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Preface

Fixed-point theory is one of the major research areas in nonlinear analysis. This is
partly due to the fact that in many real-world problems, fixed-point theory is the
basic mathematical tool used to establish the existence of solutions to problems
which arise naturally in applications. As a result, fixed-point theory is an important
area of study in pure and applied mathematics, and it is a flourishing area of research.
As the title states, this is a book on metric fixed-point theory where the basic ideas
come from metric space topology. We present a self-contained account of the theory
(techniques and results) in metric-type spaces (in particular in G-metric spaces).

The book consists of 12 chapters. The first three chapters present some prelim-
inaries and historical notes on metric spaces (in particular G-metric spaces) and
on mappings. A variety of Banach-type contraction theorems in metric-type spaces
are established in Chaps. 4, 6, 7, and 8. Fixed-point theory in partially ordered
G-metric spaces is discussed in Chaps. 5 and 8. Fixed-point theory for expansive
mappings in metric-type spaces is presented in Chap. 9. The final three chapters
discuss generalizations and present results and techniques in a very general abstract
setting and framework.
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de-Hierro.
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Chapter 1
Introduction with a Brief Historical Survey

In 1906, Fréchet [78] gave the formal definition of the distance1 by introducing a
function d that assigns a nonnegative real number d.x; y/ (the distance between x
and y) to every pair .x; y/ of elements (points) of a nonempty set X. It is assumed
that this function satisfies the following conditions:

.d1/ d.x; y/ D 0 if x and y coincide;

.d2/ d.x; y/ > 0 if x and y are distinct;

.d3/ d.x; y/ D d.y; x/ for all x and y in X;

.d4/ d.x; y/ � d.x; z/C d.z; y/ for all x, y and z in X.

The pair .X; d/ is called a metric space.

1.1 2-Metric Spaces

In the sixties, the notion of a 2-metric space was introduced by Gähler [79, 80] in a
series of papers which he claimed to be a generalization of ordinary metric spaces.
This structure is as follows:

Let X be a nonempty set. A function d W X � X �! RC is said to be a 2-metric
on X if it satisfies the following properties:

.t1/ For distinct points x; y 2 X, there is a point z 2 X such that d.x; y; z/ ¤ 0,

.t2/ d.x; y; z/ D 0 if any two elements of the triplet .x; y; z/ are equal,

.t3/ d.x; y; z/ D d.x; z; y/ D : : :, (symmetry),

.t4/ d.x; y; z/ � d.x; y; a/ C d.x; a; z/ C d.a; y; z/ for all x; y; z 2 X, (triangle
inequality).

1It was called metric first by F. Hausdorff [92].
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2 1 Introduction with a Brief Historical Survey

A nonempty set X together with a 2-metric d is called a 2-metric space.
In [79], Gähler claimed that a 2-metric function is a generalization of an ordinary

metric function. Ha et al. in [90] showed that a 2-metric need not be a continuous
function of its variables. In particular the contraction mapping theorem in metric
spaces and in 2-metric spaces are unrelated. Dhage [64] introduced a new structure
of a generalized metric space called a D-metric space.

1.2 D-Metric Spaces

Definition 1.2.1. A nonempty set X, together with a function D W X � X � X !
Œ0;1/ is called a D-metric space, denoted by .X;D/ if D satisfies

.i/ D.x; y; z/ D 0 if and only if x D y D z, (coincidence),
.ii/ D.x; y; z/ D D.px; y; z/, where p is a permutation of x; y; z (symmetry),
.iii/ D.x; y; z/ � D.x; y; a/ C D.x; a; z/ C D.a; y; z/ for all x; y; z; a 2 X, (tetrahe-

dral inequality).

The nonnegative real function D is called a D-metric on X. The set X together
with such a generalized metric D is called a generalized metric space, or D-metric
space, and denoted by .X;D/.

An additional property sometimes imposed on a D-metric (see [65]) is,

D.x; y; y/ < D.x; z; z/C D.z; y; y/ for all x; y; z 2 X:

If D.x; x; y/ D D.x; y; y/ for all x; y 2 X, then D is referred to as a symmetric
D-metric.

The perimeter of a triangle of vertices x; y; z in R
2 provided the typical example

of a D-metric. Dhage [64] also gave the following examples of D-metrics:

.Es/ Ds.d/.x; y; z/ D 1

3
.d.x; y/C d.y; z/C d.z; x//; and

.Em/ Dm.d/.x; y; z/ D maxfd.x; y/; d.y; z/; d.z; x/g;

where .X; d/ is a metric space and x; y; z 2 X.

Definition 1.2.2. In a D-metric space .X;D/, three possible notions for the conver-
gence of a sequence fxng to a point x suggest themselves:

.C1/ xn ! x if D.xn; x; x/ ! 0 as n ! 1;

.C2/ xn ! x if D.xn; xn; x/ ! 0 as n ! 1;

.C3/ xn ! x if D.xm; xn; x/ ! 0 as m; n ! 1;
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Clearly, .C3/ ! .C2/ and if D is symmetric then .C1/ $ .C2/. No other
implications are true in general. For more details, see the works of Mustafa and
Sims [142, 154].

In [64], Dhage also defined Cauchy sequences in a D-metric space as follows.

Definition 1.2.3. A sequence fxng � X is said to be D-Cauchy if, for each " > 0,
there exists a positive integer n0 such that, for all m > n > p � n0, D.xm; xn; xp/ < ".

In [64], Dhage mentioned the possibility of defining two topologies, denoted
by �� and � , in any D-metric space, with convergence in the sense of .C3/
corresponding to convergence in the � -topology. More details were presented in
two subsequent papers, [68] and [65].

1.3 Some Problems with D-Metric Spaces

In [64], the ��-topology is generated by the family of open balls of the form

.B1/ B�.x; r/ WD fy 2 X; D.x; y; y/ < rg

where x 2 X and r > 0.
The convergence of a sequence in the ��-topology is equivalent to its .C2/

convergence. However, in [65], where the ��-topology was discussed, D-metric
convergence of a sequence is taken to mean that it converges in both the sense of
.C2/ and .C1/, and it is claimed that the D-metric topology (here the ��-topology)
is the same as the topology of D-metric convergence of sequences in X (in the sense
of .C1/ and .C2/ convergence). This claim is not true; see Mustafa and Sims [154]
where some examples are presented to affirm this assertion. Thus, the notion of a
D-metric convergence is stronger than convergence in the ��-topology. However,
Mustafa and Sims [154] tried to correct this by taking convergence to mean only in
the sense of .C2/, but they encountered a new problem; namely, they constructed a
sequence fxng which is convergent (in the sense of .C2/), but is not D-Cauchy.

The first attempt to define a � -topology [64] is as follows.

.B2/ B.x; r/ WD \z2Xfy; z 2 X; D.x; y; z/ < rg

where x 2 X and r > 0. A second attempt [68] in order to modify the definition of
� -topology is

.B2/0 B.x; r/ WD fy; z 2 X; D.x; y; z/ < rg:

Dhage (Theorem 6.1.2 in [68]) claimed that if a D-Cauchy sequence of points in a
D-metric space contains a convergent (in the sense of .C3/) subsequence, then the
sequence is itself convergent. However, Mustafa and Sims [154] provided a concrete
example showing that this is not generally valid.
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Moreover, Dhage [68] took the distance between a point x and a subset A of
.X;D/ to be

d.x; x;A/ DW inffD.x; x; a/; a 2 Xg

and claimed that the function f .x/ WD d.x; x;A/ is continuous in both the � -topology
[68], and the ��-topology [65]. However, the proofs of Lemma 5.1 in [68] and
Lemma 1.2 in [65] rely on the continuity of D in the respective topologies and also
contain errors; for more details see [142, 154]. Mustafa and Sims [154] showed also
that even a symmetric D-metric arising from a semi-metric, need not be a continuous
function of its variables with respect to convergence in the sense of .C3/, contrary
to the claim in [64], Lemma 2.1.



Chapter 2
Preliminaries

In this section we present fundamental definitions and elementary results (see
Apostol [23], Bourbaki [51], and Schweizer and Sklar [186]).

2.1 Sets, Mappings and Sequences

In the sequel, N D f0; 1; 2; 3; : : :g denotes the set of all nonnegative integers, R
denotes the set of all real numbers and Œ0;1/ (respectively, .0;1/) denotes the
interval of nonnegative (respectively, positive) reals. The absolute value jxj of a real
number x is the maximum between x and �x, that is, jxj D maxfx;�xg.

Henceforth, X and Y will denote nonempty sets. Elements of X are usually called
points. Given a positive integer n, we use Xn to denote the nth Cartesian power of
X, that is, X � X � : : : � X (n times).

Let f W X ! Y be a mapping. The domain of f is X and it is denoted by Dom f . Its
range, that is, the set of values of f in Y , is denoted by f .X/ or by Ran f . A mapping
f is completely characterized by its domain, its range, and the manner in which each
origin x 2 Dom f is applied on its image f .x/ 2 f .X/. For any set X, we denote the
identity mapping on X by IX W X ! X, which is defined by IX.x/ D x for all x 2 X.

A mapping f W X ! Y is said to be:

• injective (or one to one) if x D y for all x; y 2 X such that f .x/ D f .y/;
• injective on a subset U � X if x D y for all x; y 2 U such that f .x/ D f .y/;
• surjective (or onto) on a subset V � Y if for all y 2 V , there exists x 2 X such

that f .x/ D y;
• surjective (or onto) if for all y 2 Y , there exists x 2 X such that f .x/ D y;
• bijective if it is both injective and surjective.

Proposition 2.1.1. If T W X ! X is onto, then there exists a mapping T 0 W X ! X
such that T ı T 0 is the identity mapping on X.

© Springer International Publishing Switzerland 2015
R.P. Agarwal et al., Fixed Point Theory in Metric Type Spaces,
DOI 10.1007/978-3-319-24082-4_2
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6 2 Preliminaries

Proof. For any point x 2 X, let yx 2 X be any point such that T.yx/ D x. Let
T 0.x/ D yx for all x 2 X. Then T.T 0.x// D T.yx/ D x for all x 2 X. ut

Given two mappings f W X ! Y and g W Y ! Z, the composite of f and g is the
mapping g ı f W X ! Z given by

.g ı f / .x/ D g.f .x// for all x 2 Dom f :

We say that two self-mappings f ; g W X ! X are commuting if f .g .x// D g .f .x//
for all x 2 X (that is, f ı g D g ı f ).

The iterates of a self-mapping f W X ! X are the mappings ff n W X ! Xgn2N
defined by

f 0 D IX; f 1 D f ; f 2 D f ı f ; f nC1 D f ı f n for all n � 2:

If f W X ! X is a self-mapping, the orbit Of .x/ of a point x 2 X is

Of .x/ D ff n.x/ W n 2 Ng D fx; f .x/; f 2.x/; f 3.x/; : : :g:

The following facts are basic notions and properties about sequences. A sequence
in the set X is a function x W N ! X. The point x.n/ 2 X will be denoted by xn,
and the sequence x will be denoted by fxngn2N or, simply, by fxng (we will use both
notations). We will write fxng � X to clarify that fxng is a sequence whose terms are
points of X. A subsequence of fxngn2N is a sequence fxm.k/gk2N, where m W N ! N

is a strictly increasing function, that is, m.k/ < m.kC1/ for all k 2 N. Given n0 2 N,
the sequence fxngn�n0 is the subsequence y W N ! X defined by y.n/ D x.n C n0/
for all n 2 N.

A sequence of real numbers is a sequence fang � R (symbol � is used to denote
that an 2 R for all n 2 N but we know that it is impossible that fan W n 2 Ng is the
whole set R). We will say that:

• fang is a Cauchy sequence if for all " > 0, there exists n0 2 N such that
jan � amj � " for all n;m � n0:

• fang converges to L 2 R (and we will denote it by fang ! L) if for all " > 0,
there exists n0 2 N such that jan � Lj � " for all n � n0.

One of the most useful properties in analysis is known as the squeeze theorem or
the sandwich lemma.

Lemma 2.1.1. Let fang, fbng and fcng be three sequences of real numbers such that
an � bn � cn for all n 2 N. If there exists L 2 R such that fang ! L and fcng ! L,
then fbng ! L.

Proof. Let " > 0 be arbitrary. Since fang ! L, there exists n1 2 N such
that jan � Lj � " for all n � n1. Similarly, as fcng ! L, there exists n2 2 N

such that jcn � Lj � " for all n � n2. Let n0 D maxfn1; n2g 2 N. Therefore, if
n 2 N is such that n � n0, then
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bn � L � cn � L � jcn � Lj � " and

L � bn � L � an � jan � Lj � ":

As a consequence,

jbn � Lj D max fbn � L;L � bng � "

for all n � n0, which means that fbng ! L. ut
Corollary 2.1.1. Let fang and fbng be two sequences of non-negative real numbers
such that an � bn for all n 2 N. If fbng ! 0, then fang ! 0.

Corollary 2.1.2. Let fang; fbng; fcng � Œ0;1/ be three sequences of non-negative
real numbers such that fmax .an; bn/g ! 0 and fmax .an; bn; cn/g ! L, where
L 2 Œ0;1/. Then fcng ! L.

Proof. Notice that, for all n 2 N,

0 � jL � cnj � jL � max .an; bn; cn/j C jmax .an; bn; cn/ � cnj
� jL � max .an; bn; cn/j C max .an; bn; cn/ � cn

� jL � max .an; bn; cn/j C max .an; bn/C cn � cn

D jL � max .an; bn; cn/j C max .an; bn/ :

Since fjL � max .an; bn; cn/j C max .an; bn/gn2N ! 0, then Corollary 2.1.1 implies
that fjL � cnjgn2N ! 0, which means that fcngn2N ! L. ut
Corollary 2.1.3. Let fa1ngn2N; : : : ; faN

n gn2N � Œ0;1/ be N sequences of non-
negative real numbers such that fmax.a1n; : : : ; a

N
n /gn2N ! 0. Then fai

ngn2N ! 0

for all i 2 f1; 2; : : : ;Ng.

Proof. It follows from Corollary 2.1.1 taking into account that 0 � ai
n � bn for all

i 2 f1; 2; : : : ;Ng and all n 2 N, where bn D max.a1n; : : : ; a
N
n / for all n 2 N. ut

If the maximum does not necessarily converge to zero, then we have the
following statement.

Lemma 2.1.2. Let fa1ngn2N; : : : ; faN
n gn2N be N real lower bounded sequences such

that fmax.a1n; : : : ; a
N
n /gn2N ! ı. Then there exists i0 2 f1; 2; : : : ;Ng and a

subsequence fai0
n.k/gk2N such that fai0

n.k/gk2N ! ı.

Proof. Let bn D max.a1n; a
2
n; : : : ; a

N
n / for all n 2 N. As fbng is convergent,

it is bounded. As ai
n � bn for all n 2 N and i 2 f1; 2; : : : ;Ng, then

every fai
ng is bounded. As fa1ngn2N is a real bounded sequence, it has a

convergent subsequence fa1�1.n/gn2N ! a1. Consider the subsequences

fa2�1.n/gn2N; fa3�1.n/gn2N; : : : ; faN
�1.n/

gn2N, that are N � 1 real bounded sequences,

and the sequence fb�1.n/gn2N that also converges to ı. As fa2�1.n/gn2N is a real
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bounded sequence, it has a convergent subsequence fa2�2�1.n/gn2N ! a2. Then

the sequences fa3�2�1.n/gn2N, fa4�2�1.n/gn2N, : : :, faN
�2�1.n/

gn2N also are N � 2 real

bounded sequences and fa1�2�1.n/gn2N ! a1 and fb�2�1.n/gn2N ! ı. Repeating this

process N times, we can find N subsequences fa1�.n/gn2N, fa2�.n/gn2N, : : :, fan
�.n/gn2N

(where � D �n : : : �1) such that fai
�.n/gn2N ! ai for all i 2 f1; 2; : : : ;Ng. Now

fb�.n/gn2N ! ı. Note

fb�.n/gn2N D fmax.a1�.n/; : : : ; a
N
�.n//gn2N ! max.a1; : : : ; aN/;

so ı D max.a1; : : : ; aN/ and there exists i0 2 f1; 2; : : : ;Ng such that ai0 D ı.
Therefore, there exists i0 2 f1; 2; : : : ;Ng and a subsequence fai0

�.n/gn2N such that

fai0
�.n/gn2N ! ai0 D ı. ut

Lemma 2.1.3. Let fa1ngn2N; fa2ngn2N; : : : ; faN
n gn2N � Œ0;1/ be N sequences of

nonnegative real numbers and assume that there exists � 2 Œ0; 1/ such that

a1nC1 C a2nC1 C : : :C aN
nC1 � �

�
a1n C a2n C : : :C aN

n

�
for all n 2 N:

Then fai
ngn2N ! 0 for all i 2 f1; 2; : : : ;Ng.

Proof. Let bn D a1n C a2n C : : :C aN
n for all n 2 N. Then we have that bn � �bn�1 �

�2bn�2 � : : : � �nb0. If b0 D 0, then bn D 0 for all n 2 N and, in particular, ai
n D 0

for all n 2 N and all i 2 f1; 2; : : : ;Ng. Hence fai
ng ! 0 for all i 2 f1; 2; : : : ;Ng.

Suppose that b0 > 0 and let " > 0 be arbitrary. As � 2 Œ0; 1/, the geometric
sequence f�ng converges to zero. Therefore, there exists n0 2 N such that

�n0 � "

b0
:

Therefore, for all n 2 N such that n � n0, we have that

0 � bn � �nb0 � �n0b0 � "

b0
b0 D ":

Hence, fbng ! 0. Now as 0 � ai
n � bn for all n 2 N and all i 2 f1; 2; : : : ;Ng, we

conclude that fai
ng ! 0 for all i 2 f1; 2; : : : ;Ng. ut

Corollary 2.1.4. Let fang � Œ0;1/ be a sequence and assume that there exists
� 2 Œ0; 1/ such that anC1 � �an for all n 2 N. Then fang ! 0.

In the sequel, we will use sequences that depends on two natural numbers, so we
introduce the following notation. A double sequence of nonnegative real numbers is
a function A W N � N ! Œ0;1/. Given a number L 2 Œ0;1/, we will write:

• lim
n;m!1 A.n;m/ D L if for all " > 0, there exists n0 2 N such that jA.n;m/ � Lj �
" for all n;m 2 N verifying n � n0 and m � n0;
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• lim
n;m!1; n�m

A.n;m/ D L if for all " > 0, there exists n0 2 N such that

jA.n;m/ � Lj � " for all n;m 2 N verifying m � n � n0;
• lim

n;m!1; n<m
A.n;m/ D L if for all " > 0, there exists n0 2 N such that

jA.n;m/ � Lj � " for all n;m 2 N verifying m > n � n0.

For simplicity, we will use the notation “n;m � n0” when “n � n0 and m � n0”.
If L D 0, then the previous notions can be written as follows.

• lim
n;m!1 A.n;m/ D 0 if for all " > 0, there exists n0 2 N such that A.n;m/ � " for

all n;m 2 N verifying n;m � n0;
• lim

n;m!1; n�m
A.n;m/ D 0 if for all " > 0, there exists n0 2 N such that A.n;m/ � "

for all n;m 2 N verifying m � n � n0;
• lim

n;m!1; n<m
A.n;m/ D 0 if for all " > 0, there exists n0 2 N such that A.n;m/ � "

for all n;m 2 N verifying m > n � n0.

2.2 Fixed, Coincidence and Common Fixed Points

In this section we present these well known concepts from the literature.

Definition 2.2.1. Given a self-mapping T W X ! X, we will say that a point x 2 X
is a fixed point of T if Tx D x. We will denote by Fix.T/ the set of all fixed points
of T .

Similarly, given two mappings T; g W X ! X, we will say that a point x 2 X is a
coincidence point of T and g if Tx D gx, and it is a common fixed point of T and g
if Tx D gx D x. We will denote by Co.T; g/ the set of all coincidence points of T
and g.

A coincidence point of two mappings T and g is a solution of the nonlinear
equation Tx D gx. In this book we will present some sufficient conditions
to guarantee existence and, in some cases, uniqueness, of fixed, coincidence or
common fixed points in the setting of G-metric spaces.

In the past, many conditions have been introduced in order to guarantee existence
of coincidence points. One of the most simple, but useful, property is the following
one.

Lemma 2.2.1. Let T; g W Œa; b� ! R be two continuous functions such that Ta < ga
and Tb > gb. Then T and g have, at least, a coincidence point c 2 .a; b/.
Remark 2.2.1. If T and g are commuting and x is a coincidence point of T and g,
then y D Tx is also a coincidence point of T and g. It follows from Ty D Tgx D
gTx D gy.
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2.3 Control Functions

This section introduces examples of functions that are usually involved in establish-
ing fixed (or coincidence) point results.

Next, we list a collection of properties on a mapping � W Œ0;1/ ! Œ0;1/.

.P1/ � is non-decreasing, that is, if 0 � t � s, then � .t/ � � .s/.

.P2/ � is increasing, that is, if 0 � t < s, then � .t/ < � .s/.

.P3/ � .t/ D 0 if, and only if, t D 0 (this is equivalent to say that ��1 .f0g/ D f0g).

.P4/ � is continuous.

.P5/ � is right-continuous.

.P6/ � is left-continuous.

.P7/ � is lower semi-continuous.

.P8/ � is upper semi-continuous.

.P9/ There exist k0 2 N, � 2 .0; 1/ and a convergent series
P

k�1vk of non-
negative real numbers such that

�kC1 .t/ � ��k .t/C vk for all t > 0 and all k � k0:

.P10/ The series
P

n�1
�n .t/ converges for all t > 0.

.P11/ lim
n!1�n .t/ D 0 for all t > 0.

.P12/ � .t/ < t for all t > 0.

.P13/ lim
t!0C

� .t/ D 0.

.P14/ lim
s!tC

� .s/ < t for all t > 0.

.P15/ lim
s!t

� .s/ > 0 for all t > 0.

.P16/ � .t/ < 1 for all t � 0, that is, � W Œ0;1/ ! Œ0; 1/.

.P17/ If ftng � Œ0;1/ is a sequence such that f� .tn/g ! 1, then ftng ! 0.

.P18/ � is subadditive, that is, � .t C s/ � � .t/C � .s/ for all t; s � 0.

In Table 2.1, we give some of the families we will use, together with the name of
some of those functions.

Remark 2.3.1. We have the following implications.

• .P1/ ) .P2/.
• .P4/ implies .P5/, .P6/, .P7/ and .P8/.
• .P9/ , .P10/ (see [37]).
• .P10/ ) .P11/.
• .P12/ ) .P13/.
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Table 2.1 Some families of control functions

Name Family Properties

Comparison function (Matkowski [135]) Fcom .P1/C .P11/

(c)-Comparison function F .c/
com .P1/C .P9/

Altering distance function [123] Falt .P1/C .P4/C .P3/

Associated to altering distance function (I) F 0
alt .P3/C .P7/

Associated to altering distance function (II) F 00
alt .P3/C .P13/C .P15/

Geraghty function FGer .P16/C .P17/

Boyd-Wong function FBW .P8/C .P12/

Mukerjea function FMuk .P5/C .P12/

Ćirić function FCir .P12/C .P14/

Browder function FBr .P1/C .P5/

Krasnoselskii function FKr .P3/C .P4/

Auxiliary functions FA .P1/C .P3/

2.3.1 Comparison Functions

In [135], Matkowski considered functions satisfying .P1/, .P11/ and .P12/. Notice
that, in general, there is no relationship between .P11/ and .P12/. For example, the
function � W Œ0;1/ ! Œ0;1/ defined by

� .t/ D
�
0; if t ¤ 1;

2; if t D 1;

satisfies .P11/ but it does not satisfy .P12/. Conversely, the function

� .t/ D
8
<

:

0; if t � 1;
1C t

2
; if t > 1;

satisfies .P12/ but it does not satisfy .P11/ (notice that the sequence ftng, defined
by t0 D 2 and tnC1 D �.tn/ for all n 2 N, converges to 1). However, when � is
non-decreasing, we have the following relationship.

Proposition 2.3.1 (Matkowski [135]). .P1/C .P11/ ) .P12/.

Proof. Assume that .P12/ is false. Then, there exists t0 > 0 such that t0 � � .t0/.
As � is non-decreasing, then � .t0/ � � .� .t0//, which implies that t0 � � .t0/ �
�2 .t0/. By induction, it can be proved that t0 � �n .t0/ for all n 2 N. Then .P11/
cannot hold. ut
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Although functions satisfying .P1/ and .P11/ (and, consequently, also .P12/)
could be called Matkowski functions, in the literature these functions are known as
comparison functions (see, for example, [36–38]).

Definition 2.3.1. A comparison function is a non-decreasing function � W
Œ0;1/ ! Œ0;1/ such that f�n.t/g ! 0 for all t > 0. Let Fcom denote the
family of all comparison functions.

Matkowski also pointed out the following partial converse using functions
belonging to FMuk.

Proposition 2.3.2 (Matkowski [135]). .P5/C .P12/ ) .P11/.
Proof. Let � be a function verifying .P5/ and .P12/. As � is right-continuous at
t D 0 and � .t/ < t for all t > 0, then � .0/ D 0. Let t0 > 0 be arbitrary and let
tn D �n.t0/ for all n 2 N. We distinguish two cases.

Case 1. tn > 0 for all n 2 N. In this case, 0 < tnC1 D �.tn/ < tn for all n 2 N.
Then, ftng is a bounded below, decreasing sequence of real numbers. Hence, it is
convergent. Let L � 0 be its limit. As � is right-continuous,

�.L/ D lim
t!LC

�.t/ D lim
n!1�.tn/ D lim

n!1 tnC1 D L:

Thus, L D 0 and f�n.t0/g ! 0.
Case 2. There exists n0 2 N such that tn0 D 0. In this case, tn0C1 D �.tn0 / D
�.0/ D 0. By induction, tn D 0 for all n � n0, so f�n.t0/g D ftng ! 0. ut

Remark 2.3.2. In the proof of Theorem 2.2 in [127], the authors announced another
converse statement: .P12/ and .P14/ implied .P11/, that is, if � 2 FCir, then
limn!1 �n .t/ D 0 for all t > 0. Unfortunately, this is false. For example, if
� W Œ0;1/ ! Œ0;1/ is defined by

� .t/ D
�
1; if t D 0;

0; if t > 0;

then � 2 FCir but limn!1 �n .1/ does not exist because f�n .1/gn2N is the alternated
sequence f1; 0; 1; 0; 1; 0; : : :g.

Lemma 2.3.1 ([179]). If � W Œ0;1/ ! Œ0;1/ is a comparison function, then:

1. each iterate �n is also a comparison function;
2. �.t/ < t for all t > 0;
3. � is continuous at t D 0 and �.0/ D 0.

For practical reasons, Berinde introduced in [37] the notion of (c)-comparison
function as follows.
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Definition 2.3.2. A (c)-comparison function is a non-decreasing function � W
Œ0;1/ ! Œ0;1/ such that there exist k0 2 N, a 2 .0; 1/ and a convergent series of
nonnegative terms

P
k�1vk verifying

�kC1.t/ � a�k.t/C vk for all k � k0 and all t � 0:

In some sources, (c)-comparison functions are called Bianchini-Grandolfi gauge
functions (see e.g. [45, 166, 167])

Lemma 2.3.2 (Berinde [36, 37]). If � W Œ0;1/ ! Œ0;1/ is a (c)-comparison
function, then the following properties hold:

1. � is a comparison function;
2. � .t/ < t for all t 2 .0;1/;
3. � is continuous at t D 0 and �.0/ D 0;
4. the series

P
n�1�n.t/ converges for all t 2 Œ0;1/;

5. f�n .t/gn2N converges to 0 as n ! 1 for all t 2 .0;1/;
6. the function '� W Œ0;1/ ! Œ0;1/ defined by

'�.t/ D
1P

kD0
�k.t/ for all t � 0

is non-decreasing and continuous at t D 0:

2.3.2 Altering Distance Functions and Associated Functions

Definition 2.3.3 (Khan et al. [123]). An altering distance function is a continuous,
non-decreasing function � W Œ0;1/ ! Œ0;1/ such that �.t/ D 0 if, and only if,
t D 0. Let Falt denote the family of all altering distance functions.

Falt D f� W Œ0;1/ ! Œ0;1/ W � is continuous, non-decreasing

and ��1.f0g/ D f0gg:

As we shall see, many fixed point theorems involve a contractivity condition in
which two functions,  2 Falt and � 2 F 0

alt, play a key role.

Proposition 2.3.3. Falt � FA, Falt � FKr.

The following results can be found in the literature, but we recall them here for
the sake of completeness.

Proposition 2.3.4. If � W Œ0;1/ ! Œ0;1/ is a non-decreasing function and fang �
Œ0;1/ is a sequence such that � .anC1/ < � .an/ for all n 2 N, then anC1 < an for
all n 2 N. In particular, fang is convergent and L < an for all n 2 N (where L is the
limit of fang).
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Proof. If there exists some n0 2 N such that an0 � an0C1, then � .an0 / �
� .an0C1/ < � .an0 /, which is impossible. ut
Lemma 2.3.3. If � 2 FA and fang � Œ0;1/ is a sequence such that f� .an/g ! 0,
then fang ! 0.

Proof. Assume that f� .an/g ! 0 but fang does not converge to zero. This means
that there exists "0 > 0 such that, for all n 2 N, there exists m 2 N with m > n and
am � "0. In particular, fang has a subsequence fan.k/g such that an.k/ � "0 for all
k 2 N. Since ��1 .f0g/ D f0g, we have that � ."0/ > 0. Furthermore, as � is non-
decreasing, we have that 0 < � ."0/ � �.an.k// for all k 2 N. However, f�.an.k//g
is a subsequence of f� .an/g which converges to zero. This contradiction shows that
necessarily fang ! 0. ut

The previous lemma is false if we replace monotonicity by continuity. For
example, if

� .t/ D
�

t; if 0 � t � 1;

1=t; if t > 1;

then f� .n/gn2N ! 0 but fngn2N ! 1.
Many fixed point theorems use a contractivity condition involving a difference

 � � where  2 Falt and � 2 F 0
alt.

Lemma 2.3.4. Let  ; � W Œ0;1/ ! Œ0;1/ be two functions such that  is non-
decreasing and ��1 .f0g/ D f0g, and let t; s; r 2 Œ0;1/.

1. If  .t/ �  .s/ � � .r/, then t < s or r D 0.
2. If  also verifies  �1 .f0g/ D f0g and  .t/ � . � �/ .s/, then t < s or

t D s D 0. In any case, t � s.

Proof.(1) Assume that t � s and we have to prove that r D 0. Indeed, as  is
non-decreasing,  .s/ �  .t/. Therefore,

 .t/ �  .s/ � � .r/ �  .s/ �  .t/ :

As a consequence,  .t/ D  .s/ and �.r/ D 0. Therefore r D 0.
(2) Next, assume that  .t/ � . � �/ .s/ and t � s. By item (1), s D 0. Therefore,

0 �  .t/ �  .0/ � � .0/ D 0, so  .t/ D 0 and t D 0. ut
Corollary 2.3.1. Let  ; � W Œ0;1/ ! Œ0;1/ be two functions such that  is non-
decreasing and  �1 .f0g/ D ��1 .f0g/ D f0g, and let ftng; fsng � Œ0;1/ be two
sequences such that fsng ! 0.

1. If  .tn/ �  .sn/ � � .sn/ for all n 2 N, then ftng ! 0.
2. If  2 Falt and  .tn/ �  .sn/ for all n 2 N, then ftng ! 0.
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Proof.(1) By item 1 of Lemma 2.3.4, we have that, for all n 2 N, either tn < sn or
tn D sn D 0. In any case, 0 � tn � sn. Therefore, Corollary 2.1.1 implies that
ftng ! 0.

(2) As  is continuous, it follows that f .sn/g !  .0/ D 0. Corollary 2.1.1
guarantees that f .tn/g ! 0 and Lemma 2.3.3 concludes that ftng ! 0. ut

Lemma 2.3.5. Let  ; � W Œ0;1/ ! Œ0;1/ be two functions such that  is
continuous and � 2 F 0

alt. Let ftng; fsng � Œ0;1/ be two sequences that converge
to the same limit L 2 Œ0;1/ and satisfy

 .tn/ �  .sn/ � � .sn/ for all n 2 N: (2.1)

Then L D 0 and f� .sn/g ! 0.

Proof. By (2.1), we have that 0 � � .sn/ �  .sn/ �  .tn/ for all n 2 N. As  is
continuous, then

lim
n!1 .tn/ D lim

n!1 .sn/ D  .L/ :

Therefore, f� .sn/g ! 0. Since � is lower semi-continuous and f� .sn/g is
convergent,

0 � � .L/ � lim inf
n!1 �.sn/ D lim

n!1�.sn/ D 0:

Hence � .L/ D 0, which implies that L D 0. ut
Corollary 2.3.2. Let ftng; fsng � Œ0;1/ be two sequences that converge to the
same limit L 2 Œ0;1/. Assume that there exist two functions  2 Falt and � 2 F 0

alt
such that

 .tn/ �  .sn/ � � .sn/ for all n 2 N:

Then L D 0 and f� .sn/g ! 0.

Proof. It is a particular case of Lemma 2.3.5. ut
Corollary 2.3.3. Let � 2 F 0

alt and let ftng; fsng � Œ0;1/ be two sequences that
converge to the same limit L 2 Œ0;1/ and satisfy

tn � sn � � .sn/ for all n 2 N:

Then L D 0 and f� .sn/g ! 0.

Proof. This is the particular case of Lemma 2.3.5 in which  .t/ D t for all t � 0.
ut
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Lemma 2.3.6. Let  2 Falt, � 2 F 0
alt and let ftng � Œ0;1/ be a sequence such that

 .tnC1/ �  .tn/ � � .tn/ for all n 2 N: (2.2)

Then ftng ! 0.

Proof. We distinguish two cases.

Case 1. Assume that there exists some n0 2 N such that tn0 � tn0C1. Since  is
non-decreasing,

 .tn0C1/ �  .tn0 / � � .tn0 / �  .tn0 / �  .tn0C1/ :

Therefore  .tn0 / D  .tn0C1/ and � .tn0 / D 0. As � 2 F 0
alt, we deduce that

tn0 D 0. By (2.2),  .tn0C1/ �  .0/ � � .0/ D 0, so  .tn0C1/ D 0 and also
tn0C1 D 0. Repeating this argument, we deduce that tn D 0 for all n � n0. In
particular, ftng ! 0.

Case 2. Assume that tnC1 < tn for all n 2 N. Then ftng is a strictly decreasing
sequence of nonnegative real numbers. Then, there exists L � 0 such that ftng !
L. Since 0 � � .tn/ �  .tn/ �  .tnC1/ for all n 2 N and  is continuous, then
f�.tn/g ! 0. Using the same argument of the proof of Lemma 2.3.5,

0 � � .L/ � lim inf
n!1 �.sn/ D lim

n!1�.sn/ D 0;

which implies that L D 0.
ut

If  .t/ D t for all t � 0 in the previous lemma, then we get the following result.

Corollary 2.3.4. Let � 2 F 0
alt and let ftng � Œ0;1/ be a sequence such that

tnC1 � tn � � .tn/ for all n 2 N:

Then ftng ! 0.

Given  2 Falt and � 2 F 0
alt, if s � t, then  .s/ �  .t/. However, we do not

know the relationship between  .t/ � � .t/ and  .s/ � � .s/. The following result
is an approach to this case.

Lemma 2.3.7. Let  ; � W Œ0;1/ ! Œ0;1/ be two functions such that � .0/ D 0

and  �1 .f0g/ D f0g. Let ftng; fsng � Œ0;1/ be two sequences such that, for all
n 2 N,

sn � tn;  .tnC1/ � max f .tn/ � � .tn/ ;  .sn/ � � .sn/g :
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Then the following properties hold.

1. If there exists some n0 2 N such that tn0 D 0, then tn D 0 for all n � n0.
In particular, ftng ! 0 and fsng ! 0.

2. If  is non-decreasing, ��1 .f0g/ D f0g and tn > 0 for all n 2 N, then tnC1 � tn
for all n 2 N.

3. If  2 Falt and � 2 F 0
alt, then the sequences ftng, fsng, f� .tn/g and f� .sn/g

converge to zero.

Proof.(1) Since 0 � sn0 � tn0 D 0, then tn0 D sn0 D 0. Therefore

0 �  .tn0C1/ � max f .tn0 / � � .tn0 / ;  .sn0 / � � .sn0 /g
D  .0/ � � .0/ D 0:

As  �1 .f0g/ D f0g, then tn0C1 D 0. By induction, the same argument proves
that tn D 0 for all n � n0.

(2) Assume that  is non-decreasing, ��1 .f0g/ D f0g and tn > 0 for all n 2 N.
Since sn � tn, then  .sn/ �  .tn/. Therefore, for all n 2 N,

 .tnC1/ � maxf .tn/ � �.tn/;  .sn/ � �.sn/g
� maxf .tn/;  .sn/g D  .tn/: (2.3)

To prove that tnC1 � tn for all n 2 N, we reason by contradiction. Assume that
there exists some n 2 N such that tn < tnC1. In such a case,

 .tn/ �  .tnC1/ � max f .tn/ � � .tn/ ;  .sn/ � � .sn/g �  .tn/ :

Therefore,

 .tn/ D  .tnC1/ D max f .tn/ � � .tn/ ;  .sn/ � � .sn/g : (2.4)

Depending on the maximum, we distinguish two cases to get a contradiction. If

max f .tn/ � � .tn/ ;  .sn/ � � .sn/g D  .tn/ � � .tn/ ;
then  .tn/ D  .tn/ � � .tn/, so � .tn/ D 0. As ��1 .f0g/ D f0g, then tn D 0,
which contradicts the fact that tn > 0. In the other case, if

max f .tn/ � � .tn/ ;  .sn/ � � .sn/g D  .sn/ � � .sn/ ; (2.5)

then  .tn/ D  .sn/ � � .sn/. Therefore  .tn/ D  .sn/ � � .sn/ �  .tn/ �
� .sn/ �  .tn/, so  .tn/ D  .sn/ and � .sn/ D 0. As ��1 .f0g/ D f0g, then
sn D 0. Hence, (2.4) and (2.5) prove that

 .tnC1/ D max f .tn/ � � .tn/ ;  .sn/ � � .sn/g D  .sn/ � � .sn/

D  .0/ � � .0/ D 0;
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so tnC1 D 0, which also contradicts the fact that tnC1 > 0. As a consequence, in
any case we get a contradiction. Then the case tn < tnC1 is impossible and we
conclude that tnC1 � tn for all n 2 N.

(3) If there exists some n0 2 N such that tn0 D 0, item (1) guarantees that tn D 0

for all n � n0. As 0 � sn � tn D 0, then sn D 0 and � .sn/ D 0 for all n � n0.
In particular, all sequences ftng, fsng and f� .sn/g converge to zero.

Next, assume that tn > 0 for all n 2 N. By item (2), tnC1 � tn for all n 2 N,
so ftng is a non-increasing, bounded below sequence. Then, it is convergent. Let
L D limn!1 tn. By (2.3), for all n 2 N,

 .tnC1/ � max f .tn/ � � .tn/ ;  .sn/ � � .sn/g �  .tn/ :

As  is continuous, letting n ! 1 in the previous inequality, we deduce that

lim
n!1 max f .tn/ � � .tn/ ;  .sn/ � � .sn/g D  .L/ :

From Lemma 2.1.2 we deduce that there exists a subsequence of one of the
sequences f .tn/ � � .tn/g and f .sn/ � � .sn/g that converge to  .L/. Then,
we distinguish two cases.

Let f .tn.k//��.tn.k//gk2N be a subsequence of f .tn/ � � .tn/gn2N such that
f .tn.k// � �.tn.k//gk2N !  .L/. Then, as  is continuous and ftn.k/g ! L, it
follows that

lim
k!1�

�
tn.k/

� D lim
k!1

�
 
�
tn.k/

� � �
 
�
tn.k/

� � � �tn.k/
�� �

D  .L/ �  .L/ D 0:

As � is lower semi-continuous at t D L, then

0 � � .L/ � lim inf
t!L

� .t/ � lim
k!1�

�
tn.k/

� D 0:

Then, � .L/ D 0, so L D 0, which proves that ftng ! L D 0.
For the other case, let f .sn.k// � �.sn.k//gk2N be a subsequence of

f .sn/ � � .sn/gn2N such that

˚
 
�
sn.k/

� � � �sn.k/
��

k2N !  .L/ :

As 0 � sn.k/ � tn.k/ for all k 2 N and ftn.k/g ! L, then fsn.k/g is a bounded
sequence of real numbers. As a consequence, it has a convergent subsequence.
Let fsn0.k/gk2N be a convergent subsequence of fsn.k/g. Then, there exists L0 � 0

such that

fsn0.k/gk2N ! L0 and f .sn0.k// � �.sn0.k//gk2N !  .L/ : (2.6)
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Since 0 � sn0.k/ � tn0.k/ for all k 2 N and ftn.k/g ! L, then 0 � L0 � L. As  is
non-decreasing, then  .L0/ �  .L/. As  is continuous, then

0 � lim
k!1�

�
sn0.k/

� D lim
k!1

�
 
�
sn0.k/

� � �
 
�
sn0.k/

� � � �sn0.k/
�� �

D  
�
L0� �  .L/ � 0:

In particular,

lim
k!1�

�
sn0.k/

� D 0: (2.7)

As � is lower semi-continuous at t D L0, then

0 � �
�
L0� � lim inf

t!L0
� .t/ � lim

k!1�
�
sn0.k/

� D 0:

Hence, � .L0/ D 0, so L0 D 0. In particular, fsn0.k/gk2N ! L0 D 0. By (2.6),
(2.7) and the continuity of  , we deduce that

 .L/ D lim
k!1

�
 
�
sn0.k/

� � � �sn0.k/
� � D  .0/ � 0 D 0:

It follows that L D limn!1 tn D 0. In any case, we have just proved that
ftng ! 0.

Since 0 � sn � tn for all n 2 N, then fsng ! 0. Furthermore, for all n 2 N,

 .tnC1/ � max f .tn/ � � .tn/ ;  .sn/ � � .sn/g
�  .tn/ � � .tn/C  .sn/ � � .sn/ ;

which implies that

0 � max f� .tn/ ; � .sn/g � � .tn/C � .sn/ �  .tn/C  .sn/ �  .tnC1/ :

As  is continuous, we deduce that fmax f� .tn/ ; � .sn/gg ! 0, so the
sequences f� .tn/g and f� .sn/g converge to zero. ut

In the next result, we employ convergent sequences.

Lemma 2.3.8. Let  2 Falt and � 2 F 0
alt be two functions and let ftng; fsng; frng �

Œ0;1/ be three sequences such that, for all n 2 N,

rn � sn;  .tn/ � max f .sn/ � � .sn/ ;  .rn/ � � .rn/g :

If there exists some L 2 Œ0;1/ such that ftng ! L and fsng ! L, then L D 0.
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Proof. Since  is non-decreasing,  .rn/ �  .sn/. Then, for all n 2 N,

 .tn/ � max f .sn/ � � .sn/ ;  .rn/ � � .rn/g
� max f .sn/ ;  .rn/g �  .sn/ :

As  is continuous and ftng ! L and fsng ! L, Lemma 2.1.1 guarantees that

lim
n!1 max f .sn/ � � .sn/ ;  .rn/ � � .rn/g D  .L/ :

From Lemma 2.1.2 we deduce that there exists a subsequence of one of the
sequences f .sn/ � � .sn/g and f .rn/ � � .rn/g that converge to  .L/. Then, we
distinguish two cases.

Let f �sn.k/
�� � �sn.k/

�gk2N be a subsequence of f .sn/ � � .sn/gn2N such that
f �sn.k/

� � �
�
sn.k/

�gk2N !  .L/. Then, as  is continuous and fsn.k/g ! L, it
follows that

lim
k!1�.sn.k// D lim

k!1
�
 
�
sn.k/

� � �
 
�
sn.k/

� � � �sn.k/
�� �

D  .L/ �  .L/ D 0:

As � is lower semi-continuous at t D L, then

0 � � .L/ � lim inf
t!L

� .t/ � lim
k!1�

�
sn.k/

� D 0:

Then, � .L/ D 0, so L D 0.
For the other case let f �rn.k/

� � �
�
rn.k/

�gk2N be a subsequence of
f .rn/ � � .rn/gn2N such that

˚
 
�
rn.k/

� � � �rn.k/
��

k2N !  .L/ :

As 0 � rn.k/ � sn.k/ for all k 2 N and fsn.k/g ! L, then frn.k/g is a bounded sequence
of real numbers. As a consequence, it has a convergent subsequence. Let frn0.k/gk2N
be a convergent subsequence of frn.k/g. Then, there exists L0 � 0 such that

frn0.k/gk2N ! L0 and f .rn0.k// � �.rn0.k//gk2N !  .L/ : (2.8)

Since 0 � rn0.k/ � sn0.k/ for all k 2 N and fsn.k/g ! L, then 0 � L0 � L. As  is
non-decreasing, then  .L0/ �  .L/. As  is continuous, then

0 � lim
k!1�.rn0.k// D lim

k!1
�
 .rn0.k// � �

 .rn0.k// � �.rn0.k//
� �

D  
�
L0� �  .L/ � 0:
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In particular,

lim
k!1�.rn0.k// D 0: (2.9)

As � is lower semi-continuous at t D L0, then

0 � �
�
L0� � lim inf

t!L0
� .t/ � lim

k!1�.rn0.k// D 0:

Hence, � .L0/ D 0, so L0 D 0. In particular, frn0.k/gk2N ! L0 D 0. By (2.8), (2.9)
and the continuity of  , we deduce that

 .L/ D lim
k!1

�
 .rn0.k// � �.rn0.k//

� D  .0/ � 0 D 0:

As  2 Falt, condition  .L/ D 0 implies that L D 0. In any case, we have just
proved that L D 0. ut
Remark 2.3.3. As we have mentioned before, many fixed point theorems use a
contractivity condition involving a difference  � � where  2 Falt and � 2 F 0

alt.
As we shall see, most of them are also valid using � 2 F 00

alt. However, there is no
relationship of inclusion between the classes F 0

alt and F 00
alt of functions associated to

altering distance functions. For example, on the one hand, the function

� .t/ D
�
0; if t D 0;

1; if t > 0;

belongs to F 0
alt, but it does not satisfy .P13/. Hence, � 2 F 0

altŸF 00
alt. On the other

hand, the function

� .t/ D
8
<

:

t; if 0 � t < 1;
2; if t D 1;

1; if t > 1;

belongs to F 00
alt, but it does not satisfy .P7/. Hence, � 2 F 00

altŸF 0
alt.

Next, we repeat Lemmas 2.3.2 and 2.3.6 using � 2 F 00
alt.

Lemma 2.3.9. Let ftng; fsng � Œ0;1/ be two sequences that converge to the same
limit L 2 Œ0;1/. Assume that there exist two functions  2 Falt and � 2 F 00

alt such
that

 .tn/ �  .sn/ � � .sn/ for all n 2 N: (2.10)

Then L D 0.
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Proof. By contradiction, assume that L > 0. As � satisfies axiom .P15/, then ` D
lims!L � .s/ > 0. Since  is continuous, taking the limit in (2.10) as n ! 1, we
deduce that  .L/ �  .L/ � `, which is impossible because ` > 0. Hence, L D 0.

ut
Lemma 2.3.10. Let  2 Falt, � 2 F 00

alt and let ftng � Œ0;1/ be a sequence such
that

 .tnC1/ �  .tn/ � � .tn/ for all n 2 N: (2.11)

Then ftng ! 0.

Proof. By item 2 of Lemma 2.3.4, tnC1 � tn for all n 2 N. Then, ftng is a non-
increasing sequence of non-negative real numbers. Hence, it is convergent. If we
denote its limit by L, then Lemma 2.3.9 guarantees that L D 0. Thus, ftng ! 0. ut

2.3.3 Ćirić Functions

Inspired by Boyd and Wong [52] and Mukherjea [141], Lakshmikantham and Ćirić
considered in [127] functions satisfying axioms .P12/ and .P14/.
Lemma 2.3.11. Let � 2 FCir be a function and let famg � Œ0;1/ be a sequence.

1. If M � 0, then �.t/ � max.�.0/;M/ for all t 2 Œ0;M�. In particular, �.t/ �
max.�.0/; t/ for all t � 0.

2. If amC1 � �.am/ for all m 2 N, then amCk � max.�.0/; am/ for all m; k � 0.
3. If amC1 � �.am/ and am ¤ 0 for all m 2 N, then famg ! 0.
4. If there exists L � 0 such that famg ! L and satisfying L � �.am/ for all m 2 N,

then L D 0.
5. Let fbmg � Œ0;1/ be a sequence such that bm � � .am/ for all m 2 N and

verifying the following condition:

if there exists some m0 2 N such that am0 D 0, then bm0 D 0: (2.12)

Then bm � am for all m 2 N. As a result, if famg ! 0, then fbmg ! 0.
6. Assume that amC1 � �.am/ for all m 2 N and the following property holds: if

there exists some m0 2 N such that am0 D 0, then am0C1 D 0. Then famg ! 0.
7. If �.0/ D 0, then � is continuous at t D 0.
8. If �.0/ D 0 and fbmg � Œ0;1/ is a sequence verifying am � �.bm/ for all m and

fbmg ! 0, then famg ! 0.
9. If �.0/ D 0 and amC1 � �.am/ for all m, then famg ! 0 and f�.am/g ! 0.
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Proof.(1) Fix M � 0 and let t 2 Œ0;M� arbitrary. If t D 0, it is obvious. If t > 0,
then �.t/ < t � M.

(2) If k D 0 the result is evident for all m. If k D 1, the result follows from
amC1 � �.am/ � max.�.0/; am/ for all m. Suppose, by induction, that for
some k � 1, the condition “amCk � max.�.0/; am/ for all m � 0” holds and we
are going to prove that it is also true for k C 1. Indeed, amC.kC1/ D a.mC1/Ck �
max.�.0/; amC1/ � max.�.0/;max.�.0/; am// D max.�.0/; am/.

(3) Since am ¤ 0, condition (I) implies that amC1 � �.am/ < am for all m.
Therefore, famg is a decreasing, bounded below sequence of real numbers, so it
is convergent, that is, there is L � 0 such that famg ! L. We prove that L D 0

reasoning by contradiction. Indeed, if L > 0, then 0 < L � amC1 � �.am/ < am

for all m. This proves two facts: f�.am/g ! L and famg is a strictly decreasing
sequence. Hence, by (II),

L D lim
m!1�.am/ D lim

t!LC
�.t/ < L; (2.13)

which is a contradiction. Thus L D 0.
(4) Assume that L > 0 and we will get a contradiction. Since famg ! L, then there

exists m0 2 N such that am > L=2 > 0 for all m � m0. As � 2 FCir and am > 0

for all m � m0, then

L � � .am/ < am for all m � m0: (2.14)

Taking the limit as n ! 1, we deduce that limm!1 � .am/ D L. Furthermore,
(2.14) means that famCm0g ! LC. Therefore, since � 2 FCir, we have that

L D lim
m!1� .am/ D lim

m!1� .amCn0 / D lim
s!LC

� .s/ < L;

which is a contradiction. Then, necessarily L D 0.
(5) We claim that bm � am for all m 2 N. We prove it by distinguishing two cases.

Let m 2 N be arbitrary. If am ¤ 0, then bm � � .am/ < am. On the other case,
if am D 0, then, by hypothesis, bm D 0, so bm D 0 D am. In any case, bm � am

for all m 2 N. As a result, if famg ! 0, then also fbmg ! 0.
(6) We distinguish two cases.

Case 1. Suppose that there exists some m0 2 N such that am0 D 0. In this
case, by hypothesis, am0C1 D 0. Applying again the hypothesis, am0C2 D 0.
Thus by induction, am D 0 for all m � m0. In particular, famg ! 0.

Case 2. Suppose that am ¤ 0 for all m 2 N. In this case, item 3 implies that
famg ! 0.

(7) Let fbmg � Œ0;1/ be a sequence such that fbmg ! 0. By item 1 applied to
M D bm, we deduce that 0 � �.bm/ � bm, so f�.bm/g ! 0. Therefore, � is
continuous at t D 0.

(8) Since � is continuous at t D 0, then f�.bm/g ! �.0/ D 0 and, therefore,
famg ! 0.
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(9) By item 2, amC1 � max.�.0/; am/ D am for all m � 0. Since famg is a non-
increasing, bounded below sequence of real numbers, it is convergent, that is,
there is L � 0 such that famg ! L. We prove that L D 0 reasoning by
contradiction. Indeed, if L > 0, then 0 < L � am. Hence item 3 shows that
famg ! 0, which contradicts L > 0. ut

Item 5 of Lemma 2.3.11 would not be valid if we avoid condition (2.12). For
example, let � W Œ0;1/ ! Œ0;1/ be defined by � .0/ D 1 and �.t/ D 0 for all
t > 0. Then � 2 FCir. If we consider the sequences

am D
�
0; if m is even;
1; if m is odd;

and bm D
�
1; if m is even;
0; if m is odd;

then bm � �.am/ for all m 2 N. However, condition bm � am is false when m is
even.

Lemma 2.3.12. Let � 2 FCir be a function and let ftng � Œ0;1/ be a sequence
such that tnC1 � �.tn/ for all n 2 N. Also assume that the following condition
holds:

if there exists some n0 2 N such that tn0 D 0, then tn0C1 D 0: (2.15)

Then ftng ! 0.

Proof. We distinguish two cases.

Case 1. There exists n0 2 N such that tn0 D 0. In this case, by hypothesis (2.15),
tn0C1 D 0. In fact, tn D 0 for all n � n0. In particular, ftng ! 0.

Case 2. tn > 0 for all n 2 N. In this case an easy standard argument guarantees
the result. ut

Lemma 2.3.13. Let ' 2 FCir be a function and let ftng; fsng � Œ0;1/ be two
sequences that converge to the same limit L 2 Œ0;1/ and satisfying tn � ' .sn/ and
L < sn for all n 2 N. Then L D 0.

Proof. Assume that L > 0 and we will get a contradiction. As fsng ! L, there exists
n0 2 N such that sn � L=2 > 0 for all n � n0. Moreover, as ' 2 FCir and sn ¤ 0 for
all n � n0, then we have

tn � ' .sn/ < sn for all n � n0:

Therefore, by Lemma 2.1.1,

lim
n!1' .sn/ D L:
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However, as ' 2 FCir and fsng ! LC, we have that

L D lim
n!1' .sn/ D lim

s!LC
'.s/ < L;

which is a contradiction. As a consequence, L D 0. ut
Lemma 2.3.14. Let ' 2 FCir be a function and let ftng; fsng � Œ0;1/ be two
sequences that converge to the same limit L 2 Œ0;1/ and satisfying L < tn � ' .sn/

for all n 2 N. Then L D 0.

Proof. Assume that L > 0 and we will get a contradiction. As fsng ! L, there exists
n0 2 N such that sn � L=2 > 0 for all n � n0. Moreover, as ' 2 FCir and sn ¤ 0 for
all n � n0, then we have

L < tn � ' .sn/ < sn for all n � n0:

Therefore, by Lemma 2.1.1,

lim
n!1' .sn/ D L:

However, as ' 2 FCir and fsng ! LC, we have that

L D lim
n!1' .sn/ D lim

s!LC
'.s/ < L;

which is a contradiction. As a consequence, L D 0. ut
Lemma 2.3.15. Let ' 2 FBW and let famg � Œ0;1/ be a sequence. If amC1 �
'.am/ and am ¤ 0 for all m, then famg ! 0.

2.3.4 Properties of Control Functions

In this subsection, we point out some basic facts that the reader can observe.

Remark 2.3.4. A strictly increasing function � W Œ0;1/ ! Œ0;1/ satisfies the
following property: given t; s 2 Œ0;1/,

� .t/ � � .s/ ) t � s: (2.16)

However, non-decreasing functions do not necessarily satisfy (2.16). This is the case
of altering distance functions. For example, the function

� .t/ D
�

t; if 0 � t � 1;

1; if t > 1;



26 2 Preliminaries

is an altering distance function but, using t D 2 and s D 1, it is clear that � does
not verify (2.16). To use property (2.16) in the context of non-decreasing functions
(such as altering distance functions) is a mistake that can be found sometimes in the
literature.

Remark 2.3.5. Conditions .P13/ and .P15/ are not strong enough to guarantee
property .P3/. For example, let N be a positive integer and let

AN D
�

k

N
2 Œ0;1/ W k 2 N

�
D
�
0;
1

N
;
2

N
;
3

N
; : : :

�
:

Let � W Œ0;1/ ! Œ0;1/ be the function

� .t/ D
8
<

:

0; if t 2 AN ;

t; if 0 < t < 1
N ;

1; otherwise:

Then � satisfies conditions .P13/ and .P15/. However, it takes the value zero at
infinitely many points.

Proposition 2.3.5. If  W Œ0;1/ ! Œ0;1/ is a subadditive function, then

1

n
 .t/ �  

	 t

n



for all n 2 NŸf0g and all t 2 Œ0;1/ :

Proof. Let n 2 NŸf0g and let t 2 Œ0;1/. By induction, we prove that

 .t/ D  
	

n
t

n



D  

	 t

n
C t

n
C .n/: : :C t

n




�  
	 t

n



C  

	 t

n



C .n/: : :C  

	 t

n



D n 

	 t

n



:

Hence, the conclusion holds. ut
Definition 2.3.4. A Geraghty function is a function � W Œ0;1/ ! Œ0; 1/ such that
if ftng � Œ0;1/ and f�.tn/g ! 1, then ftng ! 0. Let FGer denote the family of all
Geraghty functions.

2.4 Metric Structures

Definition 2.4.1. A metric (or a distance function) on a nonempty set X is a
mapping d W X � X ! Œ0;1/ satisfying the following conditions: for all x; y; z 2 X,
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� d.x; x/ D 0I (2.17)

� d.x; y/ > 0 if x ¤ yI (2.18)

� d.x; y/ D d.y; x/I (2.19)

� d.x; y/ � d.x; z/C d.z; y/: (2.20)

In such a case, the pair .X; d/ is called a metric space.

It is easy to show that a mapping d W X � X ! R is a metric on X if, and only if,
it satisfies the following two conditions:

.i/ d.x; y/ D 0 if, and only if, x D yI .ii/ d.x; y/ � d.z; x/C d.z; y/

for all x; y; z 2 X.

Example 2.4.1. If X is a nonempty subset of R, the Euclidean (or usual) metric on
X is d.x; y/ D jx � yj for all x; y 2 X.

Example 2.4.2. If X is a nonempty subset of Rn, the Euclidean (or usual) metric on
X is

d2.x; y/ D
p
.x1 � y1/2 C .x2 � y2/2 C : : :C .xn � yn/2

for all x D .x1; x2; : : : ; xn/; y D .y1; y2; : : : ; yn/ 2 X.

Example 2.4.3. The Euclidean metric on X � R
n is a particular case of the distance

function

dp.x; y/ D .jx1 � y1jp C jx2 � y2jp C : : :C jxn � ynjp/1=p

for all x D .x1; x2; : : : ; xn/; y D .y1; y2; : : : ; yn/ 2 X, which can be defined for all
p > 0.

Example 2.4.4. Letting p ! 1, we have the metric

d1.x; y/ D max fjx1 � y1j ; jx2 � y2j ; : : : ; jxn � ynjg

for all x D .x1; x2; : : : ; xn/; y D .y1; y2; : : : ; yn/ 2 X � R
n.

Example 2.4.5. If X is an arbitrary nonempty set, the discrete metric on X is

d.x; y/ D
�
0; if x D y;
1; if x ¤ y:

Example 2.4.6. If Y is a nonempty subset of X and d is a metric on X, then the
restriction of d to Y � Y is also a metric on Y .
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Definition 2.4.2. A mapping d W X � X ! Œ0;1/ is called:

• a quasi-metric (or a nonsymmetric metric) if it satisfies (2.17), (2.18) and (2.20);
• a semi-metric if it satisfies (2.17), (2.18) and (2.19);
• a pseudo-metric if it satisfies (2.17), (2.19) and (2.20);
• a pseudo-quasi-metric if it satisfies (2.17) and (2.20);
• an extended real-valued metric if it is allowed to assume the value 1;
• an ultrametric if, instead of (2.20), it satisfies the stronger condition

d.x; y/ � max fd.x; z/; d.z; y/g for all x; y; z 2 X: (2.21)

If d is a semi-metric on X, we say that .X; d/ is a semi-metric space (and similarly
when using other metric structures).

2.5 Quasi-metric Spaces

It is of interest to discuss quasi-metrics because these are precisely the metric struc-
ture that we obtain when repeating two arguments of a G-metric (see Lemma 3.3.1).
Therefore, we introduce convergent and Cauchy sequences, and completeness, in
the framework of quasi-metric spaces (that include the class of metric spaces). First
of all, we recall here the notion of quasi-metric and the notation we will use.

Definition 2.5.1. A quasi-metric on X is a function q W X � X ! Œ0;1/ satisfying
the following properties:

.q1/ q.x; y/ D 0 if and only if x D y;

.q2/ q.x; y/ � q.x; z/C q.z; y/ for any points x; y; z 2 X.

In such a case, the pair .X; q/ is called a quasi-metric space.

Definition 2.5.2. Let .X; q/ be a quasi-metric space, fxng be a sequence in X, and
x 2 X. We will say that:

• fxng converges to x (we denote it by fxng q�! x) if limn!1 q.xn; x/ D
limn!1 q.x; xn/ D 0;

• fxng is a Cauchy sequence if for all " > 0, there exists n0 2 N such that
q.xn; xm/ < " for all n;m � n0.

The quasi-metric space is said to be complete if every Cauchy sequence is
convergent.

As q is not necessarily symmetric, some authors distinguished between left/right
Cauchy/convergent sequences and completeness.
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Definition 2.5.3 (Jleli and Samet [97]). Let .X; q/ be a quasi-metric space, fxng be
a sequence in X, and x 2 X. We say that:

• fxng right-converges to x if limn!1 q.xn; x/ D 0;
• fxng left-converges to x if limn!1 q.x; xn/ D 0;
• fxng is a right-Cauchy sequence if for all " > 0 there exists n0 2 N such that

q.xn; xm/ < " for all m > n � n0;
• fxng is a left-Cauchy sequence if for all " > 0 there exists n0 2 N such that

q.xm; xn/ < " for all m > n � n0.

Remark 2.5.1. 1. The limit of a sequence in a quasi-metric space, if it exists, is
unique. However, this is false if we consider right-limits or left-limits.

2. If a sequence fxng has a right-limit x and a left-limit y, then x D y, fxng converges
and it has one limit (from the right and from the left). However, it is possible that
a sequence has two different right-limits when it has no left-limit.

Example 2.5.1. Let X be a subset of R containing Œ0; 1� and define, for all x; y 2 X,

q.x; y/ D
�

x � y; if x � y;
1; otherwise:

Then .X; q/ is a quasi-metric space. Note fq.1=n; 0/g ! 0 but fq.0; 1=n/g ! 1.
Therefore, f1=ng right-converges to 0 but it does not converge from the left. We also
point out that this quasi-metric satisfies the following property: if a sequence fxng
has a right-limit x, then it is unique.

Definition 2.5.4. Let .X; q/ be a quasi-metric space and let T W X ! X be a
mapping. We will say that T is right-continuous if fq.Txn;Tu/g ! 0 for all sequence
fxng � X and all u 2 X such that fq.xn; u/g ! 0.

To take advantage of some unidimensional results, we need to extend quasi-
metrics on X to the product space X2. The following is an easy way to consider
quasi-metrics on X2 via quasi-metrics on X.

Lemma 2.5.1 (Agarwal et al. [14]). Let q W X2 ! Œ0;1/ and Qq
s ;Q

q
m W X4 !

Œ0;1/ be three mappings verifying

Qq
s ..x1; x2/; .y1; y2// D q.x1; y1/C q.x2; y2/ and

Qq
m..x1; x2/; .y1; y2// D max.q.x1; y1/; q.x2; y2// for all x1; x2; y1; y2 2 X:

Then the following conditions are equivalent.

(a) q is a quasi-metric on X.
(b) Qq

s is a quasi-metric on X2.
(c) Qq

m is a quasi-metric on X2.
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In such a case, the following properties hold.

1. Every sequence f.xn; yn/g � X2 verifies:

f.xn; yn/g Q
q
s�! .x; y/ ” f.xn; yn/g Q

q
m�! .x; y/

”
h

fxng q�! x and fyng q�! y
i
:

2. f.xn; yn/g � X2 is Qq
s -Cauchy ” f.xn; yn/g is Qq

m-Cauchy
” Œfxng and fyng are q-Cauchy�:

3. Items 1 and 2 are valid from the right and from the left.
4. .X; q/ is right-complete ” .X2;Qq

s / is right-complete
” .X2;Qq

m/ is right-complete.
5. .X; q/ is left-complete ” .X2;Qq

s / is left-complete
” .X2;Qq

m/ is left-complete.
6. .X; q/ is complete ” .X2;Qq

s / is complete
” .X2;Qq

m/ is complete.
7. The following conditions are equivalent.

(7.1) Each right-convergent sequence in .X; q/ has an unique right-limit.
(7.2) Each right-convergent sequence in .X2;Qq

s / has an unique right-limit.
(7.3) Each right-convergent sequence in .X2;Qq

m/ has an unique right-limit.

2.6 Topological Structures

Definition 2.6.1. A topology on X is a family � D fAigi2ƒ of subsets of X that
includes both X and ;, and is closed under arbitrary unions and finite intersections,
that is,

� X;; 2 �;
� if ƒ0 � ƒ, then [i2ƒ0 Ai 2 �;
� if n 2 N and �1; �2; : : : ; �n 2 ƒ, then A�1 \ A�2 \ : : : \ A�n 2 �:

In such a case, we say that .X; �/ is a topological space. A subset A of X is � -open
(or open relative to � ) if A 2 � , and it is � -closed if its complement XŸA is � -open.

A subset U � X is a � -neighborhood of a point x 2 X if there exists A 2 � such
that x 2 A � U. A topology � on X satisfies the Hausdorff separation property if it
satisfies the following condition:

“for all distinct points x; y 2 X, there exists a � -neighborhood U of x and a
� -neighborhood V of y such that U \ V D ;”.
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If � is a topology on X, the family ˇx of all � -open subsets of X that contains x is
a neighborhood system at x. The following lemma provides an easy way to consider
a topology on a set X generated by the balls of a metric structure.

Lemma 2.6.1. Let X be a set and, for all x 2 X, let ˇx be a non-empty family of
subsets of X verifying:

1. x 2 B for all B 2 ˇx.
2. For all B1;B2 2 ˇx, there exists B3 2 ˇx such that B3 � B1 \ B2.
3. For all B 2 ˇx, there exists B0 2 ˇx such that for all y 2 B0, there exists B00 2 ˇy

verifying B00 � B.

Then there exists a unique topology � on X such that ˇx is a neighborhood system
at x.



Chapter 3
G-Metric Spaces

In this chapter we introduce the concept of G-metric on a set X, and we show some
of its basic properties. We provide any G-metric space with a Hausdorff topology in
which the notions of convergent and Cauchy sequences will be a key tool in almost
all proofs. Later, we will study the close relationships between G-metrics and quasi-
metrics.

3.1 G-Metric Spaces

In 2003, Mustafa and Sims [154] proved that most of the claims concerning
the topological properties of D-metrics were incorrect. In order to repair these
drawbacks, they gave a more appropriate notion of generalized metrics, called
G-metrics. Mustafa provided many examples of G-metric spaces in [142] and
developed some of their properties. For example, he proved that G-metric spaces
are provided with a Hausdorff topology which allows us to consider, among other
topological notions, convergent sequences, limits, Cauchy sequences, continuous
mappings, completeness and compactness. He also developed further topics in
G-metric spaces such as the properties of ordinary metrics derived from a G-metric,
and he investigated the properties of G-metrics derived from ordinary metrics.

Definition 3.1.1 (Mustafa and Sims [154]). A G-metric space is a pair .X;G/
where X is a nonempty set and G W X � X � X ! Œ0;1/ is a function such that, for
all x; y; z; a 2 X, the following conditions are fulfilled:

.G1/ G.x; y; z/ D 0 if x D y D z; (3.1)

.G2/ G.x; x; y/ > 0 for all x; y 2 X with x ¤ y; (3.2)

.G3/ G.x; x; y/ � G.x; y; z/ for all x; y; z 2 X with z ¤ y; (3.3)
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.G4/ G.x; y; z/ D G.x; z; y/ D G.y; z; x/ D : : : (symmetry in all 3); (3.4)

.G5/ G.x; y; z/ � G.x; a; a/C G.a; y; z/ (rectangle inequality). (3.5)

In such a case, the function G is called a G-metric on X.

The previous properties may be easily interpreted in the setting of metric spaces.
Let .X; d/ be a metric space and define G W X � X � X ! Œ0;1/ by

G.x; y; z/ D d.x; y/C d.x; z/C d.y; z/ for all x; y; z 2 X:

Then .X;G/ is a G-metric space. In this case, G.x; y; z/ can be interpreted as the
perimeter of the triangle of vertices x, y and z. For example, .G1/ means that
with one point we cannot have a positive perimeter, and .G2/ is equivalent to the
fact that the distance between two different points cannot be zero. Furthermore, as
the perimeter of a triangle cannot depend on the order in which we consider its
vertices, we have .G4/, and .G5/ is an extension of the triangle inequality using a
fourth vertex. Maybe, the most controversial axiom is .G3/, which has an obvious
geometric interpretation: the length of an edge of a triangle is less than or equal to
its semiperimeter, that is,

d .x; y/ � d .x; y/C d .y; z/C d .z; x/

2
:

Example 3.1.1. If X is a non-empty subset of R, then the function G W X � X � X !
Œ0;1/, given by

G .x; y; z/ D jx � yj C jx � zj C jy � zj for all x; y; z 2 X;

is a G-metric on X.

Example 3.1.2. Every non-empty set X can be provided with the discrete G-metric,
which is defined, for all x; y; z 2 X, by

G.x; y; z/ D
�
0; if x D y D z;
1; otherwise.

Example 3.1.3. Let X D Œ0;1/ be the interval of nonnegative real numbers and let
G be defined by:

G.x; y; z/ D
�
0; if x D y D z;
maxfx; y; zg; otherwise.

Then G is a complete G-metric on X.

Example 3.1.4. If G is a G-metric on X and ˛ > 0, then G˛ , defined by
G˛ .x; y; z/ D ˛G .x; y; z/ for all x; y; z 2 X, is another G-metric on X.
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Example 3.1.5. If G is a G-metric on X, then G0 W X3 ! Œ0;1/, given by

G0.x; y; z/ D G.x; y; z/

1C G.x; y; z/
for all x; y; z 2 X;

is another G-metric on X.

3.1.1 Basic Properties

One of the most useful properties of G-metrics is the following one.

Lemma 3.1.1. If .X;G/ is a G-metric space, then

G.x; y; y/ � 2G.y; x; x/ for all x; y 2 X: (3.6)

Proof. By the rectangle inequality (3.5) together with the symmetry (3.4), we have

G.x; y; y/ D G.y; y; x/ � G.y; x; x/C G.x; y; x/ D 2G.y; x; x/: ut
Corollary 3.1.1. Let fxng and fyng be two sequences of a G-metric space .X;G/.
Then

lim
n!1 G.xn; xn; yn/ D 0 if, and only if, lim

n!1 G.xn; yn; yn/ D 0:

Proof. It follows from the fact that, by using .G4/ and Lemma 3.1.1, for all n 2 N,

0 � G.xn; xn; yn/ � 2G.xn; yn; yn/ � 4G.xn; xn; yn/:

Therefore, Lemma 2.1.1 is applicable. ut
The following lemma can be derived easily from the definition of a G-metric

space.

Lemma 3.1.2 (See, e.g., [154]). Let .X;G/ be a G-metric space. Then, for any
x; y; z; a 2 X, the following properties hold.

1. G .x; y; z/ � G .x; x; y/C G .x; x; z/.
2. G .x; y; z/ � G .x; a; a/C G .y; a; a/C G .z; a; a/.
3. jG.x; y; z/ � G.x; y; a/j � maxfG.a; z; z/;G.z; a; a/g.
4. If n � 2 and x1; x2; : : : ; xn 2 X, then

G .x1; xn; xn/ �
n�1P
iD1

G .xi; xiC1; xiC1/ and (3.7)
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G .x1; x1; xn/ �
n�1P
iD1

G .xi; xi; xiC1/ :

5. If G .x; y; z/ D 0, then x D y D z.
6. G .x; y; z/ � G .x; a; z/C G .a; y; z/.
7. G .x; y; z/ � 2

3
ŒG .x; y; a/C G .x; a; z/C G .a; y; z/ �.

8. If x 2 XŸfz; ag, then jG.x; y; z/ � G.x; y; a/j � G.a; x; z/.
9. G.x; y; y/ � 2G.x; y; z/:

Remark 3.1.1. The reader may observe that properties 1, 2, 3 and 4 can be proved
without using axiom .G3/.

Proof.(1) Applying .G4/ and .G5/ using a D x, we have that

G .x; y; z/ D G .y; x; z/ � G .y; x; x/C G .x; x; z/

D G .x; x; y/C G .x; x; z/ :

(2) By using .G5/ twice and also .G4/,

G .x; y; z/ � G .x; a; a/C G .a; y; z/ D G .x; a; a/C G .y; a; z/

� G .x; a; a/C G .y; a; a/C G .a; a; z/ :

(3) By .G4/ and .G5/,

G.x; y; z/ D G .z; y; x/ � G.z; a; a/C G.a; y; x/;

G.a; y; x/ � G.a; z; z/C G.z; y; x/:

Therefore,

G.x; y; z/ � G.a; y; x/ � G.z; a; a/ and

G.a; y; x/ � G.x; y; z/ � G.a; z; z/:

Hence, jG.x; y; z/ � G.x; y; a/j � maxfG.a; z; z/;G.z; a; a/g.
(4) If n D 2, it is obvious, and if n D 3, then (3.7) is property .G5/ using x D x1,

a D x2 and y D z D x3. By induction, if (3.7) holds for some n � 3, then it is
also valid for n C 1 because, also by .G5/ and the hypothesis of induction,

G .x1; xnC1; xnC1/ � G .x1; xn; xn/C G .xn; xnC1; xnC1/

�
n�1P
iD1

G .xi; xiC1; xiC1/C G .xn; xnC1; xnC1/

D
nP

iD1
G .xi; xiC1; xiC1/ :
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(5) Assume that G .x; y; z/ D 0. We claim that if y ¤ z, then x D y. Indeed, by .G3/,
0 � G.x; x; y/ � G.x; y; z/ D 0, so G.x; x; y/ D 0. If x ¤ y, then G.x; x; y/ > 0
by .G2/, so condition G.x; x; y/ D 0 implies that x D y. As G is symmetric on
its variables, we have also proved that if z ¤ y, then x D z. Hence, y D x D z,
which is a contradiction with the hypothesis y ¤ z. Then, all arguments must
be equal (x D y D z).

(6) If a D y or a D x, the result is obvious. Assume that a ¤ x and a ¤ y. If a D z,
then, by .G5/,

G .x; y; z/ D G .x; y; a/ � G .x; a; a/C G .a; y; a/

� G .x; a; z/C G .a; y; z/ :

Next, assume that a ¤ z. Then, by .G5/ and .G3/,

G.x; y; z/ � G.x; a; a/C G.a; y; z/ � G .x; a; z/C G .a; y; z/ :

(7) By item (6) and .G4/,

G .x; y; z/ � G .x; a; z/C G .a; y; z/ ;

G .x; y; z/ D G .y; z; x/ � G .y; a; x/C G .a; z; x/ ;

G .x; y; z/ D G .z; x; y/ � G .z; a; y/C G .a; x; y/ :

Adding the previous inequalities and using .G4/,

3G .x; y; z/ � 2 ŒG .x; y; a/C G .x; a; z/C G .a; y; z/ � :

(8) By item (3), j G.x; y; z/ � G.x; y; a/ j � maxfG.a; z; z/;G.z; a; a/g. Then,
using .G3/,

x ¤ a ) G .z; a; a/ � G.z; a; x/I
x ¤ z ) G .a; z; z/ � G.a; z; x/:

Then, by .G4/, we conclude that maxfG.a; z; z/;G.z; a; a/g � G.x; a; z/.
(9) We distinguish two cases. If y D z then, G.x; y; y/ D G.x; y; z/ � 2G.x; y; z/.

On the contrary case, if y ¤ z, using Lemma 3.1.1 and axiom .G3/, it follows
that G.x; y; y/ � 2G.x; x; y/ � 2G.x; y; z/. ut
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3.1.2 Some Relationships Between Metrics and G-Metrics

Every metric on X induces G-metrics on X in different ways.

Lemma 3.1.3 ([154]). If .X; d/ is a metric space, then the functions Gd
m;G

d
s W X3 !

Œ0;1/, defined by

Gd
m.x; y; z/ D maxfd.x; y/; d.y; z/; d.z; x/g; (3.8)

Gd
s .x; y; z/ D d.x; y/C d.y; z/C d.z; x/ (3.9)

for all x; y; z 2 X, are G-metrics on X. Furthermore,

Gd
m.x; y; z/ � Gd

s .x; y; z/ � 3Gd
m.x; y; z/ for all x; y; z 2 X:

Conversely, a G-metric on X also induces some metrics on X.

Lemma 3.1.4. If .X;G/ is a G-metric space, then the functions dG
m; d

G
s W X2 !

Œ0;1/ defined by

dG
m.x; y/ D max fG.x; y; y/;G.y; x; x/g and

dG
s .x; y/ D G.x; y; y/C G.y; x; x/

for all x; y 2 X, are metrics on X. Furthermore, the following properties hold.

1. dG
m.x; y/ � dG

s .x; y/ � 2 dG
m.x; y/ for all x; y 2 X.

2. dG
m and dG

s are equivalent metrics on X and they generate the same topology on X.

The following result collects some basic relations between metrics and G-metrics
involved in Lemmas 3.1.3 and 3.1.4.

Lemma 3.1.5. If d is a metric on X, then, for all x; y 2 X,

d
Gd

m
m .x; y/ D d.x; y/; d

Gd
m

s .x; y/ D d
Gd

s
m .x; y/ D 2 d.x; y/;

d
Gd

s
s .x; y/ D 4 d.x; y/;

d
Gd

s
s D 2 d

Gd
m

s D 2 d
Gd

s
m D 4 d

Gd
m

m D 4 d:

Conversely, if G is a G-metric on X, then, for all x; y; z 2 X,

G
dG

m
m .x; y; z/ D maxfG.x; y; y/;G.y; x; x/;G.y; z; z/;G.z; y; y/;

G.z; x; x/;G.x; z; z/g;
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G
dG

s
s .x; y; z/ D G.x; y; y/C G.y; x; x/C G.y; z; z/C G.z; y; y/

C G.z; x; x/C G.x; z; z/:

In particular, G
dG

m
m � G

dG
s

s � 6G
dG

m
m .

Proof. We have the following straightforward calculations:

d
Gd

m
m .x; y/ D max

˚
Gd

m.x; y; y/;G
d
m.y; x; x/

�

D max fmax.d.x; y/; d.x; y/; d.y; y//;max.d.y; x/; d.y; x/; d.x; x//g
D d.x; y/I

d
Gd

m
s .x; y/ D Gd

m.x; y; y/C Gd
m.y; x; x/

D max.d.x; y/; d.x; y/; d.y; y//C max.d.y; x/; d.y; x/; d.x; x//

D 2 d.x; y/I
d

Gd
s

m .x; y/ D max
˚
Gd

s .x; y; y/;G
d
s .y; x; x/

�

D max fd.x; y/C d.x; y/C d.y; y/; d.y; x/C d.y; x/C d.x; x/g
D 2 d.x; y/I

d
Gd

s
s .x; y/ D Gd

s .x; y; y/C Gd
s .y; x; x/

D d.x; y/C d.x; y/C d.y; y/C d.y; x/C d.y; x/C d.x; x/

D 4 d.x; y/:

Conversely,

G
dG

m
m .x; y; z/ D max

˚
dG

m.x; y/; d
G
m.y; z/; d

G
m.z; x/

�

D maxfmax fG.x; y; y/;G.y; x; x/g ;
max fG.y; z; z/;G.z; y; y/g ;
max fG.z; x; x/;G.x; z; z/gg

D maxfG.x; y; y/;G.y; x; x/;G.y; z; z/;G.z; y; y/;

G.z; x; x/;G.x; z; z/gI
and

G
dG

s
s .x; y; z/ D dG

m.x; y/C dG
m.y; z/C dG

m.z; x/

D G.x; y; y/C G.y; x; x/C G.y; z; z/C G.z; y; y/

C G.z; x; x/C G.x; z; z/:

ut
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3.1.3 Symmetric G-Metric Spaces

A G-metric space .X;G/ is called symmetric if G.x; y; y/ D G.y; x; x/ for all
x; y 2 X.

The mappings given in Examples 3.1.1, 3.1.2 and 3.1.3 are symmetric G-metrics.
There also exist G-metric spaces that are not symmetric, as we see in the following
example.

Example 3.1.6. Let X D f0; 1; 2g and let G W X � X � X ! Œ0;1/ be the function
given by the following table.

.x; y; z/ G .x; y; z/

.0; 0; 0/ ; .1; 1; 1/ ; .2; 2; 2/ 0

.0; 0; 1/ ; .0; 1; 0/ ; .1; 0; 0/ ; .0; 1; 1/ ; .1; 0; 1/ ; .1; 1; 0/ 1

.1; 2; 2/ ; .2; 1; 2/ ; .2; 2; 1/ 2

.0; 0; 2/ ; .0; 2; 0/ ; .2; 0; 0/ ; .0; 2; 2/ ; .2; 0; 2/ ; .2; 2; 0/ 3

.1; 1; 2/ ; .1; 2; 1/ ; .2; 1; 1/ ; .0; 1; 2/ ; .0; 2; 1/ ; .1; 0; 2/ 4

.1; 2; 0/ ; .2; 0; 1/ ; .2; 1; 0/ 4

Then G is a G-metric on X, but it is not symmetric because G .1; 1; 2/ D 4 ¤ 2 D
G.2; 2; 1/.

Lemma 3.1.6. If .X; d/ is a metric space, then Gd
m and Gd

s (defined in Lemma 3.1.4)
are symmetric G-metrics on X. In fact,

Gd
s .x; y; y/ D 2Gd

m .x; y; y/ D 2d .x; y/ for all x; y 2 X:

Conversely, if .X;G/ is a symmetric G-metric space and dG W X � X ! Œ0;1/ is
defined by

dG .x; y/ D G .x; y; y/ for all x; y 2 X;

then .X; dG/ is a metric space.

Given two G-metric spaces .X1;G1/ and .X2;G2/, the function G W X � X � X !
Œ0;1/ given, for all .x1; x2/ ; .y1; y2/ ; .z1; z2/ 2 X D X1 � X2, by

G ..x1; x2/ ; .y1; y2/ ; .z1; z2// D G1 .x1; y1; z1/C G2 .x2; y2; z2/

is not necessarily a G-metric on the Cartesian product X because, although it satisfies
conditions .G1/, .G2/, .G4/ and .G5/, axiom .G3/ is not guaranteed. This only holds
when the factors are symmetric.
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Theorem 3.1.1 ([154]). Let f.Xi;Gi/gn
iD1 be a finite family of G-metric spaces and

let X D X1�X2� : : :�Xn be the Cartesian product. Consider the mappings Gm;Gs W
X � X � X ! Œ0;1/ defined by

Gm.A;B;C/ D max
1�i�n

Gi.ai; bi; ci/ and

Gs.A;B;C/ D
nP

iD1
Gi.ai; bi; ci/;

for all A D .a1; a2; : : : ; an/ ;B D .b1; b2; : : : ; bn/ ;C D .c1; c2; : : : ; cn/ 2 X. Then
the following conditions are equivalent.

1. .Xi;Gi/ is a symmetric G-metric space for all i 2 f1; 2; : : : ; ng.
2. .X;Gm/ is a symmetric G-metric space.
3. .X;Gs/ is a symmetric G-metric space.

Proof. We only prove the equivalence between the first two items (the other
equivalence is similar). First of all, we claim that .X;Gm/ satisfies the axioms .G1/,
.G2/, .G4/ and .G5/.

.G1/ Gm .A;A;A/ D max1�i�n Gi.ai; ai; ai/ D max1�i�n 0 D 0.

.G2/ Assume that A ¤ B. Then, there exists j 2 f1; 2; : : : ; ng such that aj ¤ bj.
Since Gj is a G-metric on Xj, then Gj.aj; aj; bj/ > 0. Hence, Gm .A;A;B/ D
max1�i�n Gi.ai; ai; bi/ � Gj.aj; aj; bj/ > 0.

.G4/ It follows from the fact that each Gi is symmetric in its three variables.

.G5/ Let A D .a1; a2; : : : ; an/ ;B D .b1; b2; : : : ; bn/ ;C D .c1; c2; : : : ; cn/ ;D D
.d1; d2; : : : ; dn/ 2 X be arbitrary. Then

Gm .B;C;D/ D max
1�i�n

Gi.bi; ci; di/

� max
1�i�n

ŒGi.bi; ai; ai/C Gi.ai; ci; di/�

� max
1�i�n

Gi.bi; ai; ai/C max
1�i�n

Gi.ai; ci; di/

D Gm .B;A;A/C Gm .A;C;D/ :

Next, we prove the equivalence between .1/ and .2/.

.1/ ) .2/. Assume that .Xi;Gi/ is a symmetric G-metric space for all i 2
f1; 2; : : : ; ng. We claim that .X;Gm/ verifies .G3/. Let A;B;C 2 X be such that
B ¤ C. Let i 2 f1; 2; : : : ; ng be arbitrary. If bi D ci, then, using that .Xi;Gi/ is
symmetric, Gi.ai; ai; bi/ D Gi .bi; bi; ai/ D Gi .ci; bi; ai/ D Gi .ai; bi; ci/. If bi ¤ ci,
then Gi.ai; ai; bi/ � Gi .ai; bi; ci/ by the axiom .G3/ in .Xi;Gi/. In any case, we have
just proved that Gi.ai; ai; bi/ � Gi .ai; bi; ci/ for all i 2 f1; 2; : : : ; ng. Therefore,

Gm .A;A;B/ D max
1�i�n

Gi.ai; ai; bi/ � max
1�i�n

Gi.ai; bi; ci/ D Gm .A;B;C/ :
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Hence, .X;Gm/ is a G-metric space. Moreover, it is symmetric because each factor
is symmetric, that is, for all A;B 2 X,

Gm .A;A;B/ D max
1�i�n

Gi.ai; ai; bi/ D max
1�i�n

Gi.bi; bi; ai/ D Gm .B;A;A/ :

.2/ ) .1/. Assume that .X;Gm/ is a symmetric G-metric space. Fix a point
P D �

p01; p
0
2; : : : ; p

0
n

� 2 X and, for all i 2 f1; 2; : : : ; ng and all ai 2 Xi, let

Ai
P D .p01; p

0
2; : : : ; p

0
i�2; p0i�1; ai; p

0
iC1; p0iC2; : : : ; p0n/ 2 X:

Notice that for all i 2 f1; 2; : : : ; ng and all ai; bi; ci 2 Xi, we have that

Gi.ai; bi; ci/ D Gm.A
i
P;B

i
P;C

i
P/: (3.10)

Therefore, for all i 2 f1; 2; : : : ; ng and all ai; bi 2 Xi,

Gi.ai; ai; bi/ D Gm.A
i
P;A

i
P;B

i
P/ D Gm.B

i
P;B

i
P;A

i
P/ D Gi.bi; bi; ai/:

Thus, each factor .Xi;Gi/ is symmetric. ut

3.2 Topology of a G-Metric Space

In this section we introduce the canonical Hausdorff topology of a G-metric space
and we present its corresponding topological notions.

Definition 3.2.1 ([142]). The open ball of center x 2 X and radius r > 0

in a G-metric space .X;G/ is the subset BG.x; r/ D fy 2 X W G.x; y; y/ < rg.
Similarly, the closed ball of center x 2 X and radius r > 0 is BG.x; r/ D
fy 2 X W G.x; y; y/ � rg.

Clearly, x 2 BG.x; r/ � BG.x; r/.

Proposition 3.2.1. If .X;G/ is a G-metric space and dG
m and dG

s are the metrics on
X defined in Lemma 3.1.4, then

BdG
s
.x; r/ � BdG

m
.x; r/ � BG .x; r/ � BdG

m
.x; 2r/ � BG .x; 2r/

for all x 2 X and all r > 0.

Proof. Let y 2 BdG
m
.x; r/. Then max fG.x; y; y/;G.y; x; x/g D dG

m.x; y/ < r.
In particular, G.x; y; y/ < r, so y 2 BG .x; r/. This proves that BdG

m
.x; r/ � BG .x; r/.

In a similar way, BdG
m
.x; 2r/ � BG .x; 2r/. Now let y 2 BG .x; r/. Then G.x; y; y/ < r.

By Lemma 3.1.1, it follows that

G.y; x; x/ � 2G.x; y; y/ < 2r:
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Therefore, dG
m.x; y/ D max fG.x; y; y/;G.y; x; x/g < 2r, so y 2 BdG

m
.x; 2r/. This

proves that BG .x; r/ � BdG
m
.x; 2r/. ut

Example 3.2.1 ([142]). Let .X; d/ be a metric space and let Gd
m and Gd

s be the
G-metrics on X defined in Lemma 3.1.3. Then, for all x0 2 X and all r > 0, we
have the following properties:

BGd
m
.x0; r/ D Bd.x0; r/; BGd

s
.x0; r/ D Bd

	
x0;

r

2



;

BGd
m
.x0; r/ D Bd.x0; r/ and BGd

s
.x0; r/ D Bd

	
x0;

r

2



:

Example 3.2.2 ([142]). Let X be a nonempty set, and let Gdis be the discrete
G-metric on X (see Example 3.1.2). For any x0 2 X and all r > 0, we have the
following properties:

1. if r < 1, then BGdis.x0; r/ D BGdis.x0; r/ D fx0g;
2. if r D 1, then BGdis.x0; r/ D fx0g and BGdis.x0; r/ D X; and
3. if r > 1, then B.x0; r/ D B.x0; r/ D X.

The family of all open balls permit us to consider a topology on X.

Theorem 3.2.1. There exists a unique topology �G on a G-metric space .X;G/ such
that, for all x 2 X, the family ˇx of all open balls centered at x is a neighbourhood
system at x. Furthermore, �G is metrizable because it is the metric topology
on X generated by the equivalent metrics dG

m and dG
s (defined in Lemma 3.1.4).

In particular, �G satisfies the Hausdorff separation property.

Proof. We use Lemma 2.6.1. The first two properties are trivial because B.x; r1/ \
B.x; r2/ D B.x;min fr1; r2g/. Let B D B.x; r/ 2 ˇx be an open ball and let B0 D
B 2 ˇx. We have to prove that for all y 2 B, there exists B00 2 ˇy satisfying B00 � B.
Indeed, fix y 2 B D B.x; r/. Therefore G.x; y; y/ < r. Let s and ı > 0 be arbitrary
numbers such that G.x; y; y/ < s < s C ı < r. We claim that B00 D B .y; ı/ �
B D B .x; r/. To prove it, let z 2 B .y; ı/ be arbitrary, that is, G .y; z; z/ < ı. Then,
by axiom .G5/, it follows that G .x; z; z/ � G .x; y; y/ C G .y; z; z/ < s C ı < r.
Hence z 2 B .x; r/. Lemma 2.6.1 guarantees that there exists a unique topology �G

on a G-metric space .X;G/ such that, for all x 2 X, the family ˇx of all open balls
centered at x is a neighbourhood system at x.

Proposition 3.2.1 guarantees that, for all x 2 X and all r > 0,

BdG
m
.x; r/ � BG .x; r/ � BdG

m
.x; 2r/ � BG .x; 2r/ :

This means that, for all x 2 X, the family ˇ0
x D ˚

BdG
m
.x; r/ W r > 0

�
is a

neighbourhood system at x equivalent to ˇx, that is, they generate the same topology.
Therefore, �G D �dG

m
, which implies that �G is metrizable and it satisfies the

Hausdorff separation property. ut
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The following notions can be considered on a topological space (see [23, 51]),
but we particularize them to the case of the topology �G.

• A subset U � X is a G-neighborhood of a point x 2 X if there is r > 0 such that
BG.x; r/ � U.

• A subset U � X is G-open if either it is empty or it is a G-neighborhood of all its
points.

• A subset U � X is G-closed if its complement XŸU is G-open.
• An adherent point (also closure point or point of closure) of a subset U � X is

a point x 2 X such that every G-open set containing x also contains, at least, one
point of U, that is, for all " > 0 we have that BG .x; "/ \ U ¤ ;.

• The G-closure U D clG.U/ of a subset U � X is the family of all its adherent
points. Clearly, x 2 U if, and only if, BG .x; "/\U ¤ ; for all " > 0. In particular,
U � U. Moreover, U is G-closed if, and only if, U D U.

• The G-interior VU D intG.U/ of a subset U � X is the complement XŸU. An
interior point of U is a point x 2 U such that there exists r > 0 verifying
BG .x; r/ � U. In particular, VU � U. Moreover, U is G-open if, and only if,
VU D U.

For simplicity, we will omit the prefix G- in the previous notions.

3.2.1 Convergent and Cauchy Sequences

In this subsection, we introduce the notions of convergent sequence and Cauchy
sequence using the topology �G.

Definition 3.2.2. Let .X;G/ be a G-metric space, let x 2 X be a point and let fxng �
X be a sequence. We say that:

• fxng G-converges to x, and we write fxng G�! x or fxng ! x, if
limn;m!1 G.xn; xm; x/ D 0, that is, for all " > 0 there exists n0 2 N satisfying
G.xn; xm; x/ � " for all n;m 2 N such that n;m � n0 (in such a case, x is the
G-limit of fxng);

• fxng is G-Cauchy if limn;m;k!1 G.xn; xm; xk/ D 0, that is, for all " > 0 there exists
n0 2 N satisfying G.xn; xm; xk/ � " for all n;m; k 2 N such that n;m; k � n0.

• .X;G/ is complete if every G-Cauchy sequence in X is G-convergent in X.

The following two properties are well known.

Proposition 3.2.2. The limit of a G-convergent sequence in a G-metric space is
unique.

Proof. Let .X;G/ be a G-metric space and let fxng � X be a sequence that
converges, at the same time, to x 2 X and to y 2 X. We claim that G .x; y; y/ < " for
all " > 0. Indeed, let " > 0 be arbitrary. By definition, there exist natural numbers
n1; n2 2 N such that
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G.xn; xm; x/ � "

3
for all n;m � n1I

G.xn; xm; y/ � "

3
for all n;m � n2:

Let n0 D max .n1; n2/. Then, by .G5/ and Lemma 3.1.1, we have that, for all n �
max .n1; n2/,

G.x; y; y/ � G.x; xn; xn/C G.xn; y; y/

� G.xn; xn; x/C 2G.xn; xn; y/ � "

3
C 2

"

3
D ":

Consequently, we have that G.x; y; y/ D 0 and, by .G2/, we conclude that x D y.
ut

Proposition 3.2.3. Every convergent sequence in a G-metric space is a Cauchy
sequence.

Proof. Let .X;G/ be a G-metric space and let fxng � X be a sequence that converges
to x 2 X. Let " > 0 be arbitrary. By definition, there exists n0 2 N such that

G.xn; xm; x/ � "

3
for all n;m � n0:

By .G4/, .G5/ and Lemma 3.1.1, we have that, for all n;m; k � n0,

G .xn; xm; xk/ � G .xn; x; x/C G .x; xm; xk/

� 2G.xn; xn; x/C G.xm; xk; x/ � 2
"

3
C "

3
D ":

Therefore, fxng is a Cauchy sequence in .X;G/. ut
Remark 3.2.1. The reader can observe that axiom .G3/ is not necessary in the proofs
of many results. For example, it was not used in the proofs of Propositions 3.2.2
and 3.2.3. In the same way, assumption .G3/ will not be involved in the equiv-
alences between conditions (a) to (h) in Lemma 3.2.1, or in the equivalences of
Lemma 3.2.2.

Next, we characterize convergent and Cauchy sequences. In the following result,
we use the notation introduced at the end of Sect. 2.1.

Lemma 3.2.1. Let .X;G/ be a G-metric space, let fxng � X be a sequence and let
x 2 X. Then the following conditions are equivalent.

(a) fxng G-converges to x.
(b) lim

n!1 G.xn; xn; x/ D 0, that is, for all " > 0, there exists n0 2 N such that

xn 2 BG .x; "/ for all n � n0.
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(c) lim
n!1 G.xn; x; x/ D 0.

(d) lim
n;m!1; m�n

G .xn; xm; x/ D 0.

(e) lim
n!1 G.xn; xn; x/ D 0 and lim

n!1 G.xn; xnC1; x/ D 0.

(f) lim
n!1 G.xn; x; x/ D 0 and lim

n!1 G.xn; xnC1; x/ D 0.

(g) lim
n!1 G .xn; xnC1; xnC1/ D 0 and lim

n!1 G.xn; xnC1; x/ D 0.

(h) lim
n!1 G .xn; xnC1; xnC1/ D 0 and lim

n;m!1; m>n
G .xn; xm; x/ D 0.

(i) lim
n;m!1; m>n

G .xn; xm; x/ D 0.

Proof. (a))(b) It is obvious using m D n.
(b))(c). It follows from Lemma 3.1.1 because

G.xn; x; x/ � 2G.xn; xn; x/

for all n 2 N:

(c))(a). It follows from the fact that, by .G5/ and .G4/, for all n;m 2 N,

G .xn; xm; x/ � G .xn; x; x/C G .x; xm; x/

D G .xn; x; x/C G .xm; x; x/

The implications (a))(d))(b), (a))(e))(b) and (a))(f))(c) are trivial.
(a))(h) By Proposition 3.2.3, fxng is a Cauchy sequence. Then, using

m D k D n C 1 in the definition of Cauchy sequence, we deduce that
limn!1 G .xn; xnC1; xnC1/ D 0. Moreover, (a) trivially implies that

lim
n;m!1; m>n

G.xn; xm; x/ D 0:

(h))(g). It is obvious using m D n C 1.
(g))(b). By .G5/ and .G4/, for all n 2 N,

G.xn; xn; x/ � G.xn; xnC1; xnC1/C G.xnC1; xn; x/

D G.xn; xnC1; xnC1/C G.xn; xnC1; x/:

Moreover, (a))(i) is also apparent. The only implication in which we will use
axiom .G3/ is the following one.

(i))(b). It follows from item 9 of Lemma 3.1.2 (which needs axiom .G3/),
because G .xn; xn; x/ � 2G .xn; x; xnC1/ D 2G .xn; xnC1; x/ for all n 2 N. ut
Lemma 3.2.2. If .X;G/ is a G-metric space and fxng � X is a sequence, then the
following conditions are equivalent.

(a) fxng is G-Cauchy.
(b) lim

n;m!1 G.xn; xm; xm/ D 0.
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(c) lim
n;m!1; m�n

G.xn; xm; xm/ D 0.

(d) lim
n;m!1; m>n

G.xn; xm; xm/ D 0.

(e) lim
n;m!1 G.xn; xn; xm/ D 0.

(f) lim
n;m!1; m�n

G.xn; xn; xm/ D 0.

(g) lim
n;m!1; m>n

G.xn; xn; xm/ D 0.

(h) lim
n!1 G.xn; xnC1; xnC1/ D 0 and lim

n;m!1; m>n
G.xn; xnC1; xm/ D 0.

Proof. (a))(b))(c) are obvious.
(c))(a). Let " > 0 be arbitrary. By condition (b), there exists n0 2 N such that

G .xn; xm; xm/ � "

2
for all m � n � n0:

Let n;m; k 2 N be such that n;m; k � n0. Let n0 D minfn;m; kg, k0 D maxfn;m; kg
and m0 D fn;m; kgŸfn0; k0g. Then fn;m; kg D fn0;m0; k0g and n0 � m0 � k0.
Therefore, by .G5/ and .G4/,

G .xn; xm; xk/ D G .xn0 ; xm0 ; xk0/ � G .xn0 ; xk0 ; xk0/C G .xk0 ; xm0 ; xk0/

D G .xn0 ; xk0 ; xk0/C G .xm0 ; xk0 ; xk0/ � "

2
C "

2
D ":

Hence, fxng is a Cauchy sequence.
(c))(d). It is obvious.
(d))(c). If n D m, then G.xn; xm; xm/ D G.xn; xn; xn/ D 0, and if m > n, then

we can get G.xn; xm; xm/ � ".
The equivalences (b),(e), (c),(f) and (d),(g) follow from Lemma 3.1.1,

because G.xn; xm; xm/ � 2G.xn; xn; xm/ � 4G.xn; xm; xm/ for all n;m 2 N.
It is clear that (a))(h).
(h))(g). For all n;m 2 N such that m > n, we have that

G.xn; xn; xm/ � G.xn; xnC1; xnC1/C G.xnC1; xn; xm/

D G.xn; xnC1; xnC1/C G.xn; xnC1; xm/: ut
Taking into account that the topologies �G, �dG

m
and �dG

s
coincide, it is convenient

to highlight that they have the same Cauchy sequences and the same convergent
sequences, converging to the same limits.

Lemma 3.2.3. Given a G-metric space .X;G/, let dG
m and dG

s be the metrics on X
defined in Lemma 3.1.4. Then a sequence fxmg � X is G-convergent to x 2 X if, and
only if, it is dG

m-convergent (or dG
s -convergent) to x.

Furthermore, fxmg � X is G-Cauchy if, and only if, it is dG
m-Cauchy (or dG

s -
Cauchy).
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Closedness can be characterized using convergent sequences.

Proposition 3.2.4 ([142]). Let .X;G/ be a G-metric space and let U � X be a
nonempty subset of X. Then U is G-closed if, and only if, for any G-convergent
sequence fxng in U with G-limit x 2 X; one has that x 2 U.

3.2.2 Continuity of Mappings Between G-Metric Spaces

Definition 3.2.3. Let .X;G/ be a G-metric space. We say that:

• a mapping T W X ! X is G-continuous at x 2 X if fTxmg G�! Tx for all sequence

fxmg � X such that fxmg G�! x;
• a mapping F W Xn ! X is G-continuous at .x1; x2; : : : ; xn/ 2 Xn if

fF
�
xm
1 ; x

m
2 ; : : : ; x

m
n

�g G�! F .x1; x2; : : : ; xn/

for all sequence f�xm
1 ; x

m
2 ; : : : ; x

m
n

�g � Xn such that fxm
i g G�! xi for all i 2

f1; 2; : : : ; ng;
• a mapping H W Xn ! Xm is G-continuous at .x1; x2; : : : ; xn/ 2 Xn if �m

i ı H W
Xn ! X is G-continuous at .x1; x2; : : : ; xn/ for all i 2 f1; 2; : : : ;mg, where �m

i W
Xm ! X is the ith-projection of Xm onto X (that is, �m

i .a1; a2; : : : ; am/ D ai for
all .a1; a2; : : : ; am/ 2 Xm).

By Lemma 3.2.3, convergence of sequences on X with respect to G, dG
m and dG

m
coincide.

Lemma 3.2.4. Let .X;G/ be a G metric space. Then a mapping T W X ! X
is G-continuous if, and only if, it is dG

m-continuous (dG
m-continuous). Similarly, a

mapping F W Xn ! X is G-continuous if, and only if, it is dG
m-continuous (dG

m-
continuous).

Theorem 3.2.2 ([154]). If .X;G/ is a G-metric space, then the function G.x; y; z/
is jointly continuous in all three of its variables, that is, if x; y; z 2 X and

fxng; fyng; fzng � X are sequences in X such that fxmg G�! x, fymg G�! y and

fzmg G�! z, then fG .xm; ym; zm/g ! G .x; y; z/.

