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Preface

"Par ma foi! il y a plus de quarante ans que 

je dis de la prose sans que j fen susse rien, 

et je vous suis le plus oblige du monde de 

m 1avoir appris cela."

M. Jourdain in Moliere's "Le Bourgeois 

Gentilhomme" (Act. II Sc. IV)

The original title under which these notes were written— "Notes toward the 

definition of the craft of mathematical modelling"— was somewhat long-winded 

and perhaps, by reason of its allusion, a shade pretentious. It had however 

the merit of greater precision and conveyed the tentative spirit in which 

these notes are put forward for the criticism of a larger public. The whole 

activity of mathematical modelling has blossomed forth into such a multitude 

of areas in the last few years (witness a 1st International Conference with 2646 

pages of Proceedings [199]) that there is indeed a need to define it in the 

sense of seeking out its boundary and exploring its interior as well as of 

discovering its structure and essential nature. The time is not yet ripe for 

a magisterial survey, which would in any case demand an abler pen than mine, 

but I believe it can be approached from the angle of craftsmanship. It is a 

commonplace in educational circles that it is comparatively easy to teach the 

method of solution of a standard mathematical equations, but much harder to 

communicate the ability to formulate the equations adequately and economi­

cally. With the notable exception of Lin and Segelfs [223], and Haberman's book 

[213] and the papers of Hammersley [80,81,82] few publications pay much
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attention to the little things that the experienced mathematical modeller 

does, almost by instinct. It would therefore seem to be worthwhile to try 

and set down some of these notions in the interests of the craft and with 

the hope that it will stimulate further discussion and development. There is 

manifestly a danger here, for it may be only the MM. Jourdains who will be 

vastly excited to learn that they have been talking prose all their lives. 

Nevertheless I hope that some of my peers and betters will find the subject 

worthy of their attention.

Later iterations of this effort will demand a wealth of examples drawn 

from all branches of the physical and social sciences. In this first attempt 

I have chosen three physical examples to serve the illustration of many 

points. These examples— the packed bed, the chromatographic column and the 

stirred tank— are given in detail in the appendices. They are in some sense 

fold-out maps to the text though they cannot be presented as such. (Each 

has its own nomenclature which is listed at the end of its discussion; the 

nomenclature for other examples is introduced in situ.) These examples and 

those introduced at various points of the text are often connected with the 

mathematical theory of chemical reactors. I make no apology for this; the 

field is a rich one that has stimulated some of the work of the best applied 

mathematicians who have used a reactor like a stalking-horse under cover of 

which to shoot their wit. Its problems are challenging, yet from the 

modelling point of view they do not demand any great knowledge of chemistry 

or of engineering and so are accessible to all.

Many of the notions I have advanced here and the order I have tried to 

impose on the subject are quite tentative and I shall appreciate any comments 

and criticism. I have already benefitted from interaction with colleagues, 

both faculty and students, at Caltech and it is one of the virtues of
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Pitman's Research Notes for Mathematics series that it quickly submits ideas 

to a wider public.

To the California Institute of Technology I am vastly indebted for a term 

as a Sherman Fairchild Distinguished Scholar in the fall of 1976, under con­

ditions of such generous hospitality that the fruits of such a tenure can 

never be worthy of the opportunity. At the risk of overlooking someone, I 

would like to thank in particular (and in alphabetical order) Cohen, Gavalas, 

Keller, Pings, Seinfeld and Weinberg. Yolande Johnson did a splendid job of 

the first draft of these notes that was prepared at Caltech, being helped by 

Sharon ViGario in the last minute rush. The final version was typed by 

Shirley Tabis who met the exacting requirements of camera readiness with 

great skill and dispatch. I am most grateful to all of them.
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1 What is a model?
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__The idea of a mathematical model and its relationship to other uses of
of the word.

In these notes the term Mathematical model*— usually abbreviated to 

'model' will be used for any complete and consistent set of mathematical 

equations which is thought to correspond to some other entity, its prototype. 

The prototype may be a physical, biological, social, psychological or con­

ceptual entity, perhaps even another mathematical model, though in detailed 

examples we shall be concerned with a few physico-chemical systems.

Being derived from 'modus' (a measure) the word 'model' implies a change 

of scale in its representation and only later in its history did it acquire 

the meaning of a type of design, as in Cromwell's New Model Army (1645).

Still later (1788) came the complacent overtones of the exemplar that Gilbert 

was to use so effectively for his modern major general, while it is the first 

years of this century before fashion became so self-conscious as to claim 

its own models and make possible Kaplan's double entendre (see quotation at 

head of Ch. 5). In the sense that we are seeking a different scale of
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thought or mode of understanding we are using the word in its older meaning. 

However, the word model (without the adjective Mathematical1) has been and 

is used in a number of senses both by philosophers and scientists as merely 

glancing through the titles of the bibliography will suggest. Thus 

Apostel [7] distinguishes nine motivations underlying the use of models 

ranging from the replacement of a theory-less domain of facts by another for 

which a theory is known (e.g., network theory as a model for neurological 

phenomena) to the use of a model as a bridge between theory and observation. 

Suppes in the same volume [169] maintains that the logicians concept of a 

model is the same in the empirical sciences as in mathematics though the use 

to which they are put is different. The logician's definition he takes from 

Tarski [172] as: "a possible realization in which all valid sentences of a 

theory T are satisfied is called a model of T". This is a non-linguistic 

entity in which a theory is satisfied and Suppes draws attention to the 

confusion that can arise when model is used for the set of assumptions 

underlying a theory, i.e. the linguistic structure which is axiomatized. In 

our context this suggests that we might usefully distinguish between the 

prototype (i.e. the physical entity or system being modelled), the precursive 

assumptions or what the logicians call the theory of the model (i.e. the 

precise statement of the assumptions of axioms) and the model itself (i.e. 

the scheme of equations).

The idea of a change of scale which inheres in the notion of a model 

through its etymology can be variously interpreted. In so far as the 

prototype is a physical or natural object, the mathematical model represents 

a change on the scale of abstraction. Certain particularities will have 

been removed and simplifications made in obtaining the model. For this 

reason some hard-headed, practical-minded folk seem to regard the model as
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less "real” than the prototype. However from the logical point of view the 

prototype is in fact a realization in which the valid sentences of the 

mathematical model are to some degree satisfied. One could say that the 

prototype is a model of equations and the two enjoy the happy reciprocality 

of Menander and life.

The purpose for which a model is constructed should not be taken for 

granted but, at any rate initially, needs to be made explicit. Apostel (loc. 

cit.) recognizes this in his formalization of the modelling relationship 

R(S,P,M,T), which he describes as the subject S taking, in view of a 

purpose P, the entity M as a model for the prototype T. J. Maynard Smith 

[165] uses the notion of purpose to distinguish mathematical descriptions of 

ecological systems made for practical purposes from those whose purpose is 

theoretical. The former he calls 1 simulations * and points out that their 

value increases with the amount of particular detail that they incorporate. 

Thus in trying to predict the population of a pest the peculiarities of its 

propagation and predilections of its predators would be incorporated in the 

model with all the specific detail that could be mustered. But ecological 

theory also seeks to make general statements about the population growth 

that will discern the broad influence of the several factors that come into 

play. The mathematical descriptions that serve such theoretical purposes 

should include as little detail as possible but preserve the broad outline 

of the problem. These descriptions are called ’models1 by Smith, who also 

comments on a remark of Levins [114] that the valuable results from such 

models are the indications, not of what is common to all species or systems, 

but of the differences between species of systems.

Hesse [92] in her excellent little monograph "Models and Analogies in 

Science" distinguished two basic meanings of the word ’model’ as it is used
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in physics and Leatherdale in a very comprehensive discussion of "The Role 

of Analogy, Model and Metaphor in Science" has at least four. They stem from 

the methods of "physical analogy" introduced by Kelvin and Maxwell who used 

the partial resemblance between the laws of two sciences to make one serve 

as illustrator of the other. In the hands of 19th century English physicists 

these often took the form of the mechanical analogues that evoked Duhemfs 

famous passage of Gallic ire and irony. Duhem [56] had in mind that a 

physical theory should be a purely deductive structure from a small number 

of rather general hypotheses, but Campbell [41] claimed that this logical 

consistency was not enough and that links to or analogies with already estab­

lished laws must be maintained. Leatherdalefs four types are the formal and 

informal variants of Hessefs two. Her "model^" is a copy, albeit imperfect, 

with certain features that are positively analogous and certain which are 

neutral but shorn of all features which are known to be negatively analogous, 

i.e. definitely dissimilar to the prototype. Her "mode^" is the copy with 

all its features, good, bad and indifferent. Thus billiard balls in motion, 

colored and shiny, are a mode^ for kinetic theory, whilst billiard balls in 

motion obeying perfectly the laws of mechanics but bereft of their colour, 

shine and all other non-molecular properties constitute a model^. It is the 

natural analogies (i.e. the features as yet of unknown relevance) that are 

regarded by Campbell as the growing points of a theory. In these terms a 

mathematical model would presumably be a formal model^.

Brodbeck [35], in the context of the social sciences, stresses the aspect 

of isomorphism and reciprocality when she defines a model by saying that if 

the laws of one theory have the same form as the laws of another theory, 

then one may be said to be a model for the other. There remains, of course, 

the problem of determining whether the two sets of laws are isomorphic.
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Brodbeck further distinguishes between two empirical theories as models one 

of the other and the situation when one theory is an "arithmetical 

structure". She then goes on to describe three meanings of the term 

mathematical model according as the modelling theory is (a) any quantified 

empirical theory, (b) an arithmetic structure or (c) a mere formalization in 

which descriptive terms are given symbols in the attempt to lay bare the 

axioms or otherwise to examine the structure of the theory. If arithmetical 

is interpreted with suitable breadth we are clearly concerned in these notes 

with sense (b).

It is obviously inappropriate in the present context to try to survey all 

the senses in which the word has been used, among which there is no lack of 

confusion. A more formal version of the definition of a (mathematical) model 

that we started with might be as follows: a system of equations, E, is said 

to be a model of the prototypical system, S, if it is formulated to express 

the laws of S and its solution is intended to represent some aspect of the 

behavior of S. This is vague enough in all conscience, but the isomorphism 

is never exact and we deny the name of modelling to the less successful 

efforts of the game. Rather, we should try and find out what constitutes a 

good or bad model.

It scarcely needs to be added that we shall not raise the old red herring 

about the model being less "real" than the prototype. Tolkien [178] has 

reminded us of the failure of the expression "real life" to live up to 

academic standards. "The notion", he remarks, "that motor cars are more 

’alive1 than, say, centaurs or dragons is curious; that they are more 'real* 

than, say, horses is pathetically absurd".

The mention of reality leads me to add that by far the most enlightening 

discussion of models I have found is in Harre’s excellent introduction to
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the philosophy of science, "The principles of scientific thinking" [37]. He 

writes from a realist point of view which eschews simplifications and 

attempts to present a theory of science based on the actual complexity of 

scientific theory and practice; he regards the alternative traditions of 

conventialism and positivism as vitiated by the attempt to force the 

description of scientific intuition and rationality into the deductivist 

mould. Model building becomes an essential step in the construction of a 

theory. I shall not attempt to summarize the argument of his second 

chapter, which demands careful and considered reading, but it may be useful 

to mention one or two of the distinctions he makes. He starts with the 

notion of a sentential model in which one set of sentences T is a model of 

(or with respect to) another set of sentences S if for each statement t 

of T there is a corresponding statement s of S such that s is true 

whenever t is acceptable and t is unacceptable whenever s is false.

If T and S are descriptions of two systems M and N and T is a 

sentential model of S, then M is an iconic model of N. He recognizes 

that in mathematics the word is used in both ways: model theory is clearly 

a sentential model within mathematical logic, but we often conceive sets of 

objects, real or imaginary, which are described mathematically. The latter 

is an iconic model and the equations a sentential model of the sentences 

describing the set of objects. Harre goes on to distinguish between the 

subject and source of a model. The former is whatever the model is a model 

of, the latter what it is based on; for example elementary kinetic theory 

gives models of a gas (subject) based on the mechanics of particles (source). 

Homeomorphs are models in which the source and subject are the same as in a 

mechanical scale model. When source and subject are not the same, as with 

the English tubes and beads that amazed Duhem so much (cf. Sec. 2.1), Harrd
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speaks of paramorphs. He goes on to discuss the taxonomy of models and to 

show how they are incorporated into the construction of theories first by 

the creation of a paramorph and then by supposing that it provides a hypo­

thetical mechanism. This process evokes existential hypotheses and raises 

such questions as the degree of abstraction that can be tolerated leading 

into a full-scale discussion of the formation of scientific theories.

Clearly mathematical modelling in the sense in which we are here discussing 

it is a small part of this much larger design.

1.2 Relations between models with respect to origins.

It seems well to use the term model for any set of equations that under 

certain conditions and for a certain purpose provide an adequate description 

of a physical system. But, if we do this, we must distinguish the kinds of 

relationships that can obtain between different models of the same process. 

(This approach seems more useful than to talk of models and sub-models, 

since the relations are more varied and mixed than can be compasses by this 

nomenclature). It is of the first moment to recognize that models do not 

exist in isolation and that, though they may at times be considered in their 

own terms, models are never fully understood except in relation to other 

members of the family to which they belong.

One type of relationship can be seen in the packed bed example, the full 

details of which are given in Appendix A. The physical system is that of a 

cylindrical tube packed with spherical particles and our purpose is to model 

the longitudinal dispersion phenomenon. By this we mean that if a sharp 

pulse of some tracer is put into the stream flowing through a packed bed it 

emerges as a broad peak at the far end of the bed, showing that some 

molecules of the tracer move faster through the bed than others 

and that the sharp peak of tracer is dispersed.
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This is the physical system P and it is amenable to modelling in various 

ways. The most obvious one is to write down the equation of continuity, the 

Navier-Stokes equation and the diffusion equation with their several boundary 

conditions (eqns. Al-7). This model, which we will call IT̂ , is admirably 

complete and founded on the fewest and most impeccable assumptions, but, for 

two reasons, it is not a very useful model. In the first place, if the 

actual geometry of a given packed bed could be used the results would be 

peculiar to that bed, making it a good simulation but a bad model in the 

senses of Smith. Secondly, even if the geometry were standardized (and this 

presents its own difficulties) to, say, a cubic array of spheres the 

resulting equations would present ferocious difficulties to computation and 

the model would probably remain barren of results. If the models with
t f t

standardized and peculiar geometries are denoted by JÎ and 11̂  

respectively they are clearly distinguishable but very closely related— in 

fact almost "non-identical twins".

The second way in which we might try to model P is to say that the same 

sort of dispersion is experienced in a much simpler system, namely that of 

plug or uniform flow through a tube with a longitudinal diffusion 

coefficient. If we call this modified prototype we can easily derive a

partial differential equation IT2* which is much simpler than those of JÎ 

(see eqns. A8-12). There is no immediate connection between JÎ and JT̂ 

though we can imagine that some sort of averaging of the Navier-Stokes
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equations over the cross-section of the bed would lead to the plug flow 

approximation.

On the other hand, we might make something of the fact that in a packed 

bed the space between particles makes a natural cavity whilst the inter­

stices narrow where the particles touch and the fluid can be thought of as 

jetting through into the cavity space. In this rather crude sense the 

packed bed as a sequence of little stirred tanks gives us a modified proto­

type, say P^, which can be modelled. To avoid Suppes1 criticism, we do not 

say that is a model of P, though recognizing that it is popularly

called the "cell model" of the packed bed. The model of P^ (and therefore 

of P) consists N ordinary differential equations for the time-varying 

concentrations in the N stirred tanks of P^. This will be denoted by 11̂ 

and the equations are numbered A13-16. There is no obvious connection between 

and or between and IT̂ .

A fourth way of modelling the system P would be to regard the system as 

a stochastic one in which a tracer molecule had at each step in time the 

options of either moving forward with the stream or of being caught in an 

eddy and remaining essentially in the same place. This modification of the 

prototype, say P^, leads to and the equations A25-26. Again there is

no immediate or obvious connection between 11̂  and the preceding models.

The relationship of these models is expressed in the diagram.P
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The models are best described as cognate models since they appear

to be siblings of the same parent system,

A rather different relationship obtains between the models E^...,Eg of 

the stirred tank S described in Appendix C. In these E^ is the full set 

of ordinary and partial differential equations obtained by making mass 

balances for each of the S species and energy balances on the contents, the 

wall, and the cooling system of the reactor (see pp. 152-164 for details and 

particularly pp. 153 and 154 for the hypotheses). This gives S+2 ordinary 

differential equations and a parabolic partial differential equation. This 

system, E^, (eqns. Cl-6) is again of considerable complexity, but less 

difficult of calculation than P^. E  ̂ is the steady state version of these 

equations obtained simply by deleting all time derivatives and with them the 

initial conditions. It thus consists of non-differential equations coupled 

to an elliptic differential equation. If the assumption is made that the 

wall of the reactor is thin, (hypothesis H^) the elliptic equation can be 

solved quite easily and Eg then consists entirely of algebraic equations,

C9 and 10. (We will call equations that are not differential equations 

'algebraic* even though they may contain transcendental functions).

To reach the model E, we return to the full transient model E- and 4 1

assume that the conductivity of the wall is very high (hypothesis H^). Then 

the parabolic partial differential equation can be replaced by an ordinary 

differential equation for the mean wall temperature and E^ consists wholly 

of ordinary differential equations one for each reacting species and one for 

each of the reactor, wall and coolant temperatures. (eqns. Cl, 2, 6 , 11)

If and Hg, the hypotheses that assert that the wall is thin and of

negligible heat capacity, are imposed instead we have one fewer equation and 

the model E^ (eqns. Cl, 13, 14).
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The final model, E^, is written for a special case of some importance, 

both historically and logically. It is a case that has dominated the 

development of stirred tank reactor analysis, as seen in the papers of van 

Heerden [253], Amundson and Bilous [258], Amundson and Aris [5] and Uppal, 

Ray and Poore [183,184]. Logically it can be defended as the simplest case 

in which the essentially nonlinearity of the nonisothermal behavior comes to 

light. Thus the added hypotheses of instantaneous cooling action (H^) and 

restriction to a single irreversible, first-order reaction (H^q) allow the 

system to be immediately reduced to a pair of ordinary differential equations 

(C15 and 16).

The relationship of those models is represented by the diagram:

Stmdij state j transient
It makes more sense in this case to speak of E0,...E, as derived froml o
(rather than cognate with) E^ since no modification of S is involved and 

the later models can be obtained from E^ by letting certain parameters 

take on limiting values. Steady-state models are worth singling out as of 

particular importance. They can be obtained formally as a limiting case 

introducing an artificial parameter multiplying each time derivative and 

letting this go to zero. But this should be distinguished from a
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pseudo-steady state hypothesis such as in which a physical parameter is

very small and is allowed to take its limiting value of zero. Thus we have

The reader is left to justify the diagram given on p. 149 for the 

relationship of the models of the chromatograph given in Appendix B. They

appear to be a mixture of both. No new relationships seem to be introduced 

however.

The model of a model represents a relationship which is a little different 

from that of cognate models or from the idea of a derived model. This kind 

of modelling arises when the first model is so complicated, either in the 

form of the equations or the number of parameters, that it seems that better 

insight can be gained by quite drastic simplification. Such is the case when 

Burger's equation ut+uux = v u ^  is used to get preliminary insight into 

the nature of turbulence. It is not claimed that the physical system 

corresponds exactly to this equation, though it may be that an artificial one 

could be constructed. But the model of the model has its validity in so far 

as it extracts some important feature of the first model with a form in which 

it can be analyzed more easily. The relationship is more like:

where E is the first model and E? the model of it. The relationships 

indicated by the dotted line may or may not exist and even when they exist

a clone of models in which Z^> E^ and E<- are immediately derived from

E^ while E^ and E^ are derived from Z^ and £

they may or may not be worth attending to.
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Another example Is the Lorentz equations 

x = -a(x-y) 

y = -xz + rx - y 

z = xy - bz

which have a tenuous connection with meteorology, whose equations are well 

developed but vastly complicated; they are perhaps best regarded as a model 

of the meteorological equations. How profitable, and indeed fascinating, 

the study of them may be is to be seen from Lorentz* [119] and Marsden and 

McCracken*s [128] treatments of them.

In some cases the difficulties with E, the model of the physical system 

S, lead the investigator to consider a simplified system, S*, and construct 

a model, E*, of it. In this case the connection between E and E* may 

not be of interest and the situation is

Such a case is the famous "Brusselator" where the unlikely reaction 

mechanism A->X, B+X->Y+D, 2X+Y-K3X, X-*-C was inspired by the Belousov-Zhabo- 

tinsky reaction. It has much intrinsic interest and served to bring to light 

some important phenomena (see e.g. Nicolis and Portnow [135] Lavenda, Nicolis 

and Herschkowitz-Kaufmann [109] or the introductory summary in [14]. But it 

has little to do with the Belousov-Zhabotinsky reaction itself, the 

"Oregonator" and other mechanisms being much more direct attempts to give 

precursors of a model for this. The reader should refer to the excellent 

little monograph of Tyson [182] and the references given there, particularly 

the papers of Kopell and Howard, Murray, Othmer and Winfree [see cf. 219,254].
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Another example stimulated by the need to reduce both the number of 

parameters and the number of equations in Aris and Schruben's [17] simplifi­

cation of Amundson and Liu's [6] packed bed equations. Defining the heights 

of transfer units for mass and heat between the particles and intersticial

( 1 . 1)

fluid as H and 
8 V

£e  + 1 = P p - P
3x u 30 H

8

3t 1 3 t e t -t
3x u 30 ( 1 . 2)

where p = partial pressure of the reactant in the fluid,

pp = partial pressure in the particle where reaction takes place.

t = temperature of fluid, 

tp = temperature of particle, 

x = distance from inlet 

0 = time

These equations were derived from mass and heat balances in the fluid and 

similar handling of the particles, assuming a first order reaction rate

V gave

3p
L _ R  =

8 30

3t
L _JE. =
Lh 30

P P

= t - t - M k(t )p P h pytp

(1.3)

(1.4)

where L ,...M^ are further combinations of the flow rate, particle size, 

density of fluid, etc., the details of which need not concern us here. If 

we make P>Pp dimensionless by dividing by p*, t and tp by t*, x with 

x* and 0 with 0* we are left with five parameters

u6*/x*,H /x*,H^/x*,L^/0*,L^/0* and the additional parameters in M^k(tp)
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and M^k(tp)p*/t* of which there are three. Of these eight only four can

be eliminated by the choice of x*, 0*, p* and t*; for example, if

x* = Hg, 0* = Hg/u, p* = t*/M^A, t* = E/R where k(tp) = A exp-(E/RTp), we

are still left with L u/H , L,u/H , Hu/H and M A. In the steady state g g h g h g g 7

the first two disappear, being multipliers of the time derivatives.

If we look at the steady state equations we have

i ^  = g dx p -p = -M k(t )p P g P P

H ^  = (H /H, )(t -t) = mM k(t )p g dx g h/ p g P P

where m = M^H /M H^. Thus from the two end terms of the equations

H —  [mp + t] = 0 g dx v

(1.5)

( 1 . 6 )

(1.7)

or

P = Pe “ (t-te)/m (1.8)

where pg and t are the entrance values. This last equation merely 

expresses the fact that the bed is adiabatic. Also from the last two terms 

of eqn. (1 .6).

M p M k(t )
t _ t = J l l ---—
p M 1 + M k(t )g g P

(1.9)

Using eqn. (1.8)

Q
M t - t

JL
M k(t )

1 M, p + (t /m) - (t/m) 1 + M k(t )h *e  v e  y \ / g P
= Qo ( 1 . 1 0 )

The right hand side of this equation is an S-shaped curve depending only on 

the two parameters in Mgk(t^). The left hand side varies from point to 

point in the bed since it depends on t. However it represents a family of

straight lines all passing through the point (t + mp , H /H, ). For any te e g n
at position x, tp can
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be found by solving eqn. (1.10) for t̂  and eqn. (1.5) for p^. Then with 

p given by eqn. (1 .8), there is a single equation

£-«*> (l.ii)

to solve for t(x) and this can even be done by quadrature. However the 

diagram shows that the solution of eqn. (1 .1 1) may be multivalued and this 

is the origin of the multiple profiles that are possible in a packed bed. 

Eigenburger [59,60] showed that this continuum of steady states is reduced 

to a single state if heat conduction between particles is allowed, but the 

same phenomenon can be found in isothermal beds with more complicated 

kinetics.

Because of the number of parameters there seems no possibility of getting 

a comprehensive view of the system, though it is to be noted that the 

multiplicity of the solutions of eqn. (1 .10) is determined by the study of 

the stirred tank in Sec. 5.2, if

a = Mg_A, C = RMhp/MgE, v = Rt/E.

This suggests that a simpler model should be constructed that would incor­

porate this feature of multiplicity with the fewest parameters possible.

This was the motivation of Aris and Schruben [17].

Note first that the intermediate intersection can be disregarded since it 

is known always to be unstable. This suggests that the sigmoid curve should
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be replaced by a step function i.e.

h

Also it seems desirable to reduce the number of equations to two. This can 

be done if we suppose that the wall of a tube generates heat at a rate Q by 

means of an exothermic reaction of order zero which is triggered at a 

critical temperature Tc. This heat from the wall, whose temperature at 

position x and time t is denoted by W(x,t) is transferred to the fluid 

flowing in the tube, whose temperature is T(x,t), and we have the 

equations

p is the inner perimeter of the tube, 
h is the heat transfer coefficient,
H is Heaviside’s step function, 

and V is the velocity of the fluid.

The substitutions

c a —  = h (T-W) + QH (W-T ) w w 3t p x c

where Cw ,Cf are t*ie ^eat caPacities of wall and fluid,
a ,a£ are their areas, w fw

v = hp (T-Tc)/Q, w = hp(W-Tc)/Q

£ = h x/Vcjrai., t = h t/crar p t r p t t

a) = c a /c^aW W f f

give

to —  = v-w + H(w) dT
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These equations have only one parameter and the solution of the nonlinear 

equation v-w + H(w) = 0  is immediate. This allowed the full spectrum of 

possible solutions to be surveyed and some observations on the transients to 

be made that had a bearing on the more complicated system. They also have 

an important bearing on the behavior of the monolithic reactor.

1.3 Relations between models with respect to purpose and conditions.

The relationship between models is not only an intrinsic matter of mathe­

matical genealogy but must be viewed also in the perspective of the purpose 

of the model and the conditions under which it is to be used. For example, 

the steady state models of the stirred tank, and £3, are quite unfitted 

to the purposes of control whatever the conditions may be. They are adapted 

to the purpose of steady state design however. E  ̂ may be demanded by the 

conditions of thick walls or poor heat conduction but E^ suffices otherwise. 

This is indicated in part (a) of the figure below, where the boundaries of

the regions are deliberately vague to indicate that the division between the 

regions of applicability is not a sharp one. If the purpose is control then 

E^, the most complicated model, may be demanded by the same conditions that 

demand E^ for the steady state. E^ is valid if the wall is thin whatever
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its conductivity and E,. is a simplification made possible by the good con­

ductivity of the wall even when it is thick. Another way of representing 

the interaction of conditions and purposes with the type of model is shown 

in the next figure. Here the degree of sophistication of the model ranges 

from mere algebraic equations at the lowest level to the coupled partial and 

ordinary differential equations of Ê .

Sometimes the regions of applicability of models can be delineated more 

exactly by setting up a certain standard of accuracy. Though this is 

admittedly arbitrary it sets the stage for the entrances and exits of the 

models. An example is contained in the early work of Gill and his colleagues 

on Taylor diffusion [74,75] which may be illustrated by the A-models of 

Appendix B. The problem is to describe the movement of solute as the solvent 

passes in laminar flow through a long tube. The combined influence of 

molecular diffusion and convection softens an initially sharp front, for, 

thanks to the parabolic flow profile, tracer molecules at the center of the 

tube are taken ahead of the pack by the fast central streams but, then
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finding themselves in a region of low tracer concentration, can diffuse out­

wards to the slower streams and so slow down. The mean concentration of 

tracer is thus diminished in an error-function fashion about a point moving 

with the mean speed of the stream. In fact this mechanism of dispersion, 

first elucidated by Taylor in 1953 [174], shows that the higher the diffusion 

coefficient the smaller the longitudinal dispersion, since lateral diffusion 

will immediately negate the effects of the flow profile. But when the 

diffusion is isotropic a high lateral molecular diffusion implies a high 

longitudinal dispersion and there is a point at which total effect is 

minimum. The purpose of the model is to account for the advancing wave of 

solute as represented by its mean value. This is zero initially and in a 

general way is as shown here:

1 C i c

~\
CK

_ L _ *
w

The models, described in detail in Appendix B, are:

the full parabolic partial differential equations to be solved for 

the concentration c as a function of x, distance from inlet, r, 

distance from tube axis, and time, t. This solution is averaged over 

the cross section to give c(x,t).

the equation for plug flow at the mean speed of the stream with an 

equivalent longitudinal diffusion coefficient Dg are solved for the 

mean concentration directly. Dg is related to D, the molecular 

diffusion coefficient, a, the tube radius and U, the mean velocity. 

A^ De = a2U2/48D

A^' Dg = D + A2U2/48D
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f l »
A D = D A4 e

A5 a Pure convection model with no consideration of diffusion 

A6 An empirical fit of Dg between the solutions of A2 and A^.

ajj
S

If the purpose is to provide a sufficiently accurate value of c for a

period of time t we may take one axis to be the dimensionless time 
2

t = Dt/a . The conditions are represented by the Peclet number P = aU/D.

Gill and his colleagues [74] mapped the x-P space as shown above. Thus,

for example, the full equations have to be solved in the region A£, but the
2 2Taylor diffusion coefficient a U /48D in the plug flow model suffices in
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the region A^. The arrangement of the A^-regions is reasonable, for the
i » 2modification A^ (cf. [10]) can be written D[1 + P /48]. Thus when P is

»

large we can neglect the 1 in the bracket giving A^, whereas, when P is
2 1 1small, P /48 is negligible. A^ is an empirical bridge between A^ and

! t I

1.4 How should a model be judged?

We shall have more to say of the detailed evaluation of models in the last 

chapter, but it will be useful to make a few points in a preliminary way. 

Clearly, once a model has been set up it has a life of its own and its 

equations have their own intrinsic interest. However most models are 

indissolubly bound to their origins and cannot be viewed in isolation from 

their background any more than they can ignore their relatives. The 

relation is a dynamic one calling for continual interaction if either con­

ceptual progress or actual understanding is to be gained. It may be 

envisioned in the following way:

Preliminary 
ideas N

First model
\Design of 
experiment

^^onceptuaJ^Progres^^^^
Revised 

ideas
S 'Interpretation Second

model

Evaluation
^  y
Experience Actual understanding

A certain primacy belongs to theory since it is impossible to design a 

good experiment without some theoretical vision and the more precise the 

theory the more decisive the experiment can be. If conceptual progress is 

to go hand in hand with the understanding of an actual situation there must
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be this intercourse between the system, S, and its family of models, E, 

though the distinction that Smith has made between model and simulation is a 

valid one. It might be represented by a serpentine progress that tends to 

emphasize one level of the other, i.e.:

actual understanding

The revision of ideas and development of models is not necessarily in 

the direction of greater complexity or an increasing number of parameters. 

Progress may be toward simplification and the reduction of the number of 

adjustable constants since it is often said that you can fit an elephant 

with five constants, though Wei [189] has shown that the fit may not be 

spectacular. While it is certainly convincing if a complicated situation 

can be represented by the adjustment of very few constants, care must be 

taken to see that it is not purchased by a less obvious accommodation else­

where, as when it was said of a certain theorist that his work required no 

adjustable constants but completely pliable hypotheses. Nevertheless part 

of the judgment of a model will lie in whether its constants can be found 

from independent sources and combined to give a convincing picture in the 

interactive situation. Thus we have a high degree of confidence in a model 

of a reactor embodying such complicating features as diffusion within 

catalyst pellets if the kinetics of the reaction, diffusivities and catalyst 

properties can all be determined independently and give, in the model, a
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recognizable behavior. We have less confidence if we adjust the parameters 

in the model as a whole, for example by a least square fit of outputs, with­

out any interior understanding. Similarly at the interior level in deter­

mining, say, the kinetics, we have much more confidence in a kinetic 

expression that is based on an independently confirmed mechanism than in an 

overall kinetic expression that lacks this insight. Of course, the 

exigencies of a particular situation may force us to be content with less 

than the best.

There is however a phenomenon of current interest that raises deeper 

questions about our ability to compare the implications of a model with 

experience. This is the class of solutions of quite simple equations which 

are said to be chaotic in their behavior. The locus classicus in which this 

behavior may be observed is the difference equation

x ,- = Ax (1—x ) n+1 n v n'

— an innocent enough starting point for anyone. If 0 < A < 4 the trans­

formation maps the interval [0,1] into itself. The origin x = 0 is always 

a fixed point and indeed is the only fixed point until A exceeds 1 when 

1-A  ̂ is also a fixed point. At A = 1 the origin becomes unstable but 

the new fixed point is stable and remains so until A = = 3. At this

point two stable solutions of period 2 (i.e. for which xn+2 = xn) aPPear 

and are stable. But not for long, since when A reaches A^ = 1+/6 = 3.45 

these become unstable and spawn four solutions of period 4 which are, at 

first, stable. This process of binary fission becomes increasingly frequent 

as A increases and in fact the sequence of points A2, A^, Ag,... at 

which the 2n stable cycles of period 2n appear has a limit point A^ = 3.57. 

Beyond this point there are a countable infinite number of unstable periodic 

orbits and also an infinite number of solutions which are in no sense
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periodic, that is they are neither periodic nor asymptotic to a periodic 

solution. At A = 3.68 a long periodic solution of odd length appears and 

by the time A = A^ = 3.83 a cycle of period 3 is seen. At this point cycles 

of all periods are present some of which are stable. In fact cycles of 

period 3 bifurcate into those of period 6, which in turn go to those of 

period 12 and again the values of A at which these bifurcations take place 

have a limit point (A = 3.85) short of A = 4. Indeed Li and Yorke [115,222] 

have shown that once there is a cycle of period 3 there must be cycles of all 

periods as well as strictly non-periodic solutions— a situation aptly des­

cribed as chaotic.

This remarkable situation is not peculiar to the expression Ax(l-x) but 

is generic for all functions with a hump and a parameter such as A by 

which it can be 'tuned1. It is described with admirable clarity by May, 

Oster and Guckenheimer in various places [128,129,130,211]. It is a feature 

shared by many allegedly simple systems as the Lorentz equations [119] and 

the examples of Rossler [157] show. In itself it points up the value of 

even the simplest models for here a simple generic situation has opened our 

eyes to a new type of behavior of the solution which may well reflect the 

irregularities experienced in nature. It differs from a random process in 

the following sense. In the random process the attempt to predict future
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states is limited by the range of the correlation of the random process, 

whereas in a chaotic process it is limited by the accuracy with which the 

initial conditions can be determined. This is the case because arbitrarily 

near to the initial point of any solution there are infinitely many initial 

points that will give solutions that ultimately diverge completely from the 

first solution. But this raises the question of whether the matching of the 

results of a computation with experience can ever be trusted. Such questions 

as: does a mismatch constitute an adverse reflection on the model or is it

only the result of a failure to find the initial conditions with sufficient 

accuracy? could a chaotic solution be distinguished from one of a very long 

period? even if such a distinction could be made would it matter? how can 

two models ever be compared if their solutions are both chaotic? These and 

other questions are as yet unanswered but are relevant to the question of 

evaluating a model.

Different types of model call for different modes of evaluation. Bush 

and Mosteller [38] present an interesting comparison of eight statistical 

models of a learning process and in doing so examine various criteria. They 

reject the likelihood ratio, for example, as an adequate tool for discrimi­

nation. Though it is a convenient summary of the fit of the model to the 

data it is often difficult to compute and obscures the peculiar strengths 

and weaknesses of a particular model, failing to suggest why the model is 

inadequate. Moreover, it may be sensitive to uninteresting differences 

between the model and the experimental set-up. Instead they use a number of 

different statistics (e.g. trials before first avoidance, trials before last 

shock, etc.) to judge the match between the data and the learning sequences

calculated from each model.



2 The different types of model

MLet us take them in order. The first is the taste, 

which is meagre and hollow, but crisp: .

C. L. Dodgson. The Hunting of the Snark.

Fit 2. St. 16.

This chapter is little more than an annotated list of various types of model 

that are in common use. It would be pleasant, but unrealistic, to think that 

the author could produce a sequence of sparkling little essays on the his­

torical origins, the current status, the manifold areas of application and 

the virtues and vices of each. No doubt this would be the very model of such 

a chapter but, for the moment, this rather superficial survey must suffice as 

a reminder of the variety of tools that the modeller should have in his bag.

2.1 Verbal models and mechanical analogies.

This type of model, referring to one couched in the language of everyday 

discourse rather than in the language of mathematics, is in the strict sense 

outwith our present policies, but it should nevertheless be mentioned since 

it may well have some of the characteristics of a mathematical model. Such 

models might be called "soft" models without being pejorative for they are 

useful without being "hard" in the sense of having quantitative predictions 

or sharply defined concepts. Toffler [88, p. 274] points out that in the 

social context it is virtually impossible to make absolutely explicit all 

the assumptions of a hard model and that models can thus be "implicitly soft." 

On the other hand there are "explicitly soft" models and Toffler points to
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the novelists who present verbal models of society often with great pre­

cision; e.g., McCarthy of the internal politics of a small United States 

college in ’’The Groves of Academe" or Snow's "The Masters" with its model of 

a Cambridge college. (The ambiguity— and richness— of verbal models is 

evident when one considers the totally different overtones of the one word 

"college.") He is in line with Maynard Smith's use of the word when he 

writes: "Good mathematical models don't 'predict' in the colloquial sense

of the word. But they can broaden our understanding of the potential con­

sequences of our decisions..." In a very different context from the Venice 

seminar of economists, sociologists and futurists to whom Toffler spoke,

Os ter and Guckenheimer have reported [128, p. 328] "that many ecologists 

seriously question whether mathematics can play any useful role in biology. 

Some claim that there has not been a single fundamental advance in biology 

attributable to mathematical theory. Where complex systems are concerned, 

they assert that the appropriate language is English, not mathematical." 

These are reservations worth bearing in mind for mathematical modelling is 

not without a certain danger of narcissism (cf. [224]).

The use of mechanical analogies, verbally described, is not uncommon in 

mathematical modelling. Rheologists will, for example, often talk about 

springs and dashpots even when the equations they obtain could have been 

derived directly from more abstract hypotheses. When they draw further 

pictures of the CQiling and uncoiling of polymer chains they may indeed be 

making mechanical hypotheses. But analogies also have their place. How much 

of a place is to be given to them is partly a matter of taste, and there is 

a famous passage in Duhem [56] contrasting like French and English in their 

approach to the physics of his day. "The employment of similar mechanical 

models...is a regular feature of the English treatises on physics. Here is
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a book intended to expound the modern theories of electricity... in it there 

are nothing but strings which move around pulleys, which roll around drums, 

which go through pearl beads, which carry weights; and tubes which pump 

water while others swell and contract; toothed wheels which are geared to 

one another and engage hooks. We thought we were entering the tranquil and 

neatly ordered abode of reason, but we find ourselves in a factory."

2.2 Finite models.

The theory of graphs has found many natural applications in the physical and 

social sciences. A graph is a collection of vertices, V, linked in some way 

by elements of a collection of edges, E. If u, veV are vertices (the terms 

node and point are also used), then uveE denotes the edge connecting u to v.

If this has a sense of direction from u to v, the graph is a directed graph 

or digraph. E is thus a subset of VxV. If w  is allowed as a proper element 

of E, then the graph is called a loop graph. If more than one edge may 

connect two vertices, the term multiple graph or multigraph is often used.

The problems of connectivity and decomposition, or characterization and the 

topography of graphs arise immediately and there is a rich theory on which to 

draw. The most obvious applications are to networks of all sorts, electrical, 

mechanical, transportation, job assignment and scheduling, industrial inter­

dependence and the planning of experiments. Perhaps the most famous 

"application" is the four-colour problem, the many, unsuccessful attempts to 

solve which have contributed greatly to the advancement of graph theory. But 

the structure of many different areas, social, physical and intellectual, can 

be illuminated by its methods; see, for example [85]. It has even been 

applied to the structure of Mozart's "Cosi fan Tutte" [83]. It has a vast 

literature of which only a sample can be mentioned: [24,27,28,67,84,85,140].
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The theory of games is another finite model that has found wide 

application and indeed was developed by von Neumann and Morgenstern in the 

context of economics. In its simplest form two players P and Q each select 

one of their set of options (p^, for P and (q^,...qm) f°r Q> the payoff

from P to Q if the choices are p^ and being an amount a ^ . The question 

is whether there is an optimal way for each to play. A pure strategy for p 

is the choice of one p^, a mixed strategy, a, is the choice of a set of num­

bers s^, i=l,...m, Es^=l, which can be regarded as the proportion of times 

in a long run that p^ will be chosen. A similar definition applies for t ̂ , 

a mixed strategy t for Q. The expected payoff p(a,x) = EEs^a^tj and the 

game has a value if there exist two strategies a and t such that for all a 
and t

p (5,t) > p(a,T) > p(a,x).
The fundamental theorem shows that a two-person game has a value under the 

condition that it is zero-sum, i.e., the payoff to Q of an amount a is the 

same as a payoff to P of -a. There are many natural applications in the 

social and physical sciences. Some problems in control theory can be 

regarded as games against Nature. There are also many extensions, as to non­

zero-sum and multiperson games and to differential games in which the action 

and condition of the players develop continuously in time. See, for example, 

[69,99,121,149,150,191].

Game theory is intimately 

of determining the set of non

cuiuiecuea w itn

[-negative x^, j=l,2,...N, that satisfy

.En a..x. < b., i=l,2,...,M j=l 1J 3 l’

and maximize

M
Z = . E-, c .x .. 

3 = 1 J J
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To which there is a dual problem, that of minimizing 

MW = .Z. b.y. i=l 3/1

subject to 

M.Zi y.a.. > c., j=l,2,...N.1=1 i ij 3

Many systems have been modelled in this form ranging from huge input-output

models of the economy to modest problems of blending. Dantzig, the principle

architect of the subject, has given a splendid exposition of it [52] and its

extensions in a book from which one can learn much about modelling in general.

Finite automata have been used variously as models, not only in computer

science, the house in which they were born, but also in control theory,

linguistics, psychology, and biology. See [8,9,62,78,168,180]. Basically,

the automaton is the computer reduced to its simplest elements, an input/

output tape on which symbols from a finite alphabet are read or written and a

set of internal states. The computation is done by a set of instructions that

modify the internal state and either move the tape or modify the symbol under

the head. If the alphabet is A = (a^; j=l,...M} and the states are a set

S = (S. ; k=l,2,...N} the instruction can be of three forms: (a., S. ) -* (a ,S ) k k p q
says that when the machine is in state and reads â  it replaces the symbol

by a^ and changes its state to S^; (a^S^) + (1,S^) changes the state to

but leaves â  unchanged merely moving the tape one place to the left;

(aj,S^) -* (r,S^) does the same except that movement is to the right. The

machine is deterministic if (a.,S,) has a unique consequence. A computationJ k
is a series of such steps which either terminates or goes into a repetitive 

sequence. Usually there is a distinguished initial state and the input tape, 

which is finite, starts in the left-most position. When it stops, the state 

of the tape may be regarded as the output. The Turing machine, as this
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automaton is called, thus gives a mapping from the input tape to the output 

tape. It can be generalized to have several reading and writing heads, but 

it is a matter of convenience rather than necessity for Church’s thesis is 

that all devices that formalize the notion of computability are equivalent.

The finite automaton is a Turing machine that only reads and only moves the 

tape in one direction, say to the left; its instructions can therefore be 

written (â jŜ .) -* since the 1 can be taken for granted. It is not hard to 

see how such a device has possibilities for representing the learning process 

or the formal aspects of language and these and other developments are to be 

found in the references given.

2.3 Fuzzy subsets.

An important class of mathematical models was introduced by Zadeh [195] in 

1965 when he defined a fuzzy set or subset. The usual definition of a subset 

A of U can be formalized in terms of the characteristic function of the subset 

X(x) such that for any xeU, x(x)=l if xeA and x(x)=0 if x does not belong to 
A. Such definiteness is all very well in its place but there are clearly many 

situations whose intrinsic ambiguity and vagueness is ill-served by such a 

black-or-white attitude. The concept of fuzzy subset replaces the character­

istic function x ( x ) with values in the set {0,1} by a membership function 

y(x) with values in a membership set M. Usually M is a totally ordered set 

(very often the closed interval (0,1) is taken) and y(x) is the degree of 

membership of x in A. For example, if U is the real line and M=[0,1], the 

fuzzy subset of "small numbers" might be defined with y(x)=(l+|x|)  ̂or of 

"really small numbers" by y(x)=(l+|x|)

The usual operation with sets can be defined suitable for fuzzy subsets.

For example, if A and B are fuzzy subsets of U with the same membership set,

A is included in B is y^(x) ^ yg(x) for all xeU. The union of two fuzzy
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subsets has a membership function y(x) = Max(y (x),y (x)). For example, ifL> D

M and U are both [0,1], these ideas can be shown graphically.

l

o

In the same spirit graphs, relations and equivalence can be generalized to 

fuzzy graphs, fuzzy relations and similitude. Binary operations on two 

fuzzy subsets can be defined leading to monoids and groupoids. For example, 

if U=R+ and I is the fuzzy subset with membership function

Pn(x) = Anxn ^e ^X/(n-1)! then we can define the composition of two of these 

subsets Im*IR as the fuzzy set with membership function

C » • „ ( o  dto m n
Then I *1 =1 , and, if we add I with y (x) = 6(x), we have a monoid m n m+n o o
I ,1^... of fuzzy subsets which is isomorphic to the natural numbers. The 

1^ are called the exponential fuzzy integers.

But the generalization have gone far beyond this and there are fuzzy 

categories, topological spaces, logics, algorithms, automata, languages, and 

environments. Some of the most important applications concern decision­

making in a fuzzy environment; see, for example, Bellman and Zadeh [26]. The 

book of Kaufmann [104] is a lucid introduction; Negoita and Ralescu [134] 

are very good but poorly translated; see also Bellman and Giertz [25] 

and Zadeh, Fu, Tanaka and Shimura [192].
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2.4 Statistical models.

In his analysis of a system S, Bury [39] lumps together the process and its 

measuring devices as a black-box out of which comes perceived data. The data 

generated by the process can be corrputed by either systematic or random 

error in the process of being perceived. The aim of statistical analysis is 

thus to construct a statistical model on the basis of the available output 

and hence form conclusions about the underlying phenomena. This is to view 

the measurements as realization of a random variable X. The statistical 

model of the process is thus the probability density function (sometimes 

called the probability mass function when it associates non-zero probabilities 

with points) or its integral, the cumulative distribution function, for the 

random variable. The statistical tools needed to make the desired inferences 

are an understanding of sampling theory and order statistics and the various 

qualities of inference— consistency, bias, minimum variance, efficiency, 

etc.— and the several estimation and confidence tests. There is a range of 

distributions (Gaussian or normal, log-normal, gamma, beta, binomial,

Poisson, Weibull), each with its own virtues and properties.

Of the vast array of books on probability and statistics it is almost 

impertinent to single out one or two. Kendall and Stuart's magisterial 

volumes may still be given pride of place [106], but Feller [64], Lindley 

[117] and Parzen [143] might be mentioned. There is, of course, a huge 

literature on the philosophical issues in "the matter of chance" [132].

2.5 Difference and differential equations.

Differential equations will so dominate the rest of these notes that it 

would be somewhat gratuitous to do more than mention them here. They are by 

far the commonest type of model in the physical sciences, ordinary 

differential equations playing the same role for lumped systems as partials
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do for distributed. Whole tracts of control theory, for example, can be 

cast in the form

x = f(x,u,t), y = g(x,u,t), (2.1)

where x = x(t) is a vector of state variables, y a vector of observations 

and u a vector of control variables. Feedback control seeks a function 

u = h(y) which will attain certain goals; optimal control theory is con­

cerned with finding the control u which will maximize or minimize some 

functional of the path or function of the final state. There are key 

questions of observability and controllability in such models which lie at 

the root of the question of whether optimal or feedback controllers exist. 

Naturally these questions are answered most completely for linear systems. 

Similar questions pertain to partial differential equations where they are 

of course much more difficult to answer.

Difference equations are appropriate when the dependent variable is 

discrete. An example has already been given of the logistical equation 

x^+  ̂= Xx^Cl-x^). Sampled continuous systems are also an avenue to 

different equations. Their theory parallels that of differential equations 

in many ways though the example just given does suggest that their behavior 

can become bizarre much earlier. The difference-differential equation

x(t) = f(x(t), x(t-l)) (2.2)

is an example of a functional differential equation. Whereas eqn. (2.1) 

requires initial values x(0) to be specified if a particular solution is to 

be determined, eqn. (2.2) requires all values x(t) over a unit initial 

interval, say -l<t<0. In that the differential equation has to be dis­

cretized when its solution is to be computed on a digital machine it is 

clear that the difference equation is more important than one would first

suppose.
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The solution of x = f(x,t) also satisfies

x(t) -x(0) (2.3)

which is an integral equation. It can be regarded as a nonlinear integral 

equation and if X is a suitable defined class of functions the right hand 

side of eqn. 2.3 is a nonlinear transformation from X into X. If this 

transformation has a fixed point it provides a solution of the integral 

equation. Integral equations and indeed integro-differential equations are 

used as models, though we shall not have occasion to refer to them.

2.6 Stochastic models.

The integral formulation (2.3) of the differential equation is often used as 

a starting point for the study of differential equations with random elements 

Thus if a is a random variable, i.e. known only through its probability 

distribution function F(a) = Pr{a<a} or its density f(a)da =

Pr{ae(a, a+da)}, a generalization of eqn. (2.1) is

x(t;a) = f(x(t;a),t;a) +g(x(t;a), t)w(t;a) (2.4)

where w is a random process often taken to be white noise. The initial 

state is also random x(0;a) = xq (cO t>ut we have a formal analogue of eqn. 
(2.3) in

x(t;a) = xQ (a) + (x(tf;a), t1;a)dt + /^g(x(t1;a),t')dW(t';a) (2.5)

where W is the Wiener process from which w is derived. Unfortunately 

the second integral almost surely does not exist in the ordinary Riemann- 

Stieltjes sense and it requires special interpretation (see [100],[126] etc.) 

Nevertheless it is clear that in such stochastic differential equations we 

have a class of model of the utmost importance. Nor can we fail to expect 

some striking new results. Take for example the very simplest of cases, the 

equation x + ax = 0, x =1 where a is uniformly distributed over the
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interval (3-y, 3+y) • The expected value of a is 3 and with this expected 

value for a the solution of the equation is x(t) = exp-3t. But x(t;a) = 

exp-at and the expected value of this is E(x(t;a)) = (exp-Bt)[(sinhyt)/yt] 

which behaves quite differently as time goes on. Seldom can the equation be 

solved explicitly and one has recourse to moments or equations for the 

transition probability. Thus if F(x, t |xo,to)=Pr{x(t;a)<x|x(to;a)=sxo) and 

f = 3F/8x and x = m(x,t) + a(x,t)w(t,a) then F satisfies a Kolmogoroff 

or backwards diffusion equation and f the Fokker-Planck equation

9f 1 9  , 2-v 3 , -v
3t = "2 ~ 2  ( f) "ax (mf)9x

with a boundary condition from the probability density function of the 

initial state.

The origins of the theory of stochastic processes lie in the study of 

Brownian motion and other random walk problems, though Markov, one of the 

key figures in the development, had interests in linguistic problems also.

We have mentioned some elementary stochastic models in Appendices A and B.

A key notion of wide applicability is that though only known probabilistically 

the state at time t+1 only depends on the state at time t. This property, 

often called the Markov property, means that the transition probability 

between state i at time t and stage j at time t+1, p^Ct), is all 

that need be known. If it is independent of t the process is stationary.

The theory develops from random walk problems to Markov chains with discrete 

time and a finite number of states, to processes with discrete states in 

continuous time and so to those with continuous state space and continuous 

time, i.e. stochastic differential equations. Non-Markovian processes can 

also be considered though with more difficulty. Time series, the outputs of 

stochastic processes, are also studied for their own sake and prediction and
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filtering theory plays a key role in many applications. It is easy to see 

that stochastic models are appropriate to a wide range of situations from 

learning theory or the mobility of the work force to gunnery and ecology.

