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Preface

In recent years it has become more and more evident that Nonlinear Functional
Analysis is of crucial importance in the Mathematical Sciences. This is because
functional analytic ideas and methods have turned out to be essential tools in the
analysis of nonlinear phenomena in many areas of Mathematics and its applications.
Among these areas one can mention Ordinary Differential Equations, Partial Differ-
ential Equations, the Geometry of Banach Spaces, Nonlinear Operator Theory, the
Calculus of Variations, Optimal Control Theory, Optimization and Mathematical
Economics.

One of the main features of the functional analytic approach is the investigation
and solution of general classes of problems rather than of more specific individual
ones. When one uses this approach, the following question arises:

We consider a class of problems which is identified with some functional space
equipped with a natural complete metric. We know that for some elements of the
functional space the corresponding problems possess a solution (or a solution with
some desirable properties) and for some elements such solutions do not exist. We
usually know some sufficient conditions for the existence of solutions, but often
these conditions are difficult to verify or they hold for rather small subsets of the
whole space. In such situations it is natural to ask if a solution (or a solution with
some desirable properties) exists for most elements of the functional space in the
sense of Baire category. This means that the functional space under consideration
contains an everywhere dense Gδ subset such that for all its elements a solution
exists.

It turns out that this generic approach is very useful and many interesting and
important problems can be solved using it. The goal of our book is to demonstrate
this. Although it is, of course, impossible to cover the whole spectrum of present-
day trends in Nonlinear Analysis and its applications where the generic approach
is used, we do present quite a few of the main topics which are of current research
interest. They include fixed point theory of both single- and set-valued mappings,
convergence analysis of infinite products, best approximation problems, discrete
and continuous descent methods for minimization in a general Banach space, and

v



vi Preface

the structure of minimal energy configurations with rational numbers in the Aubry-
Mather theory.

Now we describe the structure of the book. We begin in Chap. 1 with the applica-
tions of the Baire theory to fixed point theory. A self-mapping of a complete metric
space is called nonexpansive if it is Lipschitz with Lipschitz constant one. If the
Lipschitz constant is less than one, then it is called a strict contraction. According
to Banach’s celebrated result, a strict contraction has a unique fixed point and all
its iterates converge to it. It was unclear what happens when a mapping acting on a
closed and convex subset of a general Banach space is just nonexpansive until the
classical paper by De Blasi and Myjak of 1976 [49], where they show, using the
Baire approach, that most mappings in the class of nonexpansive self-mappings of
a bounded, closed and convex subset of a general Banach space possess a unique
fixed point which attracts uniformly all their iterates. Note that they also show that
the subclass of strict contractions is a small set in the whole class of nonexpansive
mappings.

Chapter 2 is devoted to further generalizations, extensions and developments
concerning this result of De Blasi and Myjak. Using the Baire approach, we estab-
lish existence and uniqueness of a fixed point for a generic mapping, convergence
of iterates of a generic nonexpansive mapping, stability of the fixed point under
small perturbations of a mapping, convergence of Krasnosel’skii-Mann iterations of
nonexpansive mappings, generic power convergence of order preserving mappings,
and existence and uniqueness of positive eigenvalues and eigenvectors of order-
preserving linear operators. In this chapter we also study convergence of iterates of
nonexpansive mappings in the presence of computational errors.

Chapter 3 is devoted to an important subclass of the class of nonexpansive map-
pings which consists of the so-called contractive mappings. A contractive mapping
is obtained if in the definition of a strict contraction the constant is replaced by a
monotonically decreasing function with nonnegative values which do not exceed
one and which is a function of the distance between two points. This topic has re-
cently become rather popular. In Chap. 3 we study different types of contractive
mappings, existence of fixed points for such mappings, convergence of their powers
to a fixed point, stability of a fixed point under small perturbations of the mapping,
and use the Baire approach to show that most nonexpansive mappings are contrac-
tive.

In Chap. 4 we use the generic approach in order to study the asymptotic behavior
of trajectories of a certain dynamical system which originates in a convex minimiza-
tion problem. Usually, an algorithm for the minimization of an objective function
on a set can be considered a self-mapping of the set for which the objective function
is a Lyapunov function. In our case the set is a closed subset of a Banach space.
The results presented in this chapter show that for most algorithms, the values of the
objective function along all the trajectories tend to its infimum.

In Chap. 5 we generalize some of the results of Chap. 2 for mappings which are
relatively nonexpansive with respect to Bregman distances. Such mappings appear
in optimization theory and in studies of feasibility problems [37, 39].
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Chapter 6 is devoted to the study of convergence of infinite products of different
classes of mappings. The convergence of infinite products of nonexpansive map-
pings is of major importance because of their many applications in the study of fea-
sibility and optimization problems. We study the convergence of typical (generic)
infinite products of mappings to the set of their common fixed points, and estab-
lish weak ergodic theorems (a term which originates in population biology), which
roughly mean that all trajectories generated by infinite products converge to each
other. We study convergence and its stability for generic infinite products of non-
expansive mappings, uniformly continuous mappings, order-preserving mappings,
order-preserving linear mappings, homogeneous order-preserving mappings, prod-
ucts of affine mappings, as well as products of resolvents of accretive operators.

In Chap. 7 we study best approximation problems in a general Banach space.
A best approximation problem is determined by a pair consisting of a point and a
closed (convex) subset of a Banach space. We consider the complete metric space
of such pairs equipped with a natural complete metric and show that for most (in the
sense of Baire category) pairs the corresponding best approximation problem has a
unique solution. We also provide some generalizations and extensions of this result.

In Chap. 8 we study discrete and continuous descent methods for minimizing a
convex (Lipschitz) function on a general Banach space. We consider a space of vec-
tor fields V such that for any point x in the Banach space, the directional derivative
in the direction V x is nonpositive. This space of vector fields is equipped with a
complete metric. Each vector field generates two gradient type algorithms (discrete
descent methods) and a flow which consists of the solutions of the corresponding
evolution equation (continuous descent method). We show that most (in the sense of
Baire category) vector fields produce algorithms for which values of the objective
function tend to its infimum as t tends to infinity. Actually, we introduce the subclass
of regular vector fields, show that the convergence property stated above holds for
them and that a generic vector field is regular. We also show that this convergence
property is stable under small perturbations of a given regular vector field.

Chapter 9 is devoted to set-valued mappings. We study approximate fixed points
of such mappings, existence of fixed points, and the convergence and stability of
iterates of set-valued mappings.

Chapter 10 is devoted to the Aubry-Mather theory applied to the famous Frenkel-
Kontorova model, an infinite discrete model of solid-state physics related to dislo-
cations in one-dimensional crystals. In this model a configuration of a system is
a sequence of real numbers with indices from −∞ to +∞. We are interested in
(h)-minimal configurations with respect to an energy function h. A configuration
is called (h)-minimal if its total energy cannot be made less by changing its final
states. Classical Aubry-Mather theory is concerned with finding and investigating
h-minimal configurations with a given rotation number, where the function h is
fixed. It implies that the set of all periodic h-minimal configurations of a rational
rotation number p/q is totally ordered. Moreover, between any two neighboring pe-
riodic h-minimal configurations with rotation number p/q , there are (non-periodic)
h-minimal heteroclinic connections having the same rotation number p/q . We con-
sider a complete metric space of energy functions h equipped with a certain C2
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topology and show that for most energy functions in this space, there exist three
different h-minimal configurations with rotation number p/q such that any other
h-minimal configuration with the same rotation number p/q is a translation of one
of these three.

Simeon Reich
Alexander J. Zaslavski

Haifa
December 31, 2012
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Chapter 1
Introduction

Let X be a complete metric space. According to Baire’s theorem, the intersection of
every countable collection of open dense subsets of X is dense in X. This rather sim-
ple, yet powerful result has found many applications. In particular, given a property
which elements of X may have, it is of interest to determine whether this property
is generic, that is, whether the set of elements which do enjoy this property contains
a countable intersection of open dense sets. Such an approach, when a certain prop-
erty is investigated for the whole space X and not just for a single point in X, has
already been successfully applied in many areas of Analysis. In this chapter we dis-
cuss several recent results in metric fixed point theory which exhibit these generic
phenomena.

1.1 Hyperbolic Spaces

It turns out that the class of hyperbolic spaces is a natural setting for our generic
results. In this section we briefly review this concept.

Let (X,ρ) be a metric space and let R1 denote the real line. We say that a map-
ping c : R1 → X is a metric embedding of R1 into X if

ρ
(
c(s), c(t)

)= |s − t |
for all real s and t . The image of R1 under a metric embedding will be called a
metric line. The image of a real interval [a, b] = {t ∈ R1 : a ≤ t ≤ b} under such a
mapping will be called a metric segment.

Assume that (X,ρ) contains a family M of metric lines such that for each pair of
distinct points x and y in X, there is a unique metric line in M which passes through
x and y. This metric line determines a unique metric segment joining x and y. We
denote this segment by [x, y]. For each 0 ≤ t ≤ 1, there is a unique point z in [x, y]
such that

ρ(x, z) = tρ(x, y) and ρ(z, y) = (1 − t)ρ(x, y).

This point will be denoted by (1 − t)x ⊕ ty.
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2 1 Introduction

We will say that X, or more precisely (X,ρ,M), is a hyperbolic space if

ρ

(
1

2
x ⊕ 1

2
y,

1

2
x ⊕ 1

2
z

)
≤ 1

2
ρ(y, z)

for all x, y and z in X.
An equivalent requirement is that

ρ

(
1

2
x ⊕ 1

2
y,

1

2
w ⊕ 1

2
z

)
≤ 1

2

(
ρ(x,w) + ρ(y, z)

)

for all x, y, z and w in X. A set K ⊂ X is called ρ-convex if [x, y] ⊂ K for all x

and y in K .
It is clear that all normed linear spaces are hyperbolic. A discussion of more

examples of hyperbolic spaces and in, particular, of the Hilbert ball can be found,
for instance, in [66, 68, 81, 124].

In the sequel we will repeatedly use the following fact (cf. pp. 77 and 104 of [68]
and [124]): If (X,ρ,M) is a hyperbolic space, then

ρ
(
(1 − t)x ⊕ tz, (1 − t)y ⊕ tw

)≤ (1 − t)ρ(x, y) + tρ(z,w) (1.1)

for all x, y, z and w in X and 0 ≤ t ≤ 1.

1.2 Successive Approximations

Let (X,ρ,M) be a complete hyperbolic space and let K be a closed ρ-convex subset
of X. Denote by A the set of all operators A : K → K such that

ρ(Ax,Ay) ≤ ρ(x, y) for all x, y ∈ K.

In other words, the set A consists of all the nonexpansive self-mappings of K .
Fix some θ ∈ K and for each s > 0, set

B(θ, s) = B(s) = {
x ∈ K : ρ(x, θ) ≤ s

}
.

For the set A we consider the uniformity determined by the following base:

E(n, ε) = {
(A,B) ∈A×A : ρ(Ax,Bx) ≤ ε, x ∈ B(n)

}
,

where ε > 0 and n is a natural number. Clearly the space A with this uniformity is
metrizable and complete. We equip the space A with the topology induced by this
uniformity.

A mapping A : K → K is called regular if there exists a necessarily unique
xA ∈ K such that

lim
n→∞Anx = xA for all x ∈ K.

A mapping A : K → K is called super-regular if there exists a necessarily unique
xA ∈ K such that for each s > 0,

Anx → xA as n → ∞, uniformly on B(s).



1.3 Contractive Mappings 3

Denote by I the identity operator. For each pair of operators A,B : K → K and
each t ∈ [0,1], define an operator tA ⊕ (1 − t)B by

(
tA ⊕ (1 − t)B

)
(x) = tAx ⊕ (1 − t)Bx, x ∈ K.

Note that if A and B belong to A, then so does tA ⊕ (1 − t)B .
In Chap. 2 we establish generic existence and uniqueness of a fixed point for a

generic mapping, convergence of iterates of a generic nonexpansive mapping, sta-
bility of the fixed point under small perturbations of a mapping and many other
results. Among these results are the following two theorems obtained in [132].

The first result shows that in addition to (locally uniform) power convergence,
super-regular mappings also provide stability, while the second result shows that
most mappings in A are, in fact, super-regular. This is an improvement of the clas-
sical result of De Blasi and Myjak [49] who established power convergence (to a
unique fixed point) for a generic nonexpansive self-mapping of a bounded closed
convex subset of a Banach space.

Theorem 1.1 Let A : K → K be super-regular and let ε, s be positive numbers.
Then there exist a neighborhood U of A in A and an integer n0 ≥ 2 such that for
each B ∈ U , each x ∈ B(s) and each integer n ≥ n0, we have ρ(xA,Bnx) ≤ ε.

Theorem 1.2 There exists a set F0 ⊂ A which is a countable intersection of open
everywhere dense sets in A such that each A ∈F0 is super-regular.

1.3 Contractive Mappings

In Chap. 3 we consider the class of contractive mappings which we now define.
Let K be a bounded, closed and convex subset of a Banach space (X,‖ · ‖).
Denote by A the set of all operators A : K → K such that

‖Ax − Ay‖ ≤ ‖x − y‖ for all x, y ∈ K.

Set

d(K) = sup
{‖x − y‖ : x, y ∈ K

}
.

We equip the set A with the metric h(·, ·) defined by

h(A,B) = sup
{‖Ax − Bx‖ : x ∈ K

}
, A,B ∈ A.

Clearly, the metric space (A, h) is complete.
We say that a mapping A ∈ A is contractive if there exists a decreasing function

φA : [0, d(K)] → [0,1] such that

φA(t) < 1 for all t ∈ (0, d(K)
]

and

‖Ax − Ay‖ ≤ φA
(‖x − y‖)‖x − y‖ for all x, y ∈ K.
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The notion of a contractive mapping, as well as its modifications and applications,
were studied by many authors. See, for example, [114, 116] and the references men-
tioned there. We now quote a convergence result which is valid in all complete met-
ric spaces [114].

Theorem 1.3 Assume that A ∈ A is contractive. Then there exists a unique xA ∈ K

such that Anx → xA as n → ∞, uniformly on K .

In Chap. 3 we show that most of the mappings in A (in the sense of Baire’s
categories) are, in fact, contractive and prove the following result obtained in [131].

Theorem 1.4 There exists a set F which is a countable intersection of open every-
where dense sets in A such that each A ∈ F is contractive.

Note that at least in Hilbert space the set of strict contractions is only of the first
Baire category in A [13, 49].

In Chap. 3 we continue with a discussion of nonexpansive mappings which are
contractive with respect to a given subset of their domain. We now define this class
of mappings.

Let K be a closed (not necessarily bounded) ρ-convex subset of the complete
hyperbolic space (X,ρ,M). Denote by A the set of all nonexpansive self-mappings
of K .

For each x ∈ K and each subset E ⊂ K , let ρ(x,E) = inf{ρ(x, y) : y ∈ E}. For
each x ∈ K and each r > 0, set

B(x, r) = {
y ∈ K : ρ(x, y) ≤ r

}
.

Fix θ ∈ K . We equip the set A with the same uniformity and topology as in the
previous section.

Let F be a nonempty, closed and ρ-convex subset of K . Denote by A(F ) the set
of all A ∈ A such that Ax = x for all x ∈ F . Clearly, A(F ) is a closed subset of A.
We consider the topological subspace A(F ) ⊂ A with the relative topology.

An operator A ∈ A(F ) is said to be contractive with respect to F if for any natural
number n, there exists a decreasing function φA

n : [0,∞) → [0,1] such that

φA
n (t) < 1 for all t > 0

and

ρ(Ax,F ) ≤ φA
n

(
ρ(x,F )

)
ρ(x,F ) for all x ∈ B(θ,n).

Clearly, this definition does not depend on our choice of θ ∈ K .
The following result, which was obtained in [131], shows that the iterates of an

operator in A(F ) converge to a retraction of K onto F .

Theorem 1.5 Let A ∈A(F ) be contractive with respect to F . Then there exists B ∈
A(F ) such that B(K) = F and Anx → Bx as n → ∞, uniformly on B(θ,m) for
any natural number m.
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Finally, we present the following theorem of [131] which shows that if A(F )

contains a retraction, then almost all the mappings in A(F ) are contractive with
respect to F .

Theorem 1.6 Assume that there exists

Q ∈ A(F ) such that Q(K) = F.

Then there exists a set F ⊂ A(F ) which is a countable intersection of open every-
where dense sets in A(F ) such that each B ∈ F is contractive with respect to F .

1.4 Infinite Products

In Chap. 6 we present several results concerning the asymptotic behavior of (ran-
dom) infinite products of generic sequences of nonexpansive, as well as uniformly
continuous, operators on closed and convex subsets of a complete hyperbolic space.

Let (X,‖ · ‖) be a Banach space and let K be a nonempty, bounded, closed and
convex subset of X with the topology induced by the norm ‖ · ‖.

Denote by A the set of all sequences {At }∞t=1, where each At : K → K is a
continuous operator, t = 1,2, . . . . Such a sequence will occasionally be denoted by
a boldface A.

For the set A we consider the metric ρs :A×A → [0,∞) defined by

ρs

({At }∞t=1, {Bt }∞t=1

)= sup
{‖Atx − Btx‖ : x ∈ K, t = 1,2, . . .

}
,

{At }∞t=1, {Bt }∞t=1 ∈ A.

It is easy to see that the metric space (A, ρs) is complete. The topology generated
in A by the metric ρs will be called the strong topology.

In addition to this topology on A, we will also consider the uniformity deter-
mined by the base

E(N,ε) = {({At }∞t=1, {Bt }∞t=1

) ∈ A×A :
‖Atx − Btx‖ ≤ ε, t = 1, . . . ,N,x ∈ K

}
,

where N is a natural number and ε > 0. It is easy to see that the space A with this
uniformity is metrizable (by a metric ρw : A × A → [0,∞)) and complete. The
topology generated by ρw will be called the weak topology.

Define

Ane = {{At }∞t=1 ∈A : At is nonexpansive for t = 1,2, . . .
}
.

Clearly, Ane is a closed subset of A in the weak topology. We will consider the
topological subspace Ane ⊂ A with both the weak and strong relative topologies.

In Theorem 2.1 of [129] we showed that for a generic sequence {Ct }∞t=1 in the
space Ane with the weak topology,

‖CT · · · · · C1x − CT · · · · · C1y‖ → 0 as T → ∞,
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uniformly for all x, y ∈ K . (Such results are usually called weak ergodic theorems
in the population biology literature; see [43, 107].)

Here is the precise formulation of this weak ergodic theorem.

Theorem 1.7 There exists a set F ⊂ Ane , which is a countable intersection of open
(in the weak topology) everywhere dense (in the strong topology) subsets of Ane ,
such that for each {Bt }∞t=1 ∈ F and each ε > 0, there exist a neighborhood U of
{Bt }∞t=1 in Ane with the weak topology and a natural number N such that:

For each {Ct }∞t=1 ∈ U , each x, y ∈ K , and each integer T ≥ N ,

‖CT · · · · · C1x − CT · · · · · C1y‖ ≤ ε.

Note that in Chap. 6 we also prove a random version of this theorem.
We will say that a set E of operators A : K → K is uniformly equicontinuous

(ue) if for any ε > 0, there exists δ > 0 such that ‖Ax − Ay‖ ≤ ε for all A ∈ E and
all x, y ∈ K satisfying ‖x − y‖ ≤ δ.

Define

Aue = {{At }∞t=1 ∈A : {At }∞t=1 is a (ue) set
}
.

Clearly, Aue is a closed subset of A in the strong topology.
We will consider the topological subspace Aue ⊂ A with both the weak and

strong relative topologies.
Denote by A∗

ne the set of all {At }∞t=1 ∈ Ane which have a common fixed point
and denote by Ā∗

ne the closure of A∗
ne in the strong topology of the space Ane.

Let A∗
ue be the set of all A = {At }∞t=1 ∈ Aue for which there exists x(A) ∈ K

such that for each integer t ≥ 1,

Atx(A) = x(A) and
∥∥Aty − x(A)

∥∥≤ ∥∥y − x(A)
∥∥ for all y ∈ K,

and denote by Ā∗
ue the closure of A∗

ue in the strong topology of the space Aue.
We consider the topological subspaces Ā∗

ne and Ā∗
ue with the relative strong

topologies. In Theorem 2.4 of [129] we showed that a generic sequence {Ct }∞t=1
in the space Ā∗

ue has a unique common fixed point x∗ and all random products of
the operators {Ct }∞t=1 converge to x∗, uniformly for all x ∈ K . We now quote this
theorem.

Theorem 1.8 There exists a set F ⊂ Ā∗
ue, which is a countable intersection of

open everywhere dense (in the strong topology) subsets of Ā∗
ue, such that for each

{Bt }∞t=1 ∈ F , there exists x∗ ∈ K for which the following assertions hold:

1. Btx∗ = x∗, t = 1,2, . . . , and

‖Bty − x∗‖ ≤ ‖y − x∗‖, y ∈ K, t = 1,2, . . . .

2. For each ε > 0, there exist a neighborhood U of {Bt }∞t=1 in Ā∗
ue with the strong

topology and a natural number N such that for each {Ct }∞t=1 ∈ U , each integer
T ≥ N , each mapping r : {1, . . . , T } → {1,2, . . .}, and each x ∈ K ,

‖Cr(T ) · · · · · Cr(1)x − x∗‖ ≤ ε.
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In [129] we also proved an analog of this theorem for the space Ā∗
ne .

We remark in passing that one can easily construct an example of a sequence
of operators {At }∞t=1 ∈ A∗

ue for which the convergence properties described in the
previous theorem do not hold. Namely, they do not hold for the sequence each term
of which is the identity operator.

Now assume that F is a nonempty, closed and convex subset of K and that
Q : K → F is a nonexpansive operator such that

Qx = x, x ∈ F.

Such an operator Q is usually called a nonexpansive retraction of K onto F (see
[68]). Denote by A(F )

ne the set of all {At }∞t=1 ∈ Ane such that

Atx = x, x ∈ F, t = 1,2, . . . .

Clearly, A(F )
ne is a closed subset of Ane in the weak topology. We equip the topolog-

ical subspace A(F )
ne ⊂ Ane with both the weak and strong relative topologies.

In Theorem 3.1 of [129] we showed that for a generic sequence of operators
{Bt }∞t=1 in the space A(F )

ne with the weak topology there exists a nonexpansive re-
traction P∗ : K → F such that

Bt · · · · · B1x → P∗x as t → ∞,

uniformly for all x ∈ K . We end this section with the precise statement of this con-
vergence theorem.

Theorem 1.9 There exists a set F ⊂ A(F )
ne , which is a countable intersection of

open (in the weak topology) everywhere dense (in the strong topology) subsets of
A(F )

ne , such that for each {Bt }∞t=1 ∈F , the following assertions hold:

1. There exists an operator P∗ : K → F such that

lim
t→∞Bt · · · · · B1x = P∗x for each x ∈ K.

2. For each ε > 0, there exist a neighborhood U of {Bt }∞t=1 in A(F )
ne with the weak

topology and a natural number N such that for each {Ct }∞t=1 ∈ U , each integer
T ≥ N , and each x ∈ K ,

‖CT · · · · · C1x − P∗x‖ ≤ ε.

Theorem 3.2 of [129] is a random version of this theorem.

1.5 Contractive Set-Valued Mappings

In Chap. 9 we study contractive set-valued mappings.
Assume that (X,‖ · ‖) is a Banach space, K is a nonempty, bounded and closed

subset of X and there exists θ ∈ K such that for each x ∈ K ,

tx + (1 − t)θ ∈ K, t ∈ (0,1).
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We consider the complete metric space K with the metric ‖x −y‖, x, y ∈ K . Denote
by S(K) the set of all nonempty closed subsets of K . For x ∈ K and D ⊂ K , set

ρ(x,D) = inf
{‖x − y‖ : y ∈ D

}
,

and for each C,D ∈ S(K), let

H(C,D) = max
{

sup
x∈C

ρ(x,D), sup
y∈D

ρ(y,C)
}
.

We equip the set S(K) with the Hausdorff metric H(·, ·). It is well known that the
metric space (S(K),H) is complete.

Denote by A the set of all nonexpansive operators T : S(K) → S(K). For the set
A we consider the metric ρA defined by

ρA(T1, T2) = sup
{
H
(
T1(D),T2(D)

) : D ∈ S(K)
}
, T1, T2 ∈A.

Denote by N the set of all mappings T : K → S(K) such that

H
(
T (x), T (y)

)≤ ‖x − y‖, x, y ∈ K.

Set

d(K) = sup
{‖x − y‖ : x, y ∈ K

}
.

A mapping T ∈ N is called contractive if there exists a decreasing function φ :
[0, d(K)] → [0,1] such that

φ(t) < 1 for all t ∈ (0, d(K)
]

and

H
(
T (x), T (y)

)≤ φ
(‖x − y‖)‖x − y‖ for all x, y ∈ K.

Assume that T ∈ N . For each D ∈ S(K), denote by T̃ (D) the closure of the set⋃{T (x) : x ∈ D} in the norm topology.
It was shown in [144] that for any T ∈ N , the mapping T̃ belongs to A and

moreover, the mapping T̃ is contractive if and only if the mapping T is contractive.
We equip the set N with the metric ρN defined by

ρN (T1, T2) = sup
{
H
(
T1(x), T2(x)

) : x ∈ K
}
, T1, T2 ∈ N .

It is not difficult to verify that the metric space (N , ρN ) is complete.
For each T ∈N set P(T ) = T̃ . It is easy to see that for each T1, T2 ∈ N ,

ρA
(
P(T1),P (T2)

)= ρN (T1, T2).

Denote

B = {
P(T ) : T ∈N

}
.

Clearly, the metric spaces (B, ρA) and (N , ρN ) are isometric.
In [144] we obtained the following results.

Theorem 1.10 Assume that the operator T ∈ N is contractive. Then there exists
a unique set AT ∈ S(K) such that T̃ (AT ) = AT and (T̃ )n(B) → AT as n → ∞,
uniformly for all B ∈ S(K).
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Theorem 1.11 There exists a set F , which is a countable intersection of open and
everywhere dense subsets of (N , ρN ), such that each T ∈F is contractive.

1.6 Nonexpansive Set-Valued Mappings

Let (X,‖ · ‖) be a Banach space and denote by Sco(X) the set of all nonempty,
closed and convex subsets of X. For x ∈ X and D ⊂ X, set

ρ(x,D) = inf
{‖x − y‖ : y ∈ D

}
,

and for each C,D ∈ Sco(X), let

H(C,D) = max
{

sup
x∈C

ρ(x,D), sup
y∈D

ρ(y,C)
}
.

The interior of a subset D ⊂ X will be denoted by int(D). For each x ∈ X and
each r > 0, set B(x, r) = {y ∈ X : ‖y − x‖ ≤ r}. For the set Sco(X) we consider the
uniformity determined by the following base:

G(n) = {
(C,D) ∈ Sco(X) × Sco(X) : H(C,D) ≤ n−1},

n = 1,2, . . . . It is well known that the space Sco(X) with this uniformity is metriz-
able and complete. We endow the set Sco(X) with the topology induced by this
uniformity.

Assume now that K is a nonempty, closed and convex subset of X, and denote by
Sco(K) the set of all D ∈ Sco(X) such that D ⊂ K . Clearly, Sco(K) is a closed sub-
set of Sco(X). We equip the topological subspace Sco(K) ⊂ Sco(X) with its relative
topology.

Denote by Nco the set of all mappings T : K → Sco(K) such that T (x) is
bounded for all x ∈ K and

H
(
T (x), T (y)

)≤ ‖x − y‖, x, y ∈ K.

In other words, the set Nco consists of those nonexpansive set-valued self-mappings
of K which have nonempty, bounded, closed and convex point images.

Fix θ ∈ K . For the set Nco we consider the uniformity determined by the follow-
ing base:

E(n) = {
(T1, T2) ∈ Nco ×Nco : H (

T1(x), T2(x)
)≤ n−1

for all x ∈ K satisfying ‖x − θ‖ ≤ n
}
, n = 1,2, . . . .

It is not difficult to verify that the space Nco with this uniformity is metrizable and
complete.

The following result is well known [45, 102]; see also [116].

Theorem 1.12 Assume that T : K → S(K), γ ∈ (0,1), and

H
(
T (x), T (y)

)≤ γ ‖x − y‖, x, y ∈ K.

Then there exists xT ∈ K such that xT ∈ T (xT ).
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The existence of fixed points for set-valued mappings which are merely non-
expansive is more delicate and was studied by several authors. See, for example,
[67, 94, 119] and the references therein. We now state a result established in [145]
which shows that if int(K) is nonempty, then a generic nonexpansive mapping does
have a fixed point. This result will be proved in Chap. 9.

Theorem 1.13 Assume that int(K) �= ∅. Then there exists an open everywhere
dense set F ⊂ Nco with the following property: for each Ŝ ∈ F , there exist x̄ ∈ K

and a neighborhood U of Ŝ in Nco such that x̄ ∈ S(x̄) for each S ∈ U .

1.7 Porosity

In this section we present a refinement of the classical result obtained by De Blasi
and Myjak [49]. This refinement involves the notion of porosity which we now recall
[51, 123, 180, 182].

Let (Y, d) be a complete metric space. We denote by B(y, r) the closed ball of
center y ∈ Y and radius r > 0. A subset E ⊂ Y is called porous (with respect to the
metric d) if there exist α ∈ (0,1) and r0 > 0 such that for each r ∈ (0, r0] and each
y ∈ Y , there exists z ∈ Y for which

B(z,αr) ⊂ B(y, r) \ E.

A subset of the space Y is called σ -porous (with respect to d) if it is a countable
union of porous subsets of Y .

Remark 1.14 It is known that in the above definition of porosity, the point y can be
assumed to belong to E.

Since porous sets are nowhere dense, all σ -porous sets are of the first Baire
category. If Y is a finite-dimensional Euclidean space, then σ -porous sets are of
Lebesgue measure 0. In fact, the class of σ -porous sets in such a space is much
smaller than the class of sets which have Lebesgue measure 0 and are of the Baire
first category. Also, every Banach space contains a set of the first Baire category
which is not σ -porous.

To point out the difference between porous and nowhere dense sets, note that if
E ⊂ Y is nowhere dense, y ∈ Y and r > 0, then there is a point z ∈ Y and a number
s > 0 such that B(z, s) ⊂ B(y, r) \ E. If, however, E is also porous, then for small
enough r we can choose s = αr , where α ∈ (0,1) is a constant which depends only
on E.

Let (X,ρ,M) be a complete hyperbolic space and K ⊂ X a nonempty, bounded,
closed and ρ-convex set. Once again we denote by A the set of all nonexpansive
self-mappings of K . For each A,B ∈ A we again define

h(A,B) = sup
{
ρ(Ax,Bx) : x ∈ K

}
. (1.2)

It is easy to verify that (A, h) is a complete metric space.
The following result was established in [142].
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Theorem 1.15 There exists a set F ⊂ A such that the complement A \ F is
σ -porous in (A, h) and for each A ∈F the following property holds:

There exists a unique xA ∈ K for which AxA = xA and Anx → xA as n → ∞,
uniformly on K .

Proof Set

d(K) = sup
{
ρ(x, y) : x, y ∈ K

}
. (1.3)

Fix θ ∈ K . For each integer n ≥ 1, denote by An the set of all A ∈ A which have
the following property:

(C1) There exists a natural number p(A) such that

ρ
(
Ap(A)x,Ap(A)y

)≤ 1/n for all x, y ∈ K. (1.4)

Let n ≥ 1 be an integer. We will show that A \An is porous in (A, h). To this end,
let

α = (
d(K) + 1

)−1
(8n)−1. (1.5)

Assume that A ∈A and r ∈ (0,1]. Set

γ = 2−1r
(
d(K) + 1

)−1 (1.6)

and define Aγ ∈ A by

Aγ x = (1 − γ )Ax ⊕ γ θ, x ∈ K. (1.7)

It is easy to see that

ρ(Aγ x,Aγ y) ≤ (1 − γ )ρ(x, y), x, y ∈ K, (1.8)

and

h(A,Aγ ) ≤ γ d(K). (1.9)

Choose a natural number p for which

p > r−1(d(K) + 1
)24n + 1. (1.10)

Let B ∈A satisfy

h(Aγ ,B) ≤ αr, (1.11)

and let x, y ∈ K . We will show that ρ(Bpx,Bpy) ≤ 1/n. (We use the convention
that C0 = I , the identity operator.)

Assume the contrary. Then for i = 0, . . . , p,

ρ
(
Bix,Biy

)
> 1/n. (1.12)

It follows from (1.11), (1.2), (1.8) and (1.12) that for i = 0, . . . , p − 1,

ρ
(
Bi+1x,Bi+1y

)≤ ρ
(
Bi+1x,Aγ Bix

)+ ρ
(
Aγ Bix,Aγ Biy

)+ ρ
(
Aγ Biy,Bi+1y

)

≤ αr + ρ
(
Aγ Bix,Aγ Biy

)+ αr

≤ 2αr + (1 − γ )ρ
(
Bix,Biy

)≤ ρ
(
Bix,Biy

)+ 2αr − γ /n
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and

ρ
(
Bix,Biy

)− ρ
(
Bi+1x,Bi+1y

)≥ γ /n − 2αr.

When combined with (1.3), (1.6) and (1.5), this latter inequality implies that

d(K) ≥ ρ(x, y) − ρ
(
Bpx,Bpy

)

=
p−1∑

i=0

[
ρ
(
Bix,Biy

)− ρ
(
Bi+1x,Bi+1y

)]≥ p(γ /n − 2αr)

≥ p
[
r
(
d(K) + 1

)−1
(2n)−1 − 2r

(
d(K) + 1

)−1
(8n)−1]

≥ pr
(
d(K) + 1

)−1
(4n)−1

and

p ≤ r−1d(K)
(
d(K) + 1

)
4n,

a contradiction (see (1.10)). Thus ρ(Bpx,Bpy) ≤ 1/n for all x, y ∈ K . This means
that

{
B ∈A : h(Aγ ,B) ≤ αr

}⊂ An. (1.13)

It now follows from (1.9), (1.6) and (1.5) that
{
B ∈ A : h(Aγ ,B) ≤ αr

}⊂ {
B ∈ A : h(A,B) ≤ αr + γ d(K)

}

⊂ {
B ∈ A : h(A,B) ≤ r

}
.

In view of (1.13) this inclusion implies that A \ An is porous in (A, h). Define
F =⋂∞

n=1 An. Then A \F is σ -porous in (A, h).
Let A ∈ F . It follows from property (C1) that for each integer n ≥ 1, there ex-

ists a natural number s such that ρ(Aix,Ajy) ≤ 1/n for all x, y ∈ K and all in-
tegers i, j ≥ s. Since n is an arbitrary natural number, we conclude that for each
x ∈ K , {Aix}∞i=1 is a Cauchy sequence which converges to a point x∗ ∈ K satisfy-
ing Ax∗ = x∗ and moreover, Aix → x∗ as i → ∞, uniformly on K . This completes
the proof of Theorem 1.15. �

1.8 Examples

Most of the results obtained in this book are generic existence theorems. Usually, we
study a certain property for a class of problems which is identified with a complete
metric space and it is shown that for a typical (generic) element of this space the
corresponding problem has a unique solution. Of course, such results are of interest
only if there is a problem which does not possess the desired property. It should be
mentioned that such problems do exist. Let us consider, for instance, the space of
mappings discussed in Sect. 1.2. By Theorem 1.2, a typical element of this space is
super-regular. It is easy to see that the identity operator is not super-regular. If our
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metric space is a Banach space, then any translation is not super-regular. Of course
both of these mappings are not contractive too. In the book we also consider other
examples which are more interesting and complicated.

In Sect. 3.4 we construct a contractive mapping A : [0,1] → [0,1] such that none
of its powers is a strict contraction. Section 3.5 contains an example of a mapping
A : [0,1] → [0,1] such that

|Ax − Ay| ≤ |x − y| for all x, y ∈ [0,1],
Anx → 0 as n → ∞, uniformly on [0,1],

and for each integer m ≥ 0, the power Am is not contractive. In Sect. 3.6 we con-
struct a nonexpansive mapping with nonuniformly convergent powers.

