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Preface

Fixed-point theory is one of the major research areas in nonlinear analysis. This is
partly due to the fact that in many real-world problems, fixed-point theory is the
basic mathematical tool used to establish the existence of solutions to problems
which arise naturally in applications. As a result, fixed-point theory is an important
area of study in pure and applied mathematics, and it is a flourishing area of research.
As the title states, this is a book on metric fixed-point theory where the basic ideas
come from metric space topology. We present a self-contained account of the theory
(techniques and results) in metric-type spaces (in particular in G-metric spaces).

The book consists of 12 chapters. The first three chapters present some prelim-
inaries and historical notes on metric spaces (in particular G-metric spaces) and
on mappings. A variety of Banach-type contraction theorems in metric-type spaces
are established in Chaps.4, 6, 7, and 8. Fixed-point theory in partially ordered
G-metric spaces is discussed in Chaps.5 and 8. Fixed-point theory for expansive
mappings in metric-type spaces is presented in Chap.9. The final three chapters
discuss generalizations and present results and techniques in a very general abstract
setting and framework.

We would like to express our thanks to our family and friends.

Ravi P. Agarwal, Erdal Karapinar, Donal O’Regan and Antonio F. Roldén-Loépez-
de-Hierro.

Kingsville, USA Ravi P. Agarwal
Incek, Turkey Erdal Karapinar
Galway, Ireland Donal O’Regan
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Chapter 1
Introduction with a Brief Historical Survey

In 1906, Fréchet [78] gave the formal definition of the distance' by introducing a
function d that assigns a nonnegative real number d(x, y) (the distance between x
and y) to every pair (x,y) of elements (points) of a nonempty set X. It is assumed
that this function satisfies the following conditions:

(dl) d(x,y) =0 ifxandy coincide;

(d2) d(x,y) >0 ifxandy are distinct;

(d3) d(x,y) =d(y,x) forallxandyinX;

(d4) d(x,y) <d(x,z) +d(z,y) forallx,yandzinX.

The pair (X, d) is called a metric space.

1.1 2-Metric Spaces

In the sixties, the notion of a 2-metric space was introduced by Géhler [79, 80] in a
series of papers which he claimed to be a generalization of ordinary metric spaces.
This structure is as follows:

Let X be a nonempty set. A function d : X x X —> R is said to be a 2-metric
on X if it satisfies the following properties:

(1) For distinct points x, y € X, there is a point z € X such that d(x, y,z) # 0,
(2) d(x,y,z) = 0if any two elements of the triplet (x, y, z) are equal,

(#3) d(x,y,2) = d(x,z,y) = ..., (symmetry),
(t4) d(x,vy,2) < d(x,y,a) + d(x,a,z) + d(a,y,z) for all x,y,z € X, (triangle
inequality).

't was called metric first by F. Hausdorff [92].

© Springer International Publishing Switzerland 2015 1
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2 1 Introduction with a Brief Historical Survey

A nonempty set X together with a 2-metric d is called a 2-metric space.

In [79], Géhler claimed that a 2-metric function is a generalization of an ordinary
metric function. Ha et al. in [90] showed that a 2-metric need not be a continuous
function of its variables. In particular the contraction mapping theorem in metric
spaces and in 2-metric spaces are unrelated. Dhage [64] introduced a new structure
of a generalized metric space called a D-metric space.

1.2 D-Metric Spaces

Definition 1.2.1. A nonempty set X, together with a function D : X x X x X —
[0, 00) is called a D-metric space, denoted by (X, D) if D satisfies

(i) D(x,y,z) = 0if and only if x = y = z, (coincidence),
(i) D(x,y,z) = D(px,y,z), where p is a permutation of x, y, z (symmetry),
(iii)y D(x,y,z) < D(x,y,a) + D(x,a,z) + D(a,y,z) for all x,y,z,a € X, (tetrahe-
dral inequality).

The nonnegative real function D is called a D-metric on X. The set X together
with such a generalized metric D is called a generalized metric space, or D-metric
space, and denoted by (X, D).

An additional property sometimes imposed on a D-metric (see [65]) is,

D(x,y,y) < D(x,z,2) + D(z,y,y) forall x,y,z € X.
If D(x,x,y) = D(x,y,y) for all x,y € X, then D is referred to as a symmetric
D-metric.

The perimeter of a triangle of vertices x, y, z in R? provided the typical example
of a D-metric. Dhage [64] also gave the following examples of D-metrics:

(E;) Dy(d)(x,y,2) = %(d(x, y) +d(y,z) +d(z.x)), and

(Em) Du(d)(x.y,2) = max{d(x.y).d(y.2).d(z. )},

where (X, d) is a metric space and x, y,z € X.

Definition 1.2.2. In a D-metric space (X, D), three possible notions for the conver-
gence of a sequence {x,} to a point x suggest themselves:

(cn x, —>x if D(x,,x,x) >0 as n— oo,
(C2) x, = x if D(xy,x,,x) >0 as n— o0,

(C3) x, = x if Dy, x,,x) >0 as m,n — oo,
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Clearly, (C3) — (C2) and if D is symmetric then (C1) < (C2). No other
implications are true in general. For more details, see the works of Mustafa and
Sims [142, 154].

In [64], Dhage also defined Cauchy sequences in a D-metric space as follows.

Definition 1.2.3. A sequence {x,} C X is said to be D-Cauchy if, for each ¢ > 0,
there exists a positive integer ng such that, for allm > n > p > ng, D(x,,, X4, X,) < €.

In [64], Dhage mentioned the possibility of defining two topologies, denoted
by t* and t, in any D-metric space, with convergence in the sense of (C3)
corresponding to convergence in the t-topology. More details were presented in
two subsequent papers, [68] and [65].

1.3 Some Problems with D-Metric Spaces

In [64], the t*-topology is generated by the family of open balls of the form
(Bl) B*(x,r):={yeX, D(x,y,y) <r}

where x € X and r > 0.

The convergence of a sequence in the t*-topology is equivalent to its (C2)
convergence. However, in [65], where the t*-topology was discussed, D-metric
convergence of a sequence is taken to mean that it converges in both the sense of
(C2) and (C1), and it is claimed that the D-metric topology (here the 7*-topology)
is the same as the topology of D-metric convergence of sequences in X (in the sense
of (C1) and (C2) convergence). This claim is not true; see Mustafa and Sims [154]
where some examples are presented to affirm this assertion. Thus, the notion of a
D-metric convergence is stronger than convergence in the t*-topology. However,
Mustafa and Sims [154] tried to correct this by taking convergence to mean only in
the sense of (C2), but they encountered a new problem; namely, they constructed a
sequence {x,} which is convergent (in the sense of (C2)), but is not D-Cauchy.

The first attempt to define a t-topology [64] is as follows.

(B2) B(x,r) := Nex{y,z€ X, D(x,y,z) <r}

where x € X and r > 0. A second attempt [68] in order to modify the definition of
T-topology is

(B2) B(x,r):={y,z€X, D(x,y,2) <r}.

Dhage (Theorem 6.1.2 in [68]) claimed that if a D-Cauchy sequence of points in a
D-metric space contains a convergent (in the sense of (C3)) subsequence, then the
sequence is itself convergent. However, Mustafa and Sims [154] provided a concrete
example showing that this is not generally valid.
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Moreover, Dhage [68] took the distance between a point x and a subset A of
(X, D) to be

d(x,x,A) =: inf{D(x,x,a), ae€ X}

and claimed that the function f(x) := d(x, x, A) is continuous in both the 7-topology
[68], and the t*-topology [65]. However, the proofs of Lemma 5.1 in [68] and
Lemma 1.2 in [65] rely on the continuity of D in the respective topologies and also
contain errors; for more details see [142, 154]. Mustafa and Sims [154] showed also
that even a symmetric D-metric arising from a semi-metric, need not be a continuous
function of its variables with respect to convergence in the sense of (C3), contrary
to the claim in [64], Lemma 2.1.



Chapter 2
Preliminaries

In this section we present fundamental definitions and elementary results (see
Apostol [23], Bourbaki [51], and Schweizer and Sklar [186]).

2.1 Sets, Mappings and Sequences

In the sequel, N = {0,1,2,3,...} denotes the set of all nonnegative integers, R
denotes the set of all real numbers and [0, co) (respectively, (0, 00)) denotes the
interval of nonnegative (respectively, positive) reals. The absolute value |x| of a real
number x is the maximum between x and —x, that is, |x| = max{x, —x}.

Henceforth, X and Y will denote nonempty sets. Elements of X are usually called
points. Given a positive integer n, we use X" to denote the nth Cartesian power of
X, thatis, X x X x ... x X (n times).

Letf : X — Y be a mapping. The domain of f is X and it is denoted by Domf. Its
range, that is, the set of values of f in Y, is denoted by f(X) or by Ranf. A mapping
f is completely characterized by its domain, its range, and the manner in which each
origin x € Domf is applied on its image f(x) € f(X). For any set X, we denote the
identity mapping on X by Iy : X — X, which is defined by Ix(x) = x for all x € X.

A mapping f : X — Y is said to be:

* injective (or one to one) if x = y for all x,y € X such that f(x) = f(y);

* injective on a subset U C X if x = y for all x, y € U such that f(x) = f(y);

* surjective (or onto) on a subset V C Y if for all y € V, there exists x € X such
that f(x) = y;

* surjective (or onto) if for all y € Y, there exists x € X such that f(x) = y;

* bijective if it is both injective and surjective.

Proposition 2.1.1. If T : X — X is onto, then there exists a mapping T' : X — X
such that T o T’ is the identity mapping on X.

© Springer International Publishing Switzerland 2015 5
R.P. Agarwal et al., Fixed Point Theory in Metric Type Spaces,
DOI 10.1007/978-3-319-24082-4_2



6 2 Preliminaries

Proof. For any point x € X, let y, € X be any point such that T(y,) = x. Let
T'(x) = y, forall x € X. Then T(T'(x)) = T(y,) = x forall x € X. O

Given two mappings f : X — Y and g : Y — Z, the composite of f and g is the
mapping g of : X — Z given by

(gof)(x) = g(f(x)) forall x € Domf.

We say that two self-mappings f, g : X — X are commuting if f (g (x)) = g (f (x))
for all x € X (thatis,fog = gof).

The iterates of a self-mapping f : X — X are the mappings {f" : X — X},en
defined by

=K fl=f fP=fof, f""'=fof" foralln>2.

If f : X — X is a self-mapping, the orbit O(x) of a point x € X is

0r(x) = ") 1 n € N} = o f(). 20 S @) ).

The following facts are basic notions and properties about sequences. A sequence
in the set X is a function x : N — X. The point x(n) € X will be denoted by x,,
and the sequence x will be denoted by {x, },en or, simply, by {x,} (we will use both
notations). We will write {x,} C X to clarify that {x,} is a sequence whose terms are
points of X. A subsequence of {x,}nen is a sequence {X,)jren, Where m : N — N
is a strictly increasing function, that is, m(k) < m(k+1) for all k € N. Given g € N,
the sequence {x,},>n, is the subsequence y : N — X defined by y(n) = x(n + ny)
foralln € N.

A sequence of real numbers is a sequence {a,} C R (symbol C is used to denote
that a, € R for all n € N but we know that it is impossible that {a, : n € N} is the
whole set R). We will say that:

e {a,} is a Cauchy sequence if for all ¢ > 0, there exists np € N such that
|a, — a| < & forall n,m > ny:

e {a,} converges to L € R (and we will denote it by {a,} — L) if for all ¢ > 0,
there exists ny € N such that |a, — L| < ¢ for all n > ny.

One of the most useful properties in analysis is known as the squeeze theorem or
the sandwich lemma.

Lemma 2.1.1. Let {a,}, {b,} and {c,} be three sequences of real numbers such that
an, < b, < cyforalln € N. If there exists L € R such that {a,} — L and {c,} — L,
then {b,} — L.

Proof. Let ¢ > 0 be arbitrary. Since {a,} — L, there exists n; € N such
that |a, —L| < e for all n > n;. Similarly, as {c,} — L, there exists n, € N
such that |c, — L| < ¢ for all n > n,. Let ny = max{n;,n,} € N. Therefore, if
n € N is such that n > ng, then
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by—L<c¢,—L<|c,—L| <e and

L—b,<L—a,<|a,—L|<e.
As a consequence,
|b, — L| = max{b, —L,L—b,} < ¢

for all n > ngy, which means that {b,} — L. d

Corollary 2.1.1. Let {a,} and {b,} be two sequences of non-negative real numbers
such that a, < b, foralln € N. If {b,} — 0, then {a,} — O.

Corollary 2.1.2. Let {a,},{b,}, {c,} C [0, 00) be three sequences of non-negative
real numbers such that {max (a,,b,)} — 0 and {max (a,,b,,c,)} — L, where
L € [0,00). Then {c,} — L.

Proof. Notice that, for all n € N,

0 < |L—c¢,| <|L—max (a,, by, c,)| + |max (a,, by, cy) — ¢l
< |L — max (ay, by, ¢,)| + max (a,, b,, ¢,) — ¢,
< |L — max (ay,, by, ¢,)| + max (a,, b,) + ¢, — ¢

= |L — max (ay, by, ¢,)| + max (a,, b,) .

Since {|L — max (ay, by, ¢,)| + max (a,, by) neny — 0, then Corollary 2.1.1 implies
that {|L — c,|}nen — 0, which means that {c,},eny — L. 0

Corollary 2.1.3. Let {a}l}neN,...,{aﬁ:’}neN C [0,00) be N sequences of non-
negative real numbers such that {max(a,ll, vy @ ben — 0. Then {ai}en — 0
forallie{1,2,...,N}.

Proof. Tt follows from Corollary 2.1.1 taking into account that 0 < afl < b, for all
i€{l,2,...,N}and all n € N, where b,, = max(a,lp ... ,aﬁ:’) forall n € N. O

If the maximum does not necessarily converge to zero, then we have the
following statement.

Lemma 2.1.2. Let {a},en, . .., {a) },en be N real lower bounded sequences such
that {max(a,l,, e anN)},leN — 4. Then there exists iy € {1,2,...,N} and a
subsequence {ai?(k)}kEN such that {a;f(k)}keN — 4.

Proof. Let b, = max(al,a?,...,aY) for all n € N. As {b,} is convergent,
it is bounded. As afq < b, for all n € N and i € {1,2,...,N}, then
every {a'} is bounded. As {al},en is a real bounded sequence, it has a
convergent subsequence {aclrl(n)}nEN — a;. Consider the subsequences

{a(z71 (n)}nGN’ {ai1 (n)}”EN’ .. .,{ag1 (n)}neN, that are N — 1 real bounded sequences,
and the sequence {bs (s }nen that also converges to 5. As {afyl (n)}neN is a real
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bounded sequence, it has a convergent subsequence {afml p tnen — az. Then
the sequences {agzm (n)}nEN’ {aﬁm (n)}nENv {aﬁm (n)}neN also are N — 2 real
bounded sequences and {a}rm(n)},,eN — a; and {bg,5,(n) }nen — 0. Repeating this
process N times, we can find N subs§quences {a(ly(n)}neN, {ai(n)},,eN, - {aﬁ(n)},,eN
(where 0 = 0, ...01) such that {aﬁ,(,,)}neN — gq; foralli € {1,2,...,N}. Now
{bs(n) tnen — 8. Note

{Do(n) tnen = {max(a},(n), .. .,agv(n))},,eN — max(ay, ..., ay),
so § = max(ai,...,ay) and there exists iy € {1,2,...,N} such that a;, = 6.
Therefore, there exists iy € {1,2,...,N} and a subsequence {aif(,,)}neN such that
{a?(n)}nEN — 4, = 8. ad
Lemma 2.1.3. Let {ali}neN, {aﬁ}neN, ooy {dV ey C [0,00) be N sequences of

nonnegative real numbers and assume that there exists A € [0, 1) such that
Ay +aoy 4. ay,, fk(a},+a5+...+ag) foralln e N.

Then {ai},en — O foralli € {1,2,...,N}.

Proof. Letb, = al +a?+ ...+ d) forall n € N. Then we have that b, < Ab,—; <
APbu—y < ... < A"by.If by = 0, then b, = O for all n € N and, in particular, @/, = 0
foralln € Nandalli € {1,2,...,N}. Hence {a} — Oforalli € {I,2,...,N}.
Suppose that by > 0 and let ¢ > 0 be arbitrary. As A € [0, 1), the geometric
sequence {A"} converges to zero. Therefore, there exists ny € N such that
no i
AT < be

Therefore, for all n € N such that n > n(, we have that

0<b, < A'hy < A™by < bibo _
0

Hence, {b,} — 0. Now as 0 < aﬁl <b,foralln € Nandalli € {1,2,...,N}, we
conclude that {a'} — 0 foralli € {1,2,...,N}. O

Corollary 2.14. Let {a,} C [0,00) be a sequence and assume that there exists
A € [0, 1) such that a,+, < Aa, for all n € N. Then {a,} — 0.

In the sequel, we will use sequences that depends on two natural numbers, so we
introduce the following notation. A double sequence of nonnegative real numbers is
a function A : N x N — [0, 00). Given a number L € [0, 00), we will write:

e lim A(n,m) = Lif forall ¢ > 0, there exists ny € N such that |[A(n,m) — L| <

n,m— 00
¢ for all n,m € N verifying n > ny and m > ny;
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. lim A(n,m) = L if for all ¢ > 0, there exists np € N such that

n,m—>00, n<m
|A(n,m) — L| < & for all n,m € N verifying m > n > ny;
. lim A(n,m) = L if for all ¢ > 0, there exists np € N such that

n,m—>00, n<m
|A(n,m) — L| < & for all n,m € N verifying m > n > ny.

For simplicity, we will use the notation “n,m > ny” when “n > ng and m > ny”.
If L = 0, then the previous notions can be written as follows.

e lim A(n,m) = 0if for all € > 0, there exists ny € N such that A(n, m) < ¢ for

nm—>0o0
all n,m € N verifying n, m > ny;
. lim  A(n,m) = Oifforall e > 0, there exists ny € Nsuchthat A(n,m) < e

nm—>00, n<m
for all n,m € N verifying m > n > ny;

. lim A(n,m) = 0if for all £ > 0, there exists ny € N such thatA(n,m) < ¢
nm—>00, n<m

for all n,m € N verifying m > n > ny.

2.2 Fixed, Coincidence and Common Fixed Points

In this section we present these well known concepts from the literature.

Definition 2.2.1. Given a self-mapping 7 : X — X, we will say that a pointx € X
is a fixed point of T if Tx = x. We will denote by Fix(T') the set of all fixed points
of T.

Similarly, given two mappings 7, g : X — X, we will say that a pointx € X is a
coincidence point of T and g if Tx = gx, and it is a common fixed point of T and g
if Tx = gx = x. We will denote by Co(T, g) the set of all coincidence points of T
and g.

A coincidence point of two mappings 7 and g is a solution of the nonlinear
equation 7x = gx. In this book we will present some sufficient conditions
to guarantee existence and, in some cases, uniqueness, of fixed, coincidence or
common fixed points in the setting of G-metric spaces.

In the past, many conditions have been introduced in order to guarantee existence
of coincidence points. One of the most simple, but useful, property is the following
one.

Lemma 2.2.1. LetT,g : [a, b] — R be two continuous functions such that Ta < ga
and Tb > gb. Then T and g have, at least, a coincidence point ¢ € (a, b).

Remark 2.2.1. If T and g are commuting and x is a coincidence point of T and g,
then y = Tx is also a coincidence point of T and g. It follows from 7y = Tgx =

gTx = gy.
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2.3 Control Functions

This section introduces examples of functions that are usually involved in establish-
ing fixed (or coincidence) point results.
Next, we list a collection of properties on a mapping ¢ : [0, 00) — [0, 00).

(P1) ¢ is non-decreasing, that is, if 0 < 7 < s, then ¢ (t) < ¢ (s).

(P,) ¢ is increasing, that is, if 0 < ¢ < s, then ¢ (1) < ¢ (s).

(P3) ¢ (t) = 0if, and only if, r = O (this is equivalent to say that ¢—' ({0}) = {0}).

(Ps) ¢ is continuous.

(Ps) ¢ is right-continuous.

(Ps) ¢ is left-continuous.

(P7) ¢ is lower semi-continuous.

(Pg) ¢ is upper semi-continuous.

(Py) There exist kp € N, A € (0,1) and a convergent series Y ,.,vx of non-
negative real numbers such that -

¢t (1) < A" (1) + vp forallr> 0and all k > k.

(P10) The series Y ¢" (r) converges for all ¢ > 0.
n>1

(P11) lim ¢" (t) = 0forallt > 0.
(P12) ¢ (f) <tforallt> 0.
(P13) lim ¢ () = 0.
=0t
(P1s) lim ¢ (s) < tforallt> 0.

s>t
(P1s) lim ¢ (s) > Oforallz > 0.
(Pis) ¢ (1) < 1forallz> 0, thatis, ¢ : [0,00) — [0, 1).
(P17) If {t,} C [0, 00) is a sequence such that {¢ (t,)} — 1, then {z,} — O.
(Pis) ¢ is subadditive, that is, ¢ (r +5) < ¢ (1) + ¢ (s) for all 7,5 > 0.

In Table 2.1, we give some of the families we will use, together with the name of
some of those functions.

Remark 2.3.1. We have the following implications.

s (P1) = (P).

* (Py) implies (Ps), (Ps), (P7) and (Ps).
(P9) < (Pro) (see [37]).

(Pro) = (P11).

(P12) = (P13).
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Table 2.1 Some families of control functions
Name Family | Properties

Comparison function (Matkowski [135]) | Feom | (P1) 4+ (P11)

(c)-Comparison function c(éin (P1) + (Py)
Altering distance function [123] Fant (PD) + (Ps) + (P3)
Associated to altering distance function (I) | 7, (P3) + (P7)

Associated to altering distance function (I) | Fp, (P3) + (P13) + (P15)

Geraghty function FGer (P1s) + (P17)
Boyd-Wong function Fpw (Pg) + (P12)
Mukerjea function Fvk | (Ps) + (Pr2)
Cirié function Fcir (P12) + (P1y)
Browder function Fere (P1) + (P5)
Krasnoselskii function Fkr (P3) + (Ps)
Auxiliary functions Fa (P1) + (P3)

2.3.1 Comparison Functions

In [135], Matkowski considered functions satisfying (P;), (P11) and (P;). Notice
that, in general, there is no relationship between (P;;) and (Pi,). For example, the
function ¢ : [0, 00) — [0, c0) defined by

0,ifr # 1,

D=1 =1,

satisfies (P;1) but it does not satisfy (P;3). Conversely, the function

0, ifr<l,
()= 1+¢
2

Jifr> 1,

satisfies (P1) but it does not satisfy (P;1) (notice that the sequence {z,}, defined
by tp = 2 and t,41 = ¢(t,) for all n € N, converges to 1). However, when ¢ is
non-decreasing, we have the following relationship.

Proposition 2.3.1 (Matkowski [135]). (P;) + (P11) = (Pr2).

Proof. Assume that (P;,) is false. Then, there exists #, > 0 such that 7y < ¢ (z9).
As ¢ is non-decreasing, then ¢ (f)) < ¢ (¢ (tp)), which implies that 7y < ¢ (fp) <
¢? (ty). By induction, it can be proved that ty < ¢" (t,) for all n € N. Then (P;)
cannot hold. O
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Although functions satisfying (P;) and (Py;) (and, consequently, also (Pi2))
could be called Matkowski functions, in the literature these functions are known as
comparison functions (see, for example, [36—38]).

Definition 2.3.1. A comparison function is a non-decreasing function ¢
[0,00) — [0,00) such that {¢"()} — O for all + > 0. Let F.oy, denote the
family of all comparison functions.

Matkowski also pointed out the following partial converse using functions
belonging to Fypu.

Proposition 2.3.2 (Matkowski [135]). (Ps) + (P12) = (Pn)).

Proof. Let ¢ be a function verifying (Ps) and (Pj2). As ¢ is right-continuous at
t = 0and ¢ () < tforall t > 0, then ¢ (0) = 0. Let 5 > 0 be arbitrary and let
t, = ¢"(ty) for all n € N. We distinguish two cases.

Case 1. t, > 0 foralln € N. In this case, 0 < t,41 = ¢(t,) < t, foralln € N.
Then, {z,} is a bounded below, decreasing sequence of real numbers. Hence, it is
convergent. Let L > 0 be its limit. As ¢ is right-continuous,

#(L) = lim ¢(t) = lim ¢(1,) = lim f,41 = L.
t—Lt+ n—o0 n—>00

Thus, L = 0 and {¢"(#)} — O.
Case 2. There exists ng € N such that t,, = 0. In this case, t,y+1 = ¢(t,,) =
¢(0) = 0. By induction, t, = 0 for all n > ny, so {¢"(tp)} = {t,} — O. O

Remark 2.3.2. In the proof of Theorem 2.2 in [127], the authors announced another
converse statement: (Pj;) and (Py4) implied (P;y), that is, if ¢ € Fgy, then
lim,— 00 ¢" (f) = O for all + > 0. Unfortunately, this is false. For example, if
¢ : [0,00) — [0, 00) is defined by

1,ift =0,

piy=1""
0,if t >0,

then ¢ € Feir but lim,, o0 ¢" (1) does not exist because {¢" (1)},en is the alternated

sequence {1,0,1,0,1,0,...}.

Lemma 2.3.1 ([179]). If ¢ : [0, 00) — [0, 00) is a comparison function, then:

1. each iterate ¢" is also a comparison function;
2. ¢(t) <tforallt>0;
3. ¢ is continuous at t = 0 and ¢ (0) = 0.

For practical reasons, Berinde introduced in [37] the notion of (c)-comparison
function as follows.
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Definition 2.3.2. A (c)-comparison function is a non-decreasing function ¢
[0, 00) — [0, 00) such that there exist kp € N, a € (0, 1) and a convergent series of
nonnegative terms ) ., v verifying

¢ (1) < ag®(t) + v forallk > ky and all £ > 0.

In some sources, (c)-comparison functions are called Bianchini-Grandolfi gauge
functions (see e.g. [45, 166, 167])

Lemma 2.3.2 (Berinde [36, 37]). If ¢ : [0,00) — [0,00) is a (c)-comparison
function, then the following properties hold:

¢ is a comparison function;

¢ () <t forallte (0,00);

¢ is continuous at t = 0 and ¢(0) = 0;

the series ), ¢"(t) converges for all t € [0, 00);

{@" (1)},,en converges to 0 as n — oo for all t € (0, 00);
the function @4 : [0, 00) — [0, 00) defined by

SR BN~

wg(1) = §¢k(t) forallt >0
k=0

is non-decreasing and continuous att = 0.

2.3.2 Altering Distance Functions and Associated Functions

Definition 2.3.3 (Khan et al. [123]). An altering distance function is a continuous,
non-decreasing function ¢ : [0,00) — [0, 00) such that ¢(¢#) = 0 if, and only if,
t = 0. Let Fy denote the family of all altering distance functions.

Fae = {¢ : [0, 00) — [0, 00) : ¢ is continuous, non-decreasing
and ¢~ ({0}) = {0}}.

As we shall see, many fixed point theorems involve a contractivity condition in
which two functions, ¥ € Fy, and ¢ € F,,, play a key role.

Proposition 2.3.3. Fu C Fa, Far C Fkr

The following results can be found in the literature, but we recall them here for
the sake of completeness.

Proposition 2.3.4. If¢ : [0, 00) — [0, o0) is a non-decreasing function and {a,} C
[0, 00) is a sequence such that ¢ (a,+1) < ¢ (a,) for alln € N, then a,4+ < a, for
all n € N. In particular, {a,} is convergent and L < a,, for all n € N (where L is the
limit of {a,}).



14 2 Preliminaries

Proof. If there exists some ny € N such that a,, < a,,+1, then ¢ (a,,) =<
@ (any+1) < @ (ay,), which is impossible. |

Lemma 2.3.3. If ¢ € Fa and {a,} C [0, 00) is a sequence such that {¢ (a,)} — 0,
then {a,} — 0.

Proof. Assume that {¢ (a,)} — 0 but {a,} does not converge to zero. This means
that there exists &y > 0 such that, for all n € N, there exists m € N with m > n and
an > €. In particular, {a,} has a subsequence {a,)} such that a,z > & for all
k € N. Since ¢! ({0}) = {0}, we have that ¢ (g9) > 0. Furthermore, as ¢ is non-
decreasing, we have that 0 < ¢ (¢9) < ¢(anu)) for all k € N. However, {¢ (a,x))}
is a subsequence of {¢ (a,)} which converges to zero. This contradiction shows that

necessarily {a,} — 0. O

The previous lemma is false if we replace monotonicity by continuity. For
example, if

t, if0=<tr=<l1,
1= -
v 1/t,ift > 1,
then {¢ (n)},en — 0 but {n},en — 0.

Many fixed point theorems use a contractivity condition involving a difference
V¥ — ¢ where ¢ € Fy and ¢ € F,.

Lemma 2.3.4. Let Y, ¢ : [0,00) — [0,00) be two functions such that  is non-
decreasing and ¢~' ({0}) = {0}, and let t, s, r € [0, 00).

L Ify (@) <y (s)—¢(r), thent <sorr=0.
2. If ¥ also verifies ¥~ ({0}) = {0} and ¥ (t) < (Y — ) (s), then t < s or

t =5 =0.Inany case, t <s.

Proof.(1) Assume that ¢+ > s and we have to prove that » = 0. Indeed, as ¥ is
non-decreasing, ¥ (s) < ¥ (¢). Therefore,

VYO =Y =) =Y (s) =y (@).

As a consequence, ¥ (1) = ¥ (s) and ¢ () = 0. Therefore r = 0.
(2) Next, assume that ¢ (t) < (¥ — ¢) (s) and r > 5. By item (1), s = 0. Therefore,
0<vy @) <y¥0)—¢(0)=0,s0¢% (t) =0andt = 0. |

Corollary 2.3.1. Let v, ¢ : [0,00) — [0, 00) be two functions such that  is non-
decreasing and ¥~ ({0}) = ¢~ ({0}) = {0}, and let {t,},{s,} C [0, 00) be two
sequences such that {s,} — 0.

L Ify (t,) < ¥ (sp) — @ (sy) foralln € N, then {t,} — 0.
2. If Y € Fawand ¥ (t,) < ¥ (s,) foralln € N, then {t,} — 0.
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Proof.(1) By item 1 of Lemma 2.3.4, we have that, for all n € N, either 7, < s, or
t, = s, = 0.1In any case, 0 < t, < s,. Therefore, Corollary 2.1.1 implies that
{t.} — 0.

(2) As ¥ is continuous, it follows that {y (s,)} — ¥ (0) = 0. Corollary 2.1.1

guarantees that {y (#,)} — 0 and Lemma 2.3.3 concludes that {z,} — 0. O

Lemma 2.3.5. Let ¢,¢ : [0,00) — [0,00) be two functions such that  is
continuous and ¢ € F,. Let {t,},{s,} C [0,00) be two sequences that converge
to the same limit L € [0, 00) and satisfy

Ir,/ (tn) = 1// (Sn) - ¢ (sn) for alln € N. (2.1)

Then L = 0 and {¢ (s,)} — O.
Proof. By (2.1), we have that 0 < ¢ (s,,) < ¥ (s,) — ¥ (#,) for all n € N. As ¥ is
continuous, then

lim ¢ (5,) = lim ¥ () = ¢ (L).

Therefore, {¢ (s,)} — 0. Since ¢ is lower semi-continuous and {¢ (s,)} is
convergent,

0= ¢ (L) < liminfé(s,) = lim ¢(s,) = 0.

Hence ¢ (L) = 0, which implies that L = 0. O

Corollary 2.3.2. Let {t,},{s,} C [0,00) be two sequences that converge to the
same limit L € [0, 00). Assume that there exist two functions € Fy and ¢ € F,,
such that

1/f (tn) =< w (Sn) - ¢ (Sn) fOr alln € N.

Then L = 0 and {¢ (s,)} — O.
Proof. 1Tt is a particular case of Lemma 2.3.5. O

Corollary 2.3.3. Let ¢ € F,, and let {t,},{s,} C [0,00) be two sequences that
converge to the same limit L € [0, 00) and satisfy

th <sp— ¢ (s,) foralln € N.

Then L = 0 and {¢ (s,)} — 0.

Proof. This is the particular case of Lemma 2.3.5 in which () = ¢ for all r > 0.
O
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Lemma 2.3.6. Let yy € Fu, ¢ € F, and let {t,} C [0, 00) be a sequence such that

Y (tat1) =V (1a) — ¢ (1a)  foralln € N. (2.2)

Then {t,} — O.
Proof. We distinguish two cases.

Case 1.  Assume that there exists some ny € N such that t,, < t,,+1. Since V¥ is
non-decreasing,

K” (tno+1) =< 1# (tno) - ¢ (tno) = W (tno) = W (tn0+l) .

Therefore V¥ (t,,) = V¥ (tny+1) and ¢ (1,,) = 0. As ¢ € F,,, we deduce that
tny = 0. BY (2.2), W (tm)+1) = W (O) - ¢ (O) =0, s0 W (tnOJrl) = 0 and also
th,+1 = 0. Repeating this argument, we deduce that ¢, = 0 for all n > ny. In
particular, {#,} — 0.

Case 2. Assume that t,+1 < t, for all n € N. Then {1,} is a strictly decreasing
sequence of nonnegative real numbers. Then, there exists L > 0 such that {z,,} —
L. Since 0 < ¢ (t,) < ¥ (t,) — ¥ (ty41) for all n € N and ¢ is continuous, then
{¢(t,)} — 0. Using the same argument of the proof of Lemma 2.3.5,

0<¢ (L) <liminf¢(s,) = lim ¢(s,) =0,
n—>oo n—>oo
which implies that L = 0.
a

If ¥ (t) = t for all > 0 in the previous lemma, then we get the following result.

Corollary 2.3.4. Let ¢ € F,, and let {t,} C [0, 00) be a sequence such that

tiv1 <t,— ¢ (t,) forallneN.

Then {t,} — 0.

Given ¢ € Fy and ¢ € ]—';h, if s < ¢, then ¥ (s) < ¥ (). However, we do not
know the relationship between ¥ (f) — ¢ (¢) and ¥ (s) — ¢ (s). The following result
is an approach to this case.

Lemma 2.3.7. Let ¥, ¢ : [0,00) — [0, 00) be two functions such that ¢ (0) = 0
and ¥~ ({0}) = {0}. Let {t,}, {s,} C [0,00) be two sequences such that, for all
neN,

Sp = In, \” (tn+l) =< max {1/’ (tn) - ¢ (tn) s 1/f (Sn) - ¢ (sn)} .
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Then the following properties hold.

1. If there exists some ny € N such that t,, = 0, then t, = 0 for all n > n.
In particular, {t,} — 0 and {s,} — 0.

2. If ¥ is non-decreasing, $~' ({0}) = {0} and t, > O foralln € N, then t,y1 < t,
foralln € N.

3. If Yy € Faand ¢ € F,, then the sequences {t,}, {sn}, {¢ (t,)} and {¢ (s,)}
converge to zero.

Proof.(1) Since 0 < s, < t,,, = 0, then t,,, = s,,, = 0. Therefore

0 <Y (tug+1) < max{y (tny) — @ (tng) » ¥ (Sny) — @ (5ny)}
=¥ (0)—¢(0) =0.

As ¥y~ ({0}) = {0}, then t,,+1 = 0. By induction, the same argument proves
that ¢, = O for all n > ny.
(2) Assume that v is non-decreasing, ¢! ({0}) = {0} and #, > O for all n € N.
Since s, < t,, then ¥ (s,) < ¥ (,). Therefore, for all n € N,

Y (tat1) < max{y (t,) — ¢ (tn), ¥ (s,) — P (sn)}
= max{lﬂ(t,,), W(Sn)} = w(ln)~ (2.3)

To prove that #,+; < t,, for all n € N, we reason by contradiction. Assume that
there exists some n € N such that ¢, < 7,4+;. In such a case,

Y (tn) =Y (ta1) < max{yy (6,) — @ (1) .Y (s0) — P (s0)} = ¥ (1) .
Therefore,
Y () = Y (tag1) = max {y (1) — ¢ (ta) . ¥ (52) — b (s0)} - (2.4)
Depending on the maximum, we distinguish two cases to get a contradiction. If
max {y (ta) — ¢ (ta) .Y (s2) — P (s2)} = ¥ (ta) — ¢ (1) .
then v (1,) = ¥ (1) — ¢ (1a), 50 ¢ (1,) = 0. As ¢~' ({0}) = {0}, then s, = 0,

which contradicts the fact that 7, > 0. In the other case, if

max {y (t,) — ¢ (t,) . ¥ (5,) — @ (s2)} = ¥ (s4) — & (5) (2.5)

then ¥ (t,) = ¥ (s,) — ¢ (s,). Therefore ¥ (¢,) = ¥ (s,) — P (s,) < V¥ (1) —
¢ (s0) < ¥ (ta), 50 ¥ (1,) = ¥ (5,) and ¢ (s,) = 0. As ¢~ ({0}) = {0}, then
s, = 0. Hence, (2.4) and (2.5) prove that
1// (tn+l) = max {W (tn) - ¢) (tn) s 1/’ (sn) - ¢) (sn)} = 1// (Sn) - ¢ (S,,)
=9 (0)—¢(0) =0,
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80 t,+1 = 0, which also contradicts the fact that #,4; > 0. As a consequence, in
any case we get a contradiction. Then the case #, < t,+; is impossible and we
conclude that ¢, <t, foralln € N.

(3) If there exists some ny € N such that #,, = 0, item (1) guarantees that f, = 0
foralln > ng. As0 < s, <t, =0, thens, = 0and ¢ (s,) = 0 forall n > ny.
In particular, all sequences {t,}, {s,,} and {¢ (s,)} converge to zero.
Next, assume that 7, > 0 for all n € N. By item (2), #,4; < t, foralln € N,
so {t,} is a non-increasing, bounded below sequence. Then, it is convergent. Let
L =1lim,— o0 t,. By (2.3), foralln € N,

1// (tn+l) =< max {l” (tn) - ¢ (tn) ’ l/f (sn) - ¢ (Sn)} =< 1// (tn) .

As v is continuous, letting n — oo in the previous inequality, we deduce that
nl—lglo max {Vy () — ¢ (), ¥ (s,) =@ (s,)} = ¥ (L) .

From Lemma 2.1.2 we deduce that there exists a subsequence of one of the

sequences {¥ (t,) — ¢ (t,)} and {¢ (s,) — ¢ (s,,)} that converge to ¥ (L). Then,
we distinguish two cases.

Let { (ta)) — @ (tnk)) }ren be a subsequence of { (£,,) — ¢ () },,ey Such that
{¥ (tay) — @ (tay)) }ken — ¥ (L). Then, as ¢ is continuous and {t,x)} — L, it
follows that

Jim ¢ (tuy) = Jim_ [ (1) = (¥ (ta0) = & (i) ]
=y L) -y L) =0.
As ¢ is lower semi-continuous at ¢ = L, then
0=¢() = liminf ¢ (n = Jim ¢ (taw) = 0.

Then, ¢ (L) = 0, so L = 0, which proves that {#,} — L = 0.
For the other case, let {¥(s,x) — @(Snw))ren be a subsequence of
{¥ (s0) — @ (s1)}eny such that

W (5n0) = & (snw0) e =~ ¥ (D)
As 0 < sy < tu forall k € N and {t,y} — L, then {s,q} is a bounded
sequence of real numbers. As a consequence, it has a convergent subsequence.

Let {s. k) tken be a convergent subsequence of {s,)}. Then, there exists L' > 0
such that

{swtken = L' and  {¥ (sw@) — ¢ (sww) tken = ¥ (L) . (2.6)
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Since 0 < 8,7y < tw forall k € Nand {t,qn} — L,then 0 < L' < L. As ¥ is
non-decreasing, then ¥ (L) < v (L). As ¥ is continuous, then

0= lim ¢ (sww) = lim [¥ (sww) = (¥ (sww) = ¢ (svw)) ]
¥ (L) =y (@) =<0

In particular,
li ‘o) = 0. 2.7
k_lfgofﬁ (sww) =0 2.7
As ¢ is lower semi-continuous at ¢t = L/, then
0<¢ (L) <liminf¢ (f) < li o) = 0.
< ¢ (L) <liminfé (1) < lim & (s)

Hence, ¢ (L') = 0, so L' = 0. In particular, {s,y@ken — L' = 0. By (2.6),
(2.7) and the continuity of ¥, we deduce that

V(L) = kl_l)fgo [V (sww) — ¢ (sww) ] = v (0)—0=0.

It follows that L = lim,—c#, = 0. In any case, we have just proved that
{t,} = 0.
Since 0 < s, < t, for all n € N, then {s,,} — 0. Furthermore, for all n € N,

W (tn-i-l) = max {W (tn) - ¢ (tn) s 1/f (Sn) - ¢ (Sn)}
= l// (tn) - ¢ (tn) + 1// (Sn) - ¢ (Sn) ’

which implies that

0 <max{¢ (t.), ¢ (s))} <@ (tn) + & (s2) <V () + ¥ (s0) =V (tat1)

As ¥ is continuous, we deduce that {max{¢ (z,),¢ (s,)}} — 0, so the
sequences {¢ (¢,)} and {¢ (s,)} converge to zero. |

In the next result, we employ convergent sequences.

Lemma 2.3.8. Let € Fy and ¢ € F,,, be two functions and let {t,}, {s,}.{r.} C
[0, 00) be three sequences such that, for alln € N,

Ty = Sp, 1r//(l‘n) Emax{lﬁ (Sn)_¢(sn)»W(rn)_¢(rn)}'

If there exists some L € [0, 00) such that {t,} — L and {s,} — L, then L = 0.
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Proof. Since v is non-decreasing, ¥ (r,) < ¥ (s,). Then, foralln € N,

4 (tn) < max{y (s,) — @ (sn), ¥ (ra)) — @ (1)}
<max{y (s,), ¥ (r)} <V (s) .

As v is continuous and {f,} — L and {s,} — L, Lemma 2.1.1 guarantees that
nli>n<>lo max{y (s,) — @ (sn) , ¥ (ra) — P (r)} = ¥ (L).

From Lemma 2.1.2 we deduce that there exists a subsequence of one of the
sequences {V (s,) — ¢ (s,)} and {y (r,) — ¢ (r,)} that converge to ¥ (L). Then, we
distinguish two cases.

Let {W (Sury) — @ (Sni)) brer be a subsequence of {1 (s,) — @ (su)},en such that
{V (Suw) — @ (Suw) }kew — ¥ (L). Then, as ' is continuous and {s,4} — L, it
follows that

lim ¢ (s(0)
k—o00

Jim [V (su) — (¥ (s00) — @ (500))) |
Vv(L) —y(L) =0.

As ¢ is lower semi-continuous at t = L, then
< < limi < 1i —
0<¢(L) < liminf¢ (1) < lim ¢ (Snw) = 0.

Then, ¢ (L) = 0,s0 L = 0.
For the other case let {¥ (ru@) — & (raw)lken be a subsequence of
{¥ (r) — ¢ (r)},en Such that

W (raw) = & (raw) fren = ¥ ().
As 0 < ry) < Spk forall k € Nand {s,u } — L, then {r,y)} is a bounded sequence

of real numbers. As a consequence, it has a convergent subsequence. Let {7, ) }ren
be a convergent subsequence of {r,)}. Then, there exists L’ > 0 such that

{rvwren = L' and  {Y (ryw) — ¢ (rww) ken = ¥ (L) . (2.8)

Since 0 < ryg < Sy forall k € N and {s,4)} — L, then0 < L' < L. As y is
non-decreasing, then ¥ (L') < ¥ (L). As ¥ is continuous, then

0= lim d(rww) = Jim [V(rww) — (V(rww) — ¢ rww)) ]

=y (L)-y @ =0
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In particular,
lim ¢(rn/(k)) =0. (29)
k—00
As ¢ is lower semi-continuous at # = L', then
0<¢ (L) <liminf¢ (1) < lim ¢(ryw) = 0.
=1 k—o00

Hence, ¢ (L) = 0, so L' = 0. In particular, {r,yx) ten = L' = 0. By (2.8), (2.9)
and the continuity of ¥, we deduce that

Y(L) = lim [V (rww) — ¢ (rwwy) | = v(0)—0=0.

As ¥ € Fa, condition ¥ (L) = 0 implies that L = 0. In any case, we have just
proved that L = 0. O

Remark 2.3.3. As we have mentioned before, many fixed point theorems use a
contractivity condition involving a difference ¥ — ¢ where ¥ € Fy and ¢ € F,.

As we shall see, most of them are also valid using ¢ € F|. However, there is no

relationship of inclusion between the classes F,, and F; of functions associated to

altering distance functions. For example, on the one hand, the function

0,ift=0,

PO=011 >0

belongs to F, On the other

alt®
hand, the function

but it does not satisfy (P13). Hence, ¢ € F; \Fy

alt*
t, if0<r<1,
@) =42, ift=1,
L,ift>1,

belongs to F;,, but it does not satisfy (P;). Hence, ¢ € Fi; \Fy.
Next, we repeat Lemmas 2.3.2 and 2.3.6 using ¢ € F;

alt*

Lemma 2.3.9. Let {t,,}, {s,} C [0, 00) be two sequences that converge to the same
limit L € [0, 00). Assume that there exist two functions € Fy and ¢ € F,, such
that

¥ (tn) < ¥ (sp) = (sn) forallneN. (2.10)

Then L = 0.
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Proof. By contradiction, assume that L > 0. As ¢ satisfies axiom (P;5), then £ =

lim,—; ¢ (s) > 0. Since ¥ is continuous, taking the limit in (2.10) as n — oo, we

deduce that v (L) < ¥ (L) — £, which is impossible because £ > 0. Hence, L = 0.
O

Lemma 2.3.10. Let € Fu, ¢ € F, and let {t,} C [0,00) be a sequence such
that

U (tag)) SV (t) — ¢ () foralln €N. @11

Then {t,} — 0.

Proof. By item 2 of Lemma 2.3.4, t,4; < t, for all n € N. Then, {t,} is a non-
increasing sequence of non-negative real numbers. Hence, it is convergent. If we
denote its limit by L, then Lemma 2.3.9 guarantees that L = 0. Thus, {z,} — 0. O

2.3.3 Cirié Functions

Inspired by Boyd and Wong [52] and Mukherjea [141], Lakshmikantham and Ciri¢
considered in [127] functions satisfying axioms (Pj,) and (Pi4).

Lemma 2.3.11. Let ¢ € Fcir be a function and let {a,,} C [0, 00) be a sequence.

1. If M > 0, then ¢(t) < max(¢(0), M) for all t € [0, M]. In particular, ¢(t) <

max(¢(0), 1) forall t > 0.

If apy1 < P(ay) forallm € N, then a4 < max(¢(0),a,,) for all m, k > 0.

If apy1 < ¢(ay) and a,, # 0 for allm € N, then {a,,} — 0.

4. If there exists L > 0 such that {a,,} — L and satisfying L < ¢ (a,,) forallm € N,
then L = 0.

5. Let {b,} C [0,00) be a sequence such that b,, < ¢ (a,,) for all m € N and
verifying the following condition:

w N

if there exists some my € N such that a,,, = 0, then by,, = 0. (2.12)

Then b,, < a,, for all m € N. As a result, if {a,,} — 0, then {b,,} — O.
6. Assume that a4+, < ¢(a,) for all m € N and the following property holds: if
there exists some my € N such that a,,, = 0, then ayy+1 = 0. Then {a,} — 0.
If $(0) = 0, then ¢ is continuous at t = 0.
8. If $(0) = 0 and {b,,} C [0, 00) is a sequence verifying a,, < ¢(b,,) for all m and
{b} = 0, then {a,,} — 0.
9. If $(0) = 0 and ap+1 < ¢(ay,) for all m, then {a,,} — 0 and {¢(a,)} — O.

N
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Proof.(1) Fix M > 0 and let ¢t € [0, M] arbitrary. If ¢+ = 0, it is obvious. If # > 0,

then ¢ (1) <t <M.

(2) If k = O the result is evident for all m. If k = 1, the result follows from
amt1 < ¢(an) < max(¢(0),a,) for all m. Suppose, by induction, that for
some k > 1, the condition “a,,; < max(¢(0), a,,) for all m > 0” holds and we
are going to prove that it is also true for k + 1. Indeed, a4 +1) = dpnt1)+x =
max(¢(0), am+1) < max(¢(0), max(¢(0), a)) = max(¢(0), an).

(3) Since a,, # 0, condition (I) implies that a,+; < ¢(a,) < a, for all m.
Therefore, {a,,} is a decreasing, bounded below sequence of real numbers, so it
is convergent, that is, there is L > 0 such that {a,,} — L. We prove that L = 0
reasoning by contradiction. Indeed, if L > 0,then 0 < L < a,,+1 < ¢(an) < an,
for all m. This proves two facts: {¢(a,,)} — L and {a,,} is a strictly decreasing
sequence. Hence, by (II),

L= lim ¢(a,) = lim ¢() <L, (2.13)
t—L

m—>00

which is a contradiction. Thus L = 0.

(4) Assume that L > 0 and we will get a contradiction. Since {a,,} — L, then there
exists my € N such that a,, > L/2 > 0 for all m > my. As ¢ € Fcir and a,, > 0
for all m > my, then

L<¢(an) <a, foralm>my. (2.14)

Taking the limit as n — oo, we deduce that lim,,;—c0 ¢ (a,,) = L. Furthermore,
(2.14) means that {a,,4n,} — L*. Therefore, since ¢ € Fcir, We have that

L= lim ¢ (a,) = lim ¢ (auin) = lim ¢ (s) <L,
m—>00 m—>00 s—LT

which is a contradiction. Then, necessarily L = 0.

(5) We claim that b,, < a,, for all m € N. We prove it by distinguishing two cases.
Let m € N be arbitrary. If a,, # 0, then b,, < ¢ (a,,) < a,,. On the other case,
if a,, = 0, then, by hypothesis, b,, = 0, so b,, = 0 = a,,. In any case, b,, < a,,
for all m € N. As a result, if {a,,} — 0, then also {b,,} — 0.

(6) We distinguish two cases.

Case 1. Suppose that there exists some my € N such that a,, = 0. In this
case, by hypothesis, a,,,+1 = 0. Applying again the hypothesis, @,,,+2» = 0.
Thus by induction, a,, = 0 for all m > my. In particular, {a,,} — 0.

Case 2. Suppose that a,, # 0 for all m € N. In this case, item 3 implies that
{an} — 0.

(7) Let {b,,} C [0,00) be a sequence such that {b,} — 0. By item 1 applied to
M = b,,, we deduce that 0 < ¢(b,,) < by, so {¢(b,,)} — 0. Therefore, ¢ is
continuous at t = 0.

(8) Since ¢ is continuous at t = 0, then {¢(b,,)} — ¢(0) = 0 and, therefore,
{am} — 0.
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(9) By item 2, a,,,+1 < max(¢(0),a,) = a, for all m > 0. Since {a,,} is a non-
increasing, bounded below sequence of real numbers, it is convergent, that is,
there is L > 0 such that {a,} — L. We prove that L = 0 reasoning by
contradiction. Indeed, if L > 0, then 0 < L < a,,. Hence item 3 shows that

{an} — 0, which contradicts L > 0. ]

Item 5 of Lemma 2.3.11 would not be valid if we avoid condition (2.12). For
example, let ¢ : [0,00) — [0, 00) be defined by ¢ (0) = 1 and ¢ () = 0 for all
t > 0. Then ¢ € Fcy;. If we consider the sequences

0, if m is even, 1, if m is even,
and b, =

= 1. itmis odd, 0. if mis odd,

then b,, < ¢(a,,) for all m € N. However, condition b,, < a,, is false when m is
even.

Lemma 2.3.12. Let ¢ € F¢i be a function and let {t,} C [0, 00) be a sequence
such that t,41 < ¢(t,) for all n € N. Also assume that the following condition
holds:

if there exists some ny € N such that t,, = 0O, then t,,+1 = 0. (2.15)

Then {t,} — O.
Proof. We distinguish two cases.

Case 1. There exists ny € N such that t,, = 0. In this case, by hypothesis (2.15),
thy+1 = 0. In fact, 7, = O for all n > ny. In particular, {z,} — 0.

Case 2. t, > 0 forall n € N. In this case an easy standard argument guarantees
the result. 0

Lemma 2.3.13. Let ¢ € Fcir be a function and let {t,},{s,} C [0,00) be two
sequences that converge to the same limit L € [0, 00) and satisfying t, < ¢ (s,) and
L <s,foralln e N. Then L = 0.

Proof. Assume that L > 0 and we will get a contradiction. As {s,} — L, there exists
no € N such thats, > L/2 > 0 for all n > ny. Moreover, as ¢ € F¢i, and s, 7 0 for
all n > ngy, then we have

t, <@ (sy) <s, foralln> ng.

Therefore, by Lemma 2.1.1,

lim ¢ (s,) = L.
n—>oo
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However, as ¢ € Fcj; and {s,} — LT, we have that
L= lim ¢(s,) = lim ¢(s) <L,
n—00 s—L+

which is a contradiction. As a consequence, L = 0. O

Lemma 2.3.14. Let ¢ € Fcir be a function and let {t,},{s,} C [0,00) be two
sequences that converge to the same limit L € [0, 00) and satisfying L < t, < ¢ (s,)
foralln € N. Then L = 0.

Proof. Assume that L > 0 and we will get a contradiction. As {s,} — L, there exists
ny € N such thats, > L/2 > 0 for all n > ny. Moreover, as ¢ € F¢i, and s, 7 0 for
all n > ngy, then we have
L<t,<@(s,) <s, foralln=> ng.

Therefore, by Lemma 2.1.1,

lim ¢ (s,) = L.

n—oo
However, as ¢ € Fcj; and {s,} — LT, we have that

L= lim ¢(s,) = lim ¢(s) <L,
n—00 s—Lt

which is a contradiction. As a consequence, L = 0. O

Lemma 2.3.15. Let ¢ € Fpw and let {a,,} C [0,00) be a sequence. If a4+ <
¢(ay) and a,, # 0 for all m, then {a,,} — 0.

2.3.4 Properties of Control Functions

In this subsection, we point out some basic facts that the reader can observe.
Remark 2.3.4. A strictly increasing function ¢ : [0,00) — [0, 0c0) satisfies the
following property: given ¢, s € [0, 00),

o) <¢(s) = t<s. (2.16)

However, non-decreasing functions do not necessarily satisfy (2.16). This is the case
of altering distance functions. For example, the function

t,if0<r=1,

)= Lift>1,
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is an altering distance function but, using t = 2 and s = 1, it is clear that ¢ does
not verify (2.16). To use property (2.16) in the context of non-decreasing functions
(such as altering distance functions) is a mistake that can be found sometimes in the
literature.

Remark 2.3.5. Conditions (Pj3) and (P;s) are not strong enough to guarantee
property (P3). For example, let N be a positive integer and let

k 1 2 3
Ay=4{—€[0,00):keN; =30,—,—,—,...¢.
N N N
Let ¢ : [0, 00) — [0, c0) be the function

0, ift € Ay,
(=11 if0<t<4,
1, otherwise.

Then ¢ satisfies conditions (P;3) and (Ps). However, it takes the value zero at
infinitely many points.

Proposition 2.3.5. If{ : [0, 00) — [0, 00) is a subadditive function, then

Yoo <y (5) foralln € NN{0} and all t € [0, 50) .
n n

Proof. Let n € N\ {0} and let t € [0, 00). By induction, we prove that

T B

Sh () () ()= ()

Hence, the conclusion holds. O

Definition 2.3.4. A Geraghty function is a function ¢ : [0, 00) — [0, 1) such that
if {t,} C [0,00) and {¢(¢,)} — 1, then {z,} — 0. Let Fge; denote the family of all
Geraghty functions.

2.4 Metric Structures

Definition 2.4.1. A metric (or a distance function) on a nonempty set X is a
mapping d : X x X — [0, co) satisfying the following conditions: for all x, y, z € X,
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e d(x,x)=0; 2.17)
o dx,y) >0 ifx#y; (2.18)
e d(x,y) =d(yx); (2.19)
o dx,y) <d(x,2) +d(z.y). (2.20)

In such a case, the pair (X, d) is called a metric space.
It is easy to show that a mapping d : X x X — R is a metric on X if, and only if,
it satisfies the following two conditions:

(i) d(x,y) = 0if, and only if, x = y; (i) d(x,y) <d(z,x) +d(z,y)

forallx,y,z € X.

Example 2.4.1. 1f X is a nonempty subset of R, the Euclidean (or usual) metric on
Xisd(x,y) = |[x—y|forallx,y € X.

Example 2.4.2. 1f X is a nonempty subset of R”, the Euclidean (or usual) metric on
Xis

dr(x,y) = V(x1 —y1)2 + (2 —y2)? + o+ (6 — ya)?

forall x = (xy,x2,..., %),y = V1, Y2, ..., ¥n) € X.
Example 2.4.3. The Euclidean metric on X C R” is a particular case of the distance
function

dp(x.y) = (1 =3P + =yl + o+ =yl
for all x = (x1,x2,...,%,),y = (y1,¥2,...,Yn) € X, which can be defined for all
p>0.

Example 2.4.4. Letting p — 0o, we have the metric

doo(x,y) = max {|x; — yi|,[x2 = y2|, ..., |[% — yul}

forallx = (x1,x2,..., %),y = V1, ¥2,...,yn) € X C R".

Example 2.4.5. 1f X is an arbitrary nonempty set, the discrete metric on X is

0,ifx=y,

eV =01 i £

Example 2.4.6. 1f Y is a nonempty subset of X and d is a metric on X, then the
restriction of d to Y x Y is also a metric on Y.
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Definition 2.4.2. A mapping d : X x X — [0, 00) is called:

* aquasi-metric (or a nonsymmetric metric) if it satisfies (2.17), (2.18) and (2.20);
e a semi-metric if it satisfies (2.17), (2.18) and (2.19);

* apseudo-metric if it satisfies (2.17), (2.19) and (2.20);

* apseudo-quasi-metric if it satisfies (2.17) and (2.20);

e an extended real-valued metric if it is allowed to assume the value oo;

* an ultrametric if, instead of (2.20), it satisfies the stronger condition

d(x,y) <max{d(x,z).d(z,y)} forallx,y,zeX. (2.21)

If d is a semi-metric on X, we say that (X, d) is a semi-metric space (and similarly
when using other metric structures).

2.5 Quasi-metric Spaces

It is of interest to discuss quasi-metrics because these are precisely the metric struc-
ture that we obtain when repeating two arguments of a G-metric (see Lemma 3.3.1).
Therefore, we introduce convergent and Cauchy sequences, and completeness, in
the framework of quasi-metric spaces (that include the class of metric spaces). First
of all, we recall here the notion of quasi-metric and the notation we will use.

Definition 2.5.1. A quasi-metric on X is a function ¢ : X x X — [0, oo) satisfying
the following properties:

(q1) ¢q(x,y) = 0if and only if x = y;
(q2) q(x.y) < q(x.2) + q(z.y) for any points x, y,z € X.
In such a case, the pair (X, q) is called a quasi-metric space.

Definition 2.5.2. Let (X, ¢) be a quasi-metric space, {x,} be a sequence in X, and
x € X. We will say that:

e {x,} converges to x (we denote it by {x,} N x) if lim,— 00 q(x,;,x) =
limy,— 00 g(x, x,) = 0;

e {x,} is a Cauchy sequence if for all ¢ > 0, there exists np € N such that
q(x, x,) < g forall n,m > ny.

The quasi-metric space is said to be complete if every Cauchy sequence is
convergent.

As ¢ is not necessarily symmetric, some authors distinguished between left/right
Cauchy/convergent sequences and completeness.
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Definition 2.5.3 (Jleli and Samet [97]). Let (X, ¢) be a quasi-metric space, {x,} be
a sequence in X, and x € X. We say that:

o {x,} right-converges to x if lim,_, » q(x,,x) = 0;

o {x,} left-converges to x if lim,_, q(x, x,) = 0;

e {x,} is a right-Cauchy sequence if for all ¢ > 0 there exists ny € N such that
q(x4, x) < e forallm > n > ny;

e {x,} is a left-Cauchy sequence if for all ¢ > 0 there exists nyp € N such that
q(xm, x,) < e forallm > n > ny.

Remark 2.5.1. 1. The limit of a sequence in a quasi-metric space, if it exists, is
unique. However, this is false if we consider right-limits or left-limits.

2. If a sequence {x,} has a right-limit x and a left-limit y, then x = y, {x,,} converges
and it has one limit (from the right and from the left). However, it is possible that
a sequence has two different right-limits when it has no left-limit.

Example 2.5.1. Let X be a subset of R containing [0, 1] and define, for all x,y € X,

_Vx—yifx>y,
q0xy) = 1, otherwise.

Then (X, q) is a quasi-metric space. Note {g(1/n,0)} — 0 but {¢(0,1/n)} — 1.
Therefore, {1/n} right-converges to 0 but it does not converge from the left. We also
point out that this quasi-metric satisfies the following property: if a sequence {x,}
has a right-limit x, then it is unique.

Definition 2.5.4. Let (X, g) be a quasi-metric space and let 7 : X — X be a
mapping. We will say that T is right-continuous if {q(Tx,, Tu)} — 0 for all sequence
{x,} € X and all u € X such that {g(x,,u)} — 0.

To take advantage of some unidimensional results, we need to extend quasi-
metrics on X to the product space X2. The following is an easy way to consider
quasi-metrics on X? via quasi-metrics on X.

Lemma 2.5.1 (Agarwal et al. [14]). Let g : X> — [0,00) and Q7,04 : X* —
[0, 00) be three mappings verifying

Q1 ((x1,x2), (1, y2)) = q(x1,y1) + q(x2,y2) and

O ((x1,%2), (y1,¥2)) = max(q(x1,y1), g(x2,¥2)) forall x,x2,y1,y2 € X.

Then the following conditions are equivalent.

(a) q is a quasi-metric on X.
(b) Q1 is a quasi-metric on X>.
(¢) Q1 is a quasi-metric on X*.
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In such a case, the following properties hold.

1. Every sequence {(x,,yn)} € X? verifies:

() 5 () = @t 2 ()

= [{xn}i)xand{yn}—q>y].

2. {(xn, y)} € X% is Q4-Cauchy <> {(x,,y,)} is Q% -Cauchy
< [{xn} and {y,} are g-Cauchy).

Items 1 and 2 are valid from the right and from the left.

4. (X, q) is right-complete <= (X?,QY) is right-complete
<~ (X%, 09) is right-complete.

5. (X, q) is left-complete <= (X2, QY) is left-complete
<~ (X%, 09) is left-complete.

6. (X, q) is complete <> (X>,QY) is complete
— (X%, 04) is complete.

7. The following conditions are equivalent.

w

(7.1)  Each right-convergent sequence in (X, q) has an unique right-limit.
(7.2)  Each right-convergent sequence in (X*, Q9) has an unique right-limit.
(7.3)  Each right-convergent sequence in (X*, Q9) has an unique right-limit.

2.6 Topological Structures

Definition 2.6.1. A ropology on X is a family t = {A;};ep of subsets of X that
includes both X and @, and is closed under arbitrary unions and finite intersections,
that is,

o X Oer,
o if A’ C A, then Ujepn’ A; € T,
o ifneNandA;,Ay..., A, € A thenAy NAy, N...NA,, €.

In such a case, we say that (X, t) is a fopological space. A subset A of X is t-open
(or open relative to t) if A € t, and it is T-closed if its complement X'\ A is T-open.
A subset U C X is a t-neighborhood of a point x € X if there exists A € t such
that x € A C U. A topology t on X satisfies the Hausdorf{f separation property if it
satisfies the following condition:
“for all distinct points x,y € X, there exists a t-neighborhood U of x and a
t-neighborhood V of y suchthat U NV = @”.
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If 7 is a topology on X, the family B, of all T-open subsets of X that contains x is
a neighborhood system at x. The following lemma provides an easy way to consider
a topology on a set X generated by the balls of a metric structure.

Lemma 2.6.1. Let X be a set and, for all x € X, let B, be a non-empty family of
subsets of X verifying:

1. x e Bforall B € B,.

2. Forall By, By € B,, there exists B3 € B, such that B3 C B; N By.

3. Forall B € B,, there exists B' € B, such that for all y € B/, there exists B" € B,
verifying B C B.

Then there exists a unique topology t on X such that B, is a neighborhood system
at x.



Chapter 3
G-Metric Spaces

In this chapter we introduce the concept of G-metric on a set X, and we show some
of its basic properties. We provide any G-metric space with a Hausdorff topology in
which the notions of convergent and Cauchy sequences will be a key tool in almost
all proofs. Later, we will study the close relationships between G-metrics and quasi-
metrics.

3.1 G-Metric Spaces

In 2003, Mustafa and Sims [154] proved that most of the claims concerning
the topological properties of D-metrics were incorrect. In order to repair these
drawbacks, they gave a more appropriate notion of generalized metrics, called
G-metrics. Mustafa provided many examples of G-metric spaces in [142] and
developed some of their properties. For example, he proved that G-metric spaces
are provided with a Hausdorff topology which allows us to consider, among other
topological notions, convergent sequences, limits, Cauchy sequences, continuous
mappings, completeness and compactness. He also developed further topics in
G-metric spaces such as the properties of ordinary metrics derived from a G-metric,
and he investigated the properties of G-metrics derived from ordinary metrics.

Definition 3.1.1 (Mustafa and Sims [154]). A G-metric space is a pair (X, G)
where X is a nonempty set and G : X x X x X — [0, 00) is a function such that, for
all x,y,z,a € X, the following conditions are fulfilled:

(G1) Gx,y,2)=0 ifx=y=z (3.1)
(G2) G(x,x,y) >0 forallx,y € X withx # y; (3.2)
(G3) G(x,x,y) < G(x,y,z) forallx,y,z € X withz # y; (3.3)
© Springer International Publishing Switzerland 2015 33
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(Gy) Gx,y,2) =G(x,z,y) = G(y,z,x) = ...(symmetry in all 3); (3.4)
(Gs) G(x,y,2) <G(x,a,a) + G(a,y,z) (rectangle inequality). (3.5)

In such a case, the function G is called a G-metric on X.

The previous properties may be easily interpreted in the setting of metric spaces.
Let (X, d) be a metric space and define G : X x X x X — [0, co) by

G(x,y,2) =d(x,y) +d(x,2) +d(y,z) forallx,y,z € X.

Then (X, G) is a G-metric space. In this case, G(x,y,z) can be interpreted as the
perimeter of the triangle of vertices x, y and z. For example, (G;) means that
with one point we cannot have a positive perimeter, and (G,) is equivalent to the
fact that the distance between two different points cannot be zero. Furthermore, as
the perimeter of a triangle cannot depend on the order in which we consider its
vertices, we have (G4), and (Gs) is an extension of the triangle inequality using a
fourth vertex. Maybe, the most controversial axiom is (G3), which has an obvious
geometric interpretation: the length of an edge of a triangle is less than or equal to
its semiperimeter, that is,

d(x,y)+d,2) +d(zx)

d(x,y) <
(x,y) < 5

Example 3.1.1. If X is a non-empty subset of R, then the function G : X x X x X —
[0, 00), given by

G, y,2)=|x—y|+x—z|+|y—2z forallx,y zeX,

is a G-metric on X.

Example 3.1.2. Every non-empty set X can be provided with the discrete G-metric,
which is defined, for all x, y, z € X, by

0, ifx=y=g
G(x,y,2) = ;
(x.2) % 1, otherwise.

Example 3.1.3. Let X = [0, co) be the interval of nonnegative real numbers and let
G be defined by:

0, ifx=y=z

G(x,y,z) = .
*y.2) { max{x, y, z}, otherwise.

Then G is a complete G-metric on X.

Example 3.1.4. If G is a G-metric on X and ¢« > 0, then G,, defined by
Gy (x,y,2) = G (x,y,z) for all x, y, z € X, is another G-metric on X.
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Example 3.1.5. If G is a G-metric on X, then G’ : X3 — [0, 00), given by

G(x,y.2)

G/x, ) = —————————
(x.7.2) 1+ G(x,y,2)

forall x,y,z € X,

is another G-metric on X.

3.1.1 Basic Properties

One of the most useful properties of G-metrics is the following one.

Lemma 3.1.1. If (X, G) is a G-metric space, then
G(x,y,y) <2G(y,x,x) forallx,y € X. (3.6)
Proof. By the rectangle inequality (3.5) together with the symmetry (3.4), we have

G(x,y,y) = G(y,y,%) < G(y,x,x) + G(x,y,x) = 2G(y, x, x). -

Corollary 3.1.1. Let {x,} and {y,} be two sequences of a G-metric space (X, G).
Then

lim G(x,,x,,y:) = 0 if, and only if, lim G(x,,y,,y,) = 0.
n—>o0 n—>o00
Proof. 1t follows from the fact that, by using (G4) and Lemma 3.1.1, for all n € N,
0 < G(xn, Xn, Yu) < 2G (X, Yy Yn) < 4G (%X, X, Yn)-

Therefore, Lemma 2.1.1 is applicable. O

The following lemma can be derived easily from the definition of a G-metric
space.

Lemma 3.1.2 (See, e.g., [154]). Let (X, G) be a G-metric space. Then, for any
X,¥,z,a € X, the following properties hold.

1. G(x,y,2) < G(x,x,y) + G(x,x,2).

2. G(x,y,2) <G x,a,a) + G(y,a,a) + G(z,a,a).

3. |G(x,y,2) — G(x,y,a)| <max{G(a,z,7),G(z,a,a)}.
4. Ifn>2and x1,x3,...,x, € X, then

n—1

G (x1, X0, %2) < DG (X3, X1, %41)  and (3.7
i=1
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n—1
G (x1.x1, %) < )G (Xi X3 Xig 1) -

i=1

5. IfG(x,y,z2) =0, thenx =y =z

6. G(x,y,2) <G (x,a,2) + G(a,y,2)

7. G(x,y,2) < %[G(x,y,a) +Gxa,z)+Gay.2)]

8. Ifx € X\{z.a}, then |G(x,y,z) — G(x,y,a)| < G(a, x,z).
9. G(x,y,y) £2G(x,y,2).

Remark 3.1.1. The reader may observe that properties 1, 2, 3 and 4 can be proved
without using axiom (Gj3).

Proof.(1) Applying (G4) and (Gs) using a = x, we have that

G()C,y,Z) = G(y,x,z) =< G(y,X,x) +G(X,X,Z)
=G(xx,y)+G(xx,z2).

(2) By using (Gs) twice and also (Gy),

Gx,v,2) <Gx,a,a)+G(a,y,z) =G(x,a,a)+G(y,az)
<Gx,a,a)+G((,a,a)+ G(a,a,z).

(3) By (G4) and (Gs),

G(x,y,2) = G(z,9,%) < G(z,a,a) + G(a,y,x),
G(a,y,x) < G(a,z,2) + G(z,y,x).

Therefore,

G(x,y,z) — G(a,y,x) < G(z,a,a) and
G(a,y.x) — G(x,y,2) < G(a,z,2).

Hence, |G(x,y,z) — G(x,y,a)| < max{G(a,z,2),G(z,a,a)}.

(@) If n = 2, it is obvious, and if n = 3, then (3.7) is property (Gs) using x = xi,
a = xp and y = z = x3. By induction, if (3.7) holds for some n > 3, then it is
also valid for n + 1 because, also by (Gs) and the hypothesis of induction,

G (x1, Xp4 1 Xn41) < G (X1, X0, %) + G (X, Xnt1, Xnt-1)

n—1

< ZG(Xi,XiH,XiH) + G (Xp, X1, Xn1)

i=1

=, G (X, X1, Xig1) -

i=1
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(5) Assume that G (x,y, z) = 0. We claim thatif y # z, then x = y. Indeed, by (G3),
0 <G(x,x,y) <G(x,y,z) = 0,50 G(x,x,y) = 0. If x # y, then G(x,x,y) > 0
by (G»), so condition G(x, x,y) = 0 implies that x = y. As G is symmetric on
its variables, we have also proved that if 7 # y, then x = z. Hence,y = x = z,
which is a contradiction with the hypothesis y # z. Then, all arguments must
be equal (x =y = 2).

(6) If a = y or a = x, the result is obvious. Assume that a # xand a # y. If a = z,
then, by (Gs),

Gx,y,2)=G(x,y,a) <G(x,a,a) +G(a,y,a)

<G(x,a,2)+G(ayz).
Next, assume that a # z. Then, by (G5) and (G3),
G(x,y,2) < G(x,a,a) + G(a,y,2) <G (x,a,z) + G(a,y,z).
(7) By item (6) and (Gy),

G(x,v,2) <G(x,a,2) +G(a,y,z2),
Gx,y,2)=G(,z,x) <G(,a,x) +G(a,z,x),
G(x.y.2) =G(zxy) <G (z.a,y) + G(a,x.y).

Adding the previous inequalities and using (Gy),
36 (xy.2) =2[G(x.y.a) + G (x.a.2) + G(a.y.2) ]

(8) By item (3), | G(x,y,2) — G(x,y,a) | < max{G(a,z,z),G(z,a,a)}. Then,
using (G3),

x#a = G(z,a,a) <Gz a,x);
x#z = G(a,z,2) <G(a, zx).
Then, by (G4), we conclude that max{G(a, z,z), G(z,a,a)} < G(x, a, 7).
(9) We distinguish two cases. If y = z then, G(x,y,y) = G(x,y,2) < 2G(x,y,2).

On the contrary case, if y # z, using Lemma 3.1.1 and axiom (Gj3), it follows
that G(x,y,y) <2G(x,x,y) < 2G(x,y,2). O
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3.1.2 Some Relationships Between Metrics and G-Metrics

Every metric on X induces G-metrics on X in different ways.

Lemma 3.1.3 ([154]). If (X, d) is a metric space, then the functions G%,G¢ : X* —
[0, 00), defined by

G4 (x.y.2) = max{d(x,y).d(y,2),d(z. )}, (3.8)
GY(x,y.2) = d(x,y) + d(y.2) + d(z.x) (3.9)
forall x,y,z € X, are G-metrics on X. Furthermore,
Gfln(x,y, 7) < Gf(x,y, 7) <3 Gi(x,y, 7) forall x,y,z € X.

Conversely, a G-metric on X also induces some metrics on X.

Lemma 3.1.4. If (X, G) is a G-metric space, then the functions dS,dS : X* —
[0, 00) defined by

dg(x, y) = max {G(x,y,y),G(y,x,x)} and

d°(x.y) = G(x,,) + G(y,x,x)

forall x,y € X, are metrics on X. Furthermore, the following properties hold.

1. dS(x,y) <d%(x,y) <2dS(x,y) forall x,y € X.
2. d% and d° are equivalent metrics on X and they generate the same topology on X.

The following result collects some basic relations between metrics and G-metrics
involved in Lemmas 3.1.3 and 3.1.4.

Lemma 3.1.5. Ifd is a metric on X, then, for all x,y € X,
G4 G¢ G4
dp"(x,y) = d(x.y), di"(x.y) = dp’ (x.y) = 2d(x.y),
a7 (x,y) = 4d(x,y),
d% =2d% =248 = 445 = 4.
Conversely, if G is a G-metric on X, then, for all x,y,z € X,

G
Gf?l%n (X, Yy, Z) = maX{G(x, Yy, y)9 G(y’x’ X), G(y’ Z, Z)v G(Z’ Y, y)7
G(z,x,x), G(x, 2, 2)},
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G
ngx (-x’yv Z) = G(xvyvy) + G(ywx»x) + G(y, Z, Z) + G(Z,y,y)
+ G(z,x,x) + G(x, 2, 2).

. A% d% d%
In particular, G < Gs* < 6Gy".

Proof. We have the following straightforward calculations:

diy (x,y) = max {GY (x.y.). G4 (v %.2)}
= max {max(d(x.y). d(x. y). d(y. y)). max(d(y. x). d(y. ). d(x. X))}
=d(x,y);

A7 (x.y) = G4 x.y.y) + GA(y.x.x)

= max(d(x,y),d(x.y).d(y.y)) + max(d(y, x),d(y. x), d(x, x))
= 2d(x,y);

dg;’ (x,y) = max {Gg’(x,y,y), Gf(%xv x)}
= max {d(x.y) + d(x.y) + d(y.y). d(y.x) +d(y.x) + d(x.x)}
= 2d(x,y);

dng(xs y) = va](x’yvy) + Gf(y,x,x)
— d(x.y) + d(x.y) + A y) + d(.2) + d(y.2) + d(x. %)
=4d(x,y).

Conversely,

G (x, y,2) = max {dS (x,y), d5(y, 2), d5(z, %)}
= max{max {G(x,y,y), G(y,x,x)},
max {G(y, z,2),G(z,y,y)},
max {G(z, x,x), G(x,z,2)}}
= max{G(x,y,y), G(y, x,x), G(y,z,2), G(z,y,Y),
G(z,x,x),G(x,z,2)};

and
G (x.y.2) = dS(x.y) + dS(r.2) + dS(z.x)
=G(x,y,y) + GO, x,x) + Gy, 2.2) + G(z,y,y)
+ G(z,x,x) + G(x, z, 2).
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3.1.3 Symmetric G-Metric Spaces

A G-metric space (X,G) is called symmetric if G(x,y,y) = G(y,x,x) for all
x,y € X.

The mappings given in Examples 3.1.1, 3.1.2 and 3.1.3 are symmetric G-metrics.
There also exist G-metric spaces that are not symmetric, as we see in the following
example.

Example 3.1.6. Let X = {0,1,2} andlet G : X X X x X — [0, co) be the function
given by the following table.

(x.y.2) Gx,y.2)

0,0,0), (1,1,1), (2,2,2) 0

—

0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), (1,1,0)
(1,2,2), (2,1,2), (2,2,1) 2
0,0,2), (0,2,0), (2,0,0), (0,2,2), (2,0,2), (2,2,0) |3
(1,1,2), (1,2,1), (2,1,1), (0,1,2), (0,2,1), (1,0,2) |4

(1,2,0), (2,0,1), (2,1,0) 4

Then G is a G-metric on X, but it is not symmetric because G (1,1,2) = 4 # 2 =
G(2,2,1).

Lemma 3.1.6. If (X, d) is a metric space, then G% and G¢ (defined in Lemma 3.1.4)
are symmetric G-metrics on X. In fact,

G (x,y,y) = 2G4 (x,y,y) =2d (x,y) forallx,y € X.

Conversely, if (X, G) is a symmetric G-metric space and dg : X x X — [0, 00) is
defined by

dc (x,y) = G(x,y,y) forallx,ye€X,

then (X, dg) is a metric space.

Given two G-metric spaces (X, G;) and (X5, G»), the function G : X x X x X —
[0, 00) given, for all (x1,x2), (y1,y2) . (21,22) € X = X1 X X5, by

G ((x1,x2), 1, ¥2) , (21, 22)) = G (x1,y1,21) + G2 (x2,¥2, 22)

is not necessarily a G-metric on the Cartesian product X because, although it satisfies
conditions (Gy), (Gz), (G4) and (Gj5), axiom (G3) is not guaranteed. This only holds
when the factors are symmetric.
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Theorem 3.1.1 ([154]). Let {(X;, G))}'—, be a finite family of G-metric spaces and
let X = X1 x X, X...xX, be the Cartesian product. Consider the mappings G,,, Gy :
X x X x X — [0, 00) defined by

G.(A,B,C) = ln<11fd<x”G,-(a,<,bi,c,-) and

G,(A,B,C) = Y Gi(a;, b;, ),

i=1

forall A = (ay,ay,...,a,),B = (b1,by,...,b,),C = (c1,¢2,...,¢y) € X. Then
the following conditions are equivalent.

1. (X;, G;) is a symmetric G-metric space foralli € {1,2,...,n}.
2. (X, Gy) is a symmetric G-metric space.
3. (X, Gy) is a symmetric G-metric space.

Proof. We only prove the equivalence between the first two items (the other
equivalence is similar). First of all, we claim that (X, G,,) satisfies the axioms (G)),
(Gz), (G4) and (GS)

(G]) Gm (A,A,A) = maxlsisn Gi(ai, ai,a,-) = maXlS,’S” 0=0.

(G») Assume that A # B. Then, there exists j € {1,2,...,n} such that a; # b;.
Since G; is a G-metric on Xj, then Gj(a;, a;, b;) > 0. Hence, G,, (A,A,B) =
maXj<i<y Gi(a,-, a;, b,) > Gj((lj, aj, b]) > 0.

(Gy4) It follows from the fact that each G; is symmetric in its three variables.

(Gs) LetA = (al,az, .. .,a,l),B = (bl,bz,... ,bn) ,C = (C],Cz,... ,Cn) ,D =
(di,dy,...,d,) € X be arbitrary. Then

Gm (B, C, D) = max G,‘(b,', Ci,d,‘)

1<i<n

< max [G;(b;, a;, a;) + Gi(a;, c;. d;)]

1<i<n

IA

max G,‘(bi, a;, a,~) + max Gi(a,‘, Ci, d,)
1<i<n 1<i<n

=Gnu(B,A,A)+ G, (A.C,D).

Next, we prove the equivalence between (1) and (2).

(1) = (2). Assume that (X;, G;) is a symmetric G-metric space for all i €
{1,2,...,n}. We claim that (X, G,,) verifies (G3). Let A,B,C € X be such that
B # C.Leti € {1,2,...,n} be arbitrary. If b; = ¢;, then, using that (X;, G;) is
symmetric, G;(a;, a;, b;) = G; (b;, bi, a;) = G; (ci, bi, a;) = Gi(ai, b;, ¢;). If b; # ci,
then G;(a;, a;, b;) < G; (a;, b;, ¢;) by the axiom (G3) in (X;, G;). In any case, we have
just proved that G;(a;, a;, b;)) < G; (a;, b;, ¢;) foralli € {1,2,...,n}. Therefore,

Gn (A, A, B) = max Gi(a;,a;,b;) < max Gi(a;, b;,c;) = G, (A,B,C).
1<i<n 1<i<n
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Hence, (X, G,,) is a G-metric space. Moreover, it is symmetric because each factor
is symmetric, that is, for all A, B € X,

Gn(A,A,B) = max Gi(ai,a;,b;) = max Gi(bi,bi,a;)) = G, (B,A,A).

(2) = (1). Assume that (X, G,,) is a symmetric G-metric space. Fix a point
P = (p?,pg,...,pg) € X and, foralli € {1,2,...,n}and all q; € X;, let

Ajo = (P?’Ptz)’ e ,P?—2~P?—1vai»17?+1’17?+2v e ’PS) €X.
Notice that for all i € {1,2,...,n} and all g;, b;, ¢c; € X;, we have that
Gi(aj bi, ¢;) = Gu(Ap, Bp, C}). (3.10)
Therefore, for all i € {1,2,...,n} and all a;, b; € X,
Gi(ai, ai, b;) = G(Ap, Ab, Bp) = G,y(Bp, Bp, AL) = Gi(bi, b, a;).

Thus, each factor (X;, G;) is symmetric. O

3.2 Topology of a G-Metric Space

In this section we introduce the canonical Hausdorff topology of a G-metric space
and we present its corresponding topological notions.

Definition 3.2.1 ([142]). The open ball of center x € X and radius r > 0
in a G-metric space (X,G) is the subset Bg(x,r) = {y€X:G(xy.y) <r}
Similarly, the closed ball of center x € X and radius r > 0 is Bg(x,r) =
{yeX:Gx,y,y <r}.

Clearly, x € Bg(x,r) € Bg(x, ).

Proposition 3.2.1. [f (X, G) is a G-metric space and dS and d° are the metrics on
X defined in Lemma 3.1.4, then

Bys (x,1) € Byg (x,r) S Bg (x,1) S Byg (x,2r) € Bg (x, 2r)

forallx € Xand allr > 0.

Proof. Let y € Byc (x,r). Then max{G(x,y,y), G(y,x,x)} = d%(x,y) < r.
In particular, G(x,y,y) < r,soy € Bg (x, r). This proves that Byc (x,r) € Bg (x, r).
In a similar way, Byc (x, 2r) € Bg (x, 2r). Now lety € Bg (x, r). Then G(x,y,y) <r.
By Lemma 3.1.1, it follows that

Gy, x,x) <2G(x,y,y) <2r.
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Therefore, d%(x,y) = max{G(x,y,y), G(y,x,x)} < 2r,s0y € B,g (x,2r). This
proves that Bg (x,7) € Byg (x, 2r). O

Example 3.2.1 ([142]). Let (X,d) be a metric space and let G and GY be the
G-metrics on X defined in Lemma 3.1.3. Then, for all x € X and all r > 0, we
have the following properties:

,
Bga (x0,r) = Ba(xo, 1), Bgi(xo,7) = By (xo, 5) .

EG.;I()CO, r) = By(xo,7) and EGg(XO, r) = By (xo, %) .
Example 3.2.2 ([142]). Let X be a nonempty set, and let G, be the discrete
G-metric on X (see Example 3.1.2). For any x; € X and all » > 0, we have the
following properties:

1. if r < 1, then Bg,, (x0, 7) = Bg,, (X0, 7) = {x0};
2. if r = 1, then Bg,, (xo. r) = {xo} and Bg,, (xo, r) = X; and
3. if r > 1, then B(xo, r) = B(xo,7) = X.

The family of all open balls permit us to consider a topology on X.

Theorem 3.2.1. There exists a unique topology t on a G-metric space (X, G) such
that, for all x € X, the family B, of all open balls centered at x is a neighbourhood
system at x. Furthermore, t1c is metrizable because it is the metric topology
on X generated by the equivalent metrics d$ and dS (defined in Lemma 3.1.4).
In particular, t¢ satisfies the Hausdorff separation property.

Proof. We use Lemma 2.6.1. The first two properties are trivial because B(x, r1) N
B(x,r;) = B(x,min{ry,r}). Let B = B(x,r) € 8, be an open ball and let B" =
B € ;. We have to prove that for all y € B, there exists B” € B, satisfying B” C B.
Indeed, fix y € B = B(x, r). Therefore G(x,y,y) < r. Let s and § > 0O be arbitrary
numbers such that G(x,y,y) < s < s + 6§ < r. We claim that B” = B(y,8) C
B = B (x,r). To prove it, let z € B (y, §) be arbitrary, that is, G (y,z,z) < §. Then,
by axiom (Gs), it follows that G (x,z,z2) < G(x,y,y) + G(y,2,2) < s+ 6 < r.
Hence z € B (x,r). Lemma 2.6.1 guarantees that there exists a unique topology tg
on a G-metric space (X, G) such that, for all x € X, the family §, of all open balls
centered at x is a neighbourhood system at x.
Proposition 3.2.1 guarantees that, for all x € X and all r > 0,

Byg (x,1) € Bg (x,r) € Byg (x,2r) € Bg (x,2r) .

This means that, for all x € X, the family B, = {Bdg (x,r):r> 0} is a
neighbourhood system at x equivalent to f,, that is, they generate the same topology.
Therefore, 7 = 46, which implies that t; is metrizable and it satisfies the
Hausdorff separation property. O
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The following notions can be considered on a topological space (see [23, 51]),
but we particularize them to the case of the topology 7.

e Asubset U C X is a G-neighborhood of a point x € X if there is r > 0 such that
Bc;(.x, r) g U.

e Asubset U C X is G-open if either it is empty or it is a G-neighborhood of all its
points.

e Asubset U C X is G-closed if its complement X\ U is G-open.

* An adherent point (also closure point or point of closure) of a subset U C X is
a point x € X such that every G-open set containing x also contains, at least, one
point of U, that is, for all £ > 0 we have that B (x, &) N U # @.

+ The G-closure U = clg(U) of a subset U C X is the family of all its adherent
points. Clearly, x € U if, and only if, Bg (x, &) NU # @ for all ¢ > 0. In particular,
U C U. Moreover, U is G-closed if, and only if, U = U.

« The G-interior U = intg(U) of a subset U C X is the complement X\ U. An
interior point of U is a point x € U such that there exists r > 0 verifying

B (x,r) € U. In particular, U € U. Moreover, U is G-open if, and only if,
U="U.

For simplicity, we will omit the prefix G- in the previous notions.

3.2.1 Convergent and Cauchy Sequences

In this subsection, we introduce the notions of convergent sequence and Cauchy
sequence using the topology 7¢.

Definition 3.2.2. Let (X, G) be a G-metric space, let x € X be a point and let {x,} C
X be a sequence. We say that:

e {x,} G-converges to x, and we write {x,} N x or {x,} — x, if
lim,, ;y—o00 G (X, X, x) = 0, that is, for all & > O there exists ny € N satisfying
G(xp, X, x) < e for all n,m € N such that n,m > ny (in such a case, x is the
G-limit of {x,});

o {x,}is G-Cauchy if lim, ,, y—oc0 G (X4, X, Xx) = 0O, thatis, for all & > 0 there exists
ny € N satisfying G(x,, X, xx) < ¢ for all n,m, k € N such that n, m, k > ny.

* (X, G) is complete if every G-Cauchy sequence in X is G-convergent in X.

The following two properties are well known.

Proposition 3.2.2. The limit of a G-convergent sequence in a G-metric space is
unique.

Proof. Let (X,G) be a G-metric space and let {x,} < X be a sequence that
converges, at the same time, to x € X and to y € X. We claim that G (x, y,y) < ¢ for
all ¢ > 0. Indeed, let ¢ > 0 be arbitrary. By definition, there exist natural numbers
ny, np € N such that
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G(x, X, x) < for all n,m > ny;

G(x, X, y) < for all n,m > n,.

W|lm W|m

Let nyp = max (n, ny). Then, by (G5) and Lemma 3.1.1, we have that, for all n >
max (ny, ny),

G(‘x?y’y) E G(x,x,,,xn) + G(xn»)’»)’)

< G(xy, X, %) +2G(xy, X, y) < g + 2§ =e.

Consequently, we have that G(x, y,y) = 0 and, by (G;), we conclude that x = y.
O

Proposition 3.2.3. Every convergent sequence in a G-metric space is a Cauchy
sequence.

Proof. Let (X, G) be a G-metric space and let {x,} C X be a sequence that converges
tox € X. Let ¢ > 0 be arbitrary. By definition, there exists ny € N such that

G(xp, X, x) < for all n, m > ny.

£

3

By (G4), (Gs) and Lemma 3.1.1, we have that, for all n, m, k > ny,
G (Xn, X X1) < G (%, %, X) + G (X, X, Xg)

& &
= 2600, %, %) + Gl X X) 27+ 3 =&

Therefore, {x,} is a Cauchy sequence in (X, G). O

Remark 3.2.1. The reader can observe that axiom (G3) is not necessary in the proofs
of many results. For example, it was not used in the proofs of Propositions 3.2.2
and 3.2.3. In the same way, assumption (G3) will not be involved in the equiv-
alences between conditions (a) to (h) in Lemma 3.2.1, or in the equivalences of
Lemma 3.2.2.

Next, we characterize convergent and Cauchy sequences. In the following result,
we use the notation introduced at the end of Sect. 2.1.

Lemma 3.2.1. Let (X, G) be a G-metric space, let {x,} C X be a sequence and let
x € X. Then the following conditions are equivalent.

(@) {x,} G-converges to x.
(b) lim G(x,,x,,x) = 0, that is, for all & > 0, there exists ng € N such that
n—>o00

X, € Bg (x, ¢) forall n > ny.
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(¢) lim G(x,,x,x) =0.
n—>oo
(d) lim . G (x4, X, x) = 0.

n,m—>00, m>n

(e) lim G(x,,x,,x) =0 and lim G(x,,X,+1,x) = 0.
n—>oo n—>o0o

® lim G(x,,x,x) =0 and lim G(x,,x,+1,x) = 0.
n—>oo n—oo

(g lim G (x,, Xp41,%X+1) =0 and lim G(x,,x,+1,x) = 0.
n—00 n—00

(h) lim G (x,, Xy+1,%41) =0 and lim G (x4, X, x) = 0.
n—>o0 nm—>00, m>n

@) lim G (x4, X, x) = 0.

n,m—>00, m>n

Proof. (a)=(b) It is obvious using m = n.
(b)=(c). It follows from Lemma 3.1.1 because

G(x,, x,x) <2G(x,, X4, %)

foralln € N.
(c)=(a). It follows from the fact that, by (Gs) and (G,), for all n,m € N,

G (X, X, X) < G (X4, %, %) + G (x, Xy, X)
= G (xp, X, x) + G (X, x, X)

The implications (a)=>(d)=>(b), (a)=(e)=>(b) and (a)=(f)=(c) are trivial.

(a)=(h) By Proposition 3.2.3, {x,} is a Cauchy sequence. Then, using
m = k = n + 1 in the definition of Cauchy sequence, we deduce that
lim, 00 G (X4, X441, Xu+1) = 0. Moreover, (a) trivially implies that

lim G(xp, X, x) = 0.
n,m—>00, m>n

(h)=(g). It is obvious using m = n + 1.
(g)=(b). By (Gs) and (Gy), foralln € N,

G(xn»xnvx) =< G(xn»xn-i-lv-xn-i-l) + G(xn-i-l»xnv )C)

= G(xp, Xpa1, Xng1) + GOy, X1, X).

Moreover, (a)=>(i) is also apparent. The only implication in which we will use
axiom (Gj3) is the following one.

(i)=(b). It follows from item 9 of Lemma 3.1.2 (which needs axiom (G3)),
because G (x,, X, x) < 2G (X, X, Xp41) = 2G (X, Xy41, %) foralln € N. O

Lemma 3.2.2. If (X, G) is a G-metric space and {x,} C X is a sequence, then the
following conditions are equivalent.

(@) {x,} is G-Cauchy.
(b) lim G(x,, Xy, X)) = 0.
n,m—0o0
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(© lm  G(xy,Xp, Xm) = 0.
nm—>00, m>=n

(d) lim G(Xn, Xy xm) =0.

n,m—>00, m>n

() lim G(x,,x,,x,) =0.

n,m—00

) lim G(xy, X, X)) = 0.

nm—>00, m>n

(e lim G(xy, X, %) = 0.

n,m—>00, m>n

(h) lim G(x,, X41,X:+1) =0 and lim G(x, Xp1, X)) = 0.
n—>oo nm—>00, m>n

Proof. (a)=(b)=(c) are obvious.
(c)=(a). Let ¢ > 0 be arbitrary. By condition (b), there exists ny € N such that

G (X, X X)) < % for all m > n > ny.

Let n,m, k € N be such that n, m, k > ng. Let ' = min{n, m, k}, k' = max{n, m, k}
and m' = {n,m, k\\{n',K'}. Then {n,m,k} = {0, m' . K} and ' < m' < k.
Therefore, by (Gs) and (Gy),

G (s Xmo X)) = G (o, X, X)) < G (X, X X)) + G (X7, X, Xir)
&
2

=G (X, x1,x0) + G (X, X7, xp7) < g + - ==e.
Hence, {x,} is a Cauchy sequence.