An excellent bibliography up to 1959 has been edited by Wold [192] and there 

is an extraordinary range of books on the subject of which a few are: [22, 

44,48,100,103,126,139,143,154,166,193,227]. For a graphic presentation of 

three stochastic processes the introduction to [192] makes interesting 

reading.



3 How to formulate a model

,,fYou may seek it with thimbles— and seek it with care;

You may hunt it with forks and hope;

You may threaten its life with a railway share;

You may charm it with smiles and soap— 1"

C. L. Dodgson. The Hunting of the Snark.

Fit. 3, St. 8.

Comparatively little needs to be said on this score now that we have 

reviewed the types of model that are available for the formulation is 

nothing more than a rational accounting for the various factors that enter 

the picture in accordance with the hypotheses that have been laid down.

3.1 Laws and conservation principles.

The formulation of the equations of a model is usually a matter of 

expressing the physical laws or conservation principles in appropriate 

symbols. This can often be written down as a prescription as, for example, 

in particle dynamics [107] where, if m is the mass of the particle and r its 

position with respect to an inertial frame, mr is calculated and set equal to 

F, the resultant of all forces acting on the particle. This is a second 

order equation and, this being recognized, it will clearly be necessary to 

specify the initial position, rQ, and velocity, r^, before the model is com­

plete. For a single rigid body whose center of mass is at s in an inertial 

frame, ms is equated to the resultant of the forces and H^, the rate of change 

of the vector of moments of momentum, to the moment of these forces about Q,
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provided that Q is fixed or the center of mass, s.

Except in relativistic contexts when the interconvertibility of mass and 

energy is at issue, the conservation principles invoked for physical problems 

are usually those of mass, momentum or energy. We can also do number counts, 

as, for example, in a population model which may be used to illustrate the 

basic kind of balance that is involved. Let n(a,t)da be the number of 

individuals in the age bracket (a,a+da), then we can compute the change in 

this number during the time interval (t,t+dt). By definition of n this is 

{n(a,t+dt)-n(a,t)}da and by a balance over the age bracket this is the number 

of individuals who 'age* into the bracket, i.e., n(a-dt,t)dt, minus the number 

who age out of it, i.e., n(a,t)dt, minus those that die 0(a,t)dadt. Thus 

dividing by dadt

n(a,t+dt)-n(a,t) _ n(a-dt,t)-n(a,t) , .
dt " da

We then recognize that age and time run simultaneously so that da=dt. Letting 

the common value of this increment go to zero we have

A more sophisticated version of this basic balance starts by recognizing the 

simultaneous flow of age and time. This implies that n(a,t) is the flux of 

numbers that age across a at any time t. Thus, for any interval of ages

n(b,t)-n(c,t)= -/^(3n/3a)da is the net flux into the interval and /^0(a,t)da b b
is the total loss by death. Thus

(3.1)

b<a<c (not necessarily small), /£n(a,t)da is the total number in that interval

or
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But if the integrand is continuous it must vanish everywhere, for, suppose it 

were positive at aQ , b<aQ<c, then it would be positive in some interval about 

aQ. But then b and c could both be taken in this interval and the integral 

could not be zero. The recognition of n(a,t) as a flux across the age a 

makes it easy to write a boundary condition since n(0,t) is the rate of total

births. Thus, if y(a,t)da is the number of births per unit time to

individuals in the age bracket (a,a+da) at time t,

n(0,t) = ĵ ° y(a,t)n(a,t)da. (3.2)

This process can be stated rather generally as follows. In a discrete 

element we can let, F be the net flux of the entity into the element, G its 

rate of generation there and H the total amount of it which is present. Then 

F, G and H are functions of time and satisfy

F + G = g  (3.3)

If we are dealing with a continuum then these quantities must be defined as 

densities. Thus we let the vector f denote a flux which is defined such that 

the flux across an element of area dS in the direction of its normal n is

f*n dS. Similarly the generation must be defined as a rate per unit volume,

so that in a volume element it is gdV, and H becomes a concentration h. Then 

if ft is an arbitrary, simply connected region of the continuum with a piece- 

wise smooth surface 8ft whose outward normal is denoted by n, we have

-/ / f*n dS + /// gdV = ■£- fff hdV 3!) '  '  Q 3t  n

In this equation we use the fact that ft is fixed to interchange the order of 

integration and differentiation and use Green’s theorem on the surface 

integral. Then all terms can be brought to one side of the equation and we

have
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-^ + V • f - g dV = 0.

We must now make the hypothesis that f, g and h are sufficiently continuous 

that the integrand is continuous and then, since the region ft is completely 

arbitrary,

If the volume is a material volume ft(t) moving in a continuum where the 

velocity field is v = v(x,t), then we need Reynolds1 theorem for the inter­

change of differentiation with respect to time and integration. This is

The fact that the flux through a surface element can always be expressed 

as f*n dS is the conclusion of an interesting type of argument that is some­

times useful in other contexts. The figure shows a particular form of element, 

namely a tetrahedron of volume dV and with three sides perpendicular to the 

axes 0n^, On^, 0n^ and having dS as the area of its slanting face. Then by 

definition of the direction cosine the face perpendicular to 0n^ has area 

n^dS. Let f^ be the flux in the direction 0n^ and f the flux over the slant 

face. Then a balance can be struck over the tetrahedron for

(3.4)

F = ( f ^  + f2n2 + f3n3 - f)dS, G = gdV, H = hdV

3
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and the equation F + G = H. But if the volume is allowed to shrink in size

whilst keeping its proportions, dS will decrease as the square of the size 

but dV as the cube. It follows that G and H become negligible in comparison 

with F and hence in the limit F = 0. Thus

if f is the vector with components (f^jf^jf^)*

A similar argument is used in the formulation of boundary conditions if 

the element over which the balance is made is an element of surface 

extended by a distance dh on either size. Then letting dh-K) first reduces

the volume to zero. It is another way of saying that in three dimensions a 

surface has no volume and hence no capacity for a quantity defined per unit 

volume. Thus in the boundary conditions (C4) and (C5) there is no term with 

a time derivative since the natural capacity of the surface is zero. If 

however a quantity is defined 'per unit area* and is therefore a surface 

concentration it may well show up in a boundary condition.

The same principles apply to a moving discontinuity as can best be seen 

in one dimension for a kinematic wave moving in the x-direction

f = fini + ^2n2 + f3n3 = (3.5)
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If a discontinuity moves with velocity u having a flux f_ and concentration 

h to the left and f , h, to the right then in a time dt the net flux (f -f,)dt" T T — ~r
provides the amount that builds up as the front advances, which in (t,t+dt) 

is (h_-h+)udt. Thus the speed of the discontinuity is

We observe that there is no term in g here for there can be no contribution

from the discontinuity itself which is a set of measure zero. Put another
2way, we could say that the amount generated would be gdxdt = gu(dt) which 

becomes vanishingly small in comparison with the other terms as dt-*0.

3.2 Constitutive relations.

In formulating a general conservation relation we left the relationship 

between flux and concentration undefined. This is desirable since the 

physical laws (of conservation of matter, etc.) are applicable to a variety 

of substances of different constitutions. It is the duty of the constitutive 

relation to provide the connection between f, g, and h or F, G and H. Thus 

for example in the stirred tank model of Appendix C when the heat equation, 

(C3) ,

3T 0
P c -rjr = k V2T w pw 3t w w

is written for the wall, we assert that

f = -k VT , g=0, h=p c T w w* e ’ w pw w

for the entity ’energy* or *heat*. Thus the constitution of the wall is that 

it conducts heat according to Fourier’s law, f<*-VT, and does not of itself 

generate heat, g = 0. Similarly the species balance on the whole reactor, 

eqn. Cl,
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dc.
qc . + a.Vr (c.. ,.. . c ,T) 

3 J 1 s’
is of our general form with

F = qjC^f-qCj, G = ajVr(ci>*••CS>T)> H = Vc^ .

The expressions for F and H follow from the definitions but that for G 

asserts two things about the constitution of the system; first, that the 

reaction rate is a function of all the concentrations and the temperature; 

second, that there is but one reaction in which the stoichiometric 

coefficient of is ay  This is further specialized by the constitutive

relation of the first order irreversible reaction in where a = -1,

r = k(T)c.

Under certain circumstances it might be well to distinguish even the 

generally applied constitutive relations from the physical laws in the sys­

tem of hypotheses. This has not been done in the appendices where Fourier*s, 

Fick's law or Newton’s law of cooling have been lumped with the basic laws 

in an underlying hypothesis, Hq , but the more specific constitutive 

relations have been made explicit (e.g. and for the reaction rate in 

Appendix C).

Constitutive relations may come in alternative forms as when Fick’s law 

expresses the diffusive flux in terms of concentration gradients whereas the 

Maxwell relations for multicomponent diffusion express these gradients in 

terms of the fluxes. In many cases the forms can be converted into one 

another and one should keep an unprejudiced mind in case a conversion is 

desirable, but in some cases there are natural choices. Thus in a problem 

of diffusion and first-order reaction

DV c = kc in

Dn«Vc = h(c^-c) on
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one could formulate the problem in terms of a flux

j = -DVc

since then

and

2DV *j = kj in Œ

with

-n*j = h + (h/k)V*j on d Q,

Though the second set of equations has three components and is clearly not 

the set to use to solve the problem yet the complementary formulations have 

their roles in the variational properties of the solutions since the 

solution c minimizes the functional

Many examples of this duality are to be found in Arthurs [19].

Powerful general principles can often be brought to bear on constitutive 

relations to show what general form they must have. Thus Serrin [160] shows 

that the stress tensor, T, of a Stokesian fluid must be related to the rate 

of strain tensor, D, in the form

T = al + 6D + yD2

where a,3 and y may be functions of the three invariants of D. Examples 

of this kind of reasoning abound in rational mechanics, as, for example, in 

Truesdell and Toupin's materpiece [179].

iff
Q

whilst j maximizes

2 if (n-j)dS - fff
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3.3 Discrete and continuous models.

At this point it is useful to discuss the alternative formulation of dis­

crete and continuous models of physical problems. Each has its advantages 

and disadvantages but even here the distinctions are not absolute nor clean- 

cut, either in substance or in method, and may manifest themselves at one 

time as ordinary vs. partial differential equations, at another in linear 

algebraic vs. integral equations. Moreover when it comes to computation on 

a digital computer, the continuous necessarily becomes discrete. The terms 

'lumped parameter' and 'distributed parameter' systems seem misguided for it 

is variables not parameters that are lumped (discrete) or distributed 

(continuous).

The word 'lumping', in spite of its ungainly overtones, is useful in 

describing the process by which a number of things are put together in one. 

This may result in replacing a continuous system by a discrete one. An 

example of this is the network thermodynamics of Oster, Perelson and 

Katchalsky [141], where problem of flow and transport in biological systems 

are treated by the ideas of electrical network theory. This converts 

parabolic equations into ordinary differential equations and elliptic into 

algebraic. An important discussion of lumping in the context of mono- 

molecular reactions has been made by Wei and Kuo [190]. This reduces a 

large system of species into a continuum of species and in this sense lumps 

them together. Lumping of this sort does replace a large number of equations 

by a single equation, but this is often an integro-differential equation 

rather than an ordinary differential equation. In fact the sense of the 

word has been turned around and what is being done is the distribution of a 

large number of discrete variables into a continuous variable— vigorously 

stirring out the lumps. These two processes are worth considering further
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as they illustrate some of the subtleties of the relations between continuous 

and discrete models. Consider first the loss of heat of a wall to its 

environment— a thermal analogue of Oster's case of diffusion through a 

membrane. The figure below shows the physical picture with T(x,t),

-a < x < a, the temperature at any point of the wall. Thus (incorporating 

the symmetry) the continuous model be

PCP
9T
3t 0 < x < a,

9T
8x 0, x = 0,

k H  = h(V T)’ x = a>

T (x,o) = Tr

(3.6)

The kind of solution that we expect for these equations is sketched in the 

right part of this figure. Let us make the equations dimensionless by 

writing

£ = x/a, t = kt/pcpa2, u = (T-Tq )/( T ^ )  , p = ha/k. (3.7)

Thus
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u t = U5C ’ 0 < 5 < 1 ’

u ? = 0 ,  e = o ,

+ yu = 0,5 = 1, 

u(C,0) = 1.

The complete solution of this equation is elementary enough, being

9 -A2T
u ( C . t ) = ? — r------ ---------  e n cosA £

1 A (secA + sinA ) n n n

(3.8)

(3.9)

where

ARtanAn = p, n = 1,2,...

In particular the average temperature is

2

(3.10)

u (t) = I 2p -A2tn

1 Xn(Xn + **An + p2)
(3.11)

The sequence of eigenvalues A^, A^ increases rapidly; for example with 

large p, Ar = (2n-l)Tr/2. Thus all the terms after the first quickly 

became negligible and

u (t ) ' -\1 u(x).

This makes it look like a first order system with a time constant of A

(3.12)

-2

In terms of real time this is

a2/A2D, (3.13)

2 2or 4a /7T D as p-*«>.

The network analogue consists in lumping the resistances and examining 

the driving potentials. A wall of unit area, thickness 2a and conductivity 

k will conduct heat at a rate Q = kAT/2a and might therefore be regarded 

as having a resistance of AT/Q = 2a/k. Let this resistance which is in
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fact distributed over the thickness, be divided into two and lumped at the 

surfaces of the slab as shown in the figure. The temperature within the 

slab sill also have to be lumped and since the resistance has been separated 

to the walls the natural lumping is T, the mean temperature. The flow of

heat out of the slab at each face will therefore be (k/a)(T-Tg) where Tg 

is the temperature at the outside surface of the slab. This just matches 

the flow through the external film h(Tg-To) so we have

q ^ |  (T-Ts) = h(Ts-To) = | (1+ J r h i - y .

Now the thermal capacity of the slab is clearly 2apCp, so

2apc ^  = 2 J  (1 + ~)-1(T -T) p dt a y o (3.14)

or

f f . - U + i ) - 1 « (3.15)

This gives a dimensionless time constant of (1 + 1/y) or in dimensional 

terms

a2(l+y)/Dy, (3.16)

and in the limit y -* °°,

a2/D. (3.17)

Comparing (3.13) and (3.17) we see that we are off by a factor of two and 

a half. This suggests that agreement could be improved by assuming that 

the "dynamic" capacity of the wall is only two fifths of its "static"
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capacity 2apCp. For the more general case of external resistance the ratio 

of the time constants of the lumped and distributed systems is

t L/ t D = 11/(1 + u)xl

tanA^
A^(l+A^tanA^)

As y decreases from infinity to zero, A^ decreases from tt/2 to 0 and
2the ratio increases from (4/tt ) to 1. It is not surprising that the two 

time constants should agree in the limit y 0, or k/a >>> h, for if the 

resistance of the outside films dominates so completely then the system is 

truly lumped.

This comparison illustrates some of the difficulties in going from the 

discrete to the continuous. A certain amount of accuracy can be recovered 

by the use of a pseudo-capacity, much as a virtual mass can be used in other 

cases, but it is not altogether satisfactory to have the wall capacity 

depend on the heat transfer coefficient. An analogous method of reducing 

the partial differential equations of a catalyst particle to ordinary 

differential equations was used by Hlavacek et al. [95]. Reference to this 

is given in [12] and [14] where the one-point collocation method of Villadsen 

and Stewart [188] is also described. (See also Sec. 4.5.2 below and [206]).

To illustrate the kind of "lumping" that is really distribution consider 

Luss and Hutchinson’s [123] treatment of many parallel first order reactions. 

In many situations it is not possible to describe a mixture of chemical 

species that boil between, say, 350° and 500° and this might be taken as a 

largish lump. On the other hand if we talk about the number of moles 

n(T)dT that boil in the range (T, T + dt) we have really made a continuum, 

i.e. an infinity of species, out of a system that is necessarily discrete.

In the case of species which can all undergo a reaction A^ with rate
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constant we may devise a continuum and talk about the "species1' A(k)dk

as all that reacts with rate constant in the range (k,k + dk). If c(t,k)dk 

is the concentration of this material at time t and if the reactions are 

all parallel first order

c(t,k) dk = c(o,k) dk e Ĉt (3.18)

Now in many cases we may only be interested in the total amount C(t) =

f c(t,k)dk and we see that o

C(t) = /" e“ktc(o,k)dk (3.19)

is the Laplace transform of the initial distribution with time, for a change, 

playing the role of the transform variable.

It is interesting to enquire if there is an apparent rate law

c = = -f(C) (3.20)

but although ¿ = -¡̂  ke Ĉtc(o,k)dk it is seldom possible to invert (3.19) 

and so eliminate t. A notable exception is

„ _ou Ra+1
c(o,k) = C(o)kae , a, 0 > 0. (3.21)

Let us make c dimensionless by dividing by C(o), i.e.

u(t,k) = C(t,k)//o°° c(o,k)dk (3.22)

so that for this distribution

u(o,k) = 8a+^kae (a+1) (3.23)

Then by eqn. (3.19)

u(t) = = U  + f r (“+1) (3.24)

and
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6 (t) = + |)“ (<X+2) = ^  UY (3.25)

where

y = (a+2)/(a+1 )

Thus the ’’lump" appears to decay as a order reactant with y depending

on the parameter a in the initial distribution. It is not surprising that
2as a ■+ °°, y 1 for the variance a of the initial distribution is 

(a+1)/8  ̂ and the mean, l/(a+l)y is (a+1) 8. Thus = 1/(a+1) -* 0 as

a °°, the distribution becomes narrower and therefore appears to decay in 

first order fashion. It is remarkable that for all a and 8 the rate 

constant in eqn. (3.25) is y = (a+1)/8, the mean value of k in the initial 

distribution. If a = 0 the apparent order is y = 2 and it is noteworthy 

that second order reaction rates have been used to correlate hydrocarbon 

cracking for some time.

Though it is seldom possible to get complete results of this kind, Luss 

exploited the convexity of the exponential to show that

e ut < U(t) < |ct2 + vi2e_V ĵ//|a2 + y^j , 

v = (a2 + y2)/y.

Such a result is extremely useful (and incidentally an excellent illus­

tration of the value of the theory of inequalities) as it gives bounds on an 

observable in terms of certain calculable functionals, in this case the mean 

rate constant and their variance in the initial distribution. For an 

extended discussion of continuous mixtures see Gavalas and Aris [73], while 

for some alternative treatments Liu and Lapidus [118] and Bailey [21] may be

consulted.



4 How should a model be manipulated into its 
most responsive form?

"You boil it in sawdust: you salt it in glue:

You condense it with locusts and tape:

Still keeping one principal object in view—

To preserve its symmetrical shape."

C. L. Dodgson. The Hunting of the Snark. 

Fit 5. St. 24.

4.1 Introductory suggestions.

Though a model may have been formulated with perfect propriety and 

perspicacity it is almost always a mistake to jump in with an extensive 

series of computations. It is better to live with it for a bit, to view it 

from different angles, to shape and mould it more justly. If the analogy 

may be permitted, there is a need for mathematical foreplay if model is to 

be fully responsive and the ultimate knowledge is to be satisfactory. The 

analogy is not inappropriate in that a like delicacy and tentativeness are 

required, but it breaks down in the bibliography for while the literature of 

the one art is enormous, though for the most part preternaturally dull, that 

of the other, for all its excitement, is thin on the ground. Nor is the 

maxim of going to the masters as much help as it might be, for though, like 

Jacob's, their wrestling is before the breaking of the day, unlike him, they 

seldom show it in their gait. There is of course a considerable literature 

on intellectual creativity but that is not the issue here. Our needs are 

closer to those that have been met by Polya’s examination of the art of 

problem solving [145-147] but in some ways are even preparatory to this.
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Lin and Segel's excellent text is one of the very few that addresses itself 

to this question, though there is much to be learned from Hammersley's 

vivacious writing on the strategy and tactics of research in mathematics 

[80-82] and Noble’s book [136].

Hammersley's "maxims for manipulators" [80] are worth summarizing since 

they give the flavour of his thinking and raise several points we shall 

return to later. They are: i, clean up the notation; ii, choose suitable 

units; iii, reduce the number of variables wherever possible; iv, draw rough 

sketches and examine particular cases; v, avoid rigour like the plague, it 

only leads to rigor mortis at the manipulative stage; vi, have about an equal 

amount of stuff on each side of the equation. These he illustrates with a 

maximimization problem of deceptively innocent aspect. If this is tackled 

bullheadedly without the kind of prior manipulation Hammersley discusses it 

proves very resistant to accurate and apprehensible solution. Though he is 

obviously the poorer golfer brandishing a bigger bag of clubs, Aris' "maxims 

for mathematical modelling" [15] will perhaps bear repetition.

Maxims for Mathematical Modelling

1. Cast the problem in as elegant a form as possible.

2. Choose a sympathetic notation, but don't become too attached 

to it.

3. Make the variables dimensionless, since this is the only way 

in which their magnitudes take on general significance, but

do not lose sight of the quantities which may have to be varied 

later on in the problem nor forget the physical origin of each

part.



4. Use a priori bounds of physical or mathematical origin to keep 

all variables of the same order of magnitude, letting the dimen­

sionless parameters show the relative size of the several terms.

5. Think geometrically. See when you can reduce the number of 

variables (even at the expense of first treating an over-sim­

plified problem), but keep in mind the needs of the general 

case.

6. Use rough and ready methods, but don’t carry them beyond their 

point of usefulness. (e.g. Isoclines in the phase plane.)

7. Find critical points and how the system behaves near them or 

what is asymptotic behaviour is at long or short times.

8. Check limiting cases and see how they tie in with simpler 

problems that can be solved explicitly.

9. Use crude approximations, e.g. 1-point collocation. Trade on 

the analogies they suggest, but remember their limitations.

10. Rearrange the problem. Don’t get fixed ideas on what are the 

knowns and what the unknowns. Be prepared to work with 

implicit solutions.

11. Neglect small terms, but distinguish between regular and sin­

gular perturbations.

12. Use partial insights and despise them not. (e.g. Descartes 

rule of signs).

13. These maxims will self-destruct. Make your own!

Of these the most important is surely the last for they are not to be 

regarded as a book of rules with promise of success to any who will apply 

them. Rather they are suggestions and if anyone is to ’’think in the marrow 

bone” he must grow his own bone marrow.

56 Mathematical Modelling Techniques
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The graith of the compleat mathematical modeller is a rich one and it is 

beyond the scope of these notes to survey the whole range of it, but we shall 

want to say something about the preliminaries of nomenclature and. the choice 

of dimensionless variables. The possible reduction of the number of 

equations also deserves some attention, but the nub of the matter lies in 

the whole business of getting a feel for the solution without doing the 

detailed calculations. To see this done skillfully as, for example, by 

Paul Fife in his treatment of pattern formation [65], is to share the delight 

of the true craftsman. There are many tools that are available for this task 

and we shall only be able to touch on a few of them in any detail. However a 

preliminary list (in no particular order) would certainly include:

1. Obtaining a priori bounds on the solution;

2. Use of fixed point theorems and contraction maps;

3. Location of roots (Descartes’ rule of signs);

4. Use of special properties (e.g. the constant cross-ratio of 

four solutions of Ricatti's equation);

5. Method of isoclines;

6. Degree theory;

7. Use of perturbation theory;

8. Asymptotic analysis, singular perturbation theory;

9. Group theory;

10. Use of inequalities;

11. Finding moments of the solution;

12. Intermediate asymptotics, travelling waves;

13. Integration by parts (e.g. Frisch's treatment of diffusion lag);

14. Maximum principles;



58 Mathematical Modelling Techniques

15. Numerical approximations (even crude ones like one-point collo­

cation) ;

16. Variational principles;

17. Linearization;

18. Integral methods (e.g. in boundary layer theory).

4.2 Natural languages and notations.

Certain branches of mathematics lend themselves naturally to expressing the 

structure of a physical theory. It is well-known that the theory of 

relativity found a natural language in the calculus of tensors, or "Ricci- 

calcul" as it was first called. Similarly the language of Cartesian vectors 

and tensors is natural for mechanics and linear algebra for the stoichiometry 

of chemical reactions. Thus the physical realities are clearly represented 

by the vectorial equation mr = f and though it may be necessary to use the 

equations in component form, mx = f^, etc., one should never lose sight of 

the whole in dealing with the parts. The notational convention of having 

one symbol for the vector or tensor helps in this. When a component notation

is used such rules as the summation convention are also valuable and the

compactness of 1 . x  or l^x1 has advantage over l^x^ + + ^3X3 °r

lx + my + nz.

Hammersley's first maxim (to clean up the notation) has more to it than 

meets the eye, for the right choice of notation, though in some respects a

matter of personal taste, is not to be dismissed as trivial. It is easy

enough to make mistakes in manipulation under the best of circumstances but 

to burden oneself with a cumbersome and unsuitable notation is downright 

stupid. Except where some overriding convention has a prerogative, the 

system for the basic physical quantities should be generally as simple and 

mnemonic as possible. It is not always possible to avoid suffixes but again
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it is important that they should be natural. Thus in the example of App. C 

by calling the species A^,A2...Ag, it is natural to denote their concen­

trations by cj, j = 1,2...S. Similarly at the early stage it is better to 

call the volume of the coolant Vc than to preempt yet another letter. How 

sympathetic one personfs notation may appear to another is a matter of 

context and personal taste. For example chemical engineering texts often 

use 0 for the residence or holding time of the stirred tank, V/q, while 

biochemical engineers use D for its reciprocal, calling it the dilution 

rate; yet, since D plays the role of a death rate, many would feel that 

0 itself would be preferable. In choosing symbols for the dimensionless 

variables it is seldom possible to make a consistent translation between 

Latin and Greek letters, though it is an admirable tradition to follow.

Thus coordinates (x,y,z) can often become (£,n,C) or time t become 

dimensionless time t . Both alphabets tend to run out all too quickly, but 

it is better to have recourse to Ps. 119 in the King James than to succumb 

to such symbolic solecisms as V for a diffusion coefficient or x for a 

mass. In general single letters should be used for a single quantity, but 

tradition has sanctified the union of a capital and lower case for the 

notable dimensionless groups such as the Reynolds number, Re. This seldom 

causes confusion and is less unsightly than the convention N0 . Chemical 

engineers seem to have led the field in coining names for dimensionless 

groups and hence immortalizing one another— much as the naturalists of the 

18th centruy did with the taxonomy of Linnaeus— though it may be questioned 

whether it helps to perpetuate Damkohler's memory in four numbers with Roman 

numeral suffixes. Referring again to the example of App. C, the concentra­

tions and temperatures, c^, T, T^ and Tc become u ̂ , v, w and 0 in 

their dimensionless forms. The last choice is not altogether a happy one,
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but v has to be avoided if we are to have ultimate freedom from suffixed c
for the dependent variables. In the case of whose reduction to

dimensionless form is to be studied in detail in the next section we shall 

use vc for the dimensionless coolant feed temperature. This however is a 

fixed constant, not a dependent variable, and we need 0 as the conventional 

symbol for residence time.

4.3 Rendering the variables and parameters dimensionless.

If the matter of notation is incidental, being governed by the canons of 

taste and common sense rather than high principle, the matter of making the 

variables dimensionless is of the essence. A physical magnitude has meaning 

with respect to an arbitrary set of standards and two quantities of the same 

dimensions measured in the same units can be compared. But even the world­

wide adoption of SI units cannot give it any intrinsic meaning and the 

current effort in metricization, while useful to trade and engineering, has 

considerably less to contribute to science than would accrue from the 

revival of Latin as a lingua franca. It is only when quantities are made 

dimensionless that their magnitudes acquire an intrinsic meaning in the 

context of the model.

It might be worth remarking parenthetically that we are here practising 

so-called "inspectional analysis" [259,260], that is, the manipulation of 

the basic equations to reveal the dimensionless groups. It is the subtlest 

and most penetrating way of the methods sometimes called dimensional. 

Dimensional analysis, as expounded by Bridgeman [203] and others, relies on 

Rayleigh's method of indices [236] and the Buckingham Pi theorem to 

excogitate the dimensionless groups from a list of the significant physical 

quantities. The Pythagorean method, to use the name for the method of 

ratios coined by Becker in his excellent little monograph [201], refers to
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the technique of forming dimensionless ratios from the significant physical 

quantities peculiar to the system. Becker distinguishes three subgroups of 

dimensionless ratios: ratios of fluxes (e.g. of momentum energy or matter), 

which are appropriately called Heraclitian; geometrical ratios (e.g. aspect 

ratio), called the Pythagorean subgroup; and ratios of amounts or charges, 

called Democritian in recognition of the fact that the conceptual separation 

of matter from space goes back to Democritus and the atomists. He uses the 

term "configuration analysis" for the incorporation of the Pythagorean 

method into a larger analysis of physical systems and claims that it is 

"immensely more persuasive than dimensional analysis, almost as penetrating 

as inspectional analysis, and more versatile than either of these." The 

whole subject of dimensional analysis has a considerable literature; cf. 

[202,203,207-9,212,215-8,220-1,229-33,236-9,247,259,260].

The principle of making the equations dimensionless is simple enough.

Each variable, dependent or independent, is expressed as a product of some 

characteristic quantity of the same dimensions and a dimensionless variable. 

The equations are then rearranged until a suitable set of dimensionless 

parameters appears. Two principles govern this process: i, constant 

quantities should be used as characteristic quantities; ii, the dimensionless 

parameters should bear the burden of showing the comparative importance of 

the various terms in the equation.

Let us try to elucidate this by considering the model of App. C the

stirred tank with a single first-order irreversible reaction. There are 

usually several different ways of rendering equations non-dimensional and of 

choosing the dimensionless parameters and their pros and cons are best 

illustrated by an example. If we put k(T) = Aexp(-E/RT) in eqns. (C15) and 

(C16) and replace hA in (C16) by h (to avoid confusion between the area



62 Mathematical Modelling Techniques

and the pre-exponential factor in k), the equations of this model are:

TT dc t N -E/RT .V —  = q(cf-c) - VAe c (4.1)

VCp ^  = qC (Tf-T)-h(T-Tcf) + (-AH)VAe~E/RTc (4.2)

Note that the same letters will be used for the same kind of parameters in 

the different forms of the equation but they will be differently related to 

the physical constants in the different modes of non-dimensionalizing. They 

are always defined in context.

Let c*, T* and t* be a characteristic concentration, temperature and 

time to be chosen later and

t = t/t*, u = c/c*, v = T/T* (4.3)

and, by the persistence and simplification of indices,

Uf = cf/c*> vf = V T*> vc = Tcf/T*‘ (4.4)

Multiplying the first equation by t*/Vc* gives

du qt* , n -E/RT*v n  .—  = (uf-u)-At*ue (4.5)

There are three parameters qt*/V, At* and E/RT*. Now V/q is the so- 

called residence time so that V/qt* is the dimensionless residence time, 

say 0, At* is a measure of the reaction rate of Damkohler number, say a, 

and E/RT* is the dimensionless activation energy or Arrhenius number, say 

y. Thus

du
dx

U f - U -y/v

The second equation must be multiplied by t*/VC T* to give

dv _ fqt* ht*
dx " I V Vf VC L P

v + (-AH)c*
C T*P

At*ue"Y/v

(4.6)
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From this it is clear that (-AH)c*/CpT* = 3, say, is an important parameter; 

moreover it has the nature of a dimensionless temperature rise due to 

reaction for (-AH)c* is the heat released by the complete reaction of the 

feed at the characteristic concentration. For the moment let us not reduce 

everything completely but set

(AH) c* = £t* 1 ht*
C T* * °1 V 0; ô2 VC 9P

61 + (4.7)

Then

dv
dx (6ivf + 62vc} 6v + afBue-y/v (4.8)

= S(v-v) + oteue"Y/v 

if we define

V -  (5i v f  + 62vc^S (4. 9)

as the weighted mean of the feed and coolant temperatures.

We now have various directions in which we can go. First suppose that 

all conditions are to be held constant and that we are interested in 

reducing the number of parameters to the minimum. Then in the equation for 

u we can make u^, y and 0 all equal to 1 by choosing

c* = cf,T* = E/R, t* = V/q (4.10)

giving

du i -1 /v ,, 11 \—  = 1 - u - aue (4.11)ax

No amount of manipulation will get rid of a. In the equation for v there

appear to be five additional constants 6 ,̂ vf> vc and 3, but

di = 1 /0 = 1  since all conditions are constant v and vr can be con- l c r
densed into v by eqn. (4.9). It is well to take one constant over to the 

left since this will be eliminated when we set the derivatives equal to zero
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to study the steady state. Thus let v be defined as above and

C = 3/6 

so that

(4.12)

1 dv v-v . -1 /v —  —  = --- 4- aue3 di e

Between equations (4.11) and (4.13) there are four parameters

(4.13)

a = Av/q, 3 = (-AH)Rcf/CpE, c = [((-AH)Rcf/EC ]/[1+h/qC ]

and

(4.14)

R(qCpTf+hTcf) 
V ~ E(qCp+h) (4.15)

The steady state equations however contain only three, a, C and v. They

can be combined into a single equation by substituting for u from eqn 

(4.11) in eqn. (4.13),

-1 /vae
v~v = ? - _ 1 / v  

1+ae '
(4.16)

This equation is studied later in Sec. 4.5. The points to be made in favour 

of this mode of non-dimensionalizing are that it does give us the simplest 

possible form of the equations, for example, there is no parameter in the 

exponential function. The objection that can be raised to it is that the 

magnitudes of u and v are generally very different; u is between 0 and 

1 but if E/R is of the order of 10000°, as it may well be, even a fairly 

high temperature such as 500°K makes v of the order of 0.05.

A second method— and one that overcomes this difficulty— is to let 

v^ and 0 all be equal to 1 , by putting
V

c* = cf, T* = Tf, t* = V/q. (4.17)

Then



How should a model be manipulated . . .  ? 65

£  = 1 -  U - aue“Y/v (4.18)

= (6  ̂+ 62Vc) - 6v + ague (4.19)

We thus have

a = AV/q, 3 = (-AH)cf/CpTf, y = E/RTf, 61 = 1 (4.20)

and

62 = h/qCp

If and are not too disparate it is advantageous to put

T* = (qCpTf + hTcf)/(qCp + h) (4.21)

since then the second equation becomes

-jjr = 1 - v + £aue (4.22)

where

(1/6) = qCp/(qCp + h), C = qcf(-AH)/(-qC Tf + hTcf) (4.22)

A variant of the second method considers u and v to be the deviations 

of c and T from c^ and by setting

u = (cf-c)/cf, v = (T-Tf)/T*. (4.23)

Before choosing T* let us see what this does to the exponential function. 

Since T = Tf + T*v, exp-(E/RT) = {exp-(E/RTf)}{expE(T-Tf)/RTTf} = 

exp-(E/RT^)exp{ET*v/RT^(l+T*v/T^)}. Thus if we choose T* = RT^/E and put 

y = E/RT^ we have

k(T) = Ae Eŷ RT = k(T^)exp [v/(l+v/y) ] . (4.24)

The choice has two points in its favour. In the first place, it brings 

k(T^) out as a factor and this with c^ gives k(T^)c^ which is the

reaction rate at feed conditions. In fact the equations are now:
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= -u + a(l-u)exp[v/(1+v/y)], (4.25)

-7 = -v + v + a£ (1-u) exp [v/ (1+v/y) ] , (4.26)
6 ax c

where a = Vk(Tf)/q, 6 = (-AH)cfE/CpRT^, Y = E/RTf, 6 = (qCp + h)/qCp,

? = 6/6 and V = hE(T r-T.)/RTf(h + qC ). Again, if the weighted meanc cr r r p
feed temperature (qC^T^ + hT^^)/(qC^ + h) were used everywhere in place of 

T^, we would have the same equations but Vc = 0. The second advantage of 

this form is that it makes natural the approximation of the exponential 

function by ev , an approximation which can be obtained formally by 

letting y °°.

Finally— for it would be possible to play a large number of variations on

this simple theme— consider the situation when an important physical quantity

that affects more than one parameter, for example, q, is to be varied. If

neither limiting case, q -»■ 0 or q is to be considered there is no

real objection to retaining t* = V/q since the equations are autonomous.

If however we wish to avoid this we can take t* = VC^/h giving

0 = h/qCp, a = AVC^/h, <5̂ = 1/0, 6  ̂= 1. The reference temperature should

not be taken to be the weighted mean as in eqn. (4 .2 1) since this will vary
owith q but we can take v = E(T-T^)/RT^. Thus, for example, with

u = (cf-c)/cf , v = E(T-Tf)/RTj, vc = E(Tcf-Tf)/RT^, (4.27)

a = AVCp/h, 6 = (-AH)Ecf/CpRTj (4.28)

we have

0 = -u + aO(l-u)exp[v/(1+v/y)] (4.29)

0 = 0vc - (l+e)v + a60(l-u)exp[v/(1+v /y )]. (4.30)
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In this form the equations have parameters a, 3, Y> vc and 0, the last 

being the variable parameter. This is the case extensively studied by 

Uppal, Ray and Poore [184], though they took a slightly different dimen­

sionless time the effect of which was to confine the region of multiplicity 

to 0 < 0 < 1 .

Another question that may be raised about any particular choice of 

dimensionless variables is whether it fits in with a larger scheme. For 

example if we replace T  ̂ in eqn. (4.2) by Tc and append a third equation 

of the form of (C 14) 

dT
v C -j-7- = q C (T _-T ) + h(T-T ) c pc dt Mc pc cf c c

we have three equations for c, T and Tc«

form of eqns. (4.25) and (4.26) by setting

(4.31)

Consider the extension of the

u = (cf-c)/cf, v = (T-Tf)E/RT^, w = (Tc-Tf)E/RT^ (4.32)

with

t* = V/q, a = Vk(Tf)/q, 6 = E(-AH)cf/RTfCp , y = E/RTf, 

*1 " 62 = h/qCp ’“ = VcCd c/VCp ’ X = qcCpc/qV

Then we have 

du
77  = -u + a (1-u) exp[v/ ( 1+v/Y)]>

60

dx 

1 dv ̂dT = -v + —  w + aB(l-u)exp[(1+v /y )]»

dw
“ dx = x(wf"w) + '52 v̂_w^’

(4.33)

(4.34)

(4.35)

(4.36)

a set of three equations with two additional parameters u and x the

static and fluent heat capacity ratios.
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A similar example which we will take up from other aspects later can be 

given rather briefly at this point. It concerns the growth of two organisms 

in a chemostat— the microbiologistfs name for a stirred tank reactor. Two 

organisms, species 1 and 2, are present in concentrations, and X2 and 

feed on a common nutrient whose concentration is S in a vessel whose 

volume is (1/D) times the flowrate, i.e. q = DV. (This is the standard 

notation of biochemical engineering and D is known as the dilution rate). 

They grow at rates and which are functions of S and one moiety

of S yields and Y2 moieties of the two species respectively. Thus

where only nutrient is fed to the chemostat and at a concentration S„. Ther
functions v k (S) are of the form

We want to investigate the way in which the system depends on and D

so it will not do to use these values to make the concentrations and time 

dimensionless. Without loss of generality we can give the label 1 to the 

species which has the greater growth rate for large S, i.e.

Then 1/M^ has the dimensions of time and of concentration and

accordingly we let

(4.37)

(4.38)

(4.39)

(4.40)

(4 . 41)

There are then four fixed parameters
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a = M2/Mr  6 = K2/Kr  y = L2/Klf 6 = Lj/Kj (A. 42)

and two we wish to vary

0 = D/Mr  Z = Sp/K1> (4.43)

Then

x = ig^z) - 0}x

y = {g2 (z) - 0}y (4.44)

z = 0(Z-z) - xg1 (z) - yg2 (z)

where

8l = { 1 + z + t} * 82 = 01 i1 + z + f} (4*45)

We remark that y and 6 can be infinite if there is no substrate 

inhibition.

4.4 Reducing the number of equations and simplifying them.

The example we have been considering extensively in the last section was a 

model, E^, with just two equations. It had gotten to be that way by first 

reducing the model to one described by S+l equations, (one for the con­

centration of each species and one for the temperature) and then observing 

that, since the reaction rate depended on only one of the concentrations, 

only one equation was needed in the concentration and one in the tem­

perature. However for constant feed conditions a similar reduction can be 

made for the completely general reaction Ea^A^ = with reaction rate 

r(c^,C2...Cg,T). For substitute

cj = (V j f /q) + “j5
(4.46)

in the equation
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dc.
dt - qjcjf - .... S’qc. + a Vr(c1,...c_,T)

and oij comes out as a factor leaving

v if = _q5 + Vr(c>T)
where

r(C,T) = r(?,T; q1,...qr, clf...cgf)

= r((q1clf/q) + a^ , . . . ,T)

(4.47)

(4.48)

(4.49)

Thus a single equation has been obtained for a single reaction. But it will 

be objected that the initial values c^(0) = cj0 may not all be expressible 

in the form

cjo = (qjcjf/q) + “jCo- (4’50)

If they can all be so expressed then there is no problem for E,Q then 

becomes the initial value for eqn. (4.48), but if they cannot then at least 

two values of

Hj = ( c jo  -  ( q j C j f /q) }/oij (4.51)

are different. Then let

Cj = (qjCjf/q) + <Xj(5 + TljC) (4.52)

a form which can take care of the initial conditions by letting £(0) = 0, 

C(0) = 1. Substituting eqn. (4.52 in eqn. (4.38) and dividing through by 

otj gives

[v If- + qs - Vr(C,C,T)J + rij |v g  + qc = o] (4.53)

Now each of the expressions in brackets must be separately zero for otherwise 

all the nj would be the same. The first bracket gives eqn. (4.48) except 

that now the reaction rate is a function of £ as well as of £ and T



How should a model be manipulated . . . ? 71

and, parametrically, of c.jo as well as of c

equation

(4.54)

has the immediate solution C(t) = exp - qt/V and quickly tends to zero. We 

say that the feed and initial compositions are compatible if one can be 

derived from the other by some degree of reaction, i.e. they are related by 

eqn. (4.50). The C is a measure of the incompatibility of the current 

composition and the feed composition and it is very satisfying to see that 

this just "washes out" of the reactor by a purely physical equation without 

any reactive term as the memory of an initial composition should.

In a more general situation there might be R simultaneous reactions

which without loss of generality we can take to be independent, i.e. the RxS

. -i u .
j=i ij j
sE-. a..A.= 0, i = 1,2,...R (4.55)

matrix with entries a., is of rank R. Then the mass balance over the
iJ

. thj species gives

dc.
(4.56)

The substitution

(4.57)

gives

+ (cjo- v [ v^ H = °
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The independence of the reactions and the incompatibility of the feed and 

initial compositions force each of the bracketed expressions to be 

severally zero and so give R+l equations (or R, if the feed and initial 

compositions are compatible) in place of S.

When the reactor is adiabatic, a combination of concentration and tem­

perature obeys a similarly simple equation. For, taking h=0 in eqn. (4.20) 

gives 6 = 6  ̂= 1 , 62 - 0, so that multiplying eqn. (4.18) by and adding 

eqn. (4.19) gives

^ 7 (8u+v) = (1+3) - (3u+v). (4.58)

This notion can be carried over to distributed systems as when the reaction 

EoijAj = 0 takes place at a rate r per unit volume in a porous pellet, ft, 

through which the reactants diffuse with effective Knudsen diffusion 

coefficients Dj. For this system we have the equations

with

D.V c. + a.r(c,,...,T) = 0 in ft J J J 1

c . = c . on 3 ft. 
3 js

(4.59)

(4.60)

This implies that each linear combination (D.c./a.) - (D c /a ) satisfiesJ J 3 k k K

VZ{(D c /ctj) - (Dkck/ak)} = 0 in il (4.61)

and is constant over 3 ft. But a potential function constant on 3 ft is

constant everywhere in ft and hence we can substitute

c. = c. + (a./D.)£ (4.62)J Js J J

to give

* Ç + r(cls + (a1 /D1 K,...,T) = 0 in ft,

with
( 4 . 63)
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 ̂= 0 on 3i],

The energy balance gives

kgV2T = (AH)r(c1 ,...T) in Q

with
(4.64)

T = T on s

and this suggests the substitution

T = Ts + (-AH/ke)S. (4.65)

Thus all the equation collapse into one, namely

V2? = -R(C) = -r(cls + (c^/D^S,..,^ + (-AH/ke)C) in £2
(4.66)

with

£ = 0 on 3 ft.

Notice, however, that this is of restricted application. Except for 

symmetric regions, such a sphere, it does not apply with the more general 

boundary conditions 

3c.
D . = k . (c . --c .) on 3 U.j an j jf y

Nor can it be extended to transients except in the special case of 

(D_.pCp/ke) = 1 for all j. In this case we write the transient equations 

as

= V  Cj + V  ; pCp H  = keV T + ("iH)r (4.67)

and assume the initial values are uniform and cjQ > TQ respectively. Then 

putting

c. = c. + (a./D.)£ + (c. -c. )C J js j' jo

T = Ts + (-AH/keK  + (To-Ts)C
(4.68)

and letting
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D = D . = k /pc 
3 e p

gives

)̂D_.
a.J

Also £ = C = 0 on 8 ft and £ = 0, £ = 1 initially. If all the

gi _ d72? _ RJ + (Cj ° ^ s)Dj [|f - DV2c] = 0. (4.69)

quantities (Cjo-Cjs)Dj/aj are the same then we can fix and ignore £.

But if they are different then the same argument as before shows that the 

two brackets are severally equal to zero. Thus C is the distribution of 

temperature in ft which is initially uniform and has zero boundary values 

and such a temperature, as we know, subsides to zero everywhere.

When such a reduction can be made the stability picture is gained from 

the reactive equation and the intrinsically stable equation for C adds 

nothing to the analysis of stability. For example, if

f -= 1
dv

u - aR(u,v)
(4.70)

—  = 1 - v + a3R(u,v) ax

and w = 3u + v, then an equivalent system is 

^  = 1 - u - aR(u,w-3u) 

dw
d 7 = 1 + 6 - w

The linearization of the first about a steady state (us»vg) gives

(4.71)

- ( 1  + aRu) -aR

a3R - ( 1  - a3Rv)
(4.72)

where x = u”us> y = v~vs* Similarly, if z = w-wg, the linearization of

eqns. (4.71) gives
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X -(1 + cxR - agR )U V -aRv x
(4.73)

_zj l  - i  J  Lz_

The stability criteria for these two matrices are the same.

The example of competing organisms that we intend to take up again later 

can be done in the short order now. The addition of the three equations in 

(4.44) gives

x + y + z = 0{Z - (x+y+z)} (4.74)

Thus if the point (x,y,z) does not lie in the plane

x + y + z = Z (4.75)

it rapidly approaches it since

_P)tx + y + z = Z + { x  + y + z - Z}e o Jo o

From this we see that all the steady states must lie in the plane, ABC 

of the figure below. If M is a starting point in ABC the trajectory of

the solution of eqn. (4.44) lies wholly in the plane and approaches the 

steady state. The trajectory from a nearby point L, not in the plane, 

quickly approaches the trajectory MP and becomes tangential to it, if, as 

is the case shown here, the other eigenvalues are negative and greater than
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0. This relationship is preserved in the projections L'P1, M'P1 on the 

plane OAB. It follows that we shall get the essence of the behaviour of the 

system by restricting attention to the plane 

z = Z - x - y.

In this case we have the equations 

x = {g1(Z - x - y) - 0}x

y = {g2(Z - x - y) - 0}y

For a certain combination of a,6,y,6, 0 and Z the phase plane of 

solutions of these two equations looks like this:

There are two stable steady 

states 0 and Q.. Any initial 

state in the triangular region 

OPR is attracted to 0, while 

all trajectories starting out­

side, i.e. in PRBA, go to Q.

Thus RP is a separatrix 

between the two regions of 

attraction. It is the 

projection of the curve RP in 

the plane ABC, shown in the 

next figure (N.B. it is not P"R") onto OAB. The surface P ,R ,RR"P"P is 

the separatrix surface in space and allows for an arbitrary starting point. 

Thus any trajectory starting between this surface and the z-axis goes to 0; 

all other trajectories go to Q. For some purposes we may need the whole 

separatrix surface but its structure is often sufficiently clear from its

intersection with the plane.
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4.5 Getting partial insights into the form of the solution.

In the introductory paragraph to this chapter a number of techniques for 

getting some feel for the form of the solution were listed. This is not 

the place to explore them all in detail, but it is important to see some of 

them in action since they are at the heart of the whole craft of modelling. 

We shall do this by considering three examples. The first is an illus­

tration of phase plane techniques in the chemostat that we have just been 

looking at; the second is the use of a coarse numerical method to suggest 

an approach to the uniqueness problem; the third is intended to show how 

far one can get toward a complete picture without any calculation.
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4.5.1 The phase plane and competing populations.

The pair of equations

x = ig-ĵ Z - x - y) - 0}x (4.76)

y = {g2(Z - x - y) - 0}y (4.77)

can have four types of steady state which can be obtained by setting 

x = y = 0. They bear the following interpretations and we shall use the 

notation shown at the left.

T or T and U xg+ys=c,g1 (Z-c)=g2 (Z-t) = 0 both x-̂ and x2 coexist but in

indeterminate proportions

The last possibility only arises if the curves g^(z) and g2 (z) cross one 

another and then 0 must be chosen to have their common value. If the 

curves g^ and g2 are disposed as below and the point (Z,0) is at 0, then 

there are five steady states named according to the rule that proceeding to 

the left from 0 the first intersection with g^ is P and the second, if 

there is one, is called Q; likewise the first and second intersections with 

g2 are respectively R and S. Reading from right to left this disposition 

is uniquely described by the 'word1 OPRSQ. In the x,y-plane this is also 

the order of increasing distance from the origin though P and Q are of 

course on the x-axis whilst R and S are on the y-axis. We can put the 

steady states in part (b) of the preceding figure. The 45° diagonals have 

been drawn in not only to confirm the order of placing the points but also 

with the reminder that they are isoclines of horizontal and vertical 

passage. Thus x=0 on the diagonals through P and Q and y^O on

0 complete wash-out of both.

x^ and x^

P or P and Q g1 (Z-xg) = 0, yg = 0

R or R and S xg = 0, g2 (Z-yg) = 0

x^ grows, x^ washes out 

x^ washes out, x^ grows
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those through R and S. Moreover we can put arrows on the line segments 

for we see by part (a) of the figure that g2 < 0 at P and so y < 0 on 

the diagonal through P in part (b). The axes x=0 and y=0 are solutions 

of the equations and we can put arrows on the segments by glancing at 

part (a) of the figure. The other diagonals are not isoclines but we notice 

that on x+y = Z-c

d£
dx = K X .

x
g2 (c)-o
g ^ O - e  ’

that is the tangent of the angle that is the direction of the solution is a 

constant multiple of (y/x), the tangent of the direction from (x,y) to the 

origin. K = 1 on AB and zero or infinite on the diagonals through the 

steady states, and we can see that it varies roughly in this fashion:
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Thus in the trapezoidal region between the diagonals through R and S 

the flow must be northeasterly and the slope of the paths increase to a 

maximum and then decrease again to zero.

The direction of the solutions on AB is straight to the origin since 

K = 1 on AB. If this is done for each section a portrait emerges in 

which there will be south-south-easterly and east-south-easterly 

trajectories connecting R with P and S with Q in their respective 

trapezoids.

Thus we have already a general impression of the solution and see that 

RP will be a separatrix between the regions of attraction of 0 and Q 

the two stable steady states. We also see where computation may be 

difficult. For example, if it is important to be accurate in the 

neighbourhood of R the rapid change of direction may give trouble.
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All this has been done without any computation. It can be confirmed (or 

perhaps eased over a sticking point) by linearization. Eqns. (4.76) and 

(4.77) can be linearized about any steady state in the form 

l = - Gn
(4.78)

f) = -H£ + Kn

where

x = xg + C, y = yg + n (4.79)

and

F = gl(Z-xs-ys) - 0 - xsgl(Z-xs-ys)

C = xsgl(Z-xs-ys)
(4.80)

H = y g S ^ - V V

K = 82(Z_xs“ys) " 0 " ysg2(Z'xs“ys)
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are constants since they are evaluated at the steady state under scrutiny. 

Because of the equations satisfied at the various steady states, the 

constants F,...K simplify as follows

Type of 
Steady State F G H K

0 8i - 9 0 0 g2 - 0

P . Q -G G 0 g2 - 0
R, S 8l - 0 0 H -H
T,U -G G H -H

The next table shows what the eigenvalues and eigenvectors of the 

linearization are and what the conditions are that give the steady state its 

character. These characters are denoted by SN for stable node, UN for 

unstable node and SP for saddle point. The suffix on SP tells which 

eigenvector is tangent to the unique incoming trajectory. In the case of 

T and U one eigenvalue is always zero and the stability or instability 

of a point is governed by the sign of the other; these are denoted by SS 

and SU for semi-stable and semi-unstable.