Proof. Applying the axiom .G5/ three times,

G .xm; ym; zm/ � G .xm; x; x/C G .x; ym; zm/

� G .xm; x; x/C G .ym; y; y/C G .y; x; zm/

� G .xm; x; x/C G .ym; y; y/C G .zm; z; z/C G .z; x; y/ :

In a similar way,
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G .x; y; z/ � G .x; xm; xm/C G .y; ym; ym/C G .z; zm; zm/C G .zm; xm; ym/ :

In particular, for all m 2 N,

G .x; y; z/ � G .x; xm; xm/ � G .y; ym; ym/ � G .z; zm; zm/ � G .xm; ym; zm/

� G .xm; x; x/C G .ym; y; y/C G .zm; z; z/C G .z; x; y/ :

Letting m ! 1 and using Lemmas 2.1.1 and 3.2.1, we conclude that
fG .xm; ym; zm/g ! G .x; y; z/. ut

3.3 G-Metrics and Quasi-metrics

In this section, we analyze the close relationship between G-metrics and quasi-
metrics.

Lemma 3.3.1. Let .X;G/ be a G-metric space and let define qG; q0
G W X2 !

Œ0;1/ by

qG.x; y/ D G.x; x; y/ and q0
G.x; y/ D G.x; y; y/ for all x; y 2 X:

Then the following properties hold.

1. qG and q0
G are quasi-metrics on X. Moreover

qG.x; y/ � 2 q0
G.x; y/ � 4 qG.x; y/ for all x; y 2 X: (3.11)

2. In .X; qG/ and in .X; q0
G/, a sequence is right-convergent (respectively, left-

convergent) if, and only if, it is convergent. In such a case, its right-limit, its
left-limit and its limit coincide.

3. In .X; qG/ and in .X; q0
G/, a sequence is right-Cauchy (respectively, left-Cauchy)

if, and only if, it is Cauchy.
4. In .X; qG/ and in .X; q0

G/, every right-convergent (respectively, left-convergent)
sequence has a unique right-limit (respectively, left-limit).

5. If fxng � X and x 2 X, then

fxng G�! x ” fxng qG�! x ” fxng q0
G�! x:

6. If fxng � X, then fxng is G-Cauchy ” fxng is qG-Cauchy ” fxng is q0
G-

Cauchy.
7. .X;G/ is complete ” .X; qG/ is complete ” .X; q0

G/ is complete.

Proof. (1) Axiom .q1/ follows from .G1/ and .G2/ and condition .q2/ holds because
of properties .G4/ and .G5/ since, for all x; y; z 2 X,



50 3 G-Metric Spaces

qG.x; y/ D G.x; x; y/ D G.y; x; x/ � G.y; z; z/C G.z; x; x/

D G.x; x; z/C G.z; z; y/ D qG.x; z/C qG.z; y/I
q0

G.x; y/ D G.x; y; y/ � G.x; z; z/C G.z; y; y/ D q0
G.x; z/C q0

G.z; y/:

Inequalities (3.11) follow from Lemma 3.1.1. (2) It follows from Lemma 3.2.1. (3)
It follows directly from the definitions. (4) It follows from item 2 and Remark 2.5.1.
Other items are straightforward exercises. ut
Remark 3.3.1. Notice that qG and q0

G can be different quasi-metrics. For example,
q0

G is a quasi-metric even if G does not verify axiom .G4/, but qG needs that property.



Chapter 4
Basic Fixed Point Results in the Setting
of G-Metric Spaces

The Banach contractive mapping principle is the most celebrated result in fixed
point theory. The simplicity of its proof and the possibility of attaining the fixed
point by using successive approximations makes it a useful tool in analysis and in
applied mathematics. In this chapter, we present a variety of fixed (and coincidence)
point results in the context of G-metric spaces.

4.1 The Banach Procedure

Almost all contractive type fixed point results follow the same technique. In this
section, we describe this process in a very general context.

4.1.1 The Banach Procedure

Let X be a non-empty set and let T; g W X ! X be two self-mappings.

Part I. Existence of a fixed (or coincidence) point

Step 1. Construction of an iterative sequence.
A sequence fxngn�0 � X is a Picard sequence of T if

xnC1 D Txn for all n 2 N:

Some authors say that this sequence is based on the initial point x0. If this sequence
contains a point xn0 such that xn0C1 D xn0 , then xn0 is a fixed point of T , and
the existence of a fixed point is guaranteed. Therefore, it is usual to assume that

© Springer International Publishing Switzerland 2015
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xn ¤ xnC1 for all n 2 N. In this case, the main objective is to prove that this sequence
converges to a fixed point of T .

In the coincidence case, a sequence fxngn�0 � X is a Picard sequence of .T; g/ if

gxnC1 D Txn for all n 2 N:

If there exists n0 2 N such that gxn0C1 D gxn0 , then gxn0 D gxn0C1 D Txn0 , so xn0
is a coincidence point of T and g. Therefore, it is usual to assume that gxn ¤ gxnC1
for all n 2 N.

Lemma 4.1.1. If T.X/ � g.X/, then there exists a Picard sequence of .T; g/ based
on any x0 2 X.

Proof. Let x0 2 X be arbitrary. Since Tx0 2 T.X/ � g.X/, there exists x1 2
X such that gx1 D Tx0. Analogously, since Tx1 2 T.X/ � g.X/, there exists x2 2 X
such that gx2 D Tx1. Repeating this argument by the induction methodology, we
can find a Picard sequence of .T; g/ based on x0. ut

Step 2. To prove that fgxng is asymptotically regular.
A sequence fzng in a quasi-metric space .X; q/ is asymptotically regular if

lim
n!1 q .zn; znC1/ D lim

n!1 q .znC1; zn/ D 0:

In the case of a G-metric space, it is only necessary to prove that

lim
n!1 G .zn; znC1; znC1/ D 0

because, in such a case, Corollary 3.1.1 ensures that

lim
n!1 G .xn; xnC1; xnC1/ D lim

n!1 G .xn; xn; xnC1/ D 0: (4.1)

Step 3. To prove that fgxng is Cauchy.
This is usually the key step of the proof and usually in the literature the argument

involves reasoning by contradiction. The methodology we will follow is described
in Sect. 4.1.2.

Lemma 4.1.2. Let fxng be a sequence in a G-metric space .X;G/ and assume that
there exist a function ' 2 FKR and n0 2 N such that, at least, one of the following
conditions holds:

(a) G .xnC1; xnC2; xnC2/ � ' .G .xn; xnC1; xnC1// for all n � n0;
(b) G .xnC1; xnC1; xnC2/ � ' .G .xn; xn; xnC1// for all n � n0.

Then fxng is a Cauchy sequence in .X;G/.

As F .c/
com � FKR, the previous result is also valid when ' 2 F .c/

com.
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Proof. Assume that condition (a) holds and let yn D xnCn0 for all n 2 N. We claim
that fyng is a Cauchy sequence in .X;G/. Indeed, using the fact that ' is non-
decreasing, for all n � 0,

G .ynC1; ynC2; ynC2/ D G .xnCn0C1; xnCn0C2; xnCn0C2/

� ' .G .xnCn0 ; xnCn0C1; xnCn0C1// D ' .G .yn; ynC1; ynC1// :

Repeating this argument, it follows that for all n � 0,

G .yn; ynC1; ynC1/ � ' .G .yn�1; yn; yn//

� '2 .G .yn�2; yn�1; yn�1// � : : : � 'n .G .y0; y1; y1// : (4.2)

If G .y0; y1; y1/ D 0, then G .yn; ynC1; ynC1/ D 0 for all n 2 N, which means that
ynC1 D yn for all n 2 N. Then, the sequence fyng is constant, that is, yn D y0 for all
n 2 N. In particular, fyng is a Cauchy sequence in .X;G/ because G.yn; ym; y`/ D 0

for all n;m; ` 2 N.
Next, assume that t0 D G .y0; y1; y1/ > 0 and let " > 0 arbitrary. Since ' 2 FKR,

the series
P

n2N 'n.t0/ converges. In particular, there exists n1 2 N such that

1P
kDn1

'k.t0/ < ":

Now, let n;m 2 N be such that n;m � n1. Without loss of generality, assume that
n < m. From item 4 of Lemma 3.1.2 and using (4.2), we have that

G .yn; ym; ym/ �
m�1P
kDn

G .yk; ykC1; ykC1/ �
m�1P
kDn
'k.t0/

�
1P

kDn1

'k.t0/ < ":

Therefore, by Lemma 3.2.2, fyng is Cauchy in .X;G/. This argument also proves
that fxng is a Cauchy sequence because for all m > n � n0 C n1 we have that
m � n0 > n � n0 � n1, so

G .xn; xm; xm/ D G .yn�n0 ; ym�n0 ; ym�n0 / < ":

Case (b) is similar. ut
If we take '�.t/ D � t for all t 2 Œ0;1/, where � 2 Œ0; 1/, then '� 2 F .c/

com and
the previous result can be stated as follows.

Corollary 4.1.1. Let fxng be a sequence in a G-metric space .X;G/ and assume
that there exist a constant � 2 Œ0; 1/ and n0 2 N such that, at least, one of the
following conditions holds:
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(a) G .xnC1; xnC2; xnC2/ � �G .xn; xnC1; xnC1/ for all n � n0;
(b) G .xnC1; xnC1; xnC2/ � �G .xn; xn; xnC1/ for all n � n0.

Then fxng is a Cauchy sequence in .X;G/.

Step 4. To prove that the limit of fgxng is a coincidence point of T and g.
As fgxng is a Cauchy sequence in a complete space (for example, in X or in

g.X/), then it is convergent. Its limit, z 2 X, is usually a coincidence point of T
and g. To prove it, it is necessary to apply the contractivity condition using gxn

and z. If z 2 g .X/ (for example, when g.X/ is complete), then there exists u 2 X
such that z D gu, so the contractivity condition can be applied to gxn and gu.

Part II. Uniqueness

Once we have proved the existence of a coincidence (or a fixed) point, it is
of interest to discuss uniqueness if it is possible. Reasoning by contradiction and
under additional hypotheses if necessary, sometimes we can deduce a contradiction
assuming that T and g have two different coincidence points.

The following definition can be applied to any space provided with a notion of
convergence (metric, quasi-metric, G-metric or topological space).

Definition 4.1.1. We say that T W X ! X is a Picard operator if for all initial point
x0 2 X, the Picard sequence of T based on x0 converges to a fixed point of T .

4.1.2 About Asymptotically Regular Sequences
that are not Cauchy

In this section we describe some necessary conditions that must be verified by any
asymptotically regular sequence if we suppose that it is not Cauchy.

In the following result, given a fixed integer number p 2 Z, we will consider the
subsequence fG.xnCp; yn; zn/gn�jpj, and we consider the limit of this sequence when
n ! 1.

Remark 4.1.1. Throughout this subsection, we shall not use axiom .G3/.

Lemma 4.1.3. Let fxng, fyng and fzng be three sequences in a G-metric space
.X;G/. Suppose that fxng is asymptotically regular and that there exists L 2 Œ0;1/

such that lim
n!1 G.xn; yn; zn/ D L. Then, for all given p 2 Z,

lim
n!1 G.xnCp; yn; zn/ D L: (4.3)

Proof. As fxng is asymptotically regular, by (4.1), we have that

lim
n!1 G .xn; xnC1; xnC1/ D lim

n!1 G .xn; xn; xnC1/ D 0: (4.4)
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If p D 0, property (4.3) holds by hypothesis. Assume that (4.3) holds for some
p 2 N, and we will show that it also holds for p C 1. Notice that, for all n 2 N,

G.xnCpC1; yn; zn/ � G.xnCpC1; xnCp; xnCp/C G.xnCp; yn; zn/

and

G.xnCp; yn; zn/ � G.xnCp; xnCpC1; xnCpC1/C G.xnCpC1; yn; zn/:

Joining the last two inequalities,

G.xnCp; yn; zn/ � G.xnCp; xnCpC1; xnCpC1/ � G.xnCpC1; yn; zn/

� G.xnCpC1; xnCp; xnCp/C G.xnCp; yn; zn/:

Using (4.4), the hypothesis of induction (4.3) and Lemma 2.1.1, we deduce that

lim
n!1 G.xnCpC1; yn; zn/ D L;

which completes the proof. The case in which p < 0 can be proved similarly. ut
In the following corollary, given p1; p2; p3 2 Z, we will consider the limit of the

sequence

˚
G.xnCp1 ; ynCp2 ; znCp3 /

�
n�maxfjp1j;jp2j;jp3jg :

Corollary 4.1.2. Let fxng, fyng and fzng be three asymptotically regular sequences
in a G-metric space .X;G/ and assume that there exists L 2 Œ0;1/ such that
lim

n!1 G.xn; yn; zn/ D L. Then, for all given p1; p2; p3 2 Z,

lim
n!1 G.xnCp1 ; ynCp2 ; znCp3 / D L: (4.5)

Proof. From Lemma 4.1.3, we know that, for all fixed p1 2 Z,

lim
n!1 G.xnCp1 ; yn; zn/ D L:

Taking into account that G.xnCp1 ; yn; zn/ D G.yn; xnCp1 ; zn/ for all n and p1, we can
again apply Lemma 4.1.3 to deduce that, for all fixed p1; p2 2 Z,

lim
n!1 G.ynCp2 ; xnCp1 ; zn/ D L:

Repeating this argument, we conclude (4.5). ut
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Notice that we cannot deduce that a subsequence fxn.k/g of an asymptotically
regular sequence fxng is also asymptotically regular. For example, consider the
sequence fxngn�1 � R given by

xn D
nP

kD1
1

k
for all n � 1:

Then fxng is asymptotically regular if we consider on R the G-metric

G.x; y; z/ D max fjx � yj ; jx � zj ; jy � zjg

for all x; y; z 2 R. However, as fxng is strictly increasing and fxng ! 1, it contains a
subsequence fxn.k/g such that xn.kC1/ � xn.k/ C k for all k 2 N, and this subsequence
is not asymptotically regular.

Lemma 4.1.4. Let fxn.k/g, fxm.k/g and fx`.k/g be three subsequences of the same
asymptotically regular sequence fxng in a G-metric space .X;G/ and assume that
there exists L 2 Œ0;1/ such that

lim
k!1 G.xn.k/; xm.k/; x`.k// D L:

Then, for all given p1; p2; p3 2 Z,

lim
k!1 G.xn.k/Cp1 ; xm.k/Cp2 ; x`.k/Cp3 / D L: (4.6)

Proof. As fxng is asymptotically regular, by (4.1), we have that

lim
n!1 G .xn; xnC1; xnC1/ D lim

n!1 G .xn; xn; xnC1/ D 0: (4.7)

Firstly, we show, by induction on p1, that

for all p1 2 N, lim
k!1 G.xn.k/Cp1 ; xm.k/; x`.k// D L: (4.8)

If p1 D 0, then (4.8) holds by hypothesis. Assume that (4.8) holds for some p1 2 N,
and we show that (4.8) also holds for p1 C 1. Indeed, notice that, for all k 2 N,

G.xn.k/Cp1C1; xm.k/; x`.k//

� G.xn.k/Cp1C1; xn.k/Cp1 ; xn.k/Cp1 /C G.xn.k/Cp1 ; xm.k/; x`.k//

and

G.xn.k/Cp1 ; xm.k/; x`.k//

� G.xn.k/Cp1 ; xn.k/Cp1C1; xn.k/Cp1C1/C G.xn.k/Cp1C1; xm.k/; x`.k//:
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Joining the last two inequalities,

G.xn.k/Cp1 ; xm.k/; x`.k// � G.xn.k/Cp1 ; xn.k/Cp1C1; xn.k/Cp1C1/

� G.xn.k/Cp1C1; xm.k/; x`.k//

� G.xn.k/Cp1C1; xn.k/Cp1 ; xn.k/Cp1 /C G.xn.k/Cp1 ; xm.k/; x`.k///:

Using (4.7), the hypothesis of induction (4.8) and Lemma 2.1.1, we deduce that

lim
k!1 G.xn.k/Cp1C1; xm.k/; x`.k// D L;

which completes the proof. Then (4.8) holds.
The case in which p1 < 0 can be proved similarly by induction on �p1, so (4.8)

holds for all p1 2 Z.
Now, using that G.xn.k/Cp1 ; xm.k/; x`.k// D G.xm.k/; xn.k/Cp1 ; x`.k// for all k 2 N,

we can apply what we have just proved in order to deduce that

for all p1; p2 2 Z, lim
k!1 G.xm.k/Cp2 ; xn.k/Cp1 ; x`.k// D L:

Similarly, in another step, we conclude that (4.6) holds. ut
Proposition 4.1.1. Let fxng be a sequence in a G-metric space .X;G/.

1. If the following condition holds:

for all " > 0, there exists n0 2 N such that

G.xn; xm; xm/ � " for all m > n � n0; (4.9)

then fxng is a Cauchy sequence in .X;G/.
2. If the following condition holds:

for all " > 0, there exists n0 2 N such that

G.xn; xn; xm/ � " for all m > n � n0;

then fxng is a Cauchy sequence in .X;G/.

Proof. As fxng is asymptotically regular, by (4.1), we have that

lim
n!1 G .xn; xnC1; xnC1/ D lim

n!1 G .xn; xn; xnC1/ D 0:

Assume that condition (4.9) holds. Let " > 0 be arbitrary and let n0 2 N satisfy
(4.9) for "=2 > 0. If ` � m � n � n0, then

G.xn; xm; x`/ � G.xn; xm; xm/C G.xm; xm; x`/

� "

2
C "

2
D ":
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Hence, fxng is a Cauchy sequence in .X;G/. The other condition yields the same
conclusion using Lemma 3.1.1. ut
Theorem 4.1.1. Let fxng be an asymptotically regular sequence in a G-metric
space .X;G/ and suppose that fxng is not Cauchy. Then the following properties
hold.

1. There exists a positive real number "1 > 0 and two subsequences fxn.k/g and
fxm.k/g of fxng such that, for all k 2 N,

k � n.k/ < m.k/ < n.k C 1/;

G
�
xn.k/; xm.k/�1; xm.k/�1

� � "1 < G
�
xn.k/; xm.k/; xm.k/

�

and also, for all given p1; p2; p3 2 Z,

lim
k!1 G

�
xn.k/Cp1 ; xm.k/Cp2 ; xm.k/Cp3

� D "1: (4.10)

2. There exists a positive real number "2 > 0 and two subsequences fxr.k/g and
fxs.k/g of fxng such that, for all k 2 N,

k � r.k/ < s.k/ < r.k C 1/;

G
�
xr.k/; xr.k/; xs.k/�1

� � "2 < G
�
xr.k/; xr.k/; xs.k/

�

and also, for all given p1; p2; p3 2 Z,

lim
k!1 G

�
xr.k/Cp1 ; xr.k/Cp2 ; xs.k/Cp3

� D "2:

Proof. (1) As fxng is asymptotically regular, by (4.1), we have that

lim
n!1 G .xn; xnC1; xnC1/ D 0: (4.11)

Taking into account that fxng is not Cauchy, condition (4.9) cannot hold. If we deny
that condition, we can find a positive real number "1 > 0 and two subsequences
fxn.k/g and fxm.k/g of fxng such that, for all k 2 N,

k � n.k/ < m.k/ < n.k C 1/; "1 < G
�
xn.k/; xm.k/; xm.k/

�
:

For each k 2 N, it is possible to choose m.k/ as the lowest integer, greater
than n.k/, verifying the previous condition. As m.k/ � 1 does not verify it, then
G
�
xn.k/; xm.k/�1; xm.k/�1

� � "1 for all k 2 N. We claim that

lim
k!1 G

�
xn.k/; xm.k/; xm.k/

� D "1: (4.12)
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Indeed, notice that, for all k 2 N,

"1 < G
�
xn.k/; xm.k/; xm.k/

�

� G
�
xn.k/; xm.k/�1; xm.k/�1

�C G
�
xm.k/�1; xm.k/; xm.k/

�

� "1 C G
�
xm.k/�1; xm.k/; xm.k/

�
:

Taking into account (4.11) and letting k ! 1 in the previous inequality, we deduce,
using Lemma 2.1.1, that (4.12) holds. Finally, using Lemma 4.1.4, we conclude that
for all given p1; p2; p3 2 Z,

lim
k!1 G

�
xn.k/Cp1 ; xm.k/Cp2 ; xm.k/Cp3

� D "1:

The proof of the other item is similar. ut
Lemma 4.1.5. Let fxng be an asymptotically regular sequence in a G-metric space
.X;G/ and suppose that fxng is not Cauchy. Then there exists a positive real number
"0 > 0 and two subsequences fxn.k/g and fxm.k/g of fxng such that, for all k 2 N,

k � n.k/ < m.k/ < n.k C 1/;

G
�
xn.k/; xn.k/C1; xm.k/�1

� � "0 < G
�
xn.k/; xn.k/C1; xm.k/

�

and also, for all given p1; p2; p3 2 Z,

lim
k!1 G

�
xn.k/Cp1 ; xm.k/Cp2 ; xm.k/Cp3

� D "0: (4.13)

Proof. Under the asymptotically regular condition, we show that the assumption

for all " > 0, there exists n0 2 N such that

G .xn; xnC1; xm/ � " for all m � n � n0; (4.14)

implies that fxng is a Cauchy sequence. Indeed, by .G4/ and .G5/, we have that

G .xn:xn; xm/ � G .xn; xnC1; xnC1/C G .xnC1; xn; xm/

D G .xn; xnC1; xnC1/C G .xn; xnC1; xm/ :

As G .xn; xnC1; xnC1/ and G .xn; xnC1; xm/ are as small as we wish for m � n � n0
and n0 large enough, then Lemma 3.2.2 guarantees that fxng is a Cauchy sequence.
If we assume that fxng is not a Cauchy sequence, then condition (4.14) is false. Then,
there exists "0 > 0 and two subsequences fxn.k/g and fxm.k/g of fxng such that, for
all k 2 N, k � n.k/ < m.k/ < n.k C 1/ and G

�
xn.k/; xn.k/C1; xm.k/

�
> "0. If m.k/ is

the smallest integer, greater that n.k/, such that this condition holds, then

G
�
xn.k/; xn.k/C1; xm.k/�1

� � "0 < G
�
xn.k/; xn.k/C1; xm.k/

�
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for all k 2 N. As a result,

"0 < G
�
xn.k/; xn.k/C1; xm.k/

� D G
�
xm.k/; xn.k/; xn.k/C1

�

� G
�
xm.k/; xm.k/�1; xm.k/�1

�C G
�
xm.k/�1; xn.k/; xn.k/C1

�

� G
�
xm.k/; xm.k/�1; xm.k/�1

�C "0:

Since fxng is asymptotically regular, then

lim
k!1 G

�
xn.k/; xn.k/C1; xm.k/

� D "0:

Lemma 4.1.4 guarantees that (4.13) holds. ut

4.2 Basic Fixed Point Theorems in the Context
of G-Metric Spaces

We start this section by proving a fixed point theorem on G-metric spaces, which
were is to Mustafa [142].

4.2.1 Banach Contractive Mapping Principle
in G-Metric Spaces

The following one can be considered as the first generalization of the Banach
contractive mapping principle to the context of G-metric spaces.

Theorem 4.2.1 ([142]). Let .X;G/ be a complete G-metric space and let T W X !
X be a mapping such that there exists � 2 Œ0; 1/ satisfying

G.Tx;Ty;Tz/ � �G.x; y; z/ for all x; y; z 2 X: (4.15)

Then T has a unique fixed point. In fact, T is a Picard operator.

Proof. Let x0 be an arbitrary point of X and let fxngn�0 be the Picard sequence of
T based on x0, that is, xnC1 D Txn for all n � 0. If there exists some n0 such that
xn0C1 D xn0 , then xn0 is a fixed point of T , and the existence of a fixed point is
guaranteed. Therefore, assume that

xnC1 ¤ xn for all n � 0:
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By taking x D xn and y D z D xnC1 in the contractive condition (4.15) of the
theorem, we have that, for all n � 0,

G.xnC1; xnC2; xnC2/ D G.Txn;TxnC1;TxnC1/

� �G.xn; xnC1; xnC1/:

From Corollary 4.1.1, fxng is a Cauchy sequence. As .X;G/ is complete, it is
convergent, so there exists z 2 X such that fxng ! z. We assert that z is a fixed
point of T . By utilizing (4.15), we have that, for all n � 0,

G.xnC1;Tz;Tz/ D G.Txn;Tz;Tz/ � �G.xn; z; z/:

Letting n ! 1 and using the fact that the metric G is continuous (see Theo-
rem 3.2.2), we get that

G.z;Tz;Tz/ � �G.z; z; z/ D 0:

Hence, we conclude that z D Tz by item 5 of Lemma 3.1.2. We shall show that z is
the unique fixed point of T . Suppose, on the contrary, that there exists another fixed
point w 2 X. If w ¤ x, then G.w;w; z/ > 0. From (4.15) and � < 1 we have that

G.w;w; z/ D G.Tw;Tw;Tz/ � �G.w;w; z/ < G.w;w; z/;

which is a contradiction. Hence, z is the unique fixed point of T . ut
If we carefully read the previous proof, we will notice that the contractivity

condition was only used when two arguments of G are equal. Then, the following
contractivity condition, which is weaker than (4.15), leads to the same conclusion.

Theorem 4.2.2. Let .X;G/ be a complete G-metric space and let T W X ! X be a
mapping such that there exists � 2 Œ0; 1/ satisfying

G.Tx;Ty;Ty/ � �G.x; y; y/ for all x; y; z 2 X: (4.16)

Then T has a unique fixed point. In fact, T is a Picard operator.

The proof of Theorem 4.2.2 is the same as the proof of Theorem 4.2.1. We omit
the proof to avoid repetition.

Remark 4.2.1. Condition (4.15) implies condition (4.16). The converse is only true
if � 2 Œ0; 1=2/. To prove it, assume that 0 � � < 1=2 and let �0 D 2� 2 Œ0; 1/.
Let x; y; z 2 X arbitrary. If x D y or y D z, then condition (4.16) implies condition
(4.15). Assume that x ¤ y and y ¤ z. Then, using (4.16) and axioms .G3/ and .G5/,

G.Tx;Ty;Tz/ � G.Tx;Ty;Ty/C G.Ty;Ty;Tz/

� �G.x; y; y/C �G.y; y; z/

� �G.x; y; z/C �G.x; y; z/

D �0 G.x; y; z/:
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4.2.2 Fixed Point Theorems Using Altering Distance Functions

In this section we weaken the contractive conditions on the map under consideration.
In 1969, Boyd and Wong [52] defined the concept of ˆ-contraction. Later, in
1997, Alber and Guerre-Delabriere [17] defined the notion of weak �-contractions
on Hilbert spaces and proved a fixed point theorem regarding such contractions.
Specifically, a map T W X ! X on a metric space .X; d/ into itself is called a weak
�-contraction if there exists a strictly increasing function � W Œ0;1/ ! Œ0;1/ with
�.0/ D 0 such that

d.Tx;Ty/ � d.x; y/ � �.d.x; y// for all x; y 2 X:

These types of contractions were discussed in the literature (see e.g. [111, 173,
200]).

In this subsection we present some fixed point results in the framework of
G-metric spaces involving altering distance functions in the contractivity condition.
To do that, recall that

Falt D f� W Œ0;1/ ! Œ0;1/ W � continuous, non-decreasing,

� .t/ D 0 , t D 0 g;

F 0
alt D f� W Œ0;1/ ! Œ0;1/ W � lower semi-continuous, � .t/ D 0 , t D 0g :

Theorem 4.2.3. Let .X;G/ be a complete G-metric space and let T W X ! X be a
self-mapping. Assume that there exist two functions  2 Falt and � 2 F 0

alt such that

 .G .Tx;Ty;Ty// �  .G .x; y; y// � � .G .x; y; y// (4.17)

for all x; y 2 X. Then T has a unique fixed point. Furthermore, T is a Picard
operator.

Proof. Let x0 2 X be an arbitrary point and let fxngn2N be the Picard sequence of T
based on x0, that is, xnC1 D Txn for all n 2 N. If there exists some n0 2 N such that
xn0C1 D xn0 , then xn0 if a fixed point of T , and the existence part is finished. Assume
that xn ¤ xnC1 for all n 2 N. In such a case, using the contractivity condition (4.17),
for all n 2 N,

 .G .xnC1; xnC2; xnC2// D  .G .Txn;TxnC1;TxnC1//

�  .G .xn; xnC1; xnC1// � � .G .xn; xnC1; xnC1// :

From Lemma 2.3.6,

lim
n!1 G .xn; xnC1; xnC1/ D 0;
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which means that fxng is an asymptotically regular sequence on .X;G/. Next, we
will prove that fxng is a Cauchy sequence in .X;G/ reasoning by contradiction.
Suppose that fxng is not Cauchy. Then, by Theorem 4.1.1, there exists a positive
real number "0 > 0 and two subsequences fxn.k/g and fxm.k/g of fxng such that, for
all k 2 N,

k � n.k/ < m.k/ < n.k C 1/;

G
�
xn.k/; xm.k/�1; xm.k/�1

� � "0 < G
�
xn.k/; xm.k/; xm.k/

�

and also, for p1 D p2 D p3 D �1 2 Z,

lim
k!1 G

�
xn.k/; xm.k/; xm.k/

� D lim
k!1 G

�
xn.k/�1; xm.k/�1; xm.k/�1

� D "0: (4.18)

Using the contractivity condition (4.17), for all k 2 N,

 
�
G
�
xn.k/; xm.k/; xm.k/

�� D  
�
G
�
Txn.k/�1;Txm.k/�1;Txm.k/�1

��

�  
�
G
�
xn.k/�1; xm.k/�1; xm.k/�1

��

� � �G �xn.k/�1; xm.k/�1; xm.k/�1
��
:

From (4.18), note

ftk D G
�
xn.k/; xm.k/; xm.k/

�gk2N; fsk D G
�
xn.k/�1; xm.k/�1; xm.k/�1

�gk2N

are two sequences in Œ0;1/ converging to the same limit L D "0. Then, it follows
from Corollary 2.3.2 that "0 D 0, which is a contradiction. As a consequence, we
have that fxng is a Cauchy sequence in .X;G/. Taking into account that .X;G/ is
complete, there exists u 2 X such that fxng ! u. In particular,

lim
n!1 G .xn; u; u/ D 0:

By using the contractivity condition (4.17), we deduce that, for all n 2 N,

 .G .xnC1;Tu;Tu// D  .G .Txn;Tu;Tu//

�  .G .xn; u; u// � � .G .xn; u; u//

�  .G .xn; u; u// :

From item 2 of Corollary 2.3.1,

lim
n!1 G .xnC1;Tu;Tu/ D 0:
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Using the fact that G is continuous on each variable (see Theorem 3.2.2),
Lemma 2.3.3 guarantees that

G .u;Tu;Tu/ D lim
n!1 G .xnC1;Tu;Tu/ D 0:

As a consequence, by using .G2/, we conclude that Tu D u.
Finally, we claim that T has a unique fixed point. Let u; v 2 Fix.T/ be

arbitrary fixed points of T . If u ¤ v, then G.u; v; v/ > 0 and, as � 2 F 0
alt, then

� .G.u; v; v// > 0. Using the contractivity condition (4.17), we deduce that

 .G .u; v; v// D  .G .Tu;Tv;Tv//

�  .G .u; v; v// � � .G .u; v; v//
<  .G .u; v; v// ;

which is a contradiction. Then u D v and T has a unique fixed point. ut
The following contractivity condition, using three arbitrary arguments, is

stronger than (4.17).

Corollary 4.2.1. Let .X;G/ be a complete G-metric space and let T W X ! X be a
self-mapping. Assume that there exist two functions  2 Falt and � 2 F 0

alt such that

 .G .Tx;Ty;Tz// �  .G .x; y; z// � � .G .x; y; z//

for all x; y; z 2 X. Then T has a unique fixed point. Furthermore, T is a Picard
operator.

In the following result, we take  as the identity mapping on Œ0;1/, obtaining a
version of the Alber and Guerre-Delabriere’s result (see [17]).

Corollary 4.2.2. Let .X;G/ be a complete G-metric space and let T W X ! X be a
self-mapping. Assume that there exists a function � 2 F 0

alt such that

G .Tx;Ty;Ty/ � G .x; y; y/ � � .G .x; y; y//

for all x; y 2 X. Then T has a unique fixed point. Furthermore, T is a Picard
operator.

In fact, we can suppose that � is continuous, obtaining a version of Rhoades’
theorem.

Corollary 4.2.3. Let .X;G/ be a complete G-metric space and let T W X ! X be a
self-mapping. Assume that there exists a continuous function � W Œ0;1/ ! Œ0;1/

such that � .t/ D 0 if, and only if, t D 0, and satisfies

G .Tx;Ty;Ty/ � G .x; y; y/ � � .G .x; y; y//
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for all x; y 2 X. Then T has a unique fixed point. Furthermore, T is a Picard
operator.

Corollary 4.2.4. Let .X;G/ be a complete G-metric space and let T W X ! X be a
self-mapping. Assume that there exists a continuous function � W Œ0;1/ ! Œ0;1/

such that � .t/ D 0 if, and only if, t D 0, and satisfies

G .Tx;Ty;Tz/ � G .x; y; z/ � � .G .x; y; z//

for all x; y; z 2 X. Then T has a unique fixed point. Furthermore, T is a Picard
operator.

Finally, if we use �� .t/ D .1 � �/ t for all t 2 Œ0;1/, where � 2 Œ0; 1/, then
�� 2 F 0

alt and we have the following consequence.

Corollary 4.2.5. Theorem 4.2.1 is an immediate consequence of Corollary 4.2.4.

Proof. Notice that, for all x; y; z 2 X, we have that

G .Tx;Ty;Tz/ � �G .x; y; z/

D G .x; y; z/ � .1 � �/ G .x; y; z/

D G .x; y; z/ � �� .G .x; y; z// ;

so Corollary 4.2.4 is applicable. ut
The previous results are also valid if we employ � 2 F 00

alt.

Theorem 4.2.4. If we replace the condition � 2 F 0
alt by the assumption � 2 F 00

alt,
then Theorem 4.2.3 (and its subsequent corollaries) also holds.

Proof. Repeat the argument in the proof of Theorem 4.2.3 using Lemmas 2.3.9
and 2.3.10 rather than Lemma 2.3.6 and Corollaries 2.3.2 and 2.3.3. ut

4.2.3 Jachymski’s Equivalent Contractivity Conditions

In 2011, Jachymski proved in [94], in the context of metric spaces, that the
contractivity condition (4.17) can be expressed equivalently in a wide range of
different ways.

Given functions  ; � W Œ0;1/ ! Œ0;1/, we set

E ;� D f .t; u/ 2 Œ0;1/ � Œ0;1/ W  .u/ �  .t/ � � .t/ g

and

E D f .t; u/ 2 Œ0;1/ � Œ0;1/ W u �  .t/ g :
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Theorem 4.2.5 (Jachymski [94], Lemma 1). Let D be a subset of Œ0;1/2 D
Œ0;1/ � Œ0;1/. Then the following statements are equivalent.

(i) there exist functions  ; � 2 Falt such that D � E ;�;
(ii) there exist  2 Falt and a non-decreasing function � W Œ0;1/ ! Œ0;1/ such

that ��1.f0g/ D f0g and D � E ;�;
(iii) there exist  2 Falt and a lower semi-continuous function � W Œ0;1/ !

Œ0;1/ such that ��1.f0g/ D f0g, lim inft!1 �.t/ > 0 and D � E ;�;
(iv) there exist  2 Falt and a function � W Œ0;1/ ! Œ0;1/ such that �.0/ D 0

and for any sequence ftng of positive reals, f�.tn/g ! 0 implies ftng ! 0,
and D � E ;�;

(v) there exists  2 Falt satisfying the condition: for any " > 0, there exist ı > 0
and 	 2 .0; "/ such that for any .t; u/ 2 D,  .t/ < "C ı implies  .u/ � 	 ;

(vi) for any ˛ 2 .0; 1/, there exists  2 Falt such that for any .t; u/ 2 D,  .u/ �
˛  .t/;

(vii) there exist ˛ 2 .0; 1/ and  2 Falt such that for any .t; u/ 2 D,  .u/ �
˛  .t/;

(viii) there exists a continuous and non-decreasing function ' W Œ0;1/ ! Œ0;1/

such that '.t/ < t for any t > 0, and D � E';
(ix) there exists a lower semi-continuous function � W Œ0;1/ ! Œ0;1/ such that

��1.f0g/ D f0g, and D � E' , where '.t/ D t � �.t/ for all t 2 Œ0;1/;
(x) there exists a function ˇ W Œ0;1/ ! Œ0; 1� such that for any bounded

sequence ftng of positive reals, fˇ.tn/g ! 1 implies ftng ! 0, and D � E' ,
where '.t/ D t ˇ.t/ for all t 2 Œ0;1/;

(xi) there exist  2 Falt and a non-decreasing, right continuous function ' W
Œ0;1/ ! Œ0;1/ such that '.t/ < t for all t > 0, and for any .t; u/ 2
D,  .u/ � ' . .t//;

(xii) there exist  2 Falt with limt!1  .t/ D 1, and a lower semi-continuous
function � W Œ0;1/ ! Œ0;1/ such that ��1.f0g/ D f0g and D � E ;� .

As a consequence of the previous result, he proved the following result.

Theorem 4.2.6. Let T be a selfmap of a metric space .X; d/. The following
statements are equivalent.

(i) There exist functions  ; � 2 Falt such that, for any x; y 2 X,

 .d .Tx;Ty// �  .d .x; y// � � .d .x; y// : (4.19)

(ii) There exist ˛ 2 Œ0; 1/ and  2 Falt such that, for any x; y 2 X,

 .d .Tx;Ty// � ˛  .d .x; y// :

(iii) There exists a continuous and non-decreasing function ' W Œ0;1/ ! Œ0;1/

such that '.t/ < t for any t > 0 and for any x; y 2 X,

d .Tx;Ty/ � ' .d .x; y// :
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(iv) There exist  2 Falt and a non-decreasing function � W Œ0;1/ ! Œ0;1/ such
that ��1.f0g/ D f0g and (4.19) holds.

(v) There exist  2 Falt and a lower semi-continuous function � W Œ0;1/ !
Œ0;1/ such that ��1.f0g/ D f0g, lim inft!1 � .t/ > 0 and (4.19) holds.

Notice that in item (v), the function � belongs to F 0
alt. Following exactly

Jachymski’s argument, it is easy to prove the following characterization.

Theorem 4.2.7. Let T be a selfmap of a G-metric space .X;G/. The following
statements are equivalent.

(i) There exist functions  ; � 2 Falt such that, for any x; y 2 X,

 .G .Tx;Ty;Ty// �  .G .x; y; y// � � .G .x; y; y// : (4.20)

(ii) There exist ˛ 2 Œ0; 1/ and  2 Falt such that, for any x; y 2 X,

 .G .Tx;Ty;Ty// � ˛  .G .x; y; y// :

(iii) There exists a continuous and non-decreasing function ' W Œ0;1/ ! Œ0;1/

such that '.t/ < t for any t > 0 and for any x; y 2 X,

G .Tx;Ty;Ty/ � ' .G .x; y; y// :

(iv) There exist  2 Falt and � 2 F 0
alt such that (4.20) holds.

(v) There exist  2 Falt and � 2 F 0
alt such that lim inft!1 � .t/ > 0 and (4.20)

holds.

Following the same arguments given in the proof of Theorem 4.2.3, it is possible
to prove that any self-mapping T W X ! X from a complete G-metric space into
itself, satisfying any of the previous conditions, is a Picard operator.

4.2.4 Ćirić’s Fixed Point Theorems

Consider the family

FCir D
�
' W Œ0;1/ ! Œ0;1/ W � .t/ < t and lim

s!tC
� .s/ < t for all t > 0

�
:

Theorem 4.2.8. Let .X;G/ be a complete G-metric space and let T W X ! X be a
self-mapping. Assume that there exists a function ' 2 FCir such that

G .Tx;Ty;Ty/ � ' .G .x; y; y// (4.21)

for all x; y 2 X. Then T has a unique fixed point. Furthermore, T is a Picard
operator.
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Proof. Let x0 2 X be an arbitrary point and let fxngn2N be the Picard sequence of T
based on x0, that is, xnC1 D Txn for all n 2 N. If there exists some n0 2 N such that
xn0C1 D xn0 , then xn0 if a fixed point of T , and the existence part is finished. Assume
that xn ¤ xnC1 for all n 2 N. In such a case, using the contractivity condition (4.21),
for all n 2 N,

G .xnC1; xnC2; xnC2/ D G .Txn;TxnC1;TxnC1/

� ' .G .xn; xnC1; xnC1// :

From item 3 of Lemma 2.3.11,

lim
n!1 G .xn; xnC1; xnC1/ D 0;

which means that fxng is an asymptotically regular sequence on .X;G/. Next, we
will prove that fxng is a Cauchy sequence in .X;G/ reasoning by contradiction.
Suppose that fxng is not Cauchy. Then, by Theorem 4.1.1, there exists a positive
real number "0 > 0 and two subsequences fxn.k/g and fxm.k/g of fxng such that, for
all k 2 N,

k � n.k/ < m.k/ < n.k C 1/;

G
�
xn.k/; xm.k/�1; xm.k/�1

� � "0 < G
�
xn.k/; xm.k/; xm.k/

�

and also, for p1 D p2 D p3 D �1 2 Z,

lim
k!1 G

�
xn.k/; xm.k/; xm.k/

� D lim
k!1 G

�
xn.k/�1; xm.k/�1; xm.k/�1

�

D "0: (4.22)

Using the contractivity condition (4.21), for all k 2 N,

"0 < G
�
xn.k/; xm.k/; xm.k/

� D G
�
Txn.k/�1;Txm.k/�1;Txm.k/�1

�

� '
�
G
�
xn.k/�1; xm.k/�1; xm.k/�1

��
:

From (4.22),

ftk D G
�
xn.k/; xm.k/; xm.k/

�gk2N; fsk D G
�
xn.k/�1; xm.k/�1; xm.k/�1

�gk2N

are two sequences in Œ0;1/ converging to the same limit L D "0, and L D "0 <

tk � '.sk/ for all k 2 N. Then, it follows from Lemma 2.3.14 that "0 D 0, which is a
contradiction. As a consequence, we have that fxng is a Cauchy sequence in .X;G/.
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Taking into account that .X;G/ is complete, there exists u 2 X such that
fxng ! u. In particular,

lim
n!1 G .xn; u; u/ D 0:

By using the contractivity condition (4.21), we deduce that, for all n 2 N,

G .xnC1;Tu;Tu/ D G .Txn;Tu;Tu/

� ' .G .xn; u; u// :

Notice that if there exists n0 2 N such that G .xn0 ; u; u/ D 0, then xn0 D u, so
xn0C1 D Txn0 D Tu and G .xn0C1;Tu;Tu/ D 0. From item 5 of Lemma 2.3.11, we
have that

lim
n!1 G .xnC1;Tu;Tu/ D 0:

Using the fact that G is continuous on each variable (see Theorem 3.2.2), it follows
that

G .u;Tu;Tu/ D lim
n!1 G .xnC1;Tu;Tu/ D 0:

As a consequence, by using .G2/, we conclude that Tu D u.
Finally, we claim that T has a unique fixed point. Let u; v 2 Fix.T/ be arbitrary

fixed points of T . If u ¤ v, then G.u; v; v/ > 0 and, as ' 2 FCir, then
� .G.u; v; v// < G.u; v; v/. Using the contractivity condition (4.21), we deduce
that

G .u; v; v/ D G .Tu;Tv;Tv/

� ' .G .u; v; v// < G .u; v; v/ ;

which is a contradiction. Then u D v and T has a unique fixed point. ut
Corollary 4.2.6. Let .X;G/ be a complete G-metric space and let T W X ! X be a
self-mapping. Assume that there exists a function ' 2 FCir such that

G .Tx;Ty;Tz/ � ' .G .x; y; z//

for all x; y; z 2 X. Then T has a unique fixed point. Furthermore, T is a Picard
operator.
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4.3 Basic Common Fixed Point Theorems in the Context
of G-Metric Spaces

In this section, we extend the previous results to the case in which we have two
nonlinear operators T; g W X ! X, and we describe sufficient conditions to guarantee
existence of coincidence points (Tx D gx) or common fixed points (! D T! D g!).

4.3.1 Basic Common Fixed Points Theorems
in G-Metric Spaces

We first state the following theorem concerning the existence and uniqueness of
common fixed points which can be considered as a generalization of Theorem 4.2.1.

Theorem 4.3.1. Let .X;G/ be a G-metric space and let T; g W X ! X be two
mappings. Suppose that there exists � 2 Œ0; 1/ such that

G.Tx;Ty;Ty/ � �G.gx; gy; gy/ for all x; y 2 X: (4.23)

Also assume that T and g satisfy the following conditions.

.A1/ T.X/ � g.X/,

.A2/ .X;G/ is complete,

.A3/ g is G-continuous and commutes with T.

Then T and g have a unique common fixed point, that is, there is a unique x 2 X
such that gx D Tx D x.

Proof. Let x0 2 X. By assumption .A1/ and Lemma 4.1.1, there exists a Picard
sequence fxng � X of .T; g/, that is,

gxnC1 D Txn for all n 2 N:

If there exists n0 2 N such that gxn0C1 D gxn0 , then gxn0 D gxn0C1 D Txn0 , so xn0
is a coincidence point of T and g. On the contrary case, assume that gxn ¤ gxnC1
for all n 2 N. In particular, G.gx0; gx1; gx1/ > 0. Due to (4.23), we have that, for
all n � 0,

G.gxnC1; gxnC2; gxnC2/ D G.Txn;TxnC1;TxnC1/

� �G.gxn; gxnC1; gxnC1/:

From Corollary 4.1.1, fgxng is a G-Cauchy sequence in g.X/ � X. Since .X;G/ is
complete, then there exists z 2 X such that fgxng ! z. Since g is G-continuous,
we have fggxng ! gz. On the other hand, since g and T commute, we have that
ggxnC1 D gTxn D Tgxn for all n � 0. Thus,
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G.ggxnC1;Tz;Tz/ D G.Tgxn;Tz;Tz/ � �G.ggxn; gz; gz/

for all n � 0. Letting n ! 1 and using the fact that the metric G is continuous, we
get that

G.gz;Tz;Tz/ � �G.gz; gz; gz/ D 0:

Hence gz D Tz. Furthermore, for all n � 0,

G.gxnC1; gz; gz/ D G.Txn;Tz;Tz/ � �G.gxn; gz; gz/:

Letting n ! 1 and using the fact that G is continuous, we obtain that

G.z; gz; gz/ � �G.z; gz; gz/:

Hence we have z D gz D Tz. We now show that z is the unique common fixed point
of T and g. Suppose that, contrary to our claim, there exists another common fixed
point w 2 X with w ¤ z. From (4.23) we have

G.z;w;w/ D G.Tz;Tw;Tw/ � �G.z;w;w/

which is a contradiction since � < 1. Hence, the common fixed point of T and g is
unique. ut
Lemma 4.3.1. Let .X;G/ be a G-metric space and let T W X ! X and g W X ! X
be two mappings such that there exists � 2 Œ0; 1/ satisfying

G.Tx;Ty;Ty/ � �G.gx; gy; gy/ for all x; y 2 X:

If g is G-continuous at ! 2 X, then T is also G-continuous at !. In particular, if g
is G-continuous, then T is also G-continuous.

Proof. Let fxng � X be a sequence such that fxng ! !. As g is G-continuous at x,
then fgxng ! g!, that is,

lim
n!1 G .gxn; g!; g!/ D 0:

Applying the contractivity condition, we have that

0 � lim
n!1 G .Txn;T!;T!/ � lim

n!1�G .gxn; g!; g!/ D 0:

Then limn!1 G .Txn;T!;T!/ D 0, which means that fTxng ! T!. Therefore, T
is G-continuous at !. ut

The same argument used to prove Theorem 4.2.2 (which follows the proof of
Theorem 4.2.1) is useful to obtain the following result.
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Corollary 4.3.1. Let .X;G/ be a G-metric space and let T W X ! X and g W X ! X
be two mappings such that there exists � 2 Œ0; 1/ satisfying

G.Tx;Ty;Tz/ � �G.gx; gy; gy/ for all x; y 2 X: (4.24)

Assume that T and g satisfy the following conditions.

.A1/ T.X/ � g.X/,

.A2/ .X;G/ is complete,

.A3/ g is G-continuous and commutes with T.

Then T and g have a unique common fixed point, that is, there is a unique x 2 X
such that gx D Tx D x.

4.3.2 Common Fixed Point Theorems Using Altering
Distance Functions

In this subsection we present a common fixed point theorem for nonlinear operators
T; g W X ! X using the following contractivity condition: for all x; y 2 X,

 .G .Tx;Ty;Ty// �  .G .gx; gy; gy// � � .G .gx; gy; gy// ; (4.25)

where  2 Falt and � 2 F 0
alt.

Lemma 4.3.2. Let T; g W X ! X be two self-mappings on a G-metric space .X;G/
such that (4.25) holds, where  2 Falt. Then T is G-continuous at every point in
which g is G-continuous.

Proof. Assume that g is G-continuous at a point ! 2 X and let fxng � X be a
sequence such that fxng ! !. As g is G-continuous at !, then fgxng ! g!, that is,

lim
n!1 G .gxn; g!; g!/ D 0:

Applying the contractivity condition (4.25), we have that

 .G .Txn;T!;T!// �  .G .gxn; g!; g!// � � .G .gxn; g!; g!//

�  .G .gxn; g!; g!// :

From item 2 of Corollary 2.3.1,

lim
n!1 G .Txn;T!;T!/ D 0;

which means that fTxng ! T!. Therefore, T is G-continuous at !. ut
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The following result is an extension of Theorem 4.2.3 to the coincidence case.
We recall that we denote by Co .T; g/ the family of all coincidence point of T and g.

Theorem 4.3.2. Let .X;G/ be a G-metric space and let T; g W X ! X be two self-
mappings. Assume that the following conditions are fulfilled:

(i) .X;G/ is complete.
(ii) T.X/ � g.X/.

(iii) there exist two functions  2 Falt and � 2 F 0
alt such that, for all x; y 2 X,

 .G .Tx;Ty;Ty// �  .G .gx; gy; gy// � � .G .gx; gy; gy// (4.26)

(iv) g is continuous and commutes with T.

Then T and g have a unique common fixed point !, that is, a point satisfying
! D T! D g!. In fact, for any coincidence point x of T and g, we have that
! D Tx. In particular, gx D gy for all x; y 2 Co .T; g/.

Proof. First we prove that T and g have, at least, a coincidence point. Let x0 2 X
be an arbitrary point. From Lemma 4.1.1, there exists a Picard sequence fxngn2N of
.T; g/, that is,

gxnC1 D Txn for all n 2 N:

If there exists some n0 2 N such that gxn0C1 D gxn0 , then gxn0 D gxn0C1 D Txn0 , so
xn0 if a coincidence point of T and g, and the existence part is finished. Assume that
gxn ¤ gxnC1 for all n 2 N, that is,

G .gxn; gxnC1; gxnC1/ > 0 for all n 2 N:

In such a case, using the contractivity condition (4.26), for all n 2 N,

 .G .gxnC1; gxnC2; gxnC2// D  .G .Txn;TxnC1;TxnC1//

�  .G .gxn; gxnC1; gxnC1// � � .G .gxn; gxnC1; gxnC1// :

From Lemma 2.3.6,

lim
n!1 G .gxn; gxnC1; gxnC1/ D 0;

which means that fgxng is an asymptotically regular sequence on .X;G/. Next, we
will prove that fgxng is a Cauchy sequence in .X;G/ reasoning by contradiction.
Suppose that fgxng is not Cauchy. Then, by Theorem 4.1.1, there exists a positive
real number "0 > 0 and two subsequences fgxn.k/g and fgxm.k/g of fgxng such that,
for all k 2 N,

k � n.k/ < m.k/ < n.k C 1/;

G
�
gxn.k/; gxm.k/�1; gxm.k/�1

� � "0 < G
�
gxn.k/; gxm.k/; gxm.k/

�
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and also, for p1 D p2 D p3 D �1 2 Z,

lim
k!1 G

�
gxn.k/; gxm.k/; gxm.k/

� D lim
k!1 G

�
gxn.k/�1; gxm.k/�1; gxm.k/�1

�

D "0: (4.27)

Using the contractivity condition (4.26), for all k 2 N,

 
�
G
�
gxn.k/; gxm.k/; gxm.k/

��

D  
�
G
�
Txn.k/�1;Txm.k/�1;Txm.k/�1

��

�  
�
G
�
gxn.k/�1; gxm.k/�1; gxm.k/�1

��

� � �G �gxn.k/�1; gxm.k/�1; gxm.k/�1
��
:

From (4.27), (with k 2 N),

ftk D G
�
gxn.k/; gxm.k/; gxm.k/

�g; fsk D G
�
gxn.k/�1; gxm.k/�1; gxm.k/�1

�g

are two sequences in Œ0;1/ converging to the same limit L D "0 and satisfying

 .tk/ �  .sk/ � � .sk/ for all n 2 N:

Then, it follows from Corollary 2.3.2 that "0 D 0, which is a contradiction. As a
consequence, we have that fgxng is a Cauchy sequence in .X;G/.

Taking into account that .X;G/ is complete, there exists z 2 X such that
fgxng ! z. As g is G-continuous, then fggxng ! gz. In particular,

lim
n!1 G .ggxn; gz; gz/ D 0:

On the other hand, since g and T commute, we have that

ggxnC1 D gTxn D Tgxn for all n � 0:

Thus, by using the contractivity condition (4.26), we deduce that, for all n 2 N,

 .G.ggxnC1;Tz;Tz// D  .G.Tgxn;Tz;Tz//

�  .G.ggxn; gz; gz// � � .G.ggxn; gz; gz//

�  .G.ggxn; gz; gz// : (4.28)

From item 2 of Corollary 2.3.1,

lim
n!1 G.ggxnC1;Tz;Tz/ D 0;
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which means that fggxng ! Tz. However, as fggxng ! gz, the uniqueness of the
limit in a G-metric space concludes that Tz D gz, that is, z is a coincidence point of
T and g.

Next, we claim that

gx D gy for all x; y 2 Co .T; g/ : (4.29)

Assume that x and y are two coincidence points of T and g. By the contractivity
condition (4.26),

 .G.gx; gy; gy// D  .G.Tx;Ty;Ty//

�  .G.gx; gy; gy// � � .G.gx; gy; gy//

�  .G.gx; gy; gy// :

Therefore, � .G.gx; gy; gy// D 0, so G.gx; gy; gy/ D 0 and gx D gy. This proves
that (4.29) holds.

Next we show that, for all coincidence points x of T and g, the point ! D Tx
is a common fixed point of T and g. Let x 2 X be an arbitrary coincidence point
of T and g and let ! D Tx D gx. As T and g commutes, Remark 2.2.1 guarantees
that ! D Tx is also a coincidence point of T and g. Then, T! D g!. Moreover, by
(4.29), we have that gx D g!. In particular, T! D g! D gx D Tx D !. As a result,
! is a common fixed point of T and g.

Finally, we prove that T and g have a unique common fixed point. Let ! and z be
two common fixed points of T and g, that is, ! D T! D g! and z D Tz D gz. By
(4.29), we have that g! D gz, so ! D g! D gz D z. ut

The previous result is also valid if we consider � 2 F 00
alt.

Theorem 4.3.3. If we replace the condition � 2 F 0
alt by the assumption � 2 F 00

alt,
then Theorem 4.3.2 also holds.

Proof. Repeat the argument in the proof of Theorem 4.3.2 using Lemmas 2.3.9
and 2.3.10 rather than Lemma 2.3.6 and Corollaries 2.3.2 and 2.3.1. ut

4.3.3 Jachymski’s Equivalent Contractivity Conditions

Using Theorem 4.2.5, it is easy to express the contractivity condition (4.26) in
several ways as follows.

Theorem 4.3.4. Let T and g be two selfmaps of a G-metric space .X;G/. The
following statements are equivalent.

(i) There exist functions  ; � 2 Falt such that, for any x; y 2 X,

 .G .Tx;Ty;Ty// �  .G .gx; gy; gy// � � .G .gx; gy; gy// : (4.30)
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(ii) There exist ˛ 2 Œ0; 1/ and  2 Falt such that, for any x; y 2 X,

 .G .Tx;Ty;Ty// � ˛  .G .gx; gy; gy// :

(iii) There exists a continuous and non-decreasing function ' W Œ0;1/ ! Œ0;1/

such that '.t/ < t for any t > 0 and for any x; y 2 X,

G .Tx;Ty;Ty/ � ' .G .x; y; y// :

(iv) There exist  2 Falt and a non-decreasing function � W Œ0;1/ ! Œ0;1/ such
that ��1.f0g/ D f0g and (4.30) holds.

(v) There exist  2 Falt and � 2 F 0
alt such that lim inft!1 � .t/ > 0 and (4.30)

holds.

4.3.4 Ćirić’s Common Fixed Point Theorems

In this section, given two mappings T; g W X ! X, we study the contractivity
condition

G .Tx;Ty;Ty/ � ' .G .gx; gy; gy// for all x; y 2 X; (4.31)

where ' 2 FCir. Unlike Lemma 4.3.2, the continuity of g does not imply the
continuity of T .

Example 4.3.1. Let X D Œ0; 1� endowed with the complete G-metric G.x; y; z/ D
maxfjx � yj ; jx � zj ; jy � zjg for all x; y; z 2 X. Define the mappings T; g W X ! X
and ' W Œ0;1/ ! Œ0;1/ as

Tx D
�
1; if x D 0;

0; if x > 0I gx D 0; ' .t/ D
�
1; if t D 0;

0; if t > 0:

Then g is G-continuous and ' 2 FCir. We now show that (4.31) holds. Let x; y 2 X
be arbitrary. If Tx D Ty, then (4.31) trivially holds. Assume that Tx ¤ Ty. In this
case, as T.X/ D f0; 1g, then fTx;Tyg D f0; 1g and G .Tx;Ty;Ty/ D 1. Therefore,

G .Tx;Ty;Ty/ D 1 D ' .0/ D ' .G .0; 0; 0// D ' .G .gx; gy; gy// :

Although g is G-continuous, T is not continuous at x D 0.

Theorem 4.3.5. Let .X;G/ be a complete G-metric space and let T; g W X ! X be
two self-mappings. Suppose that T.X/ � g.X/ and g is continuous and commutes
with T. Also assume that there exists a function ' 2 FCir such that

G .Tx;Ty;Ty/ � ' .G .gx; gy; gy// (4.32)
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for all x; y 2 X. If

T is G-continuous or ' .0/ D 0;

then T and g have a unique common fixed point !. In fact, if u 2 Co .T; g/ is a
coincidence point of T and g, then Tu D !.

Proof. Let x0 2 X be an arbitrary point and let fxngn2N be a Picard sequence of
.T; g/ based on any x0 2 X, that is, gxnC1 D Txn for all n 2 N (see Lemma 4.1.1). If
there exists some n0 2 N such that gxn0C1 D gxn0 , then xn0 is a coincidence point of
T and g, and the existence part is finished. Assume that gxn ¤ gxnC1 for all n 2 N. In
such a case, G .gxn; gxnC1; gxnC1/ > 0 and using the contractivity condition (4.32),
for all n 2 N,

G .gxnC1; gxnC2; gxnC2/ D G .Txn;TxnC1;TxnC1/

� ' .G .gxn; gxnC1; gxnC1// :

From item 3 of Lemma 2.3.11,

lim
n!1 G .gxn; gxnC1; gxnC1/ D 0;

which means that fgxng is an asymptotically regular sequence on .X;G/. Next, we
will prove that fgxng is a Cauchy sequence in .X;G/ reasoning by contradiction.
Suppose that fgxng is not Cauchy. From Theorem 4.1.1, there exists a positive real
number "0 > 0 and two subsequences fgxn.k/g and fgxm.k/g of fgxng such that, for
all k 2 N,

k � n.k/ < m.k/ < n.k C 1/;

G
�
gxn.k/; gxm.k/�1; gxm.k/�1

� � "0 < G
�
gxn.k/; gxm.k/; gxm.k/

�

and also, for p1 D p2 D p3 D �1 2 Z,

lim
k!1 G

�
gxn.k/; gxm.k/; gxm.k/

� D lim
k!1 G

�
gxn.k/�1; gxm.k/�1; gxm.k/�1

�

D "0: (4.33)

Using the contractivity condition (4.32), for all k 2 N,

"0 < G
�
gxn.k/; gxm.k/; gxm.k/

� D G
�
Txn.k/�1;Txm.k/�1;Txm.k/�1

�

� '
�
G
�
gxn.k/�1; gxm.k/�1; gxm.k/�1

��
:

From (4.33) (with k 2 N/,

ftk D G
�
gxn.k/; gxm.k/; gxm.k/

�g; fsk D G
�
gxn.k/�1; gxm.k/�1; gxm.k/�1

�g
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are two sequences in Œ0;1/ converging to the same limit L D "0, and L D "0 <

tk � '.sk/ for all k 2 N. Then, it follows from Lemma 2.3.14 that "0 D 0, which
is a contradiction. As a consequence, we have that fgxng is a Cauchy sequence in
.X;G/.

Taking into account that .X;G/ is complete, there exists u 2 X such that
fgxng ! u. As g is continuous, fggxng ! gu. Moreover, as T and g commute,

fTgxng D fgTxng D fggxnC1g ! gu:

Next, we distinguish two cases.

Case 1. T is G-continuous. In this case, fTgxng ! Tu. By the uniqueness of the
limit, Tu D gu.

Case 2. ' .0/ D 0. In this case, by using the contractivity condition (4.32), we
deduce that, for all n 2 N,

G .TgxnC1;Tu;Tu/ � ' .G .ggxn; gu; gu// :

As ' .0/ D 0, item 8 of Lemma 2.3.11 guarantees that fG .TgxnC1;Tu;Tu/g
converges to zero, that is, fTgxng ! Tu. Again, by the uniqueness of the limit,
Tu D gu.

In any case, we have just proved that T and g have, at least, a coincidence point.
Now, we claim that

gu D gv for all u; v 2 Co .T; g/ : (4.34)

Indeed, let u; v 2 Co .T; g/ be two coincidence points of T and g. If we suppose that
gu ¤ gv, then G.gu; gv; gv/ > 0. As a consequence,

G .gu; gv; gv/ D G .Tu;Tv;Tv/ � ' .G .gu; gv; gv//

< G .gu; gv; gv/ ;

which is a contradiction. Then gu D gv and (4.34) holds.
Next, let u 2 Co .T; g/ be an arbitrary coincidence point of T and g and let

! D Tu D gu. We claim that ! is the unique common fixed point of T and g.
Firstly, as T and g commute, T! D Tgu D gTu D g!, so ! is another coincidence
point of T and g. Using (4.34), ! D gu D g!, so ! is a common fixed point of T
and g. If z 2 X is another common fixed point of T and g, that is, z D Tz D gz, then,
it follows from (4.34) that z D gz D g! D !, so ! is the unique common fixed
point of T and g. Finally, if v 2 Co .T; g/ is another arbitrary coincidence point of
T and g, then, also by (4.34), gv D g! D !. ut



Chapter 5
Fixed Point Theorems in Partially Ordered
G-Metric Spaces

In [168], Ran and Reurings established a fixed point theorem that extends the
Banach contraction principle to the setting of partially ordered metric spaces (see
Theorem A.1.1). In their original version, Ran and Reurings used a continuous
function. Nieto and Rodríguez-López established a similar result replacing the
continuity of the nonlinear operator by a property on the partially ordered metric
space (see Theorem A.1.2). In this chapter, we present some fixed point theorems in
the setting of partially ordered G-metric spaces. In particular, we will use a binary
relation weaker than a partial order.

5.1 Binary Relations on a Set

We present here some notions and basic facts about binary relations like partial
orders.

Definition 5.1.1. A binary relation on X is a nonempty subset R of X � X.

For simplicity, we let x 4 y if .x; y/ 2 R, and we will say that 4 is the binary
relation on X. Write x 	 y when x 4 y and x ¤ y. We write y < x when x 4 y.
We shall use 4 and 
 to denote binary relations on X.

Definition 5.1.2. A binary relation 4 on X is

• reflexive if x 4 x for all x 2 X;
• transitive if x 4 z for all x; y; z 2 X such that x 4 y and y 4 z;
• antisymmetric if x 4 y and y 4 x imply x D y.

A reflexive and transitive relation on X is a preorder (or a quasiorder) on X. In
such a case, .X;4/ is a preordered space. If a preorder 4 is also antisymmetric, then
4 is called a partial order, and .X;4/ is a partially ordered space (or a partially
ordered set).

© Springer International Publishing Switzerland 2015
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Example 5.1.1. The usual order on the set of all real numbers R is denoted by �.
In fact, this partial order can be induced on any non-empty subset A � R.

Example 5.1.2. Let 
 be the binary relation on R given by

x 
 y , . x D y or x < y � 0 / :

Then 
 is a partial order on R, but it is different from �.

Example 5.1.3. Any equivalence relation is a preorder.

Example 5.1.4. Let X be an arbitrary set and let x1 and x2 be two different points
of X. If we define

x 
 y , . x D y or .x; y/ D .x1; x2/ / ;

then 
 is a partial order on X. In fact, the relationship 
 only has two different
comparable points, which are x1 and x2, being x1 	 x2.

We consider fixed point theory in G-metric spaces provided with a partial order.
In many cases, it is not necessary to consider a partial order: a preorder is enough.
The main advantage of preorders if that the binary relation 
0 on X, defined by

x 
0 y for all x; y 2 X (5.1)

is a preorder on X (but it is not a partial order). Some of the contractive conditions
we shall use are:

.a/ G .Tx;Ty;Ty/ � �G .x; y; y/ for all x; y 2 XI and

.b/ G .Tx;Ty;Ty/ � �G .x; y; y/ for all x; y 2 X such that x 4 y;

(where, in .b/, 4 is a partial order on X) can be treated in an unified way as the
unique condition:

.c/ G .Tx;Ty;Ty/ � �G .x; y; y/ for all x; y 2 X such that x 
 y;

where 
 is a preorder on X.
One of the most important hypothesis that we shall use in the results of this

chapter is the monotonicity of the involved mappings.

Definition 5.1.3. Let 4 be a binary relation on X and let T; g W X ! X be mappings.
We say that T is:

• .g;4/-non-decreasing if Tx 4 Ty for all x; y 2 X such that gx 4 gy;
• .g;4/-non-increasing if Tx < Ty for all x; y 2 X such that gx 4 gy;
• .g;4/-increasing (or strictly increasing) if Tx 	 Ty for all x; y 2 X such that

gx 	 gy;
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• .g;4/-decreasing (or strictly decreasing) if Tx � Ty for all x; y 2 X such that
gx 	 gy.

If g is the identity mapping on X, we say that T is:

• 4-non-decreasing if Tx 4 Ty for all x; y 2 X such that x 4 y;
• 4-non-increasing if Tx < Ty for all x; y 2 X such that x 4 y;
• 4-increasing (or strictly increasing) if Tx 	 Ty for all x; y 2 X such that x 	 y;
• 4-decreasing (or strictly decreasing) if Tx � Ty for all x; y 2 X such that x 	 y.

Notice that if 4 is a partial order on X and T is .g;4/-non-decreasing, then the
condition gx D gy implies that Tx D Ty. In particular, in such a case, if T is injective,
then g is also injective.

Definition 5.1.4. An ordered G-metric space is a triple .X;G;4/ where .X;G/ is a
G-metric space and 4 is a partial order on X. If 4 is a preorder on X, then .X;G;4/
is a preordered G-metric space.

5.2 Fixed Point Theorems in Preordered G-Metric Spaces

The following result can be considered as the natural extension of Ran and Reurings’
result to the setting of G-metric spaces.

Theorem 5.2.1. Let .X;G;4/ be a preordered G-metric space and let T W X ! X
be a mapping. Suppose that the following conditions hold:

(i) .X;G/ is G-complete;
(ii) T is non-decreasing (with respect to 4);

(iii) T is G-continuous;
(iv) there exists x0 2 X such that x0 4 Tx0;
(v) there exists a constant � 2 Œ0; 1/ such that, for all x; y 2 X with x < y,

G.Tx;Ty;Ty/ � �G.x; y; y/: (5.2)

Then T has a fixed point. Moreover, if for all .x; y/ 2 X � X there exists w 2 X
such that x 4 w and y 4 w, we obtain uniqueness of the fixed point.

Proof. Let x0 2 X be a point satisfying (iii), that is, x0 4 Tx0. We define a sequence
fxng in X as follows:

xn D Txn�1 for n � 1: (5.3)

Regarding that T is a non-decreasing mapping together with (5.3), we have x0 4
Tx0 D x1 implies x1 D Tx0 4 Tx1 D x2. Inductively, we obtain

x0 4 x1 4 x2 4 : : : 4 xn�1 4 xn 4 xnC1 4 : : : (5.4)
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Assume that there exists n0 such that xn0 D xn0C1. Since xn0 D xn0C1 D Txn0 , then
xn0 is the fixed point of T , which completes the existence part of the proof. Suppose
that xn ¤ xnC1 for all n 2 N. Thus, by (5.4) we have

x0 	 x1 	 x2 	 : : : 	 xn�1 	 xn 	 xnC1 	 : : :

Put x D xn and y D xn�1 in (5.2). Then, for all n � 1,

G.xnC1; xnC1; xn/ D G.Txn;Txn;Txn�1/ � �G.xn; xn; xn�1/:

From Corollary 4.1.1, fxng is a G-Cauchy sequence. As .X;G/ is complete, there
exist z 2 X such that fxng ! z, that is,

lim
n!1 G.xn; xn; z/ D lim

n!1 G.xn; z; z/ D 0:

We show now that z is a fixed point of T . From the G-continuity of T , the sequence
fTxng D fxnC1g converges to Tz. By Proposition 3.2.2, the G-limit of a sequence is
unique, so z D Tz.

To prove uniqueness, we assume that y 2 X is another fixed point of T such
that z ¤ y. By hypothesis, there exists w 2 X such that y 4 w and z 4 w. Let
fwng be the Picard sequence of T based on w0 D w. As T is 4-non-decreasing,
y D Ty 4 Tw D w1 and z D Tz 4 Tw D w1. By induction, y 4 wn and z 4 wn for
all n � 0. Applying the contractivity condition (5.2), we have that, for all n � 0,

G.wnC1;wnC1; y/ D G.Twn;Twn;Ty/ � �G.wn;wn; y/ and

G.wnC1;wnC1; z/ D G.Twn;Twn;Tz/ � �G.wn;wn; z/:

Hence, for all n � 0,

G.wn;wn; y/ � �n G.w0;w0; y/ and G.wn;wn; z/ � �n G.w0;w0; z/:

Letting n ! 1 we deduce that fwng G�! y and fwng G�! z, and the uniqueness of
the limit concludes that z D y, so T has a unique fixed point. ut

The main advantage of the contractivity condition (5.2) versus (4.16) is that (5.2)
only requires the inequality to hold for comparable points, that is, for all x; y 2 X
such that x < y. In the following example, (4.16) is false but (5.2) holds.

Example 5.2.1. Let X be the set of all real numbers R endowed with the G-metric
G.x; y; z/ D max fjx � yj ; jx � zj ; jy � zjg for all x; y; z 2 R. Consider on R the
partial order

x 
 y , . x D y or x < y � 0 / :
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Define T W R ! R by

Tx D
( x

2
; if x � 0;

2x; if x > 0:

Let x; y 2 X be such that x � y. If x D y, then (5.2) trivially holds. Assume that
x ¤ y. Then y < x � 0. Hence

G.Tx;Ty;Ty/ D G
	 x

2
;

y

2
;

y

2



D
ˇ̌
ˇ
x

2
� y

2

ˇ̌
ˇ D

D 1

2
jx � yj D 1

2
G.x; y; y/:

Hence, (5.2) holds. However, (4.16) is false in this case because if x D 1 and y D 2,
then

G.T1;T2;T2/ D G .2; 4; 4/ D 2 D 2G .1; 2; 2/ :

Although Theorem 4.2.2 is not applicable, Theorem 5.2.1 guarantees that T has a
unique fixed point, which is u D 0.

In the following result, we use a contractivity condition involving three variables.

Corollary 5.2.1. Let .X;G;4/ be a preordered G-metric space and let T W X ! X
be a mapping. Suppose that the following conditions hold:

(i) .X;G/ is G-complete;
(ii) T is non-decreasing (with respect to 4);

(iii) T is G-continuous;
(iv) there exists x0 2 X such that x0 4 Tx0;
(v) there exists a constant � 2 Œ0; 1/ such that, for all x; y; z 2 X with x < y < z,

G.Tx;Ty;Tz/ � �G.x; y; z/: (5.5)

Then T has a fixed point. Moreover, if for all .x; y/ 2 X � X there exists w 2 X
such that x 4 w and y 4 w, we obtain uniqueness of the fixed point.

Proof. It follows from the fact that (5.5) implies (5.2). ut
After the appearance of the Ran and Reurings’ theorem [168], Nieto and

Rodríguez-López [158] changed the continuity of the mapping T with the following
condition on the ordered metric space .X; d;4/:

• if x 2 X and fxng � X is a sequence in X such that fxng d! x and xn 4 xnC1 for
all n 2 N, then xn 4 x for all n 2 N.

Next, we present this notion in preordered G-metric spaces and we show an
equivalent version of the Nieto and Rodríguez-López’s result. In the following
definition, we only assume that 
 is a binary relation on X. Later, we will use this
notion when 
 is a partial order or a preorder.
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Definition 5.2.1. Let .X;G/ be a G-metric space, let A � X be a non-empty subset
and let 
 be a binary relation on X. Then .A;G;
/ is said to be:

• non-decreasing-regular if for all sequence fxmg � A such that fxmg ! a 2 A
and xm 
 xmC1 for all m 2 N, we have that xm 
 a for all m 2 N;

• non-increasing-regular if for all sequence fxmg � A such that fxmg ! a 2 A and
xm � xmC1 for all m 2 N, we have that xm � a for all m 2 N;

• regular if it is both non-decreasing-regular and non-increasing-regular.

Theorem 5.2.2. Let .X;4/ be a preordered set endowed with a G-metric and let
T W X ! X be a mapping. Suppose that the following conditions hold:

(i) .X;G/ is G-complete;
(ii) T is non-decreasing (with respect to 4);

(iii) .X;G;4/ is non-decreasing-regular;
(iv) there exists x0 2 X such that x0 4 Tx0;
(v) there exists a constant � 2 Œ0; 1/ such that, for all x; y 2 X with x < y,

G.Tx;Ty;Ty/ � �G.x; y; y/: (5.6)

Then T has a fixed point. Moreover, if for all .x; y/ 2 X � X there exists w 2 X
such that x 4 w and y 4 w, we obtain uniqueness of the fixed point.

Proof. Following the proof of Theorem 5.2.1, we have a 4-non-decreasing
sequence fxng which is G-convergent to z 2 X. Due to (iii), we have that xn 4 z
for all n. We now show that z is a fixed point of T . Suppose, on the contrary, that
z ¤ Tz, that is, dG

s .z;Tz/ > 0. Regarding (5.6) with x D xn and y D Tz, we have
that

dG
s .xnC1;Tz/ D G.xnC1;Tz;Tz/C G.Tz; xnC1; xnC1/

D G.Txn;Tz;Tz/C G.Tz;Txn;Txn/

� � ŒG.xn; z; z/C G.z; xn; xn/� � 3�G.xn; z; z/:

Letting n ! 1, we get dG
s .z;Tz/ D 0, which is a contradiction. Hence, Tz D z:

Uniqueness of z can be observed as in the proof of Theorem 5.2.1. ut
Corollary 5.2.2. Let .X;4/ be an ordered set endowed with a G-metric and let
T W X ! X be a given mapping. Suppose that the following conditions hold:

(i) .X;G/ is G-complete;
(ii) T is 4-non-decreasing (with respect to 4);

(iii) .X;G;4/ is non-decreasing-regular;
(iv) there exists x0 2 X such that x0 4 Tx0;
(v) there exists a constant � 2 Œ0; 1/ such that, for all x; y; z 2 X with x < y < z,

G.Tx;Ty;Tz/ � �G.x; y; z/: (5.7)
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Then T has a fixed point. Moreover, if for all .x; y/ 2 X � X there exists w 2 X
such that x 4 w and y 4 w, we obtain uniqueness of the fixed point.

Notice that, due to the symmetry of G, it is equivalent to assuming the
contractivity condition (5.7) for all x; y; z 2 X such that x 4 y 4 z.

Corollary 5.2.3. Theorem 4.2.2 follows immediately from Theorem 5.2.2.

Proof. It is only necessary to consider on X the preorder 
0 defined in (5.1). Then,
all the hypotheses of Theorem 5.2.2 are satisfied. ut

Note one could repeat almost all the results of Sect. 4.2 in the context of
preordered G-metric spaces.

5.3 Common Fixed Point Theorems in Preordered
G-Metric Spaces

In this section, we prove some common fixed point theorems in the context of
preordered G-metric spaces under different contractivity conditions.

5.3.1 Common Fixed Point Theorems in Preordered G-Metric
Spaces Using Altering Distance Functions

The following is one of the two main results of this subsection.

Theorem 5.3.1. Let .X;G;4/ be a preordered G-metric space and let T; g W X ! X
be two mappings. Suppose that the following conditions hold:

(i) .X;G/ is G-complete;
(ii) there exists x0 2 X such that gx0 4 Tx0;

(iii) T.X/ � g.X/;
(iv) T is .g;4/-non-decreasing;
(v) g is G-continuous and commutes with T;

(vi) there exist two functions  2 Falt and � 2 F 0
alt such that, for all x; y 2 X with

gx 4 gy,

 .G.Tx;Ty;Ty// �  .G.gx; gy; gy// � �.G.gx; gy; gy//I (5.8)

(vii) T is G-continuous.

Then T and g have, at least, a coincidence point, that is, there exists z 2 X such
that Tz D gz.
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Furthermore, assume that for all x; y 2 Co.T; g/, there exists w 2 X such that
gx 4 gw and gy 4 gw. Then:

• gx D gy for all x; y 2 Co.T; g/, and
• T and g have a unique common fixed point !, which is ! D Tx where x 2

Co.T; g/ is arbitrary.

In particular, if g (or T) is injective on the set of all coincidence points of T and g,
then T and g have a unique coincidence point, which is also the common fixed point
of T and g.

Proof. Let x0 2 X such that gx0 4 Tx0. Since T.X/ � g.X/, Lemma 4.1.1
guarantees the existence of a Picard sequence fxng of .T; g/, that is,

gxnC1 D Txn; for all n � 0:

Regarding that T is a .g;4/-non-decreasing mapping, we observe that

gx0 4 Tx0 D gx1 implies gx1 D Tx0 4 Tx1 D gx2:

Inductively, we obtain

gx0 4 gx1 4 gx2 4 : : : 4 gxn�1 4 gxn 4 gxnC1 4 : : : (5.9)

If there exists n0 such that gxn0 D gxn0C1, then gxn0 D gxn0C1 D Txn0 , that
is, T and g have a coincidence point, which completes the existence part of the
proof. On the contrary case, assume that gxn ¤ gxnC1 for all n 2 N, that is,
G .gxn; gxnC1; gxnC1/ > 0 for all n � 0. Regarding (5.9), we set x D xn and
y D xnC1 in (5.8). Then we get, for all n 2 N,

 .G.gxnC1; gxnC2; gxnC2// D  .G.Txn;TxnC1;TxnC1//

�  .G.gxn; gxnC1; gxnC1// � �.G.gxn; gxnC1; gxnC1//:

From Lemma 2.3.6, we deduce that

lim
n!1 G.gxn; gxnC1; gxnC1/ D 0;

that is, fgxng is an asymptotically regular sequence. Next, we will prove that fgxng
is a Cauchy sequence in .X;G/ reasoning by contradiction. Suppose that fgxng is
not Cauchy. Then, by Theorem 4.1.1, there exists a positive real number "0 > 0 and
two subsequences fgxn.k/g and fgxm.k/g of fgxng such that, for all k 2 N,

k � n.k/ < m.k/ < n.k C 1/;

G
�
gxn.k/; gxm.k/�1; gxm.k/�1

� � "0 < G
�
gxn.k/; gxm.k/; gxm.k/

�
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and also, for p1 D p2 D p3 D �1 2 Z,

lim
k!1 G

�
gxn.k/; gxm.k/; gxm.k/

� D lim
k!1 G

�
gxn.k/�1; gxm.k/�1; gxm.k/�1

�

D "0: (5.10)

Notice that as 4 is transitive, then gxn.k/�1 4 gxm.k/�1 for all k 2 N. Using the
contractivity condition (5.8), for all k 2 N,

 
�
G
�
gxn.k/; gxm.k/; gxm.k/

��

D  
�
G
�
Txn.k/�1;Txm.k/�1;Txm.k/�1

��

�  
�
G
�
gxn.k/�1; gxm.k/�1; gxm.k/�1

��

� � �G �gxn.k/�1; gxm.k/�1; gxm.k/�1
��
:

From (5.10) (with k 2 N),

ftk D G
�
gxn.k/; gxm.k/; gxm.k/

�g; fsk D G
�
gxn.k/�1; gxm.k/�1; gxm.k/�1

�g

are two sequences in Œ0;1/ converging to the same limit L D "0 and satisfying

 .tk/ �  .sk/ � � .sk/ for all n 2 N:

Then, it follows from Corollary 2.3.2 that "0 D 0, which is a contradiction. As a
consequence, we have that fgxng is a Cauchy sequence in .X;G/.

Taking into account that .X;G/ is complete, there exists z 2 X such that
fgxng ! z. As g and T are G-continuous, then fggxng ! gz and fTgxng ! Tz.
On the other hand, since g and T commute, we have that

ggxnC1 D gTxn D Tgxn for all n � 0:

Therefore, by the uniqueness of the limit of a convergent sequence in a G-metric
space, we conclude that gz D Tz, that is, z is a coincidence point of T and g.

Now, assume that for all coincidence points x and y of T and g, there exists w 2 X
such that gx 4 gw and gy 4 gw. We claim that

gx D gy for all x; y 2 Co.T; g/: (5.11)

Assume that x and y are two coincidence points of T and g and let w 2 X be such
that gx 4 gw and gy 4 gw. Let fwng be a Picard sequence of .T; g/ based on the
point w0 D w (exists from Lemma 4.1.1). As x 4 w and y 4 w and T is a .g;4/-
non-decreasing mapping, then gx D Tx 4 Tw0 D gw1 and gy D Ty 4 Tw0 D gw1.
Similarly, by induction, it is easy to prove that gx 4 gwn and gy 4 gwn for all n 2 N.
Applying the contractivity condition (5.8), for all k 2 N,



88 5 Fixed Point Theorems in P.O. G-Metric Spaces

 .G .gx; gwnC1; gwnC1// D  .G .Tx;Twn;Twn//

�  .G .gx; gwn; gwn// � � .G .gx; gwn; gwn// :

Again by Lemma 2.3.6, we deduce that

lim
n!1 G .gx; gwn; gwn/ D 0;

so fgwng ! gx. Similarly, it can be proved that fgwng ! gy. As a consequence,
gx D gy and (5.11) holds.

Next we show that, for all coincidence point x of T and g, the point ! D Tx is
a common fixed point of T and g. Let x 2 X be an arbitrary coincidence point of
T and g and let ! D Tx D gx. As T and g commutes, Remark 2.2.1 guarantees
that ! D Tx is also a coincidence point of T and g. Then, T! D g!. Moreover, by
(5.11), we have that gx D g!. In particular, T! D g! D gx D Tx D !. As a result,
! is a common fixed point of T and g.

Finally, we prove that T and g have a unique common fixed point. Let ! and z be
two common fixed points of T and g, that is, ! D T! D g! and z D Tz D gz. By
(5.11), we have that g! D gz, so ! D g! D gz D z. ut

When the contractivity condition (5.8) is satisfied for all x; y 2 X, then the
continuity of g implies the continuity of T (recall Lemma 4.3.2). However, in the
setting of preordered G-metric spaces, the contractivity condition (5.8) is not strong
enough to guarantee this property. This is why, in the previous result, we assumed
that both T and g are continuous.

Example 5.3.1. Let X D R endowed with the G-metric G .x; y; z/ D
max fjx � yj ; jx � zj ; jy � zjg for all x; y; z 2 X and the partial order 
 given by

x 
 y , . x D y or x < y � 0 / :

Define T W R ! R by

Tx D
( x

2
; if x � 0;

2x C 1; if x > 0:

If g is the identity mapping on X, we now show that (5.8) holds using  .t/ D t and
� .t/ D t=2 for all t 2 Œ0;1/. Indeed, let x; y 2 X be such that x D gx 
 gy D y.
If x D y, then (5.8) trivially holds. Assume that x ¤ y. Then x < y � 0. Hence

G.Tx;Ty;Ty/ D G
	 x

2
;

y

2
;

y

2



D
ˇ̌
ˇ
x

2
� y

2

ˇ̌
ˇ D 1

2
jx � yj

D 1

2
G.x; y; y/ D . � �/ .G.gx; gy; gy// :
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However, although g is G-continuous on R, T is not continuous at x D 0 because
f1=ng ! 0 but fT.1=n/g ! 1 ¤ 0 D T0.

Corollary 5.3.1. Let .X;G;4/ be an ordered G-metric space and let T; g W X ! X
be two mappings. Suppose that the following conditions hold:

(i) .X;G/ is G-complete;
(ii) there exists x0 2 X such that gx0 4 Tx0;

(iii) T.X/ � g.X/;
(iv) T is .g;4/-non-decreasing;
(v) T and g are G-continuous and commuting;

(vi) there exist two functions  2 Falt and � 2 F 0
alt such that, for all x; y 2 X with

gx 4 gy,

 .G.Tx;Ty;Ty// �  .G.gx; gy; gy// � �.G.gx; gy; gy//:

Then T and g have, at least, a coincidence point, that is, there exists z 2 X such
that Tz D gz.

Furthermore, assume that for all coincidence points x and y of T and g, there
exists w 2 X such that gx 4 gw and gy 4 gw. Then T and g have a unique common
fixed point.

In the following result, we use a contractivity condition involving three variables.

Corollary 5.3.2. Let .X;G;4/ be a preordered G-metric space and let T; g W X !
X be two mappings. Suppose that the following conditions hold:

(i) .X;G/ is G-complete;
(ii) there exists x0 2 X such that gx0 4 Tx0;

(iii) T.X/ � g.X/;
(iv) T is .g;4/-non-decreasing;
(v) T and g are G-continuous and commuting;

(vi) there exist two functions  2 Falt and � 2 F 0
alt such that, for all x; y; z 2 X

with gx 4 gy 4 gz,

 .G.Tx;Ty;Tz// �  .G.gx; gy; gz// � �.G.gx; gy; gz//:

Then T and g have, at least, a coincidence point, that is, there exists z 2 X such
that Tz D gz.

Furthermore, assume that for all coincidence points x and y of T and g, there
exists w 2 X such that gx 4 gw and gy 4 gw. Then T and g have a unique common
fixed point.

If we use in X the preorder 
0 given by (5.1), we have the following consequence.

Corollary 5.3.3. Theorem 4.3.2 follows from Theorem 5.3.1.

Corollary 5.3.4. Let .X;G;4/ be a preordered G-metric space and let T; g W X !
X be two mappings. Suppose that the following conditions hold:
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(i) .X;G/ is G-complete;
(ii) there exists x0 2 X such that gx0 4 Tx0;

(iii) T.X/ � g.X/;
(iv) T is .g;4/-non-decreasing;
(v) T and g are G-continuous and commuting;

(vi) there exists a function � 2 F 0
alt such that, for all x; y 2 X with gx 4 gy,

G.Tx;Ty;Ty/ � G.gx; gy; gy/ � �.G.gx; gy; gy//:

Then T and g have, at least, a coincidence point, that is, there exists z 2 X such
that Tz D gz.

Furthermore, assume that for all coincidence points x and y of T and g, there
exists w 2 X such that gx 4 gw and gy 4 gw. Then T and g have a unique common
fixed point.

The previous result also holds if we additionally assume that � is continuous
rather than lower semi-continuous. Finally, if we use �.t/ D .1 � �/ t for all t � 0,
where � 2 Œ0; 1/, we have the following result.

Corollary 5.3.5. Let .X;G;4/ be a preordered G-metric space and let T; g W X !
X be two mappings. Suppose that the following conditions hold:

(i) .X;G/ is G-complete;
(ii) there exists x0 2 X such that gx0 4 Tx0;

(iii) T.X/ � g.X/;
(iv) T is .g;4/-non-decreasing;
(v) T and g are G-continuous and commuting;

(vi) there exists a constant � 2 Œ0; 1/ such that, for all x; y 2 X with gx 4 gy,

G.Tx;Ty;Ty/ � �G.gx; gy; gy/:

Then T and g have, at least, a coincidence point, that is, there exists z 2 X such
that Tz D gz.

Furthermore, assume that for all coincidence points x and y of T and g, there
exists w 2 X such that gx 4 gw and gy 4 gw. Then T and g have a unique common
fixed point.

In the next theorem, we replace the continuity of T by the non-decreasing-
regularity of the preordered G-metric space.

Theorem 5.3.2. Let .X;G;4/ be a preordered G-metric space and let T; g W X ! X
be two mappings. Suppose that the following conditions hold:

(i) .g.X/;G/ is complete;
(ii) there exists x0 2 X such that gx0 4 Tx0;

(iii) T.X/ � g.X/;
(iv) T is .g;4/-non-decreasing;
(v) g is G-continuous and commutes with T;
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(vi) there exist two functions  2 Falt and � 2 F 0
alt such that, for all x; y 2 X with

gx 4 gy,

 .G.Tx;Ty;Ty// �  .G.gx; gy; gy// � �.G.gx; gy; gy//I (5.12)

(vii) .X;G;4/ is non-decreasing-regular.

Then T and g have, at least, a coincidence point, that is, there exists z 2 X such
that Tz D gz.

Furthermore, assume that for all x; y 2 Co.T; g/, there exists w 2 X such that
gx 4 gw and gy 4 gw. Then:

• gx D gy for all x; y 2 Co.T; g/, and
• T and g have a unique common fixed point !, which is ! D Tx where x 2

Co.T; g/ is arbitrary.

In particular, if g (or T) is injective on the set of all coincidence points of T and
g, then T and g have a unique coincidence point, which is also the common fixed
point of T and g.

Proof. Repeating the argument in the proof of Theorem 5.3.1, we get that the 4-
non-decreasing sequence fgxng is Cauchy in .g.X/;G/. As .g.X/;G/ is complete,
there exists z 2 g.X/ such that fgxng ! z. Let u 2 X be such that gu D z. Since
.X;G;4/ is non-decreasing-regular, then gxn 4 gu for all n 2 N. As T and g
commutes,

ggxnC1 D gTxn D Tgxn for all n 2 N:

By the contractivity condition (5.12), we have that, for all n 2 N,

 .G.gxnC1;Tu;Tu// D  .G.Txn;Tu;Tu//

�  .G.gxn; gu; gu// � �.G.gxn; gu; gu//

�  .G.gxn; gu; gu//:

Since fgxng ! gu, item 2 of Corollary 2.3.1 guarantees that

lim
n!1 G.gxnC1;Tu;Tu/ D 0

and fgxng ! Tu. By the uniqueness of the limit, we conclude that Tu D gu, that
is, T and g have, at least, a coincidence point. The rest of the proof is similar to the
proof of Theorem 5.3.1. ut

The previous results are also valid if we employ � 2 F 00
alt.

Theorem 5.3.3. If we replace the condition � 2 F 0
alt by the assumption � 2 F 00

alt,
then Theorem 5.3.1 (and its subsequent corollaries) also holds.
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Proof. Repeat the argument in the proof of Theorem 5.3.1 using Lemmas 2.3.9
and 2.3.10 rather than Lemmas 2.3.6 and 2.3.2. ut

All corollaries we have deduced from Theorem 5.3.1 can now also be repeated
here.

5.3.2 Common Fixed Point Theorems for Compatible
Mappings

If we revise in detail the proofs of Theorems 5.3.1 and 5.3.2, we notice that it is not
very difficult to weaken some hypotheses. Note the following:

• The condition T.X/ � g.X/ is only used to guarantee, by Lemma 4.1.1, that
there exists a Picard sequence fxng of .T; g/, that is, satisfying gxnC1 D Txn for
all n � 0.

• The condition “gx 4 gw and gy 4 gw” which we have used to prove the
uniqueness can be replaced by the condition that “gx and gy are, at the same
time, comparable with gw”

• The continuity of g will not be necessary if we assume that g.X/ is complete.
• As T.X/ � g.X/ � X and fgxnC1 D Txng � T.X/, then it is only necessary to

assume that, at least, one of these subsets is complete.
• When g is not the identity mapping on X, the commutativity between T and g is

a very restrictive condition.

Definition 5.3.1. Let .X;G/ be a G-metric space endowed with a binary relation

 and let T; g W X ! X be two mappings. We will say that .T; g/ is an .O;
/-
compatible pair if we have that

lim
n!1 G .gTxn;Tgxn;Tgxn/ D 0 (5.13)

whenever fxng is a sequence in X such that fgxng is 
-monotone and

lim
m!1 Txn D lim

n!1 gxn 2 X:

If X is not endowed with a partial order, we have the following definition.

Definition 5.3.2. Let .X;G/ be a G-metric space and let T; g W X ! X be two
mappings. We will say that .T; g/ is an O-compatible pair if we have that

lim
n!1 G .gTxn;Tgxn;Tgxn/ D 0

whenever fxng is a sequence in X such that

lim
m!1 Txn D lim

n!1 gxn 2 X:
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Notice that if T and g are commuting, then the pair .T; g/ is O-compatible
and .O;
/-compatible whatever binary relation 
 on X. Also notice that, by
Corollary 3.1.1, condition (5.13) is equivalent to its symmetric property:

lim
n!1 G .gTxn; gTxn;Tgxn/ D 0:

Theorem 5.3.4. Let .X;G;4/ be a preordered G-metric space and let T; g W X ! X
be two mappings. Suppose that the following conditions hold.

(i) T is .g;4/-non-decreasing.
(ii) At least, one of the following conditions holds:

(ii.1) T.X/ � g.X/ and there exists x0 2 X such that gx0 4 Tx0;
(ii.2) there exists a Picard sequence fxngn2N such that gx0 4 Tx0.

(iii) At least, one of the following conditions holds:

(iii.1) X (or g.X/ or T.X/) is G-complete, T and g are G-continuous and .T; g/ is
a .O;4/-compatible pair;

(iii.2) X (or g.X/ or T.X/) is G-complete and T and g are G-continuous and
commuting;

(iii.3) .g.X/;G/ is complete and .X;G;4/ is non-decreasing-regular;
(iii.4) .X;G/ is complete, g.X/ is closed and .X;G;4/ is non-decreasing-regular.

(iv) At least, one of the following conditions holds:

(iv.1) There exist two functions  2 Falt and � 2 F 0
alt such that, for all x; y 2 X

with gx 4 gy,

G.Tx;Ty;Ty/ �  .G.gx; gy; gy// � �.G.gx; gy; gy//: (5.14)

(iv.2) There exist two functions  2 Falt and � 2 F 0
alt such that, for all x; y; z 2 X

with gx 4 gy 4 gz,

G.Tx;Ty;Tz/ �  .G.gx; gy; gz// � �.G.gx; gy; gz//:

Then T and g have, at least, a coincidence point.

Notice that under conditions (iii.3) and (iii.4), T and g does not need any kind of
continuity nor commutativity.

Proof. Notice that (ii.1) implies (ii.2), so we can suppose (ii.2). Similarly, (iv.2)
implies (iv.1), so we can assume (iv.1). Let fxngn2N be any Picard sequence of .T; g/
such that gx0 4 Tx0. Repeating the arguments in the proof of Theorem 5.3.1, we
get that the 4-non-decreasing sequence fgxng is Cauchy in .X;G/. At this point, we
distinguish four cases.

Case (iii.1) Assume that X (or g.X/ or T.X/) is G-complete and T and g are
G-continuous and .T; g/ is a .O;4/-compatible pair. As fgxnC1 D Txng is a Cauchy
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sequence that is contained in X, in g.X/ and in T.X/, and some of these subsets is
complete, then there exists z 2 X such that fgxng ! z. As T and g are continuous,
then fggxng ! gz and fTgxng ! Tz. Furthermore, as fgxng is 4-non-decreasing and

lim
m!1 Txn D lim

n!1 gxn D z 2 X;

then the .O;4/-compatibility of the pair .T; g/ implies that

lim
n!1 G .gTxn;Tgxn;Tgxn/ D 0:

As fgTxn D ggxnC1g ! gz and fTgxng ! Tz, the continuity of G (see
Theorem 3.2.2) implies that

G .gz;Tz;Tz/ D lim
n!1 G .gTxn;Tgxn;Tgxn/ D 0:

Therefore, gz D Tz and z is a coincidence point of T and g.
Case (iii.2) Assume that X (or g.X/ or T.X/) is G-complete and T and g are

G-continuous and commuting. In this case, item (iii.1) is applicable because the
commutativity of T and g implies that .T; g/ is an .O;4/-compatible pair.

Case (iii.3) Assume that .g.X/;G/ is complete and .X;G;4/ is non-decreasing-
regular. In this case, the 4-non-decreasing sequence fgxng is Cauchy in g.X/, which
is G-complete. Then, there exists z 2 g.X/ such that fgxng ! z. Let u 2 X be any
point such that gu D z. Taking into account that .X;G;4/ is non-decreasing-regular,
it follows that gxn 4 gu for all n 2 N. The contractivity condition (5.14) yields, for
all n 2 N,

 .G.gxnC1;Tu;Tu// D  .G.Txn;Tu;Tu//

�  .G.gxn; gu; gu// � �.G.gxn; gu; gu//

�  .G.gxn; gu; gu//:

As fgxng ! gu and  is continuous, we deduce that

lim
n!1 .G.gxnC1;Tu;Tu// D 0;

so

lim
n!1 G.gxnC1;Tu;Tu/ D 0;

which means that fgxng ! Tu. By the uniqueness of the limit, we conclude that
Tu D gu, that is, u is a coincidence point of T and g.

Case (iii.4) Assume that .X;G/ is complete, g.X/ is closed and .X;G;4/ is non-
decreasing-regular. In this case, we can apply item (iii.3) because any closed subset
of a complete G-metric space is also complete.
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In any case we have just proved that T and g has, at least, a coincidence point.
ut

Remark 5.3.1. Notice that, by the symmetry of G, condition gx 4 gy 4 gz in (iv.2)
may be replaced by gx < gy < gz. Nevertheless, the roles of x and y in (5.14) are
not equivalent. However, the reader can obtain a similar result replacing (5.14) by
the alternative condition:

G.Tx;Tx;Ty/ �  .G.gx; gx; gy// � �.G.gx; gx; gy//

for all x; y 2 X such that gx 4 gy.

In the next result, we study the uniqueness of the coincidence point.

Theorem 5.3.5. Under the hypotheses of Theorem 5.3.4, also assume that the
following properties are fulfilled.

(v) T.X/ � g.X/.
(vi) for all coincidence points x and y of T and g, there exists w 2 X such that gw

is, at the same time, 4-comparable to gx and to gy.

Then:

• gx D gy for all coincidence points x and y of T and g, and
• T and g have a unique common fixed point.

Proof. The proof of Theorem 5.3.1 can be followed to deduce the stated statements.
Notice that if gw 4 gx, then the Picard sequence fwng of .T; g/ based on w0 D w
(which exists by Lemma 4.1.1) also satisfies gwn 4 gx for all n 2 N because T is
.g;4/-non-decreasing. Hence, the contractivity condition (5.14) is applicable. ut

5.3.3 Ćirić’s Common Fixed Point Theorems in Preordered
G-Metric Spaces

Following the work of Ćirić et al. [61], we generalize the above-mentioned results
by introducing a function g.

Theorem 5.3.6. Let .X;4/ be a preordered set endowed with a G-metric and T W
X ! X and g W X ! X be given mappings. Suppose that the following conditions
hold:

(i) .X;G/ is G-complete;
(ii) T is G-continuous;

(iii) T is .g;4/-non-decreasing;
(iv) there exists x0 2 X such that gx0 4 Tx0;
(v) T.X/ � g.X/ and g is G-continuous and commutes with T;

(vi) there exists a function ' 2 FCir such that, for all x; y; z 2 X with gx < gy < gz,
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G.Tx;Ty;Tz/ � '.G.gx; gy; gz//: (5.15)

Then T and g have a coincidence point, that is, there exists w 2 X such that
gw D Tw.

Proof. Let x0 2 X such that gx0 4 Tx0. Since T.X/ � g.X/, Lemma 4.1.1
guarantees the existence of a Picard sequence fxng of .T; g/, that is,

gxnC1 D Txn; for all n � 0: (5.16)

Regarding that T is a .g;4/-non-decreasing mapping together with (5.16), we
observe that

gx0 4 Tx0 D gx1 implies gx1 D Tx0 4 Tx1 D gx2:

Inductively, we obtain

gx0 4 gx1 4 gx2 4 : : : 4 gxn�1 4 gxn 4 gxnC1 4 : : : (5.17)

If there exists n0 such that gxn0 D gxn0C1, then gxn0 D gxn0C1 D Txn0 , that is, T and
g have a coincidence point, which completes the proof. Assume that gxn ¤ gxnC1
for all n 2 N, that is, G .gxnC1; gxnC1; gxn/ > 0 for all n � 0. Regarding (5.17), we
set x D y D xnC1 and z D xn in (5.15). Then we get

G.gxnC2; gxnC2; gxnC1/ D G.TxnC1;TxnC1;Txn/

� '.G.gxnC1; gxnC1; gxn//;

which implies, taking into account that ' 2 FCir,

G.gxnC2; gxnC2; gxnC1/ � '.G.gxnC1; gxnC1; gxn//

< G.gxnC1; gxnC1; gxn/: (5.18)

Let tn D G.gxnC1; gxnC1; gxn/. Then, ftng is a non-increasing sequence of positive
real numbers. Thus, there exists L � 0 such that

lim
n!1 tn D L and L < tn for all n � 0:

We now show that L D 0. Suppose that, contrary to our claim, L > 0. Letting
n ! 1 in (5.18) and taking into account that ' 2 FCir, we get

L D lim
n!1 tnC1 � lim

n!1'.tn/ D lim
t!`C

'.t/ < L;
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which is a contradiction. Hence, we have

lim
n!1 G.gxnC1; gxnC1; gxn/ D lim

n!1 tn D L D 0:

We now show that fgxng is a G-Cauchy sequence. Suppose on the contrary, that
the sequence fgxng is not G-Cauchy. From Theorem 4.1.1, there exists "0 > 0 and
sequences of natural numbers fm.k/g and f`.k/g such that, for each natural number
k, k � `.k/ < m.k/ < `.k C 1/,

G
�
x`.k/; xm.k/�1; xm.k/�1

� � "0 < G
�
x`.k/; xm.k/; xm.k/

�
;

and also

lim
k!1 G

�
x`.k/; xm.k/; xm.k/

� D lim
k!1 G

�
x`.k/C1; xm.k/C1; xm.k/C1

� D "0:

By the contractivity condition (5.15) applied to x D y D xm.k/ and z D x`.k/, we
have that

G.gxm.k/C1; gxm.k/C1; gx`.k/C1/ D G.Txm.k/;Txm.k/;Tx`.k//

� '.G.gxm.k/; gxm.k/; gx`.k///:

Since fG.gxm.k/; gxm.k/; gx`.k//g & "C
0 , we deduce, using ' 2 FCir, that

"0 D lim
k!1 G

�
x`.k/C1; xm.k/C1; xm.k/C1

� � lim
k!1'.G.gxm.k/; gxm.k/; gx`.k///

D lim
t!"