(c)=(d). It is obvious.

(d=(c). If n = m, then G(x,, X, Xm) = G(x,,%,,%,) = 0, and if m > n, then
we can get G(xy,, Xp, Xp) < €.

The equivalences (b)<>(e), (c)<(f) and (d)<(g) follow from Lemma 3.1.1,
because G(x,, X, Xm) < 2 G (X, X, Xim) < 4 G(xy, X, X;y) for all n,m € N.

It is clear that (a)=>(h).

(h)=(g). For all n,m € N such that m > n, we have that

G(Xn, Xns xm) = G()Cn, Xn+1, xn+1) + G(xn+1 s Xns xm)

= G, X1, Xnt1) + G, X1, Xm). -

Taking into account that the topologies 76, 746 and 746 coincide, it is convenient
to highlight that they have the same Cauchy sequences and the same convergent
sequences, converging to the same limits.

Lemma 3.2.3. Given a G-metric space (X, G), let d5 and d° be the metrics on X
defined in Lemma 3.1.4. Then a sequence {x,,} C X is G-convergent to x € X if, and
only if, it is dS-convergent (or dS-convergent) to x.

Furthermore, {x,,} < X is G-Cauchy if, and only if, it is dS-Cauchy (or d°-
Cauchy).
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Closedness can be characterized using convergent sequences.

Proposition 3.2.4 ([142]). Let (X, G) be a G-metric space and let U C X be a
nonempty subset of X. Then U is G-closed if, and only if, for any G-convergent
sequence {x,} in U with G-limit x € X, one has that x € U.

3.2.2 Continuity of Mappings Between G-Metric Spaces

Definition 3.2.3. Let (X, G) be a G-metric space. We say that:

G
e amapping T : X — X is G-continuous at x € X if {Tx,,} —> Tx for all sequence

{xn} € X such that {x,,} N X;

e amapping F : X" — X is G-continuous at (xi,x,, ..., x,) € X" if
m m m G
{F()c1 X ,xn)} — F(x1,%2,...,%,)
G
for all sequence {(x",xy,....xr)} € X" such that {x"} —> x; for all i €
{1,2,...,n};

* amapping H : X" — X" is G-continuous at (x1,x,...,X,) € X" if n/" o H :
X" — X is G-continuous at (x,xz,...,x,) foralli € {1,2,...,m}, where 7" :
X™ — X is the ith-projection of X" onto X (that is, 7" (a1, as, ..., ay,) = a; for
all (ay,az,...,a,) € X™).

By Lemma 3.2.3, convergence of sequences on X with respect to G, d¢ and d%
coincide.

Lemma 3.2.4. Let (X,G) be a G metric space. Then a mapping T : X — X
is G-continuous if, and only if, it is dS-continuous (dS-continuous). Similarly, a
mapping F : X" — X is G-continuous if, and only if, it is d%-continuous (dS-
continuous).

Theorem 3.2.2 ([154]). If (X, G) is a G-metric space, then the function G(x,y,z)
is jointly continuous in all three of its variables, that is, if x,y,z € X and

G G

{xn} ivnts {zn} © X are sequences in X such that {x,,} —> x, {ym} —> y and
G

{zm} —> 2, then {G (X, Y, 7m)} — G (x,Y,2).

Proof. Applying the axiom (Gs) three times,

G(xmvymvzm) =< G(xm,x,x) + G(x»ymvzm)
S G(xmv-xv-x) + G(ym»)’»y) + G(yvxvzm)
<G %,%) + GO, y,Y) + G (2m,2,2) + G (2,x,9) .

In a similar way,
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G (x,9,2) < G, X Xm) + G (Vs YY) + G (2, Zms Zm) + G (Zons Xons Yn) -

In particular, for all m € N,

G(x,y,2) = G (X, X, %) — G (Vs Y, Ym) — G (2, Zm, Zm) < G (Xoms Y Zm)
<G X%, X) + GO, 3, Y) + Gz, 2,2) + G (2, x,Y) .

Letting m — oo and using Lemmas 2.1.1 and 3.2.1, we conclude that
{G oy Yms )} = G (1,3, 2). O

3.3 G-Metrics and Quasi-metrics

In this section, we analyze the close relationship between G-metrics and quasi-
metrics.

Lemma 3.3.1. Let (X,G) be a G-metric space and let define qg,qg : X —
[0, 00) by

qgc(x,y) = G(x,x,y) and qg(x, y) = G(x,y,y) forallx,y € X.

Then the following properties hold.

1. g and qg; are quasi-metrics on X. Moreover

go(x.y) < 2qg(x,y) <4qc(x.y) forallx,y€X. (3.11)

2. In (X,qg) and in (X,qy), a sequence is right-convergent (respectively, left-
convergent) if, and only if, it is convergent. In such a case, its right-limit, its
left-limit and its limit coincide.

3. In (X, qg) and in (X, q;), a sequence is right-Cauchy (respectively, left-Cauchy)
if, and only if, it is Cauchy.

4. In (X, q¢) and in (X, q;;), every right-convergent (respectively, left-convergent)
sequence has a unique right-limit (respectively, left-limit).

5. If{x,} € X and x € X, then

G 95
) — X = {0} -5 x = {1} — 1.

6. If {x,} € X, then {x,} is G-Cauchy <= {x,} is qg-Cauchy <= {x,} is q-
Cauchy.
7. (X, G) is complete <= (X, q¢) is complete <= (X, q(;) is complete.

Proof. (1) Axiom (gq;) follows from (G;) and (G;) and condition (¢;) holds because
of properties (G4) and (Gs) since, for all x, y, z € X,
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g6(x,y) = G(x,x,y) = G(y,x,x) < G(y,z,2) + G(z,x,x)
=Gx,x,2) + G(z,2,y) = q6(x.2) + g6(2.y);
d6(x,y) = G(x.y.y) = G(x.2,2) + G(z,3,y) = 45(x.2) + q5(z.¥).
Inequalities (3.11) follow from Lemma 3.1.1. (2) It follows from Lemma 3.2.1. (3)

It follows directly from the definitions. (4) It follows from item 2 and Remark 2.5.1.
Other items are straightforward exercises. O

Remark 3.3.1. Notice that g and g[; can be different quasi-metrics. For example,
qg; 18 a quasi-metric even if G does not verify axiom (G4), but ¢ needs that property.



Chapter 4
Basic Fixed Point Results in the Setting
of G-Metric Spaces

The Banach contractive mapping principle is the most celebrated result in fixed
point theory. The simplicity of its proof and the possibility of attaining the fixed
point by using successive approximations makes it a useful tool in analysis and in
applied mathematics. In this chapter, we present a variety of fixed (and coincidence)
point results in the context of G-metric spaces.

4.1 The Banach Procedure

Almost all contractive type fixed point results follow the same technique. In this
section, we describe this process in a very general context.

4.1.1 The Banach Procedure

Let X be a non-empty set and let 7', g : X — X be two self-mappings.
Part 1. Existence of a fixed (or coincidence) point

Step 1. Construction of an iterative sequence.
A sequence {x,},>0 € X is a Picard sequence of T if

Xp41 = Tx, foralln e N.

Some authors say that this sequence is based on the initial point xo. If this sequence
contains a point x,, such that x,,4+1 = x,,, then x,, is a fixed point of 7, and
the existence of a fixed point is guaranteed. Therefore, it is usual to assume that

© Springer International Publishing Switzerland 2015 51
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X, # Xu+1 forall n € N. In this case, the main objective is to prove that this sequence
converges to a fixed point of 7.
In the coincidence case, a sequence {x, },>0 < X is a Picard sequence of (T, g) if

gxn+1 = Ix, foralln e N.

If there exists no € N such that gx,,+1 = gx,,, then gx,, = gxn,+1 = Ty, SO Xy,
is a coincidence point of T and g. Therefore, it is usual to assume that gx,, # gx,+1
foralln € N.

Lemma 4.1.1. If T(X) C g(X), then there exists a Picard sequence of (T, g) based
on any xy € X.

Proof. Let xo € X be arbitrary. Since Txy € T(X) < g(X), there exists x; €
X such that gx; = Txy. Analogously, since Tx; € T(X) C g(X), there exists x, € X
such that gx, = Tx;. Repeating this argument by the induction methodology, we
can find a Picard sequence of (7, g) based on xg. O

Step 2. To prove that {gx,} is asymptotically regular.
A sequence {z,,} in a quasi-metric space (X, g) is asymptotically regular if
lim g (zp, 2a+1) = lim g (Zp41.20) = 0.
n—>o0 n—>o00
In the case of a G-metric space, it is only necessary to prove that
lim G (va ZnJrlenJrl) =0
n—>o0

because, in such a case, Corollary 3.1.1 ensures that

lim G (xy, Xpt1, Xn41) = lim G (x, X, Xp41) = 0. 4.1)
n—o0 n—00

Step 3. To prove that {gx,} is Cauchy.

This is usually the key step of the proof and usually in the literature the argument
involves reasoning by contradiction. The methodology we will follow is described
in Sect.4.1.2.

Lemma 4.1.2. Let {x,} be a sequence in a G-metric space (X, G) and assume that
there exist a function ¢ € Fxr and ny € N such that, at least, one of the following
conditions holds:

@) G (1, Xn42, Xn42) < 0 (G (X, X1, X041))  for all n > ng;
(b) G (Xpt1, Xnt 15 Xn42) < @ (G (X, Xy, Xu11))  foralln > ny.

Then {x,} is a Cauchy sequence in (X, G).

As fééﬂn C Fkr, the previous result is also valid when ¢ € }'C(Qn
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Proof. Assume that condition (a) holds and let y, = x,4,, for all n € N. We claim
that {y,} is a Cauchy sequence in (X, G). Indeed, using the fact that ¢ is non-
decreasing, for all n > 0,

G Vnt 15 Ynt2: Yn2) = G (Kndng 15 Xntno+2 Xntng+2)

=< 0 (G Xntng> Xntng+15 Xntng+1)) = @ (G Vs Yot 15 Ynt1)) -

Repeating this argument, it follows that for all n > 0,

G Ons Ynt1:Yn+1) < @ (G n=1,Yn>Yn))
< 0> (G (-2 Yn—1,¥0-1)) < ... < 9" (G (o, y1, 1)) . (4.2)

If G (yo,y1,y1) = 0, then G (yu, Yu+1,Vn+1) = 0 for all n € N, which means that
Yat1 = yp for all n € N. Then, the sequence {y,} is constant, that is, y, = y, for all
n € N. In particular, {y,} is a Cauchy sequence in (X, G) because G(y,, Y, y¢) = 0
forall n,m, ¢ € N.

Next, assume that #o = G (yo, y1,¥1) > 0 and let ¢ > 0 arbitrary. Since ¢ € Fkg,
the series ), . ¢"(fo) converges. In particular, there exists n; € N such that

io: ‘Pk(fo) <e.

k=ny

Now, let n,m € N be such that n,m > n;. Without loss of generality, assume that
n < m. From item 4 of Lemma 3.1.2 and using (4.2), we have that

m—1 m—1
G s Yimr Ym) < 3. G ks Vit 1, Vk1) < 3 05 (t0)
k=n k=n

= io: 9" (1) < e

k=n

Therefore, by Lemma 3.2.2, {y,} is Cauchy in (X, G). This argument also proves
that {x,} is a Cauchy sequence because for all m > n > ny 4+ n; we have that
m-—ng >n-—ngp = n, SO

G (xnv xmv xm) = G (yll—n() ’ ym—n() ’ ym—no) <é.

Case (b) is similar. O

If we take @, (t) = At for all 7 € [0, 00), where A € [0, 1), then ¢, € Féﬁ?n and
the previous result can be stated as follows.

Corollary 4.1.1. Let {x,} be a sequence in a G-metric space (X, G) and assume
that there exist a constant & € [0,1) and ny € N such that, at least, one of the
following conditions holds:
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(@) G (Xpt+1, X042, Xnt2) <A G Xy Xpt1, X041)  for all n > no;
(b) G(xil+17xn+l’xn+2) = A G(xn’-xnvxn-l-l) fOF alln = nyp.

Then {x,} is a Cauchy sequence in (X, G).

Step 4. To prove that the limit of {gx,} is a coincidence point of 7 and g.

As {gx,} is a Cauchy sequence in a complete space (for example, in X or in
g(X)), then it is convergent. Its limit, z € X, is usually a coincidence point of T
and g. To prove it, it is necessary to apply the contractivity condition using gx,
and z. If z € g (X) (for example, when g(X) is complete), then there exists u € X
such that z = gu, so the contractivity condition can be applied to gx, and gu.

Part II. Uniqueness

Once we have proved the existence of a coincidence (or a fixed) point, it is
of interest to discuss uniqueness if it is possible. Reasoning by contradiction and
under additional hypotheses if necessary, sometimes we can deduce a contradiction
assuming that 7" and g have two different coincidence points.

The following definition can be applied to any space provided with a notion of
convergence (metric, quasi-metric, G-metric or topological space).

Definition 4.1.1. We say that T : X — X is a Picard operator if for all initial point
Xxo € X, the Picard sequence of T based on x( converges to a fixed point of 7.

4.1.2 About Asymptotically Regular Sequences
that are not Cauchy

In this section we describe some necessary conditions that must be verified by any
asymptotically regular sequence if we suppose that it is not Cauchy.

In the following result, given a fixed integer number p € Z, we will consider the
subsequence {G(X,+p, Yn: Zn) }nx|p|> and we consider the limit of this sequence when
n — oo.

Remark 4.1.1. Throughout this subsection, we shall not use axiom (Gj3).

Lemma 4.1.3. Let {x,}, {y.} and {z,} be three sequences in a G-metric space
(X, G). Suppose that {x,} is asymptotically regular and that there exists L € [0, c0)
such that lim G(x,, y,, z,) = L. Then, for all given p € Z,

n—>o0

lim G(xu4p,Yn,2n) = L. 4.3)
n—>oQo

Proof. As {x,} is asymptotically regular, by (4.1), we have that

lim G (X, Xy+1, Xn+1) = lim G (x,, X, X5+1) = 0. 4.4)
n—>00 n—00
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If p = 0, property (4.3) holds by hypothesis. Assume that (4.3) holds for some
p € N, and we will show that it also holds for p 4+ 1. Notice that, for all n € N,

G(xn-i-p-‘rl » Yns Zn) = G(xn-i-p-i—l » Xn+ps xn-i-p) + G(xn-i-pv Yns Zn)

and

G(xn—l—p» Yns Zn) S G(xn+p7 xn+p+l ) xn+p+1) + G(xn+p+l » Yns Zn)~
Joining the last two inequalities,
G(xn+p7 Yns Zn) - G(xn—i-p, xn+p+l ) xn-‘rp-’rl) 5 G(xn—i-p—i-] s Yns Zn)
= G(xn+p+l » Xn+ps xn+p) + G(xn+p7 Yn» Zn)-
Using (4.4), the hypothesis of induction (4.3) and Lemma 2.1.1, we deduce that
im G(Xptp+1,Ynr2n) = L,
n—>oo

which completes the proof. The case in which p < 0 can be proved similarly. O
In the following corollary, given py, p2, p3 € Z, we will consider the limit of the

sequence

{G(x”+1’1 s Yntpas Z”"‘1’3)}nzmax{lpl [Ipal.lp3l}

Corollary 4.1.2. Let {x,}, {y.} and {z,} be three asymptotically regular sequences
in a G-metric space (X, G) and assume that there exists L € [0,00) such that
lim G(x,,Yn,2,) = L. Then, for all given py, p>,p3 € Z,

n—oo

E)Igo G(anrp] > Yn+pa Zn+p3) =L 4.5)

n

Proof. From Lemma 4.1.3, we know that, for all fixed p; € Z,

lim G(xn—i-p] s Yns2n) = L.
n—>00

Taking into account that G(x,4p, Yn. 2n) = G(Vn, Xntp, 2u) for all n and py, we can
again apply Lemma 4.1.3 to deduce that, for all fixed p;, p» € Z,

nll>nc30 GVntprs Xntpi2n) = L.

Repeating this argument, we conclude (4.5). O
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Notice that we cannot deduce that a subsequence {x,y)} of an asymptotically
regular sequence {x,} is also asymptotically regular. For example, consider the
sequence {x,},>1 C R given by

foralln > 1.

|

n
Xn = Z
k=1
Then {x,} is asymptotically regular if we consider on R the G-metric
Gx,y,2) = max{lx—y|,[x =z, [y —zl}
forall x,y, z € R. However, as {x,} is strictly increasing and {x,,} — o0, it contains a

subsequence {x)} such that x,+1) > x,4) + k for all k € N, and this subsequence
is not asymptotically regular.

Lemma 4.1.4. Let {x,4)}, {Xm@} and {x¢x)} be three subsequences of the same
asymptotically regular sequence {x,} in a G-metric space (X, G) and assume that
there exists L € [0, 00) such that
kl_l)ffolo G (Xn(ky, Xm(r)» Xeky) = L.
Then, for all given py, p2, p3 € Z,
M G )tpy + X4z Xeo+ps) = L (4.6)

Proof. As {x,} is asymptotically regular, by (4.1), we have that

lim G (X, Xy+1, Xp41) = lim G (X, X4, Xp+1) = 0. 4.7

n—>oo n—>oo

Firstly, we show, by induction on py, that

for all P1 € N, kl—lglo G()Cy,(k)_i_pl s Xm(k) » xg(k)) = L. 4.8)

If p; = 0, then (4.8) holds by hypothesis. Assume that (4.8) holds for some p; € N,
and we show that (4.8) also holds for p; + 1. Indeed, notice that, for all k € N,

G(Xn()+-p1+15 Xm(k)» Xek))
< G +pi+1+ Xn@+p1 > Xn®)+p1) + COny+p1 5 Xme) s Xer))
and

G(Xn)+p1 > Xm(k) s Xe(k))

= Gy 4p1» Xn() +p1+1> Xn®)+p1+1) F Gy 4-p1+15> Xm() s Xe(k)) -
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Joining the last two inequalities,

G(Xn()4p1» Xmk)s Xe)) — GXn(oy4-p1 s Xn(k)+p1-+15 Xnk)+p1+1)
=< G(Xam)+p1+15> Xm(k)» Xe (k)

= GO +p1+1> Xn®)+p1 > Xnky+p1) T GOy +p1> X¥mih)» Xe (1)) -
Using (4.7), the hypothesis of induction (4.8) and Lemma 2.1.1, we deduce that
Jim G(Xn()+p1+15 Xm()» Xey) = L,

which completes the proof. Then (4.8) holds.

The case in which p; < 0 can be proved similarly by induction on —py, so (4.8)
holds for all p; € Z.

Now, using that G(xn(k)+p| ,xm(k),Xg(k)) = G(xm(k),x,,(k)+p1 ,xg(k)) forall k € N,
we can apply what we have just proved in order to deduce that

forall py,p, € Z, kliﬂc}o G (X +-p2 s Xn()+p1 » Xey) = L.

Similarly, in another step, we conclude that (4.6) holds. O
Proposition 4.1.1. Let {x,} be a sequence in a G-metric space (X, G).

1. If the following condition holds:

forall € > 0, there exists ny € N such that
G (X, X, X)) < € forallm > n > ny, 4.9)
then {x,} is a Cauchy sequence in (X, G).
2. If the following condition holds:
for all € > 0, there exists ny € N such that

G (X, X, X)) < & forallm > n > ny,

then {x,} is a Cauchy sequence in (X, G).
Proof. As {x,} is asymptotically regular, by (4.1), we have that

lim G (xn,xn+1,xn+1) = lim G (xn,xn,xn+1) =0.
n—>oo n—>o00

Assume that condition (4.9) holds. Let ¢ > 0 be arbitrary and let ny € N satisfy

4.9)fore/2 > 0.If £ > m > n > ny, then

G(xn» Xms X[) =< G(xn» Xms xm) + G(Xm, Xms xﬁ)

£t
—+-=c
22

=
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Hence, {x,} is a Cauchy sequence in (X, G). The other condition yields the same
conclusion using Lemma 3.1.1. O

Theorem 4.1.1. Let {x,} be an asymptotically regular sequence in a G-metric
space (X, G) and suppose that {x,} is not Cauchy. Then the following properties
hold.

1. There exists a positive real number & > 0 and two subsequences {X,u)} and
{Xm } of {xn} such that, for all k € N,

k <n(k) <m(k) <nk+ 1),
G (Xn(ys X1+ Xm—1) < €1 < G (Xn(k)s Xy Xm(k))

and also, for all given p1,p>,p3 € Z,

kl_lglo G (Xn@0)+p1 > Xm(k) +p2 - Xm()+p3) = 1. (4.10)

2. There exists a positive real number &, > 0 and two subsequences {x,y} and
{Xs } of {xn} such that, for all k € N,

k<rk) <stk)<r(k+1),
G (Xrk)» Xrih)s Xsti)—1) < €2 < G (Xry oty » Xsty)
and also, for all given p1,p>,p3 € Z,

JAm G (X1 K@ 420 Xstl-4ps) = €2-

Proof. (1) As {x,} is asymptotically regular, by (4.1), we have that

lim G (x;, Xy+1, Xn4+1) = 0. 4.11)

n—>oo

Taking into account that {x, } is not Cauchy, condition (4.9) cannot hold. If we deny
that condition, we can find a positive real number &; > 0 and two subsequences
{Xn( } and {Xxnw) } of {x,} such that, for all k € N,

k = l’l(k) < m(k) < I’l(k + 1)s & < G (xn(k)v-xm(k)v-xm(k)) .
For each k € N, it is possible to choose m(k) as the lowest integer, greater
than n(k), verifying the previous condition. As m(k) — 1 does not verify it, then

G (Xn(k)s Xim)—1+ Xm)—1) < &1 for all k € N. We claim that

lim G (x,,(k), Xink) » xm(k)) = ¢£;. 4.12)
k—00
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Indeed, notice that, for all k € N,

e <G (Xn(k),xm(k)axm(k))
< G (Ya)s Xmy—15 Xmn—1) + G (Xmpy—1 Xty Xy )

<&+ G (xm(k)—l s Xm(k) s xm(k)) .

Taking into account (4.11) and letting k — o0 in the previous inequality, we deduce,
using Lemma 2.1.1, that (4.12) holds. Finally, using Lemma 4.1.4, we conclude that
for all given p1, p2, p3 € Z,

Jim G (g 1 X420 Xm)p3) = €1

The proof of the other item is similar. O

Lemma 4.1.5. Let {x,} be an asymptotically regular sequence in a G-metric space
(X, G) and suppose that {x,} is not Cauchy. Then there exists a positive real number
g0 > 0 and two subsequences {X,)} and {Xmu)} of {x.} such that, for all k € N,

k <n(k) <m(k) <nk+1),
G (xn(k),xn(k)-i-lvxm(k)—l) <eg <G (xn(k),xn(k)-i-lvxm(k))

and also, for all given p1,p>,p3 € Z,
klglgo G (Xn )41 > Xm(k) +p2 - Xm0y +p3) = o (4.13)
Proof. Under the asymptotically regular condition, we show that the assumption

for all € > 0, there exists ny € N such that

G (%, X1, %) < eforallm > n > ny, (4.14)
implies that {x,} is a Cauchy sequence. Indeed, by (G4) and (G5), we have that

G(-xn--xn»xm) = G(xnv-xn-i-lsxn-f—l) + G(xn+17-xlls xm)

= G(xnsxn+lvxn+l) + G(xnsxn+lvxm) .

As G (xy, Xp+1, Xn+1) and G (X, Xy+1, X)) are as small as we wish for m > n > ny
and ng large enough, then Lemma 3.2.2 guarantees that {x,} is a Cauchy sequence.
If we assume that {x, } is not a Cauchy sequence, then condition (4.14) is false. Then,
there exists &g > 0 and two subsequences {x,)} and {x,,i} of {x,} such that, for
allk € N, k < I’l(k) < m(k) < I’l(k + 1) and G (xn(k),xn(k)+1,x,,l(k)) > &y. If m(k) is
the smallest integer, greater that n(k), such that this condition holds, then

G (Xn()s Xk 1 Xm(o—1) < €0 < G (Xn(ty» Xnk)+1 Xm(k))
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for all k € N. As a result,

g0 <G (xn(k)’xn(k)-‘rlvxm(k)) =G (xm(k),xn(k),xn(k)ﬂ)
<G (xm(k) s Xm(k)—1> xm(k)—l) +G (xm(k)—l > Xn(k) > xn(k)—i—l)

<G (xm(k)»xm(k)—l’xm(k)—l) + &o.

Since {x,} is asymptotically regular, then
kl_lglo G (Xn()» Xnik) 1 Xm(v)) = €o-

Lemma 4.1.4 guarantees that (4.13) holds. O

4.2 Basic Fixed Point Theorems in the Context
of G-Metric Spaces

We start this section by proving a fixed point theorem on G-metric spaces, which
were is to Mustafa [142].

4.2.1 Banach Contractive Mapping Principle
in G-Metric Spaces

The following one can be considered as the first generalization of the Banach
contractive mapping principle to the context of G-metric spaces.

Theorem 4.2.1 ([142]). Let (X, G) be a complete G-metric space and let T : X —
X be a mapping such that there exists A € [0, 1) satisfying

G(Tx,Ty,Tz) < AG(x,y,7) forallx,y,z € X. (4.15)

Then T has a unique fixed point. In fact, T is a Picard operator.

Proof. Let x; be an arbitrary point of X and let {x,},>0 be the Picard sequence of
T based on xy, that is, x,4+; = Tx, for all n > 0. If there exists some ny such that
Xnp+1 = Xn, then x,, is a fixed point of T, and the existence of a fixed point is
guaranteed. Therefore, assume that

Xpt1 F# X, foralln > 0.



4.2 Basic Fixed Point Theorems in G-Metric Spaces 61

By taking x = x, and y = z = x,4; in the contractive condition (4.15) of the
theorem, we have that, for all n > 0,

G(Xn+15 X042, Xn+2) = G(Txy, Txpt1, TXp1)

< AG(Xp, Xy 1 Xpg1)-

From Corollary 4.1.1, {x,} is a Cauchy sequence. As (X, G) is complete, it is
convergent, so there exists z € X such that {x,} — z. We assert that z is a fixed
point of T. By utilizing (4.15), we have that, for all n > 0,

G(xp41. T2, Tz) = G(Tx,,, Tz, T7) < AG(xp, 2, 2).

Letting n — oo and using the fact that the metric G is continuous (see Theo-
rem 3.2.2), we get that

G(z,Tz,Tz) < AG(z,z,2) = 0.

Hence, we conclude that z = Tz by item 5 of Lemma 3.1.2. We shall show that z is
the unique fixed point of 7. Suppose, on the contrary, that there exists another fixed
point w € X. If w # x, then G(w, w, z) > 0. From (4.15) and A < 1 we have that

Gw,w,z2) = G(Tw,Tw, T7) < AG(w,w,z) < G(w,w, z),

which is a contradiction. Hence, z is the unique fixed point of 7. O

If we carefully read the previous proof, we will notice that the contractivity
condition was only used when two arguments of G are equal. Then, the following
contractivity condition, which is weaker than (4.15), leads to the same conclusion.

Theorem 4.2.2. Let (X, G) be a complete G-metric space and let T : X — X be a
mapping such that there exists A € [0, 1) satisfying

G(Tx, Ty, Ty) < AG(x,y,y) forallx,y,z € X. (4.16)

Then T has a unique fixed point. In fact, T is a Picard operator.

The proof of Theorem 4.2.2 is the same as the proof of Theorem 4.2.1. We omit
the proof to avoid repetition.

Remark 4.2.1. Condition (4.15) implies condition (4.16). The converse is only true
if A € [0,1/2). To prove it, assume that 0 < A < 1/2 and let ' = 24 € [0, 1).
Let x,y,z € X arbitrary. If x = y or y = z, then condition (4.16) implies condition
(4.15). Assume that x # y and y # z. Then, using (4.16) and axioms (G3) and (Gs),
G(Tx, Ty, Tz) < G(Ix, Ty, Ty) + G(1y, Ty, Tz)

<AG(x.y.y) + AG(y.y.2)

<AG(x,y,2) + AG(x,y,2)

= A1 G(x,y,2).
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4.2.2 Fixed Point Theorems Using Altering Distance Functions

In this section we weaken the contractive conditions on the map under consideration.
In 1969, Boyd and Wong [52] defined the concept of ®-contraction. Later, in
1997, Alber and Guerre-Delabriere [17] defined the notion of weak ¢-contractions
on Hilbert spaces and proved a fixed point theorem regarding such contractions.
Specifically, amap T : X — X on a metric space (X, d) into itself is called a weak
¢-contraction if there exists a strictly increasing function ¢ : [0, c0) — [0, co0) with
¢(0) = 0 such that

d(Tx, Ty) < d(x,y) — ¢(d(x,y)) forallx,ye€ X.

These types of contractions were discussed in the literature (see e.g. [111, 173,
200]).

In this subsection we present some fixed point results in the framework of
G-metric spaces involving altering distance functions in the contractivity condition.
To do that, recall that

Far = {¢ : [0,00) — [0,00) : ¢ continuous, non-decreasing,

1) =0x1=0}
=19 :[0,00) = [0,00) : ¢ lower semi-continuous, ¢ (1) =0 <t =0} .

Theorem 4.2.3. Let (X, G) be a complete G-metric space and let T : X — X be a

self-mapping. Assume that there exist two functions € Fy, and ¢ € F,, such that

for all x,y € X. Then T has a unique fixed point. Furthermore, T is a Picard
operator.

Proof. Let xy € X be an arbitrary point and let {x,},en be the Picard sequence of T
based on xo, that is, x,,+1 = Tx, for all n € N. If there exists some ny € N such that
Xno+1 = Xno, then x,,; if a fixed point of T, and the existence part is finished. Assume
that x,, # x,41 for all n € N. In such a case, using the contractivity condition (4.17),
foralln € N,

V(G (Xnt1, Xnt2, Xn+2)) = ¥ (G (T, Txnt1, Tn41))
= W (G (-xm xn+lv-xn+l)) - ¢ (G (xm-xn-l—l»xn-i-l)) .

From Lemma 2.3.6,

lim G (x,, X1, X041) = 0,

n—>oo



4.2 Basic Fixed Point Theorems in G-Metric Spaces 63

which means that {x,} is an asymptotically regular sequence on (X, G). Next, we
will prove that {x,} is a Cauchy sequence in (X, G) reasoning by contradiction.
Suppose that {x,} is not Cauchy. Then, by Theorem 4.1.1, there exists a positive
real number gy > 0 and two subsequences {X,)} and {xu} of {x,} such that, for
allk e N,

k <n(k) <m(k) <nk+1),
G (Xn@)» Xm(o—1+ Xm)—1) =< €0 < G (Xu(k)» Xty Xm(k))
and also, forp; = p, =p3 =—-1€Z,

kl_lglo G (Xn() Xy X)) = kl_l)rgo G (Xn)—1+ Xm(k)—1- Xm()—1) = Eo. (4.18)

Using the contractivity condition (4.17), for all k € N,

V(G (Xa)» Xy Xm))) = ¥ (G (Txn—1» Thimy—1, TXm@ey—1))
< Y (G (Xnt)=1+ Xmk) =1+ Xm()—1))
— ¢ (G (Xn)—1+ Xmt) 15 Xmi)—1)) -
From (4.18), note
{tc = G (Xu)» Xim(y» Xm(o)) Yxens {5k = G (Xnk)=1 Xm(k)=1, Xm(k)—1) ke

are two sequences in [0, 00) converging to the same limit L = &y. Then, it follows
from Corollary 2.3.2 that &g = 0, which is a contradiction. As a consequence, we
have that {x,} is a Cauchy sequence in (X, G). Taking into account that (X, G) is
complete, there exists u € X such that {x,} — u. In particular,

lim G (x,,u,u) = 0.
n—>o00

By using the contractivity condition (4.17), we deduce that, for alln € N,

¥ (G (xp41, Tu, Tu)) = ¥ (G (Tx,, Tu, Tu))
= ¥ (G (. u,u)) — ¢ (G (xn, u, 1))
<Y (G (x,, u,u)).

From item 2 of Corollary 2.3.1,

lim G (x,+1, Tu, Tu) = 0.
n—>oo
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Using the fact that G is continuous on each variable (see Theorem 3.2.2),
Lemma 2.3.3 guarantees that

G (u,Tu,Tu) = lim G (x,41, Tu, Tu) = 0.
n—o0

As a consequence, by using (G,), we conclude that Tu = u.

Finally, we claim that 7 has a unique fixed point. Let u,v € Fix(T) be
arbitrary fixed points of 7. If u # v, then G(u,v,v) > 0 and, as ¢ € F,, then
¢ (G(u, v,v)) > 0. Using the contractivity condition (4.17), we deduce that

Y (G (. v,v)) = ¥ (G (Tu, Tv. Tv))
=¥ (G (u,v,v)) = ¢ (G (u,v,v))
<Y (G (u,v,v)),

which is a contradiction. Then ¥ = v and T has a unique fixed point. O

The following contractivity condition, using three arbitrary arguments, is
stronger than (4.17).

Corollary 4.2.1. Let (X, G) be a complete G-metric space and let T : X — X be a

self-mapping. Assume that there exist two functions € Fy and ¢ € F,, such that

Y (G (Tx. 1), T2)) = ¥ (G (x,y.2)) — ¢ (G (x,.2))
for all x,y,z € X. Then T has a unique fixed point. Furthermore, T is a Picard
operator.

In the following result, we take i as the identity mapping on [0, 00), obtaining a
version of the Alber and Guerre-Delabriere’s result (see [17]).

Corollary 4.2.2. Let (X, G) be a complete G-metric space and let T : X — X be a

self-mapping. Assume that there exists a function ¢ € F,,, such that

G(T-xv Tyv Ty) =< G(xvyvy) —¢(G()C,y,y))

for all x,y € X. Then T has a unique fixed point. Furthermore, T is a Picard
operator.

In fact, we can suppose that ¢ is continuous, obtaining a version of Rhoades’
theorem.

Corollary 4.2.3. Let (X, G) be a complete G-metric space and let T : X — X be a
self-mapping. Assume that there exists a continuous function ¢ : [0, 00) — [0, co)
such that ¢ (t) = 0 if, and only if, t = 0, and satisfies

G(Ix, Ty, Ty) < G(x,y.y) — ¢ (G (x,y,y))
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for all x,y € X. Then T has a unique fixed point. Furthermore, T is a Picard
operator.

Corollary 4.2.4. Let (X, G) be a complete G-metric space and let T : X — X be a
self-mapping. Assume that there exists a continuous function ¢ : [0, 00) — [0, 00)
such that ¢ (t) = 0 if, and only if, t = 0, and satisfies

G (Tx, Ty, Tz) < G (x,y,2) — ¢ (G (x,y,2))
for all x,y,z € X. Then T has a unique fixed point. Furthermore, T is a Picard

operator.

Finally, if we use ¢, (t) = (1 — A) ¢ for all t € [0, 00), where A € [0, 1), then
¢, € F,,, and we have the following consequence.

Corollary 4.2.5. Theorem 4.2.1 is an immediate consequence of Corollary 4.2.4.

Proof. Notice that, for all x, y, z € X, we have that

G (Tx, Ty, Tz) < A G (x,,2)
=Gxy,z2)—(1—-1) G(x,y,2)
= G(x,y,z) _¢/X (G(x,y,z)),

so Corollary 4.2.4 is applicable. O
The previous results are also valid if we employ ¢ € F1..

Theorem 4.2.4. If we replace the condition ¢ € F,,. by the assumption ¢ € F,
then Theorem 4.2.3 (and its subsequent corollaries) also holds.

Proof. Repeat the argument in the proof of Theorem 4.2.3 using Lemmas 2.3.9
and 2.3.10 rather than Lemma 2.3.6 and Corollaries 2.3.2 and 2.3.3. O

4.2.3 Jachymski’s Equivalent Contractivity Conditions

In 2011, Jachymski proved in [94], in the context of metric spaces, that the
contractivity condition (4.17) can be expressed equivalently in a wide range of
different ways.

Given functions v, 11 : [0, c0) — [0, 00), we set

Eyg = {(t,u) €[0,00) x[0,00) : ¥ () =Y (1) = (1) }

and

Ey ={(t,u) €[0,00) x[0,00) :u <Y (1) }.
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Theorem 4.2.5 (Jachymski [94], Lemma 1). Let D be a subset of [0, oo)2 =
[0, 00) % [0, 00). Then the following statements are equivalent.

(i) there exist functions W, ¢ € Fy such that D C Ey 4;

(ii) there exist € Fyy and a non-decreasing function ¢ : [0, 00) — [0, co) such
that ¢~ ({0}) = {0} and D C Ey 4;

(iii) there exist ¥ € Fy and a lower semi-continuous function ¢ : [0, 00) —
[0, 00) such that ¢~ ({0}) = {0}, liminfi—oo ¢(f) > 0 and D C Ey 4;

(iv) there exist W € Fy and a function ¢ : [0, 00) — [0, 00) such that ¢(0) = 0
and for any sequence {t,} of positive reals, {n(t,)} — 0 implies {t,} — O,
and D g Ew.qg;

(V) there exists € Fyy satisfying the condition: for any € > 0, there exist § > 0
and y € (0, &) such that for any (t,u) € D, ¥ (t) < & + § implies ¥ (u) < y;

(vi) for any a € (0, 1), there exists W € Fay such that for any (t,u) € D, ¥ (u) <
a y(1);

(vii) there exist « € (0,1) and ¥ € Fyy such that for any (t,u) € D, ¥ (u) <
a y(1);

(viii) there exists a continuous and non-decreasing function ¢ : [0, 00) — [0, 00)
such that o(t) < t foranyt > 0, and D C E,;

(ix) there exists a lower semi-continuous function 1 : [0, 00) — [0, 00) such that
n~'({0}) = {0}, and D C E,, where ¢(t) =t — n(t) for all t € [0, 00);

(X) there exists a function B : [0,00) — [0, 1] such that for any bounded
sequence {t,} of positive reals, {B(t,)} — 1 implies {t,} — 0, and D C E,,
where ¢(t) = t B(t) forall t € [0, 00);

(xi) there exist W € Fy and a non-decreasing, right continuous function ¢ :
[0,00) — [0,00) such that ¢(t) < t for all t > 0, and for any (t,u) €
D, y(w) <o (Y1),

(xii) there exist y € Fyy with lim;—soo ¥ (t) = 00, and a lower semi-continuous
function ¢ : [0, 00) — [0, 00) such that ¢~ ({0}) = {0} and D C Ey 4.

As a consequence of the previous result, he proved the following result.

Theorem 4.2.6. Let T be a selfmap of a metric space (X,d). The following
statements are equivalent.

(i) There exist functions ¥, ¢ € Fa such that, for any x,y € X,

¥ (d(Tx.1T9) = ¢ (d(x.y)) — ¢ (d (x.y)). (4.19)
(ii) There exist o € [0, 1) and W € Fyy such that, for any x,y € X,

v (d(Tx,1y)) <y (d (x.y)) .

(iii) There exists a continuous and non-decreasing function ¢ : [0,00) — [0, c0)
such that (t) < t for any t > 0 and for any x,y € X,

d(Tx,Ty) < ¢ (d (x,y)).
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(iv) There exist W € Fy and a non-decreasing function ¢ : [0, 00) — [0, 00) such
that $~'({0}) = {0} and (4.19) holds.

(v) There exist ¥ € Fy and a lower semi-continuous function ¢ : [0,00) —
[0, 00) such that ¢~ ({0}) = {0}, liminf, o ¢ () > 0 and (4.19) holds.

Notice that in item (v), the function ¢ belongs to F;,. Following exactly

Jachymski’s argument, it is easy to prove the following characterization.

Theorem 4.2.7. Let T be a selfmap of a G-metric space (X, G). The following
statements are equivalent.

(i) There exist functions W, ¢ € Fy such that, for any x,y € X,
Y (G(Tx. T3, 1y)) = ¥ (G (x,,y) = ¢ (G (x.y.Y)) . (4.20)
(ii) There exist a € [0, 1) and W € Fyy such that, for any x,y € X,

V(G (Tx, Ty, Ty)) < a ¢ (G (x,y,y)) .

(iii) There exists a continuous and non-decreasing function ¢ : [0,00) — [0, 00)
such that ¢(t) < t for any t > 0 and for any x,y € X,

G(Tx, Ty, Ty) < ¢ (G (x,y.)).

(iv) There exist € Fy and ¢ € F,,, such that (4.20) holds.
(V) There exist Yy € Fu and ¢ € F),, such that iminf,_, o ¢ (1) > 0 and (4.20)
holds.

Following the same arguments given in the proof of Theorem 4.2.3, it is possible
to prove that any self-mapping 7 : X — X from a complete G-metric space into
itself, satisfying any of the previous conditions, is a Picard operator.

4.2.4 Cirié’s Fixed Point Theorems
Consider the family
Feir = 1 ¢ :[0,00) = [0,00) : ¢ (f) <tand lim+¢(s) <tforallt> 0} .
S—>1

Theorem 4.2.8. Let (X, G) be a complete G-metric space and let T : X — X be a
self-mapping. Assume that there exists a function ¢ € Fci such that

G(ITx, Ty, Ty) < ¢ (G(x,y,y)) 4.21)

for all x,y € X. Then T has a unique fixed point. Furthermore, T is a Picard
operator.
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Proof. Let xy € X be an arbitrary point and let {x,},en be the Picard sequence of T
based on xo, that is, x,,+1 = Tx, for all n € N. If there exists some ny € N such that
Xng+1 = Xno, then x,,; if a fixed point of T, and the existence part is finished. Assume
that x,, # x,41 for all n € N. In such a case, using the contractivity condition (4.21),
foralln € N,

G (anrl s Xn+2, xn+2) =G (T)Cn, Txn+1 s Tanrl)
=9 (G (xnvxn+lsxn+1)) .
From item 3 of Lemma 2.3.11,

lim G(x,,,x,,+1,x,,+1) = 0,
n—00

which means that {x,} is an asymptotically regular sequence on (X, G). Next, we
will prove that {x,} is a Cauchy sequence in (X, G) reasoning by contradiction.
Suppose that {x,} is not Cauchy. Then, by Theorem 4.1.1, there exists a positive
real number gy > 0 and two subsequences {X,)} and {x,} of {x,} such that, for
allk e N,

k <n(k) <m(k) <n(k+ 1),
G (Xn(y» X1+ Xm—1) < €0 < G (Xnky s Xim(k) Xm(k))
and also, for p; = p, = p3 = —1 € Z,
lim G , , = lim G 1, _1, _
e (%0 Xt X)) am (on—1> Xm@y—1 Xm()—1)
= &. (4.22)
Using the contractivity condition (4.21), for all k € N,
&0 < G (Xuy: Xy X)) = G (Txny1> Tm()—1> TXm(y—1)
=9 (G (xn(k)—] > Xm(k)—1 »xm(k)—l)) .
From (4.22),
{tc = G (Xn)» Xm()» Xm(o)) ke {5k = G (Xuk)=1, Xm(k)—1 Xm(k)—1) ke
are two sequences in [0, co) converging to the same limit L = &g, and L = gy <

t < o(sy) for all k € N. Then, it follows from Lemma 2.3.14 that ¢y = 0, whichis a
contradiction. As a consequence, we have that {x,} is a Cauchy sequence in (X, G).
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Taking into account that (X, G) is complete, there exists u € X such that
{x,} — u. In particular,

lim G (x,,u,u) =0.
n—>0oo
By using the contractivity condition (4.21), we deduce that, for alln € N,

G (xy+1, Tu, Tu) = G (Tx,, Tu, Tu)
=@ (G (xpu,u)).
Notice that if there exists np € N such that G (x,,,u,u) = 0, then x,, = u, so

Xno+1 = Txpy = Tu and G (X1, Tu, Tu) = 0. From item 5 of Lemma 2.3.11, we
have that

lim G ()Cn_H, Tu, TM) =0.
n—>00

Using the fact that G is continuous on each variable (see Theorem 3.2.2), it follows
that

G (u,Tu,Tu) = lim G (x,41, Tu, Tu) = 0.
n—>oQo

As a consequence, by using (G;), we conclude that Tu = u.

Finally, we claim that T has a unique fixed point. Let u, v € Fix(T) be arbitrary
fixed points of T. If u # v, then G(u,v,v) > 0 and, as ¢ € Fci, then
¢ (G(u,v,v)) < G(u,v,v). Using the contractivity condition (4.21), we deduce
that

G (u,v,v) = G(Tu, Tv, Tv)

<¢(Gu,v,v)) <G(u,v,v),

which is a contradiction. Then ¥ = v and T has a unique fixed point. O

Corollary 4.2.6. Let (X, G) be a complete G-metric space and let T : X — X be a
self-mapping. Assume that there exists a function ¢ € Fci; such that

G(Tx, Ty, Tz) < ¢ (G (x,y,2))

for all x,y,z € X. Then T has a unique fixed point. Furthermore, T is a Picard
operator.
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4.3 Basic Common Fixed Point Theorems in the Context
of G-Metric Spaces

In this section, we extend the previous results to the case in which we have two
nonlinear operators T, g : X — X, and we describe sufficient conditions to guarantee
existence of coincidence points (7x = gx) or common fixed points (0w = Tw = gw).

4.3.1 Basic Common Fixed Points Theorems
in G-Metric Spaces

We first state the following theorem concerning the existence and uniqueness of
common fixed points which can be considered as a generalization of Theorem 4.2.1.

Theorem 4.3.1. Let (X, G) be a G-metric space and let T,g : X — X be two
mappings. Suppose that there exists A € [0, 1) such that

G(Tx, Ty, Ty) < AG(gx,gy,gy) forallx,y € X. (4.23)

Also assume that T and g satisfy the following conditions.

(A1) T(X) < g(X),
(A2) (X, G) is complete,
(A3) g is G-continuous and commutes with T.

Then T and g have a unique common fixed point, that is, there is a unique x € X
such that gx = Tx = x.

Proof. Let xy € X. By assumption (A;) and Lemma 4.1.1, there exists a Picard
sequence {x,} C X of (T, g), that is,

gxn+1 = Tx, foralln e N.

If there exists ny € N such that gx,,+1 = gx,,, then gx,, = gxn,+1 = Txp,, SO Xy,
is a coincidence point of T and g. On the contrary case, assume that gx, # gX,+1
for all n € N. In particular, G(gxo, gx1, gx;) > 0. Due to (4.23), we have that, for
alln > 0,

G(8Xn+1, 8Xn+2, 8%n+2) = G(Txy, Txnt1, Txy41)
< AG(gXn, 8Xn+1, 8Xn+1)-
From Corollary 4.1.1, {gx,} is a G-Cauchy sequence in g(X) C X. Since (X, G) is
complete, then there exists z € X such that {gx,} — z. Since g is G-continuous,

we have {ggx,} — gz. On the other hand, since g and 7T commute, we have that
88xu+1 = gTx, = Tgx, for all n > 0. Thus,
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G(ggxn+1, Tz, Tz) = G(Tgx,, Tz, Tz) < AG(ggx,. 82, §2)

for all n > 0. Letting n — oo and using the fact that the metric G is continuous, we
get that

G(gz, Tz, Tz) < A G(gz,82,82) = 0.
Hence gz = Tz. Furthermore, for all n > 0,
G(gxn+1,82.82) = G(Txy, Tz, T2) < A G(gxn, 82, 82).
Letting n — oo and using the fact that G is continuous, we obtain that
Gz, 82.82) = AG(z. 82, 82).
Hence we have z = gz = Tz. We now show that z is the unique common fixed point
of T and g. Suppose that, contrary to our claim, there exists another common fixed
point w € X with w # z. From (4.23) we have

G(z,w,w) = G(Tz, Tw, Tw) < AG(z,w,w)

which is a contradiction since A < 1. Hence, the common fixed point of T and g is
unique. O
Lemma 4.3.1. Let (X, G) be a G-metric space andletT : X — Xandg : X — X
be two mappings such that there exists A € [0, 1) satisfying
G(Tx, Ty, Ty) < AG(gx, gy,gy) forallx,y € X.
If g is G-continuous at w € X, then T is also G-continuous at w. In particular, if g
is G-continuous, then T is also G-continuous.
Proof. Let {x,} € X be a sequence such that {x,} — w. As g is G-continuous at x,
then {gx,} — gw, that is,
lim G (gx,,gw,gw) = 0.
n—>oo
Applying the contractivity condition, we have that
0< lim G(Tx,, Tw, Tw) < lim AG (gx,, gw, gw) = 0.
n—oo n—oo
Then lim,,— oo G (Tx,,, Tw, Tw) = 0, which means that {Tx,} — Tw. Therefore, T
is G-continuous at . O

The same argument used to prove Theorem 4.2.2 (which follows the proof of
Theorem 4.2.1) is useful to obtain the following result.
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Corollary 4.3.1. Let (X, G) be a G-metric space and letT : X — Xand g : X — X
be two mappings such that there exists A € [0, 1) satisfying

G(Tx, Ty, Tz) < AG(gx,gy,gy) forallx,y € X. (4.24)

Assume that T and g satisfy the following conditions.

(A1) T(X) < g(X),
(A2) (X, G) is complete,
(A3) g is G-continuous and commutes with T.

Then T and g have a unique common fixed point, that is, there is a unique x € X
such that gx = Tx = x.

4.3.2 Common Fixed Point Theorems Using Altering
Distance Functions

In this subsection we present a common fixed point theorem for nonlinear operators
T, g : X — X using the following contractivity condition: for all x,y € X,

V(G (Tx, Ty, Ty)) < ¥ (G (gx, gy, 8Y)) — ¢ (G (gx, 8y, 8Y)) (4.25)

where ¢ € Fy and ¢ € F..

Lemma 4.3.2. LetT,g : X — X be two self-mappings on a G-metric space (X, G)
such that (4.25) holds, where € Fy. Then T is G-continuous at every point in
which g is G-continuous.

Proof. Assume that g is G-continuous at a point @ € X and let {x,} € X be a
sequence such that {x,} — w. As g is G-continuous at w, then {gx,} — gw, that is,

lim G (gx,, gw, gw) = 0.

n—>oo

Applying the contractivity condition (4.25), we have that

V(G (Txy, Tw, Tw)) < ¥ (G (gxn, g0, gw)) — ¢ (G (8%, 8w, g))
< V¥ (G (gxn, gw, gw)) .

From item 2 of Corollary 2.3.1,

lim G (Tx,,Tw,Tw) = 0,
n—>o00

which means that {Tx,} — Tw. Therefore, T is G-continuous at . O
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The following result is an extension of Theorem 4.2.3 to the coincidence case.
We recall that we denote by Co (7', g) the family of all coincidence point of T and g.

Theorem 4.3.2. Let (X, G) be a G-metric space and let T, g : X — X be two self-
mappings. Assume that the following conditions are fulfilled:

(i) (X, G) is complete.
(i) 7(X) < g(X).
(iii) there exist two functions y € Fy and ¢ € ]-';h such that, for all x,y € X,

V(G (Tx, Ty, Ty)) < ¥ (G (gx, gy, 8Y)) — ¢ (G (gx, 8y, 8y)) (4.26)

(iv) g is continuous and commutes with T.

Then T and g have a unique common fixed point w, that is, a point satisfying
o = Tw = gw. In fact, for any coincidence point x of T and g, we have that
w = Tx. In particular, gx = gy for all x,y € Co (T, g).

Proof. First we prove that T and g have, at least, a coincidence point. Let xp € X
be an arbitrary point. From Lemma 4.1.1, there exists a Picard sequence {x, },en of
(T, g), that is,

8gXpy1 = Ix, foralln e N.

If there exists some ny € N such that gx,,+1 = gxn,, then gx,, = gx,,+1 = Txp,, SO
Xy, if a coincidence point of 7 and g, and the existence part is finished. Assume that
gx, # gx,+1 forall n € N, that is,

G (g%, 8X%n+1,8%nt1) > 0 forallnm € N.
In such a case, using the contractivity condition (4.26), for alln € N,
V(G (8Xn+1, 8Xn+25 8nt2)) = ¥ (G (Txy, Txnt1, Txn41))
< ¥ (G (8Xn, 8Xn+1, 8%nt+1)) — ¢ (G (8%n, 8Xn+1, 8Xn+1)) -
From Lemma 2.3.6,
Jim G (8xn, 8%n+1, 8%n+1) = 0,

which means that {gx,} is an asymptotically regular sequence on (X, G). Next, we
will prove that {gx,} is a Cauchy sequence in (X, G) reasoning by contradiction.
Suppose that {gx,} is not Cauchy. Then, by Theorem 4.1.1, there exists a positive
real number gy > 0 and two subsequences {gx, )} and {gxu)} of {gx,} such that,
forall k e N,

k <n(k) <mk) <nk+1),

G (8%n(k)» 8Xmt)—1- 8Xm@—1) < €0 < G (8Xn(t)» &Xm(k)» 8Xmr))
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and also, for p; = p, = p3 = —1 € Z,
lim G , , = lim G 1, 1, _
kl)fgo (gxn(k) 8Xm(k) gxm(k)) kl)fgo (gxn(k) 15 8Xm(k)—15 8Xm(k) 1)
= &. 4.27)
Using the contractivity condition (4.26), for all k € N,

¥ (G (gxn(k), 8Xm(k)» gxm(k)))
= ¥ (G (Txa—1» TXm—1- Txm—1))
<v(G (gxn(k)—hgxm(k)—h gxm(k)—1))
— ¢ (G (8Xn =1+ 8Xm(k—1 &Xmit)—1)) -
From (4.27), (with k € N),
{tc = G (8%nk)» 8Xm@) 8Xm)) )+ {5k = G (8Xn)—1. 8Xm(k—1» &Xmik)—1) }

are two sequences in [0, co) converging to the same limit L = g and satisfying

V() <Y (se) —p(s) forallneN.
Then, it follows from Corollary 2.3.2 that ¢y = 0, which is a contradiction. As a
consequence, we have that {gx,} is a Cauchy sequence in (X, G).

Taking into account that (X, G) is complete, there exists z € X such that
{gx,} — z. As g is G-continuous, then {ggx,} — gz. In particular,

Jim G (ggx, g2, 82) = 0.
On the other hand, since g and T commute, we have that
88%u+1 = gTx, = Tgx, foralln > 0.
Thus, by using the contractivity condition (4.26), we deduce that, for all n € N,

1/f (G(ggxn-‘rl Tz, TZ)) = 1/f (G(Tgxn, Tz, TZ))
< ¥ (G(ggxn, 82, 82)) — ¢ (G(ggxn, 82, 82))
< ¥ (G(ggxs, gz, 82)) - (4.28)

From item 2 of Corollary 2.3.1,

lim G(ggx,+1,7z,Tz) = 0,
n—>o00
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which means that {ggx,} — Tz. However, as {ggx,} — gz, the uniqueness of the
limit in a G-metric space concludes that 7z = gz, that is, z is a coincidence point of
T and g.

Next, we claim that

gx=gyforallx,y € Co(T,g). (4.29)

Assume that x and y are two coincidence points of 7 and g. By the contractivity
condition (4.26),

¥ (G(gx, gy, 8y)) = ¥ (G(Tx, Ty, Ty))
< V¥ (G(gx, gy. gy)) — ¢ (G(gx, gy, gy))
< V¥ (G(gx, gy, gy)) .

Therefore, ¢ (G(gx, gy, gy)) = 0, so G(gx, gy,gy) = 0 and gx = gy. This proves
that (4.29) holds.

Next we show that, for all coincidence points x of T and g, the point w = Tx
is a common fixed point of 7 and g. Let x € X be an arbitrary coincidence point
of T and g and let ® = Tx = gx. As T and g commutes, Remark 2.2.1 guarantees
that @ = Tx is also a coincidence point of 7 and g. Then, Tw = gw. Moreover, by
(4.29), we have that gx = gw. In particular, Tw = gw = gx = Tx = w. As aresult,
w is a common fixed point of 7 and g.

Finally, we prove that T and g have a unique common fixed point. Let w and z be
two common fixed points of 7 and g, that is, ® = Tw = gw and z = Tz = gz. By
(4.29), we have that gw = gz, sow = gw = gz = z. O

The previous result is also valid if we consider ¢ € F;..

Theorem 4.3.3. If we replace the condition ¢ € F,, by the assumption ¢ € F,
then Theorem 4.3.2 also holds.

Proof. Repeat the argument in the proof of Theorem 4.3.2 using Lemmas 2.3.9
and 2.3.10 rather than Lemma 2.3.6 and Corollaries 2.3.2 and 2.3.1. O

4.3.3 Jachymski’s Equivalent Contractivity Conditions

Using Theorem 4.2.5, it is easy to express the contractivity condition (4.26) in
several ways as follows.

Theorem 4.3.4. Let T and g be two selfmaps of a G-metric space (X,G). The
following statements are equivalent.

(i) There exist functions V, ¢ € Fa such that, for any x,y € X,

V(G (Tx, Ty, Ty)) < ¥ (G (gx, gy, 8y)) — ¢ (G (gx, gy, gy)) - (4.30)
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(ii) There exist o € [0, 1) and W € Fyy such that, for any x,y € X,

V(G (Tx, Ty, Ty)) < o ¥ (G (gx, &Y. 8Y)) -

(iii) There exists a continuous and non-decreasing function ¢ : [0,00) — [0, c0)
such that (t) < t for any t > 0 and for any x,y € X,

G(Tx, Ty, Ty) < ¢ (G (x.y.y)) .

(iv) There exist W € Fy and a non-decreasing function ¢ : [0, 00) — [0, 00) such
that $~'({0}) = {0} and (4.30) holds.

(V) There exist ¢y € Fy and ¢ € F,, such that liminf, .o ¢ (1) > 0 and (4.30)
holds.

4.3.4 Cirié’s Common Fixed Point Theorems

In this section, given two mappings 7,g : X — X, we study the contractivity
condition

G(Tx, Ty, Ty) < ¢ (G (gx,gy,gy)) forallx,yeX, (4.31)
where ¢ € Fcjr. Unlike Lemma 4.3.2, the continuity of g does not imply the

continuity of 7.

Example 4.3.1. Let X = [0, 1] endowed with the complete G-metric G(x,y,z) =
max{|x —y|,|x—z|, |y —z|} for all x,y,z € X. Define the mappings 7, g : X — X
and ¢ : [0, 00) — [0, 00) as

1, ifx=0,
0, ifx>0;

1,ift=0,

Tx =
x 0, ift > 0.

gx=0, @@=

Then g is G-continuous and ¢ € F¢j.. We now show that (4.31) holds. Let x,y € X
be arbitrary. If Tx = Ty, then (4.31) trivially holds. Assume that Tx # Ty. In this
case, as T(X) = {0, 1}, then {Tx, Ty} = {0, 1} and G (Tx, Ty, Ty) = 1. Therefore,

G(Ix, Ty, 7)) =1 = ¢ (0) = ¢(G(0,0,0)) = ¢ (G (gx, gy, 2gy)) -

Although g is G-continuous, 7T is not continuous at x = 0.

Theorem 4.3.5. Let (X, G) be a complete G-metric space and let T, g : X — X be
two self-mappings. Suppose that T(X) C g(X) and g is continuous and commutes
with T. Also assume that there exists a function ¢ € Fci such that

G(Tx, Iy, Ty) < ¢ (G (gx.8y.8Y)) (4.32)
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forallx,y € X. If
T is G-continuous or ¢ (0) =0,

then T and g have a unique common fixed point w. In fact, if u € Co(T,g) is a
coincidence point of T and g, then Tu = w.

Proof. Let xy € X be an arbitrary point and let {x,},en be a Picard sequence of
(T, g) based on any x; € X, that is, gx,+, = Tx, forall n € N (see Lemma 4.1.1). If
there exists some ny € N such that gx,,+1 = gx,,, then x,, is a coincidence point of
T and g, and the existence part is finished. Assume that gx,, # gx,+; foralln € N.In
such a case, G (gx,, 8%n+1, &%n+1) > 0 and using the contractivity condition (4.32),
foralln € N,

G (8%n+1, 8%n+2, 8Xn42) = G (Txy, Txtng1, Ttpy1)
< @ (G (gXn, 8Xn+1,8Xn+1)) -
From item 3 of Lemma 2.3.11,
lim G (gxn, 8Xn+1,8%n+1) =0,
n—>o0

which means that {gx,} is an asymptotically regular sequence on (X, G). Next, we
will prove that {gx,} is a Cauchy sequence in (X, G) reasoning by contradiction.
Suppose that {gx,} is not Cauchy. From Theorem 4.1.1, there exists a positive real
number & > 0 and two subsequences {gx,) } and {gx, )} of {gx,} such that, for
allk e N,

k <n(k) <m(k) <nk+1),
G (8%n(k)» 8Xm)—1- 8Xm@—1) =< €0 < G (8Xn(t)» &Xm(k)» 8Xm(k))
and also, for p; = p, = p3 = —1 € Z,
kll)lgo G (8%n(k)» 8Xm(k)» 8Xm(t)) = kll)lgo G (8%n(k)—1 8Xm(k)—1- 8Xm(t)—1)
= 2. (4.33)

Using the contractivity condition (4.32), for all k € N,

&0 < G (8%nk)» 8Xm)» 8Xmw) = G (Txnt=1+ Txmiy=1> Tm(iy—1)
< ¢ (G (8Xnw)—1. 8Xmk)—1. 8Xm(k—1) ) -

From (4.33) (with k € N),

{te = G (8%uk)» 8Xm@) 8Xm)) 3+ {5k = G (8Xn()—1+ 8Xm(t—1» &Xmiky—1) }
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are two sequences in [0, co) converging to the same limit L = gy, and L = gy <
te < @(sy) for all k € N. Then, it follows from Lemma 2.3.14 that &y = 0, which
is a contradiction. As a consequence, we have that {gx,} is a Cauchy sequence in
(X, G).

Taking into account that (X, G) is complete, there exists u € X such that
{gx,} — u. As g is continuous, {ggx,} — gu. Moreover, as T and g commute,

{Tgx,} = {gTxn} = {88Xn+1} — gu.

Next, we distinguish two cases.

Case 1. T is G-continuous. In this case, {Tgx,} — Tu. By the uniqueness of the
limit, Tu = gu.

Case2. ¢ (0) = 0. In this case, by using the contractivity condition (4.32), we
deduce that, forall n € N,

G (Tgxu+1, Tu, Tu) < ¢ (G (ggxn, gu, gu)) .

As ¢ (0) = 0, item 8 of Lemma 2.3.11 guarantees that {G (Tgx,+1, Tu, Tu)}
converges to zero, that is, {Tgx,} — Tu. Again, by the uniqueness of the limit,
Tu = gu.

In any case, we have just proved that 7 and g have, at least, a coincidence point.
Now, we claim that

gu=gv forallu,veCo(T,g). (4.34)

Indeed, let u, v € Co (T, g) be two coincidence points of T and g. If we suppose that
gu # gv, then G(gu, gv, gv) > 0. As a consequence,

G (gu, gv,gv) = G (Tu,Tv, Tv) < ¢ (G (gu, gv, gv))
< G (gu, gv, gv),

which is a contradiction. Then gu = gv and (4.34) holds.

Next, let # € Co (T, g) be an arbitrary coincidence point of 7 and g and let
o = Tu = gu. We claim that @ is the unique common fixed point of 7 and g.
Firstly, as T and g commute, Tw = Tgu = gTu = gw, so w is another coincidence
point of T and g. Using (4.34), o = gu = gw, so w is a common fixed point of T
and g. If z € X is another common fixed point of T and g, that is, z = Tz = gz, then,
it follows from (4.34) that z = gz = gw = w, so w is the unique common fixed
point of T and g. Finally, if v € Co (T, g) is another arbitrary coincidence point of
T and g, then, also by (4.34), gv = gw = w. a



Chapter 5
Fixed Point Theorems in Partially Ordered
G-Metric Spaces

In [168], Ran and Reurings established a fixed point theorem that extends the
Banach contraction principle to the setting of partially ordered metric spaces (see
Theorem A.1.1). In their original version, Ran and Reurings used a continuous
function. Nieto and Rodriguez-Lopez established a similar result replacing the
continuity of the nonlinear operator by a property on the partially ordered metric
space (see Theorem A.1.2). In this chapter, we present some fixed point theorems in
the setting of partially ordered G-metric spaces. In particular, we will use a binary
relation weaker than a partial order.

5.1 Binary Relations on a Set

We present here some notions and basic facts about binary relations like partial
orders.

Definition 5.1.1. A binary relation on X is a nonempty subset R of X x X.

For simplicity, we let x < y if (x,¥) € R, and we will say that < is the binary
relation on X. Write x < y when x < y and x # y. We write y > x when x < y.
We shall use < and < to denote binary relations on X.

Definition 5.1.2. A binary relation < on X is

o reflexive if x X xfor all x € X
e transitive if x < zforall x,y,z € X suchthatx < yandy < z;
* antisymmetric if x < yand y < x imply x = y.

A reflexive and transitive relation on X is a preorder (or a quasiorder) on X. In
such a case, (X, X) is a preordered space. If a preorder < is also antisymmetric, then
< is called a partial order, and (X, X) is a partially ordered space (or a partially
ordered set).
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Example 5.1.1. The usual order on the set of all real numbers R is denoted by <.
In fact, this partial order can be induced on any non-empty subset A C R.

Example 5.1.2. Let < be the binary relation on R given by
x<Xy & (x=y or x<y=<0).

Then < is a partial order on R, but it is different from <.
Example 5.1.3. Any equivalence relation is a preorder.

Example 5.1.4. Let X be an arbitrary set and let x; and x, be two different points
of X. If we define

x=Xy & (x=y or (xy)=(x,x)),
then < is a partial order on X. In fact, the relationship < only has two different
comparable points, which are x| and x,, being x; < x;.

We consider fixed point theory in G-metric spaces provided with a partial order.
In many cases, it is not necessary to consider a partial order: a preorder is enough.
The main advantage of preorders if that the binary relation <, on X, defined by

x <oy forallx,yeX G.D

is a preorder on X (but it is not a partial order). Some of the contractive conditions
we shall use are:

(a) G(Ix,Ty,Ty) < AG(x,y,y) forallx,ye€ X; and
(b) G(Tx, Ty, Ty) < AG(x,y,y) forallx,y e Xsuchthatx <y,

(where, in (b), < is a partial order on X) can be treated in an unified way as the
unique condition:

(¢) G(Tx,Ty,Ty) < AG(x,y,y) forallx,y € X suchthatx <y,

where < is a preorder on X.
One of the most important hypothesis that we shall use in the results of this
chapter is the monotonicity of the involved mappings.

Definition 5.1.3. Let < be a binary relation on X and let 7, g : X — X be mappings.
We say that T is:

* (g, X)-non-decreasing if Tx < Ty for all x, y € X such that gx < gy;

* (g, X)-non-increasing if Tx = Ty for all x,y € X such that gx < gy;

* (g, X)-increasing (or strictly increasing) if Tx < Ty for all x,y € X such that
8X < 8Y;
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e (g, X)-decreasing (or strictly decreasing) if Tx > Ty for all x,y € X such that
gx < gy.
If g is the identity mapping on X, we say that 7 is:

* <-non-decreasing if Tx < Ty for all x,y € X such that x < y;

* <-non-increasing if Tx = Ty for all x, y € X such thatx < y;

* <-increasing (or strictly increasing) if Tx < Ty for all x,y € X such that x < y;
* <-decreasing (or strictly decreasing) if Tx > Ty for all x,y € X such that x < y.

Notice that if < is a partial order on X and T is (g, <)-non-decreasing, then the
condition gx = gy implies that 7x = Ty. In particular, in such a case, if T is injective,
then g is also injective.

Definition 5.1.4. An ordered G-metric space is a triple (X, G, X) where (X, G) is a
G-metric space and < is a partial order on X. If < is a preorder on X, then (X, G, X)
is a preordered G-metric space.

5.2 Fixed Point Theorems in Preordered G-Metric Spaces

The following result can be considered as the natural extension of Ran and Reurings’
result to the setting of G-metric spaces.

Theorem 5.2.1. Let (X, G, <X) be a preordered G-metric space and let T : X — X
be a mapping. Suppose that the following conditions hold:

(i) (X, G) is G-complete;
(ii) T is non-decreasing (with respect to <X);
(iii) T is G-continuous;
(iv) there exists xo € X such that xo < Txy;
(V) there exists a constant A € [0, 1) such that, for all x,y € X with x =y,

G(Tx, 1y, Ty) < AG(x,y,y). (5.2)

Then T has a fixed point. Moreover, if for all (x,y) € X x X there exists w € X
such that x < w and y < w, we obtain uniqueness of the fixed point.

Proof. Let xy € X be a point satisfying (iii), that is, xo < Tx. We define a sequence
{x,} in X as follows:

x, = Tx,—; for n>1. (5.3)

Regarding that T is a non-decreasing mapping together with (5.3), we have xp <
Txo = x; implies x; = Txg < Tx; = x,. Inductively, we obtain

x0<x1$x2<...<xn_1<x,,$xn+1$... (54)
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Assume that there exists ngy such that x,,, = Xx,+1. Since x,, = Xp,+1 = Txy,, then
Xy, 1s the fixed point of 7', which completes the existence part of the proof. Suppose
that x,, # x,+; for all n € N. Thus, by (5.4) we have

X0 <X1 <X < ... < Xp—1 <X < Xpt1 <X ..
Put x = x,, and y = x,,—; in (5.2). Then, for all n > 1,
G(xn+1»xn+l’xn) = G(Txn» Txm Txn—l) S AG(xn»xna xn—l)'

From Corollary 4.1.1, {x,} is a G-Cauchy sequence. As (X, G) is complete, there
exist z € X such that {x,} — z, that is,

lim G(x,,x,,z) = lim G(x,,z,z) = 0.
n—>00 n—>00

We show now that z is a fixed point of 7. From the G-continuity of 7, the sequence

{Tx,} = {x,+1} converges to Tz. By Proposition 3.2.2, the G-limit of a sequence is

unique, so z = 7z.

To prove uniqueness, we assume that y € X is another fixed point of T such
that z # y. By hypothesis, there exists w € X such that y < w and z < w. Let
{w,} be the Picard sequence of T based on wy = w. As T is <-non-decreasing,
y =T <Tw = w; and z = Tz < Tw = w,. By induction, y < w, and z < w,, for
all n > 0. Applying the contractivity condition (5.2), we have that, for all n > 0,

G(Wn+lvwn+ly)7) = G(Twnv Tw,, TY) = )LG(an Wn, y) and
GWnt1, Wnt1,2) = G(Twy,, Twy, Tz) < AG(Wy, Wy, 2).

Hence, for all n > 0,

GWp,wy,y) < A"G(wg,wp,y) and  G(wy,, wy,z) < A"G(wg, wy, 2).

G G
Letting n — oo we deduce that {w,} — y and {w,} —> z, and the uniqueness of
the limit concludes that z = y, so T has a unique fixed point. O

The main advantage of the contractivity condition (5.2) versus (4.16) is that (5.2)
only requires the inequality to hold for comparable points, that is, for all x,y € X
such that x > y. In the following example, (4.16) is false but (5.2) holds.

Example 5.2.1. Let X be the set of all real numbers R endowed with the G-metric
G(x,y,z) = max{|x—y|,|x—z|,|y—z|} for all x,y,z € R. Consider on R the
partial order

x<Xy <& (x=y or x<y<0).
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Define T : R — R by

Y ifx<o,
Tx =4 2
2x, if x > 0.

Let x,y € X be such that x > y. If x = y, then (5.2) trivially holds. Assume that
x # y. Theny < x < 0. Hence

G(Tx,Ty,Ty):G(f Y X) _ f_g‘:

1 1
3 lx—yl = EG(x,y,y).

Hence, (5.2) holds. However, (4.16) is false in this case because if x = 1 and y = 2,
then

G(T1,T2,T2) = G(2,4,4) =2=2G(1,2,2).

Although Theorem 4.2.2 is not applicable, Theorem 5.2.1 guarantees that T has a
unique fixed point, which is u = 0.

In the following result, we use a contractivity condition involving three variables.

Corollary 5.2.1. Let (X, G, X) be a preordered G-metric space and let T : X — X
be a mapping. Suppose that the following conditions hold:

(i) (X, G) is G-complete;
(ii) T is non-decreasing (with respect to <X);
(iii) T is G-continuous;
(iv) there exists xy € X such that xy < Txo,
(V) there exists a constant A € [0, 1) such that, for all x,y,z € X withx =y = z,

G(Tx, Ty, T7) < AG(x,y,2). (5.5)

Then T has a fixed point. Moreover, if for all (x,y) € X x X there exists w € X
such that x < w and y < w, we obtain uniqueness of the fixed point.

Proof. It follows from the fact that (5.5) implies (5.2). ad

After the appearance of the Ran and Reurings’ theorem [168], Nieto and
Rodriguez-Lépez [158] changed the continuity of the mapping 7" with the following
condition on the ordered metric space (X, d, <X):

d
e ifx € X and {x,} C X is a sequence in X such that {x,} — x and x,, < x4 for
alln € N, thenx, < xforalln € N.

Next, we present this notion in preordered G-metric spaces and we show an
equivalent version of the Nieto and Rodriguez-Lépez’s result. In the following
definition, we only assume that < is a binary relation on X. Later, we will use this
notion when =< is a partial order or a preorder.
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Definition 5.2.1. Let (X, G) be a G-metric space, let A C X be a non-empty subset
and let < be a binary relation on X. Then (A, G, <) is said to be:

e non-decreasing-regular if for all sequence {x,,} € A such that {x,,} — a € A
and x,, < x,,4+1 for all m € N, we have that x,, < aforallm € N;

* non-increasing-regular if for all sequence {x,,} < A such that {x,,} — a € A and
Xm > X+ for all m € N, we have that x,,, > a for allm € N;

* regular if it is both non-decreasing-regular and non-increasing-regular.

Theorem 5.2.2. Let (X, <X) be a preordered set endowed with a G-metric and let
T : X — X be a mapping. Suppose that the following conditions hold:

(i) (X, G) is G-complete;
(ii) T is non-decreasing (with respect to <X);
(iii) (X, G, X) is non-decreasing-regular;
(iv) there exists xo € X such that xo < Txy;
(V) there exists a constant A € [0, 1) such that, for all x,y € X with x = y,

G(Tx, 1y, Ty) < AG(x,y.y). (5.6)

Then T has a fixed point. Moreover, if for all (x,y) € X x X there exists w € X
such that x < w and y < w, we obtain uniqueness of the fixed point.

Proof. Following the proof of Theorem 5.2.1, we have a <-non-decreasing
sequence {x,} which is G-convergent to z € X. Due to (iii), we have that x, < z
for all n. We now show that z is a fixed point of 7. Suppose, on the contrary, that
z # Tz, thatis, d%(z, Tz) > 0. Regarding (5.6) with x = x, and y = Tz, we have
that

A% (Xpt1, T2) = G(Xnt1, T2, T2) + G(T2, Xp 1, Xnt1)
= G(Tx,, Tz, Tz) + G(Tz, Tx,, Tx,)
<A [G(xn,2.2) + G(z, X, %) ] < 3AG (%, 2, 2).
Letting n — oo, we get d%(z, Tz) = 0, which is a contradiction. Hence, 7z = z.
Uniqueness of z can be observed as in the proof of Theorem 5.2.1. O

Corollary 5.2.2. Let (X, <) be an ordered set endowed with a G-metric and let
T : X — X be a given mapping. Suppose that the following conditions hold:

(i) (X, G) is G-complete;
(ii) T is <X-non-decreasing (with respect to <X);
(iii) (X, G, X) is non-decreasing-regular;
(iv) there exists xo € X such that xo X Txo;
(V) there exists a constant A € [0, 1) such that, for all x,y,z € X withx = y = z,

G(Tx, Ty, Tz) < AG(x,y,2). (5.7)
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Then T has a fixed point. Moreover, if for all (x,y) € X x X there exists w € X
such that x < w and 'y < w, we obtain uniqueness of the fixed point.

Notice that, due to the symmetry of G, it is equivalent to assuming the
contractivity condition (5.7) for all x,y,z € X such thatx <y < z.

Corollary 5.2.3. Theorem 4.2.2 follows immediately from Theorem 5.2.2.

Proof. It is only necessary to consider on X the preorder < defined in (5.1). Then,
all the hypotheses of Theorem 5.2.2 are satisfied. O

Note one could repeat almost all the results of Sect.4.2 in the context of
preordered G-metric spaces.

5.3 Common Fixed Point Theorems in Preordered
G-Metric Spaces

In this section, we prove some common fixed point theorems in the context of
preordered G-metric spaces under different contractivity conditions.

5.3.1 Common Fixed Point Theorems in Preordered G-Metric
Spaces Using Altering Distance Functions

The following is one of the two main results of this subsection.

Theorem 5.3.1. Let (X, G, X) be a preordered G-metric space and letT,g : X — X
be two mappings. Suppose that the following conditions hold:

(i) X, G) is G-complete;
(ii) there exists xy € X such that gxy < Txo;
(iii) 7(X) < g(X);
(iv) T is (g, <X)-non-decreasing;
(v) g is G-continuous and commutes with T;
(vi) there exist two functions ¥ € Fy. and ¢ € F,, such that, for all x,y € X with
gx X gy,

¥V (G(Tx, Ty, Ty)) < ¥ (G(gx, gy, gy)) — d(G(gx, gv. gy)): (5.8)

(vii) T is G-continuous.

Then T and g have, at least, a coincidence point, that is, there exists z € X such
that Tz = gz.
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Furthermore, assume that for all x,y € Co(T, g), there exists w € X such that
gx X gwand gy < gw. Then:

e gx=gyforallx,y € Co(T,g), and
e T and g have a unique common fixed point w, which is @ = Tx where x €
Co(T, g) is arbitrary.

In particular, if g (or T) is injective on the set of all coincidence points of T and g,
then T and g have a unique coincidence point, which is also the common fixed point
of T and g.

Proof. Let xo € X such that gxg < Txp. Since T(X) € g(X), Lemma 4.1.1
guarantees the existence of a Picard sequence {x,} of (T, g), that is,

gxn+1 = Ix,, foralln > 0.

Regarding that 7 is a (g, <)-non-decreasing mapping, we observe that

gxo X Txp = gx; implies gx; = Txg < Tx; = gx,.
Inductively, we obtain

g g g g1 g g < ... 5.9
If there exists no such that gx,, = gx,,+1, then gx,, = gxy,+1 = Tx,,, that
is, T and g have a coincidence point, which completes the existence part of the
proof. On the contrary case, assume that gx, # gx,+; for all n € N, that is,

G (gXu, 8Xn+1>8%n+1) > 0 for all n > 0. Regarding (5.9), we set x = x, and
Y = Xp41 in (5.8). Then we get, foralln € N,

V (G(gXn+1, 8%n+2, 8Xnt2)) = ¥ (G(Txn, Tpt1, Txn1))
< Y (G(gxn, gXn+1, 8%n+1)) — P(G(8Xn, Xnt1, 8Xn+1))-

From Lemma 2.3.6, we deduce that
lim G(gx, 8Xn41,8%n+1) = 0,
n—>o00

that is, {gx,} is an asymptotically regular sequence. Next, we will prove that {gx, }
is a Cauchy sequence in (X, G) reasoning by contradiction. Suppose that {gx,} is
not Cauchy. Then, by Theorem 4.1.1, there exists a positive real number gy > 0 and
two subsequences {gx,)} and {gx,,)} of {gx,} such that, for all k € N,

k < n(k) <m(k) <nk+1),

G (8%n(k)» 8Xm)—1- 8xm@—1) =< €0 < G (8Xn(t)» 8Xm(k)» 8Xm(k))
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and also, for p; = p, = p3 = —1 € Z,

lim G , , = lim G _1, 1, _
kl)fgo (8xn(k) 8Xm(k) gxm(k)) klglo (gxn(k) 1> 8Xm(k)—15 8Xm(k) 1)
= &. (5.10)
Notice that as < is transitive, then gx,x)—1 < gXmw—1 for all £ € N. Using the
contractivity condition (5.8), for all k € N,
V(G (8X%n (- 8Xm(k)» 8Xm)) )
= ¥ (G (Txa—1» TXm—1- Txm—1))
<v (G (gxn(k)—l»gxm(k)—l, gxm(k)—l))
—¢ (G (gxn(k)—l > 8Xm(k)—1> gxm(k)—l)) .

From (5.10) (with k € N),

{tc = G (8%nk)» 8Xm@) 8Xm()) 3+ {5k = G (8Xn0)—1+ 8Xm(k—1» &Xmik)—1) }

are two sequences in [0, co) converging to the same limit L = g and satisfying

V() <V (sx) — ¢ (sx) forallneN.

Then, it follows from Corollary 2.3.2 that ¢y = 0, which is a contradiction. As a
consequence, we have that {gx,} is a Cauchy sequence in (X, G).

Taking into account that (X,G) is complete, there exists z € X such that
{gx,} — z. As g and T are G-continuous, then {ggx,} — gz and {Tgx,} — Tz.
On the other hand, since g and T commute, we have that

g8xn+1 = gTx, = Tgx, foralln> 0.

Therefore, by the uniqueness of the limit of a convergent sequence in a G-metric
space, we conclude that gz = Tz, that is, z is a coincidence point of 7 and g.

Now, assume that for all coincidence points x and y of T and g, there exists w € X
such that gx < gw and gy < gw. We claim that

gx = gyforall x,y € Co(T, g). (5.11)

Assume that x and y are two coincidence points of 7" and g and let w € X be such
that gx < gw and gy < gw. Let {w,} be a Picard sequence of (T, g) based on the
point wy = w (exists from Lemma 4.1.1). Asx < wandy <X wand T is a (g, X)-
non-decreasing mapping, then gx = Tx < Twy = gw; and gy = Ty <X Twy = gwy.
Similarly, by induction, it is easy to prove that gx < gw, and gy < gw,, foralln € N.
Applying the contractivity condition (5.8), for all k € N,
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¥ (G (ng EWn+1, gwn+l)) =y (G (Tx, Tw,, TWn))
= lr// (G (ng EWn,s an)) - ¢ (G (gx’ EWn,s gwn)) .

Again by Lemma 2.3.6, we deduce that

lim G (gx, gwn, gw,) = 0,
n—>o00

so {gw,} — gx. Similarly, it can be proved that {gw,} — gy. As a consequence,
gx = gy and (5.11) holds.

Next we show that, for all coincidence point x of T and g, the point w = Tx is
a common fixed point of T and g. Let x € X be an arbitrary coincidence point of
T and g and let o = Tx = gx. As T and g commutes, Remark 2.2.1 guarantees
that @ = Tx is also a coincidence point of 7 and g. Then, Tw = gw. Moreover, by
(5.11), we have that gx = gw. In particular, Tw = gw = gx = Tx = w. As aresult,
w is a common fixed point of 7 and g.

Finally, we prove that T and g have a unique common fixed point. Let w and z be
two common fixed points of 7 and g, thatis, w = Tw = gw and z = Tz = gz. By
(5.11), we have that gw = gz, sow = gw = gz = z. O

When the contractivity condition (5.8) is satisfied for all x,y € X, then the
continuity of g implies the continuity of 7' (recall Lemma 4.3.2). However, in the
setting of preordered G-metric spaces, the contractivity condition (5.8) is not strong
enough to guarantee this property. This is why, in the previous result, we assumed
that both 7" and g are continuous.

Example 5.3.1. Let X = R endowed with the G-metric G(x,y,z) =
max {|x —y|, |x —z|, |y — z|} for all x, y, z € X and the partial order < given by

x<Xy <& (x=y or x<y=<0).

Define T : R — R by

X
>
2x+ 1, ifx > 0.

ifx <0,
Tx =

If g is the identity mapping on X, we now show that (5.8) holds using ¥ (1) = ¢ and
¢ (r) = t/2forall t € [0,00). Indeed, let x,y € X be such that x = gx < gy = y.
If x = y, then (5.8) trivially holds. Assume that x # y. Then x < y < 0. Hence

S Loy
2°2°2

G(Tx. Ty. T =G( - _ -
(Tx, Ty, Ty) 275153

1
=3 G(x,y,y) = (¥ — ¢) (G(gx, gy, 8Y)) -
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However, although g is G-continuous on R, 7 is not continuous at x = 0 because
{1/n} = 0but{T(1/n)} — 1 # 0= TO0.

Corollary 5.3.1. Let (X, G, X) be an ordered G-metric space and let T,g : X — X
be two mappings. Suppose that the following conditions hold:

(i) (X, G) is G-complete;
(ii) there exists xo € X such that gxy < Txo;
(i) T(X) < g(X);
(iv) T is (g, <)-non-decreasing;
(v) T and g are G-continuous and commuting;
(vi) there exist two functions ¥ € Fyc and ¢ € F,, such that, for all x,y € X with

gx < gy
v (G(Tx, Ty, Ty)) < ¥ (G(gx, gy, 8y)) — $(G(gx, gy, gy)).

Then T and g have, at least, a coincidence point, that is, there exists 7 € X such
that Tz = gz.

Furthermore, assume that for all coincidence points x and y of T and g, there
exists w € X such that gx < gw and gy < gw. Then T and g have a unique common
fixed point.

In the following result, we use a contractivity condition involving three variables.

Corollary 5.3.2. Let (X, G, X) be a preordered G-metric space and let T,g : X —
X be two mappings. Suppose that the following conditions hold:

(i) (X, G) is G-complete;
(ii) there exists xo € X such that gxy < Txo;
(i) 7(X) < g(X);
(iv) T is (g, X)-non-decreasing;
(v) T and g are G-continuous and commuting;
(vi) there exist two functions ¥ € Fy and ¢ € F, ah such that, for all x,y,z € X
with gx < gy < gz,

V (G(Tx, Ty, Tz)) < ¥ (G(gx, gy, 82)) — $(G(gx, gy, 82)).

Then T and g have, at least, a coincidence point, that is, there exists z € X such
that Tz = gz.

Furthermore, assume that for all coincidence points x and y of T and g, there
exists w € X such that gx < gw and gy < gw. Then T and g have a unique common
fixed point.

If we use in X the preorder < given by (5.1), we have the following consequence.
Corollary 5.3.3. Theorem 4.3.2 follows from Theorem 5.3.1.

Corollary 5.3.4. Let (X, G, <) be a preordered G-metric space and let T,g : X —
X be two mappings. Suppose that the following conditions hold:
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(i) (X, G) is G-complete;

(ii) there exists xo € X such that gxy < Txo;
(i) T(X) € g(X);
(iv) T is (g, <X)-non-decreasing;

(v) T and g are G-continuous and commuting;
(vi) there exists a function ¢ € F, such that, for all x,y € X with gx < gy,

G(Tx, Ty, Ty) < G(gx, gy, 8y) — ¢(G(gx, gy, gY))-

Then T and g have, at least, a coincidence point, that is, there exists z € X such
that Tz = gz.

Furthermore, assume that for all coincidence points x and y of T and g, there
exists w € X such that gx < gw and gy < gw. Then T and g have a unique common
fixed point.

The previous result also holds if we additionally assume that ¢ is continuous
rather than lower semi-continuous. Finally, if we use ¢(f) = (1 — A) ¢ forall 1 > 0,
where A € [0, 1), we have the following result.

Corollary 5.3.5. Let (X, G, X) be a preordered G-metric space and let T,g : X —
X be two mappings. Suppose that the following conditions hold:

(i) (X, G) is G-complete;
(ii) there exists xo € X such that gxy < Txo;
(iii) 7(X) < g(X);
(iv) T is (g, X)-non-decreasing;
(v) T and g are G-continuous and commuting;
(vi) there exists a constant A € [0, 1) such that, for all x,y € X with gx < gy,

G(Tx, Ty, Ty) < A G(gx, gy.gy).

Then T and g have, at least, a coincidence point, that is, there exists z € X such
that Tz = gz.

Furthermore, assume that for all coincidence points x and y of T and g, there
exists w € X such that gx < gw and gy < gw. Then T and g have a unique common
fixed point.

In the next theorem, we replace the continuity of 7 by the non-decreasing-
regularity of the preordered G-metric space.

Theorem 5.3.2. Let (X, G, X) be a preordered G-metric space andletT,g : X — X
be two mappings. Suppose that the following conditions hold:

() (g(X),G) is complete;
(ii) there exists xy € X such that gxy < Tx;
(i) 7(X) < g(X);
(iv) T is (g, X)-non-decreasing;
(v) g is G-continuous and commutes with T;
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(vi) there exist two functions ¥ € Fy and ¢ € }";h such that, for all x,y € X with
8x < gy

vV (G(Tx, Ty, Ty)) < ¥ (G(gx, gy, 8y)) — $(G(gx, gy, gY)); (5.12)

(vii) (X, G, X) is non-decreasing-regular.

Then T and g have, at least, a coincidence point, that is, there exists z € X such
that Tz = gz.

Furthermore, assume that for all x,y € Co(T, g), there exists w € X such that
gx X gwand gy < gw. Then:

e gx=gyforallx,y € Co(T,g), and
e T and g have a unique common fixed point w, which is @ = Tx where x €
Co(T, g) is arbitrary.

In particular, if g (or T) is injective on the set of all coincidence points of 7" and
g, then T and g have a unique coincidence point, which is also the common fixed
point of T and g.

Proof. Repeating the argument in the proof of Theorem 5.3.1, we get that the <-
non-decreasing sequence {gx,} is Cauchy in (g(X), G). As (g(X), G) is complete,
there exists z € g(X) such that {gx,} — z. Let u € X be such that gu = z. Since
(X, G, X) is non-decreasing-regular, then gx, < gu foralln € N. As T and g
commutes,

88xn+1 = gTx, = Tgx, foralln e N.
By the contractivity condition (5.12), we have that, for all n € N,

W (G(gxn-‘rl’ TLt, Tu)) = I/f (G(Txn’ TM, TM))
= w(G(gxnv 8u, gu)) - ¢(G(gxm 8gu, gu))
< ¥ (G(gxy, gu, gu)).

Since {gx,,} — gu, item 2 of Corollary 2.3.1 guarantees that

lim G(gx,4+1,Tu,Tu) =0
n—>oo

and {gx,} — Tu. By the uniqueness of the limit, we conclude that Tu = gu, that
is, T and g have, at least, a coincidence point. The rest of the proof is similar to the
proof of Theorem 5.3.1. O

The previous results are also valid if we employ ¢ € F/..

Theorem 5.3.3. If we replace the condition ¢ € F,, by the assumption ¢ € F,
then Theorem 5.3.1 (and its subsequent corollaries) also holds.
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Proof. Repeat the argument in the proof of Theorem 5.3.1 using Lemmas 2.3.9
and 2.3.10 rather than Lemmas 2.3.6 and 2.3.2. O

All corollaries we have deduced from Theorem 5.3.1 can now also be repeated
here.

5.3.2 Common Fixed Point Theorems for Compatible
Mappings

If we revise in detail the proofs of Theorems 5.3.1 and 5.3.2, we notice that it is not
very difficult to weaken some hypotheses. Note the following:

¢ The condition 7(X) € g(X) is only used to guarantee, by Lemma 4.1.1, that
there exists a Picard sequence {x,} of (T, g), that is, satisfying gx,+; = Tx, for
alln > 0.

e The condition “gx < gw and gy < gw” which we have used to prove the
uniqueness can be replaced by the condition that “gx and gy are, at the same
time, comparable with gw”

* The continuity of g will not be necessary if we assume that g(X) is complete.

e AsT(X) C g(X) € X and {gx,+1 = Tx,} € T(X), then it is only necessary to
assume that, at least, one of these subsets is complete.

* When g is not the identity mapping on X, the commutativity between T and g is
a very restrictive condition.

Definition 5.3.1. Let (X, G) be a G-metric space endowed with a binary relation
<andlet T,g : X — X be two mappings. We will say that (7, g) is an (O, <X)-
compatible pair if we have that

lim G (gTx,, Tgx,, Tgx,) =0 (5.13)

n—>oo

whenever {x,} is a sequence in X such that {gx, } is <-monotone and

lim Tx, = lim gx, € X.
m—00 n—>oo

If X is not endowed with a partial order, we have the following definition.

Definition 5.3.2. Let (X, G) be a G-metric space and let 7, g : X — X be two
mappings. We will say that (7, g) is an O-compatible pair if we have that

lim G (gTx,, Tgx,, Tgx,) = 0

n—>odo

whenever {x,} is a sequence in X such that

lim Tx, = lim gx, € X.
m—>00 n—>o0
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Notice that if 7 and g are commuting, then the pair (7, g) is O-compatible
and (O, X)-compatible whatever binary relation < on X. Also notice that, by
Corollary 3.1.1, condition (5.13) is equivalent to its symmetric property:

lim G (gTx,.gTx,, Tgx,) = 0.
n—>0o0

Theorem 5.3.4. Let (X, G, X) be a preordered G-metric space and let T, g : X — X
be two mappings. Suppose that the following conditions hold.

() T is (g, X)-non-decreasing.
(i) At least, one of the following conditions holds:

(ii.1) T(X) C g(X) and there exists xy € X such that gxy < Txo,
(ii.2) there exists a Picard sequence {x,},en such that gxo < Txy.

(iii) At least, one of the following conditions holds:

(iii.1) X (or g(X) or T(X)) is G-complete, T and g are G-continuous and (T, g) is
a (0, X)-compatible pair;

(iii.2) X (or g(X) or T(X)) is G-complete and T and g are G-continuous and
commuting;

(iii.3) (¢(X), G) is complete and (X, G, X) is non-decreasing-regular;

(iii.4) (X, G) is complete, g(X) is closed and (X, G, X) is non-decreasing-regular.

(iv) At least, one of the following conditions holds:

(@iv.1) There exist two functions ¥ € Fy and ¢ € F,, such that, for all x,y € X
with gx < gy,

G(Tx, Ty, Ty) < ¥ (G(gx, gy, gy)) — $(G(gx, gy, gy)). (5.14)

(iv.2) There exist two functions ¥ € Fy and ¢ € ]:z/m such that, for all x,y,z € X
with gx <X gy <X 82,

G(Tx, Ty, Tz) < ¥ (G(gx, gy, 82)) — ¢(G(gx, gy, 82)).

Then T and g have, at least, a coincidence point.

Notice that under conditions (iii.3) and (iii.4), T and g does not need any kind of
continuity nor commutativity.

Proof. Notice that (ii.1) implies (ii.2), so we can suppose (ii.2). Similarly, (iv.2)
implies (iv.1), so we can assume (iv.1). Let {x, },en be any Picard sequence of (T, g)
such that gxo < Tx. Repeating the arguments in the proof of Theorem 5.3.1, we
get that the <-non-decreasing sequence {gx, } is Cauchy in (X, G). At this point, we
distinguish four cases.

