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Preface

In recent years it has become more and more evident that Nonlinear Functional
Analysis is of crucial importance in the Mathematical Sciences. This is because
functional analytic ideas and methods have turned out to be essential tools in the
analysis of nonlinear phenomena in many areas of Mathematics and its applications.
Among these areas one can mention Ordinary Differential Equations, Partial Differ-
ential Equations, the Geometry of Banach Spaces, Nonlinear Operator Theory, the
Calculus of Variations, Optimal Control Theory, Optimization and Mathematical
Economics.

One of the main features of the functional analytic approach is the investigation
and solution of general classes of problems rather than of more specific individual
ones. When one uses this approach, the following question arises:

We consider a class of problems which is identified with some functional space
equipped with a natural complete metric. We know that for some elements of the
functional space the corresponding problems possess a solution (or a solution with
some desirable properties) and for some elements such solutions do not exist. We
usually know some sufficient conditions for the existence of solutions, but often
these conditions are difficult to verify or they hold for rather small subsets of the
whole space. In such situations it is natural to ask if a solution (or a solution with
some desirable properties) exists for most elements of the functional space in the
sense of Baire category. This means that the functional space under consideration
contains an everywhere dense Gs subset such that for all its elements a solution
exists.

It turns out that this generic approach is very useful and many interesting and
important problems can be solved using it. The goal of our book is to demonstrate
this. Although it is, of course, impossible to cover the whole spectrum of present-
day trends in Nonlinear Analysis and its applications where the generic approach
is used, we do present quite a few of the main topics which are of current research
interest. They include fixed point theory of both single- and set-valued mappings,
convergence analysis of infinite products, best approximation problems, discrete
and continuous descent methods for minimization in a general Banach space, and
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the structure of minimal energy configurations with rational numbers in the Aubry-
Mather theory.

Now we describe the structure of the book. We begin in Chap. 1 with the applica-
tions of the Baire theory to fixed point theory. A self-mapping of a complete metric
space is called nonexpansive if it is Lipschitz with Lipschitz constant one. If the
Lipschitz constant is less than one, then it is called a strict contraction. According
to Banach’s celebrated result, a strict contraction has a unique fixed point and all
its iterates converge to it. It was unclear what happens when a mapping acting on a
closed and convex subset of a general Banach space is just nonexpansive until the
classical paper by De Blasi and Myjak of 1976 [49], where they show, using the
Baire approach, that most mappings in the class of nonexpansive self-mappings of
a bounded, closed and convex subset of a general Banach space possess a unique
fixed point which attracts uniformly all their iterates. Note that they also show that
the subclass of strict contractions is a small set in the whole class of nonexpansive
mappings.

Chapter 2 is devoted to further generalizations, extensions and developments
concerning this result of De Blasi and Myjak. Using the Baire approach, we estab-
lish existence and uniqueness of a fixed point for a generic mapping, convergence
of iterates of a generic nonexpansive mapping, stability of the fixed point under
small perturbations of a mapping, convergence of Krasnosel’skii-Mann iterations of
nonexpansive mappings, generic power convergence of order preserving mappings,
and existence and uniqueness of positive eigenvalues and eigenvectors of order-
preserving linear operators. In this chapter we also study convergence of iterates of
nonexpansive mappings in the presence of computational errors.

Chapter 3 is devoted to an important subclass of the class of nonexpansive map-
pings which consists of the so-called contractive mappings. A contractive mapping
is obtained if in the definition of a strict contraction the constant is replaced by a
monotonically decreasing function with nonnegative values which do not exceed
one and which is a function of the distance between two points. This topic has re-
cently become rather popular. In Chap. 3 we study different types of contractive
mappings, existence of fixed points for such mappings, convergence of their powers
to a fixed point, stability of a fixed point under small perturbations of the mapping,
and use the Baire approach to show that most nonexpansive mappings are contrac-
tive.

In Chap. 4 we use the generic approach in order to study the asymptotic behavior
of trajectories of a certain dynamical system which originates in a convex minimiza-
tion problem. Usually, an algorithm for the minimization of an objective function
on a set can be considered a self-mapping of the set for which the objective function
is a Lyapunov function. In our case the set is a closed subset of a Banach space.
The results presented in this chapter show that for most algorithms, the values of the
objective function along all the trajectories tend to its infimum.

In Chap. 5 we generalize some of the results of Chap. 2 for mappings which are
relatively nonexpansive with respect to Bregman distances. Such mappings appear
in optimization theory and in studies of feasibility problems [37, 39].
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Chapter 6 is devoted to the study of convergence of infinite products of different
classes of mappings. The convergence of infinite products of nonexpansive map-
pings is of major importance because of their many applications in the study of fea-
sibility and optimization problems. We study the convergence of typical (generic)
infinite products of mappings to the set of their common fixed points, and estab-
lish weak ergodic theorems (a term which originates in population biology), which
roughly mean that all trajectories generated by infinite products converge to each
other. We study convergence and its stability for generic infinite products of non-
expansive mappings, uniformly continuous mappings, order-preserving mappings,
order-preserving linear mappings, homogeneous order-preserving mappings, prod-
ucts of affine mappings, as well as products of resolvents of accretive operators.

In Chap. 7 we study best approximation problems in a general Banach space.
A best approximation problem is determined by a pair consisting of a point and a
closed (convex) subset of a Banach space. We consider the complete metric space
of such pairs equipped with a natural complete metric and show that for most (in the
sense of Baire category) pairs the corresponding best approximation problem has a
unique solution. We also provide some generalizations and extensions of this result.

In Chap. 8 we study discrete and continuous descent methods for minimizing a
convex (Lipschitz) function on a general Banach space. We consider a space of vec-
tor fields V such that for any point x in the Banach space, the directional derivative
in the direction Vx is nonpositive. This space of vector fields is equipped with a
complete metric. Each vector field generates two gradient type algorithms (discrete
descent methods) and a flow which consists of the solutions of the corresponding
evolution equation (continuous descent method). We show that most (in the sense of
Baire category) vector fields produce algorithms for which values of the objective
function tend to its infimum as ¢ tends to infinity. Actually, we introduce the subclass
of regular vector fields, show that the convergence property stated above holds for
them and that a generic vector field is regular. We also show that this convergence
property is stable under small perturbations of a given regular vector field.

Chapter 9 is devoted to set-valued mappings. We study approximate fixed points
of such mappings, existence of fixed points, and the convergence and stability of
iterates of set-valued mappings.

Chapter 10 is devoted to the Aubry-Mather theory applied to the famous Frenkel-
Kontorova model, an infinite discrete model of solid-state physics related to dislo-
cations in one-dimensional crystals. In this model a configuration of a system is
a sequence of real numbers with indices from —oo to +00. We are interested in
(h)-minimal configurations with respect to an energy function /. A configuration
is called (h)-minimal if its total energy cannot be made less by changing its final
states. Classical Aubry-Mather theory is concerned with finding and investigating
h-minimal configurations with a given rotation number, where the function % is
fixed. It implies that the set of all periodic #-minimal configurations of a rational
rotation number p/q is totally ordered. Moreover, between any two neighboring pe-
riodic #-minimal configurations with rotation number p/q, there are (non-periodic)
h-minimal heteroclinic connections having the same rotation number p/q. We con-
sider a complete metric space of energy functions & equipped with a certain C?



viii Preface

topology and show that for most energy functions in this space, there exist three
different #-minimal configurations with rotation number p/g such that any other
h-minimal configuration with the same rotation number p/q is a translation of one
of these three.

Haifa Simeon Reich
December 31, 2012 Alexander J. Zaslavski
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Chapter 1
Introduction

Let X be a complete metric space. According to Baire’s theorem, the intersection of
every countable collection of open dense subsets of X is dense in X. This rather sim-
ple, yet powerful result has found many applications. In particular, given a property
which elements of X may have, it is of interest to determine whether this property
is generic, that is, whether the set of elements which do enjoy this property contains
a countable intersection of open dense sets. Such an approach, when a certain prop-
erty is investigated for the whole space X and not just for a single point in X, has
already been successfully applied in many areas of Analysis. In this chapter we dis-
cuss several recent results in metric fixed point theory which exhibit these generic
phenomena.

1.1 Hyperbolic Spaces

It turns out that the class of hyperbolic spaces is a natural setting for our generic
results. In this section we briefly review this concept.

Let (X, p) be a metric space and let R denote the real line. We say that a map-
ping ¢ : R' — X is a metric embedding of R' into X if

p(c(s). c0) = Is —1]

for all real s and 7. The image of R' under a metric embedding will be called a
metric line. The image of a real interval [a, b] = {t € Rl:a<t< b} under such a
mapping will be called a metric segment.

Assume that (X, p) contains a family M of metric lines such that for each pair of
distinct points x and y in X, there is a unique metric line in M which passes through
x and y. This metric line determines a unique metric segment joining x and y. We
denote this segment by [x, y]. For each 0 <t < 1, there is a unique point z in [x, y]
such that

px,z)=tp(x,y) and p(z,y)=(1—-1)p(x,y).
This point will be denoted by (1 —#)x @ ty.
S. Reich, A.J. Zaslavski, Genericity in Nonlinear Analysis, 1
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2 1 Introduction

We will say that X, or more precisely (X, p, M), is a hyperbolic space if
1 EB1 1 651 <1 . 2)
PL2" 20" ¥t ) =P s

for all x, y and z in X.
An equivalent requirement is that

Loty tual)<lipmw+p0.2)
P\ W Wt ) =P Ly, 2

for all x, y, z and w in X. A set K C X is called p-convex if [x, y] C K for all x
and y in K.

It is clear that all normed linear spaces are hyperbolic. A discussion of more
examples of hyperbolic spaces and in, particular, of the Hilbert ball can be found,
for instance, in [66, 68, 81, 124].

In the sequel we will repeatedly use the following fact (cf. pp. 77 and 104 of [68]
and [124]): If (X, p, M) is a hyperbolic space, then

p(I=Dx@®tz, (1 -y ®tw) <1 —Dpx,y) +1pz, w) (1.1)

forall x, y,zandwin X and0 <r < 1.

1.2 Successive Approximations

Let (X, p, M) be a complete hyperbolic space and let K be a closed p-convex subset
of X. Denote by A the set of all operators A : K — K such that

p(Ax, Ay) <p(x,y) forallx,yeK.

In other words, the set .4 consists of all the nonexpansive self-mappings of K.
Fix some 6 € K and for each 5 > 0, set

B,s)=B(s) = {x eK:p(x,0)< s}.
For the set A we consider the uniformity determined by the following base:
E(n,e)={(A,B)e Ax A: p(Ax, Bx) <¢&,x € Bn)},

where ¢ > 0 and 7 is a natural number. Clearly the space .4 with this uniformity is
metrizable and complete. We equip the space .A with the topology induced by this
uniformity.

A mapping A : K — K is called regular if there exists a necessarily unique
x4 € K such that

lim A"x =x, forallx € K.
n—oo

A mapping A : K — K is called super-regular if there exists a necessarily unique
x4 € K such that for each s > 0,

A"x — x4 asn — oo, uniformly on B(s).
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Denote by I the identity operator. For each pair of operators A, B : K — K and
each r € [0, 1], define an operator tA @ (1 —¢) B by

(tA & (1-— t)B)(x) =tAx® (1 —-t)Bx, xeKk.

Note that if A and B belong to .4, then so does tA @ (1 —t)B.

In Chap. 2 we establish generic existence and uniqueness of a fixed point for a
generic mapping, convergence of iterates of a generic nonexpansive mapping, sta-
bility of the fixed point under small perturbations of a mapping and many other
results. Among these results are the following two theorems obtained in [132].

The first result shows that in addition to (locally uniform) power convergence,
super-regular mappings also provide stability, while the second result shows that
most mappings in .4 are, in fact, super-regular. This is an improvement of the clas-
sical result of De Blasi and Myjak [49] who established power convergence (to a
unique fixed point) for a generic nonexpansive self-mapping of a bounded closed
convex subset of a Banach space.

Theorem 1.1 Let A : K — K be super-regular and let €, s be positive numbers.
Then there exist a neighborhood U of A in A and an integer ng > 2 such that for
each B € U, each x € B(s) and each integer n > ngy, we have p(x4, B"x) <e.

Theorem 1.2 There exists a set Fo C A which is a countable intersection of open
everywhere dense sets in A such that each A € Fy is super-regular.

1.3 Contractive Mappings

In Chap. 3 we consider the class of contractive mappings which we now define.
Let K be a bounded, closed and convex subset of a Banach space (X, || - ||).
Denote by A the set of all operators A : K — K such that

|[Ax — Ay|| <|lx —y|| forallx,yeK.
Set
d(K)=sup{llx —y| :x,y e K}.
We equip the set A with the metric A(-, -) defined by
h(A, B) =sup{||Ax — Bx| :x €K}, A,BeA.

Clearly, the metric space (A, h) is complete.
We say that a mapping A € A is contractive if there exists a decreasing function
¢4 :10,d(K)] — [0, 1] such that

¢t (t) <1 forallt e (0,d(K)]
and

lAx — Ayl < ¢ (lx = yl)Ilx =yl forall x,y € K.
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The notion of a contractive mapping, as well as its modifications and applications,
were studied by many authors. See, for example, [114, 116] and the references men-
tioned there. We now quote a convergence result which is valid in all complete met-
ric spaces [114].

Theorem 1.3 Assume that A € A is contractive. Then there exists a unique x4 € K
such that A"x — x4 as n — oo, uniformly on K.

In Chap. 3 we show that most of the mappings in A (in the sense of Baire’s
categories) are, in fact, contractive and prove the following result obtained in [131].

Theorem 1.4 There exists a set F which is a countable intersection of open every-
where dense sets in A such that each A € F is contractive.

Note that at least in Hilbert space the set of strict contractions is only of the first
Baire category in A [13, 49].

In Chap. 3 we continue with a discussion of nonexpansive mappings which are
contractive with respect to a given subset of their domain. We now define this class
of mappings.

Let K be a closed (not necessarily bounded) p-convex subset of the complete
hyperbolic space (X, p, M). Denote by A the set of all nonexpansive self-mappings
of K.

For each x € K and each subset £ C K, let p(x, E) =inf{p(x, y) : y € E}. For
each x € K and each r > 0, set

B(x,r)= {y eK:plx,y) < r}.

Fix 6 € K. We equip the set A with the same uniformity and topology as in the
previous section.

Let F be a nonempty, closed and p-convex subset of K. Denote by A the set
of all A € A such that Ax = x for all x € F. Clearly, AW is a closed subset of A.
We consider the topological subspace A c A with the relative topology.

An operator A € A is said to be contractive with respect to F if for any natural
number r, there exists a decreasing function (/5;,4 : [0, 00) — [0, 1] such that

¢,?(t) <1 forallt>0
and
p(Ax, F) < ¢} (p(x, F))p(x, F) forallx € B(®,n).

Clearly, this definition does not depend on our choice of 6 € K.
The following result, which was obtained in [131], shows that the iterates of an
operator in A converge to a retraction of K onto F.

Theorem 1.5 Let A € AP be contractive with respect to F. Then there exists B €
AF) such that B(K) = F and A"x — Bx as n — oo, uniformly on B(6,m) for
any natural number m.
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Finally, we present the following theorem of [131] which shows that if A
contains a retraction, then almost all the mappings in A are contractive with
respect to F.

Theorem 1.6 Assume that there exists
0e AP suchthat Q(K)=F.

Then there exists a set F C AY) which is a countable intersection of open every-
where dense sets in AY) such that each B € F is contractive with respect to F.

1.4 Infinite Products

In Chap. 6 we present several results concerning the asymptotic behavior of (ran-
dom) infinite products of generic sequences of nonexpansive, as well as uniformly
continuous, operators on closed and convex subsets of a complete hyperbolic space.

Let (X, || - ||) be a Banach space and let K be a nonempty, bounded, closed and
convex subset of X with the topology induced by the norm || - ||.

Denote by A the set of all sequences {A;};°,, where each A, : K — K is a
continuous operator, t =1, 2, .... Such a sequence will occasionally be denoted by
a boldface A.

For the set A we consider the metric p; : A x A — [0, 0o) defined by

ps (A2 {B}Z)) = sup{l| Aix — Bix|| :x € K1 =1,2,...},
(A2 B2, € A

It is easy to see that the metric space (A, ps) is complete. The topology generated
in A by the metric ps; will be called the strong topology.

In addition to this topology on A, we will also consider the uniformity deter-
mined by the base

E(N,&) ={({A)2,.(Bi}2)) e Ax A:
|Aix — Bix|| <e,t=1,...,N,x € K},

where N is a natural number and ¢ > 0. It is easy to see that the space .4 with this
uniformity is metrizable (by a metric p, : A x A — [0, 00)) and complete. The

topology generated by p,, will be called the weak topology.
Define

Ape = {{A:}72, € A: A, is nonexpansive forr =1,2,...}.

Clearly, Ay, is a closed subset of A in the weak topology. We will consider the
topological subspace A,. C A with both the weak and strong relative topologies.

In Theorem 2.1 of [129] we showed that for a generic sequence {C,;}7°, in the
space A;, with the weak topology,

”CT ..... Clx_CTCIy”_)O asT-)OO,
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uniformly for all x, y € K. (Such results are usually called weak ergodic theorems
in the population biology literature; see [43, 107].)
Here is the precise formulation of this weak ergodic theorem.

Theorem 1.7 There exists a set F C Ape, which is a countable intersection of open
(in the weak topology) everywhere dense (in the strong topology) subsets of Aye,
such that for each {B;}7°, € F and each & > 0, there exist a neighborhood U of
{B:}72, in Ape with the weak topology and a natural number N such that:

For each {C;}72, € U, each x,y € K, and each integer T > N,

ICr -+ Cix=Cr - Ciyl <.

Note that in Chap. 6 we also prove a random version of this theorem.

We will say that a set E of operators A : K — K is uniformly equicontinuous
(ue) if for any ¢ > 0, there exists 6 > 0 such that ||Ax — Ay|| <& forall A € E and
all x, y € K satisfying ||x — y| <§.

Define

Ave = {{A}2) € A {A 2 is a (ue) set}.

Clearly, A, is a closed subset of A in the strong topology.

We will consider the topological subspace A,. C A with both the weak and
strong relative topologies.

Denote by Ay, the set of all {A;}7°, € Ay, which have a common fixed point
and denote by .Af;L the closure of A’ in the strong topology of the space A,..

Let A%, be the set of all A = {A 172, € Aue for which there exists x(A) € K
such that for each integer ¢ > 1,

Ax(A)=x(A) and Ay —xA)| < |y—x@A)| forallyeK,

and denote by A* the closure of A7, in the strong topology of the space A,..

We consider the topological subspaces A, and A*, with the relative strong
topologies. In Theorem 2.4 of [129] we showed that a generic sequence {C;}7°,
in the space A has a unique common fixed point x, and all random products of
the operators {C t}i2, converge to x, uniformly for all x € K. We now quote this
theorem.

Theorem 1.8 There exists a set F C Aue, which is a countable intersection of
open everywhere dense (in the strong topology) subsets of .Aue, such that for each
{B:};2, € F, there exists x4 € K for which the following assertions hold:

1. Bixoy =x4,t=1,2,...,and
1By — x4l <lly —x«ll, yeK,t=1,2,.

2. For each ¢ > 0, there exist a neighborhood U of {B}2, in A . With the strong
topology and a natural number N such that for each {C el e U, each integer
T > N, each mappingr : {1,..., T} — {1,2,...},andeachx ek,

ICrry----- Cryx — x4 <e.
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In [129] we also proved an analog of this theorem for the space flz ¢

We remark in passing that one can easily construct an example of a sequence
of operators {A;};°, € Ay, for which the convergence properties described in the
previous theorem do not hold. Namely, they do not hold for the sequence each term
of which is the identity operator.

Now assume that F' is a nonempty, closed and convex subset of K and that
0 : K — F is a nonexpansive operator such that

Ox=x, xeF.
Such an operator Q is usually called a nonexpansive retraction of K onto F (see
[68]). Denote by .A(F) the set of all {A}7°, € Ay, such that
Aix=x, xeF,t=1,2,....
Clearly, Aze isa closed subset of A4, in the weak topology. We equip the topolog-

ical subspace Ane C A, with both the weak and strong relative topologies.
In Theorem 3.1 of [129] we showed that for a generic sequence of operators

{B:};2, in the space A,(g) with the weak topology there exists a nonexpansive re-
traction Py : K — F such that

By Bix — Pyx ast— oo,

uniformly for all x € K. We end this section with the precise statement of this con-
vergence theorem.

Theorem 1.9 There exists a set F C Ane , which is a countable intersection of

open (in the weak topology) everywhere dense (in the strong topology) subsets of

51?, such that for each {B};2 | € F, the following assertions hold:

1. There exists an operator P, : K — F such that
lim B; ----- Bix=P.x foreachx e K.
2. For each ¢ > 0, there exist a neighborhood U of {B;};2, in A ) with the weak

topology and a natural number N such that for each {C 1172, € U, each integer
T > N, and each x € K,

Cr - Cix — Pux|| <e.

Theorem 3.2 of [129] is a random version of this theorem.

1.5 Contractive Set-Valued Mappings

In Chap. 9 we study contractive set-valued mappings.
Assume that (X, || - ||) is a Banach space, K is a nonempty, bounded and closed
subset of X and there exists & € K such that for each x € K,

tx+(1—-16ekK, te(0,1).
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We consider the complete metric space K with the metric ||x — y||, x, y € K. Denote
by S(K) the set of all nonempty closed subsets of K. For x € K and D C K, set

p(x, D) =inf{|lx — y| : y € D},
and for each C, D € S(K), let

H(C,D)= max[sup p(x,D),sup p(y,C)y.
xeC yeD

We equip the set S(K) with the Hausdorff metric H (-, -). It is well known that the
metric space (S(K), H) is complete.

Denote by A the set of all nonexpansive operators T : S(K) — S(K). For the set
A we consider the metric p 4 defined by

pA(T1, ) =sup{H(T1(D), To(D)) : D€ S(K)}, T, T»eA

Denote by N the set of all mappings T : K — S(K) such that

H(T(x),T() <lx—yll, x,yeKk.
Set

d(K) = sup{||x —yll:x,y€ K}.
A mapping T € N is called contractive if there exists a decreasing function ¢ :
[0,d(K)] — [0, 1] such that
¢(1) <1 forallz e (0,d(K)]
and
H(T(x), T(y) <¢(lx = yll)llx =yl forallx,yeK.

Assume that T € \. For each D € S(K), denote by T(D) the closure of the set
(U{T (x) : x € D} in the norm topology.
It was shown in [144] that for any T € A/, the mapping T belongs to A and
moreover, the mapping 7 is contractive if and only if the mapping 7 is contractive.
We equip the set N with the metric pps defined by
oN(T1, T) = sup{H(T1(x), Ta(x)) :x € K}, T, TeN.

It is not difficult to verify that the metric space (N, ppr) is complete.
For each T € N set P(T) = T.Itis easy to see that for each 71, T> € N,

pA(P(T1), P(T2)) = pn (T1, T2).
Denote
B={P(T):TeN}.
Clearly, the metric spaces (B, p.4) and (N, pr) are isometric.
In [144] we obtained the following results.

Theorem 1.10 Assume that the operator T € N is contractive. Then there exists
a unique set At € S(K) such that T(At) = Ar and (T)"(B) — At as n — 00,
uniformly for all B € S(K).
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Theorem 1.11 There exists a set F, which is a countable intersection of open and
everywhere dense subsets of (N, par), such that each T € F is contractive.

1.6 Nonexpansive Set-Valued Mappings

Let (X, || - ||) be a Banach space and denote by S.,(X) the set of all nonempty,
closed and convex subsets of X. For x € X and D C X, set

p(x, D) =inf{||lx — y|| : y € D},
and for each C, D € S;,(X), let

H(C,D)= max{sup p(x,D),sup p(y,C)}.
xeC yeD
The interior of a subset D C X will be denoted by int(D). For each x € X and
eachr > 0, set B(x,r) ={y € X : ||y — x| <r}. For the set S.,(X) we consider the
uniformity determined by the following base:

G(n) ={(C, D) € S¢o(X) x Seo(X) : H(C, D) <n” '},

n=1,2,....Itis well known that the space S.,(X) with this uniformity is metriz-
able and complete. We endow the set S.,(X) with the topology induced by this
uniformity.

Assume now that K is a nonempty, closed and convex subset of X, and denote by
Sco(K) the set of all D € S.,(X) such that D C K. Clearly, S.,(K) is a closed sub-
set of S¢ (X). We equip the topological subspace S¢,(K) C S¢o(X) with its relative
topology.

Denote by N, the set of all mappings T : K — S.,(K) such that T(x) is
bounded for all x € K and

H(T(x), T(y)<lx—yl. x,yeK.

In other words, the set AV, consists of those nonexpansive set-valued self-mappings
of K which have nonempty, bounded, closed and convex point images.
Fix 6 € K. For the set NV, we consider the uniformity determined by the follow-
ing base:
E(n) ={(T1, T2) € Neo X Neo : H(Ti (1), Ta(x)) <n”!
for all x € K satisfying ||x — 6| gn}, n=12,....

It is not difficult to verify that the space N, with this uniformity is metrizable and
complete.
The following result is well known [45, 102]; see also [116].
Theorem 1.12 Assume that T : K — S(K), y € (0, 1), and
H(Tx), T(y)<ylx=yl, x yek.

Then there exists xp € K such that xp € T (x7).
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The existence of fixed points for set-valued mappings which are merely non-
expansive is more delicate and was studied by several authors. See, for example,
[67, 94, 119] and the references therein. We now state a result established in [145]
which shows that if int(K) is nonempty, then a generic nonexpansive mapping does
have a fixed point. This result will be proved in Chap. 9.

Theorem 1.13 Assume that int(K) # (). Then there exists an open everywhere
dense set F C N, with the following property: for each S € F, there exist x € K
and a neighborhood U of S in N, such that x € S(X) for each S € U.

1.7 Porosity

In this section we present a refinement of the classical result obtained by De Blasi
and Myjak [49]. This refinement involves the notion of porosity which we now recall
[51, 123, 180, 182].

Let (Y, d) be a complete metric space. We denote by B(y, r) the closed ball of
center y € Y and radius r > 0. A subset E C Y is called porous (with respect to the
metric d) if there exist o € (0, 1) and r¢ > 0 such that for each r € (0, rg] and each
y € Y, there exists z € Y for which

B(z,ar) C B(y,r)\ E.

A subset of the space Y is called o-porous (with respect to d) if it is a countable
union of porous subsets of Y.

Remark 1.14 Tt is known that in the above definition of porosity, the point y can be
assumed to belong to E.

Since porous sets are nowhere dense, all o-porous sets are of the first Baire
category. If Y is a finite-dimensional Euclidean space, then o-porous sets are of
Lebesgue measure 0. In fact, the class of o-porous sets in such a space is much
smaller than the class of sets which have Lebesgue measure 0 and are of the Baire
first category. Also, every Banach space contains a set of the first Baire category
which is not o -porous.

To point out the difference between porous and nowhere dense sets, note that if
E C Y is nowhere dense, y € Y and r > 0, then there is a point z € Y and a number
s > 0 such that B(z,s) C B(y,r) \ E. If, however, E is also porous, then for small
enough r we can choose s = ar, where « € (0, 1) is a constant which depends only
on E.

Let (X, p, M) be a complete hyperbolic space and K C X a nonempty, bounded,
closed and p-convex set. Once again we denote by A the set of all nonexpansive
self-mappings of K. For each A, B € A we again define

h(A, B) =sup{p(Ax, Bx):x € K}. (12)

It is easy to verify that (A, &) is a complete metric space.
The following result was established in [142].
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Theorem 1.15 There exists a set F C A such that the complement A\ F is
o-porous in (A, h) and for each A € F the following property holds:

There exists a unique x4 € K for which Axg = x4 and A"x — x4 as n — 00,
uniformly on K.

Proof Set

d(K)=sup{p(x,y):x,y € K}. (1.3)

Fix 6 € K. For each integer n > 1, denote by A, the set of all A € A which have
the following property:

(C1) There exists a natural number p(A) such that
p(AP A x, AP A y) <1/n forallx,y e K. (1.4)

Let n > 1 be an integer. We will show that A \ A,, is porous in (A, /). To this end,
let

a=(d(K)+1)"" @)~ (1.5)
Assume that A € A and r € (0, 1]. Set
y=2""r(d(K)+1)"" (1.6)
and define A, € A by
Ay x=(1-y)Ax®y0, xcKk. (1.7)
It is easy to see that
p(Ayx,Ayy) =(I—y)p(x,y), x,yeKk, (1.8)
and
h(A, A)) <yd(K). (1.9)
Choose a natural number p for which
p>rdK)+1)%4n + 1. (1.10)
Let B € A satisfy
h(A,, B) <ar, (1.11)

and let x, y € K. We will show that p(B”x, BPy) < 1/n. (We use the convention
that C° = I, the identity operator.)
Assume the contrary. Then fori =0, ..., p,

p(B'x, B'y) > 1/n. (1.12)
It follows from (1.11), (1.2), (1.8) and (1.12) that fori =0, ..., p — 1,
,O(BH_lx,Bi-Hy) 5,O(Bi+1x,AyBix)—i—,O(AyBix,AyBiy) +/0(AyBly, Bi+1y)
Ear—}—p(AyBix,AyBiy) + ar
<2ar+ (1 — y)p(Bix, Biy) < ,o(B"x, Biy) +2ar —y/n
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and
p(Bix, Biy) — ,o(B"'Hx, Bi+1y) >y/n—2ar.
When combined with (1.3), (1.6) and (1.5), this latter inequality implies that

d(K) = p(x,y) — p(B"x, B"y)
p

|
—

[o(B'x, B'y) = p(B™'x, B y)] = p(y/n —2ar)

I
Ing

r(dK)+1)""@n)y" = 2r(dK) + 1) 8n) ']
r(dK)+1)"" @n)™!

=

=
—/

>

=

and
p <r'd(K)(d(K) + 1)4n,

a contradiction (see (1.10)). Thus p(B”x, BPy) <1/n for all x, y € K. This means
that

{Be A:h(Ay,B) <ar} C A,. (1.13)
It now follows from (1.9), (1.6) and (1.5) that

{BeA:h(Ay,B)<ar}C{BeA:h(A, B)<ar+yd(K)}
c{BeA:h(A,B)<r}.

In view of (1.13) this inclusion implies that A \ A, is porous in (A, k). Define
F =2, An. Then A\ F is o-porous in (A, h).

Let A € F. It follows from property (C1) that for each integer n > 1, there ex-
ists a natural number s such that p(A’x, A/y) < 1/n for all x,y € K and all in-
tegers i, j > s. Since n is an arbitrary natural number, we conclude that for each
x ek, {Aix};?il is a Cauchy sequence which converges to a point x, € K satisfy-
ing Ax, = x, and moreover, Alx = x, asi — 00, uniformly on K. This completes
the proof of Theorem 1.15. O

1.8 Examples

Most of the results obtained in this book are generic existence theorems. Usually, we
study a certain property for a class of problems which is identified with a complete
metric space and it is shown that for a typical (generic) element of this space the
corresponding problem has a unique solution. Of course, such results are of interest
only if there is a problem which does not possess the desired property. It should be
mentioned that such problems do exist. Let us consider, for instance, the space of
mappings discussed in Sect. 1.2. By Theorem 1.2, a typical element of this space is
super-regular. It is easy to see that the identity operator is not super-regular. If our



1.8 Examples 13

metric space is a Banach space, then any translation is not super-regular. Of course
both of these mappings are not contractive too. In the book we also consider other
examples which are more interesting and complicated.

In Sect. 3.4 we construct a contractive mapping A : [0, 1] — [0, 1] such that none
of its powers is a strict contraction. Section 3.5 contains an example of a mapping
A [0, 1] — [0, 1] such that

|Ax — Ay| <|x —y| forallx,yel0,1],
A"x — 0 asn— oo, uniformly on [0, 1],

and for each integer m > 0, the power A™ is not contractive. In Sect. 3.6 we con-
struct a nonexpansive mapping with nonuniformly convergent powers.

In Sect. 2.24 we construct an example of an operator 7 on a complete metric
space such that all of its orbits converge to its unique fixed point and for any non-
summable sequence of errors and any initial point, there exists a divergent inexact
orbit with a convergent subsequence. In Sect. 2.26 we construct an example of an
operator T on a certain complete metric space X (a bounded, closed and convex sub-
set of a Banach space) such that all of its orbits converge to its unique fixed point,
and for any nonsummable sequence of errors and any initial point, there exists an
inexact orbit which does not converge to any compact set.



Chapter 2
Fixed Point Results and Convergence of Powers
of Operators

In this chapter we establish existence and uniqueness of a fixed point for a generic
mapping, convergence of iterates of a generic nonexpansive mapping, stability of
the fixed point under small perturbations of a mapping and many other results.

2.1 Convergence of Iterates for a Class of Nonlinear Mappings

Let K be a nonempty, bounded, closed and convex subset of a Banach space
(X, Il - II). We show that the iterates of a typical element (in the sense of Baire’s
categories) of a class of continuous self-mappings of K converge uniformly on K
to the unique fixed point of this typical element.

We consider the topological subspace K C X with the relative topology induced
by the norm || - ||. Set

diam(K) = sup{[lx — y| : x,y € K }. 2.1

Denote by A the set of all continuous mappings A : K — K which have the follow-
ing property:
(P1) For each ¢ > 0, there exists x. € K such that

[Ax — xe|| < |lx —xc|| +& forallx € K. (2.2)
Foreach A, B € A, set
d(A, B) =sup{||Ax — Bx| :x € K}. (2.3)
Clearly, the metric space (A, d) is complete.
We are now ready to state and prove the following result [149].

Theorem 2.1 There exists a set F C A such that the complement A\ F is o -porous
in (A, d) and each A € F has the following properties:
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(1) There exists a unique fixed point x4 € K such that
A"x — x4 asn—> oo, uniformly forall x € K;
(i1)
|Ax —xall <llx —xall forallx € K;

(iii) For each e > 0, there exist a natural number n and a real number § > 0
such that for each integer p > n, each x € K, and each B € A satisfying
d(B,A) <4,

HBpx —Xa || <e.
The following auxiliary result will be used in the proof of Theorem 2.1.

Proposition 2.2 Let A € A and € € (0, 1). Then there exist x € K and B € A such
that

d(A,B)<¢ (2.4)
and

|lx —Bx|| <|lx —x| forallx K. (2.5)

Proof Choose a positive number

1

go < 87'e?(diam(K) +1) . (2.6)
Since A € A, there exists X € K such that
|Ax — %] < ||lx — || + &0 forallx € K. 2.7)
Let x € K. There are three cases:
[Ax — x|l <e&; (2.8)
[Ax —x[|=¢ and [JAx — x|l < |lx —X][; (2.9)
|Ax —x|| >¢e and |Ax —Xx| >|x —x]|. (2.10)

First we consider case (2.8). There exists an open neighborhood V, of x in K such
that

|Ay — x|l <e forallye V. (2.11)
Define ¢ : Vy — K by
Yx(y) =%, y€Vi. (2.12)
Clearly, for all y € V,,

0=|vx(y)—%| <lly—% and [Ay—v.(»)|=IlAy—%l<e. (2.13)
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Consider now case (2.9). Since A is continuous, there exists an open neighborhood
V, of x in K such that

Ay — x| <|ly —x|| forallye V,. (2.14)
In this case we define i, : Vy — K by
Ux(y)=Ay, yeV.. (2.15)
Finally, we consider case (2.10). Inequalities (2.10), (2.6) and (2.7) imply that
lx =X = [|Ax — x| — &0 > (7/8)e. (2.16)

For each y € [0, 1], set
72(y)=yAx+ (1 —y)x. 2.17)
By (2.17), (2.10) and (2.16), we have

|z0) = %[ =0 and |z(1) =% =lAx —X|| > x — %] > (7/8)e.  (2.18)
By (2.6) and (2.18), there exists yp € (0, 1) such that
lz(vo) — %[ = llx — Xl — 0. (2.19)
It now follows from (2.17), (2.19) and (2.7) that
w(lx — Xl +€0) = wllAx — x| = |[yoAx + (1 — )% — x|
= [zv0) = %[ = llx = %Il — &0
and
vo= (Ix — Zl| — o) (Ilx — %l +0) ' =1—2e0(llx — %[l +0) "
>1—2gollx — x| " (2.20)
Inequalities (2.20) and (2.16) imply that
yo = 1—260((7/8)¢) . 2.21)
By (2.17), (2.1), (2.21) and (2.6),
lz(v0) — Ax| = | wAx + (1 — yo)% — Ax||

= (1 — yo)llAx — %[l < (1 — yp) diam(K) < 16e0(7¢) " diam(K)
< 3ggdiam(K)e ™! < (3/8)¢

and

lz(v0) — Ax| < (3/8)e. (2.22)
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Relations (2.19) and (2.22) imply that there exists an open neighborhood V; of x in
K such that for each y € Vy,

lz(v0) — Ay| <& and |z(v0) — x| < lly — %Il (2.23)
Define ¢, : Vy — K by
Yx(y) =z(0), Y€ Vr. (2.24)

It is not difficult to see that in all three cases we have defined an open neighborhood
V. of x in K and a continuous mapping ¥, : V, — K such that for each y € V,,

[Ay —v()| <& and [T =y <lly — I (2.25)

Since the metric space K with the metric induced by the norm is paracompact, there
exists a continuous locally finite partition of unity {¢;};c; on K subordinated to
{Vi}xek, where each ¢; : K — [0, 1], i € I, is a continuous function such that for
each y € K, there is a neighborhood U of y in K such that

U N supp(¢;) # 9

only for finite number of i € [;

D b =1 xek;

iel
and for each i € I, there is x; € K such that
supp(e;) C Vy;. (2.26)

Here supp(¢) is the closure of the set {x € K : ¢ (x) # 0}. Define

Bz = Z¢>i @Yy (), ze€K. 2.27)

iel

Clearly, B : K — K is well defined and continuous.
Let z € K. There are a neighborhood U of z in K and iy, ..., i, € I such that

UNsupp(¢;) =@ foranyiel\{ii,...,in}. (2.28)
We may assume without any loss of generality that
z € supp(éi,), p=1,...,n. (2.29)

Then

Y i, =1 and Bz=) ¢;, (¥, (2. (2.30)

p=1 p=1
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Relations (2.26), (2.29) and (2.25) imply thatfor p=1,...,nand z € V;

ip?
|Az - Vi, (2) | <e and |x-— V, (2) | <1I% —zlI.

By the equation above and (2.30),

Y ¢, @V, (2) — Az

p=1

Bz — Azl =

<> i, @ |V, @) — Az|| <,

p=1

I¥ = Bzl = |¥ = Y ¢i,@v, (2)

p=1

<Y ¢i,@[F =¥y, @ <15 -zl

p=1
and
Bz — Az|| <e, lx — Bzl < llx — zl|.

Proposition 2.2 is proved. d

Proof of Theorem 2.1 For each C € A and x € K, set C°x = x. For each natural
number 7, denote by F;, the set of all A € A which have the following property:

(P2) There exist x, a natural number ¢, and a positive number § > 0 such that
| — Ax|| < |X¥ —x||+n~" forallx €K,
and such that for each B € A satisfying d(B, A) <§, and each x € K,
1

Hqu—)E” <n'.

Define

F=()F (2.31)

Lemma 2.3 Let A € F. Then there exists a unique fixed point x4 € K of A such
that

(i) A"x — x4 as n — oo, uniformly on K
(1) ||Ax —xall <|lx —xall forall x € K;
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(iii) For each ¢ > 0, there exist a natural number q and § > 0 such that for each
B € A satisfying d(B, A) <8, each x € K, and each integer i > q,

||Bix —xA“ <e.

Proof Let n be a natural number. Since A € F C F,, it follows from property (P2)
that there exist x,, € K, an integer ¢, > 1, and a number §,, > 0 such that

%y — Ax|| < |lxy — x| +n~" forallx € K; (2.32)

(P3) For each B € A satistying d(B, A) <4,,and each x € K,
“Bq”x — Xy || <1/n.

Property (P3) implies that for each x € K, ||A%x — x,|| < 1/n. This fact implies, in
turn, that for each x € K,

||Aix — Xp || <1/n for any integer i > g,,. (2.33)

Since n is any natural number, we conclude that for each x € K, {A"x};?i1 is a
Cauchy sequence and there exists lim;_, o, A’x. Inequality (2.33) implies that for
eachx € K,

lim A'x — x,
i—o00

<1/n. (2.34)

Since 7 is an arbitrary natural number, we conclude that lim;_, o Alx does not de-
pend on x. Hence there is x4 € K such that

x4 = lim A’x forallx € K. (2.35)
11— 00
By (2.34) and (2.35),
lxa —xpll < 1/n. (2.36)

Inequalities (2.36) and (2.32) imply that for each x € K,

[Ax —xall < [Ax = xull + llxp —xall = 1/n+ [[Ax — x|
<l/n+|x—x,| +1/n<2/n+||x —xall + llxa — xx]l
<llx —xall +3/n,

so that
[Ax —xall < [lx —xall + 3/n.

Since n is an arbitrary natural number, we conclude that

|[Ax — x4l <|lx —xal foreachx e K. (2.37)
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Let £ > 0. Choose a natural number
n>8/e. (2.38)
Property (P3) implies that

||Bix — X || <1/n foreachx € K, each integer i > ¢,

and each B € A satisfying d(B, A) <4,. (2.39)

Inequalities (2.39), (2.36) and (2.38) imply that for each B € A satisfying d(B, A) <
én, each x € K, and each integer i > ¢,

||Bix —xA|| < HB’)C —x,,|| + lx, —xall <1/n+1/n<e.
This completes the proof of Lemma 2.3. d

Completion of the proof of Theorem 2.1 In order to complete the proof of this the-
orem, it is sufficient, by Lemma 2.3, to show that for each natural number 7, the set
A\ F, is porous in (A, d).
Let n be a natural number. Choose a positive number
o < (16n) 127" ((diam(K) +1)°16 - 82) . (2.40)
Let
AeA and re(0,1]. (2.41)

By Proposition 2.2, there exist Ag € A and x € K such that

d(A, Ag) <r/8 (2.42)

and
| Agx — %|| < |lx — || foreachx € K. (2.43)

Set
y =8"r(diam(K) + 1) (2.44)

and choose a natural number g for which

1 < g((diam(K) +1)*16n - 8~1) ™"

<2. (2.45)
Define A : K — K by
Ax=(1—y)Aox +yX, xecK. (2.46)
Clearly, the mapping A is continuous and for each x € K,
IAx — %l = [ (1 = y)Aox + v 7 — |
= =pY)lAox —x[| = (I = p)llx — X (2.47)
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Thus A € A. Relations (2.3), (2.46), (2.1), (2.44) and (2.47) imply that

d(A, Ag) = sup{||Ax — Aox|| : x € K}
= sup{y ¥ — Aox| : x € K} <y diam(K) =r/8.

Together with (2.42) this implies that
d(A, A) <d(A, Ag) +d (Ao, A) <r/4. (2.48)

Now assume that
BeA and d(B,A)<ar. (2.49)
Then (2.49), (2.40) and (2.47) imply that for each x € K,

|Bx —x|| < ||Bx — Ax|| + ||[Ax — X|| < |lx — X|| + ar < ||x — X[ + 1/n. (2.50)
In addition, (2.49), (2.48) and (2.40) imply that
d(B,A) <d(B,A)+d(A, A) <ar+r/4<r/2. (2.51)

Assume that x € K. We will show that there exists an integer j € [0, ¢] such that
|B/x — x| < (8n)~!. Assume the contrary. Then

|B'x —%|> @', i=0,....q. (2.52)
Let an integer i € {0, ..., g — 1}. By (2.49) and (2.47),
|87 % = %] = |[B(B'x) - ¥

= |B(B'x) - A(B'x) | + | A(B'x) — ¥

<d(B,A)+|A(B'x) — &

<ar+(1—y)|B'x —x|
and

|B*'x —%|| <ar+ (1 —y)|B'x—x|.
When combined with (2.52), (2.40) and (2.44), this inequality implies that
|Bx 5] = | B x =¥ = [ B'x = 5] —er =1 =) B'x — 5]
=y|Bx =% —ar> @)y —ar > 16n)"'y,

so that

|B'x — x| — | B t'x — x| = (16n)~'y.
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When combined with (2.1), this inequality implies that

qg—1
diam(K) > |lx — x| — |BIx — x| = ) (| B'x — %[ — | B 'x —x[|) = g(16m) "'y
i=0

and
q <diam(K)16n/y,

a contradiction (see (2.45)). The contradiction we have reached shows that there
exists an integer j € [0, ..., g — 1] such that

|B/x — x| < 8n)~". (2.53)
It follows from (2.49) and (2.47) that for each integer i € {0, ..., q — 1},
|87 x — x| = [ B(B'x) — ¥ = | B(B'x) — A(B'x)| + | A(B'x) - %]
<d(A,B)+||A(B'x) —%| <ar+ | B'x — |
and
[B'H'x — x| < || B'x — x| +ar.

This implies that for each integer s satisfying j <s <gq,

|B'x — x| < | B/x — x| + ar(s — j) < | B/x — X || + arg. (2.54)
It follows from (2.53), (2.54), (2.45) and (2.40) that

|BIx — x| <arg+ @n)~' < @n)~ .

Thus we have shown that the following property holds:
For each B satisfying (2.49) and each x € K,

|Bix — x| <2n)™" and ||Bx —X|| < |lx — %]+ 1/n
(see (2.50)). Thus
{BeA:d(B,A)<ar/2}CF,N{BeA:d(B,A) <r}.

In other words, we have shown that the set A \ F,, is porous in (A, d). This com-
pletes the proof of Theorem 2.1. O

2.2 Convergence of Iterates of Typical Nonexpansive Mappings

Let (X, || - ||) be a Banach space and let K C X be a nonempty, bounded, closed and
convex subset of X. In this section we show that the iterates of a typical element (in
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the sense of Baire category) of a class of nonexpansive mappings which take K to
X converge uniformly on K to the unique fixed point of this typical element.
Denote by M,,, the set of all mappings A : K — X such that

|[Ax — Ay|| <|lx —y|| forallx,yeK.
For each A, B € M,,,, set
d(A, B) = sup{||Ax — Bx| :x € K}. (2.55)

It is clear that (M,,, d) is a complete metric space. Denote by M the set of all
A € M, such that

inf{[lx — Ax||:x e K} =0. (2.56)

In other words, M consists of all those nonexpansive mappings taking K into X
which have approximate fixed points. Clearly, My is a closed subset of M.

Every nonexpansive self-mapping of K belongs to M. In order to exhibit two
classes of nonself-mappings of K that are also contained in M, we first recall that
if x € K, then the inward set /x (x) of X with respect to K is defined by

I (x) :={zeX:z=x+a(y—x) forsomeyeKandaEO}.

A mapping A : K — X is said to be weakly inward if Ax belongs to the closure
of Ik (x) for each x € K. Consider now a weakly inward mapping A € M,,. Fix
apoint z € K and ¢ € [0, 1) and let the mapping S : K — X be defined by Sx =
tAx + (1 — 1)z, x € K. This strict contraction is also weakly inward and therefore
has a unique fixed point x; € K by Theorem 2.4 in [118]. Since ||x; — Ax;|| — 0 as
t — 17, we see that A € M.

If K has a nonempty interior int(K) and a nonexpansive mapping A : K — X
satisfies the Leray-Schauder condition with respect to w € int(K), thatis, Ay — w #
m(y — w) for all y in the boundary of K and m > 1, then it also belongs to M.
This is because the strict contraction S : K — X defined by Sx =tAx + (1 — Hw,
x € K, also satisfies the Leray-Schauder condition with respect to w € int(K) and
therefore has a unique fixed point [117].

Set

p(K)=sup{lizll:z€ K}. (2.57)

Our purpose is to show that the iterates of a typical element (in the sense of Baire
category) of My converge uniformly on K to the unique fixed point of this typical
element. As a matter of fact, we are able to establish a more refined result, involving
the notion of porosity.

We are now ready to formulate our result obtained in [152].

Theorem 2.4 There exists a set F C (Mo, d) such that its complement Mg \ F is
a o -porous subset of (Mo, d) and each B € F has the following properties:

1. There exists a unique point xg € K such that Bxp = xp;
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2. For each ¢ > 0, there exist 6 > 0, a natural number q, and a neighborhood U of
B in (M, d) such that:

(@ ifCel,yeK,and ||y —Cy| <4, then ||y —xp| <¢;
() if Cel, {x;}_y C K, and Cx; = xj41, i =0,...,q — 1, then ||x; —
xgll <e.

Although analogous results for the closed subspace of (Mj, d) comprising all
nonexpansive self-mappings of K were established by De Blasi and Myjak in [49,
50], Theorem 2.4 seems to be the first generic result dealing with nonself-mappings.
In this connection see also [131, 137].

We begin the proof of Theorem 2.4 with a simple lemma.

Denote by E the set of all A € M,, for which there exists x € K satisfying
Ax = x. That is, E consists of all those nonexpansive mappings A : K — X which
have a fixed point.

Lemma 2.5 E is an everywhere dense subset of (M, d).

Proof Let A € My and ¢ > 0. By (2.56), there exists x € K such that

lx — Ax|| <&/2.
Define
By=Ay+x—-Ax, yeKk. (2.58)
Clearly, B € M,,, and Bx = x. Thus B € E. It is easy to see that d(A, B) = ||x —
AXx|| < e. This completes the proof of Lemma 2.5. U

Proof of Theorem 2.4 For each natural number 7, denote by F,, the set of all those
mappings A € My which have the following property:

(P1) There exist a natural number g, x, € K, § > 0, and a neighborhood ¢/ of A in
M, such that:

(1) if BelU andif z € K satisfies ||z — Bz|| <4, then ||z — x«|| < 1/n;
(i) if B €U and if {x;}]_, C K satisfies xj1; = Bx;, i =0,...,q — 1, then
g — xill < 1/n.

Set

We intend to prove that Mg \ F is a o -porous subset of (M, d). To meet this goal,
it is sufficient to show that for each natural number n, the set Mg \ F, is a porous
subset of (Mg, d).

Indeed, let n be a natural number. Choose a positive number

a <27 (pK)+1)"'n7". (2.59)
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Let
AeMy and re(0,1]. (2.60)

By Lemma 2.5, there are Ag € E and x, € K such that

d(Ag, A) <r/8 and Agx, = xs. (2.61)
Set
y =[32(pK)+1)] ' (2.62)
and
§=(4n)"'y = 2ar. (2.63)

By (2.63), (2.62) and (2.56),
§>0. (2.64)

Now choose an integer g > 4 such that

(1=y)72(p(K) + 1) < (16n) " (2.65)
Define
Aly=(0—-y)Aoy +yx., yeK. (2.66)
Clearly, A € M, and
Ay = X4 (2.67)

By (2.55), (2.66), (2.61) and (2.57),
d(Ay, Ag) =sup{l|A1y — Aoyl : y € K} =sup{lly Aoy — yx«ll : y € K}
=y sup{[[ Aoy — Aoxs| : y € K}
<ysup{lly —xill : y € K} <2yp(K),
so that
d(A1, Ag) <2yp(K). (2.68)
By (2.68), (2.61) and (2.62),
d(A, A1) <d(A, Ag) +d (Ao, A1) <7/8+2yp(K) <r/4. (2.69)
Assume that B € M,,, satisfies
d(B, A)) <2ar. (2.70)

Assume further that

ze K and |z— Bz| <. 2.71)
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By (2.67) and (2.66),

A1z — x4l = A1z — Arxll
=1 =Y)Aoz — Aox«ll < (I — Y)llz — x4ll. (2.72)

By (2.55), (2.70) and (2.72),
Bz —zll > |1A1z — zll = [|1Bz — A1zll > [|A1z — z|| — d(B, A1)
> [l A1z = zll = 20r = |l = %]l = s — Ayz]l - 2ar
>z = xell = (A =)z = xxll = 2ar = yllz — x| — 2.
When combined with (2.71) and (2.63), this inequality implies that
d=|Bz—zll z yllz — x«ll — 2ar
and
lz = xell <y~ (84 20r) < (4n)~".
Thus we have shown that
if z € K satisfies ||z — Bz|| <8, then ||z — x| < (4n)~ L. (2.73)
Now assume that
(xi}_, CK, Bx;=xi11, i=0,...,q—1. (2.74)
By (2.74), (2.55), (2.70), (2.66) and (2.61), fori =0, ..., g — 1, there holds
lxie1 — xall = | Bxi — xill < 1Bxi — Arxill + | A1xi — x|
= |Bx; — Arx;|| + [[A1x;i — Arxyl|

<d(B,A)+ (1 =p)|lAox; — Apx«|l
<2ar + (I = y)llxi — xxll,

that is,
Ixi41 — xsll < 2ar + (1 = p)llxi — x|
In view of this inequality, which is valid fori =0, ...,q — 1, we get
qg—1
g = xill < 20r Y (1= ) + 1 =) [lx0 — x
i=0

<2ary ™" + (1 = ) |lx0 — x|l < 20ry ™" +2p(K)(1 — p)?.
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When combined with (2.62), (2.65) and (2.59), this last inequality implies that
Ixg = x4l < (1 = ¥)12p(K) + 2[32(p(K) + 1)]
< (16n)"" +64a[p(K) + 1] < (16m) ' +32n) ' < Bn) .
Thus we have shown that
if {x,-}?:O C K satisfies (2.74), then [|x; — x| < 8n)~ L. (2.75)

By (2.75), (2.74) and (2.73), each C € M which satisfies d(C, A1) < ar has prop-
erty (P1). Therefore

{C e Mp:d(C, Ay) fozr} C Fn.
When combined with (2.59) and (2.69), this inclusion implies that
{CeMo:d(C,A) <ar} C{BeMy:d(B,A)<r}|NF,.

This means that My \ F,, is a porous set in (Mo, d) for all natural numbers n.
Therefore Mg \ F is a o-porous set in (Mo, d).
Now let A € F and ¢ > 0. Choose a natural number

n > 8(min{l, &))" (2.76)

Since A € F,, property (P1) implies that there exist a natural number ¢,, a number
8n > 0, a neighborhood U, of A in M,,., and a point x,, € K such that the following
property holds:

(P2) (i) if Bely,z€ K, and ||z — Bz|| <6y, then ||z — x, || < 1/n;
(i) if B € Uy, {Zi}?io CK,and zj+1 = Bz;, i =0,...,¢g, — 1, then |z4, —

Since A € My, there exists a sequence {y; ?il C K such that
Jim [ly; — Ay || =0. (2.77)
Hence there exists a natural number i( such that
lyi — Ayill <6, for all integers i > ip.
When combined with (P2)(i), this implies that
lxn, — yill < 1/n for all integers i > ip. (2.78)
In view of (2.78), for each pair of integers i, j > iy,

lyi = yill < llyi = Xall +llx0 = yjll =2/n <e.
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Since ¢ is an arbitrary positive number, we conclude that {y;};2, is a Cauchy se-
quence and therefore there exists

xa= lim y;. (2.79)
1—> 00

Clearly, Ax4 = x4. It is easy to see that x4 is the unique fixed point of A. Indeed,
if it were not unique, then we would be able to construct a nonconvergent sequence
{yi}72, satisfying (2.77).

By (2.78) and (2.79),
lxa —xull < 1/n. (2.80)
Now assume that
Bel,, ze€eK, and |z— Bz| <é,. (2.81)
By (P2)(i) and (2.81),
Iz —xall = 1/n.
When combined with (2.80) and (2.76), this inequality implies that
Iz —xall < llz = xall + llxn —xall =2/n <e.
Finally, suppose that
B el,, {zifl'oC K, and Bzi=ziy1, i=0,...,q,—1. (2.82)
Then by (P2)(ii) and (2.82),
lzg, — xull = 1/n.
When combined with (2.80) and (2.76), this last inequality implies that
l2g, = xall < llzg, — Xull + llXn — xall <2/n <e.

This completes the proof of Theorem 2.4. 0

2.3 A Stability Result in Fixed Point Theory

Let K C X be a nonempty, compact and convex subset of a Banach space (X, | - ||).
In this section, which is based on [153], we consider a complete metric space of all
the continuous self-mappings of K and show that a typical element of this space
(in the sense of Baire’s categories) has a fixed point which is stable under small
perturbations of the mapping.

Denote by A the set of all continuous mappings A : K — K.Foreach A, B € A,
set

d(A, B) =sup{||Ax — Bx|:xe K}.
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Clearly, (A, d) is a complete metric space. By Schauder’s fixed point theorem, for
each A € A there exists x, € K such that Ax, = x,. We begin with the following
simple result.

Proposition 2.6 Let Ac A, 2 ={x € K : Ax = x}, and let ¢ > 0. Then there exists
a positive number 8 such that for each B € A satisfying d(A, B) <8 and eachx € K
satisfying Bx = x, there exists y € §2 such that ||x — y|| <e.

Proof Assume the contrary. Then there exist a sequence {B,};2 | C A satisfying

d(A, B,) <1/n forallintegersn > 1, (2.83)
and a sequence {x,}>° | C K such that for each integer n > 1,
Byx, =x, and inf{||xn —yl:ye Q} > e. (2.84)
Since K is compact, we may assume without loss of generality that there exists

Xy = lim x,. (2.85)

n—oo

It follows from (2.85), (2.84), (2.83) and the continuity of A that

|Axy — x4l < [[Axs — Axp|l + | Buxn — Axy|l + | Buxy — X ll + x50 — x|

< ||Axx — Axyll + 1/n+ ||xy, —x4|| > 0 asn — oo.

Thus Ax, = x4, x4« € £2, and (2.85) contradicts (2.84). The contradiction we have
reached proves Proposition 2.6. O

In view of this result, it is natural to ask if, given A € A, there is a fixed point
Xy € K of A with the following property:

For each & > 0 there exists § > 0 such that for each B € A satisfying d(A, B) <
8, there exists y € K such that By =y and ||y — x| <e.

Example 2.7 Let X = R, K=[0,1]and Ax =x,x € K. Clearly, the set of fixed
points of A is the interval [0, 1]. For each integer n > 1, define

Apx=(1—-1/n)x, B,x =min{x + 1/n,1} forall x €0, 1].

Clearly, B,,, A, — A as n — oo. It is easy to see that for each n > 1, the set of fixed
points of A, is the singleton {0} while the set of fixed points of B, is the interval
[1—1/n,1].

This example shows that in general the answer to our question is negative. Nev-
ertheless, we show in this section that for a typical A € A (in the sense of Baire’s
categories) the answer is positive.
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Let K C X be anonempty, closed and convex subset of a Banach space (X, || - ||).
Denote by A the family of all continuous mappings A : K — K such that the closure
of A(K) is a compact set in the norm topology. It is well known [171] that for each
A € A there is xa € K such that Axg = x4.

Foreach A, B € A set

d(A, B) =sup{||Ax — Bx| :x € K }. (2.86)
It is not difficult to see that (A, d) is a complete metric space.

Theorem 2.8 There exists a subset ' C Awhich is a countable intersection of open
everywhere dense subsets of (A, d) such that for each A € F, there exists x, € K
such that

(1) Axy =Xxy; 5
(ii) for each € > O there exists § > 0 such that if B € A satisfies d(A, B) <8, then
there is z € K which satisfies Bz =z and ||z — x| <e&.

Two auxiliary propositions will precede the proof of Theorem 2.8.

Propositiop 29 Let A € /L e > 0 and let x, € K satisfy Axy, = x«. Then there
exist Be A and § > 0 such that d(B, A) < ¢ and Bz = x for each 7 € K satisfying
|z — x|l <8.

Proof There exists § > 0 such that for each z € K satisfying ||z — x4|| < 46, the
following inequality holds:
Az — x«l < €/4. (2.87)

By Urysohn’s theorem, there exists a continuous function A : X — [0, 1] such that

A(z) =1 foreach z € X satisfying ||z — x| <6 (2.88)
and
M(z) =0 for each z € X satisfying ||z — x4 || > 28. (2.89)
Define
Bz =A(2)xs + (1 — A(2)) Az (2.90)
forallze K.

Clearly, B : K — K is continuous, B(K) is contained in a compact subset of X,
and

Bx, = x,. (2.91)
By (2.90), (2.88) and (2.89), for each z € K satisfying ||z — x| < §, we have

Bz =xs, (2.92)
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and for each z € K satisfying ||z — x| > 26,
Bz =Az. (2.93)

It follows from (2.90) and the choice of é (see (2.87)) that for each z € K satisfying
lz — x4l <26,

1Bz = Azll = |A(@)xs + (1 = 1(2)) Az — Az
< llxe — Azll < e/4.
This completes the proof of Proposition 2.9. O
Proposition 2.10 Let A € A >0, let x, € K be a fixed point of A, and let
Be A, §>0 be as guaranteed by Proposition 2.9. Then for each C € A satisfy-
ing d(C, B) <4, there is y € K such that
Cy=y and |y—xl <d(C,B).

Proof By Proposition 2.9,

d(A,B)<¢ (2.94)
and
Bz =x, foreach z € K satisfying ||z — x| <. (2.95)
Assume that C € A satisfies
d(C, B) <. (2.96)
Set
Q={zeK:|z—x] <d(C, B)}. (2.97)

Clearly, §2 is a closed and convex set. It follows from (2.97), (2.96) and (2.95) that
for each z € §2,

X« — Czll < llxs — Bzl + | Bz — Cz|| = | Bz — Cz|| =d(C, B)

and Cz € £2. Thus C(£2) C £2. Clearly C(£2) C C(X) is contained in a compact
subset of X. By Schauder’s theorem there is y € §2 such that Cy = y. Proposi-
tion 2.10 is proved. O

Proof of Theorem 2.8 Let A € Aand e € (0, 1). By Propositions 2.9 and 2.10, there
exist

Ase A,  xp.€K and 84.€(0,1)

such that
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d(A, A,) <e, (2.98)
Agz=xa, foreachze K satisfying ||z — x4 ¢l <84, (2.99)

and the following property holds:
(P) Foreach C e A satisfying d(C, A;) <84, there is y € K such that

Cy=y, Iy = xa.ell =d(C, Ag).
For each integer i > 1, set
UA,e,i)={CeAd:d(C,A,) <8a.]i}. (2.100)

Define

F=NUu@.e.ir:ae A ec©.1). (2.101)
i=1

Clearly, F is a countable intersection of open and everywhere dense subsets of
(A, d). ~
Let B € F. For each integer i > 1, there are A; € A and ¢; € (0, 1) such that

BeclU(A; &, i0). (2.102)

It follows from (2.102), (2.100) and property (P) that for each integer i > 1, there
y; € K such that

By, = (2.103)

and
lyi = xaell <d(A, (Ai)e;) <da;ei/i- (2.104)
Since {y;}{2, C B(K), there is a subsequence {y;, }7=, which converges to x, € K.

Clearly, Bxy = x,.
Let € > 0. There exists a natural number k£ such that

ik_1 <87 !¢ and lyvi, —x«ll <&/8. (2.105)
It follows from (2.104) and (2.105) that
i = xa; e | < 1/ix < €/8. (2.106)
Inequalities (2.105) and (2.106) imply that
s = xa;, 5, 11 < 1 = Yi I+ 1yip — x4, 6, | < €/4. (2.107)
Let
C clU(A;, i, ik)- (2.108)
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It follows from (2.108), (2.100), (2.105) and property (P) that there exists a point
z € K such that

Cz=z and |lz—xp, ¢ Il < d(c, (Aik)e,vk) <1/ix <¢/8.
When combined with (2.107), this implies that

2 = x4l < llz = xa;.6;, | + X245, e, — Xl < /2.

i Eig it »Eig

Theorem 2.8 is proved. d

2.4 Well-Posed Null and Fixed Point Problems

The notion of well-posedness is of great importance in many areas of mathemat-
ics and its applications. In this section we consider two complete metric spaces of
continuous mappings and establish generic well-posedness of certain null and fixed
point problems. Our results, which were obtained in [154], are a consequence of
the variational principle established in [74]. For other related results concerning the
well-posedness of fixed point problems see [50, 139].

Let (X, || - ||, >) be a Banach space ordered by a closed convex cone X = {x €
X :x >0} such that ||x|| < ||y]l for each pair of points x, y € X satisfying x < y.
Let (K, p) be a complete metric space. Denote by M the set of all continuous
mappings A : K — X. We equip the set M with the uniformity determined by the
following base:

E(e) = {(A, Bye M x M :||Ax — Bx| <eforall x € K} (2.109)

where ¢ > 0. It is not difficult to see that this uniform space is metrizable (by a
metric d) and complete.
Denote by M, the set of all A € M such that

Axe X4 forallx e K (2.110)

and
inf{||Ax||:xeK}=0. (2.111)

It is not difficult to see that M, is a closed subset of (M, d).
We can now state and prove our first result.

Theorem 2.11 There exists an everywhere dense G s subset F C M, such that for
each A € F, the following properties hold:

1. There is a unique x € K such that Ax = 0.
2. For any & > 0, there exist § > 0 and a neighborhood U of A in M, such that if
B € U and if x € K satisfies | Bx|| <6, then p(x,x) <e.
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Proof We obtain this theorem as a realization of the variational principle established
in Theorem 2.1 of [74] with fa(x) = ||Ax||, x € K. In order to prove our theorem
by using this variational principle we need to prove the following assertion:

(A) For each A e M, ar_ld each ¢ > 0, there are A € Mp,8>0,xe€K and a
neighborhood W of A in M, such that

(A,A) € E(e),
and if B € W and z € K satisfy || Bz|| <8, then
plz,X) <e.
Let Ae M, and ¢ > 0. Choose i € X such that
|| = e/4, (2.112)

and x € K such that
|Ax|| <e/8. (2.113)

Since A is continuous, there is a positive number r such that
r <min{l, ¢/16} (2.114)
and
|[Ax — Ax|| <¢e/8 foreach x € K satisfying p(x, x) <4r. (2.115)

By Urysohn’s theorem, there is a continuous function ¢ : K — [0, 1] such that

¢(x) =1 foreachx € K satisfying p(x,x) <r (2.116)
and
¢(x) =0 foreachx € K satisfying p(x, x) > 2r. 2.117)
Define
Ax=(1—¢(x))(Ax+12), xeK. (2.118)

It is clear that A : K — X is continuous. Now (2.116)—(2.118) imply that

Ax=0 foreachx e K satisfying p(x,x) <r (2.119)
and

Ax > i foreachx € K satisfying p(x, x) > 2r. (2.120)

It is not difficult to see that A € M ,. We claim that (A, A) € E(e).
Let x € K. There are two cases: either

p(x, %) >2r (2.121)
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or

p(x,x) <?2r.

(2.122)

Assume first that (2.121) holds. Then it follows from (2.121), (2.117), (2.118) and

(2.112) that
|Ax — Ax|| = ||| = /4.

Now assume that (2.122) holds. Then by (2.122), (2.118) and (2.112),

IAx — Ax|| = [ (1 = ¢())(Ax + @) — Ax| < ||all + || Ax]]

<e/4+||Ax].
It follows from this inequality, (2.122), (2.115) and (2.113) that

|Ax — Ax| <e&/4 + |Ax| < &/2.

Therefore in both cases || Ax — Ax|| < /2. Since this inequality holds for any x € K,

we conclude that

(A, A) € E(e).
Consider now an open neighborhood U of A in M p such that

Uc{BeM,:(A B)eE(/16)}.
Let
BeU, zeK

and

I Bz| < &/16.
Relations (2.126), (2.125), (2.124) and (2.109) imply that

I Az|l < ||Bz|l + || Az — Bz|| < &/16 + ¢/16.

‘We claim that
p(z,x) <e.

Assume the contrary. Then by (2.114),
p(z,x)>¢e>2r.
When combined with (2.120), this implies that

Az > i

(2.123)

(2.124)

(2.125)

(2.126)

(2.127)

(2.128)
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It follows from this inequality, the monotonicity of the norm, (2.125), (2.124),
(2.109) and (2.112) that

IBzll = |Azll — £/16 > [|i]| — /16 = £/4 — £/16 = 3¢/16.

This, however, contradicts (2.126). The contradiction we have reached proves
(2.128) and Theorem 2.11 itself. O

Now assume that the set K is a subset of X and
plx,y)=lx—yl, x,yek.
Denote by M, the set of all mappings A € M such that
Ax>x forallx e K
and
inf{|Ax —x||:x € K} =0.
Clearly, M, is a closed subset of (M, d). Define a map J : M,, — M, by
J(A)x=Ax —x forallx e K

and all A € M,,. Clearly, there exists J -1 m p — M, and both J and its inverse
J~! are continuous. Therefore Theorem 2.11 implies the following result regarding
the generic well-posedness of the fixed point problem for A € M,,.

Theorem 2.12 There exists an everywhere dense Gg subset F C M, such that for
each A € F, the following properties hold:

1. There is a unique x € K such that Ax = X.
2. For any € > 0, there exist § > 0 and a neighborhood U of A in M,, such that if
B e U and if x € K satisfies | Bx — x|| <6, then |x — x| <e.

2.5 Mappings in a Finite-Dimensional Euclidean Space

In this section we study the existence and stability of fixed points of continuous map-
pings in finite-dimensional Euclidean spaces. Our results [156] establish generic
existence and stability of fixed points for a class of nonself-mappings defined on
certain closed (but not necessarily either convex or bounded) subsets of a finite-
dimensional Euclidean space. In these results, we endow the relevant space of map-
pings with two topologies, one weaker than the other. In the first result we find an
open (in the weak topology) and everywhere dense (in the strong topology) set such
that each mapping in it possesses a fixed point. In the second result we construct a
countable intersection of open (in the weak topology) and everywhere dense (in the
strong topology) sets such that each mapping in this intersection has a stable fixed
point.
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Let K C R" be a nonempty, closed subset of the n-dimensional Euclidean space
(R™, || - |I). We assume that K is the closure of its nonempty interior int(K).

For each x € R" and each r > 0, set B(x,r) ={y € R" : ||x — y|| <r} and fix
fek.

Denote by M the set of all continuous mappings A : K — R". We equip the
space M with the uniformity determined by the base

Ew(N,&)={(A,B)e M x M :||Ax — Bx|| <¢
forallx € B, N)NK}, (2.129)

where N, ¢ > 0.

Clearly, the space M with this uniformity is metrizable and complete. We equip
the space M with the topology induced by this uniformity. This topology will be
called the weak topology.

We also equip the space M with the uniformity determined by the base

&(e)={(A,B) e M x M: | Ax — Bx| <¢ forall x € K}, (2.130)

where ¢ > 0. Clearly, the space M with this uniformity is also metrizable and com-
plete. The topology induced by this uniformity on M will be called the strong topol-
ogy.

Denote by M ¢ the set of all A € M which have approximate fixed points. In
other words, the set M ¢ consists of all A € M such that

inf{|lx — Ax||:x € K} =0. (2.131)

It is clear that M ¢ is a closed subset of M with the strong topology.

Note that if the set K is bounded, then M 7 consists of all those elements of M
which have fixed points. Every self-mapping of K which is a strict contraction, that
is, has a Lipschitz constant strictly less than one, clearly belongs to M ¢.

If K is bounded and convex and a continuous mapping A : K — R satisfies the
Leray-Schauder condition with respect to w € int(K), that is, Ay — w # m(y — w)
for all y on the boundary of K and m > 1, then it also belongs to M ¢. If such an
A is a strict contraction, then this continues to be true even if K is neither bounded
nor convex.

We endow the topological subspace M y C M with both the relative weak and
strong topologies.

The following two results were obtained in [156].

Theorem 2.13 Let y € (0, 1). There exists an open (in the weak topology) and ev-
erywhere dense (in the strong topology) set F,, C My such that for each A € F,,,
there are x4 € int(K), ra € (0, 1), and a neighborhood U of A in M y with the weak
topology such that

B(xa,ra) CK and Axa=2xyu,

and for each C € U, there is xc € K such that Cxc = xc and ||xc — xal|| < yra.
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Theorem 2.14 There exists a set F C My which is a countable intersection of
open (in the weak topology) and everywhere dense (in the strong topology) subsets
of My such that for each A € F and each y € (0, 1), there exist x5 € int(K),
ra € (0, 1), and a neighborhood U of A in M y with the weak topology such that

B(xa,ra) CK and Axa=2xa,
and for each C € U there is xc € K such that Cxc = xc and ||x¢c — x4l < yra.

Example 2.15 Letn =1, K = U?‘;O[Zj, 2j + 1], and define, for each integer j > 1
andeachx €[2/,2j + 1], Ax=x +277. Clearly, inf{|x — Ax|:x € K} =0but A
is fixed point free.

In order to prove Theorem 2.13 we need two auxiliary results.
Denote by & the set of all A € My for which there exist

x4 €int(K) and rg €(0,1) (2.132)
such that
B(xa,7rA) CK and Ay=x4 forallye B(xa,ra/4). (2.133)

Lemma 2.16 The set £ is an everywhere dense subset of M ¢ with the strong topol-
0gy.

Proof Let A € My and & > 0. By the definition of M ¢ (see (2.131)), there exists
xo € K such that

| Axo — xol < &/16. (2.134)

Since K is the closure of int(K) and A is continuous, there is x| € int(K) such that
lx1 —xoll <e/16 and | Ax; — Axo| <¢&/16. (2.135)

Set
Aly=Ay — Ax1 +x1, yeKk. (2.136)
Clearly, A; € M. In view of (2.136),

A1X1=)C1. (2.137)
By (2.136), (2.135) and (2.134), for each y € K,

Ay — Ayl = l[Ax1 — x1ll < [[Ax1 — Axoll + [[Axo — xoll + [lxo — x1|
<3g/16. (2.138)
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Since A has a fixed point (see (2.137)), it is clear that A; € M. Since A is
continuous and x; € int(K), there exists r; € (0, 1) such that

B(x1,r1)) CK and |A1x —Ax1]| <¢/16 forallx € B(x1,r1). (2.139)

Define
y)=1, tel0,r/2l, Y@)=0, te[r,o0),
| (2.140)
Y()=2(r —r;, ter/2,r),
and
By=vy(ly—xil)xi + (1 =y (ly —xill)) A1y, yeK. (2.141)

Clearly, B € M. It follows from (2.141) and (2.140) that for each y € B(xy, r1/2),
By =x;. (2.142)
Therefore B € £. We will now show that
|By — Ayl <e forallx € K.
Indeed, let y € K. There are two cases to be considered:

Xt =yl = ri; (2.143)
lx1 =yl > r1. (2.144)

If (2.144) holds, then (2.144), (2.141), (2.140) and (2.138) imply that
By=A1y and |By—Ayll=|[A1y— Ayl <e/4. (2.145)
Let (2.143) hold. Then by (2.143), (2.141), (2.140), (2.137) and (2.139),
IBy = Aryll = [ (ly —x1l) (x1 = Ay)|| < llx1 = Aryl = | A1x; — Aryll < g/16.
When combined with (2.138), this inequality implies that
By — Ayl < 1By — A1yl + A1y — Ayl = &/16 + 3e/16 = ¢ /4.

Thus

|By — Ay|| <e/4 forall y € K.
This completes the proof of Lemma 2.16. O
Lemma 2.17 Let A€ &, x4 €int(K), ra € (0, 1) satisfy (2.133) and let y € (0, 1).

Then there exists a neighborhood U of A in M g with the weak topology such that
foreach B €U, there is xp € K such that |xp — xa|| < yra/4 and Bxp = xp.
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Proof Set
A=yra/d (2.146)
and put
U= {B e My :||Bz — Az|| < Aforeach z € B(xy, rA)}. (2.147)

Clearly, U is a neighborhood of A in M ; with the weak topology.
Let B € U. It follows from (2.147), (2.133) and (2.146) that for each z €
B(xa,yra/4),

Bz —xall < 1Bz — Azl + |[Az — xall S A+ |Az — xall = A =yra/4.
Thus
B(B(xa,yra/4) C B(xa,yra/4).

Since the mapping B is continuous, there is xp € B(x4, yra/4) such that
Bxp =xp.
Lemma 2.17 is proved. g

Proof of Theorem 2.13 Let A € £. There exist x4 € int(K) and r4 € (0, 1) such that
(2.133) holds. By Lemma 2.17, there exists an open neighborhood U/ (A) of A in
M ¢ with the weak topology such that the following property holds:

(P1) Foreach B € U(f), there is xp € K such that
Bxp=xp and |xp—xall <yra/S. (2.148)
Set
F=Jfuw :aee}. (2.149)

By Lemma 2.16, F, is an open (in the weak topology) and everywhere dense (in
the strong topology) subset of M .
Let B € F,. By (2.149), there is A € £ such that

B elU(A). (2.150)
By property (P1), for each C € U{(A), there is xc € K such that
Cxc=xc and |lxc—xal <yra/8. (2.151)

Clearly,
lxg —xall <yra/8. (2.152)
It follows from (2.152) and (2.135) that

B(xp,ra/2) C B(xa,ra) C K. (2.153)
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By (2.151) and (2.152), for each C € U(A),
lxc —xgll < llxc —xall + llxa —xgll <yra/8+yra/8=yra/4.
This completes the proof of Theorem 2.13. g

Proof of Theorem 2.14 For each integer n > 1, let F,, be as guaranteed in Theo-
rem 2.13 with y = (2n)~!. Set

F=()Fn (2.154)
n=1

Clearly, F is a countable intersection of open (in the weak topology), everywhere
dense (in the strong topology) subsets of M .
Let A € F and y € (0, 1). Choose a natural number n such that

n~'<y/8. (2.155)

Since A € F;, and the assertion of Theorem 2.13 holds with y = 2n)~! and Fy =
Fu, there are x4 € int(K), r4 € (0, 1), and a neighborhood I/ of A in M ; with the
weak topology such that B(x4,74) C K, Axg = x4, and for each C € U, there is
xc € K such that Cx¢c = x¢ and

—1
lxc —xall Sran)™" <ray.

Thus Theorem 2.14 is also proved. O

2.6 Approximate Fixed Points
Let (K, p) be a complete metric space such that
sup{p(x,y):x,y € K} =00,
and let (X, || - ||, >) be a Banach space ordered by a closed convex cone
Xi={xeX:x>0}.

We assume that ||x|| < ||y|| for each x, y € X4 which satisfy x < y.
Denote by A the set of all continuous mappings A : K — X ;. We equip the set
A with the uniformity determined by the following base:

Eg(e)={(A,B)e Ax A:||Ax — Bx|| <¢forall x € K}, (2.156)

where ¢ > 0 [80]. Clearly, the uniform space obtained in this way is metrizable and
complete. The uniformity determined by (2.156) induces a topology on A which is
called the strong topology.
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Denote by Fy the set of all A € A for which
inf{||Ax|| 1x € K} > 0.

Theorem 2.18 The set Fy is an open everywhere dense subset of A with the strong
topology.
Proof Let A € Fg. There is r > 0 such that
|Ax|| >r forallx e K. (2.157)
Set
U={BeA:(B,A)€Er/4)}. (2.158)

Clearly, U is a neighborhood of A in A with the strong topology. Assume that
B € U. Then it follows from (2.157) and (2.158) that for each x € K,

[ Bx| = [[Ax|| — [|[Ax — Bx||
>r—||Ax — Bx||=r —r/4=3r/4.

Thus B € Fy. This implies that U C Fy. In other words, we have shown that Fy is
an open subset of Fo with the strong topology.

Now we show that Fy is an everywhere dense subset of A with the strong topol-
ogy. Let A € Fp and ¢ > 0. Choose u € X such that

ueXy and |ul=e/2, (2.159)

and set
Bx=Ax+4+u, xeKk. (2.160)
By (2.159) and (2.160), for each x € K,

[ Bx|| = l[Ax +ull = |lull = /2.

Thus B € Fy. In view of (2.160), (2.159) and (2.156), (A, B) € E,(¢e). Therefore
Fo is an everywhere dense subset of A with the strong topology. Theorem 2.18 is
proved. d

Now we equip the set A with a topology which will be called the weak topology.
Fix 0 € K. For each e,n > 0, set

Ey(e,n)= {(A, Bye Ax A:||Ax — Bx| <¢
for each x € K satisfying p(6,x) <n}. (2.161)
We equip the set A with the uniformity determined by the base

Ey(e,n), e,n>0.
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Clearly, the uniform space obtained in this way is metrizable and complete. The
uniformity determined by (2.161) induces in the set .4 a topology which is called
the weak topology.

Theorem 2.19 There exists a set F| C A which is a countable intersection of open
everywhere dense subsets of A with the weak topology such that for each A € Fi,

inf{||Ax| :x € K} =0. (2.162)

Proof Denote by £ the set of all A € A for which there is x € K such that Ax = 0.
First we show that £ is an everywhere dense subset of A with the weak topology.
Let A € A and ¢, n > 0. Choose x € K such that

p6,x)>4n + 4. (2.163)
By Urysohn’s theorem there is a continuous function ¢ : K — [0, 1] such that
px)=1 ifp(x,x) =<1
and
¢(x)=0 if p(x,x)>2. (2.164)
Set
Bx = (1 — qb(x))Ax, xeK. (2.165)
Clearly, B € A. In view of (2.164) and (2.165),
¢(x)=1 and Bx=0.
Thus B € £. Let x € K satisfy
p(x,0) <n. (2.166)
It follows from (2.166) and (2.163) that

p()zvx) > 10()2’0) - p(ewx)
>4dn+4—n=3n+4.
When combined with (2.164) and (2.165), this implies that
¢(x)=0 and Bx = Ax.

Thus Bx = Ax for each x € K satisfying (2.166). The definition of the base E,,
(see (2.161)) implies that (A, B) € Ey (&, n). In other words we have shown that £
is an everywhere dense subset of A with the weak topology.

Let A € £ and let n > 1 be an integer. There is x4 € K such that

Axs =0. (2.167)
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Since A is continuous, there is r € (0, 1) such that
lAx]| < (4n)_1 for each x € K satisfying p(x, x4) <r. (2.168)
Choose an open neighborhood U/ (A, n) of A in A with the weak topology such that
UA,n) C{BeA:(A,B)e Ey((4n) " n+4+4p0,x1)))}. (2.169)
Let
BelU(A,n), x ek, plx,x4)<r. (2.170)
By (2.170) and (2.168),
Il Ax] < @m)~". 2.171)
In view of (2.170) and since r < 1,
p(0,x) < p(0,xa) + p(xa,x)
<p@,x4)+r<p@,x4)+ 1.
Together with (2.169), (2.170) and (2.161), this inequality implies that
lAx — Bx|| < (4m)~".

When combined with (2.171), this inequality implies that ||Bx| < 1/n. Thus we
have shown that the following property holds:

(PO) Foreach BeU(A,n),inf{|Bz||:z€ K} <1/n.
Set

Fi :ﬂU{U(A,n):Aeg}. (2.172)

n=1

Clearly, F7 is a countable intersection of open everywhere dense (in the weak topol-
ogy) subsets of A.
Let B € F; and ¢ > 0. Choose a natural number n such that

8/n<e. (2.173)
By (2.172), there is A € £ such that
B cU(A,n).
It follows from this inclusion, property (P0O) and (2.173) that
inf{||Bz|| 1z € K} <l1/n<e.
Since ¢ is an arbitrary positive number, we conclude that
inf{||Bz|:z€ K} =0.

Theorem 2.19 is proved. g
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Assume now that K is a subset of X and that

px,y)=lx=yll, x,yek.

Denote by B the set of all continuous mappings A : K — X such that
Ax>x forallx e K.
For each A € B, denote by J(A) the mapping defined by
JAx=Ax—x, xek.
Clearly, J(B) = A, and if A|, A, € B are such that
J(A) = J(A2),

then A; = A,. We equip the set B with the uniformity determined by the following
base:

E(e)={(A,B)e Bx B:|Ax — Bx|| <¢forall x € K},

where ¢ > 0. It is not difficult to see that the space B with this uniformity is metriz-
able and complete. This uniformity induces in B a topology which is called the
strong topology. It is easy to see that the mapping J is a homeomorphism of the
spaces I3 and A with the strong topologies. Thus Theorem 2.18 implies the follow-
ing result.

Corollary 2.20 The set of all A € B for which
inf{||Ax—x|| 1X EK} >0
is an open everywhere dense subset of B with the strong topology.
We also equip the set B with the uniformity determined by the following base:
Ewe,n)={(A,B) e Bx B:||Ax — Bx| <¢
for each x € K satisfying [|6 — x|| <n}

where n, ¢ > 0. It is not difficult to see that the space B with this uniformity is
metrizable and complete. This uniformity induces in B a topology which is called
the weak topology. It is easy to see that the mapping J is a homeomorphism of the
spaces 3 and .A with the weak topologies.

Therefore Theorem 2.19 implies the following corollary.

Corollary 2.21 There exists a set F C B which is a countable intersection of open
and everywhere dense subsets of B with the weak topology such that for each A € F,

inf{||Ax — x| :x € K} =0.

The results of this section were obtained in [157].
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2.7 Generic Existence of Small Invariant Sets

In this section we consider generic properties of mappings with approximate fixed
points. More precisely, let K be a closed and convex subset of a Banach space
(X, || - ID- We consider a complete metric space of all the continuous self-mappings
of K with approximate fixed points. We show that a typical element of this space
(in the sense of Baire’s categories) has invariant balls of arbitrarily small radii. This
result was obtained in [146].

Denote by A the set of all mappings A : K — K such that

inf{|lx — Ax|| :x € K} =0. (2.174)
We equip the set A with the uniformity determined by the following base:
E(e)={(A,B)e Ax A:||Ax — Bx|| <& forall x € K}, (2.175)

where ¢ > 0. It is easy to see that the uniform space A is metrizable (by a metric d).
We first observe that (A, d) is a complete metric space.

Proposition 2.22 The metric space (A, d) is complete.

Proof Let {A;}72, C Abe aCauchy sequence. Then for any & > 0, there is a natural
number i, such that

|A;x —Ajx|| <& forallintegersi, j >i.andallx € K. (2.176)
This implies that for each x € K, {A;x}72, is a Cauchy sequence and there exists

Ax:= lim A;x. (2.177)

11— 00

Let ¢ > 0 and let a natural number i, satisfy (2.176). Relations (2.176) and (2.177)
imply that for each integer j > i, and each x € K,

|[Ax — A;x|| = lim [|[A;x — Ajx| <e.
11— 00
Thus
|[Ax — Ajx| <& foreachinteger j > i. and each x € K. (2.178)

In order to complete the proof of Proposition 2.22, it is sufficient to show that the
mapping A satisfies (2.174).
Let 6 > 0. Then in view of (2.178) there is a natural number ig such that

|Ax — Ajyx|| <8/4 forallx € K. (2.179)
Since A;, € A, there is y € K such that

[ Aigy = yll = 8/4.
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When combined with (2.179), this inequality implies that
[Ay =yl < 1Ay — Aigyll + | Aigy =yl = 8/4 +8/4=145/2.

Since 8 is any positive number, we conclude that A € A. This completes the proof
of Proposition 2.22. d

Denote by A, the set of all continuous A € A. Clearly, A, is a closed subset of
(A, d).

Theorem 2.23 There exists a set F C A, which is a countable intersection of open
and everywhere dense subsets of A. such that each A € F has the following prop-

erty:
Foreach y € (0, 1), there are x,, € K, r € (0, 1], and a neighborhood U of A in
A such that for each C €U,
C({zeK:llz—xyl=r})Cc{zeK:llz—x,l <yr}. (2.180)

Corollary 2.24 Assume that for each x € K, the set {z € K : ||z — x| < 1} is com-
pact. Let F be as guaranteed by Theorem 2.23, and let A € F, y € (0, 1).

Then there are x4 € K and a neighborhood U of A in A, such that for each
C elU, thereis a point z € K so that ||z —xa|| <y and Cz =z.

Corollary 2.25 Assume that X is finite-dimensional. Then the assertion of Corol-
lary 2.24 holds.

Corollary 2.26 Assume that the assumptions of Corollary 2.24 hold, and that
A € Fand e > 0. Then there are x € K and r € (0, 1] such that

Ax=% and A({zeK:llz—x|<r})ClzeK:|z—X| <er}.
Proof Choose a positive number y such that
y<1/2 and y <¢g/8. (2.181)

By Theorem 2.23, there are x, € K and r € (0, 1] such that (2.180) holds with
C = A. By Schauder’s theorem, there is x € K such that

¥ —x, ]| <yr and Ax=x. (2.182)
We have, by (2.182),
{zGK iz = xpll Syr} C {ZGK Hlz = x|l §2VV}~
When combined with (2.180) (with C = A), this inclusion implies that

A({zeK:lz—xyll<r})c{zeK : |z —xl <2yr}. (2.183)
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On the other hand, by (2.181) and (2.182),
lzeK:lz—xll<r2}ClzeK:|z—x, |l <7} (2.184)
It now follows from (2.184), (2.183) and (2.181) that
A(fxeK:llz—xl<r2)) cA({xe K :llz—xy | <r})
ClzeK:llz—x| <er/4}.
Corollary 2.26 is proved. O

Corollary 2.27 Assume that X is finite-dimensional. Then the assertion of Corol-
lary 2.26 holds.

Corollary 2.28 Let K be compact. Then A is the set of all continuous mappings
A : K — K and the assertion of Corollary 2.26 holds.

We begin the proof of Theorem 2.23 with the following lemma.

Lemma 2.29 Let A € A. and ¢ > 0. Then there are x, € K, r > 0, and B € A,
such that

|Ax — Bx|| <e forallx €K,
Bx =x, forall x € K satisfying ||x — x«|| <r.

Proof Since A € A, (see (2.174)), there is x, € K such that

[Ax, — x4]| < €/8. (2.185)
There also is a number r € (0, 1) such that

|[Ax — Ax,|| <¢e/8 foreach x € K such that ||x — x.|| <2r. (2.186)
By Urysohn’s theorem, there exists a continuous function ¢ : K — [0, 1] such that
p(x)=1, xelzeK:|z—x. =r} (2.187)

and
d(x)=0, xe€K and |x — x| >2r.
Set
Bx=¢)x:+ (1 —¢(x))Ax, xeK. (2.188)

Clearly, B : K — K is continuous, and

Bx =x, forallx € K such that ||[x — x| <r. (2.189)
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Now we show that
|Bx — Ax|| <e forallx € K.

Let x € K. There are two cases: (1) ||x — x«|| <2r; 2) ||x — x| > 2r.
Consider the first case. Then (2.188), (2.185) and (2.186) imply that

|Ax — Bx|| = | Ax — p(x)xs — (1 — ¢ (x)) Ax ||

=0 () [lxx — Ax[| < [lxs — Ax|| < [lxx — Axi || 4 | Axyc — Ax]|

<e/8+¢/8=¢/4.
Consider now the second case. Then by (2.188) and (2.187),
|Ax — Bx|| = ||Ax — Ax|| =0.

Thus ||Ax — Bx|| < e forall x € K. Lemma 2.29 is proved.

O

Proof of Theorem 2.23 Denote by & the set of all A € A, with the following prop-

erty:

There are x, € K and r > 0 such that Ax = x, for all x € K satisfying ||x —

Xyl <.
By Lemma 2.29, £ is an everywhere dense subset of .A,.

Let A € £ and let n be a natural number. There are x4 € K and r4 € (0, 1) such

that
Ax =x4 forall x € K satisfying ||x — x4l <ra.

Denote by U/(A, n) the open neighborhood of A in A, such that
UA,n)C{BeA.: (A, B) € E(ra/n)}.
Let B €eU(A, n). Clearly,
|IBy — Ay|| <ra/n<1/n forallye K.

By (2.190) and (2.192), for all y € K such that ||y — x4|| <74,

By —xall < |IBy — Ayl + [|Ay — xall = | By — Ayl < ra/n.

Thus
IBy —xall <ra/m forally e K suchthat ||y —xa| <rj.

We have shown that the following property holds:
(P1) Foreach B el (A,n), (2.193) is true.

(2.190)

(2.191)

(2.192)

(2.193)
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Define

F= ﬁU{U(A,n):A e&}.

n=1

Clearly, F is a countable intersection of open and everywhere dense subsets of A..
Let B € F and y € (0, 1). Choose a natural number n such that 8/n < y. By the
definition of F, there are A € £ such that

B cU(A,n). (2.194)
It follows from property (P1) and (2.193) that for each C € U (A, n),
C({zeK:llz—xall <ra}) c{zeK :llz—xal <ra/n}
ClzeK:llz—xall <yra}.

This completes the proof of Theorem 2.23. 0

2.8 Many Nonexpansive Mappings Are Strict Contractions

Let K be a nonempty, bounded, closed and convex subset of a Banach space

(X, |l - II). In this section we consider the space of all nonexpansive self-mappings of

K equipped with an appropriate complete metric d and prove that the complement

of the subset of strict contractions is porous. This result was established in [150].
Set

rad(K) = sup{||x|| S K} (2.195)
and
d(K) :sup{||x —yll:x,y€ K}.
Foreach A: K — X, let
Lip(4) = supf{l|Ax — Ayll/llx = yl| 1 x,y € K, x #y} (2.196)

be the Lipschitz constant of A. Denote by A the set of all nonexpansive mappings
A K — K, that is, all self-mappings of K with Lip(A) < 1, or equivalently, all
self-mappings of K which satisfy

[Ax — Ay|| < |lx —y|| forallx,y e K. (2.197)

We say that a self-mapping A : K — K is a strict contraction if Lip(A) < 1. Our
new metric is defined by

d(A, B) =sup{||Ax — Bx| :x € K} +Lip(A — B), (2.198)

where A, B € A. It is not difficult to see that the metric space (A, d) is complete.
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Theorem 2.30 Denote by F the set of all strict contractions A € A. Then A\ F is
porous.

Proof Fix a number « > 0 such that
a < (1+2rad(K)) 327" (2.199)
and fix® € K.Let A€ Aandletr € (0, 1]. Set
y =(1+2rad(K))"'r/8 (2.200)
and put
Ayx=(0-y)Ax+y6, xeKk. (2.201)
Clearly, A, € Aand foreachx,y € K,
[Ayx = Ayyll=0=p)[Ax = Ay = (1 = p)llx = |- (2.202)
By (2.201), (2.195), (2.196) and (2.198), for each x € K,
[Ayx — Ax|| = |[(1 — y)Ax + y0 — Ax| =y 6 — Ax||
<2y rad(K),

Lip(4y — A) =sup{[[(A) — A)x — (A, = A)y|/lIx =yl :x,y € K, x # y}
=sup{||(y0 —yAx) = (y6 —y AV)|/llx =yl :x,y € K, x # y}
=ysup{|lAx — Ayll/lx =yl :x,y e K,.x #y} <,

and
d(A, Ay) <2yrad(K) +y =y (1 +2rad(K)). (2.203)
Relations (2.200) and (2.203) imply that
d(A,A)) <r/8. (2.204)
Assume that B € A,
d(B,A,) <ar. (2.205)
In view of (2.205), (2.198), (2.202) and (2.200), we see that
Lip(B) <Lip(A,) +Lip(B — A,) <Lip(A,) +d(B, A,)
<Lip(A))+ar<(1—y)+ar
=1-—(r/8)(1 —|—2rad([())_1 +r(32(1+ 21rad(K))_1

<1—(/16)(1+2rad(K)) " <1
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and so B € F. Clearly, by (2.205), (2.204) and (2.199),
d(B,A) <d(B,Ay)+d(Ay,,A) <ar+r/8=r.

Thus for each B € A satisfying (2.205), B € F and d(B, A) < r. This completes
the proof of Theorem 2.30. g

Now let F be a nonempty closed convex subset of K. For each x € K, set
p(x, F)=inf{|x —y|| : y € F}. (2.206)
Assume that there exists P € A such that
P(K)=F, Px=x, xeF. (2.207)
Denote by A the set of all A € A such that
Ax=x, x€F. (2.208)

Clearly, A is a closed subset of (A, d).
Theorem 2.31 Denote by F the set of all A € AP which have the following prop-
erty:
There is a number q € (0, 1) such that
p(Ax, F)<qp(x,F) forallxeK.
Then A\ F is a porous subset of (A", d).
Proof Fix a number o > 0 such that

o < (1+2rad(K))~'3270. (2.209)

Let A e A and r € (0, 1]. Set

y = (1+2rad(K))”'r/8 (2.210)
and put
Ay x=(1-y)Ax+yPx, xek. 2.211)
Clearly, A}, € A,
Ayx=x, xeF, and A,eAD. (2.212)

For each x € K and y € F, we have by (2.211),
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p(Ayx, F)=p((1 — y)Ax +y Px, F)
< | =y)Ax +yPx —((1 —y)y +yPx)|
=1 -PIAx —yll <1 =p)lx =yl

Hence

p(Ayx, F) < (1 —y)inf{llx =yl :y € F} = (1 = y)p(x, F).
Thus
p(Ayx, F)<(1—-y)px,F), xecKk. (2.213)
By (2.211), (2.195), and (2.199), we have for x € K,
[Ayx — Ax| = (1 — y)Ax +y Px — Ax| = y||Px — Ax|| <2y rad(K),
Lip(A, — A) = Lip((l —y)A+yP— A)
=Lip(yP —yA) <2y

and

d(A,A)) <2yrad(K)+2y =2y (rad(K) + 1). (2.214)
It follows from (2.214) and (2.210) that

d(A,A)) <r/4. (2.215)
Assume now that
Be AP
and
d(B,Ay) <ar. (2.216)

Then by (2.216), (2.215) and (2.209),
d(B,A)<d(B,A,)+d(A,, A) <ar+r/4<r. (2.217)

Let x € K and y € F. It follows from (2.208), (2.212), (2.211), (2.196), (2.198),
(2.216), (2.209) and (2.210) that

p(Bx,F) < |Bx— (1 —y)y+yPx)|
<|IBx — Ayx|+ |Ayx — [(1 = y)y +y Px]|
< |(Bx = By) — (Ayx — A, y) | + (1 — )| Ax — y||
<[|B—-A)x—(B-A)y|+A=p)lx—yl
<Lip(B— Ay)llx =yl + (1 —y)lx =yl
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<arllx =yl+ A =p)llx =yl =llx = yllar+1—y)
< lx = yll(1 = (1+2rad(K)) "' /16).
Therefore
p(Bx, F)<(1—(1+ 2rad(K))*‘/16) inf{||lx — y||: y € F}
= (1— (1 +2rad(K)) "' /16) p(x, F).

Thus B € F. This completes the proof of Theorem 2.31. 0

2.9 Krasnosel’skii-Mann Iterations of Nonexpansive Operators

In this section we study the convergence of Krasnosel’skii-Mann iterations of non-
expansive operators on a closed and convex, but not necessarily bounded, subset of
a hyperbolic space. More precisely, we show that in an appropriate complete metric
space of nonexpansive operators, there exists a subset which is a countable inter-
section of open and everywhere dense sets such that each operator belonging to this
subset has a (necessarily) unique fixed point and the Krasnosel’skii-Mann iterations
of the operator converge to it.

Let (X, p, M) be a complete hyperbolic space and let K be a closed and
p-convex subset of X. Denote by A the set of all operators A : K — K such that

p(Ax, Ay) <p(x,y) forallx,yeK. (2.218)
Fix some 6 € K and for each s > 0, set
B(s)={x €K :p(x,0) <s}. (2.219)
For the set A we consider the uniformity determined by the following base:
E(m)={(A,B)e Ax A:p(Ax, Bx) <n~'forallx, y € B(n)}, (2.220)

where 7 is a natural number. Clearly the uniform space A is metrizable and com-
plete.

A mapping A : K — K is called regular if there exists a necessarily unique
x4 € K such that

lim A"x =x, forallx € K.
n—oo

A mapping A : K — K is called super-regular if there exists a necessarily unique
x4 € K such that for each s > 0,

A"x — x4 asn — oo uniformly on B(s).
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Denote by I the identity operator. For each pair of operators A, B : K — K and
each r € [0, 1], define an operator rA & (1 —r) B by

(rA ® (- r)B)(x) =rAx® (1 —-r)Bx, xeKk.
In this section we prove the following three results [132].

Theorem 2.32 Let A : K — K be super-regular and let €, s be positive numbers.
Then there exist a neighborhood U of A in A and an integer ng > 2 such that for
each B € U, each x € B(s) and each integer n > ng, the following inequality holds:
p(xa, B"x) <e.

Theorem 2.33 There exists a set Fo C A which is a countable intersection of open
and everywhere dense sets in A such that each A € Fy is super-regular.

Let {r,};2 | be a sequence of positive numbers from the interval (0, 1) such that

o
lim 7, =0 and E 7n = 00.
n—0o0 1

n=

Theorem 2.34 There exists a set F C A which is a countable intersection of open
and everywhere dense sets in A such that each A € F is super-regular and the
following assertion holds:

Let x4 € K be the unique fixed point of A € F and let §,s > 0. Then there exist
a neighborhood U of A in A and an integer ng > 1 such that for each sequence of
positive numbers {r,l}:‘;1 satisfying rp, € [rp, 11, n =1,2, ..., and each B € U the

following relations hold:
(6]
p((rnB@® (A —=r)l)---(nB& 1 —r)l)x,
(mB® (A —=r)I)--(nB®A—r)l)y) <3

for each integer n > ng and each x,y € B(s);
(i) if B € U is regular, then

p((raB® A —r)I) - (rnB® (1 —r)l)x,x4) <8
for each integer n > ng and each x € B(s).

Proof of Theorem 2.32 We may assume that € € (0, 1). Recall that x4 is the unique
fixed point of A. There exists an integer no > 4 such that for each x € B(2s +2 +
2p(x4,0)) and each integer n > ny,

p(xa, A"x) <87 le. (2.221)
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Set
U={BeA:p(Ax, Bx) < (8n9) 'e,x € B(8s +8+8p(x4.0))}. (2.222)

Let B € U. It is easy to see that for each x € K and all integers n > 1,

p(A"x, B"x) < p(A"x, AB""'x) + p(AB"'x, B"x)
<p(A"'x, B"'x) + p(AB"'x, B"x) (2.223)
and
p(B"x,x4) < p(B"x, A"x) + p(A"x,x4) < p(B"x, A"x) + p(x,x4)

<p(B"x,A"x) + p(x,0) + p(0, x4). (2.224)

Using (2.222), (2.223) and (2.224) we can show by induction that for all x € B(4s +
444p(x4,0)),andforalln=1,2,...,nop,

p(A"x, B"x) < (8ng)~'en (2.225)
and
n 1
p(B"x,0) =2p(xa,0) + p(x,0) + 5.

Let y € B(s). We intend to show that p(x4, B"y) < ¢ for all integers n > ng. Indeed,
by (2.225),

p(@,Bmy)S%—i—Z,o(xA,@)—i—s, m=1,...,no. (2.226)
By (2.225) and (2.221),
p(xa, B"y) <e/2. (2.227)
Now we are ready to show by induction that for all integers m > ny,
p(xa, B"y) <e. (2.228)

By (2.227), inequality (2.228) is valid for m = ng.
Assume that an integer k > ng and that (2.228) is valid for all integers m €
[no, k]. Together with (2.226) this implies that

. 1
p(G,B’y)SE—i-Zp(xA,Q)—i-s, i=1,... k. (2.229)
Set
j=14+k—ny and x=B'y. (2.230)
By (2.229), (2.230), (2.221) and (2.225),
p(A™x, B"x) <¢/8, p(xa, A"x) <e/8 and p(xa, Bk+1y) <e/4.

This completes the proof of Theorem 2.32. g



58 2 Fixed Point Results and Convergence of Powers of Operators

Proof of Theorem 2.33 Foreach A € Aand y € (0, 1), define A, : K — K by
Ay x=(1-y)Ax®y0, xeKk.
Let Ae Aand y € (0, 1). Clearly,

P(Ayx, Ayy) < (1 —y)p(Ax, Ay) = (1 —y)p(x,y), x,y€K.

Therefore there exists x(A, y) € K such that

Ay (x(A, ) =x(A, ).

Evidently, A, is super-regular and the set {4, : A € A,y € (0, 1)} is everywhere
dense in A. By Theorem 2.32, for each A € A, each y € (0, 1) and each inte-
ger i > 1, there exist an open neighborhood U (A, y,i) of A, in A and an integer
n(A, y,i) > 2 such that the following property holds:

(i) foreach B € U(A, y,i), each x € B(4'*!) and each n > n(A, y, i),
p(x(A,y), B"x) <4771,

Define

o0
Fo=UU@,y.):AcU,ye©D,i=q.q+1,..}
g=1

Clearly, Fy is a countable intersection of open and everywhere dense sets in A.
Let A € Fo. There exist sequences {Aq}02 | C A, {yg}g2; C (0,1) and a strictly

increasing sequence of natural numbers {iq}f]’o:1 such that
AcU(Agvq,19), qg=1,2,.... (2.231)
By property (i) and (2.231), for each x € B(4%*!) and each integer n > n(Ay,
Ya-iq)
p(x(Aq, Ya)s A”x) <471
This implies that A is super-regular. Theorem 2.33 is proved. O

In order to prove Theorem 2.34 we need the following auxiliary results.
Let

]

Fae@©1), n=12,..., lim 7, =0, Y =1 (2.232)
n—oo -

Lemma 2.35 Let A € A, S| > 0 and let ng > 2 be an integer. Then there exist a
neighborhood U of A in A and a number S, > S| such that for each B € U, each

sequence {ri}?izl C (0, 1] and each sequence {x,}?i | C K satisfying

x1 € B(S)), Xipi=rBxi®(A—rdx;, i=1,...,n9—1, (2.233)
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the following relations hold:
x; €B(Sy), i=1,...,np.
Proof Set
Sit1=285+2+2p0,A0), i=1,....,n0—1, and S,=S,,. (2234
Set
U:{BEA:,O(Ax,Bx)fl,xeB(S*)}. (2.235)

Assume that B € U, {r,-}jf’gl C (0,11, {x;}/2, C K and that (2.233) holds. We will
show that

p0,x)<Si, i=1,...,no. (2.236)

Clearly, (2.236) is valid for i = 1. Assume that the integer m € [1, n¢p — 1] and that
(2.236) holds for all integers i = 1,...,m. Then by (2.236) with i =m, (2.233),
(2.235) and (2.234),

PO, Xms1) = p(0, rm BCim) & (1 = 1))
< p(rmB(Q) D& —rp)xm, rmBx,) &0 — rm)xm)
+ (0, rmnB©) ® (1 — ri)xm)
<rmp©, xm) + p(0, BO)) + p(B©O), rmB©) & (1 — ryn)xm)
<Su+p(0,A®) + p(A©®), B©®)) + p(B®), xm)
<Su+p(0,A0) + 1+ p(xm,0) + p(6, A0) + p(A©), B(6))
<28u+2p(0, A©)) +2 = Spt1.
Lemma 2.35 is proved. O
For each A € A and each y € (0, 1), define A, : K — K by
Ayx=(1—-y)Ax®y0, xeck. (2.237)
Let Ae Aand y € (0, 1). Clearly,
p(Ayx,Ayy) =1 —y)px,y), x,yek. (2.238)
There exists x(A, ) € K such that
Ay (x(A,9)=x(A,y).

Clearly, A, is super-regular and the set {A, : A € A,y € (0, 1)} is everywhere
dense in A.
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Lemma 2.36 Let Ac A,y €(0,1),r€(0,1]and x,y € X. Then
p(rAyx @ —r)x,rA,y® (1 —r)y) <(1—yr)p(x,y).
Proof By (2.238),
p(rAyx ® (1=r)x,rAyy ® (1 =r)y) <rp(Ayx, Ayy) + (1 =r)p(x,y)
= =nrpl,y)+rd—y)plx,y)
=pl, A —yr).

Lemma 2.36 is proved. g
Lemma 2.37 Let Ac A,y € (0,1) and 8, S > 0. Then there exist a neighborhood
U of A, in A and an integer ny > 4 such that for each B € U, each sequence of

numbersri € [ri,1],i=1,...,n0—1,and each x, y € B(S), the following inequal-
ity holds:

p((rag-1B @ (1 = rag—)1) -+ (n B & (1 — r)1)x,
(}’,10_13 ® (11— rng—l)l) e (rlB & (1— rl)I)y) <$.
Proof Choose a number

v € (0, y). (2.239)

Clearly, ]_[?il( 1 — yori) — 0 as n — oo. Therefore there exists an integer ng > 4
such that

no—1
@S+2) [] 1 —ypi) <8/2. (2.240)
i=l1

By Lemma 2.35, there exist a neighborhood U of A, in A and a number S, > 0

such that for each B € Uy, each sequence {r; };’i}l C (0, 1], and each sequence
{xi}2, C X satisfying

x1 € B(S), Xip1=riBx;®A —rp)x;, i=1,...,n0—1, (2.241)
the following relations hold:
xi€B(Sy), i=1,...,np. (2.242)
Choose a natural number m | such that
m;>28.+2 and 8m;' <8(y —yo)yri, i=1,....,ng—1, (2.243)

and define

U={BeU :p(Ayx,Bx) <m]',x € B(m)}. (2.244)
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Assume that Be U, r; €lri,1],i=1,...,n0—1, and
x,y € B(S). (2.245)
Set
x| =X, Y=Y, Xiy1 =1iBx; ® (1 —ri)xi,
) (2.246)
Vier=riByi® (1 —ri)yi, i=1,...,n0—L
It follows from the definition of U; (see (2.241) and (2.242)) that
vi,Xi € B(Sx), i=1,...,np. (2.247)
To prove the lemma it is sufficient to show that
P Xng, Yng) < 9. (2.248)
Assume the contrary. Then
pxi,yi)>68, i=1,...,np. (2.249)

Fixi €{l,...,ng—1}. It follows from (2.246), (2.247), (2.243), (2.244) and (2.237)
that

pigts Yig1) =p(riBx; & (1 —r)x;, ri By; & (1 —ri)y;)
<p(riAyxi ® (1 —ri)xi, riAyyi ® (1 —ri)y;)
+p(Ayx;, Bx;) + p(Ayyi, By;)
<rip(Ayxi, Ayyi) + (1 —r)p(xi, yi) +2m7"
<2m'+ (1 —r)p i, yi) +ripGi, yi) (1 — )
<2mi'+pi. y)(1—ri +ri(1 —y))
=2m7 " + p(xi, y)(1 = yri). (2.250)

By (2.250), (2.243) and (2.249),

PXit1, Yit1) < p(xi, yi) (L — yori),

and since this inequality holds for all i € {1, ...,no — 1}, it follows from (2.245)
and (2.240) that
no—1
P g ¥ug) <28 [ | (1 = wori) < 8/2.
i=1

This contradicts (2.249) and proves Lemma 2.37. O
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Proof of Theorem 2.34 Let
o0
(Falazi €O, lim 7 =0, > Fy=o0. (2.251)
n=1

By Theorem 2.33, there exists a set 7o C .4 which is a countable intersection of
open and everywhere dense sets such that each A € Fy is super-regular.
For each A € A and each y > 0, define A, € A by

Ay x=(1-py)Axdyd, xek.

Clearly, A, is super-regular, and for each A € A and y € (0, 1), there exists
x(A,y) € K for which
A, (x(A, y)) =x(A,y). (2.252)

Let Ae A, y €(0,1) and let i > 1 be an integer. By Lemma 2.37, there exist an
open neighborhood U (A, y,i) of A, in A and an integer no(A, y, i) > 4 such that
the following property holds:

(a) foreach B € U1 (A, y, i), each sequence of numbers

rje[’_‘]al]v j=15"'an0(A’V7i)_1v

no(A,y,i) no(A,y,i)

and each pair of sequences {x;},_; AvitiZy C X satisfying
x1,y1 € BT (4+4p(x(A, 1),6))), (2.253)

Xi+1=71iBx; ® (1 —ri)x;, Yi+1 =riBy; ® (1 —ri)y;,
i=1,...,n0(A,y,i)—1, (2.254)

the following inequality holds:

0 Xng(Ap.i)» Yno(A,pi)) =< g1, (2.255)

Since A, is super-regular, by Theorem 2.32 there is an open neighborhood
U(A,y,i)of A, in A and an integer n(A, y, i), such that

UA,y,i) CUI(A, y, D), n(A,y, i) zno(A,y, i), (2.256)

and the following property holds: '
(b) for each B € U(A, y,i), each x € B2 + 2p(x(A,y),0))) and each
integer m > n(A, y,i),

p(x(A,y), B"x) <8~ (2.257)
Define

]-':]-"oﬂ[ﬂU{U(A,y,i):AeA,ye(O, 1),i=q,q+1,...}:|.

g=1

Clearly, F is a countable intersection of open and everywhere dense sets in .A.
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Let A € . Then A € Fg and it is super-regular. There exists x(A) € K such that
A(x(A)) =x(A). (2.258)

There also exist sequences {Aq};”; 1 CA vy }2021 C (0, 1) and a strictly increasing
sequence of natural numbers {iq}(‘;"=1 such that

AeU(Ay,vq,iq), q=1,2,.... (2.259)
Let 8, s > 0. Choose a natural number ¢g such that
29 >16(s+1) and 279 <8 ls, (2.260)

and consider the open set U (Ay, vy, 1q)-

Letrjelr,1], j=1,2,...,and B € U(Ay, y4,i4). By property (a), the first
part the theorem (assertion (i)) is valid.