C
0

' .t/ < "0;

which is a contradiction. Hence, fgxng is a Cauchy sequence in the G-metric space
.X;G/. Since .X;G/ is complete, there exists w 2 X such that fgxng is convergent to
w. From Lemma 3.2.1, we have

lim
n!1 G.gxn; gxn;w/ D lim

n!1 G.gxn;w;w/ D 0:

The continuity of g implies that the sequence fggxng is convergent to gw, that is,

lim
n!1 G.ggxn; ggxn; gw/ D lim

n!1 G.ggxn; gw; gw/ D 0: (5.19)

On the other hand, due to the commutativity of T and g, we can write

ggxnC1 D gTxn D Tgxn for all n � 0;
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and the continuity of T implies that the sequence fTgxng D fggxnC1g converges to
Tw, so that,

lim
n!1 G.Tgxn;Tgxn;Tw/ D lim

n!1 G.Tgxn;Tw;Tw/ D 0: (5.20)

By the uniqueness of the limit, the expressions (5.19) and (5.20) yield that gw D Tw.
ut

In the next theorem, the G-continuity of T is no longer required. However, we
require the non-decreasing-regularity of X.

Theorem 5.3.7. Let .X;4/ be an ordered set endowed with a G-metric and T W
X ! X and g W X ! X be given mappings. Suppose that the following conditions
hold:

(i) .g.X/;G/ is G-complete;
(ii) .X;G;4/ is non-decreasing-regular;

(iii) T is .g;4/-non-decreasing;
(iv) there exists x0 2 X such that gx0 4 Tx0;
(v) T.X/ � g.X/ and g is G-continuous and commutes with T;

(vi) there exists a function ' 2 FCir such that for all x; y; z 2 X with gx < gy < gz,

G.Tx;Ty;Tz/ � '.G.gx; gy; gz//: (5.21)

Then T and g have a coincidence point, that is, there exists w 2 X such that
gw D Tw.

Proof. Following the proof in Theorem 5.3.6, we consider a 4-non-decreasing
sequence fgxng and conclude that it is a G-Cauchy sequence in the G-complete,
G-metric space .g.X/;G/. Thus, there exists w 2 X such that fgxng is G-convergent
to gw. Since fgxng is non-decreasing and .X;G;4/ is non-decreasing-regular, we
have that gxn 4 gw for all n 2 N. If gw D gxn0 for some natural number n0, then xn0
is a coincidence point of T and g because gw D gxn0 4 gxn0C1 4 gw and, as 4 is a
partial order, gxn0 D gxn0C1 D Txn0 . Suppose that gw ¤ gxn for all n 2 N. By the
rectangle inequality together with the inequality (5.21), we have

G.Tw; gw; gw/ � G.Tw; gxnC1; gxnC1/C G.gxnC1; gw; gw/

� G.Tw;Txn;Txn/C G.gxnC1; gw; gw/

� '.G.gw; gxn; gxn//C G.gxnC1; gw; gw/

< G.gw; gxn; gxn/C G.gxnC1; gw; gw/:

Letting n ! 1 in the inequality above, we get that G.Tw; gw; gw/ D 0: Hence
Tw D gw. ut
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If we take '.t/ D � t, where � 2 Œ0; 1/, in Theorems 5.3.6 and 5.3.7 we deduce
the following corollaries respectively.

Corollary 5.3.6. Let .X;4/ be a preordered set endowed with a G-metric and T W
X ! X and g W X ! X be given mappings. Suppose that the following conditions
hold:

(i) .X;G/ is G-complete;
(ii) T is G-continuous;

(iii) T is g-non-decreasing (with respect to 4);
(iv) there exists x0 2 X such that gx0 4 Tx0;
(v) T.X/ � g.X/ and g is G-continuous and commutes with T;

(vi) there exists � 2 Œ0; 1/ such that for all x; y; z 2 X with gx < gy < gz,

G.Tx;Ty;Tz/ � �G.gx; gy; gz/: (5.22)

Then T and g have a coincidence point, that is, there exists w 2 X such that
gw D Tw.

Corollary 5.3.7. Let .X;4/ be an ordered set endowed with a G-metric and T W
X ! X and g W X ! X be given mappings. Suppose that the following conditions
hold:

(i) .g.X/;G/ is G-complete;
(ii) .X;G;4/ is non-decreasing-regular;

(iii) T is g-non-decreasing (with respect to 4);
(iv) there exists x0 2 X such that gx0 4 Tx0;
(v) T.X/ � g.X/ and g is G-continuous and commutes with T;

(vi) there exists � 2 Œ0; 1/ such that for all x; y; z 2 X with gx < gy < gz,

G.Tx;Ty;Tz/ � �G.gx; gy; gz/: (5.23)

Then T and g have a coincidence point, that is, there exists w 2 X such that
gw D Tw.

If we take z D y in Theorems 5.3.6 and 5.3.7 we obtain the following particular
cases.

Corollary 5.3.8. Let .X;4/ be an ordered set endowed with a G-metric and T W
X ! X and g W X ! X be given mappings. Suppose that the following conditions
hold:

(i) .X;G/ is G-complete;
(ii) T is G-continuous;

(iii) T is g-non-decreasing;
(iv) there exists x0 2 X such that gx0 4 Tx0;
(v) T.X/ � g.X/ and g is G-continuous and commutes with T;

(vi) there exists a function ' 2 FCir such that for all x; y 2 X with gx < gy,
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G.Tx;Ty;Ty/ � '.G.gx; gy; gy//: (5.24)

Then T and g have a coincidence point, that is, there exists w 2 X such that
gw D Tw.

Corollary 5.3.9. Let .X;4/ be an ordered set endowed with a G-metric and T W
X ! X and g W X ! X be given mappings. Suppose that the following conditions
hold:

(i) .g.X/;G/ is G-complete;
(ii) .X;G;4/ is non-decreasing-regular;

(iii) T is g-non-decreasing;
(iv) there exists x0 2 X such that gx0 4 Tx0;
(v) T.X/ � g.X/ and g is G-continuous and commutes with T;

(vi) there exists a function ' 2 FCir such that for all x; y 2 X with gx < gy,

G.Tx;Ty;Ty/ � '.G.gx; gy; gy//: (5.25)

Then T and g have a coincidence point, that is, there exists w 2 X such that
gw D Tw.

Finally, we let g D IX in Theorems 5.3.6 and 5.3.7.

Theorem 5.3.8. Let .X;4/ be an ordered set endowed with a G-metric and T W
X ! X be a given mapping. Suppose that the following conditions hold:

(i) .X;G/ is G-complete;
(ii) T is G-continuous,

(iii) T is non-decreasing (with respect to 4);
(iv) there exists x0 2 X such that x0 4 Tx0;
(v) there exists a function ' 2 FCir such that for all x; y; z 2 X with x < y < z,

G.Tx;Ty;Tz/ � '.G.x; y; z//: (5.26)

Then T has a fixed point.

Theorem 5.3.9. Let .X;4/ be an ordered set endowed with a G-metric and T W
X ! X be a given mapping. Suppose that the following conditions hold:

(i) .X;G/ is G-complete;
(ii) .X;G;4/ is non-decreasing-regular;

(iii) T is non-decreasing;
(iv) there exists x0 2 X such that x0 4 Tx0;
(v) there exists a function ' 2 FCir such that for all x; y; z 2 X with x < y < z,

G.Tx;Ty;Tz/ � '.G.x; y; z//: (5.27)

Then T has a fixed point.
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5.3.4 Geraghty’s Fixed Point Theorems in Preordered
G-Metric Spaces

Let FGer be the family of all Geraghty functions, that is, functions ˇ W Œ0;1/ !
Œ0; 1/ satisfying the condition

fˇ.tn/g �! 1 implies ftng �! 0: (5.28)

In 2007, Jachymski and Jóźwik [95] proved that the classes FGer and FCir generate
equivalent conditions in the sense that, given an operator T W X ! X, there exists
ˇ 2 FGer such that

d .Tx;Ty/ � ˇ .d .x; y// d .x; y/ for all x; y 2 X;

if, and only if, there exists � 2 FCir such that

d .Tx;Ty/ � � .d .x; y// for all x; y 2 X:

However, the following examples show that this relationship is not trivial. If ˇ 2
FGer, the function �ˇ.t/ D ˇ.t/ t for all t 2 Œ0;1/ does not necessarily belong to
FCir. Conversely, if � 2 FCir, the function

ˇ�.t/ D
8
<

:

0; if t D 0;
�.t/

t
; if t > 0;

(5.29)

does not necessarily belong to FGer.

Example 5.3.2. Let ˇ W Œ0;1/ ! Œ0; 1/ be the function

ˇ .t/ D

8
ˆ̂̂
<

ˆ̂
:̂

0; if t D 0;
1

t C 1
; if 0 < t � 1;

1

2
C 1

4
sin

�
1

t � 1
�
; if t > 1:

Since 1=4 � ˇ.t/ � 3=4 for all t > 1, it is clear that ˇ is a Geraghty function in the
sense of property (5.28). However, limt!1C ˇ.t/ does not exist. As a consequence,
it we consider the function �ˇ W Œ0;1/ ! Œ0;1/ given by �ˇ .t/ D ˇ.t/ t for all
t � 0, it is clear that �ˇ.t/ < t for all t > 0. Nevertheless,

lim
t!1C

�ˇ.t/
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does not exist, so �ˇ cannot verify the condition

lim
t!1C

�ˇ.t/ < 1;

which must be satisfied by any function � 2 FCir.

Example 5.3.3. Let � W Œ0;1/ ! Œ0; 1/ be the function

� .t/ D � t C 2 t arctan t

2�
for all t 2 Œ0;1/ :

Then � 2 FCir. The function ˇ� W Œ0;1/ ! Œ0;1/ defined by (5.29) satisfies the
condition ˇ�.t/ < 1 for all t > 0. However, ˇ� does not belong to FGer because the
sequence ftn D ngn2N satisfies fˇ�.tn/g ! 1 but ftng does not converge to zero.

Under monotone conditions, there exists an inclusion FGer ,! FCir.

Proposition 5.3.1. If ˇ 2 FGer is non-increasing in .0;1/, then the function �ˇ W
Œ0;1/ ! Œ0;1/, given by �ˇ .t/ D ˇ.t/ t for all t � 0, belongs to FCir.

Proof. As ˇ.t/ < 1 for all t � 0, then �ˇ .t/ D ˇ.t/ t < t for all t > 0. Since ˇ
is non-increasing, it has limit from the right at any point of .0;1/. Let ftng be an
strictly decreasing sequence converging to ı > 0. Therefore, 0 < ı < tnC1 < tn and
ˇ .tn/ � ˇ .tnC1/ � ˇ .ı/ < 1. Hence, fˇ .tn/g is a non-decreasing, upper-bounded
sequence. Thus, it is convergent and

lim
t!ıC

ˇ.t/ D lim
n!1ˇ .tn/ � ˇ .ı/ :

As a consequence, the following limit exists and it satisfies

lim
t!ıC

�ˇ.t/ D lim
n!1ˇ .tn/ tn � ˇ .ı/ ı < ı:

Hence, �ˇ 2 FCir. ut
Remark 5.3.2. If ˇ.t/ < 1 for all t > 0, then ˇ.t/ t � t for all t � 0.

Taking into account the relationships introduced by Jachymski and Jóźwik in
[95], the following results are equivalent to those given in Sect. 5.3.3.

Theorem 5.3.10. Let .X;4/ be a preordered set endowed with a G-metric G and
let T W X ! X be a given mapping. Suppose that the following conditions hold:

(i) .X;G/ is G-complete;
(ii) T is G-continuous;

(iii) T is non-decreasing (with respect to 4);
(iv) there exists x0 2 X such that x0 4 Tx0;
(v) there exists a function ˇ 2 FGer such that, for all x; y 2 X with x < y,
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G.Tx;Ty;Ty/ � ˇ.G.x; y; y//G.x; y; y/: (5.30)

Then T has a fixed point.

Proof. Let x0 2 X be such that x0 4 Tx0 and let xnC1 D Txn for all n 2 N.
Regarding that T is a non-decreasing mapping, we have that x0 4 Tx0 D x1 implies
x1 D Tx0 4 Tx1 D x2. Inductively, we obtain

x0 4 x1 4 x2 4 : : : 4 xn�1 4 xn 4 xnC1 4 : : : (5.31)

Assume that there exists n0 such that xn0 D xn0C1. Since xn0 D xn0C1 D Txn0 , then
xn0 is the fixed point of T , which completes the existence part of the proof. Suppose
that xn ¤ xnC1 for all n 2 N. Thus, by (5.31) we have

x0 	 x1 	 x2 	 : : : 	 xn�1 	 xn 	 xnC1 	 : : :

In particular, G.xnC1; xn; xn/ > 0 for all n 2 N. Applying the contractivity condition
(5.30) to x D xnC1 and y D xn, we obtain that, for all n 2 N,

G.xnC2; xnC1; xnC1/ D G.TxnC1;Txn;Txn/

� ˇ.G.xnC1; xn; xn//G.xnC1; xn; xn/

< G.xnC1; xn; xn/:

Hence, the sequence fG.xnC1; xn; xn/g is convergent. Let L 2 Œ0;1/ be its limit. To
prove that L D 0, assume that L > 0. In such a case,

1 <
G.xnC2; xnC1; xnC1/

L
� ˇ.G.xnC1; xn; xn//

G.xnC1; xn; xn/

L

<
G.xnC1; xn; xn/

L
:

Letting n ! 1, Lemma 2.1.1 guarantees that fˇ.G.xnC1; xn; xn//g ! 1. As ˇ 2
FGer, then fG.xnC1; xn; xn/g ! 0, which contradicts the fact that L > 0. Thus, L D 0

and fxng is an asymptotically regular sequence. We show that it is Cauchy reasoning
by contradiction. In such a case, Theorem 4.1.1 ensures that there exists a positive
real number "0 > 0 and two subsequences fxn.k/g and fxm.k/g of fxng such that, for
all k 2 N,

k � n.k/ < m.k/ < n.k C 1/;

G
�
xn.k/; xn.k/�1; xm.k/�1

� � "0 < G
�
xn.k/; xn.k/; xm.k/

�
;

and also

lim
k!1 G

�
xn.k/; xn.k/; xm.k/

� D lim
k!1 G

�
xn.k/�1; xn.k/�1; xm.k/�1

� D "0: (5.32)
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As 4 is transitive, then xn 4 xm for all n < m. Then, by Remark 5.3.2,

G
�
xn.k/; xn.k/; xm.k/

�

"0
D G

�
Txm.k/�1;Txn.k/�1;Txn.k/�1

�

"0

� ˇ.G.xm.k/�1; xn.k/�1; xn.k/�1//
G.xm.k/�1; xn.k/�1; xn.k/�1/

"0

� G.xm.k/�1; xn.k/�1; xn.k/�1/
"0

:

As a consequence, letting k ! 1,

lim
k!1ˇ.G.xm.k/�1; xn.k/�1; xn.k/�1// D 1:

As ˇ 2 FGer, then fG.xm.k/�1; xn.k/�1; xn.k/�1/g ! 0, which contradicts (5.32)
because "0 > 0. Then fxng is a Cauchy sequence. As .X;G/ is complete, there
exists u 2 X such that fxng ! u, and as T is continuous, Tu D limn!1 Txn D
limn!1 xnC1 D u. Hence, T has a fixed point. ut
Theorem 5.3.11. Let .X;4/ be a preordered set endowed with a G-metric G and
let T W X ! X be a given mapping. Suppose that the following conditions hold:

(i) .X;G/ is G-complete;
(ii) .X;G;4/ is non-decreasing-regular;

(iii) T is non-decreasing (with respect to 4);
(iv) there exists x0 2 X such that x0 4 Tx0;
(v) there exists a function ˇ 2 FGer such that, for all x; y 2 X with x < y,

G.Tx;Ty;Ty/ � ˇ.G.x; y; y//G.x; y; y/: (5.33)

Then T has a fixed point.

Proof. Following the proof in Theorem 5.3.10, we get that fxng ! u 2 X. As
.X;G;4/ is non-decreasing-regular, it follows that xn 4 u for all n 2 N. Applying
the contractivity condition (5.33) and Remark 5.3.2, for all n 2 N,

G.Tu; xnC1; xnC1/ D G.Tu;Txn;Txn/

� ˇ.G.u; xn; xn//G.u; xn; xn/

� G.u; xn; xn/:

Hence Tu D limn!1 xnC1 D u. ut
The two corollaries below are immediate consequences of Theorems 5.3.10 and

5.3.11
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Corollary 5.3.10. Let .X;4/ be a preordered set endowed with a G-metric G and
let T W X ! X be a given mapping. Suppose that the following conditions hold:

(i) .X;G/ is G-complete;
(ii) T is G-continuous,

(iii) T is non-decreasing (with respect to 4);
(iv) there exists x0 2 X such that x0 4 Tx0;
(v) there exists a function ˇ 2 FGer such that, for all x; y; z 2 X with x < y < z,

G.Tx;Ty;Tz/ � ˇ.G.x; y; z//G.x; y; z/: (5.34)

Then T has a fixed point.

Corollary 5.3.11. Let .X;4/ be a preordered set endowed with a G-metric G and
let T W X ! X be a given mapping. Suppose that the following conditions hold:

(i) .X;G/ is G-complete;
(ii) .X;G;4/ is non-decreasing-regular;

(iii) T is non-decreasing (with respect to 4);
(iv) there exists x0 2 X such that x0 4 Tx0;
(v) there exists a function ˇ 2 FGer such that, for all x; y; z 2 X with x < y < z,

G.Tx;Ty;Tz/ � ˇ.G.x; y; z//G.x; y; z/: (5.35)

Then T has a fixed point.

The uniqueness of the fixed point can be obtained using the same additional
assumption in Theorem 5.2.1.



Chapter 6
Further Fixed Point Results on G-Metric Spaces

In this chapter we present some fixed point theorems in the context of G-metric
spaces.

6.1 A New Approach to Express Contractivity Conditions

In the contractivity conditions we have presented in the previous chapters, the
mapping T only appears in the left-hand term of the inequality (see, for example,
(4.15), (4.23) and (5.2)).

Theorem 6.1.1 ([24]). Let .X;G/ be a complete G-metric space and let T W X ! X
be a mapping. Suppose that there exists � 2 Œ0; 1/ such that

G.Tx;Ty;Ty/ � �G.x;Tx; y/ for all x; y 2 X: (6.1)

Then T has a unique fixed point. In fact, T is a Picard operator.

Proof. Let x0 2 X be an arbitrary point and define the sequence fxng by xn D Tnx0
for all n � 0. From (6.1), we have that, for all n � 0,

G.xnC1; xnC2; xnC2/ D G.Txn;TxnC1;TxnC1/ � �G.xn;Txn; xnC1/

D �G.xn; xnC1; xnC1/:

From Corollary 4.1.1, fxng is a Cauchy sequence in .X;G/. Due to the completeness
of .X;G/, there exists u 2 X such that fxng is G-convergent to u. We prove that u is
a fixed point of T . Indeed, for all n � 0, we have that

© Springer International Publishing Switzerland 2015
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G.xnC1;Tu;Tu/ D G.Txn;Tu;Tu/ � �G.xn; xnC1; u/: (6.2)

Letting n ! 1 and using the fact that the metric G is continuous (see Theo-
rem 3.2.2), we get that

G.u;Tu;Tu/ � �G.u; u; u/ D 0;

so G.u;Tu;Tu/ D 0 and Tu D u. Finally, we claim that T has a unique fixed point
(which is u). Assume that x; y 2 Fix .T/ are two fixed points of T . Then, applying
(6.1), we deduce that

G .x; y; y/ D G .Tx;Ty;Ty/ � �G.x; x; y/ and

G .x; x; y/ D G .Ty;Tx;Tx/ � �G.y; y; x/:

As a consequence,

G .x; y; y/ � �G.x; x; y/ � �2 G.x; y; y/:

If G .x; y; y/ > 0, the previous inequality is false because � 2 Œ0; 1/. Hence,
G .x; y; y/ D 0 and x D y. ut
Example 6.1.1. Let X D Œ0;1/ be the interval of nonnegative real numbers and let
G the complete G-metric on X defined by

G.x; y; z/ D
�
0; if x D y D z;
maxfx; y; zg; otherwise.

Define T W X ! X by Tx D x=5 for all x 2 X. Then, all the hypotheses of
Theorem 6.1.1 hold. In fact,

G.Tx;Ty;Ty/ D 1

5
maxfx; yg � maxfx; yg D G.x;Tx; y/

for all x; y 2 X. Then T has a unique fixed point on X, which is u D 0.

Based on Theorem 6.1.1, the following result can be easily proved.

Corollary 6.1.1 ([24]). Let .X;G/ be a complete G-metric space and let T W X ! X
be a mapping. Suppose that there exist real numbers a; b 2 R, verifying a C b < 1,
such that

G.Tx;Ty;Tz/ � aG.x;Tx; z/C bG.x;Tx; y/ for all x; y; z 2 X:

Then T has a unique fixed point. In fact, T is a Picard operator.
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Proof. Let � D max f0; a C bg 2 Œ0; 1/. Then, for all x; y 2 X, it follows that

G.Tx;Ty;Ty/ � aG.x;Tx; y/C bG.x;Tx; y/

D .a C b/ G.x;Tx; y/ � �G.x;Tx; y/:

Then we can apply Theorem 6.1.1. ut
In the following result, we employ T , T2 and T3 in the contractivity condition.

Theorem 6.1.2 ([24]). Let .X;G/ be a complete G-metric space and let T W X ! X
be a mapping. Assume that there exist nonnegative real numbers a, b, c and d, with
a C b C c C d < 1, such that, for all x; y 2 X,

G.Tx;Ty;T2y/ � aG.x;Tx;T2x/C bG.y;Ty;T2y/

C cG.x;Tx;Ty/C dG.y;Ty;T3x/ (6.3)

Then T has a unique fixed point.

Proof. Let x0 2 X be an arbitrary point and let fxngn�0 be the Picard sequence of T
based on x0, that is,

xnC1 D Txn for all n � 0:

If there exists some n0 2 N such that xn0 D xn0C1, then xn0 D xn0C1 D Txn0 , so xn0
is a fixed point of T . On the contrary case, assume that

xn ¤ xnC1 for all n 2 N: (6.4)

From (6.3) with x D xn�1 and y D xn we have that, for all n � 1,

G .xn; xnC1; xnC2/ D G.Txn�1;Txn;T
2xn/

� aG.xn�1;Txn�1;T2xn�1/C bG.xn;Txn;T
2xn/

C cG.xn�1;Txn�1;Txn/C dG.xn;Txn;T
3xn�1/

D aG.xn�1; xn; xnC1/C bG.xn; xnC1; xnC2/

C cG.xn�1; xn; xnC1/C dG.xn; xnC1; xnC2/:

As a result, for all n � 1

.1 � b � d/ G.xn; xnC1; xnC2/ � .a C c/ G.xn�1; xn; xnC1/;

which implies that

G.xn; xnC1; xnC2/ D �G.xn�1; xn; xnC1/ for all n � 1;
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where

� D a C c

1 � b � d
< 1:

Repeating the previous argument, we deduce that

G.xn; xnC1; xnC2/ � �n G.x0; x1; x2/ for all n � 0: (6.5)

Notice that, from .G3/ and (6.4), we know that

G.xn; xn; xnC1/ � G.xn; xnC1; xnC2/ for all n � 0:

From Lemma 3.1.1, it follows that, for all n � 0,

G.xn; xnC1; xnC1/ � 2G.xn; xn; xnC1/

� 2G.xn; xnC1; xnC2/ � 2�n G.x0; x1; x2/:

As a consequence, for all n;m 2 N such that n < m, item 4 of Lemma 3.1.2 yields

G.xn; xm; xm/ �
m�1P
iDn

G .xi; xiC1; xiC1/ �
m�1P
iDn
2�i G.x0; x1; x1/

D 2.�n C �nC1 C �nC2 C : : :C �m�1/G.x0; x1; x1/

� 2�n

1 � �G.x0; x1; x1/:

In particular, the same argument of Theorem 4.2.1 guarantees that

lim
n;m!1 G.xn; xm; xm/ D 0;

and fxng is Cauchy sequence in .X;G/. Due to the completeness of .X;G/, there
exists z 2 X such that fxng is G-convergent to z. We claim that Tz is a fixed point
of T . Indeed, for all n � 0, from (6.3) with x D xn, we have,

G.xnC1;Tz;T2z/ D G.Txn;Tz;T2z/

� aG.xn;Txn;T
2xn/C bG.z;Tz;T2z/

C cG.xn;Txn;Tz/C dG.z;Tz;T3xn/

D aG.xn; xnC1; xnC2/C bG.z;Tz;T2z/

C cG.xn; xnC1;Tz/C dG.z;Tz; xnC3/:
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Taking the limit as n ! 1 in the above inequality, we have that

G.z;Tz;T2z/ � c C d

1 � b
G.z; z;Tz/;

where .c C d/=.1 � b/ < 1. If we suppose that Tz ¤ T2z then, by .G3/, we get that

G.z;Tz;T2z/ � c C d

1 � b
G.z; z;Tz/ � c C d

1 � b
G.z;Tz;T2z/ < G.z;Tz;T2z/;

which is a contradiction. Then, necessarily, Tz D T2z, which means that Tz is a fixed
point of T .

To prove that T has a unique fixed point, let x; y 2 Fix.T/ be two fixed points
of T . Using (6.3), we have that

G.x; y; y/ � aG.x; x; x/C bG.y; y; y/C cG.x; x; y/C dG.y; y; x/

D cG.x; x; y/C dG.y; y; x/:

Therefore,

G.x; y; y/ � 
G.x; x; y/; where 
 D c

1 � d
< 1:

Changing the roles of x and y, we also have that G.x; x; y/ � 
G.x; y; y/. Hence,
G.x; y; y/ � 
G.x; x; y/ � 
2G.x; y; y/, which is not possible when G.x; y; y/ > 0

because 
2 < 1. As a consequence, G.x; y; y/ D 0 and x D y: ut
Next, we show some results in which we combine these contractivity conditions

(in which T appears in both sides of the inequality) and control functions. Recall that

Falt D f� W Œ0;1/ ! Œ0;1/ W � continuous, non-decreasing,

� .t/ D 0 , t D 0g;

F 0
alt D f� W Œ0;1/ ! Œ0;1/ W � lower semi-continuous, � .t/ D 0 , t D 0g :

Theorem 6.1.3 ([24]). Let .X;G/ be a complete G-metric space and let T W X ! X
be a mapping. Assume that there exist  2 Falt and � 2 F 0

alt such that, for all
x; y 2 X,

 .G.Tx;T2x;Ty// �  .G.x;Tx; y// � �.G.x;Tx; y//: (6.6)

Then T has a unique fixed point.

Proof. Let x0 2 X be an arbitrary point and let fxngn�0 be the Picard sequence of T
based on x0, that is,

xnC1 D Txn for all n � 0:
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If there exists some n0 2 N such that xn0 D xn0C1, then xn0 D xn0C1 D Txn0 , so xn0
is a fixed point of T . On the contrary case, assume that

xn ¤ xnC1 for all n 2 N: (6.7)

From (6.6) with x D xn and y D xnC1, we have that, for all n � 0,

 .G.xnC1; xnC2; xnC2// D  .G.Txn;T
2xn;TxnC1//

�  .G.xn;Txn; xnC1// � �.G.xn;Txn; xnC1//

D . � �/ .G.xn; xnC1; xnC1//:

Using Lemma 2.3.6, we deduce that:

lim
n!1 G.xn; xnC1; xnC1/ D 0; (6.8)

and by Lemma 3.1.1,

lim
n!1 G.xn; xn; xnC1/ D 0: (6.9)

Next, we show that fxng1
nD0 is a G-Cauchy sequence. Suppose, to the contrary,

that fxng is not Cauchy in .X;G/. Then, by Theorem 4.1.1, there exist a positive real
number "0 > 0 and two subsequences fxn.k/g and fxm.k/g of fxng such that, for all
k 2 N,

k � n.k/ < m.k/ < n.k C 1/;

G
�
xn.k/; xm.k/�1; xm.k/�1

� � "0 < G
�
xn.k/; xm.k/; xm.k/

�
;

lim
k!1 G

�
xn.k/; xm.k/; xm.k/

� D lim
k!1 G.xm.k/; xm.k/C1; xn.k//

D lim
k!1 G.xm.k/�1; xm.k/; xn.k/�1/ D "0: (6.10)

Therefore, using (6.6), it follows that, for all k 2 N,

 .G.xm.k/; xm.k/C1; xn.k/// D  .G.Txm.k/�1;T2xm.k/�1;Txn.k/�1//

�  .G.xm.k/�1;Txm.k/�1; xn.k/�1// � �.G.xm.k/�1;Txm.k/�1; xn.k/�1//

D  .G.xm.k/�1; xm.k/; xn.k/�1// � �.G.xm.k/�1; xm.k/; xn.k/�1//

Using Lemma 2.3.5 applied to the sequences ftk D G.xm.k/; xm.k/C1; xn.k//g and
fsk D G.xm.k/�1; xm.k/; xn.k/�1/g, we conclude that "0 D 0, which is a contradiction.
This contradiction proves that fxng is a Cauchy sequence in .X;G/. Since, .X;G/ is
complete, then there exist z 2 X such that fxng ! z. From (6.6) with x D xn and
y D z we have,
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 .G.xnC1; xnC2;Tz// D  .G.Txn;T
2xn;Tz//

�  .G.xn;Txn; z// � �.G.xn;Txn; z//

D  .G.xn; xnC1; z// � �.G.xn; xnC1; z//

�  .G.xn; xnC1; z//:

Using that  and G are continuous, and taking the limit as n ! 1 we get that

 .G.z; z;Tz// �  .0/ D 0:

Then G.z; z;Tz/ D 0, i.e., z D Tz. To prove uniqueness, suppose that x; y 2 Fix.T/
are two fixed points of T . Now, by (6.6) we get

 .G.x; x; y// D  .G.Tx;T2x;Ty//

�  .G.x;Tx; y// � �.G.x;Tx; y//

D  .G.x; x; y// � �.G.x; x; y//;

which is impossible unless G.x; x; y// D 0, that is, x D y. ut
Corollary 6.1.2. Let .X;G/ be a complete G-metric space and let T W X ! X be a
mapping. Assume that there exists a function � 2 F 0

alt such that, for all x; y 2 X,

G.Tx;T2x;Ty/ � G.x;Tx; y/ � �.G.x;Tx; y//:

Then T has a unique fixed point.

If �.t/ D .1 � �/ t for all t 2 Œ0;1/, where 0 � � < 1, we have the following
result.

Corollary 6.1.3 ([24]). Let .X;G/ be a complete G-metric space and let T W X ! X
be a mapping. Assume that there exists � 2 Œ0; 1/ such that, for all x; y 2 X,

G.Tx;T2x;Ty/ � �G.x;Tx; y/:

Then T has a unique fixed point.

Example 6.1.2 ([24]). Let X D Œ0;1/ and let

G.x; y; z/ D
�
0; if x D y D z;
maxfx; yg C maxfy; zg C maxfx; zg; otherwise.
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Then G is a complete G-metric on X: Define, T W X ! X by Tx D x=4 for all x 2 X.
Then, for all x; y 2 X,

G.x;Tx; y/ D
(
0; if x D y D 0;

x C maxfx; yg C max
n x

4
; y
o
; otherwise;

and

G.Tx;T2x;Ty/ D
8
<

:

0; if x D y D 0;
1

4

	
x C maxfx; yg C max

n x

4
; y
o

; otherwise:

Therefore,

G.Tx;T2x;Ty/ � 1

4
G.x;Tx; y/

for all x; y 2 X and all the conditions of Corollary 6.1.3 (and also Theorem 6.1.3)
hold. Hence, T has a unique fixed point, which is u D 0.

Corollary 6.1.4 ([24]). Let .X;G/ be a complete G-metric space and let T W X ! X
be a mapping. Suppose that there exist a; b 2 R, where 0 � a C b < 2, such that,
for all x; y; z 2 X,

G.Tx;T2x;Ty/C G.Tx;T2x;Tz/ � aG.x;Tx; y/C bG.x;Tx; z/:

Then T has a unique fixed point.

Proof. By taking y D z, we get that

G.Tx;T2x;Ty/ � a C b

2
G.x;Tx; y/

where � D aCb
2

2 Œ0; 1/. That is, the conditions of Theorem 6.1.3 hold (where
 .t/ D t and �.t/ D .1 � �/t for all t � 0) and T has a unique fixed point. ut

Jachymski [94] proved the equivalence of the so-called distance functions (see
Lemma 1 in [94]). Inspired by this result, we state the following theorem.

Theorem 6.1.4. Let .X;4/ be an ordered set endowed with a G-metric and T be a
self-map on a G-complete partially ordered G-metric space .X;G/. The following
statements are equivalent:

.i/ there exist functions  ; � 2 ˆw
2 such that

 .G.Tx;Ty;Tz// �  .G.x; y; z// � �.G.x; y; z//; (6.11)

.ii/ there exist ˛ 2 Œ0; 1/ and a function  2 ˆw
2 such that

 .G.Tx;Ty;Tz// � ˛ .G.x; y; z//; (6.12)
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.iii/ there exists a continuous and non-decreasing function ˛ W Œ0;1/ ! Œ0;1/

such that ˛.t/ < t for all t > 0 such that

G.Tx;Ty;Tz/ � ˛.G.x; y; z//;

.iv/ there exist function  2 ˆw
2 and a non-decreasing function � W Œ0;1/ !

Œ0;1/ with ��1.0/ D 0 such that

 .G.Tx;Ty;Tz// �  .G.x; y; z// � �.G.x; y; z//; (6.13)

.iv/ there exist function  2 ˆw
2 and a lower semi-continuous function � W

Œ0;1/ ! Œ0;1/ with ��1.0/ D 0 and lim inf
t!1 �.t/ > 0 such that

 .G.Tx;Ty;Tz// �  .G.x; y; z// � �.G.x; y; z//; (6.14)

for any x; y; z 2 X with x < y < z.

Corollary 6.1.5. Let .X;4/ be an ordered set endowed with a G-metric and T be
a self-map on a G-complete partially ordered G-metric space .X;G/. The following
statements are equivalent:

.i/ there exist functions  ; � 2 ˆw
2 such that

 .G.Tx;Ty;Ty// �  .G.x; y; y// � �.G.x; y; y//; (6.15)

.ii/ there exist ˛ 2 Œ0; 1/ and a function  2 ˆw
2 such that

 .G.Tx;Ty;Ty// � ˛ .G.x; y; y//; (6.16)

.iii/ there exists a continuous and non-decreasing function ˛ W Œ0;1/ ! Œ0;1/

such that ˛.t/ < t for all t > 0 such that

G.Tx;Ty;Ty/ � ˛.G.x; y; y//; (6.17)

.iv/ there exist function  2 ˆw
2 and a non-decreasing function � W Œ0;1/ !

Œ0;1/ with ��1.0/ D 0 such that

 .G.Tx;Ty;Ty// �  .G.x; y; y// � �.G.x; y; y//; (6.18)

.iv/ there exist function  2 ˆw
2 and a lower semi-continuous function � W

Œ0;1/ ! Œ0;1/ with ��1.0/ D 0 and lim inf
t!1 �.t/ > 0 such that

 .G.Tx;Ty;Ty// �  .G.x; y; y// � �.G.x; y; y//; (6.19)

for any x; y 2 X with x 4 y.
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6.2 Fixed Point Theorems Using Contractivity Conditions
Involving a Unique Variable

As a G-metric is a function in three variables, it is usual that fixed point theorems
involve contractivity conditions using three different arguments x; y; z 2 X. In this
section, we show some results in which a unique variable plays the key role.

Theorem 6.2.1. Let .X;G;
/ be a preordered G-metric space and let T; g W X ! X
be two mappings. Suppose that the following conditions are fulfilled.

(a) There exists x0 2 X such that gx0 
 Tx0.
(b) T.X/ � g.X/.
(c) T is .g;
/-non-decreasing.
(d) There exists a function ' 2 F .c/

com such that

G
�
Tgx;T2x;T2x

� � ' .G .ggx; gTx; gTx// (6.20)

for all x 2 X such that gx 
 Tx.
(e) T and g are G-continuous and commuting.
(f) X (or g.X/ or T.X/) is G-complete.

Then T and g have, at least, a coincidence point.

Proof. Using (a) and (b), Lemma 4.1.1 guarantees that there exists a Picard
sequence fxng � X of .T; g/ based on the point x0, that is, a sequence satisfying

gxnC1 D Txn for all n 2 N:

Using the initial condition gx0 
 Tx0 D gx1, we have that

gxn 4 gxnC1 D Txn for all n 2 N

because T is .g;
/-non-decreasing. Now, applying the contractivity condition
(6.20) and the commutativity between T and g, we have that, for all n 2 N,

G .ggxnC1; ggxnC2; ggxnC2/ D G .gTxn; gTxnC1; gTxnC1/

D G .Tgxn;TgxnC1;TgxnC1/ D G .Tgxn;TTxn;TTxn/

� ' .G .ggxn; gTxn; gTxn// D ' .G .ggxn; ggxnC1; ggxnC1// :

Therefore, Lemma 4.1.2 implies that fggxng is a Cauchy sequence in .X;G/. As

ggxnC1 D gTxn D Tgxn for all n 2 N;

then fggxng � T.X/ � g.X/ � X for all n � 1. Taking into account that one of
these subsets is G-complete, there exists z 2 X such that fggxng ! z. Since T and g
are G-continuous, then

fgggxng ! gz and fTggxng ! Tz:
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However, as T and g are commuting, it follows that, for all n 2 N,

Tggxn D gTgxn D ggTxn D gggxnC1:

By the uniqueness of the limit, we conclude that Tz D gz, that is, z is a coincidence
point of T and g. ut
Corollary 6.2.1. Let .X;G;
/ be a preordered G-metric space and let T W X ! X
be a 
-non-decreasing, continuous mapping. Assume that there exists a function
' 2 F .c/

com such that

G
�
Tx;T2x;T2x

� � ' .G .x;Tx;Tx//

for all x 2 X such that x 
 Tx. If X (or T.X/) is G-complete, then T has, at least, a
fixed point provided that there exists x0 2 X such that x0 
 Tx0.

Theorem 6.2.1 is also interesting when 
 is a partial order on X (we leave to the
reader to change the word preordered by ordered). Furthermore, assume that we use
the partial order 
0 given in (5.1). In such a case, the following result is obtained.

Corollary 6.2.2. Let .X;G/ be a G-metric space and let T; g W X ! X be two
mappings. Suppose that the following conditions are fulfilled.

(a) T.X/ � g.X/.
(b) There exists a function ' 2 F .c/

com such that, for all x 2 X,

G
�
Tgx;T2x;T2x

� � ' .G .ggx; gTx; gTx// :

(c) T and g are G-continuous and commuting.
(d) X (or g.X/ or T.X/) is G-complete.

Then T and g have, at least, a coincidence point.

Finally, the following one is a version of Theorem 6.2.1 using the function
'�.t/ D � t for all t 2 Œ0;1/, where � 2 Œ0; 1/.
Corollary 6.2.3. Let .X;G;
/ be a preordered G-metric space and let T; g W X !
X be two mappings. Suppose that the following conditions are fulfilled.

(a) There exists x0 2 X such that gx0 
 Tx0.
(b) T.X/ � g.X/.
(c) T is .g;
/-non-decreasing.
(d) There exists a constant � 2 Œ0; 1/ such that

G
�
Tgx;T2x;T2x

� � �G .ggx; gTx; gTx/

for all x 2 X such that gx 
 Tx.
(e) T and g are G-continuous and commuting.
(f) X (or g.X/ or T.X/) is G-complete.

Then T and g have, at least, a coincidence point.
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6.3 Generalized Cyclic Weak �-Contractions
on G-Metric Spaces

In this section we present the notion of a cyclic map and some fixed point theory for
cyclic maps in G-metric spaces.

6.3.1 Cyclic Mappings on G-Metric Spaces

We begin with the definition of a cyclic mapping.

Definition 6.3.1. A self-mapping T W X ! X is cyclic if there exist non-empty
subsets A0;A1; : : : ;Ap�1 � X such that

A0 [ A1 [ : : : [ Ap�1 D X and

T.Ai/ � AiC1 for all i 2 f0; 1; 2; : : : ; p � 1g (where Ap D A0):

In such a case, we say that fAigp�1
iD0 is a cyclic representation of .X;T/.

If X is endowed with a topology, we say that fAigp�1
iD0 is closed if each Ai is closed

for all i 2 f0; 1; 2; : : : ; p � 1g.

It is usual to define Ap D A0, ApC1 D A1, ApC2 D A2, etc. In other words,

if n;m 2 N and m 
 n .mod p/ , then Am D An:

Using this agreement, notice that fAigp
iD1 D fA1;A2;A3; : : : ;Apg is, indeed, the

same cyclic representation of T . We will use this representation in the statements
of theorems, but the initial point x0 will belong to A0.

Lemma 6.3.1. If a cyclic self-mapping T W X ! X has a fixed point z, then z 2
\p

iD1Ai whatever the cyclic representation fAigp
iD1 of .X;T/.

Proof. As z 2 X D A1 [ A2 [ : : : [ Ap, there exists i 2 f1; 2; : : : ; pg such that
z 2 Ai. Then z D Tz 2 T.Ai/ � AiC1. By repeating this argument, z 2 Aj for all
j 2 f1; 2; : : : ; pg. ut

If fxmgm�0 is a Picard sequence of a cyclic operator T W X ! X such that x0 2 A0,
then xm 2 Am for all m 2 N. Furthermore,

xmpCi 2 Ai for all m 2 N and all i 2 f1; 2; : : : ; pg:

Therefore, each Ai contains a partial subsequence of fxmg.
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Lemma 6.3.2. Let X be a Hausdorff topological space and let fAigp
iD1 be a closed

cyclic representation of .X;T/, where T W X ! X is a self-mapping. Then, the limit
of any convergent Picard sequence of T belongs to \p

iD1Ai.

Proof. As each Ai contains a partial subsequence of the Picard sequence, then, its
limit z (which is unique by the Hausdorff property) belongs to the closure of Ai. But
as each Ai is closed, then z 2 Ai for all i 2 f1; 2; : : : ; pg. ut
Remark 6.3.1. Let fAigp

iD1 be a cyclic representation of .X;T/, where T W X ! X
is a self-mapping, and let fxmgm�0 be a Picard sequence of T W X ! X such that
x0 2 A0. Let n;m 2 N and i; j 2 f1; 2; : : : ; pg be natural numbers. Then

xn 2 Ai; m > n; m � n 
 j .mod p/ ) xm 2 AiCj:

In particular,

xn 2 Ai; m > n; m 
 n .mod p/ ) xm 2 AiI
xn 2 Ai; m > n; m � n 
 1 .mod p/ ) xm 2 AiC1: (6.21)

The following result extends Banach theorem to cyclic mappings.

Theorem 6.3.1 ([119]). Let .X;G/ be a complete G-metric space and let fAigp
iD1

be a closed cyclic representation of .Y;T/, where Y � X is a non-empty subset and
T W Y ! Y is a mapping. If there exists � 2 Œ0; 1/ such that

G.Tx;Ty;Ty/ � �G.x; y; y/ (6.22)

for all x 2 Aj and y 2 AjC1 (where j 2 f1; 2; : : : ; pg is arbitrary), then T has a
unique fixed point, which belongs to \p

iD1Ai. In fact, T is a Picard operator.

Remark 6.3.2. In the previous result, we assume that T W Y ! Y is a cyclic
mapping, where .X;G/ is complete and fAigp

iD1 is a closed cyclic representation
of .Y;T/. Since each Ai is closed, the finite union Y D [p

iD1Ai is also closed. As Y
is closed in the complete space .X;G/, then .Y;G/ is also complete. Therefore, we
have a mapping T W Y ! Y from a complete G-metric space into itself.

Proof. We first prove the existence part. Take an arbitrary x0 2 Y . Without loss of
generality, assume that x0 2 A0. Let fxngn�0 be the Picard sequence of T based on
x0. Since T is cyclic, xn 2 An for all n � 0. If there exists some n0 2 N such that
xn0C1 D xn0 , then xn0 is a fixed point of T . Assume that xnC1 ¤ xn for all n 2 N.
Put x D xnC1 and y D xnC2 in (6.22). Then, for all n � 0,

G.xnC1; xnC2; xnC2/ D G.Txn;TxnC1;TxnC1/ � �G.xn; xnC1; xnC1/:
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It follows from Corollary 4.1.1 that fxng is Cauchy in .Y;G/. Since the space .Y;G/
is complete, then fxng is convergent in .Y;G/. Let u 2 Y be the limit of fxng. From
Lemma 6.3.2, u 2 \p

iD1Ai. Now we show that u is a fixed point of T , that is, u D Tu.
Indeed, for all n,

G .xnC1;Tu;Tu/ D G .Txn;Tu;Tu/ � �G .xn; u; u/ :

Letting n ! 1, we deduce that G .u;Tu;Tu/ D 0, that is, Tu D u. Finally, in
order to prove the uniqueness, we assume that v 2 Y is another fixed point of T . By
Lemma 6.3.1, both u and v belong to \p

iD1Ai. Thus, we can substitute x D u and y D
v in the contractivity condition (6.22), which yields G.u; v; v/ D G.Tv;Tu;Tu/ �
�G.u; v; v/. As � < 1, then G.u; v; v/ D 0, and u D v. ut
Corollary 6.3.1 ([119]). Let .X;G/ be a G-metric space and let fAigp

iD1 be a closed
cyclic representation of .Y;T/, where Y � X is complete and T W Y ! Y is a
mapping. If there exists � 2 Œ0; 1/ such that

G.Tx;Ty;Tz/ � �G.x; y; z/

for all x 2 Aj and y; z 2 AjC1 (where j 2 f1; 2; : : : ; pg is arbitrary), then T has a
unique fixed point, which belongs to \p

iD1Ai. In fact, T is a Picard operator.

6.3.2 Generalized Cyclic Weak �-Contractions (Type I)

Recall that FKr is the family of all continuous mappings � W Œ0;1/ ! Œ0;1/ such
that � .t/ D 0 if, and only if, t D 0.

Theorem 6.3.2 ([119]). Let T W X ! X be a mapping from a complete G-metric
space .X;G/ into itself and let fAigp

iD1 be a closed cyclic representation of .X;T/.
Assume that there exists a function � 2 FKr such that

G.Tx;Ty;Ty/ � M.x; y/ � �.M.x; y// (6.23)

for all x 2 Ai and y 2 AiC1 ( i 2 f1; 2; : : : ; pg arbitrary), where

M.x; y/ D maxfG.x; y; y/;G.x;Tx;Tx/;G.y;Ty;Ty/g: (6.24)

Then T has a unique fixed point, which belongs to \p
iD1Ai. In fact, T is a Picard

operator.

Proof. To prove the existence part, we construct a sequence of Picard iterations as
usual. Take an arbitrary x0 2 A0 and define the sequence fxng as

xnC1 D Txn for all n 2 N:
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Since T is cyclic, xn 2 An for all n 2 N. If there exists some n0 2 N such that
xn0C1 D xn0 , then xn0 is a fixed point of T . Assume that xnC1 ¤ xn for all n 2 N,
that is,

G.xn; xnC1; xnC1/ > 0 for all n 2 N: (6.25)

Let x D xn and y D xnC1 in (6.23). Then

G.xnC1; xnC2; xnC2/ D G.Txn;TxnC1;TxnC1/

� M.xn; xnC1/ � �.M.xn; xnC1//; (6.26)

where

M.xn; xnC1/ D max fG.xn; xnC1; xnC1/;G.xn;Txn;Txn/;

G.xnC1;TxnC1;TxnC1/g
D maxfG.xn; xnC1; xnC1/;G.xnC1; xnC2; xnC2/g: (6.27)

If there exists some n 2 N such that

G.xn; xnC1; xnC1/ � G.xnC1; xnC2; xnC2/;

then (6.26) and (6.27) yield

G.xnC1; xnC2; xnC2/ D M.xn; xnC1/ � �.M.xn; xnC1//

D G.xnC1; xnC2; xnC2/ � � .G.xnC1; xnC2; xnC2// ;

which implies that �.G.xnC1; xnC2; xnC2// D 0 and, as � 2 FKr,

G.xnC1; xnC2; xnC2/ D 0;

which contradicts (6.25). Therefore, we must have G.xnC1; xnC2; xnC2/ <

G.xn; xnC1; xnC1/ for all n 2 N, that is, M.xn; xnC1/ D G.xn; xnC1; xnC1/. From
(6.26), for all n 2 N,

G.xnC1; xnC2; xnC2/ � G.xn; xnC1; xnC1/ � �.G.xn; xnC1; xnC1//

� G.xn; xnC1; xnC1/: (6.28)

Thus, the sequence fG.xn; xnC1; xnC1/g is a non-increasing sequence of nonnegative
real numbers, which converges to L � 0. As � is continuous, letting n ! 1 in
(6.28), we get

L � L � �.L/: (6.29)
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It follows that �.L/ D 0, so L D 0, that is,

lim
n!1 G.xn; xnC1; xnC1/ D 0: (6.30)

From Lemma 3.1.1, we also have

lim
n!1 G.xn; xn; xnC1/ D 0: (6.31)

Next, we claim that fxng is a G-Cauchy sequence in .X;G/. Assume the contrary,
that is, fxng is not G-Cauchy. Then, according to Theorem 4.1.1, there exist " > 0

and corresponding subsequences fn.k/g and f`.k/g of N satisfying n.k/ > `.k/ > k
for which

G.x`.k/; xn.k/�1; xn.k/�1/ � " < G.x`.k/; xn.k/; xn.k//; (6.32)

lim
k!1 G.x`.k/; xn.k/; xn.k// D lim

k!1 G.x`.k/C1; xn.k/C1; xn.k/C1/ D ": (6.33)

Observe that for every k 2 N there exists s.k/ satisfying 0 � s.k/ < p such that

n.k/ � `.k/C s.k/ D n.k/ � .`.k/ � s.k// 
 1 .mod p/: (6.34)

As f`.k/g ! 1, for large enough values of k we have that r.k/ D `.k/ � s.k/ > 0

and, by (6.21), xr.k/ and xn.k/ lie in consecutive sets Ajk and AjkC1, respectively, for
some 0 � jk < p. We next substitute x D xr.k/ and y D xn.k/ in (6.23) to obtain

G.xr.k/C1; xn.k/C1; xn.k/C1/ D G.Txr.k/;Txn.k/;Txn.k//

� M.xr.k/; xn.k// � �.M.xr.k/; xn.k///; (6.35)

where

M.xr.k/; xn.k// D max
˚
G.xr.k/; xn.k/; xn.k//;G.xr.k/; xr.k/C1; xr.k/C1/;

G.xn.k/; xn.k/C1; xn.k/C1/
�
: (6.36)

If s.k/ D 0, then G.xr.k/; xn.k/; xn.k// D G.x`.k/; xn.k/; xn.k//, and when s.k/ > 0, by
item 3 of Lemma 3.1.2,

jG.x`.k/; xn.k/; xn.k// � G.xr.k/; xn.k/; xn.k//j
� maxfG.xr.k/; xr.k/; x`.k//;G.xr.k/; x`.k/; x`.k//g

� 2G.xr.k/; xr.k/; x`.k/ � 2
`.k/�1P

iDr.k/
G.xi; xi; xiC1/: (6.37)
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Notice that `.k/ � r.k/ D s.k/ < p, so the sum on the right-hand-side of (6.37)
consists of a finite number of terms, and due to (6.30) and (6.31), each term of this
sum tends to 0 as k ! 1. Therefore, by (6.33),

lim
k!1 G.xr.k/; xn.k/; xn.k// D lim

k!1 G.x`.k/; xn.k/; xn.k// D ": (6.38)

Repeating the previous arguments and Lemma 4.1.4, it can be deduced from (6.33)
that

lim
k!1 G.xr.k/C1; xn.k/C1; xn.k/C1/ D ": (6.39)

Now, passing to the limit as k ! 1 in (6.35) and using (6.30), (6.38) and (6.39),
we get

" � maxf"; 0; 0g � �.maxf"; 0; 0g/ D " � �."/;

and, hence �."/ D 0. We conclude that " D 0, which contradicts the assumption
that fxng is not G-Cauchy. Thus, the sequence fxng is G-Cauchy. Since .X;G/ is
G-complete, it is G-convergent to a limit, say w 2 X. By Lemma 6.3.2, w 2 \p

iD1Ai.
To show that the limit of the Picard sequence is the fixed point of T , that is,

w D Tw, we employ (6.23) with x D xn and y D w. This leads to

G.xnC1;Tw;Tw/ D G.Txn;Tw;Tw/ � M.xn;w/ � �.M.xn;w//

where

M.xn;w/ D maxfG.xn;w;w/;G.xn; xnC1; xnC1/;G.w;Tw;Tw/g:

As a consequence,

lim
n!1 M.xn;w/ D G.w;Tw;Tw/:

Passing to the limit as n ! 1, we get

G.w;Tw;Tw/ � G.w;Tw;Tw/ � �.G.w;Tw;Tw//:

Thus, �.G.w;Tw;Tw// D 0 and, hence, G.w;Tw;Tw/ D 0, that is, w D Tw.
Finally, we prove that the fixed point is unique. Assume that v 2 X is another

fixed point of T . Then, since both v and w belong to \p
iD1Ai, we set x D v and y D w

in (6.23), which yields

G.v;w;w/ D G.Tv;Tw;Tw/ � M.v;w/ � �.M.v;w//; (6.40)
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where

M.v;w/ D maxfG.v;w;w/;G.v;Tv;Tv/;G.w;Tw;Tw/g D G.v;w;w/:

Then (6.40) becomes G.v;w;w/ � G.v;w;w/ � �.G.v;w;w// and, clearly,
G.v;w;w/ D 0, so we conclude that v D w, i.e., the fixed point of T is unique. ut
Corollary 6.3.2 ([119]). Let T W X ! X be a mapping from a complete G-metric
space .X;G/ into itself and let fAigp

iD1 be a closed cyclic representation of .X;T/.
Assume that there exists a function � 2 FKr such that

G.Tx;Ty;Tz/ � M.x; y; z/ � �.M.x; y; z//

for all x 2 Ai and y; z 2 AiC1 ( i 2 f1; 2; : : : ; pg arbitrary), where

M.x; y; z/ D maxfG.x; y; z/;G.x;Tx;Tx/;G.y;Ty;Ty/;G.z;Tz;Tz/g:

Then T has a unique fixed point, which belongs to \p
iD1Ai. In fact, T is a Picard

operator.

For particular choices of the function � we obtain the following corollaries. We
employ Remark 6.3.2 to give the following versions.

Corollary 6.3.3 ([119]). Let .X;G/ be a G-complete G-metric space and let
fAigp

iD1 be a family of nonempty G-closed subsets of X with Y D [p
iD1Ai. Let

T W Y ! Y be a map satisfying

T.Aj/ � AjC1 for all j 2 f1; 2; : : : pg (where ApC1 D A1).

Suppose that there exists � 2 Œ0; 1/ such that the map T satisfies

G.Tx;Ty;Tz/ � �M.x; y; z/ (6.41)

for all x 2 Aj and all y; z 2 AjC1 (for j 2 f1; 2; : : :mg), where

M.x; y; z/ D maxfG.x; y; z/;G.x;Tx;Tx/;G.y;Ty;Ty/;G.z;Tz;Tz/g: (6.42)

Then T has a unique fixed point, which belongs to \p
iD1Ai.

Proof. The proof is obvious by choosing the function � in Theorem 6.3.2 as �.t/ D
.1 � �/ t. ut
Corollary 6.3.4 ([119]). Let .X;G/ be a G-complete G-metric space and let
fAigp

iD1 be a family of nonempty G-closed subsets of X with Y D [p
iD1Ai. Let

T W Y ! Y be a map satisfying

T.Aj/ � AjC1 for all j 2 f1; 2; : : : pg (where ApC1 D A1).



6.3 Generalized Cyclic Weak �-Contractions 125

Suppose that there exist constants a; b; c and d, with a C b C c C d < 1, such that
the map T satisfies

G.Tx;Ty;Tz/ � aG.x; y; z/CbG.x;Tx;Tx/CcG.y;Ty;Ty/CdG.z;Tz;Tz/ (6.43)

for all x 2 Aj and all y; z 2 AjC1 (for j 2 f1; 2; : : :mg). Then T has a unique fixed
point, which belongs to \p

iD1Ai.

Proof. Clearly we have,

aG.x; y; z/C bG.x;Tx;Tx/C cG.y;Ty;Ty/

C dG.z;Tz;Tz/ � .a C b C c C d/M.x; y; z/;

where

M.x; y; z/ D maxfG.x; y; z/;G.x;Tx;Tx/;G.y;Ty;Ty/;G.z;Tz;Tz/g: (6.44)

By Corollary 6.3.3 using � D maxfa C b C c C d; 0g 2 Œ0; 1/, the map T has a
unique fixed point. ut
Example 6.3.1 ([119]). Let X D Œ�1; 1� and let T W X ! X be given as Tx D � x

3

for all x 2 X. Let A D Œ�1; 0� and B D Œ0; 1�. Define the function G W X � X � X !
Œ0;1/, for all x; y; z 2 X, as

G.x; y; z/ D jx3 � y3 j C jy3 � z3 j C jz3 � x3 j :

Clearly, the function G is a G-metric on X. Define also � W Œ0;1/ ! Œ0;1/ as
�.t/ D 2t

3
for all t � 0. Notice that t � � .t/ D t=3 for all t � 0. It can be easily

shown that the map T satisfies condition (6.23). Indeed, note that

G.Tx;Ty;Tz/ D 1

27

	
jx3 � y3 j C jy3 � z3 j C jz3 � x3 j




and

M.x; y; z/ D max

�
jx3 � y3 j C jy3 � z3 j C jz3 � x3 j; 56

27
j x3 j;

56

27
j y3 j; 56

27
j z3 j

�

for all x; y; z 2 X. As M.x; y; z/ � �.M.x; y; z// D 1
3
M.x; y; z/, we have that, for all

x; y; z 2 X,

G.Tx;Ty;Tz/ D 1

27

	
jx3 � y3 j C jy3 � z3 j C jz3 � x3 j




� 1

3

	
jx3 � y3 j C jy3 � z3 j C jz3 � x3 j



� 1

3
M.x; y; z/:
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Hence, by Theorem 6.3.2, T has a unique fixed point, which belong to A \ B D f0g.

Cyclic maps satisfying integral type contractive conditions are common applica-
tions of fixed point theorems.

Corollary 6.3.5 ([119]). Let .X;G/ be a G-complete G-metric space and let
fAigp

iD1 be a family of nonempty G-closed subsets of X with Y D [p
iD1Ai. Let

T W Y ! Y be a map satisfying

T.Aj/ � AjC1 for all j 2 f1; 2; : : : pg (where ApC1 D A1).

Suppose also that

Z G.Tx;Ty;Tz/

0

ds �
Z M.x;y;z/

0

ds � �
 Z M.x;y;z/

0

ds

!

;

where � 2 FKr and

M.x; y; z/ D maxfG.x; y; z/;G.x;Tx;Tx/;G.y;Ty;Ty/;G.z;Tz;Tz/g

for all x 2 Aj and y; z 2 AjC1 (for j 2 f1; 2; : : : pg). Then T has a unique fixed point,
which is in \p

iD1Ai.

Corollary 6.3.6 ([119]). Let .X;G/ be a G-complete G-metric space and let
fAigp

iD1 be a family of nonempty G-closed subsets of X with Y D [p
iD1Ai. Let

T W Y ! Y be a map satisfying

T.Aj/ � AjC1 for all j 2 f1; 2; : : : pg (where ApC1 D A1).

Suppose also that

Z G.Tx;Ty;Tz/

0

ds � �

Z M.x;y;z/

0

ds;

where � 2 Œ0; 1/ and

M.x; y; z/ D maxfG.x; y; z/;G.x;Tx;Tx/;G.y;Ty;Ty/;G.z;Tz;Tz/g

for all x 2 Aj and y; z 2 AjC1 (for j 2 f1; 2; : : : pg). Then T has a unique fixed point,
which is in \p

iD1Ai.

Taking into account the equivalence between different classes of auxiliary
functions due to Jachymski [94] (recall Theorem 4.2.5) we state the following result.
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Theorem 6.3.3 ([119]). Let T be a self-map on a G-complete G-metric space
.X;G/ and let fAigp

iD1 be a family of nonempty G-closed subsets of X with Y D
[p

iD1Ai. Let T W Y ! Y be a map satisfying

T.Aj/ � AjC1 for all j 2 f1; 2; : : : pg (where ApC1 D A1).

Assume that

M.x; y; z/ D maxfG.x; y; z/;G.x;Tx;Tx/;G.y;Ty;Ty/;G.z;Tz;Tz/g:

Then the following statements are equivalent.

.i/ There exist functions  ; � 2 Falt such that

 .G.Tx;Ty;Tz// �  .M.x; y; z// � �.M.x; y; z//;

for any x 2 Aj and y; z 2 AjC1 ( for j 2 f1; 2; : : : pg).
.ii/ There exists a function ˇ W Œ0;1/ ! Œ0; 1� such that for any bounded sequence

ftng of positive reals, fˇ.tn/g ! 1 implies ftng ! 0, and

G.Tx;Ty;Tz/ � ˇ.M.x; y; z//  .M.x; y; z//;

for any x 2 Aj and y; z 2 AjC1 ( for j 2 f1; 2; : : : pg).
.iii/ There exists a continuous function � W Œ0;1/ ! Œ0;1/ such that ��1.f0g/ D 0

and

G.Tx;Ty;Tz/ � M.x; y; z/ � �.M.x; y; z//

for any x 2 Aj and y; z 2 AjC1 ( for j 2 f1; 2; : : : pg).
.iv/ there exists function  2 Falt and a non-decreasing, right continuous function

' W Œ0;1/ ! Œ0;1/, with '.t/ < t for all t > 0, with

 .G.Tx;Ty;Tz// � '. .M.x; y; z///

for any x 2 Aj and y; z 2 AjC1 ( for j 2 f1; 2; : : : pg).
.v/ There exists a continuous and non-decreasing function ' W Œ0;1/ ! Œ0;1/

such that '.t/ < t for all t > 0, with

 .G.Tx;Ty;Tz// � '.M.x; y; z//

for any x 2 Aj and y; z 2 AjC1 ( for j 2 f1; 2; : : : pg).
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6.3.3 Generalized Cyclic Weak �-Contractions (type II)

We start this subsection by recalling some sets of auxiliary functions. Note

Falt D f� W Œ0;1/ ! Œ0;1/ W � continuous, non-decreasing,

� .t/ D 0 , t D 0g;

F 0
alt D f� W Œ0;1/ ! Œ0;1/ W � lower semi-continuous, � .t/ D 0 , t D 0g :

Using these control functions, we present the following results, which were inspired
from [46].

Theorem 6.3.4. Let T W X ! X be a mapping from a complete G-metric space
.X;G/ into itself and let fAigp

iD1 be a closed cyclic representation of .X;T/. Assume
that there exist functions  2 Falt and � 2 F 0

alt such that the map T satisfies the
inequality

 .G.Tx;Ty;Ty// �  .M.x; y// � �.M.x; y// (6.45)

for all x 2 Aj and all y 2 AjC1 ( i 2 f1; 2; : : : ; pg arbitrary), where

M .x; y/ D max

�
G.x; y; y/;G.x;Tx;Tx/;G.y;Ty;Ty/;

G.x; y;Tx/

2
;
2G.x;Ty;Ty/C G.y;Tx;Tx/

4
;

G.x;Ty;Ty/C 2G.y;Tx;Tx/

5

�
: (6.46)

Then T has a unique fixed point, which belongs to \p
iD1Ai. In fact, T is a Picard

operator.

Proof. First, we show the existence of a fixed point of the map T . For this purpose,
let fxng be the Picard sequence of T based on an arbitrary point x0 2 A0, that is,

xnC1 D Txn for all n 2 N: (6.47)

Since T is cyclic, xn 2 An for all n 2 N. If there exists some n0 2 N such that
xn0C1 D xn0 , then xn0 is a fixed point of T . Assume that xnC1 ¤ xn for all n 2 N,
that is,

G.xn; xnC1; xnC1/ > 0 for all n 2 N: (6.48)
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Let x D xn and y D xnC1 in (6.45). Then

 .G.xnC1; xnC2; xnC2// D  .G.Txn;TxnC1;TxnC1//

�  .M.xn; xnC1// � �.M.xn; xnC1//; (6.49)

where

M.xn; xnC1/ D max

�
G.xn; xnC1; xnC1/;G.xnC1; xnC2; xnC2/;

G.xn; xnC1; xnC1/
2

;
2G.xn; xnC2; xnC2/

4
;

G.xn; xnC2; xnC2/
5

�
: (6.50)

Since

G.xn; xnC2; xnC2/
5

� 2G.xn; xnC2; xnC2/
4

� G.xn; xnC1; xnC1/C G.xnC1; xnC2; xnC2/
2

� max fG.xn; xnC1; xnC1/;G.xnC1; xnC2; xnC2/g ;

then (6.50) becomes

M.xn; xnC1/ D max fG.xn; xnC1; xnC1/;G.xnC1; xnC2; xnC2/g

for all n 2 N. If there exists some n 2 N such that G.xn; xnC1; xnC1/ �
G.xnC1; xnC2; xnC2/, then (6.49) yields

 .G.xnC1; xnC2; xnC2// �  .G.xnC1; xnC2; xnC2// � �.G.xnC1; xnC2; xnC2//;

which implies that �.G.xnC1; xnC2; xnC2// D 0 and, as � 2 F 0
alt,

G.xnC1; xnC2; xnC2/ D 0;

which contradicts (6.48). Therefore, we must have G.xnC1; xnC2; xnC2/ <

G.xn; xnC1; xnC1/ for all n 2 N, that is, M.xn; xnC1; xnC1/ D G.xn; xnC1; xnC1/.
From (6.49),

 .G.xnC1; xnC2; xnC2// �  .G.xn; xnC1; xnC1// � �.G.xn; xnC1; xnC1//:
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From Lemma 2.3.6,

lim
n!1 G.xn; xnC1; xnC1/ D 0; (6.51)

that is, fxng is an asymptotically regular sequence.
Next, we show that fxng is a G-Cauchy sequence in .X;G/. Suppose, on the

contrary, that fxng is not G-Cauchy. Reasoning as in the proof of Theorem 6.3.2,
there exists " > 0 and corresponding subsequences fn.k/g and f`.k/g of N satisfying
n.k/ > `.k/ > k for which (see Theorem 4.1.1)

G.x`.k/; xn.k/�1; xn.k/�1/ � " < G.x`.k/; xn.k/; xn.k//;

lim
k!1 G.x`.k/; xn.k/; xn.k// D "; (6.52)

0 � s.k/ < p; n.k/ � `.k/C s.k/ 
 1 .mod p/: (6.53)

As f`.k/g ! 1, for large enough values of k we have that r.k/ D `.k/ � s.k/ > 0.
Applying item 3 of Lemma 3, we have that

ˇ̌
G.x`.k/; xn.k/; xn.k// � G.xr.k/; xn.k/; xn.k//

ˇ̌

� maxfG.x`.k/; xr.k/; xr.k//;G.x`.k/; x`.k/; xr.k//g
� 2G.xr.k/; x`.k/; x`.k//

� 2

`.k/�1X

iDr.k/

G.xi; xiC1; xiC1/:

Taking into account that `.k/�r .k/ D s .k/ 2 f0; 1; : : : ; p�1g, the previous sum
has not more than p terms. As fxng is asymptotically regular, the right-hand term of
the previous inequality tends to zero as k ! 1. Therefore, using (6.52), we deduce
that

lim
k!1 G.xr.k/; xn.k/; xn.k// D ":

It follows from Lemma 4.1.4 that, for all given p1; p2; p3 2 Z,

lim
k!1 G.xr.k/Cp1 ; xn.k/Cp2 ; xn.k/Cp3 / D ": (6.54)

By (6.53) and (6.21), xr.k/ and xn.k/ lie in consecutive sets Ajk and AjkC1, respectively,
for some 0 � jk < p. We next substitute x D xr.k/ and y D xn.k/ in (6.45) to obtain

 
�
G.xr.k/C1; xn.k/C1; xn.k/C1/

� D  
�
G.Txr.k/;Txn.k/;Txn.k//

�

�  
�
M.xr.k/; xn.k//

� � �.M.xr.k/; xn.k///; (6.55)
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where

M.xr.k/; xn.k// D max

�
G.xr.k/; xn.k/; xn.k//;G.xr.k/; xr.k/C1; xr.k/C1/;

G.xn.k/; xn.k/C1; xn.k/C1/;
G.xr.k/; xn.k/; xr.k/C1/

2
;

2G.xr.k/; xn.k/C1; xn.k/C1/C G.xn.k/; xr.k/C1; xr.k/C1/
4

;

G.xr.k/; xn.k/C1; xn.k/C1/C 2 G.xn.k/; xr.k/C1; xr.k/C1/
5

�
:

The first term of the previous maximum tends to " as k ! 1. Notice also

G.xr.k/; xn.k/; xr.k/C1/
2

� G.xr.k/; xr.k/C1; xr.k/C1/C G.xr.k/C1; xr.k/C1; xn.k//

2

� G.xr.k/; xr.k/C1; xr.k/C1/C 2G.xr.k/C1; xn.k/; xn.k//

2
! 0C 2"

2
D ":

Also note

2G.xr.k/; xn.k/C1; xn.k/C1/C G.xn.k/; xr.k/C1; xr.k/C1/
4

� 2G.xr.k/; xn.k/C1; xn.k/C1/C 2G.xr.k/C1; xn.k/; xn.k//

4

! 2"C 2"

2
D ":

Finally,

G.xr.k/; xn.k/C1; xn.k/C1/C 2 G.xn.k/; xr.k/C1; xr.k/C1/
5

� G.xr.k/; xn.k/C1; xn.k/C1/C 4 G.xr.k/C1; xn.k/; xn.k//

5
! "C 4"

5
D ":

Therefore,

lim
k!1 M.xr.k/; xn.k// D ":
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This proves that the sequences

˚
tk D G.xr.k/C1; xn.k/C1; xn.k/C1/

�
k2N and

˚
sk D M.xr.k/; xn.k//

�
k2N

converge to the same limit L D ", and they satisfy  .tk/ �  .sk/ � �.sk/ for all
k 2 N (at least, for large enough values of k). As a consequence, Corollary 2.3.2
guarantees that " D 0, which is a contradiction. This contradicts the assumption
that fxng is not G-Cauchy. As a result, the sequence fxng is Cauchy in .X;G/. Since
.X;G/ is complete, it is G-convergent to a limit, say w 2 X. By Lemma 6.3.2,
w 2 \p

iD1Ai.
To show that the limit of the Picard sequence is the fixed point of T , that is,

w D Tw, we can employ (6.45) with x D xn and y D w. This leads to

 .G.xnC1;Tw;Tw// D  .G.Txn;Tw;Tw//

�  .M.xn;w// � �.M.xn;w//; (6.56)

where

M.xn;w/ D max

�
G.xn;w;w/;G.xn; xnC1; xnC1/;G.w;Tw;Tw/;

G.xn;w; xnC1/
2

;
2G.xn;Tw;Tw/C G.w; xnC1; xnC1/

4
;

G.xn;Tw;Tw/C 2G.w; xnC1; xnC1/
5

�
:

Since G is continuous,

lim
n!1 M.xn;w/ D G.w;Tw;Tw/:

Using Corollary 2.3.2 again applied to the sequences

f tk D G.xnC1;Tw;Tw/ gk2N ; f sk D M.xn;w/ gk2N

we deduce that G.w;Tw;Tw/ D 0, that is, Tw D w.
Finally, we prove that the fixed point of T is unique. Assume that v 2 X is another

fixed point of T such that v ¤ w. Then, since both v and w belong to
Tm

jD1 Aj, we
set x D v and y D w in (6.45) which yields

 .G.v;w;w// D  .G.Tv;Tw;Tw//

�  .M.v;w// � �.M.v;w//; (6.57)
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where

M.v;w/ D max

�
G.v;w;w/;G.v;Tv;Tv/;G.w;Tw;Tw/;

G.v;w;Tv/

2
;
2G.v;Tw;Tw/C G.w;Tv;Tv/

4
;

G.v;Tw;Tw/C 2G.w;Tv;Tv/

5

�

D max

�
G.v;w;w/;

G.v;w; v/

2
;
2G.v;w;w/C G.w; v; v/

4

G.v;w;w/C 2G.w; v; v/

5

�

� max fG.v;w;w/;G.w; v; v/g :
Similarly,

 .G.w; v; v// D  .G.Tw;Tv;Tv//

�  .M.w; v// � �.M.w; v//;
where

M.w; v/ D max

�
G.w; v; v/;

G.w; v;w/

2
;

2G.w; v; v/C G.v;w;w/

4
;

G.w; v; v/C 2G.v;w;w/

5

�

� max fG.w; v; v/;G.v;w;w/g :
As  is non-decreasing,

 fmax fG.v;w;w/;G.w; v; v/gg
D max f .G.v;w;w// ;  .G.w; v; v//g
� max f .M.v;w//;  .M.w; v//g

� min f�.M.v;w//; �.M.w; v//g
�  fmax fG.v;w;w/;G.w; v; v/gg :

As a result,

min f�.M.v;w//; �.M.w; v//g D 0;

so �.M.v;w// D 0 or �.M.w; v// D 0. Hence, M.v;w/ D 0 or M.w; v/ D 0. In
any case, we deduce that v D w, that is, T has a unique fixed point. ut
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To illustrate Theorem 6.3.4, we give the following example.

Example 6.3.2 ([46]). Let X D Œ�1; 1� and let T W X ! X be given as Tx D �x
8

for all x 2 X. Let A D Œ�1; 0� and B D Œ0; 1�. Let G W X � X � X ! Œ0;1/ be the
G-metric

G.x; y; z/ D jx � yj C jy � zj C jz � xj for all x; y; z 2 X: (6.58)

Define also  ; � W Œ0;1/ ! Œ0;1/ by  .t/ D t
2

and �.t/ D t
8

for all t 2 Œ0;1/.
Obviously, the map T has a unique fixed point, which is u D 0 2 A \ B.

It can be easily shown that the map T satisfies the contractivity condition (6.45).
Indeed, for all x; y 2 X,

G.Tx;Ty;Ty/ D 2 jTx � Tyj D jy � xj
4

;

which yields that

 .G.Tx;Ty;Ty// D jy � xj
8

: (6.59)

Moreover, as G.x; y; y/ D 2 jx � yj, then

M.x; y/ � G.x; y; y/ D 2 jx � yj:

On the other hand, we have the following inequality

 .M.x; y// � �.M.x; y// D M.x; y/

2
� M.x; y/

8

D 3M.x; y/

8
: (6.60)

From an elementary calculation, we conclude that

3 jx � yj
4

� 3M.x; y/

8
D  .M.x; y// � �.M.x; y//: (6.61)

Combining the expressions (6.59) and (6.60) we obtain that

 .G.Tx;Ty;Ty// D jy � xj
8

� 3 jx � yj
4

� 3M.x; y/

8

D  .M.x; y// � �.M.x; y//: (6.62)

Hence, all the conditions of Theorem 6.3.4 are satisfied. Notice that u D 0 is the
unique fixed point of T .
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For particular choices of the functions � and  , we obtain the following
corollaries.

Corollary 6.3.7. Let .X;G/ be a G-complete G-metric space and let fAigp
iD1 be a

family of nonempty G-closed subsets of X with Y D [p
iD1Ai. Let T W Y ! Y be a

map satisfying

T.Ai/ � AiC1 for all i 2 f1; 2; : : : ; pg (where ApC1 D A1). (6.63)

Suppose that there exist a constant � 2 Œ0; 1/ such that the map T satisfies

G.Tx;Ty;Ty/ � �M.x; y/ (6.64)

for all x 2 Aj and y 2 AjC1 (for some j 2 f1; 2; : : : ; pg), where

M .x; y/ D max

�
G.x; y; y/;G.x;Tx;Tx/;G.y;Ty;Ty/;

G.x; y;Tx/

2
;
2G.x;Ty;Ty/C G.y;Tx;Tx/

4
;

G.x;Ty;Ty/C 2G.y;Tx;Tx/

5

�
: (6.65)

Then T has a unique fixed point, which belongs to \p
iD1Ai.

Proof. This is a particular case of Theorem 6.3.4 choosing the functions  and � as
 .t/ D t and �.t/ D .1 � �/ t for all t 2 Œ0;1/. ut
Corollary 6.3.8. Let .X;G/ be a G-complete G-metric space and let fAigp

iD1 be a
family of nonempty G-closed subsets of X with Y D [p

iD1Ai. Let T W Y ! Y be a
map satisfying

T.Ai/ � AiC1 for all i 2 f1; 2; : : : ; pg (where ApC1 D A1).

Suppose that there exist real constants a, b, c, d, e and f , with aCbCcCdCeCf < 1,
such that the map T satisfies the inequality

G.Tx;Ty;Ty/ � a G.x; y; y/C b G.x;Tx;Tx/C c G.y;Ty;Ty/

C d

2
G.x; y;Tx/C e

4
.2G.x;Ty;Ty/C G.y;Tx;Tx//

C f

5
.G.x;Ty;Ty/C 2G.y;Tx;Tx//

for all x 2 Aj and y 2 AjC1 (for some j 2 f1; 2; : : : ; pg). Then T has a unique fixed
point, which belongs to \p

iD1Ai.
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Proof. Let � D max fa C b C c C d C e C f ; 0g 2 Œ0; 1/. Clearly we have that

G.Tx;Ty;Ty/ � a G.x; y; y/C b G.x;Tx;Tx/C c G.y;Ty;Ty/

C d

2
G.x; y;Tx/C e

4
.2G.x;Ty;Ty/C G.y;Tx;Tx//

C f

5
.G.x;Ty;Ty/C 2G.y;Tx;Tx//

� .a C b C c C d C e C f / M.x; y/ � � M.x; y/

where M.x; y/ was given in (6.65). By Corollary 6.3.7, the map T has a unique fixed
point. ut
Corollary 6.3.9. Let .X;G/ be a G-complete G-metric spaces and let fAigp

iD1 be a
family of nonempty G-closed subsets of X with Y D [p

iD1Ai. Let T W Y ! Y be a
map satisfying

T.Ai/ � AiC1 for all i 2 f1; 2; : : : ; pg (where ApC1 D A1).

Suppose that there exist functions 2 Falt and � 2 F 0
alt such that the map T satisfies

the inequality

 .G.Tx;Ty;Tz// �  .M.x; y; z// � �.M.x; y; z//

for all x 2 Aj and y; z 2 AjC1 (for some j 2 f1; 2; : : : ; pg), where

M .x; y; z/ D max

�
G.x; y; y/;G.x;Tx;Tx/;G.y;Ty;Ty/;G.z;Tz;Tz/;

G.x; y;Tx/

2
;
G.x;Ty;Ty/C G.x;Tz;Tz/C G.y;Tx;Tx/

4
;

G.x;Ty;Ty/C G.y;Tx;Tx/C G.z;Tx;Tx/

5

�
: (6.66)

Then T has a unique fixed point, which belongs to \p
iD1Ai.

Proof. The expression (6.66) coincides with the expression (6.46) when y D z.
Following the proof in Theorem 6.3.4, by letting x D xn and y D z D xnC1, we get
the desired result. ut
Corollary 6.3.10. Let .X;G/ be a G-complete G-metric space and let fAigp

iD1 be a
family of nonempty G-closed subsets of X with Y D [p

iD1Ai. Let T W Y ! Y be a
map satisfying

T.Ai/ � AiC1 for all i 2 f1; 2; : : : ; pg (where ApC1 D A1).
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Suppose also that there exist functions  2 Falt and � 2 F 0
alt such that the map T

satisfies

 

 Z G.Tx;Ty;Ty/

0

ds

!

�  

 Z M.x;y/

0

ds

!

� �
 Z M.x;y/

0

ds

!

;

for all x 2 Aj and y 2 AjC1 (for some j 2 f1; 2; : : : ; pg), where

M .x; y/ D max

�
G.x; y; y/;G.x;Tx;Tx/;G.y;Ty;Ty/;

G.x; y;Tx/

2
;
2G.x;Ty;Ty/C G.y;Tx;Tx/

4
;

G.x;Ty;Ty/C 2G.y;Tx;Tx/

5

�
:

Then T has a unique fixed point, which belongs to \p
iD1Ai.

Corollary 6.3.11. Let .X;G/ be a G-complete G-metric space and let fAigp
iD1 be a

family of nonempty G-closed subsets of X with Y D [p
iD1Ai. Let T W Y ! Y be a

map satisfying

T.Ai/ � AiC1 for all i 2 f1; 2; : : : ; pg (where ApC1 D A1).

Suppose also that there exists a constant � 2 Œ0; 1/ such that the map T satisfies

Z G.Tx;Ty;Ty/

0

ds � �

Z M.x;y/

0

ds;

for all x 2 Aj and y 2 AjC1 (for some j 2 f1; 2; : : : ; pg), where

M .x; y/ D max

�
G.x; y; y/;G.x;Tx;Tx/;G.y;Ty;Ty/;

G.x; y;Tx/

2
;
2G.x;Ty;Ty/C G.y;Tx;Tx/

4
;

G.x;Ty;Ty/C 2G.y;Tx;Tx/

5

�
:

Then T has a unique fixed point, which belongs to \p
iD1Ai.
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6.4 On Common Fixed Points in G-Metric Spaces
Using the (E.A) Property

In 2002, Aamri and El Moutawakil [2] defined the (E.A) property (which generalizes
the concept of compatible mappings) and proved some common fixed point
theorems. In this section, we consider types of commuting mappings on G-metric
spaces (called G-weakly commuting of type GT and G-�-weakly commuting of type
GT ) and we obtain several common fixed point results using the (E.A) property.

6.4.1 Weakly Compatibility and Weakly Commutativity

First of all, we recall here the notion of weakly compatibility.

Definition 6.4.1. A pair .T; g/ of self-mappings T; g W X ! X is called weakly
compatible if they commute at their coincidence points, that is,

Tx D gx ) Tgx D gTx: (6.67)

We note that we should not confuse the notions of coincidence point and point of
coincidence.

Definition 6.4.2. Following Abbas and Rhoades [10]:

• a coincidence point of two self-mappings T and g is a point x 2 X such that
Tx D gx;

• if x is a coincidence point of T and g, then w D Tx D gx is a point of coincidence
of T and g.

In this sense, we have the following property.

Proposition 6.4.1 ([10]). Let T and g be weakly compatible self-maps of a set X.
If T and g have a unique point of coincidence ! D Tx D gx, then ! is the unique
common fixed point of T and g.

Proof. First, we prove that ! is a common fixed point of T and g. Using (6.67),
T! D Tgx D gTx D g!. Then, !0 D T! D g! is another point of coincidence of
T and g. As we assume that ! is the unique point of coincidence of T and g, then
! D !0, which means that ! D !0 D T! D g!. Hence, ! is a common fixed point
of T and g. Assume that z 2 X is another common fixed point of T and g, that is,
z D Tz D gz. As z is a coincidence point of T and g, then z D Tz D gz is a point of
coincidence of T and g. As it is unique, then z D !, so ! is unique. ut

We introduce two different kinds of commutativity between mappings in the
context of G-metric spaces.
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Definition 6.4.3 ([147]). A pair .T; g/ of self-mappings T; g W X ! X from a
G-metric space .X;G/ into itself is said to be G-weakly commuting of type GT if

G.Tgx; gTx;TTx/ � G.Tx; gx;Tx/ for all x 2 X: (6.68)

Definition 6.4.4 ([147]). Given � � 0, a pair .T; g/ of self-mappings T; g W X ! X
from a G-metric space .X;G/ into itself is said to be G-�-weakly commuting of type
GT if

G.Tgx; gTx;TTx/ � �G.Tx; gx;Tx/ for all x 2 X: (6.69)

It is clear that a G-weakly commuting pair of type GT is also a G-1-weakly
commuting of type GT . If � � 1, then every G-�-weakly commuting pair of type
GT is also a G-weakly commuting pair of type GT . Notice that the roles of T and g
in the previous notions are not symmetric, and pairs of type GT are different to pairs
of type Gg.

Remark 6.4.1. Notice that if g is the identity mapping on X, then all pairs .T; IX/

are weakly compatible. However, they are not necessarily G-weakly commuting of
type GT nor G-�-weakly commuting of type GT .

Example 6.4.1 ([147]). Let X D Œ0; 2� be endowed with the G-metric

G.x; y; z/ D jx � yj C jy � zj C jx � zj

for all x; y; z 2 X. Define Tx D 2 � x and gx D x for all x 2 X. Then, from an easy
calculation, one can show that G.Tgx; gTx;TTx/ D 4jx � 1j and G.Tx; gx;Tx/ D
4jx � 1j. Hence, the pair .T; g/ is G-weakly commuting of type GT and G-1-weakly
commuting of type GT .

Example 6.4.2. Let X D Œ1; 3� be endowed with the G-metric

G.x; y; z/ D jx � yj C jy � zj C jx � zj

for all x; y; z 2 X. Define Tx D 1
2
x C 1 and gx D 2

3
x C 1 for all x 2 X. Then,

for x D 1, we see that G.Tgx; gTx;TTx/ D 1
2

and G.Tx; gx;Tx/ D 1
3
. Therefore,

the pair .T; g/ is not G-weakly commuting of type GT . However, it is G-�-weakly
commuting of type GT for � � 3

2
.

The following example shows that a G-weakly commuting pair of type GT does
not need to be G-weakly commutative of type Gg.

Example 6.4.3 ([147]). Let X D Œ0; 1� be endowed with the G-metric

G.x; y; z/ D maxfjx � y; jy � zj; jx � zjg
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for all x; y; z 2 X. Define Tx D 1
4
x2 and gx D x2 for all x 2 X. Then

G.Tgx; gTx;TTx/ D 15

64
x4 � 3

4
x2 D G.Tx; gx;Tx/

for all x 2 X, so .T; g/ is G-weakly commuting of type GT . However, for x D 1, we
have

G.gT1;Tg1; gg1/ D 15

16
>
3

4
D G.g1;T1; g1/;

which means that the pair .T; g/ is not G-weakly commuting of type Gg.

Lemma 6.4.1 ([147]). If .T; g/ is a G-weakly commuting pair of type GT (or a G-
�-weakly commuting pair of type GT), then T and g are weakly compatible.

Proof. Let x be a coincidence point of T and g, that is, Tx D gx. If the pair .T; g/ is
G-weakly commuting of type GT , then we have

G.Tgx; gTx;Tgx/ D G.Tgx; gTx;TTx/ � G.Tx; gx;Tx/ D 0:

It follows that Tgx D gTx, so T and g are weakly compatible. If .T; g/ is G-�-weakly
commuting of type GT , then

G.Tgx; gTx;Tgx/ D G.Tgx; gTx;TTx/ � �G.Tx; gx;Tx/ D 0;

and the same conclusion holds. ut
The converse of Lemma 6.4.1 fails (for the case of G-weakly commutativity).

The following example confirms this statement.

Example 6.4.4 ([147]). Let X D Œ1;1/ and G.x; y; z/ D jx�yjCjy�zjCjx�zj for
all x; y; z 2 X. Define T; g W X ! X by Tx D 2x � 1 and gx D x2 for all x 2 X. We
can see that x D 1 is the only coincidence point and, at this point, Tg1 D T1 D 1

and gT1 D g1 D 1. Therefore, T and g are weakly compatible. However, using
x D 2 we have that

G.Tg2; gT2;TT2/ D 8 > 2 D G.T2; g2;T2/:

Therefore, T and g are not G-weakly commuting of type GT .

Definition 6.4.5. Given a sequence S D fxngn�0 of elements of a set X, let, for all
n;m 2 N,

O.xn;m; S/ D fxn; xnC1; xnC2; : : : ; xnCmg;
O.xn;1; S/ D fxn; xnC1; xnC2; : : :g:

We avoid using the notation O.x0;1/ because it is confusing: the reader could
think that O.x0;1/ only depends on x0, but this is not true since it may be necessary
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to involve all the sequence. For example, when we consider a Picard sequence
of .T; g/, we define xnC1 as a point (which is not necessarily unique) satisfying
gxnC1 D Txn. In such a case, the notation O.gx0;1/ is confusing because the
sequence Kfgxng is not uniquely determined. We prefer using O.xn;1; S/. In some
contexts (for example, when a unique sequence fxng is considered throughout the
work), it is possible to use the notation O.x0;1/.

Definition 6.4.6 ([147]). Let .X;G/ be a G-metric space and let T W X �! X be a
mapping. The diameter ı .A/ of a non-empty subset A � X is

ı.A/ D sup fG.x; y; z/ W x; y; z 2 Ag:

Notice that if O.x0;1; S/ is G-bounded, then fı.O.x0; n; S//gn�0 is a non-
decreasing sequence of real numbers converging to ı.O.x0;1; S//.

Recall that a comparison function (or Matkowski function) is a non-decreasing
function � W Œ0;1/ ! Œ0;1/ such that lim

n!1�n.t/ D 0 for all t > 0. This kind of

mappings must also satisfy � .0/ D 0 and �.t/ < t for all t > 0.

Theorem 6.4.1. Let .X;G/ be a G-metric space and let T; g W X ! X be mappings
satisfying the following conditions.

1. There exists a Picard sequence fxngn�0 of .T; g/ such that

ı.O.gx0;1; S// < 1

(where S D fgxngn�0).
2. g.X/ (or T.X/) is a G-complete subset of X.
3. there exists a continuous comparison function � 2 Fcom such that

G.Tx;Ty;Tz/ � �.Mg.x; y; z// for all x; y; z 2 X; (6.70)

where

Mg.x; y; z/ D max

8
<

:

G.gx; gy; gz/;G.gx; gx;Ty/;G.gx; gx;Tz/;
G.gy; gy;Tx/;G.gy; gy;Tz/;
G.gz; gz;Tx/;G.gz; gz;Ty/

9
=

;
: (6.71)

Then T and g have, at least, a coincidence point.
Furthermore, if .T; g/ is a G-weakly commuting pair of type GT and x 2 X is any

coincidence point of T and g, then ! D Tx D gx is the unique common fixed point
of T and g.

Proof. First we prove that T and g have, at least, a coincidence point. By hypothesis,
let fxngn�0 be a Picard sequence of .T; g/ such that

ı.O.gx0;1; S// < 1
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(where S D fgxngn�0). Let yn D gxnC1 D Txn for all n 2 N (so S D fyngn�0g).
If there exists some n0 2 N such that yn0C1 D yn0 , then Txn0C1 D yn0C1 D yn0 D
gxn0C1, so xn0C1 is a coincidence point of T and g. Now, assume that yn ¤ ynC1 for
all n 2 N. In particular,

ı .O .ym; n; S// > 0 for all m � 0 and n � 1:

Claim (1): for all m; n � 0 we have

ı.O.ym; n; S// � �m.ı.O.y0; n C m; S///: (6.72)

If n D 0, there is nothing to prove. Assume that n � 1. We proceed by induction on
m. If m D 0, then both members are equal (here �0 stands for the identity mapping
on X). If m D 1 and n is arbitrary, then

O.y1; n; S/ D fy1; y2; : : : ; ynC1g and

O.y0; n C 1; S/ D fy0; y1; y2; : : : ; ynC1g:
Let i; j; ` 2 f1; 2; : : :g be indexes such that 1 � i � j � `. Therefore, by the
contractivity condition,

G.yi; yj; y`/ D G.Txi;Txj;Tx`/ � �.Mg.xi; xj; x`//;

where

Mg.xi; xj; x`/ D max

8
ˆ̂<

ˆ̂:

G.gxi; gxj; gx`/;G.gxi; gxi;Txj/;

G.gxi; gxi;Tx`/;G.gxj; gxj;Txi/;

G.gxj; gxj;Tx`/;G.gx`; gx`;Txi/;

G.gx`; gx`;Txj/

9
>>=

>>;

D max

8
ˆ̂<

ˆ̂:

G.yi�1; yj�1; y`�1/;G.yi�1; yi�1; yj/;

G.yi�1; yi�1; y`/;G.yj�1; yj�1; yi/;

G.yj�1; yj�1; y`/;G.y`�1; y`�1; yi/;

G.y`�1; y`�1; yj/

9
>>=

>>;
: (6.73)

Notice that all indexes in (6.73) are lower or equal to `. This means that if 1 � i �
j � ` � n C 1, then

Mg.xi; xj; x`/ � max
�
G.xs; xr; xp/ W s; r; p 2 f0; 1; 2; : : : ; n C 1g�

� ı.O.y0; n C 1; S/ � ı.O.y0;1; S// < 1:

As � is non-decreasing, then

ı.O.y1; n; S// D max
˚
G.yi; yj; y`/ W i; j; ` 2 f1; 2; : : : ; n C 1g�

� max
˚
�.Mg.xi; xj; x`// W i; j; ` 2 f1; 2; : : : ; n C 1g�
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D �
�
max

˚
Mg.xi; xj; x`/ W i; j; ` 2 f1; 2; : : : ; n C 1g��

� � .ı.O.y0; n C 1; S// :

This proves that (6.72) holds for m D 1 and arbitrary n 2 N. Assume that (6.72)
holds for m, and we are going to prove it for m C 1. Also taking into account (6.73)
using m C 1 � i � j � ` � m C 1C n, we have that

ı.O.ymC1; n; S// D ı.fymC1; ymC2; : : : ; ymC1Cng/
D max

˚
G.yi; yj; y`/ W i; j; ` 2 fm C 1;m C 2; : : : ;m C 1C ng�

� max
˚
�.Mg.xi; xj; x`// W i; j; ` 2 fm C 1;m C 2; : : : ;m C 1C ng�

D �
�
max

˚
Mg.xi; xj; x`/ W i; j; ` 2 fm C 1;m C 2; : : : ;m C 1C ng��

� � .ı.O.ym; n C 1; S// :

Applying the hypothesis of induction (6.72) for m and taking into account that � is
non-decreasing, it follows that

ı.O.ymC1; n; S// � � .ı.O.ym; n C 1; S// � � .�m.ı.O.y0; n C 1C m; S////

D �mC1.ı.O.y0;m C 1C n; S///;

which completes the induction. Hence, (6.72) holds for all m; n � 0.
Let t0 D ı.O.y0;1; S// > 0. Taking into account that, for all m; n � 0,

ı.fym; ymC1; : : : ; ymCng/ D ı.O.ym; n; S// � �m.ı.O.y0; n C m; S///

� �m.ı.O.y0;1; S/// D �m .t0/ ;

the condition limm!1 �m .t/ D 0 for all t > 0 implies that fyng D fgxnC1g D fTxng
is a Cauchy sequence in .X;G/. In fact, it is Cauchy in the G-complete subset g.X/
(or T.X/). Hence, there exists z 2 g.X/ such that fgxng ! z. Let u 2 X be any point
such that gu D z. We claim that u is a coincidence point of T and g.

We argue by contradiction. Assume that Tu ¤ gu, that is, G.gu; gu;Tu/ > 0.
Using the contractivity condition (6.70),

G.Tu; gxnC1; gxnC1/ D G.Tu;Txn;Txn/

� � .max fG.gu; gxnC1; gxnC1/;G.gu; gu; gxnC2/;

G.gxnC1; gxnC1; gxnC2/;G.gxnC1; gxnC1;Tu//g/ :
From the continuity of � and letting n ! 1, we deduce that

G.Tu; gu; gu/ � � .G.gu; gu;Tu// < G.gu; gu;Tu/;

which is a contradiction. As a consequence, Tu D gu, and u is a coincidence point
of T and g.
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In the sequel, let x 2 X be an arbitrary coincidence point of T and g, and let
! D Tx D gx. Since the pair .T; g/ is G-weakly commuting of type GT , then

G.Tgx; gTx;TTx/ � G.Tx; gx;Tx/ D 0:

Thus, Tgx D gTx. In particular,

T! D gTx D g!;

so ! is another coincidence point of T and g. Moreover, by the contractivity
condition (6.70),

G .T!;!; !/ D G .T!;Tx;Tx/ � � .Mg.!; x; x// and

G .T!;T!;!/ D G .T!;T!;Tx/ � � .Mg.!; !; x// ;

where

Mg.!; x; x/ D max fG.g!; gx; gx/;G.g!; g!;Tx/;G.g!; g!;Tx/;

G.gx; gx;T!/;G.gx; gx;Tx/;G.gx; gx;T!/;G.gx; gx;Tx/g
D max fG.T!;!; !/;G.T!;T!;!/g and

Mg.!; !; x/ D max fG.g!; g!; gx/;G.g!; g!;T!/;G.g!; g!;Tx/;

G.g!; g!;T!/;G.g!; g!;Tx/;G.gx; gx;T!/;G.gx; gx;T!/g
D max fG.T!;!; !/;G.T!;T!;!/g :

Hence,

max fG .T!;!; !/ ;G .T!;T!;!/g � � .max fG.T!;!; !/;G.T!;T!;!/g/

which is only possible when max fG .T!;!; !/ ;G .T!;T!;!/g D 0. This proves
that ! D T! D g!, so ! is a common fixed point of T and g.

To prove the uniqueness, suppose that v 2 X is another common fixed point of T
and g, that is, v D Tv D gv. Therefore, the contractivity condition (6.70) ensures
that

G .!; v; v/ D G .T!;Tv;Tv/ � �.Mg .!; v; v// and

G .!; !; v/ D G .T!;T!;Tv/ � �.Mg .!; !; v//;

where

Mg.!; v; v/ D max fG.g!; gv; gv/;G.g!; g!;Tv/;G.g!; g!;Tv/;

G.gv; gv;T!/;G.gv; gv;Tv/;G.gv; gv;T!/;G.gv; gv;Tv/g
D max fG.!; v; v/;G.!; !; v/g and
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Mg.!; !; v/ D max fG.g!; g!; gv/;G.g!; g!;T!/;G.g!; g!;Tv/;

G.g!; g!;T!/;G.g!; g!;Tv/;G.gv; gv;T!/;G.gv; gv;T!/g
D max fG.!; v; v/;G.!; !; v/g :

Hence,

max fG .!; v; v/ ;G .!; !; v/g � �.max fG.!; v; v/;G.!; !; v/g/;
which is only possible when max fG .!; v; v/ ;G .!; !; v/g D 0, that is, ! D v,
and T and g have a unique common fixed point. ut
Corollary 6.4.1. Let .X;G/ be a complete G-metric space and S D fxngn�0 be a
Picard sequence of an operator T W X ! X such that ı.O.x0;1; S// < 1. Assume
that there exists a continuous comparison function � 2 Fcom such that

G.Tx;Ty;Tz/ � �.M.x; y; z// for all x; y; z 2 X;

where

M.x; y; z/ D max fG.x; y; z/;G.x; x;Ty/;G.x; x;Tz/;

G.y; y;Tx/;G.y; y;Tz/;G.z; z;Tx/;G.z; z;Ty/g :
Then T has a unique fixed point.

6.4.2 (E.A) Property

In the proof of Theorem 6.4.1, we show that there exists a sequence fxng � X and a
point z 2 g.X/ such that fgxng ! z and fTxng ! z.

Definition 6.4.7 ([2]). Let T; g W X ! X be two self mappings of a metric space
.X; d/. We say that T and g satisfy the (E.A) property if there exists a sequence
fxng � X and a point z 2 X such that

lim
n!1 Txn D lim

n!1 gxn D z:

Definition 6.4.8 ([147]). Let T; g W X ! X be two self mappings of a G-metric
space .X;G/. We say that T and g satisfy the (E.A) property if there exists a sequence
fxng � X and a point z 2 X such that

lim
n!1 Txn D lim

n!1 gxn D z:
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In other words, thanks to Lemma 3.2.1,

lim
n!1 G.Txn;Txn; z/ D lim

n!1 G.gxn; gxn; z/ D 0:

In the following example, we show that the (E.A) property does not imply that
.T; g/ is G-weakly commuting of type GT .

Example 6.4.5 ([147]). We return to Example 6.4.4, in which .T; g/ is not a G-
weakly commuting pair of type GT . Let xn D 1 C 1

n for all n � 1. Then, we have
lim

n!1 Txn D lim
n!1 gxn D 1 2 X D Œ1;1/, so T and g satisfy the (E.A) property.

Theorem 6.4.2 ([147]). Let .X;G/ be a G-metric space and let T; g W X ! X be
two mappings such that the following conditions are fulfilled.

1. T and g satisfy the (E.A) property.
2. g.X/ is closed in .X;G/.
3. There exists a continuous comparison function � 2 Fcom such that

G.Tx;Ty;Tz/ � �.Mg.x; y; z// for all x; y; z 2 X; (6.74)

where

Mg .x; y; z/ D max

8
<

:

G.gx;Ty;Ty/; G.gx;Tz;Tz/;
G.gy;Tx;Tx/; G.gy;Tz;Tz/;
G.gz;Tx;Tx/; G.gz;Ty;Ty/

9
=

;
:

Then T and g have, at least, a coincidence point.
Furthermore, if .T; g/ is a G-weakly commuting pair of type GT and x 2 X is any

coincidence point of T and g, then ! D Tx D gx is the unique common fixed point
of T and g.

Proof. From the (E.A) property, there exists a sequence fxng � X and a point z 2 X
such that fTxng ! z and fgxng ! z. Since g.X/ is a closed subset of .X;G/, then
z 2 g.X/, so there exists u 2 X such that gu D z. We claim that u is a coincidence
point to T and g. Notice that, for all n 2 N,

G .Tu;Tu;Txn/ � �.Mg.u; u; xn//;

where

Mg.u; u; xn/ D max fG.gu;Tu;Tu/;G.gu;Txn;Txn/;G.gu;Tu;Tu/;

G.gu;Txn;Txn/;G.gxn;Tu;Tu/;G.gxn;Tu;Tu/g :
Letting n ! 1 we obtain that

lim
n!1 Mg.u; u; xn/ D G.gu;Tu;Tu/:
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Since � is continuous,

G .Tu;Tu; gu/ D lim
n!1 G .Tu;Tu;Txn/ � lim

n!1�.Mg.u; u; xn//

D �
	

lim
n!1 Mg.u; u; xn/



D � .G.gu;Tu;Tu// ;

and this is only possible when G .Tu;Tu; gu/ D 0, that is, Tu D gu.
Next, assume that .T; g/ is a G-weakly commuting pair of type GT and let x 2 X

be any coincidence point of T and g. Define ! D Tx D gx. We claim that ! is the
only common fixed point of T and g. Indeed, since T and g are G-weakly commuting
of type GT , then

G.Tgx; gTx;TTx/ � G.Tx; gx;Tx/ D 0:

Thus, TTx D Tgx D gTx. In particular,

T! D TTx D gTx D g!;

so ! is another coincidence point of T and g. Moreover, by the contractivity
condition (6.74), we have that

G .T!;!; !/ D G .T!;Tx;Tx/ � � .Mg.!; x; x// and

G .T!;T!;!/ D G .T!;T!;Tx/ � � .Mg.!; !; x// ;

where

Mg .!; x; x/ D max fG.g!;Tx;Tx/;G.g!;Tx;Tx/;G.gx;T!;T!/;

G.gx;Tx;Tx/;G.gx;T!;T!/;G.gx;Tx;Tx/g
D max fG.T!;!; !/;G.T!;T!;!/g

and

Mg .!; !; x/ D max fG.g!;T!;T!/;G.g!;Tx;Tx/;G.g!;T!;T!/;

G.g!;Tx;Tx/;G.gx;T!;T!/;G.gx;T!;T!/g
D max fG.T!;!; !/;G.T!;T!;!/g D Mg .!; x; x/ :

Therefore,

max fG.T!;!; !/;G.T!;T!;!/g � � .max fG.T!;!; !/;G.T!;T!;!/g/ ;

which is only possible when max fG.T!;!; !/;G.T!;T!;!/g D 0. In such a
case, ! D T! D g! and this proves that ! is a common fixed point of T and g.
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To prove the uniqueness, suppose that v 2 X is another common fixed point
of T and g, that is, v D Tv D gv. Therefore, the contractivity condition (6.74)
ensures that

G .!; v; v/ D G .T!;Tv;Tv/ � �.Mg .!; v; v// and

G .!; !; v/ D G .T!;T!;Tv/ � �.Mg .!; !; v//;

where

Mg .!; v; v/ D max fG.g!;Tv;Tv/;G.g!;Tv;Tv/;G.gv;T!;T!/;

G.gv;Tv;Tv/;G.gv;T!;T!/;G.gv;Tv;Tv/g
D max fG.!; v; v/;G.!; !; v/g

and

Mg .!; !; v/ D max fG.g!;T!;T!/;G.g!;Tz;Tz/;G.g!;T!;T!/;

G.g!;Tz;Tz/;G.gz;T!;T!/;G.gz;T!;T!/g
D max fG.!; v; v/;G.!; !; v/g D Mg .!; v; v/ :

Hence,

max fG .!; v; v/ ;G .!; !; v/g � �.max fG.!; v; v/;G.!; !; v/g/;

which is only possible when max fG .!; v; v/ ;G .!; !; v/g D 0, that is, ! D v,
and T and g have a unique common fixed point. ut

In the following result, we slightly change the contractivity condition and we
replace the G-weakly commutative pair by a weakly compatible pair.

