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Preface

By systematically building an optimal theory, this monograph develops and explores
several approaches to Hardy spaces (H? spaces) in the setting of d-dimensional
Alhlfors-regular quasi-metric spaces. The text is broadly divided into two main
parts. The first part debuts by revisiting a number of basic analytical tools in
quasi-metric space analysis, for which new versions are produced in the nature
of best possible. These results, themselves of independent interest, include a sharp
Lebesgue differentiation theorem, a maximally smooth approximation to the iden-
tity, and a Calderén-Zygmund decomposition for a brand of distributions suitably
adapted to our general setting. Such tools are then used to obtain atomic, molecular,
and grand maximal function characterizations of HP spaces for an optimal range
of p’s. This builds on and extends the work of many authors, ultimately creating a
versatile theory of H” spaces in the context of Alhlfors-regular quasi-metric spaces
for a sharp range of p’s.

The second part of the monograph establishes very general criteria guaranteeing
that a linear operator T acts continuously from a Hardy space H? into some
topological vector space £, emphasizing the role of the action of the operator T on
HP-atoms. Applications include the solvability of the Dirichlet problem for elliptic
systems in the upper-half space with boundary data from H?” spaces. The tools
originating in the first part are also used to develop a sharp theory of Besov and
Triebel-Lizorkin spaces in Ahlfors-regular quasi-metric spaces.

The monograph is largely self-contained and is intended for an audience of math-
ematicians, graduate students, and professionals with a mathematical background
who are interested in the interplay between analysis and geometry.

Columbia, MO, USA Ryan Alvarado
March 5, 2015 Marius Mitrea
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Chapter 1
Introduction

The presentation in this section is divided into several parts, dealing with historical
notes and motivation, the principal results, examples, sharpness, approach and main
tools, as well as an overview of contents of the chapters in this monograph.

1.1 Historical Notes and Motivation

One of the most fascinating facets of modern mathematics is studying how geometry
and analysis influence each other. Indeed, combining geometric insights together
with analytic techniques has generated many fruitful ideas and surprising results
throughout the years. We begin by focusing on the role of analysis, a word defined
in Webster’s dictionary as

a breaking up of a whole into its parts as to find out their nature.

This is indicative of one of the most fundamental principles manifesting itself in
Harmonic Analysis, having to do with decomposing a mathematical object (such
as a function/distribution, or an operator) into simpler entities (enjoying certain
specialized localization, cancellation, and size conditions), analyzing these smaller
pieces individually, and then organizing this local information in a global, coherent
manner, in order to derive conclusions about the original object of study. This
principle goes back at least as far as the ground breaking work of J. Fourier in
the early 1800s who had the vision of using superposition of sine and cosine
graphs (with various amplitudes) as a means of creating the shape of the graph
of a relatively arbitrary function. In such a scenario, the challenge is to create a
dictionary between the nature of the Fourier coefficients on the one hand, and the
functional-analytic properties of the original function (such as membership to L2
or [7).

© Springer International Publishing Switzerland 2015 1
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2 1 Introduction

This point of view has received further impetus through the development of
Littlewood-Paley theory (especially in relation to the LP-setting with p # 2), leading
up to the modern theory of function spaces of Triebel-Lizorkin and Besov type.
Another embodiment of the pioneering ideas of Fourier that has fundamentally
shaped present day Harmonic Analysis is the theory of Hardy spaces viewed through
the perspective of atomic and molecular techniques. This time, the so-called atoms
and molecules play the role of the sine and cosine building blocks (though this
times they form an “overdetermined basis” as opposed to a genuine linear basis).
First introduced in the work of R.R. Coifman in [Co74] (for n = 1), R.H. Latter
in [Lat79] (for n > 1), then benefiting from insights due to many specialists (see
[CoWe77, MaSe79ii, GCRAF85, Car76, FollSt82, Li98, Uch80, TaiWe79, TaiWe80,
St93, DafYuel2, HuYaZh09, HaMuYa06, GraliuYa09iii, GraLiuYa09ii, YaZh10,
Bo03, Bo05, BoLiYaZhl10], and the references therein) this body of work has
evolved into a beautiful multifaceted theory, with far-reaching implications in
many branches of mathematics. To put matters into a broader perspective it is
worth recalling that the history of Hardy spaces can be traced back to 1915 when
G.H. Hardy has associated in [Har15] integral means, for a holomorphic function F
in the unit disk, of the form

w ) 1/p
wt.ni= ([ 1Feeras) " reo (LD
if p € (0, co) and its natural counterpart corresponding to the case when p = oo, i.e.,
hoo(F.7) == sup |F(re”)|, re[0,1) (1.2)
—r<O<mw

and showed that i, (F, r) was increasing as a function of r. It was eight years later,
however, that the emergent young theory has gathered momentum through the work
of F. Riesz in [Ri23] where he considered the class of functions, denoted by H”
(0 < p < 00), consisting of functions F' which are holomorphic in the unit disk and
satisfy

sup u,(F,r) < oo. (1.3)

0<r<l1

The internal logic also dictates the consideration of H” spaces of holomorphic
functions F in the upper half-plane subject to a growth control condition of the
form

o
sup / |F(x + iy)|P dx < oo. (1.4)

O<y<oo J—o0

The theory of H” spaces originally developed as an important bridge between
complex function theory and Fourier Analysis, two branches of mathematics which
tightly interfaced with one-another. On the one hand, methods of complex function
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theory such as Blaschke products and conformal mappings played a decisive role.
On the other hand, they yielded deep results in Fourier analysis. Excellent accounts
on this period in the development Hardy spaces may be found in the monographs of
A. Zygmund [Zyg59], P.L. Duren [Dur70], and P. Koosis [Koo80].

It was natural that extensions of this theory would be sought with R” replacing the
real line in (1.4). Specifically, one was led to considering systems F = (uy, ..., u,)
of harmonic functions in Rf‘:’l satisfying natural generalizations of the Cauchy-
Riemann equations as well as

sup |F(x1, ..., X0, Y)P dxy . ..dx, < oo. (1.5)

O<y<oo JR?

This is the point of view adopted in [FeffSt72], building on the earlier work in
[StWe60, St70, StWe71]. In this theory of harmonic H? spaces it was natural to
shift the focus from the harmonic functions themselves to their boundary values,
which are tempered distributions on R” from which the harmonic functions can
be recovered via Poisson’s integral formula. The resulting spaces, HP (R"), are
equivalent to L (R") when p > 1, but acquire distinct nature when p < 1. While
complex function theory is no longer available, harmonic majorization proved to be
at least a partial substitute. This approach originated in the work of Stein-Weiss.

The early 1970s brought a series of major developments in quick succession
which, in turn, led to a profound restructuring of the theory. One particularly
significant breakthrough was due to Burkholder, Gundy, and Silverstein who, using
Brownian motion techniques, have obtained in [BurGuSil71] a one-dimensional
maximal characterization of H” in terms of Poisson integrals. A concrete way of
phrasing this is to say that a holomorphic function F = u + iv belongs to H? if
and only if N'u, the nontangential maximal function of u = Re F, belongs to L.
The upshot of this is that while the H? theory was still interfacing with harmonic
functions, it was no longer necessary (at least in the upper-half plane) to rely on the
Cauchy-Riemann equations.

In the wake of these exciting developments, two basic issues were brought
to prominence, namely: (1) extending the Burkholder-Gundy-Silverstein result to
higher dimensions, and (2) clarifying the role (indispensable, or rather accidental)
of the Poisson kernel in these matters. In particular, it turned out that the Poisson
kernel can be replaced by any approximation to the identity (fashioned out of a
fixed Schwartz function ¢ with (¢ # 0) or one can take into account “all”
possible approximate identities in terms of a very useful tool—the “grand maximal
function”. More concretely, in their pioneering work in [FeffSt72], C. Fefferman and
E.M. Stein have shown that the n-dimensional Hardy spaces, developed in [StWe60]
have purely real-variable characterizations as the space of tempered distributions f
in R" whose radial maximal function, f¢+, or nontangential maximal function, f*
( f is assumed to be a bounded distribution in this case), or whose grand maximal
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function, f;{, belongs to L7 (R"), where, roughly speaking, for each x € R”

f () = sup ) |(f * @) ()]

t€(0,00

f*x) = sup sup [(f *P)(I, (1.6)
1€(0,00) ‘yEHT”
X—y <t

Sa(x) == sup f5" (),
deA

where ¢ is some Schwartz function with f]R” e(x)dx # 0, p;(x) == tT"p(x/1),
t > 0, P is the Poisson kernel P(x) := c,(1 + |x|?)~®*D/2 and A is a collection
of suitably normalized Schwartz functions. It was also shown in [FeffSt72] that this
characterization is independent of the choice of ¢, thus unambiguously defining
the notion of Hardy spaces in n-dimensions. In particular, the Poisson kernel no
longer played a crucial role and could be replaced with any suitable Schwartz
function. This development came near the beginning of a series of advancements
in the real-variable theory of Hardy spaces including the well-known duality result,
originally due to C. Fefferman [Feff71], which identified the dual of H' as the
space of functions of bounded mean oscillation BMO, introduced by F. John and
L. Nirenberg in [JoNir61]. From this result, emerged the atomic decomposition of
H' mentioned earlier.

As regards the role of geometry, one fundamental development (from the
perspective of the work undertaken here) is the consideration of environments much
more general than the Euclidean ambient, through the introduction of the so-called
spaces of homogeneous type. The basic references in this regard are [CoWe71] and
[CoWe77], which have retained their significance many decades after appearing
in print. More specifically, by the late 1970s it has been fully recognized that
much of contemporary real analysis requires little structure on the ambient. Indeed
Hardy-Littlewood like maximal functions, functions of bounded mean oscillation,
Lebesgue’s differentiation type theorem, Whitney decompositions, singular integral
operators of Calder6n-Zygmund-type, etc., all continue to make sense and have
a rich theory in spaces of homogeneous type. The latter spaces are quasi-metric
spaces equipped with a doubling Borel measure. The reader is reminded that a
function p : X x X — [0, 00] is said to be a quasi-metric on the ambient set' X,
if p~1({0}) = diag(X), the diagonal in Cartesian product X x X, and

p(x.y) ~ p(y. x)
C,:= sup < 00, C, := sup < 00. 1.7)
T e max{p(x,2), p(z 1)} ’ e ()
not all equal x#£y

ITacitly assumed to have cardinality at least 2.
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Analysis in spaces of homogeneous type is now a well-developed field with
applications to many areas of mathematics.

Focusing specifically just on metrics, i.e., considering objects satisfying the
standard triangle inequality

plx,y) < px,2) + p(z,y), Vxyz€eX, (1.8)

as opposed to a more inclusive quasi-triangle inequality, best expressed” in terms of
the quasi-subadditivity condition

p(x.y) = C max{p(x,2), p(z.)},  Vx,yz€X, (1.9)

would miss the mark, since this would preclude differentiating the various nuances
within the very class of metrics. In a nutshell, some metrics are better behaved than
others and, as a result, one has to make provisions for detecting such qualities and
be able to understand their implications for our theory. We shall return to this point
later in the narrative (see the discussion following the statement of Theorem 1.2).

Perhaps nothing typifies these developments better than the emergence of the
theory of Hardy spaces in spaces of homogeneous type. As noted earlier, a basic
feature of this theory is the ability of decomposing “distributions” belonging to
the Hardy space into atoms. As such, when the Euclidean Hardy space theory
was extended to the more general context of a space of homogeneous type X in
[CoWe77], R.R. Coifman and G. Weiss adopted the said atomic decomposition as
the definition of Hardy space H? for p € (0, 1]. Granted the natural limitations
of such a general environment, the resulting spaces will only coincide with their
Euclidean counterparts for p’s sufficiently close to 1, as higher vanishing moments
involving polynomials are typically unavailable. Nevertheless, a rich theory of
Hardy spaces ensued. In particular, it was shown that the dual of these atomic Hardy
spaces coincides with the space of Holder-continuous functions of order 1/p — 1,
when p < 1, and with BMO when p = 1 (cf. [CoWe77, p. 593]). Moreover, it was
noted that L. Carleson’s proof of the duality between H' and BMO in [Car76] can
be adapted to the setting of spaces of homogeneous type and this was used to obtain
a maximal characterization of H'(X).

Given a space of homogeneous type (X, p, #) (where X is the ambient set,
p 1s a quasi-distance, and p is a Borel doubling measure on X), one issue that
arises in the consideration of Hardy spaces, H”(X) in this setting is that unless p
is “near” to 1, then these spaces become trivial. At the heart of the matter is the
fact that Holder spaces reduce to just constant functions if the smoothness index
is too large. Such a phenomenon is well-known in the Euclidean setting where the
homogeneous Holder space ¢ (R9) reduces (thanks to the Mean Value Theorem)

%In the sense that the optimal constant for the inequality in (1.9) encodes significantly more
precise geometric information than the constant appearing in the standard quasi-triangle inequality
p(x.y) < Cp(x.2) + p(z.y)). Vx.y.z €X.
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to just constants whenever o > 1. However, given an arbitrary quasi-metric space,
the upper smoothness bound may, in principle, not be 1. From this perspective, a
central question is that of determining the range of p’s, say

p € (px. 1], (1.10)

where py is a natural threshold index depending on the geometry of X for which
there exists a satisfactory theory of Hardy spaces H”(X). This issue is implicitly
raised in the work of R.R. Coifman and G. Weiss (see, in particular, the comment
on the footnote on p.591 in [CoWe77] where the authors mention a qualitative,
unspecified, range of p’s for which their construction works) and, more recently,
resurfaces in [HuYaZh09, Remark 5.3 on p. 133]. In this vein, the first significant
attempt to clarify the nature of the range of p’s for which there exists a satisfactory
HP? theory on a space of homogeneous type X is due to R.A. Macfas and C. Segovia
who, in [MaSe79ii], have obtained a grand maximal function characterization for
the atomic Hardy spaces H” (X) of Coifman-Weiss for

1
Pe (1 + [logy(A,(2A, + 1)L 1} (1.11)

where A, is the best constant usable in the quasi-triangle inequality satisfied by
P, 1.e.,

Aw:sw-—lgﬂ——emw) (1.12)

xyzex P(x,2) + p(z,y)

not all equal

Unfortunately, the above range is far from optimal and, in turn, results based on the
Macias-Segovia theory have inherent, undesirable limitations. One such limitation
is the fact that the work in [MaSe79ii] is not a genuine generalization of the classical
theory in the Euclidean setting. Indeed, if X = R, p = |- — -], and u = LY, the
one-dimensional Lebesgue measure, then (X, p, ) is a space of homogeneous type
for which the constant A|._ in (1.12) is 1. Therefore, the range of p’s associated as
in (1.11) becomes

1
pE (—1 Flog, 31 1i| (1.13)

which is strictly smaller than the familiar interval (1/2,1]. One of the sources
responsible for the format of the critical index in (1.11) is a metrization result
proved by R.A. Macias and C. Segovia in [MaSe79i, Theorem 2, p.259] which
has played a very influential role in the analysis on spaces of homogeneous type,
since its inception. This is a popular result which has been widely cited; see, e.g., the
discussion in the monographs [Chr90i] by M. Christ, [St93] by E.M. Stein, [Trieb06]
by H. Triebel, [Hein01] by J. Heinonen, [HaSa94] by Y. Han and E. Sawyer,
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[DaSe97] by G. David and S. Semmes, as well as [DeHa09] by D. Deng and Y. Han,
to name a few. While the canonical topology in a quasi-metric space is metrizable,
it is a rather subtle matter to associate metrics, inducing the same topology, in a way
that brings out the quantitative features of the quasi-metric space in question in an
optimal manner.

Up until now, the limitations of the Macias-Segovia theory have been tacitly
regarded as perhaps the price to pay for considering such a degree of generality
by weakening the structures involved, to the point that even a good conjecture as
to what constitute a reasonable range of p’s has been missing in the literature. In
retrospect, there are attenuating circumstances for the lack of such a conjecture,
since the critical endpoint px € [0, 1), ensuring a satisfactory H? theory for all p’s
as in (1.10), depends on a rather subtle manner on the geometry of the ambient. A
tantalizing hint of the complexity of this issue is the fact that px not only depends
of the Ahlfors Regularity dimension d € (0, co) of X, defined via the demand that
the measure of balls of radius r is proportional with 74, but also on the nature of the
“best” quasi-distance within the class of all quasi-distances pointwise equivalent to
p. Agreeing to denote the said pointwise equivalence by the symbol =, the latter
feature is quantified via the “index”

-1

/
ind (X, p) := sup (logZCp/)_1 = sup 10g2|: sup P&y :|

p'=p p'=p x,y.2€X maX{P (-x Z) P (Z, y)}

not all equal

-1

_ sup log,|  sup (0p)(x,y)
0:XxX—R x,y.2€X max{(@p)(x, Z)v (010)(27 y)}

0 <inff <supf <00 not all equal

(1.14)

recently introduced and studied in [MiMiMiMo13]. In this connection we wish
to remark that this number is strongly sensitive to the quasi-geometry of the
environment, as evidenced by the following properties:

ind (X, p) > 1 if there exists a genuine distance on X

o P) = L . ’ (1.15)
which is pointwise equivalent to p;
ind (Y, p) > ind (X, p) for any subset Y of X; (1.16)
indX,||-—-D=1if (X,|-])isa nontr1v1a1 normed (1.17)
vector space; hence ind(R”, |- —-|) = :
ind(Y, | -—-]|) = 1if Y is a subset of a normed vector
space (X, |- | contalnmg an open line segment —hence (1.18)
ind ([0, 1], |- —-]) =
ind (X, p) < 1 whenever the interval [0, 1] may be bi- (1.19)

Lipschitzly embedded into (X, p);
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(X, p) cannot be bi-Lipschitzly embedded into some

R", n € N, whenever ind (X, p) < 1; (1.20)
ind(X,p) < dif (X,7,) is pathwise connected and 1.21)
(X, p) is equipped with a d-AR measure; '
there are compact, totally disconnected, AR spaces
with index oo, e.g., the four-corner planar Cantor set (1.22)
equipped with | - — - |;
ind (X, p) = oo whenever the underlying set X has (1.23)
finite cardinality; )
ind (X, p) = oo if there exists a ultrametric’ on X (1.24)
which is pointwise equivalent to p; ’

N N
ind (l];ll X, i\=/l pi) = 1IsniiSnNind (X, p;) for any quasi- (125)

metric spaces* {(X;, pi)}i\;l .

In (1.21) and elsewhere, the topology 7, induced by a quasi-metric p on X is given by

def
Oet, <= 0 CXandVxe 0 3r> 0such that
By(x,r):={yeX: px,y)<r} CO.

(1.26)

In relation to the manner in which the index has been introduced in (1.14), a
natural question is whether the supremum intervening in its definition is actually
attained. An example of a setting where the question just asked has a positive answer
is as follows. Fix y € (0, c0) and consider the quasi-metric | - — - |” in R¢. Then
inf{C, : p ~ |-—-|"} is actually attained. Indeed, from the first formula in (1.7)
one readily obtains C|._y = 27, and we claim that G, > 2 forevery p ~ |- — - |".
In turn, this claim is justified via reasoning by contradiction. Specifically, apply
the fact that every function defined on an open connected subset of the Euclidean
space satisfying a Holder condition with exponent > 1 is necessarily constant, to
the function px(0,-) (defined as in Theorem 1.3, formulated a little later) in any
Euclidean ball whose closure is contained in R? \ {0}. In light of the Holder-
type condition formulated in (1.74) from Theorem 1.3, this yields a contradiction
whenever B € (0, (log,C,)~") is such that g > y~'.

However, it may happen that the supremum intervening in the definition of the
index in (1.14) is not actually attained. The following result from [BriMil3] sheds
light on this phenomenon.

3Recall that a distance d on the set X is called an ultrametric provided that in place of the triangle-
inequality, d satisfies the stronger condition d(x, y) < max {d(x, z),d(z,y)} for all x,y,z € X.

4With notation explained in Proposition 2.14.
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Theorem 1.1 There exists a quasi-metric space (X, p) with the property that the
infimum

Cx,p) := inf{Cp/ S p} (1.27)
is not attained. Furthermore, X may be taken to be a vector space which is
separable, complete, and locally bounded with respect to t,. For example, let L

be the collection of equivalence classes of complex-valued, Lebesgue measurable
functions defined on [0, 1]. Also, fix py € (0, 1], define || - || : L — [0, co] by

YueL, (1.28)

1

]| := inf{/\ € (0, 00) : / /A /\},
o In(ju(x)/Al* + e)

andset X :={u € L: |u|| < oo}. Then X is a vector space, || - || is a quasi-F-norm
on X, and for each p € (0,po) there exists a p-homogeneous norm on X, call it
| - |, which induces the same topology on X as || - ||. Also, if p : X x X — [0, 00)
is defined by p(u,v) = |lu — v||, for all u,v € X, then p is a quasi-distance
(in fact, a translation invariant, p-homogeneous, genuine distance) on X such that
G e (2770 2] and the quasi-metric space (X, p) has all the attributes listed in the
first part of the statement. In particular, Cx ;) = 2°/P0 byt Gy > 20/ for every
quasi-distance p' = p.

1.2 Sampling the Principal Results

The main aim of the current monograph is to systematically develop a theory of
Hardy spaces in a very general geometric and measure theoretic setting with special
emphasis on the optimality of the range of applicability of such a theory, thus
bringing to a natural conclusion a number of attempts which have only produced
partial results. In particular, the main thrust of our work dispels the aforementioned
preconceptions by producing a theory of Hardy spaces in d-AR (d-dimensional
Ahlfors-regular) spaces for a range of p’s which is strictly larger than that suggested
by Macias-Segovia in (1.11) and which is in full agreement with its Euclidean
counterpart. In this regard, one of the main novelties is the systematic involvement
of the index (1.14) in the formulation of the main results. As such, the work in
this monograph falls under the scope of the general program aimed at studying the
interrelationship between geometry and analysis, by addressing issues such as

how to relate the geometry of an environment to the analysis it can support.

The theorem below exemplifies the specific manner in which the general question
just raised is addressed in this monograph. While precise definitions are given later,
here we wish to mention that H”(X), H,,(X), H ,(X), H!, (X) stand, respectively,
for Hardy spaces on X defined via the grand maximal function, via atoms, via
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molecules, and via ions. Moreover, a Borel measure p on a topological space
(X, 7) is said to be Borel-semiregular provided that for each p-measurable set E
having finite p-measure there exists a Borel set B “befitting” E in the sense that
the symmetric difference of E and B (i.e., the disagreement between E and B) is a
null-set for p (see Definition 3.9 in the body of this work). The significance of this
regularity assumption will be discussed in further detail in Sect. 1.4. Then a version
devoid of technical jargon of the theorem alluded to earlier reads as follows.

Theorem 1.2 (Characterization of H”(X)) Let (X, p, ) be a d-AR space for
some d € (0,00) where |4 is assumed to be a Borel-semiregular measure on X.
Recall ind (X, p) from (1.14). Then whenever

d
one has
HP(X) = Hi,(X) = H., (%) (1.30)

with equivalent quasi-norms, whereas if p € (1, o],
HP(X) = LP(X, p) (1.31)

with equivalent norms. Moreover, with indy (X, p) denoting the so-called Hélder
index (defined in (2.141)), if

d
7 (0 e ) (152

then

{0} if pX)=oo,
C if pulX) <oo.

Hy(X) = H,,,/(X) = (1.33)

If in addition w(X) < oo (equivalently, if X is a bounded set) and p is as in (1.29)
then

H'(X) = H (X) (1.34)

won

with equivalent quasi-norms, and

P _ . d
H,,(X)=C if pe (0, T X)) (1.35)
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It turns out that working exclusively with the given quasi-metric p produces a
Hardy space theory for the range

d
el ——m——, , 1.36
P (d+(1ogch)—l ”} (13

involving a left end-point which, in general, can be strictly larger than the left end-
point of the range of p’s in (1.29). However, while the Hardy space H” (X) remains
unchanged if one replaces p with any other p’ satisfying p’ & p, the left end-point of
the interval in (1.36) becomes WC#)_I under such a replacement. It is therefore
apparent that identifying the largest range of p’s for which a Hardy space theory is
viable necessarily involves an optimization process, with respect to the quasi-metric
involved. This may (and, in general, does) require departing from the original quasi-
metric (even in the case when the said quasi-metric is actually a metric) and work
with a replacement within its which is pointwise equivalence class which is better
suited for the present goals. A case in point is offered by the four-corner planar
Cantor set E (defined in (2.106) below), which happens to be 1-AR (i.e., d = 1).
Specifically, it turns out that there exists a quasi-metric® p’ on E, which is pointwise
equivalentto p 1= |- —-| . and Cy = 1, hence (bearing in mind that C, = 2),

1
1 + (log, Cy)™!

1 1
- 0<-=— (1.37)
2 14 (log, Cp)!

A direct consequence of Theorem 1.2 is the observation that

if (X,p) is a metric space equipped with a d-AR measure which is Borel-
semiregular then the associated Hardy scale behaves in a natural fashion on the.
interval (diﬂ, 1]

(1.38)
In particular, the characterizations in (1.30) hold whenever p € (#, 1]. Another
feature of Theorem 1.2 is that its statement adapts naturally to the case when the

ambient is a Cartesian product of AR spaces. Indeed, if for each i € {1,...,N}
some d;-AR space (X;, p;, it;) is given, then taking

N N

2=1]% r=\r n=Q wm (1.39)
i=1

i=1 1<i<N

yields a d-Ahlfors-regular space, with dimension d := d; + -+ + dy, for which
ind (27, p) = lminN ind (X;, p;) (cf. (1.25)). As such, a viable H? space theory on
<is

SWhich actually is an ultrametric.
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N
the product space 2~ = [] X; can be developed for
i=1

d d

c oo | = Y | a4

P d+ min ind (X;. p) (1?%’M+1nd(x,-,p,-) } (1.40)
<i<

For example, X; := E, the four-corner planar Cantor set, and X, := [0, 1] (both
equipped with the Hausdorff one-dimensional measure and the natural Euclidean
distance), yields a Hardy space theory for H? (E x [0, 1]) with p € (%, o0]. A plethora
of other embodiments of Theorem 1.2 is presented in the next subsection.

1.3 Examples

It is evident from Theorem 1.2 that the range of p’s for which there exists a
satisfactory theory of Hardy spaces is intimately linked to both the geometric and
measure theoretic aspects of the underlying environment. In order to illustrate the
implications (with regards to the conclusions of Theorem 1.2) that follow from the
range of p’s identified in (1.29) and (1.32) we include several figures demonstrating
how such ranges change depending on the choice of the underlying ambient. We
begin with the setting of arbitrary d-Ahlfors-regular spaces (Fig. 1.1).

HP? = Trivial Rich HP Theory HP = [P

4 A L
\ Y \ 1 1

d d
0 d+ind g (X,p) d+ind (X,p) 1 o0

Fig. 1.1 The structure of the H” scale in the context of an arbitrary d-AR space

The gap in Fig. 1.1 is not entirely surprising (or unnatural) given the rather abstract
nature of the setting we are presently considering. Although the definition of H? (X)
continues to make sense for p in this range as well, it is not clear what, if any, good
properties these spaces enjoy. An example of such a setting is as follows: given
a,b,c,d e Rwitha < b < ¢ <d, then

ind ([a,b] Ule,d],|-—- |) =1 and indH([a, blU[c,d],|-—- |) = 00.
(1.41)

The next example illustrates the fact that from the range of p’s in Theorem 1.2

we recover the familiar condition p € (#, 1] when the underlying ambient is the

d-dimensional Euclidean setting. This is a significant improvement over the work in
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[MaSe79ii, Theorem 5.9, p. 306] which highlights one of the distinguishing features
of Theorem 1.2.

HP = Trivial Rich H? Theory HP = [P

o 1 1

-~

0 = 1 o0

Fig. 1.2 The structure of the H” scale when the underlying space is a nontrivial normed vector
space equipped with a d-Ahlfors-regular measure

As stated in the above caption, the range of p’s in Fig. 1.2 is to be expected when
the underlying space is any nontrivial normed vector space equipped with a d-AR
measure. In fact, if (X, ||-||) is a normed vector space equipped with a d-AR measure
W, then this range of p’s if one considers H? defined on the space (Y, ||-—-||, 1) where
Y is any p-measurable subset of X containing a nontrivial convex set. In contrast,
if one applies the results [MaSe79ii, Theorem 5.9, p. 306] in the Euclidean® setting,
one obtains a “rich” HP-theory only for the range appearing in (1.13).

The following example demonstrates that there are environments in which one
has non-trivial Hardy spaces for any p € (0, oo] (Fig. 1.3):

Rich H? Theory HP = [P
o ] ]

0 d;j_l 1 00

~

Fig. 1.3 The structure of the H? scale when the underlying is an ultrametric space

Remarkably, in the setting of d-AR ultrametric spaces the range of p’s for which
there exists a satisfactory Hardy space theory is strictly larger than the expected
condition dd? in the d-dimensional Euclidean setting. Such a range of p’s cannot
be obtained by the results in [MaSe79ii] since the techniques employed by these
authors will never allow p < 1/2. A particular example of such a setting is
four-corner planer Cantor set when equipped with Euclidean distance and the
one-dimensional Hausdorff measure (see Example 2 in Sect. 2.4 for more details
regarding this environment).

Ultrametric spaces happen to be totally disconnected, i.e., the only connected sets
in (X, 7,) consists of singletons, where 7, is the topology on X naturally induced by
p (as in (1.26)). It turns out that if the underlying space exhibits a certain degree
of connectivity then there is a substantial range of p’s for which H? is trivial. More

Their results are only applicable in the one-dimensional Euclidean setting.
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specifically, if the underlying space is pathwise connected (in the sense that any two
points can be joined via a continuous path) then (Fig. 1.4).

HP? = Trivial Rich H? Theory HP =[P

° A} L
U \ 1 1

1 d d
0 3 T ndn(Xp) dFmd(X.p) 1 ey

Fig. 1.4 The structure of the H” scale when the underlying space is a pathwise connected d-AR
space

In the above setting, one has that indgy (X, p) < d which forces % < m.
Hence, in this context H? is trivial for each p € (0, 1/2).
If (X, p) is a metric space and p is a d-AR measure on X then

H? = Trivial Rich H? Theory HP =[P
( \ ( o
5 7 C p—
d d d
0 T+ind s (X.0) TFmd (Xp) a1 1 o0

Fig. 1.5 The structure of the H” scale when the underlying d-AR space is equipped with a genuine
distance

In particular, as indicated by Fig. 1.5, when the ambient is endowed with a distance
then one is guaranteed a satisfactory HP-theory for every p € (ﬁ_l, 1] since in
such a setting there holds ind (X, p) > 1. This is remarkable since the latter range
is typically associated with Hardy spaces in R? (a setting with a rich structure).
Recalling (1.41) on the one hand, and the fact that indy (R, |- — - |) = 1 on the
other, we cannot infer anything definitive (in general) regarding the range for which
HP(X) is trivial.

Combining the previous two examples, if (X, p, ;) is a pathwise connected
Ahlfors-regular space of dimension 1 where p is a genuine distance on X, then the
range of p’s in Theorem 1.2 is (Fig. 1.6):

HP = Trivial Rich HP? Theory HP =[P

Fig. 1.6 The structure of the H” scale when the underlying space is 1-AR, pathwise connected,
and equipped with a genuine distance
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The work in [MaSe79ii] was carried out in the setting of so-called normal spaces
which are a generalization of the one-dimensional Euclidean setting. As argued
more persuasively later, from the perspective of applications it is necessary to have a
theory of Hardy spaces in the context of arbitrary d-AR spaces. In addition to provid-
ing a context in which many of the results done in the Euclidean setting can be gener-
alized, the category of d-AR spaces encompass a variety of environments which are
fairly exotic (relative to (R?, | - — - |, £¢)) and important in many branches of mathe-
matics. We now take a moment to include several examples demonstrating this fact.

Example 1 (BMOy)-graphs) Consider a function ¢ € BMO(;)(R"), the homoge-
neous BMO-based Sobolev space of order one in R”, i.e., assume that

¢ : R" — Ris locally integrable, with Vg € Llloc and (1.42)
IVl := sup][ ‘V(p(x) - (][ Vo(y) dy)‘ dx < 0. (1.43)
Bball J B B
Define
X :={(x,0(x): xe R"} C R, w=H",, (1.44)

and consider p to be the restriction to X of the Euclidean distance from R"*!. Then
[HoMiTalO, Proposition 2.25, p. 2616] ensures that

(X , P, ,u) is a n-AR space equipped with a genuine metric. (1.45)

In this case, the scale of the corresponding Hardy space H? (X, p, i) has a structure
asin Fig. 1.5 withd = n. |

Example 2 (Lipschitz-Surfaces) Call a nonempty, proper, closed subset X of R" a
Lipschitz surface if for every xo € X there exist r,c > 0 with the following
significance. One can find an (n — 1)-dimensional plane H € R” passing through
the point xo, a choice N of the unit normal to H, and an open cylinder

Cro:={X+IN: X €eH, |¥—x0| <7, |t] <c}
such that
CreNX=CreN{Y' + ()N : X €H} (1.46)
for some Lipschitz function ¢ : H — R satisfying
px) =0 and |p()| <c if |¥ —xo| <r. (1.47)

Taking p := H"! | y and considering p to be the restriction to X of the Euclidean
distance from R”, it follows from Example 1 that

(X.p. ) isa(n—1)-AR space equipped with a genuine metric. (1.48)
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In this case, the scale of corresponding Hardy space H” (X, p, 1) has a structure as
in Fig. 1.5 withd =n — 1. |

Example 3 (n-Thick Subsets of R") A Lebesgue measurable set X € R” is said to
be n-thick if there exist C € (0, 00) and r, € (0, 0o) with the property that

E"(XﬂB(x, r)) > Cr', VxedX, Vre(0,r,). (1.49)

It turns out that a demand equivalent to (1.49) is the existence of some ¢ € (0, co0)
such that

L"(X N B(x,r)) > cr, VxeX, ¥re (0, diam(X)). (1.50)

Taking p := £”|  and considering p to be the restriction to X of the Euclidean
distance from R”, it follows that

(X , P, ,u) is a n-AR space equipped with a genuine metric. (1.51)

In this case, the corresponding Hardy space H” (X, p, j¢) has a structure as in Fig. 1.5
with d = n. This being said, it is worth elaborating on a number of concrete
examples of this kind. A scheme shedding light on this topic is presented below:

n-thick <= interior corkscrew condition <— NTA domain

= A4-domain <= BMO(j)-domain <= Lipschitz domain (1.52)

A few clarifications are in order. First, for the notions of interior corkscrew
condition and NTA (aka non-tangentially accessible) domain the reader is referred
to [JeKe82]. Second, recall that a function ¢ : R” — R belongs to Zygmund’s
A« (R") class if

h —h)—2
lolla.n = sup et ) +o—n) —29W| _ - (1.53)
x,heR” Ihl

A typical example of a function in A.(R) is Weierstrass’ nowhere differentiable
function (Fig. 1.7)

o0 . i
o)
o) er (1.54)
j=0
Third, a A x-domain is an open set in R” locally of the form

{(x/,xn) eR": x, > (p(x’)} (1.55)
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o0

Fig. 1.7 The upper graph of f(x) = Z
j=0

sin (72x)
2

where the function ¢ € A«(R"™"). According to [JeKe82, Proposition 3.6 on p. 94],
any A.-domain is NTA, and this accounts for the third implication in (1.52). Next,
by [HoMiTalO0, Proposition 3.15, p. 2637], the inclusion

BMO;)(R") <> A (RY), (1.56)

is well-defined and continuous. As a result, any BMO; domain is a A «-domain.

In this vein, let us also mention that any (&, ) domain in R” (as defined in
[Jon81]) satisfies an interior corkscrew condition and, hence, the claim made in
(1.51) continues to hold in such a case. In particular, these considerations apply
to the classical von Koch snowflake domain of conformal mapping theory (with
n=>2).

One common feature of the examples of Ahlfors-regular spaces manufactured out
of n-thick subsets X of R” (equipped with the Lebesgue measure and the Euclidean
distance) is that the corresponding Hardy scale H”(X) behaves in a natural fashion
for a range of p’s that contains the interval (;77. 1]. This is remarkable since the
interval in question is typically associated with Hardy spaces defined in the entire
Euclidean space R” (hence, restricting to the type of sets considered here does not
impose restrictions on the range of p’s for which the Hardy space behaves in a
natural fashion). |

Example 4 (Fractal Sets) Let Q = [0, 1]" be the closed cube with side-length 1.
Trisect each side of Q and remove the inner cube with side-length 1/3. Repeat
this process the remaining 3" — 1 cubes side-length 1/3. Iterating this indefinitely
produces the so-called n-dimensional Cantor set %,,. Define

d:=log;(3" —1). (1.57)
Then (cf., e.g., [Trieb97, Theorem 4.7, p.9]) equipping %, with the Euclidean

distance and the measure Hd|(€ yields a compact d-AR set. Consequently, the
corresponding Hardy space has a structure as in Fig. 1.5. Moreover, when n = 1
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it has been shown in [MiMiMiMo13, Comment 4.31, p. 202] that the restriction to
%) of standard Euclidean distance on the real line is equivalent to an ultrametric
(Fig. 1.8). In this scenario the associated H? scale is as in Fig. 1.3.

(a) First Generation ) Second Generation (c¢) Third Generation

Fig. 1.8 The first three iterations in the construction of 4,

Similar considerations apply to the planar Sierpinski gasket with d := log, 3, the
three-dimensional Sierpinski tetrahedron with d := log, 4, etc. (Fig. 1.9).

L As £

) First Generation ) Second Generation ) Third Generation ) Sixth Generation

Fig. 1.9 Iterations in the construction of the planar Sierpinski gasket

Here we also wish to mention that the von Koch’s snowflake curve in R? is

another example of a d-AR metric space with d := log; 4 (Fig. 1.10). |
(a) Zeroth Generation (b) First Generation (¢) Second Generation (d) Fourth Generation

Fig. 1.10 TIterations in the construction of von Koch’s snowflake curve
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Example 5 (Push Forward of Ahlfors Regular Spaces) Suppose (X,p,u) is a
d-AR space for some d € (0,00) and assume that there exists a set ¥ and a
bijective mapping ® : X — Y. Define the forward push of p and p via ® by

px(x.y) = p(@7'(0). @7 (),  Vayey (1.58)
px(A) = u(®7'(A)). VA € M., (1.59)

where M, 1= {A CY: o lA)is p,-measurable}. Then
(Y, P p,*) is a d-AR space and ind (Y, px) = ind (X, p). (1.60)

Thus, through the consideration of p, and p« structures are transferred from X to Y
via the bijection . |

1.4 Sharpness

The theory developed in this monograph is optimal from a number of perspectives,
including:
* Sharpness in terms of the nature of the range of p’sin (1.29)":
—(1.29) reduces precisely to (#, 1] in (Rd, [ -—-1, Ld);
—(1.29) becomes (0, 1] when the original quasi-distance is an ultrametric;

—(1.29) is invariant under power-rescalings of the quasi-distance.
(1.61)

* Sharpness in terms of the regularity of the quasi-distance:
some of the main tools involved in establishing Theorem 1.2 are based on
the sharp metrization theory recently developed in [MiMiMiMol3]. These
include:

— approximation to the identity of maximal order;

— a quantitative Urysohn’s lemma, granting the ability to construct normalized
“bump functions” possessing maximal smoothness and separating two given
disjoint closed sets which, in turn, allows one to manufacture a partition
of unity exhibiting an optimal amount of smoothness as well as precise
quantitative control in terms of geometry;

— density of Holder functions (of maximal order) in Lebesgue spaces.

"The reader is reminded that (1.29) is the range of p’s for which the H? Hardy spaces considered
on Ahlfors-regular spaces enjoy properties comparable in scope and power to those in the standard
Euclidean setting.
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* Sharpness interms of the regularitydemands on the measure:
Historically, Lebesgue’s Differentiation Theorem and the theorem pertaining to
the density of continuous functions in Lebesgue spaces have had an ubiquitous
influence, playing a key role in establishing many basic results in the area
of analysis on spaces of homogeneous type, including the treatment of Hardy
spaces in such a setting (see, e.g., [CoWe77, Li98, HuYaZh09, Hein01, Cald76,
MiMiMiMo13]). Typically, sufficient conditions on the underlying measure have
been imposed in order to ensure the availability of the aforementioned theorems.®
Here we actually identify the conditions on the underlying measure which are
necessary and sufficient for the veracity of these theorems.

* Sharpness in terms of the arbitrariness of the Ahlfors
regularity dimension: Originating with [MaSe79ii] the notion of nor-
mal space, translating in the language employed here into a one-dimensional
Ahlfors-regular space, is an environment which a number of authors have
found convenient when introducing Hardy spaces. In contrast with these works,
here we develop a Hardy space theory in an Ahlfors-regular space of an
arbitrary dimension d € (0, co). This aspect is particularly relevant in concrete
applications (as indicated shortly).

Below we further elaborate on the issues raised above.

Itis evident from (1.29) in Theorem 1.2 that the range of p’s for which there exists
a satisfactory theory of Hardy spaces is intimately linked to both the geometric
and measure theoretic aspects of the underlying environment. One perspective on
from which this range is optimal is the recognition that we recover the familiar
condition p € (dLH, 1] (associated with atomic Hardy spaces for atoms satisfying
one vanishing moment condition) in the case when X := R?, d € N, is equipped
with the standard Euclidean distance and the d-dimensional Lebesgue measure.
Significantly, there exists d-AR spaces the range in (1.29) is strictly than what it
would be in the Euclidean setting. One such example is offered by the four-corner
planar Cantor set equipped with the one-dimensional Hausdorff measure and the
standard Euclidean distance. In this context, the range in (1.29) reduces to (0, 1]
and hence, there exists a satisfactory theory of Hardy spaces for any p € (0, 1].
This is a tantalizing feature of the range in (1.29) since this full range (0, 1],
though natural and desirable in the presence of an ultrametric, cannot be treated
via the techniques previously available in the literature (for instance, the techniques
employed in [MaSe79ii] never allow having p < 1/2).

Another key feature of the range of p’s in (1.29) is revealed by studying how
various entities behave under power-rescalings of the original quasi-distance p,
i.e., transformations of the form p — p? for y € (0, 00). To shed light on this
matter, we shall let f p’f‘a, s denote the grand maximal function of a distribution f
(defined on spaces of homogeneous type in the spirit of its Euclidean counterpart)
and let H‘é’g,(X , p, 1) stand for the atomic Hardy spaces introduced in [CoWe77].

8Specifically, it has been de rigueur to assume that the measure in question is Borel-regular.
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The reader is referred to the body of the monograph for more details. Then, starting
from definitions or first principles, it can be verified that for every y € (0, co):

ind (X, p”) =y lind (X, p); (1.62)
(X,p, ) isad-AR space < (X, p", ) isa (d/y)-AR space; (1.63)
Jorap = foup pOintwise on X; (1.64)
HP(X, p”, ) = H' (X, p, p); (1.65)
aisa(p’,p,g)-atom <= aisa (p,p,q)-atom; (1.66)
Hew (X, p¥, ) = Heg (X, o, jo). (1.67)

Since (1.65) tells us that the space H? is invariant under power-rescalings of the form
p — p? for each y € (0, 00), such a quality should also be reflected in the range
of p’s for which there exists a satisfactory theory of these spaces. Indeed, using
(1.62) and (1.63) one can verify that the range in (1.29) exhibits such an invariance
which serves to further reinforce the notion of its optimality. By way of contrast,
it is obvious that this fundamental feature is absent in the Macias-Segovia range in
(1.11).

Regarding the regularity properties of a quasi-distance, we rely on the following
sharp metrization result from [MiMiMiMo13, Theorem 3.46, p. 144], improving an
earlier result with similar aims from [MaSe79i]. Before reading its statement, the
reader is advised to recall (1.7).

Theorem 1.3 Let (X, p) be a quasi-metric space. Define pgy, : X X X — [0, 00) by
Poym(x,y) 1= max {p(x,y), p(y,x)}, VxyeX. (1.68)

Then pgyy is a symmetric quasi-metric on X satisfying p < pgym =< Cp ponXxX
and G, < G,

Given any fixed number a € (O, (longp)_l], define the a-subadditive regular-
ization py : X X X — [0, 00) of p by

N 1
putxy) = inf (3 o 6:)7) " NeNand i, ... by €X. (169)
i=1

such that & = x and &y+1 :y}, VxyeX,

if o < 0o and, corresponding to oo = oo (occurring precisely when C, = 1), take
pOO(-xv y) = p(-xv y)
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Then py is a quasi-metric on X which satisfies (C,)™2p < py < pon X x X
(hence, p, ~ p)as well as C,, < C, < 217% Also, py is B-subadditive for each
B €(0,qa], ie.,

1
Pa(x,Y) =< (pa(x.2)? + pa(z.y)F) ", Vxyz€X, (1.70)

(interpreting the right hand-side of (1.70) as max {pa (x,2), palz, y)} when B = 00),
and p = p, if and only if p is a-subadditive.

Finally, define py : X <X — [0, 00) by py := (psym)a With o taken to be precisely
(longp)_l. Then py is a symmetric quasi-metric on X which is B-subadditive for
each B € (0, . Hence (ps)P is a metric on X for each finite B € (0, a]. In particular,

p metric on X == py metric on X. (1.71)
Furthermore C,, < C, and

(C)2p(x.y) < pu(x,y) <G, p(x.y),  Vx,yeX. (1.72)

In particular, one has that the topology induced by the distance (pg)? on X is
precisely 7, (cf. (1.26)), thus the topology induced by any quasi-metric is metrizable.

Moreover, for each finite exponent 8 € (O, (longp)_l], the function py satisfies
the following local Holder-type regularity condition of order B in both variables
simultaneously:

| p#(x,y) = ps(w, 2)| < 5 max {ps(x. )P, ps(w.2)' P}

(s (x, w)? + pi(y.2)P). (1.73)

forall x,y,w,z € X where, if B > 1, it is assumed that x # y,w # z. In particular,
in the case x = w, formula (1.73) becomes

| o) — pu(x.2)| = & max {pu(e.9)' P pul. ) Y[ a0, 00]". (174

forall x,y,z € X where, if B > 1, it is assumed that x ¢ {y, z}.
Finally, the Holder-type results from (1.73)—(1.74) are sharp in the sense that

they may fail if B > (log,C,)™".

A couple of comments are in order. First, an inspection of the regularization
procedure described in Theorem 1.3 reveals that

p# = p whenever p is a genuine distance on X with C, = 2. (1.75)

In particular, this is the case for the standard Euclidean distance in R4, i.e., one has
===l
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Second, the Holder-type regularity result described in the last part of the above
theorem is sharp, in the following precise sense. Given any C; € (1,00), there
exist a quasi-metric space (X, p) such that C, = C; and which has the following
property: if o’ : X x X — [0, 00) is such that p’ & p and there exist B € (0, c0) and
C € [0, 0o) for which

|0/ ) = /(. 2)| < € max {p' e )P, p' (2.0 P[P n2)] (176)

whenever x, y, z € X (and also x ¢ {y, z} if B > 1) then necessarily

< . 1.77

b= log, Ci ( )

Indeed, suppose C; € (1,00) is given and for s := log, C; € (0, 00), consider
X := R and the quasi-distance p : R — [0, c0), which is defined by setting

plx,y) = |x—y’, VxyeR (1.78)

The choice of the exponent s is designed so that p satisfies C, = C;. Assume now
that o' : R — [0, 00) is a function such that p’ &~ p (in particular, o’ is a quasi-
distance on X) and there exist 8 € (0, c0) and C € [0, oo) for which the version of
(1.76) holds in the current setting. Writing this inequality for x,y,z € R arbitrary
(with the understanding that we also assume that x ¢ {y, z} if 8 > 1) yields

|0 () = p'(x.2)| < € max {p'(x.9)' . 0/ (x, ) P} [0/ (.

< Cmax {|x —y['"P x — 2 Yy —2FL (1.79)
Note that s8 > 1 would force p’(0,-) to be constant on (0, 00) which, in turn,
would contradict the fact that p’(0,x) ~ |x|* — oo as x — oo. Hence, necessarily,
B <1/s,i.e., (1.77) holds.

A large degree of variety exists even within the class of genuine metrics, and
the regularization procedure presented in Theorem 1.3 does not treat a metric as an
“unimprovable” object. Indeed, in some respects, py may be better behaved than p
even if the latter is already known to be a metric, to begin with.

In turn, we use the sharp metrization result described in Theorem 1.3 in order
to derive a number of consequences which are optimal from the perspective of
regularity. A case in point is the maximally smooth approximation to the identity
result, recalled later in Theorem 1.5.

Moving on, the fact that demands we place on the underlying measure are optimal
is apparent in the context of the following theorem (here and elsewhere a barred
integral indicates mean average).

Theorem 1.4 (A Sharp Version of Lebesgue’s Differentiation Theorem) Ler
(X, p, ) be a space of homogeneous type. Denote by py the regularized version
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of p defined as in Theorem 1.3, and let the topology t, on X be as in (1.26). Then
the following conditions are equivalent:

(1) The measure y is Borel-semiregular on (X, t,).
(2) For every locally integrable function f : X — C, one has

lim | fO) — f(x)|du(y) =0 for pu-almost everyx € X.  (1.80)

r—0t Bpy (x.r)

(3) For every locally integrable function [ : X — C, there holds

1im+ fdu= f(x) forp-almosteveryx € X. (1.81)
r—>0 By (x.r)

(4) For some (orall)’ B € (0, ind (X, ,0)) one has that the homogeneous space of
Holder continuous functions of order B which have bounded support in X are
dense in the Lebesgue space LP (X, ) for some (or all) p € (0, 00).

(5) For some (or all) p € (0, 00) one has that the space of continuous functions
having bounded support in X are dense in the Lebesgue space LP (X, ).

To place Theorem 1.4 in a proper perspective it is worth recalling that, for
Lebesgue’s Differentiation Theorem, a rather ubiquitous result in mathematics,
assuming the underlying measure to be Borel regular (a stronger condition than
we are currently assuming in Theorem 1.4) has essentially been de rigueur so far.

The benefits of developing a theory of Hardy spaces which is both analytically
versatile and geometrically optimal, as described in Theorem 1.2, are best felt in
the context of applications, which would otherwise be arcane to establish or be
adversely affected by artificial limitations. To briefly elaborate on this aspect we
start by recalling that, in recent years, one of the driving forces in the consideration
of Hardy spaces in the context of spaces of homogeneous type has been the
work on Partial Differential Equations in rough settings. For example, the use by
C. Kenig and B. Dahlberg in [DalKen87] of Hardy spaces when the ambient is
a Lipschitz surface has helped cement the connection between analysis on spaces
of homogeneous type and PDE’s involving nonsmooth structures, and the latter
continues to motivate the development of the former. The ability of describing
the membership to H? spaces either through atomic decompositions, or through
the grand maximal function, pays dividends here. For instance, while treating the
Neumann problem for the Laplacian in a domain 2 C R” whose boundary is

°Tt actually turns out that whenever the supremum defining the index in (1.14) is attained the value
B = ind (X, p) is also permissible.
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(n — 1)-AR with respect to the (n — 1)-dimensional Hausdorff measure H"~! it
is crucial to note that

the normal derivative d,,u of a function u harmonic in 2 belongs to the

Hardy space H” (02) with p € (=1, 1] provided NV (Vu) € L"(3), (1.82)

where A is the nontangential maximal operator, relative to . When Q is a
Lipschitz domain an atomic decomposition for 9, u (viewed as a distribution on 0€2)
was produced in [JMiMiO7], but in the present, considerably rougher, setting this
approach is difficult to implement. This being said, one still has the option to prove
such a membership by controlling the grand maximal function of d,u. Indeed, it has
been shown in [MiMiMi13] that

n—1

@uw)* <C [Mag (J\/(VM)T)]m pointwise on 0€2, (1.83)

where (...)* stands for the grand maximal function on d€2, and Mg is the Hardy-
Littlewood maximal operator on 2. Then the membership d,u € H?(0€2) follows
from the boundedness of Mg on LY(dQ2) with g = -5 € (1, 00).

The above discussion also serves as a good example of the necessity of having
an optimal range for the theory of Hardy spaces. Concretely, the triplet X = 9€2,
p=|-—-], u = H"" constitutes a d-AR space with d := n — 1 and index
ind (X, p) > 1 by (1.15). As such,

d <n—l
d+ind(X,p) = n

(1.84)

which, in light of (1.29), goes to show that we have a well-developed theory of
HP(02) for all p’s as in (1.82). This is in stark contrast with what would have
happened if instead of our range (1.29) one would resort to the Macias-Segovia
theory which places artificial limitations in several regards. First the main results
in [MaSe79ii] are stated only in the setting of 1-AR (called there normal spaces)
and this is limiting for many practical purposes. In fact, part of the motivation
for developing Hardy space theory for d-AR spaces with arbitrary d € (0, c0)
comes from the usefulness of such a theory in applications to Partial Differential
Equations on domains 2 € R” whose boundaries are typically assumed to behave
(quantitatively) as (n — 1)-dimensional objects (hence, d := n — 1 would be the
appropriate choice in such a scenario). However, even in the case when n = 2
(which would render 02 a 1-AR space) the Macias-Segovia range from (1.13)
restricts p to a strictly smaller interval than that (1/2, 1] which is the desired range
in (1.82) corresponding to n = 2.

To offer yet another example the usefulness of having a theory of Hardy spaces
developed as broadly as possible, consider the harmonic single layer potential
associated with a given open set 2 € R", n > 2. This is the operator S taking
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real-valued functions f defined on 9<2 into

(S = /m Ex=)fMdu). xeQ, (1.85)

where &£ is the standard fundamental solution for the Laplacian in R" and the
measure (= H"![dQ is the (n — 1)-dimensional Hausdorff measure in the
ambient Euclidean space restricted to d€2. When 2 is a uniformly rectifiable
domain, in the sense of [HoMiTayl0, Definition 3.7, p.2631], it follows from
[HoMiTay10, Proposition 3.20] that

INVS ) ey = CIf lveey. Ve (l00), (1.86)

for some finite constant C = C(2,p) > 0, independent of f € [P(92), where N
denotes the nontangential maximal operator relative to 2. To extend such a result
to a larger range of indices (while still assuming that €2 is a uniformly rectifiable
domain in R"), for p € (% 1] it is natural to define the action of the harmonic
single layer on a given f € HP(02) via the duality pairing

(SH) = mroay<(Ex—"), f)Hp(aQ), xeQ. (1.87)

With this convention, it is then possible to establish, based on (1.86) and our
boundedness criteria from Chap. 8 (cf. Theorem 8.16 in particular), the estimate

n—1

for some finite constant C = C(€2,p) > 0, independent of f € HP(d2). These
considerations highlight the necessity of having a proper understanding of the range
of p’s for which a viable theory of Hardy spaces (including duality aspects) can
be developed in the present geometric context. Note that 2 being a uniformly
rectifiable domain implies that & = H"![9Q is an (n — 1)-AR measure which
is Borel-regular, so taking p (= |- — - || a0 Tenders (€2, p, 1) a metric measure
space of the sort to which the observation made in (1.38) applies (withd :=n —1).
This explains the range of p’s in (1.88) which, in turn, makes (1.88) work in tandem
with (1.82), in the scenario when u := S f with f € HP(dQ2).

1.5 Approach and Main Tools

As noted earlier, one significant feature of the present monograph is the fact that
it addresses several ubiquitous limitations of the work in [MaSe79ii]. Chief among
those are the issues regarding the non-optimality of the range of p’sin (1.11) and the
restriction of having an HP-theory valid only in the setting of the so-called normal
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spaces of order «. The latter environment is defined as a 1-AR space (X, p, n)
where for some number « € (0, co) the quasi-distance possesses the following local
Holder-type regularity property of order o:

there exists a constant C € (0, oo) with the property that
for every r > 0 one has \p(x, y) — p(x, z)| < Crl- [,o(y, z)]a (1.89)
for all x, y, z € X satisfying max {p(x, y), p(x,2)} < r.

The parameter « played a fundamental role in [MaSe79ii] where in the context of a
normal space of order o, Macias and Segovia developed an H”-theory for every

1
pE (m, 1i|- (1.90)

As such, the question becomes that of determining the largest value of @ € (0, 00)
for which a given 1-AR space is normal of order «. In this regard, in [MaSe79i,
Theorem 2, p.259] Macias and Segovia established the following metrization
theorem: given a quasi-metric space (X, 0) one can find a quasi-distance p which
is equivalent to o and satisfies (1.89) with'”

a = [log, (A28, + 1))] 7' € (0,10g;2) (1.91)
where A, € [1, 00) is as in (1.12). In particular,

a 1-AR space (X, o, 1) is normal of order

B (1.92)
a = [log, (A,2A, + 1))] " € (0,l0g;2).

This is, however, far from optimal. Indeed, based on (1.74) in Theorem 1.3 it is
apparent that'!

a 1-AR space (X, g, i) is normal of order «
only if « € (0, min {1,ind (X, 0)}). (1.93)
When starting from a general d-AR space (X, p, ) for an arbitrary d € (0, 00), a

strategy aimed at reducing matters to the special situation just described has been
attempted in [MiMiMiMo13] where the authors considered a power-rescaling of

0Strictly speaking, [MaSe79i, Theorem 2, p.259] is stated for 3A, in place of A,(2A, + 1) in
(1.91) but, as indicated in a discussion in [MiMiMiMo13], the number A,(2A, + 1) is the smallest
constant for which their approach works as intended.

Given that, in principle, 8 may be larger than 1, the property displayed in (1.74) implies (1.89)
only when § < min {1, ind (X, Q)}.
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the form p > @ := p? in order to manufacture a 1-AR space (X, p¢, it). Bearing in
mind the manner in which the index rescales (cf. (1.62)), from (1.90) and (1.93) one
then obtains a rich Hardy space theory for the range

1 d
re (1 +min{1,ind (X. p9)} 1} N (d+min{d,ind(X,p)} ’ 1] (1.94)

Although this constitutes significant improvement over the work in [MaSe79ii], the
range of p’s in (1.94) is still subject to artificial constraints which can be traced back
to the manner in which these normal spaces have been defined. In addition, while
the range of p’s above satisfies the first and last conditions in (1.61), it fails to satisfy
the middle condition in (1.61) (specifically, it becomes (1/2, 1] and not (0, 1], when
the original quasi-distance is an ultrametric). Our larger range

d
pE (m, 1i| (195)

corrects all the aforementioned deficiencies.

From the above discussion it is evident that the optimal range (1.95) cannot be
obtained by simply considering a power-rescaling of the form p + p?. Indeed, even
when starting from the sharpened version (1.93) of the Macias-Segovia normality
result (1.92), such an argument only produces (1.94) and not (1.95). For this reason,
we revisit the original approach of [MaSe79ii] and, while a number of tools used
to prove Theorem 1.2 are to be expected, those involving smoothness had to be
developed at full strength in order to be able to produce a sharp main result. One
particularly important example, of intrinsic value, is our brand of approximation
to the identity (A.T.T.I.), constructed in a manner that incorporates the sharpness
of the metrization result presented in Theorem 1.3 and which also highlights the
significance and optimality of the property of being Borel-semiregular for the
underlying measure. While an expanded statement is given in Theorem 3.22, for
the purpose of this introduction we record the following version:

Theorem 1.5 (A Maximally Smooth A.T.T.I.) Assume that (X, p, L) is a d-AR
space for some d € (0, 00) and set tx := diam,(X) € (0, oo]. Then for each

&, € (0,ind (X, p)) (1.96)

there exists a family {S;}o<i<:, of integral operators

Sf() = /X S fO)duG).  xeX, (197)

such that for every ¢ € (0, &,] there exists a constant C € (0, 00) with the property
that when t € (0, t«) the integral kernels S, : X x X — R satisfy:

(i) 0 <S,(x,y) < Ct forallx,y € X, and S,(x,y) = 0 if p(x,y) > Ct;
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(ii) 1S,(x,y) = S;(x', )| < Ct=9+®) p(x, X')¢ for every x,x',y € X;

(iii) [[S:(e.y) = Si )] = [S:00y) = S| = @ p(x, ) (3. y)* for
all x,x',y,y € X;

(iv) Si(x,y) = Si(y.x) foreveryx,y € X, and [, Si(x,y) du(y) = 1 foreveryx € X.

In addition, for each p € [1, 00) there holds

lim S, f = f in IP(X,n), forevery f eL’(X,un), (1.98)

—0+

if and only if the measure  is Borel-semiregular on (X, t,).

Similar comments pertaining to the optimality of smoothness and the role of Borel-
semiregularity apply to other tools developed here, such as the various Calder6n-
Zygmund-type decompositions from Sect. 5.2.

1.6 An Overview of the Contents of Subsequent Chapters

This monograph is organized as follows. We begin in Chap. 2 by presenting a
self-contained introduction to the category of quasi-metric spaces which includes
a sharp metrization result recently established in [MiMiMiMo13]. Sections 2.2-2.3
are concerned with covering lemmas and other related basic tools which are useful
in area of analysis on quasi-metric spaces. Measure theoretic aspects pertinent to
this work are discussed in Sect. 2.4. In Sect. 2.5 we review the concept of index for
a quasi-metric space, appearing in (1.14), which will plays a fundamental role in the
formulation of many of our key results.

The bulk of Chap. 3 is devoted to establishing sharp versions of some of the
cornerstones of classical Harmonic Analysis when the Euclidean setting is replaced
with more the general context of spaces of homogeneous type. In particular, the
work in Sects. 3.2 and 3.3, pertaining to the mapping properties of a Hardy-
Littlewood maximal operator and Lebesgue’s Differentiation Theorem, culminates
in Sect. 3.4 with the construction of an approximation to the identity possessing the
maximal amount of smoothness measured on the Holder scale (cf. Theorem 3.22).
Throughout, the emphasis is on minimal assumptions on the underlying ambient. In
the process, we also bridge over gaps left open in the literature, such as the delicate
matter of the measurability of the Hardy-Littlewood maximal operator, an issue that
has unfortunately gone overlooked until now.

Moving on, in Chap. 4, we first develop a theory of distributions suitable for the
general environment considered in this work. In turn, this permits us to introduce
the notion Hardy spaces (H? spaces) in the context of d-AR spaces via the grand
maximal function and show that these spaces coincide with L” when p € (1, co].
The former is addressed in Sect. 4.2 while the latter is accomplished in Sect. 4.3,
making essential use of the approximation to the identity constructed in Sect. 3.4.
This chapter concludes with establishing the completeness of HP.
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The focus of Chap. 5 is on H” when p < 1. More concretely, we establish an
atomic characterization of H”? which amounts to the ability to write each distribution
belonging to H? as a linear combination of atoms. This achievement is recorded
in Theorem 5.27 of Sect. 5.3. En route, we obtain versatile Calderén-Zygmund-
type decompositions for both distributions belonging to H” and functions in L? with
q > 1. The focus remains on H” with p < 1 throughout Chap. 6. In Sects. 6.1 and 6.2
we introduce the notions of molecules and ions, the latter being a function which is
similar to an atom where, in place of the vanishing moment condition, the demand is
that its integral is small relative to the size of its support. We then use these objects to
characterize H” in a spirit closely related to the atomic theory established in Chap. 5.
The work contained in Chaps. 4-6 pertaining to the characterizations of H”(X) is
then summarized in Theorem 6.11.

In Chap. 7, in an effort to unify various points of view on the theory of
Hardy spaces in abstract settings, we focus on understanding the relationship
between the brand of Hardy spaces defined in this work and those considered
earlier in [CoWe77]. Stemming from this, we obtain maximal, molecular, and ionic
characterizations of the Hardy spaces in [CoWe77]. Next, in Sect. 7.2 we succeed
in identifying the dual of the grand maximal Hardy space H? with certain Holder
spaces when p < 1 and with BMO when p = 1. In Sects. 7.3—7.4 we derive atomic
decompositions for certain dense subspaces of H” which converge pointwise and in
L1. Such results will be particularly useful in Chap. 8.

In Chap. 8 we test the versatility of our optimal Hardy space theory by deriving
new, general criteria guaranteeing boundedness of linear operators on H? spaces. We
establish two main results in this regard. The first, stated in Theorem 8.10, concerns
the extension to HP of bounded linear operators originally defined on L? with
q € [1,00) which take values in pseudo-quasi-Banach spaces (see Definition 8.2)
and are uniformly bounded on all (p,g)-atoms. In our second main result we
focus on operators which take values in a very general class of function-based
topological spaces. By considering a more specialized variety of target spaces, we
show that it is possible to extend operators defined on L? with g € [p, co) which are
uniformly bounded on all (p, co)-atoms. This is accomplished in Theorem 8.16. It
is worth remarking that these two results are new even in R?. In order to establish
these results we rely on both the atomic decompositions obtained in Sect. 7.3
and the density results derived in Sect. 7.4. We then discuss several consequences
of Theorems 8.10, 8.16, including the boundedness of Calder6n-Zygmund-type
operators on spaces of homogeneous type, and the solvability of the Dirichlet
problem for elliptic systems in the upper-half space Rﬁ with boundary data from
the Hardy space H” (R*™).

Finally, in Chap. 9, we make use of the sharp metrization theory from
[MiMiMiMo13] (cf. Theorem 1.3 in this work) as well as the approximation to the
identity constructed in Theorem 3.22 (which incorporates this degree of sharpness)
in order to record several definitions and basic results from the theory of Besov
and Triebel-Lizorkin spaces in d-AR spaces for an optimal range of the parameters
involved with these spaces.
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One last word regarding notational conventions used throughout the manuscript.
We shall use the infinity symbol oo := +o0. The set of positive integers is denoted
by N, and the set Ny := N U {0} = {0, 1,2,...}. Also, we will regard 1/0 := oco.
In obtaining estimates, we will often let the letter C denote a strictly positive real
number whose value may differ from line to line.
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Chapter 2
Geometry of Quasi-Metric Spaces

The main goal of this chapter is to set the stage for the rest of this monograph by
presenting a brief survey of some of the many facets of the theory of quasi-metric
spaces. Quasi-metric spaces constitute generalizations of not only the classical
Euclidean setting, but of quasi-Banach spaces and ultrametric spaces. In this work,
quasi-metric spaces will constitute the natural geometric context in which our main
results are going to be developed.

This chapter is organized as follows. In Sect.2.1 we record an assortment of
preliminary material, centered around the concept of quasi-metric spaces, and
discuss the sharp metrization theory developed in [MiMiMiMol3]. For the sake
of completeness, we will then survey various important tools used in this work such
as the existence of a partition of unity subordinate to a Whitney decomposition for
an open set in a geometrically doubling quasi-metric space. This is done in Sect. 2.2.
In this vein, we also present a Vitali-type covering lemma in Sect. 2.3.

Regarding measure theoretic aspects pertinent to present work, Sect.2.4 is
devoted to developing and exploring a general notion of d-dimensional Ahlfors-
regular quasi-metric spaces where we consider the possibility of a set, consisting
just of a singleton, having strictly positive measure.

Section 2.5 is the final section of this chapter wherein we review basic definitions
and results from [MiMiMiMo13] pertaining to the concept of the index of a quasi-
metric space. This index will play an important in the formulation of many of our
subsequent key results.

2.1 Quasi-Metric Spaces

There are two main goals of this section. First, we review the notion of a quasi-
metric space (along with related metric and topological matters) and lay out
several necessary conventions with regards to the notation used in this monograph.
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Second, we record a sharp metrization theorem recently obtained [MiMiMiMo13,
Theorem 3.46, p. 144]. This theorem will prove to be a superior tool in establishing
many of the results we have in mind.

To get started, given a nonempty set X, call a function p : X x X — [0, 00)
a quasi-distance (or a quasi-metric) provided there exist two finite
constants Cy, C; > 0 with the property that for every x, y, z € X, one has

px,y) =0<=x=y, p@,x) <Cop(x,y)
and  p(x,y) < Cymax{p(x,z2), p(z,y)}.

2.1

If X has cardinality at least 2 then necessarily the constants Cy and C| appearing in
(2.1) are > 1. In this context, we define C, to be the smallest constant which can
play the role of Cj in the last inequality in (2.1), i.e.,

p(x,y)
1, 00), 22
fggx max{p(x, z), p(z.y)} ) 22

not all equal

C, =

and define 6‘,, to be the smallest constant which can play the role of Cy in the first
inequality in (2.1), i.e.,

é . ,O(y,X)
b 1= sup ———
x,yEX p(x,y)

x#y

€ [1,00). 2.3)

A quasi-metric p, as in (2.1), shall be referred to as symmetric whenever é‘p =1,
i.e., whenever p(x,y) = p(y,x) for every x,y € X. Recall that a distance' d on the
set X is called an ultrametric provided that in place of the triangle-inequality,
d satisfies the stronger condition d(x,y) < max{d(x,z),d(z,y)} for all x,y,z € X,
holds. Hence,

p ultrametric on X <= p is a quasi-distance on X and C, = Cp =1. 24

In light of this observation, it is natural to refer to the last condition in (2.1) as
the quasi-ultrametric condition for p. Given the elementary inequality
%(a + b) < max{a,b} < a+ b,a,b € [0,00), it is easy to see that this condition
is equivalent to the more commonly used quasi-triangle inequality. Namely, the
condition that there exists a constant C € (0, co) such that

p(x,y) < C(p(x, 2) + p(z, y)) for every x,y,z € X. (2.5)

A function d : X — [0, oo) shall be referred to as a distance provided for every x,y,z € X,
the function d satisfies: d(x,y) = 0 & x =y, d(x,y) = d(y,x), and d(x,y) < d(x,z) + d(z,y).
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However, as we will demonstrate below, it is the nature of the best constant C,
(appearing the in the quasi-ultrametric condition) rather than C as in (2.5) which
will prove to be of utmost importance.

In the sequel, we shall denote by (X)) the collection of all quasi-distances on X.
It is clear that

peNX) = pP eQ(X) forevery number B € (0,00), (2.6)

where, in general, given any nonempty set 2, a function f : 2~ — [0, oc], and an
exponent 8 € (0, 0o0) we define

fP 2 —[0,00] byseting fPx):=(f()’, VxeZ. @7

Also, with 2" keeping its significance, call two functions f,g : 2~ — [0, 0]
equivalent, and write f = g, if there exists a constant C € [1, 00) with the
property that

C'f <g<Cf pointwiseon 2 . (2.8)

It follows that if p € Q(X) and o : X X X — [0,00) is a function such that
0 &~ p, then ¢ € Q(X) as well. Thus (2.8) defines an equivalence relation ~ on
(X) and we will call each equivalence class q € Q(X)/ ~ a quasi-metric
space structure on X. Finally, for each p € Q(X), denote [p] € Q(X)/ ~ the
equivalence class of p.

By a quasi-metric space we shall understand a pair (X, q) where X is a set
of cardinality at least 2, and q € Q(X)/ =. If X is a set of cardinality at least 2 and
p € Q(X) we will sometimes write (X, p) in place of (X, [p]). Given a quasi-metric
space (X, q) and p € q, the p-ball centered at x € X with radius r € (0, c0) is
naturally defined as

By(x,r) :={yeX:p(x,y) <r}. (2.9)

Given that the quasi-distance p is not assumed to be symmetric, care must be taken
when discussing the membership of a point to any p-ball. We also remark here that
it follows from (2.6) and (2.9) that whenever 8 € (0, co) there holds

By (x,r) = By(x,r'P) VxeX and Vre (0,00). (2.10)

Given a quasi-metric space (X, q), call E C X bounded if E is contained in a
p-ball for some (hence all) p € q. In other words, a set E C X is bounded, relative
to the quasi-metric space structure q on X, if and only if for some (hence all) p € q

we have diam,(E) < oo, where

diam,(E) := sup {p(x,y) : x,y € E}. (2.11)
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Given a bounded set E C X, if we wish to emphasize the particular choice of quasi-
distance p € q, then we will refer to E as being p-bounded. In this context, if
p € q, we define the p-distance between two arbitrary, nonempty sets E, F € X
to be

dist,(E, F) ;== inf{p(x,y) : x € E, y € F}, (2.12)

and if E = {x} for some x € X we shall abbreviate dist,(x, F) := dist,({x}, F).

Turning to topological considerations, we note that any quasi-metric space (X, q)
has a canonical topology, denoted 74, which is (unequivocally) defined as the
topology 7, naturally induced by a choice of quasi-distance p € q, the latter being
characterized by

def
Oecr, < OCXand Yx €O, 3re (0,00) such that B,(x.r) € O. (2.13)

For a given quasi-distance p € q, we will refer to the elements of 7, as p-open
sets. It follows from the observation in (2.10) that the topology 7, is invariant
under power-rescalings of the quasi-distance p, i.e.,

peEQ, Pe(0,00) = Tqg=71,=71yp. (2.14)
This is remarkable since, in general, it is not to be expected pf ~ p if B € (0, 00)
is a fixed number. For example, such an occurrence of this fact can been seen when
o is the Euclidean distance and the underlying set is RY.

Additionally, it is important to note that in contrast to what would be the case
in a genuine metric space, the relaxation of the triangle inequality precludes the
guarantee that all p-balls belong to 7,,. In spite of this disparity, as is well-known, the
topology induced by the given quasi-distance on a quasi-metric space is metrizable
and we shall take a moment review a main result in [MiMiMiMo13] which is a
sharp quantitative version of this fact.

To facilitate the subsequent discussion in this chapter we first make a couple of
definitions. Assume that X is an arbitrary, nonempty set. Given an arbitrary function
p: X x X — [0, 00] and an arbitrary exponent o € (0, oo] define the function

P i X XX —> [0, 0] (2.15)
by setting for each x,y € X
N 1
Oa(x,y) = inf{(z (&, giH)“)“ : there exists N € Nand &p,..., &v+1 € X,
i=1
(not necessarily distinct) such that & = x and &y = y},

(2.16)
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whenever & # o0, and its natural counterpart corresponding to the case when one
has o = o0, ie.,

Poo(X,y) := inf{lmaﬁp(si,&ﬂ) :thereexists N e N, &,..., &v+1 € X, (2.17)
<i<
(not necessarily distinct) such that & = x and &y = y}.

It is then clear from definitions that

pa € Q(X),
VpeQX), Yae(0,00] = {C, <C,, and (2.18)

Pe < p pointwise on X x X.

Going further, if p : X x X — [0,00] is an arbitrary function, consider its
symmetrization pyy,, : X x X — [0, oo] which is defined by

Psym(x,y) 1= max {p(x,y), o(y,x)}, VxyeX. (2.19)
Then pgy,, is symmetric, i.e., Pgm(X, ¥) = pgom(y, x) forevery x,y € X, and pgym > p

on X x X. In fact, pyy, is the smallest [0, oco]-valued function defined on X x X which
is symmetric and pointwise > p. Furthermore, if p € Q(X) then

Psym € Q(X), Cp,, <Cp, C

ym  — Psym

=1, and p < pgym < C‘p 0. (2.20)
The reader is referred to [MiMiMiMo13, Theorem 3.26, p. 91] for a more systematic

exposition regarding the properties of p, and pyy,. Here is the quantitative metriza-
tion theorem from [MiMiMiMo13] alluded to above.

Theorem 2.1 Let (X,q) be a quasi-metric space, fix p € q, and assume that
C,, C, € [1,00) are as in (2.2)~(2.3). In this context, define (cf. (2.16)—(2.17))

P := (Psym)a, for a, = [l(’gch]_l € (0, oc]. (2:21)

Then py € qwith C,, < C, and Cp# = 1. Also, (,oV)# ~ (p#)yfor everyy € (0, 00).
Moreover, for any finite number B € (0, o), the function

dop 1 XXX —>[0.00). dpp(xy) =[x 0], VryeX. (222
is a distance on X, i.e., for every x,y,z € X, d, g satisfies
dpp(x,y) =0 & x=y (2.23)

dpp(x,y) =dpp(y.x) (2.24)

dyp(x,y) <d,p(x,2) +dyp(z,y) (2.25)
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and which has the property (dp,ﬁ)l/ﬂ & p. More specifically,

(C) 2o y) < [dope ] = psx.y) < Cpp(x,y), VxyeX. (226)

In particular, the topology induced by the distance d, g on X is precisely .
Additionally, ps satisfies the following local Holder-type regularity condition of
order B:

|0 (x.3) = po(x.2)| < & max {pu(e ), o) Y [u0r.0]"  @27)

whenever x,y,z € X (with the understanding that when 8 > 1 one also imposes
the condition that x & {y, z} ). In particular, it is straightforward to show, based on
(2.27), that the function

P X x X —> [0,00) is continuous, (2.28)

when X x X is equipped with the natural product topology tq X tq. Ergo, all pyg-balls
are open in the topology 14.

The striking feature of the result discussed in Theorem 2.1 is the fact that if
(X, q) is any quasi-metric space and p € q then p? is equivalent to a distance on
X for any finite number f € (0, (log,C,)~']. This result improves upon an earlier
version due to R.A. Macias and C. Segovia [MaSe79i, Theorem 2, p. 259], in which
these authors have identified a non-optimal upper-bound for the exponent 8. The
non-optimality of the metrization theory in [MaSe79i] has presented widespread
limitations to many subsequent publications. For example, as we will illustrate
in this monograph, this exponent directly influences the range of p’s for which
there exists a “rich” theory of Hardy spaces (H” spaces). In addition, the ability
to construct an approximation to the identity is an indispensable tool in analysis and
this exponent governs the amount of smoothness such an approximate identity can
possess. This alone has many overreaching consequences which others have taken
note (see, e.g., [HuYaZh09, Remark 5.3, p.133]).

In this regard, it is instructive to note that it was shown in [MiMiMiMo13, p. 150]
that the upper bound of &, = [log2 Cp]_1 is sharp in the following sense. Given any
finite number C; > 1, there exist a nonempty set X and a symmetric quasi-distance
p X x X — [0, 00) satisfying the quasi-ultrametric condition for the given C; and
which has the property that if o : X x X — [0, 00) is such that ¢ ~ p and there exist
B € (0,00) and C € [0, o0) for which

lo(x,y) — 0(x, 2)| < € max {o(x,»)'*, 0(x,2)'#}[0(r. 2)]’ (2.29)

whenever x, y, z € X (and also x ¢ {y, z} if B > 1) then necessarily

B =<

. 2.30
log, Ci (2.30)



2.2 A Whitney-Type Decomposition and Partition of Unity 39

We conclude this section by proving a result pertaining to the nature of the
topology induced by a quasi-metric, which is going to be relevant in the context
of the Lebesgue Differentiation Theorem discussed later, in Sect. 3.3.

Lemma 2.2 Assume that (X, q) is a quasi-metric space. Then any open set in the
topology tq can be written as a countable union of closed sets in the topology 1q.

Proof Let O be an open set in the topology 74. Fix a quasi-metric p € q and let pg
be its regularization, as discussed in Theorem 2.1. For each j € N then consider

G = {x € 0: pu(x,y) > 1/j forevery y € X\O} (2.31)

pick an arbitrary xo € O. Since O is open in g, it follows that there exists r > 0
with the property that B, (xo,7) € O. Then for any y € X \ O we necessarily have
p#(xo,y) > r which, in turn, goes to show that xo € C; whenever j € N satisfies
J = 1/r. This establishes O = UjeN C;. There remains to show that, for each j € N,
the set C; is closed in 4. To this end, fix x; € X \ C; and note that this entails the
existence of some y; € X \ O such that ps(x;,y1) < 1/j. Select B € (O, [log, Cp]_l)
and pick a number r satisfying

Clearly, C; € O for every j, hence UjeN C; € 0. To prove the opposite inclusion,

0 < r< (1) = petxr,y)f) " (2.32)

In light of (2.25), this choice ensures that for every z € B, (x1, r) we have

pi(z yD)P < pu(z.x)P + pr(xr )P <P+ pyr ) < (1)), (2.33)

Hence, ultimately, ps(z, y1) < 1/j which places zin X \ C;. Given that z € B, (x1, 1)
has been arbitrarily chosen, it follows that B,,(x;,7) € X \ C; from which we
conclude that X \ C; is open in 74. Thus, C; is closed in 74, as wanted. O

2.2 A Whitney-Type Decomposition and Partition of Unity

In the first part of this section, we present a version of the classical Whitney
decomposition in the setting of geometrically doubling quasi-metric spaces recently
obtained in [AIMiMil3]. A variation of this result in the Euclidean setting (as
presented in, e.g., [St70, Theorem 1.1, p. 167]) has been worked out in [CoWe71,
Theorem 3.1, p.71] and [CoWe77, Theorem 3.2, p.623] for bounded open sets
and in [MaSe79ii, Lemma 2.9, p.277] for proper open subsets of finite measure
in the context of spaces of homogeneous type. Regarding a version absent of any
measure theoretic structure, we wish to mention that in [MiMiMiMo13], the scope
of this work has been further generalized as to apply to arbitrary open sets in
a geometrically doubling quasi-metric space, equipped with a symmetric quasi-
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distance. This result has further been refined in [AIMiMil3] to incorporate the
scenario when the quasi-distances are not necessarily symmetric.

In the second part of this section we present a result obtained in [MiMiMiMo13]
guaranteeing the existence of a partition of unity subordinate to the aforementioned
Whitney-type decomposition, which is quantitative in the sense that the size of the
functions involved is controlled in terms of the size of their respective supports.
A formulation in the standard setting of R” may be found in [St70, p.170].
More recently, such quantitative Whitney partitions of unity have been constructed
on general metric spaces (see [KoShTu00, GoKoSh10, Lemma 2.4, p.339]), and
on quasi-metric spaces, as in [MaSe79ii, Lemma 2.16, p.278]. Here we wish
to improve upon the latter result both by allowing a more general set-theoretic
framework and by providing a transparent description of the order of smoothness
of the functions involved in such a Whitney-like partition of unity for an arbitrary
quasi-metric space. Before formulating these results, in Theorems 2.4 and 2.5 below,
we first define the class of geometrically doubling quasi-metric spaces.

Definition 2.3 A quasi-metric space (X, q) is called geometric doubling if
there exists p € q for which one can find a number N € N, called the geometric
doubling constant of (X, q), with the property that any p-ball of radius r in X
may be covered by at most N p-balls in X of radii /2. Finally, if X is an arbitrary,
nonempty set and p € Q(X), call (X, p) geometric doubling if (X, [p]) is geometric
doubling.

Note that a quasi-metric space (X, q) is geometrically doubling if and only if

Vpeq V6O € (0,1) AN € N such that any p-ball of radius r (234)
in X may be covered by at most N p-balls in X of radii 0r. .

In particular, this ensures that the last part in Definition 2.3 is meaningful. Another
useful consequence of the geometrically doubling property for a quasi-metric space
(X, q) is as follows.

If (X, q) is a geometric doubling quasi-metric space (235)
then the topological space (X, tq) is separable. .

Throughout the remainder of the work, given a set X, we denote by 1z the
characteristic function of a set E € X. With this in mind we present the first main
result of this section.

Theorem 2.4 (Whitney-Type Decomposition) Suppose (X, q) is a geometrically
doubling quasi-metric space and fix p € q. Then for each number A € (1,00)
there exist constants A € (A,00) and M € N, both depending only on C, as in
(2.2), A and the geometric doubling constant of (X, q), and which have the following
significance.
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For each proper, nonempty, open subset Q of the topological space (X, tq) there
exist a sequence of points {x;}jen in Q along with a family of real numbers r; > 0,
Jj € N, for which the following properties are valid:

(1) @ = U B,y ry);
jeN
(2) > 1B, (yar) < M on Q. In fact, there exists & € (0, 1), which depends only on
jeN

C,, A and the geometric doubling constant of (X, q), with the property that for
any xy € Q

#{j € N1 By (xo. e disty(v0, X \ @) N By Ar) # 0 <M, (2.36)

where in general we define #E to be the cardinality of a set E.
(3) By(xj, Arj) € Q and B,(x;, Arj) N [X \ Q] % @ forevery j € N.
(4) ri ~ rj uniformly for i,j € N such that B,(x;, Ar;) N By(x;, Arj) # 9.

Proof For the proof of Theorem 2.4, the reader is referred to [AIMiMil3]. See also
[MiMiMiMo13, Theorem 4.21, p. 184] wherein the authors present a constructive
proof in the case when the quasi-distance is assumed to be symmetric. O

We will refer to the constant M appearing in (2) in the conclusion of Theorem 2.4
as the bounded overlap constant (for the given decomposition).

In Theorem 2.5 below, we present the existence of a partition of unity subordinate
to such a decomposition produced in Theorem 2.4. A version of this result
originally appeared in [MiMiMiMo13, Theorem 4.18, p. 178] in the class of Holder-
continuous functions and was subsequently generalized to a class of functions
having a modulus of continuity in [AIMiMil3]. Theorem 2.5 below is a slight
extension of the work in [MiMiMiMo13]. Before proceeding, we take a moment
to recall the smoothness class of Holder functions € in the context of quasi-metric
spaces.

Let (X, q) be a quasi-metric space. Also, fix a number 8 € (0, c0) and a quasi-
distance p € q. Given a complex-valued function f on X, define H61der semi-
norm? (of order B, relative to the quasi-distance p) of the function f by setting

| f) — O

(2.37)
X yEX, x#y Io(x’ y)ﬂ

l f”cg‘ﬁ(x,p) =

We introduce the homogeneous Hé1der space 4* (X, q) as
¢PX.q):={f:X—>C: | fllgsx ) < o0 for some p € q}

={f:X->C:| Sllgsx ) < oo forevery p € q}. (2.38)

2Given a vector space .2 over C, recall that a function || ]| : 2~ — [0, 00) is called a semi-norm
provided that for each x,y € 2 the following three conditions hold (i) x = 0 implies ||x|| = 0,
(@) [IAx]l = |Al-llxll, ¥ A € C, and (i) [lx + yll < llxl| + [Iyll.
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Given any S € (0, 00), it follows that {|| ||<gﬁ(X 0 PE q} is a family of equivalent

semi-norms on €7 (X, q). If p € Q(X) is given then we shall some times slightly
simplify notation and write 4 (X, p) in place of €7 (X, [p]). If we introduce an
equivalence relation, ~, on €7 (X, p) defined by f ~ gif and only if f —gisa
constant function on X, then € (X, p)/ ~ is a Banach space when equipped with
the norm || - ||<6;ﬁ(X,p). Let us also note here that if p € q and if 8 > 0 is a finite

number then for any pair of real-valued functions f, g € &P (X, q) it follows that
max{ f.g} € ¢*(X.q).  min{ f.g} € ¥ (X.q). (2.39)
with
max { | max{ £.g} s x.py: | ming /. 8l gy )
< max {|| £ llgs e p I8lgs ) (2.40)
As a notational convention, given a quasi-metric space (X, q), we will write
Lip(X. q) := €' (X.q). (2.41)

Maintaining the above assumptions on the ambient, given a complex-valued
function f on X set

I flloo := sup{| f(x)| : x € X}. (2.42)
and define the inhomogeneous Hélder space €#(X, q) as
X ={f:X>C: | floo+| Fligsx ) < oo for some p € q}
={/:X>C:| fllo+ I Fligsx ) < oo forevery p € q}. (2.43)

Note that for each fixed p € q, the space €# (X, q), when equipped with the norm

I lagmcrny == - oo + 1 lignie (2.44)

is a Banach space for every § € (0, oo) In fact, similar to as above, given any
B € (0, 00), it follows that {|| lesxp = PE q} is a family of equivalent norms on
P (X,q).

It is instructive to note that the following general fact holds. Given a quasi-metric
space (X, p), one has

BddX)Ne*(X.p) S | ¢¥X.p). Vae(0.00), (2.45)
pE©.a]
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where
BddX):={f: X—=>C: || flloo < 00}. (2.46)

Moreover, the inclusion in (2.45) is quantitative in the sense that for each & € (0, c0)
and each 8 € (0, @) there holds

I F g < max (20 Flloos | fllga e ) ¥ f € BAXK) NE(X.p).  (2.47)

Going further, we wish to note that the function spaces defined in (2.38) and
(2.43) exhibit a certain type of homogeneity with respect to power-rescalings of the
quasi-distance. Specifically, if (X, p) is a quasi-metric space and & € (0, co) is fixed,
then (X, p%) is a quasi-metric space and

P (X, p*) = €*P (X, p) and €P(X, p*) = €*P(X.p), VB € (0,00). (2.48)

We now present the result pertaining to the existence of a partition of unity.

Theorem 2.5 (Partition of Unity) Let (X, q) be a geometrically doubling quasi-
metric space and suppose 2 is an proper nonempty subset of X. Fix p € q along
with a number A > Cﬁ, where C, is as in (2.2), and consider the decomposition of 2

into the family {Bp(xj, rj)}jeN as given by Theorem 2.4 for this choice of A. Finally,
consider a number )’ € (Cp, A/C,). Then for every a € R satisfying

0<a<[log,C,] ", (2.49)

there exist a finite constant C > 1, depending only on p, o, M, and the
proportionality constants in (4) of Theorem 2.4, along with a family of real-valued
Sunctions {¢;}jen defined on X such that the following conditions are valid:

(1) foreachj € N one has
o e X and Ngllgn, < Cr (2:50)

forevery B € (0, ],
(2) foreveryj € N one has
0<¢;<1on X, ¢=0onX\B,(x,Ar)),
and @; > 1/C on By(x;,17); (2.51)

(3) one has Z%’ =1y e85 = WienByyr) = WWien Bo(.0r)-
jEN

Proof The conclusion of this theorem is a direct result of Theorem 5.1 in
[AIMiMi13] with the exception of (2.50), where it was only shown to be valid
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for 8 = «. However, if (2.50) is valid for 8 = « then the conditions in (2.51)
ensure (2.50) also holds for every 8 € (0, «]. O

The following result is quantitative version of the classical Urysohn’s lemma
which was originally proved in [MiMiMiMo13, Theorem 4.12, p. 165] and subse-
quently generalized in [AIMiMi13].

Theorem 2.6 Let (X, q) be a quasi-metric space and fix p € q. Let C,, € [1, 00) be
as in (2.2) and consider a finite number B € (0, (log, C,)~']. Suppose Fo, F1 € X
are two nonempty sets with the property that dist,(Fo, F1) > 0. Then, there exists a
finite constant C = C(p) > 0 and a function { € &P (X, q) such that

0<v<1lonX, Yv=0o0nF, y¢Yv=1on Fy, (2.52)

and for which
1l .y < C(disty(Fo. F1) ™. (2.53)

As a corollary, the space &P (X, q) separates the points in X. In particular, the
space € (X, q) contains non-constant functions.

2.3 Vitali-Type Covering Lemma on Quasi-Metric Spaces

Proposition 2.8 below is the main result in the section where we further elaborate
on the nature of the topological structure induced by a quasi-metric. As a preamble,
we first record the following basic covering result, in the spirit of Vitali’s covering
lemma, proved in [MiMiMil3].

Lemma 2.7 Let (X, p) be a quasi-metric space and fix a finite constant C, > Cf) Cp.
Consider a family of p-balls

A= {Bp(xa,ra)}ael, Xy € X, ry € (0,00) foreveryw €1, (2.54)
such that

supry < 00. (2.55)

a€l

In addition, suppose that either

(X, tp) is separable, (2.56)
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or

or every sequence {B,(x;, r;)}ien C A consistin
. ry seq p\Xjs Tj) 8

L . (2.57)
of mutually disjoint of p-balls one has lim r; = 0.
J—>00
Then there exists an at most countable set J C I with the property that
B,(xj, 1)) N By(xg, rx) =9 Vjkeld with j#k, (2.58)

and each p-ball from A is contained in a dilated p-ball of the form B,(x;, C,r;) for
some j € J. In particular,

| BoGa. 7o) S | Bo(ai. Cory). (2.59)

o€l jeJ

In turn, the above Vitali-type covering lemma is the main ingredient in estab-
lishing the following result pertaining to the nature of the open sets in the topology
induced by a quasi-metric. To introduce some notation, suppose (X, p) is a quasi-
metric space and, as usual, denote by 7, the topology canonically induced by p
on X. In this context, given any A C X let A and A° stand, respectively, for the
closure and interior of A in the topology 7,. In this regard, it is useful to recall from
[MiMiMiMo13, p. 149, (3.544)—(3.545)] that

0 €(0.C;") = B,(x.0r) € By(x.7)  (B,(x.67'r)",
VxeX, Vre(0,00). (2.60)

Proposition 2.8 Let (X, p) be a quasi-metric space such that (X, t,) is separable.
Consider an arbitrary, nonempty open set O (in the topology t, ) and fix some
e € (0, 00).

Then there exist a sequence of points {xj}jen in X and a sequence of positive
numbers {rj}jen such that the following properties hold:

(i) 0 <rj<eforeachjeN;
(i) O = U By(xj,ry) = U Bp(xj, 1) = U(Bp(xjvrj)) ,
jeN jeN jeN
(iii) there exists 0 € (0, 1) with the property that the p-balls B,(x;, 0r;), j € N, are
mutually disjoint.

Proof Assume that ¢ € (0, 00) is given and fix a finite number M > 4C2€‘p. Since
O is open, it follows that for every x € O there exists r(x) € (0,00) such that
B,(x,r(x)) € O. Introduce 7(x) := min{e, r(x)} and apply Lemma 2.7 to the family
of p-balls with bounded radii

).
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Hence, since the topological space (X, 1,) is separable, Lemma 2.7 applies and gives
the existence of a sequence {x;};en of points in O with the property that the p-balls

B, (x,-, %) jeN, are mutually disjoint, (2.62)
and
Vxe O 3j = j(x) € N such that Bp(x, %) c B,,(x,-, %) (2.63)
Define
rj = @ foreach j € N. (2.64)

We claim that the x;’s and 7;’s just constructed are such that properties (i)—(ii) are
satisfied. To see this, note that since M > L and 7(x;) < &, itis immediate thatr; < ¢
for every j € N. Moreover, the above choices ensure that

B (x~ M) =B (x~ L) C (By(xj,1,))°, foreveryjeN, (2.65)
P\ M e\ 2¢, p\Xjs T5)) s yJ ) .

thanks to (2.60). Based on (2.65) and (2.63), we may therefore conclude that

0 < | JBo@. )" (2.66)
jeN

Moving on, whenever A € (Cp, &), which is a non-degenerate interval given
ptp

that M > 4Cg€‘p, then Ar; < 7(x;) < r(x;) for every j € N so that, by (2.60),

By(xj, 1) € By(xj, Arj) C Bp(xj, r(xj)) cO, VjeN. (2.67)
Hence,
By € 0. (2.68)
jeN

By combining (2.66) and (2.68), we may therefore conclude that (ii) holds. Finally,

choose 6 € (0,1)sothat0 < 8 < ﬁ Then 0r; < 7%) which, in view of (2.62),
ptp

shows that (iif) holds for this choice of 8, completing the proof of the proposition.
O



2.4 Ahlfors-Regular Quasi-Metric Spaces 47
2.4 Ahlfors-Regular Quasi-Metric Spaces

The bulk of this section is devoted to developing an important subclass of spaces of
homogeneous type in which we will choose to establish a theory of Hardy spaces
which generalizes well-known results in the d-dimensional Euclidean setting (where
d € N). R? is a very resourceful environment which, among other things, has a
vector space structure as well as the notion of differentiability. In contrast, we wish
to work in a setting which has minimal assumptions on the geometric and measure
theoretic aspects since, from the perspective of applications, it is not often that we
get to work in such a resourceful environment.

One such general context which has provided an environment rich enough to
do a good deal of analysis on is a space of homogeneous type introduced by
R.R. Coifman and G. Weiss in [CoWe71, p. 66] (see also [CoWe77, p.587] where
the measure is assumed to be doubling (see (2.80) below). In this setting, although a
theory of Hardy spaces exists, the assumptions are so general that it is even difficult
to identify when these named spaces are trivial (i.e., reduce to just constants). It is
this qualitative nature of the Hardy space theory which is undesirable for application
purposes.

In this work, we will ask more of our measure (in a fashion which would not
compromise our desire for minimal assumptions on the ambient) and in turn we
will be able to produce a theory which generalizes results in the Euclidean setting to
a more general geometric measure theoretic context. More importantly, this is done
without compromising the quantitative aspects of such a theory.

Given the generality of the framework of a space of homogeneous type, it may
be the case that the measure of a singleton is positive.® However, as it was shown
in [MaSe79i], there can only be at most countably many such points. For the
completeness of the theory developed in the subsequent sections of this work, we
wish to consider a space which still allows for the existence of atoms. The specifics
of this space are described in Definition 2.11 below. However, a few preliminary
notions must first be discussed.

Moving on, we make the following convention, an arbitrary set X and a topology
7 on X, we denote by Borel,(X), the smallest sigma-algebra of X containing t. With
this in mind we now record a few measure theoretic notions in Definition 2.9 below.

Definition 2.9 Suppose X is a set and 7 is any topology on X. Assume 91 is a
sigma-algebra of subsets of X and consider a measure p : 9t — [0, oo].

1. Call 4 a Borel measure on (X,t) (or simply on X if the topology is
understood) provided Borel (X)) C 9.

2. The measure ju is said to be a Borel-regular measure (again, on (X, 7) or
simply on X if the topology is understood) provided p is a Borel measure on X
satisfying

3Such points have been historically referred to as “atoms”.
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for every A € 9, there exists B € Borel, (X) 2.69)
with the property that A C B and w(A) = u(B). .

3. Given a quasi-metric structure q on X, call the measure u locally finite
provided the p-measure of every bounded subset of X is finite.

Comment 2.10 In regards to parts / and 2 of Definition 2.9, the reader is alerted to
the fact that for a measure p : 9t — [0, oo] to be Borel measure we merely demand
that 9t contains Borel,(X) and not necessarily that 9t = Borel,(X). In fact, in
the latter case the measure i would automatically be Borel-regular. In particular, if
W9 — [0, 0o] is a Borel measure then u‘ Borel, (X) is Borel-regular measure. W

We next record some definitions regarding certain aspects of the geometry of
a quasi-metric space. Suppose (X, q) is a quasi-metric space, p € q, and u is a
nonnegative measure X. In this setting we define for each x € X

R,(3) = sup{r € (0,00) : By(x,r) # X} if u(X) < oo, 270)
0o if u(X) = oo,

and
rp(x) = inf{r € (0,00) : By(x,r) # {x}}. (2.71)

In the definition of a spaces of homogeneous type one typically demands that the
measure of every ball is finite (see (3.1) below for more details). This assumption
implies that the underlying set is bounded whenever the space has infinite measure.
In this regard, at least roughly speaking, the additional assumption in (2.70) that
R,(x) = oo whenever 11(X) = oo can be thought of as an analogous condition in
this setting.

It is readily seen from the definitions in (2.70)—(2.71) that

rp(x) € [0, 00) and R, (x) € (0, oo] are well-defined for every x € X, (2.72)
rp(x) < R,(x) for every x € X, (2.73)

VIB € (Ov OO) - rpﬁ (x) = [rp(x)]ﬂ and Rpﬁ (x) = [R,D(x)]ﬂ
for every x € X, 2.74)

foreveryx € X, r,(x) > 0 = Bp(x, rp(x))z {x}, (2.75)

for every x € X, Ry(x) < 00 = X \ B,(x, R,(x))
={yeX:p(xy =R}, (2.76)
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and also

if o € q, that is, if C;, C; € (0, 00) are such that Cyp < p < C,p pointwise (02n77)

X x X then C1R, < R, < (3R, and Cir, < r, < Cyr, pointwise on X.

Observe that if (X, q) is a quasi-metric space, p € (, and u is a nonnegative
measure on X with the property that all p-balls are p-measurable then every
singleton in X is u-measurable. With this in mind, we make the following definition.

Definition 2.11 Call a triplet (X,q,pt) a d-Ahlfors-regular (quasi-
metric) space (or simply, a d-AR space) if the pair (X, q) is a quasi-metric
space, [ is a nonnegative measure on X and if for some number d € (0, co) there
exist p € q and four constants Cy, Cy, ¢y, ¢z € (0,00) with ¢; < 1 < ¢; having the
following property: all p-balls are u-measurable and

Cir? < w(B,(x,r)) < Cyrd, forallx € X
1= H( o )) 2 2.78)
and r € (0, 00) with ¢;7,(x) < r < 2R, (x),

where 7, and R, are as in (2.70)—(2.71).

Additionally, call a d-Ahlfors-regular quasi-metric space, (X,q,u), a
standard d-Ahlfors-regular (quasi-metric) space if r,(x) = 0
for every x € X.

Note that by possibly decreasing and increasing, respectively, the constants
C; and C; in (2.78), we can assume without consequence that C; € (0, 1] and
C; € [1,00). The constants cy, ¢z, Cy, and C, will be referred to as constants
depending on p. Going further, given a set X with cardinality at least 2 along with a
quasi-distance p € £2(X) and a nonnegative measure 4 on X satisfying the Ahlfors-
regularity condition described in (2.78) with p, we let (X, p, ) denote the d-AR
space (X, [p]. ).

We now collect some basic properties of d-AR spaces.

Proposition 2.12 Suppose (X,q, ) is a d-AR space for some d € (0,00).
Specifically, suppose p € q satisfies (2.78). Then there exists C € (0,00) such
that the following hold.

1. If p(X) < oo then diam,(X) < oo and

0< (Cpép)_ldiamp(X) < in}f(Rp(x) < supR,(x) < diam,(X); (2.79)
xe xeX

where Cy, C, € [1,00) are as in (2.2)~(2.3);

2. p,(Bp(x, r)) < Cr, for every x € X and positive r € [c17,(x), 00), where
c1 € (0, 1] is as Definition 2.11; this property will be referred to as the upper-
Ahlfors-regularity condition for i,
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[9%)

. < p,(Bp(x, r)), for every x € X and finite r € (0, c2R,(x)], where the
constant ¢; € [1,00) is as Definition 2.11; this property will be referred to as
the lower-Ahlfors-regularity condition for i,

. supr,(x) < diam,(X);
x€X

. Cr,] < u(§x}) < Clrp(x)] for every x € X;

C R, ()Y < u(X) < CIR, () for every x € X;

. diam,(X) < oo ifand only if u(X) < oo;

. for every parameter A € [1,00), there exists some finite constant ¢ > 0 such
that cr? < pL(Bp (x, r)),for every x € X and finite r € (0, A Ry(x)]; in particular,
for every parameter A € [1,00), there exists some finite constant ¢ > 0 such
that cr? < M(Bp(x, r)),for every x € X and finite r € (0, A diam, (X)];

9. pL(Bp(x, r)) € (0,00) foreveryx € X and r € (0, 00);

10.  satisfies (2.78) (with the same constants cy, c; ) for any other ¢ € q having

the property that all o-balls are |t measurable;

11. for every point x € X and every radius r € (0,00), B,(x, r) = {x} if and only if

there holds r € (0, rp(x)];

12. for every point x € X and every radius r € (0, 00), B,(x,r) = X if and only if

there holds r € (R,(x), 00);

13. u satisfies the following doubling property: there exists a finite constant k > 0

such that

NS R

0 < u(By(x,2r)) < kpu(Bo(x,r)) <oo, VxeX, Vre(0,00); (2.80)
14. one has
W is a Borel measure on (X, 1q), (2.81)

where 1ty is the topology induced by the quasi-metric space structure q on X;
15. there holds

X, pP. ) isa %-AR space for each fixed B € (0, c0); (2.82)

more specifically, if B € (0, 00) is fixed then u satisfies the regularity condition
listed in (2.78) in Definition 2.11 with pﬂ and with constants Cy, C,, c’f, and cg.

Proof We begin proving /. First observe that if «(X) < oo then the condition
in (2.78) implies sup,cx Rp(x) < oo. Combining this fact with (2.76) gives
B,(x,R,(x)+1) = X forevery x € X. Hence, diam,,(X) < co. Turning our attention
to proving the inequalities in (2.79), fix x € X. Observe that by the definition of a
p-ball and the nondegeneracy of the quasi-distance p, we have for every y € X with
y # xthat p(x,y) > Oandy € X \ B,(x, p(x,y)). In particular, B, (x, p(x, y)) # X.
Therefore, by (2.70) we have p(x,y) < R,(x). As such, if y,z € X then

p(z.y) < Comax{p(z,x), p(x,5)} < CoCoR, (), (2.83)



2.4 Ahlfors-Regular Quasi-Metric Spaces 51

which further implies
diam, (X) < C,C,R,(x), (2.84)

giventhaty, z € X were arbitrary. Moving on, if 7 € (0, co) is such that B,(x, r) # X
then we may choose y € X \ B,(x, r) and write

r < p(x,y) < diam,(X). (2.85)

Taking the supremum over all such r (recalling that in this case we are assuming
n(X) < oo) gives R,(x) < diam,(X). Given that x € X was arbitrary, the
inequalities in / follow from this and the estimate in (2.84).

Moving on, we next prove 2. Pick x € X and r € (0, oo) such that r > ¢r,(x).
From (2.78) we know that p,(Bp(x, r)) < Cyr* whenever r < ¢3R,(x). Thus suppose
r > c2R,(x). In this case, we necessarily have that R,(x), and therefore p(X), is
finite (cf. (2.70)). Also, from (2.76) and the fact that c; > 1 we have B,(x,r) = X.
Thus, 3 will follow once we show the existence of a constant C € (0, co), which is
independent of x and r, such that

w(X) < cri. (2.86)
Given that u(X) < oo, it is possible to choose a number C € (0, 0o) satisfying
C > (C,Cp)! (X)/diam, (X)“. (2.87)

Note that it follows from (2.79) in [ that such a choice of C implies (2.86) holds
granted that

(CpCp) (X) /diam, (X)? > pu(X)/R,(x)", (2.88)

and r > R,(x). This completes the proof of 2.

Disposing next of the claim in 3 pickx € X and r € (0, oo) such that r < c2R,(x).
From (2.78) we know that Cyr! < u(B,(x, r)) whenever r > c;r,(x). Thus suppose
r < c1r,(x). Then necessarily we have that r,(x) > 0. Moreover, collectively (2.75)
and the fact that ¢; < 1 imply B,(x, r) = {x}, for r < c¢1r,(x). Therefore, in order to
finish the proof of 3, we want a constant C € (0, co), independent of x and r, such
that

Crt < p(ix)). (2.89)

Observe that given 0 < r < ¢1r,(x), the condition in (2.78) (with r,(x) in place of
r) implies

p({x}) = Cilr,)]* = Crey?r. (2.90)
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Note that the usage of (2.78) is valid in this scenario granted (2.73) along with the
fact that c; < 1 give c17,(x) < r,(x) < c2R,(x). Hence, (2.89) holds whenever
C € (0,Cicy?).

Moving on, we next address the claim in 4. Fix x € X and note that since the
cardinality of X is at least 2, we may choose a point y € X with y # x. Then for
every ¢ € (1, 00) we have

rp(x) < ep(x,y) < ediam,(X), (2.91)

where the first inequality above is a consequence of (2.71), (2.75), and the fact
yEB, (x, ep(x, y)) with x # y. Hence,

sup r,(x) < ediam,(X), (2.92)

x€X

from which the desired conclusion follows granted ¢ € (1, co) was arbitrary.

Disposing next of the claim in 5, fix x € X and note that if r,(x) > 0, then the
desired conclusion follows immediately from combining (2.75) and (2.78). Note
that the use of (2.78) is valid since c;7,(x) < r,(x) < c2R,(x) given (2.73) and the
fact that ¢; < 1 < ¢». On the other hand, if r,(x) = 0, then it follows from what has
been established in 2 that p({x}) = 0. Hence, the estimates in 5 hold in this case as
well.

We move forward to the proof of 6. Fix x € X and note that in light of (2.70),
the desired conclusion follows if (X) = oo. If on the other hand, u(X) < oo
then necessarily we have R,(x) € (0, 00) by (2.72) and /. Consequently, the first
inequality in 6 follows from (2.78) and the fact that ¢;7,(x) < R,(x) < c2R,(x).
Regarding the second inequality, observe that (2.76) implies B, (x, 2Rp(x)) =X
which in conjunction with 2 gives

pw(X) = u(B,(x,2R,(x))) < C[2R,(x)]“ (2.93)

as desired.

Regarding the claim in 7, the fact that diam,(X) < oo whenever u(X) < oo
follows from /. Conversely, if diam,(X) < oo then fix x € X and choose the radius
r € (rp(x), 00) large enough so that B,(x,r) = X. Note that such a choice of r is
possible granted 4. From 2 we have

pw(X) = u(B,y(x,r)) < Cr' < oo (2.94)
completing the proof of 7.
We prove 8 in a similar fashion as 2 except that if the radius r € (0, co) is such

that coR,(x) < r < AR,(x) then we demand C € (0, oo) satisfies

C < u(X)/diam,(X)? < (X)/AR,(x)". (2.95)
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Again, such a choice of C is guaranteed in the current scenario by /.

Moving on, note that 9 now follows from 2 and 3 and that /0 is an immediate
consequence of parts 2—3 as well as (2.77) and (2.78).

As for the claim in /1, it is clear that if x € X and r € (0, r,(x)] then r,(x) > 0.
It therefore follows from (2.75) that B,(x,r) = {x}. Conversely, if B,(x,r) = {x},
then combining parts 9 and 5 we have that

Clrpy@) < () = p(By(x.)> 0. (2.96)

Hence, r,(x) > 0 and the fact that r € (0, r,(x)] follows from (2.71) and (2.75).
This completes the proof of /1. The justification for /2 follows along a similar line
of reasoning used in the proof of /1.

Observing that (2.80) follows from using 2-3 we address next the claim in
(2.81). It is well known, doubling condition in (2.80) implies the ambient space is
geometrically doubling in the sense of Definition 2.3 (cf. [CoWe71]). Consequently,
(2.81) follows from part (/) in Theorem 2.4 and (2.78).

There remains the matter of justifying /5. In this regard, fix § € (0, 00) and
recall from (2.10) that

B (x,r) = Bp(x, rl/ﬂ) for every x € X and every r € (0, c0). (2.97)

From this observation, we can see immediately that all balls with respect to
the quasi-distance pf are p-measurable given the measurability of the p-balls.
Moreover, the equality in (2.97) when used in conjunction with the fact that u
satisfies the Ahlfors-regularity condition in (2.78) (with p) gives

p,(Bp/; (x, r)) = M(Bp(x, rl/ﬂ)) ~ r/F  uniformly for every x € X (2.98)
and r € (0, 00) satisfying c17,(x) < r'/? < 2R, (x).

On the other hand, by (2.74) we have

x e Xandr € (0, 00) with 5 5
= rp() Sr<cRpx), (2.99)

cirp(x) < /P < R, (x)

which in concert with (2.98) ultimately yields (2.82). This completes the proof of
the proposition. O

Comment 2.13 As a consequence of Proposition 2.12, the following fact holds.
Suppose (X, q, ) is a d-AR space for some d € (0, 00). Then, one has

W satisfies the d-dimensional Ahlfors-regularity
pPEq — (2.100)
condition stated in (2.78) with ps € q
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where the quasi-distance py denotes the regularized version of p defined in
(2.21). Indeed, this is an immediate consequence of Theorem 2.1 and (2.81) in
Proposition 2.12. |

Let us further augment the list of properties in Proposition 2.12 with the
following result pertaining to the nature of a Cartesian product of Ahlfors-regular
quasi-metric spaces.

Proposition 2.14 Let N € N be ﬁxed and assume that (X,, pi), 1 <i <N, are

quasi-metric spaces. Define X := ]_[ X; and consider p := \/ pi i X xX —[0,00)
i=1 i=1
concretely given by

p(x,y) ;= max p;(x;,y;) forall x = (xy,...,xn),
1<i<N
y=01....yn) €X. (2.101)

Then p € Q(X). Moreover, assume that each (X;, p;) is equipped with a measure
Wi which renders the triplet (X;, pi, i) a di-AR space for some d; € (0, 00), and
consider the product measure defined by | := (1] @ 2 ® -+ ® un on X. Then

(X, p, 10) is (21<,<N )AR (2.102)

Proof All claims are straightforward consequences of definitions. O

We conclude this section by making some remarks. First, in the context of a
d-Ahlfors-regular space, we do not need to assume initially that the measure p
is Borel, but rather (as Proposition 2.12 outlines) this is a quality that p inherits
as a consequence (2.78). It is remarkable that this phenomenon still remains valid
in the more general setting of spaces of homogeneous type where the measure is
only assumed to be doubling in the sense that pu satisfies the condition described
in (2.80). Secondly, the doubling condition in (2.80) along with (2.81) implies that
every Ahlfors-regular quasi-metric space of dimension d € (0, 00) is a space of
homogeneous type in the sense of [CoWe71] and [CoWe77].

Lastly, granted Proposition 2.12, if we consider symmetric quasi-distances, then
it is straightforward to check that when d = 1, the definition of a 1-AR space is
equivalent to the notion of a normal space in [MaSe79i, p.258] and [MaSe79ii,
p-272] due to R.A. Macias and C. Segovia. Moreover, regarding the notion of
normal spaces of a given order (cf. [MaSe79ii, 1.9 on p. 272]), recall a normal space
(X, p, ) shall be referred to as a normal space of order o € (0, 00) if p is symmetric
and there exists a finite constant Ky > 0 with the property that

lp(x,2) — p(v. 2)| < Kor' ™ p(x, )", (2.103)
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for every x, y, z € X satisfying max{p(x, z), p(y,z)} < r. Although, in principle, the
notion of a normal space is valid for all ¢ € (0, 00), the authors proved in [MaSe79i,
Theorem 2, p. 259], that given an arbitrary space of homogeneous type, there exists
a normal space only of order « € (0, 1). In comparison, we wish mention that in
light of Theorem 2.1, any given 1-AR space is a normal space of order min{1, 8}
for every finite B € (0,«] where « is defined as in (2.21). Hence, d-AR spaces
constitute a generalization of the spaces considered in [MaSe79ii].

We now conclude this section by giving a few interesting examples of d-AR
spaces, the first of which may be regarded as the prototypical example.

Example 1 Givend € N, and a number § € (0, 00), then
R |- =17, L9, (2.104)
where £ is the d-dimensional Lebesgue measure on R, is an Ahlfors-regular space
of dimension d/ 8. |
The next example often arises in several areas of analysis.
Example 2 Givend € N, d > 2, suppose that & C R is the graph of a real-valued
Lipschitz function defined in R~!. Fix B € (0, 00) and consider
(.= 1P 1), (2.105)
where H?™! is the (d — 1)-dimensional Hausdorff measure on R restricted to the
set X is an Ahlfors-regular space of dimension (d — 1)/8. |

In the previous example, the set ¥ possessed a fair amount of regularity. In
contrast the following example highlights the fact the underlying set can be rather
rough and yet still be equipped with an Ahlfors-regular measure.

Example 3 (The Four-Corner Planar Cantor Set) Consider Eo := [0, 1]?, the unit

of side-length 4! which are located in the corners of Ey and set E; := U;;l Q{.
Iteratively, for each n € N we let C, denote the n-th generation of squares defined

located in the corners of E,—; (i.e., each Qﬂ,,j =1,...,4", is located in one of the
corners of the square QX_ |, for some k € {1,...,4""'}) and set E, := U;;l 0.

Having introduced this notation, the four-corner Cantor set in R2, is then
given by (Fig.2.1)

E:=()En. (2.106)
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B, B, Ey B

Fig. 2.1 The first four iterations in the construction of the four-corner Cantor set

It has been shown in [MiMiMiMol3, Proposition 4.79, p.238] (see also
[MiMiMiMol3, Corollary 4.80,p.245]) that for each fixed 8 € (0, co), the space

(E’|._.|ﬂ

- H'E) (2.107)

is a 1/ B-Ahlfors-regular quasi-metric space. |

As is apparent from the above examples, the Hausdorff outer-measure plays
a conspicuous role, at least in the Euclidean setting. Recently, in [MiMiMil3] it
has been shown that the Hausdorff outer-measure defined on quasi-metric spaces
continues to enjoy most of the properties of its counterpart from the setting of
Euclidean spaces (see, e.g., [EvGa92] for a good reference of these properties). For
example, it is a basic result in the Euclidean setting that the Hausdorff outer-measure
is a Borel-regular outer-measure. This phenomenon, to some degree, continues to
transpire in the more general context of quasi-metric spaces. We present this result,
from [MiMiMil3], in Proposition 2.16 below. First, a definition is in order.

Definition 2.15 Let (X, p) be a quasi-metric space, and fix d € [0, c0). Given a set
E C X, for every ¢ € (0, 00) define

o0 o0
Hg,p’S(E) = inf{z r;i EC UBP(xf’ rj) and r; < ¢ for everyj} (2.108)
j=1 j=1
(with the convention that inf@ := o©0), then define the Hausdorff outer-

measure* of dimension d in (X, p) of the set E as

Hy ,(E) := lim Hy o (E) = sup H . (E) € [0, 00]. (2.109)

Also, define the Hausdorff dimension in (X, p) of the set E by the formula
dim;'fp(E) ;= inf {d € [0,00) : ’H,?(,p(E) = O} (2.110)

again, with the convention that inf@ := oo.

“In general, given a nonempty set X, call a function u : 2X — [0, 0] an outer-measure if
n(@) = 0and w(E) < 3 ey p(Ej) whenever E, {E;}jen C 2% satisfy E C UjenE;.
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We now make a few notational conventions. Given a quasi-metric space (X, p),
and nonempty subset E C X, we will denote by p| g, the function defined on E x E
obtained by restricting the function p to the set E x E. It is clear that that the function
ple is a quasi-distance on E. As such, we can consider the canonical topology
induced by the quasi-distance p|z on E, which we will denote by 7, .. We are now
in a position to state the aforementioned proposition (see [EvGa92, p.5,61] for a
version of this result specialized to the Euclidean setting, and [MiMiMi13] for the
more general setting considered here).