Case (iii.1) Assume that X (or g(X) or T(X)) is G-complete and T and g are
G-continuous and (T, g) is a (0, X)-compatible pair. As {gx,+, = Tx,} is a Cauchy
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sequence that is contained in X, in g(X) and in 7'(X), and some of these subsets is
complete, then there exists z € X such that {gx,} — z. As T and g are continuous,
then {ggx,} — gz and {Tgx,} — Tz. Furthermore, as {gx,} is <-non-decreasing and

lim Tx, = lim gx, =z€ X,
m—00 n—>oo

then the (O, <)-compatibility of the pair (7', g) implies that

lim G (ngnv Tgxns Tgxn) =0.
n—>o0o

As {gTx, = ggxu+1} — gz and {Tgx,} — Tz, the continuity of G (see
Theorem 3.2.2) implies that

G (gz,Tz,Tz) = lim G (gTx,, Tgx,, Tgx,) = 0.
n—o0

Therefore, gz = Tz and z is a coincidence point of T and g.

Case (iii.2) Assume that X (or g(X) or T(X)) is G-complete and T and g are
G-continuous and commuting. In this case, item (iii.1) is applicable because the
commutativity of T and g implies that (7', g) is an (O, <)-compatible pair.

Case (iii.3) Assume that (g(X), G) is complete and (X, G, X) is non-decreasing-
regular. In this case, the <-non-decreasing sequence {gx,} is Cauchy in g(X), which
is G-complete. Then, there exists z € g(X) such that {gx,} — z. Let u € X be any
point such that gu = z. Taking into account that (X, G, <) is non-decreasing-regular,
it follows that gx,, < gu for all n € N. The contractivity condition (5.14) yields, for
alln e N,

¥ (G(gxn+1, Tu, Tu)) = ¥ (G(Txy, Tu, Tu))
< Y (G(gxn, gu, gu)) — $(G(gxn, gu, gu))
< Y (G(gxn, gu, gu)).

As {gx,} — gu and ¥ is continuous, we deduce that
lim ¥ (G(gxu+1, Tu, Tu)) = 0,
n—>oo

sO

lim G(gxy+1,7Tu,Tu) =0,
n—>oo

which means that {gx,} — Tu. By the uniqueness of the limit, we conclude that
Tu = gu, that is, u is a coincidence point of 7" and g.

Case (iii.4) Assume that (X, G) is complete, g(X) is closed and (X, G, X) is non-
decreasing-regular. In this case, we can apply item (iii.3) because any closed subset
of a complete G-metric space is also complete.
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In any case we have just proved that 7" and g has, at least, a coincidence point.
a

Remark 5.3.1. Notice that, by the symmetry of G, condition gx < gy < gz in (iv.2)
may be replaced by gx > gy > gz. Nevertheless, the roles of x and y in (5.14) are
not equivalent. However, the reader can obtain a similar result replacing (5.14) by
the alternative condition:

G(Tx,Tx, Ty) < ¥ (G(gx, gx, 8y)) — $(G(gx, gx, gy))

for all x,y € X such that gx < gy.
In the next result, we study the uniqueness of the coincidence point.

Theorem 5.3.5. Under the hypotheses of Theorem 5.3.4, also assume that the
following properties are fulfilled.

W T(X) < g(X).
(vi) for all coincidence points x and y of T and g, there exists w € X such that gw
is, at the same time, <-comparable to gx and to gy.

Then:

e gx = gy for all coincidence points x and y of T and g, and
e T and g have a unique common fixed point.

Proof. The proof of Theorem 5.3.1 can be followed to deduce the stated statements.
Notice that if gw < gx, then the Picard sequence {w,} of (T, g) based on wy = w
(which exists by Lemma 4.1.1) also satisfies gw, < gx for all n € N because T is
(g, <)-non-decreasing. Hence, the contractivity condition (5.14) is applicable. O

5.3.3 Cirié’s Common Fixed Point Theorems in Preordered
G-Metric Spaces

Following the work of Ciri¢ et al. [61], we generalize the above-mentioned results
by introducing a function g.

Theorem 5.3.6. Let (X, X) be a preordered set endowed with a G-metric and T :
X — X and g : X — X be given mappings. Suppose that the following conditions
hold:

(i) (X,G) is G-complete;
(ii) T is G-continuous;
(iii) T is (g, X)-non-decreasing;
(iv) there exists xo € X such that gxo < Txp;
(v) T(X) € g(X) and g is G-continuous and commutes with T
(vi) there exists a function ¢ € Fci such that, for all x,y,z € X with gx = gy > gz,
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G(Tx, Ty, Tz) < ¢(G(gx, 8y, 82))- (5.15)

Then T and g have a coincidence point, that is, there exists w € X such that
gw = Tw.

Proof. Let xp € X such that gxg < Txp. Since T(X) € g(X), Lemma 4.1.1
guarantees the existence of a Picard sequence {x,} of (T, g), that is,

gxn+1 = Ix,, foralln > 0. (5.16)

Regarding that T is a (g, <)-non-decreasing mapping together with (5.16), we
observe that

gxo <X Txp = gxp implies gx; = Txg < Tx; = gxp.

Inductively, we obtain
8o X gxp X gy X ... X g1 X X X QX1 XLl (5.17)

If there exists ng such that gx,, = gxn,+1, then gx,, = gx,y4+1 = Tx,,, thatis, T and
g have a coincidence point, which completes the proof. Assume that gx,, # gx,+1
for all n € N, that is, G (gx,+1, &Xu+1, &x,) > 0 for all n > 0. Regarding (5.17), we
setx =y = x,4+; and z = x;,, in (5.15). Then we get

G(8xn+2, 8%n+2, 8Xn+1) = G(Txnt1, Txny1, Txy)

< (G(gXnt1, 8Xnt1. 8%n))s
which implies, taking into account that ¢ € Fcj,
G(gXn+2, 8Xn+2, 8Xn+1) < P(G(8Xn+1, 8Xn+1,8%n))
< G(gXp+1, 8Xn+1,8Xn). (5.18)

Lett, = G(gxu+1,8%u+1,8Xn). Then, {t,} is a non-increasing sequence of positive
real numbers. Thus, there exists L > 0 such that

limt, =L and L <t,foralln>0.
n—o0o

We now show that L = 0. Suppose that, contrary to our claim, L > 0. Letting
n — oo in (5.18) and taking into account that ¢ € F;;, we get

L= lim t,+; < lim ¢(t,) = lim ¢(t) <L,
n—o00 n—o0o t—0+
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which is a contradiction. Hence, we have

lim G(gx,+1,8Xn+1,8%n) = nlLrgo t,=L=0.

n—>oo

We now show that {gx,} is a G-Cauchy sequence. Suppose on the contrary, that
the sequence {gx,} is not G-Cauchy. From Theorem 4.1.1, there exists &y > 0 and
sequences of natural numbers {m(k)} and {£(k)} such that, for each natural number
k,k < L(k) <m(k) < L(k+ 1),

G (Xewys Xm—1- Xmy—1) < 80 < G (Xeqrys Xm(ty s Xm(ty) »
and also

kl_l)rglo G (XZ(k),xm(k), xm(k)) = kl_l)fglo G (XZ(k)+1,xm(k)+1,xm(k)+1) = &p.

By the contractivity condition (5.15) applied to x = y = X, and z = x¢), we
have that

G(8Xm(y+1> 8Xmy+1-> 8%ty +1) = G(Txmry s Tmery» Toe(ry)
< ©(G(8Xmk)» &Xm(k)» 8Xe(k)))-

Since {G(8Xm)> 8Xm(k)» 8Xek)) T "\ 80+ , we deduce, using ¢ € Fcy, that

g = kl_l)fglo G (X041, Xmk) 1 Xm(oy+1) < kl_lglo O (G(8Xm(k) > 8Xm(k)> 8Xe(k)))

= lim ¢ (¢) < &,
=&,

which is a contradiction. Hence, {gx,} is a Cauchy sequence in the G-metric space
(X, G). Since (X, G) is complete, there exists w € X such that {gx, } is convergent to
w. From Lemma 3.2.1, we have
lim G(gx,, gx,,w) = lim G(gx,,w,w) = 0.
n—>oo n—>oo
The continuity of g implies that the sequence {ggx,} is convergent to gw, that is,
lim G(ggx,, 88xn, gw) = lim G(ggx,, gw, gw) = 0. (5.19)
n—>oo n—>oo
On the other hand, due to the commutativity of 7" and g, we can write

88xn+1 = 8Tx, = Tgx, foralln >0,
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and the continuity of 7 implies that the sequence {Tgx,} = {ggx,+1} converges to
Tw, so that,

lim G(Tgx,, Tgx,, Tw) = lim G(Tgx,, Tw, Tw) = 0. (5.20)
n—>o0 n—>oo

By the uniqueness of the limit, the expressions (5.19) and (5.20) yield that gw = Tw.
O

In the next theorem, the G-continuity of T is no longer required. However, we
require the non-decreasing-regularity of X.

Theorem 5.3.7. Let (X, <) be an ordered set endowed with a G-metric and T :

X — X and g : X — X be given mappings. Suppose that the following conditions
hold:

(i) (g(X),G) is G-complete;
(ii) (X, G, X) is non-decreasing-regular;
(iii) T is (g, X)-non-decreasing;
(iv) there exists xy € X such that gxy < Txo;
(v) T(X) € g(X) and g is G-continuous and commutes with T,
(vi) there exists a function ¢ € Fcir such that for all x,y,z € X with gx > gy > gz,

G(Tx, Ty, Tz) < ¢(G(gx, gy, 82)). (5.21)

Then T and g have a coincidence point, that is, there exists w € X such that
gw = Tw.

Proof. Following the proof in Theorem 5.3.6, we consider a <-non-decreasing
sequence {gx,} and conclude that it is a G-Cauchy sequence in the G-complete,
G-metric space (g(X), G). Thus, there exists w € X such that {gx,} is G-convergent
to gw. Since {gx,} is non-decreasing and (X, G, <) is non-decreasing-regular, we
have that gx,, < gw for alln € N. If gw = gx,, for some natural number ny, then x,,,
is a coincidence point of T and g because gw = gx,,, <X gXp+1 < gwand, as <isa
partial order, gx,, = gx,,+1 = Tx,,. Suppose that gw # gx, for all n € N. By the
rectangle inequality together with the inequality (5.21), we have

G(Tw, gw, gw) < G(Tw, gxn+1, 8Xn+1) + G(gXn+1,8W, gW)
< G(Tw, Txy, Txn) + G(gXn+1,8W, gW)
< ¢(G(gw, gxn, gxn)) + G(gXnt1.8W, gW)
< G(gw, gxn, 8xn) + G(gXnt1.8W, gW).

Letting n — oo in the inequality above, we get that G(Tw, gw, gw) = 0. Hence
Tw = gw. O
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If we take ¢(f) = At, where A € [0, 1), in Theorems 5.3.6 and 5.3.7 we deduce
the following corollaries respectively.

Corollary 5.3.6. Let (X, X) be a preordered set endowed with a G-metric and T :
X — X and g : X — X be given mappings. Suppose that the following conditions
hold:

(i) (X, G) is G-complete;
(ii) T is G-continuous;
(iii) T is g-non-decreasing (with respect to X);
(iv) there exists xy € X such that gxy < Txo;
(v) T(X) € g(X) and g is G-continuous and commutes with T;
(vi) there exists A € [0, 1) such that for all x,y,z € X with gx = gy = gz,

G(Tx, Ty, T7) < AG(gx, gy, g2)- (5.22)

Then T and g have a coincidence point, that is, there exists w € X such that
gw = Tw.

Corollary 5.3.7. Let (X, <) be an ordered set endowed with a G-metric and T :
X — Xand g : X — X be given mappings. Suppose that the following conditions
hold:

(i) (g(X),G) is G-complete;
(ii) (X, G, X) is non-decreasing-regular;
(iii) T is g-non-decreasing (with respect to <),
(iv) there exists xy € X such that gxo < Txo;
(v) T(X) C g(X) and g is G-continuous and commutes with T,
(vi) there exists A € [0, 1) such that for all x,y,z € X with gx > gy = gz,

G(Tx, Ty, Tz) < AG(gx, gy, g2). (5.23)

Then T and g have a coincidence point, that is, there exists w € X such that
gw = Tw.

If we take z = y in Theorems 5.3.6 and 5.3.7 we obtain the following particular
cases.

Corollary 5.3.8. Let (X, <X) be an ordered set endowed with a G-metric and T :
X — X and g : X — X be given mappings. Suppose that the following conditions
hold:

(i) (X,G) is G-complete;
(ii) T is G-continuous;
(iii) T is g-non-decreasing;
(iv) there exists xo € X such that gxy < Txo;
(v) T(X) € g(X) and g is G-continuous and commutes with T;
(vi) there exists a function ¢ € Fcir such that for all x,y € X with gx = gy,
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G(Tx, Ty, Ty) < ¢(G(gx, gy, gY)). (5.24)

Then T and g have a coincidence point, that is, there exists w € X such that
gw = Tw.

Corollary 5.3.9. Let (X, <X) be an ordered set endowed with a G-metric and T :

X — X and g : X — X be given mappings. Suppose that the following conditions
hold:

(i) (g(X), G) is G-complete;
(ii) (X, G, X) is non-decreasing-regular;
(iii) T is g-non-decreasing;
(iv) there exists xo € X such that gxo < Txo;
(v) T(X) C g(X) and g is G-continuous and commutes with T;
(vi) there exists a function ¢ € Fci such that for all x,y € X with gx = gy,

G(Tx, Ty, Ty) < ¢(G(gx, gy, 8y))- (5.25)

Then T and g have a coincidence point, that is, there exists w € X such that
gw = Tw.

Finally, we let g = Ix in Theorems 5.3.6 and 5.3.7.

Theorem 5.3.8. Let (X, <) be an ordered set endowed with a G-metric and T :
X — X be a given mapping. Suppose that the following conditions hold:

(i) (X, G) is G-complete;
(ii) T is G-continuous,
(iii) T is non-decreasing (with respect to <);
(iv) there exists xo € X such that xo < Txy;
(v) there exists a function ¢ € Fcir such that for all x,y,z € X withx =y > z,

G(Tx, Ty, Tz) < ¢(G(x,y,2)). (5.26)

Then T has a fixed point.

Theorem 5.3.9. Let (X, <) be an ordered set endowed with a G-metric and T
X — X be a given mapping. Suppose that the following conditions hold:

(i) (X, G) is G-complete;
(ii) (X, G, X) is non-decreasing-regular;
(iii) T is non-decreasing;
(iv) there exists xo € X such that xo < Txo;
(v) there exists a function ¢ € Fcir such that for all x,y,z €e X withx =y > z,

G(Tx, Ty, Tz) < ¢(G(x,y,2)). (5.27)

Then T has a fixed point.
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5.3.4 Geraghty’s Fixed Point Theorems in Preordered
G-Metric Spaces

Let Fger be the family of all Geraghty functions, that is, functions B : [0, 00) —
[0, 1) satisfying the condition

{B(t,)} — 1 implies {5} —> 0. (5.28)

In 2007, Jachymski and J6Zwik [95] proved that the classes Fger and Fcj generate
equivalent conditions in the sense that, given an operator 7 : X — X, there exists
B € Fger such that

d(Tx, Ty) < B(d(x,y)) d(x,y) forallx,yeX,
if, and only if, there exists ¢ € Fcj: such that
d(Tx,Ty) < ¢ (d(x,y)) forallx,yeX.

However, the following examples show that this relationship is not trivial. If 8 €
FGer, the function ¢g(r) = B(1) ¢ for all ¢ € [0, oo) does not necessarily belong to
Fcir- Conversely, if ¢ € Fcyr, the function

0, ift =0,

Po() = @ ifr>0, (5-29)

does not necessarily belong to Fge.

Example 5.3.2. Let B : [0, 00) — [0, 1) be the function

0, ift =0,
1
—_— if0<r<l1
BO=131+1 ! =0
1

1 1
—+ —sin| —|,ifr> 1.
271 Sm(r—l) '
Since 1/4 < B(t) < 3/4 forallt > 1, itis clear that 8 is a Geraghty function in the
sense of property (5.28). However, lim,_, ;+ B(¢) does not exist. As a consequence,

it we consider the function ¢4 : [0, 00) — [0, 00) given by ¢ (r) = B(r)t for all
t > 0, it is clear that ¢g(f) < ¢ for all # > 0. Nevertheless,

lim t
z—1>1+ ¢ﬁ( )
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does not exist, so ¢g cannot verify the condition
lim ¢g(r) < 1,
=1t

which must be satisfied by any function ¢ € Fcj;.
Example 5.3.3. Let ¢ : [0,00) — [0, 1) be the function

wt+ 2t arctant

() = oy

forall ¢t € [0, 00) .

Then ¢ € Fcir. The function B4 : [0,00) — [0, 00) defined by (5.29) satisfies the
condition B4(7) < 1 for all # > 0. However, B, does not belong to Fger because the
sequence {t, = n}uey satisfies {84 (z,)} — 1 but {#,} does not converge to zero.

Under monotone conditions, there exists an inclusion Fger <> Fcir-

Proposition 5.3.1. If B € Fge is non-increasing in (0, 00), then the function ¢g :
[0,00) — [0, 00), given by ¢g (t) = B(t)t for all t > 0, belongs to Fcir.

Proof. As B(t) < 1 forall t+ > 0, then ¢g (f) = B(t)t < ¢t for all + > 0. Since j
is non-increasing, it has limit from the right at any point of (0, co). Let {z,} be an
strictly decreasing sequence converging to § > 0. Therefore, 0 < § < f,41 < t, and
B (t,) < B (th+1) < B (8) < 1. Hence, {B (#,)} is a non-decreasing, upper-bounded
sequence. Thus, it is convergent and

lim A1) = lim B (1,) < B (8).
t—st n—o0
As a consequence, the following limit exists and it satisfies
lim ¢g(r) = lim B (t,) t, < B () 6 <é.
=5+ n—>00

Hence, ¢5 € Fcir. ad
Remark 5.3.2. 1f B(t) < 1forall t > 0, then B(f)t < ¢t forall r > 0.

Taking into account the relationships introduced by Jachymski and J6Zwik in
[95], the following results are equivalent to those given in Sect. 5.3.3.

Theorem 5.3.10. Let (X, X) be a preordered set endowed with a G-metric G and
let T : X — X be a given mapping. Suppose that the following conditions hold:

(i) (X, G) is G-complete;
(ii) T is G-continuous;
(iii) T is non-decreasing (with respect to <X);
(iv) there exists xo € X such that xo < Txo;
(v) there exists a function B € Fge such that, for all x,y € X with x =y,
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G(Tx, Ty, Ty) < B(G(x,y,y))G(x,y,y). (5.30)

Then T has a fixed point.

Proof. Let xp € X be such that xy < Txo and let x,4| = Tx, forall n € N.
Regarding that 7 is a non-decreasing mapping, we have that xo < Txo = x; implies
x1 = Txyp < Tx; = x,. Inductively, we obtain

XX INI. .00 X (5.31)

Assume that there exists ng such that x,, = Xu,41. Since x,, = X,+1 = Txp,, then
Xy, 1s the fixed point of T, which completes the existence part of the proof. Suppose
that x,, # x,4+; for all n € N. Thus, by (5.31) we have

Xo < X1 <X < ... < X1 <X < Xpt1 <X ..

In particular, G(x,+1, X,,, x,) > 0 for all n € N. Applying the contractivity condition
(5.30) to x = x,,+1 and y = x,,, we obtain that, for all n € N,

G(xn-‘rZa Xn41> xn-i—]) = G(Txn-‘rl s Txn’ Txn)
< B(G g1, Xn, X)) G(Xnp1, Xy Xn)

< G(Xp41,Xn, Xn)-

Hence, the sequence {G(x,+1, X, X,)} is convergent. Let L € [0, co) be its limit. To
prove that L = 0, assume that L > 0. In such a case,

G n 9 n ’ n G n 9 ns n
| < G2 St X)) Gt )
L L
< G(xn+1’xn,xn).
L

Letting n — 0o, Lemma 2.1.1 guarantees that {8(G(x;+1,Xn,X,))} — 1. As 8 €
FGer» then {G(x,,+1, X, X,)} — 0, which contradicts the fact that L > 0. Thus, L = 0
and {x, } is an asymptotically regular sequence. We show that it is Cauchy reasoning
by contradiction. In such a case, Theorem 4.1.1 ensures that there exists a positive
real number gy > 0 and two subsequences {X,)} and {x,} of {x,} such that, for
allk e N,

k <n(k) <m(k) <nk+ 1),
G (Xn () Xnky=15 Xmiky=1) < €0 < G (Xa(k)s Xn(ey» X)) »

and also

kli)lgo G (Xn()» Xy Xmiy) = kl_l)rgo G (Xn()—1+ Xnk)— 1> Xm(k)—1) = o (5.32)
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As < is transitive, then x,, < x,, for all n < m. Then, by Remark 5.3.2,

G (Xn Xnk)s Xm®) G (Txmity—1, Tngoy—1. Thniiy—1)

&0 €0

G Xy =15 Xn()—1> Xn(k)—1)
&o

< B(G(Xm(i—1 Xn(k)— 15 Xn()=1))

- G(Xm()—1 Xn(k)—1> Xn(k)—1)
< - )

As a consequence, letting k — oo,
lim B(G(Xm@)—1, Xny—1+ Xnt)—1)) = 1.
k—00

As B € Fger, then {G(Xme)—1, Xnk)—1>Xny—1)} — 0, which contradicts (5.32)
because gy > 0. Then {x,} is a Cauchy sequence. As (X, G) is complete, there
exists u € X such that {x,} — u, and as T is continuous, Tu = lim,— o TX, =
lim,, o0 X,+1 = u. Hence, T has a fixed point. O

Theorem 5.3.11. Let (X, X) be a preordered set endowed with a G-metric G and
let T : X — X be a given mapping. Suppose that the following conditions hold:

(i) (X, G) is G-complete;
(ii) (X, G, X) is non-decreasing-regular;
(iii) T is non-decreasing (with respect to X);
(iv) there exists xo € X such that xo < Txy;
(v) there exists a function B € Fger such that, for all x,y € X with x = y,

G(Tx, 1y, Ty) < B(G(x,y,y)) G(x,y,y). (5.33)

Then T has a fixed point.
Proof. Following the proof in Theorem 5.3.10, we get that {x,} — u € X. As
(X, G, %) is non-decreasing-regular, it follows that x, < u for all n € N. Applying
the contractivity condition (5.33) and Remark 5.3.2, for alln € N,
G(Tu, xy41, xn+1) = G(Tu, Tx,, Tx,)
< B(G(u, x,, x,)) G(ut, X, Xp,)

S G(ua xrh xn)‘

Hence Tu = lim,,_, o0 Xp+1 = u. d

The two corollaries below are immediate consequences of Theorems 5.3.10 and
5.3.11
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Corollary 5.3.10. Let (X, <X) be a preordered set endowed with a G-metric G and
let T : X — X be a given mapping. Suppose that the following conditions hold:
(i) (X, G) is G-complete;
(ii) T is G-continuous,
(iii) T is non-decreasing (with respect to X);
(iv) there exists xo € X such that xo < Txy;
(v) there exists a function B € Fge such that, for all x,y,z € X withx =y = z,

G(Tx, Ty, T7) < B(G(x,y,72)) G(x,y,7). (5.34)

Then T has a fixed point.

Corollary 5.3.11. Let (X, X) be a preordered set endowed with a G-metric G and
let T : X — X be a given mapping. Suppose that the following conditions hold:

(i) (X, G) is G-complete;
(ii) (X, G, X) is non-decreasing-regular;
(iii) T is non-decreasing (with respect to <);
(iv) there exists xo € X such that xo < Txo;
(v) there exists a function B € Fger such that, for all x,y,z € X withx =y = z,

G(T.X, Ty, TZ) =< ﬂ(G(xv Yy, Z)) G(xv Y, Z)' (5.35)

Then T has a fixed point.

The uniqueness of the fixed point can be obtained using the same additional
assumption in Theorem 5.2.1.



Chapter 6
Further Fixed Point Results on G-Metric Spaces

In this chapter we present some fixed point theorems in the context of G-metric
spaces.

6.1 A New Approach to Express Contractivity Conditions

In the contractivity conditions we have presented in the previous chapters, the
mapping T only appears in the left-hand term of the inequality (see, for example,
(4.15), (4.23) and (5.2)).

Theorem 6.1.1 ([24]). Let (X, G) be a complete G-metric space and let T : X — X
be a mapping. Suppose that there exists A € [0, 1) such that

G(Tx, Ty, Ty) < AG(x,Tx,y) forallx,y € X. 6.1)

Then T has a unique fixed point. In fact, T is a Picard operator.
Proof. Let xy € X be an arbitrary point and define the sequence {x,} by x, = T"xo
for all n > 0. From (6.1), we have that, for all n > 0,
G(xn-i-l > Xn+25 xn+2) = G(Txna Txn-l—l ’ Txn-i—l) = A G(xm Txn, xn+l)
= AG (X, Xpt 1, Xnt1)-
From Corollary 4.1.1, {x, } is a Cauchy sequence in (X, G). Due to the completeness

of (X, G), there exists u € X such that {x,} is G-convergent to u. We prove that u is
a fixed point of 7. Indeed, for all n > 0, we have that

© Springer International Publishing Switzerland 2015 107
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G(xyt1, Tu, Tu) = G(Tx,, Tu, Tu) < AG(x,, Xyt1, U). (6.2)

Letting n — oo and using the fact that the metric G is continuous (see Theo-
rem 3.2.2), we get that

G(u,Tu, Tu) < AG(u,u,u) = 0,

so G(u, Tu, Tu) = 0 and Tu = u. Finally, we claim that T has a unique fixed point
(which is u). Assume that x,y € Fix (T) are two fixed points of 7. Then, applying
(6.1), we deduce that

G(x,y,y) =G(Ix, Ty, Ty) < AG(x,x,y) and

G(x,x,y) = G(Iy,Tx, Tx) < A G(y,y,x).

AS a Consequence,
G (x.y,y) < AG(x,x,y) < A2 G(x.y,y).

If G(x,y,y) > 0, the previous inequality is false because A € [0, 1). Hence,
G(x,y,y)=0andx = y. O
Example 6.1.1. Let X = [0, co) be the interval of nonnegative real numbers and let
G the complete G-metric on X defined by

0, ifx=y=z,
G(x,y,2) = .
(x:3,2) max{x, y, z}, otherwise.

Define T : X — X by Tx = x/5 for all x € X. Then, all the hypotheses of
Theorem 6.1.1 hold. In fact,

1
G(Tx, Ty, Ty) = 3 max{x, y} < max{x,y} = G(x, Tx,y)

for all x,y € X. Then T has a unique fixed point on X, which is u = 0.
Based on Theorem 6.1.1, the following result can be easily proved.

Corollary 6.1.1 ([24]). Let (X, G) be a complete G-metric space andletT : X — X
be a mapping. Suppose that there exist real numbers a,b € R, verifyinga + b < 1,
such that

G(Tx,Ty,Tz) < aG(x,Tx,z) + bG(x,Tx,y) forallx,y,z € X.

Then T has a unique fixed point. In fact, T is a Picard operator.
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Proof. Let A = max {0,a + b} € [0, 1). Then, for all x, y € X, it follows that

G(Tx, Ty, Ty) < aG(x,Tx,y) + bG(x, Tx,y)
= (a+ b) G(x, Tx,y) < AG(x,Tx,y).

Then we can apply Theorem 6.1.1. O
In the following result, we employ T, T2 and T3 in the contractivity condition.
Theorem 6.1.2 ([24]). Let (X, G) be a complete G-metric space and letT : X — X
be a mapping. Assume that there exist nonnegative real numbers a, b, ¢ and d, with

a+b+c+d <1, suchthat, forall x,y € X,
G(Tx, Ty, T?y) < aG(x, Tx, T*x) + bG(y, Ty, T*y)
+ cG(x, Tx, Ty) + dG(y, Ty, T*x) (6.3)

Then T has a unique fixed point.

Proof. Let xp € X be an arbitrary point and let {x,},>0 be the Picard sequence of T
based on xg, that is,

Xp+1 = Ix, foralln > 0.

If there exists some ny € N such that x,, = X,,0+1, then x,, = X541 = Ty, SO Xy,
is a fixed point of 7. On the contrary case, assume that

X, # Xu41 foralln e N. (6.4)
From (6.3) with x = x,,_; and y = x,, we have that, for alln > 1,

G (6ns Xt 1, Xut2) = G(Txp1, Ty, T2x,)
< aG(x,—1, Txp—1, szn_l) + bG(xy, Txy, sz,,)
+ cG(xy—1, Txp—1, Tx,) + dG(x,, Tx,, T3x,,_1)
= aG(Xy—1, X, Xn41) + DG (Xn, Xpt1, Xn42)

+ cG(Xu—1, X, Xn41) + d GO, X1, Xn42)-
As aresult, foralln > 1
(1 —=b—d) G(x,, Xp+1,Xn+2) < (a + ¢) G(xy—1, Xy, Xn+1),
which implies that

G(Xp, Xt 1, Xn42) = AG(Xp—1, Xy, Xpy1)  foralln > 1,
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where
a+c
A=———<1.
1-b—-d
Repeating the previous argument, we deduce that
G(Xn, X1, Xnt2) < A" G(x0,x1,%2) foralln > 0. (6.5)

Notice that, from (G3) and (6.4), we know that
G(xp, X, Xn1) < G(x, X1, Xn42) foralln > 0.
From Lemma 3.1.1, it follows that, for all n > 0,

G(Xn, xn-l—lvxn-i-l) = 2G(xm xmxn-i-l)

< 2G(xn, Xpg 1. Xnt2) < 24" G(x0, X1, x2).

As a consequence, for all n,m € N such that n < m, item 4 of Lemma 3.1.2 yields

m—1 m—1

Gy Xy Xm) < D G (X3, Xige1,%i41) < 2 24 Glx0, X1, %1)

= 2"+ AT A2 A G, x1, 1)

AG(XO,XI»XI)-

<
=1_

In particular, the same argument of Theorem 4.2.1 guarantees that

lim G(xn’ Xm xm) =0,
n,m—>00

and {x,} is Cauchy sequence in (X, G). Due to the completeness of (X, G), there
exists z € X such that {x,} is G-convergent to z. We claim that 77 is a fixed point
of T. Indeed, for all n > 0, from (6.3) with x = x,,, we have,

G(xpy1, Iz, T?7) = G(Tx,, Tz, Tzz)
< aG(x,, Tx,, T*x,) + bG(z, Tz, T?z)
+ ¢G(xy, Tx,, T2) + dG(z, Tz, T x,,)
= aG(Xy, Xut 1. Xn42) + bG(2. T2, T?z)
+ cG(xp, Xpt1, T2) + dG(z, Tz, xp43).
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Taking the limit as n — oo in the above inequality, we have that
G(z. Tz, T*2) < %l G(z,z,Tz),
where (¢ 4+ d)/(1 — b) < 1. If we suppose that Tz # T?z then, by (G3), we get that
G(z,Tz. T?z) < %ZG(Z, z,T7) < TLTZG(Z, Tz, T°z) < G(z,Tz. Tz).

which is a contradiction. Then, necessarily, 7z = T2z, which means that 77 is a fixed
point of T.
To prove that T has a unique fixed point, let x,y € Fix(T) be two fixed points
of T. Using (6.3), we have that
G(x,y,y) =aGx,x,x) + bG(y,y,y) + cG(x,x,y) + dG(y, y,x)

=cG(x,x,y) + dG(y,y,x).

Therefore,

G(x,y,y) < uG(x,x,y), wherepu = ﬁ < 1.

Changing the roles of x and y, we also have that G(x,x,y) < uG(x,y,y). Hence,
G(x,y,y) < nG(x,x,y) < u*>G(x,y,y), which is not possible when G(x,y,y) > 0
because u? < 1. As a consequence, G(x,y,y) = 0 and x = y. a

Next, we show some results in which we combine these contractivity conditions
(in which T appears in both sides of the inequality) and control functions. Recall that

Far = {¢ : [0,00) — [0,00) : ¢ continuous, non-decreasing,
¢ () =0<%1t=0},
Fo =1{¢ :[0,00) = [0,00) : ¢ lower semi-continuous, ¢ (1) =0 < t =0} .
Theorem 6.1.3 ([24]). Let (X, G) be a complete G-metric space andletT : X — X

be a mapping. Assume that there exist \y € Fy and ¢ € F,, such that, for all
x,y €X,

Y (G(Tx, T?x, Ty)) < ¥ (G(x, Tx,y)) — ¢(G(x. Tx.y)). (6.6)

Then T has a unique fixed point.

Proof. Let xp € X be an arbitrary point and let {x,},>0 be the Picard sequence of T
based on xg, that is,

Xn+1 = Ix, foralln > 0.
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If there exists some ny € N such that x,,, = x,,y+1, then x,, = Xp+1 = TXy,, SO Xy,
is a fixed point of 7. On the contrary case, assume that

X, # Xy foralln € N, (6.7)

From (6.6) with x = x,, and y = x,,4+, we have that, for alln > 0,

I//(G()Cn+l  Xn2, Xng2)) = W(G(Txn’ szna Txn+l))
= W(G(xnv Txn,xn+1)) - ¢(G(xns Txn»xn+1))
= (W - ¢) (G(xn»xn+l,xn+l))-

Using Lemma 2.3.6, we deduce that:

lim G(x,, X+1,X4+1) = 0, (6.8)
n—>oo
and by Lemma 3.1.1,
lim G(x,, Xy, Xy+1) = 0. (6.9)
n—oo

Next, we show that {x,}°2 is a G-Cauchy sequence. Suppose, to the contrary,
that {x,} is not Cauchy in (X, G). Then, by Theorem 4.1.1, there exist a positive real
number gy > 0 and two subsequences {x,x } and {x, } of {x,} such that, for all
keN,

k <n(k) <m(k) <nk+1),
G (Xn) Xim)—1: Xm)—1) < €0 < G (Xn(ky» Xm(k)» Xm(k)) -

kl_lglo G (Xn(k),xm(k),xm(k)) = klgglo G(Xim(iy» Xm(k)+1> Xn(k))

= kl_lglo G(Xm(k)—1, Xm(k) » Xn(k)—1) = 0. (6.10)
Therefore, using (6.6), it follows that, for all k € N,

Y (G Comihys X1+ Xn(0) = V(G(Txmity—1- T Xm(y—1. Tny—1))
< Y (GEmw—15 Txmy—1, Xn)—1)) — P(GCmiy—15 TXm)—15 Xn()—1))
= Y (G(Xmt) -1+ Xmk)» Xnk)—1)) — P (G Xm(i)—15 Xm(k) » Xn(k)—1))

Using Lemma 2.3.5 applied to the sequences {fx = G(Xuk) Xm(t)+1, X))} and
{8k = G(Xm(k)—1, Xm(k)» Xnk)—1) }» We conclude that &g = 0, which is a contradiction.
This contradiction proves that {x,} is a Cauchy sequence in (X, G). Since, (X, G) is
complete, then there exist z € X such that {x,} — z. From (6.6) with x = x, and
y = z we have,



6.1 A New Approach to Express Contr. Conditions 113

Y (GOot1, %042, T2) = Y(G(Txy, T?x,, T2))
< Y (G(xn, Txp, 2)) — $(G(xn, Txn, 2))
= Y (G(xn, Xn41,2)) — P(G(xn, X 41, 2))
< Y (G(xns Xnt1,2))-

Using that ¢ and G are continuous, and taking the limit as n — oo we get that

¥ (G(z,z,T7)) < ¥(0) = 0.

Then G(z,z,Tz) = 0, i.e., z = Tz. To prove uniqueness, suppose that x, y € Fix(T)
are two fixed points of 7. Now, by (6.6) we get
¥ (G(x,x,)) = ¥(G(Tx, T’x, Ty))
= '([/'(G(X, Txv }’)) - ¢(G(}C, Tx7 )’))
= ¥ (G(x,x.y)) — p(G(x,x,y)),

which is impossible unless G(x, x,y)) = 0, that is, x = y. O
Corollary 6.1.2. Let (X, G) be a complete G-metric space and let T : X — X be a
mapping. Assume that there exists a function ¢ € F,, such that, for all x,y € X,

G(Tx, T’x, Ty) < G(x,Tx,y) — ¢(G(x, Tx, y)).

Then T has a unique fixed point.

Ifp(t) = (1 —A)tforallz € [0,00), where 0 < A < 1, we have the following
result.

Corollary 6.1.3 ([24]). Let (X, G) be a complete G-metric space andletT : X — X
be a mapping. Assume that there exists A € [0, 1) such that, for all x,y € X,

G(Tx, Tx, Ty) < AG(x, Tx.y).

Then T has a unique fixed point.
Example 6.1.2 ([24]). Let X = [0, co) and let
ifx=y=z

0
G(x,y,2) =1 .
(x.,2) max{x, y} + max{y, z} + max{x, z}, otherwise.
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Then G is a complete G-metric on X. Define, T : X — X by Tx = x/4 for all x € X.
Then, for all x,y € X,

0, ifx=y=0,
G, Tx.y) = x + max{x, y} + max {%y} , otherwise,
and
0, ifx=y=0,
G(Tx, T’x,Ty) = { 1 X )
1 (x + max{x, y} + max {Z y}) , otherwise.
Therefore,

1
G(Tx, T?x, Ty) < ZG(x, Tx,y)
for all x,y € X and all the conditions of Corollary 6.1.3 (and also Theorem 6.1.3)
hold. Hence, T has a unique fixed point, which is u = 0.

Corollary 6.1.4 ([24]). Let (X, G) be a complete G-metric space andletT : X — X
be a mapping. Suppose that there exist a,b € R, where 0 < a + b < 2, such that,
forall x,y,z € X,

G(Tx, Tx, Ty) + G(Tx, T*x, Tz) < aG(x, Tx,y) + bG(x, Tx, 7).

Then T has a unique fixed point.
Proof. By taking y = z, we get that

b
G(Tx, T*x, Ty) < %G(x, Tx,y)
where A = # € [0,1). That is, the conditions of Theorem 6.1.3 hold (where

¥ () = tand ¢(f) = (1 — A)z for all > 0) and T has a unique fixed point. O

Jachymski [94] proved the equivalence of the so-called distance functions (see
Lemma 1 in [94]). Inspired by this result, we state the following theorem.

Theorem 6.1.4. Let (X, <) be an ordered set endowed with a G-metric and T be a
self-map on a G-complete partially ordered G-metric space (X, G). The following
statements are equivalent:

i) there exist functions ¥, n € ®Y such that
n 2

W(G(Txv Ty’ TZ)) = W(G(X, Ys Z)) - VI(G(X, Y Z))’ (61 1)

(ii) there exist a € [0, 1) and a function W € @Y such that

V(G(Tx, Ty, Tz)) < ay(G(x,y,2)), (6.12)
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(iii)

(iv)

(iv)
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there exists a continuous and non-decreasing function a : [0,00) — [0, 00)
such that a(t) < t for all t > 0 such that

G(Tx, Ty, Tz) < a(G(x,y,72)),

there exist function € ®Y and a non-decreasing function n : [0,00) —
[0, 00) with n~1(0) = 0 such that

w(G(Txv Tyv TZ)) = W(G()C, Y, Z)) - U(G(X» Y, Z))’ (613)

there exist function ¥ € ® and a lower semi-continuous function n :
[0, 00) = [0, 00) with =" (0) = 0 and liminf n(t) > 0 such that
—>00

Ir//(G(Tx’ Ty? TZ)) = W(G(X, Y, Z)) - T](G(X, Y, Z))’ (614)

foranyx,y,z€ X withx >y > z

Corollary 6.1.5. Let (X, X) be an ordered set endowed with a G-metric and T be
a self-map on a G-complete partially ordered G-metric space (X, G). The following
statements are equivalent:

(®)

(i)

(iii)

(iv)

(iv)

there exist functions yr, n € ® such that
V(G(Tx, Ty, 7)) = ¥(G(x.y.)) = 1(G(x. y.y)). (6.15)
there exist a € [0, 1) and a function € O} such that
V(G(Tx, 1y, 1)) < ay (G(x.y.y)), (6.16)

there exists a continuous and non-decreasing function « : [0,00) — [0, 00)
such that a(t) <t for all t > 0 such that

G(Tx, Ty, Ty) < a(G(x,y,y)), (6.17)

there exist function € ®Y and a non-decreasing function n : [0,00) —
[0, 00) with n~'(0) = 0 such that

w(G(T-xv Tyv Ty)) = w(G(xv Y, y)) - U(G(M Y, y))v (618)

there exist function € @) and a lower semi-continuous function 1 :
[0, 00) — [0, 00) with ' (0) = 0 and lirm inf n(t) > 0 such that
—>00

V(G(Tx, 1y, Ty)) < ¥ (G(x,y,y)) — n(G(x,y.,y)), (6.19)

forany x,y € X withx <X y.
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6.2 Fixed Point Theorems Using Contractivity Conditions
Involving a Unique Variable

As a G-metric is a function in three variables, it is usual that fixed point theorems
involve contractivity conditions using three different arguments x, y,z € X. In this
section, we show some results in which a unique variable plays the key role.

Theorem 6.2.1. Let (X, G, <) be a preordered G-metric space and letT,g : X — X
be two mappings. Suppose that the following conditions are fulfilled.

(a) There exists xo € X such that gxo < Txo.
(b) T(X) < gX).

(¢) T is (g, X)-non-decreasing.

(d) There exists a function ¢ € »Fc(ét)n such that

G (Tgx, T?x, sz) < @ (G (ggx, gTx, gTx)) (6.20)

for all x € X such that gx < Tx.
(e) T and g are G-continuous and commuting.
®) X (or g(X) or T(X)) is G-complete.

Then T and g have, at least, a coincidence point.

Proof. Using (a) and (b), Lemma 4.1.1 guarantees that there exists a Picard
sequence {x,} € X of (T, g) based on the point x, that is, a sequence satisfying

gxn+1 = Ix, foralln e N.
Using the initial condition gxy < Txp = gx;, we have that
gx, X gxyy1 = Tx, forallme N

because T is (g, <)-non-decreasing. Now, applying the contractivity condition
(6.20) and the commutativity between 7 and g, we have that, for all n € N,

G (88%n+1.88%n+2, 88Xn+2) = G (8Txn, 8TxXn11, 8TXn11)
= G (Tgxn, Tgxn+1, Tgxn+1) = G (Tgx,, TTx,, TTx,)
= ¢ (G (88%n. 8Txn, 8Tx)) = ¢ (G (88Xn. 88%n+1. 88%n+1)) -
Therefore, Lemma 4.1.2 implies that {ggx,} is a Cauchy sequence in (X, G). As
88xn+1 = 8Tx, = Tgx, foralln e N,
then {ggx,} € T(X) C g(X) C X for all n > 1. Taking into account that one of
these subsets is G-complete, there exists z € X such that {ggx,} — z. Since T and g

are G-continuous, then

{gggx,t — gz and {Tggx,} — Tz.
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However, as T and g are commuting, it follows that, for all n € N,

Tggx, = gTgx, = g8Tx, = g88X%n+1.

By the uniqueness of the limit, we conclude that 7z = gz, that is, z is a coincidence
point of T and g. O

Corollary 6.2.1. Let (X, G, X) be a preordered G-metric space and let T : X — X

be a =-non-decreasing, continuous mapping. Assume that there exists a function

Qe ]-"C(f)zn such that

G (Tx, T?x, T*x) < ¢ (G (x, Tx, Tx))
for all x € X such that x < Tx. If X (or T(X)) is G-complete, then T has, at least, a
fixed point provided that there exists xy € X such that xo < Txy.

Theorem 6.2.1 is also interesting when =< is a partial order on X (we leave to the
reader to change the word preordered by ordered). Furthermore, assume that we use
the partial order < given in (5.1). In such a case, the following result is obtained.

Corollary 6.2.2. Let (X, G) be a G-metric space and let T,g : X — X be two
mappings. Suppose that the following conditions are fulfilled.

@ T(X) < gX).
(b) There exists a function ¢ € »Fc(ét)n such that, for all x € X,
G (Tgx, T?x, sz) <@ (G (ggx,gTx, gTx)).
(¢) T and g are G-continuous and commuting.
(d) X (org(X) or T(X)) is G-complete.
Then T and g have, at least, a coincidence point.

Finally, the following one is a version of Theorem 6.2.1 using the function
@i (t) = Atforall f € [0,00), where A € [0, 1).

Corollary 6.2.3. Let (X, G, <) be a preordered G-metric space and let T,g : X —
X be two mappings. Suppose that the following conditions are fulfilled.

(a) There exists xy € X such that gxy < Txo.
(b) T(X) < g(X).

(¢) Tis (g, X)-non-decreasing.

(d) There exists a constant A € [0, 1) such that

G (Tgx, Tx, sz) < A G (ggx, gTx, gTx)

for all x € X such that gx < Tx.
(e) T and g are G-continuous and commuting.
) X (or g(X) or T(X)) is G-complete.

Then T and g have, at least, a coincidence point.
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6.3 Generalized Cyclic Weak ¢-Contractions
on G-Metric Spaces

In this section we present the notion of a cyclic map and some fixed point theory for
cyclic maps in G-metric spaces.

6.3.1 Cyclic Mappings on G-Metric Spaces

We begin with the definition of a cyclic mapping.

Definition 6.3.1. A self-mapping T : X — X is cyclic if there exist non-empty

subsets Ay, A, ...,A,—1 € X such that

A0UA1U...UAP71=X and
T(A;) CAiy forallie{0,1,2,...,p— 1} (where A, = Ay).

In such a case, we say that {Ai}f;é is a cyclic representation of (X, T).
If X is endowed with a topology, we say that {A,-}f;é is closed if each A; is closed
foralli € {0,1,2,...,p—1}.

It is usual to define A, = Ao, Ap+1 = Ay, Ap+2 = Ay, etc. In other words,
if n,m e Nand m = n (mod p),then A, = A,.

Using this agreement, notice that {A;}/_, = {A;,A2,As,...,A,} is, indeed, the
same cyclic representation of 7. We will use this representation in the statements
of theorems, but the initial point xo will belong to A.

Lemma 6.3.1. If a cyclic self-mapping T : X — X has a fixed point z, then 7 €
NY_,A; whatever the cyclic representation {A;},_, of (X, T).

Proof. Asz € X = A UA, U ... UA,, there exists i € {1,2,...,p} such that
z € A;. Then z = Tz € T(A;) € Ai+1. By repeating this argument, z € A; for all
je{l,2,...,p} O

If {x;n}m>0 is a Picard sequence of a cyclic operator 7' : X — X such that xy € Ay,
then x,, € A,, for all m € N. Furthermore,

Xmp+i €A; forallme Nandalli e {1,2,...,p}.

Therefore, each A; contains a partial subsequence of {x,,}.
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Lemma 6.3.2. Let X be a Hausdorff topological space and let {Ai}f:1 be a closed
cyclic representation of (X, T), where T : X — X is a self-mapping. Then, the limit
of any convergent Picard sequence of T belongs to ﬁleAi.

Proof. As each A; contains a partial subsequence of the Picard sequence, then, its
limit z (which is unique by the Hausdorff property) belongs to the closure of A;. But
as each A; is closed, then z € A; forall i € {1,2,...,p}. O

Remark 6.3.1. Let {A;}\_, be a cyclic representation of (X, T), where T : X — X
is a self-mapping, and let {x,,},>0 be a Picard sequence of T : X — X such that
xp € Ag. Letn,m € Nand i,j € {1,2,...,p} be natural numbers. Then

X, €A;, m>n, m—n=j (mod p) = x, €A

In particular,

X, €Ay, m>n, m=n (mod p) = x, €A;

X, €EA;, m>n, m—n=1 (mod p) = x, €A+ (6.21)

The following result extends Banach theorem to cyclic mappings.

Theorem 6.3.1 ([119]). Let (X, G) be a complete G-metric space and let {A;}_,
be a closed cyclic representation of (Y, T), where Y C X is a non-empty subset and
T :Y — Y is a mapping. If there exists A € [0, 1) such that

G(Tx, 1y, Ty) = AG(x,y.y) (6.22)

forall x € Ajand 'y € Ajyy (where j € {1,2,...,p} is arbitrary), then T has a
unique fixed point, which belongs to N._,A;. In fact, T is a Picard operator.

Remark 6.3.2. In the previous result, we assume that 7 : ¥ — Y is a cyclic
mapping, where (X, G) is complete and {A;}%_, is a closed cyclic representation
of (Y, T). Since each A; is closed, the finite union ¥ = U’l.’zlAi is also closed. As Y
is closed in the complete space (X, G), then (Y, G) is also complete. Therefore, we
have a mapping T : Y — Y from a complete G-metric space into itself.

Proof. We first prove the existence part. Take an arbitrary xo € Y. Without loss of
generality, assume that xo € Ag. Let {x,},>0 be the Picard sequence of T based on
Xo. Since T is cyclic, x, € A, for all n > 0. If there exists some ny € N such that
Xng+1 = Xny, then x,, is a fixed point of 7. Assume that x,,4+; # x, forall n € N.
Put x = x,,4+1 and y = x,,45 in (6.22). Then, for all n > 0,

G(Xut1, Xng2, Xn2) = G(Txn, Txug1, Txp1) < AG(Xn, Xpg1, X 1)
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It follows from Corollary 4.1.1 that {x, } is Cauchy in (¥, G). Since the space (Y, G)
is complete, then {x,} is convergent in (Y, G). Let u € Y be the limit of {x,}. From
Lemma 6.3.2,u € ﬂf=1Ai. Now we show that u is a fixed point of 7', that is, u = Tu.
Indeed, for all n,

G (xp+1, Tu, Tu) = G (Tx,, Tu, Tu) < AG (x,, u, u) .

Letting n — oo, we deduce that G (u, Tu, Tu) = O, that is, Tu = u. Finally, in
order to prove the uniqueness, we assume that v € Y is another fixed point of 7. By
Lemma 6.3.1, both « and v belong to ﬂf’z 1Ai. Thus, we can substitute x = wandy =
v in the contractivity condition (6.22), which yields G(u, v,v) = G(Tv, Tu, Tu) <
AG(u,v,v). As A < 1, then G(u,v,v) = 0,and u = v. O

Corollary 6.3.1 ([119]). Let (X, G) be a G-metric space and let {A;}._, be a closed
cyclic representation of (Y, T), where Y C X is complete and T : Y — Y is a
mapping. If there exists A € [0, 1) such that

G(Tx, Ty, T7) < AG(x,y,2)

forallx € Ajand y,z € Ajyy (where j € {1,2,...,p} is arbitrary), then T has a
unique fixed point, which belongs to N,_,A;. In fact, T is a Picard operator.

6.3.2 Generalized Cyclic Weak ¢-Contractions (Type 1)

Recall that F, is the family of all continuous mappings ¢ : [0, 00) — [0, c0) such
that ¢ (¢) = 0 if, and only if, r = 0.

Theorem 6.3.2 ([119]). Let T : X — X be a mapping from a complete G-metric
space (X, G) into itself and let {A;}'_, be a closed cyclic representation of (X, T).
Assume that there exists a function ¢ € Fx, such that

G(Ix, 1y, Ty) < M(x,y) — ¢p(M(x,y)) (6.23)
forallx € Ajandy € Ay (i € {1,2,...,p} arbitrary), where
M(x,y) = max{G(x,y,y), G(x, Tx, Tx), G(y, Ty, Ty)}. (6.24)

Then T has a unique fixed point, which belongs to ﬂleA,-. In fact, T is a Picard
operator.

Proof. To prove the existence part, we construct a sequence of Picard iterations as
usual. Take an arbitrary xy) € Ao and define the sequence {x,} as

Xp+1 = Tx, foralln e N.
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Since T is cyclic, x, € A, for all n € N. If there exists some ny € N such that
Xng+1 = Xng» then x,, is a fixed point of T. Assume that x,,+; # x, foralln € N,
that is,

G(x,l,xn+1,xn+1) > (0 foralln € N. (6.25)
Let x = x,, and y = x,,+ in (6.23). Then

G(Xnt1, X2, Xng2) = G(Txy, Txng1, Thyg1)

< M(xn»xn—l—l) - ¢(M(X”,)Cn+1)), (626)
where
M(-xm xn+1) = max {G(xnv Xn+1, xn+1)s G(-xns Txm Tx}’l)s

G(xn+l s Txn+l P Txn+l)}

= maX{G(xnv Xn+1 xn-i-l)a G(x11+l s Xn+2, xn+2)}' (627)
If there exists some n € N such that
G (X Xp1, X 1) < G(Xpp1, Xng2, Xnt2),

then (6.26) and (6.27) yield

G(Xnt15 Xnt25 Xnt2) = M (X, Xp1) — ¢ (M (X, Xp41))
= G(Xnt1, Xnt2 Xnt2) — @ (Gt 1, X2, Xnt2))
which implies that ¢ (G(x,+1, Xu+2, Xn+2)) = 0 and, as ¢ € Fg;,
G(Xn+1, Xnt2, Xnt2) = 0,
which contradicts (6.25). Therefore, we must have G(X,+1,Xp42, Xp42) <

G(xn,xn+1,xn+1) for all n € N, that is, M(xn,xn+1) = G(xn,xn+1,x,,+1). From
(6.26), for all n € N,

G(Xnt1, X425 Xn42) < G, X1, Xn41) — P(G (X, Xt 15 Xt 1))
< G(Xp, Xpt15 Xnt1)- (6.28)
Thus, the sequence {G(x,, X,+1, X,+1)} 1S @ non-increasing sequence of nonnegative
real numbers, which converges to L > 0. As ¢ is continuous, letting n — oo in

(6.28), we get

L=<L—¢(L). (6.29)
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It follows that ¢ (L) = 0, so L = 0, that is,

lim G(xn,x,,+1,x,1+1) =0. (630)
n—00

From Lemma 3.1.1, we also have

lim G(x,, X, Xy+1) = 0. (6.31)

n—>oo

Next, we claim that {x,} is a G-Cauchy sequence in (X, G). Assume the contrary,
that is, {x,} is not G-Cauchy. Then, according to Theorem 4.1.1, there exist ¢ > 0
and corresponding subsequences {n(k)} and {£(k)} of N satisfying n(k) > £(k) > k
for which

G (Xt s Xn(k) =15 Xnk)—1) < & < G(Xe@k), Xn(ky> Xn(k)) (6.32)
kl_l)fgo G(Xeky, Xn(k)» Xn(k)) = kl_lfgo GXek)+15 Xn(k)+ 1> Xn(k)+1) = €. (6.33)

Observe that for every k € N there exists s(k) satisfying 0 < s(k) < p such that
n(k) — L(k) + s(k) = n(k) — (£(k) — s(k)) = 1 (mod p). (6.34)

As {£(k)} — oo, for large enough values of k we have that r(k) = £(k) — s(k) > 0
and, by (6.21), x,x) and x,) lie in consecutive sets A;, and A;, 4, respectively, for
some 0 < j; < p. We next substitute x = X, and y = x,) in (6.23) to obtain
G ) +1> Xn() +1> Xny+1) = G(Txrwys Txniiy> Txnr))
< M(Xrky> X)) — S (M (Xr (k) Xn(k))) s (6.35)

where

M (Xrrys Xncy) = max {G (X Xnkys Xnik) ) s GOrk) s Xrih) 15 Xr()+1)
G(Xn(tys Xn(k)+1+ Xn(+1)} - (6.36)
If S(k) = 0, then G(x,(k), xn(k),xn(k)) = G(xg(k),xn(k),xn(k)), and when S(k) > 0, by
item 3 of Lemma 3.1.2,
[ G Xk > Xn(ky» Xnk)) — GOrk) s Xnry» Xn(k)) |

< max{G(x@x), Xr)> Xe(r))» GXr(ry» Xe(r)» X))}

2)—1
<2 G(x,(k),x,(k),xg(k) <2 Z G(xi, Xi, Xig1)- (6.37)
i=r(k)
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Notice that £(k) — r(k) = s(k) < p, so the sum on the right-hand-side of (6.37)
consists of a finite number of terms, and due to (6.30) and (6.31), each term of this
sum tends to 0 as k — oo. Therefore, by (6.33),

kl_l)ﬂ(f)lo G(Xr(k) s Xn(ly s Xnk)) = kl_l)fgo G(Xe(k) s Xn(k) s Xn()) = €. (6.38)

Repeating the previous arguments and Lemma 4.1.4, it can be deduced from (6.33)
that

kl_lglo GXr()+1> Xn(k)+15 Xn(t)+1) = &. (6.39)

Now, passing to the limit as k — oo in (6.35) and using (6.30), (6.38) and (6.39),
we get

& < max{e, 0,0} — ¢(max{e, 0,0}) = ¢ — P (e),
and, hence ¢(g) = 0. We conclude that ¢ = 0, which contradicts the assumption
that {x,} is not G-Cauchy. Thus, the sequence {x,} is G-Cauchy. Since (X, G) is
G-complete, it is G-convergent to a limit, say w € X. By Lemma 6.3.2, w € N_ A;.
To show that the limit of the Picard sequence is the fixed point of T, that is,
w = Tw, we employ (6.23) with x = x,, and y = w. This leads to
G(xXu+1, Tw, Tw) = G(Tx,,, Tw, Tw) < M(x,,, w) — ¢ (M(x,,, w))
where
M (x,, w) = max{G(x,, w,w), G(Xn, Xn+1, Xn+1), G(w, Tw, Tw)}.
As a consequence,
lim M(x,,w) = G(w, Tw, Tw).
n—oo
Passing to the limit as n — oo, we get
Gw, Tw, Tw) < G(w, Tw, Tw) — ¢(G(w, Tw, Tw)).
Thus, ¢(G(w, T, Tw)) = 0 and, hence, G(w, Tw, Tw) = 0, that is, w = Tw.
Finally, we prove that the fixed point is unique. Assume that v € X is another
fixed point of T. Then, since both v and w belong to ﬂleAi, wesetx =vandy =w

in (6.23), which yields

Gl,w,w) =G(Tv,Tw,Tw) < M(v,w) — dp(M(v,w)), (6.40)
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where

M(v,w) = max{G(v,w,w),G(v,Tv, Tv), G(w, Tw, Tw)} = G(v,w,w).
Then (6.40) becomes G(v,w,w) < G(v,w,w) — ¢(G(v,w,w)) and, clearly,
G(v,w,w) = 0, so we conclude that v = w, i.e., the fixed point of T is unique. O

Corollary 6.3.2 ([119]). Let T : X — X be a mapping from a complete G-metric
space (X, G) into itself and let {A;}:_, be a closed cyclic representation of (X, T).
Assume that there exists a function ¢ € Fg, such that

G(Tx, Ty, Tz) < M(x,y,z) — $p(M(x,y,2))
forallx € A;and y,z € Aj+1 (i € {1,2,...,p} arbitrary), where
M(x,y,z) = max{G(x,y,z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, T7) }.

Then T has a unique fixed point, which belongs to ﬂleA,-. In fact, T is a Picard
operator.

For particular choices of the function ¢ we obtain the following corollaries. We
employ Remark 6.3.2 to give the following versions.

Corollary 6.3.3 ([119]). Let (X,G) be a G-complete G-metric space and let
{AY_, be a family of nonempty G-closed subsets of X with Y = U_ A;. Let
T :Y — Y be a map satisfying
T(A)) CAjy forallje{l,2,...p} (where Apy1 = A1)
Suppose that there exists A € [0, 1) such that the map T satisfies
G(Tx, Ty, Tz) < AM(x,y.z2) (6.41)
forallx € Ajand ally,z € Ajyy (forj € {1,2,...m}), where

M(x,y,z) = max{G(x,y,z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, T7) }. (6.42)

Then T has a unique fixed point, which belongs to N\_,A;.

Proof. The proof is obvious by choosing the function ¢ in Theorem 6.3.2 as ¢ () =
(1-2)r O

Corollary 6.3.4 ([119]). Let (X,G) be a G-complete G-metric space and let
{AY_, be a family of nonempty G-closed subsets of X with Y = U'_ A;. Let
T : Y — Y be a map satisfying

T(A)) CAjy forallje{l,2,...p} (where Apy1 = A1)
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Suppose that there exist constants a, b, c and d, witha + b + ¢ + d < 1, such that
the map T satisfies

G(Tx, Ty, Tz) < aG(x,y,z2)+bG(x, Tx, Tx)+cG(y, Ty, Ty)+dG(z, Tz, Tz)  (6.43)

forallx € Ajand all y,z € Ajyy (forj € {1,2,...m}). Then T has a unique fixed
point, which belongs to ﬂ‘leAi.

Proof. Clearly we have,
aG(x,y,z) + bG(x, Tx, Tx) + cG(y, Ty, Ty)
+dG(z,Tz,T2) < (a+ b+ c+d)M(x,y,2),
where
M(x,y,z) = max{G(x,y,z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz)}. (6.44)

By Corollary 6.3.3 using A = max{a + b 4+ ¢ + d,0} € [0,1), the map T has a
unique fixed point. O

Example 6.3.1 ([119]). LetX = [—1,1] and let T : X — X be given as Tx = —3

forall x € X. Let A = [—1,0] and B = [0, 1]. Define the function G : X x X x X —
[0, 00), forall x,y,z € X, as

G(x,y,2) = | = |+ Y = 2|+ |2 - ¥
Clearly, the function G is a G-metric on X. Define also ¢ : [0,00) — [0, c0) as

o) = % for all + > 0. Notice that t — ¢ (f) = t/3 for all + > 0. It can be easily
shown that the map T satisfies condition (6.23). Indeed, note that

1
GU&UJﬁ:&;Of—f%Hf—f%Hf—ﬁo
and
3_.3 3_ 3 5 3, 6 4
M(x,y,z)zmax |x —y|+|y —Z|+|Z _x|’ﬁ|x |’
56, 5 56 ,
21l 121}

forall x,y,z € X. As M(x,y,z) — ¢(M(x,y,z)) = 3M(x,y.z), we have that, for all
x,y,z€X,

G(Tx 137 = o= (19 =3[ 415 =2 + 12 =)

W= o

IA

1
(19 =141 =21+ 12 =) < 3 M.y,
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Hence, by Theorem 6.3.2, T has a unique fixed point, which belong to A N B = {0}.

Cyclic maps satisfying integral type contractive conditions are common applica-
tions of fixed point theorems.

Corollary 6.3.5 ([119]). Let (X,G) be a G-complete G-metric space and let
{AY_, be a family of nonempty G-closed subsets of X with Y = U'_ A;. Let
T : Y — Y be a map satisfying

T(A) CAjy forallje{l,2,...p} (where Apy1 = A1)

Suppose also that

G(Tx,1Ty,Tz) M(x,y,2) M(x,y,z)
/ ds < / ds— ¢ / ds]),
0 0 0

where ¢ € Fg, and
M(x,y,7) = max{G(x,y,z),G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz) }

forallx € Ajandy,z € Ajyy (forj € {1,2,...p}). Then T has a unique fixed point,
which is in N_,A;.

Corollary 6.3.6 ([119]). Let (X,G) be a G-complete G-metric space and let
{A_, be a family of nonempty G-closed subsets of X with Y = U_ A;. Let
T :Y — Y be a map satisfying

T(Aj)) CAjy forallje{l,2,...p} (where Apyr1 = A1)

Suppose also that

G(Tx,Ty,Tz) M(x,y,z)
/ ds < A / ds,
0 0

M(x,y,z) = max{G(x,y,z), G(x, Tx, Tx), G(y, Ty, ), G(z, Tz, Tz) }

where A € [0, 1) and

forallx € Ajandy,z € Ajyy (forj € {1,2,...p}). Then T has a unique fixed point,
which is in ﬂf=1Ai.

Taking into account the equivalence between different classes of auxiliary
functions due to Jachymski [94] (recall Theorem 4.2.5) we state the following result.
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Theorem 6.3.3 ([119]). Let T be a self-map on a G-complete G-metric space
(X, G) and let {A;}\_, be a family of nonempty G-closed subsets of X with Y =
UY_ A Let T : Y — Y be a map satisfying

T(A)) CAjy forallje{1,2,...p} (where Ay = Ay).
Assume that

M(x,y,z) = max{G(x,y,z), G(x, Tx, Tx), G(y, Ty, TV), G(z, Tz, T7)}.

Then the following statements are equivalent.

(i) There exist functions ¥, ¢ € Fy such that

W(G(Txv Tyv TZ)) = W(M(xvyv Z)) - ¢(M(X,y, Z))»
foranyx € Ajandy,z € Ajyy (forje {1,2,...p}).

(ii) There exists a function B : [0, 00) — [0, 1] such that for any bounded sequence
{t.} of positive reals, {B(t,)} — 1 implies {t,} — 0, and

G(Tx, Ty, T2) < B(M(x,y,2)) ¥ (M(x,y, 2)),
foranyx € Ajandy,z € Ajy (forje{l1,2,...p})

(iii) There exists a continuous function 1) : [0, 00) — [0, 00) such that n~' ({0}) = 0
and

G(Tx, Ty, Tz) < M(x,y,z) — n(M(x,y,z))
foranyx € Ajandy,z € Ajy1 (forje {1,2,...p}).
(iv) there exists function € Fy and a non-decreasing, right continuous function

¢ 1[0, 00) = [0, 00), with ¢(t) < tforall t > 0, with

V(G(Tx, 1y, T2)) < (¥ (M(x,y,2)))
foranyx € Ajandy,z € Ajy, (forje{l1,2,...p})

(v) There exists a continuous and non-decreasing function ¢ : [0,00) — [0, c0)
such that ¢(t) < t for all t > 0, with

V(G(Tx, 1y, T7)) < ¢(M(x,y,z))

foranyx € Ajandy,z € Ajp1 (forje {1,2,...p}).
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6.3.3 Generalized Cyclic Weak ¢-Contractions (type I1)

We start this subsection by recalling some sets of auxiliary functions. Note

Far = {¢ : [0,00) — [0,00) : ¢ continuous, non-decreasing,
¢ () =04 t=0},
= {9 :[0,00) = [0,00) : ¢ lower semi-continuous, ¢ (1) = 0 <t = 0}.
Using these control functions, we present the following results, which were inspired

from [46].

Theorem 6.3.4. Let T : X — X be a mapping from a complete G-metric space
(X, G) into itself and let {A;}._, be a closed cyclic representation of (X, T). Assume
that there exist functions ¥ € Fy, and ¢ € F,, such that the map T satisfies the
inequality

V(G(Tx. Ty, Ty)) < Y (M(x,y)) — ¢(M(x.y)) (6.45)

forallx e Ajand ally € Ajpy (i € {1,2,...,p} arbitrary), where

M (x,y) = max { G(x,y,y), G(x, Tx, Tx), G(y, Ty, Ty),

G(x,y, Tx) 2G(x, Ty, Ty) + G(y, Tx, Tx)
2 ’ 4 ’
G(x, Ty, Ty) + 2G(y, Tx, Tx)
5 .

(6.46)

Then T has a unique fixed point, which belongs to ﬂf;lA,-. In fact, T is a Picard
operator.

Proof. First, we show the existence of a fixed point of the map T. For this purpose,
let {x,,} be the Picard sequence of T based on an arbitrary point xy € A, that is,

Xpy1 = Tx, foralln e N. (6.47)
Since T is cyclic, x, € A, for all n € N. If there exists some ny € N such that
Xno+1 = Xu,, then x,, is a fixed point of T. Assume that x,4; 7# x, foralln € N,

that is,

G(xy, Xp1,Xy+1) >0 foralln € N. (6.48)
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Letx = x,, and y = x,,4 in (6.45). Then

V(G (Xnt1, Xn+2, Xn+2)) = Y (G(Txn, Txpt1, TXn41))
= w(M(xn,xn+1)) - ¢(M(xn»xn+1))’ (6.49)

where

M (xp, Xp+1) = max § G(xp, X1, Xp+1), Gt 1, X2, Xnt2),

G Xp 15 Xn41) 2G(00, X2, Xnt2) Gy Xng2, Xng2)

, , 6.50
2 4 5 ( )
Since
G (X, Xng2, Xng2) <2G(xnaxn+27xn+2)
5 = 4

- G (X, X1, Xnt1) + Gt 1, Xn2, Xnt2)

- 2

< max {G(x,, Xpt 1 Xnt1)> G(nt 15 Xnt2s Xnt2) ) s
then (6.50) becomes

M(xy, Xp11) = max {G(x,, Xpt-1, Xn+1), GXnt1, Xnt2, Xn42) }

for all n € N. If there exists some n € N such that G(x,, Xp41,X+1) <
G(Xn+1, Xn+2, Xnt2), then (6.49) yields

W(G(-xn-f-l s Xn+2, -xn+2)) =< W(G(xn-%l » Xn+2, -xn+2)) - ¢ (G(-xn+1 s Xn+2, -xn+2)),
which implies that ¢ (G(X,41, Xy42, X,42)) = 0 and, as ¢ € F,,
G(Xnt1, Xn42. Xn42) =0,

which contradicts (6.48). Therefore, we must have G(X,+1,X,42,X42) <
G(xn,xn+1,xn+1) for all n € N, that iS, M(xn,xn+1,xn+1) = G(x,l,xn+1,xn+1).
From (6.49),

Y(G(Xnt1, X425 Xn42)) < Y (G(Xn, Xt 15 Xnt1)) — (G Xy X1, Xnt1))-
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From Lemma 2.3.6,

lim G(x,,,xn+1,x,,+1) = 0, (651)

n—>odo

that is, {x,} is an asymptotically regular sequence.

Next, we show that {x,} is a G-Cauchy sequence in (X, G). Suppose, on the
contrary, that {x,} is not G-Cauchy. Reasoning as in the proof of Theorem 6.3.2,
there exists ¢ > 0 and corresponding subsequences {n(k)} and {£(k)} of N satisfying
n(k) > £(k) > k for which (see Theorem 4.1.1)

G(Xew)s Xn(—15 Xnk)—1) = € < G(Xeeky Xn(k)> Xn(k))

klggo G(Xe(k)s Xnh)» Xn(k)) = €, (6.52)
0<s(k)<p, n(k)—Lk) +s(k) = 1 (mod p). 6.53)

As {£(k)} — oo, for large enough values of k we have that r(k) = £(k) — s(k) > 0.
Applying item 3 of Lemma 3, we have that

| G ey Xny Xn ) — G Xy Xny Xny) |

< max{G(Xewy, Xr(k)> Xr(k))s G(Xerys Xeqrys Xr(h)) }

< 2G(Xrrys Xe(ry» Xe(k))

L(k)—1
<2 ) G X Xip1).
i=r(k)
Taking into account that £(k) —r (k) = s (k) € {0, 1,..., p—1}, the previous sum
has not more than p terms. As {x,} is asymptotically regular, the right-hand term of

the previous inequality tends to zero as k — oco. Therefore, using (6.52), we deduce
that

kli)lgo G(Xr(k) Xn(k)> Xn(k)) = &.
It follows from Lemma 4.1.4 that, for all given py, p»,p3 € Z,
M GOy X+ s Xn()-+ps) = &- (6.54)

By (6.53) and (6.21), x,x) and x,) lie in consecutive sets Aj, and A;, 41, respectively,
for some 0 < ji < p. We next substitute x = x,) and y = x,) in (6.45) to obtain

V(GO +1 Xnt 1. Xngo+1)) = ¥ (G(Tx )2 Ty Tnry) )
< ¥ (M, X)) — M (s X)) (6.55)
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where

M (Xr(ty» Xn(ry) = max § G(Xx), Xnk)» Xn(k))s GXr(ky s Xr(k)+15 Xr()+1)

G(Xr(ky> Xn(kys Xr(k)+1)

G(Xnky s Xn(k)+15 Xn(k)+1)

2 b
2G(Xr (k) Xnk)+15 Xn()+1) + GXniieys Xr(o)+15 Xr()+1)
4 9
G (X, (k) s Xn()+15 Xn()+1) + 2 GXney s Xr()+15 Xr(k)+1)
z )

The first term of the previous maximum tends to ¢ as k — oo. Notice also

G(Xr ) s Xn(iys Xr(k)+1)

2
- Gy Xr(0)+1> Xrk)+1) + GOy +1, Xr(k)+15 Xnk))
- 2
_ G Xk, Xr(y+15 Xy +1) + 2 GO +1, Xn()» Xni)) N 042s
- 2 2
Also note
2G Xy s Xn(k)+15 X +1) + GXnghys Xrk)+15 Xr(k)+1)
4
_ 2G (X (k) Xn)+1> Xy +1) + 2 Gr 41+ Xnk) » Xn(k))
= 4
2e + 2¢
_—— =
2
Finally,

G (X k) Xn()+1- Xn)+1) + 2 Gy s Xr()+15 Xr(k)+1)
5
- Gk Xn()+15 Xn)+1) + 4 G +1, Xn(k) » Xn(k)) et 4g
- 5 5

Therefore,

lim M , =¢.
k00 (xr(k) -xn(k))

131
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This proves that the sequences

{tc = GOty +1. X+ 1- Xno+1) J1ey  and

{5k = M%) Xao) e

converge to the same limit L = ¢, and they satisfy ¥ (t;) < ¥ (sx) — ¢ (s¢) for all
k € N (at least, for large enough values of k). As a consequence, Corollary 2.3.2
guarantees that ¢ = 0, which is a contradiction. This contradicts the assumption
that {x,} is not G-Cauchy. As a result, the sequence {x,} is Cauchy in (X, G). Since
(X, G) is complete, it is G-convergent to a limit, say w € X. By Lemma 6.3.2,
w e ﬂf=1Ai.

To show that the limit of the Picard sequence is the fixed point of T, that is,
w = Tw, we can employ (6.45) with x = x,, and y = w. This leads to

V(G(xng1, Tw, Tw)) = Y (G(Txy, Tw, Tw))
= 1//(M(xn,w)) - ¢(M(xn,w)), (656)

where

M (x,,w) = max { G(x,, w,w), G(X, Xp-1, Xnt1), Gw, Tw, Tw),

G(xp, w, Xp41) 2G(x,, Tw, Tw) + G(W, Xp4-1, Xnt1)
> ; 1 ;
G(Xn, TW, TW) + 2G(W, Xn+1, X,H_])
5 .

Since G is continuous,
nl_i)ngoM(xn,w) = G(w, Tw, Tw).
Using Corollary 2.3.2 again applied to the sequences
Uk = Gut1, Tw, Tw) heny s Sk = M(Xn, W) Jpen
we deduce that G(w, Tw, Tw) = 0, that is, Tw = w.
Finally, we prove that the fixed point of T is unique. Assume that v € X is another

fixed point of T such that v # w. Then, since both v and w belong to ﬂ;"zl Aj, we
set x = v and y = w in (6.45) which yields

Y (G(v,w,w)) = Y (G(Tv, Tw, Tw))
=Yy M, w)) —p(M(v,w)), (6.57)
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where

M(v,w) = max {G(v, w,w), G(v, Tv, Tv), G(w, Tw, Tw),

G(v,w,Tv) 2G(v, Tw, Tw) + G(w, Tv, Tv)

2 ’ 4 ’
G, Tw, Tw) + 2G(w, Tv, Tv) }
5
_ max{G(v,w, W), G(v,zw, v)’ZG(v,w, w):— G(w,v,v)
G(,w,w) +2G(w, v, v)
o
<max{G(v,w,w),G(w,v,v)}.
Similarly,
Y (G(w,v,v)) = Y (G(Tw, Tv, Tv))
<Y M(w,v)) —d(M(w,v)),
where
M(w,v) = max{ G(w, v, v), M,

2G(w,v,v) + G(v,w,w) Gw,v,v) 4+ 2G(v,w,w)
4 ’ 5

< max {G(w,v,v), G(v,w,w)}.

As ¥ is non-decreasing,

¥ {max {G(v,w,w), G(w,v,v)}}
= max{y (G(v,w.w)) . ¥ (G(w,v,v))}
< max{y (M (v, w)). ¥ (M(w,v))}
—min{$(M(v,w)), p(M(w,v))}
< ¢ {max {G(v,w,w), G(w, v, v)}}.

As a result,

min {¢(M(v, w)), (M(w,v))} = 0,

so p(M(v,w)) = 0 or ¢p(M(w,v)) = 0. Hence, M(v,w) = 0 or M(w,v) = 0. In
any case, we deduce that v = w, that is, 7 has a unique fixed point. m|
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To illustrate Theorem 6.3.4, we give the following example.

Example 6.3.2 ([46]). Let X = [-1,1] andlet T : X — X be given as Tx = 3

forallx € X.LetA = [—1,0]and B = [0,1]. Let G : X X X x X — [0, 00) be the
G-metric

G(x,y,2) = |x—yl +|y—zl +]z—x forallx,yzeX. (6.58)

Define also ¥, ¢ : [0,00) — [0,00) by ¥(f) = 5 and ¢(1) = g for all € [0, c0).
Obviously, the map 7 has a unique fixed point, whichisu =0 € AN B.

It can be easily shown that the map T satisfies the contractivity condition (6.45).
Indeed, for all x,y € X,

G(Tx, Ty, Ty) = 2|Tx = Ty| = @

which yields that

Y (G(Tx, Ty, Ty)) = % (6.59)

Moreover, as G(x,y,y) = 2 |x — y|, then
M(x,y) = G(x,y.y) = 2[x —yl.
On the other hand, we have the following inequality

V(M) — pM(x, y)) = &) M)

2 8
3M(x,
_Mxy (6.60)
8
From an elementary calculation, we conclude that
3=yl _ 3M(x,y)
S g = VM) — (M), (6.61)
Combining the expressions (6.59) and (6.60) we obtain that
— 3|x— 3M(x,
V(G 1y, Ty)) = 28 < Ayl 3MEy)
8 4 8
=¥ (M(x,y) — d(M(x,y)). (6.62)

Hence, all the conditions of Theorem 6.3.4 are satisfied. Notice that u = 0 is the
unique fixed point of 7.
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For particular choices of the functions ¢ and v, we obtain the following
corollaries.

Corollary 6.3.7. Let (X, G) be a G-complete G-metric space and let {A;}!_, be a
family of nonempty G-closed subsets of X with Y = UleA,-. LetT : Y - Y bea
map satisfying

TA) CAiyy forallie{l,2,...,p} (where A,y = Ay). (6.63)
Suppose that there exist a constant A € [0, 1) such that the map T satisfies
G(Tx, Ty, Ty) < AM(x,y) (6.64)

forallx € Ajandy € Ajy (for some j € {1,2,...,p}), where

M (x,y) = max ¢ G(x,y,y), G(x, Tx, Tx), G(y, Ty, Ty),

G(x,y, Tx) 2G(x, Ty, Ty) + G(y, Tx, Tx)
2 ’ 4 ’
G(x, Ty, Ty) + 2G(y, Tx, Tx)
z .

(6.65)

Then T has a unique fixed point, which belongs to ﬂf=1Ai.

Proof. This is a particular case of Theorem 6.3.4 choosing the functions i and ¢ as
Y(t) =tand ¢p(f) = (1 — A) tforall ¢ € [0, 00). O

Corollary 6.3.8. Let (X, G) be a G-complete G-metric space and let {A;}_, be a
family of nonempty G-closed subsets of X with Y = U,_|A;. Let T : Y — Y be a
map satisfying

T(A) CAiy forallie{l,2,...,p} (whereA,;1 = Aj).

Suppose that there exist real constants a, b, ¢, d, e and f, with a+b+c+d+e+f < 1,
such that the map T satisfies the inequality

G(Tx, Ty, Ty) <aG(x,y,y) + bG(x,Tx, Tx) + cG(y, Ty, Ty)
d
+ 5 G(x,y, Tx) + Z Q2G(x, Ty, Ty) + G(y, Tx, Tx))

+ Jg (G(x, Ty, Ty) + 2G(y, Tx, Tx))

forallx € Ajandy € Ajy (for some j € {1,2,...,p}). Then T has a unique fixed
point, which belongs to N\_,A,.
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Proof. Let A =max{a+b+c+d+e+f,0}€l0,1). Clearly we have that
G(Tx, Ty, Ty) <aG(x,y,y) + bG(x,Tx, Tx) + cG(y, Ty, Ty)
d
+ > G(x,y, Tx) + 2 QGx, Ty, Ty) + G(y, Tx, Tx))

+ ’; (G(x. Ty, Ty) + 2G(y. Tx, Tx))

S(@+b+ct+d+e+f) Mx,y) <A Mxy)

where M(x, y) was given in (6.65). By Corollary 6.3.7, the map 7T has a unique fixed
point. O

Corollary 6.3.9. Let (X, G) be a G-complete G-metric spaces and let {A;}._, be a
family of nonempty G-closed subsets of X with Y = U_|A;. Let T : Y — Y be a
map satisfying

T(A) CAiy forallie{l,2,...,p} (where A,y = Aj).

Suppose that there exist functions y € Fyand ¢ € F, such that the map T satisfies
the inequality

Ir//(G(Tx7 Ty» TZ)) = W(M(}C, Y, Z)) - ¢(M(x7 Y, Z))

forallx € Ajandy,z € Ajyy (for some j € {1,2,...,p}), where

M (x,y,z) = max{ G(x,y,y),G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz),

G(x,y, Tx) G(x, Ty, Ty) + G(x, Tz, Tz) + G(y, Tx, Tx)
2 ’ 4 ’
G(x, Ty, Ty) + G(y, Tx, Tx) + G(z, Tx, Tx)

- (6.66)

Then T has a unique fixed point, which belongs to ﬂleAi.

Proof. The expression (6.66) coincides with the expression (6.46) when y = z.
Following the proof in Theorem 6.3.4, by letting x = x,, and y = z = x,,+1, we get
the desired result. o

Corollary 6.3.10. Let (X, G) be a G-complete G-metric space and let {A;}"_, be a
family of nonempty G-closed subsets of X with Y = U._|A;. Let T : Y — Y be a
map satisfying

T(A)) CAiy forallie{l,2,...,p} (whereA,;1 = Aj).
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Suppose also that there exist functions € Fy and ¢ € F,, such that the map T

satisfies
G(Tx,1y.1y) M(x.y) M(x.y)
1ﬂ</0 ds)fxﬁ(/(; ds)—qb(fo ds),

forallx € Ajandy € Ajy (for some j € {1,2,...,p}), where

M (x,y) = max % G(x,y,y),G(x, Tx, Tx), G(y, Ty, Ty),

G(x,y, Tx) 2G(x, Ty, Ty) + G(y, Tx, Tx)
2 ’ 4 ’
G(x, Ty, Ty) + 2G(y, Tx, Tx)
z .

Then T has a unique fixed point, which belongs to N\_,A;.

Corollary 6.3.11. Let (X, G) be a G-complete G-metric space and let {A;}"_, be a
family of nonempty G-closed subsets of X with Y = U._|A;. Let T : Y — Y be a
map satisfying

T(A) CAip1 forallie{1,2,...,p} (where Apy1 = Ay).

Suppose also that there exists a constant A € [0, 1) such that the map T satisfies

G(Tx,1y,1y) M(x.y)
/ ds < A / ds,
0 0

forallx € Ajandy € Ajy (for some j € {1,2,...,p}), where

M (x,y) = max % G(x,y,y),G(x, Tx, Tx), G(y, Ty, Ty),

G(x,y, Tx) 2G(x, Ty, Ty) + G(y, Tx, Tx)
2 ’ 4
G(x, Ty, Ty) + 2G(y, Tx, Tx)
z .

Then T has a unique fixed point, which belongs to ﬂf;lAi.
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6.4 On Common Fixed Points in G-Metric Spaces
Using the (E.A) Property

In 2002, Aamri and El Moutawakil [2] defined the (E.A) property (which generalizes
the concept of compatible mappings) and proved some common fixed point
theorems. In this section, we consider types of commuting mappings on G-metric
spaces (called G-weakly commuting of type Gt and G-A-weakly commuting of type
Gr) and we obtain several common fixed point results using the (E.A) property.

6.4.1 Weakly Compatibility and Weakly Commutativity

First of all, we recall here the notion of weakly compatibility.

Definition 6.4.1. A pair (7, g) of self-mappings 7,g : X — X is called weakly
compatible if they commute at their coincidence points, that is,

Ix =gx = Tgx=gTx (6.67)

We note that we should not confuse the notions of coincidence point and point of
coincidence.

Definition 6.4.2. Following Abbas and Rhoades [10]:

* a coincidence point of two self-mappings 7 and g is a point x € X such that
Tx = gx;

* if xis a coincidence point of T and g, then w = Tx = gx is a point of coincidence
of T and g.

In this sense, we have the following property.

Proposition 6.4.1 ([10]). Let T and g be weakly compatible self-maps of a set X.
If T and g have a unique point of coincidence w = Tx = gx, then w is the unique
common fixed point of T and g.

Proof. First, we prove that @ is a common fixed point of 7" and g. Using (6.67),
Tw = Tgx = gTx = gw. Then, o = Tw = gw is another point of coincidence of
T and g. As we assume that w is the unique point of coincidence of T and g, then
® = o', which means that w = @’ = Tw = gw. Hence,  is a common fixed point
of T and g. Assume that z € X is another common fixed point of 7 and g, that is,
z = Tz = gz. As z is a coincidence point of 7 and g, then z = 7z = gz is a point of
coincidence of T and g. As it is unique, then z = w, so w is unique. O

We introduce two different kinds of commutativity between mappings in the
context of G-metric spaces.
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Definition 6.4.3 ([147]). A pair (7, g) of self-mappings 7,g : X — X from a
G-metric space (X, G) into itself is said to be G-weakly commuting of type Gy if

G(Tgx, gTx, TTx) < G(Tx, gx,Tx) forallx € X. (6.68)

Definition 6.4.4 ([147]). Given A > 0, a pair (7, g) of self-mappings T, g : X — X
from a G-metric space (X, G) into itself is said to be G-A-weakly commuting of type
Grif

G(Tgx, gTx, TTx) < AG(Tx, gx, Tx) forall x € X. (6.69)

It is clear that a G-weakly commuting pair of type Gy is also a G-1-weakly
commuting of type Gr. If A < 1, then every G-A-weakly commuting pair of type
Gr is also a G-weakly commuting pair of type G7. Notice that the roles of T and g
in the previous notions are not symmetric, and pairs of type Gy are different to pairs
of type G,.

Remark 6.4.1. Notice that if g is the identity mapping on X, then all pairs (7, Ix)
are weakly compatible. However, they are not necessarily G-weakly commuting of
type Gt nor G-A-weakly commuting of type Gry.

Example 6.4.1 ([147]). Let X = [0, 2] be endowed with the G-metric
Gx.y.2) =lx—yl+y—zl+ [x—z

for all x,y,z € X. Define Tx = 2 — x and gx = x for all x € X. Then, from an easy
calculation, one can show that G(Tgx, gTx, TTx) = 4|x — 1| and G(Tx, gx, Tx) =
4|x — 1|. Hence, the pair (7', g) is G-weakly commuting of type Gr and G-1-weakly
commuting of type Gr.

Example 6.4.2. Let X = [1, 3] be endowed with the G-metric
Gx.y,2) =[x =yl + Iy —zl + |x—2

for all x,y,z € X. Define Tx = %x 4+ 1 and gx = %x + 1 for all x € X. Then,
for x = 1, we see that G(Tgx, gTx, TTx) = % and G(Tx, gx, Tx) = % Therefore,
the pair (7, g) is not G-weakly commuting of type Gr. However, it is G-A-weakly

commuting of type Gr for A > %

The following example shows that a G-weakly commuting pair of type Gy does
not need to be G-weakly commutative of type G,.

Example 6.4.3 ([147]). Let X = [0, 1] be endowed with the G-metric

G(x,y,z) = max{lx—y, |y_Z|» |X—Z|}



140 6 Further Fixed Point Results on G-Metric Spaces
for all x,y,z € X. Define Tx = ixz and gx = x2 for all x € X. Then

15 3
G(Tgx, gTx, TTx) = ax“ < sz = G(Tx, gx, Tx)

for all x € X, so (T, g) is G-weakly commuting of type Gr. However, for x = 1, we
have

15 3
G(gT1,Tgl, ggl) = 1= G(gl,T1,gl),

which means that the pair (7', g) is not G-weakly commuting of type G,.

Lemma 6.4.1 ([147]). If (T, g) is a G-weakly commuting pair of type Gr (or a G-
A-weakly commuting pair of type Gt), then T and g are weakly compatible.

Proof. Let x be a coincidence point of T and g, that is, Tx = gx. If the pair (7, g) is
G-weakly commuting of type G, then we have

G(Tgx, gTx, Tgx) = G(Tgx, gTx, TTx) < G(Tx, gx, Tx) = 0.
It follows that Tgx = gTx, so T and g are weakly compatible. If (7, g) is G-A-weakly
commuting of type Gr, then

G(Tgx, gTx, Tgx) = G(Tgx, gTx, TTx) < AG(Tx, gx,Tx) = 0,

and the same conclusion holds. ad

The converse of Lemma 6.4.1 fails (for the case of G-weakly commutativity).
The following example confirms this statement.

Example 6.4.4 ([147]). LetX = [1,00) and G(x,y,z) = |x—y|+ |y—z|+|x—z| for
allx,y,z€ X.DefineT,g: X - XbyTx =2x—1and gx = x2forall x e X. We
can see that x = 1 is the only coincidence point and, at this point, 7gl = 71 = 1
and gT1 = gl = 1. Therefore, T and g are weakly compatible. However, using
x = 2 we have that

G(Tg2,gT2,TT2) = 8 > 2 = G(T2, g2, T2).

Therefore, T and g are not G-weakly commuting of type G7.
Definition 6.4.5. Given a sequence S = {x,},>0 of elements of a set X, let, for all
n,meN,

O(Xm m, S) = {xn, Xnd+1sXn425 -+ xn+m}»

O(xm 0, S) = {xna Xn+1sXn+25 - - }

We avoid using the notation O(xp, 00) because it is confusing: the reader could
think that O(xy, co) only depends on xo, but this is not true since it may be necessary
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to involve all the sequence. For example, when we consider a Picard sequence
of (T,g), we define x,+; as a point (which is not necessarily unique) satisfying
g%u+1 = Tx,. In such a case, the notation O(gxy, 00) is confusing because the
sequence {gx,} is not uniquely determined. We prefer using O(x,, 0o, S). In some
contexts (for example, when a unique sequence {x,} is considered throughout the
work), it is possible to use the notation O(xg, 00).

Definition 6.4.6 ([147]). Let (X, G) be a G-metric space andlet 7 : X — X be a
mapping. The diameter & (A) of a non-empty subset A C X is

8(A) = sup{G(x,y,z2) : x,y,z € A}.

Notice that if O(xy, 00,S) is G-bounded, then {§(O(xo,n,S))},>0 is a non-
decreasing sequence of real numbers converging to §(O(xg, 00, S)).

Recall that a comparison function (or Matkowski function) is a non-decreasing
function ¢ : [0, 00) — [0, 00) such that nlirgo ¢"(#) = 0 for all # > 0. This kind of

mappings must also satisfy ¢ (0) = 0 and ¢ (r) < ¢ for all r > 0.

Theorem 6.4.1. Let (X, G) be a G-metric space and let T, g : X — X be mappings
satisfying the following conditions.

1. There exists a Picard sequence {x,}n>0 of (T, g) such that
8(0(gxo, 00,85)) < 00

(Where §= {gxn}1120)~
2. g(X) (or T(X)) is a G-complete subset of X.
3. there exists a continuous comparison function ¢ € Feom Such that

G(Tx, Ty, Tz) < ¢p(M8(x,v,2)) forallx,y,z € X, (6.70)
where

G(gx, gy, 82), G(gx, gx, Ty), G(gx, gx, Tz),
M5 (x,y, z) = max G(gy, gy, Tx), G(gy, gv. Tz), . (6.71)
G(gz, gz. Tx), G(gz, 82, Ty)

Then T and g have, at least, a coincidence point.

Furthermore, if (T, g) is a G-weakly commuting pair of type Gy and x € X is any
coincidence point of T and g, then w = Tx = gx is the unique common fixed point
of T and g.

Proof. First we prove that T and g have, at least, a coincidence point. By hypothesis,
let {x,},>0 be a Picard sequence of (7, g) such that

8(0(gxp, 00,8)) < o0
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(where § = {gxn}n20)~ Lety, = gxy+1 = Tx, foralln € N (so § = {yn}nZO})-
If there exists some ny € N such that y, 41 = yn,, then Tx, 41 = Ynot1 = Ynp =
8Xny+1» SO X1 is a coincidence point of T and g. Now, assume that y, # y,; for
all n € N. In particular,

8(0(m,n,S)) >0 forallm=>0andn > 1.
Claim (1): for all m,n > 0 we have
30O, n,8)) < d™(8(0O(yy,n + m,S))). (6.72)

If n = 0, there is nothing to prove. Assume that n > 1. We proceed by induction on
m. If m = 0, then both members are equal (here ¢° stands for the identity mapping
on X). If m = 1 and n is arbitrary, then

0(}’1»”75):{y1»y25-~-s)’n+l} and
0(y09n+ 17S) = {y05y17y27"'7yn+1}'

Let i,j,£ € {1,2,...} be indexes such that 1 < i < j < {. Therefore, by the
contractivity condition,

G(i.yj,ye) = G(Tx;, Txj, Txp) < ¢ (ME(x;, x5, x¢)),
where

G(gxi, gxj, gx¢), G(gx;, gxi, Tx;)),

G(gx;, gxi, Txe), G(gxj, gx;, Tx;),

G(gxj, gxj, Txe), G(gx¢, gxe, Tx;),
G(gx¢, gxe. Tx;)

Gi-1,Yj—1. Y1), GOi=1, Yi-1,¥))
G(i-1,Yi-1,Y0), Gj—1, Yj-1, Y1), . 6.73)
G(j—1,Y-1,Y0), GOe—1, Ye—1, i)
G(ye—1,Ye-1,Y))

Notice that all indexes in (6.73) are lower or equal to £. This means thatif 1 <i <
j<{€<n+1,then

M?®(x;, xj, x¢) = max

= max

ME&(x;, xj, x¢) < max (G(xx,x,,x,,) 2s,r,pef{0,1,2,....n+ l})
<68(0(yo,n+1,8) <8(0(yp, 00,9)) < o0.

As ¢ is non-decreasing, then

8(0(y1.n.8)) = max {G(yi.y;. y0) 1i.j. L € {1.2,....n+ 1}}
< max{¢(Mg(xi,xj,xg)) L, 0e{l,2,...,n+ 1}}
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= ¢ (max {M®(x;, xj,x0) 1 i,j, L € {1,2,...,n+ 1}})
< ¢ (8(0(yo,n+1,9)).