Theorem 6.4.3 ([147]). Let .X;G/ be a G-metric space and let T; g W X ! X be
two mappings such that the following conditions are fulfilled.

1. T and g satisfy the (E.A) property.
2. g.X/ is closed in .X;G/.
3. There exists a continuous comparison function � 2 Fcom such that

G.Tx;Ty;Tz/ � �.Mg.x; y; z// for all x; y; z 2 X; (6.75)

where

Mg .x; y; z/ D max

(
G.gx; gy; gz/;G.gx;Tx; gz/;

G.gz;Tz; gz/;G.gy;Ty; gz/

)

:

Then T and g have, at least, a coincidence point.
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Furthermore, if .T; g/ is a weakly compatible pair of type GT and x 2 X is any
coincidence point of T and g, then ! D Tx D gx is the unique common fixed point
of T and g.

Proof. Following the same argument in the proof of Theorem 6.4.2, it is easy to
prove that, if fTxng ! gu and fgxng ! gu, then Tu D gu.

Assume that .T; g/ is a weakly compatible pair of type GT and let x 2 X be
any coincidence point of T and g. Define ! D Tx D gx. Then, by the weakly
compatibility, Tx D gx implies that Tgx D gTx. In particular, T! D Tgx D gTx D
g!, so ! is also a coincidence point of T and g. We can also follow the rest of the
proof of Theorem 6.4.2 in order to conclude that ! is the unique common fixed
point of T and g. ut
Example 6.4.6 ([147]). Let X D Œ0;1/ provided with the G-metric G.x; y; z/ D
jx � yjC jy � zjC jx � zj for all x; y; z 2 X. Consider T; g W X ! X and � W Œ0;1/ !
Œ0;1/ defined by

Tx D x

8
; gx D x

2
for all x; y; z 2 X;

�.t/ D 2t

3
for all t � 0:

The only coincidence point of T and g is x D 0, where Tg0 D gT0 D 0, so T and g
are weakly compatible. Let xn D 1=n for all n 2 N. Then fTxng ! 0 and fgxng ! 0,
so T and g satisfy the (E.A.) property. We also have that, for all x; y; z 2 X,

G.Tx;Ty;Tz/ D 1

8
.jx � yj C jy � zj C jx � zj/

� 1

3
.jx � yj C jy � zj C jx � zj/

D 2

3
.
1

2
.jx � yj C jy � zj C jx � zj// D �.G.gx; gy; gz//

� �.maxfG.gx; gy; gz/;G.gx;Tx; gz/;

G.gz;Tz; gz/;G.gy;Ty; gz/g/:
Hence, all the conditions of Theorem 6.4.3 are satisfied and ! D 0 is the unique
common fixed point of T and g.

Example 6.4.7. Let X D Œ0; 1� provided with the G-metric G.x; y; z/ D jx � yj C
jy � zj C jx � zj for all x; y; z 2 X. Consider T; g W X ! X and � W Œ0;1/ ! Œ0;1/

defined by

Tx D x2

4
; gx D x2 for all x; y; z 2 X;

�.t/ D t

3
for all t � 0:
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As in the previous example, it is easy to show that T and g are weakly compatible
and verify the (E.A) property (by taking the sequence xn D 1=n). We also have that,
for all x; y; z 2 X,

G.Tx;Ty;Tz/ D 1

4
maxfjx2 � y2j; jy2 � z2j; jx2 � z2jg

� 1

3
maxfjx2 � y2j; jy2 � z2j; jx2 � z2jg

D �.G.gx; gy; gz//

� �.maxfG.gx; gy; gz/;G.gx;Tx; gz/;

G.gz;Tz; gz/;G.gy;Ty; gz/g/:

Hence, all the conditions of Theorem 6.4.3 are satisfied and ! D 0 is the unique
common fixed point of T and g.

Example 6.4.8 ([147]). Let X D Œ2; 20� provided with the G-metric G.x; y; z/ D
jx � yjC jy � zjC jx � zj for all x; y; z 2 X. Consider T; g W X ! X and � W Œ0;1/ !
Œ0;1/ defined, for all x; y; z 2 X and all t � 0, by

Tx D
8
<

:

2; if x D 2;

6; if 2 < x � 5;

2; if 5 < x � 20I
g.x/ D

8
<

:

2; if x D 2;

14; if 2 < x � 5;
4xC10
15

; if 5 < x � 20I
�.t/ D t

2
:

It is clear that g.X/ D Œ2; 6� [ f14g is a closed subset of X and T and g are weakly
compatible. If we consider the sequence fxng D f5 C 1

n g, then fTxng ! 2 and
fgxng ! 2 as n ! 1. Thus, T and g satisfy the (E.A) property. On the other hand,
a simple calculation gives that

G.Tx;Ty;Tz/ � �.G.gx; gy; gz// for all x; y; z 2 X;

so, in particular (6.75) holds. As a consequence, all the hypotheses of Theorem 6.4.3
are satisfied and ! D 2 is the unique common fixed point of T and g.

Note that the main result of Mustafa [142] is not applicable in this case. Indeed,
for y D z D 5

2
and x D 2, we have that

G

�
T .2/ ;T

�
5

2

�
;T

�
5

2

��
D 8 > � D �G

�
2;
5

2
;
5

2

�

whenever � 2 Œ0; 1/:
Theorem 6.4.4 ([147]). Let .X;G/ be a G-metric space and let T; g W X ! X be
two mappings such that the following conditions are fulfilled.
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1. T and g satisfy the (E.A) property.
2. g.X/ is closed in .X;G/.
3. There exist nonnegative real constants ˛ and ˇ with 0 � ˛ C 2ˇ < 1 such that,

for all x; y; z 2 X,

G.Tx;Ty;Tz/ � ˛G.gx; gy; gz/

C ˇ .G.gx;Tx;Tx/C G.gy;Ty;Ty/C G.gz;Tz;Tz// : (6.76)

Then T and g have, at least, a coincidence point.
Furthermore, if .T; g/ is G-�-weakly commuting of type GT (for some � > 0)

and x 2 X is any coincidence point of T and g, then ! D Tx D gx is the unique
common fixed point of T and g.

Proof. From the (E.A) property, there exists a sequence fxng � X and a point z 2 X
such that fTxng ! z and fgxng ! z. Since g.X/ is a closed subset of .X;G/, then
z 2 g.X/, so there exists u 2 X such that gu D z. We claim that u is a coincidence
point of T and g. Notice that, for all n 2 N,

G.Tu;Tu;Txn/ � ˛G.gu; gu; gxn/

C ˇ .G.gu;Tu;Tu/C G.gu;Tu;Tu/C G.gxn;Txn;Txn// :

Letting n ! 1 we deduce that

G.Tu;Tu; gu/ � 2ˇG.gu;Tu;Tu/:

If gu ¤ Tu, then

G.Tu;Tu; gu/ � 2ˇG.gu;Tu;Tu/ � .˛ C 2ˇ/ G.Tu;Tu; gu/

< G.Tu;Tu; gu/;

which is a contradiction. Therefore gu D Tu.
Now, assume that the pair .T; g/ is G-�-weakly commuting of type GT (for some

� > 0). Let x 2 X be any coincidence point of T and g and let ! D Tx D gx. We
claim that ! is the only common fixed point of T and g. Indeed, since the pair .T; g/
is G-�-weakly commuting of type GT , then

G.Tgx; gTx;TTx/ � G.Tx; gx;Tx/ D 0:

Thus, TTx D Tgx D gTx. In particular,

T! D TTx D gTx D g!;

so ! is another coincidence point of T and g. Moreover, by the contractivity
condition (6.76), we have that
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G .T!;!; !/ D G .T!;Tx;Tx/ � ˛G.g!; gx; gx/

C ˇ .G.g!;T!;T!/C G.gx;Tx;Tx/C G.gx;Tx;Tx//

D ˛G.T!;!; !/ � .˛ C 2ˇ/ G.T!;!; !/:

If T! ¤ !, then

G .T!;!; !/ � .˛ C 2ˇ/ G.T!;!; !/ < G.T!;!; !/;

which is a contradiction. Therefore, ! D T! D g!, so ! is a common fixed point
of T and g.

To prove the uniqueness, suppose that v 2 X is another common fixed point of T
and g, that is, v D Tv D gv. Therefore, the contractivity condition (6.76) ensures
that

G .!; v; v/ D G .T!;Tv;Tv/ � ˛G.g!; gv; gv/

C ˇ .G.g!;T!;T!/C G.gv;Tv;Tv/C G.gv;Tv;Tv//

D ˛G.!; v; v/:

If ! ¤ v, then

G .!; v; v/ � ˛G.!; v; v/ � .˛ C 2ˇ/ G.!; v; v/ < G.!; v; v/;

which is a contradiction. Then ! D v and T and g have a unique common fixed
point. ut
Example 6.4.9 ([147]). Let X D Œ1;1/ be endowed with the G-metric

G.x; y; z/ D jx � yj C jy � zj C jx � zj

for all x; y; z 2 X. Define T; g W X ! X by Tx D 2x � 1 and gx D 3x � 2 for each
x 2 X. Set ˛ D 3

4
and ˇ D 0. It is clear that the mappings T and g are G-�-weakly

commuting of type GT (with � D 2) and satisfy the following: (i) T and g satisfy the
(E.A) property (by taking xn D 1C 1

n and z D 1), and (ii) g.X/ is a closed subspace
of X. Moreover, for all x; y; z 2 X we have

G.Tx;Ty;Tz/ D 2Œjx � yj C jx � zj C jy � zj�

� 9

4
Œjx � yj C jx � zj C jy � zj� D ˛G.gx; gy; gz/

C ˇ .G.gx;Tx;Tx/C G.gy;Ty;Ty/C G.gz;Tz;Tz// :

Thus, all the conditions of Theorem 6.4.4 are satisfied and ! D 1 is the unique
common fixed point of T and g.
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Note that the main result of Mustafa [142] is not applicable in this case. Indeed,
for y D z D 1 and x D 2;

G.T2;T1;T1/ D 4 > 2� D �G.2; 1; 1/

whenever � 2 Œ0; 1/. Also, the Banach principle [34] is not applicable using the
Euclidean distance d.x; y/ D jx � yj for all x; y 2 X. In such a case, we have, for
x ¤ y;

d.Tx;Ty/ D 2 jx � yj > �jx � yj

whenever � 2 Œ0; 1/.
Corollary 6.4.2 ([147]). Theorems 6.4.2, 6.4.3 and 6.4.4 remain true if we
replace, respectively, G-weakly commutativity of type GT, weakly compatibility
and G-�-weakly commutativity of type GT by any one of them (retaining the rest of
hypothesis).

Some corollaries could be derived from Theorems 6.4.1, 6.4.2, 6.4.3 and 6.4.4
by taking z D y or g as the identity mapping on X.

6.5 Generalized Meir–Keeler Type Contractions
on G-Metric Spaces

In this section, we present the notion of a generalized Meir–Keeler type contraction
on G-metric spaces. We will distinguish between whether the G-metric space is
endowed with a partial order or not.

6.5.1 Generalized Meir–Keeler Type Contractions
on G-Metric Spaces

We begin this subsection by introducing the definition of a generalized Meir–Keeler
type contraction.

Definition 6.5.1 ([148]). Let .X;G/ be a G-metric space and T be a self map on
X. Then T is called a generalized Meir–Keeler type contraction whenever for each
" > 0, there exists ı > 0 such that

" � M.x; y; z/ < "C ı ) G.Tx;Ty;Tz/ < "; (6.77)

where

M.x; y; z/ D maxfG.x; y; z/;G.Tx; x; x/;G.Ty; y; y/;G.Tz; z; z/g:
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Remark 6.5.1. Notice that if T is a generalized Meir–Keeler type contraction, then
we have

G.Tx;Ty;Tz/ < M.x; y; z/ (6.78)

for all x; y; z 2 X such that G.x; y; z/ > 0.

In 1971, Ćirić [61] introduced the notion of orbitally continuous maps on metric
spaces as follows.

Definition 6.5.2. Let .X; d/ be a metric space and let x0 2 X. A mapping T W X ! X
is orbitally continuous at x0 if limk!1 TTnk u D Tx0 for all u 2 X and all
strictly increasing sequence fnkgk�1 of non-negative integer numbers satisfying
limk!1 Tnk u D x0.

Definition 6.5.3 ([148]). Let .X;G/ be a G-metric space, let T W X ! X be a
self map and let x0 2 X. We say that T is orbitally G-continuous at x0 whenever
lim

k!1 G.Tnk u; x0; x0/ D 0 implies that lim
k!1 G.TTnk u;Tx0;Tx0/ D 0 whatever u 2 X

and a strictly increasing sequence fnkgk�1 � N of non-negative integer numbers.

It is clear that all G-continuous mappings are also orbitally G-continuous.

Definition 6.5.4. In a G-metric space, a cluster (or accumulation) point of a
sequence fxng is a point x 2 X such that for every neighbourhood V of x in �G,
there are infinitely many natural numbers fnkgk�1 such that xnk 2 V for all k � 1.

We show that every generalized Meir–Keeler type contraction is asymptotically
regular.

Proposition 6.5.1 ([148]). If T W X ! X is a generalized Meir–Keeler type
contraction in a G-metric space .X;G/, then limn!1 G.TnC1x;Tnx;Tnx/ D 0 for
all x 2 X.

Proof. Let x0 2 X be arbitrary and let fxn D Tnx0gn�0 be the Picard sequence of
T based on x0. If there exists some n0 2 N such that xn0C1 D xn0 , then xn0 is a
fixed point of T . In particular, Tnx0 D xn D xn0 for all n � n0, so the sequence fxng
converges, and the proposition follows. On the contrary case, assume that xnC1 ¤ xn

for all n � 0. Consequently, we have M.xnC1; xn; xn/ � G.xnC1; xn; xn/ > 0 for
every n � 0. Notice that, for all n � 0,

M.xnC1; xn; xn/ D maxfG.xnC1; xn; xn/;G.TxnC1; xnC1; xnC1/;

G.Txn; xn; xn/;G.Txn; xn; xn/g
D maxfG.xnC1; xn; xn/;G.xnC2; xnC1; xnC1/g: (6.79)

From Remark 6.5.1, we get that, for all n � 0,

G.xnC2; xnC1; xnC1/ D G.TxnC1;Txn;Txn/ < M.xnC1; xn; xn/

D maxfG.xnC1; xn; xn/;G.xnC2; xnC1; xnC1/g:



6.5 Generalized Meir–Keeler Type Contractions 155

If there exists some n 2 N such that G.xnC2; xnC1; xnC1/ � G.xnC1; xn; xn/, we get a
contradiction. Therefore,

G.xnC2; xnC1; xnC1/ < G.xnC1; xn; xn/ for all n � 0:

Thus, fG.xnC1; xn; xn/gn�0 is a decreasing sequence which is bounded below by 0.
Hence, it converges to some " 2 Œ0;1/, that is,

lim
n!1 G.xnC1; xn; ; xn/ D " and (6.80)

G.xnC1; xn; ; xn/ > " for all n � 0: (6.81)

In particular, by (6.79), we have

lim
n!1 M.xnC1; xn; xn/ D ": (6.82)

We claim that " D 0. Suppose on the contrary that " > 0. Regarding (6.82) together
with the assumption that T is a generalized Meir–Keeler type contraction, for this
" > 0, there exists ı > 0 such that (6.77) holds. By (6.79) and (6.82), there exists a
natural number n0 2 N such that

" � M.xnC1; xn; xn/ < "C ı for all n � n0;

but, in this case, by (6.77), we have that

G.xnC2; xnC1; xnC1/ D G.TxnC1;Txn;Txn/ < ";

which contradicts (6.81).
Hence, limn!1 G.TnC1x;Tnx;Tnx/ D limn!1 G.xnC1; xn; xn/ D " D 0. ut

Theorem 6.5.1 ([148]). Let .X;G/ be a complete G-metric space and let T W X !
X be an orbitally continuous generalized Meir–Keeler type contraction. Then T has
a unique fixed point and T is a Picard operator.

In other words, if ! 2 X is the only fixed point of T , then fTnxg ! ! for all
x 2 X.

Proof. Take x0 2 X arbitrary and let fxngn�0 be the Picard sequence of T based on
x0, that is, xn D Tnx0 for all n � 0. From Proposition 6.5.1, we have that

lim
n!1 G.xnC1; xn; xn/ D 0: (6.83)

We prove that fxng is a Cauchy sequence in .X;G/ reasoning by contradiction.
Suppose that fxng is not a Cauchy sequence. By Theorem 4.1.1, there exists "0 > 0
and two subsequences fxn.k/g and fxm.k/g of fxng such that, for all k � 0,
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k � n.k/ < m.k/ < n.k C 1/;

G
�
xn.k/; xm.k/�1; xm.k/�1

� � "0 < G
�
xn.k/; xm.k/; xm.k/

�
: (6.84)

and

lim
k!1 G

�
xn.k/; xm.k/; xm.k/

� D lim
k!1 G

�
xn.k/�1; xm.k/�1; xm.k/�1

� D "0: (6.85)

As T is a generalized Meir–Keeler type contraction, for "0 > 0, there exists ı > 0

such that

"0 � M.x; y; z/ < "0 C ı ) G.Tx;Ty;Tz/ < "0: (6.86)

Notice that

M.xn.k/�1; xm.k/�1; xm.k/�1/ D maxfG.xn.k/�1; xm.k/�1xm.k/�1/;

G.Txn.k/�1; xn.k/�1; xn.k/�1/;

G.Txm.k/�1; xm.k/�1; xm.k/�1/g
D maxfG.xn.k/�1; xm.k/�1; xm.k/�1/;

G.xn.k/; xn.k/�1; xn.k/�1/;

G.xm.k/; xm.k/�1; xm.k/�1/g: (6.87)

By (6.83) and (6.85), there exists k0 2 N such that, for all k � k0,

maxfG.xn.k/; xn.k/�1; xn.k/�1/;G.xm.k/; xm.k/�1; xm.k/�1/g
<
"0

2
< G.xn.k/�1; xm.k/�1; xm.k/�1/ (6.88)

We now show, reasoning by contradiction, that

G.xn.k/�1; xm.k/�1; xm.k/�1/ � "0 for all k � k0: (6.89)

Assume that there exists some k0 � k0 such that G.xn.k0/�1; xm.k0/�1; xm.k0/�1/ < "0.
Define "0

0 D G.xn.k0/�1; xm.k0/�1; xm.k0/�1/ 2 �"0=2; "0Œ. As T is a generalized Meir–
Keeler type contraction, for "0

0 > 0, there exists ı0 > 0 such that

"0
0 � M.x; y; z/ < "0

0 C ı0 ) G.Tx;Ty;Tz/ < "0
0: (6.90)

From (6.87) and (6.88), we have that

M.xn.k0/�1; xm.k0/�1; xm.k0/�1/ D maxfG.xn.k0/�1; xm.k0/�1; xm.k0/�1/;
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G.xn.k0/; xn.k0/�1; xn.k0/�1/;G.xm.k0/; xm.k0/�1; xm.k0/�1/g
D G.xn.k0/�1; xm.k0/�1; xm.k0/�1/ D "0

0:

Using (6.90),

G.xn.k0/; xm.k0/; xm.k0// D G.Txn.k0/�1;Txm.k0/�1;Txm.k0/�1/ < "0
0 < "0;

which contradicts (6.84). This contradiction proves that (6.89) holds. As a conse-
quence, it follows from (6.87), (6.88) and (6.89) that, for all k � k0,

M.xn.k/�1; xm.k/�1; xm.k/�1/ D G.xn.k/�1; xm.k/�1; xm.k/�1/ � "0:

Using (6.85) and ı > 0, there exists k1 � k0 such that

"0 � M.xn.k1/�1; xm.k1/�1; xm.k1/�1/ < "0 C ı;

and by (6.86),

G.xn.k1/; xm.k1/; xm.k1// D G.Txn.k1/�1;Txm.k1/�1;Txm.k1/�1/ < "0

which contradicts (6.84). This contradiction proves that fxng is a Cauchy sequence
in .X;G/. Since .X;G/ is G-complete, the sequence fxng converges to some ! 2 X.
From Lemma 3.2.1, we have that

lim
n!1 G.xn; !; !/ D lim

n!1 G.xn; xn; !/ D 0:

Next, we will show that ! is a fixed point of T . Since T is orbitally continuous,

lim
n!1 G.Tnx0; !; !/ D lim

n!1 G.xn; !; !/ D 0

) lim
n!1 G.xnC1;T!;T!/ D lim

n!1 G.TTnx0;T!;T!/ D 0:

Thus, fxnC1g converges to T! in .X;G/. By the uniqueness of the limit, we get
T! D !.

Finally, we show that T has a unique fixed point. Assume that u 2 X is another
fixed point of T . If u ¤ !, then M.u; !; !/ � G.u; !; !/ > 0. Using Remark 6.5.1,
we derive that

0 < G.u; !; !/ D G.Tu;T!;T!/ < M.u; !; !/

D maxfG.u; !; !/;G.u;Tu;Tu/;G.!; !;T!/g
D G.u; !; !/;
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which is a contradiction. Hence, u D ! and T has a unique fixed point. In particular,
we have proved that, for all x0 2 X, the sequence fTnx0g converges to a fixed point
of T , which can only be !. ut
Example 6.5.1. Let X D Œ0; 10� endowed with the G-metric G.x; y; z/ D maxfjx �
yj; jy�zj; jz�xjg for all x; y; z 2 X. Then .X;G/ is G-complete. Define T W X ! X by

Tx D
� x
3
; if 0 � x < 6
2; if 6 � x � 10:

We claim that T is a generalized Meir–Keeler type contraction. Let " > 0 be
arbitrary. Taking ı D 2" > 0, we claim that (6.77) holds. Indeed, let x; y; z 2 X. By
the symmetry of G, we assume that x � y � z without loss of generality. We have
the following cases.

• Case 1: 0 � x � y � z < 6. Here, we have

G.Tx;Ty;Tz/ D z

3
� x

3
D 1

3
.z � x/ ;

and

M.x; y; z/ D max

�
z � x;

2

3
x;
2

3
y;
2

3
z

�
D max

�
z � x;

2

3
z

�
:

If " � M.x; y; z/ < "C ı D 3", then

G.Tx;Ty;Tz/ D 1

3
.z � x/ � 1

3
max

�
z � x;

2

3
z

�

D 1

3
M.x; y; z/ < ":

• Case 2: 0 � x � y < 6 � z � 10. Here, we have

G.Tx;Ty;Tz/ D G
	 x

3
;

y

3
; 2



D 2 � x

3

and

M.x; y; z/ D maxfz � x;
2

3
x;
2

3
y; z � 2g D maxfz � x; z � 2g:

If " � M.x; y; z/ < "C ı D 3", then

G.Tx;Ty;Tz/ D 2 � x

3
D 1

3
.6 � x/ � 1

3
.z � x/
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D 1

3
M.x; y; z/ < ":

• Case 3: 0 � x < 6 � y � z � 10. Here, we have

G.Tx;Ty;Tz/ D G
	 x

3
; 2; 2



D 2 � x

3

and

M.x; y; z/ D maxfz � x;
2

3
x; y � 2; z � 2g D maxfz � x; z � 2g:

The same argument proves that if " � M.x; y; z/ < " C ı D 3", then
G.Tx;Ty;Tz/ < ".

In any case, (6.77) holds and T is a generalized Meir–Keeler type contraction.
Also, the mapping T is continuous in .X;G/, so it is also orbitally G-continuous.
All the hypotheses of Theorem 6.5.1 are satisfied and ! D 0 is the unique fixed
point of T .

Example 6.5.2 ([148]). Let X D Œ0; 1� endowed with the G-metric G.x; y/ D
maxfjx � yj; jy � zj; jz � xjg for all x; y; z 2 X, which is complete on X. Consider
T W X ! X defined by

Tx D x2

8
for all x 2 X:

If x; y; z 2 X satisfy, without loss of generality, x � y � z, then

G.Tx;Ty;Tz/ D z2

8
� x2

8
D .z C x/ .z � x/

8
� 2 .z � x/

8
D z � x

4
:

Also we get

M.x; y; z/ D max

�
z � x; x � x2

8
; y � y2

8
; z � z2

8

�
:

Given " > 0, let ı D 3" > 0. Then, if " � M.x; y; z/ < "C ı D 4", we deduce that

G.Tx;Ty;Tz/ � z � x

4
� 1

4
max

�
z � x; x � x2

8
; y � y2

8
; z � z2

8

�

D 1

4
M.x; y; z/ < ":

As T is continuous, all the hypotheses of Theorem 6.5.1 are satisfied. In this case,
! D 0 is the unique fixed point of T .
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Remark 6.5.2. Theorem 6.5.1 remains true if we replace the hypothesis that T is a
generalized Meir–Keeler type contraction with:

I For each " > 0, there exists ı > 0 such that

" � N.x; y; z/ < "C ı ) G.Tx;Ty;Tz/ < "; (6.91)

where N.x; y; z/ is given by

maxfG.x; y; z/;G.Tx;Tx; x/;G.Ty;Ty; y/;G.Tz;Tz; z/g:

Finally, in the following two examples, we consider some non-symmetric
G-metrics.

Example 6.5.3 ([148]). Let X D f0; 1g be endowed with the G-metric:

G.0; 0; 0/ D G.1; 1; 1/ D 0; G.0; 0; 1/ D 1; G.0; 1; 1/ D 2

(extended by symmetry in its three variables). As G.0; 0; 1/ ¤ G.0; 1; 1/, G is not
symmetric. Take T W X ! X given by

T0 D T1 D 0:

For all x; y; z 2 X, we have G.Tx;Ty;Tz/ D 0. Clearly (6.77) holds. Applying
Theorem 6.5.1, T has a unique fixed point, which is ! D 0.

Example 6.5.4. Let X D f0; 1; 2g be endowed with the G-metric:

G.0; 0; 0/ D G.1; 1; 1/ D G.2; 2; 2/ D 0;

G.0; 0; 1/ D G.0; 1; 1/ D 1; G.1; 2; 2/ D 3

2
;

G.0; 0; 2/ D G.1; 1; 2/ D G.0; 2; 2/ D G.0; 1; 2/ D 2

(extended by symmetry in its three variables). Note that G is not symmetric because
G.1; 2; 2/ ¤ G.1; 1; 2/. Define T W X ! X by

T0 D T1 D 0 and T2 D 1:

Let " > 0. Taking ı D "
2
, property (6.77) holds. Indeed, to prove this assertion, we

distinguish three cases.

• Case 1: If

.x; y; z/ 2 f.0; 0; 0/; .1; 1; 1/; .2; 2; 2/; .0; 0; 1/; .0; 1; 0/;
.1; 0; 0/; .1; 1; 0/; .0; 1; 1/; .1; 0; 1/g;
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then by a simple calculation we get

G.Tx;Ty;Tz/ D 0;

and so clearly (6.77) holds.
• Case 2: If

.x; y; z/ 2 f.0; 0; 2/; .0; 2; 0/; .2; 0; 0/; .0; 1; 2/; .0; 2; 1/;
.1; 0; 2/; .1; 2; 0/; .2; 1; 0/; .2; 0; 1/; .0; 2; 2/;

.2; 2; 0/; .2; 0; 2/; .1; 1; 2/; .1; 2; 1/; .2; 1; 1/g;
it is easy to see that

G.Tx;Ty;Tz/ D 1 and M.x; y; z/ D 2:

By taking ı D "=2, property (6.77) is satisfied.
• Case 3: If .x; y; z/ 2 f.1; 2; 2/; .2; 2; 1/; .2; 1; 2/g, we have

G.Tx;Ty;Tz/ D 1 and M.x; y; z/ D 3

2
:

Similarly, property (6.77) is satisfied. Applying Theorem 6.5.1, the map T has a
unique fixed point, which is ! D 0.

6.5.2 �-Asymmetric Meir–Keeler Contractive Mappings
on G-Metric Spaces

In this subsection we introduce a slightly different notion of a Meir–Keeler
contraction using the following control functions. Recall that Falt denotes the
family of all continuous, non-decreasing functions � W Œ0;1/ ! Œ0;1/ such that
��1.f0g/ D f0g.

Definition 6.5.5. Let .X;G/ be a G-metric space and � 2 Falt. Suppose that T W
X ! X is a self-mapping satisfying the following condition: for each " > 0 there
exists ı > 0 such that

" � �.G.x;Tx; y// < "C ı ) �.G.Tx;T2x;Ty// < " (6.92)

for all x; y 2 X. Then T is called a �-Asymmetric Meir–Keeler contractive mapping.

Remark 6.5.3. Notice that if T W X ! X is a �-Asymmetric Meir–Keeler
contractive mapping and x; y 2 X satisfy that x ¤ Tx or x ¤ y, then

�.G.Tx;T2x;Ty// < �.G.x;Tx; y//: (6.93)
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Theorem 6.5.2. Let .X;G/ be a G-complete G-metric space and let � 2 Falt be an
altering distance function. Suppose that T W X ! X is a �-Asymmetric Meir–Keeler
contractive mapping. Then T has a unique fixed point.

Proof. Take x0 2 X. We construct a sequence fxng1
nD0 of points in X in the following

way:

xnC1 D Txn for all n D 0; 1; 2; : : :

Notice that if there is n0 2 N such that xn0 D xn0C1, then obviously T has a fixed
point. Thus, suppose that

xn ¤ xnC1 for all n � 0: (6.94)

From .G2/, we have

G.xn; xnC1; xnC1/ > 0 for all n � 0: (6.95)

Let sn D G.xn; xnC1; xnC1/ > 0 for all n � 0. By (6.93), we observe that for all
n � 0,

�.snC1/ D �.G.xnC1; xnC2; xnC2// D �.G.Txn;T
2xn;TxnC1//

< �.G.xn;Txn; xnC1// D �.G.xn; xnC1; xnC1// D �.sn/: (6.96)

Therefore, f�.sn/g is a decreasing sequence in Œ0;1/ and, thus, it is convergent. Let
L 2 Œ0;1/ its limit and we claim that L D 0. Suppose, on the contrary, that L > 0.
Thus, we have

0 < L � �.sn/ D �.G.xn; xnC1; xnC1// for all n � 0: (6.97)

Let " D L > 0. Since T W X ! X is a �-Asymmetric Meir–Keeler contractive
mapping, there exists ı > 0 such that (6.92) holds. As f�.sn/g ! L, there exists
n0 2 N such that L � �.sn0 / < L C ı. Therefore, (6.92) implies that

" � �.G.xn0 ;Txn0C1; xn0C1// D �.sn0 / < "C ı

) �.sn0C1/ D �.G.xn0C1; xn0C2; xn0C2//

D �.G.Txn0 ;T
2xn0C1;Txn0C1// < " D L;

which contradicts (6.97). Therefore, L D 0, which means that f�.sn/g ! 0. From
Lemma 2.3.3, fG.xn; xnC1; xnC1/g ! 0.

Next, we show that fxng1
nD0 is a G-Cauchy sequence reasoning by contradiction.

Suppose that fxng is not a G-Cauchy sequence. In such a case, Lemma 4.1.5
guarantees that there exist a positive real number "0 > 0 and two subsequences
fxm.k/g and fxn.k/g of fxng such that, for all k 2 N,
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k � m.k/ < n.k/ < m.k C 1/;

G
�
xm.k/;Txm.k/; xn.k/�1

� � "0 < G
�
xm.k/;Txm.k/; xn.k/

�
(6.98)

and also

lim
k!1 G

�
xm.k/;Txm.k/; xn.k/

� D lim
k!1 G

�
xm.k/�1;Txm.k/�1; xn.k/�1

� D "0:

Let "1 D � ."0/ > 0. Since � is non-decreasing,

"1 D � ."0/ � �
�
G
�
xm.k/;Txm.k/; xn.k/

��
for all k 2 N: (6.99)

As � is continuous,

lim
k!1�

�
G
�
xm.k/�1;Txm.k/�1; xn.k/�1

�� D � ."0/ D "1: (6.100)

In particular, there exists k0 2 N such that, for all k � k0,

"1

2
< �

�
G
�
xm.k/�1;Txm.k/�1; xn.k/�1

��
:

We claim that

"1 � �
�
G
�
xm.k/�1;Txm.k/�1; xn.k/�1

��
for all k � k0: (6.101)

To prove this, assume that there exists k0 � k0 such that

"1

2
< �

�
G
�
xm.k0/�1;Txm.k0/�1; xn.k0/�1

��
< "1:

In this case, as T is a �-Asymmetric Meir–Keeler contractive mapping, correspond-
ing to " D �

�
G
�
xm.k0/�1;Txm.k0/�1; xn.k0/�1

��
> 0, there exists ı > 0 such that

" � �.G.x;Tx; y// < "C ı ) �.G.Tx;T2x;Ty// < ":

Using x D xm.k0/�1 and y D xn.k0/�1, we see that

�.G.xm.k0/;Txm.k0/; xn.k0/// D �.G.Txm.k0/�1;T2xm.k0/�1;Txn.k0/�1//

< " < "1 D � ."0/ ; (6.102)

which contradicts (6.102). This contradiction shows that (6.101) holds. As T is a
�-Asymmetric Meir–Keeler contractive mapping, corresponding to "1 > 0, there
exists ı1 > 0 such that

"1 � �.G.x;Tx; y// < "1 C ı1 ) �.G.Tx;T2x;Ty// < "1: (6.103)
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By (6.100) and (6.101), there exists k1 � k0 such that, for all k � k1,

"1 � �
�
G
�
xm.k/�1;Txm.k/�1; xn.k/�1

��
< "1 C ı1:

From (6.103), it follows that

�.G.xm.k1/;Txm.k1/; xn.k1/// D �.G.Txm.k1/�1;T2xm.k1/�1;Txn.k1/�1//

< "1 D � ."0/ ;

which contradicts (6.99). This contradiction proves that fxng is a G-Cauchy
sequence. Since .X;G/ is G-complete, there exists w 2 X such that fxng ! w
as n ! 1. Since G is a continuous function, then we have

lim
n!1 G.xn; xnC1;w/ D G.w;w;w/ D 0: (6.104)

We assert that Tw D w. Regarding (6.93), we have that

�.G.xnC1; xnC2;Tw// D �.G.Txn;T
2xn;Tw//

< �.G.xn;Txn;w// D �.G.xn; xnC1;w//: (6.105)

Since � is a continuous mapping, letting n ! 1 in (6.105), it follows that
�.G.w;w;Tw// � �.G.w;w;w// D 0. Consequently, we have G.w;w;Tw/ D 0.
Hence, by .G2/, we have Tw D w.

Now we show w is the unique fixed point of T . By contradiction, if there exists
u 2 X such that u ¤ w and u D Tu, then (6.93) implies that

�.G.u;w;w// D �.G.Tw;T2w;Tu// < �.G.w;Tw; u// D �.G.w;w; u//

which is a contradiction. Thus w is the unique fixed point of T . ut
In the next result, we use the altering distance function given by � .t/ D t for all

t 2 Œ0;1/.

Corollary 6.5.1. Let .X;G/ be a G-complete G-metric space and let T W X ! X be
a self-mapping verifying that for each " > 0, there exists ı > 0 such that

x; y 2 X; " � G.x;Tx; y/ < "C ı ) G.Tx;T2x;Ty/ < ": (6.106)

Then T has a unique fixed point.

Example 6.5.5. Let X D Œ0;1/. Define G W X3 ! Œ0;1/, for all x; y; z 2 X, by

G.x; y; z/ D
�
0; if x D y D z;
max.x; y/C max.y; z/C max.x; z/; otherwise:
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Clearly, .X;G/ is a G-complete G-metric space. Define T W X ! X by Tx D x=4 for
all x 2 X. Taking into account that

max.Tx;Ty/ D max.x=4; y=4/ D max.x; y/=4;

it is not difficult to prove that

G.Tx;Ty;Tz/ D G.x; y; z/=4

for all x; y; z 2 X. In particular, G.Tx;T2x;Ty/ D G.x;Tx; y/=4 for all x; y 2 X,
which means that (6.106) holds (it is only necessary to take ı D "=3). Therefore,
the conditions of Corollary 6.5.1 hold and T has a unique fixed point.

The following result uses a contractivity condition in the orbit of a point.

Theorem 6.5.3. Let .X;G/ be a G-metric space and let T W X ! X be a self-
mapping. Assume that there exists a point x0 2 X satisfying:

• the orbit OT.x0/ of x0 with respect to T has a cluster point z 2 X;
• T is orbitally G-continuous at z;
• there exists a mapping  x0 2 Falt with the following property: for all " > 0, there

exists ı > 0 such that

x;Tx 2 OT.x0/; y D Tx ¤ x;

" �  x0 .G.x;Tx; y// < "C ı

)

)  x0 .G.Tx;T2x;Ty// < ": (6.107)

Then z is a fixed point of T in OT.x0/.

Proof. Consider the sequence fxn D Tnx0gn�0. Following the proof in Theo-
rem 6.5.2, we can reduce to the case in which xn ¤ xnC1 for all n � 0, which yields
limn!1 G.xn; xnC1; xnC1/ D 0. Since z 2 X is a cluster point of OT.x0/, there is
a strictly increasing sequence fn.k/gk�1 of non-negative integer numbers satisfying
fxn.k/ D Tn.k/x0g ! z, that is, limk!1 G.xn.k/; z; z/ D limk!1 G.Tn.k/x0; z; z/ D 0.
Since T is orbitally G-continuous at z, then

lim
k!1 G.xn.k/C1;Tz;Tz/ D lim

k!1 G.TTn.k/x0;Tz;Tz/ D 0:

From the modified triangle inequality .G5/ together with Lemma 3.1.1, we have

G.z;Tz;Tz/ � G.z; xn.k/C1; xn.k/C1/C G.xn.k/C1;Tz;Tz/

� G.z; xn.k/; xn.k//C G.xn.k/; xn.k/C1; xn.k/C1/

C G.xn.k/C1;Tz;Tz/
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� 2G.xn.k/; z; z/C G.xn.k/; xn.k/C1; xn.k/C1/

C G.xn.k/C1;Tz;Tz/:

Letting k ! 1 in the previous inequality, we deduce that G.z;Tz;Tz/ D 0 and,
hence, Tz D z. ut
Corollary 6.5.2. Let .X;G/ be a G-metric space and let T W X ! X be a self-
mapping. Assume that there exists a point x0 2 X verifying:

• the orbit OT.x0/ of x0 with respect to T has a cluster point z 2 X;
• T is orbitally G-continuous at z;
• for all " > 0, there exists ı > 0 such that

x;Tx 2 OT.x0/; y D Tx ¤ x;

" � G.x;Tx; y/ < "C ı

)

) G.Tx;T2x;Ty/ < ":

Then z is a fixed point of T in OT.x0/.

To show the applicability of Theorem 6.5.2, we present some immediate
consequences to guarantee the existence of fixed points of integral type nonlinear
operators. For this purpose, let� be the family of all Lebesgue integrable mappings
� W Œ0;1/ ! Œ0;1/ such that

R "
0
� .t/ dt > 0 for each " > 0.

Theorem 6.5.4. Let .X;G/ be a G-complete G-metric space and let � 2 Falt be
non-decreasing. Suppose that T W X ! X is a self-mapping satisfying the following
condition: for each " > 0, there exists ı > 0 such that

" �
Z �.G.x;Tx;y//

0

� .t/ dt < "C ı )
Z �.G.Tx;T2x;Ty//

0

� .t/ dt < " (6.108)

whatever � 2 � and x; y; z 2 X. Then T has a unique fixed point.

Proof. For � 2 � , consider the function ƒ W Œ0;1/ ! Œ0;1/ defined by ƒ.x/ DR x
0
� .t/ dt for all x 2 Œ0;1/. We note that ƒ 2 FKr and ƒ is non-decreasing. Thus

the inequality (6.108) becomes: for each " > 0, there exists ı > 0 such that

" � ƒ.� .G .x;Tx; y/// < "C ı ) ƒ
�
�
�
G
�
Tx;T2x;Ty

���
< "

whatever x; y 2 X. Settingƒı� D ', we have that ' 2 Falt and T is '-Asymmetric
Meir-Keeler contractive. Hence, by using Theorem 6.5.2, T has a unique fixed
point. ut

We have also the following result.

Theorem 6.5.5. Let .X;G/ be a G-metric space and let T W X ! X be a self-
mapping. Assume that there exists a point x0 2 X satisfying:
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• the orbit OT.x0/ of x0 with respect to T has a cluster point z 2 X;
• T is orbitally G-continuous at z;
• there exists  2 Falt such that for all " > 0, there exists ı > 0 verifying

" �
Z  .G.x;Tx;y//

0

� .t/ dt < "C ı )
Z  .G.Tx;T2x;Ty//

0

� .t/ dt < "

whatever � 2 � and x; y 2 X.

Then z is a fixed point of T in OT.x0/.

6.5.3 Generalized Meir-Keeler Type Contractions on Partially
Ordered G-Metric Spaces

We say that the tripled .x; y; z/ 2 X3 is distinct if at least one of the following holds

.i/ x ¤ y; .ii/ y ¤ z; .iii/ x ¤ z:

The tripled .x; y; z/ 2 X3 is called strictly distinct if all inequalities .i/ � .iii/ hold.

Definition 6.5.6 ([71]). Let .X;G;4/ be a partially ordered G-metric space. We
say that a self-mapping T W X ! X is

• G-Meir-Keeler contractive if, for each " > 0, there exists ı > 0 such that for any
x; y; z 2 X with x 4 y 4 z,

" � G.x; y; z/ < "C ı ) G.Tx;Ty;Tz/ < ": (6.109)

• G-Meir-Keeler contractive of second type if, for each " > 0, there exists ı > 0

such that for any x; y 2 X with x 4 y,

" � G.x; y; y/ < "C ı ) G.Tx;Ty;Ty/ < ": (6.110)

Remark 6.5.4. Notice that if T W X ! X is G-Meir-Keeler contractive on a G-metric
space .X;G/ then T is contractive, that is,

G.Tx;Ty;Tz/ < G.x; y; z/; (6.111)

for all distinct tripled .x; y; z/ 2 X3 with x 4 y 4 z.

Remark 6.5.5. It is easy to see that a G-Meir-Keeler contraction must be G-Meir-
Keeler contractive of second type. In addition, if T W X ! X is G-Meir-Keeler
contractive of second type on a partially ordered G-metric space .X;G;4/, then

G.Tx;Ty;Ty/ < G.x; y; y/; (6.112)
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for all .x; y/ 2 X2 with x 	 y. Moreover, we have

G.Tx;Ty;Ty/ � G.x; y; y/; (6.113)

for all .x; y/ 2 X2 with x 4 y.

Theorem 6.5.6 ([71]). Let .X;4/ be a partially ordered set endowed with a G-
metric G and let T W X ! X be a given mapping. Suppose that the following
conditions hold:

(i) .X;G/ is G-complete;
(ii) T is non-decreasing (with respect to 4);

(iii) there exists x0 2 X such that x0 4 Tx0;
(iv) T is G-continuous
(v) T W X ! X is G-Meir-Keeler contractive of second type.

Then T has a fixed point. Moreover, if for all x; y 2 Fix.T/ there exists w 2 X
such that x 4 w and y 4 w, we obtain uniqueness of the fixed point.

Proof. Take x0 2 X such that condition (iii) holds, that is, x0 4 Tx0. We construct
an iterative sequence fxng in X as follows:

xnC1 D Txn for all n � 0: (6.114)

Taking into account that T is a non-decreasing mapping together with (6.114), we
have that x0 4 Tx0 D x1 implies x1 D Tx0 4 Tx1 D x2. By induction, we get

x0 4 x1 4 x2 4 : : : 4 xn�1 4 xn 4 xnC1 4 : : : (6.115)

Suppose that there exists n0 such that xn0 D xn0C1. Since xn0 D xn0C1 D Txn0 , then
xn0 is the fixed point of T , which completes the existence part of the proof. Suppose
that xn ¤ xnC1 for all n 2 N. Thus, by (6.115) we have

x0 	 x1 	 x2 	 : : : 	 xn�1 	 xn 	 xnC1 	 : : : (6.116)

From .G2/, we have

G.xn; xnC1; xnC1/ > 0 for all n � 0: (6.117)

By Remark 6.5.5, we observe that, for all n � 0,

G.xnC1; xnC2; xnC2/ D G.Txn;TxnC1;TxnC1/ < G.xn; xnC1; xnC1/: (6.118)

Due to (6.118), the sequence fG.xn; xnC1; xnC1/g is a (strictly) decreasing sequence
in Œ0;1/ and, thus, it is convergent, say L 2 Œ0;1/. We claim that L D 0. Suppose,
on the contrary, that L > 0. Thus, we have
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0 < L < G.xn; xnC1; xnC1/ for all n � 0: (6.119)

Assume " D L > 0. As T is a G-Meir-Keeler contraction of second type, there
exists a convenient ı > 0 such that

" � G.x; y; y/ < "C ı ) G.Tx;Ty;Ty/ < ": (6.120)

Since fG.xn; xnC1; xnC1/g & L, there exists n0 2 N such that

" < G.xn0 ; xn0C1; xn0C1/ < "C ı: (6.121)

Taking the condition (6.120) into account, the expression (6.121) yields that

G.xn0C1; xn0C2; xn0C2/ D G.Txn0 ;Txn0C1;Txn0C1/ < " D L (6.122)

which contradicts (6.119). Hence L D 0, that is,

lim
n!1 G.xn; xnC1; xnC1/ D 0:

We show that fxngn�0 is a G-Cauchy sequence. Let " > 0 be arbitrary. As T is G-
Meir-Keeler contractive of second type, there exists ı > 0 such that (6.110) holds.
Without loss of generality, we assume ı < ". Since L D 0, there exists n0 2 N such
that

G.xn�1; xn; xn/ < ı for all n � n0: (6.123)

We assert that for any fixed n � n0,

G.xn; xnCm; xnCm/ � " for all m � 0: (6.124)

To prove the assertion, we use the method of induction. Regarding (6.123), the
assertion (6.124) is satisfied for m D 0 and m D 1. Suppose the assertion (6.124) is
satisfied for some m 2 N. For m C 1, with the help of .G5/ and (6.123), we consider

G.xn�1; xnCm; xnCm/ � G.xn�1; xn; xn/C G.xn; xnCm; xnCm/ < ı C ": (6.125)

Next, we distinguish three cases.

• If G.xn�1; xnCm; xnCm/ � ", then, by (6.110), we get

G.xn; xnCmC1; xnCmC1/ D G.Txn�1;TxnCm;TxnCm/ < ": (6.126)

Hence (6.124) is satisfied.
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• If G.xn�1; xnCm; xnCm/ D 0, then, by .G2/, we derive that xn�1 D xnCm and,
hence, xn D Txn�1 D TxnCm D xnCmC1. From .G1/, we have

G.xn; xnCmC1; xnCmC1/ D G.xn; xn; xn/ D 0 < ";

and, thus, (6.124) is satisfied.
• If 0 < G.xn�1; xnCm; xnCm/ < ", then by Remark 6.5.5,

G.xn; xnCmC1; xnCmC1/ D G.Txn�1;TxnCm;TxnCm/

� G.xn�1; xnCm; xnCm/ < ":

Consequently, (6.124) is satisfied for m C 1 and this completes the induction.
Hence, G.xn; xnCm; xnCm/ � " for all n � n0 and m � 0, which means

G.xn; xm; xm/ < "; for all m � n � n0: (6.127)

As a consequence, fxng is a G-Cauchy sequence. Since .X;G/ is G-complete, there
exists u 2 X such that

lim
n!1 G.xn; u; u/ D 0: (6.128)

We now show that u 2 X is a fixed point of T , that is, u D Tu. Since T is
G-continuous, the sequence fTxng D fxnC1g converges to Tu, that is,

lim
n!1 G.xnC1;Tu;Tu/ D lim

n!1 G.Txn;Tu;Tu/ D 0: (6.129)

Hence, fxng also converges to Tu. By the uniqueness of the limit, we deduce that
u D Tu, that is, u is a fixed point of T .

To prove the uniqueness, let x; y 2 X be fixed points of T . From the additional
assumption, we know that there exists w 2 X such that x 4 w and y 4 w. We
claim that the sequence fTnwg converges, at the same time, to x and to y (so we
will deduce x D y). We only reason using x (but the same is true for y). From
Remark 6.5.5, we get

G.x;Tw;Tw/ D G.Tx;Tw;Tw/ � G.x;w;w/:

Since T is non-decreasing, x D Tx 4 Tw. Again by Remark 6.5.5, we get

G.x;T2w;T2w/ D G.Tx;TTw;TTw/ � G.x;Tw;Tw/:

Continuing in this way, we conclude

G.x;Tnw;Tnw/ � � � � � G.x;Tw;Tw/ � G.x;w;w/:
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Hence fG.x;Tnw;Tnw/gn�0 is a non-increasing sequence bounded below by zero.
Thus, there exists L � 0 such that

lim
n!1 G.x;Tnw;Tnw/ D L and

L � G.x;Tnw;Tnw/ for all n � 0: (6.130)

We claim that L D 0. Suppose, on the contrary, that L > 0. Choose " D L >

0 and let ı > 0 be such that (6.110) holds. Then, there exists n0 such that L �
G.x;Tn0w;Tn0w/ < L C ı which implies

G.x;Tn0C1w;Tn0C1w/ D G.Tx;Tn0C1w;Tn0C1w/ < L;

which contradicts (6.130). Hence limn!1 G.x;Tnw;Tnw/ D L D 0, so fTnwg ! x.
Similarly, it can be proved that fTnwg ! y, so x D y and T has a unique fixed point.

ut
As every G-Meir-Keeler contractive mapping of second type is also G-Meir-

Keeler contractive, we deduce the following consequence.

Corollary 6.5.3 ([71]). Let .X;4/ be a partially ordered set endowed with a G-
metric G and let T W X ! X be a given mapping. Suppose that the following
conditions hold:

(i) .X;G/ is G-complete;
(ii) T is non-decreasing (with respect to 4);

(iii) there exists x0 2 X such that x0 4 Tx0;
(iv) T is G-continuous
(v) T W X ! X is G-Meir-Keeler contractive.

Then T has a fixed point. Moreover, if for all x; y 2 Fix.T/ there exists w 2 X
such that x 4 w and y 4 w, we obtain uniqueness of the fixed point.

In the following result, we replace condition (iv) in Theorem 6.5.6 with the
assumption that .X;G;4/ is non-decreasing-regular (recall Definition 5.2.1 and the
fact that some authors use the term ordered complete for non-decreasing-regularity),
and we obtain a similar result.

Theorem 6.5.7 ([71]). Let .X;4/ be a partially ordered set endowed with a G-
metric and let T W X ! X be a given mapping. Suppose that the following conditions
hold:

(i) .X;G/ is G-complete;
(ii) T is non-decreasing (with respect to 4);

(iii) there exists x0 2 X such that x0 4 Tx0;
(iv) .X;G;4/ is non-decreasing-regular;
(v) T W X ! X is G-Meir-Keeler contractive of second type.
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Then T has a fixed point. Moreover, if for all x; y 2 Fix.T/ there exists w 2 X
such that x 4 w and y 4 w, we obtain uniqueness of the fixed point.

Proof. Following the proof in Theorem 6.5.6, we can deduce that the Picard
sequence fxnC1 D Txng converges to some u 2 X. We only need to show
u D Tu. Since fxng is 4-non-decreasing and .X;G;4/ is non-decreasing-regular,
we conclude xn 4 u for all n. Then, by Remark 6.5.5, .G5/ and (6.128), we get

G.Tu; u; u/ � G.Tu; xn; xn/C G.xn; u; u/

D G.Txn�1;Txn�1;Tu/C G.xn; u; u/

� G.xn�1; xn�1; u/C G.xn; u; u/:

Letting n ! 1, we conclude that G.Tu; u; u/ D 0, i.e., Tu D u. The rest of the
proof is similar. ut
Corollary 6.5.4 ([71]). Let .X;4/ be a partially ordered set endowed with a
G-metric and T W X ! X be a given mapping. Suppose that the following conditions
hold:

(i) .X;G/ is G-complete;
(ii) T is non-decreasing (with respect to 4);

(iii) there exists x0 2 X such that x0 4 Tx0;
(iv) .X;G;4/ is non-decreasing-regular;
(v) T W X ! X is G-Meir-Keeler contractive.

Then T has a fixed point. Moreover, if for all x; y 2 Fix.T/ there exists w 2 X
such that x 4 w and y 4 w, we obtain uniqueness of the fixed point.

To finish the chapter, we will show a version of Theorem 6.5.6 using integral
contractivity conditions.

Lemma 6.5.1 ([71]). Let .X;4/ be a partially ordered set endowed with a G-metric
G and let T W X ! X be a given mapping. Suppose that there exists a function
' W Œ0;1/ ! Œ0;1/ satisfying the following conditions:

(F1) '.0/ D 0 and '.t/ > 0 for all t > 0;
(F2) ' is increasing and right continuous;
(F3) for every " > 0, there exists ı > 0 such that, for all x; y 2 X with x 4 y,

" � '.G.x; y; y// < "C ı implies '.G.Tx;Ty;Ty// < '."/: (6.131)

Then T is a G-Meir-Keeler contractive mapping of second type.

Proof. Let " > 0 be arbitrary. Due to (F1), we have "0 D '."/ > 0. Thus there
exists ı0 > 0 such that

'."/ � '.G.x; y; y// < '."/C ı0 implies '.G.Tx;Ty;Ty// < '."/ (6.132)
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From the right continuity of ', there exists ı > 0 such that '." C ı/ < '."/ C ı0.
Fix x; y 2 X with x 4 y such that " � G.x; y; y/ < "C ı. So we have

'."/ � '.G.x; y; y// � '."C ı/ < '."/C ı0:

Hence, '.G.Tx;Ty;Ty// < '."/. Thus, we have G.Tx;Ty;Ty/ < " which completes
the proof. ut

Since a function t ! R t
0

f .s/ds is absolutely continuous, we derive the following
corollary from Theorem 6.5.6 and Lemma 6.5.1.

Corollary 6.5.5 ([71]). Let .X;4/ be a partially ordered set endowed with a
G-metric G, T W X ! X be a given mapping, and f be a locally integrable function
from Œ0;1/ into itself satisfying

R t
0

f .s/ds > 0 for all t > 0. Assume that conditions
(i)–(iv) of Theorem 6.5.6 hold, and for each " > 0, there exists ı > 0 such that

" �
Z G.x;y;y/

0

f .s/ds < "C ı )
Z G.Tx;Ty;Ty/

0

f .s/ds <
Z "

0

f .s/ds (6.133)

for all x; y 2 X with x 4 y. Then T has a fixed point. Moreover, if for all x; y 2 Fix.T/
there exists w 2 X such that x 4 w and y 4 w, we obtain uniqueness of the fixed
point.



Chapter 7
Fixed Point Theorems via Admissible Mappings

In this chapter we explain how to use functions in order to extend the notion of
partial order or, more precisely, how non-decreasing mappings can be interpreted
involving certain classes of admissible functions. The results we present are inspired
by Samet et al. [183].

Throughout this chapter, we will employ the family FKR of all non-decreasing
functions  W Œ0;1/ ! Œ0;1/ such that, for all t > 0, the series

P

n�1
 n .t/

converges. Since .P10/ ) .P11/ ) .P12/ (recall Subsection §2.3) and using the
monotonicity, these functions also verify the following properties.

• lim
n!1 n .t/ D 0 for all t > 0.

•  .t/ < t for all t > 0.
•  .0/ D 0 and  is continuous at 0.

In particular, every (c)-comparison function belongs to FKR, that is, F .c/
com � FKR.

As a consequence, all the following results can be particularized to the case in which
 2 F .c/

com.

7.1 Fixed Point Results in G-Metric Spaces
via Admissible Mappings

In this section, we present the notion of an ˛ - - contractive mapping in metric
spaces due to Samet et al. [183] to G-metric spaces using control functions in F .c/

com.

Definition 7.1.1. Let .X;G/ be a G-metric space and let T W X ! X be a given
mapping. We say that T is a

• G -ˇ - - contractive mapping of type I if there exist two functions ˇ W X � X �
X ! Œ0;1/ and  2 F .c/

com such that, for all x; y; z 2 X, we have
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ˇ .x; y; z/ G .Tx;Ty;Tz/ �  .G .x; y; z// : (7.1)

• G -ˇ - - contractive mapping of type II if there exist two functions ˇ W X � X �
X ! Œ0;1/ and  2 F .c/

com such that for all x; y 2 X, we have

ˇ .x; y; y/ G .Tx;Ty;Ty/ �  .G .x; y; y// : (7.2)

Clearly, any contractive mapping, that is, a mapping satisfying (4.15), is a G -
ˇ - - contractive mapping of type I with ˇ .x; y; z/ D 1 for all x; y; z 2 X and
 � .t/ D � t for all t � 0, where � 2 Œ0; 1/. Analogously, a mapping satisfying
(4.16) is a G -ˇ - - contractive mapping of type II using the same ˇ and  � as
before.

Definition 7.1.2. Let X be a set and let T W X ! X and ˇ W X � X � X ! Œ0;1/ be
two mappings. We say that T is ˇ - admissible if, for all x; y; z 2 X; we have

ˇ .x; y; z/ � 1 H) ˇ .Tx;Ty;Tz/ � 1:

Example 7.1.1. Let X be a non-empty subset of R and define ˇ W X�X�X ! Œ0;1/

as follows:

ˇ.x; y; z/ D
�

e; if x � y � z;
0; otherwise:

Then any non-decreasing mapping T W X ! X is ˇ - admissible.

Theorem 7.1.1. Let .X;G/ be a complete G-metric space and let T W X ! X be a
G -ˇ - - contractive mapping of type II satisfying the following conditions:

(i) T is ˇ - admissible;
(ii) there exists x0 2 X such that ˇ .x0;Tx0;Tx0/ � 1;

(iii) T is G-continuous.

Then there exists u 2 X such that Tu D u:

Proof. Let x0 2 X be such that ˇ .x0;Tx0;Tx0/ � 1 and let fxng be the Picard
sequence of T based on x0 (that is, xnC1 D Txn for all n � 0). If there exists some
n0 2 N such that xn0 D xn0C1, then u D xn0 is a fixed point of T . On the contrary
case, assume that xn ¤ xnC1 for all n: Since T is ˇ - admissible, we have

ˇ .x0; x1; x1/ D ˇ .x0;Tx0;Tx0/ � 1

H) ˇ .x1; x2; x2/ D ˇ .Tx0;Tx1;Tx1/ � 1:

Inductively, we have that

ˇ .xn; xnC1; xnC1/ � 1 for all n � 0: (7.3)
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From (7.2) and (7.3), it follows that for all n � 1; we have

G .xn; xnC1; xnC1/ D G .Txn�1;Txn;Txn/

� ˇ .xn�1; xn; xn/ G .Txn�1;Txn;Txn/

�  .G .xn�1; xn; xn// :

From Lemma 4.1.2, fxng is a Cauchy sequence in the G-metric space .X;G/. Since
.X;G/ is complete, there exists u 2 X such that fxng is convergent to u. Since T is
G-continuous, it follows that fxnC1 D Txng is G-convergent, at the same time, to u
and to Tu: By the uniqueness of the limit, we get u D Tu, that is, u is a fixed point
of T . ut

The following corollary follows from the fact that every G -ˇ - - contractive
mapping of type I is also of type II.

Corollary 7.1.1. Let .X;G/ be a complete G-metric space and let T W X ! X be a
G -ˇ - - contractive mapping of type I satisfying the following conditions:

(i) T is ˇ - admissible;
(ii) there exists x0 2 X such that ˇ .x0;Tx0;Tx0/ � 1;

(iii) T is G-continuous.

Then there exists u 2 X such that Tu D u:

Theorem 7.1.2. Let .X;G/ be a complete G-metric space and let T W X ! X be a
G -ˇ - - contractive mapping of type II satisfying the following conditions:

(i) T is ˇ - admissible;
(ii) there exists x0 2 X such that ˇ .x0;Tx0;Tx0/ � 1;

(iii) if fxng is a sequence in X such that ˇ .xn; xnC1; xnC1/ � 1 for all n 2 N and
fxng is G-convergent to x 2 X, then ˇ .xn; x; x/ � 1 for all n 2 N.

Then there exists u 2 X such that Tu D u:

Proof. Following the argument in the proof of Theorem 7.1.1, we deduce that the
Picard sequence fxng converges to some u 2 X. From (7.3) and (iii), we have

ˇ .xn; u; u/ � 1 for all n � 0: (7.4)

Using .G5/, .G4/, (7.2) and (7.4), we have that, for all n 2 N,

G .u;Tu;Tu/ � G .u;Txn;Txn/C G .Txn;Tu;Tu/

� G .u; xnC1; xnC1/C ˇ .xn; u; u/ G .Txn;Tu;Tu/

� G .u; xnC1; xnC1/C  .G .xn; u; u// :

Taking into account that  is continuous at t D 0, letting n ! 1, it follows that
G .u;Tu;Tu/ D 0, so u D Tu. ut
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Corollary 7.1.2. Let .X;G/ be a complete G-metric space and let T W X ! X be a
G -ˇ - - contractive mapping of type I satisfying the following conditions:

(i) T is ˇ - admissible;
(ii) there exists x0 2 X such that ˇ .x0;Tx0;Tx0/ � 1;

(iii) if fxng is a sequence in X such that ˇ .xn; xnC1; xnC1/ � 1 for all n 2 N and
fxng is G-convergent to x 2 X, then ˇ .xn; x; x/ � 1 for all n 2 N.

Then there exists u 2 X such that Tu D u:

With the following example, we will show that the hypotheses in Theorems 7.1.1
and 7.1.2 do not guarantee uniqueness.

Example 7.1.2. Let X D Œ0;1/ endowed with the G-metric G.x; y; z/ D jx � yj C
jy � zj C jz � xj for all x; y 2 X. Consider the self-mapping T W X ! X and the
mapping ˇ W X � X � X ! Œ0;1/ given by

Tx D
(
2x � 7

4
; if x > 1;

x

4
; if 0 � x � 1I

ˇ.x; y; z/ D
�
1; if y D z and x; y 2 Œ0; 1�;
0; otherwise.

We claim that T is a G -ˇ - - contractive mapping of type II with respect to the
(c)-comparison function  .t/ D t=2 for all t � 0. To prove it, we observe that, for
all x; y 2 X, we have that

ˇ.x; y; y/G.Tx;Ty;Ty/ � 1

2
G.x; y; y/:

Furthermore, for x0 D 1 we have that ˇ.1;T1;T1/ D ˇ.1; 1
4
; 1
4
/ D 1. As T is

continuous, to show that T satisfies all hypothesis of Theorem 7.1.1, it is sufficient to
observe that T is ˇ-admissible. For this purpose, let x; y 2 X be such that ˇ.x; y; y/ �
1. In this case, x; y 2 Œ0; 1�. Hence Tx D x=4 2 Œ0; 1� and Ty D y=4 2 Œ0; 1�, which
implies that ˇ.Tx;Ty;Ty/ � 1. As a result, all the conditions of Theorem 7.1.1 are
satisfied. Theorem 7.1.1 guarantees the existence of a fixed point of T , but not its
uniqueness. In this example, 0 and 7

4
are two fixed points of T .

Notice that Theorem 4.16, given by Mustafa as a characterization of the Banach
fixed point theorem, cannot be applied in this case because

G.T1;T2;T2/ D 4 > 2 D G.1; 2; 2/:

In the following example, T is not continuous.

Example 7.1.3. Let .X;G/ and ˇ be given as in Example 7.1.2, and let T and  be
given by
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Tx D
(
2x � 7

4
; if x > 1;

x

3
; if 0 � x � 1I  .t/ D t=3:

It is easy to show that, for all x; y 2 X we have

ˇ.x; y; y/G.Tx;Ty;Ty/ � 1

2
G.x; y; y/:

Therefore, T is a G -ˇ - - contractive mapping of type II. Furthermore, the point
x0 D 1 verifies ˇ.1;T1;T1/ D 1 and T is ˇ - admissible. However, T is not
continuous. In this case, we can prove hypothesis (iii) of Theorem 7.1.2. Indeed, let
fxng be a sequence such that ˇ.xn; xnC1; xnC1/ � 1 for all n 2 N and fxng ! x 2 X.
Since ˇ.xn; xnC1; xnC1/ � 1 for all n 2 N, then xn 2 Œ0; 1�, and as this interval
is closed, we deduce that x 2 Œ0; 1�. Thus, ˇ.xn; x; x/ � 1 for all n 2 N. As a
result, all the conditions of Theorem 7.1.2 are satisfied. Theorem 7.1.2 guarantees
the existence of a fixed point of T , but not its uniqueness. In fact, 0 and 7

4
are two

fixed points of T .

Example 7.1.4 ([19]). Let X D Œ0;1/ be endowed with the G-metric:

G.x; y; z/ D jx � yj C jy � zj C jz � xj for all x; y; z 2 X:

Define T W X ! X by Tx D 3x for all x 2 X, and ˇ W X � X � X ! Œ0;1/ in the
following way:

ˇ.x; y; z/ D
8
<

:

1; if .x; y; z/ D .0; 0; 0/;
1

9
; otherwise.

One can easily show that

ˇ.x; y; z/G.Tx;Ty;Tz/ � 1

3
G.x; y; z/ for all x; y; z 2 X:

Then T is a G -ˇ - - contractive mapping of type I with  .t/ D 1
3
t for all t 2

Œ0;1/. Notice that T is ˇ - admissible because if ˇ.x; y; z/ � 1, then x D y D z D 0,
so ˇ.Tx;Ty;Tz/ D ˇ.0; 0; 0/ D 1. Then, all the conditions of Corollary 7.1.1 are
satisfied. Here, 0 is the fixed point of T .

Also notice that the Banach contraction mapping principle is not applicable using
the Euclidean metric d.x; y/ D jx � yj for all x; y 2 X. Indeed, if x ¤ y, then
d.Tx;Ty/ D 3 jx � yj > � jx � yj for all � 2 Œ0; 1/. Furthermore, by the same
argument, Theorem 4.2.1 is not applicable in this case.

The uniqueness of the fixed point can be deduced from an additional assumption.
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Theorem 7.1.3. Under the hypotheses of Theorem 7.1.1 (respectively, Theo-
rem 7.1.2), also assume the following condition:

.U/ For all x; y 2 Fix.T/, there exists z 2 X such that ˇ .x; z; z/ � 1 and
ˇ .y; z; z/ � 1.

Then T has a unique fixed point.

Proof. Let x; y 2 X be two fixed points of T . By .U/, there exists z 2 X such that
ˇ .x; z; z/ � 1 and ˇ .y; z; z/ � 1. We claim that the sequence fTnzgn�0 converges,
at the same time, to x and to y and, hence, we will deduce that x D y. The following
argument only uses x, but it is also valid involving y. Since T is ˇ - admissible,
we get

ˇ .x; z; z/ � 1 ) ˇ .x;Tz;Tz/ D ˇ .Tx;Tz;Tz/ � 1;

and, by induction,

ˇ .x;Tnz;Tnz/ � 1 for all n 2 N: (7.5)

From (7.2) and (7.5), we have that, for all n � 0,

G
�
x;TnC1z;TnC1z

� D G .Tx;TTnz;TTnz/

� ˇ .x;Tnz;Tnz/ G .Tx;TTnz;TTnz/

�  .G .x;Tnz;Tnz// :

Thus, we get, by induction, that

G .x;Tnz;Tnz/ �  n .G .x; z; z// ; for all n 2 N:

Letting n ! 1 and taking into account that  2 F .c/
com, we have that

fG .Tnz;Tnz; x/g ! 0, so fTnzg ! x. Similarly, fTnzg ! y. As a result, x D y by
the uniqueness of the limit. ut
Corollary 7.1.3. Adding condition .U/ to the hypotheses of Corollary 7.1.1
(respectively, Corollary 7.1.2), we obtain uniqueness of the fixed point of T:

Proof. It is sufficient to take z D y in the proof of Theorem 7.1.3. ut

7.2 Consequences

The following results are simple consequences of Theorem 7.1.3 and Corollary 7.1.3
using ˇ.x; y; y/ D 1 for all x; y 2 X.
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Corollary 7.2.1. Let T W X ! X be a mapping from a complete G-metric space
.X;G/ into itself and suppose that there exists  2 F .c/

com such that

G .Tx;Ty;Ty/ �  .G .x; y; y// for all x; y 2 X:

Then T has a unique fixed point.

Corollary 7.2.2. Let T W X ! X be a mapping from a complete G-metric space
.X;G/ into itself and suppose that there exists  2 F .c/

com such that

G .Tx;Ty;Tz/ �  .G .x; y; z// for all x; y; z 2 X:

Then T has a unique fixed point.

In fact, we can deduce that the main results in [142] are simple consequences of
the previous corollaries, using the (c)-comparison function  � .t/ D �t for all t � 0,
where � 2 Œ0; 1/.
Corollary 7.2.3. Theorem 4.2.2 is a consequence of Corollary 7.2.1.

Corollary 7.2.4. Theorem 4.2.1 is a consequence of Corollary 7.2.2.

7.2.1 Fixed Point Theorems on G-Metric Spaces Endowed
with a Partial Order

Throughout this subsection, denote by .X;G;4/ an ordered G-metric space, that
is, 4 is a partial order on a G-metric space .X;G/. In some cases, we will employ
non-decreasing-regular ordered G-metric spaces (recall Definition 5.2.1).

Theorem 7.2.1. Let .X;G;4/ be an ordered G-metric space such that .X;G/ is
complete and let T W X ! X be a non-decreasing mapping with respect to 4.
Suppose that there exists a function  2 F .c/

com such that

G .Tx;Ty;Ty/ �  .G .x; y; y// ; (7.6)

for all x; y 2 X with x 4 y. Suppose also that the following conditions hold:

(i) there exists x0 2 X such that x0 4 Tx0I
(ii) T is G-continuous or .X;4;G/ is non-decreasing-regular.

Then there exists u 2 X such that Tu D u: Furthermore, under the following
additional assumption:

.U0/ For all x; y 2 Fix.T/, there exists z 2 X such that x 4 z and y 4 z,

one has uniqueness of the fixed point.
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Proof. Define the mapping ˇ W X � X � X ! Œ0;1/ by

ˇ.x; y; z/ D
�
1; if x 4 y D z;
0; otherwise.

(7.7)

Distinguishing the cases ˇ .x; y; y/ D 0 and ˇ .x; y; y/ D 1, it can be proved, from
(7.6), that

ˇ .x; y; y/ G .Tx;Ty;Ty/ �  .G .x; y; y// for all x; y 2 X;

that is, T is a G -ˇ - - contractive mapping of type II. From condition (i), we have
ˇ .x0;Tx0;Tx0/ � 1. Furthermore, since T is a non-decreasing mapping with respect
to 4, then T is ˇ - admissible because

ˇ .x; y; z/ � 1 , x 4 y D z ) Tx 4 Ty D Tz

, ˇ .Tx;Ty;Tz/ � 1:

If T is G-continuous, then T has a fixed point by Theorem 7.1.1. On the other
hand, assume that .X;G;4/ is non-decreasing-regular. To prove condition (iii) of
Theorem 7.1.2, let fxng be a sequence in X such that ˇ .xn; xnC1; xnC1/ � 1 for all
n 2 N and fxng is G-convergent to x 2 X. This means that xn 4 xnC1 for all n 2 N.
Hence, by the non-decreasing-regularity, xn 4 x for all n 2 N, which is equivalent
to ˇ .xn; x; x/ � 1 for all n 2 N. As a result, condition (iii) of Theorem 7.1.2 holds,
and this guarantees that T has a fixed point. The uniqueness follows from condition
.U/ in Theorem 7.1.3, which is equivalent to condition .U0/. ut

The following result follows from using  � .t/ D � t for all t � 0, where � 2
Œ0; 1/.

Corollary 7.2.5. Let .X;G;4/ be an ordered G-metric space such that .X;G/ is
complete and let T W X ! X be a non-decreasing mapping with respect to 4.
Suppose that there exists a constant � 2 Œ0; 1/ such that

G .Tx;Ty;Ty/ � �G .x; y; y/ for all x; y 2 X such that x 4 y:

Also assume that the following conditions hold:

(i) there exists x0 2 X such that x0 4 Tx0;
(ii) T is G-continuous or .X;4;G/ is non-decreasing-regular.

Then there exists u 2 X such that Tu D u: Furthermore, under the following
additional assumption:

.U0/ For all x; y 2 Fix.T/, there exists z 2 X such that x 4 z and y 4 z,

one has uniqueness of the fixed point.
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7.2.2 Cyclic Contractions

Now, we will prove our results for cyclic contractive mappings in G-metric spaces.

Theorem 7.2.2 (See [119]). Let A and B be non-empty G-closed subsets of a
complete G-metric space .X;G/. Suppose also that Y D A [ B and T W Y ! Y
is a given self-mapping satisfying

T.A/ � B and T.B/ � A: (7.8)

If there exists a function  2 F .c/
com such that

G.Tx;Ty;Ty/ �  .G.x; y; y// (7.9)

for all x 2 A and y 2 B or vice versa, then T has a unique fixed point, which belongs
to A \ B.

Proof. Notice that .Y;G/ is a complete G-metric space since A and B are closed
subsets of the complete G-metric space .X;G/. We define ˇ W X � X � X ! Œ0;1/

in the following way:

ˇ.x; y; z/ D
�
1; if y D z and .x; y/ 2 .A � B/ [ .B � A/;
0; otherwise.

From the definition of ˇ and assumption (7.9), we have that

ˇ.x; y; y/G.Tx;Ty;Ty/ �  .G.x; y; y// (7.10)

for all x; y 2 Y . Hence, T is a G -ˇ - - contractive mapping in .Y;G/. Next, we
show that T is ˇ - admissible. Let x; y 2 Y be such that ˇ.x; y; y/ � 1. We have two
cases. If .x; y/ 2 A � B, then x 2 A and y 2 B. By (7.8), Tx 2 B and Ty 2 A. Hence
.Tx;Ty/ 2 B � A and ˇ.Tx;Ty;Ty/ � 1. In the other case, if .x; y/ 2 B � A, the
argument is similar. In any case, ˇ.x; y; y/ � 1 implies ˇ.Tx;Ty;Ty/ � 1, so T is
ˇ - admissible.

Now, we claim that condition (iii) of Theorem 7.1.2 holds in .Y;G/. Let fxng be
a sequence in Y such that fxng ! x 2 Y and ˇ .xn; xnC1; xnC1/ � 1 for all n 2 N.
This means that .xn; xnC1/ 2 .A � B/ [ .B � A/ for all n 2 N. We distinguish two
cases.

• Case 1: There exists n0 2 N such that xn 2 YŸ .A \ B/ for all n � n0. In this
case, we have that:

xn 2 AŸB ) .xn; xnC1/ 2 A � B ) xnC1 2 B

) xnC1 2 BŸAI
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xn 2 BŸA ) .xn; xnC1/ 2 B � A ) xnC1 2 A

) xnC1 2 AŸB:

In this case, the sequence fxn0 ; xn0C1; : : :g is alternating between A and B.
Therefore, it has a subsequence on A and a subsequence on B. As fxng converges
to x, then x belongs to the closure of A and of B but, as A and B are closed, then
x 2 A \ B. Hence, in this case, ˇ .xn; x; x/ � 1 for all n 2 N.

• Case 2: For all n0 2 N, there exists m � n0 such that xm 2 A\B. In this case, fxng
has a partial subsequence fxn.k/g such that xn.k/ 2 A \ B for all k. As fxng ! x,
then fxn.k/g ! x, so x 2 A \ B. As a result, ˇ .xn; x; x/ � 1 for all n 2 N.

In any case, we have proved that ˇ .xn; x; x/ � 1 for all n 2 N, so condition (iii) of
Theorem 7.1.2 holds in .Y;G/. This guarantees that T has a fixed point. Moreover,
Fix .T/ � A \ B by Lemma 6.3.1. In particular, if x 2 Fix .T/, then ˇ .x; y; y/ � 1

for all y 2 Y . Thus, condition .U/ of Theorem 7.1.3 is satisfied, so the fixed point is
unique. ut

7.3 Generalized G -ˇ - - Contractive Mappings
on G-Metric Spaces

In this section, we extend some previously presented results.

7.3.1 Generalized G -ˇ - - Contractive Mappings of Types
I and II

In the following definition, we extend the notion given in Definition 7.1.1.

Definition 7.3.1 ([19]). Let .X;G/ be a G-metric space and let T W X ! X be a
given mapping. We say that T is a:

• generalized G -ˇ - - contractive mapping of type I if there exist two functions
ˇ W X � X � X ! Œ0;1/ and  2 F .c/

com such that, for all x; y; z 2 X, we have

ˇ .x; y; z/ G .Tx;Ty;Tz/ �  .M .x; y; z// ; (7.11)

where

M .x; y; z/ D max

�
G .x; y; z/ ; G .x;Tx;Tx/ ;

G .y;Ty;Ty/ ; G .z;Tz;Tz/ ;

G .x;Ty;Ty/C G .y;Tz;Tz/C G .z;Tx;Tx/

3

�
I (7.12)
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• generalized G -ˇ - - contractive mapping of type II if there exist two functions
ˇ W X � X � X ! Œ0;1/ and  2 F .c/

com such that, for all x; y 2 X, we have

ˇ .x; y; y/ G .Tx;Ty;Ty/ �  .M .x; y; y// ; (7.13)

where M is given in (7.12), that is,

M .x; y; y/ D max

�
G .x; y; y/ ; G .x;Tx;Tx/ ; G .y;Ty;Ty/ ;

G .x;Ty;Ty/C G .y;Ty;Ty/C G .y;Tx;Tx/

3

�
: (7.14)

Clearly, any contractive mapping, that is, a mapping satisfying (4.15), is a
generalized G -ˇ - - contractive mapping of type I with ˇ .x; y; z/ D 1 for all
x; y; z 2 X and  � .t/ D � t for all t � 0, where � 2 Œ0; 1/. Analogously, a mapping
satisfying (4.16) is a generalized G -ˇ - - contractive mapping of type II with the
same ˇ and  � as before.

Theorem 7.3.1 ([19]). Let .X;G/ be a complete G-metric space and let T W X ! X
be a generalized G -ˇ - - contractive mapping of type II satisfying the following
conditions:

(i) T is ˇ - admissible;
(ii) there exists x0 2 X such that ˇ .x0;Tx0;Tx0/ � 1;

(iii) T is G-continuous.

Then there exists u 2 X such that Tu D u:

Proof. Let x0 2 X be such that ˇ .x0;Tx0;Tx0/ � 1 and let fxng be the Picard
sequence of T based on x0 (that is, xnC1 D Txn for all n � 0). If there exists some
n0 2 N such that xn0 D xn0C1, then u D xn0 is a fixed point of T . On the contrary
case, assume that xn ¤ xnC1 for all n: Since T is ˇ - admissible, we have

ˇ .x0; x1; x1/ D ˇ .x0;Tx0;Tx0/ � 1

H) ˇ .x1; x2; x2/ D ˇ .Tx0;Tx1;Tx1/ � 1:

Inductively, we have that

ˇ .xn; xnC1; xnC1/ � 1 for all n � 0: (7.15)

From (7.13) and (7.15), it follows that for all n � 1; we have

G .xn; xnC1; xnC1/ D G .Txn�1;Txn;Txn/

� ˇ .xn�1; xn; xn/ G .Txn�1;Txn;Txn/

�  .M .xn�1; xn; xn// ; (7.16)
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where

M .xn�1; xn; xn/ D max

�
G .xn�1; xn; xn/ ; G .xn�1;Txn�1;Txn�1/ ;

G .xn;Txn;Txn/ ;

G .xn�1;Txn;Txn/C G .xn;Txn;Txn/C G .xn;Txn�1;Txn�1/
3

�

D max

�
G .xn�1; xn; xn/ ; G .xn; xnC1; xnC1/ ;

G .xn�1; xnC1; xnC1/C G .xn; xnC1; xnC1/
3

�

� max

�
G .xn�1; xn; xn/ ; G .xn; xnC1; xnC1/ ;

G .xn�1; xn; xn/C 2G .xn; xnC1; xnC1/
3

�

D max fG .xn�1; xn; xn/ ; G .xn; xnC1; xnC1/g : (7.17)

If there exists some n0 2 N such that G .xn0 ; xn0C1; xn0C1/ � G.xn0�1; xn0 ; xn0 /, then
M .xn0�1; xn0 ; xn0 / D G .xn0 ; xn0C1; xn0C1/ and it follows from (7.16) that

G .xn0 ; xn0C1; xn0C1/ �  .G .xn0 ; xn0C1; xn0C1// ;

which is impossible when G .xn0 ; xn0C1; xn0C1/ > 0. Hence, we have that
G .xn; xnC1; xnC1/ < G .xn�1; xn; xn/ for all n � 1 and it follows from (7.16)
that

G .xn; xnC1; xnC1/ �  .G .xn�1; xn; xn// for all n � 1:

It follows from Lemma 4.1.2 that fxng is a Cauchy sequence in the G- metric space
.X;G/. Since .X;G/ is complete, there exists u 2 X such that fxng is convergent
to u. Since T is G-continuous, it follows that fxnC1 D Txng is G-convergent, at the
same time, to u and to Tu: By the uniqueness of the limit, we get u D Tu, that is, u
is a fixed point of T . ut

Corollary 7.3.1 ([19]). Let .X;G/ be a complete G-metric space and let T W X ! X
be a generalized G -ˇ - - contractive mapping of type I satisfying the following
conditions:

(i) T is ˇ - admissible;
(i) there exists x0 2 X such that ˇ .x0;Tx0;Tx0/ � 1;

(iii) T is G-continuous.

Then there exists u 2 X such that Tu D u:
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Theorem 7.3.2 ([19]). Let .X;G/ be a complete G-metric space and let T W X ! X
be a generalized G -ˇ - - contractive mapping of type II for some right-continuous
 2 F .c/

com satisfying the following conditions:

(i) T is ˇ - admissible;
(ii) there exists x0 2 X such that ˇ .x0;Tx0;Tx0/ � 1;

(iii) if fxng is a sequence in X such that ˇ .xn; xnC1; xnC1/ � 1 for all n 2 N and
fxng is G-convergent to x 2 X, then ˇ .xn; x; x/ � 1 for all n 2 N.

Then there exists u 2 X such that Tu D u:

Proof. Following the argument in the proof of Theorem 7.3.1, we obtain that the
Picard sequence fxng converges to some u 2 X. We claim that Tu D u. From (7.15)
and (iii), we have that

ˇ .xn; u; u/ � 1 for all n � 0: (7.18)

Using .G5/, .G4/, (7.13) and (7.18), we have that, for all n 2 N,

G .u;Tu;Tu/ � G .u;Txn;Txn/C G .Txn;Tu;Tu/

� G .u; xnC1; xnC1/C ˇ .xn; u; u/ G .Txn;Tu;Tu/

� G .u; xnC1; xnC1/C  .M .xn; u; u// : (7.19)

In this case,

M .xn; u; u/ D max

�
G .xn; u; u/ ; G .xn; xnC1; xnC1/ ; G .u;Tu;Tu/ ;

G .xn;Tu;Tu/C G .u;Tu;Tu/C G .u; xnC1; xnC1/
3

�
:

(7.20)

Therefore

lim
n!1 M .xn; u; u/ D G .u;Tu;Tu/ :

To prove that Tu D u, we distinguish two cases.

• Case 1: There exists n0 2 N such that M .xn; u; u/ D G .u;Tu;Tu/ for all n � n0.
In this case, from (7.19), we have that

G .u;Tu;Tu/ � G .u; xnC1; xnC1/C  .G .u;Tu;Tu//

for all n � n0. Letting n ! 1, we deduce that G .u;Tu;Tu/ �  .G .u;Tu;Tu//,
which is only possible when G .u;Tu;Tu/ D 0, that is, Tu D u.
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• Case 2: For all n 2 N, there exists m � n such that M .xm; u; u/ ¤ G .u;Tu;Tu/.
As G .u;Tu;Tu/ is included in the maximum that defines M .xn; u; u/, we can find
a subsequence fxn.k/g of fxng such that

M
�
xn.k/; u; u

�
> G .u;Tu;Tu/ for all k � 1:

Thus, fM
�
xn.k/; u; u

�gk�1 is a sequence of real numbers, greater than
G .u;Tu;Tu/, that converges to G .u;Tu;Tu/. Since  is right-continuous,

lim
k!1 

�
M
�
xn.k/; u; u

�� D lim
t!G.u;Tu;Tu/C

 .t/ D  .G .u;Tu;Tu// :

From (7.19), we have that

G .u;Tu;Tu/ � G
�
u; xn.k/C1; xn.k/C1

�C  
�
M
�
xn.k/; u; u

��

for all k, and letting k ! 1, we deduce that G .u;Tu;Tu/ �  .G.u;Tu;Tu//,
which yields G .u;Tu;Tu/ D 0, that is, Tu D u. ut

Remark 7.3.1. Notice that the previous result improves Theorem 30 and Corol-
lary 31 in [19] in the sense that we only assume that  is right-continuous, but
not necessarily continuous.

Corollary 7.3.2 ([19]). Let .X;G/ be a complete G-metric space and let T W X ! X
be a generalized G -ˇ - - contractive mapping of type I for some right-continuous
 2 F .c/

com satisfying the following conditions:

(i) T is ˇ - admissible;
(ii) there exists x0 2 X such that ˇ .x0;Tx0;Tx0/ � 1;

(iii) if fxng is a sequence in X such that ˇ .xn; xnC1; xnC1/ � 1 for all n 2 N and
fxng is G-convergent to x 2 X, then ˇ .xn; x; x/ � 1 for all n 2 N.

Then there exists u 2 X such that Tu D u:

Notice that Theorem 7.1.1 and Corollary 7.1.1 are simple consequences of
Theorem 7.3.1 and Corollary 7.3.1. However, Theorem 7.1.2 and Corollary 7.1.2
cannot be deduced from Theorem 7.3.2 and Corollary 7.3.2 because, in the last
ones, we assume that  is right-continuous.

With the following example, we will show that the hypotheses in Theorems 7.3.1
and 7.3.2 do not guarantee uniqueness.

Example 7.3.1 ([19]). Let X D f.1; 0/; .0; 1/g � R
2 endowed with the following

G-metric

G..x; y/; .u; v/; .z;w// D jx � uj C ju � zj C jz � xj C jy � vj C jv � wj C jw � yj

for all .x; y/; .u; v/; .z;w/ 2 X. Obviously, .X;G/ is a complete metric space. The
mapping T.x; y/ D .x; y/ is trivially continuous and satisfies, for any  2 F .c/

com,
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ˇ..x; y/; .u; v/; .z;w//G.T.x; y/;T.u; v/;T.z;w//

�  .M..x; y/; .u; v/; .z;w///;

for all .x; y/; .u; v/; .z;w/ 2 X, where

ˇ..x; y/; .u; v/; .z;w// D
�
1; if .x; y/ D .u; v/ D .z;w/;
0; otherwise.

Thus T is a generalized G -ˇ - - contractive mapping of type I. On the other hand,
for all .x; y/; .u; v/; .z;w/ 2 X, we have

ˇ..x; y/; .u; v/; .z;w// � 1 ) .x; y/ D .u; v/ D .z;w/;

which yields that ˇ.T.x; y/;T.u; v/;T.z;w// � 1. Hence T is ˇ - admissible.
Moreover, for all .x; y/ 2 X, we have ˇ..x; y/;T.x; y/;T.x; y// � 1. So the
assumptions of Theorem 7.3.1 are satisfied. In fact T satisfies all the assumptions of
Theorem 7.3.2. However, in this case, T has two fixed points in X.

Example 7.3.2. Let X � R be a closed, bounded subset, non reduced to a single
point (for instance, a compact interval), endowed with the G-metric G .x; y; z/ D
jx � yj C jx � zj C jy � zj for all x; y; z 2 X. Let T be the identity mapping on T and
define

ˇ.x; y; z/ D
�
1; if x D y D z;
0; otherwise.

Then

ˇ .x; y; z/ G .Tx;Ty;Tz/ D 0 �  .M .x; y; z//

for all x; y; z 2 X and all  2 F .c/
com, so T is a generalized G -ˇ - - contractive

mapping of type I. Since ˇ .x;Tx;Tx/ D ˇ .x; x; x/ D 1 for all x 2 X, all the
conditions of Theorems 7.3.1 and 7.3.2 are satisfied. However, every point of X is a
fixed point of T (in particular, it has more than one).

We present the following condition in order to ensure uniqueness of the fixed
point.

Theorem 7.3.3. Under the hypotheses of Theorem 7.3.1 (respectively, Corol-
lary 7.3.1, Theorem 7.3.2, Corollary 7.3.2), also assume the following condition:

.U00/ For all x; y 2 Fix.T/ we have that max fˇ .x; y; y/ ; ˇ .y; x; x/g � 1.

Then T has a unique fixed point.

In [19], the authors assumed the stronger condition:

(iv) For all x 2 Fix.T/ we have that ˇ .x; z; z/ � 1 for all z 2 X.
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Proof. Let x; y 2 Fix.T/ be two fixed points of T . By hypothesis .U00/, we
have that max fˇ .x; y; y/ ; ˇ .y; x; x/g � 1. Without loss of generality, assume that
ˇ .x; y; y/ � 1. From (7.13),

G .x; y; y/ � ˇ .x; y; y/ G .Tx;Ty;Ty/ �  .M .x; y; y// ;

where

M .x; y; y/ D max

�
G .x; y; y/ ; G .x;Tx;Tx/ ; G .y;Ty;Ty/ ;

G .x;Ty;Ty/C G .y;Ty;Ty/C G .y;Tx;Tx/

3

�

D max

�
G .x; y; y/ ;

G .x; y; y/C G .y; x; x/

3

�

� max

�
G .x; y; y/ ;

G .x; y; y/C 2G .x; y; y/

3

�
D G .x; y; y/ :

Therefore, since  is non-decreasing, G .x; y; y/ �  .G .x; y; y//, which is only
possible when G .x; y; y/ D 0, that is, x D y, which proves that T has a unique
fixed point. ut

7.3.2 Generalized G -ˇ - - Contractive Mappings of Type III

In this subsection, we present a new contractivity condition.

Definition 7.3.2 ([19]). Let .X;G/ be a G-metric space and let T W X ! X be a
given mapping. We say that T is a generalized G -ˇ - - contractive mapping of
type III if there exist two functions ˇ W X � X � X ! Œ0;1/ and  2 F .c/

com such
that, for all x; y; z 2 X, we have

ˇ .x; y; z/ G .Tx;Ty;Tz/ �  .N .x; y; z// ; (7.21)

where

N .x; y; z/ D max fG .x; y; z/ ;G .x; x;Tx/ ;G .y; y;Ty/ ;G .z; z;Tz/g :

Theorem 7.3.4 ([19]). Let .X;G/ be a complete G-metric space and let T W X ! X
be a generalized G -ˇ - - contractive mapping of type III satisfying the following
conditions:

(i) T is ˇ - admissible;
(ii) there exists x0 2 X such that ˇ .x0;Tx0;Tx0/ � 1 (or ˇ .x0; x0;Tx0/ � 1);

(iii) T is G-continuous.

Then there exists u 2 X such that Tu D u:
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Proof. We follow the argument in the proof of Theorem 7.3.1, replacing M by N
and the inequality (7.17) by

N .xn�1; xn; xn/

D max fG .xn�1; xn; xn/ ;G .xn�1; xn�1;Txn�1/ ;G .xn; xn;Txn/g
D max fG .xn�1; xn; xn/ ; G .xn; xn; xnC1/g :

The rest of the proof is similar. ut
Theorem 7.3.5. Let .X;G/ be a complete G-metric space and let T W X ! X be
a G -ˇ - - contractive mapping of type III for some right-continuous  2 F .c/

com

satisfying the following conditions:

(i) T is ˇ - admissible;
(ii) there exists x0 2 X such that ˇ .x0;Tx0;Tx0/ � 1;

(iii) if fxng is a sequence in X such that ˇ .xn; xnC1; xnC1/ � 1 for all n 2 N and
fxng is G-convergent to x 2 X, then ˇ .xn; x; x/ � 1 for all n 2 N.

Then there exists u 2 X such that Tu D u.

On the one hand, the previous result is also valid if we replace (ii) and (iii) by the
following ones.

(ii) there exists x0 2 X such that ˇ .x0; x0;Tx0/ � 1;
(iii) if fxng is a sequence in X such that ˇ .xn; xn; xnC1/ � 1 for all n 2 N and fxng

is G-convergent to x 2 X, then ˇ .xn; xn; x/ � 1 for all n 2 N.

On the other hand, a similar comment to Remark 7.3.1 can also be given here.

Proof. We follow the argument in the proof of Theorem 7.3.2, replacing M by N
and (7.20) by

N .xn; u; u/ D max fG .xn; u; u/ ; G .xn; xn;Txn/ ; G .u;Tu;Tu/g
D max fG .xn; u; u/ ; G .xn; xn;Txn/ ; G .u;Tu;Tu/g ;

and distinguishing the same two cases. ut
As in Example 7.3.2, the uniqueness of the fixed point is not guaranteed. We need

an additional condition.

Theorem 7.3.6. Under the hypotheses of Theorem 7.3.4 (respectively, Theo-
rem 7.3.5), also assume the following condition:

.U00/ For all x; y 2 Fix.T/ we have that max fˇ .x; y; y/ ; ˇ .y; x; x/g � 1.

Then T has a unique fixed point.

Proof. We repeat the proof of Theorem 7.3.3 taking into account that, for all x; y 2
Fix.T/,

N .u; v; v/ D max fG .u; v; v/ ;G .u; u;Tu/ ;G .v; v;Tv/g
D G .u; v; v/ : ut
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7.4 Consequences

The following two results correspond to Theorem 7.3.2 and Corollary 7.3.2 in the
case in which ˇ.x; y; z/ D 1 for all x; y; z 2 X, and also applying Theorem 7.3.3.

Corollary 7.4.1. Let .X;G/ be a complete G-metric space and let T W X ! X be a
mapping. Assume that there exists a right-continuous function  2 F .c/

com such that,
for all x; y 2 X,

G .Tx;Ty;Ty/ �  

�
max

�
G .x; y; y/ ; G .x;Tx;Tx/ ; G .y;Ty;Ty/ ;

G .x;Ty;Ty/C G .y;Ty;Ty/C G .y;Tx;Tx/

3

��
:

Then T has a unique fixed point.

Corollary 7.4.2. Let .X;G/ be a complete G-metric space and let T W X ! X be a
mapping. Assume that there exists a right-continuous function  2 F .c/

com such that,
for all x; y; z 2 X,

G .Tx;Ty;Tz/ �  

�
max

�
G .x; y; z/ ; G .x;Tx;Tx/ ;

G .y;Ty;Ty/ ; G .z;Tz;Tz/ ;

G .x;Ty;Ty/C G .y;Tz;Tz/C G .z;Tx;Tx/

3

��
:

Then T has a unique fixed point.

We can avoid the right-continuity of  when T is continuous, applying Theo-
rem 7.3.1, Corollary 7.3.1 and Theorem 7.3.3.

Corollary 7.4.3. Let .X;G/ be a complete G-metric space and let T W X ! X be a
G-continuous mapping. Assume that there exists a function  2 F .c/

com such that, for
all x; y 2 X,

G .Tx;Ty;Ty/ �  

�
max

�
G .x; y; y/ ; G .x;Tx;Tx/ ; G .y;Ty;Ty/ ;

G .x;Ty;Ty/C G .y;Ty;Ty/C G .y;Tx;Tx/

3

��
:

Then T has a unique fixed point.

Corollary 7.4.4. Let .X;G/ be a complete G-metric space and let T W X ! X be a
G-continuous mapping. Assume that there exists a function  2 F .c/

com such that, for
all x; y; z 2 X,
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G .Tx;Ty;Tz/ �  

�
max

�
G .x; y; z/ ; G .x;Tx;Tx/ ;

G .y;Ty;Ty/ ; G .z;Tz;Tz/ ;

G .x;Ty;Ty/C G .y;Tz;Tz/C G .z;Tx;Tx/

3

��
:

Then T has a unique fixed point.

Assume that  � .t/ D � t for all t � 0. Then we have the following particular
cases of Corollaries 7.4.1 and 7.4.2.

Corollary 7.4.5. Let .X;G/ be a complete G-metric space and let T W X ! X be a
mapping. Assume that there exists a constant � 2 Œ0; 1/ such that, for all x; y 2 X,

G .Tx;Ty;Ty/ � � max

�
G .x; y; y/ ; G .x;Tx;Tx/ ; G .y;Ty;Ty/ ;

G .x;Ty;Ty/C G .y;Ty;Ty/C G .y;Tx;Tx/

3

�
:

Then T has a unique fixed point.

Corollary 7.4.6. Let .X;G/ be a complete G-metric space and let T W X ! X be a
mapping. Assume that there exists a constant � 2 Œ0; 1/ such that, for all x; y; z 2 X,

G .Tx;Ty;Tz/ � � max

�
G .x; y; z/ ; G .x;Tx;Tx/ ;

G .y;Ty;Ty/ ; G .z;Tz;Tz/ ;

G .x;Ty;Ty/C G .y;Tz;Tz/C G .z;Tx;Tx/

3

�
:

Then T has a unique fixed point.

Taking into account that  is non-decreasing and G .x; y; z/ � M .x; y; z/ for all
x; y; z 2 X, then we also have the following consequences.

Corollary 7.4.7. Let .X;G/ be a complete G-metric space and let T W X ! X be a
mapping. Suppose that there exists a function  2 F .c/

com such that, for all x; y 2 X,

G .Tx;Ty;Ty/ �  .G .x; y; y// :

Also assume that T is G-continuous or  is right-continuous. Then T has a unique
fixed point.

Corollary 7.4.8. Let .X;G/ be a complete G-metric space and let T W X ! X be a
mapping. Suppose that there exists a function  2 F .c/

com such that, for all x; y; z 2 X,
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G .Tx;Ty;Tz/ �  .G .x; y; z// :

Also assume that T is G-continuous or  is right-continuous. Then T has a unique
fixed point.

Corollary 7.4.9 ([19]). Let .X;G/ be a complete G-metric space and let T W X ! X
be a given mapping. Suppose that there exist nonnegative real numbers a; b; c and
d, with a C b C c C d < 1, such that

G .Tx;Ty;Ty/ � aG .x; y; y/C bG .x;Tx;Tx/C cG .y;Ty;Ty/

C d

3
.G .x;Ty;Ty/C G .y;Ty;Ty/C G .y;Tx;Tx/ / ;

for all x; y 2 X: Then T has a unique fixed point.

Proof. For all x; y 2 X we have that

aG .x; y; y/C bG .x;Tx;Tx/C cG .y;Ty;Ty/

C d

3
.G .x;Ty;Ty/C G .y;Ty;Ty/C G .y;Tx;Tx/ /

� aM .x; y; y/C bM .x; y; y/C cM .x; y; y/

C dM .x; y; y/ D .a C b C c C d/ M .x; y; y/ :

Therefore, we can apply Corollary 7.4.5 using � D max fa C b C c C d; 0g. ut
Corollary 7.4.10 ([19]). Let .X;G/ be a complete G-metric space and let T W X !
X be a given mapping. Suppose that there exist nonnegative real numbers a; b; c; d
and e, with a C b C c C d C e < 1, such that

G .Tx;Ty;Tz/ � aG .x; y; z/C bG .x;Tx;Tx/

C cG .y;Ty;Ty/C dG .z;Tz;Tz/

C e

3
.G .x;Ty;Ty/C G .y;Tz;Tz/C G .z;Tx;Tx/ / ;

for all x; y; z 2 X: Then T has a unique fixed point.

7.4.1 Fixed Point Theorems on G-Metric Spaces Endowed
with a Partial Order

In this subsection, we apply the previous results to the case in which X is endowed
with a partial order.
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Theorem 7.4.1. Let .X;G;4/ be an ordered G-metric space such that .X;G/ is
complete, and let T W X ! X be a non-decreasing mapping with respect to 4.
Suppose that there exists a function  2 F .c/

com such that

G .Tx;Ty;Ty/ �  

�
max

�
G .x; y; y/ ; G .x;Tx;Tx/ ; G .y;Ty;Ty/ ;

G .x;Ty;Ty/C G .y;Ty;Ty/C G .y;Tx;Tx/

3

��
:

(7.22)

for all x; y 2 X with x 	 y. Also assume that the following conditions are fulfilled:

(i) there exists x0 2 X such that x0 4 Tx0I
(ii) At least, one of the following conditions holds:

(ii.1) T is G-continuous, or
(ii.2) .X;4;G/ is non-decreasing-regular and  is right-continuous.

Then there exists u 2 X such that Tu D u: Furthermore, under the following
additional assumption:

.U00/ For all x; y 2 Fix.T/ we have that x 4 y or y 4 x (that is, all fixed points of
T are 4-comparable),

one has uniqueness of the fixed point.

Proof. Define the mapping ˇ W X � X � X ! Œ0;1/ by

ˇ.x; y; z/ D
�
1; if x 4 y D z;
0; otherwise.

Distinguishing the cases ˇ .x; y; y/ D 0 and ˇ .x; y; y/ D 1, it can be proved, from
(7.22), that

ˇ .x; y; y/ G .Tx;Ty;Ty/ �  .M .x; y; y// for all x; y 2 X

(the case x D y is obvious), that is, T is a G -ˇ - - contractive mapping of type
II. From condition (i), we have ˇ .x0;Tx0;Tx0/ � 1. Furthermore, since T is a non-
decreasing mapping with respect to 4, then T is ˇ - admissible because

ˇ .x; y; z/ � 1 , x 4 y D z ) Tx 4 Ty D Tz

, ˇ .Tx;Ty;Tz/ � 1:

If T is G-continuous, then T has a fixed point by Theorem 7.3.1. On the other
case, assume that .X;G;4/ is non-decreasing-regular and  is right-continuous.
To prove condition (iii) of Theorem 7.3.2, let fxng be a sequence in X such that
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ˇ .xn; xnC1; xnC1/ � 1 for all n 2 N and fxng is G-convergent to x 2 X. This means
that xn 4 xnC1 for all n 2 N. Hence, by the non-decreasing-regularity, xn 4 x for all
n 2 N, which is equivalent to ˇ .xn; x; x/ � 1 for all n 2 N. Hence, condition (iii) of
Theorem 7.3.2 holds, and this guarantees that T has a fixed point. The uniqueness
follows from condition .U00/ in Theorem 7.3.3, which is equivalent to our condition
.U00/. ut
Corollary 7.4.11. Let .X;G;4/ be an ordered G-metric space such that .X;G/ is
complete, and let T W X ! X be a non-decreasing mapping with respect to 4.
Suppose that there exists a function  2 F .c/

com such that

G .Tx;Ty;Tz/ �  

�
max

�
G .x; y; z/ ; G .x;Tx;Tx/ ;

G .y;Ty;Ty/ ; G .z;Tz;Tz/ ;

G .x;Ty;Ty/C G .y;Tz;Tz/C G .z;Tx;Tx/

3

��
:

for all x; y 2 X with x 	 y 4 z. Also assume that the following conditions are
fulfilled:

(i) there exists x0 2 X such that x0 4 Tx0I
(ii) at least, one of the following conditions holds:

(ii.1) T is G-continuous, or
(ii.2) .X;4;G/ is non-decreasing-regular and  is right-continuous.