Proposition 2.16 Let (X, p) be a quasi-metric space and fix a number d € (0, 00).
Also, consider the regularized quasi-distance py (constructed in relation to p )
defined as in (2.21). Then for any E C X, the restriction of the Hausdorff outer-
measure ’H?{p to E, ie., ’HX P#iE’ is a Borel-regular outer-measure on (E,t,|,),
and the measure associated with it (via restriction to the sigma-algebra of ’HX o
measurable subsets of E, in the sense of Carathéodory) is a Borel-regular measure
on (E, t,|,)-

Furthermore, if E is ’Hd  ps-measurable (in the sense of Carathéodory; hence, in
particular, if E is a Borel subset of (E 7,) ), then the restriction to E of the measure
associated with the outer-measure Hé _ (as above) is a Borel-regular measure on
(E’ TPI.E)'

At this stage we are prepared to shed light on the following issue. Given a quasi-
metric space (X, p), characterize all Borel measures on X which satisfy an Ahlfors-
regularity condition with a given exponentd € (0, oo). In Proposition 2.17 below we
shall show that if there is such a measure p on X, then the d-dimensional Hausdorff
measure Hd , on X also satisfies the aforementioned Ahlfors-regularity condition.

X.p#

Moreover, 1f ,u is Borel-regular then necessarily p is comparable with HX o In
particular, this explains the ubiquitous role played by the Hausdorff measure in the
examples of Ahlfors-regular spaces presented earlier in (2.104)—(2.107).

Proposition 2.17 Assume that (X,q, ) is a standard d-Ahlfors-regular quasi-
metric space for some d € (0,00), i.e., assume (X,q) is a quasi-metric space
and suppose [L is a measure on X with the property that there exists p € q and
K1, k2 € (0,00) such that all p-balls are ji-measurable and

kit < ,u(Bp(x, r)) <o, for all x € X and all finite r € (0, diam, (X)].

(2.111)
Then, with ps denoting the regularized version of p as in (2.21),

’H?{’p# (Bp(x, r)) ~ ¢, uniformly for all x € X and all finite r € (0, diam, (X)].
(2.112)
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Also, | is a Borel measure and there exist two finite constants Cy, C, > 0 such that,
if T, denotes the topology canonically induced by p on X, one has

W(E) < C, H;l(’p#(E) for every p-measurable set E € X, and (2.113)

Ci M, (E) < inf  u(O) foreverysetE CX. (2.114)
’ ECOe€rx,

Moreover, there exists a unique function f satisfying the following properties:

(i) f is Borel,,(X)-measurable,
(ii) 3C3,Cy € (0,00) and A € Borel,, (X) with H ,,(A) = 0

2.115
such that C3 < f(x) < Cq4 for every point x € X \ A, ( )
oo _ d
(l”) ’U“|Borel,p(X)_ f 7_[Xn"#iBorel,p(X)‘
Hence, in particular,
o~ ayd
M Borelfp (X) ~ HXsP# |Borelfp X)" (21 16)

In addition, if the measure | is actually Borel-regular, then for the same
constants Cy, Cy as above

Ci ’Hg,p#(E) < u(E) <G ’Hg,p#(E) for all p-measurable sets E C X. (2.117)

Proof We begin by observing that p is a Borel measure, as noted in part /4 of
Proposition 2.12. Moving on, from assumption (2.111) it follows that 1 is a doubling
measure (in the sense that p satisfies the condition described in (2.80)). In turn, this
implies that (X, p) is geometrically doubling (cf. [CoWe71, p. 67]), hence

(X,1,) isseparable (2.118)

by (2.35). Our first goal is to show that the upper bound in (2.112) holds. For this
purpose, let x € X and some finite r € (0, diam,(X)] be fixed. Also, consider some
€ € (0, r). From Lemma 2.7 it follows that it is possible to cover B, (x, r) with an at
most countable family of p-balls of radii equal to ¢, i.e., one can choose a family of
points x; € X, j € I with I at most countable, such that

By(x.r) €| JBy(xj.6) and B,(xi.&) N By(x,r) #@ foralljel (2.119)
jel

By once more applying Vitali’s lemma (cf. Lemma 2.7), there exists a set J C [
(which makes J at most countable) such that {B,(x;, €) };c; are mutually disjoint and

By(x.r) € | B,(x.3Ce). (2.120)
jel
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Since by the second part of (2.119) we have B,(x;, &) € B,(x, C,(r + 2C,¢)) for
each j € J, we obtain

He o (Boe ) = ¢ D! <Y (B, (5.0) = (| Bt o))
jes jeJ jer
< (B, (x, Cp(r + 2C,e))) < ' (B, (x, Cp(1 + 2C,)r))

< der(Cy(1+2C,)r)", (2.121)

where we have used (2.111) and the fact that the p-balls are p-measurable. After
passing to the limit as ¢ — 0T, we therefore arrive at

H py (Bp(x. 1)) = lim, H pye(Bp(x. 1)) < Cr, (2.122)

which is the upper bound in (2.112).

Regarding the lower bound in (2.112), let x, r retain their earlier significance and
fix an arbitrary ¢ € (0, 00). If we now cover B,(x,r) C U?il B, (xj, ;) for some
xi € X,0 <r; <eg,je€N, (as before, such a cover always exists) then by the upper
boundin (2.111),

w(Bo(x. 1) = > pu(Bp(x. 1)) <2y 1. (2.123)
j=1 j=1

Taking the infimum of the two most extreme sides of (2.123) over all such covers
with 0 < r; < & gives iu(By(x,r)) < cHy,, .(By(x,r)) hence, using the lower
bound in (2.111),

erl < lim My, o (Bo(x.n) = Hip, (Bo(or.1). (2.124)

as wanted. In summary, the above reasoning shows that

'~ ju(By(x, r)) ~ Mg, (By(x,r)) uniformly
for all x € X and all finite r € (0, diam,(X)],

(2.125)

proving (2.112).

Consider next (2.113). To proceed, fix an arbitrary p-measurable set E C X
and assume that ’Hf(’ o4 (E) < 00 (since otherwise there is nothing to prove). Also, fix
some finite & > 0. Then for any cover {B,(xj, 7j)}jen of Ewithx; € Xand0 < r; < ¢
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for all j € N (that such a cover exists is implicit in the fact that Hg‘ﬁ, o (E) < 00) we
can write, based on the monotonicity and subadditivity of the measure pu,

H(E)fﬂ(UBp(xjarj) Zu B,(xj. 7)) < CZ M, (2.126)

j=1 j=

—_

where for the last inequality we have used the upper-bound in (2.111). Hence, taking
the infimum over all such covers we obtain

u(E) < CHy , (E) < CHy , (E), (2.127)

proving (2.113).

To prove (2.114), suppose next that £ € X is arbitrary. Let O € X be an open
set in 7, such that £ C O and assume that {Bp(xj, rj)}jEN and 6 € (0,1) are as in
Proposition 2.8. Then making use of (2.125) we have (again, recall that p-balls are
JM-measurable in the current case):

MY (E) < HY ,,(0) < D MG, (Bo(i 1)) = Y (B, (x5 77))

jeN jeN

< CY (B, 0r)) = CM(U B, (x;. erj)) <Cu(©).  (2.128)

jEN jEN

Taking the infimum over all open sets O containing E now yields (2.114).
Consider next the issue of existence of a function f as in (2.115). First observe
that by (2.112) and Proposition 2.16 we have that

(X , Borel,p (X), 7—[31( o8 is a sigma-finite measure space. (2.129)

‘Borelrp (X))

On the other hand, p ‘ Borel,, (X) is a Borel measure on X and estimate (2.113) entails
™

< Hy (2.130)

’M|Borelrp (X) |Borel,p X)"

Having established (2.129)—(2.130), the Radon-Nikodym Theorem gives the exis-
tence of a nonnegative function f satisfying (i) and (iif) in (2.115). Moreover, (see
[Ru76i, Theorem 1.40, p.30]) there exists A € Borel,,(X) with the property that
’H?(’p#(A) =0andforx € X\ A,

fo e { gy Ji S M, ¢ E € Borel, (). Hy,, () > 0}

(2.131)
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with the closure taken in the canonical topology of R. On the other hand, if the set
E € Borely,(X) is such that Hy  (E) > 0, (2.113) gives

1 W(E)
. — dHe = -7 <, 2.132
@ L = 5 =< 2132

With this in hand, we deduce from (2.131) that f also satisfies 0 < f(x) < C, for
each x € X \ A, for some A € Borel,,(X) with H;l(,p#(A) = 0. Thus, in order to
complete the proof of (ii) in (2.115), there remains to establish a bound from below
(away from the zero) for f. To this end, based on (2.114), the fact that p-balls are
open and (iii) in (2.115), we may write

CiHy ,(By(x.7)) < pu(Bo(x.r)) = / fdHg,. (2.133)

By (x.r)

Employing Lebesgue’s Differentiation Theorem (see the implication (1) = (3) in
Theorem 3.14 below for details) there exists A € Borel,,(X) such that 7—[31(’ (A =0
and

lim fdMg,, = f(x) VxeX\A. (2.134)

r—0t By(x,r)

Thus, based on (2.133) and (2.134) the lower bound from (if) in (2.115) follows, as
desired.

As far as (2.117) is concerned, observe that Proposition 2.8 and (2.111) show
that the measure p has the property that

3{O}jen S 7, sothat X = | JO; and pu(0) <00 VjeN. (2.135)
JjEN

The relevance of this property stems from the implication (cf. [MiMiMil3] for
details)

1 Borel-regular measure on X satisfying (2.135)

2.136
== W(E) = Ecl(%fe ©(0), for all u-measurable sets £ C X. ( )
= Tp

As such, (2.117) follows from this, (2.113) and (2.114), finishing the proof of the
proposition. O

Comment 2.18 A careful inspection of the proof of Proposition 2.17 reveals that
the arguments made in justifying the upper-bound in (2.112), and the estimate in
(2.113) yields the following more nuanced conclusions. Assume that (X, p) is a
quasi-metric space and let y be an upper d-Ahlfors-regular measure on X, i.e.,



62 2 Geometry of Quasi-Metric Spaces

suppose there exists a quasi-distance p € q with the property that all p-balls are
u-measurable and assume for some d € (0, 00) and some ¢ € (0, 0o) there holds

(Bo(x, 1)) < cr’, forall x € X and all finite r € (0, diam, (X)]. (2.137)

Then, with py denoting the regularized version of p as in (2.21), there exists a finite
constant C > 0 such that

'H,g, o8 (Bp(x, r)) < Cr?, uniformly forall x € X

and all finite r € (0, diam,(X)], (2.138)

and
W(E) < C, Hff!p# (E) forevery p-measurable set E C X. (2.139)
|

2.5 The Smoothness Indices of a Quasi-Metric Space

The goal of this section is to briefly survey some of the new concepts presented in
[MiMiMiMo13] regarding to what the authors refer to as the lower smoothness and
Holder indices. One issue that arises in working with Hardy spaces, H”(X), in the
setting of spaces of homogeneous type is that unless p is “near” to 1, then the spaces
become trivial. This is a consequence of the fact that Holder spaces may reduce to
just constant functions if the order is too large. (cf., e.g., the comment on the footnote
on p. 591 in [CoWe77] where the authors qualitatively mention an unspecified range
of p’s for which this occurs). This phenomenon is well-known in the Euclidean
setting where the space of Holder functions €P(RY) is trivial (i.e., reduces to just
constant functions) whenever 8 € (1, 00). However, given an arbitrary quasi-metric
space, this upper bound, in principle, may not be 1. Therefore, the natural questions
are, how should one interpret this upper bound for 8, and is it possible to identify
such a bound in the context of a more general setting?

In an effort to answer these questions in quantifiable manner, the authors in
[MiMiMiMo13, pp.196-246] have provided a new angle on this question by
introducing the notion of “index” (see Definition 2.19 below). In this work, this
notion of index is going to play a fundamental role in the formulation and proofs of
many of our main results. For example, the index will help identify the optimal range
of p’s for which there exists a rich theory of Hardy spaces in spaces of homogeneous
type. More specifically, the index permits us to determine just how far p can be
below 1 while still having a maximal characterization of the atomic Hardy spaces
introduced in [CoWe77].
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For the purposes we have in mind for this work, we only wish to touch briefly
upon this notion of index. The reader is referred to [MiMiMiMol3, pp. 196-246],
wherein the authors provide a systematic treatment in exploring this relatively new
concept.

Definition 2.19 Suppose (X, q) is a given a quasi-metric space.

(I) The lower smoothness index of (X, q) is defined as
ind (X, q) := sup {[log,C,] ™" : p € q} € (0, ] (2.140)

where, for every p € Q(X), the constant C,, has been introduced in (2.2).
(II) The H61der index of (X, q) is defined as

indg(X,q) := inf{a €(0,00): Vx,yeX and Ve >0 (2.141)

N
3&1,...,En+1 € X such that § = x, §y4+1 = y and ZP(&E:’H)” < 8},

i=1
with the agreement that inf @ := oco.

Whenever X is an arbitrary set of cardinality at least 2 and p € £(X), abbreviate
ind (X, p) := ind (X, [p]) and indg(X, p) := indx (X, [p]).

The terminology of “Holder index” used for (2.141) is justified by the fact that
indy (X, q) = sup {a € (0,00) : €*(X,q) # C} € (0, 00], (2.142)

which follows from [MiMiMiMo13, Theorem 4.59, p.215].

In the context of Definition 2.19, one could ask if the supremum listed in (2.140)
is ever attained. In other words, does there exists a quasi-distance p € q for
which the corresponding value of C, is the smallest among all other quasi-distances
belonging to q? As the next proposition will highlight, the answer is yes in the
Euclidean setting, (R?, | - — - |). Howbeit, this anomaly is not to be expected in
arbitrary quasi-metric spaces. In [BriMil3] the authors successfully managed to
construct a quasi-metric space for which the lower smoothness index is not attained
(which has been recorded in Chap. 1 as Theorem 1.1). Hence, the issue of whether
or not the lower smoothness index of a given ambient is attained is a delicate matter.
In fact, as we will see later in this work, this directly affects the range of p’s for
which we are guaranteed nontrivial Hardy spaces. What is becoming apparent is
that, in developing a Hardy space theory in this degree of generality, the nature of
the geometry of the ambient and the amount of analysis which can be performed on
it are intimately connected.

In order to obtain a better understanding of ind (X,q) and indy(X,q), the
following proposition collects just a few of their properties. Again, the reader is
referred to [MiMiMiMol3, pp. 196-246] for further results as well as complete
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proofs of the statements provided below. In this regard, recall that a quasi-metric
space (X, q) is said to be imperfect provided there exist a quasi-distance p € q,
a point xy € X, and a number r € (0, co), with the property that

X\ By(xo,r) #0 and dist,(X \ B,(x0,7), By(x0,7)) > 0.  (2.143)

To the point, this condition amounts to the ambient space having an “island”. With
this definition in mind we now present the following proposition.

Proposition 2.20 Suppose (X, q) is a quasi-metric space and p € q. Then
1. [log,C,]7! < ind (X, q) < indy(X, q);
2. ind (X, p*) = éind (X,p) andalso indy(X,p%) = éindH(X, p), for every

number a € (0, 00).
3. There holds

ind (X, p) = sup {& € (0,00) : py & p pointwise on X x X}, (2.144)
indy (X, p) = inf {a € (0,00) : py = 0 pointwise on X x X} (2.145)

where py is defined as in (2.16).
4. There holds

(a) p ultrametric on X = ind (X, p) = oo, in particular, if X is a set of finite
cardinality then ind (X, p) = oo;

(b) p distance on X —> ind (X, p) > 1;

(c) (X,q) imperfect —> indy (X, q) = oo,

(d) ind (Y,q) > ind (X, q) for any subset Y of X;

(e) if (X, |- 1) is a nontrivial normed vector space and if q stands for the quasi-
metric space structure induced by the norm || - ||, then

ind(Y,q) =indy(Y,q) = 1, forany

convex subset Y of X of cardinality > 2;

(2.146)

(f) ind (X, q) < 1 whenever the interval [0, 1] may be bi-Lipschitzly’ embedded
into (X, q); and

(g) ifind (X, q) < 1, then (X, q) cannot be bi-Lipschitzly embedded into some R,
deN

Comment 2.21 Given quasi-metric space (X, q), part / in Proposition 2.20 gives
that the Holder index of (X, q) always dominates the lower smoothness index
however we cannot expect that these two quantities should coincide given such an

SRecall that given two arbitrary quasi-metric spaces (X;, q;), j = 0, 1, a mapping @ : (Xo, q¢) —
(X1, qp) is called bi-Lipschitz provided for some (hence, any) p; € q;,j = 0,1, one has
p1(@(x), D(y)) = po(x,y), uniformly for x,y € Xp.
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abstract setting. In particular, although there exist nonconstant Holder functions of
order o € [ind (X, q), indy (X, q)] whenever « is finite, it is not clear if these Holder
spaces have any good properties. Going further, if it was known that ind (X, q)
was attained and was finite, then the corresponding class of Holder functions of
order ind (X, q) would consist of plenty of nonconstant functions. We will see in
Example 1 below that this is occurs in the Euclidean setting but should not be
expected to happen in general. |

We continue by recording a result from [MiMiMiMol13] (cf. Proposition 4.28,
p- 198) detailing on the nature of the index of a Cartesian product of quasi-metric
spaces.

Proposition 2.22 Let N € N be ﬁxed and assume that (X,, pi), 1 <i <N, are

quasi-metric spaces. Define X := ]_[ X; and consider p := \/ pi i X xX —[0,00)
i=1 i=1

as in (2.101). Then

ind (X, p) = min ind (X;, p;) (2.147)
1<i<N

indy (X, p) = max ind (X;, p;) (2.148)
1<i<N

We now take a moment to provide a few examples of ambient spaces and their
corresponding indices.

Example 1 As a consequence of (2.146), for any d € N and o € (0, 0o) one has

ind (R, | - —+|%) = indg(R, | - —+|) = L,
(2.149)

ind ([0, 1], - =+ ) = indy ([0, 1]9,] - =+ |*) = 2,

where |-| denotes the standard Euclidean norm in R¢. Additionally, for any exponent

p € (0, 00] one also has®

ind (L7 (R), || - = - lorey ) = ind (€M), | - = o) = min {1, p}, (2.150)
and
inds (L (R), |- = oo ) = indu (€09, I =+ ) = min {1, p}.
(2.151)
|

SHere 17 (R) and ¢7(N) are defined in a natural fashion. See Sects. 3.2 and 5.1 below for details.
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Although the notion of index is of a purely geometric nature, it is remarkable, as
the following example describes, that there is still an interaction between the index
and measure theoretic aspects of a given ambient.

Example 2 Let (X, p) be a pathwise connected quasi-metric space.” With dim;?f o as
in (2.110), suppose that there exists d € (0, co) satisfying

Vx,y € X 3T continuous path joining x and y with dimgp(l") <d; (2.152)
Then
indy(X, p) <d. (2.153)
Therefore, one has
ind (X, p) <d. (2.154)
As a consequence of this result and the observation made in Comment 2.18, given
any pathwise connected quasi-metric space (X, p) having the property that there
exists a nonnegative measure p on X satisfying the following upper-Ahlfors-regular

for some d € (0, 00),

all p-balls are p-measurable and 3¢ € (0, oo) such that (2.155)
p(By(x, 7)) < cr?,  forall x € X and all finite r € (0, diam,, (X)], .

one necessarily has indgy (X, p) < d. Hence, (2.154) holds in this case as well.
A particular case of the above setting which is worth mentioning is (2.105) where

the ambient considered, X, was the graph of a real-valued Lipschitz function defined
in R4"!, In this case, for any fixed g € (0, 0), one has that

(2, =[B! |2) (2.156)

is an Ahlfors-regular space of dimension (d — 1)/ which is pathwise connected.
Hence, in this context

ind (X, p) < indy(X,p) < (d—1)/B. (2.157)

7Call a quasi-metric space (X, p) pathwise connected provided for every pair of points x, y €
X, there exists a continuous path f : [0,1] — (X, 1,) with f(0) = x and f(1) = y, where 7,
represents the canonical topology induced by the quasi-distance p on X. We shall refer to the set
I':= f([o, 1]) C X as a continuous path joining x and y.
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The previous example highlighted the fact that if the underlying set of a quasi-
metric space exhibits enough regularity (here measured by the connectivity of the
set), then the indices listed in Definition 2.19 can not be too large relative to
the Hausdorff dimension of the space itself or the Hausdorff dimension of the
continuous paths joining various points in the space in question. In contrast, the
next two examples illustrate the fact in the absences of any sort of connectivity on
the underlying set, both the Holder and lower smoothness indices can very large.

Example 3 Let
X:={a=(a")ien: a” €{0,1} foreach i e N} (2.158)
and define d : X x X — [0, 00) by setting

d(a,b) := 27P@b) Va = (@)eneX, Vb= by € X,
where D(a,b) :=inf{i e N: a # b}, (2.159)

with the convention that inf @ = oo.

Then, for each B € (0, c0) it follows that (X, d?, ’H)l(/ 5,3) is a 1/pB-Ahlfors-regular

ultrametric space.® Thus, in particular,
indy (X, d%) = ind (X, d%) = oo. (2.160)
It follows that (X, t,) is totally disconnected and, as such, any continuous path in

(X, tf) reduces to just a point. |

We shall describe next a similar phenomenon to the one presented in Example 3,
this time in the context the four-corner planar Cantor set described in Example 4 of
Sect.2.4.

Example 4 1f E is the four-corner planar Cantor set from (2.106) and define the
function d, : E X E — [0, 00) by setting

dy(x,y) = inf{r >0:36,....Evi1 €E, N €N, such that (2.161)

x=&,y=%&y and |§—§&1(| <7, Vie{l,.,,,N}},

for each x,y € E. Then, for each fixed 8 € (0, 00) it follows that df is a well-
defined ultrametric on E and (E, d’ ,’H;/ 5 ) is a 1/B-Ahlfors-regular ultrametric

space. That is,

indy (X, d?) = ind (X, d%) = 0. (2.162)

8In general, call (X, q, 1) ad-Bhlfors-regular ultrametric space for some d € (0, 00)
if (X, q, i) is a d-AR space and q contains an ultrametric.
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Moreover, while the Euclidean distance restricted to E is not an ultrametric, it
is equivalent to d,. That is, one has (E,| - — - |# ,H;/ 5 s) a 1/p-Ahlfors-regular

ultrametric space. |

Additionally, the authors in [MiMiMiMo13] provided another example of an
ultrametric on the four-corner Cantor set which is equivalent with the restriction of
the Euclidean distance to this set. We include this example in the following comment
and refer the reader to [MiMiMiMo13, Comment 4.81, p. 245] for further details.

Comment 2.23 Given a dyadic square Q in R? (always considered to be closed),
denote by Q the set consisting of Q with the upper horizontal and right vertical sides
removed. In particular, for every n € Z the plane R? decomposes into the disjoint
union of all Q’s where Q runs through the collection of all dyadic cubes with side-
length 2. Then the function d : R? x R? — [0, o) given by

d(x,y) := inf{€(Q) : O dyadic cube such thatx,y € 0}, Vx,y € R?, (2.163)

is a well-defined ultrametric on R?. In particular, with E denoting the four-corner
planar Cantor set in (2.106), it follows that d| g is an ultrametric on E. Additionally,
with d, asin (2.161),

d|g~ d,. (2.164)

The claims made in Comment 2.23 have natural formulations in all space
dimensions. In particular, a result related to the one-dimensional version reads as
follows.

Example 5 Let X := [0, 1) and for each x, y € X set

L(x,y), ifx ,
d(x,y) := O( )i)f 7 (2.165)
E} X = ys

where, for x, y € X such that x # y,

£(x,y) is the length of the smallest dyadic interval [ %, £t1),

n (2.166)

containing both x and y, where k € Nissuchthat 1 <k <2"—1.

Then d is a well-defined ultrametric on X. Hence indy (X, d) = ind (X, d) = oco. W

The last example we wish to discuss here illustrates that the inequality
ind (X, q) < indy(X, q) appearing in Proposition 2.20 for any quasi-metric space
(X, q) can be strict. See Comment 4.38 on p.206 and Remark 4.49 on p.211 in
[MiMiMiMol13].
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Example 6 Leta, b, c,d be four real numbers with the property thata < b < ¢ < d.
Then,

ind ([a,b] Ule,d], |- —- |) =1 (2.167)
whereas
indH([a, blU e, d],|-—- |) = 00. (2.168)



Chapter 3
Analysis on Spaces of Homogeneous Type

The main goal of this chapter is to rework, in a sharp and relatively self-contained
fashion, some of the most fundamental tools used in the area of analysis on quasi-
metric spaces. Many of the results presented in this section are of independent
interest and will be found useful in a plethora of subsequent applications.

This chapter is organized as follows. We begin in Sect.3.1 by developing
another regularization procedure for a quasi-distance p associated with a space of
homogeneous type. In contrast to Theorem 2.1, this time the aim is to produce a
quasi-distance which is pointwise equivalent to p and has the property that the
balls induced by it are themselves spaces of homogeneous type when equipped
with the natural restrictions of the original quasi-distance and measure. Moving on,
the principal result of Sect. 3.2 extends classical work pertaining to the mapping
properties of a Hardy-Littlewood maximal operator (done originally in RY) to the
more general context of spaces of homogeneous type. A result of this type currently
exists in the literature however the issue of the measurability of this operator has
been consistently overlooked. The major contribution here is that we address this
matter in detail in Theorem 3.7. This result will in turn permit us to establish a
satisfactory sharp version of Lebesgue’s Differentiation Theorem in this general
context. See Sect. 3.3 for details. Section 3.4 is dedicated to the construction of
the best (in terms of smoothness) approximation to the identity one may consider
in such a general context. Finally, in Sect. 3.5 we record a version of M. Christ’s
construction in [Chr90ii] of a dyadic grid on a space of homogeneous type.

Many of the results in this section will be formulated in the general context of
arbitrary spaces of homogeneous type. As such, in order to facilitate the subsequent
discussion we begin by defining this notion, in the spirit of [CoWe71, CoWe77].
Suppose (X, q) is a quasi-metric space and p € q. A nonnegative measure ., defined
on a sigma-algebra of X which contains all p-balls, is said to be doubling (with
respect to p) provided there exists a finite constant k > 0, called the doubling
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constant (for w), such that
0 < u(By(x.2r)) <k u(By(x,r)) <00, VxeX, Vre(0,00). (3.1)
Observe that the doubling condition listed in (3.1) implies ¥ € [1, 00). The number
D :=log, k € [0,00) (3.2)

is called the doubling order of w. Via successive iterations we then obtain the
following uncentered and arbitrarily scaled version of the doubling property in (3.1),

1

. D
< Z Egg <x(C,C)" (%) forall p-balls B, € B, (3.3)
where C,, C,, € [1, 00) are as in (2.2)~(2.3).

On arelated note, it is of interest to remark that the doubling condition from (3.1)
actually forces k € (1, 00), hence D = log, k € (0, 00). Indeed, if k = 1 then (3.3)
implies w(By) = w(By) for all p-balls B, € B which, after shrinking B, to a point
and expanding B; to the entire space contradicts the conclusion in the proposition
below.

Proposition 3.1 Let (X, q) be a quasi-metric space and assume that [ is a doubling
measure with respect to a quasi-distance p € . Then u({x}) < u(X) for every
x € X.

Proof Seeking a contradiction we assume that there exists a point x € X such that
n({x}) = w(X). By assumption, all p-balls are p-measurable with positive and
finite measure. In particular,

0 < 1(Bp(x, 1)) < pu(X) = pu(ix}) = p(Bp(x, 1)) < oo (3.4)
Consequently, writing
pX) = p(X\ {x}) + pfx}) = X\ {x}) + pX) 3.5
allows us to conclude (X \ {x}) = 0. Thus,
R(E) = p(EN{x}) + p(E\ {x}) = w(EN{x}), (3.6)
for every p1-measurable set E C X. Therefore if E C X is i-measurable then

X) ifxekE,
pey =)0 (3.7
0 ifxe X\ E.
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Now choose y € X such that y # x. Such a choice of y is ensured by the assumption
that the cardinality of the set X is at least 2. Then, in light of the fact that p(y, x) > 0
we have

x € By(y,2p(y,x)) and x€X\B,(y.p(y,x)). (3.8)

In concert (3.4), (3.7), (3.8), and the doubling property of the measure p imply

0 < pu(X) = 1 (Bo(y.20(y, %)) < & (Bo(y, p(, %)) = 0, 3.9)

which is false. This finishes the proof of the proposition. O
Following R.R. Coifman and G. Weiss, we now make the following definition.

Definition 3.2 Call atriplet (X, q, t) a space of homogeneous type provided
(X,q) is a quasi-metric space, and u is a nonnegative measure on X which is
doubling with respect to some p € q.

In the context of Definition 3.2, we will sometimes simply write (X, p, i) in place
of (X, [p], ). Moving on, we wish to note that strictly speaking, this definition of
a space of homogeneous type differs from [CoWe77, p. 587] (see also [CoWeT71,
p. 67]) in that we do not assume that p is a Borel measure nor that the p-balls
are open in the topology induced by p. Despite these differences, the notion of
a space of homogeneous type as in Definition 3.2 implies the one in [CoWe77].
Indeed, it is well-known that doubling condition in (3.1) implies the ambient space
is geometrically doubling in the sense of Definition 2.3 (cf. [CoWe71, p. 67], also
Proposition 3.28 in this work). As such, Theorem 2.4 implies that if (X,q, u) is a
space of homogeneous type, then (in the sense of Definition 2.9)

w is a Borel measure on (X, 7q), (3.10)

where 74 is the topology induced by the quasi-metric space structure q on X.
Moreover, recall that Theorem 2.1 guarantees the existence of a quasi-distance
p# € q having the property that all pg-balls are open in 74 (hence are p-measurable).
Combining this with the observation

W doubling with W is doubling with respect to every o € q with G
—> .
respectto p € q the property that all p-balls are p-measurable,

we can deduce that (3.1) is valid with p replaced with p4 € q. Thus, (X,q, u) is a
space of homogeneous type in the sense of [CoWe77].

Spaces of homogeneous type have provided a general framework in which many
of the fundamental results in Harmonic Analysis on R”, such as Calderén-Zygmund
theory, remain valid. Over the years, analysis in spaces of homogeneous type has
become a well-developed field with applications to many areas of mathematics.
This field remains significantly active. For example, in recent years the role of the
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doubling property of the underlying measure (cf. (3.1)) has come under scrutiny;
see, e.g., [Hyt10, Tols14, YaYaHul3, FuLinYaYal5] and the references therein.

3.1 More on the Regularization of a Quasi-Distance

In Theorem 2.1 of Sect.2.1 we have seen that a given quasi-distance can be
regularized in manner which improves a number of its qualities. In particular, this
regularization produced a quasi-distance that is locally Holder-continuous, in the
sense described in (2.27). This result is valid in arbitrary quasi-metric spaces and is
concerned with the pointwise behavior of the given quasi-distance. In this section
we will present a different type regularization procedure in the context of spaces of
homogeneous type which strengthens the relationship between the quasi-distance
and the measure. This is done in Theorem 3.4 below. As a preamble we will need to
expound upon the iterative nature of the quasi-triangle inequality.

We have previously discussed in Sect. 2.1 that any given quasi-distance p on a set
X satisfies the quasi-triangle inequality, namely, for some C € [1, co) there holds

p(x.y) < C(p(x.2) + p(z.y)) forevery x,y,z € X. (3.12)
Unlike the genuine triangle inequality (when C = 1 in (3.12)), the quasi-triangle

inequality presents the following severe limitation when iterated: with C is as
in (3.12), one has

N—1
p(xy, xy) < Z C*p(xg, Xi+1), (3.13)

k=1
whenever N € N and xj,...,xy € X. The shortcomings of (3.13) lies in the

exponential growth of the constant C. The following lemma addresses this very
issue where, through the use of the regularization procedure in Theorem 2.1, we are
able to eliminate the exponential dependence on the constant C at the expense of
considering a certain power rescaling of the right-hand side of (3.13). A result of
this nature will be very useful in applications.

Lemma 3.3 Suppose (X, p) is a quasi-metric space, let Cp, C, € [1,00) be as
in (2.2)—(2.3) and consider a number 8 € (0, oo] satisfying 0 < < [longp]_l.
Then for every collection of points x1, ..., xy € X, N € N, N > 2, there holds

Nl 1/8
plxi, xy) < Cpcﬁ(zp(xi7xi+l)ﬂ) , (3.14)

i=1
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whenever § # oo, and its natural counterpart corresponding to the case when
B = o0, ie.,

p(x,xy) < max p(x;, Xit1). (3.15)
1<i<N-—1

Proof Observe that if B = oo then C, = 1 and in this case (3.15) follows from the
quasi-ultrametric condition listed in (2.1) (with C, playing the role of Cy). Thus, we
will assume 8 € (0, 00).

Moving on, consider the regularized quasi-distance py € $£Q(X) given as
in (2.21) in Theorem 2.1 and suppose xj,...,xy € X, N € N, N > 2. Then
using (2.22), (2.25), and (2.26) we have

p(x1.xn) < C) py(x1, xy)

N—1 g N—1 1/8
< C,%(Zp#(xi,xiﬂ)ﬂ) < CpC,z,(ZP(xi,xiH)ﬂ) . (3.16)

i=1 i=1
from which we can deduce the inequality (3.14). This finishes the proof of the
lemma. O
We are now in a position to present the theorem alluded to above.

Theorem 3.4 Suppose (X, q, (1) is a space of homogeneous type and assume that
p € q is such that u is doubling with respect to p. For each x,y € X set

Pm(x,y) = inf{r € (0,00) : there exists Ne Nand E_y,..., E_1, &,..., Ev € X,
3.17)

(not necessarily distinct) such that §_y = x, Ey =y, p(6—1,&1) <1,
and p(Er, Eiy1) < 12, p(E—i1.E_) <r/2 forie{l,...,N — 1}}.
Then py, : X x X —> [0,00) is a well-defined, symmetric quasi-distance on X,
satisfying:

1. pp~ponXxX;
2. each py-ball is open in tq hence, in particular, each p,,-ball is p-measurable;
3. there exists A = A(p) € (0, 00) such that

M(Bpm (x,R) N B, (y, r)) ~ M(Bpm (v, r)) uniformly, for every x € X,

every R € (0,00), every r € (0, AR], and everyy € B, (x,r).

(3.18)

Comment 3.5 We will refer to a collection of points {4}, appearing in (3.17)
as a good chain at scale r joining x and y. Trivially, for every x,y € X and every
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r > p(x,y), the family {£_;,&_,} := {x,y} is a good chain at scale r joining x and
y. Let us also note here that given a good chain {4} ;= at scale r joining x and y,
there exists ' € (0,r) (dependlng on the chain in question) such that {éil} —, isin
fact a good chain at scale ' joining x and y. As a consequence, whenever r € (0, 00)
is a number for which there exists a good chain of point at scale r joining x and y,
then necessarily p,,(x,y) < r. |

We now present the

Proof of Theorem 3.4 We begin by noting that, by the second observation in the
above comment, the function p, : X x X — [0, co) is well-defined. To prove
part /, i.e., that p,, is pointwise equivalent to p on X x X, fix points x, y € X. Then for
¢ € (0, 00) fixed, taking N := 1, é_; := x, and §; := y we have that (1+¢)p(x, y) is
a participant in the infimum listed in (3.17). Hence, p,,(x,y) < (1 + €)p(x,y). Then
passing to the limit as ¢ — 07 gives p,,(x,y) < p(x.y).

Next, assume r € (0, 00) is such that there exist a number N € N along with
good chain of points {§+;}_, at scale r joining x and y. Consider the number

B := min {1, [log,C,]~'}. (3.19)

where C, € [1, 00) is as in (2.2). Then by (3.14) in Lemma 3.3 we have

1/
p(y) < C CZ(Zp(s_, LEDP + plEnr 1) + Zp(s,,s,+1)ﬂ)

i=1

N—1

i 1/p
SCC(Z&$+ﬁ+z:$) <er, (3.20)

i=1

for some ¢ = ¢(p) € [1,00). As such, taking the infimum over all » € (0, c0) as
in (3.17) yields ¢! p(x, y) < pm(x,y). Hence,

oY) < pulx,y) < plr,y)  VYxyeX. (3.21)

Incidentally, it follows from this pointwise equivalence in (3.21) that p,, is a quasi-
distance on X. The fact that p,, is symmetric is a consequence of the observation
that interchanging x and y amounts to a relabeling of the §;’s in (3.17). This finishes
the proof of 1.

In order to prove part 2 it suffices to show that if x € X and R € (0, co) are fixed,
then for each point y € B, (x, R) one can find a radius & € (0, 00) such that

B,(y.€) C B, (x.R). (3.22)

Suppose y € B, (x,R) for some x € X and R € (0, 00) and consider a number
& € (0, 00), to be specified later, along with a point z € B,(y, €). Since p,,(x,y) < R,
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it follows from (3.17) that there exists a good chain of points {£4;}Y, at scale R
joining x and y. From this collection of points construct a new chain {E;Ei}ﬁvjll by
setting £’ | = x, &, =z and § := & fori € {—N,...,—1,1,...,N}. Thus,
ife € (0,R/2") then {&/, f\:il constitutes a good chain of points at scale R joining x
and z. Bearing in mind, the last observation in Comment 3.5, this gives p,,;(x,z) < R
from which the desired inclusion in (3.22) follows. Noting that the p-measurability
of the p,,-balls is implied by (3.10) and the fact that each p,,-ball is open in (X, 74),
then finishes the proof of 2.

There remains to prove part 3. Fix x € X and R € (0, 00) along with a point

y € B, (x,R) and a number r € (0, AR], where

. 2B+1 _q /8
A= C,DCp (W) s (323)

with 8 as in (3.19). The reason for this particular choice of A € (0, co) will become
apparently shortly. Since the monotonicity of the measure p implies

pL(Bpm (x,R) N B, (v, r)) < pL(Bpm (v, r)), (3.24)

matters have been reduced to finding a finite constant C > 0 which is independent
of x, R, y, and r, satisfying

(B, (v, 1)) < Cu(By, (x.R) N B, (y,1)). (3.25)

To this end, with 8 € (0, co) defined as earlier in the proof, let k € Ny be such that

R 6‘2C4 2B+l _q /B - R6‘2C4 2B+l _ 1/B 396
21 e\ Top <r=5Gbolr 1) (3.20)

Given that p,,(x,y) < R, there exists a number N € N and a good chain of points
{gii}gil at scale R joining x and y. By possible enlarging this chain with additional
points near x and y, we can assume without loss of generality that N > k + 2.
Starting in earnest the proof of (3.25), the first step is establishing the inclusion

R
Bp(§k+1, W) g Bpm (y, r) n Bpm (x, R) (327)

With this goal in mind, fix z € B, ($k+1, 2}%) and observe that, on the one hand, by
second inequality in (3.21), (3.14) in Lemma 3.3, and (3.26) we may write

- /B
pu) = 9. 2) = C,C(p0n5i)” + p(Es 1.9

N—1

- - 1/
< CpC,%{ (Cpci)ﬂ( ) p@_i_l,s_i)ﬂ) + p(sk+1,z>ﬂ}

i=k+1
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N—1 1/8
~ RP RB
2 4
= pcp{( Z 273) + 2(k+1)ﬁ}
i=k+1
Y R - 2f RE VP
= CPCP{ 2k+1)B (2f5 _ 1) + 2(k+l)ﬁ}
R -5 4 2B+l _ 1\ /B
= Dkt Cpcp( 2% ] <r. (3.28)
This proves
R
By (k1. F) C By, (y.7). (3.29)
Moreover, if we set &/ := § fori € {—N,...,—1,1,...,k+ 1} and & := z for

i=1
joining x to z. Consequently, p,,(x,z) < R which, given thatz € B, (§k+1, %) has
been arbitrarily chosen, further implies

every i € {k + 2,...,N}, then the collection {S;Ei}N is a good chain at scale R

R
By(Ec+t, 5i7) S Bpu (3 R). (3.30)

Now combining (3.29) and (3.30) gives (3.27), as desired.
At this stage we claim that there exists a constant Cy € [1, c0) with the property
that

R
B,,(y.7) € By(6x+1. C*?). (3.31)

Observe first that with ¢ € (0,00) as in (3.21) we have B,,(y,r) < Bp(y, cr).
Moreover, whenever z € B, (y, cr) we can estimate (keeping in mind &y = y)

N—1

P(Ekt1,2) < 6pC,2;( >

i=k+1

N—1 B 1/8
A(E 5o

i=k+1

B B B B+1 _ 1/B
L B I B i o it
20k+DB\ 28 — 1 2kB TP TP 28 1

2B+ \ VB p
26 — 1) 2k

1/B
p( &) + P(EN,Z)ﬂ)

IA

<c éﬁcg( (3.32)
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where the first inequality in (3.32) follows from appealing to (3.14) in Lemma 3.3
with the choice B := min{l, [longp]_l}, and the second inequality is a con-
sequence of (3.21). Hence, the inclusion in formula (3.31) holds with the choice

Cy = CéﬁCﬁ(%)l/ﬁ € [1, OO)
In concert, (3.31), the doubling property of the measure p (described in (3.1)),

and the inclusion in (3.27) yield

(B, 0.1) = (B (6, C*g))

R
< Ciu(Bp(&r+1, W)) < Cu(By, (v, ) N By, (x, R)), (3.33)

where C € (0, co) depends on Cy and the doubling constant for . This finishes the
proof of (3.25) which, in turn, concludes the proof of the theorem. O

The following result is a consequence of Theorem 3.4 that highlights the fact that
given a space of homogeneous type (X, p, i), one can find another quasi-distance
on X which is pointwise equivalent to p and has the property that each of its balls are
themselves spaces of homogenous type when equipped with the natural restrictions
of i and p. In a nutshell, being a space homogenous type is locally hereditary.

Corollary 3.6 Suppose (X, q, i) is a space of homogeneous type and assume that
0 € q is such that u is doubling with respect to p. Also, consider the quasi-distance
Pom € q constructed as in (3.17) of Theorem 3.4. Then for each fixed x € X and finite
R € (0,diam,(X)], one has

Zr = B,, (x,R), equipped with the measure uiy and
R (3.34)

the quasi-distance p| 25, is a space of homogeneous type.

Proof In order to verify (3.34) we need to show that p % is doubling with respect
to pla; in the sense described in (3.1). Observing that this task follows from
parts /-3 of Theorem 3.4 concludes the proof of the corollary. O

3.2 The Hardy-Littlewood Maximal Operator

The main result of this section is Theorem 3.7 which describes the mapping
properties of Hardy-Littlewood maximal operator in the general context of spaces
of homogeneous type. This result is of independent interest and should be useful for
other problems in the areas of analysis on quasi-metric spaces.

A result of this nature dates back to 1930 and the pioneering work of both
G. H. Hardy and J. E. Littlewood who in [HarLit30] studied the boundedness of the
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Hardy-Littlewood maximal operator in the one-dimensional Euclidean setting. This
result was subsequently extended to higher dimensions by N. Wiener in [Wei39].

In more general contexts, the boundedness of the Hardy-Littlewood maximal
operator in the setting of spaces of homogeneous type seems to originate in the
work of [CoWe71, Théoreme 2.1, p. 71]. However, the authors did not address the
important issue of the measurability of the Hardy-Littlewood maximal operator.
Unfortunately, this matter has propagated through the literature and has been
allowed to go unresolved over the years; see, e.g., [CoWe77, p.624]. The issue of
measurability is delicate and requires a thorough treatment which we provide here
in Theorem 3.7 below.

As a preamble, we first establish record a number of definitions. Given a measure
space (X, ), for each p € (0, oo] we set define

(X, p):={f:X—C: fis u-measurable and || f|zrx.n) < o0}

(with p-measurability understood with respect to the original sigma-algebra on
which p is defined) where

1/p
I Py = ( [ 1P an) (339)
whenever p € (0, co) and corresponding to the case when p = oo, we set

| fllzeox,p) 1= esssupy f. (3.36)

Although our notation does not reflect it, as is customary we understand L’ (X ) to
be the collection of equivalence classes of functions, where we do not distinguish
between functions which coincide pointwise p-almost everywhere on X.

For further reference, we also recall the definition of what is commonly referred
to as weak LP-spaces. In the above context, denote by L”*°(X, ) the space defined
as

[P®°X, 1) = {f :X — C: f is u-measurable and || f || p.oox ) < oo}, (3.37)

where we have set for each p-measurable function f : X — C,
1
| f oo = suphp(fxeX: ()] >An)", (3.38)
A€(0,00)

whenever p € (0, co) and corresponding to the limiting case when p = oco,we define
I fllree g = Il fllzeox s ie.s

L®®(X, p) = L®(X, ). (3.39)
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It is instructive to note that for each p € (0, 0o], functions belonging to L*° (X, i)
are finite pointwise p-almost everywhere on X.

We next recall the space of locally p-integrable functions. Suppose (X, q) is a
quasi-metric space and suppose that @ is a nonnegative measure on X with the
property that for some quasi-distance p € q all p-balls are p-measurable. In this
setting, if p € (0, oo] we naturally define I} (X, i) to be

loc

rr

loc

X, n) = {f : X — C: f is u-measurable and (3.40)

If 18,0 () lr(x.u) < 00, foreveryx € X and r € (0, oo)}.

Moving on, suppose u is doubling with respect to p, i.e., suppose (X, p, i) is a
space of homogeneous type. In this context, for each f € L} (X, j1) set

fduw = ———— fdu, VxeX, Vre(0,00). (3.41)
Bp(x,r) /‘L(B,D(x7 }’)) Bp(x.r)

With this in mind, define the Hardy-Littlewood maximal operator, M,,
(constructed relative to p) by setting foreach f € L} (X, 1)

loc

M, f(x) ;== sup ][ | fldu VxeX. (3.42)
Bp(x,r)

r€(0,00)

Note that equivalent quasi-distances on X whose associated balls are p-measurable
induce Hardy-Littlewood maximal operators which are pointwise comparable in
size in a uniform fashion, i.e.,

o quasi-distance, ¢ & p, M, f(x) ~ M, f(x), uniformly
== (3.43)

forevery f € L! (X,u)andx € X.

with o-balls p-measurable loc

There are, however, natural reasons for preferring a specific quasi-distance (compat-
ible with the original geometric and measure theoretic aspects of the ambient) since
a judicious choice of such a quasi-distance may yield a better behaved fractional
maximal operator as far as considerations other than shear size are concerned. As
we have previously mention, one fairly delicate issue (which has, unfortunately,
often been unjustifiably disregarded in the literature) is that of the measurability of
M, f . Itis in this vein that we will make use of the sharp metrization theorem stated
in Theorem 2.1.
We now present the main result of this section.
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Theorem 3.7 Let (X, q, i) be a space of homogeneous type. Fix any quasi-distance
p € q and denote by py € q the regularized version of p defined as in (2.21). Then

My, f X = [0,00] is awell-defined, (3.44)
u-measurable function for every f € L} (X, i) .

loc

and, moreover,

My, 1 LP(X, ) — LP(X, 1) is well-defined,
(3.45)
linear and bounded for every p € (1, c0].

In addition, for each p € (1, 00], one can find a finite constant C = C(p, u,p) > 0
with the property that the operator norm of M,, satisfies

M., C. (3.46)

| =
Furthermore, corresponding to the case p = 1, one has

My, L'(X, ) — LV"®(X, ) is well-defined, linear and bounded, (3.47)
where | M.,

on p and |
As a corollary of (3.44)—(3.47), for each p € [1, o] there holds

||L1 X )L (X 10) is bounded above by a constant which depends only

My, [ is finite pointwise pi-almost
(3.48)
everywhere on X for each fixed f € LF(X, u).

Proof As a preamble, recall that balls with respect to the quasi-distance py are open
in 74, hence p-measurable (cf. Theorem 2.1 and (3.10)). In particular, from (3.11)
one has that 1 is doubling with respect to py.

We shall start by proving (3.44). To this end, consider the following truncated
version of (3.42). Namely, for each fixed R € (0, co) define

R .
M, f(x) == sup ][ | fldu, xeX, (3.49)
0<r<RJ Bp,(x,r)
for any f € L} (X, ). The first order of business is to show that, for each fixed
R € (0, 00),

Mﬁ# f 1 X — [0, 00] is a ji-measurable function V f € L; (X, ). (3.50)
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Fix f € L} (X, 1) along with a number R € (0, o). The first observation is that

loc

ME f(x) = sup ][ | fldu, VYxeX. (3.51)
0<r<R Bp#(x,r)
rrational

Indeed, this is a consequence of the fact that if x € X is arbitrary and fixed then for
each r € (0, 00) and each sequence {r;}jen € (0,00) such thatr; /' rasj — oo
one has

][ | fldu — | fldu as j— oo. (3.52)
By (x,17) By (x,1)

In order to justify (3.52) note that we have B, (x,r;) /" B, (x,r) as j — oo (i.e.,
UjeN By, (x,1;) = By, (x,r) and B,, (x, ;) € B, (x, rj+1) for every j € N) hence

,u(Bp#(x, rj)) — ,u(Bp#(x, r)) as j — oo, (3.53)

by the continuity from below of the measure . Then (3.52) follows from (3.53) and
Lebesgue’s Monotone Convergence Theorem.

Granted (3.51) and since the supremum of a countable family of p-measurable
functions is itself a pu-measurable function, it suffices to show that, for any fixed
r € (0, 00), the assignment

X3 00 = f [ flduc .00l
By (x,1)
is a u-measurable function. (3.54)

With this goal in mind, fix r € (0,00) and recall that given any p-measurable
function f : X — C one can always find a sequence {/;}jen of simple functions
defined on X having the property that 0 < h;(x) /' | f(x)| as j — oo forevery x € X
(cf. [Ru76i, Theorem 1.17, p. 15]). Since

@, ,(x) /1 DPpr(x) asj—> oo, forevery x € X, (3.55)

it suffices to prove that for each fixed j € N the function @y, , is -measurable. In
turn, given the structure of simple functions and the definition of @y, , it suffices to
prove that for each fixed p-measurable set E C X, the mapping

p(Bp, (x.r) N E)

X2>x+H—
M(Bp#(x, r))

€ [0, 0] (3.56)

is p-measurable. At this stage, recall that from (3.10) that the measure p is Borel
on (X, tq). Therefore, in order to justify (3.56), observe that it suffices to show that
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if E C X is a u-measurable set then

g: (X,7q) = [0,00), g(x):= pu(By,(x,r) NE), VxeX, 357
is a lower semi-continuous function, .

since, in the current setting, any lower semi-continuous function is p-measurable.
To this end, fix xo € X arbitrary. The crux of the matter is the fact that our choice
of the quasi-distance pg ensures that if {x;};en is a sequence of points in X with the
property that x; — xo as j — oo, with convergence understood in the (metrizable)
topology 74, then

ligglflsp#(xj»,r) O > 1,600 s VyeX. (3.58)

Indeed, on the one hand, the inequality in (3.58) is trivially true when the point
y € X\ By, (xo, r). On the other hand, in the case when y € B, (xo, ) the continuity
of ps(y,-) on (X, 7q) (cf. (2.28) in Theorem 2.1) and the fact that pg(y,x0) < r
ensure that px(y,x;) < r for all sufficiently large j’s. Hence, y € B,,(x;, r) for all
sufficiently large j’s and the inequality in (3.58) follows easily from this.

In turn, based on (3.58) and Fatou’s lemma we may then estimate

am=umemmm=Lmemmmw

=< /;%Eiglep#(xJ’,r)(y) du(y) < h]ﬂgf/; pr#(xJ',r)(y) du(y)
= liminf,u(Bp#(xj, r) N E) = liminf g(x;), (3.59)
Jj—>o0o j—o0

as desired. This finishes justifying (3.56) and, in turn, concludes the proof (3.50).

Moving on, we next address the claim made in (3.47). To proceed, fix a finite
threshold A > 0 along with a truncation parameter R € (0, c0), then for a fixed,
arbitrary, function f € L'(X, i) consider

Egp:={xeX: (M} /Hx) > A} (3.60)

By (3.50), we know that Eg; < X is a u-measurable set. Furthermore, by design,
for each point x € Eg  there exists a number r, € (0, R) such that

f | fldu > 2, (3.61)
By (x,rx)
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i.e.,
paer) <27 [ flan. (3.62)
By (x,1x)
Next, consider the collection {B,, (x, rx)}x c5, S X which has the property that
Era | Bu(x.r). (3.63)
XEER )

granted the nondegeneracy of py. We claim that the family of sets {Bp# (x, rx)}x €Ery

satisfies the hypotheses of Lemma 2.7. Observe that on the one hand since u is a
doubling measure with respect to px, we have that (X, p) is geometrically doubling
(cf. [CoWeT71, p.67]), hence

(X,7q) is separable (3.64)
by (2.35). On the other hand, by design there holds

sup rr <R < o0. (3.65)

x€ER )

Then from (3.64) and (3.65) we have that the above family of sets satisfies the
hypotheses of Lemma 2.7. Thus, Lemma 2.7 applies and yields an at most countable
family {B,, (x. r.)} _,» WithJ € Eg ;. of pairwise disjoint sets with the property that
for some finite positive constant, which without loss of generality can be assumed
to be of the form 2V for some fixed N € N which depends only on p, one has

Egy S| JBo(x.2"r). (3.66)

x€J

By availing ourselves of this condition and keeping in mind the doubling property
of u relative to the quasi-distance py (cf. (3.1) where the constant x used below first
appears) we may write

1(Er2) <) jt(Bpy (x.2Vr)) < ™D (B, (x. 7))

x€J xe€J

=Y [l

xeJ Bpy (xory)

ot [ s
X
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where the third inequality made use of (3.62). Thus, there exists a finite positive
constant C = " which depends only on p and y (in particular, C is independent of
f, A, R and Ry), with the property that

sup (% p(Ers)) = Cll f luscen (3.68)
A€(0,00)

At this stage, we make the observation that since (Mﬁ# ) S (M, f)x) as
R /" oo for each x € X, we may conclude that M, f is a u-measurable function
on X. Furthermore, if for each finite A > 0 we introduce

Ey:={xeX: (M, f)x) > 1} CX, (3.69)

it follows that for each fixed A € (0,00) we have E) is a u-measurable set and
Ery /" EjasR /" oco.Consequently, u(Egy) /* w(Ey) as R /' oo, for each fixed
A € (0, 00), hence passing to the limit R oo in (3.68) yields

sup (Ap(ED) = Cll floy.  YA>0. (3.70)
A€(0,00)

for some finite constant C > 0 depending only on p and p. Granted that the function
f € L'(X, i) was arbitrary, this proves (3.47).

There remains to establish the claim made in (3.45). In this regard, observe that
since

[ Mpe f oy < Wl ¥ f € L®(X ), (3.71)

we have that
M, 1 L®(X, u) — L*°(X, n) is well-defined, linear and bounded. (3.72)

The final step is to interpolate between the boundedness results established in (3.47)
and (3.72). Given that the operator M, is subadditive, the Marcinkiewicz Inter-
polation Theorem applies (cf. [BerLo76, Theorem 1.3.1, p. 9]) and gives (3.45)
and (3.46). This finishes the proof Theorem 3.7. O

Comment 3.8 The maximal operator defined in (3.42) is often referred to as the
centered Hardy-Littlewood maximal operator. A closely related version of this is
the uncentered Hardy-Littlewood maximal operator which is defined as follows.
Retain the setting of Theorem 3.7; in particular, fix a quasi-distance p € q with the
property that all p-balls are y-measurable. Then for every & € L (X, 1) set

loc
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(/\;lph)(x) = sup{ ][B |h|dw: y € Xandr e (0,00)

p(yvr)
such thatx € B,(y,7) ¢, (3.73)

for all x € X. Much as in the case of M,, in general it is not to be expected that
M ph is a p-measurable function on X. For the centered Hardy-Littlewood maximal
operator we have circumvented this issue by considering M, (where px € q is the
regularized version of p defined as in (2.21)), though it is unclear whether M ouh 18
p-measurable. One way to bypass this problem is to observe that M o and M, are
pointwise equivalent on the set X in the sense that one can find some finite constant
C = C(p, ) > 0 such that for every h € L} (X, i)

(M, h)(x) < (Mph)(x) < C(M p, ) (%), VxeX. (3.74)

In light of Theorem 3.7 this estimate renders the operator M o still a useful tool in
the context of Lebesgue spaces. |

3.3 A Sharp Version of Lebesgue’s Differentiation Theorem

The main goal of this section is to prove a sharp version of Lebesgue’s Differentia-
tion Theorem in the context of a space of homogeneous type (X, p, 1) by identifying
the optimal demands on the measure p ensuring that for every f € L}OC (X, u) one
has

lim fO)duly) = f(x) for u-almost every x € X. (3.75)

r—0Tt Bpy (x.r)

This is done in Theorem 3.14. En route to this result, we bring in a new concept
in the definition below, which turns out to be of central importance for the entire
present work. As a preamble, the reader is reminded that AAB stands for the
symmetric difference of the sets A and B, in other words, AAB := (A\ B) U (B\ A).

Definition 3.9 Suppose X is a set and 7 is a topology on X. Also, assume 21
is a sigma-algebra of subsets of X. Call a measure u : 9t — [0,00] Borel-
semiregular on (X, t) (orsimply on X if the topology is understood) provided
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W is a Borel measure' on X which satisfies?

for every E € 9t with u(E) < oo, there exists (3.76)
B € Borel, (X) with the property that u(EAB) = 0. .

A moment’s reflection shows that any Borel-regular measure is Borel-
semiregular. It turns out that for a given Borel measure u, the quality of being
Borel-semiregular hinges upon the ability to express characteristic functions of
J-measurable sets as limits, pointwise p-almost everywhere, of sequences of
Borel-measurable functions.

Lemma 3.10 Assume that (X, t) is a topological space. Also, suppose M is a
sigma-algebra of subsets of X containing Borel (X) and that u : M — [0, o0]
is a measure. In this context consider a set E € 0 which has the property that there
exists a sequence { f;}jen of real-valued Borel-measurable functions defined on X
such that fj — 1g pointwise pi-almost everywhere on X as j — oo. Then there
exists B € Borel (X) satisfying W(EAB) = 0.

Proof To begin, note that by the pointwise p-almost everywhere convergence of the
J;i’s to 1z we may select a j1-measurable set N € X with u(N) = 0 such that

lim f; =1g pointwise everywhere on X \ N. (3.77)

j—o0
Observe that if X := X \ N then
{BNX: B¢ Borel.(X)} = Borel, (X). (3.78)
Indeed, if we consider
F:={BNX: B e Borel.(X)}, (3.79)
G:={BCX:BNX € Borel,_(X)}. (3.80)

then it is easily checked that F is a sigma-algebra of subsets of X which contains
the open subsets of (}~(,r|)~(), whereas G is a sigma-algebra of subsets of X
which contains the open subsets of (X, 7). Consequently, Borel,|, (X) € F and
Borel.(X) < G. Now, the first of these two inclusions yields the right-to-left
inclusion in (3.78), while the second one gives the left-to-right inclusion in (3.78).
Hence, (3.78) follows.

n the sense of Definition 2.9

2A related definition may be considered by demanding, in place of (3.76), that for every E € I
there exists B € Borel,(X) such that u(EAB) = 0. Under the background assumption that X is
sigma-finite, this definition becomes equivalent to Definition 3.9.
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As a consequence of (3.78) and the fact that each f; is Borel-measurable it
follows that each jﬂ  is Borel-measurable in the context jj| 5 (5( , 7| ;() — [0, 00).
Since the pointwise limit of a sequence of Borel-measurable functions is itself a
Borel-measurable function, we may conclude that 1E| P (5( 7| ;() — [0,00) is a
Borel-measurable function. In particular,

E\N = (1g]3) ' ((1/2. 00)) € Borely (X). (3.81)

Hence, by (3.78), there exists a set B € Borel,(X) such that B\ N = E\ N. In turn,
this is equivalent to E A B € N which forces (E A B) = 0, as wanted. O

Definition 3.9 brings into focus a specific brand of regularity a certain Borel
measure is asked to exhibit. On this topic, the following lemma shows that any
Borel measure (on a topological space satisfying an additional mild condition)
automatically possess some type of inner-regularity at the level of Borel sets.

Lemma 3.11 Assume that (X, t) is a topological space. Also, suppose M is a
sigma-algebra of subsets of X containing Borel (X) and that  : 9 — [0, 00]
is a measure. Finally, suppose that (X, T) has the property that

any open set (in the topology t) can be written as

(3.82)
a countable union of closed sets (in the topology 7).
Then
B € Borel (X) and u(B) < co = u(B) = sup  u(C). (3.83)
Cclosed int,
cca
Proof Fix B € Borel (X) for which p(B) < co and define
F = {A € M : for each € > O there exists a set C C X which is
closed in 7 satisfying C € A and ,u(B N(AN\ C)) < 8}. (3.84)
Then clearly all closed sets in X belong to F. We next claim that
{AtienCF = (JAieF and [ JAieF. (3.85)

i€EN ieEN

To prove (3.85), assume that A; € F for each i € N and fix an arbitrary ¢ > 0.
Then, for each i € N, there exists a set C; C A; which is closed in t such that

,u(B N (A \ Ci)) < ¢/2!. Consequently, (") C; is a closed set in 7, contained in
ieN
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() A;, and we have
ieN

;L(Bﬂ (QAi\Qci)) < u(g(Bﬂ(Ai\Ci)))

<Y wBN@ANC) <) 27 =¢ (3.86)

i€EN i€EN

proving that () A; € F. Also, since
ieN

u(Bﬂ(UAi\Cl)) < 0o and
ieN

BO(UA,-\GC,-)\BO(UA,-\UC,-) as N — oo,

ieN i=1 ieN ieN

(3.87)

we can use the continuity from above of the measure p in order to write

Nli_)n;ov(BO (UA,-\LNJC,-)) = ,u(Bﬂ (UA,-\UC,-))

ieN i=1 ieN ieN
= M(B N (U(Ai \ Ci)))
ieN
<> uBn@NC) <Y 27 =e

ieN ieN
(3.88)

N,
Hence, there exists N, € N such that ,u(B N ( JUa\ U C,-)) < ¢. The latter,
1

ieN i=
No
together with the fact that | J C; is closed in 7 and contained in | A; proves that
i=1 i€N

|J A; € F. This completes the proof of (3.85). In light of (3.82), what we proved so
ieN
far also implies that all open sets in (X, r) are contained in F.

Consider next the set

G:={AeF:X\AeF} (3.89)
It is trivial that if A € G then X \ A € G, so G is closed under taking complements.

Since we proved that F contains all open and closed sets of (X, ), it follows that
G also contains all open and closed sets of (X, t). Moreover, G is closed under
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taking countable unions. Indeed, if {A;},en € G, then by definition {A;};,en € F

and {X \ A;}ieny C F, so that by the implication in (3.85) we have | J A; € F and
ieN
X\ UA; = NjenX \ A;) € F. This proves that [ J A; € G as desired. Summing
ieN ieN
up, we have proved that G is a sigma-algebra containing all open sets of (X, 7). This
implies that G contains also Borel,(X) and, in particular, B € G. The latter implies

that B € F and satisfies (3.83). ]

We stress that if (X, 7) is a topological space and 901 is a sigma-algebra of subsets
of X on which a nonnegative measure p is originally defined, then u being a Borel-
regular measure means (cf. Definition 2.9) that:

(i) Borel, (X) C N, and

(ii) for every A € 9, there exists B € Borel,(X) with the property that A C B and
w(A) = p(B).

In the special case when Borel,(X) = 9 then, of course, condition (ii) is

superfluous. In the general case when the inclusion of Borel,(X) into 9 is strict,

condition (ii) plays a key role in obtaining the strongest version of inner and

outer regularity properties of the measure p. Specifically, the following result from
[MiMiMil3] (cf. also, [Fed69, Theorem 2.2.2, p. 60]).

Proposition 3.12 Let (X, 7) be a topological space and assume that M is a sigma-
algebra of subsets of X with the property that Borel (X) C 9. Then for any measure
W 9 — [0, oo] the following statements are true.

(1) If (X, v) satisfies (3.82) and is such that

there exist {Oj}jen € T so that X = UO, and 1(0)) <oco VjeN, (3.90)
jeN

then

VB € Borel,(X), Ye>0 = 30 openint, withB C O
and (0 \ B) < &. (3.91)

(2) If (X, 1) satisfies (3.82) and ( is a Borel-regular measure satisfying (3.90), then
W satisfies the outer-regularity condition

wE)= inf )., VEeM, (3.92)
Oopen inrt,
ECO

as well as the inner-regularity condition

W(E) = sup  u(0), VEeM. (3.93)

Cclosed inr,
CCE
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We emphasize that in the absence of condition (ii) above the conclusions in
part (2) of Proposition 3.12 may fail, generally speaking. One very special case
in which Borel-regularity automatically occurs is when Borel,(X) = 9. This has
led to some authors to assert that Borel-regularity is not necessary for the inner and
outer regularity properties of the measure p described in part (2) of Proposition 3.12,
but the price to pay is to have the measure defined only on Borel,(X) to begin with
(and, sometimes, it is this latter property that such authors refer to as a Borel measure
rather than condition (i) mentioned earlier in this narrative.

In this vein, let us also note that

if the topological space (X, t) satisfies (3.82) then a Borel measure ¢ on X is
Borel-regular if and only if it satisfies the outer-regularity condition (3.92).

(3.94)

Indeed, the left-to-right implication is contained in part (2) of Proposition 3.12. In
the opposite direction, if E is p.-measurable then (3.92) allows us to find a sequence
of open sets {O;};en With the property that E C O; for every j and 1(0;) \, u(E)
asj — oo. Then B := ﬂjeN O, is a Borel set containing £, and therefore we have
W(E) < uw(B) < n(0;) \{ w(E) as j — oo, proving that u(E) = wu(B). Hence, u is
Borel-regular, as asserted.

Historically, the quality of being a Borel-regular measure has been extremely
useful for establishing a number of fundamental results, such as density of smooth
functions in Lebesgue spaces and Lebesgue’s Differentiation Theorem. We shall
revisit these results here, and take on the challenge of finding the optimal condition
on the underlying measure ensuring their veracity. As already mentioned, Borel-
regularity is a sufficient condition though, generally speaking, this turns out to be
unnecessarily strong. In Theorem 3.14 we shall show that the sharp condition is our
notion of Borel-semiregularity introduced in Definition 3.9.

Before stating Theorem 3.14, which constitutes the main result in this section, a
couple of clarifications are in order. First, the reader is reminded that L7 (X, ) stands
for the collection of all pu-measurable, p-th power integrable functions (where u-
measurability is defined with respect to the original sigma-algebra on which u was
defined). Second, given a quasi-metric space (X, q), we agree to let €°(X, q) stand
for the space of all continuous scalar-valued functions defined on (X, rq) which
vanish identically outside a bounded subset of (X, q).

Lastly, recall from Theorem 1.1 in Chap.1 that the supremum defining the
lower smoothness index in (2.140) may not be attained given an arbitrary quasi-
metric space (X, q). As such, we will employ the following notational convention
throughout the remainder of this work.

Convention 3.13 Given an arbitrary quasi-metric space (X, q) and a fixed number
B € R, we will understand by 8 < ind (X, q) that 8 < ind (X, q) and that the
value 8 = ind (X, q) is only permissible whenever the supremum defining ind (X, q)
in (2.140) is attained.
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Theorem 3.14 (A Sharp Version of Lebesgue’s Differentiation Theorem) Let
(X,q, n) be a space of homogeneous type. In this context fix any quasi-distance
p € q and denote by ps the regularized version of p defined as in (2.21). Then the
following conditions are equivalent:

(1) The measure i is Borel-semiregular on (X, 1q).
(2) Forevery f € L, (X, i) one has

lim | f() — f(x)|du(y) =0 for p-almost every x € X. (3.95)

r—>0t Bpy (x.1)

(3) Forevery f € L} (X, u) there holds

loc

lim fdu= f(x) foru-almosteveryx € X. (3.96)
r—0t By (xr)

(4) For some (or all) B € R satisfying 0 < f < ind (X, q) one has
CP(X,q) — LP(X, 1) densely (3.97)

for some (or all) p € (0, 00).
(5) For some (orall) p € (0, 00) one has

(ff(X, q) < L(X, ) densely. (3.98)

Comment 3.15 A careful inspection of the proof of Theorem 3.14 (below) will
reveal that the doubling property in (3.1) for the measure w is used only in
establishing that the weakest form of (5) implies (2). The heart of the matter is
in verifying the L”-boundedness (p > 1) of the Hardy-Littlewood Maximal operator
(cf. Theorem 3.7). If in place of doubling property one assumes the weaker condition
that p is a Borel-measure on X (in the sense of Definition 2.9) with the property that
for some quasi-distance p € q one has that all p-balls are ;-measurable and

0< M(Bp(x, r)) <oo, VxeX, Vre(0,00), (3.99)
then the following implications in the statement of Theorem 3.14 remain valid:
2 = QB = (1) <= @G <= (). (3.100)

Assuming that p is a genuine distance and that the measure p is Borel-regular
measure, J. Heinonen establishes the conclusion in part (3) in [HeinO1, Theorem 1.8,
p-4]. Under the assumption that p is a metric, in [HeinOl1, Sect. 2.7, p. 12] it also
indicated that condition (5) with p = 1 implies (2). That (5) with p = 1 implies
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(3) has been dealt with by A.P. Calderén in [Cald76, Lemma 7, p.302], under
certain additional assumptions on the measure p. The implication (1) = (4)
in Theorem 3.14 sharpens [MiMiMiMo13, Theorem 4.13, p. 166]. On this topic,
the reader is alerted that there a number of articles in the literature (such as
[AusHyt12, Tol03, Wit87]) which claim that the density result in part (4) and/or
the Lebesgue differentiation formula in part (3) happen to hold without any type
of regularity condition on the measure w, which is merely assumed to be defined
on a sigma-algebra containing the Borelians. However, in light of our theorem,
such claims can only be justified if the measure in question is defined only on the
sigma-algebra of Borel sets. This is a rather restrictive condition which excludes
very natural candidates, such as the Lebesgue measure in R”. Moreover, in such a
scenario the measure is automatically Borel-regular for trivial reasons, as indicated
earlier.

Next we record some immediate consequences of Theorem 3.14. For some of
the applications we have in mind, it is instructive to note that the conclusions of
Theorem 3.14 are valid in the setting of d-Ahlfors-regular spaces (d € (0, 00)) (cf.
part 13 of Proposition 2.12). Other corollaries of interest are discussed below.

Corollary 3.16 Suppose (X, q) is a quasi-metric space and assume that B € R is
such that 0 < B =< ind (X, q). Then, for every locally finite Borel measure u on
(X, 7q), and every Borel-measurable function f : X — Cwith [, | f|P du < oo for
some p € (0,00), one has

3{fi}jen € €P(X.q) suchthar lim / |f — filPdu =0.  (3.101)
i Am f j

Proof Invoke the implication (1) = (2) in Theorem 3.14 with ,u| Borelzg (X) in place
ore ‘L'q
of . O

Another application of Theorem 3.14 (and Comment 2.10) is recorded next.

Corollary 3.17 Suppose (X, q, i) is a space of homogeneous type which has the
property that  is a Borel measure on (X, tq). In this context fix any quasi-distance
p € q and denote by py € q the regularized version of p defined as in (2.21). Then
for each Borel-measurable function f : X — Csuchthat [, | f|dp < oo, forevery
Borel set A C X with u(A) < 0o, one has

lim | fO) — fx)|du(y) =0 foreveryx € X\ N, (3.102)

r—>07t By (x.r)

where N C X is a Borel set with u(N) = 0.
As a corollary of this, for each Borel-measurable function f : X — C such that
fA | fldu < oo, for every Borel set A C X with 1(A) < oo, there holds

lim fdu= f(x) foreveryxeX\N, (3.103)

r—0t Bpy (x.r)
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where N C X is a Borel set with u(N) = 0.

Proof Apply Theorem 3.14 with ,u| Borelrq (X) in place of w. O
ore ‘L'q

The proof of Theorem 3.14 requires a couple of preliminary lemmas which we
first address.

Lemma 3.18 Let (X, q, 1) be a space of homogeneous type. Fix any quasi-distance
p € q and denote by py € q the regularized version of p defined as in (2.21). Finally,
fix an exponent p € [1,00). Then, if there exists a dense subset V of LP (X, 1) such
that for every f €V one has

lim | f(y) — f(xX)|du(y) =0 for u-almost every x € X, (3.104)

r—>07t Bpy (x.1)

it follows that the equality in (3.104) actually holds for every f € L, (X, [1).

As a corollary of this, if some dense subset % of L’ (X, u) has the property that
forevery f €V there holds

lim fdu= f(x) foru-almosteveryx e X, (3.105)
r—>0+ By (x,1)

then in fact the equality in (3.105) is valid for every f € L} (X, ).

loc

Proof We begin proving (3.104) by fixing an arbitrary function f € L (X, u).
Given the goals we have in mind there is no loss of generality in assuming that
f actually belongs to L”(X, i) (note that this reduction involves working with
truncated versions of f via characteristic functions of ps-balls exhausting X). In
particular, for each fixed x € X we have f(-) — f(x) € L! (X,un). The first

loc
observation is that the convergence in (3.52) implies

lim sup ][B 0) = ldu0)

r—>0t

— limsup ][B 170 = Fldn) (3.106)

r—0t
rrational

for each fixed x € X. In turn, from (3.106) and the claim established in (3.54) we
deduce that the set

{x € X : limsup ][B ( )|f(y) — @) dp©) > o} cx (3.107)

r—0t
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is u-measurable. Granted this, to establish (3.104) it is enough to show

p,({x eX: 1imsup][B ( )|f(y) — f™)]duly) > 0}) =0. (3.108)

r—>0t

To proceed in this direction, for each 6 € (0, co) define

Sp={xeX: limsup][ | f(&y) — f)|du@y) > 0, (3.109)
By (x,1)

r—0t

and note that arguing similar to as in (3.107) we have that Sy C X is p-measurable.
Moreover, with regards to justifying (3.108), since the set in (3.109) is equal to
U]?il S1/;, it suffices to prove that 14(Sg) = 0 for each 8 € (0, 00). Fix 8, ¢ € (0, 00)
and select 1 € V such that || f — hl/px,y < e With this choice of 7 we write

/) = @I = 1(f =]+ [(f =B@)] + |h(y) — h(x)| for every x.y € X.
Then, by integrating in the y-variable we have for each fixed x € X and each fixed
r € (0, co) that

][B 0= flan0y) (3.110)

S][ I(f =hWIdpk) +[(f =X +][ |h(y) = h(x)[ dpa(y).
By (x,1) B )

oy (67

If we now pass to the lim sup as » — 0% in (3.110), it follows from the monotonicity
of the limit superior (cf. [Ru76i, p. 31]) that

Sy CA; UA; UA3, (3.111)
where
Ap:={xe€X: limsup ][ [(f—hO)|duly) >6/3; , (3.112)
r—>07t By (x,1)
Ay = {x eX: |(f=-h|> 9/3}, and (3.113)
Az :={xe€X: limsup ][ |h(y) — h(x)| du(y) > 6/3; . (3.114)
r—0t By (x,r

Then it is clear that A, C X is p-measurable given that f and & belong to L7 (X, ).
Also, by reasoning as in (3.107) we see that the sets Aj, A3 € X are u-measurable.
Moving forward, with the choice of ¢ above, we claim that one can find a constant
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C = C(p, p, u,0) € (0,00) such that
W(Ay) < CeP, fork=1,2,3. (3.115)
Assuming for the moment that (3.115) holds, by (3.111) we can estimate
1(Se) = (A1) + [1(A2) + 11(A3) < Ce. (3.116)

Hence, by considering the extreme most portions of this inequality we can conclude
that (Syp) = O granted that ¢ € (0, 00) was chosen was arbitrarily and that the
constant C as well as the set Sy are independent of ¢.

To justify (3.115), observe first that A3 = @ (hence, in particular, (A3) = 0)
given the assumption made in (3.104) and the choice of the function /. Thus the
inequality in (3.115) trivially holds for k = 3. Turning our attention next to the set
A,, observe that by virtue of Chebyshev’s Inequality there holds (keeping in mind
the significance of the function /)

3r » 3r
o) < 2l f =l < 25 € (3.117)
from which we can conclude that the inequality in (3.115) also holds for k = 2
with C := g—f, € (0, 00). As concerns the p-measure of the set A;, denote by M,
the Hardy-Littlewood maximal operator (constructed in relation to py) as in (3.42),
and note that if p = 1 then from the boundedness result established in (3.47) of
Theorem 3.7 we may estimate (again, keeping in mind how the function & was

chosen)

(@A) < ultx € X0 My, (f — 1)) > 6/3))

< %H S =hllpx < %8, (3.118)
where the constant C = C(p, p, ) € (0, o0). On the other hand, if p € (1, o0) then
by making use of Chebyshev’s Inequality, it follows from the boundedness of M,
on I”(X, ), as described in (3.45) of Theorem 3.7, that there exists a finite constant
C = C(p, p, b) > 0 satisfying

C » C ) C
wA) = M (F =BG < 550 =Ml < 55 8 G119
Granted what has been established in (3.118) and (3.119), we can deduce the
estimate in (3.115) holds for k = 1 as well. This finishes the justification of (3.115)
which, in turn, concludes the proof of (3.108). Finally, noting that (3.105) follows
as a result of (3.104) finishes the proof of the lemma. ]
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The following purely quasi-metric approximation result appears in
[MiMiMiMo13, Lemma 4.14, p. 166].

Lemma 3.19 Let (X, q) be a quasi-metric space and fix a number 8 € R satisfying
0 < B = ind (X, q). Then for every set C C X which is closed in the topology tq
there exists a sequence of functions { f;}jen C €P (X, q) such that

0<fi<1 onX foreach je N,
and f; \( 1¢ pointwise as j — oo. (3.120)

Furthermore, if the set C is bounded then matters can also be arranged so that all
J;’s vanish outside a common bounded subset of X.

As a corollary, for every set O C X which is open in the topology tq there exists
a sequence of functions {h;}jen C ¢P (X, q) such that

0<hi<1 onX foreach je€ N,
and h; /' 1o pointwise as j — oo. 3.121)

The stage has now been set for presenting the

Proof of Theorem 3.14 We divide the proof into a number of steps, starting with the
following.
Proof of the fact that (1) implies the strongest form of (4). Fix an exponent
p € (0,00) along with some B € R satisfying 0 < B =< ind (X, q). The goal is
to approximate arbitrarily well in I”(X, u) a given function f € [P (X, u) with
functions from (f'f (X, q). Since simple functions are dense in L” (X, i) there is no
loss of generality in assuming that f = 1g where E C X is u-measurable and
W(E) < oo. Because u is a Borel-semiregular measure, there exists B € Borel, (X)
with the property that (EAB) = 0. The latter property is equivalent to 1z = 1
pointwise p-almost everywhere on X, hence 1z = 1p when regarded as functions in
LP(X, ). As such, matters have been reduced to approximating 15 arbitrarily well
in IP (X, ) with functions from 4 X,q).

With this goal in mind, we first claim that it may be assumed that the Borel set
B is actually bounded. Indeed, pick some x, € X along with p € q and consider
B; := B N B,,(x,,r) for each j € N, where pg is the regularization of p as in
Theorem 2.1. Then each B is a bounded Borel set and 15, — 1p in LF(X, u) as
Jj — oo. Hence, approximating 15 in the desired manner is implied by the ability of
approximating each 1, in a similar fashion. This concludes the proof of the claim
at the beginning on the paragraph.

Moving on, in the scenario when B is a bounded Borel set, Lemma 3.11 applies
(since (3.82) holds in the current setting thanks to Lemma 2.2, and since @ (B) < o0)
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and (3.83) gives

w(B) = sup w(0). (3.122)
Cclosed in 7,
Cbounded ingq,
CCB

From (3.122), we can find a sequence of sets {C;};eny € B such that u(C;) /" u(B)
as i — oo where for each i € N the set C; is closed in 74 and bounded in q.
In particular, this implies 1¢, — 1z in LP(X, u) as i — oco. Hence, ultimately it
suffices to approximate each 1, in L7 (X, p) with functions from %r (X, q). At this
point, Lemma 3.19 applies and yields the desired conclusion.

Proof of the fact that (1) implies the strongest form of (5). This is a consequence of
what we have just proved above (since the strongest form of (4) implies the strongest
form of (5)).

Proof of the fact that the weakest form of (4) implies the weakest form of (5).
Obvious.

Proof of the fact that the weakest form of (5) implies (1). Granted that in the
current setting continuous functions are Borel-measurable, this implication is a
direct consequence of Lemma 3.10.

Proof of the fact that (1) implies (2). We already know that (1) implies the strongest
version of (5). Keeping this in mind, Lemma 3.18 applies (with V := €°(X, q))
and, in view of (3.98) with p = 1, proves that (3.95) holds for every f € L} (X, ).
Proof of the fact that (2) implies (3). Obvious.

Proof of the fact that (3) implies (1). Assume that for some quasi-distance p € q the
following holds: for each fixed f € L (X, 1) one has

loc

lim fdu = f(x) forp-almosteveryx € X, (3.123)

r—>07t Bpy (x.1)

where pz € q denotes the regularized version of p defined as in (2.21). The goal is
to prove that u is Borel-semiregular in the sense of Definition 3.9, i.e.,

VE C X p-measurable, 3B € Borel,, (X)
(3.124)
with the property that w(E A B) =0,

where A stands for the symmetric difference of sets. With this goal in mind, given
a p-measurable set E C X, for each j € N defined f; : X — [0, co) by setting

(EN By, (x, 1/)))
IL(BP#(xv r))

f =t . VxeX. (3.125)
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Thanks to (3.57), it follows that each f; is Borel-measurable. Also, from (3.123)
(written for f = 1z € L (X, u)) we see that

loc

lim f; =1g pointwise y-almost everywhere on X. (3.126)
J—>00
Granted these, Lemma 3.10 may be invoked in order to conclude that (3.124) holds,
as wanted. This completes the proof of Theorem 3.14. O

The last result of this section is another consequence of Theorem 3.14. To set the
stage, let (X, q, 1) be a space of homogeneous type and suppose i is doubling with
respect to some p € q. In this context, given an exponent g € (0, 00), consider the
operator M, ,, which assigns to each f € L] (X, 1) the function

loc

1/q
Mg f(x) == sup (][ Iflqdu) VxeX. (3.127)
By (x.r)

re(0,00)

In this notation, M, ; = M, where M, is the Hardy-Littlewood maximal operator
defined in (3.42). The following result establishes a pointwise relationship between
the functions f and M,, , f.

Corollary 3.20 Suppose (X, q, i) is a space of homogeneous type and fix any
quasi-distance p € q and denote by ps € q the regularized version of p defined
as in (2.21). Also, consider an exponent q € (0, 00). Then for every f € L] (X, 1)
one has

| fl < Mpqf pointwise p-almost everywhere on X, (3.128)

if i is a Borel-semiregular measure on (X, tq). Moreover, (3.128) also holds if u is
a Borel measure on (X, tq) and [ : X — C is a Borel-measurable function such
that [, | f|dp < oo, for every Borel set A € X with ju(A) < oo.

Proof Observe that the membership f € L] (X, 1) implies | /|9 € L} (X, j1). As
such, if p is a Borel-semiregular measure then using the implication (1) = (3) in

Theorem 3.14 we may estimate, for p-almost every x € X,

1/q
— 1i q
1= fim (f, U] = (M) 609

as wanted. In fact, the last claim made in the statement of this corollary can be
established in a similar manner by using (3.103) in Corollary 3.17 in place of
Theorem 3.14. O
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3.4 A Maximally Smooth Approximation to the Identity

In this section we are concerned with constructing an approximation to the identity
on Ahlfors-regular quasi-metric spaces which possesses the maximal amount
smoothness (measured on the Holder scale). Our main result, Theorem 3.22, sig-
nificantly extends similar work established in [DaJoSe85, p.40], [DeHa09, p. 16],
[HaSa%4, pp. 10-11], and [MaSe79ii, Lemma 3.15, pp. 285-286]. For more recent
developments, the authors in [MiMiMiMo13, Theorem 4.93, p.262] managed to
construct a discrete approximation to the identity of any order

0 <& <min{d + 1, ind (X, q)} (3.130)

in the context d-AR spaces having the additional assumption that the measure of
every singleton is zero. Building on this work, in Theorem 3.22 below we are
successful in further extending the range in (3.130) to*

0 < ¢, < ind (X, q), (3.131)

by first constructing an approximation to the identity based on a continuous
parameter 7. In addition, this construction is done in a more general measure
theoretic setting by allowing the measure of a singleton to be strictly positive. We
wish to mention that this is the first time that an approximation to the identity
which incorporates this high of a degree of smoothness has been constructed in
such a general ambient. This construction, which is important to the development
of the results in this work, is of independent interest. To get started, we record the
following definition.

Definition 3.21 Assume that (X, q, ) is a d-AR space for some d € (0, co) and
fix any quasi-distance p, € q. In this context, denote ¢, := diam,, (X) € (0, o] and
call a family {S;}o</<s, of integral operators

Sf() = /X S SOV du().  xeX, (3.132)

with integral kernels S, : XxX — R, an approximation to the identity
of order ¢ € (0, 00) (for (X, q, 1)) provided there exist p € q and C € (0, c0)
such that, for every 7 € (0, z), the following properties hold:

1) 0 <S8i(x,y) < Ct~ for all x,y € X, and S;(x,y) = 0if p(x,y) > Ct;
(i) [8:(x,y) — S;(x,y)| < Ct=UF9 p(x, )¢ for every x,x',y € X;

3Recall the significance of < from Convention 3.13.
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(i) [[S:(x.y) = S )] = [Si(x.y) = Si (. ¥)]| < CrH29 p(x, x') p(y. y)* for
allx,x',y,y € X;
(iv) Si(x,y) = Si(y,x) foreveryx,y € X, and [, Si(x,y) duu(y) = 1 foreveryx € X.

Clearly, if the operators {S;}o<;<;, form an approximation to the identity of
certain order ¢ € (0,00), then their integral kernels continue to satisfy (i)—(iv)
with p replaced by any other quasi-distance ¢ € q. It is also instructive to note
that by possibly increasing the finite constant C > 0 in Definition 3.21, we can
assume C > 1. Finally, it is instructive to note that the choice of the quasi-distance
Po € q appearing in Definition 3.21 is immaterial with regards to constructing an
approximation to the identity in the sense that any quasi-distance belonging to q
will suffice. As such, in what follows we will assume that #,. € (0, co], defined as
in Definition 3.21, retains its significance without specifying a particular choice of
quasi-distance.

In Theorem 3.22 below, it is shown that given any d-AR space, (d € (0, 00)), one
can always construct an approximation to the identity. The amount of regularity such
an approximation to the identity is guaranteed to posses is very much dependent on
the geometrical and measure theoretic aspects of the ambient. Before proceeding
with this construction recall that given a quasi-metric space (X, q) and given any
A C X we let A stand, for the closure and interior of A in the topology 7q. With this
in mind, if V is vector space (over R or C), and if f : X — V is a fixed function,
then we denote by supp f the support of f defined by

suppf :={xeX: f(x) #0}. (3.133)

We now present the main theorem of this section alluded to above (the reader is
reminded of the significance of the symbol < from Convention 3.13).

Theorem 3.22 Ler (X, q, t) be a d-AR space for some d € (0, 00). Then for any
number g, € R satisfying

0<eg, <xind(X,q) (3.134)

there exists a family {S;}o<;<:, of integral operators which constitute an approxima-

tion to the identity (in the sense of Definition 3.21) of any order ¢ € (0, &,].
Furthermore, given p € [1, 00] and a function f € I7(X, ), it follows that any

approximation to the identity {S;}o<i<:,, of any positive order ¢, satisfies

22 1Sl o < (3.139)
18/ | 4o < CEEFPN ey, V1€ ©1), (3.136)
sup ||St| ‘(fg(X,q)—><@”'9(X,q) < 00, (3137)

O<t<tx
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00, (3.138)

i‘tLPt* || CEX Q> C(Xg)

0

lim S,g =g in €%(X,q), foranyg € €°(X.q) and € (0,¢), (3.139)

—0+

lin}r Sg=g in €°(X,q), foranyg € €°(X,q) and a € (0,¢). (3.140)
t—0

If f has bounded support then so does S, f foreacht € (0, ). Infact, if p € q then
there exists a finite constant C > 0 depending only on p and the family {S;}o<;<s,
with the property that for every x € X, r € (0,00), and t € (0, )

supp f € B,(x,r) = suppS,f C Bp(x, C(r+ t)). (3.141)
In addition, if p € [1, 00) then there holds

lim S, f = f in L[’(X,p) (3.142)

t—0t

if and only if the measure  is Borel-semiregular on (X, tq).
Lastly, whenever t, = 0o and p € (1, 00) then any approximation to the identity
satisfies

im S, f =0 in L’(X,p). (3.143)
1—>00

Comment 3.23 In the context of Theorem 3.22, if the Borel measure p is not
necessarily Borel-semiregular, then the same proof as below yields, in place
of (3.142), that for each p € [1, oo] one has

lim & f = f inL”(X, u), for each function f
=0t . (3.144)
belonging to the closure of ¢* (X, q) in L’ (X, ).

We now present the

Proof of Theorem 3.22 The proof of the claim in the first part of the statement of
the theorem is dealt with in three steps, starting with
Step 1. Consider the case when

O0<eg,<d+1 and ¢,=<ind(X,q). (3.145)

We revisit an approach originally due to R.R. Coifman (see the discussion on
[DaJoSe85, pp. 16—17 and p. 40]) with the goal of monitoring the maximal amount
of Holder regularity for the integral kernels in the setting we are considering. To get
started, suppose first that X is unbounded, in which scenario t. = oco. With ¢, as
in (3.145), select p € q with the property that 0 < g, < [logch]_l (cf. (2.140)).



104 3 Analysis on Spaces of Homogeneous Type

Also, fix an arbitrary number ¢ € (0, &,]. Next, let ps € q be the regularized version
of p as described in (2.21) of Theorem 2.1. Then, from (2.27) we have

s (x.y) — pa(x. 2)| < L max {pu(x.y)' %, ps(x.2)' "} [ps(r.2)]"  (3.146)

whenever x, y, z € X (with the understanding that x ¢ {y, z} when ¢ > 1). The idea
now is to consider a non-negative function 2 € C'(R) (where, generally speaking,
CK(R?) with k € N U {oo} denotes the class of k-fold continuously differentiable
functions on R?) with the property that 0 < h < 1 pointwise on R, & = 1 on
[-1/2,1/2],and h = 0 on R\ (—2,2) and, for each ¢t € (0, 00), let T; be the
integral operator on (X, u) with integral kernel t_dh(t_l pu(x, y)), for x,y € X.
Based on properties of the function 4 and the Ahlfors-regularity condition for wu,
it is straightforward to check that there exists a finite constant C, > 1 such that
CO_1 <(T;1)(x) < C, foreachxe X and

each 1 € (0, 00) with r,, (x) < 2t (3.147)
whereas if 2t < r,, (x) for some x € X and ¢ € (0, co) then
C,' < (T)() = u(ix}). (3.148)

Moreover, whenever (3.148) holds, then
T( ! )() 1 (3.149)
— )x) = 1. .
11

Keeping this in mind, for each ¢ € (0, 00) it is then meaningful to define

2 / Rt pu(x, 2)) (" py(z, )
(THETH) Jx 7.(7) @

Si(x,y) = du(z), (3.150)

for each x,y € X. Also, if x,y € X, and 2t < max{r,,(x), ,, ()} then the support
condition on the function % implies

—1 —1
/ M pee D) (a2, ) diu(z) =0 whenever pg(x,y) > 2t. (3.151)
X

7,(7) @)

If we have pu(x,y) < 2t, then x = y and we may estimate

o= [ HOmn W i)
T Ux

du() = p(tx)), (3.152)
7.()@
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by the choice of / and (3.149). In concert, this, (3.151), and (3.148) give

2 / (1" pu(x, 2)) (e py(z, ¥))
(TN () Jx T,(%)(Z)

i 21 < rp, (). (3.153)

d,LL (Z) =< Co t_d

If, on the other hand, max{r,, (x), r,, (y)} < 2t then we may directly estimate

o< / h(t™" py(x,2))h(t™" py(z.))
o x

dp(2) < C | h(t™" ps(x.2)) dp(2)
ZE I SR

< Cp(By, (x,2t)) < Ct*, (3.154)

by the choice of #, the upper-Ahlfors-regularity condition for p (specifically, 2 in
Proposition 2.12), (3.147), and (3.148). With this in hand, the properties listed in ()
are direct consequences of (3.150), (3.147)—(3.148) and (3.152)—(3.154). In turn, it
is easy to check that (i) implies (i) in the case when y € X and x,x’ € X satisfy
p#(x,x’) > 2t. Hence, as far as property (ii) is concerned, there remains to check
the case when y € X and x,x € X satisfy pu(x, x’) < 2t. Note that in this scenario,
if 2r < max{r,(x), o, (x')} then x = x" and we are done. Thus we will assume that
2t > max{r,,(x), rp, (x)} and write

S, y) = S,(W,y) = [+ 11 (3.155)

where [, II above are given by, respectively,

2 1 1 h(t‘lp#(x, z))h(t—lp#(z, y))
B d 3.156
(Trl)(y)((Ttl)(X) (Tfl)(x/))/x Tt(%)(z) @@ ( )
and
t_2d
(TN (3.157)

X /X [1(" pi(x, ) — (1™ ps(x', 2)) [ (™ 4z, ) dp(z).

7.(7) @)
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Going further, for some constant C € (0, c0), we estimate (with the help of (3.147))

1
(TD() (Ttl)( )

< T = (THE))| (3.158)

<CF{LMO”pAnw)—h@*mcﬂwﬂdu@>

= o [ [0 ) = )| ),

where D := {y € X : pa(x,y) < 2t or ps(x’,y) < 21}, by the support condition on
h. In particular, given that we are assuming px(x, x’) < 21, it follows that

D C B,,(x,Ct) N B,,(x, Cr) (3.159)

for some finite constant C > 0. Consequently, using the Mean Value Theorem
and (3.146), the last expression in (3.158) may be further bounded by

CfvwwwmwmwﬂrfmﬂmmW?mwwmew
D

saﬁmhmﬂTLme”+mwwHme (3.160)

< Cl_(d+l) [,()#(X, x/)]s
%/ meﬂwm+/ pr(d o) ).
Bpy (x,Ct) By, (x',Cr)

by (3.159). On the other hand, since p satisfies the Ahlfors-regularity condition
listed in (2.78) with ps € q (see Comment 2.13 in this regard), then

/ P ) dpu(y)
By (x,Ct)

o

<C

pr(x, ) dp(y)

=0 /2—1"‘ (CH<py(x.y)<27(Cr)

o

Z 27(Cr)) T (27 (Cn)! = et e, (3.161)
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for some C € (0, 00), given that ¢ < d + 1. In concert, (3.158)—(3.161) give that

1 _ 1 —(d+1)
ae - anm| =l

= Ct*[pu(x, x)]". (3.162)

p#(x’ X/)]£[1_8+d

Hence, altogether, from (3.156), (3.147), (3.154), (3.162), and the fact that py ~ p
we deduce that

1] < Cr I [px, )], (3.163)

which is of the right order. Moreover, based on the same ingredients, we may also
show that |I7] < Ct~“@+9[p(x,x)]’, finishing the proof of (ii) in the statement of
Definition 3.21.

Moving on, the estimate in part (iii) of the statement Definition 3.21 is justified
by first observing that if z € (0, 0o) then for every x, X', y,y" € X we have

[S:(x.y) = S: (X' )] = [S:(x. ) = Si (. y)] (3.164)

_ 4 (! d o /
_/X|:(Tt1—)(x) (¢ P#(x,Z))—m (¢ p#(x,z))}

1)) I D)) dp(z)

T ()@ EHOT () @)

and then estimating the two expressions in the square brackets using the same circle
of ideas as in the proof of (ii). Finally, the algebraic identities in part (iv) of the
statement of the theorem are seen directly from (3.150) and Fubini’s theorem. This
concludes the proof of the fact that the family of integral operators (3.132) with
kernels as in (3.150) constitute an approximation to the identity of order ¢ in the
situation when X is unbounded. The case when X is a bounded set is handled in
a very similar fashion keeping in mind that in the current scenario ¢ stays away
from oo and that the Ahlfors-regularity condition satisfied by © may be altered to
accommodate a larger range of radii (cf. § in Proposition 2.12). This completes the
proof of Step 1.
Step 2. We claim that if {S;}o<i<s, is an approximation to the identity of order
¢ € (0,00) for (X, q, ) then, given any y € (0, 00), the family {Sp/y}o_,,r is an
approximation to the identity of order ¢/ y for the (d/y)-AR space (X, q", i) where
q ={p":peq}

Indeed, this is immediate from Definition 3.21 and part /5 of Proposition 2.12.
Step 3. Consider the case when

0 <e, <ind (X, q). (3.165)



108 3 Analysis on Spaces of Homogeneous Type

To proceed, we choose y € (0, co) large enough so that ¢, < d + y. Hence,
0<e/y<(d/y)+1 and &/y <ind(X,q"). (3.166)

Observe that (3.166) is the analogue of (3.145) with &,/y replacing &, and the
(d/y)-AR space (X, q”, ) replacing the d-AR space (X, q, ). Bearing this in
mind, from what has been established in Step 1, there exists a family {S;},_, <
which constitutes an approximation to the identity of any order ¢ € (O, &0/ y] for the
(d/y)-AR space (X,q", ). As such, Step 2 implies that the family {S,y}0< i<ty
is an approximation to the identity of order ey for any ¢ € (O, o/ y] for the d-AR
space (X (g, ,u). Hence, {S,y } O<t<ts is an approximation to the identity of any
order ¢ € (0, &,] for (X, q, ), as desired. This completes the proof of the first part
of the theorem.*

We shall now turn to the proofs of (3.135)—(3.143). Fix {S,}o</<,, an approxi-
mation to the identity of order ¢ € (0, c0), given as Definition 3.21. We know that
{Si}o<i<s, Will constitute an approximation to the identity for every quasi-distance
belonging to q. In particular, by passing to using the regularized quasi-distance pg,
we may assume that p as in Definition 3.21 is pg. That is, p is a symmetric quasi-
distance with the property that all p-balls are p-measurable.

We now address the claim in (3.135). With this goal in mind, given p € [1, o0]
and a function f € L’(X, ), the properties listed in (i) of Definition 3.21 and
the upper-Ahlfors-regularity of u give that for each ¢ € (0,00) and x € X with
Ct > rp(x),

1S, )] < /

B,(x,Ct

15, 3) )| dp(y) < Cre / | fldp
) B, (x,Ct)

sc][ | fldu=<C sup (][ | 1du)
B,(x,Ct) r€(0,00) *J By(x,r)
= (M, ), (3.167)

where M, f is the Hardy-Littlewood maximal operator of f (constructed in relation
to p). If on the other hand Ct < r,(x) then B,(x, Ct) = {x} and by the properties

“The distinguishing feature in the construction of this approximation to the identity which is
capable of incorporating an optimal degree of smoothness, is in the nature of how the integral
kernels {S,}o<;<:, were defined in (3.150). Specifically, we consider kernels which are defined via
an integral. This is an improvement over the kernels in [MaSe79ii, Lemma 3.15, p.285] where
the authors consider a pointwise definition. Such an approach could not be adapted to the more
general context we are interested in without compromising the optimality of the smoothness of our
approximation to the identity.
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listed in (i) and (iv) we have

S0 = / 5009) £0) di ()

By(x.Cr)

=/ Si(x.y)du(y) = f(x). (3.168)

By(x.Cr)
As such, we have

(S /@) = max{C(M, f)(x). [ fD)]}.

for every x € X and every t € (0, #+).

(3.169)

Then (3.135) follows from this, the membership of f to L”(X,u), and the
boundedness of M, on L7 (X, i) in the case when p > 1.If p = 1, we may directly
estimate, based on Fubini’s theorem and properties (i), (iii) from Definition 3.21,

15l = [ ([ S0 dr))duc

= /X(/X S, 3) dp)) | fO) dr ) = || fllscegn- (3:170)

Note that the fact that |S, f(x)| < oo for p-almost every x € X is implicit in the
above estimate. Incidentally, this also shows (via interpolation between p = 1 and
p = oo) that the supremum in (3.135) is dominated by a constant independent of
p € [1,00].

Consider now estimate (3.136). To set the stage, fix ¢ € (0, 7,) along with points
x,x' € X, and observe that S;(x,y) = 0 for every y € X \ B,(x,Cr) and that
Si(x',y) = 0 for every y € X \ B,(x', Cr). Assume first that p(x,x’) < Cr. In
this scenario, note that x = x” whenever Ct < max{r,(x), r,(x')}. Thus, we assume
Ct > max{r,(x), r,(x')} and we write

B,(X', Ct) € B,(x, C,C¥). (3.171)

Hence, if p’ € [1, oo] is such that 1/p+1/p’ = 1 then by this observation, properties
(i), (i) in Definition 3.21 and Holder’s inequality we may estimate

S f(x) = St f (X))

/ S,009) £ ) dpu () — / S.0¢ o) £ du ()
B,(x.C,Ct) B,(x.C,Ct)

< / 15, 3) — i) 1 £ O] da)
B,(x,C,Ct)
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< €+ p(x, X / | fldu
By (x,CpCt)

— l /
< O e V| f ooy (B, (x, CoC)
< Ct—(d+s)td/p/p(x’ x/)s” f”U’(X,[I.)' (3.172)

Note that the fourth inequality made use of the upper-Ahlfors regularity condition
for p in 2 in Proposition 2.12, which in this case is valid since it was assumed
C,Ct > Ct > r,(x). Hence,

IS /(%) = S f ()] < TP pxe X)) [l if pex) < Cr. (3.173)

Let us now consider the situation when p(x,x") > Cr. If Ct > max{r,(x), r,(x')},
then we write

S0 —Sf@) . /
| f(;)(x x/)gf(x)l < (IS /@] + IS f()]) (3.174)

with the goal in mind of estimating separately the quantities |S; f(x)| and |S, f'(X)].
In this vein, if Ct > r,(x) then

15,/ ()] < i / | fldp < 1 f e 1By CC0) 7

By(x.Cr)

< I fllpagy = COP| . (3.175)

by (i) in Definition 3.21, Holder’s inequality and the upper-Ahlfors-regularity
condition for u.

If, on the other hand Ct < r,(x) then w({x}) > 0 and as was the case in (3.168)
we have S; f(x) = f(x). Then from 5 in Proposition 2.12 we may estimate

IS S = 1f @] =< w7 f o
< Clry@I™ "1l Sl < CEVPN Sl (3:176)
where the last inequality follows from the fact that in the current situation we have

Ct > r,(x). Arguing in a similar fashion will show that estimates in (3.175)-(3.176)
also hold for |S; f(x')|. Combining this with (3.174) gives

1S, f(x) = S, f(&)] < Cr 9P o, XN\ fllr e
if p(x,x) > Ct, (3.177)

and (3.136) now follows from (3.173) and (3.177).
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As regards (3.137), pick some € (0, £,), fix two arbitrary points x,x’ € X, and
select an arbitrary function f € €*#(X,q). When p(x,x’) < Ct, then as before, if
there holds Ct < max{r,(x), r,(x")} then necessarily x = x’ and we are done. In the
case when Cr > max{r,(x), r,(x')}, proceeding as in the first part of (3.172) while
keeping in mind property (iv) from Definition 3.21, we obtain

|81 f(x) = St f ()]

[ sewieam- [ swaso du(y)‘
B, (x,C,C1) By (x,CpCt)

[ [stn-s@l(/m- ) dM(y)‘
B,(x.C,C1)

< / 18,5 3) — S )] 1f0) — F@ )
B,(x,C,Ct)

< G o, XN [ llgeiwpy = COO XN flligex ) (3:178)

where we have also used properties (i) and (if) from Definition 3.21 as well as the
upper-Ahlfors-regularity condition for u. Furthermore,

|81 /(@) = S f ()] < |(Sif () = f®) = (Sif (&) = fX)| + | f() — f(X)]
< 8 f@) = @]+ [Sf ) = FOD| + o0 XN fllige ) (3:179)

and when p(x, x’) > Ct we have, thanks to property (i) from Definition 3.21,

15,00 — £ = ‘ [ o SEN(0) = ) du)

<O flgy [ S du0)

By (x,C,oCt)
< Co(e XNl fllgex - (3.180)

with a similar estimate for \S, f&)— f )\. Altogether, the above analysis proves
that

|5:7]

eep = ClLf llgecx (3.181)

for some finite constant C > 0, independent of ¢. Hence, (3.137) follows. In
turn, (3.138) is a consequence of (3.137), and (3.135) with p = oo.
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Turning our attention to (3.139), assume that @ € (0,¢) and fix g € € (X, q)
along with x,x’ € X and ¢t € (0,¢«). When 0 < p(x,x’) < Ct, then x # x’ and
from (3.178) we have

[(Sig — &) (0) = (Sig — &) | < Cp(x, X)* gl g x )

< Cp(x ) 1 lgllgery e (3.182)
whereas when p(x,x’) > Ct from (3.179)—(3.180) we have
[(Sig — &) () = (Sig — &) X)) < Cllglligex )
< Cp(e ) 17 gl ey (3183)
Combining (3.182)-(3.183) we therefore arrive at the conclusion that
1518 = 8ll ey = C17N8ligeix e V1€ (O.10), (3.184)
which readily yields (3.139). In fact, since much as in (3.180),
ilelg|(8,g — g)(x)| < Ct5||g||cg'g(X!p), Ve (0,t), (3.185)

formula (3.140) subsequently follows from (3.185) and (3.139).

We next establish (3.143). For starters, given p € (1,00) and f € L/ (X, ),
the properties listed in (i), Holder’s inequality, and the upper-Ahlfors-regularity
condition for u give that for each x € X and ¢ € (0, o) with ¢ > r,(x),

1S, /)] = c][

By (x.Ct)

1/p
plan=c(f, irvan)
o (x,Ct

1/p
< Ct_d/f'</|f|1’d,u) "0 ast— 0. (3.186)
X

Moreover, as much as before, by (3.169) we have that |S; f| is pointwise bounded
on X (independent of 1) by the function F := max{CM, [, | f|} € L’(X,p).
Therefore, (3.143) follows with the help of Lebesgue’s Dominated Convergence
Theorem.

Moving on, note that (3.141) follows immediately from (3.132) and (i) in
Definition 3.21. There remains to prove that (3.142) holds if and only if p is Borel-
semiregular. Suppose first that x is Borel-semiregular. To justify the claim in (3.142)
in the case when 1 < p < oo, fix x € X along with € (0,7,) and observe that
from (3.168) we have

it Ct<ry(x) then [(Sf)(x)— f)]=]f(x)—f(x)|=0. (3.187)
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On the other hand, if Ct > r,(x) then based on (i) and (iv) in Definition 3.21 as well
as the upper-Ahlfors-regularity of £ we may write

(S /)X = f)] =

/ S (f0) = F() dp(y)

By(x.Cr)

<cr / | £0) — ()] du)
B,(x,Cp)

=cf 1f0 - s@luo). (3.188)
Bp(x,Ct)
The bottom line is that from this analysis, we have

(S)E) — f()] < c][

B,(x,Ct

)I JO) = f@ldpy). (3.189)

for every x € X and every t € (0,1,). Bearing Lebesgue’s Differentiation
Theorem (more specifically, the implication (1) = (2) in Theorem 3.14) in mind,
from (3.189) we can further conclude

lin}r (S fHix) = f(x) for each fixed x € X. (3.190)
t—0

With this pointwise convergence in hand, the estimate in (3.169), together with
the boundedness of the Hardy-Littlewood maximal operator, M, on L7 (X, 1) (cf.
Theorem 3.7; recall here that we have assumed p is py) and Lebesgue’s Dominated
Theorem yield (3.142) under the assumption p € (1, 00).

Suppose next that p = 1 and fix an arbitrary number § € (0, c0). Since u is a
locally finite measure (cf. part 9 in Proposition 2.12), we may invoke the implication
(1) = (4) in Theorem 3.14 in order to obtain a function g € (f'f (X, q), where f is
any fixed finite number with 0 < 8 < [logch]_l, satisfying

/If—gldu <é. (3.191)
X

Then arguing as in the proof of (3.142) when p > 1, we have for some finite constant
C > 0 independent of ¢, g, and x € X, that

(5.9) () — g)| < c][

B,(x,Ct

< Cligllgs o p” (3.192)

)Ig(y) —g@ldu(y)
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which shows that, on the one hand, ||S;g — gllzoox) =< C||g||cg~,5(X’p)tﬁ. On the
other hand, given that g vanishes outside of a p-bounded subset of X, it follows
from (3.141) that there exists a bounded subset B C X outside of which S,g vanishes
for all + € (0, 1]. From this analysis, and the fact that p is locally finite, we may
therefore conclude that

lim |S;g — gldu = 0. (3.193)
—0t+ Jx
Since, thanks to (3.191) and (3.135) (with p = 1),

1SS — Flloy S NS =i + 158 — gl + 18 — Flloraw

< C3+ (1Sig — 8l (3.194)

it follows from (3.193) that
lim IS f — fldu =0, (3.195)
—0t Jx

as wanted. This completes the justification of (3.142) assuming that the measure p
is Borel-semiregular.

Conversely, if (3.142) holds for some p € [1, co) then this implies that for every
set E which is bounded and p-measurable the indicator 1z may be approximated
arbitrarily well by functions from (X, q) in L”(X, 1) (here we also use (3.136)
and (3.141)). Granted this and bearing in mind the density of step functions
in LF(X, ), we ultimately deduce that 4°(X,q) is dense in L”(X, ). Having
established this, the implication (5) = (1) in Theorem 3.14 then yields that u
is Borel-semiregular. The proof of Theorem 3.22 is therefore complete. O

3.5 Dyadic Decompositions of Spaces of Homogeneous Type

In this section we start by recording a version of a result proved by M. Christ in
[Chr90ii] which provides an analogue of the grid of Euclidean dyadic cubes on a
space of homogeneous type, then discuss some of its consequences. The construc-
tion of such a grid is of independent interest but the will serve as an integral part of
defining Besov and Triebel-Lizorkin spaces in Chap. 9. The current version contains
two refinements. First, Christ’s dyadic grid result is established in the presence
of a background doubling, Borel-regular measure, which is more restrictive than
merely assuming that the ambient quasi-metric space is geometrically doubling.
Second, Christ’s dyadic grid result involves a scale § € (0, 1) which may be taken
to be %, as in the Euclidean setting. For more details regarding these refinements
see [HoMiMiMo13]. The reader is advised to recall the notions of geometrically
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doubling quasi-metric space from Definition 2.3 and space of homogeneous type
from Definition 3.2.

Proposition 3.24 Assume that (X, p) is a geometrically doubling quasi-metric
space and select ko € 7. U {—oo} with the property that

277! < diam,(X) < 27, (3.196)

Then there exist finite constants a; > ay > 0 such that for each k € Z with k > ky,
there exists a collection Ji(X) := {QX }yey, of subsets of X indexed by a nonempty,
at most countable set of indices I, as well as a family {x* },e;, of points in X, such
that the collection of all dyadic cubesinX, ie.,

Jx) = ) 2. (3.197)

kEZ, k=Ko

has the following properties:

(1) [All dyadic cubes are open]
For each k € Z with k > ky and each o € I, the set ng[ is open in t);
(2) [Dyadic cubes are mutually disjoint within the same generation]
For each k € Z with k > kg and each o, B € I} such that « # B there holds
0, N0 =0;
(3) [No partial overlap across generations]
For each k, € Z with £ > k > kg, and eacha € I, B € I, either ng - Q’;
or Ok N Qé =0,
(4) [Any dyadic cube has a unique ancestor in any earlier generation]
For each k,{ € Z with k > £ > kg, and each o € I} there is a unique 8 € Iy
such that Q’; C Ql‘é;
(5) [The size is dyadically related to the generation]
For each k € 7 with k > ko and each o € I}, one has

B,(xk,ap27™*) € 0F € B,(xk,a127%); (3.198)

In particular, given a measure . on X for which (X, p, ) is a space of
homogeneous type, there exists a constant ¢ > 0 such that if QE'H - Qf;,
then (@) = ep(0F).
(6) [Control of the number of children]
There exists an integer N € N with the property that for each k € 7 with
k > ko one has

#{B € Ly : Q’/;“ C O} <N, forevery a €. (3.199)
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(7)

(8)
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Furthermore, this integer may be chosen such that, for each k € Z with k > k,
eachx € X and r € (0,27%), the number of Q’s in Ji(X) that intersect B,(x, r)
is at most N.
[Any generation covers a dense subset of the entire space]

For each k € 7 with k > ko, the set | J,e, Qb is dense in (X, 1p). In
particular, for each k € Z, with k > ko one has

X = x e X dist,(x, 0F) < e27R, Vee (0,00), (3.200)
P o

€l

and there exist by, by € (0, 00) depending only on the geometrically doubling
character of X with the property that

Vx, € X, YR € (0,diam,(X)], finite, 3k € Z with k > «o, and

(3.201)
Ja € Iy with the property that Q% € B,(x,,R) and bR <27 < b|R.
Moreover, for each k € Z with k > ko and each o € I
U Q! s dense in O, (3.202)

Bely1. 05 COk
and

o g {reX: dist,(x, O5t") <e27*7'}, Ve > 0. (3.203)

ﬂEIk+lsQ;§+ng(]§

[Dyadic cubes have thin boundaries with respect to a background doubling
measure]

Given a space of homogeneous type (X, q, L) where | is doubling with
respect to a quasi-distance p € q, a collection J(X) may be constructed as
in (3.197) such that properties (1)—(7) above hold and, in addition, there exist
constants ¥ € (0, 1) and ¢ € (0, 00) such that for each k € Z with k > ko and
each a € I one has

n({xe 0l dist,, (x, X\ 05) <127%}) <’ pu(Qh), Vi>0. (3.204)

Moreover, in such a context matters may be arranged so that, for each k € Z
with k > ko and each a € I,

(Ql(;, ,Ol_Ql(;, ,lL|Qk) is a space of homogeneous type, (3.205)
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and the doubling constant of the measure | o is independent of k, o (i.e., the
quality of being a space of homogeneous type is hereditary at the level of dyadic
cubes, in a uniform fashion).

(9) [All generations cover the space almost everywhere with respect to a doubling
Borel-regular measure]

If w is a Borel measure on X which is both doubling (cf. (7.1)) and Borel-

regular (cf. (2.69)) then a collection J (X) associated with the doubling measure
W as in (8) may be constructed with the additional property that

,u(X\ U Q’;) —0  foreach keZ, k> k. (3.206)

o€l

In particular, in such a setting, for each k € Z with k > k¢ one has

M(Q{; \ U QZH) =0, forevery a €l. (3.207)

Beli1. 0 <ok

For future work it is important to clarify certain terminology that will be used on
such occasions and we do so in the comments below.

Comment 3.25 As already mentioned in the statement, sets Q belonging to 7 (X)
will be referred to as dyadic cubes (on X). Also, following a well-established
custom, whenever QXt! C Q’;} we shall call QX*! a child of Q’B, and we shall say

that Qf is a parent of Q"' For a given dyadic cube, an ancestor is then a parent,
or a parent of a parent, or so on. Moreover, for each k € Z with k > k¢, we shall
call Ji(X) the dyadic cubes of generation k and, for each Q € Jy(X), define the
side-length of Q to be £(Q) := 27%, and the center of Q to be the point x* € X if
Q=0

Comment 3.26 We make the convention that saying that 7 (X) is a dyadic cube
structure (or dyadic grid) on X will always indicate that the collection 7 (X) is
associated with X as in Proposition 3.24. This presupposes that X is the ambient
set for a geometrically doubling quasi-metric space, in which case [J(X) satisfies
properties (/)—(7) above and that, in the presence of a background measure u
satisfying appropriate conditions (as stipulated in Proposition 3.24), properties (8)
and (9) also hold.

Comment 3.27 Pick some j € N large enough so that 277a; < %, where the

constant a; is as in (3.198). Whenever convenient it is understood that a choice
for the parameter j has been made as specified here. For each k € Z and t € I} we
then organize the set {Ql;j_j : Qlﬁj C Qf} as the collection

{ N (3.208)

and denote by y* the center of the cube Q.
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As an application of this dyadic decomposition, we have the following covering
result which, essentially, shows that points in a space of homogeneous type are
indeed homogeneously distributed. More precisely, any space of homogeneous type
is geometrically doubling.

Proposition 3.28 Ler (X, q, t) be a space of homogeneous type and suppose that
W is doubling with respect to a quasi-distance p € q. Then for all 6 € (0, 1), there
exists N = N(0,X) €N, i.e., N depends only on 6 and the constitutive constants of
(X, q, 1), with the property that for each x € X and every finite r € (0, diam,(X)]
there exist N points {x;}1<j<n belonging to B,(x, r) such that

N
By(x.r) € () B,(x;. 07). (3.209)
j=1

That is, (X, q) is a geometrically doubling quasi-metric space (cf. Definition 2.3).