This proves that (6.72) holds for m = 1 and arbitrary n € N. Assume that (6.72)
holds for m, and we are going to prove it for m + 1. Also taking into account (6.73)
usingm+ 1 <i<j<{<m+ 1+ n, we have that

$(OGm+1.1,8)) = 8(Ym+1, Ymt2s - - -+ Ymt14n})
=max {G(yi.y;.ye) i jl€{m+1m+2,....m+1+n}}
< max{qb(Mg(xi,xj,xg)) Ljlefm+1lm+2,....m+1 +n}}
= ¢>(max{Mg(x,-,xj,xg) hjlem+1lm+2,....m+1 —i—n}})
< ¢ ((O@m,n+1,9)).

Applying the hypothesis of induction (6.72) for m and taking into account that ¢ is
non-decreasing, it follows that

8Om+1,1,.8)) <P (8(O0Om.n+1,5)) < ¢ (¢"(8(O(yo,n + 1+ m,S))))
= ¢" ' (8(0(yo. m + 1 + n,5))),

which completes the induction. Hence, (6.72) holds for all m,n > 0.
Let o = §(O(yo, 00, S)) > 0. Taking into account that, for all m,n > 0,

SCyms Ymt 1+ Yman}) = 8(O(ym.1.5)) = ¢"(8(O(yo. n + m, S)))
< ¢"(8(0(yo,00.5))) = ¢" (to) ,

the condition lim,,— o ¢™ (#) = O for all # > 0 implies that {y,} = {gx,+1} = {Tx,}
is a Cauchy sequence in (X, G). In fact, it is Cauchy in the G-complete subset g(X)
(or T(X)). Hence, there exists z € g(X) such that {gx,} — z. Let u € X be any point
such that gu = z. We claim that u is a coincidence point of 7 and g.

We argue by contradiction. Assume that Tu # gu, that is, G(gu, gu, Tu) > 0.
Using the contractivity condition (6.70),

G(Tu, gxp+1, 8xn+1) = G(Tu, Tx,, Tx,)
< ¢ (max {G(gu, gxn+1, &%n+1), G(gu, gu, gx,+2).
G(8Xn+1,8Xn+1, 8%n+2)> G(gXn+1, 8%n+1, Tu))}) .

From the continuity of ¢ and letting n — oo, we deduce that
G(Tu, gu, gu) < ¢ (G(gu, gu, Tu)) < G(gu, gu, Tu),

which is a contradiction. As a consequence, Tu = gu, and u is a coincidence point
of T and g.
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In the sequel, let x € X be an arbitrary coincidence point of 7 and g, and let
o = Tx = gx. Since the pair (7, g) is G-weakly commuting of type Gr, then

G(Tgx, gTx, TTx) < G(Tx, gx, Tx) = 0.
Thus, Tgx = gTx. In particular,
Tow = gTx = gw,

so w is another coincidence point of T and g. Moreover, by the contractivity
condition (6.70),

G(Tw,w,w) =GTw,Tx,Tx) < ¢ (Mé(w,x,x)) and
G(Tw,Tw,0) =GTw,Tw,Tx) < ¢ (M4 (v, w,x)),

where

M8 (w,x,x) = max {G(gw, gx, gx), G(gw, gw, Tx), G(gw, gw, Tx),
G(gx, gx, Tw), G(gx, gx, Tx), G(gx, gx, Tw), G(gx, gx, Tx)}
= max {G(Tw,w,w),G(Tw, Tw,w)} and

M (0, w,x) = max {G(gw, gw, gx), G(gw, gw, Tw), G(gw, gw, Tx),
G(gw, gw,Tw), G(gw, gw, Tx), G(gx, gx, Tw), G(gx, gx, Tw)}
=max {G(Tw,w,w),GTw,Tw,w)} .

Hence,
max{G (Tw,w,0),G(Tw,Tw,w)} < ¢ (max {G(Tw,w,»),G(Tw, Tw,w)})

which is only possible when max {G (Tw, w,w),G (Tw, Tw,w)} = 0. This proves
that w = Tw = gw, so w is a common fixed point of 7 and g.

To prove the uniqueness, suppose that v € X is another common fixed point of T
and g, that is, v = Tv = gv. Therefore, the contractivity condition (6.70) ensures
that

G(w,v,v) =G(Tw,Tv,Tv) < ¢p(M* (w,v,v)) and

G, w,v) =G(Tw,Tw,Tv) < ¢p(M?® (0, w,v)),
where

M8 (w,v,v) = max {G(gw, gv, gv), G(gw, gw, Tv), G(gw, gw, Tv),
G(gv, gv, Tw), G(gv, gv, Tv), G(gv, gv, Tw), G(gv, gv, Tv)}
= max {G(w,v,v),G(w,w,v)} and
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Mé(w,w,v) = max {G(gw, gw, gv), G(gw, gw, Tw), G(gw, gw, Tv),
G(gw, gw,Tw),G(gw, gw, Tv), G(gv, gv, Tw), G(gv, gv, Tw)}
= max {G(w, v,v),G(w,w,v)}.
Hence,
max {G (w, v,v),G (v, w,v)} < p(max {G(w, v,v),G(w,w,v)}),
which is only possible when max {G (w,v,v),G (w,w,v)} = 0, thatis, ® = v,
and T and g have a unique common fixed point. O

Corollary 6.4.1. Let (X, G) be a complete G-metric space and S = {x,}n>0 be a
Picard sequence of an operator T : X — X such that §(O(xy, 00, S)) < 00. Assume
that there exists a continuous comparison function ¢ € Fcom such that

G(Tx, Ty, T7) < p(M(x,v,7)) forallx,y,z € X,

where

M(x,y,z) = max {G(x,y,z2), G(x,x, Ty), G(x, x, Tz),
G(y,y, Tx), G(y,y, Tz), G(z, 2, Tx), G(z, 2, Ty)} .

Then T has a unique fixed point.

6.4.2 (E.A) Property

In the proof of Theorem 6.4.1, we show that there exists a sequence {x,} C X and a
point z € g(X) such that {gx,} — zand {Tx,} — z.

Definition 6.4.7 ([2]). Let T, g : X — X be two self mappings of a metric space
(X,d). We say that T and g satisfy the (E.A) property if there exists a sequence
{x,} € X and a point z € X such that

lim Tx, = lim gx, = z.
n—>o0 n—>00

Definition 6.4.8 ([147]). Let T,g : X — X be two self mappings of a G-metric

space (X, G). We say that T and g satisfy the (E.A) property if there exists a sequence

{x,} € X and a point z € X such that

lim Tx, = lim gx, = z.
n—>oo n—oo
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In other words, thanks to Lemma 3.2.1,
lim G(Tx,, Tx,,z) = lim G(gx,, gx,,z) = 0.
n—oo n—>o00

In the following example, we show that the (E.A) property does not imply that
(T, g) is G-weakly commuting of type Gr.

Example 6.4.5 ([147]). We return to Example 6.4.4, in which (7, g) is not a G-

weakly commuting pair of type Gr. Letx, = 1 + % for all n > 1. Then, we have

lim Tx, = lim gx, =1 € X = [1, 00), so T and g satisfy the (E.A) property.
n—oo

n—>o00

Theorem 6.4.2 ([147]). Let (X, G) be a G-metric space and let T,g : X — X be
two mappings such that the following conditions are fulfilled.

1. T and g satisfy the (E.A) property.
2. g(X) is closed in (X, G).
3. There exists a continuous comparison function ¢ € Feom such that

G(Tx, Ty, Tz) < ¢p(M8(x,v,2)) forallx,y,z € X, (6.74)

where

G(g-xs Ty, T)’)» G(g'x7 TZ? T‘Z)7
M? (x,y,z) = max § G(gy, Tx, Tx), G(gy, Tz, Tz),
G(gz, Tx, Ix), G(gz, 1y, Ty)

Then T and g have, at least, a coincidence point.

Furthermore, if (T, g) is a G-weakly commuting pair of type Gr and x € X is any
coincidence point of T and g, then w = Tx = gx is the unique common fixed point
of T and g.

Proof. From the (E.A) property, there exists a sequence {x,} C X and a point 7 € X
such that {Tx,} — z and {gx,} — z. Since g(X) is a closed subset of (X, G), then
z € g(X), so there exists u € X such that gu = z. We claim that u is a coincidence
point to T and g. Notice that, for all n € N,

G (Tu, Tu, Tx,) < ¢(M*(u,u, x,)),
where

M8 (u, u, x,) = max {G(gu, Tu, Tu), G(gu, Tx,, Tx,), G(gu, Tu, Tu),
G(gu, Tx,, Tx,), G(gx,, Tu, Tu), G(gx,, Tu, Tu)} .

Letting n — oo we obtain that

lim M®(u, u, x,) = G(gu, Tu, Tu).
n—>oQo
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Since ¢ is continuous,

G (Tu, Tu, gu) = lim G (Tu, Tu, Tx,) < lim ¢ (M®(u, u, x,))
n—00 n—00
=¢ ( lim M8 (u, u,xn)) = ¢ (G(gu, Tu, Tu)) ,
n—o0

and this is only possible when G (Tu, Tu, gu) = 0, that is, Tu = gu.

Next, assume that (7', g) is a G-weakly commuting pair of type G and let x € X
be any coincidence point of 7" and g. Define @ = Tx = gx. We claim that  is the
only common fixed point of 7 and g. Indeed, since T and g are G-weakly commuting
of type Gr, then

G(Tgx, gTx, TTx) < G(Tx, gx, Tx) = 0.
Thus, TTx = Tgx = gTx. In particular,
Tw =TTx = gTx = go,

so w is another coincidence point of T and g. Moreover, by the contractivity
condition (6.74), we have that

G(Tw,w,w) =G Tw,Tx, Tx) < ¢ (Mé(w,x,x)) and
G(Tw,Tw,w) =G(Tw,Tw,Tx) < ¢ (M4 (v, w,x)),

where
M (w,x,x) = max {G(gw, Tx, Tx), G(gw, Tx, Tx), G(gx, Tw, Tw),
G(gx, Tx, Tx), G(gx, Tw, Tw), G(gx, Tx, Tx)}
= max {G(Tw,w,w), G(Tw, Tw,w)}
and

Mé (w,w,x) = max {G(gw, Tw, Tw), G(gw, Tx, Tx), G(gw, Tw, Tw),
G(gw,Tx,Tx), G(gx, Tw, Tw), G(gx, Tw, Tw)}
=max{G(Tw,w,w), G(Tw, Tw,w)} = M® (0, x,x).

Therefore,
max {G(Tw,w,w),G(Tw,Tw,w)} < ¢ (max{G(Tw,w,w),G(Tw, Tw,w)}),

which is only possible when max {G(Tw, w,w), G(Tw,Tw,w)} = 0. In such a
case, ® = Tw = gw and this proves that w is a common fixed point of 7 and g.
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To prove the uniqueness, suppose that v € X is another common fixed point
of T and g, that is, v = Tv = gv. Therefore, the contractivity condition (6.74)
ensures that

G(w,v,v) =G(Tw,Tv,Tv) < ¢p(M* (w,v,v)) and
G, w,v) =G(Tw,Tw,Tv) < ¢p(M? (0, w,v)),

where

M?é (w,v,v) = max {G(gw, Tv, Tv), G(gw, Tv, Tv), G(gv, Tw, Tw),
G(gv,Tv,Tv),G(gv, Tw, Tw), G(gv, Tv, Tv)}
= max {G(w, v,v),G(w,w,v)}

and
Mé (w,w,v) = max {G(gw, Tw, Tw), G(gw, Tz, Tz), G(gw, Tw, Tw),
G(gw, Tz, Tz), G(gz. Tw, Tw), G(gz. Tw, Tw)}
= max {G(w, v,v),G(w,w,v)} = M8 (w,v,v).
Hence,

max {G (v, v,v),G (v, w,v)} < p(max {G(w,v,v),G(w,w,v)}),
which is only possible when max {G (w,v,v),G (w,w,v)} = 0, thatis, ® = v,
and T and g have a unique common fixed point. O

In the following result, we slightly change the contractivity condition and we
replace the G-weakly commutative pair by a weakly compatible pair.

Theorem 6.4.3 ([147]). Let (X, G) be a G-metric space and let T, g : X — X be
two mappings such that the following conditions are fulfilled.

1. T and g satisfy the (E.A) property.
2. g(X) is closed in (X, G).
3. There exists a continuous comparison function ¢ € Feom Such that

G(Tx, Ty, Tz) < ¢p(M8(x,v,2)) forallx,y,z € X, (6.75)
where

G(gx, gy, 82), G(gx, Tx, g2),
M8 (x,y,z) = max

G(gz. Tz, g2), G(gy, Ty, g2)

Then T and g have, at least, a coincidence point.
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Furthermore, if (T, g) is a weakly compatible pair of type Gr and x € X is any
coincidence point of T and g, then w = Tx = gx is the unique common fixed point
of T and g.

Proof. Following the same argument in the proof of Theorem 6.4.2, it is easy to
prove that, if {Tx,} — gu and {gx,} — gu, then Tu = gu.

Assume that (7, g) is a weakly compatible pair of type Gy and let x € X be
any coincidence point of 7 and g. Define « = Tx = gx. Then, by the weakly
compatibility, 7x = gx implies that Tgx = gTx. In particular, Tw = Tgx = gTx =
gw, so w is also a coincidence point of T and g. We can also follow the rest of the
proof of Theorem 6.4.2 in order to conclude that @ is the unique common fixed
point of T and g. O

Example 6.4.6 ([147]). Let X = [0, co) provided with the G-metric G(x,y,z) =
|x—y|+|y—z|+|x—z| forallx,y,z € X. Consider T, g : X — X and ¢ : [0, 00) —
[0, 00) defined by

X X
Tx = 3 gx = 3 forall x,y,z € X,

2t
o) = 3 for all ¢ > 0.

The only coincidence point of 7 and g is x = 0, where Tg0 = ¢gT0 = 0,s0 T and g
are weakly compatible. Letx, = 1/n foralln € N. Then {Tx,} — 0and {gx,} — 0,
so T and g satisfy the (E.A.) property. We also have that, for all x,y,z € X,

1
G(Tx, Ty, Tz) = g(lx =V +ly—z+x—z])

IA

1
=yl +ly—z+ -z

21
g(z(lx =y +ly—zl + [x—z|) = ¢(G(gx, g, g2))

< ¢p(max{G(gx, gy, gz), G(gx, Tx, g2),
G(gz, Tz, 82), G(gy. Ty, 82)}).

Hence, all the conditions of Theorem 6.4.3 are satisfied and @ = 0 is the unique
common fixed point of 7 and g.

Example 6.4.7. Let X = [0, 1] provided with the G-metric G(x,y,z) = |x —y| +
ly—2z| 4+ |[x—z| forall x,y,z € X. Consider T, g : X — X and ¢ : [0, o0) — [0, 00)
defined by

x? 5

Tx = T gx=x" forallx,y,z e X,

t
o(t) = 3 forallt > 0.
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As in the previous example, it is easy to show that 7" and g are weakly compatible
and verify the (E.A) property (by taking the sequence x, = 1/n). We also have that,
forall x,y,z € X,

1
G(Ix, 1y, T2) = 5 max{|x* —y?|, [y* — 2*|. |x¥* = 2|}

1
= g max{l? =y 1y? = 21,1 - 2

= ¢(G(gx, gy, 82))
< ¢(max{G(gx, gy. 82). G(gx, Tx, g2).
G(gz, Tz, 82), G(gy, Ty, g2)}).
Hence, all the conditions of Theorem 6.4.3 are satisfied and @ = 0 is the unique
common fixed point of 7 and g.

Example 6.4.8 ([147]). Let X = [2,20] provided with the G-metric G(x,y,z) =
|[x—y|+|y—z|+ |x—z| forallx,y,z € X. Consider T, g : X — X and ¢ : [0, 00) —
[0, 00) defined, for all x,y,z € X and all r > 0, by

2, ifx =2, 2, ifx=2, .
Tx=1{6,if2<x<5 gx)=114, if2<x<5, ¢>(t):5.
2,if 5 < x < 20: aF10 if 5 < x < 20:

15

It is clear that g(X) = [2,6] U {14} is a closed subset of X and T and g are weakly
compatible. If we consider the sequence {x,} = {5 + %}, then {Tx,} — 2 and
{gx,} — 2 asn — oo. Thus, T and g satisfy the (E.A) property. On the other hand,
a simple calculation gives that

G(Tx, Ty, Tz7) < ¢(G(gx, gy, gz)) forallx,y,z € X,

s0, in particular (6.75) holds. As a consequence, all the hypotheses of Theorem 6.4.3
are satisfied and @ = 2 is the unique common fixed point of 7 and g.

Note that the main result of Mustafa [142] is not applicable in this case. Indeed,
fory=z= % and x = 2, we have that

5 5 55
s(rerr(5)r(3))=s-rmr0(23)

whenever A € [0, 1).

Theorem 6.4.4 ([147]). Let (X, G) be a G-metric space and let T, g : X — X be
two mappings such that the following conditions are fulfilled.
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1. T and g satisfy the (E.A) property.
2. g(X) is closed in (X, G).
3. There exist nonnegative real constants o and B with 0 < o + 28 < 1 such that,
forall x,y,z € X,
G(Tx, Ty, Tz) < a G(gx, gy, 82)
+ B (G(gx, Tx, Tx) + G(gy. Ty, Ty) + G(gz. Tz, Tz)) . (6.76)
Then T and g have, at least, a coincidence point.
Furthermore, if (T, g) is G-A-weakly commuting of type Gr (for some A > 0)

and x € X is any coincidence point of T and g, then w = Tx = gx is the unique
common fixed point of T and g.

Proof. From the (E.A) property, there exists a sequence {x,} C X and a point 7 € X
such that {Tx,} — z and {gx,} — z. Since g(X) is a closed subset of (X, G), then
z € g(X), so there exists u € X such that gu = z. We claim that u is a coincidence
point of T and g. Notice that, for all n € N,

G(Tu, Tu, Tx,) < aG(gu, gu, gx,)
+ B (G(gu, Tu, Tu) + G(gu, Tu, Tu) + G(gx,, Tx,, Tx,)) .

Letting n — oo we deduce that
G(Tu, Tu, gu) < 2BG(gu, Tu, Tu).
If gu # Tu, then

G(Tu, Tu, gu) < 2BG(gu, Tu, Tu) < (@ + 28) G(Tu, Tu, gu)
< G(Tu, Tu, gu),

which is a contradiction. Therefore gu = Tu.

Now, assume that the pair (7', g) is G-A-weakly commuting of type Gr (for some
A > 0). Let x € X be any coincidence point of T and g and let o = Tx = gx. We
claim that w is the only common fixed point of 7 and g. Indeed, since the pair (7, g)
is G-A-weakly commuting of type Gr, then

G(Tgx, gTx, TTx) < G(Tx, gx, Tx) = 0.
Thus, TTx = Tgx = gTx. In particular,
Tw =TTx = gTx = gw,

so w is another coincidence point of T and g. Moreover, by the contractivity
condition (6.76), we have that
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G(Tw,w,w) =G (Tw,Tx,Tx) < aG(gw, gx, gx)
+ B (G(gw, Tw, Tw) + G(gx, Tx, Tx) + G(gx, Tx, Tx))
=aG(Tw,w,0) < (¢ +28) G(Tw,w, w).

If Tw # w, then
G(Tw,w,0) <(a+28) G(Tw,w,w) < G(Tw,w,w),

which is a contradiction. Therefore, ® = Tw = gw, so w is a common fixed point
of T and g.

To prove the uniqueness, suppose that v € X is another common fixed point of T
and g, thatis, v = Tv = gv. Therefore, the contractivity condition (6.76) ensures
that

G(w,v,v) =G(Tw,Tv, Tv) < aG(gw, gv, gv)
+ B (G(gw,Tw, Tw) + G(gv, Tv, Tv) + G(gv, Tv, Tv))

= uG(w,v,v).
If w # v, then
G(w,v,v) <aG(w,v,v) < (¢ +28) G(w,v,v) < G(w, v,v),

which is a contradiction. Then @ = v and T and g have a unique common fixed
point. O

Example 6.4.9 ([147]). Let X = [1, 00) be endowed with the G-metric
G, y.2) =x—yl+Iy—zl + [x—¢

for all x,y,z € X. Define T,g : X — X by Tx = 2x — 1 and gx = 3x — 2 for each
xeX. Seta = % and f = 0. It is clear that the mappings T and g are G-A-weakly
commuting of type Gy (with A = 2) and satisfy the following: (i) T and g satisfy the
(E.A) property (by taking x,, = 1 + % and z = 1), and (ii) g(X) is a closed subspace
of X. Moreover, for all x,y, z € X we have

G(Tx, Ty, Tz) = 2[|x — y| + [x — 2| + [y — 2[]
9
< Z[Ix—yl + [x—z| + |y —z|] = aG(gx, gy, &2)
+ B (G(gx, Tx, Tx) + G(gy, Ty, Ty) + G(gz, Tz, Tz)) .

Thus, all the conditions of Theorem 6.4.4 are satisfied and @ = 1 is the unique
common fixed point of 7 and g.
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Note that the main result of Mustafa [142] is not applicable in this case. Indeed,
fory=z=1andx =2,

G(T2,T1,T1)=4>21=21G(2,1,1)

whenever A € [0, 1). Also, the Banach principle [34] is not applicable using the
Euclidean distance d(x,y) = |x — y| for all x,y € X. In such a case, we have, for

x#y,
d(Tx,Ty) = 2|x —y| > A|x —y|

whenever A € [0, 1).

Corollary 6.4.2 ([147]). Theorems 6.4.2, 6.4.3 and 6.4.4 remain true if we
replace, respectively, G-weakly commutativity of type Gr, weakly compatibility
and G-A-weakly commutativity of type Gr by any one of them (retaining the rest of
hypothesis).

Some corollaries could be derived from Theorems 6.4.1, 6.4.2, 6.4.3 and 6.4.4
by taking z = y or g as the identity mapping on X.

6.5 Generalized Meir-Keeler Type Contractions
on G-Metric Spaces

In this section, we present the notion of a generalized Meir—Keeler type contraction
on G-metric spaces. We will distinguish between whether the G-metric space is
endowed with a partial order or not.

6.5.1 Generalized Meir-Keeler Type Contractions
on G-Metric Spaces

We begin this subsection by introducing the definition of a generalized Meir—Keeler
type contraction.

Definition 6.5.1 ([148]). Let (X, G) be a G-metric space and T be a self map on
X. Then T is called a generalized Meir—Keeler type contraction whenever for each
¢ > 0, there exists § > 0 such that

e<M(x,y,2)<e+6 = GTx,Ty,Tz) <e, (6.77)

where

M(x,y,z) = max{G(x,y,z2), G(Tx,x,x), G(T¥,y,y), G(Tz,z, 2)}.
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Remark 6.5.1. Notice that if T is a generalized Meir—Keeler type contraction, then
we have

G(Tx, Ty, Tz) < M(x,y,2) (6.78)

for all x, y, z € X such that G(x, y,z) > 0.

In 1971, Cirié [61] introduced the notion of orbitally continuous maps on metric
spaces as follows.

Definition 6.5.2. Let (X, d) be a metric space and let xy € X. Amapping T : X — X
is orbitally continuous at xo if limy_oo TT"u = Txy for all ¥ € X and all
strictly increasing sequence {m};>; of non-negative integer numbers satisfying
limg— 00 T™u = xy.

Definition 6.5.3 ([148]). Let (X, G) be a G-metric space, let T : X — X be a
self map and let xo € X. We say that T is orbitally G-continuous at x, whenever
klim G(T™u, x,x0) = 0 implies that klim G(TT™u, Txy, Txp) = 0 whatever u € X
—00 —>00

and a strictly increasing sequence {ni}x>1 € N of non-negative integer numbers.
It is clear that all G-continuous mappings are also orbitally G-continuous.

Definition 6.5.4. In a G-metric space, a cluster (or accumulation) point of a
sequence {x,} is a point x € X such that for every neighbourhood V of x in g,
there are infinitely many natural numbers {n; };>; such that x,, € V forall k > 1.

We show that every generalized Meir—Keeler type contraction is asymptotically
regular.

Proposition 6.5.1 ([148]). If T : X — X is a generalized Meir-Keeler type
contraction in a G-metric space (X, G), then lim,_,oo G(T""'x, T"x, T"x) = 0 for
allx € X.

Proof. Let xo € X be arbitrary and let {x, = T"xo},>0 be the Picard sequence of
T based on xo. If there exists some ny € N such that x,,41 = x,,, then x,, is a
fixed point of 7. In particular, 7"xy = x, = x,, for all n > ny, so the sequence {x,}
converges, and the proposition follows. On the contrary case, assume that x, 1 # x,
for all n > 0. Consequently, we have M(x,+1, X, X,) > G(xp41,%,,%,) > 0 for
every n > 0. Notice that, for all n > 0,

M(xn-i-l ’ xl’u xn) = max{G(an,_l ’ x}’u xn)7 G(Txl’l-'r] ’ xn+l ’ xn-‘r])a
G(Txn, Xy Xn)> G(TX, X, X)) }
= maX{G(xn—H s Xnsy xn)7 G(xn+2, Xn+1, X”_H)}. (679)

From Remark 6.5.1, we get that, for all n > 0,

G(xn+27 Xn+1, xn-‘r]) = G(Txn-‘rl 5 Txna Txn) < M(xn-‘rl > Xny xn)

= maX{G(xn+l s Xns xil)a G(xn+2a Xn+1, xn+1)}~
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If there exists some n € N such that G(x,42, Xu+1, Xn+1) = G(Xpt1, Xn, Xn), We get a
contradiction. Therefore,

G(Xn42, Xn+1, Xn+1) < G(Xpg1,X4,%,) forallm > 0.

Thus, {G(Xn+1, Xn, Xn) }ns>0 is a decreasing sequence which is bounded below by 0.
Hence, it converges to some ¢ € [0, 00), that is,

lim G(x;41,X,,,%,) =€ and (6.80)
n—o00
G(Xp41, X4, ,X,) > ¢ foralln > 0. (6.81)

In particular, by (6.79), we have

lim M(x,41, Xn, X,) = €. (6.82)

n—>oo

We claim that ¢ = 0. Suppose on the contrary that £ > 0. Regarding (6.82) together
with the assumption that T is a generalized Meir—Keeler type contraction, for this
& > 0, there exists § > 0 such that (6.77) holds. By (6.79) and (6.82), there exists a
natural number ny € N such that

e < M(Xpt1,X5,x,) <€+ 6 forall n > nyg,
but, in this case, by (6.77), we have that
G(Xn42, Xnt1, Xn+1) = G(Txyp1, Ty, Txy) < g,
which contradicts (6.81).

Hence, lim,, 00 G(T"x, T"x, T"x) = lim, 00 G(Xpi1,Xn, %) = € = 0. O

Theorem 6.5.1 ([148]). Let (X, G) be a complete G-metric space and let T : X —
X be an orbitally continuous generalized Meir—Keeler type contraction. Then T has
a unique fixed point and T is a Picard operator.

In other words, if @ € X is the only fixed point of T, then {T"x} — w for all
x € X.

Proof. Take x( € X arbitrary and let {x,},>0 be the Picard sequence of T based on
Xo, that is, x, = T"x, for all n > 0. From Proposition 6.5.1, we have that

lim G(Xpp 1, Xns Xn) = O. (6.83)
n—00

We prove that {x,} is a Cauchy sequence in (X, G) reasoning by contradiction.
Suppose that {x,} is not a Cauchy sequence. By Theorem 4.1.1, there exists gy > 0
and two subsequences {X, ) } and {x,,} of {x,} such that, for all k > 0,
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k <n(k) <m(k) <nlk+1),
G (Xn(y» X1+ Xmp—1) < €0 < G (Xn(kys Xy X)) - (6.84)
and
Iim G (x.4), X, X = lim G (X,0=1, Xm()—1, Xm()—1) = €0 6.85
Jm (Xn )+ Xk » X)) Jim (X0 =1+ X =1 Xm(y—1) 0 (6.85)

As T is a generalized Meir—Keeler type contraction, for &y > 0, there exists § > 0
such that

g0 <M, v,2) <eo+68 = G(Tx,Ty,Tz) < &o. (6.86)
Notice that

M (Xnk)—1 Xmk)—1> Xm(y—1) = MAX{G (X1 Xm(k)—1Xm(k)—1)
G(Txn(y—15 Xn(k)—15 Xn(k)—1)
G(TXm(—1 Xm(@y—15 Xm()—1) }
= Max{G(Xugt)—1, XmE) =1 Xm(k)—1)
G(Xn(k)> Xn(k)—1 Xn(k)—1)
GXpnk)» Xim(k)—1 Xim(k)—1) }- (6.87)

By (6.83) and (6.85), there exists ky € N such that, for all £k > k,
max{G(Xuk) Xn(t)—1> Xnk)~1)» GXm(ky s Xm(ty—1> Xm(k)—1) §
< %0 < G(Xn()—15 Xm(k)—1> Xm(k)—1) (6.88)
We now show, reasoning by contradiction, that
G(Xn(y—1> Xm(y—1, Xmky—1) = &0 for all k > ko. (6.89)
Assume that there exists some k' > ko such that G(x,w)—1, Xm@)—1. Xm@k')—1) < €0-
Define e = G(Xu')—1+ Xm(')—1: Xm')—1) € ]€0/2, €[ As T is a generalized Meir—
Keeler type contraction, for 86 > 0, there exists §' > 0 such that
gy <M(x,y,2) <eg+8 =  G(Ix,Ty,Tz) < &,. (6.90)

From (6.87) and (6.88), we have that

M ney=1, Xmy=1, Xmy—1) = MAX{G(Xn(t)—15 Xk )=15 Xm(k)—=1) s
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G(xn(k/)vxn(k/)—l s xn(k’)—l)s G(xm(k/)vxm(k’)—l , xm(k/)—l)}

= G(Xn@)—1, Xm@K')—1> Xm(k')—1) = 86~
Using (6.90),
G(Xnwys Xmys Xmk)) = G(Txny—1 Txmry—15 TxXimpry—1) < €4 < o,

which contradicts (6.84). This contradiction proves that (6.89) holds. As a conse-
quence, it follows from (6.87), (6.88) and (6.89) that, for all k > k,

M (X1 Xmk)—1 Xmk)—1) = G(Xnk)—15 Xim(k)~1> Xm(y—1) = €o-
Using (6.85) and § > 0, there exists k; > ko such that
80 < M(Xn(k))—15 Xm(ie)—1> X )—1) < €0 + 6,
and by (6.86),
GXnky)> Xmkr)» Xm(kr) = G(Txngky)—1> TxXmk) =1 Tim(ieyy—1) < €0

which contradicts (6.84). This contradiction proves that {x,} is a Cauchy sequence
in (X, G). Since (X, G) is G-complete, the sequence {x,} converges to some w € X.
From Lemma 3.2.1, we have that

lim G(x,,w,w) = lim G(x,,x,,w) = 0.
n—>o0 n—o0

Next, we will show that w is a fixed point of 7. Since T is orbitally continuous,
lim G(T"xp, w,w) = lim G(x,,w,w) =0
n—>o00 n—>o00
= lim GOy, To, Tw) = lim G(TT"xy, Tw, Tw) = 0.
n—>o00 n—>o00
Thus, {x,+1} converges to Tw in (X, G). By the uniqueness of the limit, we get
Tow = w.
Finally, we show that T has a unique fixed point. Assume that # € X is another

fixed point of T. If u # w, then M (1, w, w) > G(u, w,w) > 0. Using Remark 6.5.1,
we derive that

0<Gu,w,w)=GTu, T, Tw) < M(u,w,w)
= max{G(u, w, w), G(u, Tu, Tu), G(w, v, Tw)}

=Gu,n,w0),
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which is a contradiction. Hence, # = w and T has a unique fixed point. In particular,
we have proved that, for all xy € X, the sequence {T"x,} converges to a fixed point
of T, which can only be w. O

Example 6.5.1. Let X = [0, 10] endowed with the G-metric G(x, y,z) = max{|x —
y|, [y—z|, |z—x|} for all x, y, z € X. Then (X, G) is G-complete. Define T : X — X by

T — 3, if0<x<6

2,if 6 <x < 10.

We claim that T is a generalized Meir—Keeler type contraction. Let ¢ > 0 be
arbitrary. Taking § = 2¢ > 0, we claim that (6.77) holds. Indeed, let x, y, z € X. By
the symmetry of G, we assume that x < y < z without loss of generality. We have
the following cases.

e Case 1: 0 < x <y <z< 6. Here, we have

G(Tx, Ty, T7) =

=%(z—x),

SSERS
W =

and

M( ) 2 2 2 2

» Y, = max — X, =X, =y, = = max —X, = .
X, v,2 z x3x 3y 32 z x3z
Ife <M(x,y, z) < e+ 8 =3¢, then

1 1 2
G(Tx, Ty, Tz7) = 3 (z—x) < 3 max {z—x, 51%

1
= EM(x,y,z) <e.
e Case2:0 <x <y<6=<z=<10.Here, we have
Xy X
G(Tx, Ty, T =G<—,—,2)=2——
(Tx, 1y, Tz) 33 3
and
2 2
M(x,y,z) = max{z — x, gx, gy,z —2} = max{z —x,z—2}.

Ife <M(x,y,z) < e+ 8 =3¢, then

X 1 1
GTe, Ty, T) = 2— > = = (6—x) < = (z—
(Tx, Ty, Tz) 3 3( x) 3(z x)
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1
= EM(x,y,z) <e.
e Case3:0 <x <6 <y<=<z=<10.Here, we have
G(Tx, Ty, Tz) = G(;—C,2,2) —2- g
and
2
M(x,y,z) = max{z — x, gx,y —2,z—2} = max{z —x,z—2}.
The same argument proves that if ¢ < M(x,y,z) < ¢ + 8 = 3¢, then

G(Tx, Ty, Tz) < e.

In any case, (6.77) holds and T is a generalized Meir—Keeler type contraction.
Also, the mapping T is continuous in (X, G), so it is also orbitally G-continuous.
All the hypotheses of Theorem 6.5.1 are satisfied and @ = 0 is the unique fixed
point of T.

Example 6.5.2 ([148]). Let X = [0, 1] endowed with the G-metric G(x,y) =
max{|x — y|, |y — z|, |z — x|} for all x,y,z € X, which is complete on X. Consider
T : X — X defined by

2
Tx = § forall x € X.

If x, v, z € X satisfy, without loss of generality, x < y < z, then

2 x2 ( _ _ —
Z 7+x)(z—x) 2@z—x) z—x
G(Tx, Ty, T7) = — — — = < = .
(e 13, T2) = ¢ =3 8 8 4
Also we get
2 2 2
M(x,y,z):max%z—x,x—g,y—g,z—§§.

Given ¢ > 0, let § = 3¢ > 0. Then, if ¢ < M(x,y,z) < ¢ + § = 4¢, we deduce that

)C2 y2 ZZ
@J‘@J‘§}

Z—x
4

IA

1
G(Tx, Ty, Tz) < 7 max {z — X, X —

1
= ZM(x,y, 7) <e.

As T is continuous, all the hypotheses of Theorem 6.5.1 are satisfied. In this case,
o = 0 is the unique fixed point of 7.
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Remark 6.5.2. Theorem 6.5.1 remains true if we replace the hypothesis that 7' is a
generalized Meir—Keeler type contraction with:

» For each ¢ > 0, there exists § > 0 such that
e<Nxyv,2)<e+6 = G(Tx, Ty, T7) < &, (6.91)
where N(x,y, z) is given by
max{G(x,y, z), G(Tx, Tx, x), G(Ty, Ty, y), G(Tz, Tz, z)}.

Finally, in the following two examples, we consider some non-symmetric
G-metrics.

Example 6.5.3 ([148]). Let X = {0, 1} be endowed with the G-metric:
G(0,0,0) = G(1,1,1) =0, G(0,0,1) =1, G(0,1,1) =2

(extended by symmetry in its three variables). As G(0,0, 1) # G(0,1, 1), G is not
symmetric. Take T : X — X given by

T0=T1=0.

For all x,y,z € X, we have G(Tx,Ty,Tz) = 0. Clearly (6.77) holds. Applying
Theorem 6.5.1, T has a unique fixed point, which is @ = 0.

Example 6.5.4. Let X = {0, 1,2} be endowed with the G-metric:
G(0,0,0) = G(1,1,1) = G(2,2,2) =0,

G(0,0,1) =G(0,1,1) =1, G(1,2,2) =

’

— N W

G(0,0,2) = G(1,1,2) = G(0,2,2) = G(0,1,2) = 2

(extended by symmetry in its three variables). Note that G is not symmetric because
G(1,2,2) # G(1,1,2). Define T : X — X by

T0=T1=0 and 72=1.

Let & > 0. Taking § = £, property (6.77) holds. Indeed, to prove this assertion, we
distinguish three cases.

e Casel: If

(x,y,2) € {(0,0,0),(1,1,1),(2,2,2),(0,0,1), (0, 1,0),
(1,0,0),(1,1,0),(0,1,1), (1,0, 1)},
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then by a simple calculation we get
G(Tx,Ty,Tz) = 0,

and so clearly (6.77) holds.
e Case2: If

(x,y,2) € {(0,0,2),(0,2,0),(2,0,0), (0,1,2),(0,2,1),
(1,0,2),(1,2,0),(2,1,0),(2,0,1),(0,2,2),
2,2,0),(2,0,2),(1,1,2),(1,2,1), (2,1, 1)},

it is easy to see that
G(Tx,Ty,Tz) =1 and M(x,y,z) = 2.

By taking § = £/2, property (6.77) is satisfied.
o Case3:If (x,y,2) € {(1,2,2),(2,2,1),(2,1,2)}, we have

3
G(Tx,Ty,Tz) =1 and M(x,y,z) = 5

Similarly, property (6.77) is satisfied. Applying Theorem 6.5.1, the map 7 has a
unique fixed point, which is v = 0.

6.5.2 ¢-Asymmetric Meir-Keeler Contractive Mappings
on G-Metric Spaces

In this subsection we introduce a slightly different notion of a Meir—Keeler
contraction using the following control functions. Recall that F,; denotes the
family of all continuous, non-decreasing functions ¢ : [0, 00) — [0, 00) such that

¢~'({0}) = {0}.

Definition 6.5.5. Let (X, G) be a G-metric space and ¢ € Fy;. Suppose that T :
X — X is a self-mapping satisfying the following condition: for each ¢ > 0 there
exists 6 > 0 such that

e<p(Gx,Tx,y) <e+8 = ¢GTx.Tx.Ty) <e¢ (6.92)

for all x,y € X. Then T is called a ¢p-Asymmetric Meir—Keeler contractive mapping.

Remark 6.5.3. Notice that if T : X — X is a ¢-Asymmetric Meir—Keeler
contractive mapping and x, y € X satisfy that x 7 Tx or x # y, then

& (G(Tx, T*x, Ty)) < ¢(G(x, Tx, y)). (6.93)
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Theorem 6.5.2. Let (X, G) be a G-complete G-metric space and let ¢ € Fyy be an
altering distance function. Suppose that T : X — X is a ¢p-Asymmetric Meir—Keeler
contractive mapping. Then T has a unique fixed point.

Proof. Take xo € X. We construct a sequence {x, } 22, of points in X in the following
way:

Xp+1 = Tx, foralln =0,1,2,...

Notice that if there is ny € N such that x,, = x,,41, then obviously T has a fixed
point. Thus, suppose that

Xn F Xpt1 foralln > 0. (6.94)
From (G;), we have
G(xn,x,,_;_l ,xn_H) >0 forall n > 0. (6.95)

Let s, = G(x,, Xy+1,X,41) > 0 for all n > 0. By (6.93), we observe that for all
n>0,

G (snt1) = P(G(Xnt1, Xn+2, Xn42)) = G(G(Tx,, sznv Txp+1))
< ¢(G(xn’ Txn»xn+1)) = ¢(G(xmxn+1»xn+1)) = ¢(Sn) (6.96)

Therefore, {¢(s,)} is a decreasing sequence in [0, o) and, thus, it is convergent. Let
L € [0, 00) its limit and we claim that L = 0. Suppose, on the contrary, that L > 0.
Thus, we have

0<L = ¢(sn) = ¢(G(xn7xn+la-xn+l)) for all n = 0. (697)

Lete = L > 0.Since T : X — X is a ¢-Asymmetric Meir—Keeler contractive
mapping, there exists § > 0 such that (6.92) holds. As {¢(s,)} — L, there exists
ny € N such that L < ¢(s,,,) < L + 8. Therefore, (6.92) implies that

£ = ¢(G(xno’ Txno+17xno+l)) = d’(sno) <e+$§
= P(ug+1) = P(G(Xngt15 Xng+25 Xng+2))

= ¢(G(Txno» szno+1v Txng+l)) <e=1L,

which contradicts (6.97). Therefore, L = 0, which means that {¢(s,)} — 0. From
Lemma 2.3.3, {G(x,, Xu+1, Xn+1)} — O.

Next, we show that {x,}°2 is a G-Cauchy sequence reasoning by contradiction.
Suppose that {x,} is not a G-Cauchy sequence. In such a case, Lemma 4.1.5
guarantees that there exist a positive real number &y > 0 and two subsequences

{Xm@ } and {x,w } of {x,} such that, for all k € N,
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k <m(k) <n(k) <m(k+1),

G (Xm(ky» TxXm@ry» Xn()—1) < €0 < G (Xm@ey» TXmey Xniry) (6.98)
and also

kli)lgo G (Xm@y TXm(k)» Xniry) = klglgo G (%m@)—1. TXm(p—1, Xn(—1) = €o-
Let ey = ¢ (g0) > 0. Since ¢ is non-decreasing,
e =4¢ (80) <¢ (G ()Cm(k), Txm(k),x,,(k))) forall k € N. (6.99)

As ¢ is continuous,

kllglo ¢ (G (Xm—1. Txmy—1. Xn—1)) = ¢ (g0) = &1. (6.100)

In particular, there exists ky € N such that, for all £ > ko,

%1 <¢ (G (xm(k)ﬂ, Txm(k)fl»xn(k)fl)) .
We claim that
& < ¢ (G (xm(k)_l s Txm(k)_l ,xn(k)_l)) for all k > k. (6.101)

To prove this, assume that there exists X > ko such that

%1 < ¢ (G (omw)—15 ()15 Xnr)—1)) < €1

In this case, as T is a ¢-Asymmetric Meir—Keeler contractive mapping, correspond-
ing t0 & = ¢ (G (Xmw)—1. TXm@)—1. Xaw)—1)) > 0, there exists § > 0 such that

e<¢p(Gx,Tx,y)) <e+8 = ¢(G(Tx,T*x,Ty)) < ¢.
Using x = x,y)—1 and y = x,x)—1, we see that

G (G Xy Thm(iry: X)) = (G (Txmerr—12 T X1 Tinary—1))
<e<e =¢(g), (6.102)
which contradicts (6.102). This contradiction shows that (6.101) holds. As T is a
¢-Asymmetric Meir—Keeler contractive mapping, corresponding to &; > 0, there

exists §; > 0 such that

g1 <p(Gx, Tx,y)) <e1+ 8 = ¢(G(Tx,T*x,Ty)) < ). (6.103)
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By (6.100) and (6.101), there exists k; > ko such that, for all k > k|,

1 < @ (G (Xmu—1. Thmg—1, Xnp—1)) < €1 + 81.

From (6.103), it follows that

D (Gt Tty Xnthr)) = DG (Tmiary—12 T Xonir )1 Tina)—1))
<er=¢ (&),
which contradicts (6.99). This contradiction proves that {x,} is a G-Cauchy

sequence. Since (X, G) is G-complete, there exists w € X such that {x,} — w
as n — o0o. Since G is a continuous function, then we have

lim G(x,, x,+1,w) = G(w,w,w) = 0. (6.104)

n—>oo

We assert that Tw = w. Regarding (6.93), we have that

A (G(Xnt1, Xnt2, Tw)) = P(G(Txy, sznv Tw))
< ¢(G(xy, Txy, w)) = ¢ (G(xp, X1, W)). (6.105)
Since ¢ is a continuous mapping, letting n — oo in (6.105), it follows that
d(Gw,w,Tw)) < ¢(G(w,w,w)) = 0. Consequently, we have G(w,w, Tw) = 0.
Hence, by (G»), we have Tw = w.

Now we show w is the unique fixed point of 7. By contradiction, if there exists
u € X such that u # w and u = Tu, then (6.93) implies that

& (G(u, w,w)) = ¢(G(Tw, T*w, Tu)) < ¢(G(w, Tw, u)) = ¢(G(w, w, 1))

which is a contradiction. Thus w is the unique fixed point of 7. O

In the next result, we use the altering distance function given by ¢ (¢) = ¢ for all
t € [0, 00).

Corollary 6.5.1. Let (X, G) be a G-complete G-metric space and let T : X — X be
a self-mapping verifying that for each & > 0, there exists § > 0 such that

xyeX, e<GxTxy) <e+d8 = GIxTxT)<e. (6.106)

Then T has a unique fixed point.
Example 6.5.5. Let X = [0, 00). Define G : X3 — [0, 00), forall x,y,z € X, by
ifx=y=z,

0
G 9 9 == ’ .
*.y.2) max(x,y) + max(y, z) + max(x, z), otherwise.
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Clearly, (X, G) is a G-complete G-metric space. Define T : X — X by Tx = x/4 for
all x € X. Taking into account that

max(Tx, Ty) = max(x/4,y/4) = max(x,y)/4,
it is not difficult to prove that
G(Tx, Ty, T7) = G(x,y,z2)/4

for all x,y,z € X. In particular, G(Tx, T?x, Ty) = G(x,Tx,y)/4 for all x,y € X,
which means that (6.106) holds (it is only necessary to take § = ¢/3). Therefore,
the conditions of Corollary 6.5.1 hold and T has a unique fixed point.

The following result uses a contractivity condition in the orbit of a point.

Theorem 6.5.3. Let (X, G) be a G-metric space and let T : X — X be a self-
mapping. Assume that there exists a point xo € X satisfying:

* the orbit Or(xy) of xo with respect to T has a cluster point 7 € X;

e T is orbitally G-continuous at z;

* there exists a mapping Yy, € Fa with the following property: for all ¢ > 0, there
exists § > 0 such that

x,Tx € Or(xp), y=Tx # x,
€ < Yy (G(x, Tx,y)) <e+6
= ¥, (G(Tx, T’x, Ty)) < e. (6.107)

Then z is a fixed point of T in O7(xp).

Proof. Consider the sequence {x, = T"xo}n>0. Following the proof in Theo-
rem 6.5.2, we can reduce to the case in which x,, # x,,4 for all n > 0, which yields
lim, 00 G(Xp, Xu+1,Xy+1) = 0. Since z € X is a cluster point of Or(xp), there is
a strictly increasing sequence {n(k)},>1 of non-negative integer numbers satisfying
{xn(k) = T”(k)xo} — z, that is, limy oo G()C,,(k), Z, Z) = limy— 0 G(Tn(k))q), z,z7) = 0.
Since T is orbitally G-continuous at z, then

lim G(x,4)+1, Tz, T2) = lim G(IT"Vx,, Tz, Tz) = 0.
k—00 k—00

From the modified triangle inequality (Gs) together with Lemma 3.1.1, we have

G(z, Tz, Tz) < G(Z, Xu(y+1> Xnk)+1) + Gny+1, T2, T2)
< G(2, Xn(k)» X)) + G(Xn(kys Xn()+15 Xn(k)+1)

+ G(xay+1, T2, Tz)
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< 2G(Xn(y» 2, 2) + G(Xnkys Xn()+15 Xn(k)+1)
+ GOw+1, 1z, Tz).

Letting k — oo in the previous inequality, we deduce that G(z, 7z, 7z) = 0 and,
hence, 77 = z. a

Corollary 6.5.2. Let (X, G) be a G-metric space and let T : X — X be a self-
mapping. Assume that there exists a point xy € X verifying:

* the orbit O7(xo) of xo with respect to T has a cluster point 7 € X;
» T is orbitally G-continuous at z;
e forall e > 0, there exists § > 0 such that

x,Tx € Or(xp), y= Tx # x,
= GIx,T’x,Ty) <e.
e<Gx,Tx,y) <e+34

Then z is a fixed point of T in Or(xp).

To show the applicability of Theorem 6.5.2, we present some immediate
consequences to guarantee the existence of fixed points of integral type nonlinear
operators. For this purpose, let 2 be the family of all Lebesgue integrable mappings
x : [0, 00) — [0, 00) such that f(f x (t)dt > 0 for each ¢ > 0.

Theorem 6.5.4. Let (X, G) be a G-complete G-metric space and let ¢ € Fyy be
non-decreasing. Suppose that T : X — X is a self-mapping satisfying the following
condition: for each € > 0, there exists § > 0 such that

$(G(x.Tx,)) o(G(1x.1%x.1))
85/ rHdt<e+8 = / x (O di<e  (6.108)
0 0

whatever y € Q and x,y,z € X. Then T has a unique fixed point.

Proof. For y € Q , consider the function A : [0, c0) — [0, co) defined by A (x) =
fOx x (¢) dt for all x € [0, 00). We note that A € Fg, and A is non-decreasing. Thus
the inequality (6.108) becomes: for each & > 0, there exists 6 > 0 such that

e<A@PGKxTx,y)<e+d = A ((}5 (G (Tx, T?x, Ty))) <e

whatever x,y € X. Setting A o¢ = ¢, we have that ¢ € Fy and T is ¢-Asymmetric
Meir-Keeler contractive. Hence, by using Theorem 6.5.2, T has a unique fixed
point. O

We have also the following result.

Theorem 6.5.5. Let (X, G) be a G-metric space and let T : X — X be a self-
mapping. Assume that there exists a point xo € X satisfying:
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* the orbit Or(xy) of xo with respect to T has a cluster point 7 € X;
e T is orbitally G-continuous at z;
* there exists € Fyy such that for all ¢ > 0, there exists § > 0 verifying

Y (G(x.Tx.y)) v (G(Tx.T2x,Ty))
ef/ ydt<e+s = / x(@Odt<e
0 0

whatever y € Q and x,y € X.
Then z is a fixed point of T in Or(xp).

6.5.3 Generalized Meir-Keeler Type Contractions on Partially
Ordered G-Metric Spaces

We say that the tripled (x, y,z) € X? is distinct if at least one of the following holds

(i) x#y, (i) y #z, (iii) x # z.
The tripled (x,y, z) € X? is called strictly distinct if all inequalities (i) — (iii) hold.

Definition 6.5.6 ([71]). Let (X, G, <) be a partially ordered G-metric space. We
say that a self-mapping 7 : X — X is

e G-Meir-Keeler contractive if, for each £ > 0, there exists § > 0 such that for any
x,y,z€ Xwithx <y=<g

e<Gx,y,2)<e+8§ = GC(Tx,Ty,T7) <e. (6.109)

e G-Meir-Keeler contractive of second type if, for each ¢ > 0, there exists § > 0
such that for any x,y € X withx < y,

e<Glxyy) <e+d8 = G(IxT.T)<e. (6.110)

Remark 6.5.4. Notice thatif T : X — X is G-Meir-Keeler contractive on a G-metric
space (X, G) then T is contractive, that is,

G(Tx, Ty, Tz) < G(x,y,2). 6.111)

for all distinct tripled (x,y,7) € X> withx <y < z.

Remark 6.5.5. 1t is easy to see that a G-Meir-Keeler contraction must be G-Meir-
Keeler contractive of second type. In addition, if 7 : X — X is G-Meir-Keeler
contractive of second type on a partially ordered G-metric space (X, G, <), then

G(Tx, Ty, Ty) < G(x,y,y), (6.112)
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for all (x,y) € X? with x < y. Moreover, we have
G(Tx, Ty, Ty) < G(x,y,y), (6.113)

for all (x,y) € X? with x < .

Theorem 6.5.6 ([71]). Let (X, <) be a partially ordered set endowed with a G-
metric G and let T : X — X be a given mapping. Suppose that the following
conditions hold:

(i) (X,G) is G-complete;
(ii) T is non-decreasing (with respect to <X);
(iii) there exists xy € X such that xy < Txy;
(iv) T is G-continuous
(v) T :X — X is G-Meir-Keeler contractive of second type.

Then T has a fixed point. Moreover, if for all x,y € Fix(T) there exists w € X
such that x < w and y < w, we obtain uniqueness of the fixed point.

Proof. Take xy € X such that condition (iii) holds, that is, xo < Txo. We construct
an iterative sequence {x,} in X as follows:

Xp+1 = Tx, foralln > 0. (6.114)

Taking into account that 7 is a non-decreasing mapping together with (6.114), we
have that xo < Txp = x; implies x; = Txg < Tx; = x,. By induction, we get

NI 0 <G I < . (6.115)
Suppose that there exists g such that x,, = x,,,+1. Since x,, = X,,+1 = Txy,,, then
Xy, 1s the fixed point of 7', which completes the existence part of the proof. Suppose
that x,, # x,+; for all n € N. Thus, by (6.115) we have
X0 <X| <X <...<Xp—] <Xy <Xpt1 <... (6.116)
From (G;), we have
G(x, Xpt1,Xy+1) > 0 foralln > 0. (6.117)
By Remark 6.5.5, we observe that, for all n > 0,
G(Xnt1, X2, Xnt2) = G(Txn, Txug1, Txng1) < G(Xny Xt 1, Xng1)- (6.118)
Due to (6.118), the sequence {G(x,, X,+1,X,+1)} is a (strictly) decreasing sequence

in [0, 0o) and, thus, it is convergent, say L € [0, co). We claim that L = 0. Suppose,
on the contrary, that L > 0. Thus, we have



6.5 Generalized Meir—Keeler Type Contractions 169

0 < L < G Xns1,Xng1) foralln> 0. (6.119)

Assume ¢ = L > 0. As T is a G-Meir-Keeler contraction of second type, there
exists a convenient § > 0 such that

e<GMx,y,y)<e+d = GIx,TT)<e. (6.120)
Since {G(x, Xp+1, Xn+1)} \{ L, there exists ny € N such that
& < G(Xpgs Xng+1s Xng+1) < € + 6. (6.121)
Taking the condition (6.120) into account, the expression (6.121) yields that
G(Xng+15 Xng+2> Xng+2) = G(Txng, Txng+1, Txng+1) <& =1L (6.122)
which contradicts (6.119). Hence L = 0, that is,

lim G(x,, Xy41,X5+1) = 0.
n—>0o0

We show that {x, },>0 is a G-Cauchy sequence. Let ¢ > 0 be arbitrary. As T is G-
Meir-Keeler contractive of second type, there exists § > 0 such that (6.110) holds.
Without loss of generality, we assume § < . Since L = 0, there exists ny € N such
that

G(xXy—1,%,,%,) <6 foralln > ny. (6.123)

We assert that for any fixed n > ny,
G (X, Xt Xnm) <& forallm > 0. (6.124)
To prove the assertion, we use the method of induction. Regarding (6.123), the
assertion (6.124) is satisfied for m = 0 and m = 1. Suppose the assertion (6.124) is
satisfied for some m € N. For m + 1, with the help of (Gs) and (6.123), we consider

G(xn—l > Xn+m» xn+m) = G(xn—l > Xny xn) + G(.X,,, Xn+m xn—i—m) <8+e (6.125)

Next, we distinguish three cases.

o If GOx—1, Xptms Xntm) > €, then, by (6.110), we get
G(xns xn+m+1sxn+m+1) = G(Txn—l T Txn-i—m) <eé. (6.126)

Hence (6.124) is satisfied.
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o If G(xp—1, Xntm> Xn+m) = 0, then, by (G;), we derive that x,_; = x,4,, and,
hence, x, = Tx,—1 = TXy+m = Xntm+1. From (Gp), we have

G(Xn, xn+m+l7xn+m+l) = G(xn»xna xn) =0< &,

and, thus, (6.124) is satisfied.
o If0 < G(Xp—1, Xptm> Xntm) < &, then by Remark 6.5.5,

Gy Xntm+1> Xntm+1) = G(Txp—1, Tty Txpt-m)

= G(xn—lv-xn-i-mv-xn-i-m) <é.

Consequently, (6.124) is satisfied for m + 1 and this completes the induction.
Hence, G(x,, Xy+m» Xnt+m) < € for all n > ny and m > 0, which means

G(xy, X, X)) < &, forallm > n > ny. (6.127)

As a consequence, {x,} is a G-Cauchy sequence. Since (X, G) is G-complete, there
exists # € X such that

lim G(xp, u, u) = 0. (6.128)
n—>00

We now show that u € X is a fixed point of T, that is, u = Tu. Since T is
G-continuous, the sequence {Tx,} = {x,+1} converges to Tu, that is,

lim G(x,+1, Tu, Tu) = lim G(Tx,, Tu, Tu) = 0. (6.129)
n—o0 n—>oo

Hence, {x,} also converges to Tu. By the uniqueness of the limit, we deduce that
u = Tu, that is, u is a fixed point of 7.

To prove the uniqueness, let x,y € X be fixed points of 7. From the additional
assumption, we know that there exists w € X such that x < wandy < w. We
claim that the sequence {7"w} converges, at the same time, to x and to y (so we
will deduce x = y). We only reason using x (but the same is true for y). From
Remark 6.5.5, we get

G(x, Tw, Tw) = G(Tx, Tw, Tw) < G(x, w, w).
Since T is non-decreasing, x = Tx < Tw. Again by Remark 6.5.5, we get
G(x, T*w, T*w) = G(Tx, TTw, TTw) < G(x, Tw, Tw).
Continuing in this way, we conclude

Gx, T"w, T'w) < --- < G(x, Tw, Tw) < G(x,w,w).
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Hence {G(x, T"w, T"w)},>0 is a non-increasing sequence bounded below by zero.
Thus, there exists L > 0 such that

lim G(x,T"w,T"w) = L and
n—>o0
L<Gx,T'w,T"w) foralln>0. (6.130)

We claim that L = 0. Suppose, on the contrary, that L > 0. Choose ¢ = L >
0 and let § > 0 be such that (6.110) holds. Then, there exists ny such that L <
G(x, T"w, T"w) < L 4 § which implies

G(x, Ty, T ) = G(Tx, T w, T w) < L,

which contradicts (6.130). Hence lim,,—, o G(x, T"w, T"w) = L = 0, s0 {T"w} — x.
Similarly, it can be proved that {T"w} — y, so x = y and T has a unique fixed point.
O

As every G-Meir-Keeler contractive mapping of second type is also G-Meir-
Keeler contractive, we deduce the following consequence.

Corollary 6.5.3 ([71]). Let (X, <X) be a partially ordered set endowed with a G-
metric G and let T : X — X be a given mapping. Suppose that the following
conditions hold:

(i) (X,G) is G-complete;

(ii) T is non-decreasing (with respect to <X);
(iii) there exists xy € X such that xy < Txy;
(iv) T is G-continuous

(v) T : X — X is G-Meir-Keeler contractive.

Then T has a fixed point. Moreover, if for all x,y € Fix(T) there exists w € X
such that x X w and y < w, we obtain uniqueness of the fixed point.

In the following result, we replace condition (iv) in Theorem 6.5.6 with the
assumption that (X, G, <) is non-decreasing-regular (recall Definition 5.2.1 and the
fact that some authors use the term ordered complete for non-decreasing-regularity),
and we obtain a similar result.

Theorem 6.5.7 ([71]). Let (X, <) be a partially ordered set endowed with a G-
metric and let T : X — X be a given mapping. Suppose that the following conditions
hold:

(i) (X,G) is G-complete;
(ii) T is non-decreasing (with respect to <X);
(iii) there exists xy € X such that xy < Tx;
(iv) (X, G, <X) is non-decreasing-regular;
(v) T : X — X is G-Meir-Keeler contractive of second type.
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Then T has a fixed point. Moreover, if for all x,y € Fix(T) there exists w € X
such that x < w and 'y < w, we obtain uniqueness of the fixed point.

Proof. Following the proof in Theorem 6.5.6, we can deduce that the Picard
sequence {x,+; = Tx,} converges to some u € X. We only need to show
u = Tu. Since {x,} is <-non-decreasing and (X, G, X) is non-decreasing-regular,
we conclude x,, < u for all n. Then, by Remark 6.5.5, (Gs) and (6.128), we get

G(Tu, u, u) < G(Tu, x,, x,) + G(x,, u, u)
= G(Txy—1, Txp—1, Tu) + G(x,, u, u)
S G(xn—l » Xn—15 M) + G(xn, u, u)

Letting n — oo, we conclude that G(Tu, u,u) = 0, i.e., Tu = u. The rest of the
proof is similar. O

Corollary 6.5.4 ([71]). Let (X,<) be a partially ordered set endowed with a
G-metricand T : X — X be a given mapping. Suppose that the following conditions
hold:

(i) (X,G) is G-complete;

(ii) T is non-decreasing (with respect to <);
(iii) there exists xy € X such that xo < Tx;
(iv) (X, G, xX) is non-decreasing-regular;

(v) T : X — X is G-Meir-Keeler contractive.

Then T has a fixed point. Moreover, if for all x,y € Fix(T) there exists w € X
such that x < w and y < w, we obtain uniqueness of the fixed point.

To finish the chapter, we will show a version of Theorem 6.5.6 using integral
contractivity conditions.

Lemma 6.5.1 ([71]). Let (X, X) be a partially ordered set endowed with a G-metric
GandletT : X — X be a given mapping. Suppose that there exists a function
@ : [0,00) — [0, 00) satisfying the following conditions:

(F1) ¢(0) = 0and ¢(t) > 0 forallt > 0;
(F2) ¢ is increasing and right continuous;
(F3) for every & > 0, there exists § > 0 such that, for all x,y € X with x Xy,

e <@(Gx,y,y) <e+6 implies o(G(Tx,Ty, Ty)) < ¢(e). (6.131)

Then T is a G-Meir-Keeler contractive mapping of second type.

Proof. Let ¢ > 0 be arbitrary. Due to (F1), we have ¢’ = ¢(g) > 0. Thus there
exists § > 0 such that

9(e) < 9(G(x.y.y)) < @(e) + 8 implies @(G(Tx, Ty, Ty)) < p(e)  (6.132)
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From the right continuity of ¢, there exists § > 0 such that ¢(¢ + §) < ¢(e) + §'.
Fix x,y € X with x < y such that ¢ < G(x,y,y) < & + §. So we have

@(e) < (G(x,y,y) < p(e+8) < p(e) + &

Hence, ¢(G(Tx, Ty, Ty)) < @(¢). Thus, we have G(Tx, Ty, Ty) < & which completes
the proof. O

Since a function ¢ — fot f(s)ds is absolutely continuous, we derive the following
corollary from Theorem 6.5.6 and Lemma 6.5.1.

Corollary 6.5.5 ([71]). Let (X, <) be a partially ordered set endowed with a
G-metric G, T : X — X be a given mapping, and f be a locally integrable function
from [0, 00) into itself satisfying fot f(s)ds > 0 for all t > 0. Assume that conditions
(i)—(iv) of Theorem 6.5.6 hold, and for each & > 0, there exists § > 0 such that

G(x.y.y) G(Tx,Ty.Ty) e
& =< / flds<e+8§ = f f(s)ds < / f(s)ds (6.133)
0 0 0

forallx,y € X withx X y. Then T has a fixed point. Moreover, if for all x,y € Fix(T)
there exists w € X such that x < w and y < w, we obtain uniqueness of the fixed
point.



Chapter 7
Fixed Point Theorems via Admissible Mappings

In this chapter we explain how to use functions in order to extend the notion of
partial order or, more precisely, how non-decreasing mappings can be interpreted
involving certain classes of admissible functions. The results we present are inspired
by Samet et al. [183].

Throughout this chapter, we will employ the family Fxgr of all non-decreasing
functions ¢ : [0,00) — [0,00) such that, for all + > 0, the series Y " (¢)

n>1

converges. Since (P1p) = (P11) = (P12) (recall Subsection §2.3) and using the
monotonicity, these functions also verify the following properties.

e lim ¢¥"(¢f) = 0forallt > 0.
n—odo
e Y (r) <tforallt> 0.
* 1 (0) = 0 and v is continuous at 0.

In particular, every (c)-comparison function belongs to Fxg, that is, f(fézn C FKR-
As a consequence, all the following results can be particularized to the case in which

¥ € Fiom.

7.1 Fixed Point Results in G-Metric Spaces
via Admissible Mappings

In this section, we present the notion of an « - { - contractive mapping in metric
spaces due to Samet et al. [183] to G-metric spaces using control functions in ]-'(fﬁfn

Definition 7.1.1. Let (X, G) be a G-metric space and let 7 : X — X be a given
mapping. We say that 7' is a

* G- B - - contractive mapping of type I if there exist two functions 8 : X x X x
X — [0,00) and ¥ € ]-"C(gm such that, for all x, y, z € X, we have
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B (x,y,2) G(Tx, Ty, Tz) < ¥ (G (x,y,2)). (7.1)

* G- B - - contractive mapping of type II if there exist two functions f : X x X x
X — [0,00) and ¥ € F, such that for all x, y € X, we have

B (x,y.y) G(Tx, Ty, Ty) < ¥ (G (x,y,y)) . (7.2)

Clearly, any contractive mapping, that is, a mapping satisfying (4.15), is a G-
B - ¥ - contractive mapping of type I with 8 (x,y,z) = 1 for all x,y,z € X and
¥y (t) = At forall t > 0, where A € [0, 1). Analogously, a mapping satisfying
(4.16) is a G- B - - contractive mapping of type II using the same 8 and ¥, as
before.

Definition 7.1.2. LetXbeasetandlet7 :X — Xand 8 : X x X x X — [0, 00) be
two mappings. We say that T is B - admissible if, for all x, y, z € X, we have

Bx,y,2)>1 = B(Tx,Ty,Tz) > 1.

Example 7.1.1. Let X be a non-empty subset of R and define § : XxXxX — [0, co)
as follows:

e,if x>y>z

Bx.y.2) =

0, otherwise.

Then any non-decreasing mapping 7 : X — X is B - admissible.

Theorem 7.1.1. Let (X, G) be a complete G-metric space and let T : X — X be a
G - B -V - contractive mapping of type I satisfying the following conditions:

(i) T is B - admissible;
(ii) there exists xy € X such that B (xo, Txo, Txo) > 1;
(iii) T is G-continuous.

Then there exists u € X such that Tu = u.

Proof. Let xo € X be such that B8 (xq, Txg, Txp) > 1 and let {x,} be the Picard
sequence of T based on xq (that is, x,+1 = Tx, for all n > 0). If there exists some
no € N such that x,,, = x,,+1, then u = x,, is a fixed point of 7. On the contrary
case, assume that x,, # x,4; for all n. Since T is f - admissible, we have

B (xo,x1,x1) = B (x0, Txo, Txp) > 1
— /3 (xl,x2,x2) = ,3 (TX(),T)Cl,Txl) > 1.

Inductively, we have that

,3 (xn,x,,+1,xn+1) >1 foralln > 0. (7.3)
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From (7.2) and (7.3), it follows that for all » > 1, we have

G (X, Xpt1, Xn+1) = G (Txp—1, Txn, Txn)
S IB (xn—l ’ xrh xn) G (Txn—l ’ Txl‘l» Txn)
= w (G (xn—l s Xns xn)) .
From Lemma 4.1.2, {x,} is a Cauchy sequence in the G-metric space (X, G). Since
(X, G) is complete, there exists u € X such that {x,} is convergent to u. Since T is
G-continuous, it follows that {x,+; = Tx,} is G-convergent, at the same time, to u

and to 7u. By the uniqueness of the limit, we get u = 7Tu, that is, u is a fixed point
of T. O

The following corollary follows from the fact that every G- § - ¥ - contractive
mapping of type I is also of type II.

Corollary 7.1.1. Let (X, G) be a complete G-metric space and let T : X — X be a
G - B - - contractive mapping of type I satisfying the following conditions:

(i) T is B - admissible;
(ii) there exists xy € X such that B (xo, Txo, Txo) > 1;
(iii) T is G-continuous.

Then there exists u € X such that Tu = u.

Theorem 7.1.2. Let (X, G) be a complete G-metric space and let T : X — X be a
G - B - ¥ - contractive mapping of type Il satisfying the following conditions:

(i) T is B - admissible;
(ii) there exists xo € X such that B (xq, Txg, Txp) > 1;
(iii) if {x,} is a sequence in X such that B (x,, Xp+1,Xu+1) = 1 for all n € N and
{x,} is G-convergent to x € X, then B (x,,x,x) > 1 foralln € N.

Then there exists u € X such that Tu = u.

Proof. Following the argument in the proof of Theorem 7.1.1, we deduce that the
Picard sequence {x,} converges to some « € X. From (7.3) and (iii), we have

B (x,,u,u) >1 foralln > 0. (7.4)
Using (Gs), (Gy), (7.2) and (7.4), we have that, for alln € N,

G (u, Tu, Tu) < G (u, Txy, Tx,) + G (Tx,, Tu, Tu)
< G (t, Xpt1, Xn+1) + B (Xn, u, 1) G (Tx,, Tu, Tu)
< G (u, Xpg1, Xn41) + ¥ (G (xn, u, 1)) .

Taking into account that ¥ is continuous at ¢t = 0, letting n — oo, it follows that
G (u,Tu,Tu) = 0,so0u = Tu. |
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Corollary 7.1.2. Let (X, G) be a complete G-metric space and let T : X — X be a
G - B - Y - contractive mapping of type I satisfying the following conditions:

(i) T is B - admissible;

(ii) rhere exists xy € X such that B (xo, Txg, Txo) > 1;

(iii) if {x,} is a sequence in X such that B (x,, Xy+1,Xn+1) > 1 for alln € N and
{xn} is G-convergent to x € X, then B (x,,x,x) > 1 foralln € N.

Then there exists u € X such that Tu = u.

With the following example, we will show that the hypotheses in Theorems 7.1.1
and 7.1.2 do not guarantee uniqueness.

Example 7.1.2. Let X = [0, co) endowed with the G-metric G(x,y,z) = |x —y| +
ly — z| 4+ |z — x| for all x,y € X. Consider the self-mapping 7 : X — X and the
mapping B : X x X x X — [0, co) given by

2x— 1, ifx > 1,
Tx =

X
-, ifo<x<I1;
4
1, ify=zandx,y € [0, 1],
Blx.y.2) = y =z y€[0,1]
0, otherwise.

We claim that T is a G- §8 - ¥ - contractive mapping of type II with respect to the
(c)-comparison function ¥ (t) = t/2 for all t+ > 0. To prove it, we observe that, for
all x,y € X, we have that

1
IB('X’ Yy, y) G(TX, Tyv Ty) S EG(X» Y, }’)

Furthermore, for xo = 1 we have that (1,71, T1) = S(1, %, %) = 1. AsTis
continuous, to show that 7 satisfies all hypothesis of Theorem 7.1.1, it is sufficient to
observe that T is B-admissible. For this purpose, let x, y € X be such that 8(x,y,y) >
1. In this case, x,y € [0, 1]. Hence Tx = x/4 € [0, 1] and Ty = y/4 € [0, 1], which
implies that 8(Tx, Ty, Ty) > 1. As a result, all the conditions of Theorem 7.1.1 are
satisfied. Theorem 7.1.1 guarantees the existence of a fixed point of 7', but not its
uniqueness. In this example, 0 and % are two fixed points of 7.

Notice that Theorem 4.16, given by Mustafa as a characterization of the Banach

fixed point theorem, cannot be applied in this case because
G(T1,T2,T2) =4 >2=G(1,2,2).

In the following example, T is not continuous.

Example 7.1.3. Let (X, G) and B be given as in Example 7.1.2, and let T and ¥ be
given by
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2x—%,ifx> 1,

Tx = 27 f0<x<l: v () =t/3.

It is easy to show that, for all x,y € X we have

1
,B(x,y,y)G(Tx, Tyv Ty) S EG(X,%)’)

Therefore, T is a G - § - ¥ - contractive mapping of type II. Furthermore, the point
xo = 1 verifies B(1,T1,T1) = 1 and T is B -admissible. However, T is not
continuous. In this case, we can prove hypothesis (iii) of Theorem 7.1.2. Indeed, let
{x,} be a sequence such that B(x,, X,+1,X,+1) > 1 foralln € Nand {x,} - x € X.
Since B(x,, Xp41,Xa+1) > 1 for all n € N, then x,, € [0, 1], and as this interval
is closed, we deduce that x € [0, 1]. Thus, B(x,;,x,x) > 1 foralln € N. As a
result, all the conditions of Theorem 7.1.2 are satisfied. Theorem 7.1.2 guarantees
the existence of a fixed point of 7, but not its uniqueness. In fact, 0 and % are two
fixed points of 7.

Example 7.1.4 ([19]). Let X = [0, o0) be endowed with the G-metric:
Gx,y,z2)=|x—yl+|y—zl+|z—x| forallx,y,zeX.

Define T : X — X by Tx = 3xforallx € X,and 8 : X x X x X — [0, 00) in the
following way:

1, if (x,y,2) = (0,0,0),
Bx,y.2) = ,
—, otherwise.
9
One can easily show that
1
B(x,v,2)G(Tx, Ty, Tz) < 3 G(x,y,z) forallx,y,z€X.

Then T is a G- f8 - - contractive mapping of type I with ¥ (r) = %t for all t €
[0, 00). Notice that T is - admissible because if 8(x,y,z) > 1,thenx =y =z =0,
so B(Tx, Ty, Tz) = B(0,0,0) = 1. Then, all the conditions of Corollary 7.1.1 are
satisfied. Here, O is the fixed point of 7.

Also notice that the Banach contraction mapping principle is not applicable using
the Euclidean metric d(x,y) = |x — y| for all x,y € X. Indeed, if x # y, then
d(Tx,Ty) = 3|x —y| > Alx —y| for all A € [0, 1). Furthermore, by the same
argument, Theorem 4.2.1 is not applicable in this case.

The uniqueness of the fixed point can be deduced from an additional assumption.
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Theorem 7.1.3. Under the hypotheses of Theorem 7.1.1 (respectively, Theo-
rem 7.1.2), also assume the following condition:

(U) For all x,y € Fix(T), there exists z € X such that B (x,z,z) > 1 and
B(y.zz2) =1

Then T has a unique fixed point.

Proof. Let x,y € X be two fixed points of 7. By (U), there exists z € X such that
B (x,z,z) > 1 and B (y,z,2) > 1. We claim that the sequence {T"z},>( converges,
at the same time, to x and to y and, hence, we will deduce that x = y. The following
argument only uses x, but it is also valid involving y. Since T is B - admissible,
we get

Bx,z,2)>1 = B Tz,Tz) = B (Tx, Tz, Tz) > 1,
and, by induction,
B(x,T"z,T"z) =1 foralln € N. (7.5)
From (7.2) and (7.5), we have that, for all n > 0,

G (x, "'z, T"t'2) = G (Tx, TT"z, TT"z)
<BT'z,T"z) G(Tx, TT"z,TT"7)
<Y (G Tz, T"?)).

Thus, we get, by induction, that
Gx,T'z,T"z) <¢¥"(G(x,z,2)), forallneN.

Letting n — oo and taking into account that ¢ € Fih, we have that
{G(T"z,T"z,x)} — 0, s0 {T"z} — x. Similarly, {T"z} — y. As a result, x = y by
the uniqueness of the limit. O

Corollary 7.1.3. Adding condition (U) to the hypotheses of Corollary 7.1.1
(respectively, Corollary 7.1.2), we obtain uniqueness of the fixed point of T.

Proof. Tt is sufficient to take z = y in the proof of Theorem 7.1.3. O

7.2 Consequences

The following results are simple consequences of Theorem 7.1.3 and Corollary 7.1.3
using B(x,y,y) = 1l forallx,y € X.
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Corollary 7.2.1. Let T : X — X be a mapping from a complete G-metric space
(X, G) into itself and suppose that there exists ¥ € FLE such that

G(Tx, Ty, Ty) < ¥ (G (x,y,y)) forallx,yeX.

Then T has a unique fixed point.

Corollary 7.2.2. Let T : X — X be a mapping from a complete G-metric space
(X, G) into itself and suppose that there exists ¥ € fc(ézn such that

G(Tx, Ty, Tz) <Y (G (x,y,2)) forallx,y,z € X.

Then T has a unique fixed point.

In fact, we can deduce that the main results in [142] are simple consequences of
the previous corollaries, using the (c)-comparison function v, (t) = At forall¢ > 0,
where A € [0, 1).

Corollary 7.2.3. Theorem 4.2.2 is a consequence of Corollary 7.2.1.
Corollary 7.2.4. Theorem 4.2.1 is a consequence of Corollary 7.2.2.

7.2.1 Fixed Point Theorems on G-Metric Spaces Endowed
with a Partial Order

Throughout this subsection, denote by (X, G, <) an ordered G-metric space, that
is, < is a partial order on a G-metric space (X, G). In some cases, we will employ
non-decreasing-regular ordered G-metric spaces (recall Definition 5.2.1).

Theorem 7.2.1. Let (X, G, <) be an ordered G-metric space such that (X, G) is

complete and let T : X — X be a non-decreasing mapping with respect to <.

Suppose that there exists a function ¥ € fc(f,zn such that

G(Tx, Ty, Ty) < ¥ (G (x,y,Y)), (7.6)

forall x,y € X with x <X y. Suppose also that the following conditions hold:

(i) there exists xy € X such that xy < Txy;
(ii) T is G-continuous or (X, <, G) is non-decreasing-regular.

Then there exists u € X such that Tu = u. Furthermore, under the following
additional assumption:

(U'") Forallx,y € Fix(T), there exists z € X such that x X zand y <X z,

one has uniqueness of the fixed point.
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Proof. Define the mapping 8 : X x X x X — [0, c0) by

1, ifx<xy=z,
Bx.y.2) = ’

7.7
0, otherwise. 7D

Distinguishing the cases 8 (x,y,y) = 0 and B (x,y,y) = 1, it can be proved, from
(7.6), that

B(x,y,y) G(Tx, Ty, Ty) < ¥ (G (x,y,y)) forallx,ye€ X,

that is, T'is a G - B - ¥ - contractive mapping of type II. From condition (i), we have
B (x0, Txo, Txp) > 1. Furthermore, since T is a non-decreasing mapping with respect
to <, then T is 8 - admissible because

Bx,y,0)>1 & xxy=z = TxxDh=Tz
& B(Ix,Ty,Tz) > 1.

If T is G-continuous, then T has a fixed point by Theorem 7.1.1. On the other
hand, assume that (X, G, <) is non-decreasing-regular. To prove condition (iii) of
Theorem 7.1.2, let {x,} be a sequence in X such that B (x,,, X,+1,X,+1) > 1 for all
n € N and {x,} is G-convergent to x € X. This means that x,, < x,+; forall n € N.
Hence, by the non-decreasing-regularity, x, < x for all n € N, which is equivalent
to B (x,,x,x) > 1 for all n € N. As a result, condition (iii) of Theorem 7.1.2 holds,
and this guarantees that T has a fixed point. The uniqueness follows from condition
(U) in Theorem 7.1.3, which is equivalent to condition (U’). O

The following result follows from using v, (f) = At for all + > 0, where A €
[0, 1).

Corollary 7.2.5. Let (X, G, X) be an ordered G-metric space such that (X, G) is
complete and let T : X — X be a non-decreasing mapping with respect to <.
Suppose that there exists a constant A € [0, 1) such that

G(Tx, Ty, Ty) < AG(x,y,y) forallx,y € X suchthatx <X y.

Also assume that the following conditions hold:

(i) there exists xo € X such that xo < Txyp;
(ii) T is G-continuous or (X, <X, G) is non-decreasing-regular.

Then there exists u € X such that Tu = u. Furthermore, under the following
additional assumption:

(U") Forallx,y € Fix(T), there exists z € X such that x < zand y X z,

one has uniqueness of the fixed point.
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7.2.2 Cyclic Contractions

Now, we will prove our results for cyclic contractive mappings in G-metric spaces.

Theorem 7.2.2 (See [119]). Let A and B be non-empty G-closed subsets of a
complete G-metric space (X, G). Suppose also that Y = AUBandT : Y - Y
is a given self-mapping satisfying

T(A) S Band T(B) C A. (7.8)
If there exists a function ¥ € f&ifn such that

G(Ix, Ty, Ty) < ¥ (G(x,y,y)) (7.9

forallx € A andy € B orvice versa, then T has a unique fixed point, which belongs
toANB.

Proof. Notice that (Y, G) is a complete G-metric space since A and B are closed
subsets of the complete G-metric space (X, G). We define f : X x X x X — [0, 00)
in the following way:

1, ify=zand (x,y) € (AxB) U (BxA),
0, otherwise.

B(x.y,z) =

From the definition of 8 and assumption (7.9), we have that

Bx,y,y)G(Ix, Ty, Ty) < ¥ (G(x,y,y)) (7.10)

for all x,y € Y. Hence, T is a G- f8 - ¥ - contractive mapping in (Y, G). Next, we
show that T is § - admissible. Let x, y € Y be such that S(x,y,y) > 1. We have two
cases. If (x,y) € Ax B,thenx € Aandy € B. By (7.8), Tx € Band Ty € A. Hence
(Tx,Ty) € B x A and B(Tx, Ty, Ty) > 1. In the other case, if (x,y) € B x A, the
argument is similar. In any case, B(x,y,y) > 1 implies 8(Tx, Ty, Ty) > 1,s0 T is
B - admissible.

Now, we claim that condition (iii) of Theorem 7.1.2 holds in (Y, G). Let {x,} be
a sequence in Y such that {x,} — x € Y and B (x,, X,41,Xs+1) > 1 foralln € N.
This means that (x,,x,+1) € (A x B) U (B x A) for all n € N. We distinguish two
cases.

* Case 1: There exists ny € N such that x, € Y\ (A N B) for all n > ny. In this
case, we have that:
X EA\B = (x,,,x,H_l) €AXB = Xx,+1€B
= Xaut1 € B\A;
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X, €EBNA = (5, x41) EBXA = x4 €A
= Xy+1 € ANGB.

In this case, the sequence {x,,,Xn,+1....; is alternating between A and B.
Therefore, it has a subsequence on A and a subsequence on B. As {x, } converges
to x, then x belongs to the closure of A and of B but, as A and B are closed, then
x € A N B. Hence, in this case, B (x,,x,x) > 1 forall n € N.

e Case2: Forall ny € N, there exists m > ng such that x,, € ANB. In this case, {x,}
has a partial subsequence {x, } such that x,x € A N B for all k. As {x,} — x,
then {x,@} — x,sox € AN B. As aresult, 8 (x,,x,x) > 1foralln € N.

In any case, we have proved that 8 (x,,, x,x) > 1 forall n € N, so condition (iii) of
Theorem 7.1.2 holds in (Y, G). This guarantees that T has a fixed point. Moreover,
Fix (T) € AN B by Lemma 6.3.1. In particular, if x € Fix (T), then 8 (x,y,y) > 1
for all y € Y. Thus, condition (U) of Theorem 7.1.3 is satisfied, so the fixed point is
unique. O

7.3 Generalized G - 8 - ¥ - Contractive Mappings
on G-Metric Spaces

In this section, we extend some previously presented results.

7.3.1 Generalized G- 3 - ¥ - Contractive Mappings of Types
Iand Il

In the following definition, we extend the notion given in Definition 7.1.1.

Definition 7.3.1 ([19]). Let (X, G) be a G-metric space and let 7 : X — X be a
given mapping. We say that T is a:

o generalized G - B - - contractive mapping of type I if there exist two functions
B:XxXxX—[0,00)and ¥ € ]-"L(f,fn such that, for all x, y, z € X, we have

B (x,y,2) G(Tx, Ty, Tz) < ¥ (M (x,y,2)), (7.11)
where

M (x,y,z) = max |G (x,y,2), G (x, Tx, Tx) ,

Gy, Dy, Ty), G(z, Tz, T7) ,

G, 1. Ty) + G(y, Tz, Tz) + G (z, Tx, Tx) |
3 ;

(7.12)
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e generalized G - B - ¥ - contractive mapping of type II if there exist two functions
B:XxXxX—][0,00)and ¢ € .7-}(81)“ such that, for all x, y € X, we have

Bx,y.y) G(Tx, Ty, Ty) <y (M (x,y.y)), (7.13)

where M is given in (7.12), that is,

M (x,y,y) = max { G (x,y,y), G(x,Tx,Tx), G (y, 1y, Ty),

G, D, Ty) + G(y, Ty, Ty) + G (v, Tx, Tx)
3

(7.14)

Clearly, any contractive mapping, that is, a mapping satisfying (4.15), is a
generalized G - B - - contractive mapping of type I with 8 (x,y,z) = 1 for all
x,y,z € Xand ¢, (f) = Atforall r > 0, where A € [0, 1). Analogously, a mapping
satisfying (4.16) is a generalized G - B - ¥ - contractive mapping of type II with the
same B and v, as before.

Theorem 7.3.1 ([19]). Let (X, G) be a complete G-metric space and letT : X — X
be a generalized G - B - - contractive mapping of type Il satisfying the following
conditions:

(i) T is B - admissible;
(ii) there exists xy € X such that B (xo, Txo, Txg) > 1;
(iii) T is G-continuous.

Then there exists u € X such that Tu = u.

Proof. Let xo € X be such that 8 (xq, Txg, Txyp) > 1 and let {x,} be the Picard
sequence of T based on xq (that is, x,,+1 = Tx, for all n > 0). If there exists some
no € N such that x,, = x,,+1, then u = x,, is a fixed point of 7. On the contrary
case, assume that x,, # x,41 for all n. Since T is B - admissible, we have

B (x0,x1,x1) = B (x0, Txo, Txp) > 1
— /3 (xl,.Xz,)Q) = ,3 (TXQ,T}C],T)C]) > 1.

Inductively, we have that
,3 (x,,,xn+1,x,,+1) >1 foralln>0. (7.15)
From (7.13) and (7.15), it follows that for all n > 1, we have

G (-xn’ Xn+1, xn-l—l) =G (Txn—l s Txnv Txn)
f ,3 (xn—l s Xns xn) G (Txn—l ) Txm Txn)
<Y (M (Xu—1,Xn, Xn)) » (7.16)
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where

M (‘xl’l—lv-xnv xn) = max {G (xn—lvxn,xn) , G (xn—l, Tx,—1, Txn—l) ,

G (X, Txy, Txy,)

G (xn—l , ITx,, TX,,) +G (X”, Tx,, Tx,) + G (xns Ix,—1, Txn—l)
3

= max {G (xll—laxil7 xn) , G (xna xn+l7xn+l) ,

G (‘xl‘l—la Xn+1 ,xn+1) +G (xn»xn—H ,xn+1) }
3

< max { G (Xn—1, %, %) s G (Xp, Xnt-1, Xnt1) 5

G (xn—la Xny xn) +2G ('x}'h Xn+1 ,xn+1) }
3

= max {G (X,—1, Xn, Xn) , G (X, X1, Xn+1)} - (7.17)

If there exists some ny € N such that G (x,, Xug+1, Xng+1) = G(Xng—1 Xng» Xnp ), then
M (Xpg—1, Xngs Xng) = G (Xng» Xng+1,Xny+1) and it follows from (7.16) that

G(xﬂ01xﬂ()+17xn0+l) = w (G (xﬂov-xﬂ0+17xﬂ0+l)) s

which is impossible when G (Xn,Xng+1,%no+1) > 0. Hence, we have that
G (X4 Xnt1, Xn4+1) < G (xp—1,%,,x,) for all n > 1 and it follows from (7.16)
that

G (X0, Xn41, Xn+1) < ¥ (G (Xy—1, x5, x,)) foralln> 1.

It follows from Lemma 4.1.2 that {x,} is a Cauchy sequence in the G- metric space
(X, G). Since (X, G) is complete, there exists # € X such that {x,} is convergent
to u. Since T is G-continuous, it follows that {x,+; = Tx,} is G-convergent, at the
same time, to u and to Tu. By the uniqueness of the limit, we get u = Tu, that is, u
is a fixed point of 7. O

Corollary 7.3.1 ([19]). Let (X, G) be a complete G-metric space andletT : X — X
be a generalized G - B - - contractive mapping of type I satisfying the following
conditions:

(i) T is B - admissible;
(i) there exists xy € X such that B (xo, Txo, Txo) > 1;
(iii) T is G-continuous.

Then there exists u € X such that Tu = u.
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Theorem 7.3.2 ([19]). Let (X, G) be a complete G-metric space and let T : X — X
be a generalized G - B - - contractive mapping of type Il for some right-continuous
v e }'C(f)?n satisfying the following conditions:

(i) T is B - admissible;
(ii) there exists xo € X such that B (xq, Txg, Txg) > 1;
(iii) if {x,} is a sequence in X such that B (X, Xy+1,Xn+1) = 1 for alln € N and
{xn} is G-convergent to x € X, then B (x,,x,x) > 1 foralln € N.

Then there exists u € X such that Tu = u.
Proof. Following the argument in the proof of Theorem 7.3.1, we obtain that the
Picard sequence {x,} converges to some u € X. We claim that Tu = u. From (7.15)
and (iii), we have that
B (x,,u,u) >1 foralln > 0. (7.18)
Using (Gs), (Gy), (7.13) and (7.18), we have that, for all n € N,

G (u, Tu, Tu) < G (u, Tx,, Tx,) + G (Tx,, Tu, Tu)
< G W, Xp41,Xn+1) + B (x, u, u) G (Tx,,, Tu, Tu)
= G (u» xn+l,xn+l) + 1/’ (M (xns u, M)) . (719)

In this case,

M (x,, u,u) = max G (x,,, u, 1) , G (Xy, Xy+1,Xn+1) , G (u, Tu, Tu) ,

G (xn, Tu, Tu) + G (u, Tu, Tu) + G (4, Xp4-1, Xn41)
3 .

(7.20)
Therefore
lim M (x,,u,u) = G (u, Tu, Tu) .
n—oo

To prove that Tu = u, we distinguish two cases.

e Case 1: There exists ny € N such that M (x,,, u, u) = G (u, Tu, Tu) for all n > ny.
In this case, from (7.19), we have that

G (u, Tu, Tu) < G (U, Xy+1, Xn+1) + ¥ (G (u, Tu, Tu))

for all n > ny. Letting n — oo, we deduce that G (u, Tu, Tu) < ¥ (G (u, Tu, Tu)),
which is only possible when G (u, Tu, Tu) = 0, that is, Tu = u.
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e Case 2: For all n € N, there exists m > n such that M (x,,, u, u) # G (u, Tu, Tu).
As G (u, Tu, Tu) is included in the maximum that defines M (x,, u, u), we can find
a subsequence {x, } of {x,} such that

M (xn(k),u, u) > G (u,Tu,Tu) forallk > 1.

Thus, {M (x,,(k), u, u)}kz | is a sequence of real numbers, greater than
G (u, Tu, Tu), that converges to G (u, Tu, Tu). Since V¥ is right-continuous,

lim ¥ (M (X, u,u)) = lim v () = ¥ (G (u, Tu, Tu)) .
k=00 t—>G(u,Tu,Tu)Jr

From (7.19), we have that
G (u, Tu, Tu) < G (s, Xny+1, Xniy+1) + ¥ (M (Xney, 1, u) )

for all k, and letting k — oo, we deduce that G (u, Tu, Tu) < V¥ (G(u, Tu, Tu)),
which yields G (u, Tu, Tu) = 0, that is, Tu = u. m|

Remark 7.3.1. Notice that the previous result improves Theorem 30 and Corol-
lary 31 in [19] in the sense that we only assume that ¥ is right-continuous, but
not necessarily continuous.

Corollary 7.3.2 ([19]). Let (X, G) be a complete G-metric space andletT : X — X
be a generalized G - B - - contractive mapping of type I for some right-continuous

Ve ngﬁn satisfying the following conditions:
(i) T is B - admissible;
(ii) there exists xy € X such that B (xo, Txg, Txo) > 1;

(iii) if {x,} is a sequence in X such that B (x,, Xy+1,Xn+1) > 1 for alln € N and
{x,} is G-convergent to x € X, then 8 (x,,x,x) > 1 foralln € N.

Then there exists u € X such that Tu = u.

Notice that Theorem 7.1.1 and Corollary 7.1.1 are simple consequences of
Theorem 7.3.1 and Corollary 7.3.1. However, Theorem 7.1.2 and Corollary 7.1.2
cannot be deduced from Theorem 7.3.2 and Corollary 7.3.2 because, in the last
ones, we assume that i is right-continuous.

With the following example, we will show that the hypotheses in Theorems 7.3.1
and 7.3.2 do not guarantee uniqueness.

Example 7.3.1 ([19]). Let X = {(1,0),(0,1)} C R? endowed with the following
G-metric

G((x.y), (u,v), (z.w)) =[x —ul + |u—z| + |z =x[ + [y —v[ + [v —w| + [w—)]

for all (x,y), (u,v), (z,w) € X. Obviously, (X, G) is a complete metric space. The
mapping 7'(x,y) = (x,y) is trivially continuous and satisfies, for any ¥ € FO,
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B((x.). (u,v), (2. W) G(T(x. ), T(u, v), T (z. w))
= Y (M((x,y), (u,v), (z,w))),

for all (x,y), (4, v), (z, w) € X, where

1, if (x,y) = (u,v) = (z, w),
0, otherwise.

B((x,y), (u,v), (z.w)) =

Thus T is a generalized G - § - ¥ - contractive mapping of type I. On the other hand,
for all (x,y), (u,v), (z, w) € X, we have

B(x.y). (w,v). w) =1 = (xy) = (uv) = (z.w),

which yields that B(T(x,y), T(u,v),T(z,w)) > 1. Hence T is B -admissible.
Moreover, for all (x,y) € X, we have B((x,y),T(x,y),T(x,y)) > 1. So the
assumptions of Theorem 7.3.1 are satisfied. In fact T satisfies all the assumptions of
Theorem 7.3.2. However, in this case, T has two fixed points in X.

Example 7.3.2. Let X C R be a closed, bounded subset, non reduced to a single
point (for instance, a compact interval), endowed with the G-metric G (x,y,z) =
[x—y| 4+ |x—2z| + |y —z| forall x,y,z € X. Let T be the identity mapping on T and
define

l,ifx=y=z,
0, otherwise.

Bx.y.2) =

Then
B (x,y,2) G(Tx, 1y, T7) = 0 < ¢ (M (x,y,2))

for all x,y,z € X and all ¥ € ]:ggl)n, so T is a generalized G- f -y - contractive
mapping of type I. Since B (x,Tx,Tx) = B (x,x,x) = 1 for all x € X, all the
conditions of Theorems 7.3.1 and 7.3.2 are satisfied. However, every point of X is a
fixed point of T (in particular, it has more than one).

We present the following condition in order to ensure uniqueness of the fixed
point.