Then there exists u 2 X such that Tu D u: Furthermore, under the following
additional assumption:

.U00/ For all x; y 2 Fix.T/ we have that x 4 y or y 4 x (that is, all fixed points of
T are 4-comparable),

one has uniqueness of the fixed point.

In the following result, we employ  � .t/ D �t for all t � 0, which is continuous.

Corollary 7.4.12. Let .X;G;4/ be an ordered G-metric space such that .X;G/ is
complete, and let T W X ! X be a non-decreasing mapping with respect to 4.
Suppose that there exists a constant � 2 Œ0; 1/ such that

G .Tx;Ty;Ty/ � � max

�
G .x; y; y/ ; G .x;Tx;Tx/ ; G .y;Ty;Ty/ ;

G .x;Ty;Ty/C G .y;Ty;Ty/C G .y;Tx;Tx/

3

�
:

for all x; y 2 X with x 	 y. Also assume that the following conditions are fulfilled:

(i) there exists x0 2 X such that x0 4 Tx0I
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(ii) at least, one of the following conditions holds:

(ii.1) T is G-continuous, or
(ii.2) .X;4;G/ is non-decreasing-regular.

Then there exists u 2 X such that Tu D u: Furthermore, under the following
additional assumption:

.U00/ For all x; y 2 Fix.T/ we have that x 4 y or y 4 x (that is, all fixed points of
T are 4-comparable),

one has uniqueness of the fixed point.

Inspired by Corollary 7.4.9, we present the following one (which has the same
proof).

Corollary 7.4.13. Let .X;G;4/ be an ordered G-metric space such that .X;G/ is
complete, and let T W X ! X be a non-decreasing mapping with respect to 4.
Suppose that there exist nonnegative real numbers a; b; c and d, with aCbCcCd <
1, such that

G .Tx;Ty;Ty/ � aG .x; y; y/C bG .x;Tx;Tx/C cG .y;Ty;Ty/

C d

3
.G .x;Ty;Ty/C G .y;Ty;Ty/C G .y;Tx;Tx/ /

for all x; y 2 X with x 	 y. Also assume that the following conditions are fulfilled:

(i) there exists x0 2 X such that x0 4 Tx0I
(ii) at least, one of the following conditions holds:

(ii.1) T is G-continuous, or
(ii.2) .X;4;G/ is non-decreasing-regular.

Then there exists u 2 X such that Tu D u: Furthermore, under the following
additional assumption:

.U00/ For all x; y 2 Fix.T/ we have that x 4 y or y 4 x (that is, all fixed points of
T are 4-comparable),

one has uniqueness of the fixed point.

7.4.2 Cyclic Contraction

Now, we will prove our results for cyclic contractive mappings in G-metric spaces.

Theorem 7.4.2 (See [119]). Let A and B be two non-empty, G-closed subsets of a
complete G-metric space .X;G/. Suppose also that Y D A [ B and T W Y ! Y is a
given self-mapping satisfying
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T.A/ � B and T.B/ � A: (7.23)

Assume that there exists a right-continuous function  2 F .c/
com such that

G.Tx;Ty;Ty/ �  .M.x; y; y// (7.24)

for all x 2 A and y 2 B or viceversa, where

M .x; y; y/ D max

�
G .x; y; y/ ; G .x;Tx;Tx/ ; G .y;Ty;Ty/ ;

G .x;Ty;Ty/C G .y;Ty;Ty/C G .y;Tx;Tx/

3

�
:

Then T has a unique fixed point, which belongs to A \ B.

Proof. We follow the argument in the proof of Theorem 7.2.2, using M.x; y; y/
rather than G .x; y; y/. ut



Chapter 8
New Approaches to Fixed Point Results
on G-Metric Spaces

Recently, Samet et al. [184], and Jleli and Samet [97], observed that some fixed point
theorems in the context of G-metric space in the literature can be concluded from
existence results in the setting of quasi-metric spaces. In fact, if the contractivity
condition of the fixed point theorem on a G-metric space can be reduced to two
variables instead of there variables, then one can construct an equivalent fixed point
theorem in the setup of usual metric spaces. More precisely, in [97, 184], the authors
noticed that q.x; y/ D G.x; y; y/ forms a quasi-metric.

In this chapter, we notice that, although the techniques used in [97, 184] are valid
if the contractivity condition in the statement of the theorem can be expressed in two
variables, we can also consider other fixed point theorems in the context of G-metric
spaces for which the techniques in [97, 184] are not applicable.

8.1 A New Approach to Express Fixed Point
Contraction Mappings

Theorem 8.1.1. Let .X;G/ be a complete G-metric space and let T W X ! X be
mapping. Suppose that there exists � 2 �0; 1

2

�
such that

G.Tx;Ty;Tz/ � �M.x; y; z/ for all x; y; z 2 X; (8.1)
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where

M.x; y; z/ D max

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

G.x; y; z/; G.x;Tx;Tx/; G.x;Ty;Ty/;
G.x;Tx; y/; G.x;Tx; z/; G.y;Ty;Ty/;
G.y;Tx;Ty/; G.y;T2x;Ty/; G.y;Tz;Tz/;
G.z;Tx;Tx/; G.z;Tz;Tz/; G.z;Tx;Ty/;
G.z;T2x;Tz/; G.Tx;T2x;Ty/; G.Tx;T2x;Tz/

9
>>>>>=

>>>>>;

:

Then there is a unique x 2 X such that Tx D x. In fact, T is a Picard operator.

Proof. Let x0 2 X be arbitrary and let fxng be the Picard sequence of T based on x0,
that is

xnC1 D Txn for all n 2 N: (8.2)

If there exists some n0 2 N such that xn0C1 D xn0 , then xn0 is a fixed point of T .
Assume that

xn ¤ xnC1 for all n 2 N: (8.3)

Taking x D xn and z D y D xnC1 in (8.1), we find that, for all n � 0,

G.xnC1; xnC2; xnC2/ D G.Txn;TxnC1;TxnC1/ � �M.xn; xnC1; xnC1/; (8.4)

where M.xn; xnC1; xnC1/ takes the value

max

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
ˆ̂̂
ˆ̂̂
:

G.xn; xnC1; xnC1/; G.xn;Txn;Txn/;

G.xn;TxnC1;TxnC1/; G.xn;Txn; xnC1/;
G.xn;Txn; xnC1/; G.xnC1;TxnC1;TxnC1/;
G.xnC1;Txn;TxnC1/; G.xnC1;T2xn;TxnC1/;
G.xnC1;TxnC1;TxnC1/; G.xnC1;Txn;Txn/;

G.xnC1;TxnC1;TxnC1/; G.xnC1;Txn;TxnC1/;
G.xnC1;T2xn;TxnC1/; G.Txn;T2xn;TxnC1/;
G.Txn;T2xn;TxnC1/

9
>>>>>>>>>>>=

>>>>>>>>>>>;

D max

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
ˆ̂̂
ˆ̂̂
:

G.xn; xnC1; xnC1/; G.xn; xnC1; xnC1/;
G.xn; xnC2; xnC2/; G.xn; xnC1; xnC1/;
G.xn; xnC1; xnC1/; G.xnC1; xnC2; xnC2/;
G.xnC1; xnC1; xnC2/; G.xnC1; xnC2; xnC2/;
G.xnC1; xnC2; xnC2/; G.xnC1; xnC1; xnC1/;
G.xnC1; xnC2; xnC2/; G.xnC1; xnC1; xnC2/;
G.xnC1; xnC2; xnC2/; G.xnC1; xnC2; xnC2/;
G.xnC1; xnC2; xnC2/

9
>>>>>>>>>>>=

>>>>>>>>>>>;
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D max

�
G.xn; xnC1; xnC1/; G.xn; xnC2; xnC2/;
G.xnC1; xnC2; xnC2/;G.xnC1; xnC1; xnC2/

�
: (8.5)

Now, we have to examine four cases in (8.5).

• If M.xn; xnC1; xnC1/ D G.xnC1; xnC2; xnC2/, then (8.4) turns into

G.xnC1; xnC2; xnC2/ � �G.xnC1; xnC2; xnC2/

which is impossible because G.xnC1; xnC2; xnC2/ > 0 and � < 1=2.
• If M.xn; xnC1; xnC1/ D G.xnC1; xnC1; xnC2/, then (8.4) and Lemma 3.1.1 imply

that

G.xnC1; xnC2; xnC2/ � �G.xnC1; xnC1; xnC2/

� 2�G.xnC1; xnC2; xnC2/;

which is impossible because G.xnC1; xnC2; xnC2/ > 0 and 2� < 1.
• If M.xn; xnC1; xnC1/ D G.xn; xnC2; xnC2/, the inequality (8.4) leads to

G.xnC1; xnC2; xnC2/ � �G.xn; xnC2; xnC2/

� � ŒG.xn; xnC1; xnC1/C G.xnC1; xnC2; xnC2/� :

In this case, we deduce that

G.xnC1; xnC2; xnC2/ � 	G.xn; xnC1; xnC1/ (8.6)

where 	 D �
1�� < 1 since 0 � � < 1

2
.

• If M.xn; xnC1; xnC1/ D G.xn; xnC1; xnC1/, then the inequality (8.4) gives

G.xnC1; xnC2; xnC2/ � �G.xn; xnC1; xnC1/: (8.7)

As a result, the first two cases are impossible and, in the last two cases, we have
that

G.xnC1; xnC2; xnC2/ � 	G.xn; xnC1; xnC1/ for all n 2 N;

where 	 D �
1�� < 1 (notice that � < 	 ). Using the classical Banach argument,

we prove that fxng is a Cauchy sequence in .X;G/ because G.xn; xnC1; xnC1/ �
	n G.x0; x1; x1/ and

G.xn; xm; xm/ � 	n

1 � �G.x0; x1; x1/
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for all n;m 2 N with m > n. Since .X;G/ is complete, there exists u 2 X such that
fxng ! u. We now show that Tu D u. Using (8.1) with x D xnC1 and y D z D u, we
have that

G.xnC1;Tu;Tu/ D G.Txn;Tu;Tu/ � �M.xn; u; u/ (8.8)

where

M.xn; u; u/ D max

8
ˆ̂<

ˆ̂:

G.xn; u; u/; G.xn; xnC1; xnC1/; G.xn;Tu;Tu/;
G.xn; xnC1; u/; G.u;Tu;Tu/; G.u; xnC1;Tu/;
G.u; xnC2;Tu/; G.u; xnC1; xnC1/;
G.xnC1; xnC2;Tu/

9
>>=

>>;
:

As G is continuous on each argument (see Theorem 3.2.2), all terms of M.xn; u; u/
converge to 0, or G .u; u;Tu/ or G .u;Tu;Tu/. From Lemma 3.1.1, G .u; u;Tu/ �
2G .u;Tu;Tu/. Hence, by taking the limit as n ! 1 in (8.8), we deduce that

G.u;Tu;Tu/ � � max fG .u; u;Tu/ ; G .u;Tu;Tu/g
� 2�G.u;Tu;Tu/:

Since 2� < 1, the previous inequality can only hold when G.u;Tu;Tu/ D 0, which
proves that Tu D u.

Finally, we show that T has a unique fixed. Suppose that x; y 2 Fix.T/ are two
fixed points of T . Then, by (8.1), we deduce that

G .x; y; y/ D G.Tx;Ty;Ty/ � �M.x; y; y/

D � max

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

G.x; y; y/; G.x;Tx;Tx/; G.x;Ty;Ty/;
G.x;Tx; y/; G.x;Tx; y/; G.y;Ty;Ty/;
G.y;Tx;Ty/; G.y;T2x;Ty/; G.y;Ty;Ty/;
G.y;Tx;Tx/; G.y;Ty;Ty/; G.y;Tx;Ty/;
G.y;T2x;Ty/; G.Tx;T2x;Ty/; G.Tx;T2x;Ty/

9
>>>>>=

>>>>>;

D � max fG.x; y; y/; G.x; x; y/g
� 2�G.x; y; y/:

As 2� < 1, the previous inequality can only hold when G.x; y; y/ D 0, which proves
that x D y. ut

In Theorem 8.1.1, we can take � belonging to the whole interval Œ0; 1/ if we
remove the terms for which we need to apply Lemma 3.1.1. Following exactly the
same proof (we omit it here), it is possible to obtain the following result, which is
also valid adding some terms by symmetry.
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Theorem 8.1.2. Let .X;G/ be a complete G-metric space and let T W X ! X be
mapping. Assume that there exists � 2 Œ0; 1/ such that

G.Tx;Ty;Tz/ � �M.x; y; z/ for all x; y; z 2 X; (8.9)

where

M.x; y; z/ D max

8
ˆ̂<

ˆ̂:

G.x; y; z/; G.x;Tx;Tx/; G.x;Tx; y/;
G.x;Tx; z/; G.y;Ty;Ty/; G.y;Tz;Tz/;
G.y;T2x;Ty/; G.z;Tx;Tx/; G.z;Tz;Tz/;
G.z;T2x;Tz/; G.Tx;T2x;Tz/; G.Tx;T2x;Ty/

9
>>=

>>;
:

Then there is a unique x 2 X such that Tx D x. In fact, T is a Picard operator.

8.2 Revisited Fixed Point Results via Admissible Mappings

In this section we introduce some contractivity conditions very similar to those used
in Definition 7.1 and in Sect. 7.3.1, with a very important difference: these new
conditions cannot be reduced to quasi-metrics.

Definition 8.2.1. Let .X;G/ be a G-metric space and let T W X ! X be a given
mapping. We say that T is a G -ˇ - - contractive mapping of type A if there exist
two functions ˇ W X � X � X ! Œ0;1/ and  2 F .c/

com such that, for all x; y; z 2 X,
we have

ˇ .x; y;Tx/ G.Tx;Ty;T2x/ �  .G.x; y;Tx//: (8.10)

Theorem 8.2.1. Let .X;G/ be a complete G-metric space and let T W X ! X be a
G -ˇ - - contractive mapping of type A satisfying the following conditions:

(i) T is ˇ - admissible;
(ii) there exists x0 2 X such that ˇ .x0;Tx0;Tx0/ � 1;

(iii) T is G-continuous.

Then there exists u 2 X such that Tu D u.

Proof. Let x0 2 X be such that ˇ .x0;Tx0;Tx0/ � 1 and let fxng be the Picard
sequence of T based on x0 (that is, xnC1 D Txn for all n � 0). If there exists some
n0 2 N such that xn0 D xn0C1, then u D xn0 is a fixed point of T . On the contrary
case, assume that xn ¤ xnC1 for all n: Since T is ˇ - admissible, we have

ˇ .x0; x1; x1/ D ˇ .x0;Tx0;Tx0/ � 1

H) ˇ .x1; x2; x2/ D ˇ .Tx0;Tx1;Tx1/ � 1:
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Inductively, we have that

ˇ .xn; xnC1; xnC1/ � 1 for all n � 0: (8.11)

From (8.10) and (8.11), it follows that, for all n � 1, we have

G .xn; xnC1; xnC1/ D G
�
Txn�1;Txn;T

2xn�1
�

� ˇ .xn�1; xn;Txn�1/ G
�
Txn�1;Txn;T

2xn�1
�

�  .G .xn�1; xn;Txn�1// D  .G .xn�1; xn; xn// :

It follows from Lemma 4.1.2 that fxng is a Cauchy sequence in the G- metric space
.X;G/. Since .X;G/ is complete, there exists u 2 X such that fxng is convergent
to u. Since T is G-continuous, it follows that fxnC1 D Txng is G-convergent, at the
same time, to u and to Tu: By the uniqueness of the limit, we get u D Tu, that is, u
is a fixed point of T . ut

In the following result, we do not need the continuity of T .

Theorem 8.2.2. Let .X;G/ be a complete G-metric space and let T W X ! X be a
G -ˇ - - contractive mapping of type A satisfying the following conditions:

(i) T is ˇ - admissible;
(ii) there exists x0 2 X such that ˇ .x0;Tx0;Tx0/ � 1;

(iii) if fxng is a sequence in X such that ˇ .xn; xnC1; xnC1/ � 1 for all n 2 N and
fxng is G-convergent to x 2 X, then ˇ .xn; x; x/ � 1 for all n 2 N.

Then there exists u 2 X such that Tu D u:

Proof. Following the argument in the proof of Theorem 8.2.1, we obtain that the
Picard sequence fxng converges to some u 2 X. From (8.11) and (iii), we have

ˇ .xn; u; u/ � 1 for all n � 0:

Using .G5/, .G4/, (8.10) and (8.11), we have that, for all n 2 N,

G .u;Tu;Tu/ � G .u;Txn;Txn/C G .Txn;Tu;Tu/

� G .u; xnC1; xnC1/C ˇ .xn; u; u/ G .Txn;Tu;Tu/

� G .u; xnC1; xnC1/C  .G .xn; u; u// :

Taking into account that  is continuous at t D 0, letting n ! 1, it follows that
G .u;Tu;Tu/ D 0, so u D Tu. ut

With the following examples, we will show that the hypotheses in Theo-
rems 8.2.1–8.2.2 do not guarantee uniqueness.
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Example 8.2.1. Let X D Œ0;1/ be endowed with the G-metric G.x; y; z/ D jx �
yj C jy � zj C jz � xj for all x; y 2 X. Consider the self-mapping T W X ! X and the
mapping ˇ W X � X � X ! Œ0;1/ given by

Tx D
8
<

:
2x � 7

4
; if x > 1;

x

4
; if 0 � x � 1I

ˇ.x; y; z/ D
�
1; if x; y; z 2 Œ0; 1�;
0; otherwise.

We claim that T is a G -ˇ - - contractive mapping of type A with respect to the
(c)-comparison function  .t/ D t=4 for all t � 0. To prove it, let x; y 2 X be points
such that ˇ .x; y;Tx/ > 0 (if ˇ .x; y;Tx/ D 0, condition (8.10) trivially holds).
Then ˇ .x; y;Tx/ D 1, which means that x; y;Tx 2 Œ0; 1�. In particular, Tx D x=4,
T2x D x=16 and Ty D y=4. Hence,

ˇ .x; y;Tx/ G.Tx;Ty;T2x/ D G
	 x

4
;

y

4
;

x

16



D

D
ˇ̌
ˇ
x

4
� y

4

ˇ̌
ˇC

ˇ̌
ˇ
x

4
� x

16

ˇ̌
ˇC

ˇ̌
ˇ

x

16
� y

4

ˇ̌
ˇ

D 1

4

	
jx � yj C

ˇ̌
ˇx � x

4

ˇ̌
ˇC

ˇ̌
ˇ
x

4
� y

ˇ̌
ˇ



D 1

4
G .x; y;Tx/ D  .G .x; y;Tx// :

Furthermore, for x0 D 1 we have that ˇ.1;T1;T1/ D ˇ.1; 1
4
; 1
4
/ D 1. As T

is continuous, to show that T satisfies all the hypothesis of Theorem 8.2.1, it is
sufficient to observe that T is ˇ-admissible. For this purpose, let x; y 2 X such that
ˇ.x; y; z/ � 1. In this case, x; y; z 2 Œ0; 1�. Hence Tx D x=4 2 Œ0; 1�, Ty D y=4 2
Œ0; 1� and Tz D z=4 2 Œ0; 1�, which implies that ˇ.Tx;Ty;Tz/ � 1. As a result, all the
conditions of Theorem 8.2.1 are satisfied. Theorem 8.2.1 guarantees the existence
of a fixed point of T , but not its uniqueness. In this example, 0 and 7

4
are two fixed

points of T .
Notice that Theorem 4.16, given by Mustafa as a characterization of the Banach

fixed point theorem, cannot be applied in this case because

G.T1;T2;T2/ D 4 > 2 D G.1; 2; 2/:

In the following example, T is not continuous.

Example 8.2.2. Let .X;G/ and ˇ be given as in Example 7.1.2, and let T and  be
given by

Tx D
8
<

:
2x � 7

4
; if x > 1;

x

3
; if 0 � x � 1I

 .t/ D t=3:
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Following the previous arguments, it is easy to show that, for all x; y 2 X,

ˇ.x; y;Tx/G.Tx;Ty;T2x/ � 1

4
G.x; y;Tx/ �  .G .x; y;Tx// :

Therefore, T is a G -ˇ - - contractive mapping of type A. Furthermore, the point
x0 D 1 satisfies ˇ.1;T1;T1/ D 1 and T is ˇ - admissible. However, T is not
continuous. In this case, we can prove hypothesis (iii) of Theorem 7.1.2. Indeed, let
fxng be a sequence such that ˇ.xn; xnC1; xnC1/ � 1 for all n 2 N and fxng ! x 2 X.
Since ˇ.xn; xnC1; xnC1/ � 1 for all n 2 N, then xn 2 Œ0; 1�, and as this interval is
closed, we deduce that x 2 Œ0; 1�. Thus, ˇ.xn; x; x/ � 1 for all n 2 N. As a result, all
the conditions of Theorem 8.2.2 are satisfied. Notice that Theorem 8.2.2 can only
guarantee the existence of a fixed point of T , but not its uniqueness. In fact, 0 and 7

4

are two fixed points of T .

The uniqueness of the fixed point can be deduced from an additional assumption.

Theorem 8.2.3. Under the hypotheses of Theorem 8.2.1 (respectively, Theo-
rem 8.2.2), also assume the following condition:

.U/ For all x; y 2 Fix.T/, there exists z 2 X such that ˇ .x; z; x/ � 1 and
ˇ .y; z; y/ � 1.

Then T has a unique fixed point.

Notice that the previous condition is different from what we introduced in
Theorem 7.1.3.

Proof. Let x; y 2 Fix.T/ be two fixed points of T . By .U/, there exists z 2 X such
that ˇ .x; z; x/ � 1 and ˇ .y; z; y/ � 1. We claim that the sequence fzn D Tnzgn�0
converges, at the same time, to x and to y and, hence, we will deduce that x D y.
The following argument only uses x, but it is also valid involving y. Since T is
ˇ - admissible, we get

ˇ .x; z; x/ � 1 ) ˇ .x;Tz; x/ D ˇ .Tx;Tz;Tx/ � 1;

and, by induction,

ˇ .x;Tnz;Tx/ D ˇ .x;Tnz; x/ � 1 for all n 2 N: (8.12)

From (8.10) and (8.12), we have that, for all n � 0,

G
�
x;TnC1z; x

� � ˇ .x;Tnz;Tx/ G
�
Tx;TTnz;T2x

�

�  .G .x;Tnz;Tx// D  .G .x;Tnz; x// :

Thus, we get, by induction, that

G .x;Tnz; x/ �  n .G .x; z; x// ; for all n 2 N:
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Letting n ! 1 and taking into account that  2 F .c/
com, we have that

fG .x;Tnz; x/g ! 0, so fTnzg ! x. Similarly, fTnzg ! y, so x D y by the
uniqueness of the limit. ut

8.3 Modified ˛ -� - Asymmetric Meir-Keeler
Contractive Mappings

In this section, we present some theorems inspired from Sect. 6.5, by introducing a
mapping ˛ W X � X ! Œ0;1/ on the contractivity condition. Recall that we denote
by Falt the family of continuous, non-decreasing functions � W Œ0;C1/ ! Œ0;C1/

such that �.t/ D 0 if, and only if, t D 0.

Definition 8.3.1 ([182]). Let .X;G/ be a G-metric space and let � 2 Falt and ˛ W
X � X ! Œ0;1/ be two functions. We say that T W X ! X is a modified ˛ -� -
asymmetric Meir-Keeler contractive mapping if, for all " > 0, there exists ı > 0

such that

x; y 2 X; ˛.x; y/ � 1;

" � �.G.x;Tx; y// < "C ı

�
) �.G.Tx;T2x;Ty// < ": (8.13)

Remark 8.3.1. If T W X ! X is a modified ˛ -� - asymmetric Meir-Keeler
contractive mapping and x; y 2 X are such that x ¤ Tx and ˛.x; y/ � 1, then

�.G.Tx;T2x;Ty// < �.G.x;Tx; y//: (8.14)

Definition 8.3.2. A function ˛ W X � X ! Œ0;1/ is transitive if, given x; y; z 2 X,

˛.x; y/ � 1; ˛.y; z/ � 1 ) ˛.x; z/ � 1:

A mapping T W X ! X is said to be ˛ - admissible if

˛.x; y/ � 1 ) ˛.Tx;Ty/ � 1:

Remark 8.3.2. If ˛.x; y/ � 1 for all x; y 2 X, then any mapping T W X ! X is
˛ - admissible. In particular, this property holds when ˛.x; y/ D 1 for all x; y 2 X.

Lemma 8.3.1. Let T W X ! X be an ˛ - admissible mapping and let fxngn�0 � X be
a Picard sequence of T based on a point x0 2 X. If x0 satisfies ˛.x0;Tx0/ � 1, then
˛.xn; xnC1/ � 1 for all n 2 N. Additionally, if ˛ is transitive, then ˛.xn; xm/ � 1 for
all n;m 2 N such that n < m.

Proof. The initial condition ˛.x0;Tx0/ � 1 means that ˛.x0; x1/ � 1. Since T
is an ˛ - admissible mapping, we have that ˛.Tx0;Tx1/ � 1, which means that
˛.x1; x2/ � 1. By induction, we deduce that ˛.xn; xnC1/ � 1 for all n 2 N.
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Now suppose that ˛ is transitive, and let n;m 2 N such that n < m. As

˛.xn; xnC1/ � 1; ˛.xnC1; xnC2/ � 1; : : : ; ˛.xm�1; xm/ � 1;

we deduce that ˛.xn; xm/ � 1 by the transitivity of ˛. ut
In order to prove the main result of this section, we need the following version

of Theorem 4.1.1.

Lemma 8.3.2. Let .X;G/ be a G-metric space and let fxng � X be a sequence such
that limn!1 G .xn; xn; xnC1/ D 0.

1. If fxng satisfies the following property:

for all " > 0, there exists n0 2 N such that

G .xn; xnC1; xm/ < " for all n;m 2 N with m > n � n0; (8.15)

then fxng is a Cauchy sequence in .X;G/.
2. If fxng is not a Cauchy sequence in .X;G/, then there exist "0 > 0 and two

subsequences fxn.k/g and fxm.k/g of fxng such that, for all k 2 N,

k < n.k/ < m.k/;

G
�
xn.k/; xn.k/C1; xm.k/�1

� � "0 < G
�
xn.k/; xn.k/C1; xm.k/

�
:

Furthermore,

lim
k!1 G

�
xn.k/; xn.k/C1; xm.k/

� D lim
k!1 G

�
xn.k/�1; xn.k/; xm.k/�1

� D "0:

Proof. Since limn!1 G .xn; xn; xnC1/ D 0, Lemma 3.1.1 shows that

lim
n!1 G .xn; xnC1; xnC1/ D 0:

(1) Fix " > 0 arbitrary. Let n1 2 N be such that

max fG .xn; xn; xnC1/ ;G .xn; xnC1; xnC1/g � "

8
for all n � n1:

By hypothesis, let n2 2 N be such that

G .xn; xnC1; xm/ <
"

8
for all n;m 2 N with m > n � n2:

Now let n0 D max .n1; n2/. Let n;m; p 2 N be such that n0 � n < m < p. Then

G
�
xn; xm; xp

� D G
�
xp; xm; xn

� � G
�
xp; xm; xm

�C G .xm; xm; xn/
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� G
�
xm; xm; xp

�C 2G .xm; xn; xn/

� G .xm; xmC1; xmC1/C G
�
xmC1; xm; xp

�

C 2 ŒG .xn; xnC1; xnC1/C G .xnC1; xn; xm/ �

� "

8
C "

8
C 2

h "
8

C "

8

i
D 3"

4
< ":

Therefore, fxng is a Cauchy sequence in .X;G/.
(2) If fxng is not a Cauchy sequence in .X;G/, then condition (8.15) cannot hold.

Then, there exists "0 > 0 and two subsequences fxn.k/g and fxm.k/g of fxng such
that, for all k 2 N,

k � n.k/ < m.k/ and "0 < G
�
xn.k/; xn.k/C1; xm.k/

�
:

If we choose m.k/ as the smallest integer, greater than n.k/, satisfying this
property, then m.k/� 1 does not verify it. Hence, G

�
xn.k/; xn.k/C1; xm.k/�1

� � "0
for all k 2 N. In particular, for all k 2 N,

"0 < G
�
xn.k/; xn.k/C1; xm.k/

�

� G
�
xm.k/; xm.k/�1; xm.k/�1

�C G
�
xm.k/�1; xn.k/; xn.k/C1

�

� G
�
xm.k/; xm.k/�1; xm.k/�1

�C "0:

Letting k ! 1 we deduce that

lim
k!1 G

�
xn.k/; xn.k/C1; xm.k/

� D "0:

From Lemma 4.1.4,

lim
k!1 G

�
xn.k/�1; xn.k/; xm.k/�1

� D "0; (8.16)

which finishes the proof. ut
Now, we are ready to state and prove the main result of this section.

Theorem 8.3.1 ([182]). Let .X;G/ be a G-complete G-metric space and let � 2
Falt and ˛ W X � X ! Œ0;1/ be two functions. Suppose that T W X ! X
is a modified ˛ -� - asymmetric Meir-Keeler contractive mapping such that the
following conditions hold:

(i) there exists x0 2 X such that ˛.x0;Tx0/ � 1

(ii) ˛ is transitive and T is ˛ - admissible;
(iii) T is continuous.

Then T has, at least, a fixed point.
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Proof. From (i), let x0 2 X be a point such that ˛.x0;Tx0/ � 1 and let fxngn�0 be the
Picard sequence of T based on x0, that is, xnC1 D Txn for all n 2 N. If there exists
some n0 2 N such that xn0C1 D xn0 , then xn0 is a fixed point of T . On the contrary
case, suppose that

Txn D xnC1 ¤ xn for all n 2 N;

that is,

G.xn; xnC1; xnC1/ > 0 for all n 2 N: (8.17)

From Lemma 8.3.1 we get

˛.xn; xm/ � 1 for all m; n 2 N such that n < m: (8.18)

By (8.14) and (8.18), we observe that, for all n 2 N,

�.G.xnC1; xnC2; xnC2// D �.G.Txn;T
2xn;TxnC1//

< �.G.xn;Txn; xnC1// D �.G.xn; xnC1; xnC1// (8.19)

Therefore, f�.G.xn; xnC1; xnC1//gn2N is a decreasing sequence of nonnegative real
numbers. Hence, it is convergent. Let L � 0 be its limit. We claim that L D 0.
Suppose, on the contrary, that L > 0. Thus, we have

0 < L < �.G.xn; xnC1; xnC1// for all n 2 N: (8.20)

Assume " D L > 0. As T is a modified ˛ -� - asymmetric Meir-Keeler contractive
mapping, there exists ı > 0 such that (8.13) holds. On the other hand, as
f�.G.xn; xnC1; xnC1//g & L, then there exists n0 2 N such that

" � �.G.xn0 ; xn0C1; xn0C1// D �.G.xn0 ;Txn0 ; xn0C1// < "C ı: (8.21)

Taking the condition (8.13) into account, the expression (8.21) yields that

�.G.xn0C1; xn0C2; xn0C2// D �.G.Txn0 ;T
2xn0 ;Txn0C1// < " D L (8.22)

which contradicts (8.20). Hence L D 0, that is,

lim
n!1�.G.xn; xnC1; xnC1/ D 0:

Since � 2 Falt, we deduce, by Lemma 2.3.3, that

lim
n!1 G.xn; xnC1; xnC1/ D 0:
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Moreover, by Lemma 3.1.1,

lim
n!1 G.xn; xn; xnC1/ D 0:

In fact, by Proposition 2.3.4, we have that

G.xnC1; xnC2; xnC2/ < G.xn; xnC1; xnC1/ for all n 2 N:

We now show that fxng1
nD0 is a Cauchy sequence in .X;G/ reasoning by

contradiction. Assume that fxng is not a Cauchy sequence in .X;G/. By item 2 of
Lemma 8.3.2, there exists "0 > 0 and two subsequences fxn.k/g and fxm.k/g of fxng
such that, for all k � 0,

k � n.k/ < m.k/;

G
�
xn.k/; xn.k/C1; xm.k/�1

� � "0 < G
�
xn.k/; xn.k/C1; xm.k/

�
; (8.23)

and

lim
k!1 G

�
xn.k/; xn.k/C1; xm.k/

� D lim
k!1 G

�
xn.k/�1; xn.k/; xm.k/�1

� D "0:

As � is non-decreasing,

� ."0/ � �.G
�
xn.k/; xn.k/C1; xm.k/

�
/ for all k 2 N: (8.24)

Let k0 2 N be a number such that

"0

2
< G

�
xn.k/�1; xn.k/; xm.k/�1

�
for all k � k0: (8.25)

Let "1 D � ."0/ > 0. As � is continuous,

lim
k!1�.G

�
xn.k/; xn.k/C1; xm.k/

�
/ D � ."0/ D "1: (8.26)

As T is a modified ˛ -� - asymmetric Meir-Keeler contractive mapping, for "1 > 0,
there exists ı1 > 0 such that

if x; y 2 X and ˛ .x; y/ � 1;

"1 � �.G.x;Tx; y// < "1 C ı1 ) �.G.Tx;T2x;Ty// < "1 D � ."0/ :

(8.27)

If there exists some k0 2 N, with k0 � k0, such that

G.xn.k0/�1; xn.k0/; xm.k0/�1/ � "0;
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it follows from (8.14), (8.18) and (8.25) that

Txn.k0/�1 D xn.k0/ ¤ xn.k0/�1; ˛.xn.k0/�1; xm.k0/�1/ � 1

) �.G.Txn.k0/�1;T2xn.k0/�1;Txm.k0/�1//

< �.G.xn.k0/�1;Txn.k0/�1; xm.k0/�1//

) �.G.xn.k0/; xn.k0/C1; xm.k0///

< �.G.xn.k0/�1; xn.k0/; xm.k0/�1// � � ."0/ D "1;

but this is impossible because by (8.23),

"0 < G
�
xn.k/; xn.k/C1; xm.k/

�

) "1 D � ."0/ � �.G.xn.k0/; xn.k0/C1; xm.k0///:

As a result, such a k0 cannot exist, so

G.xn.k/�1; xn.k/; xm.k/�1/ > "0 for all k � k0:

As � is non-decreasing,

"1 D � ."0/ � �.G.xn.k/�1; xn.k/; xm.k/�1// for all k � k0:

Moreover, by (8.26), there exists some 
 � k0 such that

"1 � �.G.xn.
/�1;Txn.
/�1; xm.
/�1// < "1 C ı1:

Taking into account that ˛.xn.
/�1; xm.
/�1/ � 1 by (8.18) and using (8.27), we
conclude that

�.G.xn.
/; xn.
/C1; xm.
/// D �.G.Txn.
/�1;T2xn.
/�1;Txm.
/�1//

< "1 D � ."0/ ;

but this is a contradiction with (8.24). This contradiction proves that fxng is a Cauchy
sequence in .X;G/. As .X;G/ is complete, there exists u 2 X such that fxng ! u.
As T is continuous, then fxnC1 D Txng ! Tu, and the uniqueness of the limit in a
G-metric space we conclude that Tu D u. ut

In order to avoid the continuity of T in the previous result, we introduce the
following notion.

Definition 8.3.3. Let .X;G/ be a G-metric space and let ˛ W X � X ! Œ0;1/ be
a function. We say that .X;G/ is ˛-non-decreasing-regular if ˛ .xn; u/ � 1 for all
n 2 N provided that fxng � X and u 2 X are such that fxng ! u and ˛ .xn; xnC1/ � 1

for all n 2 N.
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Theorem 8.3.2 ([182]). Let .X;G/ be a G-complete G-metric space and let � 2
Falt and ˛ W X � X ! Œ0;1/ be two functions. Suppose that T W X ! X
is a modified ˛ -� - asymmetric Meir-Keeler contractive mapping such that the
following conditions hold:

(i) there exists x0 2 X such that ˛.x0;Tx0/ � 1

(ii) ˛ is transitive and T is ˛ - admissible;
(iii) .X;G/ is ˛-non-decreasing-regular.

Then T has, at least, a fixed point.

Proof. Following the proof in Theorem 8.3.1, we may deduce that there exists u 2 X
such that fxnC1 D Txng ! u and (8.18) holds. Since .X;G/ is ˛-non-decreasing-
regular, we have that

˛ .xn; u/ � 1 for all n 2 N:

Since Txn D xnC1 ¤ xn for all n, by Remark 8.3.1 we have that

�.G.xnC1; xnC2;Tu// D �.G.Txn;T
2xn;Tu//

< �.G.xn;Txn; u// D �.G.xn; xnC1; u//:

As G and � are continuous, limn!1 �.G.xn; xnC1; u// D � .G .u; u; u// D � .0/ D
0, so

�.G.u; u;Tu// D lim
n!1�.G.xnC1; xnC2;Tu// D 0:

As � 2 Falt, we deduce that G.u; u;Tu/ D 0, so Tu D u. ut
Example 8.3.1. Let X D Œ0;1/ and define G W X3 ! Œ0;1/ by

G.x; y; z/ D
�
0; if x D y D z;
maxfx; yg C maxfy; zg C maxfx; zg; otherwise.

Clearly, .X;G/ is a complete G-metric space. Define T W X ! X, ˛ W X�X ! Œ0;1/

and � W Œ0;1/ ! Œ0;1/ by

Tx D
�
1
4
x; if x 2 Œ0; 1�;

x2 C 2jx � 2jjx � 3j ln x; if x > 1I �.t/ D t

˛.x; y/ D
�
8; if x; y 2 Œ0; 1�;
0; otherwise.

Let x; y 2 X be such that ˛.x; y/ � 1. Then x; y 2 Œ0; 1�. At first, assume that x � y:
Then,
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G.x;Tx; y/ D maxfx;Txg C maxfTx; yg C maxfx; yg D x C 2y

and

G.Tx;T2x;Ty/ D maxfTx;T2xg C maxfT2x;Tyg C maxfTx;Tyg

D 1

4
.x C 2y/ D 1

4
G.x;Tx; y/:

Next, assume that, y < x. Then,

G.x;Tx; y/ D maxfx;Txg C maxfTx; yg C maxfx; yg

D 2x C max

�
1

4
x; y

�
;

and

G.Tx;T2x;Ty/ D maxfTx;T2xg C maxfT2x;Tyg C maxfTx;Tyg

D 1

4

�
2x C max

�
1

4
x; y

��
D 1

4
G.x;Tx; y/:

Let " > 0 be arbitrary. Using ı D 3" > 0, condition (8.13) holds. Again if
˛.x; y/ � 1, then x; y 2 Œ0; 1�. On the other hand for all w 2 Œ0; 1�, we have
Tw � 1. Hence ˛.Tx;Ty/ � 1. Further, if ˛.x; y/ � 1 and ˛.y; z/ � 1, then
x; y; z 2 Œ0; 1�. Thus ˛.x; z/ � 1. This implies that T is an ˛ - admissible mapping.
Clearly, ˛.0;T0/ � 1.

Although T is not continuous, we can apply Theorem 8.3.2. Indeed, let fxng be
a sequence in X such that ˛.xn; xnC1/ � 1 for all n 2 N and fxng ! x. Then
fxng � Œ0; 1� and, hence, x 2 Œ0; 1�. This implies that ˛.xn; x/ � 1 for all n 2 N.
Thus, all the conditions of Theorem 8.3.2 hold and T has a fixed point.

Notice that Theorems 6 and 8 of [116] cannot be applied for this example
because, although " � �.d.0; 1// D 1 < " C ı for " D 1 and ı > 0 arbitrary
(where d is a Euclidean metric on X), we have that

˛.0; 1/�.d.T0;T1// D 8
1

4
D 2 > 1 D �.d.0; 1// � ":

From Theorem 8.3.1 we can deduce the following corollary, using � .t/ D t for
all t � 0.

Corollary 8.3.1 ([182]). Let .X;G/ be a complete G-metric space and let ˛ W X �
X ! Œ0;1/ be a transitive function. Suppose that T W X ! X is an ˛ - admissible
mapping satisfying the following condition:



8.3 Modified Asymmetric Meir-Keeler Mappings 215

for each " > 0, there exists ı > 0 such that

x; y 2 X; ˛.x; y/ � 1;

" � G.x;Tx; y/ < "C ı

�
) G.Tx;T2x;Ty/ < ":

If there exists x0 2 X such that ˛.x0;Tx0/ � 1 and T is continuous, then T has, at
least, a fixed point.

From Theorem 8.3.2 we can deduce the following result.

Corollary 8.3.2 ([182]). Let .X;G/ be a complete G-metric space and let ˛ W X �
X ! Œ0;1/ be a transitive function. Suppose that T W X ! X is an ˛ - admissible
mapping satisfying the following condition:

for each " > 0, there exists ı > 0 such that

x; y 2 X; ˛.x; y/ � 1;

" � G.x;Tx; y/ < "C ı

�
) G.Tx;T2x;Ty/ < ":

If there exists x0 2 X such that ˛.x0;Tx0/ � 1 and .X;G/ is ˛-non-decreasing-
regular, then T has, at least, a fixed point.

By taking ˛.x; y/ D 1 for all x; y 2 X, in the above corollary we deduce the
following result.

Corollary 8.3.3 ([182]). Let .X;G/ be a complete G-metric space and let T W X !
X be a self-mapping satisfying the following condition:

for each " > 0, there exists ı > 0 such that

x; y 2 X; " � G.x;Tx; y/ < "C ı ) G.Tx;T2x;Ty/ < ":

Then T has, at least, a fixed point.

8.3.1 Fixed Point Results in Partially Ordered G-Metric Spaces

In the following result we show how a binary relation 4 induces an appropriate
function ˛4.

Corollary 8.3.4 ([182]). Let .X;G;4/ be an ordered complete G-metric space, let
T W X ! X be a 4-non-decreasing mapping and let � 2 Falt. Assume that, given
" > 0, there exists ı > 0 such that

x; y 2 X; x 4 y;
" � �.G.x;Tx; y// < "C ı

�
) �.G.Tx;T2x;Ty// < ": (8.28)

Suppose that T is continuous and there exists x0 in X such that x0 4 Tx0. Then T
has, at least, a fixed point.
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Proof. Define the mapping ˛4 W X � X ! Œ0;1/ given, for all x; y 2 X, by

˛4.x; y/ D
�
1; if x 4 y;
0; otherwise.

(8.29)

Since T is 4-non-decreasing mapping, then

˛4.x; y/ � 1 ) x 4 y ) Tx 4 Ty ) ˛4.Tx;Ty/ � 1:

Hence, T is ˛ - admissible. The point x0 such that x0 4 Tx0 satisfies
˛4 .x0;Tx0/ � 1. Moreover, as 4 is transitive, then ˛4 is transitive. Finally,
condition (8.28) means that T W X ! X is a modified ˛4 -� - asymmetric Meir-
Keeler contractive mapping. Therefore, all the hypotheses of Theorem 8.3.1 are
satisfied and, hence, T has, at least, a fixed point in X. ut

In the following corollary, we replace the continuity of T by the non-decreasing-
regularity of .X;G;4/ (recall Definition 5.2.1).

Corollary 8.3.5 ([182]). Let .X;G;4/ be an ordered complete G-metric space, let
T W X ! X be a 4-non-decreasing mapping and let � 2 Falt. Assume that, given
" > 0, there exists ı > 0 such that

x; y 2 X; x 4 y;
" � �.G.x;Tx; y// < "C ı

�
) �.G.Tx;T2x;Ty// < ":

Suppose that .X;G;4/ is non-decreasing-regular and there exists x0 in X such that
x0 4 Tx0. Then T has, at least, a fixed point.

Proof. It is only necessary to consider the function ˛4 given in (8.29). Then,
Theorem 8.3.2 is applicable. ut

We can also deduce the following corollaries from the above theorems, taking
� .t/ D t for all t � 0.

Corollary 8.3.6 ([182]). Let .X;G;4/ be an ordered complete G-metric space and
let T W X ! X be a 4-non-decreasing mapping. Assume that, given " > 0, there
exists ı > 0 such that

" � G.x;Tx; y/ < "C ı ) G.Tx;T2x;Ty/ < "

for all x; y 2 X with x 4 y. Also suppose that T is continuous and that there exists
x0 in X such that x0 4 Tx0. Then T has, at least, a fixed point.

Corollary 8.3.7 ([182]). Let .X;G;4/ be an ordered complete G-metric space and
let T W X ! X be a 4-non-decreasing mapping. Assume that, given " > 0, there
exists ı > 0 such that
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" � G.x;Tx; y/ < "C ı ) G.Tx;T2x;Ty/ < "

for all x; y 2 X with x 4 y. Also suppose that .X;G;4/ is non-decreasing-regular
and that there exists x0 in X such that x0 4 Tx0. Then T has, at least, a fixed point.

8.3.2 Fixed Point Results for Orbitally G-Continuous
Mappings

Following the techniques given in Sect. 6.5.2, we can deduce the following results
in the context of orbitally G-continuous mappings (recall Definition 6.5.3).

Theorem 8.3.3. Let .X;G/ be a G-metric space and let T W X ! X be a self-
mapping. Assume that, given " > 0, there exist � 2 Falt and ı > 0 such that

" � �.G.x;Tx; y// < "C ı ) �.G.Tx;T2x;Ty// < " (8.30)

for all distinct points x; y 2 OT.x/ with Tx D y. Suppose also that:

.C/ for some x0 2 X, the orbit OT.x0/ of x0 with respect to T has a cluster point
z 2 X.

If T is orbitally G-continuous at z, then z is a fixed point of T in OT.x0/.

Corollary 8.3.8 ([182]). Let .X;G/ be a G-metric space and let T W X ! X be a
self-mapping. Assume that, given " > 0, there exists ı > 0 such that

" � G.x;Tx; y/ < "C ı ) G.Tx;T2x;Ty/ < "

for all distinct x; y 2 OT.x/ with Tx D y. Suppose also that:

.C/ for some x0 2 X, the orbit OT.x0/ of x0 with respect to T has a cluster point
z 2 X.

If T is orbitally G-continuous at z, then z is a fixed point of T in OT.x0/.



Chapter 9
Expansive Mappings

In this chapter we present some fixed point theorems for expansive mappings.

9.1 Fixed Point Theorems for Expansive Mappings
on G-Metric Spaces

In this section, we establish some fixed point results for expansive mappings in the
frameworks of G-metric spaces.

Definition 9.1.1. A mapping T W X ! X from a G-metric space .X;G/ into itself is
said to be:

• expansive of type I if there exists � > 1 such that

G.Tx;Ty;Tz/ � �G.x; y; z/ for all x; y; z 2 X:

• expansive of type II if there exists � > 1 such that

G.Tx;Tx;Ty/ � �G.x; x; y/ for all x; y 2 X:

To prove the main result of the section, we recall that if T W X ! X is onto, then
there exists a mapping T 0 W X ! X such that T ı T 0 is the identity mapping on X
(see Proposition 2.1.1).

Theorem 9.1.1. Let .X;G/ be a complete G-metric space and let T W X ! X be an
onto mapping such that there exist  2 Falt and � 2 F 0

alt satisfying

 .G .x; x; y// �  .G .Tx;Tx;Ty// � � .G .Tx;Tx;Ty// (9.1)

for all x; y 2 X. Then T has a unique fixed point.
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Proof. From Proposition 2.1.1, since T is onto, there exists a mapping T 0 W X ! X
such that T ı T 0 is the identity mapping on X. Let x; y 2 X be arbitrary points and let
z D T 0x and w D T 0y. By using (9.1) applied to z and w, we have that

 .G .z; z;w// �  .G .Tz;Tz;Tw// � � .G .Tz;Tz;Tw// :

Since Tz D TT 0x D x and Tw D TT 0y D y, then

 
�
G
�
T 0x;T 0x;T 0y

�� �  .G .x; x; y// � � .G .x; x; y// :

From Theorem 4.2.3, T 0 has a unique fixed point u 2 X. In particular, u is also a
fixed point of T because T 0u D u implies that Tu D TT 0u D u. If u; v 2 Fix.T/
were two distinct fixed points of T , then we would get the contradiction

 .G .u; u; v// �  .G .Tu;Tu;Tv// � � .G .Tu;Tu;Tv//

D  .G .u; u; v// � � .G .u; u; v// <  .G .u; u; v// ;

so the fixed point of T is unique. ut
Remark 9.1.1. If T is not onto, the previous result is false. For example, consider
X D .�1; 1� [ Œ1;1/ endowed with the G-metric G.x; y; z/ D jx � yj C jx � zj C
jy � zj for all x; y; z 2 X, and let T W X ! X be defined by Tx D �2x for all x 2 X.
Then T has no fixed point although it satisfies (9.1) when  .t/ D t and �.t/ D t=2
for all t � 0.

Corollary 9.1.1. Let .X; q/ be a complete quasi-metric space and let T W X ! X
be an onto mapping such that there exists � 2 F 0

alt satisfying

G .x; x; y/ � G .Tx;Tx;Ty/ � � .G .Tx;Tx;Ty//

for all x; y 2 X. Then T has a unique fixed point.

Proof. It is only necessary to consider  .t/ D t for all t � 0 in Theorem 9.1.1. ut
Corollary 9.1.2. Let .X;G/ be a complete G-metric space and let T W X ! X be
an onto mapping such that there exist  2 Falt and � 2 F 0

alt satisfying

 .G .x; y; z// �  .G .Tx;Ty;Tz// � � .G .Tx;Ty;Tz//

for all x; y; z 2 X. Then T has a unique fixed point.

Proof. It is only necessary to take z D x and apply Theorem 9.1.1. ut
Using  .t/ D t for all t � 0, we deduce the following particular case.

Corollary 9.1.3. Let .X;G/ be a complete G-metric space and let T W X ! X be
an onto mapping such that there exists � 2 F 0

alt satisfying
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G .x; y; z/ � G .Tx;Ty;Tz/ � � .G .Tx;Ty;Tz//

for all x; y; z 2 X. Then T has a unique fixed point.

Corollary 9.1.4. Any onto, expansive mapping (of type I or type II) from a complete
G-metric space into itself has a unique fixed point.

Proof. It follows by taking �.t/ D .1 � �/t for all t � 0 in Corollaries 9.1.1
and 9.1.3. ut

Next, we combine expansive mappings with contractivity conditions in which the
mapping T appears in both sides of the inequality.

Theorem 9.1.2 ([24]). Let .X;G/ be a complete G-metric space and T W X ! X be
a onto mapping. Suppose that there exists � > 1 such that

G.Tx;T2x;Ty/ � �G.x;Tx; y/ for all x; y 2 X: (9.2)

Then T has a unique fixed point.

Proof. Let x0 2 X be arbitrary. Since T is onto, there exists x1 2 X such that x0 D
Tx1. By continuing this process, we can find a sequence fxng such that xn D TxnC1
for all n 2 N. If there exists some n0 2 N such that xn0 D xn0C1, then xn0C1 is a fixed
point of T . Now assume that xn ¤ xnC1 for all n 2 N. From (9.2) with x D xnC1 and
y D xn we have that, for all n � 1,

G.xn; xn�1; xn�1/ D G.TxnC1;T2xnC1;Txn/

� �G.xnC1;TxnC1; xn/ D �G.xnC1; xn; xn/

which implies that

G.xnC1; xn; xn/ � hG.xn; xn�1; xn�1/

where h D 1

�
< 1. Then we have,

G.xnC1; xn; xn/ � hn G.x0; x1; x1/

From Lemma 3.1.1 we get,

G.xn; xnC1; xnC1/ � 2G.xnC1; xn; xn/ � 2hn G.x0; x1; x1/:

Following the proof of Theorem 6.1.1, we derive that fxng is a Cauchy sequence.
Since, .X;G/ is complete, there exists z 2 X such that fxng ! z. As T is onto, there
exists w 2 X such that z D Tw. From (9.2) with x D xnC1 and y D w we have that,
for all n � 1,
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G.xn; xn�1; z/ D G.TxnC1;T2xnC1;Tw/

� �G.xnC1;TxnC1;w/ D �G.xnC1; xn;w/:

Taking the limit as n ! 1 in the above inequality we get,

G.z; z;w/ D lim
n!1 G.xn; xn�1; z/ D 0;

that is, z D w. Then, z is a fixed point of T because z D Tw D Tz. To prove
uniqueness, suppose that u; v 2 Fix.T/ are two fixed points of T . If u ¤ v, again
by (9.2), we get

G.u; u; v/ D G.Tu;T2u;Tv/ � �G.u;Tu; v/ � �G.u; u; v/ > G.u; u; v/

which is a contradiction. Hence, u D v. ut
Theorem 9.1.3 ([24]). Let .X;G/ be a complete G-metric space and let T W X ! X
be an onto mapping. Suppose that there exists � > 1 such that

G.Tx;Ty;T2y/ � �G.x;Tx;T2x/ for all x; y 2 X: (9.3)

Then T has, at least, a fixed point.

Proof. As in the previous proof, given an arbitrary point x0 2 X, let fxng be a
sequence such that xn D TxnC1 for all n 2 N. If there exists some n0 2 N such
that xn0 D xn0C1, then xn0C1 is a fixed point of T . Now assume that xn ¤ xnC1 for all
n 2 N. From (9.3) with x D xnC1 and y D xn we have

G.TxnC1;Txn;T
2xn/ � �G.xnC1;TxnC1;T2xnC1/;

which implies

G.xn; xn�1; xn�2/ � �G.xnC1; xn; xn�1/;

and so,

G.xnC1; xn; xn�1/ � hG.xn; xn�1; xn�2/

where h D 1

�
< 1. Mimicing the proof of Theorem 6.1.1, we can show that fxng is

a Cauchy sequence. Since, .X;G/ is a complete G-metric space, there exists z 2 X
such that fxng ! z. As T is onto, there exists w 2 X such that z D Tw. From (9.3)
with x D w and y D xnC1 we have,

G.z; xn; xn�1/ D G.Tw;TxnC1;T2xnC1/ � �G.w;Tw;T2w/:

Taking the limit as n ! 1 in the above inequality, we deduce that
G.w;Tw;T2w/ D 0, that is, w D Tw D T2w. ut
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9.2 Fixed Point Theorems for .˛; ;�/-Expansive Mappings

In this section, we present a new expansivity condition and we prove some new fixed
point results, avoiding the condition “T is onto”.

If T W X ! X is an onto mapping, based on each x0 2 X, there exists a sequence
fxng � X such that

TxnC1 D xn for all n � 0: (9.4)

A sequence fxng verifying (9.4) is not necessarily unique.

Definition 9.2.1. We say that a sequence fxng � X is an inverse Picard sequence
of T W X ! X based on x0 if TxnC1 D xn for all n � 0.

Definition 9.2.2. An operator T W X ! X from a quasi-metric space .X; q/ into
itself is said to be inverse Picard-continuous if for all convergent inverse Picard
sequence fxng of T we have that

T
	

lim
n!1 xn



D lim

n!1 Txn:

Remark 9.2.1. 1. If T is continuous on .X; q/, then T is inverse Picard-continuous.
2. An operator T is inverse Picard-continuous if, and only if, the limit of any

convergent inverse Picard sequence is a fixed point of T .

Definition 9.2.3. Let .X; q/ be a quasi-metric space and let T W X ! X be a
mapping. We say that T is an .˛;  ; �/-expansive mapping if there exist three
functions ˛ W X � X ! Œ0;1/,  2 Falt and � 2 ˆ such that, for all x; y 2 X,

˛.x; y/
	
 .q.x; y//C �.q.x; y//



�  .q.Tx;Ty//: (9.5)

In the following result we do not suppose that T is onto.

Theorem 9.2.1. Let .X; q/ be a quasi-metric space and let T W X ! X be an
.˛;  ; �/-expansive mapping. Assume that there exists an inverse Picard sequence
fxng of T satisfying ˛.xn; xm/ � 1 for all n;m � 1 such that n ¤ m. Then fxng is a
Cauchy sequence in .X; q/.

Furthermore, if .X; q/ is complete and T is an inverse Picard-continuous
mapping (or a continuous mapping), then fxng converges to a fixed point of T.
In particular, T has a fixed point.

In addition to this, if ˛.u; v/ � 1 for all u; v 2 Fix.T/, then T has a unique fixed
point.

Proof. If there exists some n0 2 N such that xn0 D xn0C1, then xn0 is a fixed point
of T . On the contrary case, assume that xn ¤ xnC1 for all n 2 N. In particular,
q.xn; xnC1/ > 0 and q.xnC1; xn/ > 0 for all n � 0. Applying (9.5) to x D xnC2,
we obtain
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 .q.xnC1; xn// D  .q.TxnC2;T2xnC2//
� ˛ .xnC2;TxnC2/ Œ  .q.xnC2;TxnC2//C �.q.xnC2;TxnC2// �
D ˛ .xnC2; xnC1/ Œ  .q.xnC2; xnC1//C �.q.xnC2; xnC1// �
�  .q.xnC2; xnC1//C �.q.xnC2; xnC1//
>  .q.xnC2; xnC1// (9.6)

for all n � 0. Regarding the properties of the functions  and �, we derive that

q.xnC2; xnC1/ � q.xnC1; xn/ for all n � 1:

Therefore fq.xnC1; xn/g is a decreasing sequence in .0;1/ and, thus, it is conver-
gent. Let L 2 .0;1/ be its limit. We claim that L D 0. Suppose, on the contrary,
that L > 0. Since � is lower semi-continuous,

�.L/ � lim inf
n!1 �.q.xnC2; xnC1//;

and taking into account that  is continuous,

lim inf
n!1  .q.xnC1; xn// D lim

n!1 .q.xnC1; xn// D  .L/;

lim inf
n!1  .q.xnC2; xnC1// D lim

n!1 .q.xnC2; xnC1// D  .L/:

Therefore, taking the limit inferior as n ! 1 in (9.6) we get  .L/ �  .L/C�.L/,
which implies that �.L/ D 0. Therefore, L D 0, which is a contradiction. Hence, we
have that limn!1 q.xnC1; xn/ D 0. As the expansive condition (9.5) is symmetric
on x and y, in the same way we can deduce that limn!1 q.xn; xnC1/ D 0. Therefore

lim
n!1 q.xnC1; xn/ D lim

n!1 q.xn; xnC1/ D 0: (9.7)

Next, we show that the sequence fxng is left-Cauchy in .X; q/ reasoning by
contradiction. Suppose, on the contrary, that fxng is not left-Cauchy. Reasoning as
in the proof of Theorem 4.1.1, there exists " > 0 for which one can find two partial
subsequences fxn.k/g and fxm.k/g of fxng such that

q.xn.k/�1; xm.k// � " < q.xn.k/; xm.k//; n.k/ > m.k/ � k for all k � 1; (9.8)

lim
k!1 q.xn.k/; xm.k// D lim

k!1 q.xn.k/�1; xm.k/�1/ D ": (9.9)

Regarding (9.7) and the contractivity condition (9.5), we have that, for all k,

 .q.xn.k/�1; xm.k/�1// D  .q.Txn.k/;Txm.k///

� ˛.xn.k/; xm.k//
	
 .q.xn.k/; xm.k///C �.q.xn.k/; xm.k///




�  .q.xn.k/; xm.k///C �.q.xn.k/; xm.k///: (9.10)
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Since  is continuous and � is lower semi-continuous, using (9.9),

�."/ � lim inf
n!1 �.q.xn.k/; xm.k///;

lim inf
n!1  .q.xn.k/; xm.k/// D lim

n!1 .q.xn.k/; xm.k/// D  ."/;

lim inf
n!1  .q.xn.k/�1; xm.k/�1// D lim

n!1 .q.xn.k/�1; xm.k/�1// D  ."/:

Then, taking the limit inferior in (9.10) as n ! 1, we deduce that  .L/ �  .L/C
�.L/, which implies that �.L/ D 0. Therefore, L D 0, which is a contradiction. As
a consequence, the sequence fxng is left-Cauchy in .X; q/. Analogously, it can be
proved that fxng is a right-Cauchy sequence, so it is Cauchy.

Now assume that .X; q/ is complete and T is an inverse Picard-continuous
mapping. In this case, fxng is a convergent sequence in .X; q/ and item 2 of
Remark 9.2.1 guarantees that its limit is a fixed point of T . The uniqueness of the
fixed point directly follows from (9.5) applied to u; v 2 Fix.T/, which leads to
�.q.u; v// D 0, so u D v. ut
Corollary 9.2.1. Let .X; q/ be a complete quasi-metric space and let T W X ! X
be an inverse Picard-continuous mapping such that there exist  2 Falt and � 2 ˆ
satisfying, for all x; y 2 X,

 .q.x; y//C �.q.x; y// �  .q.Tx;Ty//:

If there exists an inverse Picard sequence fxng of T, then fxng converges to a fixed
point of T. In such a case, T has a unique fixed point.

Corollary 9.2.2. Let .X; q/ be a complete quasi-metric space and let T W X ! X
be an inverse Picard-continuous mapping such that there exist two functions ˛ W
X � X ! Œ0;1/ and � 2 ˆ satisfying, for all x; y 2 X,

˛.x; y/
	

q.x; y/C �.q.x; y//



� q.Tx;Ty/:

If there exists an inverse Picard sequence fxng of T such that ˛.xn; xm/ � 1 for all
n;m � 1 satisfying n ¤ m, then fxng converges to a fixed point of T. In such a case,
T has a fixed point.

In addition to this, if ˛.u; v/ � 1 for all u; v 2 Fix.T/, then T has a unique fixed
point.

A simple way in which we can easily ensure that there exists an inverse Picard
sequence of T (a necessary condition in the last two corollaries) is to assume that T
is onto. In this case, we have that the limit of any inverse Picard sequence of T is a
fixed point of T .
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9.3 Fixed Point Theorems on Quasi-metric Spaces Using
Expansivity Conditions Depending on a Unique Variable

In this section we study existence of fixed points under expansivity conditions
depending on a unique variable. Given an operator T W X ! X, we are interested in
quasi-metrics satisfying the following property.

.RT/ Any inverse Picard sequence of T which is left-Cauchy in .X; q/ is also
right-Cauchy in .X; q/.

By item 1 of Lemma 3.3.1, examples of such quasi-metrics are the quasi-metrics
q D qG (or q D q0

G) associated to G-metrics G.

Theorem 9.3.1. Let .X; q/ be a quasi-metric space and let T W X ! X, ˛ W X�X !
Œ0;1/ and ' 2 Fcom be three mappings such that

˛.x;Tx/q.x;Tx/ � '.q.Tx;T2x// for all x 2 X: (9.11)

Suppose that there exists an inverse Picard sequence fxng of T such that
˛.xnC1; xn/ � 1 for all n � 1. Then fxng is left-Cauchy in .X; q/.

Furthermore, assume that .X; q/ is complete, T is an inverse Picard-continuous
mapping and q satisfies the condition .RT/. Then fxng converges to a fixed point
of T. In particular, T has a fixed point.

Recall that the existence of inverse Picard sequences fxng of T is guaranteed if T
is onto.

Proof. Apply the expansivity condition to x D xnC2, obtaining, for all n � 1,

q.xnC2; xnC1/ � ˛.xnC2; xnC1/q.xnC2; xnC1/

D ˛.xnC2;TxnC2/q.xnC2;TxnC2/

� '.q.TxnC2;T2xnC2// D '.q.xnC1; xn//:

Repeating the argument in the proof of Theorem 9.2.1, we deduce that fxng is left-
Cauchy in .X; q/. The second part is as follows: by condition .RT/, fxng is a Cauchy
sequence in .X; q/; by the completeness, fxng is a convergent sequence in .X; q/; and
the limit of fxng is a fixed point of T because it is inverse Picard-continuous. ut
Corollary 9.3.1. Let .X; q/ be a complete quasi-metric space and let T W X ! X
be an inverse Picard-continuous operator for which there exists ' 2 Fcom such that

q.x;Tx/ � '.q.Tx;T2x// for all x 2 X:

Suppose that q satisfies the condition .RT/ and there exists an inverse Picard
sequence fxng of T. Then fxng converges to a fixed point of T. In particular, T has a
fixed point.
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We particularize the previous result to G-metric spaces. For example, the
following result can be found on [24].

Theorem 9.3.2 ([24]). Let .X;G/ be a complete G-metric space and be T W X ! X
be an onto mapping satisfying the following condition for all x; y 2 X:

G.Tx;T2x;Ty/ � �G.x;Tx; y/ (9.12)

where � > 1. Then T has a unique fixed point.

Corollary 9.3.2. Theorem 9.3.2 follows from Corollary 9.3.1.

Proof. The function '1=�, defined by '1=�.t/ D .1=�/ t for all t � 0, satisfies '1=� 2
Fcom because 1=� 2 .0; 1/. Letting y D Tx in the expansive condition (9.12), we
have that, for all x 2 X,

�qG.x;Tx/ D �G.x;Tx;Tx/ � G.Tx;T2x;T2x/ D qG.Tx;T2x/;

so qG.x;Tx/ � .1=�/ qG.Tx;T2x/ D '1=�.qG.Tx;T2x//. Since T is onto, there exists
an inverse Picard sequence fxng of T . We now show that T is an inverse Picard-
continuous mapping. Let fxng be any inverse Picard sequence of T converging to
u 2 X and we claim that u is a fixed point of T . Since T is onto, there exists z 2 X
such that Tz D u. Applying condition (9.12) to x D xnC2 and y D z;

G.xnC1; xn; u/ D G.TxnC2;T2xnC2;Tz/ � �G.xnC2;TxnC2; z/

D �G.xnC2; xnC1; z/:

Letting n ! 1 in the previous inequality, we deduce that 0 D G.u; u; u/ � �

G.u; u; z/ � 0, so z D u D Tz and z is a fixed point of T . In particular, Tu D Tz D u,
and u is a fixed point of T . This concludes that T is an inverse Picard-continuous
mapping. Corollary 9.3.1 guarantees that T has a fixed point. The uniqueness
directly follows from (9.12). ut



Chapter 10
Reconstruction of G-Metrics: G�-Metrics

The main aim of the present chapter is to prove new unidimensional and
multidimensional fixed point results in the framework of G-metric spaces provided
with a partial preorder (not necessarily a partial order). However, we need to
overcome the well-known fact that the usual product of G-metrics is not necessarily
a G-metric unless they come from classical metrics. Hence, we will omit one of
the axioms that define a G-metric and we consider a new class of metrics, called
G�-metrics. Notice that our main results are valid in the context of G-metric spaces.

10.1 The Antecedents of G�-Metric Spaces

The original Mustafa and Sims’ notion of G-metric space is as follows (recall
Definition 3.1.1): A G-metric space is a pair .X;G/ where X is a nonempty set
and G W X � X � X ! Œ0;1/ is a function such that, for all x; y; z; a 2 X, the
following conditions are fulfilled:

.G1/ G.x; y; z/ D 0 if x D y D z;

.G2/ G.x; x; y/ > 0 for all x; y 2 X with x ¤ y;

.G3/ G.x; x; y/ � G.x; y; z/ for all x; y; z 2 X with z ¤ y;

.G4/ G.x; y; z/ D G.x; z; y/ D G.y; z; x/ D : : : (symmetry in all three

variables); and

.G5/ G.x; y; z/ � G.x; a; a/C G.a; y; z/ (rectangle inequality).

In such a case, the function G is called a G-metric on X. A classical example
of G-metric comes from a metric space .X; d/, where G.x; y; z/ D dxy C dyz C dzx

measures the perimeter of a triangle. In this case, property .G3/ has an obvious
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geometric interpretation: the length of an edge of a triangle is less than or equal
to its semiperimeter, that is, 2dxy � dxy C dyz C dzx. One of the most important
properties of G-metric spaces is the following one (see item 5 of Lemma 3.1.2).

G .x; y; z/ D 0 ) x D y D z: (10.1)

Property .G3/ was used to establish different fixed point theorems. However,
it has an important drawback: the product of G-metric spaces is not necessarily
another G-metric space. In fact, this is only true when all factors are symmetric but,
in this case, they are all classical metric spaces (see Theorem 3.1.1). We explain this
fact in detail.

Given a finite family of G-metric spaces f.Xi;Gi/gn
iD1, consider the product space

X D X1 � X2 � : : : � Xn and define Gm and Gs on X3 by:

Gm.X;Y;Z/ D max
1�i�n

Gi.xi; yi; zi/ and Gs.X;Y;Z/ D
nP

iD1
Gi.xi; yi; zi/;

for all X D .x1; x2; : : : ; xn/;Y D .y1; y2; : : : ; yn/;Z D .z1; z2; : : : ; zn/ 2 X. Property
.G3/ implies that, in general, the major structures Gm and Gs are not necessarily
G-metrics on X1�X2�: : :�Xn. Only when each Gi is symmetric (that is, G.x; x; y/ D
G.y; y; x/ for all x; y 2 X), the product is also a G-metric (see Theorem 3.1.1 or
[154]). In this case, symmetric G-metrics can be reduced to usual metrics, which
limits the interest to this kind of space.

The most important disadvantage of this fact is that multidimensional fixed point
theorems (coupled, tripled, quadrupled, etc., as we will see in Chap. 11) cannot
be proved using unidimensional results. As a consequence, a direct proof must be
presented in each case, using an appropriate contractivity condition.

In order to overcome this drawback, in 2013, Roldán and Karapınar [175]
considered spaces verifying the axioms .G1/, .G2/, .G4/ and .G5/, which has their
own Hausdorff topology �G. The problem we have recently found is that these spaces
do not have to satisfy condition (10.1) when x, y and z are different, as we show in
the following example.

Example 10.1.1. Let X D f0; 1; 2g and define G W X � X � X ! Œ0;1/, for all
x; y; z 2 X, by:

G .x; y; z/ D
�
0; if x D y D z or fx; y; zg D f0; 1; 2g;
1; otherwise.

Clearly, G verifies .G1/, .G2/ and .G4/. However, it does not satisfy condition (10.1)
because G.0; 1; 2/ D 0. To prove .G5/, let x; y; z 2 X be such that G.x; y; z/ > 0. In
this case, in fx; y; zg there are only two different points. Assume, for example, that
x ¤ y D z. Then, one of the terms G .x; a; a/ or G.a; y; y/ has, exactly, two different
points. Hence
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G.x; y; y/ D 1 � G .x; a; a/C G.a; y; y/;

so .G5/ holds. As a consequence, .X;G/ is an example of the spaces considered by
Roldán and Karapınar in [175], but it does not satisfy condition (10.1).

In this chapter, we consider a definition of G�-metric spaces avoiding property
.G3/. Omitting this property, we consider a class of spaces for which Gm and Gs

have the same initial metric structure.

10.2 Definition of G�-Metric

Definition 10.2.1. A G�-metric on a set X is a mapping G W X � X � X ! Œ0;1/

satisfying the following properties, for all x; y; z; a 2 X.

.G4/ G.x; y; z/ D G.x; z; y/ D G.y; z; x/ D : : : (symmetry in all

three variables);

.G5/ G.x; y; z/ � G.x; a; a/C G.a; y; z/ (rectangle inequality); and

.G6/ G .x; y; z/ D 0 , x D y D z;

Lemma 10.2.1. 1. Every G-metric space (in the sense of Mustafa and Sims) is a
G�-metric space.

2. Every G�-metric space satisfies axioms .G1/, .G2/, .G4/ and .G5/.
3. A G�-metric space is a G-metric space (in the sense of Mustafa and Sims) if, and

only if, it verifies .G3/.

Proof. (1) Axioms .G4/ and .G5/ are common. Condition .G1/ means that
G.x; x; x/ D 0 for all x 2 X. Conversely, condition (10.1) follows from item 5
of Lemma 3.1.2.

(2) Properties .G1/ and .G2/ immediately follows from .G6/.
ut

Although each G�-metric space satisfies axioms .G1/, .G2/, .G4/ and .G5/, it is
not necessarily a G-metric space. In other word, the converse of the first item of
Lemma 10.2.1 is false, as we show in the following example.

Example 10.2.1. Let X D f0; 1; 2g and define G W X � X � X ! Œ0;1/, for all
x; y; z 2 X, by:

G .x; y; z/ D

8
ˆ̂<

ˆ̂:

0, if x D y D z;
4, if x ¤ y ¤ z ¤ x (that is, fx; y; zg D f0; 1; 2g),
5, if fx; y; zg D f0; 0; 2g;
3, otherwise.
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Clearly, G does not satisfy axiom .G3/ since

G .0; 0; 2/ D 5 > 4 D G.0; 1; 2/:

Hence, .X;G/ is not a G-metric space. However, we claim that .X;G/ is a G�-metric
space. Properties .G4/ and .G6/ are obvious. Condition .G5/ follows from the fact
that the sum of two numbers in the set f3; 4; 5g is always greater than a third number
in the same set. Then, .G5/ holds.

Remark 10.2.1. All results given in Roldán and Karapınar [175] hold if we
additionally assume condition (10.1), that is, for G�-metric spaces in the sense of
Definition 10.2.1.

10.2.1 Basic Properties of G�-Metric Spaces

One of the most useful properties of G-metrics is the following one.

Lemma 10.2.2. If .X;G/ is a G�-metric space, then

G.x; y; y/ � 2G.y; x; x/ for all x; y 2 X:

Proof. By the rectangle inequality .G5/ together with the symmetry .G4/, we have

G.x; y; y/ D G.y; y; x/ � G.y; x; x/C G.x; y; x/ D 2G.y; x; x/:

ut
The following lemma can be derived easily from the definition of a G�-metric

space as in Lemma 3.1.2.

Lemma 10.2.3. Let .X;G/ be a G�-metric space. Then, for any x; y; z; a 2 X, the
following properties hold.

1. G .x; y; z/ � G .x; x; y/C G .x; x; z/.
2. G .x; y; z/ � G .x; a; a/C G .y; a; a/C G .z; a; a/.
3. jG.x; y; z/ � G.x; y; a/j � maxfG.a; z; z/;G.z; a; a/g.
4. If n � 2 and x1; x2; : : : ; xn 2 X, then

G .x1; xn; xn/ �
n�1P
iD1

G .xi; xiC1; xiC1/ and (10.2)

G .x1; x1; xn/ �
n�1P
iD1

G .xi; xi; xiC1/ :
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5. If fxng; fyng � X are two sequences, then limn!1 G.xn; yn; yn/ D 0 if, and only
if, limn!1 G.xn; xn; yn/ D 0.

6. If fxng � X is a sequence, then limn!1 G.xn; xnC1; xnC1/ D 0 if, and only if,
limn!1 G.xn; xn; xnC1/ D 0.

10.2.2 The Hausdorff Topology of a G�-Metric Space

All definitions and results in Sect. 3.2 can be repeated here in the ambient of G�-
metric spaces because the proofs there did not use axiom .G3/. In order to avoid
repetition, we only highlight the most important definitions and facts.

The open ball of center x 2 X and radius r > 0 in a G�-metric space .X;G/ is
the subset BG.x; r/ D fy 2 X W G.x; y; y/ < rg. Similarly, the closed ball of center
x 2 X and radius r > 0 is

BG.x; r/ D fy 2 X W G.x; y; y/ � rg :

Clearly, x 2 BG.x; r/ � BG.x; r/.
If .X;G/ is a G�-metric space, then the functions dG

m; d
G
s W X � X ! Œ0;1/

defined by

dG
m.x; y/ D max fG.x; y; y/;G.y; x; x/g and

dG
s .x; y/ D G.x; y; y/C G.y; x; x/

for all x; y 2 X, are metrics on X. Furthermore, dG
m.x; y/ � dG

s .x; y/ � 2dG
m.x; y/ for

all x; y 2 X. In fact, dG
m and dG

s are equivalent metrics on X and they generate the
same topology on X.

If .X;G/ is a G�-metric space and dG
m and dG

s are the metric defined as before,
then

BdG
m
.x; r/ � BG .x; r/ � BdG

m
.x; 2r/ � BG .x; 2r/

for all x 2 X and all r > 0.
The family of all open balls permit us to consider a topology on X.

Theorem 10.2.1. There exists a unique topology �G on a G�-metric space .X;G/
such that, for all x 2 X, the family ˇx of all open balls centered at x is a
neighbourhood system at x. Furthermore, �G is metrizable because it is the metric
topology on X generated by the equivalent metrics dG

m and dG
s . In particular, �G

satisfies the Hausdorff separation property.

The following notions can be considered on each topological space (see [23, 51]),
but we particularize them to the case of the topology �G.
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• A subset U � X is a G-neighborhood of a point x 2 X if there is r > 0 such that
BG.x; r/ � U.

• A subset U � X is G-open if either it is empty or it is a G-neighborhood of all its
points.

• A subset U � X is G-closed if its complement XŸU is G-open.
• An adherent point (also closure point or point of closure) of a subset U � X is

a point x 2 X such that every G-open set containing x also contains, at least, one
point of U, that is, for all " > 0 we have that BG .x; "/ \ U ¤ ;.

• The G-closure U D clG.U/ of a subset U � X is the family of all its adherent
points. Clearly, x 2 U if, and only if, BG .x; "/\U ¤ ; for all " > 0. In particular,
U � U. Moreover, U is G-closed if, and only if, U D U.

• The G-interior VU D intG.U/ of a subset U � X is the complement XŸU. An
interior point of U is a point x 2 U such that there exists r > 0 verifying
BG .x; r/ � U. In particular, VU � U. Moreover, U is G-open if, and only if,
VU D U.

For simplicity, we will omit the prefix G- in the previous notions.
Let .X;G/ be a G�-metric space, let x 2 X be a point and let fxng � X be a

sequence. We say that:

• fxng G-converges to x, and we write fxng G�! x or fxng ! x, if
limn;m!1 G.xn; xm; x/ D 0, that is, for all " > 0 there exists n0 2 N satisfying
G.xn; xm; x/ � " for all n;m 2 N such that n;m � n0 (in such a case, x is the
G-limit of fxmg);

• fxng is G-Cauchy if limn;m;k!1 G.xn; xm; xk/ D 0, that is, for all " > 0 there exists
n0 2 N satisfying G.xn; xm; xk/ � " for all n;m; k 2 N such that n;m; k � n0.

• .X;G/ is complete if every G-Cauchy sequence in X is G-convergent in X.

Proposition 10.2.1. The limit of a G-convergent sequence in a G�-metric space is
unique.

Proposition 10.2.2. Every convergent sequence in a G-metric space is a Cauchy
sequence.

Next, we characterize convergent and Cauchy sequences.

Lemma 10.2.4. Let .X;G/ be a G�-metric space, let fxmg � X be a sequence and
let x 2 X. Then the following conditions are equivalent.

(a) fxng G-converges to x.
(b) lim

n!1 G.xn; xn; x/ D 0, that is, for all " > 0, there exists n0 2 N such that

xn 2 BG .x; "/ for all n � n0.
(c) lim

n!1 G.xn; x; x/ D 0.

(d) lim
n;m!1; m�n

G .xn; xm; x/ D 0.

(e) lim
n!1 G.xn; xn; x/ D 0 and lim

n!1 G.xn; xnC1; x/ D 0.

(f) lim
n!1 G.xn; x; x/ D 0 and lim

n!1 G.xn; xnC1; x/ D 0.
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(g) lim
n!1 G .xn; xnC1; xnC1/ D 0 and lim

n!1 G.xn; xnC1; x/ D 0.

(h) lim
n!1 G .xn; xnC1; xnC1/ D 0 and lim

n;m!1; m>n
G .xn; xm; x/ D 0.

Lemma 10.2.5. If .X;G/ is a G�-metric space and fxmg � X is a sequence, then
the following conditions are equivalent.

(a) fxng is G-Cauchy.
(b) lim

n;m!1 G.xn; xm; xm/ D 0.

(c) lim
n;m!1; m�n

G.xn; xm; xm/ D 0.

(d) lim
n;m!1; m>n

G.xn; xm; xm/ D 0.

(e) lim
n;m!1 G.xn; xn; xm/ D 0.

(f) lim
n;m!1; m�n

G.xn; xn; xm/ D 0.

(g) lim
n;m!1; m>n

G.xn; xn; xm/ D 0.

(h) lim
n!1 G.xn; xnC1; xnC1/ D 0 and lim

n;m!1; m>n
G.xn; xnC1; xm/ D 0.

10.2.3 Continuity of Mappings Between G�-Metric Spaces

Definition 10.2.2. Let .X;G/ be a G�-metric space. We say that:

• a mapping T W X ! X is G-continuous at x 2 X if fTxmg G�! Tx for all sequence

fxmg � X such that fxmg G�! x;
• a mapping F W Xn ! X is G-continuous at .x1; x2; : : : ; xn/ 2 Xn if

fF
�
xm
1 ; x

m
2 ; : : : ; x

m
n

�g G�! F .x1; x2; : : : ; xn/ for all sequence f.xm
1 ; x

m
2 ; : : : ; x

m
n /g �

Xn such that fxm
i g G�! xi for all i 2 f1; 2; : : : ; ng;

• a mapping H W Xn ! Xm is G-continuous at .x1; x2; : : : ; xn/ 2 Xn if �m
i ı H W

Xn ! X is G-continuous at .x1; x2; : : : ; xn/ for all i 2 f1; 2; : : : ;mg, where �m
i W

Xm ! X is the ith-projection of Xm onto X (that is, �m
i .a1; a2; : : : ; am/ D ai for

all .a1; a2; : : : ; am/ 2 Xm).

From Lemma 3.2.3, convergence of sequences on X with respect to G, dG
m and dG

s
coincide.

Lemma 10.2.6. Let .X;G/ be a G metric space. Then a mapping T W X ! X is G-
continuous if, and only if, it is dG

m-continuous (dG
m-continuous). Similarly, a mapping

F W Xn ! X is G-continuous if, and only if, it is dG
s -continuous (dG

s -continuous).

The proof of the following result only needs properties .G4/ and .G5/ (see the
proof of Theorem 3.2.2).

Theorem 10.2.2. If .X;G/ is a G�-metric space, then the function G.x; y; z/
is jointly continuous in all three of its variables, that is, if x; y; z 2 X and

fxng; fyng; fzng � X are sequences in X such that fxmg G�! x, fymg G�! y and

fzmg G�! z, then fG .xm; ym; zm/g ! G .x; y; z/.
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10.2.4 Some Relationships Between G�-Metrics
and Quasi-metrics

Next, we show that there exists a similar relationships between G�-metric spaces
and quasi-metric spaces that we described in Lemma 3.3.1. The same proof is valid.

Lemma 10.2.7. Let .X;G/ be a G�-metric space and define qG; q0
G W X2 !

Œ0;1/ by

qG.x; y/ D G.x; x; y/ and q0
G.x; y/ D G.x; y; y/ for all x; y 2 X:

Then the following properties hold.

1. qG and q0
G are quasi-metrics on X. Moreover

qG.x; y/ � 2q0
G.x; y/ � 4qG.x; y/ for all x; y 2 X: (10.3)

2. In .X; qG/ and in .X; q0
G/, a sequence is right-convergent (respectively, left-

convergent) if, and only if, it is convergent. In such a case, its right-limit, its
left-limit and its limit coincide.

3. In .X; qG/ and in .X; q0
G/, a sequence is right-Cauchy (respectively, left-Cauchy)

if, and only if, it is Cauchy.
4. In .X; qG/ and in .X; q0

G/, every right-convergent (respectively, left-convergent)
sequence has a unique right-limit (respectively, left-limit).

5. If fxng � X and x 2 X, then fxng G�! x ” fxng qG�! x ” fxng q0
G�! x:

6. If fxng � X, then fxng is G-Cauchy ” fxng is qG-Cauchy ” fxng is q0
G-

Cauchy.
7. .X;G/ is complete ” .X; qG/ is complete ” .X; q0

G/ is complete.

10.2.5 Regularity of G�-Metric Spaces

Many results in fixed point theory assume the regularity of the space.

Definition 10.2.3. Let .X;G/ be a G�-metric space and let 4 be a relation
on X. The triple .X;G;4/ is said to be non-decreasing-regular (respectively, non-
increasing-regular) if for all sequence fxmg � X such that fxmg ! x and xm 4 xmC1
(respectively, xm < xmC1) for all m 2 N, we have that xm 4 x (respectively, xm < x)
for all m 2 N. Also .X;G;4/ is said to be regular if it is both non-decreasing-regular
and non-increasing-regular.
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10.3 Product of G�-Metric Spaces

The main advantage of G�-metric spaces versus G-metric spaces is that the product
of G�-metric spaces is also a G�-metric space.

Lemma 10.3.1. Given a family f.Xi;Gi/gn
iD1 of G�-metric spaces, consider the

product space X D X1 � X2 � : : : � Xn and define Gmax
n and Gsum

n on X
3 by

Gmax
n .X;Y;Z/ D max

1�i�n
Gi.xi; yi; zi/ and Gsum

n .X;Y;Z/ D
nP

iD1
Gi.xi; yi; zi/

for all X D .x1; x2; : : : ; xn/;Y D .y1; y2; : : : ; yn/;Z D .z1; z2; : : : ; zn/ 2 X. Then the
following statements hold.

1. Gmax
n and Gsum

n are G�-metrics on X.
2. Gmax

n � Gsum
n � nGmax

n , that is, Gmax
n and Gsum

n are equivalent G�-metrics on X.
3. If Am D .a1m; a

2
m; : : : ; a

n
m/ 2 X for all m and A D .a1; a2; : : : ; an/ 2 X, then fAmg

Gmax
n -converges (respectively, Gsum

n -converges) to A if, and only if, each fai
mg Gi-

converges to ai.
4. fAmg is Gmax

n -Cauchy (respectively, Gsum
n -Cauchy) if, and only if, each fai

mg is
Gi-Cauchy.

5. .X;Gmax
n / (respectively, .X;Gsum

n /) is complete if, and only if, every .Xi;Gi/ is
complete.

6. For all i, let 
i be a preorder on Xi and define

X 
 Y , xi 
i yi for all i 2 f1; 2; : : : ; ng:

Then .X;Gmax
n ;
/ is regular (respectively, non-decreasing-regular, non-

increasing-regular) if, and only if, each factor .Xi;Gi/ is also regular
(respectively, non-decreasing-regular, non-increasing-regular).

Proof. Let G D Gmax
n . Taking into account that Gmax

n � Gsum
n � n Gmax

n , we will
only present the proof using G.

(1) It is a straightforward exercise to prove the following statements.

• G.X;X;X/ D max1�i�n Gi.xi; xi; xi/ D max1�i�n 0 D 0. Moreover, if
Gmax

n .X;Y;Z/ D max1�i�n Gi.xi; yi; zi/ D 0, then Gi.xi; yi; zi/ D 0 for all
i 2 f1; 2; : : : ; ng, so xi D yi D zi for all i 2 f1; 2; : : : ; ng.

• Symmetry in all three variables of G follows from symmetry in all three
variables of each Gi.
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• We have that

G.X;Y;Z/ D max
1�i�n

Gi.xi; yi; zi/ � max
1�i�n

ŒGi.xi; ai; ai/C Gi.ai; yi; zi/�

� max
1�i�n

Gi.xi; ai; ai/C max
1�i�n

Gi.ai; yi; zi/

D G.X;A;A/C G.A;Y;Z/:

Then G is a G�-metric on X.

(3) We use Lemma 10.2.4. Suppose that fAmg G-converges to A and let " > 0.
Then, for all j 2 f1; 2; : : : ; ng and all m

Gj.aj; aj; a
j
m/ � max

1�i�n
Gi.ai; ai; a

i
m/ D G.A;A;Am/:

Therefore, faj
mg Gj-converges to aj. Conversely, assume that each fai

mg Gi-
converges to ai. Let " > 0 and let mi 2 N be such that if m � mi,
then Gi.ai; ai; ai

m/ < ". If m0 D max.m1;m2; : : : ;mn/ and m � m0, then
G.A;A;Am/ D max1�i�n Gi.ai; ai; ai

m/ < ", so fAmg G-converges to A.
(4) We use Lemma 10.2.5. Suppose that fAmg is G-Cauchy and let " > 0. Then, for

all j 2 f1; 2; : : : ; ng and all m;m0

Gj.a
j
m; a

j
m; a

j
m0/ � max

1�i�n
Gi.a

i
m; a

i
m; a

i
m0/ D G.Am;Am;Am0/:

Therefore, faj
mg is Gj-Cauchy. Conversely, assume that each fai

mg is Gi-Cauchy.
Let " > 0 and let mi 2 N be such that if m;m0 � mi, then Gi.aj

m; a
j
m; a

j
m0/ < ".

If m0 D max.m1;m2; : : : ;mn/ and m;m0 � m0, then G.Am;Am;Am0/ D
max1�i�n Gi.ai

m; a
i
m; a

i
m0/ < ", so fAmg is G-Cauchy.

(5) It is an easy consequence of items 3 and 4 since

fAmg G-Cauchy , each fai
mg G-Cauchy , each fai

mg G-convergent

, fAmg G-convergent.

(6) A sequence fAmg on X is 
-monotone non-decreasing if, and only if, each
sequence fai

mg is 
-monotone non-decreasing. Moreover, fAmg G-converges to
A D .a1; a2; : : : ; an/ 2 X if, and only if, each fai

mg Gi-converges to ai. Finally,
Am 
 A if, and only if, ai

m 
i ai, for all i. Therefore, .X;Gmax
n ;
/ is regular non-

decreasing if, and only if, each factor .Xi;Gi/ is also regular non-decreasing.
Other statements may be proved similarly. ut

Taking .Xi;Gi/ D .X;G/ for all i, we have the following result.

Corollary 10.3.1. Let .X;G/ be a G�-metric space and consider on the product
space Xn the mappings Gn and G0

n defined by
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Gn.X;Y;Z/ D max
1�i�n

G.xi; yi; zi/ and G0
n.X;Y;Z/ D

nP

iD1
G.xi; yi; zi/

for all X D .x1; x2; : : : ; xn/;Y D .y1; y2; : : : ; yn/;Z D .z1; z2; : : : ; zn/ 2 Xn. Then
the following properties hold.

1. Gn and G0
n are G�-metrics on Xn.

2. If Am D .a1m; a
2
m; : : : ; a

n
m/ 2 Xn for all m and A D .a1; a2; : : : ; an/ 2 Xn, then

fAmg Gn-converges (respectively, G0
n-converges) to A if, and only if, each fai

mg
G-converges to ai.

3. fAmg is Gn-Cauchy (respectively, G0
n-Cauchy) if, and only if, each fai

mg is
G-Cauchy.

4. .Xn;Gn/ (respectively, .Xn;G0
n/) is complete if, and only if, .X;G/ is complete.

10.4 Fixed Point Theorems in Partially Preordered
G�-Metric Spaces

As an initial result in G�-metric spaces, we prove the following statement using a
preorder rather than a partial order.

10.4.1 Some Results Under . ; '/-Contractivity Conditions

Theorem 10.4.1. Let .X;G/ be a complete G�-metric space, let 
 be a preorder
on X and let T W X ! X be a 
-non-decreasing mapping. Suppose that there exist
two functions  2 Falt and ' 2 F 0

alt such that, for all x; y 2 X with x 
 y,

 .G.Tx;Ty;Ty// � . � '/ .G.x; y; y//: (10.4)

Also assume that T is G-continuous or .X;G;
/ is non-decreasing-regular. If there
exists x0 2 X such that x0 
 Tx0, then T has, at least, a fixed point. Furthermore,
if for all x; y 2 Fix.T/ there exists ! 2 X such that x 
 ! and y 
 !, we obtain
uniqueness of the fixed point.

Proof. Let x0 2 X be such that x0 
 Tx0 and let fxngn�0 be the Picard sequence of
T based on x0, that is, xnC1 D Txn for all n 2 N. If there exists some n0 2 N such
that xn0C1 D xn0 , then xn0 is a fixed point of T . In the sequel, assume that xnC1 ¤ xn

for all n 2 N. In such a case, as T is non-decreasing (w.r.t. 
), we have that

x0 
 Tx0 D x1 ) x1 D Tx0 
 Tx1 D x2:

By induction,

xn 
 xnC1 for all n � 0: (10.5)
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Then, using the contractivity condition (10.4), we have that, for all n 2 N,

 .G.xnC1; xnC2; xnC2// D  .G.Txn;TxnC1;TxnC1//

� . � '/ .G.xn; xnC1; xnC1//:

Applying Lemma 2.3.6, fG.xn; xnC1; xnC1/g ! 0. Let us show that fxng is
G-Cauchy. Reasoning by contradiction, if fxng is not G-Cauchy, by Theorem 4.1.1,
there exist "0 > 0 and two partial subsequences fxn.k/g and fxm.k/g satisfying
k < n.k/ < m.k/ < n.k C 1/,

G.xn.k/; xm.k/�1; xm.k/�1/ � "0 < G.xn.k/; xm.k/; xm.k// for all k 2 N;

lim
k!1 G.xn.k/; xm.k/; xm.k// D lim

k!1 G.xn.k/�1; xm.k/�1; xm.k/�1/ D "0: (10.6)

As 
 is transitive and n.k/ < m.k/, we deduce from (10.5) that xn.k/�1 
 xm.k/�1 for
all k 2 N. The contractivity condition (10.4) implies that, for all k 2 N,

 
�
G.xn.k/; xm.k/; xm.k//

� D  
�
G.Txn.k/�1;Txm.k/�1;Txm.k/�1/

�

� . � '/ �G.xn.k/�1; xm.k/�1; xm.k/�1/
�
:

Taking into account (10.6) and Lemma 2.3.5, we conclude that "0 D 0, which is a
contradiction. Hence, fxng is a Cauchy sequence in .X;G/. As .X;G/ is complete,

there exist there exists z0 2 X such that fxng G! z0.

Now suppose that T is G-continuous. Then fxmC1g D fTxmg G! Tz0. By the
uniqueness of the limit of a sequence in a G�-metric space (see Proposition 10.2.1),
Tz0 D z0 and z0 is a fixed point of T .

On the other case, suppose that .X;G;
/ is non-decreasing-regular. Since

fxmg G! z0 and fxmg is monotone non-decreasing (w.r.t. 
), it follows that xn 
 z0
for all n 2 N. Hence, for all n 2 N,

 .G.xnC1; xnC1;Tz0// D  .G.Txn;Txn;Tz0//

� . � '/ .G.xn; xn; z0//:

Since fxng G! z0, then fG.xn; xn; z0/g ! 0. Taking the limit when k ! 1 we deduce
that f .G.xnC1; xnC1;Tz0//g ! 0. By Lemma 2.3.3, fG.xnC1; xnC1;Tz0/g ! 0, so

fxnC1g G! Tz0 and we also conclude that z0 is a fixed point of T .
To prove the uniqueness, let x; y 2 Fix.T/ be two fixed points of T . By

hypothesis, there exists ! 2 X such that x 
 ! and y 
 !. We now show

that f!n D Tn!g G! x. Since x 
 ! and T is 
-non-decreasing, we have that
x D Tx 
 T!. By induction, x 
 Tn! D !n for all n 2 N. Using the contractivity
condition (10.4), we have that, for all n 2 N,
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 .G.x; x; !nC1// D  .G.Tx;Tx;T!n// � . � '/ .G.x; x; !n//:

From Lemma 2.3.6, we deduce that fG.x; x; !n/g ! 0, that is, f!ng G! x. The same

reasoning proves that f!ng G! y, so x D y. ut
In the next two results, we show the main advantage of using preorders.

Corollary 10.4.1. Let .X;G/ be a complete G�-metric space, let 4 be a partial
order on X and let T W X ! X be a 4-non-decreasing mapping. Suppose that there
exist two functions  2 Falt and ' 2 F 0

alt such that, for all x; y 2 X with x 4 y,

 .G.Tx;Ty;Ty// � . � '/ .G.x; y; y//:

Also assume that T is G-continuous or .X;G;4/ is non-decreasing-regular. If there
exists x0 2 X such that x0 4 Tx0, then T has, at least, a fixed point. Furthermore,
if for all x; y 2 Fix.T/ there exists ! 2 X such that x 
 ! and y 
 !, we obtain
uniqueness of the fixed point.

In the following result, we apply that 
, defined as “x 
 y for all x; y 2 X” is a
preorder on X (but not a partial order).

Corollary 10.4.2. Let .X;G/ be a complete G�-metric space and let T W X ! X be
a mapping. Suppose that there exist two functions  2 Falt and ' 2 F 0

alt such that,
for all x; y 2 X,

 .G.Tx;Ty;Ty// � . � '/ .G.x; y; y//:

Then T has a unique fixed point.

Proof. We only have to notice that .X;G;
/ is non-decreasing-regular, and that any
x0 2 X satisfies x0 
 Tx0. ut
Corollary 10.4.3. Let .X;G/ be a complete G�-metric space, let 
 be a preorder
on X and let T W X ! X be a 
-non-decreasing mapping. Suppose that there exist
two functions  2 Falt and ' 2 F 0

alt such that, for all x; y; z 2 X with x 
 y 4 z,

 .G.Tx;Ty;Tz// � . � '/ .G.x; y; z//: (10.7)

Also assume that T is G-continuous or .X;G;
/ is non-decreasing-regular. If there
exists x0 2 X such that x0 
 Tx0, then T has, at least, a fixed point. Furthermore,
if for all x; y 2 Fix.T/ there exists ! 2 X such that x 
 ! and y 
 !, we obtain
uniqueness of the fixed point.

Proof. It follows from the fact that (10.7) implies (10.4). ut
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If we take  2 Falt as the identity mapping on X, we deduce the following
statement.

Corollary 10.4.4. Let .X;G/ be a complete G�-metric space, let 
 be a preorder
on X and let T W X ! X be a 
-non-decreasing mapping. Suppose that there exists
a function ' 2 F 0

alt such that, for all x; y 2 X with x 
 y,

G.Tx;Ty;Ty/ � G.x; y; y/ � '.G.x; y; y//:

Also assume that T is G-continuous or .X;G;
/ is non-decreasing-regular. If there
exists x0 2 X such that x0 
 Tx0, then T has, at least, a fixed point. Furthermore,
if for all x; y 2 Fix.T/ there exists ! 2 X such that x 
 ! and y 
 !, we obtain
uniqueness of the fixed point.

If ' .t/ D .1��/t for all t � 0, where � 2 Œ0; 1/, we have the following version.

Corollary 10.4.5. Let .X;G/ be a complete G�-metric space, let 
 be a preorder
on X and let T W X ! X be a 
-non-decreasing mapping. Suppose that there exists
a constant � 2 Œ0; 1/ such that, for all x; y 2 X with x 
 y,

G.Tx;Ty;Ty/ � �G.x; y; y/:

Also assume that T is G-continuous or .X;G;
/ is non-decreasing-regular. If there
exists x0 2 X such that x0 
 Tx0, then T has, at least, a fixed point. Furthermore,
if for all x; y 2 Fix.T/ there exists ! 2 X such that x 
 ! and y 
 !, we obtain
uniqueness of the fixed point.

One can obtain particular versions of Corollaries 10.4.3, 10.4.4 and 10.4.5 using,
on the one hand, a partial order 4 on X (as in Corollary 10.4.1) and, on the other
hand, the preorder “x 
 y for all x; y 2 X” (as in Corollary 10.4.2).

10.4.2 Some Results Under '-Contractivity Conditions

Next, we give another version of Theorem 10.4.1 using a different contractivity
condition.

Theorem 10.4.2. Let .X;G/ be a complete G�-metric space, let 
 be a preorder
on X and let T W X ! X be a 
-non-decreasing mapping. Suppose that there exists
a function ' 2 FCir such that, for all x; y 2 X with x 
 y,

G.Tx;Ty;Ty/ � '.G.x; y; y//: (10.8)

Also assume that T is G-continuous or .X;G;
/ is non-decreasing-regular. If there
exists x0 2 X such that x0 
 Tx0, then T has, at least, a fixed point. Furthermore,
if for all x; y 2 Fix.T/ there exists ! 2 X such that x 
 ! and y 
 !, we obtain
uniqueness of the fixed point.
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Proof. Let x0 2 X be such that x0 
 Tx0 and let fxngn�0 be the Picard sequence of
T based on x0, that is, xnC1 D Txn for all n 2 N. If there exists some n0 2 N such
that xn0C1 D xn0 , then xn0 is a fixed point of T . In the sequel, assume that xnC1 ¤ xn

for all n 2 N, that is,

G.xn; xnC1; xnC1/ > 0 for all n 2 N: (10.9)

In such a case, as T is non-decreasing (w.r.t. 
), we have that

x0 
 Tx0 D x1 ) x1 D Tx0 
 Tx1 D x2:

By induction,

xn 
 xnC1 for all n � 0: (10.10)

Then, using the contractivity condition (10.8), we have that, for all n 2 N,

G.xnC1; xnC2; xnC2/ D G.Txn;TxnC1;TxnC1/ � '.G.xn; xnC1; xnC1//:

Taking into account (10.9) and applying item 3 of Lemma 2.3.11, fG.xn; xnC1;
xnC1/g ! 0. We now show that fxng is G-Cauchy. Reasoning by contradiction,
if fxng is not G-Cauchy, by Theorem 4.1.1, there exist "0 > 0 and two partial
subsequences fxn.k/g and fxm.k/g satisfying k < n.k/ < m.k/ < n.k C 1/,

G.xn.k/; xm.k/�1; xm.k/�1/ � "0 < G.xn.k/; xm.k/; xm.k// for all k 2 N;

lim
k!1 G.xn.k/; xm.k/; xm.k// D lim

k!1 G.xn.k/�1; xm.k/�1; xm.k/�1/ D "0: (10.11)

As 
 is transitive and n.k/ < m.k/, we deduce from (10.10) that xn.k/�1 
 xm.k/�1
for all k 2 N. The contractivity condition (10.8) implies that, for all k 2 N,

"0 < G.xn.k/; xm.k/; xm.k// D G.Txn.k/�1;Txm.k/�1;Txm.k/�1/

� '
�
G.xn.k/�1; xm.k/�1; xm.k/�1/

�
:

Taking into account (10.11), item 4 of Lemma 2.3.11, applied to L D "0 and fak D
G.xn.k/�1; xm.k/�1; xm.k/�1/gk2N, guarantees that "0 D 0, which is a contradiction.
Hence, fxng is a Cauchy sequence in .X;G/. As .X;G/ is complete, there exist there

exists z0 2 X such that fxng G! z0.

Now suppose that T is G-continuous. Then fxmC1g D fTxmg G! Tz0. By the
uniqueness of the limit of a sequence in a G�-metric space (see Proposition 10.2.1),
Tz0 D z0 and z0 is a fixed point of T .