From this table we can read the character of the steady states in the 

example OPRSQ above. D is a stable node, P a saddle point (SP^), Q 

another stable node, R an unstable node and S an SP2.
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Steady State Eigenvalues and vectors Character and conditions 

Al,-1 A2,y

0 F, 1
0

K, 0
1

SN, gp g2 < 0
SP̂ .êĵ  < 0 < §2 
SP2,g2 < 0 <
UN, 0 < gx, g2

P,Q -G, Y
0

k ,--g | SN, G > 0, g2 < 0 
K+g J SP^G > 0, g2 > 0 

SP2,G < 0, g2 < 0 
UN, G < 0, g2 > 0

R,S F, f+h | -h ,
_-h |

o"
1

SN, H > 0, gx < 0
SP-^H < 0, gĵ < 0
SP2,H > 0, gĵ > 0 
UN, H < 0, gj > 0

T,U 0, -i
_i

-G-H, g"
_H

SS, G + H > 0 
SU, G + H < 0

4.5.2 Coarse numerical methods and their uses.

In the preceding section we saw that the partial differential equation for 

diffusion and reaction in a catalyst particle could be reduced to

V2£ + R(£) = 0 in Q 
£ = 0 on 3ft.

Let us suppose that U is either an infinite slab, 

a sphere so that the equation becomes

(4.66 bis) 

an infinite cylinder or

-L A
pq dp [pq g] + R(5) = 0, (4.81)

5 = 0 P = 1, (4.82)



84 Mathematical Modelling Techniques

with q = 0, 1 or 2 and p is the fractional radius or distance from the 

central plane. For reasons that we will not go into here (cf. [14]), the 

form of R(£) is:

This is clearly a very nonlinear function but is positive so that the 

solution is a convex function of p. In the case of the slab we can solve 

the equation by quadrature but we wish to follow a route opened by 

Villadsen and Stewart [188] and use a one point collocation method. For 

fuller details of this problem Finlayson's monograph [66] or Villadsen and 

Michelsen's book [261] should be consulted.

Granted that the solution is a convex function of p and zero at p=l,
2a crude approximation to it would be £(p) = a(l-p ) and its Laplacian is 

-2 (q+l)ot = -2(q+l)5(p)/(l-p2).

Hence if a were chosen to satisfy the equation at a given point, say 

p=a, the value of £(cr)=C would satisfy

-2- -q+P <; = R(C) ( 4 . 8 3 )
l-o

There is a full-blooded theory for the choice of collocation points such as

a, but we will give only the simplest motivation. If q=2 and R(£) =
2<f> (l-£) is linear then eqn. (4.81) can be solved to give:

f \ sinh<j)p
?(p) = 1 -

If the same R(£) is used in eqn. (4.83) with q=2,
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£(p) =
2 2 

♦ (1-P )
6+<t>2(l-a2)

These expressions should agree as far as possible and we find that they do 
2so for small <f> if a =3/7. A similar comparison for other cases gives 

2a =(q+l)/(q+5), giving the equation

(q+1)(q+5) 
2 C = R(C) (4.84)

for C=£(o) and a=c/(l-a2) = (q+5)C/4.

Returning now to the nonlinear form of R(£) we have an immediate 

graphical construction for C by drawing a line of the appropriate slope 

from the origin. When we do this we see there will be

cases where the line will intersect more than once with the curve R(£). We 

are thus warned of the possibility of multiple solutions of the original 

equation even though we acknowledge that the approximation is crude to a 

degree. But we also note that if R(£)/£ is monotonic decreasing as £ 

increases from 0 to 1, then there can never be more than one intersection. 

This suggests a criterion for uniqueness that might be usable in the

original partial differential equation. Suppose and ^  are two
2distinct solutions of V £ + R(£) = 0. By Green’s theorems and the fact
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/// {(Ç1V2e2 - Ç272Ç1)dV = 0

Hence substituting from the équations for the Laplacians,

o = ; / /  - ^RC^)} dv

=  f/f
u

R(Ç2) r (ç1)
hh*9-

Now it can be shown (see [105]) that there is a maximal solution and if we 

choose to be this ^  ^  everywhere. If then R(£)/£ is monotonic

the integral is positive and can only be zero if ^2=^1‘ monoton:*-c:̂ ty
of R (£)/€ is thus a very general sufficient condition for uniqueness 

(cf. [122]).

4.5.3 The interaction of easier and more difficult problems.

In this final example we want to explore further aspects of the craft of 

seeing what can be learned about the model by getting a qualitative feel 

for the solution before any actual calculation is done. In particular the 

interplay of the various versions of a model will be emphasized and we shall 

see how appeal to an apparently more difficult problem can sometimes 

illuminate a simpler one. The physical system S is a vertical counter­

current contacting column through which a gas flows upwards while a solid 

falls downwards through the gas flow and is removed at the bottom. A sub­

stance is brought in with the gas stream where its concentration at height 

x and time t is c(x,t). It can be adsorbed on the solid where its con­

centration is denoted by n(x,t). Both these concentrations are the amounts 

of A per unit volume of the phase and e and (1-e) are the volume 

fractions of the two phases. Once adsorbed on the solid A can either be 

desorbed back into the gas or react to form a product B which is 

instantaneously desorbed. Because of this instantaneous desorption we have
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no need to consider an equation for the concentration of B simultaneously 

with those for the concentrations of A, but can determine this after the 

solution for A. The scheme is A = A* -* B, where A* denotes the 

absorbed form of A. The figure shows the notation and general scheme. We 

shall not dwell on the hypotheses nor on the reduction of the equations to 

dimensionless form since we are interested in the subsequent treatment of 

the equations. Suffice it to say that the rate of adsorption is ka(N-n)c 

where N is the saturation value of n, and the rates of desorption and 

reaction are k^n and k^n respectively. Then the usual balances give

(1_e) 9t " (1_e)v H  = ka (N_n)c " (kd+kr)n 

These equations can be added to give

{ec+(l-e)n} + {euc-(l-e)vn) = -k nd t dX r

which would be a convenient form if n were known as a function of c.

They will be rendered dimensionless by the following transformations.
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Y = Kc = k^c/k^, v = n/N

€ = krx/eu, H = krL/eu, t = k^t/e

A = Nka/kr, p = Nka/kd, a = p(l-e)/e, a = av/u

There is no need to swell on this reduction except to draw attention to the 

meaning of a and a. p = NK is the ratio of adsorbed to fluid phase 

concentrations in the limit of dilute equilibrium and, in fact, is an upper 

bound of this ratio. In a this is multiplied by the volume ratio of the 

two phases and so is the ratio of the amounts that can be held in each. In 

a this is further multiplied by the ratio of the velocities and so is the 

ratio of the fluxes. This interpretation should already suggest that the 

case of a>l may have some features that are particularly different from 

a<l since the carrying capacity of the solid stream is then greater than 

that of the fluid. The three equations are:

I1  + |* = -A{(l-v)y-v} (4.85)dT dc,

a 1̂ - -o = A{ (1-v)y-v} - pv (4.86)dT dc,

and

{y+av} + {y - av) + pv = 0 (4.87)

We have four models according as we consider the rate of adsorption to 

be finite or infinite (i.e. A finite or A-*») and according as we consider 

the transient or steady state. If A-*50 the only way in which the right 

hand side of eqn. (4.85) can remain finite is for the equilibrium relation 

(l-v)y-v = 0  to obtain. Thus 

v = y/U+y)

and, substituting in eqn. (4.87)
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i 1 + — H )  IT  + f l  -  — ~—o} + JÜL = 0
l- n+v'»2/ 9t l  (1 + y )2-* 1+y(1+y )

In the steady state 

dy
di

dv
d£

= -A{(1-v)y-v}

= -A{(l-v)y-v} + pv

1 - — ~— 9}  S  + -g- = 0
f l + v l 2i dC 1+Y( 1 4 7 )

The four models are

(4.88)

(4.89)

(4.90)

(4.91)

Model Non-equilibrium 
A finite

Equilibrium
A-*»

Transient 4.85, 86, 92-95 :l 4.88, 92, 94-5 :Ze

Steady-state 4.89, 90, 94-5 :E 9 s 4.91, 94-5 :£’ es

For simplicity we shall consider only constant inlet and boundary 

conditions. The initial conditions are

Y(C,0.) = yo (4.92)

v(£,0) = vQ. (4.93)

The inlet conditions specify y at the bottom and just outside the column, 

whereas v is specified just above the top. We write these as

Y(0-0,t ) = Yb (4.94)

v (E+0,T) = vfc. (4.95)

This is physically correct but we should sense that there may be a problem 

since would appear to be overdetermined. The resolution of this

difficulty will appear.
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We are interested in how these models can be used to illuminate one 

another and how the scope of the solutions can be understood and their 

general form obtained without actually computing anything in detail. 

Obviously E is the most difficult model to crack and though there are 

well-known methods of treating such equations it would be foolhardy to do so 

without preliminary consideration. We already have the limiting case A-*» 

under consideration and the solution for large A will presumably be a 

slight blurring of this limiting case. The limit A-*» is not of the same 

interest for in this case the adsorption equilibrium is so slow that the two 

streams do not exchange matter at all. Eg and Eeg should be obtainable 

by letting time run out to infinity, but let us start with the simplest 

model Ees
The equation for E£s is separable and gives

pc = /y (0)/i+x  
Y(C) 1 Y

a
y (i+y ) dY (4.96)

This can be easily integrated but, for the moment, let us examine it without 

explicitly integrating, since a similar, but not so easily evaluated 

integral, might arise in a more complex problem. If o<l the integrand is 

always positive and, since the integrand behaves like (l-a)/Y for small

values of y> it is clear that as y CO^O and a solution can be found

for any value of H. In fact all that is needed is to take a segment of

length y H of the curve. If we set y (0)=y  ̂ this defines the segment. 

But we could equally well suppose that the value of y (~) is equilibrium
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with v and this would fix the segment by fixing the value of y at the 

top. Having both conditions is physically sensible, but, mathematically, it 

is too much and, except in very special circumstances, is going to be 

contradictory. We might reconcile the physical necessity of specifying both 

Y^ and y with the mathematical impossibility of generally satisfying 

both y(0)=y^, y(E)=v /(l-vt), by saying that there must be a discontinuity 

at one end or the other. Thus the solid as soon as it contacts the gas at 

£=5-0 might (thanks to the fact that X is infinite) instantaneously take 

up the equilibrium value v(E)=y(E)/{l+y(E)}. In order for there to be no 

continuous build-up of matter at the top the concentration y must also 

have a discontinuity from y(E)=y(E-0) to Yt=y(S+0). A balance round the 

plane £=E shows that the condition for no accumulation in the plane is 

Y(S) - Yt = a{v(S)-vt)

Thus, if the discontinuity is at the top, the concentration in the emerging 

fluid is not y(E), but

But why should this happen at the top? From the mathematics it could 

equally well happen at the bottom or, for that matter, at both ends. We 

could argue physically that the case a<l must be continuous with a=0 

and that in this case the bed of solid is fixed and only the condition at 

the bottom can be insisted upon. But to see this mathematically we have to 

look at one or other of the harder problems Ee or Eg to get the needed 

insight into the allegedly simpler ^es* Let us pick leaving the

reader to look into E , since more will be said about this later.c 7
is a single first-order quasilinear partial differential equation

which can be readily solved by the method of characteristics. In fact the 
characteristic equations of eqn. (4.88) are

(4.97)

s
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4 1 -  1 +ds

f  = 1 -ds

(1+T)‘

a
(1+Y);

dy MY
ds 1+y

(4.98)

(4.99)

(4.100)

Again these are easy enough to integrate explicitly but, having in mind that 

we want to adopt tactics that would work with more complicated equations, we 

will lightly avoid this. We first notice that y decreases monotonically 

along a characteristic so that it might be taken as the parametric variable 

along the characteristic. Clearly t always increases along the 

characteristic and, since o<l, so does £. Thus the characteristics always 

have a positive slope. In the £,t plane we are interested in the strip 

x>0, 0 < £ < E and this can be covered by characteristics emanating from 

the initial interval t=0, 0 < £ < H where Y=Y0 and the inlet at the 

bottom £=0, t<0 where Y=Y^* The characteristics emanating from points on

the top, £=E, are directed outwith the region of interest so that conditions 

specified at the top can have no influence there. The discontinuity des­

cribed by eqn. (4.97) must therefore be present at the top of the column. 

This is entirely in keeping with our feelings about the meaning of o<l, 

for the fact that the carrying capacity of the solids is less than that of
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the fluid means that the fluid stream can "blow out" the influence of the 

solids. Thus vt has no influence at all on the solution inside the 

reactor, but it does have an influence, through eqn. (4.97) on the

product of the reactor. This resolution satisfies both our mathematical and 

physical expectations.

To complete the case a<l let us note that the slope of characteristic

dx = (l+y)^+a 
- ^ c  (l+y)2-a

is positive and increases as y decreases going from near 1 when y 

large to (l+a)/(l-a) as y+0 (see section (a) of figures below). If

(4.101)

is

V Yo

(a) iby
the characteristics emanating from £=0 all have greater slope than those 

that emanate from t=0. There is thus no tendency for the two sets of 

characteristics to overlap one another; the one set is vertically parallel 

like AB and A'B' and the other horizontally parallel like CD and 

C'Df. Moreover at the origin all concentrations between yQ and y^ may 

be thought to be present. The characteristics corresponding to these 

therefore fan out and fill in the region LOM. Taking sections at constant 

values of t we see that the profile of the steady state is established in 

the length of reactor up to the characteristic OM then there is a
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transition region between OM and OL beyond which the initial constant

state is decaying and being pushed out of the reactor. The final profile

(PS in Section C of the figure) is established in the time T).

On the other hand if y <y, the characteristics from £=0 have ao b
smaller slope than those from t=0 and will overlap one another and all the 

characteristics emanating from the origin (section (a) of figure below).

This is intolerable as it would imply that three different concentrations 

were present at one point. The resolution of this is to introduce a shock 

or discontinuity. The speed of a shock, w, is such that its movement during

ico (by (C)

a time interval 6t, namely w6t, accounts for the net access of material. 

Thus if ci>ni are the values of the concentrations just below and c2>n2 

those just above the discontinuity 

w6t [e (c1-C2) + (l-e) (n^-^) ] 6t

= [ue(c1-c2)-v(l-e)(n1-n2)]6t

or

d£ w = [y] - a[v]
dxJd u [y] + a [v]
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where [y] = Yj-Yj and [v] = = [y] /(1+y^ (l+y2> .

Thus the slope of a shock line in the £,x-plane is

C12 [ds]d (1+Yj)(l+y2)-o
dfl d+Yj.) (1+Y2)+01

(4.102)

This equation is confirmed by the fact that when the discontinuity 

vanishes, i.e. y^=Y2=y, we have the slope of the characteristic. We also 

note that is certainly positive as long as a<l. If £g,xg is a

point on the shock line with y^ behind and y  ̂ before we can calculate

Similarly, y^ is the value of y on a characteristic emanating from x=0 

where y=y; thus from eqns. (4.99) and (4.100)

Moreover dTg/dCg - §iven by ecln ‘ (4.102) so that these equations,

4.102, 103 and 104, provide a way of calculating the path of the shock. We 

are not concerned here with the question of how these equations can be solved, 

but the solution must clearly give a path such as 0D above. The final 

steady state solution is fully developed behind the shock while the initial 

state decays and is pushed out in front (i.e. above) it. Again the steady

the path of the shock as follows, y^ must correspond to a distance £g 

along a characteristic that emanates from £=0 where Y=Y|?* Thus, dividing 

eqn. (4.98) by eqn. (4.100) and separating variables,

(4.103)

(4.104)

state is established in a finite, calculable time T.
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Let us now consider the case a>l and return at first to the steady

state equation of £eg. The solution is again given by eqn. (4.96) for

sufficiently small values of £. But we notice that when y drops to
1/2(a -1) the integrand vanishes and subsequently becomes negative. This 

means that as y(£) continues to fall 

the value of £ decreases instead of 

increasing, giving the solution shown 

in the figure. But this is physically 

impossible since it gives two values 

of y for some £ and cannot give
ia solution if E>£ . This suggests that there must be discontinuities in

the solution and to see where these arise we turn this time to £ .s
£g is a pair of ordinary differential equations, (4.89) and (4.90), 

whose right hand sides are functions only of y and v. We can combine 

them into a single differential equation which will give the relation 

between v and y at any point by dividing the one by the other 

P vdv 1 
dy a Aa (l-v)y-v (4.105)

The only critical point is the origin, which is a saddle-point having an 

entering trajectory of slope n_ and departing trajectory of slope n+ 

where

n4 2a 1 + a + (p/A)± Z{l+a+(p/A) }^-4a.

In fact the isoclines dv/dy=n, are

(A/p)(l-qn)Y____  _  = By
1 + (A/p)(1-an)(1+y ) 1+By (4.106)

= A(l-an) 
p+A (1-art)

where
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In particular there are the two loci of horizontal (n=0) and vertical (n=°°) 

directions and we note that n+ > 3^ > 8q > Thus the phase plane looks

as below where OA and OB are the trajectories through the saddle point 

0 and OC and OD the isoclines of verticality and horizontality.

To solve eqn. 4.105 subject to the conditions Y(0)=Y|3>v (E) = we have 

to find a path in the phase plane between the vertical line Y=Y^ and the 

horizontal v=v . Not any such trajectory will do but if the reactor is of 

length E we must find the path for which eqn. (4.89) gives

X E ~ f >t --- .Yb (I-v)y-v

This integral requires a bit of interpretation when the path crosses
2 2 2

v=y/ (1+y) since the integrand there becomes infinite. If ds = dy + dv 

is the path length along the trajectory and f = f(y,v) = ( I - v)y- v , then the 

integral could be written 

adsA E = f r 2^2 , f . v2 xl / 2  ’(a f + (f-yv) }
(4.107)

a form which is unexceptionable. For example, if the point (Yb>vt) lias

between the arms OA and OB there are a number of possible paths: P
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itself of length zero; QR corresponding to a short length; ST to a 

longer reactor and UV to a very long one; the two segments XO and OY

of OB and OA would give an infinite reactor since it takes an infinite 

length to get into and out of the origin. If the point lies

beneath OB the situation is somewhat different as shown below. Again

there is the path of zero length P, a short path QR and longer one s,

ST and UV. These are monotonic until WX, but to fit a reactor longer 

than the E corresponding to the path WX we must go back to a curve such 

as UXY which follows an earlier solution UV but dips below v = and

comes up again. STOZ is the ultimate solution of this kind since it takes 

an infinite length to get into and out of 0. (Note that paths such as ZA
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do not generate solutions since they go from the horizontal v=vfc to the 

vertical y=Yt and not vice-versa).

How does the situation look in the limit A-*»? This will take us back 

to where we foresaw certain difficulties in getting any solution at
iall if . We have no space to classify exhaustively all the possibilities

(this has been done by Aris and Viswanathan [18]) so will take only one case.

As A-*» all the isoclines in the figure on p. 97 close down on the one

curve v=y /(1+y ) and this curve, T, is a solution of the equation. This is

not surprising for A-**> means that adsorption equilibrium is instantaneous

so that we should expect the equilibrium relationship to obtain. At any

point not on T the limit A-*» in eqn. 4.105 gives dv/dy = 1/a, i.e. the

solution is a straight line. Such a solution corresponds to a discontinuity

for with A infinite any path integral such as eqn. 4.107 shows that a

segment of such a line is traversed in zero length. If a>l there is a
1/2point, C, on the curve T of slope 1/a, in fact y=o -1 at this point. 

Below it the curve is traversed upwards and above the trajectory is down­

wards. The phase plane is y
where all the straight line 

segments all correspond to 

discontinuities.

Consider a pair of 

boundary conditions y^, vt

that give a point close under the upper part of T as shown (in fact 
- 1/2Y^>a-1, 1-a <vt<Y^)/(1+y^) as the longer analysis of Aris and Viswanathan

shows). The possible ways of getting from the vertical Y=Y^ to the 

horizontal v=v are shown numbered in order of increasing reactor length.

1 is trivial corresponding to a reactor of zero length. In 2 the reactor
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is so short that the concentration does not fall very much in the reactor, it

is continuous at the bottom but has a discontinuity at the top. 3 is the

segment of T between Y=Y^ and and corresponds to the only length

E for which there is a continuous solution in the closed interval 0 < £ c E.

For a slightly longer reactor, 4, we can go below the horizontal and come

back to it with a discontinuity at the exit and this can be done until we
1/2reach the point C. This point, where y(E)=a -1, corresponds to a reactor

iof length £ as in the figure of p. 96. How do we get a one-valued

middle of the solution, following the curve T downwards to a point short

of C, then taking a chord, such as 6, down to a point below C, following

T back up to C and taking a jump to v=vt. For all such solutions
1/2y(E) = a -1. This type of solution can be fitted into any reactor that is 

long (H>£), for a path such as 7 can be made very long since £ moves 

rapidly with y in the neighbourhood of the origin. Without doing any real 

calculation we have seen how the solution must lie.

Finally we may ask how this links up with the transient solution of 

Returning to the characteristic equations 4.98, 99 and 100 and taking 

decreasing y as the parameter along the path of the characteristic we

see that the solution of
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dg _ 1+y _ a 
dy y y(l+y)

and

dx 1+y 
M dy " Y Y (1+Y )

1/2is a curve of positive slope for y>g -1, which turns back on itself at
1/2

Y=a -1 and then has a negative slope ultimately decreasing to 

-(a-1)/(a+1). We could in fact solve these equations once and for all and 

cut out a template for any pair of values of a and a, graduating its edge 

in y. It would look like this:

By laying such a template with y q at tq we can draw the character­

istic emanating from such a point. For example, the characteristics 

emanating from £=0 can be drawn by placing y^ on the vertical axis

drawing along the template and then moving it upwards to give a sequence of
1/2parallel curves. Clearly if the curve is taken beyond a -1 these curves 

can intersect one another so that there is an even greater need for discon­

tinuities than before.

Suppose that y^ and are disposed in the way x̂ e have just consi­

dered, that Yq=0 and that the reactor is long (H>C). Then the character­

istics emanating from the axis t=0 are straight lines of slope -(a-iy 

(a+1) which will certainly intersect those emanating from £=0. The 

resolution of this is to introduce a shock as we did before. This works 

well up to A the point where AB, the characteristic though E-0 mee*-
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the shock. The characteristic from the vertical line, £-E if drawn as

starting with y=Yt=vt/(1-v ), the concentration y in equilibrium with

vt, would point out of the region like CD, which is not permitted. However

we know from the study of Z how to resolve this. There is a shock ates
1/2the top and y (-) is always a -1. This allows us to draw all the

characteristics emanating from the vertical like BE and CF— they are in

fact tangential to the vertical. Between BA and BE there is a fan of

characteristics corresponding to emanating concentrations between YQ=0
1/2and y(~)=a -1. We now have all the characteristics and can start from 0

and find the shock path that will satisfy eqn. 4.102. Cross-sections at a 

typical sequence of points then show the development of the steady state 

solution. In the next figure, 0,1,2,3, 00 are the labels for an increasing 

sequence of times. 0 is t=0 when y~0> 1 is a time beneath the level of 

A in the previous figure and there is still a midsection that is unaffected 

by the inlet conditions either at the bottom or top; 2 is a time between the 

levels of A and E before the top profile has assumed its final form, 3 

is a time above E when all that remains for the discontinuity to move 

forward to its final position, °°.



How should a model be manipulated . . .  ? 103

Thus we have built a framework within which the computation of the

difficult case E can proceed and this framework can be made complete by

exploring the whole range of possible dispositions of y^, v and y .

It is interesting to note that though the internal steady state in E^ is

only approached asymptotically as the internal shock moves into its final

position, the output of the reactor reaches its final value instantaneously
1/2since y (H,t )=o -1 for all t . This is further discussed in [13].



5 How should a model be evaluated?

'Models are undeniably beautiful, and a man may justly be 

proud to be seen in their company. But they may have their 

hidden vices. The question is, after all, not only whether 

they are good to look at, but whether we can live happily 

with them.'

A. Kaplan. The Conduct of Inquiry.

5.1 Effective presentation of a model.

A mathematical model and the results that flow from its analysis deserve to 

be presented effectively. There is nothing meretricious about this, it is 

merely common-sense. If the model is worth studying and its analysis 

illuminates the system then it should be presented in such a way that its 

intrinsic merits or contributed understanding can be quickly grasped and 

fairly assessed. One of the virtues of a model is that it can be studied 

more or less comprehensively and with a little care can often ensure that 

every representative case has been studied. It then becomes a question of 

presenting it as effectively as possible. The phase plane is a good example 

of this for by showing a sufficient number of trajectories it allows the eye 

to visualize all possible solutions. Nor does the number of trajectories 

have to be large to do this well. The limitation of such phase portraits is 

that they are difficult to draw in more than two dimensions and one has to 

make do with a few two-dimensional projections. Certainly coloured holo­

graphy would allow for four-dimensional presentations, but this is clearly 

beyond the common reach; stereoscopic diagrams are possible but in their
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usual form they require a decoupling of the eyes that not everyone can 

manage (cf. [157]). Nor is the artistic virtuosity of such a journal as 

Scientific American easily attained, though how effective such graphic art 

can be is seen in such articles as Zeeman's survey of catastrophe theory 

[197] (cf. also [255]). Even so the cusp is the highest canonical 

catastrophe that can be shown in its entirety; the catastrophe set of the 

swallowtail can be fully pictured, but the butterfly and other canonical 

forms have to be shown in section. Nevertheless part of the appeal of 

catastrophe theory is that it permits a more synoptic view of a greater 

range of behaviour than had been otherwise cultivated. (The literature of 

catastrophe theory grows apace: cf. [166,177,197,204,205,225,228,234,235, 

250-2,255]).

The stirred tank reactor system is an example that can be well

presented as topologically equivalent to a cusp catastrophe. Eqns. (4.11) 

and (4.13) for the steady state with a first order irreversible reaction 

reduce to eqn. (4.16), namely

When vg, the steady state temperature is found, both sides of the equation 

are equal to the steady state reaction rate. So if we let

we see that Z is a function of three parameters: a, the Damkohler number 

or intensity of reaction; C, a combination of heat of reaction and heat 

removal rate; v, a mean feed/coolant temperature. If a is held constant 

the surface Z(cv.,£, v) as a function of C and v takes on the form of a

(v - v)/c = z(v;a) (5.1)

where

(5.2)

Z = z(vg;a) = Z(a,c, v) (5.3)
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cusp catastrophe as has been known for sixty years. When the cooling 

capacity is very large h-K) and £-K); when the operation is adiabatic h-K) 

and £+3. The possible modes of intersection are shown in the figure.

When C is small t,he straight line, which is the left hand side of the 

equation, is steeper than any part of the z-curve and the intersection is 

unique whatever the value v. If £ has the critical value £c that gives 

the line the slope of the inflection point of the z-curve, the solution is 

still unique but the tip of the cusp is attained when vc makes the line go 

through the inflection point. For C>£c then, for ^(c)<v<v (£), there are

three intersections.

The lower part of the surface (left of CB) corresponds to a poor rate of 

reaction, where as the upper right (right of CA) represents a much higher 

reaction rate. The branches CA and CB of the catastrophe set might be
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called the extinction and ignition catastrophes respectively, for if C is 

constant and v is increased from P to S and decreased back again, 

ignition takes place in a jump from Q to R and extinction in the drop 

from T to U.

The parameter a has been kept constant in this presentation and as it 

varies the cusp moves. We shall study this in some detail in the next 

section and it suffices to remark here that, though the cusp moves, no new 

features come to light (cf. Regenass and Aris [152]). However, two 

parameters are affected by the variation of flow rate and as was remarked in 

Sec. 4.3 a rather different parametrization is appropriate. Using the 

variables and parameters of eqns. (4.29 and (4.30) we have

Ou = -u + otO (1-u) exp [v/(1+v/y) ] (5.4)

Ov = 0vc - (1+0)v + 0a$(1-u)exp[v/(1+v/y)] (5.5)

This is essentially the same form of equations as that studied by Uppal, Ray 

and Poore [184] in one of the landmark papers of the subject. Following 

them, and for reasons we will not digress to here, we let y-*» and take 

vc=0. There are still three parameters and one must be kept constant if we 

are to draw surfaces in three dimensions. Let 3 be fixed for the whole 

figure and plot the steady state reaction rate Z as a function of a and 

0. Such a surface is shown below and it is clearly somewhat different from 

the simple cusp surface having a Rehoboam-like finger protruding from the 

top of the wave. The catastrophe set is the hook-shaped region shown on the

plane beneath.
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This is one way of presenting a small part of the results of Uppal, Ray 

and Poore but they have done vastly more than this by applying Hopf 

bifurcation to eqns. (5.4) and (5.5). By this means they have been able to 

direct their computations and discover all the possible types of behaviour 

of the system. These are shown in the next figure. Although the steady 

state behaviour is sufficiently demarcated by the hook-like catastrophe set 

(heavy line), within which there are three steady states and outside of 

which there is uniqueness, the dynamic behaviour is much more complicated. 

Nine different types of phase portrait can be discerned each corresponding 

to a different part of the a,0 plane. Thus if (a,0) lies in region B 

there is a single steady state, but it is unstable and is surrounded by a 

stable limit cycle. Often a figure such as this will have to be distorted 

to show the detail, but it then becomes a map to guide the viewer into an 

accurately drawn figure.
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u

u

u

A slightly different form of comprehensive presentation can be given for 

the system we studied in Sec. 4.5.1. If the growth curves of the two 

organisms are either of the following forms:

o r

and the label 1 is always used for the curve that is ultimately the higher, 

i.e. g^(z)>%2(z) for large z, then we draw both curves in the same plane

and put in the point (Z,0). This is called 0 and reading from right to
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left the intersection with are first P then Q, if it is needed (it

is not in the diagram above) and those with g^ are first R then S. 

This gives a word (in the case above ORSP) and the corresponding phase 

portrait can be found in the gallery below (in the case above //21). This 

gallery together with the portrait of OPRSQ on p. 81 is complete except 

for confluence such 0 RS

This confluence is not structurally stable for the slightest increase of 

will make RS disappear, while the slightest decrease will separate the 

confluence and give ORS. We have not been quite consistent in overlooking 

the structurally unstable however for we have included OT which arises
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from being exactly at the level of an intersection as part (b) of the next 

figure shows. We have even included OTU (shown in part (c) of the figure) 

which is "very unique" since it can only occur if the two intersections are 

at the same level.

Two further examples of presentation may be given to illustrate the

importance of bringing out a characteristic feature in as dramatic a

fashion as possible. There are various ways of describing the residence

time distribution in a flowing system. P(t), the fraction of particles or

molecules in the system at t=0 which have left by time t, is a monotone

increasing function of t with P(o)=0, P(°°)=l. It may be interpreted as

the probability of a residence time being less than t. The expected

residence time is y = /tP'(t)dt = /{1-P(t) }dt and the variance of residence 
2 2times o = ft{1-P(t)}dt-y . These are the most obvious parameters and may 

be related to the position of the fstepf in the P-curve and to its steepness. 

An alternative description is p(t) the probability density of residence 

times, i.e. p(t)dt is the probability of a particle having a residence 

time in the interval (t,t+dt). Clearly p(t)dt = P(t+dt)-P(t), so that 

p(t) = P'(t), y = /tp(t)dt and a = ft p(t)dt-y . The same information is 

present but this time the mean is the centre of gravity of a peak and the 

variance is a measure of its 'spread*. With an approximately Gaussian 

residence time distribution the one has little advantage over the other.

5 4$
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r

but where there is a rapid bypass the density function shows it up better. 

For example the system below would give a peak at the bypass residence time 

in the p-curve but this is rather lost in the P-curve.

r---------- - D - O - Q - -----U m -cpo-chih

density as another method of showing up the features of a residence time 

distribution. This is n(t)dt the probability that a molecule of age t 

will leave the system during the interval (t,t+dt). Since l-P(t) is the 

fraction of molecules of age t in the system at time t, p(t)dt = 

{l-P(t)}n(t)dt or

l-p(t) dt ln^1

For a single well-mixed compartment

P(t) = i e ~ t/v , P(t) = l-e_t/y , n(t) = i .

so that the departure of n(t) from constancy is an indication of ill­

mixedness. Some characteristic shapes are shown below, but for a full dis­

cussion of the intelligent use of residence time distributions the papers 

of Shinnar and his colleagues should be consulted [241-6].
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^ ( t )

Another situation that lends itself to considered presentation arises 

when two functions vary in opposite senses, the one increasing and the other 

decreasing as functions of a controlling variable. Such a situation can 

obtain when two pollutants behave contrarily with respect to an operating 

variable

concentrations, with a *(x)<0<bf(x), and acceptable levels of A and B 

are a* and b*. If a(a) and 3(b) are the inverse functions of a(x) 

and b(x) (i.e. a(a(a))=a, b(3(b))=b), there will be an operating window if 

3(b*)<a(a*)’ However this plot tells us little about the relative 

behaviour of A and B and it is better to plot the curve a=a(x),b=b(x) 

in the a,b-plane. The curve may be convex or concave toward the origin:
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b f / o

er a 0
a

The window can again be read off, but now it becomes clear that it is 

easier to get away from both limitations when the curve is convex to the 

origin. On the other hand if the requirements can be met in the mean, they 

can more easily be met if the curve is concave to the origin for then the 

result of operating in slow oscillation between two such points as P and 

Q is represented a point on the chord PQ, which opens up a wider window 

for oscillatory operation.

5.2 Extensions of models.

In this section I want to raise a rather speculative question. When, if 

ever, is it profitable to extend consideration of a model into physically 

unreal regions? The answer could be, 'Never', since the physically correct 

regions should define itself and be closed. Thus, for example, with

the region

0<c<cf, 0<T

is the physically appropriate region. Moreover we see that (dc/dt)<0 on 

c = cf, but (dc/dt)>0 on c = 0; while (dT/dt)>0 for T=0 and (dT/dt) 

is negative for sufficiently large T.

c

VCp ^  = qCp (Tf-T)-h(T-Tcf) + (-AH)VAe E/,RT<c
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Thus the region of physical interest is closed and one could argue that 

attention should be confined to it. One cannot argue that attention can be 

confined to any sub-region on the grounds that only such a region is of 

practical significance unless it also is similarly closed. Thus would

be an admissible confinement, but not D^. But the equations themselves 

are indifferent toward physical reality, let alone practical significance,

and obtain throughout the whole c,T plane. There is in this case the 

fmonstrous steep of Montmorency1 at T=0 which we might expect to be a 

natural barrier.

But the enlargement of the variables beyond the bounds of physical 

reality is related to a similar extension of the parameters. In the above 

equations V, q, c^, A, E, C^, h, T^ and T ^  are all positive and only 

AH can change sign. In the non-dimensional form of the equations (cf. 

Sec. 4.3)
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- u - aue-1/v (5.6)

1 dv 
6 dx v - v + a£ue-l/v (5.7)

the only parameter which can change sign is £.

However, there are at least two prima facie reasons why it might be 

desirable to extend the range of the parameters. First, the extension will 

allow us to see the system more comprehensively and understand its movements 

better. Second, it may suggest connections with other systems or even suggest 

new ones. Thus a stirred fermentor with growth by a logistical curve would 

have an equation

V = -qc + kc(c -c) dt M m

with V, q, k and cm positive. However allowing k to be negative gives 

the equation for a stirred tank with an autocatalytic reaction. Let us 

examine the steady state of the stirred tank in more detail.

The equations for u and v at steady state are

these can be reduced to the single equation which has been cited as (5.1) 

but is repeated here:

The left hand side is a straight line, the right a curve with a discontinuity 

at v = 0 and depending on only one parameter. There is a discontinuity at 

v = 0, since z(0-0;a) = 1 but z(0+0;a) = 0. The general form of the 

function is given on p. 117 for positive a and we see immediately that an

i -1/v n1 - u - aue = 0
(5.8)

^ (v-v) (5.9)

arbitrary straight line can have 0, 1, 2 or 3 intersections. The forms for
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negative a are also shown and up to three intersections are possible 

unless the branches of the curves are so disposed that an intersection of 

the form shown on the right is possible. We 

shall eliminate this possibility later.

The function z (v;a) has the properties 

z(v;a) a/(l+a) as v -* 00

z*(v;a) = z(l-z)/v2 (5.10)

z"(v;a) = z(l-z)(l-2z-2v)/v^

so the inflections points are always located on the line

v + z « 1/2 (5.11)

which is the asymptote when a = -1. We notice a certain rotational sym­

metry about z = 1/2, v = 0 and in fact

z(v;a) + z(-v;a )̂ = 1

or (5.12)

z(v;a) - 1/2 = -{z(-v;a 1) - 1/2}

Thus if v-v=Cz(v;a) has a solution v = w then v-v* = c'zivja’) will have 

the solution v = -w provided

a' = a \  C? = C and v ’ = -v-C.

To show this we write a* = a ^ and

v-v’ = c'z(v;a-1) = c' - c'z(-v;a) 

or by replacing v by -v,

v + v f + C1 = C1z(v;a).

Thus in principle we can find out everything by studying the cases for 

|ot| <1. It also suggests a transformation of parameters to 

a,C and w = v + (c/2) (5.13)
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will introduce greater symmetry since the diagrams will be invariant under 

a -+ a c w -w.

We will trace the pattern of roots of eqn. (5.9) in two cases: 0<a<l 

and 0>a>-l. For a>0 there are two critical points for v, namely the 

intersection on the v-axis of the tangents at the points of inflection, say 

V+ and V_.

As t, goes from -» through 0 to 00 the line through v swings clock­

wise from the horizontal through the vertical to the horizontal. Such a 

sequence for v<V is shown above as va, vb,...vf. Until the positive 

slope of ve is reached the intersection of lines such as va and vb is 

unique. A line between vc and vd intersects thrice, but beyond vd only 

twice until ve is reached, vd is the line with C - -v and, as

v->-00, vc and vd tend to coincide. On the other hand the slope of ve is
2 2the value of z1 at the point of tangency E and this tends to a/(1+a) y 

as y, the abscissa of E, tends to -°°. Thus for y-*-00

C+(l+a)2y2/a

and since z->a/ (1+a), we also have 

C+(y-v) (1+a) /a

and hence asymptotically we have the relation

2
aC “ [aC + (l+a)v] .

When the point v is close to V_ there is only a slight difference
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between the slopes of vc and ve. The region of two or three intersections 

corresponding to lines between vc and ve is traced out by computing the 

slope of the tangent and its intersection with the v-axis, i.e. parametically 

by letting v run from -°° to 0 in

t = v^/z(l-z), v = v-z/zf = v(l-v-z)/(1-z) (5.14)

Similarly the region of two intersections for a line of lesser slope than 

vf is traced out by letting v run from 0 to °°. If v is positive but 

less than V+ there are three intersections. Thus the pattern of 

multiplicity in the C v plane is as below

As a varies the cusps at the tip of the regions of triplicity move on the 
__2 _hyperbola v + v£ = C/4. There is a measure of symmetry about the line 

v = -C and this confirms the previous impression that w = v 4- 1/2^ may 

have merit as a parameter. In the C> w-plane we have



How should a model be evaluated? 121

4(?+l/2)2 - 16w2 = 1.

The pattern for a  ̂ is obtained from that for a by rotation about the 

C axis.

For negative a we can use a similar argument first tracing out the 

C, v-locus by eqn. (5.14). The correspondence is best shown separately.

The symmetrizing effect of using C 

but is shown below and the form for a  ̂ is obtained by reflection in

w=0.
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There are echoes here of the canonical catastrophes but there seems no 

obvious correspondence. Thus in the movement of the cusp in the case of 

negative a we have:

Apart from getting an enlarged view of the system of equations there may 

be links with similar equations in other areas. In this case, there is an 

analogue from statistical mechanics where Fermi-Dirac and Bose-Einstein
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statistics show complementary changes of sign. The mean number of particles 

in a state s is ng,es is its energy. Then Fermi-Dirac statistics give

Since $ is the chemists* abbreviation for 1/kT, l/$£g is a dimensionless 

temperature v.

5.3 Observable quantities.

Returning from the speculative to the practical, a word should be 

inserted about the value of using observable quantities. What is meant by 

this is best illustrated by an example. In Sec. 4.4 we looked at the 

equations for diffusion and reaction in a catalyst pellet

£ = 0 on 3 ft.

To see the application of observable quantities we need a slightly different 

form of the equations. Now £ has the curious dimensions of moles per unit 

length per unit time and it needs to be made dimensionless by being divided 

by the product of a characteristic value of a diffusion coefficient and 

concentration. Let these be D* and c* and set

while Bose-Einstein give

(4.66 bis)

w = £/D*c* (5.15)

Also let us write R(£) in the form
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R(?) = r[cls + (a1/D1)?,...Ts(-AH)/ke)C]

= r[c, + (a1D*/D1)c*w,...,T + {(-AH)D*c*/k }w] (5.16)Is 1 i s e

= r(cls,...Ts)P(w)

so that P is the ratio of the reaction rate to its value under surface 

conditions. Finally if the variables in the Laplacian are made dimensionless 

by dividing by a characteristic length L* we have

V2w + <(>2P(w) = 0 in Q (5.17)

w = 0 on 3 ft (5.18)

where

2 2 r Ĉls’ * * - V
♦ - 1-*2 p.c, (5.19)

This last parameter (often known as the Thiele modulus in honour of one of 

the pioneers in this field) is a measure of the ratio of the reaction rate 

to the diffusion rate. There will of course be other parameters in P(w) 

but, supposing these to be constant, the solution of eqn. (5.17) will be a 

function of <J).

Now there is a very important functional of the solution, namely

D = 7T Iff P (w)dV. 
0

(5.20)

the average value of the reaction rate in the pellet as a ratio of the 

surface reaction rate. This so-called "effectiveness factor" is a function 

of the parameter (f> and wraps up the practical implications of the solution 

very neatly. As ir̂ l, for eqn. (5.17) becomes Laplace’s equation and,

with the boundary condition (5.18), the solution is w=0; but P(0)=1 so 

n=l. Physically this makes sense, for means that diffusion is rapid

in comparison with reaction and so the surface conditions prevail everywhere. 

As n-K) since, with increasingly rapid reaction and slower diffusion,
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the interior of the pellet is starved of reactants and ineffective. In fact 

a singular perturbation analysis shows that n is inversely proportional to 

<f> for large <p. The log-log plot of n(4>) has the form shown in the simplest

cases. For example if P(w)=l-w, r\ (<J>) = (tanh<J>)/<p when ft is a flat plate of
2thickness 2L* with sealed edges; it is n(<j>) = (3/<#> ) (<f>coth<f)-l) for a sphere 

of radius L*.

Now it is all very well to know but when the reaction rate is

measured it is not r(cn ,...T ) = r that is observed, but ratherIs s s 9

nrg = r ^ since the intrusive effects of diffusion are present in the 

measuring process. It is therefore useful to define an observable parameter

<f2 = L* 2r obs/D*c* = r|(j)2 (5 .2 1)

and to plot n as a function of $ rather than of <J>. We notice that $ 

and (p are virtually the same when they are small but that $ is propor­

tional to the square root of <p, when they are large. Thus the graph of 

n($) is a little steeper and so defines a little better than n(<|>) a value
1 /

log?
no \  

diffusion
limitation^ \

A aairru6ton
limiting'

of $ above which diffusion limitation can be regarded as serious. There 

is of course something arbitrary about such a critical value (it might for 

instance, be the value at which n = 0.8, or n = 0.9 if one wanted to be 

more cautious), but it can be a very sensible arbitrariness and once deter­

mined can be correlated with other parameters. Bischoff [30] has shown how 

to normalize (p so that a sensible critical value is <J>=1.
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The notion of a normalized modulus is an elegant one and often worth 

cultivating. For example, we have noted that the asymptotic form of r) is 

inversely proportional to <J>. The constant of proportionality depends on 

the shape of Q and on the kinetics. However if w is scaled so that 

P(1)=0 and L* is chosen so that

where V is the volume and S ,the surface area of ft, then the constant of

for this statement lies in the singular perturbation solution of eqn. 5.17 

and will not be pursued here, but it can readily be appreciated that when 

<j) is large only a thin layer beneath the surface is contributing to the 

reaction and hence the surface area if important. Details can be found in 

[14].

5.4 Comparison of models and prototypes and of models among themselves.

When a model is being used as a simulation an obvious comparison can be made 

between its predictions and the results of experiment. We are favourably 

impressed with the model if the agreement is good and if it has not been 

purchased at the price of too many empirical constants adjusted to fit the 

data. If the parameters are determined independently and fed into the final 

model as fixed constants not to be further adjusted, then we can have a fair 

degree of confidence in the data and in the model. Both model and data have 

their own integrity, the former in the relevance and clarity of its hypotheses 

and the rigour and appropriateness of its development, the latter in the 

carefulness of the experimenter and the accuracy of the results. But these 

virtues do not only inhere in the possessors they also gain validity from 

the other. Thus, as Truesdell remarks, in applied mathematics rigour is of

(5.22)

proportionality is 1 (i.e. n~<f> for all shapes and kinetics. The basis



How should a model be evaluated? 127

the essence, for the comparison can have no meaning if the model has not 

been handled properly. Similarly data must be of a certain degree of 

accuracy or it has no ability to prove (i.e. test) a theoretical viewpoint. 

Thus the attitude of never believing an experiment until its confirmed by 

theory has as much to be said for it as that which never believes a theory 

before its confirmation by experiment.

In the comparison of theory with experiment an array of statistical tools 

is available and should be used. Thus not only can the fitted constants be 

chosen in some best sense (e.g. least squares) but it is not difficult to 

find also the covariance matrix of the estimates and hence detect any hidden 

sensitivities. One danger that is easy to overlook is the existence of 

hidden constancies that will give spurious values. Thus the temperature 

rise in an adiabatic bed is a measure of the reaction rate which will be a 

function of the mean temperature. But if the inlet temperature is virtually 

constant, the observed pairs of temperature rise and mean temperature will be 

perfectly correlated by a straight line whatever the functional relationship 

between them. This straight line says no more than that the mean temperature 

equals the inlet plus half the rise. The classic correlation between the 

intelligence of the children and the drunkenness of the parents which so 

confounded temperance societies years ago— until it was discovered that all 

the data came from schools in the east end of London— is another illus­

tration of a data base too narrow to test a model.

In discriminating between models it is not entirely satisfactory to fit 

the constants of each and choose the better fitting model. For one thing 

there may be little to choose between the goodness of fit in the two cases.

We are on much firmer ground if the two models can be presented in such a 

way that they have qualitatively different behaviour. Tanner [171] has



128 Mathematical Modelling Techniques

tried plotting data on the intermediates of a complex reaction in such a way 

that they fall on a loop which in some models is traversed clockwise and in 

others anti-clockwise.

A field in which qualitative behaviour of models has been used 

discriminatingly is the study of oscillations in chemical reaction. If a 

certain reaction is known to give oscillations under certain conditions then 

any mechanism that is incapable of giving oscillations under these conditions 

is ruled out. Sheintuch and Schmitz have reviewed this subject very 

thoroughly and examined the models for the oxidation of carbon monoxide in 

the light of this criterion, [163]; see also Eigenberger [61] and Luss and 

Pikios [124]. They find that a more than usually detailed account of the 

mechanism is needed. Unless the lack of uniformity of the catalyst surface, 

the affects of the chemisorbed species, their variations of reactivity and 

the dependence of the activation energy on coverage are brought into 

consideration no oscillations can occur. This rules out seven of the 

thirteen cases they consider and some of the remaining possibilities are 

seen to be unlikely by the magnitude that various terms would have to have 

if oscillations were to occur. This is remarkable in that twelve of the 

thirteen cases can be adjusted to match the known form of the reaction rate 

expression for carbon monoxide oxidation.

This work of Schmitz and Sheintuch shows the power of mathematical 

modelling when combined with physical understanding, for not only are many 

possibilities eliminated, but the features that call for further investi­

gation in the remaining candidate models are clearly brought out. The 

mention of it is a pleasant note on which to conclude this exploration of 

the craft of mathematical modelling.



Appendix A Longitudinal diffusion in a 
packed bed

Description of the system P .

A fluid flows through the interstices of a long cylinder which is packed with 

particles. Because of the variations in local velocity as the fluid passes 

around the particles, the eddying and wall effects, some molecules will pass 

through more quickly than others. In addition there is the molecular 

diffusion of the tracer molecules in the flow field. Hence, if the fluid is 

marked with a tracer which enters the bed at time t = 0 in a sharp pulse 

and the concentration of the tracer is measured as the stream leaves the bed,

it will be found to have spread out into a diffuse band. If the input were 

perfectly instantaneous and the output C(t) then

y = /q tC(t)dt/C(t)dt

would be the mean residence time of tracer molecules and 

a2 = /” (t-y)2C(t)dt//" C(t)dt

the variance of residence times. Clearly these two statistics of C(t) give 

some idea of the dispersive effect of the interaction of these physical 

processes though the equations should be capable of yielding C(t) itself.

We denote by P the intersticial space through which the fluid flows, by 

9P the bounding surface of this region excluding and the inlet

and outlet ends of the cylinder. Let the area of cross-section of the
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cylinder (and thus of 3 ^  and 3ftQ) be A, q the volumetric flow rate, L

the length and e the fractional free space. The mean linear velocity of

flow is thus q/Ae = L/0, where 0 is defined by this equation as a

residence time. The concentration of tracer at any point r of the free

space and time t is c(r,t); C(t) = //c(r,t)dS.
3^o

Hypotheses.

Physical laws and general conservation principles will be regarded as an 

underlying hypothesis, Hq. Then the specific hypotheses we need are as 

follows:

H^: the fluid is incompressible and the flow steady.

H£: its motion is governed by the Navier-Stokes equations.

H^: the diffusion of the tracer obeys Fick's law.

H^: the tracer does not penetrate the cylinder walls or enter the

particles.

H,.: the mean linear velocity is uniform.

H^: the dispersive effect is given by an effective longitudinal

diffusion coefficient.

H^: the movements of a tracer particle can be thought of in discrete

time intervals during which it either moves forward by an 

increment of length or, being caught in an eddy, moves not at all.

Model ni.

This model is just the embodiment of the hypotheses Hq-H^ using well- 

known equations; we shall not go into the derivation of the Navier-Stokes 

and similar equations but use them as needed; they are of course themselves 

derived by the principles outlined in Ch. 3. Thus, if v(r,t) is the
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velocity at some point r in ft, implies that it is really v(r) and

the incompressibility that

V • v = 0 (Al)

The Navier-Stokes equations are

(v • V)v = -Vp/p + vV^v. (A2)

and these are also written for a steady flow with p the pressure, p the 

density and v the kinematic viscosity. The equation governing the dis­

persion of the tracer is not a steady equation but, with D the molecular 

diffusion coefficient, is

+ v • Vc = DV2c . (A3)O t

These three equations are subject to the boundary conditions

v = 0 on 3ft, p = p_̂ , v = v^ on 3ft̂  (A4)

and if n denotes the outward normal to the boundary of ft,

n • Vc = 0 on 3ft or 3ft , o

vc-DVc = vc. on 3ft..~ l l
(A5)

If the impulse of tracer put to the bed is perfectly sharp we might put

cj, = 6(t)/q (A6)

since then iff c.vn dS dt = 1. 
0 3ft ~

c(r,o) = 0

Initially the bed is free of tracer so

(A7)

Model JT2.

The first model is so complicated as to be almost impossible of solution 

and clearly the complexity of the geometry is part of the problem. Suppose 

we take the drastic step of ignoring this complexity and say that the flow 

averages out to a virtually uniform velocity U = q/Ae and that the
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dispersion is the sort of thing we would see if Fickian diffusion were 

imposed on this. The prototype has thus been modified by the hypotheses,

H,., H^, to an equivalent continuum. The equations for this are for a 

concentration c(x,t) which is a function of x the distance from the inlet 

and time. Then

M + u  l £ . B ¿ 0
»' »* * 3 x 2

, 0 < x < L, (A8)

where is the effective diffusion coefficient. As boundary conditions

we have

U c - D  Tp1 = Uc., x = 0 e 3x l*
and

If = °, X = L.

Initially,

c(x,o) = 0.

The measured output is 

C (t) = c (L, t) .

Model n3.