In Sect. 2.24 we construct an example of an operator T on a complete metric
space such that all of its orbits converge to its unique fixed point and for any non-
summable sequence of errors and any initial point, there exists a divergent inexact
orbit with a convergent subsequence. In Sect. 2.26 we construct an example of an
operator T on a certain complete metric space X (a bounded, closed and convex sub-
set of a Banach space) such that all of its orbits converge to its unique fixed point,
and for any nonsummable sequence of errors and any initial point, there exists an
inexact orbit which does not converge to any compact set.



Chapter 2
Fixed Point Results and Convergence of Powers
of Operators

In this chapter we establish existence and uniqueness of a fixed point for a generic
mapping, convergence of iterates of a generic nonexpansive mapping, stability of
the fixed point under small perturbations of a mapping and many other results.

2.1 Convergence of Iterates for a Class of Nonlinear Mappings

Let K be a nonempty, bounded, closed and convex subset of a Banach space
(X,‖ · ‖). We show that the iterates of a typical element (in the sense of Baire’s
categories) of a class of continuous self-mappings of K converge uniformly on K

to the unique fixed point of this typical element.
We consider the topological subspace K ⊂ X with the relative topology induced

by the norm ‖ · ‖. Set

diam(K) = sup
{‖x − y‖ : x, y ∈ K

}
. (2.1)

Denote by A the set of all continuous mappings A : K → K which have the follow-
ing property:

(P1) For each ε > 0, there exists xε ∈ K such that

‖Ax − xε‖ ≤ ‖x − xε‖ + ε for all x ∈ K. (2.2)

For each A,B ∈A, set

d(A,B) = sup
{‖Ax − Bx‖ : x ∈ K

}
. (2.3)

Clearly, the metric space (A, d) is complete.

We are now ready to state and prove the following result [149].

Theorem 2.1 There exists a set F ⊂ A such that the complement A\F is σ -porous
in (A, d) and each A ∈F has the following properties:
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Developments in Mathematics 34, DOI 10.1007/978-1-4614-9533-8_2,
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(i) There exists a unique fixed point xA ∈ K such that

Anx → xA as n → ∞, uniformly for all x ∈ K;
(ii)

‖Ax − xA‖ ≤ ‖x − xA‖ for all x ∈ K;
(iii) For each ε > 0, there exist a natural number n and a real number δ > 0

such that for each integer p ≥ n, each x ∈ K , and each B ∈ A satisfying
d(B,A) ≤ δ,

∥∥Bpx − xA

∥∥≤ ε.

The following auxiliary result will be used in the proof of Theorem 2.1.

Proposition 2.2 Let A ∈ A and ε ∈ (0,1). Then there exist x̄ ∈ K and B ∈ A such
that

d(A,B) ≤ ε (2.4)

and

‖x̄ − Bx‖ ≤ ‖x̄ − x‖ for all x ∈ K. (2.5)

Proof Choose a positive number

ε0 < 8−1ε2(diam(K) + 1
)−1

. (2.6)

Since A ∈A, there exists x̄ ∈ K such that

‖Ax − x̄‖ ≤ ‖x − x̄‖ + ε0 for all x ∈ K. (2.7)

Let x ∈ K . There are three cases:

‖Ax − x̄‖ < ε; (2.8)

‖Ax − x̄‖ ≥ ε and ‖Ax − x̄‖ < ‖x − x̄‖; (2.9)

‖Ax − x̄‖ ≥ ε and ‖Ax − x̄‖ ≥ ‖x − x̄‖. (2.10)

First we consider case (2.8). There exists an open neighborhood Vx of x in K such
that

‖Ay − x̄‖ < ε for all y ∈ Vx. (2.11)

Define ψx : Vx → K by

ψx(y) = x̄, y ∈ Vx. (2.12)

Clearly, for all y ∈ Vx ,

0 = ∥∥ψx(y) − x̄
∥∥≤ ‖y − x̄‖ and

∥∥Ay − ψx(y)
∥∥= ‖Ay − x̄‖ < ε. (2.13)
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Consider now case (2.9). Since A is continuous, there exists an open neighborhood
Vx of x in K such that

‖Ay − x̄‖ < ‖y − x̄‖ for all y ∈ Vx. (2.14)

In this case we define ψx : Vx → K by

ψx(y) = Ay, y ∈ Vx. (2.15)

Finally, we consider case (2.10). Inequalities (2.10), (2.6) and (2.7) imply that

‖x − x̄‖ ≥ ‖Ax − x̄‖ − ε0 > (7/8)ε. (2.16)

For each γ ∈ [0,1], set

z(γ ) = γAx + (1 − γ )x̄. (2.17)

By (2.17), (2.10) and (2.16), we have
∥∥z(0) − x̄

∥∥= 0 and
∥∥z(1) − x̄

∥∥= ‖Ax − x̄‖ ≥ ‖x − x̄‖ > (7/8)ε. (2.18)

By (2.6) and (2.18), there exists γ0 ∈ (0,1) such that
∥∥z(γ0) − x̄

∥∥= ‖x − x̄‖ − ε0. (2.19)

It now follows from (2.17), (2.19) and (2.7) that

γ0
(‖x − x̄‖ + ε0

) ≥ γ0‖Ax − x̄‖ = ∥∥γ0Ax + (1 − γ0)x̄ − x̄
∥∥

= ∥∥z(γ0) − x̄
∥∥= ‖x − x̄‖ − ε0

and

γ0 ≥ (‖x − x̄‖ − ε0
)(‖x − x̄‖ + ε0

)−1 = 1 − 2ε0
(‖x − x̄‖ + ε0

)−1

≥ 1 − 2ε0‖x − x̄‖−1. (2.20)

Inequalities (2.20) and (2.16) imply that

γ0 ≥ 1 − 2ε0
(
(7/8)ε

)−1
. (2.21)

By (2.17), (2.1), (2.21) and (2.6),
∥
∥z(γ0) − Ax

∥
∥ = ∥

∥γ0Ax + (1 − γ0)x̄ − Ax
∥
∥

= (1 − γ0)‖Ax − x̄‖ ≤ (1 − γ0)diam(K) ≤ 16ε0(7ε)−1 diam(K)

≤ 3ε0 diam(K)ε−1 ≤ (3/8)ε

and
∥∥z(γ0) − Ax

∥∥≤ (3/8)ε. (2.22)
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Relations (2.19) and (2.22) imply that there exists an open neighborhood Vx of x in
K such that for each y ∈ Vx ,

∥∥z(γ0) − Ay
∥∥< ε and

∥∥z(γ0) − x̄
∥∥< ‖y − x̄‖. (2.23)

Define ψx : Vx → K by

ψx(y) = z(γ0), y ∈ Vx. (2.24)

It is not difficult to see that in all three cases we have defined an open neighborhood
Vx of x in K and a continuous mapping ψx : Vx → K such that for each y ∈ Vx ,

∥∥Ay − ψx(y)
∥∥< ε and

∥∥x̄ − ψx(y)
∥∥≤ ‖y − x̄‖. (2.25)

Since the metric space K with the metric induced by the norm is paracompact, there
exists a continuous locally finite partition of unity {φi}i∈I on K subordinated to
{Vx}x∈K , where each φi : K → [0,1], i ∈ I , is a continuous function such that for
each y ∈ K , there is a neighborhood U of y in K such that

U ∩ supp(φi) �= ∅
only for finite number of i ∈ I ;

∑

i∈I

φi(x) = 1, x ∈ K;

and for each i ∈ I , there is xi ∈ K such that

supp(φi) ⊂ Vxi
. (2.26)

Here supp(φ) is the closure of the set {x ∈ K : φ(x) �= 0}. Define

Bz =
∑

i∈I

φi(z)ψxi
(z), z ∈ K. (2.27)

Clearly, B : K → K is well defined and continuous.
Let z ∈ K . There are a neighborhood U of z in K and i1, . . . , in ∈ I such that

U ∩ supp(φi) = ∅ for any i ∈ I \ {i1, . . . , in}. (2.28)

We may assume without any loss of generality that

z ∈ supp(φip ), p = 1, . . . , n. (2.29)

Then
n∑

p=1

φip (z) = 1 and Bz =
n∑

p=1

φip (z)ψxip
(z). (2.30)
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Relations (2.26), (2.29) and (2.25) imply that for p = 1, . . . , n and z ∈ Vxip
,

∥∥Az − ψxip
(z)
∥∥< ε and

∥∥x̄ − ψxip
(z)
∥∥≤ ‖x̄ − z‖.

By the equation above and (2.30),

‖Bz − Az‖ =
∥∥∥∥∥

n∑

p=1

φip (z)ψxip
(z) − Az

∥∥∥∥∥

≤
n∑

p=1

φip (z)
∥∥ψxip

(z) − Az
∥∥< ε,

‖x̄ − Bz‖ =
∥∥∥∥∥
x̄ −

n∑

p=1

φip (z)ψxip
(z)

∥∥∥∥∥

≤
n∑

p=1

φip (z)
∥∥x̄ − ψxip

(z)
∥∥≤ ‖x̄ − z‖,

and

‖Bz − Az‖ < ε, ‖x̄ − Bz‖ ≤ ‖x̄ − z‖.
Proposition 2.2 is proved. �

Proof of Theorem 2.1 For each C ∈ A and x ∈ K , set C0x = x. For each natural
number n, denote by Fn the set of all A ∈A which have the following property:

(P2) There exist x̄, a natural number q , and a positive number δ > 0 such that

‖x̄ − Ax‖ ≤ ‖x̄ − x‖ + n−1 for all x ∈ K,

and such that for each B ∈A satisfying d(B,A) ≤ δ, and each x ∈ K ,

∥∥Bqx − x̄
∥∥≤ n−1.

Define

F =
∞⋂

n=1

Fn. (2.31)

Lemma 2.3 Let A ∈ F . Then there exists a unique fixed point xA ∈ K of A such
that

(i) Anx → xA as n → ∞, uniformly on K ;
(ii) ‖Ax − xA‖ ≤ ‖x − xA‖ for all x ∈ K ;
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(iii) For each ε > 0, there exist a natural number q and δ > 0 such that for each
B ∈ A satisfying d(B,A) ≤ δ, each x ∈ K , and each integer i ≥ q ,

∥∥Bix − xA

∥∥≤ ε.

Proof Let n be a natural number. Since A ∈ F ⊂ Fn, it follows from property (P2)
that there exist xn ∈ K , an integer qn ≥ 1, and a number δn ≥ 0 such that

‖xn − Ax‖ ≤ ‖xn − x‖ + n−1 for all x ∈ K; (2.32)

(P3) For each B ∈A satisfying d(B,A) ≤ δn, and each x ∈ K ,
∥∥Bqnx − xn

∥∥≤ 1/n.

Property (P3) implies that for each x ∈ K , ‖Aqnx − xn‖ ≤ 1/n. This fact implies, in
turn, that for each x ∈ K ,

∥∥Aix − xn

∥∥≤ 1/n for any integer i ≥ qn. (2.33)

Since n is any natural number, we conclude that for each x ∈ K , {Aix}∞i=1 is a
Cauchy sequence and there exists limi→∞ Aix. Inequality (2.33) implies that for
each x ∈ K ,

∥∥∥ lim
i→∞Aix − xn

∥∥∥≤ 1/n. (2.34)

Since n is an arbitrary natural number, we conclude that limi→∞ Aix does not de-
pend on x. Hence there is xA ∈ K such that

xA = lim
i→∞Aix for all x ∈ K. (2.35)

By (2.34) and (2.35),

‖xA − xn‖ ≤ 1/n. (2.36)

Inequalities (2.36) and (2.32) imply that for each x ∈ K ,

‖Ax − xA‖ ≤ ‖Ax − xn‖ + ‖xn − xA‖ ≤ 1/n + ‖Ax − xn‖
≤ 1/n + ‖x − xn‖ + 1/n ≤ 2/n + ‖x − xA‖ + ‖xA − xn‖
≤ ‖x − xA‖ + 3/n,

so that

‖Ax − xA‖ ≤ ‖x − xA‖ + 3/n.

Since n is an arbitrary natural number, we conclude that

‖Ax − xA‖ ≤ ‖x − xA‖ for each x ∈ K. (2.37)
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Let ε > 0. Choose a natural number

n > 8/ε. (2.38)

Property (P3) implies that
∥∥Bix − xn

∥∥≤ 1/n for each x ∈ K, each integer i ≥ qn,

and each B ∈A satisfying d(B,A) ≤ δn. (2.39)

Inequalities (2.39), (2.36) and (2.38) imply that for each B ∈ A satisfying d(B,A) ≤
δn, each x ∈ K , and each integer i ≥ qn,

∥∥Bix − xA

∥∥≤ ∥∥Bix − xn

∥∥+ ‖xn − xA‖ ≤ 1/n + 1/n < ε.

This completes the proof of Lemma 2.3. �

Completion of the proof of Theorem 2.1 In order to complete the proof of this the-
orem, it is sufficient, by Lemma 2.3, to show that for each natural number n, the set
A \Fn is porous in (A, d).

Let n be a natural number. Choose a positive number

α < (16n)−12−1((diam(K) + 1
)216 · 8n

)−1
. (2.40)

Let

A ∈A and r ∈ (0,1]. (2.41)

By Proposition 2.2, there exist A0 ∈A and x̄ ∈ K such that

d(A,A0) ≤ r/8 (2.42)

and

‖A0x − x̄‖ ≤ ‖x − x̄‖ for each x ∈ K. (2.43)

Set

γ = 8−1r
(
diam(K) + 1

)−1 (2.44)

and choose a natural number q for which

1 ≤ q
((

diam(K) + 1
)216n · 8r−1)−1 ≤ 2. (2.45)

Define Ā : K → K by

Āx = (1 − γ )A0x + γ x̄, x ∈ K. (2.46)

Clearly, the mapping Ā is continuous and for each x ∈ K ,

‖Āx − x̄‖ = ∥∥(1 − γ )A0x + γ x̄ − x̄
∥∥

= (1 − γ )‖A0x − x̄‖ ≤ (1 − γ )‖x − x̄‖. (2.47)
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Thus Ā ∈A. Relations (2.3), (2.46), (2.1), (2.44) and (2.47) imply that

d(Ā,A0) = sup
{‖Āx − A0x‖ : x ∈ K

}

= sup
{
γ ‖x̄ − A0x‖ : x ∈ K

}≤ γ diam(K) = r/8.

Together with (2.42) this implies that

d(Ā,A) ≤ d(Ā,A0) + d(A0,A) ≤ r/4. (2.48)

Now assume that

B ∈A and d(B, Ā) ≤ αr. (2.49)

Then (2.49), (2.40) and (2.47) imply that for each x ∈ K ,

‖Bx − x̄‖ ≤ ‖Bx − Āx‖ + ‖Āx − x̄‖ ≤ ‖x − x̄‖ + αr ≤ ‖x − x̄‖ + 1/n. (2.50)

In addition, (2.49), (2.48) and (2.40) imply that

d(B,A) ≤ d(B, Ā) + d(Ā,A) ≤ αr + r/4 ≤ r/2. (2.51)

Assume that x ∈ K . We will show that there exists an integer j ∈ [0, q] such that
‖Bjx − x̄‖ ≤ (8n)−1. Assume the contrary. Then

∥∥Bix − x̄
∥∥> (8n)−1, i = 0, . . . , q. (2.52)

Let an integer i ∈ {0, . . . , q − 1}. By (2.49) and (2.47),

∥∥Bi+1x − x̄
∥∥= ∥∥B

(
Bix

)− x̄
∥∥

≤ ∥∥B
(
Bix

)− Ā
(
Bix

)∥∥+ ∥∥Ā
(
Bix

)− x̄
∥∥

≤ d(B, Ā) + ∥∥Ā
(
Bix

)− x̄
∥∥

≤ αr + (1 − γ )
∥∥Bix − x̄

∥∥

and
∥∥Bi+1x − x̄

∥∥≤ αr + (1 − γ )
∥∥Bix − x̄

∥∥.

When combined with (2.52), (2.40) and (2.44), this inequality implies that

∥∥Bix − x̄
∥∥− ∥∥Bi+1x − x̄

∥∥≥ ∥∥Bix − x̄
∥∥− αr − (1 − γ )

∥∥Bix − x̄
∥∥

= γ
∥
∥Bix − x̄

∥
∥− αr > (8n)−1γ − αr ≥ (16n)−1γ,

so that
∥∥Bix − x̄

∥∥− ∥∥Bi+1x − x̄
∥∥≥ (16n)−1γ.
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When combined with (2.1), this inequality implies that

diam(K) ≥ ‖x − x̄‖−∥
∥Bqx − x̄

∥
∥≥

q−1∑

i=0

(∥∥Bix − x̄
∥
∥−∥

∥Bi+1x − x̄
∥
∥)≥ q(16n)−1γ

and

q ≤ diam(K)16n/γ,

a contradiction (see (2.45)). The contradiction we have reached shows that there
exists an integer j ∈ [0, . . . , q − 1] such that

∥∥Bjx − x̄
∥∥≤ (8n)−1. (2.53)

It follows from (2.49) and (2.47) that for each integer i ∈ {0, . . . , q − 1},
∥∥Bi+1x − x̄

∥∥= ∥∥B
(
Bix

)− x̄
∥∥≤ ∥∥B

(
Bix

)− Ā
(
Bix

)∥∥+ ∥∥Ā
(
Bix

)− x̄
∥∥

≤ d(Ā,B) + ∥∥Ā
(
Bix

)− x̄
∥∥≤ αr + ∥∥Bix − x̄

∥∥

and
∥∥Bi+1x − x̄

∥∥≤ ∥∥Bix − x̄
∥∥+ αr.

This implies that for each integer s satisfying j < s ≤ q ,
∥∥Bsx − x̄

∥∥≤ ∥∥Bjx − x̄
∥∥+ αr(s − j) ≤ ∥∥Bjx − x̄

∥∥+ αrq. (2.54)

It follows from (2.53), (2.54), (2.45) and (2.40) that
∥∥Bqx − x̄

∥∥≤ αrq + (8n)−1 ≤ (2n)−1.

Thus we have shown that the following property holds:
For each B satisfying (2.49) and each x ∈ K ,

∥
∥Bqx − x̄

∥
∥≤ (2n)−1 and ‖Bx − x̄‖ ≤ ‖x − x̄‖ + 1/n

(see (2.50)). Thus
{
B ∈A : d(B, Ā) ≤ αr/2

}⊂ Fn ∩ {
B ∈A : d(B,A) ≤ r

}
.

In other words, we have shown that the set A \ Fn is porous in (A, d). This com-
pletes the proof of Theorem 2.1. �

2.2 Convergence of Iterates of Typical Nonexpansive Mappings

Let (X,‖ · ‖) be a Banach space and let K ⊂ X be a nonempty, bounded, closed and
convex subset of X. In this section we show that the iterates of a typical element (in
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the sense of Baire category) of a class of nonexpansive mappings which take K to
X converge uniformly on K to the unique fixed point of this typical element.

Denote by Mne the set of all mappings A : K → X such that

‖Ax − Ay‖ ≤ ‖x − y‖ for all x, y ∈ K.

For each A,B ∈Mne , set

d(A,B) = sup
{‖Ax − Bx‖ : x ∈ K

}
. (2.55)

It is clear that (Mne, d) is a complete metric space. Denote by M0 the set of all
A ∈ Mne such that

inf
{‖x − Ax‖ : x ∈ K

}= 0. (2.56)

In other words, M0 consists of all those nonexpansive mappings taking K into X

which have approximate fixed points. Clearly, M0 is a closed subset of Mne .
Every nonexpansive self-mapping of K belongs to M0. In order to exhibit two

classes of nonself-mappings of K that are also contained in M0, we first recall that
if x ∈ K , then the inward set IK(x) of X with respect to K is defined by

IK(x) := {
z ∈ X : z = x + α(y − x) for some y ∈ K and α ≥ 0

}
.

A mapping A : K → X is said to be weakly inward if Ax belongs to the closure
of IK(x) for each x ∈ K . Consider now a weakly inward mapping A ∈ Mne. Fix
a point z ∈ K and t ∈ [0,1) and let the mapping S : K → X be defined by Sx =
tAx + (1 − t)z, x ∈ K . This strict contraction is also weakly inward and therefore
has a unique fixed point xt ∈ K by Theorem 2.4 in [118]. Since ‖xt − Axt‖ → 0 as
t → 1−, we see that A ∈ M0.

If K has a nonempty interior int(K) and a nonexpansive mapping A : K → X

satisfies the Leray-Schauder condition with respect to w ∈ int(K), that is, Ay −w �=
m(y − w) for all y in the boundary of K and m > 1, then it also belongs to M0.
This is because the strict contraction S : K → X defined by Sx = tAx + (1 − t)w,
x ∈ K , also satisfies the Leray-Schauder condition with respect to w ∈ int(K) and
therefore has a unique fixed point [117].

Set

ρ(K) = sup
{‖z‖ : z ∈ K

}
. (2.57)

Our purpose is to show that the iterates of a typical element (in the sense of Baire
category) of M0 converge uniformly on K to the unique fixed point of this typical
element. As a matter of fact, we are able to establish a more refined result, involving
the notion of porosity.

We are now ready to formulate our result obtained in [152].

Theorem 2.4 There exists a set F ⊂ (M0, d) such that its complement M0 \F is
a σ -porous subset of (M0, d) and each B ∈F has the following properties:

1. There exists a unique point xB ∈ K such that BxB = xB ;
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2. For each ε > 0, there exist δ > 0, a natural number q , and a neighborhood U of
B in (Mne, d) such that:

(a) if C ∈ U , y ∈ K , and ‖y − Cy‖ ≤ δ, then ‖y − xB‖ ≤ ε;
(b) if C ∈ U , {xi}qi=0 ⊂ K , and Cxi = xi+1, i = 0, . . . , q − 1, then ‖xq −

xB‖ ≤ ε.

Although analogous results for the closed subspace of (M0, d) comprising all
nonexpansive self-mappings of K were established by De Blasi and Myjak in [49,
50], Theorem 2.4 seems to be the first generic result dealing with nonself-mappings.
In this connection see also [131, 137].

We begin the proof of Theorem 2.4 with a simple lemma.
Denote by E the set of all A ∈ Mne for which there exists x ∈ K satisfying

Ax = x. That is, E consists of all those nonexpansive mappings A : K → X which
have a fixed point.

Lemma 2.5 E is an everywhere dense subset of (M0, d).

Proof Let A ∈ M0 and ε > 0. By (2.56), there exists x̄ ∈ K such that

‖x̄ − Ax̄‖ < ε/2.

Define

By = Ay + x̄ − Ax̄, y ∈ K. (2.58)

Clearly, B ∈ Mne and Bx̄ = x̄. Thus B ∈ E. It is easy to see that d(A,B) = ‖x̄ −
Ax̄‖ < ε. This completes the proof of Lemma 2.5. �

Proof of Theorem 2.4 For each natural number n, denote by Fn the set of all those
mappings A ∈M0 which have the following property:

(P1) There exist a natural number q , x∗ ∈ K , δ > 0, and a neighborhood U of A in
Mne such that:

(i) if B ∈ U and if z ∈ K satisfies ‖z − Bz‖ ≤ δ, then ‖z − x∗‖ ≤ 1/n;
(ii) if B ∈ U and if {xi}qi=0 ⊂ K satisfies xi+1 = Bxi , i = 0, . . . , q − 1, then

‖xq − x∗‖ ≤ 1/n.

Set

F =
∞⋂

n=1

Fn.

We intend to prove that M0 \F is a σ -porous subset of (M0, d). To meet this goal,
it is sufficient to show that for each natural number n, the set M0 \ Fn is a porous
subset of (M0, d).

Indeed, let n be a natural number. Choose a positive number

α ≤ 2−11(ρ(K) + 1
)−1

n−1. (2.59)
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Let

A ∈ M0 and r ∈ (0,1]. (2.60)

By Lemma 2.5, there are A0 ∈ E and x∗ ∈ K such that

d(A0,A) < r/8 and A0x∗ = x∗. (2.61)

Set

γ = [
32
(
ρ(K) + 1

)]−1
r (2.62)

and

δ = (4n)−1γ − 2αr. (2.63)

By (2.63), (2.62) and (2.56),

δ > 0. (2.64)

Now choose an integer q ≥ 4 such that

(1 − γ )q2
(
ρ(K) + 1

)
< (16n)−1. (2.65)

Define

A1y = (1 − γ )A0y + γ x∗, y ∈ K. (2.66)

Clearly, A1 ∈Mne and

A1x∗ = x∗. (2.67)

By (2.55), (2.66), (2.61) and (2.57),

d(A1,A0) = sup
{‖A1y − A0y‖ : y ∈ K

}= sup
{‖γA0y − γ x∗‖ : y ∈ K

}

= γ sup
{‖A0y − A0x∗‖ : y ∈ K

}

≤ γ sup
{‖y − x∗‖ : y ∈ K

}≤ 2γρ(K),

so that

d(A1,A0) ≤ 2γρ(K). (2.68)

By (2.68), (2.61) and (2.62),

d(A,A1) ≤ d(A,A0) + d(A0,A1) ≤ r/8 + 2γρ(K) ≤ r/4. (2.69)

Assume that B ∈Mne satisfies

d(B,A1) ≤ 2αr. (2.70)

Assume further that

z ∈ K and ‖z − Bz‖ ≤ δ. (2.71)
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By (2.67) and (2.66),

‖A1z − x∗‖ = ‖A1z − A1x∗‖
= (1 − γ )‖A0z − A0x∗‖ ≤ (1 − γ )‖z − x∗‖. (2.72)

By (2.55), (2.70) and (2.72),

‖Bz − z‖ ≥ ‖A1z − z‖ − ‖Bz − A1z‖ ≥ ‖A1z − z‖ − d(B,A1)

≥ ‖A1z − z‖ − 2αr ≥ ‖z − x∗‖ − ‖x∗ − A1z‖ − 2αr

≥ ‖z − x∗‖ − (1 − γ )‖z − x∗‖ − 2αr = γ ‖z − x∗‖ − 2αr.

When combined with (2.71) and (2.63), this inequality implies that

δ ≥ ‖Bz − z‖ ≥ γ ‖z − x∗‖ − 2αr

and

‖z − x∗‖ ≤ γ −1(δ + 2αr) ≤ (4n)−1.

Thus we have shown that

if z ∈ K satisfies ‖z − Bz‖ ≤ δ, then ‖z − x∗‖ ≤ (4n)−1. (2.73)

Now assume that

{xi}qi=0 ⊂ K, Bxi = xi+1, i = 0, . . . , q − 1. (2.74)

By (2.74), (2.55), (2.70), (2.66) and (2.61), for i = 0, . . . , q − 1, there holds

‖xi+1 − x∗‖ = ‖Bxi − x∗‖ ≤ ‖Bxi − A1xi‖ + ‖A1xi − x∗‖
= ‖Bxi − A1xi‖ + ‖A1xi − A1x∗‖
≤ d(B,A1) + (1 − γ )‖A0xi − A0x∗‖
≤ 2αr + (1 − γ )‖xi − x∗‖,

that is,

‖xi+1 − x∗‖ ≤ 2αr + (1 − γ )‖xi − x∗‖.
In view of this inequality, which is valid for i = 0, . . . , q − 1, we get

‖xq − x∗‖ ≤ 2αr

q−1∑

i=0

(1 − γ )i + (1 − γ )q‖x0 − x∗‖

≤ 2αrγ −1 + (1 − γ )q‖x0 − x∗‖ ≤ 2αrγ −1 + 2ρ(K)(1 − γ )q.
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When combined with (2.62), (2.65) and (2.59), this last inequality implies that

‖xq − x∗‖ ≤ (1 − γ )q2ρ(K) + 2α
[
32
(
ρ(K) + 1

)]

≤ (16n)−1 + 64α
[
ρ(K) + 1

]≤ (16n)−1 + (32n)−1 < (8n)−1.

Thus we have shown that

if {xi}qi=0 ⊂ K satisfies (2.74), then ‖xq − x∗‖ ≤ (8n)−1. (2.75)

By (2.75), (2.74) and (2.73), each C ∈ M0 which satisfies d(C,A1) ≤ αr has prop-
erty (P1). Therefore

{
C ∈M0 : d(C,A1) ≤ αr

}⊂ Fn.

When combined with (2.59) and (2.69), this inclusion implies that

{
C ∈ M0 : d(C,A1) ≤ αr

}⊂ {
B ∈M0 : d(B,A) ≤ r

}∩Fn.

This means that M0 \ Fn is a porous set in (M0, d) for all natural numbers n.
Therefore M0 \F is a σ -porous set in (M0, d).

Now let A ∈ F and ε > 0. Choose a natural number

n > 8
(
min{1, ε})−1

. (2.76)

Since A ∈ Fn, property (P1) implies that there exist a natural number qn, a number
δn > 0, a neighborhood Un of A in Mne, and a point xn ∈ K such that the following
property holds:

(P2) (i) if B ∈ Un, z ∈ K , and ‖z − Bz‖ ≤ δn, then ‖z − xn‖ ≤ 1/n;
(ii) if B ∈ Un, {zi}qn

i=0 ⊂ K , and zi+1 = Bzi , i = 0, . . . , qn − 1, then ‖zqn −
xn‖ ≤ 1/n.

Since A ∈M0, there exists a sequence {yi}∞i=1 ⊂ K such that

lim
i→∞‖yi − Ayi‖ = 0. (2.77)

Hence there exists a natural number i0 such that

‖yi − Ayi‖ ≤ δn for all integers i ≥ i0.

When combined with (P2)(i), this implies that

‖xn − yi‖ ≤ 1/n for all integers i ≥ i0. (2.78)

In view of (2.78), for each pair of integers i, j ≥ i0,

‖yi − yj‖ ≤ ‖yi − xn‖ + ‖xn − yj‖ ≤ 2/n < ε.
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Since ε is an arbitrary positive number, we conclude that {yi}∞i=1 is a Cauchy se-
quence and therefore there exists

xA = lim
i→∞yi . (2.79)

Clearly, AxA = xA. It is easy to see that xA is the unique fixed point of A. Indeed,
if it were not unique, then we would be able to construct a nonconvergent sequence
{yi}∞i=0 satisfying (2.77).

By (2.78) and (2.79),

‖xA − xn‖ ≤ 1/n. (2.80)

Now assume that

B ∈ Un, z ∈ K, and ‖z − Bz‖ ≤ δn. (2.81)

By (P2)(i) and (2.81),

‖z − xn‖ ≤ 1/n.

When combined with (2.80) and (2.76), this inequality implies that

‖z − xA‖ ≤ ‖z − xn‖ + ‖xn − xA‖ ≤ 2/n < ε.

Finally, suppose that

B ∈ Un, {zi}qn

i=0 ⊂ K, and Bzi = zi+1, i = 0, . . . , qn − 1. (2.82)

Then by (P2)(ii) and (2.82),

‖zqn − xn‖ ≤ 1/n.

When combined with (2.80) and (2.76), this last inequality implies that

‖zqn − xA‖ ≤ ‖zqn − xn‖ + ‖xn − xA‖ ≤ 2/n < ε.

This completes the proof of Theorem 2.4. �

2.3 A Stability Result in Fixed Point Theory

Let K ⊂ X be a nonempty, compact and convex subset of a Banach space (X,‖ · ‖).
In this section, which is based on [153], we consider a complete metric space of all
the continuous self-mappings of K and show that a typical element of this space
(in the sense of Baire’s categories) has a fixed point which is stable under small
perturbations of the mapping.

Denote by A the set of all continuous mappings A : K → K . For each A,B ∈A,
set

d(A,B) = sup
{‖Ax − Bx‖ : x ∈ K

}
.
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Clearly, (A, d) is a complete metric space. By Schauder’s fixed point theorem, for
each A ∈ A there exists x∗ ∈ K such that Ax∗ = x∗. We begin with the following
simple result.

Proposition 2.6 Let A ∈A, Ω = {x ∈ K : Ax = x}, and let ε > 0. Then there exists
a positive number δ such that for each B ∈A satisfying d(A,B) ≤ δ and each x ∈ K

satisfying Bx = x, there exists y ∈ Ω such that ‖x − y‖ ≤ ε.

Proof Assume the contrary. Then there exist a sequence {Bn}∞n=1 ⊂ A satisfying

d(A,Bn) ≤ 1/n for all integers n ≥ 1, (2.83)

and a sequence {xn}∞n=1 ⊂ K such that for each integer n ≥ 1,

Bnxn = xn and inf
{‖xn − y‖ : y ∈ Ω

}≥ ε. (2.84)

Since K is compact, we may assume without loss of generality that there exists

x∗ = lim
n→∞xn. (2.85)

It follows from (2.85), (2.84), (2.83) and the continuity of A that

‖Ax∗ − x∗‖ ≤ ‖Ax∗ − Axn‖ + ‖Bnxn − Axn‖ + ‖Bnxn − xn‖ + ‖xn − x∗‖
≤ ‖Ax∗ − Axn‖ + 1/n + ‖xn − x∗‖ → 0 as n → ∞.

Thus Ax∗ = x∗, x∗ ∈ Ω , and (2.85) contradicts (2.84). The contradiction we have
reached proves Proposition 2.6. �

In view of this result, it is natural to ask if, given A ∈ A, there is a fixed point
x∗ ∈ K of A with the following property:

For each ε > 0 there exists δ > 0 such that for each B ∈ A satisfying d(A,B) ≤
δ, there exists y ∈ K such that By = y and ‖y − x∗‖ ≤ ε.

Example 2.7 Let X = R1, K = [0,1] and Ax = x, x ∈ K . Clearly, the set of fixed
points of A is the interval [0,1]. For each integer n ≥ 1, define

Anx = (1 − 1/n)x, Bnx = min{x + 1/n,1} for all x ∈ [0,1].
Clearly, Bn,An → A as n → ∞. It is easy to see that for each n ≥ 1, the set of fixed
points of An is the singleton {0} while the set of fixed points of Bn is the interval
[1 − 1/n,1].

This example shows that in general the answer to our question is negative. Nev-
ertheless, we show in this section that for a typical A ∈ A (in the sense of Baire’s
categories) the answer is positive.
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Let K ⊂ X be a nonempty, closed and convex subset of a Banach space (X,‖ ·‖).
Denote by Ã the family of all continuous mappings A : K → K such that the closure
of A(K) is a compact set in the norm topology. It is well known [171] that for each
A ∈ Ã there is xA ∈ K such that AxA = xA.

For each A,B ∈ Ã set

d(A,B) = sup
{‖Ax − Bx‖ : x ∈ K

}
. (2.86)

It is not difficult to see that (Ã, d) is a complete metric space.

Theorem 2.8 There exists a subset F ⊂ Ã which is a countable intersection of open
everywhere dense subsets of (Ã, d) such that for each A ∈ F , there exists x∗ ∈ K

such that

(i) Ax∗ = x∗;
(ii) for each ε > 0 there exists δ > 0 such that if B ∈ Ã satisfies d(A,B) ≤ δ, then

there is z ∈ K which satisfies Bz = z and ‖z − x∗‖ ≤ ε.

Two auxiliary propositions will precede the proof of Theorem 2.8.

Proposition 2.9 Let A ∈ Ã, ε > 0 and let x∗ ∈ K satisfy Ax∗ = x∗. Then there
exist B ∈ Ã and δ > 0 such that d(B,A) ≤ ε and Bz = x∗ for each z ∈ K satisfying
‖z − x∗‖ ≤ δ.

Proof There exists δ > 0 such that for each z ∈ K satisfying ‖z − x∗‖ ≤ 4δ, the
following inequality holds:

‖Az − x∗‖ ≤ ε/4. (2.87)

By Urysohn’s theorem, there exists a continuous function λ : X → [0,1] such that

λ(z) = 1 for each z ∈ X satisfying ‖z − x∗‖ ≤ δ (2.88)

and

λ(z) = 0 for each z ∈ X satisfying ‖z − x∗‖ ≥ 2δ. (2.89)

Define

Bz = λ(z)x∗ + (
1 − λ(z)

)
Az (2.90)

for all z ∈ K .
Clearly, B : K → K is continuous, B(K) is contained in a compact subset of X,

and

Bx∗ = x∗. (2.91)

By (2.90), (2.88) and (2.89), for each z ∈ K satisfying ‖z − x∗‖ ≤ δ, we have

Bz = x∗, (2.92)
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and for each z ∈ K satisfying ‖z − x∗‖ ≥ 2δ,

Bz = Az. (2.93)

It follows from (2.90) and the choice of δ (see (2.87)) that for each z ∈ K satisfying
‖z − x∗‖ ≤ 2δ,

‖Bz − Az‖ = ∥∥λ(z)x∗ + (
1 − λ(z)

)
Az − Az

∥∥

≤ ‖x∗ − Az‖ ≤ ε/4.