On the other case, suppose that .X;G;
/ is non-decreasing-regular. Since

fxmg G! z0 and fxmg is monotone non-decreasing (w.r.t. 
), it follows that xn 
 z0
for all n 2 N. Hence, for all n 2 N,
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G.xnC1; xnC1;Tz0/ D G.Txn;Txn;Tz0/ � '.G.xn; xn; z0//:

Since fxng G! z0, then fG.xn; xn; z0/g ! 0. Using item 5 of Lemma 2.3.11 applied
to fan D G.xn; xn; z0/gn2N and fbn D G.xnC1; xnC1;Tz0/gn2N (notice that if an D 0,
then xn D z0, so xnC1 D Txn D Tz0 and bn D 0), we deduce that

G.z0; z0;Tz0/ D lim
n!1 G.xnC1; xnC1;Tz0/ D 0;

so z0 is a fixed point of T .
To prove the uniqueness, let x; y 2 Fix.T/ be two fixed points of T . By

hypothesis, there exists ! 2 X such that x 
 ! and y 
 !. Let us show that

f!n D Tn!g G! x. Since x 
 ! and T is 
-non-decreasing, we have that
x D Tx 
 T!. By induction, x 
 Tn! D !n for all n 2 N. Using the contractivity
condition (10.4), we have that, for all n 2 N,

G.x; x; !nC1/ D G.Tx;Tx;T!n/ � '.G.x; x; !n//:

Again, using item 6 of Lemma 2.3.11, we deduce that fG.x; x; !n/g ! 0, that is,

f!ng G! x. The same reasoning proves that f!ng G! y, so x D y. ut
The same arguments that we have used in the corollaries of Theorem 10.4.1 can

now be applied to deduce the following results.

Corollary 10.4.6. Let .X;G/ be a complete G�-metric space, let 4 be a partial
order on X and let T W X ! X be a 4-non-decreasing mapping. Suppose that there
exists a function ' 2 FCir such that, for all x; y 2 X with x 4 y,

G.Tx;Ty;Ty/ � '.G.x; y; y//:

Also assume that T is G-continuous or .X;G;4/ is non-decreasing-regular. If there
exists x0 2 X such that x0 4 Tx0, then T has, at least, a fixed point. Furthermore,
if for all x; y 2 Fix.T/ there exists ! 2 X such that x 
 ! and y 
 !, we obtain
uniqueness of the fixed point.

Corollary 10.4.7. Let .X;G/ be a complete G�-metric space and let T W X ! X be
a mapping. Suppose that there exists a function ' 2 FCir such that, for all x; y 2 X,

G.Tx;Ty;Ty/ � '.G.x; y; y//:

Then T has a unique fixed point.

Corollary 10.4.8. Let .X;G/ be a complete G�-metric space, let 
 be a preorder
on X and let T W X ! X be a 
-non-decreasing mapping. Suppose that there exists
a function ' 2 FCir such that, for all x; y; z 2 X with x 
 y 4 z,

G.Tx;Ty;Tz/ � '.G.x; y; z//:
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Also assume that T is G-continuous or .X;G;
/ is non-decreasing-regular. If there
exists x0 2 X such that x0 
 Tx0, then T has, at least, a fixed point. Furthermore,
if for all x; y 2 Fix.T/ there exists ! 2 X such that x 
 ! and y 
 !, we obtain
uniqueness of the fixed point.

Corollary 10.4.9. Let .X;G/ be a complete G�-metric space, let 
 be a preorder
on X and let T W X ! X be a 
-non-decreasing mapping. Suppose that there exists
a constant � 2 Œ0; 1/ such that, for all x; y 2 X with x 
 y,

G.Tx;Ty;Ty/ � �G.x; y; y/:

Also assume that T is G-continuous or .X;G;
/ is non-decreasing-regular. If there
exists x0 2 X such that x0 
 Tx0, then T has, at least, a fixed point. Furthermore,
if for all x; y 2 Fix.T/ there exists ! 2 X such that x 
 ! and y 
 !, we obtain
uniqueness of the fixed point.

10.5 Further Fixed Point Theorems in Partially Preordered
G�-Metric Spaces

In this section, inspired by the results of the previous section, we prove some
theorems in the setting of G�-metric spaces using contractivity conditions that
cannot be reduced to quasi-metric spaces, that is, involving three different values
in the arguments of G.

Theorem 10.5.1. Let .X;G/ be a complete G�-metric space, let 
 be a preorder
on X and let T W X ! X be a 
-non-decreasing mapping. Suppose that there exist
two functions  2 Falt and ' 2 F 0

alt such that, for all x; y 2 X with x 
 y,

 .G.Tx;Ty;T2x// � . � '/ .G.x; y;Tx//: (10.12)

Also assume that T is G-continuous or .X;G;
/ is non-decreasing-regular. If there
exists x0 2 X such that x0 
 Tx0, then T has, at least, a fixed point. Furthermore,
if for all x; y 2 Fix.T/ there exists ! 2 X such that x 
 ! and y 
 !, we obtain
uniqueness of the fixed point.

Proof. Let x0 2 X be such that x0 
 Tx0 and let fxngn�0 be the Picard sequence of
T based on x0, that is, xnC1 D Txn for all n 2 N. If there exists some n0 2 N such
that xn0C1 D xn0 , then xn0 is a fixed point of T . In the sequel, assume that xnC1 ¤ xn

for all n 2 N. In such a case, as T is non-decreasing (w.r.t. 
), we have that

x0 
 Tx0 D x1 ) x1 D Tx0 
 Tx1 D x2:

By induction,

xn 
 xnC1 for all n � 0: (10.13)
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Then, using the contractivity condition (10.12), we have that, for all n 2 N,

 .G.xnC1; xnC2; xnC2// D  .G.Txn;TxnC1;T2xn//

� . � '/ .G.xn; xnC1;Txn// D . � '/ .G.xn; xnC1; xnC1//:

Applying Lemma 2.3.6, fG.xn; xnC1; xnC1/g ! 0. Let us show that fxng is
G-Cauchy. Reasoning by contradiction, if fxng is not G-Cauchy, by Lemma 8.3.2,
there exist "0 > 0 and two partial subsequences fxn.k/g and fxm.k/g satisfying
k < n.k/ < m.k/ < n.k C 1/,

G
�
xn.k/; xn.k/C1; xm.k/�1

� � "0 < G
�
xn.k/; xn.k/C1; xm.k/

�
for all k 2 N;

lim
k!1 G

�
xn.k/; xn.k/C1; xm.k/

� D lim
k!1 G

�
xn.k/�1; xn.k/; xm.k/�1

� D "0: (10.14)

As 
 is transitive and n.k/ < m.k/, we deduce from (10.13) that xn.k/�1 
 xm.k/�1
for all k 2 N. The contractivity condition (10.12) implies that, for all k 2 N,

 
�
G.xn.k/; xn.k/C1; xm.k//

� D  
�
G.Txn.k/�1;Txm.k/�1;T2xn.k/�1/

�

� . � '/ �G.xn.k/�1; xm.k/�1;Txn.k/�1/
�

D . � '/ �G.xn.k/�1; xn.k/; xm.k/�1/
�
:

Taking into account that xnC1 ¤ xn for all n 2 N, we have that G.xn.k/; xn.k/C1; xm.k// >

0 and G.xn.k/�1; xn.k/; xm.k/�1/ > 0 for all k 2 N. Using (10.14) and Lemma 2.3.5,
we conclude that "0 D 0, which is a contradiction. Hence, fxng is a Cauchy sequence

in .X;G/. As .X;G/ is complete, there exist there exists z0 2 X such that fxng G! z0.

Now suppose that T is G-continuous. Then fxmC1g D fTxmg G! Tz0. By the
uniqueness of the limit of a sequence in a G�-metric space (see Proposition 10.2.1),
Tz0 D z0 and z0 is a fixed point of T .

On the other hand, suppose that .X;G;
/ is non-decreasing-regular. Since

fxmg G! z0 and fxmg is monotone non-decreasing (w.r.t. 
), it follows that xn 
 z0
for all n 2 N. Hence, for all n 2 N,

 .G.xnC1; xnC2;Tz0// D  .G.Txn;Tz0;T
2xn//

� . � '/ .G.xn; z0;Txn// D . � '/ .G.xn; xnC1; z0//:

Since fxng G! z0, then fG.xn; xnC1; z0/g ! 0. Taking the limit when
k ! 1 we deduce that f .G.xnC1; xnC1;Tz0//g ! 0. By Lemma 2.3.3,
fG.xnC1; xnC2;Tz0/g ! 0. As G is continuous on each argument (see
Theorem 10.2.2), we deduce that

G .z0; z0;Tz0/ D lim
n!1 G.xnC1; xnC2;Tz0/ D 0;

so Tz0 D z0 and z0 is a fixed point of T .
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To prove the uniqueness, let x; y 2 Fix.T/ be two fixed points of T . By
hypothesis, there exists ! 2 X such that x 
 ! and y 
 !. Let us show that

f!n D Tn!g G! x. Since x 
 ! and T is 
-non-decreasing, we have that
x D Tx 
 T!. By induction, x 
 Tn! D !n for all n 2 N. Using the contractivity
condition (10.12), we have that, for all n 2 N,

 .G.x; x; !nC1// D  .G.Tx;T!n;T
2x//

� . � '/ .G.x; !n;Tx// D . � '/ .G.x; x; !n//:

From Lemma 2.3.6, we deduce that fG.x; x; !n/g ! 0, that is, f!ng G! z1. The same

reasoning proves that f!ng G! y, so x D y. ut
The same arguments that we have used in the corollaries of Theorem 10.4.1 can

now be applied to deduce the following results.

Corollary 10.5.1. Let .X;G/ be a complete G�-metric space, let 4 be a partial
order on X and let T W X ! X be a 4-non-decreasing mapping. Suppose that there
exist two functions  2 Falt and ' 2 F 0

alt such that, for all x; y 2 X with x 4 y,

 .G.Tx;Ty;T2x// � . � '/ .G.x; y;Tx//:

Also assume that T is G-continuous or .X;G;4/ is non-decreasing-regular. If there
exists x0 2 X such that x0 4 Tx0, then T has, at least, a fixed point. Furthermore,
if for all x; y 2 Fix.T/ there exists ! 2 X such that x 4 ! and y 4 !, we obtain
uniqueness of the fixed point.

Corollary 10.5.2. Let .X;G/ be a complete G�-metric space and let T W X ! X be
a mapping. Suppose that there exist two functions  2 Falt and ' 2 F 0

alt such that,
for all x; y 2 X,

 .G.Tx;Ty;T2x// � . � '/ .G.x; y;Tx//:

Then T has a unique fixed point.

Corollary 10.5.3. Let .X;G/ be a complete G�-metric space, let 
 be a preorder
on X and let T W X ! X be a 
-non-decreasing mapping. Suppose that there exists
a function ' 2 F 0

alt such that, for all x; y 2 X with x 
 y,

G.Tx;Ty;T2x/ � G.x; y;Tx/ � '.G.x; y;Tx//:

Also assume that T is G-continuous or .X;G;
/ is non-decreasing-regular. If there
exists x0 2 X such that x0 
 Tx0, then T has, at least, a fixed point. Furthermore,
if for all x; y 2 Fix.T/ there exists ! 2 X such that x 
 ! and y 
 !, we obtain
uniqueness of the fixed point.
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Corollary 10.5.4. Let .X;G/ be a complete G�-metric space, let 
 be a preorder
on X and let T W X ! X be a 
-non-decreasing mapping. Suppose that there exists
a constant � 2 Œ0; 1/ such that, for all x; y 2 X with x 
 y,

G.Tx;Ty;T2x/ � �G.x; y;Tx/:

Also assume that T is G-continuous or .X;G;
/ is non-decreasing-regular. If there
exists x0 2 X such that x0 
 Tx0, then T has, at least, a fixed point. Furthermore,
if for all x; y 2 Fix.T/ there exists ! 2 X such that x 
 ! and y 
 !, we obtain
uniqueness of the fixed point.



Chapter 11
Multidimensional Fixed Point Theorems
on G-Metric Spaces

In this chapter we introduce several notions of multidimensional fixed points. To
prove results, it is usual to consider a number of sequences equal to the dimension of
the product space in which the main mapping is defined. Also, using the techniques
described in Sect. 10.3, we will show that most of multidimensional results can be
deduced from the corresponding unidimensional result in G�-metric spaces.

Throughout this chapter and for simplicity, given a positive integer number n, we
will use Xn to denote the nth Cartesian power of X, that is, X �X � : : :�X (n times).

11.1 Different Notions of Multidimensional Fixed Point

The notion of fixed point of a self-mapping T W X ! X can be seen as a solution of
the nonlinear equation Tx D x. In this sense, if F W Xn ! Xn is also a self-mapping,
a fixed point of F is a point .x1; x2; : : : ; xn/ 2 Xn such that

F .x1; x2; : : : ; xn/ D .x1; x2; : : : ; xn/ :

However, there is a different viewpoint about multidimensional fixed points. For
example, when we handle a mapping F W Xn ! X, a fixed point of F (in a cyclic
sense) is a point .x1; x2; : : : ; xn/ 2 Xn satisfying the following system involving n
equalities:

© Springer International Publishing Switzerland 2015
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8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂
ˆ̂̂
:̂

F .x1; x2; x3; : : : ; xn�1; xn/ D x1;
F .x2; x3; x4; : : : ; xn; x1/ D x2;

:::

F .xi; xiC1; xiC2; : : : ; xn; x1; x2; : : : ; xi�1/ D xi;
:::

F .xn; x1; x2; : : : ; ; xn�2; xn�1/ D xn:

In 2006, Gnana-Bhaskar and Lakshmikantham [84] studied the coupled case in
order to guarantee the existence and uniqueness of a solution of a boundary value
problem. In their work, they considered a nonlinear operator F W X � X ! X with
two arguments in a partially ordered metric space .X; d;4/, and they characterized
any solution of the differential system as a coupled fixed point of F, that is, a point
.x; y/ 2 X such that

�
F .x; y/ D x;
F .y; x/ D y:

In fact, this notion corresponds to a cyclic 2-dimensional fixed point of F. However,
one of the most attractive hypotheses they introduced in their main results was the
fact that F must have the mixed monotone property (see Definition 11.3.1). When
Berinde and Borcut [41, 50] tried to extend the coupled case to a third variable,
they considered that the mixed monotone property should also be assumed. Then,
in order to take advantage of this property, they did not consider the cyclic notion of
tripled fixed point, but rather they introduced, for a nonlinear operator F W X � X �
X ! X, the notion of tripled fixed point as a point .x; y; z/ 2 X � X � X such that

8
<

:

F .x; y; z/ D x;
F .y; x; y/ D y;
F .z; y; x/ D z:

In this case, both the second and the third equations do not correspond to the
cyclic notion of a fixed point. Especially attractive for researchers was the second
condition, y D F.y; x; y/, in which the variable y is repeated and z does not appear.

Later, Karapınar [110] introduced the quadrupled notion as a extension of the
two previous cases, defining

8
ˆ̂<

ˆ̂
:

F .x; y; z; !/ D x;
F .y; z; !; x/ D y;
F .z; !; x; y/ D z;
F .!; x; y; z/ D !;

which correspond to the cyclic case. He also proved some existence and uniqueness
theorems assuming the mixed monotone property on X.
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A notion of multidimensional fixed point was introduced by Berzig and Samet in
[42] and, simultaneously by Roldán-López-de-Hierro et al. in [174].

We briefly describe the different notions of fixed and coincidence points we will
use throught this chapter in the low dimensional case (n 2 f2; 3; 4g).

Definition 11.1.1. Given two mappings T; g W X ! X, we will say that a point
x 2 X is a:

• fixed point of T if Tx D x;
• coincidence point of T and g if Tx D gx;
• common fixed point of T and g if Tx D gx D x.

We will denote by Fix T the set of all fixed points of T and by Coin.T; g/ the
family of all coincidence points of T and g.

Following Gnana-Bhaskar and Lakshmikantham (see [84]), given F W X2 ! X
and g W X ! X, we will say that a point .x; y/ 2 X2 is a

• coupled fixed point of F if F.x; y/ D x and F.y; x/ D y;
• coupled coincidence point of F and g if F.x; y/ D gx and F.y; x/ D gy;
• common coupled fixed point of F and g if F.x; y/ D gx D x and F.y; x/ D gy

D y.

We will denote by Fix F the set of all coupled fixed points of F and by Coin.F; g/
the family of all coupled coincidence points of F and g.

Following Berinde and Borcut (see [41, 50]), given F W X3 ! X and g W X ! X,
we will say that a point .x; y; z/ 2 X3 is a

• tripled fixed point of F if F.x; y; z/ D x, F.y; x; y/ D y and F.z; y; x/ D z.
• tripled coincidence point of F and g if F.x; y; z/ D gx, F.y; x; y/ D gy and

F.z; y; x/ D gz.
• common tripled fixed point of F and g if F.x; y; z/ D gx D x, F.y; x; y/ D gy D y

and F.z; y; x/ D gz D z.

Following Karapınar (see [110, 117]), given F W X4 ! X and g W X ! X, we will
say that a point .x; y; z; t/ 2 X4 is a

• quadrupled fixed point of F if F.x; y; z; t/ D x, F.y; z; t; x/ D y, F.z; t; x; y/ D z
and F.t; x; y; z/ D t.

• quadrupled coincidence point of F and g if F.x; y; z; t/ D gx, F.y; z; t; x/ D gy,
F.z; t; x; y/ D gz and F.t; x; y; z/ D gt.

• common quadrupled fixed point of F and g if F.x; y; z; t/ D gx D x, F.y; z; t; x/ D
gy D y, F.z; t; x; y/ D gz D z and F.t; x; y; z/ D gt D t.

11.2 Preliminaries

In this section we introduce some technical properties we will use throughout this
chapter.
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Lemma 11.2.1. Let fx1ng; fx2ng; : : : ; fxN
n g � X be N sequences on a G�-metric space

.X;G/ such that

lim
n!1 G

�
xi

n; x
i
nC1; xi

nC1
� D 0 for all i 2 f1; 2; : : : ;Ng: (11.1)

Suppose that, at least, one of them is not Cauchy in .X;G/. Then there exist "0 > 0,
i0 2 f1; 2; : : : ;Ng and two sequences of natural numbers fn.k/gk2N and fm.k/gk2N
such that

k � n.k/ < m.k/ < n.k C 1/;

max
1�i�N

n
G.xi

n.k/; x
i
m.k/�1; xi

m.k/�1/
o

� "0 < max
1�i�N

n
G.xi

n.k/; x
i
m.k/; x

i
m.k//

o
;

lim
k!1



max
1�i�N

n
G.xi

n.k/; x
i
m.k/; x

i
m.k//

o�

D lim
k!1



max
1�i�N

n
G.xi

n.k/�1; xi
m.k/�1; xi

m.k/�1/
o�

D "0;

lim
k!1 G.xi0

n.k/; x
i0
m.k/; x

i0
m.k// D lim

k!1 G.xi0
n.k/�1; x

i0
m.k/�1; x

i0
m.k/�1/ D "0:

Proof. For all n;m 2 N, let

S .n;m/ D max
1�i�N

G.xi
n; x

i
m; x

i
m/:

Using this notation, property (11.1) means that

lim
n!1 S .n; n C 1/ D 0: (11.2)

Furthermore, for all n;m; p 2 N we have that

S .n;m/ D max
1�i�N

G.xi
n; x

i
m; x

i
m/

� max
1�i�N

˚
G.xi

n; x
i
p; x

i
p/C G.xi

p; x
i
m; x

i
m/
�

� max
1�i�N

G.xi
n; x

i
p; x

i
p/C max

1�i�N
G.xi

p; x
i
m; x

i
m/

D S .n; p/C S .p;m/ : (11.3)

Consider the following condition.

For all " > 0, there exists n0 2 N such that

S .n;m/ � " for all m > n � n0: (11.4)
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We claim that if (11.4) holds, then all sequences fx1mg; fx2mg; : : : ; fxN
mg are Cauchy.

Indeed, let " > 0 be arbitrary. Let n0 2 N satisfy (11.4). Therefore, for all m > n �
n0 and for all j 2 f1; 2; : : : ;Ng we have that

G.xj
n; x

j
m; x

j
m/ � max

1�i�N

˚
G.xi

n; x
i
m; x

i
m/
� D S .n;m/ � ":

By Lemma 10.2.5, fxj
ng is a Cauchy sequence in .X;G/ for all j 2 f1; 2; : : : ;Ng.

As we are assuming that at least, one of the sequences fx1ng; fx2ng; : : : ; fxN
n g is not

Cauchy in .X;G/, condition (11.4) cannot hold. Then, there exists "0 > 0 such that

for all n0 2 N, there exist m > n � n0 such that S .n;m/ > "0:

Using this property repeatedly, we can find two sequences of natural numbers
fn.k/gk2N and fm.k/gk2N such that, for all k 2 N,

k � n.k/ < m.k/ < n.k C 1/ and

"0 < S .n.k/;m.k// D max
1�i�N

n
G.xi

n.k/; x
i
m.k/; x

i
m.k//

o
: (11.5)

If we choose m.k/ as the lowest integer, greater than n.k/, satisfying (11.5), then we
can assume that S .n.k/;m.k/ � 1/ � "0, that is, for all k 2 N,

max
1�i�N

n
G.xi

n.k/; x
i
m.k/�1; xi

m.k/�1/
o

� "0

< S .n.k/;m.k// D max
1�i�N

n
G.xi

n.k/; x
i
m.k/; x

i
m.k//

o
:

Moreover,

"0 < max
1�i�N

n
G.xi

n.k/; x
i
m.k/; x

i
m.k//

o

� max
1�i�N

n
G.xi

n.k/; x
i
m.k/�1; xi

m.k/�1/C G.xi
m.k/�1; xi

m.k/; x
i
m.k//

o

� max
1�i�N

G.xi
n.k/; x

i
m.k/�1; xi

m.k/�1/C max
1�i�N

G.xi
m.k/�1; xi

m.k/; x
i
m.k//

� "0 C max
1�i�N

G.xi
m.k/�1; xi

m.k/; x
i
m.k// D "0 C S .m.k/ � 1;m.k// :

Taking the limit as k ! 1 and by (11.2), we deduce that

lim
k!1 S .n.k/;m.k// D lim

k!1



max
1�i�N

n
G.xi

n.k/; x
i
m.k/; x

i
m.k//

o�
D "0: (11.6)
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From (11.3)

S .n.k/ � 1;m.k// D S .n.k/ � 1; n.k//C S .n.k/;m.k// and

S .n.k/;m.k// � S .n.k/;m.k/ � 1/C S .m.k/ � 1;m.k// :

Therefore,

S .n.k/;m.k// � S .m.k/ � 1;m.k// � S .n.k/;m.k/ � 1/
� S .n.k/ � 1; n.k//C S .n.k/;m.k// : (11.7)

From (11.2) and (11.6), we deduce that

lim
k!1 S .n.k/;m.k/ � 1/ D "0: (11.8)

Similarly, by (11.3),

S .n.k/ � 1;m.k/ � 1/ D S .n.k/ � 1; n.k//C S .n.k/;m.k/ � 1/ and

S .n.k/;m.k/ � 1/ � S .n.k/; n.k/ � 1/C S .n.k/ � 1;m.k/ � 1/ :

Hence

S .n.k/;m.k/ � 1/ � S .n.k/; n.k/ � 1/ � S .n.k/ � 1;m.k/ � 1/
� S .n.k/ � 1; n.k//C S .n.k/;m.k/ � 1/ : (11.9)

Taking the limit as k ! 1 and using (11.2) and (11.8),

lim
k!1



max
1�i�N

n
G.xi

n.k/�1; xi
m.k/�1; xi

m.k/�1/
o�

D lim
k!1 S .n.k/ � 1;m.k/ � 1/ D "0:

Next, we consider the N sequences fai
k D G.xi

n.k/; x
i
m.k/; x

i
m.k//gk2N, where i 2

f1; 2; : : : ;Ng. They are lower bounded and they satisfy

lim
k!1

�
max
1�i�N

ai
k

�
D lim

k!1



max
1�i�N

n
G.xi

n.k/; x
i
m.k/; x

i
m.k//

o�
D "0:

By Lemma 2.1.2, there exists i0 2 f1; 2; : : : ;Ng and a partial subsequence fai0
p.k/ D

G.xi
p.n.k//; x

i
p.m.k//; x

i
p.m.k///gk2N such that fai0

p.k/gk2N ! "0. Identifying p ı n 
 n and
p ı m 
 m in order to not complicate the notation, we have that

lim
k!1 G.xi0

n.k/; x
i0
m.k/; x

i0
m.k// D "0:
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Finally, the property

lim
k!1 G.xi0

n.k/�1; x
i0
m.k/�1; x

i0
m.k/�1/ D "0

can be deduced using the same argument we have followed in (11.7), (11.8) and
(11.9). This completes the proof. ut
Lemma 11.2.2. Let fx1ng; fx2ng; : : : ; fxN

n g � X be N sequences on a G�-metric space
.X;G/ such that

lim
n!1 G

�
xi

n; x
i
nC1; xi

nC1
� D 0 for all i 2 f1; 2; : : : ;Ng:

Suppose that, at least, one of them is not Cauchy in .X;G/. Then there exist "0 > 0

and two sequences of natural numbers fn.k/gk2N and fm.k/gk2N such that, for all
k 2 N,

k � n.k/ < m.k/ < n.k C 1/;

NP

iD1
G.xi

n.k/; x
i
m.k/�1; xi

m.k/�1/ � "0 <
NP

iD1
G.xi

n.k/; x
i
m.k/; x

i
m.k//;

and also, for all given p1; p2; p3 2 Z,

lim
k!1



NP

iD1
G.xi

n.k/Cp1
; xi

m.k/Cp2
; xi

m.k/Cp3
/

�
D "0:

Proof. By Corollary 10.3.1, the mapping G0
N W XN � XN � XN ! Œ0;1/, given by

G0
N.X;Y;Z/ D

NP

iD1
G.xi; yi; zi/

for all X D .x1; x2; : : : ; xN/;Y D .y1; y2; : : : ; yN/;Z D .z1; z2; : : : ; zN/ 2 XN , is a
G�-metric on XN . Consider the sequence fAn D .x1n; x

2
n; : : : ; x

N
n /gn2N � XN , which

satisfies

lim
n!1 G0

N.An;AnC1;AnC1/ D lim
n!1

NP

iD1
G
�
xi

n; x
i
nC1; xi

nC1
� D 0:

Then, fAng is an asymptotically regular sequence of
�
XN ;G0

N

�
. As one of

the sequences fx1ng; fx2ng; : : : ; fxN
n g is not Cauchy in .X;G/, then item 3 of

Corollary 10.3.1 guarantees that fAng is not a Cauchy sequence in
�
XN ;G0

N

�
.

From Theorem 4.1.1 (which is also valid in G�-metric spaces by Remark 4.1.1),
there exists a positive real number "0 > 0 and two subsequences fAn.k/g and fAm.k/g
of fAng such that, for all k 2 N,
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k � n.k/ < m.k/ < n.k C 1/;

G0
N

�
An.k/;Am.k/�1;Am.k/�1

� � "0 < G0
N

�
An.k/;Am.k/;Am.k/

�

and also, for all given p1; p2; p3 2 Z,

lim
k!1 G0

N

�
An.k/Cp1 ;Am.k/Cp2 ;Am.k/Cp3

� D "0:

The proof is complete. ut
Lemma 11.2.3. Let famgm2N be a sequence of non-negative real numbers which
has no subsequence converging to zero. Then, for all " > 0, there exist ı 2 �0; "Œ

and m0 2 N such that am � ı for all m � m0.

Proof. Suppose that the conclusion is not true. Then, there exists "0 > 0 such that,
for all ı 2 �0; "0Œ, there exists m0 2 N satisfying am0 < ı. Let k0 2 N be such that
1=k0 < "0. For all k 2 N, take ık D 1=.k C k0/ 2 �0; "0Œ. Then there exists m.k/ 2 N

verifying 0 � am.k/ < ık D 1=.k C k0/. Taking the limit when k ! 1, we deduce
that limk!1 am.k/ D 0. Then famg has a subsequence converging to zero (maybe,
reordering fam.k/g), but this is a contradiction. ut
Lemma 11.2.4. Let fa1mg; fa2mg; : : : ; fan

mg; fb1mg; fb2mg; : : : ; fbn
mg � Œ0;1/ be 2n

sequences of non-negative real numbers and suppose that there exist  ; ' 2 Falt

such that

 .ai
mC1/ � . � '/.bi

m/ for all i and all m; and

 

�
max
1�i�n

bi
m

�
�  

�
max
1�i�n

ai
m

�
for all m:

Then fai
mg ! 0 for all i.

Proof. Let cm D max1�i�n ai
m for all m. Then, for all m,

 .cmC1/ D  

�
max
1�i�n

ai
mC1

�
D max

1�i�n
 
�
ai

mC1
� � max

1�i�n

�
. � '/.bi

m/
�

� max
1�i�n

 .bi
m/ D  

�
max
1�i�n

bi
m

�
�  

�
max
1�i�n

ai
m

�
D  .cm/:

Therefore, f .cm/g is a non-increasing, bounded below sequence. Then, it is
convergent. Let � � 0 be such that f .cm/g ! � and � �  .cm/. We show
that � D 0. Since

�
max
1�i�n

 .ai
m/

�
D
�
 

�
max
1�i�n

ai
m

��
D f .cm/g ! �;
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Lemma 2.1.2 guarantees that there exists i0 2 f1; 2; : : : ; ng and a partial subse-
quence fai0

m.k/gk2N such that f .ai0
m.k//g ! �. Moreover,

0 �  .ai0
m.k// � . � '/.bi0

m.k/�1/ for all k: (11.10)

Consider the sequence fbi0
m.k/�1gk2N. If this sequence has a partial subsequence

converging to zero, then we can take the limit in (11.10) when k ! 1 using that
partial subsequence, and we deduce � D 0. On the contrary, if fbi0

m.k/�1gk2N has
no partial subsequence converging to zero, Lemma 11.2.3 assures us that there exist
ı 2 �0; 1Œ and k0 2 N such that bi0

m.k/�1 � ı for all k � k0. Since ' is non-decreasing,

�'.bi0
m.k/�1/ � �'.ı/ < 0. Then, by (11.10), for all k � k0,

0 �  .ai0
m.k// � . � '/.bi0

m.k/�1/ D  .bi0
m.k/�1/ � '.bi0

m.k/�1/

�  .bi0
m.k/�1/ � '.ı/ �  

�
max
1�i�n

bi
m.k/�1

�
� '.ı/

�  

�
max
1�i�n

ai
m.k/�1

�
� '.ı/ D  

�
cm.k/�1

� � '.ı/:

Taking the limit as k ! 1 we deduce � � � � '.ı/, which is impossible. This
proves that � D 0. Since f .cm/g ! � D 0, Lemma 2.3.3 implies that fcmg ! 0,
which is equivalent to fai

mg ! 0 for all i. ut
Lemma 11.2.5. Let .X;G/ be a G-metric space and let fx1ng; fx2ng; : : : ; fxN

n g � X be

N sequences in X. Assume that there exists  2 F .c/
com such that

NP

iD1
G
�
xi

nC2; xi
nC1; xi

nC1
� �  

�
NP

iD1
G
�
xi

nC1; xi
n; x

i
n

��
(11.11)

for all n 2 N. Then each sequence fxi
ngn2N is Cauchy in .X;G/ for all i 2

f1; 2; : : : ;Ng.

Proof. Let

t0 D
NP

iD1
G
�
xi
1; x

i
0; x

i
0

� 2 Œ0;1/ :

As  is non-decreasing, by (11.11), for all n � 1,

NP

iD1
G
�
xi

nC1; xi
n; x

i
n

� �  

�
NP

iD1
G
�
xi

n; x
i
n�1; xi

n�1
��

�  2

�
NP

iD1
G
�
xi

n�1; xi
n�2; xi

n�2
�� � : : :

�  n

�
NP

iD1
G
�
xi
1; x

i
0; x

i
0

�� D  n .t0/ :
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As a consequence, for all j 2 f1; 2; : : : ;Ng and all n;m 2 N such that n < m, we
have that

G.xj
m; x

j
n; x

j
n/ �

NP

iD1
G
�
xi

m; x
i
n; x

i
n

� �
NP

iD1

m�1P
kDn

G
�
xi

kC1; xi
k; x

i
k

�

D
m�1P
kDn

�
NP

iD1
G
�
xi

kC1; xi
k; x

i
k

�� �
m�1P
kDn
 k .t0/ :

If t0 D 0, then xj
m D xj

n for all j 2 f1; 2; : : : ;Ng and all n;m 2 N. In such a case,
each sequence fxj

ngn2N is constant, so it is also Cauchy. Assume that t0 > 0. Let
" > 0 be arbitrary. Since  2 F .c/

com, the series
P

k2N k .t0/ converges. Then, there
exists n0 2 N such that

1P
kDn0

 k .t0/ < ":

Therefore, for all j 2 f1; 2; : : : ;Ng and all n;m 2 N such that m > n � n0, it follows
that

G
�
xj

m; x
j
n; x

j
n

� �
m�1P
kDn
 k .t0/ �

1P
kDn0

 k .t0/ < ":

From Lemma 3.2.2, each sequence fxj
ngn2N is Cauchy in .X;G/. ut

Lemma 11.2.6. Let .X;G/ be a G-metric space and let fx1ng; fx2ng; : : : ; fxN
n g � X be

N sequences in X. Assume that there exists  2 F .c/
com such that

max
1�i�N

G
�
xi

nC2; xi
nC1; xi

nC1
� �  

�
max
1�i�N

G
�
xi

nC1; xi
n; x

i
n

��

for all n 2 N. Then each sequence fxi
ngn2N is Cauchy in .X;G/ for all i 2

f1; 2; : : : ;Ng.

Proof. Repeat the argument in the proof of Lemma 11.2.5 replacing the sum by the
maximum. In particular, if

t0 D max
1�i�N

G
�
xi
1; x

i
0; x

i
0

�
> 0;

then

G.xj
m; x

j
n; x

j
n/ � max

1�i�N
G
�
xi

m; x
i
n; x

i
n

� � max
1�i�N

�
m�1P
kDn

G
�
xi

kC1; xi
k; x

i
k

� �
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�
m�1P
kDn

�
max
1�i�N

G
�
xi

kC1; xi
k; x

i
k

� � �
m�1P
kDn
 k .t0/ ;

and continue. ut
Corollary 11.2.1. Let .X;G/ be a G-metric space and let fx1ng; fx2ng; : : : ; fxN

n g � X
be N sequences in X. Assume that there exists � 2 Œ0; 1/ such that

max
1�i�N

G
�
xi

nC2; xi
nC1; xi

nC1
� � � max

1�i�N
G
�
xi

nC1; xi
n; x

i
n

�

for all n 2 N. Then each sequence fxi
ngn2N is Cauchy in .X;G/ for all i 2

f1; 2; : : : ;Ng.

Proof. It is only necessary to apply Lemma 11.2.6 using  �.t/ D � t for all t 2
Œ0;1/. ut

11.3 Coupled Fixed Point Theory in G-Metric Spaces

In this section, we describe sufficient conditions to ensure that a mapping F W X �
X ! X has a coupled fixed point, that is, a point .x; y/ 2 X2 such that F .x; y/ D x
and F .y; x/ D y.

11.3.1 Gnana-Bhaskar and Lakshmikantham’s Coupled
Fixed Point Theory

The notion of coupled fixed point was introduced by Guo and Lakshmikantham in
[89]. Later, in [84], Gnana-Bhaskar and Lakshmikantham reconsidered this concept
and introduced the mixed monotone property.

Definition 11.3.1 ([84]). Let X be a non-empty set endowed with a binary relation
4. A mapping F W X2 ! X is said to have the mixed 4-monotone property if F.x; y/
is monotone 4-non-decreasing in x and monotone 4-non-increasing in y, that is, for
all x; y 2 X ,

x1; x2 2 X; x1 4 x2 ) F.x1; y/ 4 F.x2; y/

and

y1; y2 2 X; y1 4 y2 ) F.x; y1/ < F.x; y2/:
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In their original definition, Guo and Lakshmikantham considered that 4 was
a partial order on X. We will use preorders in the theorems we present in this
chapter. When the binary relation 4 is implicitly considered, it is usual to refer
to the previous property as the mixed monotone property.

Lemma 11.3.1. Let 
 be a transitive binary relation on a set X and let F W X2 !
X be a mapping having the mixed 
-monotone property. Assume that there exists
x0; y0 2 X such that x0 
 F.x0; y0/ and y0 � F.y0; x0/. Then the sequences fxng and
fyng, iteratively defined by

xnC1 D F.xn; yn/ and ynC1 D F.yn; xn/ for all n 2 N; (11.12)

verify xn 
 xnC1 and yn � ynC1 for all n 2 N.
Furthermore, if there exists n0 2 N such that xn0 D xn0C1 and yn0 D yn0C1, then

.xn0 ; yn0 / is a coupled fixed point of F.

Proof. We proceed by induction. For n D 0, we assume, by hypothesis, that x0 

F.x0; y0/ D x1 and y0 � F.y0; x0/ D y1. Suppose that xn 
 xnC1 and yn � ynC1 for
some n 2 N. Then, as F has the mixed 
-monotone property, then

xnC1 D F.xn; yn/ 
 F.xnC1; yn/ 
 F.xnC1; ynC1/ D xnC2;

ynC1 D F.yn; xn/ � F.ynC1; xn/ � F.ynC1; xnC1/ D ynC2:

This completes the induction. Furthermore, if the exists n0 2 N such that xn0 D
xn0C1 and yn0 D yn0C1, then

xn0 D xn0C1 D F.xn0 ; yn0 / and yn0 D yn0C1 D F.yn0 ; xn0 /;

so .xn0 ; yn0 / is a coupled fixed point of F. ut
Theorem 11.3.1. Let .X;G/ be a complete G-metric space endowed with a pre-
order 
 and let F W X2 ! X be a mapping having the mixed 
-monotone property.
Suppose that there exists a constant � 2 Œ0; 1/ such that

G .F .x; y/ ;F .u; v/ ;F .z;w// � �

2
ŒG .x; u; z/C G .y; v;w/ � (11.13)

for all .x; y/ ; .u; v/ ; .z;w/ 2 X2 satisfying x 
 u 
 z and y � v � w. Also
assume that F is continuous and there exists x0; y0 2 X such that x0 
 F.x0; y0/ and
y0 < F.y0; x0/. Then F has, at least, a coupled fixed point.

The condition “x 
 u 
 z and y � v � w” can be replaced by the condition
“x � u � z and y 
 v 
 w” because G is commutative and

G .F .x; y/ ;F .u; v/ ;F .z;w// D G .F .z;w/ ;F .u; v/ ;F .x; y// :
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Proof. Starting from the points x0; y0 2 X such that x0 
 F.x0; y0/ and y0 <
F.y0; x0/, consider the sequences fxng and fyng as in (11.12). By Lemma 11.3.1,
the sequence fxng is 
-non-decreasing and fyng is 
-non-increasing. If x0 D x1 and
y0 D y1, then .x0; y0/ is a coupled fixed point of F, and the existence part is finished.
In the other case, assume that

G .x0; x1; x1/C G .y0; y1; y1/ > 0:

Then, using the contractivity condition (11.13), for all n 2 N,

G .xnC1; xnC2; xnC2/ D G .F .xn; yn/ ;F .xnC1; ynC1/ ;F .xnC1; ynC1//

� �

2
.G .xn; xnC1; xnC1/C G .yn; ynC1; ynC1/ /

and, taking into account that ynC1 
 ynC1 
 yn and xnC1 � xnC1 � xn,

G .ynC2; ynC2; ynC1/ D G .F .ynC1; xnC1/ ;F .ynC1; xnC1/ ;F .xn; yn//

� �

2
ŒG .ynC1; ynC1; yn/C G .xnC1; xnC1; xn/ � :

Therefore, for all n 2 N,

G .xnC1; xnC2; xnC2/C G .ynC2; ynC2; ynC1/

� � ŒG .xn; xnC1; xnC1/C G .yn; ynC1; ynC1/ � :

Repeating this argument, we have that, for all n 2 N,

G .xn; xnC1; xnC1/C G .yn; ynC1; ynC1/

� � ŒG .xn�1; xn; xn/C G .yn�1; yn; yn/ �

� �2 ŒG .xn�2; xn�1; xn�1/C G .yn�2; yn�1; yn�1/ �

� : : : � �n ŒG .x0; x1; x1/C G .y0; y1; y1/ � :

Let " > 0 be arbitrary. As � 2 Œ0; 1/, the series†n�1�n converges. Then, there exists
n0 2 N such that

1P
nDn0

�n <
"

G .x0; x1; x1/C G .y0; y1; y1/
:

Let n;m 2 N be such that m > n � n0. Then

max fG .xn; xm; xm/ ;G .yn; ym; ym/g � G .xn; xm; xm/C G .yn; ym; ym/

�
m�1P
kDn

ŒG .xk; xkC1; xkC1/C G .yk; ykC1; ykC1/ �
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�
m�1P
kDn

�
�k .G .x0; x1; x1/C G .y0; y1; y1/ /

�

D ŒG .x0; x1; x1/C G .y0; y1; y1/ �
m�1P
kDn

�k

� ŒG .x0; x1; x1/C G .y0; y1; y1/ �
1P

kDn0

�k � ":

As a consequence, the sequences fxng and fyng are Cauchy in .X;G/. As .X;G/ is
complete, there exists x; y 2 X such that fxng ! x and fyng ! y. Moreover, taking
into account that F is continuous, we know that the sequence fxnC1 D F.xn; yn/g
converges, at the same time, to x and to F.x; y/, and the sequence fynC1 D F.yn; xn/g
converges, at the same time, to y and to F.y; x/. By the uniqueness of the limit in a
G-metric space, we conclude that .x; y/ is a coupled fixed point of F. ut

In the following result, we replace the continuity of F by the regularity of
.X;G;
/ (recall Definition 5.2.1).

Theorem 11.3.2. Theorem 11.3.1 also holds if we replace the continuity of F by
the regularity of .X;G;
/.
Proof. Following the argument in the proof of Theorem 11.3.1, we deduce that there
exists x; y 2 X such that fxng ! x and fyng ! y. Since fxng is 
-non-decreasing and
fxng ! x, the regularity of .X;G;
/ implies that xn 
 x for all n 2 N. Similarly,
yn � y for all n 2 N. Then, the contractivity condition (11.13) yields

G .xnC1;F .x; y/ ;F .x; y// D G .F .xn; yn/ ;F .x; y/ ;F .x; y//

� �

2
ŒG .xn; x; x/C G .yn; y; y/� :

As G is continuous (see Theorem 10.2.2), we deduce that

G .x;F .x; y/ ;F .x; y// D lim
n!1 G .xnC1;F .x; y/ ;F .x; y// D 0;

so F.x; y/ D x. Similarly,

G .F .y; x/ ;F .y; x/ ; ynC1/ D G .F .y; x/ ;F .y; x/ ;F .yn; xn//

� �

2
ŒG .y; y; yn/C G .x; x; xn/ � ;

so F.y; x/ D y and .x; y/ is a coupled fixed point of F. ut
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Theorem 11.3.3. Under the hypotheses of Theorem 11.3.1 (respectively, Theo-
rem 11.3.2), also assume the following condition:

.U/ for all two coupled fixed points .x; y/ and .x0; y0/ of F, there exists .z;w/ 2 X2

such that x 
 z, x0 
 z, y � w and y0 � w.

Then F has a unique coupled fixed point.

Proof. Let .x; y/ and .x0; y0/ be two arbitrary coupled fixed points of F. By
hypothesis, there exists .z0;w0/ 2 X2 such that x 
 z0, x0 
 z0, y � w0 and y0 � w0.
Define the sequences

znC1 D F.zn;wn/ and wnC1 D F.wn; zn/ for all n 2 N:

We claim that fzng ! x and fwng ! y. The same argument will show that fzng ! x0
and fwng ! y0, so we will deduce .x; y/ D .x0; y0/.

Since x 
 z0 and y � w0, and F has the mixed 
-monotone property, then

x D F.x; y/ 
 F .z0; y/ 
 F .z0;w0/ D z1 and

y D F.y; x/ � F.w0; x/ � F.w0; z0/ D w1:

Repeating this argument, we deduce, by induction, that x 
 zn and y � wn for all
n 2 N. Therefore, using the contractivity condition (11.13), it follows that

G .x; x; znC1/ D G .F.x; y/;F.x; y/;F.zn;wn//

� �

2
ŒG .x; x; zn/C G .y; y;wn/ �

and

G .wnC1; y; y/ D G .F.wn; zn/;F.y; x/;F.y; x//

� �

2
ŒG .wn; y; y/C G .zn; x; x/ � :

Joining the last two inequalities, for all n 2 N,

G .x; x; znC1/C G .y; y;wnC1/ � � ŒG .x; x; zn/C G .y; y;wn/ � :

From Lemma 2.1.3, we deduce that fG .x; x; znC1/g ! 0 and fG.y; y;wnC1/g ! 0.
Then fzng ! x and fwng ! y. ut
Corollary 11.3.1. Let .X;G/ be a complete G-metric space endowed with a partial
order 4 and let F W X2 ! X be a mapping having the mixed 4-monotone property.
Suppose that there exists a constant � 2 Œ0; 1/ such that
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G .F .x; y/ ;F .u; v/ ;F .z;w// � �

2
ŒG .x; u; z/C G .y; v;w/ �

for all .x; y/ ; .u; v/ ; .z;w/ 2 X2 satisfying x 4 u 4 z and y < v < w. Also assume
that, at least, one of the following conditions holds:

(i) F is continuous, or
(ii) .X;G;4/ is regular.

If there exists x0; y0 2 X such that x0 4 F.x0; y0/ and y0 < F.y0; x0/, then F has,
at least, a coupled fixed point.

Furthermore, if we additionally assume the following condition:

.U/ for all two coupled fixed points .x; y/ and .x0; y0/ of F, there exists .z;w/ 2 X2

such that x 4 z, x0 4 z, y < w and y0 < w;

then F has a unique coupled fixed point.

In the next corollary, we use the special preorder 
0 on X given by “x 
0 y for
all x; y 2 X”. In such a case, .X;G;
0/ is regular and .U/ trivially holds.

Corollary 11.3.2. Let .X;G/ be a complete G-metric space and let F W X2 ! X be
a mapping. Suppose that there exists a constant � 2 Œ0; 1/ such that

G .F .x; y/ ;F .u; v/ ;F .z;w// � �

2
.G .x; u; z/C G .y; v;w/ /

for all .x; y/ ; .u; v/ ; .z;w/ 2 X2. Then F has a unique coupled fixed point.

11.3.2 Choudhury and Maity’s Coupled Fixed Point Theorem
in G-Metric Spaces

In [58], Choudhury and Maity gave a version of Corollary 11.3.1 assuming the
following contractivity condition: there exists a constant � 2 Œ0; 1/ such that

G .F .x; y/ ;F .u; v/ ;F .z;w// � �

2
.G .x; u; z/C G .y; v;w/ / (11.14)

for all x; y; u; v; z;w 2 X satisfying x < u < z and y 4 v 4 w where either u ¤ z
or v ¤ w. However, the proof given by the authors is false because the condition
“either u ¤ z or v ¤ w” is very restrictive. Let us review the lines of their proof.

Based on the points x0; y0 2 X such that x0 4 F.x0; y0/ and F.y0; x0/ < y0 given
by the hypothesis, the authors defined the sequences

xnC1 D F.xn; yn/ and ynC1 D F.yn; xn/ for all n 2 N; n � 0:
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Using the mixed monotone property, they proved that

xn 4 xnC1 and yn < ynC1 for all n 2 N; n � 0:

If there exists some n 2 N such that .xnC1; ynC1/ D .xn; yn/, then xn D xnC1 D
F.xn; yn/ and yn D ynC1 D F.yn; xn/, so .xn; yn/ is a coupled fixed point of F. On
the contrary, assume that .xnC1; ynC1/ ¤ .xn; yn/ for all n � 0. Therefore, for all
n � 0;

xn 4 xnC1 and yn < ynC1; but xn ¤ xnC1 or ynC1 ¤ yn:

In this case, the authors could use the contractivity condition (11.14) to prove that

x1 � x1 � x0; y1 
 y1 
 y0; x0 ¤ x1 or y0 ¤ y1

) G.x2; x2; x1/ D G.F.x1; y1/;F.x1; y1/;F.x0; y0//

� �

2
ŒG.x1; x1; x0/C G.y1; y1; y0/ �:

However, the corresponding inequality using fyng, that is,

G.y2; y2; y1/ � �

2
ŒG.y1; y1; y0/C G.x1; x1; x0/ � (11.15)

cannot be proved because

G.y2; y2; y1/ D G.F.y1; x1/;F.y1; x1/;F.y0; x0//

but the previous conditions
�

y1 < y1 < y0;
x1 4 x1 4 x0

are not satisfied. In fact, we have the contrary inequalities: x1 < x0 and y1 4 y0.
Furthermore, it is not possible to use the symmetry of G in its variables because the
contractivity condition (11.14) requires that x < u < w and y 4 v 4 z.

A version of Choudhury and Maity’s result is the following one, which is also
valid using a preorder 
 on X. In fact, the proof of Theorem 11.3.1 can be followed.

Theorem 11.3.4. Let .X;4/ be a partially ordered set and G be a G-metric on X
such that .X;G/ is a complete G-metric space. Let F W X � X ! X be G-continuous
mapping having the mixed 4-monotone property on X. Suppose that there exists a
� 2 Œ0; 1/ such that

G.F.x; y/;F.u; v/;F.z;w// � �

2
ŒG.x; u; z/C G.y; v;w/� (11.16)
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for all x; y; u; v; z;w 2 X with

Œ x < u < z and y 4 v 4 w � or Œ x 4 u 4 z and y < v < w � ;

where either u ¤ z or v ¤ w. If there exist x0; y0 2 X such that x0 4 F.x0; y0/ and
F.y0; x0/ < y0, then F has a coupled fixed point.

11.3.3 Berinde’s Coupled Fixed Point Theory

In the setting of metric spaces, Berinde introduced in [40] a symmetric version of
the contractivity condition (11.13).

Theorem 11.3.5. Let .X;G/ be a complete G-metric space endowed with a pre-
order 
 and let F W X2 ! X be a mapping having the mixed 
-monotone property.
Suppose that there exists a constant � 2 Œ0; 1/ such that

G .F .x; y/ ;F .u; v/ ;F .u; v//C G .F .y; x/ ;F .v; u/ ;F .v; u//

� � ŒG .x; u; u/C G .y; v; v/ � (11.17)

for all .x; y/ ; .u; v/ 2 X2 satisfying x 
 u and y � v. Also assume that F is
continuous and there exists x0; y0 2 X such that x0 
 F.x0; y0/ and y0 < F.y0; x0/.
Then F has, at least, a coupled fixed point.

Notice that the contractivity condition (11.13) implies (11.17).

Proof. Starting from the points x0; y0 2 X such that x0 
 F.x0; y0/ and y0 <
F.y0; x0/, consider the sequences fxng and fyng as in (11.12). From Lemma 11.3.1,
the sequence fxng is 
-non-decreasing and fyng is 
-non-increasing. If x0 D x1 and
y0 D y1, then .x0; y0/ is a coupled fixed point of F, and the existence part is finished.
In the other case, assume that

G .x0; x1; x1/C G .y0; y1; y1/ > 0:

Then, using the contractivity condition (11.17), for all n 2 N,

G .xnC1; xnC2; xnC2/C G .ynC1; ynC2; ynC2/

D G .F .xn; yn/ ;F .xnC1; ynC1/ ;F .xnC1; ynC1//

C G .F .yn; xn/ ;F .ynC1; xnC1/ ;F .ynC1; xnC1//

� � ŒG .xn; xnC1; xnC1/C G .yn; ynC1; ynC1/ � :
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From Lemma 11.2.5, fxng and fyng are Cauchy sequences in .X;G/. Since .X;G/
is complete, there exists u; v 2 X such that fxng ! u and fyng ! v. As F is
continuous, letting n ! 1 in (11.12), we conclude that F.u; v/ D u and F .v; u/ D
v, so .u; v/ is a coupled fixed point of F. ut
Theorem 11.3.6. If we replace the continuity of F by the fact that .X;G;
/ is
regular, then Theorem 11.3.5 also holds.

Proof. Following the proof of Theorem 11.3.5, we deduce that fxng is 
-non-
decreasing and fyng is 
-non-increasing. Furthermore, there exists u; v 2 X such
that fxng ! u and fyng ! v. As .X;G;
/ is regular, then xn 
 u and yn � v for all
n 2 N. Then, from the contractivity condition (11.17),

G .xnC1;F .u; v/ ;F .u; v//C G .ynC1;F .v; u/ ;F .v; u//

D G .F .xn; yn/ ;F .u; v/ ;F .u; v//C G .F .yn; xn/ ;F .v; u/ ;F .v; u//

� � ŒG .xn; u; u/C G .yn; v; v/ � :

As a consequence, u D limn!1 xnC1 D F .u; v/ and v D limn!1 ynC1 D F .v; u/.
ut

The following uniqueness result can be proved reasoning as in the proof of
Theorem 11.3.3.

Theorem 11.3.7. Under the hypothesis of Theorem 11.3.5 (respectively, Theo-
rem 11.3.6), also assume the following condition:

.U/ for all two coupled fixed points .x; y/ and .x0; y0/ of F, there exists .z;w/ 2 X2

such that x 
 z, x0 
 z, y � w and y0 � w.

Then F has a unique coupled fixed point.

11.3.4 G -ˇ - - Coupled Fixed Point Theorems in G-Metric
Spaces

In this subsection, we have a .c/-comparison function in the contractivity condition.

Theorem 11.3.8. Let .X;G/ be a G-complete G-metric space and let F W X�X ! X
be a given mapping. Suppose there exist  2 F .c/

com and ˇ W X2 � X2 � X2 ! Œ0;1/

such that

ˇ..x; y/; .u; v/; .u; v//G.F.x; y/;F.u; v/;F.u; v//

� 1

2
 .G.x; u; u/C G.y; v; v//; (11.18)

for all .x; y/; .u; v/ 2 X2. Also assume that the following conditions hold.
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.a/ For all .x; y/; .u; v/ 2 X � X, we have

ˇ..x; y/; .u; v/; .u; v// � 1 )
ˇ..F.x; y/;F.y; x//; .F.u; v/;F.v; u//; .F.u; v/;F.v; u/// � 1:

.b/ There exists x0; y0 2 X such that

ˇ..F.x0; y0/;F.y0; x0//; .x0; y0/; .x0; y0// � 1 and

ˇ..F.y0; x0/;F.x0; y0//; .y0; x0/; .y0; x0// � 1:

.c/ F is continuous.

Then F has a coupled fixed point.

Proof. Starting from x0; y0 2 X as in .b/, let xnC1 D F .xn; yn/ and ynC1 D F .yn; xn/

for all n 2 N. Condition .b/ means that

ˇ ..x1; y1/ ; .x0; y0/ ; .x0; y0// � 1 and

ˇ ..y1; x1/ ; .y0; x0/ ; .y0; x0// � 1:

From hypothesis .a/,

ˇ ..x2; y2/ ; .x1; y1/ ; .x1; y1//

D ˇ
	
.F .x1; y1/ ;F .y1; x1//; .F .x0; y0/ ;F .y0; x0//;

.F .x0; y0/ ;F .y0; x0//



� 1 and

ˇ ..y2; x2/ ; .y1; x1/ ; .y1; x1//

D ˇ
	
.F .y1; x1/ ;F .x1; y1//; .F .y0; x0/ ;F .x0; y0//;

.F .y0; x0/ ;F .x0; y0//



� 1:

By induction, it can be proved that

ˇ ..xnC1; ynC1/ ; .xn; yn/ ; .xn; yn// � 1 and (11.19)

ˇ ..ynC1; xnC1/ ; .yn; xn/ ; .yn; xn// � 1: (11.20)

Using the contractivity condition (11.18), for all n 2 N,

G .xnC2; xnC1; xnC1/ D G .F .xnC1; ynC1/ ;F .xn; yn/ ;F .xn; yn//

� ˇ ..xnC1; ynC1/ ; .xn; yn/ ; .xn; yn// �
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G .F .xnC1; ynC1/ ;F .xn; yn/ ;F .xn; yn//

� 1

2
 .G.xnC1; xn; xn/C G.ynC1; yn; yn//:

Similarly, for all n 2 N,

G .ynC2; ynC1; ynC1/ D G .F .ynC1; xnC1/ ;F .yn; xn/ ;F .yn; xn//

� ˇ ..ynC1; xnC1/ ; .yn; xn/ ; .yn; xn// �
G .F .ynC1; xnC1/ ;F .yn; xn/ ;F .yn; xn//

� 1

2
 .G.ynC1; yn; yn/C G.xnC1; xn; xn//:

Joining the last two inequalities, for all n 2 N,

G .xnC2; xnC1; xnC1/C G .ynC2; ynC1; ynC1/

�  .G.xnC1; xn; xn/C G.ynC1; yn; yn//:

From Lemma 11.2.5, the sequences fxng and fyng are Cauchy in .X;G/. As .X;G/
is complete, there exists u; v 2 X such that fxng ! u and fyng ! v. Finally, since
F is continuous, then fxnC1 D F .xn; yn/g ! F .u; v/ and fynC1 D F .yn; xn/g !
F .v; u/, which means that F .u; v/ D u and F .v; u/ D v. ut
Theorem 11.3.9. Let .X;G/ be a G-complete G-metric space and F W X � X ! X
be a given mapping. Suppose there exist  2 F .c/

com and ˇ W X2 � X2 � X2 ! Œ0;1/

such that

ˇ..x; y/; .u; v/; .u; v//G.F.x; y/;F.u; v/;F.u; v//

� 1

2
 .G.x; u; u/C G.y; v; v//; (11.21)

for all .x; y/; .u; v/ 2 X � X. Also assume that the following conditions hold.

.a/ For all .x; y/; .u; v/ 2 X � X, we have

ˇ..x; y/; .u; v/; .u; v// � 1 )
ˇ..F.x; y/;F.y; x//; .F.u; v/;F.v; u//; .F.u; v/;F.v; u/// � 1:

.b/ There exists x0; y0 2 X such that

ˇ..F.x0; y0/;F.y0; x0//; .x0; y0/; .x0; y0// � 1 and

ˇ..F.y0; x0/;F.x0; y0//; .y0; x0/; .y0; x0// � 1:
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.c/ If fxng ; fyng � X are sequences in X, G-convergent to u and v, respectively,
such that

ˇ ..xnC1; ynC1/ ; .xn; yn/ ; .xn; yn// � 1 and

ˇ ..ynC1; xnC1/ ; .yn; xn/ ; .yn; xn// � 1 for all n 2 N;

then

ˇ..xn; yn/; .u; v/ ; .u; v// � 1 and (11.22)

ˇ ..yn; xn/ ; .v; u/ ; .v; u// � 1 for all n 2 N: (11.23)

Then F has a coupled fixed point.

Proof. Following the proof of Theorem 11.3.8, there exists u; v 2 X such that
fxng ! u and fyng ! v. Using (11.19)–(11.20), assumption .c/ guarantees
that (11.22)–(11.23). Applying the contractivity condition (11.21), it follows that

G .xnC1;F .u; v/ ;F .u; v// D G .F .xn; yn/ ;F .u; v/ ;F .u; v//

� ˇ ..xn; yn/ ; .u; v/ ; .u; v// �
G .F .xn; yn/ ;F .u; v/ ;F .u; v//

� 1

2
 .G.xn; u; u/C G.yn; v; v//:

Similarly,

G .ynC1;F .v; u/ ;F .v; u// D G .F .yn; xn/ ;F .v; u/ ;F .v; u//

� ˇ ..yn; xn/ ; .v; u/ ; .v; u// �
G .F .yn; xn/ ;F .v; u/ ;F .v; u//

� 1

2
 .G.yn; v; v/C G.xn; u; u//:

As  is continuous at t D 0, letting n ! 1 in the last two inequalities, we deduce
that

F .u; v/ D lim
n!1 xnC1 D u and F .v; u/ D lim

n!1 ynC1 D v:

Therefore, .u; v/ is a coupled fixed point of F. ut
Theorem 11.3.10. Adding the following condition to the hypotheses of Theo-
rem 11.3.8 (resp. Theorem 11.3.9) we obtain uniqueness of the coupled fixed point
of F.
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(d) For all .x; y/; .u; v/ 2 X � X, , there exists .z1; z2/ 2 X � X such that

ˇ ..x; y/; .z1; z2/ ; .z1; z2// � 1; ˇ ..z2; z1/ ; .y; x/; .y; x// � 1;

ˇ ..u; v/; .z1; z2/ ; .z1; z2// � 1; ˇ ..z2; z1/ ; .v; u/ ; .v; u// � 1:

11.3.5 Some Coupled Coincidence Point Theorems

In this subsection we show how to prove some coupled coincidence point theorems
under a very general contractivity condition.

Definition 11.3.2. Let X be a non-empty set endowed with a binary relation 4 and
let F W X2 ! X and g W X ! X be two mappings. The mapping F is said to have the
mixed .g;4/-monotone property if F.x; y/ is monotone .g;4/-non-decreasing in x
and monotone .g;4/-non-increasing in y, that is, for all x; y 2 X,

x1; x2 2 X; gx1 4 gx2 ) F.x1; y/ 4 F.x2; y/

and

y1; y2 2 X; gy1 4 gy2 ) F.x; y1/ < F.x; y2/:

Lemma 11.3.2. Let F W X2 ! X and g W X ! X be two mappings such that
F.X2/ � g.X/. Then, starting from any points x0; y0 2 X, there exist two sequences
fxng and fyng on X such that

gxnC1 D F.xn; yn/ and gynC1 D F.yn; xn/ for all n 2 N: (11.24)

Proof. Let x0; y0 2 X be arbitrary. Since F.x0; y0/ 2 F.X2/ � g.X/, then there exists
x1 2 X such that gx1 D F.x0; y0/. Similarly, as F.y0; x0/ 2 F.X2/ � g.X/, then there
exists y1 2 X such that gy1 D F.y0; x0/. If we repeat the same argument using x1
and y1 rather than x0 and y0, we can find x2; y2 2 X2 such that gx2 D F.x1; y1/ and
gy2 D F.y1; x1/. By induction, we may define the sequences fxng and fyng on X. ut
Definition 11.3.3. Given two mappings F W X2 ! X and g W X ! X, a Picard
.F; g/-sequence is a sequence f.xn; yn/gn2N � X2 satisfying (11.24).

Proposition 11.3.1. If f.xn; yn/gn2N � X2 is a Picard .F; g/-sequence of two
mappings F W X2 ! X and g W X ! X and there exists n0 2 N such that
gxn0 D gxn0C1 and gyn0 D gyn0C1, then .xn0 ; yn0 / is a coupled coincidence point
of F and g.

Proof. If the exists n0 2 N such that gxn0 D gxn0C1 and gyn0 D gyn0C1, then

gxn0 D gxn0C1 D F.xn0 ; yn0 / and gyn0 D gyn0C1 D F.yn0 ; xn0 /;

so .xn0 ; yn0 / is a coupled coincidence point of F and g. ut
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Given two mappings F W X2 ! X and g W X ! X, the condition F.X2/ � g.X/ is
sufficient to guarantee that there exists a Picard .F; g/-sequence on X based on any
initial points x0; y0 2 X. However, it is not necessary.

Lemma 11.3.3. Let 
 be a transitive binary relation on a set X and let F W X2 ! X
and g W X ! X be two mappings such that the following conditions are fulfilled.

(i) There exists a Picard .F; g/-sequence f.xn; yn/gn2N � X2.
(ii) gx0 
 F.x0; y0/ and gy0 � F.y0; x0/.

(iii) F has the mixed .g;
/-monotone property.

Then fgxng is 
-non-decreasing and fgyng is 
-non-increasing (that is, gxn 

gxnC1 and gyn � gynC1 for all n 2 N).

Proof. By (ii), we have that gx0 
 F.x0; y0/ D gx1 and gy0 � F.y0; x0/ D gy1.
Assume that there exist n 2 N such that gxn 
 gxnC1 and gyn � gynC1. Then, as F
has the mixed .g;
/-monotone property, it follows that

gxnC1 D F .xn; yn/ 
 F .xnC1; yn/ 
 F .xnC1; ynC1/ D gxnC2 and

gynC1 D F .yn; xn/ � F .ynC1; xn/ � F .ynC1; xnC1/ D gynC2:

As 
 is transitive, then gxnC1 
 gxnC2 and gynC1 � gynC2, and this completes the
induction. ut

In order to present a very general result, we introduce the following definitions.

Definition 11.3.4. Let .X;G/ be a G�-metric space endowed with a binary relation

 and let F W X2 ! X and g W X ! X be two mappings. We will say that .F; g/ is
an .O;
/-compatible pair if we have that

lim
n!1 G .gF.xn; yn/;F.gxn; gyn/;F.gxn; gyn// D 0 and

lim
n!1 G .gF.yn; xn/;F.gyn; gxn/;F.gyn; gxn// D 0

whenever fxng and fyng are sequences in X such that fgxng and fgyng are 
-
monotone and

lim
m!1 F.xn; yn/ D lim

n!1 gxn 2 X and

lim
m!1 F.yn; xn/ D lim

n!1 gyn 2 X:

Definition 11.3.5. Let .X;G/ be a G�-metric space and let F W X2 ! X and g W
X ! X be two mappings. We will say that .F; g/ is an O-compatible pair if we
have that

lim
n!1 G .gF.xn; yn/;F.gxn; gyn/;F.gxn; gyn// D 0 and
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lim
n!1 G .gF.yn; xn/;F.gyn; gxn/;F.gyn; gxn// D 0

whenever fxng and fyng are sequences in X such that

lim
m!1 F.xn; yn/ D lim

n!1 gxn 2 X and

lim
m!1 F.yn; xn/ D lim

n!1 gyn 2 X:

Remark 11.3.1. If F and g are commuting, then .F; g/ is an .O;
/-compatible pair
and an O-compatible pair.

Theorem 11.3.11. Let .X;G/ be a G-metric space endowed with a preorder 
 and
let F W X2 ! X and g W X ! X be two mappings such that F has the mixed
.g;
/-monotone property. Assume that the following conditions hold.

(i) There exist two functions  2 Falt and ' 2 F 0
alt such that

 .G .F .x; y/ ;F .u; v/ ;F .z;w///

� . � '/
	

max fG .gx; gu; gz/ ;G .gy; gv; gw/g



(11.25)

for all .x; y/ ; .u; v/ ; .z;w/ 2 X2 for which gx 
 gu 
 gz and gy � gv � gw.
(ii) At least, one of the following conditions holds.

(ii.1) F.X2/ � g.X/ and there exists x0; y0 2 X such that gx0 
 F.x0; y0/ and
gy0 � F.y0; x0/.

(ii.2) There exists a Picard .F; g/-sequence f.xn; yn/gn2N � X2 such that
gx0 
 F.x0; y0/ and gy0 � F.y0; x0/.

(iii) At least, one of the following conditions holds.

(iii.1) .X;G/ (or .g.X/;G/ or
�
F.X2/;G

�
) is complete and F and g are

continuous and .O;
/-compatible.
(iii.2) .X;G/ (or .g.X/;G/ or

�
F.X2/;G

�
) is complete and F and g are

continuous and commuting.
(iii.3) .g.X/;G/ is complete and .X;G;
/ is regular.

Then F and g have, at least, a coupled coincidence point.

Proof. By Lemmas 11.3.2 and 11.3.3, (ii.1))(ii.2). We present the proof assum-
ing (ii.2). From Lemma 11.3.3, fgxng is 
-non-decreasing and fgyng is 
-non-
increasing. As 
 is transitive, we deduce that

gxn 
 gxm and gyn � gym for all n;m 2 N such that n � m:

By the contractivity condition (11.25), for all n 2 N we have, taking into account
that gxn 
 gxnC1 
 gxnC1 and gyn � gynC1 � gynC1,
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 .G .gxnC1; gxnC2; gxnC2//

D  .G .F .xn; yn/ ;F .xnC1; ynC1/ ;F .xnC1; ynC1///

� . � '/
	

max fG .gxn; gxnC1; gxnC1/ ;G .gyn; gynC1; gynC1/g


;

and using that gynC1 
 gynC1 
 gyn and gxnC1 � gxnC1 � gxn, we deduce that

 .G .gynC2; gynC2; gynC1//

D  .G .F .ynC1; xnC1/ ;F .ynC1; xnC1/ ;F .yn; xn///

� . � '/
	

max fG .gynC1; gynC1; gyn/ ;G .gxnC1; gxnC1; gxn/g


:

As  is non-decreasing,

 
	

max fG .gxnC1; gxnC2; gxnC2/ ;G .gynC1; gynC2; gynC2/g



D max
n
 .G .gxnC1; gxnC2; gxnC2// ;  .G .gynC1; gynC2; gynC2//

o

� . � '/
	

max fG .gxn; gxnC1; gxnC1/ ;G .gyn; gynC1; gynC1/g


:

Applying Lemma 2.3.6 to the sequence

fan D max fG .gxn; gxnC1; gxnC1/ ;G .gyn; gynC1; gynC1/gg;

we deduce that fang ! 0 and, in particular,

lim
n!1 G .gxn; gxnC1; gxnC1/ D lim

n!1 G .gyn; gynC1; gynC1/ D 0:

Next, we show that fgxng and fgyng are Cauchy sequences on .X;G/. We reason by
contradiction assuming that some of them is not Cauchy in .X;G/. In such a case, by
Lemma 11.2.1, there exist "0 > 0 and two sequences of natural numbers fn.k/gk2N
and fm.k/gk2N such that

k � n.k/ < m.k/ < n.k C 1/;

max
1�i�N

˚
G
�
gxn.k/; gxm.k/�1; gxm.k/�1

�
;G
�
gyn.k/; gym.k/�1; gym.k/�1

��

� "0 < max
1�i�N

˚
G
�
gxn.k/; gxm.k/; gxm.k/

�
;G
�
gyn.k/; gym.k/; gym.k/

��
;

lim
k!1



max
1�i�N

˚
G
�
gxn.k/; gxm.k/; gxm.k/

�
;G
�
gyn.k/; gym.k/; gym.k/

���
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D lim
k!1



max
1�i�N

n
G
�
gxn.k/; gxm.k/�1; gxm.k/�1

�
;

G
�
gyn.k/; gym.k/�1; gym.k/�1

�o � D "0:

Moreover, at least one of the following conditions holds:

lim
k!1 G

�
gxn.k/; gxm.k/; gxm.k/

� D lim
k!1 G

�
gxn.k/; gxm.k/�1; gxm.k/�1

� D "0;

lim
k!1 G

�
gyn.k/; gym.k/; gym.k/

� D lim
k!1 G

�
gyn.k/; gym.k/�1; gym.k/�1

� D "0:

Since n.k/ < m.k/, we have that gxn.k/�1 
 gxm.k/�1 
 gxm.k/�1 and gyn.k/�1 �
gym.k/�1 � gym.k/�1 for all k 2 N. By the contractivity condition (11.25),

 
�
G
�
gxn.k/; gxm.k/; gxm.k/

��

D  
�
G
�
F
�
xn.k/�1; yn.k/�1

�
;F
�
xm.k/�1; ym.k/�1

�
;

F
�
xm.k/�1; ym.k/�1

���

� . � '/
	

max
˚
G
�
gxn.k/�1; gxm.k/�1; gxm.k/�1

�
;
�

G
�
gyn.k/�1; gym.k/�1; gym.k/�1

��

:

Furthermore, as gym.k/�1 
 gym.k/�1 
 gyn.k/�1 and gxm.k/�1 � gxm.k/�1 � gxn.k/�1,
then

 
�
G
�
gym.k/; gym.k/; gyn.k/

��

D  
�
G
�
F
�
ym.k/�1; xm.k/�1

�
;F
�
ym.k/�1; xm.k/�1

�
;

F
�
yn.k/�1; xn.k/�1

���

� . � '/
	

max
˚
G
�
gym.k/�1; gym.k/�1; gyn.k/�1

�
;

G
�
gxm.k/�1; gxm.k/�1; gxn.k/�1

��

:

Combining the last two inequalities and taking into account that  is non-
decreasing, if follows that

 
	

max
˚
G
�
gxn.k/; gxm.k/; gxm.k/

�
;G
�
gyn.k/; gym.k/; gym.k/

��


D max
n
 
�
G
�
gxn.k/; gxm.k/; gxm.k/

��
;
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�
G
�
gym.k/; gym.k/; gyn.k/

��o

� . � '/
	

max
˚
G
�
gxn.k/�1; gxm.k/�1; gxm.k/�1

�
;

G
�
gyn.k/�1; gym.k/�1; gym.k/�1

��

:

Applying Lemma 2.3.5 to the sequences

ftk D max
˚
G
�
gxn.k/; gxm.k/; gxm.k/

�
;G
�
gyn.k/; gym.k/; gym.k/

��gk2N

and

˚
sk D max

˚
G
�
gxn.k/�1; gxm.k/�1; gxm.k/�1

�
;

G
�
gyn.k/�1; gym.k/�1; gym.k/�1

���
k2N ;

we conclude that "0 D 0, which is a contradiction. As a consequence, fgxng and
fgyng must be Cauchy sequences on .X;G/. To continue the proof, we distinguish
some cases.

Case (iii.1). Assume that .X;G/ (or .g.X/;G/ or
�
F.X2/;G

�
) is complete and F

and g are continuous and .O;
/-compatible. In such a case, there exist z; ! 2 X
such that fgxng ! z and fgyng ! !. As F and g are continuous, we deduce that

fggxng ! gz; fggyng ! g!;

fF .gxn; gyn/g ! F.z; !/; fF .gyn; gxn/g ! F.!; z/;

Therefore, fxng and fyng are sequences in X such that fgxng and fgyng are 
-
monotone and

lim
m!1 F.xn; yn/ D lim

n!1 gxn D z 2 X and

lim
m!1 F.yn; xn/ D lim

n!1 gyn D ! 2 X:

Since F and g are compatible, we have that

lim
n!1 G .gF.xn; yn/;F.gxn; gyn/;F.gxn; gyn// D 0 and

lim
n!1 G .gF.yn; xn/;F.gyn; gxn/;F.gyn; gxn// D 0:

In particular

G .gz;F .z; !/ ;F .z; !// D lim
n!1 G .ggxn;F.gxn; gyn/;F.gxn; gyn//

D lim
n!1 G .gF.xn; yn/;F.gxn; gyn/;F.gxn; gyn// D 0
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and

G .g!;F .!; z/ ;F .!; z// D lim
n!1 G .ggyn;F.gyn; gxn/;F.gyn; gxn//

D lim
n!1 G .gF.yn; xn/;F.gyn; gxn/;F.gyn; gxn// D 0:

Hence, gz D F .z; !/ and g! D F .!; z/, so .z; !/ is a coupled coincidence point
of F and g.

Case (iii.2). Assume that .X;G/ (or .g.X/;G/ or
�
F.X2/;G

�
) is complete and F

and g are continuous and commuting. It follows from item (iii.1) because if F
and g are commuting, then they are also .O;
/-compatible.

Case (iii.3). Assume that .g.X/;G/ is complete and .X;G;
/ is regular. Since
fgxng and fgyng are Cauchy sequences on .g.X/;G/, there exist z; ! 2 g.X/ such
that fgxng ! z and fgyng ! !. Let u; v 2 X be arbitrary points such that
gu D z and gv D !. As .X;G;
/ is regular, we deduce that gxn 
 gu and
gyn � gv for all n 2 N. Therefore, applying the contractivity condition (11.25)
to gxn 
 gu 
 gu and gyn � gv � gv, we obtain

 .G .gxnC1;F .u; v/ ;F .u; v/// D  .G .F .xn; yn/ ;F .u; v/ ;F .u; v///

� . � '/
	

max fG .gxn; gu; gu/ ;G .gyn; gv; gv/g


:

As fgxng ! z D gu and fgyng ! ! D gv, then

lim
n!1 .G .gxnC1;F .u; v/ ;F .u; v/// D 0:

Since  2 Falt, Lemma 2.3.3 shows that

G .gu;F .u; v/ ;F .u; v// D lim
n!1 G .gxnC1;F .u; v/ ;F .u; v// D 0:

Therefore, gu D F .u; v/. Similarly, applying the contractivity condition (11.25) to
gv 
 gv 
 gyn and gu � gu � gxn, we obtain

 .G .F .v; u/ ;F .v; u/ ; gynC1// D  .G .F .v; u/ ;F .v; u/ ;F .yn; xn///

� . � '/
	

max fG .gv; gv; gyn/ ;G .gu; gu; gxn/g


:

As fgxng ! z D gu and fgyng ! ! D gv, then

lim
n!1 .G .F .v; u/ ;F .v; u/ ; gynC1// D 0:

Since  2 Falt, Lemma 2.3.3 shows that

G .gv;F .v; u/ ;F .v; u// D lim
n!1 G .F .v; u/ ;F .v; u/ ; gynC1/ D 0:

Therefore, gv D F .v; u/, and we conclude that .u; v/ is a coupled coincidence point
of F and g. ut
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Theorem 11.3.11 can be particularized in a wide range of different ways. For
example, assume that 
 is the preorder on X given by “x 
 y for all x; y 2 X”. Then,
obviously, F has the mixed .g;
/-monotone property and .X;G;
/ is regular.

Corollary 11.3.3. Let .X;G/ be a G-metric space and let F W X2 ! X and g W X !
X be two mappings. Assume that the following conditions hold.

(i) There exist two functions  2 Falt and ' 2 F 0
alt such that, for all

.x; y/ ; .u; v/ ; .z;w/ 2 X2,

 .G .F .x; y/ ;F .u; v/ ;F .z;w///

� . � '/
	

max fG .gx; gu; gz/ ;G .gy; gv; gw/g


:

(ii) At least, one of the following conditions holds.

(ii.1) F.X2/ � g.X/.
(ii.2) There exists in X a Picard .T; g/-sequence.

(iii) At least, one of the following conditions holds.

(iii.1) .X;G/ (or .g.X/;G/ or
�
F.X2/;G

�
) is complete and F and g are

continuous and O-compatible.
(iii.2) .X;G/ (or .g.X/;G/ or

�
F.X2/;G

�
) is complete and F and g are

continuous and commuting.
(iii.3) .g.X/;G/ is complete.

Then F and g have, at least, a coupled coincidence point.

Another way to particularize Theorem 11.3.11 occurs when 
 is a partial order.
We do not include here such a statement because it is similar to Theorem 11.3.11,
replacing the preorder 
 by a partial order 4. It is interesting to consider that case
when  is the identity mapping on Œ0;1/.

Corollary 11.3.4. Let .X;G/ be a G-metric space endowed with a preorder 
 and
let F W X2 ! X and g W X ! X be two mappings such that F has the mixed
.g;
/-monotone property. Assume that the following conditions hold.

(i) There exists a function ' 2 F 0
alt such that

G .F .x; y/ ;F .u; v/ ;F .z;w// � max fG .gx; gu; gz/ ;G .gy; gv; gw/g
� '

	
max fG .gx; gu; gz/ ;G .gy; gv; gw/g




for all .x; y/ ; .u; v/ ; .z;w/ 2 X2 for which gx 
 gu 
 gz and gy � gv � gw.
(ii) At least, one of the following conditions holds.

(ii.1) F.X2/ � g.X/ and there exists x0; y0 2 X such that gx0 
 F.x0; y0/ and
gy0 � F.y0; x0/.
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(ii.2) There exists a Picard .F; g/-sequence f.xn; yn/gn2N � X2 such that
gx0 
 F.x0; y0/ and gy0 � F.y0; x0/.

(iii) At least, one of the following conditions holds.

(iii.1) .X;G/ (or .g.X/;G/ or
�
F.X2/;G

�
) is complete and F and g are

continuous and .O;
/-compatible.
(iii.2) .X;G/ (or .g.X/;G/ or

�
F.X2/;G

�
) is complete and F and g are

continuous and commuting.
(iii.3) .g.X/;G/ is complete and .X;G;
/ is regular.

Then F and g have, at least, a coupled coincidence point.

If we take ' .t/ D .1 � �/ t for all t 2 Œ0;1/, where � 2 Œ0; 1/, we deduce the
following statement.

Corollary 11.3.5. Let .X;G/ be a G-metric space endowed with a preorder 
 and
let F W X2 ! X and g W X ! X be two mappings such that F has the mixed
.g;
/-monotone property. Assume that the following conditions hold.

(i) There exists a constant � 2 Œ0; 1/ such that

G .F .x; y/ ;F .u; v/ ;F .z;w//

� � max fG .gx; gu; gz/ ;G .gy; gv; gw/g

for all .x; y/ ; .u; v/ ; .z;w/ 2 X2 for which gx 
 gu 
 gz and gy � gv � gw.
(ii) At least, one of the following conditions holds.

(ii.1) F.X2/ � g.X/ and there exists x0; y0 2 X such that gx0 
 F.x0; y0/ and
gy0 � F.y0; x0/.

(ii.2) There exists a Picard .F; g/-sequence f.xn; yn/gn2N � X2 such that
gx0 
 F.x0; y0/ and gy0 � F.y0; x0/.

(iii) At least, one of the following conditions holds.

(iii.1) .X;G/ (or .g.X/;G/ or
�
F.X2/;G

�
) is complete and F and g are

continuous and .O;
/-compatible.
(iii.2) .X;G/ (or .g.X/;G/ or

�
F.X2/;G

�
) is complete and F and g are

continuous and commuting.
(iii.3) .g.X/;G/ is complete and .X;G;
/ is regular.

Then F and g have, at least, a coupled coincidence point.

Finally, we particularize Theorem 11.3.11 to the case in which g is the identity
mapping on X.

Theorem 11.3.12. Let .X;G/ be a complete G-metric space endowed with a
preorder 
 and let F W X2 ! X be a 
-non-decreasing mapping. Assume that
the following conditions hold.
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(i) There exist two functions  2 Falt and ' 2 F 0
alt such that

 .G .F .x; y/ ;F .u; v/ ;F .z;w///

� . � '/
	

max fG .x; u; z/ ;G .y; v;w/g



for all .x; y/ ; .u; v/ ; .z;w/ 2 X2 for which x 
 u 
 z and y � v � w.
(ii) There exists x0; y0 2 X such that x0 
 F.x0; y0/ and y0 � F.y0; x0/.

(iii) At least, one of the following conditions holds.

(iii.1) F is continuous.
(iii.2) .X;G;
/ is regular.

Then F has, at least, a coupled fixed point.

Now we present some comments concerning a recent coupled fixed point
theorem. In [140], Mohiuddine and Alotaibi announced a coupled fixed point
theorem using an ordered G-metric space .X;G;4/ and a contractivity condition as
follows: there exist two functions  2 Falt and ' 2 F 0

alt such that  is subadditive
and

 .G .F .x; y/ ;F .u; v/ ;F .s; t///

�  .G .x; u; s/C G .y; v; t//

2
� '

�
G .x; u; s/C G .y; v; t/

2

�

for all x; y; u; v; s; t 2 X with x < u < s and y 4 v 4 t where either u ¤ s or v ¤ t.
In this case, all comments given in Sect. 11.3.2 can now be repeated to show that
their proof is not correct.

11.3.6 Aydi et al’s Coupled Coincidence Point Theorems

In [30], Aydi et al. introduced a version of the following Ćirić-type result. In fact,
they assumed that the function ' 2 FCir also satisfied '�1 .f0g/ D f0g, but it was
not necessary.

Theorem 11.3.13. Let .X;
/ be a preordered set and let G be a G-metric on X.
Let F W X2 ! X and g W X ! X be two mappings such that F.X2/ � g.X/, F
has the mixed .g;
/-monotone property and g is continuous and commutes with F.
Suppose that there exist ' 2 FCir such that

G.F.x; y/;F.u; v/;F.w; z// � '

�
G.gx; gu; gw/C G.gy; gv; gz/

2

�
(11.26)
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for all x; y; u; v;w; z 2 X with gx 
 gu 
 gw and gy � gv � gz. Also assume that,
at least, one of the following conditions holds.

(a) F is G-continuous and X (or F.X2/ or g.X/) is G-complete.
(b) ' .0/ D 0, .g.X/;G/ is G-complete and .X;G;
/ is regular.

If there exist x0; y0 2 X such that gx0 
 F.x0; y0/ and gy0 � F.y0; x0/, then F
and g have a coupled coincidence point.

The previous result can be improved using weaker hypotheses as in Theo-
rem 11.3.11. Furthermore, by the symmetry of G, (11.26) also holds if gx � gu �
gw and gy 
 gv 
 gz.

Proof. Define '0 W Œ0;1/ ! Œ0;1/ by '0 .t/ D 2' .t=2/ for all t 2 Œ0;1/. Clearly,
'0 2 FCir. From Lemmas 11.3.2 and 11.3.3, there exists a Picard sequence f.xn; yn/g
of .T; g/ such that fgxng is 
-non-decreasing and fgyng is 
-non-increasing. As 

is transitive, we deduce that

gxn 
 gxm and gyn � gym for all n;m 2 N such that n � m: (11.27)

If there exists some n0 2 N such that .gxn0 ; gyn0 / D .gxn0C1; gyn0C1/, then .xn0 ; yn0 /

is a coupled coincidence point of T and g, and the proof is finished. On the contrary
case, assume that .gxn; gyn/ ¤ .gxnC1; gynC1/, that is, for all n 2 N,

G.gxn; gxnC1; gxnC1/C G.gyn; gynC1; gynC1/ > 0:

By the contractivity condition (11.26), for all n 2 N we have, taking into account
that gxn 
 gxnC1 
 gxnC1 and gyn � gynC1 � gynC1,

G .gxnC1; gxnC2; gxnC2/ D G .F .xn; yn/ ;F .xnC1; ynC1/ ;F .xnC1; ynC1//

� '

�
G.gxn; gxnC1; gxnC1/C G.gyn; gynC1; gynC1/

2

�

D 1

2
'0 .G.gxn; gxnC1; gxnC1/C G.gyn; gynC1; gynC1//

and also

G .gynC1; gynC2; gynC2/ D G .F .ynC1; xnC1/ ;F .ynC1; xnC1/ ;F .yn; xn//

� '

�
G.gynC1; gynC1; gyn/C G.gxnC1; gxnC1; gxn/

2

�

D 1

2
'0 .G.gxn; gxnC1; gxnC1/C G.gyn; gynC1; gynC1// :

Joining the last two inequalities, for all n 2 N,
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G .gxnC1; gxnC2; gxnC2/C G .gynC1; gynC2; gynC2/

� '0 .G.gxn; gxnC1; gxnC1/C G.gyn; gynC1; gynC1// :

From item 3 of Lemma 2.3.11,

lim
n!1 ŒG.gxn; gxnC1; gxnC1/C G.gyn; gynC1; gynC1/ � D 0;

so fgxng and fgyng are asymptotically regular sequences. To show that they are
Cauchy, assume that, at least, one of them is not a Cauchy sequence. In such a
case, Lemma 11.2.2 assures that there exist "0 > 0 and two sequences of natural
numbers fn.k/gk2N and fm.k/gk2N such that, for all k 2 N,

k � n.k/ < m.k/ < n.k C 1/;

G.gxn.k/; gxm.k/�1; gxm.k/�1/C G.gyn.k/; gym.k/�1; gym.k/�1/ � "0

< G.gxn.k/; gxm.k/; gxm.k//C G.gyn.k/; gym.k/; gym.k//;

and also

lim
k!1

�
G.gxn.k/�1; gxm.k/�1; gxm.k/�1/C G.gyn.k/�1; gym.k/�1; gym.k/�1/

�

D lim
k!1

�
G.gxn.k/; gxm.k/; gxm.k//C G.gyn.k/; gym.k/; gym.k//

� D "0:

Using (11.27), gxn.k/�1 
 gxm.k/�1 and gyn.k/�1 � gym.k/�1 for all k 2 N. Therefore,
the contractivity condition (11.26) yields

G.gxn.k/; gxm.k/; gxm.k//

D G.F
�
xn.k/�1; yn.k/�1

�
;F
�
xm.k/�1; ym.k/�1

�
;F
�
xm.k/�1; ym.k/�1

�
/

� '

�
1

2

�
G.gxn.k/�1; gxm.k/�1; gxm.k/�1/

CG.gyn.k/�1; gym.k/�1; gym.k/�1/
��

D 1

2
'0 �G.gxn.k/�1; gxm.k/�1; gxm.k/�1/

CG.gyn.k/�1; gym.k/�1; gym.k/�1/
�
:

In a similar way,

G.gyn.k/; gym.k/; gym.k//

D G
�
F
�
ym.k/�1; xm.k/�1

�
;F
�
ym.k/�1; xm.k/�1

�
;
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F
�
yn.k/�1; xn.k/�1

��

� '

�
1

2

�
G.gym.k/�1; gym.k/�1; gyn.k/�1/

CG.gxm.k/�1; gxm.k/�1; gxn.k/�1/
��

D 1

2
'0 �G.gxn.k/�1; gxm.k/�1; gxm.k/�1/

CG.gyn.k/�1; gym.k/�1; gym.k/�1/
�
:

Combining the last two inequalities, we deduce that, for all k 2 N,

"0 < G.gxn.k/; gxm.k/; gxm.k//C G.gyn.k/; gym.k/; gym.k//

� '0 �G.gxn.k/�1; gxm.k/�1; gxm.k/�1/

CG.gyn.k/�1; gym.k/�1; gym.k/�1/
�
:

Applying Lemma 2.3.14 to the sequences

˚
tk D G.gxn.k/; gxm.k/; gxm.k//C G.gyn.k/; gym.k/; gym.k//

�
and

˚
sk D G.gxn.k/�1; gxm.k/�1; gxm.k/�1/C G.gyn.k/�1; gym.k/�1; gym.k/�1/

�
;

that converge to L D "0, we conclude that "0 D 0, which is a contradiction.
Therefore, fgxng and fgyng are Cauchy sequences in .X;G/. Since these sequences
are included in F.X2/, in g.X/ and in X and, at least, one of them is G-complete,
there exists u; v 2 X such that fgxng ! u and fgyng ! v. Moreover, as g is
continuous, fggxng ! gu and fggyng ! gv. Notice that as T and g commute,

fF.gxn; gyn/g D fgF.xn; yn/g D fggxnC1g ! gu and

fF.gyn; gxn/g D fgF.yn; xn/g D fggynC1g ! gv:

Next, we distinguish two cases.

Case 1. F is G-continuous and X (or F.X2/ or g.X/) is G-complete. In this case,
letting n ! 1, we observe that

gu D lim
n!1 F.gxn; gyn/ D F.u; v/ and

gv D lim
n!1 F.gyn; gxn/ D F.v; u/;

so .u; v/ is a coupled coincidence point of F and g.
Case 2. ' .0/ D 0, .g.X/;G/ is G-complete and .X;G;
/ is regular. In this case,

as g.X/ is complete, then u; v 2 g.X/. Let z;w 2 X be arbitrary points such that
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gz D u and gw D v. Taking into account that fgxng is 
-non-decreasing, fgyng
is 
-non-increasing and they are convergent to gz D u and gw D v, respectively,
we deduce that

gxn 
 gz and gyn � gw for all n 2 N:

By the contractivity condition (11.26),

G .gxnC1;F .z;w/ ;F .z;w// D G .F .xn; yn/ ;F .z;w/ ;F .z;w//

� '

�
G.gxn; gz; gz/C G.gyn; gw; gw/

2

�

D 1

2
'0 .G.gxn; gz; gz/C G.gyn; gw; gw//

and, similarly,

G .gynC1;F .w; z/ ;F .w; z// D G .F .w; z/ ;F .w; z/ ;F .yn; xn//

� '

�
G.gw; gw; gyn/C G.gz; gz; gxn/

2

�

D 1

2
'0 .G.gxn; gz; gz/C G.gyn; gw; gw// :

Since '0 2 FCir and '0 .0/ D 2' .0/ D 0, letting n ! 1 in the previous
inequalities and applying item 8 of Lemma 2.3.11, we conclude that gz D u D
limn!1 gxnC1 D F.z;w/ and gw D v D limn!1 gynC1 D F.w; z/, that is, .z;w/
is a coupled coincidence point of F and g.

ut
Theorem 11.3.14. Under the hypothesis of Theorem 11.3.13, also assume that
' .0/ D 0 and that the following condition holds.

.U2/ For all .x; y/ ; .x0; y0/ 2 Co.F; g/, there exists .u; v/ 2 X2 such that, at least,
one of the following properties is satisfied.

• F .x; y/ 
 F .u; v/, F .y; x/ � F .v; u/, F.x0; y0/ 
 F .u; v/ and F.y0; x0/ �
F .v; u/.

• F .x; y/ 
 F .u; v/, F .y; x/ � F .v; u/, F.x0; y0/ � F .u; v/ and F.y0; x0/ 

F .v; u/.

• F .x; y/ � F .u; v/, F .y; x/ 
 F .v; u/, F.x0; y0/ 
 F .u; v/ and F.y0; x0/ �
F .v; u/.

• F .x; y/ � F .u; v/, F .y; x/ 
 F .v; u/, F.x0; y0/ � F .u; v/ and F.y0; x0/ 

F .v; u/.
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Then F and g have a unique common coupled fixed point .z; !/ (that is, a point
satisfying z D gz D F .z; !/ and ! D g! D F .!; z/). In fact, if .x; y/ is an
arbitrary coupled coincidence point of F and g, then z D gx and ! D gy.

Proof. First of all, we claim that

gx D gx0 and gy D gy0 for all .x; y/ ; .x0; y0/ 2 Co.F; g/: (11.28)

Indeed, let .x; y/ ; .x0; y0/ 2 Co.F; g/ be arbitrary coupled coincidence points of F
and g and let .u0; v0/ 2 X2 be the point that condition .U2/ guarantees. As F.X2/ �
g.X/, there exists a Picard sequence f.un; vn/g of .T; g/ (recall Lemma 11.3.2),
that is,

gunC1 D F.un; vn/ and gvnC1 D F.vn; un/ for all n 2 N:

In order to prove (11.28), we are going to show that fgung ! gx, fgung ! gx0,
fgvng ! gy and fgyng ! gy0. Hence, by the uniqueness of the limit, we conclude
that gx D gx0 and gy D gy0. We only reason using .x; y/, but the same arguments can
be identically applied to .x0; y0/. Assume, for example, that the first bullet property
holds (the other ones are similar). Therefore

gx D F .x; y/ 
 F .u0; v0/ D gu1 and

gy D F .y; x/ � F .v0; u0/ D gv1:

As F has the mixed .g;
/-monotone property, then

gx D F .x; y/ 
 F .u1; v0/ 
 F .u1; v1/ D gu2 and

gy D F .y; x/ � F .v1; u0/ � F .v1; u1/ D gv2:

Since 
 is transitive, then gx 
 gu2 and gy � gv2. By induction, it can be proved
that gx 
 gun and gy � gvn for all n 2 N. Using the contractivity condition (11.26),

G .gx; gunC1; gunC1/ D G .F .x; y/ ;F .un; vn/ ;F .un; vn//

� '

�
G.gx; gun; gun/C G.gy; gvn; gvn/

2

�

D 1

2
'0 .G.gx; gun; gun/C G.gy; gvn; gvn// ;

and similarly,

G .gy; gvnC1; gvnC1/ D G .F .vn; un/ ;F .vn; un/ ;F .y; x//

� '

�
G.gvn; gvn; gy/C G.gun; gun; gx/

2

�

D 1

2
'0 .G.gx; gun; gun/C G.gy; gvn; gvn// :
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Combining the last two inequalities, we derive that, for all n 2 N,

G .gx; gunC1; gunC1/C G .gy; gvnC1; gvnC1/

� '0 .G.gx; gun; gun/C G.gy; gvn; gvn// :

Since ' .0/ D 0, then '0 .0/ D 2' .0/ D 0. Applying item 9 of Lemma 2.3.11, we
deduce that

fG .gx; gunC1; gunC1/C G .gy; gvnC1; gvnC1/g ! 0:

Hence, fgung ! gx and fgvng ! gy. If we have used .x0; y0/, then we would have
deduced that fgung ! gx0 and fgvng ! gy0. Then gx D gx0 and gy D gy0 and we
have just proved that (11.28) holds.

Next, let .x; y/ 2 Co.F; g/ be an arbitrary coupled coincidence point of F and g
and let z D gx D F .x; y/ and ! D gy D F .y; x/. Since F and g commute,

gz D gF .x; y/ D F .gx; gy/ D F .z; !/ and

g! D gF .y; x/ D F .gy; gx/ D F .!; z/ :

Thus, .z; !/ is another coupled coincidence point of F and g. Applying (11.28) to
.x; y/ and .z; !/, we deduce that

z D gx D gz and ! D gy D g!:

Hence, z D gz D F .z; !/ and ! D g! D F .!; z/, which means that .z; !/ is a
common coupled fixed point of F and g.

To prove the uniqueness, let .z0; !0/ be another common coupled fixed point of
F and g. Then z0 D gz0 D F .z0; !0/ and !0 D g!0 D F .!0; z0/. Applying (11.28),
we deduce that z D gz D gz0 D z0 and ! D g! D g!0 D !0. Then, F and g have a
unique common coupled fixed point, which is .z; !/.

Finally, let .u; v/ 2 Co.F; g/ be another arbitrary coupled coincidence point of
F and g. By using (11.28), gu D g! D ! and gv D gz D z. Therefore, we get the
point .z; !/ starting from any coupled coincidence point of F and g. ut

Immediate corollaries can be derived in the following particular cases: (1) using
g as the identity mapping on X; (2) involving a partial order 4 on X; (3) using
' .t/ D � t for all t 2 Œ0;1/, where � 2 Œ0; 1/.
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11.4 Berinde and Borcut’s Tripled Fixed Point Theory

In [41], Berinde and Borcut presented the notion of a tripled fixed point of a mapping
F W X3 ! X, which is a point .x; y; z/ 2 X3 such that

8
<

:

F .x; y; z/ D x;
F .y; x; y/ D y;
F .z; y; x/ D z:

In that paper, they proved some results to guarantee existence and uniqueness of
such points in partially ordered metric spaces involving the contractivity condition

d .F .x; y; z/ ;F .u; v;w// � �1 d .x; u/C �2 d .y; v/C �3 d .z;w/

for all x; y; z; u; v;w 2 X such that gx 
 gu, gy � gv and gz 
 gw, where
�1; �2; �3 2 Œ0; 1/ verify �1 C�2 C�3 < 1. In a subsequent paper, the same authors
extended the previous condition to the coincidence case involving two mappings
F W X3 ! X and g W X ! X (see [50]). In this section we present some tripled
fixed/coincidence point theorems in the sense of Berinde and Borcut. The notion of
mixed monotone property is common to all results.

Definition 11.4.1. Let X be a non-empty set endowed with a binary relation 4 and
let F W X3 ! X and g W X ! X be two mappings. The mapping F is said to have the
mixed .g;4/-monotone property if F.x; y; z/ is monotone .g;4/-non-decreasing in
x and in z, and monotone .g;4/-non-increasing in y, that is, for all x; y; z 2 X,

x1; x2 2 X; gx1 4 gx2 ) F.x1; y; z/ 4 F.x2; y; z/;

y1; y2 2 X; gy1 4 gy2 ) F.x; y1; z/ < F.x; y2; z/ and

z1; z2 2 X; gz1 4 gz2 ) F.x; y; z1/ 4 F.x; y; z2/:

If g is the identity mapping on X, then we say that F has the mixed 4-monotone
property.

The following properties will be useful throughout this section.

Lemma 11.4.1. Let F W X3 ! X and g W X ! X be two mappings such that
F.X3/ � g.X/. Then, starting from any points x0; y0; z0 2 X, there exist three
sequences fxng, fyng and fzng on X such that

gxnC1 D F.xn; yn; zn/; gynC1 D F.yn; xn; yn/ and

gznC1 D F.zn; yn; xn/ (11.29)

for all n 2 N.
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Proof. Let x0; y0; z0 2 X be arbitrary. Since F.x0; y0; z0/ 2 F.X2/ � g.X/, then there
exists x1 2 X such that gx1 D F.x0; y0; z0/. Similarly, as F.y0; x0; y0/ 2 F.X2/ �
g.X/, then there exists y1 2 X such that gy1 D F.y0; x0; y0/. Again, as F.z0; y0; x0/ 2
F.X2/ � g.X/, then there exists z1 2 X such that gz1 D F.z0; y0; x0/. If we repeat the
same argument using x1, y1 and z1 rather than x0, y0 and z0, we can find x2; y2; z2 2
X2 such that gx2 D F.x1; y1; z1/, gy2 D F.y1; x1; y1/ and gz2 D F.z1; y1; x1/. By
induction, we may define the sequences fxng, fyng and fzng on X. ut
Definition 11.4.2. Given two mappings F W X3 ! X and g W X ! X, a Picard
.F; g/-sequence is a sequence f.xn; yn; zn/gn2N � X3 verifying (11.29).

Proposition 11.4.1. If f.xn; yn; zn/gn2N � X3 is a Picard .F; g/-sequence of two
mappings F W X3 ! X and g W X ! X and there exists n0 2 N such that gxn0 D
gxn0C1, gyn0 D gyn0C1 and gzn0 D gzn0C1, then .xn0 ; yn0 ; zn0 / is a tripled coincidence
point of F and g.

Proof. If the exists n0 2 N such that gxn0 D gxn0C1, gyn0 D gyn0C1 and gzn0 D
gzn0C1, then

gxn0 D gxn0C1 D F.xn0 ; yn0 ; zn0 /; gyn0 D gyn0C1 D F.yn0 ; xn0 ; yn0 / and

gzn0 D gzn0C1 D F.zn0 ; yn0 ; xn0 /;

so .xn0 ; yn0 ; zn0 / is a tripled coincidence point of F and g. ut
Given two mappings F W X3 ! X and g W X ! X, the condition F.X3/ � g.X/ is

sufficient to guarantee that there exists a Picard .F; g/-sequence on X based on any
initial points x0; y0; z0 2 X. However, it is not necessary.

Lemma 11.4.2. Let 
 be a transitive binary relation on a set X and let F W X3 ! X
and g W X ! X be two mappings such that the following conditions are fulfilled.

(i) There exists a Picard .F; g/-sequence f.xn; yn; zn/gn2N � X3.
(ii) gx0 
 F.x0; y0; z0/, gy0 � F.y0; x0; y0/ and gz0 
 F.z0; y0; x0/.

(iii) F has the mixed .g;
/-monotone property.

Then fgxng and fgzng are 
-non-decreasing and fgyng is 
-non-increasing (that
is, gxn 
 gxnC1, gyn � gynC1 and gzn 
 gznC1 for all n 2 N).

Proof. By (ii), we have that gx0 
 F.x0; y0; x0/ D gx1, gy0 � F.y0; x0; y0/ D gy1
and gz0 
 F.z0; y0; x0/ D gz1. Assume that there exist n 2 N such that gxn 
 gxnC1,
gyn � gynC1 and gzn 
 gznC1. Then, as F has the mixed .g;
/-monotone property,
it follows that

gxnC1 D F .xn; yn; zn/ 
 F .xnC1; yn; zn/ 
 F .xnC1; ynC1; zn/


 F .xnC1; ynC1; znC1/ D gxnC2;

gynC1 D F .yn; xn; yn/ � F .ynC1; xn; yn/ � F .ynC1; xnC1; yn/
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� F .ynC1; xnC1; ynC1/ D gynC2 and

gznC1 D F .zn; yn; xn/ 
 F .znC1; yn; xn/ 
 F .znC1; ynC1; xn/


 F .znC1; ynC1; xnC1/ D gznC2:

As 
 is transitive, then gxnC1 
 gxnC2, gynC1 � gynC2 and gznC1 
 gznC2, and this
completes the induction. ut

11.4.1 Berinde and Borcut’s Tripled Fixed Point Theorems
in G-Metric Spaces

In this subsection, we show corresponding versions, in the context of preordered
G-metric spaces, of some fixed point results given in [41].