(A9)

(A10)

(All)

(A12)

In formulating 11̂ we take the opposite view of the physical system from 

the continuous analogue of P2 and emphasize the discreteness of the packed 

bed. In particular the flow is a seaweed flow, squeezing between particles 

and bulging into the cavities. For example, in a rhombohedral blocked 

passage arrangement the overall fractional free volume is 26% but the free 

area perpendicular to the flow varies widely. Through a plane of centres of 

the spheres it is only 9% while if the region between one plane of centres 

and the next is divided into thirds the average free area is 41% in the 

middle third but only 18% in the other two. It is not entirely unreasonable
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therefore to regard each layer of particles as a cell in whose interstices,

a thorough mixing takes place. The system P is thus replaced by P^, a

sequence of N cells each of volume V through which the stream passes.

Equating the total free volume gives NV = ALe. We will not be dogmatic

about N at this point, though, if the analogy holds up we might expect N

to be of the order of L/d where d is the particle diameter.P P
If c (t) is the concentration of tracer in cell n n

dc
v 7 T  ■ (S13)

with

V qCc^-c^) (A14)

and

c (0) = 0 (A15)n

The observed quantity

C(t) = cn (t). (A16)

This model has been elaborated to consider radial as well as longitudinal 

dispersion in packed beds by Deans and Lapidus [53].

The connection between TT̂ and n̂ .

As is remarked in Ch. 1, there is no immediate connection between 11̂ and 

11̂ for the discretization of 11̂ would not produce 11̂ . They are 

connected only in the sense that they give comparable solutions. Thus if 

c^(t) is given the solution of is

C(t) = /¡j Ci<t')p2(L,t-t')dt1 (A17)

where
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P2(x,t) =U(TTDet)-1/2exp-
e

U
2D

Ux _ exp —  erfc xfUt
2(Det)1/2

(A18)

In particular if c^(t) is the delta function input, the output is P2(L,t) 

and /q P2dt=l. The distribution of residence times is almost Gaussian and 

the mean and variance of residence times are

where P = UL/2D .e
The solution for is

(A19)

(A20)

C(t) = /q ci(t')p3(t-tf)dtT (A21)

where

P3(t) = (N-l)!

This is the Poisson distribution which is also asymptotically Gaussian and 

whose mean and variance are

P3 = NV/q (A23)

a2 = NV2/q2 (A24)

Since the total volume of the cells, NV, should obviously equal the total 

free space, LAe, and q = AeU, we see that 

M3 = NV/q = L/U = 0

p p
which is approximately equal to M2 P>>1. But if we equate y /0 in

the two cases we see that

N = P(1 + \)2K 1  +

N N-l -qt/v (A22)
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As we have seen, there are physical grounds for thinking that N should be

and variances of the two models are approximately the same. If P = N =

in good agreement with experiment. An alternative way of establishing the 

connection between and II ̂ by the common Gaussian approximation to

P2 and p^ was discussed by Amundson and Aris [5].

Model IT, ._______4

A rather different model is obtained by taking a disjointed view of the 

tracer movement and saying that sometimes it moves forward with the stream 

and at others it is caught in an eddy and stays in virtually the same place. 

This is the crudest of random walk assumptions, embodied in H^, and 

obviously could be elaborated by giving a distribution of lengths over which 

the movement might take place. Suppose that in each interval of time t 

the particle either moves forward a distance 6 or remains where it is. The 

probability of the first event is p and of the second is q = 1-p. During 

a time t = Mt there have been M such "choices" and, if L = N6, the 

particle will emerge if N of-these have been to move forward. The 

probability of this is

of the order of L/d^ which is quite large; hence P = N >> 1 and the means

L/d then the so-called particle Peclet number Pe = Ud /D = 2  which is P  ̂ P e

(A25)

Thus

(A26)

It is well known that if

z N-Mp = L-(6/t)tp (A27)
(Mpq)1^2 6(tpq/t)1^2

then



136 Mathematical Modelling Techniques

C(t) -
(2irtpq/x) 1/2

exp _ (L-(6p/x)t)^ 
2(62pq/x)t

(A28)

3 -1/2as N and M -* 00 and z M 0. Comparing this with (A18) we see that

6, x and p should satisfy

6p/x = U, 6 pq/x = De»

Thus if 6 is of the order of d and Pe = Ud /D - 2  we haveP P e
q = p = 1/2, which is reasonable enough.

(A29)

Notation for the models II.

A

C(t)

c(r,t)

C.(t)
cn (t)

D

De
dP
L

M

N

P

Pe

P.

p2’p3
P> P±

cross-sectional area of bed

outcoming average concentration

concentration at position r and time t

input concentration

concentration in nt 1̂ cell

molecular diffusion coefficient of tracer

effective or equivalent diffusion coefficient in

particle diameter

length of packed bed

number of time increments in II,4
number of cells in 11̂ or space increments in

UL/2De

Ud /D P e
probability of movement in n^, q = 1-p 

residence time probability densities in and 11̂

pressure, inlet pressure in 11̂ 

volumetric flow rate

reactor of position in free space of packed bed
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t

u

V

v

x

6

e

0

U.

v

P
2 a .i

T

ft

3ft

3ft., 3ft

time

linear velocity 

volume of cell

reactor of velocity in interstices of bed 

distance from inlet 

length of step in 11̂ 

fractional free volume of bed 

residence time

mean residence time in JI. , i = 2,3l
kinematic viscosity 

density

variance of residence times in n., i = 2,3l
time increment in II,4
free space of packed bed

boundary of ft except for 3ft̂  and 3ftQ 

inlet and outlet boundaries



Appendix B The coated tube chromatograph 
and Taylor diffusion

Description of the systems C and D .

The inside of a long, cylindrical tube is coated with a thin retentive 

layer. A carrier gas flows through the tube and molecules of a tracer 

solute are convected by it, they diffuse and, if they reach the wall, may 

pass into the retentive layer and spend some time there. Different tracer 

solutes with different affinities for the retentive layer will spend 

different proportions of their time in this stationary phase and so peaks 

of different solutes are separated emerging at different times. (The 

analogy is sometimes made with a stream of soldiers on a long road lined 

with pubs: the teetotalers will arrive at the end of the road first, 

followed by the temperate and the topers— the dipsomaniacs may never make 

it.) But the diffusion, the variations of velocity across the tube and the 

rate of partition between the phases will all contribute to the spreading 

out of an initially sharp peak. Our interest is to account for the mean 

speed of the peak and to understand how each factor affects its spread.

There is also the special subordinate case when there is no retentive 

layer (system D). Here attention is focussed entirely on the interaction 

of diffusion and convection. This is the so-called Taylor diffusion problem 

first successfully analyzed by Sir Geoffrey Taylor [174]. Lateral diffusion 

prevents the solute from travelling with any one streamline and counteracts 

the spreading effect of the wide variation of flow rates. Thus there is a 

Taylor diffusion coefficient which is inversely proportional to the 

molecular diffusion coefficient. An immense literature on this problem now



Appendix B 139

exists which is it not our purpose to summarize here: an early summary was 

given by Taylor [175] and a later one by Gill and Nunge [75] but there has 

not been any survey of the most recent developments. Extensions to the 

chemical reactor where reaction takes place in the fluid, in the retentive 

layer or in both have also been proposed.

Hypotheses of systems C and D .

Again Hq will be taken to embrace the underlying scientific laws and the 

following are the specific assumptions that are introduced to define various 

models.

H^: the tube in infinite in both directions

the tube stretches from the origin, x=0, to infinity

H^: the tube is finite, 0 < x < L.

H^: the velocities in the cylinder, 0=rQ<r<r^, and the annulus,

r^<r<r2> are ^unct -̂ons only °f r> the distance from the axis say 

U + (r),i-l,2, where th is the mean velocity in the region.

H^: the annular region (retentive coating) is stationary.

H^: the coating is thin, (r2~r^)<<r^.

: there is no coating.

Hgi the rate of exchange between the two regions is proportional to 

the difference (c2*-ac^), where c^ and C2 are the concen­

trations in the cylinder and annulus and a a constant.

H^: the diffusion coefficients D^, i = 1,2, are constant (a more

general hypothesis is made in Aris [11] but we need not reach for 

too great a generality).

Hir.: there is no flow across the axis, r = r =0, or the outer wall,10 o 9
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sufficient insight into the problem is to be gained from the 

temporal evolution of the moments of the distribution in space.

: sufficient insight is to be had from calculating the mean

concentration across the tube and determining an effective speed 

and dispersion coefficient.

H^: longitudinal diffusion is unimportant.
2H^: the flow profile is parabolic tf̂ Cr) =* 2[l-(r/r^) ].

Ĥ j.: diffusion plays no role.

The most general model

Clearly some of the foregoing hypotheses are mutually contradictory and 

will be used to define different case and sets of boundary conditions. 

The basic equations of convection and diffusion (i.e. H^) with and

give

3c. 3c. ia2ci l 3 r  3cill
It" + Di*i(r) 1 7  = Di 3r L  3rJ ' »

The hypothesis H^q gives us the boundary conditions

(Bl)

9cl
Di l 7 = ° ' r o, (B2)

and

3C2
D2 1 7  = ° ’ r '  r 2>

while Hg gives

(B3)

3c- 9c2
di  7 7  = d2 “17 = k(c2-“ci ) * r l"

The initial conditions have to be specified and are

(B4)

ci(x,r,o) = x^x.r), i = 1,2. (B5)
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We have not said anything yet as to the boundary conditions with respect 

to x. If is asserted we need only add

c^(x,r,t) is finite as x -»■ ± 00 (B6)

and the problem is complete. T  ̂ is the set of equations (Bl) - (B6).

It proves advantageous in the analysis of this problem to have a moving 

origin, so that alternative equations to (Bl) are

y  = x-Vt (B7)

3c. 3c. [a2c. , 3 3e )
1

at + (U^.OO-V) 1 * 7  = D i i ------ — +  — —
l a y 2 ^  T F > |  • (B8)

This is not a new model but a preliminary modification, r|.

The models T^ and r̂ .

The doubly infinite tube is not a very accurate model of the practical 

situation. It can be realized by a long capillary tube with the variation 

of tracer concentration confined to a comparatively narrow range far from 

the ends. Indeed experiments have been done by flashing light on a short 

section of a tube through which the flow of a light sensitive fluid passes. 

Such a flash at t=0 established the initial concentration distribution x 

and the conditions of apply very precisely. A far more realistic

situation however is afforded by replacing by It then becomes

necessary to replace the condition of finiteness as x ->■ -°° by an inlet 

condition at x = 0. If and are both positive and if it is felt

that a solute fed to the plane x = 0 (for example from a reservoir) must 

enter the system then 

3c.
Di + °i*i(r) ici-cif} = °> i=1’2 (B9)

ifat x = 0, where c is the feed concentration.
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If {¡2 < 0, as when a thin film runs down the wall of a vertical 

cylinder countercurrent to an upward flow of gas then we have to invoke

since the countercurrent film must be specified at its inlet and write

With the semifinite tube there is still the requirement of finiteness as 

x-*», but for the finite tube another condition is required. These are 

often written

The moment model T..__________________ 4

The important characteristic of all dispersion situations is that there is 

a certain movement of the centre of gravity of the solute distribution and a 

steady increase in its spread. It follows that some insight may be gained 

by studying the temporal evolution of the spatial moments. If we had 

knowledge of all the moments then, with suitable restrictions, we should 

have knowledge of the whole distribution (see e.g. [162]), but, apart from 

the unlikely event of there being a special form of solution, this demands 

solution of an infinite number of equations and so is a worse task than the 

solution of itself. Of course, our hope is that the first two or three

moments will tell us all we want to know.

3c
Di I T  + ui<l,i(r) {cr cif} = °* x=0’ U1>0

(BIO)
3e

°2 *3x" + U2*2(r) {C2-C2f} = °’ X=L> U2<0

(Bll)

Let

c£P^(r,t) = /“ yPc(y,r,t)dy (B12)

be the pfch moment about the origin moving with speed V and



Appendix B 143

r r
m (p)(t) = /q1 2rcJp)(r,t) + fr2 2rc^p)(r,t)dr.

Then

3t l r 3r
3c<P>1
3r + D.p(p-l)cJP 2)

+ {U^CO-Vjpc (̂P-1)

with

(B13)

(B14)

3c<p) 3c2(p)
1 =0, r=0; 3r = 0, r=r,3r (B15)

and

3c (P) 3c (P)

l 3r 

Initially

= D2 3r k(c^p)-ac^p)), r=rx (B16)

c^(r,0) = x^P^(r) = /” xPx±(x,r)dx (B17)

and it is of course assumed that these moments are finite.

These equations come easily from multiplying the earlier equations by 

y*5 and integrating from to To get equations for m ^  we have to

average over the cross-section, giving

= p(p-l)E ^  2rc{p_2)(r)dr + p 1 / 1 2r{U.<(»1(r)-V} c|p_1)dr 
1 i-1 1 i-1

(B18)

with

m (p)(0) = 1 / 1 2rxfp)(r)dr. (B19)
1 ri_i i

It is perhaps well to interpolate here the results for T^ since they 

can be misunderstood. Without loss of generality we can take the initial 

distribution to be such that m^(0)=l, m^(0)=0. It can then be shown
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[11] that m^°^(t)=l, (t)̂ -ir/(A1+aA2> , (t)-Hnr/(Aj+aAj) where
2 2

Ai=1T(ri-ri-l) • Moreover if v is chosen to be (AjUj+aA^) / (A-j+aA^ then 

dm^/dt-M). This means that the centre of gravity of the solute ultimately 

moves with the weighted mean speed of the two streams, the weights being 

the amounts of the solute in the two phases. This is very reasonable but it 

should be emphasized that it is an asymptotic result and, while one can give 

estimates of how quickly it is approached, the exact value of m ^  depends

on the initial distribution. If B - p A ^ / ( A ^ + o ^ ) t h e  asymptotic
( 2)result for m is that its growth rate

dm (2)
dt

2
2EB. 
1 1

D. +  k .'l lI D1 I
6l62(Al+aA2)(Ur U2)2

Trkar, (B20)

where

K± = k11-2k12(V/U1)+k13(V/U1)2 (B21)

and the k .̂ can be calculated from a knowledge of the velocity profiles. 

For example, when U2=0(hypothesis H^) and the first two terms

are e ^ D ^ i U ^ M S D ^ U l - i e B j + e e 2)] and B2 [D2+(U2(r2-r1)2/3D2)(l-2$2+e2)] 

respectively. Again these growth rates are only asymptotically valid and 

nothing more is rigorously claimed for this approach. It is quite another 

step to draw comparisons with apparent longitudinal dispersion coefficients 

such as is done in subsequent models.

The Taylor diffusion models with laminar flow.

We now specialize from the chromatographic case to the case to Taylor 

diffusion in laminar flow, i.e. we invoke Hy and H^. As before, we 

could let the system be much more general (cf. [10]) but this is not to the 

point here. We then have A^ corresponding to the most complete equations
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for the physical system D. We can drop the suffixes since there is only one 

region and concentration and will write r^=a. Then

3c . i r 2 3c . 1 3  f  3cl  x  . 32c
3t + 2U 1 2 3x D r 3r 3rJ + D 2 _  a  J  L  - 1 3x

and

(B22)

U  “ 0* r -  0,a (B23)

c ( x , r , t )  f i n i t e  as x->-±«> (B24)

c ( x , r , 0 )  =  x ( x , r ) (B25)

This is the system which can be modified to A^ by the change of

variable

y = x-Ut

giving

(B26)

3c . „ , , r2 3c . 1 3  r  3c] . . 32c
«  + " [X-2 7 j 37 “ r 3? Lr 3?l + ” ¡ 7  •

Gill et al. [74] invoked and assumed that c(o,r,t) could be

(B27)

specified, in fact as a constant which without loss of generality can be 

taken to be 1. Thus to (B22) and (B23) there is added

c(o,r,t) = 1, (B28)

c(x,r,t)-K) as x-x», (B29)

c(x,r,0) = 0 (B30)

This is A^ and is worth noting that Gill made them nondimensional in a

way that would bring out the scale of the spread into which the sharp 

at t=0, x=0 will soften as t increases. Thus with

front

r r x /D _ D t  „ 2aU
p a’? 2Uv t’ T 2’ P D a

(B31)

we have
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9c , l-p2 
3t 1/2T

_L2t
9c 9cl!ç + I _

a 2 P 3p 9p
1
?4tP

(B32)

with

If = °, P = 0,1,

c (0,p ,t ) = 1, 

c(Ç,p,x) + 0 as Ç <®.

If is invoked and we define

C(p)(r,t) = C  yPc(y,r,t)dy

m (p)(t) - -t- /J 2rc(p)(r,t)dr
a

then

3c(p) n H
3t r 3r

r  3c<p>l + Dp(p-l)c^P_2  ̂ + pU
2i r

I  9r 1 “ 2__ a _
,(p-l)

and

d” t - = Dp(p-l)n/p-2^+p 2r(l-^)c^p_1  ̂(r,t)dr.
a a

(B33)

(B34)

(B35)

(B36)

(B37)

(B38)

If m ^  (0) = 1 and the (0) are finite then m ^  (t) = 1, m ^  (t) -> a
(2) 2 2constant and dm y(t)/dt 2[D+(a U /48D)]. These are again asymptotic 

results for this model, A^. The detailed asymptotic approach to normality 

of the distribution of solute has been discussed in an excellent paper by 

Chatwin [42].

Models with the mean concentration.

We now have the bolder hypothesis that the situation can be sufficiently 

represented in terms of plug flow and an effective longitudinal diffusion 

coefficient which govern the mean concentration
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c(x,t) = 4r /g 2rc (x>r>t)dr.
a

Using Gill’s boundary conditions we write

—  + U 1̂ - = D 3t 3x e 3x2

with

c(0,t) = 1 

c(x,t)-K) as x-**> 

c (x, 0) = 0

(B39)

(B40)

(B41)

(B42)

(B43)

This is A, and we observe that is is cognate with A.. but not derivable 4 1
from it, for averaging over the cross-section gives

where

4 ra
<c> - T  fo ra

1 - c(x,r,t)dr (B44)

is not c, but the cup-mixing mean. By subtraction

.  2-

D = D + U —  [c - <c>] e dx 'M1 3x (B45)

and this equation has been used to calculate a variable from any

particular solution.

The model A^ may be varied by the choice of and we recognize the

following possibilities. If is invoked then Taylor [174,175] showed

that

a2U2
A4 ' De 48D (B46)

The growth of moments in A^ and A^ are asymptotically the same if
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4 •
2„2

De = D + W (B47)

On the other hand diffusion may dominate completely in a very slow flow and

A^'': De = D. (B48)

I I I I I IClearly A^ and A^ are limiting cases of A^ .

At the other end of the spectrum we might assert diffusion is altogether 

negligible, Ĥ ,-. In this case the flat profile at t=0 becomes a 

paraboloid whose tip advances with twice the mean speed. For this 

/d-x/2Ut, x<2Ut,
A, c = \ (B49)

1 0 x>2Ut.

The correlation of results from a model.

We have already mentioned that an "exact apparent" diffusion coefficient

can be fitted to the results of the calculation with A0 so that in A, it2 4
reproduces the same mean concentration. Unless some serendipitous constancy 

emerges this exercise serves only to compare the models for the particular 

problem. Another method is to look for a correlation between the results 

of one model and those of another without attempting to give significance to 

the constants. This is again limited in usefulness to a particular problem 

and is an empirical exercise with interpolatory value but no extrapolatory 

or explanatory power. For example Gill et al. [74] found that a good 

approximation to the solution of was afforded by the formula

j erfc x-Ut
2vT)t (1+P^Q)

+ j exp xU erfc x+Ut
D(1+PZQ) 2 ^ ( l + P * 2Q)

(B50)

where, as before, P = aU/D and

A6: Q=0.028(Dt/a2)0*55, Dt/a2<0.6 (B51)
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I IIt is worth noting that A^ corresponds to A,. but with Q = 1/48, while 
» » »A^ would correspond to Q = 0.

A s



150 Mathematical Modelling techniques

Summary.

Model Hypotheses Equations

ri 0,1,4,8,9,10 B1 - B6

f
F1 0,1,4,8,9,10 B1 - B8

r2 0,2,4,8,9,10 B1 - B5,B9

F3 0,3,4,8,9,10 B1 - B5, B10.B11

P4 0,1,4,8,9,10,11 B12 - B19

A1 0,1,4,7,9,10,14 B22 - B25

»
A1 0,1,4,7,9,10,14 B23 - B27

A2 0,2,4,7,9,10,14 B22,B23,B28 - B30

AJ 0,2,4,7,9,10,14 B31 - B35

A3 0,2,4,7,9,10,11,14 B36 - B38

\ 0,2,4,7,9,10,12,14 B39 - B43

A5 0,2,4,7,9,10,14,15 B49

A6 0,2,4,7,9,10,12,14 B50 - B51

Notation.

A.l

c .l

"if

c(P) C (P) 
ci ,c
c

<c>

D

r .th , ,2 2 varea of l phase 7r(r. - r.l l-l

radius of tube, common value of r^ and r^ 

concentration of solute in tube (system D) 

concentration of solute in i ^  phase 

feed concentration

pt *̂ 1 moment of concentration

average concentration

cup mixing mean concentration

equivalent longitudinal dispersion coefficient
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D.1
k

L

m (p)

P

Q

t

u.i
V

x

y

a

ei
K

Ç

P
T

X

X(P)

diffusion coefficient in i*1*1 phase 

rate constant for partition 

length of tube

P*"*1 moment of mean concentration 

Peclet number aU/D 

defined in eqn. (B51)

radial distance (rQ=0; r^ interface of phases; outer radius

of phase 2)

time

mean velocity of phase i 

velocity of moving origin 

length coordinate 

x-Vt

partition coefficient

A./(A1 + A2)

constants in eqn. (B21)

xD1^2/2Ut1^2

r/a

Dt/a

velocity distribution 

initial distribution

pt 1̂ moment of initial distribution



Appendix C The stirred tank reactor

Description of the system S.

A stirred tank reactor consists of a cylindrical vessel of volume V with 

incoming and outgoing pipes. The incoming pipes bring reactants 

A^, ^...A^, at volume flow rates q^, q2’**,clr> and the outgoing pipe takes 

of the mixture of products Ar+i>'**As and the remnants of the reactants, 

at a flow rate of q = q^ + ^2 + * *’ + * Thus the volume V remains con­

stant. The reaction can be written as Za.A. = 0, where a a areJ J r+1’ s

positive. This cylinder is immersed in another cylinder of annular volume 

Vc, also perfectly stirred, which is fed cooling water of temperature T f 

at a flow rate of q^. Other details will be mentioned as we proceed. It 

should be mentioned that this description has already been deliberately
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simplified since the geometry of a real jacketed reactor would undoubtedly 

be more complicated than that of simple cylinders. However, I have no desire 

to pile Pelion on Ossa.

Hypotheses.

Let us lump together the applicability of all physical laws, such as the con­

servation of matter and energy or Fourier’s law of heat conduction and call 

this the underlying general hypothesis, Hq. The following hypotheses can be 

extracted from the description or be excogitated as relevant to the setting:

Hr the mixing is perfect so that the concentrations c^, the reaction

temperature T and T^, the temperature of the coolant jacket, are

all independent of position, though they may be functions of time.

The volumes V and V are constant, as also are the flow ratesc
and the feed temperatures T^. The work done by the stirrers 

may be ignored.

H •

H3 =

V
H5 =

V

the reaction rate is a function r(c^,...cg,T) such that the rate 

of change in the number of moles of by reaction alone is a^r

per unit volume.

the heat transfer to the inner and outer sides of the wall where 

the surface temperatures will be denoted by T^ and Tq 

respectively can be described by transfer coefficients tu and 

h such that the heat transferred per unit area is h.(T-T.) and 

hQ (T -Tc) respectively.

the heat capacity of the reaction mixture does not change 

significantly.

the system is in steady state.

the curvature of the wall is negligible and the sharp corners

can be ignored.
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H^: the conductivity of the wall is extremely high.

Hg: the heat capacity of the wall is negligible.

H^: the response of the cooling jacket is virtually instantaneous.

H^q : the reaction is the first-order and irreversible with respect to 

the key species.

Derivation of the most general model

Using the principle of the conservation of matter from the underlying 

hypothesis Hq, we have the following balance for each species:

rate of change of rate of rate of rate of formation
number of moles of feed of - withdrawal + of Aj by means of
A. in reactor
LJ J

A.
L J

of A.
L j J

the reaction

If c ^  is the concentration (moles/volume) of Aj in its feed stream, 

this translates immediately into the ordinary differential equation 

dc.
V = ÇjCjf - + ajVr(c1,...cs,T). (Cl)

In obtaining this equation we have invoked and H^.

If h .(c-,...cc,T) is the enthalpy per mole of A., and the work done byJ 1 h j
the stirrer is ignored, then conservation of energy implies

v 3T Ec.h. d t  J  3 l

The symbol h ^  

feed conditions.

= Eq.crh.r - qEc.h. - A.h.(T-T.)J f Jf J J i i  i

denotes the specific enthalpy of A^ evaluated for its 

In the last term A. is the total internal wall area andl
since the heat transfer coefficient h^ is independent of position we need 

only average the inner surface temperature of the wall. Thus and Hg

are used here. We now simplify this equation by subtracting from it the sum 

over j of equations (Cl) each multiplied by h ̂ . Thus
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dh.
Vic. -T-1 = q.c.,(h.,-h.) - (la.h.)V - A.h.(T-T.) J dt j f v ] f  ] '  J J r i  i v 1'

Next we observe that a.h. = AH is the heat of reaction and that since h.
3 3 3h, 39h.

is an intensive thermodynamic variable (i.e. Ec . = Ec.-—  = 0)1 3c, J 9c .
J k J J

dh. ,T 9h dc, ,
I c .  - J T  = Ec.c  . ^  + l i e .  -T—1 -T71 = c3 dt J PJ dt j 3ck dt p dt

where c . is the heat capacity of A per mole and C PJ F P
capacity of the mixture per unit volume. We now invoke

qj Cj f = clCp (Tf" T) t0  8 iv e

J m

VC —  = qC (T.-T) + (-AH)Vr(c,,...T)-A.h.(T-T.). p dt M p f 1’ l i  iy

is the heat

H. and write 4

(C2)

This form allows us to check the common sense of the equation for we can 

write it as:

rate of 
change 
of heat =

heat 
brought 
in with -

heat
taken out 
with +

heat
generated
by -

heat
removed by 
cooling

_content _f eed _ products _ _reaction _ wall _

The wall has been simplified to be a finite cylinder of internal area,

A^. If we denote the region it occupies by D and its inner and outer 

surfaces by 3D_̂  and 8Dq, we apply conservation principles and Fourier's 

law of heat conduction to obtain for the wall temperature T^,

9T
p c = k V^T in D,w pw 3t w w (C3)

where p^, c and k^ are the density, specific heat and conductivity of 

the wall respectively. To obtain boundary conditions we have to call on H^,

kw
3T
-T-2 = h. (T-T.) on 3D. , 3n l  l  i ’ (C4)
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kw
3T
-r-̂  = h (T -T ) on 3D , 3n o c o o ’ (C5)

where 3/3n is the normal derivative on the surface directed outward from

D.

Before seeing how these equations simplify let us write the heat balance 

equation for the coolant. This is

dTV C —  = q C (T ,-T ) + A h (T -T )c pc dt nc pc cf c o o o c (C6)

where is the heat capacity of the coolant per unit volume, Aq is the

area of 3Dq and Tq the average outer temperature. and have

been involved in deriving this equation as well as the underlying Hq.

Equations (Cl-6), together with suitable initial conditions, give s+2 

ordinary and one partial differential equation with its boundary conditions 

and constitute E^, the most detailed model we shall consider. In obtaining 

it the hypothesis used have been Hq, H^, and H^.

Derivation of the steady state models ar*d Ey

Now let us invoke and assume that the system is at steady state. To

do this is to set all time derivatives equal to zero and it leads to a 

partial differential equation, Laplace’s, for T^ connected through its 

boundary conditions to a set of algebraic equations. (The term algebraic 

equation is applied to any equation that is not a differential equation even 

though transcendental functions may appear in it.) Let this model be £ 

However when we recognize that T^ is a potential function we can use 

Green’s theorem to give

0 = fff k VZT dV = ff k (3T /3n)dS
D w w w w

= A.h.(T-T.)-A h (T -T ) 1 1  1 o o o c

(C7)
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Combining this with (C6) we have three expressions for the rate of removal 

of heat

Qc - q C (T -T ,) =c pc c cf A h (T -T ) = A.h.(T-T.).O O O C 1 1  1

This gives

- Q  + + +\  lq C A h  A.h. Q / pc O O 1 1  c J
T-Tcf

but the last term is a messy one and has to be evaluated from the full

solution of the potential equation. If however we invoke Hg and take d^

to be the thickness of the wall then we have the local flux of heat per unit

area equal to k^CT^-T^)/d^. Also ignoring curvature makes Aq = A^ = A so

that Q = k A(T.-T )/d . Then xc w 1 o w

Q = hA(T-T -) where - = c ct rn
A + 1 + 1q C h h.

d
+ ir (C8)

c pc O 1 w

consisting of the equations

,»T) = 0, j = 1,. . . s (C9)

qCp(Tf“T) + (-AH)Vr(C1,...cg,T)-hA(T-Tcf) = 0 (CIO)

Notice that Hg has no relevance at all to this model and that were we to 

invoke it would not change the model but only modify the value of h.

Simplified transient models E^ and Ê .

Let us return now to the transient model, dropping H^, and see the effect 

of and Hg. A little caution is needed here or terms can get lost.

First suppose that k 00 (H-.), we cannot conclude that T is constant in 

time by observing that this limit, like the steady state hypothesis, leads 

to Laplace's equation for T^. Rather the form of the temperature profile 

through the wall is invariant in time, for it takes up a temperature profile
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between T\ and Tq with virtually no delay. Thus, for very large k^,

the Laplacian of the temperature in the wall becomes very small and the 
?product k V T is finite, w w

Let denote the mean temperature of the wall, which is uniform

with respect to position around the reactor on account of k -* 00 and the 

fact that the wall is exposed to uniform temperatures on both sides. Then 

integrating (C3) throughout D, using Green1s theorem and the boundary con­

ditions (C4) and (C5), gives

dT
V p C -j-r = A.h.T + A h T - (A.h.+A h )T (Cll)wKw pwdt 1 1  0 0 c i i o o w

Thus we have a model consisting of (S+3) ordinary differential equations

(Cl), (C2), (C6) and (Cll), where in (C2) and (C6), T^ and Tq have both

been made equal to T . Let this be the model E,; it invokes H -H, and M w 4* o 4
H^. Note that we did not need Hg.

Suppose now that we assert Hg, but drop H^. Again T^ is governed by 

Laplace’s equation and we can arrive at (C7). However we are still left 

with Laplace’s equation unless we invoke Hg and note that

Q = A h (T -T ) = Ak (T.-T )/d = A h .(T-T.) = A h *(T-T )X O O C  W 1 O W 1 1  c (C12)

where

We then have a model E,., consisting of (S+2) ordinary equations; the S 

equation (Cl) and

VGp = qc (Tf-T) + (-AH)Vr(Cl,.,.T) - Ah*(T-Tc) (C13)
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Finally two more hypotheses are introduced to give a specially important 

case. The first, H^, is of the nature of the limiting hypotheses we have 

been making. It asserts that vc/clc <<: V/q so that, by comparison with the 

other time derivatives, dT^/dt has a small multiplier. If we go to the 

limit and say that the response of the cooling jacket is virtually 

instantaneous, we wipe out the derivative in eqn. (C6). Thus we are 

essentially back in the steady state and can write Qc = hACT-T^) as in 

eqn. (C8).

The second hypothesis, H^q , asserts that the reaction is irreversible and 

first order in the concentration of one species. If this is we can

write = -1 and r = kc^, where k = k(T) is a function only of T. For 

simplicity we can then drop the suffix on c and eqns. (Cl) and (C2) become

V Zt = qicf“c) - Vk(T)c (C15)

VCp ^  = qCp(Tf-T) + (-AH)Vk(T)c - hA(T-Tcf) (C16)

These equations give a pair of equations for a pair of unknowns c(t), T(t).

The dimensionless equations.

Up to this point everything has been very dimensional and it is not clear 

what we have mean by large and small values. There are various character­

istic lengths, times etc. in the problem and we want to pick the most 

judicious set. In particular constants to which we are going to give some 

limiting value should not be used to render others dimensionless, nor should 

those whose variation we are going to study.
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Let V/q be the characteristic time and t = qt/V;

c*, be a characteristic concentration, say Eq^c^/q and Uj=Cj /c*;

T*, be a characteristic temperature, say (-AH)c*/Cp, and v =

T/T*, w = T /T*, 0 = T /T*, v. = T./T*, 0- = T -/T*, w. =’ w 9 c 9 f f ’ f cf ’ 1

T./T*, w = T /T*; l ’ o o ’
d^, be a characteristic length such as a mean wall thickness with 

which the independent variables in the Laplacian are to be 

made dimensionless.

The other parameters will emerge with the equations. If (Cl) is divided by 

qc* it becomes

st
f II y. -u. +a.R(V .. . ,v) (C18)

where v . = J qjCjf/EqjCjf’ i’e* EYj = 1> is the j*1*1 fraction of feed and

R = Vr/qc*. Similarly let (C2) be divided by qC T* to give

= vf“v + R(u1(...v) - B±(v-v±) (C19)

where $. = A.h./qC .l l l  ̂p
We will use the same symbol as before for the Laplacian with respect to

the dimensionless variables, so that (C3) can be divided by p c q/VT* to
J w pw^

give

9wTT = AV w d T (C20)

where A - k V/qp c d . If 8/9v denotes the normal derivative in the w w pw w
dimensionless variables

x I ? = (v " wi} on 3Di (C21>w
where 6 = A d  p c  /VC is the ratio of the heat capacity of the wall tow i w w p w p  r j

that of the contents. Similarly



Appendix C 161

£
A —  ̂= 7T (0 - w ) on 3D 3v 6' o ow

(C22)

where 3 = A h /qC ando o o M p (Aq /A^)Ôw . Finally (C5) becomes

6c di = X(V 0) + 3o (wo"0) (C23)

where 6 = V C /VC and x = Q C /qC .c c pc p A ^c pc p
In the later models we have h and h* and we make them dimensionless 

with qCp to give

3 = Ah/qCp

3* = Ah*/qC 

Thus we have for Z^ the (S+l) non-differential equations

(C24)

(C25)

Yj " uj + ajRCu-L, . . .v) = 0, 

vf - v + R(u1,...v)-3(v-0f) = 0

(C26)

(C27)

The model E^ consists in eqns. (C18), (C19) and (C23) with the 

dimensionless form of (Cll), namely

6W = eiv + eo0-( W w - <c28>

Finally, the model Z  ̂ in eqn. (C15) and the two equations

^  = vf-v+R(u1,...v)-6*(v-0) (C29)

6c df = x(ef-e)+B*(v-e) (C30)

The initial conditions, as needed, are

u. = u. ,v = v , w = w (Ç), 0 = 0 ,  t =0, £ = x/d (C31)j jo o’ o - 9 o ’ ~ ~ w

The ways in which E^ can be non-dimensionalized are discussed

extensively in Sec. 4.2.
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Summary of parameters.

Reaction: a .
3

stoichiometric coefficients 
parameters of the rate law e.g. E/RTf

Feed: fraction of A. in feed J
feed temperature 
coolant feed temperature

Capacities: 6 heat capacity ratio of coolant to reactants 
ratio of heat capacity of wall to reactants 
ratio of heat carrying capacities of coolants 
to reactants

Transfer: 3o’3i
3,3*
A

dimensionless heat transfer coefficients 
composite heat transfer-coefficients 
dimensionless wall conductivity

Summary of models.

Model Hypotheses Equations Dimensionless equations Remarks
E H C

1 0,1,2,3,4 1,2,3,4,5,6 18,19,20,21,22,23
2 0,1,2,3,4,5 1,2,3,4,5,6 18,19,20,21,22,23 Set 3/3t 

or 3/3x=0
3 0,1,2,3,4,5,6 9,10 26,27
4 0,1,2,3,4,7 1,2,6,11 18,19,23,28
5 0,1,2,3,4,6,8 1,13,14 18,29,30
6 0,1,2,3,4,6,8,9,10 15,16 See Sec. 4.2

Notation for Appendix C: the system S and its models E.

A.
J

chemical species, j = 1, S; j = l...r for reactants, r+1,...S
products

A., Ai o inner and outer areas of reactor wall

heat capacity per unit volume of reaction mixture
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cpc heat capacity per unit volume of coolant

c .J concentration of A.J
c .JO

initial concentration of A.J

cjf
feed concentration of A.

J
cpw specific heat of wall

c* reference concentration

dw thickness of reactor wall

h.J enthalpy per mole of A^

V enthalpy per mole of A^ under feed conditions

V h0 heat transfer coefficient at inner and outer wall surfaces

h,h* composite heat transfer coefficients

kw thermal conductivity of wall

n outward normal to wall in 3/3n

Qc total rate of heat removal

q flow rate of reacting mixture

qc coolant rate flow

qj feed rate of A.J
R dimensionless reaction rate Vr/qc*

r reaction rate per unit volume

S number of reacting species

T temperature

,T^,T^(x) temperature of coolant, coolant feed, reactor feed and 

wall resp.

Ti,To,T.,To inner and outer wall temperatures and their averages 

To,Two,To reactor, wall and coolant temperatures

T* reference temperature

t time
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V volume of reactor

V ,v c’ w volume of coolant, wall

V dimensionless temperature T/T*

Vf Tf/R*

w(£) X /T* w
w. /w 1 o Ti/T*,TQ/T*

X coordinates within the wall

a .J stoichiometric coefficients

*i’Bo h.A./qC ,h A /qC 1 l M p’ o o M p
6,6* dimensionless composite heat transfer coefficients; (C24), (C25)

dimensionless feed rate of A.J
6 ,6 ,6' c’ w w V C /VC ,A .d p c /VC,A d p c /VC c p c  p i w w p w  o w w p w  p
AH heat of reaction

0 dimensionless coolant temperature, Tc/T*

14-1
CDOCD T /T*,T r/T* CO cf

A k V/q c d^ w ^w pw w
V dimensionless normal in 3/3v

§ x/dw

pw density of wall

T

X

qt/V

q C /qC ^c pc 1 px
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Re, k and % : a conversation 
on som e aspects of 
m athem atical m odelling
Rutherford Aris

Department of Chemical Engineering and Materials Science, University of Minnesota, 
Minneapolis, Minnesota 55455, USA 
(Received 20 June 1977)

Re and k discuss %'s approach to what we understand by a 
mathematical model; how it may have certain generic properties and 
how hierarchies of related models arise in connexion with a given 
physical situation. Joined at this point by n. they continue to talk 
about the way in which models are formulated and prepared for 
solution. This preparation involves such things as the choice of the 
most suitable dimensionless variables, reduction to the smallest 
number of equations, proving uniqueness and discovering the shape 
of the solution. In conclusion, some aspects of the presentation of 
the results are discussed. The abbreviated names of Reynolds, 
Boltzmann and Pythagoras have been used only to denote the 
engineer, natural scientist and mathematician taking part in the 
discussion; there is no allusion to the points of view of the historic 
figures.

There is a campus not so far from a distant ocean 
which breathes, as far as that is possible in this world 
of sin and smog, the quiet air of active leisure that 
bequeathed its name to scholarship. It is young enough 
by the standards of the Old World though old in 
relation to the civilized history of the New. Time will 
soon forgive its slight architectural promiscuities and, if 
the climate permit, a century or two of mowing, rolling 
and watering will turn the lawns from baize to velvet. 
But already its trees are venerable, respected by the 
architect and well cared for when the weight of years 
threatens their integrity. Nor is the ambience of this 
institution its only claim to distinction. What it does it 
does exceeding well and holds high the torch that it 
passes on so that all who are, or have been, related to 
it murmur their et ego's with mingled pride and 
humility.

There it was, on an ‘unusually’ warm day in the late 
summer, that I overheard the conversation of three 
friends. One appeared to be an engineer whom I will 
call Re, a useful enough fellow, positive but of no 
particular magnitude. His friend, k, was more of a 
physics or chemistry type, a brilliant but empirical 
chap who was reputed to have done little enough work 
for his degree*. They were joined, as you shall hear, by 
n, a rather portly man, distinctly older than the others,

* 1.36 x 10 16 ergs lo be precise.

very precise in his determination, but not quite 
rational for all that— in short a typical mathematician.

‘Here’s some shade’ said k as they came up a short 
slope to the base of a fine old oak whose branches 
spread over the adjacent grass.

‘Your plane tree, I suppose,’ said Re, ‘but with no 
agnus castus1 to guard your chastity, nor chorus of 
cicadae for that matter’.

‘Don’t be a jackass.’ His friend’s accent and usage 
indicated that he had been brought up in England and 
he seemed somewhat unreceptive to Re’s conceits. ‘This 
is an Engleman oak and anyway there’s no stream to 
cool your feet. Forget Achelous and the Nymphs and 
tell me what n's been saying about mathematical 
modelling for I see you have your notebook in your 
left hand.’

‘Well, he makes some pretty strong claim for 
models. They have a life of their own, sez’ee; not just a 
question of being derived from the physical situation.’

‘That sounds like him alright, but I bet that came at 
the end of the argument—“Thus we see that, 
like ... models have a life of their own”. How did he 
begin?’

‘With the O.E.D. of course. That man has more 
faith in the dictionary than Isidore himself. “Model” it 
appears comes from “modus”, a measure, through 
Italian and French with very little change into all the 
Germanic languages. It is basically a representation of



structure, as in an architect’s plan or mock up. By 
transference it can be used for a summary or outline of 
a literary work. In general, it is a more or less accurate 
representation on a different scale. A second class of 
meanings centre round the idea of a type of design as 
it was used in Cromwell’s New Model, his 
reorganization of the Parliamentary army. The third 
class has to do with objects of imitation or exemplars, 
as in “the very model of a modern major-general”.
Then there are one or two peculiar meanings that old 
n couldn’t resist wasting five minutes on.’

‘Typical!’ said k with emphasis. ‘I suppose 
mathematical model fits into the first category.’ 

‘Precisely,’ Re replied, ‘the idea being that the 
change of scale is not a physical one, but rather a 
difference in the level of abstraction. A mathematical 
model generally represents its prototype in a set of 
equations and is good in so far as it has caught the 
essence and ignored the accidents of the original.’

‘But model theory in logic stands that on its head. 
There a model is, if anything, less abstract and more 
concrete than the axioms which are fulfilled in it.’

‘Yes, he made the point that there was a certain 
reciprocity about the notion of a model. An aeroplane 
is a model of the equations which have to be solved in 
designing it just as much as the equations are a model 
of the physical entity. ‘Like Menander and life’, old n 
said with an extra puff around the gills, ‘it is at times 
difficult to know which is imitating the other’.”*

‘He is a bit much at times, isn’t he. But I suppose 
case is obvious enough for a mathematical model; no 
one’s going to confuse the hawk of a differential 
equation with the handsaw of a chemical reactor.’

‘No, but more to the point was a distinction that 
Maynard Smith has made between models and 
simulations3. Smith uses the term “simulation” for a 
mathematical description adapted to some practical 
end. The value of such a description increases as more 
and more detail is incorporated and its agreement with 
a particular situation becomes more and more exact.
By contrast, a mathematical description with a 
theoretical purpose is valuable when it incorporates as 
little specific detail as possible and gives results that 
are broadly true for whole classes of situations. For 
example, chaotic solutions obtain for a whole class of 
population models of the type Nt+l = f(Nt), where the 
population in year t +  1 is a nonlinear function of the 
population in year t. When the function /  is . . . ’

‘Hang on, what’s a chaotic solution?’ interrupted k. 
‘Haven’t you read May’s brilliant review article in 

Nature,1,4 said his friend, ‘or Li and Yorke on period 3 
implies chaos5 ? Chaos is the name that has been given 
to the situation when there are periodic solutions of all 
periods as well as solutions which are not periodic nor 
asymptotic to any periodic solution even though there 
may be stable periodic solutions around.’

‘I don’t quite get that.’
‘Well, suppose x„ is the population at the nth point 

in time; that is, time is divided into stages of duration 
At— years, breeding seasons or whatever the 
appropriate interval may be— and one value of the 
dependent variable (for example, population)
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*'Q Mévuvôpe kou fife, nôxepos 'dp' 'vpœv nôxepov 'ctnepiptjoaxo. 
Aristophanes the Grammarian

characterises the whole interval from nAt to (n +  l)Ai. 
Call it x„. Then x„ is governed by some equation 
x„+1 =  f(xn) which allows X! to be calculated from x0, 
x 2 from x, and so on. If there is a particular starting 
point x0 such that calculating X! =  / ( x 0), x 2 
=  / (x j ) , . .. leads back after p steps to x0 (i.e. xp =  x 0), 
then any of the points x0, x, , . . .  xp_ , is said to be 
periodic with period p, and the set of points 
{x0,x j , . . .x p_ 1} is the orbit of the solution. A solution 
of period 1 is a fixed point for x 0 = x { =  x2 =  . . . ;  a 
solution of period 2 has two values and jumps forth 
and back between them x0 =  x 2 =  x4 =  . ..  while 
X! =  x 3 =  x 5 =  ... . If a periodic solution is stable 
then, for a starting point y0 sufficiently close to x0, the 
sequence^, =  /(y 0). 2̂ =  /0'i),*--w ill converge to the 
periodic solution; that is \yn -  x„\ approaches zero as n 
tends to infinity or both lim inf and lim sup of \yn — x„| 
are zero. Now a chaotic solution may start very close 
to a periodic solution and as n increases it may often 
be near the periodic solution, that is \yn -  x„| may have 
a lower limit of zero, liminf|y„ — x„| =  0, but the upper 
limit, lim sup |y„ — zn|, is definitely not zero. This means 
that the chaotic solution may so to speak “hang 
around” with the periodic one and spend long periods 
of time in its company but ever and anon it will go off 
by itself in a totally unrelated way. Li and Yorke have 
proved that whenever there is a solution of period 3 
there are also solutions of all periods and a swarm of 
chaotic solutions as well.’

‘Very interesting. But that sounds like one of rc’s 
famous digressions where he rumbles through the 
undergrowth and comes out with his hair full of leaves 
wondering why he got sidetracked.*

‘Well it was in a way, but he used it to illustrate the 
idea of generic properties that models can discover. 
This sort of thing happens for any /(x ) with a 
tuneable hump.’

‘What the dickens is a “tuneable hump”?’
‘Oh, a function like /(x ) =  Ax{\ -  x) which has a 

maximum in the interval (0,1) at x =  1/2 and a 
parameter like A that can be ‘tuned’ (cf. Figure /). For 
A ■< 1 the equation x,J+1 = Axn{\ — x„) only has the 
trivial steady state solution x =  0 and all solutions 
converge to it. For 1 ■< A -< 3 the unique, non-trivial 
stable solution moves away from zero, but it becomes 
unstable for A >■ 3 and two period 2 solutions arise 
and become stable. However, their stability breaks

Figure 1 Steady state solutions and solutions of period 2 with 
f(x) =  Ax(1 -  x)
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down at X — 3.45 and they bifurcate into four of period 
4; their stability doesn’t last long however an d ...’

‘O.K. enough is enough’.
‘I wasn’t even halfway through; but anyhow, you 

can read it for yourself in May’s review or in May and 
Oster’s paper6.’

‘Get back on track and tell me where this is all 
leading’ said k after noting down the references.

Re continued ‘After the point about generic 
properties n pointed out that models don’t arise in 
isolation, both the conditions of modelling and the 
purpose for which it is being done determine the 
appropriateness of the model— its Watkins number, so 
to speak*. For example, in trying to understand 
convective diffusion there are a number of models of 
different degrees of sophistication. The basic problem 
can be illustrated by thinking of laminar flow through 
a long cylindrical tube. The velocity varies from a high 
of twice the mean speed u on the centre line to zero 
at the wall— in fact it is given by 2w(l — r2/a2) where r 
is the radial distance from the centre line and a the 
tube’s radius. If there were no diffusion a thin disk of 
dye would be drawn out into a continually lengthening 
paraboloidal shell or a plane front with dyed fluid 
coming from behind would be pushed out into a 
parabolic nose. But, in the presence of molecular 
diffusion, such a paraboloid could not retain a sharp 
edge. Molecules of dye would diffuse outwards from 
the fast moving tip to the slower adjacent streams and 
water molecules near the wall diffuse toward the faster 
central streams, diluting the dye. So, very little of the 
dye moves with anything like the extreme speeds of 
zero and 2u. In fact, the centre of gravity of the dye 
tends to move with the mean speed of the stream and 
the mean concentration of the dye across the tube 
spreads out about the centre of gravity just like the 
concentration would were the velocity uniform (i.e. 
plug flow at velocity, w) and there were an effective 
longitudinal dispersion coefficient De. This is an 
empirical observation and was made first by a 
physiologist who claimed it was obvious. Sir Geoffrey 
Taylor7 in his original analysis remarks that the only 
difficult thing to understand is the sentence following 
the words “it is obvious that. . .”

‘That’s the disease of mathematicians rather than 
physiologists, I should have thought’, interjected k.

‘I know’, said Re, ‘but it’s catching. Anyway Taylor 
showed that it was obvious though it took half the 
paper to prove it and show that De was inversely 
proportional to the molecular diffusion coefficient D.

‘Now suppose the physical system is D : the most 
complete mathematical model that can be derived for 
it is A,, a parabolic partial differential equation for the 
concentration of the dye as a function of x, the 
distance along the axis from the original plane 
interface, /•, the radial distance from the axis and the 
time, t. This is a complete model in that it involves the 
fewest and most acceptable hypotheses: the basic 
principles of physics such as the conservation of 
matter, simple constitutive relations such as Fick’s law, 
boundary conditions such as the impermeability of the 
tube wall. This full model may be moulded to some

* ‘He was always appropriate and it was fitting that none should see 
him dead’—concluding lines ‘Gino Watkins’; biography of J. M. 
Scotts’

extent, say by taking an origin moving with the mean 
speed of the flow y = x — ut(A\) or by a change of 
variables adapted to the boundary and initial 
conditions (A2), but it presents essentially the same 
aspect and demands a rather complete numerical 
solution before yielding results that can be compared 
with the phenomena. The purpose for which the model 
is intended now becomes a factor. If very precise values 
of the concentration are required it may be necessary 
to use such a model and put up with the imerical 
complexities that it entails. But if the purpose is less 
exacting, say, to get a good idea of how the dispersive 
process affects the mean concentration across the tube 
it may not be necessary to solve the full equations. 
Instead of an equation for the concentration at each 
point we content ourselves with a system of equations 
for the moments:

» a
J  ypc(y, r, t)dy = c(p) or mip)(t) =  J  2rcip)dr/a2 

-  00 0  

The equations for these should be simpler since they 
involve fewer variables and it turns out that they can 
be solved in the sequence m{0\ ci0\  m(l\ c(1), m(2). Now 
m(0) is just the total amount of solute present and it is 
not surprising that integrating the equations gives 
dw(0)/di =  0, that is, the total amount doesn’t change. 
The equation for c(0) is more difficult and its solution 
involves Fourier-Bessel series. The solution for m(l) 
shows it to be asymptotically constant which means 
that the centre of gravity of the solute eventually 
moves with the mean speed of the flow. The constant 
that /n(1) approaches depends on the initial distribution 
of the solute and the solution for c(1) again requires a 
series of Bessel functions. But the equation for m{2) 
shows that m(2) tends to become linear in i. Now by 
comparison with the plug flow case m(2) =  2Det and it 
turns out that De = D +  a2u2/4SD. This model is A3 
and it must be emphasised that its results are 
approximate in two ways. They are in principle 
approximate in that they can only provide a finite 
number of moments of the distribution of solute and 
they are in practice approximate since the computation 
of Fourier-Bessel series is cumbersome and the simple 
results are asymptotic statements: the centre of gravity 
approaches the mean speed and the rate of growth of 
half the variance approaches the dispersion coefficient 
D;8.

‘That’s quite a mouthful and much enhanced by the 
arm waving’ said k.