To prove assertion (ii), assume, in addition, that B is regular. Then there is
x(B) € K such that

B(x(B)) =x(B). (2.261)

By property (b),

p(x(Ag, vg), x(A)), p(x(Ag, vg), x(B)) <87\, (2.262)
Let x; € B(s) and

Xjp1=riBx; ®(1 —rj)x;, j=12,....
It follows from property (a) and (2.261) that
p(xj, x(B)) < 87~ for all integers j > n(Ay, vy, ig)-
Together with (2.262) and (2.260), this implies that for all integers j > n(Ay, v4.1iq),
p(xj,x(A) <387 <.

This completes the proof of Theorem 2.34. g

2.10 Power Convergence of Order-Preserving Mappings

In this section we study the asymptotic behavior of the iterations of those order-
preserving mappings on an interval (0, u,) in an ordered Banach space X for which
the origin is a fixed point. Here u is an interior point of the cone of positive elements
X4 of the space X. Such classes of order-preserving mappings arise, for example,
in mathematical economics. We show that for a generic mapping there exists a fixed
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point which belongs to the interior of X4+ such that the iterations of the mapping
with an initial point in the interior of X converge to it.

Let (X, || - ||) be a Banach space ordered by a closed cone X with a nonempty
interior such that || x| < ||y|| for each x, y € X satisfying x <y.Foreachu,v € X
such that u < v denote

(u,vy={xeX:u<x<v}.
Let u, be an interior point of X . Define
x|« =inf{r €[0,00) : —ru, <x <ruy}, xeX. (2.263)

Clearly, || - ||« is a norm on X which is equivalent to the norm || - ||.
An operator A : (0, u,) — (0, uy) is called monotone if

Ax <Ay foreachx,y e (0,u,) suchthatx <y. (2.264)

Denote by M the set of all monotone continuous operators A : (0, uy) — (0, u,)
such that

A0)=0 (2.265)
and
A(az) >aAz forall z € (0,u,) and o € [0, 1]. (2.266)

Geometrically, (2.266) means that the hypograph of A is star-shaped with respect to
the origin.
For the space M we define a metric p : M x M — [0, o0) by

p(A, B) =sup{l|Ax — Bx|s:x € (0,us)}, A, BeM. (2.267)

It is easy to see that the metric space M is complete.
An operator A : (0, uy) — (0, u) is called concave if for all x, y € (0, u,) and
a [0, 1],

A((xx—i—(l —oz)y) >aAx + (1 —a)Ay. (2.268)

We denote by M., the set of all concave operators A € M. Clearly, M, is
a closed subset of M. We consider the topological subspace M., C M with the
relative topology.

The spaces M and M, are very important, for example, from the point of view
of mathematical economics. In this area of research order-preserving mappings A
are usually models of economic dynamics and the condition A(0) = 0 means that
if we have no resources, then we produce nothing. Concavity means that the com-
bination of resources allows one to produce at least the corresponding combination
of outputs and even more than this combination. Monotonicity means that a larger
input leads to a larger output. A particular class of concave operators are those oper-
ators which are positively homogeneous of degree m < 1. Such operators were stud-
ied by many mathematical economists in the finite dimensional case (see [105] and
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the references mentioned there). For more information on ordered Banach spaces,
order-preserving mappings and their applications see, for example, [3, 4].

We are now ready to state and prove the main result of this section. This result
was established in [164].

Theorem 2.38 There exist a set F C M which is a countable intersection of open
and everywhere dense sets in M and a set F., C F N M, which is a countable
intersection of open and everywhere dense sets in M, such that for each P € F,
there exists xp € (0, uy) for which the following two assertions hold:

1. The point xp is an interior point of X1 and lim;_, oo P'x = xp for each x €
(0, uy) which is an interior point of the cone X 4.

2. Foreach y,e € (0, 1), there exist an integer N > 1 and a neighborhood U of P
in M such that for each C € U, each z € {yuy, uy) and each integer T > N,

[T~ xp], <o
Proof of Theorem 2.38 For each x,y € X define
Mx, y) =sup{r€[0,00) : rx < y}. (2.269)
In the proof of Theorem 2.38 we will use several auxiliary results.

Lemma 2.39 The function y — ,A(uy, y), y € X4, is continuous, concave and pos-
itively homogeneous.

Proof All we need to show is that the function y — A(u., ¥), y € X4, is continuous.
To this end, assume that y € X, {y,};°, C X4 and

lvw — ylls« = 0 asn— oo. (2.270)

We show that
AUy, yn) = Muy,y) asn— oo. (2.271)

It is well known that (2.271) is true if y is an interior point of X .. Therefore we
may assume that y is not an interior point of X .
Clearly,

Aluy, y) =0. (2.272)
‘We show that
lim A(uy, yu) =0. (2.273)
n—oo

Assume the contrary. Then there exists a subsequence {yy, };°, and a number r > 0
such that

Yo > rUy, k=12, (2.274)
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Together with (2.270) this implies that
y>ruy and  A(uy,y) >r.

Since this contradicts (2.272), we see that (2.273) does hold. This completes the
proof of Lemma 2.39. O

Define now an operator ¢ : (0, u,) — X4 by
G () = A, ) Puy,  x € (0, uy). (2.275)

By using Lemma 2.39 one can easily check that
¢ € M. (2.276)

Let A € M and let i > 1 be an integer. Define an operator A® : (0, uy) — (0, us)
by

ADx = (1 -27)Ax +27"¢(x), x € (0, u). (2.277)

Lemma 2.40 Let A € M and leti > 1 be an integer. Then AY) € M. Moreover, if
A€ M.y, then AD € M,,.

It is clear that for each A € M and each integer i > 1,
p(AD, A) <27 (2.278)
Lemma 2.41 Let A € M and let i > 1 be an integer. Then
AD(167 u,) > 87 u,. (2.279)
Proof By (2.277) and (2.275),
AD(167u,) = 27 ¢(167 1) = 271 (167) Pu, > 87 . 0

For each A € M and each integer i > 1, we now define the operator B9 :

(0, us) = (0, ux) by
B (x) = (1-167")ADx + min{A(us, x), 167 Juy,  x €(0,u,).  (2.280)
Lemma 2.42 Let A € M and leti > 1 be an integer. Then
BAD (167 u,) > (87 +271- 167 )uy (2.281)

and B e M. Moreover, if A e Mq,, then B@A:D e M,,.
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Proof 1t follows from (2.280) and (2.279) that
BAD(167 uy) > (1 - 167") (87 uy) + 16 uy > (87 +27 - 167 )u,.

Therefore (2.271) is valid. By Lemma 2.40, B“-D(0) = 0 and the operator B (4.0
is monotone. Lemmas 2.39, 2.40 and (2.280) imply that B+ is a continuous op-
erator. It follows from Lemma 2.39 that the operator

X — min{k(u*, x), 16_i}u*, x € (0, uy),
is concave. When combined with (2.280), Lemma 2.40 and (2.264), this implies that
B(A’i)(az) > aB@ Dz foreachze (0, uy) and each € [0, 1],

and that if A € M., then B is concave. This completes the proof of
Lemma 2.42. g

It follows from (2.280), (2.278) and (2.267) that for each A € M and each integer
i>1,

p(A, BAD) <27 + 167", (2.282)

Lemma 2.43 Let A € M and let i > 1 be an integer. Then

tim A((BD) (), (BAD) (167 u)) = 1. (2.283)
Proof Clearly,
(BADY T ) < (BADY (uy), 1=1,2,... (2.284)

and
(BAN (167 us) < (BAD) (wy), t=1,2,....
Lemma 2.42 (see 2.361)) implies that for each integer 7 > 1,
(BAD)Y (167 1,) = (BAD) (167 w,) = (877 427" 16 )uy.  (2285)
Fort=0,1,... we set
A= A((BD) (i), (BAD) (167 y)). (2.286)
By (2.284),

A <1, t=0,1,.... (2.287)

Let + > 0 be an integer. It follows from (2.280), (2.286), (2.269), (2.285),
Lemma 2.40 and (2.287) that
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(BAD) (167 ) = BAD (BADY (167 us)
= (1= 167)AD (BADY (167u.)
+ min{A (ug, (B4D) (1677u,)), 167 Jus
> (1= 167)AD (3, (BUD) (uy)) + 167"
> (1= 1672 AD ((BAD) () + 167"
= [(1 =167 AD((BADY (uy)) + 167 u,]
+ (1= 2)16 7 u,
= x[(1 =167 AD(BAD) ()
+ min{A (s, (BAD) ), 167 Jue] + (1 = 1) 16wy
=0 (BAD)Y ) + (1= 1) 167y
> (4 (1= 20167 (BAD) T ).
This implies that

A1 = he 4+ (1 =2)1670, (2.288)
Combining (2.287) and (2.288), we see that

A= lim A (2.289)

—>00
exists. By (2.289) and (2.288), A > A + (1 — A)16~!. By (2.287) this implies that
A =1.Lemma 2.43 is proved. g

Lemma 2.44 Let A € M and let i > 1 be an integer. Then there exists x@AD ¢
(0, uy) such that

xAD > (87 4271 167 u, (2.290)
and
lim (BAD) (167 u,) = lim (B4D) @) =20 2291)

Proof 1t is clear that inequalities (2.284) hold. Lemma 2.42 implies that for each
integer ¢ > 1, inequality (2.283) is also valid. By Lemma 2.43, (2.284) and (2.285),
. AN\ AN (1 o—i _

Jim [(BAD) u, — (BAD) (167 )] =0, (2.292)

and {(BA)u,}2 , as well as {(BAD) (167u,)}2

1= 1» are Cauchy sequences.
Therefore there exist x1, xp € (0, u) such that

x1 = lim (BAD)(167'u,) and xo = lim (B4))"u

t—00 —00
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By (2.292) and (2.285), x; = x2 > (8 + 27! . 167/)u,. This completes the proof
of Lemma 2.44. O

Lemma 2.45 Let A€ M, e >0, z € (0, uy) and let n > 1 be an integer. Then there
exists a neighborhood U of A in M such that for each C € U,

”an - AnZ”* <é.

Proof We prove the lemma by induction. It is clear that the assertion of the lemma
is valid for n = 1. Assume that it is valid for an integer n > 1. There exists

5€(0,87%) (2.293)
such that
|Ay — A(A"2)||, <87 e (2.294)

for each y € (0, u,) satisfying ||y — A"z||, < 4. Since the assertion of the lemma is
assumed to be valid for n, there exists a neighborhood Uy of A in M such that for
each C € U,

|c"z— A"z, <. (2.295)
Set
U={CelUy:p(C,A) <8 e}, (2.296)

and let C € U. The definition of U implies that
HAn-FlZ _ Cn—HZ”* < ||14i’1-|—1Z —AC”Z”* + ||ACnZ _ Cn+1Z||*

<A™z —ACz|, +87 e (2.297)

By (2.295),
Jare—crz]], <s.
It follows from this inequality and the choice of § (see (2.293) and (2.294)) that

|AC"z — A(A"z)|, <87 'e.
Together with (2.297) this implies that
Atz crtiz], <ate.
This completes the proof of Lemma 2.45. g

Let A€ M and leti > 1 be an integer. By Lemma 2.44, there exists an integer
N (A, i) > 4 such that

| (BAD)YNAD (167 u,) — (BAD)YNAD )|, < 167 (2.298)
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By Lemma 2.45, there exists an open neighborhood U (A, i) of B“) in M such
that

UA,i)c{CeM:p(C.BND)<16772], (2.299)
and foreach C e U(A, i),
cN@AD (1671, ) — (BAD N(A,Q) 16~ u < 16_i_2,
e (16 ) = (540) 0167w, = 0300,
H CN(A,[)(u*) _ (B(A,t))N(AJ)(M*)”* < 16=i72.

Lemma 2.46 Let A € M and let i > 1 be an integer. Assume that C € U(A, ).
Then

C'(167us) > 8 "uy, t=1,2,..., (2.301)

and for each 7 € (16 u,, uy) and each integer T > N (A, i), the following inequal-
ity holds:

|cTz —x(A D], <167+ 16772 (2.302)
Proof By the definition of U (A, i) (see (2.299)) and Lemma 2.42 (see (2.281)),
lc(167 u,) — BAD (167 uy) ||, < 16772
and
C(167u,) > BAD (167 u,) — 167 2u,
> (87 +27 167wy — 167Uy > 87w, (2.303)
Since the operator C is monotone, (2.303) implies that
C'(167u,) = C'(167'uy), t=0,1,.... (2.304)

Inequalities (2.304) and (2.303) imply (2.301), as claimed.

Assume that z € (16 "u, uy) and let T > N(A, i) be an integer. Since the op-
erator C is monotone, it follows from (2.304) and the definition of U (A, i) (see
(2.300)) that

CTze(CT (167 uy), €T (uy)) C(CV A (167 uy), CVADu,)
(B4 (167w
— 167 2u, (BADYNAD () 167 2u,). (2.305)
By Lemma 2.4, (2.281), (2.305) and (2.298),
CTz—x(A, 1) e ((BANY D (16710,) — 167 2u, — x(A, i),

(BADNYYAD ) 4167 2u, — x(A, D)
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and
x(A,i)—CTz,—x(A,)+Cz
< (B(A,i))N(A,i)(u*) . (B(A,i))N(A,i)(m—iu*) + 16—i—2u*
< (16771 + 167 ?)u,.
This implies (2.302) and completes the proof of Lemma 2.46. g

Completion of the proof of Theorem 2.38 Define
o0
F=NUlva.n:aeMi=g.q+1,..}
qg=1

and
o)
]:c(): ﬂU{U(A’i)mMCO:AeMco’i:q,é]—f‘l,...}.
qg=1

It is easy to see that F., C F N M, F is a countable intersection of open and
everywhere dense sets in M, and that F,, is a countable intersection of open and
everywhere dense sets in M,. Assume that P € F and ¢,y € (0, 1). Choose a
natural number g for which
64-279 < 64 ' min{e, y}. (2.306)
There exist A € M and a natural number i > ¢ such that
PeU(A,I). (2.307)
By Lemma 2.46,
C'(16'uy) > 8 'u, forallintegerst > landall C € U(A,i),  (2.308)

and

|CTz—x(A, )|, <1677+ 16772 forall C € U(A,i),

each integer T > N(A,i) and each z € (16_iu*, u*> (2.309)
Now (2.309), (2.306) and (2.307) imply that

|P"z—x(A,i)||, <& foreachinteger T > N(A,i)
and each z € (Yuy, uy). (2.310)
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Since ¢ is an arbitrary number in the interval (0, 1), we conclude that for each z €
(yus, uy), there exists lim;_, oo P'z. By (2.310),

lim PTz—x(A,i)” <g¢ foreach z € (yus, us). 2.311)
—> 00 *

Hence
lim P'zy = lim Pz
11— 00 11— 00
for each z1, 22 € (Yuy, uy).
Since y € (0, 1) is also arbitrary, we conclude that
lim P'z=xp (2.312)
11— 00
for each z € (0, u,) which is an interior point of X . By (2.308), xp is an interior
point of X. Now (2.309) implies that

xp—x(A, D] <1677 16772, (2.313)
%

Assume that C € U(A, 1), 7 € (Yux, ux), and let T > N(A, i) be an integer. It fol-
lows from (2.309), (2.313) and (2.306) that

€72 = xp], = Jep = x4, D), + [xa. )~ €],
<1677 416772 4 |x(4,1) — €Tz,
<2(1677 1 +1677%) <.

This completes the proof of Theorem 2.38. g

2.11 Positive Eigenvalues and Eigenvectors

In this section we consider a closed cone of positive operators on an ordered Banach
space and prove that a generic element of this cone has a unique positive eigenvalue
and a unique (up to a positive multiple) positive eigenvector. Moreover, the normal-
ized iterations of such a generic element converge to its unique eigenvector. This
section is based on [140].

Let (X, || - ||) be a Banach space which is ordered by a closed convex cone X .
For each u, v € X such that u < v, we define (u,v) ={ze X :u <z <v}.

We assume that the cone X has a nonempty interior and that for each x, y € X1
satisfying x <y, the inequality ||x|| < ||y|| holds. We denote by int(X ) the set of
all interior points of X .

Fix an interior point 1 of the cone X and define

Ixll, =inf{r € [0,00): —rn <x <rn}, xe€X. (2.314)

Clearly, | - ||;; is a norm on X which is equivalent to the original norm || - ||.
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Let X’ be the space of all linear continuous functionals f : X — R! and let
X . ={feX :f(x)=0forallx e X}

Denote by A4 the set of all linear operators A : X — X such that A(X ) C X 4. Such
operators are called positive. For the set .4 we define a metric p(-, -) by

p(A, B) =sup{l|Ax — Bx|l,:x €(0,n)}, A,BeA

This metric p is equivalent to the metrics induced by the operator norms derived
from || - || and || - ||;;. It is clear that the metric space (A, p) is complete. Since many
linear operators between Banach spaces arising in classical and modern analysis are,
in fact, positive operators, the theory of positive linear operators and its applications
have drawn the attention of more and more mathematicians. See, for example, [3,
86, 170] and the references cited therein.

In this section we study the asymptotic behavior of powers of positive linear
operators on the ordered Banach space X. We obtain generic convergence to an
operator of the form f(-)n, where f is a bounded linear functional and 7 is a unique
(up to a positive multiple) eigenvector.

We denote by A, the set of all A € A such that A& = & for some & € int(Xy)
and by A, the closure of A, in (A, p). We equip the subspace A, C A with the
same metric p.

In our paper [125] we established the following result.

Theorem 2.47 There exists a set F C A, which is a countable intersection of open
and everywhere dense sets in Ax such that for each B € F, there exists an interior
point &g of X satisfying Bép =&p, |Eglly = 1, and the following two assertions
hold:

1. There exists fp € Xﬁi_ such that imy_.« BT x = fe(x)ép,x € X.
2. For each & > 0, there exists a neighborhood U of B in A and a natural number
N such that for each C € U N Ay, each integer T > N and each x € (—n, n),

[CTx — fa)ég| <e.

Since the existence of fixed points and the convergence of iterates is of funda-
mental importance, it is of interest to look for a larger subset of A for which such
a result continues to hold. To this end, we introduce the set 4,4 of all A € A for
which there exist cg € (0, 1) and ¢ > 1 such that

con < A"n <cyn forall integers n > 1. (2.315)

Note that our definition of Aq* does not depend on our choice of 5. Since A, C Aq*,
it is natural to ask if there is also a generic result for the closure Ay of Ay.. Note
that in contrast with A,, it is not clear a priori if A, is dense in /iq*. However, as
we show in our first result that this is indeed the case.



74 2 Fixed Point Results and Convergence of Powers of Operators
Theorem 2.48 ftq* =A,.

Combining Theorems 2.47 and 2.48, we see that a generic element in flq* has a
unique (up to a positive multiple) positive fixed point and all its iterations converge
to some multiple of this fixed point.

Since the existence of positive eigenvectors which are not necessarily fixed points
is even more important, we devote most of the section to this problem.

Known results about the existence of positive fixed points and eigenvectors in-
clude the classical Perron-Frobenius and Krein-Rutman theorems. For a survey of
more recent results of the linear theory, see Sect. 2 in [106].

We begin with the following definition.

We say that an operator A € A is regular if there exist x4 € int(X4) satisfying
[xall;=1,a4 >0and f4 € X/, \ {0} such that

Axpa =0axa, o "A"x — fa(x)xs asn— oo,

uniformly for all x € (—n, n).

Note that in the definition above, x4, a4 and f,4 are all uniquely defined and that
if x € int(X4), then ||A”x||n_1A"x — XA asn — o0.

We denote by A, the set of all regular operators in .4 and by flreg its closure
in the space (A4, p). We endow the subspace flreg C A with the same metric p.

We continue with two theorems on regular operators.

Theorem 2.49 Let A € A,.q and & > 0. Then there exist an integer N > 1 and a
neighborhood U of A in A such that for each B € A,0.e NU,

lxa —xglly <e, loa —ap|<e¢
and for each x € (—n, n) and each integer n > N,
HotE"B"x — fa(x)xa Hn <e.

Theorem 2.50 Let A € Ayeq, ¢ > 0 and A € (0, 1). Then there exist an integer
N > 1 and a neighborhood U of A in A such that the following assertion holds:
Assume that B €U, xo € X1, g > 0, An < x9 < n and aoxg = Bxg. Then

llxa —xolly <e, loa —apl <e
and for each x € (—n, n) and each integer n > N,

Haa"B"x — fa(x)xa Hn <e.

These theorems bring out the importance of regular operators. Such operators
not only have a unique positive eigenvector but also enjoy certain convergence and
stability properties. Therefore we would like to show that most operators in an ap-
propriate space are indeed regular. Moreover, in analogy with the definition of A
we will also consider quasiregular operators.
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We say that an operator A € A is quasiregular if there exist @ > 0, ¢o € (0, 1) and
c1 > 1 such that

coa"n < A'n <cja’*n forall integers n > 1.

Denote by A, the set of all quasiregular A € A and by Agreg the closure of Agyeq
in (A, p). We endow the subspace A;,., C A with the same metric p.

Theorem 2.51 /_lqreg = /_lreg and there exists a set F C Ay.g which is a countable
intersection of open and everywhere dense subsets of Ayeg.

Theorems 2.48-2.51 were obtained in [140].

2.12 Proof of Theorem 2.48

In this section we are going to present the proof of Theorem 2.48. We precede this
proof by a few preliminary results.

As usual, we set A? = I (the identity) for each A € A. We denote by g - B the
composition of g € X’ and a linear operator B : X — X.

Proposition 2.52 Let A € A and assume that there exist co € (0, 1) and ¢ > 1 such
that
con < A'n<cin forallintegersn > 1. (2.316)

Then there exists fa € X', such that
fam) >0 and fa-A= fa.

Proof There exists g € X/, such that g(17) = 1. Denote by S the convex hull of the
set{g-A":n=0,1,...}. Clearly foreach i € S,

co <h(m) <ci. (2.317)

Denote by S the closure of S in the weak-star topology o (X', X). Clearly (2.317)
holds for all 4 € S and S C X', . The set S is convex and by (2.317) compact in the
weak-star topology. The operator A’ : f — f- A, f € X', is weakly-star continuous
and A’(S) C S. By Tychonoff’s fixed point theorem, there exists f4 € S for which
fa - A= fa. Since (2.317) holds for all & € S, fa(n) > co. Proposition 2.52 is
proved. O

Corollary 2.53 Assume that A€ A, co€ (0,1),c1 > 1,a > 0and
acon < A"n <d’cyn  forall integersn > 1. (2.318)

Then there exists fo € X', such that fa(n) >0and fo-A=afa.
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Lemma 2.54 Assume that A € A, there exist ¢y > 1 and a > 0 such that
A'n <da"cin  forall integersn > 1, (2.319)
and that there exists fa € X!, such that
fa-A=afa and fa(n)=1. (2.320)
Let y € (0, 1). Define A, € A by
Ayx=(1—-p)Ax +yafalx)n, xeX. (2.321)

(n)

Then fa - Ay, = afa and for each integer n > 1, there exist positive constants c; ",

i=0,...,n—1, such that

n—1
Y e =1-(1—yp) (2.322)
i=0
and
n—1 ' '
(Ay)'x=(1—p)"A"x +a" fa(0)Y (¢ 'c"A'y), xeX.  (2323)
i=0

Proof We will prove this lemma by induction. Clearly f4 - A, = fa and (2.322)
and (2.323) hold forn =1, co = y.

Assume that k > 1 is an integer and there exist positive constants cfk), i=
0,...,k — 1, such that (2.322) and (2.323) hold with n = k. It then follows from
(2.322) and (2.323) with n = k and (2.321) that for each x € X,

(A x = A, (AL x)
= (1= A[(A) ] +ayfa((A)) x)n
=ayak fa(x)n
k—1
+(1—=y)A |:(1 — )/)kAkx + aka(x) (Zaici(k)Ain>:|
i=0

k—1
+a fa(n) (1 - y)(Za—fcf’”A"“n)

i=0

— J/OlkaA(x)?? 4 (1 _ y)k+1Ak+1x
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+of a0 (1 - y)(Za e Al )

i=1

k
— (] _ y)k+1Ak+1x +ak+1fA(x) <yn + Z((l _ J/)(X C(k) Aln))

i=1

and
k
Z A=) =y + 0= -1=-n®)=1-1 -yt

Therefore (2 322) and (2.321) are true for n = k + 1 with ¢{*" =y and ™) =
a- y)cl 1»1=1,..., k. This completes the proof of Lemma 2.54. g

Lemma 2.55 Assume that A € A, there exist co € (0,1), ¢; > 1 and a > 0 such
that

acon < A"n <a’cin forall integersn > 1, (2.324)

and that there exists fa € X', such that (2.320) holds. Let y € (0, 1) and let A, € A
be defined by (2.321). Then there exists x4 €< con, c1n > such that

a "(Ay)"x — fa(x)xa — 0 asn— oo,
uniformly for all x € (0, n). Moreover, Ay x4 = axa.
Proof By Lemma 2.54 and (2.324), for each integer n > 1 there exists
Zn € (com, c1n) (2.325)

such that

A" x=0=p)"A'x+a"(1 =0 =p)") fa®)zn, x€X. (2.326)
For each integer n > 1, by (2.320), (2.324) and (2.325),

A)'n=0=p)"A"n+a"(1 -1 —=y)")z

€ (1 —y)"("con, " cin)+ o (1 — (1 — ¥)")(con, c1n)
ca’{con, c1n). (2.327)

Let ¢ > 0. By (2.326), there exists an integer n(e) > 1 such that for each x €
(con, c1n) and each integer n > n(e),

o™ (A))"x — fa(x)za| <e.
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Since {& ™" (A,) )2, C (con, c1n) and f4 - A, = afa, we conclude that for each
14 i=0 14

integer n > n(¢e) and each integer i > 0,
e = [la™"(A4))" (a7 (A)'n) = fale™ (A5 7))z]
= oA = 2

and therefore ||z, — zu4ill < 2¢. This implies that {z,,}°°, is a Cauchy sequence.
Hence there exists a vector x4 € (con, c1n) such that lim; .« ||z; — x4]| = 0. Let
& > 0. There exists an integer ng > 1 such that ||z; — x4|| < ¢/2 for all integers
i > no. By (2.326) and (2.324), there exists an integer n1 > ng such that for each
integer n > n1 and each x € (0, n),

lee ™ (Ay)'x = fa()za| <27 e

It follows from this last inequality and the definition of n¢ that for each x € (0, )
and each integer n > nj,

o™ (A)"x — fa(x)xa| <e.
This completes the proof of Lemma 2.55. U

Proof of Theorem 2.48 1t is, of course, sufficient to show that A, C A,.. Towards
this end, let A € Ay,. Then there exist ¢g € (0, 1) and ¢ > 1 such that

con < A"n <cyn forall integers n > 1.

By Proposition 2.52, there exists f4 € X/, \ {0} suchthat f4-A = fa and fa(n) = 1.
For each y € (0, 1), define A, € A by

Ayx=1—-p)Ax+yfax)n, xeX.

By Lemma 2.55, A, belongs to As. On the other hand, lim, _,¢+ A, = A. Thus
Ags C A and Theorem 2.48 is proved. O

2.13 Auxiliary Results for Theorems 2.49-2.51

For each x, y € X, define

A(x,y) =sup{i € [0, 00) : Ax <y},
(2.328)
r(x,y)= inf{r €[0,00):y < rx}.

Here we use the usual convention that the infimum of the empty set is co.
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Lemma 2.56 Assume that A € A, n > 1 is an integer and & > 0. Then there exists
a neighborhood U of A in A such that for each B € U and each x € (—n, n),

||A”x — B"x ”n <e.

Proof We prove the lemma by induction. Clearly for n = 1 the lemma is true. As-
sume that k > 1 is an integer and that the lemma holds for n =k, ..., 1. There is a
number ¢ > 0 such that | Ax||,, < ¢o for each x € (—n, n). Since the lemma is true
for n = k, there exists a neighborhood {; of A in A such that ||A¥x — ka||,7 <
(4 +4cg)~'e for each B € U; and for each x € (—n, n). It follows that there exists
c1 > 1 such that ||ka||,7 < ¢y for each B € U and each x € (—n, n). Since the
lemma holds for n = 1, there exists a neighborhood U C U of A in A such that for
each B €/ and each x € (—n, n), |[Ax — Bx||; < (4c) e
Assume now that B € I/ and x € (—n, n). Then

| A e — B x| < Ay — ABMx| + |ABSx — B | (2329)
It follows from the definition of cg and I/, that
| A%y — ABNx|, <e/4. (2.330)

By the definition of ¢/ and ¢y, |AB*x — Bk“xH,7 < ¢/4. Together with (2.329) and
(2.330), this implies that [|A¥*1x — B¥*1x||, <. In other words, the lemma also
holds for n = k 4 1. This completes the proof of Lemma 2.56. U

Let A € A be regular,
x4 €int(Xy), lxall, =1, ay >0,
fae X \{0},  Axa=oaaxa, (2.331)
a,"A"x = fa(x)xa asn— oo, uniformly on (—n,n).

Assumptions (2.331) and Lemma 2.56 imply the following result.

Lemma 2.57 Let ¢ > 0. Then there exists an integer N(¢) > 1 such that for each
integer N > N (¢), there exists a neighborhood U of A in A such that for each B € U
and each x € (—n, n),

lay"B"x — fAXAH,7 <e, n=N(),...,N.

Corollary 2.58 Assume that 0 < A1 < 1 < Ay and 6 > 1. Then there exists an
integer No > 1 such that for each integer N > Ny, there exists a neighborhood
U of A in A such that for each x € (An, Ayn), each B € U and each integer
n € [Ng, N],

B"x € (07 oy fa(x)xa, 0y fa(x)x4).
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Lemma 2.59 Assume that 0 < Ay <1 < Ay and 6 > 1. Then there exist an integer
No > 1 and a neighborhood U of A in A such that for each B € U, x € (A1, Axn)
and each integer n > Ny,

r(xA, B"x) < GA(xA, B"x). (2.332)
Proof We may assume that
Ay>60 and 0A1 <A(n,xa). (2.333)

Choose 6y > 1 such that
02 <. (2.334)

By Corollary 2.58, there exist an integer Ny > 1 and a neighborhood U of A in A
such that for each x € (A1n, Axn), each B € U and each integer n € [ Ng, 8Ng + 8],

B'x € (GalaZfA (x)xa, Boor's fa (x)xA). (2.335)

Assume that B € U and x € (A1n, Azn). By the definition of ¢/ and Ny, the inclu-
sion (2.335) is valid for each integer n € [Ny, 8 Ny + 8]. The relations (2.335) and
(2.334) imply that for each integer n € [Ny, 8 Ng + 8],

r(xa, B"x) < 6pa’y fa(x), A(xa, B"x) > QalaZfA(x)
and
r(xA, B"x) < Qg)\(xA, B"x) < GA(xA, B"x).

It remains to be shown that (2.332) is valid for all integers n > 8 Ny + 8.
Assume the contrary. Then there exists an integer

N1 >8Ny+8 (2.336)
such that
r(xA, B”x) < HA(xA, B"x) for all integers n € [Ny, N1 — 1] (2.337)
and
r(xa, BNx) > 0 (x4, BV'x). (2.338)

Consider the vector BN1=Nox . By (2.336) and (2.337), we see that
r(xa, BNMNox) <@x(xa, BN Nox) (2.339)

and

9_1r(xA, BN'_NOx)xA < BNi—Noy < r(xA, BNI_N"x)xA.
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By (2.338),
r(xa, B 0x) > 0. (2.340)
It follows from (2.339), (2.340), (2.331) and (2.333) that
r(xa. BleNox)*‘BNﬁNOx c (971XA,XA> c (971)»(771)6,4)77, W) € (A, Aa).
It follows from this relation and the definition of ¢/ and Ny (see (2.335)) that
r(xa, BNI—NO)C)_IBNI)C € (9()—1aif’°fA(x)xA, Goag"fa(x)“),

r(xa, BMx) < GOOtfofA(x)r(xA, BMi=Noy),

Mxa, BV x) = 05 ) fa ) (xa, BV NOx),
and by (2.333),

r(xa, BNx) < 0a(xa, BV'x),

an inequality which contradicts (2.338). Thus (2.332) is indeed valid for all n > Ny
and Lemma 2.59 is proved. g

Lemma 2.60 Ler y > 1. Then there exists a neighborhood U of A in A such that
foreach B € Areg NU, the inequalities y_le <xp <yxa hold.

Proof Choose a positive number 6 > 1 such that
6% <y. (2.341)

By Lemma 2.59, there exists an integer Ny > 1 and a neighborhood U of A in A
such that for each B € U/ and each integer n > Ny,

r(xA,B”n) SGA(xA,B"n). (2.342)

Assume that B € Ao, NU. Then
lim ap"B"n= fp(n)xp. (2.343)

n—>oo

By the definition of &/ and Ny, (2.342) is valid for each integer n > Ny. This implies
that for each integer n > N,

otg”)»(xA, B"n)xA <ap"B"n< al;"r(xA, B"n)xA
and
r(xa,ap"B"n) <0A(xa, 05" B"n).
When combined with (2.343), this implies that

r(xa, fe(xp) <O0*A(fe(mxp,xa) and r(xa,xp) <6%A(xa,xp). (2.344)
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It follows from (2.331), (2.334) and (2.341) that
Mxa,xB)xa <xp <r(xa,xp)xa <r(xa, Xp)n,
xa <A(xa,xp) 'xp < A(xa,xp) " 'n, r(xa,xp) > 1, Axa,xp) " >1,
r(xa,xp) <62, Axa, xp) > 07>

and finally, that

1

Yy x4 <07%x4 <xp <60%x4 < yxa.

Lemma 2.60 is proved. g

Lemma 2.61 Let 6 > 1 and A € (0, 1). Then there exists a neighborhood U of A in
A such that for each B €U, 7 € X and o > 0 satisfying

lzll, =1, z>An and Bz=uwuz, (2.345)
the following inequalities hold: 9_1xA <z <6xyu.

Proof By Lemma 2.59, there exists an integer No > 1 and a neighborhood U/ of A
in A such that for each B € I, each integer n > Ny and for each x € (4~ An, 4n),

r(xA, B"x) < GA(xA, B"x). (2.346)

Assume that B e U, z € X4, o > 0 and that (2.345) is valid. By (2.345) and the
definition of U/ and Ny (see (2.346)), for each integer n > Ny,

o"r(xp.2) =r(xa,a"z) =r(xa, B"z) <0i(xa, B"z)

(2.347)
= QK(XA, anz) =a"OA(xa,z) and r(xa,z) <OA(xa,2).
It follows from (2.345), (2.331) and (2.347) that

Axa,2)xa Sz2=5r(xa, 2)xa <r(xa, 2)n, r(xa,z) =1,
x4 <A(xa2) T2 <A(xa.2) ', Axa,z) <1,

r(xa,2) <6, Axa,2) =607
and finally, that #~'x4 < z < 6x4. This completes the proof of Lemma 2.61. O

Lemma 2.62 Let ¢ € (0, 1) and A € (0, 1). Then there exists a neighborhood U of
A in A such that for each B €U, z € X and a > 0 satisfying

lzll, =1, z>An and Bz=uaz, (2.348)

we have | —a ] <e.
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Proof Choose a number y > 1 for which
(@a+ Dy =1 =¢/8.

By Lemma 2.61, there exists a neighborhood U/ of A in A such that for each B € U],
z € X4 and o > 0 satisfying (2.348), the following inequalities hold:

y x4 <z<vyxa (2.349)
There exists a neighborhood &/ C U of A in A such that for each B e U,
Ay — Byll, <&/8 forallyey(—n,n). (2.350)

Assume that B € U, z € X4+, « > 0 and that (2.348) is true. Then by the definition
of U1, (2.349) holds.
It follows from (2.348) and (2.331) that

o —aal = llazlly — leaxally| < lez —aaxall, = 1Bz — Axally
<||Axa — Azlly + I|Az — Bz|),. (2.351)
By our choice of y, (2.349) and (2.331),
(I=p)aan < (1 —y)aaxa=A( — y)xa < Axg — Az
<(1—y ") Axa < (¥ — Daan
and
|Axa — Azlly < &/8. (2.352)
It follows from (2.349) and (2.350) that
z<yxa<yn and |Az—Bz|, <8 's

When combined with (2.351) and (2.352), this implies that ¢4 — «| < €. Lem-
ma 2.62 is proved. O

Lemmas 2.62 and 2.60 imply the following result.

Lemma 2.63 Let ¢ € (0, 1). Then there exists a neighborhood U of A in A such
that for each B € Arcg NU we have |lap —aa] <.

2.14 Proofs of Theorems 2.49 and 2.50

In this section we prove Lemma 2.64. Theorem 2.50 follows when this lemma is
combined with Lemmas 2.61 and 2.62. Theorem 2.49 is a consequence of Lem-
mas 2.60, 2.63 and 2.64.
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Lemma 2.64 Let A € A be regular and let ¢ and A belong to the interval (0, 1).
Then there exist an integer N > 1 and a neighborhood U of A in A such that the
following assertion holds:

If
Bel, X0 € int(X4),
(2.353)
An <x9 <, ao>0 and agxg= Bxy,
then for each x € (—n, n) and each integer n > N,
g™ B"x = fa(o)xal, <. (2.354)

Proof Choose a positive number &y for which
8ep <47 leA.

By Lemma 2.56, there exist a neighborhood ¢/ of A in A and an integer N > 1 such
that for each B € U],

ey BNx — fa)xal, <167"eo forallx € (—n,m). (2.355)
There exists a number ¢; > 1 such that
HBN)c”)7 <cy forxe({—n,n) and Bel;, and fa(n)<ci. (2.356)

There exists a number 81 € (0, min{1, o4 /8}) such that

—N

|o¢ - a;N|c1 <167 '¢y foreach« satisfying o — aa| < 1. (2.357)

By Lemmas 2.62 and 2.61 there exists a neighborhood U/, of A in A such that for
each B €, z € X4 and a > 0 satisfying An <z <n and Bz = az, the following
inequalities are true:

lo —ay| <8 and |z —xall, < 16" egc; " (2.358)

Set
U=UNU,. (2.359)

Assume that B € U, xg € X, ap > 0 and that (2.353) holds. By the definition of I/}
and N, (2.355) holds. It follows from the definition of U/, (see (2.358)) and (2.353)
that |og — an| < 81. By the latter inequality, (2.357), (2.356) and (2.355),

lag VBN x = fa)xal, <8 'eo forall x € (=n,n). (2.360)
By the definition of U (see (2.358)) and (2.353),

Ixo — xally < 16~ "ecy . (2.361)
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This inequality, when combined with (2.360) and (2.356), implies that
leg™ BN x = fa(x)xo ||,7 <8 e+ 1671y forallx e (—n,n).  (2.362)
By (2.362) and (2.353), we have
ag VBN x — fax)xo € 0(87 +1671)(—n,m) Ceo (87" +1671) A7 (—x0, x0)

for all x € (—n, n).
It follows from this relation and (2.353) that for each x € (—n, 1) and each integer
n>N,

ay"B"x — fa(x)xo=ay" TN B " N[ag VBN x — fa(x)x0]
Ceo(87 ' +167 1A el " BN (—x0, x0)
Ceo(8 ' +1671) A~ (—x0, x0)
Ceo(87'+1671 A"
and
g™ B"x = fa@)xo], < A7 'eo/4.

When combined with (2.361), (2.356) and (2.354), this implies that for each x €
(—n, n) and each integer n > N,

log" B"x — fati)xal, <A™ eo/4+167"eg <.

Lemma 2.64 is proved. g

2.15 Proof of Theorem 2.51

It follows fro_m Lemma 2.55 and Corollary 2.53 that Agr.g C flreg. This clearly
implies that A,.g = Agreg-
To construct the set F we let A € A,
xa €int(Xy), fa € X\ \{0}, as >0,
Axp=aaxa, fa-A=aa- fa, (2.363)
a,"A"x — fa(x)xa asn— oo, uniformly on (1, 7).
Let i > be an integer. By Lemmas 2.60 and 2.63, Theorem 2.49, Lemmas 2.61

and 2.62, and Theorem 2.50, there exist a number (A, i) € (0,4~") and an integer
N(A,i) > 1 such that the following two assertions hold:
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1. Assume that B € A, and p(A, B) <r(A,i). Then
(1—4)xp<xp<(1+47)xa,  laa —opl <47 min{l, s}
and
HaE”B"x — fa(x)xys Hn <47 forall x € (—n, n) and each integer n > N.

2. Assume that B € A, p(A, B) < r(A,i), xo € X4, ag > 0, agxg = Bxg and
471xA < x0 <n.Then

(1—47)xa <x0 = (1+47)xa, loa — ool <47 min{l, s}
and
leg" B — fatoona], <4
for all x € (—n, n) and each integer n > N (A, ).
Now set
UA,i)={BeA:p(B,A) <r(A, D))} (2.364)
and define
00
F= [ﬂU{U(A’i):AG»Areg}] N Areg. (2.365)
i=1

Evidently, F is a countable intersection of open and everywhere dense subsets
of Areg.

It remains to be shown that 7 C A,.,. To this end, assume that B € F. There
exist {Ak},fi 1 C Ayeg and a strictly increasing sequence of natural numbers {iy },fi 1
such that

B eU(Ay,ix) and U(Aks1,ik+1) CUAk ), k=1,2,.... (2.366)
Let £ > 1. It follows from assertion 1 and (2.366) that for each integer j > 1,
(1—47%)xp, <xar, < (1+47%)xg, (2.367)
and
lota, — otay, ;| <47 min{l, au, ).

It is clear that both {x4, }‘,’f’: p and {oq, }‘;f’:l are Cauchy sequences. Therefore there
exist the limits

Xe = lim x4, oy = lim ay,. (2.368)
§—> 00 §—>00
Set
A*=inf{k(xAk,n):k=1,2,...}. (2.369)
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By (2.367), A, is positive. By (2.367) and (2.368),

(1—47%)xg, <x < (L+47%)xy,,

' (2.370)
loa, —ax| <47 min{l,aa,}, x<n.
By (2.368) and (2.366),
Bx, = B( lim xAk> = lim Agxa, = lim oa xa, = 05Xy, 2.371)
k— o0 k— 00 k— 00

Let k > 1 be an integer. It follows from assertion 2, (2.366), (2.370) and (2.371) that
ez B"x — fa, (x)xa, Hn <47% forall x € (—n, n)
and each integer n > N (A, ix). (2.372)

Note that (see (2.363) and (2.369))

xa, = fac(xa)xa,, fa(xa) =1
and
Facm) = faGea) -2 =20
When combined with (2.372) and (2.370), this implies that
los" B x — fag()xal, <47 +4700! (2.373)

for all x € (—n, n) and each integer n > N (Ay, ix). Since k is an arbitrary natural
number, we obtain that for each x € X, there exists

lim o."B"x = fp(x)xy, (2.374)

n—o00

where fp € X; It follows from (2.373) and (2.374) that for each integer k > 1,
each integer n > N (Ag, ix) and each x € (—n, 1),

“ JBOO)X — fa, (X)X ”n <47 +4*"k)\;1

and
o B"x — fB(x)x, ||'7 <2(47% 447001,
Therefore B € A,.; and Theorem 2.51 is established.

2.16 Convergence of Inexact Orbits for a Class of Operators

In this section we exhibit a class of nonlinear operators with the property that their
iterates converge to their unique fixed points even when computational errors are
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present. We also show that most (in the sense of Baire category) elements in an
appropriate complete metric space of operators do, in fact, possess this property.

Assume that (X, p) is a complete metric space and let the operator A : X — X
have the following properties:

(A1) there exists a unique x4 € X such that Axg = x4;

(A2) A"x — x4 as n — oo, uniformly on all bounded subsets of X;
(A3) A is uniformly continuous on bounded subsets of X;

(A4) A is bounded on bounded subsets of X.

Many operators with these properties can be found, for example, in [23, 33, 50,
85, 108, 114, 126, 127, 137]. We mention, in particular, the classes of operators
introduced by Rakotch [114] and Browder [23]. Note that if X is either a closed
and convex subset of a Banach space or a closed and p-convex subset of a complete
hyperbolic metric space [124], then (A4) follows from (A3).

In view of (A2), it is natural to ask if the convergence of the orbits of A will be
preserved even in the presence of computational errors. In this section we provide
affirmative answers to this question. More precisely, we have the following results
which were obtained in [35].

Theorem 2.65 Let K be a nonempty, bounded subset of X and let ¢ > 0 be given.
Then there exist § = 6(e, K) > 0 and a natural number N such that for each natural
number n > N, and each sequence {x; }f‘ o C X which satisfies

xo€e K and p(Axi,xit1) <6, i=0,....,n—1,
the following inequality holds:
p(xi,xa)<e, i=N,...,n.
Corollary 2.66 Assume that {x;}7°, C X, {x;};2 is bounded, and that

lim p(Ax;, xi41) =0.

1—> 00

Then p(x;,xa) —> 0asi — oo.

Theorem 2.67 Let ¢ > 0 be given. Then there exists § = §(¢) > 0 such that for each
sequence {x;}{°, C X which satisfies

p(x0,x4) <8 and p(xit1,Ax;) <6, i=0,1,...,
the following inequality holds:
pxi,xa)<e, i=0,1,....

These results show that, roughly speaking, in order to achieve an e-approximation
of x4, it suffices to compute inexact orbits of A, that is, sequences {x;}7° such that
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xo€eX and p(xj41,Ax;) <8 foranyi >0,

where § is a sufficiently small positive number.

However, sometimes the operator A is not given explicitly and only some approx-
imation of it, B;, is available at each step i of the inexact orbit computing procedure.
The next result shows that for certain operators A, the procedure of approximating
x 4 by inexact orbits is stable in the sense that, even in this case, the orbits determined
by the sequence of operators B; approach x4 provided that each B; is a sufficiently
accurate approximation of A in the topology of uniform convergence on bounded
subsets of X. To be precise, we set, for each x € X and E C X,

p(x, E) =inf{,o(x, y):y€E E}

Denote by A the set of all self-mappings A : X — X which have properties (A3)
and (A4). Fix 6 € X. For each natural number n, set

E,={(A,B) e Ax A: p(Ax, Bx) < 1/nforallx € B@,n)}.  (2.375)

We equip the set .4 with the uniformity determined by the base E,, n = 1,2, ....
This uniformity is metrizable by a complete metric.

Denote by A, the set of all mappings A € A which satisfy (A1) and (A2), and
by Areg the closure of A,.¢ in A.

Theorem 2.68 Assume that A € Ay.q and x4 is a fixed point of A. Let m, & > 0 be
given. Then there exist a neighborhood U of A in A and a natural number N such
that for each x € B(6, m), each integer n > N, and each sequence {Bi}?:l cu,
p(Bi---Bix,x4)<e fori=N,...,n.
As a matter of fact, it turns out that the stability property established in this the-

orem is generic. That is, it holds for most (in the sense of Baire category) operators
in the closure of A, ,.

Theorem 2.69 The set A,., contains an everywhere dense G5 subset of ./ereg.

2.17 Proofs of Theorem 2.65 and Corollary 2.66

We first prove Theorem 2.65. To this end, set, for x € X and r > 0,
B(x,r)= {y eX:px,y) < r}.

We may assume without loss of generality that

e<1 and B(xs,4) CK. (2.376)
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By (A2), there exists a natural number N > 4 such that
p(A"x,x4) <e/4 forallintegersn > N andall x € K. (2.377)

By (A4), the set A" (K) is bounded for all natural numbers m. Hence there exists a
positive number S > 0 such that

AY(K)C B(xa,S8), i=0,...,2N. (2.378)

(Here we use the convention that A° is the identity operator.) By induction and (A3),
we define a finite sequence of positive numbers {J/,-}l.ziv0 so that

yon =¢/4
and, foreachi =0,1,...,2N — 1,
Yi < Vit (2.379)
and
p(Ax, Ay) <2 'y forallx,ye B(xa, S+4) with p(x,y) <. (2.380)
Set
5 =y/2. (2.381)
First, we prove the following auxiliary result.
Lemma 2.70 Suppose that {zi}%go C X satisfies
z0€ K and p(zi41,Azi) <6, i=0,...,2N —1. (2.382)
Then
p(zi,xa) <&, i=N,...,2N.
Proof We will show that fori =1,...,2N,
oz, Aizo) <. (2.383)

Clearly, (2.383) holds for i = 1 by (2.382) and (2.381).
Assume thati € {2,...,2N} and

p(zi-1, Ai*lzo) <Yi-1. (2.384)
Then (2.382) implies that
p(zi. A'20) < p(zis Azio1) + p(Azi—1. A(A"'20))
<8+ p(Azim1, A(A2)). (2.385)
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It follows from the definition of y;_1 (see (2.379)), (2.384), (2.382) and (2.378) that
A20,zi-1 € B(xa, S+ 1).

By these inclusions, the definition of y;_; (see (2.380) with j =i — 1) and (2.384),
p(A(A™ " 20), Azim1) <vi/2.

When combined with (2.385) and (2.381), this inequality implies that
p(zi, A'z0) <8 +vi/2 < vi.

Therefore (2.383) is valid for all i € {1,...,2N}. Together with (2.377), (2.379),
(2.382) and (2.383), this last inequality implies that for all i € {N,...,2N}, we
have

P xa) < p(2i. A'20) + p(A'20.x4) < yi +e/4 < /2.
Lemma 2.70 is proved. O

Now we are ready to complete the proof of Theorem 2.65.
To this end, assume that n > N is a natural number and that the sequence
{xi}!_y C X satisfies

xo€e K and p(Axj,xiy1) <68, i=0,...,n—1.

We will show that
pxi,xqg)<e, [i=N,...,n. (2.386)

If n < 2N, then (2.386) follows from Lemma 2.70. Therefore we may confine our
attention to the case where n > 2N . Again by Lemma 2.70,

p(xi,xa)<e, i=N,...,2N. (2.387)
Assume by way of contradiction that there exists an integer g € (2N, n] such that
o(xg,x4) > e. (2.388)
In view of (2.387), we may assume without loss of generality that
p(xi,xa)<e, €{2N,...,q—1}. (2.389)
Define {z;}?Y, C X by
Zi =Xigg-N, 1=0,...,N, Ziy1 =Azi, i=N,...,2N—1. (2.390)

We will show that the sequence {z; }1.21=VO satisfies (2.382). To meet this goal, we only

need to show that zg € K. By (2.390), (2.389) and (2.387),

20 =Xg—N and p(z0,x4) <e.
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The last inequality and (2.376) imply that zgp € K. Therefore (2.382) holds. It now
follows from Lemma 2.70 and (2.390) that

p(xa,xg) =p(xa,zn) < ¢

This, however, contradicts (2.388). The contradiction we have reached proves
(2.386) and this completes the proof of Theorem 2.65.

Finally, we are going to prove Corollary 2.66.

Set K ={x,:n=0,1,...} and let ¢ > 0 we given. Let § > 0 and a natural
number N be as guaranteed by Theorem 2.65. There exists a natural number j
such that for each integer i > j, we have p(Ax;, x;4+1) <§. It follows from the last
inequality and the choice of § that p(x;, x4) < ¢ for all integers i > j + N. Since
¢ is an arbitrary positive number, this implies that lim; . o x; = x4. The proof of
Corollary 2.66 is complete.

Corollary 2.66 provides a partial answer to a question raised in [77] in the wake
of Theorem 1 of [75], which is also concerned with the stability of iterations.

2.18 Proof of Theorem 2.67

We may assume without loss of generality that ¢ < 1. By Theorem 2.65, there exist
a natural number N and a real number 8y € (0, £) such that the following property
holds.

(P1) For each natural number n > N and each sequence {y;}_, C X which satisfies
yo € B(xa,4) and p(yit+1,Ayi) <8y, i=0,...,n—1, (2.391)

the following inequality holds:
p(i,xa)<e, i=N,...,n. (2.392)

By property (A4), the set Al (B(x4,4)) is bounded for any integer i > 1. Choose a
number s > 1 such that

N

A (B(xa.4) C B(xa,s). (2.393)
i=0

By induction and (A3), we define a finite sequence of positive numbers {y,-}f,v= o SO
that

yi<1l, i=0,...,N,

. (2.394)
YN =< 80/4, Vi <Vit1, 1=0,...,N—1,
and foreach j € {0,..., N — 1},
p(Ax,Ay) <27y forallx,y € B(xa,s+4)
a (2.395)

with  p(x,y) <y;.
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Set
§=w/4. (2.396)
Assume that {x;}°, C X,
p(xo,x4) <8 and p(xip1, Ax;)) <8, i=0,1,.... (2.397)
We will show that
p(Xi,xp) <€ (2.398)

for all integers i > 0. By (2.397), (2.396) and (P1), inequality (2.398) holds for all
integers i > N. Therefore we only need to prove (2.398) for i < N. Clearly, (2.398)
holds for i =0.

We will show that fori =0, ..., N, we have

p(xi,x4) = p(xi, A'xa) < vi. (2.399)
By (2.397) and (2.396), this is true for i = 0. Assume thati € {1,..., N} and
p(xi-1, AFIXA) = p(Xi—1,%X4) < ¥i-1. (2.400)
Then (2.397) implies that
p(xi,xA) < p(xi, Axi—1) + p(Axi—1,x4) <8+ p(Axi—1,x4). (2.401)
It follows from (2.400) and (2.394) that
Xi—1 € B(xa,s). (2.402)
By (2.402), (2.400) and the definition of y;_1 (see (2.395) with j =i — 1),
p(Axi—1,x4) <271y, (2.403)
Using (2.401), (2.403), (2.396) and (2.394), we obtain
p(xi,xa) <8+271y <.

Thus (2.399) indeed holds for all i € {0, ..., N}. This fact, when combined with
(2.394), implies that (2.398) is true for all i € {0, ..., N}. This completes the proof
of Theorem 2.67.

2.19 Proof of Theorem 2.68

We may assume, without any loss of generality, that ¢ < 1 and that m > 1 is an
integer such that

m> p(xa,0)+4. (2.404)
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By Theorem 2.65, there exist 6 € (0, €) and a natural number N such that the fol-
lowing property holds.

(P2) For each natural number n > N and each sequence {x;}"

o C X which satisfies
xo € B(O,m) and p(Ax;,xi41)<§8, i=0,....,n—1, (2.405)

the following inequality holds:
p(xi,xpa)<e, i=N,...,n. (2.406)

Set
Ko=B(@®,m) and Ky1={z€X:p(z, A(K)) <1},
i=0,1,.... (2.407)

Clearly, the set K; is bounded for any integer i > 0. Choose a natural number g > 8
such that

2N
ki cB@®.q) and 1/q<8/8. (2.408)
i=0

We are going to use the following technical result.
Lemma 2.71 Assume that
z€ B(O,m) and {Bi}%ivl C {C eA:(C, A€ Eq}, (2.409)

where E is given by (2.375). Then

p(Bi---B1z,x4)<e, i=N,...,2N. (2.410)
Proof Set
z0=z and z;=Bjz;i_1;, i=1,...,2N. (2.411)
We will show that
zi €K; (2.412)

fori =0,...,2N. Clearly, (2.412) holds for i = 0. Assume thati € {0,...,2N — 1}
and (2.412) is valid. Inclusions (2.412) and (2.408) imply that

zi € Ki CB,q). (2.413)
When combined with (2.409), (2.375) and (2.411), this last inclusion implies that

0(Azi, zi+1) = p(Azi, Bit1zi) < 1/q. (2.414)
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Consequently, (2.414), (2.413) and (2.407) imply that z;11 € K;41. Therefore

(2.412) is true forall i =0, ...,2N. This implies (see (2.408)) that

{z:}N, € B©, ¢).

It follows from this inclusion, (2.408), (2.409) and (2.411) that for i =0, ...,

2N — 1,
p(Zit+1, Azi) = p(Biy1zi, Azi) < 1/q <8.
By (P2), we see that

o(B;---Biz,x4) =p(zi,xa) <&, i=N,...,2N.

Lemma 2.71 is proved.

Now we are ready to complete the proof of Theorem 2.68. To this end, set

U={CeA:(C,A)eE,}

Letn > N be an integer, x € B(6, m), and {B; }?=1 C U. We will show that

p(Bi---Bix,x4)<e fori=N,...,n.

(2.415)

(2.416)

If n <2N, then (2.416) follows from Lemma 2.71. Therefore we may restrict our

attention to the case n > 2N. By Lemma 2.71,
p(Bi---Bix,xp)<e, i=N,...,2N.
Suppose now that there exists an integer p > 2N, p <n, such that
p(Bp---Bix,xp) > &.
According to (2.417), we may assume, without loss of generality, that
p(Bi---Bix,x4)<e, 1=2N,...,p—1.
Define {D; }?IIVO c Aby
Di=Biyp n, i=0,...,N, Di=A, i=N+1,...,2N,

and let
z=B,_y-- Bix.

It follows from (2.417), (2.419), (2.420) and (2.404) that

p(z,x4) <e and ze€ B(6,m).

(2.417)

(2.418)

(2.419)

(2.420)
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Applying now Lemma 2.71 to the mappings {D; }1.2/:\/0 defined by (2.420), we deduce
that

£>p(DN---Diz,x4) = p(xa, Bp---Bp_nN112) = p(xa, Bp--- B1x),

which contradicts (2.418). Hence (2.416) is true and Theorem 2.68 is established.

2.20 Proof of Theorem 2.69

Let A € Ay, and let k > 1 be an integer. There is x4 € K such that

Axg =x4. (2.421)
According to Theorem 2.68, there exist a natural number N (A, k) and an open
neighborhood U(A, k) of A in A such that the following property holds.

(P3) Foreach x € B(0, k), each natural numbern > N(A, k) andeach B e U(A, k),
we have p(B", x4) < 1/k.

Define

F= [ﬂ U{u(A, k): A€ Apeg, k> g an integer}:| N Apeg- (2.422)

g=1

Clearly, F is an everywhere dense G5 subset of fireg.

Let B € F. We claim that B € A,.,. Indeed, let ¢ be a natural number. There
exists a mapping Ay € Ay¢, with a fixed point x4, and a natural number k; > ¢
such that

Bel(Ay, ky). (2.423)
This inclusion together with (P3) imply that the following property holds.

(P4) For each point x € B(f,q) C B(0,k;) and each natural number n >
N(Ag, ky),

p(B"x,xa,) < kq_l <1/q.

Since ¢ is an arbitrary natural number, we obtain that for any x € X, the sequence
{B"x}>° | is a Cauchy sequence and its limit is the unique fixed point xz of B. Thus

lim BNz =xp foranyze X.
n—oo

Property (P4) implies that
p(xa,xp) =1/q. (2.424)
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Finally, it follows from property (P4) and (2.424) that for any x € B(6, ¢) and any
n>N (Aq > kq),

,o(B"x, xg) <2/q.

This implies that B"x — xp as n — oo, uniformly on any bounded subset of X.
This completes the proof of Theorem 2.69.

2.21 Inexact Orbits of Nonexpansive Operators

Let (X, p) be a complete metric space, A : X — X be a continuous mapping, and
let F(A) be the set of all fixed points of A. We assume that F(A) # ( and that for
eachx,ye X,

p(Ax, Ay) < p(x,y). (2.425)

By A° we denote the identity self-mapping of A. We assume that for each x € X,
the sequence {A"x}°° | converges in (X, p). (Clearly, its limit belongs to F(A).)
The following result was obtained in [34].

Theorem 2.72 Let xo € X, {r,};°, C (0, 00), Yoo o < 00,

{x,,} —0CX, pxpt1,Axy) <r,, n=0,1,.... (2.426)
Then the sequence {x,},° ; converges to a fixed point of A in (X, p).
Proof Fix a natural number k and consider the sequence {A"x;}° . This sequence
converges to yx € F'(A). By induction we will show that for each integer i > 0,

i+k—1
p(A'xe, xir1) < D rj = et (2.427)
j=k—1

Clearly, for i =0 (2.427) is valid. Assume that (2.427) is valid for an integer i > 0.
By (2.426), (2.425) and (2.427),

o (Xkgitn, AHIXk) < p (kg1 Axiri) + p(Axpgi, A(AiXk))
‘ itk
<1y + o (i Alxg) < Z ri — k-1

Jj=k—1

Therefore (2.427) holds for all integers i > 0.
By (2.427), we have for each integer i > 0,

o
Pk 1) < p(aris Axe) + p(Alxe, yi) <D i+ p(Alxe, yi). (2:428)
j=k
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Since Alxy converges to yx in (X, p), there is an integer ip > 1 such that for each
integer i > i,

o]

p(Alxi, yi) <D rj/4 (2.429)
j=k

By (2.429) and (2.428), for each pair of integers iy, i» > i,
o0
P Xkiy s Xktin) < P (Xieiy > Vi) + P (Vks Xkin) <3 er-
j=k

Thus we have shown that for each natural number k&, there is an integer ip > 1 such
that for each pair of integers iy, i > i,

oo
P (Xketiy » Xketiy) <3 Z rj.
Jj=k

Since 2711 rj < oo, we see that {x,}7° | is a Cauchy sequence and there exists
X = limy,—, o0 X,. Together with (2.428), this equality implies that

o
pE ) =D 1.
Jj=k
Since Z?oz | j < 00, this inequality implies that
T
= Jim
and Ax = x. Theorem 2.72 is proved. g

Now we present another result which was obtained in [34].
Let X be a nonempty closed subset of a Banach space (E, || - ||) with a dual space
(E*, || - |ls) and let A : X — X satisfy

|Ax — Ay|| < |lx — y|| foreachx,y e X. (2.430)

As usual, we denote by A” the identity self-mapping of X. Consider the following
assumptions.

(A1) For each x € X, the sequence {A"x}°° | converges weakly in X.
(A2) For each x € X, the sequence {A"x}>°, converges weakly in X to a fixed
point of A.

Theorem 2.73 Assume that (A1) holds. Let xo € X,
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o0
[l C (0,00), Y ry < 00, 2.431)
n=0
{xnlheo C X, [Xnt1 — Axpll <ruy n=0,1,.... (2.432)
o0

Then the sequence {x,}72.
limit is a fixed point of A.

| converges weakly in X . Moreover, if (A2) holds, then its

Proof Fix a natural number k and consider a sequence {A"x;}o° . This sequence
converges weakly to yx € X. (Note that if (A2) holds, then Ay; = yi.) By induction
we will show that for each integer i > 0,

) i+k—1
A —xepi < D0 =i (2.433)
j=k—1

It is clear that (2.433) is valid for i = 0. Assume that i > 0 is an integer and that
(2.433) is valid. By (2.432) and (2.430),

(BT ATy | < llotksier — Axppill + | Axgri — A(AiXk)\}

<Tk+i t+ ||Xk+i — Alxg ||

i+k—1 i+k
< rFk+i t+ Z rj—rg—1= Z rj—rg—1.
Jj=k—1 j=k—1

Therefore (2.433) holds for all integers i > 0. Fix an integer ¢ > 1. By (2.433), we
have

[e.0]

|ATxk = kg | <D 1 (2.434)
=k

By (2.430) and (2.434), we have for each integer i > 0,

o]

AT xp — Ay | < | A% — xigq | <D 1 (2.435)
j=k
In view of (2.435) and the definition of y; and yg 4,
o
1k = yergl <D rj (2.436)

Jj=k

Since the above inequality holds for each pair of natural numbers ¢ and & and since
Z?O:O rj < oo, we conclude that {y}72, is a Cauchy sequence and there exists

ye = lim yy (2.437)
k— 00
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in the norm topology of E. (Note that if (A2) holds, then Ay, = y..) By (2.437) and
(2.436),

o0
vk = y«ll < Z rj forall integers k > 1. (2.438)
Jj=k

In order to complete the proof it is sufficient to show that limy_, o xx = y, in the
weak topology.
Let f € E* be a continuous linear functional on E such that || f ||« < 1 and let

e > 0 be given. It is sufficient to show that | f(y, — x;)| < ¢ for all large enough
integers i.
There is an integer k > 1 such that

o0
er <e/4. (2.439)
j=k

By (2.438) and (2.434), for each integer i > 1,

|f O = xiad)| | F O = 0|+ | £ (ke — Alxil) | + | £ (A 3k — xati) |

<Ny — yell + | £ Ok — A'xi) | + | A"k — x|

0 00
< Do k= A) [+ (2.440)
J=k j=k
Since y; = lim;_ Alxt in the weak topology of X, there is a natural number iy
such that
’f()Jk — Aixk)’ <e&/4 for all natural numbers i > i. (2.441)
By (2.440), (2.439), (2.441), we have for each integer i > i,
| f s — xksi)| < &/d+ /4 + /4 =3¢ /4.

Theorem 2.73 is proved. 0

2.22 Convergence to Attracting Sets

In this section we continue to study the influence of errors on the convergence of
orbits of nonexpansive mappings in either metric or Banach spaces.

Let (X, p) be a metric space. For each x € X and each closed nonempty subset
ACX,put

p(x, A) =inf{,o(x, y):y€E A}.
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Theorem 2.74 Let T : X — X satisfy

p(Tx, Ty)<p(x,y) forallx,yeX.

Suppose that F is a nonempty closed subset of X such that for each x € X,

. i _
il_l)rgop(T X, F) =0.

Assume that {y,}°2, C (0,00), Y22 yn < 00,

{xnlhoo CX and p(xp41,Txp) <yn, n=0,1,....

Then

lim p(x,, F)=0.
n—o0

Proof Let ¢ > 0. Then there is an integer k > 1 such that

oo

Z Vi <E.

i=k
Define a sequence {y;}7°, by

yk = xk’
vi+1 =Ty; forallintegersi > k.
By (2.443) and (2.445),

P Xk+15 Ye+1) = Vi

Assume that ¢ > k + 1 is an integer and that fori =k + 1, ...

i—1

pxi yi) <Y ).

j=k

(Note that in view of (2.446), inequality (2.447) is valid when g =k + 1.)

By (2.442) and (2.447),
q—1
IO(qu1 qu) =< /O(yq, xq) < Zyj-
=k

When combined with (2.445) and (2.443), this implies that

»q,

qg—1
PCg i1 Ygr1) < pCgr1. Txg) + p(Txg. Tyg) < vg + ) v
=k

101

(2.442)

(2.443)

(2.444)

(2.445)

(2.446)

(2.447)

q
=D v
=k
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so that (2.447) also holds for i = g + 1. Thus we have shown that for all integers
q>k+1,

q—1 00
PG X) Y Vi< Y vi<6 (2.448)
j=k j=k

by (2.444). In view of (2.445) and the hypotheses of the theorem we note that
lim p(y;, F)=0. (2.449)
1—> 00

By (2.448) and (2.449),
limsup p(x;, F) <e.

i—00
Since ¢ is an arbitrary positive number, we conclude that
lim p(x;, F) =0,
1—> 00
as asserted. U

Theorem 2.75 Let X be a nonempty and closed subset of a reflexive Banach space
(E,||-1I) and let T : X — X be such that

ITx —Ty|| <|lx —y|l forallx,yeX. (2.450)

Let F be a nonempty and closed subset of X such that for each x € X, the sequence
{T"x}02 | is bounded and all its weak limit points belong to F .

Assume that {y;}72, C (0,00), Y72 ¥ < 00, {xi}?2, C X and

lxiv1 — Txi|| <y; forallintegersi > 0. (2.451)

Then the sequence {x;};°, C X is bounded and all its weak limit points also belong

to F.

Proof Let € > 0 be given. There is an integer k > 1 such that

oo
> yvi<e (2.452)
i=k
Define a sequence {y;}7°, by
Vi = Xk, vit1 =Ty; forall integersi > k. (2.453)

Arguing as in the proof of Theorem 2.74, we can show that for all integers g > k+1,

q—1
lyg — x4l <Y v <e. (2.454)
j=k

Obviously, (2.454) implies that the sequence {x}72, is bounded.
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Assume now that z is a weak limit point of the sequence {x}72 . There exists a
subsequence {x;, }‘;":1 which weakly converges to z. We may assume without loss of
generality that { yip};oz | weakly converges to Z € F. By (2.454) and the weak lower
semicontinuity of the norm,

Iz —zll<e.

Since ¢ is an arbitrary positive number, we conclude that
z€F.

Theorem 2.75 is proved. g

Both Theorems 2.74 and 2.75 were obtained in [111].

2.23 Nonconvergence to Attracting Sets

In this section, which is based on [111], we show that both Theorems 2.72 and 2.74
cannot, in general, be improved. We begin with Theorem 2.72.

Proposition 2.76 For any normed space X, there exists an operator T : X — X
such that |[Tx —Ty| < |lx — y| forall x, y € X, the sequence {T"x};_ | converges
for each x € X and, for any sequence of positive numbers {y,},- . there exists a se-
quence {xn};2 C X with ||xp+1 — Txy || < yn for all nonnegative integers n, which

converges if and only if the sequence {y,}72  is summable, i.e., YooV < 00.

Proof This is a simple fact because we may take T to be the identity operator:
Tx = x, Vx. Then we may take x¢ to be an arbitrary element of X with ||xp| =1,
and define by induction

xn+l :Txn‘l')/nx()y n=07 1129""

Evidently, ||x,4+1 — Tx,|| = y» and x,4+1 = xo(1 + Z?:o y;) for all integers n > 0,
so that the convergence of {x,},° is equivalent to the summability of the sequence
{Vn }3020 . 0

Counterexamples to possible improvements of Theorem 2.74 are more difficult
to construct because this theorem deals with convergence to attracting sets. For sim-
plicity, we assume that the non-summable sequence {y;};°, decreases to 0 and that
y1 < 1.

Proposition 2.77 Let X be an arbitrary (but not one-dimensional) normed space
and let a non-summable sequence of positive numbers {y,},°, decrease to 0. Then
there exist a subspace F C X and a nonexpansive (with respect to an equivalent
norm on X) operator T : X — X such that p(T"u, F) — 0 as n — oo for any
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u € X, and there exists a sequence {u,}>>  C X such that ||uy41 — Tuy|| <y, for

all integers n > 0, but p(uy, F) does not tend to 0 as n — o0.

Proof We take any 2-dimensional subspace of X, identify it with R? (with coordi-
nates (x, y)), and perform all constructions and proofs only in this subspace, taking
as F the one-dimensional space L := {(x, y) € R>:y = 0}. The same counterex-
ample may be then applied to the whole space X if we take F to be an algebraic
complement of the one-dimensional space {(x, y) € R? : x = 0} which contains L.

So, consider a plane with orthogonal axes x, y and the norm ||u| = ||(x, ¥)|| =
max(|x]|, |y]) (recall that in a finite dimensional space all norms are equivalent). At
the first stage, we only consider the case where y,,4+1/v, > 1/2 for all n and we de-
fine a decreasing function y = y (x) which equals y,, at x =2n,n=1,2, ..., and is
linear on the intermediate segments. Finally, we define the operator T as the super-
position T = T4 137> T of the following four mappings: (a) 77 : (x, ¥) — (|x|, [¥]);
(®) T2 : (x,y) = (x,min(l, y)); (©) T3 : (x,y) = (x +2,y); (d) Ty : (x,y) —
([T =y )]y).

The principal point of the proof is to show that the operator T is nonexpansive.

This is obviously true for the first three mappings 77, 7> and 73, so we need
only consider the fourth operator 74. For simplicity, we may assume from the very
beginning that 7 = T4.

For arbitrary x| < x2, let u; = (x1, y1) and up = (x2, y2). Then Tu; = (x1, [1 —
y(xp)Iy1) and Tus = (x2, [1 — y(x2)]y2). Our aim is to show that ||Tu; — Tuz|| <
lur — uzll, where |luy — uz|l = max(xz — x1,|y2 — y1l) and [|[Tu; — Tus|| =
max(xy — x1, |[1 — y(x2)]y2 — [1 — y(x1)]y1]). Since after the application of the
first two mappings 77 and 7>, the second coordinate y already belongs to [0, 1], the
case where xp — x1 > 1 is trivial, because then || Tu| — Tusz|| = ||juy —uz|| = xo — x1.
Hence we may assume in what follows that x, — x| < 1 and thus we need only con-
sider one of the following two possibilities: either both x| and x; belong to the same
interval [2n, 2(n + 1)] or they belong to two adjoining intervals [2n, 2(n + 1)] and
[2(n+1),2(n +2)] for some n =1, 2, .... We claim that in both cases,

y(x1) —y(x2) < (x2 — x1)y (x1). (2.455)

If 2n < x1 < x2 <2(n + 1), then the points u; and u, lie on the straight line
connecting the points (2n, 1 —y;,) and (2(n+1), 1 —;,41), so that the ratio (y (x1) —
y(x2))/(x2 — x1) coincides with the slope of this line:

kn=n = n+1)/2 = Vn/2 < Yup1 Sy (x1).
In the second case the same ratio is less than or equal to max(ky, k,,+1), where
knt1 = (Vnt1 — Yut+2)/2 < Vnr1 Sy (x1),

and therefore inequality (2.455) is proved in both cases.
Note that in order to compare the distances between u and u», and between Tu
and T'uy, it is enough to show that

|v2[1 =y (2] = yi[1 = ¥ (x1)]| < max(x2 — x1, [y2 — y1l). (2.456)
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If y1 > yz, then

yi[l=y@D]=n[l—ya)] =01 —y2) — [y &) — 2y ()] < y1 — 2,

because y (x1) > y (x2). On the other hand,

yi[l=y@D]=»[1—ye)] =01 —y)[l =y )]+ yi[r(x2) — y(x1)]

> —(x2 —xDyEDn
by (2.455). Now inequality (2.456) follows because y (x1)y; < 1.
If yo — y1 >0, then also y2[1 — y(x2)] — y1[1 — y(x1)] = 0 and it suffices to

estimate this difference only from above. Bearing in mind that all y < 1, we obtain
by (2.455) that

[l —=y@)] =yl —ry&)]
= —yD[1—y&)]+»[ye) —yx)]
<2 —yD)[l = y&D]+y @) —x1) <max(xz —x1, y2 — y1),

as needed.

Let u = (x, y) be an arbitrary point in RZ%. Then T e {(x,y):x>0,0<
y < 1} and thereafter the operators 77 and 7> coincide with the identity mapping.
Defining the integer k£ by 2k <x < 2(k + 1), we see that

n k+n
p(T"u, F)=y[[[1-yG+20] <y [] A =w)—0
i=1 i=k+1

as n — 0o, because the series Y o, y; is divergent.

To finish the proof for the case where y,,+1/y, > 1/2 for all natural numbers #,
we define u, = 2(n —1),1) forn=1,2,.... Then Tu,, = Ty Tzu, = 2n, 1 — y,)
and ||luy4+1 — Tu, || = yu. At the same time, p (u,, F') = 1 for all n and does not tend
to 0.

We now proceed to the general case where the given sequence {y,},-, does not
satisfy the condition y,1/y, > 1/2 for all n > 0. We then define by induction a
new sequence:

Y=, Yogr =max{yat1,v,/2}, n=12,...,

so that y, /¥, > 1/2. Using the new sequence {y, },2, we construct the operator

T as before, replacing each y, by y,. The sequence {u,}>°, will be defined by
induction. Let u1 = (0, 1). If the point u,, = (x,, y,,) has already been defined, then
to obtain the next point u, 1 = (Xp+41, Yn+1), W€ put X,41 = Xp + 2, Yug1 = yp if
Vi = V> and yp1 = yul[l =y, 1if y; > yp. Since Tuyp = (xXp+1, ya[1 —y,]) for each
n, we find that |lu,41 — Tu,|| <y, for all n, as needed.
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It is easy to see that
n
Ynt1 = H(l — OkVi)s

k=1

where o = 1 when y,; > ¥, and o} = 0 otherwise. But the series Z,fi 1 0k y,é con-
verges, since the ratio of any two consecutive nonzero terms here is not greater than
1/2. Therefore

—18

pln, F) = [ [(1 = oxyy) > 0.

k

Il
=

That is, the sequence {p (u,, F))} again does not tend to zero, as claimed. O

2.24 Convergence and Nonconvergence to Fixed Points

In Sect. 2.23 we have shown that Theorems 2.72 and 2.74 cannot be, in general,
improved. However in Proposition 2.76 every point of the space is a fixed point of
the operator 7 and the inexact orbits tend to infinity. In Proposition 2.77 the attract-
ing set F' is unbounded and the operator 7' depends on the sequence of errors. In
this section we construct an operator 7 on a complete metric space X such that all
of its orbits converge to its unique fixed point, and for any nonsummable sequence
of errors and any initial point, there exists a divergent inexact orbit with a conver-
gent subsequence. On the other hand, we emphasize that while the example of the
present section is for a particular subset of an infinite-dimensional Banach space,
the examples in Sect. 2.23 apply to general normed spaces, even finite-dimensional
ones.

Let X be the set of all sequences x = {x;}72, of nonnegative numbers such that
Y2 xi <L Forx={x}2,, y= {2, €X,set

00
(LS i) = ) i — yil- (2.457)
i=1
Clearly, (X, p) is a complete metric space.
Define a mapping 7 : X — X as follows:
T({xi}2)) = (2. x3, ..o xin ), (X2, € X. (2.458)
In other words, for any {x; };’il e X,
T({xi}2) ={yi}i2;, where y; = x4 for all integers i > 1. (2.459)
Set TOx = x forall x € X. Clearly,

p(Tx, Ty)<p(x,y) forallx,yeX (2.460)
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and
T"x converges to (0,0,...,...) asn— oo (2.461)

forall x € X.
The following result was obtained in [111].

Theorem 2.78 Let {r;}°, C [0, 00),

oo
Y ri=o, (2.462)
i=0

and x = {x;}°, € X. Then there exists a sequence {y}>° C X such that
i=1 i=0

yO = p(TyD, y+Dy <p i=0,1,...,

the sequence {y(i)};?io does not converge in (X, p), but (0,0, ...) is a limit point of
{y1e2,.

In the proof of this theorem we may assume without loss of generality that
ri <16=! for all integers i > 0. (2.463)

We precede the proof of Theorem 2.78 with the following lemma.

Lemma 2.79 Let 70 = {zfo)}?i | € X and let k > 0 be an integer. Then there exist
an integer n > 4 and a sequence {z(i)};?zo C X such that

p(Z(H—l)’ Tz(i)) <rewi, i=0,...,n—1,

and

p(z™,(0,0,0,...)) =47

Proof There is a natural number m > 4 such that

oo
> P <167l (2.464)
i=m
Set
LD D =0 m—1. (2.465)
Clearly,
2™ = (29,,29,.....29,..). (2.466)
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By (2.462), there is a natural number n > m such that

k+n
> orpz2h (2.467)

j=ktm

By (2.467) and (2.463), n > m + 7 and we may assume without loss of generality
that

k+n—1
Z ri<1/2. (2.468)
j=k+m
In view of (2.457) and (2.463)
k+n—1 k+n
dYoori= > rj—nam=2" =167\ (2.469)
Jj=k+m j=k+m
Fori=m+1,...,n,define 7 = {z(’)}oo | as follows:
(@) () . .
2 =25, JEll2 3\ fn+ 1=,
0 o kti—1 (2.470)
Zn+l i = n+1+ Z rj-
Jj=k+m

Clearly, for i =m + 1,...,n, z is well-defined and by (2.470), (2.464) and
(2.468),

k+i—1 k+n—1
P= T T s b et
Jj=1 Jj=i+l Jj=k+m j=k+m
Thus z2D e X, i=m+1,...,n
Leti € {m,...,n — 1}.In order to estimate p(z+V, Tz?), we first set
(Z152, =121, (2.471)

In view of (2.471), (2.458) and (2.459), z; = z | for all integers j > 1. When
combined with (2.470), this implies that

~ 0 . .
Zj=20, forall je (1,2, }\(n—i) (2.472)

and
k+i—1

~ _ (0)
Zn—i Zn+l —i 7 “n+l + Z rj-
j=k+m
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By (2.472),z; = Z§i+1) forall j € {1,2,...}\{n—i}. Together with (2.473), (2.457),
(2.472) and (2.470), this equality implies that
p(2HD, T20) = p(2FD (z;)52)) = |20 — z0 | = rea.
It follows from this relation, which holds for all i € {m, ..., n — 1}, and from (2.465)
that
,o(z(iH), Tz(i)) <rkt+i, 1=0,...,n—1.
By (2.457), (2.470) and (2.469),

k+n—1
p(z™.(0,0,0,..0) 22" =z + Y rz27t 167
Jj=k+m

This completes the proof of Lemma 2.79. U

Proof of Theorem 2.78 In order to prove the theorem, we construct by induction,
using Lemma 2.79, sequences of nonnegative integers {tx}7, and {sx}7° ), and a
sequence { y(i)}?io C X such that

yO =y, (2.473)
p(y(i+l), Ty(i)) <r; forall integersi > 0, (2.474)
to=1s50=0, Sk < Sk+1 < tg+1 for all integers k > 0, (2.475)
and for all integers k > 1,
p(y“%,(0,0,0..)) < 1/k and p(y™,(0,0,0...)) > 1/4. (2.476)

In the sequel we use the notation y(i) = {y](.i)};?ozl, i=0,1,....
Set
yO =x and 1,50 =0. (2.477)
Assume that g > 0 is an integer and that we have already defined two sequences of

nonnegative numbers {z‘k}Z:O and {sk}Z:O, and a sequence { y(")}i":O C X such that
(2.474) holds for all integers i satisfying 0 <i < s, (2.477) holds,

tr < Sk4+1 < tr41 for all integers k satisfying 0 <k < ¢,

and (2.476) holds for all integers k satisfying 0 < k < ¢g. (Note that for g = 0 this
assumption does hold.)

Now we show that this assumption also holds for g + 1.

Indeed, there is a natural number 5,11 > t, + 1 such that

o0
Yo W <@+n (2.478)

J=Sq+1—1-14
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Set
y(i+1):Ty(i), i:tq,---asq+l — 1. (2.479)
By (2.479), (2.457), (2.458), (2.459) and (2.478),

o o0
(O 0.0..0) =Yy = 3 <@+ (2480)
j=1

J=Sg+1—1g+1
Applying Lemma 2.79 with

Z(0) — y(Sq-H) and k=sg41, (2.481)

sq+1+n

we obtain that there exist an integer n > 4 and a sequence {y®} C X such

i=5q+1

that
p(YIT, TyD) <ri, i=sgqts. Sg+n—1, (2.482)

and
p(y“ 11, (0,0,0...)) > 1/4. (2.483)

Put

tq+1 = Sq_;,_l +n.

. iV~ L
In this way we have constructed a sequence { y(l)}i‘g(; C X and two sequences of

nonnegative integers {tk}Zi(]) and {sk}Zi(l) such that (2.477) holds, (2.474) holds for
all integers i satisfying 0 <i < 1,41 (see (2.479) and (2.482)), 1y < sg41 < fx41 for
all integers k satisfying 0 < k < ¢ + 1, and (2.476) holds for all integers k satisfying
0 <k <g+1(see (2.480), (2.482) and (2.483)).

In other words, the assumption made concerning ¢ also holds for ¢ + 1. It fol-
lows that we have indeed constructed two sequences of nonnegative integers {#x}72
and {s;}72 . and a sequence {y(i)};?io C X which satisfy (2.473)—(2.476). This com-
pletes the proof of Theorem 2.78. g

2.25 Convergence to Compact Sets

In this section, we study the influence of computational errors on the convergence
to compact sets of orbits of nonexpansive mappings in Banach and metric spaces.

Let (X, p) be a complete metric space. For each x € X and each nonempty closed
subset A C X, put

p(x, A) :inf{,o(x, y):y € A}.

For each mapping 7 : X — X, set Tx = x for all x € X.
The following result was obtained in [112].
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Theorem 2.80 Let T : X — X satisfy
o(Tx, Ty)<p(x,y) forallx,yeX. (2.484)

Suppose that for each x € X, there exists a nonempty compact set E(x) C X such
that

illr&p(Tix, E(x)) =0. (2.485)
Assume that {y,}°2, C (0,00), Y22 yn < 00,
{xnlooo CX and p(xpy1,Txp) <yn, n=0,1,.... (2.486)
Then there exists a nonempty compact subset F of X such that

lim p(x,, F)=0.
n—od

Proof In order to prove the theorem it is sufficient to show that any subsequence of
{xn}72, has a convergent subsequence.

To see this, it is sufficient to show that for any ¢ > 0, the following assertion
holds:

e¢]

(P1) Any subsequence of {x,}
ball with radius &.

o Possesses a subsequence which is contained in a

Indeed, there is an integer k > 1 such that

o
> vi<e/s. (2.487)
=k
Define a sequence {y;}72, by
yk = xk’
(2.488)

vit+1 =Ty; forallintegersi > k.

There exists a nonempty compact set £ C X such that

lim p(y;, E) =0. (2.489)
11— 00

By (2.486) and (2.488),
PXk+15 Ve+1) = Vi (2.490)

Assume that g > k + 1 is an integer and that fori =k +1,...,q,

i—1
P y) <Y yj- (2.491)
j=k
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(Note that in view of (2.490), inequality (2.491) is valid when g =k + 1.)
By (2.484) and (2.491),

g—1
P(Tyg, Txg) < p(yg,xq) < Zyj~
j=k
When combined with (2.486), this implies that
q—1 q
P g1y Ygr1) < pCqr1, Txg) + p(Txg, Tyg) <vg+ Y vi= Y Vi,
j=k j=k

so that (2.491) also holds for i = g + 1. Thus we have shown that for all integers
q=>k+1,

q—1 o0
PGg: X)) <Y vi< Y vi<e/8 (2.492)
j=k j=k

by (2.487). In view of (2.489), for all large enough natural numbers ¢, we have
p(xq, E) <e/4. (2.493)

By (2.493), there exist an integer gg > k and a sequence {z; }?iqo C K such that
p(xi,zi) <e/3 forall integers i > qo. (2.494)

Consider any subsequence {xg,}72, of {x,}72 . Since the set E is compact, the se-

o0 oo
quence {z4, }72 | possesses a convergent subsequence {Z(Iij } =1

We may assume without loss of generality that all elements of this convergent
subsequence belong to B(u, £/16) for some u € X.

In view of (2.494),
Xqi; € B(u,e/2) for all sufficiently large natural numbers j.
Thus (P1) holds and this completes the proof of the theorem. g

Note that Theorem 2.80 is an extension of Theorem 2.72.
The following result, which was obtained in [112], shows that both Theo-
rems 2.72 and 2.80 cannot, in general, be improved (cf. Proposition 2.77).

Proposition 2.81 For any normed space X, there exists an operator T : X — X
such that |[Tx —Ty| < |lx — y| forall x, y € X, the sequence {T"x};_ | converges
for each x € X and, for any sequence of positive numbers {y,}>2,, there exists
a sequence {x,},>  C X with ||xy+1 — Txy|| < yn for all nonnegative integers n,

o &S summable,

which converges to a compact set if and only if the sequence {y,}7°
ie., ZZO:O Vn < 00.
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Proof This is a simple fact because we may take 7 to be the identity operator:
Tx = x, Vx. Then we may take as xg to be an arbitrary element of X with ||xp|| = 1
and define by induction

xn+l :Txn+yn-x()y n=07 1129""

Evidently, [Ix,41 — Txn |l = ¥ and x,41 = xo(1 4+ >_;_ yi) for all integers n > 0,
so that the convergence of {x,}7°, to a compact set is equivalent to the summability
of the sequence {y,}7 . Proposition 2.81 is proved. O

2.26 An Example of Nonconvergence to Compact Sets

In the previous section, we have shown that Theorems 2.72 and 2.80 cannot, in
general, be improved. However, in Proposition 2.81 every point of the space is a
fixed point of the operator 7' and the inexact orbits tend to infinity. In this section,
we construct an operator 7' on a certain complete metric space X (a bounded, closed
and convex subset of a Banach space) such that all of its orbits converge to its unique
fixed point, and for any nonsummable sequence of errors and any initial point, there
exists an inexact orbit which does not converge to any compact set. This example is
based on [112].

Let X be the set of all sequences x = {x;}72 | of nonnegative numbers such that
Y2 xi < 1.Forx ={x;}?°, and y = {y;}?2, in X, set

(i), idey) le,—y, (2.495)

Clearly, (X, p) is a complete metric space.
Define a mapping 7 : X — X as follows:

T({xi}l?’i]) = (X2, X3, ..., X;,...), {x}2, €X. (2.496)

In other words, for any {x;}7°, € X,
T({xi}2) ={yi}i2;, where y; = x4 for all integers i > 1. (2.497)

Set TOx = x forall x € X. Clearly,
p(Tx, Ty)<p(x,y) forallx,yeX (2.498)

and
T"x converges to (0,0,...,...) asn— o0 (2.499)
forall x € X.
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Theorem 2.82 Let {r;}°, C [0, 00),

o
> ri=o0, (2.500)
and x = {x;};2| € X. Then there exists a sequence {y(i)}ioio C X such that
YO=x,  p(Ty?y* V) <n, i=0,1,..., (2.501)

and that the following property holds:
there is no nonempty compact set E C X such that

1lim p(y(i), E) =0.

11— 00
In the proof of this theorem, we may assume without any loss of generality that
ri < 16~ forall integers i > 0. (2.502)

We precede the proof of Theorem 2.82 with the following lemma.

Lemma 2.83 Ler 79 = {zfo) };’il € X, letk > 0 be an integer and let jo be a natural
number. Then there exist an integer n > 4 and a sequence {z(i)}?zo C X such that

oz, TzD) <y, i=0,...,n—1,

and
) (™ m ) ={zm)°
7 —(Zl N & ,~--)—{Zi }i=1
. (n) -1

Proof There is a natural number m > 4 such that

m > jo+4,
iz O 16 (2.503)
i=m
Set
D =710 i=0,...,m—1. (2.504)
Then
2™ = (20,20, .20, (2.505)
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By (2.500), there is a natural number #n > m such that

k+n
> orp=2h (2.506)
Jj=k+m
By (2.506) and (2.502),
n>m+7 (2.507)

and we may assume without loss of generality that

k+n—1
> ori<1/2. (2.508)
Jj=k+m
In view of (2.506) and (2.502),
k+n—1 k+n
dYoori= > ri—namz2" —167" (2.509)
Jj=k+m j=k+m
Fori=m+1,...,n,define z) = {z( )}°° | as follows:

=20 jef, 2, I\ {n+1+jo—il,

J Jj+i?
(1) © k+i—1 (2.510)
n+1+jo i Zn+1+]o + Z Ty
Jj=k+m

Clearly, for i =m + 1,...,n, z® is well-defined and by (2.510), (2.503) and
(2.508),

Z (@) _ 0) Rk ) graing _
z; Z z; + Z rj < Zz + Z rj <16~ Iyt
Jj=i+l j=k+m Jj=k+m

Thus z2D e X, i=m+1,...,n
Let i € {m,...,n — 1}. We now estimate p(z/t", Tz®). If i = m, then by
(2.496), (2.497), (2.505) and (2.514),

P2V, T2D) < ey 2.511)
Let i > m. We first set

(Z152, =11, (2.512)
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In view of (2.506), (2.496) and (2.497), z; = z;.ij_l for all integers j > 1. When
combined with (2.510), this implies that

zjzzj.ojm forall j € {1,2,..}\{n —i+ jo},

0 0 keti—1 (2.513)
Zntjo—i = Znfiqjoi = Fntltjo T Z rj-
j=k+m
By (2.510) and (2.513),
=210 (2.514)

forall j € {1,2,...}\ {n + jo — i}. It now follows from (2.512), (2.514), (2.510)
and (2.513) that

p(z(z’—i—l)’ Tz(i)) — p(z(i+1), {Zj}}'il) — |Z(i+1) _ zn+j07i’

n+jo—i
k+i k+i—1
) 0)
Jj=k+m j=k+m
When combined with (2.504), this implies that
p(z ), 7:D) <y, i=0,...,n— 1.
By (2.509) and (2.510),
k+n—1
(n) () -1
21 = Zny i jon 2 Do riz4h
Jj=k+m
This completes the proof of Lemma 2.83. d

Proof of Theorem 2.82 In order to prove the theorem, we construct by induction,
using Lemma 2.83, a sequence of nonnegative integers {si};", and a sequence
{y(i)};’io C X such that

YO =x,
p(y(i+1), Ty(i)) <r; forallintegersi > 0, (2.515)
so =0, Sk < Sg+1 for all integers k > 0, (2.516)
and for all integers k > 1,
W9 = 1/4. 2.517)

In the sequel we use the notation y(i) = {y;i)}?il, i=0,1,....



2.26  An Example of Nonconvergence to Compact Sets 117

Set
y©O =y, 50 =0. (2.518)

Assume that g > 0 is an integer and we have already defined a (finite) sequence of
nonnegative integers {si }Z:O and a (finite) sequence { y(’)}f":O C X such that (2.518)
is valid, (2.515) holds for all integers i satisfying 0 <i < s4,

s; <sj+1 for all integers i satisfying 0 <i < ¢,

and that (2.517) holds for all integers k satisfying 0 < k < g. (Note that for ¢ =0
this assumption does hold.)

Now we show that this assumption also holds for g + 1.

Indeed, applying Lemma 2.83 with

2O =y6) and jo=g+1, k=s,

we obtain that there exist an integer 5,41 > 4 + 5, and a sequence { y(")}jq:t; cX
such that

p(yD YD) <ri, =g, sg — L,
and

(5g+1)
vy 3" = 1/4.

Thus the assumption made for g also holds for ¢ + 1. Therefore we have con-
structed by induction a sequence {y(")}?i0 C X and a sequence of nonnegative inte-
gers {sg};2, which satisfy (2.515) and (2.516) for all integers i, k > 0, respectively,
and (2.517) for all integers k > 1.
Finally, we show that there is no nonempty compact set £ C X such that
lim p(y?", E) =0.

i—00

Assume the contrary. Then there does exist a nonempty compact set £ C X such
that
lim p(y”, E) =0.
11— 00
This implies that any subsequence of {y®) Yoo POssesses a convergent subsequence.
Consider such a subsequence { y(S‘I)}f;o:1 . This subsequence has a convergent sub-
sequence {y*» }‘;f: |- There are, therefore, a point z = {z;}72, € X such that
)

z= lim y“o
p—> 00

and a natural number pg such that

oz, y(sqp)) <16~! for all integers p > p. (2.519)
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By (2.518) and (2.519), we have for all integers p > po,

<p(z,y ) <167

(qu)
‘Z%H‘l - yqp-‘,-l

and
> (Sllp) 167] = 87]
qu—l—l et yq1;+1 - sl .
This, of course, contradicts the inequality Zf’il z; < 1. The contradiction we have
reached completes the proof of Theorem 2.82. g



Chapter 3
Contractive Mappings

In this chapter we consider the class of contractive mappings and show that a typical
nonexpansive mapping (in the sense of Baire’s categories) is contractive. We also
study nonexpansive mappings which are contractive with respect to a given subset
of their domain.

3.1 Many Nonexpansive Mappings Are Contractive

Assume that (X, || - ||) is a Banach space and let K be a bounded, closed and convex
subset of X. Denote by A the set of all operators A : K — K such that

|[Ax — Ay|| <|lx —y|| forallx,yeK. (3.1
In other words, the set A consists of all the nonexpansive self-mappings of K. Set
d(K):sup{||x—y||:x,yeK}. (3.2)
We equip the set A with the metric (-, -) defined by
h(A, B) =sup{||Ax — Bx| :x €K}, A,BeA.

Clearly, the metric space (A, k) is complete.
We say that a mapping A € A is contractive if there exists a decreasing function
¢ :10,d(K)] — [0, 1] such that

¢*(H) <1 forallt e (0,d(K)] (3.3)
and
lAx — Ayl < ¢ (Ix — yll)llx — | forallx,y e K. (3.4)

The notion of a contractive mapping, as well as its modifications and applications,
were studied by many authors. See, for example, [85]. We now quote a convergence
result which is valid in all complete metric spaces [114].
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Theorem 3.1 Assume that A € A is contractive. Then there exists x4 € K such
that A"x — x4 as n — 0o, uniformly on K .

In [131] we prove that a generic element in the space of all nonexpansive map-
pings is contractive. In [137] we show that the set of all noncontractive mappings is
not only of the first category, but also o -porous. Namely, the following result was
obtained there.

Theorem 3.2 There exists a set F C A such that A\ F is o-porous in (A, h) and
each A € F is contractive.

Proof For each natural number n, denote by 4, the set of all A € A which have the
following property:

(P1) There exists « € (0, 1) such that ||Ax — Ay|| < «|lx — y| for all x,y € K
satisfying ||x — y|| = d(K)(2n)~!.

Let n > 1 be an integer. We will show that the set A \ A, is porous in (A, k). Set

1

a=8""min{d(K), 1}2n) " (d(K) +1)" . (3.5)
Fix0 e K.Let Ac Aand r € (0, 1]. Set
y =2""r(d(K)+1)"" (3.6)
and define
Ayx=(1-y)Ax+y6, xek. 3.7
Clearly, A}, € A,
h(A,, A) <yd(K), (3.8)
and forall x,y e K,
[Ayx —Ayyll <A =p)lAx — Ayl = (A = y)llx =yl (3.9
Assume that B € A and
h(B,Ay)) <ar. (3.10)
We will show that B € A,,.
Let
x,yeK and |x—y|>@2n) 'dK). (3.11)

It follows from (3.9) and (3.11) that

Ix =yl = [Ayx — Ay yll = yllx =yl = yd(K)(2n) ™. (3.12)
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By (3.10),
[ Bx =Byl <l|Bx—Ayx||+Ayx—Ayyll+11Ayy — Byl < |Ayx — Ayl +2ar.
When combined with (3.12), (3.6), and (3.5), this implies that
¥ = yll = 1Bx = Byl = x = yll = 1 Ayx — 4,y = 2ar
> yd(K)2n)™' = 2ar
=27 [@n) ' d(K) (d(K) +1) " — 4a]
> 27 rd(K)(n) " (d(K) +1) .
Thus
IBx — By|| < llx — y|| —rd(K)(d(K) + 1)_1(8n)71
< =yl (1 =@~ (@& +1) 7).

Since this holds for all x, y € K satisfying (3.11), we conclude that B € A,. Thus
each B € A satisfying (3.10) belongs to A,,. In other words,

{Be A:h(B,A)) <ar}C A,. (3.13)
If B € A satisfies (3.10), then by (3.8), (3.5) and (3.6), we have
h(A,B) <h(B,Ay)+h(A,,A) <ar+yd(K) <8 'r+271r<r.

Thus
{BeA:h(B,Ay)) <ar}C{BeA:h(B,A)<r}.

When combined with (3.13), this inclusion implies that A \ A, is porous in (A, h).
Set F =, Ap. Clearly, A\ F is o-porous in (A, h). By property (P1), each
A € F is contractive. O

3.2 Attractive Sets

In this section, we study nonexpansive mappings which are contractive with respect
to a given subset of their domain.

Assume that (X, || - ||) is a Banach space and that K is a closed, bounded and
convex subset of X. Once again, denote by .4 the set of all mappings A : K — K
such that

|Ax — Ay|| < |lx —y|| forallx,y e K. (3.14)
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For each x € K and each subset £ C K, let
p(x, E)=inf{|lx —y|l : y € E}. (3.15)

Let F be a nonempty, closed and convex subset of K. Denote by A the set of
all A € A such that Ax = x for all x € F. Clearly, AW is a closed subset of (A, h).
In what follows we consider the complete metric space (A, k).

An operator A € A is said to be contractive with respect to F if there exists a
decreasing function ¢A :[0,d(K)] — [0, 1] such that

¢ (1) <1 forallt e (0,d(K)] (3.16)
and
p(Ax,F)gtz)A(p(x,F))p(x,F) forall x € K. 3.17)

We now show that if A contains a retraction, then the complement of the set
of contractive mappings (with respect to F) in A is o-porous. This result was
also obtained in [137].

Theorem 3.3 Assume that there exists Q € AF) such that
O(K)="F. (3.18)

Then there exists a set F C AF) such that AT\ F is o-porous in (AP h) and
each B € F is contractive with respect to F.

Proof For each natural number 7, denote by A, the set of all A € A% which have
the following property:

(P2) There exists k € (0, 1) such that p(Ax, F) <«p(x, F) for all x € K such that
p(x, F)>min{d(K), 1}/n. Define

F=[)A- (3.19)

n=1

Clearly, each element of F is contractive with respect to F'. We need to show that
AP\ A, is porous in (A, h) for all integers n > 1. To this end, let n > 1 be an
integer and set

a=(dK)+ 1)_1min{d(K), 1}aen)~". (3.20)
Let Ae A% and r € (0, 1]. Set
y=2""r(d(K)+1)"" (3.21)

and define

Ayx=(1—-y)Ax+yQx, xeKk. (3.22)
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It is obvious that A, € A, By (3.22),
h(A, Ay) <sup{[|Ayx — Ax| :x € K}

<ysup{llAx — Qx| :x € K} < yd(K). (3.23)

Let B € A be such that
h(A,,B) <ar. (3.24)
Then by (3.24), (3.23), (3.21), and (3.20),
h(A,B) <h(A,A,)+h(A,,B) <yd(K)+ar
<1/2r+r/2<r.

Thus (3.24) implies that h(A, B) <r and
[Ce AP :h(A,,C) <ar]
c{ceA® :nA,C) <r}. (3.25)
Let x € K with
p(x, F) > min{d(K), 1}/n. (3.26)

For each ¢ > 0, there exists z € F such that p(x, F) +¢& > ||x — z||, and by (3.22)
and (3.18),

p(Ayx, F)=p((1 —y)Ax +y Qx, F)
<(1=p)Ax+0x)— (1 —=py)z+y0x) <1 —y)|Ax —z|
<U=-plx—zl <A =p)px, F)+e( —yp).

Since ¢ is an arbitrary positive number, we conclude that

p(Ayx, F) < (1 =y)p(x, F).

Since |p(y1, F) — p(y2, F)| < |ly1 — y2|| for all y1, y» € K, it follows from (3.24)
that

p(Bx, F) <||Ayx — Bx|| + p(Ayx, F) <ar + p(Ayx, F)
<ar+ {1 -y)px, F),
and

10(va F) < (1 - V)P(xa F) +ar.
It now follows from this inequality, (3.26), (3.20) and (3.21) that
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p(Bx, F) < p(x, F)(1 =y +ar(p(x, F)) ")
< p, P[1 =27 (d(K) +1) " +ar(min{d(K), 1}/n) ']
< px, F)[1=r271(d(K) + 1)~ +r(16(d(K) +1)) ']
§p(x,F)(1—r4 'ak + 7.

Thus
p(Bx, F) < p(x, F)(1—rd~ ' (d(K)+1)7")

for each x € K satisfying (3.26). This fact implies that B € A,,. Since this inclusion
holds for any B satisfying (3.24), combining it with (3.25) we obtain that

{Ce AP :n(A,, C)<arfc{Ce AT h(A,C) <r}NA,.

This shows that A% \ A, is indeed porous in (A, h). O

3.3 Attractive Subsets of Unbounded Spaces

In this section we continue to study nonexpansive mappings which are contractive
with respect to a given subset of their domain.

Assume that (X, p) is a hyperbolic complete metric space and that K is a closed
(not necessarily bounded) and p-convex subset of X. Denote by A the set of all
mappings A : K — K such that

o(Ax, Ay) <p(x,y) forallx,yeK. 3.27)

For each x € K and each subset E C K, let p(x, E) = inf{p(x,y) : y € E}. For
each x € K and each r > 0, set

B(x,r):{yel(:,o(x,y)fr}. (3.28)

Fix 6 € K. For the set A we consider the uniformity determined by the following
base:

E(n,e)={(A, B) e Ax A: p(Ax, Bx) <&,x € B, n)}, (3.29)

where ¢ > 0 and n is a natural number. Clearly the space A with this uniformity is
metrizable and complete. We equip the space .4 with the topology induced by this
uniformity.

Let F be a nonempty, closed and p-convex subset of K. Denote by A the set
of all A € A such that Ax = x for all x € F. Clearly, A is a closed subset of A.
We consider the topological subspace A c A with the relative topology.
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An operator A € A% is said to be contractive with respect to F if for any natural
number n there exists a decreasing function ¢fl‘ 1[0, c0) — [0, 1] such that

(1) <1 forallz >0 (3.30)
and

p(Ax, F) < ¢ (p(x, F))p(x, F) forallx € B(O,n). (3.31)

Clearly, this definition does not depend on our choice of 6.
We begin our discussion of such mappings by proving that the set F attracts all
the iterates of A. This result was obtained in [131].

Theorem 3.4 Ler A € AP be contractive with respect to F. Then there exists
B € A such that B(K) = F and A"x — Bx as n — oo, uniformly on B(6, m)
for any natural number m.

Proof We may assume without loss of generality that & € F. Then for each real
r>0,

C(B®,r)) C B(0,r) forallC e AP (3.32)

Let r be a natural number. To prove the theorem, it is sufficient to show that there
exists B : B(8,r) — F such that

A'x — Bx asn — oo, uniformly on B9, r). (3.33)
There exists a decreasing function ¢,A 1[0, o0) — [0, 1] such that
¢2(1) <1 forallz >0 (3.34)

and
p(Ax, F) < ¢;4(,0(x, F))p(x, F) forallx e B@O,r). (3.35)

Let € € (0, 1). Choose a natural number m > 4 such that

oA (er)" <87 e, (3.36)
Let x € B(0, r). We will show that

,o(Amx, F) <er. (3.37)

Assume the contrary. Then for each i =0, ..., m, p(A'x, F) > er, and by (3.35)
and (3.32),

A'x e BO,r), p(At'x,F) <¢?(p(A'x, F))p(A'x, F)

< ¢t (er)p(A'x, F).
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When combined with (3.36), these inequalities imply that
p(A™x, F) < ¢ (er)"p(x, F) <8 'ep(x,0) <8 'er,

a contradiction. Therefore (3.27) is valid and for each x € B(6,r), there exists
Cq(x) € F such that p(A™x, Czx) < er. This implies that for each x € B(6, r),

,o(A"x, Cex) <er for all integers i > m. (3.38)

Since ¢ is an arbitrary number in (0, 1), we conclude that for each x € B(0,r),
{A’x}j’il is a Cauchy sequence and there exists Bx = lim;_, o, A’ x. Clearly,

p(Bx, Cg(x)) <er forallx e B@,r). (3.39)

Since (3.39) is true for any ¢ in (0, 1), we conclude that B(B(@,r)) C F.
By (3.39) and (3.38), for each x € B(0,r),

p(Aix, Bx) <2er for all integers i > m.

Finally, since ¢ € (0, 1) is arbitrary, we conclude that (3.33) is valid. This completes
the proof of Theorem 3.4. O

Proposition 3.5 Assume that A, B € A" and that A is contractive with respect
to F. Then AB and B A are also contractive with respect to F .

Proof We may assume that 6 € F. Then for each real r > 0,
C(B®,r)) C B(®,r) forall C e AP (3.40)
Fix r > 0. There exists a decreasing function ¢;4 1[0, c0) — [0, 1] such that
dA (1) <1 forallz>0 (3.41)

and
p(Ax, F) < ¢ (p(x, F))p(x, F) forallx e B(O,r). (3.42)
By (3.42), for each x € B(9, r),
p(BAx, F) =inf{p(BAx,y):y € F} <inf{p(Ax,y):y € F}
= p(Ax, F) < (p(x. F)) p(x, F).

Therefore B A is contractive with respect to F.
Let now x belong to B(6,r). By (3.42) and (3.40), Bx € B(6,r) and

p(ABx, F) < ¢/ (p(Bx, F))p(Bx, F). (3.43)
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There are two cases: (1) p(Bx, F) > 2_1,0(x, F); 2) p(Bx, F) < Z_Ip(x, F). In
the first case, we have by (3.43),

p(ABx, F) <627 p(x, F))p(Bx, F) < ¢/ (27" p(x, F))p(x, F),
and in the second case, (3.43) implies that
p(ABx, F) < p(Bx,F) <27 p(x, F).
Thus in both cases we obtain that

p(ABx, F) <max{¢/ (27 p(x, F)). 27} o(x, F)
=y (p(x, F))p(x, F),

where () = max{¢rA(2’1t), 2711, 1 € [0, 00). Therefore AB is also contractive
with respect to F'. Proposition 3.5 is proved. g

We now show that if A contains a retraction, then almost all the mappings in
A are contractive with respect to F.

Theorem 3.6 Assume that there exists
Qe A" suchthatr Q(K)=F. (3.44)

Then there exists a set F C AY) which is a countable intersection of open and
everywhere dense sets in AT such that each B € F is contractive with respect
to F.

Proof We may assume that 8 € F. Then for each real r > 0,
C(B©,r)) C B©®,r) forallCe A, (3.45)

For each A € AU and each y € (0, 1), define Ay, € A by

Ay x=(1-y)Ax®yQx, xek. (3.46)
Clearly, for each A € AF) Ay, —> Aasy — 0% in AY). Therefore the set {A, :
Ae APy € (0, 1)} is everywhere dense in A,

Let A€ A and y € (0, 1). Evidently,
p(Ayx, F) = inf{p((1l —y)Ax &y 0x,y)}
= inf{p((1 =y)Ax &y Qx, (1 —y)y Dy 0x)}

ye

< )}g{(l —Y)p(Ax, )} < (1 —y)px, F)
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for all x € K. Thus
p(Ayx, F)<(1 —y)p(x,F) forallx € K. (3.47)

For each integer i > 1, denote by U (A, y, i) an open neighborhood of A, in A
for which

UA,y,iyc{Be AP :(B,A,) e E(2",87'y)} (3.48)

(see (3.29)).
We will show that for each A € A, each y € (0, 1) and each integer i > 1, the
following property holds:

P(2) For each B € U(A, y,i) and each x € B(6,2!) satisfying p(x, F) > 47/, the
inequality p(Bx, F) < (1 — 2_1y)p(x, F) is true.

Indeed, let A € A, y €(0,1) and let i > 1 be an integer. Assume that
BeU(A,y,i), xeB(0,2") and p(x,F)=>4"". (3.49)
Using (3.47), (3.48) and (3.49), we see that
p(Bx.F) < p(Ayx, F) + 87y < (1= y)p(x. F) +87'y
<=y, F)+27ypx, F) < (1-27"y)p(x, F).

Thus property P(2) holds for each A € A%), each y € (0, 1) and each integer i > 1.
Define

F=NUlu.y.n: 4 AP,y € ©,1),i=q).
g=1

Clearly, F is a countable intersection of open and everywhere dense sets in A%,
Let B € F. To show that B is contractive with respect to F, it is sufficient to
show that for each r > 0 and each ¢ € (0, 1), there is « € (0, 1) such that

p(Bx, F)<kp(x,F) foreachx e B(0,r) satisfying p(x, F) > ¢.
Letr > 0and ¢ € (0, 1). Choose a natural number g such that
29>8r and 277 <8 le.
There exist A € A, y € (0,1) and an integer i > g such that B € U(A, y,i). By
property P(2), for each x € B(6,r) C B(6,2") satisfying p(x, F) > & > 27", the
following inequality holds:

p(Bx, F) < (1=27"y)p(x, F).

Thus B is contractive with respect to F. This completes the proof of Theorem 3.6. [J
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3.4 A Contractive Mapping with no Strictly Contractive Powers

Let
X=1[0,1] and p(x,y)=|x—y| foreachx,yeX.

In this section, which is based on [155], we construct a contractive mapping A :
[0, 1] — [0, 1] such that none of its powers is a strict contraction.
We begin by setting

A(0)=0. (3.50)

Next, we define, for each natural number n, the mapping A on the interval [(n +
=1 n!] by

A+ D" +) =0+ +1n =@+ D) (4D =+
forallz € [0,n' — (n+ D). (3.51)

It is clear that for each natural number #,
AR =@m+D7, (3.52)

the restriction of A to the interval [(n + 1)~', n~!] is affine, and that the mapping
A :[0,1] — [0, 1] is well defined.

First, we show that A is nonexpansive, that is, |Ax — Ay| < |x — y|forall x, y €
[0, 17.

Indeed, if x € [0, 1], then

|Ax — A0)| < Ix]. (3.53)
Assume now that 7 is a natural number and that
x,ye[m+1D Lt (3.54)
By (3.51) and (3.54),
|Ax — Ay
=0+ + @ -+ D NE T e+ D) (DT -+ 27
—[e+2 '+ -+ D) =+ D)
x(n+ D' =@+
==yl =@+ D) (@ + DT = +2)7)

=lx —yln(+ D((+ D +2) " =|x — yln(n +2)"".
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Thus for each natural number n and each x, y € [(n + D~ a1,
|Ax — Ay| < |x — yln(n +2)~". (3.55)
Together with (3.53) this last inequality implies that
|Ax — Ay| <|x —y| forallx,yel0,1], (3.56)

as claimed.