Theorem 11.4.1. Let .X;
/ be preordered set and let .X;G/ be a complete G-
metric space. Let F W X3 ! X be a mapping having the mixed 
-monotone property
on X. Suppose that there exists � 2 Œ0; 1/ such that

G .F .x; y; z/ ;F .u; v;w/ ;F .u; v;w//

� � max fG .x; u; u/ ;G .y; v; v/ ;G .z;w;w/g (11.30)

for x; y; z; u; v;w 2 X with x 
 u, y � v and z 
 w. Also assume that either F
is continuous or .X;G;
/ is regular. If there exist x0; y0; z0 2 X such that x0 

F.x0; y0; z0/, y0 � F.y0; x0; y0/ and z0 
 F.z0; y0; x0/, then F has a tripled fixed
point in X, that is, there exist x; y; z 2 X such that

F.x; y; z/ D x; F.y; x; y/ D y and F.z; y; x/ D z:

Proof. Starting from the points x0; y0; z0 2 X such that x0 
 F.x0; y0; z0/,
y0 � F.y0; x0; y0/ and z0 
 F.z0; y0; x0/, let fxng, fyng and fzng be the sequences
defined by

xnC1 D F.xn; yn; zn/; ynC1 D F.yn; xn; yn/ and

znC1 D F.zn; yn; xn/ (11.31)

for all n 2 N. As F has the mixed 
-monotone property, Lemma 11.4.2 assures
that fxng and fzng are 
-non-decreasing and fyng is 
-non-increasing. Applying the
contrativity condition (11.30) to xn 
 xnC1, yn � ynC1 and zn 
 znC1, we obtain that

G .xnC1; xnC2; xnC2/

D G .F.xn; yn; zn/;F.xnC1; ynC1; znC1/;F.xnC1; ynC1; znC1//

� � max fG .xn; xnC1; xnC1/ ;G .yn; ynC1; ynC1/ ;G .zn; znC1; znC1/g :
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Similarly, as ynC1 
 yn and xnC1 � xn,

G .ynC1; ynC2; ynC2/

D G .F.ynC1; xnC1; ynC1/;F.ynC1; xnC1; ynC1/;F.yn; xn; yn//

� � max fG .ynC1; ynC1; yn/ ;G .xnC1; xnC1; xn/ ;G .ynC1; ynC1; yn/g
D � max fG .xn; xnC1; xnC1/ ;G .yn; ynC1; ynC1/g :

Repeating this argument, since zn 
 znC1, yn � ynC1 and xn 
 xnC1, we deduce that

G .znC1; znC2; znC2/

D G .F.zn; yn; xn/;F.znC1; ynC1; xnC1/;F.znC1; ynC1; xnC1//

� � max fG .zn; znC1; znC1/ ;G .yn; ynC1; ynC1/ ;G .xn; xnC1; xnC1/g :

Joining the last three inequalities, we conclude that, for all n 2 N,

max fG .xnC1; xnC2; xnC2/ ;G .ynC1; ynC2; ynC2/ ;G .znC1; znC2; znC2/g
� � max fG .xn; xnC1; xnC1/ ;G .yn; ynC1; ynC1/ ;G .zn; znC1; znC1/g :

From Corollary 11.2.1, the sequences fxng, fyng and fzng are Cauchy. Since .X;G/
is complete, there exists u; v;w 2 X such that fxng ! u, fyng ! v and fzng ! w.
Next, we distinguish two cases.

Case 1. F is G-continuous. In this case, letting n ! 1 in (11.31), we deduce that
u D F .u; v;w/, v D F .v; u; v/ and w D F .w; v; u/, that is, .u; v;w/ is a
tripled fixed point of F.

Case 2. .X;G;
/ is regular. As fxng, fyng and fzng are 
-monotone, convergent
sequences, the regularity implies that

xn 
 u; yn � v and zn 
 w for all n 2 N:

Hence, the contractivity condition (11.30) ensures that

G .xnC1;F .u; v;w/ ;F .u; v;w//

D G .F.xn; yn; zn/;F .u; v;w/ ;F .u; v;w//

� � max fG .xn; u; u/ ;G .yn; v; v/ ;G .zn;w;w/g :

Similarly,

G .ynC1;F .v; u; v/ ;F .v; u; v//

D G .F .v; u; v/ ;F .v; u; v/ ;F.yn; xn; yn//

� � max fG .v; v; yn/ ;G .u; u; xn/g :
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Repeating this argument,

G .znC1;F .w; v; u/ ;F .w; v; u//

D G .F.zn; yn; xn/;F .w; v; u/ ;F .w; v; u//

� � max fG .zn;w;w/ ;G .yn; v; v/ ;G .xn; u; u/g :

Letting n ! 1 in the previous inequalities, we conclude that

F .u; v;w/ D lim
n!1 xnC1 D u

and, similarly, v D F .v; u; v/ and w D F .w; v; u/. Hence, .u; v;w/ is a
tripled fixed point of F.

ut
Corollary 11.4.1. Let .X;
/ be preordered set and let .X;G/ be a complete G-
metric space. Let F W X3 ! X be a mapping having the mixed 
-monotone property
on X. Suppose that there exists � 2 Œ0; 1/ such that

G .F .x; y; z/ ;F .u; v;w/ ;F .a; b; c//

� � max fG .x; u; a/ ;G .y; v; b/ ;G .z;w; c/g (11.32)

for x; y; z; u; v;w; a; b; c 2 X with x 
 u 
 a, y � v � b and z 
 w 
 c. Also assume
that either F is continuous or .X;G;
/ is regular. If there exist x0; y0; z0 2 X such
that x0 
 F.x0; y0; z0/, y0 � F.y0; x0; y0/ and z0 
 F.z0; y0; x0/, then F has a tripled
fixed point in X.

The following result is a version, in the setting of partially ordered G-metric
spaces, of Theorems 7 and 8 in [41].

Corollary 11.4.2. Let .X;4/ be a partially ordered set and let .X;G/ be a complete
G-metric space. Let F W X3 ! X be a mapping having the mixed 
-monotone
property on X. Suppose that there exists �1; �2; �3 2 Œ0; 1/ such that �1C�2C�3 < 1
and verifying

G .F .x; y; z/ ;F .u; v;w/ ;F .a; b; c//

� �1G .x; u; a/C �2G .y; v; b/C �3G .z;w; c/ (11.33)

for x; y; z; u; v;w; a; b; c 2 X with x 4 u 4 a, y < v < b and z 4 w 4 c. Also assume
that either F is continuous or .X;G;
/ is regular. If there exist x0; y0; z0 2 X such
that x0 
 F.x0; y0; z0/, y0 � F.y0; x0; y0/ and z0 
 F.z0; y0; x0/, then F has a tripled
fixed point in X.
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Proof. If � D �1 C �2 C �3 < 1, then

G .F .x; y; z/ ;F .u; v;w/ ;F .a; b; c//

� �1G .x; u; a/C �2G .y; v; b/C �3G .z;w; c/

� �1 max fG .x; u; a/ ;G .y; v; b/ ;G .z;w; c/g
C �2 max fG .x; u; a/ ;G .y; v; b/ ;G .z;w; c/g
C �3 max fG .x; u; a/ ;G .y; v; b/ ;G .z;w; c/g

D � max fG .x; u; a/ ;G .y; v; b/ ;G .z;w; c/g

for x; y; z; u; v;w; a; b; c 2 X with x 4 u 4 a, y < v < b and z 4 w 4 c.
Then, (11.33) implies (11.32). ut

11.4.2 Aydi et al.’s Tripled Fixed Point Theorems in G-Metric
Spaces

In the following result, which improves those given in [31], we will employ a
comparison function � 2 Fcom, that is, � is non-decreasing and limn!1 �n.t/ D 0

for all t > 0. Recall that we also have that � .t/ < t for all t > 0 and � .0/ D 0. As
a consequence, � .t/ � t for all t � 0, so � is continuous at t D 0.

Theorem 11.4.2. Let .X;
/ be preordered set and let .X;G/ be a complete G-
metric space. Let F W X3 ! X be a mapping having the mixed 
-monotone property
on X. Suppose that there exists � 2 Fcom such that for x; y; z; u; v;w 2 X, with
x � u � a, y 
 v 
 b, and z � w � c, one has

G .F .x; y; z/ ;F .u; v;w/ ;F .a; b; c//

� � .max fG .x; u; a/ ;G .y; v; b/ ;G .z;w; c/g/ : (11.34)

Also assume that either F is continuous or .X;G;
/ is regular. If there exist
x0; y0; z0 2 X such that x0 
 F.x0; y0; z0/, y0 � F.y0; x0; y0/ and z0 
 F.z0; y0; x0/,
then F has a tripled fixed point in X, that is, there exist x; y; z 2 X such that

F.x; y; z/ D x; F.y; x; y/ D y and F.z; y; x/ D z:

Proof. Starting from the points x0; y0; z0 2 X, define the sequences fxng, fyng and
fzng by

xnC1 D F .xn; yn; zn/ ; ynC1 D F .yn; xn; yn/ and znC1 D F .zn; yn; xn/

(11.35)
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for all n 2 N. If we suppose that x0 D x1, y0 D y1 and z0 D z1, then .x0; y0; z0/ is a
tripled fixed point of F because

x0 D x1 D F .x0; y0; z0/ ; y0 D y1 D F .y0; x0; y0/ and

z0 D z1 D F .z0; y0; x0/ :

In this case, the existence part is finished. On the contrary case, assume that

max fG .x1; x0; x0/ ;G .y1; y0; y0/ ;G .z1; z0; z0/g > 0: (11.36)

We claim that the sequences fxng and fzng are 
-non-decreasing, and fyng is 
-
non-increasing. Indeed, by hypothesis, x0 
 F.x0; y0; z0/ D x1, y0 � F.y0; x0; y0/ D
y1 and z0 
 F.z0; y0; x0/ D z1. Assume that, for some n 2 N, we have that xn 

xnC1, yn � ynC1 and zn 
 znC1. Then, using the mixed 
-monotone property,

xnC1 D F .xn; yn; zn/ 
 F .xnC1; yn; zn/ 
 F .xnC1; ynC1; zn/


 F .xnC1; ynC1; znC1/ D xnC2;

ynC1 D F .yn; xn; yn/ � F .ynC1; xn; yn/ � F .ynC1; xnC1; yn/

� F .ynC1; xnC1; ynC1/ D ynC2;

znC1 D F .zn; yn; xn/ 
 F .znC1; yn; xn/ 
 F .znC1; ynC1; xn/


 F .znC1; ynC1; xnC1/ 
 znC2:

As a consequence, fxng and fzng are 
-non-decreasing, and fyng is 
-non-
increasing. As 
 is transitive, then

xn 
 xm; yn � ym and zn 
 zm for all n � m: (11.37)

Applying the contractivity condition (11.34),

G .xnC2; xnC1; xnC1/

D G .F .xnC1; ynC1; znC1/ ;F .xn; yn; zn/ ;F .xn; yn; zn//

� � .max fG .xnC1; xn; xn/ ;G .ynC1; yn; yn/ ;G .znC1; zn; zn/g/ ;

and, similarly,

G .ynC2; ynC1; ynC1/

D G .F .ynC1; xnC1; ynC1/ ;F .yn; xn; yn/ ;F .yn; xn; yn//

D G .F .yn; xn; yn/ ;F .yn; xn; yn/ ;F .ynC1; xnC1; ynC1//

� � .max fG .yn; yn; ynC1/ ;G .xn; xn; xnC1/g/
� � .max fG .xnC1; xn; xn/ ;G .ynC1; yn; yn/ ;G .znC1; zn; zn/g/
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and

G .znC2; znC1; znC1/ D G .F .znC1; ynC1; xnC1/ ;F .zn; yn; xn/ ;F .zn; yn; xn//

� � .max fG .znC1; zn; zn/ ;G .ynC1; yn; yn/ ;G .xnC1; xn; xn/g/ :
As � is non-decreasing, we deduce that for all n 2 N,

max fG .xnC2; xnC1; xnC1/ ;G .ynC2; ynC1; ynC1/ ;G .znC2; znC1; znC1/g
� � .max fG .xnC1; xn; xn/ ;G .ynC1; yn; yn/ ;G .znC1; zn; zn/g/ : (11.38)

Repeating (11.38) n times and taking into account that � is non-decreasing,

max fG .xnC1; xn; xn/ ;G .ynC1; yn; yn/ ;G .znC1; zn; zn/g
� � .max fG .xn; xn�1; xn�1/ ;G .yn; yn�1; yn�1/ ;G .zn; zn�1; zn�1/g/
� �2 .max fG .xn�1; xn�2; xn�2/ ;G .yn�1; yn�2; yn�2/ ;

G .zn�1; zn�2; zn�2/g/
� : : : � �n .max fG .x1; x0; x0/ ;G .y1; y0; y0/ ;G .z1; z0; z0/g/ : (11.39)

From (11.36) and � 2 Fcom, we deduce that

lim
n!1�n .max fG .x1; x0; x0/ ;G .y1; y0; y0/ ;G .z1; z0; z0/g/ D 0: (11.40)

In particular,

lim
n!1 G .xnC1; xn; xn/ D lim

n!1 G .ynC1; yn; yn/ D lim
n!1 G .znC1; zn; zn/ D 0;

that is, the sequences fxng, fyng and fzng are asymptotically regular.
Next, we show that, for all " > 0, there exists n0 2 N such that

max fG.xn; xn; xm/;G.yn; yn; ym/;G.zn; zn; zm/g � " (11.41)

for all m � n � n0. Indeed, if m D n, then (11.41) trivially holds. Assume that
m > n. Let " > 0 be arbitrary. As � ."/ < ", let ı D " � � ."/ > 0. From (11.40),
there exists n0 2 N such that

�n .max fG .x1; x0; x0/ ;G .y1; y0; y0/ ;G .z1; z0; z0/g/ < ı D " � � ."/

for all n � n0. Using (11.39),

max fG .xn; xn; xnC1/ ;G .yn; yn; ynC1/ ;G .zn; zn; znC1/g
� �n .max fG .x1; x0; x0/ ;G .y1; y0; y0/ ;G .z1; z0; z0/g/ < " � � ."/

(11.42)
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for all n � n0. This means that if m D n C 1, then (11.41) also holds. reasoning
by induction, assume that (11.41) holds for some m > n, and we will prove it for
m C 1. It follows from

G.xn; xn; xmC1/ D G.xmC1; xn; xn/

� G.xmC1; xnC1; xnC1/C G.xnC1; xn; xn/

< G .F .xm; ym; zm/ ;F .xn; yn; zn/ ;F .xn; yn; zn//C " � � ."/
� � .max fG .xm; xn; xn/ ;G .ym; yn; yn/ ;G .zm; zn; zn/g/C " � � ."/
� � ."/C " � � ."/ D ":

Similarly, G.yn; yn; ymC1/ � " and G.zn; zn; zmC1/ � ". As a consequence, (11.41)
holds, and this guarantees that fxng, fyng and fzng are Cauchy sequences. As .X;G/
is complete, there exist x; y; z 2 X such that fxng ! x, fyng ! y and fzng ! z. Next,
we distinguish two cases.

If we assume that F is continuous, letting n ! 1 in (11.35), we deduce that
F.x; y; z/ D x, F.y; x; y/ D y and F.z; y; x/ D z, that is, .x; y; z/ is a tripled fixed
point of F. In the other case, assume that .X;G;
/ is regular. Taking into account
that fxng, fyng and fzng are convergent, 
-monotone sequences, we deduce that

xn 
 x; yn � y and zn 
 z for all n 2 N:

Using the contractivity condition (11.34), we have that, for all n 2 N,

G .F .x; y; z/ ; xnC1; xnC1/ D G .F .x; y; z/ ;F .xn; yn; zn/ ;F .xn; yn; zn//

� � .max fG .x; xn; xn/ ;G .y; yn; yn/ ;G .z; zn; zn/g/ :

As � is continuous at t D 0, letting n ! 1 in the previous inequality, we deduce
that F.x; y; z/ D x. Similarly, for all n 2 N,

G .ynC1;F .y; x; y/ ;F .y; x; y// D G .F .yn; xn; yn/ ;F .y; x; y/ ;F .y; x; y//

� � .max fG .yn; y; y/ ;G .xn; x; x/g/ ;

so F .y; x; y/ D y. In the same way, we can prove that F.z; y; x/ D z, so .x; y; z/ is a
tripled fixed point of F. ut
Corollary 11.4.3. Let .X;
/ be preordered set and let .X;G/ be a complete G-
metric space. Let F W X3 ! X be a mapping having the mixed monotone property
on X. Suppose that there exists � 2 Œ0; 1/ such that for x; y; z; u; v;w 2 X, with
x � u � a, y 
 v 
 b, and z � w � c, one has

G .F .x; y; z/ ;F .u; v;w/ ;F .a; b; c//

� � max fG .x; u; a/ ;G .y; v; b/ ;G .z;w; c/g :
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Also assume that either F is continuous or .X;G;
/ is regular. If there exist
x0; y0; z0 2 X such that x0 
 F.x0; y0; z0/, y0 � F.y0; x0; y0/ and z0 
 F.z0; y0; x0/,
then F has a tripled fixed point in X, that is, there exist x; y; z 2 X such that

F.x; y; z/ D x; F.y; x; y/ D y and F.z; y; x/ D z:

Taking into account that t C s C r � 3maxft; s; rg for all t; s; r 2 R, we can also
establish the following result.

Corollary 11.4.4. Let .X;
/ be preordered set and let .X;G/ be a complete G-
metric space. Let F W X3 ! X be a mapping having the mixed monotone property
on X. Suppose that there exists � 2 Œ0; 1/ such that for x; y; z; u; v;w 2 X, with
x � u � a, y 
 v 
 b, and z � w � c, one has

G .F .x; y; z/ ;F .u; v;w/ ;F .a; b; c//

� �

3

	
G .x; u; a/C G .y; v; b/C G .z;w; c/



:

Also assume that either F is continuous or .X;G;
/ is regular. If there exist
x0; y0; z0 2 X such that x0 
 F.x0; y0; z0/, y0 � F.y0; x0; y0/ and z0 
 F.z0; y0; x0/,
then F has a tripled fixed point in X, that is, there exist x; y; z 2 X such that

F.x; y; z/ D x; F.y; x; y/ D y and F.z; y; x/ D z:

Example 11.4.1. Let X D R be endowed with the complete G-metric G .x; y; z/ D
maxfjx � yj ; jx � zj ; jy � zjg for all x; y; z 2 X. If we define F W X3 ! X by

F .x; y; z/ D 6x � 6y C 6z C 5

36
for all x; y; z 2 X;

then F has the mixed �-monotone property. If x; y; z; u; v;w; a; b; c 2 X are such
that x � u � a, y � v � b, and z � w � c, then

jx � aj D x � a � maxfx � u; u � ag D max fjx � uj ; ju � ajg ;
jb � yj D b � y � maxfb � v; v � yg D max fjb � vj ; jv � yjg ;
jz � cj D z � c � maxfz � w;w � cg D max fjz � wj ; jw � cjg :

Therefore

G .F .x; y; z/ ;F .u; v;w/ ;F .a; b; c//

D
ˇ̌
ˇ̌6x � 6y C 6z C 5

36
� 6a � 6b C 6c C 5

36

ˇ̌
ˇ̌
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D
ˇ̌
ˇ̌6 .x � a/ � 6 .y � b/C 6 .z � c/

36

ˇ̌
ˇ̌ D 6 .x � a/C 6 .b � y/C 6 .z � c/

36

D 1

6

	
.x � a/C .b � y/C .z � c/




D 1=2

6

	
G .x; u; a/C G .y; v; b/C G .z;w; c/



:

If � D 1=2, then all conditions of Corollary 11.4.4 are fulfilled (notice that F is
G-continuous). Therefore, G has a tripled fixed point in X, which is .1=6; 1=6; 1=6/.

Another particular case occurs when 
 is a partial order on X.

Corollary 11.4.5. Let .X;
/ be partially ordered set and let .X;G/ be a complete
G-metric space. Let F W X3 ! X be a mapping having the mixed monotone property
on X. Suppose that there exists � 2 Fcom such that for x; y; z; u; v;w 2 X, with
x � u � a, y 
 v 
 b, and z � w � c, one has

G .F .x; y; z/ ;F .u; v;w/ ;F .a; b; c//

� � .max fG .x; u; a/ ;G .y; v; b/ ;G .z;w; c/g/ :

Also assume that either F is continuous or .X;G;
/ is regular. If there exist
x0; y0; z0 2 X such that x0 
 F.x0; y0; z0/, y0 � F.y0; x0; y0/ and z0 
 F.z0; y0; x0/,
then F has a tripled fixed point in X, that is, there exist x; y; z 2 X such that

F.x; y; z/ D x; F.y; x; y/ D y and F.z; y; x/ D z:

Finally, if we use the preorder 
0on X given in (5.1), we deduce the following
version.

Corollary 11.4.6. Let .X;G/ be a complete G-metric space and let F W X3 ! X be
a mapping. Suppose that there exists � 2 Fcom such that, for x; y; z; u; v;w; a; b; c 2
X, one has

G .F .x; y; z/ ;F .u; v;w/ ;F .a; b; c//

� � .max fG .x; u; a/ ;G .y; v; b/ ;G .z;w; c/g/ :

Then F has a tripled fixed point in X, that is, there exist x; y; z 2 X such that

F.x; y; z/ D x; F.y; x; y/ D y and F.z; y; x/ D z:
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11.4.3 Aydi et al.’s Tripled Coincidence Point Theorems
in G-Metric Spaces

In this subsection we prove and extend the main results given by Aydi, Karapınar
and Shatanawi in [32]. In order to present a very general result, we introduce the
following definitions.

Definition 11.4.3. Let .X;G/ be a G�-metric space endowed with a binary relation

 and let F W X3 ! X and g W X ! X be two mappings. We will say that .F; g/ is
an .O;
/-compatible pair if we have that

lim
n!1 G .gF.xn; yn; zn/;F.gxn; gyn; gzn/;F.gxn; gyn; gzn// D 0;

lim
n!1 G .gF.yn; xn; yn/;F.gyn; gxn; gyn/;F.gyn; gxn; gyn// D 0 and

lim
n!1 G .gF.zn; yn; xn/;F.gzn; gyn; gxn/;F.gzn; gyn; gxn// D 0

whenever fxng, fyng and fzng are sequences in X such that fgxng, fgyng and fgzng are

-monotone and

lim
m!1 F.xn; yn; zn/ D lim

n!1 gxn 2 X;

lim
m!1 F.yn; xn; yn/ D lim

n!1 gyn 2 X and

lim
m!1 F.zn; yn; xn/ D lim

n!1 gzn 2 X:

Definition 11.4.4. Let .X;G/ be a G�-metric space and let F W X3 ! X and g W
X ! X be two mappings. We will say that .F; g/ is an O-compatible pair if we have
that

lim
n!1 G .gF.xn; yn; zn/;F.gxn; gyn; gzn/;F.gxn; gyn; gzn// D 0;

lim
n!1 G .gF.yn; xn; yn/;F.gyn; gxn; gyn/;F.gyn; gxn; gyn// D 0 and

lim
n!1 G .gF.zn; yn; xn/;F.gzn; gyn; gxn/;F.gzn; gyn; gxn// D 0

whenever fxng, fyng and fzng are sequences in X such that

lim
m!1 F.xn; yn; zn/ D lim

n!1 gxn 2 X;

lim
m!1 F.yn; xn; yn/ D lim

n!1 gyn 2 X and

lim
m!1 F.zn; yn; xn/ D lim

n!1 gzn 2 X:
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Remark 11.4.1. If F and g are commuting, then .F; g/ is an .O;
/-compatible pair
and an O-compatible pair.

Theorem 11.4.3. Let .X;G/ be a G-metric space endowed with a preorder 
 and
let F W X3 ! X and g W X ! X be two mappings such that F has the mixed
.g;
/-monotone property. Assume that the following conditions hold.

(i) There exist two functions  2 Falt and ' 2 F 0
alt such that

 .G .F .x; y; z/ ;F .u; v;w/ ;F .a; b; c///

� . � '/
	

max fG .gx; gu; ga/ ;G .gy; gv; gb/ ;G .gz; gw; gc/g



(11.43)

for all .x; y; z/ ; .u; v;w/ ; .a; b; c/ 2 X3 for which gx 
 gu 
 ga, gy � gv � gb
and gz 
 gw 
 gc.

(ii) At least, one of the following conditions holds.

(ii.1) F.X3/ � g.X/ and there exist x0; y0; z0 2 X such that gx0 
 F.x0; y0; z0/,
gy0 � F.y0; x0; y0/ and gz0 
 F.z0; y0; x0/.

(ii.2) There exists a Picard .F; g/-sequence f.xn; yn; zn/gn2N � X3 such that
gx0 
 F.x0; y0; z0/, gy0 � F.y0; x0; y0/ and gz0 
 F.z0; y0; x0/.

(iii) At least, one of the following conditions holds.

(iii.1) .X;G/ (or .g.X/;G/ or
�
F.X3/;G

�
) is complete and F and g are

continuous and .O;
/-compatible.
(iii.2) .X;G/ (or .g.X/;G/ or

�
F.X3/;G

�
) is complete and F and g are

continuous and commuting.
(iii.3) .g.X/;G/ is complete and .X;G;
/ is regular.

Then F and g have, at least, a tripled coincidence point.

Proof. By Lemmas 11.4.1 and 11.4.2, (ii.1))(ii.2). We present the proof assuming
(ii.2). From Lemma 11.4.2, fgxng and fgzng are 
-non-decreasing, and fgyng is 
-
non-increasing. As 
 is transitive, we deduce that gxn 
 gxm, gyn � gym and gxn 

gxm for all n;m 2 N such that n � m. If there exists some n0 2 N such that
.gxn0 ; gyn0 ; gzn0 / D .gxn0C1; gyn0C1; gzn0C1/, then

gxn0 D gxn0C1 D F .xn0 ; yn0 ; zn0 / ;

gyn0 D gyn0C1 D F .yn0 ; xn0 ; yn0 / and

gzn0 D gzn0C1 D F .zn0 ; yn0 ; xn0 / ;

so .xn0 ; yn0 ; zn0 / is a tripled coincidence point of F and g. Next, assume that

.gxn; gyn; gzn/ ¤ .gxnC1; gynC1; gznC1/ for all n 2 N: (11.44)
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For convenience, let define, for all n;m 2 N such that n < m,

T .n;m/ D max fG .gxn; gxm; gxm/ ;

G .gyn; gym; gym/ ;G .gzn; gzm; gzm/g ;
S .n;m/ D max fG .gxn; gxm; gxm/ ;G .gyn; gym; gym/g ;
tn D T.n; n C 1/;

sn D S.n; n C 1/:

Condition (11.44) is equivalent to

tn > 0 for all n 2 N:

By the contractivity condition (11.43), for all n 2 N we have, taking into account
that gxn 
 gxnC1 
 gxnC1, gyn � gynC1 � gynC1 and gzn 
 gznC1 
 gznC1,

 .G .gxnC1; gxnC2; gxnC2//

D  .G .F .xn; yn; zn/ ;F .xnC1; ynC1; znC1/ ;F .xnC1; ynC1; znC1///

� . � '/
	

max fG .gxn; gxnC1; gxnC1/ ;

G .gyn; gynC1; gynC1/ ;G .gzn; gznC1; gznC1/g



D  .tn/ � � .tn/ : (11.45)

Using that gynC1 
 gynC1 
 gyn and gxnC1 � gxnC1 � gxn, we deduce that

 .G .gynC2; gynC2; gynC1//

D  .G .F .ynC1; xnC1; ynC1/ ;F .ynC1; xnC1; ynC1/ ;F .yn; xn; yn///

� . � '/
	

max fG .gynC1; gynC1; gyn/ ;G .gxnC1; gxnC1; gxn/g



D  .sn/ � � .sn/ : (11.46)

In the same way, since gzn 
 gznC1, gyn � gynC1 and gxn 
 gxnC1, we also have
that

 .G .gznC1; gznC2; gxnC2//

D  .G .F .zn; yn; xn/ ;F .znC1; ynC1; xnC1/ ;F .znC1; ynC1; xnC1///

� . � '/
	

max fG .gzn; gznC1; gznC1/ ;
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G .gyn; gynC1; gynC1/ ;G .gxn; gxnC1; gxnC1/g



D  .tn/ � � .tn/ : (11.47)

Notice that the right-hand term of inequality (11.46) is different from the right-
hand terms of inequalities (11.45) and (11.47). However, as  is non-decreasing,
for all n 2 N,

 .tnC1/ D  
	

max fG .gxnC1; gxnC2; gxnC2/ ;G .gynC1; gynC2; gynC2/ ;

G .gznC1; gznC2; gxnC2/g



D max
n
 .G .gxnC1; gxnC2; gxnC2// ;  .G .gynC1; gynC2; gynC2//

 .G .gznC1; gznC2; gxnC2//
o

� maxf .tn/ � � .tn/ ;  .sn/ � � .sn/g:

From item (3) of Lemma 2.3.7, we deduce that ftng ! 0. In particular,

fG .gxn; gxnC1; gxnC1/g ! 0; fG .gyn; gynC1; gynC1/g ! 0

and fG .gzn; gznC1; gznC1/g ! 0;

that is, the sequences fgxng, fgyng and fgzng are asymptotically regular.
Next, we show that fgxng, fgyng and fgzng are Cauchy sequences on .X;G/. We

reason by contradiction assuming that one of them is not Cauchy in .X;G/. In such
a case, by Lemma 11.2.1, there exist "0 > 0 and two sequences of natural numbers
fn.k/gk2N and fm.k/gk2N such that, for all k 2 N,

k � n.k/ < m.k/ < n.k C 1/;

max
˚
G
�
gxn.k/; gxm.k/�1; gxm.k/�1

�
;G
�
gyn.k/; gym.k/�1; gym.k/�1

�
;

G
�
gzn.k/; gzm.k/�1; gzm.k/�1

��

� "0 < max
˚
G
�
gxn.k/; gxm.k/; gxm.k/

�
;

G
�
gyn.k/; gym.k/; gym.k/

�
;G
�
gzn.k/; gzm.k/; gzm.k/

��
;

and also

lim
k!1

h
max

n
G
�
gxn.k/; gxm.k/; gxm.k/

�
;G
�
gyn.k/; gym.k/; gym.k/

�
;

G
�
gzn.k/; gzm.k/; gzm.k/

�o i
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D lim
k!1

h
max

n
G
�
gxn.k/�1; gxm.k/�1; gxm.k/�1

�
;

G
�
gyn.k/�1; gym.k/�1; gym.k/�1

�
;

G
�
gzn.k/�1; gzm.k/�1; gzm.k/�1

�oi D "0: (11.48)

Moreover, the number i0 in Lemma 11.2.1 guarantees that, at least, one of the
following conditions holds:

lim
k!1 G

�
gxn.k/; gxm.k/; gxm.k/

� D lim
k!1 G

�
gxn.k/; gxm.k/�1; gxm.k/�1

� D "0;

(11.49)

lim
k!1 G

�
gyn.k/; gym.k/; gym.k/

� D lim
k!1 G

�
gyn.k/; gym.k/�1; gym.k/�1

� D "0;

(11.50)

lim
k!1 G

�
gzn.k/; gzm.k/; gzm.k/

� D lim
k!1 G

�
gzn.k/; gzm.k/�1; gzm.k/�1

� D "0:

(11.51)

In order to apply Lemma 2.3.8, let consider the sequences ftkg, fskg and frkg
given by

tk D T.n.k/;m.k//; sk D T.n.k/ � 1;m.k/ � 1/
and rk D S.n.k/ � 1;m.k/ � 1/ for all k 2 N:

Clearly, rk � sk for all k 2 N. Moreover, if we define L D "0, conditions (11.48)
means that ftkg ! L and fskg ! L. Since n.k/ < m.k/, we have that gxn.k/�1 

gxm.k/�1 
 gxm.k/�1, gyn.k/�1 � gym.k/�1 � gym.k/�1 and gzn.k/�1 
 gzm.k/�1 

gzm.k/�1 for all k 2 N. By the contractivity condition (11.43),

 
�
G
�
gxn.k/; gxm.k/; gxm.k/

��

D  
	

G
	

F
�
xn.k/�1; yn.k/�1; zn.k/�1

�
;

F
�
xm.k/�1; ym.k/�1; zm.k/�1

�
;

F
�
xm.k/�1; ym.k/�1; zm.k/�1

�



� . � '/
	

max
n
G
�
gxn.k/�1; gxm.k/�1; gxm.k/�1

�
;

G
�
gyn.k/�1; gym.k/�1; gym.k/�1

�
;

G
�
gzn.k/�1; gzm.k/�1; gzm.k/�1

�o


D . � '/ .T .n.k/ � 1;m.k/ � 1// D  .sk/ � ' .sk/ :
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Furthermore, as gym.k/�1 
 gym.k/�1 
 gyn.k/�1 and gxm.k/�1 � gxm.k/�1 � gxn.k/�1,
then

 
�
G
�
gyn.k/; gym.k/; gym.k/

��

D  
	

G
	

F
�
ym.k/�1; xm.k/�1; ym.k/�1

�
;

F
�
ym.k/�1; xm.k/�1; ym.k/�1

�
;

F
�
yn.k/�1; xn.k/�1; yn.k/�1

�



� . � '/
	

max
n
G
�
gyn.k/�1; gym.k/�1; gym.k/�1

�
;

G
�
gxn.k/�1; gxm.k/�1; gxm.k/�1

�o


D . � '/ .S .n.k/ � 1;m.k/ � 1// D  .rk/ � ' .rk/ :

Similarly,

 
�
G
�
gzn.k/; gzm.k/; gzm.k/

��

D  
	

G
	

F
�
zn.k/�1; yn.k/�1; xn.k/�1

�
;

F
�
zm.k/�1; ym.k/�1; xm.k/�1

�
;

F
�
zm.k/�1; ym.k/�1; xm.k/�1

�



� . � '/
	

max
n
G
�
gzn.k/�1; gzm.k/�1; gzm.k/�1

�
;

G
�
gyn.k/�1; gym.k/�1; gym.k/�1

�
;

G
�
gxn.k/�1; gxm.k/�1; gxm.k/�1

�o


D . � '/ .T .n.k/ � 1;m.k/ � 1// D  .sk/ � ' .sk/ :

Combining the last three inequalities and taking into account that  is non-
decreasing, if follows that, for all k 2 N,

 .tk/ D  
	

max
n
G
�
gxn.k/; gxm.k/; gxm.k/

�
;G
�
gyn.k/; gym.k/; gym.k/

�

G
�
gzn.k/; gzm.k/; gzm.k/

�o


D max
n
 
�
G
�
gxn.k/; gxm.k/; gxm.k/

��
;

 
�
G
�
gym.k/; gym.k/; gyn.k/

��
;
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�
G
�
gzn.k/; gzm.k/; gzm.k/

��o

� max f .sk/ � ' .sk/ ;  .rk/ � ' .rk/g :

Applying Lemma 2.3.8, we conclude that "0 D L D 0, which is a contradiction.
As a consequence, fgxng, fgyng and fgzng must be Cauchy sequences on .X;G/. To
continue the proof, we distinguish some cases.

Case (iii.1). Assume that .X;G/ (or .g.X/;G/ or
�
F.X3/;G

�
) is complete and F

and g are continuous and .O;
/-compatible. In such a case, as the sequences
fgxnC1 D F.xn; yn; zn/g, fgynC1 D F.yn; xn; yn/g and fgznC1 D F.zn; yn; xn/g
belong to F.X3/ � g.X/ � X, and one of these spaces is G-complete, there exist
u; v;w 2 X such that fgxng ! u, fgyng ! v and fgzng ! w. As F and g are
continuous, we deduce that

fggxng ! gu; fggyng ! gv; fggzng ! gw;

fF .gxn; gyn; gzn/g ! F.u; v;w/; fF .gyn; gxn; gyn/g ! F.v; u; v/;

fF .gzn; gyn; gxn/g ! F.w; v; u/:

Therefore, fxng, fyng and fzng are sequences in X such that fgxng, fgyng and fgzng
are 
-monotone and

lim
m!1 F.xn; yn; zn/ D lim

n!1 gxn D u 2 X;

lim
m!1 F.yn; xn; yn/ D lim

n!1 gyn D v 2 X and

lim
m!1 F.zn; yn; xn/ D lim

n!1 gzn D w 2 X;

Since F and g are .O;
/-compatible, we have that

lim
n!1 G .gF.xn; yn; zn/;F.gxn; gyn; gzn/;F.gxn; gyn; gzn// D 0;

lim
n!1 G .gF.yn; xn; yn/;F.gyn; gxn; gyn/;F.gyn; gxn; gyn// D 0 and

lim
n!1 G .gF.zn; yn; xn/;F.gzn; gyn; gxn/;F.gzn; gyn; gxn// D 0

In particular

G .gu;F .u; v;w/ ;F .u; v;w//

D lim
n!1 G .ggxnC1;F .gxn; gyn; gzn/ ;F .gxn; gyn; gzn//

D lim
n!1 G .gF.xn; yn; zn/;F .gxn; gyn; gzn/ ;F .gxn; gyn; gzn// D 0:
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It follows that gu D F .u; v;w/. In the same way,

G .gv;F .v; u; v/ ;F .v; u; v//

D lim
n!1 G .ggynC1;F .gyn; gxn; gyn/ ;F .gyn; gxn; gyn//

D lim
n!1 G .gF.yn; xn; yn/;F .gyn; gxn; gyn/ ;F .gyn; gxn; gyn// D 0;

so gv D F .v; u; v/. Finally, as

G .gw;F .w; v; u/ ;F .w; v; u//

D lim
n!1 G .ggznC1;F .gzn; gyn; gxn/ ;F .gzn; gyn; gxn//

D lim
n!1 G .gF.zn; yn; xn/;F .gzn; gyn; gxn/ ;F .gzn; gyn; gxn// D 0;

it follows that gw D F .w; v; u/. As a consequence, .u; v;w/ is a tripled
coincidence point of F and g.

Case (iii.2). Assume that .X;G/ (or .g.X/;G/ or
�
F.X3/;G

�
) is complete and F

and g are continuous and commuting. It follows from item (iii.1) because if F
and g are commuting, then they are also .O;
/-compatible.

Case (iii.3). Assume that .g.X/;G/ is complete and .X;G;
/ is regular. Since
fgxng, fgyng and fgzng are Cauchy sequences on .g.X/;G/, there exist u0; v0;w0 2
g.X/ such that fgxng ! u0, fgyng ! v0 and fgzng ! w0. Let u; v;w 2 X be
arbitrary points such that gu D u0, gv D v0 and gw D w0. As .X;G;
/ is regular,
and the sequences fgxng, fgyng and fgzng are convergent and 
-monotone, we
deduce that gxn 
 gu, gyn � gv and gzn 
 gw for all n 2 N. Therefore, applying
the contractivity condition (11.43) to gxn 
 gu 
 gu, gyn � gv � gv and
gzn 
 gw 
 gw, we obtain

 .G .gxnC1;F .u; v;w/ ;F .u; v;w///

D  .G .F .xn; yn; zn/ ;F .u; v;w/ ;F .u; v;w///

� . � '/
	

max fG .gxn; gu; gu/ ;

G .gyn; gv; gv/ ;G .gzn; gw; gw/g



�  
	

max fG .gxn; gu; gu/ ;G .gyn; gv; gv/ ;G .gzn; gw; gw/g


:

As fgxng ! gu, fgyng ! gv, fgzng ! gw and  is continuous, we deduce that

 .G .gu;F .u; v;w/ ;F .u; v;w///

D lim
n!1  .G .gxnC1;F .u; v;w/ ;F .u; v;w///

�  .maxf0; 0; 0g/ D 0;
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so gu D F .u; v;w/. In the same way, applying the contractivity condition (11.43)
to gv 
 gv 
 gyn and gu � gu � gxn, we obtain

 .G .F .v; u; v/ ;F .v; u; v/ ; gynC1//

D  .G .F .v; u; v/ ;F .v; u; v/ ;F .yn; xn; yn///

� . � '/
	

max fG .gv; gv; gyn/ ;G .gu; gu; gxn/g



�  
	

max fG .gv; gv; gyn/ ;G .gu; gu; gxn/g


:

again, and letting n ! 1 we deduce that

 .G .F .v; u; v/ ;F .v; u; v/ ; gv//

D lim
n!1  .F .v; u; v/ ;F .v; u; v/ ; gynC1/

�  .maxf0; 0g/ D 0;

and, therefore, gv D F .v; u; v/. Repeating the previous arguments, we can show
that gw D F.w; v; u/. Thus, we conclude that .u; v;w/ is a tripled coincidence point
of F and g. ut

We leave to the reader to particularize Theorem 11.4.3 as we did it in Sect. 11.3.5.
We only include the following results, which can be considered as extensions of
Borcut and Berinde’s Theorem 4 in [50].

Corollary 11.4.7. Let .X;G/ be a complete G-metric space endowed with a
preorder 
 and let F W X3 ! X and g W X ! X be two mappings such that
F.X3/ � g.X/ and F has the mixed .g;
/-monotone property. Suppose that there
exists � 2 Œ0; 1/ such that

G .F .x; y; z/ ;F .u; v;w/ ;F .a; b; c//

� � max fG .gx; gu; ga/ ;G .gy; gv; gb/ ;G .gz; gw; gc/g (11.52)

for all .x; y; z/ ; .u; v;w/ ; .a; b; c/ 2 X3 for which gx 
 gu 
 ga, gy � gv � gb and
gz 
 gw 
 gc. Also assume that, at least, one of the following conditions holds.

(a) .X;G/ (or .g.X/;G/ or
�
F.X3/;G

�
) is complete and F and g are continuous

and commuting.
(b) .g.X/;G/ is complete and .X;G;
/ is regular.

Theorem 11.4.4. Then F and g have, at least, a tripled coincidence point.

Proof. It follows from Theorem 11.4.3 using  .t/ D t and � .t/ D .1 � �/ t for all
t 2 Œ0;1/. ut
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Corollary 11.4.8. Let .X;G/ be a complete G-metric space endowed with a partial
order 4 and let F W X3 ! X and g W X ! X be two mappings such that
F.X3/ � g.X/ and F has the mixed .g;4/-monotone property. Suppose that there
exist �1; �2; �3 2 Œ0; 1/ such that �1 C �2 C �3 < 1 and verifying

G .F .x; y; z/ ;F .u; v;w/ ;F .a; b; c//

� �1G .gx; gu; ga/C �2G .gy; gv; gb/C �3G .gz; gw; gc/ (11.53)

for all .x; y; z/ ; .u; v;w/ ; .a; b; c/ 2 X3 for which gx 4 gu 4 ga, gy < gv < gb and
gz 4 gw 4 gc. Also assume that, at least, one of the following conditions holds.

(a) .X;G/ (or .g.X/;G/ or
�
F.X3/;G

�
) is complete and F and g are continuous

and commuting.
(b) .g.X/;G/ is complete and .X;G;4/ is regular.

Theorem 11.4.5. Then F and g have, at least, a tripled coincidence point.

Proof. It follows reasoning as in Corollary 11.4.2 because (11.53) implies
(11.52). ut

11.5 Karapınar’s Quadrupled Fixed Point Theory

In [110], Karapınar introduced the notion of a quadrupled fixed point of a mapping
F W X4 ! X as a point .x; y; z; !/ 2 X4 such that

8
ˆ̂<

ˆ̂:

F .x; y; z; !/ D x;
F .y; z; !; x/ D y;
F .z; !; x; y/ D z;
F .!; x; y; z/ D !:

All arguments given in Sects. 11.3 and 11.4, can now be repeated. For more details,
see also [113, 117].

Definition 11.5.1. Let X be a non-empty set endowed with a binary relation 4 and
let F W X4 ! X and g W X ! X be two mappings. The mapping F is said to have the
mixed .g;4/-monotone property if F.x; y; z; !/ is monotone .g;4/-non-decreasing
in x and in z, and monotone .g;4/-non-increasing in y and in !, that is, for all
x; y; z; ! 2 X,

x1; x2 2 X; gx1 4 gx2 ) F.x1; y; z; !/ 4 F.x2; y; z; !/;

y1; y2 2 X; gy1 4 gy2 ) F.x; y1; z; !/ < F.x; y2; z; !/;
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z1; z2 2 X; gz1 4 gz2 ) F.x; y; z1; !/ 4 F.x; y; z2; !/ and

!1; !2 2 X; g!1 4 g!2 ) F.x; y; z; !1/ < F.x; y; z; !2/:

If g is the identity mapping on X, then we say that F has the mixed 4-monotone
property.

Theorem 11.5.1. Let .X;G/ be a G-metric space endowed with a preorder 
 and
let F W X4 ! X and g W X ! X be two mappings such that F has the mixed
.g;
/-monotone property. Assume that the following conditions hold.

(i) There exist two functions  2 Falt and ' 2 F 0
alt such that

 .G .F .x; y; z; t/ ;F .u; v;w; p/ ;F .a; b; c; d///

� . � '/
	

max
n
G .gx; gu; ga/ ;G .gy; gv; gb/ ;

G .gz; gw; gc/ ;G .gt; gp; gd/
o


for all .x; y; z; t/ ; .u; v;w; p/ ; .a; b; c; d/ 2 X4 for which gx 
 gu 
 ga, gy �
gv � gb, gz 
 gw 
 gc and gt � gp � gd.

(ii) At least, one of the following conditions holds.

(ii.1) F.X4/ � g.X/ and there exist x0; y0; z0; t0 2 X such that gx0 

F.x0; y0; z0; t0/, gy0 � F.y0; z0; t0; x0/, gz0 
 F.z0; t0; x0; y0/ and gt0 �
F.t0; x0; y0; z0/.

(ii.2) There exists a Picard .F; g/-sequence f.xn; yn; zn; tn/gn2N � X4 such that
gx0 
 F.x0; y0; z0; t0/, gy0 � F.y0; z0; t0; x0/, gz0 
 F.z0; t0; x0; y0/ and
gt0 � F.t0; x0; y0; z0/.

(iii) At least, one of the following conditions holds.

(iii.1) .X;G/ (or .g.X/;G/ or
�
F.X4/;G

�
) is complete and F and g are

continuous and commuting.
(iii.2) .g.X/;G/ is complete and .X;G;
/ is regular.

Then F and g have, at least, a quadrupled coincidence point.

11.6 Roldán et al.’s Multidimensional Fixed Point Theory

Inspired by the previous notions of coupled, tripled and quadrupled fixed point,
and the Berinde and Borcut’s condition F.y; x; y/ D y, in 2012, Roldán et al. [174]
introduced the following notion of multidimensional fixed point using two mappings
F W Xn ! X and g W X ! X (see also [178]).
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11.6.1 The Notion of Multidimensional Fixed Point

Henceforth, let fA;Bg be a partition of ƒn D f1; 2; : : : ; ng, that is, A and B are
non-empty subsets of ƒn such that A [ B D ƒn and A \ B D ¿. From now on, let
ˆ D .�1; �2; : : : ; �n/ be a n-tuple of mappings from f1; 2; : : : ; ng into itself.

Definition 11.6.1 (Roldán et al. [174]). Given two mappings F W Xn ! X and
g W X ! X, we say that a point .x1; x2; : : : ; xn/ 2 Xn is a

• ˆ-fixed point of F if

F.x�i.1/; x�i.2/; : : : ; x�i.n// D xi for all i 2 f1; 2; : : : ; ng I

• ˆ-coincidence point of F and g if

F.x�i.1/; x�i.2/; : : : ; x�i.n// D gxi for all i 2 f1; 2; : : : ; ng I

• ˆ-common fixed point of F and g if

F.x�i.1/; x�i.2/; : : : ; x�i.n// D gxi D xi for all i 2 f1; 2; : : : ; ng :

If we represent a mapping � W ƒn ! ƒn throughout its ordered image, i.e.,
� D .�.1/; �.2/; : : : ; �.n//, then:

• the Gnana-Bhaskar and Lakshmikantham’s condition in n D 2 is �1 D .1; 2/ and
�2 D .2; 1/;

• the Berinde and Borcut’s condition in n D 3 is �1 D .1; 2; 3/, �2 D .2; 1; 2/ and
�2 D .3; 2; 1/;

• the Karapınar’s condition in n D 4 is �1 D .1; 2; 3; 4/, �2 D .2; 3; 4; 1/, �3 D
.3; 4; 1; 2/ and �4 D .4; 1; 2; 3/;

• the cyclic condition is �i D .i; i C 1; : : : ; n; 1; 2; : : : ; i � 1/ for all i 2
f1; 2; : : : ; ng.

Low dimensional cases consider A as the odd numbers in f1; 2; : : : ; ng and B as
its even numbers. Another definition was due to Berzig and Samet [42], who used
A D f1; 2; : : : ;mg, B D fm C 1; : : : ; ng and arbitrary mappings between them.

As we shall see, Roldán et al. succeeded in proving existence and uniqueness
of multidimensional fixed (or coincidence) points when ˆ D .�1; �2; : : : ; �n/ is a
n-tuple of mappings from f1; 2; : : : ; ng into itself satisfying �i 2 �A;B if i 2 A and
�i 2 �0

A;B if i 2 B, where

�A;B D f� W ƒn ! ƒn W �.A/ � A and �.B/ � Bg ;
�0

A;B D f� W ƒn ! ƒn W �.A/ � B and �.B/ � Ag :

In order to prove a multidimensional result, we need to extend the notion of the
mixed monotone property.
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Given a binary relation 4 on X and i 2 ƒn, let denote by 4i the binary relation
4, if i 2 A, and the binary relation <, if i 2 B. In other words, for all x; y 2 X,

x 4i y ,
�

x 4 y; if i 2 A;
x < y; if i 2 B:

(11.54)

Definition 11.6.2 (Roldán et al. [174]). Let 4 be a binary relation on a set X and
let F W Xn ! X and g W X ! X be two mappings. We say that F has the mixed
.g;4/-monotone property (w.r.t. fA;Bg) if F is monotone .g;4/-non-decreasing in
arguments of A and monotone .g;4/-non-increasing in arguments of B, i.e., for all
x1; x2; : : : ; xn; y; z 2 X and all i,

gy 4 gz ) F.x1; : : : ;xi�1; y; xiC1; : : : ; xn/

4i F.x1; : : : ; xi�1; z; xiC1; : : : ; xn/:

Lemma 11.6.1. Let F W Xn ! X and g W X ! X be two mappings such
that F.Xn/ � g.X/ and let ˆ D .�1; �2; : : : ; �n/ be a n-tuple of mappings from
f1; 2; : : : ; ng into itself. Then, starting from any points x10; x

2
0; : : : ; x

n
0 2 X, there exists

a sequence f�x1m; x2m; : : : ; xn
m

�gm2N on Xn such that

gxi
mC1 D F.x�i.1/

m ; x�i.2/
m ; : : : ; x�i.n/

m / (11.55)

for all m 2 N and all i 2 f1; 2; : : : ; ng :

Proof. Let x10; x
2
0; : : : ; x

n
0 2 X be arbitrary. Given i 2 f1; 2; : : : ; ng, since

F.x�i.1/
0 ; x�i.2/

0 ; : : : ; x�i.n/
0 / 2 F.Xn/ � g.X/, then there exists xi

1 2 X such that

gxi
1 D F.x�i.1/

0 ; x�i.2/
0 ; : : : ; x�i.n/

0 /. Then, we have n points x11; x
2
1; : : : ; x

n
1 2 X.

Similarly, given i 2 f1; 2; : : : ; ng, since F.x�i.1/
1 ; x�i.2/

1 ; : : : ; x�i.n/
1 / 2 F.Xn/ � g.X/,

then there exists xi
2 2 X such that

gxi
2 D F.x�i.1/

1 ; x�i.2/
1 ; : : : ; x�i.n/

1 /:

If we repeat by induction this argument, we can define a sequence

f�x1m; x2m; : : : ; xn
m

�gm2N

on Xn satisfying (11.55). ut
Definition 11.6.3. Given ˆ D .�1; �2; : : : ; �n/ and two mappings F W Xn ! X and
g W X ! X, a Picard .F; g; ˆ/-sequence is a sequence f�x1m; x2m; : : : ; xn

m

�gm2N on Xn

satisfying (11.55).
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Proposition 11.6.1. If f�x1m; x2m; : : : ; xn
m

�gm2N on Xn is a Picard .F; g; ˆ/-sequence
and there exists n0 2 N such that gxi

n0 D gxi
n0C1 for all i 2 f1; 2; : : : ; ng, then�

x1n0 ; x
2
n0 ; : : : ; x

n
n0

�
is a ˆ-coincidence point of F and g.

Proof. It follows from the fact that, for all i 2 f1; 2; : : : ; ng, gxi
n0 D gxi

n0C1 D
F.x�i.1/

n0 ; x�i.2/
n0 ; : : : ; x�i.n/

n0 /, so
�
x1n0 ; x

2
n0 ; : : : ; x

n
n0

�
is a ˆ-coincidence point of F and g.

ut
Given two mappings F W Xn ! X and g W X ! X, the condition F.Xn/ � g.X/

is sufficient to guarantee that there exists a Picard .F; g; ˆ/-sequence on X based on
any initial points x10; x

2
0; : : : ; x

n
0 2 X. However, it is not necessary.

Lemma 11.6.2. Let ˆ D .�1; �2; : : : ; �n/ be a n-tuple of mappings from
f1; 2; : : : ; ng into itself such that �i 2 �A;B if i 2 A and �i 2 �0

A;B if i 2 B.
Let 4 be a transitive binary relation on a set X and let F W Xn ! X and g W X ! X
be two mappings such that the following conditions are fulfilled.

(i) There exists a Picard .F; g; ˆ/-sequence f�x1m; x2m; : : : ; xn
m

�gm2N � Xn.

(ii) gxi
0 4i F.x�i.1/

0 ; x�i.2/
0 ; : : : ; x�i.n/

0 / for all i 2 f1; 2; : : : ; ng.
(iii) F has the mixed .g;4/-monotone property.

Then, for each i 2 f1; 2; : : : ; ng, the sequence fgxi
mgm2N is 4i-non-decreasing

(that is, it is 4-non-decreasing if i 2 A and 4-non-increasing if i 2 B). In particular,

gxi
m 4i gxi

` for all i 2 f1; 2; : : : ; ng and all m; ` 2 N with m � `: (11.56)

Proof. By (ii), we have that gxi
0 4i F.x�i.1/

0 ; x�i.2/
0 ; : : : ; x�i.n/

0 / D gxi
1 for all i 2

f1; 2; : : : ; ng. Assume, by hypothesis of induction, that there exist m 2 N such that
gxi

m 4i gxi
mC1 for all i 2 f1; 2; : : : ; ng. This condition means that

(
gxj

m 4 gxj
mC1; if j 2 A;

gxj
m < gxj

mC1; if j 2 B.
(11.57)

To complete the induction process, we have to prove that gxi
mC1 4i gxi

mC2 for all
i 2 f1; 2; : : : ; ng, that is,

(
gxj

mC1 4 gxj
mC2; if j 2 A,

gxj
mC1 < gxj

mC2; if j 2 B.
(11.58)

We distinguishing two cases.

Case 1: i 2 A. In this case, �i.A/ � A and �i.B/ � B. As F has the mixed
g-monotone property, we apply that F is g-monotone .g;4/-non-decreasing in
A-arguments with the first inequalities of (11.57) and we deduce that, for all
a1; a2; : : : ; an 2 X:
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if j; s 2 A; gxj
m 4 gxj

mC1 )
F.a1; : : : ; as�1; xj

m; asC1; : : : ; an/ 4 F.a1; : : : ; as�1; xj
mC1; asC1; : : : ; an/;

and that F is g-monotone .g;4/-non-increasing in B-arguments with the second
inequalities of (11.57):

if j; s 2 B; gxj
m < gxj

mC1 )
F.a1; : : : ; as�1; xj

m; asC1; : : : ; an/ 4 F.a1; : : : ; as�1; xj
mC1; asC1; : : : ; an/:

In any case, it follows that, if j; s 2 f1; 2; : : : ; ng satisfy j; s 2 A or j; s 2 B, then:

F.a1; : : : ; as�1; xj
m; asC1; : : : ; an/ 4 F.a1; : : : ; as�1; xj

mC1; asC1; : : : ; an/

for all a1; a2; : : : ; an 2 X. As �i 2 �A;B:

gxi
mC1 D F.x�i.1/

m ; x�i.2/
m ; x�i.3/

m ; : : : ; x�i.n/
m /

(1; �i.1/ 2 A or 1; �i.1/ 2 B)

4 F.x�i.1/
mC1; x

�i.2/
m ; x�i.3/

m ; : : : ; x�i.n/
m /

(2; �i.2/ 2 A or 2; �i.2/ 2 B)

4 F.x�i.1/
mC1; x

�i.2/
mC1; x

�i.3/
m ; : : : ; x�i.n/

m /

(3; �i.3/ 2 A or 3; �i.3/ 2 B)

4 : : : 4 F.x�i.1/
mC1; x

�i.2/
mC1; x

�i.3/
mC1; : : : ; x

�i.n/
mC1/ D gxi

mC2:

Hence gxi
mC1 4 gxi

mC2 when i is in A, so (11.58) holds if i 2 A.
Case 2: i 2 B. In this case, we apply that F is .g;4/-monotone non-decreasing

in A-arguments with the second inequalities of (11.57) and that F is .g;4/-
monotone non-increasing in B-arguments with the first inequalities of (11.57),
and we deduce, for all a1; a2; : : : ; an 2 X, that, if j; s 2 f1; 2; : : : ; ng satisfy
j 2 A, s 2 B or j 2 B, s 2 A, then

F.a1; : : : ; as�1; xj
m; asC1; : : : ; an/ < F.a1; : : : ; as�1; xj

mC1; asC1; : : : ; an/:

Since �i 2 �0
A;B, therefore:

gxi
mC1 D F.x�i.1/

m ; x�i.2/
m ; x�i.3/

m ; : : : ; x�i.n/
m /

(1 2 A; �i.1/ 2 B or 1 2 B; �i.1/ 2 A)

< F.x�i.1/
mC1; x

�i.2/
m ; x�i.3/

m ; : : : ; x�i.n/
m /
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(2 2 A; �i.2/ 2 B or 2 2 B; �i.2/ 2 A)

< F.x�i.1/
mC1; x

�i.2/
mC1; x

�i.3/
m ; : : : ; x�i.n/

m /

(3 2 A; �i.3/ 2 B or 3 2 B; �i.3/ 2 A)

< : : : < F.x�i.1/
mC1; x

�i.2/
mC1; x

�i.3/
mC1; : : : ; x

�i.n/
mC1/ D gxi

mC2:

Hence gxi
mC1 < gxi

mC2 when i 2 B.

In any case, we have proved that (11.58) holds. In particular, (11.56) holds
because 4 is transitive. ut

In order to present a very general result, we introduce the following definitions.

Definition 11.6.4. Let .X;G/ be a G�-metric space endowed with a binary relation
4 and let F W Xn ! X and g W X ! X be two mappings. Givenˆ D .�1; �2; : : : ; �n/,
we will say that .F; g/ is an .O;4; ˆ/-compatible pair if we have that, for all i 2
f1; 2; : : : ; ng,

lim
n!1 G

�
gF.x�i.1/

m ; x�i.2/
m ; : : : ; x�i.n/

m /;F.gx�i.1/
m ; gx�i.2/

m ; : : : ; gx�i.n/
m /;

F.gx�i.1/
m ; gx�i.2/

m ; : : : ; gx�i.n/
m /

� D 0

whenever f�x1m; x2m; : : : ; xn
m

�gm2N is a sequence in Xn such that each fgxi
mg is 4-

monotone and

lim
m!1 F.x�i.1/

m ; x�i.2/
m ; : : : ; x�i.n/

m / D lim
n!1 gxm 2 X for all i 2 f1; 2; : : : ; ng :

Definition 11.6.5. Let .X;G/ be a G�-metric space and let F W Xn ! X and g W
X ! X be two mappings. Given ˆ D .�1; �2; : : : ; �n/, we will say that .F; g/ is an
.O; ˆ/-compatible pair if we have that, for all i 2 f1; 2; : : : ; ng,

lim
n!1 G

�
gF.x�i.1/

m ; x�i.2/
m ; : : : ; x�i.n/

m /;F.gx�i.1/
m ; gx�i.2/

m ; : : : ; gx�i.n/
m /;

F.gx�i.1/
m ; gx�i.2/

m ; : : : ; gx�i.n/
m /

� D 0

whenever f�x1m; x2m; : : : ; xn
m

�gm2N is a sequence in Xn such that

lim
m!1 F.x�i.1/

m ; x�i.2/
m ; : : : ; x�i.n/

m / D lim
n!1 gxm 2 X for all i 2 f1; 2; : : : ; ng :

Remark 11.6.1. If F and g are commuting, then .F; g/ is an .O;4; ˆ/-compatible
pair and an .O; ˆ/-compatible pair.
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11.6.2 Existence of ˆ-Coincidence Points

Next, we present one of the main results of the chapter.

Theorem 11.6.1. Let .X;G/ be a G-metric space endowed with a preorder 4 and
let F W Xn ! X and g W X ! X be two mappings such that F has the mixed
.g;4/-monotone property. Let ˆ D .�1; �2; : : : ; �n/ be a n-tuple of mappings from
f1; 2; : : : ; ng into itself satisfying �i 2 �A;B if i 2 A and �i 2 �0

A;B if i 2 B. Assume
that the following conditions hold.

(i) There exist two functions  ; ' 2 Falt such that

 .G .F .X/ ;F .Y/ ;F .Z/// � . � '/
�

max
1�i�n

G .gxi; gyi; gzi/

�
(11.59)

for all X .x1; x2; : : : ; xn/ ;Y .y1; y2; : : : ; yn/ ;Z .z1; z2; : : : ; zn/ 2 Xn for which

gxi 4i gyi 4i gzi for all i 2 f1; 2; : : : ; ng :

(ii) At least, one of the following conditions holds.

(ii.1) F.Xn/ � g.X/ and there exist x10; x
2
0; : : : ; x

n
0 2 X such that gxi

0 4i

F.x�i.1/
0 ; x�i.2/

0 ; : : : ; x�i.n/
0 / for all i 2 f1; 2; : : : ; ng.

(ii.2) There exists a Picard .F; g; ˆ/-sequence f�x1m; x2m; : : : ; xn
m

�gm2N � Xn

such that gxi
0 4i F.x�i.1/

0 ; x�i.2/
0 ; : : : ; x�i.n/

0 / for all i 2 f1; 2; : : : ; ng.

(iii) At least, one of the following conditions holds.

(iii.1) .X;G/ (or .g.X/;G/ or .F.Xn/;G/) is complete and F and g are
continuous and .O;4; ˆ/-compatible.

(iii.2) .X;G/ (or .g.X/;G/ or .F.Xn/;G/) is complete and F and g are
continuous and commuting.

(iii.3) .g.X/;G/ is complete and .X;G;
/ is regular.

Then F and g have, at least, a ˆ-coincidence point.

Proof. By Lemma 11.6.1, (ii.1))(ii.2). We present the proof assuming (ii.2). From
Lemma 11.6.2,

gxi
m 4i gxi

` for all i 2 f1; 2; : : : ; ng and all m; ` 2 N with m � `:

From Lemma 11.6.1, if there exists n0 2 N such that gxi
n0 D gxi

n0C1 for all i 2
f1; 2; : : : ; ng, then

�
x1n0 ; x

2
n0 ; : : : ; x

n
n0

�
is a ˆ-coincidence point of F and g, and the

existence part is finished. On the contrary case, assume that

max
1�j�n

G
	

gxj
mC1; gxj

mC2; gxj
mC2



> 0 for all m 2 N:
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Let for all j 2 f1; 2; : : : ; ng and all m 2 N,
n
aj

m D G
	

gxj
m; gxj

mC1; gxj
mC1


o

m2N and

�
bj

m D max
1�i�n

G
	

gx
�j.i/
m ; x

�j.i/
mC1; x

�j.i/
mC1


�

m2N
By the contractivity condition (11.59), for all m 2 N and all j 2 f1; 2; : : : ; ng, we
have, taking into account that gxj

mC1 4j gxj
mC2 4j gxj

mC2,

 
	

aj
mC1



D  

	
G
	

gxj
mC1; gxj

mC2; gxj
mC2





D  
	

G
	

F.x
�j.1/
m ; x

�j.2/
m ; : : : ; x

�j.n/
m /;

F.x
�j.1/

mC1; x
�j.2/

mC1; : : : ; x
�j.n/
mC1/;F.x

�j.1/

mC1; x
�j.2/

mC1; : : : ; x
�j.n/
mC1/





� . � '/
�

max
1�i�n

G
	

gx
�j.i/
m ; x

�j.i/
mC1; x

�j.i/
mC1


�
D . � '/ �bj

m

�
:

Notice that

max
1�j�n

bj
m D max

1�j�n

�
max
1�i�n

G
	

gx
�j.i/
m ; x

�j.i/
mC1; x

�j.i/
mC1


�

� max
1�j�n

G
	

gxj
m; gxj

mC1; gxj
mC1



D max

1�j�n
aj

m;

and as  is non-decreasing,

 

�
max
1�j�n

bj
m

�
�  

�
max
1�j�n

aj
m

�
:

Applying Lemma 11.2.4, we deduce that

lim
m!1 G

	
gxj

m; gxj
mC1; gxj

mC1



D lim
m!1 aj

m D 0 for all j 2 f1; 2; : : : ; ng :

Next we show that each sequence fgxj
mg is Cauchy in .X;G/ reasoning by contradic-

tion. If we suppose that, at least, one of them is not Cauchy in .X;G/, Lemma 11.2.1
guarantees that there exist "0 > 0, i0 2 f1; 2; : : : ; ng and two sequences of natural
numbers fn.k/gk2N and fm.k/gk2N such that, for all k 2 N,

k � n.k/ < m.k/ < n.k C 1/;

max
1�i�n

n
G.gxi

n.k/; gxi
m.k/�1; gxi

m.k/�1/
o

� "0

< max
1�i�n

n
G.gxi

n.k/; gxi
m.k/; gxi

m.k//
o
;
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and also

lim
k!1



max
1�i�n

n
G.gxi

n.k/; gxi
m.k/; gxi

m.k//
o�

D "0; (11.60)

lim
k!1



max
1�i�n

n
G.gxi

n.k/�1; gxi
m.k/�1; gxi

m.k/�1/
o�

D "0; (11.61)

lim
k!1 G.gxi0

n.k/; gxi0
m.k/; gxi0

m.k// D "0: (11.62)

Since n.k/ < m.k/, we have that gxi
n.k/�1 4i gxi

m.k/�1 4i gxi
m.k/�1 for all i 2

f1; 2; : : : ; ng and all k 2 N. By the contractivity condition (11.59),

 
	

G
	

gxi0
n.k/; gxi0

m.k/; gxi0
m.k/




D  

	
G
	

F.x
�i0 .1/

n.k/�1; x
�i0 .2/

n.k/�1; : : : ; x
�i0 .n/
n.k/�1/;

F.x
�i0 .1/

m.k/�1; x
�i0 .2/

m.k/�1; : : : ; x
�i0 .n/
m.k/�1/;

F.x
�i0 .1/

m.k/�1; x
�i0 .2/

m.k/�1; : : : ; x
�i0 .n/
m.k/�1/





� . � '/
�

max
1�s�n

G
	

gx
�i0 .s/
n.k/�1; x

�i0 .s/
m.k/�1; x

�i0 .s/
m.k/�1


�
: (11.63)

From item 2 of Lemma 2.3.4, we have that, for all k 2 N,

G
	

gxi0
n.k/; gxi0

m.k/; gxi0
m.k/



< max

1�s�n
G
	

gx
�i0 .s/
n.k/�1; x

�i0 .s/
m.k/�1; x

�i0 .s/
m.k/�1



or

G
	

gxi0
n.k/; gxi0

m.k/; gxi0
m.k/



D max

1�s�n
G
	

gx
�i0 .s/
n.k/�1; x

�i0 .s/
m.k/�1; x

�i0 .s/
m.k/�1



D 0:

From (11.62), the second case is impossible for infinite values of k. Then, there
exists k0 2 N such that

G
	

gxi0
n.k/; gxi0

m.k/; gxi0
m.k/



< max

1�s�n
G
	

gx
�i0 .s/
n.k/�1; x

�i0 .s/
m.k/�1; x

�i0 .s/
m.k/�1




for all k � k0. As a consequence,

G
	

gxi0
n.k/; gxi0

m.k/; gxi0
m.k/



< max

1�s�n
G
	

gx
�i0 .s/
n.k/�1; x

�i0 .s/
m.k/�1; x

�i0 .s/
m.k/�1




� max
1�s�n

G.gxs
n.k/�1; gxs

m.k/�1; gxs
m.k/�1/

for all k � k0. Letting k ! 1 and using (11.61) and (11.62), we deduce that

lim
k!1



max
1�s�n

G
	

gx
�i0 .s/
n.k/�1; x

�i0 .s/
m.k/�1; x

�i0 .s/
m.k/�1


 �
D "0: (11.64)
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Hence, the sequences

n
tk D G

	
gxi0

n.k/; gxi0
m.k/; gxi0

m.k/


o

k2N and

�
sk D max

1�s�n
G
	

gx
�i0 .s/
n.k/�1; x

�i0 .s/
m.k/�1; x

�i0 .s/
m.k/�1


�

k2N

satisfy, by (11.63), that  .tk/ � . � '/ .sk/ for all k 2 N. Furthermore, they have
the same limit L D "0 by (11.62) and (11.64). Lemma 2.3.5 yields "0 D 0, which is
a contradiction. This contradiction proves that each fgxi

mgm2N is a Cauchy sequence
in .X;G/. To continue the proof, we distinguish three cases.

Case (iii.1). Assume that .X;G/ (or .g.X/;G/ or .F.Xn/;G/) is complete and
F and g are continuous and .O;4; ˆ/-compatible. In such a case, there exist
z1; z2; : : : ; zn 2 X such that fgxi

mgm2N ! zi for all i 2 f1; 2; : : : ; ng. As F and g
are continuous, we deduce that

fggxi
mgm2N ! gzi;

fF.gx�i.1/
m ; gx�i.2/

m ; : : : ; gx�i.n/
m /g ! F.z�i.1/; z�i.2/; : : : ; z�i.2//

for all i 2 f1; 2; : : : ; ng. Therefore, each fgxi
mgm2N is a 4-monotone sequence

and

lim
m!1 F.x�i.1/

m ; x�i.2/
m ; : : : ; x�i.n/

m / D lim
n!1 gxi

nC1 D zi 2 X

for all i 2 f1; 2; : : : ; ng. As the pair .F; g/ is .O;4; ˆ/-compatible, we deduce
that, for all i 2 f1; 2; : : : ; ng,

lim
m!1 G

�
gF.x�i.1/

m ; x�i.2/
m ; : : : ; x�i.n/

m /;F.gx�i.1/
m ; gx�i.2/

m ; : : : ; gx�i.n/
m /;

F.gx�i.1/
m ; gx�i.2/

m ; : : : ; gx�i.n/
m /

� D 0:

As a consequence, for all i 2 f1; 2; : : : ; ng,

G
�
gzi;F.z�i.1/; z�i.2/; : : : ; z�i.2//;F.z�i.1/; z�i.2/; : : : ; z�i.2//

�

D lim
m!1 G

�
ggxi

mC1;F.gx�i.1/
m ; gx�i.2/

m ; : : : ; gx�i.n/
m /;

F.gx�i.1/
m ; gx�i.2/

m ; : : : ; gx�i.n/
m /

�

D lim
m!1 G

�
gF.x�i.1/

m ; x�i.2/
m ; : : : ; x�i.n/

m /;

F.gx�i.1/
m ; gx�i.2/

m ; : : : ; gx�i.n/
m /;

F.gx�i.1/
m ; gx�i.2/

m ; : : : ; gx�i.n/
m /

� D 0;
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so F.z�i.1/; z�i.2/; : : : ; z�i.2// D gzi for all i 2 f1; 2; : : : ; ng, which means that
.z1; z2; : : : ; zn/ 2 Xn is a ˆ-coincidence point of F and g.

Case (iii.2). Assume that .X;G/ (or .g.X/;G/ or
�
F.X2/;G

�
) is complete and F

and g are continuous and commuting. It follows from item (iii.1) because if F
and g are commuting, then they are also .O;
; ˆ/-compatible.

Case (iii.3). Assume that .g.X/;G/ is complete and .X;G;
/ is regular. Since
fgxng and fgyng are Cauchy sequences on .g.X/;G/, there exist z1; z2; : : : ; zn 2
g.X/ such that fgxi

mgm2N ! zi for all i 2 f1; 2; : : : ; ng. Let !1; !2; : : : ; !n 2 X be
arbitrary points such that g!i D zi for all i 2 f1; 2; : : : ; ng. As .X;G;
/ is regular
and each sequence fgxi

mg is 4i-non-decreasing and convergent, we deduce that

gxi
m 4i g!i for all m 2 N:

Therefore, applying the contractivity condition (11.59) to gxi
m 4i g!i 4i g!i, we

obtain

 
�
G.gxi

mC1;F.!�i.1/; !�i.2/; : : : ; !�i.n//;F.!�i.1/; !�i.2/; : : : ; !�i.n///
�

D  
�
G
�
F.x�i.1/

m ; x�i.2/
m ; : : : ; x�i.n/

m /;F.!�i.1/; !�i.2/; : : : ; !�i.n//;

F.!�i.1/; !�i.2/; : : : ; !�i.n//

��

� . � '/
�

max
1�j�n

G
�
gx�i.j/

m ; g!�i.j/; g!�i.j/
��
:

As fgx�i.j/
m g ! g!�i.j/ for all i; j 2 f1; 2; : : : ; ng, and G,  and ' are continuous,

we deduce that

lim
m!1 G.gxi

mC1;F.!�i.1/; !�i.2/; : : : ; !�i.n//;

F.!�i.1/; !�i.2/; : : : ; !�i.n//// D 0:

Since  2 Falt, Lemma 2.3.3 shows that

G.g!i;F.!�i.1/; !�i.2/; : : : ; !�i.n//;F.!�i.1/; !�i.2/; : : : ; !�i.n///

D lim
m!1 G.gxi

mC1;F.!�i.1/; !�i.2/; : : : ; !�i.n//;

F.!�i.1/; !�i.2/; : : : ; !�i.n/// D 0;

so F.!�i.1/; !�i.2/; : : : ; !�i.n// D g!i for all i 2 f1; 2; : : : ; ng, which means that
.!1; !2; : : : ; !n/ 2 Xn is a ˆ-coincidence point of F and g. ut
The previous results have many particularizations. For example, when 4 is

a partial order on X (we do not write such version because it is similar to
Theorem 11.6.1). It is interesting to consider the preorder “x 4 y for all x; y 2 X”.
In such a case, we have the following version.
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Corollary 11.6.1. Let .X;G/ be a G-metric space and let F W Xn ! X and g W
X ! X be two mappings. Let ˆ D .�1; �2; : : : ; �n/ be a n-tuple of mappings from
f1; 2; : : : ; ng into itself satisfying �i 2 �A;B if i 2 A and �i 2 �0

A;B if i 2 B. Assume
that the following conditions hold.

(i) There exist two functions  ; ' 2 Falt such that

 .G .F .X/ ;F .Y/ ;F .Z/// � . � '/
�

max
1�i�n

G .gxi; gyi; gzi/

�

for all X .x1; x2; : : : ; xn/ ;Y .y1; y2; : : : ; yn/ ;Z .z1; z2; : : : ; zn/ 2 Xn.
(ii) At least, one of the following conditions holds.

(ii.1) F.Xn/ � g.X/.
(ii.2) There exists a Picard .F; g; ˆ/-sequence

f�x1m; x2m; : : : ; xn
m

�gm2N � Xn:

(iii) At least, one of the following conditions holds.

(iii.1) .X;G/ is complete and F and g are continuous and .O; ˆ/-compatible.
(iii.2) .X;G/ is complete and F and g are continuous and commuting.
(iii.3) .g.X/;G/ is complete.

Then F and g have, at least, a ˆ-coincidence point.

In the next result, we assume that  is the identity mapping on Œ0;1/.

Corollary 11.6.2. Let .X;G/ be a G-metric space endowed with a preorder 4 and
let F W Xn ! X and g W X ! X be two mappings such that F has the mixed
.g;4/-monotone property. Let ˆ D .�1; �2; : : : ; �n/ be a n-tuple of mappings from
f1; 2; : : : ; ng into itself satisfying �i 2 �A;B if i 2 A and �i 2 �0

A;B if i 2 B. Assume
that the following conditions hold.

(i) There exists a function ' 2 Falt such that

G .F .X/ ;F .Y/ ;F .Z//

� max
1�i�n

G .gxi; gyi; gzi/ � '
�

max
1�i�n

G .gxi; gyi; gzi/

�

for all X .x1; x2; : : : ; xn/ ;Y .y1; y2; : : : ; yn/ ;Z .z1; z2; : : : ; zn/ 2 Xn for which

gxi 4i gyi 4i gzi for all i 2 f1; 2; : : : ; ng :

(ii) At least, one of the following conditions holds.

(ii.1) F.Xn/ � g.X/ and there exist x10; x
2
0; : : : ; x

n
0 2 X such that gxi

0 4i

F.x�i.1/
0 ; x�i.2/

0 ; : : : ; x�i.n/
0 / for all i 2 f1; 2; : : : ; ng.
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(ii.2) There exists a Picard .F; g; ˆ/-sequence f�x1m; x2m; : : : ; xn
m

�gm2N � Xn

such that gxi
0 4i F.x�i.1/

0 ; x�i.2/
0 ; : : : ; x�i.n/

0 / for all i 2 f1; 2; : : : ; ng.

(iii) At least, one of the following conditions holds.

(iii.1) .X;G/ (or .g.X/;G/ or .F.Xn/;G/) is complete and F and g are
continuous and .O;4; ˆ/-compatible.

(iii.2) .X;G/ (or .g.X/;G/ or .F.Xn/;G/) is complete and F and g are
continuous and commuting.

(iii.3) .g.X/;G/ is complete and .X;G;
/ is regular.

Then F and g have, at least, a ˆ-coincidence point.

If we take ' .t/ D .1 � �/ t for all t � 0, where � 2 Œ0; 1/, we obtain the
following result.

Corollary 11.6.3. Let .X;G/ be a G-metric space endowed with a preorder 4 and
let F W Xn ! X and g W X ! X be two mappings such that F has the mixed
.g;4/-monotone property. Let ˆ D .�1; �2; : : : ; �n/ be a n-tuple of mappings from
f1; 2; : : : ; ng into itself satisfying �i 2 �A;B if i 2 A and �i 2 �0

A;B if i 2 B. Assume
that the following conditions hold.

(i) There exists a constant � 2 Œ0; 1/ such that

G .F .X/ ;F .Y/ ;F .Z// � � max
1�i�n

G .gxi; gyi; gzi/

for all X .x1; x2; : : : ; xn/ ;Y .y1; y2; : : : ; yn/ ;Z .z1; z2; : : : ; zn/ 2 Xn for which

gxi 4i gyi 4i gzi for all i 2 f1; 2; : : : ; ng :

(ii) At least, one of the following conditions holds.

(ii.1) F.Xn/ � g.X/ and there exist x10; x
2
0; : : : ; x

n
0 2 X such that gxi

0 4i

F.x�i.1/
0 ; x�i.2/

0 ; : : : ; x�i.n/
0 / for all i 2 f1; 2; : : : ; ng.

(ii.2) There exists a Picard .F; g; ˆ/-sequence f�x1m; x2m; : : : ; xn
m

�gm2N � Xn

such that gxi
0 4i F.x�i.1/

0 ; x�i.2/
0 ; : : : ; x�i.n/

0 / for all i 2 f1; 2; : : : ; ng.

(iii) At least, one of the following conditions holds.

(iii.1) .X;G/ (or .g.X/;G/ or .F.Xn/;G/) is complete and F and g are
continuous and .O;4; ˆ/-compatible.

(iii.2) .X;G/ (or .g.X/;G/ or .F.Xn/;G/) is complete and F and g are
continuous and commuting.

(iii.3) .g.X/;G/ is complete and .X;G;4/ is regular.

Then F and g have, at least, a ˆ-coincidence point.

A version of Theorem 11.6.1 using g as the identity mapping is the following
one.
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Corollary 11.6.4. Let .X;G/ be a complete G-metric space endowed with a
preorder 4 and let F W Xn ! X be a mapping having the mixed 4-monotone
property. Let ˆ D .�1; �2; : : : ; �n/ be a n-tuple of mappings from f1; 2; : : : ; ng into
itself satisfying �i 2 �A;B if i 2 A and �i 2 �0

A;B if i 2 B. Assume that the following
conditions hold.

(i) There exist two functions  ; ' 2 Falt such that

 .G .F .X/ ;F .Y/ ;F .Z/// � . � '/
�

max
1�i�n

G .xi; yi; zi/

�

for all X .x1; x2; : : : ; xn/ ;Y .y1; y2; : : : ; yn/ ;Z .z1; z2; : : : ; zn/ 2 Xn for which

xi 4i yi 4i zi for all i 2 f1; 2; : : : ; ng :

(ii) There exist x10; x
2
0; : : : ; x

n
0 2 X such that gxi

0 4i F.x�i.1/
0 ; x�i.2/

0 ; : : : ; x�i.n/
0 / for all

i 2 f1; 2; : : : ; ng.
(iii) At least, one of the following conditions holds.

(iii.1) F is continuous, or
(iii.2) .X;G;4/ is regular.

Then F has, at least, a ˆ-fixed point.

11.6.3 Uniqueness

Finally, we describe how we can ensure the uniqueness of the ˆ-coincidence point.

Theorem 11.6.2. Under the hypotheses of Theorem 11.6.1, also assume that
F .Xn/ � g .X/. Let .x1; x2; : : : ; xn/ and .y1; y2; : : : ; yn/ be twoˆ-coincidence points
of F and g for which there exists .!1; !2; : : : ; !n/ 2 Xn such that:

gxi 4i g!i and gyi 4i g!i for all i 2 f1; 2; : : : ; ng :

Then gxi D gyi for all i 2 f1; 2; : : : ; ng.

Proof. Let .x1; x2; : : : ; xn/ and .y1; y2; : : : ; yn/ be twoˆ-coincidence points of F and
g for which there exists

�
!10 ; !

2
0 ; : : : ; !

n
0

� 2 Xn such that

gxi 4i g! i
0 and gyi 4i g! i

0 for all i 2 f1; 2; : : : ; ng : (11.65)

From Lemma 11.6.1, there exists a sequence f�!1m; !2m; : : : ; !n
m

�gm2N on Xn such
that

g! i
mC1 D F.!�i.1/

m ; !�i.2/
m ; : : : ; !�i.n/

m /
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for all m 2 N and all i 2 f1; 2; : : : ; ng :

We claim that, for all m 2 N and all i 2 f1; 2; : : : ; ng, we have that

gxi 4i g! i
m and gyi 4i g! i

m: (11.66)

We only show the first part (using .x1; x2; : : : ; xn/) because the second one is similar.
For m D 0, (11.66) holds by (11.65). Assume, by hypothesis of induction, that there
exist m 2 N such that gxi 4i g! i

m for all i 2 f1; 2; : : : ; ng. This condition means that

(
gxj 4 g! j

m; if j 2 A;

gxj < g! j
m; if j 2 B:

(11.67)

To complete the induction process, we have to prove that gxi 4i g! i
mC1 for all

i 2 f1; 2; : : : ; ng, that is,

(
gxj 4 g! j

mC1; if j 2 A,

gxj < g! j
mC1; if j 2 B.

(11.68)

We distinguishing two cases.

Case 1: i 2 A. In this case, �i.A/ � A and �i.B/ � B. As F has the mixed
g-monotone property, we apply that F is g-monotone .g;4/-non-decreasing in
A-arguments with the first inequalities of (11.57) and we deduce that, for all
a1; a2; : : : ; an 2 X:

if j; s 2 A; gxj 4 g! j
m )

F.a1; : : : ; as�1; xj; asC1; : : : ; an/ 4 F.a1; : : : ; as�1; ! j
m; asC1; : : : ; an/;

and that F is g-monotone .g;4/-non-increasing in B-arguments with the second
inequalities of (11.67):

if j; s 2 B; gxj < g! j
m )

F.a1; : : : ; as�1; xj; asC1; : : : ; an/ 4 F.a1; : : : ; as�1; ! j
m; asC1; : : : ; an/:

In any case, it follows that, if j; s 2 f1; 2; : : : ; ng satisfy j; s 2 A or j; s 2 B, then:

F.a1; : : : ; as�1; xj; asC1; : : : ; an/ 4 F.a1; : : : ; as�1; ! j
m; asC1; : : : ; an/

for all a1; a2; : : : ; an 2 X. As �i 2 �A;B:

gxi D F.x�i.1/; x�i.2/; x�i.3/; : : : ; x�i.n// (1; �i.1/ 2 A or 1; �i.1/ 2 B)
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4 F.!�i.1/
m ; x�i.2/; x�i.3/; : : : ; x�i.n// (2; �i.2/ 2 A or 2; �i.2/ 2 B)

4 F.!�i.1/
m ; !�i.2/

m ; x�i.3/; : : : ; x�i.n// (3; �i.3/ 2 A or 3; �i.3/ 2 B)

4 : : : 4 F.!�i.1/
m ; !�i.2/

m ; !�i.3/
m ; : : : ; !�i.n/

m / D g! i
mC1:

Hence gxi 4 g! i
mC1 when i is in A, so (11.68) holds if i 2 A.

Case 2: i 2 B. In this case, we apply that F is .g;4/-monotone non-decreasing
in A-arguments with the second inequalities of (11.67) and that F is .g;4/-
monotone non-increasing in B-arguments with the first inequalities of (11.67),
and we deduce, for all a1; a2; : : : ; an 2 X, that, if j; s 2 f1; 2; : : : ; ng satisfy
j 2 A, s 2 B or j 2 B, s 2 A, then

F.a1; : : : ; as�1; xj; asC1; : : : ; an/ < F.a1; : : : ; as�1; ! j
m; asC1; : : : ; an/:

Since �i 2 �0
A;B, therefore:

gxi D F.x�i.1/; x�i.2/; x�i.3/; : : : ; x�i.n//

(1 2 A; �i.1/ 2 B or 1 2 B; �i.1/ 2 A)

< F.!�i.1/
m ; x�i.2/; x�i.3/; : : : ; x�i.n//

(2 2 A; �i.2/ 2 B or 2 2 B; �i.2/ 2 A)

< F.!�i.1/
m ; !�i.2/

m ; x�i.3/; : : : ; x�i.n//

(3 2 A; �i.3/ 2 B or 3 2 B; �i.3/ 2 A)

< : : : < F.!�i.1/
m ; !�i.2/

m ; !�i.3/
m ; : : : ; !�i.n/

m / D g! i
mC1:

Hence gxi < g! i
mC1 when i 2 B, that is, we also have that gxi 4i g! i

mC1 when
i 2 B. This completes the induction so (11.66) holds.

Next, let, for all i 2 f1; 2; : : : ; ng and all m 2 N,

˚
ai

m D G
�
gxi; gxi; g!

i
mC1

��
m2N and

�
bi

m D max
1�j�n

G
�
gx�i.j/; gx�i.j/; g!

�i.j/
m

��

m2N
:

By the contractivity condition (11.59), for all m 2 N and all i 2 f1; 2; : : : ; ng, we
have, taking into account that gxi 4i gxi 4i g! i

m,

 
�
ai

mC1
� D  

�
G
�
gxi; gxi; g!

i
mC1

��

D  
	

G
	

F
�
x�i.1/; x�i.2/; x�i.3/; : : : ; x�i.n/

�
;
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F
�
x�i.1/; x�i.2/; x�i.3/; : : : ; x�i.n/

�
;F.!�i.1/

m ; !�i.2/
m ; : : : ; !�i.n/

m /
��

� . � '/
�

max
1�j�n

G
�
gx�i.j/; gx�i.j/; g!

�i.j/
m

�� D . � '/ �bi
m

�
:

Notice that

max
1�i�n

bi
m D max

1�i�n

�
max
1�j�n

G
�
gx�i.j/; gx�i.j/; g!

�i.j/
m

��

� max
1�i�n

G
�
gxi; gxi; g!

i
m

� D max
1�i�n

ai
m;

and, as  is non-decreasing,

 

�
max
1�i�n

bi
m

�
�  

�
max
1�i�n

ai
m

�
:

Applying Lemma 11.2.4, we deduce that

lim
m!1 G

�
gxi; gxi; g!

i
mC1

� D lim
m!1 ai

m D 0 for all i 2 f1; 2; : : : ; ng :

Hence fg! i
mgm2N ! gxi for all i 2 f1; 2; : : : ; ng. Using the same argument, we also

have that fg! i
mgm2N ! gyi for all i 2 f1; 2; : : : ; ng. By the uniqueness of the limit,

we conclude that gxi D gyi for all i 2 f1; 2; : : : ; ng. ut
We will say that g is injective on the set of allˆ-coincidence points of F and g if

for allˆ-coincidence points .x1; x2; : : : ; xn/ and .y1; y2; : : : ; yn/ of F and g such that
gxi D gyi for all i 2 f1; 2; : : : ; ng, we can deduce that xi D yi for all i 2 f1; 2; : : : ; ng.

Corollary 11.6.5. Under the hypotheses of Theorem 11.6.1, also assume that
F .Xn/ � g .X/ and the following conditions:

.U/ For all ˆ-coincidence points .x1; x2; : : : ; xn/ and .y1; y2; : : : ; yn/ of F and g,
there exists .!1; !2; : : : ; !n/ 2 Xn such that

gxi 4i g!i and gyi 4i g!i for all i 2 f1; 2; : : : ; ng :

.U0/ g is injective on the set of all ˆ-coincidence points of F and g.

Then F and g have a unique ˆ-coincidence point.

Proof. Let .x1; x2; : : : ; xn/ and .y1; y2; : : : ; yn/ be two arbitrary ˆ-coincidence
points of F and g. From Theorem 11.6.2, gxi D gyi for all i 2 f1; 2; : : : ; ng, and
as g is injective on the set of all ˆ-coincidence points of F and g, we conclude that
xi D yi for all i 2 f1; 2; : : : ; ng. ut
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11.7 Reducing Multidimensional Results to Unidimensional
Ones

Many authors have proved that coupled, tripled and quadrupled fixed point results
can be deduced from their corresponding unidimensional version. This section
describes how some of the previous multidimensional theorems can be easily
concluded from simple unidimensional results.

11.7.1 The Low-Dimensional Reducing Technique

Throughout this section, given n 2 f2; 3; 4g and two mappings F W Xn ! X and
g W X ! X, denote by Tn

F;G
n W Xn ! Xn the mappings

8
ˆ̂
<

ˆ̂:

n D 2; T2F.x; y/ D .F.x; y/;F.y; x//;
n D 3; T3F.x; y; z/ D .F.x; y; z/;F.y; x; y/;F.z; y; x//;
n D 4; T4F.x; y; z; t/ D .F.x; y; z; t/;F.y; z; t; x/;F.z; t; x; y/;

F.t; x; y; z//:

(11.69)

8
<̂

:̂

n D 2; H2
g.x; y/ D .gx; gy/;

n D 3; H3
g.x; y; z/ D .gx; gy; gz/;

n D 4; H4
g.x; y; z; t/ D .gx; gy; gz; gt/:

(11.70)

The following lemma guarantees that multidimensional notions of com-
mon/fixed/coincidence points can be interpreted in terms of TN

F and GN .

Lemma 11.7.1. Given n 2 f2; 3; 4g, F W Xn ! X and g W X ! X, a point
.x1; x2; : : : ; xn/ 2 Xn is:

1. a coupled/tripled/quadrupled fixed point of F if, and only if, it is a fixed point
of Tn

F;
2. a coupled/tripled/quadrupled coincidence point of F and g if, and only if, it is a

coincidence point of Tn
F and Hn

g;
3. a coupled/tripled/quadrupled common fixed point of F and g if, and only if, it is

a common fixed point of Tn
F and Hn

g.

Proof. For example, if n D 2, a point .x; y/ 2 X2 is a coupled coincidence point of
F and g if, and only if,

F.x; y/ D gx;
F.y; x/ D gy

�
, .F.x; y/;F.y; x// D .gx; gy/

, T2F.x; y/ D H2
g.x; y/;

which means that .x; y/ is a coincidence point of T2F and H2
g . The other cases are

similar. ut
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Proposition 11.7.1. The mappings F and g commute if, and only if, Tn
F and Hn

g
commute.

Proof. Assume n D 2. If F and g commute, then, for all .x; y/ 2 X2,

H2
gT2F .x; y/ D H2

g.F.x; y/;F.y; x// D .gF.x; y/; gF.y; x//

D .F.gx; gy/;F.gy; gx// D T2F.gx; gy/ D H2
gT2F .x; y/ ;

so T2F and H2
g also commute. Conversely, if T2F and H2

g commute, then

.gF.x; y/; gF.y; x// D H2
g.F.x; y/;F.y; x// D H2

gT2F .x; y/ D
D H2

gT2F .x; y/ D T2F.gx; gy/ D .F.gx; gy/;F.gy; gx// :

In particular, gF.x; y/ D F.gx; gy/ for all x; y 2 X, so F and g commute. ut
The continuity of F and g implies the continuity of Tn

F and Hn
g .

Lemma 11.7.2. If .X;G/ is a G-metric space and let F W Xn ! X and g W X ! X
be two mappings.

1. The mapping g is continuous if, and only if, the mapping Hn
g W Xn ! Xn is also

continuous (considering in Xn the G�-metric Gn or G0
n as in Lemma 10.3.1).

2. The mapping F is continuous if, and only if, the mapping Tn
F W Xn ! Xn is also

continuous (considering in Xn the G�-metric Gn or G0
n as in Lemma 10.3.1).

Proof. (1) Assume that g is continuous and let f�x1m; x2m; : : : ; xn
m

�gm2N � Xn and�
a1; a2; : : : ; an

� 2 Xn be such that

f�x1m; x2m; : : : ; xn
m

�g Gn�! �
a1; a2; : : : ; an

�
:

From item 2 of Lemma 10.3.1, fxi
mg G�! ai for all i 2 f1; 2; : : : ; ng. Since g

is continuous, then fgxi
mg G�! gai for all i 2 f1; 2; : : : ; ng. Again by item 2 of

Lemma 10.3.1, we deduce that

fHn
g

�
x1m; x

2
m; : : : ; x

n
m

�g D ˚�
gx1m; gx2m; : : : ; gxn

m

��

Gn�! �
ga1; ga2; : : : ; gan

� D Hn
g

�
a1; a2; : : : ; an

�
:

Then, Hn
g is Gn-continuous.

Conversely, assume that Hn
g is Gn-continuous and let fxmgm2N � X and a 2 X

be such that fxmg G�! a. Therefore, f.xm; xm; : : : ; xm/g Gn�! .a; a; : : : ; a/. As Hn
g

is Gn-continuous, then

f.gxm; gxm; : : : ; gxm/g D fHn
g .xm; xm; : : : ; xm/g
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Gn�! Hn
g .a; a; : : : ; a/ D .ga; ga; : : : ; ga/ :

As a result, fxmg G�! a, so g is continuous.
(2) It is similar to the proof of the previous item.

ut
Any binary relation 
 on X can be induced on Xn generating the binary relation

v given by:

8
<

:

n D 2; .x; y/ v .u; v/ , Œ x 
 u and y � v � ;

n D 3; .x; y; z/ v .u; v;w/ , Œ x 
 u; y 
 v and z � w � ;
n D 4; .x; y; z; t/ v .u; v;w; s/ , Œ x 
 u; y 
 v; z � w and t 
 s � :

(11.71)
Notice that v directly depends on 
. Also notice that v coincides with the binary

relation defined in (11.79) when A is the subset of all odd numbers in f1; 2; : : : ; ng
and B contains its even numbers.

Lemma 11.7.3. The binary relation 4 on X is reflexive (respectively, transitive, a
preorder, a partial order) if, and only if, the binary relation v on Xn is reflexive
(respectively, transitive, a preorder, a partial order).

Furthermore, it would be equivalent to consider the binary relation v0 given by

.x; y/ v0 .u; v/ , Œ x � u and y 
 v � : (11.72)

We also have the following properties.

Lemma 11.7.4. Let 
 be a binary relation on X and, given n 2 f2; 3; 4g, let F W
Xn ! X and g W X ! X be two mappings.

1. If F has the mixed .g;
/-monotone property and 
 is transitive, then Tn
F is a�

Hn
g ;v

�
-non-decreasing mapping.

2. If Tn
F is a

�
Hn

g ;v
�
-non-decreasing mapping and 
 is reflexive, then F has the

mixed .g;
/-monotone property.

Proof. We show the proof assuming that n D 2. Let .x; y/ ; .u; v/ 2 X2 be such that
H2

g .x; y/ v H2
g .u; v/. In particular, gx 
 gu and gy � gv. Therefore, as F has the

mixed .g;
/-monotone property,

F.x; y/ 
 F.u; y/ 
 F.u; v/ and F.y; x/ � F.v; x/ � F.v; u/:

As 
 is transitive, F.x; y/ 
 F.u; v/ and F.y; x/ � F.v; u/. Hence,

T2F .x; y/ D .F.x; y/;F.y; x// v .F.u; v/;F.v; u// D T2F .u; v/ :

This proves that T2F is a
�
H2

g ;v
�
-non-decreasing mapping.
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Conversely, assume that T2F is a
�
H2

g ;v
�
-non-decreasing mapping. Let x; y 2 X

be such that gx 
 gy. Now let a 2 X arbitrary. As 
 is reflexive, then ga � ga.
Therefore, .gx; ga/ v .gy; ga/. In other words, H2

g .x; a/ v H2
g .y; a/. As T2F is a�

H2
g ;v

�
-non-decreasing mapping, then

.F .x; a/ ;F .a; x// D T2F .x; a/ v T2F .y; a/ D .F .y; a/ ;F .a; y// :

Hence, F .x; a/ 
 F .y; a/ (and F is .g;
/-non-decreasing in its first argument) and
F .a; x/ � F .a; y/ (so F is .g;
/-non-increasing in its second argument). Therefore,
F has the mixed .g;
/-monotone property. ut
Corollary 11.7.1. Let 
 be a preorder on X and, given n 2 f2; 3; 4g, let F W Xn !
X and g W X ! X be two mappings. Then F has the mixed .g;
/-monotone property
if, and only if, Tn

F is a
�
Hn

g ;v
�
-non-decreasing mapping.

If we had considered the binary relation v0 on Xn given in (11.72), then Tn
F would

have been a
�
Hn

g ;v
�
-non-increasing mapping.

Lemma 11.7.5. Given a reflexive binary relation 
 on a G-metric space .X;G/ and
n 2 f2; 3; 4g, let v be the binary relation on Xn given in (11.71) and let Gn and G0

n
the G�-metrics on Xn defined in Lemma 10.3.1. Then the following conditions are
equivalent (the same is valid for G0

n).

(i) .X;G;
/ is regular.
(ii) .Xn;Gn;v/ is regular.

(iii) .Xn;Gn;v/ is non-decreasing-regular.
(iv) .Xn;Gn;v/ is non-increasing-regular.

Notice that the condition “.X;G;
/ is non-decreasing-regular” is not strong
enough to guarantee that .Xn;Gn;v/ is regular nor .Xn;Gn;v/ is non-decreasing-
regular.

Proof. We show the proof in the coupled case (the other cases are similar).
(i))(iii) Assume that .X;G;
/ is regular and let f.xm; ym/gm2N � X2 and

.x; y/ 2 X2 be such that .xm; ym/ v .xmC1; ymC1/ for all m 2 N and f.xm; ym/g G2�!

.x; y/. On the one hand, xm 
 xmC1 and ym � ymC1 for all m 2 N. By item 2

of Lemma 10.3.1, we have that fxmg G�! x and fymg G�! y. As .X;G;
/ is both
non-decreasing and non-increasing-regular, then xm 
 x and ym � y for all m 2 N.
In particular, .xm; ym/ v .x; y/ for all m 2 N. This proves that

�
X2;G2;v

�
is non-

decreasing-regular.
(iii))(i) Assume that

�
X2;G2;v

�
is non-decreasing-regular and let fxmgm2N �

X and x 2 X be such that xm 
 xmC1 for all m 2 N and fxmg G�! x. Given an
arbitrary point a 2 X, let ym D a for all m 2 N. As 
 is reflexive, then ym � ymC1
for all m 2 N. Moreover, fymg G�! a. In particular, .xm; ym/ v .xmC1; ymC1/ for

all m 2 N. From item 2 of Lemma 10.3.1, f.xm; ym/g G2�! .x; y/. As
�
X2;G2;v

�
is

non-decreasing-regular, then .xm; ym/ v .x; a/ for all m 2 N. In particular, xm 
 x
for all m 2 N, which proves that .X;G;
/ is regular.
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(i),(iv) It is exactly the same proof of the previous two cases.
(i),(ii) It follows from the equivalence (iii),(i),(iv). ut

11.7.2 Reducing Coupled Fixed Point Theorems

In the following result, it is important to notice that
�
X2;G0

2

�
is a G�-metric space,

but it is not necessarily a G-metric space.

Theorem 11.7.1. Theorems 11.3.1, 11.3.2 and 11.3.3 immediately follow from
Corollary 10.4.5.

Proof. Assume that .X;G/ is a complete G-metric space endowed with a preorder 

and let F W X2 ! X be a mapping having the mixed 
-monotone property. Suppose
that there exists a constant � 2 Œ0; 1/ such that

G .F .x; y/ ;F .u; v/ ;F .z;w// � �

2
.G .x; u; z/C G .y; v;w/ / (11.73)

for all .x; y/ ; .u; v/ ; .z;w/ 2 X2 satisfying x 
 u 
 z and y � v � w. Also assume
that either F is continuous or .X;G;
/ is regular, and that there exists x0; y0 2 X
such that x0 
 F.x0; y0/ and y0 < F.y0; x0/.

As G is a G-metric on X, then G0
2, defined by

G0
2 ..x1; y1/ ; .x2; y2/ ; .x3; y3// D G .x1; x2; x3/C G .y1; y2; y3/

for all .x1; y1/ ; .x2; y2/ ; .x3; y3/ 2 X2, is a G�-metric on X2 (see item 1 of
Corollary 10.3.1). Consider on X2 the binary relation v defined in (11.71). Then,
we have the following properties.

• By item 4 of Lemma 10.3.1,
�
X2;G0

2

�
is complete.

• By Lemma 11.7.3, v is a preorder on X2.
• By Corollary 11.7.1, T2F is a

�
H2

g ;v
�
-non-decreasing mapping.

• As there exists x0; y0 2 X such that x0 
 F.x0; y0/ and y0 < F.y0; x0/, then
.x0; y0/ v T2F .x0; y0/.

• By item 2 of Lemma 11.7.2, if F is G-continuous, then T2F W X2 ! X2 is also
G0
2-continuous.

• By Lemma 11.7.5, if .X;G;
/ is regular, then
�
X2;G0

2;v
�

is also regular.

Let us show that the contractivity condition (11.73) implies that, for all
.x; y/ ; .u; v/ 2 X2 with .x; y/ v .u; v/,

G0
2.T

2
F .x; y/ ;T

2
F .u; v/ ;T

2
F .u; v// � �G0

2..x; y/ ; .u; v/ ; .u; v//:

To prove it, we notice that by (11.73), x 4 u 4 u and y < v < v implies that



330 11 Multidimensional F.P.T. on G-Metric Spaces

G .F .x; y/ ;F .u; v/ ;F .u; v// � �

2
.G .x; u; u/C G .y; v; v/ / ;

and by v 4 v 4 y and u < u < x we deduce

G .F .v; u/ ;F .v; u/ ;F .y; x// � �

2
.G .v; v; y/C G .u; u; x/ / :

Joining both inequalities, we conclude that

G0
2.T

2
F .x; y/ ;T

2
F .u; v/ ;T

2
F .u; v//

D G .F .x; y/ ;F .u; v/ ;F .u; v//C G .F .v; u/ ;F .v; u/ ;F .y; x//

� � .G .x; u; u/C G .y; v; v/ /

D �G0
2..x; y/ ; .u; v/ ; .u; v//:

This property is the contractivity condition in Corollary 10.4.5.
As a consequence, all hypotheses of Corollary 10.4.5, applied to T2F on�

X2;G0
2;v

�
hold. Then T2F has, at least, a fixed point, which is a coupled fixed point

of F by item 1 of Lemma 11.7.1. Furthermore, the condition .U/ in Theorem 11.3.3
is equivalent to saying that for all fixed point .x; y/ ; .x0; y0/ 2 Fix.T2F/ (which are
coupled fixed points of F), there exists .z;w/ 2 X2 such that .x; y/ v .z;w/ and
.x0; y0/ v .z;w/, which is precisely the uniqueness condition in Corollary 10.4.5.

ut

11.7.3 Weakness of Some Coupled Fixed Point Results

After the appearance of the reducing technique we have described in Sect. 11.7.2,
many coupled fixed point results were reduced to the unidimensional case. In fact,
such a procedure showed the weakness of some given statements. For instance, the
following result was obtained by Shatanawi in [190] as a corollary of a previous
coincidence point result.