Theorem 7.3.3. Under the hypotheses of Theorem 7.3.1 (respectively, Corol-
lary 7.3.1, Theorem 7.3.2, Corollary 7.3.2), also assume the following condition:

(U") Forall x,y € Fix(T) we have that max {B (x,y,y), 8 (v, x,x)} > 1.
Then T has a unique fixed point.
In [19], the authors assumed the stronger condition:

(iv) For all x € Fix(T) we have that 8 (x,z,z) > 1 forall z € X.
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Proof. Let x,y € Fix(T) be two fixed points of T. By hypothesis (U”), we
have that max {8 (x,y,y), B (v,x,x)} > 1. Without loss of generality, assume that
B (x,y,y) = 1. From (7.13),

Gx,y.y) =B (xy.y) G(Tx,1Ty.Ty) < ¥ (M (x,y,y)) .

where

M (x,y,y) = max {G(x,y, y), Gx,Tx, Tx), G (v, Ty, Ty) ,

G, Ty, Ty) + G, Ty, Ty) + G (v, Tx, Tx) }

3
G b ’ G 9 9
:max{G(x,y,y), (xyy);r (yxX)}
G(x,y,9) +2G(x,y,)
Smax%G(x,y,y), 3 =G(x,y,y).

Therefore, since ¥ is non-decreasing, G (x,y,y) < ¥ (G (x,y,y)), which is only
possible when G (x,y,y) = 0, that is, x = y, which proves that 7 has a unique
fixed point. O

7.3.2 Generalized G- B - ¥ - Contractive Mappings of Type 111

In this subsection, we present a new contractivity condition.

Definition 7.3.2 ([19]). Let (X, G) be a G-metric space and let 7 : X — X be a
given mapping. We say that T is a generalized G- 8 - - contractive mapping of
type 111 if there exist two functions 8 : X x X x X — [0,00) and ¢ € ]-"L(Szn such
that, for all x, y, z € X, we have

B (x,y,2) G(Tx, Ty, Tz) < ¥ (N (x,y.2)) . (7.21)
where

N (x,y,z) = max{G (x,¥,2),G (x,x,Tx) ,G (v,y, 1Y) ,G (2,2, T7) } .

Theorem 7.3.4 ([19]). Let (X, G) be a complete G-metric space and let T : X — X
be a generalized G - B - - contractive mapping of type Il satisfying the following
conditions:

(i) T is B - admissible;

(ii) there exists xy € X such that B (xo, Txo, Txg) > 1 (or B (x0,x0, Txo) > 1);
(iii) T is G-continuous.

Then there exists u € X such that Tu = u.
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Proof. We follow the argument in the proof of Theorem 7.3.1, replacing M by N
and the inequality (7.17) by

N (Xn—1, Xn, Xn)
= max {G (Xp—1, X, %) . G (1, X1, T0—1) . G (%, X, Tx) }
= max {G (Xy—1, X, Xn) s G (X, X, Xp41) } -
The rest of the proof is similar. 0

Theorem 7.3.5. Let (X, G) be a complete G-metric space and let T : X — X be
a G- B - - contractive mapping of type Il for some right-continuous ¥ € fégﬁn
satisfying the following conditions:

(i) T is B - admissible;
(ii) rhere exists xy € X such that B (xo, Txg, Txo) > 1;
(iii) if {x,} is a sequence in X such that B (x,, Xy+1,Xn+1) > 1 foralln € N and
{xn} is G-convergent to x € X, then B (x,,x,x) > 1 foralln € N.

Then there exists u € X such that Tu = u.

On the one hand, the previous result is also valid if we replace (ii) and (iii) by the
following ones.

(ii) there exists xo € X such that 8 (xo, xo, Txp) > 1;
(iii) if {x,} is a sequence in X such that 8 (x,, x,, x,+1) > 1 for all n € N and {x,}
is G-convergent to x € X, then S (x,,, x,,,x) > 1 forall n € N.

On the other hand, a similar comment to Remark 7.3.1 can also be given here.

Proof. We follow the argument in the proof of Theorem 7.3.2, replacing M by N
and (7.20) by

N (xp, u, u) = max {G (x,, u, u) , G (xy,x,, Tx,), G (u, Tu, Tu)}
= max {G (x,, u,u) , G (X, %, Tx;), G (u, Tu,Tu)},
and distinguishing the same two cases. O

As in Example 7.3.2, the uniqueness of the fixed point is not guaranteed. We need
an additional condition.

Theorem 7.3.6. Under the hypotheses of Theorem 7.3.4 (respectively, Theo-
rem 7.3.5), also assume the following condition:

(U") Forall x,y € Fix(T) we have that max {f (x,y,y),8 (y,x,x)} > 1.
Then T has a unique fixed point.
Proof. We repeat the proof of Theorem 7.3.3 taking into account that, for all x,y €
Fix(T),
N (u,v,v) = max {G (u,v,v),G (u,u,Tu) ,G (v,v, Tv)}

=G (u,v,v). O
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7.4 Consequences

The following two results correspond to Theorem 7.3.2 and Corollary 7.3.2 in the
case in which B(x,y,z) = 1 for all x,y, z € X, and also applying Theorem 7.3.3.
Corollary 7.4.1. Let (X, G) be a complete G-metric space and let T : X — X be a
mapping. Assume that there exists a right-continuous function ¥ € fégﬂn such that,
forall x,y € X,

G(Tx, Ty, Ty) < ¢ (max %G xy,y), G(x,Tx, Tx), G(y, Ty, Ty) ,

G, Ty, Ty) + Gy, Ty, Ty) + G (y, Tx, Tx) } )
3 i

Then T has a unique fixed point.

Corollary 7.4.2. Let (X, G) be a complete G-metric space and let T : X — X be a
mapping. Assume that there exists a right-continuous function ¥ € .Fc(égn such that,

forall x,y,z € X,

G(Tx, Ty, Tz) < ¢ (max { G(x,y,2), G(x,Tx, Tx),

G(. Ty, Ty), G(z.Tz, Tz),
G(x, Ty, Ty) + G (y, Tz, Tz) + G (z, Tx, Tx) %)

3

Then T has a unique fixed point.

We can avoid the right-continuity of { when T is continuous, applying Theo-
rem 7.3.1, Corollary 7.3.1 and Theorem 7.3.3.

Corollary 7.4.3. Let (X, G) be a complete G-metric space and let T : X — X be a
G-continuous mapping. Assume that there exists a function ¥ € fc(f)zn such that, for
allx,y € X,

G(Tx.Ty.Ty) < ¥ (max %G(x,y,y), G, Tx,Tx), G(y. Ty, Ty) ,

Gx, T, Ty) + GOy, Ty, Ty) + G (y, Tx, Tx) } )
3 .

Then T has a unique fixed point.

Corollary 7.4.4. Let (X, G) be a complete G-metric space and let T : X — X be a
G-continuous mapping. Assume that there exists a function € ]:C(f)zn such that, for
allx,y,z € X,
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G(Tx, Ty, Tz) < ¥ (max {G (x,v,2), G(x,Tx, Tx),

G(y’ Ty, Ty) s G(Z, TZ, TZ) s

G, Ty, Ty) + G(y, Tz, Tz) + G (z, Tx, Tx) })
3 .

Then T has a unique fixed point.

Assume that ¥, (r) = At for all + > 0. Then we have the following particular
cases of Corollaries 7.4.1 and 7.4.2.

Corollary 7.4.5. Let (X, G) be a complete G-metric space and let T : X — X be a
mapping. Assume that there exists a constant A € [0, 1) such that, for all x,y € X,

G(Tx, Ty, Ty) < Amax{G (x,y,y), G(x,Tx, Tx), G(y, Ty, Ty),

Gx, D, Ty) + GO, Ty, Ty) + G (v, Tx, Tx)
3 .

Then T has a unique fixed point.

Corollary 7.4.6. Let (X, G) be a complete G-metric space and let T : X — X be a
mapping. Assume that there exists a constant A € [0, 1) such that, for all x,y, z € X,

G(Tx,Ty,T7) < Amax{G(x,y,2), G (x,Tx, Tx) ,

G(y. Ty, Ty), G(z. Tz, Tz),

Gx,1,T) + G(y, Tz, Tz) + G (z, Tx, Tx)
3 .

Then T has a unique fixed point.

Taking into account that ¥ is non-decreasing and G (x,y,z) < M (x,y, z) for all
x,¥,z € X, then we also have the following consequences.

Corollary 7.4.7. Let (X, G) be a complete G-metric space and let T : X — X be a

mapping. Suppose that there exists a function Y € fc(f,fn such that, for all x,y € X,

G(Tx. 1Ty, 1) = ¥ (G (x,y.y)).
Also assume that T is G-continuous or  is right-continuous. Then T has a unique
fixed point.

Corollary 7.4.8. Let (X, G) be a complete G-metric space and let T : X — X be a
mapping. Suppose that there exists a function € fc(gfn such that, for all x,y,z € X,
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G (Tx, Ty, Tz) < ¥ (G (x,y.2)) .

Also assume that T is G-continuous or V is right-continuous. Then T has a unique
fixed point.

Corollary 7.4.9 ([19]). Let (X, G) be a complete G-metric space andletT : X — X
be a given mapping. Suppose that there exist nonnegative real numbers a, b, c and
d, witha+ b+ c+d <1, such that

G(Tx, Ty, Ty) <aG (x,y,9) + bG (x, Tx, Tx) + cG (v, Ty, Ty)
+ 63—1 (GCxD,D)+Gy, Ty, Ty) + G(y, Tx, Tx) ),
forall x,y € X. Then T has a unique fixed point.
Proof. For all x,y € X we have that
aG (x,y,9) + bG (x, Tx, Tx) + cG (y, Ty, Ty)
+ %l (G, Ty, Ty) + G (., Ty, Ty) + G (v, Tx, Tx) )

<aM(x,y,y) + bM (x,y,y) + cM (x,,y)
+dM (x,y,y)=(a+b+c+d) M(x,y,y).

Therefore, we can apply Corollary 7.4.5 using A = max {a + b + ¢ + d, 0}. |

Corollary 7.4.10 ([19]). Let (X, G) be a complete G-metric space and let T : X —
X be a given mapping. Suppose that there exist nonnegative real numbers a,b, c, d
and e, witha + b + c +d + e < 1, such that

G(Tx, Ty, Tz) < aG (x,y,z) + bG (x, Tx, Tx)
+cGO, 1Ty, 1Y) +dG(z, Tz, Tz)

+5 (D 1)+ GO T2T) + GG T Tx).
forall x,y,z € X. Then T has a unique fixed point.
7.4.1 Fixed Point Theorems on G-Metric Spaces Endowed
with a Partial Order

In this subsection, we apply the previous results to the case in which X is endowed
with a partial order.
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Theorem 7.4.1. Let (X, G, <) be an ordered G-metric space such that (X, G) is

complete, and let T : X — X be a non-decreasing mapping with respect to <.
Suppose that there exists a function ¥ € ffé?n such that

G(Ix,Ty,Ty) <y (max % Gx,y.y), Gx,Tx,Tx), Gy, Iy, Ty),

G, 1y, Ty) + GOy, Ty, Ty) + G (v, Tx, Tx)

3 .
(7.22)

forall x,y € X with x < y. Also assume that the following conditions are fulfilled:

(i) there exists xo € X such that xo < Txy;
(ii) At least, one of the following conditions holds:

(ii.1) T is G-continuous, or
(ii.2) (X, <, G) is non-decreasing-regular and  is right-continuous.

Then there exists u € X such that Tu = u. Furthermore, under the following
additional assumption:

(U") Forall x,y € Fix(T) we have that x < y or'y < x (that is, all fixed points of
T are <X-comparable),

one has uniqueness of the fixed point.

Proof. Define the mapping 8 : X x X x X — [0, c0) by

1, ifx<xy=z,
B(x.y.2) = ’

0, otherwise.

Distinguishing the cases 8 (x,y,y) = 0 and B (x,y,y) = 1, it can be proved, from
(7.22), that

B (x,y.y) G(Ix, Ty, Ty) < ¢ (M (x,y,y)) forallx,y € X

(the case x = y is obvious), that is, 7 is a G- 8 - ¥ - contractive mapping of type
II. From condition (i), we have 8 (xo, Txo, Txo) > 1. Furthermore, since 7 is a non-
decreasing mapping with respect to <, then 7 is § - admissible because

Bx,y,2)>1 & xxy=z = TxxDy=1z
< B(IxTy,Tz) = 1.
If T is G-continuous, then T has a fixed point by Theorem 7.3.1. On the other

case, assume that (X, G, <) is non-decreasing-regular and v is right-continuous.
To prove condition (iii) of Theorem 7.3.2, let {x,} be a sequence in X such that
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B (X4, Xp+1,Xn+1) > 1 for all n € N and {x,} is G-convergent to x € X. This means
that x, < x,+; for all n € N. Hence, by the non-decreasing-regularity, x, < x for all
n € N, which is equivalent to 8 (x,,x,x) > 1 for all n € N. Hence, condition (iii) of
Theorem 7.3.2 holds, and this guarantees that T has a fixed point. The uniqueness
follows from condition (U”) in Theorem 7.3.3, which is equivalent to our condition
{u”y. ]

Corollary 7.4.11. Let (X, G, X) be an ordered G-metric space such that (X, G) is
complete, and let T : X — X be a non-decreasing mapping with respect to <.
Suppose that there exists a function € ]-'C(g?n such that

G(Tx, Ty, T7) < ¢ (max { G(x,y,2), G, Tx,Tx),

GO, T, 1), G(z, Tz, Tz)

G Ty, 1Ty) + G(y, Tz, Tz) + G (z, Tx, Tx) } )
3 .

for all x,y € X with x <y <X z. Also assume that the following conditions are
fulfilled:

(i) there exists xo € X such that xo < Txy;
(ii) at least, one of the following conditions holds:

(ii.1) T is G-continuous, or
(ii.2) (X, <, G) is non-decreasing-regular and ¥ is right-continuous.

Then there exists u € X such that Tu = u. Furthermore, under the following
additional assumption:

(U") Forall x,y € Fix(T) we have that x < y or y < x (that is, all fixed points of
T are <X-comparable),

one has uniqueness of the fixed point.
In the following result, we employ ¥, (f) = At for all t > 0, which is continuous.

Corollary 7.4.12. Let (X, G, X) be an ordered G-metric space such that (X, G) is
complete, and let T : X — X be a non-decreasing mapping with respect to <.
Suppose that there exists a constant A € [0, 1) such that

G(Tx, Ty, Ty) < Amax{G(x,y,y), G(x,Tx,Tx), G (y, Ty, Ty),

G, DV, Ty) + G(y, Ty, Ty) + G (v, Tx, Tx)
3 .

forall x,y € X with x < y. Also assume that the following conditions are fulfilled:

(i) there exists xo € X such that xo < Txy;
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(ii) at least, one of the following conditions holds:

(ii.1) T is G-continuous, or
(ii.2) (X, <, G) is non-decreasing-regular.

Then there exists u € X such that Tu = u. Furthermore, under the following
additional assumption:

(U") Forall x,y € Fix(T) we have that x < y or'y < x (that is, all fixed points of
T are <X-comparable),

one has uniqueness of the fixed point.

Inspired by Corollary 7.4.9, we present the following one (which has the same
proof).

Corollary 7.4.13. Let (X, G, X) be an ordered G-metric space such that (X, G) is
complete, and let T : X — X be a non-decreasing mapping with respect to <.
Suppose that there exist nonnegative real numbers a, b, c and d, witha+b+c+d <
1, such that

G(Tx, Ty, Ty) < aG (x,9,y) + bG (x, Tx, Tx) + cG (v, Ty, Ty)

d
t3 (G(x, Ty, TY) + Gy, Ty, Ty) + G (y, Tx, Tx) )

forall x,y € X with x < y. Also assume that the following conditions are fulfilled:

(i) there exists xo € X such that xo < Txy;
(ii) at least, one of the following conditions holds:

(ii.1) T is G-continuous, or
(ii.2) (X, <, G) is non-decreasing-regular.

Then there exists u € X such that Tu = u. Furthermore, under the following
additional assumption:

(U") Forall x,y € Fix(T) we have that x < y or'y < x (that is, all fixed points of
T are <X-comparable),

one has uniqueness of the fixed point.

7.4.2 Cyclic Contraction

Now, we will prove our results for cyclic contractive mappings in G-metric spaces.

Theorem 7.4.2 (See [119]). Let A and B be two non-empty, G-closed subsets of a
complete G-metric space (X, G). Suppose also thatY = AUBandT :Y — Yisa
given self-mapping satisfying
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T(A) CBand T(B) C A. (7.23)

Assume that there exists a right-continuous function ¥ € féﬁ?n such that
G(Tx, Ty, Ty) = ¥ (M(x.y.y)) (7.24)

forall x € A andy € B or viceversa, where

M (x,y,y) = maxi{G(x,y,y), G, Tx,Tx), G (y, Ty, Ty) ,

Gx, Ty, Ty) + Gy, Ty, Ty) + G (v, Tx, Tx)
3 .

Then T has a unique fixed point, which belongs to A N B.

Proof. We follow the argument in the proof of Theorem 7.2.2, using M(x,y,y)
rather than G (x, y, y). O



Chapter 8
New Approaches to Fixed Point Results
on G-Metric Spaces

Recently, Samet et al. [184], and Jleli and Samet [97], observed that some fixed point
theorems in the context of G-metric space in the literature can be concluded from
existence results in the setting of quasi-metric spaces. In fact, if the contractivity
condition of the fixed point theorem on a G-metric space can be reduced to two
variables instead of there variables, then one can construct an equivalent fixed point
theorem in the setup of usual metric spaces. More precisely, in [97, 184], the authors
noticed that g(x,y) = G(x,y,y) forms a quasi-metric.

In this chapter, we notice that, although the techniques used in [97, 184] are valid
if the contractivity condition in the statement of the theorem can be expressed in two
variables, we can also consider other fixed point theorems in the context of G-metric
spaces for which the techniques in [97, 184] are not applicable.

8.1 A New Approach to Express Fixed Point
Contraction Mappings

Theorem 8.1.1. Let (X, G) be a complete G-metric space and let T : X — X be
mapping. Suppose that there exists A € [0, %) such that

G(Tx, Ty, T7) < AM(x,y,z) forallx,y,z € X, (8.1)
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where

G(x,y,2), G(x,Tx, Tx), G(x, Ty, Ty),

G(x,Tx,y), G(x,Tx,z), G(y, Ty, Ty),
M(x,y,z) = max 3 G(y, Tx, Ty), G(y. T*x, Ty), G(v, Tz, Tz),

G(z, Tx, Tx), G(z, Tz, Tz), G(z, Tx, Ty),

G(z, T*x, Tz), G(Tx, T%x, Ty), G(Tx, T?x, T7)

Then there is a unique x € X such that Tx = x. In fact, T is a Picard operator.

Proof. Let xy € X be arbitrary and let {x, } be the Picard sequence of T based on x,
that is

Xn+1 = Tx, foralln e N. (8.2)
If there exists some ny € N such that x,,,41 = x,,, then x,, is a fixed point of 7.
Assume that

Xy # Xy foralln e N, (8.3)

Taking x = x,, and z = y = x,,41 in (8.1), we find that, for all n > 0,
G(Xnt1, Xn2: Xnt2) = G(Tox, Txpg1, Txug1) < AM (X, Xng1, Xng1)s (8.4)
where M (x,,, X,+1,X,+1) takes the value

G(xnv Xn+1, xn-H)a G(xm Txy, Txn),

G(xp, Txp1, Txpt 1), Gy T, Xpp 1),
Gy Txn, Xnt1)s Gt 1, Txp 1, Txnt1),
Gnt1: T, Txng1)y G(ug1s T2, Ty 1),
Gt 1, Tt 1, Txpt 1), G(Xpp1, Txn, Txy),
G(xn_H , Tx,,+1 s Tx,l+]), G(x,1+1 , Tx,,, TX,H.]),
Gnt1: Txn Txt1)s G(Tx, T2, T 11,
G(Txy, T?xy, TXp41)

max

G(Xn, X415 Xn+1)5 G(Xn, Xng 15 Xnt1),
G(Xp, Xnt2, Xn42), Gy X1, Xt 1),
G(Xns Xnt15 Xn+1)5 G(Xnt1, Xnt2, Xnt2),
G(Xnt1, Xnt 15 Xnt+2)s Gt 1, Xnt2, Xn42),
G(Xn+1, Xnt25 Xnt+2)s Gt 15 Xnt 1, Xn41),
G(Xn+1, Xn+25 Xn+2)s G(Xnt1, Xnt 15 Xnt2),
G(Xnt1, Xnt25 Xnt+2)s G(Xnt1, Xnt2, Xn42),
G(Xp15 Xn2: Xnt2)

= max
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— max G(xnaxn-f-lvxn-i-l)» G(xnv-xn-f-Zs xn+2)s (85)

G(Xnt1, X042, Xn+2)s Gt 15 Xnt 15 Xnt2)
Now, we have to examine four cases in (8.5).

o If M(xy, Xpt1, Xnr1) = G(Xu41, Xnt2, Xnt2), then (8.4) turns into

G(-xn+l s Xn+2, -xn+2) = A G(-xn-H s Xn+25 -xn+2)

which is impossible because G(x,,+1, Xy+2, Xp42) > 0and A < 1/2.
o If M(x, Xp41,Xn+1) = G(Xp41, Xn+1,Xn+2), then (8.4) and Lemma 3.1.1 imply
that
G(Xnt1> Xnt25 Xnt+2) < AG(Xnt1, Xnt1, Xn42)

< 2AG(Xpg 15 Xt 25 Xnt2)

which is impossible because G(x,+1, X,+2,Xu42) > 0 and 24 < 1.
o If M(xy, Xpt1, Xnt1) = G(xp, Xut2, Xn42), the inequality (8.4) leads to

G(xn+1 s Xn+2, xn+2) = A G()Cn, Xn+2, xn+2)
= A [G(xnv-xn+19xn+1) + G(xn+1a-xn+29xn+2)] .
In this case, we deduce that

G(Xpt15 Xn42: Xng2) < ¥V G(Xs X1, Xt 1) (8.6)

Wherey=%<lsince0§k<%.

o If M(xy, Xpt1, Xnt1) = G(xp, Xu-1, Xnt1), then the inequality (8.4) gives

G(xn+lvxn+27xn+2) =< AG(xnvxn+l,xn+l)~ (87)

As a result, the first two cases are impossible and, in the last two cases, we have
that

G(Xn+1, Xn+25 Xn+2) < ¥ G(Xp, X1, Xp41)  Toralln € N,

where y = ﬁ < 1 (notice that A < ). Using the classical Banach argument,
we prove that {x,} is a Cauchy sequence in (X, G) because G(x,, Xy+1,Xn+1) <
)/”G(xo,xl,xl) and

n

G(xn,xm,xm) < ly

T G(xo,x1,x1)
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for all n,m € N with m > n. Since (X, G) is complete, there exists u € X such that
{x,} = u. We now show that Tu = u. Using (8.1) with x = x,,+; and y = z = u, we
have that

G(Xyt1, Tu, Tu) = G(Tx,, Tu, Tu) < AM(x,, u, u) (8.3)
where

G(x, u, 1), G(xp, Xpt1, Xnt1), G(xy, Tu, Tu),
G(x,, Xpt1,u), G, Tu, Tu), G(u, x,+1, Tu),
G(u, Xpt2, Tu), G(u, Xt 1, Xnt1),

G(Xpt1, Xpy2, Tit)

M(x,, u, u) = max

As G is continuous on each argument (see Theorem 3.2.2), all terms of M (x,,, u, u)
converge to 0, or G (u, u, Tu) or G (u, Tu, Tu). From Lemma 3.1.1, G (u, u, Tu) <
2G (u, Tu, Tu). Hence, by taking the limit as n — oo in (8.8), we deduce that

G(u, Tu, Tu) < A max{G (u,u, Tu), G (u, Tu, Tu)}
< 2AG(u, Tu, Tu).

Since 2A < 1, the previous inequality can only hold when G(u, Tu, Tu) = 0, which
proves that Tu = u.

Finally, we show that 7" has a unique fixed. Suppose that x,y € Fix(T) are two
fixed points of 7. Then, by (8.1), we deduce that

G(x,y,y) = G(Tx, Ty, Ty) < AM(x,y,y)

G(x,y,y), G(x, Tx, Tx), G(x, Ty, Ty),
G(x,Tx,y), G(x,Tx,y), G(y, Ty, Ty),

= Amax { GOy, Tx,Ty), G(y,T%x, ), G(y, Ty, Ty),
Gy, Tx, Tx), G(y, Ty, Ty), G(y, Tx, Ty),
G(y, T?x, Ty), G(Tx, T*x, Ty), G(Tx, T*x, Ty)

= A max {G(x,y.y), G(x,x,y)}

<2AG(x.y,y).
As 24 < 1, the previous inequality can only hold when G(x, y,y) = 0, which proves
that x = y. O

In Theorem 8.1.1, we can take A belonging to the whole interval [0, 1) if we
remove the terms for which we need to apply Lemma 3.1.1. Following exactly the
same proof (we omit it here), it is possible to obtain the following result, which is
also valid adding some terms by symmetry.
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Theorem 8.1.2. Let (X, G) be a complete G-metric space and let T : X — X be
mapping. Assume that there exists A € [0, 1) such that

G(Tx, Ty, Tz) < AM(x,y,z) forallx,y,z € X, (8.9
where

G(x,y,2), G(x,Tx, Tx), G(x, Tx,y),
G(x,Tx,z), GOy, Ty, Ty), G(y, Tz, Tz),

Gy, T*x, Ty), G(z, Tx, Tx), G(z, Tz, Tz),
G(z, T%x, Tz), G(Tx, T?x, Tz), G(Tx, T*x, Ty)

M(x,y,z) = max

Then there is a unique x € X such that Tx = x. In fact, T is a Picard operator.

8.2 Revisited Fixed Point Results via Admissible Mappings

In this section we introduce some contractivity conditions very similar to those used
in Definition 7.1 and in Sect.7.3.1, with a very important difference: these new
conditions cannot be reduced to quasi-metrics.

Definition 8.2.1. Let (X, G) be a G-metric space and let 7 : X — X be a given
mapping. We say that T is a G - B - ¥ - contractive mapping of type A if there exist
two functions 8 : X x X x X — [0,00) and ¢ € ]-"L(f)zn such that, for all x,y,z € X,
we have

B (x,v, Tx) G(Tx, Ty, T*x) < ¥ (G(x, y, Tx)). (8.10)

Theorem 8.2.1. Let (X, G) be a complete G-metric space and let T : X — X be a
G - B - ¥ - contractive mapping of type A satisfying the following conditions:
(i) T is B - admissible;
(ii) there exists xo € X such that B (xq, Txg, Txg) > 1;
(iii) T is G-continuous.

Then there exists u € X such that Tu = u.

Proof. Let xy € X be such that 8 (xo, Txo, Txo) > 1 and let {x,} be the Picard
sequence of T based on xq (that is, x,,+1 = Tx, for all n > 0). If there exists some
no € N such that x,,, = x,,+1, then u = x,, is a fixed point of 7. On the contrary
case, assume that x,, 7 x,4; for all n. Since T is f - admissible, we have

B (x0,x1,x1) = B (x0, Txo, Txo) > 1
— ﬂ (X],.XQ,JQ) = ,3 (TXQ,TX[,TX]) > 1.
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Inductively, we have that
ﬂ(x,,,x,,+1,xn+1) >1 foralln>0. (8.11)
From (8.10) and (8.11), it follows that, for all n > 1, we have

G (xns Xn+1 »xn—i-l) =G (Txn—l s Txna szn—l)
f ,8 (xn—lvxm Txn—l) G (Txn—lv Txn» szn—l)
< w (G (xnflaxny T-xnfl)) = w (G ()C,,,l, xn,xn)) .
It follows from Lemma 4.1.2 that {x,} is a Cauchy sequence in the G- metric space
(X, G). Since (X, G) is complete, there exists u € X such that {x,} is convergent
to u. Since T is G-continuous, it follows that {x,+; = Tx,} is G-convergent, at the

same time, to u# and to 7u. By the uniqueness of the limit, we get u = Tu, that is, u
is a fixed point of 7. O

In the following result, we do not need the continuity of 7.

Theorem 8.2.2. Let (X, G) be a complete G-metric space and let T : X — X be a
G - B - Y - contractive mapping of type A satisfying the following conditions:

(i) T is B - admissible;
(ii) rhere exists xy € X such that B (xo, Txg, Txg) > 1;
(iii) if {x,} is a sequence in X such that B (x,, Xy+1,Xn+1) > 1 foralln € N and
{xn} is G-convergent to x € X, then B (x,,x,x) > 1 foralln € N.

Then there exists u € X such that Tu = u.
Proof. Following the argument in the proof of Theorem 8.2.1, we obtain that the
Picard sequence {x, } converges to some # € X. From (8.11) and (iii), we have
B (xu,u,u) > 1 foralln>0.

Using (Gs), (Gy), (8.10) and (8.11), we have that, for all n € N,

G (u, Tu, Tu) < G (u, Tx,, Tx,) + G (Tx,, Tu, Tu)
< G W, Xp41,Xn+1) + B (x, u, ) G (Txy,, Tu, Tu)
<G U Xpt1, Xp4+1) + ¥ (G (X, u, 1)) .
Taking into account that ¥ is continuous at ¢t = 0, letting n — oo, it follows that
G (u,Tu,Tu) = 0,sou = Tu. O

With the following examples, we will show that the hypotheses in Theo-
rems 8.2.1-8.2.2 do not guarantee uniqueness.
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Example 8.2.1. Let X = [0, 00) be endowed with the G-metric G(x,y,z) = |x —
y| 4+ |y —z| + |z — x| for all x, y € X. Consider the self-mapping T : X — X and the
mapping B : X x X x X — [0, co) given by

7
2x——,ifx> 1, ;
=1, 4 Blxy.2) = 1, 1fx,y,z. € [0,1],
n if0o<x<I: 0, otherwise.

We claim that T is a G - B - - contractive mapping of type A with respect to the
(c)-comparison function v (f) = t/4 for all > 0. To prove it, let x, y € X be points
such that g (x,y, Tx) > 0 (if B (x,y,Tx) = 0, condition (8.10) trivially holds).
Then B (x,y, Tx) = 1, which means that x, y, Tx € [0, 1]. In particular, Tx = x/4,
T?x = x/16 and Ty = y/4. Hence,

Xy X
) aT GTsTst :G(_7_7_>:
By 10 6T . 179 = 6 (5.2 2

S S I FL A B I

il i e R v Rl E T
i (et =)
4 Y 4l Tlg Y

1
= ZG(x,y, Tx) = 1//(G(x,y, Tx))

Furthermore, for xo = 1 we have that §(1,71,T1) = B(1, %, %) =1.AsT
is continuous, to show that T satisfies all the hypothesis of Theorem 8.2.1, it is
sufficient to observe that T is B-admissible. For this purpose, let x, y € X such that
B(x,y,z) > 1. In this case, x,y,z € [0,1]. Hence Tx = x/4 € [0,1], Ty = y/4 €
[0, 1] and Tz = z/4 € [0, 1], which implies that 8(Tx, Ty, Tz) > 1. As aresult, all the
conditions of Theorem 8.2.1 are satisfied. Theorem 8.2.1 guarantees the existence
of a fixed point of 7, but not its uniqueness. In this example, 0 and % are two fixed
points of 7.

Notice that Theorem 4.16, given by Mustafa as a characterization of the Banach

fixed point theorem, cannot be applied in this case because
G(T1,7T2,T2) =4 >2=G(1,2,2).

In the following example, T is not continuous.

Example 8.2.2. Let (X, G) and B be given as in Example 7.1.2, and let T and ¥ be
given by

-
2x——,ifx> 1,

Tx=14, 4 ¥ (1) =t/3.
3 if0<x<1;
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Following the previous arguments, it is easy to show that, for all x,y € X,
1
B(x,y, Tx) G(Tx, Ty, sz) < ZG(x,y, Tx) < ¥ (G (x,y, Tx)) .

Therefore, T is a G - B - ¥ - contractive mapping of type A. Furthermore, the point
xo = 1 satisfies B(1,71,71) = 1 and T is B -admissible. However, T is not
continuous. In this case, we can prove hypothesis (iii) of Theorem 7.1.2. Indeed, let
{x,} be a sequence such that B(x,, X,+1,X,+1) > 1 foralln € Nand {x,} > x € X.
Since B(x,, Xu+1,Xn+1) = 1 for all n € N, then x, € [0, 1], and as this interval is
closed, we deduce that x € [0, 1]. Thus, B(x,,x,x) > 1 for all n € N. As a result, all
the conditions of Theorem 8.2.2 are satisfied. Notice that Theorem 8.2.2 can only
guarantee the existence of a fixed point of 7, but not its uniqueness. In fact, 0 and %
are two fixed points of 7.

The uniqueness of the fixed point can be deduced from an additional assumption.

Theorem 8.2.3. Under the hypotheses of Theorem 8.2.1 (respectively, Theo-
rem 8.2.2), also assume the following condition:

(U) For all x,y € Fix(T), there exists z € X such that B (x,z,x) > 1 and
p(v.z.y) =1

Then T has a unique fixed point.

Notice that the previous condition is different from what we introduced in
Theorem 7.1.3.

Proof. Let x,y € Fix(T) be two fixed points of 7. By (U), there exists z € X such
that 8 (x,z,x) > 1 and B (y,z,y) > 1. We claim that the sequence {z, = T"z},>0
converges, at the same time, to x and to y and, hence, we will deduce that x = y.
The following argument only uses x, but it is also valid involving y. Since T is
B - admissible, we get

B,z,x)>1 = BxTz,x)=p(Tx, Tz, Tx) > 1,
and, by induction,

B(x,T'z,Tx) = B (x,T"z,x) > 1 foralln e N. (8.12)
From (8.10) and (8.12), we have that, for all n > 0,

G (x, T”+lz,x) <BxT'z,Tx) G (Tx, TT"z, sz)
<Y (Gx,T'z,Tx)) =¥ (G(x,T"z,x)) .

Thus, we get, by induction, that

G(x,T'z,x) <y"(G(x,z,x)), forallneN.
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Letting n — oo and taking into account that ¢ € ]-'C(gl)n, we have that
{Gx,T'z,x)} — 0, so {T"z} — x. Similarly, {T"z} — y, so x = y by the
uniqueness of the limit. O

8.3 Modified « - ¢ - Asymmetric Meir-Keeler
Contractive Mappings

In this section, we present some theorems inspired from Sect. 6.5, by introducing a
mapping @ : X x X — [0, 00) on the contractivity condition. Recall that we denote
by Fuy the family of continuous, non-decreasing functions ¢ : [0, +00) — [0, +00)
such that ¢ (r) = 0 if, and only if, t = 0.

Definition 8.3.1 ([182]). Let (X, G) be a G-metric space and let ¢ € Fy and « :
X x X — [0,00) be two functions. We say that T : X — X is a modified o - ¢ -
asymmetric Meir-Keeler contractive mapping if, for all ¢ > 0, there exists § > 0
such that

x,yeX, alxy >1,

2
e < (G Try) <& +38 =  ¢(G(Tx, T°x, Ty)) < e. (8.13)

Remark83.1. If T : X — X is a modified o -¢ -asymmetric Meir-Keeler
contractive mapping and x, y € X are such that x # Tx and «(x,y) > 1, then

& (G(Tx, T*x, Ty)) < ¢(G(x, Tx, y)). (8.14)
Definition 8.3.2. A function « : X x X — [0, 00) is transitive if, given x,y, 7 € X,
ax,y) > 1, ay,2)>1 = oaxz)>1
A mapping T : X — X is said to be « - admissible if
ax,y)>1 = oaTx,Ty) > 1.
Remark 8.3.2. 1f a(x,y) > 1 for all x,y € X, then any mapping T : X — X is

« - admissible. In particular, this property holds when «(x,y) = 1 forall x,y € X.

Lemma 8.3.1. LetT : X — X be an o - admissible mapping and let {x,},>0 < X be
a Picard sequence of T based on a point xy € X. If xg satisfies a(xg, Txg) > 1, then
a(xy, xp41) > 1 for all n € N. Additionally, if « is transitive, then a(x,, x,,) > 1 for
all n,m € N such that n < m.

Proof. The initial condition «(xg, Txg) > 1 means that a(xp,x;) > 1. Since T
is an « - admissible mapping, we have that o(Txo, Tx;) > 1, which means that
a(x1,x) > 1. By induction, we deduce that o(x,,x,+1) > 1 for all n € N.
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Now suppose that « is transitive, and let n, m € N such that n < m. As

a(xnv-xn+l) > 1’ O[(-)‘jrt-l—lvxn-i-Z) > 17 .. ~va(-xm—1,xm) > 1’

we deduce that o (x,, x,,) > 1 by the transitivity of «. O

In order to prove the main result of this section, we need the following version
of Theorem 4.1.1.

Lemma 8.3.2. Let (X, G) be a G-metric space and let {x,} € X be a sequence such
that lim,,_se0 G (X, X, Xp41) = 0.

1. If {x,} satisfies the following property:

for all € > 0, there exists ny € N such that

G (X4, Xpt1, X) < e foralln,m € Nwithm > n > ny, (8.15)
then {x,} is a Cauchy sequence in (X, G).
2. If {x,} is not a Cauchy sequence in (X, G), then there exist &g > 0 and two
subsequences {x,x} and {Xm } of {x,} such that, for all k € N,

k < n(k) < m(k),
G (Xn()» Xnk 1 Xm(—1) < €0 < G (Xn(ty» Xnk) 1 Xm(x) ) -
Furthermore,
lim G , , = lim G 1, , —1) = &.
kl)fglo (xn(k) Xn(k)+1 xm(k)) klglo (xn(k) 1> Xn(k) s Xm(k) 1) &0
Proof. Since lim,,— o G (X, X, X,+1) = 0, Lemma 3.1.1 shows that

lim G (X, Xp+1, Xp4+1) = 0.
n—>oo
(1) Fix & > 0 arbitrary. Let n; € N be such that

max {G (X, Xy, Xn+1) » G (X, X1, Xnt1) } < for all n > nj.

0| ™

By hypothesis, let n, € N be such that
G (X, X1, Xm) < % for all n,m € N withm > n > n,.

Now let nyp = max (ny,n,). Let n,m, p € N be such that np < n < m < p. Then

G (X, Xms %p) = G (%, X X)) = G (X Xons X)) + G (s X X))
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< G (X Xims Xp) + 2G (Xn, X, Xp)

=< G(XM’XM+17xm+1) + G(-xm-‘rla-xma-xp)
+ 2 [G (Xn, Xnt 1, Xn1) + G (X1, X, Xm) |
P [8 n 8] 3¢ -
-+ -|=—<ec
8 8 4

=

8+8
8 8

Therefore, {x,} is a Cauchy sequence in (X, G).

(2) If {x,} is not a Cauchy sequence in (X, G), then condition (8.15) cannot hold.
Then, there exists &g > 0 and two subsequences {x,) } and {X,)} of {x,} such
that, for all k € N,

k< n(k) < m(k) and ¢y <G (xn(k),xn(k)+1 ,xm(k)) .
If we choose m(k) as the smallest integer, greater than n(k), satisfying this

property, then m(k) — 1 does not verify it. Hence, G (x,,(k),xn(k)+1 , xm(k)_l) <e&o
for all k € N. In particular, for all k € N,

g <G (x,,(k),xn(k)ﬂ,xm(k))
<G (xm(k),xm(k)—l,xm(k)—l) +G (xm(k)—l s xn(k),xn(k)+1)

<G (xm(k)sxm(k)—lvxm(k)—l) + &o.

Letting k — oo we deduce that
kl_lfgo G (Xn()s Xn(k)+1+ Xm()) = €0-

From Lemma 4.1.4,

kl_lglo G (Xn)—1+ Xn(k)» Xmik)—1) = o, (8.16)
which finishes the proof. O

Now, we are ready to state and prove the main result of this section.

Theorem 8.3.1 ([182]). Let (X, G) be a G-complete G-metric space and let ¢ €
Far and a : X x X — [0,00) be two functions. Suppose that T : X — X
is a modified a - ¢ - asymmetric Meir-Keeler contractive mapping such that the
following conditions hold:

(i) there exists xo € X such that a(xg, Txp) > 1
(ii) o is transitive and T is o - admissible;
(iii) T is continuous.

Then T has, at least, a fixed point.
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Proof. From (i), let xo € X be a point such that «e(xo, Tx) > 1 and let {x, },>0 be the
Picard sequence of T based on xy, that is, x,+; = Tx, for all n € N. If there exists
some ny € N such that x,,4+1 = x,,, then x,, is a fixed point of 7. On the contrary
case, suppose that
Tx, = xy41 # x, foralln e N,

that is,

G(x,l,xn+1,xn+1) > (0 foralln € N. (8.17)
From Lemma 8.3.1 we get

o(x,, x,) > 1 forall m,n € N such that n < m. (8.18)

By (8.14) and (8.18), we observe that, for all n € N,

P (G(Xnt1. Xnt2. Xn42)) = G (G(Tx, T?X, Txt1))
< ¢(G(xn» Txnsxn-i-l)) = ¢(G(xnvxn+laxn+l)) (8.19)

Therefore, {¢ (G (x,, Xu+1, Xn+1)) }nen is a decreasing sequence of nonnegative real
numbers. Hence, it is convergent. Let L > 0 be its limit. We claim that L = 0.
Suppose, on the contrary, that L > 0. Thus, we have
0 <L < ¢(G(xy, Xp+1,X9+1)) forallm e N. (8.20)
Assume ¢ = L > 0. As T is a modified « - ¢ - asymmetric Meir-Keeler contractive
mapping, there exists § > 0 such that (8.13) holds. On the other hand, as
{(G(xy, Xn+1,Xn+1))} \ L, then there exists ny € N such that
& Z (G (Xngs Xng+1,Xng+1)) = @ (G(Xngs Ty, Xny+1)) < € + 6. (8.21)
Taking the condition (8.13) into account, the expression (8.21) yields that
¢(G(xn0+l5xno+25xno+2)) = ¢(G(Txn07 sznov Txno-l—l)) <e=1L (822)
which contradicts (8.20). Hence L = 0, that is,
lim ¢(G(xn, Xn+1 a-xil+1) =0.
n—>o00

Since ¢ € Fy, we deduce, by Lemma 2.3.3, that

lim G(xn,xn+1,x,,+1) =0.
n—>00



8.3 Modified Asymmetric Meir-Keeler Mappings 211

Moreover, by Lemma 3.1.1,

lim G(x,, Xy, Xy+1) = 0.
n—>o00

In fact, by Proposition 2.3.4, we have that
G(X,H_] y Xn+2, X,H_z) < G(Xn, Xn+1, xn+l) for all n € N.
We now show that {x,}°2, is a Cauchy sequence in (X,G) reasoning by
contradiction. Assume that {x,} is not a Cauchy sequence in (X, G). By item 2 of
Lemma 8.3.2, there exists &9 > 0 and two subsequences {X,)} and {Xu} of {x,}

such that, for all k > 0,

k < n(k) < m(k),
G (Xn () Xk 1 Xm(—1) < €0 < G (Xngty» Xnk)+1 Xm(x) ) » (8.23)
and
Jim G (Xn() Xty +1: Xm()) = Jm G (Xuy—1+ Xn(ty s Xim(y—1) = €0-
As ¢ is non-decreasing,
¢ (€0) < ¢(G (Xuy» Xaoy+1 ¥mpy))  forall k € N. (8.24)
Let ky € N be a number such that

‘%0 < G (Any—1- Xty Xm—1)  for all k > ko. (8.25)

Let &y = ¢ (g9) > 0. As ¢ is continuous,
kl_if20¢(G (%) s Xn(oy+1+ Xm)) = @ (80) = &1. (8.26)

As T is a modified « - ¢ - asymmetric Meir-Keeler contractive mapping, for ¢; > 0,
there exists §; > 0 such that

ifx,yeXand a (x,y) > 1,

g < PG Tx,y) <e1+68 = ¢G(Ix,T*x,Ty)) < &1 = ¢ (&) -
(8.27)

If there exists some kK’ € N, with k¥ > ko, such that

G(Xn()—1, Xn@kys Xmk)—1) = €o,
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it follows from (8.14), (8.18) and (8.25) that

Txnk)—1 = Xn() 7 Xnk)=1>  OXn@)=1, Xmr)—1) > 1
= A (G(Txaw)—1> T Xy —1> Tm(ry—1))
< A(Gnwry—15 Ty =15 X )—1))
= Q(GOaw) Xn®)+1 Xm(x’)))
< Q(G(Xn(y—1, Xn(i), Xmk)—1)) < ¢ (g0) = €1,

but this is impossible because by (8.23),

g0 <G (xn(k)vxn(k)+lsxm(k))

= &1 = ¢ (g0) = P(GXuw)> Xn)+15 Xm(x)))-
As aresult, such a k¥’ cannot exist, so
G(Xn(k)—1s Xn(k)> Xmgy—1) > €0 for all k > k.
As ¢ is non-decreasing,
g1 = ¢ (80) < P(G(Xn(y—1>Xnk)> Xm(—1)) forall k > ko.
Moreover, by (8.26), there exists some k > ko such that

€1 < P(GXnge—1, Thnge)—15 Xm(e)—1)) < €1 + 61.

Taking into account that o(X,)—1, Xmu)—1) = 1 by (8.18) and using (8.27), we
conclude that

¢(G(xn(/c)a Xn(k)+1s xm(lc))) = ¢ (G(Txn(l()—l s szn(lc)—l , Txm(/c)—l ))
<é& = ¢ (80) R

but this is a contradiction with (8.24). This contradiction proves that {x,} is a Cauchy
sequence in (X, G). As (X, G) is complete, there exists # € X such that {x,} — u.
As T is continuous, then {x,+; = Tx,} — Tu, and the uniqueness of the limit in a
G-metric space we conclude that Tu = u. O

In order to avoid the continuity of 7 in the previous result, we introduce the
following notion.

Definition 8.3.3. Let (X, G) be a G-metric space and let o« : X x X — [0, 00) be
a function. We say that (X, G) is a-non-decreasing-regular if « (x,,u) > 1 for all
n € Nprovided that {x,} € X and u € X are such that {x,,} — uand o (x,,, x,,+1) > 1
forall n € N.
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Theorem 8.3.2 ([182]). Let (X, G) be a G-complete G-metric space and let ¢ €
Far and a : X x X — [0,00) be two functions. Suppose that T : X — X
is a modified « - ¢ - asymmetric Meir-Keeler contractive mapping such that the
following conditions hold:

(i) there exists xo € X such that a(xg, Txp) > 1
(ii) o is transitive and T is o - admissible;
(iii) (X, G) is a-non-decreasing-regular.

Then T has, at least, a fixed point.

Proof. Following the proof in Theorem 8.3.1, we may deduce that there exists u € X
such that {x,1; = Tx,} — u and (8.18) holds. Since (X, G) is a-non-decreasing-
regular, we have that

o (x,,u) >1 foralln e N.
Since Tx, = x,4+1 # x, for all n, by Remark 8.3.1 we have that

G (G(Xnt 1. Xut2. Tw)) = ¢(G(Txy, Tx, Tt))
< ¢(G(xm Tx,, Li)) = ¢(G(xn, Xn+1> M))

As G and ¢ are continuous, lim, o0 (G (X, Xy+1, %)) = ¢ (G (4, u,u)) = ¢ (0) =
0, so

& (G(u, u, Tu)) = nl_i)rgo¢(G(xn+1’xn+27 Tu)) = 0.

As ¢ € Fy, we deduce that G(u, u, Tu) = 0, so Tu = u. O
Example 8.3.1. Let X = [0, c0) and define G : X3 — [0, c0) by

0, ifx=y=z,

G b b = .
(x.3,2) % max{x, y} + max{y, z} + max{x, z}, otherwise.

Clearly, (X, G) is a complete G-metric space. Define 7 : X — X, o : XxX — [0, 00)
and ¢ : [0, 00) — [0, 00) by

1 .
X ifx € [0,1]
Tx = 4 o )=t
* {x2+2|x—2||x—3|lnx,ifx>1; ()
{8, ifx,y €[0,1],
*(xy) = % 0, otherwise.

Let x,y € X be such that a(x,y) > 1. Then x, y € [0, 1]. At first, assume that x < y.
Then,
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G(x, Tx,y) = max{x, Tx} + max{Tx, y} + max{x,y} = x + 2y
and
G(Tx, T?x, Ty) = max{Tx, T*x} + max{T’x, Ty} + max{Tx, Ty}
—1( +2)—1G( Tx,y)
= 1 X y) = 1 X, 1X,Y).
Next, assume that, y < x. Then,
G(x, Tx,y) = max{x, Tx} + max{Tx, y} + max{x, y}

1
=2x+max{zx,y} ,

and

G(Tx, T*x, Ty) = max{Tx, T°x} + max{T?x, Ty} + max{Tx, Ty}

1 5 1 1 Glx. T
=3 ( x+max{4x,y}) =1 (x, Tx, y).
Let ¢ > 0 be arbitrary. Using § = 3¢ > 0, condition (8.13) holds. Again if
a(x,y) > 1, then x,y € [0,1]. On the other hand for all w € [0, 1], we have
Tw < 1. Hence a(Tx,Ty) > 1. Further, if a(x,y) > 1 and a(y,z) > 1, then
x,y,z € [0, 1]. Thus @(x,z) > 1. This implies that 7 is an « - admissible mapping.
Clearly, «(0,70) > 1.

Although T is not continuous, we can apply Theorem 8.3.2. Indeed, let {x,} be
a sequence in X such that «(x,,x,+;) > 1 for all n € N and {x,} — x. Then
{x,} € [0, 1] and, hence, x € [0, 1]. This implies that «(x,,x) > 1 forall n € N.
Thus, all the conditions of Theorem 8.3.2 hold and T has a fixed point.

Notice that Theorems 6 and 8 of [116] cannot be applied for this example
because, although ¢ < ¢(d(0,1)) = 1 < e+ §fore = 1 and § > O arbitrary
(where d is a Euclidean metric on X), we have that

1
a(0,1)¢(d(T0,T1)) = SZ =2>1=¢d0,1) >e.
From Theorem 8.3.1 we can deduce the following corollary, using ¢ (t) = ¢ for

allt > 0.

Corollary 8.3.1 ([182]). Let (X, G) be a complete G-metric space and let o : X X
X — [0, 00) be a transitive function. Suppose that T : X — X is an « - admissible
mapping satisfying the following condition:
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for each € > 0, there exists § > 0 such that

xnyeX, alxy =1,

= G(Tx,T*x, Ty .
e<G(x,Tx,y) <e+ 4 (IxT'x,Ty) <&

If there exists xy € X such that a(xy, Txo) > 1 and T is continuous, then T has, at
least, a fixed point.

From Theorem 8.3.2 we can deduce the following result.

Corollary 8.3.2 ([182]). Let (X, G) be a complete G-metric space and let o : X X
X — [0, 00) be a transitive function. Suppose that T : X — X is an o - admissible
mapping satisfying the following condition:

for each € > 0, there exists § > 0 such that

xyeX, oy >1,

= G(Tx,T’x,Ty) < e.
e <G Tx,y) <e+34 (% Tx 1Y)

If there exists xo € X such that o(xg, Txg) > 1 and (X, G) is a-non-decreasing-
regular, then T has, at least, a fixed point.

By taking o(x,y) = 1 for all x,y € X, in the above corollary we deduce the
following result.

Corollary 8.3.3 ([182]). Let (X, G) be a complete G-metric space and let T : X —
X be a self-mapping satisfying the following condition:
for each € > 0, there exists § > 0 such that

xyeX, e<GxTxy)<e+8 = G(Ix,T*x,Ty) <e.

Then T has, at least, a fixed point.

8.3.1 Fixed Point Results in Partially Ordered G-Metric Spaces

In the following result we show how a binary relation < induces an appropriate
function ax.

Corollary 8.3.4 ([182]). Let (X, G, <) be an ordered complete G-metric space, let
T : X — X be a <X-non-decreasing mapping and let ¢ € Fy. Assume that, given
e > 0, there exists § > 0 such that

x,yeX, x=<)y, 2

= G(Tx, T°x,Ty)) < . 8.28
£ < ¢(G(x,Tx,y) <&+ 8 $(G(Ix T'x. 1Y) (8.28)
Suppose that T is continuous and there exists xo in X such that xo < Txg. Then T
has, at least, a fixed point.
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Proof. Define the mapping a< : X X X — [0, 0o) given, for all x,y € X, by

1, ifx=<y,

8.29
0, otherwise. ( )

ai(x’ y) =

Since T is <-non-decreasing mapping, then
o<x(x,y)>1 = xxy = TnxTy = ox(Tx,Ty) > 1.

Hence, T is o -admissible. The point xo, such that x, < Tx, satisfies
ax (xo, Txo) > 1. Moreover, as < is transitive, then a< is transitive. Finally,
condition (8.28) means that 7 : X — X is a modified o< - ¢ - asymmetric Meir-
Keeler contractive mapping. Therefore, all the hypotheses of Theorem 8.3.1 are
satisfied and, hence, T has, at least, a fixed point in X. ad

In the following corollary, we replace the continuity of T by the non-decreasing-
regularity of (X, G, <) (recall Definition 5.2.1).

Corollary 8.3.5 ([182]). Let (X, G, X) be an ordered complete G-metric space, let
T : X — X be a <X-non-decreasing mapping and let ¢ € F. Assume that, given
e > 0, there exists § > 0 such that

x,yeX, x=xy,

2
e < (G Try) < £+ 8 =  ¢(G(Tx,T°x,Ty)) < .

Suppose that (X, G, X) is non-decreasing-regular and there exists xo in X such that
X0 X Txo. Then T has, at least, a fixed point.

Proof. Tt is only necessary to consider the function o< given in (8.29). Then,
Theorem 8.3.2 is applicable. O

We can also deduce the following corollaries from the above theorems, taking
¢ (t) =tforallt > 0.

Corollary 8.3.6 ([182]). Let (X, G, X) be an ordered complete G-metric space and
let T : X — X be a <X-non-decreasing mapping. Assume that, given ¢ > 0, there
exists § > 0 such that

e<Gx.Tx,y)<e+8 = GIx.Tx,Ty) <ce
forall x,y € X with x < y. Also suppose that T is continuous and that there exists

Xo in X such that xo <X Txo. Then T has, at least, a fixed point.

Corollary 8.3.7 ([182]). Let (X, G, X) be an ordered complete G-metric space and
let T : X — X be a <X-non-decreasing mapping. Assume that, given ¢ > 0, there
exists § > 0 such that
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e<G(x,Tx,y)<e+8 = G(Ix,Tx,Ty) <e

for all x,y € X with x < y. Also suppose that (X, G, X) is non-decreasing-regular
and that there exists xy in X such that xy < Txo. Then T has, at least, a fixed point.

8.3.2 Fixed Point Results for Orbitally G-Continuous
Mappings

Following the techniques given in Sect. 6.5.2, we can deduce the following results
in the context of orbitally G-continuous mappings (recall Definition 6.5.3).
Theorem 8.3.3. Let (X, G) be a G-metric space and let T : X — X be a self-
mapping. Assume that, given & > 0, there exist ¢ € Fo and § > 0 such that

e<P(G(x,Tx,y)) <e+8 = ¢GTx,T’x,Ty) <¢ (8.30)

for all distinct points x,y € Or(x) with Tx = y. Suppose also that:

(C) for some xy € X, the orbit O7(xy) of xo with respect to T has a cluster point
zeX

If T is orbitally G-continuous at z, then z is a fixed point of T in Or(xy).
Corollary 8.3.8 ([182]). Let (X, G) be a G-metric space and let T : X — X be a
self-mapping. Assume that, given ¢ > 0, there exists § > 0 such that

e<Gx.Tx,y)<e+8 = GIx.TxTy) <c¢

for all distinct x,y € Or(x) with Tx = y. Suppose also that:

(C) for some xy € X, the orbit O7(xy) of xo with respect to T has a cluster point
zeX.

If T is orbitally G-continuous at z, then z is a fixed point of T in O7(xp).



Chapter 9
Expansive Mappings

In this chapter we present some fixed point theorems for expansive mappings.

9.1 Fixed Point Theorems for Expansive Mappings
on G-Metric Spaces

In this section, we establish some fixed point results for expansive mappings in the
frameworks of G-metric spaces.

Definition 9.1.1. A mapping 7 : X — X from a G-metric space (X, G) into itself is
said to be:

e expansive of type I if there exists A > 1 such that
G(Tx,Ty,T7) > AG(x,y,z) forallx,y,z € X.
e expansive of type II if there exists A > 1 such that

G(Tx,Tx,Ty) > AG(x,x,y) forallx,y € X.

To prove the main result of the section, we recall that if 7 : X — X is onto, then
there exists a mapping 77 : X — X such that 7 o T’ is the identity mapping on X
(see Proposition 2.1.1).

Theorem 9.1.1. Let (X, G) be a complete G-metric space and let T : X — X be an
onto mapping such that there exist y € Fy, and ¢ € F,, satisfying

V(G (x,x,y) =¥ (G(Tx,Tx, Ty)) — ¢ (G (Tx, Tx, Ty)) .1
forall x,y € X. Then T has a unique fixed point.
© Springer International Publishing Switzerland 2015 219

R.P. Agarwal et al., Fixed Point Theory in Metric Type Spaces,
DOI 10.1007/978-3-319-24082-4_9



220 9 Expansive Mappings

Proof. From Proposition 2.1.1, since T is onto, there exists a mapping 77 : X — X
such that 7 o T” is the identity mapping on X. Let x, y € X be arbitrary points and let
z = T'xand w = T'y. By using (9.1) applied to z and w, we have that

V(G (z,2,w) < ¥ (G (Tz, Tz, Tw)) — ¢ (G (Tz, Tz, Tw)) .
Since Tz = TT'x = x and Tw = TT'y = y, then

V(G (T'x.T'xT'y)) < ¥ (G(x.x.3) — ¢ (G(x.x,y)) .

From Theorem 4.2.3, T’ has a unique fixed point u € X. In particular, u is also a
fixed point of T because T'u = u implies that Tu = TT'u = u. If u,v € Fix(T)
were two distinct fixed points of T, then we would get the contradiction

Y (G (u,u,v)) <Y (G (Tu, Tu, Tv)) — ¢ (G (Tu, Tu, Tv))
= 1// (G (u» u, U)) - ¢ (G (Ll, u, U)) < w (G (M, u, U)) )

so the fixed point of T is unique. O

Remark 9.1.1. If T is not onto, the previous result is false. For example, consider
X = (—o0, 1] U [1, 00) endowed with the G-metric G(x,y,z) = [x —y| + |x —z| +
|ly—z| forall x,y,z € X, and let T : X — X be defined by 7x = —2x for all x € X.
Then T has no fixed point although it satisfies (9.1) when ¥ (¢) = rand ¢ (¢) = t/2
forall ¢t > 0.

Corollary 9.1.1. Let (X, q) be a complete quasi-metric space and let T : X — X
be an onto mapping such that there exists ¢ € F, satisfying

G(x,x,y) < G(Tx,Tx, Ty) — ¢ (G (Tx, Tx, Ty))

forall x,y € X. Then T has a unique fixed point.
Proof. Tt is only necessary to consider () = ¢ for all # > 0 in Theorem 9.1.1. O

Corollary 9.1.2. Let (X, G) be a complete G-metric space and let T : X — X be
an onto mapping such that there exist € Fy, and ¢ € F,), satisfying

lr// (G (-x’ Ys Z)) =< 1/f (G (Tx9 Ty» TZ)) - ¢ (G (Txv Ty’ TZ))

forall x,y,z € X. Then T has a unique fixed point.
Proof. 1t is only necessary to take z = x and apply Theorem 9.1.1. O
Using ¥ (r) = ¢ for all t > 0, we deduce the following particular case.

Corollary 9.1.3. Let (X, G) be a complete G-metric space and let T : X — X be
an onto mapping such that there exists ¢ € F,, satisfying
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G, y,2) <G(Tx,Ty,Tz) — ¢ (G (Tx, Ty, Tz))

forall x,y,z € X. Then T has a unique fixed point.

Corollary 9.1.4. Any onto, expansive mapping (of type I or type 1I) from a complete
G-metric space into itself has a unique fixed point.

Proof. It follows by taking ¢(r) = (1 — A)z for all # > 0 in Corollaries 9.1.1
and 9.1.3. O

Next, we combine expansive mappings with contractivity conditions in which the
mapping T appears in both sides of the inequality.

Theorem 9.1.2 ([24]). Let (X, G) be a complete G-metric space and T : X — X be
a onto mapping. Suppose that there exists A > 1 such that

G(Tx, T’x,Ty) > AG(x,Tx,y) forallx,y € X. 9.2)

Then T has a unique fixed point.

Proof. Let xo € X be arbitrary. Since T is onto, there exists x; € X such that xy =
Tx;. By continuing this process, we can find a sequence {x,} such that x, = Tx,+;
for all n € N. If there exists some ny € N such that x,,, = x,,,+1, then x,,+; is a fixed
point of T. Now assume that x,, # x,,4 for all n € N. From (9.2) with x = x,,+1 and
y = x, we have that, foralln > 1,

G(xru Xn—1» xn—l) = G(Txn—i-l 5 szn-i-l s Txn)

> A G(xn+1 ) Txn—l—l s xn) =2 G(xn+l s Xns xn)
which implies that

G(xn-f-l » Xns -xn) =< hG(-xm Xn—1, xn—l)
1
where h = X < 1. Then we have,

G(Xut1, X0, Xn) < H"G(xp, x1,x1)
From Lemma 3.1.1 we get,
G (X, X1, X0t 1) < 2G(Xnp1, Xy Xn) < 20" G(x0, X1, x1).
Following the proof of Theorem 6.1.1, we derive that {x,} is a Cauchy sequence.
Since, (X, G) is complete, there exists z € X such that {x,} — z. As T is onto, there

exists w € X such that z = Tw. From (9.2) with x = x,,+; and y = w we have that,
foralln > 1,
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G (X, Xn—1,2) = G(Txnt1, T Xpt1, Tw)

= AG(Xn41, Txng 1. w) = AG (g1, X, W).
Taking the limit as n — oo in the above inequality we get,
G(z,z,w) = lim G(xy,x,—1,2) =0,
n—>o0

that is, z = w. Then, z is a fixed point of T because z = Tw = Tz. To prove
uniqueness, suppose that u, v € Fix(T) are two fixed points of 7. If u # v, again
by (9.2), we get

G(u,u,v) = G(Tu, T*u, Tv) > AG(u, Tu,v) > AG(u,u,v) > G(u, u, v)

which is a contradiction. Hence, u = v. O

Theorem 9.1.3 ([24]). Let (X, G) be a complete G-metric space and let T : X — X
be an onto mapping. Suppose that there exists A > 1 such that

G(Tx, Ty, T?y) > AG(x, Tx,T*x) forallx,y € X. 9.3)

Then T has, at least, a fixed point.

Proof. As in the previous proof, given an arbitrary point xo € X, let {x,} be a
sequence such that x, = Tx,y; for all n € N. If there exists some ny € N such
that x,, = X;,y+1, then x,,+ is a fixed point of 7. Now assume that x,, # x,4 for all
n € N. From (9.3) with x = x,,4; and y = x,, we have

G(Txpt1, Txn, T2X,) > AG(Xp1, T 1, T?Xg1),
which implies
G()Cn, Xn—1» xn—2) > A G(xn+l » Xns xn—l)v
and so,

G(xn+l s Xns xn—l) S hG(xna Xn—1» xn—Z)

1
where 7 = — < 1. Mimicing the proof of Theorem 6.1.1, we can show that {x,} is

a Cauchy sequence. Since, (X, G) is a complete G-metric space, there exists z € X
such that {x,} — z. As T is onto, there exists w € X such that z = Tw. From (9.3)
with x = w and y = x,,+1 we have,

Gz, Xp, Xn—1) = G(Tw, Txpg1, T* X1 1) = AG(w, Tw, T?w).

Taking the limit as n — oo in the above inequality, we deduce that
G(w, Tw, T*>w) = 0, that is, w = Tw = T?w. O
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9.2 Fixed Point Theorems for («, ¥, ¢)-Expansive Mappings

In this section, we present a new expansivity condition and we prove some new fixed
point results, avoiding the condition “T is onto”.

If T : X — X is an onto mapping, based on each xy € X, there exists a sequence
{x,} € X such that

Txp+1 = x, foralln>0. 9.4)

A sequence {x,} verifying (9.4) is not necessarily unique.

Definition 9.2.1. We say that a sequence {x,} C X is an inverse Picard sequence
of T : X — X based on x¢ if Tx,+1 = x, foralln > 0.

Definition 9.2.2. An operator 7 : X — X from a quasi-metric space (X, g) into
itself is said to be inverse Picard-continuous if for all convergent inverse Picard
sequence {x,} of T we have that

T(lim xn> = lim Tx,.

n—>oo n—>oo

Remark 9.2.1. 1. If T is continuous on (X, g), then T is inverse Picard-continuous.

2. An operator T is inverse Picard-continuous if, and only if, the limit of any
convergent inverse Picard sequence is a fixed point of 7.

Definition 9.2.3. Let (X, g) be a quasi-metric space and let 7 : X — X be a
mapping. We say that T is an («, V¥, ¢)-expansive mapping if there exist three
functions o : X x X — [0, 00), ¥ € Fy and ¢ € O such that, for all x,y € X,

a(x,y) (w(q(x, y) + ¢o(g(x.y)) ) < ¥ (q(Tx, Ty)). 9.5)

In the following result we do not suppose that 7' is onto.

Theorem 9.2.1. Let (X, q) be a quasi-metric space and let T : X — X be an
(o, ¥, p)-expansive mapping. Assume that there exists an inverse Picard sequence
{x,} of T satisfying o(x,, x,,) > 1 for all n,m > 1 such that n # m. Then {x,} is a
Cauchy sequence in (X, q).

Furthermore, if (X,q) is complete and T is an inverse Picard-continuous
mapping (or a continuous mapping), then {x,} converges to a fixed point of T.
In particular, T has a fixed point.

In addition to this, if «(u,v) > 1 for all u,v € Fix(T), then T has a unique fixed
point.

Proof. If there exists some ny € N such that x,,;, = x,,+1, then x,, is a fixed point
of T. On the contrary case, assume that x,, # x,4; for all n € N. In particular,
q(xn, Xp41) > 0 and g(x,41,x,) > O for all n > 0. Applying (9.5) to x = X2,
we obtain
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Y (qt1. %) = Y (q(Txnt2, T Xn42))
> o (X2, Txnt2) [ Y (qCntas Txnt2)) + d(q(xn+2, Txnt2)) |
= o (Xnt2, Xnt1) [V (G(nt2, Xn41)) + @ (g(Xnt2, Xnt1)) |
> Y (q(nt2, Xnt1)) + P(g(Xnt2, Xnt1))
> Y (q(Xnt2, Xnt1)) 9.6)

for all n > 0. Regarding the properties of the functions ¥ and ¢, we derive that

q(Xnt2, X0+1) < q(xp41,x,) forallm > 1.

Therefore {g(x,+1,x,)} is a decreasing sequence in (0, co) and, thus, it is conver-
gent. Let L € (0, 00) be its limit. We claim that L = 0. Suppose, on the contrary,
that L > 0. Since ¢ is lower semi-continuous,

¢(L) = liminf(g(xa+a, Xa+1)),

and taking into account that ¥ is continuous,

1ir£1>inf1p(q(x,,+1,xn)) = lim ¥ (g(xut1,%)) = ¥ (L),

n—>0oo n—>oo

liminf ¢ (g(xp42, Xp11)) = lim ¥ (g(xnt2, Xn41)) = Y (L).

n—oo n—>oo
Therefore, taking the limit inferior as n — oo in (9.6) we get ¥ (L) > ¥ (L) + ¢ (L),
which implies that ¢ (L) = 0. Therefore, L = 0, which is a contradiction. Hence, we

have that lim,— o0 ¢(x,+1,X,) = 0. As the expansive condition (9.5) is symmetric
on x and y, in the same way we can deduce that lim,,— oo g(xy,, X,41) = 0. Therefore

lim Q(xn-l-laxn) = lim Q(xnvxn-i-l) = 0. (97)
n—»00 n—00

Next, we show that the sequence {x,} is left-Cauchy in (X, g) reasoning by
contradiction. Suppose, on the contrary, that {x,} is not left-Cauchy. Reasoning as
in the proof of Theorem 4.1.1, there exists ¢ > 0 for which one can find two partial
subsequences {x,)} and {X,u)} of {x,} such that

q(Xn)—15 Xm)) < € < q(Xn@y, Xmy), n(k) >m(k) >k forallk > 1, (9.8)
M gQow s Xngy) = HM qQg—1.Xmp—1) = & 9.9)
Regarding (9.7) and the contractivity condition (9.5), we have that, for all &,
V(G (Xny—1: Xmty—1)) = ¥ (q(Txniky, TXmx)))
> o (Xn (k) Xim(k)) ( V(G (Xncky s X)) + @Gy s Ximik))) )

> Y (qXnwy> Xm))) + D (@) > Xmer)))- 9.10)
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Since ¥ is continuous and ¢ is lower semi-continuous, using (9.9),

¢(e) < liminf ¢ (q(xXnw), Xmx))).
n—o0
lifginfl/f(CI(xn(k),xm(k))) = lim Y (g, Xmwy)) = ¥ (&),
n o0 n—>o00

liminf ¢ (g(oug—1, Xmw—1)) = M Y (gOo—1, Xmw—1)) = ¥ (€)-

Then, taking the limit inferior in (9.10) as n — oo, we deduce that ¥ (L) > ¥ (L) +
¢ (L), which implies that ¢ (L) = 0. Therefore, L = 0, which is a contradiction. As
a consequence, the sequence {x,} is left-Cauchy in (X, ¢). Analogously, it can be
proved that {x,} is a right-Cauchy sequence, so it is Cauchy.

Now assume that (X, q) is complete and 7 is an inverse Picard-continuous
mapping. In this case, {x,} is a convergent sequence in (X,q) and item 2 of
Remark 9.2.1 guarantees that its limit is a fixed point of 7. The uniqueness of the
fixed point directly follows from (9.5) applied to u,v € Fix(T), which leads to
¢(g(u,v)) =0,s0u = v. O

Corollary 9.2.1. Let (X, q) be a complete quasi-metric space and let T : X — X
be an inverse Picard-continuous mapping such that there exist W € Fyand ¢ € ®
satisfying, for all x,y € X,

V(g(x,y) + ¢(q(x,y) < ¥ (q(Tx, Ty)).

If there exists an inverse Picard sequence {x,} of T, then {x,} converges to a fixed
point of T. In such a case, T has a unique fixed point.

Corollary 9.2.2. Let (X, q) be a complete quasi-metric space and let T : X — X
be an inverse Picard-continuous mapping such that there exist two functions o :
X x X — [0,00) and ¢ € D satisfying, for all x,y € X,

a(x,y) (q(x, y) + ¢(q(x.y)) ) < q(Tx, Ty).

If there exists an inverse Picard sequence {x,} of T such that o(x,, x,,) > 1 for all
n,m > 1 satisfying n # m, then {x,} converges to a fixed point of T. In such a case,
T has a fixed point.

In addition to this, if «(u, v) > 1 for all u,v € Fix(T), then T has a unique fixed
point.

A simple way in which we can easily ensure that there exists an inverse Picard
sequence of T (a necessary condition in the last two corollaries) is to assume that T
is onto. In this case, we have that the limit of any inverse Picard sequence of T is a
fixed point of 7.
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9.3 Fixed Point Theorems on Quasi-metric Spaces Using
Expansivity Conditions Depending on a Unique Variable

In this section we study existence of fixed points under expansivity conditions
depending on a unique variable. Given an operator 7 : X — X, we are interested in
quasi-metrics satisfying the following property.

(Rr) Any inverse Picard sequence of 7" which is left-Cauchy in (X, ¢) is also
right-Cauchy in (X, g).

By item 1 of Lemma 3.3.1, examples of such quasi-metrics are the quasi-metrics
g = qg (or ¢ = qp;) associated to G-metrics G.

Theorem 9.3.1. Let (X, q) be a quasi-metric space and letT : X — X, o : XXX —
[0, 00) and ¢ € Feom be three mappings such that

a(x, Tx) g(x, Tx) < ¢(q(Tx, T*x)) forall x € X. 9.11)

Suppose that there exists an inverse Picard sequence {x,} of T such that
a(Xyt1,X%,) > 1 foralln > 1. Then {x,} is left-Cauchy in (X, q).

Furthermore, assume that (X, q) is complete, T is an inverse Picard-continuous
mapping and q satisfies the condition (Rr). Then {x,} converges to a fixed point
of T. In particular, T has a fixed point.

Recall that the existence of inverse Picard sequences {x,} of T is guaranteed if T
is onto.

Proof. Apply the expansivity condition to x = x,4, obtaining, for all n > 1,

GXnt2, X 1) < (g2, Xnt1) G (X2, Xng1)

= o (Xpp2, Txng2) Q(Xng2, Tpy2)

< 0(@(Txn42, T*%042)) = @(q(n1, X))

Repeating the argument in the proof of Theorem 9.2.1, we deduce that {x,} is left-
Cauchy in (X, q). The second part is as follows: by condition (R7), {x,} is a Cauchy
sequence in (X, g); by the completeness, {x,} is a convergent sequence in (X, ¢); and
the limit of {x,} is a fixed point of T because it is inverse Picard-continuous. O

Corollary 9.3.1. Let (X, q) be a complete quasi-metric space and let T : X — X
be an inverse Picard-continuous operator for which there exists ¢ € Feom Such that

q(x, Tx) < ¢(q(Tx, T*x)) forall x € X.

Suppose that q satisfies the condition (Rt) and there exists an inverse Picard
sequence {x,} of T. Then {x,} converges to a fixed point of T. In particular, T has a

fixed point.
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We particularize the previous result to G-metric spaces. For example, the
following result can be found on [24].

Theorem 9.3.2 ([24]). Let (X, G) be a complete G-metric space and be T : X — X
be an onto mapping satisfying the following condition for all x,y € X:

G(Tx, T’x, Ty) = AG(x, Tx, ) 9.12)

where A > 1. Then T has a unique fixed point.
Corollary 9.3.2. Theorem 9.3.2 follows from Corollary 9.3.1.

Proof. The function ¢,;, defined by @1, (f) = (1/A) tfor all t > 0, satisfies @1/, €
Feom because 1/4 € (0, 1). Letting y = Tx in the expansive condition (9.12), we
have that, for all x € X,

Age(x, Tx) = AG(x, Tx, Tx) < G(Tx, T*x, T*x) = q5(Tx, T?x),

$0 gG(x, Tx) < (1/A) q(Tx, T?x) = ¢12(q6(Tx, T?x)). Since T is onto, there exists
an inverse Picard sequence {x,} of 7. We now show that T is an inverse Picard-
continuous mapping. Let {x,} be any inverse Picard sequence of T converging to
u € X and we claim that u is a fixed point of 7. Since T is onto, there exists z € X
such that 7z = u. Applying condition (9.12) tox = x,4p and y = z,

G (Xt 15 %, ) = G(Txpt2, T2, T2) > AG(X42, TXn42, 2)

= G(xn+2» Xn+1, Z)'

Letting n — oo in the previous inequality, we deduce that 0 = G(u, u, u) > A
G(u,u,z) > 0,50z = u = Tz and z is a fixed point of T In particular, Tu = Tz = u,
and u is a fixed point of 7. This concludes that T is an inverse Picard-continuous
mapping. Corollary 9.3.1 guarantees that 7" has a fixed point. The uniqueness
directly follows from (9.12). ad



Chapter 10
Reconstruction of G-Metrics: G*-Metrics

The main aim of the present chapter is to prove new unidimensional and
multidimensional fixed point results in the framework of G-metric spaces provided
with a partial preorder (not necessarily a partial order). However, we need to
overcome the well-known fact that the usual product of G-metrics is not necessarily
a G-metric unless they come from classical metrics. Hence, we will omit one of
the axioms that define a G-metric and we consider a new class of metrics, called
G*-metrics. Notice that our main results are valid in the context of G-metric spaces.

10.1 The Antecedents of G*-Metric Spaces

The original Mustafa and Sims’ notion of G-metric space is as follows (recall
Definition 3.1.1): A G-metric space is a pair (X, G) where X is a nonempty set
and G : X x X x X — [0,00) is a function such that, for all x,y,z,a € X, the
following conditions are fulfilled:

(G1)) Gx,y,2)=0 ifx=y=z

(G2) G(x,x,y) >0 forallx,y e X withx # y;

(G3) G(x,x,y) <Glx,y,z) forallx,y,z € X withz # y;

(Gy) G(x,y,2) = Gx,z,5) = G(y,z,x) = ...(symmetry in all three

variables); and
(Gs) G(x,y,z2) <G(x,a,a) + G(a,y,z) (rectangle inequality).
In such a case, the function G is called a G-metric on X. A classical example

of G-metric comes from a metric space (X, d), where G(x,y,z) = dy, + dy; + dy«
measures the perimeter of a triangle. In this case, property (G3) has an obvious
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geometric interpretation: the length of an edge of a triangle is less than or equal
to its semiperimeter, that is, 2dy, < d,, + dy; + d.. One of the most important
properties of G-metric spaces is the following one (see item 5 of Lemma 3.1.2).

G(xy,z)=0 = x=y=z (10.1)

Property (G3) was used to establish different fixed point theorems. However,
it has an important drawback: the product of G-metric spaces is not necessarily
another G-metric space. In fact, this is only true when all factors are symmetric but,
in this case, they are all classical metric spaces (see Theorem 3.1.1). We explain this
fact in detail.

Given a finite family of G-metric spaces {(X;, G;)}"_,, consider the product space

X = X; x X5 x ... x X, and define G and G* on X> by:

G"(X,Y,2) = max Gi(xi,yi,z)) and G'X,Y,Z2) = > Gi(x;, v, 2),
<i<n =1

l

forall X = (x1,x2,.... %), Y = 01, y2, - . ), Z = (21,22, - - - » Zu) € X. Property
(G3) implies that, in general, the major structures G and G° are not necessarily
G-metrics on X; XX, X. . .xX,. Only when each G; is symmetric (that is, G(x, x, y) =
G(y,y,x) for all x,y € X), the product is also a G-metric (see Theorem 3.1.1 or
[154]). In this case, symmetric G-metrics can be reduced to usual metrics, which
limits the interest to this kind of space.

The most important disadvantage of this fact is that multidimensional fixed point
theorems (coupled, tripled, quadrupled, etc., as we will see in Chap. 11) cannot
be proved using unidimensional results. As a consequence, a direct proof must be
presented in each case, using an appropriate contractivity condition.

In order to overcome this drawback, in 2013, Rolddn and Karapimar [175]
considered spaces verifying the axioms (G,), (G3), (G4) and (Gs), which has their
own Hausdorff topology 7. The problem we have recently found is that these spaces
do not have to satisfy condition (10.1) when x, y and z are different, as we show in
the following example.

Example 10.1.1. Let X = {0,1,2} and define G : X x X x X — [0, 0c0), for all
x,y,z € X, by:

Gx.y.2) = 0,if x =.y =z or {x,yz2 =1{0,1,2},
1, otherwise.

Clearly, G verifies (G1), (G») and (G4). However, it does not satisfy condition (10.1)

because G(0, 1,2) = 0. To prove (Gs), let x,y,z € X be such that G(x, y,z) > 0. In

this case, in {x, y, z} there are only two different points. Assume, for example, that

x # y = z. Then, one of the terms G (x, a, a) or G(a, y, y) has, exactly, two different

points. Hence
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Gx,y,y) =1=<G(x,a,a) + G(a,y,y),

so (Gs) holds. As a consequence, (X, G) is an example of the spaces considered by
Roldan and Karapinar in [175], but it does not satisfy condition (10.1).

In this chapter, we consider a definition of G*-metric spaces avoiding property
(G3). Omitting this property, we consider a class of spaces for which G™ and G*
have the same initial metric structure.

10.2 Definition of G*-Metric

Definition 10.2.1. A G*-metric on a set X is a mapping G : X x X x X — [0, 0c0)
satisfying the following properties, for all x,y,z,a € X.

(Gy) G(x,v,2) = G(x,z,y) = G(y,z,x) = ...(symmetry in all

three variables);
(Gs) G(x,y,2) <G(x,a,a) + G(a,y,z) (rectangle inequality); and
(Ge) G(x,y,29)=0 & x=y=zg

Lemma 10.2.1. /. Every G-metric space (in the sense of Mustafa and Sims) is a
G*-metric space.

2. Every G*-metric space satisfies axioms (G1), (G3), (G4) and (Gs).

3. A G*-metric space is a G-metric space (in the sense of Mustafa and Sims) if, and
only if, it verifies (G3).

Proof. (1) Axioms (G;) and (Gs) are common. Condition (G;) means that
G(x,x,x) = 0 for all x € X. Conversely, condition (10.1) follows from item 5
of Lemma 3.1.2.
(2) Properties (Gp) and (G,) immediately follows from (Gg).
O

Although each G*-metric space satisfies axioms (Gy), (G,), (G4) and (Gs), it is
not necessarily a G-metric space. In other word, the converse of the first item of
Lemma 10.2.1 is false, as we show in the following example.

Example 10.2.1. Let X = {0,1,2} and define G : X x X x X — [0, 00), for all
x,y,z € X, by:

0,ifx=y=z3

4,ifx £y #z#x (thatis, {x,y,z} = {0,1,2}),
5, if {x,y,z} = {0,0, 2},

3, otherwise.

G(x,y,2) =
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Clearly, G does not satisfy axiom (G3) since
G(0,0,2) =5>4=G(0,1,2).

Hence, (X, G) is not a G-metric space. However, we claim that (X, G) is a G*-metric
space. Properties (G4) and (Gg) are obvious. Condition (Gs) follows from the fact
that the sum of two numbers in the set {3, 4, 5} is always greater than a third number
in the same set. Then, (Gs) holds.

Remark 10.2.1. All results given in Rolddn and Karapinar [175] hold if we
additionally assume condition (10.1), that is, for G*-metric spaces in the sense of
Definition 10.2.1.

10.2.1 Basic Properties of G*-Metric Spaces

One of the most useful properties of G-metrics is the following one.

Lemma 10.2.2. If (X, G) is a G*-metric space, then
G(x,y,y) <2G(y,x,x) forallx,y € X.
Proof. By the rectangle inequality (Gs) together with the symmetry (G4), we have
G(x,y,y) =GO, y,x) <G(y,x,x) + G(x,y,x) = 2G(y, x, x).

a

The following lemma can be derived easily from the definition of a G*-metric
space as in Lemma 3.1.2.

Lemma 10.2.3. Let (X, G) be a G*-metric space. Then, for any x,y,z,a € X, the
following properties hold.

1. G(x,y,2) <G (x,x,y) + G (x,x,2).

2. G(x,y,2) <G (x,a,a) + G(y,a,a) + G(z,a,a).

3. |G(x,y,2) — G(x,y,a)| <max{G(a,z,7),G(z,a,a)}.
4. Ifn > 2and x1,x3,...,x, € X, then

n—1
G (x1, %0, %2) < Y G (xi, Xi1,Xi+1) and (10.2)

i=1

n—1

G (x1,x1,%,) < > G (X3, X, Xig1) -

=
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5. I {x,}, {vn} C X are two sequences, then lim,_, o G(X,, yn, Vn) = 0 if, and only
if; limn—>oo G()Cn, xnyyn) = 0.

6. If {x,} € X is a sequence, then lim,_ oo G(x, Xy+1, Xp1) = O if, and only if,
lim,,— o0 G(Xn, Xns xn+l) =0.

10.2.2 The Hausdorff Topology of a G*-Metric Space

All definitions and results in Sect. 3.2 can be repeated here in the ambient of G*-
metric spaces because the proofs there did not use axiom (G3). In order to avoid
repetition, we only highlight the most important definitions and facts.

The open ball of center x € X and radius r > 0 in a G*-metric space (X, G) is
the subset Bg(x,r) = {y € X : G(x,y,y) < r}. Similarly, the closed ball of center
x € X and radius r > 0 is

Bg(x,r) ={y € X : G(x,y,y) <r}.

Clearly, x € Bg(x,r) C Ec(x, r).
If (X, G) is a G*-metric space, then the functions dfn; ,dSG X xX — [0,00)
defined by

dg(x, y) = max {G(x,y,y),G(y,x,x)} and

dl(x,y) = G(x,y.y) + G(y, x.x)

for all x,y € X, are metrics on X. Furthermore, d%(x,y) < d%(x,y) < 2d%(x,y) for
all x,y € X. In fact, d% and d° are equivalent metrics on X and they generate the
same topology on X.

If (X, G) is a G*-metric space and d% and dY are the metric defined as before,
then

Byg (x,1) € Bg (x,r) € Byg (x,2r) € Bg (x,2r)

forall x € X and all r > 0.
The family of all open balls permit us to consider a topology on X.

Theorem 10.2.1. There exists a unique topology tg on a G*-metric space (X, G)
such that, for all x € X, the family B of all open balls centered at x is a
neighbourhood system at x. Furthermore, tg is metrizable because it is the metric
topology on X generated by the equivalent metrics dS and dS. In particular, T
satisfies the Hausdorff separation property.

The following notions can be considered on each topological space (see [23, 51]),
but we particularize them to the case of the topology 7.
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e Asubset U C X is a G-neighborhood of a point x € X if there is r > 0 such that
Bg(x,r) C U.

e Asubset U C X is G-open if either it is empty or it is a G-neighborhood of all its
points.

e Asubset U C X is G-closed if its complement X\ U is G-open.

* An adherent point (also closure point or point of closure) of a subset U C X is
a point x € X such that every G-open set containing x also contains, at least, one
point of U, that is, for all ¢ > 0 we have that Bg (x,&) N U # @.

+ The G-closure U = clg(U) of a subset U C X is the family of all its adherent
points. Clearly, x € U if, and only if, B (x,e)NU # @ forall & > 0. In particular,
U C U. Moreover, U is G-closed if, and only if, U = U.

« The G-interior U = intg(U) of a subset U C X is the complement X\ U. An
interior point of U is a point x € U such that there exists r > 0 verifying
B (x,r) € U. In particular, l°] C U. Moreover, U is G-open if, and only if,
U=U.

For simplicity, we will omit the prefix G- in the previous notions.
Let (X, G) be a G*-metric space, let x € X be a point and let {x,} € X be a
sequence. We say that:

e {x,} G-converges to x, and we write {x,} N x or {x,} — «x, if
limy, ;- 00 G (X4, X, X) = 0, that is, for all &€ > 0 there exists ny € N satisfying
G(xp, X, x) < e for all n,m € N such that n,m > ny (in such a case, x is the
G-limit of {x,,});

o {x,}is G-Cauchy if lim, ;, y—oc0 G (X4, X, Xx) = 0O, thatis, for all & > 0 there exists
ny € N satisfying G(x,, x,,,, x¢) < ¢ for all n,m, k € N such that n, m, k > ny.

* (X, G) is complete if every G-Cauchy sequence in X is G-convergent in X.

Proposition 10.2.1. The limit of a G-convergent sequence in a G*-metric space is
unique.

Proposition 10.2.2. Every convergent sequence in a G-metric space is a Cauchy
sequence.

Next, we characterize convergent and Cauchy sequences.

Lemma 10.2.4. Let (X, G) be a G*-metric space, let {x,,} C X be a sequence and
let x € X. Then the following conditions are equivalent.
(a) {x,} G-converges to x.
(b) lim G(x,,x,,x) = 0, that is, for all ¢ > 0, there exists ny € N such that
n—oo
X, € Bg (x,¢) forall n > ny.
(¢) lim G(x,,x,x)=0.
n—>oo
(d) lim G (x,, X, x) = 0.
nm—>00, m=>n
(e) lim G(x;,x;,,x) =0 and lim G(x,;,x,+1,x) = 0.
n—>oo n—oo

) lim G(x,;,x,x) =0 and lim G(x,,x,4+1,x) = 0.
n—>oo n—>o00
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(g) lim G (xy, xp41,%+1) =0 and lim G(x,, X,+1,x) = 0.
n—oo n—o0

(h) lim G (x,, Xp41,X41) =0 and lim G (x,, X, x) = 0.

n—00 n,m—>00, m>n
Lemma 10.2.5. If (X, G) is a G*-metric space and {x,,} C X is a sequence, then
the following conditions are equivalent.

(a) {x,} is G-Cauchy.
(b) lLim G(x,, X, xn) = 0.
n,m—00

(c) lim G(xp, X, X)) = 0.
nm—>00, m=n

(d) lim G(xp, X, X)) = 0.

nm—>00, m>n

() lim G(xy,x,,x,) =0.

n,m—00

) lim G(xp, X, X)) = 0.

nm—>00, m>n

(g lim G(xp, X, Xp) = 0.

nm—00, m>n

(h) lim G(x,, Xp41,%X+1) =0 and lim G(xp, Xpt1,%Xm) = 0.
n—>o00

n,m—>00, m>n

10.2.3 Continuity of Mappings Between G*-Metric Spaces

Definition 10.2.2. Let (X, G) be a G*-metric space. We say that:

e amapping T : X — X is G-continuous at x € X if {Tx,,} S, Tx for all sequence

G
{x} € X such that {x,,} — x;
e a mapping F : X" — X is G-continuous at (xi,x,...,x,) € X" if

{F (¥, xy, . xm)) N F (x1,x2,...,x,) for all sequence {(x]",x7,...,x")} C
X" such that {x"} S, x;forallie{l,2,...,n};

* amapping H : X" — X" is G-continuous at (x,x2,...,x,) € X"if n" o H :
X" — X is G-continuous at (x1,x,...,x,) foralli € {1,2,...,m}, where nr/" :
X" — X is the ith-projection of X" onto X (that is, 7" (a;, a2, . .., a,) = a; for
all (ay,az,...,ay,) € X™).

From Lemma 3.2.3, convergence of sequences on X with respect to G, dS and d°
coincide.

Lemma 10.2.6. Let (X, G) be a G metric space. Then a mapping T : X — X is G-
continuous if, and only if, it is dS-continuous (dS-continuous). Similarly, a mapping
F : X" — X is G-continuous if, and only if, it is d°-continuous (d°-continuous).

The proof of the following result only needs properties (G4) and (Gs) (see the
proof of Theorem 3.2.2).

Theorem 10.2.2. If (X,G) is a G*-metric space, then the function G(x,y,z)
is jointly continuous in all three of its variables, that is, if x,y,z € X and

G
{xn}, Avnts {zn} © X are sequences in X such that {x,,} N X {ym} — y and
G
{Zm} —> 2, then {G (xma Yms Zm)} e G(x’y» Z)'
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10.2.4 Some Relationships Between G*-Metrics
and Quasi-metrics

Next, we show that there exists a similar relationships between G*-metric spaces
and quasi-metric spaces that we described in Lemma 3.3.1. The same proof is valid.

Lemma 10.2.7. Let (X.G) be a G*-metric space and define qg.q; : X* —
[0, 00) by

gc(x.y) = G(x,x,y) and qg(x,y) = G(x,y,y) forallx,y€X.

Then the following properties hold.

1. g and q/G are quasi-metrics on X. Moreover

go(x,y) < 2q5(x.y) < 4qg(x.y) forallx,y € X. (10.3)

2. In (X.q¢) and in (X.qp), a sequence is right-convergent (respectively, left-
convergent) if, and only if, it is convergent. In such a case, its right-limit, its
left-limit and its limit coincide.

3. In (X, q¢) and in (X, q;;), a sequence is right-Cauchy (respectively, left-Cauchy)
if, and only if, it is Cauchy.

4. In (X, qc) and in (X, q;;), every right-convergent (respectively, left-convergent)
sequence has a unique right-limit (respectively, left-limit).

5. If{x,} € X and x € X, then {x,} Six — {x,} 2k = {xn} 2, 4.

6. If {x,} € X, then {x,} is G-Cauchy <= {x,} is qg-Cauchy <= {x,} is q5-
Cauchy.

7. (X, G) is complete <=> (X, q¢) is complete <= (X, q(;) is complete.

10.2.5 Regularity of G*-Metric Spaces

Many results in fixed point theory assume the regularity of the space.

Definition 10.2.3. Let (X,G) be a G*-metric space and let < be a relation
on X. The triple (X, G, X) is said to be non-decreasing-regular (respectively, non-
increasing-regular) if for all sequence {x,,} € X such that {x,,} — x and x,, < X;,+1
(respectively, x;, > x,,+1) for all m € N, we have that x,, < x (respectively, x,, > x)
forall m € N. Also (X, G, X) is said to be regular if it is both non-decreasing-regular
and non-increasing-regular.
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10.3 Product of G*-Metric Spaces

The main advantage of G*-metric spaces versus G-metric spaces is that the product
of G*-metric spaces is also a G*-metric space.

Lemma 10.3.1. Given a family {(X;, G;)}!—, of G*-metric spaces, consider the
product space X = X; x X3 X ... x X, and define G™* and G**™ on X* by

i=1

G,TaX(X, Y, Z) = 1IIlElX G,-(x,-, Vi, Z,‘) and G;um(x, Y, Z) = ZG,’(.X,‘, Vi, Z,’)
<i<n

forall X = (x1,x2,..., %), Y = 01,2, ..., ), Z = (21,22, .. .,2,) € X. Then the
following statements hold.

1. G and G3"™ are G*-metrics on X.

2. G < G'™ < nGY™, that is, G™ and G3™ are equivalent G*-metrics on X.

3. IfA, = (l,a,....a") e Xforallmand A = (a1, aa,...,a,) €X, then {A,}
G™*_converges (respectively, G3"™-converges) to A if, and only if, each {a! } G;-
converges to a;.

4. {A,} is G™-Cauchy (respectively, G*™-Cauchy) if, and only if, each {a!} is
G;-Cauchy.

5. (X, GI'™) (respectively, (X, G)'™)) is complete if, and only if, every (X;, G;) is
complete.

6. For alli, let X; be a preorder on X; and define

X=<Y & x; <jyiforalie{l,2,...,n}.

Then (X,Gy™, <) is regular (respectively, non-decreasing-regular, non-
increasing-regular) if, and only if, each factor (X;,G;) is also regular
(respectively, non-decreasing-regular, non-increasing-regular).

Proof. Let G = G;*. Taking into account that G;** < G;" < nG™, we will
only present the proof using G.

(1) Itis a straightforward exercise to prove the following statements.

o G(X, X, X) = max;<j<, Gi(x;, x;,X;)) = maXj<;<, 0 = 0. Moreover, if
G;“‘”‘(X, Y, Z) = MmaXji<i<n G,-(x,»,yi,z,») = 0, then Gi(xi,y,-,zi) = 0 for all
ie{l,2,....,n},sox; =y; =z forallie {1,2,...,n}.

e Symmetry in all three variables of G follows from symmetry in all three
variables of each G;.
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¢ We have that

G(X,Y,Z) = max G;(x;,yi, 7)) < max [G (xi, ai, a;) + Giag, yi, i)

1<i<n

< max Gi(x;, a;, a;) + max Gi(a;, yi, zi)
1<i<n 1<i<n

= G(X,AA) + G(A.Y. 2).