This completes the proof of Proposition 2.9. �

Proposition 2.10 Let A ∈ Ã, ε > 0, let x∗ ∈ K be a fixed point of A, and let
B ∈ Ã, δ > 0 be as guaranteed by Proposition 2.9. Then for each C ∈ Ã satisfy-
ing d(C,B) ≤ δ, there is y ∈ K such that

Cy = y and ‖y − x∗‖ ≤ d(C,B).

Proof By Proposition 2.9,

d(A,B) ≤ ε (2.94)

and

Bz = x∗ for each z ∈ K satisfying ‖z − x∗‖ ≤ δ. (2.95)

Assume that C ∈ Ã satisfies

d(C,B) ≤ δ. (2.96)

Set

Ω = {
z ∈ K : ‖z − x∗‖ ≤ d(C,B)

}
. (2.97)

Clearly, Ω is a closed and convex set. It follows from (2.97), (2.96) and (2.95) that
for each z ∈ Ω ,

‖x∗ − Cz‖ ≤ ‖x∗ − Bz‖ + ‖Bz − Cz‖ = ‖Bz − Cz‖ ≤ d(C,B)

and Cz ∈ Ω . Thus C(Ω) ⊂ Ω . Clearly C(Ω) ⊂ C(X) is contained in a compact
subset of X. By Schauder’s theorem there is y ∈ Ω such that Cy = y. Proposi-
tion 2.10 is proved. �

Proof of Theorem 2.8 Let A ∈ Ã and ε ∈ (0,1). By Propositions 2.9 and 2.10, there
exist

Aε ∈ Ã, xA,ε ∈ K and δA,ε ∈ (0,1)

such that
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d(A,Aε) ≤ ε, (2.98)

Aεz = xA,ε for each z ∈ K satisfying ‖z − xA,ε‖ ≤ δA,ε, (2.99)

and the following property holds:

(P) For each C ∈ Ã satisfying d(C,Aε) ≤ δA,ε , there is y ∈ K such that

Cy = y, ‖y − xA,ε‖ ≤ d(C,Aε).

For each integer i ≥ 1, set

U(A, ε, i) = {
C ∈ Ã : d(C,Aε) < δA,ε/i

}
. (2.100)

Define

F =
∞⋂

i=1

⋃{
U(A, ε, i) : A ∈ Ã, ε ∈ (0,1)

}
. (2.101)

Clearly, F is a countable intersection of open and everywhere dense subsets of
(Ã, d).

Let B ∈ F . For each integer i ≥ 1, there are Ai ∈ Ã and εi ∈ (0,1) such that

B ∈ U(Ai, εi, i). (2.102)

It follows from (2.102), (2.100) and property (P) that for each integer i ≥ 1, there
yi ∈ K such that

Byi = yi (2.103)

and

‖yi − xAi,εi
‖ ≤ d

(
A, (Ai)εi

)≤ δAi,εi
/i. (2.104)

Since {yi}∞i=1 ⊂ B(K), there is a subsequence {yik }∞k=1 which converges to x∗ ∈ K .
Clearly, Bx∗ = x∗.

Let ε > 0. There exists a natural number k such that

i−1
k < 8−1ε and ‖yik − x∗‖ ≤ ε/8. (2.105)

It follows from (2.104) and (2.105) that

‖yik − xAik
,εik

‖ ≤ 1/ik < ε/8. (2.106)

Inequalities (2.105) and (2.106) imply that

‖x∗ − xAik
,εik

‖ ≤ ‖x∗ − yik‖ + ‖yik − xAik
,εik

‖ ≤ ε/4. (2.107)

Let

C ∈ U(Aik , εik , ik). (2.108)
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It follows from (2.108), (2.100), (2.105) and property (P) that there exists a point
z ∈ K such that

Cz = z and ‖z − xAik
,εik

‖ ≤ d
(
C, (Aik )εik

)≤ 1/ik ≤ ε/8.

When combined with (2.107), this implies that

‖z − x∗‖ ≤ ‖z − xAik
,εik

‖ + ‖xAik
,εik

− x∗‖ ≤ ε/2.

Theorem 2.8 is proved. �

2.4 Well-Posed Null and Fixed Point Problems

The notion of well-posedness is of great importance in many areas of mathemat-
ics and its applications. In this section we consider two complete metric spaces of
continuous mappings and establish generic well-posedness of certain null and fixed
point problems. Our results, which were obtained in [154], are a consequence of
the variational principle established in [74]. For other related results concerning the
well-posedness of fixed point problems see [50, 139].

Let (X,‖ · ‖,≥) be a Banach space ordered by a closed convex cone X+ = {x ∈
X : x ≥ 0} such that ‖x‖ ≤ ‖y‖ for each pair of points x, y ∈ X+ satisfying x ≤ y.
Let (K,ρ) be a complete metric space. Denote by M the set of all continuous
mappings A : K → X. We equip the set M with the uniformity determined by the
following base:

E(ε) = {
(A,B) ∈M×M : ‖Ax − Bx‖ ≤ ε for all x ∈ K

}
, (2.109)

where ε > 0. It is not difficult to see that this uniform space is metrizable (by a
metric d) and complete.

Denote by Mp the set of all A ∈ M such that

Ax ∈ X+ for all x ∈ K (2.110)

and

inf
{‖Ax‖ : x ∈ K

}= 0. (2.111)

It is not difficult to see that Mp is a closed subset of (M, d).
We can now state and prove our first result.

Theorem 2.11 There exists an everywhere dense Gδ subset F ⊂ Mp such that for
each A ∈F , the following properties hold:

1. There is a unique x̄ ∈ K such that Ax̄ = 0.
2. For any ε > 0, there exist δ > 0 and a neighborhood U of A in Mp such that if

B ∈ U and if x ∈ K satisfies ‖Bx‖ ≤ δ, then ρ(x, x̄) ≤ ε.
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Proof We obtain this theorem as a realization of the variational principle established
in Theorem 2.1 of [74] with fA(x) = ‖Ax‖, x ∈ K . In order to prove our theorem
by using this variational principle we need to prove the following assertion:

(A) For each A ∈ Mp and each ε > 0, there are Ā ∈ Mp , δ > 0, x̄ ∈ K and a
neighborhood W of Ā in Mp such that

(A, Ā) ∈ E(ε),

and if B ∈ W and z ∈ K satisfy ‖Bz‖ ≤ δ, then

ρ(z, x̄) ≤ ε.

Let A ∈Mp and ε > 0. Choose ū ∈ X+ such that

‖ū‖ = ε/4, (2.112)

and x̄ ∈ K such that

‖Ax̄‖ ≤ ε/8. (2.113)

Since A is continuous, there is a positive number r such that

r < min{1, ε/16} (2.114)

and

‖Ax − Ax̄‖ ≤ ε/8 for each x ∈ K satisfying ρ(x, x̄) ≤ 4r. (2.115)

By Urysohn’s theorem, there is a continuous function φ : K → [0,1] such that

φ(x) = 1 for each x ∈ K satisfying ρ(x, x̄) ≤ r (2.116)

and

φ(x) = 0 for each x ∈ K satisfying ρ(x, x̄) ≥ 2r. (2.117)

Define

Āx = (
1 − φ(x)

)
(Ax + ū), x ∈ K. (2.118)

It is clear that Ā : K → X is continuous. Now (2.116)–(2.118) imply that

Āx = 0 for each x ∈ K satisfying ρ(x, x̄) ≤ r (2.119)

and

Āx ≥ ū for each x ∈ K satisfying ρ(x, x̄) ≥ 2r. (2.120)

It is not difficult to see that Ā ∈Mp . We claim that (A, Ā) ∈ E(ε).
Let x ∈ K . There are two cases: either

ρ(x, x̄) ≥ 2r (2.121)
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or

ρ(x, x̄) < 2r. (2.122)

Assume first that (2.121) holds. Then it follows from (2.121), (2.117), (2.118) and
(2.112) that

‖Ax − Āx‖ = ‖ū‖ = ε/4.

Now assume that (2.122) holds. Then by (2.122), (2.118) and (2.112),

‖Āx − Ax‖ = ∥∥(1 − φ(x)
)
(Ax + ū) − Ax

∥∥≤ ‖ū‖ + ‖Ax‖
≤ ε/4 + ‖Ax‖.

It follows from this inequality, (2.122), (2.115) and (2.113) that

‖Āx − Ax‖ ≤ ε/4 + ‖Ax‖ < ε/2.

Therefore in both cases ‖Āx−Ax‖ ≤ ε/2. Since this inequality holds for any x ∈ K ,
we conclude that

(A, Ā) ∈ E(ε). (2.123)

Consider now an open neighborhood U of Ā in Mp such that

U ⊂ {
B ∈ Mp : (Ā,B) ∈ E(ε/16)

}
. (2.124)

Let

B ∈ U, z ∈ K (2.125)

and

‖Bz‖ ≤ ε/16. (2.126)

Relations (2.126), (2.125), (2.124) and (2.109) imply that

‖Āz‖ ≤ ‖Bz‖ + ‖Āz − Bz‖ ≤ ε/16 + ε/16. (2.127)

We claim that

ρ(z, x̄) ≤ ε. (2.128)

Assume the contrary. Then by (2.114),

ρ(z, x̄) > ε ≥ 2r.

When combined with (2.120), this implies that

Āz ≥ ū.
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It follows from this inequality, the monotonicity of the norm, (2.125), (2.124),
(2.109) and (2.112) that

‖Bz‖ ≥ ‖Āz‖ − ε/16 ≥ ‖ū‖ − ε/16 = ε/4 − ε/16 = 3ε/16.

This, however, contradicts (2.126). The contradiction we have reached proves
(2.128) and Theorem 2.11 itself. �

Now assume that the set K is a subset of X and

ρ(x, y) = ‖x − y‖, x, y ∈ K.

Denote by Mn the set of all mappings A ∈ M such that

Ax ≥ x for all x ∈ K

and

inf
{‖Ax − x‖ : x ∈ K

}= 0.

Clearly, Mn is a closed subset of (M, d). Define a map J :Mn → Mp by

J (A)x = Ax − x for all x ∈ K

and all A ∈ Mn. Clearly, there exists J−1 : Mp → Mn, and both J and its inverse
J−1 are continuous. Therefore Theorem 2.11 implies the following result regarding
the generic well-posedness of the fixed point problem for A ∈Mn.

Theorem 2.12 There exists an everywhere dense Gδ subset F ⊂ Mn such that for
each A ∈F , the following properties hold:

1. There is a unique x̄ ∈ K such that Ax̄ = x̄.
2. For any ε > 0, there exist δ > 0 and a neighborhood U of A in Mn such that if

B ∈ U and if x ∈ K satisfies ‖Bx − x‖ ≤ δ, then ‖x − x̄‖ ≤ ε.

2.5 Mappings in a Finite-Dimensional Euclidean Space

In this section we study the existence and stability of fixed points of continuous map-
pings in finite-dimensional Euclidean spaces. Our results [156] establish generic
existence and stability of fixed points for a class of nonself-mappings defined on
certain closed (but not necessarily either convex or bounded) subsets of a finite-
dimensional Euclidean space. In these results, we endow the relevant space of map-
pings with two topologies, one weaker than the other. In the first result we find an
open (in the weak topology) and everywhere dense (in the strong topology) set such
that each mapping in it possesses a fixed point. In the second result we construct a
countable intersection of open (in the weak topology) and everywhere dense (in the
strong topology) sets such that each mapping in this intersection has a stable fixed
point.



38 2 Fixed Point Results and Convergence of Powers of Operators

Let K ⊂ Rn be a nonempty, closed subset of the n-dimensional Euclidean space
(Rn,‖ · ‖). We assume that K is the closure of its nonempty interior int(K).

For each x ∈ Rn and each r > 0, set B(x, r) = {y ∈ Rn : ‖x − y‖ ≤ r} and fix
θ ∈ K .

Denote by M the set of all continuous mappings A : K → Rn. We equip the
space M with the uniformity determined by the base

Ew(N, ε) = {
(A,B) ∈M×M : ‖Ax − Bx‖ ≤ ε

for all x ∈ B(θ,N) ∩ K
}
, (2.129)

where N,ε > 0.
Clearly, the space M with this uniformity is metrizable and complete. We equip

the space M with the topology induced by this uniformity. This topology will be
called the weak topology.

We also equip the space M with the uniformity determined by the base

Es(ε) = {
(A,B) ∈ M×M : ‖Ax − Bx‖ ≤ ε for all x ∈ K

}
, (2.130)

where ε > 0. Clearly, the space M with this uniformity is also metrizable and com-
plete. The topology induced by this uniformity on M will be called the strong topol-
ogy.

Denote by Mf the set of all A ∈ M which have approximate fixed points. In
other words, the set Mf consists of all A ∈M such that

inf
{‖x − Ax‖ : x ∈ K

}= 0. (2.131)

It is clear that Mf is a closed subset of M with the strong topology.
Note that if the set K is bounded, then Mf consists of all those elements of M

which have fixed points. Every self-mapping of K which is a strict contraction, that
is, has a Lipschitz constant strictly less than one, clearly belongs to Mf .

If K is bounded and convex and a continuous mapping A : K → Rn satisfies the
Leray-Schauder condition with respect to w ∈ int(K), that is, Ay − w �= m(y − w)

for all y on the boundary of K and m > 1, then it also belongs to Mf . If such an
A is a strict contraction, then this continues to be true even if K is neither bounded
nor convex.

We endow the topological subspace Mf ⊂ M with both the relative weak and
strong topologies.

The following two results were obtained in [156].

Theorem 2.13 Let γ ∈ (0,1). There exists an open (in the weak topology) and ev-
erywhere dense (in the strong topology) set Fγ ⊂ Mf such that for each A ∈ Fγ ,
there are xA ∈ int(K), rA ∈ (0,1), and a neighborhood U of A in Mf with the weak
topology such that

B(xA, rA) ⊂ K and AxA = xA,

and for each C ∈ U , there is xC ∈ K such that CxC = xC and ‖xC − xA‖ ≤ γ rA.
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Theorem 2.14 There exists a set F ⊂ Mf which is a countable intersection of
open (in the weak topology) and everywhere dense (in the strong topology) subsets
of Mf such that for each A ∈ F and each γ ∈ (0,1), there exist xA ∈ int(K),
rA ∈ (0,1), and a neighborhood U of A in Mf with the weak topology such that

B(xA, rA) ⊂ K and AxA = xA,

and for each C ∈ U there is xC ∈ K such that CxC = xC and ‖xC − xA‖ ≤ γ rA.

Example 2.15 Let n = 1, K =⋃∞
j=0[2j,2j + 1], and define, for each integer j ≥ 1

and each x ∈ [2j,2j + 1], Ax = x + 2−j . Clearly, inf{|x − Ax| : x ∈ K} = 0 but A

is fixed point free.

In order to prove Theorem 2.13 we need two auxiliary results.
Denote by E the set of all A ∈Mf for which there exist

xA ∈ int(K) and rA ∈ (0,1) (2.132)

such that

B(xA, rA) ⊂ K and Ay = xA for all y ∈ B(xA, rA/4). (2.133)

Lemma 2.16 The set E is an everywhere dense subset of Mf with the strong topol-
ogy.

Proof Let A ∈ Mf and ε > 0. By the definition of Mf (see (2.131)), there exists
x0 ∈ K such that

‖Ax0 − x0‖ < ε/16. (2.134)

Since K is the closure of int(K) and A is continuous, there is x1 ∈ int(K) such that

‖x1 − x0‖ < ε/16 and ‖Ax1 − Ax0‖ < ε/16. (2.135)

Set

A1y = Ay − Ax1 + x1, y ∈ K. (2.136)

Clearly, A1 ∈M. In view of (2.136),

A1x1 = x1. (2.137)

By (2.136), (2.135) and (2.134), for each y ∈ K ,

‖Ay − A1y‖ = ‖Ax1 − x1‖ ≤ ‖Ax1 − Ax0‖ + ‖Ax0 − x0‖ + ‖x0 − x1‖
< 3ε/16. (2.138)
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Since A1 has a fixed point (see (2.137)), it is clear that A1 ∈ Mf . Since A1 is
continuous and x1 ∈ int(K), there exists r1 ∈ (0,1) such that

B(x1, r1) ⊂ K and ‖A1x − A1x1‖ ≤ ε/16 for all x ∈ B(x1, r1). (2.139)

Define

ψ(t) = 1, t ∈ [0, r1/2], ψ(t) = 0, t ∈ [r1,∞),

ψ(t) = 2(r1 − t)r−1
1 , t ∈ (r1/2, r1),

(2.140)

and

By = ψ
(‖y − x1‖

)
x1 + (

1 − ψ
(‖y − x1‖

))
A1y, y ∈ K. (2.141)

Clearly, B ∈M. It follows from (2.141) and (2.140) that for each y ∈ B(x1, r1/2),

By = x1. (2.142)

Therefore B ∈ E . We will now show that

‖By − Ay‖ ≤ ε for all x ∈ K.

Indeed, let y ∈ K . There are two cases to be considered:

‖x1 − y‖ ≤ r1; (2.143)

‖x1 − y‖ > r1. (2.144)

If (2.144) holds, then (2.144), (2.141), (2.140) and (2.138) imply that

By = A1y and ‖By − Ay‖ = ‖A1y − Ay‖ < ε/4. (2.145)

Let (2.143) hold. Then by (2.143), (2.141), (2.140), (2.137) and (2.139),

‖By −A1y‖ = ∥∥ψ
(‖y −x1‖

)
(x1 −A1y)

∥∥≤ ‖x1 −A1y‖ = ‖A1x1 −A1y‖ < ε/16.

When combined with (2.138), this inequality implies that

‖By − Ay‖ ≤ ‖By − A1y‖ + ‖A1y − Ay‖ ≤ ε/16 + 3ε/16 = ε/4.

Thus

‖By − Ay‖ ≤ ε/4 for all y ∈ K.

This completes the proof of Lemma 2.16. �

Lemma 2.17 Let A ∈ E , xA ∈ int(K), rA ∈ (0,1) satisfy (2.133) and let γ ∈ (0,1).
Then there exists a neighborhood U of A in Mf with the weak topology such that
for each B ∈ U , there is xB ∈ K such that ‖xB − xA‖ ≤ γ rA/4 and BxB = xB .
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Proof Set

Δ = γ rA/4 (2.146)

and put

U = {
B ∈ Mf : ‖Bz − Az‖ ≤ Δ for each z ∈ B(xA, rA)

}
. (2.147)

Clearly, U is a neighborhood of A in Mf with the weak topology.
Let B ∈ U . It follows from (2.147), (2.133) and (2.146) that for each z ∈

B(xA,γ rA/4),

‖Bz − xA‖ ≤ ‖Bz − Az‖ + ‖Az − xA‖ ≤ Δ + ‖Az − xA‖ = Δ = γ rA/4.

Thus

B
(
B(xA,γ rA/4)

)⊂ B(xA,γ rA/4).

Since the mapping B is continuous, there is xB ∈ B(xA,γ rA/4) such that

BxB = xB.

Lemma 2.17 is proved. �

Proof of Theorem 2.13 Let A ∈ E . There exist xA ∈ int(K) and rA ∈ (0,1) such that
(2.133) holds. By Lemma 2.17, there exists an open neighborhood U(A) of A in
Mf with the weak topology such that the following property holds:

(P1) For each B ∈ U(f ), there is xB ∈ K such that

BxB = xB and ‖xB − xA‖ ≤ γ rA/8. (2.148)

Set

Fγ =
⋃{

U(A) : A ∈ E
}
. (2.149)

By Lemma 2.16, Fγ is an open (in the weak topology) and everywhere dense (in
the strong topology) subset of Mf .

Let B ∈ Fγ . By (2.149), there is A ∈ E such that

B ∈ U(A). (2.150)

By property (P1), for each C ∈ U(A), there is xC ∈ K such that

CxC = xC and ‖xC − xA‖ ≤ γ rA/8. (2.151)

Clearly,

‖xB − xA‖ ≤ γ rA/8. (2.152)

It follows from (2.152) and (2.135) that

B(xB, rA/2) ⊂ B(xA, rA) ⊂ K. (2.153)
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By (2.151) and (2.152), for each C ∈ U(A),

‖xC − xB‖ ≤ ‖xC − xA‖ + ‖xA − xB‖ ≤ γ rA/8 + γ rA/8 = γ rA/4.

This completes the proof of Theorem 2.13. �

Proof of Theorem 2.14 For each integer n ≥ 1, let Fn be as guaranteed in Theo-
rem 2.13 with γ = (2n)−1. Set

F =
∞⋂

n=1

Fn. (2.154)

Clearly, F is a countable intersection of open (in the weak topology), everywhere
dense (in the strong topology) subsets of Mf .

Let A ∈F and γ ∈ (0,1). Choose a natural number n such that

n−1 < γ/8. (2.155)

Since A ∈ Fn and the assertion of Theorem 2.13 holds with γ = (2n)−1 and Fγ =
Fn, there are xA ∈ int(K), rA ∈ (0,1), and a neighborhood U of A in Mf with the
weak topology such that B(xA, rA) ⊂ K , AxA = xA, and for each C ∈ U , there is
xC ∈ K such that CxC = xC and

‖xC − xA‖ ≤ rA(2n)−1 < rAγ.

Thus Theorem 2.14 is also proved. �

2.6 Approximate Fixed Points

Let (K,ρ) be a complete metric space such that

sup
{
ρ(x, y) : x, y ∈ K

}= ∞,

and let (X,‖ · ‖,≥) be a Banach space ordered by a closed convex cone

X+ = {x ∈ X : x ≥ 0}.
We assume that ‖x‖ ≤ ‖y‖ for each x, y ∈ X+ which satisfy x ≤ y.

Denote by A the set of all continuous mappings A : K → X+. We equip the set
A with the uniformity determined by the following base:

Es(ε) = {
(A,B) ∈ A×A : ‖Ax − Bx‖ ≤ ε for all x ∈ K

}
, (2.156)

where ε > 0 [80]. Clearly, the uniform space obtained in this way is metrizable and
complete. The uniformity determined by (2.156) induces a topology on A which is
called the strong topology.
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Denote by F0 the set of all A ∈A for which

inf
{‖Ax‖ : x ∈ K

}
> 0.

Theorem 2.18 The set F0 is an open everywhere dense subset of A with the strong
topology.

Proof Let A ∈ F0. There is r > 0 such that

‖Ax‖ ≥ r for all x ∈ K. (2.157)

Set

U = {
B ∈A : (B,A) ∈ Es(r/4)

}
. (2.158)

Clearly, U is a neighborhood of A in A with the strong topology. Assume that
B ∈ U . Then it follows from (2.157) and (2.158) that for each x ∈ K ,

‖Bx‖ ≥ ‖Ax‖ − ‖Ax − Bx‖
≥ r − ‖Ax − Bx‖ ≥ r − r/4 = 3r/4.

Thus B ∈ F0. This implies that U ⊂ F0. In other words, we have shown that F0 is
an open subset of F0 with the strong topology.

Now we show that F0 is an everywhere dense subset of A with the strong topol-
ogy. Let A ∈F0 and ε > 0. Choose u ∈ X such that

u ∈ X+ and ‖u‖ = ε/2, (2.159)

and set

Bx = Ax + u, x ∈ K. (2.160)

By (2.159) and (2.160), for each x ∈ K ,

‖Bx‖ = ‖Ax + u‖ ≥ ‖u‖ = ε/2.

Thus B ∈ F0. In view of (2.160), (2.159) and (2.156), (A,B) ∈ Es(ε). Therefore
F0 is an everywhere dense subset of A with the strong topology. Theorem 2.18 is
proved. �

Now we equip the set A with a topology which will be called the weak topology.
Fix θ ∈ K . For each ε,n > 0, set

Ew(ε,n) = {
(A,B) ∈A×A : ‖Ax − Bx‖ ≤ ε

for each x ∈ K satisfying ρ(θ, x) ≤ n
}
. (2.161)

We equip the set A with the uniformity determined by the base

Ew(ε,n), ε, n > 0.
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Clearly, the uniform space obtained in this way is metrizable and complete. The
uniformity determined by (2.161) induces in the set A a topology which is called
the weak topology.

Theorem 2.19 There exists a set F1 ⊂ A which is a countable intersection of open
everywhere dense subsets of A with the weak topology such that for each A ∈ F1,

inf
{‖Ax‖ : x ∈ K

}= 0. (2.162)

Proof Denote by E the set of all A ∈ A for which there is x ∈ K such that Ax = 0.
First we show that E is an everywhere dense subset of A with the weak topology.
Let A ∈A and ε,n > 0. Choose x̄ ∈ K such that

ρ(θ, x̄) ≥ 4n + 4. (2.163)

By Urysohn’s theorem there is a continuous function φ : K → [0,1] such that

φ(x) = 1 if ρ(x, x̄) ≤ 1

and

φ(x) = 0 if ρ(x, x̄) ≥ 2. (2.164)

Set

Bx = (
1 − φ(x)

)
Ax, x ∈ K. (2.165)

Clearly, B ∈A. In view of (2.164) and (2.165),

φ(x̄) = 1 and Bx̄ = 0.

Thus B ∈ E . Let x ∈ K satisfy

ρ(x, θ) ≤ n. (2.166)

It follows from (2.166) and (2.163) that

ρ(x̄, x) ≥ ρ(x̄, θ) − ρ(θ, x)

≥ 4n + 4 − n = 3n + 4.

When combined with (2.164) and (2.165), this implies that

φ(x) = 0 and Bx = Ax.

Thus Bx = Ax for each x ∈ K satisfying (2.166). The definition of the base Ew

(see (2.161)) implies that (A,B) ∈ Ew(ε,n). In other words we have shown that E
is an everywhere dense subset of A with the weak topology.

Let A ∈ E and let n ≥ 1 be an integer. There is xA ∈ K such that

AxA = 0. (2.167)
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Since A is continuous, there is r ∈ (0,1) such that

‖Ax‖ ≤ (4n)−1 for each x ∈ K satisfying ρ(x, xA) ≤ r. (2.168)

Choose an open neighborhood U(A,n) of A in A with the weak topology such that

U(A,n) ⊂ {
B ∈A : (A,B) ∈ Ew

(
(4n)−1, n + 4 + ρ(θ, xA)

)}
. (2.169)

Let

B ∈ U(A,n), x ∈ K, ρ(x, xA) ≤ r. (2.170)

By (2.170) and (2.168),

‖Ax‖ ≤ (4n)−1. (2.171)

In view of (2.170) and since r < 1,

ρ(θ, x) ≤ ρ(θ, xA) + ρ(xA, x)

≤ ρ(θ, xA) + r < ρ(θ, xA) + 1.

Together with (2.169), (2.170) and (2.161), this inequality implies that

‖Ax − Bx‖ ≤ (4n)−1.

When combined with (2.171), this inequality implies that ‖Bx‖ ≤ 1/n. Thus we
have shown that the following property holds:

(P0) For each B ∈ U(A,n), inf{‖Bz‖ : z ∈ K} ≤ 1/n.

Set

F1 =
∞⋂

n=1

⋃{
U(A,n) : A ∈ E

}
. (2.172)

Clearly, F1 is a countable intersection of open everywhere dense (in the weak topol-
ogy) subsets of A.

Let B ∈ F1 and ε > 0. Choose a natural number n such that

8/n < ε. (2.173)

By (2.172), there is A ∈ E such that

B ∈ U(A,n).

It follows from this inclusion, property (P0) and (2.173) that

inf
{‖Bz‖ : z ∈ K

}≤ 1/n < ε.

Since ε is an arbitrary positive number, we conclude that

inf
{‖Bz‖ : z ∈ K

}= 0.

Theorem 2.19 is proved. �
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Assume now that K is a subset of X and that

ρ(x, y) = ‖x − y‖, x, y ∈ K.

Denote by B the set of all continuous mappings A : K → X such that

Ax ≥ x for all x ∈ K.

For each A ∈ B, denote by J (A) the mapping defined by

J (A)x = Ax − x, x ∈ K.

Clearly, J (B) = A, and if A1,A2 ∈ B are such that

J (A1) = J (A2),

then A1 = A2. We equip the set B with the uniformity determined by the following
base:

Es(ε) = {
(A,B) ∈ B ×B : ‖Ax − Bx‖ ≤ ε for all x ∈ K

}
,

where ε > 0. It is not difficult to see that the space B with this uniformity is metriz-
able and complete. This uniformity induces in B a topology which is called the
strong topology. It is easy to see that the mapping J is a homeomorphism of the
spaces B and A with the strong topologies. Thus Theorem 2.18 implies the follow-
ing result.

Corollary 2.20 The set of all A ∈ B for which

inf
{‖Ax − x‖ : x ∈ K

}
> 0

is an open everywhere dense subset of B with the strong topology.

We also equip the set B with the uniformity determined by the following base:

Ew(ε,n) = {
(A,B) ∈ B ×B : ‖Ax − Bx‖ ≤ ε

for each x ∈ K satisfying ‖θ − x‖ ≤ n
}

where n, ε > 0. It is not difficult to see that the space B with this uniformity is
metrizable and complete. This uniformity induces in B a topology which is called
the weak topology. It is easy to see that the mapping J is a homeomorphism of the
spaces B and A with the weak topologies.

Therefore Theorem 2.19 implies the following corollary.

Corollary 2.21 There exists a set F ⊂ B which is a countable intersection of open
and everywhere dense subsets of B with the weak topology such that for each A ∈F ,

inf
{‖Ax − x‖ : x ∈ K

}= 0.

The results of this section were obtained in [157].
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2.7 Generic Existence of Small Invariant Sets

In this section we consider generic properties of mappings with approximate fixed
points. More precisely, let K be a closed and convex subset of a Banach space
(X,‖ · ‖). We consider a complete metric space of all the continuous self-mappings
of K with approximate fixed points. We show that a typical element of this space
(in the sense of Baire’s categories) has invariant balls of arbitrarily small radii. This
result was obtained in [146].

Denote by A the set of all mappings A : K → K such that

inf
{‖x − Ax‖ : x ∈ K

}= 0. (2.174)

We equip the set A with the uniformity determined by the following base:

E(ε) = {
(A,B) ∈A×A : ‖Ax − Bx‖ ≤ ε for all x ∈ K

}
, (2.175)

where ε > 0. It is easy to see that the uniform space A is metrizable (by a metric d).
We first observe that (A, d) is a complete metric space.

Proposition 2.22 The metric space (A, d) is complete.

Proof Let {Ai}∞i=1 ⊂ A be a Cauchy sequence. Then for any ε > 0, there is a natural
number iε such that

‖Aix − Ajx‖ ≤ ε for all integers i, j ≥ iε and all x ∈ K. (2.176)

This implies that for each x ∈ K , {Aix}∞i=1 is a Cauchy sequence and there exists

Ax := lim
i→∞Aix. (2.177)

Let ε > 0 and let a natural number iε satisfy (2.176). Relations (2.176) and (2.177)
imply that for each integer j ≥ iε and each x ∈ K ,

‖Ax − Ajx‖ = lim
i→∞‖Aix − Ajx‖ ≤ ε.

Thus

‖Ax − Ajx‖ ≤ ε for each integer j ≥ iε and each x ∈ K. (2.178)

In order to complete the proof of Proposition 2.22, it is sufficient to show that the
mapping A satisfies (2.174).

Let δ > 0. Then in view of (2.178) there is a natural number i0 such that

‖Ax − Ai0x‖ ≤ δ/4 for all x ∈ K. (2.179)

Since Ai0 ∈A, there is y ∈ K such that

‖Ai0y − y‖ ≤ δ/4.
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When combined with (2.179), this inequality implies that

‖Ay − y‖ ≤ ‖Ay − Ai0y‖ + ‖Ai0y − y‖ ≤ δ/4 + δ/4 = δ/2.

Since δ is any positive number, we conclude that A ∈ A. This completes the proof
of Proposition 2.22. �

Denote by Ac the set of all continuous A ∈ A. Clearly, Ac is a closed subset of
(A, d).

Theorem 2.23 There exists a set F ⊂ Ac which is a countable intersection of open
and everywhere dense subsets of Ac such that each A ∈ F has the following prop-
erty:

For each γ ∈ (0,1), there are xγ ∈ K , r ∈ (0,1], and a neighborhood U of A in
Ac such that for each C ∈ U ,

C
({

z ∈ K : ‖z − xγ ‖ ≤ r
})⊂ {

z ∈ K : ‖z − xγ ‖ ≤ γ r
}
. (2.180)

Corollary 2.24 Assume that for each x ∈ K , the set {z ∈ K : ‖z − x‖ ≤ 1} is com-
pact. Let F be as guaranteed by Theorem 2.23, and let A ∈F , γ ∈ (0,1).

Then there are xA ∈ K and a neighborhood U of A in Ac such that for each
C ∈ U , there is a point z ∈ K so that ‖z − xA‖ ≤ γ and Cz = z.

Corollary 2.25 Assume that X is finite-dimensional. Then the assertion of Corol-
lary 2.24 holds.

Corollary 2.26 Assume that the assumptions of Corollary 2.24 hold, and that
A ∈F and ε > 0. Then there are x̄ ∈ K and r ∈ (0,1] such that

Ax̄ = x̄ and A
({

z ∈ K : ‖z − x̄‖ ≤ r
})⊂ {

z ∈ K : ‖z − x̄‖ ≤ εr
}
.

Proof Choose a positive number γ such that

γ < 1/2 and γ < ε/8. (2.181)

By Theorem 2.23, there are xγ ∈ K and r ∈ (0,1] such that (2.180) holds with
C = A. By Schauder’s theorem, there is x̄ ∈ K such that

‖x̄ − xγ ‖ ≤ γ r and Ax̄ = x̄. (2.182)

We have, by (2.182),
{
z ∈ K : ‖z − xγ ‖ ≤ γ r

}⊂ {
z ∈ K : ‖z − x̄‖ ≤ 2γ r

}
.

When combined with (2.180) (with C = A), this inclusion implies that

A
({

z ∈ K : ‖z − xγ ‖ ≤ r
})⊂ {

z ∈ K : ‖z − x̄‖ ≤ 2γ r
}
. (2.183)
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On the other hand, by (2.181) and (2.182),
{
z ∈ K : ‖z − x̄‖ ≤ r/2

}⊂ {
z ∈ K : ‖z − xγ ‖ ≤ r

}
. (2.184)

It now follows from (2.184), (2.183) and (2.181) that

A
({

x ∈ K : ‖z − x̄‖ ≤ r/2
})⊂ A

({
x ∈ K : ‖z − xγ ‖ ≤ r

})

⊂ {
z ∈ K : ‖z − x̄‖ ≤ εr/4

}
.

Corollary 2.26 is proved. �

Corollary 2.27 Assume that X is finite-dimensional. Then the assertion of Corol-
lary 2.26 holds.

Corollary 2.28 Let K be compact. Then Ac is the set of all continuous mappings
A : K → K and the assertion of Corollary 2.26 holds.

We begin the proof of Theorem 2.23 with the following lemma.

Lemma 2.29 Let A ∈ Ac and ε > 0. Then there are x∗ ∈ K , r > 0, and B ∈ Ac

such that

‖Ax − Bx‖ ≤ ε for all x ∈ K,

Bx = x∗ for all x ∈ K satisfying ‖x − x∗‖ ≤ r.

Proof Since A ∈Ac (see (2.174)), there is x∗ ∈ K such that

‖Ax∗ − x∗‖ ≤ ε/8. (2.185)

There also is a number r ∈ (0,1) such that

‖Ax − Ax∗‖ ≤ ε/8 for each x ∈ K such that ‖x − x∗‖ ≤ 2r. (2.186)

By Urysohn’s theorem, there exists a continuous function φ : K → [0,1] such that

φ(x) = 1, x ∈ {z ∈ K : ‖z − x∗‖ ≤ r
}

(2.187)

and

φ(x) = 0, x ∈ K and ‖x − x∗‖ ≥ 2r.

Set

Bx = φ(x)x∗ + (
1 − φ(x)

)
Ax, x ∈ K. (2.188)

Clearly, B : K → K is continuous, and

Bx = x∗ for all x ∈ K such that ‖x − x∗‖ ≤ r. (2.189)
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Now we show that

‖Bx − Ax‖ ≤ ε for all x ∈ K.