Next, we show that the power A™ is not a strict contraction for any integer m > 1.
Assume the converse. Then there would exist a natural number m and ¢ € (0, 1) such
that for each x, y € [0, 1],

|A™x — A™y| < clx —y|. (3.57)
Since
m+im+i+Di "G+ >1 asi— oo,
there is an integer p > 4 such that
p(p+1)>{p+m)(p+m+Ic. (3.58)
By (3.52), (3.50) and (3.58),
A"(p~h) = A™((p+ D7)
=(p+m)~ —(p+m+ D) =p+m)p+m+ 1~
>eplp+ D =c(pT =+ D7),

which contradicts (3.57).

The contradiction we have reached proves that A™ is not a strict contraction for
any integer m > 1.

Finally, we show that A is contractive. Let ¢ € (0, 1). We claim that there exists
c € (0, 1) such that

|Ax — Ay| <c|x —y| foreachx,y e[0, 1] satisfying |[x —y|>e.  (3.59)
Indeed, choose a natural number p > 4 such that
p> 18672, (3.60)

and assume that
x,y€[0,1] and |x—y|>e. (3.61)

We may assume without loss of generality that

y > X. (3.62)
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There are two cases:

x < @p)h (3.63)
x> (4p)~ L (3.64)

Assume that (3.63) holds. There exists a natural number n such that
A+n)t<y<nl. (3.65)
By (3.65), (3.62) and (3.61),
e<y<l1/n, n+2)7"'> @) >e/3. (3.66)
By (3.65) and (3.51),
Ay=+2) '+ -+ D) -+ 1)—1)‘1 (n+D'—m+2)71)
=n+) '+ -@+ D e+ D+ D +2)7!
<y-m+D '+ @n+2)7"
and

y—Ay>=m+ D mn+2)7h
When combined with (3.66), the above inequality implies that

Ay—Ax <Ay <y—(+ D'+ sy - +2)F <y —6/9. (367
By (3.63), (3.60) and (3.67),
(1-187"e)(y—x) > (1-187"e?)y—x > (1-187'e?)y — (dp)~!

>y—e2/18—(@dp) >y /18 —£2/18
> Ay — Ax.

Thus we have shown that if (3.63) holds, then
|Ax—Ay|§(1—82/18)|x—y|. (3.68)
Now assume that (3.64) holds. By (3.64) and (3.62),
X,y € [(4p)71, 1].

In view of (3.55), the Lipschitz constant of the restriction of A to the interval
[(4p)_1, 1] does not exceed (4p +2)(4p + 4)~! and therefore we have

|Ax — Ay| < 4p +2)@p+4H " Hx —yl.
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By this inequality and (3.68), we see that, in both cases,
| Ax — Ay| < max{(1 —&?/18), (4p +2)(4p +4) ' lx — ).

Since this inequality holds for each x, y € X satisfying (3.61), we conclude that
(3.59) is satisfied and therefore A is contractive.

3.5 A Power Convergent Mapping with no Contractive Powers

Let X =[0,1] and let p(x, y) = |x — y| for all x, y € X. In this section, which is
based on [155], we construct a mapping A : [0, 1] — [0, 1] such that

|[Ax — Ay| <|x —y| forallx,ye]l0,]1],

A"x - 0 asn— oo, uniformly on [0, 1],

and for each integer m > 0, the power A” is not contractive.
To this end, let

A(0)=0 (3.69)
and for ¢ € [271, 1], set
A=t —1/4. (3.70)
Clearly,
A(l)=3/4 and A(1/2)=1/4. (3.71)
Fort e [471,271), set
A =47"— 167"+ (1 —47 )41, (3.72)

Clearly, A is continuous on [4’], 1] and
A@ Y =4""-16"". (3.73)

Now let n > 2 be a natural number. We define the mapping A on the interval
[2=2",272"""] as follows. For each ¢ € [272"+1, 272", set

A =1-277. (3.74)
Clearly,
ARy =27 and AQY =27 277 (3.75)

Forr e [272",272"+1) get
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A(t) _ 2_2n _ 2_2)1+1 + ([ _ 2_2n)22n (2_2n+1)

2n+1

=272 27y (1 277, (3.76)

It is clear that
2n+1

A7) =27 -2
and

lim  A@)=2"2" —272" L2 ¥ 27 =27 377
t_)(2—2”+1)+
It follows from (3.74)—(3.77) that the mapping A is continuous on each one of

the intervals [272",272"""], n = 2,3, .... It is not difficult to check that A is well
defined on [0, 1] and that it is increasing.

By (3.70) and (3.72), for each x € [1/4, 1] we have Ax < x. We will now show
that this inequality holds for all x € (0, 1].

Let n > 2 be an integer and let x € [2_2",2_2"71]. It is clear that Ax < x if
x €272 272" If x e [272", 272"+, then by (3.74) and (3.75),

Ax < AQ77H) <27 <.

Thus Ax < x forall x € [2_2" , 2_2n_|] and for any integer n > 2. Therefore we have
indeed shown that

Ax <x forallx € (0, 1], (3.78)

as claimed.
Next, we will show that

|Ax — Ay| <|x —y| foreachux,ye]0,1]. (3.79)
If x =0and y > 0, then
|[Ay — Ax[=Ay <y =y —x|. (3.80)

Assume that x, y € (0, 1]. Note that the restrictions of the mapping A to the interval
[1/4,1] and to all of the intervals [2_2", 2_2"71], where n > 2 is an integer, are
Lipschitz with Lipschitz constant one. This obviously implies that the mapping A is
1-Lipschitz on all of (0, 1]. Therefore (3.79) is true.

Let x € (0, 1]. By (3.78), the sequence {A"x}7° | is decreasing and there exists
the limit

Xy = lim A"x.
n—oo

Clearly, Ax, = x,. If x, > 0, then by (3.78), Ax, < x4, a contradiction. Thus x, =0
and lim,,_, oo A" (1) = 0. Since the mapping A is increasing, this implies that

A"x - 0 asn— oo, uniformly on [0, 1].
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Finally, we will show that for each integer m > 1, the power A™ is not contractive.

Indeed, let m > 1 be an integer. It is sufficient to show that there exist x, y € [0, 1]
such that

x#y and |A" —A"y|=|x -yl

To this end, choose a natural number n > m + 4 such that
227 3> m 42 (3.81)
Using induction and (3.74), we show that for each integer i € {1, ..., 22"7l -2},

Al (272"*1) —p 2 2 > 2"+l

and
Ai(Z,ZH) c [272"+1 , 272”71]'
Put
x=2"2" and y=4(22").
Then fori =1,...,22" ' —3, we have

|Aix_Aiy| =|x_)’|7
and in view of (3.81),
|A™x — A" y| = |x — yl.

Thus the power A™ is not contractive, as asserted.

3.6 A Mapping with Nonuniformly Convergent Powers
In [155] we proved the following result.

Theorem 3.7 Let (X, p) be a compact metric space, let a mapping A : X — X

satisfy
p(Ax, Ay) < p(x,y) foreachx,ye X, (3.82)

and let x4 € X satisfy
A'x — x4 asn— oo, foreachx € X.

Then A"x — x4 as n — 00, uniformly on X.
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Proof Let ¢ > 0. For each x € X, there is a natural number n(x) such that

p(A"x,x4) <e/2 forall integers n > n(x). (3.83)
Let

x,yeX with p(x,y) <e/2. (3.84)
By (3.83) and (3.84), for each integer n > n(x),

p(A"y,xa) < p(A"y, Ax) + p(A"x,xp) <€/2+¢/2.

Thus the following property holds:

(P) For each x € X, each integer n > n(x), and each y € X satisfying p(x,y) <
e/2, we have

,o(A”y, xA) <e.
Since X is compact, there exist finitely many points x1, ..., x; € X such that

q
UlveX:p0.x)<e/2)=

i=1

Assume that y € X and that the integer n > max{n(x;) :i =1, ..., g}. Then there is
J€{l,...,q}suchthat p(y,x;) < ¢&/2. By property (P),

p(A"y,xA) <e.
This completes the proof of Theorem 3.7. 0

The following example was constructed in [155].
Let X be the set of all sequences (x1, x2,...,X,,...) such that Zloil x| <1
and set

p(x,y) = p((x:), () Zm—yl

In other words, (X, p) is the closed unit ball of ¢;. Clearly, (X, p) is a complete
metric space. Define

A1, X2, oy Xpy o) = (2, X2, 0.0, Xny .0 ), X =(x1,X2,...) € X.

Then the mapping A is nonexpansive, and for each x € X, A"x — 0 as n — oo.
However, if n is a natural number and e, is the n-th unit vector of X, then
p(ATe,1,0) = 1.
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3.7 Two Results in Metric Fixed Point Theory

In this section, which is based on [115], we establish two fixed point theorems for
certain mappings of contractive type. The first result is concerned with the case
where such mappings take a nonempty and closed subset of a complete metric space
X into X, and the second with an application of the continuation method to the case
where they satisfy the Leray-Schauder boundary condition in Banach spaces.

The following result was obtained in [115].

Theorem 3.8 Let K be a nonempty and closed subset of a complete metric space
(X, p). Assume that T : K — X satisfies

p(Tx, Ty) <¢(p(x,y))p(x,y) foreachx,y €K, (3.85)

where ¢ : [0, 00) — [0, 1] is a monotonically decreasing function such that ¢ (t) < 1
forallt > 0.
Assume that Ko C K is a nonempty and bounded set with the following property:

(P1) For each natural number n, there exists x, € Ko such that T'x,, is defined for
alli=1,...,n.

Then

(A) the mapping T has a unique fixed point x in K
(B) Foreach M, ¢ > 0, there exist § > 0 and a natural number k such that for each
integer n > k and each sequence {x;}_, C K satisfying

p(xo,x) <M and p(xiy1,Tx;)) <6, i=0,....,n—1,
we have

pxi,x)<e, i=k,...,n. (3.86)

Proof of Theorem 3.8(A) The uniqueness of x is obvious. To establish its existence,
let x,, € Ko be, for each natural number 7, the point provided by property (P1). Fix
6o € K. Since K is bounded, there is ¢ > 0 such that

0(0,2) <co forall z € K. (3.87)

Let ¢ > 0 be given. We will show that there exists a natural number k such that the
following property holds:

(P2) If n > k is an integer and if an integer i satisfies k <i < n, then
p(T xn, T x,) <6 (3.88)

Assume the contrary. Then for each natural number k, there exist natural numbers
ny and i such that

k <iy <n; and p(Tikxnk, Tik+1xnk) > e. (3.89)
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Choose a natural number & such that

k> (s(1= ()" (2co + p(6, TH)). (3.90)
By (3.89) and (3.85),

p(T xn, T xp ) > 6, i=0,... 0. (3.91)

(Here we use the notation that 79z = z for all z € K.) It follows from (3.85), (3.91)
and the monotonicity of ¢ that foralli =0, ..., i — 1,

,O(Tinnk, Ti_Hxnk) < ¢(p(Ti+lxnk, Tix;zk))p(Ti+lxnk, Tixnk)
< ¢@p(T™ ony, Txny )
and
P(Ti+2xnk, Ti+1xnk) . p(Tinnk, Tixnk)
<(pe) = 1)p(T ™ x, Tlxn ) < —(1 = p(e))e. (3.92)
Inequalities (3.92) and (3.89) imply that

=P, Txyy) < p(Tik+1xrlk’ Tikxnk) — pXnyes Txny)

-
= [p(Ti+2x,,k, Ti+1xnk) — p(Tinnk, Tixnk)]
0

< —(1-¢@©e)it = —k(1 - (e))e
and
k(1= $(&))e < pCrng. ). (3.93)
In view of (3.93), (3.85) and (3.87),
k(1= ¢(©)e < pan,, Toxny)
< pXn, ) + 00, TO) + p(TO, Txy,) <co+ p(0, TO) +co
and
k< (e(1 =) (2co+ (0, TH)).

This contradicts (3.90). The contradiction we have reached proves that for each
& > (0, there exists a natural number k such that (P2) holds.

Now let § > 0 be given. We show that there exists a natural number k such that
the following property holds:

(P3) If n > k is an integer and if integers i, j satisfy k <i, j < n, then

p(Tixn, T-/xn) <.
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To this end, choose a positive number
e<47'85(1-9(). (3.94)

We have already shown that there exists a natural number &k such that (P2) holds.
Assume that the natural numbers 7, i and j satisfy

n>k and k<i,j<n. (3.95)

We claim that p(Tx,, T/ x,) <.
Assume the contrary. Then

p(T'xn, T x,) > 8. (3.96)
By (P2), (3.95), (3.85), (3.96) and the monotonicity of ¢,
p(Tixn, zjn) < p(Tixn, Ti+1xn) + ,o(Ti‘Hxn, Tj+1xn) + p(Tj+1xn, zjn)

<e+ p(T”lxn, Tj“x,,) +e

<2+ ¢(p(Tixn, zjn))p(Tixn, zj,,)

<2e+ @) p(T xn, T'xy).
Together with (3.94) this implies that

p(Tixn, T/ x,) < 26(1 — $(8)) ' <6,

a contradiction. Thus we have shown that for each § > 0, there exists a natural
number k such that (P3) holds.

Let ¢ > 0 be given. We will show that there exists a natural number k such that
the following property holds:

(P4) If ny, ny > k are integers, then ,o(Tkx,,,, Tkxnz) <e.

Choose a natural number k such that
k> ((1—¢() () 4co (3.97)
and assume that the integers n; and nj satisfy
ni,ny > k. (3.98)
We claim that ,o(Tk)c,,I , Tkxnz) < &. Assume the contrary. Then
,o(Tkxnl, Tkxnz) > &.
Together with (3.85) this implies that

o(T xn,, T'xy) > 6, i=0,....k (3.99)
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By (3.85), (3.99) and the monotonicity of ¢, we have fori =0, ...,k — 1,
o(T T %y, T x0,) < (0 (T %0,y T ) ) (T Xy, T Xy )
< ¢ p(T xn,, T'xny)
and
p(T ™ x,, T x0,) — p(T %0, Thxny)
< (¢ = D)p(T'xn,, T'xny) < —(1 = ().
This implies that

_p(xnl s xnz) = ,O(Tkxn. s Tkxnz) - ;O(an , xnz)
k—1
= Z[,o(T"Hx,,l, T %) = p(T %y, T'xny )] < —k(1 = ¢ (e))e.
i=0

Together with (3.87) this implies that
k(1= (&))e < p(xny, Xny) < p(xny, 0) + p(0, Xny) < 2c0.
This contradicts (3.97). Thus we have shown that
,o(Tkx,,l, Tkx,,z) <e.

In other words, there exists a natural number k for which (P4) holds.
Let ¢ > 0 be given. By (P4), there exists a natural number k; such that

p(Tklxnl, Tklxnz) <e/4 for all integers ny, ny > kj. (3.100)
By (P3), there exists a natural number k, such that

p(Tixn, T-ix,,) <eg/4 for all natural numbers n, j, i satisfying kp <i, j <n.

(3.101)
Assume now that the natural numbers n1, ns, i and j satisfy
ni,ny >k +ky, i,j>ki+ko, i<ny, j <ns. (3.102)
We claim that
p(Tix,,l, zjnz) <e.
By (3.100), (3.102) and (3.85),
p(TH ey, Th¥R2x, ) < p(T* x,,, TF x,,) < e/4. (3.103)

In view of (3.102) and (3.101),

,o(Tkl'H‘zxnl, Tix,,l) <e/4 and ,o(Tkl'H‘zx,lz, zjnz) <eg/4.
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Together with (3.103) these inequalities imply that
p(Tix,,], zjnz)
< p(Tixnl, Tk‘+k2xn]) + ,O(Tk1+k2x,,], Tk1+k2xn2) + ,O(Tk1+k2xn2, zj,,z)
<e.

Thus we have shown that the following property holds:

(P5) For each € > 0, there exists a natural number k(g) such that
o(T xn,, T/ xp,) < ¢

for all natural numbers n1,no > k(¢),i € [k(e),n1) and j € [k(¢), na).

Consider the two sequences {T”’zx,,}flo=2 and {T”’lx,,}ff:z. Property (P5) im-
plies that both of them are Cauchy and that

lim p(7" 'x,, T"%x,) =0.
n— o0
Therefore there exists X € K such that
lim ,0()?, T"fzxn) = lim ,o()f, T"flxn) =0.
n— o0 n—o0
Since the mapping 7 is continuous, 7x = x and assertion (A) is proved. g

Proof of Theorem 3.8(B) For each x € X and r > 0, set

B(x,r)={yeX:px,y) <r}. (3.104)
Choose &g > 0 such that
8o < M(l — ¢(M/2))/4. (3.105)
Assume that
yeKNBE, M), z€X and p(z,Ty) <. (3.106)

By (3.106) and (3.85),
p(x,2) < p(x, Ty)+p(Ty,z) <p(Tx,Ty)+do
<¢(px, ), y)+ . (3.107)
There are two cases:

p(y,x) < M/2; (3.108)
oy, x) > M/2. (3.109)
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Assume that (3.108) holds. By (3.107), (3.108) and (3.105),
p(x,2)<pXx,y)+8<M/2+686 <M. (3.110)
If (3.109) holds, then by (3.107), (3.106), (3.109) and the monotonicity of ¢,

p(X,2) <80+ d(M/2)p(x,y) <80+ d(M/2)M
<M/H(1—pM/2))+d(M/2)M < M.

Thus p(x, z) < M in both cases.
We have shown that

p(xX,z) <M foreachze Xandye KN B(x, M)
satisfying p(z, Ty) < &o. (3.111)

Since M is any positive number, we conclude that there is §; > 0 such that

p(x,z)<e foreachze Xandye K NB(x,¢)
satisfying p(z, Ty) < 1. (3.112)

Choose a positive number § such that
8<min{80,81,s(1—¢(5))4_1} (3.113)
and a natural number k such that
k>4M+1)(1—¢e)e) ' +4. (3.114)
Let n > k be a natural number and assume that {x;}!_, C K satisfies
plxp,x) <M and p(xi+1,Tx;) <68, i=0,...,n—1. (3.115)

We claim that (3.86) holds. By (3.111), (3.115) and the inequality 6 < &g (see
(3.113)),

{xi}i_y C B(x, M). (3.116)

Assume that (3.86) does not hold. Then there is an integer j such that
jelk,n} and p(xj,x)>e. (3.117)
By (3.117), (3.115), (3.112) and (3.113),
pxi,x)>e, i=0,...,]J. (3.118)

Leti € {0,...,j — 1}. By (3.115), (3.118), the monotonicity of ¢, (3.113) and
(3.85),
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P (i1, X) < p(xi1, Txi) + p(Txi, TX) < 8+ ¢(p(xi, ¥))p(xi, )
=8+ ¢(e)p(xi, x)

and

PXip1,X) — p(xi, X) <8 — (1 —¢(e))p(xi, ¥) <6 — (1 — ¢ (e))e
<—(1—¢()e/2.
By (3.115) and (3.117) and the above inequalities,

—M < —p(x0,%) < p(xj,X) — p(x0, X)

j—1
=Y [pGi1, ) = p(xi, )] < —j (1 — ¢ (e)e/2) < —k(1 — $(e))e/2.
i=0

i=

This contradicts (3.114). The contradiction we have reached proves (3.86) and as-
sertion (B). O

Let G be a nonempty subset of a Banach space (Y, || - ||). In [64] J. A. Gatica
and W. A. Kirk proved that if T : G — Y is a strict contraction, then 7' must have
a unique fixed point x1, under the additional assumptions that the origin is in the
interior Int(G) of G and that T satisfies a certain boundary condition known as the
Leray-Schauder condition:

Tx#Ax Vxe€dG,Vi>1. (L-S)

Here G is not necessarily convex or bounded. Their proof was nonconstructive.
Later, M. Frigon, A. Granas and Z. E. A. Guennoun [61], and M. Frigon [60] proved
that if x; is the unique fixed point of ¢T, then, in fact, the mapping ¢+ — x; is Lip-
schitz, so it gives a partial way to approximate x;. Our second result in this sec-
tion, which was also obtained in [115], extends these theorems to the case where T
merely satisfies (3.85).

Theorem 3.9 Let G be a nonempty subset of a Banach space Y with 0 € Int(G).
Suppose that T : G — X is nonexpansive and that it satisfies condition (L-S). Then
for each t € [0, 1), the mapping tT : G — X has a unique fixed point x; € Int(G)
and the mapping t — x; is Lipschitz on [0, b] for any 0 < b < 1. If, in addition, T
satisfies (3.85), then it has a unique fixed point x| € G and the mapping t — x; is
continuous on [0, 1]. In particular, x; = lim,_, ;- x;.

Proof In the first part of the proof we assume that 7" is nonexpansive, i.e., it satisfies
(3.85) with ¢ identically equal to one.
Let S C [0, 1) be the following set:

S = {t € [0, 1) : ¢T has a unique fixed point x; € Int(G)}.
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Since ¢ T is a strict contraction for each ¢ € [0, 1), it has at most one fixed point. In
order to prove the first part of this theorem, we have to show that S = [0, 1). Since
0 € § by assumption and since [0, 1) is connected, it is enough to show that § is
both open and closed.

1. S is open: Let #y € S. From the definition of § it is clear that 7y < 1, so there
is a real number ¢ such that #p < g < 1. Let x4, € Int(G) be the unique fixed point
of 1T .

Since Int(G) is open, there is r > 0 such that the closed ball B[x;,, ] of radius r
and center x;, is contained in Int(G). We have, for all x € B[x;,,r] and ¢ € [0, 1),

1T x = xigll < 1T x = 1T x|+ 1t — 1ol Txeg Il + 10T x4y — x|

< tllx — x|l + 1t — 00l Txsy | < tr + |2 — 10 (I T x50 | + 1) (3.119)

Suppose that ¢ € [0, 1) satisfies

1_
It — 1o <min{M,q—to}. (3.120)
L+ 1T x4 |l

Then ¢t < g and

r(l1—rt)

lt —1to] < ——,
L+ 1Ty

50 [[tTx — x4 || < r by (3.119). Consequently, the closed ball B[x;,, r] is invariant
under #7T, and the Banach fixed point theorem ensures that 7 has a unique fixed
point x; € B[xy,, r] CInt(G). Thus t € § for all ¢ € [0, 1) satisfying (3.120).

2. S is closed: Suppose #p € [0, 1) is a limit point of S. We have to prove that
to € S, and since 0 € S we can assume that 7y > 0. There is a sequence (#,), in [0, 1)
such that #y = lim,,_, » ;, and since #y < 1, there is 0 < g < 1 such that ¢, < g forn
large enough. Define

Ao = {x;:1€5N[0,q]}.
The set Ag is not empty since 0 € Ag. In addition, if t € S N [0, g], then

el = Nl Txell < g (ITxe — TOI + 1TO) < g (llx: —Oll)llx; — Oll + g 7Ol

Therefore

gliTol _ 170l
—¢(lxlhg ~1—¢q’
so Ao is a bounded set, and since T is Lipschitz, T (Ag) is also bounded, say by M.
We will show that (x;,), is a Cauchy sequence which converges to the fixed point x;,

of 1oT. Indeed, since x;, and x;, are the fixed points of #,T and ¢,, T, respectively,
it follows that

el = (3.121)

lx, = xe, | = W6n T X1, =t T X1, || < |10 — G N T 5, | + 1 8m T X5, — T X1, |

< ltn =t M + tw(Ilxs, — x5, 1) 125, — %z, .
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Hence
” < |tn _tm|M < |tn _tmlM
L = tm@ (llxs, — x4, 1) l—¢q

Since t, — fo as n — 00, we see that (x;,), is indeed Cauchy and hence con-
verges to xy, € G. Using again the equality #, T x;, = x;,, we obtain

(3.122)

llxs, — x4,

20T x5 — X |l < 20T X129 — t0T X4, | + 20T X1, — ta Tx1, || + 80 T X1, — X1
=101 Txty — Txz, || + |0 — tu || Txe,, || + ||z, — Xgoll

< llxg = X1, | + 1t0 — ta M + |25, — X1 | = O,

50 10T X1y = Xy, 1.€., Xy, 1s indeed a fixed point of # 7. It remains to show that
Xz, € Int(G), and this follows from the (L-S) condition: since Tx;, = %x,o, so (L-S)
implies that x;, ¢ dG (recall that 0 < 79 < 1). Hence S is closed, as claimed.

The fact that the mapping ¢+ — x; is Lipschitz on the interval [0, b] for any 0 <
b < 1 follows from (3.122).

Suppose now that 7 satisfies (3.85) with ¢ (#) < 1 for all positive . Let (#,), be
a sequence in [0, 1) such that #, — 7o = 1. The set Ay (and hence the set T (Ap))
remain bounded also when g = 1, because if ||x;|| > 1, then in (3.121) we get
x| < lﬂo(“l), so in any case ||x;|| < max(l, 1[20(”1)) (recall that ¢ (1) < 1). Now,
in order to prove that xj :=lim,_ ;-1 x; exists, note first that (x;,), is Cauchy if
t, — 1, because otherwise there is ¢ > 0 and a subsequence (call it again #,) such
that ||x,,,, — X, Il > &, but from (3.122) we obtain

|t2n+1 - t2n+2|M
1 —ton29(e)

a contradiction. Now, all these sequences approach the same limit because for any
two such sequences

— 0,

X141 — Xtgpa | <

(th Ins (xsn)n’

the interlacing sequence (f1,s1,%,52,...) = 1, 50 (X4, X5, X1y, Xy, ...) 1S also
Cauchy. The fact that x; is a fixed point of T is proved as above (here, however,
one cannot use (L-S) to conclude that x; € Int(G), and indeed it may happen that
x1 € G as the mapping T : [—1, 00) — R, defined by Tx = % shows). O

3.8 A Result on Rakotch Contractions

In this section, which is based on [160], we establish fixed point and convergence
theorems for certain mappings of contractive type which take a closed subset of a
complete metric space X into X.

Let K be a nonempty and closed subset of a complete metric space (X, p). For
eachx € X and r > 0, set

B(x,r)= {y eX:p(x,y) fr}.
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In the following result, which was obtained in [160], we provide a new sufficient
condition for the existence and approximation of the unique fixed point of a con-
tractive mapping which maps a nonempty and closed subset of a complete metric
space X into X.

Theorem 3.10 Assume that T : K — X satisfies

p(Tx,Ty) <¢(p(x,)p(x,y) forallx,yeK, (3.123)

where ¢ : [0, 00) — [0, 1] is a monotonically decreasing function such that ¢ (t) < 1
forallt > 0.
Assume that there exists a sequence {x,},° | C K such that

lim po(x,, Tx,)=0. (3.124)
n—oQ
Then there exists a unique x € K such that Tx = Xx.

Proof The uniqueness of x is obvious. To establish its existence, let ¢ € (0, 1) be
given and choose a positive number y such that

y < (1 — ¢(8))8/8. (3.125)
By (3.124), there is a natural number nq such that
o(xn, Txy) <y for all integers n > ng. (3.126)

Assume that the integers m, n > ng. We claim that p(x,,, x,) < &. Assume the
contrary. Then
P (X, xp) > €. (3.127)

By (3.125), (3.123), (3.127), the monotonicity of ¢, and (3.126),

P (X, Xn) < P, Txm) + (T X, Txn) + p(T Xn, Xp)
<2y 4+ ¢ (0 Ctm, x2)) P Qo Xn) <2y + (&) p (X, Xn)
= p(tm, Xn) — (1= ¢(&)) p (Xm Xn) + 2y
< P @ms Xn) = (1= (&) p(Xm, xa) + (1 — B (e)) /4
< p@msxn) — (1= (&) p (X, x0) (3/4)
= p(tm, X)[(1/4) + () B/H)] < p(Xm. Xn),
a contradiction.

The contradiction we have reached proves that p(x,,, x,) < ¢ for all integers
m,n > ng, as claimed.
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Since ¢ is an arbitrary number in (0, 1), we conclude that {x, };’lo | is a Cauchy se-
quence and there exists x € X such that lim,_, o x, = x. By (3.123), for all integers
n>1,

p(Tx,x) < p(Tx, Txp) + p(Txn, xp) + p(xp, X)

<20, X))+ p(Txp,x,) —> 0 asn— oo.

This concludes the proof of Theorem 3.10. 0

In the following result, which was also obtained in [160], we present another
proof of the fixed point theorem established in Theorem 1(A) of [115]. This proof
is based on Theorem 3.10.

Theorem 3.11 Let T : K — X satisfy

p(Tx,Ty) <¢(p(x,y)p(x,y) forallx,yeK,

where ¢ : [0, 00) — [0, 1] is a monotonically decreasing function such that ¢ (t) < 1
forallt > 0.

Assume that Ko C K is a nonempty and bounded set with the following property:

For each natural number n, there exists y, € Ko such that T'y,, is defined for all
i=1,...,n.

Then the mapping T has a unique fixed point x in K.

Proof By Theorem 3.10, it is sufficient to show that for each ¢ € (0, 1), there is
x € K such that p(x, Tx) < €. Indeed, let € € (0, 1). There is M > 0 such that

oo, yi) <M, i=1,2,.... (3.128)
By (3.123) and (3.128), for each integer i > 1,
o i Tyi) < p(yis yo) + p(yo, Tyo) + p(Tyo, Tyi) <2M + p(yo, Tyo). (3.129)
Choose a natural number g > 4 such that
(g — De(1 = (&) > 4M +2p(yo, Tyo). (3.130)

Set 7% =7z,z¢€K.
We claim that ,o(Tq_lyq, T%y,) < &. Assume the contrary. Then by (3.123),

o(T'yy, T y))>e, i=0,....,q—1. (3.131)
In view of (3.123), (3.131) and the monotonicity of ¢, we have fori =0, ...,q — 2,

<o @©@)p(T y,, T y,)
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and

P(T'yq: T yq) = (T yg, TH2y0) = (1= ¢@) (T yg, T yg)
> (1—¢(e))e. (3.132)

By (3.129) and (3.132),

2M + p(30. Ty0) = p(3g. Tyg) — p(T9 7 yg. T?y,)
q—2
> Z['O(leq’ Tz+1yq) _ ,O(Tl_qu, Tz+2yq)]
i=0

> (g —D(1—9()e
and
2M + p(y0, Tyo) = (g — (1 — p(e))e.
This contradicts (3.130). The contradiction we have reached shows that
p(T7 "y Ty,) <,

as claimed. Theorem 3.11 is proved. U

In the following result, also obtained in [160], we establish a convergence re-
sult for (unrestricted) infinite products of mappings which satisfy a weak form of
condition (3.123).

Theorem 3.12 Let ¢ : [0,00) — [0, 1] be a monotonically decreasing function
such that ¢ (t) < 1 forallt > 0.
Let

x ek, T,:K—> X, i=0,1,..., Tix=x, i=0,1,..., (3.133)
and assume that
p(Tix,x) < d)(p(x,)?))p(x,)?) foreachx e K,i=0,1,.... (3.134)
Then for each M, € > 0, there exist § > 0 and a natural number k such that for each
integer n >k, each mapping r : {0,1,...,n — 1} = {0, 1, ...}, and each sequence
{)c,-}?:_ol C K satisfying
pxo,x) <M and pxiy1, Tryxi) <8, i=0,...,n—1,

we have

pxi,x)<e, i=k,...,n. (3.135)
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Proof Choose &g > 0 such that
So<M(1—¢(M/2))/4. (3.136)
Assume that
ye KNBx, M), ief{0,1,...}, zeX and p(z,Tiy) <&. (3.137)
By (3.137) and (3.134),
P(E,2) < p(X, Tiy) + p(Ti, 2) < (p (X, y)) p (X, ¥) + o. (3.138)
There are two cases:
p(y,x) =M/2 (3.139)
and

o(y,x)>M/2. (3.140)
Assume that (3.139) holds. Then by (3.138), (3.139) and (3.136),

p(x,2) <p(x,y) +8<M/2+ 8 <M. (3.141)
If (3.140) holds, then by (3.138), (3.137), (3.136) and the monotonicity of ¢,

p(x,z) <80+ @(M/2)p(x,y) <o +dM/2)M
<M/H(1—¢pM/2))+(M/2)M < M.

Thus p(x,z) < M in both cases.
‘We have shown that

ifye KNB(x,M),i€{0,1,...},z€ X, p(z, T;y) <o, then p(¥,z) <M.
(3.142)

Since M is any positive number, we conclude that there is §; > 0 such that

ifye KNB(x,e),i€{0,1,...},z€ X, p(z, T;y) <41, then p(¥X,2) <e.
(3.143)

Now choose a positive number § such that
8 <min{do, 81,¢(1 —¢(e))47"} (3.144)
and a natural number k such that

k>4M+1)((1—¢e)e) ™ +4. (3.145)
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Let n > k be a natural number. Assume that7 : {0,...,n — 1} — {0, 1, ...} and that
)i, CK
satisfies
p(xo,x) <M and p(xi41, Trox) <8, i=0,....,n—1 (3.146)

We claim that (3.135) holds. By (3.142), (3.146) and the inequality § < §o,
{xi}i—o C B(x, M). (3.147)

Assume to the contrary that (3.135) does not hold. Then there is an integer j such
that

jelk,...,n} and p(x;, %) >e. (3.148)
By (3.148) and (3.134),

pxi,x)>¢e, i=0,...,]. (3.149)

Leti €{0,...,j— 1}. By (3.146), (3.134) and the monotonicity of ¢,
p(Xit1, %) < pxigt, Triyxi) + p(Tryxi, ¥) < 8 + ¢ (o (xi, X)) p(xi, X)
=8+ ¢(e)p(xi, x).
When combined with (3.144) and (3.49), this implies that
pig1, X) — p(xi, X) 8 — (1 —¢(&)p(x;, ) <6 — (1 —p(e))e
< —(1 - ¢(s))s/2. (3.150)

Finally, by (3.146), (3.150) and (3.148),

-M = _,O(XO,X)S,O(X],)E)_,O(X(),X)

j—1
=Y [ois1. H) = (. D] < —j(1 - p(©)e/2 < —k(1 — p(e))e/2.
i=0

1=

This contradicts (3.145). The contradiction we have reached proves (3.135) and
Theorem 3.12 itself. O

3.9 Asymptotic Contractions

In this section, which is based on [8], we provide sufficient conditions for the iterates
of an asymptotic contraction on a complete metric space X to converge to its unique
fixed point, uniformly on each bounded subset of X.
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Let (X, d) be a complete metric space. The following theorem is the main result
of Chen [40]. It improves upon Kirk’s original theorem [83]. In this connection, see
also [6] and [76].

Theorem 3.13 Let T : X — X be such that
d(T"x, T"y) < ¢u(d(x. y))

for all x,y € X and all natural numbers n, where ¢, : [0,00) — [0, 00) and
limy,—, 00 ¢n = @, uniformly on any bounded interval [0, b]. Suppose that ¢ is up-
per semicontinuous and that ¢ (t) <t for all t > 0. Furthermore, suppose that there
exists a positive integer ny such that ¢, is upper semicontinuous and ¢, (0) = 0. If
there exists xo € X which has a bounded orbit O (xg) = {x¢, T xo, szo, ...}, then
T has a unique fixed point x,, € X and lim,_, oo T"x = x, forall x € X.

Note that Theorem 3.13 does not provide us with uniform convergence of the
iterates of T on bounded subsets of X, although this does hold for many classes of
mappings of contractive type (e.g., [23, 114]). This property is important because it
yields stability of the convergence of iterates even in the presence of computational
errors [35]. In this section we show that this conclusion can be derived in the setting
of Theorem 3.13 if for each natural number n, the function ¢, is assumed to be
bounded on any bounded interval. To this end, we first prove a somewhat more
general result (Theorem 3.14) which, when combined with Theorem 3.13, yields
our strengthening of Chen’s result (Theorem 3.15).

Theorem 3.14 Let x, € X be a fixed point of T : X — X. Assume that
d(T"x, x*) < ¢y (d(x, x*)) forall x € X and all natural numbers n, (3.151)

where ¢, : [0, 00) — [0, 00) and lim,_, oo ¢, = ¢, uniformly on any bounded inter-
val [0, b]. Suppose that ¢ is upper semicontinuous and ¢ (t) <t for all t > 0. Then
T"x — x4 as n — 00, uniformly on each bounded subset of X .

Theorem 3.15 Let T : X — X be such that

d(T"x, T"y) < ¢u(d(x. y))

for all x,y € X and all natural numbers n, where ¢, : [0,00) — [0, 00) and
lim;,—, 5o ¢ = ¢, uniformly on any bounded interval [0, b]. Suppose that ¢ is up-
per semicontinuous and ¢(t) <t for all t > 0. Furthermore, suppose that there
exists a positive integer ny such that ¢, is upper semicontinuous and ¢, (0) = 0. If
there exists xo € X which has a bounded orbit O (xg) = {xo, T xo, T%x, ... }, then T
has a unique fixed point x, € X and lim,,_, oo T" x = x4, uniformly on each bounded
subset of X.
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Proof of Theorem 3.14 We may assume without loss of generality that ¢ (0) = 0 and
¢, (0) =0 for all integers n > 1.
For each x € X and each r > 0, set

B(x,r)= {y eX:dkx,y) < r}.
We first prove three lemmata.

Lemma 3.16 Let K > 0. Then there exists a natural number q such that for all
integers s > ¢,

T*(B(xs, K)) C B(xy, K 4+ 1).
Proof There exists a natural number g such that for all integers s > ¢,
|¥s(t) — ()| <1 forallr [0, K.
Let s > g be an integer. Then for all x € B(x,, K),
d(T°x,x:) < ¢s(d(x,x0)) <@(d(x,x0)) +1 <d(x,x) +1 <K +1.
Lemma 3.16 is proved. g

Lemma 3.17 Let O < &1 < gg. Then there exists a natural number g such that for
each integer j > q,

T/ (B(xs, £1)) C B(x«, £0).
Proof There exists an integer ¢ > 1 such that for each integer j > ¢,
|9j(t) — ()| < (60 —€1)/2 forallt € [0, go]. (3.152)

Assume that
jef{qg,.qg+1,...} and x € B(xy,e¢1).
By (3.151) and (3.152),

d(T/x,xy) < ¢j(d(x,x0)) < p(d(x, x5)) + (80 — £1)/2
<e1+ (g0 —£1)/2= (g0 +£1)/2.

Lemma 3.17 is proved. 0

Lemma 3.18 Let K, ¢ > 0 be given. Then there exists a natural number q such that
for each x € B(xy, K),

min{d(T-/x,x*) j=1, ...,q} <e.
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Proof By Lemma 3.16, there is a natural number g such that

T" (B(x*, K)) C B(x4, K + 1) for all natural numbers n > q.

(3.153)

‘We may assume without loss of generality that ¢ < K /8. Since the function t — ¢ (¢),

t € (0, 00), is lower semicontinuous and positive, there is
3€(0,¢/8)

such that
t—¢@)=>25 foralltele/2,K +1].

There is a natural number s > ¢ such that
|p(t) — ¢s()| <8 forallt € [0, K +1].
By (3.155) and (3.156), we have, for all ¢t € [¢/2, K + 1],
bs() <Pp()+8<t—-25+8=1—3.
In view of (3.156) and (3.154), we have, for all ¢ € [0, /2],
Os(t) <Pp(t)+6<t+56=<¢/24+5<(3/4e.
Choose a natural number p such that
p>4+5 1 (K +1).

Let
x € B(xy4, K).
‘We will show that

min{d(zj,x*) (j=12,...,ps}<e
Assume the contrary. Then
d(zj,x*) >¢ forall j=s,...,ps.
By (3.160) and(3.153),
T/ x eBx., K+1), j=s,...,ps.
Let a natural number i satisfy i < p — 1. By (3.162) and (3.163),
d(T”x,x*) >¢ and d(T”x,x*) <K-+1.

It follows from (3.151), (3.164) and (3.157) that

d(T‘Y(Ti‘Yx), x*) < ¢y (d(Ti‘Yx, x*)) < d(Tisx, x*) — 4.

(3.154)

(3.155)

(3.156)

(3.157)

(3.158)

(3.159)

(3.160)

(3.161)

(3.162)

(3.163)

(3.164)
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Thus for each natural numberi < p — 1,
d(T(i“)sx, x*) < a’(T”x, x*) — 4.
This inequality implies that
d(TPx, x.) <d(TP x,x,) =8 <+ <d(Tx, x:) — (p — 1)8.
When combined with (3.163) and (3.159), this implies, in turn, that
d(Tpsx,x*) <K+1—-(p—-1$§<0.

The contradiction we have reached proves (3.161) and completes the proof of
Lemma 3.18. 0

Completion of the proof of Theorem 3.14 Let K, ¢ > 0 be given. Choose ¢ € (0, ¢).
By Lemma 3.17, there exists a natural number ¢; such that

T/(B(xy,€1)) C B(x,,e) forall integers j > gi. (3.165)
By Lemma 3.18, there exists a natural number ¢, such that
min{d(T/x,x,):j=1,....,q2} <e; forallx € B(xs, K). (3.166)

Assume that
x € B(xy, K).

By (3.166), there is a natural number j; < g» such that
d(Tx, x,) <ey. (3.167)
In view of (3.167) and (3.165),
T/(T/'x) € B(xy,€) forall integers j > gi. (3.168)
Inclusion (3.168) and the inequality j; < g» now imply that
Tixe B(xy,e) forallintegersi > g1 + q>.

Theorem 3.14 is proved. 0

3.10 Uniform Convergence of Iterates

Let (X, d) be a complete metric space. The following theorem [9] is the main result

of this section. In contrast with Theorem 3.14, here we only assume that a subse-

quence of {¢,}7° | converges to ¢.
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Theorem 3.19 Let x, € X be a fixed point of T : X — X. Assume that
d(T”x,x*) §¢n(d(x,x*)) (3.169)

forall x € X and all natural numbers n, where the functions ¢, : [0, o0) — [0, 00),
n=1,2,..., satisfy the following conditions:

(i) Foreach b > 0, there is a natural number ny, such that
sup{¢, (1) :1 €[0,b] and all n > np} < oo; (3.170)
(ii) there exist an upper semicontinuous function ¢ : [0, 00) — [0, 00) satisfying

¢(t) <t forall t > 0 and a strictly increasing sequence of natural numbers
{mk},fil such that limg_, oo ¢, = ¢, uniformly on any bounded interval [0, b].

Then T"x — x, as n — 00, uniformly on any bounded subset of X .

Proof Set T%x = x for all x € X. For each x € X and each r > 0, set
B(x,r)={zeX:d(x,2) <r}. (3.171)

Let M > 0 and ¢ € (0, 1) be given. By (i), there are M| > M and an integer n; > 1
such that

¢i(t) <M; forallte [0, M+ 1] and all integers i > n. (3.172)
In view of (3.169) and (3.172), for each x € B(x,, M) and each integer n > nj,
d(Tyx, x,) < ¢ (d(x, x5)) < M. (3.173)
Since the function t — ¢ (¢) is lower semicontinuous, there is § > 0 such that
§<¢e/8 (3.174)

and
t—@(t) =25, tele/8,4M1+4] (3.175)
By (ii), there is an integer no > 2n1 + 2 such that
|, (1) —p ()| <8, 1 €[0,4M, +4]. (3.176)
Assume that
X € B(xy, M1 +4). (3.177)
If d(x, x) < ¢&/8, then it follows from (3.169), (3.174), (3.176) and (3.177) that

d(Tnzxa x*) =< ¢,,2(d(x,x*)) < ¢(d(x’x*)) +8<d(x,x)+5< 8/4“
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If d(x, x,) > ¢/8, then relations (3.169), (3.175), (3.176) and (3.177) imply that
d(T"x, x5) < @ny (d(x, x2)) S P(d(x,x0)) +8 <d(x, %) =28+ 8 =d (x, x4) — 6.
Thus in both cases we have
d(T"x, x,) < max{d(x, x,) — 8, £/4}. (3.178)
Now choose a natural number g > 2 such that
g>@+2M)5"". (3.179)
Assume that
x€Bxy, M +4) and T"x e B(xy, M1 +4), i=1, ...,qg—1. (3.180)
We claim that
min{d(T/"x,x,): j=1,...,q} <e/4. (3.181)
Assume the contrary. Then by (3.178) and (3.180), foreach j =1, ..., g, we have
d(Tjnzx, x*) < d(T(j_l)"zx, x*) )
and
d(T7x, x,) < d(T(q_l)”zx,x*) —8<--<d(x,x4) —g8 <M +4—gé.

This contradicts (3.179). The contradiction we have reached proves (3.181).
Assume that an integer j satisfies 1 < j <g — 1 and

d(T/"x,x,) <e/4.
When combined with (3.178) and (3.180), this implies that
d(TY "y, x,) < max{d(T/"2x, x,) — 8,¢/4} <e/4.
It follows from this inequality and (3.181) that
d(T1x,x,) <e/4 (3.182)

for all points x satisfying (3.177).
Assume now that x € B(x,, M) and let an integer s be such that s > n| + gno.
By (3.173),

T'xe B(xx, M1) for all integers i > nj
and

T°79"2x € B(xx, My). (3.183)
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Since T%x = T9"2(T*~9"2x), it follows from (3.182) and (3.183) that

d(Tsx, x*) = d(Tq"2 (Tsfqnzx), x*) <eg/4.
This completes the proof of Theorem 3.19. O

The following result, which was also obtained in [9], is an extension of Theo-
rem 3.19.

Theorem 3.20 Let x. € X be a fixed point of T : X — X. Assume that {my}72 | is
a strictly increasing sequence of natural numbers such that

d(kax, x*) =< dm, (d(x’ x*))
for all x € X and all natural numbers k, where T and the functions ¢,,, : [0, 00) —
[0,00), k=1,2,..., satisfy the following conditions:

(i) Foreach M > 0, there is M| > 0 such that
T! (B(x*, M)) C B(xx, My) for each integeri > 0;

(ii) there exists an upper semicontinuous function ¢ : [0, c0) — [0, 00) satisfying
¢(t) <t for all t > 0 such that limg_, oo ¢, = ¢, uniformly on any bounded
interval [0, b].

Then T"x — x, as n — 00, uniformly on any bounded subset of X .

Proof Let i be a natural number such that i ## my for all natural numbers k. For
each t > 0, set

¢i(t) =sup{d(T'x, x.) :x € B(xs, 1)}

Clearly, ¢;(t) is finite for all £ > 0. It is easy to see that all the assumptions of
Theorem 3.19 hold. Therefore Theorem 3.19 implies that 7"x — x, as n — oo,
uniformly on all bounded subsets of X. Theorem 3.20 is proved. g

Now we show that Theorem 3.19 has a converse.

Assume now that T : X — X, x, € X, T"x — x, as n — 00, uniformly on all
bounded subsets of X, and that 7'(C) is bounded for any bounded C C X. We claim
that T necessarily satisfies all the hypotheses of Theorem 3.19 with an appropriate

sequence {¢,}72 ;.
Indeed, fix a natural number n and for all ¢ > 0, set
On(t) = sup{d(T"x, x*) 1 x € B(xy, t)}.

Clearly, ¢, (¢) is finite for all # > 0 and all natural numbers n, and

d(Tnxa x*) <n (d(xa x*))
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for all x € X and all natural numbers »n. It is also obvious that ¢, — 0 as n — oo,
uniformly on any bounded subinterval of [0, 0o0), and that for any b > 0,

sup{¢, (1) :1 €[0,b],n>1} < c0.

Thus all the assumptions of Theorem 3.19 hold with ¢ (¢) = 0 identically.

3.11 Well-Posedness of Fixed Point Problems

Let (K, p) be a bounded complete metric space. We say that the fixed point problem
for a mapping A : K — K is well posed if there exists a unique x4 € K such that
Ax4 = x4 and the following property holds:

if {xn}jf’:l C K and p(x,, Ax,;) — 0 as n — o0, then p(x,,x4) — 0 as n — oo.

The notion of well-posedness is of central importance in many areas of Math-
ematics and its applications. In our context this notion was studied in [50], where
generic well-posedness of the fixed point problem is established for the space of
nonexpansive self-mappings of K.

In this section, which is based on [139], we first show (Theorem 3.21) that the
fixed point problem is well posed for any contractive self-mapping of K. Since it is
known that in Banach spaces (see Theorem 3.2) almost all nonexpansive mappings
are contractive in the sense of Baire’s categories, the generic well-posedness of the
fixed point problem for the space of nonexpansive self-mappings of K follows im-
mediately in this case. In our second result (Theorem 3.22) we show that the fixed
point problem is well posed as soon as the uniformly continuous self-mapping of K
has a unique fixed point which is the uniform limit of every sequence of iterates.

Let (K, p) be a bounded complete metric space. Define

d(K)=sup{p(x,y):x,y € K}. (3.184)

Recall that a mapping A : K — K is contractive if there exists a decreasing func-
tion ¢ : [0, d(K)] — [0, 1] such that

o) <1, te (O,d(K)] (3.185)
and

p(Ax, Ay) < qb(p(x, y)),o(x, y) forallx,yeK. (3.186)

Theorem 3.21 Assume that a mapping A : K — K is contractive. Then the fixed
point problem for A is well posed.

Proof Since the mapping A is contractive, there exists a decreasing function ¢ :
[0,d(K)] — [0, 1] such that (3.185) and (3.186) hold. By Theorem 3.1, there exists
a unique x4 € K such that

Axg =x4. (3.187)
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Let {x,}2 | C K satisfy

lim po(x,, Ax,) =0. (3.188)
n—oo

We claim that x, — x4 as n — o0o. Assume the contrary. By extracting a subse-
quence, if necessary, we may assume without loss of generality that there exists
& > 0 such that

p(xy,x4) >¢ forall integers n > 1. (3.189)
Then it follows from (3.187), (3.186), (3.189) and the monotonicity of the function
¢ that for all integers n > 1,
pxa, xp) < p(xa, Axp) + p(Axp, xp) < p(Axp, xp) + ¢(p(xna XA)),O(Xn, Xa)
< p(Axp, xn) + @ ()p(xa, Xn). (3.190)

Inequalities (3.190) and (3.189) imply that for all integers n > 1,

e(1=9(e) < (1—¢©)p(xa,xn) < p(Axn, Xn),

a contradiction (see (3.188)). The contradiction we have reached proves Theo-
rem 3.21. O

Theorem 3.22 Assume that A : K — K is a uniformly continuous mapping,
x4 €K, Axpq = x4, and that A"x — x4 as n — o0, uniformly on K. Then the
fixed point problem for the mapping A is well posed.

Proof Let ¢ > 0 be given. In order to prove this theorem, it is sufficient to show that
there exists § > 0 such that for each y € K satisfying p(y, Ay) < §, the inequality
p(y,x4) < € is true.

There exists a natural number ng > 3 such that

p(A"x,xA) <¢/8 forany x € K and any integer n > ny. (3.191)

Set
8o = &(8ng) "\ (3.192)

Using induction, we define a sequence of positive numbers {5;}7°, such that for any
integer i > 0,

8iy1 < 8; (3.193)
and
if x,ye K and p(x, y) <38;j+1, then p(Ax, Ay) <4;. (3.194)

We now show that if y € K satisfies p(y, Ay) < &,,, then p(y,x4) < &/2. Indeed,
let y € K satisfy

Py, Ay) < 3. (3.195)
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It follows from the definition of the sequence {‘Si}?io (see (3.193), (3.194)) and
(3.195) that for any integer j € [1, ng],

p(ATy, AT y) <8, ;. (3.196)

Relations (3.196), (3.193) and (3.192) imply that

no
p(y, A™Fly) < Zp(Ajy, ATTYY) < (o + D)8y < &/4. (3.197)
j=0

(Here we use the notation A%x = x for all x € K.) It follows from (3.197) and the
definition of nq (see (3.191)) that

p(y,xa) < p(y, A"Ty) + p(A"Fy x4) <e/d+e/8 <e/2.

Thus we have indeed shown that if y € K satisfies p(y, Ay) < 8,,, then p(y, x4) <
&/2. This completes the proof of Theorem 3.22. U

3.12 A Class of Mappings of Contractive Type

Let (X, p) be a complete metric space. In this section, which is based on [158],
we present a sufficient condition for the existence and approximation of the unique
fixed point of a contractive mapping which maps a nonempty, closed subset of X
into X.

Theorem 3.23 Let K be a nonempty and closed subset of a complete metric space
(X, p). Assume that T : K — X satisfies

p(Tx, Ty) < ¢>(p(x, y)) foreachx,y € K, (3.198)

where ¢ : [0, 00) — [0, 00) is upper semicontinuous and satisfies ¢ (t) <t for all
t>0.

Assume further that Ko C K is a nonempty and bounded set with the following
property:
(P1) For each natural number n, there exists x, € Ko such that T" x,, is defined.

Then the following assertions hold.

(A) There exists a unique x € K such that Tx = Xx.
(B) Let M, & > 0. Then there exist § > 0 and a natural number k such that for each

integer n > k and each sequence {x;}_, C K satisfying

p(xo,Xx) <M
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and
o(xit1, Tx;) <68, i=0,....,n—1,
the inequality p(x;, X) < € holds fori =k, ...,n.

Proof (A) The uniqueness of x is obvious. To establish its existence, we may and
shall assume that ¢ (0) = 0.

For each natural number n, let x, be as guaranteed by (P1). Fix 6 € K. Since K
is bounded, there is ¢g > 0 such that

0(0,2) <co forall z € Kp. (3.199)

Let ¢ > 0 be given. We will show that there exists a natural number k such that the
following property holds:

(P2) If n and i are integers such that k <i < n, then
p(T" x, Ti+1xn) <e.

Assume the contrary. Then for each natural number k, there exist natural numbers
ny and i such that

k<ip<ng and p(T%x,,, Ty, ) >e. (3.200)

Since the function ¢ — ¢ (¢) is positive for all # > 0 and lower semicontinuous, there
is ¥ > 0 such that

t—¢(t) >y forallte[e/2,2co+ p(0,TO) +¢]. (3.201)
Choose a natural number k such that
k>y~'(2co +p(0,T0)). (3.202)
Then (3.200) holds. By (3.200) and (3.198),
p(T xn, T xp ) > 6, i=0,... 0. (3.203)
(Here we use the convention that 70z = z for all z € K.) By (3.198),

,O(Xnk, Txnk) = p(Tank, Ti—Hxnk)
for each integer i satisfying 0 <i < ix. (3.204)

By (P1), (3.199) and (3.198),

,O(xnk, Txnk) =< p(xnk» 0)+p(6,T0)+ p(Tev Txnk)
<o+ pB,TO) + co. (3.205)
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Together with (3.203) and (3.204) this implies that
e < p(T xn,, T xy,) < 2c0 + p(0,TO) foralli=0,...,i. (3.206)
It follows from (3.198), (3.206) and (3.201) that for all i =0, ..., i — 1,
p(THzxnk, Ti+1xnk) < d)(p(TiJrlxnk, Tix,)) < p(Ti+1xnk, Tixn) — .
When combined with (3.205) and (3.200), this implies that

—p(0,T0) —2cp < —/O(xnk, Txnk) = p(Tik+1xnks Tikxnk) - p(xnk» Txnk)

ir—1

— Z[p(TH%an’ Ti+1xnk) _ ,O(Tinnk, Tixnk)]
i=0

—yir < —ky

IA

and
ky <2co+ p(0,T0).

This contradicts (3.202). The contradiction we have reached proves the existence of
a natural number k such that property (P2) holds.

Now let § > 0 be given. We will show that there exists a natural number k such
that the following property holds:

(P3) If n,i and j are integers such that k <i, j < n, then
p(Tixn, zjn) <3§.

Assume to the contrary that there is no natural number k for which (P3) holds.
Then for each natural number k, there exist natural numbers ng, iy and ji such
that

k <ip < jkx <ng (3.207)
and
p(Tikxnk, Tjkxnk) > 4.

We may assume without loss of generality that for each natural number k, the fol-
lowing property holds:
If an integer j satisfies iy < j < ji, then

p(T%xp, TV xp,) < 6. (3.208)
We have already shown that there exists a natural number kq such that (P2) holds

with k = kg and ¢ = 4.
Assume now that & is a natural number. It follows from (3.207) and (3.208) that
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§ < p(Tikxnk, Tjkx,,k) < p(T-/’fxnk, Tj"_lxnk) + p(Tjk—lxnk, Tikxnk)
< p(THxy,, TH ', ) + 6. (3.209)

By property (P2),

) ) _—
klggop(T]kx"k’ Tk Xnk) =0.
When combined with (3.209), this implies that

lim p(T%xy,, T'x,,) = 8. (3.210)

k— 00

By (3.207), for each integer k > 1,
8 < p(Ti"xnk, Tj"xnk)
< p(Tikxnk, Tik+1xnk) + p(Ti"Jrlxnk, Tjk+1xnk) + p(Tj”]xnk, Tjkx,,k)

< p(Tikxnk, T"k“xnk) + p(Tj"Hxnk, Tj"x,,k) + ¢>(p(Tikxnk, Tj"xnk)).
(3.211)

Since by (P2),

Jim (T, T ) = Jim p(T ey, Ty, ) = 0.

(3.210) and (3.211) imply that § < ¢ (5), a contradiction.

The contradiction we have reached proves that there exists a natural number k
such that (P3) holds.

Let ¢ > 0 be given. We will show that there exists a natural number k such that
the following property holds:
(P4) If the integers n1, ny > k, then p(Tkxnl, Tkxnz) <e.

Assume the contrary. Then for each integer k > 1, there are integers nﬁk), ng‘) >k
such that

p(Tkxngk), T"xngk)) > . (3.212)
By (P1), (3.198) and (3.199), the sequence

{p(Tkxn(lk) R Tkxn;k))}]to 1

is bounded. Set

5= limsupp(Tkano, Tkxn;k,). (3.213)

k— 00
By definition, there exists a strictly increasing sequence of natural numbers {k; }7° |
such that

8= lim ,o(Tk"xngki), T"ixngkﬁ). (3.214)

i—00
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By (3.212) and (3.213),
§>e. (3.215)

By (3.198), for each natural number i,
ki ) ki ) < ki+1 ) ki )
,O(T xn(lkl), T xnékl)) < p(T xn(lkl), T xngk”)
ki+1 . ki+1 ) ki+1 ) ki )
+ p(T xn(lA,), T Xn;kl)) + ,O(T xn(2k1>, T xn;k,))

ki+1 ki ki+1 ki
< /J(T it X ), T ‘xn(k,») +,0(T it X k) T ’xn<k,->)
1 1 2 2

+ (b(p(Tkixn(lki) s Tkixn;ki)))' (3.216)
By property (P2),
lim p(T5x w), Thx 4)) =0, j=12. (3.217)
i—00 nj nj

Now it follows from (3.216), (3.217), (3.204) and (3.215) that e < § < ¢ (5), a con-
tradiction. This contradiction implies that there is indeed a natural number k such
that (P4) holds, as claimed.

Let ¢ > 0 be given. By (P4), there exists a natural number k| such that

p(T" %y, T*1x,,) < e/4 for all integers n1, ny > ki. (3.218)
By (P3), there exists a natural number k, such that

p(Tix,,, zj,,) <eg/4 for all natural numbers n, i, j satisfying kp <i, j <n.

(3.219)
Assume that the natural numbers n1, no, i and j satisfy
ni,ny >k + ko, i,j>ki+ko, i <nip, Jj <ns. (3.220)
We claim that p (T x,,, T/ xn,) < e. By (3.198), (3.218) and (3.220),
p(Th e, Th+R2x, ) < p(T* x,,, TF x,,) < e/4. (3.221)

In view of (3.219) and (3.220),
p(T"2x,  T'x, ) <e/4 and p(TH Ry, Tix,,) <e/4. (3.222)
Inequalities (3.222) and (3.221) imply that
o(T xny, T xny) < (T %0y, T2k, ) + p(TH T2k, TR R2K,)
+ p(Tk‘+k2x,,2, zjnz) <e.

Thus we have shown that the following property holds:
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(P5) For each € > 0, there exists a natural number k() such that

p(Tixnl, zjnz) <e for all natural numbers n1, n>,i and j

such that

ni,ny>k(e),  i€lk(e),n) and j€[k(e),n2).

Consider now the sequences {T"_an}flo:3 and {T"_lx,,}floz3. Property (P5) im-

plies that both of them are Cauchy sequences and that

lim p(T" 2x,, T" 'x,) = 0.

n—o00

Hence there exists x € K such that

Jim_ (3, 7" 2x,) = lim p(%, 7" ) =0.

Since the mapping T is continuous, it follows that 7x = x. Thus part (A) of our

theorem is proved.
We now turn to the proof of part (B). Clearly,

inf{t —¢p@):te[M/2, M]} > 0.
Choose a positive number ¢ such that
8o <min{M/2,inf{r — $p (1) : 1 € [M/2, M1} /4}.
For each x € X and r > 0, set
B(x,r)= {y eX:px,y) < r}.
Assume that
ye KNB(x, M), zeX and p(z,Ty) <ép.

By (3.224) and (3.198),

P(E,2) < p(E,Ty) +p(Ty,2) < p(TX, Ty) + 80 < ¢(0(X, y)) + o

There are two cases:

p(y,x) <M/2;
o(y,x)>M/2.

Assume that (3.226) holds. By (3.225), (3.226), (3.198) and (3.223),

p(x,z) <p(x,y)+8=M/2+ 8 <M.

(3.223)

(3.224)

(3.225)

(3.226)
(3.227)
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Assume that (3.227) holds. Then by (3.223), (3.225), (3.224) and (3.227),

p(E,2) <8+ 0(p(x. ) <[pE, y) —d(p@E ) ]4 +o(pE. )
<p(x,y) <M.

Thus p(x,z) < M in both cases.
‘We have shown that

p(x,z) <M foreach z € X such that
there exists y € K N B(x, M) satisfying p(z, Ty) < dp. (3.228)

Since M is an arbitrary positive number, we may conclude that there is 6; > 0 so
that

p(x,z) <e foreachz e X such that
there exists y € K N B(x, ¢) satisfying p(z, Ty) < 4. (3.229)

Choose a positive number é such that
8 <min{8o, 8,47 inf{t —p (1) :t € [e, M + e+ 1]}} (3.230)
and a natural number & such that
k>2(M+ 18! +2. (3.231)

Assume that n is a natural number such that n > k and that {x;}}

o C K satisfies
p(xo,X) <M, pxiv1,Tx;) <48, i=0,....,n—1 (3.232)

We claim that
pxi,x)<e, i=k,...,n. (3.233)
By (3.228), (3.230) and (3.232),

{xi}_o C B(x, M). (3.234)
Assume that (3.233) does not hold. Then there is an integer j such that
je€lk,....,n} and p(xj,Xx)>e. (3.235)
By (3.229), (3.230) and (3.232),
pxi,x)>¢e, i=0,...,]J. (3.236)
Leti €{0,...,j—1}. By (3.232), (3.198), (3.234), (3.236) and (3.230),
PXit1, %) < p(xig1, Txi) + p(Tx;, TX) <8+ ¢(p(xi, X))
<d(pGi D) +47 (o (i, 1) — ¢(p(xi, )))
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<o(pCi. ) +27 (p(xi, 3) — p(p(xi. X)) — 8
< p(xi, x) — 9.
When combined with (3.232) and (3.235), this implies that
_M S _IO(XOP)E) E lo(xjv)z) - IO(XOP)E)
i—1

[p(xis1,%) — p(xi, X)] < —j8 < —k8.
i =0

1=
Thus
k<M

which contradicts (3.231).
Hence (3.233) is true, as claimed, and part (B) of our theorem is also proved. [

3.13 A Fixed Point Theorem for Matkowski Contractions

Let (X, p) be a complete metric space. In this section, which is based on [159],
we present a sufficient condition for the existence and approximation of the unique
fixed point of a Matkowski contraction [99] which maps a nonempty and closed
subset of X into X.

Theorem 3.24 Let K be a nonempty and closed subset of a complete metric space
(X, p). Assume that T : K — X satisfies

p(Tx,Ty) < ¢>(,0(x, y)) foreachx,y e K, (3.237)

where ¢ : [0, 00) — [0, 00) is increasing and satisfies lim,— o ¢" (t) = 0 for all
t > 0. Assume that Ko C K is a nonempty and bounded set with the following prop-
erty:

(P1) For each natural number n, there exists x, € Ko such that T" x,, is defined.
Then the following assertions hold.

(A) There exists a unique x € K such that Tx = Xx.
(B) Let M, & > 0. Then there exists a natural number k such that for each sequence
{xi}!'_, C K with n > k satisfying
p(xo,x) <M and Tx;i=xiy1, i=0,...,n—1,

the inequality p(x;, x) < € holds for alli =k, ..., n.
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Proof Foreachx € X and r > 0, set
B(x,r)={yeX:px,y) <r} (3.238)
(A) Since ¢"(t) — 0 as n — oo for all ¢ > 0, and since ¢ is increasing, we have
¢(t) <t forallt >0. (3.239)

This implies the uniqueness of x. Clearly, ¢ (0) =0.
For each natural number =, let x,, be as guaranteed by property (P1). Fix 6 € K.
Since K is bounded, there is ¢g > 0 such that

0(0,72) <co forall z € K. (3.240)

Let ¢ > 0 be given. We will show that there exists a natural number k such that
the following property holds:

(P2) If the integers i and n satisfy k <i < n, then
p(Tix,,, Ti+1x,,) <e.
By (3.236) and (3.240), for each z € K,
p(z,Tz) < p(z,0)+p©,T0)+ p(T0,Tz)
<2p(z,0)+ p(O,T0) <2co+ p©, T0). (3.241)
Clearly, there is a natural number k such that
¢*(2co + p(0,T)) <e. (3.242)

Assume now that the integers i and n satisfy k <i < n.
By (3.236), (3.239), (3.241), the choice of x,,, and (3.242),

p(Tixn, Ti+1xn) = ,O(Tkxm Tk+1xn) = ¢k (p(xn, Txn))
< ¢*(2c0+ (0, TH)) <e.

Thus property (P2) holds for this k.
Let 6 > 0 be given. We claim that there exists a natural number k such that the
following property holds:

(P3) If the integers i, j and n satisfy k <i < j < n, then
p(Tixn, zjn) <3§.
Indeed, by (3.239),

¢(8) <. (3.243)

By (P2) and (3.243), there is a natural number k such that (P2) holds with ¢ =
§—9¢().
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Assume now that the integers i and n satisfy k <i < n. In view of the choice of
k and property (P2) with ¢ =§ — ¢(§), we have

p(T xn, T x,) <8 — 9 (8). (3.244)
Now let

x € KNB(T'xy,8). (3.245)
It follows from (3.236), (3.244) and (3.245) that
p(Tx, T'xy) < p(Tx, T xy) + p (T 50, Thxy) < d(p(x, T'x)) + 8 — $(5)
<.
Thus
T(K NB(T"xy,8)) C B(T"x4,8),

and if an integer j satisfies i < j < n, then p(T'x,, T/x,) < 8. Hence property (P3)
does hold, as claimed.

Let ¢ > 0 be given. We will show that there exists a natural number k such that
the following property holds:

(P4) If the integers ny, no and i satisfy k <i <min{ny, n,}, then
,o(T"x,,l, Tix,,z) <e.
Indeed, there exists a natural number k such that
¢ (2co) <& for all integers i > k. (3.246)
Assume now that the natural numbers n1, ny and i satisfy
k <i <min{ny,na}. (3.247)
By (3.236), (3.240) and (3.246),
(T %y, T'xny) < @' (0(iny s ) < @' (2c0) <e.

Thus property (P4) indeed holds.
Let ¢ > 0 be given. By (P4), there exists a natural number k; such that

,o(T’.)c,,I , Tix,,z) <e¢g/4 for all integers ny, ny > ki

and all integers i satisfying k1 <i < min{n, ny}. (3.248)
By property (P3), there exists a natural number k> such that

p(Tix,,, zj,,) <eg/4 for all natural numbers n, i, j satisfying kp <i, j <n.

(3.249)
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Assume that the natural numbers n1, no, i and j satisfy
ni,ny >k +ky, i,j>ki+ko, i<ny, j <na. (3.250)
We claim that
p(T xn,, T x,) <.
By (3.238), (3.243), (3.248) and (3.250),
p(T5x,,, TR 2y, ) < p(THx,,, TR x,,) < e/4. (3.251)
In view of (3.249) and (3.250),
p(Tk1+k2xnl, Tixnl) <e/4 and p(Tk1+k2xn2, zjnz) <e/4.
When combined with (3.251), this implies that
,o(T"xn1 , zj,,z) < ,o(T"xnl, Tk‘+k2xnl) + ,O(Tk]Jrkzxnl , Tk1+k2xn2)
+ p(Tk'+k2x,,2, zjnz)
<e/d+¢e/d+¢c/d<e.
Thus we have shown that the following property holds:
(P5) For each € > 0, there exists a natural number k(&) such that
p(Tix,,l, zjnz) <eg

for all natural numbers n1,n> > k(e),i € [k(e),n1) and j € [k(¢),n>).

Consider now the sequences {T"_an};io=3 and {T"_lx,,}floz3. Property (P5) im-
plies that these sequences are Cauchy sequences and that

lim p(T"fzxn, T”flx,,) =0.

n—oo
Hence there exists x € K such that
lim p(i, T"_2xn) = lim p()?, T”_lx,,) =0.
n—oo n—>oo
Since the mapping 7 is continuous, 7x = x and part (A) is proved.
(B) Since T is a Matkowski contraction, there is a natural number k such that
k(M) <e.

Assume that a point Xo € B(x, M), an integer n > k, and that T x is defined for
alli=0,...,n. ThenT'xg € K,i =0,...,n— 1, and by (3.236),

(T x0, %) < " (p(x0, D)) <" (M) <.
By (3.236) and (3.239), we have fori =k, ..., n,
p(T'xo, %) < p(Tkxo, x)<e.

Thus part (B) of our theorem is also proved. g
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3.14 Jachymski-Schroder-Stein Contractions

Suppose that (X, d) is a complete metric space, Ny is a natural number, and ¢ :
[0, 0c0) — [0, 00) is a function which is upper semicontinuous from the right and
satisfies ¢ (t) < t for all + > 0. We call a mapping 7 : X — X for which

min{d(T'x, T'y):i €{l,..., No}} <¢(d(x,y)) forallx,yeX (3.252)

a Jachymski-Schroder-Stein contraction (with respect to ¢).

Condition (3.252) was introduced in [78]. Such mappings with ¢ (t) = yt for
some y € (0, 1) have recently been of considerable interest [10, 78, 79, 100, 101,
174]. In this section, which is based on [161], we study general Jachymski-Schroder-
Stein contractions and prove two fixed point theorems for them (Theorems 3.25 and
3.26 below). In our first result we establish convergence of iterates to a fixed point,
and in the second this conclusion is strengthened to obtain uniform convergence
on bounded subsets of X. This last type of convergence is useful in the study of
inexact orbits [35]. Our theorems contain the (by now classical) results in [23] as
well as Theorem 2 in [78]. In contrast with that theorem, in Theorem 3.25 we only
assume that ¢ is upper semicontinuous from the right and we do not assume that
liminf;_, 5 (t — ¢ (¢)) > 0. Moreover, our arguments are completely different from
those presented in [78], where the Cantor Intersection Theorem was used. We re-
mark in passing that Cantor’s theorem was also used in this context in [65] (cf. also
[68]).

Theorem 3.25 Let (X,d) be a complete metric space and let T : X — X be
a Jachymski-Schroder-Stein contraction. Assume there is xo € X such that T is
uniformly 'continuous on the orbit {T'xo :i = 1,2,...}. Then there exists x =
lim;_, o0 T'xg in (X,d). Moreover, if T is continuous at X, then x is the unique
fixed point of T .
Proof Set

T'x=x, xeX. (3.253)

We are going to define a sequence of nonnegative integers {k;}7°, by induction. Set
ko = 0. Assume that i > 0 is an integer, and that the integer k; > 0 has already been
defined. Clearly, there exists an integer k; such that

1 <kis1—ki < No (3.254)
and
d(T* + xo, T+ x0) = min{d (T i xo, TV TR x0) 1 j = 1,..., No}. (3.255)

By (3.252), (3.254) and (3.255), the sequence {d(kaxo, TkJ'on)}?O:O is decreas-
ing. Set

r= lim d(T% xo, T xp). (3.256)

j—o0
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Assume that r > 0. Then by (3.252), (3.254) and (3.255), for each integer j > 0,
d(T*+1 xg, T*+1 % xg) < ¢ (d (T  x0, TH M x0)).

When combined with (3.256), the monotonicity of the sequence

(a(Tx0. T 0) )2,

and the upper semicontinuity from the right of ¢, this inequality implies that

r <limsupp(d(T% xo, T x0)) < § (1),

j—o0
a contradiction. Thus r = 0 and

lim d(T%xo, T*1'x) = 0. (3.257)

j—o00
We claim that, in fact,

lim d(T"xo, T"*'x0) = 0.

1—> 00

Indeed, let ¢ > 0 be given. Since T is uniformly continuous on the set
2:={T'xp:i=1.2,..} (3.258)

there is
o € (0, ¢) (3.259)

such that
ifx,y€ef,ie{l,....No}.d(x,y) <go, thend(T'x, T'y) <e.  (3.260)
By (3.257), there is a natural number jj such that
d(T*ixo, T xg) < ey for all integers j > jo. (3.261)
Let p be an integer such that
p =>kj, + No.
Then by (3.254) there is an integer j > jo such that
kj < p<kj+ No. (3.262)
By (3.261) and the inequality j > jo,

d(Tijo, Tkj+lx0) < &p.
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Together with (3.262) and (3.261), this implies that
d(TPx0, T"x0) <.
Thus this inequality holds for any integer p > kj, + No and we conclude that

lim d(T”xo, T"*'x0) =0, (3.263)

p—00

as claimed.

Now we show that {T"xo}l?'i1 is a Cauchy sequence. Assume the contrary. Then
there exists & > 0 such that for each natural number p, there exist integers m, >
np > p such that

d(T™rxo, T"rx0) > e. (3.264)
We may assume without loss of generality that for each natural number p,
d(Tixo, T"I’xo) < ¢ forall integers i satisfying n, <i <m,. (3.265)
By (3.264) and (3.265), for any integer p > 1,
e < d(T'"Pxo, T”Pxo) < d(Tmeo, Tml’_lxo) + d(T’"P_lxo, T"I’xo)
<d(T™rxo, T"™'x0) +e.
When combined with (3.263), this implies that

lim d(T"7xo, T""x0) =&. (3.266)

p—>00
Let § > 0 be given. By (3.263), there is an integer pg > 1 such that
d(T™ ' x0, T'x0) < 8(4Np)~"  for all integers i > po. (3.267)
Let p > po be an integer. By (3.263), there is j € {1, ..., No} such that
d(T™rH xo, T" I x0) < ¢(d (T x0, T"7 x0)). (3.268)
By the inequalities m, > n, > p, (3.267) and (3.268),

-1
d(Tmpr’ Tnpr) < d(Tm”JriX(), Tmp+i+1xO) +d(Tm”+ij, Tanrij)

i

~.

Il
o

j—1
+ ) d (T g, T )
i=0

< 2j8(4No) ™" + ¢(d(T™7x0. T"7 x0))
<8+ ¢(d(T™rx0, T"" x0)). (3.269)
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By (3.266), (3.269), (3.264), and the upper semicontinuity from the right of ¢,

= lim d(Tmeo, T”Pxo) <§+lim sup¢(d(T’"Px0, T”l’xo)) <85+ ¢(e).

P—00 p—>00

Since 6 is an arbitrary positive number, we conclude that ¢ < ¢ (¢). The contradic-

tion we have reached proves that {T"x()}f.’o1 is indeed a Cauchy sequence. Set

X = lim Tixo.
i— 00

Clearly, if T is continuous, then 7x = x and x is the unique fixed point of 7. The-
orem 3.25 is proved. O

For each x € X and r > 0, set
B(x,r)= {z eX:p(x,2) < r}.

Theorem 3.26 Let (X,d) be a complete metric space and let T : X — X be a
Jachymski-Schroder-Stein contraction with respect to the function ¢ : [0, 00) —
[0, 00). Assume that ¢ is upper semicontinuous, T is uniformly continuous on the
set {Tix :i=1,2,...} for each x € X, and that T is continuous on X. Then there
exists a unique fixed point x of T such that T"x — x as n — 00, uniformly on
bounded subsets of X .

Proof By Theorem 3.25, T has a unique fixed point x and
T"x — % asn— ooforall x € X. (3.270)

Let r > 0 be given. We claim that 7" x — x as n — o0, uniformly on B(x, r).
Indeed, let

ee(0,r). (3.271)
Since T is continuous, there is
g0 € (0,¢) (3.272)
such that
ifxeX,d(x,x)<ep,i €{l,..., No}, then d(Tix,)E) <e. (3.273)

Since ¢ is upper semicontinuous, there is
8 € (0, g9) (3.274)

such that

if t € [0, 7], thent — ¢ (t) > 6. (3.275)
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Choose a natural number N such that

N8 > 2r. (3.276)
Assume that
xeX, dx,x)<r. (3.277)
We will show that
d(i, Tix) <e forall integers i > No + NoNj. (3.278)

To this end, set ko = 0. Define by induction an increasing sequence of integers
{ki}72 | such that

ki+1 —ki €[1,Nol, d(T5'x, %) =min{d(T/ x,%):je{l,.... No}}.
(3.279)

By (3.252) and (3.279), the sequence {d(T%ix, X)}72, is decreasing. We claim that
d(T*ix, %) < .
Assume the contrary. Then by (3.277) and (3.252),

r>d(Thx,x)>e, j=0,...,Ny. (3.280)
By (3.279), (3.252), (3.280) and (3.275), we have for j =0,..., N,
d(T%x,%) —d(TH %, %) > d(Th x, %) — ¢p(d(T"x, %)) = 8. (3.281)
Together with (3.277), this implies that
r>d(Thx, %) —d(T"+1x, %) = (N1 + 1),

which contradicts (3.276). The contradiction we have reached and the monotonicity
of the sequence {d(kax, )E)}?OZO show that there is p € {0, 1, ..., N1} such that
d(T*x,%) <eo forallintegers j > p. (3.282)

Assume that i > Ng + NoNj is an integer. By (3.279), there is an integer j > 0
such that

ki <i<kjqr. (3.283)
By (3.279), (3.283) and the choice of p,
(+ DNy >,
J+1>i/No=Ni+1,
and

j>Ni=>p. (3.284)
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By (3.284) and (3.282), d(T*ix, %) < 9. Together with (3.283), (3.279), (3.272)
and (3.273), this inequality implies that

d()E, Tix) <e,

as claimed. Theorem 3.26 is proved. O

3.15 Two Results on Jachymski-Schroder-Stein Contractions

Suppose that (X, d) is a complete metric space, Ny is a natural number, and ¢ :
[0, 00) — [0, 00) is a function. In this section we continue to study Jachymski-
Schrdder-Stein contractions (with respect to ¢) T : X — X for which

min{d(Tix, Tiy) iefl, ..., No}} < qb(d(x, y)) forallx,ye X. (3.285)

In the previous section we studied general Jachymski-Schroder-Stein contrac-
tions, where ¢ is upper semicontinuous from the right and satisfies ¢ () < 1 for all
positive 7. In this section, which is based on [162], we study the case where ¢ is
increasing and satisfies

lim ¢(1)" =0 (3.286)

for all r > 0. Here ¢" = ¢"~! o ¢ for all integers n > 1. This condition on ¢ origi-
nates in Matkowski’s fixed point theorem [99].

More precisely, we establish two fixed point theorems (Theorems 3.27 and 3.28
below). In our first result we prove convergence of iterates to a fixed point, and in the
second this conclusion is strengthened to obtain uniform convergence on bounded
subsets of X.

Theorem 3.27 Let (X,d) be a complete metric space and T : X — X be
a Jachymski-Schroder-Stein contraction such that ¢ is increasing and satisfies
(3.286). Let xo € X. Assume there is xo € X such that T is uniformly continuous on
the orbit {T'xg i =1,2,...}. Then there exists ¥ = lim;_, oo T xo. Moreover, if T
is continuous at X, then X is the unique fixed point of T .

Proof Since ¢ (t) = 0sn— oo fort >0,
¢(e) <e foranye > 0. (3.287)

Set T%x = x, x € X. Using induction, we now define a sequence of nonnegative
integers {k;}7°. Set ko = 0. Assume that i > 0 is an integer and that the integer
k; > 0 has already been defined. Clearly, by (3.286) there exists an integer k1
such that

1 <kit1 —ki = No (3.288)
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and
d(T%+ xg, TH+1xg) = min{d (T i xo, T/ xg) 1i = 1,..., No}. (3.289)

By (3.285), (3.287), (3.288) and (3.289), the sequence {d (T xo, ka+1x0)};°: o is
decreasing and for any integer i > 0,

d (T xo, T4+ x) < §(d (T4 20, TN x0)). (3:290)

Since ¢ is indecreasing, it follows from (3.290) and (3.285) that for any integer
Jj=1,

d(kaxo, kaon) <¢/ (d(x0, Tx0)) > 0 as j — oo.
Thus
lim d(T%xo, T*'x) = 0. (3.291)

j—00
We claim that
lim d(T"xo, T"'x0) = 0.
11— 00
Let £ > 0 be given. Since T is uniformly continuous on the set
2:={T'x:i=12,...}, (3.292)
there is
o€ (0,¢) (3.293)

such that
ifx,ye2,iefl,...,No},d(x,y) <eo, thend(T'x,T'y) <e. (3.294)
By (3.291), there is a natural number jy such that
d(T*ixo, T xg) < &9 for all integers j > jo. (3.295)
Consider an integer
p = kj, + No. (3.296)
Then by (3.288) and (3.296), there is an integer j > jo such that

kj <p=<kj+ No. (3.297)
By (3.295) and the inequality j > jy, we have
d(T* xo, T % xg) < eo.
Together with (3.294) and (3.297) this implies

d(Tpxo, Tp+lx0) <e.
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Since this inequality holds for any integer p > kj, + No, we conclude that

lim d(T7xo, T"*'x0) =0, (3.298)

p—>0o0

as claimed. '
Next we show that {T’xo}fi1 is a Cauchy sequence. To this end, let ¢ > 0 be
given. By (3.287),

¢(e) <e. (3.299)
By (3.299), there exists g9 > 0 such that

g0 < (e —p(e))4™". (3.300)
By (3.298), there exists a natural number n¢ such that
if the integers i, j > no, |i — j| <2No +2, thend (T xo, T/x0) <ep. (3.301)
We show that for each pair of integers i, j > no,
d(Tixo, zjo) <e.
Assume the contrary. Then there exist integers p, g > ng such that
d(T”xo, quo) > €. (3.302)
We may assume without loss of generality that
P <q.
We also may assume without loss of generality that
if an integer i satisfies p <i < ¢, then d(Tixo, T”xo) <e. (3.303)
By (3.302), (3.301) and (3.300),
qg—p>2No+2

and

q—No>p+No+2. (3.304)
By (3.303) and (3.304),

d(T9 Noxg, TPxp) <. (3.305)

There is s € {1, ..., Ng} such that

d(Tq_N°+Sxo, Tp+sx0) :min{d(Tq_N°+jx0, Tp+jxo) cjell,..., No}}.

(3.306)
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By (3.285), (3.305) and (3.306),
d(TT Nt xo, TP x0) < ¢(d (T4 Nxo, TPx0)) < (o). (3.307)
Hence,
d(T"xo, Tpxo) < d(Tpxo, Tp+sxo)
+ d(Tpﬂxo, quNOJ”‘xo) + d(T‘FNO“xo, T‘fxo)
<d(TPxo, TP x0) + ¢ (e) +d(T9 N0Hx0, T9x0). (3.308)
By (3.301) and (3.304) and the choice of s,
d(TPxq, TP x0), d(T9NoFs T9x0) < ey. (3.309)
By (3.299), (3.300), (3.308) and (3.309),
d(T7x0, TPx0) <2e0+¢(e) <27 e +27 ¢ () <e.

However, the inequality above contradicts (3.302). The contradiction we have
reached proves that

d(Tixo, zjo) < ¢ forall integers i, j > ng.
Since ¢ is an arbitrary positive number, we conclude that {T"xo};?o
Cauchy sequence and there exists ¥ = lim;_, o, 7" xo.
Clearly, if T is continuous, then x is a fixed point of 7 and it is the unique fixed

point of T'.
This completes the proof of Theorem 3.27. g

| is indeed a

Theorem 3.28 Let (X,d) be a complete metric space and T : X — X be
a Jachymski-Schroder-Stein contraction such that ¢ is increasing and satisfies
(3.286). Assume that T is continuous on X and uniformly continuous on the or-
bit {T'x :i=1,2,...} for each x € X. Then there exists a unique fixed point X of
T and T"x — X as n — o0, uniformly on all bounded subsets of X .

Proof By Theorem 3.27, there exists a unique fixed point of 7. Let r > 0 be given.
We claim that 7"x — X as n — oo, uniformly on the ball B(x,r) ={y € X :

p(x,y) =r}.
Indeed, let ¢ € (0, r). Clearly, there exists a number &g € (0, &) such that
if x € X,d(x,X) <eo,i €{l,...,No}, thend(T'x, %) <e. (3.310)

By (3.286), there is a natural number nq such that

" (r) < &o. (3.311)
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Let x € X satisfy d(x,x) <r. Set kp = 0. We now define by induction an in-
creasing sequence of integers {k; }7°, such that for all integers i > 0,

ki+] _ki € [lvNO]’
d(T%+x, %) =min{d(T""x, %) : j e {l,..., No}}.  (3.312)

By (3.312), (3.285) and (3.287), the sequence {d(Tkix, )E)}fil is decreasing.
For each integer i > 0,

d(T"+'x,%) < ¢(d(T" x, %)). (3.313)
By (3.313) and the choice of x, for each integer m > 1,
d(T*nx, %) < ¢™(d(x, %)) < ¢™(r).
By (3.287) and (3.311), for each integer m > ny,
d(Tk"’x, X) <" (r) <¢"(r) <. (3.314)

Assume now that i > No(ng + 2) is an integer. By (3.312), there is an integer j > 0
such that

kj§i<kj+1. (3.315)
By (3.312) and (3.315),

G+DNo>i,  j+1>iNy'=no+2,  j>no.
Together with (3.314) this implies that
d(kax,)E) < &.
When combined with (3.315), (3.312) and (3.310), this implies that
d(Tix, )E) > €.

Theorem 3.28 is proved. O



Chapter 4
Dynamical Systems with Convex Lyapunov
Functions

4.1 Minimization of Convex Functionals

In this section, which is based on [128], we consider a metric space of sequences
of continuous mappings acting on a bounded, closed and convex subset of a Ba-
nach space, which share a common convex Lyapunov function. We show that for a
generic sequence taken from that space the values of the Lyapunov function along
all trajectories tend to its infimum.

Assume that (X, || - ||) is a Banach space with norm | - ||, K C X is a bounded,
closed and convex subset of X, and f : K — R! is a convex and uniformly contin-
uous function. Set

inf(f) =inf{f(x) :x € K}.

Observe that this infimum is finite because K is bounded and f is uniformly con-
tinuous. We consider the topological subspace K C X with the relative topology.
Denote by A the set of all continuous self-mappings A : K — K such that

f(Ax) < f(x) forallx € K. 4.1)

Later in this chapter (see Sect. 4.4), we construct many such mappings.
For the set A we define a metric p : A x A— R! by

p(A,B)=sup{l|Ax — Bx||:xe K}, A,BeA 4.2)

Clearly, the metric space A is complete. Denote by M the set of all sequences
{A}2, € A. Members {A;}7°,, {B;}72, and {C;}72, of M will occasionally be
denoted by boldface A, B and C, respectively. For the set M we consider the uni-
formity determined by the following base:

E(N, &) ={({A}2 | {B}2) e Mx M:p(A;, B)<e,t=1,...,N},
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where N is a natural number and ¢ > 0. Clearly the uniform space M is metrizable
(by a metric p,, : M x M — R') and complete (see [80]).

From the point of view of the theory of dynamical systems, each element of
M describes a nonstationary dynamical system with a Lyapunov function f. Also,
some optimization procedures in Banach spaces can be represented by elements of
M (see the first example in Sect. 4.4 and [97, 98]).

In this section we intend to show that for a generic sequence taken from the space
M the values of the Lyapunov function along all trajectories tend to its infimum.

‘We now present the two main results of this section. They were obtained in [128].
Theorem 4.1 deals with sequences of operators (the space M), while Theorem 4.2
is concerned with the stationary case (the space A).

Theorem 4.1 There exists a set F C M, which is a countable intersection of open
and everywhere dense sets in M, such that for each B ={B;}7° | € F the following
assertion holds:

For each ¢ > 0, there exist a neighborhood U of B in M and a natural number
N such that for each C = {C,;}2, € U and each x € K ,

f(Cn - Cix) <inf(f)+e.

Theorem 4.2 There exists a set G C A, which is a countable intersection of open
and everywhere dense sets in A, such that for each B € G the following assertion
holds:

For each & > 0, there exist a neighborhood U of B in A and a natural number
N such that for each C € U and each x € K,

F(CVx) <inf(f) +e.

The following proposition is the key auxiliary result which will be used in the
proofs of these two theorems.

Proposition 4.3 There exists a mapping A, € A with the following property:
Given ¢ > 0, there is 6(¢) > 0 such that for each x € K satisfying f(x) >
inf(f) + ¢, the inequality

fAx) < f(x) —3(e)
is true.

Remark 4.4 1f there is x,,i, € K for which f(x,;,) = inf(f), then we can set
Ay(x) = xpip forall x € K.

Section 4.2 contains the proof of Proposition 4.3. Proofs of Theorems 4.1 and 4.2
are given in Sect. 4.3. Section 4.4 is devoted to two examples.
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4.2 Proof of Proposition 4.3

By Remark 4.4, we may assume that
[xeK: f(x)=inf(f)}=0. 4.3)
For each x € K, define an integer p(x) > 1 by
px) = min{i : 1 is a natural number and f(x) > inf(f) + 27! } 4.4)

By (4.3), the function p(x) is well defined for all x € K. Now we will define an
open covering {V, : x € K} of K. For each x € K, there is an open neighborhood
V, of x in K such that:

1F) = f@)| <8771 forallye V, (4.5)
and

if p(x) > 1 then f(y) <inf(f) +27P®* forall y € V,. (4.6)

For each x € K, choose a, € K such that
f(ay) <inf(f) +27P0=9, 4.7
Clearly, | J{Vy :x € K} =K and {V, : x € K} is an open covering of K.
Lemma 4.5 Let x € K. Then forall y € Vi,
y) > 1n + 27 - .
(y) = inf(f) +27707! (4.8)

and

p(y) — p)| < 1. (4.9)

Proof Let y € V. Then (4.8) follows from (4.5) and (4.4). The definition of p(x)
(see (4.4)) and (4.8) imply that p(y) < p(x) + 1. Now we will show that p(y) >
p(x) — 1. Itis sufficient to consider the case p(x) > 1. Then by the definition of V;
(see (4.6)) and (4.4), f(y) < inf(f) + 2P+ and p(y) > p(x). This completes
the proof of the lemma. O

Since metric spaces are paracompact, there is a continuous locally finite parti-
tion of unity {¢}xecx on K subordinated to {V,}ycx (namely, supp ¢ C V, for all
xeKand )  _x¢c(y)=1forall y € K).

For y € K, define

Ay =) (¥, (4.10)
xekK

Clearly, the mapping A, is well defined, A,(K) C K and A, is continuous.
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Lemma 4.6 Foreachye K,
fAy) = f) =277 (4.11)

Proof Let y € K. There is an open neighborhood U of y in K and xq,...,x, € K
such that

{x e K :suppp NU # P} = {x;}1,. (4.12)
‘We have
n
Ay =) ¢y (y)ay,. (4.13)
i=1
We may assume that there is an integer m € {1, ..., n} such that
¢y, (y) >0 ifandonlyif 1<i<m. (4.14)

By (4.12) and (4.14), /" | ¢, (y) = 1. When combined with (4.13) and (4.14), this
implies that

f(A*y)§max{f(axl.):i=1,...,m}. (4.15)
Leti € {1,...,m}. It follows from (4.14) and Lemma 4.5 that

yesuppey, C Vi, and [p(y) — p(xi)| < 1. (4.16)
By (4.7) and (4.16),
flay) <inf(f) +27P00= <inf(f) +27P0)78,

Thus, by (4.15),

f(Asy) <inf(f) 4277078, 4.17)
On the other hand, by (4.4), f(y) > inf(f) + 2P0, Together with (4.17) this im-
plies (4.11). The lemma is proved. 0

Completion of the proof of Proposition 4.3 Clearly, A, € A. Let ¢ > 0 be given.
Choose an integer j > 1 such that 27/ < e.
Let x € K satisfy f(x) > inf(f)+¢. Then by (4.4), p(x) < j and by Lemma 4.6,
fAX) < fl) =277 < oy —27/7 L
This completes the proof of the proposition (with §(¢) =27/~1). O

Remark 4.7 As a matter of fact, if ¢ € (0, 1), then the proof of Proposition 4.3 shows
that it holds with §(¢) = ¢ /4.
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4.3 Proofs of Theorems 4.1 and 4.2

Set
rg =sup{[lx|:x € K} and do=sup{|f(x)|:x€K}. (4.18)

Let A, € A be one of the mappings the existence of which is guaranteed by Propo-
sition 4.3. For each {A;}7°, € M and each y € (0, 1), we define a sequence of
mappingsAg/ K-> K,t=1,2,...,by

Alx=(1—-p)Ax+yAx, xeK,t=1,2,.... (4.19)
It is easy to see that for each {A;};°, € M and each y € (0, 1),
{AV} 2, eM and p(A], A) <2yrk, t=12,.... (4.20)

We may assume that the function §(¢) of Proposition 4.3 satisfies §(¢) < ¢ for all
e>0.

Lemma 4.8 Assume that e,y € (0, 1), {At}fil € M and let an integer N > 4 sat-
isfy
27INys(e) > 2dy + 1. 4.21)

Then there exists a number A > 0 such that for each sequence {B,}fv= | C A satisfy-
ing
p(B,A])<A, t=1,...,N, (4.22)

it follows that, for each x € K,
f(By -+ B1x) <inf(f) +e. (4.23)

Proof Since the function f is uniformly continuous, there is A € (0, 16718(¢)) such
that

|fO) = fF)| <167 1ys(e) (4.24)

for each yi, y» € K satisfying ||y; — y2|| < A.

Assume that {Bt}iv= | C A satisfies (4.22) and that x € K. We now show that
(4.23) holds.

Assume the contrary. Then

fG)>inf(f)+e and f(By---Bix)>inf(f)+e, n=1,....,N. (4.25)

Set

X0 =X, Xt+1=Biy1x;, t=0,1,...,N—1. (4.26)
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For each ¢ > 0 satisfying ¢t < N — 1, it follows from (4.22), (4.26) and the definition
of A (see (4.24)) that

|Bisixi — A x| < A (4.27)
and
| f @) = F(AL %) | = | f(Brrxe) — f(A] %)
<167 1y5(e). (4.28)

By (4.19), (4.25), (4.26), the definition of §(¢) and the properties of the mapping
Ay, we have foreacht =0,...,N — 1,

F(A] %) = (L= P)Arprxe + v Awxy)
< (=) fAx) +vf(Ax) < 1= y) f ) + v (f () = 8(e))
= f(x) —yd(e).
Together with (4.28) this implies that fort =0,..., N — 1,
fQin) <1671y 8(e) + f(x) = yd(e).
By induction we can show that forallr =1,..., N,
f@) < fo) =27y,
Together with (4.21) and (4.18) this implies that
f(By - Bix) = f(xy) < f(x0) =27 'Nys(e)
<dy—2""Nys(e) < —dy— 1 <inf(f) —1.

This obvious contradiction proves (4.23) and the lemma itself. O

By Lemma 4.8, for each A = {A,};’il € M, each y € (0, 1) and each integer
q > 1, there exist an integer N (A, y, ¢) > 4 and an open neighborhood U (A, y, q)
of {Ay 2, in M such that the following property holds:

(a) For each {B/}°, € U(A,y,q) and each x € K,

f(BN(A,y,q) -+ Bix) <inf(f) + 471,
Proof of Theorem 4.1 1t follows from (4.20) that the set
{{Ag/}?i] HANZ e M,y €0, D)
is everywhere dense in M. Define
o
F=U{vA.y.9):Ae M,y €0, D}.
g=1

Clearly, F is a countable intersection of open and everywhere dense sets in M.
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Assume that {B;};°, € F and that ¢ > 0. Choose an integer ¢ > 1 such that
471 <¢. (4.29)
There exist {A;}7°, € M and y € (0, 1) such that
(B2, e U({AZ) v. 9)- (4.30)

It follows from (4.29) and property (a) that for each {C;}{°, € U(A, y, ¢) and each
xeK,

f(Cn@y,g - Cix) <inf(f) + 471 <inf(f) +«.
This completes the proof of Theorem 4.1. g

Proof of Theorem 4.2 For each A € A, define
A=A, t=1,2,.... 4.31)
Clearly, {A,}%°, € M for A € A, and for each A € A and each y € (0, 1),
Alx=(1—yp)Ax+yAx, xeK,t=12, ... (4.32)

(see (4.19)). By property (a) (which follows from Lemma 4.8), for each A € A,
each y € (0, 1) and each integer g > 1, there exist an integer N (A, y,q) >4 and an
open neighborhood U (A, y, g) of the mapping (1 — y)A + y A, in A such that the
following property holds:

(b) Foreach Be U(A, y,q) andeachx € K,

F(BNAYDx) <inf(f) +479.
Clearly, the set

{H=A+yA,:Ac A ye (D)

is everywhere dense in A. Define

g=mU{U(A,V,q):AeA,ye(O,l)},

g=1

It is clear that G is a countable intersection of open and everywhere dense sets in A.
Assume that B € G and ¢ > 0. Choose an integer ¢ > 1 such that (4.29) is valid.
There exist A € A and y € (0, 1) such that B € U(A, y, ¢). It now follows from
(4.29) and property (b) that for each C € U(A, y,q) and each x € K,

F(CNAYDx) <inf(f) +477 <inf(f) +e.

Theorem 4.2 is established. O
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4.4 Examples

Let (X, | - |I) be a Banach space. In this section we consider examples of contin-
uous mappings A : K — K satisfying f(Ax) < f(x) for all x € K, where K is a
bounded, closed and convex subset of X and f : K — R! is a convex function.

Example 4.9 Let f : X — R be a convex uniformly continuous function satisfying
f(x) > o0 as|x|| — oo.

Evidently, the function f is bounded from below. For each real number c, let K. =
{x € X : f(x) <c}. Fix a real number ¢ such that K. # . Clearly, the set K. is
bounded, closed and convex. We assume that the function f is strictly convex on
K., namely,

flax+ (1 —a)y) <af@)+ (1 —a)f(y)

forall x,y € K., x #y,and all « € (0, 1).
Let V : K. — X be any continuous mapping. For each x € K, there is a unique
solution of the following minimization problem:

f(@)—>min, ze{x+aVx):acl0,1]].

This solution will be denoted by Ax. Since f(Ax) < f(x) for all x € K., we con-
clude that A(K,) C K..

We will show that the mapping A : K. — K, is continuous. To this end, con-
sider a sequence {x, }gozl C K. such that lim,_, 5 X, = x,. We intend to show
that lim, . Ax, = Ax,. For each integer n > 1, there is «;, € [0, 1] such that
Ax, = x, + o, Vx,. There is also ay € [0, 1] such that Ax, = x4 + oV (x4). We
may assume without loss of generality that the limit & = lim,,—, 5 &, exists. By the
definition of A,

f(Ax) < fx+aV(x).

Since the function f is strictly convex, to complete the proof it is sufficient to show
that

F(Ax) = f (5 + @V (@) = f (e +@V (x2). (433)

Assume the contrary. Then
im £ (i + 0V () = f (62 + 2V (x2))
< fla+aV(e)) = lim f(x+ oV ),
and for all large enough n,

F(xn + o V() < fxn 4+ V(xn) = f(Axy).
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This contradicts the definition of A. Hence (4.33) is true and the mapping A is
indeed continuous.

Example 4.10 Let K be a bounded, closed and convex subset of X and f: K — R1
be a convex continuous function which is bounded from below. For each xg, x; € K
satisfying f(xo) > f(x1), we will construct a continuous mapping A : K — K such
that f(Ax) < f(x) for all x € K and Ax = x for all x in a neighborhood of x.
Indeed, let xg, x; € K with f(xg) > f(x1). There are numbers rg, &y such that

f(x)—eo> f(x1) forall x € K satisfying ||x — xp|| <ro. 4.34)

Now we define an open covering {V, :x € K} of K. Letx € K. If ||[x — x|l <19
we set

Vi={yeK:lly—xol <ro} and ay=x.
If ||x — xo|| > ro, then there is ry € (0,4’1r0) and a, € K such that
flay) < f(y) forallye{zeK :|z—x| <r}. (4.35)
In this case we set
Vi ={yeK Ay — x|l <rx}.

Clearly, [ J{Vx : x € K} = K. There is a continuous locally finite partition of unity
{éx}xek on K subordinated to {V,},cx (namely, supp ¢, C V, for all x € K). For
y € K, define

Ay=) ¢e(yax.

xekK

Evidently, the mapping A is well defined, A : K — X and A is continuous. Since
erK ¢x(y)=1forall y € K and K is convex, we see that A(K) C K.

We will now show that f(Ay) < f(y) for all y € K and that Ay = x if ||y —
xoll <47 ro.

Let y € K. There are zy, ..., z, € K and a neighborhood U of y in K such that

{ze K:UNsuppo, 0} ={z1,...,2n}-
We have
n n n
Ay=) b (Maz, Y ¢N=1, AN ¢, (0)f(a,). (4.36)
i=1 i=1 i=1
We may assume without loss of generality that there is p € {1, ..., n} such that
¢,;(y) >0 ifandonlyif 1<i<p. (4.37)
Let1<i < p. Then
y €supp ¢y C V, (4.38)
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and by the definition of V,; and a;, (see (4.34) and (4.35)), f(y) > f(a;). When
combined with (4.36) and (4.37), this implies that f(Ay) < f(y).

Assume in addition that ||y — xo|| <4~ 1ry. Then it follows from the definition of
{V;:z€ K} and (4.38) that ||z; — xo|| <rg and a;;, =x; foreachi =1,..., p. By
(4.36) and (4.37), Ay = x;. Thus we have indeed constructed a continuous mapping
A : K — K such that f(Ay) < f(y) for all y € K, and Ay = x| for all y € K
satisfying ||y — xol| <4~ 'ro.

4.5 Normal Mappings

Assume that (X, || - ||) is a Banach space with norm || - ||, K C X is a nonempty,
bounded, closed and convex subset of X, and f : K — R!is a convex and uniformly
continuous function. Set

inf(f) =inf{ f(x) :x € K}.

Observe that this infimum is finite because K is bounded and f is uniformly con-
tinuous. We consider the topological subspace K C X with the relative topology.
Denote by A the set of all self-mappings A : K — K such that

f(Ax) < f(x) forallx e K (4.39)

and by A, the set of all continuous mappings A € A. In Sect. 4.4 we constructed
many mappings which belong to A..
We equip the set A with a metric p : A x A — R! defined by

p(A, B)=sup{l|Ax — Bx|:xe K}, A,BeA (4.40)

Clearly, the metric space A is complete and A, is a closed subset of A. In the sequel
we will consider the metric space (A, p). Denote by M the set of all sequences
{A;}72, C A and by M, the set of all sequences {A;}°, C A.. Members {A;}°,,
{B;}72, and {C;}2, of M will occasionally be denoted by boldface A, B and C,
respectively. For the set M we will consider two uniformities and the topologies
induced by them. The first uniformity is determined by the following base:

Ew(N,e)={({A}2 . {B}2)) e M x M:
p(Ar, B) <et=1,...,N}, (4.41)

where N is a natural number and ¢ > 0. Clearly the uniform space M with this
uniformity is metrizable (by a metric p,, : M x M — R") and complete (see [80]).
We equip the set M with the topology induced by this uniformity. This topology
will be called weak and denoted by 7,,. Clearly M, is a closed subset of M with
the weak topology.
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The second uniformity is determined by the following base:
Eg(e) = {({AN2) (B2) EM X M:ip(A, B) etz 1}, (442)

where ¢ > 0. Clearly this uniformity is metrizable (by a metric oy : M x M —
R') and complete (see [80]). Denote by 7, the topology induced by this uniformity
in M. Since t; is clearly stronger than t,,, it will be called strong. We consider the
topological subspace M, C M with the relative weak and strong topologies.

In Sects. 4.1-4.3 we showed that for a generic sequence taken from the space
M., the sequence of values of the Lyapunov function f along any trajectory tends
to the infimum of f.

A mapping A € A is called normal if given ¢ > 0, there is §(¢) > 0 such that for
each x € K satisfying f(x) > inf(f) + ¢, the inequality

f(Ax) < f(x) —é(e)

is true.
A sequence {A,};’il € M is called normal if given € > 0, there is §(¢) > 0 such
that for each x € K satisfying f(x) > inf(f) + ¢ and each integer ¢ > 1, the inequal-

1ty
J(Ax) = f(x) —8(e)

holds.

In this chapter we show that a generic element taken from the spaces A, A., M
and M, is normal. This is important because it turns out that the sequence of values
of the Lyapunov function f along any (unrestricted) trajectory of such an element
tends to the infimum of f on K.

Fora € (0,1), A={A;}72,,B={B}7°, € M define ¢A + (1 —a)B = {a A, +
(1 —o)B}2, e M.

We can easily prove the following fact.

Proposition 4.11 Let o« € (0, 1), A,B € M and let A be normal. Then aA + (1 —
o)B is also normal.

In this chapter we will prove the following results obtained in [63].

Theorem 4.12 Let A = {A;}°, € M be normal and let ¢ > 0. Then there exists a
neighborhood U of A in M with the strong topology and a natural number N such
that for each C = {Ct}?; eU,eachx € K andeachr:{1,2,...} > {1,2,...},

S(Crvy -+ Crayx) < inf(f) +&.

Theorem 4.13 Let A = {A;}{°, € M be normal and let ¢ > 0. Then there exists a
neighborhood U of A in M with the weak topology and a natural number N such
that for each C = {C;}7°, € U and each x € K,

f(Cy---Cix) <inf(f) +e.
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Theorem 4.14 There exists a set F C M which is a countable intersection of open
and everywhere dense sets in M with the strong topology and a set F. C F N M,
which is a countable intersection of open and everywhere dense sets in M with the
strong topology such that each A € F is normal.

Theorem 4.15 There exists a set F C A which is a countable intersection of open
and everywhere dense sets in A and a set F. C F N A¢, which is a countable inter-
section of open and everywhere dense sets in A. such that each A € F is normal.

4.6 Existence of a Normal A € A,

If there is x,,;, € K for which f(x;;i,) = inf(f), then we can set A(x) = x,i,, for
all x € K and this A is normal. Therefore in order to show the existence of a normal
A € A, we may assume that

[xeK: f(x)=inf(f)}=0. (4.43)
The existence of a normal A € A, follows from Michael’s selection theorem.

Proposition 4.16 There exists a normal A, € A..

Proof We may assume that (4.43) is true. Define a set-valued map a : K — 2K as
follows: for each x € K, denote by a(x) the closure (in the norm topology of X) of
the set

[yeK:f(y) <27 (fx)+inf(f))}. (4.44)

It is clear that for each x € K, the set a(x) is nonempty, closed and convex. We will
show that a is lower semicontinuous.

Let xop € K, yp € a(xg) and let ¢ > 0 be given. In order to prove that a is lower
semicontinuous, we need to show that there exists a positive number § such that for
each x € K satisfying ||x — xo|| <6,

a@N{yeK:ly—yl <e}#0.
By the definition of a(xg), there exists a point y; € K such that
Fon <271 (f (o) +inf(f)) and fly1 — yoll < /2.

Since the function f is continuous, there is a number § > 0 such that for each x € K
satisfying ||x — xo| < 6,

FO1) <27 (f () +inf(f)).

Hence y; € a(x) by definition. Therefore a is indeed lower semicontinuous. By
Michael’s selection theorem, there exists a continuous mapping A, : K — K such
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that A,x € a(x) for all x € K. It follows from the definition of a (see (4.44)) that
foreach x € K,

f(Ax) <271 (f () +inf(/)).
This implies that A, is normal. This completes the proof of Proposition 4.16. O

4.7 Auxiliary Results

By Proposition 4.16, there exists a normal mapping A, € A.. For each {A;}, € M
and each y € (0, 1), we define a sequence of mappings AY = {A7 2, €Mby

Ag/x:(l—y)A,x—i—yA*x, xeK,t=1,2,.... (4.45)

Clearly, for each A = {A;}?°, € M, and each y € (0, 1), AV € M,. By (4.45) and
Proposition 4.11, A? is normal for each A € M and each y € (0, 1). It is obvious
that for each A € M,

A” - A asy — 07 in the strong topology. (4.46)

Lemma 4.17 Let A = {A;}°, € M be normal and let ¢ > 0 be given. Then there
exist a neighborhood U of A in M with the strong topology and a number § > 0
such that for each B = {B;}°, € U, each x € K satisfying

f(x)>inf(f) +¢ (4.47)
and each integer t > 1,

f(Bix) = f(x)—34.

Proof Since A is normal, there is §o > 0 such that for each integer r > 1 and each
x € K satisfying (4.47),

F(Ax) < f(x) = b0, (4.48)
Since f is uniformly continuous, there is § € (0, 4~184) such that
|fO) = f@] =478 (4.49)
for each y, z € K satisfying ||y — z|| <28. Set
U={BeM: (A B)ecE©))}. (4.50)

Assume that B = {B,};2, € U, let t > 1 be an integer and let x € K satisfy
(4.47). By (4.47) and the definition of &y, (4.48) is true. The definitions of § and U
(see (4.49) and (4.50)) imply that

|A;x — Bix|| <8 and | f(A;x) — f(Bix)| < 80/4.
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When combined with (4.48), this implies that
FBx) < f(x)+4718—80 < f(x) = 6.

This completes the proof of the lemma. g

4.8 Proof of Theorem 4.12

Assume that A = {A;}7°, € M is normal and let & > 0 be given. By Lemma 4.17,
there exist a neighborhood U of A in M with the strong topology and a number
8 > 0 such that the following property holds:

(Pi) Foreach {B}{°, € U, each integer t > 1 and each x € K satisfying (4.47), the
inequality

f(Bix) < f(x)—6 4.51)
holds.

Choose a natural number N > 4 such that

SN >2(s+ 1) +2sup{|f(2)| :z€ K}. (4.52)
Assume that
C={C};2, €U, xeK and r:{1,2,...}—>{1,2,...}. (4.53)
We claim that
F(Crny - Crayx) < inf(f) +-e. (4.54)

Assume the contrary. Then
f(x) > inf(f) + ¢, f(Crpy---Crayx) >inf(f)+e, n=1,...,N. (4.55)
It follows from (4.55), (4.53) and property (Pi) that

F(Crayx) < f(x) =36,
FCra+)Crmy - Crayx) < f(Crmy---Crayx) =8, n=1,...,N—1.

This implies that

fCry- - Crayx) < f(x) = N§ < —2—sup{‘f(z)| :ZGK},

a contradiction. Therefore (4.54) is valid and Theorem 4.12 is proved.
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Assume that A = {A;}7°, € M is normal and let ¢ > 0 be given. Since A is normal,

there is § € (0, 1) such that for each integer ¢ > 1 and each x € K satisfying

fx) = inf(f) +e,

the following inequality is valid:

Jf(Ax) = f(x) =36.
Choose a natural number N > 4 for which

N >48""+45 " sup{| f ()| : z € K }.

Since f is uniformly continuous, there is A € (0, 4’18) such that

[f@ = f»|<87"s
for each y, z € K satisfying ||z — y|| <4A. Set

U={BeM:(AB)€E,N,A)}.
Assume that
C={C}2,€eU and xeKk.

We claim that

f(Cy---Cix) <inf(f) +e.

Assume the contrary. Then

F(x)>inf(f)+e,  f(Cp---Cix)>inf(f)+e, n=1,...

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

4.61)

(4.62)

(4.63)

Define Cp: K — K by Cox =x forall x € K. Let t € {0, ..., N — 1}. It follows

from (4.63) and the definition of § (see (4.56) and (4.57)) that

J(Ar1Cr--- Cox) = f(Ci -+~ Cox) — 6.