‘Oh, I haven’t finished yet. Let’s call the model with 
plug flow and a dispersion coefficient A4 (that is, A3 
shorn of its refinements). Also we note that if 
P = au/D »  1 (say > 100) then De = a2u2/4W  since the 
D in De =  D +  a2u2/4SD is negligible. This is Taylor’s 
original result obtained by a different way of 
approximating A^ If P has an intermediate value then 
both terms are needed. If P = au/D «  1 (say < 0.2) 
then the term D in the expression for De dominates.
Call these cases A'^A'i, and A'4 respectively. In 
addition, let A5 be the case of pure convection with no 
term at all for diffusion, and A6 an empirical formula 
found by Gill et al.9 to be an excellent approximation 
to the exact solution of Aj. Then we can arrange these 
models in relation to the conditions and purpose (as in 
Figure 2). First, we agree on a sufficient level of
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Figure 2 Domains of applicability of different models of Taylor 
diffusion

accuracy; this is arbitrary and some may be more 
exacting than others in their demands but for the 
moment this level is fixed. The conditions may be 
represented by P = ciu/D, the so-called Peclet number. 
The purpose may be indicated by the dimensionless 
time r = Dt/ci2; that is, we intend to account for the 
behaviour of the system at short or at long times. The 
P, i-plane can then be divided into regions in each of 
which a given model is adequate. For example, with 
high P and low r there is little diffusion and no time 
for it to work anyway, so A5, the pure convection 
model is good. The A4 models are by nature 
asymptotic so we expect to find their regions where z 
is large, and for reasons just given A4 will be above A4 
(i.e. A4 is where P is larger). The detailed equations A, 
may be needed for smaller t and larger P and the 
interpolatory model A6. The boundaries of all these 
regions are fuzzy or rather the regions overlap for two 
models could give the same accuracy at certain points. 
Indeed, A2 presumably applies everywhere since it 
claims to be full and true; but even A2 would break 
down for sufficiently short times since Fick’s law would 
have to be replaced by some molecular description. If 
we set up more exacting standards of accuracy the 
domains of A4,A 5 and A6 would move outwards in the 
In P, In t-plane leaving more and more of the plane to 
A2. If we let accuracy go to pot the regions would 
overlap more and more since it would not matter 
which model were used. In fact, if we made 
stereographic projections of the regions on a sphere 
whose radius was a measure of the accuracy 
demanded, we could get a very neat three-dimensional

picture with the A4, A5, A6 regions contracting on the 
polar axis as the exactingness increased.’

‘Hold hard a minute’, said k, raising a hand in 
protest, ‘you’ll be wanting coloured cine-holography 
next.’

‘That would be rather fun, wouldn’t it,’ Re replied. 
‘But seriously, n claims that models must be viewed in 
this kind of relationship and not in isolation. Later 
models (Gill and Shankar10 have one with a time 
dependent dispersion coefficient) can then be fitted in 
to their place.’

‘Yes, that’s obvious enough. But what about the 
origin of models and their intrinsic relations. The 
“exact” model A, comes from the physical system D. 
A3, the set of equations for moments, is obtained from 
it by the mathematical operation of multiplying by yp 
and integrating or averaging. To apply it a physical 
observation, or analogy, is made; one that calls 
attention to the fact that plug flow with longitudinal 
dispersion produces the same sort of effect. This is A4 
and A4 is its expression with A4 and A'4 as limiting 
cases. Suppose some totally different analogy were 
made, say with a sequence of stirred tanks with flow 
from one to the next. A sharp burst of tracer would 
pass through such a system with some mean speed and 
the variance of the tracer would increase linearly but a 
totally different set of equations would be involved. 
How would such a model (call it T in contrast to the 
A’s) be related to A4?’

‘I suppose n would say that T and A4 were cognate, 
being born of the same physical system D, but not 
immediately derivable one from the other. Actually the 
stirred tank sequence would be hard to justify for the 
open tube with laminar flow but would be easy to 
motivate for a packed bed.’

‘You speak like an engineer,’ said k, ‘How so?’
‘Well, if you have a cylinder packed with small 

spheres they pack down and form small chambers 
between successive layers. As the fluid pushes through 
the bed it sort of jets into these cavities from the 
previous layer, stirring them up. This makes the 
physical analogy of a chain of stirred tanks a very 
natural one.’

‘Fair enough, we have hierarchies of models cognate 
to or derived from one another and related to a 
physical system as prototype. What does n have to say 
about types of models?’

‘Oh nothing original; just the usual types of 
mathematical equation— ordinary or partial differential 
equations, difference equations, etcetera, etcetera, 
etcetera. He did make a point about verbal models and 
mechanical analogies that Duhem derided so hugely11. 
Old n had great fun quoting him at length,

“The employment of similar mechanical 
models... is a regular feature of the English 
treatises on physics. Here is a book intended to 
expound the modern theories of electricity... in it 
there are nothing but strings which move around 
pulleys, which roll around drums, which go 
through pearl beads, which carry weights; and 
tubes which pump water while others swell and 
contract; toothed wheels which are geared to one 
another and engage hooks. We thought we were 
entering the tranquil and neatly ordered abode of 
reason, but we find ourselves in a factory.”
‘Yes he’d enjoy that,’ said k.
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‘I did. I did.’ It was a new voice, for whilst they 
were busy talking n had come up and was resting his 
portly frame on the tree trunk behind them. No end 
chuffed he was to think that anyone would discuss his 
lectures outside of class and he lowered his bulk to the 
ground prepared to take over the conversation. ‘Great 
fellow Duhem full of ire and irony, not to mention the 
rather extravagant eloquence of the French. Touch of 
bombast of course. Know what “bombast” comes 
from ?’

‘Cotton wool as padding, of course,’ said Re hastily 
fearing a long digression on words derived from names 
of textiles. ‘Not unrelated to “fustian”, but not as some 
people think derived from the full name of Paracelsus,’ 
he continued, ‘but get back to mathematical models’.

‘I was only making the point that language itself 
carries about little models in its words, using them 
metaphorically so that they sparkle with inner 
meanings— “a kist o ferlies” as Douglas Young called 
his dictionary of the older Scottish tongue*.’

‘But what, sir, do you see as the next important 
aspect of the craft of modelling?’ k made a last ditch 
attempt to get n back on track.

‘The formulation of models of course,’ said n. ‘We 
have to distinguish between physical laws, such as the 
conservation of mass, energy or momentum, and 
constitutive relations, such as Fick’s law or the 
stress-strain relations of a solid. The former are 
generally applicable to all situations or at any rate to a 
whole class, such as non-relativistic situations; the 
latter are dictated by specific assumptions about 
particular species. If F is the net flux of an entity into 
a given region and G the rate of generation there while 
H is the total amount of a given entity there, the 
conservation principle is:

F + G = dH/dt

If the system is distributed /  is the flux vector per unit 
area and g is the rate of generation per unit volume 
while h is the concentration of the entity, then we can 
take an arbitrary region Q with surface dQ, and 
F = -  JJ / .  n dS, where n is the outward normal to 
3Q, G =  JJJgdi; and H = ¡¡¡hdV. Then using Green’s 
theorem and assuming sufficient continuity gives:

The constitutive relation comes in to relate/ g 
and h to each other. For example in a diffusion 
situation g might be zero, h the molar concentration c 
and /  given by Fick’s law as — DVc. Then the 
combination of conservation principle and constitutive 
relation would give an equation for c :

dc
— = V .(DVc)

In another situation there might be adsorption onto 
a surface and h = c +  aw(c), where a is the surface area 
per unit volume and n(c) the equilibrium surface

*‘Tm canty yet wi sma delytes, albeid ma baird’s sae black and 
swack. I ken a thing that’s like a kist of ferlies gif ye read.” From 
D. C. C. Young’s poem “Thesaurus Paleo-Scoticus”

concentration. If there is surface, as well as bulk, 
diffusion/ might be -D V c  -  aDsVn giving;

dc
[1 +  an (c)]— =  V • [D +  aDsn'(c)]Vc 

ot

a very different equation on account of the very 
different constitutive relation.’

‘That is clear enough,’ said Re, ‘but where do you 
go from there?’

‘You will see if you keep coming to my lectures,’ n 
rejoined, ‘but to put you out of your agony of suspense 
let me outline things for you.’

‘I wish you would be good enough to give us a 
really detailed account—unless you are pressed for 
time,’ said k rolling into a more comfortable position 
on the grass.

But his slight sarcasm and the minor impertinence 
of the allusion12 were both lost on n who continued 
loftily. ‘I cannot, of course, do justice to the course in 
the short time I have available, but one should at this 
point spend some time on the formulation of boundary 
conditions and say something about lumped and 
distributed models. The bulk of the course will then be 
on the just moulding of models and their presentation. 
The latter calls for all the graphic imagination one can 
muster for there is nothing like a picture or diagram 
for getting a result across. Mathematicians and 
physicists have something to learn from engineers 
there.’

‘There!?!’ said Re to himself with an internally 
raised eyebrow but aloud his question was, ‘What do 
you mean by the moulding of models?’

‘I thought you’d never ask,’ beamed n ignoring the 
fact that he’d given the others little enough chance. 
‘That’s the core of my course for I thought it would be 
good to bring together a lot of the methods that one 
uses only half consciously. An obvious task is to 
simplify the system of equations and to scale them 
appropriately. Everyone does this with whatever grace 
and style they can command but the principles had 
rarely been explicated before Segel’s SIAM Review 
paper on scaling13 and his book with Lin on 
“Mathematics applied to deterministic problems in the 
natural sciences”.14 The general principle is that the 
burden of showing the relative magnitude of the 
important quantities should be borne by the 
dimensionless parameters and that the dimensionless 
variables should be scaled to the interval (0,1) or 
thereabouts.’

But why bother to make the variables 
dimensionless?’ objected k. Surely it is better to keep 
as much of the physical magnitude and meaning as 
possible.’

‘You must not confuse meaning and magnitude. The 
dimensionless variables retain their physical meaning.
In fact, they gain in meaning, for they are being 
compared with some quantity of the same dimensions 
which are characteristic of the system. A quantity with 
dimensions is also being compared with some other 
quantity of the same dimensions but the second 
quantity is arbitrary—some sacred lump of platinum 
laid up somewhere. Metricization may be good for 
merchants and mechanics; intellectually it is neither 
here nor there and the effort would be far better spent 
in restoring Latin as the lingua franca of the educated.
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When you make a number or variable dimensionless 
you invest it with a meaning intrinsic to the problem— 
also you get the smallest number of parameters.’

‘Can’t you get that from the Buckingham n 
theorem?’ Re asked.

‘Yes, but that’s all you can get. You can only start 
moulding the equations when you have the equations. 
To set down the variables and quantities will tell you 
how many independent dimensionless groups may 
arise but not where they should be put. There are 
trade-offs between the equations and their boundary 
conditions. For example15 if you have the problem of 
a reactant diffusing into a slab of porous catalyst and 
there disappearing by first order reaction which has 
the equations:

in |x| -< L,

c — c0 on |x| =  L;

you can take u =  c/c0 and y = x/L to give:

d2u
d? 1

u =  1 on \y\ =  1

and there is a single dimensionless group (¡>2 =  kL2/D 
in the equation. If (D/k)112 is used as the characteristic 
length and z =  x{k/D)112 then

d2u_ 
d z2 \z\<4>

u =  1 on |z| =  (f)

Again there is only a single parameter but this time it 
is in the boundary condition, in fact, in the position of 
the boundary.’

‘Fair enough,’ said k. ‘So you get the variables and 
parameters into dimensionless form and have the 
smallest number of each, how do you know you have 
the smallest number of equations?’

‘There again these are trade-offs,’ said n. ‘Take the 
non-isothermal case of the same problem where k is a 
function of the temperature T and in addition to:

d2c
D dP'= '£(T)c

we have:

X
d 2T 
dx2

= (A H)k{T)c

as a differential equation for T; where (AH) is a heat of 
reaction and X a conductivity. If Xy AH and D are 
constant then the combination D( — AH)c +  XT =  W 
(say) satisfies the simple equation:

This means IF is a linear function of x and with the 
right boundary conditions may be a constant. For 
example, if we seek symmetrical solutions or solutions 
with the same values of c and T—and hence of W—at 
x =  ±L , then D{ — AH)c +  XT = D( — AH)c0 +  XT0i a 
constant. This fact is recognized if we put :

c = c0{ 1 - v ) y T =  T0(l + M

p =  D(-AH)c0/XT0

But substituting these into either equation now gives 
the same equation for u, namely:

d2v 1
^2 +  ^*(To(l + PW\ -  V) =  0, x < L  

y =  0, |x| =  L

If we make x dimensionless by x =  Ly and let:

4>2 = k(T0)L2/D

f(v) = [k(T0(\ + Pv))/k(T0)](\ -  v)
then:

^2 + ̂ 2/(1') = 0- M  < 1

•> =  0, |y| =  l

[Figure 3 shows the possible forms of f{v)]
‘Let me interrupt’, said Re, ‘and just say that you 

have made your point adequately enough. You’ve got 
the smallest numbers of equations with the smallest 
number of parameters and let’s suppose there’s no 
simple analytical solution. Then I presume you have to 
go off to the computer and compute the real answer.’ 

‘Good heavens, N O !’ n almost shouted. ‘Don’t let 
the genius of this place even hear you think such a 
thing. Rushing off to computers is a criminal act and 
almost justifies the cynics who say that all computers 
should be built with an on-line incinerator. No, no, no, 
it’s only safe to compute when you know the answer, 
or, at least have found out as much as possible about 
it.’

Figure 3  Possible forms of f(v). a, monotonie; b, f'(v) 
monotonie; c, f(v)/v  monotonie; d. f(v)/v  not monotonie
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‘O.K. show us then,’ said k. ‘Use your last example 

of diffusion and reaction:

d2v
-¡p- +  <t>2Rv) =  0 in |y| <  1 

and let’s suppose the solution is symmetrical so:

v =  0, y =  1

‘Very well,’ replied ny ‘but first I must say a little, 
more about the function f(v). You notice that by 
definition it is zero when v =  1 and is 1 when v =  0; 
what’s more it is positive in 0 <  v <  1. It follows that v 
is positive in 0 < y < 1 and has its maximum at y =  0.’ 

‘How so?’ asked k.
‘Elementary, my dear Boltzmann,’ said n. ‘If /  is 

positive v" = d2v/dy2 = —(¡>2f{v) is negative. So:
y

tHy) -  u'(0) =  |  v"(y)dy <  0 
0

and, since i/(0) =  0, u'(y) is always negative except at 
y =  0 where it is zero. This v(y) decreases as y 
increases, so v(y) must be greatest at y =  0 and least at 
y =  1. But i?(l) =  0 so, if it is least there, it must be 
positive elsewhere. Notice that we have only used the 
fact that f(v) is positive in 0 <  v <  1.

‘But how do you know v can’t be greater than 1 
and so make J'(v) negative,’ asked Re.

‘By the same kind of argument, for, as you say, 
f(v) <  0 if v >  1. Suppose v(0) > 1, then v"(0) > 0 and 
there is a minimum of v at y =  0. Moreover:

y
v(y) = v'iy) -  v'{0) = J tf'{y)dy >  0,

o
so that v{y) increases as y increases and it can never 
come down to zero to satisfy the boundary condition.’ 

‘Anyway it’s obvious on physical grounds,’ k was 
pleased to be one up on n. ‘When you derived the 
equation, you substituted c =  c0(l -  t>) for the 
concentration and, since a concentration cannot be 
negative, v cannot be greater than 1.’

‘Certainly that’s convincing enough,’ replied ny ‘but 
it’s no bad thing to get it out of the mathematics. For 
one thing, it would imply a serious mistake in the 
model building if the two arguments didn’t agree. For 
another, the physical argument might not be so 
obvious in another context. What’s more the 
mathematical argument may be developed for other 
purposes. For example, let us ask whether the solution 
for a given value of </>2 is unique. The standard way of 
doing this is to suppose that there are two solutions v{ 
and v2 and then prove that their difference vanishes; 
that is, there are not really two distinct solutions but 
only one. If and v2 are both solutions, both of them 
satisfy the equations:

^  =  ~<P2f{v i) and v2 =  ~4>2f{v2)y 

and both satisfy the boundary conditions

tA(0) =  t/2(0) =  v{(\) =  v2{\) =  0.

If we take the equation for Vi and multiply it by v2 
and take the equation for v2 and multiply it by vx and 
then subtract we have:

U2«1 -  =  -<I>2[V2 f (v i) -  Ol/(o2)] (1)
Now integrate both sides between y =  0 and y =  1.
For the left hand side we have:

iJ [v2ifl ~ Viv2]dy = [v2vi -  iW Jo  
0

But this is zero, because v /  and v2 are both zero at 
y =  0 and Vi and v2 are zero at y =  1. It follows that 
the integral of the right hand side of (1) is also zero 
and, since 4>2 > 0:

i
|  -  Dtf{v2)] dy =  0
0

The integrand may be written:

H f M M  ~  ( / ( ” 2)/v2)]v i V2

and if the integral is to vanish the integrand must 
either vanish everywhere (in which case v{ = v 2 and 
there really is only one solution) or it must change sign 
so that the integral over the negative parts equals the 
integral over the positive parts and the whole integral 
balances out to zero. Now F(v) = f(v)/v has the 
geometrical interpretation of being the slope of the line 
joining the origin to a typical point {vyf(v)) on the f(v) 
curve. When v =  0, F(0) is infinite since this line is 
vertical; when v =  1, F(l) =  0 since /(1 ) =  0. Let us 
suppose f(v) is monotonically decreasing* then F(v) 
also decreases monotonically from infinity to zero as v 
goes from 0 to 1. Then F{v{) — F{v2) can only change 
sign if Vi is sometimes greater than v2 and sometimes 
less, that is, the two curves ^(y) and v2(y) are 
intertwined. Let’s see whether that’s possible.

‘If they are intertwined we can take y =  rj to be the 
first point (i.e. least value of y) for which vx = v2. We 
lose no generality by calling Vi the solution which has 
the greater value at y =  0 (i.e. v{(0) > t>2(0)). Then 
where they meet must be greater than - t / 2(rj)y
since the situation must look like Figure 4. Now

- " i W  = -v'i(n) + v',(0)
'/

= - | w'iWd y 
0

•I

= +  0 2 J /(» i)d ji
0

and

-Vi(n) =  <p2 ^ f(v2)dy.
0

Since we have made the stronger assumption that f(v) 
is monotonically decreasing (this implies, but is not 
implied by, the monotonicity of F(v)) then u, >  v2 in

* This is not the most general condition but it illustrates the point 
easily, cf. vol. 2 of reference 15.
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y
Figure 4  Disposition of two intertwined solutions

0 < y < implies that / ( u,) < f(v2) and hence that 
— v'2{*i) > But this contradicts the geometrical
necessity that > t/2(>/). So if f{v) is
monotonically decreasing the curves cannot intertwine.

‘You’re making it very easy for yourself with all 
these restrictions,’ said k. ‘Is that really cricket?’

‘By all means,’ n replied. ‘At this stage of the game 
it isn’t a bad thing to make simplifying assumptions 
for we are still feeling out the problem. What is bad is 
to forget you’ve made ’em and so delude yourself into 
thinking you know more than you really do. 
Assumptions should be tagged so that you know that 
you have to come back and try to relax them.’

‘That’s reasonable enough.’ Re looked as if he 
wanted to get on with the job of solving the equations. 
‘We now know that u(j>) is positive and that the 
solution is certainly unique if f{v) is monotonic. 
Shouldn’t we just slap it on the computer? At this 
point in time?’ he added knowing that the solecism 
would get 7t’s goat.

‘Not quite yet, if you please.’ n was using an 
exaggerated politeness to restrain his wrath at the 
Nixonian use of English. ‘We know that the solutions 
are monotonic, decreasing as we move outwards from 
y = 0 to y =  1, but the equations still have boundary 
conditions at two different points so that if we move 
outwards from y =  0 where we know t/(0) = 0 and 
make up for our ignorance by assuming a value for 
r(0) = v0, how do we know that we shall hit t(l) = 0 
exactly at y =  1 ?’

‘By trial and error, of course,’ said Re.
‘You could simultaneously integrate an equation for 

dv{y)/dv0 ' added k. ‘Then, when you reach y = 1 you 
have an idea of how sensitive u(l) is to changes in v0.
In fact you can iterate by changing v0 to 
v0 -  p(l)/[di;(l)/di;(0)]—Newton-Raphson, you know,’ 
he added rather patronizingly, seeming to assume that 
anything with the name of Newton attached was the 
peculium of the physicist.’

‘You’re still generating a lot of incinerator-fodder, 
when you could make every calculation count,’ said n. 
‘Why not use the second non-dimensional form with:

z = <f>y =  <f>x/L =  xJk(T0)ID ?

Start by assuming some value of v0 in the interval 
(0,1); integrate the equation d2t;/dz2 =  f{v) from y = 0

with i?(0) = v0 and t/(0) = 0 until v{z) = 0. Since y =  1 
when v =  0, z must equal (/> there. In other words, you 
determine the value of <f) for which v0 happens to be 
the right value of u(0). This is better than hunting for 
the v0 that corresponds to a preordained </>. Always be 
prepared to interchange the things you assume with 
those you have to determine.’

‘Is this what you call the just moulding of models?’ 
k asked.

‘Yes; there are many more tricks to the trade—as 
will be discovered to you if you come to my course.’ n 
was unable to resist the commercial. ‘Maximum 
principles, phase planes and isoclines, a priori bounds, 
group theoretic methods, quick and dirty calculations, 
generating functions, variational bounds, perturbations 
both regular and singular, integral methods even the 
lowly notion of integration by parts—I treat ’em all 
with great care and distinction.’

‘A veritable “joy of mathematical modelling”, by the 
sound of it.’

But not only was 7t’s complacency proof against the 
stone of k’s sarcasm, he positively caught it as it were 
a ball and ran with it. ‘Actually I often call it the 
foreplay of applied mathematics because it requires a 
similar tact and tentativeness, a corresponding restraint 
and delicate imaginativeness that are characteristic 
alike of lover, poet and mathematician. Oh, and 
freedom from solemnity,’ he added, pulled back from 
the brink of betraying his own words by the memory 
of Lewis’ remarks*.’ Morse and Feschbach16 or 
Courant and Hilbert17 at this stage would be like 
having Freud, Kraft-Ebbing and Havelock Ellis on the 
bed-table.’

‘Good grief!’ muttered Re under his breath, looking 
across at k who had raised his eyes to heaven in 
acknowledgement of the fact that this one had 
backfired on him. ‘But tell us about the presentation of 
models. That’s just the illustrations, I suppose.’

‘Oh, heavens, not just the illustrations. It’s . . . ’ n 
faltered as it suddenly dawned on him that his prose 
was being compared with Comfort’s and his figures
with__ He went on hastily. ‘No, figures are of great
importance, of course, and may at some times be 
drawn with accuracy and at others distorted for clarity, 
or even dramatic, effect. Synopsis should be cultivated 
so that as much as possible the model is seen steadily 
and seen whole. This is one of the chief virtues of 
catastrophe theory which, as Thom says,18 “is not a 
mathematical theory but a ‘body of ideas’”. I would 
say it’s a way of looking at things and a great part of 
its value lies in helping people grasp the situation more 
completely. But there are other interesting questions to 
examine such as the use of observable, rather than 
intrinsic, parameters. In the diffusion problem we were

* ‘All my life a ludicrous and portentous’ solemnization of sex has 
been going on ... And the psychologists have so bedevilled us with 
infinite importance of complete sexual adjustment and the all but 
impossibility of achieving it, that I could believe that some young 
couples now go to it with the complete works of Freud, 
Kraft-Ebbing, Havelock Ellis and Dr. Stopes spread out on bed 
tables around them. Cheery old Ovid, who never either ignored a 
molehill or made a mountain of it, would be more to the point. We 
have reached the stage at which nothing is more needed than a roar 
of old-fashioned laughter.” Lewis, C. S. The Four Loves’ (p. 113) G. 
Bles, London, 1960
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discussing <p2 =  L2k(T0)/D is an intrinsic parameter, 
because k(T0) is the intrinsic reaction rate in the 
absence of diffusion limitation. You can’t measure k(T0) 
unless D is very large (or (p is small) but you can’t tell 
if (¡> is small until you’ve measured (p. Of course there 
are times when the intrinsic rate can be measured but 
it is important to find out what is measured when 
diffusion is affecting the measurement. From the way 
we have defined it k(T0)f{v(y)) is the actual rate of 
reaction at a point y so :

i
kQbs k(T0) j  f(v(y))dy

0
is the total rate of reaction. If D is very large <p is 
almost zero and the solution of v" +  (p2f(v) =  0 is very 
close to the solution of the equation when <p =  0, 
namely v(y) =  0. But /(0 ) = 1 so that when (p -> 0 we 
do measure the intrinsic rate, since

i
k(T0) j m d y  =  k(T0).

0
For any value of <p let q =  q(<p) be the value of 
{¿/(i/’(y))dy. We get rj by solving the equation for v(y) 
and evaluating the integral so it is a function of (p 
(Figure 5). Then the observed rate constant kohs and 
the intrinsic k are related by kobs =  tjk. If then we 
define G>2 =  L2kobs/D as an observable version of 
(p2 =  L2k/D, we have O2 = t]((p)<p2. If (p2r]((p) is a 
monotonic function of 0, then we can express // as a 
function of 0. For example, if f(v) =  1 — v,
O2 = 0  tanh(p which defines an inverse function 0(0) 
and then t/(0) = O2/[0(O)]2. For practical use //(O) is 
the better function to tabulate since it will show how 
much diffusion limitation there is (// close to 1 means 
little effect of diffusion rj «  1 means severe-diffusion 
limitation) in terms of an observable parameter.’

‘And I never knew you cared,’ murmured Re, rising 
and picking up his books.

‘But how else can we defend or prove them when 
they are put to the test*.’ Ignoring Re’s cheek, n 
dropped unknowingly into the allusion the two had 
started out with and k promptly took it up.

‘Ah, yes,’ he said, ‘so they are to be called not only 
mathematicians, engineers or physicists, but are worthy 
of a higher name—the modest and befitting title of 
natural philosophers*.’

Soc. And now the play is played out; and of rhetoric enough. Go and 
tell Lysias that to the fountain and school of the Nymphs we went down 
and were bidden by them to convey a message to him and to all other 
composers of speeches... to all of them we are to say that if their 
compositions are based on knowledge of the truth, and they can defend 
or prove them, when they are put to the test, by spoken arguments, which 
leave their writings poor by comparison of them, then they are to be 
called not only poets, orators, legislators, but are worthy of a higher 
name, befitting the serious pursuit of their life.

Phaedr. What name would you assign to them?
Soc. Wise, I may not call them; for that is a great name which 

belongs to God alone, —lovers of wisdom is their modest and befitting 
title.

Phaedrus 278, (Jowett’s translation)

Figure 5  Effectiveness of a catalyst in terms of Thiele modulus 
(top), observable modulus (bottom) and relation between moduli
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P R O L O G U E

The College of Saints Jerome, Paula, and Eustochium, an ornament to one of the great 
universities of the western world, finds almost universal approbation among those who 
know of it. Theologians are so glad to find a Doctor of the Church honoured that they 
overlook his reputation for irrascibility, while psychiatrists are charmed to find a 
genuine subject of their studies so exalted. The watchers of gender rejoice that the 
balance is two to one in favour of the female, though a sociologist, whose learning had 
not quite reached the beginnings of words, was heard to rejoice in the celebration of 
masculine, feminine and neuter. In point of fact the place was founded, and does indeed 
conduct itself in complete disregard of differences of sex and age as a veritable beacon 
in a naughty world, enshrining forever the oldest and fullest meaning of the word ‘man.’ 

It was within its Inner Quadrangle on an uncommonly warm afternoon that three 
friends gathered. They would not wish their ages or sexes to be revealed, so I will 
designate them by a single majuscule. One was an art historian, with a bent for 
mathematics, who admitted to the designation of a single B — of course he (or she) 
would have liked to have had it doubled, but modesty disallowed. The second, an 
engineering scientist, was not so inhibited and off her (or his) own bat suggested L; the 
third, a professional scribe holding a visiting fellowship at the college that year, was a 
great admirer of Tagliente and accepted T. for a siglum. L. and T. disposed themselves 
in deck chairs while the portly B, who had a rooted distrust of these devices, sprawled 
on the grass and continued a conversation that had evidently been begun earlier.

D IA L O G U E

“You were saying L ,” said B, “before old Cholmondeley interrupted at lunch, that you 
almost never worked with quantities having dimensions. I thought you engineers 
always did things with appropriate units— meters and litres and the like. Aren’t you 
always quarreling about Celsius and Fahrenheit and that sort of thing?”

“Well, of course, a lot of engineering has to be done with units and a lot of care has to 
be taken over the preservation of the standards. Otherwise you couldn’t have
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something designed in Japan and built in India. You have to teach students to use ‘em, 
and they use textbooks that have been rewritten in S I units, whatever they are. Some of 
my colleagues get very worked up about ‘metrication’ and all that, but in the kind of 
problem I ’m interested in I seldom, if ever, need feet or lbs, let alone meters and 
kilograms. They’re all completely arbitrary anyway.”

“But I thought there was a human background to units,” said B. “The foot is of the 
size of a large foot, the inch can be measured off with a segment of a finger, barley corns 
are barley corns and carats, carats and so on.”

“Yes, there’s a lot of colorful background to dimensions though the rationalists of 
the French Revolution tried to do away with all that by defining the meter as the 
umpteenth part of the length of the equator. O f course they could not determine that 
with perfect accuracy and they finished up with the length of an arm anyway. But these 
are very vague and haphazard relationships and have little more than anecdotal value.” 

“I hope you’re not deprecating anecdotes,” interrupted B. “When all your scientific 
abstractions are swept away by the next paradigm, anecdote will remain a mirror unto 
man to whom it says

“Spare us, spare us. I wasn’t downplaying the humane aspect, but merely making the 
point that fundamental units are necessarily arbitrary, and because they must be used 
in all situations, are peculiar to none. Tremendous care has to be taken in propagating 
the units from the primary standard in Paris, through secondary and tertiary standards 
to the level of everyday life. But in the problems of academic, or at any rate theoretical, 
engineering science the magnitude of a quantity needs to be defined in the terms of the 
magnitudes of the particular situation. A fine powder may not be fine or small with 
respect to the molecules that are reacting with it whereas it may indeed be small 
compared with the paddles that are moving it around and mixing it up.”

“That’s not so strange to me,” said T. coming into the conversation for the first time. 
“The size of a letter is always specified in terms of pen widths. Whether it’s a fifth of an 
inch or five inches high may depend on the use it’s being put to— it’s no good writing a 
book with five inch letters or a carving monument in a minute script— but it’s the 
proportion that gives it its character. A  Rustic capital may be nine pen widths in height, 
but a Caroline minuscule is usually.more like four.” And suiting the action to the word, 
T. pulled out a broad felt-tipped pen, took up a pad (for T  never seemed to be without 
them) and started writing. (What he drew is shown here as Figure 1.)

$M6tic

f  .  a  b e PP= Ca4T>UwgUUV
FIGURE 1 The different proportions of different scripts shown as dimensionless multiples of the pen 
width.
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“There’s much the same internal standard in a painting, of course,” said B. “It’s just a 
matter of getting the proportions right, or rather using the proportions for a particular 
purpose. I ’ll think of an example in a minute, but I ’m not sure that I really followed L ’s 
notions except in a very trivial sense. Give us a really significant example and pitch it so 
that we can understand without too much of your beastly technological jargon.”

“Well, just think of your automobile,” L. began. “If  it has been made in the last few 
years it has a catalytic converter in the exhaust system.”

“If you say so,” said B., who affected an immense ignorance of things mechanical. “I 
suppose it’s the source of some of the stinks I get from my new machine. Does it help the 
mileage.”

“Heavens no” said T., who clearly was much more aware of the banalities of modern 
living, or at the least was less shy in admitting to knowledge of them. “Nothing helps 
the mileage more than a change of dimensions. They measure them now in E P A  miles, 
don’t y’know— a euphemism for kilometers by the look of it.”

“The catalytic converter’s for cutting down the pollution, of course,” said L. 
resuming his discourse. “I only referred to it because it’s the commonest of all reactors 
these days and illustrates the point I want to make with a non-trivial case such as you 
wanted. All you need to know is that it’s a heavy metal container filled with pellets 
through which the exhaust passes. The exhaust as it comes from the engine contains a 
greater percentage of pollutants than can be tolerated by E P A  standards and these 
have to be removed by reaction. To keep it simple just think of carbon monoxide: this is 
a poison that has to be removed by converting it to carbon dioxide. Oxygen, from air, is 
present in the exhaust and the catalyst is needed to make the oxidation reaction that 
changes the carbon monoxide into dioxide go at a reasonable rate. If  you don’t mind I ’ll 
use the abbreviation C O  for carbon monoxide— it happens to be its chemical 
formula.”

“Now the catalyst pellets are porous and the reaction itself only takes place inside the 
pores when a C O  molecule diffuses in from the mouth of the pore and sits down on the 
wall. These pores can be thought of as little cylindrical tubes about 100A in diameter, 
but though that sounds small it is, of course, very many times bigger than the molecule. 
Sometimes the C O  molecule alights on the surface very close to an oxygen molecule 
and to a platinum atom that has been put there in the preparation of the catalyst, and 
then it may be converted into the harmless carbon dioxide. The probability of this 
happening is proportional to the concentration of C O  in the pore at a given position, 
and it’s because this isn’t what you might think it should be that a problem arises.

“You might think that the concentration of C O  inside the pellet is the same as that 
on the outside, but not so. Because the C O  has to diffuse into the pellet and it is there 
used up, its concentration falls off, and in a symmetrical pellet, such as a sphere, it is 
least at the center. In fact in one case it takes exactly the same form as the curve of a 
chain hanging freely between two points, the catenary. Here, let me draw it.” And 
pulling out a pen, L. sketched a figure. (As it was equivalent to the small diagram in 
Figure 2 it is not reproduced specially.)

“Give us the equations,” said B. who was particularly proud of having taken some 
advanced courses in what he quaintly called “the higher mathematics.” “We’re not 
unacquainted with the higher mathematics, you know,” he added primly, and you 
could almost see the quotation marks round the words as he enunciated them.
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FIGURE 2 The basic diffusion-reaction problem in the dimensionless variables.

“Oh, sure,” said L., quickly listing the variables; r, the distance from this center; c(r), 
the concentration of C O  there; cs, its concentration at the surface; Z), the effective 
diffusion coefficient; R(c), the rate of disappearance of C O  per unit volume as a function 
of c; and, a, the radius of the pellet.

“Those are the variables and the parameters of the problem. Now think of a sphere 
of radius a; a balance over a very thin shell of inner radius r leads to the differential 
equation for c(r)

D  d (  2 dc  
r 2 d r \ r dr

=  R(c)

and this has to be solved subject to the conditions

and

c  =  cs at r =  a,

dc
—  — o at r =  o 
dr

B. grunted his approval in a knowing sort of way. “You don’t have to know what it 
means,” he told T. rather patronizingly. “It’s just an ordinary differential equation that 
has to be solved for c(r). I must confess I don’t see how to solve it, though.”

“Oh, you can’t in general, except numerically,” said L. who was rather surprised that 
B. had so far conceded his ignorance.” But in any case, before you would try, you’d want 
to lick the equation into a much neater shape. You would think that there were at least



four parameters — D , cs, a, and one or more in R .  But some of these can be used to make 
the variables dimensionless. These are your pen-widths, T .”

L. quickly scribbled down the dimensionless concentration, u -  c/cs, and x  =  r/a, 
the dimensionless radial distance: he put /(u) =  R ( c sit)/R(cs) and wrote the equation as

(x V ( x ) ) '  =  4>2x 2f { u )  
u'(Q) =  0, w(l) =  1 (cf. Figure 2)

“The beautiful thing about this,” L . continued, “is that there emerges a single 
parameter
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<t>2 =
a 2R ( c s)

D c s

which, apart from the possibility that there are some parameters tucked away in /?(cs), 
is the only parameter the problem needs. W hat’s more, it has a clear physical meaning 
as the ratio of a reaction rate to a diffusion rate, for I can write it

3 (4/3)7za3R ( c s)

4 n a 2D ( c s/a)

and the numerator is the volume of the sphere times a reaction rate per unit volume, 
while the denominator is the surface area times the diffusion coefficient times a 
concentration gradient.”

“E.W. Thiele, an American chemical engineer who looked at this problem in the late 
’30’s at about the same time as a German, Damkohler, and a Russian, Zeldowitch, went 
a step further and wrapped up the whole problem in a single number. What’s needed is 
the ability to calculate the total rate of reaction, which is

R  =
ma ri

4 n r 2R(c(r)) dr =  4 n a 3R ( c s) 
o Jo

x 2f(u(x)) d x

Now, if there were no diffusional hindrance to the C O  getting into the pellet, the 
concentration would be everywhere cs and the total reaction would be the volume 
(4/3)na3 times R (cs). This is the natural measure of reaction rate and the ratio

r, =  R/(4/3)na3R ( c s) =  3
'1

x 2f( u ( x j)  d x
O

is called the effectiveness factor.”
“Why use two words when one would do?” asked B. “Surely ‘effectiveness’ would be 

quite unambiguous.”
“I don’t know,” replied L. “It was a habit that stuck I suppose. Even Aris, who seems 

to fancy himself as a user of good English, didn’t have the sense to drop the word ‘factor’ 
in a monograph he wrote on the subject a decade ago.1 At least the phrase ‘utilization 
factor’ which appeared briefly in the literature has perished.”

“I should hope so,” said T. “How anyone could use the word ‘utilize’ is beyond me. 
But do I  understand you aright that if your problem only has one parameter, </>, then /7, 
the effectiveness, will depend only on </>?”



“Yes, though perhaps there will be further parameters tucked away inside /(«). For 
example, if
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In general the effectiveness r] (known to mathematicians as a functional of the solution) 
gives a curve like this (and here L. sketched Figure 3). It must approach 1 as 0 -►  0 and it 
can be shown that 0>7 tends to be a constant as 0 gets large. The curves labelled A , B , 
and C  would be the concentration profiles in the pellet corresponding to the 0-values 
labelled A , £, and C  on the 0, ^-curve.

“Now the interesting thing is that the constant to which 0^ tends are 0 -►  oo depend 
only on the kinetics and the shape. The reason is that for high reactivity the 
concentration of reactant falls off exponentially quickly just inside the surface, and it 
matters less and less whether it’s cylindrical or spherical or any other shape. It might as 
well be taking place in a plane slab. In the slab of half thickness a, the differential

1

i

0
[toXtAjr SOUt

0 i

FIGURE 3 The relation of the effectiveness to the Thiele modulus.
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equation is

w'(0) =  0, u( 1)= 1

and this can be integrated by quadratures.”
“By quadratures,” said T., sitting up. “That’s a quaint phrase on modern lips. 

‘Capitalis quadrata’ is an old name for Square or Roman capitals and ‘quadrature’ is 
literally ‘making square.’ What does it mean in your context?”

“I suppose it gets its meaning from the idea of making something square or 
rectanglar. You are really making an irregular area equivalent to the area of a rectangle 
which is easily calculated. Quadrature is just the process of calculating the area under a 
curve.”

“Integration, don’t you know,” interrupted B., as if that explained everything to T. 
who had understood perfectly well anyway.

“Well, multiplying my equation by 2u and integrating,” said L., with heavy 
emphasis,” gives

(V (*)]2 = 202
*u(x)

f ( u ) d u  =  <£2[F (u ;u0)]2
uo

where u0 is the dimensionless concentration at the center of the slab. We don’t know the 
value of u0 yet, but it is between zero and one. Integrating again and using the 
boundary condition u(l) =  1 gives

(j)X =
*u(v) duJ„„ F(u;u0)

and

du

uo F{ut Uq)

The flux per unit area at the surface is

If the outside area is S x and the pellet volume is Vp

S xD ( c s/a)<f>F(l;u0) a S x F ( \ ; u 0)
>1=-

VpR { c s) V J

Now as u0 -*■  0, <f> -» oo because the reaction goes so fast that it completely exhausts the 
reactant, so asymptotically

#  ~  -rr f(i; 0)
vp

If  instead of the radius or half-thickness, a, we use [Kp/SXF(1; 0)] to define the 
characteristic dimension, i.e. define

V 2P R 2(cs) I t "

s2x D  I Jo R (c)d c
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then we have
rj(p ~~ 1

for all shapes and kinetics.
“There is an important exception to this asymptotic behavior,” went on L. somewhat 

intoxicated with the exuberance of his own verbosity, and that is when the boundary 
condition is not c =  cs at the surface, but kc(cf  — c5) =  D(dc/dri)s . This simply says that 
there is a certain resistance to the transfer of carbon monoxide between the flowing gas, 
where its concentration is c fy  and the surface, where its concentration is cs . In 
dimensionless terms this is u'(l) =  v where v =  kca/D . For a first order reaction it’s been 
known for a long time that the reciprocal-of the internal effectiveness is a kind of 
resistance which is additive to the external resistance proportional to 1/v, so that 
asymptotically

-  -  <D + <P2/v.
n

But I proved the other day that the same formula holds good for any kinetics as O -> oc 
and v _1 =  o(d)"1). Here, I ’ll show you.” And, seizing T .’s pad, L. sketched what has 
been tidied up in Figure 4. It took about five minutes of handwaving, for L. was so 
pleased with himself at being able to recall it all that he didn’t notice he had completely 
lost his listeners.

“It is not surprising therefore,” he went on in the full flood of his eloquence, “that 
when the activity varies through the pellet a special case is obtained when the activity 
falls to zero at the surface, for that’s really like having an external resistance. Varma, 
working with Wang and M orbidelli2 showed that a general result could be obtained by 
suitably modifying v to include both the external resistance and that of the dead 
exterior region. Yortsos and Tsotsis3 extended this result using the Liouville-Green or 
W K B J method, when the activity varies but does not vanish within the pellet. In the 
case where the activity becomes zero at the surface in a known and fixed way (i.e. 
quadratically or cubically) a shape normalization can be done. But a general 
normalization is not possible. So you see shape’s a tricky thing in chemical 
engineering.”

Not even a snore greeted L .’s conclusion, which B. seemed to regard as profoundly 
trivial, and T. looked completely lost. B. turned to T. and said,

“Why don’t you tell us about shape in letters, T.?”
“Hang on just one more minute,” said L. hastily, “while I tell you about multiple first 

order reactions.”
“Matrices, I suppose,” said B., who when L. agreed with him was suffused with such 

complacency that he sat up in his best approximation to the lotus position and stayed 
wide awake the rest of the time.

“Yes, the extension to any set of first order reactions is simple; you just replace the 
concentration by a vector of concentrations u and the diffusion coefficient and rate 
constant by matrices D  and K .  There are good physical reasons why the matrix D  must 
have an inverse, and we can write x¥ 2 =  D _1K  to give

V 2u =  ¥ 2u in n

u =  us in 8 0
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FIGURE 4 The general asymptotic problem with external resistance.

Now in most cases we can diagonalize *¥ by finding a matrix L  such that

L ~  14/2L =  diag(ilt\, \j/\,. . . ,  I/'*)

where what is called the definiteness of ¥  ensures that the ^  are real though, if all the 
species are included, \j/l =  0. If

v =  L~ lu, vs =  L~lus

and K(p;</>) is the solution of the scalar problem

V 2K =  (j)2V  in Q

V  =  1 on d Q
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with

V ( p\ ( p )d V

then

Thus,

v =  diag№ ) ,  K (^ 2) ,. . . ,  V(ipn))vs =  A£s(say). 

u = Lv =  LAL-1t/s

and the average rate of reaction is

1

K
K u d V  =  K L E L T  l us =  H K u s

where

E  =  d i a g ( / / ( ^ f 7(«A„)).

“That’s a truly amazing result,” concluded L. triumphantly. “It shows that the first- 
order irreversible effectivenesses can be used in the most complicated network of 
reversible first-order reactions. Indeed any formula that can be written in terms of 
effectivenesses is shape invariant in first-order systems. Put another way, we can relate 
the results of a whole class of problems to the result of the simplest problem of its class. 
The problems for different shapes have a common bond and as it were, a certain 
connection between themselves.”

“Sounds to me as if you’ve got off on Cicero’s famous phrase: ‘quasi cognitione 
quadam inter se continentur,’ ” said T.

“What’s that?” said L., thoroughly confused.
“Oh nothing,” said T. quickly, fearful lest B. should take it up with his usual 

pomposity. “Just a tag I happened to think of. But let me tell you about shape relations 
in script. Albrecht D iirer’s treatise on applied geometry “Underweysung der Messung 
mit dem Zirckel und Richtscheyt” first published in 1525, has a famous chapter known 
by its translated title “O f the Just Shaping of Letters.” His diagram capitals are well- 
known and illustrate the way in which they fit into the square and indicate the 
curvature of various parts by inscribed circles.

“He also gave a prescription for Gothic or, as he called them, “text” letters. “It was 
formerly the custom so to write,” he says, for by 1525 the humanistic script had gained 
the ascendency over the Gothic script. He bases everything on the letter for this is 
the dominant component of Gothic script, and in a word like “minimum” (Figure 5a) 
gives it the almost unreadable regularity of a picket fence. (T. was busy all the time with 
his pen while he was talking and some of his demonstrations are collected in Figures 5 
and 6). His ‘quadrate’ i is five pen widths tall, but the bottom of the top square and the 
top of the bottom one are divided into three parts on which like squares, but with
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<• c

FIGURE 5 a. The word ‘minimum’ in Gothic script.
b. Durer’s canons for Gothic.
c. The construction of Gothic s.

vertical diagonals, respectively stand on the left-most third mark and depend from the 
rightmost (Figure 5b).

“The letters m, n, w, v, w are combinations of i with some indication of joining at the 
bottom of v and w. The letter r has either two diagonal squares at the top or, more 
usually, a second jutting out to the right; b ascends a further three squares while q, its 
image under a rotation of 7c, descends equally. The tall letters 6, f  ft, k , /, and long 5 are 
all eight squares high (Figure 5b). The short s gets his most elaborate directions (cf. 
Figure 5c): ‘Curved, or short S,Ayou shall make on this wise. At the middle height of the 
letter, let there be set, close to one another, their angles touching, two oblique squares; 
from the near square draw a broad vertical limb to the height of the letter; and in the 
same fashion, from the farther square let one fall downwards— just as you constructed 
I top and bottom. Next cut off both these limbs, one at top and one at bottom, by 
diagonals, in such fashion that the sharp tips of both may be on the side near the middle. 
Then let there be drawn two broad limbs— namely, from the upper, to the right, and 
downwards; and in like manner; from the lower, upwards, and to the left; of the breadth 
of the limb, above and below, but let them be produced no further than the breadth of 
the distance between the limbs: then draw a diagonal downwards, from right to left, 
which shall cut off both oblique limbs. To it also you must produce the sides of the 
squares set in the midst.

“That’s all very easy for Gothic,” said B., “but how can you hope to do it for a more 
curved script such as the humanistic hands that superseded Gothic?”

“Let me go back to an earlier script,” answered T. “After all the Italian humanists 
took as their model the 9th century hands of the Carolingian period, though they 
thought that they were reaching back to antiquity. It’s what we would call a good 
round hand and in fact is the basis of all our modern typefaces, for it was adopted by the 
first printers and has persisted with various modifications ever since. As it was
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developed over the 10th and 11th centuries at centers like Winchester it acquired an 
outstanding grace and dignity and was the model that Edward Johnston took in his 
reform of manuscript lettering at the turn of the century. (Figure 6a shows three lines 
from a Winchester psalter).

“The thick and thin comes from the broad cut-nib and the direction in which it is 
moving and not from any variation of pressure— after all they used quills not steel nibs 
in those days, and its only with copperplate that you find pressure being used to make 
thick and thin. It is more difficult to assess how much variation of pen angle there was. 
In the traditional scripts there seems to have been very little, if any, and the beginner is 
usually taught to keep the angle of the pen constant. This is a wise introductory 
discipline but, as all good teachers will explain, no rule is inflexible and ultimately the 
scribe will move with such freedom that the letter on the page is but the record of where 
a three-dimensional dance of the pen has touched down on the two-dimensional space 
of the membrane. Then indeed there may be discovered variations of pen angle and 
subtleties of movement that the undisciplined hand and eye could not accomplish 
however great their virtuosity at pen twirling. There is a preface writer in New York

6¿ les плл medicino т е л  eft 
-\r iuó¿ лттл me\ó¿Luid¿\biz uc 

ó¿ ludicixziiA adiuiubunr me

FIGURE 6 a. An 1 lth century hand in a psalter written at Winchester.
b. The circular structure of the foundation hand as analysed by Hechle.
c. Hechle’s analysis of the compressed hand and of Italic.
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who thinks a new age of freedom from the domination of the Johnstonians has been 
achieved by learning to twiddle from the start, but his case is far from made.”

“I say, my dear fellow, don’t get all worked up about that,” interposed B., who, of 
course, knew that the word ‘fellow’ was of common gender. “Just tell us how you 
analyze the Carolingian minuscule on the principles of its shape. Do you take the i as 
the basic unit?”

“No, not the i but the o,” T. replied, fetching a curious object from a side pocket and 
turning over a new leaf of his pad. The object turned out to be red and green felt-tip pens 
bound together, with which T. drew a circular o keeping the angle between the red tip 
on the left and the green on the right at 30° to the horizontal. “The pen of course fills in 
the ink between these lines which represent the track of the two edges of the nib. You 
can see quite clearly that the thinnest parts of the letter are at 11 and 5 o’clock when my 
pen angle is 30° (cf. Figure 6b).

“But what is even more interesting is the relationship of the letters to each other and 
to the o. Here I am following the analysis of Ann Hechle, one of the foremost 
calligraphers in Britain today and a fine teacher as well. She emphasises of course that it 
is just a guide to the underlying construction and not a set of rigid rules. I find it a 
fascinating analysis and the clearest explanation of the visual coinherence of the 
different alphabets. The round hand, which is a good foundational hand to learn, is 
based on the circular o above four and a half pen widths high and drawn with the pen at 
30° to the horizontal. How the vertical ascender of ab or descender of ap is not just 
tangential to the o which is part of each of these two letters, rather the right side of the 
vertical stroke goes through the thinnest part of the letter at 11 o’clock. The upper part 
of the bow of the 6, running clockwise from 11 to 2 thus starts to thicken immediately. If  
the vertical were much farther to the left the arch would look weak; if to the right it 
would be cramped and the round look would be lost. In the n, for example, the second 
stroke which begins the arch must start with the left hand edge of the nib at the left hand 
side of the first vertical stroke. Then the arch begins to thicken immediately and is 
strong, otherwise it looks stubby or weak. The other letters are related to the o in 
their several ways.” And here T. sketched several letters some of which are shown in 
Figure 6b.

“That relates the different letters to one another through their common relationships 
to a single letter alright,” agreed B. “But what about other alphabets?”

“Hechle’s insight works here, too,” T. insisted. “For example if the elongated 0 is 
taken as the base shape, a compressed round hand comes about. This seems to be 
something of the same relationship as L. had between his first order systems and the 
simple irreversible reaction, though I didn’t fully understand all L. had to say.”

“It was just a question of matrices,” said B. smugly, though in fact he (or she) had 
understood no more of the mathematics than had T.

“Let me show you the compressed round hand which is based on the squashed circle. 
Again the inner side of a vertical goes through the thinnest part of the basic 0, and a 
more condensed upright hand results. Then the italic is based on an ellipse with a 
slightly greater pen angle of 45°. This time the ascenders and descenders are slightly 
sloped and are tangential at the outer edge rather than the inner edge going through the 
thinnest point. This gives the italic arch its characteristic leap and leaves scope for 
variation by altering the inclination of the ellipse and the vertical (Figure 6c). Sheila
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Waters, one of the finest calligraphers practicing in the U SA, has developed a Caroline 
minuscule based on a slightly flattened o — a grapefruit rather than an orange shape—  
that has great coherence and grace. She has used it in an exquisite manuscript of Dylan 
Thomas’ “Under M ilk Wood” which she wrote at the commission of an English 
collector. It can be analysed on similar lines.

“It is this freedom within a very disciplined framework that gives the art and craft of 
the scribe its perpetual fascination, and it seems to me has an analogy with the art and 
craft of mathematical modelling. Sometime I ’d like to pursue the further analogy 
between the choice of script and evolution of a work of lettering art and strategy of the 
approach to a mathematical problem, large or small. It would be interesting to get two 
virtuosos such as Donald Jackson and John Hammersley talking to one another.”

“Yes, that would be fascinating,” agreed L., who seemed to be ready to explore the 
idea further when B. interrupted.

“At the risk of being pompous (a possibility that B. had never worried about before 
and was scarcely likely to start worrying about now) I might say that this reminds me of 
Sackville-West’s lines:

‘A ll craftsmen share a knowledge
They have held reality down fluttering to a bench;
Cut wood to their own purposes; compelled
The growth of pattern with the patient shuttle;
Drained acres to a trench.’ ”

“That reminds me, it must be time for afternoon tea,” said L. with Philistine brutality. 
And so they departed the quad.