Let x ∈ K . There are two cases: (1) ‖x − x∗‖ ≤ 2r ; (2) ‖x − x∗‖ > 2r .
Consider the first case. Then (2.188), (2.185) and (2.186) imply that

‖Ax − Bx‖ = ∥∥Ax − φ(x)x∗ − (
1 − φ(x)

)
Ax

∥∥

= φ(x)‖x∗ − Ax‖ ≤ ‖x∗ − Ax‖ ≤ ‖x∗ − Ax∗‖ + ‖Ax∗ − Ax‖
≤ ε/8 + ε/8 = ε/4.

Consider now the second case. Then by (2.188) and (2.187),

‖Ax − Bx‖ = ‖Ax − Ax‖ = 0.

Thus ‖Ax − Bx‖ ≤ ε for all x ∈ K . Lemma 2.29 is proved. �

Proof of Theorem 2.23 Denote by E the set of all A ∈ Ac with the following prop-
erty:

There are x∗ ∈ K and r > 0 such that Ax = x∗ for all x ∈ K satisfying ‖x −
x∗‖ ≤ r .

By Lemma 2.29, E is an everywhere dense subset of Ac.
Let A ∈ E and let n be a natural number. There are xA ∈ K and rA ∈ (0,1) such

that

Ax = xA for all x ∈ K satisfying ‖x − xA‖ ≤ rA. (2.190)

Denote by U(A,n) the open neighborhood of A in Ac such that

U(A,n) ⊂ {
B ∈Ac : (A,B) ∈ E(rA/n)

}
. (2.191)

Let B ∈ U(A,n). Clearly,

‖By − Ay‖ ≤ rA/n ≤ 1/n for all y ∈ K. (2.192)

By (2.190) and (2.192), for all y ∈ K such that ‖y − xA‖ ≤ rA,

‖By − xA‖ ≤ ‖By − Ay‖ + ‖Ay − xA‖ ≤ ‖By − Ay‖ ≤ rA/n.

Thus

‖By − xA‖ ≤ rA/n for all y ∈ K such that ‖y − xA‖ ≤ rA. (2.193)

We have shown that the following property holds:

(P1) For each B ∈ U(A,n), (2.193) is true.
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Define

F =
∞⋂

n=1

⋃{
U(A,n) : A ∈ E

}
.

Clearly, F is a countable intersection of open and everywhere dense subsets of Ac.
Let B ∈F and γ ∈ (0,1). Choose a natural number n such that 8/n < γ . By the

definition of F , there are A ∈ E such that

B ∈ U(A,n). (2.194)

It follows from property (P1) and (2.193) that for each C ∈ U(A,n),

C
({

z ∈ K : ‖z − xA‖ ≤ rA
})⊂ {

z ∈ K : ‖z − xA‖ ≤ rA/n
}

⊂ {
z ∈ K : ‖z − xA‖ ≤ γ rA

}
.

This completes the proof of Theorem 2.23. �

2.8 Many Nonexpansive Mappings Are Strict Contractions

Let K be a nonempty, bounded, closed and convex subset of a Banach space
(X,‖ · ‖). In this section we consider the space of all nonexpansive self-mappings of
K equipped with an appropriate complete metric d and prove that the complement
of the subset of strict contractions is porous. This result was established in [150].

Set

rad(K) = sup
{‖x‖ : x ∈ K

}
(2.195)

and

d(K) = sup
{‖x − y‖ : x, y ∈ K

}
.

For each A : K → X, let

Lip(A) = sup
{‖Ax − Ay‖/‖x − y‖ : x, y ∈ K,x �= y

}
(2.196)

be the Lipschitz constant of A. Denote by A the set of all nonexpansive mappings
A : K → K , that is, all self-mappings of K with Lip(A) ≤ 1, or equivalently, all
self-mappings of K which satisfy

‖Ax − Ay‖ ≤ ‖x − y‖ for all x, y ∈ K. (2.197)

We say that a self-mapping A : K → K is a strict contraction if Lip(A) < 1. Our
new metric is defined by

d(A,B) = sup
{‖Ax − Bx‖ : x ∈ K

}+ Lip(A − B), (2.198)

where A,B ∈ A. It is not difficult to see that the metric space (A, d) is complete.



52 2 Fixed Point Results and Convergence of Powers of Operators

Theorem 2.30 Denote by F the set of all strict contractions A ∈ A. Then A \F is
porous.

Proof Fix a number α > 0 such that

α <
(
1 + 2 rad(K)

)−1
32−1 (2.199)

and fix θ ∈ K . Let A ∈ A and let r ∈ (0,1]. Set

γ = (
1 + 2 rad(K)

)−1
r/8 (2.200)

and put

Aγ x = (1 − γ )Ax + γ θ, x ∈ K. (2.201)

Clearly, Aγ ∈A and for each x, y ∈ K ,

‖Aγ x − Aγ y‖ = (1 − γ )‖Ax − Ay‖ ≤ (1 − γ )‖x − y‖. (2.202)

By (2.201), (2.195), (2.196) and (2.198), for each x ∈ K ,

‖Aγ x − Ax‖ = ∥∥(1 − γ )Ax + γ θ − Ax
∥∥= γ ‖θ − Ax‖

≤ 2γ rad(K),

Lip(Aγ − A) = sup
{∥∥(Aγ − A)x − (Aγ − A)y

∥∥/‖x − y‖ : x, y ∈ K,x �= y
}

= sup
{∥∥(γ θ − γAx) − (γ θ − γAy)

∥∥/‖x − y‖ : x, y ∈ K,x �= y
}

= γ sup
{‖Ax − Ay‖/‖x − y‖ : x, y ∈ K,x �= y

}≤ γ,

and

d(A,Aγ ) ≤ 2γ rad(K) + γ = γ
(
1 + 2 rad(K)

)
. (2.203)

Relations (2.200) and (2.203) imply that

d(A,Aγ ) ≤ r/8. (2.204)

Assume that B ∈A,

d(B,Aγ ) ≤ αr. (2.205)

In view of (2.205), (2.198), (2.202) and (2.200), we see that

Lip(B) ≤ Lip(Aγ ) + Lip(B − Aγ ) ≤ Lip(Aγ ) + d(B,Aγ )

≤ Lip(Aγ ) + αr ≤ (1 − γ ) + αr

= 1 − (r/8)
(
1 + 2 rad(K)

)−1 + r(32
(
1 + 2 rad(K)

)−1

≤ 1 − (r/16)
(
1 + 2 rad(K)

)−1
< 1
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and so B ∈F . Clearly, by (2.205), (2.204) and (2.199),

d(B,A) ≤ d(B,Aγ ) + d(Aγ ,A) ≤ αr + r/8 ≤ r.

Thus for each B ∈ A satisfying (2.205), B ∈ F and d(B,A) ≤ r . This completes
the proof of Theorem 2.30. �

Now let F be a nonempty closed convex subset of K . For each x ∈ K , set

ρ(x,F ) = inf
{‖x − y‖ : y ∈ F

}
. (2.206)

Assume that there exists P ∈A such that

P(K) = F, Px = x, x ∈ F. (2.207)

Denote by A(F ) the set of all A ∈ A such that

Ax = x, x ∈ F. (2.208)

Clearly, A(F ) is a closed subset of (A, d).

Theorem 2.31 Denote by F the set of all A ∈ A(F ) which have the following prop-
erty:

There is a number q ∈ (0,1) such that

ρ(Ax,F ) ≤ qρ(x,F ) for all x ∈ K.

Then A(F ) \F is a porous subset of (A(F ), d).

Proof Fix a number α > 0 such that

α <
(
1 + 2 rad(K)

)−132−1. (2.209)

Let A ∈A(F ) and r ∈ (0,1]. Set

γ = (
1 + 2 rad(K)

)−1
r/8 (2.210)

and put

Aγ x = (1 − γ )Ax + γPx, x ∈ K. (2.211)

Clearly, Aγ ∈A,

Aγ x = x, x ∈ F, and Aγ ∈ A(F ). (2.212)

For each x ∈ K and y ∈ F , we have by (2.211),
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ρ(Aγ x,F ) = ρ
(
(1 − γ )Ax + γPx,F

)

≤ ∥∥(1 − γ )Ax + γPx − (
(1 − γ )y + γPx

)∥∥

= (1 − γ )‖Ax − y‖ ≤ (1 − γ )‖x − y‖.
Hence

ρ(Aγ x,F ) ≤ (1 − γ ) inf
{‖x − y‖ : y ∈ F

}= (1 − γ )ρ(x,F ).

Thus

ρ(Aγ x,F ) ≤ (1 − γ )ρ(x,F ), x ∈ K. (2.213)

By (2.211), (2.195), and (2.199), we have for x ∈ K ,

‖Aγ x − Ax‖ = ∥∥(1 − γ )Ax + γPx − Ax
∥∥= γ ‖Px − Ax‖ ≤ 2γ rad(K),

Lip(Aγ − A) = Lip
(
(1 − γ )A + γP − A

)

= Lip(γ P − γA) ≤ 2γ

and

d(A,Aγ ) ≤ 2γ rad(K) + 2γ = 2γ
(
rad(K) + 1

)
. (2.214)

It follows from (2.214) and (2.210) that

d(A,Aγ ) ≤ r/4. (2.215)

Assume now that

B ∈A(F )

and

d(B,Aγ ) ≤ αr. (2.216)

Then by (2.216), (2.215) and (2.209),

d(B,A) ≤ d(B,Aγ ) + d(Aγ ,A) ≤ αr + r/4 ≤ r. (2.217)

Let x ∈ K and y ∈ F . It follows from (2.208), (2.212), (2.211), (2.196), (2.198),
(2.216), (2.209) and (2.210) that

ρ(Bx,F ) ≤ ∥∥Bx − (
(1 − γ )y + γPx

)∥∥

≤ ‖Bx − Aγ x‖ + ∥∥Aγ x − [
(1 − γ )y + γPx

]∥∥

≤ ∥∥(Bx − By) − (Aγ x − Aγ y)
∥∥+ (1 − γ )‖Ax − y‖

≤ ∥∥(B − Aγ )x − (B − Aγ )y
∥∥+ (1 − γ )‖x − y‖

≤ Lip(B − Aγ )‖x − y‖ + (1 − γ )‖x − y‖
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≤ αr‖x − y‖ + (1 − γ )‖x − y‖ = ‖x − y‖(αr + 1 − γ )

≤ ‖x − y‖(1 − (
1 + 2 rad(K)

)−1
/16

)
.

Therefore

ρ(Bx,F ) ≤ (
1 − (

1 + 2 rad(K)
)−1

/16
)

inf
{‖x − y‖ : y ∈ F

}

= (
1 − (

1 + 2 rad(K)
)−1

/16
)
ρ(x,F ).

Thus B ∈ F . This completes the proof of Theorem 2.31. �

2.9 Krasnosel’skii-Mann Iterations of Nonexpansive Operators

In this section we study the convergence of Krasnosel’skii-Mann iterations of non-
expansive operators on a closed and convex, but not necessarily bounded, subset of
a hyperbolic space. More precisely, we show that in an appropriate complete metric
space of nonexpansive operators, there exists a subset which is a countable inter-
section of open and everywhere dense sets such that each operator belonging to this
subset has a (necessarily) unique fixed point and the Krasnosel’skii-Mann iterations
of the operator converge to it.

Let (X,ρ,M) be a complete hyperbolic space and let K be a closed and
ρ-convex subset of X. Denote by A the set of all operators A : K → K such that

ρ(Ax,Ay) ≤ ρ(x, y) for all x, y ∈ K. (2.218)

Fix some θ ∈ K and for each s > 0, set

B(s) = {
x ∈ K : ρ(x, θ) ≤ s

}
. (2.219)

For the set A we consider the uniformity determined by the following base:

E(n) = {
(A,B) ∈ A×A : ρ(Ax,Bx) ≤ n−1 for all x, y ∈ B(n)

}
, (2.220)

where n is a natural number. Clearly the uniform space A is metrizable and com-
plete.

A mapping A : K → K is called regular if there exists a necessarily unique
xA ∈ K such that

lim
n→∞Anx = xA for all x ∈ K.

A mapping A : K → K is called super-regular if there exists a necessarily unique
xA ∈ K such that for each s > 0,

Anx → xA as n → ∞ uniformly on B(s).
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Denote by I the identity operator. For each pair of operators A,B : K → K and
each r ∈ [0,1], define an operator rA ⊕ (1 − r)B by

(
rA ⊕ (1 − r)B

)
(x) = rAx ⊕ (1 − r)Bx, x ∈ K.

In this section we prove the following three results [132].

Theorem 2.32 Let A : K → K be super-regular and let ε, s be positive numbers.
Then there exist a neighborhood U of A in A and an integer n0 ≥ 2 such that for
each B ∈ U , each x ∈ B(s) and each integer n ≥ n0, the following inequality holds:
ρ(xA,Bnx) ≤ ε.

Theorem 2.33 There exists a set F0 ⊂ A which is a countable intersection of open
and everywhere dense sets in A such that each A ∈ F0 is super-regular.

Let {r̄n}∞n=1 be a sequence of positive numbers from the interval (0,1) such that

lim
n→∞ r̄n = 0 and

∞∑

n=1

r̄n = ∞.

Theorem 2.34 There exists a set F ⊂ A which is a countable intersection of open
and everywhere dense sets in A such that each A ∈ F is super-regular and the
following assertion holds:

Let xA ∈ K be the unique fixed point of A ∈ F and let δ, s > 0. Then there exist
a neighborhood U of A in A and an integer n0 ≥ 1 such that for each sequence of
positive numbers {rn}∞n=1 satisfying rn ∈ [r̄n,1], n = 1,2, . . . , and each B ∈ U the
following relations hold:

(i)

ρ
((

rnB ⊕ (1 − rn)I
) · · · (r1B ⊕ (1 − r1)I

)
x,

(
rnB ⊕ (1 − rn)I

) · · · (r1B ⊕ (1 − r1)I
)
y
)≤ δ

for each integer n ≥ n0 and each x, y ∈ B(s);
(ii) if B ∈ U is regular, then

ρ
((

rnB ⊕ (1 − rn)I
) · · · (r1B ⊕ (1 − r1)I

)
x, xA

)≤ δ

for each integer n ≥ n0 and each x ∈ B(s).

Proof of Theorem 2.32 We may assume that ε ∈ (0,1). Recall that xA is the unique
fixed point of A. There exists an integer n0 ≥ 4 such that for each x ∈ B(2s + 2 +
2ρ(xA, θ)) and each integer n ≥ n0,

ρ
(
xA,Anx

)≤ 8−1ε. (2.221)
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Set

U = {
B ∈ A : ρ(Ax,Bx) ≤ (8n0)

−1ε, x ∈ B
(
8s + 8 + 8ρ(xA, θ)

)}
. (2.222)

Let B ∈ U . It is easy to see that for each x ∈ K and all integers n ≥ 1,

ρ
(
Anx,Bnx

)≤ ρ
(
Anx,ABn−1x

)+ ρ
(
ABn−1x,Bnx

)

≤ ρ
(
An−1x,Bn−1x

)+ ρ
(
ABn−1x,Bnx

)
(2.223)

and

ρ
(
Bnx,xA

)≤ ρ
(
Bnx,Anx

)+ ρ
(
Anx,xA

)≤ ρ
(
Bnx,Anx

)+ ρ(x, xA)

≤ ρ
(
Bnx,Anx

)+ ρ(x, θ) + ρ(θ, xA). (2.224)

Using (2.222), (2.223) and (2.224) we can show by induction that for all x ∈ B(4s +
4 + 4ρ(xA, θ)), and for all n = 1,2, . . . , n0,

ρ
(
Anx,Bnx

)≤ (8n0)
−1εn (2.225)

and

ρ
(
Bnx, θ

)≤ 2ρ(xA, θ) + ρ(x, θ) + 1

2
.

Let y ∈ B(s). We intend to show that ρ(xA,Bny) ≤ ε for all integers n ≥ n0. Indeed,
by (2.225),

ρ
(
θ,Bmy

)≤ 1

2
+ 2ρ(xA, θ) + s, m = 1, . . . , n0. (2.226)

By (2.225) and (2.221),

ρ
(
xA,Bn0y

)≤ ε/2. (2.227)

Now we are ready to show by induction that for all integers m ≥ n0,

ρ
(
xA,Bmy

)≤ ε. (2.228)

By (2.227), inequality (2.228) is valid for m = n0.
Assume that an integer k ≥ n0 and that (2.228) is valid for all integers m ∈

[n0, k]. Together with (2.226) this implies that

ρ
(
θ,Biy

)≤ 1

2
+ 2ρ(xA, θ) + s, i = 1, . . . , k. (2.229)

Set

j = 1 + k − n0 and x = Bjy. (2.230)

By (2.229), (2.230), (2.221) and (2.225),

ρ
(
An0x,Bn0x

)≤ ε/8, ρ
(
xA,An0x

)≤ ε/8 and ρ
(
xA,Bk+1y

)≤ ε/4.

This completes the proof of Theorem 2.32. �



58 2 Fixed Point Results and Convergence of Powers of Operators

Proof of Theorem 2.33 For each A ∈A and γ ∈ (0,1), define Aγ : K → K by

Aγ x = (1 − γ )Ax ⊕ γ θ, x ∈ K.

Let A ∈A and γ ∈ (0,1). Clearly,

ρ(Aγ x,Aγ y) ≤ (1 − γ )ρ(Ax,Ay) ≤ (1 − γ )ρ(x, y), x, y ∈ K.

Therefore there exists x(A,γ ) ∈ K such that

Aγ

(
x(A,γ )

)= x(A,γ ).

Evidently, Aγ is super-regular and the set {Aγ : A ∈ A, γ ∈ (0,1)} is everywhere
dense in A. By Theorem 2.32, for each A ∈ A, each γ ∈ (0,1) and each inte-
ger i ≥ 1, there exist an open neighborhood U(A,γ, i) of Aγ in A and an integer
n(A,γ, i) ≥ 2 such that the following property holds:

(i) for each B ∈ U(A,γ, i), each x ∈ B(4i+1) and each n ≥ n(A,γ, i),

ρ
(
x(A,γ ),Bnx

)≤ 4−i−1.

Define

F0 =
∞⋂

q=1

⋃{
U(A,γ, i) : A ∈ U,γ ∈ (0,1), i = q, q + 1, . . .

}
.

Clearly, F0 is a countable intersection of open and everywhere dense sets in A.
Let A ∈ F0. There exist sequences {Aq}∞q=1 ⊂ A, {γq}∞q=1 ⊂ (0,1) and a strictly

increasing sequence of natural numbers {iq}∞q=1 such that

A ∈ U(Aq, γq, iq), q = 1,2, . . . . (2.231)

By property (i) and (2.231), for each x ∈ B(4iq+1) and each integer n ≥ n(Aq,

γq, iq),

ρ
(
x(Aq, γq),Anx

)≤ 4−iq−1.

This implies that A is super-regular. Theorem 2.33 is proved. �

In order to prove Theorem 2.34 we need the following auxiliary results.
Let

r̄n ∈ (0,1), n = 1,2, . . . , lim
n→∞ r̄n = 0,

∞∑

n=1

r̄n = 1. (2.232)

Lemma 2.35 Let A ∈ A, S1 > 0 and let n0 ≥ 2 be an integer. Then there exist a
neighborhood U of A in A and a number S∗ > S1 such that for each B ∈ U , each
sequence {ri}n0−1

i=1 ⊂ (0,1] and each sequence {xi}n0
i=1 ⊂ K satisfying

x1 ∈ B(S1), xi+1 = riBxi ⊕ (1 − ri)xi, i = 1, . . . , n0 − 1, (2.233)
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the following relations hold:

xi ∈ B(S∗), i = 1, . . . , n0.

Proof Set

Si+1 = 2Si + 2 + 2ρ(θ,Aθ), i = 1, . . . , n0 − 1, and S∗ = Sn0 . (2.234)

Set

U = {
B ∈A : ρ(Ax,Bx) ≤ 1, x ∈ B(S∗)

}
. (2.235)

Assume that B ∈ U , {ri}n0−1
i=1 ⊂ (0,1], {xi}n0

i=1 ⊂ K and that (2.233) holds. We will
show that

ρ(θ, xi) ≤ Si, i = 1, . . . , n0. (2.236)

Clearly, (2.236) is valid for i = 1. Assume that the integer m ∈ [1, n0 − 1] and that
(2.236) holds for all integers i = 1, . . . ,m. Then by (2.236) with i = m, (2.233),
(2.235) and (2.234),

ρ(θ, xm+1) = ρ
(
θ, rmB(xm) ⊕ (1 − rm)xm

)

≤ ρ
(
rmB(θ) ⊕ (1 − rm)xm, rmB(xm) ⊕ (1 − rm)xm

)

+ ρ
(
θ, rmB(θ) ⊕ (1 − rm)xm

)

≤ rmρ(θ, xm) + ρ
(
θ,B(θ)

)+ ρ
(
B(θ), rmB(θ) ⊕ (1 − rm)xm

)

≤ Sm + ρ
(
θ,A(θ)

)+ ρ
(
A(θ),B(θ)

)+ ρ
(
B(θ), xm

)

≤ Sm + ρ
(
θ,A(θ)

)+ 1 + ρ(xm, θ) + ρ(θ,Aθ) + ρ
(
A(θ),B(θ)

)

≤ 2Sm + 2ρ
(
θ,A(θ)

)+ 2 = Sm+1.

Lemma 2.35 is proved. �

For each A ∈A and each γ ∈ (0,1), define Aγ : K → K by

Aγ x = (1 − γ )Ax ⊕ γ θ, x ∈ K. (2.237)

Let A ∈A and γ ∈ (0,1). Clearly,

ρ(Aγ x,Aγ y) ≤ (1 − γ )ρ(x, y), x, y ∈ K. (2.238)

There exists x(A,γ ) ∈ K such that

Aγ

(
x(A,γ )

)= x(A,γ ).

Clearly, Aγ is super-regular and the set {Aγ : A ∈ A, γ ∈ (0,1)} is everywhere
dense in A.
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Lemma 2.36 Let A ∈A, γ ∈ (0,1), r ∈ (0,1] and x, y ∈ X. Then

ρ
(
rAγ x ⊕ (1 − r)x, rAγ y ⊕ (1 − r)y

)≤ (1 − γ r)ρ(x, y).

Proof By (2.238),

ρ
(
rAγ x ⊕ (1 − r)x, rAγ y ⊕ (1 − r)y

)≤ rρ(Aγ x,Aγ y) + (1 − r)ρ(x, y)

≤ (1 − r)ρ(x, y) + r(1 − γ )ρ(x, y)

= ρ(x, y)(1 − γ r).

Lemma 2.36 is proved. �

Lemma 2.37 Let A ∈ A, γ ∈ (0,1) and δ, S > 0. Then there exist a neighborhood
U of Aγ in A and an integer n0 ≥ 4 such that for each B ∈ U , each sequence of
numbers ri ∈ [r̄i ,1], i = 1, . . . , n0 −1, and each x, y ∈ B(S), the following inequal-
ity holds:

ρ
((

rn0−1B ⊕ (1 − rn0−1)I
) · · · (r1B ⊕ (1 − r1)I

)
x,

(
rn0−1B ⊕ (1 − rn0−1)I

) · · · (r1B ⊕ (1 − r1)I
)
y
)≤ δ.

Proof Choose a number

γ0 ∈ (0, γ ). (2.239)

Clearly,
∏∞

i=1(1 − γ0r̄i ) → 0 as n → ∞. Therefore there exists an integer n0 ≥ 4
such that

(2S + 2)

n0−1∏

i=1

(1 − γ0r̄i ) < δ/2. (2.240)

By Lemma 2.35, there exist a neighborhood U1 of Aγ in A and a number S∗ > 0

such that for each B ∈ U1, each sequence {ri}n0−1
i=1 ⊂ (0,1], and each sequence

{xi}n0
i=1 ⊂ X satisfying

x1 ∈ B(S), xi+1 = riBxi ⊕ (1 − ri)xi, i = 1, . . . , n0 − 1, (2.241)

the following relations hold:

xi ∈ B(S∗), i = 1, . . . , n0. (2.242)

Choose a natural number m1 such that

m1 > 2S∗ + 2 and 8m−1
1 < δ(γ − γ0)ri , i = 1, . . . , n0 − 1, (2.243)

and define

U = {
B ∈ U1 : ρ(Aγ x,Bx) < m−1

1 , x ∈ B(m1)
}
. (2.244)



2.9 Krasnosel’skii-Mann Iterations of Nonexpansive Operators 61

Assume that B ∈ U , ri ∈ [r̄i ,1], i = 1, . . . , n0 − 1, and

x, y ∈ B(S). (2.245)

Set

x1 = x, y1 = y, xi+1 = riBxi ⊕ (1 − ri)xi,

yi+1 = riByi ⊕ (1 − ri)yi, i = 1, . . . , n0 − 1.
(2.246)

It follows from the definition of U1 (see (2.241) and (2.242)) that

yi, xi ∈ B(S∗), i = 1, . . . , n0. (2.247)

To prove the lemma it is sufficient to show that

ρ(xn0, yn0) ≤ δ. (2.248)

Assume the contrary. Then

ρ(xi, yi) > δ, i = 1, . . . , n0. (2.249)

Fix i ∈ {1, . . . , n0 −1}. It follows from (2.246), (2.247), (2.243), (2.244) and (2.237)
that

ρ(xi+1, yi+1) = ρ
(
riBxi ⊕ (1 − ri)xi, riByi ⊕ (1 − ri)yi

)

≤ ρ
(
riAγ xi ⊕ (1 − ri)xi, riAγ yi ⊕ (1 − ri)yi

)

+ ρ(Aγ xi,Bxi) + ρ(Aγ yi,Byi)

≤ riρ(Aγ xi,Aγ yi) + (1 − ri)ρ(xi, yi) + 2m−1
1

≤ 2m−1
1 + (1 − ri)ρ(xi, yi) + riρ(xi, yi)(1 − γ )

≤ 2m−1
1 + ρ(xi, yi)

(
1 − ri + ri(1 − γ )

)

= 2m−1
1 + ρ(xi, yi)(1 − γ ri). (2.250)

By (2.250), (2.243) and (2.249),

ρ(xi+1, yi+1) ≤ ρ(xi, yi)(1 − γ0ri),

and since this inequality holds for all i ∈ {1, . . . , n0 − 1}, it follows from (2.245)
and (2.240) that

ρ(xn0 , yn0) ≤ 2S

n0−1∏

i=1

(1 − γ0ri) < δ/2.

This contradicts (2.249) and proves Lemma 2.37. �



62 2 Fixed Point Results and Convergence of Powers of Operators

Proof of Theorem 2.34 Let

{r̄n}∞n=1 ⊂ (0,1), lim
n→∞ r̄n = 0,

∞∑

n=1

r̄n = ∞. (2.251)

By Theorem 2.33, there exists a set F0 ⊂ A which is a countable intersection of
open and everywhere dense sets such that each A ∈ F0 is super-regular.

For each A ∈A and each γ > 0, define Aγ ∈A by

Aγ x = (1 − γ )Ax ⊕ γ θ, x ∈ K.

Clearly, Aγ is super-regular, and for each A ∈ A and γ ∈ (0,1), there exists
x(A,γ ) ∈ K for which

Aγ

(
x(A,γ )

)= x(A,γ ). (2.252)

Let A ∈ A, γ ∈ (0,1) and let i ≥ 1 be an integer. By Lemma 2.37, there exist an
open neighborhood U1(A,γ, i) of Aγ in A and an integer n0(A,γ, i) ≥ 4 such that
the following property holds:

(a) for each B ∈ U1(A,γ, i), each sequence of numbers

rj ∈ [r̄j ,1], j = 1, . . . , n0(A,γ, i) − 1,

and each pair of sequences {xi}n0(A,γ,i)

i=1 , {yi}n0(A,γ,i)

i=1 ⊂ X satisfying

x1, y1 ∈ B
(
8i+1(4 + 4ρ

(
x(A,γ ), θ

)))
, (2.253)

xi+1 = riBxi ⊕ (1 − ri)xi, yi+1 = riByi ⊕ (1 − ri)yi,

i = 1, . . . , n0(A,γ, i) − 1, (2.254)

the following inequality holds:

ρ(xn0(A,γ,i), yn0(A,γ,i)) ≤ 8−i−1. (2.255)

Since Aγ is super-regular, by Theorem 2.32 there is an open neighborhood
U(A,γ, i) of Aγ in A and an integer n(A,γ, i), such that

U(A,γ, i) ⊂ U1(A,γ, i), n(A,γ, i) ≥ n0(A,γ, i), (2.256)

and the following property holds:
(b) for each B ∈ U(A,γ, i), each x ∈ B(8i+1(2 + 2ρ(x(A,γ ), θ))) and each

integer m ≥ n(A,γ, i),

ρ
(
x(A,γ ),Bmx

)≤ 8−1−i . (2.257)

Define

F = F0 ∩
[ ∞⋂

q=1

⋃{
U(A,γ, i) : A ∈A, γ ∈ (0,1), i = q, q + 1, . . .

}
]

.

Clearly, F is a countable intersection of open and everywhere dense sets in A.
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Let A ∈F . Then A ∈ F0 and it is super-regular. There exists x(A) ∈ K such that

A
(
x(A)

)= x(A). (2.258)

There also exist sequences {Aq}∞q=1 ⊂ A, {γq}∞q=1 ⊂ (0,1) and a strictly increasing
sequence of natural numbers {iq}∞q=1 such that

A ∈ U(Aq, γq, iq), q = 1,2, . . . . (2.259)

Let δ, s > 0. Choose a natural number q such that

2q > 16(s + 1) and 2−q < 8−1δ, (2.260)

and consider the open set U(Aq, γq, iq).
Let rj ∈ [r̄j ,1], j = 1,2, . . . , and B ∈ U(Aq, γq, iq). By property (a), the first

part the theorem (assertion (i)) is valid.
To prove assertion (ii), assume, in addition, that B is regular. Then there is

x(B) ∈ K such that

B
(
x(B)

)= x(B). (2.261)

By property (b),

ρ
(
x(Aq, γq), x(A)

)
, ρ
(
x(Aq, γq), x(B)

)≤ 8−iq−1. (2.262)

Let x1 ∈ B(s) and

xj+1 = rjBxj ⊕ (1 − rj )xj , j = 1,2, . . . .

It follows from property (a) and (2.261) that

ρ
(
xj , x(B)

)≤ 8−iq−1 for all integers j ≥ n(Aq, γq, iq).

Together with (2.262) and (2.260), this implies that for all integers j ≥ n(Aq, γq, iq),

ρ
(
xj , x(A)

)≤ 3 · 8−iq−1 < δ.

This completes the proof of Theorem 2.34. �

2.10 Power Convergence of Order-Preserving Mappings

In this section we study the asymptotic behavior of the iterations of those order-
preserving mappings on an interval 〈0, u∗〉 in an ordered Banach space X for which
the origin is a fixed point. Here u∗ is an interior point of the cone of positive elements
X+ of the space X. Such classes of order-preserving mappings arise, for example,
in mathematical economics. We show that for a generic mapping there exists a fixed
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point which belongs to the interior of X+ such that the iterations of the mapping
with an initial point in the interior of X+ converge to it.

Let (X,‖ · ‖) be a Banach space ordered by a closed cone X+ with a nonempty
interior such that ‖x‖ ≤ ‖y‖ for each x, y ∈ X+ satisfying x ≤ y. For each u,v ∈ X

such that u ≤ v denote

〈u,v〉 = {x ∈ X : u ≤ x ≤ v}.
Let u∗ be an interior point of X+. Define

‖x‖∗ = inf
{
r ∈ [0,∞) : −ru∗ ≤ x ≤ ru∗

}
, x ∈ X. (2.263)

Clearly, ‖ · ‖∗ is a norm on X which is equivalent to the norm ‖ · ‖.
An operator A : 〈0, u∗〉 → 〈0, u∗〉 is called monotone if

Ax ≤ Ay for each x, y ∈ 〈0, u∗〉 such that x ≤ y. (2.264)

Denote by M the set of all monotone continuous operators A : 〈0, u∗〉 → 〈0, u∗〉
such that

A(0) = 0 (2.265)

and

A(αz) ≥ αAz for all z ∈ 〈0, u∗〉 and α ∈ [0,1]. (2.266)

Geometrically, (2.266) means that the hypograph of A is star-shaped with respect to
the origin.

For the space M we define a metric ρ : M×M → [0,∞) by

ρ(A,B) = sup
{‖Ax − Bx‖∗ : x ∈ 〈0, u∗〉

}
, A,B ∈ M. (2.267)

It is easy to see that the metric space M is complete.
An operator A : 〈0, u∗〉 → 〈0, u∗〉 is called concave if for all x, y ∈ 〈0, u∗〉 and

α ∈ [0,1],
A
(
αx + (1 − α)y

)≥ αAx + (1 − α)Ay. (2.268)

We denote by Mco the set of all concave operators A ∈ M. Clearly, Mco is
a closed subset of M. We consider the topological subspace Mco ⊂ M with the
relative topology.

The spaces M and Mco are very important, for example, from the point of view
of mathematical economics. In this area of research order-preserving mappings A

are usually models of economic dynamics and the condition A(0) = 0 means that
if we have no resources, then we produce nothing. Concavity means that the com-
bination of resources allows one to produce at least the corresponding combination
of outputs and even more than this combination. Monotonicity means that a larger
input leads to a larger output. A particular class of concave operators are those oper-
ators which are positively homogeneous of degree m ≤ 1. Such operators were stud-
ied by many mathematical economists in the finite dimensional case (see [105] and
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the references mentioned there). For more information on ordered Banach spaces,
order-preserving mappings and their applications see, for example, [3, 4].

We are now ready to state and prove the main result of this section. This result
was established in [164].

Theorem 2.38 There exist a set F ⊂ M which is a countable intersection of open
and everywhere dense sets in M and a set Fco ⊂ F ∩ Mco which is a countable
intersection of open and everywhere dense sets in Mco such that for each P ∈ F ,
there exists xP ∈ 〈0, u∗〉 for which the following two assertions hold:

1. The point xP is an interior point of X+ and limt→∞ P tx = xP for each x ∈
〈0, u∗〉 which is an interior point of the cone X+.

2. For each γ, ε ∈ (0,1), there exist an integer N ≥ 1 and a neighborhood U of P

in M such that for each C ∈ U , each z ∈ 〈γ u∗, u∗〉 and each integer T ≥ N ,
∥∥CT z − xP

∥∥∗ ≤ ε.

Proof of Theorem 2.38 For each x, y ∈ X+ define

λ(x, y) = sup
{
r ∈ [0,∞) : rx ≤ y

}
. (2.269)

In the proof of Theorem 2.38 we will use several auxiliary results.

Lemma 2.39 The function y → λ(u∗, y), y ∈ X+, is continuous, concave and pos-
itively homogeneous.

Proof All we need to show is that the function y → λ(u∗, y), y ∈ X+, is continuous.
To this end, assume that y ∈ X+, {yn}∞n=1 ⊂ X+ and

‖yn − y‖∗ → 0 as n → ∞. (2.270)

We show that

λ(u∗, yn) → λ(u∗, y) as n → ∞. (2.271)

It is well known that (2.271) is true if y is an interior point of X+. Therefore we
may assume that y is not an interior point of X+.

Clearly,

λ(u∗, y) = 0. (2.272)

We show that

lim
n→∞λ(u∗, yn) = 0. (2.273)

Assume the contrary. Then there exists a subsequence {ynk
}∞k=1 and a number r > 0

such that

ynk
≥ ru∗, k = 1,2, . . . . (2.274)
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Together with (2.270) this implies that

y ≥ ru∗ and λ(u∗, y) ≥ r.

Since this contradicts (2.272), we see that (2.273) does hold. This completes the
proof of Lemma 2.39. �

Define now an operator φ : 〈0, u∗〉 → X+ by

φ(x) = λ(u∗, x)1/2u∗, x ∈ 〈0, u∗〉. (2.275)

By using Lemma 2.39 one can easily check that

φ ∈Mco. (2.276)

Let A ∈ M and let i ≥ 1 be an integer. Define an operator A(i) : 〈0, u∗〉 → 〈0, u∗〉
by

A(i)x = (
1 − 2−i

)
Ax + 2−iφ(x), x ∈ 〈0, u∗〉. (2.277)

Lemma 2.40 Let A ∈ M and let i ≥ 1 be an integer. Then A(i) ∈ M. Moreover, if
A ∈ Mco, then A(i) ∈Mco.