(4.64)

The definition of U (see (4.60)) and (4.61) imply that || A;11C; - -- Cox — Cy+1Cy - - -

Cox|| < A. By this inequality and the definition of A (see (4.59)),

| f(A1Cr -+ Cox) = f(Cri1Cr -+~ Cox)| <8715

When combined with (4.64), this implies that

F(Cr1Cr---Cox) < f(Cy---Cox) — 2716,
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Since this inequality is true for all ¢ € {0, ..., N — 1}, we conclude that
f(Cy -+ Cix) < f(x) —27'N8.

Together with (4.58) this implies that

—sup{|f(@)]:ze K} <sup{|f(2)|:ze K} —271sN
<-2-sup{|f(@)|:ze K},

a contradiction. Therefore (4.62) does hold and Theorem 4.13 is proved.

4.10 Proof of Theorem 4.14

Let Ae M, y €(0,1) and let i > 1 be an integer. Consider the sequence AY € M
defined by (4.45). By Proposition 4.11, A is normal. By Lemma 4.17, there ex-
ists an open neighborhood U (A, y, i) of AY in M with the strong topology and a
number §(A, y, i) > 0 such that the following property holds:

(Pii) For each B = {B,}toi1 € U(A, y,i), each integer r > 1 and each x € K satis-
fying f(x) > inf(f) 4+ 277,

f(Bix) < f(x) —8(A, y,0).
Define

F=U{vAa.y.iy:Ae M,y €© 1)} (4.65)

s

I
—_

1

and

Fe= [ﬂU{U(A, y,i):A €My e, 1)}] nMe.

i=1

Clearly, F. C F, F is a countable intersection of open and everywhere dense sets
in M with the strong topology, and . is a countable intersection of open and
everywhere dense sets in M, with the strong topology.

Assume that B = {B,}7°, € 7. We will show that B is normal.

Let ¢ > 0 be given. Choose an integer i > 1 such that

271 <¢/8. (4.66)
By (4.65), there exist A € M and y € (0, 1) such that

BeUA,vy,i). (4.67)
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Let t > 1 be an integer, x € K, and f(x) > inf(f) + €. Then by (4.66), (4.67) and
property (Pii),

f(Bl‘x) S f(x) - S(A’ )/7 l)

Thus B is indeed normal and Theorem 4.14 is proved.
The proof of Theorem 4.15 is analogous to that of Theorem 4.14.

4.11 Normality and Porosity

In this section, which is based on [133], we continue to consider a complete metric
space of sequences of mappings acting on a bounded, closed and convex subset K
of a Banach space which share a common convex Lyapunov function f. In previous
sections, we introduced the concept of normality and showed that a generic element
taken from this space is normal. The sequence of values of the Lyapunov uniformly
continuous function f along any (unrestricted) trajectory of such an element tends
to the infimum of f on K. In the present section, we first present a convergence
result for perturbations of such trajectories. We then show that if f is Lipschitzian,
then the complement of the set of normal sequences is o -porous.

Assume that (X, || - ||) is a Banach space with norm || - ||, K C X is a nonempty,
bounded, closed and convex subset of X, and f : K — R! is a convex and uniformly
continuous function. Observe that the function f is bounded because K is bounded
and f is uniformly continuous. Set

inf(f) =inf{f(x):x € K} and sup(f)=sup{f(x):x€K}.

We consider the topological subspace K C X with the relative topology. Denote
by A the set of all self-mappings A : K — K such that

f(Ax) < f(x) forallx e K

and by A, the set of all continuous mappings A € A.
For the set A we define a metric p : A x A— R! by

p(A, B)=sup{l|Ax — Bx||:xe K}, A,BeA

It is clear that the metric space A is complete and A, is a closed subset of A. We will
study the metric space (A, p). Denote by M the set of all sequences {A;};°, C A
and by M. the set of all sequences {A;}7°, C A.. For the set M we define a metric

om: M x M — R' by
PM ({At}?il’ {Bz}?il) = SUP{P(Atv B):t=1,2,.. -}, (A2 (B2 e M.

Clearly, the metric space M is complete and M, is a closed subset of M. We will
also study the metric space (M, prq).
We recall the following definition of normality.
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A mapping A € A is called normal if given ¢ > 0, there is §(¢) > 0 such that for
each x € K satisfying f(x) > inf(f) + ¢, the inequality

F(AX) < f(x) = 8(e)

is true.
A sequence {A;}7°, € M is called normal if given & > 0, there is §(¢) > 0 such
that for each x € K satisfying f(x) > inf( f) + ¢ and each integer ¢ > 1, the inequal-

1ty
J(Ax) = f(x) —8(e)

holds.
We now present two theorems which were obtained in [133]. Their proofs are
given in the next two sections.

Theorem 4.18 Let {A;}7°, € M be normal and let ¢ be positive. Then there exist
a natural number ng and a number y > 0 such that for each integer n > ng, each

mapping r : {1,...,n} — {1, 2, ...} and each sequence {x;}!_, C K which satisfies

lxic1 — Argenxill <y, i=0,...,n—1,
the inequality f(x;) <inf(f) + ¢ holds for i =ny, ..., n.

Theorem 4.19 Let F be the set of all normal sequences in the space M and let
F={Ac A:{A}2, € Fwhere A;=A,t=1,2,...}.

Assume that the function f is Lipschitzian. Then the complement of the set F is a
o -porous subset of M and the complement of the set F N\ M, is a o -porous subset
of M. Moreover, the complement of the set F is a o-porous subset of A and the
complement of the set F N A, is a o-porous subset of A..

4.12 Proof of Theorem 4.18

We may assume that ¢ < 1. Since {A;}7°, is normal, there exists a function § :
(0, 00) — (0, 00) such that for each s > 0, each x € K satisfying f(x) > inf(f) +s
and each integer t > 1,

f(Ax) = f(x)—35(5). (4.68)
We may assume that 6(s) < s, s € (0, 00). Choose a natural number

1

no > 4(1 +sup(f) —inf(f))8(8 'e)” (4.69)
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Since f is uniformly continuous, there exists a number y > 0 such that for each
¥1, 2 € K satisfying ||y; — y2|| < y, the following inequality holds:

|foD) = fO)| <88 e)8 o+ 17" (4.70)

We claim that the following assertion is true:
(A) Suppose that

(i)l CK,r:{l,...,no} —> {1,2,...},

lxit1 — Arg+pxill <y, i=0,...,n0—1. (4.71)
Then there exists an integer n1 € {1, ..., no} such that
) <inf(f) + /8. 4.72)

Assume the contrary. Then
S&) >inf(f)+¢/8, i=1,...,nop. (4.73)

By (4.73) and the definition of § : (0, 00) — (0, 00) (see (4.68)), for each i =
1,...,n0— 1, we have

F(Arganxi) < f i) —8(87e). (4.74)
It follows from (4.71) and the definition of y (see (4.70)) that fori =1,...,n9 — 1,
|f (i) = f(Arenx)] <8(87'e)8 o+ D7
When combined with (4.74), this inequality implies that fori =1, ...,n9 — 1,

F&xig) — fxi) < f i) = F(Ara+nxi) + f(Aranxi) — f(xi)
<8(87'e)8 mo+ D' —8(87e) = (—1/2)8(87'e).
This, in turn, implies that
inf(f) = sup(f) < f(xny) — £ (x1) < (o — D(=1/2)8(8'¢),

a contradiction (see (4.69)). Thus there exists an integer n1 € {1, ..., no} such that
(4.72) is true. Therefore assertion (A) is valid, as claimed.
Assume now that we are given an integer n > ng, a mapping

r-{l,...,n}—>{1,2,...} 4.75)
and a finite sequence

{xi}?zo CK suchthat |lxit1 —Ar+pxill <y, i=0,...,n—1. (4.76)
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It follows from assertion (A) that there exists a finite sequence of natural numbers
{j[,}z7=1 such that

1 < j1 <ny, 1<jpr1—jp=<no ifl<p=<g-—1,n—j, <no,
fxj,) <inf(f)+¢/8, p=1,...,q.

Let i € {ng,...,n}. We will show that f(x;) < inf(f) + /2. There exists p €
{1,...,q} such that

4.77)

Ofi_jpfno'

Ifi = jp, then by (4.77), f(x;) = f(x;,) <inf(f)+ &/8. Thus we may assume that
i > jp.Forallintegers j, <s <, it follows from (4.76) and the definition of y (see
(4.70)) that

FArs11Xg) < f(Xs),

| £ (rs41) = f(Arinxs)| <8(87'e)8 o+ 1)
and

Fern) < f(Arenxs) +8(87e)8 Hmo + 17!

< fx)+887e)8 Lo+ 7.
Thus
flg) — fx) <887 'e)8 o+ D71, jp <5 <i.

This implies that

fi) < fx,)+8(87'e)8 o+ D (mo + 1)

<inf(f) +e/8+87'8(8 ') <inf(f) +¢/2.

Therefore f(x;) < inf(f) + ¢/2 for all integers i € [ng,n] and Theorem 4.18 is
proved.

4.13 Proof of Theorem 4.19

Since f : K — R! is assumed to be Lipschitzian, there exists a constant L(f) > 0
such that

|f) = fFO| <L(Hlx—yll forallx,yeK. (4.78)

By Proposition 4.16, there exist a normal continuous mapping A, : K — K and a
function ¢ : (0, 0c0) — (0, co) such that for each ¢ > 0 and each x € K satisfying
f(x) = inf(f) + ¢, the inequality f(A.x) < f(x) — ¢ (e) holds.
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Let ¢ > 0 be given. We say that a sequence {A;}7°, € M is (¢)-quasinormal if
there exists § > 0 such that if x € K satisfies f(x) > inf(f) + ¢, then f(A;x) <
f(x) — & for all integers ¢ > 1.

Recall that F is defined to be the set of all normal sequences in M. For each in-
teger n > 1, denote by F,, the set of all (n~!)-quasinormal sequences in M. Clearly,

F= ﬂ Fn. (4.79)
n=1
Set
d(K)=sup{lzl :z€ K}. (4.80)

Let n > 1 be an integer. Choose « € (0, 1) such that

2L(fa < (1 —a)p(n~ )8 (d(K)+1) " (4.81)
Assume that 0 <7 < 1 and {A;}7°, € M. Set

1

y=010—-o)r8 ' (d(K)+1)" (4.82)
and define for each integer t > 1, the mapping A;), : K — K by
Apx=(01-p)Ax+yAx, xek. (4.83)

It is clear that {A;,}°, € M and
pMm({AN2 A )2) <2y sup{||z|| 1zZE€ K} <2yd(K). (4.84)

Note that {A;,}7°, € M, if {A;}7°, € M, and that A;, = Ay, t =1,2,..., if
A=A, t=1,2,....
Assume that

{C2 eM and pa({Ay 12 (C2)) <ar (4.85)
Then by (4.85), (4.84) and (4.82),
oM({ANEACHS,) <ar +2yd(K) <ar + (1 —a)r/2
=r(l+a)/2<r. (4.86)
Assume now that x € K satisfies
f@) = inf(f) +n~"! (4.87)
and that 7 > 1 is an integer. By (4.87), the properties of A and ¢, and (4.83),
fAX) < f) =¢(n7"),
f(Apx) < (1= y) f(Ax) + 7f(Aux) (4.88)
<U=Pf@+r(f@—g(n™")=r)—ye(r™").
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By (4.85), [|Cix — Asyx|| < ar. Together with (4.78) this inequality yields

| f(Cix) = f(Apx)| < L(fHar.

By the latter inequality, (4.88), (4.82) and (4.81),

f(Cix) < f(Ayx) + L(f)ar
<L(Har+ fx) —yp(n")
< f0) —p(n )1 — )8 (d(K) + 1) + L(far
< f(x) = L(fHHar.

Thus for each {C,};’i | € M satisfying (4.85), inequalities (4.86) hold and
{C:}72, € F. Summing up, we have shown that for each integer n > 1, M\ F,
is porous in M, M, \ F, is porous in M., the complement of the set

{A e A:{A};2, € F, with A; = A for all integers 7 > 1}
is porous in .4 and the complement of the set
{A ceA.: {A,}‘t’i1 € F, with A; = A for all integers ¢ > 1}

is porous in A,.

Combining these facts with (4.79), we conclude that M \ F is o-porous in M,
M.\ F is o-porous in M., A\ F is o-porous in A and A, \ F is o-porous in A.
This completes the proof of Theorem 4.19.

4.14 Convex Functions Possessing a Sharp Minimum

In this section, which is based on the paper [7], we are given a convex, Lipschitz
function f, defined on a bounded, closed and convex subset K of a Banach space
X, which possesses a sharp minimum. A minimization algorithm is a self-mapping
A: K — K such that f(Ax) < f(x) for all x € K. We show that for most of these
algorithms A, the sequences {A"x}°C ;| tend to this sharp minimum (at an exponen-
tial rate) for all initial values x € K.

Let K C X be a nonempty, bounded, closed and convex subset of a Banach
space X. Foreach A: K — X, set

Lip(A) = sup{||Ax — Ay|l/llx — |l : x, y € K such that x # y}. (4.89)

Assume that f : K — R! is a convex, Lipschitz function such that Lip( f) > 0.
We have

|f(x) = f| <Lip(HHllx =yl forallx,yeK.
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Assume further that there exists a point x, € K and a number ¢y > 0 such that

inf(f) :=inf{f(x):x € K} = f(xs)
and
f(x) = f(xye) +collx —x4|| forallx e K. (4.90)
In other words, we assume that the function f possesses a sharp minimum (cf.
[26, 109]).
Denote by A the set of all self-mappings A : K — K such that Lip(A) < oo and
f(Ax) < f(x) forallx eK. 4.91)
We equip the set A with the uniformity determined by the base
E@E)={(A,B)e Ax A:||Ax — Bx| <¢eforall x € K and Lip(A — B) <¢},

where ¢ > 0. Clearly, the uniform space A is metrizable and complete.

Theorem 4.20 There exists an open and everywhere dense subset B C A such that
for each B € B, there exist an open neighborhood U of B in A and a number
Ao € (0, 1) such that for each C € U, each x € K, and each natural number n,

[C"x = x| < 2" (f ) = f(x0)

Proof Lety € (0,1) and A € A be given. Set

Ay x=(1-p)Ax+yx., x€eK. (4.92)
Clearly, for all x € K,
FAyx) = (L —y) f(Ax) + v f(xs) (4.93)
and
A, e A (4.94)

Next, we prove the following lemma.
Lemma 4.21 Let A€ A, y € (0,1) and B € A. Then for each x € K,
f(Bx) = f(x) < [(1 = y) +Lip(f) Lip(B — Ay)cy ' [(f () — £ (x).
Proof Let x € K. By (4.93), the relations A, x = Bxy = x4 and (4.90),

f(Bx) = f(xy) = f(Ayx) — f(x) + f(Bx) — f(Ayx)
<1 =y (f&x) — f(x)) +Lip()lIBx — Ayx]
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< (1= y)(f(x) = f(x)) + Lip(f)Lip(B — Ay)|lx — x|
< =M(f) = f&x0)

+ Lip(f) Lip(B — Ay)cy ' (f(x) — f(x2))
< [(1 =)+ Lip(/)Lip(B — Ay)cy ' [(F () = f(x)).

The lemma is proved. O

Completion of the proof of Theorem 4.20 Let A € A and y € (0, 1) be given.
Choose r(y) > 0 such that

Ay i=(1—y)+Lip(Hr(y)e;' < 1. (4.95)
Denote by L{(A, y) the open neighborhood of A, in A such that
UA,y)C{BeA:(A,,B)e&(rin)}. (4.96)
Set
B=|J{uA.y):Ae Ay e 1} (4.97)
Clearly, we have for each A € A,
A, —> A asy—07".

Therefore B is an everywhere dense, open subset of A. Let B € A. There are A € A
and y € (0, 1) such that

BelU(A,y). (4.98)
Assume that
Cel(A,y) and xeKk. (4.99)
By Lemma 4.21, (4.99), (4.96) and (4.95),
£(Cx) = f(x) < [(1 = y) + Lip(f) Lip(C — A, )cg ' (£ (x) = £(x))
< Ay (f () = f(x)).

This implies that for each x € K and each natural number #,

F(C"x) = fx) <AL () = fx)).

When combined with (4.90), this last inequality implies, in its turn, that for each
x € K and each integer n > 1,

[€"x x| = e (£(C™0) = () < g 'K (£ ) = f ).
This completes the proof of Theorem 4.20. g



Chapter 5
Relatively Nonexpansive Operators with Respect
to Bregman Distances

5.1 Power Convergence of Operators in Banach Spaces

The following problem often occurs in functional analysis and optimization theory,
as well as in other fields of pure and applied mathematics: given a nonempty, closed
and convex subset K of a Banach space X and an operator 7' : K — K, do the
sequences iteratively generated in K by the rule x¥*! = T'xk converge to a fixed
point of 7' no matter how the initial point x° € K is chosen? It is well known that
this indeed happens, in some sense, for “standard” classes of operators (e.g., cer-
tain nonexpansive operators and operators of contractive type which were studied
in Chaps. 2 and 3, and in [24, 68]). Note that in [27, 38, 122] it was shown that the
question asked above has an affirmative answer even if the operator 7 is not con-
tractive in any standard sense, but still satisfies some requirements which make the
orbits of T behave like the orbits of contractive operators. A careful analysis shows
that the operators discussed in these papers share the following property:

There exists a convex function f : X — R! U {oo} such that K is a subset of the
interior of

dom(f)={x € X: f(x) < oo},
and for some z7 € K, we have
Dy(zr,Tx) < Dy(zr,x) (5.1

forall x € K, where Dy : D x DY — [0, 0o) denotes the Bregman distance [37, 39]
with respect to f (here D = dom(f) and DY is the interior of D) defined by

Ds(y,x)=f() — f@)+ fOlx, x =), (5.2)
where
O, v) =tlir(r)1+t_1(f(x + 1) — f(x)). (5.3)

Operators satisfying (5.1) will be called nonexpansive with respect to f in the
sequel. In general, operators which are nonexpansive with respect to some totally
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convex function f are not nonexpansive in the usual sense of the term, that is, they
do not necessarily satisfy the condition

ITx =Tyl <llx =yl (5.4)

or even the condition D¢(Tx,Ty) < Dy(x,y) for all x,y € K. Examples of this
phenomenon can be found in [28]. Also, it may happen that the orbits of an operator
T which is nonexpansive with respect to some convex function f are not convergent
or do not converge to fixed points of T, although such an operator 7 must have fixed
points (z7 is a fixed point of T because of (5.1)). Moreover, even if all the orbits
of T converge to fixed points of T, it may happen that the limits of these orbits are
not equal to the point z7 in (5.1). For instance, take X = R!, fx)= x2, K =1[0,1]
and Tx = x2. Then T is nonexpansive with respect to f and z7 = 0 satisfies (5.1).
However, the orbit of T starting at V=1 converges to 1 (a fixed point of 7 which
does not satisfy (5.1)).

The convergence of orbits of significant classes of operators satisfying (5.1) was
studied because of its importance in optimization theory and in other fields. Our aim
in this chapter is to show that strong convergence is not the exception, but the rule.
More precisely, we show that in appropriate complete metric spaces of operators
which are nonexpansive with respect to a uniformly convex function f, there exists
a subset which is a countable intersection of open and everywhere dense sets such
that for any operator belonging to this subset, all its orbits converge strongly.

The practical meaning of our results is that whenever one applies iterative al-
gorithms of the form x¥*1 = Tx¥ to compute a fixed point of an operator 7', then
there is a good chance that the convergence of the resulting sequence {x*} is actually
strong. This conclusion is consistent with many computational experiments despite
the fact that the study of particular classes of operators T satisfying (5.1) has not yet
produced general strong convergence theorems.

5.2 Power Convergence for a Class of Continuous Mappings

Let (X, || - ||) be a Banach space, K C X a nonempty, closed and convex subset
of X, and let f: X — R! U {oo} be convex. Let D be the domain of f and let
Dy :D x DY — [0, 00) denote the Bregman distance with respect to f defined
by (5.2). We assume in the sequel that K ¢ DP.

Denote by M the set of all mappings 7 : K — K which are bounded on bounded
subsets of K. For the set M we consider the uniformity determined by the following
base:

E(N.&)={(T1.Ty) € M x M:||Tix — Tax|| < ¢
for all x € K satisfying ||x|| < N}, (5.5

where N, & > 0. Clearly, this uniform space is metrizable and complete. We equip
the space M with the topology induced by this uniformity. Denote by M, the set
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of all continuous 7 € M. Clearly, M, is a closed subset of M. We consider the
topological subspace M, C M with the relative topology.

Denote by My the set of all T € M, for which there is z7 € K such that the
following assumptions hold:

A(®)
Tzt =z7, D¢(zr,-): K — Rlis convex,

Dy(zr,Tx) <Dy(zr,x) forallx € K;

A(ii) for any & > 0, there exists § > 0 such thatif x € K and Dy(z7,x) <, then
lzr — x|l <&
A(iii) Dy (zr,-): K — R!is Lipschitzian in a neighborhood of z7.

Denote by M the closure of Mg in M. We consider the topological subspace
My C M with the relative topology.

Note that A(iii) holds if the function D¢(z7, ) : DP® — R! is convex. Note also
that A(ii) holds if the function f is uniformly convex. Examples of such functions
f can be found in [28]. Let § € K be given. Denote by My ¢ the set of all T € My
such that Assumption A holds with z7 = & and denote by /\;lo, ¢ the closure of My ¢
in M. We consider the topological subspace /\;lo,g C M with the relative topology.

In this chapter we prove the following six results, which were obtained in [30].

Theorem 5.1 Let x; € K, j=1,..., p, where p is a natural number. Then there
exists a set F C Mo, which is a countable intersection of open and everywhere
dense sets in Mo such that for each T € F, the following assertions hold:

1. There exists z« € K such that T"x; — z4« asn — oo foreach j =1, ..., p.
2. For each ¢ > 0, there exist an integer N > 1, a neighborhood U of T in M and
neighborhoods Vi of xjin K for j =1,..., p such thatfor j=1,..., p,

” STy — z4 ” <e¢ foreach S €U, eachy € Vj and each integern > N.

Theorem 5.2 Leté € K and x; € K, j =1,..., p, where p is a natural number.
Then there exists a set Fg C Mo g which is a countable intersection of open and
everywhere dense sets in Mo g such that for each T € Fg,

lim T"x; =&, j=1,...,p,

n—o00

and the following assertion holds:
For each ¢ > 0, there exist an integer N > 1, a neighborhood U of T in M and
neighborhoods Vi of xjin K for j =1,..., p such thatfor j=1,..., p,

HS”y —E“ <e¢ foreach S €U, eachy € V; and each integern > N.

Let & € K be given. We equip the topological spaces K x M, K x My and
K x My ¢ with the appropriate product topologies.
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Theorem 5.3 There exists a set F C K x Mg which is a countable intersection of
open and everywhere dense sets in K x Mg such that for each (x,T) € F, there
exists lim, . o T" x and the following assertion holds:

For each ¢ > 0, there exists an integer N > 1 and a neighborhood U of (x, T) in
K x M such that for each (y, S) € U and each integeri > N,

Our next theorem is an analog of Theorem 5.3 for the space ./\;lo,g c M.

Sy — lim T”xH <e.

n—00

Theorem 5.4 Let & € K be given. Then there exists a set F¢ C K x /\;lo,g which is
a countable intersection of open and everywhere dense sets in K x /\;lo,g such that
foreach (x,T) € Fg, lim,_,oo T"x =& and the following assertion holds:

For each ¢ > 0, there exists an integer N > 1 and a neighborhood U of (x, T) in
K x M such that for each (y, S) € U and each integeri > N,

[s'y—¢] =e.

Theorem 5.5 Let Ko be a nonempty, separable and closed subset of K . Then there
exists a set F C Mo which is a countable intersection of open and everywhere dense
sets in /\;lo such that for each B € F, there exist xgp € K and a set Kg C Ko which
is a countable intersection of open and everywhere dense sets in Ko with the relative
topology such that the following assertions hold:

1. limy,,_, o0 B"x = xp for each x € Kp.

2. For each x € Kp and each ¢ > 0, there exist an integer N > 1 and a neigh-
borhood U of (x, B) in K x M such that for each (y, S) € U and each integer
i>N,

Ity —xs] <.

Theorem 5.6 Let Ky be a nonempty, separable and closed subset of K, and let
& € K be given. Then there exists a set Fg C /\;lo,g which is a countable intersection
of open and everywhere dense sets in /\;lo,g such that for each B € Fg, there exists
a set Kp C Ko which is a countable intersection of open and everywhere dense sets
in Ko with the relative topology such that the following assertions hold:

1. lim,_ oo B"x =& for each x € Kp.

2. For each x € Kp and each ¢ > 0, there exist an integer N > 1 and a neigh-
borhood U of (x, B) in K x M such that for each (y, S) € U and each integer
i>N,

[s'y €] <e.
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5.3 Preliminary Lemmata for Theorems 5.1-5.6

With the notions and notations of Sects. 5.1 and 5.2, assume that T € M, z7 € K,

Tzr =zr, Dy¢(zr,): K — R'is convex,
(5.6)
Dy(zr,Tx) < Dy(zr,x) forallx € K,
and that
for any ¢ > 0, there exists § > 0 such thatif x € K and
Dy(z7,x) <4, then |zr — x| <e. 5.7)
For any y € (0, 1), define a mapping T, : K — K by
Tyx=yzr+(1—-y)Tx, xecKk. (5.8)
Clearly, for each y € (0, 1),
T,eMandif T € M., then T, € M., (5.9)
and
T,—T inMasy—0". (5.10)
Lemma 5.7 Lety € (0, 1) be given. Then T,z =z and
D¢(zr, Tyx) <(1 —y)Dys(zr,x) forallx e K. (5.11)

Proof Evidently, T, zr = zr. Assume that x € K. Then by (5.8) and (5.6),
Dy(zr, Tyx) = Dy(zr, yzr + (1 — y)Tx)
<yDsGr,zr) + (0 —=y)Ds(zr,Tx) <1 —y)Dys(zr,x),

as claimed. O

Lemma 5.8 Assume that the function Dy¢(z7,") : K — R' is Lipschitzian in a
neighborhood of zr. Let €,y € (0,1). Then there exist a number § € (0, &) and
a neighborhood U of T), in M such that for each S € U and each x € K satisfying
||)(§ — zr|l <86, the inequality ||S"x — z7 || < & holds for all integers n > 0 (note that
SYx =x).

Proof We may assume without loss of generality that there is cg > 1 such that
|Dyp(zr,y1) = Dy(zr, y2)| < collyr — yal (5.12)
for each y; and y; € K satisfying

lyi —z7ll <8¢, i=1,2. (5.13)
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By (5.7), there exists A € (0, ¢) such that
lzr — yll <e foreachy € K satisfying Dy (zr,y) < A. (5.14)
Choose a positive number
§< (o) ' =y)ya (5.15)
and set

U={SeM:||Sy—T,y|<sforally e K

satisfying ||y — z7 || <4}. (5.16)
Assume that
Seld, xeK and |x—z7| <6. (5.17)
We intend to show that
|S"x —zr| <& forallintegersn > 1. (5.18)

By (5.14), in order to prove (5.18), it is sufficient to show that
Df(zT, S"x) <A forall integers n > 1. (5.19)
It follows from (5.17), (5.12), (5.13) and (5.15) that
Dy(zr,x) < Dys(zr, z27) +collzr — x|l < cod < A. (5.20)

Assume that (5.19) is not true. Then by (5.20), there exists an integer m > 0 such
that

Dy(zr,S'x) <A, i=0,...,m, and Dys(zr,8"'x)>A4. (521
Inequalities (5.21) and (5.14) imply that
lzr — $™x| <. (5.22)
By Lemma 5.7,
Dy(zr, T, (8™x)) < (1 — y) Dy (27, S"x). (5.23)

It follows from (5.23) and (5.21) that D¢ (z7, T, ($"x)) < A. Together with (5.14)
this inequality implies that

lar = T (8"x) | <e. (5.24)
Note that (5.22), (5.16) and (5.17) imply that

|7, (s™x) — s™Hx| <. (5.25)
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When combined with (5.24) and (5.15), this inequality implies that
lzr — $™Hx| <e+8 <2e. (5.26)
By (5.24), (5.26), (5.12), (5.13) and (5.25),
|Df(zr, T, (S"x)) — Dy (zr, S™T'x)| < co Ty (8™ x) — S"Flx| < cos. (5.27)
It follows from (5.27) and (5.23) that
Dy(zr, S™'x) < cod + Dy (zr, Ty (S™x)) < cod + (1 —y) Dy (zr, S"x). (5.28)

There are two cases: (i) D f(zr, $"x) <27 A; (i) Dy (z7, S"x) > 271 A.
Consider first case (i). Then by (5.28) and (5.15),

Dy(zr, S"Mx) <cod +27 (1 —p)A < 4,

a contradiction (see (5.21)).
Consider now case (ii). Then by (5.28) and (5.15),

Dy(zr, S"x) — Dy(zr, S"'x) > y Dy (zr, $"x) —co8 =27 'y A — o8 > 0,
sothat Dy (ZT, S’"+1x) < Df(ZT, Smx),

a contradiction (see (5.21)). Thus in both cases we have reached a contradic-
tion. Therefore (5.19) is valid and (5.18) is also true. This completes the proof of
Lemma 5.8. O

Lemma 5.9 Assume that the mapping T : K — K is continuous and that y > 0.
Then for each x € K, each ¢ > 0 and each integer n > 1, there exist a number
8 > 0 and a neighborhood U of T, in M such that for each S € U and each y € K
satisfying ||y — x|| < 8, the inequality ||(T),)"x — S"y|| < & holds.

Proof We prove this lemma by induction. It is clear that for n = 1 itis valid. Assume
that m > 1 is an integer and that the lemma is true for n = m. We will show that it
is also true forn = m + 1.

Let x € K and ¢ > 0 be given. Since the lemma is true for n = 1, there are
a neighborhood Uy of T, in M and a number &y > O such that for each y € K
satisfying ||y — (T},)"x|| < 8¢ and each § € Uy, the following inequality holds:

ISy = T, ((T,)"x) | <47 . (5.29)

Since we assume that the lemma is true for n = m, there exist a number § > 0 and
a neighborhood U/ of T}, in M such that U C Uy and for each y € K satisfying
ly — x|l <6 and each § € U, the inequality

Is™y —(1,)"x| <278 (5.30)

is true.
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Assume that
Sel, yeK and |y—x]| <$4. (5.31)

By (5.31) and the definition of U, (5.30) is true. By (3.30) and the definition of U
and §p (see (5.29)),

IS(s™y) =T, ((T,)"y) | <47 "e. (5.32)

Therefore for each S € U/ and each y € K satisfying (5.31), inequality (5.32) holds.
Thus the lemma is true for n = m + 1. This completes the proof of Lemma 5.9. [

Lemma 5.10 Assume that the function Dy(zr,-) : K — R Uis Lipschitzian in a
neighborhood of zr and that the mapping T : K — K is continuous. Let y, ¢ €
(0, 1) and x € K be given. Then there exist a neighborhood U of T, in M, a number
8 > 0 and an integer N > 1 such that for each y € K satisfying ||y — x|| <6, each
S € U and each integer n > N,

|57y~ zr] <.

Proof By Lemma 5.8, there are a number A € (0, ¢) and a neighborhood U4 of T),
in M such that the following property holds:

A(i) For each S € Uy and each y € K satisfying ||y — zr|| < A, the following rela-
tion holds:

” Sy —zr || <e¢ forall integers n > 1.

By (5.7), there is 8o > 0 such that
lzr —yll <47'A ifye K and Ds(z7, y) < &. (5.33)
By Lemma 5.7, there exists an integer N > 1 such that
Dy (zr, (T))"x) < d.
When combined with (5.33), this inequality implies that
|lzr — (T)Vx| <47 ' A. (5.34)

By Lemma 5.9, there exist a neighborhood ¢/ C Uy of T, in M and a number § > 0
such that for each y € K satisfying |y — x|| <§ and each S € U,

[sYy — (T)Vx| <47 A.
By the definition of ¢/, § and (5.34), the following property holds:
A(ii) Foreach y € K satisfying |y — x|| <§ and each S e U,

HSNy —ZT” <27 1A,
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By properties A(i) and A(ii), for each S € U and each y € K satisfying |y — x| <,
” S*y —zr H <e¢ forall integersn > N.

Lemma 5.10 is proved. O

5.4 Proofs of Theorems 5.1-5.6

Proofs of Theorems 5.1 and 5.2 Leté,x; € K, j=1,..., p, where p is a natural
number. With each T € My, we associate a point z7 € K satisfying Assumption A.
If T e Moyg, then z7 =&.

By Lemma 5.7, for each T € My and each y € (0, 1), T, € Mg and T, € Mg
if T e Mog.

By Lemma 5.10, for each T € My, each y € (0, 1) and each integer i > 1, there
exist a natural number N (T, y, i), a real number 6(7, y,i) > 0 and an open neigh-
borhood U(T, y, i) of T), in M such that the following property holds:

C(i) Foreach S eU(T,y,i),eachj e (l,..., p},eachy € K satisfying ||y —x;| <
(N, y,i) and each integer n > N(T, y, i),

[$"y —zr] <27".
Define
=~ _
F= |:ﬂ U{U(T,)/,i):TeMo,y € (0, 1),i:q,q+1,_“}:| N Mo,

g=1

= -

Fe= [ﬂ U@, v.0): T e Mog,y €0, 1), =q,q+1,...}} N Mog.

g=1

It is clear that F (respectively, F¢) is a countable intersection of open and every-
where dense sets in Mg (respectively, Mo ¢), and that F¢ C F.
Let B € F and ¢ > 0 be given. Choose an integer ¢ > 1 such that

277 <471, (5.35)

There exist T € Mo (T € Mo if B € F¢), y € (0, 1) and an integer i > ¢ such
that
BelU(T,y,i). (5.36)
It follows from property C(i) and (5.35) that the following property holds:
C(ii) For each S e U(T,y,i), each j € {1,..., p}, each y € K satisfying ||y —
Xjll <8(N,y,i) and each integer n > N(T, y, i),

Is"y —zr| <47 e (5.37)
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Since ¢ is an arbitrary positive number, we conclude that for each j =1,..., p,
{B"x;}7, is a Cauchy sequence and there exists lim, oo B"x;. Inequality (5.37)
implies that

lim B"x; —zT” <47 le, j=1,....p. (5.38)

n— o0
(If B € F¢,then T € My g, zr = & and since (5.38) holds for any ¢ > 0, we see that
lim, oo B"x; =&, j=1,...,p)
Since (5.38) holds for any ¢ > 0, we conclude that

lim B"x; = lim B"x;, j=1,...,p.

n—oo n— o0
It follows from property C(ii) and (5.38) that for each S € U(T,y,i), each j =
I,...,p, each y € K satisfying ||y — x|l < 6(N,y,i) and each integer r >
N(T,y,i),

This completes the proofs of Theorems 5.1 and 5.2. 0

Sy —nlingo B"x;j H <27 1.

Now we are going to show that Theorems 5.3 and 5.4 are also true.

Proofs of Theorems 5.3 and 5.4 Witheach T € Mg we associate a point z7 € K sat-
isfying Assumption A. If T € My ¢, then z7 =&. By Lemma 5.7, foreach T € My
and each y € (0,1), T, e Mg and T}, € Mog if T € M. By Lemma 5.10, for
each (x,T) € K x My, each y € (0, 1) and each integer i > 1, there exist an inte-
ger N(x,T,y,i)> 1 and an open neighborhood U (x, T, y, i) of (x,T,) in K x M
such that the following property holds:

C(iii) Foreach (y,S) eUU(x, T, y,i) and each integern > N(x, T, y, i),
|8"y —zr|| <27

Define

F= |:m U{L[(x,T,y,i):xeK,TeMo,

g=1

ye(O,l),izq,q+1,...}:|ﬂ(KxMo),

oo
Fr = [ﬂ Jx. Ty i):x e K. T e Mo,

g=1

y € (0, 1),i:q,q+1,...}}m(Kx/\?to,g).



5.4  Proofs of Theorems 5.1-5.6 215

Clearly, F (respectively, F¢) is a countable intersection of open and everywhere
dense sets in K x M (respectively, K x Mo ¢) and Fz C F.
Let (z, B) € F and ¢ > 0 be given. Choose an integer ¢ > 1 such that

279 <471, (5.39)

There exist x € K, T € Mo (T € Mg if (z, B) € F¢), y € (0, 1) and an integer
i > g such that

(z, ByeU(x, T, y,i). (5.40)
It follows from property C(iii) and (5.39) that the following property also holds:
C(iv) Foreach (y,S) eUU(x, T, y,i) and each integern > N(x, T, y, i),

Is"y —zr| <47 (5.41)

Note that z7 =& if (z, B) € F¢. Since ¢ is an arbitrary positive number, we conclude
that { B"z}2 | is a Cauchy sequence and there exists lim,,_, o B"z. Inequality (5.41)
implies that

lim B"z — z7 ” <47 lg, (5.42)

n— oo
(If (z, B) € F¢, then zr =& and since (5.42) holds for any ¢ > 0, we conclude that
limy, o0 B"z =£.)

It follows from property C(iv) and (5.42) that for each (y, S) e U(x, T, y,i) and
each integer j > N(x, T, y,i),

H S/y — lim B"z|| <27 'e.
n—o0
This completes the proofs of Theorems 5.3 and 5.4. O

Proof of Theorem 5.5 Assume that K is a nonempty, closed and separable subset
of K. Let the sequence {x j}?‘;l C Ko be dense in K and let p be a natural number.
By Theorem 5.1, there exists a set F, C Mo, which is a countable intersection of
open and everywhere dense sets in My such that, for each T € F,,, the following
two properties hold:

C(v) For j=1,..., p there exists lim,_, oo T"xj and

lim T"x; = lim T"x;, j=1,...,p;
n—>oo n—oo
C(vi) Foreach ¢ > 0, there exist a neighborhood ¢/ of T in M, a real number § > 0
and a natural number N > 1 such that, for each S e U, each j =1,..., p,
each y € K satisfying ||y — x| < and each integer m > N,

HS’”y— lim Tixj)‘ <e.

i—00
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Set
oo
F=()Fp (5.43)
p=1

It is clear that F is a countable intersection of open and everywhere dense sets
in M.
Assume next that 7' € F. By (5.43) and C(v), there exists x7 € K such that

lim T"x; =xp, j=12,.... (5.44)

n—o0

Now we construct the set K7 C Ko. To this end, observe that property C(vi), (5.44)
and (5.43) imply that for each pair of natural numbers (g, i) there exist a neighbor-
hood U(q,i) of T in M, a number §(g,i) > 0 and a natural number N (g, i) such
that the following property holds:

C(vii) For each S € U(q,i), each y € K satisfying ||y — x4|| < 8(g,7) and each
integer m > N(q, i),

|57y —xr <27
Define

Kr=U{{yeko:lly—x4l <8(q. D)} :q = 1.i = n}. (5.45)

n=1

Clearly, K7 is a countable intersection of open and everywhere dense sets in Kjp.
Assume that x € K7 and ¢ > 0 are given. Choose an integer n > 1 such that

27" <471, (5.46)
By (5.45), there exist a natural number g and an integer i > n such that
lx — x4l <8(q,i). (5.47)

Combining (5.46) with property C(vii), we see that the following property is also
true:

C(viii) For each S € U(q,i), each y € K satisfying ||y — x41| < 8(q, i) and each
integer m > N(q, 1),

||Smy — X7 H <471,
Using this fact and (5.47), we get
H T"x —xT || <47 le forall integers m > N(q, i).

Since ¢ is an arbitrary positive number we conclude that {7 x}7°_, is a Cauchy
sequence and

lim T"x =xr. (5.48)

m— 00
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Applying property C(viii) and (5.35), it follows that for each S € U/(q,i), each
y € K satisfying ||y — x|| <&8(g,i) — |lx — x4| and each integer m > N(q, 1),

HSmy —XT || <471
This completes the proof of Theorem 5.5. U

We omit the proof of Theorem 5.6 because it is analogous to that of Theorem 5.5.

5.5 A Class of Uniformly Continuous Mappings

Denote by A the set of all mappings 7 : K — K which are uniformly continuous
on bounded subsets of K. Clearly any T € A is bounded on bounded subsets of K
and A is a closed subset of the complete uniform space M defined in Sect. 5.2. We
consider the topological subspace A C M with the relative topology.

Denote by A, the set of all T € A for which there is a point z7 € K such that the
following three properties hold:

B(i)
Tzr =zr, Dy(zr,-): K — R is convex,

Dy¢(zr,Tx) < Dy(zr,x) forallx € K;

B(ii) The function D¢ (z7, ) is bounded from above on any bounded subset of K;
B(iii) For any ¢ > 0 there exists § > 0 such thatif x € K and Dy (z7,x) <4, then
lzr — x|l <e.

Denote by A, the closure of A, in the space A. We consider the topological sub-
space A, C A with the relative topology.
We note that B(iii) holds if the function f is uniformly convex.

Theorem 5.11 There exists a set F C A, which is a countable intersection of open
and everywhere dense sets in Ay, such that for each T € F, the following two as-
sertions hold:

1. There exists 7, € K such that T"x — z, asn — oo forall x € K.
2. Foreach ¢ > 0 and each bounded set C C K, there exist an integer N > 1 and a
neighborhood U of T in A such that for each S € U and each x € C,

HS"x — Z4 H <e¢ forallintegersn > N.

Let & € K be given. Denote by A the set of all T € A which satisfy Property B
with z7 = § and denote by Ag the closure of Ag in .A. We consider the topological
subspace Az C A with the relative topology.
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Theorem 5.12 There exists a set Fi C Ag, which is a countable intersection of
open and everywhere dense sets in Ag, such that for each T € F, the following two
assertions hold:

1. T"x > &asn— oo forallx € K.
2. For each € > 0 and each bounded set C C K, there exists an integer N > 1 and
a neighborhood U of T in A such that for each S € U and each x € C,

|| S'x — & || <e& forallintegersn > N.

5.6 An Auxiliary Result
This section is devoted to an auxiliary result which will be used in the next section.

Proposition 5.13 Let K be a bounded subset of K, T € A, ¢ > 0and letn > 1 be
an integer. Then there exists a neighborhood U of T in A such that for each S € U
and each x € Ky, the inequality || T"x — S" x| < & holds.

Proof We prove this proposition by induction. Clearly, it is valid for n = 1. Assume
that m > 1 is an integer and that the proposition is true for n = m. We now show
that it is also true forn =m + 1.

Since the proposition is true for n = m, there is a neighborhood Uy of T in A
such that

Ay = sup{ || Smx” :Seldy, x € Ko} < 00. (5.49)
Set
Ki={xeK:|x||<Ao+1} (5.50)
and define
Uy ={Sely:|Tx — Sx|| <8 'eforall x € K1 }. (5.51)

Since the mapping 7 is uniformly continuous on K1, there is § > 0 such that
ITx — Tyl <87 'e (5.52)

for each x, y € K satisfying ||x — y|| <. Since the proposition is true for n = m,
there is a neighborhood ¢/ of T in A such that

ucu (5.53)
and for each S € U and each x € Ky, the following inequality holds:

|T"x — $"x|| <. (5.54)



5.7 Proofs of Theorems 5.11 and 5.12 219

Assume that S € i/ and x € K. Then
|77+ x — 5™ty || < |7 x — T(S™x) || + | T(5"x) — 5" Fx|.  (5.55)

By the definition of I/, inequality (5.54) is true. Now (5.49), (5.53), (5.51) and (5.50)
imply that

T"x,S8"x € K. (5.56)
It follows from (5.54), (5.56) and the definition of § (see (5.52)) that

|7 (s™x) — T x| <87 . (5.57)
By (5.53), (5.51) and (5.56),
|7 (5™x) — 5™ x| <87 . (5.58)

Combining (5.57), (5.58) and (5.55), we obtain that |77+ x — §"+1x|| <27 le.
Proposition 5.13 is proved. O

5.7 Proofs of Theorems 5.11 and 5.12

Let T € Ay, ¥y € (0,1) and let z7 € K satisfy Property B. Define a mapping T, :
K — K by

Tyx=yzr+(1—-y)Tx, xeKk. (5.59)
Clearly, T, € A. By Lemma 5.7, T, € A, with z7(,,) = zr and
Dy(zr,Tyx) <(1—=y)Dys(zr,x) forallx € K. (5.60)
It is clear that for each T € A,,
T,—-T asy—0in A (5.61)

We precede the proof of Theorems 5.11 and 5.12 by the following lemma.

Lemma 5.14 Let T € Ay, e,y € (0, 1) and let z7 € K satisfy Property B. Let K
be a nonempty and bounded subset of K . Then there exist a natural number N and a
neighborhood U of T, in A such that for each S € U, each x € Ky and each integer
n>N,

|8"x —zr|| <e. (5.62)
Proof We may assume without any loss of generality that

{xeK:llx—zrl| <1} C Ko. (5.63)
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According to Property B, there exists § € (0, €) such that
if x € K and Df(z7, x) <28, then ||z7 — x|| <27 'e. (5.64)
Also by Property B, there exists a number ¢y > 0 such that
Dy(z7,x) <co forall x € Kp. (5.65)
Choose a natural number N such that
(1—p)N(co+1) <2715, (5.66)

It follows from (5.66), (5.65) and (5.61) that for each x € Ky, and each integer
n>N,

Dy(zr, Tyx) < (1 —y)"Dy(zr,x) < (1 — y)Neg <2718

This inequality and (5.64) imply that for each x € K¢ and each integer n > N, we
have

lzr = T)x|| <27 e (5.67)

Proposition 5.13 guarantees that there exists a neighborhood U of 7), in A such that
for each x € Ky, all integersn =N, N+ 1,...,4N,andeach S e U,

|7)x — s"x| <47 e (5.68)
Assume that § € I and x € K. We claim that for all integers n > N, we have
|S"x — 27| <. (5.69)

In order to show this, suppose, by way of contradiction, that the claim is false.
Then there is an integer ¢ > N such that

|87x —zr | > e. (5.70)
It follows from the definition of I/ (see (5.68)) and (5.67) that
|lzr — 8"y <3-47'e forallyeKoandalln=N,N+1,....4N. (5.71)

Inequalities (5.70) and (5.71) imply that g > 4N . Note that we may assume without
loss of generality that

|zr — S'x| <e foralli=N,...,q—1. (5.72)

Together with (5.63) this implies that S9~V x € K. Combining this with (5.71), we
see that

Jar = $x] = fer = $¥(597)x] <3471,
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which contradicts (5.70). Thus (5.69) is true for all integers n > N. This completes
the proof of Lemma 5.14. U

Now we proceed to prove Theorems 5.11 and 5.12.

Proofs of Theorems 5.11 and 5.12 Fix 6 € K. For each natural number i, set
Ki={xeK:|x—0|<i}. (5.73)

With each T € A, we associate a point z7 € K satisfying Property B. If T € Ag,
then z7 =&.

By Lemma 5.14, for each T € A,, y € (0, 1) and for each integer i > 1, there
exist a natural number N (7, y, i) and an open neighborhood U(T, y, i) of T, in A
such that the following property holds:

P@) foreach S eU(T,y,i), each x € K, and each integern > N(T, v, i),
|| S"x —zr || <27%.

Define

]—":|:mU{Z/{(T,y,i):TeA*,ye(0, 1),i=q,q+1,...}j|ﬂfi*,

g=1
Fe= [ﬂU{u(T»%i)iTGAS’V6(0,1),i=q,q+1,...}i| N Ag.
g=1

Evidently, F (respectively, F¢) is a countable intersection of open and everywhere
dense sets in A, (respectively, Ag) and F; C F.

Let C be a bounded subset of K and let B € F, ¢ > 0 be given. There exists an
integer ¢ > 1 such that

CCKy and 279 <47 e (5.74)
There exist T € A, (T € Ag if B € F¢), y € (0, 1) and an integer i > ¢ such that
Bel(T,y,i). (5.75)
It follows from property P(i), (5.75) and (5.74) that the following property holds:
P(ii) Foreach x € C,each S e U(T, y,i) and each integer n > N(T, y, i),
|87x — 2| <47,

Note that z7 = § if B € F%.
Relation (5.75) and property P(ii) imply that for each x € C and each integer
n=N(T,vy,i),

|B"x —zr|| <47 'e. (5.76)
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Since ¢ is an arbitrary positive number and C is an arbitrary bounded set in K, we
conclude that for each x € K, {B"x}7° | is a Cauchy sequence. Therefore for each
x € K, there exists lim,_, o, B"x. Inequality (5.76) implies that

lim B"x — 77 H <47l forallxeC. (5.77)

n—o00

Again, since ¢ is an arbitrary positive number and C is an arbitrary bounded subset
of K, (5.77) implies that there is z, € K such that

z¢ = lim B"x forall x € K. (5.78)
n—o0
By (5.78) and (5.77),
lzs —zr| <47 'e. (5.79)

(If B € Fg, then T € Ag, z7 = & and since the inequality above is true for any
¢ > 0, we obtain that z,, = &.) It follows from property P(ii) and (5.79) that for each
S €U(T,y,i), each x € C and each integer n > N (T, y, i), |S"x — z4|| <27 le.
This completes the proofs of Theorems 5.11 and 5.12. g

5.8 Mappings with a Uniformly Continuous Bregman Function

In this section we use the definitions and notations from Sects. 5.1 and 5.2 and the
complete uniform spaces M and M. introduced there.

Denote by M, the set of all T € M for which there is z7 € K such that the
following assumptions hold:

C()
Tzr =zr, D¢(zr,-): K — R! is convex,

Dy(zr,Tx) < Dy(zr,x) forallx € K;

C(ii) The function D¢ (zr, -) is uniformly continuous on any bounded subset of K ;

C(iii) For any ¢ > 0, there exists § > 0 such that if x € K and D (z7, x) <4, then
lzr —xll <e;

C(iv) Foreach a > 0, the level set {y € K : Dy(zr, y) < a} is bounded.

Set My, = M, N M,. Denote by M, the closure of M, in the space M and by
M, the closure of M, in the space M. We consider the topological subspaces
M. and M, C M with the relative topologies.

Again we note that C(iii) holds if the function f is uniformly convex.

Theorem 5.15 There exists a set F C M*, which is a countable intersection of
open and everywhere dense sets in ./\;l*, and a set F. C F N ./\;lc*, which is a count-
able intersection of open and everywhere dense sets in Mse, such that for each
T € F, the following assertions hold:
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1. There exists 7, € K such that T"x — z, asn — oo forall x € K.
2. For each € > 0, and each bounded set C C K, there exist an integer N > 1 and
a neighborhood U of T in M such that for each S € U and each x € C,

||S"x — Zx H <e¢ forallintegersn > N.

Let £ € K. Denote by Mg the set of all T € M which satisfy Assumption C
with z7 =&. Set Mg, = Mg N M.. Denote by /\;lg the closure of Mg in M and
by ./\;lgc the closure of Mg, in M. We consider the topological subspaces ./\;lg and
./\;lgc C M with the relative topologies.

Theorem 5.16 There exists a set Fz C Mg (respectively, Fge C ./\;lgc N Fg), which
is a countable intersection of open and everywhere dense sets in Mg (respectively,
in Mg.), such that for each T € Fg, the following assertions hold:

1. T"x > &asn—>ooforallx e K.
2. Foreach ¢ > 0 and each bounded set C C K, there exist an integer N > 1 and a
neighborhood U of T in M such that for each S € U and each x € C,

|| Sy — & || <e¢ forallintegersn > N.

5.9 Proofs of Theorems 5.15 and 5.16

Let T € My, y € (0,1) and let z7 € K satisfy Assumption C. Define a mapping
T, :K — K by

Tyx=(1-y)Tx+vyzr, xecKk. (5.80)
Clearly,
T,eMandif T € M, then T, € M.. (5.81)
By Lemma 5.7, T, € M, with z(T,,) =z(T) and
Dy¢(z7,Tyx) <(1 —y)Dys(z7,x) forallx e K. (5.82)

Evidently, for each T € M,,

T,—T asy—0in M. (5.83)

Lemma 5.17 Let T € M, e,y € (0, 1) and let z7 satisfy Assumption C. Let K be
a bounded subset of K. Then there exist a natural number N and a neighborhood
U of T\, in M such that for each S € U, each x € K and each integer n > N,

|| S"x — ZT” <e.
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Proof By Assumption C, there exist § € (0, €), cp > 1 and ¢1 > O such that

ifx € K and Dy(zr,x) <26, then |z7 — x|| < 2_18, (5.84)
Dy(z7,x) <co forallx € Ko (5.85)

and
lxll <c; forall x € K satisfying D¢ (z7,x) < co+ 2. (5.86)

Set
Ki={xeK:|x|<c1} and Kry={xeK:|x| <c1+2}. (5.87)

Clearly, Ko C K. By Assumption C, the function D¢(z7, -) is uniformly continu-
ous on K». Therefore there is 8g € (0, 47'8) such that

|Dfzr,x1) = Dy(zr, x2)| < y887" (5.88)

for each x1, xp € K3 satisfying ||x; — x2|| < dp.
Choose a natural number N such that

8 INys>co+2 (5.89)
and define
U={SeM:|Sx—Tyx|| <8 forallx € K;}. (5.90)
Assume that S € U/ and x € K. We claim that
H S"x —zr || <e¢ forall integersn > N. (5.91)

By the definition of § (see (5.84)), in order to prove (5.91), it is sufficient to show
that

Dy(zr,8"x) <28 forall integers n > N. (5.92)
First we will show by induction that for all integers n > 0,
Dy(zr,8"x) <co (5.93)
and

Dy (zr. S”Hx) < —y)Dys(zr,8"x) + 87!ys forallintegers n > 0. (5.94)

Clearly, by (5.85), inequality (5.93) is valid for n = 0. (Note that SO =x.)
Assume that (5.93) is true for some integer n > 0. We will show that (5.94) is
also true. By (5.87), (5.86) and (5.93),

S"xeK; and |$"x| <ci. (5.95)
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Combining (5.95) and (5.90), we see that
|s"x — T, 8"x | < . (5.96)
By (5.82) and (5.93),
Dy(zr. T, (8"x)) < (1 =)D (27, S"x) < (1 — y)co. (5.97)
Together with (5.86) this implies that
|7 (s"2) || = 1. (5.98)
Combining (5.96), (5.98) and (5.87), we see that
T,(S"x) €Ky and S§"''x € K>. (5.99)
It follows from (5.99), (5.96) and the definition of &y (see (5.88)) that
|Ds(zr, $"T'x) — Dy(zr, T, $"x)|| <87 'y6. (5.100)
By (5.100) and (5.97),
Dy(zr,$"'x) <87 'y8+ (1 —y)Dy(zr, $"x)
<87 lys+ (1 —y)eo <y + (1 —y)co < co.

Thus (5.94) is true and Dy (z7, §"*t1x) < ¢o. Therefore both inequalities (5.93) and
(5.94) are valid for all integers n > 0.
Let n > 0 be an integer. If D¢ (z7, $"x) < §, then by (5.94) we have

Dy(zr.8"Mx) <(1—y)s +87'ys <6.
Therefore in order to prove (5.92), it is sufficient to show that D ¢ (z7, §"x) < § for
some integer n € [0, N].

If this were not true, then it would follow that D (zr, S"x)>68,n=0,...,N.
Thus according to (5.94), forn =0, ..., N, we would get

Df(ZT, S"x) — Df(ZT, S"Hx) > )/Df(zT, S"x) — 87])/5 > 271)/8.
When combined with (5.89), this would yield
Dy(zr,x) > Dy(zr,x) — Dy(zr, SN+1x) >27 18N > o+ 2,

which contradicts (5.93). Hence (5.92) and therefore (5.91) are valid for all integers
n > N. This completes the proof of Lemma 5.17. g

Proofs of Theorems 5.15 and 5.16 The proofs of Theorems 5.15 and 5.16 follows
the pattern of the proofs of Theorems 5.11 and 5.12. The main difference is that we
use Lemma 5.17 instead of Lemma 5.14. g
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5.10 Generic Power Convergence to a Retraction

We continue to consider the problem of whether and under what conditions, rela-
tively nonexpansive operators 7 defined on, and with values in, a nonempty, closed
and convex subset K of a Banach space (X, || - ||) have the property that the se-
quences {Tkx},fil converge strongly to fixed points of 7', whenever x € K. For a
given nonempty, closed and convex subset F of K, we consider complete metric
spaces of self-mappings of K which fix all the points of F and are relatively non-
expansive with respect to a given convex function f on X. We show (under certain
assumptions on f) that the iterates of a generic mapping in these spaces converge
strongly to a retraction onto F'.

These results were obtained in [33].

We say that an operator T : K — K is relatively nonexpansive with respect to
the convex function f : X — R! U {oo} if K is a subset of the algebraic interior D°
of the domain of f,

D::dom(f):{xeX:f(x)<oo},

the function f is lower semicontinuous on K and there exists a point z € K such
that, for any x € K, we have

Dy(z,Tx) < Dyf(z,x), (5.101)

where Dy : X x DO — [0, 0o) stands for the Bregman distance given by

Ds(y,x) = f(y) — f(x) + fOx,x — y), (5.102)

and f%(x, d) denotes the right-hand derivative of f at x in the direction d. In this
case, the point z is called a pole of 7" with respect to f.

Let M = M(f, K, F) be the set of all operators T : K — K which are relatively
nonexpansive with respect to the same convex function f : X — R! U {oo} and
which have a nonempty, closed and convex set F' of common poles. We assume that
the function f satisfies the following conditions:

A() For any nonempty bounded set E C K and any ¢ > 0, there exists § > 0 such
that

ifxeE,ze Fand Dy(z,x) <4, then |z — x| <e. (5.103)

A(ii) There exists 6 € F such that the restriction to K of the function g(-) :=
Dy (0, -) has the following property: for any subset £ C K, g(E) is bounded
if and only if E is bounded.

A(iii) Forany z € F, the function D¢ (z,-) : K — R! is convex and lower semicon-
tinuous.

A(iv) For any x € K, there exists a vector Px € F such that

Dy(Px,x) < Ds(z,x) forallzeF. (5.104)
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In practical situations one also uses the following stronger version of A(i):
For any nonempty and bounded set E C K, inf{vs(x,?) : x € E} is positive for
all r > 0, where

vp(x,t)=inf{Ds(y,x):ye X and ||y — x| =t}. (5.105)

In [28] this condition is termed sequential compatibility of the function f with
the relative topology of the set K. We will show (see Lemma 5.18 below) that se-
quential compatibility implies A(i). In its turn, condition A(i) implies that all z € F
are common fixed points of the operators in M. Condition A(ii) guarantees that any
operator T € M is bounded on bounded subsets of K (a feature which is essential
in our proofs) because, for any bounded set E C K, we have

Ds(0,Tx) <Dg(8,x), (5.106)

where, according to condition A(ii), the function D (0, -) is bounded on E, and
therefore so is the set {Tx : x € E}. Condition A(ii), even taken in conjunction with
A(i), is satisfied by many useful functions and, among them, by many functions
which are sequentially compatible with the relative topology of K. In contrast, con-
dition A(iii) is quite restrictive. However, it does hold for many functions f which
are of interest in current applications (see the examples below). The vector Px sat-
isfying (5.104) was termed the Bregman projection with respect to f of x onto F in
[38].

Condition A(iv) is automatically satisfied when X is reflexive and f is totally
convex on K (in particular, when f is sequentially compatible with the relative
topology of K) as follows from Proposition 2.1.5(i) of [28]. In this case, if f is
differentiable on the algebraic interior of its domain, then, for each x € K, there
exists a unique vector Px in F which satisfies (5.104). We now mention four typical
situations in which all the conditions A(i)—A(iv) are satisfied simultaneously.

(i) (cf. [28]) X is a Hilbert space, K and F are nonempty closed convex subsets
of X such that F C K and f(x) = ||x||%;
(i) (cf. [29]) F C K C R}, and f is the negentropy;
(iii) (cf. [31]) X is a Lebesgue space L? or I, 1 < p <2, f(x) = ||x||” and K
consists of either nonnegative or nonpositive functions;
(iv) (cf. [32]) X is smooth and uniformly convex, F is a singleton {z}, and f(x) =
|lx — z||” with r > 1.

We provide the set M = M(f, K, F) with the uniformity determined by the
following base:

E(N,&)={(T1, ) e M x M:||Tix — Tox|| <&
for all x € K satisfying |lx|| < N},
where N, e > 0. Clearly, this uniform space is metrizable and complete. We equip

the space M with the topology induced by this uniformity. Let M, be the set of
all operators in M which are continuous on K. This is a closed subset of M and
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we endow it with the relative topology. The subset of M, consisting of those oper-
ators which are uniformly continuous on bounded subsets of K is denoted by M,,.
Again, this set is closed in M and we endow it with the relative topology. We will
show that the sequence of powers of a generic mapping T in M, M, and M,
respectively, converges in the uniform topology to a relatively nonexpansive opera-
tor which belongs to the same space and is a retraction onto F. Consequently, the
sequences {T"x},f‘;l generated by a generic mapping 7 are strongly convergent to
points in F, i.e., to fixed points of T.

In this chapter we have shown that the iterates of a generic operator in certain
other spaces of relatively nonexpansive operators converge strongly to its unique
fixed point. As we have just noted above, in the different situation considered now,
the iterates of a generic operator converge to a retraction onto its fixed point set F.

5.11 Two Lemmata

This section is devoted to two lemmata. The first one shows that sequential com-
patibility implies condition A(i), while the second shows that the retraction, the
existence of which is stipulated in condition A(iv), belongs to M.

Lemma 5.18 If the convex function f is sequentially compatible with the relative
topology of K, then it satisfies condition AQi).

Proof Let the convex function f be sequentially compatible with the relative topol-
ogy of K. For any nonempty set £ C K and any ¢ > 0, set

vf(E,t):inf{Df(y,x) :x€E,yeXand|y— x| :t}.

Since f is assumed to be sequentially compatible with the relative topology of K,
vs(E,t) > 0 for any nonempty and bounded set £ C K, and any ¢ > 0, and the
function v (x, -) is strictly increasing (see Proposition 1.2.2 of [28]).

Assume now that we are given a nonempty and bounded subset M of K and an
e>0.Letd=vy(M,e).If xe M,y € F and Dy(y, x) <4, then

ve(x, lly —xll) < Dy(y,x) <8 <vy(x,e).

Since the function vy (x, ) is strictly increasing, we conclude that ||y — x|| < &.
Lemma 5.18 is proved. O

Note that the functions in the examples (i)—(iv) listed in the previous section
are all sequentially compatible with the relative topology of any closed and convex
subset of their respective domains.

Lemma 5.19 Let an operator P : K — F be as guaranteed in condition A(iv).
Then for any x € K and for any z € F, we have

Df(z, Px) < Df(z,x). (5.107)



5.11 Two Lemmata 229
Proof Fix x € K and z € F. Denote X = Px and let
u(e) =% +a(z—x) (5.108)

for any o € [0, 1]. Observe that D¢ (-, x) and f are convex and, therefore, the fol-
lowing limits exist, and forall y € K and d € X,

[Ds¢0] (r.d)
= lim [Dy(y +1d,x) = Dy (v, 0)]/1

= tlir(1)1+[f(y +1d) — f(x)+ fOlx,x —y —td)
—(fO) = &) + O, x — )]/t
= lim [fO+td) = fO)]/1+ lim [0 x =y —td) = fO0x,x = )]/t

= /0 )+ lim [00x =y —1d) = 00, x = »)]/1.

The function fO(x,-) is subadditive and positively homogeneous because f is
convex. Consequently, we have

fPax == fOox—y—t1d) +1f00x,d).
Combining this inequality and the previous formula, we get
(D00 d) = fOv.d) = fOx, d). (5.109)
Now since x = Px, we have by (5.104) and (5.109) that for any « € (0, 1],
0> D&, x) — Dy(u(@), x) = [Ds (-, 0] (@), & — u(@))
= [Df(-,x)]o(u(oz), —a(z—X)) = ot[Df(-,x)]O(u(oc),)? -2)
>a[fO(u@, 2 —z) - fO(x, % - 2]
Hence, for any o € (0, 1], we get
i -2 = fOu@), % —z). (5.110)

Note that by A(iii), the function ¢ (x) = f O(x,x —2), x € K, is lower semicontinu-
ous. Hence the function ¢ (u(@)), o € [0, 1], is also lower semicontinuous. Since

p(u@) = fOu@),u(@) —z) =1 —a) fO(u(@), £ —z), «e€l0,1),

the function @« — fO(u(w), £ — z), o € [0, 1), is lower semicontinuous too.
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Applying liminf,,_, o+ to both sides of inequality (5.110), we see that
e t-> 0% % -2.
This, in turn, implies that
f@ = fE+ 00,2 —2) = Dy(z, %),
Since f%(x, -) is sublinear, it follows that
@ =@+ 02 =0+ O x —2) = Ds(z. D).

Hence

Dz, x)+[f@ — fR) — f@+ fx)+ fOx, —x)] = Dy(z,%). (5.111)
Note that the quantity between square brackets is exactly

~[f@® - f@ - @ i-0]=<0

because f is convex. This inequality and (5.111) imply (5.107). The proof of
Lemma 5.19 is complete. g

In the remaining sections of this chapter we use the following notation.
For each x € K and each nonempty G C K, set

pf(x,G) :=inf{Dy(z,x):z€ G}. (5.112)

5.12 Convergence of Powers of Uniformly Continuous Mappings

We assume that the operator P, the existence of which is stipulated in condition
A(iv), belongs to M,,, and that the following condition holds:

For each bounded set Ko C K and each ¢ > 0, thereis § > 0

such thatif x € Ko,z € F and ||z — x|| <8, then D¢(z,x) <e. (5.113)

Remark 5.20 Note that condition (5.113) indeed holds if the function f is Lips-
chitzian on each bounded subset of K.

Theorem 5.21 There exists a set F C M,, which is a countable intersection of
open and everywhere dense subsets of M,,, such that for each B € F, the following
assertions hold:

(i) There exists Pg € M,, such that Pg(K) = F and B"x — Pgx as n — 00,
uniformly on bounded subsets of K ;
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(1) for each € > 0 and each bounded set C C K, there exist a neighborhood U of
B in M, and an integer N > 1 such that for each S € U, each x € C and each
integern > N,

|| S"x — Ppx || <e.

This theorem is established in Sect. 5.15.

5.13 Convergence to a Retraction

In this section we assume that the function Dy(-,-) : F x K — R! is uniformly
continuous on bounded subsets of F' x K and state two theorems, the proofs of
which will be given in Sect. 5.16.

Theorem 5.22 There exists a set F C M, which is a countable intersection of open
and everywhere dense subsets of M, such that for each B € F, the following asser-
tions hold:

1. There exists Pg € M such that Pg(K) = F and B"x — Pgx as n — 00, uni-
formly on bounded subsets of K; if B € M, then Pg € M_.

2. For each ¢ > 0 and each nonempty bounded set C C K, there exist a neighbor-
hood U of B in M and a natural number N such that for each S € U and each
x € C, thereis z(S, x) € F such that ||S"x — z(S, x)|| < ¢ for all integersn > N.

Moreover, if P € M., then there exists a set F. C F N M., which is a countable
intersection of open and everywhere dense subsets of M.

Theorem 5.23 Let the set F C M be as guaranteed in Theorem 5.22, B € F N
M, Pz =1lim, o B"z, 7€ K, and let x € K, ¢ > 0 be given. Then there exist
a neighborhood U of B in M, a number § > 0 and a natural number N such
that for each y € K satisfying ||x — y|| <38, each S € U and each integer n > N,
S"y — Ppx| <e.

5.14 Auxiliary Results

In this section we prove two lemmata which will be used in the proofs of our theo-
rems. We use the convention that S°x = x for each x € K and each S € M.
For each y € (0, 1) and each T € M, define a mapping T, : K — K by

Tyx=yPx+(1—-y)Tx, xekK (5.114)

(see condition A(iv)).
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Lemma 524 Let T e M and y € (0,1). Then T, e M. If T, P € M, (respec-
tively, T, P € M), then T, € M, (respectively, T,, € M,).

Proof Clearly T, € M and T, x = x forall x € F. By (5.114), A(iii), (5.101), A(iv)
and Lemma 5.19, foreach z € F andeach x € K,

Dy(z,Tyx) = Dy(z,y Px + (1 — y)Tx)
<yDy(z, Px)+ (1 —y)Dyf(z, Tx) < Dy(z, x).

Thus T, € M. Clearly, T, e M, if T,P e M, and T, € M. if T,P € M_,.
Lemma 5.24 is proved. g

It is obvious that for each T' € M,
T,—T asy—0"in M. (5.115)
Lemma 5.25 Let T € M,y €(0,1) and let x € K. Then
pf(Tyx, F) < (1—y?)ps(x, F). (5.116)
Proof Let ¢ > 0 be given. There exists y € F such that (see (5.112))
Di(y,x) <prx,F)+e. (5.117)
It follows from (5.114), A(iv), Lemma 5.19, A(iii) and (5.101) that

pr(Tyx, F) = pf(ny + (1 —-y)Tx, F)
<Ds(yPx+U—y)y,(1 —y)Tx +yPx)
< )/Df(Px, yPx+(1— y)Tx) + (1 - y)Df(y, yPx+(1— y)Tx)
< ysz(Px, Px)+y(1—y)Ds(Px,Tx)
+ (1 =y)yDy(y, Px)+ (1= y)*Ds(y, T)
<y(I=y)Ds(Px,x)+ (1 =y)y Ds(y, Px)+ (1 —y)*Ds(y, Tx).
(5.118)
It follows from (5.118), A(iv), Lemma 5.19 and (5.117) that

pr(Tyx, F) <y(d—=y)prx, F)+ A —y)yDs(y,x) + 1 — J/)sz(y,X)
<e+ (1 — yz)pf(x, F).

Since ¢ is an arbitrary positive number, we conclude that (5.116) holds. This com-
pletes the proof of Lemma 5.25. g



5.15 Proof of Theorem 5.21 233

5.15 Proof of Theorem 5.21

We begin with the following lemma.

Lemma 5.26 LetT € M,,,y € (0, 1), ¢ > 0 and let Ky be a nonempty and bounded
subset of K . Then there exist a neighborhood U of T, in M, and a natural number
N such that for each x € Ky, there exists Qx € F such that for each integer n > N
and each S € U,

[$"x — Qx| <e.
Proof Set
K= {5 (Ko): S e M.i = 0}. (5.119)
Assumption A(ii) and (5.101) imply that the set K is bounded. Evidently,
S(K))C K, forall Se M), (5.120)
By A(i), there exists g € (0, €) such that
if x e Ky,ze Fand Dy(z,x) < e, then ||z —x|| <47 'e. (5.121)
By (5.113), there is €1 € (0, 2~ 1gg) such that
ifx € Ky,z€ Fand ||x —z|| <2¢1, then Dy(z,x) < 2_150. (5.122)
By A(i), there is &3 € (0, 271¢1) such that
if x € K1,z € F and Dy(z,x) < 2&, then ||lx —z]| <27 'ey. (5.123)
Set
c0=sup{,of(x,F):xeK1}. (5.124)
By A(ii), cg < 0o. Choose a natural number N > 4 such that
(1= o+ 1) <27e (5.125)
It follows from Lemma 5.25, (5.124) and (5.125) that for each x € K1,
pf(T)fvx, F) < (1 — yz)pr(x, F)< (1 — yz)Nco < 2_182.

Thus for each x € K, there is Qx € F such that D¢(Qx, T]fvx) <27 !¢y, When
combined with (5.120) and (5.123), the last inequality implies that

|TYx— 0x| <27'e; forallx € K. (5.126)
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By Proposition 5.13, there exists a neighborhood U of T, in M, such that for each
x € Ky andeach S € U,

|SNx =TV x| <47 ey (5.127)

Assume that x € Ko and S € U. Evidently, {Six}?io C Ki. By (5.126) and
(5.127), ||S¥x — Qx|| <3 -4~ '¢;. It follows from this inequality and (5.122) that
Dr(Qx, SN x) < 2_180. Since S € M,, it follows from the last inequality that
D¢ (Qx,8"x) < 27 1g, for all integers n > N. When combined with (5.121), this
implies that || Qx — §"x|| < ¢ for all integers n > N. Lemma 5.26 is proved. O

Proof of Theorem 5.21 By (5.115), the set {T,, : T € M,y € (0, 1)} is an every-
where dense subset of M,,. For each natural number i, set

Ki={xeK:|x—0|<i}. (5.128)

By Lemma 5.26, for each T € M,,, each y € (0, 1) and each integer i > 1, there
exist an open neighborhood U(T, y, i) of T, in M,, and a natural number N (T, y, i)
such that the following property holds:

P(@i) For each x € Ky, there is Qx € F such that
|$"x — Qx| <27 forallintegersn > N(T, y,i) and all S e U(T, y, i).

Define
00
F = ﬂ LJ{Z/{(T7 v.q):TeM,,ye, l)}
g=1

Clearly, F is a countable intersection of open and everywhere dense subsets of M,,.
Let B € F, ¢ > 0 and let C be a bounded subset of K. There exists an integer
g > 1 such that

CCKy and 279 <47 lg (5.129)

There also exist T € M, and y € (0, 1) such that
BelU(T,y,q). (5.130)

It now follows from Property P(i), (5.129) and (5.130) that the following property
also holds:

P(ii) For each x € C, there is Qx € F such that
HS"x — Qx” <47 1¢

for each integer n > N(T, y,q) and each S e U(T, y, q).
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Property P(ii) and (5.130) imply that for each x € C and each integer n >
N(T.y.q),

|B"x — Ox|| <47 'e. (5.131)

Since ¢ is an arbitrary positive number and C is an arbitrary bounded subset of K,
we conclude that for each x € K, {B"x}°°, is a Cauchy sequence. Therefore for
each x € K, there exists

Ppx = lim B"x. (5.132)
n—0o0
By (5.131) and (5.132), for each x € C,
| Px — Ox|| <47 'e. (5.133)

Once again, since ¢ is an arbitrary positive number and C is an arbitrary bounded
subset of K, we conclude that

Pp(K)=F. (5.134)

It now follows from property (Pii) and (5.133) that for each x € C, each S €
U(T, y,q) and each integer n > N(T, y, q),

||S"x — Ppx H <27 lg,

This completes the proof of Theorem 5.21. g

5.16 Proofs of Theorems 5.22 and 5.23

We begin with four lemmata.

Lemma 5.27 Let Ko be a nonempty and bounded subset of K, and let § be a posi-
tive number. Then the set {(z,y) € F x Ko : Dy(z,y) < B} is bounded.

Proof If this assertion were not true, then there would exist a sequence {(z;,
X))}, C F x Ko such that

Dy¢(zi,x;))<B, i=12,..., and |z| > 00 asi— oo. (5.135)

By (5.101), Dy(zi, Px;) < B, i =1,2,.... Clearly, the sequence {Px;}72, is

bounded. We may assume that ||z; — Px;|| > 16,i =1, 2,.... Foreachintegeri > 1,
there exists «; > 0 such that

I[(1 — i) Px; +ejzi] — Pxi | = 1. (5.136)

Clearly, o; — 0 as i — oo. It is easy to see that for each integer i > 1,

Df((l — ;) Px; + oz, Px,-) <a;iDf(zi, Px;j) <a;B— 0 asi— oo.
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When combined with A(i), this implies that ||Px; — [(1 — «;) Px; + aizi]]| —
0 as i — oo. Since this contradicts (5.136), Lemma 5.27 follows. O

Lemma 5.28 Let T ¢ M, y,e € (0,1) and let Ko be a nonempty and bounded
subset of K. Then there exists a neighborhood U of T, in M such that for each
S e U and each x € K satisfying ps(x, F) > ¢, the following inequality holds:

ps(Sx, F) < pf(x, F) —ey?/4. (5.137)
Proof Set

K= J{s"(ko): SeM.i>0}. (5.138)

Assumption A(ii) and (5.101) imply that the set K is bounded. Evidently, S(K1) C
K for all S € M. By A(ii), there exists ¢y > 0 such that

4+sup{Ds(0,x):x € K1} < co. (5.139)
By Lemma 5.27, there exists a number c¢; > 0 such that
if (z,x) € F x Kyand D¢(z,x) <co+2, then |z]| <cy. (5.140)
We may assume without loss of generality that
c1>sup{||Px||:xeK1}. (5.141)

Since D (-, -) is uniformly continuous on bounded subsets of /' x K, there exists a
number 8 € (0, 27") such that for each pair of points,

(z.x1), (2. x2) e {E € F: ||§] <1} x K
satisfying ||x; — x2|| <4, the following inequality holds:
|Df(z,x1) — Df(z,x2)| <47 ey (5.142)
Set

U={SeM:|Sx—T,x|| <6 forall x € Ky }. (5.143)

It is clear that U is a neighborhood of T, in M.
Assume that

SelU, xeKo and pr(x, F)>e. (5.144)
We claim that (5.137) is valid. By Lemma 5.25,

pf(Tyx, F) < (1—y?)ps(x, F). (5.145)

Let
Ae(0,47"y%). (5.146)



5.16 Proofs of Theorems 5.22 and 5.23 237
There is z € F such that
Dy(z, Tyx) < (1= y?)ps(x, F) + A. (5.147)

By (5.147), (5.146), (5.139) and (5.140),

Dy¢(z, Tyx)<co and |z|| <ci. (5.148)

By (5.143) and (5.144),
1T, x — Sx|| <. (5.149)

By (5.148) and (5.142),
(@ Tyx), (2. Sx) e {§ € Fr €l =i} x K. (5.150)

By (5.150), (5.149) and the definition of & (see (5.142)),
|Df(z,Tyx) — Dys(z, Sx)| <4 Ley?.
When combined with (5.147) and (5.146), this implies that

07(Sx, F) < Ds(z,Sx) <4 'ey? + Dy (z, Ty x)
<47y’ +(1-y*)prx, ) + A
<(1=y*)psx, F)+27 ey
Thus
pr(Sx, F) < (1=y?)ps(x, F) +27 ey,

Inequality (5.137) follows from this inequality and (5.144). Lemma 5.28 is
proved. d

Lemma 5.29 Let T € M, y,e € (0,1) and let Ko be a nonempty and bounded
subset of K. Then there exist a neighborhood U of T, in M and a natural number
N such that for each S € U and each x € Ky,

pr(SVx, F) <e. (5.151)

Proof Define the set K| by (5.138). Assumption A(ii) and (5.101) imply that the set
K is bounded. Clearly, S(K1) C K for all S € M,,. By A(ii), there is a positive
number cq such that (5.139) is valid. By Lemma 5.28, there exists a neighborhood
U of T, in M such that for each § € U and each x € K| satisfying py(x, F) > ¢,
the following inequality holds:

pr(Sx, F) < ps(x, F) —ey?/4. (5.152)
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Choose a natural number N for which
8 ey N > ¢ + 1. (5.153)

Assume that S € U and x € Ko. We claim that inequality (5.151) is valid. If
it were not, then we would have p(S'x, F) > ¢ for all i =0, ..., N. When com-
bined with the definition of U (see (5.152)), these inequalities imply that for all
i=0,...,N—1,

,Of(Sin, F) < pf~(Six, F) - 8]/2/4.
Therefore
pr(SNx, F) < pp(x, F) —ey*N/4.
By this inequality, (5.139) and (5.153),
0<ps(S"x,F) <co—4""ey?N < —1.

This contradiction proves (5.151) and Lemma 5.29 follows. 0

Lemma 5.30 Let T € M, y,e € (0,1) and let Ko be a nonempty and bounded
subset of K. Then there exist a neighborhood U of T, in M and a natural number
N such that for each S € U and each x € Ky, there is z(S, x) € F such that

|| Six —z(S, x)” <e& forallintegersi > N. (5.154)

Proof Define K| by (5.138). Assumption A(ii) and (5.101) imply that K; is
bounded. By Assumption A(i), there exists § € (0, 1) such that

if x € Ki,z€ Fand Dy(z,x) <8, then [|x —z|| <27 'e. (5.155)

By Lemma 5.29, there exists a neighborhood U of T,, in M and a natural number
N such that

pf(SNx,F) <4/2 foreach S €U and x € K.

This implies that for each x € Ko and each S € U, there is z(S, x) € F for which
Dy (z(S, x), S¥x) < 8. When combined with (5.155) this implies that for each
x € Ko, each S € U, and each integer i > N,

Dy(z(S.x), $'x) <6 and |S'x —z(S.x)| <27'e.
Lemma 5.30 is proved. g

Proof of Theorem 5.22 By (5.115), the set {T}, : T € M,y € (0, 1)} is an every-
where dense subset of M and if P € M., then {T,, : T € M.,y € (0, 1)} is an
everywhere dense subset of M. For each natural number i, set

Ki={xeK:|x—0|<i}. (5.156)
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By Lemma 5.30, for each T € M, each y € (0, 1), and each integer i > 1, there
exist an open neighborhood (T, y, i) of T), in M and a natural number N (T, y, i)
such that the following property holds:

P(iii) For each x € K, and each S e U(T, y, i), there is z(S, x) € F such that
|| S"x —z(S, x) || < 270 forall integers n > N(T,y,i).

Define

F=UJu@.v.9): T e M.y € 0. D}.
qg=1

Clearly, F is a countable intersection of open and everywhere dense subsets of M.
If P € M., then we define

o

Foi= [ﬂ Ju@.v.9): T e M,y €0, 1)}} NM..
g=1

In this case, . C F and F. is a countable intersection of open and everywhere

dense subsets of M..

Let B € F, ¢ > 0, and let C be a bounded subset of K. There exists an integer
q > 1 such that

CC Ky and 279 <47l (5.157)
There also exist T € M and y € (0, 1) such that

BelU(T,y,q). (5.158)

Note that if P € M. and B € F.,then T € M..
It follows from Property P(iii), (5.157) and (5.158) that the following property
also holds:

P(iv) Foreach S e U(T, y, q) andeach x € C, thereis z(S, x) € F such that || $"x —
2(S, x)|| <4~ e for each integer n > N (T, y, q).

Relation (5.158) and property P(iv) imply that for each x € C and each integer
n Z N(T7 y5 CI)’

|B"x —z(B,x)| <47 e. (5.159)

Since ¢ is an arbitrary positive number and C is an arbitrary bounded subset of K,
we conclude that for each x € K, {B"x}7°, is a Cauchy sequence. Therefore for

each x € K, there exists

Ppx = lim B"x.
n—>oo

Now (5.159) implies that for each x € C,

| Psx —z(B,x)|| <47 e (5.160)
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Once again, since ¢ is an arbitrary positive number and C is an arbitrary bounded
subset of K, we conclude that

Pp(K)=F.

It follows from (5.159) and (5.160) that for each x € C and each integer n >
N(T,v.q),

|| B"x — Pgx || <27 lg.
This implies that Pg € M and if B € M_, then Pg € M,. Theorem 5.22 is estab-
lished. n

We will use the next lemma in the proof of Theorem 5.23.

Lemma 5.31 Let Be M., x € K, ¢ € (0,1) and let N > 1 be an integer. Then
there exist a neighborhood U of B in M and a number § > 0 such that for each
S e U and each y € K satisfying ||y — x|| <6, the following inequality holds:

||S”y — B"x“ <e.
This lemma is proved by induction on 7.

Proof of Theorem 5.23 By Theorem 5.22, there exist a natural number N and a
neighborhood Uy of B in M such that

|Pgy — B"y| <87 'e foreachy e K satisfying ||y — x|| < 1 and eachn > N;
(5.161)

and for each S € Uy and each y € K satistying ||y — x| <1, there is z(S,y) € F
such that

IS"y —z(S,y)| <8 'e forallintegersn > N. (5.162)

By Lemma 5.31, there exist a number § € (0, 1) and a neighborhood U of B in M
such that U C Uy and

||SNy— BNx|| <87 !¢ foreach SeU and each y € K for which ||y — x| <34.
(5.163)

Assume that
y€eK, lx—yll<8 and SeU. (5.164)
By (5.164), (5.163) and (5.161),
|s¥y—BVx| <87, |sVy—z(S,y)] <87'e and

|| Ppx — BNx H < 8 1e.
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These inequalities imply that
|z(S,y) — Ppx| <3-87 e
When combined with (5.162), the last inequality implies that
| "y — Pgx| < 27 !¢ for all integers n > N.

This completes the proof of Theorem 5.23. U

5.17 Convergence of Powers for a Class of Continuous Operators

In this section we assume that P € M, and that the function

D¢(z,:): K — R! is continuous forall z € F. (5.165)

Theorem 5.32 Let x € K. Then there exists a set F C M, which is a countable
intersection of open and everywhere dense subsets of M, such that for each B € F,
the following assertions hold:

1. There exists lim,,_, o, B"x € F.

2. For each ¢ > 0, there exist a neighborhood U of B in M., a natural number N
and a number § > 0 such that for each S € U, each y € K satisfying ||y —x|| <6
and each integern > N, ||S"y — lim; _, o B'x| < e&.

We equip the space K x M with the product topology.

Theorem 5.33 There exists a set F C K x M., which is a countable intersection
of open and everywhere dense subsets of K x M., such that for each (z, B) € F,
the following assertions hold:

1. There exists lim,,_,oo B"z € F.
2. Foreach ¢ > 0, there exist a neighborhood U of (z, B) in K x M and a natural
number N such that for each (y, S) € U and each integer n > N,

|

Theorem 5.34 Assume that the set Ko is a nonempty, separable and closed subset
of K. Then there exists a set F C M., which is a countable intersection of open
and everywhere dense subsets of M, such that for each T € F, there exists a set
Kt C Ko, which is a countable intersection of open and everywhere dense subsets
of Ko with the relative topology, such that the following assertions hold:

S"y — lim B'z

i— 00

e

1. For each x € Kr, there exists lim,,_,,, T"x € F.

2. For each x € Kt and each ¢ > 0, there exist an integer N > 1 and a neighbor-
hood U of (x,T) in K x M, such that for each (y,S) € U and each integer
P> N, [|STy — Tim, o0 T"x|| <.
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5.18 Proofs of Theorems 5.32-5.34

We precede the proofs of Theorems 5.32 and 5.33 by the following lemma.

Lemma 5.35 Let T € M, y,e €(0,1) and let x € K. Then there exist a neighbor-
hood U of T\, in M., a natural number N, a point 7 € F and a number § > 0 such
that for each S € U, each y € K satisfying ||y — x|| < and each integer n > N,

Iy —7| <e. (5.166)
Proof Define
K ::U{Si({y eK:ly—x||<1}):SeM,i=0, 1} (5.167)
By A(ii) and (5.101), the set K is bounded. By A(i), there is &g € (0, £/2) such that
ifze F,ye Kyand Dy(z,y) <2¢, then [z —y| <¢&/2. (5.168)
Choose a natural number N for which
(1= (s (x, F) +1) < £0/8. (5.169)
By Lemma 5.25, this implies that
pr(TNx, F) < (1—v2)" o (x, F) < £0/8.
Therefore there exists 7 € F for which
Df(Z.T) x) <&0/8. (5.170)

Since the function Df(’zj ):K > R is continuous (see (5.165)), there exists ] €
(0, £9/2) such that

D;(Z.§) <eo/8 forall& € K satisfying |€ — T, x| <e1. (5.171)

It follows from the continuity of 7, that there exist a neighborhood U of T, in
M, and a number § € (0, 1) such that for each S € U and each y € K satisfying
Iy —xll <39,

IsVy —TNx| <& (5.172)

(see Lemma 5.31).
Assume that

SeU, yeK, and |y—x| <6é.

By the definition of U and 4§, inequality (5.172) is valid. By (5.172) and (5.173),
Dy, SNy) < e9/8. This implies that D f(zZ, S"y) < &o/8 for all integers n > N.
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When combined with (5.168), this implies that ||Z7— $" y|| < ¢ for all integers n > N.
Lemma 5.35 is proved. O

Proof of Theorem 5.32 Let x € K be given. By Lemma 5.35, for each T € M.,
each y € (0, 1) and each integer i > 1, there exist an open neighborhood U(T', y, i)
of T, in M., a natural number N(T,y,i), a point z(T, y,i) € F and a number
8(T, v, i) > 0 such that the following property holds:

(Pv) Foreach S e U(T, y,i),each y € K satisfying ||x — y|| <&(T, y,i) and each
integer n > N(T, y, i),

Iy —z(T, v, )| <27".

Define

F=UUT.v.9): T e Mc.y € 0.1}

g=1

Clearly, F is a countable intersection of open and everywhere dense subsets of M_.
Let B € F and ¢ > 0 be given. There exists an integer ¢ > 1 such that

279 <47 lg. (5.173)
There also exist T € M, and y € (0, 1) such that
BelU(T,y,q). (5.174)

It follows from property (Pv) and (5.173) that the following property also holds:

(Pvi) Foreach S eU(T,y,q),eachy € K satisfying |y — x| < (T, y, q) and each
integern > N(T, y,q),

|S"y —2(T.y. )| <47 'e. (5.175)

Since ¢ is an arbitrary positive number, we conclude that {B"x}>° | is a Cauchy
sequence and there exists lim,_, o B"x. Inequality (5.175) implies that

lim B"x —z(T, v, q) ” <47 1g,
n—o00
Since ¢ is an arbitrary positive number, we conclude that lim,,_, o, B" x belongs to F.

It follows from this inequality and property (Pvi) that for each S e U(T, y, q), each
y € K satisfying ||y — x|l <8(T, v, q), and each integer n > N(T, v, q),

Theorem 5.32 is proved. g

$"y — lim Bl'xH <27lg.

i—00
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Proof of Theorem 5.33 By Lemma 5.35, foreach (x, T) € K x M, eachy € (0, 1),
and each integer i > 1, there exist an open neighborhood U (x, T, y, i) of (x,T,) in
K x M, anatural number N (x, T, v, i) and a point z(x, T, y, i) € F such that the
following property holds:

(Pvii) Foreach (y,S) eU(x,T,y,i) and each integern > N(x, T, y, i),
Is"y —z(x, Ty, )| <27".

Define

F = ﬂ U{u(x, T.y.q): (x,T) e K x M,y € 0, D}.
qg=1

Clearly, F is a countable intersection of open and everywhere dense subsets of
K x M,.
Let (z, B) € F and ¢ > 0 be given. There exists an integer ¢ > 1 such that

277 <47 1g, (5.176)
There exist x € K, T € M., and y € (0, 1) such that
(z,B) U, T,y,q). (5.177)

By (5.176) and property (Pvii), the following property also holds:
(Pviii) Foreach (y,S)eU(x, T, y,q) and each integern > N(x, T, v, q),

|8"y —2(x. T,y q) <47 "e. (5.178)

Since ¢ is an arbitrary positive number, we conclude that {B"z}>° , is a Cauchy
sequence and there exists lim,_, oo B"z. Property (Pviii) and (5.177) now imply that

fim B”z—z(x,T,y,q)H <4 g (5.179)
n—o0

Since ¢ is an arbitrary positive number, we conclude that lim,,_, o, B"z € F. It fol-
lows from (5.179) and property (Pviii) that for each (y, S) e U(x, T, y, gq) and each
integern > N(x, T, v, q),

‘ $"y — lim Biz ‘ <27 le.
11— 00
This completes the proof of Theorem 5.33. 0

Proof of Theorem 5.34 Assume that K is a nonempty, closed and separable subset
of K. Let {xj}j?ozl C Ky be a sequence such that K is the closure of {xj}j?"zl. For
each integer p > 1, there exists by Theorem 5.32 a set ), C M, which is a count-
able intersection of open and everywhere dense subsets of M, such that for each
T € Fp, the following properties hold:
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C(i) There exists lim, oo T"xp € F.

C(ii) For each ¢ > 0, there exist a neighborhood U of T in M., a number § > 0
and a natural number N such that for each S € U, each y € K satisfying
ly — xpll <6 and each integer m > N,

m,, _1; n
|7y = Jim, 775, <e.
Set

oo
F=(\Fp (5.180)
p=1

Clearly, F is a countable intersection of open and everywhere dense subsets of M_..
Assume that T € F. Then for each p > 1, there exists lim, .o T"xp € F.
Now we construct the set Cr C Kg. By property C(ii), for each pair of natural
numbers q, i, there exist a neighborhood U/(q, i) of T in M,, a number §(gq,i) >0
and a natural number N (g, i) such that the following property holds:

C(iii) For each § € U(q,i), each y € K satisfying ||y — x4l < (g, i), and each
integer m > N(q, 1),

HS’"y — lim T"x, ” <27t

n—oo

Define
[e¢)
Kr = ﬂ U{{y eKo:lly—xqll <8(q. )} :q>1,i>n}. (5.181)
n=1
Clearly, [Cr is a countable intersection of open and everywhere dense subsets of Kj.
Assume that x € Oy and ¢ > 0 are given. There exists an integer n > 1 such that
27" <471, (5.182)
By (5.181), there exist a natural number g and an integer i > n such that
lx — x4l <8(q,10). (5.183)

It follows from (5.182) and C(iii) that the following property also holds:

C(iv) For each S € U(q,i), each y € K satisfying ||y — x4|| < &(g,i), and each
integer m > N(q, i),

$"y — fim Tix,| <47e.
J—>00

By property C(iv) and (5.183),

H T"x — lim T-jxq ” <47 lg
j—o00



246 5 Relatively Nonexpansive Operators with Respect to Bregman Distances

for all integers m > N(q,1). Since ¢ is an arbitrary positive number, we conclude
that {T™x}>°_, is a Cauchy sequence and there exists lim,;, oo 7" x. We also have

| tim 77— im 77| <47 (5.184)
m— 00 m—> 00

Since lim;; o0 T™x, € F, we conclude that lim,, .o, T™x also belongs to F. By
(5.184) and property C(iv), for each S € U(q, i), each y € K satisfying ||y — x|| <
8(q,1) — |lx — x41|, and each integer m > N (g, i), we have

Hsmy ~ lim foH <27lg.

j—o0

Theorem 5.34 is proved. O



Chapter 6
Infinite Products

6.1 Nonexpansive and Uniformly Continuous Operators

In this section we discuss several results concerning the asymptotic behavior of (ran-
dom) infinite products of generic sequences of nonexpansive as well as uniformly
continuous operators on bounded, closed and convex subsets of a Banach space.
These results were obtained in [129]. In addition to weak ergodic theorems, we also
study convergence to a unique common fixed point and more generally, to a non-
expansive retraction. Infinite products of operators find application in many areas
of mathematics (see, for example, [17, 18, 38, 57] and the references mentioned
there). More precisely, we show that in appropriate spaces of sequences of opera-
tors there exists a subset which is a countable intersection of open and everywhere
dense sets such that for each sequence belonging to this subset, the corresponding
infinite product converges.

Let X be a Banach space normed by | - || and let K be a nonempty, bounded,
closed and convex subset of X with the topology induced by the norm || - ||

Denote by A the set of all sequences {A;}7°,, where each A, : K — K is a
continuous operator, = 1, 2, .... Such a sequence will occasionally be denoted by
a boldface A.

For the set A we consider the metric p; : A x A — [0, 0o0) defined by

ps({AN2 {B}2)) = sup{llA;x — Bix| :x € K,1=1,2,...},
{A)72 {Bi}2, € A. 6.1)
It is easy to see that the metric space (A, ps) is complete. The topology generated
in A by the metric ps; will be called the strong topology.

In addition to this topology on .4, we will also consider the uniformity deter-
mined by the base

E(N, &) ={({A}2,.{Bi}i2)) e Ax A:
IAx — Bixl| <e,t=1,...,N,x €K}, 6.2)
S. Reich, A.J. Zaslavski, Genericity in Nonlinear Analysis, 247
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where N is a natural number and ¢ > 0. It is easy to see that the space .4 with this
uniformity is metrizable (by a metric p, : A x A — [0, 00)) and complete. The
topology generated by p,, will be called the weak topology.

An operator A : K — K is called nonexpansive if

|[Ax — Ay|| <|lx —y|| forallx,yeK.

Define
Ape = {{A,};’i] € A: A, is nonexpansive forr =1, 2, .. } (6.3)

Clearly, A, is a closed subset of A in the weak topology. We will consider the
topological subspace A,. C A with both the relative weak and strong topologies.

We will show (Theorem 6.1) that for a generic sequence {C, 2 ; in the space Ape
with the weak topology,

ICr - Cix = Cp -+~ Ciy| = 0,

uniformly for all x, y € K. We will also prove Theorem 6.2 which shows that for
a generic sequence {C;}7°, in Ay, with the strong topology, this type of uniform
convergence holds for random products of the operators {C;}7°,. (Such results are
usually called weak ergodic theorems in the population biology literature [43].)

We will say that a set E of operators A : K — K is uniformly equicontinuous
(ue) if for any ¢ > 0, there exists 6 > 0 such that ||Ax — Ay|| <& forall A € E and
all x, y € K satisfying ||x — y|| <.

Define

Aye = {{A,}j’i1 e A:{A};2, is a (ue) set}. (6.4)

It is clear that A, is a closed subset of A in the strong topology.

We will consider the topological subspace A, C A with the relative weak and
strong topologies.

Denote by A, the set of all {A;}7° € Ay, such that

(NxeK:Ax=x}#0,

t=1

and denote by Af; . the closure of A%, in the strong topology of the space A,,.

Denote by A, the set of all A = {A,}f’i | € Aye for which there exists x(A) € K
such that for each integer > 1,

Ax(A)=x(A),  |Ay—x@A)| =< |y—x@A)| forallyek,

and denote by A, the closure of .A¥, in the strong topology of the space A,..

We will con51der the topological subspaces A%, and A¥, with the relative strong
topologies and show (Theorems 6.3 and 6.4) that for a generic sequence {C;};2
in the space .A (Au > respectively), there exists a unique common fixed point x,
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and all random products of the operators {C;};2, converge to x,, uniformly for all
xeK.

Assume that F' is a nonempty, closed and convex subset of K, and Q : K — F
is a nonexpansive operator such that

Ox=x, xeF. (6.5)

(Such an operator Q is usually called a nonexpansive retraction of K onto F [68].)
Denote by A,(lf) the set of all {A}7°, € Ay, such that

Aix=x, xeF,t=1,2,.... (6.6)

It is clear that .Af,e is a closed subset of A, in the weak topology.

We will consider the topological subspace .A( ) A, with both the relative
weak and strong topologies.

We will show (see Theorem 6.5) that for a generic sequence of operators {B;};2
in the space .A,(f:) with the weak topology, there exists a nonexpansive retraction
P, : K — F such that

By Bix — P.x ast— o0,

uniformly for all x € K. We will also prove Theorem 6 6, which shows that for a

generic sequence of operators {B;}7°, in the space A ) with the strong topology,
all its random products

Brgy- - By (1yx

also converge to a nonexpansive retraction P, : K — F, uniformly for all x € K,
wherer : {1,2,...} — {1, 2, ...}. Finally, we will prove Theorem 6.7, which extends
Theorem 6.6 to a larger class of operators described in Sect. 6.3.

In Sect. 6.4 we also point out that our results can, in fact, be extended to all
hyperbolic spaces.

6.2 Asymptotic Behavior

In this section we will first formulate precisely our weak ergodic theorems [129].

Theorem 6.1 There exists a set F C Ay, which is a countable intersection of
open (in the weak topology) everywhere dense (in the strong topology) subsets of
Ape, such that for each {B, 2| € F and each € > 0, there exist a neighborhood U
of {B:}72, in Ane with the weak topology and a natural number N such that:

For each {Ci}72, €U, eachx,y € K and each integer T > N,

Theorem 6.2 There exists a set F C Ay, which is a countable intersection of
open everywhere dense (in the strong topology) subsets of Ay, such that for each
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{B:};2, € F and each & > 0, there exist a neighborhood U of {B;};2 | in Ay with
the strong topology and a natural number N such that:

For each {C/}2, € U, each x,y € K, each integer T > N and each mapping
r:{l,..., T} —>{1,2,...},

NCrry----- Crayx —Crry -+ Crayyl<e.

The following theorems [129] establish generic convergence to a unique fixed
point.
Theorem 6.3 There exists a set F C A¥,, which is a countable intersection of
open everywhere dense (in the strong topology) subsets of flze, such that for each
{B:}72, € F, there exists x4 € K for which the following assertions hold:

1. Bixy = x4, t =1,2,....

2. For each & > 0, there exist a neighborhood U of { B;}2, in flzc with the strong
topology and a natural number N such that for each {C/};°, € U, each integer

T > N, each mappingr : {1,..., T} — {1,2,...} and each x € K,
ICrey----- Crayx — x4 <e.

Theorem 6.4 There exists a set F C A%,, which is a countable intersection of
open everywhere dense (in the strong topology) subsets of A%, such that for each

{B:};2, € F, there exists x4 € K for which the following assertions hold:
1. Bixy = x4, t =1,2, ...,

1By —xll < lly —xll, yeK,t=12,....

2. For each & > 0, there exist a neighborhood U of { B} in -/Zl:e with the strong
topology and a natural number N such that for each {C;}°, € U, each integer
T > N, each mappingr : {1,..., T} — {1,2,...} and each x € K,

ICrery----- Crayx — x4 <e.

One can easily construct an example of a sequence of operators {A;}°, € Ay,
for which the convergence properties described in Theorems 6.1-6.3 do not hold.
Namely, they do not hold for a sequence each term of which is the identity operator.

6.3 Nonexpansive Retractions

In this section we assume that F' is a nonempty, closed and convex subset of K, and
that Q : K — F is a nonexpansive retraction, namely

Ox=x, x€F, 6.7)
1Qx — Oyl = llx—yll, x,y€K. (6.8)
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The following two theorems [129] establish generically uniform convergence of
(random) infinite products to nonexpansive retractions.
Theorem 6.5 There exists a set F C A,(f:), which is a countable intersection of
open (in the weak topology) everywhere dense (in the strong topology) subsets of
.Afle), such that for each {B;};° | € F, the following two assertions hold:

1. There exists an operator Py : K — F such that

lim B;----- Bix=P.x foreachx e K.

2. For each & > 0, there exist a neighborhood U of {B;};2 in A,(w with the weak
topology and a natural number N such that for each {C/}°, € U, each integer
T > N and each x € K,

NCr----- Cix — Pux|| <e.

Theorem 6.6 There exists a set F C A,y:), which is a countable intersection of

open everywhere dense subsets of A,ﬁ? (in the strong topology), such that for each
{Bt}?; € F, the following two assertions hold:

1. Foreachr :{1,2,...} = {1,2,...}, there exists an operator P. : K — F such
that

lim Bycpy----- B.(yx = P,x foreachx € K.
T—o00

2. For each ¢ > 0, there exist a neighborhood U of {B,};’i1 in the space ./45,5)
with the strong topology and a natural number N such that for each {C;}7°, € U,
each mapping r : {1,2,...} = {1,2,...}, each integer T > N and each x € K,

ICrry----- Crayx — Prx|| <e.
In our next result [129] we extend Theorem 6.6 to a subspace of 4, consisting
of sequences of quasi-nonexpansive operators. More precisely, we now assume that

F is a nonempty, closed and convex subset of K and Q : K — F is a uniformly
continuous operator such that

Ox=x, xe€F, 10y —xll<lly—xl, yeK,xeF. (6.9)
Denote by Af,e) the set of all {A,}7°, € A, such that for each integer t > 1,
Aix=x, xE€F, Ay —xl<lly—xll, yeK,xeF. (6.10)

It is clear that A(I;) is a closed subset of A4, in the strong topology.
We will consider the topological subspace .A( ) with the relative strong topology
and establish the following result.
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Theorem 6.7 There exists a set F C A,(f;), which is a countable intersection of
open everywhere dense subsets of Af,? (in the strong topology), such that for each
{B:}72, € F, the following two assertions hold:

1. For each mapping r : {1,2, ...} = {1, 2, ...}, there exists a uniformly continu-
ous operator P, : K — F such that

lim Byry----- B,qyx = P.x foreachx € K.
T—o0

2. For each ¢ > 0, there exist a neighborhood U of {B;};2, in the space .A,(f:)
with the strong topology and a natural number N such that for each {C;}2, € U,
each mapping r : {1,2,...} = {1,2,...}, each integer T > N and each x € K,

NCrry -+ Cryx — Prx| <e.

6.4 Preliminary Results

In this section we will prove three auxiliary lemmas which will be used in the proofs
of Theorems 6.1-6.7.
For each bounded operator A : K — X, we set

Al =sup{l|Ax||: x € K}. (6.11)
For each x € K and each E C X, we set
d(x, E)=inf{|lx — y|| : y € E}, rad(E) = sup{llyll: y € E}. (6.12)

Lemma 6.8 Assume that F is a nonempty, closed and convex subset of K, Q :
K — F and A: K — K are continuous operators such that

Ox=x, xe€F, 1Oy —x|| <|ly—x|| forallyeKandx¢€F,
Ax=x, x€F, Ay —x|| < |ly —x]|| forallye K andx € F, (©13)
and y € (0, 1). Define an operator B : K — K by

Bx=(1—-y)Ax+yQx, xeKk.
Then

Bx=x, x€F, IBy —x|| <|ly —x|| forallye K andx € F,

and

dBx,F)<(1—-y)dx,F), xeK. (6.14)

Moreover, if A and Q are nonexpansive, then B is nonexpansive.
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Proof 1t is sufficient to show that (6.14) is valid. Let x € K and ¢ > 0 be given.
There exists z € F such that

lx —zll <d(x, F) +e.
It is easy to verify that y Ox + (1 — y)Az € F. Hence

d(Bx,F) < |((1 —y)Ax +yQx) — (y Qx + (1 — y) Az) |
<A=plx—=zll=A=p)dx, F)+ (1 —yp)e.

Since ¢ is any positive number, we conclude that (6.14) holds. The lemma is
proved. U

Lemma 6.9 Assume that E is a nonempty uniformly continuous set of operators
A: K — K, N is a natural number and ¢ is a positive number. Then there exists

a number § > 0 such that for each sequence {Al}ﬁvzl C E, each sequence {Bt}fv:l,
where the (not necessarily continuous) operators B; : K — K,t=1,..., N, satisfy
|B: — A/l <6, t=1,...,N, (6.15)
and each x € K, the following inequality holds:
I|By----- Bix —Ay----- Ax|| <e. (6.16)
Proof Set
ey = (@4N)" e, (6.17)

By induction we define a sequence of positive numbers {ei}lN: o such that for each
ie{l,...,N},

cio1 < AN) g, (6.18)

and for each A € E and each x,y € K satisfying ||x — y|| < &j_1, the following
inequality holds:

|Ax — Ay|| <27 'g;. (6.19)

Set § = gp.

Assume that {A,}Y  CE,B;: K — K,t=1,..., N, and that (6.15) holds. We
will show that (6.16) is valid for each x € K.

Let x € K. We will show by induction that forr =1,..., N,

1By Bix — Ao Arx| =& (6.20)

Inequalities (6.15) and (6.18) imply that | Bjx — A1x|| < &1.
Assume thatr € {1,..., N}, < N, and
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It follows from the definition of &; (see (6.18), (6.19)) and (6.15) that

lArp1 By - Bix —Aip1Ap - Ax| <27 e,
lAs1Br----- Bix — Biy1B; -+ - - Bix| <9
and
lArs1As----- Ax — Biy1Br -+ Bix| < ért1.

Thus we have shown by induction that (6.20) holds for t =1, ..., N. This implies
that (6.16) is valid and the lemma is proved. O

Lemma 6.10 Assume that F is a nonempty, closed and convex subset of K, Q :
K — F is a uniformly continuous operator such that

Ox=x, xé€eF, 1Qy —x|| <|ly—x|| forallye K andx € F,

e>0,y €(0,1) and E is a nonempty uniformly continuous set of operators A :
K — K such that for each A € E, the following relations hold:

Ax=x, Xx€F, Ay —x|| <|ly —x|| forallye K andx € F.
Let N > 1 be an integer such that
(1 — )V (rad(K)) < 16 'e. (6.21)
For each A € E, define an operator A, : K — K by
Ayx=(1—-y)Ax+y0x, xek.

Then the set {A,, : A € E} is uniformly continuous and there exists a number § > 0
such that for each sequence {C,}f\’: 1 C{A, : A € E}, each sequence of (not neces-
sarily continuous) operators B, : K — K, t=1,..., N, satisfying

1B; —Cil| <68, t=1,...,N, (6.22)

the following inequality holds:

Proof Evidently, the set {A,, : A € E} is uniformly continuous. By Lemma 6.8 and
(6.21), for each sequence {C,}fv=1 C{A, : A € E} and each x € K, the following
inequality holds:

d(Cy - Cix, F) < (1 —y)Nd(x, F) <87 'e. (6.23)

Applying Lemma 6.9 with the uniformly continuous set {A,, : A € E}, we obtain
that there exists a number § > 0 such that for each sequence {C,}ﬁV: 1 C{A) A€ E]}
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and each sequence of operators B; : K — K, t =1,..., N, satisfying (6.22), the
following inequality holds:

By - Bix —Cpy -+~ Cix|| <87 ls, xeKk. (6.24)

Assume that {Ct}lN=1 C{Ay:A€E},B:K— K,t=1,..., N, and that (6.22)
holds. Then (6.23) and (6.24) are valid for each x € K. This implies that

d(By - Bix,F)<e, xeK.

The lemma is proved. g

6.5 Proofs of Theorems 6.1 and 6.2

Fix x, € K. Let {A;}7°, € Ape and y € (0,1). Fort =1,2, ..., define A;, : K —
K by

Apx=(0—-py)Ax+yx., xek. (6.25)
Clearly, {A;,}72, € Ay and

lAx —Apyl <L =p)lx—yl, xyeK,t=12... (6.26)
It is easy to see that the set

{{Azy}?; : {At}?il € Ape, v € (0, 1)}
is an everywhere dense subset of A, in the strong topology.

Proof of Theorem 6.1 Let {A;}7°, € Ape, y € (0,1) and let i > 1 be an integer.
Choose a natural number N (y, i) such that

(1 =NV rad(K) <2774 (6.27)
Inequalities (6.26) and (6.27) imply that

A7y <+ Alyx — Agy -+ Aly}’“fz_i_?’
for all x, y € K and all integers T > N (y, i). (6.28)

By Lemma 6.9, there exists an open neighborhood U ({A;};2, v, 1) of {A;,}72,
in the space A,, with the weak topology such that for each {Bf}?il eU ({At}?il,
y,i)and each x € K,

lANG Ly - Aty X — Byiy - Bix| <2773
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Together with (6.28) this implies that for each {B,} 2, € U({At}, 1»¥» 1), each
x,y € K and each integer T > N(y, i),

I|Br - Bix—Br----- Byl <2771 (6.29)

Define
F= ﬂU (AN v, i) AN € Apey €0, D) i=q.q+1,..}.

Evidently F is a countable intersection of open (in the weak topology) everywhere
dense (in the strong topology) subsets of A,,.
Assume that {B;}7°, € F and & > 0. Choose a natural number g such that

2479 ¢ (6.30)
There exist {A,};’il € Ape, y € (0, 1) and an integer i > ¢ such that
{Bt}?il S U({At}?il» Y, i)-

It follows from (5.29) and (6.30) that for each {C;};2, € U({A;};2,, v, 1), each pair
of points x, y € K and each integer 7 > N (y, i),

\Cr:-----Cix—Cp----- C1y||§2—i—1§2_q_1<8
This completes the proof of the theorem. B

Proof of Theorem 6.2 Let {A;}7°, € Ape, ¥ € (0,1) and let i > 1 be an integer.
Choose a natural number N (y, i) such that (6.27) is valid. Inequalities (6.26) and
(6.27) imply that for each integer T > N(y,i),eachr:{l,..., T} — {1,2,...} and
eachx,ye K,

lAr7yy - oo+ Aryyx — Apryy - Arayyyll < 2773, (6.31)

By Lemma 6.9, there is an open neighborhood U({A;}2,, v, i) of {A;,}72, in
the space A,, with the strong topology such that for each {C}7°, € U({A;}72,,
y,i),eachx € K andeachr:{1,...,N(y,i)} = {1,2,...}, the followmg inequal-
ity holds:

ANy - AryyX — Cr(Ny,ipy Crapxll <2773,

Together with (6.31) this implies that the following property holds:
(a) Foreach {C}72, e U({A;};2,, v, 1), eachinteger T > N(y,i),eachx,y € K
and each r : {1, .. T} — {1, 2, ...}, the following inequality is valid:

NCrry----- Crayx = Crry -+~ Crayyll <2771 (6.32)
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Define
F= ﬂU (AN y. i) H{ANR € Ape,y € (0, D), i=q,qg + 1,...}.

Evidently, F is a countable intersection of open everywhere dense (in the strong
topology) subsets of A,,.

Assume that {B;}7°, € F and & > 0 are given. Choose a natural number g which
satisfies (5.30).