Theorem 11.7.2. Let .X;G/ be a complete G-metric space. Let F W X � X ! X be
a mapping such that

G.F.x; y/;F.u; v/;F.u; v// � k .G.x; u; u/C G.y; v; v/ / (11.74)

for all x; y; u; v 2 X. If k 2 Œ0; 1=2/, then there is a unique x in X such that
F.x; x/ D x.

In [13], Agarwal and Karapınar showed that the previous result can be deduced
from Theorem 4.2.1. Furthermore, the following example illustrates a case in which
Theorem 4.2.1 can be applied but Theorem 11.7.2 cannot be applied.



11.7 Reducing Mult. Results to Unidimens. Ones 331

Example 11.7.1. Let X D R be endowed with the G-metric G.x; y; z/ D j x � y j C
j x � z j C j y � z j for all x; y; z 2 X, and let F W X � X ! X be the mapping given by
F.x; y/ D .3x � y/=5 for all x; y 2 X. Then, for all x; y; u; v;w; z 2 X, it follows that

G.F.x; y/;F.u; v/;F.w; z// D G

�
3x � y

5
;
3u � v
5

;
3w � z

5

�

D
ˇ̌
ˇ
ˇ
3x � y

5
� 3u � v

5

ˇ̌
ˇ
ˇC

ˇ̌
ˇ
ˇ
3x � y

5
� 3w � z

5

ˇ̌
ˇ
ˇ

C
ˇ̌
ˇ̌ 3u � v

5
� 3w � z

5

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌ 3
5
.x � u/ � 1

5
.y � v/

ˇ̌
ˇ̌C

ˇ̌
ˇ̌ 3
5
.x � w/ � 1

5
.y � z/

ˇ̌
ˇ̌

C
ˇ̌
ˇ̌ 3
5
.u � w/ � 1

5
.v � z/

ˇ̌
ˇ̌

� 3

5
j x � u j C 1

5
j y � v j C 3

5
j x � w j C 1

5
j y � z j

C 3

5
j u � w j C 1

5
j v � z j

D 3

5
. j x � u j C j x � w j C j u � w j /

C 1

5
. j y � v j C j y � z j C j v � z j /

� 3

5
.G .x; u;w/C G .y; v; z/ / :

It is easy to see that there is no k 2 Œ0; 1=2/ verifying condition (11.74) because if
x D 1 and y D u D v D 0, then

G.F.1; 0/;F.0; 0/;F.0; 0// D G.3=5; 0; 0/ D 2
3

5
D 6

5
;

k .G.1; 0; 0/C G.0; 0; 0/ / D k . 2C 0 / D 2k < 1:

However note that the mapping T2F W X2 ! X2 satisfies

G0
2

�
T2F.x; y/;T

2
F.u; v/;T

2
F.w; z/

�

D G0
2 ..F.x; y/;F.y; x//; .F.u; v/;F.v; u// ; .F.w; z/;F.z;w///

D G .F.x; y/;F.u; v/;F.w; z//C G .F.y; x/;F.v; u/;F.z;w//
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D G

�
3x � y

5
;
3u � v
5

;
3w � z

5

�
C G

�
3y � x

5
;
3v � u

5
;
3z � w

5

�

� 3

5
. j x � u j C j x � w j C j u � w j /

C 1

5
. j y � v j C j y � z j C j v � z j /

C 3

5
. j y � v j C j y � z j C j v � z j /

C 1

5
. j x � u j C j x � w j C j u � w j /

D 4

5
. j x � u j C j x � w j C j u � w j C j y � v j C j y � z j C j v � z j /

D 4

5
.G .x; u;w/C G .y; v; z/ /

D 4

5
G0
2 ..x; y/ ; .u; v/ ; .w; z// :

As the other hypothesis can be easily checked, Theorem 4.2.1 guarantees that F has
a unique fixed point, which is a coupled fixed point of F. In fact, the unique coupled
fixed point of F is .0; 0/. However, here Theorem 11.7.2 is not applicable.

11.7.4 Choudhury and Maity’s Coupled Fixed Point Results
in G-Metric Spaces

In Sect. 11.3.2, we showed why the technique used in the proof of main result
in [58] was not suitable because the contractivity condition could not be applied
to incomparable points. As a consequence, we gave a correct version of such a
result (see Theorem 11.3.4). In this subsection we prove that this coupled result is a
consequence of the following theorem.

Theorem 11.7.3. Let .X;G/ be a complete G-metric space endowed with a partial
order 4 and let T W X ! X be a continuous, 4-non-decreasing self-mapping.
Assume that there exists � 2 Œ0; 1/ such that

G.Tx;Tx;Ty/ � �G.x; x; y/

for all x; y 2 X with x 4 y and x ¤ y. If there exists x0 2 X such that x0 4 Tx0, then
T has, at least, a fixed point.

Proof. Let fxng be the Picard sequence of T based on x0. As x0 4 Tx0 and T is
4-non-decreasing, then xn 4 xnC1 for all n 2 N. As 4 is a partial order, xn 4 xm for
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all n;m 2 N with n � m. If there exist n0;m0 2 N with n0 < m0 such that xn0 D xm0 ,
then xn0 4 xn0C1 4 : : : 4 xm0 D xn0 , so xn0 D xn0C1 D Txn0 and xn0 is a fixed point
of T . In the contrary case, assume that xn 4 xm with xn ¤ xm for all n;m 2 N with
n < m. Then, the same argument in the proof of Theorem 5.2.1 concludes that T
has a fixed point. ut

As a consequence, we have the following result.

Theorem 11.7.4. Theorem 11.3.4 immediately follows from Theorem 11.7.3.

Proof. The same argument in the proof of Theorem 11.7.1 can be applied to T2F in
.X2;G0

2;v). We only describe the contractivity condition. Let .x; y/ ; .u; v/ 2 X2 be
such that .x; y/ v .u; v/ and .x; y/ ¤ .u; v/. Then x 4 u and y < v, but x ¤ u or
y ¤ v. By the contractivity condition (11.16),

G.F.x; y/;F.x; y/;F.u; v// � �

2
ŒG.x; x; u/C G.y; y; v/�:

Since (11.16) can also be applied when u < x and v 4 y (being u ¤ x or v ¤ y),
then

G.F.y; x/;F.y; x/;F.v; u// � �

2
ŒG.y; y; v/C G.x; x; u/�:

Hence,

G0
2.T

2
F .x; y/ ;T

2
F .x; y/ ;T

2
F .u; v//

D G .F .x; y/ ;F .x; y/ ;F .u; v//C G .F .y; x/ ;F .y; x/ ;F .v; y//

� � .G.x; x; u/C G.y; y; v//

D �G0
2..x; y/ ; .x; y/ ; .u; v//:

Theorem 11.7.3 implies that T2F has a fixed point, which is a coupled fixed point of F.
ut

11.7.5 Reducing Tripled Fixed Point Theorems

The main aim of this subsection is to show how very recent tripled fixed (and
coincidence) point results can be reduced to their corresponding unidimensional
version. For example, in [31, Theorem 2.1], Aydi, Karapınar and Shatanawi1 proved
the following result.

1In their original paper, the authors omitted, by mistake, the completeness of the G-metric space.
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Theorem 11.7.5. Let .X;4/ be a partially ordered set and let .X;G/ be a complete
G-metric space. Let F W X3 ! X be a continuous mapping having the mixed

-monotone property on X. Suppose that there exists � 2 Fcom such that for
x; y; z; a; b; c; u; v;w 2 X, with x < a < u, y 4 b 4 v and z < c < w, one has

G .F .x; y; z/ ;F .a; b; c/ ;F .u; v;w//

� � .max fG .x; a; u/ ;G .y; b; v/ ;G .z; c;w/g/ : (11.75)

If there exist x0; y0; z0 2 X such that x0 4 F.x0; y0; z0/, y0 < F.y0; x0; y0/ and
z0 4 F.z0; y0; x0/, then F has a tripled fixed point in X, that is, there exist x; y; z 2 X
such that

F.x; y; z/ D x; F.y; x; y/ D y and F.z; y; x/ D z:

This theorem is a particular version of Theorem 11.4.2, and we have already
showed a direct proof. However, now we explain that this result is a direct
consequence of the following result (which is a simple version of Theorem 5.3.6
in the context of partially ordered G-metric spaces).

Theorem 11.7.6. Let .X;G/ be a complete G�-metric space endowed with a
preorder 
 and let T W X ! X be a 
-non-decreasing self-mapping. Suppose that
there exists � 2 Fcom such that, for all x; y; z 2 X with x � y � z,

G.Tx;Ty;Tz/ � �.G.x; y; z//: (11.76)

Also assume that, at least, one of the following conditions holds.

• T is G-continuous, or
• .X;G;
/ is regular.

If there exists x0 2 X such that x0 
 Tx0, then T has, at least, a fixed point.

The proof of the previous result is similar to the proof of Theorem 5.3.6 (when g
is the identity mapping on X), but it is useful to deduce the following consequence.

Theorem 11.7.7. Theorem 11.7.5 immediately follows from Theorem 11.7.6.

Proof. As G is a G-metric on X, then G3, defined by

G3 ..x1; y1; z1/ ; .x2; y2; z2/ ; .x3; y3; z3//

D max f G .x1; x2; x3/ ;G .y1; y2; y3/ ;G .z1; z2; z3/ g

for all .x1; y1; z1/ ; .x2; y2; z2/ ; .x3; y3; z3/ 2 X3, is a G�-metric on X3 (see item 1
of Corollary 10.3.1). Consider on X3 the binary relation v defined in (11.71) and
the mappings T3F;H

3
g W X3 ! X3 defined in (11.69)–(11.70). Then, we have the

following properties.
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• By item 4 of Lemma 10.3.1, .X3;G3/ is complete.
• By Lemma 11.7.3, v is a partial order on X3.
• By Corollary 11.7.1, T3F is a

�
H3

g ;v
�
-non-decreasing mapping, where g is the

identity mapping on X.
• As there exists x0; y0; z0 2 X such that x0 4 F.x0; y0; z0/, y0 < F.y0; x0; y0/ and

z0 4 F.z0; y0; x0/, then .x0; y0; z0/ v T3F .x0; y0; z0/.
• By item 2 of Lemma 11.7.2, if F is G-continuous, then T3F W X3 ! X3 is also

G3-continuous.

Let us show that the contractivity condition (11.75) implies that, for all
.x; y; z/ ; .a; b; c/; .u; v;w/ 2 X3 with .x; y; z/ w .a; b; c/ w .u; v;w/,

G3.T
3
F .x; y; z/ ;T

3
F .a; b; c/ ;T

3
F .u; v;w//

� � .G3..x; y; z/ ; .a; b; c/ ; .u; v;w/// :

Indeed, since .x; y; z/ w .a; b; c/ w .u; v;w/, then x < a < u, y 4 b 4 v and
z < c < w. On the one hand, (11.75) implies that

G .F .x; y; z/ ;F .a; b; c/ ;F .u; v;w//

� � .max fG .x; a; u/ ;G .y; b; v/ ;G .z; c;w/g/ :

On the other hand, since v < b < y and u 4 a 4 x, we deduce

G .F .v; u; v/ ;F .b; a; b/ ;F .y; x; y//

� � .max fG .v; b; y/ ;G .u; a; x/ ;G .v; b; y/g/
D � .max fG .x; a; u/ ;G .y; b; v/g/
� � .max fG .x; a; u/ ;G .y; b; v/ ;G .z; c;w/g/ :

Finally, since z < c < w, y 4 b 4 v and x < a < u, it follows that

G .F .z; y; x/ ;F .c; b; a/ ;F .w; v; u//

� � .max fG .z; c;w/ ;G .y; b; v/ ;G .x; a; u/g/
D � .max fG .x; a; u/ ;G .y; b; v/ ;G .z; c;w/g/ :

Joining the last three inequalities, we conclude that

G3.T
3
F .x; y; z/ ;T

3
F .a; b; c/ ;T

3
F .u; v;w//

D G3

	
.F.x; y; z/;F.y; x; y/;F.z; y; x//

.F.a; b; c/;F.b; a; b/;F.c; b; a//;



336 11 Multidimensional F.P.T. on G-Metric Spaces

.F.u; v;w/;F.v; u; v/;F.w; v; u//



D max fG .F.x; y; z/;F.a; b; c/;F.u; v;w//

G.F.y; x; y/;F.b; a; b/;F.v; u; v//;

G.F.z; y; x/;F.c; b; a/;F.w; v; u//
o

� � .max fG .x; a; u/ ;G .y; b; v/ ;G .z; c;w/g/ :
D � .G3..x; y; z/ ; .a; b; c/ ; .u; v;w/// :

This property is the contractivity condition in Theorem 11.7.6. ut
Also in [31, Theorems 2.1 and 2.4], the authors replaced the continuity of F by

the regularity of the partially ordered G-metric space, obtaining the following result
(see [31, Theorems 2.1 and 2.4], Theorem 2.4).

Theorem 11.7.8. Let .X;4/ be a partially ordered set and let .X;G/ be a complete
G-metric space such that .X;G;
/ is regular. Let F W X3 ! X be a mapping having
the mixed 
-monotone property on X. Suppose that there exists � 2 Fcom such that
for x; y; z; a; b; c; u; v;w 2 X, with x � a � u, y 
 b 
 v, and z � c � w, one has

G .F .x; y; z/ ;F .a; b; c/ ;F .u; v;w//

� � .max fG .x; a; u/ ;G .y; b; v/ ;G .z; c;w/g/ :

If there exist x0; y0; z0 2 X such that x0 4 F.x0; y0; z0/, y0 < F.y0; x0; y0/ and
z0 4 F.z0; y0; x0/, then F has a tripled fixed point in X, that is, there exist x; y; z 2 X
such that

F.x; y; z/ D x; F.y; x; y/ D y and F.z; y; x/ D z:

Theorem 11.7.9. Theorem 11.7.5 immediately follows from Theorem 11.7.6.

Proof. We follow the proof in Theorem 11.7.7, replacing the continuity of F
by the fact that if .X;G;4/ is regular, then .X3;G3;v/ is also regular (see
Lemma 11.7.5). ut

In [32, Theorem 15], the authors proved the following result (notice that they
assumed that the function � 2 F 0

alt was non-decreasing).

Theorem 11.7.10. Let .X;4/ be a partially ordered set and let .X;G/ be a
complete G-metric space. Let F W X3 ! X and g W X ! X be two mappings.
Suppose that there exists  2 Falt and � 2 F 0

alt such that � is non-decreasing and,
for x; y; z; a; b; c; u; v;w 2 X with gx < ga < gu, gy 4 gb 4 gv and gz < gc < gw,
we have
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 .G .F .x; y; z/ ;F .a; b; c/ ;F .u; v;w///

�  .max fG .gx; ga; gu/ ;G .gy; gb; gv/ ;G .gz; gc; gw/g/
� � .max fG .gx; ga; gu/ ;G .gy; gb; gv/ ;G .gz; gc; gw/g/ :

(11.77)

Assume that F and g satisfy the following conditions:

(1) F.X3/ � g.X/,
(2) F has the mixed .g;
/-monotone property on X,
(3) F is G-continuous,
(4) g is continuous and commutes with F.

Suppose that there exist x0; y0; z0 2 X such that gx0 4 F.x0; y0; z0/, gy0 <
F.y0; x0; y0/ and gz0 4 F.z0; y0; x0/. Then F and g have a tripled coincidence point
in X, i.e., there exist x; y; z 2 X such that

F.x; y; z/ D x; F.y; x; y/ D y and F.z; y; x/ D z:

It seems that Theorem 11.7.10 might follow from Theorem 5.3.1. In fact, we can
repeat the scheme of the proof in Theorem 11.7.7 using G3, the binary relation v
and the mappings T3F;H

3
g W X3 ! X3. However, the contractivity condition (11.77)

does not coincide with the following one:

 
�
G3.T

3
F .x; y; z/ ;T

3
F .a; b; c/ ;T

3
F .u; v;w//

�

� . � �/ �G3.H
3
g .x; y; z/ ;H

3
g .a; b; c/ ;H

3
g .u; v;w//

�
;

for all .x; y; z/ ; .a; b; c/; .u; v;w/ 2 X3 with H3
g .x; y; z/ w H3

g.a; b; c/ w
H3

g .u; v;w/. The reason is hidden in the second Berinde’s equation: since
H3

g .x; y; z/ w H3
g.a; b; c/ w H3

g .u; v;w/, then gx < ga < gu, gy 4 gb 4 gv
and gz < gc < gw. Then

 .G .F .x; y; z/ ;F .a; b; c/ ;F .u; v;w///

�  .max fG .gx; ga; gu/ ;G .gy; gb; gv/ ;G .gz; gc; gw/g/
� � .max fG .gx; ga; gu/ ;G .gy; gb; gv/ ;G .gz; gc; gw/g/

D . � �/ �G3.H
3
g .x; y; z/ ;H

3
g .a; b; c/ ;H

3
g .u; v;w//

�

and

 .G .F .z; y; x/ ;F .c; b; a/ ;F .w; v; u///

�  .max fG .gz; gc; gw/ ;G .gy; gb; gv/ ;G .gx; ga; gu/g/
� � .max fG .gz; gc; gw/ ;G .gy; gb; gv/ ;G .gx; ga; gu/g/
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D  .max fG .gx; ga; gu/ ;G .gy; gb; gv/ ;G .gz; gc; gw/g/
� � .max fG .gx; ga; gu/ ;G .gy; gb; gv/ ;G .gz; gc; gw/g/

D . � �/ �G3.H
3
g .x; y; z/ ;H

3
g .a; b; c/ ;H

3
g .u; v;w//

�
:

However, from gv < gb < gy and gu 4 ga 4 gx, we deduce that

 .G .F .v; u; v/ ;F .b; a; b/ ;F .y; x; y///

�  .max fG .gv; gb; gy/ ;G .gu; ga; gx/ ;G .gv; gb; gy/g/
� � .max fG .gv; gb; gy/ ;G .gu; ga; gx/ ;G .gv; gb; gy/g/

D  .max fG .gx; ga; gu/ ;G .gy; gb; gv/g/
� � .max fG .gx; ga; gu/ ;G .gy; gb; gv/g/ :

The term � .max fG .gx; ga; gu/ ;G .gy; gb; gv/g/ is not strong enough to obtain
. � �/ �G3.H3

g .x; y; z/ ;H
3
g .a; b; c/ ;H

3
g .u; v;w//

�
. As a consequence, this type of

result would need a direct proof using Lemmas 2.3.7 and 2.3.8.

11.7.6 Reducing Quadrupled Fixed Point Theorems

In this section, we show how to reduce to the unidimensional case a version Theorem
2.1 given in [145] by Mustafa. In the original theorem, given a G-metric space .X;G/
and two mappings F W X4 ! X and g W X ! X, the author studied the contractivity
condition

 .G .F .x; y; z;w/ ;F .u; v; s; t/ ;F .a; b; c; d///

� 1

4
 
	

G .gx; gu; ga/C G .gy; gv; gb/

C G .gz; gs; gc/C G .gw; gt; gd/



� �
�
1

4

	
G .gx; gu; ga/C G .gy; gv; gb/

C G .gz; gs; gc/C G .gw; gt; gd/

�

(11.78)

for all x; y; z;w; u; v; s; t; a; b; c; d 2 X with gx < gu < ga, gy 4 gv 4 gb, gz <
gs < gc and gw 4 gt 4 gd. The control functions  and � belong to

Fsubalt D f 2 Falt W  is subadditive g and

F 0
subalt D f� W Œ0;1/ ! Œ0;1/ W � verifies .P13/C .P15/ g ;
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respectively. However, functions belonging to F 0
subalt can take the value zero at

infinitely many points (see Remark 2.3.5), which is a drawback to prove a fixed
point theorem. Hence, in the following result, we shall employ � 2 F 00

alt.

Theorem 11.7.11. Let .X;4/ be a partially ordered set and let .X;G/ be a G-
metric space. Let F W X4 ! X and g W X ! X be such that F.X4/ � g.X/, F has the
mixed .g;4/-monotone property and g is continuous and commutes with F. Assume
that there exist  2 Falt and � 2 F 00

alt such that  is subadditive and satisfying
inequality (11.78) for all x; y; z;w; u; v; s; t; a; b; c; d 2 X with gx < gu < ga, gy 4
gv 4 gb, gz < gs < gc and gw 4 gt 4 gd. Also assume that, at least, one of the
following conditions holds:

(a) .X;G/ is complete and F is continuous, or
(b) .g.X/;G/ is complete and .X;G;4/ is regular.

If there exist x0; y0; z0;w0 2 X such that

gx0 4 F.x0; y0; z0;w0/; gy0 < F.y0; z0;w0; x0/;

gz0 4 F.z0;w0; x0; y0/ and gw0 < F.w0; x0; y0; z0/;

then F and g have, at least, a quadrupled coincidence point.

Theorem 11.7.12. Theorem 11.7.11 immediately follows from Theorem 5.3.3.

Proof. We follow the argument in the proof of Theorem 11.7.1 but using four
variables. As G is a G-metric on X, then G0

4, defined by

G0
2 ..x1; y1; z1;w1/ ; .x2; y2; z2;w2/ ; .x3; y3; z3;w3//

D G .x1; x2; x3/C G .y1; y2; y3/C G .z1; z2; z3/C G .w1;w2;w3/

for all .x1; y1; z1;w1/ ; .x2; y2; z2;w2/ ; .x3; y3; z3;w3/ 2 X4, is a G�-metric on X4 (see
item 1 of Corollary 10.3.1). Consider on X4 the binary relation v defined in (11.71).
Then, we have the following properties.

• By item 4 of Lemma 10.3.1,
�
X4;G0

4

�
is complete.

• By Lemma 11.7.3, v is a preorder on X4.
• By Corollary 11.7.1, T4F is a

�
H4

g ;v
�
-non-decreasing mapping.

• By Proposition 11.7.1, as F and g commute, then T4F and H4
g also commute.

• As there exists x0; y0; z0;w0 2 X such that gx0 4 F.x0; y0; z0;w0/, gy0 <
F.y0; z0;w0; x0/, gz0 4 F.z0;w0; x0; y0/ and gw0 < F.w0; x0; y0; z0/, then
H4

g .x0; y0; z0;w0/ v T4F .x0; y0; z0;w0/.
• By item 2 of Lemma 11.7.2, if F is G-continuous, then T4F W X4 ! X4 is also

G0
4-continuous.

• By Lemma 11.7.5, if .X;G;
/ is regular, then
�
X4;G0

4;v
�

is also regular.
• As � 2 F 00

alt, then �0, defined by �0.t/ D 4 �.t=4/ for all t 2 Œ0;1/, also belongs
to F 00

alt.
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Let us show that the contractivity condition (11.78) implies that, for all
.x; y; z;w/ ; .u; v; s; t/ ; .a; b; c; d/ 2 X4 with .x; y; z;w/ w .u; v; s; t/ w .a; b; c; d/,

 
�
G0
4.T

4
F .x; y; z;w/ ;T

4
F .u; v; s; t/ ;T

4
F .a; b; c; d//

�

� . � �/ �G0
4.H

4
g .x; y; z;w/ ;H

4
g .u; v; s; t/ ;H

4
g .a; b; c; d//

�
:

To prove it, we notice that by (11.78), gx < gu < ga, gy 4 gv 4 gb, gz < gs < gc
and gw 4 gt 4 gd imply that

 .G .F .x; y; z;w/ ;F .u; v; s; t/ ;F .a; b; c; d///

� 1

4
 
	

G .gx; gu; ga/C G .gy; gv; gb/

C G .gz; gs; gc/C G .gw; gt; gd/



� �
�
1

4

	
G .gx; gu; ga/C G .gy; gv; gb/

C G .gz; gs; gc/C G .gw; gt; gd/

�

D 1

4

�
 � �0� 	G .gx; gu; ga/C G .gy; gv; gb/

C G .gz; gs; gc/C G .gw; gt; gd/



and

 .G .F .z;w; x; y/ ;F .s; t; u; v/ ;F .c; d; a; b///

� 1

4
 
	

G .gz; gs; gc/C G .gw; gt; gd/

C G .gx; gu; ga/C G .gy; gv; gb/



� �
�
1

4

	
G .gz; gs; gc/C G .gw; gt; gd/

C G .gx; gu; ga/C G .gy; gv; gb/

�

D 1

4

�
 � �0� 	G .gx; gu; ga/C G .gy; gv; gb/

C G .gz; gs; gc/C G .gw; gt; gd/


:
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Similarly, using that gb < gv < gy, gc 4 gs 4 gz, gd < gt < gw and ga 4 gu 4 gx,
it follows that

 .G .F .b; c; d; a/ ;F .v; s; t; u/ ;F .y; z;w; x///

� 1

4
 
	

G .gb; gv; gy/C G .gc; gs; gz/

C G .gd; gt; gw/C G .ga; gu; gx/

�

� �
�
1

4

	
G .gb; gv; gy/C G .gc; gs; gz/

C G .gd; gt; gw/C G .ga; gu; gx/

�

D 1

4

�
 � �0� 	G .gx; gu; ga/C G .gy; gv; gb/

C G .gz; gs; gc/C G .gw; gt; gd/



and

 .G .F .d; a; b; c/ ;F .t; u; v; s/ ;F .w; x; y; z///

� 1

4
 
	

G .gd; gt; gw/C G .ga; gu; gx/

C G .gb; gv; gy/C G .gc; gs; gz/



� �
�
1

4

	
G .gd; gt; gw/C G .ga; gu; gx/

C G .gb; gv; gy/C G .gc; gs; gz/

�

D 1

4

�
 � �0� 	G .gx; gu; ga/C G .gy; gv; gb/

C G .gz; gs; gc/C G .gw; gt; gd/


:

As  is non-decreasing and subadditive, combining the last four inequalities, we
deduce that

 
�
G0
4.T

4
F .x; y; z;w/ ;T

4
F .u; v; s; t/ ;T

4
F .a; b; c; d//

�

D  
	

G .F .x; y; z;w/ ;F .u; v; s; t/ ;F .a; b; c; d//
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C G .F .y; z;w; x/ ;F .v; s; t; u/ ;F .b; c; d; a//

C G .F .z;w; x; y/ ;F .s; t; u; v/ ;F .c; d; a; b//

C G .F .w; x; y; z/ ;F .t; u; v; s/ ;F .d; a; b; c//



�  .G .F .x; y; z;w/ ;F .u; v; s; t/ ;F .a; b; c; d///

C  .G .F .y; z;w; x/ ;F .v; s; t; u/ ;F .b; c; d; a///

C  .G .F .z;w; x; y/ ;F .s; t; u; v/ ;F .c; d; a; b///

C  .G .F .w; x; y; z/ ;F .t; u; v; s/ ;F .d; a; b; c///

� 4
1

4

�
 � �0� 	G .gx; gu; ga/C G .gy; gv; gb/

C G .gz; gs; gc/C G .gw; gt; gd/



� �
 � �0� �G0

4.H
4
g .x; y; z;w/ ;H

4
g .u; v; s; t/ ;H

4
g .a; b; c; d//

�
:

This property is the contractivity condition in Theorem 5.3.3.
As a consequence, all the hypotheses of Theorem 5.3.3, applied to T4F and H4

g

on
�
X4;G0

4;v
�

hold. Then T4F and H4
g have, at least, a coincidence point, which is a

quadrupled coincidence point of F and g by item 3 of Lemma 11.7.1. ut
We note that the existence and uniqueness of a common quadrupled coincidence

point of F and g can be derived using the following additional condition (which is
equivalent to that given in Theorem 5.3.2):

.U/ for all quadrupled coincidence points .x; y; z;w/ and .u; v; s; t/ of F and g,
there exists .a; b; c; d/ 2 X4 such that H4

g .a; b; c; d/ is v-comparable, at the same
time, to H4

g .x; y; z;w/ and to H4
g .u; v; s; t/.

11.8 Multidimensional ˆ-Fixed Point Results in Partially
Preordered G�-Metric Spaces

The technique we have shown in the previous section can be applied in the
multidimensional case in order to obtain new fixed point theorems. This is the main
aim of the present section. To do that, we introduce the following notation. Recall
that fA;Bg represents a partition ofƒn D f1; 2; : : : ; ng and letˆ D .�1; �2; : : : ; �n/

be a n-tuple of mappings from f1; 2; : : : ; ng into itself.
To start with, we extend a binary relation 4 on X to a binary relation v on the

product space Xn as follows: for X D .x1; x2; : : : ; xn/;Y D .y1; y2; : : : ; yn/ 2 Xn,

X v Y , xi 4i yi; for all i 2 ƒn; (11.79)
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where 4i was defined in (11.54). Notice that v depends on A and B. We say that
two points X and Y are v-comparable if X v Y or X w Y.

Lemma 11.8.1. The binary relation 4 is reflexive (respectively, transitive, a pre-
order, antisymmetric, a partial order) on X if, and only if, v is reflexive (respectively,
transitive, a preorder, antisymmetric, a partial order) on Xn.

Proof. (Transitivity) Assume that 4 is transitive and let

X .x1; x2; : : : ; xn/ ;Y .y1; y2; : : : ; yn/ ;Z .z1; z2; : : : ; zn/ 2 Xn

be such that X v Y v Z. Therefore, xi 4i yi 4i zi for all i 2 ƒn. If i 2 A, then
xi 4 yi 4 zi, so xi 4 zi because 4 is transitive. Then, xi 4i zi. For the other case,
if i 2 B, then xi < yi < zi, so xi < zi because 4 is transitive. Then, xi 4i zi. In any
case, xi 4i zi for all i 2 ƒn, so X v Z.

Conversely, assume that v is transitive and let x; y; z 2 Xn be such that x 4 y 4 z.
Define X .x1; x2; : : : ; xn/ ;Y .y1; y2; : : : ; yn/ ;Z .z1; z2; : : : ; zn/ 2 Xn by:

xi D
�

x, if i 2 A,
z, if i 2 B;

yi D yI zi D
�

z; if i 2 A,
x; if i 2 B.

(11.80)

Therefore, X v Y v Z. As v is transitive, then X v Z. In particular, x 4 z and 4 is
transitive.

(Antisymmetry) Assume that 4 is antisymmetric and let

X .x1; x2; : : : ; xn/ ;Y .y1; y2; : : : ; yn/ 2 Xn

be such that X v Y v X. Therefore, xi 4i yi 4i xi for all i 2 ƒn. If i 2 A, then
xi 4 yi 4 xi, so xi D yi because 4 is antisymmetric. Now if i 2 B, then xi < yi <
xi, so again xi D yi. In any case, xi D yi for all i 2 ƒn. Then X D Y and v is
antisymmetric.

Conversely, assume that v is antisymmetric and let x; z 2 X be such that x 4 z 4
x. Define X .x1; x2; : : : ; xn/ ;Z .z1; z2; : : : ; zn/ 2 Xn as in (11.80). Then X v Y v X.
As v is antisymmetric, then X D Z, so x D z and 4 is antisymmetric. ut
Proposition 11.8.1. If X v Y and � 2 �A;B [�0

A;B, then

.x�.1/; x�.2/; : : : ; x�.n// v .y�.1/; y�.2/; : : : ; y�.n// if � 2 �A;B;

.x�.1/; x�.2/; : : : ; x�.n// w .y�.1/; y�.2/; : : : ; y�.n// if � 2 �0
A;B:

In particular, .x�.1/; x�.2/; : : : ; x�.n// and .y�.1/; y�.2/; : : : ; y�.n// are v-comparable.

Proof. Suppose that xi 4i yi for all i. Hence x�.i/ 4�.i/ y�.i/ for all i. Fix � 2 �A;B.
If i 2 A, then �.i/ 2 A, so x�.i/ 4�.i/ y�.i/ implies that x�.i/ 4 y�.i/, which means
that x�.i/ 4i y�.i/. If i 2 B, then �.i/ 2 B, so x�.i/ 4�.i/ y�.i/ implies that x�.i/ < y�.i/,
which means that x�.i/ 4i y�.i/. In any case, if � 2 �A;B, then x�.i/ 4i y�.i/ for all i.
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It follows that .x�.1/; x�.2/; : : : ; x�.n// v .y�.1/; y�.2/; : : : ; y�.n//. Now fix � 2 �0
A;B.

If i 2 A, then �.i/ 2 B, so x�.i/ 4�.i/ y�.i/ implies that x�.i/ < y�.i/, which means
that x�.i/ <i y�.i/. If i 2 B, then �.i/ 2 A, so x�.i/ 4�.i/ y�.i/ implies that x�.i/ 4 y�.i/,
which means that x�.i/ <i y�.i/. ut

Given a mapping F W Xn ! X and a n-tupled ˆ D .�1; �2; : : : ; �n/, we define
Fˆ W Xn ! Xn by

Fˆ.x1; x2; : : : ; xn/ D
	

F.x�1.1/; x�1.2/; : : : ; x�1.n//;

F.x�2.1/; x�2.2/; : : : ; x�2.n//; : : : ;F.x�n.1/; x�n.2/; : : : ; x�n.n//



and F2ˆ D F ı Fˆ W Xn ! X will be

F2ˆ.x1; x2; : : : ; xn/ D F
	

F.x�1.1/; x�1.2/; : : : ; x�1.n//;

F.x�2.1/; x�2.2/; : : : ; x�2.n//; : : : ;F.x�n.1/; x�n.2/; : : : ; x�n.n//



for all X D .x1; x2; : : : ; xn/ 2 Xn. Notice that Fˆ depends on n, but we avoid the
notation F

n
ˆ because n is implicitly considered in ˆ and because we will use the

composition F
2
ˆ D Fˆ ı Fˆ.

Furthermore, given a mapping g W X ! X, we define Hn
g W Xn ! Xn, for all

.x1; x2; : : : ; xn/ 2 Xn, by

Hn
g .x1; x2; : : : ; xn/ D .gx1; gx2; : : : ; gxn/ :

Using this notation, the following lemma is immediate.

Lemma 11.8.2. Let X be a non-empty set, let Z 2 Xn be a point, let F W Xn ! X
and g W X ! X be two mappings and let ˆ D .�1; �2; : : : ; �n/ be a n-tuple of
mappings from f1; 2; : : : ; ng into itself.

1. Z is aˆ-fixed point of F if, and only if, Z is a fixed point of Fˆ (that is, FˆZ D Z).
2. Z is a ˆ-coincidence point of F and g if, and only if, Z is a coincidence point of

Fˆ and Hn
g (that is, FˆZ D Hn

gZ).
3. Z 2 Xn is a common ˆ-fixed point of F and g if, and only if, Z is a common fixed

point of Fˆ and Hn
g (that is, FˆZ D Hn

gZ D Z).

Proof. We only show the last property. We define that Z D .z1; z2; : : : ; zn/ 2 Xn is a
common ˆ-fixed point of F and g if

F.x�1.1/; x�1.2/; : : : ; x�1.n// D gxi D xi for all i 2 f1; 2; : : : ; ng:

This is equivalent to saying that
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F.z�1.1/; z�1.2/; : : : ; z�1.n//;F.z�2.1/; z�2.2/; : : : ; z�2.n//; : : : ;

F.z�n.1/; z�n.2/; : : : ; z�n.n//



D .gz1; gz2; : : : ; gzn/

D .z1; z2; : : : ; zn/ :

Using the previous notation, this is equivalent to saying that FˆZ D Hn
gZ D Z, that

is, Z is a common fixed point of Fˆ and Hn
g : ut

Next, we prove that the mixed .g;4/-monotone property implies certain type of
non-decreasingness.

Lemma 11.8.3. Let F W Xn ! X and g W X ! X be two mappings, let 4 be a binary
relation on X and let v the binary relation on Xn defined in (11.79) (depending on
the partition fA;Bg).

1. If the mapping F has the mixed .g;4/-monotone property, then Fˆ is
�
Hn

g ;v
�
-

non-decreasing.
2. If the mapping F has the mixed 4-monotone property, then Fˆ is v-non-

decreasing.

Proof. Assume that F has the mixed .g;4/-monotone property and let
X .x1; x2; : : : ; xn/ ;Y .y1; y2; : : : ; yn/ 2 Xn be two points such that Hn

g.X/v Hn
g.Y/.

Therefore, gxi 4i gyi for all i 2 ƒn. This means that

(
gxi 4 gyi; if i 2 A,

gxi < gyi; if i 2 B.
(11.81)

In particular,

gx�i.j/ 4�i.j/ gy�i.j/ for all i; j 2 ƒn: (11.82)

We distinguish four cases, but the conclusion is the same.

� if i; j 2 A ) �i.j/ 2 A ) gx�i.j/ 4 gy�i.j/

) F.a1; : : : ; aj�1; x�i.j/; ajC1; : : : ; an/

4 F.a1; : : : ; aj�1; y�i.j/; ajC1; : : : ; an/

) F.a1; : : : ; aj�1; x�i.j/; ajC1; : : : ; an/

4i F.a1; : : : ; aj�1; y�i.j/; ajC1; : : : ; an/I
� if i 2 A and j 2 B ) �i.j/ 2 B ) gx�i.j/ < gy�i.j/

) F.a1; : : : ; aj�1; x�i.j/; ajC1; : : : ; an/

4 F.a1; : : : ; aj�1; y�i.j/; ajC1; : : : ; an/



346 11 Multidimensional F.P.T. on G-Metric Spaces

) F.a1; : : : ; aj�1; x�i.j/; ajC1; : : : ; an/

4i F.a1; : : : ; aj�1; y�i.j/; ajC1; : : : ; an/I
� if i 2 B and j 2 A ) �i.j/ 2 B ) gx�i.j/ < gy�i.j/

) F.a1; : : : ; aj�1; x�i.j/; ajC1; : : : ; an/

< F.a1; : : : ; aj�1; y�i.j/; ajC1; : : : ; an/

) F.a1; : : : ; aj�1; x�i.j/; ajC1; : : : ; an/

4i F.a1; : : : ; aj�1; y�i.j/; ajC1; : : : ; an/I
� if i; j 2 B ) �i.j/ 2 A ) gx�i.j/ 4 gy�i.j/

) F.a1; : : : ; aj�1; x�i.j/; ajC1; : : : ; an/

< F.a1; : : : ; aj�1; y�i.j/; ajC1; : : : ; an/

) F.a1; : : : ; aj�1; x�i.j/; ajC1; : : : ; an/

4i F.a1; : : : ; aj�1; y�i.j/; ajC1; : : : ; an/:

In any case, we deduce that, for all i; j 2 ƒn and all a1; a2; : : : ; an 2 X,

F.a1; : : : ; aj�1; x�i.j/; ajC1; : : : ; an/ 4i F.a1; : : : ; aj�1; y�i.j/; ajC1; : : : ; an/:

Therefore, for all i 2 ƒn,

F.x�i.1/; x�i.2/; x�i.3/; : : : ; x�i.n// 4i F.y�i.1/; x�i.2/; x�i.3/; : : : ; x�i.n//

4i F.y�i.1/; y�i.2/; x�i.3/; : : : ; x�i.n// 4i : : :

4i F.y�i.1/; y�i.2/; y�i.3/; : : : ; y�i.n//:

As 4i is transitive, then

F.x�i.1/; x�i.2/; x�i.3/; : : : ; x�i.n// 4i F.y�i.1/; y�i.2/; y�i.3/; : : : ; y�i.n//

for all i 2 ƒn, which means that

Fˆ.x1; x2; : : : ; xn/ D
	

F.x�1.1/; x�1.2/; : : : ; x�1.n//;

F.x�2.1/; x�2.2/; : : : ; x�2.n//; : : : ;F.x�n.1/; x�n.2/; : : : ; x�n.n//



v
	

F.y�1.1/; y�1.2/; : : : ; y�1.n//;
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F.y�2.1/; y�2.2/; : : : ; y�2.n//; : : : ;F.y�n.1/; y�n.2/; : : : ; y�n.n//



v Fˆ.y1; y2; : : : ; yn/:

Hence, Fˆ is
�
Hn

g ;v
�
-non-decreasing. ut

Lemma 11.8.4. Let F W Xn ! X and g W X ! X be two mappings, let
fXmgm2N � Xn be a sequence and letˆ D .�1; �2; : : : ; �n/ be a n-tuple of mappings
from f1; 2; : : : ; ng into itself. Then fXmgm2N � Xn is a Picard .F; g; ˆ/-sequence if,
and only if, Hn

g.XmC1/ D Fˆ.Xm/ for all m 2 N.

Proof. Suppose that Xm D .x1m; x
2
m; : : : ; x

n
m/ for all m 2 N. Then

fXmgm2N � Xn is a Picard .F; g; ˆ/ -sequence

, gxi
mC1 D F.x�i.1/

m ; x�i.2/
m ; : : : ; x�i.n/

m / 8m 2 N, 8i 2 ƒn

, �
gx1mC1; gx2mC1; : : : gxn

mC1
� D

	
F.x�1.1/m ; x�1.2/m ; : : : ; x�1.n/m /;

F.x�2.1/m ; x�2.2/m ; : : : ; x�2.n/m /; : : : ;F.x�n.1/
m ; x�n.2/

m ; : : : ; x�n.n/
m /




8m 2 N

, Hn
g.XmC1/ D Fˆ.Xm/ for all m 2 N.

ut
Lemma 11.8.5. Let .X;G/ be a G�-metric space and let Gn and G0

n be the G�-
metrics defined in Lemma 10.3.1.

1. If g W X ! X is G-continuous, then Hn
g W Xn ! Xn is Gn-continuous (and also

G0
n-continuous).

2. If F W Xn ! X is G-continuous, then Fˆ W Xn ! Xn is Gn-continuous (and also
G0

n-continuous) and F2ˆ D F ı Fˆ W Xn ! X is G-continuous.

Proof. (1) Let Z D .z1; z2; : : : ; zn/ 2 Xn be a point and let fXm D
.x1m; x

2
m; : : : ; x

n
m/gm2N � Xn be a sequence such that fXmg Gn�! Z. From item 2

of Lemma 10.3.1, we have that fxi
mg G�! zi for all i 2 ƒn. As g is G-continuous,

then fgxi
mg G�! gzi for all i 2 ƒn. Again by item 2 of Lemma 10.3.1, we deduce

that

˚�
gx1m; gx2m; : : : ; gxn

m

�� Gn�! �
gz1; gz2; : : : ; gzn

�
;

which means that fHn
g.Xm/g Gn�! Hn

g.Z/. Hence, Hn
g W Xn ! Xn is Gn-continuous.

(2) Let Z D .z1; z2; : : : ; zn/ 2 Xn be a point and let fXm D .x1m; x
2
m; : : : ; x

n
m/gm2N �

Xn be a sequence such that fXmg Gn�! Z. From item 2 of Lemma 10.3.1, we have
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that fxi
mg G�! zi for all i 2 ƒn. In particular, fx�i.j/

m g G�! z�i.j/ for all i; j 2 ƒn. As F
is G-continuous, then

˚
F
�
x�i.1/

m ; x�i.2/
m ; : : : ; x�i.n/

m

��
m2N

Gn�! F
�
z�i.1/; z�i.2/; : : : ; z�i.n/

�

for all i 2 ƒn. Again, by item 2 of Lemma 10.3.1, it follows that

n	
F.x�1.1/m ; x�1.2/m ; : : : ; x�1.n/m /;F.x�2.1/m ; x�2.2/m ; : : : ; x�2.n/m /;

: : : ;F.x�n.1/
m ; x�n.2/

m ; : : : ; x�n.n/
m /


o

m2N
Gn�!

	
F.z�1.1/; z�1.2/; : : : ; z�1.n//;F.z�2.1/; z�2.2/; : : : ; z�2.n//;

: : : ;F.z�n.1/; z�n.2/; : : : ; z�n.n//


:

In other words, fFˆ.Xm/g Gn�! Fˆ.Z/. Hence, Fˆ W Xn ! Xn is Gn-continuous. The
second part follows from the fact that the composition F2ˆ D F ı Fˆ of continuous
mappings is also a continuous mapping. ut

The following result is an extension of Lemma 11.7.5 and it can be proved
similarly (using the fact that the partition fA;Bg has non-empty sets).

Lemma 11.8.6. Let .X;G/ be a G�-metric space and let Gn and G0
n be the G�-

metrics on Xn defined in Lemma 10.3.1. Given a transitive binary relation 4 on X,
let v be the binary relation on Xn defined in (11.79). Then the following properties
are equivalent (the same is valid for G0

n).

(i) .X;G;4/ is regular.
(ii) .Xn;Gn;v/ is regular.

(iii) .Xn;Gn;v/ is non-decreasing-regular.
(iv) .Xn;Gn;v/ is non-increasing-regular.

11.8.1 A First Multidimensional Fixed Point Theorem

In this subsection we apply Theorem 5.3.1 considering T D Fˆ defined on
.Xn;Gn;v/. We notice that, joining with some of the previous results, we obtain
the following consequences.

• If .X;G/ is complete, it follows from Corollary 10.3.1 that .Xn;Gn/ is also
complete.

• By item 2 of Lemma 11.8.3, if F has the mixed 4-monotone property, then Fˆ is
v-monotone non-decreasing on Xn.
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• By item 2 of Lemma 11.8.5, if F is G-continuous, then Fˆ W Xn ! Xn is Gn-
continuous and F2ˆ D F ı Fˆ W Xn ! X is G-continuous.

• If .X;G;4/ is regular, it follows from Lemma 11.8.6 that .Xn;Gn;v/ is also
regular.

• If x10; x
2
0; : : : ; x

n
0 2 X are such that xi

0 4i F.x�i.1/
0 ; x�i.2/

0 ; : : : ; x�i.n/
0 / for all i 2 ƒn,

then X0 D .x10; x
2
0; : : : ; x

n
0/ 2 Xn verifies X0 v Fˆ.X0/.

We study how the contractivity condition

 .Gn.FˆX;FˆY;F2ˆX// � . � '/ .Gn.X;Y;FˆX//

for all X;Y 2 Xn such that X v Y

may be equivalently established. Let X D .x1; x2; : : : ; xn/ 2 Xn and let zi D
F.x�i.1/; x�i.2/; : : : ; x�i.n// 2 X for all i. Then

F
2
ˆX D Fˆ

�
F.x�1.1/; x�1.2/; : : : ; x�1.n//; : : : ;F.x�n.1/; x�n.2/; : : : ; x�n.n//

�

D Fˆ.z1; z2; : : : ; zn/

D .F.z�1.1/; z�1.2/; : : : ; z�1.n//; : : : ;F.z�n.1/; z�n.2/; : : : ; z�n.n///

D �
F
�
F.x��1.1/.1/; : : : ; x��1.1/.n//; : : : ;F.x��1.n/.1/; : : : ; x��1.n/.n//

�
;

F
�
F.x��2.1/.1/; : : : ; x��2.1/.n//; : : : ;F.x��2.n/.1/; : : : ; x��n.n/.n//

�
;

: : : ;

F
�
F.x��n.1/.1/

; : : : ; x��n.1/.n//; : : : ;F.x��n.n/.1/
; : : : ; x��n.n/.n//

��

D �
F2ˆ.x�1.1/; x�1.2/ : : : ; x�1.n//; : : : ;F

2
ˆ.x�n.1/; x�n.2/ : : : ; x�n.n//

�
:

It follows that

Gn.X;Y;FˆX/ D max
1�i�n

G.xi; yi;F.x�i.1/; x�i.2/; : : : ; x�i.n/// and

Gn.FˆX;FˆY;F2ˆX/ D max
1�i�n

G.F.x�i.1/; x�i.2/; : : : ; x�i.n//;

F.y�i.1/; y�i.2/; : : : ; y�i.n//;F
2
ˆ.x�i.1/; x�i.2/ : : : ; x�i.n///:

Therefore, a possible version of Theorem 5.3.1 (using g as the identity mapping on
Xn) applied to .Xn;Gn;v/ taking T D Fˆ is the following.

Theorem 11.8.1. Let .X;G/ be a complete G�-metric space and let 4 be a preorder
on X. Letˆ D .�1; �2; : : : ; �n/ be a n-tuple of mappings from f1; 2; : : : ; ng into itself
satisfying �i 2 �A;B if i 2 A and �i 2 �0

A;B if i 2 B. Let F W Xn ! X be mapping
verifying the mixed monotone property on X. Assume that there exist  ; ' 2 Falt

such that
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max
1�i�n

 
�
G
�
F.x�i.1/; x�i.2/; : : : ; x�i.n//;F.y�i.1/; y�i.2/; : : : ; y�i.n//;

F2ˆ.x�i.1/; x�i.2/ : : : ; x�i.n//
��

� . � '/
�

max
1�i�n

G.xi; yi;F.x�i.1/; x�i.2/; : : : ; x�i.n///

�
(11.83)

for which xi 4i yi for all i. Suppose either F is continuous or .X;G;4/ is regular. If
there exist x10; x

2
0; : : : ; x

n
0 2 X verifying xi

0 4i F.x�i.1/
0 ; x�i.2/

0 ; : : : ; x�i.n/
0 / for all i, then

F has, at least, one ˆ-fixed point.

11.8.2 A Second Multidimensional Fixed Point Theorem

In this section we introduce a slightly different contractivity condition that cannot be
directly deduced by applying Theorem 5.3.1 to .X;Gn;v/ taking T D Fˆ, because
the contractivity condition is weaker.

Theorem 11.8.2. Let .X;G/ be a complete G�-metric space and let 4 be a partial
preorder on X. Letˆ D .�1; �2; : : : ; �n/ be a n-tuple of mappings from f1; 2; : : : ; ng
into itself satisfying �i 2 �A;B if i 2 A and �i 2 �0

A;B if i 2 B. Let F W Xn ! X
be mapping verifying the mixed monotone property on X. Assume that there exist
 ; ' 2 Falt such that

 .G.F.x1; x2; : : : ; xn/;F.y1; y2; : : : ; yn/;F
2
ˆ.x1; x2; : : : ; xn//

� . � '/
�

max
1�i�n

G.xi; yi;F.x�i.1/; x�i.2/; : : : ; x�i.n///

�
(11.84)

for which .x1; x2; : : : ; xn/; .y1; y2; : : : ; yn/ 2 Xn are v-comparable. Suppose either
F is continuous or .X;G;4/ is regular. If there exist x10; x

2
0; : : : ; x

n
0 2 X verifying

xi
0 4i F.x�i.1/

0 ; x�i.2/
0 ; : : : ; x�i.n/

0 / for all i, then F has, at least, one ˆ-fixed point.

Notice that (11.83) and (11.84) are very different contractivity conditions. For
example, (11.83) would be simpler if the image of all �i are sets with a few points.

Proof. Define X0 D .x10; x
2
0; : : : ; x

n
0/ and let xi

1 D F.x�i.1/
0 ; x�i.2/

0 ; : : : ; x�i.n/
0 / for all i.

If X1 D .x11; x
2
1; : : : ; x

n
1/, then xi

0 4i xi
1 for all i is equivalent to X0 v X1 D Fˆ.X0/.

By recurrence, define xi
mC1 D F.x�i.1/

m ; x�i.2/
m ; : : : ; x�i.n/

m / for all i and all m, and we
have that Xm v XmC1 D Fˆ.Xm/. This means that the sequence fXmC1 D Fˆ.Xm/g
is v-monotone non-decreasing. Since .Xn;Gn;v/ is complete, it is only necessary
to prove that fXmg is Gn-Cauchy in order to deduce that it is Gn-convergent. From
item 4 of Lemma 10.3.1, it will be sufficient to prove that each sequence fxi

mg is
G-Cauchy. Firstly, notice that XmC1 D Fˆ.Xm/ means that

xi
mC1 D F.x�i.1/

m ; x�i.2/
m ; : : : ; x�i.n/

m / for all i and all m.
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Hence

xi
mC2 D F.x�i.1/

mC1; x
�i.2/
mC1; : : : ; x

�i.n/
mC1/

D F
	

F.x
��i.1/.1/
m ; x

��i.1/.2/
m ; : : : ; x

��i.1/.n/
m /;

F.x
��i.2/.1/
m ; x

��i.2/.2/
m ; : : : ; x

��i.2/.n/
m /; : : : ;

F.x
��i.n/.1/
m ; x

��i.n/.2/
m ; : : : ; x

��i.n/.n/
m /




D F2ˆ.x
�i.1/
m ; x�i.2/

m ; : : : ; x�i.n/
m /:

Furthermore, for all m

F2ˆ.Xm/ D F2ˆ.x
1
m; x

2
m; : : : ; x

n
m/ D

D F.F.x�1.1/m ; x�1.2/m ; : : : ; x�1.n/m /;F.x�2.1/m ; x�2.2/m ; : : : ; x�2.n/m /;

: : : ;F.x�n.1/
m ; x�n.2/

m ; : : : ; x�n.n/
m //

D F.x1mC1; x2mC1; : : : ; xn
mC1/ D F.XmC1/: (11.85)

Therefore, for all i and all m

 .G.xi
mC1; xi

mC2; xi
mC2//

D  .G.F.x�i.1/
m ; x�i.2/

m ; : : : ; x�i.n/
m /;F.x�i.1/

mC1; x
�i.2/
mC1; : : : ; x

�i.n/
mC1/;

F2ˆ.x
�i.1/
m ; x�i.2/

m ; : : : ; x�i.n/
m //

� . � '/
�

max
1�j�n

G.x�i.j/
m ; x�i.j/

mC1;F.x
��i.j/.1/
m ; x

��i.j/.2/
m ; : : : ; x

��i.j/.n/
m //

�

D . � '/
�

max
1�j�n

G.x�i.j/
m ; x�i.j/

mC1; x
�i.j/
mC1/

�
:

Since  is non-decreasing, for all i and all m,

 

�
max
1�j�n

G.x�i.j/
m ; x�i.j/

mC1; x
�i.j/
mC1/

�
�  

�
max
1�j�n

G.xj
m; x

j
mC1; x

j
mC1/

�
:

Applying Lemma 11.2.4 using

ai
m D G.xi

m; x
i
mC1; xi

mC1/ and bi
m D max

1�j�n
G.x�i.j/

m ; x�i.j/
mC1; x

�i.j/
mC1/

for all i and all m, we deduce that
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fG.xi
m; x

i
mC1; xi

mC1/g ! 0 for all i; that is,

fGn.Xm;XmC1;XmC1/g ! 0: (11.86)

Next, we prove that every sequence fxi
mg is G-Cauchy reasoning by con-

tradiction. Suppose that fxi1
mgm�0; : : : ; fxis

mgm�0 are not G-Cauchy (s � 1) and

fx
isC1
m gm�0; : : : ; fxin

mgm�0 are G-Cauchy, with fi1; : : : ; ing D f1; : : : ; ng. From Propo-
sition 11.8.1, for all r 2 f1; 2; : : : ; sg there exists "r > 0 and subsequences
fxir

nr.k/
gk2N and fxir

mr.k/
gk2N such that, for all k 2 N,

k < nr.k/ < mr.k/ < nr.k C 1/; G.xir
nr.k/

; xir
nr.k/C1; x

ir
mr.k/

/ � "r;

and

G.xir
nr.k/

; xir
nr.k/C1; x

ir
mr.k/�1/ < "r:

Now, let "0 D max."1; : : : ; "s/ > 0 and "0
0 D min."1; : : : ; "s/ > 0. Since

fx
isC1
m gm�0; : : : ; fxin

mgm�0 are G-Cauchy, for all j 2 fisC1; : : : ; ing, there exists nj 2 N

such that if m;m0 � nj, then G.xj
m; x

j
mC1; x

j
m0/ < "

0
0=8. Let n0 D maxj2fisC1;:::;ing.nj/.

Therefore, we have proved that there exists n0 2 N such that if m;m0 � n0 then

G.xj
m; x

j
mC1; x

j
m0/ < "

0
0=4 for all j 2 fisC1; : : : ; ing: (11.87)

Next, let q 2 f1; 2; : : : ; sg such that "q D "0 D max."1; : : : ; "s/. Let k1 2 N such
that n0 < nq.k1/ and define n.1/ D nq.k1/. Consider the numbers n.1/C 1; n.1/C
2; : : : ;mq.k1/ until we find the first positive integer m.1/ > n.1/ satisfying

max
1�r�s

G.xir
n.1/; x

ir
n.1/C1; x

ir
m.1// � "0; G.x

ij
n.1/; x

ij
n.1/C1; x

ij
m.1/�1/ < "0;

for all j 2 f1; 2; : : : ; sg. Now let k2 2 N such that m.1/ < nq.k2/ and define
n.2/ D nq.k2/. Consider the numbers n.2/C 1; n.2/C 2; : : : ;mq.k2/ until we find
the first positive integer m.2/ > n.2/ satisfying

max
1�r�s

G.xir
n.2/; x

ir
n.2/C1; x

ir
m.2// � "0; G.x

ij
n.2/; x

ij
n.2/C1; x

ij
m.2/�1/ < "0;

for all j 2 f1; 2; : : : ; sg. Repeating this process, we can find sequences such that, for
all k � 1,

n0 < n.k/ < m.k/ < n.k C 1/; max
1�r�s

G.xir
n.k/; x

ir
n.k/C1; x

ir
m.k// � "0;

G.x
ij
n.k/; x

ij
n.k/C1; x

ij
m.k/�1/ < "0; for all j 2 f1; 2; : : : ; sg:
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Note that by (11.87), G.xir
n.k/; x

ir
n.k/C1; x

ir
m.k//;G.x

ir
n.k/; x

ir
n.k/C1; x

ir
m.k/�1/ < "0

0=4 < "0=2

for all r 2 fs C 1; s C 2; : : : ; ng, so

max
1�j�n

G.xj
n.k/; x

j
n.k/C1; x

j
m.k// D max

1�r�s
G.xir

n.k/; x
ir
n.k/C1; x

ir
m.k// � "0;

G.xi
n.k/; x

i
n.k/C1; gxi

m.k/�1/ < "0 (11.88)

for all i 2 f1; 2; : : : ; ng and all k � 1. Next, for all k, let i.k/ 2 f1; 2; : : : ; sg be an
index such that

G.xi.k/
n.k/; x

i.k/
n.k/C1; x

i.k/
m.k// D max

1�r�s
G.xir

n.k/; x
ir
n.k/C1; x

ir
m.k//

D max
1�j�n

G.xj
n.k/; x

j
n.k/C1; x

j
m.k// � "0:

Notice that, applying (G5) twice and (11.88), for all k and all j,

G.xj
n.k/�1; x

j
n.k/; x

j
m.k/�1/

� G.xj
n.k/�1; x

j
n.k/; x

j
n.k//C G.xj

n.k/; x
j
n.k/; x

j
m.k/�1/

� G.xj
n.k/�1; x

j
n.k/; x

j
n.k//C G.xj

n.k/; x
j
n.k/C1; x

j
n.k/C1/

C G.xj
n.k/C1; x

j
n.k/; x

j
m.k/�1/

� G.xj
n.k/�1; x

j
n.k/; x

j
n.k//C G.xj

n.k/; x
j
n.k/C1; x

j
n.k/C1/C "0: (11.89)

Applying Proposition 11.8.1 to guarantee that the following points are v-
comparable, the contractivity condition (11.84) assures us for all k

0 <  ."0/ �  
	

G.xi.k/
n.k/; x

i.k/
n.k/C1; x

i.k/
m.k//



D  

	
G.xi.k/

n.k/; x
i.k/
m.k/; x

i.k/
n.k/C1/




D  .G.F.x
�i.k/.1/

n.k/�1; x
�i.k/.2/

n.k/�1; : : : ; x
�i.k/.n/
n.k/�1/;

F.x
�i.k/.1/

m.k/�1; x
�i.k/.2/

m.k/�1; : : : ; x
�i.k/.n/
m.k/�1/;

F2ˆ.x
�i.k/.1/

n.k/�1; x
�i.k/.2/

n.k/�1; : : : ; x
�i.k/.n/
n.k/�1///

� . � '/
�

max
1�j�n

G.x
�i.k/.j/
n.k/�1; x

�i.k/.j/
m.k/�1;F.x

�i.k/.1/

n.k/�1; x
�i.k/.2/

n.k/�1; : : : ; x
�i.k/.n/
n.k/�1//

�

D . � '/
�

max
1�j�n

G.x
�i.k/.j/
n.k/�1; x

�i.k/.j/
m.k/�1; x

�i.k/.j/
n.k/ /

�

D . � '/
�

max
1�j�n

G.x
�i.k/.j/
n.k/�1; x

�i.k/.j/
n.k/ ; x

�i.k/.j/
m.k/�1/

�
: (11.90)
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Consider the sequence:

�
max
1�j�n

G.x
�i.k/.j/
n.k/�1; x

�i.k/.j/
n.k/ ; x

�i.k/.j/
m.k/�1/

�

k�1
: (11.91)

If this sequence has a subsequence that converges to zero, then we can take
the limit when k ! 1 in (11.90) using this subsequence, so that we would
have 0 <  ."0/ �  .0/ � '.0/ D 0, which is impossible since "0 > 0.
Therefore, the sequence (11.91) has no subsequence converging to zero. In this
case, taking "0 > 0 in Lemma 11.2.3, there exist ı 2 �0; "0Œ and k0 2 N such

that max1�j�n G.x
�i.k/.j/
n.k/�1; x

�i.k/.j/
n.k/ ; x

�i.k/.j/
m.k/�1/ � ı, for all k � k0. It follows that, for

all k � k0, �'.max1�j�n G.x
�i.k/.j/
n.k/�1; x

�i.k/.j/
n.k/ ; x

�i.k/.j/
m.k/�1// � �'.ı/. Thus, by (11.90)

and (11.89),

0 <  ."0/ �  

�
max
1�j�n

G.x
�i.k/.j/
n.k/�1; x

�i.k/.j/
n.k/ ; x

�i.k/.j/
m.k/�1/

�

� '
�

max
1�j�n

G.x
�i.k/.j/
n.k/�1; x

�i.k/.j/
n.k/ ; x

�i.k/.j/
m.k/�1/

�

�  

�
max
1�j�n

G.x
�i.k/.j/
n.k/�1; x

�i.k/.j/
n.k/ ; x

�i.k/.j/
m.k/�1/

�
� '.ı/

�  

�
max
1�j�n

G.xj
n.k/�1; x

j
n.k/; x

j
m.k/�1/

�
� '.ı/

�  

�
max
1�j�n

	
G.xj

n.k/�1; x
j
n.k/; x

j
n.k//C G.xj

n.k/; x
j
n.k/C1; x

j
n.k/C1/



C "0

�

� '.ı/: (11.92)

Taking the limit in (11.92) as k ! 1 and taking into account (11.86), we deduce
that 0 <  ."0/ �  ."0/ � '.ı/, which is impossible. The previous reasoning
proves that every sequence fxi

mg is G-Cauchy.
Corollary 10.3.1 guarantees that the sequence

fFm
ˆ.X0/ D Xm D .x1m; x

2
m; : : : ; x

n
m/g

is Gn-Cauchy. Since .Xn;Gn/ is complete (again by Corollary 10.3.1), there exists

Z 2 Xn such that fXmg Gn! Z, that is, if Z D .z1; z2; : : : ; zn/ then

fG.xi
m; x

i
mC1; zi/g ! 0 for all i: (11.93)

Suppose that F is G-continuous. In this case, item 2 of Lemma 11.8.5 implies

that Fˆ is Gn-continuous, so fXmg Gn! Z and fXmC1 D Fˆ.Xm/g Gn! Fˆ.Z/. By the
uniqueness of the Gn-limit, Fˆ.Z/ D Z, which means that Z is a ˆ-fixed point of F.
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Suppose that .X;G;4/ is regular. In this case, by Corollary 10.3.1, .Xn;Gn;v/
is also regular. Then, taking into account that fXm D F

m
ˆ.X0/g is a v-monotone

non-decreasing sequence such that fXmg Gn! Z, we deduce that Xm v Z for all m.
From Proposition 11.8.1, since .x1m; x

2
m; : : : ; x

n
m/ D Xm v Z D .z1; z2; : : : ; zn/, then

.x�i.1/
m ; x�i.2/

m ; : : : ; x�i.n/
m / and .z�i.1/; z�i.2/; : : : ; z�i.n// are v-comparable for all i and

all m. Notice that for all i and all m,

F.x�i.1/
mC1; x

�i.2/
mC1; : : : ; x

�i.n/
mC1/

D F.F.x
��i.1/.1/
m ; x

��i.1/.2/
m ; : : : ; x

��i.1/.n/
m /;

: : : ;F.x
��i.n/.1/
m ; x

��i.n/.2/
m ; : : : ; x

��i.n/.n/
m //

D F2ˆ.x
�i.1/
m ; x�i.2/

m ; : : : ; x�i.n/
m /:

It follows from condition (11.84) and (11.85) that, for all i,

 .G.F.x�i.1/
m ; x�i.2/

m ; : : : ; x�i.n/
m /;F.x�i.1/

mC1; x
�i.2/
mC1; : : : ; x

�i.n/
mC1/;

F.z�i.1/; z�i.2/; : : : ; z�i.n///

D  .G.F.x�i.1/
m ; x�i.2/

m ; : : : ; x�i.n/
m /;F.z�i.1/; z�i.2/; : : : ; z�i.n//;

F2ˆ.x
�i.1/
m ; x�i.2/

m ; : : : ; x�i.n/
m //

� . � '/
�

max
1�j�n

G.x�i.j/
m ; z�i.j/;

F.x
��i.j/.1/
m ; x

��i.j/.2/
m ; : : : ; x

��i.j/.n/
m //




D . � '/
�

max
1�j�n

G.x�i.j/
m ; z�i.j/; x

�i.j/
mC1/

�

�  

�
max
1�j�n

G.x�i.j/
m ; x�i.j/

mC1; z�i.j//

�

�  

�
max
1�j�n

G.xj
m; x

j
mC1; zj/

�
:

By (11.93) we deduce that

˚
F.x�i.1/

m ; x�i.2/
m ; : : : ; x�i.n/

m /
� ! F.z�i.1/; z�i.2/; : : : ; z�i.n// for all i;

which means that

˚
FˆXm D �

F.x�1.1/m ; x�1.2/m ; : : : ; x�1.n/m /; : : : ;F.x�n.1/
m ; x�n.2/

m ; : : : ; x�n.n/
m /

��

Gn! �
F.z�1.1/; z�1.2/; : : : ; z�1.n//; : : : ;F.z�n.1/; z�n.2/; : : : ; z�n.n//

� D FˆZ:
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Since fFˆXm D XmC1g Gn! Z, we conclude that FˆZ D Z, that is, Z is a ˆ-fixed
point of F. ut

If take  .t/ D t for all t 2 Œ0;1/ in Theorem 11.8.2 then, we get the following
results.

Corollary 11.8.1. Let .X;G/ be a complete G�-metric space and let 4 be a partial
preorder on X. Letˆ D .�1; �2; : : : ; �n/ be a n-tuple of mappings from f1; 2; : : : ; ng
into itself verifying �i 2 �A;B if i 2 A and �i 2 �0

A;B if i 2 B. Let F W Xn ! X
be mapping satisfying the mixed monotone property on X. Assume that there exists
' 2 Falt such that

G.F.x1; x2; : : : ; xn/;F.y1; y2; : : : ; yn/;F
2
ˆ.x1; x2; : : : ; xn/

� max
1�i�n

G.xi; yi;F.x�i.1/; x�i.2/; : : : ; x�i.n///

� '
�

max
1�i�n

G.xi; yi;F.x�i.1/; x�i.2/; : : : ; x�i.n///

�

for which .x1; x2; : : : ; xn/; .y1; y2; : : : ; yn/ 2 Xn are v-comparable. Suppose either
F is continuous or .X;G;4/ is regular. If there exist x10; x

2
0; : : : ; x

n
0 2 X verifying

xi
0 4i F.x�i.1/

0 ; x�i.2/
0 ; : : : ; x�i.n/

0 / for all i, then F has, at least, one ˆ-fixed point.

If take '.t/ D .1 � �/ t for all t � 0, with � 2 Œ0; 1/, in Corollary 11.8.1 then,
we derive the following result.

Corollary 11.8.2. Let .X;G/ be a complete G�-metric space and let 4 be a partial
preorder on X. Letˆ D .�1; �2; : : : ; �n/ be a n-tuple of mappings from f1; 2; : : : ; ng
into itself satisfying �i 2 �A;B if i 2 A and �i 2 �0

A;B if i 2 B. Let F W Xn ! X
be mapping verifying the mixed monotone property on X. Assume that there exists
� 2 Œ0; 1/ such that

G.F.x1; x2; : : : ; xn/;F.y1; y2; : : : ; yn/;F
2
ˆ.x1; x2; : : : ; xn//

� � max
1�i�n

G.xi; yi;F.x�i.1/; x�i.2/; : : : ; x�i.n/// (11.94)

for which .x1; x2; : : : ; xn/; .y1; y2; : : : ; yn/ 2 Xn are v-comparable. Suppose either
F is continuous or .X;G;4/ is regular. If there exist x10; x

2
0; : : : ; x

n
0 2 X verifying

xi
0 4i F.x�i.1/

0 ; x�i.2/
0 ; : : : ; x�i.n/

0 / for all i, then F has, at least, one ˆ-fixed point.

Example 11.8.1. Let X D f0; 1; 2; 3; 4g and let G be the G-metric on X given, for all
x; y; z 2 X, by G.x; y; z/ D max.jx � yj ; jx � zj ; jy � zj/. Then .X;G/ is complete
and G generates the discrete topology on X. Consider on X the following partial
order:

x; y 2 X; x 4 y , x D y or .x; y/ D .0; 2/:
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Define F W Xn ! X by:

F.x1; x2; : : : ; xn/ D
�
0; if x1; x2; : : : ; xn 2 f0; 1; 2g;
1; otherwise.

Then the following statements hold.

1. F is a G-continuous mapping.
2. If y; z 2 X satisfy y 4 z, then either y; z 2 f0; 1; 2g or y; z 2 f3; 4g. In particular,

F.x1; : : : ; xi�1; y; xiC1; : : : ; xn/ D F.x1; : : : ; xi�1; y; xiC1; : : : ; xn/ and F has the
mixed monotone property on X.

3. If .x1; x2; : : : ; xn/; .y1; y2; : : : ; yn/ 2 Xn are v-comparable, then F.x1; x2; : : : ; xn/ D
F.y1; y2; : : : ; yn/. In particular, (11.94) holds for � D 1=2.

For simplicity, henceforth, suppose that n is even and let A (respectively, B)
be the set of all odd (respectively, even) numbers in f1; 2; : : : ; ng.

4. For a mapping � W ƒn ! ƒn, we use the notation � 
 .�.1/; �.2/; : : : ; �.n//
and consider

�i 
 .i; i C 1; : : : ; n � 1; n; 1; 2; : : : ; i � 1/ for all i:

Then �i 2 �A;B if i is odd and �i 2 �0
A;B if i is even. Let ˆ D .�1; �2; : : : ; �n/.

5. Take xi
0 D 0 if i is odd and xi

0 D 2 if i is even. Then xi
0 4i

F.x�i.1/
0 ; x�i.2/

0 ; : : : ; x�i.n/
0 / for all i.

Therefore, we can apply Corollary 11.8.2 to conclude that F has, at least, one
ˆ-fixed point. To finish, we prove the previous statements.

If fxmg G! x, then there exists m0 2 N such that jxm � xj D G.x; x; xm/ < 1=2 for
all m � m0. Since X is discrete, then xm D x for all m � m0. This proves that �G is
the discrete topology on X.

1. If fa1mg; fa2mg; : : : ; fan
mg � X are n sequences such that fai

mg G! ai 2 X for all
i, then there exists m0 2 N such that ai

m D ai for all m � m0 and all i. Then

fF.a1m; a
2
m; : : : ; a

n
m/g

G! F.a1; a2; : : : ; an/ and F is G-continuous.
2. If y; z 2 X verify y 4 z, the either y D z (in this case, there is nothing to prove)

or .y; z/ D .0; 2/. Then either y; z 2 f0; 1; 2g or y; z 2 f3; 4g. In particular,

F.x1; : : : ; xi�1; y; xiC1; : : : ; xn/

D
�
0; if x1; : : : ; xi�1; y; xiC1; : : : ; xn 2 f0; 1; 2g;
1; otherwise

�

D F.x1; : : : ; xi�1; z; xiC1; : : : ; xn/:

Hence F has the mixed monotone property on X.
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3. Suppose that .x1; x2; : : : ; xn/; .y1; y2; : : : ; yn/ 2 Xn are v-comparable and we
claim that F.x1; x2; : : : ; xn/ D F.y1; y2; : : : ; yn/. Indeed, assume, for example,
that xi 4i yi for all i. By item 2, for all i, either xi; yi 2 f0; 1; 2g or xi; yi 2 f3; 4g.
Then

F.x1; x2; : : : ; xn/ D
�
0; if x1; x2; : : : ; xn 2 f0; 1; 2g;
1; otherwise

�

D
�
0; if y1; y2; : : : ; yn 2 f0; 1; 2g;
1; otherwise

�
D F.y1; y2; : : : ; yn/:

If xi <i yi for all i, the proof is similar. Next, we prove that (11.94) holds using
� D 1=4. If .x1; x2; : : : ; xn/ 2 Xn, then F.x�i.1/; x�i.2/; : : : ; x�i.n// 2 f0; 1g �
f0; 1; 2g. Therefore

F2ˆ.x1; x2; : : : ; xn/

D F.F.x�1.1/; x�1.2/; : : : ; x�1.n//;F.x�2.1/; x�2.2/; : : : ; x�2.n//;

: : : ;F.x�n.1/; x�n.2/; : : : ; x�n.n/// D 0:

Suppose that .x1; x2; : : : ; xn/; .y1; y2; : : : ; yn/ 2 Xn are v-comparable. It follows
that

G.F.x1; x2; : : : ; xn/;F.y1; y2; : : : ; yn/;F
2
ˆ.x1; x2; : : : ; xn//

D max.jF.x1; x2; : : : ; xn/ � F.y1; y2; : : : ; yn/j ; jF.x1; x2; : : : ; xn/ � 0j ;
jF.y1; y2; : : : ; yn/ � 0j/

D max.F.x1; x2; : : : ; xn/;F.y1; y2; : : : ; yn//

D
�
0; if F.x1; x2; : : : ; xn/ D F.y1; y2; : : : ; yn/ D 0;

1; otherwise.

It is clear that (11.94) holds if the previous number is 0. On the contrary, suppose
that

G.F.x1; x2; : : : ; xn/;F.y1; y2; : : : ; yn/;F
2
ˆ.x1; x2; : : : ; xn// D 1:

Then F.x1; x2; : : : ; xn/ D 1 or F.y1; y2; : : : ; yn/ D 1 (both cases are similar).
Assume, for example, that F.x1; x2; : : : ; xn/ D 1. Then there exists i0 2
f1; 2; : : : ; ng such that xi0 2 f3; 4g. In particular

ˇ̌
xi0 � F.x�i0 .1/

; x�i0 .2/
; : : : ; x�i0 .n/

/
ˇ̌ � 3 � 1 D 2:
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Therefore

max
1�i�n

G.xi; yi;F.x�i.1/; x�i.2/; : : : ; x�i.n///

� G.xi0 ; yi0 ;F.x�i0 .1/
; x�i0 .2/

; : : : ; x�i0 .n/
//

� ˇ̌
xi0 � F.x�i0 .1/

; x�i0 .2/
; : : : ; x�i0 .n/

/
ˇ̌ � 2:

This means that

G.F.x1; x2; : : : ; xn/;F.y1; y2; : : : ; yn/;F
2
ˆ.x1; x2; : : : ; xn// D 1

D 1

2
2 � 1

2
max
1�i�n

G.xi; yi;F.x�i.1/; x�i.2/; : : : ; x�i.n///:

Therefore, in this case, (11.94) also holds.
4. It is clear.
5. Since xi

0 2 f0; 1; 2g for all i, then F.x�i.1/
0 ; x�i.2/

0 ; : : : ; x�i.n/
0 / D 0 for all i. If i is

odd, then xi
0 D 0 4i 0 D F.x�i.1/

0 ; x�i.2/
0 ; : : : ; x�i.n/

0 /. If i is even, then xi
0 D 2 <

0 D F.x�i.1/
0 ; x�i.2/

0 ; : : : ; x�i.n/
0 /, so xi

0 4i F.x�i.1/
0 ; x�i.2/

0 ; : : : ; x�i.n/
0 /.

11.9 Multidimensional Cyclic Fixed Point Theory

In this section, we show some sufficient conditions to guarantee that two mappings
F W Xn ! X and g W X ! X have a cyclic (multidimensional) coincidence point,
that is, a point .x1; x2; : : : ; xn/ 2 Xn such that

F .xi; xiC1; xiC2; : : : ; xn; x1; x2; : : : ; xi�1/ D gxi for all i 2 f1; 2; : : : ; ng :

Given a point .x1; x2; : : : ; xn/ 2 Xn, for simplicity, we denote

Oxn
i D .xi; xiC1; xiC2; : : : ; xn; x1; x2; : : : ; xi�1/ 2 Xn:

Notice that we shall not involve the mixed monotone property.

Theorem 11.9.1. Let .X;G/ be a complete G-metric space and let F W Xn ! X
and g W X ! X be two mappings such that F.Xn/ � g.X/ and g is continuous and
commutes with F. Suppose that exist two functions  2 Falt and � 2 F 0

alt such that,
for all .x1; x2; : : : ; xn/ ; .y1; y2; : : : ; yn/ 2 Xn,

max
1�i�N

 
�
G
�
F.Oxn

i /;F.Oyn
i /;F.Oyn

i /
��

� . � �/
�

max
1�i�N

G .gxi; gyi; gyi/

�
: (11.95)
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Then F and g have a unique common cyclic fixed point .!1; !2; : : : ; !n/ 2 Xn, that
is, a point satisfying

F .!i; !iC1; : : : ; !n; !1; !2; : : : ; !i�1/ D g!i D !i:

for all i 2 f1; 2; : : : ; ng.

Proof. From Corollary 10.3.1, consider on Xn the G�-metric given by

Gn.X;Y;Z/ D max
1�i�N

G.xi; yi; zi/

for all X D .x1; x2; : : : ; xn/;Y D .y1; y2; : : : ; yn/;Z D .z1; z2; : : : ; zn/ 2 Xn. Define
H;G W Xn ! Xn by

H .x1; x2; : : : ; xn/ D �
F.Oxn

1/;F.Oxn
2/; : : : ;F.Oxn

n/
�

and

G .x1; x2; : : : ; xn/ D .gx1; gx2; : : : ; gxn/

for all .x1; x2; : : : ; xn/ 2 Xn. Then G is Gn-continuous and it commutes with H
because

F.cgxi
n/ D F .gxi; gxiC1; : : : ; gxn; gx1; : : : ; gxi�1/

D gF .xi; xiC1; : : : ; xn; x1; : : : ; xi�1/ D gF.Oxn
i /

for all i 2 f1; 2; : : : ; ng. Then

HG .x1; x2; : : : ; xn/ D H.gx1; gx2; : : : ; gxn/

D .F.cgx1
n/;F.cgx2

n/; : : : ;F.cgxn
n//

D �
gF.Oxn

1/; gF.Oxn
2/; : : : ; gF.Oxn

n/
�

D G �F.Oxn
1/;F.Oxn

2/; : : : ;F.Oxn
n/
�

D GH .x1; x2; : : : ; xn/ :

The contractivity condition (11.95) means that, for all .x1; x2; : : : ; xn/ ; .y1; y2; : : : ;
yn/ 2 Xn,

Gn .H .x1; x2; : : : ; xn/ ;H .y1; y2; : : : ; yn/ ;H .y1; y2; : : : ; yn//

D Gn

	�
F.Oxn

1/;F.Oxn
2/; : : : ;F.Oxn

n/
�
;
�
F.Oyn

1/;F.Oyn
2/; : : : ;F.Oyn

n/
�

�
F.Oyn

1/;F.Oyn
2/; : : : ;F.Oyn

n/
�


D max
1�i�N

 
�
G
�
F.Oxn

i /;F.Oyn
i /;F.Oyn

i /
��
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� . � �/
�

max
1�i�N

G .gxi; gyi; gyi/

�

� . � �/ .Gn .G .x1; x2; : : : ; xn/ ;G .y1; y2; : : : ; yn/ ;

G .y1; y2; : : : ; yn/// :

Applying Theorem 4.3.2 to H and G in .Xn;Gn/ (which is also valid for G�-
metric spaces), we deduce that H and G have a unique common fixed point
! D .!1; !2; : : : ; !n/ 2 Xn, that is, a point satisfying ! D H! D G!. This
condition shows that

.!1; !2; : : : ; !n/ D .g!1; g!2; : : : ; g!n/

D �
F. O!n

1 /;F. O!n
2 /; : : : ;F. O!n

n/
�
;

that is,

F. O!n
i / D g!i D !i for all i 2 f1; 2; : : : ; ng :

Hence, .!1; !2; : : : ; !n/ is the unique common cyclic fixed point of F and g. ut
Corollary 11.9.1. Let .X;G/ be a complete G-metric space and let F W Xn ! X
and g W X ! X be two mappings such that F.Xn/ � g.X/ and g is continuous
and commutes with F. Suppose that exists a constant � 2 Œ0; 1/ such that, for all
.x1; x2; : : : ; xn/ ; .y1; y2; : : : ; yn/ 2 Xn,

max
1�i�N

G
�
F.Oxn

i /;F.Oyn
i /;F.Oyn

i /
� � � max

1�i�N
G .gxi; gyi; gyi/ :

Then F and g have a unique common cyclic fixed point .!1; !2; : : : ; !n/ 2 Xn, that
is, a point satisfying

F .!i; !iC1; : : : ; !n; !1; !2; : : : ; !i�1/ D g!i D !i:

for all i 2 f1; 2; : : : ; ng.



Chapter 12
Recent Motivating Fixed Point Theory

In this chapter, we present some recent fixed/coincidence point results. They show
some current research, thoughts and directions on fixed point theory in metric type
spaces. However, in order not to enlarge the present book we will not include their
proofs. We give the references so that the interested reader can find the proofs.

12.1 Some Almost Generalized . ; �/-Contractions
in G-Metric Spaces

In [28], Aydi, Amor and Karapınar proved the following results. Let .X;G/ be a
G-metric space. First, we consider the following expressions:

M .x; y; z/ D max
˚
G.x;Tx; y/;G.y;T2x;Ty/;G.Tx;T2x;Ty/;G.x;Tx; z/

G.z;T2x;Tz/;G.Tx;T2x;Tz/;G.x; y; z/
�

and

N .x; y; z/ D min fG.x;Tx;Tx/;G.y;Ty;Ty/;G.z;Tz;Tz/

G.z;Tx;Tx/;G.y;Tz;Tz/g
for all x; y; z 2 X.

Theorem 12.1.1. Let .X;G/ be a complete G-metric space. Let T W X ! X be a
self-mapping. Suppose there exist  2 Falt, � 2 F 0

alt and L � 0 such that, for all
x; y; z 2 X,

 .G .Tx;Ty;Tz// �  .M .x; y; z// � � .M .x; y; z//C L N .x; y; z/ :

Then T has a unique fixed point.
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In the next result, the authors used the following notation: for all x; y 2 X,

M� .x; y/ D max
˚
G.x;Tx; y/;G.y;T2x;Ty/;G.Tx;T2x;Ty/;

G.x;Tx;Tx/;G.Tx;T2x;T2x/;G.x; y;Tx/
�

and

N� .x; y/ D min fG.x;Tx;Tx/;G.y;Ty;Ty/;G.y;Tx;Tx/g :

Theorem 12.1.2. Let .X;G/ be a complete G-metric space. Let T W X ! X be a
self-mapping. Suppose there exist  2 Falt, � 2 F 0

alt and L � 0 such that, for all
x; y 2 X,

 
�
G
�
Tx;Ty;T2x

�� �  
�
M� .x; y/

� � � �M� .x; y/
�C L N� .x; y/ :

Then T has a unique fixed point.

12.2 Common Fixed Point for Two Pairs of Mappings
Satisfying the (E.A) Property in G-Metric Spaces

In [129], Long, Abbas, Nazir and Radenović proved the following result, where they
used the notion of weak compatibility introduced in Definition 6.4.1 and the concept
of the point of coincidence given in Definition 6.4.2.

Theorem 12.2.1. Let X be a G-metric space and f ; g; S;T W X ! X be mappings
with f .X/ � T .X/ and g .X/ � S .X/ such that

 .G . fx; gy; gy// �  .M .x; y; y// � � .M .x; y; y//

where

M .x; y; y/ D max

�
G .Sx;Ty;Ty/ ;G .fx; Sx; Sx/ ;G .Ty; gy; gy/ ;

G.fx;Ty;Ty/C G.Sx; gy; gy/

2

�
;

or

 .G .fx; fx; gy// �  .M .x; x; y// � � .M .x; x; y//

where

M .x; x; y/ D max

�
G.Sx; Sx;Ty/;G.fx; fx; Sx/;G.Ty;Ty; gy/;

G.fx; fx;Ty/C G.Sx; Sx; gy/

2

�
;
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hold for all x; y 2 X, where  2 Falt and � 2 F 0
alt. Suppose that one of the pairs

.f ; S/ and .g;T/ satisfies the (E.A) property and one of the subspace f .X/, g .X/,
S .X/, T .X/ is closed in X. Assume that for every sequence fyng in X, at least one of
the following conditions holds:

.a/ fgyng is bounded in the case when .f ; S/ satisfies (E.A) property,

.b/ ffyng is bounded in the case when .g;T/ satisfies (E.A) property.

Then, the pairs .f ; S/ and .g;T/ have a common point of coincidence in X.
Moreover, if the pairs .f ; S/ and .g;T/ are weakly compatible, then f , g, S and T
have a unique common fixed point.

12.3 Coincidence Point Results Using Six Mappings

In [87], Gu and Yang proved the following result.

Theorem 12.3.1. Let .X;G/ be a complete G-metric space, and let f , g, h, A, B and
C be six mappings of X into itself satisfying the following conditions:

(i) f .X/ � B.X/, g.X/ � C.X/, h.X/ � A.X/;
(ii) For all x; y; z 2 X,

G.fx; gy; hz/ � � max

0

BBB
BB
@

G.Ax;By;Cz/; G.Ax; fx; fx/;
G.By; gy; gy/; G.Cz; hz; hz/;
G.Ax; gy; gy/; G.Ax; hz; hz/;
G.By; fx; fx/; G.By; hz; hz/;
G.Cz; fx; fx/; G.Cz; gy; gy/

1

CCC
CC
A

or

G.fx; gy; hz/ � � max

0

BBBB
B
@

G.Ax;By;Cz/; G.Ax;Ax; fx/;
G.By;By; gy/; G.Cz;Cz; hz/;
G.Ax;Ax; gy/; G.Ax;Ax; hz/;
G.By;By; fx/; G.By;By; hz/;
G.Cz;Cz; fx/; G.Cz;Cz; gy/

1

CCCC
C
A

where � 2 �0; 1
2

�
. If one of the following conditions is satisfied:

(a) Either f or A is G-continuous, the pair .f ;A/ is weakly commuting, the pairs
.g;B/ and .h;C/ are weakly compatible;

(b) Either g or B is G-continuous, the pair .g;B/ is weakly commuting, the pairs
.f ;A/ and .h;C/ are weakly compatible;

(c) Either h or C is G-continuous, the pair .h;C/ is weakly commuting, the pairs
.f ;A/ and .g;B/ are weakly compatible;
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then

(I) one of the pairs .f ;A/, .g;B/ and .h;C/ has a coincidence point in X;
(II) the mappings f , g, h, A, B and C have a unique common fixed point in X.

In [86], Gu and Shatanawi introduced the following notion.

Definition 12.3.1. Let .X;G/ be a G-metric space and let f ; g; h;R; S;T W X ! X be
six mappings. We say that the triple .f ; g; h/ is a generalized weakly G-contraction
mapping of type A with respect to the triple .R; S;T/ if for all x; y; z 2 X, the
following inequality holds:

 .G . fx; gy; hz// �  

�
G.Rx; gy; gy/C G.Sy; hz; hz/C G.Tz; fx; fx/

3

�

� � .G.Rx; gy; gy/;G.Sy; hz; hz/;G.Tz; fx; fx// ;

where 2 Falt and � W Œ0;1/3 ! Œ0;1/ is a continuous function with � .t; s; u/ D
0 if, and only if, t D s D u D 0.

Definition 12.3.2. Let .X;G/ be a G-metric space and let A;B; S;T W X ! X be
four self-maps on X. The pairs .A; S/ and .B;T/ are said to satisfy the common
(E.A) property if there exist t 2 X and two sequences fxng and fyng in X such that

lim
n!1 Axn D lim

n!1 Sxn D lim
n!1 Byn D lim

n!1 Tyn D t:

Theorem 12.3.2. Let .X;G/ be a G-metric space and let f ; g; h;R; S;T W X ! X be
six mappings such that .f ; g; h/ is a generalized weakly G-contraction mapping of
type A with respect to .R; S;T/. If one of the following conditions is satisfied, then
the pairs .f ;R/, .g; S/ and .h;T/ have a common point of coincidence in X.

(i) The subspace RX is closed in X, f .X/ � S.X/, g.X/ � T.X/, and two pairs of
.f ;R/ and .g; S/satisfy the common (E.A) property;

(ii) The subspace SX is closed in X, g.X/ � T.X/, h.X/ � R.X/, and two pairs of
.g; S/ and .h;T/ satisfy the common (E.A) property;

(iii) The subspace TX is closed in X, f .X/ � S.X/, h.X/ � R.X/, and two pairs of
.f ;R/ and .h;T/ satisfy the common (E.A) property.

Moreover, if the pairs .f ;R/, .g; S/ and .h;T/ are weakly compatible, then f , g,
h, R, S and T have a unique common fixed point in X.

12.4 Common Fixed Point Theorems of Altman Integral
Type Mappings in G-Metric Spaces

In 1975, Altman [22] proved a fixed point theorem for a mapping T W X ! X which
satisfies the condition

d .Tx;Ty/ � Q .d .x; y// for all x; y 2 X;
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where Q W Œ0;1/ ! Œ0;1/ is an increasing function satisfying the following
conditions:

.i/ 0 < Q .t/ < t for all t 2 .0;1/;
.ii/ p .t/ D t= .t � Q .t// is a decreasing function;
.iii/ for some positive number t1, there holds

Z t1

0

p .t/ dt < 1:

From condition .i/ and the fact that Q is increasing, we observe that Q .0/ D 0

and Q .t/ D t if, and only if, t D 0. In [88], Gu and Ye introduced the following
result. We denote by � W Œ0;1/ ! Œ0;1/ a function satisfying 0 < � .t/ < t for all
t > 0.

Theorem 12.4.1. Let .X;G/ be a complete G-metric space and let S, T, R, f , g, and
h be six mappings of X into itself. If there exists an increasing function Q W Œ0;1/ !
Œ0;1/ satisfying the conditions .i/, .ii/ and .iii/, and the following conditions:

.iv/ S.X/ � g.X/, T.X/ � h.X/, R.X/ � f .X/,
.v/ for all x; y; z 2 X,

Z G.Sx;Ty;Rz/

0

ı.t/ dt � �

 Z Q.G. fx;gy;hz//

0

ı.t/ dt

!

;

where ı .t/ is a Lebesgue integrable function which is summable nonnegative
such that

Z "

0

ı.t/ dt > 0 for all " > 0:

Then

.a/ one of the pairs .S; f /, .T; g/ and .R; h/ has a coincidence point in X,

.b/ if .S; f /, .T; g/ and .R; h/ are three pairs of continuous �-weakly commuting
mappings, then the mappings S, T, R, f , g and h have a unique common fixed
point in X.



Appendix A
Some Basic Definitions and Results
in Metric Spaces

A.1 First Results in Partially Ordered Metric Spaces

A function  W Œ0;1/ �! Œ0;1/ is upper semi-continuous provided that for each
t � 0 and each sequence ftngn2N such that if lim

n!1 tn D t, it follows that

lim sup
n!1

 .tn/ �  .t/:

A function  W Œ0;1/ �! Œ0;1/ is lower semi-continuous provided that for each
t � 0 and each sequence ftngn2N such that if lim

n!1 tn D t, it follows that

lim inf
n!1  .tn/ �  .t/:

Let X;Y be non empty sets and T W X ! Y a given mapping: T is said surjective
(or onto) if for all y 2 Y , there exists x 2 X such that Tx D y.
T is said injective (or one to one) if for some x; y 2 X such that Tx D Ty, then x D y.
For x 2 X, define T2x D T.Tx/. Inductively, we define for m � 3, Tm.x/ D
T.Tm�1x/.

Theorem A.1.1 (Ran and Reurings [168]). Let .X;4/ be an ordered set endowed
with a metric d and let T W X ! X be a given mapping. Suppose that the following
conditions hold:

(i) .X; d/ is complete;
(ii) T is continuous and non-decreasing (with respect to 4);

(iii) there exists x0 2 X such that x0 4 Tx0;
(iv) there exists a constant � 2 .0; 1/ such that for all x; y 2 X with x < y,

d.Tx;Ty/ � �d.x; y/:
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Then T has a fixed point. Moreover, if for all .x; y/ 2 X � X there exists z 2 X
such that x 4 z and y 4 z, we obtain uniqueness of the fixed point.

Definition A.1.1 ([84]). An ordered metric space .X; d;4/ is said to be non-
decreasing-regular (respectively, non-increasing-regular) if for all sequence
fxmg � X such that fxmg ! x and xm 4 xmC1 (respectively, xm < xmC1) for all
m, we have that xm 4 x (respectively, xm < x) for all m. Also .X; d;4/ is said to be
regular if it is both non-decreasing-regular and non-increasing-regular.

Theorem A.1.2 (Nieto and Rodríguez-López [158]). Let .X;4/ be an ordered set
endowed with a metric d and T W X ! X be a mapping. Suppose that the following
conditions hold:

(i) .X; d/ is complete;
(ii) .X; d;4/ is non-decreasing-regular;

(iii) T is 4-non-decreasing;
(iv) there exists x0 2 X such that x0 4 Tx0;
(v) there exists a constant � 2 .0; 1/ such that for all x; y 2 X with x < y,

d.Tx;Ty/ � �d.x; y/:

Then T has a fixed point. Moreover, if for all .x; y/ 2 X � X there exists w 2 X
such that x 4 w and y 4 w, we obtain uniqueness of the fixed point.

A.2 ˛ - - Contractive Mappings on Metric Spaces

Recently, Samet et al. [183] introduced the following concepts.

Definition A.2.1. Let .X; d/ be a metric space and let T W X ! X be a given
mapping. We say that T is an ˛ - - contractive mapping if there exist two functions
˛ W X � X ! Œ0;1/ and  2 F .c/

com such that

˛ .x; y/ d .Tx;Ty/ �  .d .x; y// for all x; y 2 X:

Clearly, any contractive mapping in the Banach sense (that is, verifying
d .Tx;Ty/ � � d .x; y/) is an ˛ - - contractive mapping with ˛ .x; y/ D 1 for
all x; y 2 X and  .t/ D �t for all t � 0 and some � 2 Œ0; 1/.

In some cases, the function ˛ will be intimately related with a partial order in
the following sense: if 4 is a partial order on X, we will consider the mapping
˛4 W X � X ! X given, for all x; y 2 X, by

˛4 .x; y/ D
�
1; if x 4 y;
0; otherwise.
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Definition A.2.2. Let X be a set and let T W X ! X and ˛ W X � X ! Œ0;1/ be two
mappings. We say that T is ˛ - admissible if, for all x; y 2 X, we have

˛ .x; y/ � 1 ) ˛ .Tx;Ty/ � 1:

Various examples of such mappings were presented in [183]. The main results in
[183] are the following fixed point theorems.

Theorem A.2.1. Let .X; d/ be a complete metric space and let T W X ! X be an
˛ - - contractive mapping. Suppose that

(i) T is ˛ - admissible;
(ii) there exists x0 2 X such that ˛ .x0;Tx0/ � 1;

(iii) T is continuous.

Then there exists u 2 X such that Tu D u:

Theorem A.2.2. Let .X; d/ be a complete metric space and let T W X ! X be an
˛ - - contractive mapping. Suppose that

(i) T is ˛ - admissible;
(ii) there exists x0 2 X such that ˛ .x0;Tx0/ � 1;

(iii) if fxng is a sequence in X such that ˛ .xn; xnC1/ � 1 for all n 2 N and fxng !
x 2 X, then ˛ .xn; x/ � 1 for all n 2 N.

Then there exists u 2 X such that Tu D u.

To obtain the uniqueness of the fixed point, an additional hypothesis can be
considered.

Theorem A.2.3. Under the hypotheses of Theorem A.2.1 (respectively, Theorem
A.2.2), also assume the following condition:

.U1/ For all x; y 2 X , there exists z 2 X such that ˛ .x; z/ � 1 and ˛ .y; z/ � 1.

Then T has a unique fixed point.

Recently, Karapınar and Samet [118] introduced the following concept.

Definition A.2.3. Let .X; d/ be a metric space and let T W X ! X be a given
mapping. We say that T is a generalized ˛ - - contractive mapping if there exist
two functions ˛ W X � X ! Œ0;1/ and  2 F .c/

com such that

˛ .x; y/ d .Tx;Ty/ �  .M .x; y// for all x; y 2 X;

where

M .x; y/ D max

�
d .x; y/ ;

d .x;Tx/C d .y;Ty/

2
;

d .x;Ty/C d .y;Tx/

2

�
:
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Clearly, since  is non-decreasing, every ˛ - - contractive mapping, presented
in [183], is a generalized ˛ - - contractive mapping.

Theorem A.2.4. Let .X; d/ be a complete metric space and let T W X ! X be a
generalized ˛ - - contractive mapping. Suppose that

(i) T is ˛ - admissible;
(ii) there exists x0 2 X such that ˛ .x0;Tx0/ � 1;

(iii) T is continuous.

Then there exists u 2 X such that Tu D u:

Theorem A.2.5. Let .X; d/ be a complete metric space and let T W X ! X be a
generalized ˛ - - contractive mapping. Suppose that

(i) T is ˛ - admissible;
(ii) there exists x0 2 X such that ˛ .x0;Tx0/ � 1;

(iii) if fxng is a sequence in X such that ˛ .xn; xnC1/ � 1 for all n 2 N and fxng !
x 2 X, then ˛ .xn; x/ � 1 for all n 2 N.

Then there exists u 2 X such that Tu D u.

Theorem A.2.6. Under the hypotheses of Theorem A.2.4 (respectively, Theorem
A.2.5), also assume the following condition:

.U2/ For all x; y 2 Fix.T/, there exists z 2 X such that ˛ .x; z/ � 1 and
˛ .y; z/ � 1.

Then T has a unique fixed point.
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157. Nashine, H.K., Golubović, Z., Kadelburg, Z.: Nonlinear cyclic weak contractions in G-metric
spaces and applications to boundary value problems. Fixed Point Theory Appl. 2012, 227
(2012)

158. Nieto, J.J., Rodríguez-López, R.: Contractive mapping theorems in partially ordered sets and
applications to ordinary differential equations. Order 22, 223–239 (2005)

159. Nieto, J.J., Rodríguez-López, R.: Existence and uniqueness of fixed point in partially ordered
sets and applications to ordinary differential equations. Acta Math. Sinica (English Ser.)
23(12), 2205–2212 (2007)

160. Pant, R.P.: Common fixed points of contractive maps. J. Math. Anal. Appl. 226, 251–258
(1998)

161. Pant, R.P.: R-weak commutativity and common fixed points. Soochow J. Math. 25, 37–42
(1999)
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Absolute value, 5
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Banach contractive mapping principle, 51
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Cartesian power, 5
Cauchy sequence, 6
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Coincidence point, 9, 138, 251
Common coupled fixed point, 251
Common fixed point, 9, 251
Common tripled fixed point, 251
Comparable points, 343
Compatible pair, 92, 298, 313

weakly, 138
Completeness, 28, 44, 234
Continuity, 48, 235

orbital, 154
Contraction, 62, 175, 184, 366

Meir–Keeler type, 153, 161
Meir-Keeler type, 167, 207

Coupled coincidence point, 251
Coupled fixed point, 250, 251
Cyclic representation, 118

D
Diameter, 141
Distance function, 26
Domain, 5

E
(E.A) property, 138, 145, 364

common, 366

F
Fixed point, 9, 249, 251
Function

(c)-comparison, 13
˛-admissible, 207
altering distance, 13
Bianchini-Grandolfi gauge, 13
comparison, 11, 12
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Domain, 5
Geraghty, 101
Lower semi-continuous, 369
Range, 5
subadditive, 10
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G
G-metric

discrete, 34
symmetric, 40

G-metric, 33, 34
G-Metric space, 229

complete, 234
G-metric space

complete, 44
ordered, 81

non-decreasing-regular, 84
regular, 84

preordered, 81
G�-Metric space, 231
G-weakly commuting pair, 139

H
Hausdorff separation property, 30

I
Identity mapping, 5
Image, 5
Injective, 5
Interior, 44
Iterate, 6

L
Limit, 44, 234

M
Mapping

bijective, 5
continuous, 48, 235
cyclic, 118
expansive, 219, 223
.g;4/-decreasing, 81
.g;4/-increasing, 80
.g;4/-non-decreasing, 80
.g;4/-non-increasing, 80
identity, 5
injective, 5, 324
inverse Picard continuity, 223
one-to-one, 5
orbitally continuous, 154
right-convergent, 29
surjective, 5

Mappings
Commuting, 6

Metric, 26
Discrete, 27

Euclidean, 27
extended real-valued metric, 28
G-metric, 33, 34
pseudo-metric, 28
pseudo-quasi-metric, 28
quasi-metric, 28
semi-metric, 28
ultrametric, 28

Metric space, 27
Mixed monotone property, 250, 259, 271, 287,

307, 310

N
Neighborhood, 30

O
Orbit, 6

P
Partial order, 79
Picard operator, 54
Point, 5

adherent, 44
closure, 44
cluster, 154
coincidence, 9, 138, 251, 359
common fixed, 9
comon coupled fixed, 251
comon fixed, 251
comon tripled fixed, 251
comparable, 343
coupled coincidence, 251
coupled fixed, 250, 251
fixed, 9, 249, 251
interior, 44
of coincidence, 138
ˆ-coincidence point, 309
ˆ-common fixed point, 309
ˆ-fixed point, 309
tripled coincidence, 251
tripled fixed, 250, 251

Preorder, 79

Q
Quasiorder, 79

R
Radius, 42
Range, 5
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Regularity, 84
Regulatity, 236
Relation

antisymmetric, 79
binary, 79
reflexive, 79
transitive, 79

S
Sandwich theorem, 6
Sequence, 6

asymptotically regular, 52
Cauchy, 6, 28, 44, 234
convergent, 6, 28, 44, 234
inverse Picard, 223
left-convergent, 29
limit, 44, 234
Picard, 51, 52, 288, 310
right-convergent, 29

Set
closed, 30, 44
closure, 44
interior, 44

open, 30, 44
Space

complete, 28, 44
G-metric space, 34
G�-Metric space, 231
generalized metric space, 34
metric, 27
partially ordered, 79
preordered, 79
quasi-metric space, 28
topological, 30

Subsequence, 6
Surjective, 5
Symmetry, 40, 230

T
Topology, 30
Tripled coincidence point, 251
Tripled fixed point, 250, 251

W
weak �-contraction, 62
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