It is clear that for each A ∈ M and each integer i ≥ 1,

ρ
(
A(i),A

)≤ 2−i . (2.278)

Lemma 2.41 Let A ∈M and let i ≥ 1 be an integer. Then

A(i)
(
16−iu∗

)≥ 8−iu∗. (2.279)

Proof By (2.277) and (2.275),

A(i)
(
16−iu∗

)≥ 2−iφ
(
16−iu∗

)≥ 2−i
(
16−i

)1/2
u∗ ≥ 8−iu∗. �

For each A ∈ M and each integer i ≥ 1, we now define the operator B(A,i) :
〈0, u∗〉 → 〈0, u∗〉 by

B(A,i)(x) = (
1 − 16−i

)
A(i)x + min

{
λ(u∗, x),16−i

}
u∗, x ∈ 〈0, u∗〉. (2.280)

Lemma 2.42 Let A ∈M and let i ≥ 1 be an integer. Then

B(A,i)
(
16−iu∗

)≥ (
8−i + 2−1 · 16−i

)
u∗ (2.281)

and B(A,i) ∈ M. Moreover, if A ∈Mco, then B(A,i) ∈ Mco.
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Proof It follows from (2.280) and (2.279) that

B(A,i)
(
16−iu∗

)≥ (
1 − 16−i

)(
8−iu∗

)+ 16−iu∗ ≥ (
8−i + 2−1 · 16−i

)
u∗.

Therefore (2.271) is valid. By Lemma 2.40, B(A,i)(0) = 0 and the operator B(A,i)

is monotone. Lemmas 2.39, 2.40 and (2.280) imply that B(A,i) is a continuous op-
erator. It follows from Lemma 2.39 that the operator

x → min
{
λ(u∗, x),16−i

}
u∗, x ∈ 〈0, u∗〉,

is concave. When combined with (2.280), Lemma 2.40 and (2.264), this implies that

B(A,i)(αz) ≥ αB(A,i)z for each z ∈ 〈0, u∗〉 and each α ∈ [0,1],
and that if A ∈ Mco, then B(A,i) is concave. This completes the proof of
Lemma 2.42. �

It follows from (2.280), (2.278) and (2.267) that for each A ∈ M and each integer
i ≥ 1,

ρ
(
A,B(A,i)

)≤ 2−i + 16−i . (2.282)

Lemma 2.43 Let A ∈M and let i ≥ 1 be an integer. Then

lim
t→∞λ

((
B(A,i)

)t
(u∗),

(
B(A,i)

)t(16−iu∗
))= 1. (2.283)

Proof Clearly,

(
B(A,i)

)t+1
(u∗) ≤ (

B(A,i)
)t

(u∗), t = 1,2, . . . (2.284)

and
(
B(A,i)

)t(16−iu∗
)≤ (

B(A,i)
)t

(u∗), t = 1,2, . . . .

Lemma 2.42 (see 2.361)) implies that for each integer t ≥ 1,

(
B(A,i)

)t+1(16−iu∗
)≥ (

B(A,i)
)t(16−iu∗

)≥ (
8−i + 2−1 · 16−i

)
u∗. (2.285)

For t = 0,1, . . . we set

λt = λ
((

B(A,i)
)t

(u∗),
(
B(A,i)

)t(16−iu∗
))

. (2.286)

By (2.284),

λt ≤ 1, t = 0,1, . . . . (2.287)

Let t ≥ 0 be an integer. It follows from (2.280), (2.286), (2.269), (2.285),
Lemma 2.40 and (2.287) that
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(
B(A,i)

)t+1(16−iu∗
)= B(A,i)

((
B(A,i)

)t(16−iu∗
))

= (
1 − 16−i

)
A(i)

((
B(A,i)

)t(16−iu∗
))

+ min
{
λ
(
u∗,

(
B(A,i)

)t(16−iu∗
))

,16−i
}
u∗

≥ (
1 − 16−i

)
A(i)

(
λt

(
B(A,i)

)t
(u∗)

)+ 16−iu∗

≥ (
1 − 16−i

)
λtA

(i)
((

B(A,i)
)t

(u∗)
)+ 16−iu∗

= λt

[(
1 − 16−i

)
A(i)

((
B(A,i)

)t
(u∗)

)+ 16−iu∗
]

+ (1 − λt )16−iu∗

= λt

[(
1 − 16−i

)
A(i)

(
B(A,i)

)t
(u∗)

+ min
{
λ
(
u∗,

(
B(A,i)

)t
(u∗)

)
,16−i

}
u∗
]+ (1 − λt )16−iu∗

= λt

(
B(A,i)

)t+1
(u∗) + (1 − λt )16−iu∗

≥ (
λt + (1 − λt )16−i

)(
B(A,i)

)t+1
(u∗).

This implies that

λt+1 ≥ λt + (1 − λt )16−i . (2.288)

Combining (2.287) and (2.288), we see that

Λ = lim
t→∞λt (2.289)

exists. By (2.289) and (2.288), Λ ≥ Λ + (1 − Λ)16−1. By (2.287) this implies that
Λ = 1. Lemma 2.43 is proved. �

Lemma 2.44 Let A ∈ M and let i ≥ 1 be an integer. Then there exists x(A,i) ∈
〈0, u∗〉 such that

x(A,i) ≥ (
8−i + 2−1 · 16−i

)
u∗ (2.290)

and

lim
t→∞

(
B(A,i)

)t(16−iu∗
)= lim

t→∞
(
B(A,i)

)t
(u∗) = x(A,i). (2.291)

Proof It is clear that inequalities (2.284) hold. Lemma 2.42 implies that for each
integer t ≥ 1, inequality (2.283) is also valid. By Lemma 2.43, (2.284) and (2.285),

lim
t→∞

[(
B(A,i)

)t
u∗ − (

B(A,i)
)t(16−iu∗

)]= 0, (2.292)

and {(B(A,i))tu∗}∞t=1, as well as {(B(A,i))t (16−iu∗)}∞t=1, are Cauchy sequences.
Therefore there exist x1, x2 ∈ 〈0, u∗〉 such that

x1 = lim
t→∞

(
B(A,i)

)t(16−iu∗
)

and x2 = lim
t→∞

(
B(A,i)

)t
u∗.
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By (2.292) and (2.285), x1 = x2 ≥ (8−i + 2−1 · 16−i )u∗. This completes the proof
of Lemma 2.44. �

Lemma 2.45 Let A ∈ M, ε > 0, z ∈ 〈0, u∗〉 and let n ≥ 1 be an integer. Then there
exists a neighborhood U of A in M such that for each C ∈ U ,

∥∥Cnz − Anz
∥∥∗ < ε.

Proof We prove the lemma by induction. It is clear that the assertion of the lemma
is valid for n = 1. Assume that it is valid for an integer n ≥ 1. There exists

δ ∈ (0,8−1ε
)

(2.293)

such that
∥∥Ay − A

(
Anz

)∥∥∗ ≤ 8−1ε (2.294)

for each y ∈ 〈0, u∗〉 satisfying ‖y − Anz‖∗ ≤ δ. Since the assertion of the lemma is
assumed to be valid for n, there exists a neighborhood U0 of A in M such that for
each C ∈ U0,

∥∥Cnz − Anz
∥∥∗ < δ. (2.295)

Set

U = {
C ∈ U0 : ρ(C,A) < 8−1ε

}
, (2.296)

and let C ∈ U . The definition of U implies that
∥∥An+1z − Cn+1z

∥∥∗ ≤ ∥∥An+1z − ACnz
∥∥∗ + ∥∥ACnz − Cn+1z

∥∥∗
≤ ∥∥An+1z − ACnz

∥∥∗ + 8−1ε. (2.297)

By (2.295),
∥∥Anz − Cnz

∥∥∗ < δ.

It follows from this inequality and the choice of δ (see (2.293) and (2.294)) that
∥∥ACnz − A

(
Anz

)∥∥∗ ≤ 8−1ε.

Together with (2.297) this implies that
∥∥An+1z − Cn+1z

∥∥∗ ≤ 4−1ε.

This completes the proof of Lemma 2.45. �

Let A ∈ M and let i ≥ 1 be an integer. By Lemma 2.44, there exists an integer
N(A, i) ≥ 4 such that

∥∥(B(A,i)
)N(A,i)(16−iu∗

)− (
B(A,i)

)N(A,i)
(u∗)

∥∥∗ ≤ 16−i−1. (2.298)
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By Lemma 2.45, there exists an open neighborhood U(A, i) of B(A,i) in M such
that

U(A, i) ⊂ {
C ∈ M : ρ(C,B(A,i)

)≤ 16−i−2}, (2.299)

and for each C ∈ U(A, i),

∥∥CN(A,i)
(
16−iu∗

)− (
B(A,i)

)N(A,i)(16−iu∗
)∥∥∗ ≤ 16−i−2,

∥∥CN(A,i)(u∗) − (
B(A,i)

)N(A,i)
(u∗)

∥∥∗ ≤ 16−i−2.

(2.300)

Lemma 2.46 Let A ∈ M and let i ≥ 1 be an integer. Assume that C ∈ U(A, i).
Then

Ct
(
16−iu∗

)≥ 8−iu∗, t = 1,2, . . . , (2.301)

and for each z ∈ 〈16−iu∗, u∗〉 and each integer T ≥ N(A, i), the following inequal-
ity holds:

∥∥CT z − x(A, i)
∥∥∗ ≤ 16−i−1 + 16−i−2. (2.302)

Proof By the definition of U(A, i) (see (2.299)) and Lemma 2.42 (see (2.281)),
∥∥C

(
16−iu∗

)− B(A,i)
(
16−iu∗

)∥∥∗ ≤ 16−i−2

and

C
(
16−iu∗

)≥ B(A,i)
(
16−iu∗

)− 16−i−2u∗

≥ (
8−i + 2−1 · 16−i

)
u∗ − 16−i−2u∗ ≥ 8−iu∗. (2.303)

Since the operator C is monotone, (2.303) implies that

Ct+1(16−iu∗
)≥ Ct

(
16−iu∗

)
, t = 0,1, . . . . (2.304)

Inequalities (2.304) and (2.303) imply (2.301), as claimed.
Assume that z ∈ 〈16−iu∗, u∗〉 and let T ≥ N(A, i) be an integer. Since the op-

erator C is monotone, it follows from (2.304) and the definition of U(A, i) (see
(2.300)) that

CT z ∈ 〈CT
(
16−iu∗

)
,CT (u∗)

〉⊂ 〈
CN(A,i)

(
16−iu∗

)
,CN(A,i)u∗

〉

⊂ 〈(
B(A,i)

)N(A,i)(16−iu∗
)

− 16−i−2u∗,
(
B(A,i)

)N(A,i)
(u∗) + 16−i−2u∗

〉
. (2.305)

By Lemma 2.44, (2.281), (2.305) and (2.298),

CT z − x(A, i) ∈ 〈(B(A,i)
)N(A,i)(16−iu∗

)− 16−i−2u∗ − x(A, i),

(
B(A,i)

)N(A,i)
(u∗) + 16−i−2u∗ − x(A, i)

〉
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and

x(A, i) − CT z,−x(A, i) + CT z

≤ (
B(A,i)

)N(A,i)
(u∗) − (

B(A,i)
)N(A,i)(16−iu∗

)+ 16−i−2u∗

≤ (
16−i−1 + 16−i−2)u∗.

This implies (2.302) and completes the proof of Lemma 2.46. �

Completion of the proof of Theorem 2.38 Define

F =
∞⋂

q=1

⋃{
U(A, i) : A ∈ M, i = q, q + 1, . . .

}

and

Fco =
∞⋂

q=1

⋃{
U(A, i) ∩Mco : A ∈ Mco, i = q, q + 1, . . .

}
.

It is easy to see that Fco ⊂ F ∩ Mco, F is a countable intersection of open and
everywhere dense sets in M, and that Fco is a countable intersection of open and
everywhere dense sets in Mco. Assume that P ∈ F and ε, γ ∈ (0,1). Choose a
natural number q for which

64 · 2−q < 64−1 min{ε, γ }. (2.306)

There exist A ∈ M and a natural number i ≥ q such that

P ∈ U(A, i). (2.307)

By Lemma 2.46,

Ct
(
16−iu∗

)≥ 8−iu∗ for all integers t ≥ 1 and all C ∈ U(A, i), (2.308)

and

∥∥CT z − x(A, i)
∥∥∗ ≤ 16−i−1 + 16−i−2 for all C ∈ U(A, i),

each integer T ≥ N(A, i) and each z ∈ 〈16−iu∗, u∗
〉
. (2.309)

Now (2.309), (2.306) and (2.307) imply that

∥∥P T z − x(A, i)
∥∥∗ ≤ ε for each integer T ≥ N(A, i)

and each z ∈ 〈γ u∗, u∗〉. (2.310)
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Since ε is an arbitrary number in the interval (0,1), we conclude that for each z ∈
〈γ u∗, u∗〉, there exists limt→∞ P tz. By (2.310),

∥∥∥ lim
t→∞P T z − x(A, i)

∥∥∥∗ ≤ ε for each z ∈ 〈γ u∗, u∗〉. (2.311)

Hence

lim
t→∞P tz1 = lim

t→∞P tz2

for each z1, z2 ∈ 〈γ u∗, u∗〉.
Since γ ∈ (0,1) is also arbitrary, we conclude that

lim
t→∞P tz = xP (2.312)

for each z ∈ 〈0, u∗〉 which is an interior point of X+. By (2.308), xP is an interior
point of X+. Now (2.309) implies that

∥∥xP − x(A, i)
∥∥∗ ≤ 16−i−1 + 16−i−2. (2.313)

Assume that C ∈ U(A, i), z ∈ 〈γ u∗, u∗〉, and let T ≥ N(A, i) be an integer. It fol-
lows from (2.309), (2.313) and (2.306) that

∥∥CT z − xP

∥∥∗ ≤ ∥∥xP − x(A, i)
∥∥∗ + ∥∥x(A, i) − CT z

∥∥∗
≤ 16−i−1 + 16−i−2 + ∥∥x(A, i) − CT z

∥∥∗
≤ 2

(
16−i−1 + 16−i−2)< ε.

This completes the proof of Theorem 2.38. �

2.11 Positive Eigenvalues and Eigenvectors

In this section we consider a closed cone of positive operators on an ordered Banach
space and prove that a generic element of this cone has a unique positive eigenvalue
and a unique (up to a positive multiple) positive eigenvector. Moreover, the normal-
ized iterations of such a generic element converge to its unique eigenvector. This
section is based on [140].

Let (X,‖ · ‖) be a Banach space which is ordered by a closed convex cone X+.
For each u,v ∈ X such that u ≤ v, we define 〈u,v〉 = {z ∈ X : u ≤ z ≤ v}.

We assume that the cone X+ has a nonempty interior and that for each x, y ∈ X+
satisfying x ≤ y, the inequality ‖x‖ ≤ ‖y‖ holds. We denote by int(X+) the set of
all interior points of X+.

Fix an interior point η of the cone X+ and define

‖x‖η = inf
{
r ∈ [0,∞) : −rη ≤ x ≤ rη

}
, x ∈ X. (2.314)

Clearly, ‖ · ‖η is a norm on X which is equivalent to the original norm ‖ · ‖.
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Let X′ be the space of all linear continuous functionals f : X → R1 and let

X′+ = {
f ∈ X′ : f (x) ≥ 0 for all x ∈ X+

}
.

Denote by A the set of all linear operators A : X → X such that A(X+) ⊂ X+. Such
operators are called positive. For the set A we define a metric ρ(·, ·) by

ρ(A,B) = sup
{‖Ax − Bx‖η : x ∈ 〈0, η〉}, A,B ∈A.

This metric ρ is equivalent to the metrics induced by the operator norms derived
from ‖ · ‖ and ‖ · ‖η. It is clear that the metric space (A, ρ) is complete. Since many
linear operators between Banach spaces arising in classical and modern analysis are,
in fact, positive operators, the theory of positive linear operators and its applications
have drawn the attention of more and more mathematicians. See, for example, [3,
86, 170] and the references cited therein.

In this section we study the asymptotic behavior of powers of positive linear
operators on the ordered Banach space X. We obtain generic convergence to an
operator of the form f (·)η, where f is a bounded linear functional and η is a unique
(up to a positive multiple) eigenvector.

We denote by A∗ the set of all A ∈ A such that Aξ = ξ for some ξ ∈ int(X+)

and by Ā∗ the closure of A∗ in (A, ρ). We equip the subspace Ā∗ ⊂ A with the
same metric ρ.

In our paper [125] we established the following result.

Theorem 2.47 There exists a set F ⊂ Ā∗ which is a countable intersection of open
and everywhere dense sets in Ā∗ such that for each B ∈ F , there exists an interior
point ξB of X+ satisfying BξB = ξB , ‖ξB‖η = 1, and the following two assertions
hold:

1. There exists fB ∈ X′+ such that limT →∞ BT x = fB(x)ξB , x ∈ X.
2. For each ε > 0, there exists a neighborhood U of B in Ā∗ and a natural number

N such that for each C ∈ U ∩A∗, each integer T ≥ N and each x ∈ 〈−η,η〉,
∥∥CT x − fB(x)ξB

∥∥≤ ε.

Since the existence of fixed points and the convergence of iterates is of funda-
mental importance, it is of interest to look for a larger subset of A for which such
a result continues to hold. To this end, we introduce the set Aq∗ of all A ∈ A for
which there exist c0 ∈ (0,1) and c1 > 1 such that

c0η ≤ Anη ≤ c1η for all integers n ≥ 1. (2.315)

Note that our definition of Aq∗ does not depend on our choice of η. Since A∗ ⊂ Aq∗,
it is natural to ask if there is also a generic result for the closure Āq∗ of Aq∗. Note
that in contrast with Ā∗, it is not clear a priori if A∗ is dense in Āq∗. However, as
we show in our first result that this is indeed the case.
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Theorem 2.48 Āq∗ = Ā∗.

Combining Theorems 2.47 and 2.48, we see that a generic element in Āq∗ has a
unique (up to a positive multiple) positive fixed point and all its iterations converge
to some multiple of this fixed point.

Since the existence of positive eigenvectors which are not necessarily fixed points
is even more important, we devote most of the section to this problem.

Known results about the existence of positive fixed points and eigenvectors in-
clude the classical Perron-Frobenius and Krein-Rutman theorems. For a survey of
more recent results of the linear theory, see Sect. 2 in [106].

We begin with the following definition.
We say that an operator A ∈ A is regular if there exist xA ∈ int(X+) satisfying

‖xA‖η = 1, αA > 0 and fA ∈ X′+ \ {0} such that

AxA = αAxA, α−n
A Anx → fA(x)xA as n → ∞,

uniformly for all x ∈ 〈−η,η〉.
Note that in the definition above, xA, αA and fA are all uniquely defined and that

if x ∈ int(X+), then ‖Anx‖−1
η Anx → xA as n → ∞.

We denote by Areg the set of all regular operators in A and by Āreg its closure
in the space (A, ρ). We endow the subspace Āreg ⊂ A with the same metric ρ.

We continue with two theorems on regular operators.

Theorem 2.49 Let A ∈ Areg and ε > 0. Then there exist an integer N ≥ 1 and a
neighborhood U of A in A such that for each B ∈Areg ∩ U ,

‖xA − xB‖η ≤ ε, |αA − αB | ≤ ε

and for each x ∈ 〈−η,η〉 and each integer n ≥ N ,
∥∥α−n

B Bnx − fA(x)xA

∥∥
η

≤ ε.

Theorem 2.50 Let A ∈ Areg , ε > 0 and Δ ∈ (0,1). Then there exist an integer
N ≥ 1 and a neighborhood U of A in A such that the following assertion holds:

Assume that B ∈ U , x0 ∈ X+, α0 > 0, Δη ≤ x0 ≤ η and α0x0 = Bx0. Then

‖xA − x0‖η ≤ ε, |αA − α0| ≤ ε

and for each x ∈ 〈−η,η〉 and each integer n ≥ N ,
∥∥α−n

0 Bnx − fA(x)xA

∥∥
η

≤ ε.

These theorems bring out the importance of regular operators. Such operators
not only have a unique positive eigenvector but also enjoy certain convergence and
stability properties. Therefore we would like to show that most operators in an ap-
propriate space are indeed regular. Moreover, in analogy with the definition of Aq∗
we will also consider quasiregular operators.
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We say that an operator A ∈ A is quasiregular if there exist α > 0, c0 ∈ (0,1) and
c1 > 1 such that

c0α
nη ≤ Anη ≤ c1α

nη for all integers n ≥ 1.

Denote by Aqreg the set of all quasiregular A ∈A and by Āqreg the closure of Aqreg

in (A, ρ). We endow the subspace Āqreg ⊂ A with the same metric ρ.

Theorem 2.51 Āqreg = Āreg and there exists a set F ⊂ Areg which is a countable
intersection of open and everywhere dense subsets of Āreg .

Theorems 2.48–2.51 were obtained in [140].

2.12 Proof of Theorem 2.48

In this section we are going to present the proof of Theorem 2.48. We precede this
proof by a few preliminary results.

As usual, we set A0 = I (the identity) for each A ∈ A. We denote by g · B the
composition of g ∈ X′ and a linear operator B : X → X.

Proposition 2.52 Let A ∈A and assume that there exist c0 ∈ (0,1) and c1 > 1 such
that

c0η ≤ Anη ≤ c1η for all integers n ≥ 1. (2.316)

Then there exists fA ∈ X′+ such that

fA(η) > 0 and fA · A = fA.

Proof There exists g ∈ X′+ such that g(η) = 1. Denote by S the convex hull of the
set {g · An : n = 0,1, . . .}. Clearly for each h ∈ S,

c0 ≤ h(η) ≤ c1. (2.317)

Denote by S̄ the closure of S in the weak-star topology σ(X′,X). Clearly (2.317)
holds for all h ∈ S̄ and S̄ ⊂ X′+. The set S̄ is convex and by (2.317) compact in the
weak-star topology. The operator A′ : f → f ·A, f ∈ X′, is weakly-star continuous
and A′(S̄) ⊂ S̄. By Tychonoff’s fixed point theorem, there exists fA ∈ S̄ for which
fA · A = fA. Since (2.317) holds for all h ∈ S̄, fA(η) ≥ c0. Proposition 2.52 is
proved. �

Corollary 2.53 Assume that A ∈A, c0 ∈ (0,1), c1 > 1, α > 0 and

αnc0η ≤ Anη ≤ αnc1η for all integers n ≥ 1. (2.318)

Then there exists fA ∈ X′+ such that fA(η) > 0 and fA · A = αfA.
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Lemma 2.54 Assume that A ∈A, there exist c1 > 1 and α > 0 such that

Anη ≤ αnc1η for all integers n ≥ 1, (2.319)

and that there exists fA ∈ X′+ such that

fA · A = αfA and fA(η) = 1. (2.320)

Let γ ∈ (0,1). Define Aγ ∈A by

Aγ x = (1 − γ )Ax + γ αfA(x)η, x ∈ X. (2.321)

Then fA · Aγ = αfA and for each integer n ≥ 1, there exist positive constants c
(n)
i ,

i = 0, . . . , n − 1, such that

n−1∑

i=0

c
(n)
i = 1 − (1 − γ )n (2.322)

and

(Aγ )nx = (1 − γ )nAnx + αnfA(x)

n−1∑

i=0

(
α−ic

(n)
i Aiη

)
, x ∈ X. (2.323)

Proof We will prove this lemma by induction. Clearly fA · Aγ = fA and (2.322)
and (2.323) hold for n = 1, c0 = γ .

Assume that k ≥ 1 is an integer and there exist positive constants c
(k)
i , i =

0, . . . , k − 1, such that (2.322) and (2.323) hold with n = k. It then follows from
(2.322) and (2.323) with n = k and (2.321) that for each x ∈ X,

(Aγ )k+1x = Aγ

(
Ak

γ x
)

= (1 − γ )A
[
(Aγ )kx

]+ αγfA

(
(Aγ )kx

)
η

= αγαkfA(x)η

+ (1 − γ )A

[

(1 − γ )kAkx + αkfA(x)

(
k−1∑

i=0

α−ic
(k)
i Aiη

)]

= γ αk+1fA(x)η + (1 − γ )k+1Ak+1x

+ αkfA(x)(1 − γ )

(
k−1∑

i=0

α−ic
(k)
i Ai+1η

)

= γ αk+1fA(x)η + (1 − γ )k+1Ak+1x
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+ αk+1fA(x)(1 − γ )

(
k∑

i=1

α−ic
(k)
i−1A

iη

)

= (1 − γ )k+1Ak+1x + αk+1fA(x)

(

γ η +
k∑

i=1

(
(1 − γ )α−ic

(k)
i−1A

iη
)
)

and

γ +
k∑

i=1

(
(1 − γ )c

(k)
i−1

)= γ + (1 − γ )
(
1 − (1 − γ )(k)

)= 1 − (1 − γ )k+1.

Therefore (2.322) and (2.321) are true for n = k + 1 with c
(k+1)
0 = γ and c

(k+1)
i =

(1 − γ )c
(k)
i−1, i = 1, . . . , k. This completes the proof of Lemma 2.54. �

Lemma 2.55 Assume that A ∈ A, there exist c0 ∈ (0,1), c1 > 1 and α > 0 such
that

αnc0η ≤ Anη ≤ αnc1η for all integers n ≥ 1, (2.324)

and that there exists fA ∈ X′+ such that (2.320) holds. Let γ ∈ (0,1) and let Aγ ∈A
be defined by (2.321). Then there exists xA ∈< c0η, c1η > such that

α−n(Aγ )nx − fA(x)xA → 0 as n → ∞,

uniformly for all x ∈ 〈0, η〉. Moreover, Aγ xA = αxA.

Proof By Lemma 2.54 and (2.324), for each integer n ≥ 1 there exists

zn ∈ 〈c0η, c1η〉 (2.325)

such that

(Aγ )nx = (1 − γ )nAnx + αn
(
1 − (1 − γ )n

)
fA(x)zn, x ∈ X. (2.326)

For each integer n ≥ 1, by (2.320), (2.324) and (2.325),

(Aγ )nη = (1 − γ )nAnη + αn
(
1 − (1 − γ )n

)
zn

∈ (1 − γ )n
〈
αnc0η,αnc1η

〉+ αn
(
1 − (1 − γ )n

)〈c0η, c1η〉
⊂ αn〈c0η, c1η〉. (2.327)

Let ε > 0. By (2.326), there exists an integer n(ε) ≥ 1 such that for each x ∈
〈c0η, c1η〉 and each integer n ≥ n(ε),

∥∥α−n(Aγ )nx − fA(x)zn

∥∥≤ ε.



78 2 Fixed Point Results and Convergence of Powers of Operators

Since {α−i (Aγ )iη}∞i=0 ⊂ 〈c0η, c1η〉 and fA · Aγ = αfA, we conclude that for each
integer n ≥ n(ε) and each integer i ≥ 0,

ε ≥ ∥∥α−n(Aγ )n
(
α−i (Aγ )iη

)− fA

(
α−i

(
Ai

γ η
))

zn

∥∥

= ∥∥α−n−i (Aγ )n+iη − zn

∥∥

and therefore ‖zn − zn+i‖ ≤ 2ε. This implies that {zn}∞n=1 is a Cauchy sequence.
Hence there exists a vector xA ∈ 〈c0η, c1η〉 such that limi→∞ ‖zi − xA‖ = 0. Let
ε > 0. There exists an integer n0 ≥ 1 such that ‖zi − xA‖ ≤ ε/2 for all integers
i ≥ n0. By (2.326) and (2.324), there exists an integer n1 > n0 such that for each
integer n ≥ n1 and each x ∈ 〈0, η〉,

∥∥α−n(Aγ )nx − fA(x)zn

∥∥≤ 2−1ε.

It follows from this last inequality and the definition of n0 that for each x ∈ 〈0, η〉
and each integer n ≥ n1,

∥
∥α−n(Aγ )nx − fA(x)xA

∥
∥≤ ε.

This completes the proof of Lemma 2.55. �

Proof of Theorem 2.48 It is, of course, sufficient to show that Aq∗ ⊂ Ā∗. Towards
this end, let A ∈Aq∗. Then there exist c0 ∈ (0,1) and c1 > 1 such that

c0η ≤ Anη ≤ c1η for all integers n ≥ 1.

By Proposition 2.52, there exists fA ∈ X′+ \{0} such that fA ·A = fA and fA(η) = 1.
For each γ ∈ (0,1), define Aγ ∈A by

Aγ x = (1 − γ )Ax + γfA(x)η, x ∈ X.

By Lemma 2.55, Aγ belongs to A∗. On the other hand, limγ→0+ Aγ = A. Thus
Aq∗ ⊂ Ā∗ and Theorem 2.48 is proved. �

2.13 Auxiliary Results for Theorems 2.49–2.51

For each x, y ∈ X+, define

λ(x, y) = sup
{
λ ∈ [0,∞) : λx ≤ y

}
,

r(x, y) = inf
{
r ∈ [0,∞) : y ≤ rx

}
.

(2.328)

Here we use the usual convention that the infimum of the empty set is ∞.
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Lemma 2.56 Assume that A ∈ A, n ≥ 1 is an integer and ε > 0. Then there exists
a neighborhood U of A in A such that for each B ∈ U and each x ∈ 〈−η,η〉,

∥∥Anx − Bnx
∥∥

η
≤ ε.

Proof We prove the lemma by induction. Clearly for n = 1 the lemma is true. As-
sume that k ≥ 1 is an integer and that the lemma holds for n = k, . . . ,1. There is a
number c0 > 0 such that ‖Ax‖η ≤ c0 for each x ∈ 〈−η,η〉. Since the lemma is true
for n = k, there exists a neighborhood U1 of A in A such that ‖Akx − Bkx‖η ≤
(4 + 4c0)

−1ε for each B ∈ U1 and for each x ∈ 〈−η,η〉. It follows that there exists
c1 > 1 such that ‖Bkx‖η ≤ c1 for each B ∈ U1 and each x ∈ 〈−η,η〉. Since the
lemma holds for n = 1, there exists a neighborhood U ⊂ U1 of A in A such that for
each B ∈ U and each x ∈ 〈−η,η〉, ‖Ax − Bx‖η ≤ (4c1)

−1ε.
Assume now that B ∈ U and x ∈ 〈−η,η〉. Then
∥∥Ak+1x − Bk+1x

∥∥
η

≤ ∥∥Ak+1x − ABkx
∥∥

η
+ ∥∥ABkx − Bk+1x

∥∥
η
. (2.329)

It follows from the definition of c0 and U1 that
∥∥Ak+1x − ABkx

∥∥
η

≤ ε/4. (2.330)

By the definition of U and c1, ‖ABkx − Bk+1x‖η ≤ ε/4. Together with (2.329) and
(2.330), this implies that ‖Ak+1x − Bk+1x‖η ≤ ε. In other words, the lemma also
holds for n = k + 1. This completes the proof of Lemma 2.56. �

Let A ∈A be regular,

xA ∈ int(X+), ‖xA‖η = 1, αA > 0,

fA ∈ X′+ \ {0}, AxA = αAxA,

α−n
A Anx → fA(x)xA as n → ∞, uniformly on 〈−η,η〉.

(2.331)

Assumptions (2.331) and Lemma 2.56 imply the following result.

Lemma 2.57 Let ε > 0. Then there exists an integer N(ε) ≥ 1 such that for each
integer N > N(ε), there exists a neighborhood U of A in A such that for each B ∈ U
and each x ∈ 〈−η,η〉,

∥∥α−n
A Bnx − fAxA

∥∥
η

≤ ε, n = N(ε), . . . ,N.

Corollary 2.58 Assume that 0 < Δ1 < 1 < Δ2 and θ > 1. Then there exists an
integer N0 ≥ 1 such that for each integer N > N0, there exists a neighborhood
U of A in A such that for each x ∈ 〈Δ1η,Δ2η〉, each B ∈ U and each integer
n ∈ [N0,N ],

Bnx ∈ 〈θ−1αn
AfA(x)xA, θαn

AfA(x)xA

〉
.
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Lemma 2.59 Assume that 0 < Δ1 < 1 < Δ2 and θ > 1. Then there exist an integer
N0 ≥ 1 and a neighborhood U of A in A such that for each B ∈ U , x ∈ 〈Δ1η,Δ2η〉
and each integer n ≥ N0,

r
(
xA,Bnx

)≤ θλ
(
xA,Bnx

)
. (2.332)

Proof We may assume that

Δ2 > θ and θΔ1 < λ(η, xA). (2.333)

Choose θ0 > 1 such that

θ2
0 < θ. (2.334)

By Corollary 2.58, there exist an integer N0 ≥ 1 and a neighborhood U of A in A
such that for each x ∈ 〈Δ1η,Δ2η〉, each B ∈ U and each integer n ∈ [N0,8N0 + 8],

Bnx ∈ 〈θ−1
0 αn

AfA(x)xA, θ0α
n
AfA(x)xA

〉
. (2.335)

Assume that B ∈ U and x ∈ 〈Δ1η,Δ2η〉. By the definition of U and N0, the inclu-
sion (2.335) is valid for each integer n ∈ [N0,8N0 + 8]. The relations (2.335) and
(2.334) imply that for each integer n ∈ [N0,8N0 + 8],

r
(
xA,Bnx

)≤ θ0α
n
AfA(x), λ

(
xA,Bnx

)≥ θ−1
0 αn

AfA(x)

and

r
(
xA,Bnx

)≤ θ2
0 λ
(
xA,Bnx

)≤ θλ
(
xA,Bnx

)
.

It remains to be shown that (2.332) is valid for all integers n > 8N0 + 8.
Assume the contrary. Then there exists an integer

N1 > 8N0 + 8 (2.336)

such that

r
(
xA,Bnx

)≤ θλ
(
xA,Bnx

)
for all integers n ∈ [N0,N1 − 1] (2.337)

and

r
(
xA,BN1x

)
> θλ

(
xA,BN1x

)
. (2.338)

Consider the vector BN1−N0x. By (2.336) and (2.337), we see that

r
(
xA,BN1−N0x

)≤ θλ
(
xA,BN1−N0x

)
(2.339)

and

θ−1r
(
xA,BN1−N0x

)
xA ≤ BN1−N0x ≤ r

(
xA,BN1−N0x

)
xA.
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By (2.338),

r
(
xA,BN1−N0x

)
> 0. (2.340)

It follows from (2.339), (2.340), (2.331) and (2.333) that

r
(
xA,BN1−N0x

)−1
BN1−N0x ∈ 〈θ−1xA,xA

〉⊂ 〈
θ−1λ(η, xA)η, η

〉⊂ 〈Δ1η,Δ2η〉.
It follows from this relation and the definition of U and N0 (see (2.335)) that

r
(
xA,BN1−N0x

)−1
BN1x ∈ 〈θ−1

0 α
N0
A fA(x)xA, θ0α

N0
A fa(x)xA

〉
,

r
(
xA,BN1x

)≤ θ0α
N0
A fA(x)r

(
xA,BN1−N0x

)
,

λ
(
xA,BN1x

)≥ θ−1
0 α

N0
A fA(x)r

(
xA,BN1−N0x

)
,

and by (2.333),

r
(
xA,BN1x

)≤ θλ
(
xA,BN1x

)
,

an inequality which contradicts (2.338). Thus (2.332) is indeed valid for all n ≥ N0
and Lemma 2.59 is proved. �

Lemma 2.60 Let γ > 1. Then there exists a neighborhood U of A in A such that
for each B ∈ Areg ∩ U , the inequalities γ −1xA ≤ xB ≤ γ xA hold.

Proof Choose a positive number θ > 1 such that

θ2 < γ. (2.341)

By Lemma 2.59, there exists an integer N0 ≥ 1 and a neighborhood U of A in A
such that for each B ∈ U and each integer n ≥ N0,

r
(
xA,Bnη

)≤ θλ
(
xA,Bnη

)
. (2.342)

Assume that B ∈Areg ∩ U . Then

lim
n→∞α−n

B Bnη = fB(η)xB. (2.343)

By the definition of U and N0, (2.342) is valid for each integer n ≥ N0. This implies
that for each integer n ≥ N0,

α−n
B λ

(
xA,Bnη

)
xA ≤ α−n

B Bnη ≤ α−n
B r

(
xA,Bnη

)
xA

and

r
(
xA,α−n

B Bnη
)≤ θλ

(
xA,α−n

B Bnη
)
.