E P IL O G U E

This conversation is reported as best I was able to get it down and is offered to the 
reader in the hope that it may stimulate discussion of the way we think about shape in 
engineering contexts as well as in everyday life. There is nothing particularly original in 
the engineering science here presented, though I do not recall having seen the general 
normalization presented in Figure 4 in quite that form before. The figures have been 
redrawn from the scraps of paper that I pounced on when B., L . and T. went for their 
afternoon sandwich.

The title is taken from the continuation of the poem quoted by B. at the end of the 
conversation:

They have ignored the subtle
Release of spirit from the ja il of shape

The other references, without which no scientific paper, even in this guise, would pass 
muster are listed below with numbers corresponding to those I have inserted in the 
dialogue.

Finally I would like to thank Ann Hechle for permitting me to describe her analysis 
of letter forms and Jarda Ulbrecht for his editorial tolerance.
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Abstract— Some of the ideas nascent in the notion o f a model are here explored in a 
preliminary way. In particular we ask what the special insight afforded by the mathe­
matical model may be and suggest that the notion o f craftsmanship in mathematical 
modelling can provide a via media between the formalistic and subjective extremes, at 
once doing justice to the modeller’s mental activity and providing a basis for dialogue 
and discussion.

We do not use the word “ m ere” in the sense o f  that notion o f  a model at which the hard­
core empiricist would throw up his hands. For the word “ m ere” is* patient o f  almost 
opposite meanings [1]. On the one hand it can mean “ having no greater extent, range, 
value or pow er” ; on the other it is what it is in the fullest sense o f the term, i.e , “ nothing 
short o f .” It is in the latter sense that we would wish to approach the notion o f  the model 
to try and see it in its plentitude. N o  doubt this issue and the future issues o f  this journal 
will contain many distinguished analyses o f  particular situations in the form o f  mathe­
matical models o f  varying validity and sophistication. N evertheless we feel that it is 
worthwhile to lay out som e o f  the philosophical considerations that underlie the whole 
business o f mathematical modelling. It is not that the mathematical modeller needs to be 
a full-time philosopher, or should attend to the process o f  forming a mathematical model 
in the sense o f being consciously aware o f  the philosophic issues involved. It is rather that 
all who practice the craft o f  mathematical modelling can benefit by a certain reflection on 
the underlying notions o f  the subject. W ithout such reflections it is indeed possible to get 
into a measure o f  confusion about the modelling process. W e do not claim to have the 
last word on the notion o f  models and modelling, but rather would put forward the 
following contentions in all m odesty as suggestive topics which will bear further discus­
sion and elucidation.

1. T H E  R ISE O F  M A T H E M A T IC A L  M O D E L L IN G

The extent to which mathematical modelling has becom e self-conscious is in itself a 
phenomenon o f  interest. Like M onsieur Jourdain, mathematicians have been modelling 
for centuries without perhaps recognizing it as their prose. The last few  years have seen  
two international sym posia [2], the publication o f  a number o f  different books [3 -8 , to 
give only a sample] and the founding o f  journals specifically devoted to mathematical 
modelling [9-10]. T w o encouraging features seem  to mark this developm ent. One is the 
transdisciplinary nature o f  the enterprise and the other the recognition o f  the limitations
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University College and Department of Anthropology.
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o f the process by its own practitioners. It thus may be hoped to conduce to the greater 
affinity and mutual understanding o f different departments o f learning, and it is to be 
hoped also that its progress will not be hampered by the resistance which exaggerated 
claims inevitably produce.

Evidence o f  this appears constantly. For exam ple, a symposium on “ Mathematical 
Modelling and its R elevance to the Teaching o f Mathematics in Higher Education” was 
sponsored by the Institute o f  Mathematics and its Applications at the beginning o f  1979. 
The papers published in the Bulletin o f  the I.M .A . are o f interest in them selves. In the 
first o f these, on “ Learning to U se M athem atics” by H. Burkhardt [11], a framework is 
made for discussing the teaching o f mathematical modelling. This is described as 
“ tackling realistic problems from outside o f  m athem atics.” The kind o f  problem that 
arises in this context is distinguished from the traditional mathematical example by the 
emphasis that it places on the formulation and on the objective. The objective is not just 
an exercise in mathematics as learnt but is the solution or understanding o f  som e pro­
totypical problem. There is an analogy here perhaps with the teaching o f languages where 
in the old style short exercises were made up with sentences which would test the stu­
dents’ grasp o f  the immediately preceeding grammar or syntax. In contrast to this som e 
recent texts have endeavored to use the literature o f the language itself to instruct the 
student in the syntactical and grammatical com plexities o f  the language. R. R. M cLone  
[12] called attention to the report on the “ Training o f M athem aticians” [1973] in his 
discussion o f the teaching o f  mathematical modelling. This report emphasized that math­
ematicians practicing their craft in industry saw a greater role for “ mathematical mo­
delling” in their work than had been communicated to them in their education. He points 
out that all seem  to agree that mathematical modelling is more o f  the nature o f  an activity  
than a body o f knowledge to be mastered, and goes on to enumerate the skills that are 
required under the headings o f  “ m anipulative,” “ d iscovery ,” “ critical,” and “ com ­
m unicative.” Under the first he recognizes the need for the acquisition o f  basic tech­
niques, the standard use o f  these and the extrapolation o f  them into unfamiliar situations. 
Under the second he notes the need for improvisation o f  new techniques to m eet a 
particular situation, the abstraction that often brings together in a unified way diverse  
problems and the very formulation o f  problems them selves. U nder the heading o f  
“ critical” he calls attention to the need for organization o f  material from standard 
sources, the assessm ent o f  suitability o f  different m ethods and the need to be critical o f  
on e’s ow n work as well as its sources. The comm unicative skills include the comm uni­
cation o f ideas to mathematicians and nonmathematicians and the effective working to­
gether in groups. Indeed the instruction which he favors is o f  the nature o f  a mathematical 
laboratory course. D . Saunders [12] called attention to the course on mathematical m o­
delling which is included in the Open University offerings. On a more technical vein the 
same issue contains papers by J. G . Andrews on “ Mathematical M odels in W elding” 
[14]; by D . Burghes on “ Mathematical Modelling in Geography and Planning” [15]; and 
by D . M. Burley on “ Mathematical Modelling in Biology and M edicine” [16].

What is particularly o f  interest here is the way in which the mathematical curriculum  
is being affected. It is not that this emphasis on modelling is entirely new— Ben N ob le’s 
book on applications of'undergraduate mathematics in engineering was published in 1967 
[17] and had been preceeded by several years o f  concern by a com m ittee o f the American  
Mathematical Society— but its time certainly seem s to have arrived. It is not that it has 
not been practiced in disciplines as different as biology [18-23] and geography [24-26], 
but that modelling is becoming more self-conscious and the validity o f  its approach being 
more widely realized. The literature is already vast and obviously cannot be surveyed  
here; among the ch ief benefits o f  the tw o International Sym posia are the im pressions 
they give o f  the scope o f  mathematical modelling.
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2. SO M E  U SE S O F  T H E  W O R D  “ M O D E L ”

The term “ m odel” has been subject to what Bunge calls a “ merry confusion o f  sen ses” 
and, though he has done as much as anyone to clear up this confusion, there are still 
som e ambiguities in the way in which the word is com m only used. Bunge [27,28] rec­
ognized that there is a “ model object” namely a hypothetical sketch o f  supposed phe­
nomena, which is to be grafted on to a theoretical model in the process o f  model making. 
Thus in confronting the simple case o f  planetary motion, the model object might consist 
o f two point m asses representing the sum and its satellite. If this is grafted on to the 
N ewtonian theory o f  gravitation there results a N ewtonian model o f  planetary motion. 
On the other hand, if it is treated from the viewpoint o f  Einstein’s Theory o f Relativity, 
a relativistic model o f a simple planetary system  evolves.

In his paper in the volume edited by Freudenthal, A postol [29] formalizes the modelling 
relationship as R [ S ,  P ,  M y T ] which is the relationship in which the subject S  takes, with 
a certain purpose P  in mind, the entity M  as a model for the prototype T .  This is 
interesting because it recognizes the role o f  the modeler, which A postol calls the 
“ subject,” and also brings in the note o f  purpose. Aris [5] has emphasized that the model 
must be judged in the light o f  the purpose for which it was constructed and has also given 
som e attention to the skill o f  the modeller. It is important to recognize the personal 
elem ent in the knowledge that might be gained by modelling and we shall return to this 
point later.

The term “ m odel” is indeed w idely used by philosophers o f  science. H esse [30] in 
her excellent little monograph “ M odels and A nalogies in S cience” distinguishes two 
basic senses and Leatherdale, in a longer work [31], four. McM ullin [32] has claimed that 
the “ most important single question” posed by physics for philosophy is that o f  deciding 
what “ the com plex postulated structures o f  the scientist tell us o f  the w orld .” If this 
claim can be made for large deliberations on scientific theory, and w e believe it can, then 
perhaps the more particular and detailed considerations that arise in the mathematical 
modelling o f a specific situation can bring som ething to the greater question— the tax­
onomist still needs his m icroscope. For the range o f the word “ m odel” must be recog­
nized. McMullin can speak o f  the theory being “ about this model and about nothing 
e lse” using “ m odel” in the broad sense, as when mitosis is held to be a matter o f  
exponential growth at a rate conditioned by the availability o f  nutrients. In the narrower 
sense we have a “ m odel” when that theoretical vision is focussed on a particular situa­
tion, say o f com petitive growth in a chem ostat. The distinction needs to be recognized, 
but we hesitate to im pose it by any stipulation o f  usage, even for the purposes o f  this 
paper, lest we add to the profusion— or, “ confusion” as Bunge has it— o f current uses.

Speaking loosely, the mathematical model will be the mathematical structure that ties 
the specific situation back into a more general theory (with its associated physical model). 
Its validity as an “ explanation” o f  what is going on in the given situation rests on the 
tripod of: (a) the adequacy o f  its representation o f  the situation; (b) its internal correct­
ness; and (c) the acceptability o f  the general theory which is involved. Thus a mathe­
matical model o f a tsunami would be unconvincing if it ignored inertial terms, incorrectly 
solved the equations or related itself to astrology rather than continuum m echanics. On 
the other hand, it might with impunity ignore the salinity o f  the ocean (except in so far 
as it affects the density) or the relation betw een continuum mechanics and molecular 
theory.

3. T H E  PR O C E SS O F M A T H E M A T IC A L  M O D E L L IN G

Let us turn to a brief and informal review o f the modelling process. It must be pre- 
ceeded by som e encounter o f the subject or modeller with the phenomenon. This en­
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counter will be already som ewhat mediated by the theoretical viewpoint o f the subject. 
At this state this may be very general as for example when a person approaches a new  
phenomenon as something to be explained within the framework o f natural science as 
opposed to taking it to be an act o f magic. Nothing very much more than a presumption 
of, say, the uniformity o f nature may be involved here. Let us suppose however, that the 
modeller in reflecting on the phenomenon conceives a purpose. This might involve an 
application and require constructing a model which would be o f value in predicting its 
future behavior. Or, the purpose might simply be to understand the possible mechanisms 
for the phenomenon and tie these back into other known regions o f scientific knowledge. 
Having conceived this purpose, the subject returns to the phenomenon with a more 
explicit theoretical viewpoint. It is in keeping with the common use o f  the term to refer 
to this viewpoint as a “ theory.” Thus, for exam ple, the subject might approach the 
phenomenon from the viewpoint o f the Newtonian theory o f gravitation. This does not 
preclude subsequent modifications on som e other theoretical basis for, if the Newtonian  
theory failed to give an adequate model, the subject might, as mentioned above, return 
and approach from the viewpoint o f  the theory o f relativity instead. Our point is that at 
this stage there is som e commitment to a theoretical framework within which the mo­
delling process is to go on. This would seem  to correspond to the t h e o r e t i c a l  m o d e l  o f  
Bunge.

The modelling com es about when som e particular assumptions are made about the 
phenomenon and appropriate methods o f description, corresponding to the formulation 
o f the m o d e l  o b j e c t  in Bunge’s terminology. T hese assumptions are essentially o f  a 
constitutive nature either concerning the material o f the system  or the nature o f the model 
which is deemed adequate for the purpose. Again there is a strong personal elem ent in 
this, for the skill o f  a mathematical modeller will be seen in the ease and finesse with 
which these assumptions are made and the way in which an appropriate model evolves. 
Again, there is plenty o f room for iteration and for returning to the situation with a slightly 
modified set o f assum ptions. N or should we overlook the fact that there may be several 
sets o f assumptions which lead to the same model, since in general there is an equivalence 
class o f assumptions which connects the phenomenon, viewed in the light o f a general 
theory, with the mathematical model.

This is not unrelated to the observation that any prototype has a subset o f character­
istics that are irrelevant to the modelling process, as the ocean’s salinity might be to the 
hydrodynamics o f a tsunami. T hese adiaphora form, as it were, the kernel o f the modelling 
operation which maps the “ space” o f the prototype onto the “ space” o f models since 
they are mapped on the null elem ent and so do not appear.

The mathematical model M  is now in existence and from this point has a life o f  its 
own. The use that may be made o f this intrinsic vitality will depend on the purpose for 
which the model was intended and what modifications o f that purpose may take place. 
In the simplest case the model may be operated upon to give numbers; as when a solution  
to a differential equation is found, these numbers can be compared with experimental 
observations of the phenomenon itself. The model may be judged adequate, if the agree­
ment is within experimental error, or inadequate, if it lies outside o f a reasonable estimate 
o f error. An inadequate model may be reformulated by changing the assumptions under 
which it was constructed. For exam ple, in the modelling o f tidal action, it might be found 
that the results from a model incorporating only the influence o f the moon would be 
inadequate and a modification o f the model would be necessary in which allowance would 
be made for the influence o f the sun as well. In other cases the manipulation o f the model 
might be minimal. An example o f this would be the rendering o f the equations dimen­
sionless so that the important dim ensionless numbers (e .g ., the Reynolds number from
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the Navier-Stokes equations) emerge. Another possibility is that the model would suggest 
a totally new purpose for which further manipulation or modification might be necessary. 
For example, if an adequate model of tidal action had been obtained for a smooth coastline 
one might return to this and ask what the effect of promontories and inlets might be. 
Here again the overarching theory is the same but the hypotheses have to be changed. 
In Bunge’s nomenclature the theoretical model stays the same but the model objects 
vary.

One might ask whether it is possible to construct models without an overarching the­
ory. The answer would seem to be that this is possible but that the models would remain 
isolated and the general theory would have to be created anew for each individual model. 
Thus the general theory serves as a binding element in the space of models.

4. M A N IPU LA TIO NS WITH THE MODEL

Once the model is formulated it is open to manipulation which may, as we have just 
noticed, be as slight as a rearrangement or as serious as a total reshaping. Even when the 
next objective is the straightforward solution of certain equations there may be need for 
skill in the approach as Hammersley [33,34] has shown; the preparation of the model and 
the importance of getting a preliminary feel for the solution has also been emphasized by 
Aris [5,35,36].

The internal processes of model reduction may be very drastic yet not change the 
model in essence. Thus a partial differential equation may be reduced to a set of ordinary 
differential equations as a means of finding the numerical values of the solution. This 
calls for the technical skills of the numerical analyst, but can hardly be thought to have 
changed the model. If an analytical solution had been possible it would have been used 
and would, if the discrete approximation had been done properly, have led to the same 
numbers to within the tolerated accuracy.

In other cases the transformation of a model is accepted, or even cultivated, for the 
light it may shed on the situation, for the value inherent in having an alternative approach 
or even for the sheer aesthetics o f variation. Thus in the so-called catalytic monolith a 
large number of fine passages of identical cross-section pass through a block o f heat 
conducting material so that they form a system of parallel channels separated by plane 
walls. For simplicity the cross-sections of these channels can be thought of as identical 
squares. If a hot fluid flows into a central passage and cold into all the rest, the hot stream 
will lose its heat to the surrounding streams and the temperatures at the other end of the 
monolith will show a distribution, the central stream still being the hottest with the other 
temperatures decreasing according to their distance from the central passage. In fact a 
formula for 7 wl>„(z), the temperature in the (/??,/?)th passage at a distance z  from the inlet, 
can be derived. If T 0t0( o )  =  1 and T m>n( o ) = 0, m yn =/= 0, we have a “ fundamental” 
solution

Tm,n(z) =  \ e  irzIm(2rz)In(2rz) 
a1

where

a =  the side of the square 

r  = K / V p c p a 2

K  = a transmission coefficient depending on the heat transfer to and through the wall.
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On the other hand the fundamental solution for heat conduction in a continuous flowing 
medium governed by the equation

d2T

is known to be

n*,y,z)
VpCp(x2 + f) 

4 kz

where

V = velocity o f fluid

p c p =  heat capacity o f fluid.

What is the relation between these models, the first a rather literal one, the second  
metaphoric in the sense o f treating a large number o f thin walls and narrow passages as 
if it were a continuum? If a  is the length side o f  square defining each passage w e would  
expect that T m,„(z) would approach T(m a,na,z) as a gets small and this can be shown
[37] to be the case provided k =  K .  An equivalent continuum conductivity has thus been  
calculated which relates the two distinct models. H ow ever, the same asym ptotic formulae 
which is used to establish the connection with a different model (the continuous one) 
could be used merely as computational tools within the original (discrete) model to eval­
uate

In this exam ple the reductions involved are highly conventional ones with all the 
dignity o f  precise asym ptotic formulae. Often, how ever, the situation calls for approaches 
that are much more risqué for which the justification is much less certain. Thus G illes
[38] , for exam ple, exploits the observed stability o f  form o f  a temperature w ave in a 
packed bed, introduces an artificial, though suitable, set o f  formulae for its shape that 
allow control calculations that would not otherwise be possible. In these extrem e cases 
it is probably better to regard the model as having been changed by the manipulation into 
a new model which could be presented in its own right on the basis o f  its own assum ptions.

The skillful use o f  internal manipulation and model transformation is clearly o f  the 
essence o f the craft o f  modelling. But before expanding on this theme let us review what 
is involved in tying back the model into the prototype.

5. C O N F IR M A T IO N  O F T H E  M O D E L

Though w e have em phasized that the model is an entity in itself and, if nontrivial, 
deserves study for its own sake, it is often necessary and desirable to relate it in detail 
to the prototype. The most comm on way o f  doing this is to calculate som e feature o f  the 
behavior o f  the model which is thought to be representative o f an experimental m easure­
ment made on the prototype. Thus, for exam ple, one might calculate the resonant fre­
quencies or the critical buckling loads and compare them with experim ents. If the ob­
servations and the calculation agree to within a reasonable error, then one has a certain 
degree o f  confidence that the model indeed “ represents” the system . But there are prob­
lems with the notion o f  confirming behavior by means o f observation.

The idea o f  a model is inherent in certain aspects o f  evaluating everyday evidence. 
Take, for exam ple, the situation Russell uses to call attention to the difficulty o f  judging
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causation by experiment. In two factories widely separated a bell is sounded promptly 
at noon and the workers take a lunch break. From this observation alone it is not clear 
that the bell at A  is not the cause o f the lunch break at B  and vice versa. Indeed one can 
imagine a situation where through lack o f  facilities at B , the bell is rung by som eone  
telephoning from A  to B  a moment or two before 12 o ’clock and allowing the bell operator 
to listen to the ringing o f  the bell at A .  In the event o f the simultaneous breakdown o f  
the bell at B  and in order to work through the lunch hour to fill the rush order at A , the 
lunch hour at B  might be taken by an almost automatic reaction and the observer would 
see the ringing o f the bell at A  “ causing” the egress o f the workers at B .  It is the absence 
o f any model which allows such an argument to be carried so far. In common sense terms 
we would dismiss any causative effect at B  o f  the ringing o f the bell at A  because the 
workers there cannot hear it. In other words we invoke a model o f the transmission o f  
the signal which permits it only a certain range and recognized that B  lies outside o f  that 
range. Thus the mere coincidence (even over a long series o f observations) o f the lunch 
in one place and the ringing o f the bell in the other does not convince us that there is any 
relation between the two. A model may therefore be part o f  the explanation even when 
it is there only implicitly.

What common sense demands o f  a model which really “ fits” the prototype is that 
there shall be as many connections as possible that tie it back into the prototypical 
situation. The degree o f confidence in the model, or more correctly, in the applicability 
o f the model, grows in proportion to the growth o f  detail in this connection. An example 
may serve to illustrate this. In the theory o f  diffusion and reaction the effectiveness o f  
a catalyst particle is defined as the ratio o f the actual reaction rate to the reaction rate 
which would obtain if there were no limitation by diffusion. Thus the effectiveness is one 
when there is no diffusion limitation or when the ratio o f  the reaction rate to the diffusion 
coefficient is very small. Because the reaction is taking place in the interior o f  the catalyst 
pellet, into which the reactant must diffuse, the reaction may deplete the concentration 
and hence slow the reaction down. If the rate o f the reaction is large then the flux into 
the pellet becom es the limiting factor, and there is a rapid falling off o f the concentration  
as one goes into the catalyst particle. Since the reaction rate is proportional to that 
concentration, the total reactivity o f the pellet is decreased by the diffusive resistance. 
The effectiveness o f the catalyst decreases as the reaction rate increases relative to the 
diffusion rate and ultimately it becom es inversely proportional to the so-called Thiele 
Modulus. This modulus is the form L ( K / D ) * y where L  is the size o f the pellet, K  is the 
reaction rate constant and D  the diffusion coefficient. Thus the effectiveness, €, is near 
one when <f> =  L ( K / D ) t  is small and e is proportional to 1 /</> when </> is large. N ow  the 
total reaction rate per unit volume is proportional to the product o f  K  and e , which, when 
e is one, is simply proportional to K  but, when </> is large, the total reaction rate is 
proportional to the square root o f  K .  K  has the form e ~ EIRT where E  is an activation 
energy, R  is the gas constant, and T  is the absolute temperature. Thus for small values 
o f <f> the reaction rate is proportional to e ~ E,RT whereas for large values o f  it is propor­
tional to e~E,2RT. It follow s that if the logarithm o f the reaction rate is plotted against the 
reciprocal temperature, the curve would have a slope o f  - 1 ,  for large values o f  the 
reciprocal, whereas for small values o f  the reciprocal temperature it would have a slope 
o f -  Vi (N .B . the temperature is large when its reciprocal is small and vice versa).

N ow  the single observation that, over a sufficiently wide range o f temperature, the 
dependence o f the reaction rate on the reciprocal temperature had this transition from 
slope -  Vi to slope - 1  would give one a first degree o f  confidence in the model o f  the 
catalyst particle on which this computation is based. Such in fact; was the confirmation 
that established the validity o f  the model in its early days [30]. Indeed one might go 
further and deduce the ratio o f certain physical quantities by fitting the data by a pair o f
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straight lines o f  slopes -  Vi and - 1 .  H ow ever, a much more important confirmation o f  
the model would arise if measurements o f  the diffusion coefficient o f the reactant in the 
porous material were made. A lternatively, this diffusion coefficient could be calculated  
and measurements made o f  the intrinsic rate constant. Then, from the formula for the 
effectiveness that the model gives, the reaction rate could be calculated and compared 
with observation. If these two agree to within the experimental error then one may have 
a much greater degree o f  confidence in the model.

This exam ple illustrates the fact that the degree o f  confidence in the applicability o f  a 
model is greatly raised when there is a close correspondence with relevant observations 
and the estimation o f  the parameters in the model has been done independently. If the 
correspondence o f the model and observation is used to determine the parameters then 
there is a lesser degree o f  confirmation o f the model for very much less independent 
information has been supplied. Som e degree o f confirmation still ex ists, for a totally 
unsuitable model might give no correspondence in such a test as the rate vs reciprocal 
temperature plot for the catalyst particle.

N ow  let us suppose that som e particular dynamic behavior has been predicted by the 
model which, it is hoped, can be related to experiment. If the initial conditions o f the 
experiment and o f the calculated behavior are close one might hope that the subsequent 
behavior o f the two would remain close. Such is the case in many instances o f stable 
motion, but even a periodic response presents som e difficulties. How would one confirm 
a periodic response? First o f  all it would be necessary, in comparing the ultimate response 
to a forced oscillation to allow any transients in the system  to die out, for these would 
be peculiar to the starting conditions. Secondly, one would ignore the phase o f the re­
sulting oscillations, since this would be dependent on the particularities o f  the start o f  
the process. Then one would attempt to match up the wave form, its period and particular 
characteristics. But, even assuming very accurate observations, there are som e problems 
with wave forms o f sufficiently long period.

The problem becom es even more acute when one considers so-called chaotic motion. 
“ C haos” in a dynamical system  is som etim es defined as a behavior which is neither 
steady, nor periodic, nor asym ptotically approaching a periodic behavior. It has received  
much attention from mathematicians and engineers since the discovery o f a simple system  
o f three ordinary differential equations by Lorentz [40]. It has an appearance o f random­
ness which is not o f a statistical nature. For in a nonchaotic system  subject to certain 
random fluctuations, two trajectories starting close to one another would retain som e 
resemblance when allowance was made for the fluctuations due to the random elem ent. 
By contrast, two trajectories starting close together irf a chaotic system  would, in general, 
bear no resem blance to one another after a sufficient time. The difficulty in comparing 
a prediction with observation lies in the fact that chaotic solutions often coexist with 
other solutions o f very long periods or with almost periodic solutions. Thus given a long 
and apparently chaotic record it is im possible to assert that this is not part o f an even  
longer periodic solution. Here the role o f the model would seem  to be crucial in having 
any confidence in the experimental result, or, for that matter, in the model. One would 
need to tie the model to the prototype in as many ways as possible and to show that 
certain ranges o f the parameters in the model gave rise to the same kind o f irregular 
behavior as could be observed in the real system  for more parameter ranges.

H ow ever, there is an even graver philosophical problem which may be illustrated from 
som e results in the theory o f oscillators. The so-called Van der Pol equation gives rise 
to oscillations either when left to itself or when excited with a simple harmonic or periodic 
impressed excitation. The Van de Pol equation is o f the form x  + f ( x ) x  + * = bp ( t ) .  
If b  = 0, its solution is a relaxation oscillation, but with excitation has a very com plex  
response for certain ranges o f the amplitude, b .  In the space o f x, y  =  x  and /, the time,
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the solution is represented by a point on a line always proceeding with unit speed in the 
/ direction. A return map can be made in which any given point x, y  in a plane such as 
/ = 0 is mapped into a corresponding point in the x ,  y  plane at / = 2ir. This return map 
show s the difference o f  state at the beginning and end o f one period o f  the excitation and 
is a mapping o f the jc, y  plane into itself. N ow  it has been shown that the following 
property obtains for certain solutions o f this equation. In the x ,  y  plane let us construct 
tw o regions, small rectangles about two points which will be referred to as A  and B .  In 
the wandering o f the point given by the return map we write down A  if the point enters 
the box A  and B  if, after a sufficient number o f periods it enters the box B . This cor­
responds to noting that the state o f the system  com es close to som e observation point 
corresponding either to the box A  or the box B . The size o f the box might be a measure 
o f the accuracy o f possible observation. The moti6n can be chaotic in the following sense. 
Given any sequence o f the letters A  and B , such as A A B B B A B A A A B A , it is always 
possible to find a point within the rectangle A  such that the sequence o f entries into either 
the box A  or the box B  is as prescribed. What is more, this is true if time is reversed and 
the trajectory is run backwards. It follow s that the future is in som e sense independent 
o f the past for both can be prescribed and then “ observed .” O f course there will be many 
other trajectories which have different sequences o f entry into the two boxes but, assum ­
ing sufficient powers o f observation one can always look for and find any desired result 
in this system . One could alm ost say that this was a confirmation o f  the model, namely 
that one could eventually find any required behavior, save for the fact that similar results 
might be shown by a totally different system  o f equations.

In turning from physical to social prototypes an interesting distinction arises from the 
very existence o f the prototype’s self-consciousness. In this case it may have a model o f  
itself and we have to ask what obligation the modeller has to this prior model. For 
exam ple, in modelling the kinship structure o f  a society must an anthropologist’s model 
though no doubt couched in different terms be faithful to the model that the society has 
o f its own structure? Is this fidelity, even when appropriate, o f a strict nature, as when 

is a restriction of/(* )?  Or can it be much looser, as when the society has a mechanical 
model o f itself but the anthropologist builds a statistical model? In one o f the places 
where Lévi-Strauss draws this distinction [41] he also points out the dual nature o f struc­
tural studies, or as we might say, interrelationships o f models. On the one hand, they 
isolate certain phenomena and bring special m ethods to bear on them. On the other, they 
seek to construct abstract models which can be put into som e sort o f isomorphism with 
other models. This isomorphism (at least to the extent that it carries conviction) is held 
to have a certain explanatory power [41, p. 277]. In physical sciences the explanatory 
status o f the mechanical analogues in electrom agnetic theory— beloved o f the 19th century 
English physicists which D uhem  found so derisory— is equally debatable, though the 
isomorphism can usually be drawn more convincingly. Perhaps it is having a self-con­
scious subject o f study that most clearly differentiates the social scientist from the natural; 
so that, however much the one may learn from or use the methods o f the other, the 
“ wirtschaftler” is engaged in a different kind o f reflection from the “ w issenschaftler.” 
The econom ist and statistical mechanician may lie down together, but the anthropologist 
will not eat straw like the graph theorist; it is to be hoped that none will hurt and destroy—  
at least not too much.

6. M O D E L L IN G  A S C R A F T S M A N S H IP

The emphasis we have put on mathematical modelling as a craft demands a brief, 
further discussion. We believe that it deserves consideration, though what we have to 
say here is preliminary in the strictest sense o f  the word. What goes on in the m odeller’s
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head is not purely formalizable, either in the more abstract terms o f A postol [29] or 
Bunge [27] or in the taxonom ic vein o f Harr6 [42]. N or is it purely subjective, conditioned 
by sociology and psychology as Lakatos [43] and Feyerabend [44] would have us believe. 
It has more in comm on with the tacit elem ent in personal knowledge that Polanyi [45,46] 
has drawn out. It has structure, it has techniques that can be taught and learned, but 
involves also a personal touch, not only in trivialities (such as the choice o f  notation) but 
in deeper considerations o f  skill and suitability. It also involves an elem ent o f  risk, since 
a wrong turn in the developm ent o f a model may lead to its com plete stultification. Like 
the furniture maker, the mathematical modeller shapes the several parts o f  his work and 
fits them together. If one is marred or misshapen it must be reworked or even discarded 
and replaced.

Pye [47,p .4] has brought out this aspect o f craftsmanship very well in his book, T h e  
N a t u r e  & A r t  o f  W o r k m a n s h ip .  “ If ,” he writes, “ I must ascribe a meaning to the word 
craftsmanship, I shall say a first approximation that it means simply workmanship using 
any kind o f  technique or apparatus, in which the quality o f  the results is not predeter­
mined, but depends on the judgem ent, dexterity and care which the maker exercises as 
he works. The essential idea is that the quality o f  result is continually at risk during the 
process o f making; and so I shall call this kind o f workmanship ‘The workmanship o f  
risk’; an uncooth phrase, but at least descriptive.” He goes on to contrast this with the 
workmanship o f  certainty in which the quality o f  the product is largely predetermined. 
The latter is exhibited by machine printing in contrast to handwriting, for the control o f  
quality is reduced to a few settings once the com positor’s is locked up in the frame.

The contrast has an interesting parallel in Zeigler’s description o f  “ modelling” and 
“ simulation” [48]. The former relates the so-called real system  to the model and vice  
versa; the latter is the simulation o f the model on the computer. The modelling, like 
handwriting, is the workmanship o f  risk; the simulation, like machine printing, that o f  
certainty. If it is argued that the simulation involves the craft o f  computer programming 
then we may reply that printing involves the com positor’s craft which, like the program­
mer’s, has elem ents both o f risk and certainty. But once a program is written and running 
the quality o f outcom e is predetermined, though not prejudged— you may have an in­
accurate set o f numbers as easily as a badly printed newspaper.

Many a paper and book on mathematical modelling [3,4,5,7,11,12,13,48] has its diagram 
o f the modelling process in which the relation o f  the model to the “ real” world and the 
iterative nature o f  the process are portrayed. We have resisted the urge to devise yet 
another, though the temptation to make a culinary triangle [49, see p. 29] out o f  Bunge, 
Feyerabend and Polanyi (or rather, their p ositions)‘is strong. Rather, som e o f  the ideas 
nascent in the craft o f mathematical modelling have been discussed in the hope that they 
may contribute something to the philosophers’ ongoing discussion o f the concept o f  a 
model [27 -32 ,41-44 ,50].

Between the instrumentalist’s position (that models serve only as computational tools) 
and the realist’s (that models actually tell us something about the real world) there is the 
need for a via media that will do justice to the prehensions o f the modeller and to the 
judgem ent, skill and purposefulness that are tacit in a well-constructed model. N or is it 
only a matter o f what goes on in the m odeller’s own head, for modelling is often a 
cooperative and even a transdisciplinary affair. Indeed it may well be that this dialogue 
is the appropriate model for the individual m odeller’s internal prehensions.

In his M a t h e m a t i c i a n ’s  A p o l o g y ,  G. H . Hardy claimed victory over A . E. Houseman 
in the matter o f  priority the latter had ascribed to the critic. To Hardy, as to lesser 
mathematicians o f a more applied cast o f thought, the creative act, however humble, 
takes precedence over philosophical comm entary, however profound. So let it be here. 
As the pages o f this journal unfold we shall see the mathematical models aplenty in all



The mere notion of a model 229

their variety and vigor. T h e y  will make the best contribution to the evolving concept o f  
the mathematical model.

Acknowledgement—The authors are indebted to Professor S. Gudeman, Department of Anthropology, Uni­
versity of Minnesota, for some helpful discussions.
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Ut Simulacrum, Poesis

Rutherford Aris

E tenim  om n es artes, quae ad hum ani- 
tatem  pertinent, habent q u oddam  com ­
m une vinculum  et quasi cogn ation e qua- 
dam  inter se con tin en tu r .1

I
F cicero’s som ew hat orotund statem ent in d efen se  o f  Archias is 

to be taken seriously it leaves us in a quandary. E ither it is an 
assertion so general that it may be taken as axiom atic, or it is a 

proposition  so com prehensive that it w ould take volum es to ju stify  it. 
N evertheless it is a view point that com es naturally within a university, 
where, if  anyw here, there should  live on  a sense o f  the unity o f  know l­
ed ge and o f  the ju ice  and joy  o f  its continual discovery and refresh ­
m ent. T o  develop  any such large picture is clearly beyond the scope  
o f  this essay, but I w ould like to try to ou tline som e “com m on  b on d s” 
which I believe exist betw een the activities o f  the poet and those o f  the  
m athem atical m odeler, for it is such s im u la c ra  that I have in m ind in 
the title. Like W illiam Jackson, I “w ould keep  the principle w ithin its 
proper b oun d s,”2 for it is not w ithout am ple justification  that H ag- 
strum  has referred to H orace’s phrase “ut pictura poesis” as a text too  
often  used as a pretext “for rid ing critical hobbyhorses.”3 A nd  if  this 
be d one in the green  tree o f  the accurate quotation, what shall be 
d on e in the dry branch o f  its deliberate m odification?

Let m e say at the outset that I want to avoid both grand theory and  
detailed  analogy— the on e because I am no p hilosop her and have not 
the nous for it, the other because I believe it w ould trivialize the  
subject and lead inevitably to a ridiculous final position. Rather than  
a pointw ise analogy in which an attem pt is m ade to tie details to­
gether, I would em phasise the f e l lo w s h ip  (in the m ost literal sense o f  
the word) that exists betw een m a k ers , w hether o f  poem s or o f  m odels, 
som ew hat in the spirit o f  Sackville-W est’s

All craftsm en share a know ledge,
T h ey  have held  reality dow n flu ttering  to a bench;
Cut w ood to their ow n purposes; com pelled
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T h e  grow th o f  pattern to the patient shuttle;
D rained acres to a trench .4

A fter a b rief look at som e o f  the com parisons that have been  m ade  
u nd er the p ic tu r a  rubric, I shall turn to m athem atical m od elin g  and  
introduce a population  m odel which I h ope will be fou n d  sufficiently  
elem entary to be easily com prehensib le and sufficiently d eep  to sus­
tain the w eight o f  my argum ent. In particular, I want to show  that the 
notions o f  aptness, intrinsic standard, internal tension, and iterative 
nature find echoes in poetic craft. T h e  nature o f  the com parisons I 
wish to draw is perhaps best expressed  as the kindred “a ffection s” o f  
the scientist and poet to which W ordsworth drew  attention  in the  
1802 version o f  his Preface to L y r ic a l  B a lla d s , H e fou n d  the know ledge  
o f  the o n e  rem ote and o f  the other fam iliar, but claim ed that “we have 
no know ledge, that is, no general principles drawn from  the con tem ­
plation o f  particular facts, but what has been  built up  by p leasure, and  
exists in us by pleasure a lon e.” Poetry by its very fam iliarity “is the  
breath and finer spirit o f  all know ledge: it is the im passioned exp res­
sion which is in the countenance o f  all Science.”5

T h e  tag from  H orace, how ever, has served as m otto for a w hole  
tradition o f  com parative literary theory that goes back m ore than  
tw enty-four centuries, for Plutarch attributes to S im onides o f  C eos 
the ep igram ,6 already a com m onplace, that the writer o f  A d  H e r e n -  
n iu m  quotes as “poem a loquens pictura, pictura taciturn poem a deb et 
esse .”7 T h o u g h  earlier in the A r s  P o e tic a  H orace uses the analogy o f  
painting and poetry in other ways, at this point he is m erely stressing  
that the picture that only does well in the shadows or cannot stand  
repeated  observation is, like the poem  that cannot bear the light o f  
criticism or that pleases but once, inferior. “It is innocent, i f  it is not 
actually o p p o sed ” to any “far-reaching assertions on  the relation o f  
the arts,”8 yet it has been  repeatedly used as a vexillum  in the advance  
o f  diverse critical battalions: by hum anists o f  the Renaissance to em ­
phasize the superiority o f  painting; by L essing to put poetry and  
painting back in their respective dom ains o f  tim e and space; by Bab­
bitt to rehum anize them  (at any rate as he saw it).9

O ne rem arkably long-lived work in the history o f  pictorialist theory  
was the Latin poem  o f  A lphonse D u Fresnoy, D e A r te  G ra p h ic a , written  
in 1637 and published posthum ously in 1 661 ,10 w hose popularity  
H agstrum  regards as an ind ex  o f  the popularity o f  pictorialism  in the  
seventeen th  and eigh teenth  centuries.11 D u Fresnoy “th ou gh t it im ­
proper to publish it w ithout a French translation, which he d eferred  
undertaking from  tim e to tim e, out o f  d iffid en ce o f  his ow n skill in his 
native language, which he had in som e m easure lost by his lon g  res­
idence in Italy.”12 It appeared  in England in 1695 translated into
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prose by John  D ryden with a rather labored preface, A  P a r a l le l  o f  
P o e try  a n d  P a in t in g . 13 It is not D ryden at his b est,14 for he had “bor­
row ed only two m on th s” from  his work o f  translating Virgil to u n ­
dertake it at the urging o f  “m any o f  our m ost skilful painters and  
other artists,” but Pope th ou ght well en ou gh  o f  it to com m en d  it to his 
friend and instructor in painting, Charles Jervas, as “. . . instructive 
leaves, in which conspire / Fresnoy’s close Art, and D ryden ’s native 
fire .”15 Du Fresnoy com bines H orace and S im onides in his first four  
lines and concurs with a com m on Renaissance punctuation  o f  H orace  
which associates the fourth  word e r it with u t p ic tu r a  p o e s is , instead o f  
the succeeding sen ten ce .16 T his reading, which can be traced back to 
a fifth  century gloss, gives a rather m ore forcefu l tone to the analogy  
than perhaps H orace w ould allow. T h u s D u Fresnoy’s

U t pictura poesis erit; sim ilisque poesi
Sit pictura; refert par aemula quaeque sororem ,
A lternantque vices et nom ina; m uta poesis 
D icitur haec, pictura loquens solet ilia vocari.

becom es in D ryden’s prose: “Painting and Poesy are two sisters, w hich  
are so alike in all things, that they m utually lend  each oth er both their  
nam e and office. O ne is called dum b poesy, and the oth er a speak ing  
picture.”17

In his introduction D ryden draws the cords o f  analogy fairly tightly, 
starting with the contention  “that on e m ain en d  o f  Poetry and Paint­
ing is to p lease” and considering the “rules which m ay direct them  to 
their com m on en d ,” for in fidelity to their im itation o f  nature lies 
their road to perfection . T h e  principal part o f  their com m on  art is 
“In ven tion ,” w ithout which the “Painter is but a copier, and a Poet but 
a plagiary.” In neither is this invention unbrid led  but held  in harm ony  
with the “texts o f  antient authors,” rejecting “all trifling orn am ents” 
and avoiding everyth ing “which is not proper or con ven ien t to the  
subject.” T h e  second part is “D esign  or D raw ing,” w here variety o f  
form  and face mirrors the variation o f  character in p oem  or play, 
w here absurdities are avoided and passions are congruous. Principal 
figures are to be central and in the principal light, with groups, like 
episodes, in support, but these “groupes m ust not be on  a side, that is 
with their faces and bodies all turned the sam e way,” ju st as “in a play, 
som e characters m ust be raised to op p ose  others, and to set them  o f f  
the better, according to the old m axim , C o n tr a r ia  ju x ta  se  p o s ita , m a g is  
e lu c e s c u n t .” T h e  th ird  part o f  th e ir  art is “C h rom atic  or C o l­
ou rin g ,” to which “E xpression and all that belongs to w ords” corre­
spond, for does not H orace h im self call them  “O perum  C olores”?



T h u s strong colors are like bold m etaphors and “G ood H eavens! how  
the plain sense is raised by the beauty o f  the w ords,” which “a true  
poet o ften  finds, as I may say, w ithout seeking: but he knows their  
value w hen he finds them , and is infinitely p leased .” T h e  lights and  
shadow s that belong to “C olouring” put D ryden in m ind o f  a line in 
H orace that follows “U t pictura poesis,” nam ely “H oc am at obscu- 
ram, vult hoc sub luce v ideri,”18 which he interprets as justification  for  
the contention  that the m ost beautiful parts o f  picture and poem  m ust 
be the m ost fin ished , w hereas there are m any things in both which, 
not deservin g  o f  this care, “m ust be sh ifted  off, con tent with vulgar 
exp ression s.”19 Finally, both Painter and Poet m ust know w hen to 
“give over, and to lay by the p encil.”

I have sum m arized the drift o f  D ryden ’s analogy and the style o f  his 
argu m ent,20 not to im itate it, but because I want to try a slightly  
d ifferen t approach. Mischa Penn and I have argued  elsew here that 
the notion  o f  craftsm anship in m athem atical m od elin g  provides a via 
m edia betw een  the form alistic and subjective extrem es, at on ce d o in g  
ju stice  to the m od eler’s m ental activity and p rovid in g  a basis for  
discussion .21 I want th erefore to suggest that there is a certain sym ­
pathy o f  intention  and com patibility o f  craft in the work o f  the p oet  
and o f  the m athem atical m odeler. I am not claim ing any explanatory  
value for the com parison, nor that on e is a m odel for the other, but 
that the poet and m od eler should  resonate to each o th er’s activities 
and rejoice in each o th er’s joy , which I take to be the “ch ie f e n d ” o f  
both: “I too will som eth in g  make / A nd jo y  in the m aking.”22 Each sets 
out to construct an entity— the one literary, the oth er m athem atical—  
which will do justice to the m aker’s vision. T h e  scale m ay be sm all, as 
in the elem entary population  m odel I shall describe or H ou sm an ’s 
“Epitaph on  an Arm y o f  M ercenaries,” or large, as w hen a m od el can  
rightly be exten d ed  into a veritable D y n a s ts , usually u n d er such a title 
as T h e  M a th e m a tic a l  T h eo ry  o f  D em o g ra p h y . M athem aticians, like poets, 
may be naive or sentim ental, grave or gay; their d iction  may be com ­
m onplace or exalted; their m etrics as tight as B rid ges’s or as ex p er i­
m ental as H opk in s’s. Both, though, w ould seem  to share the com m on  
objective o f  cloth ing their th ou ght in the dress m eet for it. T h e  m ath­
em atician responds instinctively to Dylan T h om as’s “In my craft or 
sullen  art.” H e knows that sullen protectiveness o f  an idea, crouches  
over it like a d iam ond cutter over the rough stone, seek in g  the cleav­
age p lane o f  truth that will reveal the full beauty o f  it with the least 
tap. By taking an abstract point o f  view, the m athem atical m odeler, 
like the poet, is approaching his subject “by ind irection .”23

I f  this sounds neb u lou s,24 I m ust try to in fuse it with som e sub­
stance by giv ing a concrete exam ple o f  a m athem atical m od el w hich is
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both elem entary and nontrivial. First, how ever, I should  say what a 
m athem atical m odel is. It is a system  o f  m athem atical equations, u su ­
ally excogitated  from  som e other situation, which has a life o f  its ow n  
by exhibiting a behavior sufficiently  rich and appropriately relevant. 
T h e  “other situation” may be a physical one, som e aspect o f  the non- 
m athem atical world (for exam ple, a linguistic p h en om en on ) or som e  
other m athem atical construct. In this way it is usually “m im etic” in the  
sense o f  imitative, but, insofar as it has its ow n in d ep en d en t ex istence, 
it is “m im etic” in H ough's und erstan d in g  o f  the A ristotelian sense o f  
being a construct o f  the im agination .25 I f  the purpose o f  the m od el is 
to im itate a natural situation with great fidelity, perhaps to predict its 
fu tu re  b eh av ior , th en  it will be ju d g e d  by th e  accuracy o f  its 
corresp on dence;26 but a m odel can also serve the purpose o f  d e fin ­
ing, clarifying, and enrich in g  a concept. T h o u g h  the word m o d e l  
m ight be thought a little d em ean in g  to the larger branches o f  pure  
m athem atics, there is a continuum  o f  th ou gh t that connects the m ost 
m im etic m odel with the farthest reaches o f  “thatt su persensuous sub­
lim ation o f  thought, / the euristic vision o f  m athem atical trance.”27 
G. H. Hardy's fierce denunciation  o f  ballistics and aerodynam ics as 
“repulsively ugly and intolerably d u ll” was m otivated by his pacifist 
convictions rather than his love o f  “the ‘real’ m athem atics o f  ‘real' 
m athem aticians,”28 and the d istinction betw een  “p u re” and “ap p lied ” 
m athem atics is no longer tenable. “Poetical R eason” may not be “the  
sam e as m athem atical R eason ,”29 but in the m otive pow er o f  im agi­
nation they have a com m onality that transcends reason.30

T h e  sim plest o f  population  m odels dem ands only the use o f  the  
m ost elem entary algebra since it looks at the population  in a certain  
environm ent at discrete intervals o f  tim e, the successive b reed in g  sea­
sons which we will sim ply call “years.” T h e  m odel may apply to any 
population  in a fixed  region, such as w ildebeest in the Serengeti or 
bacteria in a Petri dish, so lon g  as its grow th equation is appropriate, 
but it also has a life o f  its ow n as an exam ple o f  a so-called d ifferen ce  
equation or recurrence relation. W e d en ote  by pn the population  at 
som e particular point (say the end) o f  year n; so p0 is the population  
at the start o f  the period u nd er consideration , p! is the population  
after on e year, p2 after two years, and so on. (A p with no su ffix  will 
be used for a typical population  w hen the year in question  is not 
im portant.) A law o f  grow th is a form ula that tells us the relationship  
betw een the population  in year n and the prior history o f  the p op u ­
lation, that is, pn is calculable if  pn- 1> P n - 2> • •• Pi> Po are know n. T h e  
sim plest case is w hen this year's popu lation  d ep en d s only on  last 
year’s, or pn is calculable if  we know p n_ v  In this case it w ould be a 
sim ple m atter to calculate the evolu tion  o f  the population  if  we knew
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what it was to begin  with, for from  p0 we could  calculate p u  from  p x 
we w ould get p2, and so o n .31

T h ere  is a w hole fam ily o f  m edieval bestiaries w hose description  o f  
the elep h an t begins uncom prom isingly “Est anim al quod dicitur ele- 
phans in quo non est concupiscencia coitus.”32 T h e  elephant, so these  
bestiaries tell us, is m onogam ous and has only on e life-partner. In ­
deed , so free is the m ale from  all carnal desire that the fem ale has to 
seduce him  with the m andragora root to secure the on e m ating o f  her  
lifetim e, the which accom plished she gives birth in d u e tim e to a single  
offsp rin g . W hat the successive generations o f  m onks w ho cop ied  
these m anuscripts failed to recognize was that the elep h ant p opu la­
tion w ould  be halved at each generation  and that the species w ould  
rapidly be extin gu ish ed — an initial population  o f  a m illion w ould  last 
only 19 generations, for exam ple. T h e  form ulae for this population  
history w ould be p x =  p0/2, p2 =  p¡/2  =  p0/4, p3 =  p 2/2 =  p0/8, and  
in general pn =  p0/2 n. T h e converse situation is a fford ed  by the  
legen d  o f  the reward claim ed as on e grain o f  rice on  the first square  
o f  the chess board, two on the second, four on the third, and so on , 
from  a m onarch w h o little suspected  that the total w ould  be over 18 
billion billion grains in all. T his m ight be the case o f  a population  that 
divided by binary fission in each generation; ind eed  the word f is s io n  
rem inds us that it is the algebra o f  the atom ic bom b. H ere we w ould  
have a population  d oub ling  each tim e, so p 2 =  2 p 0, P2 =  2p! =  22p0, 
p3 =  2p 2 =  23po. or p„ =  2np0.

B oth  these are cases o f  the sam e law, that o f  exp on en tia l grow th or 
decay. T h e  population  at each generation  is a constant m ultiple, a , o f  
the previous population , pn =  a p n _ x and so pn =  anp 0. I f  a  >  1, the  
p opu lation  grow s exp on en tia lly  (indeed , exp losively  i f  a  is m uch  
greater than one) whereas if  a  <  1 it decays (it m ight be said to be 
sn u ffed  ou t if  a  is very m uch less than on e).33 T h e  num ber a  is called  
a param eter o f  the problem , the “grow th param eter,” i f  you will, for  
decay can be regarded as an inverse grow th. It can be th ou gh t o f  as 
the net d ifferen ce  betw een a birth rate and a death  rate. S up p ose that, 
w hen  the population  is p, the num ber o f  births is bp. T h en , in the  
absence o f  death  the grow th rate w ould be a  =  1 +  b since the  
population  p persists and is augm ented  by the births bp. I f  the n u m ­
ber o f  deaths, w hen the population  is p, is dp, then  the grow th (1 +  
b)p w ould  be d im inished  by dp giving a  =  1 +  b — d. T h is is the  
sim plest m odel o f  population  grow th which lies beh ind  the crudest 
M althusian fears. O nly if  the birth rate equals the death  rate (b =  d) 
so that a  is exactly equal to one (a =  1) will the population  rem ain  
constant at w hatever value it had at the beginn ing, Po =  P i  =  P 2 =
. . . pn.
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W e see that there is no natural population  level in the problem , for  
p0 can be any num ber we please. T h e  population  level is stable w hen  
the birth rate ju st balances the death  rate, for, were we to add to the  
population  by artificially in troducing  m em bers o f  the sam e species, 
the population  w ould rem ain at this new  level, it w ould  neither ex ­
p lode nor go into a tail spin. T h u s the steady population , th ou gh  
arbitrary and stable, is sensitive in the sense that the slightest ch an ge  
in the grow th rate param eter a  will result either in exp on en tia l grow th  
or in exponentia l decay. T his kind o f  instability can be called para­
m etric sensitivity since the behavior o f  the population  changes with  
the slightest change in the param eter. I f  the birth rate exceed s the  
death  rate (b >  d, a  =  1 +  (b -  d) >  1) the population  grow s w ithout 
bound, clearly an unstable situation; i f  the death  rate exceed s the  
birth rate (d >  b, a  =  1 -  (d -  b) <  1) the population  declines, a 
stable en ou gh  situation but with the stability o f  death . T h e  extinct 
state (pn =  0, for all n) is always a solution  o f  the equation p n =  
a p n - i ,  but not a very in teresting  one; m athem aticians call it the  
“trivial so lution .” I f  the death  rate exceed s the birth rate ( a <  1) this 
extinct steady state is stable, for if  we artificially in troduced  a few  o f  
the species they w ould d ie out and the population  w ould  return to its 
steady state o f  extinction . T his is a stronger concept o f  stability than  
we had with the case a  =  1. T h ere  the population  did  not return to 
its value before the artificial d isturbance, th ou gh  it did stay within  
bounds. H ere, with the trivial so lution  and a  <  1, the population  
actually returns to its steady state pn =  0. M athem aticians call this 
stronger kind o f  stability “asym ptotic stability.” By contrast, i f  the  
birth rate exceeds the death  rate ( a  >  1) the extinct or trivial steady  
state is unstable. For i f  we artificially in troduce som e o f  the species, 
the population  will grow  w ithout b ound  and never return to the e x ­
tinct steady state.