There exist {A;}7° | € Aye, ¥ € (0, 1) and an integer i > g such that

(B2, € U({A2,. 7. i).

The validity of Theorem 6.2 now follows from property (a) and (6.30). g

6.6 Proofs of Theorems 6.3 and 6.4

Here we prove Theorem 6.4. Theorem 6.3 is proved analogously.

there exists x(A) € K such that

ue’

Proof of Theorem 6.4 For each A = {A;}7°, € A
Ax(A)=xA), t=1,2,...,

(6.33)
[Ay —x@A)| < |y

yeK,t=1,2,....

Let {A;}°, € Ay, and y € (0,1). Fort =1,2,..., define A;, : K — K by
Apx=(1-py)Ax+yx(A), xeKk. (6.34)
It is easy to see that {A;) }7°, € Aye,
Apyx(A)=xA), t=12,...
and

[An ) —x@]| <A =»|y

yeK,i=1,2,.... (6.35)
Therefore {A;,,}72, € A, It is easy to see that the set
{{An )2, HAS, € As, v € (0, D]

is an everywhere dense subset of A, in the strong topology.
Let {At}"ol e A%,,y €(0,1),and leti > 1 be an integer. Choose a natural num-
ber N (y, i) such that

(1— )N Drad(K) <4772, (6.36)
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Inequalities (6.35) and (6.36) imply that the following property holds:
(a) For each integer T > N(y,i), each r : {1,..., T} — {1,2,...} and each
x ek,

lArcry - Arayyx —x Q)] <2727

By Lemma 6.9, there exists an open neighborhood U ({A;};2, v, 1) of {A;,}72,
in AZ . with the strong topology such that:
For each {C;}7°, e U({A/}2,. v, 1),

s ({C2 1 {A 12)) <4772, (6.37)
For each {C,}7°, € U({A;}72,, v, i), each x € K and each mapping
r: {1,...,N(y,i)} —{1,2,...},
the following inequality holds:
1Ar vy =+ AryyX = Cravpan -+ Crapxl <2727,

Together with property (a) this implies that the following property holds:
(b) For each {C;}72, € U({A;}72,,v,i), each r: {1,....,N(y, )} = {1,2,...}
and each x € K, the following inequality holds:

|Crveiyy -+ Crapx —x(A) | <4771

Define
x
Fo=(VWNHUWAXZ . i) A2 e Afy € (0. D) i=q.q+1,..}.
g=1

Evidently, F is a countable intersection of open everywhere dense (in the strong
topology) subsets of A% ,.

Assume that {B,}7°, € F and & > 0 are given. Choose a natural number ¢ such
that

2079 < ¢ (6.38)

There exist {A;}7°, € Ay, ¥ € (0,1), and an integer i > g such that
{Bt}?i] € U({At}?ip Vs i)~

By (6.38) and property (b), for each pair of integers t > 1, p > N(y, i), and each
xekK,
[(B)Px —x(A)| <47 <. (6.39)

Since ¢ is an arbitrary positive number, this implies that for each integer > 1 and
each x € K, there exists lim,_, 5o (B;)”x. Together with (6.39) this implies that for
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each integer t > 1 and each x € K,
H lim (B)”x — x(A) H <4771 g,
p—>00
Since ¢ is an arbitrary positive number, this implies, in turn, that there exists x, € K
such that
Bixy=xy, t=12,..., [x(A) —xi] <471 <. (6.40)

It follows from (6.37), (6.40), (6.35) and (6.38) that for each integer ¢ > 1 and each
yek,

By — xell < |Aryy — x| + 11Bry — Ay ¥l + | x(A) — x|
<47 442 (=) |y —x(A)
<|ly —xll 275 < Jly — xull + 6.

Since ¢ is an arbitrary positive number, we conclude that for each integer r > 1 and
eachy e K,

1Bry — x4l < lly — xull-

Therefore (6.38), (6.40) and property (b) now imply that for each {C}72, €
U({At}?il, y,1i), each integer T > N(y,i), each r : {1,..., T} — {1,2,...} and
eachx € K,

NCrry----- Criyx — x|l < ||x* —x(A) H + || Crry -+ Cryx — x(A) ||
< 2721 g,

This completes the proof of Theorem 6.4. d

6.7 Proofs of Theorems 6.5, 6.6 and 6.7

In this section we prove Theorems 6.5 and 6.6. The proof of Theorem 6.7 is analo-

gous to that of Theorem 6.6.

Let {A/}2, € .A,(f:) andy €(0,1).Forr=1,2,...,define A;, : K — K by

Apx=(01-py)Ax+y0x, xek. (6.41)
It is easy to see that
(A2 e AD and oy (1A, {An)22)) < 2y rad(K). (6.42)
Leti > 1 be an integer. Choose a natural number N (y, i) such that

(1— )N Drad(K) <4772, (6.43)
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By Lemmata 6.9 and 6.10, there exists a number §({A;}7°, ¥, i) > 0 such that
the following property holds:

(@) Foreachr: {1,...,N(y,i)} = {1,2,...} and each sequence of (not neces-
sarily continuous) operators C; : K — K, t=1,..., N(y, i), satisfying

IC = Aryy | <8(fAN2 1, v, i), t=1,...,N(y,i),
the following relations hold:

d(Cnyiy-- Cix, F) <47, xeKk,

ICNGiy - Cix — Ar(N(yiyy = - Aryxl <4772, xeK.

Proof of Theorem 6.5 Let {A;}7°, € .A,(f:), y € (0,1) and let i > 1 be an integer.
There exists an open neighborhood U({Al}z:p y,i) of {A,},}t:1 in the space A,(w)
with the weak topology such that for each {C;};2, € U({A/}72,, v, i),

IC: — Ay Il <47'8({AN2, v2i), t=1,...,N(y,i). (6.44)

Define
Fi= ﬂU (AN ye i) {ANR e AD Yy e (0, D), i=q,q+1,...}.

Clearly, F is a countable intersection of open (in the weak topology) everywhere
dense (in the strong topology) subsets of A(F).

Assume that {B,}7°, € F and & > 0 are given. Choose a natural number ¢ such
that

2679 < ¢, (6.45)
There exist {At} 21 € Ane , v €(0,1) and an integer i > g such that

(B2, e U({ANZ,, v.1). (6.46)

It follows from (6.44) and property (a) that the following property holds:
(b) For each {C/}2, e U({A/}72,, v, i),

d(CNey,iy Cix,F)<4™, xeKk.

When combined with (6.46) and (6.45), this implies that for each x € K, there is
f(x) € F such that

| BNy Bix — fo)]| <2-477 <e. (6.47)
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Since {B;};°, € A,Sf), (6.47) and (6.45) imply that for each pair of integers
T,S> N(y,i),andeachx € K,

’

|Br---- Bix — f(x)]
|Br - Bix —Bg-----Bix|| <47 <.

Bg----- Bix — f(x)| <247,
(6.43)

Since ¢ is an arbitrary positive number, we conclude that there exists an operator
P, : K — K such that

P.x = tlim B;----- Bix, xeKkK, (6.49)
—00
and

|Pix — f(0)]| <2-47", xeKk.

It is clear that the operator P, : K — K is nonexpansive and P,x = x, x € F. Since
¢ is an arbitrary positive number, (6.49) and (6.45) imply that P.(K) C F.
By (6.49) and (6.47), for each x € K,

BNy - - Bix — Pu(x) | <4, (6.50)
Property (a), (6.50), (6.44) and (6.45) imply that for each
{CHZ e U({AN2). v i),

each x € K, and each integer T > N(y, i),

<|Cng.iy---- Cix — P(x)||

< “ BN()/,[) ----- B1x — P*(.X) H + ”CN()/,[') ..... Cl-x — AN()/,[))/ ..... Aly-x”
+ ”AN()/,Z'))/ ..... Alyx — BN(y,i) ..... le” < 41—i +2. 4—2—i e
This completes the proof of Theorem 6.5. -

Proof of Theorem 6.6 Let {A )2, € AL, ¥ € (0,1), and let i > 1 be an integer.
There exists an open neighborhood U ({A,};’i 1V, i) of {At},};’i | in the space Af,g)
with the strong topology such that for each {C;}7°, € U({A}2,, v, i),

IC — Al <4718 ({AN2, v,i), t=1,2,.... 6.51)

Define

o0
F=UJU{ARv.i) A2, e AD vy e 0. 1) i=q.q+1....}.
g=1
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It is easy to see that F is a countable intersection of open everywhere dense (in the

strong topology) subsets of Af,g) .

Assume that {B,}7°, € F and & > 0 are given. Choose a natural number g for

which (6.45) holds. There exist {A;}7°, € Aﬁl?, y € (0, 1), and an integer i > ¢
such that

(B2 € U{AN2, . v, i). (6.52)

Assume thatr : {1,2,...} — {1,2,...}. It follows from (6.52), (6.45), (6.51) and
property (a) that for each x € K, there is f(x) € F such that

|Brveyiny -+ Bryx — )] <2477 <. (6.53)
Since {B;}7°, € Aﬁi), (6.53) and (6.45) imply that for each pair of integers T, S >
N(y,i)andeachx € K,

|Brry -~ Bryx — fO) |, | Bresy -+ Bryx — f(0)] <2-47,

”Br(T) ..... Br(l)x — Br(S) ..... Br(l)xH < 41—i <e.

Since ¢ is an arbitrary positive number, we conclude that there exists an operator
P, : K — K such that for each x € K,

Prx = lim By -+ B,(1)x, |Px— fx)| <247 <. (6.54)
— 00

Clearly, the operator P, : K — K is nonexpansive and P,.x = x, x € F. Since ¢ is
an arbitrary positive number, (6.54) implies that P.(K) C F.
By (6.54) and (6.53), for each x € K,

| Brvpiyy -+ Bryx — Pr(x) | <417 (6.55)
Property (a), (6.55), the definition of U({A,};’il, y,1i) (see (6.51)) and (6.45) now

imply that for each {C/}°, € U{A/};2,,v,i), each r : {1,2,...} — {1,2,...},
each integer T > N(y,i) and each x € K,

|Crry -+ Crayx — P (x) ||
< |Crnepiyy -+ Crayx — Pr(@) ||
<NCrNGiyy CrayX — Ar(NGoiyyy = - Ay
+ A NGy - ArDy X — Br(vgiyy B, (x|l
+ B (N@,iy) - - - Brayx — Prx||

<2472 gl g,

This completes the proof of Theorem 6.6. g
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6.8 Hyperbolic Spaces

Let (X, p) be a complete hyperbolic space (see Sect. 1.1) and let K be a bounded,
closed and p-convex subset of X.

Analogously to the case of a bounded, closed and convex subset K of a Banach
space (see Sects. 6.1, 6.2 and 6.3), we may define the hyperbolic analogs of the
spaces Aye, Aye, flﬁe, ./lee, AS,? and A,(f:). One can then easily formulate exten-
sions of Theorems 6.1-6.7 to this case and verify that these extensions can be es-
tablished by arguments similar to those we have used in the present chapter. These
extensions provide a partial answer to a question raised in [121].

6.9 Infinite Products of Order-Preserving Mappings

Order-preserving mappings find application in many areas of mathematics. See,
for example, [3, 4, 62, 107] and the references mentioned there. We study the
asymptotic behavior of (random) infinite products of generic sequences of order-
preserving continuous mappings on intervals of an ordered Banach space. More
precisely, we show that in appropriate spaces of sequences of operators there exists
a subset which is a countable intersection of open and everywhere dense sets such
that for each sequence belonging to this subset, the corresponding infinite products
converge.

Let (X, || - ||) be a Banach space ordered by a closed and convex cone X such
that [|x|| < ||y|| for each x,y € X, satisfying x < y. For each u, v € X such that
u < v denote

(u,v) :={xeX:u<x<v}.

For each x, y € X, we define

Alx,y) :=sup{r >0:rx < y}. (6.56)

Letb € X \ {0}. We consider the space (0, b) C X with the topology induced by

the norm || - ||. Denote by .A the set of all continuous operators A : (0, b) — (0, b)
such that

Ax <Ay foreachx,y e (0,b) satisfyingx <y
and
A(xz) >aAz foreachz e (0,b) and each o € [0, 1].
For the space A we define a metric p : A x A — [0, 00) by

p(A, B) =sup{l|Ax — Bx|| :x € (0,b)}, A,BeA. (6.57)

It is easy to see that the metric space A is complete.
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We will show (see Theorem 6.11 below) that for a generic operator B in the
space A, there exists a unique fixed point xg and the powers of B converge to xp,
uniformly for all x € (0, b).

Assume now that b is an interior point of the cone X . Define

x|l = inf{r € [0,00) : —rb <x <rb}, xeX. (6.58)

Clearly, || - || is a norm on X which is equivalent to the norm || - ||.
Denote by M the set of all sequences {A;}°,, where each A, e A, 1 =1,2,....
Such a sequence will occasionally be denoted by a boldface A. For the set M we

consider the metric p5 : M x M — [0, 00) defined by

ps({AN2 {B}2,) = sup{llA;x — Byx|lp: x €(0,b), 1 =1,2,...},
{AN2 ) (B2 e M. (6.59)

It is easy to see that this metric space (M, p;) is complete. The topology generated
in M by the metric p; will be called the strong topology.

In addition to this topology on M, we will also consider the uniformity which is
determined by the base

E(N,e) ={({A}2, . {B}2)) e M x M:
|Aix — Bix|lp <e,t=1,...,N,x €(0,b)}, (6.60)

where N is a natural number and & > 0. It is easy to see that the space M with
this uniformity is metrizable (by a metric p,, : M x M — [0, 00)) and complete.
The topology generated by p,, will be called the weak topology. We will show (see
Theorem 6.16) that for a generic sequence {C;};°, in the space M with the weak
topology,

A(CT ..... Cix,Cp----- C (0)) -1,

uniformly for all x € (0, b). We will also establish Theorem 6.17, which shows that
for a generic sequence {C;}7°, in M with the strong topology, this type of uniform
convergence holds for random products of the operators {C;}7° ;.

Let a € (0, b) be an interior point of X . Denote by M, the set of all sequences

{A;}22, € M such that
Aja=a, t=1,2,....

Clearly, M, is a closed subset of M with the weak topology. We consider the
topological subspace M, C M with the relative weak and strong topologies.

We will show (Theorem 6.18) that for a generic sequence of operators {C;
the space M, with the weak topology,

o]

=1 m

NCr----- Ciz—alp—>0 asT — oo,

uniformly for all x € (0, b). We will also establish Theorem 6.19, which shows

that for a generic sequence of operators {C;}7°, in the space M, with the strong
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topology, all its random products
Crry-- Cpz—a asT — oo,

uniformly for all x € (0, b). Here r : {1, 2, ...} — {1,2, ...} is arbitrary.
Finally, denote by M, the set of all sequences {A;}7°, € M such that

Aja=a, t=1,2,...

for some a € (0, b) such that a is an interior point of X . Denote by M, the clo-
sure of M., in the space M with the strong topology and consider the topological
subspace M, C M with the relative strong topology. We will show (Theorem 6.20)
that for a generic sequence {C;}?°, in the space M., there exists a unique common
fixed point x,, which is an interior point of the cone X and all random products of
the operators {C; ;’il converge to x,, uniformly for all x € (0, b).

Theorems 6.11 and 6.16—6.20 appeared in [127].

6.10 Existence of a Unique Fixed Point
In this section we will prove the following result.

Theorem 6.11 There exists a set F C A, which is a countable intersection of open
and everywhere dense sets in A, such that for each B € F, the following two asser-
tions hold:

1. There exists xp € (0, b) such that Bxp = xp,

BTx — xp as T — oo, uniformly on (0, b).

2. For each ¢ > 0, there exist a neighborhood U of B in A and an integer N > 1
such that for each C € U, z € (0, b) and each integer T > N,

[Tz —xp| <e. (6.61)
Before proving Theorem 6.11 we need several preliminary lemmata.

Lemma 6.12 Letn > 1 be an integer, and let A € A, ¢ > 0, and z € (0, b) be given.
Then there exists a neighborhood U of A in A such that for each C € U,

|c"z — A"z <e. (6.62)

Proof We prove the assertion of the lemma by induction. For n = 1 the assertion of
the lemma is valid. Assume that the assertion of the lemma is valid for an integer
n > 1. We will show that this implies that the lemma also holds for n + 1.

There exists

se(0,87 ") (6.63)
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such that
|Ay — A(A"z)|| <87 e (6.64)

for each y satisfying ||y — A"z|| < §. There exists a neighborhood Uy of A in A
such that for each C € Uy,

[Cc"z—A"z| <.
Set
U:={CelUy:p(C,A) <8 '¢}. (6.65)
Let C € U. The definition of U implies that
||An+lZ _ C”HZH < HA"HZ _ AC"ZH + ||AC”z _ Cn+1z||
< A"z — AC"z| +87 e (6.66)
By the definition of Uy,
[A"z—C"z| <.
It follows from this inequality and the definition of § (see (6.63) and (6.64)) that
|AC"z — A(A"z)| <87 .
Together with (6.66) this implies that
HA"HZ _ C"“ZH <471,
This completes the proof of the lemma. g
For each A € A and each y € (0, 1), define
A, :(0,b) — (0,b)
by
Ayx =1 —-y)Ax+yb, x€(0,b). (6.67)
It is easy to see that A, € A for each A € A and each y € (0, 1), and that the set
{Ay:Ae Ay €0, D}
is everywhere dense in A.
Lemma 6.13 Let A € Aand y € (0, 1) be given. Then for each integert > 0,
AL 2 AL(0), Ay <AL®B),  ALO)<AL(B)  (6.68)

and

lim 2(4},(b), A}, (0)) = 1. (6.69)
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Proof Clearly, (6.68) is valid for each integer t > 0. We show that (6.69) holds.
To this end, let # > 0 be an integer. By (6.68),

A(AL(b), AL(0)) < 1.
It follows from (6.67) that
ASFH0) = A, (AL (0) = (1 — y)A(AL(0) + yb
=yb+(1—y)A(L(AL (D), A, (1)) A}, (b))
> yb+ (1 —y)A(AL(b), AL (0))A(AL ()
=1(A},(b), AL (0))((1 —y)A(AL (b)) + yb)
+ (1= 2(AL (1), AL ()b
> 1(AL (), AL(0) AL+ (1= A(AL (D), AL (0)))y AL b
=[A(AL (), AL () +y (1 - A(AL(b), A;(O)))]A;“b.
Hence
LA (B), ALTH0)) = 1 (AL (B), AL(0) + v (1 — A(AL (b). AL(0))).  (6.70)
By (6.70), the limit
A= lim A(AL (D), AL (0))
exists and
1>A>A4+y(1—A).

Therefore A =1 and the lemma is proved. 0

Lemma 6.14 Let A€ Aandy € (0, 1) be given. Then there exists x(A, y) € (0, b)
such that Ay x(A,y)=x(A,y) and

lim A’ (0) = lim A',(b) =x(A,y). 6.71)
=0 11— 00

Proof By Lemma 6.13,
lim (45, (0) — A, (0) =0

and {A}(0)}72,, {A}(b)}i2, are Cauchy sequences. This yields (6.71) and the

=1’
lemma itself. 0

Let Ac A,y €(0,1) and leti > 1 be an integer. By Lemma 6.14 there exists an
integer N (A, y,i) > 2 such that

45470 = Y47 <57 ©72)
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By Lemma 6.12, there exists an open neighborhood U (A, y, i) of A, in A such that
foreachC e U(A, y, i),

[N AT @) — ATATD @), |CNATDB) — AYATD By | <87 (6.73)

Lemma 6.15 Let Ac A, y € (0,1) and let i > 1 be an integer. Assume that C €
U(A,y,i),z€(0,b) and that T > N(A, y, i) is an integer. Then

|CTz—x(A.p)]| <6-87".
Proof Tt is easy to see that
CcTze(CcT ), b)) c(cNArD(0), VAT b)), (6.74)
By Lemma 6.14, the definition of N(A, y, i) (see (6.72)) and (6.73),
|CN @D ©0) —x(A, )|
< [cVATD©) = AFATD ) + [AFATD©0) —x (4, p) |
<87+ [AJATD @) — ATATOO)| <287,
|CNAYD(B) — x(A, y)|
< |cNATD @) — AYATD B | 4+ | AYATD(B) - x (A, y)|
<87+ Ay AT @) — AFATD ) <287
It follows from these inequalities and (6.74) that
[cTz—xA. )| < ||CTz = CNATD@©)| + [V AP ©) —x(A,p)|
< ||leNArD @) — cNAYD ()| +2-87 <6-87".
The lemma is proved. O

Proof of Theorem 6.11 Define
o0
F=Ulv@A.v.n:AeAye©Di=q.q+1....}
g=1

Clearly, F is a countable intersection of open everywhere dense sets in A.
Assume that B € F and ¢ > 0 are given. Choose an integer ¢ > 1 such that

6-279 <647 le. (6.75)
There exist A € A, y € (0, 1) and an integer i > ¢ such that

BeU((A,vy,i). (6.76)
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By Lemma 6.15, (6.75) and (6.76) for each z € (0,b) and each integer T >
N(A, v, D),

|BTz—x(A,y)| <6-8" <647 L. (6.77)

Since ¢ is an arbitrary positive number, we conclude that all the trajectories of B
converge and there is xp € (0, b) for which

Bxp =xp. (6.78)
Relations (6.77) and (6.78) imply that
|x(A,y) —xp| <6-87, (6.79)
and that for each z € (0, b) and each integer T > N(A, y, i),
|BTz—xp| <12-87 <327 e.
Since ¢ is an arbitrary positive number, we conclude that
B'x > xp asT — oo, uniformly on (0, b).

Finally, assume that C € U(A, y,i),z € (0,b) and that T > N (A, y, i) is an integer.
It follows from (6.79), Lemma 6.15 and (6.75) that

|z —xp| < | CTz—x(A. )| + [ x(A. y) — x|
<687 +6-877 <327 ¢

The proof of the theorem is complete. 0

6.11 Asymptotic Behavior

In this section we assume that b is an interior point of the cone X . We will first
formulate precisely our weak ergodic theorems.

Theorem 6.16 There exists a set F C M, which is a countable intersection of open
(in the weak topology) everywhere dense (in the strong topology) sets in M, such
that for each {B};° | € F, the following assertion holds:

For each ¢ € (0, 1), there exist a neighborhood U of {B;};2 | in M with the weak
topology and an integer N > 1 such that for each {C};°, € U, each integer T > N
and each x € (0, b),

A(CT-~---C1x,CT ..... CI(O))EI_E.
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Theorem 6.17 There exists a set F C M, which is a countable intersection of open
everywhere dense sets in M with the strong topology, such that for each {B;}°, €
F, the following assertion holds:

For each ¢ € (0, 1), there exists a neighborhood U of {B:};°, in M with the
strong topology and an integer N > 1 such that for each {C;}7°, € U, each r :
{1,2,...} = {1,2,...}, each integer T > N and each x € (0, b),

MCrary o Crayx, Crry -+ -+ Cry(0) =1—e.

Let a € (0, b) be an interior point of X;. Now we present the theorems which
establish generic convergence to a unique fixed point in the space M,,.

Theorem 6.18 There exists a set F C My, which is a countable intersection of
open (in the relative weak topology) everywhere dense (in the relative strong topol-
ogy) sets in M, such that the following assertion holds:

For each {B,}2, € F and each & > 0, there exist a neighborhood U of {B;};2,
in M, with the relative weak topology and a natural number N such that for each
{C,};’il e U, each integer T > N and each z € (0, b),

ICr----- Ciz—allp <e.

Theorem 6.19 There exists a set F C My, which is a countable intersection of
open everywhere dense sets in M, with the relative strong topology, such that the
following assertion holds:

For each {B,}°, € F and each & > 0, there exist a neighborhood U of {B;};2,
in M, with the relative strong topology and a natural number N such that for
each {C;};2, € U, each r : {1,2,...} — {1,2,...}, each integer T > N and each
z€(0,b),

NCrry----- Crnz —allp <e.

The next theorem establishes generic uniform convergence of random infinite
products to a unique common fixed point in the space M.

Theorem 6.20 There exists a set F C ./\;l*, which is a countable intersection of
open everywhere dense sets in My, such that for each {B:};2, € F, the following
two assertions hold:

1. There exists an interior point x(B) € (0, b) of the cone X which satisfies

BxB)=xB), t=1,2,....

2. For each ¢ > 0, there exist a neighborhood U of {B,}?i | in /\;l* and a natural
number N such that for each {Ct}?il eU,eachr:{1,2,...} - {1,2,...}, each
integer T > N and each z € (0, b),

[Crry -+ Crayz—x(B) ||,7 <e.
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For the space A we define a metric p : A x A — [0, c0) by
p(A, B) :==sup{||Ax — Bx||,:x € (0,b)}, A,BeA.
Fix a € (0, b) such that a is an interior point of X . Clearly,
0<X(,a)<l. (6.80)

For each A = {A;}72, and each y € (0, 1), define A)(/a) = {Aﬁ?,) 2> Where A,()Ci) :
(0,b) —> (0,b),t=1,2,...,1s defined by

ADx =1 —y)Ax+ya, xe(0,b)r=12,.... (6.81)

It is easy to see that {A;?,) 2| € M for each {A;}°, € M and each y € (0, 1), and
that the set
A (A2, e M,y €0, D) (6.82)

is everywhere dense in M with the strong topology.
For each ¢ and y € (0, 1), we choose a natural number Q(y, ) such that

O(y,8) > 4(eyr(b, @) +4. (6.83)

Lemma 6.21 Let {A,};’il eM,e,ye1)andlet r:{1,2,...} = {1,2,...}.
Then

(@) (@) (@ (@

)‘(Ar(Q(y,S))y """ Ay B AL ogeny Ar(l)y(o)) >1-e
Proof 1Tt is clear that for each integer 7 > 1,

(@) (@ (@) (@)
1= M(Agyy oo Ay 0 Arryy Aly)
and
(@) (@) (@) (a) (@) (@)
)‘(Ar(T-H)V “Aryy Ay b Aray Arayy Ar(l)y(o))
@ (@) (@) (@)
2 MAry, o Ay O Ay - ALy, ) (6.84)

For each integer T > 1, we have by (6.81), (6.84) and (6.80),

(a) (@) (@)
ArrnyArry Ay, ©

@ @ @

= Ay (Arry Ay )

==V Aai (A, A, ) + va
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- 1—y)A AAD A9 p
=yva+ 1= Aran(H (A, r(yy?

(a) (a) (a) (a)
Ar(T)V B Ar(l)y(o))Ar(T)V """ Ar(l)y(b))

> ya+ (1= A(A, A, b,
Aty ALy O)Arany Al - AL (B)
= M4y, o A b
A£2")y T A%)y(o))[(l - V)AF(TJFI)(A;(’LZ;")V """ A%)yb) + ya]
+ (1= (A, - A, b A, o AL, (0))ya
= A(A£‘Z;")V ..... A%)yb’
Ay A O) Ay, Ay - A, @)

(@) (@) (a) (a)
+ (1 _ )‘(Ar(zT)y ..... Ar(zl)y(b)’ ArlzT)y ..... Ar‘(‘])y(o)))ya

@ @
> [M(Ayryy o ALy, b

@ @ @ (@)
Arryy Al @) +ya,a) (1= 2(Afg), - Ay b

Ay Ay ODA G, Ay Arlly, @)
and
A(Ai?mwAi?T)y """ A%)Vb’ Aﬁ‘(Z)TH)VAg‘E)T)V """ A%)V(O))
= )”(A;(’CZ;"))/ """ Af“g)yb’ Aia()T)y """ A%)y 0)
+y (1= a(Ay, - A, b AR, A, )1, a). (6.85)

Assume now that
(a) (a) (a) (a)
MA Qweny Ay D Aoy Ak, @) =1 - (6.86)

Inequalities (6.86), (6.85) and (6.84) imply that for each integer 7 € [1, N],

(@) (a) (@) (a) (a) (a)
MALT 1y Ariryy o Ay D Al sy Ariryy - Ay )
(a) (a) (@) (a)
> A(Ar(T)V ..... Aty b Ay, Ar(l)y(O)) +yer(b, a).
Together with (6.83) this implies that
(a) (a) (@) (@)
)‘(Ar(Q(V,S)))/ """ Ar(l)y(b)’ Ar(Q(y,S))y """ Ar(l)y(o))

> A(b, a)ys(Q(y, £) — l) > 4.

Since this contradicts (6.86), the lemma is proved. O
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Lemma 6.22 Let {A;}°, € M, e,y €(0,1) be given, and let n > 1 be an integer.
Then there is A > 0 such that for eachr : {1,2,...,n} — {1,2,...}, each sequence
{Ci}!_, C A satisfying

IO(C17A’(-‘ZI)))/)SA7 i:1,...,l’l,

and each z € (0, b), the inequality

ICn--- Ciz—AY ... A@D

rn)y r(l)yZ”b =e

holds.

Proof We will prove the assertion of the lemma by induction. Clearly for n = 1 the
assertion of the lemma is valid. Assume that the assertion of the lemma is valid for
an integer n > 1. To prove that the assertion also holds for n + 1, choose first a
positive number

8§ <8 1y2er(b, a)’. (6.87)
Since the assertion of the lemma holds for n, there exists Ag > 0 such that for each

rofl,...,n} = {1,2,...},each {C;}/_, C A satistying

(a) .
p(ClaAr(l)y)SAO, lzl,...,l’l,

and each z € (0, b), the inequality

||Cn ..... Ciz— A;('IZ;))/ ..... A%)yz ||b <3$
holds. Set
A:=8""min{Ag, 87 'e}. (6.88)

Assume that {C; )"0 C A, r {1, on+ 1) — {1,2,...),

p(Ci.AD))

and that z € (0, b). Relations (6.88) and (6.89) imply that

<A, i=1,...,n+]1, (6.89)

(a) (@) (a)
”Ar(nJrl)y ’ Ar(n)y """ Ar(l)yz —Cpg1-Cpevv ClZHb
(@) (a) (@) (a)
= [ Ay Ary - Ay Z = Alaryy - Ca e Q@

o Aﬁt(l;)m)y e Ciz—Cpy1-Cy e Ciz,

@ @ @
< [ ArGrny Ay Ay

By (6.88), (6.89) and the definition of Ao,

2= Al 1y, Cuooe Ciz, +87 e (6.90)

||A(“) ..... A@

rmy ry? = Cn - Ciz|, <. (6.91)
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It follows from (6.91) and (6.81) that

Cp-een Ciz> Ai(‘?zl)}/ ..... Aia({)yz —8b
= A%)z)y """ A%)yz —Ab, a)ila(yilAygl)y U A%)VZ)
=(1—sy""ab.a) A A 2
A%)m/ ..... A%)},Z >C,-----Ciz—8b
>C,---Ciz — )»(b,a)*lrSy*](A%)l)y e 'A;("Z{);/Z)
and
Ay Ay 2 (2B oy ™) Gy G
Together with (6.87) this implies that
Ar(‘?r)z+l)y 'A%)z)y SR A%)yz z (1 +8y 7', a)_l)_lASzr)zH)y Cpeeeee Ciz,
A%)zﬂ)y G Crzz (1 )‘(b7“)_13V_1)A£[(lr)z+1)y 'A%)z)y e 'A%)yz’
(1+ 10, 0) sy~ = 1)b
<AL, .Ai‘a)y ..... ANy 2= ASorstyy  Coeeee Ciz
<8y A, a)" b
and
”A%)zﬂ)y ' A}(’a(zz)y """ A%VZ - Aﬁr)l-i-l)y G Cizf,
<ib,a) 'sy ! <87 le.
It follows from this and (6.90) that
”Af‘(zr)l—i-l)y 'A%)z)y e A%)yz —Cpy1 - Cpvvee CIZ”b <471,
This completes the proof of the lemma. U

Lemma 6.23 Let {A;}7°, € Mandy, e € (0, 1) be given. Then there exist an inte-
ger Q >4 and a number A > 0 such that for each r : {1, ..., 0} — {1,2,...} and
each {C,-}inl C A satisfying

(@) :
p(Ci, A, ) =4, i=1,....0, (6.92)

the following inequality holds:

AMCo---Ci(h),Cg-----C1(0)) = 1 —&. (6.93)
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Proof Choose a positive number &g such that

co <8 ley?a (b, a) (6.94)
and
(1—so(yrtb, @)™ )1 =) (1 +s0(yrb,a)) ) > (1 —e).
Set
Q= 0(y, o) (6.95)
(see (6.83)). By Lemma 6.21, foreach r : {1,2, ...} — {1,2,...},
(a) (a) (@) (a)
A(Ar‘éQ)y ----- Ar‘zl)y(b), Ar‘fQ)y e -Ar‘fl)y(O)) >1—¢gg. (6.96)

By Lemma 6.22, there is A > 0 such that foreach r : {1,..., O} — {1,2,...}, each
sequence {C;} lQ: | C Assatisfying (6.92) and each z € (0, b), the following inequality
holds:

||CQ ..... Ciz— AEKZ)Q)V ..... A%)ﬂ”b < 0. (6.97)

Assume that r : {1,..., Q} — {1,2,...}, {C,-}l.Q:1 C A and that (6.92) is valid.
Then (6.96) is valid too. It follows from the definition of A (see (6.97)), (6.92),
(6.81), (6.96) and (6.94) that

Co--- C1(0) > ASZ)Q)}/ ~~~~~ A%)},(O) —&ob
(@) (a) -1 —1 4(a) (@)
> Afbyy AN, O = b, ) ey AL, e AT (0)
-1
= (1 —eo(yAr(b,a)) )A%)Q)y """ A%)V(O)
> (1 —eoy '2b,a) )1 - 80)A£?)Q)y """ A%)y(b)’
(@) (@)
A"‘ZQ)V e Ar‘fw(b) >Cqg--- C1(b) —eob
>Cp---- Cib— (b, a) gy ™! Aff(l)Q)y """ A%)V(b)’
(@) (a) “legy 17!
A Al b= (1+Arb,a) 'eoy™") Co---- Ci(b)
and

This completes the proof of the lemma. g
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6.13 Proofs of Theorems 6.16 and 6.17

Seta=b.

Let A={A;}}2, e M,y €(0,1) and let j > 1 be an integer. By Lemma 6.23,
there exist an integer Q(A, y, j) > 4 and a number A(A, y, j) > 0 such that the
following property holds:

(a) for each 7 : {1,..., Q(A, v, )} — {1,2, ...} and each {C;}2}77 A sat-
isfying
Ci,AD Y< Ay, ), i=1 Ay, j
10( L r(i)y)— ( vys.])v 1= 7"'7Q( VJ/?])?
the inequality

MComyjy - C1(b), Co@ay.jy -+ C1(0)) = 1—1677

holds.

Proof of Theorem 6.16 For each {A;}°, € M, each y € (0, 1) and each integer

J > 1, there exists an open neighborhood U (A, y, j) of {A;ﬁ)}
with the weak topology such that

o0
=1

in the space M

Uy, j) C G2, e M |ADx = Cux]), < A, v, ),
x€(0,b),1=1,....,0A,y, D} (6.98)

Define

DX

F=NUlUA.y.):Ae M.y e©.1),j=q.q+1,...}.

—_

q

Clearly, F is a countable intersection of open (in the weak topology) everywhere
dense (in the strong topology) subsets of M.

Assume that {B;}°, € F and ¢ € (0, 1) are given. Choose an integer ¢ > 1 for
which

279 <647 e, (6.99)
There exists {A;};2, € M, y € (0, 1) and an integer j > g such that
(B2 € U({ANZ v, J)-
It follows from (6.98), (6.99) and property (a) that for each
{2 e U(TAZ L v, ),
the following relation holds:
MCowyjy - Ci(b), Coy.jy - Cl0)=1-167 >1-27"e

This completes the proof of the theorem. g
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Proof of Theorem 6.17 For each {A;}°, € M, each y € (0, 1) and each integer
Jj =1, we first define

U, y. j)= B2, e M:p,({AD)2 (BIZ)) < Ay, ). (6.100)

Next we set

oo
Fi=JUA . ):AeMye© ) j=q.q+1...}.
qg=1

It is clear that F is a countable intersection of open and everywhere dense subsets
of M with the strong topology.

Assume that {B;}°, € F and ¢ € (0, 1) are given. Choose an integer ¢ > 1 for
which (6.99) holds. There exist {A;}7°, € M, y € (0, 1) and an integer j > g such
that

{Bi}2, e U({A2). v, )
It follows from (6.100), (6.99) and property (a) that for each
(G2 € U({AS, v J)
andeachr:{1,2,...} > {1,2,...},
MCrotyin - Cray(®), Crioa,y.jn -+ - Cr1y(0))
>1-1677>1-2"¢

The theorem is proved. g

6.14 Proofs of Theorems 6.18 and 6.19

It is easy to see that {A(”) o, € M, for each {A;}°, € M, and each y € (0, 1),
and that the set

HAD)E AN € Ma,y € 0, D)}

is everywhere dense in M, with the strong topology.

Let A={A;})2, e M,y €(0,1) and let j > 1 be an integer. By Lemma 6.23,
there exist an integer Q(A, y, j) > 4 and a number A(A, y, j) > 0 such that the
following property holds:

(a) Foreachr:{1,..., Q(A,y, j)} = {1,2,...} and each {C;}2*"") C A sat-
isfying
4@ N .
p(Ci. AfG,) <AA Y. ), i=1,...,0A, 7)),
the following inequality holds:

MCo@y.jy -+ C1(b), Comyjy -+ C1(0)) = 1—1677.
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Proof of Theorem 6.18 For each {A;}72, € M,, each y € (0, 1) and each integer

o0

J = 1, there exists an open neighborhood U (A, y, j) of {At(i) o

with the relative weak topology such that

in the space M,

UA, v, ) C [{CIZ e My A9 — Cix|, < AALy. ).
xe(0,b),t=1,...,0A,y, )} (6.101)
Define
o
F= ﬂU{U(A,y,j):AeMa,y €0, ), j=q.q9+1,...}.
g=1

Clearly, F is a countable intersection of open (in the relative weak topology) every-
where dense (in the relative strong topology) sets in M,,.

Assume that {B,}7°, € F and & > 0 are given. Choose a natural number g for
which

277 < 647 ¢, (6.102)
There exist A = {A;};2, € M, y € (0, 1) and an integer j > g such that
(B2, €U, y, )). (6.103)
Assume that {C,};’i L €U(A,y, j). It follows from property (a) and (6.101) that
MComy.jy Ci(0),Com,y,jy- - C1(0)>=1— 1677, (6.104)
Since C;a =a,t=1,2, ..., it follows from (6.104) that
CoAy,jy " " Ci(0) =a=Co@y,j - Cib),
Coty.jy - Ci(0)>(1-16"")a
and
a>(1-16")Cowu,y.j) - Ci(b).

By these relations and (6.102), for each integer T > Q(A, y, j) and each z € (0, b),
we have

Cr o - C1(0) > (1 —167/)a, a>(1-167)Cr----- Ci(b),
Cp--e- Cm—ae(CT ..... Ci(0)—a,Cp - Cl(b)—a)

ICr -+ Ciz=allp < |ICr -+~ Cib—alp+ [ Cr - - C1(0) —af,
<2167 <g,

as claimed. O
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Proof of Theorem 6.19 For each {A;}72, € M,, each y € (0, 1) and each integer
j > 1, define

UA,y, ) ={{B)32 € Ma: p({A) )2 (BI2)) < AAL v, )}, (6.105)
and set
o0
F= ﬂU{U(A»Vﬁj):AGMmV €0, 1), j=q.q+1,...}.
g=1

Clearly, F is a countable intersection of open and everywhere dense subsets of M,
with the relative strong topology.

Assume that {B,};2 | € F and & > 0 are given. Choose an integer ¢ > 1 for which

(6.102) is valid. There exist {A;}7°, € M, y € (0, 1) and an integer j > g such that

(B2, e U({AN2,. v J).

Assume that {C;}72, € U({A;};2,,y,j)and r : {1,2,...} = {1,2,...}. It follows
from (6.105) and property (a) that

MCroay.in =+ Cray®). Croay.jy =+ Cry(0)) 2 1= 1677, (6.106)
Since Cia =a,t=1,2, ..., it follows from (6.106) that
Crioy.n -+ Cry(0) =a < Criomy.jy -+ Cray (b),
Cro@Ay.y Cr1y(0) = (1 -1677)a,

and

a>(1-1677)Criomayjp - Cr1)(b).

By these relations and (6.102), for each integer T > Q(A, y, j) and each z € (0, b),
Crery - Cry(0) = (1 -1677)a, a>(1—16")Cppy- -+ Cry(),
Crary-+- Cray(@) —a e (Crry - Cray(0) —a, Crery -+ - Cr(1y(b) —a),

and finally,

ICraay -+ Cry@ —al, < [ Crary - -+ Cray(b) —al,

+ || Crery -+ Cry(0) — aHb

<2.1677 <&,

as required. This completes the proof of Theorem 6.19. g
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6.15 Proof of Theorem 6.20

Let {A;}7°, € M. There exists x(A) € (0, b) which is an interior point of the cone
X such that

A(xA)=x@A), 1=1,2,.... (6.107)
For each A = {A;}72| € M, and each y € (0, 1), we set

A =A0™ =12, (6.108)

It is easy to see that {A;)}7°, € M, for each {A;}72, € M, and each y € (0, 1),
and that the set

(AL 121 AN, € My, y € 0, D)}

is everywhere dense in M.

Let A ={A;}2, € My and y € (0,1), and let j > 1 be an integer. By
Lemma 6.23, there exist an integer Q(A, y, j) > 4 and a number A (A, y, j) >0
such that the following property holds:

(a) Foreach r : {1,..., Q(A, v, )} — {1,2, ...} and each {C;}24") C A sat-
isfying

p(Ci, Ariyy) S A1A Y, J), i=1,...,04,y,.)),
the following inequality holds:
MCotyjy - CLb), Coay.jy -+ C1(0)) 2 1 =167
Choose now a positive number
S(A, v, j) <1677 y2x(b, x(A)). (6.109)

By Lemma 6.22, there is a number A> (A, y, j) > 0 such that the following property
holds:
(b) Foreachr:{1,..., Q(A,y, j)} = {1,2,...}, each sequence

(P c A

satisfying

p(Ci, Ariyy) < Ao(A,y, ), i=1,...,0,y, ),
and each z € (0, b), the following inequality holds:
ICo@.y.py -+ Crz = Arcoaay.iny -~ Aryyzlle < 8(A v, ).
Define
UA.y, j)={{B}2 € M,:
ps (A Y2y, (B2)) <inf{A1(A, v, /), A2(A v, ) (6.110)
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and

o0
F=NUUA.v. ):AeMuye© ), j=g.q+1,..}.
q=1

Clearly, F is a countable intersection of open and everywhere dense sets in M.
Assume that {B;}7°, € F and & > 0 are given. Choose a natural number g such that

277 <647 s, (6.111)
There exist A = {At}fil € M.,y €(0,1) and an integer j > ¢ such that
(B2, €Uy, )). (6.112)

It follows from property (a) that for each r : {1, ..., Q(A, y, j)} = {1,2,...} and
each z € (0, b),

| Arcoeayny - Aryyz —x(A)], <2-167. (6.113)

Together with property (b), (6.110) and (6.109) this implies that the following prop-
erty holds:
(c) Foreach {C/};2, € U(A, y, j),eachr:{1,..., Q(A,y, j)} = {1,2,...} and
each z € (0, b),
ICriomy, - Crpz —x(A)|, <3-1677. (6.114)

Property (c), when combined with (6.112) and (6.111), implies that for each integer
T > 1, eachinteger T > r(Q(A, y, j)) and each z € (0, b),

|BIz—x@A)|, <3 1677 <e. (6.115)

Since ¢ is an arbitrary positive number, we conclude that there exists x(B) € (0, b)
such that

Tlim B,Tz =x(B) foreachinteger T > 1 and each z € (0, b). (6.116)
— 00
Clearly,

B/(x(B))=x(B), 1=1,2,.... 6.117)
By (6.115) and (6.116),

x(B)—xA)|, <3-167/. (6.118)
I I,

We will show that x(B) is an interior point of X 4. To this end, note that property
(b), (6.112), (6.110), (6.107), (6.109) and (6.117) yield

|xB) — Agay.py - Ay (xB)[, = 5AL ¥, ),



282 6 Infinite Products

x(B) > —8(A,y, Db+ Agnyj) Ay (x(B))
> yx(A) —8(A, y, )b > yx(A) — 1677 y2x(A).

This implies that x (B) is indeed an interior point of X .
Assume that {C; ;’il eUA,y,j)and r: {1,2,...} = {1,2,...} are given. It

follows from property (c), (6.118) and (6.111) that for each z € (0, b) and each
integer T > Q(A, y, j),

ICrezy - Crinz—x(A)||, <3167/
and
[Crery - Crnz—xB)|, <6167/ <&.
This completes the proof of Theorem 6.20.

6.16 Infinite Products of Positive Linear Operators

Infinite products of linear operators are of interest in many areas of mathematics
and its applications. See, for instance, [5, 22, 55-58, 71, 72, 91, 95, 110, 175] and
the references mentioned there. Since many linear operators between Banach spaces
arising in classical and modern analysis are, in fact, positive operators, the theory of
positive linear operators and its applications have drawn the attention of more and
more mathematicians. See, for example, [3, 86, 96, 170] and the references cited
therein.

In this section we study (random) infinite products of generic sequences of pos-
itive linear operators on an ordered Banach space. In addition to a weak ergodic
theorem (Theorem 6.27), we also obtain generic convergence to an operator of the
form f(-)n, where f is a bounded linear functional and 7 is a common fixed point.
More precisely, having chosen an appropriate space of sequences of positive lin-
ear operators, we construct a subset which is a countable intersection of open and
everywhere dense sets such that for each sequence belonging to this subset, the cor-
responding infinite products converge.

Let (X, || - ||) be a real Banach space with norm || - ||, which is ordered by a closed
and convex cone X . For each u, v € X such that u < v, we define

(u,v)={zeX:u<z<v}h

For each set E C X, we denote by int(E) the interior of E. We assume that the cone
X+ has a nonempty interior int(X ) and that for each x, y € X satisfying x <y,
the inequality ||x] < ||y|| holds.

Fix an interior point n of the cone X and define

lxll,; :=inf{r € [0,00) : —=rn <x <rn}, xe€X. (6.119)

Itis clear that || - ||, is a norm on X which is equivalent to the original norm || - ||.
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Let X’ be the space of all linear continuous functionals f : X — R'. Define
X\ :={feX':f(x)=0forallxe X}

Denote by A the set of all linear operators A : X — X such that A(Xy) C X4.
Let M be the set of all sequences {A;};°,, where A; € A, t=1,2,.... Such a
sequence will occasionally be denoted by a boldface A. Define

M, :={{At}j’ileM:A,n:n,t:l,Z,...}. (6.120)
For the set M, we consider the metric p; : M, x M, — [0, 0c0) defined by

s ({ANZ) (B)2)) = sup{l|A;x — Bix|ly :x € (0,n), 1 =1,2,...},
{AN2, BT, €M, (6.121)

It is easy to see that the metric space (M, ps) is complete. We shall refer to the
topology generated by the metric o as the strong topology. For the set M, we also
consider the uniformity which is determined by the base

E(N, &) ={({A}2 . (B}2)) € My x M, :
[Aix — Bixlly <e,t=1,...,N,x € (0,n)},

where N is a natural number and ¢ > 0. The topology generated by this uniformity
on M, will be called the weak topology. It is easy to see that the space M,, with
this uniformity is metrizable (by a metric p,, : M, x M, — [0, 00)) and complete
([801).

We now state our first two results [125]. The second one deals with random
products.

Theorem 6.24 There exists a set F C M, which is a countable intersection of
open (in the weak topology) everywhere dense (in the strong topology) sets in M,
such that for each B = {B,}° | € F, the following two assertions hold:

1. There exists a continuous linear functional fg: X — R such that

lim Br-----Bjx = fg(x)n foreachx € X.
T—o00
2. For each ¢ > 0, there exists a neighborhood U of B = {B;};°, in M, with
the weak topology and a natural number N such that for each {C;}7°, € U, each
integer T > N and each x € (—n, n),
lcr - Cix — fyon|, <e.
Theorem 6.25 There exists a set F C My, which is a countable intersection of

open everywhere dense in the strong topology sets in M,,, such that for each B =
{B:};2, € F, the following two assertions hold:



284 6 Infinite Products

1. For each r : {1,2,...} = {1,2,...}, there exists a linear functional f, € Xﬁi_
such that

lim Byy----- Bryx = fr(x)n foreachx e X.
T— 00

2. For each & > 0, there exists a neighborhood U of {B};2, in My with the
strong topology and a natural number N such that for each {C:}°, € U, each
integer T > N,eachr:{1,2,...} — {1,2,...} and each x € (—n, 1),

|Crery - Crayx — fr(x)ﬂ”,] <e.

We now turn our attention to another metric space of sequences.
Define

My ={{A}2, € M:sup{llAmll, 1 =1,2,...} < oo} (6.122)
For the set M}, we consider the metric p; : Mj x My — [0, 00) defined by

s (1A ABYE,) = sup{llArx — Bixlly i x € (0,m), 1 =1,2,...},
{A}2 1 ABS | € M. (6.123)
It is easy to see that the metric space (My, ps) is complete.

Denote by M the setof all {A;}7°, € M), such that there exists an interior point
&a of X4 for which

Aga =6, t=1,2,....
Finally, denote by ./\;IZ the closure of M} in M.
Theorem 6.26 There exists a set F C M, which is a countable intersection of

open and everywhere dense sets in M*, such that for each B = {B,};’il € F, there
exists an interior point &g of X 1 satisfying

Bitg =&, t=1,2,..., &Iy =1,

and the following two assertions hold:
1. For each r : {1,2,...} = {1,2,...}, there exists a linear functional f, € X;
such that

lim Byqy----- By(nyx = fr(x)ég, x€X.
T—o00
2. For each & > 0, there exist a neighborhood U of {B;}2 | in MZ and a natural
number N such that for each {C;}7°, € U N My, each integer T > N, each r :
{1,2,...} > {1,2,...} and each x € {(—n, n),

|Crery -+ Crayx — fr(x)ép Hn <e.
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For each x, y € X, define

A(x,y) =sup{r €[0,00) : rx <y},
(6.124)
r(x,y) =inf{1 € [0,00) : y < Ax}.

Here we use the usual convention that the infimum of the empty set is co.
Denote by M, the set of all sequences A = {At}fil € M such that there exist
positive constants ¢ < ¢y satisfying

con=>Ar - Amn=cn, T=12,.... (6.125)
For the set M we consider the uniformity which is determined by the base

E(N,&) = {({A}2).{B}2)) e M x M:
”Al-x_Bl-x”T] 587t= 15--~5N’-x € <07 77>}7

where N is a natural number and ¢ > 0. It is easy to see that the space M with this
uniformity is metrizable (by a metric p,, : M x M — [0, 00)) and complete. The
topology generated by this uniformity on M will be called the weak topology.

For the set M we also consider the uniformity which is determined by the fol-
lowing base:

E(e) = {({A)Z1. {B),) e M x M
IAx — Bixlly <e.t=1,2,....x € (0,n)},

where ¢ > 0. It is easy to see that the space M with this uniformity is metrizable
(by a metric ps; : M x M — [0, 00)) and complete. The topology generated by
this uniformity on M is obviously stronger than the weak topology defined above.
Therefore we will refer to it as the strong topology.

Denote by /\;l,eg the closure of M, in the space M with the weak topology
generated by the metric p,,. We consider the topological subspace Mreg C M with
the relative weak and strong topologies. Our next result is a weak ergodic theorem
in the sense of [43].

Theorem 6.27 There exists a set F C /\;l,eg, which is a countable intersection of
open (in the weak topology) and everywhere dense (in the strong topology) subsets

of/\;lrgg, such that for each B = {B,};°, € F, the following two assertions hold:

l.Bp----- Bin is an interior point of X4 for each integer T > 1.
2. For each ¢ € (0, 1), there exist a neighborhood U of { B; ?21 in Mg with the
relative weak topology and a natural number N such that for each {C};°, € U, the

point Cp - -+ Cineint(Xy4) forall T € {1,..., N}, and

F(CN - Cin,Cy----- Cix)—A(Cy----- Cin,Cn----- Cix)<e, xe(enn).
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For the set A itself we can also define a metric p(-, -) by
p(A, B) :==sup{[|Ax — Bx|l,: x € (0,n)}, A,BeA.

It is clear that the metric space (A, p) is complete.
For each interior point & of X, define

A :={Aec A: Af =&}

Clearly, Ag is a closed subset of A for each & € int(X ). For such &, we equip the
topological subspace Az C A with the relative topology.
Denote by A, the set of all A € A such that

AE =& for some & €int(X ).

Let A, be the closure of A, in A. The topological subspace A, C A is also
equipped with the relative topology.

We can now formulate our last two results. The second one deals with powers of
a single operator.

Theorem 6.28 Let & be an interior point of X . Then there exists a set F C Ag,
which is a countable intersection of open and everywhere dense sets in Ag, such that
for each B € F, there exists a continuous linear functional fg: X — R! satisfying

fB(Bx) = fp(x), xeX, fBx) =0, xeXy, fe&) =1,

lim B'x = fz(x)é, xeX,
T—o0

and the following assertion holds:
For each & > 0, there exist a neighborhood U of B in Ag and a natural number

N such that for each {C; ;’il € U, each integer T > N and each x € (—n, n),

lcr - Cix — fp0)§ |, <e.
Theorem 6.29 There exists a set F C A,, which is a countable intersection of open
and everywhere dense sets in Ay, such that for each B € F, there exists an interior
point Ep of X satisfying BEgp = &g, ||&glly = 1, and the following two assertions

hold:
1. There exists fp € X, such that

lim BT x = fp(x)ép, xeX.
T—o0

2. For each ¢ > 0, there exist a neighborhood U of B in Ay, and a natural number
N such that for each C € U N Ay, each integer T > N and each x € (—n, 1),

|CTx — fpx)&p| <e.
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Note that Theorems 6.24—6.29 were obtained in [125]. Theorems 6.24, 6.26 and
6.27 will be proved in the next three sections. The proof of Theorem 6.28 is anal-
ogous to that of Theorem 6.24, while the proofs of Theorems 6.25 and 6.29 are
analogous to the proof of Theorem 6.26. Therefore these proofs will be omitted.

6.17 Proof of Theorem 6.24

Recall that X’ is the space of all continuous linear functionals f : X — R! and that
X!, is the cone of all f € X’ such that f(x) >0, x € X,.

Lemma 6.30 Let A € A satisfy An=n. Then there is fo € X' such that
fa(x)=0, xeXg, fam) =1 and fpoA= fa. (6.126)

Proof Define S ={f € X': f(x) >0,x € X+, f(n) = 1}. Clearly, the nonempty
set S is convex and compact in the weak topology. The operator A’ defined by
A'(f)=foA, f €X', isweakly continuous and A’(S) C S. By Tychonoff’s fixed
point theorem, there exists f4 € S for which f4 o A = f4. This completes the proof
of the lemma. U

By Lemma 6.30, for each A € A satisfying An = n, there exists f4 € X’ which
satisfies (6.126). For each A = {A,}:’i1 € M;; and each y € (0, 1), we define A, =
{Ary )2, € My, by

Apx =yfa,n+ A —-p)Ax, xeX,t=12,.... (6.127)
It is clear that the set
{{An 12, (A2, € My, v € (0, D}

is everywhere dense in the space M, with the strong topology.

Lemma 6.31 Let {A;}°, € M, and let y € (0, 1). Then for each integer T > 1,
there is yr € X', such that for each x € X,

ATy -+ Ayx=0—=TAr - Aix 4+ yr(om. (6.128)

Proof We will show by induction that for each integer T > 1, there is yr € X Lr such
that (6.128) holds for all x € X. It is clear that for T = 1 equality (6.128) is valid
with y1 =y fa,.

Assume that for some integer 7 > 1 and y7 € X/_ equality (6.128) holds for all
x € X. Then by (6.128) and (6.127), we have, for every x € X,

ATty - ATy - Aryx

= Ay (A=) Ap - Aix + yr(x)n)
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+ (=) A A Arx
== A - Ap - Arx
+yr@n+ A= far, (Ar - Ao,

This implies that (6.128) holds for T + 1 too. The lemma follows. O

Lemma 6.32 Let {A;}°, € M, and let y, e € (0, 1). Then there exist a neighbor-
hood U of {A;}2, in the space M, with the weak topology, a functional | € X',
and an integer N > 1 such that for each {C;}2, € U, each x € (—n, n) and each
integer T > N,

—en<Cr-----Cix —=Il(x)n<en. (6.129)
Proof Choose a natural number N > 2 for which
1 —p)N <647 le. (6.130)
By Lemma 6.31, there exists / € X; such that for each x € X,
Any - Apyx=1—-y)NAy---- Arx +1(x)n. (6.131)
Choose
g0 € (0, (64N) "), (6.132)
and define
U:= {{Bt}?il € My |Bix — Ay x|ly < g0,
t=1,...,N,xe(0,n}. (6.133)

Assume that {C;}7°, € U and x € (0, ). To prove the lemma it is sufficient to show
that

8 lenp<Cy---Cix=1(x)n <8 len. (6.134)
By induction we will show that fors =1, ..., N,
—segn <Cg -~ Cix —Agy -+ A1yx < segon. (6.135)

It is clear that (6.135) is valid for s = 1.
Assume now that (6.135) is valid for some natural number s < N. Then it follows
from (6.135) and (6.133) that
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€ (—eom. eon) + As+1)y ((—s€0m. s€on))
C (= (s + Deon, (s + Deon).

Therefore (6.135) holds for all s =1,..., N. Together with (6.130), (6.131) and
(6.132) this implies that

:CN ..... Clx_ANy""'Alyx+ANy ..... Alyx_l(x)n
€ (=647"en, 647 Len) +(=(1 = )"y, (1 = )Vy) €327 (—en, em).
This implies (6.134). The lemma is proved. O

Construction of the set F: Let {A;}7°, € M, y € (0, 1) and let i > 1 be an inte-
ger. By Lemma 6.32, there exist an open neighborhood U ({A/}72,, v, i) of {A;,}72,

in the space M, with the weak topology, a functional / )(f?) € X/, and a natural num-
ber N({A;}2,, v, i) such that the following property holds:

(a) for each {C;}72, € U({A};2,,v.i), each x € (—n, n) and each integer T >
N{ASZ, v, D),
lCr--ee- Cix — ’ﬁ)(’“)””n <47 (6.136)

Define

F=NUU A2, v.0) A2, e M,

g=1
ye©. ,i=q.q+1,...}. (6.137)

Clearly F is a countable intersection of open (in the weak topology) everywhere
dense (in the strong topology) sets in M.
Assume that {B,}toi1 € F and ¢ € (0, 1). Choose an integer g > 1 such that

64.-279 <¢. (6.138)
There exist {A;}72, € My, y € (0, 1) and an integer i > g such that
(B2, e U(ANZ,, v, 1) (6.139)

It follows from property (a), (6.139) and (6.138) that for each x € (—n, ) and each
integer T > N({A;}72,, v, 1),

| By Bix — Z;I}i)(x)n”n <47 <647l (6.140)

Since ¢ is an arbitrary positive number, we conclude that there exists a linear oper-
ator P : X — X such that

lim By -----Bjx=Px, xelX. (6.141)

T—00
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By (6.140) and (6.141), for each x € (—n, ),

A)

|| Px —ly,l.

], <47 <647 e (6.142)

Once again, since ¢ is an arbitrary positive number, we conclude that there is a linear
functional fz: X — R! such that

Px= fp(x)n, xeX. (6.143)

It is clear that fp € X . It follows from (6.143), (6.142), (6.138) and property (a)
that for each {C;}7°, € U({A;};2,,v.i), each x € (—n,n) and each integer T >
N({Al}?i] ) yv i)’

“CT ..... Clx—fB(x)an§2~4*i <327 1e,

This completes the proof of Theorem 6.24.

6.18 Proof of Theorem 6.26

Assume that A € A and A = & for some & € int(X ). Then by Lemma 6.30 there
exists f4 € X/, such that

fao A= fa, fa)=1. (6.144)

For each A = {A}7°, € Mj, there exist £4 € int(X ) and a real number Mp > 2
such that

Ada=8r, t=1,2,..., lEally =1, and Maéa > 1. (6.145)
For each A = {A;}72, € M} and each y € (0, 1) we define {A;) };°, € M} by
Apx=yfa,@)éa+ A —-y)Ax, xeX,t=1,2,.... (6.146)

Clearly, the set {{A;,}°, : {A/};2, € M}, y € (0, 1)} is everywhere dense in the
space ./\;l;;.

Let A={A;}°, € My, y €(0,1) and let i > 1 be an integer. Choose a natural
number N (A, y,i) > 4 for which

(1 — p)NAYD - 64=181 (My + 1), (6.147)
and then choose a real number §(A, y, i) such that
8(A,y,1) € (0,647'87 (Mp + )ON(A, y,i) 14~ VATD) (6.148)

and

S(A,y,i) < M.
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Now define
U,y i) ={{B2 e M ps({An 221 {B2,) <8(A,y. D)} (6.149)

and
F= N (AR v i) 1A, € M;,
g=1

y € (0, 1),i=q,q+1,...}. (6.150)
It is clear that F is a countable intersection of open everywhere dense subsets of
M.

Lemma 6.33 Let {A;}°, € M}, y €(0,1) and let i > 1 be an integer. Assume
thatr : {1,2,...} = {1,2,...}. Then there exists | € X; such that

I(Ea) <1 (6.151)

and for each {C;}°, € U({A};2,, v, i) and each x € (0, n),

Criv@Ayp.in Crayx —L(x)Ex €327187 I (My + D ™H (=1, ). (6.152)
Proof Set

N=N({A}2,. v.i) and 8=058({A}2, v.i). (6.153)

By Lemma 6.31, there exists / € X; such that for each x € X,

Arvyy - Aryy = A=)V Ay -+ - Ar)x +1(0)éA. (6.154)
Let
x€(0,n) and (G2, e U({A}2,,y.i). (6.155)
We will show by induction that fors =1,..., N,
4 SMIEA < Crisy -+ CryX — Arsyy =+ - Aryyx < M34°8Ex.  (6.156)

Clearly for s = 1 the induction assumption is valid. Assume now that (6.156) is
valid for a natural number s < N. Then it follows from (6.155), (6.156), (6.145),
(6.149), (6.148) and (6.153) that
Cr(s+1)Cr(s) """ Cr(l)x - Ar(s+l)yAr(x)y """ Ar(l)y
= (Crs+1) — Ars+1)p)Cris) - Crpx
T Ar+1y (Criey oo CrapX — Ay oo Aryy¥)

€ (Cris41) — Ar(s+1)y)(0, MA4 86 + MaEA)
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+ Arisyy (4TSS MRER, ME4°5E,)

C Ma(1+4°8Mp)SMa(—Ea, EA) + (47 S MiEn, MA4 8EA)

C (418 MZ)(—£a, £a).

Therefore (6.156) is valid for all s = 1,..., N. When combined with (6.154),

(6.145), (6.153), (6.148) and (6.147), this implies that for each x € (0, n),

Cravy----- Crayx —1(x)éa
€ M3ANS(Ex, EA) + (1 — 1)V MA (0, En)

C 647187 (Ma + 1) (—8a, £a) + 64787 (Ma + 1) 720, £a)

3271 87 (M + 1) "H(—k4, Ea)
c 32787 My + D)=, 7).

The lemma is proved.

O

Lemma 6.34 Let {A/};2, € M} and y € (0,1), let i > 1 be an integer and let
r:{1,2,...} > {1,2,...}. Let | € Xﬁi_ be as guaranteed by Lemma 6.33. Assume

that
{C2 e U({A2, 7. 0), yeXy,
Iylly=1, and Ciy=y, t=12,....

Then
Iy —&all; <167'871,  yeint(Xy),
and for each x € (0, n) and each integer T > N(A, y,1),

[Crry -+ Crapx = 1y, <8
and
|Crry - Cranx —1(Ea], <2-87".
Proof By Lemma 6.33 and the definition of /, for each x € (0, ),

[(6a) =1

and

Crivayiy - Crayx —L(x)Ea € 3271871 (Ma + )™ (—n, ).

Together with (6.157) and (6.145) this implies that

|y —1&all, =327 - 87 (Ma+ 7Y,

(6.157)

(6.158)

(6.159)

(6.160)

(6.161)

(6.162)

(6.163)
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) =1 < lméa —y], 327" 87 (Ma+ D7, (6.164)
ly —&ally < 167187 (Ma + D74, (6.165)

and
yZEa— 167187 (Ma+ D)= (M — 16787 (Ma + 1) )0, (6.166)

It follows from (6.145), (6.161), (6.162), (6.165) and (6.157) that for each x € (0, )
and each integer T > N(A, y, i),

[(x) <1(n) < MAL(EA) < Ma (6.167)
and
[Cravayin - Crapx = 1G0)y
<[ Crvayin - Crayx —1@EA], + 1) Ea =,
<3271 8T (MA+ )T 167 BT MA(MA+ 1)
<8 My + 173, (6.168)
By (6.157), (6.168) and (6.166),
Crry -+ Crayx —1(x)y
=Crry--- Crivay i+ (Cravay,iy - Crapx —1(x)y)
eCury----- Cr(N(A,y,i)+1)(<_87i71(MA + D)7, 87 (My + 1)7377»
87 My + D3 (MY — 167187 (Mo + )74 T =y )
C (Ma+ 172871 (—y, y) €87 (Ma + 1) (=1, n). (6.169)
Now by using (6.169), (6.167) and (6.165), we deduce that
|Crery - Crayx — (8],
<8 (Ma+ D2+ [10)|lIly —&ally
<8I (MA+ 12+ MA167187 I (Ma + 1) <2870,

The lemma is proved. g

Completion of the proof of Theorem 6.26: Assume that {B,};°, € F. There exist

AR = {A(k)} L EME k=1,2,..., {n}2, € (0,1), and a strictly increasing
sequence of natural numbers {ix}72 such that

(B2, e U([APY Lyin), k=1,2,..., (6.170)
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and
U({AFY overtikn) cU(ARYS Lyin), k=1,2,....
By Lemma 6.34, {£5) },‘311 is a Cauchy sequence and there exists
&g = kli)ngo IINGE (6.171)
It follows from (6.170), (6.149), (6.148), (6.145) and (6.171) that forr = 1,2, ...,
APEyw — Bikg = (A" — B))(6aw) + B, (600 — 8) = 0 ask — oo.

Together with (6.145) and (6.171) this implies that

Biég=£&, t=1,2,..., and |&l,=1 (6.172)

Lemma 6.34, (6.170) and (6.172) imply that &g is an interior point of X .
Let ¢ > 0 be given. There is an integer k > 1 such that

27 <647 e, (6.173)

Assume that r : {1,2,...} — {1,2,...}. By Lemma 6.34, there exists [ € X; such
that the following property holds:

k .
(a) Assume that {C;}°, € U({At( )}fi], Vi i), y € X4,
Iyl,=1, and Ciy=y, t=12,....

Then y is an interior point of X, [ly —&xw ly < 16~'8~/ and for each x € (0, n)
and each integer 7 > N(A(k), Vi k),

ICrery - Crapx = 1)y, <87%

and
ICrry -+ - Crapx = I)Exw ||, <287,
It follows from property (a), (6.170), (6.172) and (6.173) that

& — Exco |l < 167187, (6.174)
and for each x € (0, ) and each integer T > N(A(k), Vi i),
|Brcry -« Bryx — ()&, <87 <647 e. (6.175)
Since ¢ is any positive number, we conclude that

Tlimw Brry - Brayx = fr(x)ép, xe€X, (6.176)

where f, € X/, .
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By (6.176), (6.175), (6.172) and (6.173),
1) — fr(x0)| <87 <647 'e, x€(0,n). (6.177)
There is My > 1 such that
n < Moég. (6.178)
We may assume that
27 <647 g4+ Mp) . (6.179)

Assume that {C/}72, € U({At(k)};’il, Yo i) D ME, T > N(A® |y i) is an integer

and x € (0, ). To complete the proof of the theorem it is sufficient to show that
[Criry -+ Crapx = fr0)88], <47 e (6.180)

Indeed, it follows from property (a), (6.145), (6.177), (6.174), the definition of M)
(see (6.173)), (6.176) and (6.179) that

[Crery -+ Crapx = fr0)s,
<|Crary----- Crayx — L(x)épawm Hn
+ [10Esw = £ 5w |, + £ I1Eaw — Eally
<287k 487k 4167187 £, ()
<2.87% 487 41671 .87 My < 647 .

This completes the proof of Theorem 6.26.

6.19 Proof of Theorem 6.27

Fix f € X/, such that f(n) = 1. Assume that {A;}7°, € M, ¢, 0 <c1 <1 <2,
y €(0,1) and

con=>Ar - Amn=cn, T=12,.... (6.181)

Define a sequence of operators A : X — X,r=1,2,...,by

Alx:=( =P Ax+y(fm) fMAm, xeX,

A xi=(1—y)Aqx
r+ ' (6.182)

—1
+y(f(Ar---- Am) T FO)A1A - A,
xeX, t=12,....
Clearly,
{AV)2, e (6.183)

t=1
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Lemma 6.35 For each integer T > 1,
Al Aln=Ar----- Arn. (6.184)

Proof We will prove the lemma by induction. Clearly for 7 =1, (6.181) is valid.
Assume that 7 > 1 is an integer and that (6.184) holds. It follows from (6.184) and
(6.182) that

14 Y Yo _ 4V
AL AL Al =AY Ar - An
=1 —-y)Ar+1Ar----- Amm+yArpAr - Ain.
This completes the proof of the lemma. g

We omit the easy proof of our next lemma.
Lemma 6.36 For each integer T > 1,
sup{ ||ATx — A;x”?7 :x €0, n)} < 2ycf1cz.
Lemma 6.37 For each integer T > 1, there exists fr € X ; such that
Al Alx=1-pTAr--- Ax + fr(x)Ar - ---- A, xeX. (6.185)

Proof We will prove the lemma by induction. Clearly for 7' = 1 the assertion of the
lemma is valid. Assume that there is fr € X jr such that (6.185) holds. It follows
from (6.185), (6.182) and Lemma 6.35 that for each x € X,

A);-H
= A7 (A7 - Alx)
=1 -y"AL (Ar -+ Arx) + fr(0)AY  Ar - Apn
=1-" (A=) Ars1Ar -+ Ax
+yf(Ap - A FAp - A A7 A - oe e Arn)
+ frx)Ar A - A
=0 - ArAp--- Apx

+[A=»TyfAr - AT (AT Arx)
+ fr()]Ar41Ar - An.

This completes the proof of the lemma. d

Lemma 6.38 Let s € (0,27") and let N be a natural number for which

(1—y)N <271e. (6.186)
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Then for each x € (0, n),
V(AN ..... Al’?aAL ..... A’fx)—k(AN ..... Al’?vAZ ..... A}llx)iz_lg. (6.187)

Proof By Lemma 6.37 there is fy € X/, such that (6.185) holds with T = N. To-
gether with Lemma 6.35 this implies that

N AN - An=(1-A-pMAy-- A, v =—0—-p)V +1,
(6.188)

and for each x € X,
ING)AN - An
< AK/ R ~A)1/x
<IN®AN - A+ A =9)Tr@ nAy - Aqn. (6.189)

If x € (0, ), then (6.187) follows from (6.189) and (6.186). The lemma is proved. [

Lemma 6.39 LetO< Ay <1< Ay, I' > 1,and let n > 1 be an integer. Then there
is a number § > 0 such that for each sequence {B;}!_, C A satisfying

sup{[[Bix — Al x|, :x € (,n),i=1,....,n} <3 (6.190)
and for each z € X satisfying
z€(0,A2n) and z> Apy, (6.191)
the following relation holds:
By Bize(r='al..... Az, TA) - Alz). (6.192)

Proof We will prove this lemma by induction. Let n = 1. Choose a positive number
& such that
' ATIsA < y(m =1y (6.193)

Assume that

Bie A, sup{||Bix— A)l/x”n ixe(0,n)} <8,
(6.194)
z€(0,A>n) and z> Ajn.
It follows from (6.194) that

|Biz—Afz], <642 and Bize(Az—84m, ATz +842m).  (6.195)
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By (6.182), (6.194), (6.181) and (6.193),

Alzz=y(fm) " f@Am=yAiAin =y Ajen
and

§Am <y =D 'etAm < (I = DI ' A7z,
Together with (6.195) this implies that

Biz € (F_IAJI/Z, rAlz).

Thus for n = 1 the assertion of the lemma is true.

Assume now that the assertion of the lemma holds for n =1, ..., k. Choose a

positive number I satisfying

1<F0<F1/2.

(6.196)

Since the assertion of the lemma holds for n = k, there is a number 8y > 0 such that

for each sequence {B; }f-‘: | C 2 satisfying
sup{ | Bix — Al x|, rx € (0.n).i=1.....k} <.

and each z € X satisfying (6.191), the following relation holds:

Choose a number § € (0, §p) such that
SMrere AT <y (- DIy
Assume that {B; }k+1 CA,
sup{HBx—AVx“ €(0,n),i=1,....k+1} <5,
and that z € X satisfies (6.191). Then (6.198) is valid. This implies that
BiyiBg - Bize(ly 'Biy1A) -+ AYz, [yBrs1 A} -+ Alz).

It follows from (6.191), (6.182), Lemma 6.35 and (6.200) that

AL AL AVz, A} - ATz € (Arcin, e2A0m),
y v Y Ay v
B AL Az = AL AL Y] <32

(6.197)

(6.198)

(6.199)

(6.200)

(6.201)

(6.202)
(6.203)

Bk+1AZ ..... (Al}(/—i-l ..... Ai’z-SCzAzn,Ak_‘rlA ..... AJ{Z+502A2U)
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By (6.199), (6.202) and (6.203),

derdpcin <ciAryTo — DIy rl<(Fo—1)F Ak+1 - Alz
and
BH]AZ.....A}{ZG( IAZHA}: ..... A)fz,FoA;}{/HA}: ..... AJ{Z).
It follows from this last relation, (6.201) and (6.196) that
Biy1Bi - Blze<1—' A}’(’HAZ ..... A%/Z, FAZHAI}; ..... AJ{Z).
This completes the proof of Lemma 6.39. 0

Lemma6.40 Let0 <A< 1,0<¢e < A/2 and let N be a natural number for
which

1=V <271e. (6.204)

Then there exist a neighborhood U of {Ay 21 in M and a number k > 0 such that
for each {B;}7° | € U, the following two assemons hold:

1.Br----- Bin=«n,T=1,...,N

2. For each x € (An, n),

r(By----- Bin,By----- Bix)—A(By----- Bin,By----- Bix) < (3/4)e. (6.205)

r(Ay--- A, AN - ATx) = r(Ay - A, A% Alx) <27 e, (6.206)
Choose a real number I" for which
r>1 and (I'’-—1)<8’'e (6.207)

By Lemma 6.39, there exists a neighborhood U of {Ay} 2 | in M such that for each
{B:};2, € U, each z € (An, n) and each integer T € [, N]

Br----- Bize(r—'aAl..... Az, TAY ... Alz). (6.208)

Assume that {B;}7°, € U. It follows from the definition of U (see (6.208)),
Lemma 6.35 and (6. 181) thatforT=1,..., N,

y. Ayn_ r— IAT ..... Alnz F_1011’]. (6209)

Therefore assertion 1 holds with ¥ = I'"1¢;. Now we will show that assertion 2
holds too.
Assume that

{B)2, €U and xe(An,n). (6.210)
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Then (6.206) is valid. By (6.210) and the definition of U (see (6.208)),

By - Bixe(r—'al ... AVx, LAY - Alx) (6.211)
and
By oo Bme(F 1A% ..... A){'?’FA% ..... A71/17>
It follows from (6.211), Lemma 6.35 and (6.144) that
F(By - Bin,By - le)fr(['_lAN ..... A, FA% ..... A’l/x)

r(By - Bin,By - Bix)—A(By -+ Bip,By - Bix)
§F2r(AN ..... Alﬂ»AL ..... A){x)—Ffz)»(AN---~-A1n,AL ..... Ai’x)
<r(AN ..... Al’),A% ..... ATX)—)\(AN ..... AIU,AZ ..... AJI/X)

<27le+2(r*—1) <3e/4.

This completes the proof of Lemma 6.40. g

Completion of the proof of Theorem 6.27: By Lemmas 6.36 and 6.35 and by
(6.181) and (6.183), the set {{A) 2 AN € Myeg, v € (0, 1)} is an every-
where dense subset of Mreg with the strong topology.

Let {Al‘}?il € Myeg, ¥ €(0,1) and leti > 1 be an integer. By Lemma 6.40, there
exist an open neighborhood U (A, y, i) of {A 2, in the space Mreg with the weak
topology and an integer N (A, y, i) > 2i +2 such that for each {C;}7°, € U(A, y, i),
the following two properties hold:

@Cp----- C1n is an interior point of X4 for T =1,..., N(A, y,i);

(b) for each x € (471, n),

r(CN@Ay.i) - Cin, CN@y,i) -+ C1x)
—AMCN@Ay.y Cin. CNAyi) -+ Cix) <87". (6.212)
Define

o
F= U@y Ae Moy €01 i=q.q +1...}.
q=1
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Clearly, F is a countable intersection of open (in the weak topology) everywhere
dense (in the strong topology) sets in Mreg. Let {B,;}72, belong to F. It is easy to
verify that assertion 1 of Theorem 6.27 holds. We will show that assertion 2 of the
theorem is valid too.

Let ¢ € (0, 1). Choose an integer g > 1 such that

279 < ¢/64. (6.213)
There are {A;}72, € Mg, ¥ € (0, 1) and an integer i > ¢ such that
(B}, € U(A, y.0). (6.214)
Assume that {C;}72, € U(A, y,i) and that
X € (en, n). (6.215)

Then property (a) holds. It follows from property (b), (2.215) and (6.213) that
(6.212) is also valid. This completes the proof of Theorem 6.27.

6.20 Homogeneous Order-Preserving Mappings

In this section we study the asymptotic behavior of (random) infinite products of
generic sequences of homogeneous order-preserving mappings on a cone in an or-
dered Banach space. Infinite products of such mappings have been studied by Fuji-
moto and Krause [62] and by Nussbaum [106, 107]. The interest in their asymptotic
behavior stems, for instance, from population biology (see [43]). We show that in
appropriate spaces of sequences of mappings there exists a subset which is a count-
able intersection of open and everywhere dense sets such that for each sequence
belonging to this subset the corresponding infinite products converge.

Let (X, || - ||) be a Banach space ordered by a closed cone X with a nonempty
interior such that || x|| < ||y| for each x,y € X satisfying x <y. When u,v € X
and u < v we set

(u,v)y={xeX:u<x<v}
For each x, y € X we define

Mx,y) =sup{r €[0,00) : rx <y},
(6.216)
r(x,y)= inf{k €[0,00):y < kx}.

(We assume that the infimum of the empty set is co.) Note that other authors use the
notations m(y/x) and M (y/x) instead of A(x, y) and r(x, y), respectively.
For an interior point 7 of the cone X we define

lxll,;, = inf{r €[0,00): —rnp<x < rr;}. (6.217)

Clearly, || - ||, is a norm on X which is equivalent to the norm || - ||.
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Denote by A the set of all mappings A : X — X such that

Ax < Ay foreachx € X and each y > x,

(6.218)
A(az) =aAz foreach « € [0, 00) and each x € X .
Fix an interior point n of the cone X .
For the space A we define a metric p : A x A — [0, 00) by
p(A, B) :==sup{[|Ax — Bx|l,:x €(0,n)}, A,BeA. (6.219)

It is easy to see that the metric space (A, p) is complete.

Denote by M the set of all sequences {A;}7°, C A. A member of M will oc-
casionally be denoted by a boldface A. For the set M we consider the uniformity
which is determined by the following base:

E(N,&)={({A2 | {B}2) e Mx M:p(A;, B) <e,t=1,...,N},
(6.220)

where N is a natural number and ¢ > 0. It is easy to see that the uniform space M
is metrizable (by a metric p,, : M x M — [0, 00)) and complete. This uniformity
generates a topology which we call the weak topology in M.

For the set M we also consider the uniformity which is determined by the fol-
lowing base:

E(N,&)={({A}2 | AB2) e M x M:p(Ar, B) <e,t=1,2,...}, (6.221)

where ¢ > 0. It is easy to see that the space M with this uniformity is metrizable
(by a metric ps : M x M — [0, 00)) and complete. This uniformity generates a
topology which we call the strong topology in M. We do not write down the explicit
expressions for the metrics p,, and p; because we are not going to use them in the
sequel.

Denote by M, the set of all sequences {A;}7°, € M for which there exist
positive constants ¢ < ¢ such that for each integer 7" > 1,

con=Ar-----Aim = crn.

Denote by Mreg the closure of M,g in M with the weak topology. We consider
the topological subspace M., C M with the relative weak and strong topologies.
‘We now list the results which were obtained in [130].

Theorem 6.41 There exists a set F C /\;l,eg which is a countable intersection of
open (in the weak topology) everywhere dense (in the strong topology) sets in M reg
such that for each {B};° | € F the following two assertions hold:

1.Bp:----- Bi1n is an interior point of X + for each integer T > 1.
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2. For each A > 1 and each & € (0, 1), there exist an integer N > 1 and an open
neighborhood U of {B};2, in Mg with the weak topology such that for each
{Ct }?i] S Us

forall x € (0, An).

Such results are usually called weak ergodic theorems in the population biology
literature [43, 107]. This result shows that a weak ergodic theorem holds for most of
the elements in /\;lreg. Clearly, if such a theorem holds for a sequence {A ,};’il it also
holds for all sequences of the form {a;A;}° |, where {a;}72, C R! is a positive se-
quence. Therefore Theorem 6.41 shows that a weak ergodic theorem actually holds
for most of those elements {A; };’i | € M for which there exists a positive constant ¢
such that for each integer 7' > 1,

[Ag - Al Az e A =cn.
Let 0 < ¢1 < ¢3. Denote by M(cq, c¢2) the set of all sequences {A,};’il € M such
that
Ar-----Ain € {cin,cyn) forall integers T > 1.

It is easy to verify that M (cy, ¢2) is a closed subset of M with the weak topology.
We first consider the topological subspace M(ci, c2) C M with the relative weak
and strong topologies.

Theorem 6.42 There exists a set Fo C M(c1, ¢2) which is a countable intersection
of open (in the weak topology) and everywhere dense (in the strong topology) sets
in M(cy, ¢2) such that for each {B,};’i1 € Fo assertion 2 of Theorem 6.41 is valid.

Denote by int(X ) the set of interior points of the cone X . Let M, be the set
of all {A,}7°, € M for which there exists a point £ € int(X 1) such that

A =8, t=1,2,....

Denote by M, the closure of M, in the strong topology. Next we consider the
topological subspace M, C M with the relative strong topology.

Theorem 6.43 There exists a set F C ./\;l* which is a countable intersection of
open everywhere dense sets in M such that for each {B;};° | € F there exists an
interior point £ of X satisfying

B/kp=¢&p, t=1,2,..., l&gll, =1,
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and the following two assertions hold:
1. For each s : {1,2,...} = {1,2,...} there exists a function g; : X+ — [0, 00)
such that

lim By ----- Bsyx =gs(x)ép, xeXy.
T—o00

2. For each € > 0, there exist a neighborhood U of {B;}2, in M, and an
integer N > 1 such that for each {C,};’i] e U N M, each mteger T > N, each
s:{1,2,...} > {1,2,...} and each x € (0, n),

|Csery -+ Csayx — gs(¥)EB ”n <e.

Denote by M,, the set of all sequences {A;}°, € M such that A;n =7,
t=1,2,.... Clearly M, is a closed subset of M with the weak topology. We
now consider the topological subspace M, C M with the relative weak and strong
topologies and state the following two results.

Theorem 6.44 There exists a set F C M, which is a countable intersection of
open (in the weak topology) everywhere dense (in the strong topology) sets in M,
such that for each {B,};° | € F the following two assertions holds:

1. There exists f : X4 — R such that

lim Bp----- Bix=f(x)n, xeXi.

2. For each ¢ > 0, there exist a neighborhood U of{Bt}""1 in M, with the weak
topology and an integer N > 1 such that for each {C,};°, € U, each integer T > N
and each x € (0, n),

|Cr - Crx = foom], <e.

Theorem 6.45 There exists a set F C My, which is a countable intersection of
open everywhere dense sets in M, with the strong topology such that for each
{B:}72, € F the following two assemons hold:

1. Foreachs:{1,2,...} = {1,2,...}, there exists a function g5 : X  — RY such
that

lim Bs(T) """ Byyx =gs(x)n, xe€ Xy

2. For each & > 0, there exist a neighborhood U of { B;};° | in M, with the strong
topology and an integer N > 1 such that for each {C,};2 | e U, each integer T > N,

eachs:{1,2,...} = {1,2,...} and each x € {0, n),
|Csery -+ Cs)X — &s ()C)n”,7 <e.
Denote by A, the set of all A € A such that there is an interior point §4 of Xy

satisfying A§4 = &4. Denote by A, the closure of A, in A. We equip the topological
subspace A, C A with the relative topology.



6.21 Preliminary Lemmata for Theorems 6.41-6.43 305

Theorem 6.46 There exists a set F C A, which is a countable intersection of open
everywhere dense sets in A, such that for each B € F there exists an interior point

&p of X4 satisfying
Bép =§p, IEslly =1,

and the following two assertions hold:
1. There exists a function gg : X+ — R such that

lim B x = gp(x)ép, x€Xy.
T—o0

2. For each ¢ > 0, there exist a neighborhood U of B in ./_l* and an integer N > 1
such that for each C € U N A, each integer T > N and each point x € (0, ),

|cTx —gp)ta], <s.

Finally, denote by A, the set of all A € A satisfying An = 5. Clearly A, is a
closed subset of 4. We endow the topological subspace A, C A with the relative
topology.

Theorem 6.47 There exists a set F C A, which is a countable intersection of open
everywhere dense sets in A, such that for each B € F the following two assertions
hold:

1. There exists a functional gg : X — R such that

lim B x =gp(x)n, xeX,.
T—o00

2. For each € > 0, there exist a neighborhood U of B in A, and an integer N > 1
such that for each C € U, each integer T > N and each x € (0, n),

[CTx = gpom|, <e.
In the next sections we prove Theorems 6.41-6.43. Theorem 6.44 is proved by

a simple modification of the proof of Theorem 6.41 while Theorems 6.45—-6.47 can
be proved by slightly modifying the proof of Theorem 6.43.

6.21 Preliminary Lemmata for Theorems 6.41-6.43
We begin with the following simple observation.

Lemma 6.48 Assume that {A;};° | € M and that for each integer T > 1,



306 6 Infinite Products

with some constants ¢ > c1 > 0 which do not depend on T. Let & be an interior
point of X . Then there exist constants cy¢, c1¢ > 0 such that for each integer T > 1,

cg€ > A - oo A€ > cié.
Clearly, for each interior point & of X (see (6.216), (6.217)), we have

r&,y)=Ilyle, yeXy. (6.222)

Assume that £ is an interior point of X, {A;};2, € M and that there are numbers
c1 € (0, 1), c2 > 1 such that for each integer 7 > 1,

CoE>Ap - ALE > ciE. (6.223)
Let y € (0, 1). Clearly,

0<A(n,é). (6.224)
Define a sequence of operators Ag/ Xy —> X4, t=1,2,..., by

Alx=(10-y)Aix+yrE x)AE,  xeXq,
Al x =1 —=y)Apix+yr(A - A1E, X)Apy1 - Ap e Ag,  (6.225)
)CEXJ,_,t:l,Q.,....
Clearly,
{AV}2, eM. (6.226)
Lemma 6.49 For each integer T > 1,

A; ..... A’{g =Ap - AE. (6.227)

Proof We will prove the lemma by induction. Clearly, for 7 = 1 (6.227) is valid.
Assume that T > 1 is an integer and (6.227) holds. It follows from (6.227), (6.225)
and (6.222) that

A;H'A; ..... AT§=A?+1'AT“-“A1€
= —yY)Ar41-Ar - AlE+YAryr-Ap - A€
=A741- A7 - ALE.
This completes the proof of the lemma. U

Lemma 6.50 For each integer T > 1,

p(Ar, AY) <yerleanm, €)7r(n, £).
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Proof Let x € (0, n). Then by (6.216), (6.217) and (6.219),
O<x<n<imé& 'e<ci'rm &) 'Ar---- A, T=12,..., (6228)
Alx — Aix=yrE,x)A1E —yAix
(6.229)
e (—yam, &) Lear(m, E)n, yaln, &) Lear(n, £)n)

and
|ATx = Avx]|, < yAGL ) car(n,§).

For each T > 1, it now follows from (6.225), (6.228) and (6.223) that

AL x —Arpix =yr(Ar - A1, x)Arq1- A - A1§ —yArqix

e (—yrm. &) ey ot v A, £) 7 k)
C(—yrm. &) e ear(m. &),y A, €) ear (0. E)n)

and

| AT 1% = Arsax], < vepler@, ©)7'r @, ©).

This completes the proof of the lemma. g

Lemma 6.51 Foreach x € X,
MAEATY) = (1= AE D +yrE D), r(AE Alx) <rE ), (6.230)

and for each integer T > 1,

Z(l—V))»(AT ..... A1$,A; ..... A’l/x)
+yr(Ar - Ag AL Alx) (6.231)

and

<r(Ap---- AE AL Al ). (6.232)
Proof By (6.225), we have for each x € X,

Alx = = p)Aix +yrE NAE = (=) AI(ME 0)E) +yrE x)ALg
= [0 = pIrE, x) +yrE 0]Ag,
A(A18, ATx) = (1 = Y)A(E, x) +yr(E,x);
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Ax < (1= p)AI(r(E, 0)E) +yrE, 0)AIE =1, 0)ALE,
r(A1, Alx) <r(, x).

Again by (6.225), we also have for each integer 7 > 1 and each x € int(Xy),

A;H -A; ..... A)l’x
= —y)Arg1- AL Al x
+V”(AT """ AIE,A? ''''' A]l/-x)AT—i-l'AT ..... ALE
Z(I_V)AT—H()\(AT ..... A1E,A)} ..... A}fX)AT ..... Alé)

dyr(Ar - AE AL ATX)Apyy - Ap o AgE

and
A;H -A)} ..... A){x
<= Arp(r(Ar - AE AL AV XA - AE)
+yr(Ar----- AE AL AYX)Arqr - Ao AE
=r(Ap - AE AL AVX)Arqy - Ap oo AE.
Thus

F(AT+1-AT-'-'-A1§,A}}+1'A; ..... A)I/X)SV(AT ..... AlE,A};""'A}fx)

and the lemma is proved. g
Lemma 6.52 Let 0 <& < A and let N be a natural number for which
A —p)N <27 1e, (6.233)

Then for each x € (0, AE),

Proof Let x € X satisfy
0<x< A& (6.234)
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Set

ro=r(&,x), Ao = A(§, x),
re=r(Ag- AE A - Al), (6.235)

By (6.216), (6.234) and Lemma 6.51,

rg < A, re>A, t=0,1,...,

Trl =T, A1 =Ar, t=0,1,...
and
AMy1= A=) +yr, t=0,1,....
Together with (6.233) this implies that forallt =0, 1, ...,
Fepl — A1 S (1= y) (e — Ap)
and
v =i =A=Nro—r)=0-pVa<27le

This completes the proof of the lemma. d

Lemma 6.53 Let0< A; <1 < Ay, I' > 1 and let n > 1 be an integer. Then there
is a number & > 0 such that for each sequence {B;}!_, C A satisfying

p(Bi,Al) <8, i=1,....n, (6.236)

and each z € (0, A>&) satisfying r(§, z) > Ay, the following relation holds:

Proof We prove this lemma by induction. Let n = 1. Choose a positive number §
such that

T AT 8 Aar(n, 0, &) <y (m — I (6.237)

Assume that By € A,
ze(0,408),  p(Bi,A) <8 and r(£.2) = A (6.238)
It follows from (6.238), (6.216) and (2.219) that

2 ME<Aor(n.&)n,  |Biz—Alz, <84 (1.8) (6.239)
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and
Biz € (A{z —840r(n, §)n, A{z +840r(n, )n)
C(AYz—8A0r(m. )0(n. 6) "6, ATz +842r (. E)M(n, §) ). (6.240)
By (6.238), Lemma 6.49, (6.223), (6.237) and (6.225),
Alz=yrE 0AE=yAicE

and

822r(m, )1, §)7'6 <y (1 =T~ Arcikr.
Together with (6.240) this implies that

Bz € (F*]A)I’z, FA’{Z).

Thus for n = 1 the assertion of the lemma is valid.

Assume now that the assertion of the lemma holds for n =1, ..., k. We now
show that the assertion of the lemma also holds for n = k + 1. To this end, choose a
positive number Ij > 1 such that

l<Iy<TI'2 (6.241)

Since the assertion of the lemma holds for n = k, there is a number §g > 0 such that
for each sequence {B,-}f.‘:1 C A satisfying

p(Bi,Al) <8, i=1,... k,
and each z € (0, Ay¢&) satisfying r (£, z) > A the following relation holds:
B Bize(ry'A] - AVz, DAY -+ Alz). (6.242)
Choose a number § € (0, §g) such that
§Macarm, HME M~ ey AT <y (o= DI (6.243)
Assume that {B,-}f.‘;rl1 CA,

p(Bi, AY) <8, i=1,....k+1,
7€(0,428) and r(§,2) = A

(6.244)

Then relation (6.242) is valid. This implies that

eIy ' Bigr - A} -+ Az, ToBy1 - A -+ Az). (6.245)



6.21 Preliminary Lemmata for Theorems 6.41-6.43 311
It follows from (6.244), (6.223), (6.225), (6.219) and Lemma 6.49 that

Alz=yAlALS, AL

il -A,’(’ ..... AJ{Z > Ajc1yE,

AZ ..... A?ZG (Ar1c1yE, Axcré),

[EYEEE Alz], = Ascar(n, ), (6:240)
|Bisr - AY - AYz— AY AL Alz], <88000r(n.8)
and
B .AZ ..... A’fz
€ {ALsy - AL oo ATz = 8A0cor (0, £,
Afpr AL Az +82202r (1, 6)1). (6.247)

By (6.216), (6.217), (6.244), Lemma 6.49, (6.243) and (6.246),

8 Agcor(n, )0 < 8Agcor(n, E)L(n, €)7'E
<8Mcar(m HrE N eyt AT AL AL Alz

<(Lo— DIy Ay, AL - Alz.

k+1

Together with (6.247) this implies that

Bit1 .AZ ..... A7l’ (F_IAZH Az ..... AIZ FOAk+1 AZ ..... A’l’z)_
It follows from this relation, (6.245) and (6.241) that

Bk+l'Bk""‘BIZ€< 1A/}</+1 k Alz FAk-H Ak ..... A}1/Z>‘
This completes the proof of the lemma. g

Lemma 6.54 Let1 < A,0< e < 1andlet N be a natural number for which

Al =)V <27 1g, (6.248)
Then there exist a neighborhood U of {AV}°° | in M with the weak topology and a
number k > 0 such that for each {B;};° 1 € U, the following two assertions hold:

LBr----- B1§>«E, T=1,.
2. For each x € (0, AE),

< (/4. (6.249)
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Proof By Lemma 6.52 for each x € (0, A§),

<g/2. (6.250)
Choose a number I" for which
r>1 and (r*—1)a<s™'e. (6.251)

By Lemma 6.53, there exists a neighborhood U of {A” 2, in M such that for each

{B;};72, € U,each z € (0, A&) satisfying (&, z) > £/2 and each integer T € [1, N],
Br----- Bize(r—'aA}..... Az, TAY ... Alz). (6.252)

Assume that {B;}°°, € U. It follows from the definition of U (see (6.252)),

=1

Lemma 6.49 and (6.223) thatfor T =1, ..., N,
Br----- Big>r"'Al..... Ale=r""A7..... AE>T g, (6.253)

Therefore assertion 1 holds with ¥ = I'"'¢;. Now we will show that assertion 2
also holds.
Assume that

{B;};2, €U and x € (0, A§). (6.254)

Then (6.250) is valid. We will show that (6.249) holds. To this end, we may assume
without loss of generality that (£, n) > ¢/2. By (6.254) and the definition of U (see
(6.252)),

By Bixe ('A% ... AYx, TAY, - Alx) (6.255)
and
By oo BISG(F_IA}/V ..... All/évFAi/v""'Ajl/é)'
It follows from (6.255), Lemma 6.49 and (6.216) that
r(By - Blé,BN-”--BM)Sr(F_lAN ..... Alg’FAL ..... All/x)
EFZF(AN“---A@,A% ..... A?l’x),

AMBy - Blg,BN""'le)Z)\(FAN ..... A1§,F_1AL ..... A’l/x)
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SV(AN""'AI“;:,AVN ..... ATX)—)\(AN ..... AIE,AK/'“"A}I/X)
+(Mr*=1rEx)+ (1= )r(Ay - ArE AN Alx)
<27le4+2(r? = 1)r,x) <27 e+ (I'* — 1) A% < (3/4e.
Thus (6.249) is indeed valid and this completes the proof of the lemma. O

Our next claim is a direct consequence of (6.225).

Lemma 6.55 Assume that A;§ =&,t=1,2,....Then
Alx=(0—-p)Ax+yrE x)E, xeXyt=1,2,....
Lemma 6.51 implies the following fact.
Lemma 6.56 Assume that A6 =&, t=1,2,...,s:{1,2,...} > {1,2,...} and
x € X4.Then
W(E AL x) 2 (1= AE x) +yrE. ),
and for each integer T > 1,
ME ALy Ay AlyX) Z (= IA(E, Ay - A Y)
+ Vr(é’ Ar(T) T 'A?v/(l)x)'

By using Lemma 6.56 and an analogue of the proof of Lemma 6.52, we can prove
the following lemma.

Lemma 6.57 Assume that A;§ =&, t=1,2,.... Let 0 <& < A and let N be a
natural number for which

A —p)N <27 1e,
Then for each x € (0, A§) and each s : {1,2,...} - {1,2,...},

r(&, A?;(N) """ Ar(l)x) — (&, Ar(N) """ A?s/(l)x) <27's

Analogously to the proof of Lemma 6.53 we can also establish our last prelimi-
nary result.

Lemma 6.58 Assume that A6 =&, t=1,2,....Let 0 < A1 <1 < Ay, T > 1
and let n be a natural number. Then there exists a number § > 0 such that for each
s:{1,2,...} = {1,2,...}, each sequence {B;}_, C A satisfying

p(BlyA;/(l))S(S, izl,...,n,

and each z € (0, A2&) satisfying r(§, z) > Ay, the following relation holds:

—1 47 Y 14 v
By Bz e (F Ax(n) ..... As(l)z, FAS(n) ..... As(l)z>'
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6.22 Proofs of Theorems 6.41 and 6.42

In this section we use the notations of Sects. 6.20 and 6.21 with & = 5. For each
{Ar}2, € Myeg and each y € (0, 1), define a sequence of operators {Ay}
(6. 225) with £ = . By (6.226), Lemmas 6.49 and 6.50, the set

{AV )2, (a2 e My €0, D) c M

is an everywhere dense subset of ./\;lrgg with the strong topology.
Let {A/}72, € Myeg, v €(0,1) and i > 1 be an integer. By Lemma 6.54, there

exist an open neighborhood U (A, y, i) of {Ay 2 | in the space Mreg with the weak
topology and an integer N (A, y,i) > 2i+2 such that for each {C;}72, € U(A, y, 1),
the following two properties hold:
@Cr----- C1n is an interior point of X4 for T =1,..., N(A, y,i);
(b) for each x € (0, 4'n),
r(CNAy,i) Cin, CN@ALy.i) -+ - C1x)

—MCN@Ayi) Cin, CnAy,i) - Cix) <87 (6.256)
Proof of Theorem 6.41 Define
o0
Fi= ﬂ U{U(A,y,i) tA €M,y €(0,1),i=q,q+1,...}.

g=1

Clearly F is a countable intersection of open (in the weak topology) everywhere
dense (in the strong topology) sets in ./\;lng

Assume that {B,};°, € F. It is easy to verify that assertion 1 of Theorem 6.41
holds. We now show that assertion 2 of Theorem 6.41 is also valid.

Let A > 1and ¢ € (0, 1) be given. Choose an integer ¢ > 1 such that

29 > max{A, e} (6.257)
There are {A;}72, € Mg, ¥ € (0, 1) and an integer i > ¢ such that
{B;}72, € U(A, v,10). (6.258)
Assume that {C}72, € U(A, y,i) and
€ (0, An). (6.259)

Then property (a) holds. It follows from property (b), (6.259) and (6.257) that rela-
tion (6.256) is valid. Since 8" < ¢, this completes the proof of the theorem. d

Proof of Theorem 6.42 Let F be defined as in the proof of Theorem 6.41. By
(6.226), Lemmas 6.49 and 6.50,

HAVYZ (A2 e M(cr.c2), ¥ € (0, D)}



6.23  Proof of Theorem 6.43 315

is an everywhere dense subset of M (c1, c2) with the strong topology. Define

Fo=JUJUA.v.h)n Mer.e):

g=1

AeMlcr,c2),y €0, ),i=q,q+1,...}.

Clearly, Fg is a countable intersection of open (in the weak topology) everywhere
dense (in the strong topology) sets in M(cy, ¢2). Since Fo C F we conclude that

assertion 2 of Theorem 6.41 is valid for each { B;}7° | € Fo. The proof is complete. []

6.23 Proof of Theorem 6.43

Assume that A = {A,}7°, € M. There exists an interior point 4 of X such that
Aga=6r, t=1,2,..., and |&l,;=1. (6.260)

For each y € (0,1), define {A;’};’il by (6.225) with n = &x. The sequence
(A 172, € M by (6.226). Lemma 6.55 implies that

Alx =1 —y)Ax +yrEa, x)Ea, xeXy,t=1,2,.... (6.261)
Together with (6.260) this implies that
AVEy=Er, t=1,2,.... (6.262)
By (6.262) and Lemma 6.30, the set
HAV )2, A2 e Muy € (0, D)}

is everywhere dense in M.
Let A= {A;}72, € My, y €(0,1) and let i > 1 be an integer. Choose a natural
number N (A, y,i) > 4 for which

2-16'A(n, &) 7" (1 — )N A7)
<6471 167 (h(n, EA) " 1) A, E). (6.263)
Fix a number I" (A, y, i) such that
I'A,y,i)>1 and
2 A,y i) =T Ay, i) " )16 A(n, €)' (6.264)

<6471 167 (h(n, Ea) " + 1) (1, Ea).
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By Lemma 6.58, there exists a number §(A, y, i) € (0, 8~) such that for each s :

{1,2,...} = {1,2,...}, each sequence {B; }N(A VD - A satisfying

p(Bi. Aly) <8(A.y.0), i=1.....N@A.y.i), (6.265)

and each z € (0, 16/ A(n, o)~ 'n) satisfying r (&5, z) > 167 A(n, £a), the following
relations hold:

BN(A R R Blz
¥
e(r-'@.y. Z)AA(N(A 20 B A
FA YDA iy Al (6.266)
Set
Uy, i)={{B}2 e My p (AT} 2 AB2)) <8(A,v.D)}.  (6.267)
Define
o
F=UUA.v.):Ae M,y (0. 1),i=q.q+1....}. (6.268)
q=1
It is clear that F is a countable intersection of open everywhere dense subsets in
M,

Lemma 6.59 Let {A;}7°, € My, y €(0,1), s : {1,2,...} —> {1,2,...}, and let
i > 1 be an integer. Deﬁne

fs(x) =ra, Ascvauy,ipy - Asyx), xeXy. (6.269)
Then for each {C};2, € U({A}72,, v, 1) and each
x €(0,16'A(n, £a) " "&A)

satisfying
r(§a,x) = 167 2.(n, 6).
the following inequality holds:

| Csveayin - Csyx = fs()éal,
<(0.64)3271167 ((n. &) T+ 1) (6.270)
Proof Set

N=N(A,y,i), 8§=08(A,y,i) and I'=T(A,y,i). 6.271)
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It follows from (6.271), (6.260), the definition of N(A, y,i) (see (6.263)), and
Lemma 6.57 that for each x € (0, 16/ A(17, £o) " '£a), the following inequality holds:

r(ga Al oo Ay¥) = 2(Eas Ay AfnX)

<A, E0)6471167 (h(n, E0) 7 +1) Y. (6.272)
Assume that {C}72, € U({A};2,, v, i) and that
x €(0, 16231, £a) 7 Ex),  r(Ea, ) = 16700, En). (6.273)

We will show that (6.270) holds. Clearly (6.272) holds. By (6.269), (6.272), (6.271)
and (6.260),

”Ai‘/(N) """ A;/(l)(x) — fs(0)éa “n
<r(&a. AE(N) """ A;/(l)x) — A(8a, Al/(zv) """ Ai'/(l)x)
<647'167 (h(n, )7+ 1) A, ). (6.274)
We now estimate
”Cs(N) """ Csyx — Ar(zv) T A?&l)’“”,;'

It follows from (6.267), the definition of 8 (A, y, i) (see (6.265), (6.266)), (6.271),
(6.264), (6.273) and (6.262) that

Cony -+ - Cy(1)x € (F71A5<N) ..... A;/(l)x* FA;/(N) ..... A;’(Dx),
|Cscvy -+ Csyx — Ay - Alayxl,
<2(r - Fﬁ]) “A;/(N) """ A;/(l)x“n

<2(F =TI N16m, 60 <647 167 (A, €)™ +1) "0, £0).

Together with (6.274) this implies inequality (6.270). The proof of the lemma is
complete. g

Lemma 6.60 Let {A}7°, € My, y € (0,1), s:{1,2,...} = {1,2,...} and let
i > 1 be an integer. Let f;: X, — R be defined by (6.269).
Assume that

{Cl‘}?il € U({Al}?ilv Y, l)a y € X+a
”y”n:l, Ciy=y, t=12,....

(6.275)

Then

ly — Eall; < 16771 y is an interior point of Xy,

(6.276)
y>2""A(n, Ea)n



318 6 Infinite Products

and for each x € (0, n) and each integer T > N(A, y, 1),
[Csery - Coyx = £y, <4- 167! (6.277)

and

|Cory -+ Coapx = fs()Eal, <5167 (6.278)
Proof 1t follows from (6.275) that
Y <0<, 60 Ea, rEa, y) = 1= A1, 8a). (6.279)
By Lemma 6.59, for each x € X which satisfies
x €(0,16'A(n, £A)'€4) and  r(Ea,x) > 1671 (1, £4) (6.280)

relation (6.270) holds. Together with (6.279), (6.275) and (6.260) this implies that

Iy = g, <327 A0, E167 (h0n, 80 " +1)

|0 =1 = | fs()Ea —¥], (6.281)
Iy —&ally < |y — fs()éa ||,7 + ) =1 <2|| () — ¥

V—EaEa—y <167, g0 (A E) T 1) (6.282)

and
y=r0 61— 167 (A 607 +1) . (6.283)

It follows from the definition of f (see (6.269)), (6.270) and (6.282) that for each
x € (0, n) and each integer T > N (A, y, i),

fs(0) < fiO) < fi(A, 6) 7 EA) = 2 (n, E0) (6.284)
and
| Cseveayin -+ Cseyx = fi@y]),
<|Csvayin Csayx — fs(x)éa || + fs(O)1IEa — ¥y
—4

<3270, ED167 (M0, E0) T+ 1) T+ 167 ((p E0) T 4+ 1)
<2167 (M, EA) T 1), (6.285)
We also have by (6.275) and (6.283),

Csry - Csyx — fs(x)y
=Csry - Cs(NAy.i)+1) (Cs(N Ay -+ Csyx — f5(x)y)
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i _ -3
€Cyry----- CsNAy.i+1) (2 167 (A, E0) ™+ 1) (=n, m))

2167 (&) 1) 2001, 80 =y, )

C4-167 " A 607 1] (=),

[Cscry - Csyx = £y, <4167 [a@m. &)~ +1]

-2

(6.286)

Let x € (0,n) and let T > N(A, y, i) be an integer. By (6.284), (6.285), (6.286)

and (6.282),

[Csery -+ Csayx — fs(x)éa ||,7

<|[Csay - Csyx = fs)y], + f:lly — Eally

<4167 e 1]+ 167 a0 e +1]70

<5-167 " [x(n.60) " +1] 7

The lemma is proved.

O

Assume that {B;}>°, € F. There exist A® = {At(k)}fi] eM,, k=1,2,...,

t=1

{vi}z2, € (0, 1), and a strictly increasing sequence of natural numbers {ix}72 | such

that for all integers k > 1,

(B2, € U(AW, yy,ix) and

UMM st iker) CUAD, yi, i)
By Lemma 6.60, {§5® },fil is a Cauchy sequence and there exists
&g = kll)n;o Erd, where &g € int(X ).
It follows from (6.288) and (6.287) that fort =1, 2, ...,
APexw — Bt = (AY — B)(Exw) + B, (aw — &B) — 0
as k — oo. Together with (6.260) and (6.288) this implies that
Bigg =8, t=12,..., &l =1
Let ¢ > 0 be given. There is an integer k > 1 such that

27k <647 (44 A(n, Ep) ) 47

(6.287)

(6.288)

(6.289)

(6.290)

(6.291)
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Assume that s : {1,2,...} = {1,2,...}. Define f;: X4y — R! by

k
fo () = r(Eam, A S(N(A(k) iy Ag(})x), x€Xs. (6.292)

By Lemma 6.60 the following property holds:
k
(a) Assume that {C/}2) € UGA{N2,, v, i), y € X4, llylly =1 and Cry =y,
t=1,2,....Then y is an interior point of X1, [y — &5 I, < 16~ =ik and for each
x € (0, n) and each integer T > NA® Vk» 0k)»

[Csiry - Conx = fs )y, <4167,
and
| Cocry -+ Csnyx — fs(gam ], <5-167%.
It follows from property (a), (6.287), (6.290) and (6.291) that
68 — &l = 1677, (6.293)
and for each x € (0, ) and each integer T > N(A(k), Vi ik),
| Bsry - -+ Bsyx — fy(0)ép], <4-167% <e-647". (6.294)

Since ¢ is any positive number, we conclude that there exists g : X, — R' such
that

Tlimw Bycry----- Bsyx =gs(x)é, xe€X,. (6.295)
By (6.294) and (6.295),
|g5(x) — fi(x)| <4-167%,  x € (0,n). (6.296)

Assume that {C/}°, € UGAP )2 | v, i) " My, T = N(A®, iy s a nat-
ural number, and x € (0, ). To complete the proof of the theorem it is sufficient to
show that

[Cory oo Coyx —gs ()|, <47"s. (6.297)

Indeed it follows from property (a), (6.296), (6.293), (6.295), (6.290) and (6.291)
that

|Csry -+ Csyx — gs(x)éB ||
<|Csry - Csyx — fs(X)éam ||
+ | fs0)E 0 — g5 (X)éawm ”n + 85 () 1Eam — Elly
<5167 +4.167% + 167 g, (i)
<9-167% + 167 a(n, )" <47 e

This completes the proof of Theorem 6.43.
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6.24 Infinite Products of Affine Operators

In this section we study the asymptotic behavior of random infinite products of
generic sequences of affine uniformly continuous operators on bounded, closed and
convex subsets of a Banach space. More precisely, we show that in appropriate
spaces of sequences of operators there exists a subset which is a countable intersec-
tion of open and everywhere dense sets such that for each sequence belonging to this
subset, the corresponding random infinite products converge. We remark in passing
that common fixed point theorems for families of affine mappings (e.g., those of
Markov-Kakutani and Ryll-Nardzewski) have applications in various mathematical
areas. See, for example, [48] and the references mentioned there.

Let (X, || - ||) be a Banach space and let K be a nonempty, bounded, closed and
convex subset of X with the topology induced by the norm || - ||.

Denote by A the set of all sequences {A;};°,, where each A, : K — K is a
continuous operator, t = 1,2, .... Such a sequence will occasionally be denoted by
a boldface A.

We equip the set A with the metric p; : A x A — [0, 00) defined by

s ({AN2 1, (B)2,) =sup{llAix — Bx|| :x € K, t =1,2,...},
(A2 (B2, € A. (6.298)

It is easy to see that the metric space (A, p;) is complete. We will always consider
the set A with the topology generated by the metric pj.

We say that a set E of operators A : K — K is uniformly equicontinuous (ue)
if for any ¢ > 0, there exists § > 0 such that | Ax — Ay|| < e forall A € E and all
x,y € K satisfying ||x — y|| <é.

An operator A : K — K is called uniformly continuous if the singleton {A} is a
(ue) set.