When combined with (2.343), this implies that

r
(
xA,fB(η)xB

)≤ θ2λ
(
fB(η)xB, xA

)
and r(xA, xB) ≤ θ2λ(xA, xB). (2.344)



82 2 Fixed Point Results and Convergence of Powers of Operators

It follows from (2.331), (2.334) and (2.341) that

λ(xA, xB)xA ≤ xB ≤ r(xA, xB)xA ≤ r(xA, xB)η,

xA ≤ λ(xA, xB)−1xB ≤ λ(xA, xB)−1η, r(xA, xB) ≥ 1, λ(xA, xB)−1 ≥ 1,

r(xA, xB) ≤ θ2, λ(xA, xB) ≥ θ−2

and finally, that

γ −1xA ≤ θ−2xA ≤ xB ≤ θ2xA ≤ γ xA.

Lemma 2.60 is proved. �

Lemma 2.61 Let θ > 1 and Δ ∈ (0,1). Then there exists a neighborhood U of A in
A such that for each B ∈ U , z ∈ X+ and α > 0 satisfying

‖z‖η = 1, z ≥ Δη and Bz = αz, (2.345)

the following inequalities hold: θ−1xA ≤ z ≤ θxA.

Proof By Lemma 2.59, there exists an integer N0 ≥ 1 and a neighborhood U of A

in A such that for each B ∈ U , each integer n ≥ N0 and for each x ∈ 〈4−1Δη,4η〉,
r
(
xA,Bnx

)≤ θλ
(
xA,Bnx

)
. (2.346)

Assume that B ∈ U , z ∈ X+, α > 0 and that (2.345) is valid. By (2.345) and the
definition of U and N0 (see (2.346)), for each integer n ≥ N0,

αnr(xA, z) = r
(
xA,αnz

)= r
(
xA,Bnz

)≤ θλ
(
xA,Bnz

)

= θλ
(
xA,αnz

)= αnθλ(xA, z) and r(xA, z) ≤ θλ(xA, z).
(2.347)

It follows from (2.345), (2.331) and (2.347) that

λ(xA, z)xA ≤ z ≤ r(xA, z)xA ≤ r(xA, z)η, r(xA, z) ≥ 1,

xA ≤ λ(xA, z)−1z ≤ λ(xA, z)−1η, λ(xA, z) ≤ 1,

r(xA, z) ≤ θ, λ(xA, z) ≥ θ−1

and finally, that θ−1xA ≤ z ≤ θxA. This completes the proof of Lemma 2.61. �

Lemma 2.62 Let ε ∈ (0,1) and Δ ∈ (0,1). Then there exists a neighborhood U of
A in A such that for each B ∈ U , z ∈ X+ and α > 0 satisfying

‖z‖η = 1, z ≥ Δη and Bz = αz, (2.348)

we have |α − αA| ≤ ε.
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Proof Choose a number γ > 1 for which

(αA + 1)(γ − 1) ≤ ε/8.

By Lemma 2.61, there exists a neighborhood U1 of A in A such that for each B ∈ U1,
z ∈ X+ and α > 0 satisfying (2.348), the following inequalities hold:

γ −1xA ≤ z ≤ γ xA. (2.349)

There exists a neighborhood U ⊂ U1 of A in A such that for each B ∈ U ,

‖Ay − By‖η ≤ ε/8 for all y ∈ γ 〈−η,η〉. (2.350)

Assume that B ∈ U , z ∈ X+, α > 0 and that (2.348) is true. Then by the definition
of U1, (2.349) holds.

It follows from (2.348) and (2.331) that

|α − αA| = ∣∣‖αz‖η − ‖αAxA‖η

∣∣≤ ‖αz − αAxA‖η = ‖Bz − AxA‖η

≤ ‖AxA − Az‖η + ‖Az − Bz‖η. (2.351)

By our choice of γ , (2.349) and (2.331),

(1 − γ )αAη ≤ (1 − γ )αAxA = A(1 − γ )xA ≤ AxA − Az

≤ (
1 − γ −1)AxA ≤ (γ − 1)αAη

and

‖AxA − Az‖η ≤ ε/8. (2.352)

It follows from (2.349) and (2.350) that

z ≤ γ xA ≤ γ η and ‖Az − Bz‖η ≤ 8−1ε.

When combined with (2.351) and (2.352), this implies that |αA − α| ≤ ε. Lem-
ma 2.62 is proved. �

Lemmas 2.62 and 2.60 imply the following result.

Lemma 2.63 Let ε ∈ (0,1). Then there exists a neighborhood U of A in A such
that for each B ∈Areg ∩ U we have |αB − αA| ≤ ε.

2.14 Proofs of Theorems 2.49 and 2.50

In this section we prove Lemma 2.64. Theorem 2.50 follows when this lemma is
combined with Lemmas 2.61 and 2.62. Theorem 2.49 is a consequence of Lem-
mas 2.60, 2.63 and 2.64.
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Lemma 2.64 Let A ∈ A be regular and let ε and Δ belong to the interval (0,1).
Then there exist an integer N ≥ 1 and a neighborhood U of A in A such that the
following assertion holds:

If

B ∈ U , x0 ∈ int(X+),

Δη ≤ x0 ≤ η, α0 > 0 and α0x0 = Bx0,
(2.353)

then for each x ∈ 〈−η,η〉 and each integer n ≥ N ,
∥∥α−n

0 Bnx − fA(x)xA

∥∥
η

≤ ε. (2.354)

Proof Choose a positive number ε0 for which

8ε0 < 4−1εΔ.

By Lemma 2.56, there exist a neighborhood U1 of A in A and an integer N ≥ 1 such
that for each B ∈ U1,

∥∥α−N
A BNx − fA(x)xA

∥∥
η

≤ 16−1ε0 for all x ∈ 〈−η,η〉. (2.355)

There exists a number c1 > 1 such that
∥∥BNx

∥∥
η

≤ c1 for x ∈ 〈−η,η〉 and B ∈ U1, and fA(η) ≤ c1. (2.356)

There exists a number δ1 ∈ (0,min{1, αA/8}) such that
∣∣α−N − α−N

A

∣∣c1 ≤ 16−1ε0 for each α satisfying |α − αA| ≤ δ1. (2.357)

By Lemmas 2.62 and 2.61 there exists a neighborhood U2 of A in A such that for
each B ∈ U2, z ∈ X+ and α > 0 satisfying Δη ≤ z ≤ η and Bz = αz, the following
inequalities are true:

|α − αN | ≤ δ1 and ‖z − xA‖η ≤ 16−1ε0c
−1
1 . (2.358)

Set

U = U1 ∩ U2. (2.359)

Assume that B ∈ U , x0 ∈ X+, α0 > 0 and that (2.353) holds. By the definition of U1
and N , (2.355) holds. It follows from the definition of U2 (see (2.358)) and (2.353)
that |α0 − αN | ≤ δ1. By the latter inequality, (2.357), (2.356) and (2.355),

∥∥α−N
0 BNx − fA(x)xA

∥∥
η

≤ 8−1ε0 for all x ∈ 〈−η,η〉. (2.360)

By the definition of U2 (see (2.358)) and (2.353),

‖x0 − xA‖η ≤ 16−1ε0c
−1
1 . (2.361)
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This inequality, when combined with (2.360) and (2.356), implies that

∥∥α−N
0 BNx − fA(x)x0

∥∥
η

≤ 8−1ε0 + 16−1ε0 for all x ∈ 〈−η,η〉. (2.362)

By (2.362) and (2.353), we have

α−N
0 BNx − fA(x)x0 ∈ ε0

(
8−1 + 16−1)〈−η,η〉 ⊂ ε0

(
8−1 + 16−1)Δ−1〈−x0, x0〉

for all x ∈ 〈−η,η〉.
It follows from this relation and (2.353) that for each x ∈ 〈−η,η〉 and each integer

n ≥ N ,

α−n
0 Bnx − fA(x)x0 = α−n+N

0 Bn−N
[
α−N

0 BNx − fA(x)x0
]

⊂ ε0
(
8−1 + 16−1)Δ−1αN−n

0 Bn−N 〈−x0, x0〉
⊂ ε0

(
8−1 + 16−1)Δ−1〈−x0, x0〉

⊂ ε0
(
8−1 + 16−1)Δ−1〈−η,η〉

and
∥∥α−n

0 Bnx − fA(x)x0
∥∥

η
≤ Δ−1ε0/4.

When combined with (2.361), (2.356) and (2.354), this implies that for each x ∈
〈−η,η〉 and each integer n ≥ N ,

∥∥α−n
0 Bnx − fA(x)xA

∥∥
η

≤ Δ−1ε0/4 + 16−1ε0 < ε.

Lemma 2.64 is proved. �

2.15 Proof of Theorem 2.51

It follows from Lemma 2.55 and Corollary 2.53 that Aqreg ⊂ Āreg . This clearly
implies that Āreg = Āqreg .

To construct the set F we let A ∈Areg ,

xA ∈ int(X+), fA ∈ X′+ \ {0}, αA > 0,

AxA = αAxA, fA · A = αA · fA,

α−n
A Anx → fA(x)xA as n → ∞, uniformly on 〈η,η〉.

(2.363)

Let i ≥ be an integer. By Lemmas 2.60 and 2.63, Theorem 2.49, Lemmas 2.61
and 2.62, and Theorem 2.50, there exist a number r(A, i) ∈ (0,4−i ) and an integer
N(A, i) ≥ 1 such that the following two assertions hold:
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1. Assume that B ∈Areg and ρ(A,B) < r(A, i). Then

(
1 − 4−i

)
xA ≤ xB ≤ (

1 + 4−i
)
xA, |αA − αB | ≤ 4−i min{1, αA}

and
∥∥α−n

B Bnx − fA(x)xA

∥∥
η

≤ 4−i for all x ∈ 〈−η,η〉 and each integer n ≥ N.

2. Assume that B ∈ A, ρ(A,B) < r(A, i), x0 ∈ X+, α0 > 0, α0x0 = Bx0 and
4−1xA ≤ x0 ≤ η. Then

(
1 − 4−i

)
xA ≤ x0 ≤ (

1 + 4−i
)
xA, |αA − α0| ≤ 4−i min{1, αA}

and
∥∥α−n

0 Bnx − fA(x)xA

∥∥
η

≤ 4−i

for all x ∈ 〈−η,η〉 and each integer n ≥ N(A, i).

Now set

U(A, i) = {
B ∈A : ρ(B,A) < r(A, i)

}
(2.364)

and define

F =
[ ∞⋂

i=1

⋃{
U(A, i) : A ∈Areg

}
]

∩ Āreg. (2.365)

Evidently, F is a countable intersection of open and everywhere dense subsets
of Āreg .

It remains to be shown that F ⊂ Areg . To this end, assume that B ∈ F . There
exist {Ak}∞k=1 ⊂ Areg and a strictly increasing sequence of natural numbers {ik}∞k=1
such that

B ∈ U(Ak, ik) and U(Ak+1, ik+1) ⊂ U(Ak, ik), k = 1,2, . . . . (2.366)

Let k ≥ 1. It follows from assertion 1 and (2.366) that for each integer j ≥ 1,
(
1 − 4−ik

)
xAk

≤ xAk+j
≤ (

1 + 4−ik
)
xAk

(2.367)

and

|αAk
− αAk+j

| ≤ 4−ik min{1, αAk
}.

It is clear that both {xAp }∞p=1 and {αAp }∞p=1 are Cauchy sequences. Therefore there
exist the limits

x∗ = lim
s→∞xAs , α∗ = lim

s→∞αAs . (2.368)

Set

λ∗ = inf
{
λ(xAk

, η) : k = 1,2, . . .
}
. (2.369)
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By (2.367), λ∗ is positive. By (2.367) and (2.368),
(
1 − 4−ik

)
xAk

≤ x∗ ≤ (
1 + 4−ik

)
xAk

,

|αAk
− α∗| ≤ 4−ik min{1, αAk

}, x∗ ≤ η.
(2.370)

By (2.368) and (2.366),

Bx∗ = B
(

lim
k→∞xAk

)
= lim

k→∞AkxAk
= lim

k→∞αAk
xAk

= α∗x∗. (2.371)

Let k ≥ 1 be an integer. It follows from assertion 2, (2.366), (2.370) and (2.371) that
∥
∥α−n∗ Bnx − fAk

(x)xAk

∥
∥

η
≤ 4−ik for all x ∈ 〈−η,η〉

and each integer n ≥ N(Ak, ik). (2.372)

Note that (see (2.363) and (2.369))

xAk
= fAk

(xAk
)xAk

, fAk
(xAk

) = 1

and

fAk
(η) ≤ fAk

(xAk
) · λ−1∗ = λ−1∗ .

When combined with (2.372) and (2.370), this implies that
∥∥α−n∗ Bnx − fAk

(x)xA

∥∥
η

≤ 4−ik + 4−ik λ−1∗ (2.373)

for all x ∈ 〈−η,η〉 and each integer n ≥ N(Ak, ik). Since k is an arbitrary natural
number, we obtain that for each x ∈ X, there exists

lim
n→∞α−n∗ Bnx = fB(x)x∗, (2.374)

where fB ∈ X′+. It follows from (2.373) and (2.374) that for each integer k ≥ 1,
each integer n ≥ N(Ak, ik) and each x ∈ 〈−η,η〉,

∥∥fB(x)x∗ − fAk
(x)x∗

∥∥
η

≤ 4−ik + 4−ik λ−1∗

and
∥∥α−n∗ Bnx − fB(x)x∗

∥∥
η

≤ 2
(
4−ik + 4−ik λ−1∗

)
.

Therefore B ∈Areg and Theorem 2.51 is established.

2.16 Convergence of Inexact Orbits for a Class of Operators

In this section we exhibit a class of nonlinear operators with the property that their
iterates converge to their unique fixed points even when computational errors are
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present. We also show that most (in the sense of Baire category) elements in an
appropriate complete metric space of operators do, in fact, possess this property.

Assume that (X,ρ) is a complete metric space and let the operator A : X → X

have the following properties:

(A1) there exists a unique xA ∈ X such that AxA = xA;
(A2) Anx → xA as n → ∞, uniformly on all bounded subsets of X;
(A3) A is uniformly continuous on bounded subsets of X;
(A4) A is bounded on bounded subsets of X.

Many operators with these properties can be found, for example, in [23, 33, 50,
85, 108, 114, 126, 127, 137]. We mention, in particular, the classes of operators
introduced by Rakotch [114] and Browder [23]. Note that if X is either a closed
and convex subset of a Banach space or a closed and ρ-convex subset of a complete
hyperbolic metric space [124], then (A4) follows from (A3).

In view of (A2), it is natural to ask if the convergence of the orbits of A will be
preserved even in the presence of computational errors. In this section we provide
affirmative answers to this question. More precisely, we have the following results
which were obtained in [35].

Theorem 2.65 Let K be a nonempty, bounded subset of X and let ε > 0 be given.
Then there exist δ = δ(ε,K) > 0 and a natural number N such that for each natural
number n ≥ N , and each sequence {xi}ni=0 ⊂ X which satisfies

x0 ∈ K and ρ(Axi, xi+1) ≤ δ, i = 0, . . . , n − 1,

the following inequality holds:

ρ(xi, xA) ≤ ε, i = N, . . . , n.

Corollary 2.66 Assume that {xi}∞i=0 ⊂ X, {xi}∞i=0 is bounded, and that

lim
i→∞ρ(Axi, xi+1) = 0.

Then ρ(xi, xA) → 0 as i → ∞.

Theorem 2.67 Let ε > 0 be given. Then there exists δ = δ(ε) > 0 such that for each
sequence {xi}∞i=0 ⊂ X which satisfies

ρ(x0, xA) ≤ δ and ρ(xi+1,Axi) ≤ δ, i = 0,1, . . . ,

the following inequality holds:

ρ(xi, xA) ≤ ε, i = 0,1, . . . .

These results show that, roughly speaking, in order to achieve an ε-approximation
of xA, it suffices to compute inexact orbits of A, that is, sequences {xi}∞i=0 such that
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x0 ∈ X and ρ(xi+1,Axi) ≤ δ for any i ≥ 0,

where δ is a sufficiently small positive number.
However, sometimes the operator A is not given explicitly and only some approx-

imation of it, Bi , is available at each step i of the inexact orbit computing procedure.
The next result shows that for certain operators A, the procedure of approximating
xA by inexact orbits is stable in the sense that, even in this case, the orbits determined
by the sequence of operators Bi approach xA provided that each Bi is a sufficiently
accurate approximation of A in the topology of uniform convergence on bounded
subsets of X. To be precise, we set, for each x ∈ X and E ⊂ X,

ρ(x,E) = inf
{
ρ(x, y) : y ∈ E

}
.

Denote by A the set of all self-mappings A : X → X which have properties (A3)
and (A4). Fix θ ∈ X. For each natural number n, set

En = {
(A,B) ∈A×A : ρ(Ax,Bx) ≤ 1/n for all x ∈ B(θ,n)

}
. (2.375)

We equip the set A with the uniformity determined by the base En, n = 1,2, . . . .
This uniformity is metrizable by a complete metric.

Denote by Areg the set of all mappings A ∈ A which satisfy (A1) and (A2), and
by Āreg the closure of Areg in A.

Theorem 2.68 Assume that A ∈ Areg and xA is a fixed point of A. Let m,ε > 0 be
given. Then there exist a neighborhood U of A in A and a natural number N such
that for each x ∈ B(θ,m), each integer n ≥ N , and each sequence {Bi}ni=1 ⊂ U ,

ρ(Bi · · ·B1x, xA) ≤ ε for i = N, . . . , n.

As a matter of fact, it turns out that the stability property established in this the-
orem is generic. That is, it holds for most (in the sense of Baire category) operators
in the closure of Areg .

Theorem 2.69 The set Areg contains an everywhere dense Gδ subset of Āreg .

2.17 Proofs of Theorem 2.65 and Corollary 2.66

We first prove Theorem 2.65. To this end, set, for x ∈ X and r > 0,

B(x, r) = {
y ∈ X : ρ(x, y) ≤ r

}
.

We may assume without loss of generality that

ε ≤ 1 and B(xA,4) ⊂ K. (2.376)
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By (A2), there exists a natural number N ≥ 4 such that

ρ
(
Anx,xA

)≤ ε/4 for all integers n ≥ N and all x ∈ K. (2.377)

By (A4), the set Am(K) is bounded for all natural numbers m. Hence there exists a
positive number S > 0 such that

Ai(K) ⊂ B(xA,S), i = 0, . . . ,2N. (2.378)

(Here we use the convention that A0 is the identity operator.) By induction and (A3),
we define a finite sequence of positive numbers {γi}2N

i=0 so that

γ2N = ε/4

and, for each i = 0,1, . . . ,2N − 1,

γi ≤ γi+1 (2.379)

and

ρ(Ax,Ay) ≤ 2−1γi+1 for all x, y ∈ B(xA,S +4) with ρ(x, y) ≤ γi. (2.380)

Set

δ = γ0/2. (2.381)

First, we prove the following auxiliary result.

Lemma 2.70 Suppose that {zi}2N
i=0 ⊂ X satisfies

z0 ∈ K and ρ(zi+1,Azi) ≤ δ, i = 0, . . . ,2N − 1. (2.382)

Then

ρ(zi, xA) ≤ ε, i = N, . . . ,2N.

Proof We will show that for i = 1, . . . ,2N ,

ρ
(
zi,A

iz0
)≤ γi. (2.383)

Clearly, (2.383) holds for i = 1 by (2.382) and (2.381).
Assume that i ∈ {2, . . . ,2N} and

ρ
(
zi−1,A

i−1z0
)≤ γi−1. (2.384)

Then (2.382) implies that

ρ
(
zi,A

iz0
)≤ ρ(zi,Azi−1) + ρ

(
Azi−1,A

(
Ai−1z0

))

≤ δ + ρ
(
Azi−1,A

(
Ai−1z0

))
. (2.385)
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It follows from the definition of γi−1 (see (2.379)), (2.384), (2.382) and (2.378) that

Ai−1z0, zi−1 ∈ B(xA,S + 1).

By these inclusions, the definition of γi−1 (see (2.380) with j = i − 1) and (2.384),

ρ
(
A
(
Ai−1z0

)
,Azi−1

)≤ γi/2.

When combined with (2.385) and (2.381), this inequality implies that

ρ
(
zi,A

iz0
)≤ δ + γi/2 ≤ γi.

Therefore (2.383) is valid for all i ∈ {1, . . . ,2N}. Together with (2.377), (2.379),
(2.382) and (2.383), this last inequality implies that for all i ∈ {N, . . . ,2N}, we
have

ρ(zi, xA) ≤ ρ
(
zi,A

iz0
)+ ρ

(
Aiz0, xA

)≤ γi + ε/4 ≤ ε/2.

Lemma 2.70 is proved. �

Now we are ready to complete the proof of Theorem 2.65.
To this end, assume that n ≥ N is a natural number and that the sequence

{xi}ni=0 ⊂ X satisfies

x0 ∈ K and ρ(Axi, xi+1) ≤ δ, i = 0, . . . , n − 1.

We will show that

ρ(xi, xA) ≤ ε, i = N, . . . , n. (2.386)

If n ≤ 2N , then (2.386) follows from Lemma 2.70. Therefore we may confine our
attention to the case where n > 2N . Again by Lemma 2.70,

ρ(xi, xA) ≤ ε, i = N, . . . ,2N. (2.387)

Assume by way of contradiction that there exists an integer q ∈ (2N,n] such that

ρ(xq, xA) > ε. (2.388)

In view of (2.387), we may assume without loss of generality that

ρ(xi, xA) ≤ ε, i ∈ {2N, . . . , q − 1}. (2.389)

Define {zi}2N
i=0 ⊂ X by

zi = xi+q−N, i = 0, . . . ,N, zi+1 = Azi, i = N, . . . ,2N − 1. (2.390)

We will show that the sequence {zi}2N
i=0 satisfies (2.382). To meet this goal, we only

need to show that z0 ∈ K . By (2.390), (2.389) and (2.387),

z0 = xq−N and ρ(z0, xA) ≤ ε.
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The last inequality and (2.376) imply that z0 ∈ K . Therefore (2.382) holds. It now
follows from Lemma 2.70 and (2.390) that

ρ(xA, xq) = ρ(xA, zN) ≤ ε.

This, however, contradicts (2.388). The contradiction we have reached proves
(2.386) and this completes the proof of Theorem 2.65.

Finally, we are going to prove Corollary 2.66.
Set K = {xn : n = 0,1, . . .} and let ε > 0 we given. Let δ > 0 and a natural

number N be as guaranteed by Theorem 2.65. There exists a natural number j

such that for each integer i ≥ j , we have ρ(Axi, xi+1) ≤ δ. It follows from the last
inequality and the choice of δ that ρ(xi, xA) ≤ ε for all integers i ≥ j + N . Since
ε is an arbitrary positive number, this implies that limi→∞ xi = xA. The proof of
Corollary 2.66 is complete.

Corollary 2.66 provides a partial answer to a question raised in [77] in the wake
of Theorem 1 of [75], which is also concerned with the stability of iterations.

2.18 Proof of Theorem 2.67

We may assume without loss of generality that ε ≤ 1. By Theorem 2.65, there exist
a natural number N and a real number δ0 ∈ (0, ε) such that the following property
holds.

(P1) For each natural number n ≥ N and each sequence {yi}ni=0 ⊂ X which satisfies

y0 ∈ B(xA,4) and ρ(yi+1,Ayi) ≤ δ0, i = 0, . . . , n − 1, (2.391)

the following inequality holds:

ρ(yi, xA) ≤ ε, i = N, . . . , n. (2.392)

By property (A4), the set Ai(B(xA,4)) is bounded for any integer i ≥ 1. Choose a
number s > 1 such that

N⋃

i=0

Ai
(
B(xA,4)

)⊂ B(xA, s). (2.393)

By induction and (A3), we define a finite sequence of positive numbers {γi}Ni=0 so
that

γi ≤ 1, i = 0, . . . ,N,

γN ≤ δ0/4, γi ≤ γi+1, i = 0, . . . ,N − 1,
(2.394)

and for each j ∈ {0, . . . ,N − 1},
ρ(Ax,Ay) ≤ 2−1γj+1 for all x, y ∈ B(xA, s + 4)

with ρ(x, y) ≤ γj .
(2.395)
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Set

δ = γ0/4. (2.396)

Assume that {xi}∞i=0 ⊂ X,

ρ(x0, xA) ≤ δ and ρ(xi+1,Axi) ≤ δ, i = 0,1, . . . . (2.397)

We will show that

ρ(xi, xA) ≤ ε (2.398)

for all integers i ≥ 0. By (2.397), (2.396) and (P1), inequality (2.398) holds for all
integers i ≥ N . Therefore we only need to prove (2.398) for i < N . Clearly, (2.398)
holds for i = 0.

We will show that for i = 0, . . . ,N , we have

ρ(xi, xA) = ρ
(
xi,A

ixA

)≤ γi . (2.399)

By (2.397) and (2.396), this is true for i = 0. Assume that i ∈ {1, . . . ,N} and

ρ
(
xi−1,A

i−1xA

)= ρ(xi−1, xA) ≤ γi−1. (2.400)

Then (2.397) implies that

ρ(xi, xA) ≤ ρ(xi,Axi−1) + ρ(Axi−1, xA) ≤ δ + ρ(Axi−1, xA). (2.401)

It follows from (2.400) and (2.394) that

xi−1 ∈ B(xA, s). (2.402)

By (2.402), (2.400) and the definition of γi−1 (see (2.395) with j = i − 1),

ρ(Axi−1, xA) ≤ 2−1γi. (2.403)

Using (2.401), (2.403), (2.396) and (2.394), we obtain

ρ(xi, xA) ≤ δ + 2−1γi ≤ γi .

Thus (2.399) indeed holds for all i ∈ {0, . . . ,N}. This fact, when combined with
(2.394), implies that (2.398) is true for all i ∈ {0, . . . ,N}. This completes the proof
of Theorem 2.67.

2.19 Proof of Theorem 2.68

We may assume, without any loss of generality, that ε < 1 and that m ≥ 1 is an
integer such that

m ≥ ρ(xA, θ) + 4. (2.404)
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By Theorem 2.65, there exist δ ∈ (0, ε) and a natural number N such that the fol-
lowing property holds.

(P2) For each natural number n ≥ N and each sequence {xi}ni=0 ⊂ X which satisfies

x0 ∈ B(θ,m) and ρ(Axi, xi+1) ≤ δ, i = 0, . . . , n − 1, (2.405)

the following inequality holds:

ρ(xi, xA) ≤ ε, i = N, . . . , n. (2.406)

Set

K0 = B(θ,m) and Ki+1 = {
z ∈ X : ρ(z,A(Ki)

)≤ 1
}
,

i = 0,1, . . . . (2.407)

Clearly, the set Ki is bounded for any integer i ≥ 0. Choose a natural number q ≥ 8
such that

2N⋃

i=0

Ki ⊂ B(θ, q) and 1/q < δ/8. (2.408)

We are going to use the following technical result.

Lemma 2.71 Assume that

z ∈ B(θ,m) and {Bi}2N
i=1 ⊂ {

C ∈A : (C,A) ∈ Eq

}
, (2.409)

where Eq is given by (2.375). Then

ρ(Bi · · ·B1z, xA) ≤ ε, i = N, . . . ,2N. (2.410)

Proof Set

z0 = z and zi = Bizi−1, i = 1, . . . ,2N. (2.411)

We will show that

zi ∈ Ki (2.412)

for i = 0, . . . ,2N . Clearly, (2.412) holds for i = 0. Assume that i ∈ {0, . . . ,2N − 1}
and (2.412) is valid. Inclusions (2.412) and (2.408) imply that

zi ∈ Ki ⊂ B(θ, q). (2.413)

When combined with (2.409), (2.375) and (2.411), this last inclusion implies that

ρ(Azi, zi+1) = ρ(Azi,Bi+1zi) ≤ 1/q. (2.414)
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Consequently, (2.414), (2.413) and (2.407) imply that zi+1 ∈ Ki+1. Therefore
(2.412) is true for all i = 0, . . . ,2N . This implies (see (2.408)) that

{zi}2N
i=0 ⊂ B(θ, q).

It follows from this inclusion, (2.408), (2.409) and (2.411) that for i = 0, . . . ,

2N − 1,

ρ(zi+1,Azi) = ρ(Bi+1zi,Azi) ≤ 1/q < δ.

By (P2), we see that

ρ(Bi · · ·B1z, xA) = ρ(zi, xA) ≤ ε, i = N, . . . ,2N.

Lemma 2.71 is proved. �

Now we are ready to complete the proof of Theorem 2.68. To this end, set

U = {
C ∈ A : (C,A) ∈ Eq

}
. (2.415)

Let n ≥ N be an integer, x ∈ B(θ,m), and {Bi}ni=1 ⊂ U . We will show that

ρ(Bi · · ·B1x, xA) ≤ ε for i = N, . . . , n. (2.416)

If n ≤ 2N , then (2.416) follows from Lemma 2.71. Therefore we may restrict our
attention to the case n > 2N . By Lemma 2.71,

ρ(Bi · · ·B1x, xA) ≤ ε, i = N, . . . ,2N. (2.417)

Suppose now that there exists an integer p > 2N , p ≤ n, such that

ρ(Bp · · ·B1x, xA) > ε. (2.418)

According to (2.417), we may assume, without loss of generality, that

ρ(Bi · · ·B1x, xA) ≤ ε, i = 2N, . . . ,p − 1. (2.419)

Define {Di}2N
i=0 ⊂ A by

Di = Bi+p−N, i = 0, . . . ,N, Di = A, i = N + 1, . . . ,2N, (2.420)

and let

z = Bp−N · · ·B1x.

It follows from (2.417), (2.419), (2.420) and (2.404) that

ρ(z, xA) ≤ ε and z ∈ B(θ,m).
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Applying now Lemma 2.71 to the mappings {Di}2N
i=0 defined by (2.420), we deduce

that

ε ≥ ρ(DN · · ·D1z, xA) = ρ(xA,Bp · · ·Bp−N+1z) = ρ(xA,Bp · · ·B1x),

which contradicts (2.418). Hence (2.416) is true and Theorem 2.68 is established.

2.20 Proof of Theorem 2.69

Let A ∈Areg and let k ≥ 1 be an integer. There is xA ∈ K such that

AxA = xA. (2.421)

According to Theorem 2.68, there exist a natural number N(A,k) and an open
neighborhood U(A, k) of A in A such that the following property holds.

(P3) For each x ∈ B(θ, k), each natural number n ≥ N(A,k) and each B ∈ U(A, k),
we have ρ(Bn, xA) ≤ 1/k.

Define

F =
[ ∞⋂

q=1

⋃{
U(A, k) : A ∈Areg, k ≥ q an integer

}
]

∩ Āreg. (2.422)

Clearly, F is an everywhere dense Gδ subset of Āreg .
Let B ∈ F . We claim that B ∈ Areg . Indeed, let q be a natural number. There

exists a mapping Aq ∈ Areg with a fixed point xAq and a natural number kq ≥ q

such that

B ∈ U(Aq, kq). (2.423)

This inclusion together with (P3) imply that the following property holds.

(P4) For each point x ∈ B(θ, q) ⊂ B(θ, kq) and each natural number n ≥
N(Aq, kq),

ρ
(
Bnx,xAq

)≤ k−1
q ≤ 1/q.

Since q is an arbitrary natural number, we obtain that for any x ∈ X, the sequence
{Bnx}∞n=1 is a Cauchy sequence and its limit is the unique fixed point xB of B . Thus

lim
n→∞BNz = xB for any z ∈ X.

Property (P4) implies that

ρ(xAq , xB) ≤ 1/q. (2.424)
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Finally, it follows from property (P4) and (2.424) that for any x ∈ B(θ, q) and any
n ≥ N(Aq, kq),

ρ
(
Bnx,xB

)≤ 2/q.

This implies that Bnx → xB as n → ∞, uniformly on any bounded subset of X.
This completes the proof of Theorem 2.69.

2.21 Inexact Orbits of Nonexpansive Operators

Let (X,ρ) be a complete metric space, A : X → X be a continuous mapping, and
let F(A) be the set of all fixed points of A. We assume that F(A) �= ∅ and that for
each x, y ∈ X,

ρ(Ax,Ay) ≤ ρ(x, y). (2.425)

By A0 we denote the identity self-mapping of A. We assume that for each x ∈ X,
the sequence {Anx}∞n=1 converges in (X,ρ). (Clearly, its limit belongs to F(A).)

The following result was obtained in [34].

Theorem 2.72 Let x0 ∈ X, {rn}∞n=0 ⊂ (0,∞),
∑∞

n=0 rn < ∞,

{xn}∞n=0 ⊂ X, ρ(xn+1,Axn) ≤ rn, n = 0,1, . . . . (2.426)

Then the sequence {xn}∞n=1 converges to a fixed point of A in (X,ρ).

Proof Fix a natural number k and consider the sequence {Anxk}∞n=0. This sequence
converges to yk ∈ F(A). By induction we will show that for each integer i ≥ 0,

ρ
(
Aixk, xk+1

)≤
i+k−1∑

j=k−1

rj − rk−1. (2.427)

Clearly, for i = 0 (2.427) is valid. Assume that (2.427) is valid for an integer i ≥ 0.
By (2.426), (2.425) and (2.427),

ρ
(
xk+i+1,A

i+1xk

)≤ ρ(xk+i+1,Axk+i ) + ρ
(
Axk+i ,A

(
Aixk

))

≤ rk+i + ρ
(
xk+i ,A

ixk

)≤
i+k∑

j=k−1

ri − rk−1.

Therefore (2.427) holds for all integers i ≥ 0.
By (2.427), we have for each integer i ≥ 0,

ρ(xk+i , yk) ≤ ρ
(
xk+i ,A

ixk

)+ ρ
(
Aixk, yk

)≤
∞∑

j=k

rj + ρ
(
Aixk, yk

)
. (2.428)
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Since Aixk converges to yk in (X,ρ), there is an integer i0 ≥ 1 such that for each
integer i ≥ i0,

ρ
(
Aixk, yk

)≤
∞∑

j=k

rj /4. (2.429)

By (2.429) and (2.428), for each pair of integers i1, i2 ≥ i0,

ρ(xk+i1, xk+i2) ≤ ρ(xk+i1, yk) + ρ(yk, xk+i2) ≤ 3
∞∑

j=k

rj .

Thus we have shown that for each natural number k, there is an integer i0 ≥ 1 such
that for each pair of integers i1, i2 ≥ i0,

ρ(xk+i1, xk+i2) ≤ 3
∞∑

j=k

rj .

Since
∑∞

j=1 rj < ∞, we see that {xn}∞n=1 is a Cauchy sequence and there exists
x̄ = limn→∞ xn. Together with (2.428), this equality implies that

ρ(x̄, yk) ≤
∞∑

j=k

rj .

Since
∑∞

j=1 rj < ∞, this inequality implies that

x̄ = lim
k→∞yk

and Ax̄ = x̄. Theorem 2.72 is proved. �

Now we present another result which was obtained in [34].
Let X be a nonempty closed subset of a Banach space (E,‖ · ‖) with a dual space

(E∗,‖ · ‖∗) and let A : X → X satisfy

‖Ax − Ay‖ ≤ ‖x − y‖ for each x, y ∈ X. (2.430)

As usual, we denote by A0 the identity self-mapping of X. Consider the following
assumptions.

(A1) For each x ∈ X, the sequence {Anx}∞n=1 converges weakly in X.
(A2) For each x ∈ X, the sequence {Anx}∞n=1 converges weakly in X to a fixed

point of A.

Theorem 2.73 Assume that (A1) holds. Let x0 ∈ X,
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{rn}∞n=0 ⊂ (0,∞),

∞∑

n=0

rn < ∞, (2.431)

{xn}∞n=0 ⊂ X, ‖xn+1 − Axn‖ ≤ rn, n = 0,1, . . . . (2.432)

Then the sequence {xn}∞n=1 converges weakly in X. Moreover, if (A2) holds, then its
limit is a fixed point of A.