T o  sum m arize this first stage o f  the population  m odel, we have a 
concept o f  grow th (and its inverse, decline) which we have related to 
birth and death rates and have em bod ied  in a param eter a. I f  a  <  1, 
the only steady state is the extinct state and that is stable, for all 
perturbations die away into extinction . O n the k n ife-ed ge balance a  =
1, w hen birth and death  exactly cancel each other, any population  can  
exist as a steady state, stable in the sense that perturbations do not run  
away, but not asym ptotically stable and sensitive to the least change in 
the param eter a . l i  a >  1, the only steady state is the trivial on e o f  
extinction , but this is unstable and any perturbation leads to u n ­
b oun d ed  growth.

Clearly this m odel (to be know n as the “linear m o d el,” since p n =  
ap n_ i  is a linear equation) has its lim itations. T h o u g h  extinction  is a
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real en o u g h  possibility, unb ou nd ed  grow th is not. It is m athem atically  
conceivable and correctly form ulated  and so a valid m odel in itself, 
but it fails to do justice to the situation, it is not cond ign . W e do not 
value as great poetry the Victorian hym n on  Jonah  w orsh ip ing in the  
w hale’s belly which contains the stanza:

A h m e! T h is is an aw esom e place 
W ithout e ’er coal or candle,
N oth in g  but fish ’s tripes to eat 
A nd fish ’s tripes to handle.

T his is not because it is ill-constructed or entirely unaw are o f  the  
overtones o f  its words. “T rip es” is ill-chosen on  any reckoning, but 
“aw esom e,” for exam ple, is used wittingly, for it had not yet b een  
drained o f  its sense o f  the num inous to the exten t that now  allows it 
to qualify “statistics” or the o ffice o f  the V ice-Presidency o f  the U n ited  
States. Rather it is the inappropriateness o f  its tone. It m ight do (with  
a cou p le o f  capitals) for a Law School skit (as the plaint o f  a stu d en t 
unable to break out o f  his interpretive com m unity) but scarcely m eets  
the d ign ity even  o f  the tin chapel. W hat poetry w ould  be condign? I 
cannot recall another hym n that takes up this particular story, but it 
w ould be hard to com pete with the version o f  1611, “T h e  waters 
com passed m e about, even  to the soul: the depths closed  m e round  
about, the w eeds w ere w rapped about my h ead .”34 

T his exam ple is perhaps a little extrem e, and a m uch subtler o n e  is 
given by H ousm an in his preface to M anilius V. H e first en cou n tered  
W alter de la M are’s “Fare w ell” in a new spaper review, printed  thus:

O h, w hen this my dust surrenders  
H and, foot, lip, to dust again,
May these loved  and loving faces 

Please other m en!
May the rustling harvest h edgerow  
Still the T raveller’s Joy entw ine,
A nd as happy children  gather  

Posies once m ine.

“I knew in a m om en t,” writes H ousm an, “that Mr de la Mare had not  
written r u s t l in g , and in another m om ent I had fou n d  the true word. 
But if  the book o f  poem s had perished and the verse survived only in  
the review, w ho w ould have believed m e rather than the com positor?  
T h e  bulk o f  the reading public would have been  perfectly con tent  
with r u s tlin g , nay they w ould sincerely have preferred  it to the ep ith et 
which the poet chose. I f  I had been so ill-advised as to publish my
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em endation , I should  have been told that r u s t l in g  was exquisitely apt 
and poetical . . . and I should  have b een  recom m en ded  to quit my 
dusty (or musty) books and m ake a belated acquaintance with the  
sights and sounds o f  the English countryside. A nd the on ly possible  
answer would have been  u g h ! ”35 H ere are poetical sensibilities o f  a 
high order at work.36

T o  develop  the m odel we need  to recognize that the grow th rate 
param eter a  will be affected  by the environm ent. M ost environm ents  
will sustain only a finite population  and w hen it is reached the p o p ­
ulation will, so to speak, choke to death . T his can be m ost sim ply  
recognized by putting a  =  c(P -  p), w here c is a new  param eter, P is 
the saturation population  and p the current population . T h e  quantity  
(P -  p) is the d ifferen ce betw een these two populations or the d is­
tance from  saturation. T his goes to zero as the population  approaches  
saturation and so takes the grow th rate param eter to zero. For exam ­
ple, if  P =  1000 and c =  1/500, the grow th rate param eter a  w ould  
be close to 2 =  1000/500 w hen p is small, say 1 0 -4 0 , but a  is less than  
1/10 if  p is above 950. T h e  equation that governs the evolu tion  o f  the  
population  is pn =  c(P -  pn-i)P n - i>  an equation know n as the “lo ­
gistical equation .” It affords a very m uch richer range o f  behavior  
than the linear m odel.

A very im portant idea in the d evelop m en t o f  a m athem atical m od el 
is that o f  giving the m agnitude o f  the variables a m eanin g intrinsic to 
the problem . I f  I say p =  1000, you do not know w hether that is large  
or small: it may be large for bears on  the polar ice and sm all for  
bacteria in the laboratory. I f  how ever I say p =  0.95P , you know  
im m ediately that it is a large population , so large in fact that the  
environm ent is 95 percent saturated. By the internal standards o f  the  
problem  this is clearly a large population , w hereas p =  0 .05P  w ould  
be a small population. W e th erefore m ake the population  d im en sion ­
less by putting p =  Px or x =  p/P. T h u s p n =  c(P -  pn- i ) p n- i  
becom es Pxn = c(P -  Pxn_ i)P xn_ x and, w hen we divide through  by 
P and write g  =  cP, we have

x n =  Sx n - i ( l  “  Xn - l ) ‘

N ot only does x have a real m eaning  and an appreciable m agnitude, 
but this m anipulation has revealed  that there is a characteristic grow th  
param eter g. Since a  =  c(P -  p) was the old  grow th param eter, we see  
that the new characteristic grow th param eter g  =  cP is the value o f  a  

w hen p is negligib le com pared with P, that is, x is virtually zero. 
A nother way o f  looking at the characteristic grow th param eter g  is to 
say that it is the greatest value that the grow th param eter a  can have, 
for c(P -  p) is greatest w hen p is least, that is, w hen  p =  0.
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I f  d im ensionless num bers give m agnitudes a m ean in g w ithin the  
con text o f  a m odel, d oes not the poet do the sam e sort o f  th ing  w h en  
he expresses conditions or em otions within the con text o f  the poem ?  
T h u s Keats in “T h e  Eve o f  St. A gn es” w ould be far less effective had  
he left the reader to ju d g e  the conditions from  the plain statem ent o f  
the first line:

St. Agnes’ Eve— Ah, bitter chill it was!
The owl, for all his feathers, was a-cold;
The hare limped trembling through the frozen grass,
And silent was the flock in wooly fold.

T h e  second line, reading as it does like a shiver, m akes the reader fee l 
the cold with an intensity that alm ost needs the m ore expectab le stan­
dards o f  the n ext two to m oderate its im pact. Shakespeare n eed s not 
even  the introductory plain statem ent in “W hen icicles h an g  by the  
wall,”37 but builds up the feeling  o f  w inter line by line o f  varied action  
and passion. His W inter “m aintained by the ow l” does not silence its 
“m erry n o te” and K eats’s w inter n ight with its silent owl is the co ld er  
for the recollection  o f  this. A n even  m ore obvious exam ple m ight be 
T h om as’s op en in g  line “A g r ie f ago .”38 O ne has on ly to substitute  
“T en  h ours” or “Five days” for “A g r ie f” to realize how  m eaningless  
the units o f  tim e are in them selves. Som etim es the standard is set, not 
with respect to som e d iffer in g  referent, but from  within its ow n term s, 
as in W ilde’s “A nd  that each day is like a year, / A year w hose days are  
lo n g .”39

T h e  logistical m odel o f  population  grow th which is em bod ied  in the  
equation x n =  g ( l  — x ^ ^ x ^ !  is fecund  with the m ost in teresting  
behavior. It has the trivial steady state corresponding to extinction  x n 
=  0. By a steady state we m ean on e that does not change from  year 
to year, that is, a solution  o f  the equation for which x n =  x n_ 2 =  x. 
T h u s x m ust satisfy x =  g ( l  -  x)x and o f  this equation x =  0 is always 
a solution . M oreover it is not hard to see that it is asym ptotically stable 
for g <  1 and unstable for g >  1. T o  see this we have only to rem ark  
that the grow th param eter a  =  g ( l  -  x), w here (1 -  x) is certainly  
less than 1 so that a  <  1 if  g  <  1 .a  <  1, was the condition  for stability. 
Likewise if  g  >  1 then a  =  g ( l  -  x) >  1 i f  x is small en ou gh  and this 
is the condition  for instability. T h e  trivial steady state th erefore has 
the sam e properties as in the linear m odel, but, in contrast to the  
linear m odel, the logistical has nontrivial steady states w hen  g  >  1. T o  
see this we notice that i f  x is not zero we can divide both sides o f  the  
equation for the steady state, x  =  g ( l  -  x)x, by x and get 1 =  g ( l  —
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x) or x =  1 -  (1/g). For g >  1 this nontrivial steady state increases 
with the increase o f  the characteristic grow th param eter g. For exam ­
ple, if  g  = 1.5, x = Vs; i f  g = 2, x  = Vs; i f  g  = 3, x = Vs\ if  g  = 4, 
x =  3A . 40

It is less elem entary to d eterm ine the stability o f  the nontrivial 
steady state and I will not attem pt to describe the theory, d elightfu l 
though  it be, but be content with a bald statem ent o f  results. It turns 
out that the nontrivial steady state is asym ptotically stable only for 1 <  
g <  3 and is unstable for 3 <  g <  4. T h is m eans that stable steady  
populations are always less than two thirds o f  the saturation p opu la­
tion, x <  %. Such steady populations, obtained for 1 <  g  <  3, are 
asym ptotically stable and if  the population  is artificially perturbed it 
will, after a few generations, go  back to w here it was before. M oreover  
it is not param etrically sensitive to small changes in the characteristic 
grow th param eter g. It will be recalled that the nontrivial steady state 
o f  the linear m odel was sensitive to the grow th param eter a, the  
slightest increase or decrease o f  which led  either to exp losion  or to 
extinction. By contrast, the nontrivial steady state o f  the logistic m odel 
will change slightly if  g is changed  slightly, but will not behave cata­
strophically. T hu s if  g  =  2 so that the nontrivial steady state w ere x  =  
0.5, a small change o f  g, say to 2.1, w ould change the steady state 
population  to x =  0 .524 , but the situation w ould still be quite stable. 
O nly w hen g >  3 w ould som eth in g  radically d ifferen t h app en  if  the 
nontrivial steady state population  w ere perturbed. For exam ple, i f  g  
=  3.1, the nontrivial steady state w ould  be x =  0 .677 , but the slightest 
perturbation, say to 0 .68, w ould lead, not to unlim ited  grow th or  
extinction , but to a two-year cycle in the population  in which in odd  
years it would be about 0 .765  and in even  years about 0 .558 . M ore­
over, this two-year cycle w ould be stable in the sense that any artificial 
perturbation would die out and the population  w ould soon  get back 
to alternating betw een 0 .765  and 0 .558 . W hat’s m ore, it w ould not be 
unduly sensitive to small changes in  g. I f  g  w ere 3 .15  the num bers 
0.765 and 0 .558 w ould change slightly to 0 .783  and 0 .533 , but it 
would still be a stable two-year cycle.

As i f  this d ev elop m en t o f  a tw o-year cycle w ere not dram atic  
en ou gh , the two-year cycle loses its stability w hen g >  3 .45 and the  
only stable behavior is a four-year cycle. As the characteristic grow th  
param eter g is increased still further this breaks dow n and a stable 
eight-year cycle obtains. T his goes on  with 16, 32, 64 . . . -year cycles 
being generated  m ore and m ore rapidly, until a characteristic grow th  
rate is reached at which no cyclic behavior o f  w hatever period  is 
stable. From this point onward,
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Chaos  U m pire sits,
A nd by decision  m ore em broiles the fray 
By w hich he R eigns:41

In d eed  this behavior is know n to m athem aticians as “chaos.” It is 
determ inistic, for it contains no random  elem en t and, as in M ilton, is 
to be d istinguished  from  the “h igh Arbiter C h a n c e ” I f  chance ruled , 
it w ould  not be possible to calculate the population  x n from  x n_ l9 but 
it is possible— and by a very sim ple form ula too. So, th ou gh  perfectly  
predictable, the population  fluctuates quite irregularly and never set­
tles dow n to a steady or cyclic behavior. T h e  population  histories o f  
two populations that start extrem ely close together will, after a su ffi­
cient length  o f  tim e, bear absolutely no relationship to on e another. 
T h ere  are som e rather subtle traces o f  order in this chaos, but they  
are not easy to describe and I will not attem pt to take the description  
o f  the m odel further.42 T h ere  is also an exquisite universality about 
the m odel which allows us to replace the grow th law g( 1 — x)x with  
any function  having the sam e general shape and be assured o f  getting  
qualitatively the sam e behavior.43

I have described the population  m odel in som e detail as b eing  
perhaps less fam iliar than the num erous poem s that the reader will be 
able to call to m ind, and hope that the m inim al algebraic detail that is 
necessary will not have been  too offputting . In draw ing attention  to 
certain features, such as the im portance o f  d im ensionless variables, 
that seem  to m e to have echoes in poetic principle and craft, I want to 
stress that they will o ften  not bear the full w eight o f  analogy, still less 
o f  isom orphism . Isom orphism  and h om eom orphism  are precise co n ­
cepts applicable to the tightly d efin ed  system s o f  m athem atics. It 
w ould be a mistake to apply them  to K eats’s and B rid ges’s n igh tin ­
gales or W ordsw orth’s and S h elley ’s skylarks. O f  course, ech o es  
ab o u n d  in th e very w ords o f  all su bjects— “te x t”44 and “fib er  
b u n d le ,”45 for instance, are both redolent o f  the w eaver’s shop— and  
such echoes are a constant source o f  delight to us all, but the v in c u la  
that I am seeking  go beneath the verbal surface to the m od e o f  
th ou ght that is b eing  em ployed . T h ere  are other links which I am sure  
som eon e less painfully lim ited to his own im m ediate exp erien ce in 
literature and m athem atics than I could tease out.

T h ere  is a certain dynam ic tension w hen two ideas at som eth in g  o f  
an angle to on e another are let loose in a poem  such as H opk in s’s 
“T hat N ature is a H eraclitian Fire and o f  the com fort o f  the R esur­
rection .” T h ey  d o  not have the com plete orthogonality o f  oxym oron, 
but are sufficiently disparate to allow still stranger elem ents to be
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ordered  into a certain harm ony and co inhere in a m ovem en t toward  
the climax:

In  a flash, at a trumpet crash,
I am all at once what Christ is, since he was what I am, and 
T h is Jack, joke, poor potsherd, patch, matchwood, immortal 

diamond,
Is immortal diamond.

Similar tensions can be fou n d  in a m odel o f  a honeycom b structure 
that was used to d efin e  an equivalent uniform  m edium  o f  the sam e  
therm al properties. T h e  hexagons that represent the cells o f  the h o n ­
eycom b structure require three quantities to d efin e  them  (their o p ­
posite sides being equal), but they fill a space o f  only two d im ensions. 
T his im plies that all form ulae m ust have both the two d im ensional 
character o f  the plane and the th reefo ld  sym m etry o f  the h exagon  
and leads to a final result that em bodies this tension .46

T h en  there is the com m on struggle to m ake the w ords and concepts  
o f  a poem  or m odel crystalline in their character and suitability. T h e  
m athem atician will instantly em pathize with Eliot. H e too is

T ryin g  to learn to use words, and every attempt 
Is a wholly new start, and a different kind o f failure 

..  . And so each venture 
Is a new beginning, a raid on the inarticulate 
With shabby equipment. . . .47

Like Eliot, he finds his m eans o f  expression

strain,
Crack and sometimes break, under the burden,
Under the tension, slip, slide, perish,
Decay with imprecision, will not stay in place,
W ill not stay still.48

Finally (for was not the last principle o f  D ryden ’s P a r a l le l  the know l­
ed g e o f  w hen to “give over”?), the iterative character o f  m athem atical 
m odeling  corresponds very m uch to the th ou ght exp ressed  by Eliot in 
“Little G idd ing”:

What we call the beginning is often the end 
And to make an end is to make a beginning 
The end is where we start from .49



Or again: “Every phrase and every sentence is an end  and a b eg in ­
ning, / Every poem  an ep itap h.”50 Similarly every stage o f  a m athe­
matical m odel can o ften  be the starting point for further d ev e lo p ­
m ents. T h e  m odel itself may be part o f  a cyclic process in which the  
m od el leads to exp erience w hose analysis leads to further d ev e lo p ­
m ent o f  the m odel tend ing  to greater fidelity o f  representation  or 
greater clarity o f  con cept.51

N oth in g  could  better express the aspirations o f  the natural p hilos­
op h er in general or the peculiar efforts o f  the m athem atical m od eler  
in particular than E liot’s lines in the con clu d in g  section  o f  F o u r  
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We shall not cease from exploration 
And the end of all our exploring 
W ill be to arrive where we started 
And know the place for the first time.52
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three weeks: “How the Devil could he be so long about it? for that Poem was infam ously  
bad.” See John Dryden, A Parallel of Poetry and Painting, in The Literary works of Sir Joshua 
Reynolds, Vol. I l l  (London, 1819), p. 281.

15 William Mason, whose translation had the benefit o f  notes by Sir Joshua Rey­
nolds, also printed Pope’s Letter to Mr Jervas (1716) “in order that a Poem  which does so 
much honour to the original author may still accompany his work, although the trans­
lator [i.e., Mason] is but too conscious how much so masterly a piece o f  versification on  
the subject o f  Painting, will, by being brought thus near it, prejudice his own lines.” 
Mason also wrote an Epistle to Sir Joshua Reynolds in the hope o f  “obviat[ing] . . . every 
suspicion o f  arrogance in attem pting this work after Mr. D ryden” which has the lines,

His pen in haste the hireling task to close 
T ransform ’d the studied strain to careless prose,
Which, fondly lending faith to French pretence,
Mistook its m eaning, or obscur’d its sense.

Yet still he pleas’d, for Dryden still must please,
W hether with artless elegance and ease 
He glides in prose, or from its tinkling chime,
By varied pauses, purifies his rhyme,
And mounts on Maro’s plumes, and soars his heights sublime.

All these are conveniently to be found in The Literary Works of Sir Joshua Reynolds, Vol. 
I l l ,  pp. 284, 11, 3 -4 .

16 See Hagstrum, p. 60, n. 14, where the various editions are listed. T h e 1711 
edition o f  Bentley seems to have settled the question for subsequent editors. On ancient 
variants and the “Acronian” scholia see Brink, pp. 3 5 -43 .

17 For a variety o f  translations o f  H orace’s “ut pictura poesis,” see Cohen, p. 190 n.
18 Horace, 363. In Brink the line is given as “haec amat obscurum, uolet haec sub 

luce videri.”
19 Southey uses the pictorial analogy in his criticism o f  Lyrical Ballads when he  

likens “T h e Idiot Boy” to “a Flemish picture in the worthlessness o f  its design and the 
excellence o f  its execution.” See Robert Southey, rev. o f  Lyrical Ballads, The Critical 
Review, 24 (1798); as quoted in app. C o f  Lyrical Ballads: Wordsworth and Coleridge, ed. 
R. L. Brett and A. R. Jones (London, 1963), p. 319.

20 It should be em phasized that this in no way does justice to the scope o f  critical 
com m ent that com es under the rubric o f  “Ut pictura poesis.” For this one needs to turn  
to C ohen’s The Art of Discrimination, esp. ch. 4, pp. 188-215.

21 Mischa Penn and Rutherford Aris, “T he Mere Notion o f  a M odel,” Mathematical 
Modelling, 1 (1980), 1-12.

22 Robert Bridges, Shorter Poems (Oxford, 1953), Bk. IV. It is interesting that the 
now obsolete (except perhaps in Scotland) usage o f  “maker” for “poet” translates rather 
than transliterates the Greek.

23 Michael Riffaterre, Semiotics of Poetry (Bloom ington, Ind., 1978): “Poetry ex­
presses concepts and things by indirection. T o  put it simply a poem  says one thing and 
means another” (p. 30).
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24 I cannot refrain from remarking that, as a tolerably educated person, with no 
colorable claim to being really well read by the standards that should prevail in a 
university but who has read a good deal o f  literary theory and criticism during the last 
year or two, I have been struck, not by its vagueness, but by the passion with which 
much o f  the modern sort espouses a particular viewpoint. No doubt our “class” back­
ground and ideology colors our reading and writing, but to make it the sole, or even the 
dominant, determ inant seems unnecessarily perverse. Feminist critics have given, and 
are giving, us a valuable corrective to past blindness, but feminism , like masculism, can 
at best be a half-way house to humanism. Freud and Lévi-Strauss are pivotal figures in 
m odern thought, but must everything be suppression or opposition? In som e cases I 
would have thought they were having me on were it not that they showed no glim m er 
o f  that sense o f  hum or which is the grace o f  the scholar, much as a holy hilarity is o f  the 
saint. T he only parallel I know o f  in mathematics is the com petition between certain 
numerical analysts, som e o f  whom espouse finite differences whilst others are wedded  
to finite elements.

25 See Graham Goulden H ough, An Essay on Criticism (New York, 1966): “T he  
point is not, or ought not to be, that literature ‘imitates’ objects in the real world: so does 
scientific and historical writing. T he point is that literature creates fictitious objects” (p. 
42).

26 Maynard Smith, in Models in Ecology (Cambridge, 1974), has suggested that the 
word “sim ulation” be used in this case to leave “m odel” for the broader case o f  clari­
fying concepts.

27 Robert Bridges, The Testament of Beauty (O xford, 1929), I, 367. T he spelling is 
Bridges’s.

28 Godfrey Harold Hardy, A Mathematician's Apology (Cambridge, 1940), p. 80.
29 Leonard Welsted, Epistles, Odes, fcfc. (London, 1728), quoted by Cohen, p. 76.
30 I think it is this sense o f  imaginative oneness that Sir Frederick Pollock had in 

mind in his biographical m em oir o f  his friend, the mathematician W. K. Clifford, 
where he wrote, “It is an open secret to those who know it, but a mystery and a 
stumbling-block to the many, that Science and Poetry are own sisters” (quoted in John  
Pollock, Time's Chariot [London, 1950]). T hat the less imaginative aspect o f  science, its 
accuracy o f  observation and definiteness o f  knowledge, can inform  poetic expression  
and criticism has been well illustrated by Roy Broadbent Fuller in his lecture on the 
relationship o f  science and poetry, “T he Osmotic Sap,” in Professors and Gods (London, 
1973), pp. 28^46. H e deals with larger questions than have been essayed here, in 
particular with the role o f  science as the inform ing influence o f  its time. He contrasts 
the influence o f  the scientific tem per in the thirties on the direction o f  literature with 
the non- or antiscientific attitude in the fifties and sixties. H e refers also to I. A. 
Richards’s Science and Poetry, 2nd rev. ed. (London, 1935).

31 pn is said to be a function o f  pn_ i, and this is written pn =  f(pn_ i).
32 For exam ple, MS Bodley 764, f .l2 r . Cf. British Library, Harley 4751.
33 T he constant, a, must, o f  course, be a positive num ber since we could not have 

a negative population.
34 Jon. 2:5.
35 A. E. Housm an, Preface, M. Manilii Astronomicon Liber Quintus, ed. A. E. Hous- 

man (London, 1930), pp. xxxv-xxxvi. De la Mare’s word was “rusting.” Another ex­
ample is H ousm an’s criticism o f  Swinburne’s im m oderate praise o f  Shelley’s “exquisite 
inequality” in his Inaugural o f  1911 (published as The Confines of Criticism, ed. John  
Carter [Cambridge, 1969]).

36 F. W. Bateson, “T he Poetry o f  Em phasis,” in A. E. Housman: A Collection of Crit­
ical Essays, ed. Christopher Ricks (Englewood Cliffs, N.J., 1968), pp. 130-45, points out 
that Housm an missed the other misprint, namely “these” for “those” in line 3. “T h ose”
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m ight be surm ised as it balances “this my dust” in line 1, but this is a logical, rather than 
a pictorial, sensibility and tells us (as Bateson would have it) som ething about H ous- 
m an’s “em phasis.”

37 William Shakespeare, Love's Labour's Lost, 5.2.920.
38 Dylan Thom as, Collected Poems (New York, 1957), p. 54.
39 Oscar W ilde, The Ballad of Reading Gaol (1898), in The Portable Oscar Wilde, ed. 

Richard A ldington and Stanley W eintraub (Harm ondsworth, 1981), p. 685.
40 We do not consider g >  4 since then x could be greater than 1 or even negative.
41 John Milton, Paradise Lost, in John Milton: Complete Poems and Major Prose, ed. 

Merritt Y. H ughes (Indianapolis, 1957), Bk. II, 1. 907.
42 A recent conference on these matters, held in Los Alamos, N. Mex., May 1984, 

had the engaging title “Kosmos en Chao.”
43 For a fuller, but still elementary, account o f  this m odel see my “Re, k and pi; a 

conversation on som e aspects o f  mathematical m odelling,” Applied Mathematical Model­
ling, 1 (1977), 386.

44 “Verba eadem  qua com positione vel in textu iungantur vel claudantur.” See, 
e.g., Quintillian Inst. 9.4.13.

45 A term in the branch o f  mathematics known as topology.
46 Rutherford Aris, “De exem plo simulacrorum continuorum  discretalum que,” 

Archive for Rational Mechanics and Analysis, 70 (1979), 203. A translation is to be found  
in A ppendix C o f  my Chemical Engineering in a University Context (M adison, 1982).

47 T. S. Eliot, “East Coker,” in Four Quartets (New York, 1943), 11. 174—75, 178-80 . 
T he mathematician will em pathize too with the way in which small errors can creep in, 
as when a little later on in this section o f  “East Coker,” the false concord o f  “H ere and  
there does not matter” (1. 203) was overlooked in proof and stood until 1974. See  
H elen Louise Gardner, The Composition of Four Quartets (London, 1978), p. 113.

48 T. S. Eliot, “Burnt N orton,” in Four Quartets, 11. 150-54.
49 T. S. Eliot, “Little G idding,” in Four Quartets, 1 .214. T he relationship o f  end and  

beginning is a continually recurring them e in Four Quartets. In “East Coker” (1 1 .1  and  
14) there is an almost direct paraphrase o f  Guillaume de Machaut’s cryptic rondeau  
“Ma fin est m on com m encem ent / et mon com m encem ent ma fin ,” but whether this is 
a conscious allusion is, as so often with Eliot, hard to tell.

50 “Little G idding,” 1. 224.
51 See n. 25.
52 “Little G idding,” 1. 239.
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“What we need” said the Professor, carrying his tea­
cup to the table next to his accustomed chair, “is more 
good research on crushing and grinding.”

It was 11 o’clock of a Cambridge morning in that 
little room of the Shell Chemical Engineering Labor­
atory which is dedicated to the academic staff’s morn­
ing tea-break—an institution that Danckwerts once 
commended in print to his transatlantic colleagues 
(Danckwerts, 1981, p. 217). As I recall it, few had as 
yet come in for tea and perhaps that was why, in spite 
of always feeling a little like a New Boy in the presence 
of a School Prefect, I thought it incumbent on me to 
make some reply. So I said something to the effect 
that I supposed it would be a stochastic process and 
that one ought to be able to get a Fokker-Planck 
equation for the evolution of the size distribution. 
When I subsided, the word came down from 
Olympus. “What I rather had in mind was some good 
experimental research on crushing and grinding.” 
There was more discussion in which others took part 
and I do not recall if there was any consensus as to the 
need for more good research on crushing and 
grinding, but the exchange was typical of tea-room 
conversations.

Shortly after J. D. Murray’s analysis of fluidization 
as two interpenetrating continua had been published 
in JFM, I could not resist saying that, at last, it would 
be possible to understand fluidization. This was a bit 
of cheek on my part, as Davidson and Harrison’s 
book was out and their fruitful collaboration was in 
full flood. (When Peter Rowe visited the department 
at about this time and Davidson and Harrison 
brought him into tea, I remember Robin Turner 
saying to me that a terrorist bomb at that moment 
could have wiped out half the knowledge of fluid­
ization in the world.)

I recall these interactions with the great man him­
self because I think it meet, on such an occasion as 
this, not to overlook the personal side of the man 
whose memory we honour in this Danckwerts Lec­
ture. He was the Compleat Chemical Engineer, rooted 
in Oxford chemistry, a product of MIT’s Practice 
School, doyen of the Cambridge School, Professor in 
the days when there were few such chairs, President of 
the Institution. The selection of his papers, which we

are fortunate enough to have with his comments, 
shows the scope of his work: diffusion problems, gas 
absorption, the reaction of carbon dioxide in aqueous 
solutions, residence time distributions and mixing.

He had the engineer’s mistrust of too much math­
ematics. “I have felt for some years,” he said in a 
review of the historical survey “A Century of Chem­
ical Engineering” (Danckwerts, 1982), “that chemical 
engineering is weighted-down with more mathematics 
than it can support.” But—and in this feature alone 
was he like Betjeman’s Wykehamist—he was “broad 
in mind” and acknowledged that the history of the use 
of mathematics in chemical engineering was of great 
interest.

But it was an intelligent mistrust, not an ignorant 
aversion, and he knew when mathematics was needed 
and how to use it, so that there was challenge, rather 
than contempt, in his animadversions upon math­
ematical modelling. It would be unfair to call it an 
affectation, for affectations are superficial and 
Danckwerts was not a superficial man. It was of a 
piece with the remarks (Insights, pp. ix and x) that he (and 
Winston Churchill) made on the amount of time they 
had to waste on Latin prose composition during their 
schooldays—he (and Churchill) knew well enough 
that nothing is better either for English style or for 
general discipline of the mind, but the small boy in 
him could not pass that particular house without 
rattling a stick across its iron fence. It was a minor 
foible, a mannerism perhaps, the small change of 
manners. For by manners had he been made, as one 
expects in a Wykehamist and I need hardly say that I 
intend no derogation of England’s premier school by 
having adapted its motto in my title.

“Manners” is a word of rich overtones, embracing 
much more than the decencies of social intercourse. It 
is the whole way in which a thing is done, how the 
hand {manus) is put to the plough, and hence the mode 
of one’s habitual behaviour and conduct, especially in 
its moral aspect; it can be genetically individual [“but 
to my mind,—though I am native here,/And to the 
manner born,—it is a custom/More honour’d in the 
breach than the observance” (Hamlet I, iv, 14)] or 
characteristically public (“Within this hour it will be 
dinner time:/Till that, I’ll view the manners of the



town,/Peruse the traders, gaze upon the buildings” 
{Comedy of Errors I, ii, 12)]. It has all manner of 
meanings and shades of meaning and a contemporary 
critic would not need to invent any spurious connota­
tions in order to deconstruct them. Doubtless there 
are many layers to the famous motto “Manners 
makyth man” [cf. Firth (1936)], but this is not the 
place to peel them back. What I hope is conveyed by 
my title is that there are certain characteristic styles in 
the use of mathematical models in chemical engineer­
ing and that their several virtues and limitations will 
bear looking into.

WHAT IS A MATHEMATICAL MODEL?

First it should be said that the term “mathematical 
modelling” took a tremendous leap in popularity 
some 15 years ago. There are now journals of math­
ematical modelling in various forms and an Interna­
tional Society to canonize an activity that has been 
going on for many years. “Par ma foi!”, we are apt to 
exclaim with M. Jourdain, “il y a plus de quarante ans 
que je dit de la prose (or fait des modèles mathémat­
iques) sans que j’en susse rien.” For mathematical 
models come in all sizes and some of the best of them, 
for example, the model underlying Danckwerts’ 
theory of residence time distributions, involve only 
elementary mathematical considerations.

It is an essential quality in a model that it should be 
capable of having a life of its own. It may not, in 
practice, need to be sundered from its physical matrix.
It may be a poor thing, an ill-favoured thing when it is 
by itself. But it must be capable of having this inde­
pendence. Thus Liljenroth, in his seminal paper on 
multiplicity of steady states, can hardly be said to 
have a mathematical model, unless a graphical repres­
entation of the case is a model. He works out the slope 
of the heat removal line from the ratio of numerical 
values of a heat of reaction and a heat capacity. 
Certainly he is dealing with a typical case, and his 
conclusions are meant to have application beyond 
this particularity, but the mechanism for doing this is 
not there. To say this is not to detract from 
Liljenroth’s paper, which is a landmark of the chem­
ical engineering literature; it is just to notice a matter 
of style and the point at which a mathematical model 
is born. For in the next papers on the question of 
multiple steady states, those of Wagner (1945), 
Denbigh (1944, 1947), Denbigh et al (1948) and van 
Heerden (1953), we do find more general structures. 
How powerful the life that is instinct in a true math­
ematical model can be seen from the Fourier’s theory of 
heat conduction, where the mathematical equations 
are fecund of all manner of purely mathematical 
developments.

At the other end of the scale a model can cease to be 
a model by becoming too large and too detailed a 
simulation of a situation whose natural line of devel­
opment is to the particular rather than to the general.
It ceases to have a life of its own by becoming 
dependent for its vitality on its physical realization. 
Maynard Smith (1974) was, I believe, the first to draw
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the distinction in ecological models between those 
that aimed at predicting the population level with 
greater and greater accuracy (simulations) and those 
that seek to disentangle the factors that affect popula­
tion growth in a more general way (models). The 
distinction is not a hard and fast one, but it is useful to 
discern these alternatives.

Though the model may have a life of its own, it does 
not exist in isolation, nor provide all the answers of 
itself. It is better thought of as part of a process of 
understanding in which a preliminary concept leads 
to a first model on the basis of which experiments can 
be designed. The experience that this generates must 
be evaluated and interpreted and leads to revised 
ideas on the basis of which an improved model can be 
constructed. This is a cyclic process which may lead to 
greater conceptual clarity of the situation in general 
or deeper understanding of a particular case.

The level of mathematical sophistication is, of 
course, an index of style or manner and one could 
make a spectrum of chemical engineering modellers 
from Amundson to Zygourakis, slotting each into 
their mathematical wavelength. I will not do so, not 
merely because it would be the quickest way to lose 
friends and not influence the subject, but because it is 
a superficial classification. For one thing, it is a func­
tion of time. Amundson was being sophisticated as a 
chemical engineer when he used matrices in a 1946 
paper on distillation; today he would not need to 
preface his paper with an elementary introduction to 
matrix algebra. It is not sophistication but simpli­
fication that is the hallmark of mathematics, “thatt 
supersensuous sublimation of thought, the euristic 
vision of mathematical trance”, as Bridges calls it. It is 
the penetration of mathematical thought that is to be 
coveted; its ability to get through to the essential form. 
It is the realization that stoicheiometry has the same 
structure as linear algebra, or that a chemical reactor 
is a reification of a dynamical system, or that the 
extremes of complete mixing and plug flow can be 
united, and indeed many more cases subsumed under 
the same formulation, by the concept of the residence 
time distribution.

In the context of mathematical modelling Bridges’ 
insight is certainly true and germane. He is concerned 
in the section of Book I of The Testament of Beauty 
with the tendency to divorce human thought from 
natural phenomena, to set man outwith the house of 
nature into which he peers “hooding his eyes” to see 
what is within rather than his own reflection. He goes 
on in lines 358-370:

See how they hav made o’ the window an imper­
meable wall
partitioning man off from the rest of nature 
with stronger impertinence than Science can allow. 
Man’s mind, Nature’s encrusted gem, her own 
mirror
cannot be isolated from her other works 
by self-abstraction of its unique fecundity 

in the new realm of his transcendent life;—



Not emotion or imagination ethic or art
logic of science nor dialectic discourse,
not even thatt supersensuous sublimation of
thought,
the euristic vision of mathematical trance 
hath any other foundation than the common base 

of Nature’s building:—

Whether Bridges is correct in making the connection 
as strong and pervasive as he does is no doubt a 
matter for debate among philosophers, but his case is 
good for mathematical modelling of chemical engin­
eering systems.

Mathematical modelling, then, is the art and craft 
of devising a mathematical structure that will most 
elegantly penetrate to the essence of a given situation. 
“Situation” is a deliberately vague word, used to give 
this definition a degree of generality, but in the present 
context we might better say “physico-chemical sys­
tems”. But let me leave these somewhat diffuse 
ruminations for a concrete example.

PVD ON THE RTD

As Danckwerts himself recognized, his paper on 
“Continuous flow systems”, subtitled “Distribution of 
residence times”, was possibly his “most impotant 
contribution to chemical engineering”. He valued it as 
the product of “academic indolence”, for the central 
idea of it came to him during the Cambridge tea- 
break. He starts with the representation of an easy 
physical experiment, that of switching the perfusing 
fluid at time zero to a marked one and measuring the 
fraction of marked fluid, F(f), emerging at time t. He 
then defined the internal and exit age (the latter 
subsequently called residence time) distributions, I(t) 
and E(t)y and established their relationship,

E{t) = F'{t) and I(t) = (v /V ){\-F (t)}  (1)

where v is the flow rate, and V the volume. He went on 
to discuss “hold-back” and “segregation”, measures of 
departure from plug flow and complete mixing, re­
spectively. These two concepts have not led to any 
great developments, for the application of residence 
time distribution theory to reactors led Zwietering 
(1959) to define “segregation” in a different sense when 
he introduced the ideas of “complete segregation” and 
“maximum mixedness”. But Danckwerts’ primary 
concepts have stood firm and provided a basis for 
many later developments. The only addition to the 
three functions has been Shinnar’s intensity function

A (0 =  -  (d/df)ln[K /(i)/»]. (2)

This is an escape probability for A(f)dr is the fraction 
of material of age t that emerges during the interval 
(i, t +  di). It exhibits a maximum when there is 
stagnancy in the system (Naor and Shinnar, 1963).

As Danckwerts wrote, “Like most conceptual ad­
vances, it represents a crystalization of ideas which at 
the time were scattered and ill-defined.” He mentions 
Gilliland and Mason’s (1952) work on fluidized beds

Manners makyth modellers 251
in particular. Earlier McMullin and Weber had used 
the curious expression “mathematical bypassing” for 
the high probability of a molecule having a relatively 
short residence time in a stirred tank. Danckwerts 
went on to look at flow through a packed bed, where 
the mixing due to the packing can be represented by a 
longitudinal dispersion coefficient, to consider the 
cases of laminar and turbulent pipe flow, and to do 
the tubular reactor with longitudinal diffusion. It was 
in this last connection that he gave the boundary 
conditions which are often known by his name and 
which have given rise to “a lengthy and almost meta­
physical discussion in the literature although”, as he 
says, “I thought that I had fully justified them in this 
first publication”. His comments on one of the latest 
contributions to this literature (Parulekar and 
Ramkrishna, 1984) or some of the sophisticated math­
ematics in Petho and Noble (1982)—including my 
own, somewhat gratuitous excursion into convolution 
transforms—would have been worth recording.

His argument in support of his choice of boundary 
conditions is confessedly intuitive, but hard to fault 
for he had sound intuitions. The entrance condition 
expresses the need to be able to say that what you are 
putting into the reactor does indeed go in, i.e. the flux 
of material brought to x =  0 from the left (at 0 — 0, as 
mathematicians put it) equals the flux to the right at 0 
+  0. Hence, if C is the concentration in the feed, and 

c0 that just within:

uC = uc0 -  D*(dc/dx)0. (3)

At the outlet we have similarly:

ucj — D*(dc/dx)i =  ucp (4)

where c1 is the concentration at L — 0, and cp that in 
the product. Now if dc/dx is negative cp > ciy while, if 
it is positive, c has a minimum within the bed. Both 
these alternatives run counter to intuition, which 
therefore suggests that

dc/dx =  0 (5)

is the correct condition. In the considerable literature 
that has sprung from this, involving the work of no 
less than Wilhelm, Pearson and Turner amongst 
others, there must be found somewhere my preferred 
proof. I will give it (with apologies for my ignorance or 
poor memory of the literature to anyone who has 
given it before) because it illustrates what I mean in 
claiming that models have a life of their own. The 
model of plug flow with dispersion and a general 
reaction has the differential equation

D*(d2c/dx2) -  u(dc/dx) -  r(c) =  0. (6)

If D* becomes exceedingly large, c(x) must be nearly 
constant, since the slightest gradient of concentration 
will be dissipated. The limit as D* goes to infinity of 
this model is therefore the perfectly mixed stirred 
tank, whose equation is

C - c -  0r(c) =  0. (7)

But dividing through by w, integrating from 0 to L and
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setting L/u = 6 gives

[(D*/u)(dc/dx) -  c], -  [(D*/K)(dc/dx) -  c]o

— 9r(c) = 0 (8)

and the Danckwerts conditions reduce this immedi­
ately to the stirred-tank equations. The intuition here 
is not the physical intuition that does not allow a 
minimum within the reactor, but the mathematical 
intuition of the limiting case. There are hidden diffi­
culties that I have glossed over arising from the 
singular nature of the perturbation, but these are 
liable to affect the inlet rather than the exit condition 
and it is the latter that has been controversial. But the 
argument is conducted in the world of the models 
rather than that of the physical system as in 
Danckwerts formulation. Which one finds the more 
convincing is a matter of taste. Danckwerts does 
check this limiting case later in the paper, but in 
connection with conversion rather than the boundary 
conditions. Incidentally it was not until many years 
later that Danckwerts learned that he had been an­
ticipated by Irving Langmuir in 1908 (Danckwerts, 
1982).

I have dealt with this paper at some length for it is a 
classic, having now “reached the status of being a 
primary reference which is seldom cited. It has been 
overtaken by a snowfall of more sophisticated con­
cepts, many derived from control theory. However I 
thick it has served and continues to serve working 
chemical engineers because it does not blind them 
with mathematics” (Insights, p. 218). The reference to 
control theory is not clear to me. I rather think 
control theory was something of a whipping boy in 
PVD’s eyes, for I recall an ukase of his to the editors of 
Chemical Engineering Science (CES) warning us that . 
there was a danger of CES becoming another journal 
of control theory. But aside from that, I think it is a 
fair judgement of his own work, which needs no 
impertinent endorsement from lesser fry, but typifies 
the manner of Danckwerts as a modeller.

A PUZZLING MODEL OF A TWO-PHASE REACTOR

It would be impossible to survey the ramifications 
of residence time distribution theory. The literature is 
vast and well covered by Nauman and Buffham (1983) 
and Shinnar has an excellent article that combines 
theory with the experience of practical application 
(Shinnar, 1987); various related topics are treated in 
Petho and Noble (1982). Rather I would like to pass 
to a particular model of a two-phase reactor that 
might be, by a stretch of the imagination, a sort of 
fluidized bed. It is a transmogrification of a problem 
in heat transfer that Amundson and I thought we had 
solved in 1961 (Amundson and Aris, 1962). It was 
received politely at an international meeting on the 
interaction between fluids and particles held here in 
London under the auspices of the Institution of 
Chemical Engineers, and fortunately not, so far as I 
can determine, referred to again—definitely not a 
citation classic! I say “fortunately” because it con­

tains a subtle error, of which I could write in the first 
draft of this lecture (early August 1990), “which 
we have never found”. It was first pointed out to me 
in 1964 by that most acute and perceptive of chem­
ical and mycological engineers, J. C. R. Turner. He 
observed that in certain cases we had managed to cool 
a gas to a lower temperature than that of the entering 
coolant solid. While I am not prepared to write that 
off as impossible, it does suggest that somewhere in 
the system the second law—at least in the Flanders 
and Swann formulation, “Heat cannot of itself flow 
from the cooler to the hotter”—is being violated. To 
reduce it to simpler terms I have transformed it into 
an isothermal first-order reactor problem. But the 
error is the same in principle and shows up as a 
negative concentration. I shall have a suggestion as to 
where it lies and can only hope that it will turn out to 
be a felix culpa whose resolution may tell us some­
thing useful about mathematical modelling. I have 
checked the obvious places enough times in the last 30 
years that I believe the error to be non-trivial. I will 
present the problem as clearly as I am able without 
indicating to you where I think the failure may lie 
until the discussion at the end.

Suspend, if you will, your disbelief for a moment 
and consider a model of a fluidized bed in which the 
particles are perfectly mixed but the fluid is only 
partially mixed. In fact we will consider the whole 
range of degrees of mixing in the fluid by assuming it 
is in uniform flow with longitudinal dispersion. If the 
length of the reactor is L, the velocity of the fluid t>, 
and the dispersion coefficient Z)*, we shall get a 
dispersion (Peclet) number P = vL/D* and by letting 
P vary from 0 to infinity we can pass from complete 
mixing to piston flow. The solid phase consists of fine 
catalyst particles, which for simplicity are taken to be 
spheres. It is within them that the reaction A* -> B* 
takes place after A* has diffused to the surface and 
into the porous interior. Consider a sphere introduced 
into the bed at time t = 0. The concentration of A* at 
any point r within it, c(r,f), and hence the overall rate 
of reaction in the sphere at time i, depends on the 
whole history of the fluid phase concentration to 
which it has been exposed, C(i'), 0 ^  r' ^  t. In fact the 
mean concentration of A* in the sphere will be of the 
form

<c> (f) = — (')d('. (9)

The function F is derived in Amundson and Aris 
(1962), but the general form of this formula follows 
from the linearity of the problem.

We want ultimately to find the steady concentra­
tion field, C(z), 0 ^  z ^  L, in which the particles are 
dancing and, when we come to make a balance on A* 
over a section of the bed between z and z +  dz, we 
shall want to calculate R(z), the expected value of the 
reaction rate. In such a section there will be particles 
of all ages and, of particles of a given age, those having 
a vast number of possible histories C(i') will be re­
presented. Since taking the expected value is a linear
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operation (it is a matter of multiplying by a prob­
ability and integrating over all possibilities) and 
since C appears linearly in <c>, the expected reaction 
rate must be proportional to [C], the average concen­
tration in the fluid phase, because the well-mixed 
particles have been everywhere and been exposed to 
every concentration in the bed with equal probability. 
After all that is what is meant by being “well-mixed”.

To put this in another manner, let P(t; z; C', 
£') dz dC' be the probability that a particle of age t is in 
the slice (z, z + dz) and that when its age was t' it was 
exposed to a concentration in the range (C',C +  dC). 
Again let p(t; z; z', z', i') dzdz' be the probability that 
just such a particle was in the interval (z', z' +  dz') at 
time i'. Clearly, if the particle is moving through a 
steady concentration field, C(z), then

P(t; z; C \ f')dzdC' = p(t; z; z', £')dzdz' (10)

if C  =  C(z'). By “being well-mixed” we mean that p is 
independent of both z and z', since a particle can be 
anywhere at any time with equal probability. Thus 
p =  1/L2. The average concentration in particles of 
age t is therefore independent of position (again that is 
the meaning of “well-mixed”) and is

P(i; z; C(t‘

P(t\

'),f']dcj'c(i')

; z; z', f')C(z')dz' J  F(t — t')dt'

= [C]L"2 F(t’)dt‘

The last step uses the constancy of p and a change of 
variable from £' to t — £'. To get R, which we now see 
must be independent of z, we have to average over all 
ages. Let e and (1 — e) be the fractions of the reactor 
volume occupied by the fluid and solid phases, re­
spectively; then eAL is the volume of catalyst in a bed 
of area A and length L, and, if qs is the rate at which it 
is added and removed, 6S =  eAL/qs is the mean resi­
dence time of the catalyst and its age distribution is 
exp — (i/0J/0s. Thus R =  a[C], where

ea =  (1 — e)k exp ~(t/9s)dt/ds F(£')d£'i'
= (l-e )kO sf(\/9s) (11)

and f{s) is the Laplace transform of F{t). It is an 
unexpected benefit of the exponential age distribution 
that the inversion of the Laplace transform is not 
required.

We can now make a balance of A* in the segment of 
the reactor between z and z +  dz, equating the net 
flow into the segment in the fluid phase to the rate of 
reaction and the withdrawal rate of the solid. Thus

eA {D*C" — vC }dz  =  EOi[C]Adz

+ qs(dz/L)(a/k)lQ  (12) 
or

where

P = «(1 + k9s)/k9s (14)

and the prime denotes the derivative with respect to 
x =  z/L. The last term arises from the fact that no A* 
is being fed to the reactor with the solid whereas it is 
being withdrawn at the average particle concentra­
tion. This equation is subject to

-  P~1 C'(0) -I- C(0) =  Cf  and C'(L) =  0. (15)

Solving the differential equation is easy, since [C] is a 
constant which we can determine afterwards. The 
solution is

C(x) = Cf -  jff[C]{l +  Px -  exp -  P( 1 -  x)}/P.
(16)

Averaging gives

LC} = Cf /{ l+ P x (P )}  (17)

where

X(P) =  {P 2 +  2P -  2 +  2 exp -  P}/2P2. (18)

We can now substitute [C] in C(x) and set x =  1 to 
get the exit concentration, namely

C(l) =  C/ { l - W - x ) } / { l + f e } .  (19)

Now x varies from 1 to 0.5 as P varies from 0 to 
infinity, so 1 — x is a positive number, zero only when 
P =  0. But P can be made as large as we please quite 
independently of x which depends only on P, whereas 
P depends on the other parameters. As soon as p >  (1 
— x)~\ C(l) is negative! The only reprieve would 

come if P were always less than 2. But

P =  «(1 +  k9s)/k9s =  {(1 -  e)/e} [(1 +  /c0s)/(l/0J]
(20)

and even though the expression in the square bracket 
is bounded, the ratio (1 — e)/e can be made as large as 
we please by flooding the system with catalyst. This 
choice can be made independently of the other prop­
erties. Though, if we insist on thinking of this as a fluid 
bed, e cannot be made arbitrarily small.

A SIMPLER SYSTEM

However a simpler system, much less suspect in its 
assumptions, suggests itself. Let the reactor consist of 
a tube of length L  and volume e V  through which there 
is flow with dispersion, but no reaction. The reaction 
takes place in a stirred tank of volume V(l — e) with 
which the tube communicates through its porous wall. 
With the experience of the previous problem the 
equations can be written down with an obvious 
notation:

e{D*(d2C/dz2) -  v(dC/dz)} =  (1 - s ) k c  +  (q/V)c.
(21)

The last term again arises from the fact that no A* 
flows into the stirred tank reactor whereas it flows out 
at a concentration c in the effluent stream of volu-p - ' C ’ - C  =  /?[C] (13)
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metric rate q. The equation for the stirred tank is

(SkJL) | L(C -  c) dr =  (1 -  «) Vkc + qc. (22)

Introducing the dimensionless quantities

U =  C/Cfi u =  c/Cf , x =  z/L 

m =  Skjq, n =  (1 — s) Vk/q> P =  vL/D*, b =  qL/Vev 

gives the equations

(1 IP)U" -  V  =  b( 1 +  n)u (23)

m[U] = (l + m  + n)u (24)

with

-  U’(0)/P +  U(0) =  1 and l/'(l) =  0. (25)

Let us look at the solution for P tending to infinity 
since the difficulty shows up most easily in this case. 
Then

U(x) =  1 -  {hm(l +  «)/(! +  m +  n)}[ 1/ ] jc (26) 

[ I / ]  =  1/{1 +  [ M l  +  n)/ 2(1 +  m +  fi)]} (27) 

1/(1) = {1 -  [ M l  + ")/2(l +  rn +  n)]}/{l

+ [ M l  +  ")/2(l +  m +  n)]}. (28)

Once again this can be negative.
But there is another way of tackling this problem. 