Then G is a G*-metric on X.

(3) We use Lemma 10.2.4. Suppose that {A,,} G-converges to A and let ¢ > 0.
Then, forallj € {1,2,...,n} and all m

Gj(@;, aj,),) < max Gy(ai, ai,a,,) = G(A, A, Ay,).
o <i<n

Therefore, {a,} G;-converges to a;. Conversely, assume that each {da’,} G;-
converges to a;. Let ¢ > 0 and let m; € N be such that if m > m;,
then G(a,,a,,a ) < e If my = max(my,my,...,m,) and m > my, then
G(A,A,Ay) = maxi<i<, Gi(a;i, a;,d’) < ¢, 50 {A,,} G-converges to A.

(4) We use Lemma 10.2.5. Suppose that {A,,} is G-Cauchy and let ¢ > 0. Then, for
allje{l1,2,...,n}and all m, m’

G(a A/) = G(An, Am, Aw).

m? m’ m’ m’

,) < 1max Gi(d
Therefore, {&/ } is Gj-Cauchy. Conversely, assume that each {ai }is G; Cauchy
Let & > 0 and let m; € N be such that if m, m’ > m;, then G;(d,,, &,,, m) <e.
If my = max(my,my,...,m,) and m,m’ > my, then G(A,,, A, Aw) =
max;<i<, Gi(d,,. a\,.a ) < g, s0 {A,} is G-Cauchy.

(5) Itis an easy consequence of items 3 and 4 since

{A,.} G-Cauchy & each {d'

} G-Cauchy < each {a' } G-convergent

m m

< {A,,} G-convergent.

(6) A sequence {A,,} on X is <-monotone non-decreasing if, and only if, each
sequence {a’} is <-monotone non-decreasing. Moreover, {A,,} G-converges to
A = (a1,as,...,a,) € Xif, and only if, each {a} G;-converges to a;. Finally,
A, < Aif, and only if, am =; a;, for all i. Therefore, (X, G'™*, <) is regular non-
decreasing if, and only if, each factor (X;, G;) is also regular non-decreasing.
Other statements may be proved similarly. O

Taking (X;, G;) = (X, G) for all i, we have the following result.

Corollary 10.3.1. Let (X, G) be a G*-metric space and consider on the product
space X" the mappings G, and G,, defined by
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G,(X,Y,Z) = max G(xi,yi,zi) and G,(X,Y,Z) = Y G(xi,yi,zi)

i=1

forall X = (x1,x2,..., %), Y = OV1,¥2,---» ), Z = (21,22, ...,2,) € X". Then
the following properties hold.

1. G, and G|, are G*-metrics on X".

2. IfA, = (a,L,a,zn,...,aZl) € X" forallmand A = (ay,as,...,a,) € X", then
{A} G,-converges (respectively, Gl -converges) to A if, and only if, each {d.,}
G-converges to a;.

3. {A,} is G,-Cauchy (respectively, G.-Cauchy) if, and only if, each {d.} is
G-Cauchy.

4. (X", G,) (respectively, (X", G)) is complete if, and only if, (X, G) is complete.

10.4 Fixed Point Theorems in Partially Preordered
G*-Metric Spaces

As an initial result in G*-metric spaces, we prove the following statement using a
preorder rather than a partial order.

10.4.1 Some Results Under (¥, ¢)-Contractivity Conditions

Theorem 10.4.1. Let (X, G) be a complete G*-metric space, let < be a preorder
onX andlet T : X — X be a <-non-decreasing mapping. Suppose that there exist

two functions W € Fy and ¢ € F,, such that, for all x,y € X withx <y,

Y(G(Tx, Ty, 1)) < (¥ — ¢) (G(x,y.,y)). (10.4)

Also assume that T is G-continuous or (X, G, <) is non-decreasing-regular. If there
exists xo € X such that xy = Txy, then T has, at least, a fixed point. Furthermore,
if for all x,y € Fix(T) there exists v € X such that x < @ and y <X w, we obtain
uniqueness of the fixed point.

Proof. Let xy € X be such that xy < Txy and let {x,},>0 be the Picard sequence of
T based on xy, that is, x,+1 = Tx, for all n € N. If there exists some ny € N such
that x,,,+1 = Xy,, then x,, is a fixed point of T In the sequel, assume that x,; # x,
for all n € N. In such a case, as T is non-decreasing (w.r.t. <), we have that

X0 X Txg =x1 = x1 = Txg X Tx; = x3.

By induction,

Xp = Xp41 foralln > 0. (10.5)
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Then, using the contractivity condition (10.4), we have that, for alln € N,

V(G(Xnt1, X425 Xn+2)) = Y (G(Txn, Txpt1, Txpt1))
= (I// - (P) (G(xn,xn-i-l’xn-i-l))-

Applying Lemma 2.3.6, {G(x,, Xy+1,%,+1)} — 0. Let us show that {x,} is
G-Cauchy. Reasoning by contradiction, if {x,} is not G-Cauchy, by Theorem 4.1.1,
there exist 5 > 0 and two partial subsequences {x,x} and {x,} satisfying
k <n(k) <m(k) <n(k+1),

G(Xn(y s Xm()—15 Xm(—1) < €0 < G(Xnw), Xm(k)> Xmry) forallk € N,

kl_lfgo G(Xn(ky» Xm()» Xm(k)) = kl_l)lgc G(Xn(ty—15 Xm(y—1, Xm(ky—1) = €0. (10.6)

As < is transitive and n(k) < m(k), we deduce from (10.5) that x,)—1 =< Xpx)—1 for
all k£ € N. The contractivity condition (10.4) implies that, for all k € N,

Y (Gt Xy X)) = ¥ (G(Txngy—12 Tm@y—1. Tm(y—1))

< (¥ — ) (GEuo—1 X1+ Xm(p—1)) -

Taking into account (10.6) and Lemma 2.3.5, we conclude that &g = 0, which is a
contradiction. Hence, {x,} is a Cauchy sequence in (X, G). As (X, G) is complete,

. . G
there exist there exists 7o € X such that {x,} — z.

Now suppose that T is G-continuous. Then {x,+1} = {Tx,} S Tzo. By the
uniqueness of the limit of a sequence in a G*-metric space (see Proposition 10.2.1),
Tzp = 7o and 7y is a fixed point of 7.

On the other case, suppose that (X, G, <) is non-decreasing-regular. Since

G . . .
{xn} — 20 and {x,,} is monotone non-decreasing (w.r.t. <), it follows that x,, < 7o
for all n € N. Hence, forall n € N,

Y (G(nt1. Xn+1, T20)) = Y (G(Txy, Txy, T20))
< (¥ — ) (G(xn, Xu, 20))-

Since {x,} S 20, then {G(x,,, x,, z0)} — 0. Taking the limit when k — oo we deduce
that {Y (G(Xy+1,Xn+1, 120))} — 0. By Lemma 2.3.3, {G(x+1, Xu+1, T20)} — 0, so

G
{xn4+1} — Tzo and we also conclude that z, is a fixed point of 7.
To prove the uniqueness, let x,y € Fix(T) be two fixed points of 7. By
hypothesis, there exists @ € X such that x < w and y <X . We now show

G . . .

that {w, = T"w} — x. Since x < w and T is =<-non-decreasing, we have that
x = Tx < Tw. By induction, x < T"w = w, for all n € N. Using the contractivity
condition (10.4), we have that, for all n € N,
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V(G x, 0p41)) = Y (G(Tx, Tx, Tw,)) < (¥ — @) (G(x, x, @,)).

From Lemma 2.3.6, we deduce that {G(x, x, ,)} — 0, that is, {w,} A x. The same

. G
reasoning proves that {w,} — y, so x = y. O
In the next two results, we show the main advantage of using preorders.

Corollary 10.4.1. Letr (X, G) be a complete G*-metric space, let X be a partial
order on X and let T : X — X be a <-non-decreasing mapping. Suppose that there
exist two functions € Fy and ¢ € F,,, such that, for all x,y € X with x Xy,

Also assume that T is G-continuous or (X, G, X) is non-decreasing-regular. If there
exists xo € X such that xy < Txy, then T has, at least, a fixed point. Furthermore,
if for all x,y € Fix(T) there exists o € X such that x < @ and y <X w, we obtain
uniqueness of the fixed point.

In the following result, we apply that <, defined as “x < yforall x,y € X" is a
preorder on X (but not a partial order).

Corollary 10.4.2. Let (X, G) be a complete G*-metric space and let T : X — X be
a mapping. Suppose that there exist two functions ¥ € Fy; and ¢ € F,, such that,
forallx,y € X,

V(G(Tx, Ty, 1)) < (¥ — @) (G(x,y.,y)).

Then T has a unique fixed point.

Proof. We only have to notice that (X, G, <) is non-decreasing-regular, and that any
Xxo € X satisfies xy < Txp. O

Corollary 10.4.3. Let (X, G) be a complete G*-metric space, let < be a preorder
onX andlet T : X — X be a <-non-decreasing mapping. Suppose that there exist
two functions ¥ € Fy, and ¢ € F,, such that, for all x,y,z € X withx <y < z,

V/(G(Tx’ Ty’ TZ)) = (‘/f - 90) (G(X, Y, Z)) (107)

Also assume that T is G-continuous or (X, G, X) is non-decreasing-regular. If there
exists xo € X such that xy = Txy, then T has, at least, a fixed point. Furthermore,
if for all x,y € Fix(T) there exists w € X such that x < @ and y <X w, we obtain
uniqueness of the fixed point.

Proof. It follows from the fact that (10.7) implies (10.4). O
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If we take ¥ € Fy as the identity mapping on X, we deduce the following
statement.

Corollary 10.4.4. Let (X, G) be a complete G*-metric space, let < be a preorder
onX andlet T : X — X be a <X-non-decreasing mapping. Suppose that there exists
a function ¢ € F,,, such that, for all x,y € X withx <y,

G(TX, Tyv Ty) =< G(X, Vs y) - (p(G(x, Ys y))

Also assume that T is G-continuous or (X, G, <X) is non-decreasing-regular. If there
exists xo € X such that xy = Txy, then T has, at least, a fixed point. Furthermore,
if for all x,y € Fix(T) there exists w € X such that x < @ and y <X w, we obtain
uniqueness of the fixed point.

If o (f) = (1—A)tforall r > 0, where A € [0, 1), we have the following version.

Corollary 10.4.5. Let (X, G) be a complete G*-metric space, let < be a preorder
on X and let T : X — X be a <-non-decreasing mapping. Suppose that there exists
a constant A € [0, 1) such that, for all x,y € X with x <y,

G(Tx, Ty, Ty) < AG(x,y,y).

Also assume that T is G-continuous or (X, G, <) is non-decreasing-regular. If there
exists xo € X such that xy = Txy, then T has, at least, a fixed point. Furthermore,
if for all x,y € Fix(T) there exists v € X such that x < w and y < w, we obtain
uniqueness of the fixed point.

One can obtain particular versions of Corollaries 10.4.3, 10.4.4 and 10.4.5 using,
on the one hand, a partial order < on X (as in Corollary 10.4.1) and, on the other
hand, the preorder “x < y for all x,y € X” (as in Corollary 10.4.2).

10.4.2 Some Results Under @-Contractivity Conditions

Next, we give another version of Theorem 10.4.1 using a different contractivity
condition.

Theorem 10.4.2. Let (X, G) be a complete G*-metric space, let < be a preorder
onX andlet T : X — X be a <X-non-decreasing mapping. Suppose that there exists
a function ¢ € Fcj: such that, for all x,y € X withx Xy,

G(Tx, Ty, Ty) < o(G(x,y,y)). (10.8)

Also assume that T is G-continuous or (X, G, <) is non-decreasing-regular. If there
exists xo € X such that xy = Txy, then T has, at least, a fixed point. Furthermore,
if for all x,y € Fix(T) there exists w € X such that x < o and y < w, we obtain
uniqueness of the fixed point.
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Proof. Let xy € X be such that xy < Tx, and let {x,},>0 be the Picard sequence of

T based on x, that is, x,+; = Tx, for all n € N. If there exists some ny € N such
that x,,,+1 = X,,, then x,, is a fixed point of T In the sequel, assume that x,; # x,
for all n € N, that is,

G(xy, Xp41,Xy+1) >0 foralln € N. (10.9)
In such a case, as T is non-decreasing (w.r.t. <), we have that
X0 X Txg =x1 = x1 = Txg X Tx; = x3.
By induction,
Xn X Xp41 foralln > 0. (10.10)
Then, using the contractivity condition (10.8), we have that, for all n € N,

G(xn+lv-xn+Zs xn+2) = G(TX,,, T-xn-l-ls Txn+1) =< ¢(G(xnvx'1+1,xn+l))-

Taking into account (10.9) and applying item 3 of Lemma 2.3.11, {G(x,, x,+1,
Xn4+1)} — 0. We now show that {x,} is G-Cauchy. Reasoning by contradiction,
if {x,} is not G-Cauchy, by Theorem 4.1.1, there exist &g > 0 and two partial
subsequences {x, )} and {x,, } satisfying k < n(k) < m(k) < n(k + 1),

G(Xn(k) s Xm(ty—1 Xmk)—1) < €0 < G(Xn@ky> Xmk)> Xmxy) forallk € N,

kl_lg)lo G(Xu(ky» Xim(kys Xm(k)) = kl_lglo G(Xn(ty—15 Xm)—15 Xmk)—1) = &0. (10.11)

As =< is transitive and n(k) < m(k), we deduce from (10.10) that Xx,x)—1 =< X1
for all k € N. The contractivity condition (10.8) implies that, for all k € N,

g0 < GQXnys Xm(ky» Xmk)) = G(Txny—1, Txm(y—1 Tomy—1)

< @ (GOa—1+ Xm(k—1» Xm(p—1) ) -

Taking into account (10.11), item 4 of Lemma 2.3.11, applied to L = gy and {a; =
G(Xn(y—1> Xm(k)—1> Xm(k)—1) tkeN, guarantees that &g = 0, which is a contradiction.
Hence, {x,} is a Cauchy sequence in (X, G). As (X, G) is complete, there exist there

. G
exists zg € X such that {x,} — zo.

Now suppose that T is G-continuous. Then {x,,+1} = {Tx,} A Tzo. By the
uniqueness of the limit of a sequence in a G*-metric space (see Proposition 10.2.1),
Tzp = 7o and 7y is a fixed point of T.

On the other case, suppose that (X, G, <) is non-decreasing-regular. Since

G ) . .
{xn} — 70 and {x,,} is monotone non-decreasing (w.r.t. <), it follows that x,, < 7
for all n € N. Hence, forall n € N,
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G(Xn+1, Xn+1, T20) = G(Txy, Txn, T2o) < 9(G(X, X, 20))-

Since {x,} S 20, then {G(x,,, x,,, z0)} — 0. Using item 5 of Lemma 2.3.11 applied
to {a, = G(xn, xn, 20) }nen and {b, = G(Xy41,Xu+1, T20) }nen (notice that if a, = 0,
then x,, = zp, 50 x,4+1 = Tx,, = Tzo and b,, = 0), we deduce that

G(z0, 20, Tzp) = nlggo G(xug1, X041, T20) = 0,

s0 7p is a fixed point of 7.
To prove the uniqueness, let x,y € Fix(7T) be two fixed points of 7. By
hypothesis, there exists @ € X such that x < w and y < . Let us show that

{w, = T'w} E) x. Since x X o and T is <-non-decreasing, we have that
x = Tx X Tw. By induction, x X T"w = w, for all n € N. Using the contractivity
condition (10.4), we have that, for all n € N,

G(x,x, wy+1) = G(Tx, Tx, Tw,) < (G(x,x, w,)).
Again, using item 6 of Lemma 2.3.11, we deduce that {G(x, x, w,)} — O, that is,

G . G
{w,} = x. The same reasoning proves that {w,} — y, sox = y. O

The same arguments that we have used in the corollaries of Theorem 10.4.1 can
now be applied to deduce the following results.

Corollary 10.4.6. Let (X, G) be a complete G*-metric space, let X be a partial
order on X and let T : X — X be a <X-non-decreasing mapping. Suppose that there
exists a function ¢ € Fcir such that, for all x,y € X withx <y,

G(Tx, Ty, Ty) < p(G(x,y,Y)).

Also assume that T is G-continuous or (X, G, X) is non-decreasing-regular. If there
exists xo € X such that xo < Txy, then T has, at least, a fixed point. Furthermore,
if for all x,y € Fix(T) there exists o € X such that x < @ and y <X w, we obtain
uniqueness of the fixed point.

Corollary 10.4.7. Let (X, G) be a complete G*-metric space and let T : X — X be
a mapping. Suppose that there exists a function ¢ € Fci such that, for all x,y € X,

G(Tx, Ty, Ty) < ¢(G(x, 3, y)).
Then T has a unique fixed point.

Corollary 10.4.8. Let (X, G) be a complete G*-metric space, let < be a preorder
onX andlet T : X — X be a X-non-decreasing mapping. Suppose that there exists
a function ¢ € Fcir such that, for all x,y,z € X withx <y <Xz,

G(Tx, Ty, Tz) < p(G(x,,2)).
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Also assume that T is G-continuous or (X, G, <) is non-decreasing-regular. If there
exists xo € X such that xy =< Txy, then T has, at least, a fixed point. Furthermore,
if for all x,y € Fix(T) there exists v € X such that x < @ and y < w, we obtain
uniqueness of the fixed point.

Corollary 10.4.9. Let (X, G) be a complete G*-metric space, let < be a preorder
onX andlet T : X — X be a X-non-decreasing mapping. Suppose that there exists
a constant A € [0, 1) such that, for all x,y € X with x <y,

G(Tx, Ty, Ty) < AG(x,y,y).

Also assume that T is G-continuous or (X, G, <) is non-decreasing-regular. If there
exists xo € X such that xy < Txy, then T has, at least, a fixed point. Furthermore,
if for all x,y € Fix(T) there exists w € X such that x < w and y < w, we obtain
uniqueness of the fixed point.

10.5 Further Fixed Point Theorems in Partially Preordered
G*-Metric Spaces

In this section, inspired by the results of the previous section, we prove some
theorems in the setting of G*-metric spaces using contractivity conditions that
cannot be reduced to quasi-metric spaces, that is, involving three different values
in the arguments of G.

Theorem 10.5.1. Letr (X, G) be a complete G*-metric space, let < be a preorder
onX andlet T : X — X be a <-non-decreasing mapping. Suppose that there exist

two functions ¥ € Fy and ¢ € F),, such that, for all x,y € X withx <y,

Y (G(Tx, Ty, T?x)) < (¥ — ¢) (G(x,y. Tx)). (10.12)

Also assume that T is G-continuous or (X, G, <) is non-decreasing-regular. If there
exists xo € X such that xy < Txo, then T has, at least, a fixed point. Furthermore,
if for all x,y € Fix(T) there exists w € X such that x < w and y < w, we obtain
uniqueness of the fixed point.

Proof. Let xop € X be such that xp < Txo and let {x,},>0 be the Picard sequence of
T based on x, that is, x,+1 = Tx, for all n € N. If there exists some ny € N such
that X,,+1 = Xn,, then x,, is a fixed point of T In the sequel, assume that x,,+; # X,
for all n € N. In such a case, as T is non-decreasing (w.r.t. <), we have that

xXo X Txg =x1 = x1 = Txo X Tx; = x2.
By induction,

Xp =< Xnp1 foralln > 0. (10.13)
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Then, using the contractivity condition (10.12), we have that, for all n € N,

1p[f(G(xn-H s Xn+2,5 xn+2)) = KD(G(Txm Txp+1, szn))
= (1/f - (ﬂ) (G(xnvxn-l-l, Txn)) = (1/f - (P) (G(xnvxn-l-l, xn-i-l))'

Applying Lemma 2.3.6, {G(x,, Xy+1,%+1)} — 0. Let us show that {x,} is
G-Cauchy. Reasoning by contradiction, if {x,} is not G-Cauchy, by Lemma 8.3.2,
there exist 5 > 0 and two partial subsequences {x,x} and {x,} satisfying
k <n(k) <m(k) <n(k+1),

G (Xn()» Xnk 1 Xm—1) < €0 < G (Xn()» Xn()+1, Xmxy) ~ forall k € N,

lim G , , = lim G 1, , _1) = . 10.14
Jim (%) Xn(k)+1+ Xty Jim (Xnk)=1+ Xn (k) s Xim(y—1) 0 ( )

As =< is transitive and n(k) < m(k), we deduce from (10.13) that x,@)—1 = XpmE)—1
for all k € N. The contractivity condition (10.12) implies that, for all k € N,

Y (Gt Xao+1:Xm0)) = ¥ (G(Txy—1, Thmiy—1. T Xn(y—1))
< (¥ — @) (G(ngo—1+ X1 Txnr—1))
= (¥ — @) (Gn—1. Xn() Xmi—1)) -
Taking into account that x, 41 # x, foralln € N, we have that G(Xux). Xa(t)+1, Xm@kx) >

0 and G(xy(k)—1, Xn(k)> Xmk—1) > O for all k € N. Using (10.14) and Lemma 2.3.5,
we conclude that &g = 0, which is a contradiction. Hence, {x,} is a Cauchy sequence

. . . . G
in (X, G). As (X, G) is complete, there exist there exists zy € X such that {x,} — zo.

Now suppose that T is G-continuous. Then {x,+1} = {Txu} S Tzy. By the
uniqueness of the limit of a sequence in a G*-metric space (see Proposition 10.2.1),
Tzp = 7o and 7y is a fixed point of 7.

On the other hand, suppose that (X, G, <) is non-decreasing-regular. Since

G . . .
{xm} = 70 and {x,,} is monotone non-decreasing (w.r.t. <), it follows that x,, < zg
for all » € N. Hence, forall n € N,

1W(G(xn+l s Xn+2, TZ())) = w(G(Txn, TZO7 szn))
= (Y — @) (G(xn, 20, Txn)) = (¥ — @) (G(xn, Xnt1, 20))-
Since {x,} S 20, then {G(x,,X,+1,20)} — 0. Taking the limit when
k — oo we deduce that {V(G(x,+1,%,+1,T20))} — 0. By Lemma 2.3.3,
{G(xp+1,X%n+2,T29)} — 0. As G is continuous on each argument (see
Theorem 10.2.2), we deduce that

G (20, 20. Tz0) = nl_i}go G(Xpt1, X042, T20) = 0,

so Tzp = zo and zg is a fixed point of 7.
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To prove the uniqueness, let x,y € Fix(T) be two fixed points of 7. By
hypothesis, there exists @ € X such that x < w and y <X . Let us show that
G . .

{w, = T'w} — x. Since x < w and T is <-non-decreasing, we have that
x = Tx X Tw. By induction, x X T"w = w, for all n € N. Using the contractivity
condition (10.12), we have that, for all n € N,

w(G(x’ X, wn+l)) = W(G(T-xv T(l)n, sz))
= (¥ —9) (Gx. 04, Tx)) = (¥ — ¢) (G(x, x, ).

From Lemma 2.3.6, we deduce that {G(x, x, w,)} — 0, thatis, {w,} S z1. The same

. G
reasoning proves that {w,} — y, S0 x = y. O

The same arguments that we have used in the corollaries of Theorem 10.4.1 can
now be applied to deduce the following results.

Corollary 10.5.1. Ler (X, G) be a complete G*-metric space, let X be a partial
order on X and let T : X — X be a <X-non-decreasing mapping. Suppose that there
exist two functions Y € Fu and ¢ € F,,, such that, for all x,y € X withx < y,

Y (G(Tx, Ty, T?0) < (¥ — ) (G(x,y, T)).

Also assume that T is G-continuous or (X, G, X) is non-decreasing-regular. If there
exists xo € X such that xy < Txo, then T has, at least, a fixed point. Furthermore,
if for all x,y € Fix(T) there exists w € X such that x X w and y <X w, we obtain
uniqueness of the fixed point.

Corollary 10.5.2. Let (X, G) be a complete G*-metric space and let T : X — X be
a mapping. Suppose that there exist two functions Y € Fy, and ¢ € F), such that,
forall x,y € X,

K”(G(Tx’ Tyv sz)) = (1// - (p) (G(xv Ys Tx))

Then T has a unique fixed point.

Corollary 10.5.3. Let (X, G) be a complete G*-metric space, let < be a preorder
onX and let T : X — X be a <-non-decreasing mapping. Suppose that there exists
a function ¢ € ]-‘;h such that, for all x,y € X withx <y,

G(Tx, Ty, T*x) < G(x,y, Tx) — p(G(x, y, Tx)).

Also assume that T is G-continuous or (X, G, <) is non-decreasing-regular. If there
exists xo € X such that xy = Txo, then T has, at least, a fixed point. Furthermore,
if for all x,y € Fix(T) there exists w € X such that x < w and y < w, we obtain
uniqueness of the fixed point.
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Corollary 10.5.4. Let (X, G) be a complete G*-metric space, let < be a preorder
onX andlet T : X — X be a <X-non-decreasing mapping. Suppose that there exists
a constant A € [0, 1) such that, for all x,y € X withx <y,

G(Tx, Ty, T?x) < AG(x, y, Tx).

Also assume that T is G-continuous or (X, G, X) is non-decreasing-regular. If there
exists xo € X such that xy = Txy, then T has, at least, a fixed point. Furthermore,
if for all x,y € Fix(T) there exists w € X such that x < @ and y <X w, we obtain
uniqueness of the fixed point.



Chapter 11
Multidimensional Fixed Point Theorems
on G-Metric Spaces

In this chapter we introduce several notions of multidimensional fixed points. To
prove results, it is usual to consider a number of sequences equal to the dimension of
the product space in which the main mapping is defined. Also, using the techniques
described in Sect. 10.3, we will show that most of multidimensional results can be
deduced from the corresponding unidimensional result in G*-metric spaces.
Throughout this chapter and for simplicity, given a positive integer number n, we
will use X" to denote the nth Cartesian power of X, thatis, X x X X...x X (n times).

11.1 Different Notions of Multidimensional Fixed Point

The notion of fixed point of a self-mapping 7 : X — X can be seen as a solution of
the nonlinear equation Tx = x. In this sense, if F': X" — X" is also a self-mapping,
a fixed point of F is a point (x;, X, ..., X,;) € X" such that

F(X],)Cz,...,xn) = (X],Xz,...,xn).

However, there is a different viewpoint about multidimensional fixed points. For
example, when we handle a mapping F' : X" — X, a fixed point of F (in a cyclic

sense) is a point (x1, x2,...,x,) € X" satisfying the following system involving n
equalities:
© Springer International Publishing Switzerland 2015 249
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F (1, %0, X3, 0, X1, Xp) = X1,

F(x2’x37~x4a o axn’xl) = x27
F(xi»xi+lvxi+2v s Xy X1, X2, e )xi—l) = X,
F(xn,xleZa ey vxn—Zaxn—l) = Xn.

In 2006, Gnana-Bhaskar and Lakshmikantham [84] studied the coupled case in
order to guarantee the existence and uniqueness of a solution of a boundary value
problem. In their work, they considered a nonlinear operator F : X x X — X with
two arguments in a partially ordered metric space (X, d, <), and they characterized
any solution of the differential system as a coupled fixed point of F, that is, a point
(x,y) € X such that

F(x,y) =x,
F(y,x) =y.

In fact, this notion corresponds to a cyclic 2-dimensional fixed point of . However,
one of the most attractive hypotheses they introduced in their main results was the
fact that F must have the mixed monotone property (see Definition 11.3.1). When
Berinde and Borcut [41, 50] tried to extend the coupled case to a third variable,
they considered that the mixed monotone property should also be assumed. Then,
in order to take advantage of this property, they did not consider the cyclic notion of
tripled fixed point, but rather they introduced, for a nonlinear operator F' : X x X x
X — X, the notion of tripled fixed point as a point (x,y,z) € X x X x X such that

F(x,y,2) =x,
F(,xy) =y,
F(z,y,x) = z.

In this case, both the second and the third equations do not correspond to the
cyclic notion of a fixed point. Especially attractive for researchers was the second
condition, y = F(y, x,y), in which the variable y is repeated and z does not appear.

Later, Karapinar [110] introduced the quadrupled notion as a extension of the
two previous cases, defining

F(x,y,z,w) = x,
F(y,z,w,x) =y,
F(z,w,x,y) =z,
F(w,x,y,2) = o0,

which correspond to the cyclic case. He also proved some existence and uniqueness
theorems assuming the mixed monotone property on X.
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A notion of multidimensional fixed point was introduced by Berzig and Samet in
[42] and, simultaneously by Roldan-Lépez-de-Hierro et al. in [174].

We briefly describe the different notions of fixed and coincidence points we will
use throught this chapter in the low dimensional case (n € {2, 3, 4}).

Definition 11.1.1. Given two mappings 7,g : X — X, we will say that a point
xeXisa

e fixed point of T if Tx = x;
* coincidence point of T and g if Tx = gx;
e common fixed point of T and g if Tx = gx = x.

We will denote by Fix T the set of all fixed points of 7 and by Coin(7, g) the
family of all coincidence points of T and g.

Following Gnana-Bhaskar and Lakshmikantham (see [84]), given F : X?> — X
and g : X — X, we will say that a point (x,y) € X?is a

e coupled fixed point of F if F(x,y) = xand F(y,x) = y;
e coupled coincidence point of F and g if F(x,y) = gx and F(y,x) = gy;
e common coupled fixed point of F and g if F(x,y) = gx = x and F(y,x) = gy
= y'
We will denote by Fix F' the set of all coupled fixed points of F and by Coin(F, g)
the family of all coupled coincidence points of F and g.
Following Berinde and Borcut (see [41, 50]), given F : X3 — X and g: X —>X,
we will say that a point (x,y,z) € X’ isa

e tripled fixed point of F if F(x,y,z) = x, F(y,x,y) = yand F(z,y,x) = z.

e tripled coincidence point of F and g if F(x,y,7) = gx, F(y,x,y) = gy and
F(z,y,x) = gz.

e common tripled fixed point of F and g if F(x,y,2) = gx = x, F(y,x,y) = gy =Yy
and F(z,y,x) = gz =z

Following Karapmar (see [110, 117]), given F : X* — X and g : X — X, we will
say that a point (x,y,z.7) € X*isa

* quadrupled fixed point of F if F(x,y,z,t) = x, F(y,z,t,x) = y, F(z,1,x,y) = z
and F(t,x,y,z) = t.

e quadrupled coincidence point of F and g if F(x,y,z,t) = gx, F(y,z,t,x) = gy,
F(z,t,x,y) = gzand F(t,x,y,7) = gt.

* common quadrupled fixed point of F and g if F(x,y,z,t) = gx = x, F(y, z,t,x) =
gy =y, F(z,t,x,y) = gz=zand F(t,x,y,z7) = gt = ¢.

11.2 Preliminaries

In this section we introduce some technical properties we will use throughout this
chapter.
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Lemma 11.2.1. Ler {x'}, {x2}, ..., {x)'} C X be N sequences on a G*-metric space
(X, G) such that

lim G(xn,x,H_l, n+1) =0 forallic{l,2,...,N}. (11.1)

n—>o0

Suppose that, at least, one of them is not Cauchy in (X, G). Then there exist &y > 0,
ip € {1,2,...,N} and two sequences of natural numbers {n(k)}ren and {m(k)}ren
such that

k <n(k) <m(k) <nk+1),

max {G(xﬁl(k),xjn(k)ﬂ,xin(k)fl)} <g < jmax {G(x;(k),x;n(k),x;(k))},

1<i<N

lim [max {G(x;;(k)’xin(k)’x;(k))}}

k—o00 | 1<i<N

= lim |:max {G(xz(k)_l,xfn(k)_l,xﬁn(k)_l)}} = &,

k—o00 | 1<i<N

hm G(xn(k)’ m(k)’x:?z(k)) = hm G(x K)—1° ng(k)—l’x;)z(k)—l) = &o.
Proof. For all n,m € N, let
_ P
S(n,m) = 112?5)§VG(X”’X’"’X’")'
Using this notation, property (11.1) means that

lim S(n,n+1) = 0. (11.2)
n—oo

Furthermore, for all n, m, p € N we have that

S(n’ m) = 1I2a<X G(xn’ m? ﬂl)

< max {G(xn, X ) + G(x, X X))

1<i<N

< max G maxG L ox
< max G(x,.3).,) + max G(x,.3).x,)

=S(n,p) +S(p,m). (11.3)

Consider the following condition.

For all & > 0, there exists ny € N such that

S(n,m) <egforallm > n > ny. (11.4)
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We claim that if (11.4) holds, then all sequences {x}}, {x2}, ..., {x]}} are Cauchy.
Indeed, let ¢ > 0 be arbitrary. Let ny € N satisfy (11.4). Therefore, for all m > n >
ng and for all j € {1,2,..., N} we have that

G(x),, X, x),) < max, {G(,x),. X))} =S (n,m) <e.

By Lemma 10.2.5, {¥} is a Cauchy sequence in (X, G) for all j € {1,2,...,N}.
As we are assuming that at least, one of the sequences {x!}, {x2},..., {x'} is not
Cauchy in (X, G), condition (11.4) cannot hold. Then, there exists &9 > 0 such that

for all ny € N, there exist m > n > ng such that S (n, m) > &.

Using this property repeatedly, we can find two sequences of natural numbers
{n(k) }ren and {m(k) }ren such that, for all k € N,

k <n(k) <m(k) <n(k+1) and

go < S (n(k), m(k)) = [max {G(xz(k),xin(k),xin(k))} . (11.5)

If we choose m(k) as the lowest integer, greater than n(k), satisfying (11.5), then we
can assume that S (n(k), m(k) — 1) < g, that is, for all k € N,

P i
Joax, {G(xn(k)’xm(k)—l’xm(k)—l)} =&
< S (0. m(k) = max {60 Xy o)} -

Moreover,

i i i
fo < max {G (xn<k)’xm<k)’xm<k>)}

IA

max {G(xil(k)vxin(k)—lvxin(k)q) + G(xfn(k)fl’xin(k)’xin(k))}
11;11?1555\] Gy Xongy—1 Xty —1) + 11;11?15%\, G(Xt)—1+ Xk Oty

IA

<é& + lléliegv G(xin(k)_l,x;q(k),x;(k)) = g9+ S (m(k) — 1, m(k)) .

Taking the limit as k — oo and by (11.2), we deduce that

lim S (n(6), m()) = Jim [1‘;% {G(x;@,xin(k),xin(k))}] =e. (16)
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From (11.3)

S (k) — 1,mk)) = S (n(k) — 1,n(k)) + S (n(k), m(k)) and
S (n(k), m(k)) < S (n(k), m(k) — 1) + S (m(k) — 1, m(k)) .

Therefore,

S (n(k), m(k)) — S (m(k) — 1, m(k)) < S (n(k), m(k) — 1)
< S (n(k) — 1,n(k)) + S (n(k), m(k)) . 11.7)

From (11.2) and (11.6), we deduce that
lim S (n(k), m(k) — 1) = &. (11.8)
k—00

Similarly, by (11.3),

S(nk) — 1,mk) — 1) = S (n(k) — 1, n(k)) + S (n(k), m(k) — 1) and
S (n(k), m(k) — 1) < S (n(k), n(k) — 1) + S (n(k) — 1, m(k) — 1) .

Hence

S (n(k), m(k) — 1) — S (n(k), n(k) — 1) < S (n(k) — 1, m(k) — 1)
< S(n(k) — 1, n(k)) + S (n(k), m(k) — 1) . (11.9)

Taking the limit as k — oo and using (11.2) and (11.8),

lim |:max {G(x;(k)—l’x;n(k)—hx:n(k)—l)}i|

k—o00 | 1<i<N

= kl_iIgoS(n(k) —1,m(k) — 1) = &.

Next, we consider the N sequences {a}; = G(xil(k),xfn(k),xj;l(k))}keN, where i €
{1,2,...,N}. They are lower bounded and they satisfy

lim (max a};) = lim [max {G(x;(k),xfn(k),xfn(k))}} = &.

k—o0 \ 1<i<N k—o0 | 1<i<N
By Lemma 2.1.2, there exists iy € {1,2,..., N} and a partial subsequence {a;‘)(k) =
) . . i ips _
G(x;(n(k)),xl’)(m(k)),x;(m(k)))}keN such that {a;(k)}keN — gp. Identifying p o n = n and

p om = m in order to not complicate the notation, we have that

. i i i
dim Gy Xy Xmy) = €0-
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Finally, the property

. i i i
kllfg‘o G(xno(k)—l’xn(;(k)—l’xrz(k)—l) = &0

can be deduced using the same argument we have followed in (11.7), (11.8) and
(11.9). This completes the proof. O

Lemma 11.2.2. Let {x!} {x2},..., {xV} C X be N sequences on a G*-metric space
(X, G) such that

nl_i)noloG (xi,,xilﬂ,xilﬂ) =0 forallie{l,2,...,N}.
Suppose that, at least, one of them is not Cauchy in (X, G). Then there exist &g > 0

and two sequences of natural numbers {n(k)}ren and {m(k)}ren such that, for all
keN,

k <n(k) <m(k) <nk+1),
N ) . . N . . .
;G(xn(k)»xm(k)—pxm(k)—1) =& < ;G(xn(k)’xm(k)’xm(k))’

and also, for all given py,p»,p3 € Z,

k—00

v A 4
lim [;G(xfl(kH-ﬁl’xj?l(k)+l72’xiﬂ(k)+ﬁs)i| = &0
=

Proof. By Corollary 10.3.1, the mapping Gy, : XV x XV x X¥ — [0, 00), given by
) N
Gy(X,Y,Z2) = ;G(xi’)’i»Zi)

forall X = (x1,x2,...,x8),Y = O1,v2,....08). 2 = (21, 22,...,2n) € XV, is a
G*-metric on XV. Consider the sequence {A, = (x},x%,...,xV)},en € XV, which
satisfies

N
: / S T i i i _
Jim Gy (Ap, A1, Apr) = lim l;G(xnvan»an) =0.

Then, {A,} is an asymptotically regular sequence of (XN , G;v) As one of
the sequences {x!},{x2},...,{x¥} is not Cauchy in (X,G), then item 3 of
Corollary 10.3.1 guarantees that {A,} is not a Cauchy sequence in (XN G;V)
From Theorem 4.1.1 (which is also valid in G*-metric spaces by Remark 4.1.1),
there exists a positive real number gy > 0 and two subsequences {A, )} and {A,x)}
of {A,,} such that, for all k € N,
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k <n(k) <m(k) <nk+ 1),

Gy (A Am—1 Am—1) < €0 < Gy (An@y> Amciy» Amit))
and also, for all given py, p»,p3 € Z,
Jim Gy (Antpi» Anto-+p2 Amto-+ps) = &0-

The proof is complete. O

Lemma 11.2.3. Let {a,,}men be a sequence of non-negative real numbers which
has no subsequence converging to zero. Then, for all ¢ > 0, there exist § € 0, g[
and my € N such that a,, > § for all m > my,.

Proof. Suppose that the conclusion is not true. Then, there exists &g > 0 such that,
for all § € ]0, g, there exists my € N satisfying a,,, < §. Let ky € N be such that
1/ko < &9. For all k € N, take 6; = 1/(k+ ko) € ]0, &o[. Then there exists m(k) € N
verifying 0 < a4y < 8 = 1/(k + ko). Taking the limit when k — oo, we deduce
that limy— oo dm@y = 0. Then {a,} has a subsequence converging to zero (maybe,
reordering {a,)}), but this is a contradiction. |

Lemma 11.2.4. Let {al},{a2},.... {a"},{b1}, {B2}, ... {b"} C [0,00) be 2n
sequences of non-negative real numbers and suppose that there exist ,¢ € Fa
such that

w(ainﬂ) < —o)b) foralliandallm, and

Y (max bjn) <y (max a ) for all m.

1<i<n 1<i<n

Then {ai,} — 0 for all i.

Proof. Let ¢,, = max)<;<, d, for all m. Then, for all m,

V) = 1 (s ) = max v () < max [0 = )6}

1<i< 1<i<n

IA

max 1//(b’ )= (ln<1a<x b’m) W (max a ) = Y(cm).

1<i<n
Therefore, {{(c,)} is a non-increasing, bounded below sequence. Then, it is

convergent. Let A > 0 be such that {{/(c,)} — A and A < ¥(c,). We show
that A = 0. Since

L vn] = (o (m ) = o -
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Lemma 2.1.2 guarantees that there exists iy € {1,2,...,n} and a partial subse-
quence {am(k)}keN such that {w(am(k))} — A. Moreover,

0= (@) < (¥ —)bl,_) forallk. (11.10)

Consider the sequence {big(k)—l}keN' If this sequence has a partial subsequence
converging to zero, then we can take the limit in (11.10) when k — oo using that
partial subsequence, and we deduce A = 0. On the contrary, if {biz(k)—l}kGN has
no partial subsequence converging to zero, Lemma 11.2.3 assures us that there exist
8 €10, 1] and ky € N such that bfj;(k)_l > § for all k > k. Since ¢ is non-decreasing,

—p(bpiy—1) < —¢(8) < 0. Then, by (11.10), for all k > ko,
0< W(af,(;(k)) < _w)(big(k)_l) = (blo(k) 1) ¢(bl m(lk)— 1)

< 1/f(bm(k) D —e@) <y (max b )~ 1) — 9(8)

1<i<

<y (max am(k) 1) - =y (Cm(k)—l) — ().

Taking the limit as k — oo we deduce A < A — ¢(8), which is impossible. This
proves that A = 0. Since {{/(¢,;)} = A = 0, Lemma 2.3.3 implies that {c,,} — O,
which is equivalent to {a’ } — 0 for all i. O

Lemma 11.2.5. Let (X, G) be a G-metric space and let {x\}, {2}, ..., {xV} C X be

N sequences in X. Assume that there exists ¥ € JF c(ozn such that

N

ZG(XZH»XZHJZH) (ZG( K10 X )) (1L.1D)

=

for all n € N. Then each sequence {x:},en is Cauchy in (X,G) for all i €
{1,2,...,N}.

Proof. Let
N S
tg = ZG(x’l,xg,x’O) € [0, 00).
i=1

As v is non-decreasing, by (11.11), for alln > 1,
ZG( n+1’ n’ n) (ZG( n’ n 1’ n— 1))
(ZG( 1’n2’n2))§"'
<v (Zo)) = v .
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As a consequence, for all j € {1,2,...,N} and all n,m € N such that n < m, we
have that
L. N L N m—1 . .
G, x,,x) < 'ZlG (x;n,x;,x;) < Zikz G (x}<+1,x}{,x}<)
i= i=lk=n

m—1 /N X . m—1
=3 (ZG(ijH,x;c,xj()) < kz v (1) .

k=n \i=1

If fp = 0, then &, = &, forallj € {1,2,...,N} and all n,m € N. In such a case,
each sequence {x{,}neN is constant, so it is also Cauchy. Assume that 7, > 0. Let

& > 0 be arbitrary. Since ¥ € fc(g‘ln, the series Zkerk (tp) converges. Then, there
exists ny € N such that

3y (1) < .

k=ng
Therefore, forallj € {1,2,...,N}and all n, m € N such that m > n > ny, it follows
that
i i X m—1 e’}
G, 2. x) < Y vh) < X v' () <e
k=n k=nyg
From Lemma 3.2.2, each sequence {x/ },ey is Cauchy in (X, G). O

Lemma 11.2.6. Let (X, G) be a G-metric space and let {x}}, {x2}, ..., {xN} € X be
N sequences in X. Assume that there exists W € fc(gzn such that

max G (x ., x  ,x < max G (x ,,x x
1<i<N (n+2 n+1° n+l)—w 1<i<N (n+l n° n)

for all n € N. Then each sequence {xi},en is Cauchy in (X,G) for all i €
{1,2,...,N}.

Proof. Repeat the argument in the proof of Lemma 11.2.5 replacing the sum by the
maximum. In particular, if

fo= max G(x',x\,x\) >0
0 I<i<N (l’ 0 0) ’

then

G(x),, X, x) < max G(xjn,xj,,x;) < max ZG(x}cH,x}(,x;()

I<i<N 1<i=N | (=,
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m—1 . L m—1
<% (a6 ko) ) = S,
i=n \I<i<N k=n
and continue. O

Corollary 11.2.1. Let (X, G) be a G-metric space and let {x'}, {x2},... {x)} € X
be N sequences in X. Assume that there exists A € [0, 1) such that

max G (x ., x  ,x <A max G(x'_,,x,x
1<i<N (n+2’ n+1° n+l) — 1<i<N (n+l’ n’ n)

for all n € N. Then each sequence {x!},en is Cauchy in (X,G) for all i €
{1,2,...,N}.

Proof. Tt is only necessary to apply Lemma 11.2.6 using ¥, (t) = At forall ¢ €
[0, 00). |

11.3 Coupled Fixed Point Theory in G-Metric Spaces

In this section, we describe sufficient conditions to ensure that a mapping F : X x
X — X has a coupled fixed point, that is, a point (x,y) € X2 such that F (x,y) = x
and F (y,x) = y.

11.3.1 Gnana-Bhaskar and Lakshmikantham’s Coupled
Fixed Point Theory

The notion of coupled fixed point was introduced by Guo and Lakshmikantham in
[89]. Later, in [84], Gnana-Bhaskar and Lakshmikantham reconsidered this concept
and introduced the mixed monotone property.

Definition 11.3.1 ([84]). Let X be a non-empty set endowed with a binary relation
<. A mapping F : X> — X is said to have the mixed <-monotone property if F(x, y)
is monotone <X-non-decreasing in x and monotone <-non-increasing in y, that is, for
allx,ye X,

x,x€X, x1x<xx, = F@,y) XF(,Yy)

and

Yy €X, i<y =  F(,yn)=Fy).
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In their original definition, Guo and Lakshmikantham considered that < was
a partial order on X. We will use preorders in the theorems we present in this
chapter. When the binary relation < is implicitly considered, it is usual to refer
to the previous property as the mixed monotone property.

Lemma 11.3.1. Let < be a transitive binary relation on a set X and let F : X2 -
X be a mapping having the mixed <-monotone property. Assume that there exists
X0, Yo € X such that xo < F(xo,yo) and yo > F(yo, xo). Then the sequences {x,} and
{yn}, iteratively defined by

X1 = F(xy,yn) and yy41 = F(yu,x,) foralln € N, (11.12)

verify x, X Xp4+1 and y, > yu+1 foralln € N.
Furthermore, if there exists ny € N such that x,, = X,y+1 and yn, = Yny+1, then
(Xng» Yny) s a coupled fixed point of F.

Proof. We proceed by induction. For n = 0, we assume, by hypothesis, that xo <
F(xp,y0) = x1 and yg > F(yo,x9) = y1. Suppose that x, < x,+; and y, > y,4; for
some n € N. Then, as F has the mixed <-monotone property, then

Xp+1 = F(xnvyn) = F(xn+lvyn) = F(xn+17yn+1) = Xp+2,

Yn+1 = F(,anxn) > F(Yn+lvxn) = F(yn+1axn+1) = Yn+2-

This completes the induction. Furthermore, if the exists np € N such that x,, =
Xno+1 and Y, = Yno+1, then

Xng = Xng+1 = F(xnovyno) and Yng = Yno+1 = F(yno’xno)’

SO (Xny» Vo) 1s a coupled fixed point of F. O

Theorem 11.3.1. Let (X, G) be a complete G-metric space endowed with a pre-
order < and let F : X*> — X be a mapping having the mixed <-monotone property.
Suppose that there exists a constant A € [0, 1) such that

G(F(x,y),F(u,v),F(z,w)) < % (G (x,u,2) + G, v,w) ] (11.13)

for all (x,y),w,v),(zw) € X? satisfyingx < u < zandy > v > w. Also
assume that F is continuous and there exists xg, yo € X such that xy < F(xo,yo) and
vo = F(yo, x0). Then F has, at least, a coupled fixed point.

The condition “x < u < zand y > v > w” can be replaced by the condition
“x>u>zandy < v < w” because G is commutative and

G(F(x,y),F(u,v),F(z,w)) =G(F(z,w),F(u,v),F(x,y)).
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Proof. Starting from the points xg,yp € X such that xo < F(xg,y0) and yy >
F(yo,x0), consider the sequences {x,} and {y,} as in (11.12). By Lemma 11.3.1,
the sequence {x, } is <-non-decreasing and {y, } is <-non-increasing. If xo = x; and
Yo = y1, then (xo, yo) is a coupled fixed point of F, and the existence part is finished.
In the other case, assume that

G (xo0,x1,x1) + G (yo. y1,y1) > 0.
Then, using the contractivity condition (11.13), for all n € N,
G (Xnt1, Xnt2: Xn2) = G (F O yn) o F (g1, Ynk1)  F (1 Y1)
st % (G (s Xnt 15 Xn41) + G O Ynt 15 Ynt1) )

and, taking into account that y,4+1 < y,+1 <y, and X,4+1 > X417 > Xy,

G(Yn+2»yn+2ayn+1) = G(F(yn+lsxn+1)sF(yn+lvxn+l)vF(-xn»yn))

A
= E [G (yn+lvyn+l’))n) + G(xn+lvxn+l,xn) ] .
Therefore, for alln € N,

G (Xnt1. X042, Xn42) + G Vut2. Ynt2, Ynt1)

< A [G (s Xt 15 Xn+1) + G Vs Yot 1, Yut1) |-
Repeating this argument, we have that, foralln € N,
G (Xn, Xn+15 Xn+1) + G Vs Ynt-15 Ynt1)
= A [G(xn—l»xn’xn) + G(yn—laynvyn) ]
E Az [G(xn—2vxn—1’xn—l) + G(yn—z’ yn—l»yn—]) ]
<. A [G (x0,x1,x1) + G (o, y1,31) |-

Lete > 0 be arbitrary. As A € [0, 1), the series X, A" converges. Then, there exists
no € N such that

&

o0
AT < .
n;no G (x0,x1,x1) + G (3o, y1,31)

Let n,m € N be such that m > n > ny. Then

max {G (Xn, Xpms Xm) s G Oy Ym> Ym)} < G Xy Xim, Xiw) + G Vs Yims Ym)

m—1

< > [G k. X1, %41) + G ks Y15 Y1) |

k=n
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m—1
< 1; [A* (G (x0.x1.x1) + G (o, y1.31) ) ]

m—1

= [G (x0,x1,x1) + G (o, y1,y1) ] 2 AF
k=n

o
<[G (xo,x1.%1) + G (o, y1,y) ] 3 AF <e.

k=ng

As a consequence, the sequences {x,} and {y,} are Cauchy in (X, G). As (X, G) is
complete, there exists x,y € X such that {x,} — x and {y,} — y. Moreover, taking
into account that F is continuous, we know that the sequence {x,+1 = F(x,,V,)}
converges, at the same time, to x and to F(x, y), and the sequence {y,+1 = F(yn, X,)}
converges, at the same time, to y and to F(y, x). By the uniqueness of the limit in a
G-metric space, we conclude that (x, y) is a coupled fixed point of F. O

In the following result, we replace the continuity of F by the regularity of
(X, G, <) (recall Definition 5.2.1).

Theorem 11.3.2. Theorem 11.3.1 also holds if we replace the continuity of F by
the regularity of (X, G, <X).

Proof. Following the argument in the proof of Theorem 11.3.1, we deduce that there
exists x, y € X such that {x,} — xand {y,} — y. Since {x, } is <-non-decreasing and
{x,} — x, the regularity of (X, G, <) implies that x,, < x for all n € N. Similarly,
yn = y for all n € N. Then, the contractivity condition (11.13) yields

G (o1, F (0, ). F (x,y)) = G (F (n, yn) » F (x,9) . F (x,Y))
<216 (x0 + Gy,
As G is continuous (see Theorem 10.2.2), we deduce that
G F(xy) F(xy) = lim G @1, F(x.y), F(xy) =0,
so F(x,y) = x. Similarly,
G(F(».%) . F(.%) . yns1) = G(F (.%) . F (v, %) . F (Y, X))
<2160 + G ],

so F(y,x) = y and (x, y) is a coupled fixed point of F. O
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Theorem 11.3.3. Under the hypotheses of Theorem 11.3.1 (respectively, Theo-
rem 11.3.2), also assume the following condition:

(U)  for all two coupled fixed points (x,y) and (x',y') of F, there exists (z, w) € X>
suchthatx <z, X <z, y > wandy > w.

Then F has a unique coupled fixed point.

Proof. Let (x,y) and (x',y’) be two arbitrary coupled fixed points of F. By
hypothesis, there exists (z9, wg) € X? such that x < z9, X’ < 29,y > wp and ¥ > wy.
Define the sequences

Znt1 = F(zp,wy) and wyy = F(wy,z,) foralln e N.
We claim that {z,} — x and {w,,} — y. The same argument will show that {z,} — x’
and {w,} — ¥/, so we will deduce (x,y) = (', ).

Since x <X zg and y > wy, and F has the mixed <-monotone property, then

x=F(x,y) X F(20,y) X F(z0.w0) =2z and
y=F(,x) = F(w,x) = F(wo, 20) = wi.

Repeating this argument, we deduce, by induction, that x < z, and y > w,, for all
n € N. Therefore, using the contractivity condition (11.13), it follows that

G (x. x, zp+1) = G (F(x,y). F(x,y). F(zn, Wn))
< 216 (xz) + G0y
and
G Wnt1,5:y) = G (F(Wn, 24), F(y. x), F(y, %))
< % [G Wn.y.y) + G (zn. x. %) ]
Joining the last two inequalities, for all n € N,

G(x’x’ Zn-‘rl) + G(y,y, Wn-i-]) = /1 [G(X,X,Zn) + G()),y, Wn) ] .

From Lemma 2.1.3, we deduce that {G (x, x, z,4+1)} — 0 and {G(y,y, w,+1)} — O.
Then {z,} — x and {w,} — y. |

Corollary 11.3.1. Let (X, G) be a complete G-metric space endowed with a partial
order < and let F : X*> — X be a mapping having the mixed <-monotone property.
Suppose that there exists a constant A € [0, 1) such that
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G(F (5.9) F () F ) = 5 (G (5.0.2) + G v w)]

forall (x,y) ., (u,v), (z.w) € X? satisfying x < u < zandy > v = w. Also assume
that, at least, one of the following conditions holds:

(i) F is continuous, or
(i) (X, G, =) is regular.

If there exists xy, yo € X such that xy < F(xo, yo) and yo = F(yg, Xo), then F has,
at least, a coupled fixed point.
Furthermore, if we additionally assume the following condition:

(U) forall two coupled fixed points (x,y) and (x',y") of F, there exists (z,w) € X?
suchthatx <Xz, X <z, y=wandy = w;

then F has a unique coupled fixed point.

In the next corollary, we use the special preorder <, on X given by “x < y for
all x,y € X”. In such a case, (X, G, <o) is regular and (U) trivially holds.

Corollary 11.3.2. Let (X, G) be a complete G-metric space and let F : X*> — X be
a mapping. Suppose that there exists a constant A € [0, 1) such that

G (F(x,y).F(u,v) ,F(z,w)) = % (G(x.u.2) + G(y.v,w))

forall (x,v), (u,v), (z,w) € X2. Then F has a unique coupled fixed point.

11.3.2 Choudhury and Maity’s Coupled Fixed Point Theorem
in G-Metric Spaces

In [58], Choudhury and Maity gave a version of Corollary 11.3.1 assuming the
following contractivity condition: there exists a constant A € [0, 1) such that

G(F (x,y),F (u,v),F(z,w)) < % (Gx,u,2) + G(y,v,w)) (11.14)

for all x,y,u,v,z,w € X satisfying x > u > zand y < v < w where either u # z
or v # w. However, the proof given by the authors is false because the condition
“either u # z or v # w” is very restrictive. Let us review the lines of their proof.

Based on the points xy, yo € X such that xo < F(xo, yo) and F(yg, Xo) > yo given
by the hypothesis, the authors defined the sequences

Xpr1 = F(x,,y,) and y,+1 = F(yn,x,) forallme N, n> 0.
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Using the mixed monotone property, they proved that

Xp X X1 and  y, =y, forallne N, n>0.
If there exists some n € N such that (x,+1, Vut+1) = (X4, yn), then x, = x4 =
F(x,,y,) and y, = yu41 = F(Yn, Xn), 80O (X, yn) is a coupled fixed point of F. On

the contrary, assume that (x,+1, Vu+1) # (X, y,) for all n > 0. Therefore, for all
n=>0,

Xn =X Xp41 and Yn = Yn+1, but Xn 7é Xp+1 O Yp4 # Yn-

In this case, the authors could use the contractivity condition (11.14) to prove that

Xy =X = X0, Y1 =Xy1=XYo, XoFX Or YoFYy

= G(x2,x2,x1) = G(F(x1,y1), F(x1,31), F(x0, ¥0))
A
< 5 [G(x1,x1,X0) + G(y1,y1,Y0) |-

However, the corresponding inequality using {y,}, that is,

A
G(y2,y2,y1) < 3 [GOi,y1,¥0) + G(x1,x1,x0) ] (11.15)
cannot be proved because

G(y2,y2.y1) = G(F(y1,x1), F(y1, x1), F(yo, x0))

but the previous conditions

Y1 =y1 = Yo,
X1 $X1 5)60

are not satisfied. In fact, we have the contrary inequalities: x; > xp and y; < Yp.
Furthermore, it is not possible to use the symmetry of G in its variables because the
contractivity condition (11.14) requires thatx > u > wandy < v < z.

A version of Choudhury and Maity’s result is the following one, which is also
valid using a preorder < on X. In fact, the proof of Theorem 11.3.1 can be followed.

Theorem 11.3.4. Let (X, X) be a partially ordered set and G be a G-metric on X
such that (X, G) is a complete G-metric space. Let F : X x X — X be G-continuous

mapping having the mixed <-monotone property on X. Suppose that there exists a
A € [0, 1) such that

G(F(x,y), F(u,v),F(z,w)) < %[G(x,u,z) + Gy, v,w)] (11.16)
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forall x,y,u,v,z,w € X with
[x>u>zandy<v=w] or [x=su<zandyzv=w],

where either u # z or v # w. If there exist xo, yo € X such that xy <X F(xo,yo) and
F(yo,x0) = Yo, then F has a coupled fixed point.

11.3.3 Berinde’s Coupled Fixed Point Theory

In the setting of metric spaces, Berinde introduced in [40] a symmetric version of
the contractivity condition (11.13).

Theorem 11.3.5. Let (X, G) be a complete G-metric space endowed with a pre-
order < and let F : X*> — X be a mapping having the mixed <-monotone property.
Suppose that there exists a constant A € [0, 1) such that
G (F (x,y),F (u,v),F(u,v)) + G(F (y,x),F (v,u),F (v,u))
=AIG(xuu)+G(.v,v)] (11.17)
for all (x,y), (u,v) € X? satisfying x < uwand y > v. Also assume that F is

continuous and there exists xo, yo € X such that xy < F(xo, yo) and yo = F(yg, Xo).
Then F has, at least, a coupled fixed point.

Notice that the contractivity condition (11.13) implies (11.17).

Proof. Starting from the points xo,yo € X such that xo < F(xo,y0) and yy >
F(y0, x0), consider the sequences {x,} and {y,} as in (11.12). From Lemma 11.3.1,
the sequence {x,} is <-non-decreasing and {y, } is <-non-increasing. If x, = x; and
Yo = y1, then (xg, o) is a coupled fixed point of F, and the existence part is finished.
In the other case, assume that

G (x0,x1,x1) + G (yo, y1,y1) > 0.

Then, using the contractivity condition (11.17), for all n € N,

G (Xnt1: Xn42, Xn42) + G V1, Ynt2: Ynt2)
= G (F (xn, yn)  F (1, Y1) o F (o1, Ynt1))
+ G (F (s Xn) s F Ont 15 X041) s F Ont 1, Xa41))
< A [G s Xt 15 Xn11) + G ns Yot 1, Ynt1) |-
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From Lemma 11.2.5, {x,} and {y,} are Cauchy sequences in (X, G). Since (X, G)
is complete, there exists u,v € X such that {x,} — u and {y,} — v. As F is
continuous, letting n — oo in (11.12), we conclude that F(u, v) = u and F (v, u) =
v, so (u, v) is a coupled fixed point of F. O

Theorem 11.3.6. If we replace the continuity of F by the fact that (X, G, <) is
regular, then Theorem 11.3.5 also holds.

Proof. Following the proof of Theorem 11.3.5, we deduce that {x,} is <-non-
decreasing and {y,} is <-non-increasing. Furthermore, there exists u,v € X such
that {x,} — u and {y,} — v. As (X, G, <) is regular, then x, < u and y, > v for all
n € N. Then, from the contractivity condition (11.17),
G (xp41, F (u,v) , F (u,v)) + G Vg1, F (v, 1), F (v, u))

= G(F (‘xi’ﬂyﬂ) ’ F(M, U) ’ F(l/t, v)) + G (F (ynsxn) ’ F (09 M) ’ F (vv M))

< A[G (i, usu) + G (s v,0) ]
As a consequence, u = lim, o0 X417 = F (1, v) and v = lim,,—, o0 yu+1 = F (v, u).

O

The following uniqueness result can be proved reasoning as in the proof of
Theorem 11.3.3.

Theorem 11.3.7. Under the hypothesis of Theorem 11.3.5 (respectively, Theo-
rem 11.3.6), also assume the following condition:

(U)  for all two coupled fixed points (x,y) and (x',y') of F, there exists (z, w) € X>
suchthatx <z, X' <z, y > wandy > w.

Then F has a unique coupled fixed point.

11.3.4 G- B -y -Coupled Fixed Point Theorems in G-Metric
Spaces

In this subsection, we have a (c)-comparison function in the contractivity condition.

Theorem 11.3.8. Let (X, G) be a G-complete G-metric space and let F : XxX — X
be a given mapping. Suppose there exist ¥ € Fiom and B : X> x X2 x X* — [0, 00)
such that

B((x,), (u,v), (u, v)) G(F(x, y), F(u, ), F(u, v))

< %w(G(x,u,u)JrG(y,v,v)), (11.18)

for all (x,), (u,v) € X% Also assume that the following conditions hold.
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(a) Forall (x,y),(u,v) € X x X, we have

B(x.y). . v), (wv)) =1 =

B((F(x.). F(y.x)), (F(u,v), F(v.u)), (F(u.v), F(v,u))) = 1.

(b) There exists xy, yo € X such that

B(F(x0,y0), F(y0,X0)), (X0, Y0), (X0, 0)) = 1 and
B((F(yo,x0), F(x0,¥0)), (o, X0)» (yo. X0)) = 1.

(c) F is continuous.

Then F has a coupled fixed point.

Proof. Starting from xy, yg € X asin (b), let x,+1 = F (X, ) and y,+1 = F (Y, X»)

for all n € N. Condition (b) means that

B ((x1,y1), (x0,¥0) , (x0,¥0)) =1 and
B (i, x1), (o, x0) , (o, x0)) = 1.

From hypothesis (a),
B ((x2.32)  (x1.31) . (x1.3)
= B ((F Gt.0)  F G x0)), (F (50,30) . F (3, 50)),
(F (50.50) . F (0. %)) = 1 and
B ((2.%2) . (1.31) . (01.31))
= B ((F 0151 F (51, 90), (F 50, %) , F (30, 30)).
(F (0. %0) . F (0. 30))) = 1.
By induction, it can be proved that

:8 ((xn+1vyn+1) , (xnvyn) s (Xn»yn)) >1 and
:3 ((YH-H»xn-H) > (Yn»xn) , (Yn»xn)) > 1.

Using the contractivity condition (11.18), for all n € N,

G (Xnt2: Xnt15 Xn+1) = G (F g1, Yng1) » F (e, y0) o F (X, Y1)

= /3 ((xn-i-lvyn-i-l) ’ (xnv yn) ’ (xnv yn)) :

(11.19)
(11.20)
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G (F (Xn+1,Yn1) » F (ns Yn) 5 F (X0, Yn))

1
==z W(G(xn-i-l s Xns xn) + G(yn-l-l s Yns yn))
Similarly, for all n € N,

G(yn+2»yn+lvyn+l) = G(F (yn+lsxn+1) ’F(ynvxn) vF(yn»xn))
= ﬂ ((yn-i-laxn-i-l) > (ynvxn) > (ynsxn)) :

G(F(yn-i-lvxn-i-l)’F@ll,xn),F(yn’xn))

1
== W(G(yn-i-lvynvyn) + G(-xn+lsxnv-xn))-

Joining the last two inequalities, for all n € N,

G (Xp2, Xnt15 Xn41) + G Vnt2s Yt 1, Ynt 1)
= W(G(Xn-H,xn, xn) + G(yn—i-lvyn»Yn))-

From Lemma 11.2.5, the sequences {x,} and {y,} are Cauchy in (X, G). As (X, G)
is complete, there exists u, v € X such that {x,} — u and {y,} — v. Finally, since
F is continuous, then {x,+1 = F (x,;,y,)} = F(u,v) and {y,+1 = F OV, X))} —
F (v, u), which means that F (1, v) = uand F (v, u) = v. O

Theorem 11.3.9. Let (X, G) be a G-complete G-metric space and F : X x X — X
be a given mapping. Suppose there exist ¥ € Feom and B : X* x X* x X* — [0, 00)
such that

B((x.y). (. v), (1. v)) G(F(x. y), F(u, v), F(u, v))

< %W(G(X,u,u) + G(y,v,v)), (11.21)

for all (x,y), (u,v) € X x X. Also assume that the following conditions hold.
(a) Forall (x,y),(u,v) € X x X, we have

B((x,y), (u,v), (w,v)) > 1 =
B((F(x,y), F(y,x)), (F(u,v), F(v,u)), (F(u,v), F(v,u))) > 1.

(b) There exists xy, yo € X such that

B((F(x0.¥0), F(y0,X0)), (X0, Y0), (X0,y0)) = 1 and
B((F (o, x0), F(x0,¥0)), (o, X0), (o, X0)) = 1.
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(¢) If {xn},{yn} S X are sequences in X, G-convergent to u and v, respectively,

such that
/3 ((xn+la))n+l) s (xnsyn) s (xns yyt)) > 1 and
ﬂ ((yn-i-l,xn-i-l) s (yn’xn) s (yn,xn)) >1 fOI‘ alln € N,
then
B((xn, yn), (,v), (u,v)) > 1 and (11.22)
B (u,xn), (v, 1), (v,u)) > 1 foralln € N. (11.23)

Then F has a coupled fixed point.

Proof. Following the proof of Theorem 11.3.8, there exists u,v € X such that
{x,} — wu and {y,} — wv. Using (11.19)—(11.20), assumption (c) guarantees
that (11.22)—(11.23). Applying the contractivity condition (11.21), it follows that

G (X1, F (u,0)  F (u,0)) = G (F (X, y) . F (u,v)  F (1, v))
= ,3 ((xn»yn) ’ (Lt, U) ’ (I/l, U)) :

G (F (xn, yn) . F (u, ), F (u, v))
1

=

V(G (xy, u, ) + G(yn, v, v)).

N |

Similarly,

G Ont1, F(.u) . F (v,w)) = G (F (yn. ) . F (v, 1) . F (v, 1))
< B (Onxn) . (v.u), (v.0)) -
G (F (yn:xn) . F (v, 1), F (v, u))
1

=

Y (GO, v, V) + G, u, 1)).

|

As ¢ is continuous at r = 0, letting n — oo in the last two inequalities, we deduce
that

F,v)= lim x,0; =u and F (v,u) = lim y,y| = v.
n—>o0 n—>o0

Therefore, (1, v) is a coupled fixed point of F. O

Theorem 11.3.10. Adding the following condition to the hypotheses of Theo-
rem 11.3.8 (resp. Theorem 11.3.9) we obtain uniqueness of the coupled fixed point
of F.
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(d) For all (x,y), (u,v) € X x X, , there exists (z1,22) € X X X such that

B((x),(z1,22),@122) =1, B(z2,21), (%), (0, x)) = 1,
B((u,v),(z1,22),(z1,22)) = 1, B ((z2.21), (v, u), (v, u)) > 1.

11.3.5 Some Coupled Coincidence Point Theorems

In this subsection we show how to prove some coupled coincidence point theorems
under a very general contractivity condition.

Definition 11.3.2. Let X be a non-empty set endowed with a binary relation < and
let F: X> — X and g : X — X be two mappings. The mapping F is said to have the
mixed (g, <X)-monotone property if F(x,y) is monotone (g, <)-non-decreasing in x
and monotone (g, <)-non-increasing in y, that is, for all x,y € X,

x,xeX, gx<gn = F@,y) XFx,y)

and

L2 €X, gy <gn = F@y)=Fxy).

Lemma 11.3.2. Let F : X> — X and g : X — X be two mappings such that
F(X?) C g(X). Then, starting from any points xo, vy € X, there exist two sequences
{x,} and {y,} on X such that

&nt1 = F(x,,y,) and  gyu+1 = F(yu,x,) foralln € N. (11.24)

Proof. Letxy,yo € X be arbitrary. Since F(xo, yo) € F(X?) C g(X), then there exists
x1 € X such that gx; = F(x, o). Similarly, as F(yo, xo) € F(X?) € g(X), then there
exists y; € X such that gy; = F(yo, xo). If we repeat the same argument using x;
and y; rather than x and y,, we can find x;,y, € X2 such that gx, = F(x1,y;) and
gy2 = F(y1,x)). By induction, we may define the sequences {x,} and {y,} on X. O

Definition 11.3.3. Given two mappings F : X> — X and g : X — X, a Picard
(F, g)-sequence is a sequence {(X,, y,)nen C X? satisfying (11.24).

Proposition 11.3.1. If {(x,.y.)lnen < X? is a Picard (F,g)-sequence of two

mappings F : X*> — X and g : X — X and there exists ny € N such that
8Xny = &Xng+1 and gy, = &Vny+1, then (X, yn,) is a coupled coincidence point
of F and g.

Proof. If the exists ng € N such that gx,, = gxn,+1 and gy,, = &Vn,+1, then
8Xny = &Xng+1 = F(Xngs Yn)  and  gVny = &Vng+1 = F(Yng» Xnp)s

SO (Xny, Y, ) 1is a coupled coincidence point of F and g. O
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Given two mappings F : X*> — X and g : X — X, the condition F(X?) C g(X) is
sufficient to guarantee that there exists a Picard (F, g)-sequence on X based on any
initial points xg, yo € X. However, it is not necessary.

Lemma 11.3.3. Let < be a transitive binary relation on a set X and let F X2 > X
and g : X — X be two mappings such that the following conditions are fulfilled.

(i) There exists a Picard (F, g)-sequence {(X,, y,)nen < X°.

(i) gxo < F(xo.yo) and gyo = F(yo.Xo).
(iii) F has the mixed (g, <)-monotone property.

Then {gx,} is <-non-decreasing and {gy,} is <-non-increasing (that is, gx, =<
&Xny1 and gy, > gyu+1 for alln € N).

Proof. By (ii), we have that gxo < F(xo,y0) = gx; and gyo > F(yo,X0) = gV1-
Assume that there exist n € N such that gx, < gx,+; and gy, > gV,+1. Then, as F
has the mixed (g, <)-monotone property, it follows that

nt1 = F (X, yn) 2 F (X1, Y0) X F (g1, Yn+1) = 8%n42  and

n+1 = F (Vs X)) 2= F Ont15X0) = F Vnt 1, X041) = Vnt2-

As < is transitive, then gx,+; < gx,+42 and gy,+1 > gYVn+2, and this completes the
induction. o

In order to present a very general result, we introduce the following definitions.

Definition 11.3.4. Let (X, G) be a G*-metric space endowed with a binary relation
<andlet F: X> — X and g : X — X be two mappings. We will say that (F, g) is
an (0, X)-compatible pair if we have that

Jim_ G (gF (xn, yn), F(8%n: 8Yn), F (g%, gyn)) = 0 and
Jim G (8F Vs Xn)s F(8Vns &%), F(gYn, 8%1)) = 0

whenever {x,} and {y,} are sequences in X such that {gx,} and {gy,} are <-
monotone and

lim F(x,,y,) = lim gx, € X and
m—>0Q0 n—>o00
lim F(y,,x,) = lim gy, € X.
m—>00 n—>o00
Definition 11.3.5. Let (X, G) be a G*-metric space and let F : X> — X and g :

X — X be two mappings. We will say that (F, g) is an O-compatible pair if we
have that

Jim_ G (gF (xn, yn), (8%, 8Yn), F (g%, gyn)) = 0 and
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Jim G (8F (n, xn), F(8Yns 8%), F(gyn, 8%n)) = 0
whenever {x,} and {y,} are sequences in X such that
lim F(x,,y,) = lim gx, € X and
m—0o0 n—>oo

lim F(y,,x,) = nl_i)n;o gy, € X.

m—>0Q0

Remark 11.3.1. 1If F and g are commuting, then (F, g) is an (O, <)-compatible pair
and an O-compatible pair.

Theorem 11.3.11. Let (X, G) be a G-metric space endowed with a preorder < and
let F: X*> - Xand g : X — X be two mappings such that F has the mixed
(g, X)-monotone property. Assume that the following conditions hold.

(i) There exist two functions € Fy; and ¢ € F),, such that

¥ (G (F(x.y) . F (u,v),F(z,w)))

=W -9 (max{G (gx, gu, 82) , G (gy, 8, gW)}) (11.25)

forall (x,y), (u,v), (z,w) € X? for which gx < gu < gzand gy > gv > gw.
(ii) At least, one of the following conditions holds.

(ii.1) F(X?) C g(X) and there exists xo, yo € X such that gxo < F(xo, Yo) and

gyo = F(yo. Xo).
(ii.2) There exists a Picard (F,g)-sequence {(X,,yn)inen < X> such that

gxo = F(xo, y0) and gyo = F(yo, Xo).
(iii) At least, one of the following conditions holds.
(iii.1) (X,G) (or (g(X),G) or (F(Xz),G)) is complete and F and g are
continuous and (0, <X)-compatible.
(iii.2) (X,G) (or (g(X),G) or (F(Xz),G)) is complete and F and g are
continuous and commuting.
(iii.3) (g(X), G) is complete and (X, G, <) is regular.

Then F and g have, at least, a coupled coincidence point.

Proof. By Lemmas 11.3.2 and 11.3.3, (ii.1)=(ii.2). We present the proof assum-
ing (ii.2). From Lemma 11.3.3, {gx,} is <-non-decreasing and {gy,} is <-non-
increasing. As < is transitive, we deduce that

gx, =X gx,, and gy, > gy, foralln,m e N suchthatn <m.

By the contractivity condition (11.25), for all n € N we have, taking into account
that gx, < gx,41 = gxu+1 and gy, = &Vn+1 = gVn+1,
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Y (G (8Xn+1, 8Xnt25 8Xnt2))
=Y (G (F (xnyn) , F Cng 1, Yn11) s F (X1, Yn1)))

= (¥ — ) (max (G (g2 8xn+1. 8%1+1) . G (89 ¥t 1. 8041}

and using that gy,4+1 < gVn+1 = gyn and gx, 41 > gXn+1 > gXx,, we deduce that

V(G (8Yn+2: 8Yn+2: 8¥n+1))
=y (G (F (yn+l7xn+1) , F(Yn+1»xn+l) F (yn’xn)))

< -9) (max {G (8Yn+1,8Vn+1,8Vn) » G (gXnt1, gxn+lvgxn)}> .

As ¥ is non-decreasing,

14 (max {G (8Xn+1. 8%n+2. 8%n+2) . G (8Yn+1. 8Vn+2, gyn+z)})
= max {w (G (8%n+1:8Xn+2. 8Xn+2)) s ¥ (G (8Vn+1. 8Vn+2: gyn+z))}
=W -9 (maX{G(gxn,gan,gan) . G(gymgyn-i-lvgyrt-i-l)}) .
Applying Lemma 2.3.6 to the sequence
{an = max {G (gxu, 8xn+1, 8%n+1) , G (8Vn: &Vn+1, 8¥n+1)}}
we deduce that {a,} — 0 and, in particular,
im G (g%, gXn+1,8%n+1) = M G (8Yn, &Vn+1, 8¥n+1) = 0.
n—>oo n—oo
Next, we show that {gx, } and {gy,} are Cauchy sequences on (X, G). We reason by
contradiction assuming that some of them is not Cauchy in (X, G). In such a case, by
Lemma 11.2.1, there exist &g > 0 and two sequences of natural numbers {n(k) }ren
and {m(k)};en such that
k <n(k) <m(k) <nk+1),

max {G (8xu) 8Xm)—1> 8¥mt1—1) » G (8Vnk) 8¥mt—1 &¥m(ty—1)}

1<i<N

= &0 < max {G (8% 8Xmiky s 8Xm(t)) + G (8Vn(hy+ 8Ymt)+ 8Ymity)§ -

lim |: max {G (gxn(k)v 8Xm(k) gxm(k)) ,G (g}’n(k), 8Ym(k)» gym(k))}]

k—o0 | 1<i<N
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= lim |:max {G (gxn(k),gxm(k)_l,gxm(k)_l),

k—o0 | 1<i<N
G (gYn(k), 8Ym(k)—1, gym(k)—l)} } = &o.
Moreover, at least one of the following conditions holds:

lim G , , = lim G , —1, —1) = &,
e (gxn(k) 8Xm(k) gxm(k)) cm (gxn(k) 8Xm(k)—15 &Xm(k) 1) 0

k1—1>r20 G (8Vn)+ &Ymik)» 8Ym(k)) = k]_lfgo G (8Yn()» 8Ymik)—1> 8Ymt)—1) = &0.

Since n(k) < m(k), we have that gx,)—1 =< 8Xm@—1 = &Xm(y—1 and gyny—1 >
&Ym(k)—1 = &¥m)—1 for all k € N. By the contractivity condition (11.25),

¥ (G (8%nty 8Xmik) - 8Xmik)))
= ¥ (G (F (var—1, Yar-1) » F (Kmoy—15 Ymwy—1) »
F (Xingo—1. Ym(—1)))
=W -9 (max {G (82101 8Xm—1. 8¥m—1) - }

G (8Yn(k—1 &Ymik)—1, gym(k)—l)}) .

Furthermore, as gyu@)—1 = &Vmk)—1 =< &Vnk)—1 and gXpmy—1 = &Xm)—1 = Xn(k)—1>
then

1// (G (gym(k) > &Ym(k)» gy’l(k)))
=V (G (F (hmr—15Xmw—1) » F (Ymoy—1, Xmy=1) »
F (yn(k)—l ) xﬂ(k)_l)))

=W -9 (max {G (8Vmt)—1. 8Ymk)—1- &Yn)—1) »
G (8%m()—1- 8Xm(y—1+ gxn(k)—l)}> :

Combining the last two inequalities and taking into account that ¥ is non-
decreasing, if follows that

v (max {G (8% 8Xm(t)> 8Xm(t)) » G (890t 8Ymit)» gym(k>)})

= max {1// (G (gxn(k)’ 8Xm(k)> gxm(k))) ’
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¥ (G (83mitr- 8mtr- &)}
=W -9 (maX {G (8Xnw)—1+ 8Xmt)—1 &Xmt—1) -
G (8Vnt)—1- 8Ymv—1 gym(k)—l)}) :
Applying Lemma 2.3.5 to the sequences
{1 = max {G (8Xn(). 8Xm@)+ 8Xm)) + G (8Vn(k)» E¥m(k)» &¥m(k)) } Jken
and
{s¢ = max {G (8Xu00—1. §Xmk)—1 E¥mk)—1) »
G (8Yn)—1- 8Ym)—1- 8Ym(—1) } } rery -

we conclude that &g = 0, which is a contradiction. As a consequence, {gx,} and

{gy,} must be Cauchy sequences on (X, G). To continue the proof, we distinguish
some cases.

Case (iii.1). Assume that (X, G) (or (g(X), G) or (F(Xz), G)) is complete and F
and g are continuous and (O, <)-compatible. In such a case, there exist z, w € X
such that {gx,} — z and {gy,} — w. As F and g are continuous, we deduce that

{egxn} — gz, {88y} — go,
{F (g%n,8yn)} = F(z, @), {F (gyn.8%0)} — F(w,2),

Therefore, {x,} and {y,} are sequences in X such that {gx,} and {gy,} are <-
monotone and

lim F(x,,y,) = lim gx, =z€ X and
m—>00 n—oo

lim F(y,,x,) = lim gy, = w € X.
n—oo

m—>0Q0

Since F and g are compatible, we have that
Jim G (§F (. yn), F (8%, ), F (8%, gyn)) = 0 and
Jim G (§F (s Xa), F(8Yn: 8%n), F(8Yn: 8%n)) = 0.
In particular
G(gz.F(z.0) F(z,0)) = lim G (ggxs, F(8Xn, 8Yn), F(8%n, 8Yn))

= lim G (gF (xu, yn), F(gxn, gVn), F(gXn, gyn)) = 0
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and
G(gw,.F(w,2),F(0,2) = Jim G (ggyn. F¥ (8Yn- 8%n), F(gYn» 8Xn))

= nl_i)ngoG(gF(anxn)vF(gym 8Xn), F(gyn, gxn)) = 0.

Hence, gz = F (z, w) and gw = F (w, z), 50 (z, w) is a coupled coincidence point
of F and g.

Case (iii.2). Assume that (X, G) (or (g(X), G) or (F(X2), G)) is complete and F
and g are continuous and commuting. It follows from item (iii.1) because if F'
and g are commuting, then they are also (O, <)-compatible.

Case (iii.3). Assume that (g(X), G) is complete and (X, G, <) is regular. Since
{gx,} and {gy,} are Cauchy sequences on (g(X), G), there exist z, v € g(X) such
that {gx,} — z and {gy,} — . Let u,v € X be arbitrary points such that
gu = zand gv = w. As (X, G, X) is regular, we deduce that gx, < gu and
gyn = gv for all n € N. Therefore, applying the contractivity condition (11.25)
to gx, < gu < gu and gy, > gv > gv, we obtain

V(G (8xn41. F (u,0) . F (u,v))) = ¥ (G (F (X, yn) . F (u, v) , F (u, v)))
=W -9 (max {G (gxn. gu. gu) . G(gymgv,gv)}) :
As {gx,} = z = guand {gy,} —> w = gv, then
nl_i)ngol// (G (gxn+1, F (u,v) , F (u,v))) = 0.
Since ¥ € Fy, Lemma 2.3.3 shows that

G(gM,F(M, U),F(u, U)) = ll)m G(g.xn+1,F(l/l, U),F(u, U)) :O
n o0

Therefore, gu = F (u, v). Similarly, applying the contractivity condition (11.25) to
gv < gv < gy, and gu > gu > gx,, we obtain

W(G(F(U»u)’F(U»“)sg)’nﬂ)) = w(G(F(Uvu)»F(U’u)vF()/n»xn)))
= (¥ —¢) (max G (gv.v.g3) . G (gu. gu 8%}

As {gx,} = z = guand {gy,} > o = gv, then
lim ¢ (G (F (v,u) ,F (v,u), gVn+1)) = 0.
n—>oo

Since ¥ € Fy, Lemma 2.3.3 shows that

G(gv.F (v.u) . F (v.u)) = lim G(F (v.u) . F (v.u),gyn+1) = 0.

Therefore, gv = F (v, u), and we conclude that (u, v) is a coupled coincidence point
of F and g. O
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Theorem 11.3.11 can be particularized in a wide range of different ways. For
example, assume that < is the preorder on X given by “x < y for all x,y € X”. Then,
obviously, F has the mixed (g, <)-monotone property and (X, G, <) is regular.

Corollary 11.3.3. Let (X, G) be a G-metric space and let F : X* — X and g : X —
X be two mappings. Assume that the following conditions hold.

(i) There exist two functions v € Fu and ¢ € F,

e, 0 e Such that, for all
x.y) . (u.v), (z,w) € X7,

V(G (F(x,y).F(u,v),F(z,w)))

< -9 (max {G (gx, gu, g2) , G (gy, gv,gW)}) :

(i) At least, one of the following conditions holds.

(ii.1) F(X*) C g(X).
(ii.2) There exists in X a Picard (T, g)-sequence.

(iii) At least, one of the following conditions holds.

(iii.1) (X,G) (or (g(X),G) or (F(Xz),G)) is complete and F and g are
continuous and O-compatible.

(iii.2) (X,G) (or (g(X),G) or (F(Xz),G)) is complete and F and g are
continuous and commuting.

(iii.3) (g(X), G) is complete.

Then F and g have, at least, a coupled coincidence point.

Another way to particularize Theorem 11.3.11 occurs when =< is a partial order.
We do not include here such a statement because it is similar to Theorem 11.3.11,
replacing the preorder < by a partial order <. It is interesting to consider that case
when ¥ is the identity mapping on [0, 00).

Corollary 11.3.4. Let (X, G) be a G-metric space endowed with a preorder < and
let F: X> - Xand g : X — X be two mappings such that F has the mixed
(g, X)-monotone property. Assume that the following conditions hold.

(i) There exists a function ¢ € F,;, such that

G (F(x,y),F (u,v),F(z,w)) < max{G (gx, gu, gz) , G (gy, gv, gw)}

-9 (max {G (gx, gu,gz), G (gy, g, gw)})
forall (x,y), (u,v), (z,w) € X? for which gx < gu < gzand gy > gv > gw.
(ii) At least, one of the following conditions holds.

(ii.1) F(X?) C g(X) and there exists xo, yo € X such that gxo < F(xo,Yo) and
gyo = F(yo. Xo).
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(ii.2) There exists a Picard (F,g)-sequence {(X,,y,)}nen < X* such that
gxo = F(xo,y0) and gyo = F(yo,Xo).

(iii) At least, one of the following conditions holds.

(iii.1) (X,G) (or (g(X),G) or (F(Xz),G)) is complete and F and g are
continuous and (0, <X)-compatible.

(iii.2) (X,G) (or (g(X),G) or (F(Xz),G)) is complete and F and g are
continuous and commuting.

(iii.3) (g(X), G) is complete and (X, G, <) is regular.

Then F and g have, at least, a coupled coincidence point.

If we take ¢ (f) = (1 — A) ¢t for all t € [0, 00), where A € [0, 1), we deduce the
following statement.

Corollary 11.3.5. Let (X, G) be a G-metric space endowed with a preorder < and
let F: X* > Xand g : X — X be two mappings such that F has the mixed
(g, X)-monotone property. Assume that the following conditions hold.

(i) There exists a constant A € [0, 1) such that

G(F(x,y),F(u,v),F(z,w))

< A max{G (gx, gu, gz) , G (gy, gv, gw)}

forall (x,y), (u,v), (z,w) € X? for which gx < gu < gzand gy > gv > gw.
(i) At least, one of the following conditions holds.

(ii.1) F(X?) C g(X) and there exists xo,yo € X such that gxy < F(xo,yo) and

gyo = F(yo, Xo).
(ii.2) There exists a Picard (F, g)-sequence {(x,,yn)}nen C X2 such that

gxo = F(xo, y0) and gyo > F(yo, Xo).
(iii) At least, one of the following conditions holds.

(iii.1) (X,G) (or (g(X),G) or (F(Xz),G)) is complete and F and g are
continuous and (0, <X)-compatible.

(iii.2) (X,G) (or (g(X),G) or (F(Xz),G)) is complete and F and g are
continuous and commuting.

(iii.3) (¢(X), G) is complete and (X, G, <) is regular.

Then F and g have, at least, a coupled coincidence point.

Finally, we particularize Theorem 11.3.11 to the case in which g is the identity
mapping on X.

Theorem 11.3.12. Let (X,G) be a complete G-metric space endowed with a
preorder < and let F : X* — X be a <-non-decreasing mapping. Assume that
the following conditions hold.
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(i) There exist two functions W € Fy and ¢ € th such that

V(G (F(x.y) . F(u,v),F(z,w)))

<Y —9) (max {G(x,u,2),G(y, U,W)})

for all (x,y), (u,v), (z,w) € X? for whichx <u<zandy > v > w.
(ii) There exists xg, yo € X such that xo < F(xo, yo) and yy > F(yo, xo)-
(iii) At least, one of the following conditions holds.

(iii.1) F is continuous.
(iii.2) (X, G, <x) is regular.
Then F has, at least, a coupled fixed point.
Now we present some comments concerning a recent coupled fixed point
theorem. In [140], Mohiuddine and Alotaibi announced a coupled fixed point
theorem using an ordered G-metric space (X, G, <) and a contractivity condition as

follows: there exist two functions ¥ € Fy and ¢ € }"glh such that ¥ is subadditive
and

V(G (F(x,y),F(u,v),F(s,1))
- ¥ (G (x,u,s) +G(,v,1) — (G(x,u,s) + G(y,v,t))

2 2

for all x,y,u,v,s,t € X withx > u > sand y < v < t where either u # sor v # t.
In this case, all comments given in Sect. 11.3.2 can now be repeated to show that
their proof is not correct.

11.3.6 Aydi et al’s Coupled Coincidence Point Theorems

In [30], Aydi et al. introduced a version of the following Cirié-type result. In fact,
they assumed that the function ¢ € F¢; also satisfied ¢! ({0}) = {0}, but it was
not necessary.

Theorem 11.3.13. Let (X, <X) be a preordered set and let G be a G-metric on X.
Let F : X> - Xand g : X — X be two mappings such that F(X*) € g(X), F
has the mixed (g, <)-monotone property and g is continuous and commutes with F.
Suppose that there exist ¢ € Fcir such that

G(F(x.y). F(.v). F(w.2)) < (G(gx, gu, gw) + G(gy, gv,gZ))

5 (11.26)



11.3  Coupled Fixed Point Theory in G-Metric Spaces 281

forall x,y,u,v,w,z € X with gx < gu < gwand gy > gv > gz. Also assume that,
at least, one of the following conditions holds.

(a) F is G-continuous and X (or F(X?) or g(X)) is G-complete.
) ¢ (0) =0, (g(X),G) is G-complete and (X, G, <) is regular.

If there exist xy,yyg € X such that gxo < F(xo,yo) and gyy > F(yo,Xp), then F
and g have a coupled coincidence point.

The previous result can be improved using weaker hypotheses as in Theo-

rem 11.3.11. Furthermore, by the symmetry of G, (11.26) also holds if gx > gu >
gwand gy <X gv X gz.
Proof. Define ¢’ : [0,00) — [0,00) by ¢’ (1) = 2¢ (t/2) for all 1 € [0, 00). Clearly,
¢’ € Fcir. From Lemmas 11.3.2 and 11.3.3, there exists a Picard sequence {(x,, y,)}
of (T, g) such that {gx,} is <-non-decreasing and {gy,} is <-non-increasing. As <
is transitive, we deduce that

gx, < gx, and gy, > gy, foralln,m € Nsuchthatn <m. (11.27)
If there exists some ny € N such that (gx,,, 8Vn,) = (8Xng+1+ 8Vne+1)> then Xy, Yuy)

is a coupled coincidence point of 7 and g, and the proof is finished. On the contrary
case, assume that (gx,, gv,) 7# (€Xn+1, &Vn+1), thatis, forall n € N,

G (8%, 8Xn+1, 8¥n+1) + G(8Vns 8Ynt1, 8Yn+1) > 0.

By the contractivity condition (11.26), for all n € N we have, taking into account
that gx, < gx,41 = gxu+1 and gy, = gVn+1 = gVn+1,

G (8%n+1, 8%nt2,8%n+2) = G (F (X, Y1) + F (g1, Ynt1) s F (1, Ynt1))

=¢

(G(gxn, 8Xn+1>8%n+1) + G(8Vns &Vn+15 &Vn+1) )
2

1
=3 @' (G(gXn, Xns1. 8%nt1) + G(EVn: &Vnt 1. 8Vn+1))

and also

G (8Vn+1>8Vn+2, 8Vn+2) = G (F Ynt1: Xnt1) » F Ont 15 Xnt1) s F (Vs X))

(G(gyn+1,gyn+1,gyn) + G(8Xn+1. 8%n+1. gxn))

<(p >

1
=3 @' (G(8Xn. 8Xn+1. 8Xn41) + G(&Yns 8Vn+158Vn+1)) -

Joining the last two inequalities, for all n € N,
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G (8Xn+1. 8%n+25 8¥n+2) + G (8Vnt1, 8Vn+2: 8Yn+2)

< @' (G(g%n. 8Xnt1. 8%n+1) + G(&Yns 8Vnt1 8Vn+1)) -

From item 3 of Lemma 2.3.11,
lim [G(gxn, §Xn+1, 8%n+1) + G(gVn, 8Vn+1.8¥nt+1)] = 0.
n—>o0

so {gx,} and {gy,} are asymptotically regular sequences. To show that they are
Cauchy, assume that, at least, one of them is not a Cauchy sequence. In such a
case, Lemma 11.2.2 assures that there exist &g > 0 and two sequences of natural
numbers {n(k)}reny and {m(k)}ren such that, for all k € N,

k < n(k) <mk) <n(k+ 1),
G(8Xn(k)» 8Xm(y—1- 8Xm(k)—1) + G(&Yn(k)» 8Ym(k)—1+ &Ym(—1) = €0
< G(8Xn(k)» 8Xm(k)> 8Xm(k)) + G(8Yn(k)+ EYm(k)» 8Ym(K))>

and also
kl_l)lgo [ G(8%n()—1+ 8Xm(—1+ 8Xm(t—1) + G(8Yn()—1. &Ym(ty—1- 8¥m(—1) ]
= kl_l)l‘go [ G(gxuk) 8Xmk)» 8Xmk)) + G(8Yn()+ &Ymk)+ &¥Ymy) | = €0-

Using (11.27), gX%uk)—1 = &Xmk)—1 and gyny—1 = &Vmk)—1 for all k € N. Therefore,
the contractivity condition (11.26) yields

G(8Xn(k)» 8Xm(k) > 8Xm(k))
= G(F (xn=1 Ynt)—1) + F (Xmw=1, Ymw=1) + F (Ximy=1, Ymiy—1))

1
<¢ (5 (G(guto=1: 8¥n(i)=1. 8Xn(k)-1)
FG(8Yn0—15 8Ymy—15 8Ymit)—1 )))

1
=3 @' (G(8Xnk)—1+ 8Xmt)—1+ 8Xm(t)—1)
+G(8Yn—1+ 8Ymk)—1> 8¥mik)—1)) -
In a similar way,

G(&Yn(k)> 8Ym(k)> 8Ym(k))
= G (F (Ymk=1 Xmw=1) + F (Ym—1+ Xm)—1) -
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F (yn(k)—l ) Xn(k)—l))

1
7 (5 (G(8Ym@y—1+ &Ym(k)—1- 8Yn(k)—1)
+G(8Xm(k)—15 8Xm(k)—1> 8Xn(k)—1 )))

1
=3 @' (G(8Xnk)—1 8Xmk)—1+ 8Xm(y—1)
+G(8Ynk)—1 8Ymk)—1+ 8Ym(y—1)) -

Combining the last two inequalities, we deduce that, for all k € N,

€0 < G(gXnw)> 8Xm)s 8Xm(t)) + G(&Vn(k) 8Ym(i)> 8Ym(k))
< ¢’ (G(gXn)—1+ 8Xm(k—1» Xm(k)—1)
+G(gYnk)—1+ 8Ym()—1+ &Ym(k)—1)) -

Applying Lemma 2.3.14 to the sequences

{tc = G(8Xu(t)» &Xm(ty - 8Xm(ty) + G(Vn(k)» &¥m(k)» &¥miy)}  and
{5k = G(8Xnt—1+ 8Xmt)—1+ 8xmk)—1) + G(&Vn)—1 8Ym(k)—1 &Ym(—1) } »
that converge to L = ¢y, we conclude that & = 0, which is a contradiction.
Therefore, {gx,} and {gy,} are Cauchy sequences in (X, G). Since these sequences
are included in F(X?), in g(X) and in X and, at least, one of them is G-complete,
there exists u,v € X such that {gx,} — u and {gy,} — v. Moreover, as g is
continuous, {ggx,} — gu and {ggy,} — gv. Notice that as T and g commute,
{F(8xn. 8Yn)} = {8F (xu. yn)} = {gg¥nt1} — gu and
{F(8Yn, %)} = {8F (. Xn)} = {88Vn+1} — gV.