Proof Fix 6 € (0,1). We make the claim that there exists N = N(6,X) € N for
which, given any x € X and any finite r € (0, diam,(X)], there exist N p-balls
{Bj}1<j<n of radii Or such that

N
B,(x.r) < | JB;. (3.210)
j=1

Note that once this claim is established, the desired conclusion follows. To see this,
apply the claim just made with 6 replaced by G(Cpé‘p)_l (where CpC‘p € [1,00) as
in (2.2)-(2.3)) in order to obtain a family of balls {B;}<j<y of radii Q(Cpép)_lr for
which (3.210) holds. Also, by discarding the B;’s which are disjoint from B, (x, r),
there is no loss of generality in assuming that there exists x; € B,,(x, r) N B; for every
j=1,...,N. Then the family of balls {B,(x;, 0r)}1<j<ny Will do the job.

There remains to show that the claim made at the beginning of the proof is true.
To this end, fix a finite number A > C, and choose k € Z, k > K to be specified later
(ko € Z U {—o0} as in (3.196)). Also assume x € X and consider r € (0, diam,(X)],
finite. By Proposition 3.24 there exist constants ag, a; € (0, 00) with a; > a( and
a family of points {xt},e;, C X indexed by a nonempty, at most countable set of
indices I;. Then it follows from (3.198) and (3.200) in Proposition 3.24 that

By(x.r) € X = ) B, (. 2a127). (3.211)

€l

By increasing A € (1,00) we may assume further that A > 1/bja; where
by € (0,00) is as in (3.201). Thus A remains a constant which only depends on
the ambient X. Then, we choose k € Z with k > K to be the integer as in (3.201)

(applied here with x, := x and R := Mflral € (0,diam,(X)]). Such a choice of k
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ensures that

b
b—oer < Aa; 27 < or, (3.212)
1

where b; € (0, 00) is as in (3.201). Moving on, consider the set
1(x,r) == {o € I : B,(xk,1a127%) N B,(x, 1) # 0}, (3.213)

and observe that by design we have

By(x.r) S | Bo(.0m). (3.214)

a€l(x,r)

It remains to show that the set /(x, r) has finite cardinality and that the number of
points it contains is independent of x and . Note that, for all « € I(x, r), we have

B,(xk.1a;27%) € B,(x, C,(r + Xa127")) € B,(x.C,(1+ 0)r). (3.215)

On the other hand, (3.198) implies that B, (xX, ap27%) < B, (x, 1a;27%) whenever
a € I(x, r), and therefore by (3.215),

B, (. a027%) € B,(x.Cp(1 + 0)r), foralla € I(x,r). (3.216)

Since Bp( o> a02_k) NB, (xg, aOZ_k) =0Qifa, B € I(x,r),x # B (thanks to parts (2)
and (5) of Proposition 3.24) we obtain

1(Bo(x. Co(1 +0)r) = Y u(By (. ao27)). (3.217)

a€l(x,r)

On the other hand, by (3.3),

By (x, Co(1 + O)r Cp(1 + 0)r\”

By (x. Co(1 + 6)r)) _ ( il +k )r) foralla € I(x,r). (3.218)
,u(Bp (xk, a02_k)) ap2~

By (3.212) we have r &~ 27* (where the proportionality constants only depend on 6

and the ambient X), so (3.218) gives

M(Bp(x, C,(1+ e)r))) < Cu(Bp( a,a02_k)) foralla € I(x, 1), (3.219)

where C € (0, co) depends only on 6 and the constants C,, ao, a1, bo, by, D relative
to X. This, combined with (3.217), implies that the cardinality of /(x, r) is finite and
is at most C. Taking N € N to be the integer part of C finishes the proof of (3.210)
and, in turn, the proof of the proposition. O
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Another manifestation of the homogeneous distribution of points in a space of
homogeneous type is described in the proposition below.

Proposition 3.29 Ler (X, q, t) be a space of homogeneous type and suppose that
W is doubling with respect to a quasi-distance p € q. Then for each fixed 6 € (0, 1),
there exists N depending only on the doubling constant of u and 6 such that for
every x € X and every r € (0, 00) the following implication holds.

U}’;l By(xj, 0r) € By(x,r) with
x;€X, j=1,...,m suchthat y — m=N. (3.220)
Bo(xj, 0r) N B,(x, 0r) =0 Vj#k

Proof Fix x € X and r € (0, 00) and assume that the points {x;};_; < X are such
that B, (x;, 0r) N By (xx, 0r) = @ whenever j # k and ;L B,(x;, 0r) € B,(x, 7).
Using this and (3.3) we may write ‘

m

w(Bo(x.1)) = Y p(Bp(x;. 6r)) = ZC@D B,(x,1))

j=1

= Cmb p,(Bp(x, r)), (3.221)

where D is the doubling order of p appearing in (3.3). This, in turn, implies that
m < C7'6~P =: N and finishes the proof of the Proposition 3.29. O



Chapter 4
Maximal Theory of Hardy Spaces

The main goal of this chapter is to introduce Hardy spaces in the context of
d-Ahlfors-regular quasi-metric spaces by defining H” (X) as a collection of distribu-
tions whose maximal belongs to L”(X). This is in the spirit of the pioneering work
of C. Fefferman and E.M. Stein who their 1972 Acta paper [FeffSt72] developed
Hardy spaces in the Euclidean setting by considering H” (Rd ) as a space of tempered
distributions having the property that their grand maximal function belongs with
L7 (R?). With this as a starting point, subsequent attempts have been made to
introduce and study H? spaces via some sort of maximal function in more general
settings. In this regard, of particular relevance is the work of R.R. Coifman and
G. Weiss who, in [CoWe77], have taken the step of developing a brand of Hardy
spaces (here denoted by H7, (X)) in the general context of spaces of homogeneous
type. They considered the following radial maximal function

f+(x) = sup /XK(x,y,r)f(y)d,u(y), VxeX, 4.1)

r€(0,00)

where {K(x,y,7)}re0,00) is a family of nonnegative functions on X x X enjoying
several properties' which are detailed in [CoWe77, pp. 641-642]. It was stated in
[CoWe77, p.642] that by using the duality of H'(X) and BMO(X) one can show
f € H'(X) if and only if f* € L'(X). They also mention without proof that
based on some ideas in [Co74] and [Lat79] this result should also hold for some
unspecified p < 1.

In this vein, A. Uchiyama showed in [Uch80] that for 1 — p > 0, small, the
maximal function in (4.1) can be used to characterize a subspace of an atomic Hardy

Iwhich essentially make it an approximation to the identity
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space’ consisting of L!-functions. More recently, the spirit of this result was later
extended to the context of reverse-doubling spaces in [ YaZh10] and [GraLiuYa09ii]
using the Hardy spaces in [HaMuYa06] (see also [GraLiuYa09iii] for other maximal
characterizations in this setting).

A year before the appearance of [Uch80], R.A. Macias and C. Segovia in
[MaSe79ii] obtained a maximal characterization of the atomic Hardy spaces
introduced in [CoWe77] using a different circle of ideas more akin to the work of
Fefferman and Stein. Somewhat more specifically, in the setting of normal spaces (1-
Ahlfors-regular quasi-metric spaces) Macias and Segovia considered the following
grand maximal function

fr@) = sup [(f.y)], VxeX, 4.2)

VET(x)

where f belongs to a certain space of distributions and 7 (x) is a class of normalized
Holder functions supported “near” x (see [MaSe79ii, p.273] for details), and
succeeded in showing that f € HY,(X) if and only if f* € L7 (X) for every

1
Pe (1 T fog(C2C + )T 1} “3

where C € (0, co) is the constant appearing in the quasi-triangle inequality in (2.5).
Recycling some of the ideas in [MaSe79ii], several years later W. Li also managed
to characterize H7.;(X), retaining the assumption that p is as in (4.3), using a grand
maximal function defined via test functions introduced in [HaSa94].

This main result of [MaSe79ii] was a significant step in providing maximal
characterizations of Hardy spaces in abstract settings. However, there are two very
important limitations with this work. First, the measure theoretic aspects of normal
spaces only give a generalization of the one-dimensional Euclidean setting. More
significantly, if we specialize Macias and Segovia’s results to the Euclidean setting
then the range of p’s in (4.3) (now bearing in mind that C = 1 in this setting) is
strictly smaller that the expected range of (1/2, 1]. Thus, the results [MaSe79ii]
cannot be regarded as a true generalization of the Euclidean theory.

In this chapter we achieve two main goals. First, we introduce Hardy spaces via
a grand maximal function in the spirit of [FeffSt72]. This is done in Ahlfors-regular
quasi-metric spaces of any positive dimension. With this definition, we accomplish
our second main goal which is to show that these Hardy spaces coincide with L7 (X)
when p € (1, oo]. Later, in Chap. 5, we will also demonstrate that these Hardy spaces

2The atomic Hardy spaces considered in [Uch80] are of a slightly different variety of than those in
[CoWe77]; see [Uch80, p. 581] for details.
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have an atomic characterization for each exponent

There are many features that distinguish this range of p’s from (4.3). For starters, the
range of p’s in (4.4) strictly larger than the one in (4.3). Of even greater importance
is the fact that when the underlying space considered is the d-dimensional Euclidean
setting, (4.4) becomes the expected range (#, 1]. Thus, in contrast to [MaSe79ii],
the results presented in the current work can be regarded as a genuine generalization
of the classical theory established in the d-dimensional Euclidean setting.

This chapter is organized as follows. In Sect.4.1 we review some necessary
background information regarding distribution theory in d-Ahlfors-regular spaces,
d € (0,00). Based on this preliminary material, in Sect.4.2 we introduce two
different, yet closely related, maximal Hardy spaces, building on the work in
[MiMiMiMo13]. Section 4.3 is dedicated to showing that the two maximal Hardy
spaces developed in Sect. 4.2 can be identified with L” (X, n) whenever p € (1, o0].
The approximation to the identity constructed in Sect.3.4 will prove to be an
indispensable tool in this undertaking. Finally, we will conclude this chapter with a
result describing the completeness of the space H” (X, p, i) in Sect. 4.19.

4.1 Distribution Theory on Quasi-Metric Spaces

In an approach akin to that of Fefferman and Stein in [FeffSt72], we will consider
HP to be a space of distributions whose grand maximal function belongs to 7. For
this we will require a class of test functions which incorporates the optimal degree
of smoothness that the variety of general ambients we have in mind can support.

Let (X, q) be a quasi-metric space and suppose p € q. In this setting, for each
a € (0, oo] define the class of test functions (of order &) on X as

Zu(X.p) =[] C/(X.p) (4.5)
Be(0.a)

where in general for each finite number § > 0 we set

¢/ (X,q) ;= {f € €P(X,q) : f vanishes outside of a bounded subset of X}. (4.6)

Much as was the case with 7 (X, q) and €7 (X, q), if p € Q(X) we shall sometimes
write &7 (X, p) in place of %! (X, [p]) as is the case in (4.5). Furthermore, we note
here that these spaces are nested in the sense that the identity operator

L: CK.C“ X,q) — ‘éﬂ (X,q) 1is well-defined whenever 0 < <« < oo, (4.7)
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i.e.,

%.f(X, q) <€ ﬂ (ff(X, q) forevery a € (0, 00). (4.8)
Be(0.)

Comment 4.1 Throughout, it is possible to employ other types of test functions (in
place of (4.5)) which lead us to the same main results. For example, following in the
spirit of [Li98, Definition 1.7, p. 13] (see also [HaSa94]), one can use the following
class of test functions.

DEFINITION: Suppose (X, q) is a quasi-metric space, p € q and fix two finite
parameters y > 0 and B € (0, [log,C,]™"]. In addition, fix a pointxo € X and a
number d € (0, 00). Call a function ¢ : X — C of type (xo, d, B, y) provided there
exists a finite constant C > 0 with the property that for every x,y € X

dV
o 4.9
Y ()| < (d+p(xo,x))l+y @9
and
v — vy < of —2e» ' (4.10)
— \d+p00) ) (d+ pxo, )T |

hold. In the above context, set
M (xo.d.B.y) :={¥ : X - C: v is a function of type (xo.d, B, y)}. (4.11)

Moving on, we wish to comment on the nature of the space Z,(X,p) with
respect to the parameter «. Turning to specifics, if @ € (0, 00) is too large, e.g.,
o € (indH(X, 0), oo] (where indy (X, p) is as in (2.141) of Definition 2.19, also
see (2.142)) then Z, (X, p) = {0}. As such, we will consider

a € (0, [log,C,] '] (4.12)

in order to ensure that 9, (X, p) is a rich set in the sense that it contains plenty of
nonconstant functions (cf. the last part in Theorem 2.6).

Turning to the issue of defining the topology 74, on 7, (X, p), fix a nested family
{K,}nen of p-bounded subsets of X with the property that any p-ball is contained in
one of the K,,’s. Hence, in particular, U,enK,, = X. Next, for each n € N, denote by
Dun(X, p) the collection of functions from %, (X, p) which vanish in X \ K,. With
| - lloo standing for the supremum norm on X, this becomes a Frechét space when
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equipped with the topology 7, , induced by the family of norms
- lloo + 11 - llgp . : P rational number such that 0 < B < o} (4.13)

That is, Z,..(X, p) is a Hausdorff topological space, whose topology is induced by
a countable family of semi-norms, and which is complete (as a uniform space with
the uniformity canonically induced by the aforementioned family of semi-norms
or, equivalently, as a metric space when endowed with a metric yielding the same
topology as 1y ). Since for any n € N the topology induced by 74 ,+1 on Zy (X, p)
coincides with 7, ,, we may turn Z, (X, p) into a topological space, (Z (X, p), t2,),
by regarding it as the strict inductive limit of the family of topological spaces
(P X.P). Ta) e

Theorem 4.2 Let (X,q) be a quasi-metric space. Then for each p € q and
a € (0, [logZCp]_l] (C, € [l,00) as in (2.2)), the class of test functions
Dy (X, p), equipped with the topology tg, introduced above, satisfies the following
properties.

(1) The topology tg, is independent of the particular choice of a family of sets
{Ky}nen with the properties specified above. Also, in general, 14, is not
metrizable.

(2) (Zu(X, p), t9,) is a Hausdorff, locally convex, topological vector space.® Also,
for every n € N, the topology induced by to, on Dy ,(X, p) coincides with Ty .

(3) (Z4(X,p),t9,) has the Heine-Borel property (i.e., a subset of Do(X, p) is
compact in tg, if and only if it is closed and bounded).

(4) The topology t9, on Zy(X,p) is the final topology of the nested
family of metrizable topological spaces {(.@a,n(X, p), Ta’n)}nEN and, hence,
(Z4(X, p), 19,) is an LF-space.

(5) A convex and balanced subset O of Py(X, p) is open in 19, if and only if the
set O N Dy u(X, p) is open in 14, for every n € N, i.e., if and only if

VneN 3de>0 3B € (0,a) suchthat

(4.14)
{0 € Zu(X,p): ¢ =00n X\ K, and ||¢]loo + 945 x ) < &} SO

31n this work, the pair (2, 7) shall be referred to as a topological vector space provided 2 is a
vector space and Tt is a topology on 2 such that the vector space operations of addition and scalar
multiplication are continuous with respect to . Under these assumptions, the topological space
(2, t) may not be Hausdorff. If, in addition to the above considerations, one assumes that the set
{x} € (2, 1) is closed for each x € 2 then (2, ) is necessarily Hausdorff. In light of this, part
of the literature includes the latter condition in the definition of a topological vector space (see,
e.g., [Ru9l, p. 7]).
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(6) One has

{@j}ien € Zu(X, p) converges to zero in 1g, <= In € N such that @.15)
{@j}ien € Dun(X, p) and {@;}jen converges to zero in Ty, ‘

i.e., there exists n € N with the property that ¢; = 0 on X \ K,, for everyj € N
a"djglgo[llwlloo + ||(pj||<5;,3(x’p)] = 0 whenever 0 < B < .

(7) A sequence {¢j}jen  Pu(X, p) is Cauchy (in the sense of topological vector
spaces) if and only if there exists a number n € N having the property that
¢;j = 0 pointwise on X \ K, for every j € N and whenever 0 < 8 < o one has
that ||¢j — ¢illoo + lgj — (Pk”sg'ﬁ(x,p) — 0asj k— oo.

(8) Zy(X, p) is sequentially complete, in the sense that any Cauchy sequence in
Dy (X, p) converges to a (unique) function from Dy, (X, p) in the topology t4,.

(9) A set B < Dy(X, p) is bounded (i.e., any neighborhood of the origin in this
topological vector space contains a positive dilate of ) if and only if there
exists n € N with the property that

o =0 on X\ K, foreach ¢ € B, and

sup {¢lloo + @l sy, : @ € B} < 00 (4.16)
whenever B € R satisfies 0 < < .

Proof This is proved along the lines of [Ru91, Theorems 6.4-6.5, pp. 152—-153].
O

Next, given a quasi-metric space (X, q), foreach p € qand o € (0, [logZCp]_l]
we define the space of distributions Z,(X,p) on X as the (topological)
dual of Z,(X, p). Call each elements belonging to Z,,(X, p) a distribution,
and denote by (-, -) the natural duality pairing between distributions in Z,(X, p) and
test functions in Z, (X, p).

Theorem 4.3 Let (X, q) be a quasi-metric space, fix a quasi-distance p € q,
and consider a parameter o € (0, [longp]_l] where C, € [1,00) is defined as
in (2.2). Then for a linear mapping f : Y4(X, p) — C the following conditions are
equivalent.

(1) f belongsto 7,(X, p).

(2) f maps bounded subsets of the topological vector space (Zy(X, p), t13,) into
bounded subsets of C.

(3) Whenever a sequence {@;}jen S Zo(X, p) converges to zero in the topological
vector space (Do (X, p), t9,) then { f,¢;) = 0asj— oo inC.

(4) Foreachn € N, the restriction of f t0 (Dyn(X, p), Ta.n) is continuous.

(5) For everyn € N there exist C € (0,00) and B € (0, o) with the property that

(Lo) = Clglloo + Illgs ) Vo€ ZunX,p). (417
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Proof This is proved by reasoning much as in [Ru91, Theorems 6.6 on p. 155 and
Theorem 6.8 on p. 156]. O

Given a quasi-metric space (X, q), a quasi-distance p € q, and some parameter
a € (O, [logch]_l], it follows that Z/,(X, p) has a natural vector space structure.
We shall equip this space with the weak-topology 74, i.e., the topology induced
by the family of semi-norms {p,}eez,(x.0n) on Z, (X, p) where, for each function
¢ € (X, p) and distribution ' € Z,(X, p) we defined p,,(f) := |(f. ¢)|. Thus,
for a sequence { f;}jen € Z, (X, p) and a distribution f € Z,,(X, p),

lim f;= f in 19 <= lim (f;,¢) = (f.¢) in C
J—>00 J—>00
foreach ¢ € Z,(X, p). (4.18)

It is easy to see from (4.18) that if a sequence { f;}jen € Z, (X, p) is convergent then
its limit is unique.

The space of distributions on a quasi-metric space is sequentially complete, in
the sense made precise in the theorem below.

Theorem 4.4 Suppose (X, q) is a quasi-metric space. Fix a quasi-metric p € q and
a parameter o € (O, [logZCp]_l] where C, € [1,00) is as in (2.2). If the sequence
{fi}jen € Z,(X, p) has the property that

lim ( f;, ) exists in C for each ¢ € Z,(X, p), (4.19)

Jj—>00

then the functional which associates to each test function ¢ € Zy(X, p) the number
defined as the limit in (4.19) is a distribution f € 9., (X, p) which satisfies the
following properties.

(1) lim f; = f in tg9,.
J—>00

(2) Foreveryn € N there exist C € (0,00) and € (0, ) such that
(0| < Cllelloo + 19l 4o x ) for all ¢ € Don(X, p) and all j € N (4.20)

(3) lim ( f;, @) = ( f. @) in C for every sequence {¢;}jen S Zu(X, p) converging
Jj—>00 X
in tg, to a limit ¢ € Iy(X, p).

Proof This is essentially a consequence of the Banach-Steinhaus principle of
uniform boundedness (cf. [Hor03, Theorems 2.1.8, pp.38-39] for details in the
standard Euclidean setting). O

It is well-understood in the Euclidean setting that function f € L} (R?, L")
induces a distribution on Z(R?) = C>°(R) (denoted by A ) of “function-type”,
i.e., via integrating f against any function from Z(IRY) over the entire R¢. In fact,

this association is injective and we may unambiguously identify such a distribution



128 4 Maximal Theory of Hardy Spaces

A r with the function f itself. As the following proposition asserts, this continues
to remain valid in a more general geometric and measure theoretic setting.

Proposition 4.5 Let (X, q) be a quasi-metric space and suppose [L is a nonnegative
measure on X with the property that for some p € q, all p-balls are j-measurable.
Also, fix a finite number o € (0, [logZCp]_l].

Then f € L, (X, ) ifand only if f : X — C is a p-measurable function which
satisfies

/lellfldu <oo. VY ETuX.p). @21

Consequently, given any w-measurable function f : X — C, the linear functional

Ay Dy(X, p) — C defined by

A= ()= [ frde Yuegt. @2

is a well-defined distribution on 9y(X, p) if and only if f € L} (X, w).
Proof Consider a function f € L' (X,u). Then f : X — C is pu-measurable.

loc
Moreover, we have fy € L'(X,u) for each fixed ¥ € Z,(X,p) given the
membership f to L} (X, /) and the fact that functions from %, (X, p) have bounded
support in X. Hence, (4.21) holds.
Suppose next that f : X — C is an arbitrary p-measurable function
satisfying (4.21) and fix any point x € X and any radius r € (0, c0). We want to

show

/ | fldu < oo. 4.23)
Bp(x.r)

To establish (4.23) consider the set Fy := X \ B,(x, C,C,r), where C,, C, € [, c0)
are as in (2.2)~(2.3). If Fy = @ then X = B,(x, C,C,r). In this case we have that any
constant function belongs to %, (X, p). As such, by specializing (4.21) to the case
when v is the constant function 1 we may conclude that (4.23) holds. If, on the other
hand, Fy # @ then dist,(Fo, F1) > 0 where we have set F'; := B,(x, r). Invoking
Urysohn’s lemma in Theorem 2.6, there exists a nonnegative function ¢ € %;?‘ X,q)
such that suppy C B,(x, Cpépr) and ¥ = 1 on B,(x,r). Moreover, since (4.8)
implies ¥ € Z,(X, p), we have from (4.21) that

[ \fldp =/ vl du < / ] < oo, (4.24)
Bp(x,r) Bp(x,r) X

as desired.
Regarding the second assertion in the statement of the proposition, if f : X — C
is a p-measurable function such that the linear mapping in (4.22) is a well-defined
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distribution on %, (X, p) then (4.21) holds. Hence, f € L} (X, ). Conversely,
assuming that f € L} (X, n), if {gj}ien € Zu(X,p) converges to zero in the
topological vector space (Z,(X, p), tg,) (cf. (6) in Theorem 4.2) then calling upon
Holder inequality yields the fact that {A r(¢;)}jen S C converges to zero in
C. Hence, Ay € Z,(X,p), granted Theorem 4.3. This finishes the proof of the
proposition. O

At this stage, from Proposition 4.5 each function from L} (X, x) may be

associated with a distribution A y on Z,(X, p). We will see that this association
of f with A ; is injective, however the justification of this fact is more delicate and
will be postponed until Sect. 3.4 as we will require the construction of an appropriate
approximation to the identity. In turn, this will permit us to conclude that L}OC X, n)
is the subspace of Z, (X, p) which constitutes the collection of all distributions of
“function-type”.

We would also like to mention that it can easily be seen that these classes of test
functions are nested in the sense that for every o, @z € (0, oo], the identity operator

U Do, (X, p) = Do, (X, p) is well-defined 425)
whenever 0 < ) < o, < [log,C,] 7" .

We conclude this section by discussing the matter of defining the multiplication
of a distribution by a “smooth” function which is made precise in the following
proposition.

Proposition 4.6 Suppose (X, q) is a quasi-metric space and fix a quasi-distance
p € q along with two parameters o,y € R satisfying a € (0, [longp]_l] and
y € o, 00) where C, € [1,00) is as in (2.2). Then for each fixed € €7 (X, q) and
f € 2,(X, p), the mapping

Vf 1 Du(X,p) - C defined by
(Wfe)=(f¥e) YoeZuX. p),

(4.26)

is a distribution on X.

Proof Fix ¢ € 74 (X, q) and suppose f € Z.(X, p). Given the assumptions on y,
from (4.7)—(4.8) we have ¥ € Z,(X, p). In particular, this gives Y ¢ € Z,(X, p) for
each ¢ € Z,(X, p). Hence, the mapping in (4.26) is well-defined.

To see that this mapping is in fact a distribution on X we remark that a
straightforward argument will show that if {¢;}jen € Z(X,p) converges to
zero in the topological vector space (Z,(X,p),tq,) (cf. (6) in Theorem 4.2)
then necessarily {Y¢;}jen € Zu(X, p) also converges to zero in (Z,(X, p), t2,).
Combining this with (3) in Theorem 4.3 and the fact that f € 2, (X, p) gives that
the mapping in (4.26) is distribution on X, as desired. This completes the proof of

the theorem. O
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4.2 A Grand Maximal Function Characterization of Hardy
Spaces

In this section we introduce the notion of Hardy Spaces in the context of d-Ahlfors-
regular quasi-metric spaces (d € (0, 00)) by means of the grand maximal function.
In order to facilitate the discussion, a few definitions are in order. In this section we
will work in the setting of a d-AR space, (X, q, 1), d € (0,00). To fix ideas, let
(X, q) be a quasi-metric space and suppose that i is a nonnegative measure on X
with the property that there exists p, € q, and two constants c;,c; € (0, 00) with
c1 < 1 < ¢; such that the following Ahlfors-regularity condition holds:

all p,-balls are yi-measurable, and (B, (x,r)) ~ r* uniformly o

for every x € X and every r € (0, 00) with r € [c1r,, (x), 2R, (x)]

where r,,, and R,,, are defined as in (2.70)—(2.71). Recall, Proposition 2.12 implies
that regularity condition in (4.27) holds with p, replaced with any other p € q
having the property that all p-balls are p-measurable. In particular, (4.27) is valid
with p, replaced with the regularized quasi-distance py € q for every p € q,
granted (2.28) and (2.81). Moreover, in light of 8 in Proposition 2.12 we may
assume (4.27) is valid for every point x € X and every radius r € (0, 0o) satisfying
r € [c1rp, (x), 2diam,, (X)].
In this context, if p € q and y, o € (0, co] with

0<y<a<[logC)] (4.28)

(Cp as in (2.2)) then for each x € X we define the class 7;?'0( (x) of normalized
bump-functions (of order o) supported near x according to

T, (%) = {w € Zu(X.p) : 37 € [r,(x). 00) with > 0 such that (4.29)

Y =00nX\By(e.r) and P ¥lloe + 7Yl g, < 1.

Next, given a quasi-distance p and numbers y and o as in (4.28), define the
grand maximal function of a distribution f € Z, (X, p) by setting (with the
duality paring understood as before)

fhe@= sup [(fy)]. VxeX. (4.30)
VT a0

This grand maximal function is the natural analogue of the one introduced by
Fefferman and Stein in [FeffSt72] (see also [St93]) where, given that our underlying
set X is not necessarily a vector space, the convolution is replaced by a distributional
pairing, and in place of normalized smooth functions we consider bump-functions
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which Holder continuous, the most regularity that such a general environment can
support.

It is evident at this stage that the grand maximal function has a dependence on
the amount of regularity (measured on the Holder scale) the collection of functions
7;,?'(1 possess. Howbeit, we will show that this dependence is an inessential feature
from the perspective of applications. We will comment on this in more detail later.

We now collect some properties of the grand maximal function in the follow-
ing two lemmas which extend the work done in [MiMiMiMol3] (specifically,
[MiMiMiMo13, Lemma 4.87 p. 251, Lemma 4.88 p. 252]).

Lemma 4.7 Suppose (X, q, t) is a d-AR quasi-metric space for some d € (0, 00)
and assume that the quasi-distance p € q, and the parameters o, y € (0, 00| satisfy

0<y <a<[log,C,] . (4.31)

Finally, recall the regularized version py of p as defined in Theorem 2.1. Then there
exist two finite constants Cy, C; > 0, depending only on p and y, with the property
that for any f € 9.,(X, p) one has

Co fpj’y’a(x) < fpfy,a(x) < C fp:,y,a(x) forall x € X. (4.32)
Furthermore, for each distribution f € 2,,(X, p),

the function f,

p:,y,a 1 (X, 7q) = [0,00] is lower semi-continuous.  (4.33)

As a corollary of this and (2.81), for each f € (X, p) the function is

-measurable.

*
P#, Y

Proof The proof of this lemma is presented in [MiMiMiMo13] in the case when
o« = [log,C,]™" and p is symmetric. With natural alterations, the proof of
this lemma follows an argument similar to the one presented in [MiMiMiMo13,
Lemma 4.87 p.251] whenever o € (0, [longp]_l) and p is merely assumed to be
quasi-symmetric. O

The next lemma can be thought of as a Cauchy-type criterion for distributions
in the sense that every sequence of distributions which is “Cauchy” (when viewed
through the prism of the I”-quasi-norm* of the grand maximal function) converges
(in the sense of distributions) to unique distribution.

4Given a vector space 2" over C, call a function || - || : .2~ — [0, 00) a quasi-norm provided
there exists a constant C € (0, 0o) such that for each x, y € 2 the following three conditions hold
@ Ixl =0 < x=0, @) lIAxl =[] - |Ix]l, ¥ A € C, and (i) lx + yll < Clxll + lIyl).-
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Lemma 4.8 Let (X, q, i) be a d-AR space for some d € (0, 00). Also, assume that
peQq,pe(0,00]andy, a € (0,00] are such that

0<y<a<][logC) " (4.34)
Finally, consider a sequence { fj}jen € Z,(X, p) with the property that

Ve >0 3N = N(e) € N such that
|| (fi = [y HU,(X#) < & whenever j, k > N. (4.35)

Then there exists a (unique) distribution f € 9.(X, p) for which

,-Efélo fi=f in Z.(X,p) and jglglo () o = 0. (436)

Proof We will provide the proof when p < oo as the proof in the case when p = oo
follows similarly with the natural alterations. With the goal of eventually employing
Theorem 4.4, in a first stage we propose to show that

{(f;. qo)}jeN is a Cauchy sequence in C, for each fixed ¢ € Z,(X, p). (4.37)

To see this, pick an arbitrary ¢ € Z,(X, p) C 74 (X, q). In particular, there exist a
point xo € X and a radius r € (r,,(x0), c0) such that ¢ vanishes in X \ B, (xo, r).
Hence, we can select a finite constant C, > 0 with the property that ¢ /C,, € 7;,;' «(x)
for every x € B, (xo, r). Consequently, for each j, k € N we may write

|(fi = fo @) < Co(fi = [y ya @) Y x € B, (xo, 7). (4.38)

In turn, after raising both sides of the above inequality to the p-th power and
integrating in x € B, (xo, r) with respect to u, this yields

[(fi = Joo )] 18 (Bpy (x0, 7)) < C / [(fi— f% vl A (4.39)

Bpy (x0,r)

and, hence,

= fo0)| = Col i = il VikeN. (40

Note that the integrals appearing in (4.39)-(4.40) are well-defined by (4.33)
in Lemma 4.7 and part /4 of Proposition 2.12. Now, (4.37) follows from this
and (4.35). Thus, Theorem 4.4 applies and gives the existence of a distribution
f € 2.(X, p) for which IEEOJ? = fin Z,(X, p).

J

We are therefore left with showing that ( f — fi);#,y,a — 0in LP(X, n) asj — oo.
To this end, pick an arbitrary ¢ > 0 and, based on (4.35), select N = N(¢) € N
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such that ||(f; — fi)p, yellzaew < €ifj,k > N. By once again relying on (4.35),
we may inductively construct a subsequence { f;, }»en of the original sequence of
distributions such that

/ [(f;, — ﬁnﬂ);#w]” dpu <27", VneN. (4.41)
X

Finally, consider a natural number i > N, and pick £ € N so that j; > N, and
27t < ¢. Since we have

f=fi=fi=fi+ Y (S — ) in Z(X.p), (4.42)
n={
it follows that for every x € X
(f = 0y ya® < (i = Sy + D (Fis = Fi) iy (0. (443)
n={

P
Recall 'Fhat || - |U,(X’M)
further imply that

is sub-additive whenever p € (0, 1). Then this and (4.43)

H(f - fi);#.,y.a ”[z),v(x,ﬂ) = ”(ﬁz - ﬁ);#,y,ailzﬂ(x,u)

3 i = Byl @44

n=~{

Finally, on account of (4.41) and the choices we have made on the parameters N,
i, £, we obtain from (4.44) that || (f — f0)}, ,.allp(x, =< 3¢- With this in hand, the
desired conclusion (i.e., the last condition in (4.36)) follows.

On the other hand if p € [1, 00) then || - ||zr(x,y) is sub-additive and from (4.43)

we have

[Cf = el < 1= el

D N = Fidpaliy @49
={

Then the last condition in (4.36) follows in this case as well by again relying
on (4.41). This completes the proof of the lemma. O
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Moving on, let (X, q, ;t) be a d-AR space for some d € (0, co) and consider next
an exponent
€ d (4.46)
T v 0. .
PE\a+indx.q)
Observe that this membership of p amounts to demanding that p € (0, oo] together
with the existence of some p € q with the property that d(1/p — 1) < [log,C,]".
This makes it possible to select a parameter « € (0, 0o] such that

d(1/p—1) <a < [log,C,] " (4.47)

Then for each such index p, quasi-distance p and parameter «, define the Hardy
space HY(X, p, i) by setting’

H(X, p, ) := {f € 7.(X,p): fp’:’y’a e IP(X, p) forevery y € (0,00)

satisfying d(1/p—1) < y < a}. (4.48)

A closely related version of the above Hardy space is HP (X, p, u) which, with p,
p, and « as before, is defined as®

I:Is(X, o, 1) = {f € 7.(X,p): fp?y’a e [P(X, p) forsome y € (0,00) (4.49)
satisfying d(1/p—1) <y < a}.

It is not difficult to see from (4.48) that HY (X, p, j1) is a vector space. In contrast,
given the weaker demand on the parameter y as in (4.49), the issue as to whether
or not H%(X, p, 1) is also a vector space is not as immediate. Nevertheless, this
question has a positive answer as the following proposition will demonstrate.

Proposition 4.9 Suppose (X, q, i) is a d-AR space for some d € (0, 00) and fix an

exponent
€ 4 (4.50)
» OO . .
PE\a¥nd(X.q)

This variety of Hardy spaces was introduced in [MiMiMiMo13] where the authors considered a
slightly less general geometric measure theoretic ambient than the one in this work.

SThis class of Hardy spaces was introduced in [MaSe79ii] in the setting of normal spaces (1-AR
spaces) although the notation is due to the authors in [MiMiMiMol3].
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Then for every quasi-distance p € q and every parameter € (0, 00| satisfying
d(1/p—1) <o = [logyC,] ™" 4.51)

one has that H (X, p, ju) is a vector space over C.

Proof Fix p and « as in (4.51). Viewing HE (X, p, i) as a subset of the vector space
9. (X, p), it suffices to show that Hy (X, p, i) is closed under addition and scalar
multiplication. Noting that the fact

fe I:Ig(X,p,H) = Af e I:Ig(X, o, u), YieC (4.52)

follows immediately from the definitions in (4.30) and (4.49), we focus our attention
on showing that HY(X, p, y) is closed under addition.
To this end, fix f, g € Hy(X, p, ). Then

3B,y € (d(1/p—1),a) such that Fonyar &pppa ELLX ). (4.53)

Without loss of generality, we may assume 8 < y. In order to finish the proof of the
proposition, we need to prove that there exists a number 1 with the property that

ne(dl/p—1),a) and (f+2),, € LX) (4.54)

Observe that the existence of a number 7 satisfying (4.54) will follow once we
establish the following general fact. For any pair of numbers A,0 € (0,«) with
A < 6, there exists a finite constant C = C(p, ) > 0 such thatif & € 2. (X, p) then

b.a < Chy y , pointwise on X. (4.55)
Indeed, if (4.55) holds, then specializing (4.55) to the case when A := f and
0 := y, and defining n := max{B, y} will ensure that (4.54) is valid, granted the
subadditivity of the grand maximal function.

Returning to the justification of (4.55), suppose 4,0 € (0,«) with A < 6. Pick
an arbitrary point x € X and consider a function ¥ € 7;3’0( (x) which is supported in
By, (x, r), for some positive r € [r,, (x), 00), and is normalized as in (4.29) relative
to r. We claim that there exists a finite constant C = C(p, A, 8) > 0 such that

C'y e, . (4.56)
Given the nature in which 7;:,04 (%) is defined, we only need to verify that || Y| *X.p)

has the proper normalization. Fix y,z € X and note that by the support conditions
on v, it suffices to just treat the situation when y € B, (x, r) and z € X. On the one
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hand, if z € B, (x, C,, 1) then pg(y, 2) < Cg#r and

V) = B @] = (Wl gogy pyr0-2)"
< r—@—dp#(y’ Z)@—/\p#(y, Z)lr—/\—drl-l—d
=" pp(y. )" pu (. )

62 Pa——
< G P psly, )t r !

A

< Clpu(y. )" r (4.57)

where the first and second inequalities are a consequence of ¥ € ﬁfﬂ (x), the third
inequality made use of 8 —A > 0, and the last inequality follows from the fact 6 < «
and Cp, > 1.

On the other hand if z € X \ B, (x, C,,r) then r < px(y,z) and by the support
conditions on ¥ we have

YO < W lloe <774
= r (. ) pe(r. 2)* < r (v, 2) (4.58)

It follows from (4.57)~(4.58) that ||y || «. o = CZ“ —*=d_Since C,, < C,, we
have that C as in (4.56) can be chosen to depend only p and «. This finishes the
proof of (4.56).

Having established (4.56), observe that for every ¥ € T

V() — v

o, o (x) we have

(b9} = Cl(h C™ )| < Ch (), (4.59)

from which we can deduce the claim in (4.55). This finishes the proof of the
proposition. O

Moving on, we turn our attention to certain functional analytic considerations. In
the above setting, for each f € HY(X, p, j1) set

I g oy 7= ” fp:,y,a ”U’(X,p.) (4.60)

if y € (d(l/p — 1),a) with y > 0 is such that p#ya € IP(X,u). At this
stage, we have that || - ||z x , ) defines a quasi-semi- norm’ on both H5 (X, p, i)

"Given a vector space 2" over C, call a function || - || : 2~ — [0,00) a quasi-semi-norm
provided there exists a constant C € (0, 0o) with the property that for each x,y € 2 the following
three conditions hold (i) x = 0 implies that ||x|| = 0, (i) ||Ax]| = || - [|x]l, VA € C, and also
(@) llx + yl < Clxll + NIyl
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and H% (X, p, ). Indeed, first observe that homogeneity is a straightforward conse-
quence of the definitions in (4.30) and (4.60). Moreover, by making use of what has
been established in (4.55) we have that the function | - ||y , . satisfies the quasi-
triangle inequality with constant 2m{1/7=1.0} o the space HL (X, p, ) (which is
optimal) and constant < 2/ PHIC2 on HL(X, p, j1). Lastly, it clear that if f = 0in
Z,(X, p) then || f | gz x p.y = O- Later on, as a result of Proposition 4.15, we will
see that || - || H(x,p,) DECOMeES a genuine quasi-norm. We explore this topic further

in Sect. 4.4 where the matter of the completeness of HZ (X, p, i) and HY (X, p, j1) is
also discussed.

As indicated in Sect. 1.1 (cf. the discussion pertaining to (1.6)), there are several
venues through which Hardy spaces have been traditionally considered, namely
via:

(1) the radial maximal function characterization;
(2) the nontangential maximal function characterization,
(3) the grand maximal function characterization.

We have just seen that the grand maximal characterization has a suitable counterpart
in the context of Ahlfors-regular quasi-metric spaces. Next, we will introduce the
radial and nontangential maximal Hardy spaces and prove in Theorem 4.11 that
each of these maximal characterizations yields the same grand maximal Hardy space
Hy(X. p. ).

With this goal in mind, let (X, q, ;) be a d-AR space for some d € (0, co) and
choose a parameter o € (0, co] such that

a < [log,Cp] 7" (4.61)

In this context, suppose that the family {S;}o<;<s, is an approximation to the identity
(in the sense of Definition 3.21) of order «, given as in Theorem 3.22. Then, in light
of properties (i) and (ii) in Definition 3.21 one can naturally give meaning to the
action of the operators {S;}o</<,, on a distribution f € Z, (X, p), by setting for
eachr € (0, tx),

(S )0 = g £:8:(x.)g,,  VXeX. (4.62)

As such, we define the radial maximal function and the nontangential
maximal function of adistribution f € 2. (X, p), respectively, by setting

(MFF)@x) == sup [(S.f)&)

1€(0.1%)

., VxeX, (4.63)

(MEf)(x) == sup sup [(S./))], VxeX, (4.64)

t€(0,tx) YEX
pu(xy)<t
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where p# € (q is as in Theorem 2.1. These maximal functions are the natural
counterparts to the ones introduced by Fefferman and Stein in [FeffSt72] (see also
[St93]); compare with (1.6).

The following proposition concerns the measurability of the functions M; f and

M-S

Proposition 4.10 Ler (X, q, t) be a d-AR space for some d € (0, 00) and fix p € q
along with a parameter a € (0, 00] such that a < [log,C,]~". Also, suppose that
the family {S;}o<i<s, is an approximation to the identity of order «, given as in
Theorem 3.22.

Then for each fixed distribution f € 2),(X, p), the functions M: S and MG f
are p-measurable.

Proof Fix a distribution f € Z,(X, p). Given that u is a Borel measure on X
(cf. (2.81) in Proposition 2.12), it suffices to show that for each A € (0, 00), the
level sets

Qf i={xeXx: (M} f)x) > 21} and (4.65)

Q= fr e X (ME ) () > A} (4.66)

are open in 7.

To this end, fix A € (0, 00) and suppose first that x € Qf Then there exists
to € (0, tx) with the property that \(8,0 f )(x)\ > A. We claim that the function S, f
is continuous at x. Indeed, if {x;};en C X is a sequence of points with p(x,x;)) — 0
asj — oo then (4.17) in Theorem 4.3 implies that there exists a constant C € (0, co0)
such that for j € N large enough, and for each 8 € (0, @) there holds

(S0)0 = (80 ) )| =

@&(fv Sfo (x, ) - Sfo (xj’ '))@d ‘

< (105 ) = S (5. loo + 150 () = S (5 g 1))

< C1; P p(x, x) P (4.67)

where the first inequality in (4.67) made use of property (ii) in Definition 3.21. From
this, the claim follows. Granted this, one can then find a radius r € (0, co) with the
property that \(S,O f )(y)\ > A for every y € B,(x, r) which implies that Qf is open
in 4.

To prove that " is open in 7, fix an arbitrary pointx € ;*". Then there exist
t € (0,t4) and y € B, (x, t) with the property that \(St f )(y)| > A. If for some finite
B € (0, «] we now define

ri= (7 = pur?) " € (0.00). (4.68)
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then for each z € B, (x, r) we may estimate

1 1
pr(v.2) = (p4(y.2)") P < (p+ (. 0)" + pa(x,2)P) P
B B\/E
< (psr 0 +9)P = 1. (4.69)
This makes the pair (y, ) a competitor in the supremum game giving (MZ"' )@,
which further forces (M2" f)(z) = [(S f)(»)| > A. Consequently, z € QJ'",

which goes to show that we have the inclusion B, (x,r) € Q A’” Thus, ultimately,
Q" is open in 14, as wanted. O

We now introduce the radial and nontangential maximal Hardy spaces. Let
(X, q, 1) be ad-AR space for some d € (0, co) and fix an exponent

d

Consider p € q with the property that d(1/p — 1) < [log,C,]™" and choose a
parameter & € (0, co] such that

d(1/p—1) <a < [log,C,] . 4.71)

Then define the radial Hardy space H! (X, p, jt) by setting

(X p.) = f € X p) s M f € V(X ), 4.72)
and similarly, the nontangential Hardy space HY, (X, p, i) by setting

HL (X.po) = {f € X p0): My f ePX ). (473)

Clearly, H ,(X, p, ) and H’, (X, p, jt) are vector spaces which can naturally be
equipped with the quasi-norms

£ et = M5 e @01l ey o= MG F gy @74

The following theorem describes the relationship between the grand, radial,
and nontangential maximal Hardy spaces. This extends the work of [UchS80,
GraLiuYa09ii, GraLiuYa09iii] and [YaZh10]. The reader is reminded of the notion
of a standard d-AR space from Definition 2.11.
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Theorem 4.11 Let (X, q, i) be a standard d-AR space for some d € (0, 00) and
suppose that (1(X) = oo. Fix an exponent

d

and consider p € q along with a parameter a € (0, 00| with the property that

d(1/p—1) <a < [log,C,] " (4.76)
Then, one has
HY(X, p, ) = Hy (X, p, 1) = Hy, (X, p, ) 4.77)

with equivalent quasi-norms.

Proof From the definitions in (4.63)—(4.64) it follows immediately that
M:,rf < M}" f pointwise on X, (4.78)

for each fixed f € Z,,(X. p). Moreover, if y € (d(1/p — 1), ) then properties (i)
and (i) in Definition 3.21 imply that there exists a finite constant C > 0 which is
independent of ¢ € (0, 7,) and satisfies for each x € X

Cc8(,) e T o), Yy € B,,(x,1), (4.79)

#, O

where py € q is as in Theorem 2.1. As such, if f € Z, (X, p) then

Myt f <Cf, . pointwiseonX. (4.80)

Then (4.78) and (4.78) in concert imply

Hg(Xs ps /*’L) gH{’t)T(Xs ps /*’L) ngad(vav H)ﬂ (4’81)

with [ -l xpg0 = I a2, oo = Cl - g xpun-
The equalities in (4.77) will follow once it is shown that for some C € (0, co)
there holds

I St yallrcem < CIME fllraw v feZ,X p). (4.82)

The key claim in this regard is that for each g € ( there exists a finite

d
aFind (X.q) ° Oo)
constant C = C, > 0 with the property that for every f € 7, (X, p) we have

P#

1/
Sopya = C(M,;[(M;'f)q]) ! pointwise on X, (4.83)
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where M, is the Hardy-Littlewood maximal operator on X (cf. (3.42)). In
turn, (4.83) can be established along the lines of the proof of [GraLiuYa0O9ii,
Proposition 1.7] (here is the only place where the condition p(X) = oo is used).
With (4.83) in hand, for each p as in (4.75) choose some g € (m , p)
and make use of the boundedness of the Hardy-Littlewood maximal operator from
Theorem 3.7 (bearing in mind that p/g > 1) in order to estimate

I fovallorecs < CH (M”[(M:’rf)q])l/q pw CHM,)[(M;“f)‘I] HZ:(X,M)
1/q
< clog ] = M P, (4:84)

for some finite constant C > 0 independent of f € 2. (X, p). This gives (4.82)
which, in turn, finishes the proof of the theorem. O

Moving on, it follows from the definitions in (4.48)—(4.49) above that the identity
operator

L HP(X, p, ) < HP(X, p, ) is well-defined and 485)
bounded, whenever p and « are as in (4.46)—(4.47) .

Our goal is to prove that the mapping ¢ in (4.85) is actually surjective for all

d

Indeed, this is done in Theorem 5.26 below in Sect.5.3 for p < 1. However, this
requires that we discuss the notions of atoms and atomic Hardy spaces, which for
the moment, will be postponed until Sect.5.1. On the other hand, the case when
p € (1, 00] is handled in Theorem 4.16 in Sect. 4.3 and makes essential use of the
construction of an approximation to identity with an optimal range of smoothness
obtained in Sect. 3.4. We will pursue this strategy in the next section.

4.3 Nature of H”(X) When p € (1, oo]

At this stage, we are in a position to describe the nature of spaces H%(X) and H%(X)
whenever p € (1, 00]. As is known in the Euclidean setting, the notion of Hardy
spaces is equivalent to 7 when p € (1, o] (cf., e.g., [St93, p.91]. Our goal here
is to develop an analogous version of this concept in the setting of d-AR spaces.
In particular, we will prove in Theorem 4.16 below that for a suitable range of o’s
(which depend on both the geometry and measure theoretic aspects of the ambient)
the spaces HY(X) and H%(X) coincide and can be identified with I (in a suitable
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sense) whenever p € (1, oo]. One of these inclusions is addressed in Theorem 4.13
below. Specifically, it is shown that functions from L induce distributions whose
grand maximal function belongs to L”. The proof relies upon two key ingredients.
Namely, the boundedness of the Hardy-Littlewood Maximal function on L” in the
context of d-AR spaces (cf. Theorem 3.7) and the density of (f'f functions in I
given by the implication (1) = (4) in Theorem 3.14.

Recall from Sect.4.1, that given a d-AR space (X,q,u), (d € (0,00)), a
quasi-distance p € q and a parameter o € (0, [longp]_l], then any function
f € L} (X, ) induces a well-defined a distribution A s : Z,(X, p) — C defined
by

Ap(y) = (Ap, ) = /X Fvdn. V€ 2. p). (4.87)

In particular, for every integrability exponent p € [1, co] we have that functions
belonging to L (X, 1) € L}, (X, j) induce distributions on Z (X, p).

As we noted in Sect. 4.1 the association f +—— A is injective provided pu is
assumed to be Borel-semiregular on X (in the sense of Definition 3.9) . Indeed, this

will be a consequence of the following proposition.

Proposition 4.12 Let (X, q, 1) be a d-AR space for some d € (0, 00) where i is
assumed to be a Borel-semiregular measure on X. Fix a quasi-distance p € q along
with a number o € R satisfying

0 <a < [log,C,] ™" (4.88)

Then there exists a finite constant C > 0 such that whenever f,g € L} (X, ) satisfy

loc
fX Fydu| < /X gVl du. Y ¥ € Zu(X. ). (4.89)

there holds
| f| < Clg| pointwise u-almost everywhere on X. (4.90)

Conversely, if f.g € L} (X,u) are such that |f| < |g| pointwise u-almost

loc

everywhere on X, then one has that (4.89) is valid.

Proof Fix two functions f, g € L} (X, ) and note that one direction is straightfor-
ward. Namely, the fact that (4.89) holds if | /| < |g| pointwise p-almost everywhere
on X. To see opposite implication, we first remark that the real and imaginary parts
of f enjoy the same type of property as the function f itself (this can be seen by
integrating f against real-valued test functions v and using the elementary fact that
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max{|Rez|, |[Imz|} < |z| < 2max{|Rez|, |Imz|} for every z € C).® Thus, without
loss of generality we may assume that f is a real-valued function. Moving on, fix
an arbitrary function u € L*°(X, ) having bounded support in X and consider an
approximation to the identity {S;}o</<:, of order « as given in Definition 3.21. Then,
from (3.136) and (3.141) in Theorem 3.22 we may deduce that

{S}ocicr. € 6 (X. Q). 4.91)
In fact, from (4.7) we have

{Siuto<i<r. S Zu(X, p). (4.92)
Moreover, since u € L (X, /) has bounded support implies u € L' (X, ) it follows
from (3.142) in Theorem 3.22, specialized to p = 1 (keeping in mind that u

is assumed to be Borel-semiregular on X) that there exists a numerical sequence
{ti}ren C (0, 00) with the property that klim t, = 0and
—>00

lim S,u(x) = u(x) for u-almost every x € X. (4.93)
k—>00

Note that we may assume {# }reny < (0, 1). In particular, (with ps € q as in (2.21))
relying again on (3.141) we may choose xp € X and R € (0, co) large enough so
that

suppS,u C By, (xo,R), VkeN. (4.94)

Moving on, by (3.135) (specialized to the case when p = o0) there exists a
constant C € (0, 0o) such that

ISt ullzoex ) < Cllulloox )y, Yk €N, (4.95)
which in conjunction with (4.94) further implies that pointwise on X we have
| £Syul = Cllullzso il f 11,000 € L' (X, 1), (4.96)
and
¢Syl < Cllulloocxp |88, ok € L'(X. f2). (4.97)

Note that usage of p4 in (4.93)-(4.96) was essential here in order to ensure that the
function IB,,#(xO,R) was measurable. Then on the one hand, from (4.92) and (4.89)

8Given z € C we denote by Rez € R and Imz € R, respectively, the real and imaginary parts of z.
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we have

‘/fStkud,u f/lgé}ku|du, VkeN. (4.98)
X X

On the other, it follows from (4.93), (4.96), (4.97), and Lebesgue’s Dominated
Convergence Theorem that

lim / fSpudp = / fudu (4.99)
k=00 Jx X
and
lim | gS,udp = / gudpu. (4.100)
k=00 Jx X

This in concert with (4.98) and the fact that u € L°° (X, 1) (having bounded support)
was chosen arbitrarily, gives

fo

To proceed fix a point x4 € X and for each a number n € N, consider the bounded
set A, 1= {x € By, (x«,n) : f(x) > |g(x)|}. Then

< / lgu|dp, Y u e L*(X, u) having bounded supportin X. (4.101)
b'e

o0
JAr =A.. (4.102)
n=1

where A, 1= {x € X : f(x) > |g(x)|}. Also, note that by design, A, is i-measurable
with finite ;-measure for every n € N. Consequently, 14, € L*° (X, 1) has bounded
support in X for every n € N. Then, by specializing (4.101) to case when u is the
function 1,,, we obtain (keeping in mind the definition of A,,)

gldp < / fdu < / 18l dp. (4.103)
A, A A

Hence, fA” (f —lgl)di = 0 where f —|g| > 0 on A, forevery n € N. It necessarily
follows that 1 (A,) = 0 for every n € N. Therefore by this and (4.102) we have that
U(Ax) = 0. That is,

f <|g| pointwise p-almost everywhere on X. (4.104)
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To complete the proof of (4.90) introduce the set A, 1= {x € X : —f(x) > |g(x)|}.
Then using a similar reasoning as above with the sets A, replaced with

Ay i={x € By, (xs,n) 1 —f(x) > [g(¥)]}, neN, (4.105)
implies w(Ay) = 0. Hence,
— f <|g| pointwise p-almost everywhere on X. (4.106)
By combining (4.104) and (4.106) we have
| fl=max{ f,—f} <|g| pointwise u-almost everywhere on X, (4.107)

as desired. This completes the proof of the proposition. O

In the context of Proposition 4.12, by specializing (4.89) to the case when g = 0
we can see that for every f € L} (X, )

Ar=0onY%,(X,p) < f =0 for u-almost every pointin X, (4.108)

where A ; is defined above as in (4.87). Consequently, the association of a function
f €L (X, ) to adistribution A ; € Z,(X, p) is injective. Hence, L} (X, j1) can
naturally be viewed as a subspace of 7, (X, p). In fact, by Proposition 4.5, we have
that this subspace of Z, (X, p) contains every distribution of “functions-type”. In

particular, if p € [1, 0o] then

LP(X,p) = L (X, ) — Z,(X,p), forevery

(4.109)
p € qand every a € (0, [log,C,]™").

Of course when p € (0, 1), we cannot naturally view L”(X, u) as a subspace of
9! (X, p). Albeit, we have that L’ (X, u) N L} (X, p) is the largest portion of the

loc

LP(X, n) which can be embedded into Z., (X, p). That is,

X, w)NL, (X, 1) = 2.,(X,p), forevery

(4.110)
p € qand every a € (0, [log,C,]™").

In light of (4.109), given a function f € L}UC (X, ), we will refer to the mapping
A 7, defined as in (4.87), as the distribution induced by the function f on %, (X, p)
and, for the simplicity of exposition, write f in place of A .

We now present the theorem alluded to above.
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Theorem 4.13 Let (X, q, i) be a d-AR space for some d € (0,00) and fix p € q
along with a finite number o € (0, [logZCp]_l]. Then with Ay as in (4.87), the

mapping
(X, p) — Ho(X, p, ) defined by
t(f):= Ay, foreach f € (X, u)

4.111)

is well-defined, linear and bounded for every p € (1, o]. In addition, if i is Borel-
semiregular then v is injective. In this case,

(X, ) C Ho(X, p, ),  forevery

(4.112)
p € (1,00] and every finite o« € (O, [longp]_l].

As a corollary, whenever i is assumed to be Borel-semiregular then one has

LP(X,p) € HY(X. p. ), forevery

(4.113)
p € (1, 00] and every finite a0 € (O, [longp]_l].

Proof Consider py € q constructed according to the recipe in (2.21). Regarding
the mapping ¢, consider f € L[P(X, u) where p € (1, 00] is fixed. By design, ¢ is
linear. To see that ¢ is well-defined, we note that in light of the fact that the Hardy-
Littlewood maximal operator is bounded on ¥ when p € (1, oo] (cf. Theorem 3.7),
membership of (Af);#,y,oc to LP(X, ) for every y € (0, «) will readily following
once we establish the claim that there exists a finite constant C = C(u) > 0 such
that if y € (0, @) then

(Af)pyya < CM,,(f) pointwise on X, (4.114)
where M,, is the Hardy-Littlewood maximal operator defined in (3.42) (constructed
in relation to pg). In this vein, fix x € X and suppose ¥ € 7;3:,0( (x) is supported in

By, (x, r) for some r € [r,, (x), o) with r > 0 and is normalized as in (4.29) relative
to r. With these properties, we may write

/ fydu
Bpy(x,1)

< W lloo 1t (Bpy (v, 1)) [Mp, ( )]() < Crdr[ M, ()]0,

(Ar9)] =

< ¥ lloe / | fldu @.115)
Bpy(x,1)

where the last inequality made use of the upper-Ahlfors-regular condition satisfied
by w in Proposition 2.12. The claim in (4.114) may now be deduced from this
estimate. Incidentally, (4.114) also provides the justification for the boundedness
of ¢ given the boundedness of M, on L7 (X, 1) when p > 1.
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Observe that in the case when p is assumed to be Borel-semiregular, the
injectivity of ¢ follows from (4.108) (which is ultimately a consequence of Propo-
sition 4.12). Finally, noting that (4.113) follows from combining (4.112) and (4.85)
finishes the proof of the theorem. O

It is a well-known fact in the Euclidean setting that L' (RY) ¢ H'(R¢) and as is
expected we have that (4.112) fails to be valid when p = 1.

So far, we have proven that given a d-AR space (X, q, 1), d € (0, 00) with the
property that p is a Borel-semiregular measure on X and given a quasi-distance
o € q then

(X, ) € HY(X, p, ) € HY(X, p. ), for every
(4.116)
p € (1, 00] and every finite o € (0, [log,C,]™"].

To see that these spaces in fact coincide (in natural sense), it suffices to prove that
the injection L7 (X, ) < HP(X, p, jt) is onto. This is done in Theorem 4.16 below,
however, before proceeding with its presentation we will require two auxiliary
results, the first of which pertains to the behavior of an approximation to the identity
when applied to functions belonging to 7, (X).

Proposition 4.14 Ler (X,q) be a quasi-metric space and assume that | is a
measure on X satisfying (4.27) for some d € (0,00). Fix a quasi-distance p € q
and a parameter o with

0 < a < [log,C,] 7" (4.117)

Finally, consider {S;}o<i<r., an approximation to the identity of order a. Then for
each fixed € Dy (X, p), the family {S,V }o<i<r, C Zu(X, p) and

lim Sy =y in Zu(X.p). (4.118)
t—0

Proof Fix a function ¥ € Z,(X, p). Then by the definition of %, (X, p) we have
from (3.137) in Theorem 3.22 that S,y € €P (X, q) for every B € (0, «) and every
t € (0,t4). Moreover, in light of (3.141), we may deduce that S, has p-bounded
support, granted that ¥ does. Hence, it follows that {S; ¥ }o<;<r, € Zu(X, p).

As concerns (4.118), observe first that ¥ € %7 (X.q) € €P(X,q) for each
fixed B € (0,a). Then in concert, this, (3.140) in Theorem 3.22, and (4.15) in
Theorem 4.2 finishes the proof of (4.118) and, in turn, the proof of the proposition.

O

We will also require the following result which will prove not only to be essential
in not only the establishment of the fact H; C L7 for p € [1, 0o], but also in showing
that || - ||z defined as in (4.60) is a genuine quasi-norm, the latter claim being
addressed in Theorem 4.19.
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Proposition 4.15 Suppose (X, q, 1) is a d-AR space for some d € (0,00). Then
for each fixed p € q and a € R satisfying

0 <a < [log,C,] ", (4.119)

there exists a finite constant C > 0 with the property that for each f € Z,(X, p)
and each y € (0, a) one has

vl sc/Xf,;';,y,aww, VY € Du(X.p). (4.120)

As a corollary of this, if f € 2,(X,p) then f = 0in 2,,(X, p) if and only if

p:’y’a = 0 for t-almost every point in X for some (hence all) y € (0, ).

Proof Fix ¥ € Z,(X, p) and suppose, granted ps ~ p, that suppyy € B, (xo, 7)
for some xp € X and r € (0, 00). Recall that every quasi-metric space carrying
a doubling measure is geometrically doubling in the sense of Definition 2.3.
In particular, since the Ahlfors-regularity condition for p in (2.78) implies u
is a doubling measure on X (cf. Proposition 2.12) we may therefore conclude
from (2.35) that there exists a countable dense subset {x;};en € X. Consequently,
since all pg-balls are open in the topology induced by py we have that the collection
of sets {B,, (x;, &) }jen is an open cover of (X, t,,) for each ¢ € (0, o). Furthermore,
granted that (X, 7,,) is a metrizable topological space (cf. Theorem 2.1), for each
& € (0, 00) there exists a partition of unity {¢; };en consisting of nonnegative real-
valued functions which are continuous (hence ;t-measurable) on (X, 74) and satisty

supp ¢; < By, (x;, ¢) foreveryj € N and Z(pf =1 on X. (4.121)
jeN

At this stage, consider {S;}o<;<,, an approximation to the identity of order «,
and define for each ¢ € (0, #4) and each ¢ € (0, co) the function ¥/ : X — C, by

YE) =D Y ) (Sif s, 0.0) ()

jeN

= Z[w(xj)

S M dpl) | Yxex. @122)
jeN Bp#()((),r)

Note that the summation in (4.122) converges absolutely for every x € X. Hence,
¥f : X — Cis well-defined for every ¢ € (0, tx) and every ¢ € (0, 00). To proceed
we make the claim that for each fixed ¢ € (0, t),

lim Y =Sy in Zu(X.p). (4.123)
e—>0



4.3 Nature of H”(X) When p € (1, o] 149

To this end, fix ¢ € (0, ¢). Observe from Proposition 4.14 we have immediately that
S € Y,(X, p). Moving on, in order to establish the claim in (4.123) we must next
verify that

Y € Dy(X, p) forevery e € (0, 00). (4.124)
Fix ¢ € (0, 0o) arbitrary and observe by (i) in Definition 3.21 and (4.122) we have
supp V¥ € By, (xo0. C(r + 1)) (4.125)

for some finite constant C > 0 independent of 7. Hence, ¥, has bounded support.
Moving on, fix x,y € X. Then granted (ii) in Definition 3.21 and (4.121) we may
write

IAGEHO DY [178]

jeN Bp#()((),r)

1S1(6,2) = $10.2) |} (2) dpa (@) |

< Ol loopr ) S /

jeN p#()((),r)

0@ dp)|

< Cp(x,y)*, (4.126)

which implies ¥, € Cﬁ.c"‘ (X, p). In fact, since the function ¥/ has bounded support

we have y¢ € %r (X, p) for every B € (0, «] (cf. (4.7)). In concert, this, (4.125) and
the fact that & was chosen arbitrary give (4.124) as desired.

We now turn our attention to the convergence of v by first estimating the
quantity ||f — S¥||eo for each e € (0, 00). In this vein let € € (0, 00), B € (0, @),
and observe for each x € X we have

Ve - Syl <Y / g O (5) = YO dp)

jeN ¥ Bpy(x0.r)

Wiy, [ S@DG0p.0 d)

€N
J By (x0,r)NBpy (x7,€)

< Wl / S50 Y g 0 duy)

Bpy (xo.r) jeN

< 1l e [X Sie) i) = Wl e’ @.127)

Note that the first and fourth inequality follow from (4.121) and the last equality is a
consequence of (iv) in Definition 3.21. Therefore, in light of the estimate in (4.127)
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we have

1V =S lloo < 1¥llgs(x e’ forevery e € (0,00). (4.128)

It remains to estimate |7 — S, (|5 (x ) for each B € (0, ). Before proceeding,
observe that Theorem 3.22 ensures {S;}o</<:, 1S an approximation to the identity of
any order § € (0, «]. Then, granted this, (ii) in Definition 3.21, and (4.121) we may
write for every x,y € X and every B € (0, «)

W () = S (@) — ¥ ) + Sy )|

> /1; [Si(x.2) = Si(y. 2] - [V (%)) — ¥ (D)} (2) dpu(2)

jEN P# (x0,7)

< C DY llogn i oy P09 / p(x7.2)P ¢ (2) dpu(2)
JEN G (x0,7) By (37,)

= P Lo S [ 01 d)

jeN Y Boy (x0.r)

= C DNl x g (B (0, 7)) (3, ) (4.129)

Since ¢ € (0,00) and B € (0, ) were chosen arbitrarily, it follows from (4.129)
that

1 = S llgpix < CC PN oyt (Bpy (0. 1))eP, (4.130)

for every ¢ € (0,00) and every 8 € (0, «). In concert (4.125), (4.128) and (4.130)
give (4.123).

Moving forward, fix a finite number A > O arbitrary. Then in light of
Proposition 4.14, we have

(L = LSy + A (4.131)

whenever ¢ € (0, x) is small enough. On the other hand, for each t € (0, #+) we have
that (4.123) implies

LS = 2101 [{ £ S0 1,y 00m))| + 2. 4.132)

jeN

for ¢ € (0, co) small enough. Let ¢ € (0, .) be such that (4.131) holds and assume
e € (0,1) is small enough so that (4.132) is valid. For these choices of 7 and e,
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define for each j € N the function A; : X — R by
Ai(x) = (S 18,,(x0.n) (%)

= [ see0duo). Vxex (4.133)
Bp#(XOJ)

Clearly A, is a well-defined function for each j € N. Using this notation, a rewriting
of (4.132) amounts to

(LS <Y @)l - (LAY + A4 (4.134)

jeN

At this stage we make the claim that there exists a finite constant C > 0 such that

(rswlsc [ g vlde i (4.135)

By (x0.7)

To see this, it suffices to further bound the inequality in (4.134). With this goal in
mind, consider the set

J:={j € N:B,(x,r) Nsuppy’ # B}
and note that by decreasing ¢ € (0, f) we may assume that ¢ is small enough so that
J # . Then by design, A; = 0 pointwise on X and hence ( f,4;) = 0 for every

Jj € N\ J. As an initial step toward proving (4.135), we make the claim that there
exists a finite constant C > 0 such that for eachj € J

-1
Aj |:C/ o d,u] €T, (), VxeB,(x,e¢). (4.136)
Bp#(XOsr) '

Fix j € J and suppose x € B,,(x;, ¢). By the support conditions on S; and @; we
have (keeping in mind & < f) that suppA; € B,, (x;, C(s + 1)) € B, (x;, Ct). It then
follows that

suppA; € By, (x;, Ct) C B,,(x, CCp,1). (4.137)

Moreover, by (i) and (ii) in Definition 3.21, we may estimate for every z, w € X

A = e / ¢ du (4.138)

By, (x0,7)
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and

Aj(2) — Aj(w)| < CrFD py(z. w)” / of dp. (4.139)

By, (x0.7)

Note that the estimate in (4.139) utilized the fact that y € (0, @] and {S; }o<;<s, is an
approximation to the identity of any order B € (0, «]. In turn, it follows from (4.138)
and (4.139) that there exists a finite constant C > 0 such that

(CCo 1) 1Ajlloc + (CCpD Y Al g1 x ppy < C / ¢fdp  (4.140)

By (x0.r)

which, in conjunction with (4.137) finishes the proof of the claim in (4.136)
provided that we have CC,t > r,,(x) (cf. (4.29)). If CC,,t < 1y, (x), then (4.137)
gives

suppA; = supp ¢J_€ = {x} = B,, (x, Ty (x)) (4.141)

which further implies xp = x since j € J. We also have,

Aj(@) = p((x)Si(z. 0] (x) = 1y e (), VzeX. (4.142)

Then, this along with part 5 in Proposition 2.12 gives

(e @) T4 llo0 < Cut(Exh)gf @) = € / o dpt 4.143)

By (x0.7)

and

() 145l ) = C({ef () < € / prdp.  (4.144)

Bp#(X(),V)
In concert, (4.141), (4.143), and (4.144) imply (4.136) also holds if CC\,t < r,,(x).

Moving on, having established (4.136), we may write for each j € J

K LAN < Cfoya® @i di, Y x€By,(x.¢). (4.145)

By (x0.r)

Furthermore, since ¥ € Z,(X, p) we have that

WO < W+ 1Vl x g’ (4.146)
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for every x € B,,(x;,¢), B € (0,a] and j € N. Combining this with (4.145) yields
[¥ ()ef ()] - 1( A = C[IW(X)prI,y,a(X)Qf(X)

Wi a0 @] [ gfdn @147
Bpy (x0.r)

for all x € B,,(xj,¢). Integrating both sides of (4.147) in the x variable over
B, (x0,7) N By, (xj, ) implies

)| 1 fA)] < c/ £ Wl dp

By (x0.7)

O grpe® [ S i (4.148)

By, (x0,7)

for every j € J. Combining this with the estimate in (4.134) we obtain that

LS <D W) [(LAN +2 =D 1wl [( LAY +4 (4149

jeN jes
S CZ [/ fp:yalwh%s d“:|
jeJ By (x0.7)

+ C||W||35“(X,p#)8ﬂ Z |:/B o) fpﬁ,y,a‘/?f d,u:| +4
oy (X0.T.

jer
<O et g [ adit A
Bp#(XOJ) Bp#(XOsr)

Noting that ¢ € (0, o0) was chosen arbitrarily small, (4.135) follows immediately
from (4.149). In turn, (4.131) in conjunction with (4.135) shows

(¥ = C/ Syl ¥l dp + 24 (4.150)

By, (x0,7)

which, taking into account that A € (0, co) was chosen arbitrarily, proves (4.120) as
desired. This finishes the proof of Proposition 4.15. O

We now present a result which will be the key tool in showing that the injection

P (X, p) = H'(X, p, ), (4.151)
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defined in Theorem 4.13 is onto. In turn, this will permit us to identify L” with the
spaces H}, and HY, whenever p € (1, o0].

Theorem 4.16 Suppose (X, q, t) is a d-AR space for some d € (0, 00). Then for
each fixed p € q and o € R satisfying

0 <a < [log,C,] ", (4.152)

one has the following.
If f € Z,(X,p) such that f ,, € LP(X, ) for some p € [1,00] and some
y € (0,@), then there exists a function g € LP(X, 1) such that the distribution

induced by g on 9y(X, p) coincides with f. That is,

<ﬂww=égwmu Yy € ZulX.p). (4.153)

Moreover, if in addition p is a Borel-semiregular measure on (X, tq) then there
exists a finite constant C > 0, which is independent of f, satisfying (with g as
in (4.153))

lgl < Cgp, v = Cfpyo  pointwise on X. (4.154)

As a corollary of this, if u is assumed to be Borel-semiregular and o is as
in (4.152), then the association in (4.153) induces an unambiguously defined,
injective, linear and bounded mapping of

HY (X, p.p) = IP(X. ), Vp € [1.00]. (4.155)
Hence,
HO(X,p.pt) S LP(X.p).  Vp e [l.oo]. (4.156)

Proof Having established Proposition 4.15, specifically the estimate in (4.120),
define

Ly : 24X, p) — C by setting

(4.157)
Ley = (f, ), forevery ¥ € Z,(X, p).

Then by design, Ly is a well-defined linear functional on Z,(X, p). At this stage
wish to proceed by considering two cases: when p = 1 and when p € (1, o0].

We will first treat the case when p € (1, oo]. In this situation, consider the number
p’ € [1,00) such that 1/p + 1/p’ = 1 with the understanding that p’ := 1 when
p = oco. Then, keeping in mind that 7, (X, p) is a linear subspace of L”' (X, 1), we
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may consider its closure in the r (X, u)-norm, which we will denote by

—— 1 xw
ZuX.p)

Then on the one hand, given that this is a closed subspace of the Banach space
L’ (X, ) we may conclude that

————1 (x.) .
(90[ X, p) - ||U,/(X’#)) is itself a Banach space (4.158)

which contains %, (X, p) as a dense subspace. On the other hand, from (4.120) we
have

Lyl <€) frvall oVl ooy V¥ € Zu(Xop). (4159

Given that by assumption p’;,y,a € I7(X, u), the estimate in (4.159) implies L ¢ is

bounded linear functional on the normed vector space (@a X, o) -1l (X,;L))‘
Consequently, it is a well-known that in this scenario L extends to a linear and
bounded functional

' X,

L;: 94X, p) —C. (4.160)

Additionally, by the Hahn-Banach theorem there exists a linear and bounded
functional

Ly P X.p) —C (4.161)
which extends L r. Hence, I:f belongs to the topological dual of 114 (X, u) which,

by the Riesz Representation Theorem, can be identified with L”(X, u) given that
p' €[1,00). That is,

dg e I’(X, ) such that Zf(h) = / hgdu, Vhe L"/(X, w. (4.162)
X
In particular,

/X Vedu = L) = (fi9). V¥ € Zu(X. p). (4.163)

which shows the function g : X — C satisfies (4.153). This finishes the proof
of (4.153) in the case when p € (1, c0].
We now address the case p = 1. In this scenario we may consider the nonnegative

measure, ii == f  ,du onX,induced by the function /7, , € L'(X, it). Then by
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reasoning as in the case when p € (1, oo] using the measure f in place of u, we
deduce that

—_—
(90[ (X, p)L (X’M), Il - ||L1(X,,1)) is a Banach space (4.164)

which contains 2, (X, p) as a dense subspace. Moreover, an interpretation of (4.120)
amounts to the condition

ILy¥| < ClY e o VY € Zu(X, p). (4.165)

That s, L ¢ is a bounded linear functional on Z,(X, p) with respect to the L' (X, j)-
norm. Then, executing an argument similar to the one in the case p € (1, 00], shows
that L; can be extended to a linear and bounded functional Ly : L'(X, i) — C.

Consequently, since L 7+ belongs to the topological dual of L' (X, 1)
3% € L*®(X, i) such that I:f(h) = / hgdji, YheL'(X,ft). (4.166)
X
As aresult of this and the fact that if extends Ly we have

/Xwgdﬁ L) = (fY) VY€ Zu(X.p). .167)

Moreover, noting that g is ;t-measurable, given that it is ji-measurable, it is valid to
write

[ vedi = [ ve s udn (4.168)
X X

In concert, (4.167) and (4.168) imply that the equality in (4.153) is satisfied for the
choice g := g p:,y,a € L' (X, ). This finishes the proof of (4.153) for all p €[1, o0].

Moving on, we next verify the claim in (4.154). To this end, fix f € Z,(X, p)
such that p:,y,a € I’(X, u) forsome p € [1, 00] and some y € (0, ). From what we
have established in the first part of the theorem, we know that there exists a function
g € I7(X, u) such that (4.153) holds. Then from (4.120) in Proposition 4.15 there

exists a finite constant C € (0, co) which is independent of f and g such that

/Xglﬁdﬂ‘ =[{f¥)l = C/Xfp:,y,alwldua VY e Zu(X.p). (4.169)

As such, since g,Cfy , € L} (X, ) then (4.154) follows immediately from
the conclusion of Proposition 4.12. Finally, noting that we may alter, without
consequence, g on a set of ;i-measure zero we can assume (4.154) holds for every

x € X. This completes the proof of (4.154).
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There remains to justify the claim in (4.155). To this end, fix p € [1, 00] and
define the mapping ¢ : H,(X, p, 1) — LP(X, i) by setting

t(f) := gforeach f € Hy(X.p. ),

if g € I7(X, ) satisfies (4.153).

(4.170)

Granted that p is assumed to be Borel-semiregular on X, the fact that ¢ is unam-
biguously defined and injective is an immediate consequence of (4.109) (which
ultimately depends on Proposition 4.12). Finally, noting that the boundedness of
¢ follows from the estimate in (4.154) finishes the proof of the theorem. O

The following proposition establishes a pointwise relationship between functions
belonging L”, p € [1, co] and their corresponding grand maximal functions.

Proposition 4.17 Suppose (X, q, t) is a d-AR space for some d € (0, 00) where
W is assumed to be a Borel-semiregular measure on X and consider an exponent
p € (1, 00]. Then for each fixed p € q and o € R satisfying

0 <a < [log,C,] ™", (4.171)

there exists a finite constant C > 0 with the property that for each f € LP(X, 1)
and each y € (0, ) one has

| f] < Cfp’:’y’a Sfor p-almost every point in X. (4.172)

Moreover, if f € L'(X, ) N I:I; (X, p, i), then (4.172) holds in this case as well.

Proof Fix a function f € I”(X, i) and consider a number y € (0, ). On the one
hand, Theorem 4.13 we have fp’;y’a € IP(X, it). On the other, the estimate (4.120)
in Proposition 4.15 gives

‘/Xfwdﬂ‘ =[(f¥)l= C/Xf,;,y,alwldus VY € Zu(X.p). (4.173)

Consequently, (4.172) follows from specializing Proposition 4.12 to the case when
f=f e lXnpadg = Cf;,, € LF(X,n) (note that the usage of
Proposition 4.12 has relied on the assumption that u is Borel-semiregular).

Finally, suppose that f € L'(X, u) N I:I;(X,p, w). Since f € H.(X, p, 1), by
Theorem 4.16 there exists a function g € L' (X, ) satisfying (4.154) which has the

property that

/X Fodp = /X gvdpn. VY e Zu(X.p). (4.174)
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It follows from (4.108) (keeping in mind u is assumed to be a Borel-semiregular
measure on X) and the fact that f € L'(X, ) that f = g for u-almost every point
in X. Consequently, (4.172) is a result of combining this and (4.154). O

We conclude this section by combining Theorems 4.13 and 4.16 in order to obtain
a full characterization of the spaces HY (X, p, ) and Hy (X, p, ;1) when p € (1, o0].

Theorem 4.18 Let (X, q, t) be a d-AR space for some d € (0,00) and assume |
is a Borel-semiregular measure on X. Also, suppose p € q and a € (0, 00) satisfy

0 < a < [log,C,] 7" (4.175)

Then, for every p € (1,00, the mapping t : LP(X, 1) — HL(X, p, 1), defined by
setting for each f € I[P(X, ),

)W) = /X FUdu. Yy e Z(X.p). (4.176)

is well-defined, bijective, linear and has the property that there exist finite constants
C1, Cy > 0 such that whenever y € (0, o) one has

Cllf o = H‘f ”Hf;(X,p,;L) = “ (‘f);#.y.a ||L”(X,;L) = Gl f v, (4.177)

for every f € LP(X, ). Consequently, the spaces HL(X, p, ) and HL(X, p, 1)
can be naturally identified with I’(X, ) for every p € (1,00] and every o
satisfying (4.175) whenever | is assumed to be Borel-semiregular. In particular,
they do not depend on the particular choice of the quasi-distance p and index o
as in (4.175), and their notation will be abbreviated to simply H?(X) and HP(X).
Hence,

HP(X) = H(X) = [P (X, 1) foreveryp € (1, 0] (4.178)

Proof Fix p € (1, 00] and note that it follows from Theorem 4.13 and (4.85) that
¢ is well-defined, linear and bounded. In particular, the boundedness of ¢ yields
the second inequality in (4.177). To see that ¢ is surjective, fix f € HY(X, o, ).
By Theorem 4.16, there exists a function g € LP(X, i) such that ((g) coincides
with f on Z,(X, p). Hence, ¢ is surjective. Moreover, since u is Borel-semiregular,
Theorem 4.16, specifically (4.154), gives

gl = C| Sorra ”U(X,m =C| (&) 7. ”U’(X,p_)’ (4.179)

whenever y € (0, «), finishing the first inequality in (4.177) and, in turn, the proof
of the theorem. ]
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4.4 The Completeness of H? (X)

This section is dedicated to finishing a discussion started in Sect.4.2 regarding
the completeness of the spaces Hy(X, p, i) and HY(X, p, 10). Specifically, in The-
orem 4.19 formulated below, we will show that if d/(d + ind (X,q)) < p < o0
andd(1/p—1) < a < [log,C,]™" then || - |12 (xp.0) 18 @ genuine quasi-norm and,
in fact, the spaces H (X, p, v) and HY(X, p, j1) are quasi-Banach spaces’ equipped
with || - [l x .- Despite HY(X, p, ;v) making its appearance in [MaSe79ii], this
is to our knowledge, the first time the topic of the completeness of Hy (X, p, i) or
HY, (X, p, ) has been addressed. We now present the main theorem of this section.

Theorem 4.19 Suppose (X, q, it) is a d-AR space for some d € (0, 00) and fix an
exponent

d
el ——F—F———, 4.180
b (d+ind(x,q) OO} (150
along with a quasi-distance p € q and a parameter o € (0, 00| satisfying
d(1/p—1) <« = [log,C,] " (4.181)

Then, || - ||pz(x pu) @S in (4.60), defines a quasi-norm on both HY(X, p, ) and
HY(X, p, ). Additionally, the spaces HY(X, p, 1) and HL(X, p, i) are complete,

hence quasi-Banach, in the quasi-norm || - ||Hg(x,w). In fact, the space Hy(X, p, 1t)
is a genuine Banach space when equipped with the norm || - ||H5(X,p,ﬂ) for each
p € [l, 0]

Proof We have already established in Sect.4.2 that HL(X, p, ) and H,(X, p, i)
are vector spaces whenever p, p, and o are as in (4.180)—(4.181) (see also
Proposition 4.9 in this regard). Also, under these assumptions it was also noted
in Sect. 4.2 that || - ||z x ., is @ quasi-semi-norm on He (X, p, jt) and HY(X, p, 10).
To see that ||- || x .,y 18 @ true quasi-norm note that if f € HY(X, p, j1) is such that
I 2 x pgy = 0, i€y if H Jos v HU,(X’M) = 0, then necessarily /7, , = 0 pointwise
wu-almost everywhere on X. Consequently, from Proposition 4.15 we have f = 0 in
Z,(X, p). It therefore follows that | - ||z x , ) i @ genuine quasi-norm. Finally, the
completeness property of these spaces follows from Lemma 4.8. This finishes the
proof of the theorem. O

The following result highlights the fact that H%(X, p, 4) can be continuously
embedded into Z., (X, p).

Call a pair (2, || - ||) (or simply .2") a quasi-Banach space provided 2 is a vector space
(over C) and || - || is a quasi-norm on 2" with the property that 2" is complete in the quasi-norm
|l - |I, i.e., every sequence of points in 2~ which is Cauchy with respect to || - || converges to a point
in 2.
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Theorem 4.20 Suppose (X, q, (1) is a d-AR space for some d € (0, 00) and fix an
exponent

d

along with a quasi-distance p € q and a parameter a. € (0, 00| satisfying

d(1/p—1) <a < [log,C,]™". (4.183)

Then the identity mapping t (I:Ig(X, 0, ,u),t”.”H,,(X )) - Z,(X,p) is
o (XL

continuous, where 9,,(X, p) is equipped with weak-topology. As a corollary of this,
we have that the identity mapping - Hy(X, p, &) — 2,(X, p) is also continuous.

Proof Since, by design, the mapping ¢ : HS(X, p, t) — 2!(X, p) is well-defined,
we focus on the claim of continuity. Note that given the range of p’s in (4.182) we
have from Theorem 4.19 that the function

Hy (X, p ) x HyX,p,10) 3 (£.8) = | f = 8lpippy 4189
is a quasi-distance on H%(X, p, i) that induces a topology which coincides with

Ul oy By applying Theorem 2.1 for this quasi-distance we have that the

topological space HY(X, p, 1) (when equipped with Tllyp )), is metrizable. As
o (X.p.p
such, the continuity of « will follow once we establish the claim that

if { fi}jen C HA(X, p, i) is such that lim f; = f
J—>00

.- . . (4.185)
in Hy(X, p, ), then lim f; = f in Z,(X, p).
Jj—oo

Suppose the sequence { f;}jen is as in (4.185). Then lim [|( f — /)7, , ol =0
Jj—>o0o o

and by Lemma 4.8 there exists a unique distribution g for which
lim fi=g in Z,(X,p) and lim |(g— f)}, ol =0, (4.186)
J—>00 J—>00

where y € (0, 0c0) is any fixed number satisfying y € (d(1/p — 1), «). To see that
f = gin 2,(X, p) we make use of the second condition in (4.186) along with
the convergence of { f;}jen to conclude that (g — f );#,%a = 0 pointwise p-almost
everywhere on X. Combining this with Proposition 4.15 we have that f = g in
2!,(X, p) which completes the proof of (4.185).

Finally noting that the last claim made in the statement of this theorem follows
from (4.85) and what has already been established earlier in this proof, finishes the
proof of the theorem. O



Chapter 5
Atomic Theory of Hardy Spaces

We have seen in Sect.4.3 that H,(X) and H%(X) can be identified with L”(X)
wheneverp € (1, 00] and & € (0, [log,C,]']. As such, the focus of this chapter will
be on the spaces H.(X) and HS(X) when p € (0, 1]. As it turns out, in the setting of
a d-Ahlfors-regular space (X, q, i), d € (0, 00), when

d
re(rrmima: 1} .

(ind (X, q) as in (2.140)) the elements of H%(X) and H%(X) can be expressed as
a linear combination of functions called “atoms”, which among other things, have
bounded support and satisfy desirable normalization and cancellation properties.

A result of this type was established in [MaSe79ii, Theorem 5.9, p. 306] for the
Hardy space H, when

1
pe (1 T lomCaC T T 1} 62

in the setting of 1-AR spaces with symmetric quasi-distances. Here, C € (0, 0co)
denotes the constant appearing the quasi-triangle inequality in (2.5). As previously,
mentioned, the range of p’s is not appropriate from the perspective of applications
as it lacks precision and optimality. For example, when the ambient is specialized
to the Euclidean setting, the range of p’s in (5.2) is strictly smaller that the expected
range of (1/2, 1]. In turn, this shortcoming adversely affects all subsequent results
involving these spaces. A partially successful attempt to address this weakness
appears in [MiMiMiMo13, Theorem 4.91, p.259] in the setting of d-AR spaces.
Using a power-rescaling argument, the authors managed to identify a larger, yet not
optimal, range of p’s than that of the one in (5.2).
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The main goal of goal of this chapter is to reconsider the approach of [MaSe79ii]
and establish an atomic characterization of the spaces HY(X) and H%(X) for the
range of p’s in (5.1) which is strictly larger than the ranges specified in both
[MaSe79ii] and [MiMiMiMo13]. Along the way, we manage to extend and sharpen
a variety of results from [MaSe79ii].

This chapter is organized as follows. In Sect.5.1, we introduce the notion of
an atomic Hardy space H;?(X) and prove that it can naturally be identified as a
subspace of Hb(X). Section 5.2 is dedicated to obtaining a Calderén-Zygmund-
type decomposition for distributions belonging to H.. As a consequence, we
provide a generalization of the well-known Calderén-Zygmund decomposition for
Li-functions (¢ € [1,00)) in R? (cf. [CalZyg52], also [St70]) to the setting of
arbitrary d-AR spaces. In the final section of this chapter, we describe how to use
the Calderén-Zygmund-type decomposition from Sect.5.2 to write a distribution
belonging to HY as a linear combination of atoms. Accordingly, in Theorem 5.27
we are able to establish the identification H.,Y = HY, = H, for every p as in (5.1)
and every g € [1, co] with g > p.

5.1 Atomic Characterization of Hardy Spaces

In this section we develop the notion of an atomic Hardy space in the context of
d-AR spaces and prove that it can naturally be viewed as a subset of the maximal
Hardy spaces defined in Sect.4.2 for a given range of p’s. Recall that (X, q, ) is
said to be a d-AR space for some d € (0, co) provided (X, q) is a quasi-metric space
and u is a nonnegative measure on X with the property that there exists p, € q, and
two constants cj,c; € (0,00) with ¢; < 1 < ¢ such that the following Ahlfors-
regularity condition holds:

all p,-balls are p-measurable, and p,(Bpg (x, r)) ~ r? uniformly

for every x € X and every r € (0, 00) with r € [c1r,, (x), 2R, (x)]

where r,, and R,, are defined as in (2.70)-(2.71). As was noted in Sect. 4.2, the
regularity condition in (5.3) holds for any other p € q having the property that all
p-balls are p-measurable. In particular, (5.3) is valid with p, replaced with py for
every p € (, granted (2.81) and (2.28). Moreover, if ©(X) < oo then in light of
8 in Proposition 2.12 we may assume (5.3) for every x € X and every r € (0, 00)
satisfying r € [c1r,, (x), 2 diam,, (X)].

Before introducing the atomic Hardy space, we will first need to develop an
appropriate class of linear functionals. In this vein, we recall the space of functions
having L?-normalized bounded mean oscillation (g € [1, 00)). Let (X, q) be a quasi-
metric space and suppose (1 is a nonnegative measure on X with the property that
there exists a quasi-distance p, € q such that all p,-balls are pu-measurable. In
this context, given any p,-bounded set E € X which is p-measurable and satisfies
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w(E) > 0, define for each f € L} (X, 1), the quantity mg( f) € C by setting

loc

me( f) = ][Ef de. (5.4)

The reader is referred to Sect.3.2 for the definition of L{ (X, p). With this in
mind, introduce the vector space of functions of L?-normalized Bounded Mean

Oscillation, denoted by BMO,(X, q, i), to be

BMO, (X, q. ;1) == {f € L} (X, 1) : | f Ismo,(x.qu) < 00}, (5.5)

where, we set for each f € L] (X, n)

1/q
1 om0y = Sup (][B ( )If(Y)—mea(x,r)(f)lqdu(y)) . 56)

XEX
re(0,00)

if ;£(X) = oo and corresponding to the case when u(X) < oo
”f”BMOq(X,q,p.) = ”f”Ll(X,[l.)

1/q
+ sup (][B ( )|f(y)_meU(x,r)(f)lqd“(Y)) (5.7

XEX
re(0,00)

Similar as is the case with L7, if u(X) = oo, then we will regard BMO, (X, q, i)
with an equivalence relation, ~, defined by f* ~ g if and only if f — g is a constant
on X. As such, BMOy(X, q, ) is a Banach space for every ¢ € [I,00) when
equipped with the norm || - |smo, (x.q..)- When ¢ = 1 BMO,(X, q, n) is the space
of functions of Bounded Mean Oscillation introduced by F. John and L. Nirenberg
in [JoNir61] and we will write BMO(X, q, ) in place of BMO, (X, q, t). Under
appropriate regularity assumptions on the underlying measure, in the setting of
spaces of homogeneous type one has BMO,, = BMO,, for every ¢i,¢> € [, 00).
Indeed, this is established in [CoWe77, p. 593] assuming that u is Borel-regular (cf.
[CoWeT77, footnote, p. 628]), but the proof given there may be adapted to the case
when pu is merely Borel-semiregular thanks to Theorem 3.14. Hence, if (X, q, ) is
a d-AR space for some d € (0, co) where u is assumed to be Borel-semiregular on
X, one has

BMO([I (Xs q, H) = BMOqz(Xv q, M)v qu q2 € [I,OO), (58)

with equivalent norms.
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Consider next, a subspace of BMO, (X, q, ), g € [1, 00), which is defined as

BMO, (X, q. p) = {f € BMO,(X.q.)t) : Ve.r € (0,00) and ¥ x € X,

¢ : (X, 7q) — C bounded, continuous, and /

|f —oldp < zf.
By, (x.1)

(5.9)

Let us note here that the space BMO,, o (X, q, 1) is a lattice in the sense that for every
pair of real-valued functions f, g € BMO, (X, q, it) it follows that

max{ f, g} € BMO,o(X,q, i), min{ f, g} € BMO,o(X,q, ). (5.10)

We are now in a situation to define the space .Z#(X, q). Suppose (X, q, ) is a
d-AR space for some d € (0, 00). Then for each § € (0, 00) we set

(X, @)/ ~if pX) = oo,
ZP(X,q) = (5.11)
€P(X,q if pX) < oo,

If p € Q(X) is given then as before, we shall some times slightly simplify notation
and write .Z#(X, p) in place of .Z#(X, [p]). It is clear that .Z#(X,q) is a vector
space over C for every B € (0, 0c0).

We turn next to defining a topology on the spaces .## (X, q) and BMO, (X, q, it).
In an initial step towards this endeavor, observe that if for every 8 € (0, co) and
every p € ¢, we set

Il ||<g'/3(x,p) if pX) = oo,
[ - ||$ﬂ(x,p) = . (5.12)
I lloo + 1+ gy p i 10X) < o0,

then the collection {|| Nzbxp P € q} constitutes a family equivalent norms.
Given that the results in this work are stable under such equivalences, for any fixed
choice of p € q we define || - || &5 x ) = II* | £8(x,p)- If there is a need to emphasize
the particular choice of the quasi-distance p € q we will write || - || &5(x ,) in place
of || - || &8 x [ - The space BMO, (X, g, 1) will be endowed with the natural quasi-
norm, namely, || - [|Bmo, (x.q.4)-

In order to proceed, given a vector space 2~ (over C or similarly over R) and a
quasi-norm || - | 2 defined on 2", we denote by 2 ™* the topological dual of 27, i.e.,

X* = {A (X, 1 ,) = C: Alislinear and continuous}, (5.13)
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where 7)., is the topology induced by the quasi-norm || - || o~ on X. In this regard,
observe that given any pair of exponents
€ 4 1 d gell,00) (5.14)
> an , 00), .
PE\d+ind X, q) 4

any quasi-distance p € q, and any parameter o € (0, o] with the property that
d(1/p—1) < a < [log,C,]~" we have

Zu(X, p) € BMO,0(X,q, ) and
) (5.15)
Zu(X,p) € 20D (X, q) € GUPD(X, q).

In particular, linear functionals in (£?/7=V(X,q))" and (BMO,o(X,q, 1))
induce distributions belonging to 7, (X, p) when restricted to Z, (X, p).

Proposition 5.1 Suppose (X, q, ) is a d-AR space for some d € (0, 0). Then, for

every
e (0 d (5.16)
P " d+indy(X, q) .
one has
{0} if p(X)=oo,
240/ D(x q) = (5.17)
C if uX) <oo,
whereas
240D (X q) s nontrivial' for p e 4,1 . (5.18)
d +indy(X, q)

In fact, for p in the latter range, the space Z*V/P=V (X, q) is rich in the sense that
any two distinct points in X can be separated by functions from this space.

Proof Having p as in (5.16) forces indy (X, q) < d(1/p — 1), hence (5.17) follows
from (5.11) and (2.142) in Definition 2.19. In fact, the same ingredients also
give (5.18) while the last claim in the statement of the proposition is consequence
of Theorem 2.6. O

li.e., not reducing to the zero space when 11(X) = oo, and not consisting of just constants when

w(X) < oo
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As we did in (4.26) of Proposition 4.6, we can define the notion of multiplying
linear functionals belonging to (.fﬁ (X, q))* by “smooth” functions as follows. In
the context of a d-AR space, (X, q, i), (for some fixed d € (0, 00)),if B,y € (0, c0)
satisfy y > B then for each ¢ € ¢ (X, q) we have

vf: ZP(X,q) — C defined by

(5.19)
(Yf.@) = (fve) VeeLPX.q),

is well-defined and belongs to (Z# (X, q))".

For future reference, we define the collection of function spaces L (X, q, ) and
LY(X, ). Suppose (X, q) is a quasi-metric space and p is a nonnegative measure on
X. In this setting, for each p € (0, oo], define LZ(X, ) := L (X, q, i) to be

L2(X,q.p) := {f € [’(X, ) : f hasbounded supportin X},  (5.20)
and set
LiX.p):={fel'X.p: /deu = 0}. (5.21)
Also, for each p € (0, o] denote
L7 o(X, 1) i= L2(X, p) N Lo(X, ). (5.22)
As in the case of L7(X, ), p € (0, 00], we regard the spaces L7 (X, i) and L} (X, j1)
as the collection of equivalent classes of functions where we do not distinguish

between functions which coincide pointwise p-almost everywhere on X. Observe
that the scale of spaces in (5.22) are decreasing in the sense that

LY (X, ) S LY (X, ) whenever 0 < g < p < oo. (5.23)

We are now in a position to recall the notion of an atom, defined in the spirit
of [CoWe77]. Let (X, q) be a quasi-metric space and suppose . is a nonnegative
measure on X satisfying (5.3). In this context, given exponents®> p € (0,1] and
q € [1, 00] with ¢ > p, call a u-measurable functiona : X — C a (p,, p, g)-atom
provided there exist x € X and a number r € (0, 0o) with the property that?

suppa C B, (x, 1), |lallrac ) < ,u(Bpg(x, r))l/q_l/p, and /ad,u =0. (5.29)
X

>The demand that ¢ > p only precludes the situation when p = g = 1.

3The integral condition in (5.24) is commonly referred to as a “vanishing moment” condition.
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In the case when pu(X) < oo, it is agreed upon that the constant function which is
given by a(x) := [11(X)]~"/? for every x € X is a (p,, p., ¢)-atom on X.
Note that, without loss of generality we may assume

every r € (0, 00) in (5.24) satisfies r € [r,, (x), 2 diam,, (X)], (5.25)

7y, is defined as in (2.71). Indeed, observe that if (5.24) holds for some x € X and r €
(0, 00) then it holds for every other " € (0, ] such that suppa C B, (x, '), granted
1/q —1/p < 0. Hence, we may assume r € (0, co) is such that » < 2diam,, (X).
Moreover, if r < r,, (x) then we have B, (x,r) = By, (x,r,, (x)) = {x} (cf. (2.75)).
Hence, we may assume r € (0, co) is such that r > r, (x). Incidentally, whenever
r < rp, (x) the vanishing moment condition in (5.24) and Proposition 2.12 (which
implies p({x}) > 0) force a = 0 pointwise on X in this scenario.

We wish to mention that given any quasi-metric space (X, ) and any measure
w satisfying (5.3), there are plenty of functions satisfying (5.24). In fact, whenever
p € (0,1]and g € [1, oo] with ¢ > p then, up to a normalization, every function from
Lg,o (X, ) isa(po, p, g)-atomon X. This fact is made more precise in Proposition 5.6
below.

We now take a moment to collect some properties of atoms.

Proposition 5.2 Let (X, q) be a quasi-metric space and assume [L is a nonnegative
measure on X satisfying (5.3) for some d € (0,0). Fix exponents p € (0, 1] and
q € [1, 00] such that g > p. Then for each (p,,p, q)-atom a € L1(X, ) with x € X
andr € (0,00) as in (5.24), the following hold.

1. Foreverys € (0,q], onehas a € Lj ,(X, u) with ||al|sx ) < M(Bpn(x, r))l/s_l/p;

2. aisa (p,,p,q)-atom forevery q' € [1,00] withp < q' < gq;

3. if p € q has the property that all p-balls are -measurable, then there exists a
finite constant ¢ = c(p, po, t) > 0 such that ¢ 'a is a (p, p, q)-atom on X;

4. a € L1(X, ) induces a distribution on 9y(X, p), denoted by a € 2,,(X, p), for
every p € qand a € (0, [log,C,]™'];

5. there exists a finite constant C = C(p, ) > 0 having the following significance:
one has a € (.,2”’3 (X, q))* for each B € (0,00) in the sense that the function a
induces a bounded linear functional on £ (X, q) defined by

(a,¥) = /Xawdu, vy e 2P (X, q). (5.26)

Moreover, there holds

CrA=ar=D ifa # p0)r,
lall 28 x.qy* < (5.27)
OI VP if a = pXx)~"/7.
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Additionally, if ¢ > 1 then via an integral pairing defined in the spirit of (5.26),
one also has a € (BMO(/,O(X, q, ,u))* where ' € [1,00) satisfies 1/q+1/q =1
and

Cr/p=D i g 2 u(X)~'/7,
lallemo, ox.qm)* = (5.28)
LGOI if a = px)~'r.

Furthermore, if a # [w(X)]~V?, then for each fixed B € (0,00) one has
that a € (‘Kﬁ (X, q))* (in sense of the integral pairing in (5.26)) satisfying
”a”(%”'ﬁ(x,q))* < CrP=40/r=D with C as above.

6. if {a;}jen is a sequence of (p,,p,q)-atoms on X and {A;}jen € £F(N)* then the
mappings f + L*/P=V(X q) - Cifp < land g : BMOy o(X,q,u) — Cif
p=1(q €[l,00) satisfying 1/q + 1/4' = 1) defined by

(fv W) = ij(ajv w)v VW egd(l/p—l)(x’ q)s and

jeN
(5.29)
(gs W) = %Aj(ajv w)v VW EBMOq/’()(X,q,,LL),
je
are well-defined, bounded linear functionals satisfying
1/p
”f”(xd(l/pfl)(x’q))* < C(Z |,Xj|[’) (5.30)
jeN
if p < 1, and corresponding to the case p = 1
lgll@Mo, oxam* < C D IA, (5.31)

jeN

where C € (0,00) is as in part 5. In particular, the linear functionals defined
in (5.29) induce distributions on 9y(X, p) whenever p € q and a € (0, 00]
satisfy d(1/p—1) < a < [log,C,] ™. In this case, the mappings defined in (5.29)
will be abbreviated simply to f =3} ey Ajaj and g = 3 ey Aja.

Proof To justify the claimin /, fix s € (0, ¢]. If s = ¢ then we are done given that by
assumption, a is a (p,, p, ¢)-atom on X. If on the other hand, s < ¢ then observe by

“In general, for any p € (0, 00), we denote by £7(N) the collection of sequences {A;}jen € C with
the property that Z,oil [A;17 < o0.
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Holder’s inequality (applied using the exponent ¢/s > 1) and the L?-normalization
of the given atom a as in (5.24) we have (keeping in mind suppa C B,, (x, r))

lallzs .0 Z/X|LI|SIBPG(x,r)d,lL

s I—s 1—s/p
< allace ot (Ba, 06.)' ™ < u(By, (1) T < 00 (532)

from which the conclusion in / follows.

Noting that 2 is an immediate consequence of / and (5.24) we focus now on the
claim in 3. Suppose p € q has the property that all p-balls are p-measurable and let
C1, C; € (0, 00) be the constants such that Cip < p, < C,p pointwise on X xX. It is
clear that the vanishing moment condition in (5.24) still remains valid. As concerns
the other two conditions, note that on the one hand B, (x,r) € B,(x, Cl_lr) which
implies suppa C B,(x, Cl_l r). On the other hand, since /0 Proposition 2.12 implies
that p satisfies (5.3) with p, replaced with p, it follows from the upper and lower-
Ahlfors-regularity of p (described as in 2—3 in Proposition 2.12) that there exists a
finite constant ¢ = ¢(p, p,, 1) > 0 such that

w(Bo(x. C7'r)) < cp(By, (x. 7). (5.33)

Granted the L7-normalization of the atom «, and the fact that 1/g — 1/p < 0, we
have

— 1/g—1/p
lall o, < cn(By(x, €))7 (5.34)

as desired. This finishes the proof of 3.

Noting that 4 is an immediate consequence of Theorem 4.13, we focus on the
claim in 5. Fix B € (0, 00) along with a function ¥ € .Z#(X, q). First, there is
the matter of showing that the pairing (a, ) is well-defined. That is, we want to
establish ayr € L'(X, n). Indeed, since the function v is Holder-continuous we
have that v is locally bounded on X (i.e., the restriction of i to any bounded subset
of X is itself a bounded function). Combining this with the fact that a € L!(X, u)
(by what has been established in /) we have ayr € L'(X, 1) as desired.

Suppose next ¢ > 1 and consider ¥ € BMO, o(X. q, 1) € L{ (X, p). It follows

from Holders inequality and the support conditions on the atom a € L7(X, u) that
there holds

/X|d¢|dH=/B( )alﬁdﬂf ||a||L4(X,u)Hlsp(x,r)lﬁHLq/(Xw- (5.35)
p(x.r

Hence, ayy € L'(X, ), as desired. From the above analysis we may conclude
that the atom « induces a well-defined linear functional on .Z#(X,q) and on
BMOy (X, q, i) via an integral pairing.



170 5 Atomic Theory of Hardy Spaces

Regarding the boundedness of this mapping, suppose a # [(X)]~'/7 and fix
Vv e ZP(X, q). Then with mp, (.n(¥) defined as in (5.4) we will first estimate the
quantity

[ 1600 196) = s () ), (5.36)
To this end, observe that

sup Y (y) = mp,, (W) =2 sup [ (y) =¥ ()]

YEBy, (x,r) YEBp, (x,r)

< 2019 g x - (5.37)

Consequently, making use of / in the conclusion of this proposition (with s = 1)
and the lower-Ahlfors-regularity condition for u we have

/X )] - 19 () — s, o (V)] ()

:/B A 1Y O) = i e (D] i)

< sup [Y0) — ma, (V)] - / lal djt

YEBy, (x,r) 0o (x,r)
< 2 B . 1-1/p
= 2r ||W||35ﬁ(x,pg)ﬂ(3po(x’r))
< Crﬁ—d(l/p—l)||w||%.ﬁ(x’po), (5.38)
It follows from the definition of || - || & (x g that (5.38) is further bounded above by
o [Py (5.39)

Note that at this stage we have from (5.38) and the vanishing moment condition
in (5.24) that

@ 9)] = ‘ [ 400 =i (s

< PP W llogn iy (5.40)

for some C € (0, o) independent of ¥ and a. Hence, ||l sy )« < CrP=40/P~Y.
This proves the last claim made in part 5. Incidentally, this, along with the definition
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of || - llgsxq implies llall gpx gy < CrP=?/r=D for some C € (0,00)
independent of ¥ and a.

Moving on, suppose ¢ > 1 and fix ¥ € BMOy (X, q, ). Then by Holder’s
inequality, the support and L7-normalization conditions in (5.24), and the upper-
Ahlfors-regularity condition satisfied by it we may write

[X )] - 195) = s,y ()] i)

1-1/
< llallzoceop(Bp, (x, 1)) q||¢||BMoq,(X,q,M)
< Cr_d(l/p_l)||W||BMOq/(X,q,;L) = Ci’_d(l/ﬁ_l)||W||BMOq/_0(X,q,;L) (5.41)

where C = C(p, ) € (0, 00). Having this in hand, making use of the vanishing
moment condition in (5.24) there holds

l{a, ¥} = ‘/Xa(y)[w()’) —mg, (e ()] du(y)
5 Cr_d(l/ﬁ_l) ”1// ”BMOq/,()(XaquL)’ (542)
for some C € (0, 00) independent of ¥ and a. Hence, [lal| (s x g« < Cr-40/P71.
This finishes the proof of 5 when a # [ (X)]~'/7.

Suppose now a = [1(X)]~'/7. Then necessarily 11(X) < oo and membership of
ayr to L'(X, ) follows from

/|m/f|du < ||w||oo/|a|du
X X
= GO P W oo < O] W g (5:43)

and

/Xlawl dpe = (GO PN g < [COIP 1Y lamocx.a.n

< GO 1Y llsmo, x a0 (5.44)

if ¢ > 1. Then, again we may conclude that the atom a = [u(X)]™'/? induces a
well-defined linear functional via an integral pairing. Moreover, these estimates are
also enough to obtain the appropriate bounds in (5.27) and (5.28) finishing the proof
of 5.
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In order to justify part 6 consider a sequence {a;}jen of (0., P, ¢)-atoms on X and
a numerical sequence {A;};en € £”(N). Suppose first that p € (0, 1). Then using the
conclusions of part 5 we may write for every ¥ € .Z%/P=D (X, q)

Yl e ) < ClY lganmnxg D 1A

jeN jeN
1/p
< C||W||$d(1/p1>(x,q)(z |Aj|p) . (5.45)
jeN

from which we may conclude that f, as given in (5.29), is well-defined and
satisfies (5.30). In fact, the same ingredients can be used to justify to claims
regarding the linear functional g when p = 1. This finishes the proof of part 6
and, in turn, the proof of the proposition. O

The stage has now been set to introduce the atomic Hardy space. Suppose
(X,q, 1) is a d-AR space for some d € (0, co) where the measure p satisfies (5.3)
and fix exponents p € (0, 1] and g € [1, co] with ¢ > p. In this context, the atomic
Hardy space HY(X) := H2Y(X, q, u)° is introduced as

(X, g, ) = { f € (L0700 )" 3{}jen € € (N) and

(00, p, g)-atoms {a;}jen such that [ = Z Aja;
jeN

in (2/rN(x, q))*}, (5.46)
when p € (0, 1) and, corresponding to the case p = 1,
Hy'(X,q, 1) = {f € (BMOy o(X.q. )" : 3{Aj}jen € ¢! (N) and

(po- 1, q)-atoms {a;}jen such that f = Z/Xjaj
jeN

in (BMO, o(X.q. u))*}, (5.47)

where ¢’ € [1, 00) satisfies 1/g+ 1/q' = 1.

5This notion of H, (X) is consistent with the atomic Hardy spaces in [CoWe77] and in [MaSe79ii]
(for ¢ = o0 in the setting of 1-AR spaces with symmetric quasi-distances). We will comment on
this in more detail in Sect. 7.1.
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It is clear HY,?(X) is a vector space over C. Whenever the condition in (5.46)—
(5.47) holds, we will refer to ZIEN Ajajasthe atomic decompositionof f.1It
is clear that such a decomposition is far from begin unique. Thus, from a topological
perspective, we consider || - ||y, defined for each f* € H7(X) by setting

/p
IS g xy - = inf{ (Z |Aj|")  f =Z Aja; asin (5.46) or (5.47);. (5.48)

JjeEN JEN

It is straightforward to see that |- || ;74 (y, defines a quasi-norm on HY(X). It follows
from the discussion in [CoWe77, p. 592], that H%;7(X) is a quasi-Banach space when
equipped with the quasi-norm in (5.48) for every pair of exponents p € (0, 1) and
q € [1, 00]. We will show later on in this work that Hi;q(X) is a quasi-Banach space
when equipped with the quasi-norm in (5.48) for every ¢ € (1, o0].

Before moving on, we would like make a few comments pertaining to the spaces
HY(X). First, it is important to note that by 3 in Proposition 5.2, we have that the
specific choice of the quasi-distance p, € q, as above, is immaterial when defining
HY(X) in (5.46). That is, if p € q is any other quasi-distance on X for which
satisfies (2.78) then every f € H’,%(X) has an atomic decomposition with respect
to (p, p, g)-atoms. Conversely, one has that every linear combination of (p, p, ¢)-
atoms with coefficients in £7(N) belongs to H5;?(X). In particular, this justifies the
notation used for H%;? (X). Moreover, in the setting of d-AR spaces of finite measure
(or equivalently, where the underlying set X is a bounded) the space H%,(X) is
“local” in the sense that, under ¢ — ¢f, it is a module over €” (X, q) for each fixed
y € [d(l /p — 1), 00). The reader is referred to (5.19) to be reminded of the notion
of multiplying a linear functional by a “smooth” function. This is proven in detail in
Proposition 7.8.

Going further, while maintaining the assumptions on the ambient (X, q, 1), if
p € (0,1] and g1, g2 € [1, oo] then it follows from Proposition 2.12 that

H”2(X) € HM'(X),  wheneverp < g1 < ¢a. (5.49)

It is a known result in [CoWe77, Theorem A, p.592] that one actually has equality
in (5.49) whenever the underlying ambient is a spaces of homogeneous type
equipped with a Borel-semiregular measure. In Chap. 7 we will show that we also
have equality in (5.49) in the setting of d-AR spaces. This result stems from the
work done in [CoWe77] for p € (0, 1). The case when p = 1 however, must be
treated using a different circle of ideas as the atomic spaces introduced in this work
are of a different nature than the ones in [CoWe77, p.592]. This the coincidence
between the spaces in (5.49) when p = 1 is a new result.
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In an effort to further unify the theory of Hardy spaces in abstract settings, we
will show in Theorem 7.5 below that the atomic Hardy spaces defined in (5.46) are
equivalent to the atomic spaces introduced in [CoWe77]. Despite the similarities
of these spaces, this task will require a delicate treatment when p = 1. In fact,
we will make full use of the atomic characterization of H”(X, p, i) developed in
Theorem 5.27 below. To our knowledge, this is the first time this issue has been
addressed.

Our next result highlights the fact that the space H%,?(X) can be continuously
embedded into (£%1/7=D (X, q))* when p < 1 and BMO (X, q, ) whenp = 1.

Proposition 5.3 Suppose (X, q) is a quasi-metric space and assume [L is a non-
negative measure on X satisfying (6.1) for some d € (0,00). Let p € (0, 1] and
q € [1,00] withq > p and let ¢’ € [1,00] be such that 1/q + 1/q' = 1. Then there
exists a finite constant C > 0 with the property that for each f € H5%(X), there
holds

I/ Il zaam—nxqgys < CIlf lgrexy.  ifp <1, and (5.50)

I f l@mo, gxamy* = Clfllgra),  ifp =1 (5.51)

That is, H'(X) — (£9V/r~D(X,q))* and Hy'(X) — (BMOy (X, q, 11))*,
continuously.

Proof Fix f € HY,%(X). We will provide the proof (5.50) as the justification
of (5.51) follows along similar lines. With this in mind, if p < 1 then by definition
of H,;7(X), we may write

f=Y XNa in (£ @) (5.52)

jeN
where {a;}jen is a sequence of (p,, p, ¢)-atoms on X and {A;};en € €7 (N) satisfies
1/p
(Z |A,-|P) <20 f s (5.53)
jeN
Going further, we have by part 5 of Proposition 5.2 that

{aj}jen € (L7 (X, )" such that sup [|ajl| gamn gy < C. (5.54)
jeN
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As such, since p € (0, 1) we may write

Lf 1l aton gy = sup I(f8)] < sup > Ailay. g>‘
gl aa/p—1) x =1 el aa/p—1x =t jen
< sup Y Nl llagll g x g gl anmnx.q)

llgll yoact/p—1) x =1 jeN

IA

1/p
(T ) =g 5:55)

jeN

from which the desired conclusion in (5.50) follows. This concludes the proof of the
proposition. O

The following result highlights the fact that it p € (0, 1] is too small then the
spaces H%?(X) are trivial. As it turns out, the range of p’s for which these named
spaces are trivial is directly related to the geometry of the quasi-metric space. This
phenomenon was discussed qualitatively in a footnote on p. 591 in [CoWe77] where
the authors point out that the Holder spaces (hence the atomic Hardy spaces) become
trivial unless p is “near” 1. Theorem 5.4 below displays precisely just how “near” p
must be.

Theorem 5.4 Let (X, q, ) be a Ahlfors-regular space of dimension d € (0, 00)
and suppose the measure [ satisfies (5.3). Then for every pair of real numbers

d
0, —— d 1, 5.56
pE( d+indH(X’q)) and q € [1,00] (5.56)

one has

{0} if u(X)=oo,
C if pulX) <oo.

HY (X, q, 1) = (5.57)

Proof In the case when p(X) = oo we may invoke (5.17) in Proposition 5.1 in
order to conclude that whenever p, g € R are as in (5.56) then

Hi (X.q, 1) € (27770 (x, @)" = {0}, (5.58)
Next, assume j(X) < o0o. In this scenario, the function a(x) := [u(X)]~/? for every

x € X is by definition a (p,, p, ¢)-atom on X, hence H,;Y(X, q, ) # {0}. Moreover,
since whenever u(X) < oo implies .Z90/7=D(X,q) = C as vector spaces (cf.
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Proposition 5.1) we have
HYY (X, q, 1) € (29077 D(X,q))" = C* =C, (5.59)

forcing H%,?(X, q, ) = C in the current case. This finishes the proof of the theorem.
O

Comment 5.5 In the setting of a d-AR space (X, q, 1), d € (0,00), Theorem 5.4
highlights the fact that unless p is sufficiently close to 1, the spaces H:Y(X, q, i)
will be trivial. In contrast, whenever

d
pE (d—i-T(X,q) 1:| (5.60)

the spaces .Z%1/P=D (X, q) are “rich”. Indeed, given that ind (X, q) < indy(X, q),

the membership in (5.60) entails p > m so Proposition 5.1 applies.

Consequently, for p as in (5.60) the corresponding Hardy spaces HL?(X,q, i)
contain a wealth of nontrivial functionals.

It is important to note that the exclusion of the lower bound in (5.60) is necessary
as, in general, it is not clear what, if any, good properties the spaces .Z4/P=D (X, q)
enjoy at the endpoint p = H#(X,q) (cf. Comment 2.21 in this regard). |

As previously discussed, given any Ahlfors-regular space, one can easily manu-
factured plenty of atoms. We now take a moment to further explore this fact, as well
as related topics, in the following proposition.