Define

Aye = {{A)2, € A {A )2 is a (ue) set}. (6.299)

It is clear that A, is a closed subset of A.
We endow the topological subspace A, C A with the relative topology.
We say that an operator A : K — K is affine if

Afax + (1 —a)y) =aAx + (1 —a)Ay
foreach x, y € K and all ¢ € [0, 1].
Denote by M the set of all uniformly continuous affine mappings A : K — K.
For the space M we consider the metric

p(A,B):sup{||Ax—Bx|| tX EK}, A,Be M.

It is easy to see that the metric space (M, p) is complete.
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In the next sections we analyze the convergence of infinite products of operators
in M and other mappings of affine type and prove several convergence results which
were obtained in [126].

We begin by showing (Theorem 6.61) that for a generic operator B in the space
M there exists a unique fixed point xp and the powers of B converge to xp for all
x € K. We continue with a study of the asymptotic behavior of infinite products of
this kind of operators and prove a weak ergodic theorem. Finally, we present several
theorems on the generic convergence of infinite product trajectories to a common
fixed point and to a common fixed point set, respectively.

Denote by .A the set of all {A;}7°, € Ay, such that for each integer ¢ > 1, each
x,y€ K and all @ € [0, 1],

A,(ax +(1— ot)y) =aAx+ (1 —a)Ary.

Clearly, A% is a closed subset of A,,.. We consider the topological subspace AZ]; C
Ay with the relative topology.
We will show (Theorem 6.63) that for a generic sequence {C;}7°, in the space
af
ue s

ICrery -~ Crayx —Cr(ry -+ - Crayyll =0,

uniformly for all x, y € K and all mappings r : {1,2,...} — {1, 2,...}. Such results
are usually called weak ergodic theorems in the population biology literature [43].

Denote by AO the set of all A = {A;}°, € Ay, for which there exists x5 € K
such that

Apxp=xa, t=1,2,..., (6.300)

and for each y € (0, 1), x € K and each integer t > 1,
Ar(yxa+(1=)x) =2y 0)xa + (1= ki (r, ) Apx (6.301)

with some constant A;(y, x) € [y, 1].

Denote by A%, the closure of A7, in the space A,.. We will consider the topo-
logical subspace .A with the relatwe topology and show (Theorem 6.64) that for
a generic sequence {C,}°°1 in the space Auc, there exists a unique common fixed
point x, and all random products of the operators {C;};2, converge to x4, uniformly
for all x € K. We will also show that this convergence of random infinite products
to a unique common fixed point holds for a generic sequence from certain subspaces
of the space AJ,

Assume now that F C K is a nonempty, closed and convex set, Q : K — F isa
uniformly continuous operator such that

Ox=x, xe€eF, (6.302)
and foreach y e K, x € F and o € [0, 1],

Q(ax—l—(l —ot)y):otx~|—(1 —a)0y. (6.303)
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Denote by AMI;’O) the set of all {A,}7°, € Ay, such that

Aix=x, t=1,2,...,x€eF,
and for each integer t > 1,each y e K, x € F and o € (0, 1],
At((xx+(1 —ot)y) =ax+ (1 —a)A;y.

Clearly, A,(f;"o) is a closed subset of A,,.
The topological subspace Af,':’o) c A, will be equipped with the relative topol-

ogy.
We will show (Theorem 6.67) that for a generic sequence of operators {C; };’il in

the space Ai,f’o), all its random infinite products

tend to the set F', uniformly for all x € K. Moreover, under a certain additional
assumption on F, these random products converge to a uniformly continuous re-
traction P, : K — F, uniformly for all x € K (Theorem 6.69).

For each bounded operator A : K — X, we set

Al =sup{l|Ax|l: x € K}. (6.304)
For each x € K and each E C X, we set

d(x, E) =inf{|lx — y|| : y € E}, rad(E) = sup{llyll: y € E}. (6.305)

6.25 A Generic Fixed Point Theorem for Affine Mappings
This section is devoted to the proof of the following result.

Theorem 6.61 There exists a set F C M, which is a countable intersection of open
and everywhere dense subsets of M, such that for each A € F, the following two
assertions hold:

1. There exists a unique x4 € K such that Axs = x4;

2. For each ¢ > 0, there exist a neighborhood U of A in M and a natural number
N such that for each {B;};°, C U and each x € K,

B «---- Bix —xall <& forallintegers T > N.
In the proof of Theorem 6.61 we will need the following lemma.

Lemma 6.62 Let B € M and ¢ € (0, 1) be given. Then there exist B, € M, an
integer ¢ > 1 and y, € K such that

p(B, B;) <e¢, |BLye — yel| <&, t=1,....q,
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and for each z € K the following inequality holds:
|88 3. <.
Proof Choose a number y € (0, 1) for which
8y(rad(K) + 1) <e,
and then an integer ¢ > 1 such that
(1—y)(rad(K)+1) <167 'e
and a natural number N such that
16gN " (rad(K) + 1) <8~ 'e.
Fix xo € K and define a sequence {x;};°, C K by
X411 =Bx;, t=0,1,....
For each integer k > 0, define
k+N-—1
Vi = N1 Z Xi.
i=k
It is easy to see that

Byk:yk+], k=0,1,...,
and foreach k € {0, ..., g},

llvo — yill <2kN~'rad(K) < 2g N~ rad(K).

Define B, : K — K by
B.z:=(1—-y)Bz+vyy), z€K.
It is easy to see that

B.eM and p(B,B,) <2 e

6

Infinite Products

(6.306)

(6.307)

(6.308)

(6.309)

(6.310)

(6.311)

(6.312)

(6.313)

(6.314)

Now let z be an arbitrary point in K. We will show by induction that for each integer

n>1,
n—1
Blz=(1—-y)"B"z+ chiyi»
i=0

(6.315)
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where
n—1
cni >0, i=0,...,n—1, and Zcm+(1—y)"=1. (6.316)
i=0
It is easy to see that for n = 1 our assertion holds.

Assume that it is also valid for an integer n > 1. It follows from (6.313), (6.315),
(6.316), (6.314) and (6.311) that

B!z =yyo+ (1 —y)B(B!z)

n—1
=yyo+(1- y)[(l —y)"B" 4+ Zcm-By,}
i=0

n—1

= (=) B et yyo+ (1 =9) Y cuivigr.
i=0

This implies that our assertion is also valid for n + 1. Therefore for each integer
n > 1, equality (6.315) holds with some constants c,;, i =0,...,n — 1, satisfying
(6.316).

Now we will show that

|82z 3ol <e.

We have already shown that there exist positive numbers ¢;; > 0,i =0,...,g — 1,
such that
q—1 q—1
Y oei+U—y)=1 and Blz=(1-y)Bi2+) cgivi. (6.317)
i=0 i=0

By (6.317), (6.312), (6.307) and (6.308),

g—1
1Bz —yol| < (A=) B2 = yo| + D _cqillyo — yil
i=0

<2(1 —y)?rad(K) 4+ 2¢g N~ ' rad(K)
<167 e +8 g <27 1g,

Thus we have shown that
|BIz— o < 27l foreachze K.
Letr e{l,...,q}. To finish the proof we will show that

| Biyo = yo <e.
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By (6.315) and (6.316), there exist positive numbers ¢, i =0, ..., ¢ — 1, such that

r—1 -1
Y oci+(—y)=1 and Biyo=(1-y)By+) ciy
i=0 i=0

Together with (6.311), (6.312) and (6.308) this implies that

1—1
|yo = Blyo| = |y0 = cuyi— (1 =)' w
i=0
<4gN~'rad(K) <87 'e.
This completes the proof of Lemma 6.62 (with y. = yp). O

Proof of Theorem 6.61 To begin the construction of the set F, let B € M and let
i > 1 be an integer. By Lemma 6.62, there exist CcB.) e M, y(B,i) € K and an
integer ¢ (B, i) > 1 such that

p(B,cPV) <87,
. , (6.318)
[(cBDY y(B,i)—y(B,i)| <87, t=0,...,q(B,i),

and
[(c®B)1 P2 — y(B,i)| <8 foreachze K. (6.319)

By Lemma 6.9, there exists an open neighborhood U (B, i) of C®) in M such that

for each {Aj}‘;(:Bl’i) CU(B,i)andeachz € K,

|Agsiy -+ Arz = (CENIED | <647, (6.320)
It follows from (6.319) and (6.320) that for each {4;}/}")  U(B. ) and each
zeK, ’
|Ag.iy -+ Az —y(B. i) <87 + 647 6.321)
Define
o0
F=UluB.i):BeM i=kk+1,..}.

k=1

It is easy to see that F is a countable intersection of open and everywhere dense
subsets of M.
Assume that A € F and ¢ > 0. Choose a natural number k for which

642K < ¢, (6.322)
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There exist B € M and an integer i > k such that
AeU(B,i). (6.323)
When combined with (6.321) and (6.322), this implies that for each z € K,
|A7BDz —y(B,i)| <8 +647" <e.

Since ¢ is an arbitrary positive number, we conclude that there exists a unique
x4 € K such that Axq = x4. Clearly,

|xa —y(B,i)| <87 +647".

Together with (6.321) and (6.322) this last inequality implies that for each
{AJ-};?OZ1 C U(B,i),each z € K and each integer T > ¢ (B, i),

|Ag -~ Az —xal <2(87 +6477) <e.

This completes the proof of Theorem 6.61. g

6.26 A Weak Ergodic Theorem for Affine Mappings

In this section we will prove the following result.

Theorem 6.63 There exists a set F C AZ{, which is a countable intersection of

open and everywhere dense subsets of AZ]; , such that for each { B;}7° | € F and each

& > 0, there exist a neighborhood U of {B;}{2, in AZ]; and a natural number N such

that for each {C,};’il e U, eachinteger T > N,eachr :{1,..., T} — {1,2,...}and
eachx,y € K,

NCrry----- Crayx —Crry -+~ Crayyl <e.

Proof Fix y, € K. Let {A;}7°, € AZ{ andy € (0,1). Fort =1,2,..., define A,y :
K — K by

Apx=10-p)Aix+yy., x€eKk.
Clearly,
{An)2, € AL s ({A 1 {An 12)) <2y rad(K). (6.324)
Leti > 1 be an integer. Choose a natural number N (y, i) > 4 such that
(1 — )N (rad(K) +1) < 1671471 (6.325)

We will show by induction that for each integer T > 1, the following assertion holds:
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Foreachr:{1,...,T}— {1,2,...}, there exists y, 7 € K such that

Aryy Aryy X
== Ay Arayx+ (1= A=) )yrr (6.326)
foreach x € K.

It is clear that for T = 1 this assertion is true. Assume that it is also true for an
integer T > 1. It follows from (6.327) that for each r : {1,..., T + 1} - {1,2,...}
and each x € K,

Ar+ny o Aryyx

=Ar a0y [Aray - Aryyx]
= Arrny [ — MA@y - Aryx + (1—(1— V)T)yr,T]
=yye+ U —y) A1 — WAy - Arapx+ (1= (1= V)T)yr,T]
=0-n""Aq o Aax+ A=) (1= A=) A aiyyer
+ ¥ Vs

This implies that the assertion is also valid for T 4 1. Therefore we have shown that
our assertion is true for any integer T > 1. Together with (6.325) this implies that
the following property holds:
(a) For each integer T > N(y,i), each r : {1,..., T} — {1,2,...} and each
x,yeKkK,
IArryy - Ar(yyx — Arryy oo Ayl
<2(1—y)Trad(K) <87 !.471,

By Lemma 6.9, there is an open neighborhood U ({A;}2,, v, i) of {A;,}72, in
A4l such that for each {Ci}72, e U({AL2,, v, 1), each

re{l Ny = (1,2,
and each x € K,
ICr Ny« - CrayX — Ar(N(yipyy =" Aryyxl 647147

When combined with property (a) this implies that the following property also
holds:

(b) For each integer T > N(y,i),eachr:{l,...,T} - {1,2,...},eachx,ye K
and each {C/}72, e U({A/};2,, v, 1),

NCrry----- Crayx = Crry -+~ Crayyll <4771 (6.327)
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Define

Fi= ﬂU (AN Ly, i) AN € Ay € 0, 1), i=q,q+1,...}).

Clearly, F is a countable intersection of open and everywhere dense subsets of A%
Let {B;};2, € F and & > 0 be given. Choose a natural number g for which

64.-271 <¢. (6.328)
There exist {A;}7°, € .Aue, y € (0, 1) and an integer i > ¢ such that
{Bi}i2, € U({At}?il, Y, i)-

By property (b) and (6.328), for each {Ct} 21 € U({A,}l 1 Vsi),eachT > N(y,i),
eachr:{1,...,T}—{1,2,. }andeachx yeK,

”Cr(T) """ C,(l)x — Cr(T) e Cr(l)y” < 471'71 <e

This completes the proof of Theorem 6.63. g

6.27 Affine Mappings with a Common Fixed Point
In this section we will state three theorems which will be proved in the next section.

Theorem 6.64 There exists a set F C Age, which is a countable intersection of
open and everywhere dense subsets of A%, such that F C A%, and for each B =
{B:};2, € F, the following assertion holds:

Let xg € K, Bixg =x, t =1,2,..., and let ¢ > 0. Then there exist a neigh-
borhood U of B = {Bt} 2, in .Aue and a natural number N such that for each
{Ci}2, €U, eachmtegerT>N eachr:{1,...,T}—{1,2,...}and each x € K ,

NCrry----- Crayx —xgll <e.

Denote by A,(u) the set of all A = {A;};2, € Ay, for which there exists xp € K
such that
Apxa=xa, t=1,2,..., (6.329)
and for each & € (0, 1), x € K and an integer t > 1,

A,(axA + (1 - ot)x) =oaxp + (1 —a)Ax.

Denote by Aﬁ,e) the closure of .AmZ in the space A,.. We equip the topological
subspace ALY c Ay with the relative topology.
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Theorem 6.65 Let a set F C f(ge be as guaranteed in Theorem 6.64. There exists

aset FV c Fn .A,(,le) which is a countable intersection of open and everywhere
dense subsets of Af,le).

Denote by AZ‘QO the set of all A = {A,}°, € Aﬁé for which there exists xp € K
such that (6.329) holds.

Denote by AZJ; o the closure of AZJ; o in the space A,.. We also consider the
topological subspace AZJ:,O C A, with the relative topology.

Theorem 6.66 Let a set FV be as guaranteed in Theorem 6.65. There exists a set
FecFOn .AZ]; o Which is a countable intersection of open and everywhere dense

—af
subsets of A, o-

Theorems 6.65 and 6.66 show that the generic convergence established in Theo-
rem 6.64 is also valid for certain subspaces of AY,.

6.28 Proofs of Theorems 6.64, 6.65 and 6.66

Proof of Theorem 6.64 Let A ={A;}7°, € Age and y € (0, 1). There exists xp € K
such that

Aixpa=xp, t=1,2,..., (6.330)
and for each integer ¢ > 1, x € K and o € (0, 1),

Ay (och +(1— (x)x) =M (o, x)xp + (1 — A(a, x))A,x (6.331)

with some constant A;(«, x) € [a, 1].
Fort=1,2,...,define A;, : K — K by

Apx=1—-py)Ax+yxa, xek. (6.332)
Clearly,

{Ap}2, € Auer  Appxa=xa, 1=1,2,.... (6.333)

Letx € K, 2 €[0,1) and let ¢ > 1 be an integer. Then there exists A;(«, x) € [, 1]
such that (6.331) holds. Also, by (6.331) and (6.332),

Ay (axA +(1— a)x)
=1 —y)Ai(axs + (1 —a)x) + yxa
=yxa+ 1 —y)[A(e, x)xa + (1 — (@, x)) Arx]
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=(1=y)(1 =A@, 0))Ax + [y + (1 = y)hi(e, x)]|xa
= (1= 2@ 0)) Ayx + [y + (1 = )@, x) =y (1 = A (e, ) Jxa
= (l — M (a, x))A,yx + A (a, x)xA. (6.334)
Thus property (6.301) is satisfied and therefore
{A )2 € Ay, (6.335)

Let z € K. We will show by induction that for each integer 7 > 1 and each
r:{l,...,T}—>{1,2,...}, there exists A(z, T, r) € [0, (1 — y)T] such that

Armyy o Ar(yy2
=A@ T.r)Arqy -+ Aryz+ (1= Az, T, r))xa. (6.336)

It is clear that for 7 = 1 our assertion is valid.

Assume that it is also valid for an integer 7 > 1. Let r : {1,..., T + 1} —
{1,2,...}. There exists A(z, T, r) € [0, (1 — ¥)T] such that (6.336) is valid. It fol-
lows from (6.336) and (6.334) that

Ar(T41yy - Ar(yz
= Ay M@ T Arry -+ Az + (1= Az, T, 1)) xa]
=0 -)A-)ArT+1)ArT) - Aryz+ [y + A —y)x]xa
with k € [1 — A(z, T, r), 1]. Set
AMz, T+1,r)=(10—-y)1A —«).
It is easy to see that
0<A@T+1Ln)<U-prET,r)<d-p)'
and
ArT+iyy o Ar(yz
=AMz, T+ 1L,r)A g1y Aryz+ (1= Az, T +1,r))xa.

Therefore the assertion is valid for 7' 4 1. Thus we have shown that for each integer
T>1andeachr:{1,...,T}— {1,2,...}, there exists A(z, T, r) € [0, (1 — y)T]
such that (6.336) holds.

Let i > 1 be an integer. Choose a natural number N (y, i) for which

64(1 — )N (rad(K) + 1) < 87" (6.337)

We will show that for each z € K, each integer T > N(y,i) and each r :
{1,..., T} > {1,2,...},

IArTyy - Arqyyz — xall <877 (6.338)



332 6 Infinite Products

Let T > N(y,i) be an integer, z € K and r : {1,..., T} — {1,2,...}. There exists
Mz, T,r)e]0, (1 — y)T] such that (6.336) holds. It is easy to see that (6.336) and
(6.337) imply (6.338).

By Lemma 6.9, there exists a number

S({AN2,, v,i) € (0,167187) (6.339)
such that for each {C;}7°, € A . satisfying
ps (G2 (AR )21) < 8({AN2 v, i),
eachr:{1,...,N(y,i)} > {1,2,...} andeach x € K,
ICr NGy -+ CryX — ANy - Aryyxl < 16718700 (6.340)

Set

U({AZ) v 0)
={{C2, € A, 1 ps (1G22 {An 172)) < S({A2, v.i) ). (6.341)
It follows from (6.341), the choice of §({A;};2,,y,1) (see (6.339), (6.340)) and
(6.338) that the following property holds:

(a) For each {C/};2, € U({A:}72,,y.1), each integer T > N(y,i), each r :
{1,..., T} —>{1,2,...} andeach x € K,

NCrry----- Crayx —xall <87

Define

Fi= ﬂU (A2 v 1) HANZ € Ay €0, D) i=q, g+ 1,...}.

It is easy to see that F is a countable intersection of open and everywhere dense
subsets of AY,.

Assume now that B = {B;}{°, € F and ¢ > 0. Choose a natural number g such
that

64-279 <. (6.342)

There exist {A;}7°, € A° 'y €(0,1) and an integer i > ¢ such that

(B2, € U({ANZ, v, i) (6.343)

By property (a), (6.343) and (6.342), for each x € K, each integer T > N (y, i) and
each integer 7 > 1,

|BIx —xa <87 <e. (6.344)
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Since ¢ is an arbitrary positive number, we conclude that there exists xg € K such
that

lim B,Tx =XB
T—o00

for each x € K and each integer T > 1. It is easy to see that
Bixg=xp, t=12,... ||lxg—xall <8 <e. (6.345)

It follows from property (a), (6.345) and (6.342) that for each sequence {C;};°, €
U({A,};’il, y,i), each integer T > N(y,i), each r : {1,..., T} — {1,2,...} and
eachx € K,

”Cr(T) e C,.(l)x - XB|| <Eé&. (6.346)

We will show that for each integerr > 1, x € K and « € (0, 1), there exists A € [¢, 1]
such that

B, (oth + (1 - oc)x) =Axg + (1 — 1) B;x. (6.347)

Letz > 1 be an integer, x € K andlet o € (0, 1). By (6.331) and (6.334), there exists
A € [, 1] such that

Ay (axA + (1 - a)x) =Aexpa + (1 —Ag)Apx. (6.348)

Since ¢ is an arbitrary positive number, it follows from (6.348), (6.345), (6.343),
(6.341), (6.339) and (6.342) that for each & > 0, there exist A € [, 1] and z; € K
such that

lze —xgll <&, | Bi(oze + (1 —a)x) — (hexp + (1 — X)) Byx)|| <e.

This implies that (6.347) holds with some A € [«, 1] and completes the proof of
Theorem 6.64. O

Proof of Theorem 6.65 Let F be as constructed in the proof of Theorem 6.64. Let
A={A)2, € Af,le), y € (0,1) and let i > 1 be an integer. There exists x5 € K
such that (6.340) holds, and for each x € K, each integer # > 1 and each « € [0, 1],
equality (6.331) holds with A, (o, x) =a. Fort =1,2, ..., define A;, : K — K by
(6.332). It is easy to see that {A;,}7°, € .Ai,le). Choose a natural number N (y, i) for
which (6.337) holds. Let 6({A,};’il, y,i) and U({At}fil, y, i) be defined as in the
proof of Theorem 6.64. Set

FO . |:m U{U({At};}il’ Y, i) :
=1

(A2 € ARy €0, 1 i=q.q+ 1,...}] nAD.
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Clearly, 71 is a countable intersection of open and everywhere dense subsets of
/_l,(,le) and F(U ¢ F. Arguing as in the proof of Theorem 6.64, we can show that
FD ¢ .Ai,le). This completes the proof of Theorem 6.65. U

The proof of Theorem 6.66 is analogous to that of Theorem 6.65.

6.29 Weak Convergence

In this section we present two theorems concerning the space .A,(;’O) defined in
Sect. 6.24. Recall that F is a nonempty, closed and convex subset of K for which
there exists a uniformly continuous operator Q : K — F such that

Ox=x, xe€F, (6.349)
and foreach ye K, x € F and o € [0, 1],
Q(ax+(1—a)y)=ax+(1 —a)Qy. (6.350)
We now state our first theorem.

Theorem 6.67 There exists a set F C .A,(li’o) which is a countable intersection
of open everywhere dense sets in .A,(,}Z’O) and such that for each {B;};2, € F, the

following assertion holds:

For each ¢ > 0, there exist a neighborhood U of {B,};2, in the space Ai,?o)

and a natural number N such that for each {C,};’il € U, each integer T > N, each
r:{1,2,...,T}—>{1,2,...} and each x € K,
d(Crery -+ Crayx, F) <e.
Assume now that for each x, y € K and « € [0, 1],

Q(ax+(1 —a)y):an+(1 —a)Q0y. (6.351)

Denote by A,(f:’l) the set of all {A;}7°, € A, such that
Aix=x, t=1,2,...,x€eF,

and foreachr € {1,2,...},each x, y € K and each « € [0, 1],

A,(ax + (1 — (x)y) =aAx+ (1 —a)Ay.

It is clear that ,45,5’” is a closed subset of A}}Z‘”. We consider the topological sub-
space AED = AL with the relative topology.
Here is our second theorem.
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Theorem 6.68 Let the set F be as guaranteed in Theorem 6.67. Then there exists

aset F1 CFnN .A,(,IZ’]) which is a countable intersection of open everywhere dense
subsets of Af,ﬁ D,

6.30 Proofs of Theorems 6.67 and 6.68

Proof of Theorem 6.67 Let {A}2, € A%L'” and y € (0, 1) be given. For 1 =
1,2, ... we define A;, : K — K by

Apx=(1-py)Ax+y0x, xeKk. (6.352)
It is easy to see that
(A )22, € ALO, (6.353)

Let z € K. By induction we will show that for each integer 7 > 1, the following
assertion holds:
Foreachr:{1,...,T}— {1,2,...},

Arryy Arayyz=0 =T Ay - Armz+(1=A=pT)yr (6.359)

for some yr € F.

Clearly, for T =1 our assertion is valid. Assume that it is also valid for 7" > 1
andthatr: {1,..., T+ 1} — {1,2,...}. Evidently, (6.354) holds with some yr € F.
By (6.354), (6.353) and (6.352),

ArT+y o Aryy2
=Arr4ny [A=TArry - Az + (1= (A=) )yr]

=0 -MT"ArarylArry - Ay + (1= A=) T)yr

== Aaqy Az
+y(U =T OlA a1y -+ Azl + (1= =T )yr
== A Az

+(1=A=p)™) (== ya-—pT
x QA - Arnyl+ (1= A=) (1= (1 = )T)yr].

This implies that our assertion also holds for 7+ 1.
Therefore we have shown that it is valid for all integers 7' > 1.
Leti > 1 be an integer. Choose a natural number N (y, i) for which

64(1 — )N (rad(K) 4+ 1) <87". (6.355)
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It follows from (6.354) that for each z € K, each integer T > N(y,i) and each
r:{l,...,T}—>{1,2,...},

d(Arryy -+ Aryyz, F) <8771 (6.356)

By Lemma 6.9, there exists an open neighborhood U({A,};’il, y,i) of {Aty}?il in

A(F 0 such that the following property holds:
(a) for each {Ct 2, € U({At}t Lpysi),eachr i {1,...,N(y,i)} - {1,2,...}
and each x € K,

ICr Ny -+ CrapX — Ar(vpaiyyy - Aryyxll < 1671877

It follows from the definition of U ({A,}fil, y,i) and (6.356) that the following
property is also true:

(b) For each {C;}7°, € U({A/};2,, v,i), each integer T > N(y,i), each r :

{1,...,T}—>{1,2,...} andeach x € K,
d(Crery -+ Crayx, F) <87".

Define

mU {A }t l’yv) {Ai}t 1EA(FO)»}/6(091)’i=q’q+17”'}'

It is easy to see that F is a countable intersection of open and everywhere dense

subsets of A 0,
Assume that {B;}7°, € F and & > 0. Choose a natural number g such that

64.-271 <¢. (6.357)
There exist {A;}7°, € AL 0 y € (0,1) and an integer i > ¢ such that {B;}°
U{A; }[:1, y,1). By (6.357) and property (b), for each {C,} 21 € U({A,}t 1 Ys z)
each integer T > N(y,i),eachr:{l,..., T} — {1,2,. }and eachx € K,
d(Cry-----Crayx, F) < e.
This completes the proof of Theorem 6.67. g

Analogously to the proof of Theorem 6.65 we can prove Theorem 6.68 by mod-
ifying the proof of Theorem 6.67.

6.31 Affine Mappings with a Common Set of Fixed Points

In this section we assume that F' is a nonempty, closed and convex subset of K, and
Q : K — F is a uniformly continuous retraction satisfying (6.350).
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We assume, in addition, that there exists a number A > 0 such that
[xeX:dx, F)< A}l CK.

In this setting we can strengthen Theorem 6.67.

Theorem 6.69 Let the set F C Aue P9 be as constructed in the proof of Theo-
rem 6.67. Then for each {B;}°, € F, the following two assertions hold:

1. Foreachr:{1,2,...} = {1, 2,...}, there exists a uniformly continuous oper-
ator P, : K — F such that

lim Bycry----- B,(yx = P.x foreachx € K.
T—00
2. For each & > 0, there exist a neighborhood U of {B;}°, in the space A

and a natural number N such that for each {C/};2, € U, each r : {1,2,...} —
{1,2,...} and each integer T > N,

ICrery----- Crayx — Pex|| <& forallx € K.

Proof As in the previous section, given {A,}7°, € A(F 0 , ¥ €(0,1) and an in-

teger i > 1, we define {A;,};°, € Aff; 0 (see (6.352)), a natural number N(y, i)

(see (6.355)) and an open neighborhood U ({A}72,, v, i) of {A;,}72, in Aue 0 (see

property (a)). Again, as in the previous section, we define a set F which is a count-

able intersection of open and everywhere dense sets in .Af,i 0 b

Fi= ﬂU (AN, v, i) {ANR, € ALD Yy € (0, ), i=q,qg+1,...}.

Assume that {B,} 2, € Fand ¢ € (0, 1). Choose a number &g such that
g0 < 64~ ! (min{e, A}), 820A™! (rad(K) + 1) <87 'e. (6.358)
Choose a natural number g such that
64279 < g. (6.359)
There exist {A; } 21 € .A(F 0), y € (0, 1) and an integer i > ¢ such that
{Bi}2, € U(fA12,, v, i). (6.360)
It was shown in the previous section (see (6.356)) that the following property holds:

(c) For each z € K, each integer T > N(y,i) and each r : {1,...,T} —
{1,2,...},

d(Arryy -+ Aryyz, F) <8771
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By the definition of U({At}?ip y, 1) (see Sect. 6.30 and property (a)), the following
property holds:

(d) for each {C/}72, € U{A}2,,y,i), each r : {1,...,N(y,i)} — {1,2,...}
and each x € K,

ICr @y =+ Cryd = Arvepainy - Arayy x| < 1671877

Assume that r : {1,2,...} — {1,2,...}. Then by property (c), for each x € K
there exists f,(x) € K such that

| Aravriny - Aryyx = fr0] <2870 (6.361)

We will show that for each {C;}7°, € U({A;}2,, v, i), each integer T > N(y, i)
and each x € K,

|Crary -+ Cranx = fr(0)]| <87 (6.362)
Let {C/}72, e U{A:}72,,v,i) and let x € K. By (6.361) and property (d),
ICravey,ipy - Crayx — fr0)| =87 (167" +471). (6.363)

Set
7= fr(x) + SiA[Cr(N(y,i)) ~~~~~ Crayx — fr(@)]. (6.364)
It follows from (6.363), (6.364) and the definition of A that z € K and

CrNG,ipy "+ Crayx=8""A7"z+ (1-872a7") fr(x). (6.365)
It follows from (6.365), (6.358) and (6.359) that for each integer 7 > N (y, i),
Crary oo Crayx =87 AT Crpy - Crvgyiyrnz + (1-87471) fr(x).
Together with (6.366) and (6.358) this implies that for each integer T > N (y, i),
|Crery -+ Cryx — fr(x)]| <2rad(K)8 ' A™! <87 e,

Therefore we have shown that for each r : {1,2,...} - {1,2,...} and each x € K,
there exists f,-(x) € F such that the following property holds:

(e) For each {C/}2, € U({A;};2,,v.i), each integer T > N(y,i) and each
x € K, inequality (6.362) is valid.

Since ¢ is an arbitrary positive number, this implies that foreach r : {1,2,...} —
{1,2, ...}, there exists an operator P, : K — K such that

lim Bycpy----- B,ihyx=PFPx, xek. (6.366)
T—o00
Letr:{1,2,...} = {1,2,...} be given. By (6.366), property (e) and (6.362),

|Px— fr0] <87%e, xeKk,
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and for each {C;}7°, € U({A;}2,, v, i), eachinteger T > N(y,i) and each x € K,

[Crry - Crapx = Pr0) | <47 e

This completes the proof of Theorem 6.69. 0

6.32 Infinite Products of Resolvents of Accretive Operators

Accretive operators and their resolvents play an important role in nonlinear func-
tional analysis [16, 20, 24, 46]. Infinite products of resolvents of accretive operators
and their applications were investigated, for example, in [21, 25, 70, 104, 120, 167,
172].

We use Baire’s category to study the asymptotic behavior of infinite products of
resolvents of a generic m-accretive operator on a general Banach space X. We prove
a weak ergodic theorem (Theorem 6.71) and Theorem 6.72, which provides strong
convergence of infinite products to the unique zero of such an operator. These re-
sults were obtained in [134]. More precisely, we consider two spaces of m-accretive
operators on X. The first space is the space of all m-accretive operators endowed
with an appropriate complete metrizable uniformity. The second space is the closure
in the first space of all those operators which have a zero. For the first space we con-
struct a subset which is a countable intersection of open and everywhere dense sets
such that for each operator belonging to this subset, all infinite products of resol-
vents have the same asymptotics. For the second space we again construct a subset
which is a countable intersection of open and everywhere dense sets such that for
each operator belonging to this subset, all infinite products of resolvents converge
uniformly on bounded subsets of X to the unique zero of the operator.

Let (X, || - ||) be a Banach space. We denote by I : X — X the identity operator
on X (thatis, Ix = x, x € X). Recall that a set-valued operator A : X — 2X with a
nonempty domain

DA)={xeX:Ax # 0}
and range
R(A) = {y € X :y e Ax for some x € D(A)}
is said to be accretive if
Ix =yl < [x =y +r@—v) (6.367)

for all x,y € D(A), u € Ax, v € Ay and r > 0. When the operator A is accretive,
then it follows from (6.367) that its resolvents

JA=U +rA)7 VR +rA) = D(A) (6.368)
are single-valued nonexpansive operators for all positive r. In other words,

|72 = 72y < llx =yl (6.369)
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for all x and y in D(JrA) = R(I + rA). As usual, the graph of the operator A is
defined by

graph(A) = {(x,y) € X x X : y € Ax}.

Note that if A is accretive, then the operator A : X — 2% the graph of which is the
closure of graph(A) in the norm topology of X x X, is also accretive. We will say
that the operator A is closed if its graph is closed in X x X.

An accretive operator A : X — X is said to be m-accretive if

R(I+rA)=X forallr>0.

Note that if X is a Hilbert space (H, (-, -)), then an operator A is accretive if and
only if it is monotone; that is, if and only if

(u —v,x —y)=>0 forall (x,u), (y,v) € graph(A).

It is well known that in a Hilbert space an operator A is m-accretive if and only
if it is maximal monotone. It is not difficult to see that in any Banach space an
m-accretive operator is maximal accretive; that is, if A: X — X is accretive and
graph(A) C graph(A), then A = A. However, the converse is not true in general.

In the sequel we are going to use a certain topology on the space of nonempty
closed subsets of ¥ = X x X. We will now define this topology in a more general
setting (cf. [11]). Let (Y, p) be a complete metric space. Fix 6 € Y. For each r > 0,
define

Ye={yeY:p(y.0)=r}
For each y € Y and each E C Y, define
p(y, E)=inf{p(y,2) :z € E}.

Denote by S(Y) the set of all nonempty and closed subsets of Y. For F, G € S(Y)
and an integer n > 1, define

ha(F,G) = sup |p(y, F) — p(y. G)|.
yeyY,

Clearly, h,(F, G) < oo for each integer n > 1 and each pair of sets F, G € S(Y).
For the set S(Y) we consider the uniformity generated by the following base:

E(m)y={(F.G)eS(Y)x S(Y):hy(F,G) <n™'}, n=1,2,.... (6.370)
This uniform space is metrizable by the metric

h(F,G)=> 27"[hy(F.G)/(1+ ha(F.G))] (6.371)

n=1

and the metric space (S(Y), k) is complete.
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From now on we apply the above to the space Y = X x X with the metric
p((x1,x2), z1.22)) = llx1 — 21l + e — 220, xi,zi € X,i=1,2,

and with 6 = (0, 0).
Denote by M, the set of all closed accretive operators A : X — 2X. For each
A, B € M, define

hq(A, B) = h(graph(A), graph(B)). (6.372)

Clearly, (Mg, hg) is a metric space and the set {graph(A) : A € M,} is a closed
subset of S(X x X). Therefore (Mg, h,) is a complete metric space. Denote by
M,, the set of all m-accretive operators A € M,,.

Proposition 6.70 M,, is a closed subset of M.

Proof Suppose that {A;}7°, C M,;, A € Mg, and that A; — A as i — 00 in M.
Assume that r is a positive number. We have to show that R(I 4+ rA) = X. To this
end, let z € X. For each integer n > 1, there exists y, € X for which

ze€({ +rA,)y, orequivalently, y,=(+ rA,,)flz. (6.373)

We will show that the sequence {y,}°°, is bounded. To this end, fix (x,u) €

n=1

graph(A). There is a sequence {(x,, u,)};>; C X x X such that

(xp,upn) € graph(A,), n=1,2,..., and lim (x,,u,) = (x,u). (6.374)
n—>oo

For each integer n > 1,
Xp=+rA) " +ruy) and  xy — yull < loxw +rug — 2zl (6.375)

By (6.374) and (6.375), the sequence {y,,};’l":1 is indeed bounded. By (6.373), for
each integer n > 1, there exists v, for which

vy € Ap(yn) and z=y, +ru,. (6.376)

o0

Clearly, the sequence {(yn, v)}, 2 is also bounded. There exists a sequence

{ G, Bn)} -, C graph(A)
such that
150 — Yull + |9p — vall = 0 asn — oo. (6.377)

Set, for all integers n > 1,

I =Yn+710, € +1rA)Y,. (6.378)
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By (6.376)-(6.378),

lim z, =z and |lzn —zkll = |y» — Y|l for all integers n, k.
n—>oo

Therefore the sequence {(y, vn)}°° | converges to (y, v) € graph(A). Clearly, z =
y + rv. Proposition 6.70 is proved. 0

Denote by M, the set of all A € M,, such that there exists x4 for which 0 €
A(x4) and denote by M the closure of M in M,,. The two complete metric
spaces (M,,, hy) and (/\;l;:,, h,) are the focal points of our investigations. Finally,
we denote by M the set of all A € M, for which there exists x4 € X such that

0€A(xa) and (J{)"(x)—>xa asn— ooforallx € X.

Let {r,}72, be a sequence of positive numbers such that

o0
<1, n=1,2,..., lim 7, =0 and anzoo (6.379)

n—0o0
andlet 7 > 1.

Theorem 6.71 There exists a set F C M,,, which is a countable intersection of
open and everywhere dense sets in M,, such that for each A € F, each § > 0 and
each K > 0 the following assertion holds:

There exist a neighborhood U of A in M,, and an integer ng > 1 such that
for each sequence of positive numbers {r,},° | satisfying ¥ >r, >, n=1,2,.
each B € U and each x,y € X satisfying || x||, |y|| < K, we have

||]B JB ... JBX__]B JB ... ]rll?yufg

n—1 I'n—1

for all integers n > ny.

We remark in passing that such a result is called a weak ergodic theorem in
population biology [43]. It means that for a generic operator in M,, all infinite
products of its resolvents become eventually close to each other.

Theorem 6.72 There exists a set F C MS ﬂ/\;l;“n, which is a countable intersection

of open and everywhere dense sets in /\;l;;, such that for each A € F, the following
two assertions hold:

(1) There exists a unique x4 € X such that 0 € A(x4).

(ii) Foreach 8 > 0 and each K > 0, there exist a neighborhood U of A in M, and
an integer no > 1 such that for each sequence of positive numbers {r,}>° | sat-
isfying r >rp, >irp,n=1,2,...,each BeUN Mg and each x € X satisfying
Ix|| < K, we have

|72 g8 e TPx —xs| <8

Tn—1

for all integers n > ny.
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This result means that a generic operator in /\;l:‘n has a unique zero and all the
infinite products of its resolvents converge uniformly on bounded subsets of X to
this zero.

6.33 Aucxiliary Results

Let {r,}72, C (0, 1) satisfy (6.379) and let 7 > 1.

Lemma 6.73 Let A € M,,, Ko > 0 and let ng > 2 be an integer. Then there exist a
neighborhood U of A in My, and a number co > 0 such that for each B € U, each

sequence {r,-}?i?l C (0,7) and each sequence {x; }?il C X satisfying ||x1|| < Ko,
Xit] = .If(xi), i=1,...,n0—1,we have |x;|| <co foralli=1,..., ngp.

Proof Choose (x4, uy4) € graph(A). There exists a neighborhood U of A in M,,
such that for each B € U there exists (xp, up) € graph(B) satisfying

lxg —xall + llua —upl <1. (6.380)
Assume that B e U,
Y c.p),  xmeX,  Iml<Ko and
R (6.381)
xi+1=Jr[_(xi), i=1,...,n0—1.
We will estimate ||x; || fori =1, ..., ng. To this end, set
zi=xp+riug, i=1,...,n9—1. (6.382)

For such i we clearly have by (6.380)—(6.382),
xp=J2G),  llxp —xiil < llzi = xil
and

Ixigtll < llxpll + Ixill + llzill < llxill + llxall + 1+ llxp + riugll
< lxill + 1+ llxall + llxgll + Flluspll
< llxill + 14+ 20xall + 1+ 7 (luall + 1).

This implies that fori =1, ...,n9 — 1,
i1l < ilxall + 2 4 F(lluall + 1)) + Ko.
The proof of Lemma 6.73 is complete. d

Assumption (6.379) and Lemma 6.73 imply the following result.
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Lemma 6.74 Let A € M,,, Ko > 0 and let ng > 2 be an integer. Then there exist
a neighborhood U of A in M, and a number c| > 0 such that for each B € U,
each sequence ri € [r;,7),i =1,...,n0 — 1, and each two sequences {x; };21 CcX,
{yi}?oz C X satisfying

B
lx1ll < Ko, Xip1 = Jp; (%),
Xi = Xit1 +TiYigls Yi+1 € B(xit1), i=1,...,n0—1,
the following two estimates hold:

lxll<ci, i=1,...,n0, and |yill<c1, i=2,...,np.

Lemma 6.75 Let A € M,,;, x4 € X, 0 € A(xy), € > 0 and let ng > 2 be an integer.
Then there exists a neighborhood U of A in M, such that for each B € U and each

sequence ri € (0,7),i=1,...,n9 — 1, there exists a sequence {xi}?il C X such
that
xip1=JEG), i=1,....no—1, and |xi—xJl<e, i=1,...no.
Proof Choose a natural number p such that
p>44+no+|x]l and p>7r(no+ l)(inf{l, 8})_1 (6.383)
and define
U ={B e M, :hp,(graph(A), graph(B)) < p~'}. (6.384)

Assume that Be U and r; € (0,7),i =1,...,n9 — 1. By (6.383) and (6.384), there
exists (x1, y1) € graph(B) such that

et = xll + yill < p~1 (6.385)

Set
E=x1+riy, i=1,....,n0—1. (6.386)

Then

Xy = J,?(Ei) and |x1—§&ll<F/p, i=1,...,n0— 1. (6.387)

Set
xipi=JP (), i=1,....no—L (6.388)
Since fori =1, ...,n9—1, J,? is a nonexpansive operator, it follows from (6.385)—

(6.388) that for each integer k € [2, ng], we have

llxx = x1ll < llxk—1 — &k—1ll < llxx—1 — x1ll + 7l

< Ixk—1 —x1ll +7/p, llxx —x1ll =kr/p
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and
lxk — xall < Ik — x1ll + llx1 — x4l < k+ 1)i/p < (no+ )i/ p < e.

This completes the proof of Lemma 6.75. g

6.34 Proof of Theorem 6.71

For each A € M,,, £ € X and each positive number y, let the operator A, ¢ be
defined by

Ayex=Ax+y(x—§&), xeX.

We begin the proof with the following three observations.

Lemma 6.76 IfAec M, ,§cXandy >0, then Ay, ¢ € M,,.

Lemma 6.77 Let Aec M,,,§e€ X, y,r>0andlet x,y € X. Then
AR R AR O IR P ]

Lemma 6.78 For each fixed § € X, the set {A, ¢ : A e M,,,y € (0, 1)} is every-
where dense in M,,.

In the rest of the proof we assume that (cf. (6.379))

o0
F>1, {Fa)2, C (0, 1), lim 7, =0 and Y F=oco. (6.389)
n—oo

n=1

Lemma 6.79 Let Ae M,,, § € X, y € (0,1) and 8, K > 0. Then there exist a
neighborhood U of A, ¢ in M,, and an integer no > 4 such that for each B € U,
each sequence of numbers ri € [r;,7),i =1,...,n90 — 1, and each x, y € X satisfy-
ing ||x|l, |yl < K, the following estimate holds:

(FAE AR JPx—gf gB Iy <s. (6.390)

Tng—1 Tnp—2 Fng—1 Tng—2
Proof Choose a number y such that
vo € (0, y). (6.391)

Clearly

n

[T +wi)— 00 asn— . (6.392)

i=1



346 6 Infinite Products

Therefore there exists an integer ng > 4 such that

no—1
(2K +2) ]_[ (1+yor) "' <8/2. (6.393)

i=1

By Lemma 6.74, there exist a neighborhood Uy of A, ¢ in M,, and a number ¢; > 0
such that for each B € Uy, each sequence r; € [r;,7;),i =1,...,n9 — 1, and each
pair of sequences {x;};2, C X and {u;};2, C X satisfying

X1l < K, xip1=J72(x), Xi = Xig1 FTilliy1,
(6.394)
uiy1 € B(xjy1), i=1,...,n0—1,
the following estimates hold:
lxill <c1, i=1,...,n0, and J|lu;|| <c1, i=2,...,n0. (6.395)
Choose a natural number m; such that
mip > 4(n0 +8(c1 + l)),
. (6.396)
[L+ i) = +yi) '8 >2@+7m]', i=1,....n,
and set
U= {B e U :hp, (graph(Ay,g), graph(B)) < ml_l } (6.397)
Assume that Be U, r; €[r;,7),i=1,...,n9— 1, and
x,y€X and x|, |yl =K. (6.398)
Set
X=X, yi=y,
5 2 (6.399)
Xit] = Jr,» (xj) and yi41= Jrl, (i), i=1,....,n9—1.
Foreachi =1,...,n9 — 1, there exist u;4+1 and v;41 € X such that
ui+1 € B(xi+1), Vi+1 € B(yi+1),
(6.400)
Xi =Xi41 +riuiyr and  y; = Y41 +rivigg.
It follows from the definition of U; (see (6.394)) and (6.400) that
lxill, lyill <ci, i=1,....n0 and |lu;illllvill <c1, i=2,...,n0. (6.401)

To prove the lemma it is sufficient to show that

”xno — Yno ” = J. (6402)
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Assume the contrary. Then
lxi —yill =68, i=1,...,np. (6.403)

Leti e{l,...,n9 — 1}. It follows from (6.400), (6.401), (6.397) and (6.396) that
there exist

(Xit1,ui+1) € graph(Ay ¢) and  (it1, Ui+1) € graph(Ay ¢) (6.404)
such that
I¥i1 = Xit1ll + litie1 —uierl <mp'  and
. . X (6.405)
Vi1 — yi+rll + 10i41 —vig1ll <my .
Set
Xi =Xiy1+ritti+1  and  y; = yip) +riviql. (6.406)
By Lemma 6.77, (6.404) and (6.406),
_ _ Ave - Avs - 1i- -
%41 — Fiprll = | 7% = I 75 5 | < A4+ yr) 7 HIE = will
< (U +yr) E = il (6.407)
It follow from (6.406), (6.400) and (6.405) that
1% — xill < IXi1 — Xt |+ rillien — wigall < my (L+7) (6.408)

and
15 = yill < i1 = Yist | +rillDis1 — vigall < my (L +7).
By (6.405), (6.407) and (6.408),
xip1 = Yirtll < %1 = Fiprll +2m7 <2m7 + A+ i) 7 IE = 3l

<2mi'+ A+ yr) 7 (Il = yill +2m7 (14 7))

< (L +yi) lx = il +2m7 1+ A+ yi) 7 (1 +7)

< (L+yi) Mxi — yill +2m; '@+ 7). (6.409)
Now (6.409), (6.396) and (6.403) imply that

Ixig1 = yisr Il < (L +vor) ™ Hlxy — yi

and since these inequalities are valid for all i € {1,...,n9 — 1}, it follows from
(6.398), (6.399) and (6.393) that

no—1

Xy = ynoll < 2K T 1+ i) ~" < /2.

i=1

This contradicts (6.403). Therefore (6.402) is true and Lemma 6.79 is proved. [
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Completion of the proof of Theorem 6.71 Let A € My, € =0, y € (0, 1) and let
i > 1 be an integer. By Lemma 6.79, there exist an open neighborhood U (A, y, i)
of Ay in M,, and an integer q(A, y,i) > 4 such that for each B € U(A, y, i),
each sequence of numbers r; € [r;,7),i =1,...,q(A,y,i) —l,andeach x,y € X
satisfying || x||, || y|l < 2/*!, the following estimate holds:

(A I =0 JBy| <2771,

Define

F=UU@A.v.i): Ae My, y €0, 1),i =n}.

n=1

Clearly (see Lemma 6.78), F is a countable intersection of open and everywhere
dense sets in M,,. Let A € F, § > 0 and K > 0 be given. Choose an integer n >
2K +2+85~L. There exist C € M,,, y€(0,1)andi >nsuchthat Ac U(C, y,i).
The validity of Theorem 6.71 now follows from the definitions of U(C, y,i) and
q(C,y, D).

6.35 Proof of Theorem 6.72

Let

[o,0]
F>1, {Fa)2, C (0, 1), lim 7, =0 and Y F=oco. (6410)
n—oo

n=lI
By definition, for each A € M, there exists x4 € X such that
0 A(xyp). (6.411)

Recalling the definition of A, ¢ at the beginning of Sect. 6.34, we will use in this
section the operator A, x, . In other words,

Ay x=Ax+y(x —x4), xeX. (6.412)
By Lemma 6.76 and (6.411), for each A € M and each y € (0, 1),

Ay, €M and 0€ A, ., (x4). (6.413)
The following observation is also clear.

Lemma 6.80 The set {A, ., : Ae M, vy e (0,1)}is everywhere dense in ./\;l;k,l

Let Ae M}, y €(0,1) and let i > 1 be an integer. By Lemma 6.79 with
& = x4, there exist an open neighborhood U (A, y, i) of A}, ,, in M, and an inte-
ger n(A, y, i) > 4 such that the following property holds:
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(a) For each B € U1 (A, y, i), each sequence
rielr;,r), j=1,...,n(A,y,i)—1
and each x, y € X satisfying
Il 1yl < 87+ (4 + 4lx4l). (6.414)
the following estimate holds:

||_]B _____ _]rll?x _JB _]ByH <g~i-1, (6.415)

n(A,y,i)—1 n(A,y,i)—1 r

By Lemma 6.75, there exists an open neighborhood U(A, y,i) of A, ., in M,,
such that

U(A,y.i) CUI(A,y.0) (6.416)

and the following property holds:
(b) Foreach B € U(A, y, i) and each sequence

rje0,7), j=1,....,8n(A,y,i)—1,
there exists a sequence {x; : j=1,...,8n(A, y, j)} C X such that
Xt =Jrf(xj), j=1,....81(A, y,i)—1, (6.417)
and

bej —xall <877L j=1.....80(A . 0).

We will now show that the following property also holds: '
(c) For each B € U(A, y, i), each x € X satisfying ||x| < 8T1(2+ 2|lxa|) and
each integer m > n(A, y,i) — 1,

1(IE)" ) — xal <2-8777 L. (6.418)
Indeed, let B € U(A, vy, i). By property (b), there exists a sequence
(xj:j=1...8n(A, y,H} CX (6.419)
such that
i =JEG), j=1,....81(A, y, i) — 1, (6.420)
and
1%, —xall <8771, j=1,...,8n(4,y,i).
Let x € X with
lxll <872+ 2[1xall) (6.421)
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and consider the sequence {(J lB ) (x)152 |- Since the operator J IB is nonexpansive,
it follows from (6.420) and (6.421) that for j =1, ...,8n(A, y,i) — 1,

[E) x| = 0%+ | (7F) % =%
< xall + 1551 —xall + | (JE) x = (JB) G |
< xall +87 7+ flx — 5yl
< 2(llxall + 8771 + x|l
<8 (24 2)xall) +2(lxal +271)
< 8T (4 +4]xal). (6.422)

We now show by induction that (6.418) is valid for all integers m > n(A, y,i) — 1.
Letm =n(A, y,i) — 1. Then by property (a) and (6.420),

1(8)" @) =xal < |(1F) ) = (IF)" G0 + [ (IF)" @) = xal|
<87 4 | Zppr —xall <2-877L,

Therefore for m = n(A, y,i) — 1 (6.418) is valid. Assume that g > n(A, y,i) — 1
and that (6.418) is valid for all integers m € [n(A, y,i) — 1, g]. Consider

y=()x) withp=g—(n(A,y,i)—1)+1. (6.423)

It follows from (6.418), which is valid by our inductive assumption for all integers
me[n(A,y,i)—1,q], and (6.422), which holds forall j =1, ...,8n(A, y,i) — 1,
that

Iyl <87 (4+4]xall).
By this estimate, (6.423), (6.420) and property (a),

| (7E) o) — 24
=y AT )~

<[Py ATy = (AT

ED| + 1Xnca,p,i) — xall
<2.8771

Therefore (6.418) is valid for all integers m > n(A, y, i) — 1 and property (c) holds.
Next we define

Fo= [ﬂ U{U(A, y,i):Ae M ye(0,1),i> k}} nME.
k=1

Clearly, F is a countable intersection of open and everywhere dense sets in /\;12,‘1
We will show that 7 C Mg.
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Let A € F. Then there exist sequences {A}7>; C My, {v)p2, € (0,1) and a
strictly increasing sequence of natural numbers {ik},‘:il such that A € U(Ag, y, i)
for all natural numbers k. Property (c) implies that there exists x4 € X such that

lim (J{) (x)=x4 forallx € X,
Jj—o00

Clearly, 0 € A(x4) and if y € X satisfies 0 € A(y), then y = x4. Therefore
F C M.
Let 6, K > 0 be given. Choose a natural number ¢g such that

49> 4K +4 and 49 >6871, (6.424)

and consider the open set U (Ay, vy, iq)-
Letr; €[r;,7),i=1,2,..., and let

B e MyNU(Ag, vy, iq). (6.425)
There exists a unique xp € X such that
0 € B(xp) (6.426)

and
(JB)'y - xp asn— ooforall y € X. (6.427)
It follows from (6.427) and property (c) that

lxa —xa,ll, xp —xa, Il <287, (6.428)

Let x € X with
x| < K. (6.429)

Setn=n(Ay, yy,iq). It follows from (6.425), (6.428), (6.429), (6.424) and property
(a) that

|7B - JBx—gB JBxp| <87, (6.430)

Tn—1 -1

By (6.426), (6.430) and (6.428), we now have, for each integer n > n,

R e R e P

and

7B e JBx — x4 <5877 <.

n—1

This completes the proof of Theorem 6.72.



Chapter 7
Best Approximation

7.1 Well-Posedness and Porosity

Given a nonempty closed subset A of a Banach space (X, | - ||) and a point x € X,
we consider the minimization problem

min{|lx — y| :y € A}. (P)

It is well known that if A is convex and X is reflexive, then problem (P) always has
at least one solution. This solution is unique when X is strictly convex.

If A is merely closed but X is uniformly convex, then according to classical
results of Stechkin [173] and Edelstein [59], the set of all points in X having a
unique nearest point in A is Gs and dense in X. Since then there has been a lot
of activity in this direction. In particular, it is known [84, 88] that the following
properties are equivalent for any Banach space X:

(A) X isreflexive and has a Kadec-Klee norm.

(B) For each nonempty closed subset A of X, the set of points in X \ A with nearest
points in A is dense in X \ A.

(C) For each nonempty closed subset A of X, the set of points in X \ A with nearest
points in A is generic (that is, a dense G5 subset) in X \ A.

A more recent result of De Blasi, Myjak and Papini [52] establishes well-
posedness of problem (P) for a uniformly convex X, closed A and a generic x € X.

In this connection we recall that the minimization problem (P) is said to be well
posed if it has a unique solution, say ag, and every minimizing sequence of (P)
converges to ao.

A more precise formulation of the De Blasi-Myjak-Papini result mentioned
above involves the notion of porosity.

Using this terminology and denoting by F the set of all points such that the
minimization problem (P) is well posed, we note that De Blasi, Myjak and Papini
[52] proved, in fact, that the complement X \ F is o-porous in X.

However, the fundamental restriction in all these results is that they hold only
under certain assumptions on the space X. In view of the Lau-Konjagin result
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mentioned above these assumptions cannot be removed. On the other hand, many
generic results in nonlinear functional analysis hold in any Banach space. Therefore
the following natural question arises: can generic results for best approximation
problems be obtained in general Banach spaces? In [138] we answer this question
in the affirmative. In this chapter we present the results obtained in [138].

To this end, we change our point of view and consider a new framework. The
main feature of this new framework is that the set A in problem (P) may also vary. In
our first result (Theorem 7.3) we fix x and consider the space S(X) of all nonempty
closed subsets of X equipped with an appropriate complete metric, say 7. We then
show that the collection of all sets A € S(X) for which problem (P) is well posed
has a o -porous complement.

In the second result (Theorem 7.4) we consider the space of pairs S(X) x X
with the metric (A, B) + ||x — y||, where A, B € §(X) and x, y € X. Once again
we show that the family of all pairs (A, x) € S(X) x X for which problem (P) is
well-posed has a o -porous complement.

In our third result (Theorem 7.5) we show that for any nonempty, separable and
closed subset X of X, there exists a subset F of (S(X), h) with a o-porous com-
plement such that any A € F has the following property:

There exists a dense G5 subset F of X such that for any x € F, the minimization
problem (P) is well posed.

In order to prove these results we now provide more information on porous sets.

Let (Y, p) be a metric space. We denote by B, (y,r) the closed ball of center
y € Y and radius r > 0.

The following simple observation was made in [180].

Proposition 7.1 Let E be a subset of the metric space (Y, p). Assume that there
exist ro > 0 and B € (0, 1) such that the following property holds:

(P1) Foreachx €Y and eachr € (0, rol, there exists z € Y \ E such that p(x,z) <
rand B,(z, Br)NE = 0.

Then E is porous with respect to p.
Proof Let x € Y and r € (0, rp]. By property (P1), there exists z € Y \ E such that
p(x,z) <r/2 and B,(z,Br/2)NE=40.
Hence B,(z, Br/2) C B,(x,r) \ E and Proposition 7.1 is proved. O

As a matter of fact, property (P1) can be weakened.

Proposition 7.2 Let E be a subset of the metric space (Y, p). Assume that there
exist ro > 0 and B € (0, 1) such that the following property holds:

(P2) Foreach x € E and eachr € (0, rol, there exists z € Y \ E such that p(x,z) <
rand B,(z, Br)NE = 0.

Then E is porous with respect to p.
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Proof We may assume that 8 < 1/2. Let x € Y and r € (0, r9]. We will show that
there exists z € Y \ E such that

p(x,z) <r and B,y(z,Br/2)NE=40. 7.1

If B,(x,r/4) N E =, then (7.1) holds with z = x. Assume now that B,(x,r/4) N
E # (. Then there exists

x1€By(x,r/HNE. (7.2)
By property (P2), there exists z € Y \ E such that

px1,2) <r/2 and B,(z,Br/2)NE=0. (7.3)
The relations (7.2) and (7.3) imply that
p(x,2) < plx,x1) + p(x1,2) < 3r/4.

Thus there indeed exists z € Y \ E satisfying (7.1). Proposition 7.2 is now seen to
follow from Proposition 7.1. g

The following definition was introduced in [180].

Assume that a set Y is equipped with two metrics p; and p> such that p;(x, y) <
p2(x,y) forall x, y € Y and that the metric spaces (Y, p1) and (Y, p2) are complete.

We say that a set E C Y is porous with respect to the pair (p1, p2) if there exist
ro > 0 and « € (0, 1) such that for each x € E and each r € (0, r¢], there exists
ze Y\ E such that po(z,x) <r and By, (z,ar) N E=0.

Proposition 7.2 implies that if E is porous with respect to (p1, p2), then it is
porous with respect to both p; and ps.

A set E C Y is called o-porous with respect to (o1, p2) if it is a countable union
of sets which are porous with respect to (o1, 02).

As a matter of fact, it turns out that our results are true not only for Banach
spaces, but also for all complete hyperbolic spaces.

Let (X, p, M) be a complete hyperbolic space. For each x € X and each A C X,
set

p(x, A) :inf{,o(x, y):y € A}.

Denote by S(X) the family of all nonempty closed subsets of X. For each A, B €
S(X), define

H(A, B) := max{sup{,o(x, B):xe€ A}, sup{p(y, A):ye B}} (7.4)

and
H(A, B):=H(A, B)(1+ H(A, B))™".

It is easy to see that H is a metric on S(X) and that the space (S(X), H)is complete.
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Fix 6 € X. For each natural number n and each A, B € §(X), we set
ha(A, B) =sup{|p(x, A) — p(x, B)| : x € X and p(x,0) <n} (7.5)

and
WA, B) = [27"ha(A, B)(1+ha(A, B)'].

n=1

Once again it is not difficult to see that & is a metric on S(X) and that the metric
space (S(X), h) is complete. Clearly,

H(A,B)>h(A,B) forall A, B e S(X).

We equip the set S(X) with the pair of metrics H and h.
We now state the following three results which were obtained in [138]. Their
proofs are given later in this chapter.

Theorem 7.3 Let (X, p, M) be a complete hyperbolic space and let x € X. Then
there exists a set 2 C S(X) such that its complement S(X) \ §2 is o-porous with
respect to the pair (h, H) and such that for each A € 2, the following property
holds:

(C1) There exists a unique y € A such that p(x,y) = p(x, A). Moreover, for each
& > 0, there exists 5 > 0 such that if x € A satisfies p(x,x) < p(x, A) + 6,
then p(x,y) <e.

To state the following result we endow the Cartesian product S(X) x X with the
pair of metrics d; and d> defined by

di((A,x), (B.y)) =h(A, B)+ p(x,y),
d>((A,x),(B,y)) = H(A,B)+ p(x,y), x,y€X,A,BeSX).

Theorem 7.4 Let (X, p, M) be a complete hyperbolic space. There exists a set §2 C
S(X) x X such that its complement [S(X) x X]\ §2 is o -porous with respect to the
pair (d1, d2) and such that for each (A, X) € $2, the following property holds:

(C2) There exists a unique y € A such that p(x,y) = p(x, A). Moreover, for each
& > 0, there exists § > 0 such that if z € X satisfies p(x,z) <6, B € S(X) sat-
isfies h(A, B) <4§,and y € B satisfies p(y,z) < p(z, B)+6,then p(y,y) <e.

In classical generic results the set A was fixed and x varied in a dense G5 subset
of X. In our first two results the set A is also variable. However, in our third result
we show that if X is a nonempty, separable and closed subset of X, then for every
fixed A in a dense G subset of S(X) with a o-porous complement, the set of all
x € X for which problem (P) is well posed contains a dense G subset of Xo.
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Theorem 7.5 Let (X, p, M) be a complete hyperbolic space. Assume that Xy is a
nonempty, separable and closed subset of X . Then there exists a set F C S(X) such
that S(X) \ F is o-porous with respect to the pair (h, H) and such that for each
A € F, the following property holds:

(C3) There exists a set F C Xo which is a countable intersection of open and ev-
erywhere dense subsets of X with the relative topology such that for each
X € F, there exists a unique y € A for which p(x,y) = p(x, A). Moreover, if
{3i}72, C A satisfies lim; 00 p(X, y;) = p(X, A), then y; — J as i — oo.

7.2 Auxiliary Results

Let (X, p, M) be a complete hyperbolic space and let S(X) be the family of all
nonempty closed subsets of X.

Lemma 7.6 Let Ac S(X),x € X and let r, e € (0, 1). Then there exists x € X such
that p(x, A) <r and for the set A = A U {x} the following properties hold:

p(E,%) = p(E, A);
ifx € Aand p(%,x) < p(X, A) +er/4, then p(x,x) <e.

Proof If p(x, A) <r, then the lemma holds with x = x and A = AU{X}. Therefore
we may restrict ourselves to the case where

p(X,A) >r. (7.6)
Choose xg € A such that
p(X,x0) = p(X,A) +r/2. (1.7
There exists
relyi@d—y)xo:y €0, D} (7.8)
such that
p(x,x0)=r and p(x,x)=p(,x0) —r (7.9)

Set A = A U {x}. We have by (7.9) and (7.7),
p(X,X)=pX x0) —r <p, A)+r/2—r=px,A)—r/2.

Therefore p(%, %) = p(X, A), and if x € A and px,x) < p(x, A)+r/2, then x = x.
This completes the proof of Lemma 7.6. g
Before stating our next lemma we choose, for each ¢ € (0, 1) and each natural

number #n, a number

a(e,n) e (0,167 %), (7.10)
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Lemma 7.7 Let A € S(X), x € X and let r, e € (0, 1). Suppose that n is a natural
number, let

a=oale,n) (7.11)

and assume that
p(x,0)<n and {xeX:p(x,0)<n}NA#Q. (7.12)

Then there exists X € X such that p(X, A) < r and such that the set A = A U{X} has
the following two properties:

p(E,X) = p(F, A); (7.13)
if

yeX, p@,x)=<ar, (7.14)
BeS(X), h(A, B)<ar, (7.15)

and
ze€B, p(,2)<p@F,B)+er/l6, (7.16)

then
p(z,%) <e. (7.17)

Proof By Lemma 7.6, there exists x € X such that
px,A)<r (7.18)

and such that for the set A = A U {X}, equality (7.13) is true and the following
property holds:

If x € Aand p(%,x) < p(%, A) +er/8, then p(X,x) <e&/2. (7.19)

Assume that y € X satisfies (7.14) and B € S(X) satisfies (7.15). We will show
that

03, B) < p(%, A) + 4ar16". (7.20)
By (7.14),
lp(5, A) — p(&, A)| < ar.
When combined with (7.13), this implies that
lp(3, A) — p(F, )| < ar. (7.21)
Relations (7.13) and (7.12) imply that

pE,x)<px,A)<2n and p(x,60)<3n. (7.22)
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It follows from (7.5) and (7.15) that
han(A, BY(1 + han (A, B)) ™' <2%'h(A, B) < 2" ar.
When combined with (7.10) and (7.11), this inequality implies that
han(A, B) < 24”ar(1 — 24”01r)71 <24ty (7.23)

Since x € A, it now follows from (7.23), (7.22) and (7.5) that p(x, B) < 2%t gr
and there exists y € X such that

yeB and p(x,y) <2arl6". (7.24)
By (7.24), (7.14) and (7.13),

p(y,B) < p(3,y) <p(. %)+ p(X,y)
< p(3, %)+ pX, x) +2arl6”
<2arl6" +ar + p(%, A).

This certainly implies (7.20), as claimed.
Assume now that z € B satisfies (7.16). It follows from (7.16), (7.20), (7.11) and
(7.10) that

0(3,2) < p(3, B) +er/16 < p(%, A) + 4ar16" + er/16
< p(x, A) +er/8. (7.25)

Relations (7.25), (7.22) and (7.14) imply that
0(3.2) < p(, A) +er/8 <2n+r/8. (7.26)
By (7.26), (7.14), (7.11) and (7.12),

p(z,0) < p(z,9) +p(3,0) <2n+r/8+ p(7,0)
<2n+r/8+p(y,x)+ p(,0)
<2n+r/8+ar+n<dn. (7.27)

It follows from (7.23), (7.5), (7.16) and (7.27) that
p(z, A) = |p(z, A) = p(z, B)| < han(A, B) < 2arl6".
Hence there exists 7 € X such that
zeA and p(z,%) <2arl6". (7.28)

By (7.14), (7.28) and (7.16) we have
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p(x,2) < p(X,y)+p(,2) +p(z,2)
<ar+p(,z) +2arl6"
<ar +2arl6" + p(y, B) +¢r/16.

It follows from this inequality, (7.20), (7.11) and (7.10) that

p(%,2) <ar+2arl6" +er/16 + p(%, A) + 4arl6”
< p(%, A) 4 8ar16" +er/16 < p(X, A) + er/8.
Thus
p(%,2) < p(X, A) +er/8.
Using this inequality, (7.28) and (7.19), we see that p(x, 7) < &/2. Combining this
fact with (7.28), (7.11) and (7.10), we conclude that
0(z2,%) <p(z,2) +p(E,X) <20rl6" + /2 <e.

Thus (7.17) holds and Lemma 7.7 is proved. O

7.3 Proofs of Theorems 7.3-7.5

Proof of Theorem 7.3 For each integer k > 1, denote by £2 the set of all A € S(X)
which have the following property:

(P3) Thereexistxs € X and 64 > 0 such that if x € A satisfies p(x, x) < p(x, A)+
84, then p(x,x4) <1/k.

Clearly, 2541 C 2, k=1,2,.... Set

o0
Q= ﬂ 2.
k=1

First we will show that S(X) \ §2 is o-porous with respect to the pair (4, H). To
meet this goal it is sufficient to show that S(X) \ §2; is o-porous with respect to
(h, H) for all sufficiently large integers k.

There exists a natural number kg such that p (6, X) < kg. Let k > ko be an integer.
We will show that the set S(X) \ £2¢ is o-porous with respect to (/, H). For each
integer n > ko, set

En={AecSX)\2:{zeX:p(z 0) <n}NA+0}.

By Lemma 7.7, the set E, is porous with respect to (h, H) for all integers n > ko.
Since S(X)\ 2, = US‘; ko Enk> We conclude that S(X) \ £2 is o -porous with respect

to (h, H). Therefore S(X) \ §2 is also o -porous with respect to (, H).
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Let A € £2 be given. We will show that A has property (C1). By the definition
of £2; and property (P3), for each integer k > 1, there exist x; € X and §; > 0 such
that the following property holds:

(P4) If x € A satisfies p(x, x) < p(x, A) + ¢, then p(x, xx) < 1/k.
Let {z;}{2, C A be such that

lim p(%,z) = p(, A). (7.29)
1—> 00

Fix an integer k > 1. It follows from property (P4) that for all large enough natural
numbers i,

p(X,zi) < p(X, A) + 8
and
p(zi, xx) < 1/k.

Since k is an arbitrary natural number, we conclude that {z;};2, is a Cauchy se-
quence which converges to some y € A. It is clear that p(X, y) = p(X, A). If the
minimizer y were not unique, we would be able to construct a nonconvergent mini-
mizing sequence {z;}7° . Thus y is the unique solution to problem (P) (with x = x)
and any sequence {z; }°° | C A satisfying (7.29) converges to y. This completes the
proof of Theorem 7.3. O

}OO

Proof of Theorem 7.4 For each integer k > 1, denote by 24 the set of all (A, X) €
S(X) x X which have the following property:

(P5) There exist X € X and § > 0 such that if x € X satisfies p(x,%) <48, B €
S(X) satisfies h(A, B) <8, and y € B satisfies p(y,x) < p(x, B) + 5, then
p(y,x) <1/k.

Clearly 2541 C £2r,k=1,2,.... Set
o0
= ﬂ o)}
k=1

First we will show that [S(X) x X]\ §2 is o-porous with respect to the pair (d1, d2).
For each pair of natural numbers n and k, set

Ene={(A,x) €[S(X) x X]\ 2k : p(x,0) <n, By(0,n) N A0}

By Lemma 7.7, the set E,; is porous with respect to (d1, d») for all natural numbers
n and k. Since

e¢]

[sC0) x X]\ 2= J([SX) x X]\ ) = U U Epuk,

k=1 k=1n=1

the set [S(X) x X]\ §2 is o-porous with respect to (di, d2), by definition.
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Let (A, x) € 2. We will show that (A, x) has property (C2).
By the definition of £2; and property (P5), for each integer k > 1, there exist
xi € X and §; > 0 with the following property:

(P6) If x € X satisfies p(x,X) < &, B € S(X) satisfies h(A, B) <&, and y € B
satisfies p(y, x) < p(x, B) + 8, then p(y, x) < 1/k.

Let {z;};2, C A be such that

lim p(F,z;) = p(F, A). (7.30)
1—> 00

Fix an integer k > 1. It follows from property (P6) that for all large enough natural
numbers i,

p(X,zi) < p(X, A) +
and

p(zi, xk) < 1/k.

Since k is an arbitrary natural number, we conclude that {z;}72, is a Cauchy se-

quence which converges to some y € A. Clearly, p(x, y) = p(x, A). Itis not difficult

to see that y is the unique solution to the minimization problem (P) with x = x.
Let ¢ > 0 be given. Choose an integer k > 4/ min{1, }. By property (P6),

p(y.x) = 1/k. (7.31)

Assume that z € X satisfies p(z,X) < &, B € S(X) satisfies h(A, B) < 8 and
y € B satisfies p(y,z) < p(z, B) + 8. Then it follows from property (P6) that
o (v, xx) < 1/k. When combined with (7.31), this implies that p(y,y) <2/k < €.
This completes the proof of Theorem 7.4. d

Proof of Theorem 7.5 Let {x;}72, C Xo be an everywhere dense subset of X(. For
each natural number p, there exists a set F, C S(X) such that Theorem 7.3 holds
with X = x, and 2 = F,. Set F = ﬂ;ozl Fp. Clearly, S(X) \ F is o-porous with
respect to the pair (h, H).

Let A € F and let p > 1 be an integer. By Theorem 7.3, which holds with ¥ = x,
and §2 = F, there exists a unique X, € A such that

p(xp. %p) = p(xp. A) (732)

and the following property holds:

(P7) For each integer k > 1, there exists §(p, k) > O such that if x € A satisfies
,O(X,XP) S :O(xpa A) +48(p7 k)’ then :O(xaip) S 1/k

For each pair of natural numbers p and k, set

V(p.k)={z € Xo:p(z,xp) <8(p,k)}.
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It follows from property (P7) that for each pair of integers p, k > 1, the following
property holds:

(P8) If x € A, z € Xo, p(z,xp) <8(p,k) and p(z,x) < p(z,A) + 3(p, k), then
lo(xa)zp) E 1/k

Set

F::ﬁ[U{V(p,k):pzl,Z,...}].

k=1

Clearly, F is a countable intersection of open and everywhere dense subsets of Xg.
Let x € F be given. Consider a sequence {x;};°, C A such that

lim p(x,x;) = p(x, A). (7.33)
1—> 00

Let £ > 0. Choose a natural number k > 8~ !/min{l, ¢}. There exists an integer
p > 1 such that x € V(p, k). By the definition of V(p,k), p(x,xp) < 8(p, k). It
follows from this inequality and property (P8) that for all sufficiently large integers
i, p(x,x)) < p(x,A)+8(p, k) and p(x;,xp) < 1/k < /2. Since ¢ is an arbitrary
positive number, we conclude that {x;}7°, is a Cauchy sequence which converges to
y € A. Clearly, y is the unique minimizer of the minimization problem z — p(x, z),
z € A. Note that we have shown that any sequence {x,-}ioil C A satisfying (7.33)

converges to y. This completes the proof of Theorem 7.5. O

7.4 Generalized Best Approximation Problems

Given a closed subset A of a Banach space X, a point x € X and a continuous func-
tion f : X — R!, we consider the problem of finding a solution to the minimization
problem min{f(x — y) : y € A}. For a fixed function f, we define an appropriate
complete metric space M of all pairs (A, x) and construct a subset £2 of M, which
is a countable intersection of open and everywhere dense sets such that for each pair
in £2, our minimization problem is well posed.

Let (X, | - |) be a Banach space and let f : X — R! be a continuous function.
Assume that

inf{ f(x) : x € X} is attained at a unique point x, € X, (7.34)
lim f(u)=o0, (7.35)
[lul|—o00
if {x;}72, C X and lim f(x;) = f(xy), then lim x; = x,, (7.36)
1—>00 1—>00

and that for each integer n > 1, there exists an increasing function ¢, : (0,1) —
(0, 1) such that

flax + 1 =a)xs) < ¢n(@) f(0) + (1= du(@)) f(x:) (7.37)
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for all x € X satisfying ||x|| <n and all @ € (0, 1). It is clear that (7.37) holds if f
is convex.

Given a closed subset A of X and a point x € X, we consider the minimization
problem

min{f(x—y):yeA}. P)

This problem was studied by many mathematicians mostly in the case where
f(x) = |lx||. We recall that the minimization problem (P) is said to be well posed
if it has a unique solution, say ag, and every minimizing sequence of (P) converges
to ap. In other words, if {y;}7°, C A and lim; . f(x — y;) = f(x — ap), then
lim; 0 y;i = ao.

Note that in the studies of problem (P) [52, 59, 84, 88, 173], the function f is the
norm of the space X. There are some additional results in the literature where either
f is a Minkowski functional [51, 93] or the function ||x — y||, y € A, is perturbed
by some convex function [42].

However, the fundamental restriction in all these results is that they only hold
under certain assumptions on either the space X or the set A. In view of the Lau-
Konjagin result mentioned above, these assumptions cannot be removed. On the
other hand, many generic results in nonlinear functional analysis hold in any Banach
space. Therefore a natural question is whether generic existence results for best ap-
proximation problems can be obtained for general Banach spaces. Positive answers
to this question in the special case where f = | - || can be found in Sects. 7.1-7.3.
In the next sections, which are based on [143], we answer this question in the affir-
mative for a general function f satisfying (7.34)—(7.37).

To this end, we change our point of view and consider another framework, the
main feature of which is that the set A in problem (P) can also vary. We prove four
theorems which were established in [143]. In our first result (Theorem 7.8), we fix
x and consider the space S(X) of all nonempty closed subsets of X equipped with
an appropriate complete metric, say #. We then show that the collection of all sets
A € S(X) for which problem (P) is well posed contains an everywhere dense G
set. In the second result (Theorem 7.9), we consider the space of pairs S(X) x X
with the metric h(A, B) + ||lx — y||, A, B € S(X), x, y € X. Once again, we show
that the family of all pairs (A, x) € S(X) x X for which problem (P) is well posed
contains an everywhere dense Gy set. In our third result (Theorem 7.10), we show
that for any separable closed subset X of X, there exists an everywhere dense G
subset F of (§(X), h) such that any A € F has the following property: there exists
a G dense subset F' of X such that for any x € F, problem (P) is well posed.

In our fourth result (Theorem 7.11), we show that a continuous coercive convex
f : X — R! which has a unique minimizer and a certain well-posedness property
(on the whole space X) has a unique minimizer and the same well-posedness prop-
erty on a generic closed subset of X.
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7.5 Theorems 7.8-7.11

We recall that (X, || - ||) is a Banach space, f : X — R! is a continuous function
satisfying (7.34)—(7.36) and that for each integer n > 1, there exists an increasing
function ¢, : (0, 1) — (0, 1) such that (7.37) is true.

For each x € X and each A C X, set

p(x, A)=inf{p(x,y):y € A} (7.38)
and

pr(x, A)=inf{f(x —y):y € A}. (7.39)

Denote by S(X) the collection of all nonempty closed subsets of X. For each
A, B € S(X), define

H(A, B) := max{sup{p(x, B) : x € A}, sup{p(y,A) : y € B}} (7.40)
and
A(A,B):=H(A,B)(1+ H(A, B) .

Here we use the convention that co/oco = 1. B
It is not difficult to see that the metric space (S(X), H) is complete.
For each natural number n» and each A, B € S(X), we set

ha(A, B) :=sup{|p(x, A) — p(x, B)| : x € X and ||x|| < n} (7.41)
and
(A, B) = [27"ha(A, B)(1 +ha(A, B)'].
n=1

Once again, it is not difficult to see that A is a metric on S(X) and that the metric
space (S(X), h) is complete. Clearly, H(A, B) > h(A, B) forall A, B € S(X).

We equip the set S(X) with the pair of metrics H and h. The topologies induced
by the metrics H and & on S(X) will be called the strong topology and the weak
topology, respectively.

We now state Theorems 7.8-7.11.

Theorem 7.8 Let x € X. Then there exists a set 2 C S(X), which is a countable in-
tersection of open (in the weak topology) everywhere dense (in the strong topology)
subsets of S(X), such that for each A € §2, the following property holds:

(C1) There exists a unique y € A such that f(X — y) = ps(x, A). Moreover,
for each ¢ > 0, there exists § > 0 such that if x € A satisfies f(Xx —x) <
pr(X, A) +36, then | x — y| <e.
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To state our second result we endow the Cartesian product S(X) x X with the
pair of metrics d; and d, defined by

di((A,x), (B.y)) =h(A, B)+ p(x,y),
d>((A,x),(B,y)) = H(A,B) + p(x,y), x,y€X,A,BeSX).

We will refer to the topologies induced on S(X) x X by d> and d as the strong and
weak topologies, respectively.

Theorem 7.9 There exists a set 2 C S(X) x X, which is a countable intersection
of open (in the weak topology) everywhere dense (in the strong topology) subsets of
S(X) x X, such that for each (A, X) € §2, the following property holds:

(C2) There exists a unique y € A such that f(X — y) = py (X, A). Moreover, for
each & > 0, there exists 8 > 0 such that if z € X satisfies |z — X|| <38, B €
S(X) satisfies h(A, B) <6, and y € B satisfies f(z—y) < ps(z, B)+9, then
ly =yl <e.

In most classical generic results the set A was fixed and x varied in a dense G
subset of X. In our first two results the set A is also variable. However, our third
result shows that for every fixed A in a dense G subset of S(X), the setof all x € X
for which problem (P) is well posed contains a dense G5 subset of X.

Theorem 7.10 Assume that X is a closed separable subset of X. Then there exists
a set F C S(X), which is a countable intersection of open (in the weak topology) ev-
erywhere dense (in the strong topology) subsets of S(X), such that for each A € F,
the following property holds:

(C3) There exists a set F C X, which is a countable intersection of open and ev-
erywhere dense subsets of X with the relative topology, such that for each
X € F, there exists a unique y € A for which f(X —y) = py(x, A). More-
over, if {yi}72, C A satisfies lim; o0 f(X — y;) = pr (X, A), then y; — y as
i — oo.

Now we will show that Theorem 7.8 implies the following result.

Theorem 7.11 Assume that g : X — R' is a continuous convex function such that
inf{g(x) : x € X} is attained at a unique point y, € X, lim|, |- 00 §(u) = 00, and if
(i}, C X and lim; o0 (i) = g(¥«), then y; — y, as i — oo. Then there exists
a set §2 C S(X), which is a countable intersection of open (in the weak topology) ev-
erywhere dense (in the strong topology) subsets of S(X), such that for each A € 2,
the following property holds:

(C4) There is a unique y4 € A such that g(ya) = inf{g(y) : y € A}. Moreover, for
each € > 0, there exists § > 0 such that if y € A satisfies g(y) < g(ya) + 6,
then ||y — yall <e.
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Proof Define f(x) = g(—x), x € X. Clearly, f is convex and satisfies (7.34)—
(7.36). Therefore Theorem 7.8 is valid with x = 0 and there exists a set £2 C S(X),
which is a countable intersection of open (in the weak topology) everywhere dense
(in the strong topology) subsets of S(X), such that for each A € §2, the following
property holds:

There is a unique y € A such that

() =f(=y =inf{f(—y):ye A} =inflg(y):y e A}.
Moreover, for each ¢ > 0, there exists § > 0 such that if x € A satisfies
g(x)=f(=x) < ps(0,A)+ 8 =inf{f(—y): y e A} + 8 =inflg(y): y e A} 46,

then ||x — y|| <e. Theorem 7.11 is proved. O

It is easy to see that in the proofs of Theorems 7.8—7.10 we may assume without
loss of generality that inf{ f(x) : x € X} = 0. It is also not difficult to see that we
may assume without loss of generality that x, = 0. Indeed, instead of the function
f(-) we can consider f (- + x,). This new function also satisfies (7.34)—(7.37). Once
Theorems 7.8-7.10 are proved for this new function, they will also hold for the
original function f because the mapping (A, x) — (A, x +x4), (A, x) € S(X) X A,
is an isometry with respect to both metrics d; and d>.

7.6 A Basic Lemma

Lemma 7.1~2 Let A € S(X), x € X, and let r, e € (0,1). Then there exists Ae
S(X),x € A, and § > 0 such that

H(A,A) <r, fE—%) =prF,A), (7.42)

and such that the following property holds: ~
For each y € X satisfying ||y — X|| <6, each B € S(X) satisfying h(B, A) <6,
and each 7 € B satisfying

JO =2 =ps(y, B)+3, (7.43)

the inequality ||z — x|| < € holds.

Proof There are two cases: either p(x, A) <r or p(x, A) > r. Consider the first
case where
p(x,A) <r. (7.44)
Set
¥=% and A=AU{X}. (7.45)
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Clearly, (7.42) is true. Fix an integer n > ||x||. By (7.36), there is & € (0, 1) such
that

if z€ X and f(z) < 4§, then |z|]| <&/2. (7.46)
Using (7.34), we choose a number § € (0, 1) such that
§ <27 *min{e, £} (7.47)
and
if z € X and ||z|] <2"%$, then f(z) <E&. (7.48)
Let
yex, [y—x[<é, BeS(X), h(B,A)<3$ (7.49)

and let z € B satisfy (7.43). By (7.49) and (7.41), hn(A, BY(14+h, (A, B))~! <27s.
This implies that hn(A, B)(1 —2"8) < 2"§. When combined with (7.47), this in-
equality shows that &, (A, B) < 2"t1§. Since n > ||%||, the last inequality, when
combined with (7.44) and (7.41), implies that p(%, B) < 2"+15. Hence there is
xo € B such that ||¥ — xo|| < 2"*25. This inequality and (7.49) imply in turn that
Iy — xol < 21+3§. The definition of § (see (7.48)) now shows that f(y — xg) <§&.
Combining this inequality with (7.43), (7.47) and the inclusion xg € B, we see that

JO—-2)=8+f( —x)=<&+35=28. (7.50)

It now follows from (7.46) that ||z — y|| < &/2. Hence (7.47), (7.49) and (7.45) imply
that ||x — z|| < e. This concludes the proof of the lemma in the first case.
Now we turn our attention to the second case where

p(%, A) > r. (1.51)
For each 1 € [0, ], set
Ar={veX:pw A)<t}eSX) (7.52)
and
n(t) =psx, Ar). (7.53)
By (7.51) and (7.36),
n(t) >0, tel0,rl (7.54)

It is clear that . (¢), t € [0, r], is a decreasing function. Choose a number
to € (0,r/4) (7.55)

such that u is continuous at ty. By (7.35), there exists a natural number n which
satisfies the following conditions:

n> 4|7 +8 (7.56)
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and
ifze X, f(x) <u(0)+1, then |z|| <n/4. (7.57)

Let ¢, : (0, 1) — (0, 1) be an increasing function for which (7.37) is true. Choose a
positive number y € (0, 1) such that

y < o)1 — ¢ —2r/n))/8. (7.58)

Next, choose a positive number §p < 1/4 such that

2380 < min{e, v}, (7.59)
[to — 480, fo 4 480] C (0, r/4), (7.60)

and
(@) — pto)| <y. 1t €lto— 480, 10 + 480]. (7.61)

Finally, choose a vector x( such that
xo€ Ay and  f(X —x0) < u(to) +vy. (7.62)
It follows from (7.62), (7.52) and (7.55) that
llxo — X[l = p(x, A) — p(x0, A) = p(X, A) — 10 = p(X, A) —r/2, (7.63)
and hence by (6.51),

llxo — X|| > r/2. (7.64)
It follows from (7.62) and (7.57) that

llxo — x| <n/4. (7.65)
There exist x € {axg+ (1 —a)x :a € (0, 1)} and ag € (0, 1) such that

X —xoll =r/2 (7.66)
and

% = aoxo + (1 — ag)X. (7.67)

By (7.67) and (7.66), r/2 = || X — xoll = llegx0 + (1 —ag)x — x| = (1 — ) |X — xol
and

- -1
ap=1-— r(2||x - x0||) . (7.68)
Relations (7.68) and (7.65) imply that

ao<1—r/Q2n/4)=1-2r/n. (7.69)
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Set

A=A, U (i)

Now we will estimate f (X — x). By (7.67), (7.65), (7.37), (7.62) and (7.69),

f(E—=%) = f(& = (xoxo + (1 — ap)X)) = f(xo(X — x0))

< $n(00) £ (F — x0) < dulc0) (1(t0) +y)
< ¢n(1 —2r/n)(u(to) +y).

Thus

f@E—=3) < (1 =2r/n) (o) +v) < p(t0)pu(1 = 2r/n) +y.

By (7.70), (7.53), (7.58) and (7.71), for each x € A \ {x} C Ay,
fE=x)=pulto) > f(X—X)
and therefore

fE=X)=psE, A).

There exists § € (0, §p) such that
2 < 5
and

|f@)— fG-%)|<y/4

for all z € X satisfying ||z - (X - )E)H <235,

By (7.70), (7.40), (7.66), (7.62), (7.55) and (7.52),
H(A,A)<H(A,A) <r.
Relations (7.76) and (7.73) imply (7.42). Assume now that
yeX, [Iy—xll=<é

and
BeS(X) and h(A,B)<S$.

First we will show that

pr(¥, B) = u(to)pn (1 —2r/n) +2y.

(7.70)

(7.71)

(7.72)

(7.73)

(7.74)

(7.75)

(7.76)

(7.77)

(7.78)

(7.79)
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By (7.78) and the definition of / (see (7.41)), h, (A, B)(1 + h, (A, B))~' <2"5.
When combined with (7.74), this inequality implies that

ha(A, B) <2"8(1 —2"8) " <215, (7.80)

It follows from (7.41) and the definition of n (see (7.57), (7.56)) that ||x — x|| <n/2
and ||x|| <n. When combined with (7.70) and (7.80), this implies that p(x, B) <
27+1s. Therefore there exists y € B such that |¥ — ¥|| < 2"+2§. Combining this
inequality with (7.77), we see that |[(y—y) — (X —X) || < [[x =¥ [+ [y —X| < nt3g,
It follows from this inequality and (7.75) that f(y — y) < f(X — X) + y /4. By the
last inequality and (7.71), f(y — y) < u(to)¢n, (1 —2r/n) + 2y . This implies (7.79).

Assume now that z € B satisfies (7.43). To complete the proof of the lemma it is
sufficient to show that ||x — z|| < &. Assume the contrary. Then

lx —z|l > e. (7.81)
We will show that there exists Z € A such that
Iz -zl <2"*2%s. (7.82)
We have already shown that (7.80) holds. By (7.43), (7.79), (7.58) and (7.74),
JO -2 =pr(y, B)+8 < pp(1 —2r/n)u(to) + 2y + 6 =< u(0) + 1/2.
Hence ||z — y|| <n/4 by (7.57), and by (7.77) and (7.56),
Izl =n/4+ 1yl <n/4+1IX]+ Iy — XIl <n.

Thus [|z|| < n. The inclusion z € B and (7.80) now imply that p(z, A) <h,(B,A) <
2"+1s. Therefore there exists Z € A such that (7.82) holds. It follows from (7.82),
(7.81), (7.70), (7.74) and (7.59) that

Ze Ay (7.83)

By (7.82) and (7.77), [z + % — § — ZIl < |I¥ — JIl + [z — Z|| <2"+25 + § <235,
It follows from this inequality, (7.83), (7.52) and (7.74) that

pa+F =3, A) <llz+3 =5 =2l +p@E A) <275 +10 <19+ .
Thus z + X — Yy € Agy+s5,- By this inclusion, (7.52), (7.53) and (7.61),
FO—=f(X—@+X—9)=pr(E, Agtsy) = multo + 80) > pu(to) — y-
Hence, by (7.43), (7.79), (7.59) and (7.74),
pr) —y = f(G—2)<pr(3, B)+8 < ¢p(1 =2r/n)u(to) +2y + 4
< ¢n(1 —2r/n)u(o) + 3y.

Thus p(t9) —y < ¢ (1 —2r/n)u(ty) + 3y, which contradicts (7.58). This completes
the proof of Lemma 7.12. g
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7.7 Proofs of Theorems 7.8-7.11

The cornerstone of our proofs is the property established in Lemma 7.12.
By Lemma 7.12, for each (A, x) € S(X) x X and each integer k > 1, there exist
A(x,k) e S(X), x(A,k) € A(x, k), and §(x, A, k) > 0 such that

H(A, Ax, b)) <275, fx = %(A,0) = py(x, Alx, b)), (7.84)

and the following property holds:

(P1) For each y € X satisfying ||y — x| <28(x, A, k), each B € S(X) satisfying
h(B, A(x,k)) <25(x, A, k) and each z € B satisfying f(y —z) < ps(y, B) +
28(x, A, k), the inequality ||z — X (A, k)|| <27% holds.

For each (A, x) € S(X) x X and each integer k > 1, define
V(A,x,k)={(B,y) e S(X) x X :
h(B, A(x,k)) <8(x,A,k)and ||y — x| <8(x, A,k)} (7.85)

and
U(A,x,k)={B e S(X):h(B, A(x,k)) <8(x, A, k)}. (7.86)
Now set
Q=ﬂU{V(A,x,k):(A,x)eS(X)><X,kzn}, (7.87)
n=1

and for each x € X let

o0
20=J{UA.x. ) : AeSX).k=n}. (7.88)

n=1
It is easy to see that £2, x {x} C £2 for all x € X, £2; is a countable intersection
of open (in the weak topology) everywhere dense (in the strong topology) subsets of

S(X) forall x € X, and £2 is a countable intersection of open (in the weak topology)
everywhere dense (in the strong topology) subsets of S(X) x X.

Completion of the proof of Theorem 7.9 Let (A, Xx) € 2. We will show that (A, x)
has property (C2). By the definition of £2 (see (7.87)), for each integer n > 1, there
exist an integer k, > n and a pair (A,, x,) € S(X) x X such that

(Av-i:) € V(Anaxn,kn)- (789)
Let {z;}{2, C A be such that

lim f(x —z;) = pf(x, A). (7.90)

1—> 00
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Fix an integer n > 1. It follows from (7.89), (7.85) and property (P1) that for all
large enough integers i,

fGE—z) <pr(x, A)+8(xn, A, kn)
and

”Zi — Xn(Ap, kn)” <27

Since n > 1 is arbitrary, we conclude that {z;}?°, is a Cauchy sequence which con-
verges to some y € A. Clearly f(x — y) = pys(x, A). If the minimizer y were not
unique we would be able to construct a nonconvergent minimizing sequence {z;}:°, .
Thus y is the unique solution to problem (P) (with x = x).

Let ¢ > 0 be given. Choose an integer n > 4/ min{l, ¢}. By property (P1), (7.89)
and (7.85),

|5 — Zn(An. k)| <277 (7.91)

Assume that z € X satisfies ||z — X|| < 6(xn, Apn, kn), B € S(X) satisfies h(A, B) <
8(xp, Ay, ky), and y € B satisfies f(z — y) < ps(z, B) + 8(xu, Ap, kp). Then

h(B, An(xn. kn)) <28(xtn, An, k) and ||z — X (An, k) | <28(xn, A, kn)
by (7.89) and (7.85). Now it follows from property (P1) that
|y =% (Ans k) | <27
When combined with (7.91), this implies that
ly =3l <2'"<e.
The proof of Theorem 7.9 is complete. g

Theorem 7.8 follows from Theorem 7.9 and the inclusion £2; x {x} C £2.

Although a variant of Theorem 7.10 also follows from Theorem 7.9 by a classi-
cal result of Kuratowski and Ulam [87], the following direct proof may also be of
interest.

Proof of Theorem 7.10 Let the sequence {x; };’il C Xy be everywhere dense in Xj.
Set F = ﬂ;o: 1 82y, Clearly, F is a countable intersection of open (in the weak
topology) everywhere dense (in the strong topology) subsets of S(X).

Let A € F and let p,n > 1 be integers. Clearly, A € £2,, and by (7.88) and
(7.86), there exist A, € S(X) and an integer k,, > n such that

h(A, Ap(xp, kn)) < 8(xp, Ap ky)  with A € S(X). (7.92)

It follows from this inequality and property (P1) that the following property holds:
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(P2) Foreach y € X satisfying ||y —xp|l < 8(xp, Ay, ky) and each z € A satisfying
fO—2= ;Of())a A) +28(xpa An, ky), the inequality ||z _Xp(Ana k)| <27
holds.

Set W(p,n) ={z€ Xo:llz—xpll <8(xp, An, ky)} and

F:ﬂU{W(p,n):p:l,Z,...}.

n=1

It is clear that F is a countable intersection of open and everywhere dense subsets
of Xp.
Let x € F be given. Consider a sequence {z;}7°, C A such that

lim f(x —2z) = ps(x, A). (7.93)

Let ¢ > 0. Choose an integer n > 8§/ min{1, ¢}. There exists an integer p > 1 such
that x € W(p, n). By the definition of W(p, n), [[x —x, || < 8(xp, An, k). It follows
from this inequality, (7.93) and property (P2) that for all sufficiently large integers
i, flx —2;) < pr(x, A) +6(xp, Ap, ky) and ||z; — Xp (A, kn)ll <277 < &. Since
& > 0O is arbitrary, we conclude that {z;}{2, is a Cauchy sequence which converges to
y € A. Clearly, y is the unique minimizer of the minimization problem z — f(x —
2), z € A. Note that we have shown that any sequence {z;}{°, C A satisfying (7.93)

converges to y. This completes the proof of Theorem 7.10. O

7.8 A Porosity Result in Best Approximation Theory

Let D be a nonempty compact subset of a complete hyperbolic space (X, p, M) and
denote by S(X) the family of all nonempty closed subsets of X. We endow S(X)
with a pair of natural complete metrics and show that there exists a set £2 C S(X)
such that its complement S(X) \ £2 is o-porous with respect to this pair of metrics
and such that for each A € §2 and each X € D, the following property holds: the set
{yeA:p(x,y)=p(x, A)}is nonempty and compact, and each sequence {y,-}l?i1 C
A which satisfies lim;_, o, p(X, y;) = p(X, A) has a convergent subsequence. This
result was obtained in [147].

Let (X, p, M) be a complete hyperbolic space. For each x € X and each A C X,
set

p(x, A) :inf{,o(x, y):y € A}.

Denote by S(X) the family of all nonempty closed subsets of X. For each A, B €
S(X), define

H(A, B) := max{sup{p(x, B) : x € A}, sup{p(y, A) : y € B}} (7.94)

and

H(A,B):=H(A,B)(1+H(A, B) .
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Here we use the convention that co/oco = 1. It is easy to see that H is a metric on
S(X) and that the metric space (S(X), H) is complete.
Fix 6 € X. For each natural number n and each A, B € S(X), we set

ha(A, B) =sup{|p(x, A) — p(x, B)| : x € X and p(x,0) <n} (7.95)

and

o]

WA, B) = [27"ha(A, B)(1+ha(A, B) '],

n=l1
Once again, it is not difficult to see that 4 is a metric on S(X) and that the metric
space (S(X), h) is complete. Clearly,
H(A,B)>h(A,B) forall A, B € S(X).

We equip the set S(X) with the pair of metrics H and & and prove the following
theorem which is the main result of [147].

Theorem 7.13 Given a nonempty compact subset D of a complete hyperbolic space
(X, p, M), there exists a set 2 C S(X) such that its complement S(X) \ £2 is o-
porous with respect to the pair of metrics (h, H), and such that for each A € $2 and
each x € D, the following property holds:

The set{y € A: p(Xx,y) = p(x, A)} is nonempty and compact and each sequence
{yi}172, C A which satisfies lim; o0 p(X, y;) = p(X, A) has a convergent subse-
quence.

7.9 Two Lemmata

Let (X, p, M) be a complete hyperbolic space and let D be a nonempty compact
subset of X. In the proof of Theorem 7.13 we will use the following two lemmata.

Lemma 7.14 Let g be a natural number, A € S(X), e € (0,1),r € (0,11, and let
O ={&1,...,&,} be a finite subset of D. Then there exists a finite set {£, ...,&,} C
X such that

pE A <r, i=1,...4q, (7.96)
and such that the set A := AU {&y, ..., é'q} has the following properties:

p(&i (&1 ... . &) =pGEiL A), i=1,....¢; (7.97)
(P3) ifie{l,....q},x €A, and p(&,x) < p&, A) +er/4, then

,O(X, {gla---agq})fg-
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Proof Leti €{l,...,q}. There are two cases: (1) p(§;, A) <r; (2) p(§;,A) >r.In
the first case we set

&i=6. (7.98)
In the second case, we first choose x; € A for which
p i xi) = pGi, A) +r/4, (7.99)
and then choose
Eelyxi®—p)E:y e 1) (7.100)
such that
pGix)=r and p(. &)= pi. &) —r. (7.101)

Clearly, (7.96) holds. Consider now the set A=AU {51, e, §q}.

Leti €{l,...,q}. Itis not difficult to see that if p(&;, A) <r, then the assertion
of the lemma is true. Consider the case where p(&;, A) > r. It follows from (7.99)
and (7.101) that

p(&i (&1, ... &) < p(&. &) = p(xi &) —
=p@E A +r/4—r=p&.A) =3r/4
Therefore
p(& (&1, ... . Eg)) = pEi, A),

and if x € A and p(&,x) < p(&, A) + r/2, then x € {&1,..., éq}. This completes
the proof of Lemma 7.14. U

For each ¢ € (0, 1) and each natural number 7, choose a number
a(e,n) e (0,167 %) (7.102)
and a natural number 7n( such that

p(x,0)<ng, xebD. (7.103)

Lemma 7.15 Let n > ng be a natural number, A € S(X), e € (0,1),r € (0, 1], and

oa=uoa(e,n). (7.104)
Assume that
{zeA:p(z.0) <n}#0. (7.105)
Then there exist a natural number q and a finite set (E1,..., e,gq} C X such that

pGE A <r i=1,...,q, (7.106)
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and if A:= AUE, ..., &}, ue D, BeSX),

h(A, B) < ar, (7.107)

and
z€B, p(u.z) <pu, B)+er/16, (7.108)

then
p(z. &1, ... &}) <e. (7.109)

Proof Since D is compact, there are a natural number ¢ and a finite subset
{€1,...,&;} of D such that

q
Dc| J{zeX:pG. &) <ar}. (7.110)
i=1

By Lemma 7.14, there exists a finite set {51 . éq} C X such that (7.106) holds, and
theset A:= AU(&, ..., éq} satisfies (7.97) and has the following property:

(P4) Ifi efl,...,q}, x € A,and p(&,x) < p(&, A) +er/8, then

p(x. (&1, ....&)) <e/2.

Assume that u € D, B € §(X), and that (7.107) holds. By (7.110), there is j €
{1, ..., q} such that

pEj,u) <ar. (7.111)
We will show that
o(u, B) < p(£j, A)+4-16"ar. (7.112)
Indeed, there exists p € {1, ..., g} such that
P& Ep) = p(§j {61, &g}).
By (7.97),
p (&), Ep) = p(§), A). (7.113)
By (7.111),
lo(u, A) — p(&;, A)| <ar. (7.114)
When combined with (7.113), this inequality implies that
lp(u, A) — p(&.&p)| <ar. (7.115)
Now (7.113), (7.105) and (7.103) imply that

p(Ej.Ep) <pEj, A)<2n and p(E),6) <3n. (7.116)
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It follows from (7.95) and (7.107) that
han(A, B)(1+ han (A, B)) ™' <2*h(A, B) <2*"ar,
and when combined with (7.104) and (7.102), this inequality yields
han(A, B) <2"ar(1 — 24”ar)_1 <24ty (7.117)

Since &, € A, it follows from (7.117), (7.116) and (7.97) that p(£,, B) < 2*"*lar
and there exists v € X such that

veB and p(p,v) <2arl6". (7.118)
By (7.118), (7.111), (7.113) and (7.118),
p(u, B) < p(u,v) < pu.&p) + pEp. v) < pu. &) + p&j. &p) + p(Ep. v)
<ar+p(Ej, A)+2-16"ar.

Hence (7.112) is valid.
Now let (7.108) hold. Then by (7.108), (7.112) and (7.102),

p(z,u) < p(u, B) +er/16 < p(&;, A) +4-16"ar +er/16
< p(Ej, A) +er/8. (7.119)
Therefore (7.119) and (7.116) imply that
p(z.u) < p(&;. A) +er/8 < 2n+r/8.
It follows from this inequality, (7.111) and (7.103) that

p(z,0) < p(z,u) +pu,0) <2n+r/8+p(u,0)
<2n+r/8+pw,&;)+p&;,0) <2n+r/8+ar+n <4n.

Since z € B, it follows from (7.97) and (7.117) that
p(z, A) = |p(z, A) — p(z, B)| < han(A, B) <2-16"ar.
Therefore there exists Z € A such that
0(z,7) <2-16"ar. (7.120)
By (7.111), (7.120), (7.108), (7.112) and (7.102),

p(Z,&5) < p&j,u)+pu,2) +p(z,2) <ar+pu,z)+2-16"ar
<ar+2-16"ar + p(u, B) +¢r/16
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<er/164+ar+2-16"ar + p(&;, A) +4 - 16"ar
<p(j, A)+8-16"ar +er/16 < p(£;, A) +er/8
and
0, &) < p(&j, A) +er/8. (7.121)

Since 7 € A, it follows from (7.121) and property (P4) that p(Z, {1, ..., &,}) < /2.
When combined with (7.120) and (7.102), this inequality implies that

p(Za{éla ’gq}) 55*
This completes the proof of Lemma 7.15. g

7.10 Proof of Theorem 7.13

For each integer k > 1, denote by §2;, the set of all A € S(X) which have the follow-

ing property:

(P5) There exist a nonempty finite set Q@ C X and a number é > 0 such that if
ueD,xeAand p(u,x) <p(u, A) +46, then p(x, Q) <1/k.

It is clear that 241 C 2, k=1,2,....Set 2 = (2 2.
Let k£ > ng (see (7.103)) lze an integer. We will show that S(X) \ §2y is o-porous
with respect to the pair (4, H). For any integer n > k, define

En={AeSX)\ 2 :{z€A:p(z.0) <n}#0)}.

By Lemma 7.15, E,; is porous with respect to the pair (h, H) for all integers n > k.
Thus S(X)\ 2x = Uiik E i is o-porous with respect to (h, I:I). Hence S(X)\ 2 =
UIC()O:nO (S(X) \ £2) is also o -porous with respect to the pair of metrics (#, H).

Let A € £2. Since A € £2; for each integer k > 1, it follows from property (P5)
that for any integer k > 1, there exist a nonempty finite set Oy C X and a number
8% > 0 such that the following property also holds:

P6) fue D,xe€ A,and p(u,x) < p(x, A) + &, then p(x, Qk) < 1/k.

Let u € D. Consider a sequence {x; f.’il C A such that lim;_,  p(u, x;) =
p(u, D). By property (P6), for each integer k > 1, there exists a subsequence

{xl.(k)} 72 of {x;}72, such that the following two properties hold:

(1) {)cl.(kH)}l‘?"l is a subsequence of {xi(k)}f?il for all integers k > 1;
(k)

(ii) for any integer k > 1, ,o(xj ,xs(k)) <2/k for all integers j,s > 1.

These properties imply that there exists a subsequence {x}}7°, of {x;}{°, which

is a Cauchy sequence. Therefore {x;'}°°, converges to a point X € A which satisfies
p(X,u) =1im;_, o p(xj, u) = p(u, D). This completes the proof of Theorem 7.13.



380 7 Best Approximation
7.11 Porous Sets and Generalized Best Approximation Problems

Given a closed subset A of a Banach space X, a point x € X and a Lipschitzian (on
bounded sets) function f : X — R!, we consider the problem of finding a solution
to the minimization problem min{ f(x — y) : y € A}. For a fixed function f, we
define an appropriate complete metric space M of all pairs (A, x) and construct a
subset £2 of M, with a o -porous complement M \ §2, such that for each pair in 2,
our minimization problem is well posed.

Let (X,| - |) be a Banach space and let f : X — R! be a Lipschitzian (on
bounded sets) function. Assume that

inf{f(x) X € X} is attained at a unique point x, € X, (7.122)
lim f(u)=o0, (7.123)
llul—o0
if {x;}72, C X and lim f(x;) = f(xy), then lim x; = x,, (7.124)
1—>00 1—> 00

Flax+ (1 —a)x) <af (o) + (1 —a) f(r)
forallx e X and all « € (0, 1), (7.125)

and that for each natural number n, there exists &, > 0 such that
|f(x) - f(y)| <kyllx —y|| foreachx,y € X satisfying ||x||, [|y]| <n. (7.126)

Clearly, (7.125) holds if f is convex.
Given a closed subset A of X and a point x € X, we consider the minimization
problem

min{f(x—y):yeA}. P)
For each x € X and each A C X, set

plx, A) =inf{|lx - y| 1y € A}

and
prx, A) =inf{f(x —y):yE€ A}.

Denote by S(X) the collection of all nonempty closed subsets of X. For each
A, B € §(X), define

H(A, B) := max{sup{p(x, B):x € A}, sup{,o(y, A):ye€ B}} (7.127)
and
H(A,B):=H(A,B)(1+ H(A, B)) .

Here we use the convention that co/oco = 1. ~
It is not difficult to see that the metric space (S(X), H) is complete.
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For each natural number n and each A, B € S(X), we set

hn(A, B) :=sup{|p(x, A) — p(x, B)| : x € X and ||x|| <n} (7.128)
and
h(A, B) =Y [27"ha(A, B)(1+ha(A, B))'].
n=1

Once again, it is not difficult to see that 4 is a metric on S(X) and that the metric
space (S(X), h) is complete. Clearly, ﬁ(A, B)>h(A, B) forall A, B € S(X).

We equip the set S(X) with the pair of metrics H and h. The topologies induced
by the metrics H and h on S(X) will be called the strong topology and the weak
topology, respectively.

Let A € S(X) and X € X be given. We say that the best approximation problem

f(xX—y)—min, yeaA,
is strongly well posed if there exists a unique x € A such that
fGE =% =inf{f(&—y):yeA}

and the following property holds:

For each ¢ > 0, there exists § > 0 such that if z € X satisfies ||z — X|| <38, B €
S(X) satisfies h(A, B) <8, and y € B satisfies f(z —y) < py(z, B) + 9, then ||y —
x|l <e.

‘We now state four results obtained in [151]. Their proofs will be given in the next
sections.

Theorem 7.16 Let X € X be given. Then there exists a set 2 C S(X) such that its
complement S(X) \ 2 is o -porous with respect to (h, H) and for each A € 2, the
problem f (X —y) — min, y € A, is strongly well posed.

To state our second result, we endow the Cartesian product S(X) x X with the
pair of metrics d; and d> defined by

di((A,x),(B,y)) =h(A, B) +|lx — yl|,
dr((A,x),(B,y)) = H(A,B)+ |x — yll, x,y€X,A,BeSX).

We will refer to the metrics induced on S(X) x X by d> and d; as the strong and
weak metrics, respectively.

Theorem 7.17 There exists a set 2 C S(X) x X such that its complement (S(X) X
X))\ 82 is o-porous with respect to (d1, dy) and for each (A, X) € §2, the minimiza-
tion problem

f(X—y)—>min, ye€A,

is strongly well posed.
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In most classical generic results the set A was fixed and x varied in a dense
G5 subset of X. In our first two results the set A is also variable. However, our
third result shows that for every fixed A in a subset of S(X) which has a o-porous
complement, the set of all x € X for which problem (P) is strongly well posed
contains a dense G4 subset of X.

Theorem 7.18 Assume that X is a closed separable subset of X. Then there exists
a set F C S(X) such that its complement S(X) \ F is o-porous with respect to
(h, H) and for each A € F, the following property holds:

There exists a set F C X, which is a countable intersection of open and every-
where dense subsets of Xo with the relative topology, such that for each x € F, the
minimization problem

f(x—y)—>min, yeaA,

is strongly well posed.
Now we will show that Theorem 7.16 implies the following result.

Theorem 7.19 Assume that g : X — R' is a convex function which is Lipschitzian
on bounded subsets of X and that inf{g(x) : x € X} is attained at a unique point
Y« € X, limyy 00 §(u) = 00, and if {y;};2| C X and lim;_, o g(yi) = §(y«), then
Yi = Y« as i — 00. Then there exists a set 2 C S(X) such that its complement
S(X) \ 2 is o-porous with respect to (h, H) and for each A € §2, the following
property holds:

There is a unique ys € A such that g(ya) = inf{g(y) : y € A}. Moreover, for
each ¢ > 0, there exists § > 0 such that if y € A satisfies g(y) < g(ya) + 8, then
ly—yall <e.

Proof Define f(x) = g(—x), x € X. It is clear that f is convex and satisfies
(7.122)—(7.126). Therefore Theorem 7.16 is valid with x = 0 and there exists a set
£2 C S(X) such that its complement S(X) \ §2 is o-porous with respect to (%, H )
and for each A € §2, the following property holds:

There is a unique y € A such that

g = f(=y) =inf{f(=y):y € A} =inf{g(y): y € A}.

Moreover, for each & > 0, there exists § > 0 such that if B € S(X) satisfies
h(A, B) <6 and x € B satisfies

g(x)= f(=x) < ps(0,B)+8=inf{f(—y): ye B} + 8 =inf{g(y): y € B} +3,
then ||x — y|| < e. Theorem 7.19 is proved. O

It is easy to see that in the proofs of Theorems 7.16-7.18 we may assume without
any loss of generality that inf{ f (x) : x € X} = 0. It is also not difficult to see that we
may assume without loss of generality that x, = 0. Indeed, instead of the function
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f(-) we can consider f(-+ x,). This new function also satisfies (7.122)—(7.126).
Once Theorems 7.16-7.18 are proved for this new function, they will also hold
for the original function f because the mapping (A, x) — (A, x + xx), (A,x) €

S(X) x X, is an isometry with respect to both metrics d; and d5.