Instead of doing a balance of A* over a section of both 
the tube and the stirred reactor between z and z + dz, 
in which the transfer term does not appear, let us do it 
only over the tube. Then

e{D*(d2C/dz2) -  u(dC/dz)} =  (SkJV)(C -  c)
(29)

or

(1 /P)U" -  V  = bm(U -  u) (30)

with the same boundary conditions and the same 
relation between u and [ ( / ] .  If we again look at the 
extreme case of infinite P\

U(x) =  u +  (1 -  u) exp -  bmxy

u = m [I/]/(l + m + n) (31)

whence

[ l / ]  =  (1 + m + n)E/{ 1 + n +  mE}>

E =  [1 — exp — bni]/bm (32)

and

t/(l) =  {(1 + n)e +  mE}/{ 1 + n + m£},

e =  exp -  bm. (33)

This is certainly positive and presents none of the 
problems of the other solution.

THE PUZZLE REVISITED

This simplified model raises a number of questions. 
Why do the two approaches not agree? Are we to

conclude that the invalidity of the result in the first 
case shows that the method is wrong? Not without 
other reasons, for it could be wrong at some other 
point. Are we wrong in making a balance over any­
thing less than the complete stirred tank? I see no a 
priori reason that would forbid this. Have we done the 
balance correctly? I think so, but would be glad of 
correction if I have erred.

But wait! Return to the possibility that we were in 
error by taking a balance over anything less that the 
whole stirred tank. If it is permissible to take a balance 
over the (z, z +  dz) slice of both reactors, then it is 
permissible to take balances on the tubular and on the 
stirred reactor separately. Doing so on the stirred side 
gives

Skc{C -  c) =  (1 -  s)Vkc +  qc. (34)

But, since c is independent of z, so also is C and 
therefore C  =  0. Thus the two concentrations must 
both be everywhere zero and this is inconsistent with 
the feed condition C =  Cf . It follows that eq. (23) is 
invalid and it is eqs (24) and (30) that must be solved. 
Doing this we find that

C/(l) =  (1 +  n)/{mG +  (1 + n)H} (35)

where

G =  (M/NQ)(eN -  1) +  (N/MQ)(\ -  e~M)

H =  (M /0 (  1 +  N)eN +  ( N / 0 0  -  M)e~M 

and

Q2 =  P 2 +  4Pbm, M =  (P +  0 /2 ,  N = {Q — P)/2.
(36)

Both these functions are positive and, hence, U is 
always positive.

Can we apply the second method to the fluidized- 
bed problem? The expected value of the surface con­
centration, rather than that of the mean concentra­
tion, could be calculated and would be proportional 
to the average concentration [C]. An equation of the 
form

P~l C" — C  — [¡/C =  - M C ]  (37)

would take the place of (13) with

=  3(1 — e)Lkjeva, y =  n/ift +  (K2/3)f)(*<p)],

t](a) =  3(a coth o — 1 )/o2. (38)

If the two eigenvalues of (37) are denoted by M and 
— N, so that

6 2 = P 2 + 4P^, M = {Q + P)/2, N =  (6  —P)/2
(39)

and we define the functions

r  = (M/NQ)(eN -  1) +  (N/MQ){ 1 -  e~M) =  G, 

A =  (M2eH -  N2e~u )/PQ- (40)

Then

C(l)/C, =  {K2ti(K<p)/l +  iiT}l{K2ti(K<p) A/3 +  /ir}
(41)



is the exit concentration. This is positive and shows 
the expected separation of the various parameters. 
Nor are we surprised to see the Thiele effectiveness 
factor appearing to account for the internal diffusion 
limitation.

This seems to resolve the ancient error satisfact­
orily; a correction of the heat transfer problem will be 
given elsewhere. The principle at work seems to be 
that the deliberate mixing, whether of particles or 
reacting fluid, establishes a forced connection between 
different parts of the boundary so that on the reactive 
side they are non-local. In the fluid phase or on the 
tube side it is legitimate to apply pointwise balances, 
but not in the solid or stirred-tank side.

SOME MANNERS OF THE CRAFT

A mathematical model should be fully seized of its 
purpose whether this be synthesis or analysis, design 
or understanding. Its purpose will shape it to a large 
extent and certainly size it. If the objective is to 
develop a structured model of Saccharomyces 
cerevisiae you have to be prepared to have 18 balance 
equations and 26 rate expressions (Shuler and 
Steinmeyer, 1989). Nothing much smaller will do the 
job. If an explanation of chaotic behavior is sought, at 
least three state variables will be needed. If the pur­
pose is to understand phase separation on a catalytic 
surface, mean field theory will not do and one may 
have to have recourse to finite models and Monte- 
Carlo methods. If the purpose is to explore the range 
of applicability of a class of model then the shape is 
given and it becomes a question of seeing what phys­
ical situations it illuminates. The danger is the temp­
tation to force a physical situation into an inap­
propriate mathematical mould, but, if this is avoided, 
the exploration can be quite fruitful and the demands 
of the physical situation lead to an extension of the 
mathematical technique. Iordache’s cultivation of 
polystochastic models is an example (Iordache, 1987).

Of dimensionless variables I shall have something 
to say in a moment, but chemical engineers are parti­
cularly fortunate to be conversant with such a wide 
range of dimensionless parameters and to have ab­
sorbed, perhaps to a greater degree than other engin­
eers, the beautiful notion that expresses the magni­
tudes of the quantities of a problem in the problem’s 
own terms. I well remember the first time I grasped 
the significance of making the variables dimensionless 
when C. H. Bosanquet showed me that the equations 
of a conduction problem became universal by taking 
the time to be Dt/a2. For the mathematician, all 
variables are dimensionless and C. H. Bosanquet had 
a brother L. S. whom he described as a mathematician 
so pure that if you give a number a meaning he won’t 
touch it! Fortunately dimensionless numbers do have 
meaning. The adroit choice of dimensionless variables 
and parameters and the point at which they are 
introduced are characteristic manners of the modeller 
[see Becker (1976) and Aris (1978, pp. 60-68)]. Once
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they have been introduced the ability to check 
equations by their dimensional consistency is almost 
entirely lost, though a ghost of it lingers in the feeling 
for the consistency of an expression that the modeller 
develops. They are essential to the examination of 
limiting cases, another characteristic manner of the 
mathematical modeller. A history of dimensionless 
parameters would be rewarding; the only essay to­
ward this that I know of is by Layton (1988).

Manners are an expression of principles and there 
are principles that govern the reduction to dimen­
sionless form. Truly constant quantities must be used 
as characteristic quantities. Thus although [C] is a 
constant and independent of z, it would not do to 
define a dimensionless variable as C/[C]. It can be 
done, but is likely to cause confusion and C/Cf  is 
greatly to be preferred. A second principle is that, 
except when there is a single kind of dependent vari­
able, the reduction must be complete. I well remember 
the consternation I caused in an industrial short 
course by having the temperature, as well as the 
concentration, in units of moles per unit volume! If 
there is only one kind of dependent variable, as C and 
c above, then it can be left “as having a certain 
picturesquencess” [I quote from the preface to E. C. 
Titchmarsh’s Theory of Fourier Integrals—“I have 
done certain problems in heat and mass transfer as I 
think an analyst” (i.e. a mathematical analyst) 
“should. I have retained such terms as temperature 
and heat as having a certain picturesqueness. The 
reader need not know that these things exist.”] The 
third principle is that the dimensionless parameters 
should bear the burden of showing the comparative 
importance of the various terms in the equation. Thus 
C/Cf  is in the range (0,1), as are c/Cf  and z/L, and P 
and b{ 1 + n) show the importance of the terms they 
are associated with in eq. (23). It is not possible to 
reduce the number of parameters further for, though y 
= Pxy a = b{ 1 +  n)/P would leave only a in eq. (23), P 

would turn up again in eq. (25) as U'(P) =  0. Nor can 
b and (1 +  n) be usefully united since (1 + n) is needed 
by itself in eq.. (24). (1 +  n) could be renamed as a 
single parameter, but in (1 +  m + n) it serves as a 
useful reminder that there are three process at work 
removing A*. If the tube were infinite then y =  Px 
=  vz/D* would be the way to go. Any problem of 

sufficient magnitude gives scope for the individual 
expression of manners on the part of the modeller.

A final point in this section, which is not intended 
to be comprehensive, concerns the colloquy of mo­
dels. What I mean by this is illustrated above by the 
way in which the transfer of a heat problem to a 
reaction context, an isomorphism, suggested another 
form of reactor in which one of the questionable 
hypotheses of the model, the perfect mixing of the 
solid phase, could be made rigorous. This allowed me 
to see that the error did not lie in the probability 
argument and, eventually, to find it in the way of 
making the balance. In this sense the models can 
fruitfully interact with each other, while each enjoys a 
life of its own.
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CRAFT AND SULLEN ART

In conclusion I cannot forbear to mention the 
affinity between the very practical craft of mathemat­
ical modelling and the art and craft of poetry and 
indeed with the whole literary and artistic life of the 
mind. It is not that it needs legitimizing, still less that 
it should be dressed in pretentious garments and seek 
a connection or genealogy for reason of intellectual 
snobbery, but, if we are to retain our wholeness and if 
we have any enjoyment in the arts, it is worthwhile to 
preserve the link and let it nurture our work. We do 
not put down the pen when we take up the T-square.
{I have tried elsewhere to express this idea [cf. Aris 
(1969, 1977, 1982, 1983, 1989)].}

I think the key is in the notion of craftsmanship 
(Penn and Aris, 1980) and the innate sympathy of 
craftsmen who, as Vita Sackville-West (1934) says, 
“share a knowledge”, having “compelled the growth 
of pattern to the patient shuttle” and “out of need 
made inadvertent art”. It is the experience of refining 
our own models that makes us resonate instantly to 
her lines:

The poet like the artisan 
Works lonely with his tools; picks up each one, 
Blunt mallet knowing, and the quick thin blade, 
And plane that travels when the hewing’s done; 
Rejects and chooses; scores a fresh faint line; 
Sharpens, intent upon his chiselling;
Bends lower to examine his design,
If it be truly made,
And brings perfection to so slight a thing.

Or to Dylan Thomas’

In my craft or sullen art 
Exercised in the still night 
When only the moon rages . . .

There would seem to be four aspects of model 
building which relate themselves to aspects of the 
poetic craft: aptness, intrinsic standards, internal ten­
sion, and iterative nature. By aptness I mean that the 
model is suited to the purpose for which it is designed. 
PVD’s notion of the residence time distribution is 
most excellently apt. It is condign to the elucidation of 
many aspects of what goes on in the general mixed 
vessel. It does not complicate the situation unneces­
sarily, nor so oversimplify it as to reduce its content to 
the point of it's not being useful.

In just such a manner does the poet seek the-apt 
word. The word that does not particularily draw 
attention to itself or that has been drained of its 
meaning by hackneyed use; which will not “slip, slide, 
perish,/decay with imprecision”, as Eliot has it. 
Housman’s poetic instincts were aroused when he 
read Walter de la Mare’s “Fare Well” for the first time 
in a newspaper (for so he tells us in the preface to the 
edition of Manilius).

Oh, when this my dust surrenders 
Hand, foot, lip, to dust again,
May these loved and loving faces 
Please other men!

May the rustling harvest hedgerow 
Still the Travellers’s Joy entwine,
And as happy children gather 
Posies once mine.

“I knew in a moment”, Housman writes, “that Mr. 
de la Mare had not written ‘rustling’ and in another 
moment I had the true word” which was, of course, 
‘rusting’. Interestingly enough he missed the other 
misprint, “these” for “those” in line 3, but that is a 
question of logical balance rather than of pictorial 
image.

We can think of aptness on several scales. There is 
the fine grained scale of the word which has just been 
illustrated and might correspond to some small, but 
subtle, detail of mathematics, the choice of variables 
in an integration for example. Even the choice of a 
symbol demands a certain sympathy and respect for 
tradition. On the larger scale the choice of a method 
for tackling a model or of a framework within which 
to formulate it—e.g. discrete or continuous, lumped 
or distributed—can be apt or clumsy. Similarly the 
poet must choose his form. A Shropshire Lad could 
not have been written in the metre of An Essay on 
Criticism.

Poetic imagery exercises something of the same 
function as the use of dimensionless variables. Each 
creates a magnitude from within its context, whether 
of the poem or model, and so invests it with a meaning 
that it could not have in external units. A Reynolds’ 
number means something; a velocity of 5 dm a second 
may be large or small depending on the context. So 
the natural instinct of the modeller is to cast the 
variables in dimensionless form and so obtain the 
minimum number of parameters. Similarly the poet 
calls on the creatures of his context. How banal Keats' 
“Eve of St. Agnes” would be if it read

St. Agnes Eve—Ah, bitter chill it was!
The temperature was barely minus two.

Instead he chooses an image that literally puts a 
shiver into the shoulders:

The owl, for all his feathers, was a-cold;.

You can see the owl sitting hump-shouldered on a 
branch, his feathers roused slightly to trap the air and 
minimize the heat transfer coefficient. And even then 
failing as the bitter chill penetrates. You can feel the 
sharp edges of frost-stiffened blades of grass and see 
the sheep huddled in their pen in the next lines.

The hare limp’d trembling through the frozen 
grass,

and silent was the flock in woolly fold.



What I mean by internal tension is less easy to 
illustrate. It is patent from the title of Hopkins “That 
Nature is a Heraclitian Fire and of the Comfort of the 
Resurrection”. Here an idea from Greek philo­
sophy is juxtaposed with a doctrine of Christian 
soteriology. Or in “The Windhover” where Hopkins 
contrasts the apparent effortless achieve and mastery 
of the dapple-dawn-drawn falcon with the sheer plod 
of the plough and the gold-vermillion of embers, spent 
yet still beautiful in their breakup and recalling the 
plumage of the kestrel.

The most vivid internal tension I have come across 
in a mathematical model is the attempt to get a matrix 
of equivalent thermal diffusivities for an array of 
hexagonal passages (Aris, 1979). These tessalate che 
two-dimensional plane yet themselves are defined by 
three sides. The whole problem must be worked with 
this “twoness” and “threeness” constantly in mind and 
the final formula both embodies and resolves the 
tension.

The iterative nature of model building is sufficiently 
obvious and has been mentioned earlier. We have 
seen that it is a way of understanding the natural 
world by mirroring it in an alternative space. The 
commutative diagram

Physical reality Physical behavior
1 1

Mathematical reality -» Mathematical solution

expresses the relationship. When it is well constructed 
a good model is capable of suggesting further ques­
tions and greater refinements. Its several parts are 
beginnings and ends in themselves much as Eliot says 
of phrases and sentences:

Every phrase and every sentence is an end and 
a beginning

Every poem an epitaph.

But “tools have their own integrity” and we would 
distort our trade by imagining we could ever produce 
anything so moving as the finale of Four Quarters, 
though we can perhaps hum along with the the first 
few bars of its build-up;

We shall not cease from exploration 
And the end of all our exploring 
Will be to arrive where we started 
And know the place for the first time.

“Omne tulit punctum qui miscuit utile dulce” wrote 
Horace, and, if we have taken our subject seriously 
enough to have mixed the utile of application with the 
dulce of understanding, and have taken ourselves not 
so seriously as to forget that getting there is a good 
deal more than half the fun, we shall be able to enjoy 
the place of chemical engineering science among the 
artes humaniores and of mathematical modelling 
among the various activities that become the chemical 
engineer.
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th e  le c tu re . I a m  su re , h o w e v e r, th a t  n o n e  w ill m in d  b e in g  
re p re s e n te d  b y  N e a l A m u n d s o n , to  w h o m , m o re  th a n  a n y ­
o n e , th e  w h o le  p ro fe s s io n  is in d e b te d  fo r “ th e  m a th e m a tic a l 
u n d e r s ta n d in g  o f  c h e m ic a l e n g in e e r in g  sy s te m s” . I n eed  
h a rd ly  a d d  th a t  th e y  m u s t n o t  b e  b la m e d  fo r m y  p e c u lia r  
p e rv e rs itie s . I h a v e  in flic ted  th e  “ p u z z lin g  p ro b le m ” o n  m a n y  
p e o p le  d u r in g  th e  26 y e a rs  s in ce  R o b in  T u rn e r  sh ew ed  m e 
th a t  th e re  w as  s o m e th in g  am iss . T h e  fac t th a t  n o  o n e  c a m e  
u p  w ith  th is  c o r r e c t io n — if in d e e d  th e  c o r re c t io n  is c o r r e c t—  
e n c o u ra g e s  m e  to  th in k  th a t  a  n o n - tr iv ia l p o in t  is a t issue. I t  
is a  p le a s u re  to  re c o rd  th a t  fina l e n lig h te n m e n t c a m e  to  m e 
d u r in g  c o n v e rs a t io n s  w ith  m y  fr ie n d  A1 M o sc o w itz , w h ich  
p ro v e s  th a t  c h e m ic a l e n g in e e rs  c a n  a lw a y s  b en e fit fro m  
c o n s o r t in g  w ith  p h y s ic a l c h e m is ts .

NOTATION
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A area of cross section
A* reactant
a radius of spherical particle
b ratio of residence times in the two parts 

of the reactor [eq. (23)]
C concentration of reactant in fluid phase 

or tubular reactor
[C] average value of C over the whole reactor
Cf feed concentration of reactant
c concentration of reactant in solid phase 

or stirred tank
<c> average value of c(r, i) over sphere
D diffusion coefficient
D* dispersion coefficient in direction of flow
E function defined by eq. (32)
F function defined by eq. (9)
f Laplace transform of F[eq. (11)]
G, H functions defined by eq. (36)
k reaction rate constant
K mass transfer coefficient
L length of reactor
M, - N eigenvalues [eq. (36)]
m, n dimensionless parameters [eq. (23)]
P Peclet number for longitudinal disper­

sion
Q parameter defined by eq. (39)
<1 volumetric flow rate
r radial distance within particle
S area for interchange between tubular and 

stirred reactors
s Laplace transform variable
t time or age of particle
U dimensionless concentration in tubular 

reactor
u dimensionless concentration in stirred- 

tank reactor (also, following PVD, linear 
velocity)

V volume
V linear velocity of flow (also, following 

PVD, volumetric flow rate)
X z/L
y Px =  vz/D*
z distance along the tubular reactor
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Greek letters
a dimensionless parameter defined by eq.

(ID
P dimensionless parameter defined by eq. 

(14)
r function defined by eq. (40)
y dimensionless parameter defined by eq. 

(38)
A function defined by eq. (40)
e fraction of bed occupied by fluid
n effectiveness factor [eq. (38)]
e residence time, with suffix for particle, 

etc.
k, /t, v dimensionless parameters defined in Ap­

pendix
P r/a
a dimensionless Laplace variable
(p Thiele modulus

dimensionless transfer parameter [eq. 
(38)]

X function of P defined by eq. (18)
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E S a  lecture

HOW TO GET THE MOST OUT OF AN EQUATION 
WITHOUT REALLY TRYING*
RUTHERFORD ARIS
U n iv e r s i ty  o f  M in n eso ta  
M in n ea p o lis , M in n eso ta  55455

MAXIMS FOR MATHEMATICAL MODELLING
1. Cast the problem in as elegant a form as possible.
2. Choose a sympathetic notation, but don’t  become 

too attached to it.
3. Make the variables dimensionless, since this is the 

only way in which their magnitudes take on general 
significance, but do not lose sight of the quantities 
which may have to be varied later on in the prob­
lem nor forget the physical origin of each part.

4. Use a priori bounds of physical or mathematical 
origin to keep all variables of the same order of 
magnitude, letting the dimensionless param eters 
show the relative size of the several terms.

5. Think geometrically. See when you can reduce the 
number of variables (even a t the expense of first 
treating an over-simplified problem), but keep in 
mind the needs of the general case.

6. Use rough and ready methods, but don’t  carry them 
beyond their point of usefulness. (E.g. Isoclines in 
the phase plane).

7. Find critical points and how the system behaves 
near them or what is asymptotic behaviour is a t 
long or short times.

8. Check limiting cases and see how they tie in with 
simpler problems tha t can be solved explicitly.

9. Use crude approximations, e.g. 1-point collocation. 
Trade on the analogies they suggest, but remember 
their limitations.

10. Rearrange the problem. Don’t  get fixed ideas on 
what are the knowns and what the unknows. Be 
prepared to work with implicit solutions.

11. Neglect small terms, but distinguish between 
regular and singular perturbations.

12. Use partial insights and despise them not. (E.g. 
Descarters’ rule of signs).

13. These maxims will self-destruct. Make your own!

T t  is  a  c o m m o n  para d o x  that one should only 
•*-start computing after one knows the answer. 
Not to be taken to literally, it emphasizes that 
one should learn as much as possible about a 
problem before computing any case or sequence 
of cases so that the output of the computer may

be critically appraised, for, without this critical 
oversight, the computer can produce an output 
more tedious and turgid than the so-called play­
boy philosophy. It is in any case part of the 
‘craft and sullen art’ of the engineer or applied 
scientists to bring his problem into its most re­
sponsive formulation and to explore the modes 
of its solution as delicately as possible before pro­
ceeding to its complete analysis. From one point 
of view it requires sensibilities which are ‘nasci- 
tur non fit/ but from another it is surely an art 
we may all strive after even if  we despair of 
its mastery.

Of the texts on applied mathematics and en­
gineering analysis the best may perhaps instruct 
by example, but only Segel and Lin’s recent 
masterpiece [1 ] attempts to unfold some of the 
techniques of right formulation. There the ques­
tion of reduction to dimensionless form and the 
scaling of equations is carefully and systematical­
ly explained. It will be clear that this essay is in­
fluenced by what they have done, both in this 
regard and in the play they have given to per­
turbation methods. The maxims of modelling that 
I have ventured to set down are a preliminary 
attempt to codify some of the mental processes of 
the chemical engineer as he probes and explores a 
problem. Like all maxims they tend to have the 
unassailable probity of “this ye ought to have 
done and not to have left the other undone.”

* EDITOR’S NOTE: In this issue, CEE begins a new de­
partm ent: ChE LECTURES. We intend to publish 
seminars and lectures on im portant areas of modern 
chemical engineering. If you feel th a t one of your 
seminars or lectures on a certain topic would have peda­
gogical or tu torial value and would be of general in­
terest to our erudite readers, please send the manuscript 
to the editor for review. We would appreciate comments 
from our readers on this new departm ent as well as 
suggestions for authors of papers.
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Dr. Rutherford Aris was born in England in 1929, studied mathe­
matics in the University of Edinburgh and taught it to engineers 
there. He has degrees from the University of London (B.Sc. (Math); 
Ph.D. (Math, and Chem. E.); D.Sc.). He worked a total of seven 
years in industry, but since 1958 he has been in the Chemical 
Engineering Department at the University of Minnesota enjoying the 
liveliness of its interests, both technical and cultural, and endeavouring 
to contribute to this vitality and communicate it to his students.

Nevertheless they should be looked on with a 
quizzical eye and subjected to a more than usually 
critical appraisal. They are dignified with 
numbers merely to invite the participation of the 
reader by pencilling them in the margin at the 
stage or stages of the example where they are 
most obviously invoked.

1. SETTING UP THE EQUATIONS

rpHE EXAMPLE WILL be the elementary and 
familiar one of a single nonisothermal re­

action in a catalyst pellet of arbitrary shape for, 
though it might be argued that I am getting 
the benefit of a good deal of hindsight, its very 
familiarity will allow us to concentrate on the 
method rather than be preoccupied with the 
matter. If the reaction is between the S species 
Aj it may be written SajAj =  0 giving a positive 
sign to the stoicheiometric coefficients of those 
species which are regarded as the products of 
the process. In the Knudsen diffusion regime the 
effective diffusion coefficients Dej may be regard­
ed as independent and mass balances for over 
an element of volume within the catalyst pellet 
for each species lead immediately to the S equa­
tions

DejV2Cj +  «jpbSgf (c1,c2,...,cs,T) =  0 , (1)
where Cj =  Cj (r) =  concentration of Aj ,

T =  temperature,

p h =  bulk density,
SB =  catalytic area per gram, 
f  =  reaction rate per unit catalytic area.

The Laplacian is with respect to the position 
variables r =  (x,y,z) within the pellet which is 
assumed to have uniform properties. Into the 
formulation of this equation have gone the 
principle of the conversation of matter and two 
constitutive relations. One is a generalization of 
Fick’s law which asserts that despite the physical 
complexity of the porous medium the flux can 
be related to the concentration gradient by an 
effective diffusion coefficient. The other is the 
kinetic law that may be embodied within the 
rate expression f. With the validity of the model 
we are not here concerned but though a suspension 
of disbelief is called for it should be remembered 
that it is ever temporary. An energy balance leads 
to the equation for the temperature

keV 2T +  (— AH)pbSgf (ca,c2,...cs,T) =  0 (2)
where AH is the heat of reaction and is credited 
with a negative sign since the exothermic reac­
tion, being more interesting in its effects, is taken 
as the norm. The simplest of boundary conditions 
will be taken at the boundary of the pellet, namely

The maxims of modelling that I have 
ventured to set down are a preliminary 

attempt to codify some of the mental 
processes of the chemical engineer, as he 

probes and explores a problem. Like all 
maxims they tend to have the unassailable 
probity of "this ye ought to have done and 

not to have left the other undone."

Cj =  Cjf, T =  Tf. (3)
The notation for the basic equations is an 

obvious one with Cj immediately suggesting the 
concentration of the jth species and T the tem­
perature. Similarly the suffix f in the boundary 
value suggests quantities associated with the 
fluid phase around the particle or, for the teu- 
tonically minded, with the surface. As a problem 
grows one often runs out of really sympathetic 
letters for the various quantities and compromises 
often have to be made. However, when the ob­
vious suggestiveness of an initial letter (e.g. c,T) 
is abandoned, those quantities that hang together 
should have letters that hang together; thus 
dimensionless c and T may become u and v but 
the barbarity of * and W  should be avoided. Well-



How to get the most out of an equation . . . 261

established conventions should be observed and 
of course there are publishers’ house styles which 
may ultimately override a preference for Re and 
insist on NRe. The practice of using two letters 
for one quantity is open to objection even though 
one in upper and one in lower case give it a 
pleasant literary favor.

However notation is somewhat a matter of 
taste and “de gustibus non est disputandum.” 
Since it is also a vehicle of communication it is 
important not to become so attached to one's own 
version that the sensibilities of others are offend­
ed or communication impaired.

These basic equations presume a consistent set 
of units for each variable and parameter and our 
first task is to render the variables dimensionless. 
This does not derogate their physical significance 
in any way, for it is always important to keep 
the physical meaning of a variable or parameter 
in mind ; rather it is intended to confer a meaning 
on their magnitude that is independent of the 
particular system of units. This point is important 
for the significance thus attained is universal in 
a deeper sense than would be conferred even by 
a universal agreement on units, such as the SI. 
Philosophically it is akin to Lonergan’s in­
dependence of time and place [2]. But more than 
this, it measures the quantities in terms that are 
intrinsic to the problem rather than those dic­
tated by an arbitrary external system. In general

However notation is somewhat 
a matter of taste and "de gustibus 
non as disputandum." Since it is also 
a vehicle of communication it is important 
not to become so attached to one's 
own version that the sensibilities 
of others are offended or 
communication impaired.

the objective should be to keep the dimensionless 
variables of the order of magnitude of 1 and al­
low the parameters to be just that—quantities 
which give the measure of the situation. How­
ever this should not be done at the expense of in­
troducing unnecessary dimensions. For example, 
when the tubular reactor is considered without 
regard to any longitudinal dispersion there is no 
boundary at the far end of the reactor and it is 
artificial to introduce the length of the reactor 
just to make the dimensionless axial coordinate 
go from 0 to 1; it is preferable to use a combina­

tion of velocity and rate constant with the dimen­
sions of length. It is however often possible to 
choose between putting a parameter in the equa­
tion or in the boundary conditions as we shall see 
later.

In the problem under consideration r =  (x,y,z) 
is the coordinate system within the pellet of 
which we have some natural dimension, dp, to 
render these independent variables dimensionless 
as p  =  (£ 77,£) =  r/dp =  x/dp,y/dp,z/dp). (Here 
a notational problem is raised by the traditional 
use of 7) for the effectiveness factor. We should 
probably go to (x^XzjXa) as coordinates with 
fi =  Xi/dp. However so little use is made of the 

-cartesian space coordinates that we will not be­
labour this. When there is symmetry and r can 
be taken as a scalar its dimensionless form is p.) 
It is dangerous to take Uj =  C j / c jf since we may 
want to consider cjf =  0 for some products of 
the reaction. Rather we take c£ as characteristic 
of the c jf, perhaps as 2 jC jf, and set Uj =  C j / c f, 
Ujf =  Cjf/Cf. Then equation (1) becomes

V 2u, +  ^ ^ f ( c , „ , T )  =  0, (4)
-DejCf

where the Laplacian is with respect to the 
dimensionless space variables. There is only one 
characteristic temperature in the data, namely 
Tf, and it is in no danger of being zero. We there­
fore take v =  T/Tf and the second equation is

V ’v +  =  0. (5)

The second terms in these equations is now di­
mensionless and could be written as say Rj(u,v) 
and R(u,v). However this would confound the 
importance of the various factors that enter the 
functions and overlook the fact that they are all 
proportional to one another. It is better to render 
the reaction rate dimensionless first by setting

R(u,v) =  f (Cfu,T)/f (Cjf,Tf) (6)

so that R (uf,l)  =  1. Then the coefficient of R in 
equation (4) would be ajdp2pbSgf'(Cjf,Tf) /D ejcf 
and this only depends on j through and Dej. 
If we let Aj =  Dej/D0 where De is some charac­
teristic value of the diffusivities then dp2pbSgf 
(Cjf,Tf)D eCf emerges as the characteristic dimen­
sionless parameter. We will not rush to fix the 
characteristic value De since it may be advan­
tageous to fix it—or rather the combination Decf 
—later. But

<f)2 =  dp2pbSgf (cf,Tf) /D ecf (7)
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. . . Our first task is to render the variables dimensionless. This does not derogate their physical signifi­
cance in any way, for it is always important to keep the physical meaning of a variable or parameter 

in mind; rather it is intended to confer a meaning on their magnitude that is independent of 
the particular system of units. Philosophically it is akin to Lonergan's independence 
of time and place. But more than this, it measures the quantities in terms that 

are intrinsic to the problem rather than those dictated by an arbitrary external system.

is in fact the general form of the modulus intro­
duced by Thiele and commonly bears his name. 
This is appropriate enough for of the three in­
dependent workers in the late thirties he solved 
this problem the most completely (see historical 
notes in 3, 4). Calling this parameter <f>2 we have

V 2Uj +  (aj/Aj)^*R(u,v) =  0 (8)

V2v +  j3tf>2R(u,v) = 0  (9)
where /3 =  (—AH) Decf/keTf. These equations 
hold in o, the region occupied by the pellet, whilst 
on the boundary 0i2

Uj =  ujf, v =  1. (10)
Let us pause a moment to see what we have. 

There are three dimensionless independent 
variables in p  occurring explicitly only in the 
differential operator, (S + l)  dependent variables 
and one reaction rate expression, R. There are 
(S+2) visible parameters, of which S are 
stoicheiometric coefficients modified by the diffu­
sion ratios (it is assumed that none of these is 
zero). /3 is clearly a dimensionless heat of reac­
tion, on which more later, and there may be one 
or more parameters, such as a dimensionless ac­
tivation energy or Arrhenius number, concealed 
in the dimensionless rate law. The Thiele modulus 
can be written

<t>2 =  dp3pbSgf (cJf,Tf) /dp2De(cf/dp) . (10)
The numerator is proportional to the total reac­
tion rate at surface conditions since the volume 
is some multiple of dp3. Similarly in the denomina­
tor dp2 is proportional to the surface area and 
(Cf/dp) characteristic of the gradients in con- 
tration, so that the whole denominator is a mea­
sure of the total diffusion rate. The Thiele modulus 
is thus a ratio of the reaction rate to the diffusion 
rate and, when it is small, the reaction rate is 
the limiting whereas, when it is large, diffusion 
controls. But why call it <£2 rather than 
<£? This is certainly legitimate since the Thiele 
modulus is always positive, but it is not altogeth­
er a product of hindsight. For the Laplacian is a

second order operator and hence we might ex­
pect solutions to be functions of <£p, which is 
rather neater than <f№p.

But at this point the mind should question 
whether ( S + l)  equations are really necessary 
when there is only one reaction in an adiabatic 
system. This is the import of the maxim “Think 
geometrically.’' Geometry is here being used in 
a sense which is loaded with even more overtones

y >
than the ayecoyeTpriTOS over the archway of the 
academy. It embraces the idea of degrees of free­
dom and of what we may expect in the way of 
characteristic dependencies. In this case we ob­
serve that we can eliminate the reaction rate be­
tween any pair of equations and that the linear 
combinations (^AjUj—ajv) are all harmonic func­
tions. Since their values are constant on the sur­
face they are constant throughout il and so 
each concentration can be expressed in terms of 
the temperature

uj = u Jf +  (aj//JA,) (v-1)

This would allow us to reduce all the equations 
to a single equation in the dimensionless tempera­
ture.

However, once having perceived the idea of 
reducing the equations to a single equation, we 
might try to do the reduction more symmetrically . 
There is a risk here since it is sometimes an ad­
vantage to stay with a physical variable such as 
v rather than move to a more mathematical 
variable. Let us brave this danger in the hope 
of comprehending the mysteries of the equation 
and set

Uj =  Ujf +  - + - w , v  =  1 +  /3w (11)

and
P(w ) = R (u ,f +  a ,w /A „r-+ j8w ). (12)

Then all the equations reduce to the single equa­
tion

V 2 w +  </>2P(w ) =  0 in il
w =  0 on K }
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But R (c,T) has a zero on the path

cj =  Cjf +  DeCf-^p- w, T =  Tf + ( - A H ) D eCf 
- ke ^ -W

for either the reaction reaches equilibrium or, if  
it is irreversible, a least abundant reactant is ex­
hausted. We may now choose Decf so that this 
corresponds to w =  1. Then if the reaction is ir­
reversible, 0 < w < l  since no concentration can 
become negative. If the reaction is reversible 
then 0 < w < l  provided the reaction does not go 
beyond equilibrium and the rate change sign. 
Physical intuition would dispose one to doubt 
if the reaction could go beyond equilibrium but 
the following argument (due, to Varma (5)) 
proves the case. For suppose there is a region 
ft- within ft where w > l and P (w )< 0, then it is 
bounded by a surface 0 ft- on which w =  1. But in 
ft_, V 2w =  —$2P (w) > 0  and so w is subharmonic. 
This implies that w < l in ft_ and contradicts the 
assumption that w > l there.

We have reached the point of knowing that 
the system can be reduced to a single equation 
(13) in a variable w bounded between zero and 
1 ; also the reaction rate expression P(w ) has 
been normalized so that P(0) =  1, P ( l )  =  0. By 
equation (11) the fact that w < l  implies that the 
steady state temperature cannot exceed Tf (l-f-/3) 
a result which in its generality is due to Prater 
and justifies attaching his name to the parameter 
/3. It was the way in which Thiele expressed the 
useful result of the solution of the equation that 
distinguished his work from that which had gone 
before. The mathematician commonly uses a norm 
of the solution, which in this case might be
^ftX w l> but the useful functional of the solu­
tion is not a norm but rather the average reaction 
rate as a fraction of the reaction rate at surface 
conditions. This is known as the effectiveness 
factor where Vp =  vd,,3 is the volume of the

V = / / / ,feT>'iv
VP ï(C[,Tt)

~ f f  f  P(w (p))dy =  
ft

cr
V (j)2

3«

_9w
0n ) d2 (14)

particle and d y  =  dV/dp3 and d2  are the elements 
of volume of ft arid area of 0ft respectively. The 
external surface area of the particle is Sx =  
o*dp2 and 3 / 0 n denotes the derivative along the 
outward normal. Note that for any shape 17 will 
be a function of<£, /3 and whatever parameters are 
concealed in P(w).

When the tubular reactor is considered without 
regard to any longitudinal dispersion there is 
no boundary at the far end of the reactor and 

it is artificial to introduce the length of the 
reactor just to make the dimensionless axial 

coordinate go from 0 to 1; it is preferable to use 
a combination of velocity and rate constant 

with the dimensions of length.

2. EXPLORING THE SOLUTION

rriHUS far we HAVE only set up the equations 
■** that govern the system and it would be re­

latively safe to proceed immediately to the solu­
tion by some respectable numerical technique. 
We want, however, to get more of a feel for the 
form of the solution. To do this we can go in 
several directions:

a. simplify the geometry and with it the 
differential operator;

b. simplify the kinetics so that an analytical 
solution is possible;

c. use a crude numerical method;
d. consider limiting cases.

Let us consider these seriatim.

2a. SIMPLIFYING THE GEOMETRY

H P he simplest form of a Laplacian operator is 
the second order derivative in one variable. 

To make the equation one dimensional we may 
consider the case of a slab of porous catalyst with 
two exposed faces a distance 2dp apart and with 
its other edges sealed. Then there is a single 
spatial variable p, the dimensionless distance from 
the central plane and the exposed surfaces are 
p  z= ±  1. To make things even simpler, we con­
sider only symmetrical solutions for which the 
derivative vanishes on p =  0. Then the equations 
are:

=  -* * P (w ), (15)

dw 
dP =  0,p =  0, (16)
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w =  0, p =  1, (17)

V =  f  p  <w > dP =  =  1 (18)
0

Though the sphere could have an equally sym­
metrical solution and is more natural, since it 
does not need sealed edges, its Laplacian is more 
complicated and p enters explicitly.

The second order autonomous form of equa­
tion (15) suggests the phase plane might give 
some insight into the solution. Let W denote the 
derivative —dw/dp, then

_ ^ L = _W,  w ( l ) = 0, (19)

4 J - =  +  * P < w ) ,  W (0) =  0. (20)

In the w, W plane this means that the trajectory 
w (p ), W (p), 0 < p < l ,  is a curve, such as LM in 
Figure 1, which starts (p =  0) at some point on 
the w-axis and ends (p =  1) on the W-axis.

The curve is a solution of the first-order non­
linear equation for W (w) which can be obtained 
by dividing (20) by (19), namely

dW P (w )
W  =  - +  ~ w ~ ( 21)

This equation can be solved for any value of </> 
and will give a solution if  the path LM cor­
responds to going from p =  0 to p =  1 i.e. if

dw
W (w) =  1.

The isoclines could be drawn in the plane and 
we could sketch the solution curves, but they 
would have to be redrawn for each value of </>. 
However p is only acting as a parameter along the 
solution curve and there is no reason why (f>p 
should not be the parameter instead. Let (j>p =  r, 
s (t) =  w (t/</>), S ( t) =  W (t/< £)/4> then

~ • =  — S, s(</> =  0, (22)

=  P (s ) ,  s«tt =  O, (23) 
and

i) =  y S W .  (24)

Now the isoclines can be drawn once and for all 
in the s, S plane, for suppose dS/ds =  — co then

dS P(S) c 1 r>/ \ /oc\
S T = ------- S ^ = - 0> or S = — P ( s ) - ( 2 5 )
But this means the isoclines are all derived from  
the curve P (s) which represents the reaction 
rate expression and that for a given slope co the 
curve for <o =  1  is simply redrawn with a ver­
tical scale of l/co . Let us suppose that the curve 
S =  P (s ) is like PQ in Fig. 2. Then it can be 
crossed with a number of short lines of slope —1 . 
The curve RQ whose ordinates are just twice 
those of PQ is ticked with lines of slope —  
whilst TQ at half the height of PQ is the iso­
cline of slope —2. The s-axis and the vertical 
s = 1  correspond to infinite and zero slope re­
spectively. Quite clearly then any solution curve 
such as LM will take off vertically from L and 
go in an arc of decreasing slope to M. In fact

s

FIG. 2
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if  s0 is the value of s at L, the arc S (s ) is given
by

S2(s) =  2 f S°P (s')ds'
•'S

and M is the point

S0
S2 =  2 P(s')ds':=[S(</>)l2. (26)

Once this curve is determined the value of <f> 
which corresponds to it comes from the integral

Thus each trajectory can be made to yield a point 
on the r),^-curve by equations (24), (26) and 
(27).

But what can we learn of the behavior of 
v W  without actually doing any of the integra­
tions. First we see that for a solution curve L'M' 
lying underneath LM the corresponding value of 
$  must be smaller. For the integral can be 
written

A -  C S W _______
9  -  J o  —ai(S)S

and in comparing the contributions of the seg­
ments AB and A'B' to their respective integrals 
we see that ( —oj) is greater on A'B7 than on 
A B so that the integrand is smaller. Moreover 
the path LM is over a greater range of S than 
is L'M' so that on both counts the value of 
corresponding to LM must be greater than that 
which corresponds to L'M7. The trajectories can­
not cross one another (except at Q) hence a se­
quence of trajectories with increasing sc give an 
increasing sequence of values of <j>.

When <j> =  0 the equation gives the solution 
w =  s =  0, so that s0 =  0 corresponds to  $  =  0. 
Does s0 — 1 correspond to <f> =  oo ? The answer 
must depend on the behavior of P (s )  near its 
zero at s =  1. Let us suppose that P (s )  =  —P' 
( 1 ) ( 1 -s) - f  0 ( l - s ) 2 in the neighborhood of s =  1 . 
Then the indeterminacy of dS/ds near s =  1, S =  
0 is resolved by noting that

dS P (s) ( 1 - s )
ds “  S S

can be integrated to give

S2 =  - P ' ( l )  ( 1 - s ) 2.

The trajectory that starts from Q therefore takes 
off tangentially to the line S =  —X (l—s) where 
X2 =  —P '( l ) .  If this is substituted in the in­
tegral (27) with s0 =  1 we see that the integral 
diverges. It follows that the trajectory through 
Q (QN in Fig. 2) does correspond to an infinite 
value of </>. What is remarkable however is that 
the solution curve QN does not go to infinity but 
reaches s =  0 for a finite value of N. This is 
clearly the case since if  it sneaked up the S-axis 
it would have to have an increasingly large slope. 
But near the S-axis for large S the slope of the 
trajectories gets increasingly small, so that QN 
must finish at a finite point N. Let the value of 
S here be ; then, since the trajectories LM 
move up under QN as <j> increases, S(<£) ap­
proaches as </) gets large. But equation (24)

then shows that n ~ s for large valuesoo
of <f>. Moreover the value of S can be calcu-' oo
lated from equation (26),

1

s2 = 2 1 P(s’)ds*OO 4
0

Thus a rough sketch of isoclines can be made 
to yield a lot of information without really solving 
any equation. However, it should be mentioned 
that some of these arguments depend on the 
rather straightforward shape of P (w ) and 
would not carry over quite so easily to a more 
general shape. In particular a fam ily of nonin­
tersecting curves of the type LM could be found, 
approaching 0 for —>0 and QN for <£-»oo but 
they would not necessarily correspond to a mono­
tonic sequence in <£. The arguments about QN 
would also have to be modified if P '( l)  were not 
finite.

2b. SIMPLIFYING THE KINETICS

T ^ he essential nonlinearity of the equations 
lies in the kinetic expression P (w ) which is 

limited only by the normalization P (0) =  1, P ( l)  
=  0. If we take an isothermal (/3 =  0) first order 
reaction P (w ) =  1  — w and the equations become 
linear. In particular we have analytical solutions 
for simple shapes such as the sphere. In particular
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P2
d

dp ( p l ~ ^ r )  + <*,2(1~ w) = ° (28) _1_
Pq

_d_
dp Pq

dw \ 
dp /

w ( l )  =  0, w '(0 ) =  0 and with this trial function for w it is

has the solution

w (p ) sinh ftp 
p sinh </>

Thus the effectiveness factor is

(29)

which again has the asymptotic property that 
r)<l> tends to a constant (in this case 3) as 
(f>—> 00.

It is not suggested
that the maxims or their illustration . . .  
provide an infallable recipe which when followed 
will open the portals of any problem.
Rather, they are adumbrated 
as a framework.

In this case the complete solution can be ob­
tained rather easily and one might use this as a 
starting point to explore other variations such 
as those of shape or in the boundary conditions. 
In any case it ties in with what we learned from  
the method of isoclines about the general be­
havior of the planar case. From the simple form  
of solution we see that the value of w (p ) rises 
from its zero boundary value with exponential 
sharpness near the surface p =  1. In fact if  
p  =  l — y

w( t ) = 1  -  exp -  (j) y

so that w quickly rises to a constant value of 1 
when <f> is large.

2c. COARSENING THE NUMERICAL METHOD

-  2 (q + l)o ! =  - 2 ( q + l ) w ( p ) / ( l - p 2).

Thus the differential equation would be satis­
fied at the point p =  px if  the value of a, and so 
of Wj =  w (p i) =  a ( l —px2), were chosen to 
satisfy

2 ( q + l ) w i / ( l - p 12) =  £ 2P(Wi). (31)

There is a full-scale theory, that of collocation 
methods, to say where the point p x is best taken, 
but we can use our experience with the sphere in 
the previous section. When q =  2 , for the sphere, 
and P (w ) =  1—w, for the first order reaction, 
equation (31) gives

Wi =  02(1-Pi2) /[6+ ^ d - p , 2)].

Since the approximation should be good for small 
<\> we might hope that this would agree with equa­
tion (29) for small </>. In fact the expansions are 
identical in the first term <j>2( l —p i2) /6  and 
agree in the term of order <£4 if p x2 =  3 /7  or 
px =  0.6547. A more general analysis would show 
that pi2 =  (q + l) . / (q + 5 )  is a good choice.

Let us use this value of pi but return to a 
general P (w ). Then with q =  2, pi2 =  3/7, equa­
tion (31) is

=  P (w i), (32)

Before exploring this equation let us note that 
to the same approximation

Hence, by (14),

V =  =  P (W ,). (33)

/ " \ ften something can be learned from an ex- 
” tremely crude numerical method. This was 
first shown for this problem by Stewart and Vil- 
ladsen [6]. At any rate for small values of <£, 
w (p) =  a ( l —p2) is an approximation that satis­
fies the boundary conditions for a symmetrical 
solution. We can deal with all three symmetrical 
shapes (the slab, cylinder and sphere) by writing 
the Laplacian as

Equation (32) lends itself to a graphical solu­
tion, as is shown in Fig. 3, for the right hand 
side of the equation is the fixed curve P (w) and 
the left side the straight line through 0 of slope 
2 1 /2(f)2. When </> is small the line is steeply sloped, 
like OA, and vj is close to 1. In fact, if  the part 
of the curve P (w ) near P ( 0 ) =  1  is approximat­
ed by the straight line P (w ) =  l+ P 'iO J w ), 
then equation (33) can be solved for w x and
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(34)
On the other hand if  0  is very large the same 
kind of straight line approximation gives

21 Pi i 21
V -  2<f>‘  |_ +  2[—P ' ( l )]</>2

This is not a very good approximation since we 
know that rj<f) tends to be constant for large 
0. However this is not surprising since w (p ) =  
a ( l —p2) is not a good approximation for large 0 .

Much more important is the revelation of the 
possibility of multiple steady states that is made 
in Fig. 3. For if  the curve P (w ) is as shown 
then for values of 0  giving lines between OBC

Fig. 3

and OGH there will be three intersections such 
as D, E and F which will give three values of 17. 
We cannot expect much accuracy beyond the point 
G, but Stewart and Villadsen showed that a sur­
prising accuracy was maintained [6]. The im­
portant thing is that it gives notice of the multi­
plicity of steady states. Furthermore the variable 
Wj can be made a parameter in the computation 
of the 17,0 -curve, since 17 =  P (w x), 0 2 =  21Wi/ 
2 P ( W i ) .  This suggests that some internal value 
of w, such as w ( 0 ) or max w (p) may be taken 
as the parameter along the 17,0 -curve in more 
general cases.

On the basis of this understanding computa­
tion by more exact methods, such as those de­
scribed by Villadsen and Stewart [6] and Fin- 
layson [7], can safely go forward. At the same

time one must be cautious not to push conclusions 
based on crude approximations too far.

2d. CONSIDERING LIMITING CASES

rp H E  LIMITING CASES of large and small 0 have 
already been considered in the partial solu­

tions we have obtained. However they can be 
approached also from the equation itself. If 
0  =: 0, V 2w =  0 giving the solution w  =  0 
and 17 =  P(0) =  1 . Let us see if a solution can be 
generated in powers of 0 2 by setting

w (p) = 0 2w l (p) +  0 4w 2(p) +  ... .

The function P (w ) must be expanded similarly

P (w ) =  l-f-02P'(O) Wj-f-
0 4[P, (O)w2+ i/2P"(O)w12] +  ...

Then comparing powers of 0 2 we have

V 2Wi =  — 1  in il, Wi =  0 on
(35)

V 2w2 =  —P' (0) Wi in H, w 2 =  0 on ...

These equations are linear nonhomogeneous equa­
tions and are easier to solve than the nonlinear 
equation (13). Moreover we can see the form  
which 17 will take, for first wx can be found and 
averaged to give kx (say), then w 2 can be found 
and its average, k2, calculated, and so on. This 
then gives

17 =  l + k 1P'(O )02+ [k 2P '(O )+  i/2k i2P"(O)]04+  ...

which accords with equation (3 4 ) .
This solution for small 0  is obtained by a 

regular perturbation in powers of 0 2 and a regular 
perturbation does not involve a change in the 
character of the equations. The situation for large 
0  is quite different for, if  we put c2 =  1 / 0 2, we 
have

e2V 2w +  P (w ) = 0 .  (36)

The limiting case e =  0 is here quite different 
for it has changed a second order differential 
equation into a non-differential equation 
P (w ) =  0 whose only solution is w =  1. This 
makes sense since it claims that when 0  is large 
(i.e. the reaction rate is vastly greater than the 
diffusion rate) the reaction is virtually complete 
everywhere. But it cannot be true near the sur­
face, for w =  0 on the surface itself and the 
solution is a continuous function of position.

This is the classic situation of a singular per­
turbation problem in which an “inner” solution—  
in this case a solution near the boundary—has to
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be matched with an “outer” solution—in this 
case w =  1. Singular perturbation problems have 
a large literature [8,9,10,111 and this is no place 
to try to survey it, but mention should be made 
of the unusually lucid introduction that Segel 
and Lin [1] give in their book. In the present 
case we know from the experience of Section 2b 
that for large <£, w  can rise with exponential 
sharpness from the boundary. In fact the solu­
tion we found there suggest that we should intro­
duce <£y where y is the normal distance from  
the boundary, as a new variable. This is known 
as a “stretching transformation” since it stretches 
y proportionately to </>. If we introduce an or­
thogonal coordinate system in the boundary sur­
face, say £,rj, and take £ =  <£y as the third co­
ordinate then the Laplacian in equation (36) is

This accords with all that has gone before. In 
particular if, for a sphere, d„ is the radius cr =  
47r, v  =  47r/3 while for a first order reaction

P (s') =  1—s', Soo = 1 • Thus 7) — 3 /(¡> as

we see also from equation (30).

This is the classic situation 
of a single perturbation problem 

in which an "inner" solution—in this 
case, a solution near the boundary 

—has to be matched with an 
"outer" solution . . .

CONCLUSION

32w
0{2 +  V 2* 1 2w

where V 22 4 is a second order operator in f  and rj. 
Substituting this in (36) and letting e =  1 
tend to zero gives

d2w
df2

+  P (w ) = 0 .

But this reduces the problem to the one 
dimensional case that we explored in Section 2a. 
Nor is this surprising since when all the change 
is confined to a thin shell on the outside of the 
pellet the curvature is not important and it might 
well be unfolded as a flat plate. Now the flat plate 
analysis gave

So
[ S W T  =  2 J p (s ')d s '

0
and when s0 approaches 1, as in this case, <£-» oo 
and

1

S -V =  [ 2 | P(s')ds’]1/2 
0

The use of the phase plane and perturbation 
methods has been stressed in illustrating the 
value of the qualitative study of equations. These, 
of course, are not the only methods available—  
the maximum principles [12] and some of the 
theorems on the behavior of the solutions of 
equations come immediately to mind. Amundson's 
papers in general, and some of those with Luss 
[13] and Varma [14,15] in particular, show how 
the skillful use of such tools can give insight into 
much more complicated systems than the one con­
sidered here.

It is not suggested that the maxims, or their 
illustration in the above example, provide an in­
fallible recipe which when followed will open the 
portals of any problem. Rather are they adum­
brated as a framework within which one aspect 
of the craft of mathematical modelling may be

"Exercised in the still night
When only the moon rages
And the lovers lie abed
W ith all their griefs in their arm s.”

Sufficient will be the reward if  for a few  moments 
we find that it is “by singing light” that we have 
haply laboured. □
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