Proposition 5.6 Suppose (X, q) is a quasi-metric space and assume [L IS a non-
negative measure on X satisfying (6.1) for some d € (0,00). Let p € (0,1] and
q € [1,00] with q > p. Then for every f € Lf_’O(X, W), there exists a finite constant
c = c(fip,q) > 0 such that ™' f is a (0o, p, q)-atom on X. In fact, whenever
fe LZ’O(X, w) is such that || f ||ax,) > O then this constant ¢ can be taken to be

c = ||f||Lq(X,,L)p,(Bpg(x, r))l/p_l/q € (0,00) where x € X and r € (0, 00) satisfy
supp f € B, (x, r).

As a consequence, one can find a finite constant C = C(p, ) > 0 such that
if f e LZ.O(X, W), then f induces a continuous linear functional via an integral
pairing on L*V/P~N(X q) if p < 1 and on BMOy o(X,q, ) if p = 1 (where
g €[1,00) is such that 1/q + 1/q' = 1) which belongs to H.'(X) and satisfies

1/p—1
1f ooy < C(Ba, D) P~ 0 £ s, (5.61)

for every x € X and every r € (0, 00) with supp f C B, (x,r). Conversely, every
(o, p. q)-atom on X belongs to L? (X, ).

Moreover, if W(X) < oo (or;, equivalently, if X is a bounded set) then for each
s € [g, 0], one has that each f € L*(X, t) induces a continuous linear functional
via an integral pairing on L*VP~V(X,q) if p < 1 and on BMOy (X, q, ) if
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p = 1 which belongs to H'(X). In fact, with p, q, and s as above, there exists a
Sfinite constant C = C(u, p, s) > 0 with the property that

I Moy < Clf sy Sorevery f e L'(X, ). (5.62)

More specifically, with C as in (5.62), for each € L*(X, u), one can find two finite
constants C1, C; > 0 and two functions fi, f>» : X — C such that

f = fi + f» pointwise on X where C{' fi and C;' f
(5.63)
are (0o, p, q)-atoms on X with max{Ci, C2} < C|| f |l sx.)-

Proof Fix f € LZO(X, w). Thatis, f € LY(X, ) is such that supp f € B, (x, r) for
some x € X and r € (0, 0o) and fx fdu=0.If f =0 for u-almost every point in
X then the conclusion of the proposition is immediate, thus we assume f # O for
p-almost every point in X. Granted this assumption, it follows that || f ||zs(x ;) > 0.
Incidentally, the function g : X — C defined by

8 = 1/ g ot (B e 1) " £, Vxex, (5.64)

is a (p,, p, g)-atom on X. Thus, taking

1/p—1
¢ = | f o it (Bp, (5. 1)) /74 € (0, 00)

finishes the proof of the first part of the proposition. Consequently, with f
maintaining the significance as above, we have from part 5 of Proposition 5.2 that
¢! £, hence f itself, induces a linear functional on .Z?1/P=V (X, q) if p < 1 and on
BMOy ¢(X,q, p) if p = 1, denoted by f. Moreover, given that the function ¢! f
is a (0o, p, q)-atomon X (hence [[c™" f[|grex) < 1) it follows that f € Hi;?(X) and
satisfies (5.61).

There remains to verify that every function from L'(X,u) (s € [gq,0])
induces a continuous linear functional on .Z4(/?=1 (X q) when p < 1 and on
BMOy (X, q, ) when p = 1 which satisfies (5.62). Fix an exponent s € [gq, 00]
and consider a function f € L*(X, ). If f = 0 for pu-almost every point in X
then it is immediate that f € H%,?(X) , thus we assume f # 0 pointwise jt-almost
everywhere on X. Moving on, observe that

Xbounded = L'(X,u) < LI(X,p) CL'(X, ). (5.65)
In particular, in this setting we have that f € LI(X, i) where the support of f is
trivially contained in the bounded set X. As such, since || f|zex ) € (0,00) we

have that if [\ f du = Othen f € L (X, u) (similar to as in (5.64)) the function
Jfo : X = C defined by

Jo@) = || flzaie o [RGO1V4P f(x), VxeX, (5.66)
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is a (p,, p, g)-atom on X. Hence, it follows that f € H5?(X) and

1/ ey < [ QOTP Y fllisoey < IR@OIPT N f e (5:67)

Moving on, next suppose fx fdu # 0and write f = fi + f, where for each
x € X we have set

A = f0) - /X fdu and )= /X £ dp. (5.68)

Then f; € LZ’O(X, 1), and by arguing as in (5.66)—(5.67) we have that
||f1||;,1(X,M)[M(X)]1/‘1_1/Pf1 is a (po,p,q)-atom on X, hence, in particular there
holds f1 € H.Y(X), and

LAl < [RCOTP ™ Aillesgn (5.69)

< [COIMPY5 (1 + nQO)f Nl (5.70)

On the other hand, since in this scenario we regard the constant function taking
the value [1£(X)]~'/? as a (p,, p, ¢)-atom on X, it follows that

¢ fris a (po, p. g)-atom on X, where ¢ := [M(X)]I/P/ fdu e (0,00). (5.71)
X

Therefore we may conclude that f, € H5?(X) and
| Aol < lel < Q@OTPH TN fllisoe . (5.72)

Combining this with the fact that f; € H,?(X) we ultimately have f € HL(X)
as desired. Incidentally, the estimate in (5.62) follows from what has just been
established in (5.69)—(5.72). This finishes the proof of the proposition. |

In the next proposition we build upon the results in Proposition 5.6 in that under
certain additional assumptions one can actually view, in a suitable sense, LZ.O X, 1)
and L9(X, 1) as subspaces of H.,?(X).

Proposition 5.7 Suppose (X, q) is a quasi-metric space and assume [ is a Borel-
semiregular measure on X satisfying (6.1) for some d € (0, 00). Also, fix exponents

d
—_— 1 d 1, jth . 5.73
pe(dﬂnd(xﬁq) } and g € [1,00] withq>p (5.73)

Then

L oX,p) < HYA(X)  forevery s € [q,00], withs > 1, (5.74)
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and
LZ’O(X, w) = H(X)  densely, whenever g > 1. (5.75)
Moreover, if u(X) < oo (equivalently, if X is a bounded set) then one has
L'(X, ) CHYI(X) forevery s € [g,o0], withs > 1, (5.76)
and
LY(X, ) < HYA(X) densely, whenever g > 1. (5.77)

Finally, corresponding to the cases when g = s = 1, whenever

d
pE (d—i—Td(Xq)’ 1) (5.78)
there holds
Ll o(X, 1) = Hy'(X)  densely, (5.79)
whereas if (1(X) < oo (equivalently, if X is a bounded set) then
L'(X, p) — H'(X)  densely. (5.80)
Proof We begin by justifying the claim made in (5.74). Since the inclusion
L (X,pn) € Lg,O(X , 1) holds for every s € [g,00] we will prove (5.74) in the

case when s = ¢ > 1. To this end, introduce ¢, : LY ((X, 1) — H;?(X), defined by
setting for each function f € LZ,O X, 1)

L) = /X £ dp. (5.81)

where ¥ € L4/r=D(X q)if p < 1 and ¢y € BMO,o(X,q,p) if p = 1. As a
consequence of Proposition 5.6 we have that the mapping ¢ : LY (X, 1) — Hy,"(X)
is well-defined.

As concerns the proof of (5.74), we need to show next that the mapping ¢, is
injective. Suppose f € Lg,o (X, ) such that

/ Fyrdu =0, (5.82)
X

forall y € £41/r=(X,q)if p < 1 and all y € BMO, o(X,q, ) if p = 1. We
want to show that f is equal to zero pointwise p-almost everywhere on X. To this
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end, observe that from (4.7) and the definitions of the spaces .#¢(/P=D (X, q) and
BMOy o(X, q, p) in (5.11) and (5.9), we have

¢V (X,q) € LrD(x,q) ifp<1,and (5.83)

¢!(X,q) € BMOy o(X,q, ) ifp=1, (5.84)

for each number y € (d(l /p—1),ind (X, q)). In particular, for each fixed number
y € (d(1/p — 1),ind (X, q)), the equality in (5.82) holds for every function
f € ¢/ (X, q). Note that the interval to which y belongs is well-defined given the
demand on p in (5.73). On the other hand, for y in this range, from the implication
(1) = (4) in Theorem 3.14 we have

€Y (X,q) = L'(X, ;) densely, foreveryr e (0,00). (5.85)

Then combining (5.82)—(5.85) with the fact that f € L°(X, u) with s € (1, 0o, it
follows from Holder’s inequality that

u(f)W) =0 forevery ¥ eL'(X,un), (5.86)

where r € [1,00) is such that 1/s + 1/r = 1. However, the equality in (5.86)
is equivalent to ¢; f = 0 in the dual of L"(X, u), which, by virtue of the Riesz
representation theorem, implies f = 0 pointwise u-almost everywhere on X, as
desired.

Up until this point, we have shown in that L ,(X, u) < H"Y(X) whenever
s € [g,00] with s > 1. In order to prove (5.75) we make the observation that by
Proposition 5.6 we have

the vector space of all finite linear
L2 (X, ) = (5.87)
combinations of (p,, p, ¢)-atoms on X,

as vector spaces. Hence, (5.75) is a consequence of (5.87) and the fact that (under
the mapping ¢;) the space of all finite linear combinations of (p,, p, g)-atoms on X
is trivially dense in H5,?(X).

Regarding the inclusion in (5.76), similar to as before, we focus on verifying the
case when s = ¢ > 1. Introduce an auxiliary mapping t, : LI(X, u) — H5%(X) by
setting for each function f € LY(X, u),

L)) = /X £ du, (5.88)

forall y € £4/P=D(X,q)if p < 1 and all ¥ € BMOy o(X,q,p) if p = 1.
It is clear that the mapping t, : LI(X, ) — HLY(X) is well-defined in light of
Proposition 5.6. Now if s > 1, then the fact that ¢, is injective will follow by
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recycling some of the ideas used in showing that (; was injective. This finishes
the proof of (5.76). As concerns the density result in (5.77) we once again rely on
Proposition 5.6 to obtain

the vector space of all finite linear
LY(X, p) = (5.89)
combinations of (p,, p, g)-atoms on X,

as vector spaces. Hence, (5.77) is a consequence of (5.89) and the fact that (under
the mapping t,) the space of all finite linear combinations of (p,, p, ¢)-atoms on X
is trivially dense in HY,7(X).

We now focus on establishing the claim in (5.79). Returning back to making use
of the mapping ¢;, we have already seen that ¢; : LLI,’O(X, n) — Hg;l(X) is well-
defined. With the goal of employing Proposition 4.12 to show that ¢; is injective in
this case, we choose a quasi-distance p € q and a number « € R satisfying

0<d(l/p—1) <a <[log, C,]”" (5.90)

and note that such a choice of « is possible given the membership of p to the interval
in (5.73). Suppose now f € LLI,’O(X, 1) is such that

/ fydu=0, Vye2/rix q). (5.91)
X

Then it follows from the definition of .Z%!/P=D (X, q) in (5.11) (keeping in mind
p < 1), and the choices of p and « as in (5.90), that

Du(X, p) € 2"V D (X, q). (5.92)

Hence, from (5.91) we have

/fwd,u =0, Yy e X)), (5.93)
X

and the injectivity of ¢; follows from Proposition 4.12 (used here with g := 0).

Moreover, the density claim in (5.79) is justified much as in the proof of (5.75).
Finally, noting that the proof of (5.80) follows a similar reasoning used in

proving (5.79) finishes the proof of the proposition. O

The main goal of this chapter is to prove that the atomic Hardy spaces, defined
in (5.46)—(5.47), are equivalent to the maximal Hardy spaces introduced in Sect. 4.2.
More specifically, let (X, q, 1) be a d-AR space for some d € (0, co) where p is
assumed to be a Borel-semiregular measure on X. Also, fix exponents

d
— % 1| and 1, 5.04
pe(d+ind(X,q) } and g €1, 00] (5:94)
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with g > p. Then, in this context, if p € q and y, « € R are such that
0<d(l/p—1) <y <a <[log,Cp] ™", (5.95)
then Theorem 5.27 below shows that
H X, a0 = {1 € ZuX.0) ¢ S0 € LX) (5.96)

The equality in (5.96) is to be understood as an identification given that the left hand
side consists of linear functionals on Z41/7=V (X, q) if p < 1 and BMOy (X, q, i)
if p = 1, whereas the right hand side consists of distributions belonging to Z., (X, p).

The identification in (5.96) was established in [MaSe79ii, Theorem 5.9, p. 306]
for

pe ( ! —, 1:| and g = oo, (5.97)
1 + [log,(C,(2C, + 1))]

in the setting of 1-AR spaces with symmetric quasi-distances. Strictly speaking,
the statement of [MaSe79ii, Theorem 5.9, p. 306] has 3Cf, in place of the constant
C,(2C, + 1) in (5.97) but, as indicated in the discussion in [MiMiMiMol3,
Comment 2.83, p.59], the number C,(2C, + 1) is the smallest constant for
which their approach works as intended. This result was subsequently extended in
[MiMiMiMo13] to the setting of d-AR spaces for arbitrary values of d € (0, c0),
again with symmetric quasi-distances. More specifically, using a power-rescaling
argument, the authors in [MiMiMiMo13, Theorem 4.91, p.259] established (5.96)
for

d
1| and g = oo, 5.08
pe (d ¥ min{d, ind (X, q)} } and g =00 (5.98)

under the additional assumption that u({x}) = O for every x € X. In Theorem 5.27
below, we further enlarge the range of p’s in (5.98) while successfully removing the
condition that w({x}) = O for every x € X.

The range in (5.94) is a remarkable improvement over the result in
[MiMiMiMo13, Theorem 4.91, p.259] that has some surprising consequences.
For example, if (X, p,u) is any d-AR space where p is an ultrametric then as
Theorem 5.27 describes, (5.94) implies that (5.96) holds for any p € (0, 1], whereas
[MiMiMiMo13, Theorem 4.91, p.259] would only guarantee such an equality for
pe(1/2,1].

As far as the proof of (5.96) for the range of p’s listed in (5.94) is concerned, the
left to right “inclusion” is more straightforward and relies upon the fact that there is
a uniform bound for L”-quasi-norm of any grand maximal function associated to an
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atom. The other direction is more delicate as we will need a way of decomposing a
distribution as in (5.96) into a linear combination of atoms. This is done in Sect. 5.3
below and makes use of a Calderén-Zygmund-type decomposition presented in
Sect.5.2.

Regarding the left to right “inclusion”, recall that linear functionals on
Lr=N(x,q) if p < 1 and BMOy (X, q, ) if p = 1, induce distributions
on Zy(X, p). In particular, for every ¢ € [1,00], with ¢ > p, the elements in
HY(X,q, ) can naturally be viewed as distributions on X. With this in mind,
we will first show that the elements of H%?(X) induce distributions whose grand
maximal function belongs to L7 (X, ), that is, belong to Hj (X). Granted the nature
of the elements of H%,7(X), we begin by showing that every atom belongs to Hb, (X).

Lemma 5.8 Let (X, q, i) be an Ahlfors-regular quasi-metric space of dimension
d € (0, 00). Specifically, assume that | is a measure on X satisfying (5.3). Fix an
exponents

d
S d 1, 5.99
pe(dﬂnd(xﬁq) } and q € [1,00] (5.99)

with q > p. Also, suppose p € q and a € (0, oo] are such that
d(1/p—1) <a < [log,C,] " (5.100)
Then,
aeH (X, p,u) forevery (p,,p.q)-atoma € LY(X, p). (5.101)

In fact, for each fixed parameter y € (d(l/p - 1), a), one can find a finite constant
C = C(p,q, p, Po, 4, ¥) > 0 with the property that

||Cl;#’y’a||lp(x’“) <C, forevery (p,,p,q)-atoma € LY (X, n). (5.102)

Proof Fix some index y € R satisfying d(1/p — 1) < y < «. Also, suppose that
a € LY(X, u) is a (oo, p, g)-atom on X where B, (x«, r«) satisfies the conditions
listed in (5.24). Recall that we may assume (without consequence) the radius
r« € (0,00) satisfies rv € [ry, (x«), 2diam,, (X)] (cf. (5.25)). Also, note that part
4 in Proposition 5.2 implies a induces a distribution on %, (X, p) according to the
recipe formulated in (4.22). Moving on, consider the regularized quasi-distance p4
constructed as in (2.21) and recall that all py-balls are open, hence, (-measurable
by (2.81) and (2.28).

Suppose first that a = [ (X)]~'/? (which may be the case when u(X) < 00).
Fix x € X and assume ¥ € 7,/ ,(x) is supported in B,,(x, r), for some positive
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r € [rp,(x), 00), and is normalized as in (4.29) relative to r. Then we have

@) = /Xawdu'
swawwf [yl di < [u@)]™7 (B, e ) ¥ ]l oo
By (x,1)
< CluX]™7 ¥ |l < ClX)] 7. (5.103)

where C = C(u) € (0,00). Note that the third inequality made use of the upper-
Ahlfors-regularity condition for u in Proposition 2.12. Taking the supremum over
all such ¢ € 7,! 4 (x) we may deduce that

ar . < Clu)™'7, VxeX. (5.104)
Hence,

||a;#,y,a||lp(x,ﬂ) S C7 (5‘105)

where we have absorbed the value of £ (X) into the constant C € (0, co). This proves
that (5.102) is valid if a = [u(X)]~'/7. Given that y € (d(1/p—1), &) was arbitrary,
this also justifies the claim made in (5.101).

Moving forward, suppose next that a # [14(X)]~!/? and pick a sufficiently large
constant M > C,, (the importance of which will become apparent shortly) and
consider separately the estimation a* near and away from B, (x«, Mr«). Near

Py
By, (xx, Mry), if ¢ > 1 then we may write,

l_
/1; (o M )la;#,y,alp dp = ||a;#,}/,0(||i‘/(X,[L)ILL(BP(J(x*7Mr*)) P/ (5.106)
po X, Mk

1— 1—
< ClIMpyally o1t (Bp, Gosee 7)) ™' < Cllallsy iy oyt (Bp, (rn 72))
S C?

for some finite constant C > 0 depending on p, M, u, p, q. Note that, first inequality
is a consequence of Holder’s inequality (applied with exponent ¢/p > 1), the
second inequality made use of the estimate (4.114) in Theorem 4.112 and the upper-
Ahlfors-regularity condition satisfied by p in Proposition 2.12, the third inequality
follows from the boundedness of the Hardy-Littlewood maximal operator which was
established in Theorem 3.7 and the last inequality is a result of the L7-normalization
of the given atom a in (5.24).

If g = 1, we define for A € (0,00) the set Q) = {x € X : a*, , _(x) > A}.

Py
Then, by Lemma 4.7 (specifically (4.33)) and (2.81) it follows that#the set 2 is
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pu-measurable for every A € (0, 00). Moreover, observe for A € (0, 00)
(22 N By, (xx, Mry)) < min{u (1), (B, (x«, Mry))}
< Cmin{lallpix,0/2. 1£(By, (xe. Mra)}
< Cmin{u(By, (xr 7)) TP I, (B, (X, Mri)))

< Cu(By, (X, 1)) min{u (B, (v, 1))~ P /2, 11,
(5.107)

The second inequality in (5.107) follows from (4.114) in Theorem 4.114 as well as
the weak-(1, 1) bound for the Hardy-Littlewood maximal operator listed in (3.47) of
Theorem 3.7, the third inequality is deduced from the L'-normalization of the atom
a, and the last equality is consequence of the upper-Ahlfors-regularity condition for
M in Proposition 2.12.

Consequently, since ¢ = 1 necessarily implies p < 1 we have that (with the

choice Ay 1= M(Bpg(x*,r*))_l/p € (0, 00))
o0
/ |ay, o7 dit = / PAP T (S22 N By, (xi, Mry)) dA (5.108)
By, (xs,Mr+) e 0

A
< C/ pk”_lu(BpU(x*,Mr*)) dA
0
o
+ / pk"_z,u(Bpa(x*,Mr*))l_l/p dr < C,
A

again, for some finite C > 0 independent of a. Combining (5.106) and (5.108) we
have

/ a3, ol di < C, (5.109)
Bpa(x*,Mr*)

where C € (0, co) depends on p, g, p, i, and the boundedness of M,,.

To estimate the contribution away from the ball B, (x«, Mrx), for each k € N let
us introduce Ay := By, (xx, M*T114) \ By, (xx, M*ry). If By, (x4, Mry) = X then we
are done by the estimate in (5.109). Otherwise, to proceed, pick an arbitrary point
x € X \ B, (x«, Mr) and suppose that ¥ € T} «(x) is supported in B, (x, ), for
some positive r € [r,, (x), 00), and is normalized as in (4.29) relative to r. By the
choice of the point x € X, there exists k € N so that x € A;. We claim that there exist
two constants ¢ = ¢(p, p,) > 0and C = C(p, p,) > 0, independent of a, V¥, k, r, r«,
with the property that

By, (xx,14) N Bp, (X, 1) #0 = r > My (5.110)
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To justify this claim, note that if there exists y € B, (x«, r«) N B, (x, r) then we may
write (keeping in mind that ps ~ p,)

MFry < po(xie, x) < Cpy(xs, x) < Cp#(xx.y) + pa(y, %)) < C(pa(xs,y) + 1)

< C(Cpoxs,y) +7) = C"re + C'r, (5.111)

where all constants involved depend only on the proportionality factors of p and
Po- Hence, by eventually increasing M (in a manner which only depends on py4 and
0,) we may deduce from (5.111) that r > cM*'r,, where ¢ = c(p, p,) > 0. This
proves (5.110).

Next, based on the membership of y to the interval (d(1/p — 1), @) we have that

the function ¥ € Z,(X, p) € €7 (X, q). Consequently, from 5 in Proposition 5.2
and the normalization of ¥ we may estimate

@) < llall gy - 1V i
—d(1/p—1 —d—y y—d(1/p—1
< Y g gy < O AT (5012)

In turn, (5.112), (5.110), and support considerations imply that, for every k € N, we
have

ar, () < MDD henever x € Ay, (5.113)

where C is a positive, finite constant, independent of a and k. Having established
this, we may then proceed to estimate

% dy = / 0% P du
/X\B,,U(x*,Mr) Py Z a7

keN

< C Z M(k—l)(—dp—yp) r;dﬂ(BpU (X* , Mk-‘rl }’*))

keN

< C Z M(k_l)(_d.”_y.”) }’;d(MlH—l }’*)d
keN

=CY MR < oo, (5.114)
keN

since M > 1, and since y > d(1/p — 1) entails —d + yp + dp > 0. In
concert, (5.109) and (5.114) imply (5.102) whenever a # [11(X)]~'/?. Incidentally,
since the parameter y € (d(l/ p—1), a) was chosen arbitrarily, the claim made
in (5.101) follows from what has been established in (5.102). This completes the
proof of the lemma. O
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From the conclusion of Lemma 5.8, each atom belongs to H%(X) and has
a uniformly bounded Hj-quasi-norm. As a consequence, given any sequence of
atoms {a;};en and any sequence of numbers {A;}jen € £7(N), the series D eN Ajd
converges in the sense of distributions. The specifics of this result is discussed in the
following corollary.

Corollary 5.9 Let (X, q, ) be an Ahlfors-regular quasi-metric space of dimension
d € (0,00). Specifically, assume that p is a measure on X satisfying (5.3). Fix an
exponents

d
4 4 d 1. 5.115
pe(d+ind(X,q) } and q €1, 00] (5.115)

with g > p. Also, suppose p € q and a € (0, oo] are such that
d(1/p—1) <a < [log,C,] . (5.116)

Then given a sequence {a;}jen, of (0o, p. q)-atoms on X and a numerical sequence
{Ajtjen € €P(N), the sum ZJEN Ajaj converges in the topological vector space
D!(X, p), i.e., the mapping f : Dy(X, p) — C, defined by

(L¥) =) M@ ¥), VYV € ZulX,p), (5.117)

jeN

is a well-defined linear functional on Py(X, p). Moreover, the distribution f
belongs to Hy(X, p, v) and the sum in (5.117) also converges in Hy(X, p, ). In

fact, foreach y € (d(l/p — 1), ) one can find a finite C = C(p, q, p, po, L, y) >0
with the property that

1/p
” fp:,y,a HL”(X,[L) = C(Z |Aj|p) . (5.118)

jeN

In this case, the mapping defined in formula (5.117) will be abbreviated simply to
f =2 en Aiay.

Proof Our strategy in establishing this corollary is to invoke Lemma 5.8 along
with Lemma 4.8. With this in mind, for each n € N, set f, := Z;’Zl Aja;. Then,

thanks to (5.102) in Lemma 5.8, part 4 of Proposition 5.2, and the subadditivity of
”(');#,y,a”[l)}’(X,;L)’ whenever n,m € N are such that m > n we have f, € Z,(X, p)
an

H (fm - f"):#,y,a ||ZP(X,M) = Z |Aj|p H (aj);#q%a HU’(X,[I.)
j=n+1

=C > Il (5.119)

j=n+1



188 5 Atomic Theory of Hardy Spaces

where C = C(p,q,p, po, 4, ¥) € (0,00) is as in the conclusion of Lemma 5.8.
Given (5.119), it follows from the membership {A;};en € £”(N) and Lemma 4.8 that
there exists a unique distribution f € Z, (X, p) for which

jl_l)rgoﬁ = f in Z,(X,p) and jgrgo”(f—ﬁ);#,y,a HU,(X’M) =0. (5.120)

Note that the second observation in (5.120) implies lim f; = f in Hy (X, p, j1).
J—>00
Regarding the estimate in (5.118), observe that (5.102) in Lemma 5.8 gives

n 1
[l = C(1217) " foreachn e N, (5.121)
=1

with C € (0,00) independent of n. As such, combing (5.121) and the second
observation in (5.120) yields (5.118) which further implies f € HY(X, p, i), as
desired. O

Having shown that linear combinations of atoms (with coefficients in £7(N))
belong to HA(X), we are now in place to prove that the elements of H5;?(X) also
belong to HY (X) in a suitable sense.

Lemma 5.10 Let (X, q, i) be an Ahlfors-regular quasi-metric space of dimension
d € (0, 00). Specifically, suppose that | is a measure on X satisfying (5.3) and fix
exponents

d
S d 1, 5.122
pE(dHnd(X’q) } and g € [1,00] ( )

with q > p. Also, suppose p € q and o € (0, 00 are such that
d(1/p—1) <a < [log,C,] . (5.123)

Then, for every f € HL1(X), the distribution Zf = f|@ *.p) (obtained by
restricting the linear functional f to 2,(X,p)) belongs to Hy(X,p, ). More
specifically, given a functional f € H5(X), a sequence of (p,, p, q)-atoms {a;}jen
on X, and a numerical sequence {A;}jen € £7(N) such that

=Y Na in (£ VX.q)" ifp<l
jeN (5.124)

orin (BMOyo(X.q. )" if p=1,

(where q' € [1,00) is such that 1/q+ 1/q' = 1) then for each y € (d(1/p—1), ),
one can find a finite constant C = C(p,q, p, po, L, ¥) > 0 (in particular, C is
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independent of ) such that,

1/p
[ Dl = (o 12087) (5.125)

jeN
Moreover, whenever (5.124) holds, one also has

Rf =Y Naj in D,(X.p) andin H)(X.p. ). (5.126)
jeN

Proof Fix a number y € (0, oo) for which
d(1/p—1) <y < a < [log,C,] ™" (5.127)

and consider f € H.(X). Then, f belongs to (£/1/7~)(X,q))" if p < 1 and
(BMOq/,o(X, q, u))* if p = 1. Moreover, there exist a sequence {A;}jen € ¢#(N)
and a sequence {a;}jen, of (0o, p, ¢)-atoms on X with the property that (5.124) holds.
Observe that by 6 in Proposition 5.2 we have

Rf =Y Maj in Z,(X.p). (5.128)

JjeEN

As such, the conclusions of this lemma now follow from (5.128) and Corollary 5.9.
O

At this stage, we have just shown in Theorem 5.10 that by restricting linear
functionals belonging to H.,7(X) to Z, (X, p), the elements of H%,?(X) can naturally
be viewed as elements of HY (X). In turn, this association induces a well-defined
linear mapping of H,,7(X) into Hy(X). In this next stage, our goal is to show for
a smaller range of p’s that this mapping is injective so that, in a suitable sense,
we may view H,?(X) as a subset of Hy(X, p, ). This is done in Theorem 5.12
below. A key tool in its proof will be an approximation to the identity given as in
Theorem 3.22. As such, in the following lemma we will take a moment to explore
further the nature of an approximation to the identity when applied to functions from
BMO, (X, q, 1t). A version of this result can be found in [MaSe79ii, Lemma 5.3,
p. 304] for ¢ = 1 using the approximation to the identity constructed by the authors
in [MaSe79ii, Lemma 3.15, p. 285]. Granted that the approximation to the identity
constructed in this monograph presents a number of improvements to [MaSe79ii,
Lemma 3.15, p. 285], Lemma 5.11 below extends the work of [MaSe79ii]. We also
with to mention that the authors in [MaSe79ii] chose to omit the proof of [MaSe79ii,
(5.5), p-305] (for the analogous equation, see (5.131) in Lemma 5.11 below). Here,
we include the proof of (5.131) as its justification is not trivial.
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Lemma 5.11 Let (X, q, 1) be a d-AR space for some d € (0, 00). Fix and exponent
q € [1, 00) along with a quasi-distance p € q and a parameter o € R with

0 < a < [log,C,| 7" (5.129)
Finally, consider {S;}o<i<:,, an approximation to the identity of order . Then,

sup |S;

O<r<ts

”BMoq_o(X,q,m—>BMoq.o<x,qm < 0. (5.130)

Moreover, for each fixed B € (0, o] and for each fixed y € LP(X, q) one has (with
os € qasin(2.21))

lim IS —y|9du =0, VxeX, Vre(0,00). (5131

t—0t Bpy (x.r)

If, in addition, p is assumed to be a Borel-semiregular measure on X then (5.131)
also holds for each v € BMO, (X, q, 1).

Proof Fix B € (0, ] along with a function ¥ € .Z#(X, q). By Comment 3.23 we
have

lim Sy = ¢ in L®(X, ). (5.132)
t—0t
Consequently, if x € X and r € (0, co) then
[ 1S =l du < w(Bp IS~ . Ve O, 6133)
By (x,1)

from which (5.131) follows, granted (5.132).

We will prove next (5.131) in the case when ¥ € BMO, (X, q, t) under the
additional assumption that p is Borel-semiregular on X. Fix a point x € X along with
numbers r, & € (0, 00). By definition of BMO, o (X, q, ), there exists a bounded and
continuous function ¢ : (X, tq) — C such that

/ [ —|?du < e. (5.134)
Bpy (x.Cpyr)

With C € (0, 00) as in Definition 3.21, observe by (i) in Definition 3.21, we have
that if 7 € (0, t,) is small (relative to r) then

By, (v, Ct) C By, (x,Cp,r) forevery ye B, (x,r). (5.135)
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Hence, for these small values of # we have

SY0) = / 510, )Y (@) du(2)

Bp# (v,Ct)
_ / 510 D, .oy DV () da2)
Bp# (v,Ct)

= (813, wco,n¥) ), (5.136)

for every y € B, (x, r). Consequently, for these values of k we have

/ Sy — Yl dp = / 18,y w00 V) — L oo | di
Bp#(x,r) Bp#(x,r)

<h+bL+1, (5.137)

where we define

I = C/X |S: (18, .oV — 18, (r.Con @) | dit (5.138)
L:=C / 815, (x.c,,n®) — 18, (.o |" di.  and (5.139)
X

I; = C/ |IBP#(X'CP#r)w — IBP#(x,C,,#r)(Nq dpL, (5140)
X

for some C = C(g) € (0, 00). Observe first that, thanks to (5.134), we have
I3 SC/ [V —lfdu < e. (5.141)
Bpy (x.Cpyr)

Before continuing with the bounding of I; and I, it is helpful to note that
IBP#(X,CP#,)I// and pr#(x,cp#r)QD both belong to L4(X, p). In light of this, it follows
from (3.135) in Theorem 3.22 that there exists a finite constant C > 0 such that
I < CI; which, by (5.141), is further bounded by Ce. Moreover, by (3.142) in
Theorem 3.22 (keeping in mind p is assumed to be a Borel-semiregular measure
on X) we may choose ¢ € (0, ) small enough so that [, < ¢. In summary, this
analysis shows that there exists a finite constant C > 0 such that, for small values
of t € (0,1), the expression in (5.137) is bounded by Ce. This finishes the proof
of (5.131) given that x € X and r € (0, oo) were chosen arbitrarily.
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Now turning our attention to proving the estimate in (5.130) fix # € (0,2),
along with x € X and r € (0,00). We will consider first the case u(X) = oo.
Then, given how || - [[BM0,(x.q..) Was defined in this scenario, we need to estimate
S [IBMO, (x.q.10)- With this in mind, observe

][B ( )|3t1/f(Y) —mg,, (xn (S¥) iqdu(y)

q
f (L s -svelae) o, G1a
By (x,1) By (x,1)
On the other hand, by (iv) in Definition 3.21 we have for any ¢ € C

Sy —-Sv(z) = /X[St(y, w) — Si(z, w)] - [ (W) — c] du(w),  (5.143)

for every y,z € X. Moreover, by (i) in Definition 3.21 we may conclude that if
¥,2 € By, (x,r) then

supp [S/(y,-) — Si(z, )] € By, (v, Ct) U By, (z, Ct) € By, (x, c(t+ r)) (5.144)
If1 < rthen By, (x, C(t+7)) S B, (x, Cr). Taking ¢ := mp,, (x.cr (¥) € Cin(5.143)

it follows from Fubini’s Theorem, (iv) in Definition 3.21, and the doubling property
for the measure u that

][ SYO) — S @) du(z)
By (x,1)
< / 100 )| 0) — i, oy () | dpa(ow)
By (x,Cr)
+][ / Se W) | 9) — s, ocry () | dit(w) dpa2)
By (x,1) J By (x,Cr)

<S(W)(y) + ][ )|W(w) —mg,, w.cn (¥) | dp(w)

By (x,Cr
< S W) () + [[¥IBmor.qu)- (5.145)
where we have set W(w) = W(w) — mBP#(x,C,)(w)|IBP#(X,C,)(W) for each w € X.

Note that W € L(X, ) given the membership ¥ € BMO, (X, q, t). Moreover,
by Holder’s inequality we have ||Y/[|smox.q.) < |¥ lBMO, (x.q.)- Combining these



5.1 Atomic Characterization of Hardy Spaces 193

observations with (5.142), (5.144), and (5.145) we have

][3 [SHO) = S0 [

< c][B ( )[8,(\11)]qu + CIY Ko, oxasn
py T

< ClY lsvo, o x> (5.146)

where the last inequality made use of (3.135) in Theorem 3.22.

Consider next the case ¢ > r. Then By, (x, C(t + r)) C By, (x. Ct). Suppose first
Ct = ry,(x). Then, similar to as before, letting ¢ := mgp,, (v.cn (¥) € Cin (5.143), it
follows from (i) in Definition 3.21 and the upper-Ahlfors-regularity condition for p
that for every pair of points y, z € B, (x,r)

SYO) - SYE| < / [ 0w) — s, o () | dpeow)

By, (x,Ct)

< Cl[¥lBMox.q < ClIV lIBMO,0(x.q.0- (5.147)

If, on the other hand, Ct < r,,(x) then in the current scenario we have r < r,,(x),
hence By, (x,r) = {x}. In particular, if y,z € B,,(x, r) then necessarily y = z = x
and therefore S, (y) — S (z) = 0. It follows from this and (5.147) that (5.142) is
bounded by a constant multiple of ||1//||%Moq’0(x’q’ - Given thatx € X, r € (0, 00)
and ¢ € (0, t,) were arbitrary we have

IS¢ llBmo, ox.a) = CllY llBMo, 0xqps V1 € (0,14, (5.148)

for some C € (0, co) independent of ¥ and . This completes the proof of (5.130)
in the case when p(X) = oo. If (X) < oo, then recall that

- lIBMo,ox.qm) = I+ I x) + || - IBMO, (X.q.10)- (5.149)
Hence, in this scenario the above estimates along with (3.135) (with p = 1) in
Theorem 3.22 justify (5.130) when w(X) < oo. This completes the proof of the
lemma. O

We are now in a position to prove the main result of this section. Namely, the fact
that

HY(X) € HP(X, p, ). (5.150)
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Theorem 5.12 Let (X,q) be a quasi-metric space and consider an arbitrary
number d € (0, 00). Fix exponents

d
S d 1, 5.151
pe(dﬂnd(xﬁq) } and q € [1,00] ( )

with q > p and suppose [ is a nonnegative measure on X satisfying (5.3) for d
(which is assumed to be Borel-semiregular when p = 1). Then for each p € q and
each o € R for which

d(1/p—1) <a < [log,C,] ™" (5.152)
the mapping % : H,'(X) — HY(X, p, i) defined by
Rf = f\%(x’p), Y f e HA(X), (5.153)
is well-defined, linear, bounded, and injective. Hence,
Hy!(X) € HY(X. p. p). (5.154)

Consequently, the above considerations imply that there exists a well-defined
linear mapping « - H,,'(X) — HY(X, p, t) which is injective and bounded. That is,

HY(X) € HE(X, p. ). (5.155)

Proof Fix p € q and ¢ € (0,00] as in (5.152). Then p and « satisfy (5.123)
in Lemma 5.10. As such, the conclusion in Lemma 5.10 implies that the linear
mapping %, defined as in (5.153), is well-defined and bounded. There remains to
address the injectivity of Z. In this vein, given that the restriction operation is linear,
it suffices to assume

feKerZ :={ge H (X): (g.¥) =0, VY € Zu(X,p)} (5.156)

and show (£, %) = O for each fixed ¥ € Z%/P=D(X,q) if p < 1 and each fixed
Y € BMOy o(X,q, ) (¢' € [1,00) such that 1/¢g+1/4 = 1) if p = 1. To this end,
fix such a function ¥. We will proceed with the proof in five distinct steps, the first
of which is as follows.

Step I: Assume ¥ is a nonnegative real-valued function having bounded
support in X.

To make matters concrete, suppose suppyy < B, (x«,r«) for some x, € X
and r € (0,00). Since f belongs to Hy;’(X) we may write f = Y .. A;ja; on



5.1 Atomic Characterization of Hardy Spaces 195

L4Wr=N(x,q) if p < 1 and on BMO, (X, q, 11) if p = 1, where the numerical
sequence {A;}jen € £7(N), and {a;};en is a sequence of (p,, p, g)-atoms on X. Next,
fix ¢ € (0, 0o) arbitrary and choose N = N(¢) € N such that

1/p
( ZWV’) <e. (5.157)
JEN,j>N

Note that such a choice of N € N is possible since {A;};jen € €7 (N). Going further,
fix xo € X and take ry € (0, oo) large enough so that

suppa; € By, (xo,rp) foreach je{l,...,N}. (5.158)

Lastly, consider an approximation to the identity, {S;}.,.,,, of order « satisfying
(i)—(iv) in Definition 3.21 with the quasi-distance ps € q. At this stage we wish to
establish the claim that

SV e € Za(X. p). (5.159)

In an initial step toward proving the first inclusion in (5.159), we wish to mention
that given ¥ vanishes outside of a pg-bounded subset of X, it follows from
property (3.141) in Theorem 3.22 that

supp ;¥ C By, (x*, C(r« + t)), Vite(0,t). (5.160)
As such, to prove (5.159) it suffices to show

{SV}0erar, € € (X. Q). (5.161)

granted (4.7). In this vein, if p < 1 then ¢ € ‘tﬁd(l/p_l)(X, q) € L*®°(X, n) from
which we may deduce (5.161) given (3.136) in Theorem 3.22.
We now address the case when p = 1. Recall that in this scenario

¥ € BMO, o(X. q. 1t) € LY, (X, 10). (5.162)

loc

Fix t € (0,1), along with two points x,x' € X and observe that the support
conditions for ¥ along with (i) in Definition 3.21 allow us to write

IS (x) — Sy ()|

/ S0V ) ) — / S DY) du )
By (x5,7%)

Bp#(x*,r*)
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<[ s = SE 0 dro)
By (xx.1%)

< Cr T py(x, x')* / || du (5.163)

Bp#(x*,r*)

where C € (0, 00) is as in Definition 3.21. It follows that S, € €*(X, q) given
that the membership ¥ € L (X, ), with ¢’ € [1, 00), forces ¥ € L} (X, u). This

loc loc
finishes the proof of (5.161) and in turn the proof of (5.159). As a consequence
of (5.159) we have that the pairing between f and S;¥ is meaningfully defined.
Having established (5.159), we have (f,S;¥) = 0 for every tr € (0, 1) since

f € KerZ. Therefore,

N
(fv) =Ly —Sy) =D Ala. ¥ — Sivp)
j=1
+ ) Ailag v = Sp). (5.164)
JjEN,j>N

By (3.137)—(3.138) in Theorem 3.22 (if p < 1) and Lemma 5.11, specifi-
cally (5.130), (when p = 1) there exists a finite constant C > 0 such that

sup ||St'(ﬂ||$d(l/p—l)(x’q) < C”l//”_gd(l/p—l)(x’q) lfp < 1, and (5165)

O<t<tsx

sup [|Si¥llBmo, yxqum = CllVIBMO, gxqw  ifp=1.  (5.166)

O<t<tsx

As such, by part 5 in Proposition 5.2 and the fact that  — S,y € £4/P=D(X, q) if
p <land ¢ — Sy € BMOy o(X,q, n) if p = 1 we may estimate

1/p
S e v — S| < c( ) ij’) 1l nera
JEN,j>N JjEN,j>N
= C”w”‘,%d(l/p*l)()(,q) £. (5.167)
if p < 1 and, corresponding to the case p = 1,
1/p
> istaw = 5| = A7) Iohavio o

jEN,j>N jEN,j>N

= Cll¥llemo, 4(x.a.0 &- (5.168)
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On the other hand

N

Z (aj, v =S¥ >‘

N /¢
(Tl )( [ w-svran) T cie
=1

o (X0,70)

where

lim v — Syl du =0 (5.170)

—>0F By (x0,70)

by (5.131) in Lemma 5.11. Here, recall that p is assumed to be Borel-semiregular
when p = 1. By picking 7 € (0, co) small enough, combining (5.164) and (5.167)—
(5.170) shows ( f, ¥) = 0 assuming i has bounded support. If X is bounded, i.e.,
if (X)) < oo, then this implies f = 0 on Z4/P=D(X,q) if p < 1 and every
¥ € BMOy o(X,q, ) (¢’ € [1,00) such that 1/¢g + 1/¢' = 1) if p = 1. Thus, in
what follows, assume @ (X) =

Step II: Assume V¥ is a bounded, nonnegative real-valued function.

By Theorem 2.6, we may consider a bounded function ¢ € ¢ (X, q) such that
0 < ¢ < 1 pointwise on X, ¢ = 1 on B, (xo, r9), and ¢ = 0 on X \ B, (x0, Cy,70),
where B, (xo, o) is as in (5.158). Moreover, by possibly increasing ry € (0, c0) so
that ro > 1 we may assume  satisfies |||« xp =1 Granted that ¢ has bounded
support we may deduce that in fact ¢ € Z,(X, p).

Define  : X — [0, 00) by setting n := max{y, |V |lco¢}. Then n = ||| 0o On
By, (x0,70) and n = ¥ on X \ By, (xo, Cp,70). Also, if p < 1 then (2.39)-(2.40) along
with the fact d(1/p — 1) < a imply n € £41/P=D (X, q) with

191l a1 gy < € (11l zaov—n gy + 1V lloo) - (5.171)

Moreover, given that ||1]lco < ||V |lco and that the function ¢ is continuous we have
n € BMOy o(X, q, ) with

Inllsmo, yx.am = CllY lloo- (5.172)

As such, it follows that the function v — n € Z4/P=D(X q) if p < 1 and
Y —n € BMOy (X, q, 1) if p = 1 and has bounded support. From what we have
proved earlier in Step I, this implies ( f, ¥ — 1) = 0. Moreover, since 7 is constant
on the supports of @y, . . ., ay we have from the vanishing moment condition on the
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atoms ajy, ..., ay (keeping in mind 5 in Proposition 5.2) that
1/p
AW =1Aml < Y Il < c( 3 M,-V’) P
JjEN,j>N JjEN,j>N

< C(I¥llgamneg + 1¥lo) e, (5.173)

if p < 1 and similarly, if p = 1

1/p
s 3 Wl = (3w Inlaviosycan
JEN,j>N JEN,j>N
< Cl¥ oo & (5.174)

Given that ¢ € (0, 00) was chosen arbitrary, this implies that (f,¢) = 0 if ¥ is
bounded.

Step III: Assume Y is a nonnegative real-valued function.

For each k € N define the function ¢; : X — [0, 00) by setting ¢ := min{y, k}.
Then by design, for every k € N we have ¢y is pointwise bounded and ¢; < ¥ on
X. Moreover, we have

o € LU (X q) with gkl pam-nag < 1V gamxg (5175

ifp<1and

¢k € BMOy o(X.q, 1) with [lgllBmo,, ycx.am = IV lBMO, ox.q) (5-176)

if p = 1. Also, the sequence {¢;}ren converges to ¥ pointwise on X as k tends to
infinity. Therefore, from we have just proved in Step I, { f, ¢x) = 0 forevery k € N.
As such, we may write

N

(f)=(f¥—o) =D Ala ¥ —a) + Y Alapy —e).  (5.177)
j=1 JEN,j>N
Then on the one hand, appealing to part 5 in Proposition 5.2, we have

ZA a]sw @k

JEN,j>N

1/p

<C( > 1 |P) 1V — @xll aoimn x.q

JjEN,j>N

< Cl|¥ |l ar—1x q) &- (5.178)
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if p < 1 and similarly, if p = 1

1/p
Z Ailaj, ¥ —@i)| < C( ZM |p) 1V — @ellBmo, o (x.q0)
JEN,j>N JEN,j>N
=< Cl¥llsmo, ox.qum - (5.179)
On the other hand,

N N
> Aitas v — i) §ZIA/I/XIaj|-Iw—<ka m
j=1 J=1

=z

Z | Nlajll oo - 1 = @8, om0 e 0

(5.180)

which, by Lebesgue’s Dominated Convergence Theorem, tends to zero as k tends
to infinity where the domination is provided by Y15, (x.r) € LY (X, n). Thus we

have shown ( £, ¥) = 0 for each fixed € Z41/P=D(X,q) if p < 1 and each fixed
Y € BMOy o(X, q, ) if p = 1 which takes nonnegative values.

Step IV: Assume V¥ is a real-valued function.

Note that whenever p # 1, (2.39)~(2.40) imply that the positive and negative
parts of v, denoted by v+ and _ belong to €*!/?~D (X, q). Combining this with
the fact that

max{[|¥+[loo. [[¥~lloo} =< [I¥lloo- (5.181)

gives ¥y, Y € L4/P=1(X, q). Whenever p = 1 then by (5.10) we have that v/
and v belong to BMO, o(X, q, ). Combining this with the fact that ¥ and ¥
are both nonnegative functions, we may conclude from what has been established
in Step III that ( f, ¥+) = (f, ¥—) = 0. As such, we also have

(L) = (fiy+ —¥-) =0, (5.182)

granted the linearity of f.
Step IV: Assume ¥ (as above) is arbitrary.

Write ¥ = u + iv where u,v : X — R and observe that by virtue of the fact
Y e LW D(X, q)ifp < 1land ¥ € BMOy (X, q, ) if p = 1 we have u and v
belong to .Z41/P=D(X,q) if p < 1 and to BMOy o(X,q, n) if p = 1. As such, the
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conclusion of Step IV permits us to deduce that { f, u) = (f, v) = 0 which further
implies

(fiv)=(fiu+iv) =0, (5.183)

granted the linearity of f. This finishes showing that % is injective and in turn the
proof of (5.154).

There remains to establish the justification of the inclusion in (5.155). Observe
that, taking ¢ : H.Y(X) — H5(X, p, it) to be the composition of Z and the identity
operator in (4.85) readily yields (5.155), finishing the proof of Theorem 5.12. 0O

As a consequence of Theorem 5.12 we have the following completeness result
for H,,7 (X).
To summarize, the above analysis shows that

HE™ (X) € Hy'(X) € HA(X. p. ) S Hy(X. p. o) (5.184
for every p and g as in (5.151) and every « and p as in (5.152). .

Thus, in order to prove that all of these spaces coincide (i.e., that they may be
identified with one another in a natural fashion), it suffices to check that the injection
H'®(X) < HP(X,p.p) is onto. The essential tool in this endeavor will be a
refined version of the Calderén-Zygmund decomposition suitable for distributions
belonging to H,(X, p. 11).

5.2 Calderén-Zygmund-Type Decompositions

The Calderén-Zygmund decomposition has been an indispensable result in Analysis
since it came to fruition in 1952, appearing in [CalZyg52]. Maintaining its signif-
icance, it will also prove to be a principal tool in showing that every distribution
whose grand maximal function belongs to L” can be decomposed into a linear
combination of atoms. The Calderén-Zygmund decomposition is well-known in the
Euclidean setting (cf., e.g., [St93]) with extensions to spaces of homogeneous type
in [CoWe77]. Macias and Segovia in [MaSe79ii] obtained a similar result in the
context of the so called normal spaces [MaSe79ii, Lemma 3.2, p. 280]. Our goal here
is to generalize this result to the setting of d-Ahlfors-regular quasi-metric spaces.
The two key ingredients in its construction will be the Whitney-type decomposition
stated in Theorem 2.4 along with a subordinate partition of unity (presented in
Theorem 2.5) which takes into account the optimal range of smoothness measured
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on the Holder scale. Before proceeding, we present the following a few useful
lemmas, the first of which is of a geometrical flavor.

Lemma 5.13 Let (X, q, i) be a Ahlfors-regular quasi-metric space of dimension
d € (0,00). Also, assume x € X, r € (0,00) and q € (d, 00) are fixed. Then for
every p € ( there exists a finite constant C > 0 depending only on q,d, p and |
such that

r q
/X(mf) dp(y) < Cu(Bp, (x. 1)) (5.185)

where py € q is as in (2.21).

Proof Fix p € q and consider py € q as defined in (2.21). Then, granted (2.81)
and (2.28) we have that the function ps(y,-) : X — [0, 00) is u-measurable for
any fixed y € X. In particular, all pg-balls are pu-measurable. In fact, it follows from
Proposition 2.12 that p satisfies the Ahlfors-regularity condition in (2.78) with p
replaced with py. Thus the expressions present in (5.185) are well-defined.

Moving on, notice that if B,,(x,7) = X then (5.185) holds almost trivially for
any C € [1, 00). Indeed, since px(x,y) + r > r for every y € X, the desired estimate
follows. Thus we may assume X \ B, (x, r) # @. In this scenario, we write

r q
/X(p#(x, y)+r) w0)

r q r q
= — ) 4 — | d
/Bp#(x,r) (P#(Xs y) + V) M(y) * /X\Bp#(x,r) (p#(xs y) + V) M(y)

r
< u(Bp,(x, 1) +/ (
( P ) X\Bpy (x,1) ,O#(X, y)

q
) du(). (5.186)

Therefore matters have been reduced to estimating the second term in (5.186).
To proceed, fix a finite constant M > C,, (where C,, is as in (2.2)) and let
s 1= max{r, rp, (x)/M}. Then B,,(x, s) = B, (x, r). Moving on, for each k € Ny
define

Ay := By, (x, M)\ By, (x, M"s). (5.187)

Note that such a choice of M ensures the collection {A;}ren, consists of mutually
disjoint, p-measurable subsets of X such that | J,cnyAx = X \ By, (x, 5). From
this and the upper-Ahlfors-regularity condition satisfied by p in part 2 of Propo-
sition 2.12 (keeping in mind that by design sM* > r,, (x) for every k € N) we may
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estimate
q q
[ ( . )du(y)=/ ( . )du(y)
X\Bp, (x,5) p#(xs y) UAx p#(xs y)
! k k+1
= d My M
N ) RECEDIRICRIT AR
=Cs' Y M) = ¢ (5.188)
k€Ny

for some finite C = C(q,d,p,p) > 0, granted ¢ > d. In order to finish
the proof, recall that in the current scenario B, (x, r) is a proper subset of X.
Hence, s < diam,,(X) which, by the lower-Ahlfors-regularity condition for w in
Proposition 2.12 implies that (5.188) is further bounded by a constant multiple of
W(B,,(x, 5)) = w(B,,(x, r)) independent of x and r. This completes the proof of
the desired estimate. O

The next lemma in some sense can be thought of as an iterated version of
Lemma 5.13. Its proof relies upon a version of the Fefferman-Stein inequality. The
statement of this next lemma was formulated in [MaSe79ii, Lemma 2.22, p.279] in
the setting of normal spaces where the authors chose to omit the “simple” proof.
Here the result is presented in the setting of d-AR spaces and is accompanied along
with a complete proof.

Lemma 5.14 Let (X, q, i) be a d-AR space for some d € (0,00). Fix p € q and

consider numbers y € (0,00), g € (d/(d + y),00) and M € N. Then, with py € q

as in (2.21), there exists a constant C € (0, 00) which depends on U, d, g, y, and

M such that for any given sequence of finite numbers {ri}ren < (0, diamp(X)] and

sequence of points {x;}jen C X having the property that ) 1p,,(y.r) < M pointwise
jeN

on X, one has

7 d+y7]?
/X[Z(—’) } au) = Cu((JBn(.r)).  (5.189)
jEN

pu(x, ;) + 7 joN

Proof Suppose that the collection {B,,(x;, 7j)}jen is as in the statement of the
lemma. Then by the upper and lower-Ahlfors-regularity condition satisfied by u
in Proposition 2.12, there exists a finite constant C = C(u, p) > 0 (which may be
assumed to be at least 1) with the property that for each fixed j € N and each x € X
with x # x;

1 < (B s.1)) and

(B (. pa(x.37) + 17)) < Cpa(x.xp) + 1) (5.190)



5.2 Calder6n-Zygmund-Type Decompositions 203

granted that r; < diam,(X) < Cﬁ#diamp# (X) and pg(x, xj) 4+ r; > rp,(x;) whenever
x # x;. This, along with the definition of the operator M os» defined as in (3.73), we
may estimate for each fixed j € N and each x € X

no o ( (B, (7. 77)) )”d
p#(-xv -xj) + T - M(Bp#(xjs p#(-xv -xj) + V]))
- 1/d
= (Ml @) (5.191)

Combining this estimate with fact that M,,, &~ M, in the sense of (3.73) we have

i 1/d
m = C<MP# Lsp, (5) (x))

for every j € N and every x € X, (5.192)

where the constant C € (0, o0) depends only on u, p, and d. As such, granted the
assumptions on ¢ and y, it follows from (5.192), the measurability of the operator
M, when applied to functions in L} (X, 1) as seen in (3.44) of Theorem 3.7, a
version of the Fefferman-Stein inequality (cf. [GraLiuYa09i, Theorem 1.2, p.4]),
and the bounded overlap property of the collection {B,,(x;, 7;)}jen that there exists

a finite constant C > 0 depending only on u, d, g, y and M such that
i d+y 4
Yot—) | dr
X

jeN P (6, ) + 7

i (d+y)/d 4
=) Z(Mp#l%uj,q)(x)) ]du(x)

L jeN
i (d+y)/d 1
<cC / 3 (13,,#@,.,,,.) (x)) } dp(x) < Cu( B . r,-)). (5.193)
X | jeN jeN
This finishes the proof of the lemma. O

The following lemma will prove to be useful in obtaining the decomposition in
Theorem 5.16 below.

Lemma 5.15 Let (X, q) be a quasi-metric space. Suppose p €  and assume that
W is a nonnegative measure defined on a sigma-algebra of subsets of X which
contains all p-balls. Fix a finite number k > 0 and consider a finite parameter
o€ (O, [longp]_l]. Then there exists a finite constant C = C(k, p) > 0 with the
following significance.
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Ifp e Cff‘ (X, q) is such that
0<¢p=<lonX, /(pdp, >0 and suppy C B,(xo, rp), (5.194)
X

Sfor some xo € X and ry € (0, 00) that also has the additional property that

lell o,y < ko’ forevery B e (0.e), (5.195)

then the linear operator T, : Z,(X, p) — Zu(X, p) which associates to any given
¥ € Py (X, p) the function

-1
T, (¥)(x) == @(x) (/ wdu) /(w(x) —¥(2)e@) du(z), YxeX, (5.196)
X X
is well-defined and satisfies

1Tl < CIV g (5.197)

and

1T, () lloo < Cro ¥ Il (5.198)

forevery ¥ € Dy (X, p) and every B € (0, ).

As a corollary of this, T, maps bounded subsets of 7, (X, p) into bounded subsets
of Du(X, p), which in fact further implies that T, is continuous from (.@a X, p), ‘E%)
into (@a X, p), t%).

Proof Fix ¢ € ‘K;‘?‘ (X, q) satistying (5.194)—(5.195), along with a number § € (0, @)
and a function ¥ € Z,(X, p) € €*(X, q). Note that by the properties of the given

functions ¢ and ¥ that the function T, () : X — C is well-defined. Moving on,
observe by (5.194) and (5.196) we have

supp T, (¥) < suppg € B,(xo, 79)- (5.199)
Hence, T, () has bounded support. We now address the estimate in (5.197). Let

x,y € X and notice that (5.199) implies T, (y)(x) = T,(¥)(y) = 0 whenever
x,y € X\ B,(xo, o). In this case we trivially have

| T, () () = T, (0| < 1 llgs P3P (5.200)
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given that p takes nonnegative values. Thus it suffices to treat the case when the
point x € B, (xo, ro) and the point y € X. In this scenario we may estimate,

| T, (W) () = T,(¥) )|

—1
oV () — 0OV O) — () — 0() ( /X wdu) /X Vodu

= A + A (5.201)

where A; 1= go(y)(W(x) — W(y)) and

~1
2 = v (o) = 00) = (o0 = o0) ([ van) [ v

(X0, 70)
-1
- ( / <pdu) (0() — () / (W) — V()0 du(). (5.202)
X By (x0,r0)

Then on the one hand, since ¥ € ¢P (X,q)and 0 < ¢ < 1, we have

AL < 1Y) = VO < 1l o 0P (5.203)

On the other hand, since by assumption all p-balls are pu-measurable we have that
the function p(z,-) : X — [0, 00) is u-measurable for each fixed z € X. Hence,
by (5.195) we may estimate

-1
s < ( / wdu) o0 —e0l [ 0~ v
-1
< ( [ wdu) 16l P W [ P e )
< kg p P [l s () (Cor0)? = CllW Nl P )P (5.204)

Combining (5.203)—(5.204) we see that (5.201) is further bounded by C||v/||.;s )
p(x,y)P. The estimate in (5.197) therefore follows from this analysis.
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As concerns (5.198), observe for every x € X we have

-1
T, @) < o) (/ <pdu) / W) — ¥ @le@ du ()
X By (xo0,70)

-1
< Wlaraen ([ wdu) [ e e )

< 1l x ) (Coro)”. (5.205)

This completes the proof of the estimate in (5.198).

At this stage we observe that the fact that T, : Z,(X, p) — Z.(X, p) is well-
defined is a consequence of (5.197)—(5.198) and (5.199). Moreover, the estimates
in (5.197)—(5.198) along with part (9) of Theorem 4.2 imply that

T, maps bounded subsets of (.@a X, p), r%) (5.206)
into bounded subsets of (@a X, p), t%). .

Granted that (.@a X, p), r%) is an LF-space (cf. part (4) of Theorem 4.2), we have
that the mapping property in (5.206) is equivalent to the continuity of 7;,. This
finishes the proof of the lemma. O

We are now in a position to present a Calderén-Zygmund-type decomposition
at the level of distributions. In keeping with the spirit of the original formulation in
[CalZyg52, pp. 91-94] (done in the Euclidean setting for functions belonging to L7),
we decompose a distribution f € H% (X, p, t) into two other distributions, denoted
by g.b € HL(X, p, ju), having certain desirable qualities (the reader is referred to
the statement of Theorem 5.16 below for a precise listing of these properties). As
described in Theorem 5.16, we are able to obtain such a decomposition for every

d
el—————.1]. 5.207
P (d+ind(X,q) } 6207
We wish to mention that this range of p’s is optimal in sense that, when Theo-
rem 5.16 is specialized to the case when® (X, p, 1) is (R?, | - — - |, £¢), then (5.207)
ensures the validity of such a decomposition whenever
€ d 1 (5.208)
PE\a+1 '

Shere and elsewhere, £¢ denotes the Lebesgue measure in R?
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which is precisely the range intervening in the classical theory in this setting. This
central feature of our result is conspicuously absent in all previous works dealing
with this topic. See, e.g.,7 [MaSe79ii, Lemma 3.2, p.280] and [Li98, Lemma 3.7,
p- 17] where the specified range of p’s becomes

pE (%, 1i| (5.209)
1 + [log, 3]

and not the expected range p € (1/2, 1]. In this respect, Theorem 5.16 broadens the
scope of the aforementioned works by extending the range of p’s to a larger, more
natural range in the more general setting of d-AR spaces.

In addition to our result encompassing the classical theory, it is remarkable that
there are naturally occurring examples of d-AR spaces for which the decomposition
described in Theorem 5.16 may be performed for any p € (0, 1]. For instance, if X
is the four-corner planar Cantor set E from (2.106) and d, is the ultrametric given
asin (2.161) then (5.207) implies that the conclusions of Theorem 5.16 are valid for
every p € (0, 1]. This full range of p’s cannot be treated by the results presented in
[MaSe79ii] and [Li98] since the techniques employed by these authors will never
allow p < 1/2.

Theorem 5.16 (Calderén-Zygmund-Type Decomposition for Distributions)
Let (X, q, t) be an Ahlfors-regular space of dimension d € (0, 00). Fix a number

d
Pe (d +ind(X.q)’ 1} G210

and consider a quasi-distance p € q and a parameter @ € R satisfying
d(1/p—1) <a < [log,C,] ™" (5.211)

Assume further that f € HY(X, p, ). That is, with py € q as in (2.21), assume
f € Z,(X, p) with the property that [\, € LP(X, ) for some y € (0, 00) with

.y
dl/p—1) <y <a. (5.212)
Suppose that t € (0, 00) is such that the open set

Qi={xeX: fr &>t C (X, 19 (5.213)

is proper subset of X and assume 2, is nonempty. Consider the Whitney-type
decomposition {B,,(x;,1j)}jen of 2, satisfying (1)-(4) in Theorem 2.4 and let

"These examples only cover the 1-dimensional Euclidean setting as the results in [MaSe79ii] and
[Li98] are only applicable in 1-AR spaces.
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{@j}ien € ‘to”;‘.)‘ (X, q) be the associated partition of unity given as in Theorem 2.5
(with py in place of p) for some choices of A, A" € (C,,, 00) with A > A'Ch,.
Finally, for each j € N define b; : Z,(X, p) — C by

(bj, v) == ([ Ty,(¥)). V¥ € Zu(X.p), (5.214)

where Ty, (V) is as in (5.196). Then there exists a finite constant C > 0 (independent
of f) such that for every j € N one has b; € (X, p) with

d+y
r
( )p# ya(‘x) —= Ct (p#(x’ .X]) + r]) IX\BP#(Xj,)»/Cp#rj)(x)

HCL oW, ac,m@)  (5.215)

forevery x € X and

(B puldn=C [ ()i (5.216)
/X Mt By (M Cpgr)
Moreover; there exists a distribution b € 9,(X, p) such that

dYbi=b in ZLX.p) (5.217)
jeN

and which satisfies

d+y
W) < 1% (p#(x L) e, Vaex.
(5.218)
and

/ (b ) di = C /Q (£ ) du. (5.219)

Hence, b € Hy(X, p, ) with ”bp# )/OtHU’(X W = H por HU’(X,M)'
Additionally, the distribution g € 9,,(X, p) defined as g :== f — b satisfies

d+y
r
gp# }/a(x) = CIZ (m) + Cfp:’y’a(.x)lx\gt(x), VxelX.

JEN

(5.220)
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Finally, for each g € [p, 00), there exists a finite constant ¢ > 0 which depends on q
and the constant C € (0, 00) (as above) with the property that

J e = o [ (52 (5:221)

In particular, g € ﬂqe[p,oo) HL(X, p, j0).

Proof Fix j € N. We begin by justifying why b;, given as in (5.214), is well-
defined. It follows from Theorem 2.5, specifically (2.50)—(2.51), that the function
¢; satisfies the hypotheses of Lemma 5.15. As such, it follows from the conclusion
of Lemma 5.15, (5.214), and the fact f € Z.(X, p) that b; € Z,(X, p). For the
sake of completeness we wish to mention that €2, is open in (X, 7q) as a result
of the lower semi-continuity of p’;’y’a (cf. Lemma 4.7) and the definition of £2,.
Incidentally, from (2.81) we have that €2, is p-measurable. Additionally, the fact
that €2, is properly contained in X follows from the choice of the parameter ¢ and
the assumption p’;’y’a e [7(X, n). Finally, the existence of such a partition of unity
(constructed in relation to the quasi-distance py) of order « is possible granted that
C,, < C, implies a < [log,C,,]”". Hence, « satisfies (2.49) in Theorem 2.5.

Moving on, we focus next on disposing of the claim in (5.215). To this end,
fix x € X. We begin by considering the case when x € X \ By, (x;, A'Cp,1;).
Suppose ¥ € T,Y(x) is supported in B, (x,r) for some strictly positive radius
r € [ry,(x),00) and is normalized as in (4.29) relative to r. Note that by (2.51)
we have suppg; C B, (x;, A'r). Therefore, by the definition of T, in (5.196) if
B, (x;, A'rj) N Bp,(x,r) = @ then T, () = 0 and hence (b, ) = 0. As such, we
assume B, (xj, A'r;) N By, (x,r) # @. In this scenario it is easy to see that

Mrp<r and pg(x,x;) < Cp,r. (5.222)

Lety; € X \ ©, be as in (3) in Theorem 2.4. Then, px(xj, y;) < Ar; and therefore
supp Ty, (¥) € supp@; € By, (xj. A'rj) € By, (vj. ACp,1)). (5.223)
where A € (A,00) is as in the conclusion of Theorem 2.4. Note that the last
inclusion in (5.223) follows from the fact that for each z € B,,(x,A'r;) we may

estimate (keeping in mind A'C,,, < A)

pu(yj,2) < Cp, max{ps(yj, %)), ps(xj, 2)}
< Cpymax{l’, A} r; < ACp,r;. (5.224)



210 5 Atomic Theory of Hardy Spaces

Then since, y; # x; we have ACy,1; > r,, (y;). Moreover, by Lemma 5.15 may write

d+
(Acp#rj)d+y”Ttpj(l/f)”sgfy(x,p#) = er y”w”?ux,p#)

d+y
o I [ P

rj d"r)/ rj d+y
) <C (5.225)
pu(x, ;)

and similarly

d+y
d d+y . T
(ACo i) ITyy (W)l < CF ||1/f||<m(x,p,,)sc(p#(x,x]_)) . (5.226)

Combining (5.223), (5.225), and (5.226) we see that

7 —(d+y)
c (p#(xj xi)) Ty (V) € Ty a0 (5.227)

for some finite constant C = C(pg, A, d, y) > 0. In turn, (5.227) implies

b cl—5L T forg o 5228
. < ! ) < . .
oy ¥l < (p#(x,)?i)) Toura ) = t(p#(x,xj)) 6229

Therefore, by taking the supremum over all such ¢ € 7;3:,& (x) we may write for all
x € X\ Bp, (x;, A'Cp,1y)

) Vj d+y
(b)) pyya(¥) = Ct ( i (x, x,»))

1 A/C d+}/ X d"r)/
< Ct( ;C ”#) ( d ) (5.229)
o# pu(x, ;) + 715

where the second inequality follows from using that A'C,,r; < ps(x,x;) in the
current scenario. This shows (5.215) holds whenever x € X \ B, (xj, A'Cp,r;).

Assume next that x € B,,(x;, A'C,, ;) and suppose ¥ € T} ,(x) is supported in
By, (x, r) for some strictly positive r € [r,,(x), 00) and is normalized as in (4.29)
relative to r. Consider first the case when r; < r. Then,

supp Ty, () C supp ¢; S By, (x, A'rj) S By, (x, AC,p,1), (5.230)
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where the last inclusion follows from the fact that (keeping in mind A'C,, < 1)

p#(z,x) < Cp, max{ps(z, X)), pu(xj, X)}

< Cpy max{1, Cp A1, < AC,yrj < AC,, 1, (5.231)

whenever z € By, (xj, A'rj). Then, AC,,r > r > r,,(x) and by once again appealing
to Lemma 5.15 we have

ACHD Ty (Dl g py < O W gy <C - (5:232)
and similarly (keeping in mind r; < r)
ACo N 1Ty (Wlloo < CrIIY v i pny < Cr7 I gr x pyy < €. (5:233)
Combining (5.230), (5.232), and (5.233) we see that
C'T,(¥) € T)) (%), (5.234)
for some finite constant C = C(p4, A, d,y) > 0. Accordingly, we have

(b )| < Cf k). (5.235)

in the case when r; < r.
Moving on we treat next the case when r < r;. With the goal of estimating
[{f: Ty;(¥))| we first write for each y € X,

-1
Ty (1)) = ;MY ) = ¢0) (/X %’du) /XWD; dp
= h(y) —ha(), (5.236)
where for every y € X, we define
—1
mo)i= a0 ad b= g0 ([wdn)  [voan 52

Focusing on £, we first note that by the definition of /; we have

supph; € supp ¥ C B, (x, ). (5.238)
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Furthermore, making use of (2.50), the first condition in (2.51), and the fact that
r < rj, a straightforward calculation shows

Inilloo < W lloo and il < 1 g iy + Cllloor ™. (5239
Moving along, we see from the definition of /4, in (5.237) that
supphy C supp ¢; C B, (x,A'Cp,17), (5.240)

where, in the current scenario A’'C,,r; > r > rp(x). Keeping in mind (2.51)
(specifically the third condition), let us now estimate ||/;||oo. Observe

—1 -1
[h2]lo0 < (/ <pjdu) /Iwmdu < (/ wjdu) / Rarm
X X Bpy (7,17 Bpy (x.r)

—1 — —
< CllY lloott(Boy (i 1)) 1(Bpy (x. 7)) < Cr|[W]|oor; @ < Cri?. (5.241)

where C = C(u) € (0, 00). Notice that the fourth inequality in (5.241) made use of
the lower-Ahlfors-regularity condition for u in Proposition 2.12. This is valid since
r; < Ry, (x;) granted B, (x;, r;) € €2, and that 2, is a proper subset of X (cf. (2.76)).
Going further, using (2.50) and the bound obtained in (5.241), it is easy to see that

—d —(d+y)
”hZ”%ﬂ'y(X,p#) =< CV] ||¢j||CgV(X’p#) =< er . (5.242)
Here, the constant C € (0, 00) depends on p and constants in the conclusion of

Theorem 2.5 (which are ultimately of a geometrical nature). In turn, the estimates
in (5.239), (5.241), (5.242), and the normalization of the function iy show that

Mlhilloo < 1Y lloo < C. (5.243)
Pl iy < TN gy ey + CFN W lloo < €0 (5.244)
(A Cppr) 2]l < C,  and (5.245)
(/\/Cp#ri)d_Fy”hZ”((éy(X'p#) <C. (5.246)

In summary, the estimates in (5.243)—(5.246) together with (5.238) and (5.240)
imply the existence of a finite constant C > 0 such that

C'h.C'hy e T (%) (5.247)
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which in conjunction with (5.236) implies
(B ) = (L T = (S )| + (S} = Cf o). (5.248)
Now combining this with (5.235) shows
(b ¥) = Cpya®. Y¥ €T, (). (5.249)

Then taking the supremum over all such ¥ € T,} 4 (x) where x € B,,(x, A'Cp,r;) it
follows that

(bj);#,y,a x) < Cfp:,m (x), Vx€B,(x,ACpry). (5.250)
Finally, note that (5.215) is consequence of this and (5.229).

Moving along, raising both sides of the inequality in (5.215) to the power p
(which is at most 1) and integrating in the x variable over X we obtain

[1055 oY a

rj d+y
< Ct| ——— 1 e
- /X { (p#(-x, .Xj) + r]) X\Bpy (1, Cpy j)('x)

)
+ C S ya @, .00y () ¢ dp(x)

i (d+y)p
) du)

<cr (—
X\Bpy (5.1 Cpyry) \ P (X, X)) + 7

+c / (fir,0)du.  (5.251)
By (54 Cpyr)

Therefore, by Lemma 5.13 (keeping in mind (d + y)p > d by assumption) and
taking into account B, (xj, A'Cp,1;)) S B, (xj,Ar;) € €, we have that the last
inequality in (5.251) is further bounded by

CtPH(Bp#(xjv'vcp#”j)) + C/ (fp:,y,a)pd“

Bpy (3.1 Cpy 1)

e / P dp(x) + C / (orya) it
Bpy (5.1 Cpy 1) Bpy (54 Cpyry)

C/ (fp:,y,a)pdﬂv (5.252)
Bpy (xj.A" Cpy1)

IA



214 5 Atomic Theory of Hardy Spaces

which shows the estimate in (5.216) is valid. Given thatj € N was chosen arbitrarily,
this finishes the proof of (5.216).

We next focus on examining the convergence of .oy b;. With the idea of
wanting to use Lemma 4.8, fix ¢ € (0, co) arbitrary and introduce for each n € N,
fo = 2 =1 bj € Z,(X, p). Observe by (5.216), the bounded overlap property in
(2) in Theorem 2.4, and the fact that B, (xj, A'C,,rj) € Bp,(x;, Ar;) we may write
foreachn,k e N

n+k

/X [k = fyuldi < 3 / ()%, (5.253)

j=nt1

n+k

p
=C Z / (fp:qy,a) dp
j=n+1 By (x4 Cpy 1)

<C * VYdu < e,
B /fj By (A7) () i
Jj=n+1

for every n,k € N with n large enough. Indeed, such a choice of n is guaranteed
by Lebesgue’s Dominated Convergence Theorem. Given that ¢ € (0,00) was
arbitrary, we have that the sequence { f,},en S Z, (X, p) satisfies the hypotheses
of Lemma 4.8. In turn, we may conclude that there exists a unique distribution
b € Z,(X. p) such that }_ .oy by = b in Z, (X, p) which justifies (5.217).

At this stage we address the claim in (5.219) by first fixing ¢ € (0, co) arbitrary.
Observe that (4.36) in Lemma 4.8, (2) in Lemma 2.4, and (5.216) collectively imply
(keeping in mind the definition of the sequence { f;,},en)

[ G T (A A (V2

n

<ée+ Ny
) Z /B:p# (Xj,k’Cp#,j) (fp#,y,a) M

J=1

58+C/n (S a) du
Ul By (.07 PV

j=
<e+C /Q (for ) drt, (5.254)

whenever n € N large enough. Given that ¢ € (0, 00) was arbitrary, (5.219) follows
from (5.254). Incidentally, the estimate in (5.219) implies b € H5 (X, p, ju) granted

p:,y,a € L[’(X’ l’L)
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As concerns (5.218), fix x € X and let ¢ € T,} 4(x). Then, by (5.217) we have
(again maintaining the definition of the sequence { f, },en)

(b, ¥)| = limsup (£, )] < Bm D (B}, 0@ = D ), a0, (5.255)
e =1 =1

which further implies

pry.e =
jeN

bt < Z(b/);#,%a pointwise on X. (5.256)

Therefore, (5.218) immediately follows from this, the estimate in (5.215), and the
fact that

L Bo (. A Cpyry) = (5.257)
JEN

where the collection {B,,(x;, A'Cp,rj)}jen has bounded overlap (cf. (2) in Theo-
rem 2.4).

There remains to establish the estimates on g;#’w listed in (5.220). In this vein,
fix x € X and assume first that x € §2,. With this choice of x, suppose ¥ € T,} (x)
is supported in B, (x, r) for some strictly positive r € [r,, (x), 00) and is normalized
as in (4.29) relative to r. Given that

xeQ =By 1) (5.258)
JEN

(cf. item (1) in Theorem 2.4) we may choose k € N such that x € B, (x, rx).
Also, consider a point y, € B,,(xx, Ary) N X \ ©, and note that such a choice
of yi is guaranteed by (3) in Theorem 2.4. Once again appealing to Theorem 2.4
(specifically (2)—(3)), as well as using that dist,, (x, X \ €2,) > rx we may conclude
there exists ¢ € (0, 1) with the property that

" { J €N By (x. £r) N By, (xj, Arj) # @} <M. (5.259)
For the sake of exposition we set
Ji= {j € Nt B, (x. £r) N By, (3. Arj) # @}. (5.260)

Note that J # @ since k € J. Moreover, by our choice of A > C,, and the fact
& < 1we have

By, (x, err) € By, (xx, Cpu1i) S By, (xk, A1), (5.261)
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which implies B, (xk, Ary) N By, (xj, Arj) # @ for every j € J. Hence, by (4) in
Theorem 2.4 there exist two finite constants ki, k» > 0 such that

kirge <1 <kyr,, foreveryjeJ. (5.262)
Note that this and the definition of J in (5.260) implies the existence of a finite
constant C > 0, which depends on p4, A, and k; such that x € B, (x;, Cr;) for every
j € J. In particular,

ps(x,x;)) < Crj, Vjel. (5.263)

Moreover, again making use of (5.262) and the definition of J/ we may conclude that
there exists a finite constant C = C(ps, A, k2) > 0 such that

By, (xj, Arj) € By, (k. Cry), foreveryjeJ. (5.264)
To proceed we first consider the case when r < ery. Then, By, (x, r) € B, (x, &ry)

which by definition of both J and T, implies 7,,(y) = 0 for every j € N\ J.
Keeping in mind the definition of b;’s in (5.214) we may write

(8. V) = (L) =Y (b ¥) = (L) =D (b V)

jEN jes

= (L) =Y [(few) = (£ @) =D (fé). (5265

jeJ jer

where for each j € J we define

-1
¢ (y) == ¢;(y) [/ 7 dﬂ} / Vejdp, VyeX. (5.266)
X X
Given this definition, by (5.264)
supp ¢; € supp@; € By, (xj, Arj)) € By, (v, Cri),  VjelJ. (5.267)
Then since y; # x; and since k € J we have Cry > r,, (yi). Moreover, using (5.262)
and the fact that » < er;, executing the same argument as in (5.241)-(5.242)
(observing that ¢ is of similar form as that of /) will show that for eachj € J,
d+y | ~ d
PG iy < CF W oo < € (5.268)

and

113iloe < Cri¥ e < C. (5.269)
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By combining (5.267)—(5.269) with the fact that y, € X \ €, we have,

{C7' Bljer S T) 0 0)- (5.270)

It follows that

(@) < Cflai) <Cr Yjel. (5.271)

Therefore, recalling (5.262), it follows from (5.265) and (5.259) that

pu(x, x) + re )d+y

(g ¥) = D _{/.¢) = MCr (p#<x,xk> +

jeJ

d+y
< MCtZ (p#(x o r,) , (5.272)

given that py is [0, oo)-valued and x € B, (x, rx).
Let us now estimate |{g, ¥)| in the case when r > &ry. To proceed, write

(&) < AW+ 1By < L)+ Y 1By )]

Jj€J

+ > 1B )L, (5.273)

JEN\J

and observe that it suffices to further bound each of the three terms in (5.273) by the
right hand side of (5.220). Now granted that in this situation r > &ry, we have

By, (x.1) € By, (v 6™ Cy, A1), (5.274)

where S_ICI%#Ar > rp, (yx) since y, # x. Thus, since ¥ is already normalized
relative to r, there exists a finite constant C = C(g, p#, A) > 0 such that

C'y e T, 0. (5.275)

Consequently, since y; € X \ ©2;, we may estimate

s (X, X)) + i )d+y

(Al = Clpyalin) < Ct=Ci (p#(x, xX) + e

d+y

JjEN
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As concerns the second term in (5.273), first observe that (5.275) implies

> b ) < CY (B, 00 (5.277)

jes jeJ
Now, in light of the fact that y; € X \ €2,, our choice of A > A'C,, ensures
p#(xj, yk) = Arj > A'Cp,rj,  foreveryj € N. (5.278)

In particular, yx € X \ B, (xj, A'Cp, 1)) for every j € J. Using this, (5.263) and the
estimate in (5.215), we have that the inequality in (5.277) is further bounded by

d+y ity
Ct; (m) C’; (p#(x DT r]) . (5279
Putting together (5.277) and (5.279) we have

d+y
,-; by, v Ct%\; (p# T r]) . (5.280)

In order to estimate ) ien\s |(Bj, ¥}, notice that by the definition of J in (5.260)
we have

x € X\ B,,(xj,Ar;) whenever j e N\ J. (5.281)
On the other hand, our choice of A > A'C,, entails B, (xj, A'Cp,rj) € By, (xj, Ar})

for every j € N. Combining this with (5.281) implies x € X \ By, (xj, A’Cy,r;j) for
every j € N\ J. It therefore follows from (5.215) that

S b = C Y () ) < ctz(

d+y
) (5.282)
JEN\J JEN\J jeN

pa(x, x]) + 1

In concert (5.273), (5.280), and (5.282) give

d+y
< Ct ( ) (5.283)
j%\; P (x, x]) + 7
in the case when r > ery. In turn, we have shown up until now that for each x € 2,

d+y
Ctz (p#(x X)) + r]) Yy e p#a(x) (5.284)

JjEN
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Hence, taking the supremum over all ¢ € ’7;3:,& (x) in (5.284) shows (5.220) is valid
for every x € Q,.

We now consider the situation when x € X \ ;. Observe, if x € X \ 2, and
¥ € T, o(x) then (5.218) implies (keeping in mind the definition of £2,)

g ¥ = [N+ (b Y = e ) + b7, 0 ()

r; d+y
<Cfr L +CY (—) . (5.285)

jeN pi(x. X)) + 7j

Thus, taking the supremum overall ¢ € 7, p# «(x) in (5.285) shows (5.220) also holds
forx € X \ Q,, finishing the proof of (5.220).

Finally, we address the membership of g ya 1O ﬂqe[poo)L (X, u). Fix an
exponent ¢ € [p,00). Then raising both 51des of (5.220) to the power g and
integrating in the x variable over the whole space X we obtain

* q q T e
/X (&50.y0) ' = Ct /X LZN: (—p#(x’xj) +r,») ] dp(x)

+C/ £ ) du. (5.286)
X\Q,( Pi#> Vs )

To bound the second term in (5.286) observe that by the definition on €2, we have

pjiy.a < t pointwise on X. As such, since g > p we have

/X\Q (frya) ' dpt <177 /X\Q (fosya) du < t"“’/x(fp#ya)”du. (5.287)

Thus, we the desired bound for second term in (5.286).

Regarding the first term in (5.286), given the bounded overlap property of
the collection {By, (xj, 7;)},c (cf. part (2) of Theorem 2.4) and the fact that, by
assumption, ¢ > p > d/(d + y), we may invoke Lemma 5.14 in order to estimate

of [Z(+)d+y]qdﬂ(ﬂ

jeN p(x, ;) + 1

< Cru(Q,) < Cr P/(fp#ya)pd,u. (5.288)
X

Note that the first inequality in (5.288) is a consequence of Lemma 5.14 and the
fact that Q; = U;ey By (%7, 77) and last inequality made use of the definition
of €2,;. Combining (5.286)—(5.288) justifies the inequality in (5.221). Having
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established (5.221), the assumption p:,y,a € [P(X, n) necessarily implies the mem-
bership of g;#’y’a to ) selp.oo) L1(X, ). This concludes the proof of Theorem 5.16.

|

Comment 5.17 In the statement of Theorem 5.16 we considered ¢ € (0, o0) with
the property that the open set €2, defined as in (5.213), was a proper subset of
X. One can always find such a ¢ given any distribution f € HY(X, p, 11). Indeed,
since f;,, € LP(X, n) implies infrex £y, ,(x) < oo one has that Q; is a proper
subset of X for every finite number 7 > inf,ex p:,y,a (x). In particular, €2, is a proper
subset of X for any ¢ € (0,00) satisfying t > [w(X)]~'/? || oy ||U,(Xw (note:
infrex f,; 4 (x) = 0 whenever u(X) = oo which implies that any ¢ € (0, co) will
do in this context). The latter demand on the parameter ¢ has been considered in
[MaSe79ii, Lemma 3.2, p. 280].

However, the assumption that €2, is nonempty (made in the statement of
Theorem 5.16) is necessary since one cannot expect this conclusion to follow from

any of the above considerations. Take for example the scenario when p’;,y,a is
bounded from above on X. Unfortunately, this assumption often goes overlooked
in the literature. |

We now present a particular case of the Calderén-Zygmund-type decomposition
for distributions described in Theorem 5.16 in which the focus is now on decompos-
ing those distributions belonging to HY(X, p, ) which are associated with functions
f € Li(X, ) with g € [1,00]. In this case, f is split into two other functions
b, g € LY(X, u) enjoying a number of properties. Among other things, one has that
b is supported in the level set {x € X : f s.ya(X) > 1}, and g is bounded by a constant
multiple of . Incidentally, the functions b and g induce distributions which coincide
with the distributions b and g given as in Theorem 5.16. This decomposition, making
the object of Theorem 5.18, is obtained for every exponent

Again, we wish to stress that this range of p’s is optimal. When these considerations
are applied to the n-dimensional Euclidean setting, then (5.289) ensures the validity
of such a decomposition for every

pe (# 1] (5.290)

The above range of p’s fits into the framework of well-known results in the
n-dimensional Euclidean setting (cf. [CalZyg52, pp. 91-94] for the original appear-
ance, and [St70, p.31] for a more timely exposition). This is in contrast to the
work of Macias and Segovia since specializing [MaSe79ii, Lemma 3.36, p.292]
to the 1-dimensional Euclidean setting (the only dimension to which the results in
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[MaSe79ii] are applicable), would only yield such a decomposition for

1
pe (—_1 1. (5.291)
1 + [log, 3]

which is smaller than the expected range p € (1/2,1]. From this perspective,
Proposition 5.18 is a significant improvement over the work in [MaSe79ii], and
constitutes a genuine generalization of results in the Euclidean setting.

A salient feature of the range described in (5.289) is that it relates quantitative
geometric aspects of the ambient to the analysis such an environment supports. To
illustrate this, we wish to note that there are examples for d-AR spaces for which
some remarkable ranges of p’s can occur. For example, specializing Proposition 5.18
to the setting when X is the four-corner planar Cantor set E from (2.106) and d,
is the ultrametric given as in (2.161) then (5.289) implies that we can perform
the Calderén-Zygmund-type decomposition alluded to above for every p € (%, 1].
Such a range cannot be reproduced by [MaSe79ii, Lemma 3.36, p. 292] since the
techniques presented therein will always force p > 1/2.

Theorem 5.18 (Calderén-Zygmund-Type Decomposition for L?) Fix a number
d € (0,00) and let (X, q, 1) be a d-AR space where | is assumed to be a Borel-
semiregular measure on X. Consider exponents

d
- 1 d 1, 5.292
pE(dHnd(X’q) } and g € [1,00] ( )

and suppose the quasi-distance p € q and parameter o € R satisfy
d(1/p—1) < a < [logyC,] " (5.293)

Also, suppose the function f € L1(X, w) is such that the distribution induced by f
on 9,(X, p) belongs to Hy(X, p, ). Specifically, with ps € q as in (2.21), assume
that fo ., € IP(X, ) for some 'y € (d(1/p — 1),a) and consider the additional

demand that f; ., € LY(X, ) when g = 1.

Suppose that t € (0, 00) is such that the open set
Q= {x eX: fp:’y’a(x) > t} C (X, 1q) (5.294)

is proper subset of X and assume 2, is nonempty. Consider the Whitney-type
decomposition {B,,(x;, rj)}jen of , satisfying (1)-(4) in Theorem 2.4 and let
{@j}ien € ‘to”;“ (X, q) be the associated partition of unity given as in Theorem 2.5
for some choices of A,A" € (Cp,,00) with A > A'C,,. Finally, let the family of
distributions {bj}jen.b,g € Z,(X,p) be as in the conclusion of the Calderdn-
Zygmund-type decomposition result presented in Theorem 5.16. Then there exists
a finite constant C > 0 (which is independent of ) such that following hold.
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1. IfforeachjeN, m; := (fx (pjd,u)_l (f.¢j) € C, then
|m;| < Ct for every j € N. (5.295)

2. Iffor eachj € N, the function l;j : X — Cis defined by
bi(x) == (f(x) — m)g;(x), VxeX, (5.296)

then 13]- € ﬂre(o’q] L' (X, p) induces a distribution on 9,(X, p) which coincides
with b; for all j € N and satisfies

/Xiajdu =0, VjeN. (5.297)
Moreover for each j € N there holds
’l;,| <c(fl+ fp:’y’a)lgp#(xj’/vrj), for w-almost every pointin X. (5.298)
In particular,
||l;, ||Lq(X,;L) = CH fp:,y,apr#(XM’rj) ||L'1(X,;L) (5.299)
3. There exists a function b € ﬂrE(O, p L' (X, i) such that

b= Z l;j pointwise on X. (5.300)
jeN

The sum in (5.300) also converges in L' (X, 1) for every finite r € (0, q| and

in® L>®(K, i) for every compact subset K C (X,7q) when r = q = oo.
Consequently, one has

/Bdu =0. (5.301)
X

Additionally, b satisfies

ii)i < C(|f| + fp:,y,ot)lgt Sfor p-almost every pointin X.  (5.302)

8Tt is well-known that compact subsets of metric spaces are closed in the topology induced by
the metric. This conclusion remains valid in quasi-metric spaces given that associated topology is
metrizable. In particular, compact subsets of d-AR spaces are measurable (cf. Proposition 2.12).
Hence, when K C (X, 74) is compact, we can define L°° (K, ) in a natural fashion.
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In particular, there holds

HBHL‘I(X,;L) = CH fp:,y,alﬂr LI(X.p)" (5:303)

Moreover, the distribution induced by b on Z,(X,p) coincides with b. In
particular, one has b € HY (X, p, ).

4. The function 3 : X — C given by g := f — b induces a distribution on Dy(X, p)
which coincides with g. Moreover, g satisfies

g = flxng, + Z mj@; pointwise on X, (5.304)
jeN
and
|g] < Cmin {t, fp’;’y’a} for p-almost every point in X. (5.305)

In particular, one has g € (),ep.00) H (X, p, jt) and hence, § € (Mreft.o0) L' (X 1)

Proof We begin by noting that since p is assumed to be a Borel-semiregular
measure on X, Proposition 4.17 guarantees the existence of a constant C € (0, co)
(independent of f) with the property that

| f] < Cfp";qua for p-almost every point in X. (5.306)

Note that in the process of invoking Proposition 4.17 we have made essential use of
the demand that p’;’y’a € L'(X, u) when g = 1. Moving on we focus on proving
1 by fixing j € N arbitrary and noting that by (3) in Theorem 2.4 we may consider
a point y; € B,,(xj, Arj) N X \ Q, where A € (A, 00) is as in the conclusion of

Theorem 2.4. Consequently,
supp ¢ € By, (x;, A'rj) € By, (vj, Cpy A1), (5.307)
where, granted that y; # x;, we have Cp,Arj > r,,(y;). On the other hand, it

clearly follows from (2.51) in Theorem 2.5, and the lower-Ahlfors-regularity of u
in Proposition 2.12 that

—1 —1
(o) =(] o) =oms st
X By (x,17)

Notice that the use of the lower regularity is valid in (5.308) since r; < R, (x;) given
that B, (x;, r;) € €2, and that €2, is a proper subset of X. Going further, (5.308), and
the normalization in (2.50) imply that there exists a finite constant C > 0 (which is
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independent of f and j) such that

—1
( /X wjdu) l¢ifl o = Cri¢ and

—1
( /X <pjdu) |0l iy = Cri . (5.309)

Combining (5.307) and (5.309) it follows

—1
(C/%du) o €T, ) (5.310)
b'¢
which in turn implies

Imj| < Cfpyyai) < Ct, (5.311)

given y; € X \ ; and the definition of €,. Since j € N was chosen arbitrarily, this
finishes the proof of 1.

Moving on, fix j € N. Observe first that from (5.296) we have that the function
l;j is p-measurable granted f is p-measurable and ¢; is continuous, hence p-
measurable (cf. (2.81)). If ¢ = oo then it follows from I, the definition of l~)j,
and the fact ¢; € L*°(X, u) with suppg; S B, (x;, A'rj) that l;j € L*®(X, ) and

satisfies (5.299). If on the other hand ¢ < oo, observe by I, the definition of b;, the
support and size conditions on the function ¢; in (2.51) in Theorem 2.5, (5.306), and
the definition of ; we have

/\13j|qdu§C/ Ifl"du+C/ I i d
X By (xj,A'17) By (xj,A'17)

< C/ | f19dp + Crl (B, (7, A'ry))
Bpy (xj.1'rj)

=C / (frrya)'dp < oo, (5.312)
By (%, 1)

granted f € LY(X,p) implies fF , € L%(X,p). Hence, l;j € LY(X,u) and
satisfies (5.299). In fact, since by design each l;j has bounded support in X, we
also have 13]- € L'(X, n) for every r € (0,q) by Holder’s inequality. In particular
13]- € L'(X,p). From this and the definition of b; in (5.214) we can further

deduce (5.297).
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With T, j € N, as in (5.196), we have for each ¢ € Z,(X, p), (keeping in mind
f induces a distribution of function type)

(o) = (£, (9)) = /X F Ty () dps
=/f<ﬂjlﬂdﬂ—mj/1ﬂ<ﬂjdﬂ
X X

_ /Xijwdu = B.v). (5.313)

Given thatj € N and ¢ € %,(X, p) were arbitrary, this finishes the proof of 2.

Addressing next the claim in 3, observe for each x € X the sum ) l;j(x)
converges absolutely. Indeed, by combining the bounded overlap property in (2) in
Theorem 2.4, the definition of I;j, J € Nin (5.296), and the fact supp ¢; € B, (x;, Ar;)
for every j € N, we may conclude that

for any fixed x € X, the sum ) bi(x
Y 2jere i) (5.314)
contains finitely many nonzero terms.

Hence, ) jen bj converges pointwise to a j-measurable function b everywhere on

X. Moreover, granted /, the definition of 13]-, (3) in Theorem 2.5, (1) in Theorem 2.4,
and the definition of 2;, we have for each x € X

S 15| < D20 = m)ei)] < (f@] + Co) 1g,(x)

jeN jeN
< C(If @]+ fr,a@) 1g,(x). (5.315)
Hence, b satisfies (5.302). Combining this estimate with (5.306) we have

|l~9(x)| < Z |bi(x)| < Cfoya@®) 1g,(x) for u-almostevery x € X. (5.316)
jeN

Observe that ©u(2,) < oo granted the assumption p:,y,a e IP(X,un). As
such, since fp’;’y’a belongs to L(X, ) it follows from Holder’s inequality that

p:’%algt € L'(X,u) for every r € (0,g]. Consequently, this along with the
estimate in (5.316) is enough to conclude that b belongs to (Nreq L' (X, ) and
satisfies (5.303). Incidentally, by virtue of Lebesgue’s Dominated Convergence

Theorem, the estimate in (5.316) is sufficient to prove

Z Bj =b in L'(X,u), forevery finite r € (0,g]. (5.317)
jeN
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As such, (5.301) follows from (5.297) and the fact that the sum in (5.317) converges
in L'(X, ).

Consider next the case when r = g = oo and fix a compact set K C (X, 7q). We
want to show that for every ¢ € (0, 0o) there exists a number N € N such that for
each n € N with n > N there holds

n o0
b(x) — Z l;j(x) = Z l;j(x) < ¢ for p-almost every x € K. (5.318)
j=1 Jj=n+1

Observe that from the estimate in (5.315) and the fact that in the current scenario
f € L™ (X, ), we have for eachn € N

> b

j=n

o0
<C Z @j(x) for p-almost every x € X, (5.319)

j=n

where the constant C € (0, co) depends on f and the threshold ¢. If we introduce
Joi=22, ¢;foreachn € N then { f,},en is a monotonically decreasing sequence
on X which converges pointwise to zero by (5.314). Moreover, granted the bounded
overlap property described in (2.36), the support conditions on ¢; in (2.51), and the
fact that each g; is continuous on X, we have that f, is continuous on X for every
n € N. Hence by Dini’s Theorem’ we have that f,, — 0 uniformly on K as n — oo.
This in concert with (5.319) give (5.318).

Moving on, fix a finite number r € [1, ¢] and let the exponent 7’ € (1, o] be such
that 1/r + 1/¥ = 1. Then by what has been established in 2 and (5.217) we may
estimate for each fixed ¥ € Z,(X, p),

((bow) — (B )| = '(b,w—/xwdu‘ _

klggo( :l<b,-,1/f>—/xévfdu)'

J

k
= lim /l;'lﬂd,u,—/i)l/fdu)
k—00 ; X / X
k
< 1i b. — b . ’ = .
stim | Lh=bl W =0 (5.320)

where the last inequality made use of Holder’s inequality. Therefore, the distribution
induced by b coincides with b on Z, (X, p). This completes the proof of 3.

°Dini’s Theorem: If (27, 7) is a compact topological space, and {¢;};en is a monotonically
decreasing sequence of continuous real-valued functions defined on 2" which converges pointwise
to a continuous function ¢ : X — R, then the convergence is uniform.
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It remains to prove the claim in 4. Notice first, by 3 and that by assumption
f e L4(X, n) we have g € L(X, ) by design. Hence, g induces a distribution on
Py (X, p). Furthermore, by again appealing to what has been established in 3, we
have for each ¥ € Z,(X, p) (keeping in mind the definition of g in Theorem 5.16)

<g,1/f>=<f,w>—<b,w>=/Xfwdu—/xiavfdu

:/(f_;;)mzfgm. (5.321)
X X

It follows that the distribution induced by g coincides with g on Z,(X, p).
From (5.221) in Theorem 5.16 we have g € ﬂre[pm) I:Il;(X, o, ).

Going further, by 3 and the fact that ) jen ¢ = lq, pointwise on X we may write
foreachx € X

20 = f(0) —b(x) = f¥) = D _(f() — m)g;(x) (5.322)
jeN
= [, + D m¢;x).
jEN

Here, we have also relied upon the fact that the sum in (5.322) contains only finitely
many nonzero terms for any given x € X.

Lastly, we turn our attention to justifying the estimate in (5.305). By once
again relying on the fact ZieN ¢; = 1gq, pointwise on X, it follows from (5.306)
and (5.322) that

lg(x0)] < Cfp:’y’a (0 1x\q,(x) + Crlg, for u-almosteveryx € X. (5.323)

Then on the one hand, given the definition of €2,, we can bound the first term
in (5.323) by a constant multiple of 7, ultimately yielding |g| < Ct pointwise -
almost everywhere on X. On the other hand, by again making use of the definition
of ©Q; we have t1g, < p:’y’algt pointwise on X. Hence, from this and (5.323)
we have |g| < C p:’y’a pointwise p-almost everywhere on X. Consequently, we
have g € ﬁgo(X) and hence & € (),¢).00) H' (X, p, jt). Finally, combining this
membership of g with (4.156) in Theorem 4.16, which gives

I:I;(X,p,p,) CL'(X,u) whenever r e [l, 0], (5.324)
we have that g € ﬂre[lm] L' (X, p). This finishes the proof of 4 and, in turn, the

theorem. |

Comment 5.19 Regarding the statement of Theorem 5.18, when ¢ = 1 we placed

the additional demand that pj,m € L'(X, w). This requirement ensures that we
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may properly invoke Proposition 4.17 to conclude that (5.306) holds. In place of
this assumption one could simply ask that the function f belongs to LY(X, n) for
some g € [1, o], and satisfies (5.306). As Proposition 4.17 asserts, functions from
L(X, ) always enjoy this latter quality when ¢ € (1, oo]. However, in general, this
is not the case for functions in L' (X, 1t). The reader is alerted to an inaccuracy in the
statement of [MaSe79ii, Lemma 3.36, p. 292] concerning this matter. It instructive
to note that the full force of the property displayed in (5.306) was only used to
establish (5.299), (5.303), and (5.305). |

As a consequence of Theorems 5.16 and 5.18 we have the following result
highlighting the fact that the spaces LY(X, ) (| Hy (X, p, i) are decreasing in g for
each fixed p.

Corollary 5.20 Let (X,q, 1) be a d-AR space for some d € (0,00) where | is
assumed to be a Borel-semiregular measure on X. Fix exponents

d
4 4 d 1. 5.325
pe(d+mda¢n } and q € (1, o] (5.325)

and suppose the quasi-distance p € q and parameter @ € R satisfy
d(1/p=1) <a < [log,C,] ™" (5.326)

Also, f € Li(X, ) (HL(X, p. jb), i.e., suppose S € LiU(X, p) is such that the
distribution induced by f on Zy(X, p) belongs to Hy(X, p, i) (specifically, with
p# € qas in (2.21), assume that f, ., € LF (X, p) for some y € (d(1/p —1),a)).

Thenone has [ € ( MNrepi g L' X, w) N HY(X, p, ). As a corollary of this, there
holds

LX) (VH X o) = () LK) VHX.po).  (5.327)
r€(lq]

Proof The observations made in Comment 5.17 imply that the open set
Q ={reX: fp’:’y’a(x) > 1} € (X, 1q) (5.328)

is a proper subset of X if t+ € (0, co) satisfies > inf,ecx p’;’y’a (x). Note that such
a t exists since the membership f7  , € LP(X, u) implies infrex £, ,(x) < oo.
Suppose first that there is such a ¢ with the property that €2, # @. Then by
Theorem 5.18, the function f may be written as f = g + b pointwise on X where
the functions g and b belong to ﬂre[l"oo] L' (X, ) and ﬂre[l, o L' (X, ), respectively.
Hence, f € (),e1,4 L' (X, 1) as desired.

If on the other hand, 2, = @ for every finite number ¢ > inf,ey p:,wx (x), then
f p’;’y’a is constant on X. In particular, this forces ;1 (X) < oo given the membership

* e € LP(X, ). Consequently, /X € ﬂre[l, 4 L"(X, p). This finishes the proof

piy. pi.y.
of the corollary. O
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As a consequence on the Calderén-Zygmund-type decomposition in Theo-
rem 5.16 we obtain a density result in Theorem 5.21 below which shows that if

d

then LY N HY, is a dense subspace of H?, for every g € [1, 00). A version of this result
was formulated in the setting of normal spaces in [MaSe79ii, Theorem 3.34, p.291]
however there was a gap in the proof. Specifically, the authors did not consider
the case when €2, (as defined as in [MaSe79ii, Lemma 3.2, p. 280]) is empty. This
scenario is handled in the proof of Theorem 5.21 below.

Theorem 5.21 Let (X, q, 1) be a d-AR space for some d € (0, 00). Fix

d

and suppose the quasi-distance p € q and parameter o € R satisfy
d(1/p—1) < = [log,C,] " (5.331)

Suppose f € HL(X,p, ), that is, suppose f € 2!, (X, p) with the property that
p:’y’a e I’(X, ) for some y,a € R withy € (d(1/p — 1),a). Then for every
e € (0,00) and every q € [1, 00) there exists a function h € L1(X, i) such that the

distribution induced by h on 9,(X, p) satisfies
ICf=h)2, e ||U,(Xm <e. (5.332)

In particular, h € HY(X, p, 11).
As a corollary, if | is assumed to be Borel-semiregular on X then one has

Li(X, u) N ﬁg(X, 0, ) — ﬁg(X, 0, ) densely, forevery g € [1,00). (5.333)

In (5.333), the set L1(X, ) is to be understood as a subspace of 7,(X, p) in the
sense of (4.109).

Proof Fix parameters ¢ and ¢ as in the statement of the theorem and consider a
number § € (0, co0) to be chosen later. For each ¢ € (0, 00), consider the set

Q= {xeX: fr (0> 1, (5.334)

which, as previously noted, is ;i-measurable. Observe, 2, \ @ as ¢ tends to infinity,

granted p’;,y,a € IP(X, u). As such, we may choose a finite number # > 0 large
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enough so that €2, is a proper subset of X and

/Q (S ) dp < 8. (5.335)

See Comment 5.17 regarding the existence of a number ¢ € (0, co) such that 2, is
a proper subset of X. Suppose initially that 2, # @. Applying Theorem 5.16 for
this value of 7, we obtain two distributions b, g € Z, (X, p) such that f = b + g on
P (X, p) and which satisfy for some C € (0, co) (independent of f and 7)

/(b;#s)’sa)p d“ S C/Q (fl;:s)’sa)p d'u“’ (5336)
X '

and

/X (g5, ,0)" dp < C7P /X (frkva) dit. (5.337)

Note that (5.336) is a consequence of (5.219) and the estimate in (5.337) follows
from (5.221) (recall here that g > 1 > p).

Having (5.337), the membership f,; , , € L7(X, ) implies g7, , € LY(X, w).
As such, by Theorem 4.16 we have that there exist a function 2 € L7(X, i) such
that the distribution induced by 4 on %, (X, p) coincides with g, and satisfies

/X [(f —m)%, o) dp = /X [(f -9, (5338)

= [Gran < [ (72,0 dn < s

given (5.336) and (5.335). Since C is independent of + we may choose § € (0, o0)
such that § < &”/C finishing the proof of (5.332) in the case when Q, # @.

Suppose now that 2, = @. Then fp:’y’a < t pointwise on X and as such,

/X ( fp”;’y’a)qdﬂ <P /X ( fp’;w)”du <00 (5.339)

which implies p’:’y’a € LY(X, n). Therefore, by Theorem 4.16, we have that there
exist a function 2 € LY(X, p) such that the distribution induced by 4 on Z,(X, p)
coincides with f. Thus, in this case (5.332) holds trivially, as the left hand side
of (5.332) is zero. This finishes the proof (5.332).

As concerns (5.333), recall that from (4.109) we may identify L7(X, p) naturally
as subspace of (X, p) whenever u is assumed to be Borel-semiregular on X. As
such, the injection in (5.333) is immediate. Finally noting that the density follows

from the estimate in (5.332) completes of the theorem. O
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5.3 Decomposing Distributions into Atoms

At this stage, given a quasi-metric space (X, p), we are in a position to start in earnest
the proof that every distribution whose grand maximal function belongs to L can
be decomposed into linear combination of atoms whenever

d
el———, 1]. 5.340
P (d+[1ogch1—l } (-340)

The proof will consist of three stages. The first stage is presented in Lemma 5.22,
where we consider the decomposition of distributions belonging to L (X, 1) N H
for some ¢ < p. In this lemma we will show that this decomposition converges in
the sense of distributions, in a pointwise sense and in L' (X, ) for every r € (g, 00).

Lemma 5.22 will then allow us to handle the more general task of decomposing
distributions which belong to L(X, 1) N H}, where g € (1, oc]. This decomposition
converges in the sense of distributions, in a pointwise sense and in L"(X, u) for
every each finite r € (1/p, g/p]. This is done in Theorem 5.23 and is of independent
interest as it has applications to establishing boundedness on Hardy spaces of linear
operators.

In Theorem 5.25, we utilize Theorem 5.23 and the fact that L*>(X, ) N HE is
dense in HY to decompose any distribution whose grand maximal function belongs
to L.

As a consequence of these results, we will be able to fully characterize H, and
HY, the maximal Hardy spaces introduced in Sect. 4.2, with the atomic space H,>
consisting of those linear functionals having an atomic decomposition comprised of
L*°-normalized atoms. This is done in Theorem 5.26. Consequently, this will permit
us to identify

H?(X) = H,(X) = H,'(X) = HL ™ (X) (5.341)

for any exponents p as in (5.340), and ¢ € [1, oo] with g > p. This end result of
Chap. 5 is presented in Theorem 5.27.

From a historical perspective, the authors in [MaSe79ii, Theorem 5.9, p.306]
obtained the identification A (X) = H%°(X) for

e ( d . 1] (5.342)
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in the setting of 1-AR spaces with symmetric quasi-distances.'” This result was later
extended in [MiMiMiMo13, Theorem 4.91, p. 259] where, in the setting of d-AR
spaces, it was shown that

HY(X) = Hy(X) = Hy;™(X) (5.343)
for the larger range of p’s satisfying

d
d + min{d, [log, C,]~'}

<p<1. (5.344)

Despite these generalizations, the authors obtained this result having the additional
assumption that u({x}) = 0 for every x € X.

In this monograph, we further extend the work of [MiMiMiMo13] (which, in
turn extends the work of [MaSe79ii]) in the context of d-AR spaces by considering
a strictly larger range of p’s in (5.340), allowing for measure of a singleton to
be positive, and taking into account quasi-distances which are not necessarily
symmetric.

We now turn our attention back to the task of decomposing distributions
belonging to Hg. A version of this was presented in [MaSe79ii, Lemma 4.2,
p.295] in setting of normal spaces, however there are gaps present in the proof.'!
Specifically, (using the notation in [MaSe79ii]) the manner in which the sequence,
{Hy}, was constructed on [MaSe79ii, pp.295-256]. Here we generalize this result
to the setting of d-AR spaces while sealing up the aforementioned gaps.

Lemma 5.22 Let (X,q, i) be a d-AR space for some d € (0,00) where | is
assumed to be a Borel-semiregular measure on X. Suppose

d

and fix p € q, along with numbers o, y € R satisfying
0<y<a<][logC)l " (5.346)

Then given any q € (d(d + y)~', p), there exists a finite constant C € (0, c0) with
the following significance. For every f € L\ (X, u) such that f* ., € Li(X, w)

loc N2

10The original statement of [MaSe79ii, Theorem 5.9, p. 306] has 3c%in place of ¢(2c + 1), but, as
indicated in the discussion in [MiMiMiMo13, Comment 2.83, p. 59], the number c¢(2¢ + 1) is the
smallest constant for which their approach works as intended.

'"The reader is alerted to the wording/timing of [MaSe79ii, Lemma 4.2, p. 295] is inaccurate. For
example, the constant appearing in [MaSe79ii, Lemma 4.2, p. 295] depends on y and the fact that
y depends on h, does make the constant dependent on A, contrary to what is stated there.
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and | | < 1 pointwise on X, there exist a numerical sequence {A;}jen € £7(N), and
a sequence of (pg, p, 00)-atoms {a;}jen on X, such that

f=Yjentia in Z,(X,p), pointwise p-almost

(5.347)
everywhere on X, and in L' (X, ), for each r € (q, 00).
Moreover, for each r € (q, o] there holds
Z [Ajaj| e L'(X, u) and
jeN
1 (5.348)
> ajl < C(/(fp:,y,a)q du)
jeN L'(X.p) X
(with the convention 1 /oo := 0). Additionally, one has
Yol =c /X (£ o) d. (5.349)

jeN

Proof Fix a number ¢ € (0,1) to be specified later. We begin by inductively
constructing a possibly finite sequence of functions, {Fj}ie; S L®X,u) N
HI(X, p, jt). Define the function Fy := f € L°(X, ). Then by assumption
(FO);#,y,a € L4(X, ). That is, Fy € HL(X, p, jt). To proceed, suppose that we have
defined the collection of functions Fy, ..., Fy—1 € L®°(X, ) N HY (X,p, ), ke N.
Then, if

e < OO | Fe1)fy el i (5.350)
we stop the construction, obtaining a finite sequence {Fj};‘;(l). If, on the other hand

> TP [ (Fie)fy e 1 X (5.351)
then we further consider two scenarios. If, in addition to satisfying (5.351), we have

(Fr— 1);#!%0[ = 0 then we stop the construction. However, if (Fj—;) # 0, we
consider the set

*
P,y

Q= {xeX: (Fi1)}, .00 > . (5.352)

If Q; = 0 then we define Fy := Fy—; € L®(X,u) N I:IZ(X, p, 4). On the contrary,
if 2, # @ then €2, is a nonempty, open proper subset of (X, 7q) (see Comment 5.17
regarding the fact that €4 is a proper subset of X). Applying Theorem 5.18 with
the function F;_, € L®(X, ) N HL(X,p, ;1) and ¢ := &* we obtain a function
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Zr € L®(X, ) N HL(X, p, p) satisfying (5.304)—(5.305). We then define Fy := gx.
Continuing this procedure, we obtain a sequence {F;}je; € L®(X, u) NHZ (X, p, i),
J € Ny (possibly finite) with the following properties. For eachj € J,j > 1

Fi=F_1—Y iw pointwise on X (5.353)
keN

where {B,k} veny S L®(X, ) is the sequence defined as in (5.296) (with 7 := o,
Fj_ in place of f) if Q; # @ and otherwise defined by setting I~9j,k := 0 for every
k € N. Note that by (5.296), (3) in Theorem 2.5, and (2) in Theorem 2.4 we have
that the sum appearing in (5.353) is such that

> Bj,k(x) contains finitely many nonzero
keN (5.354)
terms for any given x € X and fixedj € N.

We will now take a moment to establish two facts regarding the sequence {F}}es
which will be important throughout the proof. We begin with the claim that for each
j € J there holds

|Fj| < Cé¢ for u-almost every point in X, (5.355)

where C € [1,00) is a constant independent of j € J. Fix j € J and note that
when j = 0, (5.355) follows from the definition of Fy and the assumption that
| f1 < 1 pointwise on X. If Q; # @ then (5.355) is an immediate consequence of
the definition of F; and (5.305). If 2; = @, then consider the number defined by
ko := max{k € {0,....j — 1} : ; # @}. Given manner in which the sequence
{Fi}kes was constructed we have F; := Fy := Fy, for every k € {ko,....j— 1}
where F, is the function gz, € L= (X, n) N HL(X, p, 1) satisfying (5.304)—(5.305),
obtained from applying Theorem 5.18 to the function F,—; with the value ¢ := &%,
Going further, observe that

Fio)pyya = Fjm1)py o < ¢/ for p-almost every pointin X,  (5.356)

where the above inequality in (5.356) follows from the fact that 2; = @. Now, since
M is assumed to be Borel-semiregular on X, from Proposition 4.17 there exists a
finite constant C > 0 such that

|Fio| < C(Fyy)}, o Pointwise on X. (5.357)

Combining this with the definition of F; and (5.356) we may conclude

|Fj|l = |Fiy| < C(Fi)}, o < C& (5.358)

*
P,y
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for p-almost every point in X. This finishes the proof of (5.355). Observe that
from (5.355) we immediately have for eachj € J,

(Fj);#,y,a < Cé¢ for u-almost every point in X, (5.359)

Moving on, the next claim that we make is that for every j € J,j > 1 we have for
some fixed C € (0, co0)

J
(Fyya® < [, a@ +CY &Y Cik. VxeX, (5.360)
i=1 keN

where, in general, we define {C;}ren iesi>1 as follows. For each k € Nand i € J,
i>1set

ik d+y
(—) if Q#0
Cix = pu (X, xix) + Tix (5.361)

0 if Q=0

where the sequence of numbers {r;}ics xen < (0, 00) and the sequence of points
{xir}ies ken in X are associated with the Whitney-type decomposition of the set 2;
given as in Theorem 2.4 (with the parameters 1,1’ € (1, 00) as in the statement of
Theorem 2.4, fixed independent of 7).

Observe that (5.360) will follow immediately by induction once we establish for
each fixedj € J,j > 1, that

() ya@ < (Fim)h o) + Ce/ > Ci. VxeX. (5.362)
keN

To this end, fix j € J,j > 1 and let x € X. If Q; = @ then (5.362) follows
immediately from the definitions of F; := F;_; and C;;’s. Thus suppose 2; # @
and note that if x € X \ €; then on the one hand (5.215) implies (keeping in mind
By (i A Cpyrin) © @ Yk € N)

~ ) . d+y
Z(b/vk);#,y,a (x) <cé¢ Z (rj—k) forevery x € X. (5.363)

poet = \ s, x50 + 7k
while on the other, the estimate

(F)ty v < Fim)hy o + Y (B}, . POIntwise on X, (5.364)
keN
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follows from (5.353). Combining this and (5.363) shows (5.362) holds provided
x € X\ Q. Next assume x € ;. In this situation, granted that

Q= (U Bo s 1) = | By o A1), (5.365)
keN keN

we may choose ko € N such thatx € By, (xj 4, 7jk,)- As such, it follows from (5.355)
that

d+y
Py, xj,ko) + Tiko )

F)r L (x) < Cei(
( j)p#,)/, ( ) p#(x,xj,ko) + Fjko

Slatien)”
<Ccdy (—E— (5.366)

=\ o (X, x0) + Tk

which implies (5.362) holds for x € £2;. This completes the proof of (5.362).

At this stage, we proceed with the proof of the lemma by considering separately
the cases when J is infinite and finite. Assume first J is infinite, i.e., / = Ny and
observe that if we define Jy := {j € N : Q; # @} then from the definition of
the collection {Bj’k}j’keN, the estimates in (5.298), (5.355), (5.359), and (4.172) in
Proposition 4.17, as well as (5.365) and the bounded overlap property in (2) from
Theorem 2.4, we may write for p-almost every x € X,

Z Z il;ka (x)| =C Z Z e pr#()‘./'Jﬁk/’.ﬂ")(x)

JjEN keN Jj€Jo keN

<C) d ' =C. (5.367)
jeN

for some finite constant C > 0 independent of f, where the last inequality follows
from the fact that ¢ € (0, 1). Hence,

oD bkl e L2 (X ), (5.368)

JjEN keN

where the p-measurability of the sum in (5.368) follows from the p-measurability
of the I;j,k’s and the fact that u is a Borel measure on X.