7.12 A Basic Lemma

Let m and n be two natural numbers. Choose a number
cm > sup{ f(u):u € X and |lull <2m+4}+2
(see (7.126)). By (7.123), there exists a natural number
ap >m~+2

such that
ifue X and f(u) <cp, then |lul| <ay,,.

By (7.126), there is k;;, > 1 such that

|f @) = fOD] < kmllx =yl

for each x, y € X satisfying ||x||, ||¥|| < 4a,, + 4.

By (7.131), there exists a positive number
a(m,n) <2 4m=41671,~1

such that

if u € X satisfies f(u) <320a,,(m, n), then |u] < (4n)_1.

Finally, we choose a positive number
a(m,n) < a(m,n)[(ky + 1)~ 127 4m=16],
Lemma 7.20 Let

o =a(m,n), a=a(m,n),

AeS(X),xeX,re(0,1], and assume that
IZl<m and {zeX:lzll <m}NA#Q.
Then there exists x € X such that

p(x,A) <r/8

(7.129)

(7.130)

(7.131)

(7.132)

(7.133)

(7.134)

(7.135)

(7.136)

(7.137)
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and for the set A:=AU({x}, the following property holds:
If

BeS(X), h(A,B)<ar,

yex, ly—xll=ar

and
z€B, f(—2)=<pr@, B)+ar,
then
h(A,B)<r
and
lz =%l <n”".

(7.138)
(7.139)

(7.140)

(7.141)

(7.142)

Proof First we choose x € X. There are two cases: (1) p(x, A) <r/8;(2) p(x, A) >

r/8.If

p(x, A) =r/8,
then we set

¥=% and A=AU{X}.

Now consider the second case where

p(x,A)>r/8.
First, choose x( € A such that

f(x =x0) < ps(x,A) +a(m,n)r

and then choose

xelyi+ (I —y)xo:y (0, D}
such that

X —xoll=r/8 and |IX —X| =X —xoll —r/8.

Finally, set
A=AU({x).
Clearly, there is y € (0, 1) such that
x=yx+ ({1 —y)xo.
It is easy to see that in both cases (7.137) holds and

H(A,A)<H(A,A) <r/8.

(7.143)

(7.144)

(7.145)

(7.146)

(7.147)

(7.148)

(7.149)

(7.150)

(7.151)
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Now assume that z € X satisfies

zeA and f(F—2) <ps&, A)+8a(m,n)r.

385

(7.152)

We will show that ||x — z|| < (2n)~!. First consider case (1). Then by (7.152),

(7.144) and (7.149),
fx—2)=f(x—2) <8a(m,n)r.
When combined with (7.133), this inequality implies that

% —z|| < @n)~".

Now consider case (2). We first estimate f(x — x). By (7.150) and (7.125) (with

X, =0and f(xs) =0),
fE=X) = f(X—yx—(—y)xo)
= f((1=p)(E—x0)) <A —y)f(E —x0).
By (7.136), there is zg € X such that
zo€A and |zo| <m.

Thus (7.146), (7.132), (7.154) and (7.136) imply that

fGE—x0)<prE A)+1<f(F—z0)+1

Ssup{f(u):ueX, ||u||§2m+1}+1<cm.

Relations (7.155) and (7.130) imply that
llxo — X1l < am.
It follows from (7.148), (7.150) and (7.156) that
I —xoll = r/8 =% =Xl = [ = yX — (1 = y)xo

= =py)x —xoll,

1—y = (IF = xoll = r/8) 1 — xoll ™" = 1 = r(8]I% — xol) "

<1—r8ay)”!

and that
1—y <1—r(8ay .
By (7.153) and (7.157),

fGE=H) ==Y fE—x0) < (1 —rBam)™") f(& — x0).

(7.153)

(7.154)

(7.155)

(7.156)

(7.157)

(7.158)
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Relations (7.152) and (7.158) now imply that
f(X—2) < f(x —x)+ 8ar <8ar + (1 — r(Sam)_l)f()? — X0). (7.159)

There are two cases:

f(& —x0) = 8- 18aay (7.160)
and

f(X —x0) <8-18xap. (7.161)
Assume that (7.160) holds. Then it follows from (7.159), (7.146) and (7.160) that

FG—2) <8ar+ f(F —x0) — r(8am) " f(F — x0)
<8ar +ps(E. A) +ar =871 18ar < py(¥, A).

Thus z ¢ A and by (7.152) and (7.149),
Z=X. (7.162)
Now assume that (7.161) is true. By (7.161) and (7.152),
f(X—2) < f(X —x0) +8ar < 8- 18aa, + 8a < 160aay,.
When combined with (7.133), (7.148) and (7.161), this estimate implies that
I¥ =zl < @m~'E = xoll < (4m) 7,
I = %[ < 1% = xoll < @m)~",

and
I =zl < @m)~".
Thus in both cases,
% —zll < @n)~ L.
In other words, we have shown that the following property holds:
(P1) If z € X satisfies (7.152), then || — z|| < 2n)~\.
Now assume that (7.138)—(7.140) hold. By (7.136) and (7.139), we have

X <m and |y||<m+1. (7.163)
Relation (7.136) implies that there is zo € X such that

z0€A and |zoll <m. (7.164)
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It follows from (7.128), (7.138), (7.164), (7.134) and (7.128) that

haay+4(A, B)(1 4 haa, 14(A, B)) "' < 2% +4n(A, B) < 2%n+qr,

- (7.165)
Rag,+4(A, B) < 2% 4gp (1 — 2%amHgy) < 24 Hgy
and
p(z0. B) < p(z0, A) + |p(z0. B) — p(20, A)|
< hya,+4(A, B) < 2% gy, (7.166)

Inequalities (7.166), (7.134) and (7.132) imply that p(z9, B) < 1, and that there is
Zo € X such that

Zo€B and |Zo—zoll < 1. (7.167)
Clearly, by (7.164) and (7.167),

Zoll <m 4+ 1. (7.168)
Let
{(L.h} e (A, %), (B, 7))} (7.169)
By (7.136), (7.163), (7.164), (7.168) and (7.167),
I <m+1 (7.170)
and there is # € X such that
uel and |li| <m+1. (7.171)

Relations (7.171), (7.170) and (7.129) imply that
pr, L) < f(l—u) <sup{f@u):ueX, |ul <2m+2} <cn—2. (7.172)

Also, relations (7.172), (7.130) and (7.170) imply the following property:

(P2) fue Land f(I—u) <pr(,L)+2,then ||l —ull <ay and |lu]| < ||| +a, <
2ay,.

Now assume that L; € S(X) and [; € X, i =1, 2, satisfy
{(L1.1D), (L2, )} = {(A, %), (B. )} (7.173)
Let
u € Ly besuchthat f(l1 —u) <pr(ly,L1)+2. (7.174)
By (7.174), (7.173) and property (P2),

lull < 2am. (7.175)
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Relations (7.174), (7.173), (7.175), (7.165) and (7.128) imply that

p(u, Ly) =|pu, L1) — p(u, Ly)| < hag, (L1, L2)

< hag,+4(A, B) < 2% Pgr.

When combined with (7.132) and (7.134), this inequality implies that there is v € X
such that

vel, and |u—v|e2*toqr<1. (7.176)

Inequalities (7.175) and (7.176) imply that
vl <1+ 2a,. (7.177)
By (7.177), (7.175), (7.173) and (7.163),
M1 —ull, Il —vl| <14 2a, +m+1<3ap. (7.178)
It follows from (7.176), (7.139) and (7.173) that
1 —u) — (o — )| < @r + 2% +qr. (7.179)
By (7.179), (7.178), (7.134) and the definition of k,, (see (7.131)),
£ =) = f 2 = 0)| < k| (11 —10) = (12 = )|
< kpar (14 2%m6) < 279 (7.180)
Inequalities (7.180) and (7.176) imply that
prb,La) < f(lb—v) < f(li —uw) +2 %ar
and

pra, Ly) <2 %r + f(l; — u). (7.181)
Since (7.181) holds for any u satisfying (7.174), we conclude that

pr(la, La) <2 %ar + ps(ly, Ly).
This fact implies, in turn, that
lor (i, L) = ppa, Lo)| = |pp (R, A) = ps (5, B)| <27 ar. (7.182)
By property (P2), (7.169) and (7.140),
ly—zll <an and |z| <2a;. (7.183)

It follows from (7.140), (7.183), (7.165) and (7.128) that
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p(z, A) < p(z, B) + |p(z, B) — p(z, A)|
= |p(z, B) = p(z, A)| < hag,14(A, B) < 2% Far.

Thus there exists Z € X such that
7€eA and |z -—7Z| <2%ntoar. (7.184)
By (7.136), (7.183), (7.184), (7.134) and (7.132), we have

X =zl < IXI + 2l < m + Nzl 4+ 12—zl

<m+2a, + 2*"oqr < 3a,, + 1.

When combined with (7.134), (7.184), (7.139), (7.140) and (7.182), this inequality
implies that

fG=D<fO-D+|fG-D—fG—2)|
SfOG-D+kn|f-2-0G-2|=fG-2
< knll% = 5 +knllZ = 2ll < G —2) + kmar + kn2* oar
< ps(3, B) +ar + kyar(1 + 24nt0)
<ar+ km&r(l + 24“m+6) +por(X, A)+2%r <ar +ar+ pr(x, A).
Thus we see that
fGE=7) <psE A)+2ar. (7.185)
It follows from property (P1), (7.152), (7.185) and (7.184) that
Iz — %Il < @n)~ .
When combined with (7.184), (7.134) and (7.132), this inequality implies that
lz — %I < llz = Zll + |12 — %Il < 2* qr + 2n)~' <n™ L.

Thus (7.142) is proved. Inequality (7.141) follows from (7.138), (7.151), (7.134)
and (7.132). Thus we have shown that (7.138)—(7.140) imply (7.141) and (7.142).
Lemma 7.20 is proved. O

7.13 Proofs of Theorems 7.16-7.18

We use the notations and the definitions from the previous section.
For each natural number n, denote by F;, the set of all (x, A) € X x S(X) such
that the following property holds:
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(P3) There exist y € A and § > 0 such that for each x € X satisfying ||x — x| <,
each B € S(X) satisfying h(A, B) <38, and each z € B satisfying f(x —z) <
pf(X, B) + 8, the inequality ||z — y|| < n~! holds.

Set
o
F=()Fn (7.186)
n=1
Lemma 7.21 If
(x,A) € F, (7.187)

then the problem f(x —y) — min, y € A, is strongly well posed.
Proof Let (x, A) € F and let n be a natural number. Since (x, A) € F C J;, there
exist x, € A and §, > 0 such that the following property holds:

(P4) For each x € X satisfying ||x — x|| < §,, each B € S(X) satisfying h(A, B) <
8n, and each z € B satisfying f (X — z) < pr(X, B) + §,, the inequality ||z —
Xnll <n~! holds.

Suppose that

{zi})2, CA and lim f(x —z)=pslx, A). (7.188)
I—> 00

Let n be any natural number. By (7.188) and property (P4), for all sufficiently large
i we have

fa—z)<pr@, A)+8 and zi —xyll <n”h. (7.189)
The second inequality of (7.189) implies that {z;}{°, is a Cauchy sequence and there
exists
X = lim z;. (7.190)
11— 00

Limits (7.190) and (7.188) imply that
S =x)=pr(x, A).

Clearly, x is the unique solution of the problem f(x — z) — min, z € A. Otherwise
we would be able to construct a nonconvergent sequence {z;}7° satisfying (7.188).
By (7.190) and (7.189),

¥ —xull<n™', n=1,2,.... (7.191)
Let ¢ > 0 be given. Choose a natural number

n>8s L. (7.192)
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Assume that
z€B, and f(x—12) <prX,B)+d,.

By Property (P4), ||z — x|l < 1/n. When combined with (7.192) and (7.191), this
inequality implies that

~ - -1
lz =Xl < llz = xull + llxp, — X = 2n)"" <e.

Thus the problem f(x —z) — min, z € A, is strongly well posed. Lemma 7.21 is
proved. g

Proof of Theorem 7.16 For each integer n > 1, set

2,:={AeSX): (%, A) e Fy} (7.193)
and let
2:=(") 2. (7.194)

By Lemma 7.21, (7.193) and (7.194), for each A € £2, the problem f (X —z) — min,
z € A, is strongly well posed. In order to prove the theorem, it is sufficient to show
that for each natural number 7, the set S(X) \ §2,, is o -porous with respect to (/, H).
To this end, let n be any natural number.

Fix a natural number

mo > I%|. (7.195)

For each integer m > my, define
En:={AeSX):AN{zeX |zl <m}#0}. (7.196)

Since

SO\ 2= | (Em\ 20,

m=mog

in order to prove the theorem, it is sufficient to show that for any natural number
m > my, the set E,, \ £2,, is porous with respect to (h, H). Let m > m( be a natural
number. Define

ay=a(m+1,n)/2 (7.197)

(see (7.132) and (7.134)). Let A € S(X) and r € (0, 1]. There are two cases:
case (1), where

AN{zeX |zl <m+1}=¢ (7.198)
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and case (2), where
AnfzeX:zll=m+1}#0. (7.199)

Consider the first case.
Let

B € S(X) be such that h(A, B) <272, (7.200)

We claim that B ¢ E,,. Assume the contrary. Then there is u € X such that
ueB and |ul| <m. (7.201)
By (7.201) and (7.128),
p(u, A) < p(u, B) + |p(u, B) — p(u, A)| < hy(A, B). (7.202)
The definition of £, (see (7.128)) and (7.200) imply that

h(A, BY(1+hy(A, B) ™ <h(A, B)2" <272,
By (A, B) < hy(A, B)272 4272

and
hn(A,B) <1/3.

When combined with (7.202), this implies that there is v € A such that |Ju — v| <
1/2. Together with (7.201) this inequality implies that ||v|| < m + 1/2, a contradic-
tion (see (7.198)). Therefore B ¢ E,,, as claimed. Thus we have shown that

{BeS(X):h(A,B)<27"*}NE, =0. (7.203)

Now consider the second case. Then by Lemma 7.20, (7.195) and (7.199), there
exists x € X such that

p(x,A)<r/8
and such that for the set A = A U {x}, the following property holds:

P5) if B e S(X), h(ﬁ, B)y<am+1,mr,yeX, |y —x||<a@m+ 1,n)r, and
z € B satisfies

FO =2 =pr(y,B)+a(m+1,n),
then
lz—x|l<n~' and h(A,B)<r.
Clearly,
H(A,A) <r/8.
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Property (P5), (7.193) and the definition of F,, (see (P3)) imply that
{BeS(X):h(A,B) <a(m+1,n)r/2} C 2,.
Thus in both cases we have
{BGS(X):h(A,B)§a*r/2}ﬂ(Em\.Qn)=®. (7.204)

(Note that in the first case (7.204) is true with A = A.) ~
Therefore we have shown that the set E,, \ £2,, is porous with respect to (h, H).
Theorem 7.16 is proved. g

Proof of Theorem 7.17 By Lemma 7.21, in order to prove the theorem, it is sufficient
to show that for any natural number n, the set (X x S(X)) \ F, is o-porous in
X x S(X) with respect to (h, H ). To this end, let n be a natural number. For each
natural number m, define

En={(x,A)eXxSX): x|l <mand AN{zeX:|z| <m}#0}. (7.205)
Since

(X x SCO)N\Fou= | En\ Fu.

m=1

in order to prove the theorem it is sufficient to show that for each natural number m,
the set E,, \ JF, is porous in X x S(X) with respect to (, I:I).

Let m be a natural number. Define «, by (7.197). Assume that (x x A) € X x
S(X)and r € (0, 1].

There are three cases:

case (1), where

Xl >m+1,
case (2), where
IZl<m+1 and {zeA:|zll <m+1}=4, (7.206)
and case (3), where
¥ <m+1 and {z€A:|z|l <m+1}#0. (7.207)
In the first case,
{(3.B)e X x S(X):di((X, A), (v, B)) <27} NE, =0. (7.208)
Next, consider the second case. In the proof of Theorem 7.16 we have shown that
if B € S(X) satisfies h(A, B) <2772, then
Bn{zeX:|zl<m}=9

and
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{(y, B)e X xS(X):d; ((y, B), (x, A)) < 2_'"_2} NE,=40. (7.209)

Finally, consider the third case. Then by~Lemma 7.20, there exists x € X such that
p(x, A) <r/8 and such that for the set A = A U {x}, property (P5) holds. Clearly,

dr((%, A), (%, A)) = H(A, A) <r/8.
Property (P5) implies that
{G.B)e X x S(X):d\((F, B), (&, A)) <a(m+ 1,n)r/2} C F,.
Hence in all three cases we have
{G.B)eX x S(X):di((F, B), %, A)) <aur} N(Ex \F)=0.  (7.210)

Note that in the first and second cases, (7.210) is true with A = A. Therefore we
have shown that the set E,, \ F, is porous with respect to (d, d2). Theorem 7.17 is
proved. g

Proof of Theorem 7.18 Let {x;}7°, be a countable dense subset of X¢. By countable
dense subset of X(. By Theorem 7.16, for each F; C S(X) such that S(X)\ F;iso-
porous in S(X) with respect to (/, H ) and such that for each A € S(X), the problem
f(x; —z) = min, z € X, is strongly well posed. Set

o0
Fi= ﬂ]-‘i. (7.211)
i=1

Clearly, S(X) \ F is a o-porous subset of S(X) with respect to (, H).

Let A € F. Assume that n and i are natural numbers. Since the problem f(x; —
z) — min, z € A, is strongly well posed, there exists a number §;, > 0 and a unique
X; € A such that

S i —xi) = pr(xi, A) (7.212)
and the following property holds:

(P6) if y € X satisfies ||y — x;|| < 8in, B € S(X) satisfies h(A, B) <djn,andz € B
satisfies

SO =2 =pfr(y, B)+in, (7.213)
then ||z — X[ < 2n)~".

Define

o0
F=UHlzeXllz—xill <dn}:i=1.2,....n=g.q+1,...} N Xo.
gq=1
(7.214)
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Clearly, F is a countable intersection of open everywhere dense subsets of X(. Let
XeF. (7.215)

For each natural number g, there exist natural numbers n, > ¢ and i, such that

X — xigll < 8iyn,- (7.216)
Assume that
2, CA and  lim f(E — ) = ps(E, A). (7.217)
k—o00
Let g be a natural number. Then for all sufficiently large natural numbers &,
J &=y = pg(x, A) +8ign,
and by property (P6) and (7.216),
lyx =%, | < @ng) ™' < )7 (7.218)

This implies that { yk},‘{’o=1 is a Cauchy sequence and there exists x = limg_, o Vi-
By (7.217), f(x —x) = py (X, A). Clearly, x is the unique minimizer for the problem
f(x —z) = min, z € A. Otherwise, we would be able to construct a nonconvergent
sequence {y}72 ;. By (7.218),

IF—xi, <@~ g=1.2,.... (7.219)

Let ¢ > 0 be given. Choose a natural number

q > 8e 1.
Set
8 =38i,n, — IIX — xi, Il (7.220)

By (7.216), § > 0. Assume that

veX, ly—il<s,  BeS(X), h(A,B)<s, (7.221)
and

ze€B, f(y—2) =psr(y,B)+3d.

By (7.220) and (7.221),

ly = xi, Il < Iy = Zl + 1% = xi, | < 8, n, (7.222)

By (7.222), (7.220) and property (P6), ||z — X;, || < (2¢)~'. When combined with

(7.219), this inequality implies that ||z — x| < g~ <e. This completes the proof of
Theorem 7.18. O



Chapter 8
Descent Methods

8.1 Discrete Descent Methods for a Convex Objective Function

Given a Lipschitzian convex function f on a Banach space X, we consider a com-
plete metric space A of vector fields V on X with the topology of uniform conver-
gence on bounded subsets. With each such vector field we associate two iterative
processes. We introduce the class of regular vector fields V € A and prove (under
two mild assumptions on f) that the complement of the set of regular vector fields
is not only of the first category, but also o-porous. We then show that for a locally
uniformly continuous regular vector field V and a coercive function f, the values
of f tend to its infimum for both processes. These results were obtained in [136].

Assume that (X, || - ||) is a Banach space with norm || - ||, (X, || - ||+) is its dual
space with the norm || - ||+, and f : X — R! is a convex continuous function which
is bounded from below. Recall that for each pair of sets A, B C X*,

H(A, B) =max{sup in£ lx — yll, sup in£ lx — y||*}

xeAYE yeBX€

is the Hausdorff distance between A and B.
For each x € X, let

Af(x):=={leX*: f(y)— f(x)=1(y —x) forall y € X}

be the subdifferential of f at x. It is well known that the set df (x) is nonempty and
bounded (in the norm topology). Set

inf(f) :=inf{f(x) X € X}.

Denote by A the set of all mappings V : X — X such that V is bounded on every
bounded subset of X (i.e., for each Ky > 0 there is K| > 0 such that | Vx| < K if
x|l < Kp), and for each x € X and each [ € 9f (x), [(Vx) < 0. We denote by A,
the set of all continuous V € A, by A, the set of all V € A which are uniformly
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continuous on each bounded subset of X, and by .4, the set of all V € A which are
uniformly continuous on the subsets

{xeX:llxll <nand f(x) > inf(f)+ 1/n}

for each integer n > 1. Finally, let Agye = Agy N Ae.
Next we endow the set A with a metric p: For each Vi, V; € A and each integer
i > 1, we first set

pi(V1, V2) :=sup{[[Vix — Vax| :x € X and |lx|| < i} 8.1)

and then define

p(Vi. V)= 27 i (Vi Vo) (1 + i (V1. Vo)) '], (8.2)
i=1

Clearly (A, p) is a complete metric space. It is also not difficult to see that the
collection of the sets

E(N,&)={(Vi,V2) e Ax A:|Vix = Vax| e, x € X, x| <N}, (83)

where N, e > 0, is a base for the uniformity generated by the metric p. Evidently
Ae, Ay, Agu and Ay, are closed subsets of the metric space (A, p). In the sequel
we assign to all these spaces the same metric p.

To compute inf( f), we are going to associate with each vector field W € A two
gradient-like iterative processes (see (8.5) and (8.7) below).

The study of steepest descent and other minimization methods is a central topic in
optimization theory. See, for example, [2, 19, 44, 47, 69, 73, 103] and the references
mentioned therein. Note, in particular, that the counterexample studied in Sect. 2.2
of Chap. VIII of [73] shows that, even for two-dimensional problems, the simplest
choice for a descent direction, namely the normalized steepest descent direction,

Vix)= { l,d:d:l},
(x) = argmin lég;lé)( )l

may produce sequences the functional values of which fail to converge to the infi-
mum of f. This vector field V belongs to .4 and the Lipschitzian function f attains
its infimum. The steepest descent scheme (Algorithm 1.1.7) presented in Sect. 1.1
of Chap. VIII of [73] corresponds to any of the two iterative processes we consider
below.

In infinite dimensions the problem is even more difficult and less understood.
Moreover, positive results usually require special assumptions on the space and the
functions. However, as shown in our paper [135] (under certain assumptions on the
function f), for an arbitrary Banach space X and a generic vector field V € A, the
values of f tend to its infimum for both processes. In that paper, instead of consid-
ering a certain convergence property for a method generated by a single vector field
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V, we investigated it for the whole space .A and showed that this property held for
most of the vector fields in \A.

Here we introduce the class of regular vector fields V € A. Our first result, The-
orem 8.2, shows (under the two mild assumptions A(i) and A(ii) on f stated below)
that the complement of the set of regular vector fields is not only of the first cate-
gory, but also o-porous in each of the spaces A, A., A,, Ag, and Ag,c. We then
show (Theorem 8.3) that for any regular vector field V € A, if the constructed se-
quence {x;}7°, C X has a bounded subsequence (in the case of the first process) or
is bounded (in the case of the second one), then the values of the function f tend to
its infimum for both processes. If, in addition to A(i) and A(ii), f also satisfies the
assumption A(iii), then this convergence result is valid for any regular V € A. Note
that if the function f is coercive, then the constructed sequences will always stay
bounded. Thus we see, by Theorem 8.2, that for a coercive f the set of divergent
descent methods is o -porous. Our last result, Theorem 8.4, shows that in this case
we obtain not only convergence, but also stability.

Our results are established in any Banach space and for those convex functions
which satisfy the following two assumptions.

A(i) There exists a bounded (in the norm topology) set Xo C X such that
inf(f) =inf{ f(x) :x € X} =inf{ f(x) : x € Xo};

A(ii) for each r > 0, the function f is Lipschitzian on the ball {x € X : ||x]| <r}.

Note that we may assume that the set X in A(i) is closed and convex. It is clear
that assumption A(i) holds if limj x| 0 f(x) = 00.

We say that a mapping V € A is regular if for any natural number 7, there exists
a positive number 6(n) such that for each x € X satisfying

x|l<n and f(x)>inf(f)+ 1/n,
and each / € 9f (x), we have

[(Vx) < —=8(n).

Denote by F the set of all regular vector fields V € A.

It is not difficult to verify the following property of regular vector fields. It means,
in particular, that G = A \ F is a face of the convex cone A in the sense that if a
non-trivial convex combination of two vector fields in A belongs to G, then both of
them must belong to G.

Proposition 8.1 Assume that Vi, V, € A, Vy is regular, ¢ : X — [0, 1], and that for
each integern > 1,

inf{¢(x) xeXand x| < n} > 0.

Then the mapping x — ¢ (x)Vix + (1 — ¢ (x)) Vax, x € X, also belongs to F.
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Our first result shows that in a very strong sense most of the vector fields in A
are regular.

Theorem 8.2 Assume that both A() and A(ii) hold. Then A\ F (respectively,
ANF, Agu \ F and Agyc \ F) is a o-porous subset of the space A (respectively,
Ac, Aau and Aguc). Moreover, if | attains its infimum, then the set A, \ F is also
a o -porous subset of the space A,.

Now let W € A. We associate with W two iterative processes.
For x € X we denote by Py (x) the set of all

ye{x+aWx:ael0,1]}
such that

f(y)=inf{ f(x +BWx): B €0, 11}. (8.4)

Given any initial point xo € X, one can construct a sequence {x;}7°, C X such that
foralli =0,1,...,

Xit+1 € Py (xi). (8.5)

This is our first iterative process.
Next we describe the second iterative process.

Given a sequence a = {ai}f?io C (0, 1] such that
o0
Jlim a; =0 and Xéai = o0, (8.6)
1=

we construct for each initial point xo € X, a sequence {x;};°, C X according to the
following rule:

Xigl =X +ai W) if f(xi+aiW(x)) < f(x), &7)
Xi+1 =x; otherwise, '

wherei =0, 1, ....
We will also make use of the following assumption:

A(iii) For each integer n > 1, there exists § > 0 such that for each x1, xp € X satis-
fying

lxells lx2ll < n, Jf (i) zinf(f) +1/n, i=1,2, and

lx1 —x2l <6,

the following inequality holds:

H(3f (x1), 8f (x2)) < 1/n.
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This assumption is certainly satisfied if f is differentiable and its derivative is
uniformly continuous on those bounded subsets of X over which the infimum of f
is larger than inf(f).

Our next result is a convergence theorem for those iterative processes associated
with regular vector fields. It is of interest to note that we obtain convergence when
either the regular vector field W or the subdifferential df enjoy a certain uniform
continuity property.

Theorem 8.3 Assume that W € A is regular, A(i), A(ii) are valid and that at least
one of the following conditions holds: 1. W € Agy; 2. A(iii) is valid. Then the fol-
lowing two assertions are true:

(i) Let the sequence {x;};°, C X satisfy (8.5) foralli =0,1,....If

liminf |lx;]| < oo,
11— 00

then lim; . f(x;) = inf(f).
(ii) Let a sequence a={a;}°, C (0, 1] satisfy (8.6) and let the sequence {x;}7°, C
X satisfy (8.7) foralli =0,1,.... If{x,}?io is bounded, then

lim f(x;) =inf(f).

Finally, we impose an additional coercivity condition on f and establish the fol-
lowing stability theorem. Note that this coercivity condition implies A(i).

Theorem 8.4 Assume that f(x) — oo as ||x|| = oo, V € Ais regular, A(ii) is valid
and that at least one of the following conditions holds: 1. V € Ag,y,; 2. A(iii) is valid.

Let K, & > 0 be given. Then there exist a neighborhoodU of V in A and a natural
number Ng such that the following two assertions are true:

(i) For each W € U and each sequence {xi}f\lz(’o C X which satisfies || x| < K and
(8.5) foralli=0,..., Ng— 1, the inequality f(xn,) <inf(f) + ¢ holds.

(ii) For each sequence of numbers a = {a,-}fio C (0, 1] satisfying (8.6), there exists
a natural number N such that for each W € U and each sequence {xi}lN: 0 C
X which satisfies ||xol| < K and (8.7) for alli =0, ..., N — 1, the inequality
f(xn) <inf(f) + € holds.

8.2 An Auxiliary Result

Assume that K is a nonempty, closed and convex subset of X. We consider the
topological subspace K C X with the relative topology. For each function / : £ —
R! define inf(h) := inf{h(x) : x € K}.
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Proposition 8.5 Let g : K — R' be a convex, bounded from below, function which
is uniformly continuous on bounded subsets of IC. Assume that there exists a
bounded and convex set Ko C KC such that for each x € IC, there exists y € Ko for

which g(y) < g(x).
Then there exists a continuous mapping Ag : K — Ko which satisfies g(Agx) <
g(x) for all x € K and has the following two properties:

B(i) For each integer n > 1, the mapping A, is uniformly continuous on the set
{x e :|x|| <nand g(x) > inf(g) + l/n};
B(ii) if g(x) > inf(g) + ¢ for some ¢ > 0 and x € IC, then
8(Agx) =g(x) —e/2.

Proof If there exists x € IC for which g(x) = inf(g), then there exists x* € Ky for
which g(x*) =inf(g) and we can set Ag(y) = x* for all y € K. Therefore we may
assume that

{x el:glx)= inf(g)} =0.
For each integer i > 0, there exists y; € o such that
. -1 .
g < (4G + 1) +inf(g). (3.8)

Consider now the linear segments which join yg, y1,..., Ys,... (all contained in
ICo by the convexity of Ky), represented as a continuous curve y : [0, 00) — Ko and
parametrized so that

YO =yi+ =)y —y) ifi<t<i+13G=0,1,2,...). (8.9)
The curve y is Lipschitzian because the set K¢ is bounded. Define
. -1
Agx =y(g(x) — (inf(g)) "), xek. (8.10)

It is easy to see that Agx € Ko for all x € /I, the mapping A, is continuous on K
and that it is uniformly continuous on the subsets

{x € K:llx|l <nand g(x) > inf(g) + 1/n}

for each integer n > 1.
Assume that

x ek, e>0 and g(x)>inf(g)+e. (8.11)
There is an integer i > 0 such that

gy —inf(g) e ((+ 17" i™"] (8.12)
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(here 0~! = 00). Then

(s(x) —inf(g)) " €li,i+1) (8.13)
and by (8.10), (8.9) and (8.13),
Agx =y () — (inf(9) ") = yi + ((g@) — inf(®)) ™ = i) i1 — ¥0)-
It follows from this relation, (8.8), (8.11), (8.12) and the convexity of g that
g(Agx) < max{g(y), g} <inf(g) + (4G + 1)
< inf(g) +47'(g(x) —inf(g)) = g(x) — 3 -4~ (g(x) —inf(g))
<gx)—3-47"s

This completes the proof of Proposition 8.5. g

8.3 Proof of Theorem 8.2

We first note the following simple lemma.

Lemma 8.6 Assume that Vi,V € A, ¢ : X — [0, 1], and that
Vx = (l — ¢(x))V1x +o(x)Vox, xeX.

ThenV € A. If V1, Vo € A, and ¢ is continuous on X, then V € A.. If Vi, Vo € Ay
(respectively, Aqy, Aauc) and ¢ is uniformly continuous on bounded subsets of X,
then V € A, (respectively, Aqy, Aquc)-

For each pair of integers m, n > 1, denote by £2,,,, the set of all V € A such that
Vx| <m forall x € X satisfying ||x|| <n +1 (8.14)
and
sup{l(Vx):x € X, |lx|| <n, f(x) >inf(f)+ 1/n,l €df (x)} =0. (8.13)
Clearly,

o o
U U @2m=A\F. (8.16)
m=1n=1
Therefore in order to prove Theorem 8.2 it is sufficient to show that for each pair of
integers m, n > 1, the set £2,,, (respectively, £2,,, N Ac, 20 N Agus 2imn N Aguc)
is a porous subset of A (respectively, A., Agy, Aauc), and if f attains its minimum,
then £2,,, N A, is a porous subset of A4,,.
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By assumption A(i), there is a bounded and convex set Xy C X with the follow-
ing property:

C(i) Foreach x € X, there is xg € X such that f(xg) < f(x). If f attains its mini-
mum, then Xy is a singleton.

By Proposition 8.5, there is a continuous mapping A ¢ : X — X such that
Ar(X) C X, fApx) < f(x) forallx e X, (8.17)

and which has the following two properties:

C(i) IfxeX,e>0and f(x) >inf(f) +e¢,then f(Arx) < f(x) —&/2;
C(iii) for any natural number n, the mapping A 7 is uniformly continuous on the set

[xeX:lx| <nand f(x) >inf(f) + 1/n}.

Let m,n > 1 be integers. In the sequel we will use the piecewise linear function
¢ : R' — R! defined by

op(x)=1, xel[—n,n], ¢(x)=0, |x|>=n+1 (8.18)
and
p(—n—14+1=t, te]0,1], pm+1)=1—1t, te]0,1].
By assumption A(ii), there is ¢ > 1 such that
|f @) = fF] < collx =yl (8.19)
for all x, y € X satisfying ||x||, ||y|| <n + 2. Choose « € (0, 1) such that
ac2"™? <2y 1271 - a)(m +n+2+ sup{||x|| 1x € Xo})il. (8.20)
Assume that V € £2,,,, and r € (0, 1]. Let
y =27" 0 = a)r(m +n+2+ sup{llx|l :x € Xo}) (8.21)
and define V), : X — X by
Vyx=(1—yo(llxll))Vx +yo(lxl)(Asx —x), xeX. (8.22)

By Lemma 8.6, V,, € A and moreover, if V € A, (respectively, Au,, Aauc), then
V, € A. (respectively, Aqu, Aauc), and if V € A, and f attains its minimum, then
A is constant (see C(i)) and V), € A,,.

Next we estimate the distance p(V,,, V). It follows from (8.22) and the definition
of ¢ (see (8.18)) that V,,x = Vx for all x € X satisfying ||x|| > n + 1 and

pi(Vy,V)=puy1(V,, V) forallintegersi >n+ 1.
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Since V € £2,,,,, the above equality, when combined with (8.2), (8.1), (8.22), (8.18)
and (8.17), yields

)
p(Vy, V) <Y 27 pi(V, V) < pugt (V. V)
i=1
=sup{||Vx — Vyx|l:x € X, |Ix|| <n+ 1}
< sup{y(Ixll)(IVxll + 1A sx — x) : x € X, |lx|| <n + 1}
<ym+1D+yn+1)+ysup{lx|:x e Xo}. (8.23)
Assume that W € A with
p(W,V)) <ar. (8.24)
By (8.24), (8.23) and (8.21),
p(W,V)<ar+ y(m +n+2+ sup{||x|| 1X € Xo}) <27 +a)r <r. (8.25)
Assume now that
xeX, Ix]| <n, fx)=>inf(f)+1/n and [€df(x). (8.26)
Inequality (8.19) implies that
l1ls < co-
By (8.22), (8.26), the definition of ¢ (see (8.18)) and C(ii),
1(Vyx) =1((1 =y (1)) Vx + yo(IlxI)(Arx —x)) < yd(llxll)I(Arx —x)
=yl(Apx —x) <y (f(Arx) — f(0) < —y@m)~". (8.27)
It follows from (8.26) and (8.1) that
IWx = Vyx|| < pu (W, Vy). (8.28)

By (8.24), (8.28) and the inequality ||/||« < co, we have

_ -1
27" p (W, Vy)(1+pn(Wv Vy)) <pW, Vy)far,

on (W, V) (1+ pa (W, V,)) ™! < 2"ar, (8.29)
on(W, Vy)(l — Z”ar) <2"ar, Wx —V,x|| < 2"ar(l — Z”ar)_l,
and
[(Wx) —1(Vyx)| < co2"ar (1 —2"ar) " (8.30)

By (8.30), (8.27), (8.21) and (8.20),
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I(Wx) <1(V,x) + o2 ar(1—2"ar)”!

<—y@n) ' +cp2'ar(1—2"ar)”!
= cp2"ar(1—2"ar)™!
—@n) 27 (1 — ) (m 4+ 2+ supf x| 1 x € Xo}) !
< —r[~co2"a- 24 @n) 27 (1 —a)(m +n + 2+ sup{lix]| : x € Xo}) ']
< —2rco2"a.

Thus
(WeA:p(W, V) <ar} N Qu, =0.

In view of (8.25), we can conclude that £2,,, is porous in A, £2,,, N A is porous in
Ac, 2n N Agy is porous in Ay, $2,un N Agye is porous in Ay, and if f attains its
minimum, then £2,,, N.A, is porous in A,. This completes the proof of Theorem 8.2.

8.4 A Basic Lemma

The following result is our key lemma.

Lemma 8.7 Assume that V € A is regular, A(i), A(ii) are valid and that at least
one of the following conditions holds: 1. V € Ayy,; 2. A(iii) is valid.

Let K and & be positive. Then there exist a neighborhood U of V in A and
positive numbers & and y such that for each W € U, each x € X satisfying

x| < K, f(x) =inf(f) + ¢, (8.31)
and each B € (0, ],
J@) = flx+pWx) = By. (8.32)
Proof There exists Ko > K + 1 such that
Vx| <Ko ifxeXand|x|| <K +2. (8.33)
By Assumption A(ii), there exists a constant Ly > 4 such that
| f(x1) = f(x2)| < Lollx — x2| (8.34)

for all x1, xo € X satisfying ||x1]|, [|[x2|| <2Ko + 4. Since V is regular, there exists
a positive number §¢ € (0, 1) such that

E(Vy)=—do (8.35)
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for each y € X satisfying ||y|| < Ko + 4, f(y) > inf(f) +€/4,and each § € 3f (y).
Choose 81 € (0, 1) such that

481(Ko + Lo) < do. (8.36)
There exists a positive number ¢« such that the following conditions hold:
8a(Lp+ 1)(Ko+ 1) <min{l, &}; (8.37)
(a) if V € Agy, then for each x1, xp € X satisfying

Ixill, lx2ll < K +4,  min{f(x1), f(x2)} >inf(f) +&/4,
and |[x; — x| <a(Ko+ 1),

(8.38)

the following inequality is true:
Vxi — Vx| <d1; (8.39)

(b) if A(iii) is valid, then for each x1, x; € X satisfying (8.38), the following
inequality is true:

H(3f (x1), 3f (x2)) < 1. (8.40)

Next choose a positive number §, such that
882(Lo + 1) < 8160- (8.41)
Now choose a positive number y such that
y <80/8 (8.42)
and define
U:={WeA:|Wx—Vx|<8,xeXand x| <K} (8.43)

Assume that W € U, x € X satisfies (8.31), and that 8 € (0, a]. We intend to
show that (8.32) holds. To this end, we first note that (8.31), (8.33), (8.37), (8.43)
and (8.41) yield

lx+BVx|| <K+BKo<K+ako<K+1

and
Ix+BWx| <828+ lx+BVx| <K +1+adh<K+2.
By these inequalities, the definition of L (see (8.34)) and (8.43),

|f(x+BVx) = flx + BWx)| < LoBllWx — V|| < LoBsa. (8.44)
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Next we will estimate f(x) — f(x + 8V x). There exist 8 € [0, 8] and [ € 9f (x +
6V x) such that

fx+BVx)— f(x)=I1(Vx)B. (8.45)
By (8.31), (8.33) and (8.37),
x|l < K, IVxll < Ko, 0Vx| <aKp, and
_ (8.46)
lx+6Vx|| <K +1.
It follows from (8.46) and the definition of Lg (see (8.34)) that
I« < Lo. (8.47)

It follows from (8.46), the definition of L (see (8.34)), (8.37) and (8.31) that
fx+0Vx) = f(x) = LollOVx|
> f(x) — LoaKo > f(x) —87'& > inf(f) + /2.  (8.48)
Consider the case where V € A, . By (8.47), condition (a), (8.46), (8.31) and (8.48),
BL(Vx) < BI(V(x +6Vx)) + BlLl(|V(x +6Vx) — Vx|)
<BI(V(x+6Vx))+ BLo||V(x+6Vx) — Vx|
<BIV(x+60Vx))+ BLo;. (8.49)
By (8.46), (8.48) and the definition of &g (see (8.39)),
[(V(x+6Vx)) < —bo.
When combined with (8.49) and (8.36), this inequality implies that
Bl(Vx) < —Bdo+ BLod1 < —Bdo/2.
By these inequalities and (8.45),
J&x+BVx)— f(x) =—pB8/2. (8.50)

Assume now that A(iii) is valid. It then follows from condition (b), (8.46), (8.31)
and (8.48) that

H(3f (x), 8f (x +6Vx)) < &1.

Therefore there exists [ € 9 f (x) such that Il —1||+ < &;. When combined with (8.45)
and (8.46), this fact implies that

Fx+BVx)— f(x)=BI(Vx) < BI(VX)+ Bl — 1] Vx]
< BI(Vx) + B8 Ko. (8.51)
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It follows from the definition of &¢ (see (8.35)) and (8.31) that ,Bl_(Vx) < —Bdo.
Combining this inequality with (8.51) and (8.36), we see that

J&x+BVx)— f(x) = =B + Bd1Ko = —Bo/2.

Thus in both cases (8.50) is true. It now follows from (8.50), (8.44), (8.41) and
(8.42) that

JFa+BWx) = f) < fx+BVx) = f)+ flx+BWx) — f(x +pVx)
< —Pdo/2+ Lopd2 = —Bdo/4 < —yp.

Thus (8.32) holds. Lemma 8.7 is proved. O

8.5 Proofs of Theorems 8.3 and 8.4

Proof of Theorem 8.3 To show that assertion (i) holds, suppose that

(1%, CX,  xip1€Pwx;, i=0,1,..., and liminf|x] <oo. (852)
1—>00

We will show that
lim f(x;) =inf(f). (8.53)
11— 00
Assume the contrary. Then there exists ¢ > 0 such that
fGp)=inf(f)+e, i=0,1,.... (8.54)

There exists a number S > 0 and a strictly increasing sequence of natural numbers
{ix}p2, such that

lx I <SS, k=1,2,.... (8.55)
By Lemma 8.7, there exist numbers «, y € (0, 1) such that for each x € X satisfying
lxll < S, f @) = inf(f) +e, (8.56)

and each 8 € (0, o],

fx)—fx+BWx)>ypB. (8.57)

It follows from (8.52), (8.4), (8.5), the definitions of « and y, (8.55) and (8.54) that
for each integer k > 1,

f(xik) - f(xik—i-l) = f(xl'k) - f(xl'k +OlW)Cl'k) > ya.
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Since this inequality holds for all integers k > 1, we conclude that
lim (f (x0) = f(xn)) = 0.
n—od

This contradicts our assumption that f is bounded from below. Therefore (8.53) and
assertion (i) are indeed true, as claimed.

We turn now to assertion (ii). Let a = {a;}{2, C (0, 1] satisfy (8.6) and let a
bounded {x;}7°, C X satisfy (8.7) for all integers i > 0. We will show that (8.53)
holds. Indeed, assume that (8.53) is not true. Then there exists £ > 0 such that (8.54)
holds. Since the sequence {x; }‘fio is bounded, there exists a number S > 0 such that

S>|xill, i=0,1,.... (8.58)

By Lemma 8.7, there exist numbers «, y € (0, 1) such that for each x € X satisfying
(8.56) and each B € (0, ], inequality (8.57) holds. Since a; — 0 as i — oo, there
exists a natural number iy such that

a; <o for all integers i > ip. (8.59)

Let i > ip be an integer. Then it follows from (8.58), (8.54), the definitions of «
and y, and (8.59) that

fi) = fxi+aiWxi) >2yai, xiq1=xi +aiWx;,
and
fxi) = fxiv1) > ya.
Since Z,Oio a; = 00, we conclude that

nlingo(f(x()) - f(xn)) = OQ.

The contradiction we have reached shows that (8.53), assertion (ii) and Theorem 8.3
itself are all true. O

Proof of Theorem 8.4 Let
Ko>sup{f(x):xe X, x| <K +1} (8.60)
and set
E0={xeX:f(x)§Ko+1}. (8.61)
Clearly, Ey is bounded and closed. Choose
K1 >sup{[lx]l:x € Eo} + 1+ K. (8.62)

By Lemma 8.7, there exist a neighborhood U of V in A4 and numbers «, y € (0, 1)
such that for each W € U, each x € X satisfying

lxll < K1, fx) =inf(f) + &, (8.63)
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and each g8 € (0, o],
)= fx+BWx) > yB. (8.64)

Now choose a natural number Ny which satisfies
No > (ay) ™' (Ko + 4+ [inf(f)]). (8.65)
First we will show that assertion (i) is true. Assume that W e U, {x; }lN:Oo c X,
lxoll < K, and xjy1€ Pwx;, i=0,...,No— 1. (8.66)
Our aim is to show that

fxny) <inf(f) +e. (8.67)

Assume that (8.67) is not true. Then
f(x;) >inf(f)+¢e, i=0,...,No. (8.68)
By (8.66) and (8.60)—(8.62), we also have
lx ]l < K1, i=0,..., No. (8.69)

Leti €{0,..., No — 1}. It follows from (8.69), (8.68) and the definitions of U, «
and y (see (8.63) and (8.64)) that

fxi) = fxiv) = f(xq) — f(xi +aWxi) > ya.
Summing up from i =0 to Ny — 1, we conclude that
f(x0) — f(xn,) = Noye.
It follows from this inequality, (8.60), (8.65) and (8.66) that
inf(f) < f(xny) < f(x0) — Noye < Ko — Noyer < —4 — [inf(f)|.
Since we have reached a contradiction, we see that (8.67) must be true and assertion
(1) is proved.

Now we will show that assertion (ii) is also valid. To this end, let a sequence
a={a;}72, C (0, 1] satisfy

o0
lim ¢; =0 and Zai = 0. (8.70)

i—00
i=0
Evidently, there exists a natural number N such that

a; <a foralli> Nj. (8.71)
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Choose a natural number N > N; + 4 such that

N—1
% Z a; > Ko+ 4+ |inf(f)]. (8.72)
i=N

Now assume that W € U, {xi}zNzo C X, |lxoll < K, and that (8.7) holds for all i =
0,..., N — 1. We claim that

fxn) <inf(f) +e. (8.73)
Assume the contrary. Then
f(xi) >inf(f)+e, i=0,...,N. (8.74)
Since ||xo] < K, we see by (8.7) and (8.60)—(8.62) that
x| <Ky, i=0,...,N. (8.75)

Leti € {Ny,..., N — 1}. It follows from (8.75), (8.74), (8.71) and the definitions of
a and y (see (8.63) and (8.64)) that

f&x) — fxi +aiWx) > ya;.

This implies that

N-1
fon) = fam) =y Y ai.

i=N,

By this inequality, (8.7), the inequality ||xo|| < K, (8.60) and (8.72), we obtain

N—-1
inf(f) < fON) S FON) =Y Y ai
i=N;
N—-1
<Ko—y Y ai<—4—|inf(f)].
i=N;

The contradiction we have reached proves (8.73) and assertion (ii). This completes
the proof of Theorem 8.4. g

8.6 Methods for a Nonconvex Objective Function

Assume that (X, || - ||) is a Banach space, (X*, || - ||.) is its dual space, and f : X —
R! is a function which is bounded from below and Lipschitzian on bounded subsets
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of X. Recall that for each pair of sets A, B C X*,

H (A, B) = max{sup inf |[x = [, sup inf [lx =yl

xeAYE yeBX€A

is the Hausdorff distance between A and B. For each x € X, let

O,y = limsup [f(y+th)— f(»]/t. heX, (8.76)

t—0t,y—>x
be the Clarke derivative of f at the point x [41],
Bf(x)z{leX*:fO(x,h)zl(h) forallheX} 8.77)
the Clarke subdifferential of f at x, and
E(x) :=inf{f0(x, h):heX and |h|| = 1}. (8.78)

It is well known that the set df (x) is nonempty and bounded. It should be mentioned
that the functional = was introduced in [176] and used in [182] in order to study
penalty methods in constrained optimization.

Set inf(f) = inf{f (x) : x € X}. Denote by A the set of all mappings V : X —
X such that V is bounded on every bounded subset of X, and for each x € X,
O, Vx) < 0. We denote by A, the set of all continuous V € A and by A, the set
of all V € A which are bounded on X. Finally, let Ap. = Ap N A.. Next we endow
the set A with two metrics, pg and p,,. To define pg, we set, for each Vi, V> € A,
Ps(V1, V2) = sup{||Vix — Vox || : x € X} and

ps(Vi, Vo) = o (Vi, Vo) (14 s (Vi, Va)) ™. (8.79)

(Here we use the convention that co/oo = 1.) It is clear that (A, ps) is a complete
metric space. To define py,, we set, for each V|, V, € A and each integer i > 1,

pi(V1, V2) :=sup{[[Vix — Vax| :x € X and ||lx|| < i}, (8.80)

pu(Vi,V2) = > 27 i (Vi Vo) (1+ o1 (V1. Vo) 1. (8.81)

i=1

Clearly, (A, py) is a complete metric space. It is also not difficult to see that the
collection of the sets

E(N,e)={(Vi,V)) e AX A: ||[Vix — Vax| <&, x € X, |Ix|| < N},

where N, ¢ > 0, is a base for the uniformity generated by the metric p,,. It is easy
to see that p,, (V1, V2) < ps(V1, V») for all Vi, V» € A. The metric p,, induces on A
a topology which is called the weak topology and the metric p; induces a topology
which is called the strong topology. Clearly, A, is a closed subset of .4 with the
weak topology while 4, and A are closed subsets of .4 with the strong topology.
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We consider the subspaces A, Ap and Ap. with the metrics pg and p,, which induce
the strong and the weak topologies, respectively.

When the function f is convex, one usually looks for a sequence {x;}72, which
tends to a minimum point of f (if such a point exists) or at least such that
lim; , o0 f(x;) =inf(f). If f is not necessarily convex, but X is finite-dimensional,
then we expect to construct a sequence which tends to a critical point z of f,
namely a point z for which 0 € 9f(z). If f is not necessarily convex and X is
infinite-dimensional, then the problem is more difficult and less understood be-
cause we cannot guarantee, in general, the existence of a critical point and a con-
vergent subsequence. To partially overcome this difficulty, we have introduced the
function & : X — R!. Evidently, a point z is a critical point of f if and only if
E(z) = 0. Therefore we say that z is e-critical for a given ¢ > 0 if &(z) > —e.
We look for sequences {xi}j’il such that either liminf; o & (x;) > 0 or at least
limsup;_, o, & (x;) > 0. In the first case, given ¢ > 0, all the points x;, except possi-
bly a finite number of them, are e-critical, while in the second case this holds for a
subsequence of {x;}7°,.

We show, under certain assumptions on f, that for most (in the sense of Baire’s
categories) vector fields W € A, the iterative processes defined below (see (8.84)
and (8.85)) yield sequences with the desirable properties. Moreover, we show that
the complement of the set of “good” vector fields is not only of the first category,
but also o-porous. These results, which were obtained in [141], are stated in this
section. Their proofs are relegated to subsequent sections.

For each set E C X, we denote by cl(E) the closure of E in the norm topology.
Our results hold for any Banach space and for those functions which satisfy the
following two assumptions.

A(@) For each ¢ > 0, there exists § € (0, &) such that
dfreX:Ex) <—¢e})c{xeX:8x) <68}

A(ii) for each r > 0, the function f is Lipschitzian on the ball {x € X : ||x| <r}.

We say that a mapping V € A is regular if for any natural number #, there exists
a positive number §(n) such that for each x € X satisfying ||x|| <n and &(x) <
—1/n, we have fO(x, Vx) < —8(n).

This concept of regularity is a non-convex analog of the regular vector fields
introduced in [136]. We denote by F the set of all regular vector fields V € A.

Theorem 8.8 Assume that both A(i) and A(ii) hold. Then A\ F (respectively,
AN\F, Ap \ F and Ape \ F) is a o-porous subset of the space A (respectively,
Ac, Ap and Ape) with respect to the pair (py, ps).

Now let W € A. We associate with W two iterative processes. For x € X we
denote by Py (x) the setof all y € {x + «Wx : « € [0, 1]} such that

) =inf{f(x +BWx): B €0, 11}. (8.82)
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Given any initial point xg € X, one can construct a sequence {x; }C’O0 C X such that
foralli =0,1,...,

Xit+1 € Pw(x;). (8.83)

This is our first iterative process. Next we describe the second iterative process.
Given a sequence a = {a;};2 C (0, 1) such that

lim ¢; =0 and Za, =00, (8.84)

i—00
i=0

we construct for each initial point xo € X, a sequence {x;};°, C X according to the
following rule:

Xip1 =X +a; W) if £ +aW)) < fx),

(8.85)
Xi+1 =x; otherwise, wherei =0,1,....

In the sequel we will also make use of the following assumption:

A(iii) For each integer n > 1, there exists 6 > 0 such that for each x1, x, € X satis-
fying [lx(|l, llx2ll < n, min{Z (x;) : i = 1,2} < —1/n, and |lx; — x2|| <6, the
following inequality holds: H (3f (x1), df (x2)) < 1/n.

We denote by Card(B) the cardinality of a set B.

Theorem 8.9 Assume that W € A is regular, and that A1), A(ii) and A(iii) are all
valid. Then the following two assertions are true:

(i) Let the sequence {x;};°, C X satisfy (8.83) for all i =0, 1,.... If {x;}2, is
bounded, then hmmf,_)C>O E(x;)=>0.

(ii) Let a sequence a = {a;};2, C (0,1) satisfy (8.84) and let the sequence
{xi}72 C X satisfy (8.85) forall i =0, 1,....If {x;}{2, is bounded, then

limsup Z (x;) > 0.
i— 00

Theorem 8.10 Assume that f(x) — o0 as ||x|| = oo, V € A is regular, and that
A1), A(ii) and A(ii) are all valid. Let K, & > 0 be given. Then there exist a neigh-
borhood U of V in A with the weak topology and a natural number Ny such that
the following two assertions are true:

(1) For each W € U, each integer n > Ny and each sequence {xi}!_y C X which
satisfies | xo|| < K and (8.83) foralli =0, ...,n — 1, we have

Card{i €{0,...,N — 1}: E(x;) < —¢} < No.

(ii) For each sequence of numbers a = {al}ooo C (0, 1) satisfying (8.84), there
exists a natural number N such that for each W € U and each sequence
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{x,-}f\/:0 C X which satisfies ||xo|| < K and (8.85) foralli =0,...,N — 1, we
have

max{Z (x;):i=0,...,N} > —e.

8.7 An Auxiliary Result
For each positive number A, set
Ey:={xeX:Ex) <-i}. (8.86)
Proposition 8.11 Ler ¢ > 0 be given. Suppose that
cl(Eg) C Ese) (8.87)

for some 8(¢) € (0, €). Then there exists a locally Lipschitzian vector field V € Ay,
such that fO(y, Vy) < —8(¢) for all y € X satisfying 5 (y) < —e.

Proof 1t easily follows from definitions (8.76) and (8.78) that E, is an open set
for all A > 0. Let x € Es(). Then there exist h, € X such that ||| =1 and
O, hy) < —8(¢), and (see (8.76)) an open neighborhood U, of x in X such that

Oy, hy) < —8(¢) forall y € Uy. (8.88)
For x € X \ E5(), set
hy=0 and Uy=X\cl(E,). (8.89)

Clearly, {Uy}xex is an open covering of X. Since any metric space is paracompact,
there is a locally finite refinement {Q, : @ € A} of {U, : x € X}, i.e., an open cov-
ering of X such that each x € X has a neighborhood Q(x) with Q(x) N Qy # ¥
only for finitely many o € A, and such that for each o € A, there exists x, € X
with Q4 C U(xy). Let o € A. Define gy : X — [0,00) by pg(x) =0if x ¢ Qg
and by e (x) =inf{||x — y|l : y € 0Qq} otherwise. (Here 9B is the boundary of
a set B C X.) The function p, is clearly Lipschitzian on all of X with Lipschitz
constant 1. Let wy (x) = ,ua(x)(zﬂeA ,u,,g(x))_l, x € X. Since {Qy : @ € A} is lo-
cally finite, each w,, is well defined and locally Lipschitzian on X. Define a locally
Lipschitzian, bounded mapping V : X — X by

V)= 0eWhy,, yeX. (8.90)
acA
Let y € X. There are a neighborhood Q of y in X and ¢y, ..., o, € A such that

foeA: QuNO#0B)=A{a1,..., o). (8.91)
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We have

VO =Y 0qMhy, . Y oa () =1, (8.92)
i=1

i=1

0. vy =r° (y, > o, (y)hxai) <Y 0O b)) (8.93)

i=1 i=1

Leti € {1,...,n} with wy,; (y) > 0. Then
y € supp{wy; } C Qu; C Ux,, - (8.94)

If g, € X \ Ese), then by (8.89), hy, =0and fO(y, hy, ) =0.If xo; € Es(e), then
by (8.88) and (8.94), fO(y, hy, ) < 0. Therefore f°(y, iy, ) <0 in both cases and

£y, Vy) <0. Thus V € A. Assume that y € E., i € {1,...,n} and wy; (y) > 0.
Then (8.94) holds. We assert that x,; € Es(¢). Assume the contrary. Then x,, € X \
Es(s) and by (8.89), Uy, = X\ cl(E,). When combined with (8.94), this implies that
yeEN Uxai =E.N ()l( \cl(E¢)), a contradiction. Thus xy; € Es(), as asserted. By

the definition of Uxa,- (see (8.88)) and (8.94), fo(y, hxa,-) < —48(¢). When combined
with (8.93), this implies that f0(y, Vy) < —8(e). O

8.8 Proof of Theorem 8.8

For each pair of integers m, n > 1, denote by £2,,,, the set of all V € A such that

IVx|| <m forall x € X satisfying ||x|| <n+1 and (8.95)
sup fO(x, Vx) ix € X, x| <n, E(x) < —1/n} =0. (8.96)
Clearly,
o0 o0
U U Qun = A\ F. (8.97)
m=1n=1

Therefore in order to prove Theorem 8.8 it is sufficient to show that for each pair of
integers m, n > 1, the set £2,,,, (respectively, £2,,, N Ac, 2pmn N Ap, 2pn N Ape) is a
porous subset of A (respectively, A., Ap, Apc) with respect to the pair (py, ps). Let
m,n > 1 be integers. By Proposition 8.11, there exists a vector field V, € A such
that (i) Vi is bounded on X and Vj is locally Lipschitzian on X; (ii) there exists
84 € (0, 1) such that

Oy, Viy) < =8, forall y € X satisfying & (y) < —(4n) ™. (8.98)
By assumption A(ii), there is ¢ > 1 such that

| () = F] <collx =yl (8.99)
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for all x, y € X satisfying ||x||, || y|| <n + 2. Choose « € (0, 1) such that

acp2"? < 2n)7'27 (1 — @)8 (m + 1+ sup{|| Vix| 1 x € X})_l. (8.100)
Assume that V € A and r € (0, 1]. There are two cases: (a) sup{||Vx| : x €
X, x| <n+1}<m+1; ) sup{||Vx]:x € X, ||lx|| <n+ 1} > m + 1. We first
assume that (b) holds. Let W € A with p,, (W, V) <274, Then Pn+1 (W, V(1 +

Pn1(V, W)™ <871 o, 1 (W, V) <1/7, and sup{[|Wx|| : x € X, x| <n+1} >
m. Thus {(W e A: p,(W,V) < 2_”_4} N £2,,, = ¥. Assume now that (a) holds. Let

y =20 —a)r(m+1+sup{|Vix| :x e X})™' (8.101)

and define V), € A by
Vyx=Vx+yVix, xeX. (8.102)

If V e A. (respectively, Ap, Apc), then V,, € A, (respectively, A, Apc). Next we
estimate the distance ps(V,, V). It follows from (8.102), (8.101) and (8.76) that

ps(Vy, V) < Bs(Vyy, V) < ysupf{||Va®) | :x e X} <271 — ). (8.103)

Assume that W € A with
pw(W, V) <ar. (8.104)
By (8.104) and (8.103),

Pw(W, V) < (W, Vy)) + pu(Vy, V) <ar +27' (1 —a)r
<2 "1 +a)r<r (8.105)

Assume now that
xeX, x|l <n, E(x)<—1/n and [edf(x). (8.106)

Inequality (8.99) implies that
l1ls < co- (8.107)
By (8.102), (8.98) and (8.106),

[(Vyx) =1(Vx) + yl(Va(x)) < pl(Vax) < yfO(x, Vix) < y(=8).  (8.108)
It follows from (8.106) and (8.80) that
IWx = Vyx]| < ou (W, Vy). (8.109)

By (8.104) and (8.81), we have 27" o, (W, V,,)(1 + p, (W, Vy))_1 < puw(W,V,) <
ar, p,(W,V,)A + pu (W, V},))_l <2"ar, and p,(W,V,)(1 — 2"ar) < 2"ar.
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When combined with (8.109), the last inequality implies that |Wx — V, x| <
2"ar(1 —2"ar)~!, and when combined with (8.107), this implies that

1

[l(Wx) = 1(Vyx)| < co2"ar(1 —2"ar)” . (8.110)

By (8.110), (8.108), (8.101) and (8.100),

I(Wx) <1(Vyx) + o2 ar(1 = 2"ar) "' < —y8, +co2ar(l = 2"ar) ™

= cp2"ar(1 —2"ar)™"

— 827 A —a)r(m+ 1+ sup{|[Vixl| :x € X )]
= —r[—co2"a(1 = 2"ar) "

48,27 (1 —a)(m + 1+ sup{[| Vx| :x € X}) ']

< —2rcp2"a.

Since / is an arbitrary element of df (x), we conclude that f O(x, Wx) < =2rcp2"a.
Thus {(W € A: py, (W, V) < ar} N 2, = 9. Recall that in case (b), {W € A:
pw(W, V) <270 §2,,, = B. Therefore £2,,, is porous in A, §2,,, N A, is porous
in A¢, 2., N Ap is porous in Ay, and §2,,,, N Ap, is porous in Ay, as asserted.

8.9 A Basic Lemma for Theorems 8.9 and 8.10

Lemma 8.12 Assume that V € A is regular, and that A(i), A(ii) and A(ii) are all
valid. Let K and & be positive. Then there exist a neighborhood U of V in A with
the weak topology and positive numbers o and y such that for each W € U, each
x € X satisfying

Ix| <K and E(x)<-—&, (8.111)
and each B € (0, a], we have
Jf@) = fx+BWx) > By. (8.112)
Proof There exists Ko > K + 1 such that
IVx|| <Ko ifxeXand|x| <K+2. (8.113)
By Assumption A(ii), there exists a constant Ly > 4 such that
| £Ge) = F ()] < Lollx1 — xall (8.114)
for all x1, xp € X satisfying ||x1]|, [|x2]| < 2Ky + 4. There is §y € (0, 1) such that

Oy, Vy) <=8 (8.115)
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for each y € X satisfying ||y|| < Ko +4 and & (y) < —&/4. Choose §; € (0, 1) such
that

481(Ko + Lg) < p. (8.116)

By A(iii), there is a positive & such that the following conditions hold:
8a(Lo+ 1)(Ko + 1) <min{l, &}; (8.117)
for each x1, xy € X satisfying

lxill, lx2l <K +4,  min{&(x1), §(x2)} < —&/4,

(8.118)
X1 —x2ll <a(Ko+ 1),
the following inequality is true:
H(f (x1), 8f (x2)) < 81/2. (8.119)
Next, choose a positive number &, such that
882(Lo + 1) < 810. (8.120)
Finally, choose a positive number y and define a neighborhood &/ such that
y < 80/4, (8.121)
U={WeA:|Wx— Vx| <8, xeXand|x]| <K} (8.122)

Assume that W € U, x € X satisfies (8.111), and that 8 € (0, @]. We intend to
show that (8.112)) holds. To this end, we first note that (8.111), (8.113), (8.117)
and (8.122) yield

lx+ Vx| <K+BKo<K+aKo<K+1,

_ _ (8.123)

[x +BWx|| <+ Ix+BVx| <K+ 1+adh <K +2.

By these inequalities, the definition of L (see (8.114)) and (8.122),
|f(x+BVx) — f(x 4+ BWx)| < LoBl[Wx — Vx| < LoBss. (8.124)

Next we estimate f(x) — f(x+BVx).By [89], there exist6 € [0, Bl and [ € of (x +
6V x) such that

fx+BVx)— f(x)=1(Vx)B. (8.125)
By (8.111), (8.114) and (8.117),
Ixl <K, Vx|l < Ko, 0Vx] <aKp, and

} (8.126)
Ix +6Vx| <K +1.
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Note that (8.126) and the definition of Lg (see (8.114)) imply that
I« < Lo. (8.127)

It also follows from (8.111), (8.126) and the definition of « (see (8.118) and (8.119))
that H(3f (x), 0f (x +0Vx)) < §1. Therefore there exists [ € df (x) such that ||/ —
|« < &1. When combined with (8.125) and (8.126), this fact implies that

f+BVx) = f(x) = BI(Vx) < BI(Vx) + BIT = 1. Vx|
< BI(Vx) + B8 Ko. (8.128)
It follows from the definition of &g (see (8.115)) and (8.111) that ,Bl_(Vx) < —Bdo.
Combining this inequality with (8.128) and (8.116), we see that f(x + BVx) —
f(x) < =By + BS1 Ko < —Bdp/2. It now follows from this inequality, (8.120),
(8.124) and (8.121) that f(x + BWx) — f(x) < f(x + BVx) — f(x) + f(x +

BWx) — f(x + BVx) < —B80/2+ Lof82 < —Bdo/4 < —yp. Thus (8.112) holds
and Lemma 8.12 is proved. g

8.10 Proofs of Theorems 8.9 and 8.10

Proof of Theorem 8.9 To show that assertion (i) holds, suppose that

{xifiZo C X, Xit1 € Pwxi, i=0,1,...,
(8.129)
sup{[lxifl :i =0,1,...} < oo.
We claim that
liminf Z (x;) > 0. (8.130)
11— 00

Assume the contrary. Then there exist ¢ > 0 and a strictly increasing sequence of
natural numbers {i;}72, such that

Exp)<-—e k=12,.... (8.131)
Choose a number S > O such that
lxll <8, i=12,.... (8.132)

By Lemma 8.12, there exist numbers «, y € (0, 1) such that for each x € X satisfy-
ing

lx<S and &(x)<-—e, (8.133)

and each g € (0, a], we have

fx)—fx+BWx)>ypB. (8.134)
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It follows from (8.129), (8.82), (8.83), the definitions of « and y, (8.132) and (8.131)
that for each integer k > 1, f(x;,) — f(xi,+1) = f(x;,) — f(xi, +aWx;) > ya.
Since this inequality holds for all integers k > 1, we conclude that lim,,_, o, ( f (x0) —
f(xn)) = oo. This contradicts our assumption that f is bounded from below. There-
fore (8.130) and assertion (i) are indeed true, as claimed.

We turn now to assertion (ii). Let a = {ai}?oo C (0, 1) satisfy (8.84) and let a

bounded {x;}°, C X satisfy (8.85) for all integers i > 0. We will show that

limsup & (x;) > 0. (8.135)

i— 00

Indeed, assume that (8.135) is not true. Then there exist ¢ > 0 and an integer i; > 0
such that

E(x) <-—e, =il (8.136)

Since the sequence {x; Tio is bounded, there exists a number S > 0 such that

S> x|, i=0,1,.... (8.137)

By Lemma 8.12, there exist numbers «, y € (0, 1) such that for each x € X satisfy-
ing (8.133) and each 8 € (0, «], inequality (8.134) holds. Since a; — 0 as i — oo,
there exists a natural number iy > i; such that

a;j <« for all integers i > iy. (8.138)

Let i > ip be an integer. Then it follows from (8.137), (8.136), the definitions of
o and y, and (8.138) that f(x;) — f(xi +a;iWx;) > ya;, xiy1 = xi +a; Wx;, and
f(xi) — f(xi+1) = ya;. Since Z?io a; = 0o, we conclude that lim,,— ~ (f (xg) —
f(x,)) = oo. The contradiction we have reached shows that (8.135), assertion (ii)
and Theorem 8.9 itself are all true. ]

Proof of Theorem 8.10 Let

Ko >sup{f(x):x € X, |lx[| <K + 1}, (8.139)
Eo={xeX:f(x)<Ko+1}. (8.140)

It is clear that Eg is bounded and closed. Choose
Ki >sup{lix||:x € Eo} +1+K. (8.141)

By Lemma 8.12, there exist a neighborhood ¢/ of V in A and numbers «, y € (0, 1)
such that for each W € U/, each x € X satisfying

x| <K; and E(x)<-—¢, (8.142)
and each B8 € (0, o],
f) = f(x+BWx) > yB. (8.143)
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Now choose a natural number Ny which satisfies
No > (ay) ™' (Ko +4 + [inf(f)]). (8.144)
Let W eld, {xi}l’f:O C X, where the integer n > Ny,
Ixoll <K, and xjy1€Pwx;, i=0,....,n—1, (8.145)
B={ie{0,....n—1}: E(x;) <—¢} and m=Card(B). (8.146)
By (8.145) and (8.139)—(8.141), we have
x|l <Ky, i=0,...,n. (8.147)

Let i € B. It follows from (8.147), (8.146) and the definitions of I/, o and y (see
(8.142) and (8.143)) that f(x;) — f(xi+1) = f(x;)) — f(x; +aWx;) > yo. Summing
up from i =0 to n — 1, we conclude that

f(x0) — f(xn) = ya Card(B) =mya.
It follows from this inequality, (8.139), (8.145) and (8.144) that
m < [|inf(f)] + Ko](@y) ™" < No.
Thus we see that assertion (i) is proved.

To prove assertion (ii), let a sequence a = {a;}{°, C (0, 1) satisfy

o
Jim ;=0 and .Xga" = o0. (8.148)
1=
Clearly, there exists a natural number N; such that

a; <a foralli> Nj. (8.149)

Choose a natural number N > Nj + 4 such that

N—1
y Y ai > Ko+4+|inf(f)]. (8.150)
=N

Now assume that W € U, {x,-}fv 0 € X, [Ixoll < K, and that (8.85) holds for all

i=0,...,N— 1. We will show that
max{Z(x;):i=0,...,N} > —e. (8.151)

Assume the contrary. Then

Ex)<-—e 1i=0,...,N. (8.152)
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Since || xp|| < K, we see by (8.85) and (8.139)—(8.141) that
|xil <Ky, i=0,...,N. (8.153)

Leti € {Ny,..., N —1}. It follows from (8.153), (8.152), (8.149) and the definitions
of o and y (see (8.142)) and (8.143)) that

fxi) — fxi +a;iWx;) > ya;.

This implies that

N-1
fon) = fam) =y Y ai.

i=N,

By this inequality, (8.85), the inequality [|xo| < K, (8.139) and (8.150), we obtain
that

N—1 N-1
inf(f) < fON) < fGan) —y D ai <Ko—y Y ai <—4—|inf(f)|.
i=N i=N;
The contradiction we have reached proves (8.151) and assertion (ii). O

8.11 Continuous Descent Methods

Let (X*, || - |l+) be the dual space of the Banach space (X, | - 1), and let f : X — R!
be a convex continuous function which is bounded from below. Recall that for each
pair of sets A, B C X*,

H(A, B) =max|sup inf [lx = [, sup inf J}x = yl|.}

xeA Y€ yeBX€A

is the Hausdorff distance between A and B.
For each x € X, let

f (x) := {leX*:f(y)—f(x)zl(y—x) forallyeX}

be the subdifferential of f at x. It is well known that the set df (x) is nonempty and
norm-bounded. Set

inf( f) ::inf{f(x) 1X € X}.

Denote by A the set of all mappings V : X — X such that V is bounded on every
bounded subset of X (that is, for each Ky > 0, there is K| > 0 such that | Vx| < K|
if ||x|| < Kp), and for each x € X and each [ € 3f (x), [(Vx) < 0. We denote by A,
the set of all continuous V € A, by A, the set of all V € A which are uniformly
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continuous on each bounded subset of X, and by .4, the set of all V € A which are
uniformly continuous on the subsets

{xe€X:llx|l <nand f(x) >inf(f) + 1/n}

for each integer n > 1. Finally, let Ay, = Ay N Ac.
Our results are valid in any Banach space and for those convex functions which
satisfy the following two assumptions.

A(i) There exists a bounded set Xy C X such that
inf(f) =inf{f(x) :x € X} =inf{ f(x) : x € Xo};
A(ii) for each r > 0, the function f is Lipschitzian on the ball {x € X : || x| <r}.

Note that assumption A(i) clearly holds if lim |- o0 f(x) = 00.
We recall that a mapping V € A is regular if for any natural number 7, there
exists a positive number §(n) such that for each x € X satisfying

[xll<n and f(x)=inf(f)+ 1/n,
and for each [ € af (x), we have
[(Vx) < —=6(n).
Denote by F the set of all regular vector fields V € A.

LetT >0, xg € X and let u : [0, T] — X be a Bochner integrable function. Set

'
x(t):xo—}—[ u(s)ds, tel[0,T].
0

Then x : [0, T] — X is differentiable and x’(¢) = u(r) for almost every r € [0, T].
Recall that the function f: X — R! is assumed to be convex and continuous, and
therefore it is, in fact, locally Lipschitzian. It follows that its restriction to the set
{x(¢) : t € [0, T} is Lipschitzian. Indeed, since the set {x(¢) : ¢ € [0, T']} is compact,
the closure of its convex hull C is both compact and convex, and so the restriction
of f to C is Lipschitzian. Hence the function (f - x)(¢) := f(x(¢)), t € [0, T], is
absolutely continuous. It follows that for almost every ¢ € [0, T'], both the derivatives
x'(t) and (f - x)'(¢) exist:

x'(1) = }}irr%)h‘l [x(t +h) —x(0)].
(f )@ = lim B[ f (x (e + 1) = f(x(0))]-
We continue with the following fact.

Proposition 8.13 Assume that t € [0, T] and that both the derivatives x'(t) and
(f - x)(r) exist. Then

(f-x) (@) = ,}ii%h—l [f(x@®) +hx'@) — f(x®)] (8.154)
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Proof There exist a neighborhood U of x(r) in X and a constant L > 0 such that
|f(z1) = f(z2)| < Llz1 — 22|l forallzy,zo €U. (8.155)
Let & > 0 be given. There exists § > 0 such that
x(t4h), x(t) +hx'(t) eU foreach h € [~8,81N[~1, T —1], (8.156)
and such that for each i € [(—8,8) \ {0}] N [—1, T — 1],
[x@+h) —x(t) — hx'(1)|| < &lhl. (8.157)
Let
hel[(=8,9)\{0}N[—t, T —1]. (8.158)
It follows from (8.156), (8.155) and (8.157) that
|f(x+h) = f(x(®)+hx' )| < L|x(t+h)—x(t) —hx'(1)]| < Le|h|. (8.159)
Clearly,
[f(xt+m) = fFx®)]n" = [f(x@+h) = f(x@®) +hx' ()]
+[f(x@) +hx' @) — f(x(®)]n7". (8.160)
Relations (8.159) and (8.160) imply that
I[f (et + 1) = fx@)]n™" = [£(x @) +ha'@) = f(x@)) ]2~
<|f(x@+n) = fx@® +hx'®)||n7"] < Le.

Since ¢ is an arbitrary positive number, we conclude that (8.154) holds. O

Assume now that V € A and that the differentiable function x : [0, T] — X sat-
isfies

x')=V(x@) forae.r€[0,T]. (8.161)

Then by Proposition 8.13, (f - x)'(t) <0 fora.e.t € [0, T], and f(x(¢)) is decreas-
ing on [0, T'].

In the sequel we denote by i (E) the Lebesgue measure of E C R'.

In the next two sections, we prove the following two results which were obtained
in [148].

Theorem 8.14 Let V € A be regular, let x : [0, 00) — X be differentiable and sup-
pose that

xX'(t) = V(x(t)) fora.e.t €[0,00). (8.162)
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Assume that there exists a positive number r such that

n({t€l0,T1: |x@®)| <r}) > 00 as T — oco. (8.163)
Then lim;_, oo f(x(t)) =inf(f).
Theorem 8.15 Let V € A be regular, let f be Lipschitzian on bounded subsets of
X, and assume that lim| x| oo f(x) = 00. Let Ko and & > 0 be positive. Then there
exist No > 0 and § > 0 such that for each T > Ny and each differentiable mapping
x : [0, T] — X satisfying

[x@]| <Ko and |x'@)—V(x®)| =<8 foraetel0,T],

the following inequality holds for all t € [Ny, T]:

f(x(@®) <inf(f) +e.

8.12 Proof of Theorem 8.14

Assume the contrary. Since f(x(¢)) is decreasing on [0, 00), this means that there
exists ¢ > 0 such that

lim_f(x(1)) > inf(f) +e. (8.164)

Then by Proposition 8.13 and (8.162), we have for each T > 0,
T
Fx(M) = f(x(0) :/o (f -0 ®adr
T T
= /0 Oo(x@),x' ) dt = /0 o(x@), v (x®))dt

< / ox@®), V(x®))dt, (8.165)
Qr

where
Qr={rel0,T]:||x@)| <r}. (8.166)
Since V is regular, there exists § > 0 such that for each x € X satisfying

x| <r+1 and f(x)>inf(f)+e/2, (8.167)

and each / € 9f (x), we have

I(Vx) < —6. (8.168)
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It follows from (8.165), (8.166), (8.164), the definition of § (see (8.167) and (8.168))

and (8.163) that for each T > 0,

fx(M) = f(x©) < / FOx@), V(x@))di < —8u(2r) > —o0

Qr

as T — oo, a contradiction. The contradiction we have reached proves Theo-

rem 8.14.

8.13 Proof of Theorem 8.15

We may assume without loss of generality that ¢ < 1/2. Choose
K1 >sup{f(x):x € X and |lx|| < Ko+ 1}.

The set
[xeX: f(x) <K+ |inf(f)| +4}

is bounded. Therefore there exists
Ky > Ko+ Ky

such that

if £(x) <K+ [inf(f)| +4, then [x| < K>.

There exists a number K3 > K + 1 such that

sup{f(x):x € Xand |lx|| < Kx+ 1} +2
<inf{f(x):x € X and ||x|| > K3}.

There exists a number Ly > 0 such that
| f(x1) — f(x2)| < Lollx1 — x2||
for each x1, x3 € X satisfying
lxll, le2ll = K3+ 1.

Fix an integer
n> Kz +8/e.

There exists a positive number é(n) < 1 such that:

(8.169)

(8.170)

(8.171)

(8.172)

(8.173)

(8.174)

(8.175)
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(P1) for each x € X satisfying
[xll<n and f(x)=inf(f)+1/n,
and each / € 3f (x), we have
[(Vx) < —=8(n).

Choose a natural number Ny > 8 such that

87'8(n)No > |inf(f)| + sup{| f(z)| : z € X and ||z|| < K>} +4 (8.176)
and a positive number § which satisfies

8(No+ 1(Lo+1)<e and (14 Lg)§ <d(n)/2. (8.177)

Let T > Ng and let x : [0, T] — X be a differentiable function such that

|x©] < k2 (8.178)
and
'@ =V (x®)| <8 forae.te(0,T]. (8.179)
We claim that
|x@®| < k3, te[0,min{2No, T}]. (8.180)

Assume the contrary. Then there exists #g € (0, min{2Ng, T'}] such that
|[x@| < k3, t€[0,19) and |x(t0)| =K. (8.181)
It follows from Proposition 8.13, the convexity of directional derivatives, the in-
equality FO(x(t), Vx (1)) <0, which holds for all ¢ € [0, T], (8.181), the definition
of Lg (see (8.173), (8.174) and (8.179)) that
f(x(0) = f(x(0))
Iy Iy
= / (f -0 @) dt = / o), x' @) dr
0 0
1) 1o
< /0 o), v(x@))dr +[0 o, x' (1) = V(x®))dt
100 fo
< / FOx@), x' @) = V(x())dt < / Lo|x'(t) = V (x(®))| dt < toLoé.
0 0
Thus by (8.177),

f(x(t0)) < £(x(0)) +2NoLoS < f(x(0)) + 1.
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Since ||x(0)]| < K> (see (8.178)) and ||x(f)|| = K3, the inequality just obtained
contradicts (8.172). The contradiction we have reached proves (8.180).
We now claim that there exists a number

to € [1, No] (8.182)
such that
f(x(to)) <inf(f) + e/8. (8.183)
Assume the contrary. Then
f(x@®)>inf(f)+¢e/8 and |x(@)| <Kz e[l Nol. (8.184)

It follows from (8.184), Property (P1) and (8.175) that
O, V(x®)) < =8m), tell, Nol. (8.185)

By (8.185), (8.184), (8.179), (8.177), the convexity of the directional derivatives of
f, and the definition of Lg (see (8.173) and (8.174)), we have, for almost every
t €[1, Nol,
o), @) < FO(x@). V(x®)) + f2(x0), x' @) = V (x(0)))
< —38(n) + Lo||x'(1) = V(x(®))| < —8(n) + Los
< —=8(n)/2. (8.186)

It follows from the convexity of the directional derivatives of f, the inclusion
V e A, (8.179), (8.180) and the definition of Lq (see (8.173) and (8.174)), that for
almost every t € [0, 1],

PO, X' @) < fO(x@). V(x®)) + £2x0). x'@0) = V(x®))
< fO(x),x'@0) = V(x(®)) < Lo[|x' @) = V (x®) |
< Los. (8.187)
Inequalities (8.178), (8.186) and (8.187) imply that
inf(f) —sup{ f(2) :z € X, |lz]l < K2}
< f(x(No) — f(x(0))

No

N 1

:/ Ofo(x(t),x/(t))dt:/ fo(x(t),x/(t))dt+/ (e, x' ) dt
0 0 1

< —27's(m)No/2 + 1.

This contradicts (8.176). The contradiction we have reached yields the existence of
a point #op which satisfies both (8.182) and (8.183). Clearly, ||x(fo)| < K». Having
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established (8.180) and the existence of such a point #y for an arbitrary mapping x
satisfying both (8.178) and (8.179), we now consider the mapping xo(¢) = x (¢ + 1p),
t €0, T — to]. Evidently, (8.178) and (8.179) hold true with x replaced by x¢ and
T replaced by T — 9. Hence, if T — #9p > Ny, then we have

|x@] = [xot —t0)|| < K3, 1€ [to, 10+ min{2No, T}],
and there exists
n € lto + 1,10 + Nol
for which

f(x@) <inf(f) +¢/8.

Repeating this procedure, we obtain by induction a finite sequence of points {#; }?20
such that

to € [1, Nol, tixi—ti€[l,Ngl, i=0,...,q-1, T — 143 < No,

f(x(t,-)) <inf(f)+¢/8, i=0,...,q,
x| < K3, telt. T
Leti €{0,...,q},t <T,and 0 <t —¢; < Ny. Then by Proposition 8.13, the con-

vexity of the directional derivative of f, the inclusion V € A, the definition of L
(see (8.173) and (8.174)), (7.177) and (8.179), we have

t
Flx®) = flx@) = / fo(x(t),x/(t)) dt
ti
! t
s/ fo(x(t),v(x(t)))dwr/ FOx@), X (1) — V(x(0))) dr
ti 1
t
5/ FO(x@),x'(0) = V(x0))dr
ti

t
< / Lo|x'(t) = vV (x(®))| dt
ti
< Lob(t —t;) <2NoLo$ < ¢e/4
and hence

Fx®) < f(x@)) +e/4 <inf(f) +¢/2.

This completes the proof of Theorem 8.15.
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8.14 Regular Vector-Fields

In the previous sections of this chapter, given a continuous convex function f on
a Banach space X, we associate with f a complete metric space A of mappings
V : X — X such that fO(x, Vx) <0 for all x € X. Here f°(x,u) is the right-
hand derivative of f at x in the direction of u € X. We call such mappings descent
vector-fields (with respect to f). We identified a regularity property of such vector-
fields and showed that regular vector-fields generate convergent discrete descent
methods. This has turned out to be true for continuous descent methods as well. Such
results are significant because most of the elements in .4 are, in fact, regular. Here by
“most” we mean an everywhere dense G5 subset of .A. Thus it is important to know
when a given descent vector-field V : X — X is regular. In [163] we established
necessary and sufficient conditions for regularity: see Theorems 8.18—8.21 below.

More precisely, let (X, || - ||) be a Banach space and let (X™*, || - ||«) be its dual.

Foreach i : X — R!, set inf(h) = {h(z) : z € X}.

Let U be a nonempty, open subset of X and let f : U — R! be a locally Lips-
chitzian function.

For each x e U, let

O,y = limsup [f(y+th)— f(»]/t, heX, (8.188)

t—0t,y—>x
be the Clarke derivative of f at the point x, and let
af x)={le X*: fO(x,h) > 1(h) forall h € X} (8.189)

be the Clarke subdifferential of f at x.
For each x € U, set

Er() =inf{ O, u):ue X, Jul < 1}. (8.190)

Clearly, &¢(x) <O forall x € X and & (x) =01if and only if 0 € 9f (x).
For each x € U, set

Er)=inf{ O, h):he X, |Ih] = 1}. (8.191)

Let x € U. Clearly, £7(x) > Ef(x) and 0 € 3f (x) if and only if Z ¢ (x) > 0.
In the next section we prove the following two propositions.

Proposition 8.16 Ler x € U. If :’?f(x) >0, then E¢(x) =0. If E:'f(x) < 0, then
Ef(x = Sf(x).

Proposition 8.17 For each x € U,

Ey(x)=—inf{||ll]l.: 1 €df (x)}. (8.192)
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Assume now that f : X — R! is a continuous and convex function which is
bounded from below. It is known that f is locally Lipschitzian. It is also known (see
Chap. 2, Sect. 2 of [41]) that in this case

O, h) = li%l+[f(x+th)—f(x)]/t, x,heX.
t—

Recall that a mapping V : X — X is called regular if V is bounded on every
bounded subset of X, f O(x, Vx) <0 forall x € X, and if for any natural number n,
there exists a positive number §(n) such that for each x € X satisfying ||x|| <n and
f(x)>inf(f) + 1/n, we have

fOx, Vi) < —8(n).

We now present four results which were established in [163]. Their proofs are
given in subsequent sections.

Theorem 8.18 Ler f : X — R' be a convex and continuous function which is
bounded from below, let x € X satisfy

f&) =inf{f(z):z € X}, (8.193)

and let the following property hold.:

(P1) for every sequence {yi}?il C X satisfying limjo f(yi) = f(X),
lim; s 0 ¥; = X in the norm topology.

For each natural number n, let ¢, : [0, 00) — [0, 00) be an increasing function
such that ¢, (0) = 0 and the following property holds:

(P2) foreach e > 0, there exists § := §(e,n) > 0 such that for each t > 0 satisfying
On(t) <4, the inequality t < ¢ holds.

If V : X — X is bounded on bounded subsets of X,
fOx,Vx) <0 forallx e X, (8.194)
and if for each natural number n and each x € X satisfying || x|| <n, we have
Fox, V) < —¢u (-85 (x)), (8.195)
then V is regular.

Theorem 8.19 Assume that f : X — R' is a convex and continuous function,
xeX,

fx) =inf(f),
property (P1) holds and the following property also holds:
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(P3) if {x;i}?2, C X converges to X in the norm topology, then
lim &¢(x;)=0.
i—00
Assume that V : X — X is regular and let n > 1 be an integer. Then there exists

an increasing function ¢, : [0, 00) — [0, 00) such that ¢,(0) = 0, property (P2)
holds, and for each x € X satisfying ||x|| < n, we have

o, Vx) < —gu (87 ().

Assume now that f : X — R! is merely locally Lipschitzian. Recall that in this
case a mapping V : X — X is called regular if V is bounded on every bounded
subset of X,

O, Vx)<0 forallx € X, (8.196)

and for any natural number n, there exists 6(n) > 0 such that for each x € X satis-
fying ||l x|| <n and E¢(x) < —1/n, we have fo(x, Vx)<-6(n).

Theorem 8.20 Let f : X — R! be a locally Lipschitzian function. For each natural
number n, let ¢,, : [0, 00) — [0, 00) be an increasing function such that ¢, (0) =0
and property (P2) holds.

Assume that V : X — X is bounded on every bounded subset of X,

fo(x, Vx) <0 forallx € X,
and for each natural number n and each x € X satisfying ||x|| <n, we have
FO0,Vx) < —¢u (=85 (). (8.197)

Then V is regular.

Theorem 8.21 Assume that the function f : X — R' is locally Lipschitzian and
that V : X — X is regular.

Then for each natural number n, there exists an increasing function ¢, :
[0, 00) — [0, 00) such that (P2) holds and for each natural number n and each
x € X satisfying || x|| <n, (8.197) holds.

8.15 Proofs of Propositions 8.16 and 8.17

Proof of Proposition 8.16 Assume that E:'f (x) >0.Then0 € 9f (x) and Z¢(x) =0.
Assume that 5 £(x) < 0. Then by definition (see (8.191)),

inf{ fOx, ) :h e X, |kl =1} = & 7(x) <0. (8.198)
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By (8.198) and the homogeneity of f°(x, -),

O, k)= Er()|h| forallheX. (8.199)
By (8.198), (8.191), (8.190) and (8.199),

0> E7(x)> 8p(x) =inf{ fOx,h) :h e X, |h]| < 1}
> inf{Z;@)llhll:h e X, Al <1} = Ef(x).
This implies that

Er(x)=Erx),

as claimed. Proposition 8.16 is proved. U
We precede the proof of Proposition 8.17 with the following lemma.

Lemma 8.22 Let x € U and ¢ > 0 be given. Then the following statements are
equivalent:

@) Er(x) = —¢
(i) Ef(x) = —c;
(iii) thereisl € df (x) such that |||« <c.

Proof By Proposition 8.16,
Ef(x)>—c ifandonlyif Zf(x)>—c.
It follows from (8.191) that Z 7 (x) > —c if and only if
O, h) > —c forall h € X satisfying ||h| =1,

which is, in its turn, equivalent to the following relation:

£O0e,h) = —c|lh|| forall h e X.
Rewriting this last inequality as

O, ) +cl|h| =0 forallhe X,

we see that it is equivalent to the inclusion

0cdf(x)+c{leX |l <1}

Thus we have proved that (ii) is equivalent to (iii). This completes the proof of
Lemma 8.22. g
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Proof of Proposition 8.17 Clearly, equality (8.192) holds if either one of its sides
equals zero. Therefore we only need to prove (8.192) in the case where

Zr(x) <0 and inf{[l|l«:l€df(x)}>0. (8.200)
Assume that (8.200) holds. By Lemma 8.22, there is I such that
ledf(x) and |l|4< —Ef(x). (8.201)

Hence
—inf{ |1l : 1 €3f ()} = —Nlllx = Ef(x). (8.202)

Let ¢ be any positive number. There is [, € df (x) such that
Ilell« < inf{[ll]l«:1 € 0f (x)} +e&. (8.203)
By (8.203) and Lemma 8.22,
Er(x) = —e—inf{|ll|l«:1edf(x)}.
Since ¢ is any positive number, we conclude that
Er(x) > —inf{||l||* e af(x)}.

When combined with (8.202), this inequality completes the proof of Proposi-
tion 8.17. O

8.16 An Aucxiliary Result

Proposition 8.23 Ler g : X — R be a convex and continuous function, ¥ € X,
g(¥) =inf{g(z) : z € X}, (8.204)

and let the following property hold:

o0

(P4) for any sequence {y;}2, C X satisfying lim; .o g(y;) = g(x), we have
lim; 00 [lyi — X[ =0.

Assume that {x;}?°, C X,

sup{llxil:i=1,2,...} <oo and lim E,(x;) =0. (8.205)
11— 00

Then lim; _, o ||x; — X|| =0.
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Proof By (8.205) and Proposition 8.17, there exists a sequence {/;}72, C X* such
that

ll_l)rgo llill« =0 and [; €dg(x;) forallintegersi > 1. (8.206)
Choose a number M > 0 such that
lxill <M for all integersi > 1 (8.207)
and let i > 1 be an integer. By (8.206),
g() —1li(z) > g(x;) —li(x;) forall z € X. (8.208)
It follows from (8.208), (8.207) and (8.206) that
g(X) — g(xi) = g(¥) — [;(X) — (g(xi) — i (xi)) + i (¥ — x;)
> L(F—xi) = =L IE —xill = =G I(M+ %)) >0 asi— oo
and therefore
liggf(g(i) —g(x)) =0.

Together with (P4) this implies that lim;_.  [|x; — X|| = 0. Proposition 8.23 is
proved. g

8.17 Proof of Theorem 8.18

To show that V is regular, let n be a natural number. We have to find a positive
number § = §(n) such that for each x € X satisfying ||x|| <n and f(x) > inf(f) +
1/n,

O, vx) < —6.
Assume the contrary. Then for each natural number k, there exists x; € X satis-
fying
xell < n, fx) = inf(f) +1/n, (8.209)
and
O, V) > —1/k. (8.210)
It follows from (8.210), (8.209) and (8.195) that for each natural number &,

k7' < O, Vi) < —¢n (85 (x0)

and hence ¢, (—& r(xx)) < kL
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Together with (P2) this inequality implies that limg o &' (x;) = 0. When com-
bined with Proposition 8.23 and (8.209), this implies limj_,  [|xx — X|| = 0. Since
f is continuous,

lim £ () = f () = inf(/).

This, however, contradicts (8.209). The contradiction we have reached proves that
V is indeed regular, as asserted.

8.18 Proof of Theorem 8.19

In what follows we make the convention that the infimum over the empty set is
infinity. Set ¢,,(0) =0 and let r > 0. Put

én(t) =min{inf{—f0(x, Vx):xeX,|x[| <nand Ef(x) < —t}, 1}. (8.211)

Clearly, ¢, : [0, 00) — [0, 1] is well defined and increasing.
We show that for each x € X satisfying ||x|| <n,

o, Vx) < —gu (-85 (). (8.212)

Let x € X with [|x|| <n.If Z¢(x) =0, then it is obvious that (8.212) holds.
Assume now that

Er(x) <O0. (8.213)
Then by (8.211)), (8.213) and the inequality ||x|| <n,

¢n(—Er(0) = min{inf{— Oy, Vy) 1y € X, |yl <nand Er(y) < ()} 1}
<min{l, — O, Vo)} < — fO(x, Vix)

and hence
FOx, Vx) < —¢u(—Er ().

Thus (8.212) holds for each x € X satisfying ||x|| < n.
Next we show that (P2) holds. To this end, let ¢ > 0 be given. We claim that there
is § > 0 such that for each ¢ > 0 satisfying ¢, () < §, the inequality ¢ < ¢ holds.
Assume the contrary. Then for each natural number i, there exists #; > 0 such
that

on(t) < @D > e (8.214)

By (8.214) and (8.211), for each natural number i, there exists a point x; € X such
that

x|l <n, Er(x) < —ti <—¢, (8.215)
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and
O, va) = - (8.216)
Now it follows from (8.215), (8.216) and the definition of regularity that
lim f(x;) = f(x).
1—> 00

Together with (P1) this implies that lim;_, « [|x; — X|| = 0. When combined with
(P3), this inequality implies that lim;_, o &7 (x;) = 0. This, however, contradicts
(8.215). The contradiction we have reached proves Theorem 8.19.

8.19 Proof of Theorem 8.20

Let n be a given natural number. We need to show that there exists § > 0 such that
for each x € X satisfying

xll<n and Ef(x)<—1/n, (8.217)

we have
O, vx) < —6.

Assume the contrary. Then for each natural number k, there exists x; € X such that

lxkll <n, Er(xp) <—1/n, (8.218)
and

£, Vo) > = 1/k.
By (8.218) and (8.197),
—1/k < £, V) < —¢a (=55 (w0))

and

¢>(—Ef(xk)) <1/k. (8.219)
It now follows from (8.219) and property (P2) that

limsup(—Z¢(xx)) =0

k—o00
and
lim Ey(x;) =0.
k— 00

The last equality contradicts (8.218) and this contradiction proves Theorem 8.20.
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8.20 Proof of Theorem 8.21

Set ¢,,(0) =0 and let ¢ > 0. Define
¢n(t) = min{inf]— fOCx, V) s x € X, [Ix]| <n, Ep(x) < —t}, 1}. (8.220)

Clearly, ¢ : [0, o0) — [0, 1] is well defined and increasing.
We show that for each x € X satisfying ||x|| <n,

O, V) < —u (-85 (). (8.221)
Consider x € X with
x|l <n. (8.222)
If Z¢(x) =0, then (8.221) clearly holds. Assume that
E¢(x) <0. (8.223)
Then by (8.220), (8.221), (8.222) and (8.223),
¢n(—E () = min{inf{— O, Vy) 1y e X, Iyl <n, 87 () < Ef (0}, 1}
<min{l, — fOx, V) } < — f0x, Vix)

and hence (8.221) holds for all x € X satisfying ||x|| < n, as claimed.

Now we show that property (P2) also holds. To this end, let ¢ be positive.

We claim that there is § > 0 such that for each ¢ > 0 satisfying ¢, () < &, the
inequality # < ¢ holds.

Assume the contrary. Then for each natural number i, there exists #; > 0 such
that

pt) <@, h>e (8.224)
Let i be a natural number. By (8.224) and (8.220), there exists x; € X such that
lxill <n, Er(xi) < —ti < —e, (8.225)
and
— O,V = @7
Clearly,
£O0x, V) = =27 (8.226)

Choose a natural number p such that
p>n and 1/p<e. (8.227)
Since V is regular, there is § > 0 such that

ifx € X, x| <pand Ef(x) < —1/p, then f(x, Vx) < —8. (8.228)
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Choose a natural number j such that
1/j <$. (8.229)
Then for all integers i > j, it follows from (8.225) and (8.227) that
Er(xj)) <—e<—1/p and |x] <p.
Together with (8.228) and (8.229), this implies that for all integers i > j,
O, Vai) <=8 <—j ' <=L

Since this contradicts (8.226), the proof of Theorem 8.21 is complete.

8.21 Most Continuous Descent Methods Converge

Let (X, ||-||) be a Banach space and let f : X — R' be a convex continuous function
which satisfies the following conditions:

C@G)  limyyj—oo f(x) =00;

C(ii) thereis x € X such that f(x) < f(x) forall x € X;

C(ii) if {x,};2; C X and lim,, . » f(x,) = f(x), then
lim ||x, — x| =0.
n—o0

By C(iii), the point x, where the minimum of f is attained, is unique.
For each x € X, let

O, u) = 1ir(1)1+[f(x +tu)— fO]/t, ueX. (8.230)
—

Let (X*, | - ||+) be the dual space of (X, | - ||).
For each x € X, let

af)y={leX*: f(y)— f(x)=1(y —x) forall y € X}

be the subdifferential of f at x. It is well known that the set df (x) is nonempty and
norm-bounded.
For each x € X and r > 0, set

B(x,r)= {z eX:|lz—x|| < r} and B(r)=B(@,r). (8.231)
For each mapping A : X — X and each r > 0, put

Lip(A, r) :=sup{||Ax — Ayll/llx — yll:x,y € B(¢) and x #y}.  (8.232)
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Denote by A; the set of all mappings V : X — X such that Lip(V,r) < oo for
each positive r (this means that the restriction of V to any bounded subset of X is
Lipschitzian) and fo(x, Vx)<Oforall x € X.

For the set A; we consider the uniformity determined by the base

Eg(n,) = {(V1,V2) € Ay x A; :Lip(V1 — Va,n) <&
and ||Vix — Vox| <eforall x € B(n)}. (8.233)

Clearly, this uniform space .4; is metrizable and complete. The topology induced
by this uniformity in .4; will be called the strong topology.
We also equip the space .A; with the uniformity determined by the base

Ey(n,e)={(Vi,Va) € Al x A;: |Vix — Vax|| <¢
for all x € B(n)} (8.234)

where n, & > 0. The topology induced by this uniformity will be called the weak
topology.
The following existence result is proved in the next section.

Proposition 8.24 Ler xo € X and V € A;. Then there exists a unique continuously
differentiable mapping x : [0, 00) — X such that

xX'()=Vx@®), tel0,00),
x(0) = xp.

In the subsequent sections we prove the following result which was obtained
in [1].

Theorem 8.25 There exists a set F C A; which is a countable intersection of open
(in the weak topology) everywhere dense (in the strong topology) subsets of A; such
that for each V € F, the following property holds:

For each ¢ > 0 and each n > 0, there exist Ty, > 0 and a neighborhood U of
V in A; with the weak topology such that for each W € U and each differentiable
mapping y : [0, 00) — X satisfying

|f(y®)|<n and y'@)=Wy@) forallt=>0,

the inequality || y(t) — x|| < € holds forall t > T,.

8.22 Proof of Proposition 8.24

Since V is locally Lipschitzian, there exists a unique differentiable function x : I —
X, where [ is an interval of the form [0, b), b > 0, such that

x(0) = xo, X =Vx@), tel. (8.235)
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We may and will assume that / is the maximal interval of this form on which the
solution exists.

We need to show that b = co. Suppose, by contradiction, that b < co.

By Proposition 8.13 and the relation V € A, the function f(x(¢)) is decreasing
on I. By C(i), the set {x(¢) : € [0, b)} is bounded. Thus there is Ko > 0 such that

|x@®)| < Ko forallze[0,b). (8.236)
Since V is Lipschitzian on bounded subsets of X, there is K1 > 0 such that
if z € X, ||z|| £ Ko, then |Vz| < K;. (8.237)

Let ¢ > 0 be given. Then it follows from (8.235), (8.236) and (8.237) that for each
t,t €[0,b) suchthat 0 < — 1 < ¢/Kj,
n
/ Vx()dt
n

5]
/ x'(t)dt =‘
41

I 15
5/ZHVX(f)”df§/2K1dt=K1(t2—t1)<£.
3l 5]

|x(@2) — x| = ‘

Hence there exists zg = lim,_, ;- x(¢) in the norm topology. It follows that there
exists a unique solution of the initial value problem

7)) =Vz@), z(b) = 2o,

defined on a neighborhood of b, and this implies that our solution x(-) can be ex-
tended to an open interval larger than /. The contradiction we have reached com-
pletes the proof of Proposition 8.24.

8.23 Proof of Theorem 8.25
For each V € A; and each y € (0, 1), set
Vix=Vx+yx—x), xeX. (8.238)

We first prove several lemmata.
Lemma 8.26 Let V e Ajandy € (0,1). Then 'V, € A,.

Proof Clearly, V, is Lipschitzian on any bounded subset of X. Let x € X. Then by
(8.238), the subadditivity and positive homogeneity of the directional derivative of
a convex function, the relation V € A;, and C(ii),

o V) = fOx, Va +y (& —x)) < 0, V) + v 0, X — x)
<y, —x <y(f@ - f(0) <0.
This completes the proof of Lemma 8.26. g
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It is easy to see that the following lemma also holds.
Lemma 8.27 Let V € A;. Then lim,,_, o+ V), =V in the strong topology.

Lemma 8.28 Let V e A;, y €(0,1), e > 0,and let x € X satisfy f(x) > f(X)+e.
Then fo(x, Vyx) < —vye.

Proof It follows from (8.238), the properties of the directional derivative of a convex
function, and the relation V € 4; that

o V) = fOx, Ve +y (& —x)) < 0, V) + 0, X — x)
<y -0 <y(f@® - f(0) < —ey.
The lemma is proved. O
Lemma 8.29 Let V € A;, y €(0,1), and let x € C' ([0, 00); X) satisfy
X'(1)=V,x(t), te€l0,00). (8.239)
Assume that Ty, € > 0 are such that
To> (f(x(0) - f®)(ye) " (8.240)
Then for each t > Ty, f(x(1)) < f(¥) +&.

Proof Since the function f(x(-)) is decreasing on [0, co) (see Proposition 8.13,
Lemma 8.26 and (8.239)), it is sufficient to show that

f(x(T) < f(&) +e. (8.241)

Assume the contrary. Then f(x(7p)) > f(x) + &, and since f(x(-)) is decreasing
on [0, 00), we have

f(x(t)) > f(x)+¢e forallt [0, To]. (8.242)
When combined with Lemma 8.28, inequality (8.242) implies that
o), Vy(x(0) < —ye forallt €0, Tyl (8.243)

It now follows from Proposition 8.13, (8.239) and (8.243) that
Ty Ty
Fle) = (5 O) = [T Fomy@ai= [ 1,5 @)

To
=/0 O(x@), Vyx(0) dt < To(—ye),
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whence

Toye < f(x(0)) — f(x(Tp)) < f(x(0)) — f(¥).

This contradicts (8.240). The contradiction we have reached proves the lemma. [J

Lemma 8.30 Let V € A;, y € (0, 1), ¢ > 0and n > 0. Then there exist a neighbor-
hood U of V,, in A; with the weak topology and T > 0 such that for each W € U
and each continuously differentiable mapping x : [0, 00) — X satisfying

xX'(t)=Wx(t), tel0,00), (8.244)

and
|f(x@)] <n, (8.245)
the following inequality holds:

|x(t) —%| <& forallt=r. (8.246)
Proof By C(i), there is n > n such that
ifze X, f(z) <n, then |z|| <n;. (8.247)
By C(iii), there is §; > 0 such that
ifze X and f(z) < f(x) 481, then ||z — x| <e. (8.248)
Since f is continuous, there is €1 > 0 such that
|f(X) = f(2)| <81 foreach z € X satisfying ||z — X|| <¢&). (8.249)
In view of C(iii), there exists 5g € (0, 1) such that
ifze X and f(z) < f(x) + do, then ||z — x| <e&1/4. (8.250)
Since V,, € A;, there is L > 0 such that
IVyz1 — Vyz2ll < Lllz1 — 22|l forall z1, 22 € B(ny). (8.251)
Fix
t>(n—fE+1) ) +1 (8.252)

and choose a positive number A such that
Atel™ < /4. (8.253)

Set
u:{WeAI:||Wz—Vyz||§AforallzeB(n1)}. (8.254)
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Assume that
Weld (8.255)

and that x € C1([0, 00); X) satisfies (8.244) and (8.245). We have to prove (8.246).
In view of (8.248), it is sufficient to show that

fx@®) < f&)+38; forallsr>1.

Since the function f(x(-)) is decreasing on [0, 00), in order to prove the lemma we
only need to show that

fx(@) = f(X) +31.
By (8.249), this inequality will follow from the inequality
|x(t) — x| < e (8.256)

We now prove (8.256).
To this end, consider a continuously differentiable mapping y : [0, 00) = X
which satisfies

Y () =V,y@), 1€]0,00), (8.257)
and
y(0) = x(0). (8.258)

Since the functions f(x(-)) and f(y(-)) are decreasing on [0, c0), we obtain by
(8.258) and (8.245) that for each s > 0,

f(x®). f(y(®) = f(x(©0)) <n.
When combined with (8.247), this inequality implies that
()

It follows from Lemma 8.29 (with x = y, ¢ = §p), (8.258), (8.257), (8.252) and
(8.245) that

ly@)| <ni foralls > 0. (8.259)

f(y@) = f&E)+ o
This inequality and (8.250) imply that

ly(@) — x| <e1/4. (8.260)

Now we estimate ||x(t) — y(7)]|. It follows from (8.257), (8.244) and (8.258) that
for each s € [0, 7],

ly(s) —x(9)|| = Hy(0)+/0 V,y(t)dt — <x(0)+/0 Wx(t)dt) H
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- ”/o (Vyy (@) = Wx (o)) dr 5/0 [V y(@) = Wx(o)| di

N N
< /O 1Vyy(@) = Vyx(0)| dt +/O |Vyx(t) — Wx(@®)| dt. (8.261)
By (8.259) and (8.254), for each s € (0, t], we have
s N
/ |Vyx(t) = Wx@)||dt < f Adt < As < At (8.262)
0 0

By (8.259) and (8.251), for each s € [0, 7],

/OS |V, () = Vyx ()| dr < /0 L]y = x(t)] d. (8.263)
It follows from (8.261), (8.262) and (8.263) that for each s € [0, 7],
|y(s) —x(s)| < At + /0 L]y — x| dt. (8.264)
Applying Gronwall’s inequality, we obtain that
|y(@) —x(@)| < Arelo L4 = Azel®.

When combined with (8.253), this inequality implies that

ly(@) = x| <e1/4.

Together with (8.260), this implies that ||x(7) — X|| < €1/2. Lemma 8.30 is
proved. U

Completion of the proof of Theorem 8.25 Let V € A,, y € (0,1), and let i be a
natural number. By Lemma 8.30, there exist an open neighborhood U(V, y,i) of
V, in A; with the weak topology and a positive number 7(V, y, i) such that the
following property holds:

(P) For each W € U(V, y,i) and each continuously differentiable mapping x :
[0, 00) — X satisfying

X () =Wx(), tel0,00),
|f(x@)] =i,
the following inequality holds:

1

x@) —x|| <i™" forallt >t(V,y,i).
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Set

o
F=UU.y.:vea,ye0 D} (8.265)

i=1
By Lemma 8.27, F is a countable intersection of open (in the weak topology) ev-

erywhere dense (in the strong topology) subsets of A
Let V € F and let n, ¢ > 0 be given. Choose a natural number i such that

i>n, i>e L. (8.266)
By (8.265), there are V € A; and y € (0, 1) such that
VelUV,y,i). (8.267)

We claim show that the assertion of Theorem 8.15 holds with & =U(V, y,i) and
Ten = T(Vv y7 l)

Assume that W € U(V, y,i) and that the continuously differentiable mapping
v : [0, 00) — X satisfies

|f(y ()] <n, y'(t) = Wy(t) forallz>0. (8.268)

Then by (8.268), (8.266) and property (P), it follows that

1

||y(t) —)E” <i* forallt>t(V,y,i).

When combined with (8.266), this inequality implies that ||y(z) — x| < ¢ for all
t >1(V,y,i). Theorem 8.25 is established. O



Chapter 9
Set-Valued Mappings

9.1 Contractive Mappings

We begin this chapter with a few results on single-valued contractive mappings,
which will be used in subsequent sections.

Let (X, p) be a complete metric space. Recall that an operator A : X — X is said
to be nonexpansive if

p(Ax, Ay) <p(x,y) forallx,yeX.

We denote by 2 the set of all nonexpansive operators A : X — X. We assume that
X is bounded and set

d(X)= sup{,o(x, y)ix,ye€ X} < 00.
We equip the set 2 with the metric pg defined by
pa(A, B) :=sup{p(Ax,Bx):x € X}, A,Be2l 9.1

It is clear that the metric space (2, pg() is complete.

Denote by A the set of all sequences {A,};’il , where A, e, t=1,2,....
A member of A will occasionally be denoted by boldface A.

For the set A we define a metric p 4 by

pA({ANS (B)2,) =sup{p(Aix, Bix):1=1,2,... and x € X }. (9.2)

Clearly, the metric space (A, p4) is also complete.
A sequence {A;};°, € Ais called contractive if there exists a decreasing function
¢ :[0,d(X)] — [0, 1] such that

¢(t) <1 forallz e (0,d(X)] (9.3)
and

p(Ax, Ary) < ¢(,o(x, y)),o(x, y) forall x,y € X and all integerst > 1. (9.4)
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An operator A € 2 is called contractive if the sequence {A;}72, with A, = A,
t=1,2,...,1s contractive.

It is known that the iterates of any contractive mapping converge to its unique
fixed point (see Chap. 3). The following theorem, which was obtained in [144],
extends this result to infinite products.