Proof Fix a natural number k and consider a sequence {Anxk}∞n=0. This sequence
converges weakly to yk ∈ X. (Note that if (A2) holds, then Ayk = yk .) By induction
we will show that for each integer i ≥ 0,

∥
∥Aixk − xk+i

∥
∥≤

i+k−1∑

j=k−1

rj − rk−1. (2.433)

It is clear that (2.433) is valid for i = 0. Assume that i ≥ 0 is an integer and that
(2.433) is valid. By (2.432) and (2.430),

∥
∥xk+i+1 − Ai+1xk

∥
∥≤ ‖xk+i+1 − Axk+i‖ + ∥

∥Axk+i − A
(
Aixk

)∥∥

≤ rk+i + ∥∥xk+i − Aixk

∥∥

≤ rk+i +
i+k−1∑

j=k−1

rj − rk−1 =
i+k∑

j=k−1

rj − rk−1.

Therefore (2.433) holds for all integers i ≥ 0. Fix an integer q ≥ 1. By (2.433), we
have

∥∥Aqxk − xk+q

∥∥≤
∞∑

j=k

rj . (2.434)

By (2.430) and (2.434), we have for each integer i ≥ 0,

∥∥Aq+ixk − Aixk+q

∥∥≤ ∥∥Aqxk − xk+q

∥∥≤
∞∑

j=k

rj . (2.435)

In view of (2.435) and the definition of yk and yk+q ,

‖yk − yk+q‖ ≤
∞∑

j=k

rj . (2.436)

Since the above inequality holds for each pair of natural numbers q and k and since∑∞
j=0 rj < ∞, we conclude that {yk}∞k=1 is a Cauchy sequence and there exists

y∗ = lim
k→∞yk (2.437)
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in the norm topology of E. (Note that if (A2) holds, then Ay∗ = y∗.) By (2.437) and
(2.436),

‖yk − y∗‖ ≤
∞∑

j=k

rj for all integers k ≥ 1. (2.438)

In order to complete the proof it is sufficient to show that limk→∞ xk = y∗ in the
weak topology.

Let f ∈ E∗ be a continuous linear functional on E such that ‖f ‖∗ ≤ 1 and let
ε > 0 be given. It is sufficient to show that |f (y∗ − xi)| ≤ ε for all large enough
integers i.

There is an integer k ≥ 1 such that

∞∑

j=k

rj < ε/4. (2.439)

By (2.438) and (2.434), for each integer i ≥ 1,

∣∣f (y∗ − xk+i )
∣∣≤ ∣∣f (y∗ − yk)

∣∣+ ∣∣f
(
yk − Aixk

)∣∣+ ∣∣f
(
Aixk − xk+i

)∣∣

≤ ‖y∗ − yk‖ + ∣∣f
(
yk − Aixk

)∣∣+ ∥∥Aixk − xk+i

∥∥

≤
∞∑

j=k

rj + ∣∣f
(
yk − Aixk

)∣∣+
∞∑

j=k

rj . (2.440)

Since yk = limi→∞ Aixk in the weak topology of X, there is a natural number i0
such that

∣∣f
(
yk − Aixk

)∣∣≤ ε/4 for all natural numbers i ≥ i0. (2.441)

By (2.440), (2.439), (2.441), we have for each integer i ≥ i0,

∣∣f (y∗ − xk+i )
∣∣≤ ε/4 + ε/4 + ε/4 = 3ε/4.

Theorem 2.73 is proved. �

2.22 Convergence to Attracting Sets

In this section we continue to study the influence of errors on the convergence of
orbits of nonexpansive mappings in either metric or Banach spaces.

Let (X,ρ) be a metric space. For each x ∈ X and each closed nonempty subset
A ⊂ X, put

ρ(x,A) = inf
{
ρ(x, y) : y ∈ A

}
.
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Theorem 2.74 Let T : X → X satisfy

ρ(T x,T y) ≤ ρ(x, y) for all x, y ∈ X. (2.442)

Suppose that F is a nonempty closed subset of X such that for each x ∈ X,

lim
i→∞ρ

(
T ix,F

)= 0.

Assume that {γn}∞n=0 ⊂ (0,∞),
∑∞

n=0 γn < ∞,

{xn}∞n=0 ⊂ X and ρ(xn+1, T xn) ≤ γn, n = 0,1, . . . . (2.443)

Then

lim
n→∞ρ(xn,F ) = 0.

Proof Let ε > 0. Then there is an integer k ≥ 1 such that

∞∑

i=k

γi < ε. (2.444)

Define a sequence {yi}∞i=k by

yk = xk,

yi+1 = Tyi for all integers i ≥ k.
(2.445)

By (2.443) and (2.445),

ρ(xk+1, yk+1) ≤ γk. (2.446)

Assume that q ≥ k + 1 is an integer and that for i = k + 1, . . . , q ,

ρ(xi, yi) ≤
i−1∑

j=k

γj . (2.447)

(Note that in view of (2.446), inequality (2.447) is valid when q = k + 1.)
By (2.442) and (2.447),

ρ(T yq,T xq) ≤ ρ(yq, xq) ≤
q−1∑

j=k

γj .

When combined with (2.445) and (2.443), this implies that

ρ(xq+1, yq+1) ≤ ρ(xq+1, T xq) + ρ(T xq,T yq) ≤ γq +
q−1∑

j=k

γj =
q∑

j=k

γj ,
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so that (2.447) also holds for i = q + 1. Thus we have shown that for all integers
q ≥ k + 1,

ρ(yq, xq) ≤
q−1∑

j=k

γj <

∞∑

j=k

γj < ε, (2.448)

by (2.444). In view of (2.445) and the hypotheses of the theorem we note that

lim
i→∞ρ(yi,F ) = 0. (2.449)

By (2.448) and (2.449),

lim sup
i→∞

ρ(xi,F ) ≤ ε.

Since ε is an arbitrary positive number, we conclude that

lim
i→∞ρ(xi,F ) = 0,

as asserted. �

Theorem 2.75 Let X be a nonempty and closed subset of a reflexive Banach space
(E,‖ · ‖) and let T : X → X be such that

‖T x − Ty‖ ≤ ‖x − y‖ for all x, y ∈ X. (2.450)

Let F be a nonempty and closed subset of X such that for each x ∈ X, the sequence
{T nx}∞n=1 is bounded and all its weak limit points belong to F .

Assume that {γi}∞i=0 ⊂ (0,∞),
∑∞

i=0 γi < ∞, {xi}∞i=0 ⊂ X and

‖xi+1 − T xi‖ ≤ γi for all integers i ≥ 0. (2.451)

Then the sequence {xi}∞i=0 ⊂ X is bounded and all its weak limit points also belong
to F .

Proof Let ε > 0 be given. There is an integer k ≥ 1 such that

∞∑

i=k

γi < ε. (2.452)

Define a sequence {yi}∞i=k by

yk = xk, yi+1 = Tyi for all integers i ≥ k. (2.453)

Arguing as in the proof of Theorem 2.74, we can show that for all integers q ≥ k+1,

‖yq − xq‖ ≤
q−1∑

j=k

γj < ε. (2.454)

Obviously, (2.454) implies that the sequence {xk}∞k=0 is bounded.
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Assume now that z is a weak limit point of the sequence {xk}∞k=0. There exists a
subsequence {xip }∞p=1 which weakly converges to z. We may assume without loss of
generality that {yip }∞p=1 weakly converges to z̃ ∈ F . By (2.454) and the weak lower
semicontinuity of the norm,

‖z̃ − z‖ ≤ ε.

Since ε is an arbitrary positive number, we conclude that

z ∈ F.

Theorem 2.75 is proved. �

Both Theorems 2.74 and 2.75 were obtained in [111].

2.23 Nonconvergence to Attracting Sets

In this section, which is based on [111], we show that both Theorems 2.72 and 2.74
cannot, in general, be improved. We begin with Theorem 2.72.

Proposition 2.76 For any normed space X, there exists an operator T : X → X

such that ‖T x − Ty‖ ≤ ‖x − y‖ for all x, y ∈ X, the sequence {T nx}∞n=1 converges
for each x ∈ X and, for any sequence of positive numbers {γn}∞n=0, there exists a se-
quence {xn}∞n=0 ⊂ X with ‖xn+1 − T xn‖ ≤ γn for all nonnegative integers n, which
converges if and only if the sequence {γn}∞n=0 is summable, i.e.,

∑∞
n=0 γn < ∞.

Proof This is a simple fact because we may take T to be the identity operator:
T x = x, ∀x. Then we may take x0 to be an arbitrary element of X with ‖x0‖ = 1,
and define by induction

xn+1 = T xn + γnx0, n = 0,1,2, . . . .

Evidently, ‖xn+1 − T xn‖ = γn and xn+1 = x0(1 +∑n
i=0 γi) for all integers n ≥ 0,

so that the convergence of {xn}∞n=0 is equivalent to the summability of the sequence
{γn}∞n=0. �

Counterexamples to possible improvements of Theorem 2.74 are more difficult
to construct because this theorem deals with convergence to attracting sets. For sim-
plicity, we assume that the non-summable sequence {γn}∞n=0 decreases to 0 and that
γ1 ≤ 1.

Proposition 2.77 Let X be an arbitrary (but not one-dimensional) normed space
and let a non-summable sequence of positive numbers {γn}∞n=0 decrease to 0. Then
there exist a subspace F ⊂ X and a nonexpansive (with respect to an equivalent
norm on X) operator T : X → X such that ρ(T nu,F ) → 0 as n → ∞ for any
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u ∈ X, and there exists a sequence {un}∞n=0 ⊂ X such that ‖un+1 − T un‖ ≤ γn for
all integers n ≥ 0, but ρ(un,F ) does not tend to 0 as n → ∞.

Proof We take any 2-dimensional subspace of X, identify it with R2 (with coordi-
nates (x, y)), and perform all constructions and proofs only in this subspace, taking
as F the one-dimensional space L := {(x, y) ∈ R2 : y = 0}. The same counterex-
ample may be then applied to the whole space X if we take F to be an algebraic
complement of the one-dimensional space {(x, y) ∈ R2 : x = 0} which contains L.

So, consider a plane with orthogonal axes x, y and the norm ‖u‖ = ‖(x, y)‖ =
max(|x|, |y|) (recall that in a finite dimensional space all norms are equivalent). At
the first stage, we only consider the case where γn+1/γn ≥ 1/2 for all n and we de-
fine a decreasing function y = γ (x) which equals γn at x = 2n, n = 1,2, . . . , and is
linear on the intermediate segments. Finally, we define the operator T as the super-
position T = T4T3T2T1 of the following four mappings: (a) T1 : (x, y) �→ (|x|, |y|);
(b) T2 : (x, y) �→ (x,min(1, y)); (c) T3 : (x, y) �→ (x + 2, y); (d) T4 : (x, y) �→
(x, [1 − γ (x)]y).

The principal point of the proof is to show that the operator T is nonexpansive.
This is obviously true for the first three mappings T1, T2 and T3, so we need

only consider the fourth operator T4. For simplicity, we may assume from the very
beginning that T = T4.

For arbitrary x1 < x2, let u1 = (x1, y1) and u2 = (x2, y2). Then T u1 = (x1, [1 −
γ (x1)]y1) and T u2 = (x2, [1 − γ (x2)]y2). Our aim is to show that ‖T u1 − T u2‖ ≤
‖u1 − u2‖, where ‖u1 − u2‖ = max(x2 − x1, |y2 − y1|) and ‖T u1 − T u2‖ =
max(x2 − x1, |[1 − γ (x2)]y2 − [1 − γ (x1)]y1|). Since after the application of the
first two mappings T1 and T2, the second coordinate y already belongs to [0,1], the
case where x2 −x1 ≥ 1 is trivial, because then ‖T u1 −T u2‖ = ‖u1 −u2‖ = x2 −x1.
Hence we may assume in what follows that x2 − x1 < 1 and thus we need only con-
sider one of the following two possibilities: either both x1 and x2 belong to the same
interval [2n,2(n + 1)] or they belong to two adjoining intervals [2n,2(n + 1)] and
[2(n + 1),2(n + 2)] for some n = 1,2, . . . . We claim that in both cases,

γ (x1) − γ (x2) ≤ (x2 − x1)γ (x1). (2.455)

If 2n ≤ x1 < x2 ≤ 2(n + 1), then the points u1 and u2 lie on the straight line
connecting the points (2n,1−γn) and (2(n+1),1−γn+1), so that the ratio (γ (x1)−
γ (x2))/(x2 − x1) coincides with the slope of this line:

kn = (γn − γn+1)/2 ≤ γn/2 ≤ γn+1 ≤ γ (x1).

In the second case the same ratio is less than or equal to max(kn, kn+1), where

kn+1 = (γn+1 − γn+2)/2 ≤ γn+1 ≤ γ (x1),

and therefore inequality (2.455) is proved in both cases.
Note that in order to compare the distances between u1 and u2, and between T u1

and T u2, it is enough to show that
∣∣y2

[
1 − γ (x2)

]− y1
[
1 − γ (x1)

]∣∣≤ max
(
x2 − x1, |y2 − y1|

)
. (2.456)
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If y1 ≥ y2, then

y1
[
1 − γ (x1)

]− y2
[
1 − γ (x2)

]= (y1 − y2) − [
y1γ (x1) − y2γ (x2)

]≤ y1 − y2,

because γ (x1) ≥ γ (x2). On the other hand,

y1
[
1 − γ (x1)

]− y2
[
1 − γ (x2)

]= (y1 − y2)
[
1 − γ (x2)

]+ y1
[
γ (x2) − γ (x1)

]

≥ −(x2 − x1)γ (x1)y1

by (2.455). Now inequality (2.456) follows because γ (x1)y1 < 1.
If y2 − y1 ≥ 0, then also y2[1 − γ (x2)] − y1[1 − γ (x1)] ≥ 0 and it suffices to

estimate this difference only from above. Bearing in mind that all y ≤ 1, we obtain
by (2.455) that

y2
[
1 − γ (x2)

]− y1
[
1 − γ (x1)

]

= (y2 − y1)
[
1 − γ (x1)

]+ y2
[
γ (x1) − γ (x2)

]

≤ (y2 − y1)
[
1 − γ (x1)

]+ γ (x1)(x2 − x1) ≤ max(x2 − x1, y2 − y1),

as needed.
Let u = (x, y) be an arbitrary point in R2. Then T2T1u ∈ {(x, y) : x ≥ 0,0 ≤

y ≤ 1} and thereafter the operators T1 and T2 coincide with the identity mapping.
Defining the integer k by 2k ≤ x < 2(k + 1), we see that

ρ
(
T nu,F

)= y

n∏

i=1

[
1 − γ (x + 2i)

]≤ y

k+n∏

i=k+1

(1 − γi) −→ 0

as n → ∞, because the series
∑∞

i=1 γi is divergent.
To finish the proof for the case where γn+1/γn ≥ 1/2 for all natural numbers n,

we define un = (2(n − 1),1) for n = 1,2, . . . . Then T un = T4T3un = (2n,1 − γn)

and ‖un+1 −T un‖ = γn. At the same time, ρ(un,F ) = 1 for all n and does not tend
to 0.

We now proceed to the general case where the given sequence {γn}∞n=0 does not
satisfy the condition γn+1/γn ≥ 1/2 for all n ≥ 0. We then define by induction a
new sequence:

γ ′
1 = γ1, γ ′

n+1 = max
{
γn+1, γ

′
n/2

}
, n = 1,2, . . . ,

so that γ ′
n+1/γ

′
n ≥ 1/2. Using the new sequence {γ ′

n}∞n=0, we construct the operator
T as before, replacing each γn by γ ′

n. The sequence {un}∞n=0 will be defined by
induction. Let u1 = (0,1). If the point un = (xn, yn) has already been defined, then
to obtain the next point un+1 = (xn+1, yn+1), we put xn+1 = xn + 2, yn+1 = yn if
γ ′
n = γn, and yn+1 = yn[1−γ ′

n] if γ ′
n > γn. Since T un = (xn+1, yn[1−γ ′

n]) for each
n, we find that ‖un+1 − T un‖ ≤ γn for all n, as needed.
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It is easy to see that

yn+1 =
n∏

k=1

(
1 − σkγ

′
k

)
,

where σk = 1 when γ ′
n > γn and σk = 0 otherwise. But the series

∑∞
k=1 σkγ

′
k con-

verges, since the ratio of any two consecutive nonzero terms here is not greater than
1/2. Therefore

ρ(un,F ) ≥
∞∏

k=1

(
1 − σkγ

′
k

)
> 0.

That is, the sequence {ρ(un,F )} again does not tend to zero, as claimed. �

2.24 Convergence and Nonconvergence to Fixed Points

In Sect. 2.23 we have shown that Theorems 2.72 and 2.74 cannot be, in general,
improved. However in Proposition 2.76 every point of the space is a fixed point of
the operator T and the inexact orbits tend to infinity. In Proposition 2.77 the attract-
ing set F is unbounded and the operator T depends on the sequence of errors. In
this section we construct an operator T on a complete metric space X such that all
of its orbits converge to its unique fixed point, and for any nonsummable sequence
of errors and any initial point, there exists a divergent inexact orbit with a conver-
gent subsequence. On the other hand, we emphasize that while the example of the
present section is for a particular subset of an infinite-dimensional Banach space,
the examples in Sect. 2.23 apply to general normed spaces, even finite-dimensional
ones.

Let X be the set of all sequences x = {xi}∞i=1 of nonnegative numbers such that∑∞
i=1 xi ≤ 1. For x = {xi}∞i=1, y = {yi}∞i=1 ∈ X, set

ρ
({xi}∞i=1, {yi}∞i=1

)=
∞∑

i=1

|xi − yi |. (2.457)

Clearly, (X,ρ) is a complete metric space.
Define a mapping T : X → X as follows:

T
({xi}∞i=1

)= (x2, x3, . . . , xi, . . .), {xi}∞i=1 ∈ X. (2.458)

In other words, for any {xi}∞i=1 ∈ X,

T
({xi}∞i=1

)= {yi}∞i=1, where yi = xi+1 for all integers i ≥ 1. (2.459)

Set T 0x = x for all x ∈ X. Clearly,

ρ(T x,T y) ≤ ρ(x, y) for all x, y ∈ X (2.460)
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and

T nx converges to (0,0, . . . , . . .) as n → ∞ (2.461)

for all x ∈ X.
The following result was obtained in [111].

Theorem 2.78 Let {ri}∞i=0 ⊂ [0,∞),

∞∑

i=0

ri = ∞, (2.462)

and x = {xi}∞i=1 ∈ X. Then there exists a sequence {y(i)}∞i=0 ⊂ X such that

y(0) = x, ρ
(
Ty(i), y(i+1)

)≤ ri , i = 0,1, . . . ,

the sequence {y(i)}∞i=0 does not converge in (X,ρ), but (0,0, . . .) is a limit point of
{y(i)}∞i=0.

In the proof of this theorem we may assume without loss of generality that

ri ≤ 16−1 for all integers i ≥ 0. (2.463)

We precede the proof of Theorem 2.78 with the following lemma.

Lemma 2.79 Let z(0) = {z(0)
i }∞i=1 ∈ X and let k ≥ 0 be an integer. Then there exist

an integer n ≥ 4 and a sequence {z(i)}ni=0 ⊂ X such that

ρ
(
z(i+1), T z(i)

)≤ rk+i , i = 0, . . . , n − 1,

and

ρ
(
z(n), (0,0,0, . . .)

)≥ 4−1.

Proof There is a natural number m > 4 such that

∞∑

i=m

z
(0)
i < 16−1. (2.464)

Set

z(i+1) = T z(i), i = 0, . . . ,m − 1. (2.465)

Clearly,

z(m) = (
z
(0)
m+1, z

(0)
m+2, . . . , z

(0)
i , . . .

)
. (2.466)
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By (2.462), there is a natural number n > m such that

k+n∑

j=k+m

rj ≥ 2−1. (2.467)

By (2.467) and (2.463), n ≥ m + 7 and we may assume without loss of generality
that

k+n−1∑

j=k+m

rj < 1/2. (2.468)

In view of (2.457) and (2.463)

k+n−1∑

j=k+m

rj =
k+n∑

j=k+m

rj − rk+n ≥ 2−1 − 16−1. (2.469)

For i = m + 1, . . . , n, define z(i) = {z(i)
j }∞j=1 as follows:

z
(i)
j = z

(0)
j+i , j ∈ {1,2, . . .} \ {n + 1 − i},

z
(i)
n+1−i = z

(0)
n+1 +

k+i−1∑

j=k+m

rj .
(2.470)

Clearly, for i = m + 1, . . . , n, z(i) is well-defined and by (2.470), (2.464) and
(2.468),

∞∑

j=1

z
(i)
j =

∞∑

j=i+1

z
(0)
j +

k+i−1∑

j=k+m

rj ≤
∞∑

j=m

z
(0)
j +

k+n−1∑

j=k+m

rj ≤ 16−1 + 2−1 < 1.

Thus z(i) ∈ X, i = m + 1, . . . , n.
Let i ∈ {m, . . . , n − 1}. In order to estimate ρ(z(i+1), T z(i)), we first set

{z̃j }∞j=1 = T z(i). (2.471)

In view of (2.471), (2.458) and (2.459), z̃j = z
(i)
j+1 for all integers j ≥ 1. When

combined with (2.470), this implies that

z̃j = z
(0)
j+1+i for all j ∈ {1,2, . . .} \ {n − i} (2.472)

and

z̃n−i = z
(i)
n+1−i = z

(0)
n+1 +

k+i−1∑

j=k+m

rj .
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By (2.472), z̃j = z
(i+1)
j for all j ∈ {1,2, . . .}\{n− i}. Together with (2.473), (2.457),

(2.472) and (2.470), this equality implies that

ρ
(
z(i+1), T z(i)

)= ρ
(
z(i+1), {z̃j }∞j=1

)= ∣∣z(i+1)
n−i − z̃n−i

∣∣= rk+i .

It follows from this relation, which holds for all i ∈ {m, . . . , n−1}, and from (2.465)
that

ρ
(
z(i+1), T z(i)

)≤ rk+i , i = 0, . . . , n − 1.

By (2.457), (2.470) and (2.469),

ρ
(
z(n), (0,0,0, . . .)

)≥ z
(n)
1 = z

(0)
n+1 +

k+n−1∑

j=k+m

rj ≥ 2−1 − 16−1.

This completes the proof of Lemma 2.79. �

Proof of Theorem 2.78 In order to prove the theorem, we construct by induction,
using Lemma 2.79, sequences of nonnegative integers {tk}∞k=0 and {sk}∞k=0, and a
sequence {y(i)}∞i=0 ⊂ X such that

y(0) = x, (2.473)

ρ
(
y(i+1), T y(i)

)≤ ri for all integers i ≥ 0, (2.474)

t0 = s0 = 0, sk < sk+1 < tk+1 for all integers k ≥ 0, (2.475)

and for all integers k ≥ 1,

ρ
(
y(sk), (0,0,0 . . .)

)≤ 1/k and ρ
(
y(tk), (0,0,0 . . .)

)≥ 1/4. (2.476)

In the sequel we use the notation y(i) = {y(i)
j }∞j=1, i = 0,1, . . . .

Set

y(0) = x and t0, s0 = 0. (2.477)

Assume that q ≥ 0 is an integer and that we have already defined two sequences of
nonnegative numbers {tk}qk=0 and {sk}qk=0, and a sequence {y(i)}tqi=0 ⊂ X such that
(2.474) holds for all integers i satisfying 0 ≤ i < sq , (2.477) holds,

tk < sk+1 < tk+1 for all integers k satisfying 0 ≤ k < q,

and (2.476) holds for all integers k satisfying 0 < k ≤ q . (Note that for q = 0 this
assumption does hold.)

Now we show that this assumption also holds for q + 1.
Indeed, there is a natural number sq+1 > tq + 1 such that

∞∑

j=sq+1−1−tq

y
(tq )

j < (q + 1)−1. (2.478)
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Set

y(i+1) = Ty(i), i = tq , . . . , sq+1 − 1. (2.479)

By (2.479), (2.457), (2.458), (2.459) and (2.478),

ρ
(
y(sq+1), (0,0, . . .)

)=
∞∑

j=1

y
(sq+1)

j =
∞∑

j=sq+1−tq+1

y
(tq )

j < (q + 1)−1. (2.480)

Applying Lemma 2.79 with

z(0) = y(sq+1) and k = sq+1, (2.481)

we obtain that there exist an integer n ≥ 4 and a sequence {y(i)}sq+1+n

i=sq+1
⊂ X such

that

ρ
(
y(i+1), T y(i)

)≤ ri , i = sq+1, . . . , sq+1 + n − 1, (2.482)

and

ρ
(
y(sq+1+n), (0,0,0 . . .)

)≥ 1/4. (2.483)

Put

tq+1 = sq+1 + n.

In this way we have constructed a sequence {y(i)}tq+1
i=0 ⊂ X and two sequences of

nonnegative integers {tk}q+1
k=0 and {sk}q+1

k=0 such that (2.477) holds, (2.474) holds for
all integers i satisfying 0 ≤ i < tq+1 (see (2.479) and (2.482)), tk < sk+1 < tk+1 for
all integers k satisfying 0 ≤ k < q + 1, and (2.476) holds for all integers k satisfying
0 < k ≤ q + 1 (see (2.480), (2.482) and (2.483)).

In other words, the assumption made concerning q also holds for q + 1. It fol-
lows that we have indeed constructed two sequences of nonnegative integers {tk}∞k=0
and {sk}∞k=0, and a sequence {y(i)}∞i=0 ⊂ X which satisfy (2.473)–(2.476). This com-
pletes the proof of Theorem 2.78. �

2.25 Convergence to Compact Sets

In this section, we study the influence of computational errors on the convergence
to compact sets of orbits of nonexpansive mappings in Banach and metric spaces.

Let (X,ρ) be a complete metric space. For each x ∈ X and each nonempty closed
subset A ⊂ X, put

ρ(x,A) = inf
{
ρ(x, y) : y ∈ A

}
.

For each mapping T : X → X, set T 0x = x for all x ∈ X.
The following result was obtained in [112].
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Theorem 2.80 Let T : X → X satisfy

ρ(T x,T y) ≤ ρ(x, y) for all x, y ∈ X. (2.484)

Suppose that for each x ∈ X, there exists a nonempty compact set E(x) ⊂ X such
that

lim
i→∞ρ

(
T ix,E(x)

)= 0. (2.485)

Assume that {γn}∞n=0 ⊂ (0,∞),
∑∞

n=0 γn < ∞,

{xn}∞n=0 ⊂ X and ρ(xn+1, T xn) ≤ γn, n = 0,1, . . . . (2.486)

Then there exists a nonempty compact subset F of X such that

lim
n→∞ρ(xn,F ) = 0.

Proof In order to prove the theorem it is sufficient to show that any subsequence of
{xn}∞n=0 has a convergent subsequence.

To see this, it is sufficient to show that for any ε > 0, the following assertion
holds:

(P1) Any subsequence of {xn}∞n=0 possesses a subsequence which is contained in a
ball with radius ε.

Indeed, there is an integer k ≥ 1 such that

∞∑

i=k

γi < ε/8. (2.487)

Define a sequence {yi}∞i=k by

yk = xk,

yi+1 = Tyi for all integers i ≥ k.
(2.488)

There exists a nonempty compact set E ⊂ X such that

lim
i→∞ρ(yi,E) = 0. (2.489)

By (2.486) and (2.488),

ρ(xk+1, yk+1) ≤ γk. (2.490)

Assume that q ≥ k + 1 is an integer and that for i = k + 1, . . . , q ,

ρ(xi, yi) ≤
i−1∑

j=k

γj . (2.491)
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(Note that in view of (2.490), inequality (2.491) is valid when q = k + 1.)
By (2.484) and (2.491),

ρ(T yq,T xq) ≤ ρ(yq, xq) ≤
q−1∑

j=k

γj .

When combined with (2.486), this implies that

ρ(xq+1, yq+1) ≤ ρ(xq+1, T xq) + ρ(T xq,T yq) ≤ γq +
q−1∑

j=k

γj =
q∑

j=k

γj ,

so that (2.491) also holds for i = q + 1. Thus we have shown that for all integers
q ≥ k + 1,

ρ(yq, xq) ≤
q−1∑

j=k

γj <

∞∑

j=k

γj < ε/8 (2.492)

by (2.487). In view of (2.489), for all large enough natural numbers q , we have

ρ(xq,E) < ε/4. (2.493)

By (2.493), there exist an integer q0 > k and a sequence {zi}∞i=q0
⊂ K such that

ρ(xi, zi) < ε/3 for all integers i ≥ q0. (2.494)

Consider any subsequence {xqi
}∞i=1 of {xn}∞n=0. Since the set E is compact, the se-

quence {zqi
}∞i=1 possesses a convergent subsequence {zqij

}∞j=1.

We may assume without loss of generality that all elements of this convergent
subsequence belong to B(u, ε/16) for some u ∈ X.

In view of (2.494),

xqij
∈ B(u, ε/2) for all sufficiently large natural numbers j.

Thus (P1) holds and this completes the proof of the theorem. �

Note that Theorem 2.80 is an extension of Theorem 2.72.
The following result, which was obtained in [112], shows that both Theo-

rems 2.72 and 2.80 cannot, in general, be improved (cf. Proposition 2.77).

Proposition 2.81 For any normed space X, there exists an operator T : X → X

such that ‖T x − Ty‖ ≤ ‖x − y‖ for all x, y ∈ X, the sequence {T nx}∞n=1 converges
for each x ∈ X and, for any sequence of positive numbers {γn}∞n=0, there exists
a sequence {xn}∞n=0 ⊂ X with ‖xn+1 − T xn‖ ≤ γn for all nonnegative integers n,
which converges to a compact set if and only if the sequence {γn}∞n=0 is summable,
i.e.,

∑∞
n=0 γn < ∞.
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Proof This is a simple fact because we may take T to be the identity operator:
T x = x, ∀x. Then we may take as x0 to be an arbitrary element of X with ‖x0‖ = 1
and define by induction

xn+1 = T xn + γnx0, n = 0,1,2, . . . .

Evidently, ‖xn+1 − T xn‖ = γn and xn+1 = x0(1 +∑n
i=0 γi) for all integers n ≥ 0,

so that the convergence of {xn}∞n=0 to a compact set is equivalent to the summability
of the sequence {γn}∞n=0. Proposition 2.81 is proved. �

2.26 An Example of Nonconvergence to Compact Sets

In the previous section, we have shown that Theorems 2.72 and 2.80 cannot, in
general, be improved. However, in Proposition 2.81 every point of the space is a
fixed point of the operator T and the inexact orbits tend to infinity. In this section,
we construct an operator T on a certain complete metric space X (a bounded, closed
and convex subset of a Banach space) such that all of its orbits converge to its unique
fixed point, and for any nonsummable sequence of errors and any initial point, there
exists an inexact orbit which does not converge to any compact set. This example is
based on [112].

Let X be the set of all sequences x = {xi}∞i=1 of nonnegative numbers such that∑∞
i=1 xi ≤ 1. For x = {xi}∞i=1 and y = {yi}∞i=1 in X, set

ρ
({xi}∞i=1, {yi}∞i=1

)=
∞∑

i=1

|xi − yi |. (2.495)

Clearly, (X,ρ) is a complete metric space.
Define a mapping T : X → X as follows:

T
({xi}∞i=1

)= (x2, x3, . . . , xi, . . .), {xi}∞i=1 ∈ X. (2.496)

In other words, for any {xi}∞i=1 ∈ X,

T
({xi}∞i=1

)= {yi}∞i=1, where yi = xi+1 for all integers i ≥ 1. (2.497)

Set T 0x = x for all x ∈ X. Clearly,

ρ(T x,T y) ≤ ρ(x, y) for all x, y ∈ X (2.498)

and

T nx converges to (0,0, . . . , . . .) as n → ∞ (2.499)

for all x ∈ X.
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Theorem 2.82 Let {ri}∞i=0 ⊂ [0,∞),

∞∑

i=0

ri = ∞, (2.500)

and x = {xi}∞i=1 ∈ X. Then there exists a sequence {y(i)}∞i=0 ⊂ X such that

y(0) = x, ρ
(
Ty(i), y(i+1)

)≤ ri , i = 0,1, . . . , (2.501)

and that the following property holds:
there is no nonempty compact set E ⊂ X such that

lim
i→∞ρ

(
y(i),E

)= ∅.

In the proof of this theorem, we may assume without any loss of generality that

ri ≤ 16−1 for all integers i ≥ 0. (2.502)

We precede the proof of Theorem 2.82 with the following lemma.

Lemma 2.83 Let z(0) = {z(0)
i }∞i=1 ∈ X, let k ≥ 0 be an integer and let j0 be a natural

number. Then there exist an integer n ≥ 4 and a sequence {z(i)}ni=0 ⊂ X such that

ρ
(
z(i+1), T z(i)

)≤ rk+i , i = 0, . . . , n − 1,

and

z(n) = (
z
(n)
1 , . . . , z

(n)
i , . . .

)= {
z
(n)
i

}∞
i=1

with z
(n)
j0+1 ≥ 4−1.

Proof There is a natural number m > 4 such that

m > j0 + 4,

∞∑

i=m

z
(0)
i < 16−1.

(2.503)

Set

z(i+1) = T z(i), i = 0, . . . ,m − 1. (2.504)

Then

z(m) = (
z
(0)
m+1, z

(0)
m+2, . . . , z

(0)
i , . . .

)
. (2.505)
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By (2.500), there is a natural number n > m such that

k+n∑

j=k+m

rj ≥ 2−1. (2.506)

By (2.506) and (2.502),

n ≥ m + 7 (2.507)

and we may assume without loss of generality that

k+n−1∑

j=k+m

rj < 1/2. (2.508)

In view of (2.506) and (2.502),

k+n−1∑

j=k+m

rj =
k+n∑

j=k+m

rj − rk+n ≥ 2−1 − 16−1. (2.509)

For i = m + 1, . . . , n, define z(i) = {z(i)
j }∞j=1 as follows:

z
(i)
j = z

(0)
j+i , j ∈ {1,2, . . .} \ {n + 1 + j0 − i},

z
(i)
n+1+j0−i = z

(0)
n+1+j0

+
k+i−1∑

j=k+m

rj .
(2.510)

Clearly, for i = m + 1, . . . , n, z(i) is well-defined and by (2.510), (2.503) and
(2.508),

∞∑

j=1

z
(i)
j =

∞∑

j=i+1

z
(0)
j +

k+i−1∑

j=k+m

rj ≤
∞∑

j=m

z
(0)
j +

k+n−1∑

j=k+m

rj ≤ 16−1 + 2−1 < 1.

Thus z(i) ∈ X, i = m + 1, . . . , n.
Let i ∈ {m, . . . , n − 1}. We now estimate ρ(z(i+1), T z(i)). If i = m, then by

(2.496), (2.497), (2.505) and (2.514),

ρ
(
z(i+1), T z(i)

)≤ rk+i . (2.511)

Let i > m. We first set

{z̃j }∞j=1 = T z(i). (2.512)
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In view of (2.506), (2.496) and (2.497), z̃j = z
(i)
j+1 for all integers j ≥ 1. When

combined with (2.510), this implies that

z̃j = z
(0)
j+1+i for all j ∈ {1,2, . . .} \ {n − i + j0},

z̃n+j0−i = z
(i)
n+1+j0−i = z

(0)
n+1+j0

+
k+i−1∑

j=k+m

rj .
(2.513)

By (2.510) and (2.513),

z̃j = z
(i+1)
j (2.514)

for all j ∈ {1,2, . . .} \ {n + j0 − i}. It now follows from (2.512), (2.514), (2.510)
and (2.513) that

ρ
(
z(i+1), T z(i)

)= ρ
(
z(i+1), {z̃j }∞j=1

)= ∣∣z(i+1)
n+j0−i − z̃n+j0−i

∣∣

=
∣∣∣
∣∣
z
(0)
n+1+j0

+
k+i∑

j=k+m

rj −
(

z
(0)
n+1+j0

+
k+i−1∑

j=k+m

rj

)∣∣∣
∣∣
< rk+i .

When combined with (2.504), this implies that

ρ
(
z(i+1), T z(i)

)≤ rk+i , i = 0, . . . , n − 1.

By (2.509) and (2.510),

z
(n)
j0+1 = z

(n)
n+1+j0−n ≥

k+n−1∑

j=k+m

rj ≥ 4−1.