Given that (5.368) implies the sum ZiGN D ieN l~)j,k converges absolutely point-
wise p-almost everywhere on X, we may relabel the double sum in (5.368) via
a bijection ¢ : N? 5 N in order to obtain an enumeration of the double
indices allowing us to view the double sum as a series over one index. Such a
relabeling will be implicit in all subsequent reasonings pertaining to the double sum

> jeN > reN l~)j,k involving partial sums and issues of convergence. With this in mind,
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we will begin by establishing the following equality:

fx) = Z Z bix(x) for p-almost every x € X. (5.369)
jeN keN

First, observe that the sum appearing in (5.369) is p-measurable on account of
the fact the b;;’s are p-measurable. Next, by appealing to (5.353), an inductive
argument will show that for each j € N (keeping in mind Fy := f),

J
f—- Z Zlﬂ)i,k =Fj pointwise on X. (5.370)
i=1 keN

Consequently, using the estimate in (5.355), we can deduce (5.369) by passing to
the limit as j — oo in (5.370).
We claim next that

£=Y>"byu in Z,X.p). (5.371)

jeN keN

To justify (5.371) amounts to showing that for each fixed ¢ € Z,(X, p), there holds

Jim g (fiv.g),, = lim /X fvedp (5.372)
= / fedu = g,(f.0), (5.373)
X

where fy € L°°(X, ) denotes a given partial sum of the series in (5.371). The
convergence in (5.372) follows by employing the use of Lebesgue’s Dominated
Convergence Theorem which is applicable here given the pointwise convergence
in (5.369) and the domination (keeping in mind (5.368))

|fvel <D0 |bial - ol € L'(X. ). (5.374)

jEN keN

where ¢ € Z,(X, p).
Moving forward, define for each j, k € N,

2011 (B, (xix. M) P if Q; # 0,
Ay = (B G A750)) i 7 (5.375)
0 if Q =0,
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and

i) b if Q£ 0,
ajx = { (hia) i if 25 2 (5.376)

0 if Q=0

Note that if Q; # @ for some j € N, then the definition of l~)j,k in 2 of
Theorem 5.18, (5.355), and the fact that by assumption | f| < 1 pointwise on X
(for the case when j = 1) we have

suppajx < Bp, (xjx, A'Fjk). /aj,k du =0, and
X (5.377)

-1/
lajkllzoe oy < 1 (Boy (ks A'rin))—7°

for every k € N. As such, combining (5.377) along with the fact that the constant
zero function is trivially an atom on X, we may conclude that g;; (as defined
in (5.376)) is a (p#, p, 00)-atom for every j, k € N.

With the definitions made in (5.376) and (5.377), it follows from (5.368), (5.370),
and (5.371) that

YN Nwajrl € L2(X. ) (5.378)
jEN keN
fx) = Z Z Ajkajr(x) for p-almost every x € X, and (5.379)
jEN keN
£ =Y Nikajx in Z,(X.p). (5.380)
jeN keN

Hence, with these choices of sequences {A;i}jren and {aji}jren, we have
that (5.348) is valid with » = oo and that the equality in (5.347) holds in the
pointwise sense and in the sense of distributions.

Prior to addressing the L"-convergence of the sum appearing in (5.380), we will
first establish the estimate in (5.349) still under the assumption that J is infinite. Note
that in doing so will give {A;x}jren € €7(N). Moving forward, from the bounded
overlap property in part (2) in Theorem 2.4, (5.365), and the definition of {A;}; ten
in (5.375), we have

DDl = @CyM Y e (). (5.381)

jeN keN jeN
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where M is as in (2) in Theorem 2.4. Fix j € N, j > 2 with ©; # 0. Observe
by (5.360) and the definition of €2;, we have

() < /X[<F Dyl A

j—1
gl
1

Z/XC?,/( dp

< [Ua)an s
X i=1  keN

=1
=C [ / ([ )t +CtM Y s"‘fu(sz,-)] , (5.382)
X

i=1

where the third inequality makes use of Lemma 5.13 and (2) in Theorem 2.4 for
each i € N with ; # 0. Hence, for every j € N,

J=1

() < C [ /X (S ) drn + CqMZ giqu(szi)] (5.383)

i=1

with the understanding that the sum is omitted when j = 1. Consequently, if we
denote yo := [ p’;’yﬂ)qdu and y; := &(S;) for each j € N then a rewriting
of (5.383) yields

j—1
B<CY v jeN (5.384)

i=0

It is straightforward to see that, granted (5.384), the sequence {y;}jen, is such that
yj < yo(2 + CY for every j € Ny. Therefore, (keeping in mind the definition of
{yj}jen,) we have

() < 2+ C)/'/X(fpj,y,a)qdu, VjeN. (5.385)

In concert, (5.381), (5.385), and the fact that p > g imply

SO gl < @OypMeT Y P02 + Y / (fr ) du. (5.386)
X

jeN keN jeN

Consequently, choosing ¢ € (0, 1) small enough so that &#74(2 + C) < 1/2 we have
that (5.349) is satisfied with this choice of {A;x};jen € €7(N).
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We now return to addressing the following claim:

f=> > Aixayx in L'X.p),  Vre(q.00) (5.387)

jEN keN

Our goal is to obtain the desired conclusion in (5.387) by invoking Lebesgue’s
Dominated Convergence Theorem. Towards this goal, observe first that it is clear
that the sum in (5.387) is a w-measurable function on X. Moreover, we have
already established the pointwise convergence in (5.379). Going further, recalling
the definitions made in (5.376) and (5.377), the estimate in (5.367) gives

SN hwau@] = €Y g () < C, (5.388)

jEN keN jEN

for some finite constant C > 0 independent of f. Hence, the first inequality
in (5.388) will provide the appropriate domination once we establish that the
function given by sum ZiGN & 11gq ; belongs to L"(X ). Note that this sum is p-
measurable as a consequence of the u-measurability of the sets {€2;}en

To proceed, we will consider separately the case r > 1 and r < 1. When the
exponent r € [1,00) we can make use of the subadditivity of the L"-norm along
with (5.385) to write

Z ! lgj

jeN

IA

Z Sj_l M(Qj)l/r

LX) jeN

=gl ZE/(I—LI/V) [Siq“(gj)]l/’

jeN

IA

1/r
e ( / (fpi,y,a)qdu) Y @U@ 4 cylr. (5.389)
X

jeN

Then by choosing & small enough so that £!=%/"(2 + C)'/" < 1/2 (recall that ¢ < 7),
the estimate in (5.389) implies ZJEN g1 1o, € L'(X, p).

When r < 1 we will use the subadditivity of | - ||£,(X#) along with (5.385) to
write '

r

IA

Zsj_l IQ]-

2 (@)

rm  jen

=" Z =) quM(Qj)

jeN

IA

e’ /X (frye) dnd 22+ Cy. (5390

jeN



5.3 Decomposing Distributions into Atoms 241

In this case, choosing ¢ small enough such that ¢ 792 + C) < 1/2 gives
> jes € ' 1g; € L'(X, ), granted the estimate in (5.390). We have just finished jus-
tifying (5.387). Moreover, combining the estimates in (5.388), (5.389), and (5.390)
yields (5.348), which, in turn, concludes the proof (5.387) and the lemma under the
assumption J is a infinite set.

We now suppose J is finite and we denote m( := supJ € Nj. Recall that there
are two scenarios which result in J being a finite set, namely, the situation when

" < OO | Fu)py v | i (5.391)

and the case when
" > (OO | Faopy vl iy With (Fig)iy e = 0. (5:392)

Granted this, we first assume (Fy, )5, , , satisfies (5.392). From the last statement in
the conclusion of Proposition 4.15, we may deduce that F,,,, = Oon X. If mp = 0
then /' =: F,,, = 0 on X and the conclusions in the statement of this theorem
holds trivially. Thus we will assume m > 1. As such, making use of the equality
in (5.370) specialized to the case j = my, and the fact that the sum ) _, o b ; k contains

at most a fixed number of nonzero terms for each j € {1,...,mp} and x € X, we
obtain
mo
f= Z Z bjr pointwise on X, (5.393)
j=1 keN

W~here the collection of functions {I;j,k 11 <j < my, k € N} is defined as before, i.e.,
jk 1 =j < mo,k € N} € L*(X, p) is the sequence defined as in (5.296) (with
t:= ¢, Fj_y in place of f)if Q; # @ and otherwise defined by setting b; := 0 for
every k € N.

Similar to as before in (5.375)—(5.376), for each j € {1,...,mp} and k € N we
define

2C8j_l,u (Bp#(x]"k, A/}fj’k))l/p if Qj 7é a,

/\j,k = (5394)
0 if Q; =9,
and
-1z .
A b if Q; # 0,
= () braif (5.395)
0 if Q; =0.
Again, it follows that a; is a (o, p, 0o)-atom for every j € {1,...,mo} and k € N.

Then from (5.393) we have

mo

f= Z Z Ajxajx  pointwise on X, (5.396)
j=1 keN
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and by arguing in the spirit of the first part of this proof when J = N, this time
with the double sum in (5.396), we have that (5.347)-(5.349) hold with the choice
of sequences {A;x : 1 <j<mg,k € N}and {a;; : 1 <j <mg, k € N}.

Next suppose that (Fy,)y, ,, satisfies (5.391). Note that in this situation we
necessarily have p(X) < oco. Without loss of generality we may assume p(X) = 1.
As before with (5.393), by making use of (5.353) along with the fact that the sum
> ien bjx contains at most a fixed number of nonzero terms for eachj € {1, ..., mo}
and x € X, we may write

mo

f =Fu + Z Zl;j’k pointwise on X. (5.397)
j=1 keN

Foreachj € {1,...,mo} and k € N define A;; and a; just as in (5.394)—(5.395).
Then again, it follows that a; is a (o, p, 00)-atom for every j € {1,...,mp} and
k € N and a rewriting of (5.397) in terms of A;4 and a; yields

mo

f=Fuy + Z Z Aaj; pointwise on X. (5.398)
j=1 keN

Our goal now is to express the function F,,, as linear combination of (o4, p, 00)-
atoms on X. To this end, note that since u(X) < oo we have that F,,, € L'(X, ) as
a result of the fact F,,, € L% (X, p). Next, if |, v Finy dit # 0 then we write

Fpy = /FW!() dp + [Fm() - / Fong d“i| = bimg+1,1 + bDing+12 (5.399)
X X
where by 41,1 1= [y Fimy dit and b1 := Fpuy — [y Fin dji. Define

/\m()-H,l = .[X Fmo d“s Amo+l,2 1= 2Cg"™ (5400)

X —1 . —1
Amy+1,1 = (Amo-‘rl,l) bumg+11,  and  @pyy12 = (AWI(H—I,Z) Ding+1.2-

We claim that a,,,+1,1 and @, +12 are (py, p, 00)-atoms. First observe that by
design we have suppau,+1x S X, k = 1,2. Given that u(X) < oo we have
that diam,, (X) < oo. Hence, there exists x« € X and R € (0,00) such that
X = By, (x«, R). It follows from (5.355), the definition of a1, and the fact that
w(X) =1 that

—1
a2l < 1= p1 (Bpy(oec R) ™7 and [ g1z = 0.
X
(5.401)
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Thus we may conclude a,,,+1 2 is a (o, p, 00)-atom. As concerns d,+1,1, recall that
when we have 1(X) < oo, we regard the constant function a(x) := [w(X)]~'/? =1
is a (pg, p, 0o)-atom. Hence, a,,,+1.1 1S a (pg, p, 00)-atom by design. This finishes
showing that F,,, can be expressed as a linear combination of (p4, p, 00)-atoms on
X if fx Fu,dp # 0. Consequently, if we set A, 414 := 0 and @pmy+14 = O for
every k € N with £ > 3, then a rewriting of (5.398) gives

mo+1

f= Z Z’\f”‘af’k pointwise on X, (5.402)
j=1 keN

where the {a;; : 1 <j < my+ 1, k € N} is a sequence of (o, p, 0c0)-atoms on X.
Then with the double sum in (5.402) we can execute an argument which is in the
spirit of the one made in the proof when J = Ny to show that the claims in (5.347)
and (5.348) hold with the choice of the two sequences {A;x : 1 <j <mo+1,k € N}
and{aj;: 1 <j<my+1,keN}.

Still under the assumption that fx Fu,du # 0, we need show that estimate
in (5.349) holds for the choice of the sequence {A;x : 1 < j < mo+ 1, k € N}.
Observe that (5.355), (5.391), the definition of the collection {A,,+1}ken, the
definition of €2,,,41, and the fact that ;(X) = 1 and p > ¢ collectively imply

Z [Amo+ 16l = Aot 117 + [Amg 1217
keN

< (BC)Pe™P < (3CYe™P / [(Fing)sy e dt. (5.403)
X

Going further, similar to argument which obtained the estimates in (5.382), we can
use (5.360), the definition of €2;, Lemma 5.13, and (2) in Theorem 2.4, in order to
write

mo

/X[(F’”O);#,y,a]pdl“ = /X(fp:,%a)pdu + CZS”’Z/XCZ( m

i=1 keN

mo
=C fX (frya) di+CY e u(<)

j=1

=C /X (fiya)'di +C Y (), (5.404)

j=1
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where the last inequality in (5.404) relied on the fact that | f,; , ,
assumption p > ¢q. Altogether, (5.403), (5.404), and (5.385) give

Zlkmoﬁ,klp < C/

keN X

| < Con X and the

(fp:,y,a)qdﬂ + Z & (%))

j=1

<C /X (for ) dp + Zsﬂf’—q)(z +cy /X (fory) dit,

J=1

(5.405)

where in the last inequality of (5.405) we have enlarged the sum (as to eliminate any
dependence on mg) and made use of the estimate in (5.385). Hence, if ¢ € (0, 1) is
small enough so that e#~4(2 + C) < 1/2 we have

D Pmprial” < C/

keN X

(frk ) dt. (5.406)

On the other hand, by the bounded overlap property in part (2) in Theo-
rem 2.4, (5.365), the definition of A;; in (5.394), and the estimate in (5.385), we
may write

mo

DD sl = OyPM Y eI ()
j=1 keN JeN
< (2C)P’Ms™" Z P92 4 ¢y / (S va) ' dpt. (5.407)
jeN X

where M is as in (2) in Theorem 2.4. As such, if we again ensure ¢ € (0, 1) satisfies
e?71(2 + C) < 1/2 then we have

mo

> ik = [ () (5.408)

j=1 keN
In concert, (5.406) and (5.408) give

mo+1

oD Il =c /X (fr o) du. (5.409)

j=1 keN

which shows that the sequence, {A;x : 1 < j < my + 1, k € N}, defined as above,
satisfies (5.349).
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Finally, there remains, to treat the situation when fX Fpydp = 0. In this case,
for each j € {l,...,mp} and k € N define A;; and a;; just as in (5.394)-
(5.395). Additionally, define a, 41,1 := Ar;ol+1,1Fmo where A, 41,1 := Ce™ and set
Amo+14 = 0 and @414 := 0 for every k € N with k > 2. Then again, it follows
that aj is a (pg, p, 00)-atom for every j € {1,...,mp} and k € N. Corresponding to
the case when j = my + 1 we have from (5.355) that

—1/p
Suppamo-l—l,k g BP#(-X*7R)3 ||am0+l,k||L°°(X,[L) f 1= M (BP#('X*7R)) /E l} (5410)

and
/am0+1,/< du =0, (5.411)
X

for every k € N. Then, with these choices of A;x and a;; we obtain from (5.397)
that

mo+1
f= Z Z’\f”‘af’k pointwise on X. (5.412)

j=1 keN

Again, this double sum can be shown to satisfy (5.347) and (5.348) by arguing as in
the case when J = Nj. Moreover, using an reasoning similar to the one presented
in (5.403)—(5.409) will show that the sequence {A;x : 1 < j < mo+ 1, k € N}
satisfies (5.349) which finishes the proof of Lemma 5.22. ]

Having established Lemma 5.22, we are now in a position to able to decompose
distributions belonging to L7(X, ) () HY(X, p, ) with g € (1, 00]. We will show
that this decomposition converges in the sense of distributions, pointwise almost
everywhere on X an in L"(X, u) for every finite r € (1/p,q/p]. The fact that
this decomposition can be performed in the sense of distributions can be found in
the proof of [MaSe79ii, Theorem 4.13, p.299] in the setting of 1-AR spaces with
symmetric quasi-distances for a smaller range of p’s (see (5.342) above).'> Here
we extend this work to the more general context of d-AR spaces (which allows
for the possibility of a quasi-distance to be quasi-symmetric) for an optimal range
of p’s. Remarkably we are also able to obtain pointwise and L"-convergence of
this decomposition which will prove to be important applications, some of which
are presented in Chap. 8. Moreover, the authors in [MaSe79ii] do not address the
situation when level set 2; := {x € X : p:,y,a (x) > 1} is empty. This is a crucial
matter as the argument presented in [MaSe79ii] would cease to be valid in such
a situation. In contrast to [MaSe79ii], we also include the proof in the case when
U(X) < oo as there are some delicate issues that arise such a scenario.

12Again, as a result of the wording/timing in the statement of [MaSe79ii, Theorem 4.13, p. 299],
the reader is alerted to the inaccuracies regarding the nature of the constant depending of f.
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Theorem 5.23 Let (X, q, ) be a d-AR space for some d € (0,00) where [ is
assumed to be a Borel-semiregular measure on X. Suppose

d
— 1 d 1, 00, 5.413
pe(d+ind(X,q) } and q € (1,00] ( )

and fix a quasi-distance p € q along with a parameter a € R satisfying
d(1/p—1) <a < [log,C,] . (5.414)

Then, for every f € Li1(X,n) ﬂl:lg(X, P, L), there exist a numerical sequence
{Aj}jen € C, and a sequence of (o, p, 00)-atoms, {aj}jen on X (pg as in (2.21)), for
which

f=2entia in Z,(X,p), pointwise ji-almost everywhere
(5.415)
on X, andin L' (X, u), for each finite r € {1} U (1/p, q/p).

When q = oo then one has that the sum in (5.415) also converges in L' (X, ), if
r € [p, 1). Additionally,

> 1Ajajl € L'(X. ). (5.416)
jeN

for each finite r € {1} U (1/p, q/p] (and also for r € [p, 1) U {o0} when g = c0).

Furthermore, given any y € (d(l/p — 1),a), if feliX,u) ﬂlzlg(X,p,pL) is
such that fp:,y,a € IP(X, ), then the decomposition in (5.486) may be performed
with the additional property that

1/p
(Z |Aj|p) <12 sl (5.417)

jeN

for some constant C € (0, 00) (which is independent of [). In particular, in such a
scenario {Aj}jen € LP(N).

Proof Suppose y € (d(1/p— 1), @) and fix f € LY(X, 1) () Ha(X, p, jt) such that

p’;’y’a e I’X, n).If fp’;’y’a = 0 pointwise on X then by the last statement in the
conclusion of Proposition 4.15 we may deduce that f = 0 in Z,(X, p). In this
scenario taking A; := 0 and a; := 0 for every j € N would ensure (5.415)-(5.417)
are satisfied. Thus assume fp’;’y’a % O on X.

We first consider the case when u(X) = oo, i.e., when X is unbounded (cf. 7
in Proposition 2.12). By Proposition 4.17 (recall that p is assumed to be a Borel-
semiregular measure on X) there exists a finite constant C > 0 (which is independent
of f) such that

| f] < Cfp’:,y,a for p-almost every pointwise on X. (5.418)
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Moving on, if fp’;y’a is bounded on X, i.e., if f € L>°(X, u) (cf. Theorem 4.18),
then define

mo = inf{n € Z : log,(sup f, ,(x)) <n} €Z (5.419)
XEX

otherwise, set my := 0o. Going further, for each k € Z, define the set
Qo={reX: fr ,(x)>2 (5.420)

Then by definition of mq and the fact that /7 , # 0 on X we have that Q2 is an
open subset of X for each k € Z, which is also nonempty whenever k < my — 1.
Moreover, since we are currently assuming ©(X) = oo we also have that € is a
proper subset of X for each k € Z, granted fp’;y’a € [P (X, u). Therefore, for each
k € Z,k < my—1 itis meaningful to denote by Gy and By, respectively, the functions
g and b, which belong to L4(X, ) N HY(X, p, j1), obtained in the conclusion of
Theorem 5.18 applied with ¢ := 2% and f € L9(X, j). Note that essential use was
made of the fact that u(X) = oo in order to ensure that these choices of ¢ satisfy
the hypotheses of Theorem 5.18. Additionally, if m( € Z then define G,,, := f and

By, := 0. Then, by design we have
f = Gy + By pointwiseon X, VkeZ, k<my. (5.421)
Now, for each fixed k € Z we may define the function 4 : X — C by setting
hi := Gi41 — Gy = By41 — By, (5.422)

whenever k < mg — 1 and A := 0 if k > my. Note that the equality in (5.422)
holds granted that f = By + Gy = Bj+1 + G+ pointwise on X for every integer
k € Z,k < mp— 1 in light of (5.421). Observe, that by 3 in Theorem 5.18, we have
By € L1(X, ) for every k € Z, k < myp — 1. Combining this with (5.422) we may
conclude i, € L4(X, w) for every number k € Z. Therefore, for each integer k € Z,
k < mp—1, the function /i induces a distribution on Z, (X, p) by the integral pairing
described in (4.22). Given this, we make the claim that

>h=f in 2,X,p), and
kez (5.423)
pointwise p-almost everywhere on X.

First assume my € Z and observe by (5.421) and the definitions of A, and G,
we have for every n,m € N, m > n > |my|

k=m
f_ Z hk:f_GM()+G—n:G—n in @/Q(va)s
R (5.424)

and pointwise p-almost everywhere on X.
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The estimate displayed in (5.305) implies there exists a finite constant C > 0 such
that |G_,| < C27" for p-almost every point in X for each n € N. As such, for
each fixed ¥ € Z,(X, p) we have |(G_,, )| < C27" for every n € N. It therefore
follows that {G_,},en converges to zero in Z, (X, p) and for p-almost every point
in X as n tends to infinity which, when used in conjunction with (5.424), finishes the
proof of (5.423) in the case when my < oo.

Assume next that my = oco. Then similar to as in (5.424), we may write for each
n,me Nwithm >n

k=m
=2 hh=f—-Gu1+G_, =Bpuy1 +G_,.
=n (5.425)

in 2'4(X, p) and pointwise p-almost everywhere on X.

Then, much as before we have {G_,},en converges to zero in Z,,(X, p) and for p-
almost every point in X as # tends to infinity. As concerns the behavior of B, as
m tends to infinity, first observe that the distribution induced by B,,4+; € LY(X, i)
coincides with b as in Theorem 5.16 (cf. 3 in Theorem 5.18). With this, observe
by (5.219) we have

/X[(Bm+l);#,y,a]pdﬂ < C/

Qm-‘,—l

(fr ) di. YmeN.  (5426)

As such, since f7 , € L[P(X,u) and since Q41 N\ 9 as m tends to infinity,
Lebesgue’s Dominated Convergence Theorem and Lemma 4.8 collectively imply
that {B,}.en converges to zero in Z,(X, p) as m tends to infinity. Regarding
the pointwise behavior of B,,4;, observe first that by (5.302) in Theorem 5.18
and (5.418),

|Bit1] < Cfp:,y,alngrl pointwise p-almost everywhere on X.  (5.427)

Combining this wit the fact that 2,41 \ @ as m as tends to infinity, gives {B,,}nen
also converges to zero for p-almost every point in X as m tends to infinity. This
concludes the proof of (5.423) in the case when my = oo.

At this stage, having established (5.423), the goal (informally speaking) is to
decompose each term Ay into a sum of atoms. With this in mind, we wish to show
that there exists a finite constant C, > 0 such that for every k € Z the function
C,; '27*hy, satisfies the hypotheses of Lemma 5.22. In this vein, fix k € Z and an
exponent ¢ € (d/(d + y),p). Clearly there is nothing to prove if iz = 0 (which
would necessarily be the case if k € Z with k > myg) so we assume that i # 0.
Then, by appealing to the definition of A, it follows from (5.305) that

|hi] < |Gra1] + |Gr| < €2 for p-almost every point in X, (5.428)

which further implies |C™'27¥h;| < 1 pointwise p-almost everywhere on X.
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There remains to establish

(C127 n)*

Y e €LIX ). (5.429)

To see this, let us first estimate (hk);#,y,a pointwise on X. Since i # 0 we know
that k € 7Z is such that k < mg — 1. Then Q; # @. Moreover, the estimate
in (5.428) implies (hk);#,y,a < (C2* pointwise on X granted that /; induces a
distribution of function type. In order to proceed, let the sequence of numbers
{rej}jen € (0,00) and the sequence of points {x;j}jen C X be associated with
the Whitney-type decomposition (constructed in relation to the regularized quasi-
distance py) of the set 2, (along with parameters A, A’ € (1, co) as in the statement
of Theorem 2.4, fixed independent of j). Then, if x € €, there exists j, € N such

that x € B, (xij,, 7t )- Hence, in this case we have

¥
p#(x, Xk o) + szio) 4
Pu (X, Xk jo) + Trjo

wmwms&%

. ( rkJ' )d"r}/
<2ty — . (5.430)

e Pu(x, Xi ) + 1
On the other hand, if x € X \ € then based on the definition of %, we write

(1) e ) < (BO)p, 50 (X) + (Bt 1), 0 (X). (5.431)

Now, if k € Z with k < my — 2 then it follows from this and (5.218) that

* k Tkj Ity
() gy 0 (¥) = C2 Z (—)

jen pu(x, xij) + 1y

Tk+1, e
+C2* ) ( J ) . (5.432)

pere P (X, Xk 1) + ka1

Therefore, combining (5.430) and (5.432) we get foreachk € Z, k < my — 2

k+1 d+y
(M) o (0) < C2ED N ( iy ) forevery x € X. (5.433)

=% jan \Pr(6Xig) 7

In concert, (5.433), Lemma 5.13, and the fact that ¢(d + y) > d give

[t v < 20 < o0, (5.434)
X



250 5 Atomic Theory of Hardy Spaces

for all k € Z with k < mg — 2. Note that the first inequality made use of the fact that
Qi1 C Q4 for every k € Z and that when k < mp — 1 the decomposition

Qi = By, (. 7)) (5.435)
jEN

has bounded overlap.
Lastly, if k = my — 1 then since B,,, = 0 by definition, we have

(himg=1) 5y yor < (Bmg—1)}, ,  POINtwise on X, (5.436)

which by a reasoning similar to as in (5.431)—(5.434) will show (5.434) is also valid
fork = my — 1, hence all k € Z.

In summary, this analysis justifies the claim made in (5.429) as desired. This
finishes the claim that there exists a finite constant C, > 0 such that Co_l2_khk
satisfies the hypotheses of Lemma 5.22 for any given k € Z. Therefore, applying
Lemma 5.22 we may conclude that for each k € Z, there exists a numerical sequence
{Akj}jen € £P(N), and a sequence of (pg, p, 00)-atoms {ay j}jen on X, such that

Co_12_"hk = Z /\k‘j axj in @o/z (X, p),
jeN (5.437)
and pointwise p-almost everywhere on X,

and

Sl =€ [ (€20, ] du < Cu@n. 65.438)
jeN X

where C € (0,00) is independent of k. Note that second inequality in (5.438)
follows from (5.434). Moreover, by (5.348) of Lemma 5.22 and (5.434) we have
for k € Z and each r € (g, 0o],

1/r
D Akl . =C ( /X [(C; 12_khk)z#,y,a]qdﬂ)
" (X

jeN
< (" (5.439)

If we set mj := C(,ZkAkJ for each j € N and each k € Z then a rewriting of (5.437)
and (5.438) implies

he =Y mejar;  in Z,(X.p). and
JEN (5.440)
pointwise p-almost everywhereon X, Vk € Z,
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and

DN Il = €Y 2 (). (5.441)

keZ jeN kez

We dispose next of the claim that

Z Z [k axj(x)| < oo for p-almost every x € X. (5.442)
keZ jeN

Note that (5.442) will follow once we show that

Y Inegargl € L'(X. ). (5.443)

k€Z jeN

To this end, observe that the ©.-measurability of the sum in (5.442) follows from the
p-measurability of the a;;’s and the fact that 1 is a Borel measure on X. Moreover,
we have

Z Z |1 @l

k€Z jeN

< CZ 2 ()

LX) kez

=C /X(fpjw)” dp., (5.444)

where the first inequality follows from (5.439) (specialized to r = 1) and the second
inequality follows using the definition of the €2;’s. Combining this with the fact
pjﬁy’a € [P(X, ) yields (5.443), as desired. From (5.442) we have that the sum
> ke 2_jen Mk dkj converges pointwise p-almost everywhere on X.
Our next goal is to show that the numerical sequence, {1 }jen € £”(N), and the
sequence of (py, p, 00)-atoms, {dx,}jen, are such that the sum > ;o D ey Mk Ak,

has all of the qualities listed in (5.415)~(5.416) in the statement of this theorem.'?

13Contrasting the format of the double sum
DD i (5.445)
kEN jEN

with that of the single sum Y ;i Aj @, appearing the in (5.415) in the statement of the theorem, shows

that it is necessary to re-label the double sum in (5.445) via a bijection ¢ : N2 5 Nin order to

obtain
Z Z Mkj Ahej = Z Ao Go()- (5.446)

keN jeN jEN

Note that the existence of such a relabeling is guaranteed by (5.442). For the remainder of this
proof this re-enumeration of the double series in (5.445) will be implicitin all reasonings pertaining
to (5.445) involving partial sums and issues of convergence.
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Observe that by combining (5.423) and (5.440) we have

f= ke%%:\] Nkjax; pointwise p-almost everywhere on X. (5.447)

Moreover, given the pointwise convergence in (5.447) and the fact that the member-

ship (5.443) implies D ;7 D e |Mijaxl - 19| € L'(X, ju) whenever ¢ € Z,(X, p),
we can reason as in the proof of (5.372) in order to conclude that

=200 maary in Z,(X.p). (5.448)

k€Z jeN

Moving on, we will now show

f=Y" mjar; inL(X.p) foreach finite r € {1} U (1/p.q/pl. (5.449)
keZ jeN

Fix r € {1} U (1/p,q/p], finite. Since we have already have pointwise
convergence of the sum from (5.447), the desired conclusion in (5.449) will follow
from Lebesgue’s Dominated Convergence Theorem, once we establish that the p-
measurable function given by the sum ), ., > .y |7k ax;| belongs to L' (X, ).
Since the case r = 1 has already been in (5.444) we assume r € (1/p,q/p] is
finite. A key observation in proving (5.449) is that by (5.327) in Corollary 5.20 and
Theorem 4.18 we have that f,; ,, € ﬂse(l, o L' (X, ). In turn, this along with the
factr € (1/p,q/p] gives f,; , o € L'7(X, w). The importance of this will be apparent
shortly. Moving on, since r > 1, by (5.439) (keep in mind the definition of 7y ;), and

Holder’s inequality, we may estimate

DD Il

keZ jeN

< Cu(@p"”
LX) ez

kr(1—p)

1-1/r 1/r
< C{ Y 27 } { sz“’u(m)}

kEZ kEZ

1/r
<C ( /X (frrva)” d,u) : (5.450)

where the last inequality in (5.450) made use of the second estimate in (5.444). In
particular, since fp:’y’a € L'P(X, u) we are able to deduce that

> Imja| € L'(X. ) foreach finite r € (1/p.q/p),  (5451)
keZ jeN

finishing the proof of (5.449).
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Next, when g = oo then my € Z and keeping in mind that we have set iy = 0
for every k € Z with k > my we may conclude

mo—1

f=2 2 mjay = X 3 Mkjak,

k€Z jEN k=—00jeN (5.452)
pointwise p-almost everywhere on X.

As such, it follows from (5.439) (used with r = o0), and the definition of the 7 ;’s
that

mo—1
Z Z [Nk arj(x)| < C2™  for p-almost every x € X. (5.453)

k=—o00 jeN

Hence, the function ), , ZJEN |k axjl € L2 (X, ). Moreover, if r € [p, 1) then

mo—1 r mo—1 mo—1
30D ki acl < > Q) =C Y 2T (@)
k=—00 ieN L'X.n)  g=—o00 k=—00
mo—1
< Clmolzlmo\(r—.v) Z 2/(17“(90
k=—00
<C / (frk ) dp < 00, (5.454)
o o

where we have used (5.439) in conjunction with the definition of the 7 ;’s as well as
the subadditivity of | - |7, . ) in obtaining the first inequality in (5.454), and have
used the second estimate in (5.444) for last inequality. Hence, (5.449) also holds for
r € [p,1) when g = oc.

In summary, the above analysis shows that (5.415)—(5.416) hold with the
numerical sequence {7;x}jen ez and the sequence of (g, p, 00)-atoms, {a; s }jeN kez.-
To see that {1+ }jen ez satisfies (5.417) (hence, belongs to £ (N)) we use (5.441) in
conjunction with the second estimate in (5.444) in order to write

DD gl =€y 2P < C/

(frrya) dit. (5.455)
keZ jeN kez, X
This finishes the proof of theorem under the assumption p(X) = oo.
The case when p(X) < oo follows along the same lines, however, we will take a
moment to make a few comments regarding the nature of the details involved in the
proof. In this scenario, the idea still remains to construct two sequences {Gy} and
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{By} by repeatedly invoking Theorem 5.18 with the value  := 2% (k € Z, k < my—1
with mo maintaining its significance in (5.419)) and the function f € LY(X, n). If
k € 7Z with k < my — 1 is such that

2> (O | for vl e (5.456)

then the set €2, defined as in (5.420), is a nonempty, open, proper subset of (X, 7q).
Hence, we are permitted to use the conclusion of Theorem 5.18. However, one issue
that arises is that for large negative values of k € Z we have

AN 10.9) il /o (e (5.457)

Recall here that we assumed that the lower semi-continuous function f* £ 0,

Py
which forces || f p:’y’a || e > 0. Hence, for these values of k& we may not apply

Theorem 5.18. In such a scenario we proceed as follows.
First, without loss of generality we can assume ©(X) = 1. Define

no = int{n € Z: 1ogs (| oyl ) <} €2 (5.458)
and note that by design ny < mg and
< | fomyalpoyy  YhkeZwithk<no—1. (5.459)
Consider the case when my — 1 < ng. Then my € Z and
| f] < Cfp’;’y’a < C2™ for pu-almost every point in X, (5.460)

where C € (0, 00) is independent of f. Incidentally, this implies f € L'(X, u)
given that ;¢(X) is finite. Then, if [, f du # 0, we write

f=/fdu+[f—/fd,u}=b1+b2 (5.461)
X X
where by := [, fdpand by := f — [, f du. Define

Al = fxfd,u, Az =202

E ~ (5.462)
ay = (A-l) blv and ap = (A-Z) bz'

Then as was shown in the last part of the proof of Lemma 5.22 (specifically the
discussion beginning with (5.399)) we have that a; and a, are (p4, p, 00)-atoms
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on X. Moreover, by the definitions of A, A5, ng, and my
[A1]P + |A2P < (BC)P2MoP

mo—no—1 p p
< C2tmomo=r | Jonya HU’(X,M) <[ for el gy (3:463)
where C € (0, co) is independent of f granted that my — np — 1 < 0. In summary,
if fX f du # 0, we have managed to write

f = A1a; + Aray  pointwise on X, (5.464)

where a; and a, are (pg, p, 00)-atoms on X and A; and A, satisfy (5.463). Hence,
the conclusions of the theorem hold in this case.

Finally, if [, fdp = 0 then taking a; := ATLf where A| ;= C2™ we have
from (5.305) (also keeping in mind we are assuming @ (X) = 1) that

f = A1a; pointwise on X, (5.465)

where a; is a (p4, p, 00)-atom on X. Moreover, from (5.459) (specialized to the
choice k :=ng — 1)

AP = C2lmo—mo—hppo—lp < CH fpz,y,a HP) (5.466)

X
given that in the current scenario we are assuming my — nop — 1 < 0. Again, in this
case it is clear to see that the conclusions of the theorem hold.

Next suppose ny < my— 1 and note that for every k € Z withny < k < my—1 we
have that the hypotheses of Theorem 5.18 are satisfied with the value ¢ := 2* and the
function f € L7(X, ). Therefore, as in the case when p(X) = oo, it is meaningful
to denote by Gy and By, respectively, the functions g and 13, which belong to LY (X, ),
obtained in the conclusion of Theorem 5.18 and as before, if my € Z then we also
set Gy, := f and B,,, := 0. Now, for each fixed k € Z we define the function
hy : X — C by setting

hk = Gk+1 — Gk - Bk+1 - Bky (5-467)

whenevernyg <k <mo—1land b, :=0ifk > mgyork <ng— 1.
Our goal now is to establish a relationship between the distributions ), ., ix and
f (similar to as was done in (5.423)). Specifically, we claim

G+ D = f in Z,(X,p), and
kez (5.468)
pointwise p-almost everywhere on X.
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First assume my € Z and observe by (5.421) and the definitions of /; and G,,, we
have for each n,m € N, m > n > max{|mo|, |no|}

k=m
f- he=f —Guy + Gyy =Gy, on Zy(X, p)
k:X_:n 0 0 0 o (5‘469)

and pointwise p-almost everywhere on X.

This finishes the proof of (5.468).
If, on the other hand my = oo, then we may write foreachn,m € Nm > n > |ny|

k=m
f_ hk:f_Gm+l+Gn =Bm+1+Gn
k=2—:n ‘ ’ (5.470)

on Z,(X, p), and pointwise p-almost everywhere on X.

where we have previously concluded that {B,,},en converges to zero both in
2!(X, p) and pointwise u-almost everywhere on X as m tends to infinity. This
finishes the proof of (5.468) in the case when my = oco.

Then having established (5.468), we proceed as we did in the case u(X) = oo to
write

aenh = uen yen sty 0 Zo(X.p). pointwise poalmost

everywhere on X, and in L"(X, u), VY r € {1} U (1/p, q/p], finite,

where {a; }jen is a sequence of (o, p, co)-atoms on X and {n;}rjen € £#(N) is a
numerical sequence satisfying

DD Imjarl € L(X.p)  Yre{13U(1/p.q/p). finite,  (5.472)
k€Z jeN

and

DDA LTIl N . (5.473)

k€Z jeN

Moreover, when ¢ = oo the convergence of the atomic decomposition in (5.471)
also holds in L"(X, w), foreach r € [p, 1) and 3,y > icny Mijar; € L'(X, p) for all
r € [p, 1) U {oo}. From this it follows that ‘

Gy + D ten 2 jenMkjakj = f in Z,(X, p), pointwise u-almost
‘ (5.474)
everywhere on X, and in L"(X, ), Y r € {1} U (1/p, q/p], finite,

where the convergence also occurs in L"(X, p) for each r € [p, 1) whenever g = co.
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There remains to analyze the term Gy,. Observe that by definition of Gy,
and (5.305) we have

|G| < C2™  for p-almost every point in X, (5.475)

where C € (0, 00) is independent of f. Hence G,, € L*(X, ). Moreover, since
we are currently under the assumption that ;1 (X) < oo, we have that (5.475) implies
Gy, € L'(X, ). Then, if [, G,, dp # 0, we write

Gno = / Gno du + |:Gn0 - / Gno dﬂ:| =b1 + by (5.476)
X X

where by := [, Gy dp and by := Gy — [ Gy dpt. Define

A= [y Guodp, Ay i=2C2"

’ ~ (5.477)
ar =) by, and ay:= (A2)7 by

Then as was shown in the last part of the proof of Lemma 5.22 (specifically the
discussion beginning from (5.399)) we have that | and a, are (p¢, p, 00)-atoms on
X. Moreover, by (5.459) (used here with k = ny— 1) and the definitions of A; and A,

Ml + 22 < 302" = (6CY 2"~ < (6CY | £t el (5478)

In summary, if [, G,, dju # 0, we have managed to write
G,, = A1a; + Ara, pointwise on X, (5.479)

where a; and a, are (ps, p, 00)-atoms on X and A; and A, satisfy (5.478). Com-
bining this with (5.474) and (5.473) yield the conclusions in (5.415) and (5.417).
Moreover, (5.475), (5.476), and (5.477) imply

M| + Aol + D Imjan| € L'(X. p), (5.480)
k€Z jeN

for each finite » € {1} U (1/p, q¢/p] (and also for r € [p, 1) U {oo} when g = 00).
This finishes the proof of the theorem if fx Gy, dp # 0.

On the other hand, if fx Gy, dp = 0 then taking a; := Al_lGnO where A := C2"
we have from (5.305) (also keeping in mind we are assuming j(X) = 1) that

G,, = A1a; pointwise on X, (5.481)
where a; is a (p#, p, 0c0)-atom on X and

Ml = €2 = CY2" T < QOY | foa iy (5:482)
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Note that the last inequality in (5.482) follows from (5.459) (used here with the
choice k = ny — 1). In concert (5.481), (5.482), (5.474), and (5.473) justify the
claims made in (5.415) and (5.417). Finally observing that (5.475) gives

Mar] + )Y Inejaigl € L2 (X, ), (5.483)

k€Z jeN

for each finite » € {1} U (1/p, ¢/p] (and also for r € [p, 1) U {oo} when ¢ = 00),
finishes the proof of Theorem 5.23. O

Comment 5.24 Analyzing the proof Theorem 5.23, specifically the arguments
made in (5.449)—(5.454), one can deduce that the atomic decomposition listed
in (5.415) of the given function f € LI(X, u) ﬂl:lg (X, p, n) can be performed
so that it converges in L"(X, p1) for each r € [1, 00) such that /7, € LT(X, p).
Moreover, when g = oo then the decomposition also converges in L"(X, u) for each

relp,1). |

Having established Theorem 5.23, we are now in a position to able to decom-
pose any distribution whose grand maximal function belongs to L into a linear
combination of atoms where the convergence occurs in the sense of distributions. A
version of this result can be found in [MaSe79ii, Theorem 4.13, p. 299] and as with
Theorem 5.23, we extend this work in the following theorem.

Theorem 5.25 Let (X, q, ) be a d-AR space for some d € (0,00) where [ is
assumed to be a Borel-semiregular measure on X. Suppose

d
pE (—d T 1i| (5.484)

and fix a quasi-distance p € q along with a parameter o € R satisfying
d(1/p—1) <« = [log,C,] " (5.485)

Then, for every f € HY(X, p, i), there exist a numerical sequence {Ajljen € C,
and a sequence of (pg, p, 00)-atoms, {a;}jen on X (pg as in (2.21)), for which

f=Y Na in Z,X.p). (5.486)

JjeEN

Furthermore, given any parametery € (d(l/p -1, Ol), if f € HY(X, p, |u) is such
that f,, ,, € LP(X, ), then the decomposition in (5.486) may be performed with
the additional property that

1/p
(Z |Aj|p) < £ el (5.487)

jeN



5.3 Decomposing Distributions into Atoms 259

for some constant C € (0, 00) (which is independent of ). In particular, in such a
scenario {Aj}jen € £P(N).
Finally, for each B, n € R satisfying

d(1/p—1) <n < B < [log,C,] ", (5.488)

there exists a finite constant ¢ > 0 such that given a distribution [ € .@é X,p), a
numerical sequence {A;}jen € £P(N), and a sequence of (pg, p, 00)-atoms, {a;}jen
on X, with the property that

f=>a in ZyX.p), (5.489)

jeN

then f € I:IZ(X, P, L), the sum in (5.489) also converges to f in I:IZ X, p, ) and

1/p
I fopnp ey < c( > |Aj|1’) . (5.490)

jeN

Proof Suppose y € (d(l/p — 1),a) and fix f € LY(X, w) (\HL(X, p, i) such that

eya € VX, ). If f2 ., = 0 pointwise on X then by the last statement in the

conclusion of Proposition 4.15 we may deduce that f = 0 in Z,(X, p). In this
scenario taking A; := 0 and a; := O for every j € N would ensure (5.486)—(5.487)
are satisfied. Thus assume /%, , # 0 on X. Then, in light of the fact that /7 , is
lower semi-continuous (cf. Lemma 4.7) and not identically equal to zero on X, we

may conclude that fx( p’:,y,a)p du € (0, 00). Then, by Theorem 5.21 for each fixed

k € N there exists a function f; € L*>(X, ) such that the distribution induced by f;
on Z,(X, p) satisfies

[ = Fral sy <27 vl (5.491)
Then clearly,
I [ = Sl = 0 (5.492)

Let fo := 0 on X and for each n € N introduce F,, := Y ;_,(fk — fic1) = Jfa-
Notice that (5.491) ensures for any given ¢ € (0, c0) there exists N = N(¢) € N
such that

” (Fotm — F");#,y,a HIL)/’(X,;L) = ” (fotm = ﬁl);#.y,a ”[z),v(x,ﬂ)

< (2—(n+m) + 2—n) H fp* ip

eyl ey <€ (5.493)
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for every m € Ny and n € N, n > N. Therefore, by (5.492) and Lemma 4.8 we
have

Y (fimfir) = in Z,(X.p). (5.494)

keN

Consider now the claim
(fie = fie1)y yo € (X, ) NP (X, ), VkeN. (5.495)

Fix k € N and notice that the membership of (fx — fi—1)3, , o to L (X, n) follows

. 2 . . . .
from (5.491) granted that p";’y’a € [P (X, n). Concerning L* (X, ), this is immediate

from Theorem 4.13 recalling that f; — fi—; € L>(X, ). This justifies (5.495).
In turn, by Theorem 5.23 we may write for each k € N

fi— for =Y mjar; in - Z,(X.p). (5.496)
JjeN

where {a;j}jen is a sequence of (pg, p, 00)-atoms on X and {7 }jen € £°(N) with

> Imgl = = Syl (5.497)
jEN

Therefore, by once again appealing to (5.491) we have

Z Z Insl” < € ZH (fx = fk—l);#,y,a ”[z)p(x,#)

keN jeN keN

< () el = €1 e

keN

(5.498)

p
ey

In particular, {netxjen € /(N) granted f7 , € LP(X, ). On the other hand,

combining (5.494) and (5.496) we may conclude

f=200 myay in o (X, p). (5.499)

keN jeN

In the last stage of this proof, we need to relate the double series in (5.499) to the
single series appearing in (5.486). With this goal in mind, if p < 1 then observe
that part 5 in Proposition 5.2 along with the inclusion 2, (X, p) € Z4/P=D(X, q)
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and (5.498) permit us to write

DD Imilacy @) < Clllgamneeg Y D el - laklczamn gy

keN jeN keN jeN
1/p
< cnwugmn(x,q)(z > |nkz,~|f’)
keN jeN
= Cliellgamvua | fonral o < o0 (5.500)

for each ¢ € Z4(X, p). On the other hand, when p = 1, if we rely on part 5 in
Proposition 5.2 as well as the inclusion %, (X, p) € BMO, ((X, q, t) and (5.498)
then arguing as in (5.500), with BMO, ¢(X,q, i) in place of Z%/r=D(X, q),
implies

Z Z g ars, @) < Cllgllsmoroct.amw | Fonya HU’(X,V,) <oo. (5.501)
keN jeN

In light of this estimate, the representation of f in (5.499) can be arranged as a
single series converging to f in Z, (X, p) via a bijection ¢ : N? = N. Moreover, the
double series in (5.498) can also be arrange via the same bijection. Hence, (5.498)—
(5.499) yield the desired conclusions in (5.486)—(5.487). Finally, noting that the
last statement made in the theorem follows from Corollary 5.9 and the inclusion
H,ps X, p, ) S I~1§ (X, p, p) finishes the proof of theorem. |

Having established Theorem 5.25, we are now able to decompose distributions
whose grand maximal function belongs to L into linear combination of L°°-
normalized atoms (where the convergence of such a sum occurs in Z,, (X, p)). The
next step is to show that this decomposition can be obtained with convergence also
in (£41/r=D(X, q))" if p < 1 and in BMO o(X, q, p) if p = 1. This will permit us
to conclude that the injection H,,*°(X) < H”(X, p, /1), obtained in Theorem 5.12, is
in fact onto. This is now in Theorem 5.26 below. The identification of H.,** (X) with
I:I"(X , p, 0) was the main result of [MaSe79ii]. Here in the following theorem we
improve upon [MaSe79ii, Theorem 5.9,p. 306] by specifying a strictly larger range
of p’s for which this identification is valid. Moreover, this result is obtained in the
more general context of Ahlfors-regular quasi-metric spaces of arbitrary dimension
d € (0, 00) as opposed to the 1-AR spaces considered in [MaSe79ii].

Theorem 5.26 Let (X,q) be a quasi-metric space and assume [ is a Borel-
semiregular measure on X which satisfies the Ahlfors-regularity condition in (5.3)
for some d € (0, 00). Fix a number

d
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and suppose p € q and « € R satisfy
d(1/p—1) <a < [log,C,] . (5.503)
Then the linear mapping % : H,,”°(X) — HL(X, p, i) defined by
Af = fawp ¥/ €Ha™ (), (5.504)

is well-defined, bounded, and bijective. Moreover, for each y € (d(l /p— 1),a)
there exist two finite constants c1, cy > 0 such that

il oy < 2L N yall o < 21 e (5.505)

forall f € HY,* (X). The inequalities in (5.505) may be rephrased as

1/p
1% f 2 xp ey & inf ( > w) (5.506)

jeN

where the infimum is taken over all representations of f as jeN Ajajin HY(X).
Consequently, one has

H(X) = I:Ig (X, p, t) with equivalent quasi-norms. (5.507)

Proof The fact that % is well-defined, linear, bounded and injective is a conse-
quence of Theorem 5.12. Thus, we focus on the surjectivity of Z. In this vein,
consider f € HY, (X, p, ). Then by Theorem 5.25 there exist a numerical sequence
{Aj}jen € £7(N), and a sequence of (px, p, 00)-atoms, {a;};en on X such that

f=Y Na in Z,X.p). (5.508)

jeN

Since the p,-balls are p-measurable and p, &~ pg, conclusion 3 in Proposition 5.2
guarantees the existence a finite constant C = C(p,, p, #) > 0 such that Cg; is a
(po, p, 00)-atom for every j € N. This, along with 6 in Proposition 5.2 implies that
the mapping

v — Z C_lkj(Caj, Y¥) belongs to (.Zd(l/p_l)(X, q))*
jeN (5.509)
if p<landto BMO;o(X,q, ) if p=1.

Hence,

> hap =Y C ') Ca; € HYZ(X). (5.510)
JjeN JjeN
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Moreover, (5.508) implies that the restriction of the map defined in (5.509) to
P4 (X, p) coincides with f on Z,(X, p). Thus, Z is surjective as desired.

We now turn our attention to proving the estimate in (5.505). Let f € H5(X).
Then Lemma 5.10 implies Zf € HY(X,p, ). In particular, we have that
(Z f );#,%a e I’(X, n) foreach y € (d(1/p — 1), ). Therefore, by Theorem 5.25
there exist a numerical sequence {A;}jen € ¢7(N), and a sequence of (pg,p, 00)-
atoms, {a;}jen on X, such that

Rf =Y XNa in Z,(X.p). (5.511)
jeN
where
1/p
IVl < (Z M,»V’) < ORIVl (5512)
jeN
for two finite constants C;, C, > 0 independent of f. Since Z is injective we have
f=>da in (2" V(x.q)". (5.513)
jeN

Combining this with (5.512) completes the proof of (5.505) and the theorem. ]

We conclude Chap.5 with the end result of this section combining conclusions
of Theorems 5.26 and 5.12.

Theorem 5.27 Let (X, q, t) be a d-AR space for some d € (0,00) where | is
assumed to be a Borel-semiregular measure on X and consider exponents

d
S d 1, 00], 5.514
pe(dﬂnd(xﬁq) } and q € [1,00] ( )

with g > p. Then, for every p € q and o € R satisfying
d(1/p—1) <a < [log,C,] ", (5.515)
the spaces Hh(X,p. ), Hy(X,p. ) are naturally identified with HY(X). In
particular, these spaces do not depend on the particular choice of the quasi-distance
0, the parameter q, or the inde~x o as in (5.514)—(5.515), and their notation will be
abbreviated to simply HP (X), H?(X), and H%,(X). Hence,
HP(X) = H’(X) = H'(X) with equivalent quasi-norms. (5.516)

Proof This is an immediate consequence of Theorems 5.26 and 5.12 along
with (5.184). O
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Comment 5.28 We have seen in Sect. 5.1 that the space H%;?(X) is a quasi-Banach
space for every p € (0,1) and every g € [1, 00] when equipped with the quasi-
norm defined in (5.48). As a result of Theorem 5.27 we also have that the space
H;,’q (X) is a quasi-Banach space for every ¢ € (1, co] when equipped with the same
quasi-norm. |

In summary, the work carried out in Chaps. 4-5 shows that it is possible to fully
characterize the maximal Hardy spaces H? (X) and H” (X) for

d

where, more specifically, we have seen

HP(X) = I:IP(X) =I’(X,un) forpe(1,00] (5.518)
and
p Y _ P d _
HP(X) = H’(X) = H,(X) for pe (d X li| . (5.519)

In the next chapter, the focus will remain on H”(X) when p < 1 with the goal of
obtaining molecular and ionic characterizations.



Chapter 6
Molecular and Ionic Theory of Hardy Spaces

This chapter is dedicated to the exploration of the molecular and ionic theory of
HP(X) in the setting of d-AR spaces. As a motivation for this topic, suppose one is
concerned with the behavior of a bounded linear operator 7 : L*(X, ) — L*(X, j1).
Specifically, assume that the specific issue we are interested in is whether T extends
as a bounded operator on HP(X) with p < 1. Given the atomic characterization
of HP(X) obtained in Chap. 5, one would expect that such a question has a
positive answer as soon as we are able to verify that 7 maps HP-atoms into H”-
atoms. Unfortunately, this is too much to hope for in general. For instance, in the
important case when 7 is a generic singular integral operator, 7a is not typically
an atom whenever a is since in general, T destroys the bounded support condition
of the atom. However, as it was observed in [CoWe77], for many convolution-type
operators although 7a is not an atom itself, it has properties which closely resemble
those of an atom. It turns out that 7a fits into a special class of functions referred
to as molecules. Remarkably, every atom is a molecule and every molecule can
be decomposed into a linear combination of atoms via a sequence of coefficients
belonging to £” whose quasi-norm is bounded independent of the molecule. From
this we can conclude that T : H”(X) — H?(X) is bounded whenever T maps atoms
into molecules. We will explore this matter in greater detail in Sect. 8.3.

One central goal of this chapter is to introduce and systematically explore a
particular class of molecules in the setting of d-AR spaces and show that linear
combinations of molecules can be used to characterize H.,7(X) and H?(X). This is
done in Theorem 6.4, which constitutes the main result of Sect. 6.1. As a variation
on this theme, in Sect. 6.2 we introduce the notion of an ion, a function which
is similar to an atom where, in place of the vanishing moment condition, we ask
that its integral is small relative to the size of its support. Among other uses, this
class of functions has been found useful in studying the well-posedness of the
Neumann boundary value problem for perturbations of the Laplacian in Lipschitz
domains with boundary data in the Hardy space H%,(3Q) for 1 — p > 0, small; see
[MiTaOl, Theorem 7.9, p.403]. In Theorem 6.9 we show that ions can also be used
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to characterize H”(X). Finally, Sect. 6.3 is the culmination of all of the work done
up until this point, and in Theorem 6.11 we summarize all the characterizations of
HP(X) that we have obtained in Chaps. 4-6.

6.1 Molecular Characterization of Hardy spaces

In this section we introduce the notion of a molecule and, in a fashion similar
to H,?(X), construct the molecular Hardy space H.'?(X). The main result of this
section is Theorem 6.4 where we show that H"%(X) = H%%(X) = HP(X). This
generalizes similar results obtained in the Euclidean setting in [TaiWe79, TaiWe80],
[GCRAFS8S5, p. 326] and improves upon the work in [CoWe77] and [HuYaZh09].
Let (X, q, 1) be an AR space of dimension d € (0, co). That is, suppose (X, q)
is a quasi-metric space and assume p is a nonnegative measure on X satisfying
the following property. There exist a quasi-distance p, € ¢, and four constants

C1,Cy,c1,¢3 € (0,00) with ¢; <1 < ¢; such all p,-balls are yu-measurable and

Cir < u(By,(x, 1)) < Cor? foreveryx € X 61
and every r € (0, 00) with r € [c1ry, (x), c2R,, (X)] .

where r,,, and R, are defined as in (2.70)~(2.71). Note that we may assume there
holds C; < 1 < C,. Throughout the rest of this section, when given this setting we
shall consider a fixed number A € (1, c0)' such that

A> (Cy/Cp)Ve, (6.2)

Definition 6.1 Suppose (X, q) be a quasi-metric space and assume j is a nonnega-
tive measure on X satisfying (6.1) for some d € (0, 00). Fix exponents p € (0, 1] and
q € [1, 00] such that g > p, along with parameters A as in (6.2) and ¢ € (0, c0). In
this setting, call a pi-measurable function M : X — C a (p,,p, q,A, €)-molecule
(at scale r € (0, oo) with dilation factors A and ¢) provided there exist a pointx € X
with r,, (x) < r having the following properties

. 1/g—1
@) 1Ml < (B, 1) 7,
.. e 1/g—1
(ii) HMprU(X’Ak,)\BPU(X’Ak—lr)||L4(X’M) < AKWa=1=9) (B, (x. 1)) fa=1/p for every
number k € N, and
(iii) [, Mdu = 0.

Whenever M and B, (x, r) are as in Definition 6.1, we will say M is centered
near the ball B, (x,r). In the case when u(X) < oo, it is also agreed upon

1A has been taken to be 2 in some cases, see, e.g., [HuYaZh09, p.96], [CoWe77, Footnote on
p. 595]. In this work, we do not wish to make such assumptions.
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that the constant function given by M(x) := [u(X)]™'/? for every x € X, is a
(pos P+ q, A, €)-molecule on X. Observe that reasoning as in Sect. 5.1 with atoms,
we may assume without loss of generality that if » € (0, 00) is as in Definition 6.1,
then r € [r,, (x), 2 diam,, (X)].

Comment 6.2 The notion of a molecule as in Definition 6.1 can be generalized by
replacing item (ii) with the demand that

M1g, (xakr)\B,, ccar=1r) a0t )

< nkAkd(l/q_l)ﬂ(Bpg(xy r))l/q—l/.ﬁ VkeN, 6.3)

where {1 }ren C [0, 00) is a numerical sequence satisfying

> ki < oo, ifp =1,
keN
(6.4)
> (m)PARIP) < oo, if p € (0, 1).
keN

The conditions listed above in (6.4) have been presented in [HuYaZh09, Defini-
tion 1.2, p. 95] in the case when d = 1. Observe that for each fixed ¢ € (1/p—1, 00)
it follows that (6.3) reduces to the condition listed in part (ii) of Definition 6.1 by
specializing n; := A7 for every k € N. In this situation, when d = 1 it is
mentioned in [HuYaZh09, Remark 2.2, p.98] that for a certain ¢ € (0, 00), the
molecules defined in Definition 6.1 coincide with the classical notion of molecules
(see, e.g., [CoWeT77, GCRAF85, TaiWe80], and [GatVa92]) whenever p € (1—41_‘E 1].

|

We now take a moment to collect a few properties of the molecules defined in
Definition 6.1.

Proposition 6.3 Suppose (X, q) be a quasi-metric space and assume |i is a nonneg-
ative measure on X satisfying (6.1) for some d € (0, 00). Fix exponents p € (0, 1]
and q € [1, 00] such that q > p along with parameters A as in (6.2) and ¢ € (0, 00).
Then if M is a (po, p, q, A)-molecule centered near a ball B, (x, r) for some x € X
and some r € (0, 00) with r € [r,, (x), 2 diam,, (X)] then the following hold.

1. Forevery s € (0, q, there exists a constant C € (0, 00), independent of M, with
the property that M € L*(X, ) with || M ||sx 1) < Cp,(Bpg (x, r))l/‘v_l/p.

2. For every ¢ € [l,00] with p < ¢ < q, there exists a constant C € (0, 00),
independent of M, such that CM is a (p,, p, ¢, A, €)-molecule.

3. If u(X) = oo, then for each fixed B € (0, de) there exists a constant C € (0, 00),
independent of M, with the property that M € (92”/3 X, q))* in the sense that M
induces a bounded linear functional on P (X, q) defined by

M,y = /XMWd,u, Vi e 28X, q), (6.5)
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which satisfies |M|| 6 x q)x = Crf=40/r=D If n(X) < oo then one has
M € (.i”ﬁ (X, q))* (in the sense described above) for each fixed B € (0, 00).
Moreover, there exists a constant ¢ € (0, 00), which does not depend on M when
B < de, such that

erP=d/=0 4f M £ p(X)"VP,
1M 28 x.q* < (6.6)
GOV =P if M= px)~'r.

Additionally, if ¢ > 1 (where p(X) is finite or infinite) then via an integral
pairing defined in the spirit of (6.5), one also has M € (BMOq/,o(X, q, p,))*
(where ¢’ € [1,00) is such that 1/q+ 1/q' = 1) and

Cra/p=4f M p(x)~'/7,
Ml Bmo,, o (x.qmn* = 6.7)
[O17VPif M = p(x)~'/.

In particular, in all cases, M induces a distribution on P, (X, p) for every quasi-
distance p € q and every parameter a € (0, [log,C,]™'].

4. If {Mj}jen is a sequence of (po.p,q.A,€)-molecules on X for some fixed
e € (1/p—1,00), and if {Aj}jen € €P(N) is a numerical sequence then the
mappings f : LP=V(X,q) — Cifp < land g : BMO, o(X,q, ) — C if
p = 1, defined by

(L) = Tien My 9), Yy e 2 DX, q), and

(6.8)
(gv W) = ZjeN Aj(Mj, w)s VW € BMOq/,O(Xv q, ,LL),
are well-defined, bounded linear functionals satisfying
1/p
”f ”(_fd(l/l’_l)(X,q))* f C( Z IA,AP) (69)
jeN
if p < 1 and, corresponding to the case p = 1

lgllBmo, o (x.q)* = CZ 4] (6.10)

jeN

where C € (0,00) as in the conclusion of part 3. In this case, the mappings
defined in (6.8) will be abbreviated by f =3} ey AiMj and g = 3 ey AiM;.

Proof LetMbea (p,,p, q,A)-molecule centered near a ball B, (x, r) for some x € X
and some r € (0, oo) with r € [r,, (x), 2 diam,, (X)]. Recall that although initially u
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satisfied the Ahlfors-regularity condition stated in (6.1), by Proposition 2.12 we can
assume can assume j in fact satisfies

p(Bp, (v.5)) ~ s* uniformly, for every y € X 6.1
and every s € (0, 00) with s € [c17,, (), 2 diam,, (X)]. .

In particular, we have that (6.11) holds with y and s replaced with x and r
(respectively).

With this in mind, we begin proving / by fixing s € (0, g] and first noting that
from (i) in Definition 6.1 and Holder’s inequality (keeping in mind ¢/s > 1) we
have

s s I=s/ 1=s/p
/ ( M| du < ”M”Lq(x,ﬂ) /’L(Bpn(xv r)) ! = H(Bpn(xv r)) " (6.12)
Bpn x,r)

Moreover, if we denote By := B, (x, AFr) \ By, (x, A*=1y) for each k € N then from
(i) in Definition 6.1, Holder’s inequality, and the upper-Ahlfors-regularity condition
for p in Proposition 2.12 we may deduce for each k € N

K K I—=s
IMI® dp < M1, [0 14(Bp, (x. ARP)) T8
By

< CAMMUIT0(B, () T (6.13)

where C = C(u, p, g, s) € (0,00). In concert, (6.12) and (6.13) give

My = [ P du+ Y [ adp
k

Po (x.r) keEN

1_‘ —] —,
< C/L(Bpg(x, r)) s/p ZAde(l/x 1—¢)
keNy

< Cu(B,, (x.1) (6.14)

from which the claim in / follows, granted that the assumption s € [1, oo] implies
I/s—1—¢g<0.

The justification for 2 follows from the estimates in (6.13)—(6.14) and (iii) in
Definition 6.1. As concerns 3, suppose (X) = oo and fix § € (0, de) along with
¥ € ZP(X, q). First, there is the matter of showing that the mapping defined in (6.5)
is well-defined. That is, we want to show that My € L'(Xu). In a step towards
establishing this fact, consider the claim that

M- (Y —mp, (o)) € L'(X, p), (6.15)
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where, as before, mp, (v W) = pr (”)1// du. To see (6.15) observe first that if
By := B,, (x, r) then (with By, k € N maintaining its above significance), we have

sup [ (y) —ma,, (V)| =2 sup Y (y) — Y ()]

yEB YEBp, (x.Akr)
< 20 ¥llgn x p) (AT
< CllY Il x.q AP, (6.16)

for each k € Ny. Consequently, making use of (6.13) (with s = 1), (6.11), and (iii)
in Definition 6.1 we have

/X MO - 1Y O) = ms, ()] di ()

= [sup 50 =l [ ) du}

keNy YEBy

< CrP= P DN s x g Z AP (6.17)
k€N

< Crﬁ_d(l/p_l)||1ﬁ||3ﬁ(x,q) < 00,

where the last inequality follows from the fact § — de < 0. This finishes the proof
of (6.15).

We will also show that if g > 1 then (6.15) holds for each ¢ € BMO, o(X, q, 1)
where ¢’ € [1, 00) such that 1/¢' + 1/ = 1. With this goal in mind, observe that by
Holder’s inequality, (i) in Definition 6.1, and Ahlfors-regularity condition satisfied
by w in (6.11), we may write

/X MO - 1Y ) = ms, con ()] di)

1-1/
= ||M||L‘I(X,;A)H(Bpu (x, r)) ! [y ”BMOq/(X,q,;L)
< Cr_d(l/"_l)||W||BMoq/(x,q,u) <00 (6.18)
where C = C(p, ) € (0, 00). Hence, (6.15) holds for each ¥ € BMOy o(X, q, ).
Moving on, since we have already shown in part / that M € L'(X, ), it follows

from (6.15) and the vanishing moment condition for M that Myr € L'(X, ). As
such, the mapping defined by

(M, ) = /XMw du, (6.19)
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forall v € ZP(X,q) and all ¥ € BMOy o(X,q, n) if g > 1 is a well-defined
linear functional. Moreover, regarding the boundedness of this mapping, it follows
from making use of the vanishing moment condition in (iii) in Definition 6.1 and
the estimates in (6.17) and (6.18), that

(M. 9| = /X MY — ms, o] dpt| < CE= D o, (6.20)

and

(M) = ‘ [ M0 = sl

< crda/r=h v ”BMOq’,o(Xs(lle) )

6.21)

where C € (0,00) is constant independent of ¥ and M. This justifies the first
inequality in both (6.6) and (6.6) and finishes the proof of 3 in the case when
w(X) = oo.

Assume next that ©(X) < oo and fix 8 € (0,00). Again, our first goal is to
establish the membership My € L'(X, i), for every ¥ € Z#(X,q), and every
Y € BMOy o(X,q, n) if g > 1. However, in this case diam,, (X) < oo (cf. 7 in
Proposition 2.12). Thus,

LP(X,q =€/ (X, q) S LP(X, p) (6.22)

which implies My € L' (X, 1), given that we have shown in  that M € L' (X, ). If
g > 1 then the estimate in (6.18), the membership M € L' (X, 1), and the vanishing
moment condition for M imply My € L' (X, u).

As concerns the boundedness of this functional, note that there exists a number
my € Ny with the property that By = @ whenever k € Ny with & > my.
Consequently, if M # [u(X)]~'/7, then the proof follows similarly to as in (6.17)—
(6.18) except now the sum in (6.17) only contains finitely many terms. This
eliminates the need for the demand B < de in order to obtain a bound for
M|l ¢ (x.q))<- However, if B > de then the constant C in (6.17) depends on M
(specifically, it is related to my).

Suppose now M = [u(X)]~'/7. Then membership of My to L'(X, 1) follows
from

/X Myl dp < @] 1Y loo < OO 1Yl onrge  (6.23)

andifg > 1

/X|M1/f|d,u =[O PVl g < [M(X)]_l/p||W||BMoq/(x,q,,L)- (6.24)
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Then again, the linear functional defined in (6.5) is well-defined. Moreover, these
estimates are also enough to justify the second inequality in in both (6.6) and (6.6).
This finishes the proof of 3.

Concerning 4, observe that the demand that ¢ > 1/p — 1 will ensure the choice
B :=d(1/p—1) € (0,de) when p < 1. Moreover, when p = 1 then by assumption
g > 1. Thus the hypotheses of 3 are satisfied and we may in turn conclude {M;} e is
asubset of (L41/P=D (X, q))*if p < 1 and (BMOy (X, q, u))* if p = 1. Moreover,
given the choice of B, the conclusion in 3 guarantees the existence of a constant
C € (0, o0) (which is independent of any such family {M;};en) satisfying

supjen 1Ml za/v—nx.qp+ < € if p<1,and
(6.25)

SUpPjeN ||Mj||(BMOq/,0(X,q,;L))* =C ifp=1.

Then the rest of the proof of 4 follows much in the spirit as the justification of 5 in
Proposition 5.2 This completes the proof of the proposition. O

The stage has now been set to introduce the notion of the molecular Hardy
space is the setting of d-AR spaces. Concretely, suppose (X, q, i) is a d-AR space
for some d € (0,00) and specifically assume p satisfies (6.1). Fix exponents
p € (0,1] and g € [1, o] such that ¢ > p along with parameters A as in (6.2) and
¢ € (1/p—1,00). In this context, we introduce the molecular Hardy space

HPSA (X, po. ) as

O X, pos ) o= { f € (L0770 (X, @)" : 3 {Azhjen € /() and

mol

(0o P+ 4, A, €)-molecules {M;};en such that f = ZA,-M]- in (0P (x, q))*},
jeN
(6.26)

if p < 1, and corresponding to the case p = 1

(X, pos 1) i= | f € (BMOy.0(X.q. )" 1 3{Ashjen € /() and
(00, 1,4q,A, e)-molecules {M;};en such that = Z A;M; in (BMOqgo(X, q, p,))*}
jeN

(6.27)

where ¢’ € [1, 00) satisfies 1/g+ 1/q' = 1.
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Hl’squ,E

It is clear H,,;

(X, po, i) is a vector space over C. Thus, similar to the atomic
) defined for each f eHP (X, p,. 11) by

Hardy spaces, we consider ||-[| ;p.q.. ol
moi

[ :(X,PU,

1/p
1 e s,y = inf § (ZW”) : f =) AM; asin (6.26) or (6.27);.

jeN jEN
(6.28)

We shall soon see, as a consequence of Theorem 6.4, that || - || paae 0 defines
mol 03

X.p
a quasi-norm on H”%**(X, p,., jt) and that in fact H”:%**(X, p,. ) is quasi-Banach
for every p € (0, 1] when equipped with the quasi-norm in (6.28).

It is important to note that unlike the case with the atomic Hardy spaces, we
are forced to incorporate the choice of quasi-distance p, € q in the notation of
Hf'n’gl’A’s (X, po, it). This is a manifestation of the fact that we do not have an analogue
of part 3 in Proposition 5.2 for molecules. Nevertheless, in Theorem 6.4 we will
show that the particular choice of p, € q as in (6.1) is immaterial.

Going further, part 2 of Proposition 6.3 implies that the spaces H’;,’gl’A’g(X s Pos L)
scale naturally with respect to the integrability parameter g. Specifically, if A is as

in (6.2),e € (1/p—1,00),p € (0,1], and g1, g2 € [1, o0] then

HY2A5 (X, 0y, 1) € HPOA (X, poy 1) Wheneverp < g1 < qa. (6.29)
In fact, in Chap. 7 we will see that the value of ¢ is not an essential feature in the
definition of Hf'n’Z,’A’S (X) in the sense that different values of ¢ all yield the same
molecular Hardy space.

The purpose of the remainder of this section is show that the spaces
HSY¥ (X, py, i) fully characterize the atomic spaces H%(X). In this vein, if
p € (0,1], g € [1,00] with g > p, ¢ € (0,00), and A is as in (6.2), then it is
clear to see that every (p,, p, g)-atom is a (p,, p, g, A, €)-molecule. As such, when
e (1/p—1,00) then

HY(X) € HYSA (X, pos ), (6.30)

mol

with
||f||Hl,;.0ql.A.s(X,pr < fllursx), forevery f € Hy*(X). (6.31)

The other inclusion, namely Hf'n’gl’A’s(X, 0o, ) € HLY(X) is handled next in
Theorem 6.4 below. The proof makes use of some of the arguments presented in

[CoWe77].

Theorem 6.4 Suppose (X, q) be a quasi-metric space and assume [i is a nonnega-
tive measure on X satisfying (6.1) for some d € (0, 00). Fix exponents p € (0,1]
and q € [1,00] such that ¢ > p, along with parameters A as in (6.2) and
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e € (1/p —1,00). Also, assume that u is a Borel-semiregular measure on X when
p = land g < oo. Then there exists a finite constant C > 0 such that if M is a
(pos P+ q, A, €)-molecule on X then the continuous linear functional induced by M
on L4~V (X, q) if p < 1 and on BMOy (X, q, 1) if p = 1 (where ¢’ € [1,00)
satisfies 1/q + 1/q' = 1), which is denoted also by M, belongs to H%(X) and
M|l e x) < C. Consequently, the identity operator

L HDOAS (X, pos ) = HYU(X) is well-defined, linear and bounded. (6.32)

mol

Hence, in the above setting,

HPSA4 (X, poy ) € HEZ(X). (6.33)

mol

As a corollary, the space Hl[;’gl’A’S(X, Po, 1) can naturally be identified with
HY(X). In particular, these spaces do not depend on the particular choice quasi-
distance as in (6.1) or the choice of the dilation factors A as in (6.2) and ¢ €
(1/p — 1,00) and the notation will be abbreviated to simply H"%(X) Hence, as
vector spaces,

HY(X) = HYY(X)  with equivalent quasi-norms. (6.34)

mol

As such, one has that the space H"%(X) is quasi-Banach when equipped with the

. mol
quasi-norm || - ”H,”,;Z,(X)'

Proof Let M be a (p,,p,q,A, €)-molecule on X centered near a ball B, (x,r) for
some x € X and some r € (0, 00) with r € [r,, (x),2diam,, (X)]. Then the linear
functional induced by M on .#?(/P=D (X, q) is well-defined by 3 in Proposition 6.3,
granted that the demand that ¢ > 1/p — 1 will ensure § := d(1/p— 1) < de.

Moving on, we begin by establishing that M € H)?(X) in the case when
diam,, (X) = oo (i.e., under the assumption w(X) = o0). In this vein, we
make a few definitions. Let By := B, (x,r) and for each integer k € N denote
By := B, (x,A*r) \ B,, (x,A*"1r). Then for every k € Ny we have u(By) € (0, 00).
Indeed, if k = 0 then w(By) = ,u(BpU (x, r)) € (0,00) by Proposition 2.12. In
order to justify this claim when k € N observe that since ©(X) = oo we have
R,,(y) = oo for every y € X. (cf. Proposition 2.12). Hence, in this scenario, the
Ahlfors-regularity condition stated in (6.1) reduces to

Cis? < p,(BpU(y, s)) < Cys¢ foreveryye X 635)
and every s € [c1rp,(v), 00) with s > 0. .

With this in hand, if £ € N then on the one hand, relying again on Proposition 2.12,
it follows from the definition of B, that

((Bi) < (B, (x,A*r)) < oc. (6.36)
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On the other hand, appealing to (6.35), the choice of the constant A € (1, co) ensures

(B = (B, (x.A*r)) — ju(By, (x. A*"'r))
> C1(A* ) — (A1) = c a1 > 0, (6.37)

where C = C1A?—C, € (0, o). Note that in (6.37), the use of the Ahlfors-regularity
condition stated in (6.35) is valid given that Ay > > c1rp, (x). The desired
conclusion follows now from (6.36)—(6.37). Before moving on, we wish to mention
that it follows from (6.37) and (6.35) that

(By) = CA" D u(By), Yk e Ny, (6.38)

where C = C(Cy,C;,A) € (0,00). The importance of (6.38) will be apparent
shortly.

Having established these facts, it is meaningful to define a sequence of numbers
{mi}ren, € C and a sequence {¢i}ren, Of p-measurable, nonnegative functions
defined on X by setting for each k € Ny

m = | Mdp and @(x) = u(By) 'p,(x), YxeX. (6.39)
By

Then by design, we have (keeping in mind (6.38))

supp ¢x < Bpa(stkr), /(pk du =1, and
X

(6.40)
0<¢ < CAd(l_l‘),u(Bo)_1 pointwise on X.
for each k € Ny. Moreover, if for every k € Ny we set
My == M1, — mypy, (6.41)
then it is immediate that
M = Z M + Z mp@r  pointwise on X. (6.42)

k€N k€N

In light of the equality in (6.42), we note that in order to obtain the membership of
M to H,Y(X), it suffices to show individually

ZM" and Z migr  belong to HY(X). (6.43)
k€N keNy
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In this vein, we first justify the membership of ZkeNO M, to HL,7(X). With this goal
in mind, we claim there exists a finite constant C = C(u, p, g) > 0 such that

C'ATMA/P=1=0p1 s a (p,. p.g)-atom on X for every k € Ny. (6.44)

To this end, if k € Ny is fixed then it follows from the definitions of My, ¢, and my,
as well as (6.40) that

suppM;, < Bpg(x,Akr) and /Mk dp = 0. (6.45)
X

In order to estimate ||My/||z4(x, 1), we note that by using (i) and (i) in Definition 6.1
in conjunction with Holder’s inequality and (6.1) we may write

lmillzace ) = 1M, | g (B4 < 1M1l acx g0
< Akd(l/q—l—a)M(Bpo(x’ r))l/q—l/p
< CAMP=1=9 (B, (x, Aky)) TP (6.46)
where C € (0, co) depends only on y, p and g. Consequently,
IMill oy < C(IIMAg Loy + Ilmiell o)
< CAMUP=1=9) (B, (x, Akr)) TP (6.47)

where C as in (6.46). Combining (6.45) and (6.46) finishes the proof of (6.44).
As a consequence of (6.44) we obtain

My € H'(X)  with | My|| o, < CAMOP7179 Wk e Ny (6.48)

Combining this with Proposition 5.3 gives for each k € Ny

||Mk||($d(l/p71)(x,q))* < C”Mk”H{;’»q(X), ifp <1, and (6.49)

IMillsmo, ox.amn* = ClMillpray). ifp=1. (6.50)
On the other hand, observe that

e>1/p—1 = Y CAMIII7) <o 6.51)
k€N
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In fact, this choice of & implies the membership of {CA*(1/P=1=8)y, " to ¢P(N).
Then combining (6.48)—(6.51) we have

> teno Mi  convergesin (2?0 (x, q))",

(6.52)
if p < 1and in (BMOy o(X,q, )" if p = 1.
Finally, noting that we may write
D M=) (CAMUPTIm) CTATROPTImE pyy (6.53)

k€N k€N

where the sequence {CA*(/P=1=a)y, € £7(N) and {CTTATRI/P=1=0pp Y o, is
a sequence of (p,, p, g)-atoms on X gives

> MieHL(X)  with

k€Ny
1/p
< ( > CPAkd“—P—Sm) <cC

Hy(X) keN,

(6.54)

2 M

k€N

Moving on, we now focus our attention on proving oy, "¢ € Hg' (X).
Specifically, we will show Y, ., mx@x € Hy™ (X) € Hby?(X) where this inclusion
follows from (5.49). Before proceeding, define for every j € Np,

o0
Npi="my (6.55)
k=j

and note that this sequence {N;}jen, S C is well-defined. In fact, making use

of (6.13) in the proof of Proposition 6.3 with s replaced with 1, and the definitions
of N; and mj, j € Ng we have for eachj € Ng

o0 o0
M= 3 [ IMlde = €3 aHe e
k=j ¥ Bk k=j

< CA7 u(By)' ™7 < . (6.56)

Furthermore, since Ny = fx M du = 0 we have

D mpe =Y (Ni=Nex)ge = Y Nevr(@e1 — 9i) (6.57)

k€N keNy k€N

pointwise on X. Thus, it suffices to show ZkeNO Nit1(@rs1 — @) € HZZ(X).
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With this goal in mind, we make the claim that there exists a finite constant C > 0
such that

CT' A (B ™ (pr41 — @) s a (p,.p,00)-atom on X, (6.58)

for every k € Ny. Observe that for each fixed k € Ny we have, granted (6.40),

/(¢k+1 — @) dp =0, (6.59)
X
and

supp (@i+1 — @) < supp grt1 U supp g € By, (x, A*t'r). (6.60)

Moreover, appealing again to (6.40) gives |g;| < CAY1=P 11(By)~! pointwise on X.
Hence,

I @k+1 — @rllzce oy < C[AT + AY00] w(Bo) ™" < 2€AY™0 1 (By) ™!
1/p—1 -1
_ 2CAd(l/p+l)[Akdu(BO)] /p [Ad(k+1)M(BO)] /p (6.61)
< C[A% (B 1/p—=1 B Akt —1/p
< C[AYuB)] " w(By, (x. A1) 7,

for some C = C(u,A,d, p) € (0, 00) which finishes the proof of (6.58).
As a consequence of (6.58) we obtain

Gir1 — o € HLZ(X)

with [|@ep1 — @illroo iy, < CIAMu(Bo)]'7™" Yk € No. (6.62)
Moreover, note that it follows from Proposition 5.3 that for each k € Ny,
o1 — @ell 2 x.qys < Cllerrt — @ellyrec ), if p <1, and (6.63)
l@r+1 = erllBmoy gxawy* = Cllgrtt — @illyeo ). ifp=1. (6.64)
Combining this with (6.62) and the estimate in (6.56) yields for each k € Nj,

N1 (@1 — @) | (paim—n x gy < CA”®AMUPTIZ " if p < 1,and  (6.65)

[Nk+1 (@1 — @)l ™m0, o (x.q.n* = CA™depke  ifp =1, (6.66)



6.1 Molecular Characterization of Hardy spaces 279
Consequently, in light of (6.51) we have

Y teny Vet 1 (@r1 — @) convergesin  (£40/7=D (X, q))*
(6.67)
if p < 1andin (BMOy o(X,q, )" if p = 1.

We now write

Z Nir1(@r1 — 1)

keNy

= Z(CNk+1[Ade(Bo)]l/p_l)C_l[Ade(Bo)]l_l/p(fpkH—90/(), (6.68)
keNy

where by (6.58) {CT'[A* 11(Bo)]' ™7 (gr+1 — @x) hren, is a sequence of (0, p, 00)-
atoms on X gives

There remains to show {CN41[A*u(Bo)]"/P " Hhen, € ¢P(N). To this end,
observer that by combining (6.56) along with the fact that ¢ > 1/p — 1 we have

Z |Nk+1|p[Ade(Bo)]l_p <C Z ATMEPAROD) < (6.69)
k€Ny keNy

Thus, we have just shown that

Z Nit1 (@41 — @) € HE (X)) with
keNy

Z Nicr1 (@1 — @x)
k€Ny

_\W (670)
< (Z N1 1P [A* 1w (Bo) | p) <C.

Ho ™ (%) ke,

as desired. Then finally combining (6.57) with (6.70) gives

Z my @y

k€N

<C. (6.71)

> migpr € HL(X) € HL(X)  with
Hai" (X)

k€N

In summary, given (6.42) and the claims established in (6.54) and (6.71) we can
deduce that M € Hy;"(X) with [|[M| ey, < C where the constant C € (0, 00) is
independent of M.

We assume now that diam,,(X) < oo. Then u(X) < oo and without loss of
generality we may assume u(X) = 1. In this scenario recall that the constant
function taking the value [;(X)]~'/7 is regarded as a (p,, p, g)-atom on X for every
p € (0,1] and g € [1, 00] with ¢ > p. Denote ko to be the largest positive integer
such that X \ B, (x,A%r) # @ and for each k € Ny let M; and my be defined
as before where we have defined {¢}ren, as follows. Let ¢ be as before for
ke {0,... ko—1},set gp, = @ro+1 := [W(X)]'/? = 1, and define ¢; := 0 on X for
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every k € Ny with k > ko + 1. Then (6.42) holds and a reasoning similar to the first

part of the proof will show M € H.;%(X) in the situation when diam,, (X) < oco. This

finishes the proof of the first part of the theorem. We now focus on justifying (6.32).
Let f € H?%**(X, p,. j1). Then by definition we may write

mol
f= ZiEN AjM; in (Zd(l/p_l)(X, q))*’

if p < 1and in (BMOy o(X,q, )" ifp = 1,

(6.72)
where {A;}jen € £7(N) and {M;};en is a sequence of (p,, p, g, A, €)-molecules on X.
From what we have established earlier, we have

{Mj}jen C Hy'(X)  with  sup || M| oy, < C, (6.73)
jeN

for some C € [1, 00). As such, for every j € N we may write,

Mj = Yiendixaie in (LXK, )",
(6.74)
if p < 1 and in (BMOy o(X,q, 1))  if p = 1,

where {a; x }en is a sequence of (0., p, g)-atoms on X and {A;x }ren € €7 (N) satisfies

D Pl < CIM G- (6.75)
keN

for each j € N. Thus,

=2 jen 2Zken AjAjk gk in (2/rD(x, q))*,

if p < 1 and in (BMOy o(X.q.p))" ifp = 1,

(6.76)

where, from (6.75) we may estimate

DD Pl < C YA IM I, < €D IAP <00, (6.77)

jeN keN jeN jEN

Hence, up to a relabeling of the countable families {A;};xen and {a;x}; ken, this in
concert with (6.76) yields f € H.?(X) with || f ||’I;p.q(X) < C) ey |4;[P completing
the proof of (6.32) and in turn the proof of the theorem. O
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6.2 Tonic Characterization of Hardy Spaces

The goal of this section is to characterize the atomic and maximal Hardy spaces
in terms ions, a special class of functions possessing properties closely related to
that of an atom where instead the vanishing moment condition is relaxed. Ions
were originally introduced by M. Mitrea and M. Taylor in [MiTa0l, Appendix A,
p.411] in the context of bounded Lipschitz domains in R?. In such a setting it was
shown that linear combinations of ions generate Hy (R?) whenever p € (74.1];
see [MiTa0l, Lemma A.1, p.411].

Building upon this work we will extend the notion of an ion to the more general
setting of bounded d-AR spaces from which we will construct the ionic Hardy
space H'?(X), defined analogously to the atomic and molecular spaces H%,?(X) and
H”%(X). Then we will present the main result in this section, Theorem 6.9, which
demonstrates that this new notion of Hardy spaces coincides with H%;%(X), H%(X),
as well as the maximal space H” (X).

Definition 6.5 Let (X, q, 1) be a d-AR space for some d € (0,00) and suppose
1 (X) < oo (or equivalently, suppose X is a bounded set). Also, assume j satisfies
the Ahlfors-regularity condition listed in (6.1) with the quasi-distance p, € q. Fix
exponents p € (0, 1] and g € [1, oo] with ¢ > p, along with a number o € [0, c0).
In this setting, call a u-measurable function ¥ : X — C a (p,, p, ¢, 0)-ion (at scale
r € (0,00)) provided there exist a point x € X and a constant C € (0, oo) having
the following properties

(1) Suppl? g B,Dg('x7 r)7

i 1/g=1/p

(D) 1 lep < 1(Bp, (x. 1)) , and
(iii) | [y 9 du| < Cr.

Note that reasoning as in Sect. 5.1 with atoms, we may assume without loss of
generality that if » € (0, 0o) is as in Definition 6.5, then r € [r,, (x), 2 diam,, (X)].
The feature of ions which distinguishes from its atomic and molecular coun-
terparts is the relaxation of the vanishing moment condition in part (iii) of
Definition 6.5.

The following proposition describes the structure of ions in the sense that
each (p,,p,q,0)-ion on X can be expressed as a linear combination of three
(po, P, q)-atoms where the coefficients are bounded independent of the ion in
question.

Proposition 6.6 Let (X, q, it) be a d-AR space for some d € (0, 00) and suppose
w(X) < oo (or equivalently, suppose X is a bounded set). Also, assume [
satisfies the Ahlfors-regularity condition listed in (6.1) with the quasi-distance
Po € (. Fix exponents p € (0,1] and g € [l,00] such that ¢ > p along
with a parameter 6 € [d(1 — 1/q),d]. Then one can find a finite constant C =
C(u,p,d, o) > 0such that for each (p,, p, q, 0)-ion U, one can find three constants
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C1,C,,C;3 € (0,00) and three functions f,g,h : X — C with the property
that

O = f + g + h pointwise on X where C{'f, Cy'g, and
(6.78)
C;lh are (p,, p, q)-atoms on X with max{Cy, Cy,C3} < C.

As a corollary, each (p,, p, q, 0)-ion ¥, induces a continuous linear functional on
L4/r=0(X,q) ifp < 1 and on (BMOq/,O(X, q, p,))* ifp =1, where g’ €[1,00) is
such that 1/q + 1/q' = 1. Moreover; this linear functional, denoted by ¥, belongs
to H(X) and satisfies ey < C.

Proof Suppose ¥ is a (p,, p, q,0)-ion on X. To proceed, let the point x € X and
the radius r € [r,, (x),2diam, (X)] be as in (i)—(iii) in Definition 6.5. Then if
[ ® di = 0 we have that 9 is a (p,, p. g)-atom on X and trivially ¢ € Hy;’(X) with
3| e (xy < 1. Moreover, (6.78) is easily verified by taking f := ¢, g :=h:=0
and C, := G, := C3 := 1. Next, suppose [, 0 dp # 0 and write 9 = f + go
where for each y € X we have set

£G) =9 = u(By, (v, 1) /X 0 dplp,,wn(y) and

@00 = 1(Bo (5.0) " [ 9 diutn, 0. 6.79)

Focusing first on f, it is clear to see that supp f € B, (x,r) and [, fdu = 0.
Moreover,

1/g—1
I ey < 19 o + 1(Bp, (x. 1)) e /Xﬁdﬂ‘ (6.80)
1/g—1 1/g—1
< 1(Byy (6, 1) (B, 6 ) T O N (6.81)
< 2u(By, (x, 1))/, (6.82)

where the second inequality made use of the L7-normalization of the ion ¢ and the
third inequality follows from part / in Proposition 6.8 (applied here with s = 1).
This analysis shows that 27! £ is a (p,. p. g)-atom on X. Hence, I/ gy < 2.
Thus, defined C; := 2.

Turning our attention next to the function g, observe that if s := ﬁ € [gq, 00]
then by condition (iii) in Definition 6.5 and the lower-Ahlfors-regularity condition

for 1 we have
/ Odu| < crdl/s=Dre — ¢ (6.83)
X

1/s—1
g0l < (Bp, (x. 7)) /
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for some constant C = C(u,d, o) € (0,00). Hence, gy € L*(X, u). Consequently,
by (5.62) and (5.63) in Proposition 5.6 we have that there exist two constants
C,, C3 € (0, 00) and two functions g, h : X — C such that gy = g + h pointwise on
X and C;'g and Cz_lh are (p,, p, g)-atoms on X.

8o = g + h pointwise on X where Cz_lg and C;'h are
) (6.84)
(00, p, g)-atoms on X with max{C3, C3} < C||go|lrsx.u)-

The constant C € (0, co) appearing in (6.84) depends only on u, p, d, and 0. In
particular, C is independent of ©¥. Combining this with the estimate in (6.83) we
have that max{C,, C3} < C. In particular ”gO”HZ,'q(X) < G, + C; < C. Altogether,
we have shown that we can find a constant C € (0, co) which is independent of ¢
such that

max{”f“Hf;,’q(X)’ ”gO“HZ,'q(X)} =C (6.85)

The above analysis shows that the claim in (6.78) holds. This concludes the proof
of the proposition. O

Comment 6.7 In the context of Proposition 6.6, the reader is alerted to the
following observation. Although, as (6.78) describes, every ion can be written as
a linear combination of atoms, in general it is not to be expected that each of these
atoms satisfy a vanishing moment condition. In fact, a close inspection of the proof
of Proposition 6.6 reveals that the decomposition in (6.78) can be performed in a
such a manner as to satisfy the following additional properties. If fx ¥ dup # 0 then
f, g, and h as in (6.78) can be chosen such that

1. supp f < supp 9,
2. suppg, supph C X, and

3. [y fdu = [ygdu=0but [ hdu = [, 0du #0. [ |

As Proposition 6.6 highlights, every ion can be decomposed into a finite linear
combination of atoms. Accordingly, ions inherit many of the qualities atoms enjoy.
We now take a moment to collect some of these key properties in the following
proposition.

Proposition 6.8 Let (X, q, i) be a d-AR space for some d € (0, 00) and suppose
W(X) < oo (or equivalently, suppose X is a bounded set). Also, assume | satisfies
the Ahlfors-regularity condition listed in (6.1) with the quasi-distance p, € q. Fix
two integrability exponents p € (0, 1] and g € [1, 00] such that g > p along with a
parameter ¢ € [0, 00). Then for each (p,,p,q,0)-atom ¥ € LI(X, u) with x € X
and r € (0, 00) as in Definition 6.5, the following hold.

1. Foreverys € (0,q], one has % € L*(X, u) with ||| s x ) < M(Bpn(x, r))l/s_l/p;

2. Visa (p,,p.q,0)-ionforeveryq € [l,00] withp < q < g;



284 6 Molecular and Ionic Theory of Hardy Spaces

3.

4

if p € q has the property that all p-balls are |1-measurable, then there exists a
finite constant ¢ = c(p, po, t) > 0 such that ¢~ is a (p, p, q)-ion;

for o € [d(1 — 1/q),d], there exists a finite constant C = C(u,p,d,0) > 0
having the following significance: for each fixed number 8 € (0,00), one has
U € (fﬁ (X, q))* in the sense that ¥ induces a bounded linear functional on
ZB (X, q) defined by

(0.9) = / Sydp. Ve LP(X.q), (6.86)
b'¢
which satisfies
191l 2 x.q < Cmax {r#~4V/P=D [diam,, (X)]P~40/P=D 1} (6.87)
Additionally, if ¢ > 1 then via an integral pairing defined in the spirit
of (6.86), one also has a € (BMOq/,O(X,q,p,))* where ¢' € [1,00) satisfies
1/q + 1/q' = 1. Moreover, there holds
19l BMo, 4 x.q s < Cmax {r/P=Y [diam, (X)]7/1/P7D 1}, (6.88)
If {V}jen is a sequence of (p,,p,q,0)-ions where o € [d(1 — 1/q),d], and
{Aj}jen € LP(N) then one has that the mappings f : Lr-D(x q) - C
ifp < land g : BMOyo(X.q.;t) — Cifp = 1 (4 € [l,00) satisfying
1/g+ 1/q = 1) defined by

(L) =X A0 )., Vy ez DX, q).and

jeN
(6.89)
(gs W) = ij(ﬁjs w)s VW € BMOq/,O(Xs q, H)s
jeN
are well-defined, bounded linear functionals satisfying
1/p
I/l zaarm=n x.q+ = C(Z |/\j|p) (6.90)
jeN
if p < 1, and corresponding to the case p = 1
I8llBMO, o X.q.0)* = CZ ] (6.91)

jeN

with C € (0, 00) as in the conclusion of part 4. In this case, the mappings defined
in (6.89) will be abbreviated simply to [ =} ey Aj0j and g = 3 ey A0
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Proof The claims made in /—4 in the statement of this proposition are justified by
recycling some of the ideas in the proofs of parts /-4 of Proposition 5.2. On the
other hand, in light of Proposition 6.6 (in particular, the fact that every ion can
be expressed in terms of atoms), parts 5—6 follow from the conclusions of 5—6
in Proposition 5.2. To further emphasize this fact, if 0 € [d(1 — 1/¢), d] then by
Proposition 6.6 we may decompose = f +g+h asin (6.78). Combining this with
Comment 6.7, it follows from part 5 of Proposition 5.2 that there exists a constant
C € (0, 00) such that

<P~/ ifp < 1, and (6.92)

167 Flconan

-1 —d(1/p—1 P
“CI f”(BMOq/_O(X,q,;L))* <y ifp=1 (6.93)

As concerns the function g, from Comment 6.7 we have for R € (diampg X), oo)
fixed, that suppg € X = B,, (x, R). Then again recalling the conclusion in part 5
of Proposition 5.2 there holds [C;'g| 4py ) = CRF/P"Vif p < 1 and

“ Cz_lg||(BMOq/.0(X,q,M))* < CR™¥/P=D if p = 1. Hence, given that R as chosen

arbitrarily as above, we have

lcs'g| (hgs = Cldiamy, (X)]P~4/P=D  ifp < 1, and (6.94)

—1 : —d(1/p—1 .
” G gH (BMO,/ (X.q.))* < C[diam,, (X)] (/p=1) ifp=1 (6.95)

Regarding the function A, it follows from Comment 6.7 that C; 'h = [ (X)]~/7,
as the only (p,, p, g)-atom on X not satisfying a vanishing moment condition is the
constant function taking the value [1(X)]~!/7. This in conjunction with (5.27) in
Proposition 5.2 yields
<CluX)]'~"?  ifp<1,and (6.96)

1571l conexqpe

—1 —1 .
|cs'n| (BMO o) = CuX)™?  ifp=1. (6.97)

In concert, (6.92)—(6.97), as well as (6.78) in Proposition 6.6 imply that the
conclusions in part 5 hold. Lastly, noting that part 6 in the statement of the
proposition follows from using 5 and an argument closely related to the one used in
the proof of part 6 in Proposition 5.2 completes the proof of the proposition. O

The stage has now been set to introduce the notion of the ionic Hardy space is
the setting of d-AR spaces where the underlying set is bounded. Specifically, let
(X,q, ) be a d-AR space for some d € (0, 00) where it is assumed p(X) < oo
(equivalently where it is assumed X is a bounded set). To make ideas more concrete,
assume p satisfies the Ahlfors-regularity condition in (6.1). In this context, fix
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exponents p € (0,1] and g € [1,00] such that ¢ > p along with a parameter
o € [0,00). We introduce the ionic Hardy space H)"7(X) := H'' (X, q, 1)

ion ion
as

won

AT a0 = {f € (20X @) 3 e € £()

and (p,, p, g, 0)-ions {¥;};en such that f = ijl?j in (i”d(l/‘”_l)(X, q))*},
jeN
(6.98)

if p < 1 and, corresponding to the case p = 1

Higt® (X, q, ) = {f € (BMOyo(X.q.11))" : 3{A}jen € £'(N)

and (p,, 1, g, 0)-ions {B;};en such that f = Z A in (BMOq/,O(X, q, ,u))*},
jeN
(6.99)

where ¢’ € [1, c0) satisfies 1 /g + 1/¢' = 1.
Similar to the atomic spaces, we consider || - || x) defined for each element
[ € H;'" (X) by

won

1/p
||f”H§;;’“’(X) := inf { (Z |)Lj|P) D f = ijﬂj asin (6.98) or (6.99); .  (6.100)

jeN jeN

We shall soon see, as a consequence on Theorem 6.9, that || - || p.¢e

ion (

X) defines a

quasi-norm on H%'?? (X) and that in fact %' (X) is a quasi-Banach space for every

p € (0, 1] when equipped with the quasi-norm in (6.100).

We remark here that as was the case with the atomic Hardy spaces, part 3 of
Proposition 6.8 ensures that the particular choice of the quasi-distance p, € q as
in (6.1) is immaterial when defining H?'*? (X). This justifies the notation chosen

here. Moreover, the spaces H!'?° (X) enjoy the property that they are “local” in the

sense that membership to H:?(X) is stable under “smooth” truncations. This fact is
proven in Proposition 7.9.

Going further, part 2 of Proposition 6.8 implies that the spaces H:'4 (X) scale
naturally with respect to the parameter g. Specifically, if o € [0, c0), p € (0, 1], and

q1,q2 € [1, 0] then

HPP7(X) € H?(X)  wheneverp < q1 < qa. (6.101)
In fact, Theorem 7.6 in Chap. 7 we will show that the value of g is not an essential
feature in the definition of H2'? (X) in the sense that different values of ¢ all yield

won
the same ionic Hardy space.
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The purpose of the remainder of this section is show that the spaces Hf;’Z’U X)
fully characterize the atomic spaces H%,?(X). In this vein, if p € (0,1], g € [1, 0]
with ¢ > p and o € [0, 00), then it is clear to see that every (p,, p, g)-atom is a
(pos P, q, 0)-ion. Hence

HYA(X) € HDTO(X), (6.102)

won

with
1 £ lgsen < 1 Ny forevery £ € HEAX).  (6.103)

The other inclusion, namely H.° (X) € H%(X) is handled next in Theorem 6.9
below.

Theorem 6.9 Let (X,q, i) be a d-AR space for some d € (0,00) and suppose
W(X) < oo (or equivalently, suppose X is a bounded set). Fix a pair of exponents
p € (0,1] and g € [1, 00] with g > p along with a parameter o € [d(1 —1/q),d)].
Also, suppose | satisfies the Ahlfors-regularity condition listed in (6.1) with the
quasi-distance p, € q. Then the identity operator

L PO (X)) — HYA(X)  is well-defined and bounded. (6.104)

won

Hence, in the above setting,

H; % (X) € Hy (X). (6.105)

As a corollary, the space H,"°(X) can naturally be identified with H%(X).
In particular, these spaces do not depend on the particular choice of the positive
parameter 0 € [d(1 — 1/q),d] and the notation will be abbreviated to simply
H?Y(X). Hence, as vector spaces,

won

HY(X) = HY(X),  with equivalent quasi-norms. (6.106)
Consequently, one has that the space H.,!(X) is quasi-Banach whenever equipped
with the quasi-norm || - || gra x,.

ion

Proof In light of Proposition 6.6 (specifically the fact that (p,, p, g, o)-ions are
uniformly bound in the H%,(X) quasi-norm), the claims in the statement of this
theorem can now be justified by arguing as in the proof of Theorem 6.4. This finishes
the proof of the theorem. O

The following corollary concerns the coincidence between the ionic and molec-
ular Hardy spaces introduced in this work.

Corollary 6.10 Let (X, q, 1) be a d-AR space for some d € (0, 00) and suppose
(X)) < oo (or equivalently, suppose X is a bounded set). Fix a pair of exponents
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p € (0,1] and q € [1, 00] such that g > p and assume that | is Borel-semiregular
when p = 1 and q < oco. Then in this context one has
Hi,y” (X) = Hip(X) = H, 5 (X). (6.107)

Proof The equality in (6.107) follows immediately from Theorem 6.9 and Theo-
rem 6.4. O

6.3 Main Theorem Concerning Alternative
Characterizations of Hardy Spaces

Beginning in Chap. 4 we introduced Hardy spaces in the context of d-Ahlfors-
regular quasi-metric spaces by defining H”(X) as a space consisting of distributions
whose corresponding grand maximal function belongs to L7 (X, ). Then in Chaps. 5
and 6 the bulk of our focus was on demonstrating that this notion of Hardy spaces
could be characterized in terms of atoms, molecules, and ions. In this section we
take a moment to summarize these alternative characterizations in Theorem 6.11
below.

At this time, the reader is referred to (4.48)—(4.49) in Sect. 4.2 for the definitions
of H?(X) and H”(X), (5.46) in Sect. 5.1 for the definition of H.:?(X), (6.26) in
Sect. 6.1 for the definition of H'%(X), and (6.98) in Sect. 6.2 for the definition of
H(X).

won

Theorem 6.11 Ler (X, q, t) be a d-AR space for some d € (0,00) where | is
assumed to be a Borel-semiregular measure on X. Then whenever

d
— 1 d 1, 00], , 6.108
pE(dHnd(X’q) } and qe€[l,00], g>p ( )

one has
H(X) = H7(X) = Hy;(X) = H},(X) (6.109)
with equivalent quasi-norms, whereas if p € (1, 00,

HP(X) = H'(X) = [ (X, j1) (6.110)

with equivalent quasi-norms. Moreover, if

d
0, —— d 1, 6.111
”e( d+de(X,q)) and g € [1 o] (11D
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then

0} if w(X) = oo,
Hy'(X) = HyY (X) = OF 4 p00 =0 (6.112)
C if pulX) < oo.

If in addition pu(X) < oo (equivalently, if X is a bounded set) and p and q are as
in (6.108) then

HP (X) = HP(X) = H?/(X) (6.113)

with equivalent quasi-norms and whenever

d
0, — d 1, 6.114
”e( d+de(X,q)) and g € [1 o] (119

then

H(X) = C. (6.115)

won

Proof (6.109), (6.110), and (6.112) are consequences of Theorems 5.27, 6.4, 4.18,
and 5.4 whereas (6.113) follow from combining Theorems 6.9, 5.27, and 5.4. O

The following result is a corollary of Theorem 6.11 which highlights the fact that
if (X, p, ) is a d-AR metric space then the associated Hardy scale behaves in a
natural fashion on the interval (# 1].

Corollary 6.12 Let (X,q, t) be a d-AR space for some d € (0,00) where | is
assumed to be a Borel-semiregular measure on X. Then if there exists a genuine
distance p € q one has

HP(X) = H'(X) = H)/(X) = H?(X) (6.116)

mol

Wlth equivalent quasi-no’ ms, Wheneve’
S — 1 and (S [1 ()O] > (6 11 ;)
) ) ) . .

If in addition (X)) < oo (equivalently, if X is a bounded set) and p and q are as
in (6.117) then

HP(X) = HP(X) = H>Y(X) (6.118)

won

with equivalent quasi-norms.

Proof By part 4(b) of Proposition 2.20 we have ind (X, q) > 1 given that p € qis a
genuine distance on X. As such,
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d d

< 6.119
d+ind(X.q) ~d+1 ( )

and hence, the conclusion of this corollary follows from Theorem 6.11. O

To further illustrate the conclusions of Theorem 6.11 we include several pictures
demonstrating how the range of p’s in (6.108) and in (6.111) change depending on
the particular choice of the underlying ambient. In particular, we wish to highlight
the bigger principle of how much the geometry of a given ambient can influences
the amount of analysis which can be performed.

HP? = Trivial Rich HP Theory HP = [P

4 A L
\ Y \ 1 1

0 TFndn (59) F0d (5,9)

Fig. 6.1 The structure of the H” scale in the context of an arbitrary d-AR space

The gap in Fig. 6.1 is not entirely surprising (or unnatural) given the abstract
setting we are presently considering. Although the definition of H”(X) continues to
make sense for p in this range as well, it is not clear what, if any, good properties
these spaces enjoy.

The next example illustrates the fact the range of p’s in Theorem 6.11 reduces
to precisely what is expected when the underlying ambient is specialized to the
Euclidean setting. This is a significant improvement of the work in [MaSe79ii,
Theorem 5.9, p.306] and [Li98, Lemma 3.7, p. 17] which highlights one of the
distinguishing features of Theorem 6.11 (Fig. 6.2):

H? = Trivial Rich H? Theory HP = [P
4 . 1 ]
C 1 1
0 7 1 o0
Fig. 6.2 The structure of the H” scale when the underlying space is (R?, | - — - |, £9)

In contrast, if one applies the results [MaSe79ii, Theorem 5.9, p.306] and [Li98,
Lemma 3.7, p. 17] in the Euclidean? setting, one obtains a “rich” HP-theory only for

pe (;_1 1]. (6.120)
1 + [log, 3]

2These results are only applicable in the 1-dimensional Euclidean setting.
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The following example demonstrates that there are environments on which one
has non-trivial Hardy spaces for any p € (0, oo] (Fig. 6.3):

Rich H? Theory HP =[P
‘ : —_
¢
0 % 1 00

Fig. 6.3 The structure of the H” scale when the underlying is an ultrametric space

Remarkably, in the setting of d-AR ultrametric spaces the range of p’s for which
there exists a satisfactory Hardy space theory is strictly larger than what would
be expected in the d-dimensional Euclidean setting. Such a range of p’s cannot
be attained by the results presented in [MaSe79ii] and [Li98] since the techniques
employed by these authors will never allow p < 1/2. A particular example of such a
setting is four-corner planer Cantor set when equipped with Euclidean distance and
the 1-dimensional Hausdorff measure (see Example 2 in Sect. 2.4).
Ultrametric spaces happen to be totally disconnected, i.e.,

the only connected sets in (X, 7,,) consists of singletons. (6.121)

It turns out that if the underlying space exhibits a certain degree of connectivity
then there is a substantial range of p’s for which H? is trivial. More specifically, if
the underlying space is pathwise connected (in the sense that any two points can be
joined via a continuous path) then (Fig. 6.4):

HP? = Trivial Rich HP Theory HP = [P

L
\ 1 1

)

7
1 d d

0 5 TFmdn(%q)  d+md (59) 1 00

Fig. 6.4 The structure of the H” scale when the underlying space is a pathwise connected d-AR

space

d

In the above setting, one has that indy (X, q) < d which forces T X"

Hence, in this context H” is trivial for each p € (0, 1/2).
If (X, p) is a metric space and y is a d-AR measure on X then (Fig. 6.5):

1
= <
7 =

H? = Trivial Rich H? Theory HP =[P
. P

) L
\
d d
d

(
\ U

d
0 TFndy (X.Q) Trnd (X,q)  d+7 1 s

Fig. 6.5 The structure of the H” scale when the underlying d-AR space is equipped with a genuine
distance
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In particular, as visible from the above figure, when the ambient is endowed with
a distance then one is guaranteed a satisfactory HP-theory for every p € (#, 1].
This is a result of the fact that in such a setting there holds ind (X, p) > 1.

Combining the previous two examples, if (X, p, ) is a 1-Ahlfors-regular space
where p is a genuine distance on X, then the range of p’s in Theorem 1.2 becomes
(Fig. 6.6):

HP? = Trivial Rich H? Theory HP = [P

-~

e}
N[

—_

g

Fig. 6.6 The structure of the H? scale when the underlying 1-AR space equipped with a genuine
distance



Chapter 7
Further Results

In their 1977 Bulletin of AMS paper [CoWe77], Ronald Coifman and Guido Weiss
managed to develop a theory of Hardy spaces on spaces of homogeneous type by
taking the atomic characterization of H”(X) as a definition. This was the starting
point in generalizing the theory of Hardy spaces in abstract settings. The main goal
of this chapter is to explore the relationship between the Hardy spaces developed
in this monograph and those in [CoWe77]. Understanding this connection is an
important step towards unifying the theory of Hardy spaces.

This chapter is organized as follows. In Sect. 7.1 we give a systematic exposition
regarding the so-called measure quasi-distance. Understanding its basic properties
will prove to be indispensable in showing that the atomic Hardy spaces in this work
coincide with those in [CoWe77] in d-AR spaces. This is done in Theorem 7.5.
In turn, this identification will yield two brand new characterizations of the
maximal Hardy space H'(X) (developed in Sect. 4.2) in terms of L' functions;
see Theorem 7.10. Going further, in Theorem 7.16 we obtain maximal, molecular,
and ionic characterizations of the Hardy spaces in [CoWe77]. In Sect. 7.2 we
characterize the dual of maximal Hardy space H”(X) in terms of certain Holder
spaces when p < 1 and BMO(X) when p = 1. In Sect. 7.3 we study various
distinguished subspaces of H”(X). In particular, we derive atomic decompositions
for elements in these spaces which converge not only in the sense of distributions
but in a pointwise sense and in L4(X, u). Section 7.4 contains a collection of density
results of particular importance in various applications, some of which are discussed
in Chap. 8.
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7.1 The Measure Quasi-Distance and Relations to Other
Hardy Spaces

In this section we explore the manner in which the Hardy spaces defined in this
work relate to others defined in spaces of homogeneous type. In particular, the
relationship between the atomic spaces defined in this work and those in [CoWe77]
and [MaSe79ii] are investigated. This undertaking requires a proper understanding
of the so-called measure quasi-distance. To facilitate a discussion on this topic we
begin by recalling the notion of a space of homogeneous type defined in Chap. 3.

A space of homogeneous type is a triplet (X, q, i) where (X, q) is a quasi-metric
space and u is a nonnegative measure on X with the following property: there exists
p € q such that all p-balls are p-measurable and there exists a finite constant > 0,
satisfying

0 < u(Bpy(x,2r)) < kp(By(x, 1)) < oo, VxeX, Vre(0,00). (7.1)

Recall that the doubling condition in (7.1) implies ¥ € (1, 00). Moreover, as was
noted in Chap. 3, this notion of a space of homogeneous type is equivalent with the
one in [CoWe77]. It was also observed that

W is a Borel measure on (X, 7q), (7.2)

where 74 is the topology induced by the quasi-metric space structure q on X. For
future reference we also record the following fact highlighted in (3.11) in Chap. 3,

M doubling with W is doubling with respect to every ¢ € q with 73)
— .
respectto p € q the property that all p-balls are p-measurable.

In particular, we can deduce that p is doubling with respect to p4 € q.
Moving on, note that the doubling condition in (7.1) implies there exist finite
constants C, n > 0 with the property that

0 < u(By(x,Ar)) < CA"(B,y(x,r)) < 00
(7.4)
uniformly for all x € X, r € (0, 00), and A € [1, 00).

As before, if X is a set of cardinality > 2, p € £2(X) and u is a doubling measure

on X (with respect to p), we will sometimes write (X, p, ) in place of (X, [p], ).
Macias and Segovia in [MaSe79i, Theorem 3, p. 259] showed that given a space

of homogeneous type (X, p, 1) where p is symmetric and has the property that all
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p-balls are open in 7,, one can always associate to p another symmetric quasi-
distance ¢ which induces the same topology on X as p and satisfies

all po-balls are ©-measurable and ,LL(BQ(X, r)) ~ r uniformly, (75)
for every x € X and every r € (0, co) with u({x}) < r < pu(X). .

As was noted briefly in Sect. 2.4, by 5—6 in Proposition 2.12, the condition in (7.5)
is equivalent to the Ahlfors-regularity condition stated in (2.78) with d = 1. That
is, the triplet (X, o, ) is a 1-AR space in the sense of Definition 2.11. In the next
proposition we present an extension of [MaSe79i, Theorem 3, p. 259] by considering
quasi-distances that are not necessarily symmetric. To state it, for each a € R, define

(a) :=inf{n € Ny : a < n}. (7.6)

Proposition 7.1 Let (X, q, 1) be a space of homogeneous type and suppose i is
doubling with respect to p € q with doubling constant k € (1,00). Define the
Sunction p, : X x X — [0, 00) by setting for each x,y € X

pux,y) = inf{p,(Bp(z, r)) :z€Xandr € (0,00) satisfy x,y € By(z, r)}, .7
if x # y and set

pu(x,y):=0 if x=y. (7.8)

Then py, is a symmetric quasi-distance on X which induces the same topology on X
as p. Moreover, with CPu’ C,,C, € [1,00) as in (2.2)—(2.3), there holds

Cp <k {logy(C,C2)) ) (7.9)

In particular, p,, is an ultrametric on X whenever p is. If in addition, all p-balls are
open in tq then the space (X, p,, |t) is a 1-AR space in the sense of Definition 2.11.
That is, all p,-balls are j1-measurable and there exist constants cy, ¢y € (0, 00) with
c1 <1 < ¢ having the property that

,u(Bpﬂ (x, r)) &~ r, uniformly for every x € X and (7.10)
r € (0,00) satisfying c1ry, (x) < r < 2R, (%), .

where rp, ,R,, are defined as in (2.70)—(2.71) in Sect. 2.4.
As a corollary of this, if o € q is any quasi-distance, then (X, (04),, () is a 1-AR
space with the additional property that Tty = T(y,),-

Proof In the case when p is symmetric, (i.e., when é‘p = 1), this result was
handled in [MaSe791, Theorem 3, p. 259]. The present, slightly more general version
considered here may be proved either by proceeding along similar lines, or by
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observing that the result in [MaSe79i] self-improves to the current version as
follows. Observe that as a consequence of (7.7)—(7.8), and the doubling condition
for w in (7.1), we have that

(0 & (p2)u  for every pair p, p2 € q

such that all p; and p, balls are p-measurable.

(7.11)

Now consider p4 € q, the regularized version of p constructed as in (2.21). Then
since py is symmetric and all pg-balls are open (hence, ©-measurable), we may
deduce from [MaSe79i, Theorem 3, p. 259] that (p4),, is a symmetric quasi-distance
with the property that

T(,D#),L = ‘Cq. (712)

Combining this with (7.11) gives (p#),. ~ p,. Consequently we have p, is also a

quasi-distance and 7,, = 74 Finally noting that p,, is symmetric by design (cf. (7.7)-
(7.8)) completes the first part of the proof.

To justify (7.9), in accordance with the definition of C,, in (2.2), fix points

x,¥,z € X and consider u,v € X and r,s € (0, 00) such that x,z € B,(u,r) and
¥,2 € B,(v, 5). Suppose for the moment that s > r. Then

p(v,%) < Cymaxtp(v,2), p(z, )}
< Cﬁ max{s, p(z, u), p(u, x)} < CPC; max{s, r} = 6‘pCﬁs. (7.13)

Hence, x,y € B,(v, 6‘,,C§s). Combining this with the definition of p, and the
doubling property of © we have

pu(x,y) < H(BP(U’ 696%5)) = K(logZ(apcg))“(Bp(vvs))

< 1c1082Co D) oy {,u(Bp(u, r)), M(Bp(v, s))}. (7.14)
On the other hand, if we have r > s then reasoning as in (7.13) will show that

X,y € B, (u, C‘pcﬁr). Moreover, an estimate similar to the one presented in (7.14)
yields

pu(x,y) < 11022 pax {u(By(u.r)), 1(Bo(v.5))}. (7.15)
In concert, (7.14) and (7.15) permit us to conclude
pu(r.y) < 18 CD) max {p, (x,2), pu(z.y)}.  YxyzeX.,  (7.16)

from which (7.9) can further be deduced.
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We now show that (X, p,, ) is a 1-AR space under the additional assumption
that all p-balls are open in 4. Appealing again to [MaSe79i, Theorem 3, p.259]
we have that the space (X, (o#),, 1) is a 1-AR space. Then, since (p#), ~ pu, the
desired conclusion will follow from part /0 in Proposition 2.12 once we establish
that all p,-balls are p-measurable. To this end, fix x € X and r € (0, 00). When
0 < r =<rp,(x) then By, (x,r) = {x} is u-measurable. On the contrary, if r > r,, (x)
then B,, (x,r) # {x} and straightforward argument will show

B,,(x.r) = JB. (7.17)

where the union is taken over all p-balls, B, having the property that x € B and
u(B) < r. Given that all p-balls are open in 74 we have that B, (x, r) is also open in
74, hence p-measurable as desired.