Theorem 9.1 Assume that the sequence {A;};°, is contractive and that & > 0. Then
there exists a natural number N such that for each integer T > N, each mapping
h:{l,....,T}—>{1,2,...}and each x,y € X,

p(Apry -+ ApyX, Apcry -+ Anyy) <e. 9.5

Proof There exists a decreasing function ¢ : [0, d(X)] — [0, 1] such that inequali-
ties (9.3) and (9.4) hold. Choose a natural number N > 4 such that

dX)¢ ()N <e. (9.6)

Assume that T > N is an integer, 2 : {1,..., T} — {1,2,...} and that x, y € X are
given. We intend to show that (9.5) holds. Assume it does not. Then

p(x,y)>¢ and p(App)----- AnyX, Ay -+ Anyy) > &,
n=1,...,N. 9.7

It follows from (9.7) and (9.4) that

p(Anx, Apyy) <@ (p(x, y))p(x,y) <¢d(e)p(x,y)
and that for all integersi =1,...,N — 1,

P(AnG+1)Angy -+ - Ap)X, AnGi+1)Andy -+ Ann)y)

<¢@©@)p(Ani) -+ - An()X, Ay -+ - Ap)y)-
When combined with (9.6), this inequality implies that
PCARN) -+ - An X, Ay -~ Annyy) < @) p(x, y) =d(X)p()V <.
a contradiction. This completes the proof of Theorem 9.1. 0
Corollary 9.2 Assume that the sequence {A;}7°, is contractive. Then
PARTy - - ApyX, Apry - -+ - Apyy) >0 asT — oo,

uniformlyinh:{1,2,...} - {1,2,...} andinx,y € X.

We remark in passing that such results are called weak ergodic theorems in the
population biology literature [43].
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9.2 Star-Shaped Spaces

We say that a complete metric space (X, p) is star-shaped if it contains a point
x4 € X with the following property:
For each x € X, there exists a mapping

t—>tx®(1—-tx,eX, te(,1), 9.8)
such that for each t € (0, 1) and each x, y € X,
p(tx ® (1= Dxy, 1ty & (1 — 1)xy) <tp(x,y) 9.9
and

p(tx ® (1= xs.x) < (1= )p(x, x,). 9.10)
For each A € 2( and each y € (0, 1), define A, € 2 by

Ayx=1—-y)Ax D yx,, xe€X. 9.11)
Foreach A = {A;}72, € A, let Ay, ={A,};2,, where
Apyx=1-PAx®yx,, x€X,t=12,.... (9.12)

Theorem 9.3 Assume that B is a closed subset of A such that for each A € B and
eachy € (0, 1), the sequence A, € B. Then there exists a set F which is a countable
intersection of open and everywhere dense subsets of B (with the relative topology)
such that each A € F is contractive.

Proof 1t follows from (9.10) that for each A = {A;};2, € B, each y € (0, 1) and
eachx € X,
Pp(Ayix, Arx) < yp(Arx, xy).

This implies that A, — A in B as y — 0" and that the set {A, : A € B,y € (0, 1)}
is everywhere dense in B.
Let A= {A;};2, € Band y € (0, 1) be given. Inequality (9.9) implies that

P(Ayix, Ayry) < (1 —y)p(x,y) (9.13)

for all x, y € X and all integers r > 1. For each integer i > 1, choose a positive
number

SA, v, i) < @) 'd(X)y (9.14)
and define
UA,y,i)={BeB:paA,,B) <3,y i} 9.15)

Leti > 1 be an integer. We claim that the following property holds:
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P(1) ForeachB e U(A, y,i),each x, y € X satisfying p(x, y) > i~'d(X) and each
integer ¢ > 1, the inequality p(B;x, B;y) < (1 —y/2)p(x, y) is valid.

Indeed, assume that B € U (A, y, i), the points x, y € X satisfy
px,y)=i~'d(X), (9.16)

and that # > 1 is an integer. It follows from the definition of U (A, y, i) (see (9.15)
and (9.14)), (9.13) and (9.16) that
P (Bix, Bry) < p(Ayix, Ayry) +28(A, v, i)
<28(A, 7, )+ (1 =p)plx,y) < (1 —y)p(x, y) + Q) yd(X)
<(L=p)p.y) +27 yp(x.y) < (1= y/2)px. ).
Thus

p(Bix, Biy) < (1 —y/2)p(x,y). .17

Now define

F=MUlvA.y.i):AeB.y e©. D} (9.18)

i=1

It is clear that F is a countable intersection of open and everywhere dense subsets
of B (equipped with the relative topology). We claim that any B € F is contractive.
To show this, assume that i is a natural number. There exist A € 5 and y € (0, 1)
such that B € U(A, y, i). By property P(1), for each x, y € X satisfying p(x, y) >
i~'d(X) and each integer ¢ > 1, inequality (9.17) holds. Since i is an arbitrary
natural number we conclude that B is contractive. Theorem 9.3 is proved. g

Theorem 9.4 Assume that ‘B is a closed subset of U such that for each A € B and
eachy € (0, 1), the mapping A,, € B. Then there exists a set F which is a countable
intersection of open and everywhere dense subsets of ‘B (with the relative topology)
such that each A € F is contractive.

Proof For each A € B denote by Q(A) the sequence A = {A;}7°, with A, = A,
t=1,2,....Set
B={0(A): AeB}.

It is easy to see that 5 is a closed subset of A and that for each A € B and each
y € (0, 1), the sequence A, € B. Now Theorem 9.4 follows from Theorem 9.3 and
the equality

pu(A, B) = p4(Q(A), Q(B)). -
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9.3 Convergence of Iterates of Set-Valued Mappings

Assume that (E, || - ||) is a Banach space, K is a nonempty, bounded and closed
subset of E, and there exists 6 € K such that for each point x € K,

tx+(1—-00ek, te(,1).

We consider the star-shaped complete metric space K with the metric ||x — y||,
x,y € K. Denote by S(K) the set of all nonempty closed subsets of K. For x € K
and A C K, set

p(x, A) =inf{|lx — y|| : y € A},
and for each A, B € S(K), let

H(A,B):max{sugp(x,B),sup,o(y,A)}. (9.19)
X€ yeEB

We equip the set S(K) with the Hausdorff metric H (-, -). It is well known that the
metric space (S(K), H) is complete. Clearly, {0} € S(K).
For each subset A € S(K) and each ¢ € [0, 1], define
tA® (1 —1)0 :={tx+(1—t)9:xeA}eS(K). (9.20)

It is easy to see that the complete metric space (S(K), H) is star-shaped.
Denote by 2 the set of all nonexpansive operators 7 : S(K) — S(K). For the set
2l we consider the metric pg defined by

pa(T1, T2) :=sup{H(Ti(A), T2(A)) : A€ S(K)}, T, Trexl (9.21)
Denote by M the set of all mappings 7 : K — S(K) such that
H(T(x), T(y) <lx—yll, x,yek. 9.22)

A mapping T € M is called contractive if there exists a decreasing function ¢ :
[0,d(K)] — [0, 1] such that

¢(1) <1 forallze (0,d(K)] (9.23)

and
H(T(x),T() <¢(llx—yll)llx — yll forallx,yeK. (9.24)

Assume that T € M. For each A € §(K), denote by T (A) the closure of the set
({T (x) : x € A} in the norm topology.

Proposition 9.5 Assume that T € M. Then the mapping T belongs to 2.
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Proof Let A, B € S(K). We claim that
H(T(A),T(B)) < H(A, B). (9.25)
Given ¢ > 0, there exist x; € T(A) and x, € T(B) such that
max{p(x1, T(B)), p(x2. T(A))} +&/2 > H(T(A), T(B)). (9.26)

We may assume that
p(x1, T(B)) = p(x2, T (A)).
Therefore
p(x1, T(B)) +e/2> H(T(A), T(B)). (9.27)

We may assume that x; € T (A). There exist points xo € A such that x; € T'(xo) and
Yo € B such that

llxo — yoll < p(x0, B) +&/2 < H(A, B) +¢/2.
Therefore inequality (9.22) implies that
p(x1, T(B)) < p(x1, T (y0)) < H(T (x0). T(30)) < llxo — yoll < H(A, B) +¢/2.
Now (9.27) yields

H(T(A),T(B)) <H(A,B) +e.

Since ¢ is an arbitrary positive number, we conclude that (9.25) holds. Proposi-
tion 9.5 is proved. g

Proposition 9.6 Assume that T € M. Then the mapping T is contractive if and
only if the mapping T is contractive.

Proof Itis clear that T is contractive if T is contractive. Assume now that the map-
ping T is contractive. Then there exists a decreasing function ¢ : [0, d(K)] — [0, 1]
such that (9.23) and (9.24) hold.

Let A, B € S(K). We assert that

H(T(A), T(B)) < max{l/2, ¢(H(A, B)/4)}H(A, B). (9.28)
To see this, we may assume that H(A, B) > 0 and that
H(T(A),T(B)) > H(A, B)/2. (9.29)

Let
g€ (0, H(A, B)/4). (9.30)
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By the definition of the Hausdorff metric, there exist x; € YN“(A) and x; € f‘(B) such
that

max|p(x1, T(B)), p(x2. T(A))} +&/2 > H(T(A), T(B)). (9.31)
We may assume that
p(x1, T(B)) = p(x2, T (A)).
Therefore
p(x1, T(B)) +e/2> H(T(A), T(B)). (9.32)

We may also assume that x; € T (A). There exist xo € A such that x; € T (xg) and
Yo € B such that

llxo — yoll < p(x0, B) +€/2 < H(A, B) +¢/2. (9.33)
Therefore (9.24) implies that
p(x1, T(B)) < p(x1, T (y0)) < H(T (x0), T (30)) < ¢(llxo — yoll) Ixo — yoll
< ¢(llxo — yoll) (H(A, B) +¢/2). (9.34)
Combining this with (9.32), we see that
—&/2+ H(T(A), T(B)) < ¢(lxo — yoll) (H(A, B) +&/2). (9.35)
It follows from (9.22), (9.32), (9.29) and (9.30) that
Ixo = yoll = H(T (x0), T (30)) = p(x1, T (30)) = p(x1, T (B))
> —¢/2+ H(T(A), T(B)) > —¢/2+ H(A, B)/2> H(A, B) /4.
Thus
lxo — yoll = H(A, B)/4.

Combining this last inequality with (9.35), we can deduce that
—&/2+ H(T(A), T(B)) <¢(H(A, B)/4)(H(A, B) +¢/2).
Since ¢ is an arbitrary positive number, we conclude that
H(T(A),T(B)) <¢(H(A, B)/4)(H(A, B)).
This completes the proof of Proposition 9.6. O
We equip the set M with the metric pp defined by
pm(T1, T) :==sup{H(T1(x), T2(x)) :x € K}, T, The M. (9.36)

It is not difficult to verify that the metric space (M, paq) is complete.
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Foreach T € M, set P(T) =T. Itis easy to see that for each 77, T» € M,

pa(P(T1), P(T2)) = ppm (T, To). (9.37)
Denote
B={P(T): T eMj. (9.38)

It is clear that the metric spaces (*B, pg) and (M, p4) are isometric.
For each T € 2 and each y > 0, define

I,(A)=10—=-y)T(A) D yo.

It is easy to see that T}, € 2 for each T' € 2l and each y > 0, and moreover, T, € B
if T € B. Now we can apply Theorem 9.4 and obtain the following result.

Theorem 9.7 There exists a set F which is a countable intersection of open and
everywhere dense subsets of (M, paq) such that each T € F is contractive.

Theorem 3.1 and Proposition 9.6 imply the following result.

Theorem 9.8 Assume that the operator T € M is contractive. Then there exists
a unique set At € S(K) such that T(At) = Ar and (T)"(B) — At as n — o0,
uniformly for all B € S(K).

Let T € M. A sequence {)c,l},11v=1 C K with N > 1 (respectively, {x,};° | C K) is
called atrajectoryof T if xj 41 € T (x;),i =1, ..., N —1 (respectively,i =1, 2, ...).
Theorem 9.8 leads to the following results.

Theorem 9.9 Let the operator T € M be contractive and let the set At € S(K) be
as guaranteed by Theorem 9.8. Then for each ¢ > 0, there exists a natural number
n such that for each trajectory {x; }?:1 CKofT, p(xn, AT) < €.

Theorem 9.10 Let the operator T € M be contractive and let the set Ay € S(K)
be as guaranteed by Theorem 9.8. Then for each € > 0, there exists a natural number
n such that for each z € K and each x € Ar, there exists a trajectory {x;}]_, C K
of T such that x1 =z and p(x,,x) <e&.

Corollary 9.11 Let the operator T € M be contractive and let the set A € S(K)
be as guaranteed by Theorem 9.8. Then for each x € Ar, there is a trajectory
{xi}72, C At such that x; = x and liminf; ,  |x; — x| =0.

Corollary 9.12 Let the operator T € M be contractive and let the set At € S(K)
be as guaranteed by Theorem 9.8. Assume that the set Ar is separable. Then for
each x € Ar, there is a trajectory {x;}7°, C Ar such that x| = x and for each
y € Ar, liminf;,  [[x; — y[| =0.
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9.4 Existence of Fixed Points

We consider a complete metric space of nonexpansive set-valued mappings acting
on a closed and convex subset of a Banach space with a nonempty interior, and show
that a generic mapping in this space has a fixed point. We then prove analogous
results for two complete metric spaces of set-valued mappings with convex graphs.
These results were obtained in [145].

Let (X, ] - ||) be a Banach space and denote by S(X) the set of all nonempty,
closed and convex subsets of X. For x € X and A C X, set

p(x, A) =inf{|lx — y||: y € A},
and for each A, B € S(X), let

H(A,B)=max{sup,0(x,B),sup,o(y,A)}. (9.39)

xX€eA yeB

The interior of a subset A C X will be denoted by int(A). For each x € X and
eachr > 0, set B(x,r) ={y € X : ||y — x| <r}. For the set S(X) we consider the
uniformity determined by the following base:

G(n)={(A,B)e S(X) x S(X): H(A,B) <n” '}, (9.40)

n=1,2,....Itis well known that the space S(X) with this uniformity is metrizable
and complete. We endow the set S(X) with the topology induced by this uniformity.

Assume now that K is a nonempty, closed and convex subset of X and denote
by S(K) the set of all A € S(X) such that A C K. It is clear that S(K) is a closed
subset of S(X). We equip the topological subspace S(K) C S(X) with its relative
topology.

Denote by M, the set of all mappings 7 : K — S(K) such that T (x) is bounded
for all x € K and

H(T(x), T(y) <lx—=yl, x,yekK. (9.41)

In other words, the set M,, consists of those nonexpansive set-valued self-
mappings of K which have nonempty, bounded, closed and convex point images.

Fix 6 € K. For the set M,,, we consider the uniformity determined by the fol-
lowing base:

Em)={(T1, T2) € Mye x Mye : H(Ti (x), Ta(x)) <n”~!
for all x € K satisfying ||x — 8] < n}, n=1,2,.... (9.42)
It is not difficult to verify that the space M,,, with this uniformity is metrizable and

complete.
The following result is well known [45, 102]; see also [116].
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Theorem 9.13 Assume that T : K — S(K), y € (0, 1), and

H(T(x), T(y»)<ylx—yl, x,yeKk.

Then there exists x7 € K such that xt € T (xT).

The existence of fixed points for set-valued mappings which are merely non-
expansive is more delicate and was studied by several authors. See, for example,
[67, 94, 119] and the references therein.

We prove the following result which shows that if int(K) is nonempty, then a
generic nonexpansive mapping does have a fixed point.

Theorem 9.14 Assume that int(K) # @. Then there exists an open and everywhere
dense set F C My, with the following property: for each S € F, there exist x € K
and a neighborhood U of S in M, such that x € S(x) for each S € U.

For our second result we assume, in addition, that the closed and convex subset
K C X is bounded. Denote by M, the set of all mappings T : K — S(K) such that

alT(x))+ (1 —a)Tx C T(ocx1 + (1 - oe)xz) (9.43)

for each x1, x, € K and all & € (0, 1). In other words, the set M, consists of all set-
valued self-mappings of K with convex graphs. Note that convex-valued mappings
and, in particular, mappings with convex graphs, as well as spaces of convex sets,
find application in several areas of mathematics. See, for example, [54, 90, 92, 166,
168, 169, 177] and the references mentioned there. We denote by M, the set of all
those continuous mappings 7 : K — S(K) which belong to M,,.

For the set M, we consider the uniformity determined by the following base:

Ea(n)={(T1, T) € Mg x My : H(Ti(x), T2(x)) <n”"
forallx e K}, n=1,2,.... (9.44)

It is easy to see that the space M, with this uniformity is metrizable and complete.
It is clear that M, is a closed subset of M,. We endow the topological subspace
M C M, with its relative topology and prove the following result [145].

Theorem 9.15 Assume that K is bounded and int(K) # (). Then there exists an
open and everywhere dense subset F, of M, with the following property: for each
Se Fua, there exist x € K and a neighborhood U of§ in M such that x € S(x) for
each S elU.

Moreover, F, contains an open and everywhere dense subset F . of M.

Usually a generic result is obtained when it is shown that the set of “good” points
in a complete metric space contains a dense G5 subset. Note that our results are
stronger because in each one of them we construct an open and everywhere dense
subset of “good” points.
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In both Theorems 9.14 and 9.15 we assume that the interior of K is nonempty.
The following proposition, which will be proved in the next section, shows that this
situation is typical.

Proposition 9.16 The set of all elements of S(X) (respectively, Sp(X)) with a
nonempty interior contains an open and everywhere dense subset of S(X) (respec-
tively, Sp(X)).

9.5 An Auxiliary Result and the Proof of Proposition 9.16

We need the following auxiliary result (see Proposition 5.1 of [179] for the finite
dimensional case). If (Y, || - ||) is a normed linear space, x € Y and r > 0, then we
denote by B(x, r) the closed ball of radius r centered at x.

Lemma 9.17 Let (Y, || - ||) be a normed linear space and let r > 0 be given. Assume
that C is a closed and convex subset of Y such that for all y € B(0,r),

inf |y —x|| <r. (9.45)
xeC
Then 0 e C.

Proof 1f 0 ¢ C, then by the separation theorem there exists a bounded linear func-
tional [ € Y* such that ||/|| = 1 and

p=inf{l{(x):xeC}>0.

There is yg € B(0, r) such that [(—yg) > r — p/2. By (9.45), there is xog € C such
that || yop — xo|| <7 + p/2. Now we have

p <1(xo) =1(yo) +1(x0 — y0) < —r + p/2+ llx0 — yoll
<—-r+p/24+r+p/2=np.

Since we have reached a contradiction, we conclude that the origin does belong
to C. O

Proof of Proposition 9.16 Let A € S(X) and ¢ > 0 be given. Denote by A the
closure of the set A + {y € X : ||y|| < ¢}. Clearly, A € S(X) (if A € Sp(X), then
A€ Sp(X)) and H(A,A) <e. To complete the proof, it is sufficient to show that
each B € S(X) for which H(A, B) < ¢/2 has a nonempty interior.

To this end, let B € S(X) and H(B, A) < ¢/2. We claim that each point of A
belongs to the interior of B. To see this, let x € A and y € B(x, £/2).

Then B — y is a closed and convex subset of X, B(0,e/2) C A —y and H(B —
y,A—y)< ¢/2.By Lemma 9.17,0€ B — y and y € B. Thus B(x, ¢/2) C B. This
completes the proof of Proposition 9.16. g
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9.6 Proof of Theorem 9.14
Fix x, € int(K). There exists ry € (0, 1) such that
B(xy, 1) CK. (9.46)
Let T € My, and y € (0, 1) be given. Define T), : K — S(K) by
T,(x)=(1 =) Tx+yx., xek. (9.47)

It is clear that T),, € M, and H(T,(x), T, (y)) < yllx — y|l for all x,y € K. By
Theorem 9.13, there exists a point x7,,, € K such that

T,(x1,y) =XT,9. (9.48)
Consider the set
T,(K) = {T,»:ye K} c{d—y)y+yx.:yeKk}.
It follows from this inclusion and (9.46) that for each z € T}, (K),
B(z,yry) CK. (9.49)

For each x € K, denote by 7~‘y (x) the closure of T, (x) + B(0, yr,) in the norm

topology. By (9.49), f“y (x) € S(K) for all x € K. It is easy to see that f,, € Mye.
By (9.48),

B(xt.y, yrs) C Ty (xT). (9.50)

Since the point images of the nonexpansive mapping 7" are bounded, the image un-
der T of any bounded subset of K is also bounded. Therefore 7}, — T as y — 0.

Let T € M, and y € (0, 1). There exists an open neighborhood U (T, y) of Ty
in M, such that for each S € U(T, y),

H(T, (x1,)). S(1,)) < yrs. (9.51)
Define
F=J{U@T.¥): T € Mpe. v € (0. D}.
It is clear that F is an open and everywhere dense subset of M.

Assume that S € F. There exist a mapping T € M, and a number y € (0, 1)
suchthat S € U(T, y).Let S € U(T, y). Then (9.51) and (9.50) hold. Consider now
the sets Ty, (xr,,) — xT1, and S(x7,,) — x7,5,. By (9.51),

H(TV(XTJ/)_XT,VvS(xT,y) _xT,y) S Y. (9.52)
By (9.50),
B(0.yry) C Ty (xr,y) — X1,y 9.53)

It follows from (9.52), (9.53) and Lemma 9.17 that O € S(x7,,,) — x7,),. In other
words, x7,, € S(xr,,) and Theorem 9.14 is proved.
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9.7 Proof of Theorem 9.15

Lemma 9.18 Let T € M, and & > 0 be given. Then there exist points 71 € K and
70 € T(z1) such that ||z1 — 22| < e.

Proof Consider any sequence {y;}°, C K such that y;11 € T(y;), i =0,1,....

Choose a natural number n such that
ne > 25up{||x|| 1X € K}

Set 21 =n~ 'Y yi and zo = n~' Y7_, y;. It is clear that z5 € T'(z1). By the
choice of n,

Izt — 22l <n Myw — yoll <20 'sup{lixll:x e K} <e,

as asserted. Lemma 9.18 is proved. g

Fix x, € int(K). There exists r, € (0, 1) such that
B(xy,ry) CK. (9.54)
Let T € M, and y € (0, 1) be given. Define T), : K — S(K) by
T,(x) =0 —y)Tx+yxs, x€K. (9.55)

It is obvious that T, € M, and T}, € M if T € M.
Consider now the set

T,(K) = {1, :yek}c{d -y +yxn:yek}.
It follows from this inclusion and (9.54) that for each z € T, (K),
B(z,yry) CK. (9.56)

For each x € K denote by Ty (x) the closure of T, (x) + B(0, yry) in the norm

topology. Clearly, f,, € M, and f"y € Myc if T € M. By Lemma 9.18, there
exist x7,, € K and X7, € T}, (xT,},) such that

I57.y =1yl <27 yrs.
It follows from this inequality and the definition of Ty (x7,,) that
B(xr,,. 27 yr) C Ty (ar,). (9.57)

There exists an open neighborhood U (T, y) of fy in M, such that for each S €
U(,y),

H(T)(x1,y), S(x1,,)) <27 'yr.. (9.58)

Note that 7, — T as y — 0.
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Define
F, = U{U(T, y):T € Mg,y €(0, 1)}
and
Fopo = [U{U(T, ¥):T € Mac,y € (0, 1)}] N Mac.

It is clear that F, is an open and everywhere dense subset of M,, and F,. is an
open and everywhere dense subset of M.

Assume that S € Fq. There exist T € M, and y € (0, 1) such that Se Uu,y).
Let S € U(T, y). Then (9.58) and (9.57) hold. Consider the sets Ty (xX7,9) — XT,)
and S(x7,,) — x7,,. By (9.58),

H(Ty (xT,y) —XT,y, S(xT,y) - xT,y) = 2_13/7'*. (9.59)
By (9.57),
B(0,27'yry) C T, (x1,y) — x5 (9.60)

It follows from (9.59), (9.60) and Lemma 9.17 that 0 € S(xr,,) — x7,, and x7 ,, €
S(x7,y). This completes the proof of Theorem 9.15.

9.8 An Extension of Theorem 9.15

Consider the complete uniform space S(X) defined in the previous section. Assume
that K is a nonempty, closed and convex (not necessarily bounded) subset of X.
Denote by 21, the set of all mappings T : K — S(X) such that

alTxi+ (1 —a)Txp C T(ax1 + (1 — a)xz) (9.61)

for all x1,x, € K and each o € (0, 1). As we have already mentioned, such map-
pings find application in many areas. We denote by 91, the set of all continuous
mappings T : K — S(X) which belong to 1,.

For the set 91, we consider two uniformities, strong and weak, and the strong
and weak topologies generated by them. (The weak uniformity is weaker than the
strong one.) The strong uniformity is determined by the following base:

Em) ={(T1. ) €My x My : H(T1(x), Ta(x)) <n”"!
forallxeK}, n=1,2,.... (9.62)

It is not difficult to see that the space 9, with this uniformity is metrizable and
complete, and that 91, is a closed subset of 9,,.

Fix 6 € K. For the set 91, we also consider the weak uniformity determined by
the following base:

Ew(n) ={(T1, T2) €My x My : H(T1(x), Ta(x)) <n”!
for all x € K satisfying ||x — 6] < n} n=1,2,.... (9.63)
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It is not difficult to verify that the space 90t, with this weaker uniformity is also
metrizable and complete, and that 91, is, once again, a closed subset of 9J1,.

Denote by 9% the set of all T € 91, such that there exists a bounded sequence
{xi}2y C K with xjy1 € T(x;), i =0,1,.... Set M. = N7 N M. Denote by
Sjljs the closure of 9T in the space 91, with the strong topology, by 95?2“’ the
closure of 9% in the space 91, with the weak topology, by 905 the closure of D,
in the space 91, with the strong topology and by 95"(;"?’ the closure of 9Mt* . in the
space 2, with the weak topology. We equip the topological subspaces 93?;7‘?, 93?;“’,
s SL_RZL“’ C M, with both the weak and strong relative topologies.

ac’
In this section we prove the following result [145].

Theorem 9.19 There exists an open everywhere dense (in the weak topology) subset
FYof SI_RZ“’ with the following property: for each A € F)’, there exist z, € K and
a neighborhood W of A in M, with the weak topology such that z, € S(z4) for
each S € W. Moreover, there exists an open (in the weak topology) and everywhere
dense (in the strong topology) subset F,, of Ef)?f , an open (in the weak topology)
and everywhere dense (in the strong topology) subset F,. of fﬁTZi, and an open

everywhere dense (in the weak topology) subset F\. of U such that F,. C F, C
Fand Fy, C FL. CFY.

In the proof of Theorem 9.19 we will use the following auxiliary result (cf.
Lemma 9.18).

Lemma 9.20 Let T € O and € > 0 be given. Then there exist z1 € K and z3 €
T (z1) such that ||z1 — z2]|| < e.

Proof of Theorem 9.19 Let T € M, and y € (0, 1) be given. For each x € K, denote
by T, (x) the closure of Tx + B(0, y) in the norm topology. Clearly, T,, € 9, and
T, € My if T € My, Itis easy to see that foreach T e M,, T, - T as y — ot
in the strong topology.

Let T € M and y € (0, 1). By Lemma 9.20, there exists x7,, € K such that

B(x7,,.27'y) C T, (x1,p). (9.64)

There also exists an open neighborhood U (T, y) of T}, in 9, with the weak topol-
ogy such that foreach S € U(T, y),

H(T,(x,), S(x1,,)) <27 'y. (9.65)
Define
F=[Ulua v emiy e 0 n}] nany,
Fr=|UJlu@.y: T emsy e D} N,

Fo= [U{U(T, y): T €M,y €0, 1)}] N o,
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and
W = [U{U(T, y):TeM: .y e, 1)}] N

Clearly, 7). C Fiy C F} and F,, C FJ. C FX. Itis easy to see that F, is an open
(in the weak topology) and everywhere dense (in the strong topology) subset of
NS, F¥ is an open everywhere dense (in the weak topology) subset of DY*, F¥,
is an open (in the weak topology) and everywhere dense (in the strong topology)
subset of SfRZi, and F}”. is an open everywhere dense (in the weak topology) subset
of M.

Assume that A € F}. Then there exist 7 € 9t and y € (0, 1) such that A €
U(T,y).By (9.64),

B(0,27'y) C Ty (x1,,) —x1.y. (9.66)

Let Se U(T, y). By (9.65),
H(T, (x1,y) — xT,5, S(x1,,) —x7,) <27 'y (9.67)
It follows from (9.66), (9.67) and Lemma 9.17 that 0 € S(xr,,) — x7,,, and x7 ,, €
S(x7,). This completes the proof of Theorem 9.19. Il

9.9 Generic Existence of Fixed Points

Let (X, d) be a complete metric space. For x € X and a nonempty subset A of X,
setd(x,A) =inf,cad(x, a).

In the space X, an open ball and a closed ball of center a and radius r > O are
denoted by Sx(a,r) and Sx[a, r], respectively.

Set

B(X)={A C X : A is nonempty closed and bounded}.
The space B(X) is equipped with the Hausdorff metric
h(A, B) = max{supd(a, B),supd(b,A);, A,BeB(X).
acA beB

Note that &(-, -) is, in fact, defined for all pairs of nonempty subsets of X (not
necessarily bounded and closed).

A map F : X — B(X) is said to be nonexpansive (respectively, strictly contrac-
tive with a constant Lz € [0, 1)) if it satisfies

h(F(x), F(y)) <d(x,y) (resp. h(F (x), F(y)) < Lrd(x,y))
forall x,y € X.

The set fix(F) = {x € X : x € F(x)} is called the fixed point set of F. B
We say that most (or typical) elements of X have a given property P if the set X
of all x € X having P isresidual in X, i.e., X \ X is of the first Baire category in X.
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Let E be a real Banach space with norm || - ||. Set
X(E)={A C E : A is nonempty and compact}
and

E(E)={A C E : A is nonempty, compact and convex}.

The spaces X'(E) and £(E) are equipped with the Hausdorff metric 4 under
which each one of them is complete.

For any star-shaped set A C E, st(A) denotes the set of all a € A such that ta +
(1—t)xe Aforeveryx e Aandt €0, 1].

In this section we prove that most compact-valued nonexpansive map from a
closed bounded star-shaped subset of a Banach space E into itself have fixed points.
This result was obtained in [53].

Let E be a real Banach space. For a nonempty, closed, bounded and star-shaped
set D C E, define

Xp={AeX(E):ACD}.
Under the Hausdorff metric / the space Xp is complete. Set
M ={F:D — Xp: F is nonexpansive},
N ={G:D — Xp: G is strictly contractive}.
The space M is equipped with the metric of uniform convergence
o(Fi, F») = szgh(Fl (x), 2(x)), Fi,F,eM (9.68)
x

under which it is complete.
Given F : D — Xp and A € Xp, set

Dp(A) = U F(x). (9.69)

x€A
Lemma 9.21 Let F : D — Xp satisfy
h(F(x), F(y)) <Lpllx—yll (Ly=0)forallx,yeD.
Then (9.69) defines a map @ : Xp — Xp satisfying
h(¢r(A),¢r(B)) < Lrh(A,B) forall A,B € Xp. (9.70)

Proof 1t is evident that ®r(A) € Xp for each A € Ap. To prove (9.70), let
A,Be Xp.Letu € pr(A). Then u € F(x) for some x € A. Since B is compact,
there is a point y € B such that ||x — y|| =d(x, B). We have

d(u, ®p(B)) <d(u, F(y)) <d(u, F(x)) + h(F(x), F(y))
<Lrlx =yl < Lrd(x, B).
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Thus

d(u, ®p(B)) < Lrh(A,B) foreachu € ®p(A) (9.71)
and similarly,

d(u, ®r(A)) < Lrh(A, B) foreachu € ®rp(B). (9.72)
Combining (9.71) and (9.72), we get (9.70), as asserted. O

Lemma 9.22 Let F, G € M be such that p(F, G) < 8, where § > 0. Then
h(®PF(A), PG(A)) <8 foreach A€ Xp. (9.73)

Proof Let A € Xp and ¢ > 0 be given. Since A is compact, and F' and G are uni-
formly continuous, there exist a finite set {ai}lN: 1 CA and o > 0 such that, setting
A; =ANSpla;, o], one has

h(F(x), F(ai)) <e, h(G(x), G(ai)) <e foreveryxeA;,i=1,2,...,N.
Hence

h((DF(Ai), F(ai)) <e, h(qﬁc(Ai), G(ai)) <e i=1,...,N.
Therefore

N N
h(®r(A), PG(A)) =h<U Dr (A, quc(Ai)) = max h(PF(A), D6 (A)

i=1 i=1
< max [A(Pr(A), F(a)) + h(F(a), G(a;))

T 1<i<N
+h(G(ai), PG (A))]
<2+ p(F,G),

which implies h(@r(A), PG (A)) < p(F,G) < §. Since A € Xp is arbitrary, in-
equality (9.73) indeed holds as claimed. d

Lemma 9.23 The set N is dense in M.
Proof Let F € M. For a natural number n, define G, : D — Xp by
Gu(x)=n"la+(1-n"")F(x), xeD,

where a € st(D). Since G, € N and p(G,,, F) — 0 as n — o0, the result follows.
O
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Lemma 9.24 Let G € N and let € > 0 be given. Then there exists 0 < 8G(¢) < ¢
such that

if F e SM(G, SG(S)), then h(q);é(A), (PE’;(A)) <& forevery A e Xp

and all natural numbers n. (9.74)

Proof Let G € N be strictly contractive with constant 0 < Lg < 1 and let ¢ > 0
be given. By Lemma 9.21, &g : Xp — Xp is strictly contractive with the same
constant L. We claim that (9.74) holds with §g(¢) =8, where 0 < § < (1 — Lg)e.

Let F € Spm(G, 8). By Lemma 9.22, (9.73) is satisfied. Let A € X'p be arbitrary.
By (9.73),

h(Pr(Pr(A)), PG (Pr(A))) <6
and thus
h(®F(A), DE(A)) < h(@F(Pr(A)), D (Pr(A)))
+ h(D6(PF(A)), D6 (PG (A)))
<38+ Lgh(Pr(A), DG(A)) <8(1+ Ly).

Using induction, we obtain, for any natural number #,

h(®(A), @A) <8(1+Lg+---+ L.

Thus
h(DF(A), @5 (A)) <8(1 = Lg)™!
for every A € X'p and any natural number .
Since § < (1 — Lg)e, (9.74) holds, as claimed. O
Put

Mo ={F € M :fix(F) is compact nonempty }.
Theorem 9.25 The set M is residual in M.

Proof For G € N and any natural number k, let S ((G, 8G(1/k)), where 8 (1/k) <
1/k exists according to Lemma 9.24. Define

o0

M=) | Sm(G.86(1/k)).

k=1GeN

Clearly, M* is residual in M, since M* is the countable intersection of sets which
are open and, by Lemma 9.23, dense in M. The theorem is an immediate conse-
quence of the following assertion.
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Claim.
M* C M.

Let F € M* be given. By the definition of M*, there exists a sequence
{GrIR2, C N such that

F € Spm(Gr. 86, (1/k))  for every natural number k. (9.75)
Thus by Lemma 9.24, for each natural number &,
h(D%(A), Dc, (A) <1/k
for every A € Xp and every natural number n. (9.76)

According to Lemma 9.21, &g, : Xp — &p is strictly contractive, for G, € N, and
hence for each natural number k, there exists Z; € Xp such that

Zy =D, (Zy).

() {Zr}72, C Xp is a Cauchy sequence.

To see this, let ¢ > 0 be given. Let k, kX’ > 4/¢ be arbitrary natural numbers and
let A € Xp. Since dﬁgk(A) — Z; and dbgk, (A) > Zp as n — 00, there exists a
natural number m such that

h(@gk (A), Zk) <¢g/4, h((bgk, (A), Zk/) <e
for every integer n > m. 9.77)
In view of (9.77) and (9.76), one has
h(Z, Zir) < h(Zk, P, (A)) + h(Pg, (A), D (A))
+ h(DF (A), G, A) + h(cpgk, (A), Zy)
<e/d+1/k+ (k) +e/4<e,

for1/k+1/k" <&/2. As k, k' > 4/¢ are arbitrary, (j) is proved.
Since {Z}72, C &p is a Cauchy sequence and X is a complete metric space,
there exists Z € Xp such that Z; — Z as k — 00

(jj) Foreach A € Xp, the sequence {®}(A)} converges to Z as n — 00. Moreover,
Z = @ (Z) is the unique fixed point of @f.

Let A € Xp. Given ¢ > 0, fix a natural number k > 3/¢ large enough so that
h(Zy, Z) < ¢/3. Hence by (9.76), for every natural number 7, one has

h(@F(A), Z) < h(@F(A), D, (A)) + h(PE, (A), Zi) + h(Zy, Z)

<1/k+h(®g (A), Zi) +¢/3.
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Since h(q)?;k (A), Zy) tends to zero as n — o0, there is a natural number ng such
that h(d%k (A), Zy) < ¢/3 for all n > ny. Moreover, 1/k < ¢/3, and thus

h(®}(A),Z) <& forevery n > ng.
This shows that ®%(A) — Z as n — oo. The second statement of (jj) is obvious.

(jj) The fixed point set fix(F) is a nonempty compact subset of D.

First we show that the set fix(F) is nonempty. As G € A/, by Nadler’s theorem
[102], for each natural number k, there is a point a; € D such that

ai € Gilay), k=1,2,.... (9.78)
For each natural number %,
ai € Q% L (ax) for every natural number 7. (9.79)

This is obvious if n = 1 because @¢, (ar) = G (ax). Assuming that (9.79) is valid
for n, then for n + 1 one has a; € ®g, (ax) C Cb(;k(qﬁgk (ar)) = dﬁ’g;tl(ak) and thus
(9.79) holds for every natural number 7. Since q§2’;k (ax) — Zj as n — o0, it follows

that ax € Zi. On the other hand, Z; — Z implies d(ax, Z) — 0 as k — co. Since Z

is compact, there is a subsequence {ax, },> ; which converges to some a € D.

We have a € F(a). In fact, (9.75) implies that

h(F(x), G, (x)) < 86y, (1/kn)
for every x € D and any natural number 7. (9.80)
In view of (9.78) and (9.80), one has
d(a, F(a)) < |la — a, || + d(ak, . G, (ax,))
+ h(Gr, (ax,), F(ax,)) + h(F (a,), F (a))
< lla — ax, |l + 86, (1/ kn) + h(F (ax,), F(a)) <2lla — ax, |l + 1/ kn

because 8, (1/kn) < 1/kn. As n — 00, the right-hand side tends to zero and thus
d(a, F(a)) =0, i.e. a € F(a). Hence fix(F) # @, as claimed. It remains to show
that fix(F) is compact. To see this, let x € fix(F). Then x € @} (x) for every nat-
ural number 7. Since by (jj), % (x) — Z as n — oo, it follows that z € Z. Thus
fix(F) C Z, which implies that fix(F) is compact for so is Z and fix(F') is closed.
Hence (jjj) holds. Therefore F' € Mj. This completes the proof of the claim and of
Theorem 9.25 itself. O

For a nonempty, closed, bounded and star-shaped set D C E, let
ED={AG€(E):ACD}. (9.81)
When endowed with the Hausdorff metric 4, the space &; is complete. Define

U={F:D — Ep: F is nonexpansive}. (9.82)
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The set U is endowed with the metric p of uniform convergence (9.68) under which
it is complete. Set

Uy = {F € U : fix(F) is nonempty and compact}. (9.83)

Using the same argument as in the proof of Theorem 9.25, one can also prove the
following result.

Theorem 9.26 The set Uy is residual inU.

9.10 Topological Structure of the Fixed Point Set

In this section, which is based on [53], we study the topological structure of the
fixed point set for a typical compact-and convex-valued nonexpansive map from a
closed, convex and bounded subset of a Banach space into itself.

Let E be a real Banach space. In this section D denotes a closed, convex and
bounded subset of E with a nonempty interior int(D). Set

S={xeE:|x| <1}

Let £p, U and Uy be given by (9.81), (9.82) and (9.83) with D as above.
Define

Uy :={F €U : thereis ar such that F(x) + oS C D,x € D}. (9.84)
Lemma 9.27 The set U is open and dense in U.

Proof First we show that U] is open in U. Let F € U; and let o > 0 be the corre-
sponding number in (9.84). For 0 < ¢ < oF /2 we have Sy (F, ¢) C U. In fact, each
G € Sy (F, ¢) satisfies G(x) C F(z) + ¢S for each x € D. Thus, taking og = or/2,
one has

Gx)+ogSCFx)+(e+o0g)SCF(x)4+orScCD foreachxe D.

Hence Sy (F, ¢) CU;. Thus U is indeed open in U.

Next we show that {{; is dense in /. Let F €U, 0 <& < 1 and let a € int(D).
Then Sg[a, 6] C D for some 6 > 0. Fix A such that 0 < A < &/(2M), where M =
sup,ep llx|l + 1, and define G : D — Ep by

Gx)y=rxa+A-AF(x), xeD.
Clearly, G e U, and p(G, F) < ¢ since for each x € D,

h(ra + (1 =) F(x), F(x)) =h(ra+ (1 = M) F(x), A\F(x) + (1 = M) F(x))
< Ah(a, F(x)) <2AM < ¢&.
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Furthermore, taking 0 < oG < A8, for each x € D, one has
G(x)+ogSC )L(a +OGA_IS) + (1 —-MNFx)CASgla, 0]+ —=X)DCD

and thus G € U;. Since p(G, F) < ¢ it follows that U{; is dense in U, as asserted.
O

Set
Bp ={A C D : A is nonempty, closed and convex}.

The following result is a special case of a theorem due to Ricceri [165].

Lemma 9.28 Ler F : D — Bp be strictly contractive. Then the fixed point set
fix(F) of F is a nonempty absolute retract.

We call the subset of a metric space an Rs-set if it is the intersection of a de-
scending sequence of absolute retracts.

Theorem 9.29 The fixed point set fix(F) of most F € U is a nonempty and compact
Rs-set.

Proof Let Uy and U be defined by (9.83) and (9.84), respectively. By Theorem 9.26
and Lemma 9.27, the set U™ = Uy N U is residual in /. Our theorem is therefore an
immediate consequence of the following assertion.

Claim. For each F € U*, the set fix(F') is a nonempty and compact R;-set.

Let F e U*. Since F € U, there exists oF > 0 such that

F(x)+orSCD foreachx e D. (9.85)

Let a € int(D). Then Sgla, 8] C D for some 6 > 0. For a natural number 7, define
G,:D— Epby

Gn(x)=(2")a+(1-2"")F(x), xe€D.
In addition, for a natural number 7, set
0,x)=G,(x)+(1/n)S, xe€D. (9.86)

Let ng be a natural number such that n > ng implies (1/n)/(1 —27") < of. For
n >ngp and x € D, one has

0,(0) = (2")a+ (1 —27")[Fx)+ (1/m)(1 = (1/2)")”'5]
c2"a+ (1 — 2_")(F(x) + O'FS) c2™"a+ (1 - 2_”)D

by (9.84).
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Therefore Q,(x) C D and thus Q,(x) € Bp for each x € D. It follows that for
each natural number n > ng, (9.86) defines a map Q, : D — Bp which is a strict
contraction and, moreover, p(Q,, F) — 0 as n — 00. Fix n; > ng so that

n(n+1)27"M <1 forevery n >n;, where M = sup ||x||. (9.87)
xeD

We claim that for each integer n > n1, one has
F(x) C Qp41(x) C Qn(x) forevery x € D. (9.88)
To see this, let n > ny and x € D be arbitrary. Then
On+1(x) +(1/n)S
=(1-2""NYF@+2" la+m+1D7'S+(1/n)S
=(1-2""Fx)+ Q2" -2"HYFx) +2"a—- (27" +2"")a
+m+D7 'S +nls
and thus
Oni1(x)+1/n)S C Qu(x) +27"271 (F(x) —a)+ (n+ nls. (9.89)
Now,
(F(x)—a)/2C(D—a)/2C MS
and hence by (9.87),
27 (F(x) —a) C (n(n+1))7's. (9.90)
Combining (9.90) with (9.89), we obtain
Ont1(x) + (1/n)§S C Qn(x) +(1/n)S.
It now follows from Radstrom’s cancellation law [113] that
Ont1(x) C Qn(x).
It remains to be shown that F(x) C Qp+1x. Clearly,
FO+ @+ 'S=(1-2""YF@) +27" '"Fx)+27" a
—2" la+(m+1)7'S
= Qus1(x) +27"(F(x) =a)/2C Qus1(0) + (1 + D',
since by (9.90),
(1/2")(F(x) —a)/2C (n(n + 1) 'S Cc (n+1)7's.

Therefore by Radstrom’s cancellation law F(x) C Qp+1(x) and thus (9.89) is valid.
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For each integer n > ny, Q, : D — Bp is a strict contraction and by Lemma 9.27
its fixed point set fix(Q,) is a nonempty absolute retract. On the other hand, the set
fix(F) is nonempty and compact because F' € U* C Up. By (9.88),

fix(F) C ix(Qn+1) C fix(Q,,) forevery n >ny,

which implies that

fix(F) C (1) fix(Q).

n=nj

On the other hand, let x € fix(Q,,) for every n > n1. Then x € F(x) because
d(x, F(x)) <d(x, Qn(x)) + h(Qn(x), F(x)) < p(Q. F)

and p(Q,, F) — 0o as n — c0. Hence

fix(F) = (] fix(Qn)

n>n

and thus fix(F) is a nonempty and compact Rs-set. Therefore our claim is valid and
this completes the proof of Theorem 9.29. 0

9.11 Approximation of Fixed Points

In this section, which is based on [53], we consider iterative schemes for approxi-
mating fixed points of closed-valued strict contractions in metric spaces.

Throughout this and the next section of this chapter, (X, p) is a complete metric
spaceand T : X — 2X \ {@} is a strict contraction such that 7' (x) is a closed set for
each x € X. Thus T satisfies

h(T(x),T(y)) <cp(x,y) forallx,yeX, (9.91)

where 0 <c¢ < 1.
For each x € X and each nonempty set A C X, let

p(x, A) :inf{,o(x, y):y € A}.

Theorem 9.30 Let T : X — 2% \ {#} be a strict contraction such that T (x) is a
closed set for each x € X and T satisfies (9.91) with O < ¢ < 1. Assume that xo € X,
{ei}72, C (0, 00), Y 2o i < 00, and that for each integer i > 0,

Xi1 € T (x;), pxi,xiv1) < p(xi. T(x)) + & 9.92)

Then {x;}72,, converges to a fixed point of T .
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Proof First, we claim that {xi}?io is a Cauchy sequence. Indeed, let i > O be an

integer. Then by (9.92) and (9.91),

o ig1, Xig2) < p(xigrs T (i) + giv1 < (T (), T (xi41)) + €41

and
d(xit1, Xi42) < cp(Xi, Xig1) + Eit1- (9.93)
By (9.93),
p(x1,x2) < cp(xo, x1) + €1
and

p(x2,x3) < cp(x1,x2) + &2 < c*p(x0, x1) + el + €. (9.94)
Now we use induction to show that for each integer n > 1,

n—1

P, Xng1) < " p(xo, x1) + Y clen . (9.95)
i=0
In view of (9.94), inequality (9.95) is valid forn =1, 2.

Assume that k£ > 1 is an integer and that (9.95) holds for » = k. When combined
with (9.93), this implies that

k—1
k-1 i+1
P (Xt 15 Xe42) < P (X, Xe1) + €x1 < ¢ p(xo, x1) + ch+ Ek—i + Ek+1
i=0
k
k1 i
= p(xo, x1) + ZC’SkH—i.
i=0

Thus (9.95) holds with n = k + 1 and therefore (9.95) holds for all integers n > 1.
By (9.95),

D o, Xag) < Z(C"P(Xo,m) + ZC"’Q)

n=1 n=1 i=1

<pxo.x)) Y "+ Z(ch)&'
n=1 i=1 \j=0
< <Zc”> [p(xo,xo + an} < 0.
n=0

n=1
Thus {x,};2, is indeed a Cauchy sequence and there exists

X = lim x,. (9.96)

n—o0
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We claim that x, € T (x4). Let ¢ > 0 be given. By (9.96), there is an integer
ng > 1 such that for each integer n > ny,

p(Xn, X)) < €/8. (9.97)
Let n > ng be an integer. By (9.91),
h(T (n). T () < €0 (X, x2) < ce/8. (9.98)
By (9.92),
Xn+1 € T (xn).
When combined with (9.98), this implies that
p(xns1, T (xy)) < ce/8.
Hence there is
y € T(xy) (9.99)
such that p (x,+1, y) < ec/4. Together with (9.97) and (9.99), this implies that
(%, T(x2)) < (s ) < p (s X)) + 0 (g1, ) < 8/8 + £/4.
Since ¢ is an arbitrary positive number, we conclude that
Xy € T (x4),

as claimed. Theorem 9.30 is proved. 0

Theorem 9.31 Let T : X — 25 \ {8} be a strict contraction such that T (x) is a
closed set for all x € X and T satisfies (9.91) with 0 < c¢ < 1. Let ¢ > 0 be given.
Then there exists § > 0 such that if x € X and p(x, T (x)) < §, then there is X € X
such that x € T (x) and p(x,x) <e.

Proof Choose a positive number é such that

45(1—c) ' <e. (9.100)
Consider
x € X such that p(x, T(x)) < 4. (9.101)
Set
X0 =X. (9.102)

By (9.101), there is
x1 € T(xg) (9.103)
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such that
p(x0,x1) <86. (9.104)
For each integer n > 1, choose
Xnt1 € T (xp) (9.105)
such that
pCint1. %) < P, T ) (1 + )/ (20). (9.106)

By (9.91), (9.103), (9.105) and (9.106), for each integer n > 1,

0 s Xng1) < (L4 OR(T (xn—1), T (x))/(2¢) < ((1 4 ¢)/2) p (X0, Xn—1)-

When combined with (9.104), this implies that for each integer n > 1,
p Qi xn41) < [(1+0)/2]" p(xo, x1) < [(1+0)/2]"8. (9.107)
Therefore

00
Z P (Xn, Xpy1) < 00,

n=0

{xn}o2 is a Cauchy sequence and there exists X € X such that

X = lim x,. (9.108)

n—oo

Since x,,4+1 € T (x,) for all integers n > 0, (9.108) implies that

FeT().
By (9.100), (9.107) and (9.108),
o
p(x0, %) = lim p(xo, %) <Y _ p(xi, Xit1)
n—oo =0

<Y [a+o/2] '§=28/(1—c) <¢/2.
i=0

This completes the proof of Theorem 9.31. g

The conclusions of the following two theorems hold uniformly for all those rele-
vant sequences {x;}7° the initial point of which lies in a closed ball of center 6§ € X
and radius M > 0.

Theorem 9.32 Let T : X — 2%\ {8} be a strict contraction such that T (x) is a
closed set for all x € X and T satisfies (9.91) with0<c < 1. Fix0 € X. Let ¢ >0
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and M > 0 be given. Then there exist § € (0, ¢) and an integer no > 1 with the

following property:

for each sequence {xi}?oo C X such that p(xo,0) < M and such that for each

integer n > 0,
Xnt1 € T(xp) and 0 (Xnt1,x,) <8+ P(xm T(xn))s

we have

0 (Xn+1,Xxn) <& forall integers n > ny.
Proof Choose § € (0, 1) such that
s1—co)t<e2

and a natural number 7n( such that

(2M + 1+ p(6,a(0))) <e/2.
Letxg € X,

{xnkyzo C X, p(x0,0) =M,
and assume that for each integer n > 0,

Y1 €T, PGt %n) < p(%n, TO)) + 6.

We now estimate p(xg, T (xg)). By (9.91) and (9.111),

p(x0. T (x0)) < p(x0.6) + p(6. T(©0)) + h(T(6). T (x0))

< p(x0,0) +p(0.T(9)) + 0. x0) <2M + p(6.T(©)).

By (9.112) and (9.113),
p(x0,x1) < p(x0, T (x0)) +8 <2M + 1+ p(0, T (9)).
By (9.112) and (9.91), for each integer n > 0,

P Ent2, Xng1) < p(Xng1, T(Xng1)) + 68
= h(T(xn)v T(anrl)) +3 < cp(xn, Xp+1) + 6.
Next, we show by induction that for each integer n > 1,

n—1

p(Xnt1,xn) <8 )¢l 4" p(xo, x1).
i=0

(9.109)

(9.110)

(9.111)

9.112)

(9.113)

(9.114)

(9.115)

(9.116)



478 9  Set-Valued Mappings

By (9.115), inequality (9.116) holds for n = 1. Assume that k > 1 is an integer and
that (9.116) holds with n = k. Then by (9.115),

k

P (Xk42, Xp41) < cop(Xk, Xpt1) +6 < SZci + 1 p(x, x1).
i=0

Thus (9.116) holds with n = k + 1 and therefore it holds for all integers n > 1. By
(9.116) and (9.114), for all natural numbers 7,

p(Xng1, X)) <81 —c)~ 1 + "M +1+4p(6.T®))). (9.117)
Finally, by (9.117), (9.109) and (9.110), we obtain, for all integers n > no,
Pt a1 1) 81— )" + " (2M + 1+ p(0. T(©))) <e.
Theorem 9.32 is proved. O

Theorems 9.30 and 9.31 imply the following additional result.

Theorem 9.33 Let T : X — 2X \ {#} be a strict contraction such that T (x) is a
closed set for all x € X and T satisfies (9.91) with 0 < ¢ < 1. Let positive numbers
e and M be given. Then there exist § > 0 and an integer ng > 1 such that if a
sequence {x;}{°, C X satisfies

p(0,0) <M,  xpr1 €T(x) and  p(xn, Xns1) < p(n, T (i) +8

for all integers n > 0, then for each integer n > ny, there is a point y € X such that
y €T (y)and p(y,xn) <e.

The following example shows that Theorem 9.33 cannot be improved in the sense
that the fixed point y, the existence of which is guaranteed by the theorem, is not, in
general, the same for all integers n > ng.

Example 9.34 Let X =[0, 1], p(x,y) =|x —y|and T (x) = [0, 1] forall x € [0, 1].
Let § > 0 be given. Choose a natural number k such that 1/k < §. Put

x0=0, xi=i/k, i=0,...,k,
Xitk=1—i/k, i=0,...,k,

and for all integers p > 0 and any i € {0, ..., 2k}, put
X2pk+i = Xi.

Then {xi}?io C X and for any integer i > 0, we have

Xip1 €T(x) and |x; — x4 <k7' <.
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On the other hand, for all x € X and any integer p > 0,

max{|x —x;| :i =2kp, ..., 2pk + 2k} > 1/2.

9.12 Approximating Fixed Points in Caristi’s Theorem

We begin this section by recalling the following two versions of Caristi’s fixed point
theorem [36].

Theorem 9.35 ([82], Theorem 3.9) Suppose that (X, p) is a complete metric space
and T : X — X is a continuous mapping which satisfies for some ¢ : X — [0, 00),

p(x,Tx) <¢p(x)—¢(Tx), xeX.
Then {T"x};2 | converges to a fixed point of T for each x € X.

Theorem 9.36 ([82], Theorem 4.1) Suppose that (X, p) is a complete metric space,
¢ : X — R is a lower semicontinuous function which is bounded from below, and
T : X — X satisfies

px,Tx) =¢p(x) —¢p(Tx), xeX.
Then T has a fixed point.

We now present and prove a set-valued analog of Caristi’s theorem with compu-
tational errors.

Theorem 9.37 Assume that (X, p) is a complete metric space, T : X — 2%\ {#},
graph(T) :={(x,y) € X x X : y € T(x)} is closed, ¢ : X — R' U {00} is bounded
Jfrom below, and that for each x € X,

inf{gp(y) +o(x, ) 1y € T(W)} < p(). (9.118)

Let {en}72 C (0, 00), Y o 0En < 00, and let xo € X satisfy ¢(x) < 0o. Assume
that for each integer n > 0,

Xnt1 € T (x) (9.119)
and

¢ Cont1) + p (o, Xpg1) < inf{p(3) +p(x, y) 1y € T(xn) | + & (9.120)

Then {x},2, converges to a fixed point of T .
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Proof Clearly, ¢ (x;,) < oo for all integers n > 0. By (9.120), for each integer n > 0,

PXn, Xnt1) < =@ (Xnt1) + €n +inf{¢()’) +pox,y):ye T(xn)}
< = (xnt1) + ¢ (xn) +én. (9.121)

By (9.121), for each integer m > 1,

D o xip1) < P(x0) — (xm) + Y e

i=0 i=0

< ¢ (x0) —inf(§) + ) & < oc.

i=0

Thus {x;}{2, is a Cauchy sequence and there exists X = lim; , » x;. Since the graph
of T is closed, it follows that

(F.5) = lim (¥, x;41) € graph(7).
11— 0

This completes the proof of Theorem 9.37. O



Chapter 10
Minimal Configurations in the Aubry-Mather
Theory

10.1 Preliminaries

In this chapter, which is based on [181], we study (%)-minimal configurations in
the Aubry-Mather theory, where & : R> — R! belongs to a complete metric space
of functions 9. Such minimal configurations have a definite rotation number. We
establish the existence of a set F C 91, which is a countable intersection of open
and everywhere dense subsets of 91, and such that, for each # € F and each ratio-
nal number & = p/q with p and ¢ relatively prime, the following properties hold:
(i) there exist (#)-minimal configurations x® . x) and x© with rotation number
« such that xl.(f; +p> x[.(+), xi(:; +p< xl.(_) and x,.(ﬂ) gtrP= xi(o) for all integers i;
(i1) any (h)-minimal configuration with rotation number « is a translation of one of
the configurations x, x(7), x©@,

Let Z be the set of all integers. A configuration is a bi-infinite sequence x =
(x;)icz € R?. The set RZ will be endowed with the product topology and the partial
order defined by x < y if and only if x; < y; foralli € Z.

There is an order preserving action 7 : Z> x R — RZ defined by

Th,x)=Tx=y iff k= (ki ko) e Z
x,y € R? and y; = x; 4, + ky forall i € Z. (10.1)
Let x, y € R%. We say that y is a translation of x if there is n = (n1, n2) € Z? such

that y = T, x.
Let & : R — R! be a continuous function. We extend & to arbitrary finite seg-

ments (x;, ..., Xx), j <k, of configurations x € RZ by
k—1
h(xj, ..., xx) ::Zh(xi,xi+1). (10.2)
i=j
A segment (x;, ..., x) is called (h)-minimal if
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h(-xja-“axk)Sh(yj’-“’yk)

whenever x; = y; and x; = yi.
We assume that £ has the following properties [14, 15]:

(H1) Forall (§,n) € R%, h(§ +1,n+ 1) =h(&, n).
(H2) limj;|— o0 h(§, & + 1) = 00, uniformly in &.
(H3) If & < &2, m1 < m2, then

h(1, m) +h&,m) < h(é1, n2) +h(&2, m).

(H4) If (x_1, x0, x1) # (y—1, Yo, y1) are (h)-minimal segments and xo = yp, then

(x—1 =y —yp <0.

A configuration x € RZ is (h)-minimal if for each pair of integers j, k satisfying
Jj < k and each finite segment {y; }f: ;i C R! satisfying vj =xj and yr = xx, the
inequality 2 (x;, ..., xx) < h(yj, ..., yx) holds. Denote by M (k) the set of all (h)-
minimal configurations. It is known that the set M (h) is closed [12, 14].

We briefly review the definitions, notions and some basic results from the Aubry-
Mather theory [12, 14].

We say that x € RZ and x* € R cross

(@) atie Zifx; =x7 and (xj—1 —x]_)(Xi41 —xl.*H) <0;
(b) between i and i + 1if (x; — x;)(xi+1 — x/ ;) <O.

We say that x € R? is periodic with period (¢, p) € (Z\ {0}) x Z if Ty, px =x.

Remark 10.1 Assume that h = h(&], &) € C*(R?) and (3°h/d&; 3&)(u, v) < O for
all (u,v) € R2. 1t is not difficult to show that (H3) and (H4) hold. Moreover, we can
show that if 4 € C2(R?), then (H3) holds if and only if

{(u,v) € R?: (8%h/3&, 3&,) (u, v) < 0}
is an everywhere dense subset of RZ.
We recall the following result (see Corollary 3.16 and Theorem 3.17 of [14]).

Proposition 10.2 There exists a continuous function ™ : M(h) — R with the
following properties:
Forall x e M(h) and i € Z we have

}x,- — X0 — ia(h)(x)| <1.

If x € M(h) is periodic with period (q, p) € Z2, then «™ (x) = p/q.
For all « € R', the set {x € M(h) : ™ (x) = a} # 0.

Remark 10.3 We call «™ (x) the rotation number of x € M (h).
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For each « € R, define
Mh,a) = {x e M) :aP(x) = a}. (10.3)

We study M (h, a) with rational o € R

Let a rational number a = p/q be an irreducible fraction, where ¢ > 1 and p are
integers. Denote by MP¢" (h, «) the set of all periodic (#)-minimal configurations
x € M(h, a) which satisfy T, ,x = x, equivalently, x; , + p =x; foralli € Z.
For the proof of the following result see [12, 14].

Proposition 10.4 MP¢" (h, «) is a nonempty, closed and totally ordered set. More-
over, if x € MP"(h, a), then x is a minimizer of hgp : Pgp — RY, where

hgp(x) =h(xo,...,xg),  Pgp={x e R?: Ty px=x}. (10.4)

Two elements of MP¢"(h, «) are called (h)-neighboring if there does not exist
an element of MP¢" (h, @) between them. The following two propositions describe
the structure of the set M (h, ). For their proofs see [14].

Proposition 10.5 Suppose that x~ < x+ are (h)-neighboring elements of the set
MP (h, a). Then there exist y(l), y(z) € M(h, o) such that

X < y(l) < x+, X< y(z) <x+,
lim yi(l) —x; =0, 1lim yl.(l) —xl.+ =0,
1—>—00 1—>00
dim y? —x =0,  lim y® —x =0.
11— —00 11— 00

Suppose that x~ < x* are (h)-neighboring elements of MP¢" (h, ). Define
/\/l+(h, o, x ", x+)

={xeM(h,a):_1im X —x7 =0, lim x,'—xi+=0},

1—>—00 1—> 00

M_(h,a,x_,x+)

={xeM(h,oc):‘lim X —xt =0, lim x; —xl._=0}.
11— —0Q 1—> 00
We denote by M™T(h,a) (respectively, M~ (h,«)) the union of the sets
MF(h,a,x7,xT) (respectively, M~ (h,a, x~,xT)) extended over all pairs of
(h)-neighboring elements x~ < x™ of MP¢" (h, a).

Proposition 10.6

L. IfxeM~(h,a,x", x) UMY (h,a,x™,xt), where x~, xT € MP®" (h,a) are
(h)-neighboring and x~ < xT, then x~ <x < x™.

2. Mh,a) = MP" (h,a) UMY (h, ) UM~ (h, o).
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3. The sets MP"(h,a) U M™(h,a) and MP" (h,a) U M~ (h, ) are totally or-
dered.
4. MY (h,a)={x e M(h,a) :x > Ty, px},

M™(h, @) = {x € M(h, @) : x < Tgpx}.

Let k > 2 be an integer. In this chapter we consider a complete metric space of
functions 4 : R> — R! which belong to C¥(R?). This space is defined in the next
section and is denoted by 2x. We prove the existence of a set 7 C 9y, which is a
countable intersection of open and everywhere dense subsets of 9, and such that
for each h € F and each rational number o = p/g with p and ¢ relatively prime,
the following properties hold:

(i) there exist (h)-minimal configurations x V), x(=) and x(© with rotation number
+) (+)
o such that X, tp>x
integers i;
(ii) any (h)-minimal configuration with rotation number « is a translation of one of
the configurations x ), x(7), x©,

, xi(:; +p<x) and xi(g)q +p= xi(o) for all

i

This result was obtained in [181].

10.2 Spaces of Functions

Let k > 2 be an integer. For f = f(x1, x3) € C*(R*» and g = (g1, q2) € {0, ..., k}?
satisfying q1 + g2 <k, we set

lgl=q1+q2.  DIf =01 f/ax]" 9x3.
Denote by 9t the set of all 4 € C*(R?) which have property (H1), satisfy
(9%h/0x) 0x2) (61, £2) <0 forall (£1.6) € R? (10.5)

and also have the following property:

(H5) There exist §, € (0, 1) and ¢;, > 0 such that
h(xy, x2) > 8p(x1 —)C2)2 —c¢p forall (x1,x2) € R

It is clear that (H5) implies (H2).
Denote by 9o the set of all & € My such that

(9%h/dx1 9x2)(€1,62) <0 forall (£, &) € R%. (10.6)
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For each N, ¢ > 0, we set
Ex(N, &) ={(h1, ha) € Dy x My : | DThy(x1,x2) — DIha(x1, x2)| <&
for each g € {0, .. ., k}? satisfying |g| <k
and each (x1, x2) € R? satisfying |x1], |x2| < N}

N{(h1, ha) € M x My = [k (x1, x2) — ha(x1, x2)|

<e+emax{|hi(x1,x2)], [h2(x1, x2)|} for all (x1, x2) € R?}.  (10.7)

’

Using the following simple lemma, we can easily show that for the set 97, there
exists a uniformity which is determined by the base E (N, ¢), N, & > 0.

Lemma 10.7 Leta,b € R', ¢ € (0, 1) such that |a — b| < & + e max{|a|, |b|}. Then
la—bl <e+e*(1—e) ' +e(l—e) ' min{lal, |b]}.

It is not difficult to see that the uniformity determined by the base Er(N, ¢€),
N, & > 0, is metrizable (by a metric di) and complete. For the set 9%, we consider
the topology induced by the metric d», which is called the weak topology, and the
topology induced by the metric di, which is called the strong topology.

The following result, which was obtained in [181], shows that a generic function
in 91, belongs to Mo and, by Remark 10.1, has properties (H1)-(H4).

Theorem 10.8 There exists a set Fo C Mk, which is a countable intersection of
open (in the weak topology) and everywhere dense (in the strong topology) subsets

Ofg.nk.
Proof For h € My and y € (0, 1), define &, : R — R! by

hy(x1,x2) = h(x1,x2) +y(x1 —x2)%,  (x1,x2) € R%.

It is easy to see that for 1 € M and y € (0, 1), hy, € Mo and

(9%hy /8x1 8x2) (£1,82) < =2y,  (£1,&) € R? (10.8)

and h,, — h as y — 07 in the strong topology.

Let f € My, y € (0,1) and let i > 1 be an integer. By (10.7) and (10.8), there
exists an open neighborhood U(f, y, i) of f, in M with the weak topology such
that the following property holds:

(P1) For each g € U(f,y,i) and each (&1, &) € R? satisfying |£1], |&2| < i, the
inequality 82g/dx1 dx2 (&1, £&) < —y holds.

Define

o0

For=( Ut v i): feMiy €0, 1), = n}.

n=1
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Clearly, Fg is a countable intersection of open (in the weak topology) and every-
where dense (in the strong topology) subsets of 97;. We claim that Fy C IMiyo. Let
h € Fo, (€1, &) € R2. Choose a natural number n such that |£1| + |€| < n. There
exist f € My, y € (0,1) and an integer i > n such that h € U(f, y,i). It follows
from property (P1) and the choice of n that (82h/8x1 0x2) (&1, &) < —y. Therefore
h € Myo. This completes the proof of Theorem 10.8. U

10.3 The Main Results

In the subsequent sections we prove the following result [181].

Theorem 10.9 Let k > 2 be an integer and « be a rational number. Then there exists
a set Fo C IMyo, which is a countable intersection of open (in the weak topology)
and everywhere dense (in the strong topology) subsets of 9y such that, for each
f € Fy, the following assertions hold:

1. If x,y € MP"(f, @), then there exist integers m, n such that y; = xj_p,, + n for
alli e Z.

2. If x,y € MT(f, ), then there exist integers m, n such that y; = x;_, + n for
alli e Z.

3. If x,y € M~ (f, ), then there exist integers m, n such that y; = xj—,;, + n for
alli e Z.

It is not difficult to see that Theorem 10.9 implies the following result.

Theorem 10.10 Let k > 2 be an integer. Then there exists a set F C My, which is
a countable intersection of open (in the weak topology) and everywhere dense (in
the strong topology) subsets of My, such that for each rational number o and each
f € F, assertions 1-3 of Theorem 10.9 hold.

Theorem 10.9 follows from the next two propositions.

Proposition 10.11 Let k > 2 be an integer and « be a rational number. Then there
exists a set Fo+ C Myo, which is a countable intersection of open (in the weak
topology) and everywhere dense (in the strong topology) subsets of My, such that
for each [ € Fu+, assertions 1 and 2 of Theorem 10.9 hold.

Proposition 10.12 Let k > 2 be an integer and o be a rational number. Then there
exists a set Fy— C My, which is a countable intersection of open (in the weak
topology) and everywhere dense (in the strong topology) subsets of My, such that
for each f € F,-, assertions 1 and 3 of Theorem 10.9 hold.

We prove Proposition 10.11. Proposition 10.12 can be proved analogously.
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10.4 Preliminary Results for Assertion 1 of Theorem 10.9

Letm > 1 be an integer. Consider the manifold (R'/Z)™ and the canonical mapping
P, : R™ — (R'/Z)™. We first recall the following result (see Proposition 6.2 of
[178]).

Proposition 10.13 Let 2 be a closed subset of (R'/Z)?. Then there exists a non-
negative function ¢ € C*((R'/Z)?) such that 2 = {x € (R'/Z)* : ¢ (x) = 0}.

Corollary 10.14 Let 2 be a closed subset of R'/Z. Then there exists a nonnegative
function ¢ € C®°(R'/Z) such that 2 ={x e R'/Z : ¢(x) = 0}.

In this section we assume that k > 2 is an integer and o = p/q is an irreducible
fraction where ¢ > 1 and p are integers.
For each f € My, define

g—1
Eo(f)=7)_ f(xi xit1) wherex € M (f,) (109)
i=0

(see Proposition 10.4).

Proposition 10.15 Let f € My, O be a natural number and let D, ¢ > 0 be given.
Then there exists a neighborhood U of f in My with the weak topology such that
for each g € U, each pair of integers n1,ny € [n1 + 1,n1 + Q] and each sequence
{xi}2 R which satisfies

i:l’l]

}12—1 n2—1
min{ Y fxie, Y g(xi,xi—i-l)} =D, (10.10)
i=n i=n
the inequality
np—1 np—1
D f@ixig) = Y gl xip)| <e
i=ny i=n
holds.

Proof By (HY), there exist §p € (0, 1) and c¢o > 0 such that
Fx1,x2) > 80(x1 — x2)> —co  forall (x1,x2) € R%. (10.11)
Choose a positive number &1 for which

€110 + o0 + D] < 4~ ' min{1, &} (10.12)
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and a positive number gy < 1 which satisfies
g0+ e3(1 —e0) " +ep(l —egg) ' <47 ey (10.13)

Define
U={geM:(f. ¢ € Ex(l,0)} (10.14)

(see (10.7)).
Assume that g €U, ny,np € Z, no € [n1 + 1,01 + 0], {xi};’inl C R! and that

(10.10) holds. By (10.7) and (10.14), for every (z1, z2) € R,

| f(z1,22) — g(z21, 22)| < €0 + gomax{| f (21, 22)|, |g(z1, 22)|}- (10.15)

’

It follows from (10.15), (10.13) and Lemma 10.7 that for every (z1, z2) € R2,

| f(z1,22) — g(z1,22)| < €0 + &} (1 — e0) ™"

)

g(z1.22)|}
g, )|} (10.16)

+e0(1 — £0) " min{| £ (z1. 22)

<47'e; +47 ey min{| f (21, 22)

Inequalities (10.16) and (10.11) imply that for every (z1, z2) € R?,
8(z1.22) > f(z1,22) =47 Ter —47 et | f (a1, 22)| = =47 Ter —2¢0.  (10.17)
Set
Ai =min{f(xi,xiﬂ),g(xi,xi+1)}, i=ng,...,np— 1. (10.18)
It follows from (10.16), (10.11), (10.17) and (10.18) that fori =ny,...,ny — 1,
| f(xis xi1) — g(xi xig )|
<47 Te; +47 ey min{ £ (x;, xi41) + 2c0, g (xi, Xit1) + 4co + 2}
<47Ve; 14710 4 cogr +£1/2.
By these inequalities, (10.18), (10.10) and (10.12),

np—1

D (f i xie) — g(xi xig))

i=n

ny—1
<my—n)[4 a1+ 27 e +eico] +47 e Y

i=ny
<(ny—npler +e1c0l +47'e1D < Q(e1 +e1c0) +47 61D <ce.

This completes the proof of Proposition 10.15. g
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Corollary 10.16 Let f € 9o and € > 0 be given. Then there exists a neighbor-
hood U of f in My with the weak topology such that for each g € U N My,
Ey(g) S Eyu(f) +e.

Proposition 10.17 Assume that f € Mio, fn € Mo, n=1,2,..., limy 0 fu=f
in the weak topology,

xMeM(f), n=1,2,....,xeR? and

lim xl.(") =x; forallieZ.
n— o0

(10.19)

Then x € M(f).

Proof Assume the contrary. Then there exist integers i; < i and a sequence
{yi}iZ;, C R such that

ir—1 ir—1

Yo =Xin Yo =X D SOinyie) < Y f@ixig).  (10.20)

=iy =i}

Set
ir—1
A= [F G xie) = £ i yir))]- (10.21)
=iy
For each integer n > 1, define a finite sequence { yl")}i2 i R! as follows:
yW=x P =x 3=y dielin.. i)\ lii). (10.22)

It follows from (10.19), (10.22), (10.20), (10.21) and the continuity of f that

ir—1 ir—1
(n) (n) () (n)
i[5 1620 - 5 0t

=1 ll|

ir—1 ir—1

=Y fGixit) = ) i, yis1) =A>0. (10.23)
i=iy i=ij
In view of (10.19) and (10.23), the sequences

ir—1 o0 ir—1 00
(n) (n) (Vl) (”)
[zf } , [zf }

i=iy n=1 =iy n=1



490 10 Minimal Configurations in the Aubry-Mather Theory

are bounded. It follows from this fact, Proposition 10.15 and the equality f =
lim,_, » f, in the weak topology that

ir—1 ir—1
() () () ()
,,ILH;O[Zf V) - S a6 <0 a0

i=iy i=iy

ir—1 ir—1
(n) () () ()
nzngo[zf ) - 3 il ",y,il]=o- (1025)

i=iy i=iy

By (10.23)~(10.25),

ir—1 ir—1
. (n) (n) (Yl) (”) _
nlggo[zf”(xi xi'h) 2 :f Vit :|—A>0'

i=i| =i
There is an integer ng > 1 such that for each integer n > ny,

ir—1 ir—1

Z fn (n) l(:l_)l Z fn (n)’yl(i)l > A/z

=iy i=iy

This fact contradicts the ( f,)-minimality of x for all n > ng. The contradiction
we have reached proves Proposition 10.17. g

Proposition 10.18 Ler f € My, fu € Mo, n=1,2,..., lim, o0 [ = f in the
weak topology, x™ e Mper (fn,a),n=1,2,...,and let the sequence {x(")}oo be
bounded. Then the following assertions hold:

1. There exists x € R? and a strictly increasing sequence of natural numbers
{nj}?oz] such that

Xivg =X +p, i€Z, (10.26)
xl-(nj) —x; asj—ooforalliecZ. (10.27)

2. Assume that x € R and {n 7152 =1 is a strictly increasing sequence of natural

numbers such that (10.26) and (10.27) hold. Then x € MP (f, «) and

q—1
(nj) ("])

Eo(f)= Zf(x,,x,+1>— lim an, X )

i=0
= lim Eo(fy)). (10.28)
Jj—>00

Proof By Proposition 10.2, the sequence {x( )}"01 is bounded for each i € Z.

This fact implies that there exist a strictly increasing sequence of natural numbers
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{n; }3?":1 and x € RZ such that (10.26) and (10.27) are valid. Therefore assertion 1
1S true.

Now we prove assertion 2. Assume that x € RZ and {n 7152, is a strictly increas-
ing sequence of natural numbers such that (10.26) and (10.27) hold. By Proposi-
tion 10.17 and (10.26), x € MP"(f, ). Since lim,,_, » f, = f in the weak topol-

ogy it follows from Corollary 10.16 that the sequence {Ey(f,)},-, is bounded

from above. Therefore the sequence {Zlq;ol fn (xl.(n) l(:'_)l)}flo | is also bounded from

above. It follows from this fact, the equality lim,_, » f, = f in the weak topology
and Proposition 10.15 that

q—
(x, ™) ) 5
nli“éo[zf i) Zf ! 111] 0. (10.29)
By (10.9), (10.26), (10.27), (10.29) and Corollary 10.16,

qg—1

Eo(f) = 3 st xi1) = lim Zf (" 1)

i=0

q—1

:jli)n;oi(;fn]( i l+ll)=jli)n;oE“(f"j)§E‘¥(f)'
i

These relations imply (10.28). Thus Proposition 10.18 is proved. g

Proposition 10.18 and Corollary 10.16 imply the following result.

Proposition 10.19 The function f — Eq(f) is continuous on Mo with the relative
weak topology.

Proposition 10.20 Assume that f € 9Myo and that the following property holds:

If xD x@ e MPe(f, a), then there exists n = (n1,n2) € Z* such that x® =
Tnx(l).

Then there exists it = (i1, 12) € Z* such that for each x € MP¢" (f, ),

Tix > x, {ye./\/l””(f,a):x<y<7},x}=@.
Proof Let x € MP"(f, ). Then
MP(f,a) = { WX n—(n1,n2)€Z}
=T :n=m,n)eZ?0<n <q—1}. (10.30)
By (10.30), the set
{y e MP(fLa) 1 x <y < T, 1k}
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is either finite or empty. Therefore there exists ¥+ € MP¢"( f, a) such that

X

A

There exists 1 = (ii1, iz) € Z2 such that

Tox =xt.

Let x € MP"(f, «). There exists n = (ny,n2) € 72 such that

x=T,x.
In view of (10.33), (10.32) and (10.31), we have

Tix = Ti(Tyx) = T (T55) = T,x T > T,x =x

and

Tix > x.
Assume that

y € MP(f, @), x<y<T;x.
Then
T_nx <T_py < T_(Tqx)

where —n = (—ny, —ny). If follows from (10.36), (10.33) and (10.32) that

X <T-py <Ta(T-px) = Tix =i+,
a contradiction (see (10.31)). Therefore
[ye MP“(fia):x <y < Tix} =0.

This completes the proof of Proposition 10.20.

it {ye./\/lp”(f,a):i<y<i+}=®.

(10.31)

(10.32)

(10.33)

(10.34)

(10.35)

(10.36)

Corollary 10.21 Assume that f € My and that the following property holds:
IfxM, x@ e Mper (f, @), then there exists n = (n1,ns) € Z2 such that TyxV =

X(z).

Then there exists a number k > 0 such that for each x, x™ € MP¢" (f, ) satisfy-

ing

x<xT, {ye/\/lp”(f,oz):x<y<x+}=0j,

the inequality xi+ — Xx; > K holds foralli € Z.

Proposition 10.22 Assume that f € Mo, x € MP"(f, @),

MP(f, ) = {T,% :n = (n1,n2) € Z°}

(10.37)
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and that € > 0 is given. Then there exists a neighborhood U of f in My with the
weak topology such that for each g € U N Myo and each x € MP (g, a), there is
m = (my, ms) € Z? such that |x; — (TX)i| <e,i € Z.

Proof Assume the contrary. Then there exist a sequence { f; }‘]’-‘;1 C Mo satisfying
lim;_, o f; = f in the weak topology and a sequence xW) e MPE(fi, ), j =
1,2, ..., such that for each natural number j and each n = (n1,ny) € Zz,

sup{[x) — (T, 2)|:i €(0,1,...,q}} > &. (10.38)

We may assume without loss of generality that the sequence {xéj )}70:1 is bounded.
By Proposition 10.18, there exist x € MP¢"(f, &) and a strictly increasing sequence

of natural numbers {j}72; such that

o)

;77— x; ass—ooforalli € Z. (10.39)

By (10.37), there exists m = (m,m3) € 7?2 such that x = T}, x. It follows from

this equality and (10.39) that xl.(j‘) — (T,,x); as s — oo for all i € Z. This fact
contradicts (10.38). The contradiction we have reached proves Proposition 10.22.
0

10.5 Preliminary Results for Assertion 2 of Theorem 10.9

In this section we assume that k > 2 is an integer and o = p/q is an irreducible
fraction, where g > 1 and p are integers. Assume that f € Mo,

%, 5T e MPU(f, ), X <xt, (10.40)
yeMP'(fla)y:x<y<xt}=0 (10.41)

and
MP(f,a) = {T,% :n = (n1,n2) € Z%}. (10.42)

By Corollary 10.21, there exists a number « > 0 such that

xt—x;i>2%, ieZ, (10.43)

1

for each x, x T € MP¢"( f, ) which satisfy

x<xT, {yeMP(fia):x <y <xt}=0. (10.44)
Lemma 10.23 Let ¢ € (0, k/2) be given. Then there exists a neighborhood U of f
in Myo with the weak topology such that the following property holds:

For each g € U N My and each y € MP (g, a), there exists a unique x €
MPE(f, a) such that

|xi —yil<e, i€Z. (10.45)
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Proof By Proposition 10.22, there exists a neighborhood ¢/ of f in 9% with the
weak topology such that the following property holds:

For each g € U N Mo and each y € MP? (g, ), there exists x € MP(f, «)
such that (10.45) holds.

Assume that g € U N Mo,

yeMPY(g,a), xD x® e MP(F,a),

_ (10.46)
[

—yi|<e, i€z, j=1.2.

To complete the proof of the lemma, it is sufficient to show that x(V' = x®_ Assume
the contrary. We may assume without loss of generality that x") < x®_ By our
choice of k (see (10.43), (10.44)) and Proposition 10.20,

inf{x? —x":i ez} > 2. (10.47)

On the other hand, it follows from (10.46) that for all i € Z,

x[(z) —x,'(l)| = |x'(2) - yi| + |yi _xi(l)| <2 <k,

1

a contradiction. The contradiction we have reached proves Lemma 10.23. 0

Lemma 10.24 Let ¢ € (0, «/2) and let a neighborhood U of f in My, with the weak
topology be as guaranteed in Lemma 10.23. Assume that

geUNMy,  y V. yPeMr o), YD <y?, (10.48)
[zeMP(ga): vV <z <yP} =4, (10.49)
O x@ e mrr(fa),  xV =y <e, i€z, j=1,2.  (10.50)

Then either xV = x® or
x M < x@, {ze/\/lp”(f,a):x(l)<z<x(2)}=@.

Proof Assume that x(!) £ x® By (10.50) and (10.48), for all i € Z,

@

i

1 2 2 2 1 1 1
S BN N SN IO SN G

p v+ X, >—2e>—«

and

x@ 0

p ;> =K foralli € Z.

It follows from this inequality, (10.43) and Proposition 10.20 that x" < x®. To
complete the proof of the lemma, we need to show that the set

[zeMP(fia):xD <z <xP} =0
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Assume the contrary. Then by Proposition 10.20, there exist x € MP¢"( f, &) such
that

3) 2)

1 < x@) <4 ,

(10.51)
{ZeMper(f,a):x(l) <z<x(3)}=@,

It follows from Proposition 10.20, (10.51) and our choice of « (see (10.43), (10.44))
that
x(2) _ x(3)

i i

+® D

> 2k, ; ;> 2k, 1€Z. (10.52)

By (10.42), there exists m = (m1, m>) € Z* for which
x® =7,xD. (10.53)

Set
¥y =1,yD. (10.54)

Clearly, y® e MP¢ (g, a). It follows from (10.54), (10.53), (10.50) and (10.52)
that for all i € Z,

3 1 3 3 1 1 1
yl() yl() yl() i()+xi() ()+x() yl()

1 1 3 1 1 1
_yl()In|+m2 (() +m2)+x() ()+() yl()

1—mj

> -2+ 2Kk > k.

Analogously, it follows from (10.54), (10.53), (10.50) and (10.52) that for all i € Z,

)] (3) @ _

2 2 3 3 3
=y =y ()—I-x) ()—i—x() (3)

i
2 2 3 1 1
yl() '()+xi() ()+x() +m2_(yi(—)m1+m2)

1—mj

> —26 42Kk > K.

Therefore y( < y® < y@ _ This fact contradicts (10.49). The contradiction we
have reached proves Lemma 10.24. g

Suppose that € € (0, «/2), g € Mo, y € MF (g, @), yT,y~ e MP (g, ),
y <y<yt, lim y,-—y’.+=0, im oy, —y” =0.
i—00 i——00

We say that y is regular with respect to (g, g) if there exist x~, x™ € MP¢ (f, a)
such that

X oy <e |xf—yi|<e iez (10.55)

1

x~ <xT, {ze/\/lper(f,a):)F <z<x+}:(/). (10.56)
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We assume that there exists ¥ € M1 (f, a) such that

<x<it, (10.57)

><|

M (fo0) ={T,x:n = (n1,n2) € Z*}. (10.58)

Lemma 10.25 Let a neighborhood U of f in 9y with the weak topology be
as guaranteed in Lemma 10.23 with ¢ = « /4. Assume that {f,}>° | CU N Mo,
lim,— o fu = f in the weak topology and that x™ € M*(f,, ) is regular with

respect to (k /4, fn),n =1,2,.... Then there exist a strictly increasing sequence of
natural numbers {n]} 21 anda sequence s\) = (s(]) (])) €Z? j=1,2,..., such
that

Tﬂ.i)xfnj) —X; asj—ooforalieZ. (10.59)

Proof By (10.40), (10.41) and (10.57),

lim % —x =0, lim % — " =0. (10.60)

i——00 i—00

Let n > 1 be an integer. There exist

X x0T e MP(f, o) (10.61)
such that
x) < xM < x("+), (10.62)
lim x" —x™ =0,  limx" —x" =0. (10.63)
i—>—00 i—>00

Since f, € U, it follows from the definition of I/ and Lemma 10.23 that there exist
unique ), ") € MPer(f, a) such that

2 — X <ie/a, D = x| <kjs, iez. (10.64)
Since x ™ is regular with respect to (k /4, f,), we have
< fre M (fa) ") <2<} =0, (10.65)
Since lim,_,  f» = f in the weak topology, it follows from Lemma 10.23 that
(1) _ x| |20 — x| i e z) =0, (10.66)

1

lim sup{|z;

n—o00

’

Now it follows from (10.65), (10.40)—(10.43) and Proposition 10.20 that there is
I € Z% such that z" ) = T;% and z®") = T;x*. We may assume without loss of
generality that

=%, D=zt a=12.... (10.67)
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It follows from (10.64), (10.67) and the definition of x (see (10.43), (10.44)) that
for any integer n > 1 and any integer i,

()
i X =4

> —Kk/2+ % — X >3k/2

- + + + - - -
(n )>x_(n )_Zz@ )+Zl(n )_Zl(n )+Z§n )_xi(n)

and
X xS 32, (10.68)

Let n > 1 be an integer. It follows from (10.62), (10.63) and (10.68) that there exists
an integer t, such that

xt(:) — x,(n"_) <k/2, xt(:i] — xt(:;f >k/2. (10.69)

Using translations, we may assume without loss of generality that
t, €10, q]. (10.70)
In view of (10.62), (10.64) and (10.67), for all integersn > 1 and all i € Z,

- +
(") o xm <xl.(n ) <)Ei++K/4.

Xi —Kk/4<x ;

Therefore for any i € Z, the sequence {xi(")}flo: | 18 bounded. Together with (10.70)
this implies that there exist u € R and a strictly increasing sequence of natural
numbers {n f}70=1 such that

x> i asjoooforalli€ Z,  hy =iy, j=12.... (1071)

It follows from (10.71), (10.62), (10.66) and (10.67) that for all i € Z,

. @D N
im x| = [F 5. (10.72)

Jj—>o00 j—o00

u; = lim xi(nj) € [ lim xi(nj)
Jj—>00

By Proposition 10.17, u € M(f). Since x® e MT(fy,a),n=1,2,..., we have

x> T(q,p)x("), n=1,2,....Therefore xl.(”) > xl-(f)q + p for any integer n > 1 and

any integer . When combined with (10.71), this fact implies that u; > u; _, + p for

all i € Z and that

ue MP(f,a) UMT(f, a). (10.73)
It follows from (10.71), (10.72) and (10.69) that

_ T R ()
“n_xtl:,ll)m Xy, —jll)rrolox,] <k/2,

- . (n)) . (n7)
Up ] — X1 = lim x — lim x >k /2.
1+ 1+ j—>o00 fn+1 j—>00 t1+1 /



498 10 Minimal Configurations in the Aubry-Mather Theory

By these relations, (10.72), the definition of « (see (10.43) and (10.44)), (10.40) and
(10.41), u ¢ {x,x"}. When combined with (10.72), (10.73), (10.40) and (10.41),
this fact implies that u € M™(f, a). By (10.58), there exists m = (m, my) € 72
such that T,,,x =X. This completes the proof of Lemma 10.25. O

Lemma 10.26 Let Q > 1 be an integer and let € € (0, k/4) be given. Then there
exists a neighborhood U of f in My with the weak topology such that for each
g €U NMyo and each y € M (g, a), one of the following properties holds:

(a) There exists n = (ny1,ny) € 72 such that
(Twy)i —Xi| <&, i€Z.
(b) There exists n = (n1,n2) € Z* such that

(Tyy)i —%i| <e. i=-0,...,0.

Proof Assume the contrary. Then there exists a sequence {f;}52; C Mo such
that limy . f; = f in the weak topology and a sequence y® e M*(f;,a),
s =1,2, ..., such that for any integer s > 1, the following properties hold:

(c) For any n = (n1,n3) € 7?2

SUPH(Tny(S))i —)Ei’ e Z} > e,
(d) For any n = (ny,n) € Z*
Sup{|(Tny(S))[ _}\l| t =_Q99 Q} > E.

By Lemmata 10.23 and 10.24 and (10.42), y*) is regular with respect to ( f;, £/2)
for all sufficiently large integers s.
By Lemma 10.25, there exist a strictly increasing sequence of natural num-

bers {sj}j?il and a sequence n) = (n(lj),n;j)) e 72, j=1,2,..., such that
(T,»y©); — % as j — oo for all i € Z, a contradiction (see (d)). The contra-
diction we have reached proves Lemma 10.26. O

Lemma 10.27 Let € € (0,«k/4) be given. Then there exists a neighborhood U of
[ in My with the weak topology such that for each g € U N Mo and each y €
M (g, a), one of the following properties holds:

() There exists m = (my, m>) € Z* such that
|(Tny)i — %i| <&, i€Z.
(ii) There exists m = (m1, m») € Z* such that

|(Tny)i —Xi| <6, i€Z.
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Proof Choose a positive number
g0 < min{e/6, k/8}. (10.74)
By (10.57), (10.40) and (10.41), there exists a natural number Q > 8¢ + 8 such that

|%i — x| <eo/4 forallintegersi > Q/2, (10.75)
|X; — Xi| <&o/4 forallintegersi < —Q/2. (10.76)

By Lemmata 10.23 and 10.24, there exists a neighborhood U/ of f in 91 with the
weak topology such that the following properties hold:

(iii) For each g € Uy N My and each y € MP (g, o), there exists a unique
x € MP(f,a) such that |x; — y;| < &g foralli € Z.

(iv) Let g €Uy N Mo, y V., y® € MP" (g, a),

Yy <y@ zeMP(g )y <z <y@) =4,
xD x@ e MP(f, ), ’xl.(j) - yl.(j)| <gy, i€Z,j=1,2.
Then either x(V' = x® or
2 <x@  and {ze MP(f) <z < x(Z)} =0.

By Lemma 10.26, there exists a neighborhood ¢/ of f in 9% with the weak topology
such that & C U; and for each g € U N My and each y € MT(g, o), one of the
following properties holds:

(v) There exists m = (m1, m3) € Z? such that (T}, y); — X;| < go forall i € Z.

(vi) There exists m = (my,m2) € Z> such that [(Tj,y); — Xi| < €0, | =
-0,...,0.

Let

g €U N My, yeMt (g, a). (10.77)

If (v) is true, then (ii) also holds. Therefore we may assume that (v) does not hold.
Then by the definition of ¢/ and (10.77), property (vi) holds. We may assume without
loss of generality that (vi) holds with m = (0, 0). Thus

lyi —%il <e0, i=-0,...,0. (10.78)
There exist
y .yt e MPU(g ) (10.79)
such that
yo<y<yo lim ym—yi=0,  lim y" -y =0. (10.80)

By property (iii), (10.77) and (10.79), there exist unique
x7,xt e MP(f, ) (10.81)
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such that
|x7 =y | <eo. |x;" =y <, i€z (10.82)

1

By property (iv), (10.77), (10.79), (10.80), (10.81) and (10.82), either x~ = x* or
x~ <xT and {ze/\/l””(f,oz):x_<z<x+}=®. (10.83)

If x~ =x™, then (10.80) and (10.82) imply that for all i € Z,

e N S
yi—x; =yi—y;, +y —x; <y, —Xx; <&,

Vi— X =Yi—X =Yi—y, Yy =X >y —X > —¢€o,
=] <20
and combining this with (10.42), we see that property (v) holds. The contradiction

we have reached proves that (10.83) holds. It follows from (10.80) and (10.82) that
foralli € Z,

X, —e<y <yi< y;r <xi+ + &p. (10.84)
We claim that x T =x1, x~ = x.
By (10.78) and (10.75), fori = Q —4q, ..., Q,

i =5 < Iy = Til + [7i = 5F| < e0 + 20/4 (10.85)
and fori =—-0Q,...,—0Q +4q,
|yi = il < lyi = Ti| + % — il < g0 +e0/4. (10.86)

It follows from (10.85), (10.84) and (10.86) that fori = Q —4q, ..., Q,

+

- +
X" —eo—eo/4<yi <x; +eo

and that fori = —-Q, ..., -0 +4q,

X, —eo<yi <Xi+é&+¢eo/b.

1

Thus

it <x42e04e0/4, i=0-4q,...,0,

i
x; <Xxi+20+e/4, i=-0,....,—0+4q.
It follows from these inequalities, the inequality Q > 8¢ + 8, (10.40), (10.81),
(10.74) and the definition of « (see (10.43), (10.44)) that

either x" <x™ or it=xT (10.87)

and

either x~ <x or x =x. (10.88)
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When combined with (10.40), (10.41), (10.42), (10.81) and (10.83), this fact implies
that

either X=x", iT=xt or it<xT,
(10.89)
X<x~ or xT<ixT, X~ <X.

By (10.87)—(10.89),

r=x", xt=xt, (10.90)
as claimed.
Next we show that

lyi —%il <e (10.91)

forall i € Z. By (10.78), it is sufficient to show that (10.91) is valid for all integers
i satisfying |i| > Q.
Assume that i > Q is an integer. Then there exist integers s, j such that

s>1, J€l0—2q,0—ql, i=j+sq. (10.92)

By (10.78),
lyj — Xl < &o. (10.93)
It follows from (10.75) that

% — x| <eo/d, [X = 5] <e0/4. (10.94)
By (10.77), (10.79), (10.80), (10.82), (10.90), (10.94) and (10.93),
0<yf—yj=y}"—x;-r+xf—fj+5c\j—yj
<50+X}L —Xj+Xj—yj <eo+eo/4+eo <3¢
and
0<y; —yj <3e. (10.95)
Since y € M (g, a), it follows from (10.95), (10.79), (10.92) and (10.80) that
30> y) —yi >y — Teqp)); >y = ((Tq.-p)'y);
=V, = Yjtsg P =Ygy = Vitsa =Y =i >0.
Thus we have shown that
0< yi+ —y; <3¢y forall integersi > Q. (10.96)

By (10.94), (10.82) and (10.96), for all integers i > Q,
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= N I T +
[xi — yil < |xl' —X; |+ |xl» -V |+ |yi —yi|
< eo/4+ 0+ 3eo

and |X; — y;| <580 < &.
Analogously, we show that (10.91) holds for all integers i < —Q. Assume now
that i < —Q is an integer. Then there exist integers s, j such that

s>1, JE€l=0+q,—0+12q], i=j—sq. (10.97)
By (10.78), inequality (10.93) is valid. It follows from (10.76) that
Ix; — Xi| < &0/4, IXj —Xj| <eo/4. (10.98)
By (10.80), (10.93), (10.90), (10.82) and (10.98),
O<yj—y; =yj—%j+Xj—X%j+Xj—y; <eo+eo/4+Xj—y;
=go+eo/4+x; —y; <eo+eo/4+ €0 <3eo
and
0<yj— yj_ < 3¢p. (10.99)
Since y € M (g, a), it follows from (10.99), (10.79), (10.97) and (10.80) that
3e0>y; —v; > Tgpy)i —; > (Tg.p)'y); = ¥;
=Yj-sq tSP—=Y; =Vj-sq = Yj_gg=Yi =¥ >0.
Thus we have shown that

0 <y —y <3s0.

It follows from this inequality, (10.98), (10.82) and (10.90) that for all integers
i<—0,
% — yil <& =X+ |% =y |+ |y — il
< &0/4+¢e0+ 369 <S¢ep < e.

This completes the proof of Lemma 10.27. g

10.6 Proof of Proposition 10.11

Let £ > 2 be an integer and & = p/q be an irreducible fraction, where ¢ > 1 and p
are integers.



10.6  Proof of Proposition 10.11 503

Let f € Myo. Choose x) e MP(f ) such that [x, f)l < 1. By Corol-
lary 10.14, there exists a nonnegative function ¢y € C ®((R'/Z)) such that

[zeR'/Z:¢;)=0}={Pi(x):ieZ). (10.100)
Let y € (0, 1) be given. Define f), : R?> - R' by

frEL8)=FEL ) +yer(PiED), (E1,&) e R (10.101)

It is not difficult to see that f), € Myo. It follows from (10.9), (10.101), (10.100)
that

Eo(f) < Ea(fy) <Zf (", x)

i=0

q
=5 D)y S ()

i= i=0

=Y (" x5 ) = Ea(f)

and that

q—
E(f)—E(fy)—Zf (" 51D Zf D0y (0102)

i=0

Assume that y € MP¢"(f,,, @). Relations (10.9), (10.102), (10.101) and (10.100)
imply that

q—1 q—1 q—1
D FG v +y Y b (PlOD) =D fy i vig)
i=0 i=0 i=0
q—1
= Eq(fy) = Ea(f) <Y fOi, yit1),
i=0
qg—1 q—1
D Fnyie) =Y fr i vie) = Ea(fy) = Ea(f)
i=0 i=0

and

yeMPU(fya), P e(P(x):j=0.....g—1}, i=0....q—1.

Since the set MP¢"(f,,, ) is totally ordered, we conclude that y is a translation
of x(). Thus

MP(fy ) = {TxY) in = (n1,m2) € 22}, (10.103)
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By Proposition 10.20 and (10.103), there exist
D e MPT(f, @) (10.104)
such that
D <xUD e MP(fy0) i xD <z<xY D) =g, (10.105)

Proposition 10.5 implies that there exists

Y e ME(f,, @) (10.106)
such that
D <y o U, (10.107)
lim 37 — 2 =0, lim y7 —x =o. (10.108)
i—o00 i——00
Define
Uy . "y .
Q={P(I"):iezyu{p (") iez). (10.109)

It is easy to see that £2 is a closed subset of R!/Z.
By Corollary 10.14, there exists a nonnegative function ¢, € C ®(R'/Z) such
that

[zeRY/Z: ) (2) =0} = 2. (10.110)

Let u € (0, 1). Define f,, : R* — R! by

frnE1.8) = f, 1, 6) + u¥py (P1E)),  (1,6) € R (10.111)
It is easy to see that f,,, € Myo. Relations (10.111), (10.110), (10.109), (10.102)
and (10.9) imply that

Eo(fy) < Eq (fyﬂ)<ZfW Y l)

=0

<
|
—_

f)/ (xi(f) l(-{)l + M Z I//f Pl (f)))
i=0

Il
o

Q
|
—_

F &P x D) = Eo(f) = Ea(fy)

Il
=}



10.6  Proof of Proposition 10.11 505

and

Ea(fyu) = Ea(fy) = Ea(f) = wa D x)

i=0
- Z £GP, 5D Z £ 2. (10.112)
Assume that
y € MP(fyu, ). (10.113)
By (10.111), (10.113), (10.112) and (10.9),
qg—1 qg—1 qg—1
Y B Gnyi) Dy (P1oD) =Y fruOis yin)
i=0 i=0 i=0
q—1
= Eo(fyu) = Ea(fy) <Y frOis yit1),
i=0
qg—1
ny()’ia)’iﬂ) =Eq(fy)
i=0

and y € MP¢"(f),, a). Now (10.103) implies that y is a translation of x) . Thus
MP (fyua) = {TxP) in = (n1,n2) € 22}, (10.114)

Lemma 10.28 Let z € ./\/l"'(fyu, «). Then there exists m = (my,my) € Z* such
that T, yJ7) = z.

Proof By (10.114), (10.105), Proposition 10.20 and the definition of M™(h, o)
with £ satisfying (H1)—-(H4) (see Sect. 10.1), we may assume without loss of gener-
ality that

XD <z <xUD) (10.115)

Then it follows from Propositions 10.5 and 10.6, the definition of M™ (h, o) with &
satisfying (H1)—(H4) and (10.5) that

lim xl(f ) —-z; =0, lim x(f) —z; =0. (10.116)

i—00 i——00

Since the set M (fy ., @) is totally ordered (see Proposition 10.6), in order to prove
the lemma, it is sufficient to show that there exist m = (m, m») € Z% andi € Z such
that z; = (T, y(f ”))i. Assume the contrary. Then

{Pizizie Zyn{Py" :iez) =0 (10.117)
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Since the set /\/l+(fw, ) UMPE ()., @) is totally ordered (see Proposition 10.5),
(Pizisiezyn{Pix":iez) =0 (10.118)

Relations (10.118), (10.117) and (10.109) imply that
(Pizi:ieZ)NQ2=4¢. (10.119)

Relations (10.119) and (10.110) imply that

Vry(P1z;) >0 forallieZ. (10.120)

Choose a positive number

q
A<8 1y Z Uy (P1zi). (10.121)
i=—q
By Proposition 10.2,

lzi—zo—ia| <1 forallieZ, (10.122)
Iy =397 _ia| <1 forallie Z. (10.123)

Since the functions f,, f), are continuous and periodic, there exists a number
e € (0, 1) such that for each &1, &, &3, &4 € R! satisfying

&1 — &2l 163 — &4] < 2|a| + 8,

(10.124)
161 — &3] <2, |62 — 4] <2,
the following inequality holds:
|h(€1.&) —h(&3.64)| < A/16, helfy. fyu). (10.125)

It follows from (10.116) and (10.108) that there exists an integer mg > 4 4+ 4q such
that

‘zi - yi(fy)‘ < ¢g/2 for all integers i satisfying |i| > my. (10.126)

Define u € RZ as follows:

ui=2zi, i€[(—o0,—mo—1]U[mo+1,00)]NZ,
) (10.127)
:yl.

Uj , L€[—mg,my]lNZ.

We will show that

mo mo
Yo FuGihzie) = Y fyuluiuign) >0.

i=—mo—1 i=—mo—1
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It follows from (10.127) that

mo

Z fyu(ZhZH—l)_ Z fyu(”z»uz+l)

i=—mo—1 i=—mo—1
mo
fov)
Z fyu(Zini+1)_f)/li(Z —my—1> yfm)(/))

i=*Wl071

mo—1

— Fou (o vamost) = Y FouV D). (10.128)

i=—my
By the definition of ¢ (see (10.124), (10.125)), (10.126), (10.122) and (10.123),
| fyu@amo—t1s 2=mo) + Fru(@mys Zmg+1)
— Frulz=mo-1, y_{r)l/o)) fyu(Ymo ’Zmo+1)| =A4/8.
This inequality, (10.128), (10.111), (10.110), (10.109) and (10.121) imply that

mo mo
Z fyu(@is zig1) — Z Syu(ui,uiz1)

i=—my—1 i=—mg—1
mo—1 mo—1
> Y Gz — Y L) -871a
i=—myg i=—mg
mo—1 mo—1 mo—1
%A Y A te Y v — Y 00700
i=—mo i=—my i=—my
mo—1 mo—1
>7A+ Y fGiza— . f 07 Y. (10.129)
i=—myg i=—mo
Define
vi =2z, I=—mg,...,mop, 0130
Ve 1_y(fni/o) . Umgl = )’,(,l];)jr)l (10.130)

Since y/7) € M(fy, @), it follows from (10.123), the definition of & (see (10.124),
(10.125)) and (10.126) that

Of Z fy(vl, Ul+l) — Z f (fy)’yl(i)l/))

i=—mo—1 i=—mo—1

mo—1 mo—1

< Y KGam - Y. L6775

i=—mo i=—mo
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+ fy (y(—j:}l/())—l’z_mo) + fy (zmos yr(n{))—/l-)l)
fy) fy) fy) [ (fy)
_fV(y—leo—l’yfgo) _fy(ym{)y ’ymfo)—/i-l)

mo—1 mo—1

< > K- Y, RO Y + a8,

i=—my i=—mg

By these inequalities and (10.129),

mo mo
Yo Gz = Y fuulti uig) > TA+(=A/8) > 64,

i=—my—1 i=—mgy—1

a contradiction. The contradiction we have reached proves Lemma 10.28. d

Completion of the proof of Proposition 10.11 By Theorem 10.8, there exists a set
Fo C Mo, which is a countable intersection of open (in the weak topology) and
everywhere dense (in the strong topology) subsets of 9. It is easy to see that for
each f € My, lim, o+ f, = f in the strong topology and that for each f € Mo
and each y € (0, 1), lim,,_,o+ f,, = fy in the strong topology. Therefore the set

Di={fyu: f €M, v, e O, 1)) (10.131)

is an everywhere dense subset of 21 with the strong topology.
Let g € D. By (10.131), (10.114), Propositions 10.5 and 10.20, and Lem-
ma 10.28, there exist x®, x@&H ¢ MP (g, &) and y® € MT (g, @) such that

MP (g 0) = {T,x® 1n = (n1,m2) € 2%}, (10.132)
M (g, 0) ={T,y® :n = (n1,n2) € 2%}, (10.133)
x® < y® < X&), {z e MP(g,a)  x® <z < x(g+)} =¢@. (10.134)

Let j > 1 be an integer. By Proposition 10.22 and Lemma 10.27, there is an open
neighborhood U(g, j) of g in 2T with the weak topology such that the following
properties hold:

(a) For each f € U(g, j) N Myo and each x € MP"(f, ), there exists m =
(m1,my) € Z? such that |x; — (T},x®);| < (2j)"! foralli € Z.

(b) For each f € U(g, j) N Mo and each y € M™T(f, @), there exists m =
(m1,m3) € Z2 such that |(T,, y); —x*'| < (2j)~" foralli € Z or [(Tny); — y''|
2j) ' foralli e Z.

Define

A

Fot 1= Fo N [ﬂ . j):geD. zn}:|.

n=1

It is not difficult to see that F,+ is a countable intersection of open (in the weak
topology) and everywhere dense (in the strong topology) subsets of 9.
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Let f € F,+. For each integer n > 1, there exist an integer s, > n and g, € D
such that
f eUgn, sn). (10.135)

Let x,y € MP(f,a). We will show that y is a translation of x. It follows
from the property (a) and (10.35) that for each integer n > 1, there exists m™ =
(mgn), m(zn)) € 72 such that

Vi = (T,wx)i| <s;' <1/n foralli e Z. (10.136)
By the periodicity of y and x, we may assume without loss of generality that
m(ln) €[0,q] for all integers n > 1. (10.137)

Then (10.136) implies that the sequence {mé”) 152 | is bounded. By extracting a sub-

sequence we may assume without loss of generality that

m™ =mV, n=1,2,....
Again (10.136) implies that for all integers n > 1,
|yl~ — (Tm<1>x),~| <1/n, i€eZ.
Therefore y = T,,, x. Fix X € MP¢"(f, ). We have shown that
MP(f,a) = {T,% :n = (n1,n2) € Z%}. (10.138)
Proposition 10.20 implies that there exists X+ such that

it e MPU(f, a),

(10.139)
X<ixm, lzeMP(fia): X <z<it}=0.

By (10.139) and Proposition 10.5, there exists y©) € MT(f, @) such that
<y @ <5t (10.140)

Assume that y € MT(f, ). We will show that y is a translation of y(©. By the
definition of M™ (£, ), Proposition 10.20 and (10.138), we may assume without
loss of generality that

F<y<i'. (10.141)
By (10.135) and property (b), for each integer n > 1, there exist ™ = (rl("), ré")) €
7% and 1™ = (1", 1{") € Z? such that

Iy~ (T, y®)) | <@s)™ ' <@n)™" foralliez (10.142)
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or
O — (Twx®).| < @s) ™' < @)™ foralli € Z; (10.143)
i — (T y®m), | < @sp) ™' < @n)™! forallieZz (10.144)
or
i = (T x®).| < @sp)™' < @n)~" foralli e Z. (10.145)
Define
E={n€Z:n>1and (10.145) holds}. (10.146)

Assume that the set E is infinite. By the periodicity of x¢), n > 1, we may assume
without loss of generality that

1" €[0,q], nek. (10.147)
Recall that |x(§g")| <1,n=1,2,.... Together with Proposition 10.2 this implies
that for eachi € Z,

’xi(gn) < ’xégn)

+lillel +1, n=1,2,.... (10.148)

It follows from (10.145), (10.146), (10.147) and (10.148) that the set {I" : n € E} is
bounded. Therefore the set {{" : n € E} is bounded. There exists an infinite set F C
E such that [ = [2) for each nV', n® € F. When combined with (10.145) and
(10.146), this fact implies that |(Tyy); — x| < 2n)~! foralli € Z and alln € F
with some [ € Z2. This implies that y € MP¢"(f, «), a contradiction. Therefore E
is finite. Since y is an arbitrary element of M™(f, ), the set

{n€Z:n>1and (10.143) holds}

is finite. We may assume without loss of generality that (10.142) and (10.144) hold
for any integer n > 1. This fact implies that for each integer n > 1, there exists
j® = jl("), jz(n)) € Z? such that

i = (Tjwy®),| <1/n forallie Z. (10.149)

It follows from (10.149), (10.140), (10.141), (10.139) and the definition of
MT(f, a) that

dim % -y =0,  lim % -y =0,
i——00 1—>—00
(10.150)
lim & —y® =0, lim & -y =0.

i—00 i—00

By (10.149) and (10.150), for each integer n > 1,
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il—ifgo[(Tj(")’#)i - (ij)y(o))l.] =0,

timsup[| — (7y0 ), 1] = 1im [ &7 = 3| + limsupl] s = (7yy©), ]

i—00 i—00
+i1§20[(Tj<">y(O))i —(Tjmx"),]
<1/n.
Since x T is periodic, we obtain that for any integer n > 1,

= (T;wxt),|<1/n, ieZ. (10.151)
2 J i

By Corollary 10.16 and (10.138), there exists « € (0, 1) such that for each
72,22 e MPer(f, &) satisfying z(D # 22,
2V — 2P| > 2%, iez. (10.152)

By (10.152) and (10.151), for any integer n > 2k,

r=Twit, &=zt 4+ foralliez

1=

and that the rotation number o of x T satisfies « = p/q = jz(") / jl("). Since p/q is an
irreducible fraction, we obtain that for any integer n > 2« !, there is an integer a,,
such that

an(p.q)=j"™. (10.153)
We have three cases:

(1) there exists a strictly increasing sequence of natural numbers {n,};°, such that
lim; s o0 ap, = 00.

(2) there exists a strictly increasing sequence of natural numbers {n,}?°, such that
limy—, o0 ap, = —00.

(3) there exists a strictly increasing sequence of natural numbers {n,};°, such that
ay, = ap, for all integers 1 > 1.

Assume that case (1) holds. Then by (10.153), (10.138) and (10.150), for any
integer i,

(T,'(nr)y(o))i = (Tan, (q,p)y(o)i = yi(g)an[q +an, p,

_ 0 _
(Tjomy(o))i —Xi = yi(_)antq +anp— (xi—antq +an, p)

— O
- yi—a,ltq

— Xi—a, g >0 ast— 00
and
(Tj(n,)y(o))l. —x;—>0 ast—ooforallieZ.

This contradicts (10.149). Therefore case (1) does not hold.
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Analogously, we show that case (2) also does not hold. Indeed, assume that case
(2) holds. Then by (10.153), (10.138) and (10.150), for any integer i,

0) ) )

i = Yi-a, q T P>

(T./'(””y(O))i = (Tan,<q‘p)y

(Tj(nx)y(()))i - )El+ = y(O) +an,p— ()z+ +an¢p)

i—an,q i—an, q
_ 0 =+
=Yizanq ™ Yieanq = 0 ast— o0

and

(Tj(n,>y(0))l. — x>0 ast—ooforallieZ.

This contradicts (10.149). Therefore case (2) indeed does not hold. Thus we have
shown that case (3) is valid. Then it follows from (10.149) and (10.153) that for all
i € Z and any integer t > 1,

1/n > |yi = (Tapy 0,09l = 13 = (Tan, 0.9 )]

and y =Tg, (4,p) y©@_ Proposition 10.11 is proved. 0
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