Next, we distinguish two cases.

Case 1. F is G-continuous and X (or F(X?) or g(X)) is G-complete. In this case,
letting n — 0o, we observe that

gu = lim F(gx,,gyv,) = F(u,v) and
n—>oo
gv = lim F(gyn, gx,) = F(v,u),
n—>oo
so (u, v) is a coupled coincidence point of F and g.

Case2. ¢ (0) =0, (g(X), G) is G-complete and (X, G, X) is regular. In this case,
as g(X) is complete, then u, v € g(X). Let z, w € X be arbitrary points such that
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gz = u and gw = v. Taking into account that {gx,} is <-non-decreasing, {gy,}
is <-non-increasing and they are convergent to gz = u and gw = v, respectively,
we deduce that

gx, < gz and gy, > gw forallneN.
By the contractivity condition (11.26),

G(gxn-i-l’F(Z’ W)vF(Zv W)) = G(F (xn’yn)ﬁF(Z’ W)vF(Zv W))

(G(gxn, 82, 82) + G(gyn. gw, gw) )
2

=¢

1
=3 @' (G(gxy, 82, 82) + G(gyn, gW. &W))

and, similarly,

G (gyn+1. F(W,2) . F(W,2)) = G(F(W,2) . F(W.,2) ., F (V. %))
< (G(gw, 8w, gyn) + G(g2, 82. &%) )

2

1
= 5 ¢/ (G(gxn. 82.82) + Glgyn. gw. §W)
Since ¢’ € Fcir and ¢’ (0) = 2¢ (0) = 0, letting n — oo in the previous
inequalities and applying item 8 of Lemma 2.3.11, we conclude that gz = u =
hmn—)oo gxl‘l"rl = F(Zs W) and gW =V = hmn—>oo gyn-i—l = F(W, Z)7 that iS, (Zv W)
is a coupled coincidence point of F and g.
a

Theorem 11.3.14. Under the hypothesis of Theorem 11.3.13, also assume that
¢ (0) = 0 and that the following condition holds.

(Uy)  Forall (x,y),(x,y") € Co(F, g), there exists (u,v) € X* such that, at least,
one of the following properties is satisfied.

* F(xy) = F(uv), F(y.x) = F(v.u), F(x',y)
F (v, u).

* F(xy) 2 F(uv), F(y.x) = F(v.u), F(x',y)
F (v, u).

* F(xy) = F(uv), F(y,x) 2 F(v,u), F(&',y)) < F(u,v) and F(y',x')
F (v, u).

* F(xy) = F(uv), F(y,x)
F (v, u).

PN
Y

F (u,v) and F(y',x')

Y

F (u,v) and F(y',x')

A

Y

(PN

F(v,u), F(x'.y')

Y

F (u,v) and F(y',x')

(PN
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Then F and g have a unique common coupled fixed point (z, w) (that is, a point
satisfying z = gz = F(z,w) and o = gow = F(w,z)). In fact, if (x,y) is an
arbitrary coupled coincidence point of F and g, then z = gx and v = gy.

Proof. First of all, we claim that
gx=gx and gy=gy forall (x,y),(,)y) € Co(F,g). (11.28)

Indeed, let (x,y), (x',y) € Co(F,g) be arbitrary coupled coincidence points of F
and g and let (1o, v9) € X be the point that condition (U,) guarantees. As F(X?) C
g(X), there exists a Picard sequence {(u,,v,)} of (T, g) (recall Lemma 11.3.2),
that is,

guy+1 = F(uy,v,) and gu,4; = F(v,,u,) foralln e N.

In order to prove (11.28), we are going to show that {gu,} — gx, {gu,} — gx,
{gv.} — gy and {gy,} — gY'. Hence, by the uniqueness of the limit, we conclude
that gx = gx’ and gy = gy’. We only reason using (x, y), but the same arguments can
be identically applied to (¥, y"). Assume, for example, that the first bullet property
holds (the other ones are similar). Therefore

gx =F(x,y) < F(up,v9) = gu; and
gy =F(,x) = F (vo,up) = gu1.
As F has the mixed (g, <)-monotone property, then
gx = F(x,y) = F(u1,v0) 2 F(uy,v1) = gup and
gy =F(y,x) = F(vi,up) = F (v1,u1) = guy.

Since < is transitive, then gx < gu, and gy > gv,. By induction, it can be proved
that gx < gu, and gy > gv, for all n € N. Using the contractivity condition (11.26),

G (gx7 8Un+1, gun-i-]) =G (F (X,y) ,F(l/l,,, Un) P F (una vn))
- (G(gx, 8ltn, lin) + G(8Y, U, gvn))
<¢ 5

1
=3 @ (G(gx, gun, gtn) + G(gY, gUn, 8V1)) ,
and similarly,

G(gy, ganrl,ganrl) = G(F (Un» un) ,F(Un, un) »F(y,x))
<o (G(gvmgvmgy) + G(gttn, gltn, gx))
- 2

1
=5 @' (G(gx, gun, gun) + G(gy, gUn, gU)) -
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Combining the last two inequalities, we derive that, for all n € N,

G (gx, gUp+1, 8Un+1) + G (Y, 8Un+1, 8VUn+1)
< @' (G(gx, gun, gun) + G(gy, gVn, gV1)) .

Since ¢ (0) = 0, then ¢’ (0) = 2¢ (0) = 0. Applying item 9 of Lemma 2.3.11, we
deduce that

{G (gx, gUn+1, gun+1) + G (Y, gVn+1, 8Vn+1)} — 0.

Hence, {gu,} — gx and {gv,} — gy. If we have used (x’,’), then we would have
deduced that {gu,} — gx’ and {gv,} — gy'. Then gx = gx’ and gy = gy’ and we
have just proved that (11.28) holds.

Next, let (x,y) € Co(F, g) be an arbitrary coupled coincidence point of F and g
and let z = gx = F (x,y) and @ = gy = F (y,x). Since F and g commute,

gz =gF (x,y) = F(gx,gy) = F(z,w) and
gw = gF (y,x) = F(gy,.gx) = F(0,2).

Thus, (z, ) is another coupled coincidence point of F and g. Applying (11.28) to
(x,y) and (z, ), we deduce that

z=gx=gz and w =gy = gw.

Hence, z = gz = F(z,w) and @ = gw = F (w, z), which means that (z, ) is a
common coupled fixed point of F" and g.

To prove the uniqueness, let (7, ") be another common coupled fixed point of
Fand g Then? = g7 = F(7,0') and o’ = go’ = F (', 7). Applying (11.28),
we deduce that z = gz = g7 = 7 and w = gw = gw’ = @'. Then, F and g have a
unique common coupled fixed point, which is (z, ).

Finally, let (#, v) € Co(F, g) be another arbitrary coupled coincidence point of
F and g. By using (11.28), gu = gw = w and gv = gz = z. Therefore, we get the
point (z, w) starting from any coupled coincidence point of F and g. O

Immediate corollaries can be derived in the following particular cases: (1) using
g as the identity mapping on X; (2) involving a partial order < on X; (3) using
¢ (f) = Atforallr € [0,00), where A € [0, 1).
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11.4 Berinde and Borcut’s Tripled Fixed Point Theory

In [41], Berinde and Borcut presented the notion of a tripled fixed point of a mapping
F : X?® — X, which is a point (x, y, z) € X° such that

F(x,y,2) =x,
F(y,x,y) =y,
F(z,y,x) =z

In that paper, they proved some results to guarantee existence and uniqueness of
such points in partially ordered metric spaces involving the contractivity condition

d(F(x,v,2),Fv,w) <Aid@xu) +Ad(,v)+ Asd(zw)

for all x,y,z,u,v,w € X such that gx < gu, gy > gv and gz <X gw, where
A, Ao, A3 € [0, 1) verify Ay + A, + A3 < 1. In a subsequent paper, the same authors
extended the previous condition to the coincidence case involving two mappings
F:X> - Xand g : X — X (see [50]). In this section we present some tripled
fixed/coincidence point theorems in the sense of Berinde and Borcut. The notion of
mixed monotone property is common to all results.

Definition 11.4.1. Let X be a non-empty set endowed with a binary relation < and
let F: X> — X and g : X — X be two mappings. The mapping F is said to have the
mixed (g, X)-monotone property if F(x,y, z) is monotone (g, <)-non-decreasing in
x and in z, and monotone (g, <)-non-increasing in y, that is, for all x, y, z € X,
x, X €X, gxi<gnn = F(x,y,2) < Flx,y,2),
yon€e€X, gn<gn = Fy.z) =F(xy,z) and
2 €X, gu<gn = Fuyu) Fxyn).
If g is the identity mapping on X, then we say that F has the mixed <-monotone
property.
The following properties will be useful throughout this section.

Lemma 11.4.1. Let F : X>* — X and g : X — X be two mappings such that
F(X3) € g(X). Then, starting from any points Xo,yo.z0 € X, there exist three
sequences {x,}, {y,} and {z,,} on X such that

8Xn+1 = F(xnaynvZn)’ EVn+1 = F(ynaxnvyn) and
8%n+1 = F(vayn’xn) (11.29)

foralln e N.
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Proof. Letxg, o, 20 € X be arbitrary. Since F(xo, o, 20) € F(X?) € g(X), then there
exists x; € X such that gx; = F(xo, Yo, 20). Similarly, as F(yo, xo,y0) € F(X?) €
g(X), then there exists y; € X such that gy, = F(yo, x0, o). Again, as F(zo, yo, Xo) €
F(X?) C g(X), then there exists z; € X such that gz; = F(zo, Yo, Xo). If we repeat the
same argument using x, y; and z; rather than xy, yy and zo, we can find x,, y,, 2, €
X? such that gx, = F(x1,v1,21), &2 = F(y1,x1,y1) and gzo = F(z1,y1,X1). By
induction, we may define the sequences {x,}, {y,} and {z,} on X. ]

Definition 11.4.2. Given two mappings F : X> — X and g : X — X, a Picard
(F, g)-sequence is a sequence {(X,, Yn. Z») }neny < X verifying (11.29).

Proposition 11.4.1. If {(x,. Vu.20)nen € X3 is a Picard (F, g)-sequence of two
mappings F : X> — X and g : X — X and there exists ny € N such that gx,, =
8Xng+1> 8Vng = &Vno+1 AN 8Zny = 8Zng+1, then (Xny, Yny» Zny) IS a tripled coincidence
point of F and g.

Proof. If the exists nyp € N such that gx,, = gXu+1, 8V = &Vno+1 and gz,, =
8Zng+1, then

8Xny = 8Xnp+1 = F(xnovynovzno)v 8Vny = 8Yno+1 = F(yno»xnovyno) and

an() = anQ+1 = F(Znovynov-xno)v

SO (Xng» Yy Zno) 18 @ tripled coincidence point of F and g. O

Given two mappings F : X> — X and g : X — X, the condition F(X?) C g(X) is
sufficient to guarantee that there exists a Picard (F, g)-sequence on X based on any
initial points xg, yo, Z0 € X. However, it is not necessary.

Lemma 11.4.2. Let < be a transitive binary relation on a set X and let F : X3 — X
and g : X — X be two mappings such that the following conditions are fulfilled.

(i) There exists a Picard (F, g)-sequence {(X,, Y, Zn) tnen < X°.

(i) gxo =< F(x0,Y0.20), Y0 = F(yo.Xo. o) and gzo = F(zo, yo,Xo)-
(iii) F has the mixed (g, X)-monotone property.

Then {gx,} and {gz,} are <-non-decreasing and {gy,} is <-non-increasing (that
iS, 8Xn =X 8Xnt1, &Vn = &Vn+1 and gz, = gZn+1 for alln € N).

Proof. By (ii), we have that gxo < F(xo, Y0, %) = gx1, Y0 = F(yo,%0,Y0) = &)1
and gzo < F(z9,Y0,X0) = gz1. Assume that there exist n € N such that gx,, < gx,+1,
&Vn > &Vn+1 and gz, < gz,41. Then, as F has the mixed (g, <)-monotone property,
it follows that

8Xn+1 = F(xnayn»Zn) = F(xn+1,yn»Zn) = F(Xn+1,yn+1,Zn)

= F(Xn+1,yn+1,2n+1) = &Xn+2,

8Vn+1 = F(yn,xnvyn) = F(yn-i-lsxnvyn) > F(Yn+1sxn+lvyn)
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> F (Ynt1> Xn+1, Ynt+1) = &Vn+2  and
8n+1 = F(vaym xn) = F(Zn-i-len,xn) = F(Zn+1»yn+lvxn)

= F (Zut1: Ynt1 Xnt1) = 8Znt2-

As < is transitive, then gx,+1 < gXn4+2, 8Vn+1 = &Vn+2 and gZ,4+1 =X gZ,+2, and this
completes the induction. O

11.4.1 Berinde and Borcut’s Tripled Fixed Point Theorems
in G-Metric Spaces

In this subsection, we show corresponding versions, in the context of preordered
G-metric spaces, of some fixed point results given in [41].

Theorem 11.4.1. Let (X, X) be preordered set and let (X,G) be a complete G-
metric space. Let F : X3 — X be a mapping having the mixed <-monotone property
on X. Suppose that there exists A € [0, 1) such that

G(F(x,y,2),F(u,v,w),F(u,v,w))
< A max{G (x,u,u),G (y,v,v),G(z,w,w)} (11.30)
for x,y,z,u,v,w € X withx < u, y > v and z <X w. Also assume that either F

is continuous or (X, G, <X) is regular. If there exist xy,yo,20 € X such that xy =<
F(x0,0,20), Yo = F(yo,X0,Y0) and zo =< F(z0,y0,%0), then F has a tripled fixed

point in X, that is, there exist x,y,z € X such that

Fx,y,2) =x, F,x,y)=y and F(z,y,x) =z

Proof. Starting from the points xo,yp,z0o € X such that xo =< F(xo,Yo0,Z20),
Yo = F(yo,%o,y0) and zo =< F(z0,y0,%o), let {x,}, {,} and {z,} be the sequences
defined by

Xn4+1 = F(xn, Yns Zn)7 Yn+1 = F(}’mxn, yn) and

Znt1 = F(2n, Yns Xn) (11.31)
for all » € N. As F has the mixed <-monotone property, Lemma 11.4.2 assures

that {x,} and {z,,} are <-non-decreasing and {y,} is <-non-increasing. Applying the
contrativity condition (11.30) to x, =< Xu+1, Yu > Yn+1 and z, < z,+1, we obtain that

G (Xn+15 Xn+2 Xnt2)
= G(F(xnaym Zn)7 F(xn+1»yn+l’Zn+l)»F(xn+1ayn+l,Zn+l))

< A max{G (Xn, Xn+1,Xn+1) » G OV, Ynt1, Ynt1) » G @n, Zut15 Zn41) } -
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Similarly, as y,+; <X y, and x,4-1 > X,

G V15 Ynt2: Yn42)
= G (FOnt1: Xnt1: Ynt1)s F Ot 1 Xt 15 Yut 1) F Ons Xy Yn)
< A max{G (V1. Ynt1,Yn) s G 1 X1, Xn) » G Vet 12 Y1, V) }
= A max{G (X, Y41, Xn11) » G Vs Ynt 1, Ynt1)} -

Repeating this argument, since z,, < Zy+1, Yu > Yn+1 and x,, < x,41, we deduce that

G (Zn+1, Znt2 Zn+2)
= G(F(Zna))nv-xn)v F(Zn+1’yn+17xn+l)v F(Z;1+1,Yn+1v-xn+l))

< A max{G (zs, Zn+1> Zn+1) » G On, Ynt1, Ynt+1) » G (X, Xpge1, Xnt1) } -

Joining the last three inequalities, we conclude that, for all n € N,

max {G (Xp+1, Xn42, Xn42) » G Ot 15 Ynt2: Ynt2) s G (Zn 1, Zut25 Zng2) }

< A max {G (X, Xn41, Xn41) » G Ons Va1, Y1) » G (Zns Zute 1, Zng 1)} -

From Corollary 11.2.1, the sequences {x,}, {y,} and {z,} are Cauchy. Since (X, G)
is complete, there exists u, v, w € X such that {x,} — u, {y,} — v and {z,} — w.
Next, we distinguish two cases.

Case 1. F is G-continuous. In this case, letting n — oo in (11.31), we deduce that
u=Fw,v,w),v=F(@w,uv)and w = F (w, v, u), that is, (u,v,w) is a
tripled fixed point of F.

Case 2. (X,G, <) is regular. As {x,}, {y,} and {z,} are <-monotone, convergent
sequences, the regularity implies that

Xy 2u, y,>v and gz, <w forallneN.
Hence, the contractivity condition (11.30) ensures that

G (xp+1, F (u,v,w), F (u,v,w))
= G (F(xn, Yn,2n), F (u,v,w) , F (u,v,w))
< A max {G (x,, u,u),G (y,,v,v), G (z,, w,w)}.

Similarly,

G (Ynt1, F (v,u,v) , F (v, u,v))
=G(F (v,u,v),F(,u,v), F(Yn, Xn, Yn))
< A max{G (v,v,y,),G (u,u,x,)} .
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Repeating this argument,

G (zpt1, F (w,v,u) ,F (w,v,u))
= G (F(zu, Yn, %), F (W, v,u) , F (w, v, u))
< A max {G (z,,w,w), G (yn, v, v) , G (xp, u, 1)} .

Letting n — oo in the previous inequalities, we conclude that
Fv,w)= lim x,+1 = u
n—>0o0

and, similarly, v = F (v,u,v) and w = F (w, v, u). Hence, (1, v,w) is a
tripled fixed point of F.
a

Corollary 11.4.1. Let (X, <) be preordered set and let (X,G) be a complete G-
metric space. Let F : X*> — X be a mapping having the mixed <-monotone property
on X. Suppose that there exists A € [0, 1) such that

G (F (x,y,2),F (u,v,w),F(a,b,c))
< A max{G (x,u,a),G(y,v,b),G(z,w,¢)} (11.32)

forx,y,z,u,v,w,a,b,c € Xwithx <u<a,y>v>bandz X w = c. Also assume
that either F is continuous or (X, G, X) is regular. If there exist xo, yy,z20 € X such
that xo < F(xo,Y0.20), Yo = F(y0. X0, Y0) and z0 < F (20, Y0, Xo), then F has a tripled
fixed point in X.

The following result is a version, in the setting of partially ordered G-metric
spaces, of Theorems 7 and 8 in [41].

Corollary 11.4.2. Let (X, X) be a partially ordered set and let (X, G) be a complete
G-metric space. Let F : X> — X be a mapping having the mixed <-monotone
property on X. Suppose that there exists A, Ay, A3 € [0, 1) such that A1 +A,+A3 < 1
and verifying

G(F (x,y,2),F (u,v,w),F(a,b,c))
< MG (x,u,a) + A2G (y,v,b) + A3G (z,w, ¢) (11.33)
forx,y,z,u,v,w,a,b,c € Xwithx <u<ay>v=bandz < w= c. Alsoassume
that either F is continuous or (X, G, X) is regular. If there exist xy, vy, zo € X such

that xo X F(xo,Y0,20), Yo = F(yo, X0, Y0) and zo X F(zo, yo, X0), then F has a tripled
fixed point in X.
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Proof. If A = A1 + A, + A3 < 1, then

G(F(x,y,2),F (u,v,w),F(a,b,c))
< MG (x,u,a) + A,G (y,v,b) + A5G (z,w, ¢)
< Aimax{G (x,u,a),G(y,v,b),G(z,w,c)}
+ A, max {G (x,u,a),G (y,v,b),G(z,w,c)}
+ Asmax {G (x,u,a),G (y,v,b),G (z,w,c)}
= A max{G (x,u,a),G (y,v,b),G(z,w,¢)}

for x,y,z,u,v,w,a,b,c € X withx <X u < a,y v >bandz X w <X c
Then, (11.33) implies (11.32). O

11.4.2 Aydi et al.’s Tripled Fixed Point Theorems in G-Metric
Spaces

In the following result, which improves those given in [31], we will employ a
comparison function ¢p € Feom, that is, ¢ is non-decreasing and lim, o, ¢"(r) = 0
for all r > 0. Recall that we also have that ¢ (f) < ¢ forallz > 0 and ¢ (0) = 0. As
a consequence, ¢ (t) < tfor all t > 0, so ¢ is continuous at r = 0.

Theorem 11.4.2. Let (X, <X) be preordered set and let (X, G) be a complete G-
metric space. Let F : X3 — X be a mapping having the mixed <-monotone property
on X. Suppose that there exists ¢ € Feom sSuch that for x,y,z,u,v,w € X, with
x>u>ay=<v=bandz>w > c onehas

G (F (x,y,2),F (u,v,w),F(a,b,c))
< ¢ (max{G (x,u,a),G(y,v,b),G(z,w,c)}). (11.34)
Also assume that either F is continuous or (X, G, <) is regular. If there exist

X0, 0,20 € X such that xo < F(xo.Yo,20), Yo = F(yo.X0,Y0) and zo < F(z9,Y0,Xo),
then F has a tripled fixed point in X, that is, there exist x,y,z € X such that

F(x,y,2) =x, FQO,x,y)y=y and F(z,y,x) =2z

Proof. Starting from the points xo, yo,z0 € X, define the sequences {x,}, {y,} and
{za} by

Xn+1 = F(XmJ’m Zn), Ynt+1 = F(yn,xn»yn) and In+1 = F(Zn’yn»xn)
(11.35)
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for all n € N. If we suppose that xo = x;, yo = y; and zo = z1, then (xo, Yo, 20) i a
tripled fixed point of F because

X0 = x; = F(x0,%0,20), Yo =y1 =F (yo,%0,y0) and
20 = 21 = F (20, y0. X0) -
In this case, the existence part is finished. On the contrary case, assume that
max {G (x1, x0,%0) , G (y1,¥0,Y0) . G (21,20, 20)} > O. (11.36)

We claim that the sequences {x,} and {z,,} are <-non-decreasing, and {y,} is <-
non-increasing. Indeed, by hypothesis, xo < F(xo, Yo, 20) = X1, Yo = F(¥9, X0, Y0) =
y1 and 79 < F(zo,yo,%0) = z1. Assume that, for some n € N, we have that x, <

Xn+1> Yn > Yut1 and z, = z,+1. Then, using the mixed <-monotone property,

Xnp1 = F (0, Yns 2n) 2 F (g1, Yo Zn) 2 F (1, Yn 15 20)
S F (X415 Ynt 15 2o1) = Xat2,

Y1 = F Ons Xns Yu) = F Ont1s Xns Yu) = F Vnt 15 Xn 15 V)
= F (Vnt15 Xnt15 Ynt1) = Ynt2s

Znt1 = F (@ns Yns Xn) 2 F (2o, Yoo Xn) = F (Znt 1 Yok 15 Xn)

= F (Znt1: Yt 1> Xng1) = Zngo.

As a consequence, {x,} and {z,} are =<-non-decreasing, and {y,} is =<-non-
increasing. As < is transitive, then

Xp X Xmy, Yn>Vm and z, <Xz, foralln <m. (11.37)
Applying the contractivity condition (11.34),

G (Xnt2, Xnt15 Xnt1)
= G(F(xn+lﬂyn+l,1n+l)»F(xnaynvzn)»F(xnaynvzn))
S ¢ (max {G (xn+17xna xn) ’ G (yn+layn7yn) ) G(Zn+lv Zns Zn)}) s

and, similarly,

G (Ynt2, Ynt1s Ynt1)
= G (F Ont15 %41, Ynt+1) « F Ons X Yn) o F (Vs Xy Yn))
= G (F Ons %, Yn) s F Ons X Yn) o F (V1 X1 Yt 1))
< ¢ (max{G (Vu, Yn Yn1) » G (X, X, Xnt1)})
< ¢ (Max {G (Xu+1,%n, X1) » G Ont-1, Vs ) + G (@nt 15 Zns 20) )
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and
G (Zn+2’ Zn+1»Zn+l) =G (F (Zn+lsyn+1»xn+l) JF (Zn,)’mxn) JF (Zn’ynvxn))
< ¢ (rnax {G (Zn+lv Zns Zn) s G (Yn+1»yn, yn) 5 G (xn—l-l,xn»xn)}) .
As ¢ is non-decreasing, we deduce that for all n € N,
max {G (Xn42, Xt 1, Xn41) » G nt2, Ynt 1. Ynt+1) » G (Znt2, Znt 15 Znt1) }
< ¢ (max {G (Xp+1,%n: Xn) s G Vpt-1, Yns Yn) » G (Znt15 20> Z0)}) - (11.38)

Repeating (11.38) n times and taking into account that ¢ is non-decreasing,

max {G (Xnt1. Xn, Xn) s G V1, Yns Yn) » G (2120, Zn)}
= ¢ (max {G (xn, Xp—1. Xn—1) , G On Yn—1, Y1) - G (Zn, Zn—1. 2n-1)})
< ¢* (max {G (=1, Y42, Xn—2) . G Vue1. Yu—2. Yn—2) »
G (201,202, Zn-2)})
<... =< ¢" (max{G (x1,x0,X0) , G (y1,Y0.Y0) » G (z1. 20, 20)}) - (11.39)

From (11.36) and ¢ € F.om, we deduce that

nli>ngo ¢” (maX {G (.X] v-xvaO) ’ G (yl » Y0, YO) ’ G (Zl » 205 ZO)}) = 0. (1 140)
In particular,

lim G(-xn-f-l»xna-xn) = lim G())n+1»yn,))n) = lim G(Zn+17Zn»Zn) - O,
n—oo n—oo n—oo

that is, the sequences {x,}, {y,} and {z,} are asymptotically regular.
Next, we show that, for all € > 0, there exists no € N such that

max {G(X,. Xn, Xm)s GOns Yns Yim)s G(Zns Zns Zm)} < € (11.41)

for all m > n > ny. Indeed, if m = n, then (11.41) trivially holds. Assume that
m > n. Let ¢ > 0 be arbitrary. As ¢ (¢) < &,let§ = ¢ — ¢ (¢) > 0. From (11.40),
there exists ny € N such that

¢" (max {G (x1, X0, X0) , G (y1,Y0.Y0) » G (21,20, 20)}) <8 = & — ¢ (&)

for all n > ny. Using (11.39),

max {G (x,,,xn, xn+l) ) G (,Vm ynyyn—H) 5 G (Zna ns Zn+l)}

< ¢" (max {G (x1,x0,X0) , G (y1,Y0,0) » G (21,20,20)}) < &— ¢ ()
(11.42)



11.4 Berinde and Borcut’s Tripled F.P.T. 295

for all n > ny. This means that if m = n + 1, then (11.41) also holds. reasoning
by induction, assume that (11.41) holds for some m > n, and we will prove it for
m + 1. It follows from

G()Cn, Xns xm+l) = G(xm+l s Xny xn)
= G(xm+l s Xn+1, xn-l—l) + G(xn-‘rl > Xn» xn)
<G (F (xmv Yms Zm) s F(xmym Zn) s F(xmym Zn)) +é&— ¢ (8)
< ¢ (max {G (X, Xn, Xn) , G s Yns Yn) » G (@ms 20, 20)}) + € — p (€)
=9 t+e—¢(e) ==
Similarly, G(y., Y, Ym+1) < € and G(2,, Zn, Zm+1) < €. As a consequence, (11.41)
holds, and this guarantees that {x,}, {y.} and {z,} are Cauchy sequences. As (X, G)
is complete, there exist x, y, z € X such that {x,} — x, {y,} — yand {z,} — z. Next,
we distinguish two cases.
If we assume that F is continuous, letting n — oo in (11.35), we deduce that
F(x,y,z) = x, F(y,x,y) = yand F(z,y,x) = z, thatis, (x,y,z) is a tripled fixed

point of F. In the other case, assume that (X, G, <) is regular. Taking into account
that {x,}, {v,} and {z,} are convergent, <-monotone sequences, we deduce that

X, Xx, y,>y and gz, <Xz forallneN.
Using the contractivity condition (11.34), we have that, for all n € N,

G(F(x’yv Z)sxn-i-],xn-i-l) = G(F (X,y,Z) ,F(Xn,)’n, Zn) ,F(Xn,)’n, Zn))
< ¢ (max{G (x, %, %) , G (¥, Yn, Yn) » G (2, 20, 20)}) -

As ¢ is continuous at t = 0, letting n — oo in the previous inequality, we deduce
that F(x, y,z) = x. Similarly, for all n € N,

GO+t F 0. x,3) . F (3,x,5) = G (F s X, yn) . F (0%, )  F (v, X))
E ¢ (maX {G ()’n»y»y) ’ G(Xn,.x,x)}) )
so F (y,x,y) = y. In the same way, we can prove that F(z,y,x) = z, 0 (x,y,z) is a
tripled fixed point of F. O

Corollary 11.4.3. Let (X, <X) be preordered set and let (X, G) be a complete G-
metric space. Let F : X> — X be a mapping having the mixed monotone property
on X. Suppose that there exists A € [0, 1) such that for x,y,z,u,v,w € X, with
x>u>ay=v=bandz>w?>c onehas

G (F (x,y,2),F(u,v,w),F(a,b,c))
< X max{G (x,u,a),G (y,v,b),G(z,w,c)}.
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Also assume that either F is continuous or (X, G, <) is regular. If there exist
X0, Y0, 20 € X such that xo < F(xo,Y0,20), Yo = F(yo, X0, y0) and z0 < F(zo, Y0, Xo),
then F has a tripled fixed point in X, that is, there exist x,y,z € X such that

F(x,y,z2) =x, F(yx,y)=y and F(z,y,x) =z
Taking into account that  + s 4+ r < 3max{t, s, r} for all ¢, s, r € R, we can also

establish the following result.

Corollary 11.4.4. Let (X, <) be preordered set and let (X, G) be a complete G-
metric space. Let F : X> — X be a mapping having the mixed monotone property
on X. Suppose that there exists A € [0, 1) such that for x,y,z,u,v,w € X, with
x>u>ay=<v=bandz>w>c one has

G(F(x,y,2),F (u,v,w),F(a,b,c))

< % (G(x,u,a) +G@y,v,b) + G(z,w,c) )

Also assume that either F is continuous or (X, G, <) is regular. If there exist
X0, Y0, 20 € X such that xo < F(xo,Y0,20), Yo = F(yo, X0, o) and z0 < F(zo, Y0, Xo),
then F has a tripled fixed point in X, that is, there exist x,y,z € X such that

F(x,y,z2) =x, F(y,x,y)=y and F(z,y,x) =z

Example 11.4.1. Let X = R be endowed with the complete G-metric G (x,y,z) =
max{|x —y|, |x—z| .|y —z|} for all x, y, z € X. If we define F : X> — X by

6x—6y+6z+5

F(x,y,2) = 36

forall x,y,z € X,

then F has the mixed <-monotone property. If x,y, z, u, v, w,a,b,c € X are such
thatx > u >a,y <v <b,and z > w > ¢, then
|x —a| =x—a>max{x —u,u —a} = max {|x —u|, |u —al},
|b—y|=b—y>max{b—v,v—y} =max{|b—v|,|v—y|},

lz—c|=z—c>max{z—w,w—c} =max {|z—w]|,|w—c|}.
Therefore

G (F (x,y,2),F (u,v,w) ,F(a,b,c))

_|6x—6y+6z+5 6a—6b+6c+5
B 36 36
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_6(x—a)+6(—y) +6(z—0)
N 36

_ ‘6(x—a)—6(y—b)+6(z—c)
- 36

c(e—ate-nre-o)

= 1/?2 (G(x,u,a)+G(y,v,b)+G(Z’W7c) )

If A = 1/2, then all conditions of Corollary 11.4.4 are fulfilled (notice that F is
G-continuous). Therefore, G has a tripled fixed point in X, which is (1/6,1/6, 1/6).

Another particular case occurs when < is a partial order on X.

Corollary 11.4.5. Let (X, <) be partially ordered set and let (X, G) be a complete
G-metric space. Let F : X3 — X be a mapping having the mixed monotone property
on X. Suppose that there exists ¢ € Feom Such that for x,y,z,u,v,w € X, with
x>u>ay=<v=bandz>w>c one has
G(F(x,y,2),F (u,v,w),F(a,b,c))
< ¢ (max {G (x,u,a),G (y,v,b),G(z,w,c)}).
Also assume that either F is continuous or (X, G, <) is regular. If there exist

X0, Y0, 20 € X such that xo < F(xo.Yo,20), Yo = F(yo.X0,Y0) and zo = F(z0, Y0, Xo),
then F has a tripled fixed point in X, that is, there exist x,y,z € X such that

F(x,y,z) =x, F@,x,y)=y and F(z,y,x) =z

Finally, if we use the preorder <pon X given in (5.1), we deduce the following
version.

Corollary 11.4.6. Let (X, G) be a complete G-metric space and let F : X3 — X be
a mapping. Suppose that there exists ¢ € Feom Such that, for x,y,z,u,v,w,a,b,c €
X, one has

G (F(x,,2),F (u,v,w),F (a,b,c))
< ¢ (max {G (x,u,a),G (y,v,b),G(z,w,c)}).

Then F has a tripled fixed point in X, that is, there exist x,y,z € X such that

F(x,y,2) =x, F,x,y)=y and F(z,y,x) =z
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11.4.3 Aydi et al.’s Tripled Coincidence Point Theorems
in G-Metric Spaces

In this subsection we prove and extend the main results given by Aydi, Karapinar
and Shatanawi in [32]. In order to present a very general result, we introduce the
following definitions.

Definition 11.4.3. Let (X, G) be a G*-metric space endowed with a binary relation
<andlet F: X3 — X and g : X — X be two mappings. We will say that (F, g) is
an (0, <X)-compatible pair if we have that

nl_iIgoG(gF(xm Vs Zn)s F(8Xn, 8Yns 82n)s F(8Xn, 8Yn» 820)) = 0,
Jim G (8F s Xns Yn)s F(8Yns 8%ns 8Yn) F(8Vns 8%, 8¥n)) = 0 and

Him G (8F (2n, s Xn) F (820, 8Vns 8%), F (820, 8¥ns 8%)) = 0

whenever {x,}, {v,} and {z,} are sequences in X such that {gx,}, {gy,} and {gz,} are
<-monotone and

lim F(x,, Y, 2,) = lim gx, € X,
m—0o0 n—>o00

lim F(y,, X, y,) = lim gy, € X and
m—>00 n—>o00

lim F(z,,yn.x,) = lim gz, € X.
m—00 n—00

Definition 11.4.4. Let (X, G) be a G*-metric space and let F : X> — X and g :
X — X be two mappings. We will say that (F, g) is an O-compatible pair if we have
that

Jim G (§F (X, Yns 20), F (8%, 8Yn: 820), F (8%, 80, 820)) = 0,
Jim G (8F (Vs X, ), F(8Yn: §%ns 8Yn)s F(8Yn: 8%n: 8¥n)) = 0 and
Jim G (8F (2, Y Xn)s F(82n: 8Yn: 8%n) F(82n: 8Yn: 8%n)) = 0
whenever {x,}, {v,} and {z,} are sequences in X such that

lim F(x,, Y, 2,) = lim gx, € X,

m—>0Q0 n—>oo

lim F(y,,X;,y,) = lim gy, € X and

m—00 n—o0

lim F(Ziuynaxn) = lim 8Zn € X.
m—00 n—>00



11.4 Berinde and Borcut’s Tripled F.P.T. 299

Remark 11.4.1. If F and g are commuting, then (F, g) is an (O, <)-compatible pair
and an O-compatible pair.

Theorem 11.4.3. Let (X, G) be a G-metric space endowed with a preorder < and
let F : X> - Xand g : X — X be two mappings such that F has the mixed
(g, X)-monotone property. Assume that the following conditions hold.

() There exist two functions € Fy and ¢ € F), such that
V(G (F (x,,2) ., F (u,v,w) ,F (a, b, c)))

=W-9 (max {G (gx.gu, ga) . G (gy, gv.gb) . G (gz. gw, gC)})
(11.43)
forall (x,v,2), (u,v,w), (a,b,c) € X> for which gx < gu < ga, gy > gv > gb
and gz X gw < gc.
(ii) At least, one of the following conditions holds.
(ii.1) F(X?) C g(X) and there exist xo, yo,z0 € X such that gxo < F(xo, Y0, 20),

8yo = F(yo, X0, y0) and gzo =< F (2o, yo. Xo)-
(ii.2) There exists a Picard (F, g)-sequence {(X,, Vu,Zu)inen < X° such that

gxo = F(x0,Y0,20), g0 = F(yo, X0, Y0) and gzo < F(zo0, y0, Xo)-
(iii) At least, one of the following conditions holds.

(iii.1) (X,G) (or (g(X),G) or (F(X3),G)) is complete and F and g are
continuous and (O, <X)-compatible.
(iii.2) (X,G) (or (g(X),G) or (F(X3),G)) is complete and F and g are
continuous and commuting.
(iii.3) (g(X), G) is complete and (X, G, <) is regular.
Then F and g have, at least, a tripled coincidence point.

Proof. By Lemmas 11.4.1 and 11.4.2, (ii.1)=>(ii.2). We present the proof assuming
(ii.2). From Lemma 11.4.2, {gx,} and {gz,} are <-non-decreasing, and {gy, } is =<-
non-increasing. As < is transitive, we deduce that gx, < gx,,, gV, > gym and gx,, <

gx,, for all n,m € N such that n < m. If there exists some ny € N such that
(gxno»gynm ano) = (gxno+lvg)’no+l»gzno+l)v then

8Xny = 8Xng+1 = F(xno,yno, Zno) s
8Vng = 8Yno+1 = F(.Yno’xno’yno) and

8Zny = 8Zno+1 = F (Zugs Yng» Xng) »

SO (Xng» Yy Zno) 18 @ tripled coincidence point of F' and g. Next, assume that

(8%n: 8Yns 87n) 7 (8Xn+1,8Vn+1,82n+1) foralln € N. (11.44)
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For convenience, let define, for all n, m € N such that n < m,

T (n,m) = max {G (gx,, &%m» &m) »

G (8Yn- 8Ym: 8Ym) + G (82n. 8Zm- &Zm) } »
S (n,m) = max {G (gxu, 8xm. &%m) » G (&¥n &Ym+ &¥m)} »
t,=Tn,n+1),
s, = S(n,n+1).

Condition (11.44) is equivalent to
t, >0 foralln e N.

By the contractivity condition (11.43), for all n € N we have, taking into account
that gx, < X1 =X 8Xn+1, 8Vn = &Vn+1 = &Vn+1 AN 82y X 8Znt+1 = Zn+1,

W (G (gxn+1 s &Xn+25 gxn+2))
=Y (G(F (X, Yn,2n) » F g1, Ynt 15 2ot 1) s F g 13 Yot 15, 201)))

= (1/, - 90) (max {G (gxna 8Xn+1, gxn+l) B

G (gyna 8Yn+1, gyn+1) 5 G (me 8Zn+1, an+1)}>

=Y (1) — ¢ (1) (11.45)
Using that gy,+1 < gVn+1 =X gVn and gx, 41 > gx,4+1 > 8X,, we deduce that

¥ (G (8Yn+2: 8Yn+2: 8Yn+1))
= V(G (F Ont1: %41, Ynt1) o F Onts X 13 Yup 1) F s X, Y0))
= —9) (max {G (8Vn+1.8Vn+1,8Yn) - G (8Xnt1, gxn+1,gxn)})
=V (s50) = (sn) . (11.46)

In the same way, since gz, < 8Zn+1, &n = &Vn+1 and gx, =< gx,41, we also have
that

V(G (82n+1+ 8Zn+2+ 8Xn+2))

=Y (G (F (20, Yns Xn) » F @nt 1 YVnt 15 Xn1) s F (o1, Yot 1> Xnt1)))

= (W - (/’) (max {G (an, 8Zn+1, anJrl) s
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G (&Vn> 8Yn+158Vn+1) » G(gxnygxn-f—lvgxn-l-l)})
=V () — ¢ (1) (11.47)

Notice that the right-hand term of inequality (11.46) is different from the right-
hand terms of inequalities (11.45) and (11.47). However, as ¥ is non-decreasing,
foralln € N,

V(1) =¥ (max {G (8%n+1. 8%n+2: 8Xn+2) » G (&Vn+1, 8Vn+2- 8Vn+2) »
G (82n+1, 8Zn+2, gxn+2)}>
= max {w (G (8Xn+1, 8Xn+2: 8%n+2)) s ¥ (G (8Vn+1, 8Ynt25 8¥n+2))

Y (G (82ns1: 822 85n42)) |
= max{w (tn) - ¢ (tn) ’ 1// (sn) - ¢ (Sn)}'

From item (3) of Lemma 2.3.7, we deduce that {t,} — 0. In particular,

{G (%0, 8%nt 1, 8%n 1)} = 0, {G (g, 8Yn+1,8Vn+1)} — 0
and  {G (821, 8%n+1,8%n+1)} — 0,

that is, the sequences {gx, }, {gy,} and {gz,} are asymptotically regular.

Next, we show that {gx,}, {gv,} and {gz,} are Cauchy sequences on (X, G). We
reason by contradiction assuming that one of them is not Cauchy in (X, G). In such
a case, by Lemma 11.2.1, there exist &g > 0 and two sequences of natural numbers
{n(k)}ren and {m(k)}ren such that, for all k € N,

k <n(k) <m(k) <nk+1),
max {G (8Xn(t)» &Xmk)—1 &xm)—1) » G (8Yn(k) &Ym(k—1+ &¥mik)—1) »
G (82n1)» 8Zm(k)—1> 8Zm(i—1) }
< &9 < max {G (gxu(k)» §Xmk)+ 8Xm(t)) -
G (8n)+ 8Ym)» 8Ym®)) » G (82n)+ 82m(ty» 8Zmit)) } »

and also

lim [max {G (gxn(k)» 8Xm(k)» gxm(k)) .G (gyn(k), &Yk gym(k)) ,

k—00

G (820 8Zm) - me(k))} ]
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= lim [max {G (8X%n00—1+ &Xm(k)—1+ &Xm(t)—1) »

k—o00

G (gyn(k)—l s 8Ym(k)—1 gym(k)—l) ,
G (an(k)—l s 8Zm(k)—1> me(k)_l)}] = &o. (11.48)

Moreover, the number iy in Lemma 11.2.1 guarantees that, at least, one of the
following conditions holds:

Jim G (gxuw): §¥n(- 85m) = 1im. G (8ut). 8Xmty—1: 8¥mt=1) = 0.
(11.49)

kl_l)fgo G (8Yn(k)» &Ymik)» 8Ym()) = kl—lglo G (8Yn()» &Ymik)—1> 8Ymt)—1) = €0.
(11.50)

kl_l)n;o G (82Zn(k)+ 82m(k)» 8Zm(k)) = kl_l)ngo G (82n)+ 8Zm()—1+ 8Zm(k)—1) = Eo.
(11.51)

In order to apply Lemma 2.3.8, let consider the sequences {f;}, {sx} and {ry}
given by

te = T(n(k),m(k)), s = T(n(k) —1,m(k) — 1)
and rp = Snk)—1,mk)—1) forallk € N.

means that {;} — L and {sx} — L. Since n(k) < m(k), we have that gx,)—i

8Xmk)—1 = 8Xm()—1> &Vn()—1 = &Ymk)—1 = 8&Vm—1 and gZuy—1 =X &Zm(k)—1
8Zm(k—1 for all k € N. By the contractivity condition (11.43),

Clearly, r, < s; for all k € N. Moreover, if we define L = &, conditions (11.48)

=
=

¥ (G (8% 8%m(r)» 8%m(r)))
=y (G (F (X =15 Yn—1+ Zn(k—1) »
F (Xm—1 Ym(k)—1+ zm(k)—l) .
F (Ymo—15 Ymk)—15 Zm(i)—1 )))
=W -9 (max {G (8Xn() =1+ 8Xmk)—1 8Xm(t)—1) »
G (&Yn)—1> &Ymk)—15 &¥m(t)—1) -
G (82nt)—1+ 8Zmit)—1, me(k)—l)})

= =) (T (k) = Lm(k) = 1)) = ¥ (sc) — ¢ (1) .
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Furthermore, as gymw)—1 = &Vmk)—1 = &Vnk)—1 AN gXnm(t)—1 = Xmk)—1 = &Xn(k)—1»
then

¥ (G (890 8Ymit) 8Ymt)) )
=y (G (F (Vm—1+ Xm(o=1+ Ym(p—1) +
F (Ym(o—1+ Xm(o—1- Ym(—1) »
F (yn(k)—l»xn(k)—lvyn(k)—l)))
=W -9 (max {G (8Ynt—1+ &Ym(k)—1 Ymit)—1) -
G (8%nt)—1+ 8Xmk)—1+ 8Xm(k)—1) })
= — ) (Snk) —1Lmk) —1)) =¥ () — ¢ (r) -
Similarly,
¥ (G (8200)+ 82ty 82m(t)))
=y (G (F (201 Ynt)—1+ Xn()—1) »
F (2mm—15 Ymy—1, Xm=1) »
F (215 Ymm—1 ¥m(o)—1 )))
=W -9 (max {G (82 =1 8Zm(k)—1 8Zm(k—1) »
G (8Vnk)—1+ 8Ym)—1: &Ym(t)—1) -
G (8%n(—1+ &Xmk)—1 8Xm(k)—1) })
= — ) (T (n(k) = 1L,m(k) = 1)) = ¥ (st) — ¢ (s1) -

Combining the last three inequalities and taking into account that ¥ is non-
decreasing, if follows that, for all k € N,

Y (t) =y (max {G (8Xn () &Xm(k)» 8Xm(k)) + G (&Yn(k)» &Ym(k)» 8Ym(k))
G (820 8Zm)- me(k))}>

= max {1// (G (8%nk)» 8Xmk)+ 8Xm(vy)) -

¥ (G (gYm(k), 8Ym(k)» gyn(k))) >
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¥ (G (82t > 82maty» gzmac)))}
< max{y¥ (s) — ¢ (sx) . ¥ () — @ (1)} .

Applying Lemma 2.3.8, we conclude that &g = L = 0, which is a contradiction.
As a consequence, {gx,}, {gy,} and {gz,} must be Cauchy sequences on (X, G). To
continue the proof, we distinguish some cases.

Case (iii.1). Assume that (X, G) (or (g(X), G) or (F(X3), G)) is complete and F
and g are continuous and (O, <)-compatible. In such a case, as the sequences

{8xXnt1 = FOo,ynz0)}s 48n+1 = FusXn,yn)} and {g2ut1 = F(2n, Yno Xn)}
belong to F(X?) € g(X) € X, and one of these spaces is G-complete, there exist

u,v,w € X such that {gx,} — u, {gy,} — v and {gz,} — w. As F and g are
continuous, we deduce that

{egxn} — gu, {ggy.} — gv, 188z} — gw,
{F (gxn, &Vn,820)} = F(u,v,w), {F (gyn,8%n,8&yn)} = F(v,u,v),
{F (gznv 8Yn, g-xn)} — F(W, v, u)

Therefore, {x,}, {y,} and {z,,} are sequences in X such that {gx, }, {gy,} and {gz,,}
are <-monotone and

lim F(x,,yu,2,) = lim gx, = u € X,
m—>00 n—o0

lim F(y,, Xy, yn) = lim gy, =v € X and
m—>00 n—>o0

lim F(zy,Yn,X;) = lim gz, =weX,
m—>0Q0 n—>o0

Since F and g are (O, <)-compatible, we have that

nl_i)lgoG(gF(xn,yn,zn),F(gxn,gyn,gzn),F(gxn,gyn,gzn)) =0,

nlggo G (8F n, Xn, Yn), F(gYn, 8Xn, 8Yn)s F(8Vn» 8%n, 8¥n)) = 0 and

nll>nt;lo G (gF(va ylb xn)» F(gznv gynv g-xn), F(gzn’ gy}ﬂ gxn)) = O
In particular

G (gu, F (u,v,w),F (u,v,w))
= lim G (g8Xn+1, F (8Xn, 8¥n: 8Zn) + F (X, &Y+ 82n))
n—>00

= lim G (gF (X, Yn: 2n), F (8%n, 8V, 82n) » F (8%u, 8Vn+ 820)) = 0.
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It follows that gu = F (u, v, w). In the same way,

G(gv,F(v,u,v),F(v,u,v))
= lim G (ggyn+1,F (&Vn. 8%ns &Vn) » F (Vn> 8%ns 8Yn))
n—oo

= m G (gFns X, Yu)s F (8Yn: 8%ns 8Yn) » F (8¥n, 8%n, g¥n)) = O,
s0 gv = F (v, u, v). Finally, as

G(gw,F(w,v,u),F(w,v,u))

= lim G (ggzn+1.F (820, 8Vn» &%n) » F (82n: 8Yn,> 8%n))
n—>o0

= nl_i)rgo G (8F (zn, Yns Xn), F (820, 8Vn, 8%n) » F (820, &Y, 8%n)) = 0,

it follows that gw = F (w,v,u). As a consequence, (i, v,w) is a tripled
coincidence point of F' and g.

Case (iii.2). Assume that (X, G) (or (g(X), G) or (F(X3), G)) is complete and F
and g are continuous and commuting. It follows from item (iii.1) because if F'
and g are commuting, then they are also (O, <)-compatible.

Case (iii.3). Assume that (g(X), G) is complete and (X, G, <) is regular. Since
{gxn}, {gyn} and {gz,} are Cauchy sequences on (g(X), G), there exist u’, v’,w' €
g(X) such that {gx,} — o/, {gy,} — v’ and {gz,} — w'. Letu,v,w € X be
arbitrary points such that gu = v/, gv = v/ and gw = w'. As (X, G, <) is regular,
and the sequences {gx,}, {gy,} and {gz,} are convergent and <-monotone, we
deduce that gx,, < gu, gy, > gv and gz, < gw for all n € N. Therefore, applying
the contractivity condition (11.43) to gx, < gu =< gu, gy, > gv > gv and
gz, < gw =< gw, we obtain

l/f (G(gxn-l-lsF(uvU’W) ,F(M,U,W)))
=Y (G (F (Xn, Y, 2n) , F (u, 0, w) , F (u, v, w)))

= (¥ — ) (max {G (gn, gu. gu)
G (8yn, gV, 8V) , G (82, W, gW)})
<v (max{G(gxmgu, gu) , G (gyn. 8V, gv) . G (820, gW, gW)}) .
As {gx,} = gu, {gy.} — gv, {gz,} — gw and ¥ is continuous, we deduce that

v (G (gu, F (u,v,w),F (u,v,w)))
= nli)ngo 1/’ (G (gxn-H’F(u» U,W) ,F(l/l, U’W)))

< ¢ (max{0,0,0}) =0,
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so gu = F (u,v,w). In the same way, applying the contractivity condition (11.43)
to gv <X gv X gy, and gu > gu > gx,, we obtain
V(G (F (v,u,v),F(v,u,0), g¥n+1))
=Y (G(F(,u,v),F (v,u,0) , F (Yn, X0, Yn)))

= (¥ —¢) (max {G (gv. gv. g3) . G (gu. gu g3}
= v (max (G (gv. g0, g9) . G (gu gue g1} )
again, and letting n — oo we deduce that

¥ (G(F(v,u,v),F(v,u,v),gv))
= nll>no]o l// (F(U,Lt, U) ,F(U,M, U) »8}’n+1)

< ¢ (max{0,0}) = 0,

and, therefore, gv = F (v, u, v). Repeating the previous arguments, we can show
that gw = F(w, v, u). Thus, we conclude that (u, v, w) is a tripled coincidence point
of F and g. O

We leave to the reader to particularize Theorem 11.4.3 as we did it in Sect. 11.3.5.
We only include the following results, which can be considered as extensions of
Borcut and Berinde’s Theorem 4 in [50].

Corollary 11.4.7. Let (X,G) be a complete G-metric space endowed with a
preorder < and let F : X> — X and g : X — X be two mappings such that
F(X?) C g(X) and F has the mixed (g, <)-monotone property. Suppose that there
exists A € [0, 1) such that

G (F (x,y,2),F (u,v,w),F(a,b,c))
< A max{G (gx, gu, ga) , G (gy, gv. gb) . G (gz, gw. gc)} (11.52)
forall (x,v,2), (u,v,w), (a,b,c) € X> for which gx < gu < ga, gy > gv > gb and
gz =X gw =< gc. Also assume that, at least, one of the following conditions holds.

(a) (X,G) (or (g(X),G) or (F(X3), G)) is complete and F and g are continuous
and commuting.
b) (g(X), G) is complete and (X, G, <) is regular.

Theorem 11.4.4. Then F and g have, at least, a tripled coincidence point.

Proof. Tt follows from Theorem 11.4.3 using ¥ (f) = tand ¢ () = (1 — A) ¢ for all
t € [0, 00). |
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Corollary 11.4.8. Let (X, G) be a complete G-metric space endowed with a partial
order < and let F : X> — X and g : X — X be two mappings such that
F(X?) C g(X) and F has the mixed (g, <)-monotone property. Suppose that there
exist A, Ay, A3 € [0, 1) such that Ay + A, + A3 < 1 and verifying

G(F (x,y,2),F (u,v,w),F(a,b,c))
< A1G (gx, gu, ga) + A>G (gy, gv. gb) + A3G (gz. gw., gc) (11.53)
forall (x,v,2), (u,v,w),(a,b,c) € X for which gx < gu < ga, gy > gv > gb and
gz X gw X gc. Also assume that, at least, one of the following conditions holds.

(@) (X,G) (or (g(X),G) or (F(X3), G)) is complete and F and g are continuous
and commuting.
(b) (g(X),G) is complete and (X, G, X) is regular.

Theorem 11.4.5. Then F and g have, at least, a tripled coincidence point.

Proof. Tt follows reasoning as in Corollary 11.4.2 because (11.53) implies
(11.52). |

11.5 Karapmar’s Quadrupled Fixed Point Theory

In [110], Karapinar introduced the notion of a quadrupled fixed point of a mapping
F :X* — X as a point (x, y,z, w) € X* such that

F(x,y,z,0) = x,
F(y,z,w,x) =y,
F(z,w,x,y) =z,
F(w,x,y,2) = w.

All arguments given in Sects. 11.3 and 11.4, can now be repeated. For more details,
see also [113, 117].

Definition 11.5.1. Let X be a non-empty set endowed with a binary relation < and
let F: X* — X and g : X — X be two mappings. The mapping F is said to have the
mixed (g, <)-monotone property if F(x,y, z, w) is monotone (g, <)-non-decreasing
in x and in z, and monotone (g, <)-non-increasing in y and in w, that is, for all
X, ¥, 2,0 € X,

x,neX, gu<gn = FO,yzo)<F,yzo),

YLy €X, gy <gn = Fy,z )= FXy,z, o),
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2.2€X, gu<gn = Fxyuow)F@xyzn ) and

w,w €X, gwXgwy, = F,y,z,w) = Fxy2z0).

If g is the identity mapping on X, then we say that F' has the mixed <-monotone
property.
Theorem 11.5.1. Let (X, G) be a G-metric space endowed with a preorder < and

let F : X* - Xand g : X — X be two mappings such that F has the mixed
(g, X)-monotone property. Assume that the following conditions hold.

(i) There exist two functions € Fy and ¢ € F),, such that
V(G (F(x.y.2.t) . F (u,v,w.p) . F (a,b.c.d)))

<Y -9 (max {G (gx, gu, ga), G (gy,gv.gb) ,

G (gz,8w.gc), G (gt, gp, gd) })

for all (x,y,z,1), (u,v,w,p),(a,b,c,d) € X* for which gx < gu < ga, gy >
gv = gb, gz < gw =< gcand gt = gp > gd.
(ii) At least, one of the following conditions holds.

(i.1) F(X*) <€ g(X) and there exist xo,yo,20,.t0 € X such that gx,
F(x0, 0, 20, T0), gY0 = F(¥o, 20,0, %0), 820 =X F(z0, %0, %0, yo) and gty
F (%, X0, Yo, 20)-

(ii.2) There exists a Picard (F, g)-sequence {(X,, Yu, Zn. tn) }nen < X* such that
gxo = F(x0,¥0,z0,%), g0 = F(yo.z0.%,%0), 820 = F(z0, %0, X0, y0) and
gto = F(to, X0, Yo, 20)-

=
=

(iii) At least, one of the following conditions holds.

(iii.1) (X,G) (or (g(X),G) or (F(X4),G)) is complete and F and g are
continuous and commuting.
(iii.2) (g(X), G) is complete and (X, G, <) is regular.

Then F and g have, at least, a quadrupled coincidence point.

11.6 Roldan et al.’s Multidimensional Fixed Point Theory

Inspired by the previous notions of coupled, tripled and quadrupled fixed point,
and the Berinde and Borcut’s condition F(y, x,y) = y, in 2012, Roldan et al. [174]
introduced the following notion of multidimensional fixed point using two mappings
F:X"— Xand g: X — X (see also [178]).
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11.6.1 The Notion of Multidimensional Fixed Point

Henceforth, let {A, B} be a partition of A, = {1,2,...,n}, that is, A and B are
non-empty subsets of A, such that AUB = A, and AN B = @. From now on, let
® = (01,07, ...,0,) be a n-tuple of mappings from {1,2, ..., n} into itself.

Definition 11.6.1 (Roldan et al. [174]). Given two mappings F : X" — X and
g : X — X, we say that a point (x;,x,...,%,) € X"isa

*  ®-fixed point of F if
F(X,(1) X6;2)s - - - » Xoymy) = %;  forallie {1,2,...,n};
e ®-coincidence point of F and g if
F(Xoy(1)s X0;2)s - - - » Xoymy) = g% forallie {1,2,...,n};
o ®-common fixed point of F and g if
F(Xo;(1)s X0,2) s« - - s Xoy(m) = &% = x; forallie {1,2,...,n}.

If we represent a mapping o : A, — A, throughout its ordered image, i.e.,
o= (0(1),0(2),...,0(n)), then:

 the Gnana-Bhaskar and Lakshmikantham’s condition inn = 2 is o1 = (1, 2) and
oy =(2,1);

* the Berinde and Borcut’s condition inn = 3 is o7 = (1,2, 3), 0, = (2, 1,2) and
oy =(3,2,1);

 the Karapinar’s condition inn = 4is 07 = (1,2,3,4), 00 = (2,3,4,1), 03 =
(3,4,1,2) and 04 = (4, 1,2, 3);

e the cyclic condition is o; = (,i+1,...,n,1,2,...,i—1) for all i €
{1,2,...,n}.
Low dimensional cases consider A as the odd numbers in {1,2,...,n} and B as

its even numbers. Another definition was due to Berzig and Samet [42], who used
A=1{1,2,...,m},B={m+1,...,n} and arbitrary mappings between them.

As we shall see, Roldan et al. succeeded in proving existence and uniqueness
of multidimensional fixed (or coincidence) points when ® = (0y,07,...,0,) is a
n-tuple of mappings from {1, 2, ..., n} into itself satisfying 0; € Qap ifi € A and
o; € QA’B if i € B, where

Qap=1{0:A,— A,:0(A) S Aanda(B) C B},
Qhg=1{0:A,— A,:0(A) CBando(B) C A}.

In order to prove a multidimensional result, we need to extend the notion of the
mixed monotone property.
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Given a binary relation < on X and i € A,, let denote by <; the binary relation
X, if i € A, and the binary relation 3=, if i € B. In other words, for all x,y € X,

xxXy, ifi €A,

11.54
x>y, ifieB. (11.54)

X<y

Definition 11.6.2 (Roldan et al. [174]). Let < be a binary relation on a set X and
let F: X" - Xand g : X — X be two mappings. We say that F has the mixed
(g, X)-monotone property (w.r.t. {A, B}) if F is monotone (g, <)-non-decreasing in
arguments of A and monotone (g, <)-non-increasing in arguments of B, i.e., for all
X1,X2,...,%,y,2 € X and all i,

gy <8 = Fi, ... X—1,Y,Xi41,...,Xn)

i F(en, oo Xim 1, 2, X 1, - 25 X))

Lemma 11.6.1. Let F : X" — X and g : X — X be two mappings such
that F(X") C g(X) and let ® = (01,0,...,0,) be a n-tuple of mappings from

{1,2,...,n}into itself. Then, starting from any points x('),x%, ..., Xy € X, there exists
a sequence {(x,ln x,zn, ... xﬁ) }men on X" such that
gxi,H_1 = F(xzf(l),xf,;(z), e ,xZ{(")) (11.55)

forallm e Nandalli € {1,2,...,n}.

Proof. Let x(l),x%,...,xg € X be arbitrary. Given i € {1,2,...,n}, since
FOIW TP x5 e F(X") € g(X), then there exists xi € X such that
gxi1 = F(xg’(l),xgi(z),...,xgi('l)). Then, we have n points x{,xf,...,x’f e X.

Similarly, given i € {1,2,...,n}, since F(x‘lj"(l),x?’(z), ... ,xfi(")) € F(X") C g(X),
then there exists x, € X such that

gxh = F(xfi(l),x(fi(z), ... ,x(;[(")).

If we repeat by induction this argument, we can define a sequence

{(x,ln,xi, . 7-74,'1)}m€N

on X" satisfying (11.55). O

Definition 11.6.3. Given ® = (01,03, ..., 0,) and two mappings F : X" — X and
g : X — X, aPicard (F, g, ®)-sequence is a sequence {(x}nxfn .. ,x’,ﬁ)}meN on X"
satisfying (11.55).
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Proposition 11.6.1. If {(x),.x2,. ..., x")}men on X" is a Picard (F,g, ®)-sequence
and there exists ng € N such that gxi = gxfm+1 foralli € {1,2,...,n}, then
2

1
(xno,xno, . ,xno) is a ®-coincidence point of F and g.

Proof. It follows from the fact that, for all i € {1,2,...,n}, gx, = gx, ;| =

Fx a,(l)’ 26(2)’. xno(n)) S0 (x 2

s Xomgs + - - xno) is a ®-coincidence point of F and g.

a

Given two mappings F : X" — X and g : X — X, the condition F(X") C g(X)

is sufficient to guarantee that there exists a Picard (F, g, ®)-sequence on X based on
any initial points x}), x(zJ, ..., Xy € X. However, it is not necessary.
Lemma 11.6.2. Let ® = (01,02,...,0,) be a n-tuple of mappings from
{1,2,....n} into itself such that o; € Qap ifi € Aand o; € Qg ifi € B.
Let <X be a transitive binary relation on a set X and let F : X" — Xand g : X - X
be two mappings such that the following conditions are fulfilled.

(i) There exists a Picard (F, g, ®)-sequence {( X5 m, .. ,x’,;)}meN C X"
(ii) gxo X; F(xo’(l), U’(z) R ("))for alli e {1,2,...,n}.
(iii) F has the mixed (g, <)-m0not0ne property.

Then, for each i € {1,2,...,n}, the sequence {gxﬁn}meN is X;-non-decreasing
(that is, it is <-non-decreasing if i € A and <-non-increasing ifi € B). In particular,

g < gxh forallie{1,2,...,n} andallm,t € Nwithm < (. (11.56)
Proof. By (ii), we have that gx) <; F(xo’(l), X, @ . xg’(”) = gx\ foralli €

{1,2,. n} Assume, by hypothems of induction, that there exist m € N such that
gd =, gxm 4y foralli e {1,2,...,n}. This condition means that

J ¥ . ifj €A,
{gx S &1 1 (11.57)

gx kgx’ 410 ifj€B.

m

To complete the induction process, we have to prove that gxfn = gxfn 4, forall
ie{l,2,...,n}, thatis,

| oxex L ifjeA,
{g,w 8,4 if j (1158)

8X | F 8%, 4y. if j € B.

We distinguishing two cases.

Case I: i € A. In this case, 0;(A) € A and 0;(B) € B. As F has the mixed
g-monotone property, we apply that F is g-monotone (g, <)-non-decreasing in
A-arguments with the first inequalities of (11.57) and we deduce that, for all
a,a,...,a, € X:
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ifj,s € A, gx{nﬁgx';n_‘_l =
F(a17 .o 7as—l’x]m’as+lv .o 7an) < F(Cll, o ,as—19x1m+19as+17 oo aan)s

and that F is g-monotone (g,
inequalities of (11.57):

ifj,S € B’ ngm = gxin—i—l
Fay,... a51,%,  agi1,...

In any case, it follows that, if j, s € {1,2,...

F(al,...
forall ay, as, ...

8041 = Fl!

ai(1)

F( m+l’

oi(1)

F( m+l’

< F(x

i
Hence gx, |

»as—lvx]mvari‘l»'-'»

1)’x:7ni(2)’

<)-non-increasing in B-arguments with the second

va,) X F(ay, ... a1, x’+1,as+1,...,an).

,n} satisfy j, s € Aorj,s € B, then:

an) < F(alv'"7as—l5-x{ﬂ+|5as+lv'~~van)

,ay, € X. As 0; € Qpp:

in(3)’ o, xai(n))
(1,0;(1) e Aor 1,0;(1) € B)
01(2) 01(3)7 e x;i(”))
(2,0;(2) e Aor2,0;(2) € B)
;’ff,x;’;@ ...,x;’j(”))
(3,0:(3) e Aor3,0,(3) € B)
oi(1) (71(2) 0i(3) (71(”)

Xm+1 Xm0 X 10+ m+l)_gxm+2

< gx. ., wheniisin A, so (11.58) holds if i € A.

Case 2: i € B. In this case, we apply that F is (g, <)-monotone non-decreasing
in A-arguments with the second inequalities of (11.57) and that F is (g, <X)-
monotone non-increasing in B-arguments with the first inequalities of (11.57),
and we deduce, for all a,ay,...,a, € X, that, if j,s € {1,2,...,n} satisfy
jeA seBorjeB,seA, then

F(ai,...,a5-1.X,, 541, ...,a,) = F(al,...,as_l,x’mH,as_,_l,...,a,,).
Since 0; € Q), g, therefore:
gri L, = FaD i@ o o)

(1€A,0:(1) eBorl eB,oi(l) € A

= F(xfyf_(i_li,x‘,’,{(z),xf,{a), e ,x;"(”))



11.6 Roldén et al.’s Multidimensional F.P.T. 313

€A o0(2) eBor2eB,0;(2) €A
F(xor(l) 0i(2) XO“,(’;) ., xg;(n))

mt1> Xm+1° Xm
(B3€A0;3)eBor3eB,o(3) €A
oi(1) 01(2) 0i(3) Gl(”)
= F F (X1 X 1 X1 -+ -2 Xppt) = gxm+2

i i ;
Hence gx,, | > gx;,,, wheni € B.

In any case, we have proved that (11.58) holds. In particular, (11.56) holds
because < is transitive. O

In order to present a very general result, we introduce the following definitions.

Definition 11.6.4. Let (X, G) be a G*-metric space endowed with a binary relation
<andletF : X" — X and g : X — X be two mappings. Given ® = (01,03, ...,0,),
we will say that (F, g) is an (O, <X, ®)-compatible pair if we have that, for all i €

{1,2,...,n},
nll>rgo G (gF(ij(l),x;"(z), . ,xﬁ,’l"(”)), F(gxﬁ;'“), gx;"(z), e gxm(”))
F(gxgj(l), gx;"(z), . ,gx%"(”))) =0

whenever {(x},,x2,

monotone and

)}meN is a sequence in X" such that each {gx’} is <-

lim F(M x5 %My = lim gx,, € X forallie {1,2,...,n}.
n—>oo

m—00

Definition 11.6.5. Let (X, G) be a G*-metric space and let F : X" — X and g :
X — X be two mappings. Given ® = (01,03, ...,0,), we will say that (F, g) is an
(0, ®)-compatible pair if we have that, for all i € {1,2,...,n},

lim G (gF(x”’ XD XMy F (g, gx%i@ L gx@i™),

n—>oo

FgxnV, gxgi® .. gxni®)) =

whenever {(x},,x%, ..., x%)}men is a sequence in X" such that
; oi(l) ,0i(2) oi(M)y — 1i ;
man;OF(xm LX) A )—nllglogxmeX forallie {1,2,...,n}.

Remark 11.6.1. 1If F and g are commuting, then (F, g) is an (O, <X, ®)-compatible
pair and an (O, ®)-compatible pair.
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11.6.2 Existence of ®-Coincidence Points

Next, we present one of the main results of the chapter.

Theorem 11.6.1. Let (X, G) be a G-metric space endowed with a preorder <X and
let F : X" — Xand g : X — X be two mappings such that F has the mixed
(g, X)-monotone property. Let ® = (01,03, ...,0,) be a n-tuple of mappings from
{1,2,...,n} into itself satisfying 0; € Qap ifi € Aand 0; € Q) g if i € B. Assume
that the following conditions hold.

(i) There exist two functions ¥, ¢ € Fyy such that

Y (G(FX).F(Y).F@) < - w)(maxc(gx,,gyl,gzo) (11.59)
forall X (x1,x2,....,%), Y 01,2, ..., ), Z (21,22, . .., 2n) € X" for which

exi <X gyi i gz forallie {1,2,...,n}.

(i) At least, one of the following conditions holds.

(ii.1) F(X") < g(X) and there exist x(l),xlo,...,xg € X such that gx6 <

FOSO X x5 foralli € {1,2, .. }
(ii.2) There exists a Plcard (F, g, ®)-sequence {( Xpy X X ) Imen. S X"
such that gxo < F(x”’(l), "’(2), ce X g‘(n))for allie{1,2,...,n}.

(iii) At least, one of the following conditions holds.

(iii.1) (X,G) (or (g(X),G) or (F(X"),G)) is complete and F and g are
continuous and (0, <X, ®)-compatible.

(iii.2) (X,G) (or (g(X),G) or (F(X"),G)) is complete and F and g are
continuous and commuting.

(iii.3) (g(X), G) is complete and (X, G, <) is regular.

Then F and g have, at least, a ®-coincidence point.
Proof. By Lemma 11.6.1, (ii.1)=-(ii.2). We present the proof assuming (ii.2). From
Lemma 11.6.2,

gx,"n <igx2 foralli e {1,2,...,n} andallm,£ € Nwithm < £.

From Lemma 11.6.1, if there exists ny € N such that gxilo = gxilo 4 foralli e
{1,2,...,n}, then (x) ,x2 ,...,x% ) is a ®-coincidence point of F and g, and the

n()’ n()’ > 7Tng
existence part is finished. On the contrary case, assume that

G(f LX) .gn ) 0 forallme N.
128 O\ 8Xmt1r 828Xtz ) = orallm
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Letforallje {1,2,...,n}and allm € N,

ldh = G (2489120, )| and

meN

i oj(i) _oj(i) _oj(i)
{U = max G (2 ,x,éipxniil)}

meN

By the contractivity condition (11.59), for allm € Nand all j € {1,2,...,n}, we
have, taking into account that gx’ bl gx’ 2 gxin+2,

2 (‘1];;1+1) =y ( (ngm+l ngm+2’gx]r'n+2))
= (6 (FOE 5%, ),

oj(1) _0j(2) aj(n) aj(1) 0(2) aj(n)
FOL a8 D P i)

< -9 (max G (gxi’(l)»xgif] »ﬁfﬁ)) =W -9 ).

1<i<n

Notice that

max b’,'n = max (max G (gxn{(l),xjffl,x;{ﬁ)l))

1<j<n I<j<n \1<i<n

< max G (84, 89,01- 811 ) = j
= foax 8%+ 8X41+ 8% 1 [2aX >
and as ¥ is non-decreasing,
W (max b’) <y (max a’m)
]_/<n lﬁjfn
Applying Lemma 11.2.4, we deduce that
. ,] i
1im G (g4 011 85,41) = lim @), =0 forallje {1,2,....n}.

Next we show that each sequence {g¥/, } is Cauchy in (X, G) reasoning by contradic-
tion. If we suppose that, at least, one of them is not Cauchy in (X, G), Lemma 11.2.1
guarantees that there exist &g > 0, iy € {1,2,...,n} and two sequences of natural
numbers {n(k) }ren and {m(k)}ren such that, for all k € N,

k < n(k) < m(k) < n(k+ 1),

max {G(gxn(k) gxm(k) 1 gxm(k) 1)} <&

1<i<zn

< max {G(gxn(k) gxm(k) gxm(k))}

1<i<n
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and also
klggo [lrrﬁllaﬁxn {G(gxfl(k),gx’;n(k),gxin(k))}} = &y, (11.60)
lim |:1II§121§X {G(gx;;(k)_l,gx;'n(k)_l,gxin(k)_l)}] = £, (11.61)
Jim G(8X 1y 85 1> 8Xiy) = E0- (11.62)

Since n(k) < m(k), we have that gx, ;| <i &%,4_1 i &%, forall i €
{1,2,...,n} and all k € N. By the contractivity condition (11.59),

) . ; oiy(1) 0§y (2) Tig (1)
v (G (gx;’(k),gxifl(k),gxifl(k))) =V (G (F(xn((l)c)—l’xn{l)d—l’ e Kny-1):

Tigy (1) Tigy (2) Tig (n)

F(xm(k)—l’xm(k)—l’ e ’xm(k)—l)’
oig(1) 0y (2) i (1)
F(xm(()k)—l ’xm(()k)—l’ e ’xm(()k)—l ))
Oig(5) 0y (s) i (5)
<Y —-9) (1123<XnG (gxn(‘}c)_l,xm‘()k)_l,xm‘(’k)_l)) ) (11.63)

From item 2 of Lemma 2.3.4, we have that, for all k € N,

i i i Oig(s) 0y (s) iy (s)
G (gxr?(k)’gxz;;(k)’gxrz(k)) < max G (gxn((l)c)—l’xm(()k)—l’xm((]k)—l) or

1<s<n
i i i oig(s)  oig(s)  oig(s) '\ _
G (gxr?(k)’ gxzz(k)’ gx;(k)) = ITffnG (gxn((ll)—l’xm(()k)—l’xm[()k)—l> =0.

From (11.62), the second case is impossible for infinite values of k. Then, there
exists ky € N such that

Oip(8)  0ip(9) Tig (5)

G (gx;o(k)’gxis(k)’gxiz(k)) < max G (gxn(k)—l’xm(k)—l’xm(k)—l>

1<s<n
for all k > ky. As a consequence,

Oig(s) iy (5) i (5)

1 i I
G (gxz)(k)’gxrf;(k)’gxr(r):(k)) < max G (gxn(k)—l’xm(k)—l’xm(k)—l>

1<s<n

< max G(g‘x;;(k)—l ) gxfn(k)—l ’ gxfﬂ(k)_l)

1<s<n

for all k > ky. Letting k — oo and using (11.61) and (11.62), we deduce that

: Tig (s) Tig (s) Oig (s) _
kl_l)n;o |:1r2§1§xn G (gxn(k)_l,xm(k)_l,xm(k)_l) :| = &o. (11.64)
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Hence, the sequences

{tk =G (gXﬁf(kw 8ty gx;z(k))}kEN nd

Tig (5) iy (5) Tig (5)

{ Sk = lfglfxn G <gxn(k)—l Xy —1> Xm(k)—1 )} e

satisfy, by (11.63), that ¥ (t;) < (¥ — @) (s¢) for all k € N. Furthermore, they have
the same limit L = gy by (11.62) and (11.64). Lemma 2.3.5 yields &y = 0, which is
a contradiction. This contradiction proves that each {gx! },.ey is a Cauchy sequence
in (X, G). To continue the proof, we distinguish three cases.

Case (iii.1). Assume that (X,G) (or (g(X),G) or (F(X"),G)) is complete and
F and g are continuous and (O, <X, ®)-compatible. In such a case, there exist
21,22, --,2n € X such that {gx! },,en — z; foralli € {1,2,...,n}. As F and g
are continuous, we deduce that

{ggx! }nen — 82i,

{F (g0 gx%® . ex% ™)} — F(20,1). 201(2)+ - - - + Z01(2))

foralli € {1,2,...,n}. Therefore, each {gx },en is a <-monotone sequence
and
; i(1 i(2 i . H i —
mll{%oF(x;( ) 30O X0y = nlg&gx;H =z€X

foralli € {1,2,...,n}. As the pair (F, g) is (0O, <X, ®)-compatible, we deduce
that, for all i € {1,2,...,n},

lim G (gF(xg;(l),xf,j(z), . ,xg{(”)), F(gxf,{(l), gxg{(z), e gx,‘,’{(”)),

m—>00

F(gxoiV gx®@ ,gxg{(”))) =0.
As a consequence, for all i € {1,2,...,n},

G (gzl’ F(Z()'l'(l)5 Za,-(z), e ZO‘,‘(Z))» F(Zo‘f(])a ZU,‘(Z)? ce Z(T,‘(Z)))

= lim G (ggxfn_H , F(gx”"(l), gxz"(z), .

n
m—0o0 " "

.. ,gx;’j(”)),
Flgiy . gxi®. ... g
= Jim G (eFGg.a . ),
F(gx;"(l), gx;"(z), o gx;{(”)),

F(gx;"(l), gx;"(z), e, gx;"(”))) =0,
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50 F(Zo,(1)s Zoi2)» - - - » Zoy2)) = gz for all i € {1,2,...,n}, which means that
(z1,22,...,22) € X" is a ®-coincidence point of F and g.

Case (iii.2). Assume that (X, G) (or (g(X), G) or (F(Xz), G)) is complete and F
and g are continuous and commuting. It follows from item (iii.1) because if F'
and g are commuting, then they are also (0, <, ®)-compatible.

Case (iii.3). Assume that (g(X),G) is complete and (X, G, <) is regular. Since
{gx,} and {gy,} are Cauchy sequences on (g(X), G), there exist z1,22,...,2, €
g(X) such that {gx’ },,eny — z; foralli € {1,2,...,n}. Letw;, wy, ..., w, € X be
arbitrary points such that go; = z; foralli € {1,2,...,n}. As (X, G, <) is regular
and each sequence {gx! } is <;-non-decreasing and convergent, we deduce that

g’ < gw; forallmeN.

Therefore, applying the contractivity condition (11.59) to gxfn X gw; <X gw;, we
obtain

I// (G(gx:/n.l,-] ’ F(a)o,-(])7 a)o,-(Z)y crt a)U,'(n))’ F(wai(l)’ a)()'l'(z)a MR a)()'i(n))))
=y (G (F(XZ{(I),XE’,[(Z), . ,x;"(”)), F(wo;(1ys W5;2) - - - » D))

F(@o,(1), Wo;2). - - - 7waf(n))))
=W —-9) (g}%G (gxzi(i),gwaio),gwaig))) .

As {gxz(j)} — gwg, foralli,j € {1,2,...,n}, and G, ¥ and ¢ are continuous,
we deduce that

mILrIc}o I//G(gx:n_l,-] ’ F(wo'i(l)’ a)O'l'(Z)’ R wO’i(ﬂ))»
F(@,(1): 05,2+ - -+ D)) = 0.

Since Y € Fy, Lemma 2.3.3 shows that

G(gwi, F(We;(1) W5;2)+ - - - » Qo)) s F(@s;1), Wo52)» - - -+ Oy (n)))

= mll)nolo G(gxin—i,-l’ F(a)o’,'(l)v a)U,'(Z)v ceey a)CT,'(Vl))a
F(@o;(1): @o;(2) - - - » Woy(my)) = 0,

S0 F(Wo;(1)s Wo;(2)» - - - » Woy(my) = gw; for all i € {1,2,...,n}, which means that
(w1, w,,...,w,) € X" is a ®-coincidence point of F and g. O

The previous results have many particularizations. For example, when < is
a partial order on X (we do not write such version because it is similar to
Theorem 11.6.1). It is interesting to consider the preorder “x < y for all x,y € X”.
In such a case, we have the following version.
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Corollary 11.6.1. Let (X, G) be a G-metric space and let F : X" — X and g :
X — X be two mappings. Let ® = (01,03, ...,0,) be a n-tuple of mappings from
{1,2,...,n} into itself satisfying 0; € Qap ifi € Aand 0; € Q) g if i € B. Assume
that the following conditions hold.

(i) There exist two functions ¥, ¢ € Fyy such that

V(G(F(X),F(Y),F(2)) = —9) (lmlenG (gxi, 8yi, gzi))

<i<
forall X (x1,%2, ..., %), Y O, Y2, ... V0), Z (21,22, - . ., Z0) € X
(i) At least, one of the following conditions holds.
(ii.1) F(X") € g(X).
(ii.2) There exists a Picard (F, g, ®)-sequence

{0 X2 Jmery € X

(iii) At least, one of the following conditions holds.

(iii.1) (X, G) is complete and F and g are continuous and (O, ®)-compatible.
(iii.2) (X, G) is complete and F and g are continuous and commuting.
(iii.3) (g(X), G) is complete.

Then F and g have, at least, a ®-coincidence point.
In the next result, we assume that y is the identity mapping on [0, 00).

Corollary 11.6.2. Let (X, G) be a G-metric space endowed with a preorder < and
let F : X" — Xand g : X — X be two mappings such that F has the mixed
(g, X)-monotone property. Let ® = (01, 05, ...,0,) be a n-tuple of mappings from
{1,2,...,n} into itself satisfying 0; € Qap ifi € Aand o; € QfA,B if i € B. Assume
that the following conditions hold.

(i) There exists a function ¢ € Fyy such that
G(FX).F(Y).F(2)
=< lnslgG(gxivgyingi) -9 (112?5)(”(; (gxi»gyi»gzi))
forall X (x1,x2, ..., %), Y (V1,25 -, Yn) » 2 (215 22 - - -, Z0) € X" for which
gxi X gyi i gz forallie {1,2,...,n}.

(ii) At least, one of the following conditions holds.

(ii.1) F(X") C g(X) and there exist x},x3,...,x3 € X such that gxi <;
F(xgi(l) xgi(z), . ,xg"("))for allie{1,2,...,n}.
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(ii.2) There exists a Picard (F,g, ®)-sequence {(x},.x2.....xX})}men S X"
such that gxi) <, F(xo’(l) U’(z), cees g‘("))for allie{l,2,...,n}.
(iii) At least, one of the following conditions holds.

(iii.1) (X,G) (or (g(X),G) or (F(X"),G)) is complete and F and g are
continuous and (0O, X, ®)-compatible.

(iii.2) (X,G) (or (g(X),G) or (F(X"),G)) is complete and F and g are
continuous and commuting.

(iii.3) (g(X), G) is complete and (X, G, <) is regular.

Then F and g have, at least, a ®-coincidence point.

If we take ¢ (f) = (1 —A)¢ for all + > 0, where A € [0, 1), we obtain the
following result.

Corollary 11.6.3. Let (X, G) be a G-metric space endowed with a preorder < and
let F : X" — Xand g : X — X be two mappings such that F has the mixed
(g, X)-monotone property. Let ® = (01,03, ...,0,) be a n-tuple of mappings from
{1,2,...,n} into itself satisfying 0; € Qap ifi € Aand o; € Q) g if i € B. Assume
that the following conditions hold. Y

(i) There exists a constant A € [0, 1) such that

GWFX),F(Y),F(Z) <A max G (gxi, gyi» 82i)
forall X (x1,x2,....,%) ., Y 1,2, ..., ), Z (21,22, ..., 2n) € X" for which

o i gviXigz forallie{1,2,...,n}.

(i) At least, one of the following conditions holds.

(ii.1) F(X") C g(X) and there exist xy,x3.,....x3 € X such that gxi <;

FOSO X x5 foralli € (1,2, }
(ii.2) There exists a Plcard (F, g, ®)-sequence {( X X ) hmen © X"
such that gxi) <, F(xo’(l) G’(z), ces X, g‘("))for allie{l,2,...,n}.

(iii) At least, one of the following conditions holds.

(iii.1) (X,G) (or (g(X),G) or (F(X"),G)) is complete and F and g are
continuous and (0O, X, ®)-compatible.

(iii.2) (X,G) (or (g(X),G) or (F(X"),G)) is complete and F and g are
continuous and commuting.

(iii.3) (g(X), G) is complete and (X, G, X) is regular.

Then F and g have, at least, a ®-coincidence point.

A version of Theorem 11.6.1 using g as the identity mapping is the following
one.
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Corollary 11.6.4. Let (X,G) be a complete G-metric space endowed with a
preorder < and let F : X" — X be a mapping having the mixed <-monotone
property. Let ® = (01,02, ...,0,) be a n-tuple of mappings from {1,2, ..., n} into
itself satisfying o; € Qap ifi € Aand o; € Q) g if i € B. Assume that the following
conditions hold. Y

(i) There exist two functions ¥, ¢ € Fyy such that

Y (GEX).FY).F@) < W—0) (ma;n G(x,-,yi,z»)

1<i

forall X (x1,x2,...,%) ., Y 1,2, ..., ), Z (21,22, . . ., 20) € X" for which
X <iyi iz foralie{l,2,...,n}.

(ii) There existx), x%, ..., x! € X such that gxi, <; F xai(l),xai(z), .. ,xai(") or all
0> %0 0 0 0 0 0
ie{l,2,...,n}.
(iii) At least, one of the following conditions holds.

(iii.1) F is continuous, or
(iii.2) (X, G, x) is regular.

Then F has, at least, a ®-fixed point.

11.6.3 Uniqueness

Finally, we describe how we can ensure the uniqueness of the ®-coincidence point.

Theorem 11.6.2. Under the hypotheses of Theorem 11.6.1, also assume that
F(X") C g(X). Let (x1,x2, . ..,%,) and (¥1, Y2, . - . , V) be two ®-coincidence points
of F and g for which there exists (w1, w3, . .., 0,) € X" such that:

gx; i gw; and gy; X;gw; forallie {1,2,...,n}.

Then gx; = gy; foralli € {1,2,...,n}.

Proof. Let (x1,x2,...,x,)and (y1,y2, ..., y,) be two ®-coincidence points of F and

g for which there exists (o}, @3, ..., ) € X" such that

gx; <i gw) and gy, <; gwly forallie {1,2,...,n}. (11.65)
From Lemma 11.6.1, there exists a sequence {(w.,, ®2,...,®")}men on X" such
that

i i(1 i(2 i
8w, 1| = F(a)f;( ),w;( ). a)"("))

’ m
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forallm e Nandalli € {1,2,...,n}.
We claim that, for allm € Nand all i € {1, 2,...,n}, we have that
gxi i gw,, and gy, Xi g, (11.66)

We only show the first part (using (x1, x2, . . . , X)) because the second one is similar.
Form = 0, (11.66) holds by (11.65). Assume, by hypothesis of induction, that there
exist m € N such that gx; <; gwﬁn foralli € {1,2,...,n}. This condition means that

i< gl ifj e A,
{gx’ ECm> 11 (11.67)

gx; = gwl,, if j € B.

To complete the induction process, we have to prove that gx; <; gw' 4 for all
ie{l,2,...,n} thatis,

x; < gw ., ifj €A,
ggj 8 m+1 J (1168)

8x; = gwﬁn_‘_l, ifj € B.

We distinguishing two cases.

Case 1: i € A. In this case, 0;(A) C A and 0;(B) € B. As F has the mixed
g-monotone property, we apply that F is g-monotone (g, <)-non-decreasing in
A-arguments with the first inequalities of (11.57) and we deduce that, for all
a,a,...,a, € X:

ifj,s €A, gy <gw, =

m

F(ai,...,a1,%, 0541, ....ay) S F(a1,... 0,21, 0}, a1, ..., a,),

and that F is g-monotone (g, <)-non-increasing in B-arguments with the second
inequalities of (11.67):

ifj,seB, gy =gw, =

F(ai,...,a51,%, 0541, ...,0,) = F(al,...,as_l,w’,'n,aﬁ],...,an).
In any case, it follows that, if j, s € {1,2,...,n} satisfy j,s € Aorj,s € B, then:
Fai,... a5 1,%,d541,...,0,) < F(al,...,as_l,a){;,,asﬂ,...,an)
forall aj,ay,...,a, € X. As0; € Qap:

gxi = F(xa,-(l)axai(z),xai(_%)a e 5x0'i(l’l)) (1’01(1) e A or 1’01(1) e B)
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< F(wgli(l)vxai@)v-xai(:;)v e 7-x6i(l‘t)) (27 01(2) € A or 25 01(2) € B)
< F(@l, 0% xp3)s - X)) (3,01(3) € Aor 3,0;(3) € B)
<. X FIY, 00, 0% 0fi) = gof .
Hence gx; < g}, when i is in A, so (11.68) holds if i € A.
Case 2: i € B. In this case, we apply that F is (g, <)-monotone non-decreasing
in A-arguments with the second inequalities of (11.67) and that F is (g, X)-
monotone non-increasing in B-arguments with the first inequalities of (11.67),

and we deduce, for all a,ay,...,a, € X, that, if j,s € {1,2,...,n} satisfy
jeA seBorjeB,seA, then

F(a15"'9as—]7~x;]'7as+l»"'»an) > F(al7"'7as—15wlln’as+]7‘~~7al’l)'

Since 0; € Q), g, therefore:

8%i = F(Xo;(1)s X0,(2)» X0 (3) - - - + Xoy(m))
(1e€A0(1)eBorleB,o;i(1) €A)
= F(a)r(,?(l)’xai(Z)’ .in(3), ... »xU,'(VL))
2e€A 0:2)eBor2eB,o;i(2) €A)
> oV, of® x50y, - Xoym)
(3€A,0:3) eBor3eB,si(3) €A
... = F(w,‘f;'(l),a);’{(z),w,‘;’m, . ,a)r‘:lf(”)) = ga),"n+1.

Hence gx; > ga),’n 41 When i € B, that is, we also have that gx; <; gl 41 When
i € B. This completes the induction so (11.66) holds.

Next, let, foralli € {1,2,...,n} andallm € N,
{d, =G (gxi,gx,-,gw,’;lﬂ)}meN and

{b% = max G (gxo(). 801> 80 V)
I<j=n meN

By the contractivity condition (11.59), for all m € Nand alli € {1,2,...,n}, we
have, taking into account that gx; <; gx; <; gw}%,
14 (ain-i-l =v (G (gxi’gxi’gw:n+l))

)
=y (G (F (Xo3(1)> Xo1(2) Xoy(3) - - -+ Xoy(n)) »
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F (Xo,(1)+ Xoy(2)s Xo,(3) - - - + Xoy(n)) JF(0Z D i@ w,ii("))))

W -9 (maXn G (8% 8%oi()» 860%"@)) = (Y — o) (b).

I<j<

Notice that

max b), = max (max G (gx(,,.(,-), 8X5,()» ga)ZiU)))

1<i<n I<i<n \ 1<j<n
< G . . iy — i
=< max 8Xi, 8Xi, §w,,) = max a,,

1<i<n 1<i<n

and, as ¥ is non-decreasing,

W (max bin) <y (max ain) )
1<i<n 1<i<n
Applying Lemma 11.2.4, we deduce that

lim G (gx;. gxi. gw),4,) = lim ), =0 forallie{1,2,....n}.
m—>0o0

m—>00

Hence {gw! }en — gx; foralli € {1,2,...,n}. Using the same argument, we also
have that {gw] }uen — gyi foralli € {1,2,...,n}. By the uniqueness of the limit,
we conclude that gx; = gy; foralli € {1,2,...,n}. O

We will say that g is injective on the set of all ®-coincidence points of F and g if
for all ®-coincidence points (x1, x2, ..., x,) and (y1,y2,...,y,) of F and g such that
gx; = gy;foralli € {1,2,...,n},wecandeduce thatx; = y; foralli € {1,2,...,n}.

Corollary 11.6.5. Under the hypotheses of Theorem 11.6.1, also assume that
F (X™) C g (X) and the following conditions:

(U)  For all ®-coincidence points (x,x2,...,Xx,) and (y1,¥2,...,yn) of F and g,
there exists (w1, wa, ..., w,) € X" such that

gx; i gw; and gy, X;gw; forallie{l,2,...,n}.

(U") g is injective on the set of all ®-coincidence points of F and g.
Then F and g have a unique ®-coincidence point.

Proof. Let (x1,x3,...,x,) and (y1,y2,...,¥,) be two arbitrary ®-coincidence
points of F and g. From Theorem 11.6.2, gx; = gy; for all i € {1,2,...,n}, and
as g is injective on the set of all ®-coincidence points of F' and g, we conclude that
x; =y forallie{l,2,...,n}. |
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11.7 Reducing Multidimensional Results to Unidimensional
Ones

Many authors have proved that coupled, tripled and quadrupled fixed point results
can be deduced from their corresponding unidimensional version. This section
describes how some of the previous multidimensional theorems can be easily
concluded from simple unidimensional results.

11.7.1 The Low-Dimensional Reducing Technique

Throughout this section, given n € {2, 3,4} and two mappings F : X" — X and
g : X — X, denote by T}, G" : X" — X" the mappings

n=2, T%(x,y) = (F(x,y), F(y,x)),

n=3, T3(x.y.2) = (F(x,y.2), F(y.x,y). F(z.y.x)), (11.69)
n=4,THx,y,z,1) = (F(x,y,2,1), F(y,2,1,%), F(z, 1, x,y),
F(t,x,y,2)).

n =2, Hy(x,y) = (gx.8y).
n =3, H)(x.y.2) = (g8, 82). (11.70)
n=4, Hy(x,y,z,1) = (gx, gy, g2, 81)-

The following lemma guarantees that multidimensional notions of com-
mon/fixed/coincidence points can be interpreted in terms of 7% and GV.

Lemma 11.7.1. Given n € {2,3,4}, F : X" — X and g : X — X, a point
(x1,%2,...,x,) € X" is:

1. a coupled/tripled/quadrupled fixed point of F if, and only if, it is a fixed point
Of Tn,.