Finally, there remains to show that (X, (0#)., i) is a 1-AR space for each fixed
quasi-distance o € q. To this end, observe first that the regularized quasi-distance
o# € q has the property that all p4-balls are open, hence p-measurable. Combining
this with the fact that g4 ~ p implies p is also doubling with respect to o, we
may conclude from what has been established in the first part of the proposition that
(X, (0#) ., ) is a 1-AR space. This finishes the proof of the proposition. O

In light of Proposition 7.1, we will call the quasi-distance p,, (defined as in (7.7)-
(7.8)) the measure quasi- distance (induced by p). It is worth remarking
that in Proposition 7.1 we do not assume that all p-balls are open in order to conclude
that p,, is a symmetric quasi-distance. This is in contrast to the work in [MaSe79i].

We now present a corollary of Proposition 7.1 describing the interplay between
power-rescalings and the measure quasi-distance.

Corollary 7.2 Let (X, q, ) be a space of homogeneous type and suppose L is
doubling with respect to p € (. Then, with p, as in (7.7)~(7.8), one has that
(X, [pu], 1) is a 1-AR space in the sense that there exists a quasi-distance px on X
which is equivalent to p,, and has the property that |u satisfies the Ahlfors-regularity
condition listed in (2.78) with px and d = 1.

Moreover, if B € (0, 00) is a fixed number, then (,oﬂ)ﬂ and (pﬂ)ﬂ are a symmetric
quasi-distances on X which induce the same topology on X as p. In fact,

(pﬂ)M = pu pointwise on X x X. (7.18)

If in addition, all p-balls are open in tq then
(X, (p)P, p) is a 1/ B-AR space (7.19)

in the sense of Definition 2.11. Consequently,

(X, (Q#)ﬁ, ,u) is a 1/ B-AR space for each fixed o € q. (7.20)
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Proof To justify that (X, [p,],t) is a 1-AR space consider the quasi-distance
(p#)p € Q(X). From Proposition 7.1 we have (X, (o#).,n) is 1-AR space.
Combining this with (7.11) which implies (p#), ~ p, yields the desired conclusion.
Moving on, the fact that (pf) x and (pu)ﬂ are symmetric quasi-distances on X
follows from Proposition 7.1 and (2.6). Going further, the justification of (7.18)
follows immediately from the relationship between the balls with respect to pf and
p (cf. (2.10)) and the definition of the measure quasi-distance in (7.7)—(7.8).
Finally, if all p-balls are open in 74 then it follows from Proposition 7.1 and
part 15 in Proposition 2.12 that (X, (pu)ﬂ, W) is a 1/B-AR space. This completes
the proof of the corollary. O

We are now in a position to recall the atomic Hardy spaces introduced in
R.R. Coifman and G. Weiss in [CoWe77]. Let (X, q, ;t) be a space of homogeneous
type and suppose p doubling with respectto p € q. In this context, fix p € (0, 1], and
q € [1, 00] with ¢ > p. Then with the notion of an atom as in (5.24), we introduce
the atomic Hardy space (in the sense of Coifman and Weiss) Hyy, (X, p, pt)"

HEG (X p.) = { f € (L7 (X, 0) " 1 3{Ajhjen € 0N

and (p, p, g)-atoms {a;};en such that f = Z)Ljaj in (WX, pM))*},
jeN

(7.21)

whenever p € (0,1) and corresponding to the case when p = 1 we define
1,
HC;II/(X’ 10’ I'L) as

Heg (X, p, ) = {f e L'(X, ) : I{A}jen € L' (N)

and (p, 1, g)-atoms {a;}en such that /' = ijaj in L'(X, ,u)}. (7.22)
jeN

Moving on, note that it is easy to verify H‘é‘f{, (X, p, ) is a vector space over C. Then,
we consider the quasi-norm | - [|re x , ) defined for each f € H{L (X, p. ) by

1/
1 N2 o oy 1= inf{(z |A,-|P) "o =Y Xa asin (7.21)0r(7.22)}.

jeN jeN
(7.23)

Then the spaces Hy. (X, p, i) are quasi-Banach when equipped with || - || HES (X.p.10)
for every p € (0, 1) and is genuinely Banach when p = 1.

!The authors in [CoWe77] introduced the spaces Hry (X, p, ) under the additional assumption
that p is symmetric. This is an extraneous demand that we do not wish to make.
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Comment 7.3 It is important to note that the topological dual of the space
L4/r=1(X, p,), appearing in (7.21), above is constructed with respect to the norm
| - Il pact/p—1 x. p, as described in (5.12) (with p replaced by p,,). This is in contrast
to the original appearance of these atomic spaces in [CoWe77] where the authors
equipped £?1/P=D (X, p,,) with the norm | - [|4(1/,—1) Where, in general, we set
[ f”%ﬂ'ﬂ(x,pu) if p(X) = oo,
£ 1 = (7.24)
|y /£ du] + 11 fllgp ) i 1(X) < oo,

for each B € (0,00) and f € LP(X, pu). Despite this discrepancy, observe that if
w(X) < oo we have

I Flloo + 1 Flgrery ~ ‘ [ fdu' 1 lgrenr (7.25)

uniformly, for every f e Z41/r=D(x, Pu). Indeed, in one direction we trivially
have | [, f du| < (X))l f lloo- In the other, note that

L@ =1 Mg px p @9 + £, (7.26)

for every x,y € X which, by integrating both sides of the inequality in (7.26) in the
y variable over the entire space X, implies

mCOLF @] < mCON £l x.p, [diamy, (0] +‘ /X fdu‘- (727)

Hence,

| flloo < [diamy, GO /ey ) + (GO

/ f du', (7.28)
X

from which the full justification of (7.25) follows. Consequently, (7.25) along
with (7.24) and (5.12) imply that || - [l ~ || - ||$/3(X,pﬂ) for every § € (0, 00).
Hence, the spaces H‘é‘f{, defined in (7.21)—(7.22) coincide with those introduced in
[CoWeT7]. |

It is our goal to show that given a d-AR space, (X, q, 1), d € (0, 00), this notion
of atomic Hardy spaces introduced by Coifman and Weiss coincides with that of the
atomic spaces presented in this work for p € (0, 1]. This is done in Theorem 7.5.
When p < 1, this task will prove to be straightforward. The delicate matter arises
when p = 1. In this case the notion of Hé’gv and H;,’q are very different as one
comprises of functions belonging to L' while the other consists of linear functionals
defined on a subspace of BMO, where ¢’ € [1,00) satisfies 1/g + 1/¢' = 1.
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Given the nature in which H‘é‘f{, was defined, we will first need to collect some of the
properties of the measure quasi-distance. This is done in the following proposition.

Proposition 7.4 Let (X, q, 1) be a space of homogeneous type and suppose i is
doubling with respect to p € (. Then the function p, defined as in (7.7)—(7.8),
satisfies the following properties.

1. (pu)y =~ pu provided all p-balls are open in tq, and
2. with k € (1, 00) denoting the doubling constant for i, there holds

— o C 2
Kl ou () < 1 (By(xp. ) < G g,y (7.29)
for all x,y € X with x # y; in particular, if (X, q, t) is an Ahlfors-regular space
of dimension d € (0, 00) then p,, ~ o’

Proof We begin proving I by observing first that as a result of Proposition 7.1

and the assumption that all p-balls are open in 74 we have that all p,-balls are

p-measurable. In particular, (po,), is a well-defined quasi-distance on X. Moreover,

according to (7.7)—(7.8) we have for each x,y € X,

(pu)p(x.y) = inf {11(B,, (z.7)) : Iz € X and r € (0, 00) such that x, y € B, (z. 1)},
(7.30)

ifx # yand (o). (x,y) =0ifx = y.

Moving on, fix x,y € X and note that if x = y then (p,).(x,y) = pu(x,y) = 0.
Thus, assume x # y and suppose z € X and r € (O, 2 diam,,, (X)) is such that
X,y € Bp,(z,r). By Proposition 7.1 we have that (X, p,, 1) is a 1-AR space.
Thus, it is valid to make use of the lower-Ahlfors-regularity condition listed in

Proposition 2.12 in order to conclude that there exists a finite constant C > 0
(independent of z and r) satisfying

Cr < u(By, (z.1)). (7.31)

On the other hand, since x, y € By, (z, r) implies p, (x,y) < C,,r, we have in concert
with (7.31) that

pM(xs )’) S C/JL(BP“(Zv r)) (732)
Taking the infimum over all such z € X and r € (0, 2 diam,, (X)) implies

Pu(x,y) < C(py) (. y). (7.33)

As concerns the opposite inequality, observe that if x # y then

x,y € By, (x, pp(x,y) + ) Ve € (0,00). (7.34)
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In particular, since x # y, we have
c17p, (x) < 71p, (%) < pu(x,y) +&  Vee(0,00). (7.35)

As such, for these for every ¢ € (0, co0), we may write (given the definition of (p,) .
in (7.30))

(p)p(x,y) < ,U*(Bp,l (X, pp(x,y) + 5)) < C(pp(x,y) + ). (7.36)

Note that in obtaining the second inequality in (7.36), the upper-Ahlfors-regularity
of p (as in Proposition 2.12) was used which is valid given (7.10). At this
stage, letting & approach 0 gives (p,).(x,y) < Cp,(x,y) as desired. This, along
with (7.33) (taking into account that x, y € X were arbitrary) finishes the proof of 1.

We next establish the claim in 2. Since it is assumed that the cardinality of X is
at least 2, we may consider two points x,y € X such that x # y. Then, p(x,y) > 0
by the nondegeneracy of the quasi-distance p and as such, x,y € Bp(x, 2p(x, y)).
Consequently, by the definition of p, in (7.7)~(7.8) and the doubling condition
in (7.1) satisfied by u we have

pu(x.y) = 1 (Bo(x.2p(x.))) < kp (Bp(x. p(x.))) . (7.37)
This justifies the first inequality in (7.29).

Focusing on the second inequality, appealing again to the definition of p,, for
each ¢ € (1, 00), there exist z € X and r € (0, co) such that

x,y € By(z, 1) and u(By(z, 7)) < epu(x.y). (7.38)
It follows that p(x,y) < C, max{p(x, z), p(z,y)} < C,C,r which implies
Bp(x. p(x,)) € Bp(z.C,Cor). (7.39)

To proceed, set ¢ := (log,(C,C?)) € Ny. Then (7.39) in conjunction with (7.38)
and the fact that p is a doubling measure with respect to p, yields

1 (B (x. 05 )) = 1 (By(2. C,Cor)) < (By(z.27) (7.40)
< k‘u(Bp(z.r)) < ekpu(x,y). (7.41)

Hence,
1 (By(x. p(x.3)) < expu(xy). Ve e (lc0) (7.42)

Then the second inequality in (7.29) follows from letting ¢ — 17 in (7.42). This
finishes the proof of (7.29) and, in turn, the proof of the proposition. O
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One important consequence of Proposition 7.4 is as follows. In the setting of
Proposition 7.4, combining (7.11) and 3 in Proposition 5.2, we have

HYL (X, p, ) = HEY (X, 0, ) for all quasi-distances 743)
0 ~ p having the property that every p-ball is p-measurable. .

In particular, given any quasi-distance p € q it is meaningful to consider
HYL(X, ps, ) since the regularized quasi-distance py € q has the property that
all pg-balls are open in 74, hence p-measurable (cf. (2.81)). It is instructive to recall
that it was shown in [CoWe77, Theorem A, p. 592] that under the assumptions p is
symmetric and p is Borel-regular, that

HEh (X, p, ) = HEw (X, po ) forevery g € [1,00] with g > p. (7.44)

However, an inspection of the proof reveals that Theorem 3.14 may be employed
to derive the same conclusion under the weaker assumption that u is Borel-
semiregular. Granted (7.43) under the latter assumption, this result can be extended
to incorporate quasi-distances that are not necessarily symmetric. As such, when in
the above context we may denote Hy, (X, p, pt) simply by Hyy, (X, p, [4).

At this stage, we are in the position to prove that in the setting of Ahlfors-regular
quasi-metric spaces, the notion of the atomic Hardy spaces introduced in [CoWe77],
in the context of spaces of homogeneous type are equivalent to the atomic spaces
introduced in this work.

Theorem 7.5 Let (X, q) be a quasi-metric space and fix exponents p € (0, 1] and
q € [1,00] with g > p. Also, suppose W is a nonnegative measure on X (which
is assumed to be Borel-semiregular on X when p = 1) having the property that,
for some d € (0, 00), there exists p, € q, and two constants c1,cy € (0,00) with
c1 < 1 < ¢y such that the following Ahlfors-regularity condition holds:

all p,-balls are j1-measurable, and pL(Bpn (x, r)) ~ r¢ uniformly (7.45)
for every x € X and every r € (0, 00) with r € [c1rp,(x), c2R,, (x)]. ‘

Then for every p € q having the property that all p-balls are p-measurable, there
exists a linear homeomorphism v : Hyg (X, p, ) — HY (X, q, ). Hence, one may
identify

HYL (X, p, ) = HYY(X)  with equivalent quasi-norms. (7.46)
Proof Fix a quasi-distance p € q having the property that all p-balls are open

in 7q. Then the measure quasi-distance p, is well-defined and induces the same
topology on X as p. Suppose first that p € (0, 1). Then, on the one hand, from 2 in
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Proposition 7.4 we have p, ~ p?, which in conjunction with (2.48) implies

Z(I/P_l)(X, ou) = g(l/P—l)(X’ pd) — Zd(l/p_l)(X, p) = gd(l/p—l)(x’ qQ),
(7.47)

as normed vector spaces. On the other, from 3 in Proposition 5.2, there exists a finite
constant C = C(p, po, #) > 0 such that a is a (p, p, g)-atom on X if and only if Ca
is a (p,. p, ¢)-atom on X. Altogether with the definitions of H7},(X) (in (7.21)) and
H7(X) (in (5.46)) we may conclude (7.46) holds whenever p € (0, 1).

Moving on, consider next the case when p = 1 and note that from (7.43)—(7.44)
we have

HEG (X, p, 1) = HES (X, p, ) = HES (X, pas 1), (7.48)

as vector spaces. Then by Theorem 5.27 (which implies H'(X) = H,i;q(X)) it
suffices to show that H:gC (X, ps, ) may be identified with H'(X). In this vein,
observe that since p is assumed to be Borel-semiregular on X in this situation,
Theorem 4.16 gives the existence of a linear mapping ¢ : H'(X) — L'(X, t) which
is bounded, injective and satisfies for each f € H'(X),

v = /X () du. Yy € Du(X.p), (7.49)

where o € R is fixed such that 0 < o < [log,C,]'. We claim that in fact we have
¢ maps H'(X) bijectively onto Hévf,o (X, pg, 1) S LY(X, 1) in a bounded fashion.
Observe that if f € H'(X) then by Theorem 5.25 we may write

f = ijaj in HI(X), (750)

jeN

where {A;}jen € £'(N) is a numerical sequence and {a;}ey is a sequence of
(p#. 1, 00)-atoms on X. Moreover, on the one hand ¢ : H'(X) — L'(X,p) in
a bounded fashion whereas on the other ((a;)) = gy, for every j € N granted
{a;j}jen € LY(X, p) and ¢ is injective. Combining this with (7.50) give that

L(f)=ijaj in L'(X, ). (7.51)

jeN

Thus, ((f) € Hgy (X, p#, jt) and hence, ¢ : H'(X) — Hgy (X, pg, 1) is well-
defined. Then the continuity and injectivity are inherited from what has already
been established for ¢. There remains to check surjectivity. To this end, fix a function
f e Hé‘f,o (X, p, it). Then by definition f € L' (X, t) and we may write

f = ZA’/ Clj in LI(X, ,LL), (752)

jeN
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where {A;}jen € £'(N) is a numerical sequence and {a;}jey is a sequence of
(p#, 1, 00)-atoms on X. Then, by 6 in Proposition 5.2 we have

g .= Z/\, a;j in @&(X’ P) (753)

jeN

Combining this with the last statement in Theorem 5.25 we have that there exists a
finite constant C > 0 (independent of g) such that

g:=Y Aa in H'(X.p.p) with [lgh . loeem <CY AL
JEN jEN

(7.54)

whenever & € (0, [log,C,]™") and y € (0, ). In particular, we have g € H'(X).
Arguing as in (7.50)—(7.51) with g in place of f, we obtain that ((g) € L'(X, ) and

Wg) =Y Xa in L'(X.p). (7.55)
jeN

Hence, ((g) = f where g € H'(X) which proves surjectivity. Finally, granted
that H'(X) and Hévf,o (X, ps, 1) are Banach spaces, the continuity of the inverse of ¢
follows from the Open Mapping Theorem. This completes the proof. O

We now discuss a few notable consequences of Theorem 7.5. The first of which
establishes the fact that the spaces Hy?(X), H>?(X), and H??(X) are, in a sense,
independent of the choice of exponent g.

Theorem 7.6 Let (X, q, i) be a d-AR space for some d € (0, 00) and fix a pair of
exponents p € (0,1] and g € [1, 00] satisfying q > p. Then assuming that [ is a
Borel-semiregular measure on X when p = 1, there holds

HLU(X) = HEC(X)  and  HD4L(X) = HY O (X), (7.56)

0

and, if W(X) < oo (equivalently if X is a bounded set) then there also holds

HP(X) = H'™®(X). (7.57)

won won

In particulay, in their respective settings, the spaces Hy,(X), H”?(X) and HYI (X)

mol ion
do not depend on the particular choice of the exponent q as above, and their notation
will be abbreviated simply by H5,(X), H" (X), and H, (X), respectively. Hence, in
the above setting,
Hy(X) = Hy'(X),  H,

mol

X)=H'"(X) and HY (X)=HY(X). (7.58)

mol ion ion

Proof The conclusion of this theorem follows from combining Theorems 6.4, 6.9,
and 7.5. O
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Comment 7.7 From the conclusion of Theorem 7.6 we have that the atomic Hardy
spaces H,7(X, q, t) do not depend on the parameter g or the particular choice of
quasi-distance in q. As such, in the subsequent work, we will sometimes refer to
the atoms associated with the space H5?(X, q, u) = HE,(X) simply as p-atoms or
HP-atoms. |

Recall that in Sect. 5.1 we mentioned that in the setting of d-AR spaces of finite
measure (that is, in the setting of d-AR spaces where the underlying set X is a
bounded) the atomic Hardy space H%?(X) is “local” in the sense that, under the
assignment ¢ — ¢f, it is a module over €7 (X, q) for each fixed positive parameter
y € [d(l/ p—1), 00). We now take a moment to prove this fact in the Proposition 7.8.
The reader is referred to (5.19) to be reminded of the notion of multiplying a linear
functional by a “smooth” function.

Proposition 7.8 Let (X,q, i) be a d-AR space of dimension d € (0,00) and
suppose (X)) < oo (or equivalently, suppose X is a bounded set). Also, fix
exponents p € (0, 1] and g € [1, 00] with q > p, and assume that [L is a \ is Borel-
semiregular measure on X when p = 1. Then, one has that HY(X) is a module over
%7 (X,q) for each fixed y € [d(l/p - 1), oo) with y > 0, in the following precise
sense. For each fixed y € [d(l/p - 1), oo), y > 0, one has

[eHIX), 9eC"(X,q) = ¢f € Hy'(X). (7.59)

Proof Suppose p and q are as in the statement of the proposition and fix a strictly
positive number y € [d(l/p — 1),00) along with a function ¢ € CKV(X, q). To
proceed, fix f € H:?(X) and observe that since X is a bounded set we have that the
function ¢ € 74 (X, q) and hence, ¢ € L*°(X, ). Consequently, if p < 1 this along
with (5.19) gives

fe (X, q) = of e (VX q)". (7.60)

We next need to verify that ¢ f € H%,?(X). Observe that in order to justify this claim
it suffices to assume f is an atom itself. In this case f € LY(X, u). As such, we
have ¢ f € L(X, ) which by Proposition 5.6 gives ¢f € H.;?(X), as desired.

On the other hand, if p = 1 we have HL/(X) = Hé’;’,(X) by Theorem 7.5. In
particular, in a sense we have f € L'(X, ) which implies ¢f € L'(X, ). Then it
follows from the definition of Hy{ (X) that of € Hid (X) = Hy'(X). O

Combining Proposition 7.8 and Theorem 6.9 we have that H,/(X) is also
“local” in the sense that membership to the space H?'?(X) is stable under “smooth”

won
truncations.

Proposition 7.9 Let (X, q, 1) be a d-AR space for some d € (0, 00) and suppose
(X)) < oo (or equivalently, suppose X is a bounded set). Also, fix two exponents
p € (0,1] and q € [1,00] with q¢ > p, and assume that | is a Borel-semiregular
measure on X when p = 1. Then, one has that H.,!(X) is a module over €V (X, q)
for each fixed parameter y € [d(l/p -1, oo), with y > 0, in the following precise
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sense. For each fixed y € [d(l/p —1), oo), y > 0, one has

fEeHMX), ¢ €€ (X = ¢f €Ho(X). (7.6

won won

Proof The claim made in the statement of this proposition follows immediately
from the identification in (6.106) in Theorem 6.9 and Proposition 7.8. O

Recall that in Chaps. 5 and 6 we were able to identify the maximal function
characterization of the Hardy space H' with a space of linear functionals (defined
on a subspace of BMO(X)) which can be decomposed into linear combinations of
atoms and molecules. Theorem 7.5 above permits us to provide an additional three
characterizations of H' in terms of subspaces of L'.

Theorem 7.10 Let (X,q) be a quasi-metric space and suppose [ is a Borel-
semiregular measure on X which satisfies (7.45) for some d € (0, 00). Then, one
may identify

H'(X) = { fel'X.w): IALen € € (N) and (p,. 1. q)-atoms {a;}jer

suchthat f =Y Aa; in L'(X, M)} (7.62)
JEN

= {f e L'(X, w): I{Aj}en € KI(N) and (p,, 1, g, A, €)-molecules {M;}jen

such that f =Y A,M; in L'(X, u)}, (7.63)
JEN

where q € (1, 00] is any fixed number, A € (1, 00) satisfies (6.2) and ¢ € (0, 00),
Moreover, whenever u(X) < oo (equivalently, whenever X is a bounded set),
there also holds

H'O) = {7 e L't 3shen € 10N and (p,. 1., 0)-ions {3 }jen

such that f = 3" A8, in L'(X, M)}, (7.64)
JEN
where g € (1,00] and o € [d(1 — 1/q), d] are any fixed numbers.

Proof Noticing that the right hand side of the equality in (7.62) is simply
Hé’;{,(X , Pos 1), the identification in (7.62) follows immediately from Theorems 7.5



7.1 The Measure Quasi-Distance and Relations to Other Hardy Spaces 307

and 5.27. Thus, we focus on proving the equality listed in (7.63). For the simplicity
of exposition we will temporarily denote the set in (7.63) by H},. Then, with fixed
parameters g € (1,00], A € (1,00) as in (6.2), and ¢ € (0, 00), we will establish

1,
He (X, po. 1) = Hyy. (7.65)
In this vein, we note that it is clear that Hé’gv(X L Pos ) © H 1{4 given that every

(pos 1, g)-atom is a (p,, 1, ¢, A, €)-molecule. To see that the opposite inclusion is
valid we only need to check that there exists a finite constant C > 0 such that

1,
M € Hjy(X, po. jt) = Hiy (X, por 1)

and ”M”H‘CW(X,pg,u) <C.

M (p,,1,q9,A, &) —molecule —

(7.66)

Then the inclusion H}, < Hé’é{,(X, Po, i) will follow from by arguing as in the
proof of (6.32) in Theorem 6.4. To this end, fix a (p,, 1, g, A, €)-molecule M and
observe that by Proposition 6.3 we have M € L'(X, ) with ||M||,: o =< C where
C € (0, o0) is independent of M. At this stage we proceed along the same lines as
in the proof of Theorem 6.4. Specifically, with {my}ren,, {@x}ren,, and {My}ren,
defined as in (6.39) and (6.41) in Theorem 6.4, we write (just as in (6.42))

M = Z M + Z mp@y  pointwise on X. (7.67)
k€N k€N

From the claim made in (6.44) which was established in the proof of Theorem 6.4
we have that there exists a finite constant C > 0 (independent of M) such that

C 'A%, s a (p,. 1, g)-atom on X for every k € Ny. (7.68)

Moreover, from the definition of M} in (6.41) (which ultimately depends on the
definitions of my and ¢y in (6.39)) we have

IMicllrx ) < 21MB I x ) < 2IM i x gy Vi € No. (7.69)

Hence, M; € L'(X, ) for every k € Ny. Moreover, combining (7.69) and (6.13)
(specialized to s = 1) we may estimate for every n,m € N

n+m n+m
Z M, <2 Z 1M1, 11(x 0
k=n LY(X,p) k=n

n+m 0o

SCY A<y ATME (7.70)
k=n k

=n
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which in turn implies that ) ren, Mk converges in L'(X, u). Finally, since we may
write

Z M, = Z(CA"‘dE)C_IA"dEMk, (7.71)
k€N keNy

where the sequence {CA ¥}y, € £'(N) and {C'A**M; }1en, is a sequence of
(po, 1, g)-atoms on X gives that ZkeNO M;, belongs to Hé’gv(X, Pos IL)-
As concerns ZkeN m@y, we write (as in (6.57))

Z Mgy = Z Nit1 (@41 — @1, (7.72)

keNy k€N

where {N;}ren, € C is defined as in (6.55). Then, from the claim made in (6.58)
which was established in the proof of Theorem 6.4 we have that there exists a finite
constant C > 0 (independent of M) such that

C Y es1 — @) is a (p,,p,00)-atom on X. (7.73)

Moreover, combining the estimates appearing in (6.56) and (6.61) with the support
conditions listed in (6.60) we have

1Nt (@rs1 — 1) ||L1(X,M) < CATM Vi e N, (7.74)

where C € (0, oo) is independent of M. This permits us to further estimate for every
n,meN

n+m

Z Nir1(@r+1 — @x)

k=n

o0
<C ZA—’“’S, (7.75)
Ll(XvIl') k=n

which in turn implies that ZkeNO Ni+1(gr+1 — @x) converges in L!(X, it). Finally,
we write

Z Nig1(@r1 — o) = Z(CNk+1)C_1((Pk+1 — @), (7.76)
k€N k€Ny

where by (7.73), {C™ (@41 — ¢i) }ren, is a sequence of (p,, p, 00)-atoms on X and
by (6.69), {CNi+1}ken, € €7(N). Then in light of (7.72), the above analysis gives
> e i belongs to HES2 (X, p,, 1) = Helb (X, po, 1) as well.

Finally observing that the equality in (7.64) follows from the identification
in (7.62) as well as Proposition 6.6 completes the proof of the theorem. O

Comment 7.11 A notable consequence of Theorem 7.10 is that the context of
any d-AR space where the measure is assumed to be Borel-semiregular, the
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spaces HL4(X), H-%(X), and H:?(X), which were originally defined as a space of

mol ion
consisting of linear functionals, may be taken to be certain subspaces of L' (X, ).l

As pointed out in [HuYaZh09, p.93], it is not true in general that given two
topologically equivalent quasi-Banach spaces (hence, in particular, two topologi-
cally equivalent quasi-metric spaces) that the corresponding Hardy spaces are also
equivalent (cf. [Bo0O3, Theorem 10.5, p.74]) However, Theorem 7.14 below will
show that given a space of homogeneous type (X, p, ) having the property that
all p-balls are open, and given any fixed parameter d € (0, 00), there exists a
topologically equivalent d-Ahlfors-regular quasi-metric space (X, p, ) with the
property that the Hardy spaces on (X, p, ) are equivalent those spaces on (X, p, it).
Before proceeding with the presentation of Theorem 7.14 we will first need to
explore some geometrical aspects of spaces of homogeneous type.

Given an arbitrary space of homogeneous type, (X, p, ), it is not generally true
that p ~ p, on X. Despite this, there is still a sense of equivalence at the geometrical
level. Proposition 7.13 below makes this notion concrete. In its proof will need the
following property that spaces of homogeneous type possess.

Proposition 7.12 Let (X, q, 1) be a space of homogeneous type. Then p,(X) < 00
if and only if X is a bounded set.

Proof Suppose first that X is bounded. Since (X, q, i) is a space of homogeneous
type, there exists a quasi-distance p € q with the property that i is doubling with
respect to p (in the sense of (7.1)). Then under the current assumption, for any fixed
x € X, we may choose r € (0, oo) large enough such that X = B,(x, r). Combining
this with (7.1) we have

pw(X) = u(By(x,r)) < oo (7.77)

which completes one implication.

Conversely, to see that X is necessarily bounded if ©(X) < oo, we reason by
contradiction. Fix xp € X and with p € q maintaining the same significance as in
the first part of the proof, we write

X = Bo(xo.n). (7.78)

neN
Then since we are currently assuming that X is unbounded, for each n € N we may

choose a point x,, € B,(xo, Cpé’pn), where C,, é‘p € [1,00) are as in (2.2)—(2.3).
Incidentally, for each n € N we have

By (x0, 1) € Bp(xn, CyCpp(xo, X)) (7.79)
and

By (n. p(x0. %1)/CoCp) [\ By (x0.1) = 0. (7.80)
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Then combining (7.78), (7.79), the doubling condition for u (with respect to p), as
well as (7.80), we may estimate

p(X) = lim 11(B,(x0,n)) < limsup 11(B,(xs, CoCpp(x0, X))

n—>o00

< Climsup p(B, (X, p(x0, %)/ C,C)))
n—>oo

< Climsup u(X \ B,(xo,n)) = Cu(9) = 0, (7.81)

n—>oo

which is in contradiction with the fact that 4 (X) > 0 in any space of homogeneous
type. This completes the proof of the proposition. O

Proposition 7.13 Let (X, q, 1) be a space of homogeneous type and suppose (L is
doubling measure with respect to a quasi-distance p € q which has the additional
property that all p-balls are open in tq. Finally, consider the measure quasi-distance
Py, defined according to (7.7)—(7.8) (constructed in relation to p). Then there exists
a finite constant C > 0 which depends only on p and the doubling constant for [,
such that for each x € X, there exists a function ¢y : (rp, (x), oo) — (0, 00) (where
rp, is defined as in (2.71)) satisfying,

BPM (-xv r) g Bp(-xv @X(r))v fOr every re (rpu(x)v OO),'
pL(Bp(x, (px(r))) < Cr, foreveryr € (rp,(x), oo) and;
@y is nondecreasing on (rp, (x), oo);
if n > 0 is as in (7.4), then there exists a finite constant ¢ > 0 such that
Ao (r) < Coo(Ar), for everyr € (rp, (%), oo) and every A € [1,00), and
5. lim @u(r) = 0o andif ry, (x) = 0then lim ¢.(r) = 0.
r—>00 r—0t

R wbh o~

Furthermore, whenever r € (0, r,, (x)] for some x € X then one can find a radius
R € (0, rp(x)] such that

B,(x,R) = By, (x,r) = {x}. (7.82)

Proof Fix x € X and note by (2.72) we have that (r,, (x), oo) is a well-defined
interval. Thus we may define ¢, : (r,, (x), oo) — (0, 00), by setting ¢, (r) := 27 for
eachr € (rpﬂ (x), oo) where, in general, we define

§:=inf{e € (0,00) : By, (x,5) € By(x,6)}, s € (0,00), (7.83)

with the convention that inf @ := oco. The fact that ¢, is a well-defined function will
readily follow once we have established

7 €(0,00), foreveryr € (ry,(x),00). (7.84)
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In this vein, fix r € (ry, (%), oo) For the simplicity of presentation, we set
Ay = {e € (0,00) : By, (x,7) € By(x.8)}. (7.85)

With this in mind, we first show that 7 < co. By Proposition 7.12, if pL(X) < 00
then diam,(X) < co. As such, we may choose a finite R > 0 large enough so that
B,(x,R) = X. Thus R € A, and hence 7 < R < 0o. Suppose next that pL(X) = 00.
In this situation, we reason by contradiction and assume 7 = oo. Then, for every
k € N there exists x; € By, (x,7) \ By(x, k). In particular, p, (x, xx) < r and x # x;.
By definition of p,, this implies for each k € N there exists yx € X and r; € (0, 00)
such that

X, X, € Bp(yk,rk) and ,U,(Bp(yk,}’k)) <r. (786)

Moreover, k < Cpé’prk for every k € N where C,,, Cp € [1, 00) are as in (2.2)—(2.3).
Indeed,

k< p(x.x) < Cpmax{p(x, yi), POk, x)} < CpCpri (7.87)
for every k € N. This further implies
B,(x.k) € B,(y.CoCori).  VkeN. (7.88)

Then on the one hand, by the doubling condition for p (with respect to p), (7.88),
and (7.86), there exists a finite constant C = C(p, u) > 0 such that

1(Bo(x, k) < 1t(Bo(yx. C2Cpri)) < Cia(Bo(yir 1)) < Cr <00, VkeN.
(7.89)

On the other hand, X = | ren Bo(x, k) which, when recalling that 4 is a nonnegative
measure and that in the current scenario ©(X) = oo, implies

kl_lglo p(By(x, k) = p(X) = oo. (7.90)

This is in contradiction to (7.89) proving 7 < oo. Incidentally, this forces A, # @.
In order to finish the proof of (7.84) there remains to show 7 > 0. Again, reasoning
by contradiction, if 7 = 0 then there exists a sequence {ritjen € A, such that
lim r; = 0. Then by the definition of A, in (7.85) and the nondegeneracy of the
J—>00

quasi-distances p, and p we have

{x} S By, (x,r) C ﬂBp(x, r) = {x}. (7.91)
jeN
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Hence, B, (x,r) = {x}. If r,, (x) > O then this in concert with (2.75) and (2.71)
contradicts the membership of r to (r,, (x), oo) If on the other hand r,,(x) = 0
then 5 in Proposition 2.12 implies u({x}) = (B, (x,r)) = 0 which ultimately
contradicts part 9 in Proposition 2.12. Note that here we have made judicious
use of the fact all p-balls are open in 74. Indeed this assumption allows us to
conclude (X, p,, ) is a 1-AR space (cf. Proposition 7.1). Hence, it is valid to
apply Proposition 2.12 in the context of (X, p,,, ). This finishes the proof of (7.84).
Granted that ¢, is well-defined, we now address claims / — 5 in the statement of the
proposition.

Observe that for every r € (r,, (x), oo) we have ¢,(r) € A, since ¢,(r) > 7. This
proves /. In order to prove 2, fix r € (r,,(x), oo) and note that by (7.84), and the
definition of 7 there exists

y € By, (x,7) \ By(x,7/2). (7.92)
Then
? E 2p(xs )’) and pﬂ(xs )’) < r, (793)

the latter inequality implying (since x # y) that there exists z € X and R € (0, 00)
such that

x,y € By(z,R) and pu(B,(z.R)) <r. (7.94)

It therefore follows from this, the first inequality in (7.93), and the definition of ¢,
that

By (x. ¢:(r)) € B, (2. 4C;R), (7.95)
which implies, along with (7.94) and the doubling condition for u that

14(Bp(x. 9x(r)) < p(By(z.4C2R)) < Cu(B,(z. R)) < Cr, (7.96)

for some finite constant C = C(p, i) > 0. This finishes the proof of 2. The claim
in 3 follows immediately from the observation that (7.83) implies 7 < R whenever
r,R € (rp, (x), oo) with r < R.

Moving on, we now address the inequality presented in 4. Fix a point x € X and
aradius r € (rp, (%), oo), and consider a number M € [1, 00) to be specified shortly.
Observe that for any choices of M and A € [1, co) we have that

MWn<M = A(r) < Mo.(r) < Mgy (Ar), (7.97)
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given the monotonicity of ¢, in 3. On the other hand, if A € [1, 00) with A1/" > M
then there exists a finite constant C > 0 which is independent of x, r, A, and M such
that

,u(Bp(x,M_lkl/”(px(r))) < CM_”M/,(BP(x, (px(r))) < CM™"Ar

< CM_",u(Bpﬂ(x,)Lr)) < CM_"M(Bp(x, (px(kr))),
(7.98)

where the first inequality follows from (7.4), the second inequality follows from
what we have established in part 2 of this proposition, the third inequality
follows from (7.10) in Proposition 7.1 and the lower-Ahlfors-regularity condition in
Proposition 2.12, and where finally the fourth inequality follows from part / of this
proposition. Now by specifying M to be strictly greater than C'/" with C € (0, 0o0)
as in (7.98) we may deduce from the most extreme parts of the inequality in (7.98)
that

(B (x, M A "0,(r))) < (B, (x, gu(A1))). (7.99)
Incidentally, this necessarily implies
M0 (r) < ou(Ar). (7.100)

Hence, we have shown that 4 also holds whenever A € [1,00) and M > C'/" satisfy
A" > M. Combining this with (7.97) finishes the proof of 4.

Noting that 5 follows from what has been established in 4, we now prove the last
statement in the proposition. Suppose r € (0,7, (x)] for some point x € X. Then,
By, (x,r) = {x} by (2.75). Moreover, by 9 in Proposition 2.12, we necessarily have
w({x}) > 0. Then, with p4 as in (2.21) we have that there exists Ry € (0, 00) such
that B, (x, Ro) = {x} (cf. [MaSe79i, Theorem 1, p.259])* Granted that ps ~ p, we
have that there exists R € (0, o) such that B,(x, R) = {x}. This in conjunction with
part /1 of Proposition 2.12 further implies R € (0, r,(x)]. This finishes the proof of
the proposition. O

As previously mentioned that although given a space of homogeneous type
(X, p, ) it is not generally true that p ~ p,, Proposition 7.13 highlights the fact
that there is still a notion of “equivalence” at the geometric level. Specifically, if
(X, p, ) is a space of homogeneous type then for every fixed x € X and r € (0, co0)
we have, setting ry 1= p(B,(x, 7)) € (0, 00),

By(x.r) € B, (x,2r«) € B,(x, x(2r4)) (7.101)

2Passing to py was used in order to apply Theorem 1 in [MaSe79i] which only applies to symmetric
quasi-distances.
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and
By, (x,r) € By(x.¢:(2r)) € By, (x,2Cr), (7.102)

where C € (0, 0o) and ¢, are as in Proposition 7.13.
We now present the theorem alluded to above.

Theorem 7.14 Let (X, q, t) be a space of homogeneous type and fix any p € q.
With ps € q as in (2.21), consider for each fixed d € (0, 00), the d-power rescaling
of the measure quasi-distance (constructed in relation to py)

o= [(on)]" (7.103)
defined as in (7.7)—(7.8). Then for every d € (0, 00) fixed, one has

X, o, is a d-Ahlfors-regular quasi-metric
X, o, 1) lfors-regular q (7.104)
space with the property that t,, = 1q.

Moreover, for eachp € (0, 1] and q € [1, 00| such that q > p, there exists a finite
constant C = C(p, L,p,q,d) > 0 having the following significance. For every
function a € LY(X, ) such that a # [(X)]~'/?, one has
if aisa (o4, p.q)-atomthen C 'a isa (. p.q)-atom (7.105)
and
if aisa (o, p,q)-atomthen C'a isa (pg p, q)-atom. (7.106)
Additionally, whenever u(X) < oo then a := [u(X)|~"? is a (pg, p, q)-atom if and
only ifais a (, p, q)-atom.
As a corollary of this, the identity operator
v HEL (X, pya o) <> HOG (X, pus ) is @ homeomorphism. (7.107)

Proof We begin by establishing the claim that
Ty = Tq- (7.108)
In order to justify (7.108), we first need to prove that p; is a well-defined quasi-
distance on X. Observe that since the py-balls are open in 74 (hence -measurable)

we have from Proposition 7.1 that (pg), is a well-defined quasi-distance on X.
Combining this with (2.6) we have that g, is also a quasi-distance on X as desired.
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Now the proof of (7.108) will be a consequence of two straightforward observations.
First of all, from Proposition 7.1 we may conclude that

T(/’#);L = TP# = T(]' (7109)
On the other hand, from (2.14) we have
Uow) = Ty (7.110)

Then combining (7.109) and (7.110) finishes the justification of (7.108).

Finally, noting the fact that (X, o, i) is a d-AR space follows immediately from
Corollary 7.2 completes the proof of (7.104).

Moving on, we next address the claim in (7.105). Suppose a # [w(X)]~'/7 is a
(p#, p, q)-atom. Then there existx € X and r € (0, 00) such that

—1
suppa C B (v, 1), lallzooesy < p(Ba(e )77, /ad,u —0. (7.111)
X

Observe if B, (x,r) = {x} (e, if r € (0,r,(x)]) then Proposition 2.12
implies p({x}) > 0 which, together the support and vanishing moment conditions
in (7.111), give a = 0 pointwise on X. Since in this case the desired conclusion is
immediate, we will assume B, (x,r) # {x}. Then by part 11 of Proposition 2.12,
we necessarily have r > r,, (x).

Furthermore, note that (7.2) and (2.28) give that u is doubling with respect to p.
In particular, from (7.1), we have

R := [1(Bp,(x, 1)) € (0,00). (7.112)
Consequently, the definition of (pg),, implies
(p#)u(x,y) < 2R whenever y € B,,(x,r). (7.113)
Hence, granted that (pg),, &~ ps, it follows
By, (x.1) € By, (x.2R) = B, (x. [2R]'/). (7.114)
Moreover, since By, (x, r) # {x}, we have that (7.114) also implies
ro (¥) < [2R]"4 (7.115)
which, when used in conjunction with the fact that (X, p;, 1) is a d-AR space
(hence, in particular, u satisfies the upper-Ahlfors-regularity condition in part 2 of

Proposition 2.12 with g;) yields

11(Bp, (x, [2R]V/?)) < CR = Cu(B, (x, 1)). (7.116)
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From (7.111), (7.114), (7.116), and the fact that 1/¢g — 1/p < 0, we may conclude
that there exists a finite constant C > 0 independent of a such that C~!a is a

(2 p, @)-atom.
Conversely, suppose a % [(X)]~'/? is (as. p. ¢)-atom. Then there exist x € X

andr € (0, o0) such that

1/g—1
suppa C By, (x,7), lallzape < M(de(x, r)) /4 /p, /adp, = 0.
X
(7.117)

As before, we may focus just on the case when By, (x,r) # {x}. This assumption,
along with the observation (which was first noted in (2.10) of Sect. 2.1)

By, (x,r) = B, (x.7),  VxeX and Vre (0,00). (7.118)

gives By, (x, ) # {x}. Thatis, ¥ > o (0)- I @ 2 (r(py), (%), 00) — (0, 00) is
the function given as in Proposition 7.13 (obtained by using p4 in place of p), then

Bion, (5:7) € By (6. 0:(")  and (B (v.0.(#))) = 7. (7.119)

Recall that balls with respect to the regularized quasi-distance py4 are open in
7q. Hence, it is valid to invoke Proposition 7.13 with pg (see also the discussion
immediately following (7.2) in this regard). Observe that in order to conclude that a
constant multiple of a is a (pg, p, g)-atom, it suffices to establish that

cr! < (B, (x, 1), (7.120)

for some finite constant ¢ > 0. Before proceeding, recall that we may always assume
that any r € (0, 00) as in (7.117) satisfies

rpy(X) < r < 2diam,, (X). (7.121)

As such, since (X, oy, t) is a d-AR space, we have that (7.120) follows immediately
from part § in Proposition 2.12. Then combining the above analysis with the fact
that 1/g—1/p < 0, we may deduce C™'a is a (g, p. g)-atom for some finite C > 0.
This completes the proof of (7.106).

There remains to dispose of the claim in (7.107). To this end, observe that
from what has already been established in the first part of the proof regarding the
equivalence of atoms, we need only to justify that the underlying dual spaces (from
which the linear functionals belonging to HZ,, are chosen) coincide. If p = 1 then
this coincidence is immediate since the underlying space in both H é‘j{, (X, p#, ) and

Hé’;{,(X, i, 1) is taken to be L' (X, 11). For the case when p € (0, 1), note that given
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the definition of Hy, in (7.21) we need to establish

ff(l/p_l)(X, (,o#),t) = ff(l/p_l)(X, (u )ﬂ) as normed vector spaces, Vp € (0, 1).
(7.122)

Note that in light of (7.104), part 3 in Proposition 7.4 implies (o), ~ (0 )us
from which the equality in (7.122) can further be deduced. This completes the
proof (7.122) and in turn the proof of the theorem. O

Comment 7.15 The statement of Theorem 7.14 was formulated using py. However,
passing to ps was used only in order to guarantee that (po4), satisfies (7.10); a
condition that is always satisfied if it is known that all p-balls are open in 7 (cf.
Proposition 7.1). |

As a consequence of Theorem 7.14 and the theory developed in this work,
we succeed in producing maximal, molecular and ionic characterizations of the
atomic Hardy spaces in [CoWe77] (H7, (X)) defined in spaces of homogeneous
type. Additionally, when p = 1 we also obtain a new atomic characterization of the
Hardy spaces in [CoWe77] in terms of linear functionals defined on a subspace of
BMO(X). This result is presented in Theorem 7.16 below and extends the work of
[MaSe79ii] and [HuYaZh09].

The distinguishing feature of this result is that to date, we have managed to
specify the largest range of p’s for which H.,, (X, p, 1) can be characterized in terms
of a maximal function. In particular, the range in (7.125) is strictly larger than range
identified in [MaSe79ii]. We will comment more on the nature of this range at the
end of this section. Among other things, Theorem 7.16 also refines the work of
[MaSe79ii] by considering quasi-distances which are not necessarily symmetric.

In this vein, the molecular characterization in [HuYaZh09, Theorem 2.2, p. 98]
was established under the additional assumption that u(X) = oo and u({x}) = 0
for every x € X. We eliminate the need for this limitation in proving Theorem 7.16.

Theorem 7.16 Let (X, q, it) be a space of homogeneous type and suppose (i is
doubling with respect to p € q. With ps € q as in (2.21), consider for each fixed
d € (0,00), the d-power rescaling of the measure quasi-distance (constructed in
relation to ps)

= (o] (7.123)

Then for any number d € (0, 00) and any exponent p € (0, 1] (where it is assumed
that | is Borel-semiregular when p = 1), one may identify

Hiw (X, p, ) = Hy (X, pa, ) = Hp o (X, pu, (). (7.124)
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Additionally, if u is a Borel-semiregular measure on X then whenever

IS (m, 1:| (7.125)
one may also identify
Hiyw (X, p, ) = H (X, pu, j1) = H' (X, g, ). (7.126)
Finally, if w(X) < oo (equivalently, if X is a bounded set) then there holds
Hiw(X,p, ) = Hp,, (X, o1, 1), Vp € (0,1], (7.127)

where it is assumed that |4 is Borel-semiregular when p = 1.

Proof The identification in (7.124) is an immediate consequence of Theorems 7.14,
7.5, 6.4 and (7.43) (used with ¢ := py) where as (7.126) follows from Theo-
rems 7.14,7.5,6.11, and (7.43) (again, used with o := pg). Finally, (7.127) follows
from (7.124) and Theorem 6.9. O

Comment 7.17 As it has been pointed out in Comment 7.15 with regards to
Theorem 7.14, it is important to note that the statement of Theorem 7.16 was
formulated using py only in order to guarantee that (pg), satisfies (7.10); a
condition that is always satisfied if it is known that all p-balls are open in 74 (cf.
Proposition 7.1). |

We conclude this section addressing the comment made in [CoWe77, footnote,
p.591] regarding the fact that the atomic Hardy space H7y, is trivial unless p is
sufficiently close to one. It is important to note that in [CoWe77, footnote, p.591]
the range for which the above named spaces reduce to just constants is not specified.
This qualitative fact is not suitable from the perspective of applications. As such,
here we take a moment to better quantify this phenomenon.

Theorem 7.18 Let (X, q, 1) be a space of homogeneous type and suppose the
measure [ is a doubling measure with respect to the quasi-distance p € q. If p,
denotes the measure quasi-distance defined as in (7.7)—(7.8), then for every

1
el0, ———— 7.128
P ( 1 +indy(X, Pu)) ( )

there holds

{0} if p(X) = oo,
C if puX)<oo.

Hyy (X, p. ) = (7.129)
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On the other hand, whenever

1
— 1 7.130
Pe (1+ind(x,pu) } 7130

then the space Hy, (X, p, jt) contains plenty of nonconstant elements.

Proof Fix p as in (7.128). Hence, p < 1 and from (7.21) we have
Hiy (X, p.p) S (L7 (X, p) " (7.131)

Then from this observation, the justification of (7.129) follows along the same lines
as the proof of (5.57) in Theorem 5.4.

Moving on, fix p as in (7.130). If p = 1 then clearly HéW(X, . ) € LY(X, )
is nontrivial since every function from Li,o belongs to HéW(X .. If p < 1
then (7.131) holds and the membership of p to the interval in (7.130) is equivalent
to the demand

0<1/p—1<ind(X,p,). (7.132)

By Theorem 2.6 we know .Z/P=D (X, pu) contains plenty of nonconstant functions
(here recall that Z(/P=D(X, p,) has been defined in terms of € (/?=V(X, p,)).
Combining this with the fact that L. ((X, p) S (L177D(X. p,))" (cf. Proposi-
tion 5.6) completes the of the theorem. O

In light of Theorem 7.18, given a space of homogeneous type (X, p, i), the matter
of the triviality of H{y, (X, p, it) lies in understanding the quantities indy (X, p,) and
ind (X, p,). Such a task can prove to be challenging since given the such a general
setting, one cannot expect there to be a direct relationship between the entities
indy (X, p.) and indy (X, p) or ind (X, p,) and ind (X, p). Howbeit, as indicated by
the following proposition, it is possible to establish a connection between these
quantities given certain assumptions on the ambient.

Proposition 7.19 Ler (X, q, t) be a space of homogeneous type and suppose the
measure [ is doubling with respect to some fixed quasi-distance p € q with doubling
constant k € (1,00). Then if p, denotes the measure quasi-distance defined as
in (7.7)-(7.8), the following hold.

1. With C,,C, € [1, 00) as in (2.2)~(2.2), one has

- -1
[1og2 (K“ng(C»C%)))] < ind (X, p,) < ind(X. p); (7.133)

2. if p is an ultrametric on X then
ind (X, p,,) = indy (X, pp) = o0; (7.134)

in particular, (7.134) holds whenever X is a set of finite cardinality;
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3. if u satisfies a d-dimensional Ahlfors-regularity condition with p for some fixed
d € (0, 00) (cf. Definition 2.11) then

ind (X, p,) = 2ind(X,p) and indy(X.p,) = Lindy(X,p); (7.135)
4. if (X, 1q) is a pathwise connected topological space then
ind (X, p,) < indy(X, p,) < 1. (7.136)

In particular, (7.136) holds whenever X is a convex set.
5. (X, q) imperfect = indy(X, p,) = oo.

Proof Noting that (7.133) is a consequence of combining (7.9) in Proposition 7.1,
the definition of ind (X, p,) in (2.140) of Definition 2.19, and part / of Proposi-
tion 2.20 finishes the proof of /.

Moving on, having established (7.133), the claim in (7.134) follows from the fact
that

p ultrametriconX = C,=C, =1 = (log, (C,C}))=0. (7.137)

The key observation in justifying that (7.134) holds whenever X is a finite set is
that in such a scenario any two quasi-distances on X are equivalent. In particular,
since the discrete distance, which we denote by dj, i.e., dy(x,y) = 1 if x # y,
and do(x,y) := 0if x = y for x,y € X, is an ultrametric on X, we have dy ~ p.
Combining this with part 4 in Proposition 2.20 we may conclude

ind (X, py) =ind(X,dp) = oo and indy(X, p,) = indy (X, dy) = oo.
(7.138)
This finishes the proof of 2.

Turning our attention next to proving (7.135), observe that from part 2 in
Proposition 7.4 we have p,, ~ p?, which further implies

ind (X, p,) = ind (X, p) and indy(X,p,) = indy(X.p?). (7.139)

As such, (7.135) follows from this and part 2 in Proposition 2.20.

Moving on, the justification of 4 follows from a few observations. First, if p4
denotes the regularized version on p as in (2.21) then by Proposition 7.1 we have
that

(X. (p#)ur i) s a 1-AR space with 7q = T(y,), - (7.140)

In particular, since the topology induced by (p#),, coincides with T4 we have that the
space (X 2 T(pw) M) is also pathwise connected. Combining this with (7.140) it follows
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from Example 2 in Sect. 2.5 that

ind (X. (py),0) < indz (X. (p#)y0) < 1. (7.141)

On the other hand, from (7.11) we have (keeping in mind the fact that the py-balls
are open in 74, in particular, are y-measurable) (o), ~ p, hence,

ind (X, p,) = ind (X (P#)u) and indy (X, py) = indH(X, (p#)ﬂ). (7.142)

Altogether, (7.141) and (7.142) give (7.136).

The claim in 5 follows immediately from the definition of an imperfect quasi-
metric space and the fact that there is a sense of equivalence at the level of balls
between p and p, (see (7.101)-(7.102)). O

Having established Proposition 7.19, we now return to the matter of understand-
ing the nature of the range of p’s listed in (7.128) of Theorem 7.18 given different
assumptions on the ambient.

In the following examples (X, p, i) is a space of homogeneous type where u is
assumed to be a Borel-semiregular measure on X and we denote by (X, gy, it) the
d-AR space given as in Theorem 7.14, d € (0, 00).

Example 1 (X, p) is an ultrametric space (i.e., p is an ultrametric on X). In this case
we have Hy, (X, p, i) is nontrivial for any p € (0, 1] whenever p is an ultrametric
on X. Moreover, ind (X, o) = dind (X, p,) = oo and, as such, by Theorem 7.16
we have the following maximal characterization,

Hiy (X, p, ) = H (X, o, ) = B (X, o, 1), Vp € (0,1 (7.143)

Example 2 (X, p, ) is a d-AR space for some d € (0, 00). In this setting (7.135)
implies that the upper and lower bounds of the intervals in (7.128) and (7.130) are

d d
¢  aad — (7.144)
d + indy(X, p) d +ind (X, p)
respectively. In particular, we have Hfy (RY,| - — - |, £Y) = {0} if p € (0. 7%)
whereas Hyy, (R?, |-—-|, £7) contains plenty of nonconstant elements if p € (#, ]
7

1
1
(cf. Example 1 in Sect. 2.5 in this regard). Moreover, from Theorems 7.5 and 5.2
we have the maximal characterization

Hew (X, p, 1) = HY (X, p, 1) = H' (X, p, ), (7.145)

whenever

d
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Example 3 The topological space (X, 1,) is pathwise connected. In this setting,
from (7.128)—(7.129) and (7.136) we deduce that H‘éW(X , p, )0) is trivial for every
p € (0,1/2). Moreover, under the current assumptions on the ambient, (7.135)
implies

ind (X, o) = dind (X, p,) (7.147)
which, in concert with Theorem 7.16, yields the maximal characterization

HY\ (X, p, ) = HP (X, pu, ) = HP (X, pu, ), (7.148)

for every

d 1
Vpel ————— . 1|=————. 1. (7.149)
d+ind (X, ) 1 +ind (X, py)

We stress here that, in contrast to Example 2, we have made no further assumptions
as to the nature of the measure p in this example.

7.2 The Dual of H? (X)

The goal of this section is explore the nature of the topological dual of the maximal
Hardy space, H”(X), (introduced in Sect. 4.2) for every

d

Since H?(X) can be identified with L”(X, ;) whenever p € (1, oo], we will have
an immediate characterization of the dual of H”(X) in terms of Lebesgue spaces
for p in this range. For p = 1, it is a distinguished result due to C. Fefferman
and E.M. Stein in [FeffSt72] that the dual of H! (Rd) can be identified with BMO,
the John-Nirenberg class of functions of bounded mean oscillation (this result was
announced a year earlier by C. Fefferman in [Feff71]). In [CoWe77, Theorem B,
p-593], R.R. Coifman and G. Weiss obtained a version of this result for their atomic
Hardy spaces in the context of spaces of homogeneous type. Stemming from this
work, Theorems 7.5 and 5.27 will permit us to identify the maximal Hardy space
H'(X), introduced in Chap. 4, with BMO(X) in the setting of d-AR spaces. In this
regard, we also obtain a new characterization of BMO(X) in terms of the duals of the
atomic, molecular, and ionic Hardy spaces H',(X), H. (X), and H} (X) introduced
in this work.

Concerning the dual of Hardy spaces when p € (0, 1), it was shown in [CoWe77,
Theorem B, p.593] that in the setting of spaces of homogeneous type the dual of
atomic Hardy spaces H’éW(X) can be identified with a space of Holder continuous

ol
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functions of order 1/p — 1 with respect to the measure quasi-distance. In the
following theorem, we build upon this result in context of d-AR spaces and obtain a
characterization of the dual of the atomic Hardy spaces H%,(X) defined in this work
(cf. Sect. 5.1) of a similar nature. In this case, it becomes evident that the order of
the Holder continuous functions is directly related the dimension of the Ahlfors-
regularity d.

Theorem 7.20 Suppose (X, q, i) is a d-AR space for some d € (0,00) where |
is assumed to be a Borel-semiregular measure on X and fix an exponent p € (0, 1].
Given a function h € L} (X, j1), consider the functional V), formally defined by?

loc
(W, 1) :=nglgoZAj/ajhdu, (7.151)
=1 X

if f € H)(X) is such that f = Z?il Aja;j in Hy(X) for some numerical sequence
{Aj}jen € €7(N) and sequence of HP-atoms {a;}jen.
Then the mappings

L L (X q) — (HD(X))" (7.152)
h—
forp € (0, 1), and corresponding to the case whenp = 1,
1 : BMO(X. q. ) — (H},(X))" (7.153)
h+— ¥,

are well-defined linear homeomorphisms. Hence, quantitatively,

(HLX)" = LUK, Q) if pe 1), 154,
BMO(X.q. ) if p=1. '

Proof The conclusion of this theorem is an immediate consequence of [CoWe77,
Theorem B, p.593],* the coincidence between HY,(X,q) = HYy, (X, py, pt) for any
p € q which is given by Theorem 7.5, and part 2 of Proposition 7.4 which implies
LUP=D(X, (py),) = L41/P~D (X, q), where (p4),, is defined as in (7.7)~(7.8). O

3Tgnoring momentarily whether this is well-defined.

4Coifman and Weiss [CoWe77, Theorem B, p-593] also addresses the fact that, in the context
of (7.152)—(7.152), functionals introduced in the manner of (7.151) are indeed well-defined.
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As an immediate consequence of Theorem 7.20 as well as the molecular and
ionic characterizations of H%,?(X), we have the following identifications of the dual
of H” (X) and H? (X).

mol ion

Corollary 7.21 Suppose (X, q, (t) is a d-AR space for some d € (0, 00) where |4 is
assumed to be a Borel-semiregular measure on X. Then, one can identify

. |2V X @ if pe (0.,
(H.,,(X)" = (7.155)
BMO(X,q,n) if p=1.

If in addition u(X) < oo (equivalently, if X is a bounded set) then one can also
identify

. (2 i pe 0,1),
(H.,(X)" = (7.156)
BMO(X.q.p) if p=1.

Moreover; the identifications in (7.155)—(7.156) are accompanied by quantitative
estimates of the quasi-norms.

Proof The identification in (7.155) follows immediately from Theorems 7.20 and
6.4. Consequently, these identifications along with Corollary 6.10 give (7.156). 0O

Then following theorem establishes an identification of the dual of the maximal
Hardy space H? (X).

Theorem 7.22 Suppose (X, q, i) is a d-AR space for some d € (0, 00) where i is
assumed to be a Borel-semiregular measure on X and fix an exponent

d

Then, one can identify
LMV ) if p<1,
(H?(X))" = { BMO(X,q, ;1) if p=1, (7.158)
(X, p) if p>1,

where p' € [1,00) is such that 1/p + 1/p’ = 1. Moreover, the identifications
in (7.158) are accompanied by quantitative estimates of the quasi-norms.

Proof Observe that the identifications in (7.158) when p < 1 readily follow
from Theorem 7.20 and the coincidence of HY,(X) with H?(X) in Theorem 5.27.
Moreover, noting that identification in (7.158) for p > 1 is consequence of the
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fact HP(X) = LP(X, n) (cf. Theorem 4.18) and the Riesz Representation Theorem
finishes the proof the theorem. O

Comment 7.23 In the context of Theorem 7.22, it follows from (7.158) and the
coincidence between the two maximal Hardy spaces, H? (X) and H” (X), as described
in Theorem 6.11, that

24r=D(x,q)if p <1,
(H"(X))" = { BMO(X,q.p) if p=1, (7.159)
(X, 1) it p>1,

We conclude this section with a result which establishes that the pairing between
(H”(X))" and H?(X), i.e.,

@y D (7.160)
is compatible with the pairing between (L(X, 1))* and LI(X, 1), i.e.,

o+ ) (7.161)

Proposition 7.24 Suppose (X, q, t) is a d-AR space for some d € (0, 00) where
W is assumed to be a Borel-semiregular measure on X. Then for each fixed pair of
exponents

d
—, 1 d 1/p, 00), 7.162
pE(dHnd(X’q) } and q € (1/p,o00) ( )

there holds
@y g = worlhe £ (7.163)

forevery h € (H"(X))* N (Lq(X, p,))* and every f € HP(X) N L1(X, ).

Proof Fix p,q as in (7.162) along with & € (H?(X))" N (L7(X,p))" and
f € HP(X)NLY(X, n). By Theorem 7.22 (which is a consequence of Theorem 7.20),
there exists a unique function, which we also denote by h, that belongs
L /r=1(X, q) if p < 1,and BMO(X, q, 1) if p = 1, having the property that

(Hp)*(h, g)HP = nl_i)IIo'lo;Aj/XajhdlL, (7164)
j=
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if g € HP(X) is such that g = ZIEN Aja; in HY,(X) for some numerical sequence
{Aj}jen € £7(N) and sequence of HP-atoms {a;}jen. On the other hand, the Riesz

Representation Theorem gives that the function /4 also belongs to L7 (X, u) where

q = qu € (1, c0) and satisfies

@l 8y, = [ ghdu,  VgeLl(X,p) (7.165)
X

Then, by Theorem 5.23, Corollary 5.9, and Theorem 6.11 there exist a numerical
sequence {A;}jen € C and a sequence of H”-atoms, {g;};en, on X for which

f =) Aa in LX.u) andin Hb(X). (7.166)
JjeN

As such, combining (7.164) and (7.165) we have

N N
b, Sy = lm ) A /X ajhdp = lim | (Z%’aj’)hdu
j=1 j=1
- / Fhdu = qaylh, £, (7.167)
X

where the third equality in (7.167) follows from the L7-convergence of the sum
in (7.166) and the membership & € LY (X, n). This establishes the desired equality
in (7.163). O

7.3 More on Atomic Decompositions

In this section we build upon the atomic decompositions obtained in Chap. 5 for
the elements in LY(X, u) N H?(X) and H?(X). In particular, our main purpose in
this section is to derive atomic decompositions for elements belonging to dense
subspaces of HP(X) which converge in L9(X, u) for each ¢ € [p,00). We will
present the work in this section in the setting of d-AR spaces. Recall that (X, q, 1) is
said to be a d-AR space for some d € (0, co) provided (X, q) is a quasi-metric space
and p is a nonnegative measure on X with the property that there exists p, € q, and
two constants cj, ¢, € (0,00) with ¢; < 1 < ¢; such that the following Ahlfors-
regularity condition holds:

all p,-balls are p-measurable, and p,(Bpg (x, r)) ~ r? uniformly (7.168)
for every x € X and every r € (0, 00) with r € [c1r,, (x), 2R, (x)] '

where r,, and R, are defined as in (2.70)—(2.71).
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We make the following notational convention: given a d-AR space (X, q, i), for
some d € (0, 00) where u is assumed to be a Borel-semiregular measure on X set
Z%X,q) := BMO (X, q, ) where BMO, o(X, q, i) is defined as in (5.9). With
this in mind, we begin by reformulating a result which draws upon work established
in Sect. 5.3.

Theorem 7.25 Let (X, q, ) be a d-AR space for some d € (0,00) where [ is
assumed to be a Borel-regular measure on X. Suppose

d
—, 1 d 1, 00], 7.169
pe(d+ind(X,q) } and q € (1,00] ( )

and fix a quasi-distance p € q along with a parameter o € R satisfying
d(1/p—1) <a < [log,C,] . (7.170)

Then, for every function f € L1(X, i) (H"(X), there exist a numerical sequence
{Aj}jen € C, and a sequence of (py, p, 00)-atoms, {aj}jen on X (pg as in (2.21)), for
which

f=Yenhia in (L9 NX )", Z,(X.p).

and HP (X), pointwise -almost everywhere on X, (7.171)
and in L' (X, p), for every finite r € {1} U (1/p, q/p].

When q = oo then one has that the sum in (7.171) also converges in L' (X, ), for
eachr € [p, 1). Additionally,

> el € (X ), (7.172)
jeN

for each finite r € {1} U (1/p, q/p] (and also for r € [p, 1) U {oo} when g = 00.)
Moreover, given any parameter y € (d(l/p — 1), ), there exist two finite
constants Cy, Cy > 0 (which are independent of f) satisfying

1/p
Coll forel o = (Z IA/IP) <G| frvelpw, 7173

jeN

Proof First recall that by Theorem 5.27, we have HS (X, p, 1) = HP(X). Thus, the
existence of a numerical sequence {A;}jen € £”(N), and a sequence of (pg, p, 00)-
atoms, {a;}jen on X, for which the equality in (7.171) holds in Z, (X, p), pointwise
pu-almost everywhere on X, and in L" (X, ), for every finite r € (1/p, q/p], is an
immediate consequence of Theorem 5.23. Moreover, the conclusion of this theorem
when g = oo, the membership in (7.172), and the second inequality in (7.173) also
follow from Theorem 5.23.
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Additionally, the convergence of the sum in (7.171) in H?(X) as well as the first
inequality in (7.173) are consequences of the last statement made in Theorem 5.25.
Finally, the fact that such a decomposition converges in (92” d1/p=D(x, q))* can be
deduced from combining the H”-convergence of the sum in (7.171), Proposition 5.3,
and (5.516) in Theorem 5.27. This finishes the proof of the theorem. O

Recall that the decomposition of the elements in LI(X, 1) (| HP(X) into linear
combinations of atoms was obtained by means of the Calderén-Zygmund-type
decomposition in Theorem 5.18; see the proof of Theorem 5.23 for details.
As Theorem 7.25 highlights, this approach yields atomic decompositions of the
functions in L?(X, ) () H?(X) which converge in L?(X, u) for g € (1/p, 00). This
range of ¢’s is too limiting for the applications we have mind. As such, we study
a dense subspace of LY(X, ) (| H?(X) for which this same approach allows us to
produce atomic decompositions which converge in L?(X, ) for every g € [p, 00).
More specifically, for each

d
e (d+ind(X,q)’oo} 71

we will consider the set ﬂre[p’oo] H'"(X). As a consequence of Theorem 4.18,
whenever p € q and «, y € R are such that

d(1/p—1) <y <a < [log,C,] ™", (7.175)

then (N,epoo) H'X) = (Nrepoo L' (X, 1) whenever p > 1. If p < 1 then
Theorem 4.18 and Corollary 5.20 imply

(| H'X) =L®(X, M)ﬂ( N H’(X)). (7.176)

refp,00] r€p,1]

Thus, at times, we may refer to the elements of ﬂre [.09] H’(X) as functions in the
subsequent discussion.

If p < 1, it follows from what has been established in Theorem 5.25 that the
functions in ﬂre[pm] H’(X) (when viewed as elements of H”(X)) can be expressed
as a linear combination of (p,, p, 00)-atoms where this decomposition converges
in 2(X, p). The main goal of this section is to exploit the extra regularity of
the elements in ()¢, o) H'(X) in order to obtain an atomic decomposition with
convergence not only in the sense of distributions, but also with convergence
in a pointwise manner and in L9(X, u) for every ¢ € [p,00). This is done in
Theorem 7.27. Combining this resourceful atomic decomposition with the fact
that ﬂre[pm] H’(X) in dense in HP(X), which is established in Theorem 7.36 of
Sect. 7.4, makes ﬂre[p’oo] H'(X) an excellent subclass of H?(X) from the point of
view of applications such as establishing the boundedness of operators on Hardy
spaces. In this regard, we now take a moment to explore the nature of the space

ﬂre[p,oo] HV(X)
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We begin with the important observation that

LX.pc (| HEX). (7.177)

r€[p,00]

Indeed, this follows from (5.74) in Theorems 5.7, and 5.27. In particular,
ﬂre[p’oo] H"(X) contains the collection of all (p,,p, c0)-atoms when p < 1.
Moreover, whenever (X) < oo (or equivalently, whenever X is a bounded set)
we have L*°(X, n) C ﬂre(O,oo] L’ (X). Combining this with (5.77) in Theorem 5.7
and (6.110) in Theorem 6.11 yields

LX) € [ H'(X) S HX(X) = L¥(X. ). (7.178)

relp,00]

Hence, the space ﬂre[pm] H’(X) reduces precisely to L= (X, ).

Moving on, we return to the task of developing a more dynamic atomic decompo-
sition for functions belonging to (), ¢, o) H'(X). Recall that an indispensable tool in
obtaining the atomic decomposition in Theorem 5.25 was an appropriate Calderén-
Zygmund-type decomposition for functions belonging to LY(X, u) N HP(X). In
particular, it was important that this decomposition was stable in the sense that
it could be performed so that both the “good” and “bad” functions were also
in L4(X, u) N HP(X). In the following theorem we build up this decomposition
by obtaining a corresponding result for functions belonging to the smaller space

ﬂre[p,oo] HV(X)

Theorem 7.26 (Calderon-Zygmund-Type Decomposition for ﬂre[pm] H") Let
(X,q, ) be a d-AR space for some d € (0,00) where it is assumed that |4 is
Borel-semiregular on X, and fix an exponent

d
Pe (d+ ind (X, q) 1} 71

along with a quasi-distance p € q and two parameters y, o € (0, 00) satisfying
d(1/p—1) <y <a < [log,C,] " (7.180)

In this context, suppose the function f : X — C induces a distribution on 9y(X, p)
with the property that f ., € L'(X, ) for every r € [p,o0], i.e., suppose that
f € mre[p,oo] Hr(X)

Suppose that t € (0, 00) is such that the open set

Q={xeX: fF,0)>1} S (X, 1) (7.181)

is proper subset of X and assume 2, is nonempty. Consider the Whitney-type
decomposition {B,,(xj,1j)}jen of 2 satisfying (1)-(4) in Theorem 2.4 and let
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{@j}ien C ‘to”;‘.)‘ (X, q) be the associated partition of unity according to Theorem 2.5
for some choices of A, A" € (Cp,, 00) with A > A'C,,. Finally, letb, g € 7, (X, p) be
as in the conclusion of the Calderon-Zygmund-type decomposition result presented
in Theorem 5.16. Then there exists a finite constant C > 0 (which is independent of
the function f) such that following hold.

1. The function By : X — C given by

Br(x) =Y (f()—m)gi(x). VYxeX, (7.182)
jeN
is well-defined and belongs to ﬂre[lwo] H"(X), where the sequence {m;}jen < C
is defined by
—1
mj = (/qojdu) /fqojd,ue(C, VjeN. (7.183)
b'¢ X

Moreover, the sum in (7.182) converges in L' (X, 1) for every r € (0, 00) and in
L (K, u) for every compact subset K C (X, tq). Also, the distribution induced
by By on Z4(X, p) coincides with b.

2. If the function Gy : X — C is defined by Gy := f — By, then one has that
Gy € ﬂre[pm] H’(X) induces a distribution on 9y(X, p) which coincides with
g furthermore, G s satisfies

Gr= flxg, + ij% pointwise on X. (7.184)
jeN

and

|G| < Cmin {t, fp’:’y’a} for p-almost every point in X. (7.185)

Proof We begin by observing that since /¥, € L*(X, jt), we have f € L*(X, )
by Theorem 6.11. Hence, f € L*(X, ;) N H?(X). As such, the assumptions made
in the statement of this theorem ensure that the hypotheses of Theorem 5.18 are
satisfied. Consequently, there exists functions b, g € L>(X, ) N H?(X) satisfying
parts /—4 in the statement of Theorem 5.18. Observe that by design the function B,
defined in (7.182), is the function b appearing in part 3 of Theorem 5.18. As such,
we have that By : X — C is a well-defined j1-measurable function which induces
a distribution on Z, (X, p) that coincides with b. Moreover, the L"-convergence of
the sum in (7.182) follows from the argument executed in the proof of part 3 of
Theorem 5.18.
We claim that By € (),¢),00) H'(X). From (5.218) in Theorem 5.16 we have

i

d+y
m) + Cfp:’y’a(x)lgt(x), VxeX.
() J

B, <Y (

jeN
(7.186)
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As such, if r € [p,00) is fixed, then r > d/(d + y) and (7.186) along with
Lemma 5.14 gives

, d+y 7"
Ll Ja=cr /[Z (ies) o

+C /X (S ya) it

< () + € [ (f,0) di=C [ (2,) dn <oc.
(7.187)

Hence, By € (),¢|.00) H (X). On the other hand, the membership of B to H*°(X)
follows from (5.299) in Theorem 5.18 and the fact that f € L*°(X, u) implies
e € HX(X).
Having established By € [),¢|, 00 H'(X), we have G € ()¢, 00 H (X) by
design. Finally, noting that (7.184) and (7.185) follow immediately from (5.304)
and (5.305) in Theorem 5.18 finishes the proof of the theorem. ]

We are now in a position to present the decomposition of elements in
ﬂre[p,oo] H"(X) into (pg, p, 00)-atoms.

Theorem 7.27 Let (X, q, t) be a d-AR space for some d € (0,00) where | is
assumed to be a Borel-semiregular measure on X and fix exponents

d
S S d 1, 00]. 7.188
pE(dHnd(X’q) } and q € (1,00] ( )

Also, consider a quasi-distance p € q and a number o € R for which
d(1/p—1) <a < [log,C,] . (7.189)
Then, for each function f € ﬂrE[p,q] H'"(X), there exist a numerical sequence

{Aj}jen € €7(N), and a sequence of (p, p, 00)-atoms, {a;}jen on X (ps € q as
in (2.21)), such that

f =Yk in (LX) Z,(X.p), and
HP(X), pointwise j-almost everywhere on X, and in L*(X, n),  (7.190)

foreach s € [1,q/p] when q < oo, and each s € [p,o0) if g = oo
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When q = oo, one also has ZjeN [Aja;l € L*°(X, ). Moreover, given any
parameter y € (d(l/p — 1), @) there exist two finite constants Cy, C, > 0 (Which
are independent of f) satisfying

1/p
G H fp:,y,a HU’(X,;A) = (Z Milp) =G H fp:,y,a HU’(X,;L)' (7.191)

jeN

Proof If f € ()¢ r.q H' (X) then we may invoke Theorem 7.25 to write

=Y Aaj. (7.192)

jeN

for some sequence of (py,p,00)-atoms, {a;}jen, and some numerical sequence
{Aj}jen € £7(N), where the convergence of this sum occurs in (& a1/p=N(x, q))*,
2,(X, p), pointwise u-almost everywhere on X, in H”(X). Moreover, if ¢ = oo
then by assumption f € L*°(X, u) and we have ZjeN |Ajaj| € L*°(X, u) also as
a consequence of Theorem 7.25. That the sum in (7.192) converges in L*(X, 1)
for each s € [1, ¢/p] when ¢ < o0, and each s € [p, 00) if ¢ = oo, we rely on the
observation discussed in Comment 5.24 and the membership of f to ﬂre[[” aH "(X).
Finally, noting that (7.191) follows immediately from (7.173) finishes the proof of
the theorem. O

The ability to identify a scale of spaces which are dense in H”(X) and whose
elements possess an atomic decomposition with convergence pointwise and in L?
has found to be useful in applications. For this reason, we conclude this section by
examining another dense subspace of H?(X) which enjoys such a decomposition.

Suppose (X, q, i) is a d-AR space for some d € (0, 00). To make ideas more
concrete, suppose u satisfies the Ahlfors-regularity condition displayed in (7.168).
In this context, define for each finite number 8 > 0 (recalling the definition of
Li(X, ) in (5.21))

€/ (X.q) N L)X, ) it u(X) = oo,
FX):=1 . (7.193)
€ (X q) NLYX. ) U {1} if  p(X) < o0,

and consider the vector space

‘Kf o(X, q) := the finite linear combinations of functions in F(X). (7.194)

Our main objective is to show that every f € (ff o(X, q) has a resourceful atomic
decomposition such as the one described in (7.190). This is done in Theorem 7.33.
As a preamble to this result we will first need to establish that the scale of
spaces ‘fcﬁ 0(X, @) can naturally be viewed as a subspace of H”(X). Moreover, we
will also require a corresponding Calderén-Zygmund-type decomposition for the
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above named spaces. The density of (ff 0(X,q) in H?(X) will be postponed until
Theorem 7.34 of Sect. 7.4.
In the above setting, observe that clearly

ChX.q) S LL,(X. 1) S LIX. 1), VB e (0.00), Vg e (0,00 (7.195)

Granted this, each element f € %Cﬂ o(X. q) induces a linear functional via an integral
pairing. As the next result highlights, with this association we are able to view
(ffo(X, q) as a subspace of H%,(X) and HP (X).

Proposition 7.28 Let (X, q) be a quasi-metric space and suppose [L is a nonnega-
tive measure on X satisfying (7.168) for some d € (0, 00). Fix an exponent

pE (m s 1i| (7196)

along with a parameter 8 € (0,00). Then the mapping t : ‘KfO(X, qQ — HL.(X)

defined by setting for each | € ‘to”fo(X, qQ),

wWHWY) = /Xfl/f du, Vg e2!rhix,q), (7.197)

is well-defined and linear.
Moreover; there exists a finite constant C > 0 with the property that whenever
q € [1, 00] with q > p then

1/p—1
lef Ny < Cr(Bpy e )P~ 0 F Lo, (7.198)

for every f € ‘to”.fo(X, q), and every point x € X and radius r € (0, 00) satisfying

supp f € B, (x, r).
If, in addition the measure | is assumed to be Borel-semiregular on X, then v is
also injective, in which scenario, there holds

¢\ (X.q) € H(X), (7.199)

for each p as in (7.196) and each B € (0, 00).

Proof Granted the inclusion
¢h(X.q) CLl(X. ). Vge (o], (7.200)

the fact that ¢ is a well-defined linear mapping which satisfies (7.198) follows imme-
diately from Proposition 5.6. Moreover, this inclusion along with Proposition 5.7



334 7 Further Results
yields (7.199) whenever the measure p is assumed to be Borel-semiregular on X.
This finishes the proof of the proposition. O

In Corollary 7.30 below we will see that the space ‘ff o(X, q) can be embedded
into the maximal Hardy space H?P(X). As a step towards this goal we present the
following result.

Proposition 7.29 Let (X, q) be a quasi-metric space and suppose [L is a nonnega-
tive measure on X satisfying (7.168) for some d € (0, 00). Fix an exponent

d
pE (M—T@(,(}) s OOi| (7201)

along with a parameter B € (0,00). Then for every quasi-distance p € q and
number o € (0, 00| satisfying

d(1/p—1) < a < [log, C,] ", (7.202)

one has that the mapping t : %f} o(X.q) = HL(X, p, n) defined by setting for each
/€ 6L @),

W) = /X fydp. Yy € Zu(X.p), (7.203)

is well-defined and linear.
Moreover, there exists a finite constant C > 0 with the property that if y € (0, 00)
withy € (d(l/p — 1),a) then

|

o = 1l oy = CrB &) 1 flloos (7204

for every f € (f'fo(X, q), and every point x € X and radius r € (0, 00) satisfying
supp f* S By, (x,7).

Proof Fix y € (d(1/p — 1),a) with y > 0 and suppose f € (ffo(X, q). Also let
x € X and r € (0, c0) be such that supp f € B, (x, ).

Observe that when p < 1 the fact that ¢ is well-defined follows from Propo-
sition 7.28 and Lemma 5.10. and the estimate in (7.204) is obtained by combin-
ing (7.198) in Proposition 7.28 and (5.125) in Lemma 5.10. Thus, we assume p > 1.
In this scenario, Theorem 4.13 implies ¢ is well-defined, granted

fedlX.q "X, ). (7.205)

Moreover, recall that we have established in Theorem 4.13 that ¢ (considered as a
mapping defined on all of L7 (X, 1)) is a bounded mapping into Hj (X, p, i). Hence,

(7.204) follows from this and the fact that || f|lpxu < p,(BpU (x, r))l/p||f||oo.
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Altogether, this analysis proves ¢ : %f 0X.q) — HL(X,p,p) is a well-defined
mapping and satisfies (7.204) for every p as in (7.201). This finishes the proof of
the proposition. O

Proposition 7.29 gives that the mapping ¢ : ‘fcﬁ 0(X.q) — HY(X, p, i), given as
in (7.203) is well-defined whenever p is as in (7.201). In the following corollary
we will see that for a slightly smaller range of p’s, the mapping ¢ is also injective.

Hence, we may view ‘KfO(X, q) C HL(X, p, ).

Corollary 7.30 Let (X,q) be a quasi-metric space and suppose | is a Borel-
semiregular measure on X satisfying (7.168) for some d € (0, 00). Fix an exponent

d
e (d +find(X.q)’ OO} (7200

along with a number B € (0, 00). Also, consider the well-defined linear mapping
as in (7.203). Then in addition to satisfying the estimate in (7.204), ¢ is an injective
mapping, i.e., there holds

(X, q) € H(X). (7.207)

Proof We begin by recalling that H”(X) = H%(X, p, 1) = H5(X, p, ) whenever p
is asin (7.206) and p € q and & € (0, o0] satisfy

d(1/p—1) < a < [log, C,] ", (7.208)

see Theorem 5.27 for p < 1 and Theorem 4.18 for the case when p > 1.

The injectivity of ¢ is a consequence of the definition of ¢ and taking g := 0
in Proposition 4.12. Note that the additional restriction on « as in (7.208) was
necessary in order to ensure the hypotheses of Proposition 4.12 were satisfied. This
completes the proof of the corollary. O

As a notational convention, with ¢ defined as in (7.203) we will typically write,
without confusion, f in place of ¢( ). Note that as a consequence of Corollary 7.30
we have

X< [ HX), (7.209)

r€[p,00]

whenever 8 € (0,00) and p is as in (7.206). Hence, at this stage we know
that Theorem 7.27 permits us to decompose elements of Cff 0(X,q) into linear
combination of (p,,p,o0)-atoms (which belong to LZG(X, 1)) where the con-
vergence occurs pointwise and in L?. The limitation here is that Theorem 7.27
only makes minimal use of the qualities that functions in (ffg o(X, q) possess. In
turn, Theorem 7.27 produces atomic decompositions where the atoms only retain
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these minimal features. We will show in Theorem 7.33 below that in fact such a
decomposition can be performed with the atoms belonging to %Cﬂ (X, q).

Before presenting Theorem 7.33 we will need to establish a Calderén-Zygmund-
type decomposition for this class of functions. This result is obtained in Proposi-
tion 7.32 below and is in much of the spirit of Theorem 5.18. The following lemma
will prove to be a key fact in the establishment of Proposition 7.32. It pertains to
what is commonly referred to as the “bad part” of a function and the amount of
regularity it inherits given a function from ‘Kf 0(X). Remarkably, this result is of a
purely quasi-metric geometry nature. '

Lemma 7.31 Let (X,q) be a geometrically doubling quasi-metric space and fix
p € q. Suppose [ is a nonnegative measure defined on a sigma algebra of subsets
of X which contains all p-balls and has the property that all p-balls have strictly
positive ji-measure. Fix a finite number a € (0, [logZCp]_l] (Cp as in (2.2)) along
with parameters A, A" € (C,, 00) with C, A" < A. Then there exists a finite constant
C > 0 having the following significance.

If Q is a proper, nonempty, open subset of the topological space (X, tq) and
{@j}jen S %;“(X, q) is a partition of unity given as in Theorem 2.5 which is
subordinate to a Whitney-type decomposition, {B,,(x;,rj)}jen, of Q according to
Theorem 2.4 for the choices of A, X', then for every f € €“(X.,q), the function
By : X — C defined by

Br(x) =) (f@) —m)gi(x). VxeX, (7.210)

jeN

is well-defined and belongs to € (X,q) with | By ||(€'L,(X!p) <C|f ”Cg'w(x,p) where for

eachj e N
-1
m; = (/ (pjdﬂ) / fg{)jdﬂ e C. (7.211)
X X

Moreover, if the function f has p-bounded support then so does B y. In fact, one has
that By € ?fc‘ffo(x, q).

Proof Fix  C X as in the statement of the lemma and consider a Whitney-type
decomposition, {B,, (x;, j)}jen, of Q according to Theorem 2.4 for the choices of
A A" € (1,00). Also, let {gj}jen € %'f (X, q) be a partition of unity subordinate to
such a decomposition satisfying (/)—(3) in Theorem 2.5 with parameter A’. Then by
the support conditions for the family {¢;};en in (3) in Theorem 2.5, and the bounded
overlap property in (2) in Theorem 2.4 we have that the sum in (7.210) contains
only finitely many nonzero terms for any given x € X. Hence, By : X — Cisa
well-defined function for each fixed f € €%(X, q).
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We now set out to establish the claim that By € € (X, q) foreach f € € X, q).

To this end, fix f € €*(X,q). Specifically, we are seeking the existence of a finite
constant C > 0 with the property that

|By(x) —Br(y)| < C||f||<gu(X!p) plx,y)* forall x,y € X. (7.212)

Given that
suppB, C U supp ¢; < UBp(xj,A/rj) cQ, (7.213)
jeN jeN
we see that (7.212) is valid for any finite C > 0 whenever x,y € X \ Q so we
consider next the case when x € Q and y € X'\ Q. For each z € 2, introduce the set

J.:={jeN:zeBy(x, Al (7.214)

and note that (/) and (2) in Theorem 2.4 imply J, # @ and that the cardinality of
J. < M for every z € Q. Here, M € N as in Theorem 2.4 depends only on the
geometry of the ambient space. In particular, M is independent of f. We may now
write (keeping in mind (7.213))

By (x) =B, ()| = [By ()| = | > (/) — m;)e;(x)

JEJx
-1
=>(fo du) [ 1w = e duon
jes, WX By (xj.A"17)
—1

< Ui ( [ du) [ P ) )
= ”f”cg'u(xﬁp) Z(Cpépklr})as (7.215)

J€Jx

where Cp € [1, 00) is as in (2.3). Note that the first inequality in (7.215) made use
of the fact that 0 < ¢; < 1 pointwise on X for every j € N.

In order to finish the proof of (7.212) in the case when x € Q andy € X \ Q
there remains to further bound (7.215) by a constant multiple of p(x, y)*. Given the
nature of the last inequality in (7.215), it suffices to show

jeJe = Ar; < Cpplx,y). (7.216)
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To justify (7.216), recall that y € X \ Q implies y € X \ B,(x;, Ar;) for every j € J
granted that

B,(xj,Ar;)) € Q, VjeN. (7.217)
In particular, if j € J, then (keeping in mind the choice of A" € (C,,A/C,)
Ar; < p(x;,y) < Cpymax{p(x;, x), p(x, y)}
< C,max{A'rj, p(x,y)}
< max{Arj, Cop(x,y)} = Cop(x,y), (7.218)

which proves (7.216). Combining this with the fact that A’'C, < A implies
that (7.215) may be bounded above by

M| f ey (Co Co)* plx, ). (7.219)

This concludes the proof of (7.212) in the case when x € Q andy € X \ Q. The
situation when y € Q and x € X \ € is handled similarly, so there remains to treat
the case when x,y € €.

To this end, fix x,y € € and consider a point z € X \ @ with the property that

3 p(x,2) < disty(x, X \ Q) < p(x,2). (7.220)
Observe

B () =By 0| < [£(0) = FO + Y mi(e,(0) — ¢;(x) = I + 11, (7.221)

jeN

where we define

[:=|f(x)— f(O)| and II:= . (1222)

> mi(@) — ¢ (0)

jeN

Clearly, I < || f | u(x P, ¥)* granted f € €*(X, q).
As concerns /1, using the properties of the functions {¢;};en in Theorem 2.5 and
(3) in Theorem 2.5, we may write using our choice of z € X \ € as in (7.220)

= > (m— f@) (%) - ¢x)

jeN

(7.223)
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—1
= 3160 - g ( / o du) / 00 = £ gy(w) dia(ow)

jEN p(x.A7r))

-1
N f ey 3 Iw;(y)—%(X)I( / wfdu) [ PO ).

jesuly

Set

-1
A=Y |¢,-(y)—</a,~(x)|(/x @jdu) [ ot g duon,

jelUly p (5:A775)
(7.224)
To proceed we shall investigate two separate subcases, starting with:
Subcase I: Assume that the points x,y € S2 are such that
p(x,y) < (2C,) " dist,(x, X \ Q). (7.225)

To get started in earnest, we make the claim that in the above scenario, we have
dist, (x, X \ Q) < 2C,dist,(y, X \ Q). (7.226)
Indeed, for every w € X \ 2 we may write
dist,(x,x \ Q) < p(x,w) < Cp(p(x, y) + p(y.w))

< Cp[(2Cy) " dist, (x, X \ Q) + p(rv. w)].
(7.227)

hence dist,(x,X \ ) < 2C,p(y,w). Then (7.226) follows from taking the
infimum over all w € X \ Q.
Moving on, observe that using (2.50) in Theorem 2.5 we have

-1
A= ), COfptey)” ( /X cojdu) /1; p(w.2)" ¢;(w) dp(w).

jesuly o (xjsA"7j)

(7.228)
for some C € (0, oo) independent of j. We wish to now show

jeL UL, = pwz) <Cry, VYweB,(x;,Ar), (7.229)
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for some finite C = C(p) > 0. Indeed, if j € J, then keeping in mind our choice
of z € X \  in (7.220) we have for each w € B,(x;, A'r})

IO(W’ Z) f CP maX{p(w,x), ,O(x, Z)}
< C,max{C,C,A'r;. 2dist, (x. X \ Q)} < 2C3C,Ar;.  (7.230)

where A € (A, 00) is as in Theorem 2.4. Note that the last inequality in (7.230)
follows from calling upon (3) in Theorem 2.4. On the other hand, if j € J, then

p(w,2) < C,max{p(w,y), p(y,2)} < C, max{C,C,A'r;, p(y,2)}. (7.231)

Moreover, (7.226) and how z € X \ 2 was chosen in (7.220) allows us to further
estimate

p(y,2) < Comax{p(y,x), p(x,2)} (7.232)
< C, max{C,(2C,)~", 2} dist,(x, X \ Q)
< Cdist,(y, X \ Q) < Crj, (7.233)

where C = C(p, A) € (0, 00). Note that the last inequality appearing in (7.232)
follows from part 3 in Theorem 2.4. Combining this along with (7.231) and the
fact that C,A" < A < A we have

p(w,2) < Crj, (7.234)

where C = C(p,A) € (0,00). The above analysis justifies the claim made
in (7.229).
Returning to the estimate in (7.223), having established (7.228)(7.229), we have

I = Cll f llegax pyp . ) (7.235)

for some finite C > 0 independent of £, x, and y. This completes the treatment
of subcase I.
Subcase II: Assume thatx,y € 2 are such that

p(x,y) > (2C,) " dist,(x, X \ Q). (7.236)
Recalling the estimate established in (7.223), we again focus our attention to

bounding the quantity listed in (7.224) in the current scenario. Since 0 < ¢; < 1
pointwise on X for every j € N we have

-1
A<2 Z ( /X <pjdu) /B p(w,2)* gj(w)du(w).  (7.237)

jenUl, p(5:47})
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‘We wish to now deduce that
jeLUJ, =  pwz) <Cp(xy), VYweB,(x,A'r), (7.238)

for some C € (0, oo) depending only on the geometry of the ambient. Recall the
choice of z € X \ © in (7.220) and note that (7.236) forces

p(x,z) < 2dist,(x, X \ Q) < 4C,p(x,y). (7.239)
Hence, we also have

p(z,y) < Cp max{p(z,x), p(x,y)} < Cp(x,y) (7.240)

for some C = C(p) € (0, 00). Consequently, if j € J, then based on (7.239) we

may write for each w € B,(x;, A'r}),

p(w.2) < Cpmax{p(w,x), p(x.2)} < C, max{C,C,A'r;, Cp(x.y)} < Cp(x.y)
(7.241)

for some finite C > 0. The third inequality in (7.241) made use of the fact that

dist,(x,X \ ) ~ rj (cf. (3) in Theorem 2.4). Now if j € J, then making use

of (7.240)

p(w,2) < Cpmax{p(w,y), p(y,2)} < Comax{C,Cpd'r;, Co(x,y)},

(7.242)

for every w € B,(xj, A'r;). Combining this with the fact that in the current

scenario

C;lkrj E dIStp(va\ Q) S Cp max{p(ysx)vdiStp(xsX \ Q)} E Cp(xs )’),

(7.243)

for every j € J, where C € (0,00) depends only on p finishes the proof
of (7.238). In turn, we may conclude from (7.223)—(7.224) and (7.237)

I = C|[ f g pyP (5. 3%, (7.244)

for some finite C > 0. This completes the treatment of subcase II and the
situation when x,y € 2. This finishes the proof (7.212). Moreover, the estimate
in (7.212) implies ||Bf||<¢:'a(x,p) < C||f||c‘,gp~(,(X’p) as desired.
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Moving on, we now assume f € € (X, q) has p-bounded support. To make
ideas concrete, suppose

supp f € B, (xo, o), (7.245)

for some xy € X and finite rp > 0. Observe that if f = 0 pointwise on X then
B = 0 pointwise on X, in which case the desired conclusion follows. Suppose next
that f = 0 pointwise on X and consider the set

J:={jeN:KNB,(x,\r) # 0}. (7.246)

Then since supp f # @ we also have that J # @. Moreover, notice that by the
definitions of m; in (7.211) and J we have m; = 0 for every j € N\ J. Then, keeping
in mind (3) in Theorem 2.5 we may write

Br(x) =Y (f@) —m)gi(x) = f)la(x) = Y mjgi(x).  (7.247)

jeN jeJ

for every x € X. Since it is clear that f1g has p-bounded support, we focus our
attention on the support of 3, m; ¢;. Noting that

suppij @ C UBp(xj,)k’rj), (7.248)
jel jel

it suffices to prove the existence of a finite number R > 0 such that

|JB,(x. 1)) S By (x0. R). (7.249)
jeJ

Observe first that (7.245) implies d y := sup{dist,(x,X \ ©2) : x € supp f} € [0, 00)
is well-defined. Moreover, if j € J then for every x € B,(x;, A'r;) N K we have

dy > dist,(x, X \ Q) > Cr;, (7.250)
for some finite C > 0. It therefore follows that if x € Uje;B,(xj, A'r;) then there
exists j € J such that x € B,(x;, A'rj) where B,(x;,A'r;) N K # @. Hence, for
y € B,(xj, A'r;) N K fixed

p(xo,x) < Cpmaxip(xo,y), p(y,x)}
< C, max{ry, C,C,r;} < Cmax{ro,dy}, (7.251)

for some finite C = C(p) > 0. Taking R := Cmax{ry,ds} € (0,00) finishes
justifying the claim in (7.249) and in turn the fact that By has p-bounded support.



7.3 More on Atomic Decompositions 343

Finally, there remains to prove that fx Brdp = 0 whenever f € (f'f (X,q). To

this end, suppose f € ‘é"‘ (X, q) and note that since By € ‘f;“(X, q) we have that
By is continuous on X, hence p-measurable. Moreover, from what we have just
established, we may conclude

supp f € supp By C B := B,(x0.10). (7.252)

for some xyp € X and finite 7y > 0. As we have already noted,
By(x) = lim Xl:( f@) —m)gi(x), VxeX. (7.253)
J=

Moreover, if we define Fy := Zf:l ( fx) — mj)qoj, for every k € N then for each
x € X and each k € N we may estimate

[Fr(x)| =

k
D (F ) —my)e(x)
j=1

< @@ + ) Imilek)

jeJ
< 2| fllooLanp(x) < 2[| f lloo1p(x) (7.254)

In obtaining (7.254), we have used that |m;j| < | f|lc for every j € N as
well as the fact that ZJ.GJ ¢ < 1lgnp and ZJ.GN ¢ = lg pointwise on X.
Consequently, since B € X is a u-measurable set having finite 4 measure we
have 2|| f|leols € L'(X, ) and {Filren < L'(X, ). It therefore follows from
Lebesgue’s Dominated Convergence Theorem that fx By dp = 0 granted that by
design, fX( f —mjg;))dp = 0 for every j € N. This completes the proof of the
lemma. O

We are now in a position to present the Calderén-Zygmund-type decomposition
for functions belonging to %P w0 (X, Q).

Proposition 7.32 (Calderén-Zygmund-Type Decomposition for % wo) Fix a
number d € (0, 00) and let (X, q, it) be a d-AR space. Suppose

d
pE (m s 1i| (7255)
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and assume p € q is a quasi-distance for which d(1/p — 1) < [log,C,]™!. Also,
fix f € (f'fo(X, q) for some fixed real number B € (0, [log,C,]~"] and consider
parameters y,a € (0, co] with

d(1/p—1) <y <a < [log,C,]". (7.256)
Suppose that t € (0, 00) is such that the open set
Qui={xeX: fr,,(0)>1 C(X,7q) (7.257)

is proper subset of X and assume 2, is nonempty. Consider the Whitney-type
decomposition {B,,(xj,1j)}jen of 2 satisfying (1)-(4) in Theorem 2.4 and let
{@j}ien © (f.cﬂ (X, q) be the associated partition of unity according to Theorem 2.5
for some choices of A, A" € (Cp,, 00) with A > A'C,,. Finally, letb, g € 9, (X, p) be
as in the conclusion of the Calderon-Zygmund-type decomposition result presented
in Theorem 5.16. Then there exists a finite constant C > 0 (which is independent of
the function f) such that following hold.

1. If the sequence {m;}jen < C is defined as in (7.211), then

sup [m;| < Ct. (7.258)
jEN

2. The function By : X — C defined by

Br(x) =Y (f()—m)ei(x). VYxeX, (7.259)

JjeEN

is well-defined and belongs to (f.fo (X, q). Moreover, By induces a distribution on
P4 (X, p) which coincides with b and the function By enjoys the properties of b
listed in part 3 of Theorem 5.18.

3. if the function Gy : X — C is defined by Gy := f — By, then Gy € (f'fo(X, q)
induces a distribution on (X, p) which coincides with g; furthermore, Gy
satisfies

Gr= flxg, + ij(pj pointwise on X. (7.260)
jeN
and
|Gs| < Ct pointwise on X. (7.261)

Proof We begin be noting that since f € (fcﬁ oX.,q) S LUX,u) for every
q € (0,00], we have that conclusions /-4 of Theorem 5.18 hold. Observe that /
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is an immediate consequence of Lemma 7.31 (applied with 2 := ;) and part 3
of Theorem 5.18. Moving on, the justification for the claim made in 2 follows
immediately from part 4 in Theorem 5.18. Note that fact (7.261) holds pointwise
everywhere on X is a consequence of the continuity of f. This completes the proof
of the lemma. O

The stage has now been set to discuss the atomic decomposition of the elements
in ‘ff 0(X, q). In the proof of Theorem 7.27, there were two important qualities of
the space N,e o] H' (X) which permitted us to obtain the atomic decomposition as
in (7.190). First, was the Calderén-Zygmund-type decomposition in Theorem 7.26
which granted us the ability to express functions in ﬂre[p’oo] H’ (X) pointwise on
X as the sum of two other functions, each of which belongs to ﬂre[p’oo] H (X).
From this we were able to obtain an atomic decomposition of the functions in
ﬂre[p’oo] H"(X). Secondly, since by design the grand maximal function associated to
the elements in ﬂre[pm] H'(X) belonged to L" (X, ) for every r € [p, oo] we were
able to show that such a decomposition converged pointwise and in L?(X, u) for
every g € [p, 00). As such, by combining Proposition 7.32 and (7.209), an argument
similar to the one presented in the proof of Theorem 7.27 yields the following atomic
decomposition of the spaces ‘fcﬁ (X, q).

Theorem 7.33 Let (X, q, ) be a d-AR space for some d € (0,00) where [ is
assumed to be a Borel-semiregular measure on X and fix an exponent

d

Also, suppose p € q and consider a parameter B € (O, (log, Cp)_l] and a number
a € R for which

d(1/p—1) <a < [log,C,] ™" (7.263)

Then, for each f € (fcﬂ 0(X, q), there exist a numerical sequence {A;}jen € £P(N),
and a sequence of (pg, p, 00)-atoms, {a;}jen < ‘ffo(X, q) on X, such that

f=YenAa in(LWr(X, q)", Z,(X.p), and H(X),
pointwise [L-almost everywhere on X, and in LY(X, ), for (7.264)
every q € [p, 00). Moreover, one has ZJEN |Ajaj| € L*(X, ).

Moreover, given any y € (d(l/p — 1), o), there exist two finite constants C,, C, > 0
(which are independent of ') satisfying

1/p
G H fp:,m HU’(X,M) = (Z Mflp) =G H fp:,m HU’(X,M)' (7.265)

jeN
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Proof The claims made in the statement of this theorem are justified by arguing
as in Theorem 7.27 where the Calderén-Zygmund-type decomposition in Proposi-
tion 7.32 is employed. In particular, this latter result will ensure that the sequence
{a;}jen of (pg, p, 00)-atoms belongs to ‘ffo (X,q). O

7.4 Dense Subspaces of H? (X)

In this section we will record a number of density results which are useful in a wide
range of applications. We begin by establishing the density of the space %Cﬂ 0(X.q)

in HP(X). The reader is referred to (7.194) for the definition of ‘fcﬂ X, q).

Theorem 7.34 Let (X,q) be a quasi-metric space and suppose [ is a Borel-
semiregular measure on X satisfying (7.168) for some d € (0, 00). Then for each
B € R satisfying 0 < B < ind (X, q) one has

€\(X.q) = H(X)  densely, whenever p & (m 1]

(7.266)
and
‘KfO(X, q) = L’(X, ) densely, whenever p € (1,00). (7.267)

As a corollary of (7.266)—(7.267), for each B € R satisfying 0 < < ind (X, q)
there holds

: d
Cffo(X, q) < H?(X) densely, whenever p € (HT(X,(I) , oo) .

(7.268)

Proof Fix B as in the statement of the theorem and consider an exponent p as
in (7.266). From Proposition 7.28 we have already seen that we can naturally view
‘Kf (X, q) as a subset of H},(X) granted that y is assumed to be Borel-semiregular.
Thus, we focus on the matter of density.

For this, since finite linear combinations of (p,, p, o0)-atoms are dense in H%,(X),
it suffices to show that individual (p,, p, 00)-atoms may be approximated in H%,(X)
with functions from ‘Kf (X, q). With this goal in mind consider an approximation
to the identity, {S;}o</<s,, of order B as given in Theorem 3.22 and observe that
by combining (3.141) and (3.136) in Theorem 3.22 along with property (iv) in
Definition 3.21 we have that S;a € ‘ffo(X, q) for every (p,,p, 00)-atom a on X
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and each ¢ € (0, tx). In particular, in light of Proposition 7.28,
{Sia}o<r<r, € Hy(X). (7.269)

Moreover, if ais a (p,, p, 00)-atom on X supported in a ball B, (x, ) for some x € X
and some r € (0, co) then for each 7 € (0, t+) we have (keeping in mind (3.141) in
Theorem 3.22)

|Sra — a||221(X’m “ (Bpg (x, C(r+ z‘)))l/z_l/[7 (Sia—a) isa(p,,p,2)-atomon X.
(7.270)

Hence, whenever ¢ € (0, r) we have
1/p—1/2
|Sra — a”Hg,(x) = CM(Bpa (x, Cr)) [Sta — all2(x (7.271)

where C € (0,00) is independent of a and 7. Combining this with (3.142) in
Theorem 3.22 yields S;a — a in H,,(X) as t — 07 for each fixed (p,, p, 00)-atom
a on X. This finishes the proof of (7.266).

Assume next that p € (1,00). Since the inclusion appearing in (7.267) is
immediate we move on to addressing the claim regarding density. Note that
since we have € (X,q) — LP(X,pn) densely (cf. the implication (1) = (4)
in Theorem 3.14) the justiﬁcation of (7.267) will follow once we establish that
every function from 4 (X,q) may be appr0x1mated in L”(X, u) by functions

from ¢” +0(X,q). With this goal in mind fix [ € (5 (X, q) and suppose first that
diam,, (X) 0o. Then from (3.136) and (3.141) in Theorem 3.22 as well as property
(iv) in Definition 3.21 we may conclude that for each t € (0, 00) the function

= f — &, f belongs to (ﬁﬁ o(X., q). Moreover, by (3.143) in Theorem 3.22 we
have

||f —g||U)(X,,L) = ||Stf|lyr(x,ﬂ) —0 as t— oo. (7.272)

There remains to treat the case when diam,, (X) < oo. That is, when ©(X) < co.
Without loss of generality we may assume ((X) = 1. Recall that in this situation
we have 1y € ¢ o(X q). Then by writing

~( /X £ )] + ( /X £ di)1x, (7273)

where the function [ /' — (f; f du)ix]. (fy f du)lx € ‘ffo(X, q) we can deduce
that f € ‘Kf o(X, q). Hence, in the case when the underlying set X is bounded we

actually have (f'f X,q) = (ﬁﬁ o(X, q) as vector spaces. This completes the proof
of (7.267).

Finally, the inclusion in (7.268) follows from Proposition 7.29. Recall here that
HP(X) = H5(X) whenever p is as in (7.268), and « € R satisfies

d(1/p—1) <« < ind (X, q) (7.274)
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(cf. Theorem 5.27). Then the claim regarding density becomes a consequence of
what has already been established in (7.266)—(7.267) as well as Theorem 5.27 and
Theorem 4.18. This completes the proof of the theorem. O

Theorem 7.34 allows us to conclude that distributions belonging to H” (X) can be
approximated in the HP quasi-norm by test functions satisfying a vanishing moment
condition. Such a result has appeared in [MaSe79ii, Theorem 4.16, p. 302]. Here we
provide an alternative proof for a sharpened version of this result.

Theorem 7.35 Let (X, q, u) be a d-AR space for some d € (0,00) where | is
assumed to be a Borel-semiregular measure on X and fix a number

d

Then for each parameter « € R and each quasi-distance p € q satisfying
0 <a <[log, Cp]™" (7.276)
one has
Du(X, p) N LY(X, 1) = HP(X) densely. (7.277)
Proof Fix p and « as in (7.276) and observe that for each fixed 8 € (0, «), we have

C(X,q) € Zu(X,p) NLYX, 1) € 65 (X, @) CH'(X),  (7.278)

where the first inclusion is a consequence of the definitions of the spaces ‘Kfo X,q)
and Z,(X, p) as well as (4.7), the second inclusion follows from the choice of
B € (0,a), and the last inclusion is a result of Proposition 7.29. Combining this
with Theorem 7.34 which gives ‘éfO(X ,q) — HP(X) densely, finishes the proof
of (7.277). O

Recall that as a consequence of the Calderén-Zygmund-type decomposition in
Theorem 5.16 we were able to show in Theorem 5.21 that if (X, q, i) is a d-AR
space where p is assumed to be Borel-semiregular on X then

L1(X, ) N HP(X) — H?(X) densely, (7.279)
whenever
€ —d 1 and € [1, 00) (7.280)
. , 00). .
PE\a¥ind(X.q) 1

At this stage, having established Theorem 7.34, we are capable of further refin-
ing (7.279) in the following result.
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Theorem 7.36 Let (X,q) be a quasi-metric space and suppose [ is a Borel-
semiregular measure on X satisfying (7.168) for some d € (0, 00). Then for any
pair of exponents p, q1,qa € (0, 00] satisfying

———— < q1 <p < gy <00, 7.281
d+ind(X.q) G =p<q=x© ( )
there holds
(| H'(X) < H(X) densely. (7.282)
r€[q1,92]

Proof Fix p as in (7.281) and observe that clearly we may naturally view
ﬂre[ql,qz] H'(X) as a subset of H?(X). Combining this with the conclusion of
Corollary 7.30 we may write

‘ffo(X, q) C ﬂ H'(X) € H’(X), whenever f € (O,ind X, q)).
r€lg1.q2]

(7.283)

Since p is finite, (7.283) along with (7.268) in Theorem 7.34 will yield the desired
conclusion in (7.282). This finishes the proof of the theorem. ]

The next density result builds upon the conclusion of Theorem 7.36 in that each
element of LY(X, u) N HP(X) can be approximated by elements in ﬂre[p’oo] H'(X)
in both the L9(X, u) and H”(X) quasi-norms. This result will be important in
establishing criteria which guarantee boundedness on H”(X) of linear operators.
This is a distinguishing feature that the scale of spaces ﬂre[p’oo] H'"(X) possess over

C’O&fo(x q).

Theorem 7.37 Let (X, q, ) be a d-AR space for some d € (0,00) where [ is
assumed to be a Borel-semiregular measure on X. Fix exponents

d
L E— d , 7.084
pe(d—i—ind(X,q) } and q € [p, o] (7.284)

and suppose the quasi-distance p € q and parameter o € R satisfy
d(1/p—1) < < [log,C,] " (7.285)

Suppose f € (L‘f X, w)NL (X, pL)) NHP(X) (bearing in mind that the intersection
with L} (X, jv) becomes redundant when q > 1). More specifically, assume that the
function f € L1(X, 1) induces a distribution on 9y (X, p) with the property that

p:’y’a € IP(X, u) for some y,a € Rwithy € (d(1/p—1),a).
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Then for every ¢ € (0,00) there exists a function h : X — C which induces a
distribution on 9y (X, p) which belongs to ﬂrE[p,oo] H'(X) and satisfies

max{” (f =)y ya ||LD(X,;L)’ Ir - h”L‘I(X,;L)} <é (7.286)

As a corollary of this, (),ep o0 H (X) — (L9X, ) N L.(X, 1)) N HP(X),
densely, in the following sense:

VI e (L9X, 1) N LL.(X 1) NP, 3{fhen € Nreproo H(X)
7.287
suchthat lim f; = f in LYX, u) andin H?(X). ( )
J—>00

Proof Fix ¢ € (0, 00) and for each t € (0, 00), consider the p-measurable set
Qi={xeX: fr &>t} (7.288)

Assume first that ¢ < oo and for a fixed number § € (0, c0) (to be chosen later)
select a finite number ¢ > 0 large enough so that €2, is a proper subset of X and

max{ /Q ( fp:’y’a)qdu, /Q ( fp:’y’a)”du} <. (7.289)

Indeed such a choice of ¢ satisfying (7.289) is guaranteed by the fact that by
assumption we have f© € LY(X,u) N LP(X, ) (cf. Theorem 4.18 for the
membership to L?). The fact that we may choose ¢ such that €2, is a proper subset of
X is discussed in Comment 5.17.

Suppose initially that €2, # @. Applying Theorem 5.18 for this value of 7, we
obtain two functions b, g € L9(X, i) which induce distributions on Z, (X, p) that
coincide with the distributions b and g (respectively) given as in the conclusion of
Theorem 5.16. In particular, the distributions induced by b and g on Z, (X, p) belong

to H?(X). Moreover, this along with (5.219) implies

/X (), o) dn=C /Q (fr o) di. (7.290)

Going further, we have f = b + g pointwise on X and

/X|13|"du < C/Q (frr ) dit. (7.291)

We consider as candidate 7 = g € L7(X,u). We first need to establish
that the distribution induced by 4 on %,(X, p) (denoted also by /) belongs to
ﬂre[p’ ool H "(X). Observe that in light of the fact that & coincides with g on Z, (X, p),
we have by (5.221) in Theorem 5.16, that & € ﬂre[p!oo) H’(X). Moreover, (5.305)
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in Theorem 5.18 (which gives 7 € L*°(X,u)) in conjunction with (6.110) in
Theorem 6.11 (which implies L (X, u) = H*°(X)) together yield h € H*(X).
As for the estimate in (7.286), observe that

/X [(f =h)h el di = /X [(i’):#,m]p i< C /

Q

(frra) dun < C8.

granted (7.290) and (7.289). Additionally, (7.291) along with (7.289) imply that this
choice of £ also satisfies

_ — 74 < * P
/X|f h|%dp /X|b| dp < C/Qt(fp#,y,a) dp < C8,

Since C is independent of r we may choose § € (0, co) such that § < min{e”, £}/C
finishing the proof of (7.286) in the case when 2, # 0.

On the other hand, if 2, = @, we take h := f € L9(X, u) N H?(X). Thus, in this
case the estimate in (7.286) holds trivially, as the left hand side of (7.286) is zero.
To see that h € ﬂre[p’oo] H"(X), observe first f7  , < t pointwise on X given €2,
is empty. Hence, we have immediately 4 € H°(X). On the other hand, whenever
r € [p, 00) then

lf(fpt,y,a)’du =7 /X(f;;,y,a)f'du <0 (7.292)

which implies p’;,y,a e L' (X, ), ultimately implying h € ﬂre[p’oo] H' (X).

Finally, if ¢ = oo then f € L*(X,u) and hence f,, € L®(X,p) (cf.
Theorem 6.11). As such, the estimate in (7.292) is valid with 7 := | £ ||, -
giving f; , € L'(X,p) for every r € [p,00). Hence, (7.286) holds if we take
h:=f¢€ ﬂre[p’oo] H'"(X). This finishes the proof of the theorem. O

We conclude this section by analyzing the density properties of the spaces
Lz,O(X, W), g € [1, 00] defined in (5.22) of Sect. 5.1. We begin by recalling a density

result that was presented in Chap. 5.

Proposition 7.38 Suppose (X, q, (1) is a d-AR space for some d € (0, 00) where |
is assumed to be a Borel-semiregular measure on X and fix exponents

d
— 1 d 1, 00, . 7.293
pe(dﬂnd(x’q) } and qe€[l,00], g>p ( )

Then one has

L!\(X,u) — HP(X)  densely. (7.294)
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Moreover, if u(X) < oo (equivalently, if X is a bounded set) then there holds

LI(X, u) — HP(X) densely. (7.295)

Proof This result follows from combining the density result in Proposition 5.7 and
the identification established in (6.109) of Theorem 6.11. O

The following theorem augments the conclusion of Proposition 7.38 in that each
element of L7 (X, ;) N H? (X) can be approximated by functions in L7 (X, u) in both
the L9(X, u) and H? (X) quasi-norms.

Theorem 7.39 Suppose (X, q, i) is a d-Ahlfors-regular space for some d € (0, 00)
where  is assumed to be a Borel-semiregular measure on X and fix exponents

d
S — d , 00). 7.296
pe(d+ind(X,q) } and q € [p,00) ( )

loc

(X, w) becomes redundant when q > 1), in the

Then one has L) (X, ) — (L‘i(X, w NLL (X, ,u)) (\H"(X) densely (bearing
in mind that the intersection with L}OC
following sense:

Vfe (LUX, W) N L, (X, ) NHP(X),  3{fi}jen € LTH(X, p)
7.297
suchthat lim fj = f in LY(X,u) andin H?(X). ( )
J—>00

Proof We begin by making the observation that Proposition 5.6 implies
the vector space of all finite linear
L3y(X, p) = (7.298)
' combinations of (px, p, 00)-atoms on X,

as vector spaces. Here, py is the regularization of a fixed quasi-distance p € ¢
satisfying

d(1/p—1) < [log,C,]™". (7.299)

As such, it follows that LZ(X, ) € (LY(X, ) N Ly, (X, 1)) () HP(X). Moreover,
we have from Theorem 7.27 and (7.298) that

LCO,%(Xv W) = ﬂre[p,oo] H"(X)

in both the H? and L? quasi-norms.

(7.300)

Note that the membership of g to [p, c0) ensures that the L?-convergence follows
from Theorem 7.27. Consequently, the desired conclusion in (7.297) follows
from (7.300) and (7.287) in Theorem 7.37. This completes the proof of the theorem.

O



Chapter 8
Boundedness of Linear Operators Defined

on H? (X)

The main goal of this chapter is to identify criteria guaranteeing that a given
linear operator T : LY(X,u) — B; with ¢ > 1, extends as a bounded operator
T : H?(X) — B, for p as in (7.262). This is a fundamental problem that arises in
the study of integral operators, on account that H” (X) is the natural continuation of
the Lebesgue scale [7(X, u) whenp < 1.

When establishing the boundedness of linear operators on Hardy spaces, one
typically resorts to the atomic characterization of H”(X). In this regard, the task of
understanding the action of an operator on H”(X) can, in principle, be reduced to
studying the action of the said operator on individual (p, g)-atoms. For example,
if T is a Calderén-Zygmund operator in R? then it is well-known that the uniform
boundedness in 7 (RY) of T on (p, co)-atoms implies that T extends as a bounded
mapping from HP(R?) into L7 (R?) for any p € (#, 1] (see, e.g., [GCRAF8S5,
Chapter II1.7]). However, given an arbitrary linear operator, a greater degree of
care needs to be exercised in concluding boundedness on H”(X) from just uniform
boundedness on atoms. Indeed, [Bo05] contains an example of a linear functional £,
defined on the dense subspace L%(Rd) of H'(R?) which is uniformly bounded on
all (1, oo)-atoms yet cannot be extended to a bounded linear functional defined on
all of H'(RY). The construction is based on a result due to Y. Meyer in [MeTaWe85]
(see also [GCRAF85, Theorem 7.3, p.316]) which states that the quasi-norms
corresponding to finite and infinite atomic decompositions with respect to (1, 0o)-
atoms are not equivalent on L (RY).

Remarkably, S. Meda, P. S6gren, and M. Vallarino in [MeSjVa08, Corollary 3.4]
have shown that uniform boundedness on all (1, co)-atoms is sufficient enough of
a condition to extend an operator which initially maps the strictly smaller class
L3S (RY) N €°(RY), (where €°(R?) denotes the set of continuous functions on RY)
into some Banach space. Thus, while the operator £ as in [Bo05] does not have an
extension from L R%) to H'(R?), its restriction to L3S RY) N €°(RY) does. As
remarked in [MeSjVa08, p.2922], this is not in contradiction to the work of [Bo05]
as this extension will not agree with the original operator £ on all of LZj RY).
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By characterizing the structure of the dual and the completion of L3 RY),
F. Ricci and J. Verdera in [RicVerl1] managed to show that when p € (0, 1)
any linear operator 7 mapping L%(Rd) into some Banach space B such that
sup{||7al|p : aisa (p,00)-atom} < oo can be extended as a bounded operator
from HP(RY) to B. Hence, while (p, c0)-atoms present somewhat of an issue for
establishing boundedness on H” when p = 1 (within the class of operators defined
on L2 (R%)), they are satisfactory when p < 1.

Returning to the matter of boundedness on H'(R?) of linear operators, Meda,
Sogren, and Vallarino demonstrated in [MeSjVa08] that if instead of considering
operators mapping L) R?) into some Banach space Y, which are uniformly
bounded on (1, 00)-atoms, one considers operators defined on L‘C’.O(Rd) with ¢
belonging to (1, 00), then uniform boundedness in ¥ on all (1, g)-atoms ensures
that such an operator extends to H!(R?). In the same body of work, these authors
partially generalized this result by showing that if X is an unbounded space of
homogenous type and if 7 : L (X) — L'(X), ¢ € (1,00) then T extends as
an bounded operator T : H'(X) — L!(X) provided T maps all (1, g)-atoms into
uniformly bounded elements of L' (X). They remarked upon briefly (see [MeSjVa08,
Remark 3.3, p.2927]) that in the Euclidean setting, their results extend to H?(R%)
for p € (0, 1) with (p, g)-atoms, g € [1, co) but the justification for this claim was
carried out more concretely by L. Grafakos, L. Liu, and D. Yang in [GraLiuYa09iii]
in the general setting of spaces of homogeneous type where the measure satisfies a
“reverse-doubling” condition; see also [BoLiYaZh08] and [BoLiYaZh10] for similar
results pertaining to the boundedness of sublinear operators on weighted anisotropic
Hardy spaces. Moreover, the authors in [GraLiuYa09iii] also considered a larger
class of operators which take values in arbitrary quasi-Banach spaces.! In the same
context considered in [GraLiuYa009iii], D. Yang and Y. Zhou have shown by assum-
ing uniform boundedness on (p,2)-atoms, it is possible to extend quasi-Banach-
valued operators from the space of Holder continuous functions having bounded
support and which integrate to zero, to H”(X) for 1 — p > 0, small; see [YaZhOS]
and [YaZh09] for similar work done in the Euclidean setting and [ChYaZh10] for
boundedness results for sublinear operators on product Hardy spaces.

Additionally, using a different approach, K. Yabuta addressed this extension
problem in [Yab93] by showing that if an operator 7, initially defined on the set of
test functions in RY which integrate to zero, satisfies certain weak-type estimates
then T can be extended to a bounded mapping from H?(R?) into L' (R?) with
r € [1,00), or H(X) with r € [p, 1]. This result has been subsequently extended to
the setting of standard 1-Ahlfors-regular quasi-metric spaces by G. Hu, D. Yang, and
Y. Zhou in [HuYaZh09]. In this vein it should be pointed out that, while sufficient
for the job at hand (as indicated both in [Yab93] and in [HuYaZh09]) the conditions

'Meda, Ségren, and Vallarino in [MeSjVa09] established a specialized version of [GraLiuYa09iii,
Theorem 5.9, p.2282] to the effect that every linear operator T : L! (R?) — LP(RY), where
p € (0,1]and g € [1,00), p < g, extends as a bounded operator T : H?(R?) — L?(R?) provided
sup{|| Tall p ey : ais a (p, g)-atom} < oo.



8 Boundedness of Linear Operators Defined on H? (X) 355

laid out by Yabuta are not actually necessary in the context of the extension problem
to H?(X) for linear operators.

In contrast to the results mentioned above, which deal with extending operators
originally assumed to be defined on dense subspaces of H”(X), our goal here is
to study the extension of operators defined on the larger scale of spaces L?(X, ),
which take values in a very general scale of spaces generalizing the class of quasi-
Banach spaces. Since L7(X, 1) is not generally a subset of H” (X), there is the added
task of ensuring that any such “extension” coincides with the given operator on
all of L7(X, u) N HP(X). This can be a rather delicate issue and thus one needs
to be mindful of the manner through which such an extension is obtained. One
possible approach is to consider the restriction of the given operator from L7(X, )
to a dense subspace of H”(X) and extend the resulting operator by means of the
aforementioned work. However, this may not produce the desired extension of the
original operator. For example, suppose T is bounded linear operator on L7(R%)
for some ¢ € (1,00) which has the property that it maps all (1, co)-atoms into
uniformly bounded elements of some space Y. Then by [MeSjVa08, Corollary 3.4],
the restriction of T to L (R?Y) N £°(R?) has a unique extension to a bounded
operator T defined on H' (R¢). However, as seen by Bownik’s example in [Bo05],
this extension cannot generally be expected to be an extension of T since Tand T
may not agree on all (1, co)-atoms (see discussion in [MeS;jVa08, p.2922]).

Meda, S6gren, and Vallarino did show in [MeSjVa08, Proposition 4.2] that when
if T is bounded on L?(X, ;) and is uniformly bounded on all (1,2)-atoms in the
L'(X, ;) norm then the extension to H'(X) of the restriction of T to Lf’O(X, 53]
coincides with T on L?(X, 1) N H'(X), but a more general result of this nature
is desirable. Steps to address this issue have been taken by Hu, Yang, and Zhou
who considered Lebesgue space-valued operators which are uniformly bounded
on (p, oo)-atoms (see [HuYaZh09, p. 106]; for the problem of extending operators
which are bounded on L¢(IR¢) and uniformly bounded on (p, g)-atoms to bounded
mappings from H”(RY) into 17 (R?) or H?(R?), see [HaZh10] (for the case ¢ = 2)
and [Roc15] (for g € (1, 00))). From the perspective of applications it is highly
desirable to have an extension result which is not only established under minimal
assumptions the ambient but which also allows for a greater degree of flexibility in
specifying the target spaces, in which the operator takes values.

In this chapter, we will present two main results in this regard. The first is
stated in Theorem 8.10 and concerns the extension of bounded operators defined
on L(X, ) with g € [1, co) which take values in pseudo-quasi-Banach spaces (see
Definition 8.2). We show that any such operator can be extended to H”(X) if and
only if it is uniformly bounded on all (p, g)-atoms. The key ideas behind the proof
of Theorem 8.10 is the equivalence on LZ’O (X, ) of the quasi-norms corresponding
to finite and infinite atomic decompositions of (p, ¢)-atoms as well as the fact that
any element belonging to L¢(X, u) N H?(X) can be approximated by functions in
Lf_!o(X , )0) in both the L? and H? quasi-norms.
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In our second main result, we focus on operators which take values in a
very general class of function-based topological spaces. By considering a more
specialized variety of target spaces, we are able of extending operators defined on
L1(X, n) with g belonging to the larger range [p, 00), under the less demanding
requirement of uniform boundedness on (p,co)-atoms. This is done in Theo-
rem 8.16. Our strategy for establishing this result is to identify a vector space ¥
which possesses two significant qualities. Namely, that the elements of 7 have
atomic decompositions which converge in LY(X,u) for ¢ € [p,00), and that
functions in L9(X, ) N HP(X) can be approximated by the elements in ¥ in both
the L? and H? quasi-norms. We stress that our two principal boundedness results are
new even when specialized to the classical Euclidean setting (R4, £%).

The layout of this chapter is as follows. The main focus of Sect. 8.1 is to
introduce classes of topological vector spaces which generalize many spaces that
arise naturally in analysis. Some examples include Lebesgue-like spaces, Lorentz
spaces, Orlicz spaces, mixed-normed spaces, tent spaces, and discrete Besov and
Triebel-Lizorkin spaces. These spaces will play the role of the target spaces in
our extension results. We will then establish the principal extension results in in
Sect. 8.2 which generalizes work in [MeSjVa08, Proposition 4.2], [HuYaZh09], and
[HaZh10]. We also discuss several consequences as well as applications to problems
in Harmonic Analysis and Partial Differential Equations including the treatment of
the Dirichlet problem for elliptic systems in the upper-half space with boundary data
from the Hardy space H?(R%™").

Finally, in Sect. 8.3 we will make use of Theorems 8.10 and 8.16 to study
boundedness criteria for an optimal class of Calderén-Zygmund-type operators on
spaces of homogeneous type. We also include a 7(1) theorem for this optimal class
of operators, extending the work of [DaJoSe85, p. 2], [Chr90i], and [DeHa09].

8.1 General Classes of Topological Vector Spaces

The main goal of this section is to explore certain categories of topological vector
spaces® which will play a significant role in the formulation of the main results in
Sect. 8.2. To facilitate the discussion, we begin with recalling a definition that can be
found in [MiMiMiMo13, pp.296-297] (see also [MiMiMiZil2]), which describes
a general recipe for constructing topologies by means of an arbitrary function on a
group and clarifies the notion of completeness with respect to such a topology.

Definition 8.1 Let (X, +) be a group and denote by O the neutral element in X and
by — f the inverse of f € X. In this context, for a given function ¥ : X — [0, o]

Recall that we understand by a topological vector space, a pair (2, ), where 2  is a vector
space over C and 7 is a topology on 2" such that the vector space operations of addition and
scalar multiplication are continuous with respect to t. We stress that under these assumptions, the
topological space (2", r) may not be Hausdorff.
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with the property that ¥(0) = 0, define the topology 7y induced by ¥ on X by
demanding that © C X is open in ty if and only if for each f € O there exists
r € (0, co) such that By (f,r) € O, where

By(fir)={geX: ¥(f—g <r} (8.1)

In such a setting, call a sequence { f,}neny S X Cauchy provided for every finite
& > 0 there exists N = N(¢) € N such that ¥ (f, — fin) < &€ whenever n,m € N are
such that n,m > N. Also, call (X, ty) complete if any Cauchy sequence in X is
convergent in 7y to some element in X.

The following definition introduces the first main variety of topological vector
spaces that we wish to discuss.

Definition 8.2 Suppose X is a vector space over C.

1. Call a function ||-|| : X — [0, 00) a 8-pseudo-quasi-norm (or simply pseudo-
quasi-norm) on X provided the following three conditions hold:

(i) (nondegeneracy) ||x|| = Oifandonlyifx =0 Vx e X;
(i1) (quasi-subadditivity) there exists a constant Cy € [1, co) for which

[x+yll = Comax{|x[. [lyl},  VxyeX. (82)
(iii) (pseudo-homogeneity) there exist C; € (0, 00) and 6 € R such that
IAx]l < Ci|Allxll.  YxeX, VYAeC\{o}. (8.3)

2. The pair (X, || - ||) (which shall be referred to as a pseudo-quasi-normed
space) is said to be a pseudo-quasi-Banach space provided (X, 7.) is
complete in the sense of Definition 8.1, where 7). is the topology induced by || - ||
on X.

There are many classes of topological vector spaces which are of a basic
importance in Analysis that are not Banach but merely quasi-Banach. Indeed, take
for example the following familiar scales of spaces: sequence spaces, Lebesgue
spaces, weak-Lebesgue spaces, Lorentz spaces, Hardy spaces, weak-Hardy spaces,
Besov spaces, Triebel-Lizorkin spaces, as well as their weighted versions (just to
name a few). The class of pseudo-quasi-Banach spaces, given as in Definition 8.2,
further generalizes the notion of a quasi-Banach space (hence, the notion of genuine
Banach space) by allowing for the relaxation of the homogeneity condition in the
manner described in (8.3).

A natural context in which the pseudo-homogeneity condition (8.3) from Defi-
nition 8.2 occurs is as follows. Let (X, || - ||) be a quasi-normed vector space and
assume that || - |" : X — [0,00) is a function with the property that there exist
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constants ¢y, ¢; € (0, co) such that
collxll < IIxlI" < erllx]l, VxeX, (8.4)

ie, || |I" = |||l (see (2.8)). Then | - ||’ is nondegenerate, in the sense described in
part / (i) in Definition 8.2, and satisfies the quasi-subadditivity condition displayed
in (8.2). Moreover, we have

1Ax])" < erllAx] = el Allxll < et el Al VxeX, VieC. (85)

Thus, (8.3) holds for | - || with C; := cj'c; and 6 := 1. Therefore, while in
general || - ||’ may fail to be itself a quasi-norm (since it may lack homogeneity), it is
a l-pseudo-quasi-norm. Hence, the qualities of a pseudo-quasi-norm are preserved
under pointwise equivalences. Another situation when (8.3) occurs naturally is when
considering a power-rescaling of a given quasi-norm.

The following result is an analogous version of the metrization theorem (for
quasi-distances) for the class of pseudo-quasi-norms which was presented in
[MiMiMiMo13, Theorem 3.39, p. 130]. It may be regarded as a generalization of
the Aoki-Rolewicz theorem (see [Ao42, Rol57] for the original references, and
[KaPeRo84] for an excellent, timely exposition).

Theorem 8.3 Let X be a vector space over C and assume that || - || : X — [0, 00)
is a function satisfying the following properties:

(1) there exists a constant Cy € [1, 00) for which
Ix+yll < Comax{flx[l. [y},  VxyeX: (8.6)
(2) there exist Cy € (0,00) and 0 € R such that
IAxl < QAP Xl YxeX. ¥YAeC\{0} 8.7)
Set
o= [logzco]_1 € (0, 00], (8.8)
and, for each x € X, define

1

N i
Ixll. == sup inf{Ml_e(Z ||Axi||a)":NeN, and

reC\{0} P

N
X1,...,xy € X are such that inzx}, (8.9)

i=1
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if « < 00 and, corresponding to the case when o = oo,

lx|l, := sup inf]|A|™% max |[Ax;]|: N € N, and
AeC\{0} 1=i=N

N
X1,...,xy € X are such that Zx,-:x}, (8.10)

i=1
Then | - ||« : X — [0, 00) satisfies:

Co2llxll < Ixll < Cillx|| forall x € X, (8.11)

Inxll. = [n°xll. forallx € X and all n € C \ {0}, (8.12)
|| —|—y||f < ||x||f + ||y||f forall x,y € X and each B € (0, «] finite, (8.13)

Ix+yll. = Comax {flx]l.. Iyll.}, VxyeX (8.14)

Moreover, if in addition to (8.6)—(8.7), the function | - || has the property that
llx|]| = 0 if and only if x = O for every x € X, i.e., if || - || is a pseudo-quasi-norm on
X, then the function

d:XxX—[0,00), givenby d(x,y):=|x—y|?, VuxyeX, (8.15)

is a genuine distance on X such that tq = t).|, = 1)) In particular, the function
|- I is continuous on (X, vj.). Hence, the balls with respect to || - || (see (8.1)) are
open in T|.|.

We discuss next a couple of important consequences of Theorem 8.3. Suppose
(X, 7)) is a pseudo-quasi-normed space. By Theorem 8.3, the balls with respect
to function || - |, (defined as in (8.9)-(8.10)) are open in 7. As such, by
using (8.12), (8.14), as well as (8.11) in conjunction with the nondegeneracy of
| - II, a straightforward will show that the pair (X, 7)) is a Hausdorff topological
vector space.

Given any topological vector space (X, tx), recall that a subset £ C X is called
topologically bounded provided E is absorbed by each neighborhood of
zero (not to be confused with “geometrically bounded”, in the sense of having a
finite diameter). Specifically, E is topologically bounded if and only if for every
neighborhood U of the zero vector there exists a real number A, > 0 such that
E C AU for every scalar A > A,. It is well-known that, in general, topologically
bounded sets and geometrically bounded ones need not be the same. However, by
making use of the properties of the function || - ||+, given as in Theorem 8.3, one can
show that these two notions of boundedness coincide in the context of pseudo-quasi-
normed spaces. The importance of this second observation will become apparent in
Sect. 8.2.1. This concludes the preliminary discussion regarding the first class of
topological vector spaces we wish to consider.
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We now turn our attention to examining a very general class of function spaces
which were originally introduced by the authors in [MiMiMiMol3] (see also
[MiMiMiZil2]). Following the work in [MiMiMiMo13], we begin with a definition
which discusses a severely weakened notion of measure.

Definition 8.4 Given a measurable space (X, 91), call a function u : 9T — [0, o]
a feeble measure provided that the collection of its null-sets defined naturally
as A, = {A € M : u(A) = 0} contains @, is closed under countable union, and
satisfies A € 4], whenever A € 91 and there exists B € .4, such that A C B.

Let (X,907) be a measurable space and let y be a feeble measure on 91. As
in the case of genuine measures, we shall say that a property is valid p-almost
everywhere provided the property in question is valid with the possible exception
of a set in .4},. Identifying functions coinciding pointwise jp-almost everywhere
on X then becomes an equivalence relation, and we shall denote by M (X, 901, )
the collection of all equivalence classes® of scalar-valued, u-measurable functions
defined on X. Finally, we set

M (Z, 9, p) == {f e M(E, M, 1) : f >0 p-almost everywhere on Z}.
(8.16)

The following theorem, which originally appears in [MiMiMill, Theorem 6.3,
p-297] (see also [MiMiMiZil2, Theorem 1.4]), presents an abstract recipe for
constructing a variety of function spaces that arise naturally in Analysis.

Theorem 8.5 Assume that (X,9M) is a measurable space and that | is a feeble
measure on M. Suppose that the function

[ -1 : M4 (2,9, 1) — [0, 0], (8.17)

satisfies the following properties:

(1) (Non-degeneracy) there holds
[fIl=0 <« f=0 - VfeMi(Z.Ip: (8.18)
(2) (Quasi-subadditivity) there exists a constant Cy € [1, 00) with the property that

If + gl = Comax{[| /. lgll}.  V/geMy(Z.Mu). (8.19)

3Even though we shall work with equivalence classes of functions, we shall follow the common
practice of ignoring this aspect in the choice of our notation.
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We denote by C).| € [1, 00) the optimal constant in (8.19). That is,

I/ + el

_Nr+el 8.20
max{|| I, lgll} (820

C||.|| ‘= Ssup

where the supremum is taken over all f,g € My (X, M, u), not both equal to
0 for p-almost every point in X.
(3) (Pseudo-homogeneity) There exists a function ¢ : (0,00) — (0, 00) satisfying

IAf1 < WIS, VfeMi(Z,Mup), Yie(0,00), (821)
and such that*

sup[p(Mp(A )] <oo and  lim @(1) = 0; (8.22)
A>0 A—0t

(4) (Quasi-monotonicity) there exists a constant C, € [1,00) such that for any
two functions f,g € M4(Z,IM, ) satisfying [ < g pointwise p-almost
everywhere on X there holds || || < Cillgll;

(5) (Weak Fatou property) for every sequence { fi}iexn € M4 (2,9, 1), satisfying
fi < fix+1 pointwise p-almost everywhere on X for each i € N as well as
sup || fill < oo, one has H supﬁH < o0.
ieN ieN

Finally, define

L= LEMp )= e MEMp: | fle:= 1,11 < oo}
(8.23)

Then functions in L are finite ju-almost everywhere on X and, with the topology
7|, considered in the sense of Definition 8.1 (relative to the additive group
structure on L),

(E, T L) is a Hausdorff, complete, metrizable, topological vector space.
(8.24)

Moreover, any given sequence { fj}jen in L which is convergent to some function
f € L in the topology )., has a subsequence which converges to f pointwise
u-almost everywhere on X.

4 Any function of the form @(4) := A?, with p € (0, 00) fixed, satisfies (8.22). Such an example
arises naturally if, e.g., ut is a measure and || f || := /5 f? dpu for each f € M4 (Z, M, 1) (note
that || - || satisfies all hypotheses of Theorem 8.5).
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Finally, the weak Fatou property implies a quantitative version of itself. More
precisely,

3C € (0,00) suchthat V{fi}iexn € My(Z, D, 1)
—> [timinf £i|| < Climinf | £ (8.25)
—>00 —>00

Before continuing, we make the following convention.

Convention 8.6 In the context of Theorem 8.5, if ¢ : (0,00) — (0,00)
satisfies (8.21) and, in place of (8.22), we impose the stronger condition

3C,0 € (0,00) suchthat @A) <CA? VA e(0,00), (8.26)

then we will denote by Lg(X,9, u, || - ||) (or simply Ly if unambiguous) the
vector space constructed according to the recipe in (8.23). This is done primarily
to emphasize the parameter 6 which plays a significant role in this context.

Note that in light of (8.24) in Theorem 8.5, the vector spaces Ly (2,9, w, || - 1),
(constructed as in (8.23)), where the function ¢ quantifying the homogeneity of | - ||
satisfies the stronger condition (8.26) in place of (8.22), constitute a subclass of the
general spaces £ which are pseudo-quasi-Banach, in sense of Definition 8.2.

At this stage in the discussion, it is instructive to illustrate the scope of
Theorem 8.5 and the class of spaces £ by considering a multitude of examples
of interest. For a more systematic exposition regarding the following examples see
[MiMiMiMol3, p.300] and [MiMiMiZil2].

Example 1 Abstract Lebesgue spaces LP(X,9MM,n), 0 < p < oo, associated
with a measure space (2,9, u). This is, of course, a toy-case and the goal is to
illustrate the role and necessity of the assumptions we have made in our earlier

1
theorems. Here, for each [ € M (2,90, u), we take || f| = (f): 1P du) ! if

p € (0,00) and, corresponding to p = oo, || f|| := ||.f|lzoe(z,)- Then, for each
fig € My (Z, 0, ) and p € (0, 0],

Lf + gl < (LA I+ gl < 2¢, max{[| £1I. g1} (8.27)

where ¢, 1= 2m/P=10} ¢ [1 00), which shows that the quasi-norm condi-
tion (8.6) is satisfied. In particular, we have in this case, C. in (8.20), and € in (8.26)
satisfy

1< Cpy <2, =2mU/P and 9 = 1. (8.28)
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Moreover, for each index p € (0, c0], the classical Fatou Lemma (or, rather, the
Lebesgue’s Monotone Convergence Theorem) gives that®

Jsup | = sup 1 £ (8.29)
ieN ieN

whenever the functions ( f;)iey C M4 (2,9M, u) satisfy f; < fiy1 pointwise -
almost everywhere on X for each i € N. The remaining properties in the statement
of Theorem 8.5 are trivially satisfied.

Example 2 Generalized Lebesgue spaces L'"(X,M, w), associated with an arbi-
trary measure space (X,9,u). Let n : R — [0,00) be an even, lower-
semicontinuous function which vanishes at, and only at, the origin. In addition,
assume there exist co, ¢; € [1, 00) and p € (0, co) with the property that

n(t1) < con(ty), Vt,t € [0,00) suchthat #; <1, (8.30)

n(st) < c1s°n(1), Vsel[0,00) and V¢ € (0,00). (8.31)
Define || - || : M4+ (2,9, u) — [0, 0o] by setting

1A= /Xﬂ(f(X))dM(X), Ve M(Z.0M p), (8.32)

and, consistent with (8.23), consider
LS. M, pu) == {f € MM, p): ||| f]Il < oo} (8.33)

Of course, for each fixed p € (0,00), the function n(f) := |[t|’ satisfies all
conditions stipulated above and, corresponding to this choice of 6, the space
L"(X,9, ) coincides, as a topological vector space, with the classical Lebesgue
space LP (3,9, u) (thus justifying the terminology adopted here). From (8.30)—
(8.31) we have that C)j in (8.20), and 0 in (8.26) satisfy

1 <Cpy <cocr2?™ and 6 =p. (8.34)

Example 3 Variable exponent Lebesgue spaces [P0 (X, 9, i) associated with a
measure space (X,9M, ). Letp : ¥ — (0, 00) be a measurable function,® called a
variable exponent, with the property that

pti=esssupp <oo and p = ess-infp > 0. (8.35)

STn fact, (8.29) holds with equality, as the observant reader has undoubtedly noted.

STypically, in the literature it is assumed that p > 1 pointwise j-almost everywhere on X but such
a restriction is artificial for us here.



364 8 Boundedness of Linear Operators Defined on H? (X)

Define the Luxemburg “norm” || - || = | - [| ;o) (o ) DY setting

If1:=inf{r>o0: /E (/MY dpw =1} VS e MM ),
(8.36)

with the convention that inf@d := oo. The variable exponent Lebesgue space
LPO(Z,9M, ) is then constructed as in (8.23) for the choice of | - || as above. In this
case, C|.| in (8.20), and 6 in (8.26) satisfy 1 < Cj) < Cp and 0 = 1, where

+.3

I+ i -
Co = ’ (8.37)

2 it pm>1.

Example 4 The mixed-exponent spaces LY, with P = (p1,...,ps) € (0,00]", of
Benedek-Panzone. Let (2,9, u;), 1 < i < n, be measure spaces, set X := X X
<X X, M= M Q- - @M, and define the product measure @ := Q-+ -Q L, on
3. Next, given P = (p1,...,pn) € (0, 00]", consider ||-|| : M4+ (Z, 90, u) — [0, o]
defined for each f € M4 (X, 9, n) according to the formula

1A= (/}; (/}; (/; LG X)) d,un(xn))pnil/pn ”‘)171/[72 dul(xl))l/m,

(8.38)
understood with natural alterations when p; = oo for some i € {1,...,n}. In this
case, C)|. in (8.20), and 0 in (8.26) satisfy

1<Cpy < 2(]‘[%) and 6 =1, (8.39)

i=1

where, as in Example 1, ¢, := 2™!/7i=19 foreach i € {1,...,n}.

Example 5 Variable mixed-exponent spaces L), with P(-) = (p1(:),...,pa(*),
n € N. Let (3;,9;, u;), 1 < i < n, be measure spaces, set X 1= X X -+- X X,
M:= M @+ ® M,, and define the product measure L := p; ® --+ @ [, On
3. In this setting, assume that for each i € {1,...,n} a 9%;-measurable function
pi - X; — (0, 00) has been given such that

pi+ i=ess-supp; < oo and p; :=ess-infp; > 0. (8.40)
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Consider o : M (2,0, u) — [0,00] defined for each f € M4 (XZ,9M, )
according to the formula

n—1(¥n—1) p1(x1)
o= [ ([ ([ Semyr e o)™ o,
P} P33 Zn
(8.41)

and define the Luxemburg “norm” || - || = || - || )z o,y DY setting
IfI:=inf{A >0: 0(f/A) <1},  VfeM(Z,Mup). (842

Then the variable exponent mixed-norm space L") (2, 0, 1) is constructed for this
choice of || - || as in (8.23).

Example 6 Lorentz spaces [741(Z,9M, 1), 0 < p < 00, 0 < g < o0, associated
with a measure space (X,90%, ). Recall that if 0 < p < coand 0 < g < o0
then the Lorentz quasi-norm, denoted || - || = || - ||zre(z.am ), is defined for each
f € M+(E,9}t, H) by

Lf] = (fooo Mu(tee 20 f09 > a)"" d*_k)l/q’ o (8.43)
supyo[Au (fre =1 £ > 2", if ¢ = oo,

The Lorentz space L4(%, 90, n) is defined as in (8.23) when || - || is as in (8.43).

Let us also note here that similar considerations apply to scale of Lorentz-Orlicz
spaces (cf. [Ka90, MS95, Tor76]), as well as the so-called Lorentz-Sharpley spaces.
We omit the details.

Example 7 Orlicz spaces Lg(X,M, 1), associated with a measure space
(2,91, u). Consider an even, lower-semicontinuous function § : R — [0, 0o]
which is not identically zero. In addition, assume that 6 is nondecreasing on [0, c0)
and that there exist ¢ € [1, 00) and p € (0, co) with the property that

0(st) < csPO(r), Vsel0,1], Ve (0,00). (8.44)
Parenthetically we note that any Young function satisfies the above conditions. Let
us also note that if z, € (0, 00) is such that 8(z,) > 0, then ¢~ 's™70(t,) < 0(t,/s)

for each s € (0, 1) which, in particular, implies that

lim 6(¢) = oo. (8.45)
—>00
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In this setting, introduce the Luxemburg “norm” of any f € M (X2,9M, u) by
setting

11 = inf{a >0 /):Q(f(x)/a)d,u(x) < 1} € [0, 0], (8.46)

with the convention that inf@ := oo. Then the Orlicz space Lo(X,9, p) is
defined as

Ly(Z, 0, p) = {f € M(Z, 9, ) ||f]] < oo} (8.47)
In this case, Cy in (8.19) and 6 in (8.26) are
Co=2c""€[l,00) and 6 =1. (8.48)

Example 8 The homogeneous Triebel-Lizorkin sequence spaces of Frazier-Jawerth

TA(R™), with 0 < p,q < 0o, @ € R. Denote by Q, the standard family of dyadic
cubes in R”, ie., Q, = {2_j([0, 17" + k) 1 jeZ, ke Z"}. For each Q € Q,,
we shall abbreviate |Q| := £"(Q). Following [FraJa90], we may now introduce the
homogeneous Triebel-Lizorkin scale of sequence spaces by defining f/*?(IR"), for
aeR,0<p<ooand0 < g < oo, as the collection of all sequences s = {sgp}peco,
with elements from R such that

Il zra gy == | 11 ]| < o0, (8.49)

where |s| 1= {|sg|}oeo, and, for each sequence s = {sp}peco, of numbers from
[0, o0], we have set

Ish = | (3 (12 ¥5010)")’

, if 0<p<oo, 0<g=<oo,

LP(Rn)
0€Q,
(8.50)
and, corresponding to the case when p = oo and 0 < g < oo,
1
1 1 !
[[s]| :== sup ﬁ/p Z (101727 wsplp())dL"(x) | . (8.5D)

PeQn 0€9Q,:0cP

Of course, similar considerations apply to the inhomogeneous Triebel-Lizorkin
sequence spaces fi 7(R") defined in [FraJa90, §12]. Moreover, results for the
discrete Triebel-Lizorkin spaces directly translate into analogous results for the
continuous Triebel-Lizorkin scale, F;?(R"), via wavelet transforms (more details
on the latter issue may be found in [Trieb83, Trieb92, RuSi96, KaMaMi07]).
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Example 9 The homogeneous Besov sequence spaces of Frazier-Jawerth by (R"),
0 < p,q < oo, a € R. Recall that Q, stands for the standard family of dyadic cubes
in R", and denote by £(Q) the side-length of Q € Q,,. Then, following [FraJa85], the
homogeneous Besov sequence space Bﬁ’q(R”), where 0 < p,g < oo anda € R, is
defined as the collection of all numerical sequences s = {sg}geg, satisfying (with
natural interpretations when p = 0o, or ¢ = 00)

1/q
o q/p
lsllips ) = Z( 3 Lo 1/2+1/f’|sQ|]P) <o (852)
JEZ  QEQ,
HQ)=2"

Example 10 Function spaces on spaces of homogeneous type (in the sense of
Sect. 7.1). A variety of function spaces, naturally arising in the context of spaces
of homogeneous type, are amenable to the scope of the results in this work. For
example, this is the case with the discrete Triebel-Lizorkin and Besov spaces on
spaces of homogeneous type, as defined in [DeHa09, HaMuYa08]. Another, even
yet more tantalizing example of this fact is the class of mixed-normed spaces L#9
from [MiMiMil 1] defined in the setting of spaces of homogeneous type (cf. also
[HoMiMiMo13] and [BriMiMiMil2]). As it turns out, these spaces are the natural
counterpart to the tent spaces in RZ_‘H introduced by R.R. Coifman, Y. Meyer,
and E.M. Stein in [CoMeSt85]. Moreover, the development of these mixed-
normed spaces in such a general environment was the correct viewpoint from the
perspective of applications. For instance, the spaces L?? provide a natural setting
for establishing certain L” square function estimates (cf., e.g., [HoMiMiMo13]).

We now take a moment to explore further, the spaces L»9  n order to do so,
will need a few preliminary definitions. Recall from (2.12) in Sect. 2.1 that given a
quasi-metric space (X, p) and a nonempty set X C X, we define

dist;(x, X) := inf {p(x,y) : y € X}, VxeX. (8.53)

As is well-known, if p is actually a distance, then dist;(-, X) : X —> [0,00) is a
Lipschitz function (with Lipschitz constant < 1). In the general case when p is
merely a quasi-distance on X, then the function dist;(-,X) may exhibit very poor
regularity properties. For instance, this function may even fail to be continuous.
The issue which arises is whether there exists a nonnegative function on X which
is pointwise equivalent to dist;(-, X) and which exhibits better regularity properties.
Questions of this nature have been addressed in the context of R” (the reader is
referred to, e.g., [St70, Theorem 2, p. 171] for an excellent exposition). Here we state
a result recently obtained in [MiMiMiMo13] which addresses to what the extent a
result of this flavor is valid in the setting of general quasi-metric spaces. Specifically,
from [MiMiMiMo13, Theorem 4.17, p. 175] we have:
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Theorem 8.7 Suppose that (X, p) is a quasi-metric space, and that X is a nonempty

subset of X. Then the function §x = dist(z), (. X) : X — [0, 00) has the property
that there are two constants cy, c; € (0, 00), which depend only on C 5, such that

co distz(x, X) < 8x(x) < c1 distz(x, X), VxeX. (8.54)

Furthermore, if B € R is such that 0 < B < [log,C5]™', then S8x satisfies the
following properties:

(1) if X is a closed, proper subset of (X, T5) then 8x € ‘to”lgc(f( \ X,p) in the
quantitative sense that for every ¢ € (0, CEI) there exists C € (0,00),
depending only on C;, B and &, such that

W DXy € B;,(Z,Sdist;,(z,X)), x#Ey

< C[distz(z. X)]' ", forall zeX\X;
(8.55)

(2) if 0 < B =< 1 then there exists C € (0,00) which depends only on C; and f3
such that

|8x (x) — 8x ()

AP € (o) + max dists (). dis;0.003) | 8.56)

forallx,y € X with x # y.

Strictly speaking, Theorem 8.7 was prove in [MiMiMiMo13] for symmetric
quasi-distances, however this result can be extended to apply to quasi-distances
which are not necessarily symmetric by simply observing that (in the setting of
Theorem 8.7)

p,0€QX) with o = distz(-,X) ~ disty(-, X). (8.57)

In particular, dist; (-, X) ~ dist(),,, (-, X), where (p)sym = p is a symmetric quasi-
distance on X.

It follows from Theorem 8.7 that 8y : (X, 75) — [0,00) is continuous. In
particular, if j is a Borel measure on (X, 75) then

8x : X —> [0,00) is ji-measurable. (8.58)

We now take a moment to recall a few notational conventions made earlier in this
monograph. Suppose (X, q) is quasi-metric space and fix a quasi-distance p € q.
Then for any nonempty subset X € X, we will denote by p := plx, the function
defined on X x X obtained by restricting the function p to the set X x X. It is clear that
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that the function p is a quasi-distance on X. As such, we can consider the canonical
topology induced by the quasi-distance p on X, which we will denote by 7,. With
these conventions in mind, we now state the next result of this section.

_ Moving on, let (X, p) be a quasi-metric space, X a nonempty proper subset of

X, and [t a Borel measure on (5( , 75). Next, let k € (0, 0o) be arbitrary, fixed, and
consider the nontangential approach regions

') :=Telx):= {y eX\X: (Ps(x,y) < (1 +k) SX(y)}, VxeX.
(8.59)

Occasionally, we shall refer to « as the aperture of the nontangential approach
region ', (x). Since both (p)#(-, ) and éx(-) are continuous (cf. Theorems 2.1 and
8.7) it follows that T (x) is an open subset of (X, 75), for each x € X. Furthermore,
it may be readily verified that

X\X = UFK(x), Yk € (0, 00), (8.60)

x€X

where X denotes the closure of X in the topology 5.

For each integrability exponent ¢ € (0,00) and each constant k € (0, c0),
define the L9-based Lusin operator, or area operator, &, for a given
fi-measurable function u : X \ X — R := [—o0, 00] by

q
9

(= ( [ § )’ Vxex, 5.61)

To proceed, fix a Borel measure p on (X, 7). Then according to [HoMiMiMol13],
we have

for any p-measurable function u : X \ X - R, (8.62)
the mapping 7, u : X — [0, oo] is well-defined and p-measurable. .

Consequently, given k € (0, 00) and a pair of integrability indices p, ¢, following
[MiMiMil 1] and [BriMiMiMil2] we may now introduce the mixed-normed
space of type (p, ¢), denoted by L9 (X, X, ji, ju; k), or L?9 (X, X) for short, in
a meaningful manner as follows. If g € (0, 00) and p € (0, co] we set

LPD(X, X, i, i k) = {u :X\ X - R: u ji-measurable and Ay € LP(X, ,u)},
(8.63)
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equipped with the quasi-norm

(R oo 7] a) " it p < oo,

B

lull oo @ x ey = 1 g uttllroen =
if p = o0.
(8.64)

"M”LC’O(X.M)

Also, corresponding to p € (0, 00) and ¢ = oo, we set
LPO XX, i, i) = {u X\X > R [Nl < oo}, (8.65)

where A/ := N is the nontangential maximal operator defined by

Nu)(x) := Wew)(x) := sup |u(y)], VxeX, (8.66)
YET, (x)
and equip this space with the quasi-norm ”u”L(ﬂ-OO)()?,X,;I,;L;K) = \Neullp -

Finally, corresponding to p = g = 00, set
LN (X, X, i, ui k) := L¥(X \ X, [1). (8.67)

It is instructive to note that the mixed-normed spaces defined above correspond
to the tent spaces 77 in R‘f’l, introduced by Coifman, Meyer, and Stein in
[CoMeSt85]. More specifically, we have

Tg — [PD (Rd+1’ aRi'H’ lRiJrlL:dx—_:?, dx) for p,q € (0,0). (8.68)
Thus, results for mixed-normed spaces imply results for classical tent spaces.

We claim that in the above context, the function ||| ¢ % x i i) (Playing the role
of || - || in Theorem 8.5) satisfies the hypotheses in the statement of Theorem 8.5 for
every p,q € (0,00]. That is to say, the mixed-normed spaces L9 are a particular
case of the more general topological vector spaces constructed in (8.23). Indeed, if
p = q = oo then this claim is an immediate consequence of Example 1 and (8.67).
If ¢ < oo then observe that repeated applications of (8.27) yield for every u-
measurable functions u, v : X \ X — [0, oo] we have

flu + U”L(p.q)()?,x) = chcp max {”””L(p.q)()},x)s ”U”L(p-q)()?,x)} (8.69)

— pl+max{1/g—1,034+max{1/p—1,0} {”””L(P»q)()?,X)v ”U”L(P-q)(XX)}’
hence (8.19) is satisfied.

Finally, when p € (0,00) and ¢ = oo then making use of (8.27) and the fact
that V, is sub-additive implies that (8.19) holds in this case as well. Altogether the
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above analysis gives that || - || .o % x i) Satisfies the condition listed in (8.19) and
moreover that

<C < 2l+max{l/q—l,0}+maX{1/P_l’0} (8.70)
=Sl g x) = ’

1

where C”'”Lmqnxm is as in (8.20). It is also straightforward to see that the function ¢
appearing in (8.21) satisfies the stronger condition listed in (8.26) of Convention 8.6
with 6 = 1. Finally, with || - || L0a) (%X jiuz D place of | - ||, the strong Fatou
property (8.29) holds (applying the Lebesgue’s Monotone Convergence Theorem
twice in order to interchange the supremum with integrals), and the remaining
hypotheses in the statement of Theorem 8.5 are trivially satisfied. As a corollary
of Theorem 8.5, L?9 is a complete quasi-metric space (hence, quasi-Banach) with
the property that any convergent sequence from this space has a subsequence which
converges (to its limit in L¥?) in a pointwise j-almost everywhere fashion.

8.2 Boundedness Criteria and Applications

The main goal of this section is to establish a very general criteria that guarantee
a linear operator, originally defined on some L?, which is uniformly bounded on
all HP-atoms extends as a bounded operator on H”(X). We present two main
results of this nature. The first result takes into consideration operators that are
defined on L(X, ) with ¢ € (1/p,00) and take values in a very general class
of topological vector spaces which contains the category of quasi-Banach spaces.
In the second result, (which may be considered as the principal theorem in this
chapter) we extend operators that are defined on L?(X, u) for every ¢ € [p, c0).
This is accomplished by focusing on operators which take values in vector spaces
consisting of functions. We will then conclude this section by presenting several
applications of the aforementioned results. Of particular interest is that we establish
that the Dirichlet problem for elliptic systems in the upper-half space with datum in
the Hardy space H” (R“~") has a solution.

8.2.1 Main Results

In this subsection we will discuss two distinct, yet closely related theorems which
establish general criteria guaranteeing boundedness on H”(X) of linear operators.
The reader is referred to Sect. 8.1 for certain requisite definitions.

We begin with a few remarks. For k = 1,2, suppose (X, 7x) is a topological
vector space. Recall that a linear operator T : X; — X, is said to be bounded
provided 7" maps topologically bounded subsets of X; into topologically bounded
subsets of X». In particular, if for k = 1,2, the function || - ||x : Xx — [0,00) is a
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Or-pseudo-quasi-norm on X; (for some ; € (0, c0)) such that 7|, = Tk, then by
the homogeneity conditions for | - || as well as the coincidence between notions of
topologically and geometrically bounded sets one has

the linear operator T : X; — X is bounded if and only if for some

62/61 (8.71)

C € (0,00) thereholds |Tf [, =<C| /]|

forevery f € X;.
A general property of pseudo-quasi-normed spaces which will be of importance
in presenting the subsequent work is as follows:

if (X, || - ||) is a pseudo-quasi-normed vector space then there exists C € [1, 00)

such that if lim;_, o X; = x4 in X, in the topology induced on X by || - ||, then

C x|l < liminf ||x;]| < limsup [|x;|| < Cllx«]].
j—>00 j—>o0 )

(8.72)

The justification of (8.72) makes use of the continuity of the function || - ||, given
as in Theorem 8.3, as well as (8.11).
We wrap up this preparatory discussion with the following definition.

Definition 8.8 Two given topological vector spaces, (X, t), k = 1,2 are said to
be weakly compatible provided

(i) there exists a topological vector space (2, t) which has the property that every
convergent sequence of points in .2~ has a unique limit; and

(ii) for k = 1,2 there exists an injective linear mapping t; : (Xi, %) — (£, 1)
satisfying

\4 {xj}jeN C X with

Jj—>oo

lim x; = x in X = lim 4(x) = ux) in 2.  (8.73)
J—>00
for some x € X

Comment 8.9 In regards to Definition 8.8:

1. Recall that the class of topological vector spaces considered in this work are not
necessarily Hausdorff. Thus the additional demands on (2, t) in part (i) are not
redundant.

2. The mapping t; : (Xi, 7u) — (£, t) in part (ii) may not be continuous given
the minimal assumptions on the topological spaces (Xi, 7). Conversely, if ¢ is
continuous then it necessarily satisfies (8.73).

3. In light of the injectivity of the mapping ¢; in part (ii), we will often identify
x = (x) € 2 whenever x € X;. [ |
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The stage has now been set to present the first main boundedness result of this
section.

Theorem 8.10 Ler (X, q) be a quasi-metric space and assume that |4 is a Borel-
semiregular measure on X having the property that for some d € (0, 00) there exist
a quasi-distance p, € q, and two constants ¢y, c; € (0,00) with ¢y < 1 < ¢, such
that the following Ahlfors-regularity condition holds:

all p,-balls are p-measurable, and ,u(Bpg (x, r)) ~

(8.74)
uniformly, for every x € X and every finite r € (0, diam,,, (X)]
Consider exponents
c 41| ad qeftoo). g> (8.75)
_—, an ,00), , .
PE\d+indx.q) I ~r

and fix a topological vector space (X1, T1) along with a pseudo-quasi-Banach space
(X2, || - l2) such that (X1, T1) and (Xa, t).,) are weakly compatible (in the sense of
Definition 8.8). Denote by 0 € (0, 00) the parameter quantifying the homogeneity
of || - |l2 and suppose

ILf + gl
0 > p log sup ————— |. (8.76)
2 ( f.8€Xa max{]| /|2, [lgll2}
not both zero
Finally, consider a bounded linear operator
T: LY (X, p) — (X1, 71) (8.77)

having the property that the restriction T‘ 19 : LZ’O(X L) — X5 is a well-

o(Xle)
defined linear operator satisfying

3C € (0,00) suchthat |Ta|, < C forevery (p,,p,q)-atoma. (8.78)
Then there exists a unique linear and bounded operator
T:H(X) — (Xa. | - [l2). (8.79)

which extends T in the following sense. If (2, ) is the ambient topological vector
space as in part 3 of Definition 8.2 then

Tf=Tf in %2, foreach f € Li(X, )N H(X). (8.80)
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Proof With LZ’O(X , ) as in (5.22), we will first establish that for some C € (0, co)
there holds

ITfl2 < Clflopp). Y f €LLyX. . (8.81)

As before, the set LZ’O (X, ) appearing in (8.81) is to be understood as a subspace of
the space of distributions on X in the sense of (4.109). Moreover, we will continue
to employ the notational convention of not distinguishing between a given function
fe LZO (X, ) and its corresponding distribution.

Fix f € LZ’O(X , ) and observe by Proposition 5.6 we have

the vector space of all finite linear
Ly (X. p) = (8.82)
’ combinations of (p,, p, g)-atoms on X,

as vector spaces. Thus the space Lf_!o(X ,u) € L1(X, u) N HP(X) can be endowed
with the natural quasi-norm

n 1/p n
| fllo := inf { (Z |,\j|1’) Cf = Z)\jaj pointwise on X for some n € N,
j=1 j=1
{Ai}i=1 € C, and (p,, p, q)-atoms {a;};_ 1} .

(8.83)

By [GraLiuYa09iii, Theorem 5.6, p.2276]" we have that
Illo - lamey  on Lig(X, ). (8.84)

The importance of (8.84) will become apparent shortly.

Moving on, from (8.82) we may write f = Z]'.‘Zl Aja; on X where {/\j};’:l ccC

and {aj}]'.‘= , is a sequence of (p,,p,g)-atoms on X. We claim that there exists a
finite constant C > 0 (independent of f and its atomic decomposition) with the

"This result is stated using the Hardy spaces in [GraLiuYa09iii] however, under the current
assumptions of this theorem, we have that the Hardy spaces introduced in [GraLiuYa09iii] coincide
with HP(X) (see [HaMuYa06, Remarks 2.27,2.30]), see also [HaMuYa08, Remark 5.17, p. 124]
and [GraLiuYa09iii, Remark 5.5, p.2276]. Moreover, by using the approximation to the identity
constructed in Theorem 3.22 in place of the one considered in above named works gives that
the coincidence between these Hardy spaces holds for every p as in (8.75) (see [HaMuYa06,
Remark 2.5, p. 1510].)
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property that

n 0/p
ITf1> < C(Z M,»l") : (8.85)

J=1

In order to justify (8.85) we proceed by considering two cases. Suppose first that the
supremum displayed in (8.76) is one, i.e., suppose || f + gll2 < max{|| f |2, lIgll2}
for every f, g € X,. In this scenario we have

n
ATl < A Taill, < A:191Ta:
21 11| = max [|2, a,llz_Cllgg(l 1711712
p
0 [4
< Cmax 4]0 = c(m X |x,-|)
I<j=n <j<n

0/p

n 0 n
< C(Z IA,-I) < C(Z IA,-I") (8.86)
j=1 J=1

where the second inequality is a consequence of the pseudo-homogeneity of || - ||2,
the third inequality follows from the uniform bound in (8.78), and the last inequality
makes use of the fact p < 1.

Next, assume that the supremum displayed in (8.76) is strictly greater than one
and let

-1
_ T
b= [1"&( A max{nfuz,ugnz}ﬂ o0 38D

not both zero

Then in light of (8.78), for each k € N we may estimate

" B " B
D NT| <C| Y ATy
j=1 2 j=1 *

<CY 1M 1T)lf

j=1
<CY Pl < Y %, (8.88)
Jj=1 j=1

where the first and third inequalities follow from (8.11) in Theorem 8.3, and the
second inequality follows from (8.12)—(8.13) in Theorem 8.3. Note that the usage
of (8.13) is valid given the definition of 8 € (0,00). Note that the constant
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C € (0, 00) in (8.88) depends only on § and the proportionality constants in (8.11).
Combining the estimate in (8.88) with the fact that 88 > p (as a result of (8.76) and
the definition on ) we ultimately have

ankj Taj
Jj=1

0/p

n 18 "
< C(Z ijleﬂ) < C(Z |A,-|P) VkeN, (8.89)
2 =1 =1

as desired. This finishes the proof of the claim in (8.85). Then taking the infimum
in (8.85) over all finite atomic decompositions of f we have |Tf |, < C| f|,
from which (8.81) follows granted (8.84).

Given (8.71), the pseudo-homogeneity of || - ||», and the homogeneity of || || zr(x),
the estimate in (8.81) implies that

T]y gt (LoDl o) — .- 1) 500

is a well-defined, linear, and bounded mapping.

Based on this, the density result in Proposition 7.38, and the completeness of
(X2. 7,). it follows that the restriction of 7 to LY ((X, 1) extends in a standard way
to a unique linear operator 7 mapping H” (X) into X,. The fact that T satisfies (8.81)
for every f € HP(X) (hence, in particular, is bounded by (8.71)) follows from the
property displayed in (8.72). This finishes the justification for (8.79).

There remains to justify (8.80). Fix a function f € LI(X, p) () H?(X). Since g
belongs to [1, 00), we have by Theorem 7.39 that there exists a sequence of functions
{ fitien € LX(X, ) € LY (X, p) such that lim f; = f in L(X, 1) and in H?(X).

Relying on the convergence in H? (X), we may conclude from the boundedness of T
in (8.154) that

Tf=1mTf in X. (8.91)

Jj—>o0

On the other hand, from the L?-convergence and the boundedness of T in (8.77)
we have

Tf =1mTf in  Xj. (8.92)
J—>00

In concert, (~8.9l), (8.92), the compatibility of (X, 71) and (X3, 7).,), and the
coincidence T = T on Lg,o (X, n), give

Tf=1lmTfi=1lmTfi=Tf in 2. (8.93)
J—>00 J—>00
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Note that the second equality in (8.93) has made use of the fact that the space (2, 1)
enjoys the property that convergent sequences have unique limits. This finishes the
proof of (8.80) and, in turn, the theorem. |

Comment 8.11 In the statement of Theorem 8.10, the case ¢ = oo is a neces-
sary omission. Indeed, M. Bownik’s provided an example in [BoO5] of a linear
functional, T, defined LY(R?), ¢ € (1, 00) having the property that its restriction
to LY (R?) is uniformly bounded on all (1, co)-atoms yet cannot be extended to a
bounded linear functional defined on all of H'(R?). In Theorem 8.16 we provided a
related boundedness result which does include the case ¢ = oo (while considering
a different class of target spaces).

The following theorem is a notable consequence of Theorem 8.10 which extends
some of the work presented in [ Yab93, HuYaZh09], and [HaZh10].

Theorem 8.12 Let (X, q) be a quasi-metric space and assume that | is a Borel-
semiregular measure on X satisfying (8.74) for some d € (0, 00) and fix exponents

€ d 1 € [p, 1]
PE\d+mdx,q |0 1577

(8.94)
po € [1,00) with pg>p, and gy € [1,00].
Consider a bounded linear operator
T:[7°(X,u) — L(X, n) (8.95)

having the property that there exist a constant C € (0,00) and an integrability
exponent r € [1, po| with r > p such that

|Tallgexy < C  for every (p,, p, r)-atom a. (8.96)
Then there exists a unique linear and bounded operator
T :H(X) — HY(X), (8.97)
such that for each f € [P°(X, u) N HP(X) there holds
Tf =Tf inthe sense of distributions. (8.98)
Proof The goal is to invoke Theorem 8.10 with the role of X;, X5, and 2" played
by L% (X, v), H1(X), and 2, (X, p), respectively, where p € q is any quasi-distance

on X and o € R is any number for which

d(1/p—1) <a < [log,C,] " (8.99)
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With this in mind, there are a few clarifications that must be made. First, it is
clear that L% (X, ) is a topological vector space when equipped with the natural
topology induced by the L7-norm. Moreover, given that ¢ € [p, 1], by Theorem 4.19
and (6.109) in Theorem 6.11 we have that H9(X) is a genuine quasi-Banach space.
Additionally, it follows from the definition of || - ||gex) (see also the discussion
following Proposition 4.9) that

up 1f + 8llraco _ ol (8.100)

reerexy max{|l flmax), 8llaac)

not both zero

given g < 1. Hence, granted that the H?-quasi-norm is homogeneous, and that we
have assumed g > p, we have the condition in (8.76) is satisfied® with 60 = 1.

Going further, since r < po, part 2 of Proposition 5.2 implies that every
(po» P, po)-atom is a (p,, p, r)-atom. As such, we can deduce that T satisfies (8.78)
from this and the uniform boundedness condition in (8.96).

There remains to show that L% (X, u) and H?(X) are weakly compatible in
2!(X, p). As we remarked in Sect. 4.1, 2, (X, p) is a topological vector space
having the property that convergent sequences have unique limits. Furthermore,
recall that from (4.109) we have that L% (X, ) can naturally be viewed as a
subset of Z,,(X,p) via an injective mapping which satisfies (8.73) (thanks to
Holder’s inequality). As concerns HY(X), it follows from Theorem 4.20 (as well
as the notional convention made in Theorem 5.27) and the second observation in
Comment 8.9 that identity mapping ¢ : HY(X) — Z,(X, p) satisfies (8.73).

In summary, from the above discussion it is clear that we may appeal to the
conclusion of Theorem 8.10 in order to justify (8.97)—(8.98). This concludes the
proof of the theorem. O

As is common practice in the literature, we may at times eliminate the additional
tilde appearing in (8.79) of Theorem 8.10 and in (8.97) in Theorem 8.12 and not
distinguish notationally between the given operator 7 and its unique extension.

Proposition 8.14 below highlights the fact that the approximation to the identity
as in Definition 3.21 has an extension to H” (X). We will require the following lemma
in its proof.

Lemma 8.13 Ler (X, p, ) be a d-AR space for some d € (0,00) where |4 is
assumed to be a Borel-semiregular measure on X and suppose the family {S;}o<i<s,
is an approximation to the identity of order ¢ € (d(l/p - 1), oo) (in the sense of
Definition 3.21). Also, fix exponents p € (0, 1] and g € [1, oo] with g > p.

8 As the reader may notice, the H9-quasi-norm satisfies also satisfies the condition in (8.76) for any
q € (1, 00]. We have chosen to limit g to the scenario when g < 1 since the largest contribution of
Theorem 8.12 occurs for ¢ in this range (recall that HY = L7 when ¢ > 1). In Theorem 8.18 we
will establish a version of Theorem 8.12 for the case when g > 1.
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Then there exists a constant C € (0, 00) such that for each t € (0, ti) one has
C'Sais a (p,p,q)-atom on X whenever a is a (p, p, q)-atom on X.0O (8.101)

Moreover, one can find a constant Cy € (0, 00) depending only on p and the family
{Si}o<i<t,, having the property that supp S;a C Bp(xo, Co(ro + t)) for each fixed
t € (0,t4) if suppa € B,(xo, o) for some xo € X and ry € (0, 00).

Proof Suppose a is a (p, p, g)-atom on X and consider a point xy € X along with a
radius ro € [r,(xo), 2diam,(X)] satisfying

1/g—
suppa € B,(xo,r0) and |lallrax ) < M(Bp(xo,ro)) /4 l/p. (8.102)

Also, assume first that a has one vanishing moment, i.e., a satisfies fx adu = 0.
Regarding the support of Sa, it follows from (3.141) in Theorem 3.22 and the
first property in (8.102) that

supp S;a € Bp(xo, Co(ro + t)), Vite(0,t), (8.103)

for some Cy € (0, 00) depending only on p and the family {S;}o</<;,. Moreover,
part (iv) in Definition 3.21 along with the vanishing moment condition for @ and
Fubini’s Theorem imply

/X (S:a)(0) du(x) = /X /X S.06.y) a(y) du()dp(x) = /X a(y) dpu(y) = 0.
(8.104)

We also need to check that S;a has the appropriate L?-normalization. With this goal
in mind, first consider the case when ry > . Then using (3.135) in Theorem 3.22,
the second property in (8.102), and the doubling condition for p (cf. part 13 of
Proposition 2.12) we may write

1/g—1
ISl < Cllallzoee < Cre(By(ro, r0)) /4"

< Cp(By(x0, 2Cor0)) ™" < Cu(B, (xo0, Colro + 1)) /4777
(8.105)

On the other hand, if ry < ¢ then from the first property in (8.102), part (ii) in
Definition 3.21, part / in Proposition 5.2 (used here with s = 1), the Ahlfors-
regularity of u, and the fact that the assumption ¢ € (d(l /p—1), oo) implies
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d(1 —1/p) 4+ & > 0 we have for each x € X that

I(Sia)()] = / |S:(x, y) = Si(x, x0)| - |a(y)| dpa ()

B (x0.70)
< Ct_(f“'s)rf) /‘L(B,D(an ro))l—l/p < Ct—(d+£)rg(l—l/p)+£
< ¥ < Cp(By(xo, 2Con) "

< Cu(B,(xo, Colro + 1)) ™. (8.106)

Combining (8.106) with (8.103) yields

1/q
Seallzocxm) = (/ ISta|qdu)
By (x0,Co(ro+1))

< Cu(B,(xo, Colro + 1)) 7, (8.107)

as desired. Finally, note that when the atom a is the constant function taking the
value 1 (X)~'/7 then

suppSia € X and [ Sl apx ) < Cllallax < CuX)/47, (8.108)

where the first inequality in (8.108) follows from (3.135) in Theorem 3.22. Hence,
C~'S,ais a (p, p, q)-atom on X. This finishes the proof of the lemma. O

We now present the extension result alluded to above.

Proposition 8.14 Ler (X, q, i) be a d-AR space for some d € (0, 00) where i is
assumed to be a Borel-semiregular measure on X and fix an exponent

d
Pe (d+ ind (X.q) 1} (G109

along with a parameter ¢ € R satisfyingd(1/p—1) < ¢ < ind (X, q). Also, suppose
the family {S;}o<i<1, is an approximation to the identity of order ¢ (in the sense of

Definition 3.21).
Then for each t € (0, ty) there exists a unique linear and bounded operator

S, : H (X) — HP(X), (8.110)
which extends S; in the sense that

S, f =8.f inthe sense of distributions, 8.111)
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whenever g € [1,00) and f € Li(X, ) N HP(X). Moreover, the extension S, is
given by

Sy, = (L SW), YV EH'(X). VY€ Z(X.p), (8.112)

where p € q is any quasi-distance satisfying ¢ < [log, Cp]_l. Additionally, one has

oi?fr* 1S:] 0 i) < OO (8.113)
Lastly, for each f € HP(X) there holds
lim S, f = f in H'(X). (8.114)

t—0+

Proof Fix t € (0,t.). With the goal of invoking Theorem 8.12 we begin by noting
that (3.135) in Theorem 3.22 implies

S LY(X, u) — LY(X, ) 1is well-defined, linear and bounded,  (8.115)

whenever ¢ € [1,00). Moreover, Lemma 8.13, when used in conjunction with
Theorem 5.27, guarantees the existence of a finite constant C > 0 which is
independent of ¢ and has the property that

Siallarxy < C  for every (p,,p, o0)-atom a, (8.116)

where p, € q is any quasi-distance for which all p,-balls are u-measurable. Hence,
the hypotheses of Theorem 8.12 are satisfied. In turn, we may conclude that there
exists a unique, linear and bounded operator S, satisfying (8.110)—(8.111).

We will now justify the equality displayed in (8.112). Fix ¢ € Z.(X, p) and
suppose f € LY1(X, u) N H?(X) for some g € [1,00). Then (8.111) implies

AS L)y, = 2SS, =[SOV

/ / §,(x.3) F OV () din(3)d e (x)

XJX

- / f(y)( / S,(e )Y () du(x))du(y)
X X

= [ FOSNIOIG) = a5, 8.117)
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where the second equality made use the membership S, f € L4(X, u) (cf. (3.135)
in Theorem 3.22), the fifth equality made use of the symmetry of S; (cf. part (iv) in
Definition 3.21), and the last equality made use of the fact f € L¢(X, u). Thus,

2SS V) g, = 2 S SW),, VS € LUK, ) N H(X). (8.118)

Next, fix f € HP(X) and consider a sequence { f;}jen € L9(X, u) N H?(X) with
the property that lim f; = f in H”(X). Note that the existence of such a sequence
J—>00

is guaranteed by Theorem 7.36. Then from (8.110) we have lim S, fi= S, f in
J—>00
HP(X). As such, from Theorem 4.20 we have that
lim fi=f and 1lim S, f=8,f in 2/(X,p). (8.119)
J—>00

j—>o0o

In concert, (8.119) and (8.118) yield (8.112).

Moving on, we will now establish (8.113). Fix a parameter y € (d(l/p - 1), e)
and observe that it follows from (3.135) and (3.137) in Theorem 3.22 that there
exists a finite constant C > 0 which is independent of ¢ € (0, 7) and satisfies for
eachx € X

yeTl () = C'SyeT) ), (8.120)

where p4 € q is as in Theorem 2.1. As such, (8.120) and (8.112) imply that

(S,f):#’y’s < Cf,, . pointwise on X from which (8.113) follows.

There remains to justify (8.114). To this end, fix f € H?(X). By Theorem 5.25
(see also Theorem 5.27) there exist a numerical sequence {A;}jey € C, and a
sequence of (o4, p, 00)-atoms, {a;}jen on X (o as in (2.21)), for which

f=>Ja in H(X). (8.121)

jeN

Foreachn € N, set f, := Y7, A;a; € H”(X) and write
1S = Vv < 180 F = Sihalltmey + 180S0 = Sl + 10 = F Vv

= Ol = f ey + 180S0 =l

i[l’(X) + Z A1 H‘éraj — 4 HZ,,(X) (8.122)
j=1

=C[fi= 1l

where the second inequality in (8.122) has made use of (8.113). Since the first term
appearing in the last inequality of (8.122) can be made arbitrarily small (for large
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for

enough n € N) by (8.121), we focus on estimate the terms [|S,a; — aj Zz’(X)

j € {l,...,n}. Fix such anumber; and observe first that (8.111) implies S,aj = Sa;.

At this stage we claim that Sa; — @; € L2 (X, ). First, by (3.135) in
Theorem 3.22 and part / in Proposition 5.2 we have S,a; — a; € L*(X, j1). Moving
on, since we are concerned with sending ¢ to zero there is no loss of generality in
assuming that ¢+ € (0, 1). With this in mind, the last observation in the statement
of Lemma 8.13 implies that there exists a p-ball B which contains the support
of both g; and S;a;. Hence, supp (S;a; — a;) € B. There remains to establish the
vanishing moment condition. Note that either fx ajdp = Oora; = w(X)~V/P . In
each case part (iv) of Definition 3.21 forces fX(S,aj —aj)dp = 0. As such, we have
Saj—aj € LE,O(X, 1), as wanted.

Consequently, it follows from Proposition 5.6 and Theorem 5.27 that

ISia; — ajllarxy < C(B) /P12 Sa; — ajll 2 x - (8.123)

Then relying on (3.142) in Theorem 3.142 we have lim [|Sia; — ajll;2x ;) = 0, as
t—0+ X

desired. This completes the proof of the proposition. O

In order to state the second main boundedness result of this section we make two
notational conventions. The reader is referred to Definition 8.4 for the notion of a
feeble measure. Given two measurable spaces (X, 9%), k = 1,2 and two feeble
measures [ : DMy — [0, 00], k = 1,2 we will write u; < U to signify

Ae.V,, = 3Be.#, with ACB. (8.124)

i.e., whenever A € 91, is such that u,(A) = 0O then one can find a set B € I,
with ;11 (B) = 0 and A C B. The property listed in (8.124) expresses a compatibility
between two given feeble measures at the level of their null-sets which is in the spirit
of the notion of absolute continuity of a measure. In particular, (8.124) ensures that
if a statement holds p,-almost everywhere on X then this statement also holds ;-
almost everywhere on X.

Also, given a measurable space (X, 97), and a feeble measure  on 9T consider
the vector space

L=, M, p) :={f € M(Z,M. ) : | f| < oopointwise s-almost everywhere on X},
(8.125)

We now present the boundedness result alluded to above.

Theorem 8.15 Let (X, q) be a quasi-metric space and assume that | is a Borel-
semiregular measure on X having the property that for some d € (0, 00) there exist
a quasi-distance p, € q, and two constants cy,c; € (0,00) with c; < 1 < ¢, such
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that the following Ahlfors-regularity condition holds:

all p,-balls are p-measurable, and ,u(BpU (x, r)) ~ r* uniformly

(8.126)
for every x € X and every r € (0, 00) with r € [c1r,,(x), c2R,, (X)],
where R, and r,, are as in (2.70)-(2.71). Additionally, fix exponents
e d 1 d € [p, o0) (8.127)
—_— an , .
PE\d+indX.q) I

and for k = 1,2, suppose (X, is a measurable space with M, < M, and
assume [y is a feeble measure on MMy such that 1 <K Yo and pn <K @ (in the
sense of (8.124)). For k = 1,2, denote by || - ||« the function as in (8.17) satisfying
(1)-(5) in Theorem 8.5 relative to the space (X, My, (i), and assume 6 € (0, 00)
satisfies

0 > p logy (C)-1,), (8.128)
where Cy.|, € [1,00) is as in (8.20). Furthermore, assume that the function ¢
quantifying the homogeneity of || - |2 satisfies the stronger condition (8.26) in place
of (8.22), and consider the topological vector space

Ly = Ly(Z, M0, wa. | - 112). (8.129)

constructed according to the recipe in (8.23) (cf. also Convention 8.6 in this regard).
Finally, with L°(Z,90, w1) defined as in (8.125), consider a linear operator

T:L9X, ) — LO(Z, 9, i) (8.130)
having the following two properties:
whenever { fi}jen € LY(X, p) is such that lim f; = f in L9(X, u)
o J—00

for some f € L1(X, ) then there exists a subsequence { fj, }ren of

{fi}jen such that kl_i)rn (T fi)(x) = (T f)(x) for pi-almost every x € X.
(8.131)

and
sup {||Ta||£9 . forevery (p,,p, 00)-atom a} < 00. (8.132)
Then there exists a unique linear and bounded operator

T:HY(X) — Lo(Z, D0, o, || - [2), (8.133)
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which extends T in the sense that for each f € (L‘f(X, w) NL (X, ,u)) N H?(X)

loc
(bearing in mind that the intersection with L}OC(X , ) becomes redundant whenever
q > 1) there holds

Tf=Tf pointwise [L1-almost everywhere on X (8.134)

hence, T f also equals T f pointwise [1y-almost everywhere on X.

Proof As a preamble, observe that since || - ||, satisfies parts (2)—(3) of Theorem 8.5
as well as the condition stated in (8.26), we have that (Lg, || - || ,) also satisfies the
hypotheses of Theorem 8.3. As such, there exists a function || - ||, : £y — [0, o]
satisfying (8.11)—(8.14) in Theorem 8.3.

Now, starting in earnest with proof of the theorem, we wish to establish the claim
that there exists a C € (0, co) with the property that

ITfley < CUf Mpye ¥f € () HX. (8.135)

r€[p,00]

Assume for the moment that (8.135) holds. Then given (8.71), the pseudo-
homogeneity of | - ||z,, and the homogeneity of || - ||z (x), the estimate in (8.135)
implies that

T

Nrepoa 170+ (Mreppoc B X1 llaren) —> Lo (. Mz, o)
(8.136)
is a well-defined, linear, and bounded mapping.

Based on this, the density result in Theorem 7.36, and (8.24) in Theorem 8.5 which
gives Lg is a complete, Hausdorff topological vector space, it follows that the
restriction of 7 to () ]H’(X) extends in a standard way to a unique linear

operator T mapping H”(X) into Lg. Moreover, as result of (8.72) we have that T
satisfies (8.135) for every f € HP(X), which implies that this extension is also
bounded, given (8.71). In summary, the justification for (8.133) will be completed
once we establish (8.135).

With this goal in mind, we first observe that by combining mapping properties of
the operator 7T in (8.130) and the fact that ﬂre[pm] H'(X) C L1(X, i), we have

r€[p,00

T Nrepoo H'O) ﬂ H'(X) — M(X,0M,, u2) is a well-defined mapping.

r€[p,00]

(8.137)

Moving forward, fix an arbitrary function f € ﬂre[p,oo] H'"(X).By Theorem 7.27
and 3 in Proposition 5.2, we have that there exist a finite constant C > 0
(independent of f) along with a numerical sequence {A;}jen € ¢’(N), and a
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sequence of (p,, p, 00)-atoms, {a;};en on X, such that

1/p
(Z lljlp) < C| fllarx) (8.138)
JeN
and
f=>Aa bothin LI(X,u) andin H"(X). (8.139)

jeN

Observe that in light of the property listed in (8.131), the L?-convergence of the
sequence

{ > A a,-} C LI(X, p) (8.140)
j=1 "

eN
in (8.139) implies the existence of a strictly increasing sequence {rny }xen of positive

integers such that lim n; = oo and
k—>00

ng
klim Z AjTaj =T f pointwise ui-almost everywhereon . (8.141)
—>00

j=1

As such, this along with the assumption u, << w; implies that the equality
in (8.141) holds pointwise u,-almost everywhere on .

At this stage, we make the observation that there exists a finite constant C > 0
with the property that

ng
Z Aj Taj
Jj=1

"k 0/p
< C(ZM,V’) VkeN. (8.142)
Ly i=1

Indeed, recalling that the space Ly is a pseudo-quasi-Banach space, the claim
in (8.142) is justified by following an argument similar to the one presented
in (8.85)—(8.89) in the proof of Theorem 8.10 (with C., playing the role of the
supremum displayed in (8.76)).

Next, we introduce the sequence

ng
Fei=)Y AT, VYkeN. (8.143)
j=1
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Then making use of the Fatou property described in (8.25), it follows from the -
almost everywhere convergence of the sum in (8.141), (8.142), and (8.138) that

ITflle, = [timintFi| < timin 7,
k—00 Lo k—00
"k 0/p
-l » < 0
< Climint (3 l:w) < CU Wy (5.144)
=

Note that the first equality in (8.144) used the fact that the sum in (8.141) converges
pointwise j1-almost everywhere 2. This completes the proof of (8.135) as desired.

At this point in the proof, we have just finished establishing that the restriction of
T to ﬂre[[” oo H'(X) extends to a linear operator T mapping H”(X) into Lg. There
remains to justify (8.134). Fix a function f € L(X, ) N H?(X) where, as declared
in the statement of the theorem, L9(X, ;1) is replaced by LY(X, 1) N L}, (X, i) when

g < 1. By Theorem 7.37 we may choose { fi}jen < ﬂre[p’oo] H"(X) such that
lim f; = f in L9(X, n) and in H?(X). Relying on the convergence in H” (X), we
J—>00

may conclude from the boundedness of Tin (8.133) that
Tf=1mTf=1lmTf in Ly (8.145)
J—>00 J—>00
Note that the second equality in (8;145) is a consequence of (8.136) and the fact
that (Lo, ‘C||.||£9) is Hausdorff and T = T on ﬂre[p’oo] H’(X). As such, invoking

Theorem 8.5 there exists a subsequence { f}, }ren of { f;}jen such that

Tf = klim T fj, pointwise p,-almost everywhere on X. (8.146)
—00

Moreover, since (1 << (o we have that the equality in (8.146) also holds pointwise
M1-almost everywhere on X.

On the other hand, by utilizing the L7-convergence of {fj }ren We have
from (8.131) that

Tf = llim T fj, pointwise [;-almost everywhere on X, (8.147)
—00
for some subsequence { fj, }ien Of { fj, }xen. Hence,
Tf = llim Tf, = Tf pointwise ft1-almost everywhere on X, (8.148)
—>00

as desired. Finally, noting that the assumption @, << w; implies that the equality
in (8.148) holds pointwise po-almost everywhere on X finishes the proof of the
theorem. O
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Theorem 8.15 was formulated in a manner which demands minimal assumptions
on the operator 7T as in (8.130)—(8.132). In the following result we present a version
of Theorem 8.15 with a class of operators for which the hypotheses in (8.130)
and (8.131) are more readily verified.

Theorem 8.16 Let (X, q) be a quasi-metric space and assume that |4 is a Borel-
semiregular measure on X satisfying (8.126). Additionally, fix exponents

d
— 1 d , 8.149
pE(dHnd(X’q) } and q € [p,00) ( )

and for k = 1,2, suppose (X,9;) is a measurable space with M, C M, and
assume iy is a feeble measure on My such that @, <K Wy and (i, <K Wy (in the
sense of (8.124)). For k = 1,2, denote by || - ||k the function as in (8.17) satisfying
(1)—=(5) in Theorem 8.5 relative to the space (X, My, i), and assume 68 € (0, 00)
satisfies

0 > p log, (Cj-1,)s (8.150)
where C).|, € [1,00) is as in (8.20). Furthermore, assume that the function ¢
quantifying the homogeneity of || - || satisfies the stronger condition (8.26) in place
of (8.22), and consider the topological vector spaces

L:=LEM,pl-) and Lo := Lo(Z, Mo, wa, || - 112),  (8.151)

constructed according to the recipe in (8.23) (cf. also Convention 8.6 in this regard).
Finally, consider a bounded linear operator

T:LIX, p) — LMy, ps - 1) (8.152)

having the property that there exists a constant C € (0, 00)
|Tallz, < C forevery (p,,p,o0)-atom a. (8.153)

Then there exists a unique linear and bounded operator
T:H(X) —> Lo(S. Mo, pa. |- 1), (8.154)

which extends T in the sense that for each [ € (L‘i(X, w) NL (X, ,u)) N HP(X)

loc
(bearing in mind that the intersection with L}OC(X , ) becomes redundant whenever
q > 1) there holds

Tf=Tf pointwise [L1-almost everywhere on X (8.155)

hence, T f also equals T f pointwise [Ly-almost everywhere on X.
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Proof Observe first that the conclusion of Theorem 8.5 implies the inclusion
L(Z, My, 1 || - 1) € L2, 9y, ). Hence,

T:LY(X, ) — LO(Z, My, 1) is a well-defined mapping,  (8.156)

given (8.152). Then in light of Theorem 8.15, we only need to verify that the
operator 7T satisfies the property described in (8.131). To this end, observe that
the boundedness of the linear operator in (8.152) (where (LY(X, p), 7)1 4,,) 18
metrizable) implies that T is sequentially continuous. As such, if { f;}jen € LY(X, )
is a sequence such that lim fj = f in LY(X, u) for some f € LY(X, ) then

J—>00

Tf=1UmTf in L(Z, M, w, - ). (8.157)
J—>00
In turn, the desired conclusion follows from Theorem 8.5. O

Comment 8.17 In regards to Theorem 8.16:

1. This boundedness result is new even in the classical Euclidean setting (R?, £¢).

2. The present theorem should be contrasted with Theorem 8.10, where the case
g = oo is omitted while considering a different class of target spaces.

3. This result is not in contradiction with the work of M. Bownik in [Bo05]. Indeed,
Bownik provided an example which illustrates that within the class of linear
operators defined on L%(Rd), uniform boundedness on all (1, co)-atoms is not
enough to conclude that the given operator extends as an operator defined on all
of H'(RY). By way of contrast, in Theorem 8.16 we consider operators initially
defined on a larger space LI (X, i).

4. The condition listed in (8.150) is scale invariant with respect to power-rescalings
of || - |2 by positive quantities. That is, by replacing || - ||, with || - ||’3, B € (0,00),
one has 6 — 6 and C||-||§ = (C||.||2)ﬁ. Hence, (8.150) is also satisfied with ||- ||2ﬁ.

5. Tt is clear that any bounded linear operator mapping H”(X) into Ly is uniformly
bounded (with respect to the Ly-“norm”) on all (p,, p, r)-atoms with r € [1, o],
r > p. Thus, the assumption in (8.153) is necessary.

6. By part 2 in Proposition 5.2, a (p,, p, 00)-atom is a (p,, p, r)-atom for every
exponent r € [1,00] with r > p. As such, if L is a linear operator such that
for some constant C € (0, co) and some exponent 7 € [1, o0] N [g, oo] with r > 1
if ¢ = p = 1, there holds

|Lallz, < C forevery (p,,p,r)-atoma, (8.158)

then L necessarily maps all (p,, p, 00)-atoms uniformly into Lg. Hence, Theo-
rem 8.16 is applicable to a larger class of linear operators than just those which
are uniformly bounded on (p,, p, 0c0)-atoms.

7. Analyzing the proof of Theorem 8.16 reveals that it is not essential for the
operator 7T, as in (8.152), to be defined on the entire space L?(X, ). Specifically,
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in lieu of (8.152), one can assume that for some g € [p, 00)

T:( () HE. - lwew) — LE D). (8.159)

refp,00]

is well-defined, linear and bounded.

8. In applications, a particularity useful case is when the underlying measure spaces
(X, 9%, wy) and (X, My, o) are identical, in which case the demands | <<,
and u, <K w (described in (8.124)) are trivially satisfied. |

Similar considerations as laid out in Comment 8.17 apply to Theorem 8.10.
Similar to Theorems 8.10 and 8.12, at times we will eliminate the additional tilde
in (8.154) of Theorem 8.16 and not distinguish notationally between the given
operator T and its unique extension.

At this stage we find it instructive to illustrate the scope of applicability of the
abstract boundedness result established in Theorem 8.16 of Sect. 8.2 by providing
several examples of interest.

8.2.2 Operators Bounded on Lebesgue Spaces

Establishing criteria under which a linear operator, originally known to be bounded
on L? and having the property of uniformly mapping all HP-atoms into some
L1(X, ) with g € [p, o], can be extended to a bounded linear operator from H” (X)
to LY(X, ) has significant applications in Harmonic Analysis. By specializing
Theorem 8.16, we obtain the following result which can be used to provide us with
such criteria. This extends work in [CoWe77, Theorem 1.21, p.580], [HuYaZh09,
Theorem 3.2, p. 106] and [HaZh10, Theorem 1.1, p. 320].

Theorem 8.18 Let (X, q) be a quasi-metric space and suppose that |4 is a Borel-
semiregular measure on X satisfying (8.126) for some d € (0, 00). Fix exponents

p e (M—#(X,q)’ 1i| and q € [p, ], (8.160)
and assume for some fixed parameters py € [p,00) and gy € (0, 00| that
T:[P°(X,u) — L*(X, ) is a bounded linear operator (8.161)
with the property that there exist a constant C € (0, 00) such that

|Tallax) < C  for every (po, p, 00)-atom a. (8.162)
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Then there exists a unique linear and bounded operator
T:H'(X) — LI(X, ), (8.163)

which extends T in the sense that for each [ € (L”0 X, p)NL (X, ,u)) N HP (X)

loc
(bearing in mind that the intersection with L}, (X, j1) becomes redundant whenever
po > 1) there holds

Tf=Tf pointwise i-almost everywhere on X. (8.164)

Proof As previously mentioned in Example 1, we have that the spaces L (X, u)
and L7(X, u) are part of the general class of topological vector spaces constructed
in Theorem 8.5. Moreover,

Cliliageyy = 2"/ (8.165)

and, granted the homogeneity of the L?-quasi-norm, we have that the condition
in (8.26) is satisfied with & = 1. Then, since g > p implies

1>p 10g2 C”'”L‘I(X.u)’ (8.166)

we have that the demand listed in (8.150) of Theorem 8.16 is satisfied. As such, if
we specialize L(XZ, 0y, w1, || - ||1) and Lo (X, 9, ua, || - ||2) as in Theorem 8.16 to
the case when

¥ =X, M := M, = the sigma-algebra associated with x, (8.167)
pii=pa=p, - lhi= 0 o, and (-2 =l o,

then £ = L%, Ly = L7 and the conclusions in (8.163)—(8.164) follow from (8.154)—
(8.155) in Theorem 8.16. ]

The following corollary is an interpolation-type result which follows from
Theorem 8.18.

Corollary 8.19 Let (X, q) be a quasi-metric space and suppose that | is a Borel-
semiregular measure on X satisfying (8.126) for some d € (0, 00). Fix exponents

d
_ d , 8.168
pe(d—i—ind(X,q) } and g € [p, o) (8.168)

and assume that

T:LY9(X, u) — LYX, 1) is abounded linear operator (8.169)
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with the property that there exists a constant Cy € (0, 00) such that
|Tallrx.u) < Co  for every (po, p, 00)-atom a. (8.170)
Then T extends uniquely as a bounded linear operator
T:HX) — L'(X,pn) Vre 0,1l withp <r <gq. (8.171)
Proof In light of Theorem 8.18, the desired conclusion of this corollary will follow
once we establish the following claim: for each r € (0, 1] satisfying p < r < g,
there exists a constant C € (0, oo) with the property that
|Tallrx,u < C forevery (p,, r, 00)-atom a. (8.172)
Since (8.170) implies that (8.172) holds when r = p we assume r € (0, 1] is such
that p < r < ¢. With this in mind, fix a (p,, r, 00)-atom a and denote by B C X the
po-ball satisfying
suppa € B and  |al|zeoqxpy < w(B)TV" (8.173)
Observe that the function ay : X — C defined by ao(x) := w(B)/"~7a(x),
for all x € X is a (pg, p, 00)-atom on X. As such, by (8.170), (8.169), part [ in
Proposition 5.2, and the linearity of T it follows that
1Tl x oy = B~ Tag || ox ) < Cop(B) /P77, (8.174)
and
| Tallzocen = Cllalloe, < Cu(B)=" (8.175)
for some C € (0, co) which depends on T. Note that as a consequence of (8.175)
the estimate in (8.172) holds if r = g¢q. On the other hand, if r < ¢ then

using (8.174), (8.175), and Holder’s inequality with exponent % € (1,00) we
may write

(g—r) (r—p)
/|Ta|rdu=/|Ta|pqq—ﬂ -|Ta|qq—rf7 du
X X

< ( / ITaI”du) ( / |Ta|w)
X X

2= gr—p)

=G C o (B (8.176)
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where @ = (1 —p/r)% + (1 - q/r)g = 0. Hence, (8.172) also holds for
r € (p, q). This finishes the proof of (8.172) and, in turn, the proof of the corollary.
O

The next result highlights the fact that a given approximation to the identity (as
in Definition 3.21) may be extended as a family of operators mapping H”(X) into
(X, ).

Proposition 8.20 Ler (X, q, 1) be a d-AR space for some d € (0, 00) where  is
assumed to be a Borel-semiregular measure on X and fix an exponent

d

Also, suppose the family {S;}o<i<:, of integral operators is an approximation to the
identity of order ¢ € (d(l/p — 1), 00) (in the sense of Definition 3.21).
Then for each t € (0, tx) there exists a unique linear and bounded operator
S, H'(X) — L7(X). (8.178)
which extends S, in the sense that

S.f =8 f pointwise ji-almost everywhere on X, (8.179)

whenever q € [1,00) and f € L1(X, ) N H?(X). Moreover, the extension S, is
given by

(S )@ = @ny(Sie. ). fop (8.180)

forevery f € HP(X) and for u-almost every x € X. Additionally, one has

sup | S|

O<t<tx

00 < 00 (8.181)

Proof Fix t € (0, t«). Note that (3.135) in Theorem 3.22 implies

S LI(X, u) — LY(X, ) is well-defined, linear and bounded,  (8.182)
whenever g € [1, 00). Moreover, Lemma 8.13, when used in conjunction with part /
of Proposition 5.2, guarantees the existence of a finite constant C > 0 (which is

independent of ¢) with the property that

|Siallrx)y < € forevery (p,, p, 00)-atom a, (8.183)
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where p, € q is any quasi-distance for which all p,-balls are p-measurable. As
such, we may invoke Theorem 8.18 in order to conclude that there exists a unique,
linear and bounded operator S, satisfying (8.178)—(8.179).

We turn now to establishing the equality in (8.180). Note that in light of (8.178)
and the density result in Theorem 7.36, it suffices to show that (8.180) holds for
each fixed f € L'(X, ) N H?(X) where r € (1/p, 00). With this goal in mind,
observe that (i) and (ii) in Definition 3.21 and imply (keeping in mind (4.8) and the
assumption ¢ > d(1/p — 1)) that

Si(x,-) € %'f(X, q) < %.Cd(l/”_l)(X, q) foreach fixedx € X. (8.184)

Consequently, by Theorem 7.22, the inclusion 6~ /*~" (X, q) € £/r-D(X,q),
Proposition 7.24, and (8.179) we have for p-almost every x € X

(S}f)(x) = (S fHx) = (L’)*(St(% ), f)Lr = (Hﬂ)*(St(x’ ), f)Hp (8.185)

as desired.
There remains to prove the uniform estimate on atoms displayed in (8.183).
Observe first thatif & € (d(1/p — 1), min{e, [log, C,]™'}) then

To(X, p) = LUPV(X,q) = (H (X)), (8.186)
where the equality in (8.186) follows from Theorem 7.22. Moreover, the duality
pairing between Z.,(X,p) and Z,(X,p) is consistent with the duality pairing
between (H?(X))* = £%1/r=D(X, q) and H?(X), i.e.,

by = b (5.187)

Moving on, observe that it follows from parts (i) and (ii) in Definition 3.21, the fact
that o < &, and (4.8) that

Si(x,)) €6°(X.q) € Zu(X.p), Vi€ (0.1:), VxeX.  (8.188)

In fact,if y € (d(l /p—1), oc) is fixed then there exists a finite constant C > 0 such
that

C'Six) € T) (0, Vie(0.1), VxeX, (8.189)

4, O

where ps € qis as in Theorem 2.1. As such, (8.189), (8.180), and (8.187) imply that

(S| = lamy{Six. ), £y

Do (St(-xv ')v f)@&

<Cfr,.(0,  (8.190)

for u-almost every x € X whenever t € (0,#,) and f € HP(X). In turn we may
deduce (8.181). This finishes the proof of the proposition. O
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8.2.3 Fractional Integral Operators on Hardy Spaces

The main goal of this subsection is to investigate the action of certain fractional
integral operators on H”(X). The qualities of these fractional integral operators
mirror the most basic characteristics of the Riesz potentials in the RY: see, e.g.,
[HarLit28, HarLit32, Sob38], and [Zyg56], see also [St70, p. 117]. In the Euclidean
setting, the classical result regarding Riesz potentials concerns their mapping
properties on [”-spaces with p > 1. In Theorem 8.23 below, we will establish
an analogous version of this result for a more general class of fractional integral
operators in the setting of standard d-Ahlfors-regular quasi-metric spaces. Some
work in this vein has been presented in [GCGa04] in the context of metric spaces.
Building upon Theorem 8.23, we will show as a consequence of the general
boundedness criteria in Theorem 8.16 that these fractional integral operators extend
as bounded operators defined on H”(X), for an optimal range of p’s. This extends
work that has been done in [GaV90] and [GatVa92].

Suppose (X, q) is a quasi-metric space and consider a number d € (0, oo). Also,
assume u is a Borel measure on (X, 74) (or simply X if the topology is understood)
which satisfies the following upper-Ahlfors-regularity condition: there exists p € q
and C € (0, co) for which all p-balls are p-measurable and

M(Bp(x, r)) < Cr?  foreach x € X and each finite r € (0, R, (x)], (8.191)

where R, is as in (2.70). Note that the regularity condition described in (8.191)
self-improves to hold for every r € (0, co). In the above context, we set

‘KCO(X, q) = {f : X — C : f has bounded support in X
and is continuous on (X, 7q)}. (8.192)

Definition 8.21 Suppose (X, q) is a quasi-metric space and assume u is a Borel
measure on X which satisfies (8.191) for some d € (0, 00). Also, fix a parameter
a € (0,d). In this context, a u x u-measurable function K : (X x X) \ diag(X) — C
is said to be a standard fractional integral kernel on X (of order o)
provided there exist a quasi-distance p € q and a constant C € (0, c0) with the
property that

|K(x,y)| =C Vx,yeX, x #y. (8.193)

1
plx,y)d—’

Additionally, call a linear operator T defined on %°(X,q) a standard
fractional integral operator on X (of order «) provided it is associated
with a standard fractional integral kernel K in the sense that the operator 7" assigns
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to each g € ¢°(X, q) the function

Tg(x) := /K(x, e du(y), forall x € X. (8.194)
X

We want to take a moment to make a few comments regarding Definition 8.21.
First, observe that if K is a fractional integral kernel satisfying (8.193) for some
p € q then K satisfies (8.193) for every other o € q. Second, although K is not
defined on diag(X), we may still consider the integral in (8.194) which are taken
over the entire set X as the upper d-Ahlfors-regularity condition in (8.191) implies
w({x}) = 0 for every x € X. If one would like consider spaces where the measure
of a singleton is not necessarily zero, the integral in (8.194) should be replaced by

Tg(x) := / K(x,y)g(y)du(y), forall x € X. (8.195)
X\{x}

A parallel theory under these assumptions can be carried out (see [GaV90] for
the setting of 1-AR spaces). We choose to omit the details.

Secondly, it is important to note that it will follow from (8.198) in Lemma 8.22
below that the integral defining Tg in (8.194) is absolutely convergent for each fixed
g € €°(X, q). Hence, T is a well-defined operator mapping functions from (X, q)
into complex-valued functions defined on X. In this section we will see that the
operator T can be extended as an operator defined on larger classes of function
spaces such as L”(X, u) for p € [1,d/a). Moreover, assuming that the kernel K as
in Definition 8.21 exhibits a certain degree of smoothness (measured on the Holder
scale) in its second variable then the operator T can also be extended as an operator
defined on the Hardy spaces introduced in this work. More specifically, for the latter
result, we will assume that in addition to (8.193), that the kernel K satisfies the
following condition: with C ,@p, € [1,00) as in (2.3), there exist a finite number
& € (0. [log, C,]~'] and a constant C € (0, 00) such that

p(x,y)*

KZ"X _KZ7 EC—7
KG9~ K| = O

(8.196)

for every x,y,z € X, such that z & {x,y} and Cpé‘pp(x, y) < p(x,z). An example
of such a kernel K can be found as follows. Maintaining the assumptions on the
ambient as above, fix a finite number ¢ € (0, [log, Cp]_l] along with a parameter
a € (0,d), where the additional condition o € (0, ¢] is assumed if u(X) = oo.
Then with py as in Theorem 2.1, the function K, (x, y) mapping X x X \ diag(X) to
C defined by

K,(x,y) := Vx,yeX, x#y, (8.197)

pi(x, )4
satisfies (8.193) and (8.196) with these choices of € and «.
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Before proceeding with the main results of this section we record a lemma which
is of a geometric nature.

Lemma 8.22 Suppose (X, q) is a quasi-metric space and assume | is a nonneg-
ative measure on X which satisfies (8.191) for some d € (0, 00) and some p € q.
Then for each § € (0, 00), there exists a finite constant C = C(d, u,8) > 0 such
that for each x € X and each r € (0, 00) there holds

/19 n P y)d —————du(y) = and (8.198)

1
————=d <t < 190
/X\Bp(x,r) o(x, y)d+s wu(y) < Cr ( :

Proof Fix a point x € X along with a number r € (0, 00). To first show (8.198), fix
8 € (0, 00) and observe that whenever § > d we have

1
/ ———5 du) = u(By.r) P = o, (8.200)
By (x.r) P(X, y)

where the last inequality is a consequence of the upper-Ahlfors-regularity condition
for . On the other hand, if § € (0, d) then consider the family of p-measurable set
{Ai}ren, Which are given by

Ay = B,(x,27")\ B,(x,27""'r) € X,  VkeN,. (8.201)

With this in mind, we estimate

1 > 1 > 1
J 5RO = /A oGy MO =€ /A @ ins )

o (x.r) p(-xv y)d s

ad (x, 27 r) 27kr)d
Z (2p kpyd— Z(z k=1 y)d—=s

5N k5 2’ b
=Py oM = (C28 - 1)r , (8.202)
k=0

where C = C(d, 8, n) € (0,00). Note that in (8.202), the third inequality follows
from the upper-Ahlfors-regularity condition for x and the last equality is a simply
consequence of the fact that § € (0, co). This proves (8.198).

The justification of (8.199) will follow a using a similar argument as the one
in (8.202) where in place of the family {Ax}ken,, we will consider the family the
sequence of sets {By}xen, defined by By := B,(x, 2871r) \ B, (x,2%r) C X for every
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k € Ny. Assuming § € (0, 00) is fixed, we may estimate

1 e 1 00 |
/X\Bp(x,r) Wd“(y) N ;/Bk Wd“(y) = ;/Bk Wd:u()/)

o0 k+1 00 k+1..\d
= Z M (ch %H—ﬁ r)) = (Zk d:)—S
22 2.2
=Y ok = (C28 - l)r_g, (8.203)
k=0

for some C = C(d, 8, i) € (0, 00). This completes the proof of (8.199) and, in turn,
the proof of the lemma. O

The following theorem highlights the manner in which the fractional integral
operators in (8.194) act on 7 (X u) when p € [1,d/a). It turns out that these oper-
ators map L (X, n) “strongly” into another Lebesgue space (where the integrability
exponent depends on p) whenever p > 1. When p = 1, this mapping is only
of “weak-type”. For Riesz potentials in the d-dimensional Euclidean setting, the
“strong-type” mapping property was established by G.H. Hardy and J.E. Littlewood
in [HarLit28] (when d = 1) and Sobolev in [Sob38] (for general d), while the
“weak-type” result appeared first in a paper due to Zygmund, [Zyg56]; see [St70,
Theorem 1, p.119] for a more timely exposition of these results. This work was
generalized to the context of metric spaces associated with an upper-Ahlfors-
regular measure in [GCGa04]; see also [BCM10] for operators associated with a
weight. One important issue that has been overlooked in the aforementioned works
is the measurability of the function resulting from a fractional integral operator
acting on function from L”(X, u). This delicate issue is addressed in the proof of
Theorem 8.23 below.

Theorem 8.23 Suppose (X, q) is a quasi-metric space and assume [ is a Borel
measure on X which satisfies (8.191) for some d € (0, 00) and some p € q. Fix a
number a € (0, d) along with an exponent p € [1,d/a) and suppose T is a standard
fractional integral operator on X of order a.

Then T extends as a well-defined linear operator defined on LP (X, 1) in the sense
that for each fixed f € LP(X, |), the function T f (defined as in (8.194)) is well-
defined pointwise p-almost everywhere on X and is u-measurable. Moreover, if

qe(p,oo)satisﬁesé—é—z,le ifg:= dp e(p ), then one has

T:IP(X, ) — LI(X, ) iswell-defined, linear, bounded, whenever p > 1,
(8.204)
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and, corresponding to the case when p = 1, there holds

A ,u({x € X : T f(x) is well-defined and |T f(x)| > A})l/q < Cllf e s

forevery f € L"(X, ), and every A € (0, 00).
(8.205)

Proof Fix a function f € L[P(X, u). We first need to show that T f is a well-defined
function pointwise p-almost everywhere on X and is pu-measurable on X. To fix
ideas suppose that T is associated with the standard fractional integral kernel K. To
address the fact that T f is well-defined, fix any number r € (0, c0) and for each
X € X, write

[f ()] | f ()]
/X K fOldro) < [ TS aue < /X k)
[f ()]
= ——d
C/Bp#(x,r) /O#(x7y)d_a M(y)
| f ()]
——d
* C/X\BP#(W) p#(x’y)d—a H(y)
=I(x) + I (x), (8.206)
where, for each x € X, we have set
— _/o
I(x) := C/Bp#(x’r) PRSI du(y), (8.207)
and
— _fol
I(x) := C/X\BP#(”) or, )i du(y). (8.208)

Note that C € (0,00) in (8.206)-(8.208) is a constant which depends only on
p. Also, recall that p4 € q denotes the regularized version of p, defined as in
Theorem 2.1. The choice to pass from p to ps is of importance as we are only
guaranteed that regularized quasi-distance has the property that it is simultaneously
continuous in each of its variables.

To finish showing that T f is well-defined pointwise p-almost everywhere on
X, we need to show that the quantities /(x) and II(x) are finite for p-almost every
x € X. Fix x € X and note that for some C € (0, c0) we have

1w = ¢ / MO 46y < o) f gy < 0. (8:209)
X\Byy () P, )
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Indeed, if p = 1 then II(x) < r*~ || f |1 . < 00, granted d —a > 0. On the other
hand, when p > 1 we may use Holder’s inequality to estimate

1 1=1/p
1 = o [ a0y
X\Bp, (x,r) p#(x, y) p—1

1 1-1/p
- C||f||U(X,M)( /X —du(y)) , 8.210)

\Bpy (x.r) P (xv y)d+8

where § ;= [;_Talp € (0, 00). As such, this along with (8.199) in Lemma 8.22 gives

1) < Ce™)' 2 f e = C= PN f e < oo, 8.211)

which completes the proof of (8.209).
Regarding the finiteness of I(x), we claim that for each x € X, there holds

_ A
I(X) B C/Bp#(x,r) p#(xs y)d—a d’u(y)

I/p
fCr““_l/”)(/B ( )%du@)) : (8.212)

Since (8.212) is trivial when p = 1 assume p > 1. In this case, by once again calling
upon Holder’s inequality we have for each x € X

LSOl
/Bp#(x,r) p#(—xv y)d—a dﬂ(y)

L f I )l/p( 1 )1—1/p
a C(/Bp#(xs’) pa(x, y)d_a HO) /l;p#(x,r) pu(x, Y)d_a Ho)

Y
- Cra(l—l/P)(/ %du@)) ' (8.213)
By (x.r) P#{X, Y

where in obtaining the second inequality, we have used (8.198) in Lemma 8.22.
Hence, (8.212) holds.
At this stage, we claim that the assignment

£ 1
X3x> —du(y) belongstoL (X, ), (8.214)
Byy(er) P, )
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hence is finite for p-almost every x € X. In a step towards establishing (8.214) we
will first show that the mapping ® : X x X — [0, oo] defined by

4
ML)L—W pr#(XJ) ) if x #y,
XxX>3(xy o(x,y) e messuable

0 if x =1y,
(8.215)

Recall that we have assumed the measure u is Borel on (X, 74). Thus, since py is
continuous on (X x X, tq X 7q) (cf. (2.28) in Theorem 2.1) and since f belongs to
LP(X, ) we can just focus showing that the function

F(x,y) :=1p,0n(y), (xy) €XxX ispux yu-measurable. (8.216)

Note that in order to justify the claim in (8.216), it suffices to show that F is lower
semi-continuous on X x X since, in the current setting, any lower semi-continuous
function is p x pu-measurable. To this end, fix (xo,yo) € X x X arbitrary. We need
to show that if {(x;, y;)}jen is a sequence of points in X x X with the property that
(x5, ¥)) — (x0,¥0) as j — oo, with convergence understood in the (metrizable)
topology 74 X 74, then

1§2£f IBP#(XJ',V) (y,) > pr#(Xo,r) (y()) (8.217)

On the one hand, the inequality in (8.217) is trivially true when yo € X \ By, (xo, 7).
On the other hand, in the case when yy € B, (xo, r) the continuity of p4 on the space
(X x X, 7q x 7q) and the fact that px(xo,yo) < r ensure that py(x;,y;) < r for all
sufficiently large j’s. Hence, y; € B, (x;, r) for all such sufficiently large j’s and the
inequality in (8.217) follows. This completes the proof of (8.215).

Observe that since u({x}) = 0 for every x € X, we have

/}and“@)zjm —Lﬁﬂﬁfdug) VxeX.  (8.218)
X By (x,1) p#(xs y)d “

In light of this and (8.215), we may invoke Tonelli’s Theorem in order to write

LfO)IP
LLWwﬁzwzwww@

1
< s —_— X
< [1ror [ o e )

< CrN f e < oo (8.219)



402 8 Boundedness of Linear Operators Defined on H? (X)

where the first inequality in (8.219) is a consequence of the symmetry of py as well
as the fact that py is p-measurable in each of its variables, and the second inequality
has made use of (8.198) in Lemma 8.22 to estimate the integral in the x variable.
This finishes the proof of (8.214). Finally, combining what has just been established
in (8.214) with (8.212) we have that ] is finite pointwise p-almost everywhere on
X. This concludes the justification of the fact that 7 f is a well-defined function
pointwise p-almost everywhere on X.

Moving on, for f € LP(X, n) fixed, we will establish that T f is a u-measurable
function on X. By assumption, the kernel K is a ;& x p-measurable function. Hence,
the product K f is a u x i-measurable function on X x X. We can assume that K f is
real-valued since the case when K f is complex-valued will follow by considering
the real and imaginary parts of K f (which are also p x p-measurable functions
on X x X). As such, we have that the positive and negative parts of K f are well-
defined, nonnegative 1 x pu-measurable functions on X x X. Moreover, if we set
(a)+ := max{a,0} and (a)- := max{—a, 0}, for every a € R, then by virtue of
Tonelli’s Theorem we have that the assignments

X3xr /X(K(x,y)f(y))+dp,(y) and X 3x> /X(K(x,y)f(y))_du(y)
(8.220)

are p-measurable on X. On the other hand, from what has just been established
in (8.206)—(8.219), the mappings in (8.220) are finite pointwise p-almost every-
where on X. Hence, we may write for p-almost every x € X,

| Kenr01an0) = [ (ke F0), dut)
X X

_ /X (Ke) f)), du(y). (8.221)

in order to conclude that 7 f is u-measurable on X, as desired. This concludes the
proof of the first part of the theorem.
We next address the claims in (8.204)—(8.205). In a step towards obtaining the
desired conclusions, we will establish the following general fact: If pg € [1, g) and
1 o

. _dpo d : : : 1 _1_«a
90 = gm0 755,00), i.e.,if pg € [1,00) and go € (po, 00) satisfy o = @

then there holds

Ap({x € X : T f(x)is well-defined and |T f (x)| > )L})l/qo < C|l f o x. )

forevery f € [’°(X, ), and every A € (0, c0).
(8.222)
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Assume that (8.222) holds for the moment. Then the conclusion in (8.205) will
follow by specializing pp and ¢go in (8.222) to p and ¢, respectively. On the other
hand, (8.204) is justified using (8.222) along with Marcinkiewicz’s interpolation
theorem. Thus the proof of the theorem will be concluded once we establish (8.222).

To this end, fix two exponents py and go as above and consider some function
f € IP°(X, u) along with a parameter A € (0, co). By what we have established in
the first part of this theorem, there exists a ;i-measurable set E € X with u(E) =0
suchthat T f : X\ E — Cis a well-defined and p-measurable function. Fix x € X\ E
and consider a number r € (0, co) to be chosen later. Then just as in (8.206)—(8.212)
we can estimate

ITf(x)] < C/ 7O du(y)

By (x,1) P ()C, y)d_a

| fO)I
du(y) +C /X ey P )T

a(l—1/p )p /o o
< ¢t 1/10)(/ Lﬁz—ad“@) + CII f Nlro gy r* =P
By (x.r) p#(x’ y)

=I'(x) + II'(x). (8.223)

where we have set

0 1/po
I'(x) = Cr““—l/ﬁw( /B ( )%du@)) (8.224)

and

' (x) := C|| f llpo gy P0. (8.225)
Note that we have already established in (8.214) that I’ is a -measurable function.
To proceed, we will specialize r € (0,00) so that C|| f || o r® 4" = 1/2,
where C € (0, 0c0) is as in (8.223). Then from the estimate in (8.223) we have

,u({x € X : T f(x) is well-defined and |T f (x)| > A})
= u(lr eX\E: |Tf(0)] > A})
<p(lreX\E: I > 1/2})
+u(fxeX\E: |[II'x)| > 1/2})

=pu(fxeX\E: |[I'®)| > A/2}), (8.226)



404 8 Boundedness of Linear Operators Defined on H? (X)

where the last equality in (8.226) follows from the manner in which we have chosen
r. Next, using (8.219) we can further estimate (8.226) as follows,

p({x e X\E: [I'(x)| > 1/2})

P
< e [ [ WO i
X Bp#(x,r) p#(-xsy)

< CPPA ) f s = CA L 1% e (8.227)
where the last equality in (8.227) made use of our choice of r. Then the desired
conclusion in (8.222) can now be obtained by combining and (8.226) and (8.227)
which completes the proof of the proposition. O

The next theorem highlights the fact that the upper-Ahlfors-regularity condition
for w in (8.191) is necessary for (8.204)—(8.205) to hold. This builds upon the work
in [GCGa04].

Theorem 8.24 Let (X, q) be quasi-metric space and suppose | is a nonnegative
measure on X with the property that for some p € q, all p-balls are p1-measurable
with finite p-measure. Additionally, assume w({x}) = 0 for every x € X. Fix a
number d € (0, 00) along with a parameter « € (0,d) and exponents p € [1,00)
and q € (p, 00) satisfying }1 = 5— 5. Finally, with these choices of p and q, suppose
that T is a standard fractional integral operator on X of order « for which (8.204)
(if p > 1) or (8.205) (if p = 1) holds. Then one has | satisfies (8.191) with these

choices of p and d.

Proof We will prove the statement of the theorem when p > 1 as the case when
p = 1 is handled similarly. Suppose B C X is any p-ball. Let r € (0, R,(x)], finite,
denote the radius of B. If u(B) = 0 then we are done as (8.191) trivially holds in
this case. If, on the other hand, ©«(B) > 0 then for each x € B we have

1 1
(TIB)(X) = /BWCZH(Y) = WM(B). (8.228)

Given the assumptions on the measure pu we have 1p € ﬂse(o,oo] L'(X, n).
Therefore, by combining (8.228) and (8.204) in Theorem 8.23 we may write

;M(B)H—l/q < (/ |T13‘qdﬂ)l/q
(CpCpr)d—= - B

< 1 gllzacesy < Cllllron = Cu(B)'P. (8.229)

Thus, u(B)' /4P < Cr¥1=2/9 Finally, noting that the choices of p and ¢ in the
statement of the theorem imply 1 + 1/g — 1/p = 1 — «/d, we can further deduce
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w(B) < Cr? for some constant C € (0, c0) which is independent of B. Hence,
satisfies (8.191). This completes the proof of the theorem. O

We are now in a position to state the main result of this section which describes
the mapping properties of certain fractional integral operators when acting on H? (X)
spaces. The reader is referred to Definition 2.11 for the notion of a standard d-
Abhlfors-regular quasi-metric space.

Theorem 8.25 Suppose (X,q, ) is a standard d-Ahlfors-regular quasi-metric
space for some d € (0,00) and fix ¢ € (0,d). Let p € q be any quasi-distance
and with C, € [1,00) as in (2.2), consider exponents

d dp
el——, 1 d q:= € (1, 00), 8.230
re (i t] o o= glp et 620
i.e., consider exponents p as in (8.230) and q € (1, 00) satisfying 611 = 11) -4

Additionally, suppose T is a standard fractional integral operator on X of order o
which is associated to a standard fractional integral kernel K satisfying (8.196) with
this choice of p and for some finite number ¢ € (d(l/p — 1), [log, Cp]_l].

Then T extends uniquely as a well-defined, linear, and bounded operator

T:H(X,u) —> L1(X, p). (8.231)

Proof As apreamble, note that since (X, q, p) is a standard d-Ahlfors-regular quasi-
metric space, we have that u satisfies the less demanding condition in (8.191)
with the quasi-distance py € q (cf. Comment 2.13). Moreover, part /4 of Proposi-
tion 2.12, gives that p is a Borel measure on X. In particular, the current assumptions
on the ambient ensure that the hypotheses of Theorem 8.23 are satisfied. Note that
since K satisfies (8.196) with p4 in place of p and since C, < C, (cf. Theorem 2.1),
there is no loss in generality in assuming p = p.

Moving on, in order to establish (8.231), we will employ the conclusion of
Theorem 8.18 (which is ultimately a consequence of the general boundedness result
in Theorem 8.16). With this goal in mind, observe that the fact that T satisfies
the condition in (8.161) of Theorem 8.18 (for some choices of py € [p,o0) and
qo € (0, 00]) follows from (8.204) in Theorem 8.23. Thus, there remains to show
that 7 is uniformly bounded on all (p, p, 00)-atoms with respect to the L?-norm
where ¢ € (1, 00) is as in (8.230). Note that in light of Theorem 8.23, it is valid
to consider the operator T acting on (p, p, co)-atoms since such functions belong
to L*(X, p) for every s € (0, o], granted that these atoms are bounded and have
bounded support in X.

To this end, fix a (p, p, 00)-atom a € L*°(X, ;) and suppose that xp € X and
ro € (0,00) are as in (5.24). That is, xo and ry are such that

—1
suppa < Bp(xo, ro) and ||a||Loo(X,M) < [L(BP(X(), }"0)) /p. (8.232)
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Observe that by part /2 in Proposition 2.12 there is no consequence in assuming
ro < R,(x0). Moving on, in a first stage we will derive a pointwise estimate for Ta
on X. Suppose x € X is such that (Ta)(x) is well-defined and assume first that a
is a nonconstant function on X which, in particular, implies fX adu = 0. Observe
that B, (xo, r0) € B, (x, Cﬁéﬁro) whenever x € B,(xo, Cpé‘pro). As such, by making
use of (8.198) in Lemma 8.22 in conjunction with the normalization of the atom
described in (8.232) and the lower-Ahlfors-regularity of the measure p (cf. part 3 in
Proposition 2.12) we may estimate

K (x.y)a()] du(y) < C / Ol )

Tc
|(Ta) ()| = / B (x0.r0) p(x, y)'=

By (x0,70)

< Cu(B, (o r0) " /B du(y)

0 (X0.70) ,O(X, y)d—a

—d/p/ 1
=G oy )
0 BP(X,C/%E%V()) p(-xv y)d_a

<y = e, (8.233)

for some C = C(p, 1, p,d,a) € (0, 00).

Suppose next that x € X \ B,(xo, C, C »10). Observe that this membership implies
p(x0,x) > C pé’ »p(x0,y) for every y € B,(xo, rp). Consequently, using the vanishing
moment condition for the atom a, the smoothness of the kernel K (described
in (8.196)), and the lower-Ahlfors-regularity of the measure u, there holds

|(Ta) ()] S/ K (x. x0) = K(x. y)| - la(y)| dju(y)

By (x0,70)

—1/p p(xo, )*
< Cp(By(xo, r0) / ——————du(y)
( P ) B (x0.,70) IO(XOax)d_O[_HE

—d
’ /p

<c—To___ / p(x0. ) du(y)
p(xg, x)d—ate B,(x.C,Cpr0)

rs+d—d/p

0
< CW s (8234)

where the constant C € (0, co0) depends on d, p, i, p, €, and the kernel K.
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Moving forward, observe that

1/q 1/q
Tl < ([ jmian) e [ mpan)
Bp(xo,CpCpro) X\Bp(xo,cpcpro)
(8.235)

where by (8.233) and the upper-Ahlfors-regularity of ;& we can estimate

1/q .
( / ) |Ta|qd,u) < Cry (B (x0, C,Cor)) ' < €. (8.236)
By (x0,CpCpro)

Regarding the second term in (8.235), note that (8.234) implies

1/q
([, )
X\B,(x0,.CpCpro)

B 1 1/q
= d/p(/ o(xo, x)dd—o+e) du(x)) . (8.237)
0 X\B),(x0.C,Cpro) (g, x)4d—ate)

Recall that ¢ > d(1/p — 1). Thus, if welet y := g(d —a + ¢) —d € (0, 00) then
qg(d—a + &) = d+ y and by (8.199) in Lemma 8.22 the quantity in (8.237) can be
further bounded above as follows,

1/q
e+d—d/p / 1 T
r - d,u(x)) < it , ’
0 ( X\B,,(x0,C,Cpro) 0(xo, x)a(d—ate) Cr, 5 C

(8.238)

where the last equality in (8.238) is a consequence of the definitions of y and ¢. In
concert, (8.235), (8.236), (8.237), and (8.238) give that there exists a finite constant
C € (0, 0o) with the property that

|7a||ax,y < C for every nonconstant (p, p, 00)-atom a. (8.239)
Lastly, if a € L*°(X,u) is the constant (p, p, 00)-atom which takes the value
w(X)~/P then the set X is bounded (cf. 7 in Proposition 2.12). Hence, if xo € X

then we may choose a number R € (0, 0o) large enough so that B,(xo, R) = X. As
such, by (8.198) in Lemma 8.22 we have

(Ta) ()] = ‘ [ xtx3at du(y)‘

1
scuo™r [ = cr (3240
B, (x0.R) ,O(X, y)
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from which we can further deduce that ||7a|¢x ) < C. In summary, the above
analysis implies that 7 is uniformly bounded on all (p, p, 00)-atoms with respect to
the L7-norm, which completes the proof of the theorem. O

8.2.4 Square Function Estimates in Spaces
of Homogeneous Type

Recently, H? and LP-square function estimates in the setting of spaces of homo-
geneous type have been studied in [HoMiMiMol3, Theorem 6.18] by means of
developing a so-called “local T(b) theory” for square functions in this very general
context. The abstract machinery developed in Theorem 8.16 permits us to extend
the work in [HoMiMiMo13]. This is presented in Corollary 8.29 below and is a
highly specialized case of Theorem 8.16. Prior to formulating Corollary 8.29 we
will first look at some particular specializations of Theorem 8.16 in order to make
the relationship between these two results translucent. Recall that we have employed
the following notational convention: given a quasi-metric space (X, q) and a quasi-
distance p € q, we set p := p|yx, for any nonempty subset X C X. Observe
that if (5)s € Q(X) denotes the regularization of the quasi-distance 5, given as
in Theorem 2.1 then

Pl ~ps~p on XxX. (8.241)

Theorem 8.26 Fix a parameter k € (0, 00) along with two real numbers d and
m satisfying 0 < d < m. Assume that (X, p, i) is an m-AR space, X is a closed,
proper subset of (X, 7;), and that  is a Borel-semiregular measure on (X, t,) with
the property that (X, p, i) is a d-AR space.

Suppose further that (X \ X,9M4) is a measurable space and that L« is a feeble
measure on M. With I standing for the sigma-algebra on which [i is defined,
assume My € M and (1« <K i (in the sense of (8.124)). Denote by || - ||« the
function defined in (8.17) for the space (X\ X, M., j1«) and consider the topological
vector space L(X\ X, M, px) constructed according to the formula in (8.23). Also,
Jix exponents

d
_— 1, s , d 1, . 8.242
pe(d+ind(X,,o) ] e lp.oo). and qellool. (8242)

Consider a bounded linear operator

T:LO(X, 1) — LX\ X, D, s, || - [|) (8.243)
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having the property that there exist a constant C € (0, 00) such that

17all o0 & x jiywy < C  for every (p,p,o0)-atomaon (X, p,p). (8.244)
Then there exists a unique linear and bounded operator
T:H' (X, p. ) —> L7V (X. X, L. i ). (8.245)

which extends T in the sense that for each [ € (L‘f" X, w)NL (X, ,u)) N H?(X)

loc
(bearing in mind that the intersection with L}OC(X , ) becomes redundant whenever
qo > 1) there holds

Tf=Tf pointwise px-almost everywhere on X \ X. (8.246)

Proof As previously discussed, the space L?9 (X, X) = L®9 (X, X, i, u; k) is part
of the general class of topological vector spaces constructed in Theorem 8.5. With
the idea of invoking Theorem 8.16 we need to verify that 6 as in (8.26), satisfies the
condition listed in (8.150) where here the role of || - ||, is played by || - || ..o On the
one hand, observe that from (8.70) we have

_ ~l4max{l/q—1,0}+max{l/p—1,0} _ Al
C”'”L(l’ﬂ)(i,x) < chcp =2 max{1/q }+max{1/p } =2 /[7’ (8247)

given the assumptions on both p and ¢ in (8.242). Hence,

1 >plog, Cyy (8.248)

1.9 X.X) .
On the other hand, granted the homogeneity of the L9-quasi-norm, we have that
the condition listed in (8.26) is satisfied with 8 = 1. Altogether, (8.248) and the
fact that & = 1 imply that the demand listed in (8.150) of Theorem 8.16 is satisfied.
Then if we specialize Lo (X, My, (2, || - ||2) as in Theorem 8.16 to the case when

To=X\X, =M, ppc=jand |- 2= [ lpogy. (8249

then Lo(Z, My, wo. || - |l2) = LP9(X, X, fi, u; k) and the conclusions in (8.245)—
(8.246) follow from (8.154)—(8.155) in Theorem 8.16. ]

The following corollary is a specialized case of Theorem 8.26.