2. a coupled/tripled/quadrupled coincidence point of F and g if, and only if, it is a
coincidence point of Ty and Hy;

3. a coupled/tripled/quadrupled common fixed point of F and g if, and only if, it is
a common fixed point of T and Hy,.

Proof. For example, if n = 2, a point (x,y) € X is a coupled coincidence point of
F and g if, and only if,

F(x,y) = gx, 3
F(y, _X) =gy < (F(,X', y)’ F(y’ x)) - (g'xv g)’)
& Ti(x.y) = Hy(x.y),

which means that (x,y) is a coincidence point of T7 and Hg. The other cases are
similar. O
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Proposition 11.7.1. The mappings F and g commute if, and only if, T;. and H,
commute.

Proof. Assume n = 2. If F and g commute, then, for all (x, y) € X2,

H,T; (x,y) = Hy(F(x.y), F(y.x)) = (gF(x,y). gF (y,x))

= (F(gx. gy). F(gy. gx)) = Ti(gx.gy) = H; T} (x.) .

SO T% and Hg also commute. Conversely, if T% and H; commute, then

(gF(x.y).gF (.x)) = Hy(F(x.y). F(y.x)) = H,;T} (x,y) =

= H;T; (x.y) = Ti(gx. gy) = (F(gx. gy). F(gy. gx)).

In particular, gF(x,y) = F(gx, gy) for all x,y € X, so F and g commute. O
The continuity of F and g implies the continuity of 77 and Hj.

Lemma 11.7.2. If (X, G) is a G-metric space and let F : X" — Xand g : X — X
be two mappings.

1. The mapping g is continuous if, and only if, the mapping Hy : X" — X" is also
continuous (considering in X" the G*-metric G, or G, as in Lemma 10.3.1).

2. The mapping F is continuous if, and only if, the mapping Ty. : X" — X" is also
continuous (considering in X" the G*-metric G, or G, as in Lemma 10.3.1).

Proof. (1) Assume that g is continuous and let {(x}.x2,....%%)}nen € X" and
(a'.d?,...,a") € X" be such that

G)l
{(x,ln,xfn, .. x’,:l)} — (al,az, ... ,a”) .
From item 2 of Lemma 10.3.1, {x } N a foralli € {1,2,...,n}. Since g
is continuous, then {gx/ } N ga foralli € {1,2,...,n}. Again by item 2 of

Lemma 10.3.1, we deduce that

{H, (e X2 )} = {(gxh. 830 - -, 8X0) }

&> (gal,gaz,...,ga") =H; (al,az,...,a").

Then, H;‘ is G,-continuous.
Conversely, assume that Hj is G,-continuous and let {Xn}men € Xanda € X
G er
be such that {x,,} —> a. Therefore, {(x,,, X, ..., xn)} — (a,a,...,a). As H;}
is G,-continuous, then

{(8%m, Xy - 8%m) Y = {Hy (Xms Xy« + X)) }
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Gﬂ
— Hy (a,a,...,a) = (ga,ga,...,8a).

G . .
As aresult, {x,,} — a, so g is continuous.
(2) Itis similar to the proof of the previous item.
O

Any binary relation < on X can be induced on X" generating the binary relation
C given by:

n=2,(xy CEWv) & [x<wuandy>v],
n=3, (x,y,2) CE uv,w) & [x=u, y=<vandz>w],
n=4,(xyz1)C Wwv,ws) & [x=u y=<v, z>wandt<s].
(11.71)
Notice that T directly depends on <. Also notice that C coincides with the binary
relation defined in (11.79) when A is the subset of all odd numbers in {1,2,...,n}
and B contains its even numbers.

Lemma 11.7.3. The binary relation < on X is reflexive (respectively, transitive, a
preorder, a partial order) if, and only if, the binary relation T on X" is reflexive
(respectively, transitive, a preorder, a partial order).

Furthermore, it would be equivalent to consider the binary relation =’ given by
N E (u,v) © [x>uandy < v]. (11.72)

We also have the following properties.

Lemma 11.7.4. Let < be a binary relation on X and, given n € {2,3,4}, let F :
X" — X and g : X — X be two mappings.

1. If F has the mixed (g, <)-monotone property and =< is transitive, then T} is a
(Hg, E)-non-decreasing mapping.

2. IfTpisa (H;,’ , E)—non—decreasing mapping and < is reflexive, then F has the
mixed (g, <)-monotone property.

Proof. We show the proof assuming that n = 2. Let (x,y) , (4, v) € X? be such that
H; (x,y) T H; (,v). In particular, gx < gu and gy > gv. Therefore, as F has the
mixed (g, <)-monotone property,
F(x,y) < F(u,y) < F(u,v) and F(y,x) > F(v,x) > F(v,u).
As < is transitive, F(x,y) < F(u,v) and F(y, x) > F(v, u). Hence,
T (x,y) = (F(x,), F(y, %)) € (F(u,v), F(v,u)) = Tf (1, v).

This proves that 77 is a (H;, E)—non—decreasing mapping.
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Conversely, assume that 7% is a (H;, E)-non-decreasing mapping. Let x,y € X
be such that gx < gy. Now let ¢ € X arbitrary. As < is reflexive, then ga > ga.
Therefore, (gx,ga) C (gy, ga). In other words, Hﬁ (x,a) C H; (v,a). As T# is a
(H;, E)—non—decreasing mapping, then

(F(x,a) . F(a.x)) = Ty (x,a) T T7 (v,a) = (F (v.a) . F (a,y)) .

Hence, F (x,a) < F (y,a) (and F is (g, <)-non-decreasing in its first argument) and
F (a,x) > F (a,y) (so F is (g, X)-non-increasing in its second argument). Therefore,
F has the mixed (g, <)-monotone property. O

Corollary 11.7.1. Let < be a preorder on X and, given n € {2,3,4}, let F : X" —
X and g : X — X be two mappings. Then F has the mixed (g, <)-monotone property
if, and only if, Ty is a (H;’, E)-non—decreasing mapping.

If we had considered the binary relation £’ on X" given in (11.72), then T} would
have been a (H;’, E)-non-increasing mapping.

Lemma 11.7.5. Given a reflexive binary relation < on a G-metric space (X, G) and
n € {2,3,4}, let C be the binary relation on X" given in (11.71) and let G, and G,
the G*-metrics on X" defined in Lemma 10.3.1. Then the following conditions are
equivalent (the same is valid for G/,).

(i) (X,G, ) is regular.

(i) (X", G,, ) is regular.
(iii) (X", G,, C) is non-decreasing-regular.
(iv) (X", G,, ) is non-increasing-regular.

Notice that the condition “(X, G, <) is non-decreasing-regular” is not strong
enough to guarantee that (X", G,, C) is regular nor (X", G,, C) is non-decreasing-
regular.

Proof. We show the proof in the coupled case (the other cases are similar).
(i)=(iii) Assume that (X, G, <) is regular and let {(X,;, ym)},en S X> and

G
(x.y) € X be such that (. ¥m) E Xut1.ym+1) forall m € N and { (. yn)} —>
(x,y). On the one hand, x,, < x,,+1 and y,, > V41 for all m € N. By item 2

of Lemma 10.3.1, we have that {x,,} N x and {y,,} S, y. As (X, G, <) is both
non-decreasing and non-increasing-regular, then x,, < x and y,, > y for allm € N.
In particular, (x,,, y,)  (x,y) for all m € N. This proves that (Xz, Ga, E) is non-
decreasing-regular.

(ii1)=>(i) Assume that (Xz, Go, E) is non-decreasing-regular and let {x,,},,exy <

G
X and x € X be such that x,, < x,,4+1 for all m € N and {x,,} — x. Given an
arbitrary point a € X, let y,, = a for all m € N. As < is reflexive, then y,, > ;41
G
for all m € N. Moreover, {y,,} —> a. In particular, (x,,, Vix) © (Xu+1, Ym+1) for

G
all m € N. From item 2 of Lemma 10.3.1, {(xyn, ym)} —> (x,y). As (X%, G, E) is
non-decreasing-regular, then (x,,, y») C (x,a) for all m € N. In particular, x,, < x
for all m € N, which proves that (X, G, <) is regular.
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(1)< (iv) It is exactly the same proof of the previous two cases.
(1)< (ii) It follows from the equivalence (iii)<> (i) <> (iv). O

11.7.2 Reducing Coupled Fixed Point Theorems

In the following result, it is important to notice that (Xz, G’z) is a G*-metric space,
but it is not necessarily a G-metric space.

Theorem 11.7.1. Theorems 11.3.1, 11.3.2 and 11.3.3 immediately follow from
Corollary 10.4.5.

Proof. Assume that (X, G) is a complete G-metric space endowed with a preorder <
and let F : X?> — X be a mapping having the mixed <-monotone property. Suppose
that there exists a constant A € [0, 1) such that

G(F(x,y),F (u,v),F(z,w)) < % (G(x,u,z) + G(y,v,w)) (11.73)

for all (x,y), (u,v), (z, w) € X? satisfyingx < u < zand y > v > w. Also assume
that either F is continuous or (X, G, <) is regular, and that there exists xo, yg € X
such that xo < F(xg, o) and yy > F(yo, x0).

As G is a G-metric on X, then G’Z, defined by

G ((x1, 1)+ (x2,¥2) (33, ¥3)) = G (x1,x2,x3) + G (1, ¥2.3)

for all (x1,y1),(x2,¥2),(x3,y3) € X%, is a G*-metric on X2 (see item 1 of
Corollary 10.3.1). Consider on X? the binary relation = defined in (11.71). Then,
we have the following properties.

* Byitem 4 of Lemma 10.3.1, (XZ, G’z) is complete.

* ByLemma 11.7.3, C is a preorder on X.

* By Corollary 11.7.1, T% isa (H;, E)-non-decreasing mapping.

¢ As there exists xp,y9 € X such that xg < F(xo,y0) and yg > F(yo,Xo), then
(x0.y0) E T# (x0, 0)-

* By item 2 of Lemma 11.7.2, if F is G-continuous, then TI% : X2 — X2 is also
G’,-continuous.

e ByLemma 11.7.5, if (X, G, <) is regular, then (Xz, G’z, E) is also regular.

Let us show that the contractivity condition (11.73) implies that, for all
(x.y) . (u,v) € X* with (x,y) E (,v),

Gy(T7 (%, y) . T7 (u,v) . Tf (1, 0)) < AG5((x,) , (u, v) , (u, ).

To prove it, we notice that by (11.73), x < u < wand y > v > v implies that
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GF (5.3) F () F w.0) = 5 (G 4 Gv.0) )

and by v <X v <X yand u > u > x we deduce

A
G(F(v,u),F(v,u),F(yx)) < 3 (G(,v,y) +G(u,u,x)).
Joining both inequalities, we conclude that

Go(T7 (x,3) , Ty (u,v) . Tf (u,v)
=GF(xy),Fwv),Fuv)+GF@,u,F@u,Fyx)
<A(G(xuu) +G(@,v,v))
= 2G5 ((x.y). (. v) . (u, v)).

This property is the contractivity condition in Corollary 10.4.5.

As a consequence, all hypotheses of Corollary 10.4.5, applied to T2 on
(X2, G5, E) hold. Then T? has, at least, a fixed point, which is a coupled fixed point
of F by item 1 of Lemma 11.7.1. Furthermore, the condition (U) in Theorem 11.3.3
is equivalent to saying that for all fixed point (x,y), (+',)") € Fix(T%) (which are
coupled fixed points of F), there exists (z, w) € X2 such that (x,y) T (z,w) and
(*',¥) C (z,w), which is precisely the uniqueness condition in Corollary 10.4.5.

a

11.7.3 Weakness of Some Coupled Fixed Point Results

After the appearance of the reducing technique we have described in Sect. 11.7.2,
many coupled fixed point results were reduced to the unidimensional case. In fact,
such a procedure showed the weakness of some given statements. For instance, the
following result was obtained by Shatanawi in [190] as a corollary of a previous
coincidence point result.

Theorem 11.7.2. Let (X, G) be a complete G-metric space. Let F : X X X — X be
a mapping such that

G(F(x,y), F(u,v), F(u,v)) < k(G(x,u,u) + G(y,v,v)) (11.74)
for all x,y,u,v € X. If k € [0,1/2), then there is a unique x in X such that
F(x,x) =x.

In [13], Agarwal and Karapinar showed that the previous result can be deduced
from Theorem 4.2.1. Furthermore, the following example illustrates a case in which
Theorem 4.2.1 can be applied but Theorem 11.7.2 cannot be applied.
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Example 11.7.1. Let X = R be endowed with the G-metric G(x,y,z) = |[x—y]| +
|x—z|+|y—z|forallx,y,z € X, and let F : X x X — X be the mapping given by
F(x,y) = B3x—y)/5forall x,y € X. Then, for all x, y, u, v, w, z € X, it follows that

I—y 3u—v 3w—
anxwfmmxﬂma)=e(x5y,“5? " ﬁ

| 3x=y 3u-—v
| 5 5

3x—y 3w—z
5 5

3u—v  3w-—z
5 5

~|3e-n-30-0

+3e-w-s0-2

3
5

Hiu-m-zo-2

IA

S x—ult Ly v+ 2w sy -z
—|x—ul+=-|y—-v|+=|x—w|+=-]|y—
5 517 5 5177¢2

+3| |+1| |
— [— _v_
s lu—wi+ 2 z

3
3 ([x—ul+|x=w|+|u—w])
1
ts (ly=v|+ly—zl+|v—-2z])
3
Sg (G, u,w) +G(y,v,2)).

It is easy to see that there is no k € [0, 1/2) verifying condition (11.74) because if
x=1landy =u = v =0, then

aanF@mfmﬂ»zayaamzzgzg

k(G(1,0,0) + G(0,0,0)) = k(2+0) =2k < 1.
However note that the mapping 77 : X> — X? satisfies
G, (Tr(x, y), Ti(u, v), Tp(w, 2))

= Gy (F(x,y). F(y.x)), (F(u,v), F(v,u)) , (F(w,2), F(z. w)))
=G (F(x.y), F(u,v), F(w.2)) + G (F(y.x), F(v. 1), F(z, w))
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—G 3x—y,3u—v,3w—z LG 3y—x’3v—u,3z—w
5 5 5 5 5 5
3
Sg(lx—ulJrlx—WlJrlu—Wl)
1
+§(|y—v|+|y—1|+|v—ZI)
3
+§(|y—v|+|y—ZI+|v—ZI)
1
+§(|X—MI+IX—W|+|M—W|)
4
=§(|x—ul+|x—W|+|M—W|+Iy—v|+|y—Z|+|v—Z|)
4
=§(G(x,u,w)+G(y,v,z))

4
g G/z ((.X, y) ) (I/t, 'l)) ’ (W’ Z)) °

As the other hypothesis can be easily checked, Theorem 4.2.1 guarantees that F has
a unique fixed point, which is a coupled fixed point of F. In fact, the unique coupled
fixed point of F is (0, 0). However, here Theorem 11.7.2 is not applicable.

11.7.4 Choudhury and Maity’s Coupled Fixed Point Results
in G-Metric Spaces

In Sect.11.3.2, we showed why the technique used in the proof of main result
in [58] was not suitable because the contractivity condition could not be applied
to incomparable points. As a consequence, we gave a correct version of such a
result (see Theorem 11.3.4). In this subsection we prove that this coupled result is a
consequence of the following theorem.

Theorem 11.7.3. Let (X, G) be a complete G-metric space endowed with a partial
order X and let T : X — X be a continuous, <-non-decreasing self-mapping.
Assume that there exists A € [0, 1) such that

G(Tx, Tx, Ty) < AG(x,x,y)

forall x,y € X withx X y and x # y. If there exists xo € X such that xy < Txy, then
T has, at least, a fixed point.

Proof. Let {x,} be the Picard sequence of T based on xy. As xo <X Txo and T is
<-non-decreasing, then x,, < x,,+ for all n € N. As < is a partial order, x,, < x,, for
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all n,m € N with n < m. If there exist ng, mp € N with ny < my such that x,, = x,,,
then X,y < Xpo41 < oo <X Xy = Xigg» SO Xpyy = Xpg4+1 = 1%y, and x,, is a fixed point
of T. In the contrary case, assume that x,, < x,, with x,, # x,, for all n,m € N with
n < m. Then, the same argument in the proof of Theorem 5.2.1 concludes that T
has a fixed point. O

As a consequence, we have the following result.
Theorem 11.7.4. Theorem 11.3.4 immediately follows from Theorem 11.7.3.

Proof. The same argument in the proof of Theorem 11.7.1 can be applied to 77 in
(X2, Gy, C). We only describe the contractivity condition. Let (x,y) , (1, v) € X* be
such that (x,y) C («,v) and (x,y) # (#,v). Then x < u and y > v, but x # u or
y # v. By the contractivity condition (11.16),

GUF(x.). P(x.). Fu.) = 5 [G(x.x.1) + GOy, v)]

Since (11.16) can also be applied when u > x and v < y (being u # x or v # y),
then

A
G(F(y’ 'x)’F(yvx)vF(vv M)) S 5 [G(y,y, U) + G(}C,x, M)]
Hence,

Gy (T (x.3) . Ty (x.y) . T§ (u, v))
=G(Fxy),F(xy), Fv)+GFy.x),F@.x),F@,y)
= A (Gx.x.u) + G(y.y,v))
= AGy((x.y). (x.y) . (u,v)).

Theorem 11.7.3 implies that T% has a fixed point, which is a coupled fixed point of F.
O

11.7.5 Reducing Tripled Fixed Point Theorems

The main aim of this subsection is to show how very recent tripled fixed (and
coincidence) point results can be reduced to their corresponding unidimensional
version. For example, in [31, Theorem 2.1], Aydi, Karapinar and Shatanawi' proved
the following result.

'In their original paper, the authors omitted, by mistake, the completeness of the G-metric space.
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Theorem 11.7.5. Let (X, <X) be a partially ordered set and let (X, G) be a complete
G-metric space. Let F : X> — X be a continuous mapping having the mixed
<-monotone property on X. Suppose that there exists ¢ € Feom Such that for
X, v, z,a,b,c,u,v,we X, withx>a>uy=<b=<vandz=c*>w, onehas
G (F (x,y,2),F(a,b,c),F (u,v,w))
< ¢ (max{G (x,a,u),G(y,b,v),G(z,c,w)}). (11.75)
If there exist xy,yo,20 € X such that xo < F(xo,Y0,20), Yo = F(yo,X0,Y0) and

20 X F(20, Y0, X0), then F has a tripled fixed point in X, that is, there exist x,y,z € X
such that

Fx,y,2) =x, F,x,y)=y and F(z,y,x) =z

This theorem is a particular version of Theorem 11.4.2, and we have already
showed a direct proof. However, now we explain that this result is a direct
consequence of the following result (which is a simple version of Theorem 5.3.6
in the context of partially ordered G-metric spaces).

Theorem 11.7.6. Let (X,G) be a complete G*-metric space endowed with a
preorder < and let T : X — X be a =<-non-decreasing self-mapping. Suppose that
there exists ¢ € Feom Such that, for all x,y,z € X withx >y > z,

G(Tx, Ty, Tz) < ¢(G(x,y,2)). (11.76)

Also assume that, at least, one of the following conditions holds.

e T is G-continuous, or
* (X,G,=x) is regular.

If there exists xo € X such that xo < Txg, then T has, at least, a fixed point.

The proof of the previous result is similar to the proof of Theorem 5.3.6 (when g
is the identity mapping on X), but it is useful to deduce the following consequence.

Theorem 11.7.7. Theorem 11.7.5 immediately follows from Theorem 11.7.6.
Proof. As G is a G-metric on X, then G3, defined by

G ((x1,y1.21) » (X2, 32, 22) , (3,3, 23))
=max{G (x1,x2,x3),G(y1,¥2,¥3) . G (21,22, 23) }

for all (x;,y1.21) . (x2,¥2,22) . (x3,y3,23) € X>, is a G*-metric on X° (see item 1
of Corollary 10.3.1). Consider on X3 the binary relation C defined in (11.71) and
the mappings T3,H§ : X3 — X3 defined in (11.69)—(11.70). Then, we have the
following properties.



11.7 Reducing Mult. Results to Unidimens. Ones 335

* Byitem 4 of Lemma 10.3.1, (X3, G3) is complete.

» ByLemma 11.7.3, C is a partial order on X>.

* By Corollary 11.7.1, T} is a (H;, E)-non-decreasing mapping, where g is the
identity mapping on X.

¢ As there exists xg, yo, 20 € X such that xo < F(x9, 0, 20), Yo = F(yo, X0, Yo) and

20 < F(20, Y0, %0), then (xo, 0, 20) & T3 (X0, Y0, 20)-
By item 2 of Lemma 11.7.2, if F is G-continuous, then T3 : X> — X? is also
G5-continuous.

Let us show that the contractivity condition (11.75) implies that, for all
(x,,2), (@, b,¢), (u,v,w) € X* with (x,y,2) 2 (a,b,c) I (u,v,w),

G3(T; (x,y,2), T; (a,b,c), T;i (u,v,w))

< ¢ (G3((}C,y, Z) s (a,b,c) ) (M’ U,W))) .

Indeed, since (x,y,z) 3 (a,b,¢) 3 (u,v,w),thenx > a > u,y < b < v and
Z > ¢ > w. On the one hand, (11.75) implies that

G (F (x,y,z),F(a,b,c),F (u,v,w))
< ¢ (max{G (x,a,u),G (y,b,v),G(z,c,w)}).
On the other hand, since v = b >y and u < a < x, we deduce

G(F(v,u,v),F(b,a,b),F(y,x,y))
< ¢ (max{G (v,b,y),G u,a,x),G(v,b,y)})
= ¢ (max {G (x,a,u),G (y,b,v)})
< ¢ (max{G (x,a,u),G (y,b,v),G (z,c,w)}) .

Finally, since z = ¢ = w,y < b < v and x > a = u, it follows that

G(F(z,y,x),F(c,b,a),F (w,v,u))
< ¢ (max{G(z,c,w),G(y,b,v),G (x,a,u)})
= ¢ (max{G (x,a,u),G (y,b,v),G(z,c,w)}).

Joining the last three inequalities, we conclude that
G; (T13F (x,y,2), T; (a,b,c), Tg (u,v,w))

= Gs ((F(x,y, 2), F(y,x,y), F(z,y,x))

(F(a,b,c),F(b,a,b),F(c,b,a)),
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(F(u, v, w), F(v, u, v), F(w, v, u)))

= max {G (F(x,y,2), F(a,b,c), F(u,v,w))
G(F(y,x,y),F(b,a,b),F(v,u,v)),

G(F(z,y,x), F(c,b,a), F(w, v, u))}

< ¢ (max{G (x,a,u),G (y,b,v),G (z.c,w)}).
= ¢ (G3((x,y,2), (a,b,0) , (u,v,w))) .

This property is the contractivity condition in Theorem 11.7.6. O

Also in [31, Theorems 2.1 and 2.4], the authors replaced the continuity of F by
the regularity of the partially ordered G-metric space, obtaining the following result
(see [31, Theorems 2.1 and 2.4], Theorem 2.4).

Theorem 11.7.8. Let (X, X) be a partially ordered set and let (X, G) be a complete
G-metric space such that (X, G, <) is regular. Let F : X* — X be a mapping having
the mixed <-monotone property on X. Suppose that there exists ¢ € Feom such that
forx,y,z,a,b,c,u,v,w e X, withx >a>uy=<b=v,andz > c > w, one has

G (F (x,y,z),F(a,b,c),F (u,v,w))
< ¢ (max{G(x,a,u),Gy,b,v),G(z,c,w)}).

If there exist xo,y0,20 € X such that xo < F(x0,Y0,20), Yo = F(o,Xo,Y0) and
20 <X F(20, Y0, X0), then F has a tripled fixed point in X, that is, there exist x,y,z € X
such that

Fl,y,z)=x, F,x,y)=y and F(z,y,x) =z

Theorem 11.7.9. Theorem 11.7.5 immediately follows from Theorem 11.7.6.

Proof. We follow the proof in Theorem 11.7.7, replacing the continuity of F
by the fact that if (X,G, <) is regular, then (X3,G3,E) is also regular (see
Lemma 11.7.5). O

In [32, Theorem 15], the authors proved the following result (notice that they
assumed that the function ¢ € F,; was non-decreasing).

Theorem 11.7.10. Let (X,<) be a partially ordered set and let (X,G) be a
complete G-metric space. Let F : X3 — X and g © X — X be two mappings.
Suppose that there exists € Fy and ¢ € F,, such that ¢ is non-decreasing and,
forx,y,z,a,b,c,u,v,w € X with gx = ga > gu, gy < gb < gv and gz = gc = gw,
we have
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¥ (G (F (x,y,2),F (a,b,c) , F (u,v,w)))
< ¥ (max {G (gx, ga, gu) . G (gy. gb, gv) , G (gz. gc. gw)})

— ¢ (max {G (gx, ga, gu) , G (gy, gb, gv) , G (gz, gc, gw)}) .
(11.77)

Assume that F and g satisfy the following conditions:

(1) F(XP) € g(X),

(2) F has the mixed (g, <X)-monotone property on X,
(3) F is G-continuous,

(4) g is continuous and commutes with F.

Suppose that there exist xg,yo,z20 € X such that gxo <X F(xo,Y0,20), &0 =
F(yo, x0, yo) and gzo < F(zo, yo,x0). Then F and g have a tripled coincidence point
in X, i.e., there exist x,y,z € X such that

F(x,y,z2) =x, F,x,y)=y and F(z,y,x) =z.

It seems that Theorem 11.7.10 might follow from Theorem 5.3.1. In fact, we can
repeat the scheme of the proof in Theorem 11.7.7 using Gs, the binary relation =
and the mappings T3, H, : X — X°. However, the contractivity condition (11.77)
does not coincide with the following one:

v (G5(T (x,y.2) . T} (a, b,c) . T} (u, v, w)))
< (Y = $) (G} (v.y.2) . H (a.b,c) . HY (1, v.w))) .
for all (x,y,2),(a,b,c),(u,v,w) € X* with H;(x,y,z) 3 H;(a,b,c) |
H; (u,v,w). The reason is hidden in the second Berinde’s equation: since

H; (x,y,2) 2 H(a,b,c) 2 H; (u,v,w), then gx > ga > gu, gy < gh <X gv
and gz > gc > gw. Then

¥ (G (F (x,y,2),F (a,b,c) , F (u,v,w)))
= ¥ (max{G (gx, ga, gu) , G (gy. gb. gv) . G (2. 8¢, gw)})
— ¢ (max {G (gx, ga, gu) , G (g, gb, gv) . G (gz, gc, gw)})
= (¥ — ) (Gs(H, (x,y,2) . H (a,b,c) , H; (u,v,w)))

and

V(G (F (z.y.x),F(c,b.a) ,F (w,v,u)))
< ¥ (max {G (gz.8c.gw) . G (gy. 8b, gv) , G (gx, ga, gu)})
— ¢ (max {G (gz, gc. gw) . G (gy. gb. gv) . G (gx, ga. gu)})
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= ¥ (max {G (gx, ga, gu) , G (g, gb, gv) , G (gz, 8¢, gw)})
— ¢ (max {G (gx, ga, gu) , G (gy, gb, gv) , G (gz, gc, gw)})
= (I/f - ¢) (G3(H§ (x,y,z) ,H; (a*b’ C) »H; (u7 v, W))) .

However, from gv > gb > gy and gu < ga < gx, we deduce that

V(G (F(v,u,v) ,F(b,a,b).F(y,x,y)))
< ¥ (max{G (gv, gb. gy) . G (gu. ga, gx) . G (v, gb.gy)})
— ¢ (max {G (gv. gb. gy) . G (gu. ga. gx) . G (gv, gb. gy)})
= ¥ (max {G (gx, ga, gu) . G (gy. gb, gv)})
— ¢ (max {G (gx. ga, gu) , G (gy.8b. gv)}) .
The term ¢ (max {G (gx, ga, gu) , G (gy, gb, gv)}) is not strong enough to obtain

(¥ — ¢) (G3(H} (x.y.2) . H} (a.b.c) . H] (u,v,w))). As a consequence, this type of
result would need a direct proof using Lemmas 2.3.7 and 2.3.8.

11.7.6 Reducing Quadrupled Fixed Point Theorems

In this section, we show how to reduce to the unidimensional case a version Theorem
2.1 given in [145] by Mustafa. In the original theorem, given a G-metric space (X, G)
and two mappings F : X* — X and g : X — X, the author studied the contractivity
condition

v (G (F (x,y,2,w),F (u,v,s,1),F (a,b, c,d)))

=

4 (G (gx, gu, ga) + G (gy, gv, gb)

EN

+ G (g2, 85, 8¢) + G (gw, gt, gd))

1
—¢ (Z (G (gx, gu, ga) + G (gy, gv, gb)

+ G (gz, g5, gc) + G (gw, gt, gd))) (11.78)

for all x,y,z,w,u,v,s,t,a,b,c,d € X with gx = gu > ga, gy < gv < gb, gz =
gs = gc and gw < gt < gd. The control functions i and ¢ belong to

Feuvare = { ¥ € Far : ¥ is subadditive}  and
Foarr = {9 :[0,00) = [0,00) : ¢ verifies (Pi3) + (Pis) } .
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respectively. However, functions belonging to F;,,, can take the value zero at
infinitely many points (see Remark 2.3.5), which is a drawback to prove a fixed

point theorem. Hence, in the following result, we shall employ ¢ € F}..

Theorem 11.7.11. Let (X, <X) be a partially ordered set and let (X, G) be a G-
metric space. Let F : X* — X and g : X — X be such that F(X*) € g(X), F has the
mixed (g, <X)-monotone property and g is continuous and commutes with F. Assume
that there exist € Fy and ¢ € F,y, such that  is subadditive and satisfying
inequality (11.78) for all x,y,z,w,u,v,s,t,a,b,c,d € X with gx > gu = ga, gy <
gV < gb, gz = gs = gc and gw <X gt <X gd. Also assume that, at least, one of the
following conditions holds:

(a) (X, G) is complete and F is continuous, or
(b) (g(X), G) is complete and (X, G, X) is regular.

If there exist xo, Yo, 20, wo € X such that

gxo < F(xo,Y0,20,W0), &Yo = F(yo,z0, wo, Xo),

820 <X F(z0,wo,X0,y0) and gwo = F(wo, X0, Y0, 20),

then F and g have, at least, a quadrupled coincidence point.
Theorem 11.7.12. Theorem 11.7.11 immediately follows from Theorem 5.3.3.

Proof. We follow the argument in the proof of Theorem 11.7.1 but using four
variables. As G is a G-metric on X, then G:‘, defined by

G, ((x1,y1,21,w1) , (X2, ¥2, 22, W2) , (x3, y3, 23, W3))

=G (x1,x2.x3) + G(y1,y2.33) + G (21,22, 23) + G (W1, wa, w3)

forall (x1,y1,z1,wi), (X2, 2. 22, w2) , (x3,y3, 23, w3) € X*,is a G*-metric on X* (see
item 1 of Corollary 10.3.1). Consider on X* the binary relation = defined in (11.71).
Then, we have the following properties.

¢ Byitem 4 of Lemma 10.3.1, (X*, G) is complete.

+ ByLemma 11.7.3, C is a preorder on X*.

* By Corollary 11.7.1, T} is a (H,, C)-non-decreasing mapping.

* By Proposition 11.7.1, as F and g commute, then 7 and H;,‘ also commute.

e As there exists xg,Yo,z0,wo € X such that gxo < F(xo,Y0,20, Wo), &0 =
F(y0,20, wo,X0), 820 < F(z0,wo,X0,y0) and gwo > F(wo,Xo,Y0,20), then
H} (x0. Y0, 20-wo) E T} (X0, Y0, 20, Wo)-

By item 2 of Lemma 11.7.2, if F is G-continuous, then T} : X* — X* is also
G/,-continuous.

+ ByLemma 11.7.5, if (X, G, <) is regular, then (X*, G}, C) is also regular.

* As¢ e F), then ¢', defined by ¢'(r) = 4 ¢(t/4) for all 1 € [0, 00), also belongs
to F/f

alt*
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Let us show that the contractivity condition (11.78) implies that, for all
.y.z.w), (u,v,5.1), (a.b,c,d) € X* with (x,y,z.w) I (u,v,5.1) 3 (a.b,c,d),

v (Gy(TE (x,y,z.w) . Tp (u,v,5,0), Tp (a, b, ¢, d)))

< (Y —¢) (G,(H] (x.y.z.w) . Hj (u,v.5.1) . H} (a.b. c.d))).

To prove it, we notice that by (11.78), gx > gu > ga, gy <X gv < gb, gz = gs = gc
and gw < gt < gd imply that

V(G (F (x,y,z,w),F (u,v,s,1) , F (a,b, c,d)))

<-vy (G (gx, gu,ga) + G (gy, gv, gb)

PN

+ G (g2, 85, 8¢) + G (gw, gt, gd))
1
-¢(3 (G (gx. gu, ga) + G (gy, v, gb)
+ G (g2, 85, 8¢) + G (gw, gt, gd)))

(v —¢) (G (gx. gu, ga) + G (gy. gv, gb)

PN

+ G (gz, gs, gc) + G (gw, gt, gd))
and
v (G (F(z,w,x,y),F (s, t,u,v),F (c,d,a,b)))

=

4 (G (gz. 85, 8¢) + G (gw, gt, gd)

Bl

+ G (gx, gu, ga) + G (gy, gv, gb))

1
—¢ (Z (G (gz.gs,8¢) + G (gw, gt, gd)

+ G (gx, gu, ga) + G (g, gv, gb)))

(v —9) (G (gx, gu, ga) + G (gy. gv. gb)

Bl

+ G (gz, gs, gc) + G (gw, gt, gd)) .
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Similarly, using that gb > gv > gy, gc < gs < gz,8d > gt = gwand ga < gu < gx,
it follows that

Y (G(F (b,c,d,a),F (v,s,t,u),F(y,z,w,x)))

=

Y (G (gb, gv, gy) + G (gc, gs, g2)

=

+ G (gd, gt, gw) + G (ga, gu, gX))

1
—¢ (Z (G (gb, gv, gy) + G (gc, gs, 82)

+ G (gd, gt, gw) + G (ga, gu, gx}))

(v —9) (G (gx, gu. ga) + G (gy, v, gb)

FN

+ G (gz, gs,gc) + G (gw, gt, gd))
and

v (G(F(d,a,b,c),F(t,u,v,s),F(w,x,y,2)))

1
<-v (G (gd, gt,gw) + G (ga, gu, gx)

~4
+ G (gb, gv,gy) + G (gc, gs, gz))
1
—¢ 1 (G (gd, gt,gw) + G (ga, gu, gx)

+ G (gb, gv, gy) + G (gc, gs, gz)))

(v —9) (G (gx, gu, ga) + G (gy. gv. gb)

=

+ G (g2, 85, 8¢) + G (gw, gt, gd)) :

As ¥ is non-decreasing and subadditive, combining the last four inequalities, we
deduce that

4 (GQ(T; .y, z.w) . Tp (u,v,5,1) , Tt (a, b, c, d)))

= w(G(F(x,y,z,w),F(u,v,s,t),F(a,b,c,d))
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+G(F(y,z,w,x),F(v,s,t,u),F(b,c,d,a))
+G(F(z,w,x,y),F (s,t,u,v),F(c,d,a,b))

+G(F(w,x,y,2),F(t,u,v,s),F(d,a,b, c)))

<Y (G(F (x,y,z,w),F(u,v,s,t),F(a,b,c,d)))
+ v (G(F (y,z,w,x),F (v,s,t,u) ,F (b, c,d,a)))
+ ¥ (G(F(z,w,x,y),F (s,t,u,v),F(c,d,a,b)))
+ ¥ (G(F(w,x,y,2),F(t,u,v,s),F(d,a,b,c)))

1
=47 (v —¢') (G (gx. gu, ga) + G (gy. gv. gb)

+ G (gz, 85, 8¢) + G (gw, gt, gd))
< (¥ —¢') (Gy(H! (.y.zow) HE (w,v.5.1)  HE (a.b,c.d))).

This property is the contractivity condition in Theorem 5.3.3.

As a consequence, all the hypotheses of Theorem 5.3.3, applied to T} and Hg
on (X*, G}, C) hold. Then T} and H:, have, at least, a coincidence point, which is a
quadrupled coincidence point of F and g by item 3 of Lemma 11.7.1. O

We note that the existence and uniqueness of a common quadrupled coincidence
point of F and g can be derived using the following additional condition (which is
equivalent to that given in Theorem 5.3.2):

(U) for all quadrupled coincidence points (x,y,z, w) and (u, v, s,?) of F and g,
there exists (a, b, ¢, d) € X* such that Hg (a, b, c,d) is C-comparable, at the same
time, to H; (x,y,z,w) and to Hg (u,v,s,1).

11.8 Multidimensional ®-Fixed Point Results in Partially
Preordered G*-Metric Spaces

The technique we have shown in the previous section can be applied in the
multidimensional case in order to obtain new fixed point theorems. This is the main
aim of the present section. To do that, we introduce the following notation. Recall
that {A, B} represents a partition of A,, = {1,2,...,n} and let ® = (01,02, ...,0,)
be a n-tuple of mappings from {1, 2, ..., n} into itself.

To start with, we extend a binary relation < on X to a binary relation = on the
product space X" as follows: for X = (x1,x2,...,%,), Y = (1, ¥2,-..,yn) € X",

XCY <& x =y, forallie A, (11.79)
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where <; was defined in (11.54). Notice that C depends on A and B. We say that
two points X and Y are C-comparable if X T Yor X 3.

Lemma 11.8.1. The binary relation < is reflexive (respectively, transitive, a pre-
order, antisymmetric, a partial order) on X if, and only if, C is reflexive (respectively,
transitive, a preorder, antisymmetric, a partial order) on X".

Proof. (Transitivity) Assume that < is transitive and let

X x2, oo x0), Y 01, y2, 0o oo90) 221,22, - - v 20) € X"

be such that X T Y C Z. Therefore, x; <; v; X; zzforalli € A,. If i € A, then
xi <Xy <Xz, 80X; < z; because < is transitive. Then, x; <; z;. For the other case,
ifi € B, then x; > y; > z;, s0 x; > z; because < is transitive. Then, x; <; z;. In any
case, x; X; z;foralli e A,,so X C Z.

Conversely, assume that C is transitive and let x, y, z € X" be such thatx <y < z.
Define X (x1,x2, ..., %), Y 01, ¥2, .. .. W) . Z (21,22, . . ., Z0) € X" by:

x,ifi € A, |z ifieA,

M= ziftieB VT YT \xifieB.

(11.80)
Therefore, X C Y C Z. As C is transitive, then X C Z. In particular, x < z and < is
transitive.

(Antisymmetry) Assume that < is antisymmetric and let

X, %, %), YO, Y2, ..., y0) € X"

be such that X T Y C X. Therefore, x; <; y; <; x; forall i € A,. If i € A, then
x; < yi X Xx;, 80 x; = y; because < is antisymmetric. Now if i € B, then x; > y; >
X;, SO again x; = y;. In any case, x; = y; foralli € A,. Then X =Y and C is
antisymmetric.

Conversely, assume that C is antisymmetric and let x, z € X be such that x < z <
x. Define X (x1,x2,...,%,),2Z(z1,22,...,2,) € X" asin (11.80). Then X T Y C X.
As C is antisymmetric, then X = Z, so x = z and < is antisymmetric. O

Proposition 11.8.1. [f XE Yando € Qap U Q;"B, then

(Ko (1)s X52)s - - - s Xo(m) E o) Yo@)s - - - Vo)) If0 € Qap,
(Xo(1): X2+ - - -+ Xom) 2 Oo(1):Yo@)s-- -+ Vo) 0 € Qpp.

In particular, (x5(1), X5(2)» - - - » Xo(n)) ahd (Yo(1), Yo(2)» - - - » Yo(n)) are E-comparable.

Proof. Suppose that x; <; y; for all i. Hence x4(;) <o) Yo(i) for all i. Fix 0 € Qap.
If i € A, then 0(i) € A, 50 X5y <o(i) Yo implies that x5(;) < yo(), Which means
that Xo(i) i Yo(i)- If i € B, then U(i) € B, so Xo(i) o) Yo(i) implies that Xo(i) 7 Yo(i)»
which means that x,(;) <; y5(;). In any case, if 0 € Qapg, then x5 <; y5(;) forall i.
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It follows that (Xy (1), X5(2)s - - - » Xo(n) E Vo(1): Yo(@): - - -+ Yon))- Now fix 0 € QZA,B'
If i € A, then o (i) € B, 50 x5() <o(i) Yo implies that x5;) > yo(;), Which means
that Xo(i) i Yo(i)- Ifi € B, theno (i) € A, so Xo(i) Sa(i) Yo(i) implies that Xo() = Yo(i)s
which means that x5y >=; yo()- O

Given a mapping F : X" — X and a n-tupled ® = (01,0, ...,0,), we define
Fg : X" — X" by
FQD(XI,XZ, e ,xn) = (F(x(ﬂ(l)vxal(Z)v e 7x(71(ﬂ))7
F(Xoy(1)s X63(2) s+« +» Xz (m))s -+ + s F (X, (1) X6 (2)» - - - ,xa,,(n)))

andFé:FO]F\p : X" — X will be

Fa(x,x2, ... X,) = F(F(xm(l)vxal(Z)v“-»xm(n))»
F(Xo5(1)s X032) s - - - s Xop(m) s - - -+ F (X, (1) X, 2)5 - - - 7xan(n)))

for all X = (x1,x,...,x,) € X". Notice that Fg depends on n, but we avoid the
notation [, because n is implicitly considered in ® and because we will use the
composition F5, = F¢ o Fo.

Furthermore, given a mapping g : X — X, we define Hy : X" — X", for all
(x1,x2,...,%,) € X", by

Hg (X1, %2, .00, X)) = (X1, 8%2, ..., &%) .

Using this notation, the following lemma is immediate.

Lemma 11.8.2. Ler X be a non-empty set, let Z € X" be a point, let F : X" — X
and g : X — X be two mappings and let & = (01,0,...,0,) be a n-tuple of
mappings from {1,2, ..., n} into itself.

1. Zis a ®-fixed point of F if, and only if, Z is a fixed point of F (that is, FoZ = Z).

2. Zis a O-coincidence point of F and g if, and only if, Z is a coincidence point of
Fo and Hy (that is, FoZ = HgZ).

3. Z € X" is a common O-fixed point of F and g if, and only if, Z is a common fixed
point of Fo and Hy (that is, FoZ = HyZ = Z).

Proof. We only show the last property. We define that Z = (71,22, ...,2,) € X" is a
common ®-fixed point of F and g if

F(X6,1), X612 - - - s Xoy(y) = gxi = x; forallie {1,2,...,n}.

This is equivalent to saying that
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(F(Zal(l)’zal(z)’ o Zo) s FZoy(1): 20y ) - - - 2 Zoa () - - -

F(25,(1), 20,(2)» - -+ » Zo‘n(n))> = (821,822, -, 8Zn)
= (21,22, %) -
Using the previous notation, this is equivalent to saying that FoZ = H;Z = Z, that
is, Z is a common fixed point of Fg and Hg’. O

Next, we prove that the mixed (g, <)-monotone property implies certain type of
non-decreasingness.

Lemma 11.8.3. Let F : X" — X and g : X — X be two mappings, let < be a binary
relation on X and let T the binary relation on X" defined in (11.79) (depending on
the partition {A, B}).

1. If the mapping F has the mixed (g, <X)-monotone property, then Fo is (Hg, E)-
non-decreasing.

2. If the mapping F has the mixed <-monotone property, then F¢ is T-non-
decreasing.

Proof. Assume that F has the mixed (g, <)-monotone property and let
X(x1,x2, ..., %) . Y (1,2, ..., yn) € X" be two points such that H3(X)E H; (Y).
Therefore, gx; <; gy; foralli € A,. This means that

gxi < gyi, ifi €A, (11.81)
gx; = gy;, ifi € B. '

In particular,
8%oi() Soi(j) &Yei() foralli,j € A,. (11.82)
We distinguish four cases, but the conclusion is the same.

e ifi,je A = o)) €A = gxs(j < &oi(h)

= F(ai,....qj—1,Xe;(j)» Qjs1, - -, An)

< F(al,...,aj_l,ym(j),ajH,...,an)
= F(ai,...,a-1,%X0(j), Ajt1s - -, dn)

< F(al,...,aj_l,ygi(,-),ajﬂ,...,an);

eificAandjeB = 0i()) € B = gxo() = &Vui(j)
= F(ai,....q-1,%X0(j), Qjt1s - - an)

< F(alv'"7aj—lsy0i(]')7aj+la"'aan)
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= F(ai,....q-1,%X0(), Qjt1s - - an)
<iF(ai,....q-1,Y0,()> Qjt 15 - - - Qn);
eificBandje A = 0,(j)) € B = g5 = &)
= F(ai,....a-1,X0(j), Qjt1s -+ - 0n)
= F(ar.....qi-1,Yo,() Qjt1s - - - » An)
= F(ai,....qj—1,Xe;(j)» Qjs1, - .-, Gn)
i F(ai, ..., -1, Yo,()» Ajg1s - - - n)s
o ifi,jeB = 0()) €A = gxo(j) < &oi(j)
= F(ai,...,q-1,%X0(j) Ajt1s - - -, dn)
=F(ai,...,aq—1,Y0,(G) Gj4+1, - - -+ Gn)
= F(ai,....q-1,%X0(j), Qjt1s - -, dn)

<iF(ai,....a-1,Y0,G)> Qj15 - - - p).
In any case, we deduce that, for alli,j € A, and all a1, a3, ...,a, € X,
F((ll, <o Aj—1, Xoi(j)» Aj+1,5 ...,a,,) $,‘ F(al, <o Aj—1,5 Yoi () Aj+15 - ..,(ln).

Therefore, for all i € A,

F(Xo,(1)> X632) X:3), - - - » Xoi() i FVoi(1)s X032)» X:3) > - - - » Xoi(m))
<i FOoi(1) Yoi(2)» Xoi3)s - -+ + Xei(n)) i - - -

$i F(yo,’(l)»yci(z)vyai(:;)v LI 7y0i(n))'

As < is transitive, then

F(xo'i(l)’x()'i(z)axai(3)9 e »xo,-(n)) sl' F()’o,-(])7)’o,-(2),ym(3), ... »YU,-(n))

forall i € A,,, which means that
FQD(XI,XZ, e ,xn) = (F(xm(l)»xal(Z)» L 7x(71(ﬂ))7
F(Xoy(1): X022 s + - - 2 X0z ()5 - -+ » F (X, (1) Xy (2) 5 - - - ,xa,,(n)))

E (F(YO'l(l)a Yor(2)s - - - 7)}01(:1)),
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F(yaz(l)vydz(z)’ LR ’yaz(n))v ey F(J’a,,(l)»ymz(Z), LRI 7ydn(n)))

E Fcb()’l,yb LRI 7)’n)'

Hence, Fgp is (H;‘, C)-non-decreasing. |

Lemma11.84. Let F : X" — X and g : X — X be two mappings, let
{Xutmen C X" be a sequence and let ® = (01,03, ..., 0,) be a n-tuple of mappings
from{1,2,...,n} into itself. Then {X,,}men € X" is a Picard (F, g, ®)-sequence if,
and only if, Hy (X+1) = Fo(X,,) for allm € N.

Proof. Suppose that X, = (x},x2,...,x") for all m € N. Then

{Xintmen C X" is a Picard (F, g, D) -sequence

& g =FaIW 0@ x00) VmeN,Vie A,
2 1 2
& (gx,l,1+1,gxm+l,...gx’r£l+]) = (F(le( )’le( )L ’xz(n))’
PO 2@ oy o) o0 ’x;n(m))

Vm e N
& H;’(Xm+1) = Feo(X,,) forallm e N.

a

Lemma 11.8.5. Let (X, G) be a G*-metric space and let G, and G/, be the G*-
metrics defined in Lemma 10.3.1.

1. If g + X — X is G-continuous, then Hy : X" — X" is G,-continuous (and also
G/ -continuous).

2. If F : X" — X is G-continuous, then Fg : X" — X" is G,-continuous (and also
G,-continuous) and F3, = F o Fg : X" — X is G-continuous.

Proof (1) Let Z = (z1,2%,...,7") € X" be a point and let {X,, =
GV’ .
(L x2, X )men € X" be a sequence such that {X,,} —> Z. From item 2

of Lemma 10.3.1, we have that {x/ } s dforalli e A,. As g is G-continuous,

then {gx’ } N g7 for all i € A,. Again by item 2 of Lemma 10.3.1, we deduce
that

Gy
{(gxh. gx0ys ... gxh) ) —> (82 82% ... 87") .

Gy . .
which means that {H;(Xm)} — H;‘(Z). Hence, H, : X" — X" is G,-continuous.
(2)LetZ = (z',%,...,7") € X"beapointand let {X,, = (x},x2, ..., X" ) }men €

X" be a sequence such that {X,,} % Z. From item 2 of Lemma 10.3.1, we have
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that {x/ } N 7 foralli € A,. In particular, {x, (’)} — 7% foralli,j € A,. As F
is G-continuous, then

(F (0 xo@ o)) O (g i@ i)

m

for alli € A,. Again, by item 2 of Lemma 10.3.1, it follows that

ITL

{(F(xgnla),xgnl(z)w XY ) 0@ oy
L FQS D xon@ ,x;”(”)))}
meN
= (F(z‘”(“, 21O L) PR O ),

PO @) ,z"”("))) )

G” . .
In other words, {F¢(X,,)} — F¢(Z). Hence, Fg : X" — X" is G,-continuous. The
second part follows from the fact that the composition F3 = F o F¢ of continuous
mappings is also a continuous mapping. O

The following result is an extension of Lemma 11.7.5 and it can be proved
similarly (using the fact that the partition {A, B} has non-empty sets).

Lemma 11.8.6. Ler (X, G) be a G*-metric space and let G, and G, be the G*-
metrics on X" defined in Lemma 10.3.1. Given a transitive binary relation < on X,
let T be the binary relation on X" defined in (11.79). Then the following properties
are equivalent (the same is valid for G,).

(i) (X,G, <) is regular.

(i) X", G,, ) is regular.
(iii) (X", G,,, ©) is non-decreasing-regular.
(iv) (X", G,, ) is non-increasing-regular.

11.8.1 A First Multidimensional Fixed Point Theorem

In this subsection we apply Theorem 5.3.1 considering T = Fg defined on
(X", G,,C). We notice that, joining with some of the previous results, we obtain
the following consequences.

e If (X,G) is complete, it follows from Corollary 10.3.1 that (X", G,) is also
complete.

e Byitem 2 of Lemma 11.8.3, if F has the mixed <-monotone property, then F¢ is
C-monotone non-decreasing on X”.
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e By item 2 of Lemma 11.8.5, if F' is G-continuous, then Fg : X" — X" is G,-
continuous and F3 = F o Fg : X" — X is G-continuous.

o If (X, G, <) is regular, it follows from Lemma 11.8.6 that (X", G,,C) is also
regular.

o Ifx),x2,...,x € X are such that x}) <, F(xgi(l),xgi(z), .. ,xgi(")) foralli € A,
then Xo = (x(l),xg, ..., x}) € X" verifies Xo C Fo (Xo).

We study how the contractivity condition

¥ (G (FoX, FoY,F3X)) < (¥ — ¢) (G.(X, Y, FeX))
forall X,Y € X" suchthat XC Y

may be equivalently established. Let X = (x[,x3,...,%,) € X" and let z; =
F(Xo;(1)s X0;2)+ - - - » Xo;(m)) € X for all i. Then
FEX = Fo (F(oy(1)s Xo1(2) s -+ - s Xo1(m)s -+ + + FGrp(1)s X2« + + + Xoy()))
=Fo(z1,22,...,24)
= (F(Zol(l)y 201(2)s + - - 5 %0y (11))7 cees F(Zan(l), 26,(2)s - -+ » Zo’n(n)))
= (F (F(an|(l)(1)’ s ’an|(l)(”))’ cees F(x%l(n)U% s "chrl(n)(”))) s
F (F(x%z(l)(l), . ,x%zm(,,)), ey F()C%z(n)(l), e ,)C%n(n)(n))) .
F (F(xaan(l)(l)’ s 7xGan<1)(Vl))’ R F(x%,l(n)(l)’ s ’x%n(n)("))))

= (Fo(o(1): X1 - -+ X1 () - -+ Fo (X, (1)s X ) -+ -+ X)) -
It follows that
G,(X,Y,FgeX) = 112?5%1 G(xi, yi, F(X6;01), X6;2) s - - - » Xoy(n))) and
G,(FoX,FgY, IFéX) = 1H§1iagxn G(F(Xo;(1)s X6;(2) > - - - + Xay(m))

F(Yoy(1) Yoi@)+ - - -+ Yorm)» Fo (boi1)+ X 2) - - -+ Xoy(my))-

Therefore, a possible version of Theorem 5.3.1 (using g as the identity mapping on
X") applied to (X", G,,, C) taking T = Fy is the following.

Theorem 11.8.1. Let (X, G) be a complete G*-metric space and let < be a preorder
onX. Let ® = (01,02, ...,0,) be an-tuple of mappings from {1,2, . .., n} into itself
satisfying o; € Qpap ifi € Aand o; € Q’A,B ifi € B. Let F : X" — X be mapping
verifying the mixed monotone property on X. Assume that there exist ¥, € Fui
such that
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max ¥ (G (F(o,(1), X012 - - - » Xo10)s FOVoi1)s You(2)» - - + s You(n))»

1<i<n

Fé(xm(n,xm(z) s ,xg,.(n))))

=¥ —9) (max G(xi, yi, F(Xo;(1)s X,2)» - - - »xa;(n)))) (11.83)

for which x; <; y, for all i. Suppose either F is continuous or (X, G, X) is regular. If
there exist x}, X2, ..., X3 € X verifying xi <; F(xa’(l) o ,xgi("))for all i, then
F has, at least, one CID ﬁxed point.

11.8.2 A Second Multidimensional Fixed Point Theorem

In this section we introduce a slightly different contractivity condition that cannot be
directly deduced by applying Theorem 5.3.1 to (X, G,, E) taking T = Fg, because
the contractivity condition is weaker.

Theorem 11.8.2. Let (X, G) be a complete G*-metric space and let X be a partial
preorder on X. Let ® = (01,02, .. .,0,) be a n-tuple of mappings from {1,2,...,n}
into itself satisfying o; € Qapifi € Aand o; € Qppifi € B. Let F : X" - X
be mapping verifying the mixed monotone property on X. Assume that there exist
v, @ € Fu such that

V(GF(x1, X2, . X0), FO1L Y2+ Yn)s Fop (X1, X2, + ., X))

=< (W (P) (max G(X,,y,,F(Xgl (1) Xo;(2)s - - - ’xa,'(n)))) (1184)

for which (x1,x2,...,%,), V1, ¥2,...,¥,) € X" are C- compamble Suppose either
F is continuous or (X, G, X) is regular. If there exist xo,xo, ..., xp € X verifying
xo < F(xal(l), U'(z), co Xy (n))for all i, then F has, at least, one ®-fixed point.

Notice that (11.83) and (11.84) are very different contractivity conditions. For
example, (11.83) would be simpler if the image of all o; are sets with a few points.

Proof. Define XO (00 X5 - - - »Xg) and let x| = FOSD 5@ x5 for all i.
If X, = (x1 ,xl, ..., x}), then xo < xl for all i is equivalent to Xg E X; = Fg(Xp).
By recurrence, deﬁne x4 =F G x5 X5 for all i and all m, and we
have that X,, C X,,+1 = Fe(X,,). This means that the sequence {X,,+1 = Fo(X,,)}
is C-monotone non-decreasing. Since (X", G,,, C) is complete, it is only necessary
to prove that {X,,} is G,-Cauchy in order to deduce that it is G,-convergent. From
item 4 of Lemma 10.3.1, it will be sufficient to prove that each sequence {x/ } is
G-Cauchy. Firstly, notice that X,,+; = Fg(X,,) means that

m

X = FOW 30 @ 0y for all i and all m.
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Hence
i ai(1) (r,(2) Ut(”)
Xz = FOo 01 X0 X)
—F (F( :;(7,(])(1)’ :771(7,(])(2) ...,xfn”’(l)(n)),
o 1 o; 2 0 (2
Fr@® fa0®  me ey
oj(n 1 oj(n 2) oj(n )
i)
= Fé(xz{(l),xg{(z), C X0y,
Furthermore, for all m
(X,,,) = F2 (xm,xm ceX) =
— F(F(x;l(l),xfnl(z), o ’le(n))’ F(x;z(l),x;fnz(z)’ o ,xifnz(n))’
., F(x;n(l),xznﬂ), o ’x;rnn(n)))
= F(X) 1 Xy gs oo s Xy 1) = FXpp1). (11.85)

Therefore, for all i and all m

Vf(G(xan ) x£n+2’ x£n+2))
X X i(1 £(2) ;
= Y (GFGED, 0@, gy, P0G a0,
Ffp(x‘,’,[“),x‘;f(z), e ,x;"(”)))

i Oo; (1) U{r, (2 5;(j) (n)
< (¥ —o) (max G(x"‘(’) fn_({_),,F( v O o9 )))

m+1’ m+l

—_ (1// (p) (maX G(xU,(}) 0i(j) U,(/) ))
Since v is non-decreasing, for all i and all m,
v (g}igﬁn G, x5, qu-(il-)l)) (max Gy 41 +1)) :
Applying Lemma 11.2.4 using
a, =G, X X)) and b = max G(x%¥, x oi() ”’(’) )

I<j<n X154

for all i and all m, we deduce that
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(G, %y X )} — 0 foralli, thatis,

1Gn XKy X1, X 1)} — 0. (11.86)

Next, we prove that every sequence {x\} is G-Cauchy reasoning by con-
tradiction. Suppose that {x/l},>0, ..., {x%},>0 are not G-Cauchy (s > 1) and
ot Y00 s {xi},>0 are G-Cauchy, with {iy, ..., i,} = {1,...,n}. From Propo-
sition 11.8.1, for all r € {1,2,...,s} there exists &, > 0 and subsequences
{x;;r(k)}keN and {le,(k)}kGN such that, for all k € N,

k < n.(k) <my(k) <n.(k+1), G(XZ;(k)’xi{,(k)«kl’x;:z,(k)) > &,

and
i i i
G, 1y X )10 Xy ) —1) < Er-
_Now, let &9 = max(ey,...,&) > 0 and g = min(e,...,&) > 0. Since
Lot b n>0s - - 4x ) >0 are G-Cauchy, for all j € {ig1, ..., i,}, there exists #/ € N

such that if m, m’ > #/, then G(x/

m’m~+1°"m’ /7 T T e R IR A U410

Therefore, we have proved that there exists ny € N such that if m, m’ > ng then
GO, X X)) <ep/4 forallj € figyr, ..., i} (11.87)

Next, letg € {1,2,...,s} such that g, = &0 = max(ey,...,é&,). Let k; € Nsuch
that ny < ny(k;) and define n(1) = n,(k;). Consider the numbers n(1) + 1, (1) +
2,...,my(ky) until we find the first positive integer m(1) > n(1) satisfying

i i i i

max G, Xty 410 Xmny) Z €0 GOty Xty 10 Xy—1) < €0-

for all j € {1,2,...,s}. Now let k, € N such that m(1) < n,(k;) and define
n(2) = ny(ky). Consider the numbers n(2) + 1,n(2) + 2, ..., my(ks) until we find

the first positive integer m(2) > n(2) satisfying

ir ir ir ij ij ij
max G(xn(Z)’xn(Z)-f—l’xm(Z)) Z &o, G(xn(Z)"xn(2)+1"xm(2)—1) < €0,

forallj € {1,2,...,s}. Repeating this process, we can find sequences such that, for
allk > 1,

ny < n(k) <m(k) <n(k+1),  max Gl X 415 Fn) = €0,

G(xz(k),xz(k)+l,x2(k)7l) <egy, forallje{l, 2,...,s}.
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Note that by (11.87), G(xf{(k),xZ‘(kHl,xf,’l(k)), G(xf{(k),x;’(k)ﬂ,xi;(k)_l) < gy/4 < €p/2
forallr€ {s+1,s+2,...,n}, so

g}aj‘n G(. n(k)’x/n(k)—i-l’ m(k)) = {2353 G(xn(k)’ n()+1° m(k))
G (X0 Koty 1 8¥miy—1) < €0 (11.88)

foralli € {1,2,...,n}and all k > 1. Next, for all &, let i(k) € {1,2,...,s} be an
index such that

i(k) l(k) l(k) _
G(xn(k)’ n(k)+1° m(k)) = lrEf‘st(xn(k)’ n(k)+1° m(k))
= [oax G( n(k)vxln(k)+1v miy) = €0

Notice that, applying (Gs) twice and (11.88), for all k£ and all j,

()‘Jn(k) l’xiz(k)’xl(k) 0,
G, n(k)— 1”41(1()”‘51(@) + G(xil(k)’le(k)"x’ 0—1)
<G, n(k)— l’xil(k)’ n(k)) +G(] n(k)® n(k)+1~‘1n(k)+1)
+ G( n(k)+1’x;(k)’xl (k)— 1)
G(xg(k)—l’ n(k)’ n(k)) + G, n(k)’ n(k)+1’ n(k)+1) + &o. (11.89)

Applying Proposition 11.8.1 to guarantee that the following points are C-
comparable, the contractivity condition (11.84) assures us for all k

iw ik ik iw ik ik
0<¥(e0) =¥ (G(xn(k)’ Xn(k)+1° m(k))> (G(xn(k)’ Xin(ky > n(k)+1))

iy (1) Ul(k (2) m ()
= Y (G(F(x X —1> Xn)—1 -+ Xn(e)— 1)

oik(1) o) (2) U:(k)(”
F(xm(k)—l’xm(k)—l""’ m(k)— 1

2 ¢ O (1) o) (2) Uz(k)(”)
F<l>(xn(k)—l’xn(k)—l""’ n(k)— )
itk () Gl(k)(l) Gl(k)(l) Oi(k) (2) Ur(k)(”
=W- (p)(max G(xn(k) 1> Xk — 1 Fx a(k)—1° Xnl)—1> > X — 1)))
ik o) _oir ()
= —9) (max G(xn(k) 1> Xm(k)—1° Xn(k) ))

itk () i) ok ()
= —9) (max GOt X X l)) (11.90)

1<j<n
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Consider the sequence:

Oj( 0 (1
max Gty (11.91)
If this sequence has a subsequence that converges to zero, then we can take
the limit when £k — oo in (11.90) using this subsequence, so that we would
have 0 < ¥(g9) < ¥(0) — ¢(0) = 0, which is impossible since gy > 0.
Therefore, the sequence (11.91) has no subsequence converging to zero. In this
case, taking &g > 0 in Lemma 11.2.3, there exist § € ]0,g¢[ and kg € N such
that max; <j<, G(xzz(,f)’g)l,xz(,g(]), ;’E’:)U) ) = &, for all k > ko. It follows that, for

all k > ko, —p(maxi gz, GO 00 5700 y) < —(5). Thus, by (11.90)

and (11.89),
oty () _oiwy () i) ()
0 < v ten) = v s GUT 0T )

it () it () ”:(k)(})
_‘p(lrE%G(x ®=1"Fal) * Fm(h)— 1))

oity () Tt () Ur(k)(/)
=V (IH_IJEE; GXuty—1%ay  » Xm)— 1)) —¢(9)

w (max G(.Xj n(k)— l"xiz(k)’ m(k)— 1)) - (P(S)

1<j<n

=V (lril?}n (G(x’ (k)— l’x;(k)’x](k)) + G( n(k)’ n(k)+1’ n(k)+1)) + 50)
— ¢(9). (11.92)

Taking the limit in (11.92) as k — oo and taking into account (11.86), we deduce
that 0 < ¥ (80) < V¥ (g0) — ¢(8), which is impossible. The previous reasoning
proves that every sequence {x’ } is G-Cauchy.

Corollary 10.3.1 guarantees that the sequence

{]Fg(x()) = (xm’ me ’xz)}

is G,-Cauchy. Since (X", G,) is complete (again by Corollary 10.3.1), there exists
Gll . .
Z € X" such that {X,,} — Z, thatis, if Z = (21,22, .. .,2,) then

(G, x 1, z)y — 0 foralli. (11.93)

Suppose that F is G-continuous. In this case, item 2 of Lemma 11.8.5 implies

that Fg is G,-continuous, so {X,,} G Z and {X,,+1 = Fo(X,»)} G Fo(Z). By the
uniqueness of the G,-limit, Fg(Z) = Z, which means that Z is a ®-fixed point of F.
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Suppose that (X, G, <) is regular. In this case, by Corollary 10.3.1, (X", G,, E)
is also regular. Then, taking into account that {X,, = [} (Xo)} is a C-monotone

Gn
non-decreasing sequence such that {X } — Z, we deduce that X,, T Z for all m.
From Proposition 11.8.1, since (x! Xy =X, CEZ=(z1,22,...,2n), then
KD @y and (zgi(l),zm(z), . ,zgi(n)) are C-comparable for all i and

all m. Notice that for all i and all m,

"l’ "l’ . m

oi(1) 0,2) a,n)
F( m+1’ m+1""’ m+1)

LECIENE] ’

_ F(F(x;ai(l)(l),x;ai(l)(z) ) x;”i(l)(n))

RO Ga,(n)(l) %,(;«)(2)7 o Ga,(n)(ﬂ)))
= F?D(xzq"(l),x;"(z), .. ,x;‘(”)).
It follows from condition (11.84) and (11.85) that, for all i,
1 1 1 2 1
V(GECD, X PG ),

F(26:(1): 20:2)s - - - » Zoi(n)))

= W(G(F(x,‘,’{“),xf,{(z),.. m(”)) F(26:(1)s Z0:2)s - - - » Zou(n))
Fé(sz(l),xf,{(z), .. ,xf,[(”)))

< -9 (lnil]aj G719, 25,
F(x:’nai(/)(l)’xiai(/)(z)’ o ’x;Ui(/)(ll))))
=W -9 (ggagﬁ G(D. 25,5 xm+1))

5 (s 025 0)

1<j<n
<y (ma<x G, m+1,z,))
By (11.93) we deduce that
{FGGW, XD X0 D) — F20,0)s 20102)s - - -+ Zoin)) for all i,
which means that
{FoX, = (FO D, x @ xa1 ™y P xon@ L xony))

Gy
= (F2oy(1)> 2012)s -+ 20105 + - > F 2oy (1) 20,25 - - » Zouin)) = FoZ.
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Since {FoX,, = Xpt1} E’) Z, we conclude that FoZ = Z, that is, Z is a ®-fixed
point of F. O

If take ¥ (1) = ¢ for all ¢ € [0, 00) in Theorem 11.8.2 then, we get the following
results.

Corollary 11.8.1. Let (X, G) be a complete G*-metric space and let X be a partial
preorder on X. Let ® = (01,07, ...,0,) be an-tuple of mappings from {1,2, ..., n}
into itself verifying 0; € Qap ifi € Aando; € Qpgifi € B. Let F : X" — X
be mapping satisfying the mixed monotone property on X. Assume that there exists
¢ € Fay such that

G(F(x1,%2, . %), F(V1, Y2, -+ V), Fa (X1, X2, - . o Xy)

< max G(x;,yi, F(X;1), X6;2) - - - s Xai(n)))
1<i<n

- §0 (max G(xh yi7 F(xo','(l)5 xU,‘(Z)» A 7x0','(l1))))

1<i<n

for which (x1,x2,...,%,), V1,Y2,...,Yn) € X" are T-comparable. Suppose either
F is continuous or (X, G, X) is regular. If there exist x(l),x%, ..., xy € X verifying
X < F(xg[(l), xgi(z), .. ,xgi(”))for all i, then F has, at least, one ®-fixed point.

If take @(t) = (1 — A) ¢t for all # > 0, with A € [0, 1), in Corollary 11.8.1 then,
we derive the following result.

Corollary 11.8.2. Let (X, G) be a complete G*-metric space and let X be a partial
preorder on X. Let ® = (01,02, ...,0,) be an-tuple of mappings from {1,2,...,n}
into itself satisfying 0; € Qap ifi € Aando; € Qg ifi € B. Let F: X" - X
be mapping verifying the mixed monotone property on X. Assume that there exists
A € [0, 1) such that

G(F(x1,%X2, -+ ., %), F(V1, V2, -« Yn), Fa (X1, X2, . .., X))
< A max G(x,-,yi, F(x(,i(l),x,,,.(z), e ,xm(n))) (11.94)

1<i<n

Sfor which (x1,x2,...,%,), V1,Y2,-..,Yn) € X" are T-comparable. Suppose either
F is continuous or (X, G, X) is regular. If there exist x(l),x(z), .., Xy € X verifying

X < F(xg’(l),xgi(z), .. ,xgi('l))for all i, then F has, at least, one ®-fixed point.
Example 11.8.1. LetX = {0, 1,2, 3, 4} and let G be the G-metric on X given, for all
x,y,z € X, by G(x,y,z) = max(jJx—y|,|x—z|,|y—z|). Then (X, G) is complete

and G generates the discrete topology on X. Consider on X the following partial
order:

x,y €X, xxXy < x=yor (xy =(0,2).
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Define F : X" — X by:

0, if x1,x2,...,x, € {0, 1,2},
F(xi,x,..., = .
x1, % ) 1, otherwise.

Then the following statements hold.

1. Fis a G-continuous mapping.

2. If y,z € X satisfy y < z, then either y,z € {0, 1,2} or y, z € {3, 4}. In particular,
FQeq, .o Xim1, Yo Xik1s - - o5 X)) = F(x1,...,Xi—1,¥,Xi+1,...,X,) and F has the
mixed monotone property on X.

3. I (g, %2, - - -5 %), V1, Y2, - - -, yu) € X" are C-comparable, then F(x, x5, ..., x,) =
F(y1,y2,...,y,). In particular, (11.94) holds for A = 1/2.

For simplicity, henceforth, suppose that 7 is even and let A (respectively, B)
be the set of all odd (respectively, even) numbers in {1,2, ..., n}.

4. For a mapping 0 : A, — A,, we use the notation 0 = (6(1),0(2),...,0(n))

and consider

o=(0i+1,....n—1,n1,2,...,i—1) foralli.

Then 0; € Qap if i is odd and o; € Qj\_B if i is even. Let ® = (01,07,...,0,).
5. Take xf) = 0 if i is odd and xf) = 2 if i is even. Then xf) <
F(xgi<1),xgi(2), . ,xgi(")) for all i.

Therefore, we can apply Corollary 11.8.2 to conclude that F has, at least, one
®-fixed point. To finish, we prove the previous statements.

If {x,,} S x, then there exists my € N such that |x,, — x| = G(x, x, x,,) < 1/2 for
all m > my. Since X is discrete, then x,, = x for all m > my. This proves that 7 is
the discrete topology on X.

.G
L. If {al},{a%}, ..., {a"} C X are n sequences such that {a’} — a; € X for all
i, then there exists my € N such that ain = q; for all m > my and all i. Then
G
{F(a,ln, afn, ...,ar)} = F(aj,az, ..., a,) and F is G-continuous.

2. If y,z € X verify y < z, the either y = z (in this case, there is nothing to prove)
or (y,z) = (0,2). Then either y, z € {0, 1,2} or y, z € {3, 4}. In particular,

F(X1, . Xm0, Y, X 1o+ - - Xy)

0 it Xy, XL Y X, -, X €40, 1,23,
1, otherwise

=FX1, .o X1 T Xig 1y - o5 X))

Hence F has the mixed monotone property on X.
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3. Suppose that (x1,x2,...,%,), V1,¥2,...,V,) € X" are C-comparable and we
claim that F(x,x2,...,%,) = F(y1,y2,...,ys). Indeed, assume, for example,
that x; <; y; for all i. By item 2, for all i, either x;, y; € {0, 1,2} or x;, y; € {3, 4}.
Then

Flatox . xy) = %O, if x;,%,...,x, € {0, 1,2},}

1, otherwise

_ { 0, ifyl,yz,...,yn € {0, 1,2},}

= F 5 ey .
1, otherwise 012 Yn)

If x; >; y; for all i, the proof is similar. Next, we prove that (11.94) holds using
A = 1/4.If (x1.x2,...,x,) € X", then F(Xg,1), X6;(2), - - - » Xo;()) € {0, 1} C
{0, 1, 2}. Therefore
F?D(xl,xz, ey Xp)
= F(F(X6,(1): X012)+ - - - + Xo1(m) F (Xy(1): Xo2) s - -+ Xy ()
oo s F(X6,1), X6,(2)s - -+ + X)) = 0.
Suppose that (x1,xa, ..., %), (V1,¥2,-..,ys) € X" are C-comparable. It follows
that
G(F(x1,x2,...,%,), F(y1,y2,... ,y,,),Fé(xl,xz, cey X))
= max(|F(x1,x2, ..., %) — F(y1,¥2, ..., y)| s [F(x1, 22, . . ., x,) — O],
|F(y1,Y2, . --,Yn) _0|)
= max(F(x;,x2,..., %), F1,y2,...,¥n))
0, if F(xi,x2, ..., %) = F(y1,¥2, .-, ya) =0,

"] 1, otherwise.

It is clear that (11.94) holds if the previous number is 0. On the contrary, suppose
that

G(F(x1,x2,...,%), F1,y2, ... ,yn),Fé(xl,xg, v Xy) =1
Then F(x,x2,...,%;,) = 1 or F(y;,y2,...,y,) = 1 (both cases are similar).
Assume, for example, that F(xy,x;,...,x,) = 1. Then there exists iy €

{1,2,...,n} such that x;, € {3, 4}. In particular

ixio — F(xgio(l),xaio(z), - ’xafo("))| >3—-1=2.
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Therefore

max G(xiv Yi, F(-xU,'(l)5 Xoi(2)s « - - ’xU,'(n)))

1<i<n
Z G(xi() ’ yi() ’ F(-xaio(l)s xU,'O (2) LI ] -XU,‘O (n)))

Z ’xio - F(x0i0(1)7x0i0(2)» e )xU,’O(n))‘ Z 2

This means that

G(F(x1,%2, %), F(V1, Y2, -« s Yn), Fa (1, X2, ..., X)) = 1

1
2 S 5 lrglafxn G(xi’yiaF(xO','(l)7xo'i(2)a e axai(n)))‘

1
2

Therefore, in this case, (11.94) also holds.

4. Tt is clear.

5. Since xi, € {0, 1,2} for all i, then F(J", x3®, . x5™) = 0 for all i. If i is
odd, then xf) =0<x;0= F(xgi(l),ng(z), . ,xgi(")). If i is even, then xf) =2
0= F(xgi(l) ng(z)’ .. ,xgi(")), S0 Xf) <; F(xgi(l),xgi(z), ... ,xgi(")).

11.9 Multidimensional Cyclic Fixed Point Theory

In this section, we show some sufficient conditions to guarantee that two mappings
F : X" — X and g : X — X have a cyclic (multidimensional) coincidence point,

that is, a point (x, x, . . ., X,;) € X" such that
F (X, Xif 15 Xidg 25 v+ o s Xy X1, X2, ..., Xi—1) = gx; forallie {1,2,...,n}.
Given a point (x1, xy,...,x,) € X", for simplicity, we denote
X = (Xi Xidp 1y Xig 2« o Xy X1, X2, ..o, Xim1) € X"

Notice that we shall not involve the mixed monotone property.

Theorem 11.9.1. Let (X, G) be a complete G-metric space and let F : X" — X
and g : X — X be two mappings such that F(X") C g(X) and g is continuous and
commutes with F. Suppose that exist two functions W € Fy and ¢ € F,, such that,
forall (x1,x2,...,%,),,Y2,...,¥2) € X",

max ¥ (G (F@&).FG). FGD)))

1<i<N

=W -9 (lngv G (gxi,gyi»gyi)) . (11.95)

<i
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Then F and g have a unique common cyclic fixed point (w1, w;, . ..,w,) € X", that
is, a point satisfying

F (0, @ig1, ..., 0p, 01,02, ..., 01-1) = g0; = 0.

forallie{l,2,...,n}.

Proof. From Corollary 10.3.1, consider on X" the G*-metric given by

G,(X.Y,2) = [max G(xi,yi, z)

fOr a]lX = (x17x27---7xn)7Y = (ylsy2v--~7yn)vz = (Z17Z2a'-'szﬂ) € Xl’l‘ Deﬁne
.G : X" — X" by

H (1, %0, ..., x) = (FG),F(®5), ... . F(®)) and
G (x1,x0,...,%,) = (gx1,8%2,...,8%)

for all (x1,x5,...,x,) € X". Then G is G,-continuous and it commutes with
because

F(@”) = F(gxh 8Xit1s -5 8%n, 8X15 - - - 7gxi—1)
= gF (X, Xig 1, oo X, X1, .. Xim1) = gF(RY)
foralli € {1,2,...,n}. Then

HG (x1,x2,...,%,) = H(gxy, gx2,...,8%)
= (F(gx1"), F(gx2"), ..., F(gx,"))
= (sF (), gF (%), ... gF(&}))
=G (FG), F®),....F&))
= gH(Xl,Xz,.u,Xn)‘

The contractivity condition (11.95) means that, for all (x,x2,...,%,), V1, Y2, -,
yn) € X",

Gy (H (x1,%2, .o %) s H 1. ¥20 oo ¥0) s H (1Y - V)
=G, ((m';), FG).....F@&)), (FGD, FG5), ... FG)
(FGY. FGY. ... FG) )
= max ¥ (G (F(), FG}), FG)))
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=W -9 (lrgg;v G (gxi, 8vis gy,-))

SW—=9) (G (G (x1,x2,. ... %), GV Y203 V) s
g()’leZ,---s)’n)))-

Applying Theorem 4.3.2 to ‘H and G in (X", G,) (which is also valid for G*-
metric spaces), we deduce that H and G have a unique common fixed point
w = (w,w,,...,0,) € X", that is, a point satisfying &« = Hw = Gw. This
condition shows that

(@1, 0, ...,0p) = (801,802, ..., gWy)

= (F(@}),F(@3}),....F(@D),
that is,
F(®]') = gw; = w; forallie{l,2,...,n}.

Hence, (w;, s, ..., ®,) is the unique common cyclic fixed point of F and g. a

Corollary 11.9.1. Let (X, G) be a complete G-metric space and let F : X" — X
and g : X — X be two mappings such that F(X") C g(X) and g is continuous
and commutes with F. Suppose that exists a constant A € [0, 1) such that, for all
(1, X2, .., %), V1, Y2, -+ -, yn) € X7,

max G (F&!),F(}),F(3!)) <A max G (gx;. gyi.8yi) -
1<i<N I<i<N

Then F and g have a unique common cyclic fixed point (w1, wy, . ..,w,) € X", that
is, a point satisfying

F (0i, g1, ..., 0h, 01,02, ..., 0i—1) = 80; = w;.

forallie{l,2,...,n}.



Chapter 12
Recent Motivating Fixed Point Theory

In this chapter, we present some recent fixed/coincidence point results. They show
some current research, thoughts and directions on fixed point theory in metric type
spaces. However, in order not to enlarge the present book we will not include their
proofs. We give the references so that the interested reader can find the proofs.

12.1 Some Almost Generalized (¥, ¢)-Contractions
in G-Metric Spaces

In [28], Aydi, Amor and Karapimar proved the following results. Let (X, G) be a
G-metric space. First, we consider the following expressions:

M (x,y,z) = max {G(x, Tx,y), Gy, T*x, Ty), G(Tx, T*x, Ty), G(x, Tx, 2)
G(z, Tx, T2), G(Tx, T’x, T2), G(x, , 2)}
and
N (x,y,z) = min{G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz)
G(z. Tx. Tx), G(y, Tz, T2)}
forall x,y,z € X.

Theorem 12.1.1. Let (X, G) be a complete G-metric space. Let T : X — X be a
self-mapping. Suppose there exist y € Fu, ¢ € F, and L > 0 such that, for all
xy,z€X,

Y (G(Tx, Ty, T2)) < ¥ (M (x,¥,2)) — ¢ (M (x,y,2)) + LN (x,y,2) .

Then T has a unique fixed point.

© Springer International Publishing Switzerland 2015 363
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In the next result, the authors used the following notation: for all x,y € X,
M* (x,y) = max {G(x, Tx,y), G(y, T*x, Ty), G(Tx, T*x, Ty),
G(x, Tx, Tx), G(Tx, Tx, sz), G(x,y, Tx)}
and
N* (x,y) = min {G(x, Tx, Tx), G(y, Ty, Ty), G(y, Tx, Tx)} .
Theorem 12.1.2. Let (X, G) be a complete G-metric space. Let T : X — X be a

self-mapping. Suppose there exist € Fy, ¢ € F, and L > 0 such that, for all
x,y €X,

v (G (Tx, Ty, sz)) <y (M* (x, y)) —¢ (M* (x.y)) + LN* (x,y).

Then T has a unique fixed point.

12.2 Common Fixed Point for Two Pairs of Mappings
Satisfying the (E.A) Property in G-Metric Spaces

In [129], Long, Abbas, Nazir and Radenovi¢ proved the following result, where they
used the notion of weak compatibility introduced in Definition 6.4.1 and the concept
of the point of coincidence given in Definition 6.4.2.

Theorem 12.2.1. Let X be a G-metric space and f,g,S,T : X — X be mappings
with f (X) € T (X) and g (X) C S (X) such that

Y (G(fr,gy.gy) <Y M(x,y,y)) —¢p (M(x,y,y))

where
M (x,y,y) = max y G (Sx, Ty, Ty) , G (fx, Sx, Sx) , G (Ty, gy, &) ,
G(fx, Ty, Ty) + G(Sx, gy. gy)
2 b
or
V(G (fx. fx, gy)) < ¥ (M (x,x,y)) — ¢ (M (x,x,y))
where

M (x,x,y) = max { G(Sx, Sx, T¥), G(fx, fx, Sx), G(Ty, T, gy),

G(fx, fx, Ty) + G(Sx, Sx, gy)
2 bl




12.3 Coincidence Point Results Using Six Mappings 365

hold for all x,y € X, where Y € Fy and ¢ € F,,. Suppose that one of the pairs
(f,S) and (g, T) satisfies the (E.A) property and one of the subspace f (X), g (X),
S (X), T (X) is closed in X. Assume that for every sequence {y,} in X, at least one of
the following conditions holds:

(a) {gy.} is bounded in the case when (f, S) satisfies (E.A) property,
(b) {fya} is bounded in the case when (g, T) satisfies (E.A) property.

Then, the pairs (f,S) and (g,T) have a common point of coincidence in X.
Moreover, if the pairs (f,S) and (g, T) are weakly compatible, then f, g, S and T
have a unique common fixed point.

12.3 Coincidence Point Results Using Six Mappings

In [87], Gu and Yang proved the following result.

Theorem 12.3.1. Let (X, G) be a complete G-metric space, and letf, g, h, A, B and
C be six mappings of X into itself satisfying the following conditions:

(i) f(X) € B(X), g(X) € C(X), h(X) € A(X);
(ii) Forallx,y,z € X,

G(Ax, By, Cz), G(Ax, fx, fx),
G(By, gy, 8y), G(Cz, hz, hz),
G(fx, gy, hz) < A max | G(Ax, gy, gy), G(Ax, hz, hz),
G(By, fx,fx), G(By, hz, hz),
G(Cz fx, fx), G(Cz, gy. 8y)

or

G(Ax, By, Cz), G(Ax,Ax, fx),
G(By, By, gy), G(Cz, Cz, hz),
G(fx, gy, hz) < A max | G(Ax, Ax, gy), G(Ax, Ax, hz),
G(By, By, fx), G(By, By, hz),
G(Cz, Cz,fx), G(Cz,Cz, gy)

where A € [0, %) If one of the following conditions is satisfied:

(a) Either f or A is G-continuous, the pair (f,A) is weakly commuting, the pairs
(g, B) and (h, C) are weakly compatible;

(b) Either g or B is G-continuous, the pair (g, B) is weakly commuting, the pairs
(f,A) and (h, C) are weakly compatible;

(¢) Either h or C is G-continuous, the pair (h, C) is weakly commuting, the pairs
(f,A) and (g, B) are weakly compatible;
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then

(@) one of the pairs (f,A), (g, B) and (h, C) has a coincidence point in X;
(D) the mappings f, g, h, A, B and C have a unique common fixed point in X.

In [86], Gu and Shatanawi introduced the following notion.

Definition 12.3.1. Let (X, G) be a G-metric space and letf, g, h, R, S, T : X — X be
six mappings. We say that the triple (f, g, k) is a generalized weakly G-contraction
mapping of type A with respect to the triple (R, S,T) if for all x,y,z € X, the
following inequality holds:

3
— ¢ (G(Rx, gy, gy), G(Sy. hz, hz), G(Tz, fx, fx))

G(Rx, gy, G(Sy, hz, hz) + G(Tz, fx,
W(G(fX,gy,hz))gw( (Rx, 8. 8y) + G(Sy. hz, hz) + (zfxfx))

where ¥ € Fycand ¢ : [0, 00)®> — [0, 00) is a continuous function with ¢ (¢, s, u) =
Oif,and only if,t =s=u = 0.

Definition 12.3.2. Let (X, G) be a G-metric space and let A,B,S,T : X — X be
four self-maps on X. The pairs (A, S) and (B, T) are said to satisfy the common
(E.A) property if there exist t € X and two sequences {x,} and {y,} in X such that

lim Ax, = lim Sx, = 1

m By, = lim Ty, =+t.
n—>o0 n—>oo n—>o00

;
—>00
Theorem 12.3.2. Let (X, G) be a G-metric space and letf,g,h,R,S, T : X — X be
six mappings such that (f, g, h) is a generalized weakly G-contraction mapping of
type A with respect to (R, S, T). If one of the following conditions is satisfied, then
the pairs (f,R), (g,S) and (h, T) have a common point of coincidence in X.

(i) The subspace RX is closed in X, f(X) C S(X), g(X) C T(X), and two pairs of
(f, R) and (g, S)satisfy the common (E.A) property;

(ii) The subspace SX is closed in X, g(X) C T(X), h(X) C R(X), and two pairs of
(g,8) and (h, T) satisfy the common (E.A) property;

(iii) The subspace TX is closed in X, f(X) C S(X), h(X) C R(X), and two pairs of
(f,R) and (h, T) satisfy the common (E.A) property.

Moreover, if the pairs (f,R), (g,S) and (h,T) are weakly compatible, then f, g,
h, R, S and T have a unique common fixed point in X.

12.4 Common Fixed Point Theorems of Altman Integral
Type Mappings in G-Metric Spaces

In 1975, Altman [22] proved a fixed point theorem for a mapping 7 : X — X which
satisfies the condition

d(Tx,Ty) < Q(d(x,y)) forallx,yeX,
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where Q : [0,00) — [0,00) is an increasing function satisfying the following
conditions:

(@) 0< Q) <t forallte (0,00);
(ii) p(t) =t/ (t— QO (2)) is a decreasing function;
(iii) for some positive number ¢, there holds

[tlp(t)dt<oo.

0

From condition (i) and the fact that Q is increasing, we observe that Q (0) = 0
and Q (1) = tif, and only if, t = 0. In [88], Gu and Ye introduced the following
result. We denote by ¢ : [0, c0) — [0, 00) a function satisfying 0 < ¢ (r) < ¢ for all
t>0.

Theorem 12.4.1. Let (X, G) be a complete G-metric space and let S, T, R, f, g, and
h be six mappings of X into itself. If there exists an increasing function Q : [0, 00) —
[0, 00) satisfying the conditions (i), (if) and (iii), and the following conditions:

(iv) SX) € g(X), T(X) € h(X), R(X) € f(X),

(v) forallx,y,z € X,

G(Sx,Ty.Rz) O(G(fx,gy.hz))
/ s(ydt< ¢ / 8(r)de],
0

0

where § (t) is a Lebesgue integrable function which is summable nonnegative
such that

&
/ 8(t)dt >0 forall e > 0.
0

Then

(a) one of the pairs (S,f), (T, g) and (R, h) has a coincidence point in X,

(b) if (S.f), (T,g) and (R, h) are three pairs of continuous ¢-weakly commuting
mappings, then the mappings S, T, R, f, g and h have a unique common fixed
point in X.



Appendix A
Some Basic Definitions and Results
in Metric Spaces

A.1 First Results in Partially Ordered Metric Spaces

A function ¢ : [0, 00) —> [0, 00) is upper semi-continuous provided that for each
t > 0 and each sequence {7, },en such that if lim 7, = 1, it follows that
n—>oo

limsup ¥ (t,) < ¥ (1).

n—>oo

A function ¢ : [0, 00) —> [0, 00) is lower semi-continuous provided that for each
t > 0 and each sequence {f,,},en such that if lim z, = ¢, it follows that
n—oo

liminfy(z,) = (7).

Let X, Y be non empty sets and 7T : X — Y a given mapping: T is said surjective
(or onto) if for all y € Y, there exists x € X such that Tx = y.

T is said injective (or one to one) if for some x, y € X such that Tx = Ty, then x = y.
For x € X, define T>x = T(Tx). Inductively, we define for m > 3, T"(x) =
T(T" 'x).

Theorem A.1.1 (Ran and Reurings [168]). Let (X, <X) be an ordered set endowed
with a metric d and let T : X — X be a given mapping. Suppose that the following
conditions hold:

(i) (X,d) is complete;
(ii) T is continuous and non-decreasing (with respect to <X);
(iii) there exists xy € X such that xy < Txo,
(iv) there exists a constant A € (0, 1) such that for all x,y € X with x =y,

d(Tx,Ty) < Ad(x.y).
© Springer International Publishing Switzerland 2015 369
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Then T has a fixed point. Moreover, if for all (x,y) € X x X there exists z € X
such that x < z and y < z, we obtain uniqueness of the fixed point.

Definition A.1.1 ([84]). An ordered metric space (X,d, <) is said to be non-
decreasing-regular (respectively, non-increasing-regular) if for all sequence
{xn} € X such that {x,,} — x and x,, < x,4 (respectively, x,, = x,,41) for all
m, we have that x,, < x (respectively, x,, > x) for all m. Also (X, d, <) is said to be
regular if it is both non-decreasing-regular and non-increasing-regular.

Theorem A.1.2 (Nieto and Rodriguez-Lopez [158]). Let (X, X) be an ordered set
endowed with a metric d and T : X — X be a mapping. Suppose that the following
conditions hold:

(i) (X,d) is complete;
(ii) (X,d, X) is non-decreasing-regular;
(iii) T is <X-non-decreasing;
(iv) there exists xy € X such that xy < Txop;
(v) there exists a constant A € (0, 1) such that for all x,y € X with x = y,

d(Tx, Ty) < Ad(x,y).

Then T has a fixed point. Moreover, if for all (x,y) € X x X there exists w € X
such that x < w and y < w, we obtain uniqueness of the fixed point.

A.2 «-y - Contractive Mappings on Metric Spaces

Recently, Samet et al. [183] introduced the following concepts.

Definition A.2.1. Let (X,d) be a metric space and let 7 : X — X be a given
mapping. We say that 7 is an « - V¥ - contractive mapping if there exist two functions

a:XxX—[0,00)and ¥ € FY9 such that
a(x,y)d(Tx, Ty) < ¢ (d(x,y)) forallx,yeX.

Clearly, any contractive mapping in the Banach sense (that is, verifying
d(Tx,Ty) < Ad(x,y)) is an « - -contractive mapping with « (x,y) = 1 for
allx,y € X and ¢ () = At forall > 0 and some A € [0, 1).

In some cases, the function o will be intimately related with a partial order in
the following sense: if < is a partial order on X, we will consider the mapping
ax : X x X — X given, for all x, y € X, by

1, ifx=xy,

o< (x,y) = .
< (%.3) 0, otherwise.
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Definition A.2.2. LetXbeasetandlet7 : X — X and o : X x X — [0, 00) be two
mappings. We say that T is « - admissible if, for all x,y € X, we have

ay)>1 = oxT)=>1
Various examples of such mappings were presented in [183]. The main results in

[183] are the following fixed point theorems.

Theorem A.2.1. Let (X,d) be a complete metric space and let T : X — X be an
o - - contractive mapping. Suppose that

(i) T is o - admissible;
(ii) there exists xo € X such that a (xo, Txp) > 1;
(iii) T is continuous.

Then there exists u € X such that Tu = u.

Theorem A.2.2. Let (X,d) be a complete metric space and let T : X — X be an
o - Y - contractive mapping. Suppose that

(i) T is o - admissible;
(ii) there exists xo € X such that a (xo, Txo) > 1;
(iii) if {x,} is a sequence in X such that o (x,,, X,4+1) > 1 foralln € N and {x,} —
x € X, thena (x,,,x) > 1 foralln € N.

Then there exists u € X such that Tu = u.

To obtain the uniqueness of the fixed point, an additional hypothesis can be
considered.

Theorem A.2.3. Under the hypotheses of Theorem A.2.1 (respectively, Theorem
A.2.2), also assume the following condition:

(Uy) Forallx,y € X, there exists z € X such that o (x,z) > 1 and a (y,z) > 1.
Then T has a unique fixed point.
Recently, Karapinar and Samet [118] introduced the following concept.

Definition A.2.3. Let (X,d) be a metric space and let 7 : X — X be a given
mapping. We say that T is a generalized o - - contractive mapping if there exist
two functions a : X x X — [0, 00) and ¥ € F9 such that

a(x,y)d(Tx, Ty) < (M (x,y)) forallx,ye X,

where

dx,Tx) +d(y, Ty) d(x, Ty) +d(y, Tx)
2 ’ 2

M (x,y) = max {d (x,y),
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Clearly, since v is non-decreasing, every « - - contractive mapping, presented
in [183], is a generalized « - ¥ - contractive mapping.

Theorem A.2.4. Let (X,d) be a complete metric space and let T : X — X be a
generalized o - - contractive mapping. Suppose that

(i) T is o - admissible;
(ii) there exists xo € X such that « (xo, Txp) > 1;
(iii) T is continuous.

Then there exists u € X such that Tu = u.

Theorem A.2.5. Let (X,d) be a complete metric space and let T : X — X be a
generalized o - - contractive mapping. Suppose that

(i) T is o - admissible;
(ii) there exists xo € X such that o (xo, Txp) > 1;
(iii) if {x,} is a sequence in X such that o (x,, X,+1) > 1 foralln € N and {x,} —
x € X, then o (x,,x) > 1 foralln € N.

Then there exists u € X such that Tu = u.

Theorem A.2.6. Under the hypotheses of Theorem A.2.4 (respectively, Theorem
A.2.5), also assume the following condition:

(Uy) For all x,y € Fix(T), there exists z € X such that o (x,z7) > 1 and
a(y,z) > L

Then T has a unique fixed point.
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