Corollary 8.27 Fix a parameter k € (0,00) along with two real numbers d and
m satisfying 0 < d < m. Assume that (X, p, ft) is an m-AR space, X is a closed,
proper subset of (X, T5), and that y is a Borel-semiregular measure on (X, t,) with
the property that (X, p, i) is a d-AR space. Additionally, fix exponents,

d
e (d+ ind (X p)’ 1} (6250
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qo € [p, ), q € [1, 0], and p1, q1 € (0, 0]. Consider a bounded linear operator
T:L®(X, ) — LP(X, X, i, ju; k) (8.251)
having the property that there exist a constant C € (0, 00) such that
||Ta||L(p,q)()~(,Xﬁ’M;K) < C forevery (p,p,o00)-atomaon (X,p,u). (8.252)
Then there exists a unique linear and bounded operator
T:H'(X,p, ) — LP)(X, X, i, w: ). (8.253)

which extends T in the sense that for each [ € (qu X, p)NL (X, ,u)) N HP (X)

loc
(bearing in mind that the intersection with L}, (X, j1) becomes redundant whenever
qo > 1) there holds

Tf=Tf pointwise fi-almost everywhere on X \ X. (8.254)

Proof The conclusion of Corollary 8.27 follows immediately from specializing
Theorem 8.26 to the case when L := L(Pl"“)(X, X, [, i K). O

As previously discussed, to simply notation we will sometimes identify the
extension 7 with the original operator 7. Our last auxiliary result is an estimate of
geometrical nature, on a nontangential approach region. For a proof (and for more
general results of this type) see [MiMiMil3].

Lemma 8.28 Let (X, j, i) be an m-AR space for some m € (0, 00). Assume that
X is a closed, proper subset of (X, 7,) with the property that there exists a Borel
measure |4 on (X, t,) such that (X,p, pL) is a d-AR space for some d € (0, 00).
Then for each k., B, M € R satisfying k > 0, B < m, and M > m — B, there exists a
finite constant C > 0 depending on k, M, B, and the Ahlfors-regularity constants of
L and [, such that

§ -B
/ LM dii(y) < Co(x,2)" P™ ., forall z,x € X withz # x. (8.255)
e (0)#(x,y)

Before stating Corollary 8.29, we take a moment to recall some notions from
[HoMiMiMol13]. Fix a parameter ¥ € (0, co) along with two real numbers d and
m satisfying 0 < d < m. Assume that (5(, P, i) is an m-AR space, X is a closed,
proper subset of (X, 75), and that y is a Borel-semiregular measure on (X, 7,) with
the property that (X, p, i) is a d-AR space. In this context suppose that

n: (5( \ X) x X —> C is Borel-measurable with respect to the relative

topology induced by the product topology z; x 7, on X\ X) x X,
(8.256)
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and has the property that there exist constants Cy, f, v € (0,00), and b € [0,v)
such that for all x € X \ X and y € X the following hold:

c, (dist;,(x, X))_b 8.257
el = s (S ) (2570
5@y, 2)P (dist,;(x, E))_b
s - ’ — C ~ 0
Inee3) =0 D1 = Gzr =555 \ ) (8.258)

VzeX with p(y,z) < %[)(x,y).

Then define the integral operator ® for all functions f € LP(X, u), with p € [1, o0],
by

©F)() = /X M) SOV du).  Yxe X\ X, (8.259)

It was shown in [HoMiMiM013,~Lemma 3.5] that the integral in (8.259) is
absolutely convergent for each x € X \ X. As a notational convention, if ¢ € Q(X),
then for any point x € X, and any radius R € (0, co) we set

Bg(x, R) :={ye X: o(x,y) <R}, (8.260)

in order to emphasize balls contained in X. Lastly, the reader is reminded that the
function defined by 8x(y) := dist(z),(y,X) for each y € X is fi-measurable on X
(cf. (8.58)).

We are now in a position to present the corollary alluded to above.

Corollary 8.29 Fix a parameter k € (0, 00) along with two real numbers d and
m satisfying 0 < d < m. Assume that (X, p, i) is an m-AR space, X is a closed,
proper subset of (X, 7;), and that  is a Borel-semiregular measure on (X, t,) with
the property that (X, p, i) is a d-AR space.

Furthermore, suppose that © is the integral operator defined in (8.259) with a
kernel n as in (8.256) satisfying (8.257) and (8.258) for some B, v € (0, c0), and
b € [0, v). Additionally, fix exponents

d
d+min{ind(X,p), B

ge|[l,©], relp,o00) and pE( },1:| (8.261)

and suppose that the linear operator

8y "0 L' (X p) —> LU (XX fi i) (8.262)
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defined by (8;_m/q®)(f) = 8;_7"/‘1 - (OF) for every f € L'(X, 1) is bounded.

Then 8;_m/ 1©® extends uniquely as a bounded linear operator
§v 90 HP (X, p, ) —> LPD) (X, X, i, ju: k). (8.263)

in the sense described in Corollary 8.27.

Proof Having established Corollary 8.27, we only need to show that there exists a
finite constant C > 0 having the property that

||5;_m/q®a||L(p_q>(§’x,ﬁ#;,() < C forevery (p,p,oc0)-atoma on (X, p, ).

(8.264)

Fix a (p,p, 00)-atom a on (X, p, ). Then, from the properties of the atom a
listed in (5.24) we have that there exist a point xp € X and a finite radius
R € [ry(x0), 2 diam,(X)] (, as in (2.71)) such that

—1/p
suppa € BX(wo,R), and  [lalleoqryy < 1(BX (o, R) . (8.265)

To proceed, note that given the manner in which the spaces P (5( X, [ s k)
are defined, we will consider separately the cases when g € [1,00) and ¢ = oo.
Suppose first that g € [1, 00). Then given some constant ¢ € (1, 00), to be specified
later, we write

P _
LOD (XX k) /B

P

|8 el L e i) dn

® ag qu—m gn %d
+ - / OO i) dn(
=1+ I, (8.266)

where we have set

I = [B };W)( /F K(X)I(®a)(y)lq5x(y)”’“_"’dﬂ(y))qdu(X) and  (8.267)

- ©a) ()85 ()" " dji(y)) " dju (). 8.268
- A\Bg(X(),cR)</;~K(X)|( a)(y)|6x(y) M(Y)) w(x) ( )

Using Holder’s inequality (with exponent r/p > 1), the upper d-Ahlfors-regularity

of u described in part 2 of Proposition 2.12, the boundedness of the operator

8;_'"/ ?®a in (8.262), and support and normalization of the atom a in (8.265), we
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may write

P

r

"= [/Bé(xwm(/ @m0 i) du(x)] (B (xo,cR)) ™

» ®R0-5) < clal, . RO05) <. (8.269)

=C| 8;_m/q@a| LD (R X fLju56)

X.p)

for some finite C > 0 independent of a. Observe that if X is a bounded set then
we can choose ¢ € (1, 00) large enough so that Bif(xo, cR) = X. In this case, the
estimate in (8.269) is enough to justify (8.264). Thus, assume that X is unbounded.
In particular, we have know that the atom a satisfies the following vanishing moment
condition

/ adp = 0. (8.270)
X

We are now left with estimating /. First, we look for a pointwise estimate for
Oa. Fix points x € X \ B;f(xo, cR),y € I (x),and z € B;f(xo, R). Recalling (8.241),
let C; € [1, 00) be such that C;' (p)s < p < Ci(p)4 on X x X. Then, we have

p(z.%0) = p(z.%0) < CoR < 1 C,C1(p)(x0. %)

IA

LC,C1Cp), max{(p)4(x0, ), (P)(y, %)}
< 1&,C1Cg, max{(5)s(x0, ), (1 + €)8x(y)}
< 1C,C1C5,(1 + k) (B)# (v, x0). (8.271)

Now, based on this and the equivalence p & (p)# (cf. (2.26) in Theorem 2.1), by
choosing ¢ € (1, oo) sufficiently large we conclude that

p(z.x0) < 5p(y.x0) forevery z € B)(x.R). (8.272)

At this point, we set y := min{ind(X.p),} € (0,00) and we use
the support, normalization, and vanishing moment condition for the atom a
(cf. (8.265), (8.270)), (8.272), the smoothness of the function n as described
in (8.258), the definition p := p|x, and the fact that (X, p, 1) is a d-AR space
in order to obtain

[(®a) ()| = ‘/X[n(y, 2) = n(y. x0)la(z) dp(z)

/ 170, 2) — (. x0)] a(2) da(2)
BX (xo,R)
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- p(x0,2)P8x(y)~°
<c /B

S P 7ot 1N
o

Y
e @2

< C8x(y) ™" ~
BX(x0.R) p(yv-xo

ey R0
— ,5(y, xO)d+v—b+y ’

VyeTl(x). (8.273)

Note that in (8.273) we have used the fact the function p(xo, -) is y-measurable on X
granted that all p-balls are p-measurable. In turn, (8.273) and the quasi-symmetry
of p yield

Br(y) D
@) ,5(X0, y)q(d+v—b+)/)

/ (©a)IBx(»)** " dji(y) < Cro (1) / dii(y)
T (x) r

qu+qd(l—%) )
S X EX\B, (0. cR).

(8.274)

where for the last inequality in (8.274) we have used Lemma 8.28 and the
equivalence p & (p)#. Estimate (8.274) used in I, further implies

1 1
I, < crrri(i=3) / S ST
X\BX (x0.cR) p(xo, x)pd+ry

e

where the last inequality in (8.275) follows from using (8.199) in Lemma 8.22 with
the particular choice of § := pd + py —d € (0, 00). In concert, (8.266)—(8.269)
and (8.275) give that (8.264) holds when ¢ € [1, 00).

Finally, assume that ¢ = oo. The proof of (8.264) in this scenario will proceed
along lines similar to the case when ¢ < oco. Given some constant ¢ € (1, 00), to be
specified later, we begin by writing

[850al o = [, AT 00 @) di (5.276)

BX (x0.cR)

b N0 (0 dp) =Ty + I
X \B)p( (x0.cR)
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where we have set

I := / N(8x()"Oa)’(x)dpu(x) and (8.277)
Bfg(xg,cR)

L= / N (8x(-)"©a)’ (x) dp(x). (8.278)
X\BX (x0.cR)

Then just as with the estimate obtained in (8.269) we may use Holder’s inequality
(with exponent r/p > 1), the upper d-Ahlfors-regularity of p described in part 2 of
Proposition 2.12, the boundedness of the operator §y ®a in (8.262), and support and
normalization of the atom a in (8.265), to write

" [/ N (8x()"0a) @) dﬂ(x)}rH(Bﬁ(XO,cR))l_f
BX(x0,cR)

< C|5204] rR0-5) < clar, . RO <. (8279

P
Lr00) (X X L 15K) (X.p)

for some finite C > 0 independent of a. Moreover, as mentioned in the case when
q < oo, the estimate in (8.279) is enough to prove that (8.264) also holds when
q = oo provided X is a bounded set. Thus, in what follows we will assume that X
is unbounded. In particular, we have know that the atom a satisfies the vanishing
moment condition in (8.270).

Moving on, to estimate I, we will first derive a pointwise estimate for
N (8x(-)"®a) on the set X \ BX(xo,cR). Fix x € X \ BX(xo,cR) and y € T (x)
and first observe that by the equivalence (p)s ~ p (cf. (2.26) in Theorem 2.1) we
have

8x(v) < (7)#(y,x0) < Ci3yuP(ys X0). (8.280)

In turn, (8.280) can be used to estimate
p(x0, %) < Cis), (D)#(x0, %) < Cls), max{(p)s(x0, ), (B)#(y, 0)}
< C), max{(p)#(x0,y), (1 + 1)8x(»)}
< G;Cl, (1 + 1) ply. x0). (8.281)
Then combining (8.280) and (8.281) yields

p(x0. %) + 8x(y) < 2C3C5, (1 + k) By, X0). (8.282)
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Consequently, (8.280) and (8.282) can be used along with the estimate obtained
in (8.273) and the fact that v — b > 0 in order to write

Sx(y)v—hRy-i-d(l—;l,) Ry+d(1—},)
<

C
Py, xo)dTv=bty T 7 By, x0)4 Y

18x(»)°(@a)(y)| = C

R”"(‘—%) RV”(‘—%)
<C— 77 = Cop (8.283)
(5(x0.x) + 8x(»)) pxo,

where y is defined as in the first part of this proof. Hence, taking the supremum over
all y € T’y (x) we have

()

plxg, x)4+7”

N (8x(-)"®a)(x) < C VxeX\Bl(x.cR). (8.284)

Finally, with the estimate (8.284) in hand, it follows from (8.199) in Lemma 8.22,
used here with § := pd 4+ py —d € (0, o), (keeping in mind p := p|x) that

jz < Cpr-l—pd(l—},)/ d:u*(x)
X\BX (x0.cR) p(xo, x)pd+ry

pr-l—pd(l—%’)

In summary, (8.276)—(8.279) and (8.285) permit us to conclude that (8.264) also
holds when g = oo, which completes the proof the corollary. O

In Theorem 8.37 of Sect. 8.2.5, we illustrate the scope of Corollary 8.29 in the
context of Partial Differential Equations by treating the Dirichlet boundary value
problem for systems, in the upper-half space and with data in Hardy spaces.

8.2.5 The Dirichlet Problem for Elliptic Systems
in the Upper-Half Space

In this subsection, we shall indicate how the abstract machinery developed in The-
orem 8.16 lends itself to the treatment of the Dirichlet boundary value problem for
second-order, homogeneous, elliptic systems, with constant complex coefficients, in
the upper half space

Ry :={(.)eR"=R""xR:t>0}, neN,n>2, (8.286)
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with boundary data in the Hardy space H” (R"). For the remainder of this subsection,
whenever the notation R”, is employed it is understood thatn € N, n > 2.

The results established in this subsection in the Euclidean space also serve as
an illustration of the necessity of our general, abstract Hardy space theory to be
consistent with what is to be expected in this classical context. Indeed, as the
subsequent discussion indicates, any such artificial inconsistencies (rooted in the
lack of specificity of the general setting in which our main theorems have been
deduced) would further propagate and interfere with the most natural formulation
of the PDE results we have in mind.

To set the stage, a few definitions are in order. Let M be a fixed strictly positive
integer and consider the second-order, homogeneous M x M system, with constant
complex coefficients, written (with the usual convention of summation over repeated
indices in place) as

Lu = (9(af d,ug) ) (8.287)

when acting on a C? vector-valued function u = (ug)1<p<um defined in a open subset
of R", n € N, n > 2. An operator L as in (8.287) is said to be el1iptic provided
there exists a real number x9 > O such that the following Legendre-Hadamard
condition is satisfied:

Re[ai £.£7ang] = Kol€[?|n|>  for every
&= (Sr)lfrﬁn eR" and 5= (noc)lﬁoch e CM,

(8.288)

Two prototypical examples to keep in mind are the Laplacian L := A in R”, and the
Lamé system

Lu = puAu+ (A + p)Vdive, u = (uy,...,u,) € C*, (8.289)

where the constants A, € R (typically referred to as the Lamé moduli), are
assumed to satisfy

w>0 and 2u+ A >0, (8.290)

a condition actually equivalent to the demand that the Lamé system (8.289) satisfies
the Legendre-Hadamard ellipticity condition in (8.288).

Going further, given a function u defined on R”_, by N'u we shall denote the
nontangential maximal functions of u given by

(Nu)() == sup |u(y,1)], Vi e R (8.291)
(y’,z‘)E]RﬁF
' —y'| <t
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Also, whenever meaningful, set

Wy @)= lim w0 for ¥ e R (8.292)
+ RY 3(/.)—(.0)

=<t
Finally, in the Euclidean setting we simplify a few pieces of notation by writing
¢ (R = ¥R, |- —-]), «e€(0,1],
@) =R LY, pe (0,00,
By (X,r):={/ eR" ¥ —y|<r}, VX eR"! Vre (0, 00),
dx’ = dL (), (8.293)

where, for each n € N, we denote by £" the n-dimensional Lebesgue measure on R”.

Building upon the classical work pertaining the Laplacian (see, e.g., [St70,
GCRAF85]), recently in [MaMiMiMil3], J.M. Martell, D. Mitrea, 1. Mitrea, and
M. Mitrea have established the well-posedness of the following boundary value
problem for L in R” ,

ueC® (Rﬁ-)’

Lu=0 inR",
D 8.294
O\ Wue @), (8299

u
IR",

— f c L‘D(Rn_l),

for every p € (1, 00). Moreover, employing the notation F;(x) := t'™F(x’/t) for
each ¢ € (0, 00) where F a generic function defined on R""!, they have shown that
the solution u is given by

u(@.f) = Pt = )x'), V.0 eRL, (8.295)

where P denotes the S. Agmon, A. Douglis, and L. Nirenberg Poisson kernel
associated to the operator L as in (8.287)—(8.288) (cf. [ADNS59] and [ADN64]), an
object which shares similar characteristics of the classical harmonic Poisson kernel

2 1

, VX eR'L, 8.296
o A F e (8:290)

PAW) =

where w,— is the area of the unit sphere in R". See Definition 8.30 for more details
regarding the properties of P~
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Corresponding to the case when p = 1, the well-posedness of the Dirichlet
problem for L as in (8.287)~(8.288), with data from the Hardy space H' (R"'),

ue C®(RY),
Lu=0 inR",

L
PN pu e L (m),

(8.297)

n.t

u aﬁégr = f eH([R"),

has also been treated in [MaMiMiMi13] where the solution « is given as in (8.295).
What is of particular interest to this current work is the verification of the third
condition in both (8.294) and (8.297). In the case when p € (1, 00), the estimate

WNu)(x') < C(M f) (), Vx e R, (8.298)

where the symbol M := M,._ denotes the Hardy-Littlewood maximal operator
in R*! (canonically identified with BRf‘F) (see (3.42)), ensures Nu € LP (R”_l),
granted the I”-boundedness of M. When p = 1 however, this estimate alone is
no longer enough to guarantee the membership of Au to L! (R”_l). In this case, the
authors of [MaMiMiMi13] have shown that the third condition of (8.294) follows as
a particular case of the abstract boundedness result in Theorem 8.16. Remarkably,
the formulation of Theorem 8.16 is robust enough so that it permits us to also
consider values of p which are strictly less that 1 while retaining the membership
of Nuto P (R”_l) for such a range. This is established in Theorem 8.34 and relies
upon Proposition 8.32 below (which follows as a corollary of Theorem 8.16), as
well as some auxiliary results found in [MaMiMiMi13] which we include here for
the sake of completeness.

The main goal here is to build upon the work in [MaMiMiMil3] and show
that the Dirichlet problem for L as in (8.287)-(8.288) continues to be solvable
for boundary data in H? (R”_l) with p € (% 1). Granted that H? (R”_l) is no
longer a space consisting of functions when p < 1, the boundary value problem
in (8.294) must be reinterpreted, as the boundary condition in this case would not be
meaningfully defined. Instead, we consider the following Dirichlet boundary value
problem for L in R” ,

ue Ce(RY),

Lu=0 inR",

Nu e IP(R™),

lim u(-,1) = f € H*(R"™') in S'(R*),

t—0t

(DY) (8.299)
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where &’ (R"_l) denotes the space of tempered distributions in R"~!. The boundary
condition in (8.299) is to be understood as

lim u(X, () dx' = s{@. f)g Vo eS[R™Y), (8300
t—0t Rr—1

where S(R"~) stands for the class of Schwartz functions and
S(.")S/ = S(Rn*l)(',~>s/(Rn_l) (8.301)

denotes the natural duality pairing between these spaces.

Moreover, the “product” u(x’,t) ¢(x') in (8.300) is to be interpreted as the
pointwise pairing between two CM_valued functions, i.e., as CM(M(X/ ), (X ))(CM’
for (X', 1) € Ri' We choose not to stress this in our notation. In this vein, observe
that from (2.45)—(2.47) we have

S(E) < @U@ = (@) 8300

(where the above characterization of (H” (R”_l))* is a particular case of Theo-
rem 7.22) since

||§0||cg(n71>(1/p71>(Rn71) = max {2”(/’”007 ||</’||Lip(R"—l)}
< max {2]¢fleo. [ Volloo}. Ve e SR™).  (8303)
In particular, the right-hand side of (8.300) is well-defined. This also shows that the

pairing in (8.301) is consistent with the duality pairing between the vector spaces
(HP (R 1)* = (5(”_1)(1/1’_1)(}1%"_1) and HP(R" 1), i.e.,

(HP)*(', '>H” = (Hp(Rnfl))*(', '>H1’(R”_l)' (8304)

Inspired by (8.295), in Theorem 8.35 we shall show that (8.299) has a solution
given by

u@ 1) =@y (Pr =), f) e V(1) eRL. (8.305)

We begin with a discussion regarding the notion of a Poisson kernel in R’} for
an operator L as in (8.287)—(8.288). Before proceeding, recall that given n € N, we
denote by L" the n-dimensional Lebesgue measure on R”.

Definition 8.30 Let L be a second order elliptic system with complex coefficients
asin (8.287)—(8.288). A Poisson kernel for Lin R’ is a matrix-valued function

P = (PLg)i<apm : RN — CM (8.306)
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such that:

C
(a) there exists C € (0, 0o) such that |[PL(x)| < TT W~ foreach ¥’ € R 1;

(b) the C¥*M _yalued function P* is £"~'-measurable and / PL(Y)dY = Ly
Rn—1
the M x M identity matrix;

(c) if K(x',1) := PE(xX'), for each (¥, 1) € R",, then the function K = (Kup)1<ap<m
satisfies (in the sense of tempered distributions)

LK. g =0 in R} foreach B €{l,..., M}, (8.307)

where K.g := {Kyp}1<a<y foreach g € {1,...,M}.

We next record a corollary of the more general work done by S. Agmon,
A. Douglis, and L. Nirenberg in [ADN64].

Theorem 8.31 Every second order elliptic system with complex coefficients L as
in (8.287)~(8.288) has a Poisson kernel PL in the sense of Definition 8.30, which
has the additional property that the function K(x', 1) := PE(xX'), for all (x',1) € R",
satisfies K € Cw(@ \ B(0, 8)) for every ¢ € (0,00). Hence, PL € C*® (R”_l).
Moreover, K(Ax) = A'™"K(x) for all x € R", and A € (0,00). In particular, for
each multi-index a € Ny, there exists a finite constant C = C(a) > 0 with the
property that

. Cl|'="~lel if Ja| > 0, o
0K ()| = Cinlr i amp, YT EDEEADL 6309
X if =0,

where |o| denotes the length of .

With these preliminary matters aside, we begin addressing the treatment of the
Dirichlet problem in (8.299). To set the stage we discuss a boundedness result
which will be useful in establishing the third condition in (8.299). Since this is of
independent interest we choose to formulate and prove it in greater generally than
actually required for the task at hand.

Proposition 8.32 Fix two real numbers d and m satisfying 0 < d < m. Assume
that (X, p, j) is an m-AR space, X is a closed, proper subset of (X, 15), and that
W is a Borel-semiregular measure on (X, t,) with the property that (X, p, ) is a
d-AR space. Also, assume that |1 has the additional property that all p-balls are
u-measurable and fix exponents

d
- 1 d , 00). 8.309
pe(d+ind(X,p) } and q € [p,00) ( )

Suppose further that T is a linear operator mapping functions defined on X into
functions defined on X \ X which satisfies the following. There exists a constant
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Cy € (0, 00) and such that

(nea f)“m(x,u) < Collflleaxy forevery f € Li(X, ). (8.310)

and

HN(Ta) HU,(X’M) < Coy forevery (p,p,o0)-atomaon (X,p,1). (8.311)

Then there exists a unique linear operator, T, which maps elements of HP (X, i)
into functions defined on X \ X and extends T in the sense that for each function
f € (Lq(X, w) N L (X, p,)) N HP(X) (bearing in mind that the intersection with

L} (X, i) becomes redundant when q > 1) there holds
Tf=Tf pointwise fi-almost everywhere on X \ X. (8.312)

Moreover, T has the property that for some constant C € (0, 00), there holds

IN@ D g < CUf iy forevery feH (X, ). (8.313)

Proof The estimate in (8.313) follows from Corollary 8.27. More specifically, if
we denote by g, the exponent g appearing in Corollary 8.27, then the assumptions
in (8.310) and (8.311) are specializations of (8.251) and (8.252) to the case when
qo := q € [p,o0) and g := ¢q; := co. As such, the estimate in (8.313) is a rephrasing
of (8.253). O

Comment 8.33 It is worth observing that, in the context of (8.152) in Theo-
rem 8.16, it was important to have £(X, 9, i1, || - ||1) as the target space. Indeed,
if in place of (8.152) one considers a less general class of operators, say

T:LY(X, 1) — LI(X, ), (8.314)

then Proposition 8.32 would not fit into the framework of the main result, The-
orem 8.16. The reason is that if Theorem 8.16 were to be formulated in this
less general setting then adapting matters to the specific format of (8.314) would
require incorporating the nontangential maximal operator into 7 by considering
S := N(Tf). The issue however, is that, as opposed to the original operator T,
the new operator S is no longer linear which violates an important assumption in the
statement of Theorem 8.16. |

Before presenting the first main result in this subsection, it is instructive to note
that from (2.45)—(2.47) we have for each p € (% 1]

L (R"™") NLip(R™") € g DO/P=D(R1) = (BP(R™))*.  (8.315)
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Moreover, the inclusion in (8.315) is quantitative, in the sense that it is accompanied
by the following estimate

I £l ga—nasm—1 ge—1) < max £20f Nloos IS Iipan—1y - (8.316)

forevery f e L™ (R”_l) N Lip(R”_l).

As indicated earlier, in the context of (8.294), the membership of N'u to L” (R”_l)
for p € (1, 00) has been established based on (8.295). Of course, this method is no
longer viable in the case when p < 1 and below we prove a theorem designed to
offer an alternative approach to establishing such a membership in this range.

Theorem 8.34 Fix a number n € N satisfying n > 2, along with exponents

-1
pE (n , 1i|, and q € (1/p, ). (8.317)
n

Suppose L is a second order elliptic system with complex coefficients as in (8.287)—
(8.288) and denote by P the Poisson kernel for L in RY . In this context, consider
the linear operator T mapping CY-valued functions belonging to L1 (R”‘l) into
CM_valued functions defined on R, which is given by

THE 1) = (PTL * f)(x’), Vfe Lq(R”_l), V., eR,. (8.318)
Then there exists a unique linear operator, T, which maps elements of HP (X, i)
into CM-valued functions defined on R, and extends T in the sense that for each

f € LY(X, n) N HP(X) there holds
Tf=Tf pointwise L"-almost everywhere on R} . (8.319)

Moreover, one can find a constant C € (0, 00), with the property that
INT O @y < I f @, Ve PR, (8320)
In particular, N(T f) € LP (R”_l). Additionally, the extension of T is given by

THE D = @y {Pre =), fp (8.321)

for every f € HP (R”_l) and for L"-almost every (x', 1) € R’}
Proof Consider

(Xvﬁv/:l):: ®+7|'_'|7£n) and (X,p,,LL):: (Rn_l EBW+,|._'|,£n—1),
(8.322)
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where | - — - | denotes the n-dimensional Euclidean distance. Then in light of
Proposition 8.32, it suffices to show that T satisfies the estimates listed in (8.310)—
(8.311). Note here that the demand on p in (8.309) is exactly that of the one
in (8.317) given the current context.

To this end, recall first that it has been shown in [MaMiMiMi13] that there exists
a finite constant C > 0, which depends on  and L, such that for each f € LI(R"™}),
there holds

N(Tf)<CMf pointwise on R"!, (8.323)

where M stands for the Hardy-Littlewood maximal function (constructed in the
context of R*~1). As such, the estimate in (8.310) follows from the boundedness of
M on L1(R"1), given that ¢ > 1.

There remains to show the existence of a finite constant C > 0, such that

|V (Ta) <C forevery (|-—-|,p,q)-atoma on R""" (8.324)

U)(]Rn—l)

To justify (8.324), fix a (| - — - |, p.g)-atom a € LI(R""!') on R""! and suppose
x; € R" ! and r € (0, 00) are such that

suppa CB:={x e R"": |¥)—¥| <r} and |ap@-r, < [£B)]7
(8.325)

To simplify notation we let 100B := {x’ € R"™! : |x{ — x| < 100r}. Moving on,
we will consider separately the estimation A/(7a) near and away from 100B. Near
100B, observe that

/1 . N (Ta)l? dL"" < C|N (Ta)]l?, | £7\(B)] 1-p/q (8.326)

< ClMal, o[£ B)] T < Cllall, e [£7' B] T < C.
for some finite constant C > 0 depending on p, ¢, n, and L. Note that, first inequality
is a consequence of Holder’s inequality (applied with exponent ¢/p > 1), the second
inequality made use of the estimate (8.323), the third inequality follows from the L9-
boundedness of the Hardy-Littlewood maximal function, and the last inequality is a
result of the L7-normalization of the given atom a in (5.24).

To estimate the contribution away from 1008, fix a point ¥ € R"™' \ 100B
and as before, set K(x',1) := PE(x') for each (x,7) € R”.. Then using (8.308) in
Theorem 8.31 as well as the Mean Value Theorem together with the properties of
the atom « in (5.24) and Holder’s inequality, we may estimate for each (', 7) € R,
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satisfying |xX' — y/| < t,

|(PtL * a)(y/)| — ‘ /Rn,l [K(y’ — 7. f) — K(y/ —x{), t)]a(Z/) d7

< /B KO/ = 2.1) = KO = ¥y, )| - [a@)] &2

< [ lalac
(t+1y _x0|)n B

Cr

Ln—l B 1-1/p
S

CrlH =1 (1=1/p)

= m (8.327)

Note that the third inequality in (8.327) follows from part / in Proposition 5.2 (used
here with s := 1). In turn, (8.327) implies that for each x’ € R*! \ 100B we have

WNTa)(x') = sup |(Pf*a)(y)
(/.ERY
[ =y <t

CriHa=D0=1/p)  Cpl+n=1)(1=1/p)

< sup = , (8.328)
O/ HERY, (t+ 1y —xpD" ¥/ — x|
X' =y |<t
hence,
r’lp+l—n
/ |N(Ta)ip act < C/ ,—/dx’, (8.329)
R#—1\100B Rr—1\100B |_x _xolnp

for some C = C(n,p) € (0,00). Going further, since p as in (8.317) implies that
np + 1 —n > 0, a straightforward calculation using polar coordinates in R"~! will
show

rnp+l—n
rRe—1\1008 |X' — X0 "7

where C = C(n, p) € (0, 0c0). Combining this with (8.329) we have

/ IV (Ta)[" dcm < C. (8.331)
R"—1\100B
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In concert, (8.326) and (8.331) all us to deduce that
/ V(1) dc™ < C, (8.332)
Ru—l

for some finite constant C > 0 independent of the atom a. This finishes the proof
of (8.324).

We focus next on establishing the equality in (8.321). First, a few remarks are in
order as to why the pairing appearing in (8.321) is well-defined. That is, as to why
Pt e (HP (R”_l))* for each t € (0, 00). Observe that this membership will follow
once we show PX € L®(R"™") N Lip(R"') given (8.315). In this regard, it is clear
from part (a) in Definition 8.30 that P- € L*°(R"~") for every ¢ € (0, 00). On the
other hand, the membership of P* to Lip(R"™!) (i.e., the fact that P* is Lipschitz
on R"™!) can be seen by using the Mean Value Theorem in conjunction with the
estimate in (8.308).

Turning to the equality in (8.321), observe that given the density result in
Theorem 5.21, it suffices to verify (8.321) for each f € LY(R"™') N HP(R"™!).
To this end, fix an arbitrary function f € L7(R"~') N H?(R"~") along with a point
(x', 1) € R’ for which (8.319) holds. Then by Proposition 7.24 we may write

THE D =T, = (P * [)&)

= wPE =), £ = @ PECC =), £y (8.333)

where the second equality in (8.333) follows from Riesz Representation Theorem.
Note that application of Proposition 7.24 is valid since

Phe (@) N/ @), ¢ == = e (1.00).
.

where the membership to L4 (R"") follows from part (a) in Definition 8.30. This
finishes the proof of (8.321) and, in turn, the proof of the theorem. O

We are now in a position to address the solvability of the Dirichlet boundary
value problem (8.299).

Theorem 8.35 Fix a number n € N satisfying n > 2 along with an exponent

n—1
pE ( , 1) (8.334)

n

and suppose L is a second-order elliptic system with complex coefficients as
in (8.287)—(8.288). In this context, consider the following Dirichlet boundary value



8.2 Boundedness Criteria and Applications 427

problem for L in R",,
u € C®(R%),
Lu=0 in Rﬁ_,
(Dﬁ) Nue (R, (8.335)
lim u.1) = feH(RY), in S'(R).
Then
u(x', 1) := gy PE(X =), s V(1) eRY, (8.336)

where P" is the Poisson kernel for L in R"., is a solution to (8.335) which satisfies
INullpp@e—1y < Cll f o o1y (8.337)

for some constant C € (0, 00) independent of f.

Proof Fix f € HP (R"_l). Then the fact that u as in (8.336) is well-defined and
satisfies the third condition listed in (8.335) along with the estimate in (8.337)
follows immediately from Theorem 8.34.

We focus next on justifying that u € C*° (Rﬁ_) and that Lu = 0 in R, . As before,
we set K(x) 1= K(x', 1) := PE(X') for each x = (x',7) € R", and we write

u(¥'. 1) = u(x) = @y{K(x—(.0). ). Yx= .10 eR]. (8.338)
Employing this notation we claim that
@) @) = @y (K) (x— (. 0). f),, Vje{l.....n}, VxeR\, (8.339)

where 0; denotes the jth partial derivative. Observe from (8.339) we can further
deduce u € C*® (Rﬁ_) by successive iterations. Moreover, the formula in (8.339)
in conjunction with (8.307) in Definition 8.30 gives Lu = 0 in R’ . With this in
mind, we note that in order to establish (8.339) it suffices to show for each fixed
Jj€{l,....njand x € R,

i K+ e = (.0) — K(x - (-,0))
=0 h

= (9K)(x— (- 0)),  (8.340)

with convergence occurring in ¢ ~D/P~D(R*) = (HP(R"™"))” in the “dot”
variable. Here, ¢; € R" denotes the vector whose only nonzero entry is a 1 in
the jth position. In light of (8.315)—(8.316), matters can be reduced to showing
that we have convergence in L*° (R”_l) N Lip(R”_l). This however, follows from



428 8 Boundedness of Linear Operators Defined on H? (X)

a straightforward argument using the Mean Value Theorem and the estimate
in (8.308).

There remains to verify that u satisfies the boundary condition in (8.335). Fix
¢ € S'(R™"). We need to show

lim (@', p() dx' = g £ ) oy« (8.341)

t—>0+ Rn—l

For the sake of exposition we will set o := (n—1)(1/p—1) € (0, 1). An implicit
issue in (8.341) is that the integral on the left-hand side of the equality is absolutely
convergent for each fixed 7 € (0, 00). Indeed, from the definition of u in (8.336) we
have

lu(x',0)| < ||PtL(x’ - )}

ce@-n IS lmr@-n, ¥ &.0eR. (8342

On the other hand, (8.315)—(8.316) along with (8.308) permits us to estimate for
each (x',7) € R’}

| P — < Cmax{|[PHG = )| o [V-PHE =) o} = €

(8.343)

') ||c®ﬂ'u(Rn—l)

where C = C(f) € (0,00). Here, V. denotes the gradient in the “dot” variable.
Then by combining (8.342)—(8.343) we can see that for each fixed t € (0, c0), that
u is bounded as a function of X' € R"~!. In particular, since ¢ € S(R""') we have
u(-,1) ¢ € L'(R"™") for each fixed 1 € (0, 00), as desired.

Going further, we write

. . I
Jim, - u(x', (') dx' = Jim e Gl Pr =), f ) 0() X
= lim o (PtL(x’ — )T p), f>HP dx

t—0t Jru—1

= 1lm ‘6“1 </ Pf(x/ _ .)TQD(_X/) d_x/’ f>
t—0t Rr—1 HP

= gal0, fli = slo. fs- (8.344)

We now take a moment to make some comments regarding the justification for the
equalities listed in (8.344). Note that the first two equalities in (8.344) are simply a
rewriting of the expressions therein contained, and the last equality is a result of the
compatibility of the pairings between (H”)* = ¢ and H?, and &’ and S. As such,
we focus on the third and fourth equalities.
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In order to justify the fourth equality in (8.344) we need to show that

lim PL — )T o() dY = g, (8.345)
=01 Jrn—1

with convergence occurring in ¢ (R”_l) in the “dot” variable. Observe first that
since we have PX € L®(R"') and ¢ € S(R"') it is clear that the integral
in (8.345) is absolutely convergent for each fixed ¢ € (0, 00). Moving on, in light
of (8.315)—(8.316), the desired conclusion in (8.345) will follow once we establish
that the limits

tliIglJr 1 PtL(x/ — y/)T(p(x/) dx' = ¢(y'), (8.346)
—> Rr—
and

lim 9, [ P =) o) Y = (T0)0) (8.347)

converge uniformly in y/ € R"7!, i.e., converge in L;?,O (R”_l). Again, here we
employ the notation V to emphasize that the derivatives taken in the y’ variable.

Regarding (8.346), by using a change a variables along with (8.303)—(8.302) and
parts (a)—(b) of Definition 8.30, we can estimate the limit of the difference of the
quantities in (8.346) as follows. For each y/ € R*!,

lim sup
=0+

[ PR = o) = o)

<timswp [ |PC- ot +3) — 90)]
Rn—1

t—0t
< Clpll ooy limsupt [
=0+ re—1 (14 |Z])
1 / .
< C“(p”‘g'a(]]{nfl) /R’H Wdz {rl_l,rg};. ta} — 0. (8.348)

granted o € (0, 1) implies that the integral [p,— (1 + |2/|)*™" dz’ < co. From this
analysis the limit in (8.346) follows.
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As concerns (8.347), first observe that, for each fixed t € (0, oo) and each fixed
ke{l,...,n—1}, we have

ay;c /I; ~ PtL(X/ _y/)T(p(x/) dx/ — / ay,/c[PtL(x/ —y/)T]QD(X/) dxl

Rr—

= /R . —dy [P,L(x’ — y’)T]qo(x’) dx'

= / Pr( =) (0 9) () d, (8.349)
]R”*l

where in obtaining the last equality in (8.349) we have integrated by parts. Having
this, then arguing similarly as in the proof of (8.346) (with BX’/Cgo es$ (R”_l) in place
of ¢) will yield

Jim [P () ) = () 0, (8.350)

uniformly in y’, from which (8.347) can be further deduced.

There remains to justify the third equality in (8.344). Given the goals we have
in mind there is no loss of generality in assuming that ¢ actually has compact
support. Note that this reduction involves working with truncated versions of ¢ via
multiplication by sufficiently smooth “cut-off” function. For instance, we can take
as a candidate Oz(x’) := 0(x'/R), for every ¥ € R""! and every R € (0, c0) where
6 € C®(R" ") suchthat0 <6 < landf =1 onB,—(0,1).

Granted this reduction, fix # € (0, o) and choose a cube Q € R"~! large enough
so that supp @ < Q. It is clear that the function P-(- — y)T¢(:) is continuous in the
“dot” variable on the cube Q for each fixed y € R"~!. As such, by definition we can
write

/QPfoc’ —)"e()dd =lim  LTHO)PHE =) 9(E). (835D
9
§/ €0

where the limit of the finite Riemann sums over partitions {Q;}; of the cube Q, is
taken as the size of these Q;’s tend to zero. Then the desired conclusion will follow
once we show that this limit of Riemann sums converges in 4 (R""") in the “dot”
variable.
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Fix y/ € R"~! and observe that for each partition {Q;}; of Q, we can write

S e @PE ~ ) oie) - [ P =)ot a
0 J
§eo

-y /Q PEE ) (0(E) — o)) ¥
0Oj i

£ €0

+ 2 [ (PG =3 = P = ey a
0; Qj
£eQ;
— [ 4+1IL. (8.352)

Now to justify (8.351) it suffices to show that the limit of the right-hand side
of (8.352) converges to zero in € (R”_l) in the y’ variable as the size of Q; tends
to zero. By again making use of (8.315)—(8.316) matters can further be reduced to
showing that the LS°-norms of I and II as well as Vy/I and VIl tend to zero as the
size of the Q;’s tend to zero.

For 1, since | P} (§/ — y')"| can be bounded independent of £ and y’ (cf. (8.308)),
if ¢ € (0, 00) is any fixed number, then by virtue of the Mean Value Theorem we
have

1=Vl Y [ 15 -1a
[oh Qi

£eQ

= ClIVelloo Y- {£71(Q)) sup 1§ — X1} = CI Vool (@6, (8.353)
90 veg

£eQ

whenever the size of these Q;’s are small enough. Hence, || tends to zero as the size
of these Q;’s tend to zero.

A similar argument for I/ (this time invoking the Mean Value Theorem PL) will
show that |II| also ends to zero uniformly in the y’ variable as the size of the Q;’s
tend to zero. Finally noting that estimation of VI and V,/II follows using similar
techniques as in the estimation of I and /I completes the proof of (8.351), which, in
turn, finishes the justification of third equality (8.344). This concludes the proof of
the theorem. O

In Theorem 8.37 we establish the solvability of a Dirichlet boundary value
problem in R’} for elliptic systems and with data in Hardy spaces, which retains
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some of the features of the problem posed in (8.335) where in place of the size
condition N'u € L7 (R"") we now seek a solution u satisfying

5 r/2 1/p
[ / ( / £ (Vu) (', 1) dx’dt) dz’} < 00. (8.354)
Rn—l FK(Z/)

In order to establish this result we will rely upon Corollary 8.29 in Sect. 8.2.4 and
the following lemma.

Lemma 8.36 Fix a number n € N satisfying n > 2. Suppose L is a second order
elliptic system with complex coefficients as in (8.287)—(8.288) and denote by P* the
Poisson kernel for L in Ry (given as in Theorem 8.31). For j € {1, ...,n}, consider

O,/ 1) = /R”_l(a;K)(x/—y’,t)f(y’)dy/, V(1) eRL. (8355

Fix k € (0,00) and r € (1,00). Then there exists a finite constant C > 0 such that
foreach f € L"(R"™"), there holds

r/2 1/r
[ / ( / tz_"|(®jf)(x/,t)|2dx’dt) dz/} <Cllf @ (8356)
]erfl FK(Z/)

Proof This is a consequence of I”-square function estimates from [HoMiMiMo13].
O

We now record the theorem regarding the solvability of a Dirichlet boundary
value problem in R‘j_ for elliptic systems and with data in Hardy spaces.

Theorem 8.37 Fix n € N satisfying n > 2 along with parameter k € (0, 00) and
an exponent

n—1
pe( , 1:|. (8.357)

n

Also, suppose L is a second-order elliptic system with complex coefficients as
in (8.287)—(8.288). In this context, consider the following Dirichlet boundary value
problem for L in R" ,

u € C®(R1),
Lu=0 in RY,

p/2 /p
[ fw_l( fFK(Z,)tz_"|(Vu)(x’,t)|2dx’dt) dz’} < o0,

lim u(.0) = f € BP(R™) in S'(R™).

—0+

(8.358)
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Then
u(¥' 1) := @y (Pr =), f ) vV (X', 1) eR, (8.359)

where P" is the Poisson kernel for L in R"., is a solution to (8.358) which satisfies

) p/2 1/p
[ / ( / £ (Vi) (Y, 1) dx’dt) dz’} < C|l fllap@—1y.  (8.360)
Ru—l FK(Z/)

for some constant C € (0, 00) independent of f.

Proof By Theorem 8.35, we only need to check that the solution u, given as
in (8.359), satisfies (8.360). To this end, fix a number r € (1/p, oo) and consider the
operator which assigns to each g € H?(R"~") N L"(R"™") the function

O, 1) := (Vw)(, 1), ', eR", (8.361)

where for each (¥, 1) € R, we have set (keeping in mind the definition of the
function K as in Theorem 8.31)

W' 1) = @ {Pr (= ). 8, = /R KW =Yg dy. (8362)

Note that the last equality appearing in (8.362) follows from the compatibility of the
pairings (Hp)*(‘, ')Hn = (U)*(-, -)U (cf. Proposition 7.24).
Then Lemma 8.36 implies for some C € (0, 00), the operator ® satisfies

r/2 1/r
— 2—n 2
L(r.z)(@+) = |:/lé”_l (/I: " 12 ‘(@g)(_xl, l)| dxldl) dz/i|

< Cllgllzr@e—1ys (8.363)

85,2 ©x]

for every g € HP (R”_l) N L’(R”_l). Consequently, using the density result in
Theorem 7.36 we can conclude that the operator 5]11%1{ :

bounded linear operator

® extends uniquely as a

50 L(RTY) — LU (R, (8.364)
Now take X := R", X := R"! = gR", v := 1, m := n,d := n— 1, and
g := 2. Observe that © is of the form (8.259) with n(x,y) := (VK)(xX' — ¥, 1)
ifx = (W.1) € X,y = (//,)0) € X, and u := L""'. Moreover, by using the
Mean Value Theorem in conjunction with (8.308) in Theorem 8.31 we have that
n satisfies (8.257) and (8.258). Lastly, we apply Corollary 8.29, keeping in mind

that the key condition pertaining to the boundedness of the operator in (8.262)
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follows from (8.364). Then in this context (8.360) becomes a consequence of the
boundedness of the operator in (8.263). ]

8.3 Integral Operators of Calderén-Zygmund Type

In this section we discuss how the atomic theory of Hardy spaces developed in this
work can be used to obtain results concerning the boundedness of certain Calderén-
Zygmund integral operators in the context of spaces of homogeneous type. Given
a space of homogeneous type (X, p, i), we are concerned with establishing criteria
under which integral operators having the form

(T = /X K(.y) () duy). x € X, (8.365)

extend to bounded mappings 7 : HP(X) — HP(X). In this regard, we have
already seen in Theorem 8.10 in Sect. 8.2 that any linear operator which bounded
on L4(X, u) for some g € [1,00) and is uniformly bounded on all atoms in the
HP-quasi-norm extends as a bounded operator on H”(X). By making use of the
molecular characterization of H”(X) (cf. Theorem 6.11), we will show that given
the specialized form of 7 in (8.365) we do not need to know a priori that T is
uniformly bounded in H”(X) on all atoms in order to conclude that 7 extends as a
bounded operator on H”(X). Rather, under suitable size and smoothness conditions
on K, it suffices to know that the operator T is bounded on L?(X, u) for some
g > 1 and preserves the vanishing moment condition in the class of functions having
bounded support.

From a historical perspective, in the classical setting in which one takes
(X, p, ;) = (RY, |-—-|, L%), singular integral operators of the brand considered here
have been treated at length using the well-known real-variable methods of Calderén
and Zygmund (see, e.g., [CalZyg52, DaJo84, DaJoSe85, GCRAF85, Gra04, St70,
St93]) where specifications on the kernel K have been made in order to guarantee 7'
extends as a bounded operator on H” (Rd) foreveryp € (di-l—l’ oo)

Stemming from this work, there have been attempts to establish such results
regarding the boundedness of 7' on H”(X) in the more general setting of spaces of
homogeneous type. In fact, the motivation behind the conception of such spaces was
precisely to develop the theory of Calderén and Zygmund in more abstract context.
When p € (1, 00] the focus has been on a special class of Calderén-Zygmund
integral operators. The terminology regarding these operators varies in the literature
and as such, we will take a moment to record some definitions.

In the sequel, given a nonempty set X, let diag (X) := {(x,y) e X x X : x = y}.

Definition 8.38 Let (X, q, ;) be a d-AR space for some d € (0, c0) and consider
a number y € R satisfying 0 < y =< ind (X, q), where ind (X, q) is as in (2.140)
and < is as in Convention 3.13. A function K € L} (X x X \ diag(X), ) shall be

loc
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referred to as a standard Calderdén-Zygmund-type kernel on (X, q, i) of
order y (with respect to a quasi-distance p € q) provided there exist finite constants
Co > 0, C; > 1 such that

C
IK(x,»)| = p(x—oy)d’ Vx,yeX, withx #y, (8.366)
and
y
IKGio,3) — K. 9)] + K (3. 30) — K(x )] < Gt
p(xo, x)4ty

(8.367)
Y xp,x,y € X, not all equal, satisfying p(xo,x) > Cip(x9,y),

Additionally, a linear, continuous operator 7 : ¢#(X,q) — (¢#(X,q))" where
B € R satisfies 0 < B < ind (X, q) is said to be a Calderdn-Zygmund-type
operator on (X, q, u) of order y (relative to the quasi-distance p) provided T
is associated with a standard Calderén-Zygmund-type kernel K of order y, in the
following sense

<M@=Lémwmmmwwwm (8.368)

whenever f, g € &P (X, q) have bounded, disjoint supports.

Definition 8.38 is the natural extension of definitions in the Euclidean setting
(see, e.g., [DaJo84, pp.371-372], [DaJoSe835, Définition 1-2]) including range of
0 < y =< ind(X,q). In R? this range reduces to (0, 1), precisely what is to be
expected; see [DaJo84, DaJoSe85].

We also record here the notion of a Calderén-Zygmund-type operator in the
context of general spaces of homogeneous type; see [CoWe71], [Chr90i, pp. 93—
94], [DeHa09, p. 14] to name a few.

Definition 8.39 Let (X, q, ) be a space of homogeneous type and assume p is
a doubling measure on X with respect to a quasi-distance p € q. In this context,
consider a number y € R satisfying 0 < y < ind (X, p,), where p, denotes the
measure quasi-distance defined as in (7.7)—(7.8). Call K € L} (X x X \ diag(X), w)
a standard Calderdén-Zygmund-type kernel on (X, q, i) of order y (with
respect to the quasi-distance p) provided K is a standard Calder6n-Zygmund-type
kernel of order y on the 1-AR space (X, [p,], ) (with respect to the quasi-distance
pu) (see Corollary 7.2 in this regard)

Additionally, a linear, continuous operator 7 : #(X, p,) — (€F(X, pu))"
where B € R satisfies 0 < 8 < ind (X, p,) is said to be a Calderdn-Zygmund-
type operator on (X, q, i) of order y (relative to the quasi-distance p € q)
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provided T if it is associated with standard Calderén-Zygmund-type kernel K of
order y on the 1-AR space (X, [p,], u) (with respect to the quasi-distance p,).

Integral operators of Calder6n-Zygmund-type make up a nice class of operators
for which there exists a theory regarding their boundedness on H”(X). For example,
based on [CoWe71, Théoreme (2.4), p.74], one can show that any Calderdn-
Zygmund-type operator which is bounded on L*(X, 1) is also bounded on L7 (X, j1)
for every p € (1,00) and maps L!'(X, ) boundedly into weak-L'(X, 1).° Corre-
sponding to the endpoint case p = oo, Calderén-Zygmund-type operators map
L>®(X, i) into BMO(X); see [Pe66, Sp66], and [St67] in the case when X = R?
and [Chr90i] for extensions to spaces of homogeneous type.

Therefore, at least as far as the case when p > 1 is concerned, matters can
be reduced to identifying criteria under which integral operators of Calderén-
Zygmund-type are bounded on L?(X, x). In R¥ this task was accomplished by
G. David and J.L. Journé in [DaJo84] wherein they have established what is now
referred to as the 7(1) theorem. This states that a Calder6n-Zygmund-type operator
T is bounded on L*(RY) if and only if T is weakly bounded and there holds
T(1), T*(1) € BMO(RY). Here, T* denotes the weak adjoint of T; see [DeHa09,
pp- 19-20]. This result was subsequently generalized to the setting of spaces of
homogeneous type by R.R. Coifman (see the discussion on [Chr90i, Theorem 13,
p- 94]). See also [DaJoSe85, p. 2] for related work carried out in R4 and [DeHa09,
Theorem 1.18, p. 30] for the setting of spaces of homogeneous type. We will discuss
this result to a greater extent at the end of this section where we will provide more
precise definitions and statements for an optimal range of indices.

Concerning the case when p < 1, Coifman and Weiss have pointed out in
[CoWeT77, p.599] that if T, as in (8.365), is bounded on L*(X, ), Tf has vanishing
moment whenever f has bounded support and vanishing moment, and the kernel K
exhibits the following degree of regularity in its second variable

there exist Co. C; € (0, 00) and y € (0,ind (X, p,)) such that

pM(-x()s )’)y

K(x,x0) — K(x,y)| = Co———
K (x, x0) — K(x, y)] 0 G ) 77

forall xo,x,y € X, (8.369)

satisfying x & {xo,y} and such that p,(xp,x) > C1p.(x0,y).

°R.R. Coifman and G. Weiss [CoWe71, Théoréme (2.4), p. 74] implies that every operator of the
form (8.368) which is bounded on Z2(X, ;1) and has a kernel K exhibiting regularity in simply one
of its variables is bounded on L”(X, 1) for every p € (1,2] and maps L'(X, ) boundedly into
weak-L! (X, ). In turn, if T is an operator of Calderén-Zygmund-type then K exhibits regularity
in both variables and one can obtain the boundedness of 7" on L”(X, ) for every p € (1, 00) by
considering the adjoint of 7.
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then 7T is bounded on HP(X) provided p € (0, 1] is sufficiently close to 1.'° Here,
Py denotes the measure quasi-distance defined as in (2.21). The key ingredient in
the proof of the result just stated is having a molecular characterization of H%,(X)
(which was established in [CoWe77, Theorem C, p.594] for the case p = 1 and
stated without proof for 1 — p > 0, small). Indeed, granted this, the boundedness
on HY,(X) of the linear operators we are presently considering could be deduced
simply by verifying that the operators in question map atoms into molecules. This
remarkable tool which is available p < 1 then enables one to obtain the desired
boundedness property for 7 while imposing minimal conditions on kernel K.

This being said, a glaring limitation of this work is its purely qualitative nature.
Indeed, without specifying a concrete range of p’s it is not fully clear to what extent
the result in question can be applied, or even how it relates to what is known in
R?. Within this work, having already established an atomic and molecular theory
of H?(X) = H',(X) for which great care has been taken to ensure a maximal
range of validity will permit us to extend the work in [CoWe77]. This is done
in Proposition 8.43 below, where in the context of a space of homogeneous type
we provide conditions under which we can deduce that 7 will extend as bounded
operator on H? (X), for every

1
1. 8.370
”E(Hind(x,m) } (8370

We will establish this result in two stages. First, in the context of d-AR spaces
(d € (0, 00)) we provide conditions under which 7 extends as bounded operator on

HP(X, p, ) for every
€ d 1 (8.371)
PE\a+inde,p) | '

This is done in Theorem 8.40. Building on this and the work done in Chap. 5 we then
obtain boundedness results for 7 defined on the maximal Hardy spaces introduced in
Chap. 4. Given that the range in (8.370) reduces precisely to what is to be expected
in the Euclidean setting,!! namely (#, 1], Theorem 8.40 may be regarded as a
genuine extension of the theory in the Euclidean setting. Intriguingly, given an
arbitrary space of homogeneous type the range in (8.370) may be strictly larger
than (d;j_l 1]. For instance, in any ultrametric space, the range in (8.370) becomes
(0, 1]. Hence, we have boundedness results for any p € (0, 1] (cf. Proposition 7.19).
What is remarkable is that by establishing the theorems in this degree of generality

10Strictly speaking, in contrast with (8.369), the authors in [CoWe77] only specify y € (0, 00). As
it turns out, the range for y is directly related to just how close p needs to be 1. We will comment
more on this shortly.

when one considers RY equipped with the Euclidean distance and the d-dimensional Lebesgue
measure.
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it becomes evident that the range of p’s for which these results are valid is directly
related to the geometry of the ambient.

In the second stage, given a general space of homogeneous type we will make
use of Theorem 8.40 and some of its consequences in order to deduce that T will
extend as bounded operator on Hy,,(X) for the optimal range of p’s in (8.370). This
is done in Proposition 8.43.

Prior to formulating the first main result of this section, it is instructive to note
that in the context a d-AR space (d € (0, 00)), the regularity property for the kernel
K described in (8.369) is equivalent to the demand that there exist two constants
Co. C; € (0, 0) and an exponent y € R with 0 < y < ind (X, p) such that'?

14
POl gy € X,

|K(x,x0) - K(-xvy)| = CO s
p(xo, x)4tY (8.372)

satisfying x & {xo,y} and such that p(xg,x) > C;p(xo,y).

where it is assumed that p satisfies the Ahlfors-regularity condition in (2.78) with
respect to the quasi-distance p € q.

Theorem 8.40 Ler (X, q, u) be a d-AR space for some d € (0,00) where | is
assumed to be a Borel-semiregular measure on X. Fix an exponent

d

along with a quasi-distance p € (. Also, consider a number y € R satisfying
d(1/p—1) <y <ind (X, q) (8.374)

and assume T is an integral operator on (X, q, t) as in (8.365) which is associated
with a kernel K satisfying (8.372) with these choices of p and y.
In this context, if T has the property that

T:L9(X, u) — LI(X, ) is well-defined
(8.375)
and bounded for some q € [1, c0) with g > p,

and

f e LY(X, w) with bounded support, /fd,u =0 = / Tfdu=0,
X X

(8.376)

12Since K is not assumed to be a symmetric with respect to its inputs, we stress here that the
particular choice of the variable for which K exhibits the regularity in (8.372) is crucial to the
development of the subsequent theory.
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then T extends as a bounded operator
T : H’(X) — H(X). (8.377)

As a corollary of this, (8.377) is valid whenever T is a Calderon-Zygmund-type
operator of order y (with y as in (8.374)) satisfying (8.375)-(8.376).

Proof We begin by considering px € q defined as in (2.21) and recalling from
Comment 2.13 that this regularized quasi-distance enjoys the property that u
satisfies the d-dimensional Ahlfors-regularity condition stated in (2.78) with p4 € q.

In light of Theorem 8.12, the conclusion in (8.377), will follow once we show
that

sup {[|7allmr(x) : ais a (py, p. g)-atom on X} < co. (8.378)
Since Theorem 6.4 and (6.109) in Theorem 6.11 imply
sup {||M|lzrx) : Mis a (ps,p.q.A. &)-moleculeon X} < oo,  (8.379)

whenever A is as in (6.2) and ¢ € (1/p — 1, 00) are fixed, the crux of the matter
in proving (8.378) is establishing that T maps each atom of H.,?(X, q) into a fixed
multiple of a (p#, p, g, A, €)-molecule.

To this end, fix parameters A as in (6.2) and ¢ € (1/p — 1,00) along with
a (pg,p.q)-atom a € L4(X,u). Suppose that a is supported in B,,(xo,r) for
some xp € X and some r € (0,00), and recall that by possibly increasing r,
which may be done without altering the properties of the atom a, we may assume
r > rp, (o). In particular, this, along with the upper-Ahlfors-regularity of 1 (cf. 2 in
Proposition 2.12) ensures the existence of a constant ¢ € [1, co) satisfying

©(Bp,(x0.R)) < cR?, VR € [r,00). (8.380)

Moving on, observe that the vanishing moment condition on a in (5.24) along
with (8.376) yields

/ Tadp = 0. (8.381)
X

Going further, appealing to (8.375) and the size estimates on the given atom a
in (5.24) we may write

1/q—1
I17al|acx.0) < Cllallzoy < Ciu(Bpy(x0. 7)) fa=tlp (8.382)

where C € (0, co) depends only on the operator 7.
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Now, since p# ~ p we may choose constants k; € (0,1] and k, € [1,00)
satisfying

Kk1ps(x,y) < p(x,y) < Kkops(x,y) Vx,yeX (8.383)

and define A := Cixy/x; where C; > 1 is as in (8.367). The reason for this choice
of A € (1, 00) will become apparent shortly. For now, however we wish to note
that since u is doubling with respect to py (cf. part /3 of Proposition 2.12) we have
that (8.382) implies

1Tall oy < Cpu(Bpy (xo, Ar)) /477 (8.384)

where C € (0, co) depends only on T, p, ¢, ;t and A.

Moving on, there remains to show that Tu satisfies (iii) in Definition 6.1. To this
end, fix a number k € N and define By := B, (xo,A*Ar) \ B, (xo, A*"'Ar). Now
observe that our choice of A was made precisely to ensure that for each x € By
and each y € B, (xo, r) we necessarily have Cp(xo,y) < p(xo,x). As such, by the
cancellation and support conditions for a in (5.24), the estimate in (8.372), as well
as (8.383) we may write

Ta()] < /X IK(x,y) — K6 x0)] - la®y) | dpe ()

<cf "’*(x°’)y3+y )| da ()

e Go.) P#(X0, X
JrHd(1=1/p)
—p#(xo,x)dﬂ" (8.385)

Note that in obtaining the last inequality in (8.385) we have also made use of part /
in Proposition 5.2 (applied with s = 1) and (8.380). As such, (8.385) and (8.380)
permit us to estimate (keeping in mind the definition of By)

/ Taf? 74y +49d(1=1/p) ®
Ta|?dp < C/ ———du(x
By By p#(Xva)q(LH_y)

< Cr‘”+‘1d(l_l/P)(Ak_l)kr)_q(‘H'y),u(Bp#(xo,AkAr))
< CAqkd(l/q_l_V/d)u(Bp#(xo, r))l—q/p’ (8.386)

where C € (0, oo) is independent of x( and r. In particular, C is independent of the
atom a. Then, appealing again to the fact that p is doubling with respect to ps we
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have that (8.386) further implies
S 1/g—1
| T, |y, < CAMOI=1VID (B, (3, Ar) fa\p (8.387)

Finally, in order to conclude that 7a satisfies (iii) in Definition 6.1 we make the
observation that A/(1/a=1=7/d) < Akd(1/q=1=¢) whenever ¢ < y/d. Granted that we
assumed ¢ > 1/p — 1, we know that such a choice of € exists if 1/p — 1 < y/d.
That is, whenever y is as in (8.374). In summary, the above analysis show that there
exists a finite constant C > 0, independent of a such that C 'Taisa (ps,p.q.A, €)-
molecule whenever a is an (pg, p, g)-atom belonging to H.,?(X, q. i1). This finishes
the proof of the theorem. O

A close inspection of the proof of Theorem 8.40 reveals that operators as in
Theorem 8.40 have the property that they uniformly map all H”-atoms into L” with
p as in (8.373). Remarkably the condition in (8.376) is not needed to reach this
conclusion. Building on this, Theorem 8.18 (which is ultimately a corollary of the
main boundedness result in Theorem 8.16) implies that such operators map H” (X)
boundedly into (X, ). For the sake of completeness, we take a moment to make
this result concrete in the following theorem.

Theorem 8.41 Let (X, q, 1) be a d-AR space for some d € (0,00) where [ is
assumed to be a Borel-semiregular measure on X. Fix an exponent

d

along with a quasi-distance p € q and consider a number y € R satisfying
d(1/p—1) <y <ind (X, q). (8.389)
In this context, suppose T is an integral operator on (X, q, () as in (8.365) which is

associated with a kernel K satisfying (8.372) with these choices of p and y and has
the additional property that

T:L9(X, u) — LY(X, ) is well-defined

(8.390)
and bounded for some q € [1, c0) with g > p.
Then T extends as a bounded operator
T:H (X)) — L[P(X, ). (8.391)

As a corollary, (8.391) is valid whenever T is a Calderon-Zygmund-type operator
of order y (with y as in (8.389)) satisfying (8.390).



442 8 Boundedness of Linear Operators Defined on H? (X)

Proof By Theorem 8.18 it suffices to show that there exists a finite constant C > 0
such that

|Tallpx ) < C  whenever ais a (pg, p, 00)-atom on X, (8.392)

where pg € qis as in (2.21). Note that passing to ps was necessary since we are not
guaranteed the measurability of the p-balls. Suppose a € L2°(X, u) is a (p#, p, 00)-
atom supported in B,, (xo, r) for some xo € X and some r € (0, 00). By part 2 of
Proposition 5.2 we have that a is a (o, p, g)-atom on X. Hence, the arguments made
in (8.384)—(8.386) the proof of Theorem 8.40 can be recycled for a. In particular,
near the support of a we have from Hélder’s inequality and (8.384) that

| T,y 0 [y = 1T st (B0, ) 7 = €0 (8.393)

where C € (0, oo) is independent of a. Next we estimate 7a away from the support
of a. With {By }1en representing the annuli introduced in the proof of Theorem 8.40,
arguing as in (8.385)—(8.386) (with p in place of ¢) yields'?

|(T@)15, ]}, ., = CAPPTITVID Wk N, (8.394)

where C € (0, co) is again independent of a. Combining (8.393)—(8.394) gives

1Tall iy = 1T, 000 [ + 2 | @185
keN

< CH ) Ak < ¢, (8.395)
keN

granted that 1/p — 1 — y/d < 0 whenever y is as in (8.389). This finishes the proof
of (8.392) and, in turn, the proof of the corollary. O

The following result pertains to the boundedness of integral operators on H? (X)
in the context of spaces of homogeneous type which are not necessarily equipped
with an Ahlfors-regular measure.

Proposition 8.42 Ler (X, q) be a quasi-metric space and suppose L is a Borel-
semiregular measure on X which is doubling with respect to some quasi-distance
p € q With p, € Q(X) denoting the measure quasi-distance defined as in

3The reasonings presented in (8.385)—(8.386) did not make use of the fact ¢ > 1, hence, in
particular these arguments can be performed with p in place of g.
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(7.7)—(7.8), fix an exponent

1
_ 1 8.396
”6(1+ind(x,pu) } (8:390)

and consider a number y € R satisfying
(I/p—1) <y 2ind (X, p,). (8.397)

In the context of the space of homogeneous type (X, q, 1), associate an integral
operator T as in (8.365) with a kernel K satisfying (8.369) for the above choices of
pandy.

Then if T has the property that

T:L9(X, u) — LI(X, ) is well-defined

(8.398)
and bounded for some g € [1, 0o] with g > p,
it follows that T extends as a bounded operator
T:H' (X, (o#)p. 1) — LP(X. 10). (8.399)

where pg € q is defined as in (2.21). If, in addition to (8.398), T satisfies

f € LY(X, u) with bounded support, / fdp=0 = / Tfdu=0,
X X

(8.400)
then T also extends as a bounded operator

T:HP (X, (o#)p. ) —> HP (X, (0#) s 1) (8.401)

As a corollary, (8.399) (or (8.401)) is valid whenever T is a Calderon-Zygmund-
type operator of order y (with y as in (8.403)) satisfying (8.398) (or (8.398)
and (8.400)).

Proof Observe that by Theorem 7.14 we have that (X, (o)., u) 1-Ahlfors-regular
space. Thus the claims made in the statement of the current proposition follow
immediately from Theorems 8.40 and 8.41 applied here with the 1-AR space
(X, (p#) e, i), the quasi-distance p,, € [(p4),], and y as in (8.397). O

The stage has now been set to present a result pertaining to the boundedness of
integral operators on the atomic Hardy spaces Hpy, (X), developed in the context of
spaces of homogeneous type. As previously mentioned, a result of this nature was
originally discussed in [CoWe77, p.599] in this setting for an undetermined range
of p’s.
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Proposition 8.43 Let (X, q) be a quasi-metric space and suppose [ is a Borel-
semiregular measure on X which is doubling with respect to some quasi-distance
p € q. With p, € Q(X) denoting the measure quasi-distance defined as in (7.7)—
(7.8), fix an exponent

1
_ 1 8.402
p6(1+ind(x,pu> } (8492

and consider a number y € R satisfying
(I/p—1) <y 2ind (X, p,). (8.403)
In the context of (X, q, ), let T be an integral operator as in (8.365), associated
with a kernel K satisfying (8.369) for these choices of p and y.
Then, if T has the property that

T:L9(X, u) — LY(X, ) is well-defined

(8.404)
and bounded for some g € [1, 0o] with g > p,
it follows that T extends as a bounded operator
T : Hyw(X, p, ) — LP(X, ). (8.405)

If, in addition to (8.404), T satisfies

f € LY(X, u) with bounded support, /Xf du=0 = /XTf du =0,
(8.4006)
then T also extends as a bounded operator
T : HYy(X, p, ) — Heyw(X, p, 1) (8.407)

As a corollary, (8.405) (or (8.407)) is valid whenever T is a Calderon-Zygmund-
type operator of order y (with y as in (8.403)) satisfying (8.404) (or (8.404)
and (8.400)).

Proof To set the stage for the justification of the claim in (8.407) we make a couple
initial observations. First, with py € q as in (2.21), by Theorem 7.14 we have that
(X, (p#)u, ) 1-Ahlfors-regular space with the property that H7, (X, p, ) can be
identified with Hfy, (X, (p#) ., ) with equivalent quasi-norms. Second, by (7.126)
of Theorem 7.16 (applied here with d = 1) we have

Hyw (X, (p#) s 1) = HP (X, (p#) i 0)  with equivalent quasi-norms,
(8.408)
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where H”(X, (p#) ., ) is the maximal Hardy space introduced in Sect. 4.2. As
such, the claims made in the current proposition follow immediately from Proposi-
tion 8.42. O

Returning the matter of the boundedness of Calderén-Zygmund-type operators
on H?(X) when p > 1, we now record the 7'(1) theorem in d-AR spaces (d € (0, 00))
for an optimal class of operators. In turn, we will obtain a T(1) theorem in arbitrary
spaces of homogeneous type for this optimal class of operators.

As previously stated, in [Chr90i] the extension of the 7'(1) theorem to spaces
of homogeneous type was attributed to the unpublished work of Coifman. This
extension has also been credited to David, Journé, and Semmes who in [DaJoSe85]
wrote with regards to the 7(1) theorem:

La démonstration du théoréme est écrite dans les espaces euclidiens, mais peut facilement
étre généralisée aux espaces de nature homogene en utilisant [Ag81, CoWe71, CoWe77,
MaSe79i, MaSe79ii]. C’est dans cet esprit que nous avons remplacé I’espaces C° des

fonctions test par ’espaces €' des fonctions hélderiennes d’exposant 7 4 support compact,
et, naturellement, que nous nous sommes interdit ’'usage de la transformée de Fourier.

In principle, one can replace smooth functions with Holder functions of some
given order however in practice this matter is more delicate. Firstly, as we have seen
in the setting of spaces of homogeneous type, there may exist a threshold above
which the collection of Holder functions reduce to just constants. In fact, the amount
of smoothness such a general ambient can support is intimately tied up with the
metrization theory of quasi-metric spaces. Moreover, in this degree of generality one
can not expect to have an approximation to the identity of arbitrarily smooth order as
is the case in R?. This is important as the proof of the T(1) theorem in [DaJoSe85]
relies on the development of Littlewood-Paley theory based on the construction of
an approximation to the identity.

Regarding this aspect, a range of exponents has been identified in [Chr90i,
pp- 92-94], see also [DeHa09, p. 19]. More specifically, these authors have pointed
out that n must belong to (0, ] where § € (0,1) is an exponent satisfying
the condition in (2.27). This specified range was based on the metrization theory
developed in [MaSe79i]. Building upon the sharp metrization theory recently
established in [MiMiMiMo13] (see Theorem 2.1 in this work) and the construction
of an approximation to the identity which incorporates this degree of sharpness (see
Theorem 3.22) enables us to specifying a strictly larger range of n’s and, in turn,
enables us to formulate the 7(1) theorem for an optimal class of operators.

Prior to presenting this result, we will need the notion of weak boundedness.
Suppose (X, p, 1) is a d-AR space for some d € (0, co). Then following the notation
in [Chr90i, p. 94], for each y € R satisfying 0 < y < ind (X, p), each pointx € X,
and each number r € (0, 00) we set

A(y,x.r) == {f € €Y (X,p) :suppf C By, (x,r), satisfying

1 fllo <1 and | fllgrg,y <r 7). (8:409)
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We now have the following definition.

Definition 8.44 Given (X,q, ), a d-AR space for some d € (0,00) call a
Calderén-Zygmund-type operator T weakly bounded on (X, p, ) provided
there exists a quasi-distance p € q having the property that all p-balls are -
measurable, a finite exponent y with

0 <y =ind(X,q), (8.410)
and a constant C € (0, oo) such that

(T f. )| < Cu(By(x,r)) forevery x € X,
(8.411)
every r € (0,00), and every f,g € A(y,x,r).

Moreover, T will be referred to as weakly bounded on a given space of
homogeneous type (X, p, i), provided T is weakly bounded on the 1-AR space

(X7 [IOIL]’ /“L)

Note that every Calderén-Zygmund-type operator which is bounded on L? is
weakly bounded. Moreover, Calderén-Zygmund-type operators which are associ-
ated with an antisymmetric kernel K (i.e., K(x,y) = —K(y, x) for every x,y € X)
are also weakly bounded.

The new distinguishing feature of Definition 8.44 is the range of p’s
in (8.410)which is strictly larger than ones considered in the past; see, e.g., [Chr90i,
p. 94], also [DeHa09, p. 19] where the y is been restricted to (0, 1). This restriction
is rooted in the metrization theory developed in [MaSe79i]. Here we have been
successful in identifying a range in (8.410) which could be a large as (0,d + 1) in
a d-AR space, hence, as large as (0, 2) in an arbitrary space of homogeneous type.
As previously mentioned, this is a manifestation of not only the sharp metrization
theory developed in [MiMiMiMo13] but the construction of an approximation to
the identity which incorporates this degree of sharpness. In turn, this permits us to
formulate the T'(1) theorem for an optimal class of weakly bounded operators. The
reader is referred to [DeHa09, pp. 19-25] for the definitions of 7(1) and T*(1).

Theorem 8.45 Suppose (X, q, (1) is a d-AR space for some d € (0, 00), and fix a
number y € R satisfying

0 <y < ind (X, q). (8.412)

Then a Calderon-Zygmund-type operator T of order y on (X, q, |t) is bounded on
L>(X, ) if and only T is weakly bounded and T(1), T*(1) € BMO(X).

As a corollary of this, given space of homogeneous type (X, p, t), a Calderon-
Zygmund-type operator T of order y (y as in (8.412)) on (X, p, ) is bounded on
L>(X, ) if and only T is weakly bounded and T(1), T*(1) € BMO(X).

Proof This is proved along the lines of [DeHa09, Theorem 1.18, p. 20] (where the
authors relied on the regularization procedure from [MaSe79i]), this time making
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use of our metrization result in Theorem 2.1 as well as the approximation to the
identity result established in Theorem 3.22. O

We now summarize the results of this section in the following theorem.
Theorem 8.46 Let (X, q, u) be a d-AR space for some d € (0,00) where | is
assumed to be Borel-semiregular and fix a number y € Rsatisfying

0 <y <xind (X, q). (8.413)
Also, assume T is a Calderon-Zygmund-type operator on X of order y which is
bounded on L[> (X, ). Then,

(@ T:LP(X,pn) - LP(X, n) is well-defined and bounded for every p € (1, 00);
(b) T:L' (X, ) — LV (X, ) is well-defined and bounded;

() T:L®(X,u) - BMO(X) is well-defined and bounded;

(d) T: H(X) — L’(X) is well-defined and bounded for every p € (i l].

d+y’
If, in addition, T satisfies

f € L*(X, j1) with bounded support, / fdu=0 = / Tfdu=0,
b'e b'e
(8.414)

then T also extends as a bounded operator T : HP(X) —> HP(X) for each fixed
exponent p € (ﬁ, l].
Finally, every Calderon-Zygmund-type operator T of order n, where

0 <n=ind (X,q), (8.415)

is bounded on L*(X,u) if and only if T is weakly bounded and there holds
T(1), T*(1) € BMO(X).

Comment 8.47 Theorem 8.46 was formulated in the setting of d-AR spaces
however, given Definitions 8.39 and 8.44, this result has a natural version valid in
spaces of homogeneous type (regarded as 1-AR spaces with respect to the measure
quasi-distance).



Chapter 9
Besov and Triebel-Lizorkin Spaces
on Ahlfors-Regular Quasi-Metric Spaces

The 1960s and 1970s saw the birth of a new scale of spaces in the Euclidean setting
known as Besov spaces, B?¢(R?), and Triebel-Lizorkin spaces, F7*¢(R¢), where the
parameters s € R and p,q € (0, co] measure the “smoothness” and, respectively,
the “size” of a given distribution in these spaces. They provide natural scales of
spaces which encompass a great deal of well-known and useful function spaces
such as Lebesgue spaces, Hardy spaces, Sobolev spaces, Holder spaces, and BMO.
In addition, Besov and Triebel-Lizorkin spaces have been found to be useful in
many branches of mathematics including the theory of Partial Differential Equations
and Harmonic Analysis, while on the practical side they have applications in a
variety of areas of applied mathematics such as numerical analysis, fractal geometry,
and signal processing, etc. The reader is referred to [Trieb92] and [Trieb06] for a
thorough exposition regarding the history and the nature of these function spaces.

In more recent years, efforts have been made in the direction of extending the
standard theory of Besov and Triebel-Lizorkin spaces to the more general geometric
measure theoretic context of spaces of homogeneous type; see, e.g., [HaSa94, Ha98,
HalLLuYa99i, HaLuYa99ii, HaYa02, HaYa03, Ya03, Ya05, HaMuYa08, MuYa(9], and
[YaZh11]. While this enterprise has been largely successful, one major drawback in
these works is that a great many of definitions and results have been formulated with
for non-optimal ranges of indices s, p, and g. This is a manifestation of the fact that
the techniques these authors have utilized in generalizing the theory rely heavily
upon a non-optimal approximation to the identity. Specifically, the limitations on
the smoothness parameter s (which in turn limits p and ¢ when one considers
p,q < 1) are directly regulated by the amount of smoothness such an approximate
identity possesses which, until recently, was ultimately governed by the non-optimal
metrization theory developed in [MaSe791].

By way of contrast, availing ourselves to our maximally smooth approximation
to the identity from Theorem 3.22 permits us to extend the vast majority of results in
the aforementioned works by identifying a strictly larger range of indices for which
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these results are valid. Our main goal here in this chapter is to present a brief survey
of some results which illustrate this philosophy.

This chapter is organized as follows. In this first section we record several
definitions and basic results of the theory of Besov and Triebel-Lizorkin spaces in
d-AR spaces with an emphasis on the optimality of the parameters involved with the
said spaces. Then in Sect. 9.2 we develop an atomic and molecular theory for these
spaces, analogous to that of the theory established in Chaps. 5—-6 for Hardy spaces.
In Sect. 9.3 we present a general version of Calderén’s reproducing formula proved
in [HaLuYa01, Theorem 1, p. 575]. Finally, in Sect. 9.4 we record real interpolation
theorems for both Besov and Triebel-Lizorkin spaces.

9.1 Definitions with Sharp Ranges of Indices and Basic
Results

In this section we record the definitions of the homogeneous and inhomogeneous
Besov and Triebel-Lizorkin Spaces in the context of d-AR spaces, d € (0, co) for
a sharp range of indices s, p, and g. We then discuss several basic results regarding
the nature of these spaces.

Recall from Definition 2.11 (see also parts 2 and 8 of Proposition 2.12) that a
standard d-Ahlfors-regular spaces is a triplet (X, q, ) where (X, q) is a quasi-metric
space and p is a nonnegative measure on X with the property that there exists p € q
and there exist finite constants C;, C; > 0 such that all p-balls are p-measurable
and

Cir' < u(By(x,r)) < Cor?, forall x € X, o1
and every finite r € (0, diam,, (X)]. .

From Proposition 2.12, any d-Ahlfors-regular quasi-metric space is a space of
homogeneous type in the sense of Definition 3.2.
We continue by recalling a number of basic definitions from [Ha97].

Definition 9.1 Let d € (0, c0) and assume that (X, q, i) is a standard d-Ahlfors-
regular space where p is a Borel-semiregular measure on X and the quasi-distance
p € qisasin (9.1). With C, € [1,00) as in (2.2), fix two finite numbers y > 0
and B € (0,[log, C,]']. A function f : X — R is said to be a test function of
type (xo, 1, B,y) with xy € X and r € (0, oo) provided it satisfies the following two
conditions:

7
<C——— VxelX, 9.2
| /()] (r+ px. xo))d+y X )
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and, for every x,y € X,

- " p(x,y)P . r + p(x, x0)
10— SOl = e g I A < e 03)

In what follows, the collection of all test functions of type (xo, 7, 8, y) on X will be
denoted by Gx(xo, r, 8, y) and we set

1 lGxtorpop = inf{C > 0: (9.2)~(9.3) hold}. (9.4)

As noted in [HaYa03], Gx(xo, r, B, ) is a Banach space, and a different choice
of the base point xy and the scale r > 0 yields the same topological vector space,
with an equivalent norm. This justifies dropping the dependence on x( and r in the
definition of the space of test functions of a certain type. Concretely, for a fixed
Xxo € X, we abbreviate

GPr(X) := Gx(xo, 1, B, ). 9.5)

To circumvent the inconvenience created by the fact that G#17 (X) is not densely
embedded into the space GF27 (X) whenever B, > f,, introduce for each fixed finite
parameter 6 € (0, [log, Cp]_l]

gg'V(X) := the closure of G%%(X) in G#7 (X) whenever 0 < 8,y < 6. (9.6)

We now proceed to introduce the scale of homogeneous Besov and Triebel-
Lizorkin spaces on a standard d-Ahlfors-regular measure metric space.
For any a € R, set (a)+ := max{a, 0}.

Definition 9.2 Let d € (0, 00) and assume that (X, q, i) is a standard d-Ahlfors-
regular space where u is a Borel-semiregular measure on X, the quasi-distance p € q
is as in (9.1), and where diam, (X) = oo. In particular, (X, q, ) is a space of
homogeneous type by Proposition 2.12, hence further geometrically doubling, by
Proposition 3.28. Granted this, Proposition 3.24 ensures the existence of a dyadic
grid

k
{Q"}kez,aelk' ©-D
With C,, € [1, 00) as in (2.2), fix 8 € R satisfying
0 <6 <[log, C,] ™", 9.8)

and suppose that {S;},-¢ is an approximation of identity of order 6 on X as in Defini-
tion 3.21 (whose existence is ensured in the present context by Theorem 3.22), then
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define the conditional expectation operators {E }rez by setting Ey := Sy—« — Sy—i+1
for each k € Z. Then, if

d d
d+0 d+0+s

s€(—6,0), max{ } <p < o0, 0<g=<oo, (9.9

max{s—%,d({l—)—l)Jr,—s+d<%—l)+—d(l—[{)+} <y <6,

max {(s)+, —s +d<% — 1)+} <p <6,

(9.10)

the homogeneous Besov space B{;’q (X) is defined as the collection of function-
als f € (gf’y (X))* for which

1/q
I gy := { > [2"‘Y||Ek(f)||mx,m]q} < o, (9.11)

kEZ

with the natural alterations when p = oo or g = oo. Also, if

d d
—9.0), , < o0,
s €(=6.9) max%d+9 d+9+s}<p >
d d
, < o0, 9.12
max{d+9 d+9+s}<q—°° ©-12)

and (9.10) holds, then the homogeneous Triebel-Lizorkin space Ff*q(X)

is defined as the space consisting of all distributions f € (gf v (X))* with the
property that

1/q
IS iz = H{ > [zkflEk(f)l]q} < 00 (9.13)

kEZ

LP (X, )

whenever p < oo (with the natural alterations when g = co) and, corresponding to
the case when p = oo,

0 1/q
T :=supsup[ Q[Z[zkfmk(f)uw} <o

€7 t€]; T k=l

again, with the natural alterations when g = oo.
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Comment 9.3 In the context of Definition 9.2,

(1) the definition of Bf*‘f (X) and Ff"i(X) is independent of the approximation of
identity used (see [HaMuYa08, Proposition 5.6, p. 115], see also [HaMuYa08,
Proposition 6.5, p. 180] with regards to Ffo*‘f (X)). Moreover, the definition of
Bf*‘f (X) and Ff"l (X) is independent of the indices 8, y (see [HaMuYa08, Propo-
sition 5.7, p.116], see also [HaMuYaOS8, Proposition 6.6, p.180] regarding
Fa(X)).

(2) The assumptions made in Definition 9.2 imply

B‘fp(X) — F.;’P(X) 9.14)

(see [HaMuYa08, Proposition 5.10 (ii), p. 120] when p < oo and [HaMuYa08,
Proposition 6.9 (ii), p. 182] for p = o0).

Comment 9.4 Letd € (0, 0o0) and assume (X, q, i) is a standard d-Ahlfors-regular
space where u is a Borel-semiregular measure on X, the quasi-distance p € q is as
in (9.1), and where diam,, (X) = oo. Then with C, € [1, 00) as in (2.2), fix a number
0 e (0, [log, Cp]_l]. Then the following hold in this context.

(i) The homogeneous Besov space B{;*‘f (X) is quasi-Banach whenever p and ¢
satisfy

d d

max%d+9’d+9+s

}<p§oo and 0 < g <o0. (9.15)

If we restrict 1 < p, g < oo, then B{;*q(X) becomes a genuine Banach space.
(ii) The homogeneous Triebel-Lizorkin space F¥*9(X) is quasi-Banach whenever p
and q satisfy

d d

S — <
d+0d+60+s 4=

d d
_— < d
max{d+9 d+9+s} < p =00 an max{

(9.16)

In the case when 1 < p < ocoand 1 < g < oo, the space Ff"i(X) is genuinely

Banach.
Proof See [HaMuYa08, Proposition 5.10 (vi), p. 121] and [HaMuYa08, Proposi-
tion 6.9 (v), p. 182]. O

The following proposition describes how many important spaces we have dealt
with in this work relate to the homogeneous Besov and Triebel-Lizorkin spaces.

Proposition 9.5 Ler d € (0, 00) and assume that (X, q, [t) is a standard d-Ahlfors-
regular space where | is a Borel-semiregular measure on X, the quasi-distance
p € qis as in (9.1), and where diam, (X) = oo. In this context, fix a number
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6 € (0, [log, C,]~"| where C, € [1, 00) asin (2.2). Then

FI?(X) = I7(X. 1) whenever p € (1, 00), (9.17)

Fg’z(X) = HL(X) whenever p € (L, 1i|, (9.18)
d+6

FP2(X) = BMO(X, p, 1), (9.19)

FO®(X) = €°(X,p), Vse(0,0). (9.20)

Proof The identification in (9.17) is contained in [HaMuYa08, Proposition 5.10
(v), p. 140], (9.18) follows from [HaMuYa08, Definition 5.14 and Theorem 5.16,
p- 124] (see also [HaMuYa08, Remark 5.17, p. 124] and [HaMuYa06, Remark 2.30,
p- 1527] in this regard), while (9.20) and (9.19) are given by [HaMuYa08, Theo-
rem 6.11, p. 184]. O

Given a quasi-metric space (X, p) let kg € Z U {—oo} be such that
27071 < diam,(X) < 27, 9.21)
and consider a number

_ Ko as in (9.21) if X is bounded,
Ko 1= (9.22)
1 if X 1s unbounded,

With this in mind we now record the definition of the inhomogeneous Besov and
Triebel-Lizorkin spaces on a standard d-Ahlfors-regular space.

Definition 9.6 Let d € (0, 00) and assume that (X, q, i) is a standard d-Ahlfors-
regular space where p is a Borel-semiregular measure on X and the quasi-distance
p € qis as in (9.1). In particular, (X, q, ) is a space of homogeneous type
by Proposition 2.12, hence further geometrically doubling, by Proposition 3.28.
Granted this, Proposition 3.24 ensures the existence of a dyadic grid

{Ql‘;}kGZ, k>Ko* (9.23)

o€l

Also, consider the organized collection of dyadic cubes

{Qf’v}kez,kzko,zelk, (9.24)

v=1,....N(k,7)
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given according to Comment 3.27. For any dyadic cube Q’?" andany f € L} (X, 1),
recall the quantity m ok (f) € C from (5.4) which is defined as

1
My (f) 1= s /Q S (9.25)

Next, with C, € [1, 00) asin (2.2), fix 6 € R satistying
0 < 6 < [log, C,] ™", (9.26)

and suppose that {S;}o<;<s, 1S an approximation of identity of order 6 on X
as in Definition 3.21 (whose existence is ensured in the present context by
Theorem 3.22). Define the conditional expectation operators {Ex}; <7 ;> by setting

Ez:=8 =~ and Ey =8+« —Syut1 forkeZ k>ig+1, (9.27)

270
where kj is as in (9.22). Then, if

d d
d+0"d+0+s

s € (—60,0), max{ } <p <o, 0<g<oo, (9.28)

max{(s)+, s+ d(é - 1)+} <g <0, d(}l) - 1)+ <y <0, (9.29)

the inhomogeneous Besov space BY(X) is defined as the collection of
functionals f € (gg’V(X))* for which

N(ko.1)

~ 1/p
1S gy = { >3 M(Qf(””)[mg;;_v(IE;z(f)I)]p}
rel;; v=1 ’

1/q
+ Z [2"‘V||Ek(f)||U;(X,,L)]q} < 00, (9.30)

keZ
k>Kko+1

with the natural alterations when p = oo or g = oo.
Additionally, if

d d
—6,0), , = o0,
se( ) max{d_i_e d+9+s}<p_oo
d d

m“{d+9’d+9+s

} <gq<oo, 9.31)
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and (9.29) holds, then the inhomogeneous Triebel- leorkln space
FP4(X) is defined as the space consisting of all distributions f € (% 7(X))" with
the property that

N(KO T) 1/p
1 lepoey = { >3 @ = (DY }
TEI’"’ v=1
ST s} < om
keZ L2 (X,

k=ko+1

whenever p < oo (with the natural alterations when g = 00) and, corresponding to
the case when p = oo,

1 o = max{ sip  myus (E=(/)D. ©.33)

TEF~

o 1/q
sup sup |:fo Z[Z’“|Ek(f)|]qd,ui| } < 00,

T€ly —
Z>K0+1 " k=t

again, with the natural alterations when g = oco.
Comment 9.7 In the context of Definition 9.6,

(1) the definition of BY?(X) and FP4(X) is independent of the approximation of
identity used (see [HaMuYa08, Proposition 5.27, p. 136], see also [HaMuYa08,
Proposition 6.17, p. 193] with regards to F>*9(X)). Moreover, the definition
of BP4(X) and FP4(X) is independent of the indices 8,y (see [HaMuYa08,
Proposition 5.28, p.137], see also [HaMuYa08, Proposition 6.18, p.193]
regarding F°4(X)).

(2) The assumptions made in Definition 9.6 imply

B (X) = FI7(X) (9.34)

(see [HaMuYa08, Proposition 5.31 (iii), p. 140] when p < oo and [HaMuYa08,
Proposition 6.21 (iii), p. 195] for p = c0).

Comment 9.8 Assume (X, q, ) is a standard d-AR space for some d € (0, 00)
where u is a Borel-semiregular measure on X and the quasi-distance p € q is as
in (9.1). In this context, fix a parameter 6 € (0, [log, Cp]_l], where C,, € [, 00) is
defined as in (2.2). Then the following hold.
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(i) The inhomogeneous Besov space Bf¢(X) is quasi-Banach whenever p and ¢
satisfy

d d

m“{d+€d+9+s

}<p§oo and 0 <g < o0. (9.35)

If we restrict 1 < p, g < oo, then B?9(X) becomes a genuine Banach space.
(ii) The inhomogeneous Triebel-Lizorkin space F¥*9(X) is quasi-Banach whenever
p and q satisfy

d d
d+0d+0+s

d d

— — U cg<oo.
d+0 d+0+sf 1=

max{ }<p§oo and max{

(9.36)

In the case when 1 < p < oo and 1 < g < oo, the space F?9(X) is genuinely
Banach.

Proof For (i), see [HaMuYa08, Proposition 5.31 (vii), p.140] and for (ii) see
[HaMuYa0O8, Proposition 5.31 (vii), p. 140] when p < oo and [HaMuYa08,
Proposition 6.21 (iii), p. 195] for p = oco. O

The following proposition describes how many important spaces we have dealt
with in this work relate to the inhomogeneous Besov and Triebel-Lizorkin spaces.
In contrast to Proposition 9.5, the inhomogeneous spaces B?4(X) and F?9(X)
are related to the inhomogeneous Holder space (X, p) as well as the local
counterparts of H (X, p, &) and BMO(X, p, 1) which are commonly denoted by
(X, p, ) and bmo(X, p, i), respectively. These local versions are defined in
the spirit of [Gold79]; see [HaMuYa08, p.50] and [YaYaZh10] for definitions of
bmo(X, p, i), and [HaMuYa08, p. 151] for i5,(X, p, ).

Proposition 9.9 Let d € (0, 00) and assume that (X, q, b) is a standard d-Ahlfors-
regular space where |4 is a Borel-semiregular measure on X and the quasi-distance
p € qis as in (9.1). Also, with C, € [1,00) defined as in (2.2), fix a parameter
6 € (0. [logy Co]™']. Then

FI?(X) = I(X. 1) whenever p € (1, 00), (9.37)

Fg’z(X) =h.(X) whenever pc (L, 1i|, (9.38)
d+6

F2°2(X) = bmo(X, p, 1), (9.39)

F®®(X) = €°(X.p), whenever s € (0,0). (9.40)

Proof The identification in (9.37) is contained in [HaLuYaOl, Theorem 3, p.578]
and [HaMuYa08, Proposition 5.31 (vi), p. 140], (9.38) follows from [HaMuYaO08,
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Definition 5.40 and Theorem 5.42, p. 151], (9.39) is given in [HaMuYaO8, The-
orem 6.28, p.204], while (9.40) is immediate from [HaMuYa08, Corollary 6.24,
p-200]. O

9.2 Atomic and Molecular Theory

In this section we highlight the fact that there is an atomic and molecular charac-
terization of the inhomogeneous Besov and Triebel-Lizorkin spaces introduced in
Definition 9.6.

Before proceeding with the definition of atoms we recall the dyadic cubes Q%"’s
defined in (3.208) in the context of a space of homogeneous type (X, q, ) and set

TuX) :={0F" 1 keZ k>ky 1€k, 1<v <Nk} (9.41)

where K is as in (9.22).

The following definition of atoms and blocks agrees, up to a renormalization,
with the definition introduced in [HaLuYa99i, Definition 2.1, p.45] for spaces of
homogeneous type (see also [HaYa03, Definition 7, p. 74]).

Definition 9.10 Let d € (0, co) and assume that (X, q, i) is a standard d-Ahlfors-
regular space where p is a Borel-semiregular measure on X and the quasi-distance
p € qis as in (9.1). Furthermore, with the constant C, € [1, 00) as in (2.2), fix two
parameters 6 € (0, [log, C,]™'] and Cy € (0, 00), and recall the set (9.41). Finally,
suppose that s € (—6, 0) and that p € (0, o0].

Given a cube Q%" € J,(X), call a function agev X — R an n-smooth atom
of type (p, s) if the following four conditions hold:

supp (an.v) - B(yf"’, Co27%)  where y’;’” is the center of Q’;’”, (9.42)

ns—4
lager | ooy < @797 (9.43)
jns—n—4
“"Qﬁ’” e = (2 9T, (9.44)
/\an.v dl,l/ = O. (945)
X T

In the case when (9.42)—(9.44) hold but (9.45) is not necessarily satisfied, we say
that the function a gk is an -smooth block of type (p, s).

Definition 9.11 Let d € (0, co) and assume that (X, q, i) is a standard d-Ahlfors-
regular space where p is a Borel-semiregular measure on X and the quasi-distance
p € qis as in (9.1). Additionally, with C, € [l,00) as in (2.2), fix a number
0 e (0, [log, Cp]_l] and recall the set (9.41). Finally, suppose that s € (—6, 6) and
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that p € (0, 00]. Given a cube Q% € J,(X), call a function ugr 1 X —>Ra (B, y)-

smooth molecule of type (p, s) (for the dyadic cube Q) if the following three
conditions hold:

/ qu.v(x) du(x) = 0; (9.46)

X T

Jugir (0)] < Q575 (1 + 2% p(x, YEU)TE@H) forevery x € X, (9.47)
s—p—d

g (6) = e )] < @770 plax, ) (9.48)

)AL+ 250 YV )™ + (1 + 2% () ™77} VayeX.

A function u ok : X — Riscalled a (8, y)-smooth unit of type (p, s) (for the
dyadic cube Q’; V) if it satisfies (9.47) and (9.48).

We next introduce discrete Besov and Triebel-Lizorkin spaces on standard d-
Ahlfors-regular quasi-metric spaces. Our definition is adjusted to the normalization
of our atoms and yields results in line with the situation when the underlying space is
R" (see [FraJa85, FraJa90]). A different normalization appears in [HaYa03, p. 74].
The choice we have made in the normalization of atoms is designed so that the
discrete Besov and Triebel-Lizorkin spaces have definitions which are independent
of the smoothness index (which we choose not to include in the notation employed
for these discrete spaces).

Definition 9.12 Let d € (0, co) and assume that (X, q, i) is a standard d-Ahlfors-
regular space where p is a Borel-semiregular measure on X and the quasi-distance
p € qis as in (9.1). Recall the family of cubes (9.41) and suppose p, g € (0, c0].
Also, assume kj is as in (9.22). Then, we denote by b”7(X) the space of numerical
sequences A = {Ag}oe 7, (x) such that

N(k.,7)

1/q
1Moy = { Z[Z > I kvlp]q/p} < 00, (9.49)

k€Z Tl v=I
k=Ko

with natural modifications when p = oo or g = 0.
Moreover, let f79(X) be the space of numerical sequences A = {Ag}oe7, (x)
with the property that

N(k.,7)

Al prae = H{ Y33 [ty

k€Z tel v=1
k>ko

1/q
< 00,

Qk”]q}

LP (X, )

(9.50)
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when p < oo (with a natural adaptation when ¢ = o00). Finally, corresponding
to the case when p = oo, and ¢ € (0, o0], the space f°4(X) is defined as the
collection of sequences A = {Ap}pes, (x) having the property that the following
discrete Carleson measure finiteness condition holds:

[All Fooa(x) := max sup |AKo-V, 9.51)
TEr—
K0 __
v=1,...,.N(ko,7)
1 o) N(k,7) 1/q
kv k,v
sup  sup (—[ n(@YM)ATY 1 ok (7, v)i|) < 00,
' Le] a€ly //L(Qg) ;;{ ‘; T T {(I,\J)-Qr CQ{Y}
>ko+1

where, as in Proposition 3.24, {Qﬁ L eZ, >k, a € I} constitutes the dyadic
grid J (X).

Later on, we shall nonetheless also use the standard definition of discrete Besov
and Triebel-Lizorkin spaces, so we record this below (compare with [HaYa03,
p-74]).

Definition 9.13 Let d € (0, co) and assume that (X, q, i) is a standard d-Ahlfors-
regular space where p is a Borel-semiregular measure on X and the quasi-distance
p € qisasin (9.1). Recall the family of cubes (9.41) and fix parameters s € R and
p.q € (0,00]. Also, assume kj is as in (9.22). Then b29(X) denotes the space of
sequences A = {Ag}pe 7, (x) With the property that

N(k,7)

- ») /4
A llgoce :={Z[ZZ(2’%(@’;%‘2|AQ¢.V|)P]‘”’} <o, (952)

k€Z t€l v=1
k>ko

with natural modifications when p = oo or g = o0.
Furthermore, denote by f77(X) the space of sequences A = {Ag}ges,. (x) for
which

N(k,7) 1/q
s vy—1 q
4l 1 = ' LYY Y (e g 1) | <o
k€Z t€l v=1 LP(X.p1)
k>kKg
(9.53)

when p < oo (with a natural adaptation when ¢ = o0). Finally, corresponding
to the case when p = oo, and ¢ € (0, 00], the space f,>?(X) is defined as the
collection of sequences A = {Ap}pes.(x) having the property that the following
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discrete Carleson measure finiteness condition holds:

||A||ﬁoo,q(X) = max sup |AKo-V] (9.54)

0 N(k,7)

1/q
ksq kv kv q
sup sup ( 289 (QFVAEY 1 v (z,v) ) < 00,
Z{EZ{U(EI@ /L(Q‘f)[kzhezlk VZI {(zv): 07" COL} ]
=Ko

where, as in Proposition 3.24, {QY, : € € Z, a € I;} constitutes the dyadic grid
J(X).

The theorem below describes the decomposition of distributions from continuous

Besov spaces into series of atoms and blocks with coefficients belonging to discrete
Besov spaces.

Theorem 9.14 Let d € (0, 00) and assume that (X, q, i) is a standard d-Ahlfors-
regular space where [ is a Borel-semiregular measure on X and the quasi-distance
p € qis as in (9.1). Recall the space of dyadic cubes (9.41) and let k, be as
in (9.22).

(i) Assume that p, q, s, y, B are as in (9.28)-(9.29), and let f € BP4(X). Then

(ii)

there exist a sequence of coefficients A = {\A ku}Qk Ve Tu(X) and some number
S (|s| 1], along with n-smooth blocks a o of type (p.s) for T € I and
v = .,N(ky, T), and n-smooth atoms a o of type (p,s) for all k E Z,
k>K0+1‘C€Ik,U—1 ., N(k, t), such that
N(k,T)
F=Y0"2" Agoay, (9.55)
k€Z t€l v=1

k=Ko

with convergence taking place both in BP9(X) and in (gf*y(X))* when

max{p, g} < oo, and only in (gf*V(X))* when max{p, q} = oo. In addition,
there exists a finite constant C > 0, which depends on p,q, and s, such that

[Alloraxy = ClLS gpox)- (9.56)

Assume thatp, q, s, y, B are as in (9.31)-(9.29), and let f € FP4(X). Then there

exist a sequence of coefficients A = and some number 1 €

{A ku}Q Ve )
(Is], 1], al?lag with 1-smooth blocks a . of type (p,s) for T € Iz and alﬂlvv =
1,...,N(ko, T), and n-smooth atoms a v of type (p, s) forallk € Z, k > iko+1,
e, v=1,...,Nkn1), such that (9.55) holds with convergence taking

place both in FP4(X) and in (gf*y(X))* when q < oo, and only in (gg’y (X))*
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when q = oo. Also, there exists a finite constant C = C(p, q,s) > 0 such that

Al racey < ClLf Nl (9.57)

Proof This follows from [HaYa03, Theorem 4, p.75] by taking into account the
renormalization we consider for our atoms. O

In the converse direction to Theorem 9.14, the extent to which linear combina-
tions of units and molecules with coefficients in a discrete Besov space belong to
the corresponding continuous Besov space is studied next.

Theorem 9.15 Let d € (0, 00) and assume that (X, q, |t) is a standard d-Ahlfors-
regular space where |4 is a Borel-semiregular measure on X and the quasi-distance
p € qisasin(9.1). With C, € [1,00) as in (2.2) fix a number 6 € (O, [log, Cp]_l].
Also, let s € (—60,0), p € (0,00], and g € (0,0]. Recall the space of dyadic
cubes (9.41) and let ko be as in (9.22).

(i) Assume that B and y are such that
se < B <6, max{d(}, - l)+,—s+ d(,l, - 1)+} <y <6, (958

and also suppose thatu 7~ is a (B, y)-smooth unit of type (p, s) for each t € L

andeachv =1,... ,N(fcl(), ), and that U IS a (B, y)-smooth molecule of type
(p,s) foreachk € Z, k> ko+ 1, t € [yandv = 1,...,N(k, 7). Then, if p and

qare asin (9.28) and A = {AQ:;V }QJ;_UGJ* @ € bP4(X), it follows that

N(k.)

f= Z Z Z A g thgho ©.59)

k€Z €l v=1
k>kKg

holds in B1(X) when max{p, g} < oo, and in (gf"” (X))* when
{ 1
maxq(s)4, —s + d(; — 1) } <B1 <0 and 0 <y <86. (9.60)
! +

Furthermore, when max{p, q} < oo, one also has

I llgracey = ClAllorac).- (9.61)

Moreover, when s € (0, 0), the same conclusions as above continue to hold
in the situation when each Uk IS actually a (B, y)-smooth unit of type (p, s)
foreveryke Z, k>ko+ 1, t € andv = 1,...,N(k, 7).
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(ii) Assume that B and y are such that

s+ <B <0 max{d( ! 1) —|—d( ! 1) } <y<§@
s , . - , =S . - s
* min(r.q) ) min.q) ) 4f 7
(9.62)

and suppose that u 7~ is a (B, y)-smooth unit of type (p,s) for every T € I
Q

o
and everyv = 1,.. .I,N(/?a, T), and that Uk 1S a (B, y)-smooth molecule of
type (p,s) for every k € Z with k > ko + 1, every t € I; and every v =
1,....N(k,t). Then, if (9.31) is verified and A = {A,QI;.U}QI;.UGJ*(X) e fri(X),
it follows that (9.59) holds with convergence in F?1(X) when q < oo, and in
(gf"y‘ (X))* when By and y; verify (9.60).

Furthermore, when q < 0o, one also has

1 ey < ClAN pracx).- (9.63)

Moreover, when s € (0, 0), the same conclusions as above continue to hold
in the situation when each Uk IS actually a (B, y)-smooth unit of type (p, s)
foreveryke Z, k>ko+ 1, t € andv =1,...,N(k, 7).

Proof This follows from [HaYa03, Theorem 5, p.76] (cf. see also [HaLuYa99i,
Theorem 2.2, p. 51] for the case when p, g > 1), after readjusting notation. The last
claim in the statement of the theorem is seen from an inspection of the proof of
[HaYa03, Theorem 5, p. 76]. In this regard, see also the second remark in [HaYa03,
§3,p.95]. O

9.3 Calderon’s Reproducing Formula and Frame Theory

The following presents a general version of Calderén’s reproducing formula proved
in [HaLuYaOl, Theorem 1, p.575], although our formulation follows [Ya02,
Lemma 2.2, p. 573]. Related results can be found in [HaYa02, Theorem 4.1, p. 69],
[HaMuYa08, Theorem 4.14, p. 108] and [Ya04, Lemma 2.4, p. 100]).

Lemma 9.16 Ler d € (0,00) and assume that (X, q, 1) is a standard d-Ahlfors-
regular space where [ is a Borel-semiregular measure on X and the quasi-distance
p € qisasin(9.1). Also, with C, € [1,00) as in (2.2), and ky as in (9.22), fix 0 € R
satisfying

0 <6 <[log, C,] ", (9.64)

and suppose {Ei},c; =% IS the collection of conditional expectation operators
defined in Definition 9.6 and denote by Ei(-,-) the integral kernel of Ey, k € Z,
k > ko. Then there exist functions Ei(x,y), x,y € X, withk € Z, k > ky, such that
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for each distribution | € (gf"” (X))*, with 0 < B1,v1 < 0, there holds

Nior) )
f= Y WO m s () /Q ~ By dp) 9.65)
e~ v=l1 ’ T

N(k.7)

+ Y YD WOE()OEE. YY) pointwise on X
k€7 t€lk v=1
k>ko+1

where the series converges in (gf"” (X))* and in IP(X, 1) for all p € (1,00).
Above, foreachk € Z, k > ko + 1,71 € It andv = 1,...,N(k, 1) thepointy’;” is
the center of the dyadic cube Q%", and E*V is the integral operator with kernel

@ /Q ., Ex(u,2) dp(u). (9.66)

T

Moreover, for each k € Z, k > K the function Ei(-, ) satisfies a number of auxiliary
propetrties, as described in [HaMuYa0S, Theorem 4.14, p. 108].

The following two propositions provide a natural mechanism for moving back
and forth between discrete Besov spaces, b79(X), and continuous Besov spaces,
BP(X), as well as between the discrete Triebel-Lizorkin spaces, f4(X), and con-
tinuous Triebel-Lizorkin spaces, F?*4(X) (see [HaMuYa08, Proposition 7.3, p. 214
and Theorem 7.4, p.219] and also [Ya02, Theorem 2.1, p.575 and Theorem 2.2,
p. 585]).

Proposition 9.17 Fix some d € (0, 00) and assume that (X, q, 1) is a standard d-
Ahlfors-regular space where |1 is a Borel-semiregular measure on X and the quasi-
distance p € q is as in (9.1). Also, with C, € [1, 00) as in (2.2), and ky as in (9.22),
fix 0 € R satisfying

0 <6 <[log, C,] ™", 9.67)

and suppose {Ei}icz 1> is the collection of conditional expectation operators
defined in Definition 9.6. Suppose s € (—0,0) and p € (0,0] satisfies

d d
max{d—H R EIE
the form

< p < oo. Furthermore, let A be a sequence of numbers of

A={MreC:keZ k>ky, tel,v=1,... Nk1)} (9.68)

Then the following hold.
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(1) If g € (0,00] and ||A|l,pax) < 00, then the series

N(co,7)

o)=Y Y A /AO, E5(.y) du(y)

1€~ v=1 Or
K0
N(k,7)
+ 0 YN A WOEECY) (9.69)

k€7 €l v=1
k>ko+1

converges in BY1(X) when max{p, q} < oo, as well as in (gf’y (X))* when
max{0.—s+d(1—1),} <B<1. d(i-1), <y<l (70
Moreover, when max{p, q} < oo, then also
[P I52e(x) = ClIAl o x) 9.71)
which, in particular, implies that the application
P : BPI(X) — BYI(X) (9.72)

is well-defined, linear and bounded if max{p, q} < oc.

(2) Ifmax{#, ﬁ} < q < ooand ||A| grax) < 00, then the series in (9.69)

converges in F"4(X) when max{p, q} < oo, as well as in (gﬁ’y (X))* when B,y
are as in (9.70). Furthermore, granted that max{p, g} < oo, one has

1) oy =< CUAL o 9.73)
Hence, the application
@ fPUX) — FPUX) (9.74)

is also well-defined, linear and bounded provided that max{p, g} < oc.
Here is the second proposition alluded to above.

Proposition 9.18 Fix some d € (0, 00) and assume that (X, q, |t) is a standard d-
Ahlfors-regular space where | is a Borel-semiregular measure on X and the quasi-
distance p € q is as in (9.1). Also, with C, € [1,00) as in (2.2), and i as in (9.22),
fix 0 € R satisfying

0 <6 <[log,C,] ™", 9.75)
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and suppose {Ek}kez,kz}‘o' is the collection of conditional expectation operators
defined in Definition 9.6. Suppose s € (—60,0) and p € (0,00] satisfies

d d
max{d-‘rl ' dFIFs

distribution f on gf"y‘ (X) let

< p < oo. With the notation from Lemma 9.16, for every

/\;«)v — M(QKO "Ym ;:”( =(f)) fortelzandv =1,... ,N(ko, 1), ©.76)
A = E(F)OY) forkeZk >R+ 1,7 € [randv = 1,...,N(k,r),'

where yf"’ is the center onf"’, and define
o kv
W(f):={Ae }Qk.,ej @’ (9.77)

where J«(X) is as in (9.41).
Then the following conclusions are valid.

(i) If g € (0,00), then f € B24(X) ifand only if f € (gg’y(X))*for some

max{(s)+,—s+ d(é - 1)+} <B <1, d(é - 1)+ <y <1, (978

and, with A = {/\t }Qk Ve Tux) - = W(f) as in (9.77), the discrete Calderén
reproducing formula
Nko.o)
=3y x/ ~(y) dp(y)
TGI’"’ v=1
N(k,T)

+ Z Z Z A (O Er (-, y5) pointwise on X, (9.79)
kEZ €l v=1
k>ko+1

holds in (gg’V(X))*. Moreover, the coefficients satisfy the following frame
property

W(f) et (X) and || fligax) = W()llpox)
uniformly for f € BY4(X).

(9.80)
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a1 dt1+s
for some 1,y as in (9.78) and (9.79) holds in (Qg’y (X))*. In addition,

(ii) Ifmax{i L} < g < oo, then f € FPUX) ifandonlyif f € (gf’y(X))*

V(f) e fPaX) and | fllppag = WO o
uniformly for f € FP4(X).

(9.81)

When considered together, Propositions 9.17 and 9.18 yield some very useful
consequences which we describe next.

Proposition 9.19 In the context of Propositions 9.17-9.18, the bounded linear
maps ®, U satisfy

DoV =1, the identity operator, (9.82)

both on the scales of (upper- and lower-case) Besov and Triebel-Lizorkin spaces.
Furthermore, formula (9.82) also holds on the space of distributions (Qg’y (X))*.
As a result, in the context of Propositions 9.17-9.18,

® is onto, and V¥ is a quasi-isometric embedding, (9.83)

i.e., W is injective and distorts quasi-norms only up to fixed multiplicative factors)
of the continuous scales of Besov and Triebel-Lizorkin spaces into the respective
discrete versions of these scales of spaces.

Proof This is a straightforward consequence of Propositions 9.17, 9.18 and
Calder6n’s reproducing formula described in Lemma 9.16. O

9.4 Interpolation of Besov and Triebel-Lizorkin Spaces
via the Real Method

This section deals with two theorems regarding the behavior of both the inhomoge-
neous and homogeneous Besov and Triebel-Lizorkin spaces under the real method
of interpolation method. Such results have been well-understood in the Euclidean
setting for a long time (see [Trieb83] and [BerLo76] for excellent references) and
have subsequently been generalized in the context of d-Ahlfors-regular quasi-metric
spaces in [ Ya04] and to reverse-doubling spaces in [HaMuYa08]. Below, we present
some results found in [Ya04] and [HaMuYa08], but recorded here for an optimal
range of indices.

We begin with the real interpolation of the inhomogeneous Besov and Triebel-
Lizorkin spaces B?9(X) and FP4(X).
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Theorem 9.20 Ler d € (0, 00) and assume that (X, q, |) is a standard d-Ahlfors-
regular space where [ is a Borel-semiregular measure on X and the quasi-distance
p € qis as in (9.1). Also, fix a number 0 € (0, [log, Cp]_l] where C, € [1,00)
as in (2.2) and consider parameters g € (0,00] and 0 € (0, 1). Also, suppose
51,82 € (=0, 0) with s1 # sy and set s := (1 — 0)s1 + 057.

Then for each fixed q., q> € (0, 00], and each p € (0, 0o satisfying

d d d
) , , 9.84
P dT 0 d10+4s d+0+s ©59
one has
(By# (X). B2 (X)), = Br(X). (9.85)
Moreover, if p € (0,00) is as in (9.84) and q1, q2 € (0, 00], satisfy
d d <qg< fork=1,2 (9.86)
max , <oo, fork=1,2, .
d+ 6 d+0+s) 1
then there holds
(Ffl’q1 X), Fo2 (X))mq = BY(X). (9.87)

Proof See [Ya04, Theorem 2.3, p. 100] and [HaMuYa08, Theorem 8.9, p.230]. O

The next result describes the behavior of the homogeneous Besov and Triebel-
Lizorkin spaces B?9(X) and F?9(X) via the real method.

Theorem 9.21 Let d € (0, 00) and assume that (X, q, i) is a standard d-Ahlfors-
regular space where | is a Borel-semiregular measure on X, the quasi-metric p € q
is as in (9.1), and where diam,, (X) = oo. Also, fix a number 0 € (0, [log, Cp]_l]
where C, € [1,00) as in (2.2) and consider parameters q € (0,00] and o € (0, 1).
Suppose s1, 52 € (—0,0) with s1 # s, and set s := (1 — a)s1 + 05,.

Then for each fixed q., q> € (0, 00], and each p € (0, 0o satisfying

> ma d d d (9.88)
X ’ ’ ) .
o d+0 d+0+s d+0+s
one has
(B[;{m X), BL," (X))mq = BP(X). (9.89)
Moreover, if p € (0,00) is as in (9.84) and q1, q2 € (0, o], satisfy
d d
ma <g=<oo, fork=1,2, (9.90)

X d+60 d+ 0 + s
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then there holds

(FP(X), Fo (X)), = BP(X). (9.91)

04
Proof See [Ya04, Theorem 3.1, p. 111] and [HaMuYa08, Theorem 8.8, p.225]. O

In contrast to Theorems 9.20 and 9.21, the last result in this section considers
the real interpolation of the homogeneous and inhomogeneous Besov spaces where
both integrability exponents are allowed to vary.

Theorem 9.22 Let d € (0, 00) and assume that (X, q, 1) is a standard d-Ahlfors-
regular space where [ is a Borel-semiregular measure on X and the quasi-distance
p € qis asin (9.1). Also, fix a number 0 € (O, [log, Cp]_l] where C,, € [1,00) as
in (2.2) and fix a parameter o € (0, 1). Suppose s1,s, € (=0, 0) and consider a
distinct pair of exponents p, p2 € (0, o0] satisfying

d d
d+60"d+0+ s

Pk > max fork =1,2. (9.92)

In this context, set s := (1 — 0)s| + 05y and choose the exponent p € (0, o] such
that 1/p = (1 —0)/po + 0/pi1. Then one has

(BY1P(X), B> (X))a’p = B’ (X). (9.93)
Additionally, if diam, (X) = oo, then there holds
(B (X), Br2P x),, = B (X). (9.94)

Proof See [HaMuYa08, Theorem 8.7, p. 224]. O
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