This completes the proof of Lemma 2.83. �

Proof of Theorem 2.82 In order to prove the theorem, we construct by induction,
using Lemma 2.83, a sequence of nonnegative integers {sk}∞k=0 and a sequence
{y(i)}∞i=0 ⊂ X such that

y(0) = x,

ρ
(
y(i+1), T y(i)

)≤ ri for all integers i ≥ 0, (2.515)

s0 = 0, sk < sk+1 for all integers k ≥ 0, (2.516)

and for all integers k ≥ 1,

y
(sk)
k+1 ≥ 1/4. (2.517)

In the sequel we use the notation y(i) = {y(i)
j }∞j=1, i = 0,1, . . . .



2.26 An Example of Nonconvergence to Compact Sets 117

Set

y(0) = x, s0 = 0. (2.518)

Assume that q ≥ 0 is an integer and we have already defined a (finite) sequence of
nonnegative integers {sk}qk=0 and a (finite) sequence {y(i)}sqi=0 ⊂ X such that (2.518)
is valid, (2.515) holds for all integers i satisfying 0 ≤ i < sq ,

si < si+1 for all integers i satisfying 0 ≤ i < q,

and that (2.517) holds for all integers k satisfying 0 < k ≤ q . (Note that for q = 0
this assumption does hold.)

Now we show that this assumption also holds for q + 1.
Indeed, applying Lemma 2.83 with

z(0) = y(sq ) and j0 = q + 1, k = sq,

we obtain that there exist an integer sq+1 ≥ 4 + sq and a sequence {y(i)}sq+1
i=sq

⊂ X

such that

ρ
(
y(i+1), T y(i)

)≤ ri , i = sq, . . . , sq+1 − 1,

and

y
(sq+1)

q+2 ≥ 1/4.

Thus the assumption made for q also holds for q + 1. Therefore we have con-
structed by induction a sequence {y(i)}∞i=0 ⊂ X and a sequence of nonnegative inte-
gers {sk}∞k=0 which satisfy (2.515) and (2.516) for all integers i, k ≥ 0, respectively,
and (2.517) for all integers k ≥ 1.

Finally, we show that there is no nonempty compact set E ⊂ X such that

lim
i→∞ρ

(
y(i),E

)= 0.

Assume the contrary. Then there does exist a nonempty compact set E ⊂ X such
that

lim
i→∞ρ

(
yi),E

)= 0.

This implies that any subsequence of {y(k)}∞k=0 possesses a convergent subsequence.
Consider such a subsequence {y(sq)}∞q=1. This subsequence has a convergent sub-

sequence {ysqp }∞p=1. There are, therefore, a point z = {zi}∞i=0 ∈ X such that

z = lim
p→∞y(sqp )

and a natural number p0 such that

ρ
(
z, y(sqp )

)≤ 16−1 for all integers p ≥ p0. (2.519)
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By (2.518) and (2.519), we have for all integers p ≥ p0,

∣∣zqp+1 − y
(sqp )

qp+1

∣∣≤ ρ
(
z, y(sqp )

)≤ 16−1

and

zqp+1 ≥ y
(sqp )

qp+1 − 16−1 ≥ 8−1.

This, of course, contradicts the inequality
∑∞

i=1 zi ≤ 1. The contradiction we have
reached completes the proof of Theorem 2.82. �



Chapter 3
Contractive Mappings

In this chapter we consider the class of contractive mappings and show that a typical
nonexpansive mapping (in the sense of Baire’s categories) is contractive. We also
study nonexpansive mappings which are contractive with respect to a given subset
of their domain.

3.1 Many Nonexpansive Mappings Are Contractive

Assume that (X,‖ · ‖) is a Banach space and let K be a bounded, closed and convex
subset of X. Denote by A the set of all operators A : K → K such that

‖Ax − Ay‖ ≤ ‖x − y‖ for all x, y ∈ K. (3.1)

In other words, the set A consists of all the nonexpansive self-mappings of K . Set

d(K) = sup
{‖x − y‖ : x, y ∈ K

}
. (3.2)

We equip the set A with the metric h(·, ·) defined by

h(A,B) = sup
{‖Ax − Bx‖ : x ∈ K

}
, A,B ∈ A.

Clearly, the metric space (A, h) is complete.
We say that a mapping A ∈ A is contractive if there exists a decreasing function

φA : [0, d(K)] → [0,1] such that

φA(t) < 1 for all t ∈ (0, d(K)
]

(3.3)

and

‖Ax − Ay‖ ≤ φA
(‖x − y‖)‖x − y‖ for all x, y ∈ K. (3.4)

The notion of a contractive mapping, as well as its modifications and applications,
were studied by many authors. See, for example, [85]. We now quote a convergence
result which is valid in all complete metric spaces [114].
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Developments in Mathematics 34, DOI 10.1007/978-1-4614-9533-8_3,
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Theorem 3.1 Assume that A ∈ A is contractive. Then there exists xA ∈ K such
that Anx → xA as n → ∞, uniformly on K .

In [131] we prove that a generic element in the space of all nonexpansive map-
pings is contractive. In [137] we show that the set of all noncontractive mappings is
not only of the first category, but also σ -porous. Namely, the following result was
obtained there.

Theorem 3.2 There exists a set F ⊂ A such that A \F is σ -porous in (A, h) and
each A ∈F is contractive.

Proof For each natural number n, denote by An the set of all A ∈A which have the
following property:

(P1) There exists κ ∈ (0,1) such that ‖Ax − Ay‖ ≤ κ‖x − y‖ for all x, y ∈ K

satisfying ‖x − y‖ ≥ d(K)(2n)−1.

Let n ≥ 1 be an integer. We will show that the set A \An is porous in (A, h). Set

α = 8−1 min
{
d(K),1

}
(2n)−1(d(K) + 1

)−1
. (3.5)

Fix θ ∈ K . Let A ∈A and r ∈ (0,1]. Set

γ = 2−1r
(
d(K) + 1

)−1
(3.6)

and define

Aγ x = (1 − γ )Ax + γ θ, x ∈ K. (3.7)

Clearly, Aγ ∈A,

h(Aγ ,A) ≤ γ d(K), (3.8)

and for all x, y ∈ K ,

‖Aγ x − Aγ y‖ ≤ (1 − γ )‖Ax − Ay‖ ≤ (1 − γ )‖x − y‖. (3.9)

Assume that B ∈A and

h(B,Aγ ) ≤ αr. (3.10)

We will show that B ∈ An.
Let

x, y ∈ K and ‖x − y‖ ≥ (2n)−1d(K). (3.11)

It follows from (3.9) and (3.11) that

‖x − y‖ − ‖Aγ x − Aγ y‖ ≥ γ ‖x − y‖ ≥ γ d(K)(2n)−1. (3.12)
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By (3.10),

‖Bx −By‖ ≤ ‖Bx −Aγ x‖+‖Aγ x −Aγ y‖+‖Aγ y −By‖ ≤ ‖Aγ x −Aγ y‖+2αr.

When combined with (3.12), (3.6), and (3.5), this implies that

‖x − y‖ − ‖Bx − By‖ ≥ ‖x − y‖ − ‖Aγ x − Aγ y‖ − 2αr

≥ γ d(K)(2n)−1 − 2αr

= 2−1r
[
(2n)−1d(K)

(
d(K) + 1

)−1 − 4α
]

≥ 2−1rd(K)(4n)−1(d(K) + 1
)−1

.

Thus

‖Bx − By‖ ≤ ‖x − y‖ − rd(K)
(
d(K) + 1

)−1
(8n)−1

≤ ‖x − y‖(1 − r(8n)−1(d(K) + 1
)−1)

.

Since this holds for all x, y ∈ K satisfying (3.11), we conclude that B ∈ An. Thus
each B ∈ A satisfying (3.10) belongs to An. In other words,

{
B ∈ A : h(B,Aγ ) ≤ αr

}⊂ An. (3.13)

If B ∈A satisfies (3.10), then by (3.8), (3.5) and (3.6), we have

h(A,B) ≤ h(B,Aγ ) + h(Aγ ,A) ≤ αr + γ d(K) ≤ 8−1r + 2−1r ≤ r.

Thus
{
B ∈A : h(B,Aγ ) ≤ αr

}⊂ {
B ∈ A : h(B,A) ≤ r

}
.

When combined with (3.13), this inclusion implies that A \An is porous in (A, h).
Set F = ⋂∞

n=1 An. Clearly, A \ F is σ -porous in (A, h). By property (P1), each
A ∈ F is contractive. �

3.2 Attractive Sets

In this section, we study nonexpansive mappings which are contractive with respect
to a given subset of their domain.

Assume that (X,‖ · ‖) is a Banach space and that K is a closed, bounded and
convex subset of X. Once again, denote by A the set of all mappings A : K → K

such that

‖Ax − Ay‖ ≤ ‖x − y‖ for all x, y ∈ K. (3.14)
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For each x ∈ K and each subset E ⊂ K , let

ρ(x,E) = inf
{‖x − y‖ : y ∈ E

}
. (3.15)

Let F be a nonempty, closed and convex subset of K . Denote by A(F ) the set of
all A ∈A such that Ax = x for all x ∈ F . Clearly, A(F ) is a closed subset of (A, h).
In what follows we consider the complete metric space (A(F ), h).

An operator A ∈ A(F ) is said to be contractive with respect to F if there exists a
decreasing function φA : [0, d(K)] → [0,1] such that

φA(t) < 1 for all t ∈ (0, d(K)
]

(3.16)

and

ρ(Ax,F ) ≤ φA
(
ρ(x,F )

)
ρ(x,F ) for all x ∈ K. (3.17)

We now show that if A(F ) contains a retraction, then the complement of the set
of contractive mappings (with respect to F ) in A(F ) is σ -porous. This result was
also obtained in [137].

Theorem 3.3 Assume that there exists Q ∈A(F ) such that

Q(K) = F. (3.18)

Then there exists a set F ⊂ A(F ) such that A(F ) \ F is σ -porous in (A(F ), h) and
each B ∈F is contractive with respect to F .

Proof For each natural number n, denote by An the set of all A ∈ A(F ) which have
the following property:

(P2) There exists κ ∈ (0,1) such that ρ(Ax,F ) ≤ κρ(x,F ) for all x ∈ K such that
ρ(x,F ) ≥ min{d(K),1}/n. Define

F =
∞⋂

n=1

An. (3.19)

Clearly, each element of F is contractive with respect to F . We need to show that
A(F ) \An is porous in (A(F ), h) for all integers n ≥ 1. To this end, let n ≥ 1 be an
integer and set

α = (
d(K) + 1

)−1 min
{
d(K),1

}
(16n)−1. (3.20)

Let A ∈A(F ) and r ∈ (0,1]. Set

γ = 2−1r
(
d(K) + 1

)−1 (3.21)

and define

Aγ x = (1 − γ )Ax + γQx, x ∈ K. (3.22)
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It is obvious that Aγ ∈ A(F ). By (3.22),

h(A,Aγ ) ≤ sup
{‖Aγ x − Ax‖ : x ∈ K

}

≤ γ sup
{‖Ax − Qx‖ : x ∈ K

}≤ γ d(K). (3.23)

Let B ∈A(F ) be such that

h(Aγ ,B) ≤ αr. (3.24)

Then by (3.24), (3.23), (3.21), and (3.20),

h(A,B) ≤ h(A,Aγ ) + h(Aγ ,B) ≤ γ d(K) + αr

< 1/2r + r/2 ≤ r.

Thus (3.24) implies that h(A,B) ≤ r and

{
C ∈ A(F ) : h(Aγ ,C) ≤ αr

}

⊂ {
C ∈A(F ) : h(A,C) ≤ r

}
. (3.25)

Let x ∈ K with

ρ(x,F ) ≥ min
{
d(K),1

}
/n. (3.26)

For each ε > 0, there exists z ∈ F such that ρ(x,F ) + ε ≥ ‖x − z‖, and by (3.22)
and (3.18),

ρ(Aγ x,F ) = ρ
(
(1 − γ )Ax + γQx,F

)

≤ (
(1 − γ )Ax + Qx

)− (
(1 − γ )z + γQx

)≤ (1 − γ )‖Ax − z‖
≤ (1 − γ )‖x − z‖ ≤ (1 − γ )ρ(x,F ) + ε(1 − γ ).

Since ε is an arbitrary positive number, we conclude that

ρ(Aγ x,F ) ≤ (1 − γ )ρ(x,F ).

Since |ρ(y1,F ) − ρ(y2,F )| ≤ ‖y1 − y2‖ for all y1, y2 ∈ K , it follows from (3.24)
that

ρ(Bx,F ) ≤ ‖Aγ x − Bx‖ + ρ(Aγ x,F ) ≤ αr + ρ(Aγ x,F )

≤ αr + (1 − γ )ρ(x,F ),

and

ρ(Bx,F ) ≤ (1 − γ )ρ(x,F ) + αr.

It now follows from this inequality, (3.26), (3.20) and (3.21) that
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ρ(Bx,F ) ≤ ρ(x,F )
(
1 − γ + αr

(
ρ(x,F )

)−1)

≤ ρ(x,F )
[
1 − 2−1r

(
d(K) + 1

)−1 + αr
(
min

{
d(K),1

}
/n
)−1]

≤ ρ(x,F )
[
1 − r2−1(d(K) + 1

)−1 + r
(
16
(
d(K) + 1

))−1]

≤ ρ(x,F )
(
1 − r4−1d(K + 1)−1).

Thus

ρ(Bx,F ) ≤ ρ(x,F )
(
1 − r4−1(d(K) + 1

)−1)

for each x ∈ K satisfying (3.26). This fact implies that B ∈ An. Since this inclusion
holds for any B satisfying (3.24), combining it with (3.25) we obtain that

{
C ∈A(F ) : h(Aγ ,C) ≤ αr

}⊂ {
C ∈A(F ) : h(A,C) ≤ r

}∩An.

This shows that A(F ) \An is indeed porous in (A(F ), h). �

3.3 Attractive Subsets of Unbounded Spaces

In this section we continue to study nonexpansive mappings which are contractive
with respect to a given subset of their domain.

Assume that (X,ρ) is a hyperbolic complete metric space and that K is a closed
(not necessarily bounded) and ρ-convex subset of X. Denote by A the set of all
mappings A : K → K such that

ρ(Ax,Ay) ≤ ρ(x, y) for all x, y ∈ K. (3.27)

For each x ∈ K and each subset E ⊂ K , let ρ(x,E) = inf{ρ(x, y) : y ∈ E}. For
each x ∈ K and each r > 0, set

B(x, r) = {
y ∈ K : ρ(x, y) ≤ r

}
. (3.28)

Fix θ ∈ K . For the set A we consider the uniformity determined by the following
base:

E(n, ε) = {
(A,B) ∈ A×A : ρ(Ax,Bx) ≤ ε, x ∈ B(θ,n)

}
, (3.29)

where ε > 0 and n is a natural number. Clearly the space A with this uniformity is
metrizable and complete. We equip the space A with the topology induced by this
uniformity.

Let F be a nonempty, closed and ρ-convex subset of K . Denote by A(F ) the set
of all A ∈ A such that Ax = x for all x ∈ F . Clearly, A(F ) is a closed subset of A.
We consider the topological subspace A(F ) ⊂ A with the relative topology.
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An operator A ∈ A(F ) is said to be contractive with respect to F if for any natural
number n there exists a decreasing function φA

n : [0,∞) → [0,1] such that

φA
n (t) < 1 for all t > 0 (3.30)

and

ρ(Ax,F ) ≤ φA
n

(
ρ(x,F )

)
ρ(x,F ) for all x ∈ B(θ,n). (3.31)

Clearly, this definition does not depend on our choice of θ .
We begin our discussion of such mappings by proving that the set F attracts all

the iterates of A. This result was obtained in [131].

Theorem 3.4 Let A ∈ A(F ) be contractive with respect to F . Then there exists
B ∈ A(F ) such that B(K) = F and Anx → Bx as n → ∞, uniformly on B(θ,m)

for any natural number m.

Proof We may assume without loss of generality that θ ∈ F . Then for each real
r > 0,

C
(
B(θ, r)

)⊂ B(θ, r) for all C ∈A(F ). (3.32)

Let r be a natural number. To prove the theorem, it is sufficient to show that there
exists B : B(θ, r) → F such that

Anx → Bx as n → ∞, uniformly on B(θ, r). (3.33)

There exists a decreasing function φA
r : [0,∞) → [0,1] such that

φA
r (t) < 1 for all t > 0 (3.34)

and

ρ(Ax,F ) ≤ φA
r

(
ρ(x,F )

)
ρ(x,F ) for all x ∈ B(θ, r). (3.35)

Let ε ∈ (0,1). Choose a natural number m ≥ 4 such that

φA
r (εr)m < 8−1ε. (3.36)

Let x ∈ B(θ, r). We will show that

ρ
(
Amx,F

)
< εr. (3.37)

Assume the contrary. Then for each i = 0, . . . ,m, ρ(Aix,F ) ≥ εr , and by (3.35)
and (3.32),

Aix ∈ B(θ, r), ρ
(
Ai+1x,F

) ≤ φA
r

(
ρ
(
Aix,F

))
ρ
(
Aix,F

)

≤ φA
r (εr)ρ

(
Aix,F

)
.
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When combined with (3.36), these inequalities imply that

ρ
(
Amx,F

)≤ φA
r (εr)mρ(x,F ) ≤ 8−1ερ(x, θ) ≤ 8−1εr,

a contradiction. Therefore (3.27) is valid and for each x ∈ B(θ, r), there exists
Cε(x) ∈ F such that ρ(Amx,Cεx) < εr . This implies that for each x ∈ B(θ, r),

ρ
(
Aix,Cεx

)
< εr for all integers i ≥ m. (3.38)

Since ε is an arbitrary number in (0,1), we conclude that for each x ∈ B(θ, r),
{Aix}∞i=1 is a Cauchy sequence and there exists Bx = limi→∞ Aix. Clearly,

ρ
(
Bx,Cε(x)

)≤ εr for all x ∈ B(θ, r). (3.39)

Since (3.39) is true for any ε in (0,1), we conclude that B(B(θ, r)) ⊂ F .
By (3.39) and (3.38), for each x ∈ B(θ, r),

ρ
(
Aix,Bx

)≤ 2εr for all integers i ≥ m.

Finally, since ε ∈ (0,1) is arbitrary, we conclude that (3.33) is valid. This completes
the proof of Theorem 3.4. �

Proposition 3.5 Assume that A,B ∈ A(F ) and that A is contractive with respect
to F . Then AB and BA are also contractive with respect to F .

Proof We may assume that θ ∈ F . Then for each real r > 0,

C
(
B(θ, r)

)⊂ B(θ, r) for all C ∈A(F ). (3.40)

Fix r > 0. There exists a decreasing function φA
r : [0,∞) → [0,1] such that

φA
r (t) < 1 for all t > 0 (3.41)

and

ρ(Ax,F ) ≤ φA
r

(
ρ(x,F )

)
ρ(x,F ) for all x ∈ B(θ, r). (3.42)

By (3.42), for each x ∈ B(θ, r),

ρ(BAx,F ) = inf
{
ρ(BAx,y) : y ∈ F

}≤ inf
{
ρ(Ax,y) : y ∈ F

}

= ρ(Ax,F ) ≤ φA
r

(
ρ(x,F )

)
ρ(x,F ).

Therefore BA is contractive with respect to F .
Let now x belong to B(θ, r). By (3.42) and (3.40), Bx ∈ B(θ, r) and

ρ(ABx,F ) ≤ φA
r

(
ρ(Bx,F )

)
ρ(Bx,F ). (3.43)
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There are two cases: (1) ρ(Bx,F ) ≥ 2−1ρ(x,F ); (2) ρ(Bx,F ) < 2−1ρ(x,F ). In
the first case, we have by (3.43),

ρ(ABx,F ) ≤ φA
r

(
2−1ρ(x,F )

)
ρ(Bx,F ) ≤ φA

r

(
2−1ρ(x,F )

)
ρ(x,F ),

and in the second case, (3.43) implies that

ρ(ABx,F ) ≤ ρ(Bx,F ) ≤ 2−1ρ(x,F ).

Thus in both cases we obtain that

ρ(ABx,F ) ≤ max
{
φA

r

(
2−1ρ(x,F )

)
,2−1}ρ(x,F )

= ψ
(
ρ(x,F )

)
ρ(x,F ),

where ψ(t) = max{φA
r (2−1t),2−1}, t ∈ [0,∞). Therefore AB is also contractive

with respect to F . Proposition 3.5 is proved. �

We now show that if A(F ) contains a retraction, then almost all the mappings in
A(F ) are contractive with respect to F .

Theorem 3.6 Assume that there exists

Q ∈ A(F ) such that Q(K) = F. (3.44)

Then there exists a set F ⊂ A(F ) which is a countable intersection of open and
everywhere dense sets in A(F ) such that each B ∈ F is contractive with respect
to F .

Proof We may assume that θ ∈ F . Then for each real r > 0,

C
(
B(θ, r)

)⊂ B(θ, r) for all C ∈A(F ). (3.45)

For each A ∈A(F ) and each γ ∈ (0,1), define Aγ ∈A(F ) by

Aγ x = (1 − γ )Ax ⊕ γQx, x ∈ K. (3.46)

Clearly, for each A ∈ A(F ), Aγ → A as γ → 0+ in A(F ). Therefore the set {Aγ :
A ∈ A(F ), γ ∈ (0,1)} is everywhere dense in A(F ).

Let A ∈A(F ) and γ ∈ (0,1). Evidently,

ρ(Aγ x,F ) = inf
y∈F

{
ρ
(
(1 − γ )Ax ⊕ γQx,y

)}

≤ inf
y∈F

{
ρ
(
(1 − γ )Ax ⊕ γQx, (1 − γ )y ⊕ γQx

)}

≤ inf
y∈F

{
(1 − γ )ρ(Ax,y)

}≤ (1 − γ )ρ(x,F )
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for all x ∈ K . Thus

ρ(Aγ x,F ) ≤ (1 − γ )ρ(x,F ) for all x ∈ K. (3.47)

For each integer i ≥ 1, denote by U(A,γ, i) an open neighborhood of Aγ in A(F )

for which

U(A,γ, i) ⊂ {
B ∈A(F ) : (B,Aγ ) ∈ E

(
2i ,8−iγ

)}
(3.48)

(see (3.29)).
We will show that for each A ∈ A(F ), each γ ∈ (0,1) and each integer i ≥ 1, the

following property holds:

P(2) For each B ∈ U(A,γ, i) and each x ∈ B(θ,2i ) satisfying ρ(x,F ) ≥ 4−i , the
inequality ρ(Bx,F ) ≤ (1 − 2−1γ )ρ(x,F ) is true.

Indeed, let A ∈ A(F ), γ ∈ (0,1) and let i ≥ 1 be an integer. Assume that

B ∈ U(A,γ, i), x ∈ B
(
θ,2i

)
and ρ(x,F ) ≥ 4−i . (3.49)

Using (3.47), (3.48) and (3.49), we see that

ρ(Bx,F ) ≤ ρ(Aγ x,F ) + 8−iγ ≤ (1 − γ )ρ(x,F ) + 8−iγ

≤ (1 − γ )ρ(x,F ) + 2−1γρ(x,F ) ≤ (
1 − 2−1γ

)
ρ(x,F ).

Thus property P(2) holds for each A ∈A(F ), each γ ∈ (0,1) and each integer i ≥ 1.
Define

F =
∞⋂

q=1

⋃{
U(A,γ, i) : A ∈A(F ), γ ∈ (0,1), i ≥ q

}
.

Clearly, F is a countable intersection of open and everywhere dense sets in A(F ).
Let B ∈ F . To show that B is contractive with respect to F , it is sufficient to

show that for each r > 0 and each ε ∈ (0,1), there is κ ∈ (0,1) such that

ρ(Bx,F ) ≤ κρ(x,F ) for each x ∈ B(θ, r) satisfying ρ(x,F ) ≥ ε.

Let r > 0 and ε ∈ (0,1). Choose a natural number q such that

2q > 8r and 2−q < 8−1ε.

There exist A ∈ A(F ), γ ∈ (0,1) and an integer i ≥ q such that B ∈ U(A,γ, i). By
property P(2), for each x ∈ B(θ, r) ⊂ B(θ,2i ) satisfying ρ(x,F ) ≥ ε > 2−i , the
following inequality holds:

ρ(Bx,F ) ≤ (
1 − 2−1γ

)
ρ(x,F ).

Thus B is contractive with respect to F . This completes the proof of Theorem 3.6. �
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3.4 A Contractive Mapping with no Strictly Contractive Powers

Let

X = [0,1] and ρ(x, y) = |x − y| for each x, y ∈ X.

In this section, which is based on [155], we construct a contractive mapping A :
[0,1] → [0,1] such that none of its powers is a strict contraction.

We begin by setting

A(0) = 0. (3.50)

Next, we define, for each natural number n, the mapping A on the interval [(n +
1)−1, n−1] by

A
(
(n + 1)−1 + t

)= (n + 2)−1 + t
(
n−1 − (n + 1)−1)−1(

(n + 1)−1 − (n + 2)−1)

for all t ∈ [0, n−1 − (n + 1)−1]. (3.51)

It is clear that for each natural number n,

A
(
n−1)= (n + 1)−1, (3.52)

the restriction of A to the interval [(n + 1)−1, n−1] is affine, and that the mapping
A : [0,1] → [0,1] is well defined.

First, we show that A is nonexpansive, that is, |Ax − Ay| ≤ |x − y| for all x, y ∈
[0,1].

Indeed, if x ∈ [0,1], then

∣∣Ax − A(0)
∣∣≤ |x|. (3.53)

Assume now that n is a natural number and that

x, y ∈ [(n + 1)−1, n−1]. (3.54)

By (3.51) and (3.54),

|Ax − Ay|
= ∣∣(n + 2)−1 + (

x − (n + 1)−1)(n−1 − (n + 1)−1)−1(
(n + 1)−1 − (n + 2)−1)

− [
(n + 2)−1 + (

y − (n + 1)−1)(n−1 − (n + 1)−1)−1

× (
(n + 1)−1 − (n + 2)−1)]∣∣

= |x − y|(n−1 − (n + 1)−1)−1(
(n + 1)−1 − (n + 2)−1)

= |x − y|n(n + 1)
(
(n + 1)(n + 2)

)−1 = |x − y|n(n + 2)−1.
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Thus for each natural number n and each x, y ∈ [(n + 1)−1, n−1],
|Ax − Ay| ≤ |x − y|n(n + 2)−1. (3.55)

Together with (3.53) this last inequality implies that

|Ax − Ay| ≤ |x − y| for all x, y ∈ [0,1], (3.56)

as claimed.
Next, we show that the power Am is not a strict contraction for any integer m ≥ 1.

Assume the converse. Then there would exist a natural number m and c ∈ (0,1) such
that for each x, y ∈ [0,1],

∣∣Amx − Amy
∣∣≤ c|x − y|. (3.57)

Since

(m + i)(m + i + 1)i−1(i + 1)−1 → 1 as i → ∞,

there is an integer p ≥ 4 such that

p(p + 1) > (p + m)(p + m + 1)c. (3.58)

By (3.52), (3.50) and (3.58),

Am
(
p−1)− Am

(
(p + 1)−1)

= (p + m)−1 − (p + m + 1)−1 = (p + m)−1(p + m + 1)−1

> cp−1(p + 1)−1 = c
(
p−1 − (p + 1)−1),

which contradicts (3.57).
The contradiction we have reached proves that Am is not a strict contraction for

any integer m ≥ 1.
Finally, we show that A is contractive. Let ε ∈ (0,1). We claim that there exists

c ∈ (0,1) such that

|Ax − Ay| ≤ c|x − y| for each x, y ∈ [0,1] satisfying |x − y| ≥ ε. (3.59)

Indeed, choose a natural number p ≥ 4 such that

p > 18ε−2, (3.60)

and assume that

x, y ∈ [0,1] and |x − y| ≥ ε. (3.61)

We may assume without loss of generality that

y > x. (3.62)
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There are two cases:

x < (4p)−1; (3.63)

x ≥ (4p)−1. (3.64)

Assume that (3.63) holds. There exists a natural number n such that

(1 + n)−1 < y ≤ n−1. (3.65)

By (3.65), (3.62) and (3.61),

ε ≤ y ≤ 1/n, (n + 2)−1 ≥ (3n)−1 ≥ ε/3. (3.66)

By (3.65) and (3.51),

Ay = (n + 2)−1 + (
y − (n + 1)−1)(n−1 − (n + 1)−1)−1(

(n + 1)−1 − (n + 2)−1)

= (n + 2)−1 + (
y − (n + 1)−1)n(n + 1)(n + 1)−1(n + 2)−1

≤ y − (n + 1)−1 + (n + 2)−1

and

y − Ay ≥ (n + 1)−1(n + 2)−1.

When combined with (3.66), the above inequality implies that

Ay − Ax ≤ Ay ≤ y − (n + 1)−1(n + 2)−1 ≤ y − (n + 2)−2 ≤ y − ε2/9. (3.67)

By (3.63), (3.60) and (3.67),

(
1 − 18−1ε2)(y − x) ≥ (

1 − 18−1ε2)y − x ≥ (
1 − 18−1ε2)y − (4p)−1

≥ y − ε2/18 − (4p)−1 ≥ y − ε2/18 − ε2/18

≥ Ay − Ax.

Thus we have shown that if (3.63) holds, then

|Ax − Ay| ≤ (
1 − ε2/18

)|x − y|. (3.68)

Now assume that (3.64) holds. By (3.64) and (3.62),

x, y ∈ [(4p)−1,1
]
.

In view of (3.55), the Lipschitz constant of the restriction of A to the interval
[(4p)−1,1] does not exceed (4p + 2)(4p + 4)−1 and therefore we have

|Ax − Ay| ≤ (4p + 2)(4p + 4)−1|x − y|.
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By this inequality and (3.68), we see that, in both cases,

|Ax − Ay| ≤ max
{(

1 − ε2/18
)
, (4p + 2)(4p + 4)−1}|x − y|.

Since this inequality holds for each x, y ∈ X satisfying (3.61), we conclude that
(3.59) is satisfied and therefore A is contractive.

3.5 A Power Convergent Mapping with no Contractive Powers

Let X = [0,1] and let ρ(x, y) = |x − y| for all x, y ∈ X. In this section, which is
based on [155], we construct a mapping A : [0,1] → [0,1] such that

|Ax − Ay| ≤ |x − y| for all x, y ∈ [0,1],
Anx → 0 as n → ∞, uniformly on [0,1],

and for each integer m ≥ 0, the power Am is not contractive.
To this end, let

A(0) = 0 (3.69)

and for t ∈ [2−1,1], set

A(t) = t − 1/4. (3.70)

Clearly,

A(1) = 3/4 and A(1/2) = 1/4. (3.71)

For t ∈ [4−1,2−1), set

A(t) = 4−1 − 16−1 + (
t − 4−1)4−1. (3.72)

Clearly, A is continuous on [4−1,1] and

A
(
4−1)= 4−1 − 16−1. (3.73)

Now let n ≥ 2 be a natural number. We define the mapping A on the interval
[2−2n

,2−2n−1] as follows. For each t ∈ [2−2n+1,2−2n−1], set

A(t) = t − 2−2n

. (3.74)

Clearly,

A
(
2−2n+1)= 2−2n

and A
(
2−2n−1)= 2−2n−1 − 2−2n

. (3.75)

For t ∈ [2−2n
,2−2n+1), set



3.5 A Power Convergent Mapping with no Contractive Powers 133

A(t) = 2−2n − 2−2n+1 + (
t − 2−2n)

22n(
2−2n+1)

= 2−2n − 2−2n+1 + 2−2n(
t − 2−2n)

. (3.76)

It is clear that

A
(
2−2n)= 2−2n − 2−2n+1

and

lim
t→(2−2n+1)+

A(t) = 2−2n − 2−2n+1 + 2−2n(
2−2n+1 − 2−2n)= 2−2n

. (3.77)

It follows from (3.74)–(3.77) that the mapping A is continuous on each one of
the intervals [2−2n

,2−2n−1 ], n = 2,3, . . . . It is not difficult to check that A is well
defined on [0,1] and that it is increasing.

By (3.70) and (3.72), for each x ∈ [1/4,1] we have Ax < x. We will now show
that this inequality holds for all x ∈ (0,1].

Let n ≥ 2 be an integer and let x ∈ [2−2n
,2−2n−1 ]. It is clear that Ax < x if

x ∈ [2−2n+1,2−2n−1]. If x ∈ [2−2n
,2−2n+1), then by (3.74) and (3.75),

Ax < A
(
2−2n+1)≤ 2−2n ≤ x.

Thus Ax < x for all x ∈ [2−2n
,2−2n−1] and for any integer n ≥ 2. Therefore we have

indeed shown that

Ax < x for all x ∈ (0,1], (3.78)

as claimed.
Next, we will show that

|Ax − Ay| ≤ |x − y| for each x, y ∈ [0,1]. (3.79)

If x = 0 and y > 0, then

|Ay − Ax| = Ay ≤ y = |y − x|. (3.80)

Assume that x, y ∈ (0,1]. Note that the restrictions of the mapping A to the interval
[1/4,1] and to all of the intervals [2−2n,2−2n−1 ], where n ≥ 2 is an integer, are
Lipschitz with Lipschitz constant one. This obviously implies that the mapping A is
1-Lipschitz on all of (0,1]. Therefore (3.79) is true.

Let x ∈ (0,1]. By (3.78), the sequence {Anx}∞n=1 is decreasing and there exists
the limit

x∗ = lim
n→∞Anx.

Clearly, Ax∗ = x∗. If x∗ > 0, then by (3.78), Ax∗ < x∗, a contradiction. Thus x∗ = 0
and limn→∞ An(1) = 0. Since the mapping A is increasing, this implies that

Anx → 0 as n → ∞, uniformly on [0,1].
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Finally, we will show that for each integer m ≥ 1, the power Am is not contractive.
Indeed, let m ≥ 1 be an integer. It is sufficient to show that there exist x, y ∈ [0,1]

such that

x �= y and
∣∣Am − Amy

∣∣= |x − y|.
To this end, choose a natural number n ≥ m + 4 such that

22n−1 − 3 ≥ m + 2. (3.81)

Using induction and (3.74), we show that for each integer i ∈ {1, . . . ,22n−1 − 2},

Ai
(
2−2n−1)= 2−2n−1 − i2−2n ≥ 2−2n+1

and

Ai
(
2−2n−1) ∈ [2−2n+1,2−2n−1].

Put

x = 2−2n−1
and y = A

(
2−2n−1)

.

Then for i = 1, . . . ,22n−1 − 3, we have

∣∣Aix − Aiy
∣∣= |x − y|,

and in view of (3.81),
∣∣Amx − Amy

∣∣= |x − y|.
Thus the power Am is not contractive, as asserted.

3.6 A Mapping with Nonuniformly Convergent Powers

In [155] we proved the following result.

Theorem 3.7 Let (X,ρ) be a compact metric space, let a mapping A : X → X

satisfy

ρ(Ax,Ay) ≤ ρ(x, y) for each x, y ∈ X, (3.82)

and let xA ∈ X satisfy

Anx → xA as n → ∞, for each x ∈ X.

Then Anx → xA as n → ∞, uniformly on X.
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Proof Let ε > 0. For each x ∈ X, there is a natural number n(x) such that

ρ
(
Anx,xA

)≤ ε/2 for all integers n ≥ n(x). (3.83)

Let

x, y ∈ X with ρ(x, y) < ε/2. (3.84)

By (3.83) and (3.84), for each integer n ≥ n(x),

ρ
(
Any,xA

)≤ ρ
(
Any,Anx

)+ ρ
(
Anx,xA

)
< ε/2 + ε/2.

Thus the following property holds:

(P) For each x ∈ X, each integer n ≥ n(x), and each y ∈ X satisfying ρ(x, y) <

ε/2, we have

ρ
(
Any,xA

)
< ε.

Since X is compact, there exist finitely many points x1, . . . , xq ∈ X such that

q⋃

i=1

{
y ∈ X : ρ(y, xi) < ε/2

}= X.

Assume that y ∈ X and that the integer n ≥ max{n(xi) : i = 1, . . . , q}. Then there is
j ∈ {1, . . . , q} such that ρ(y, xj ) < ε/2. By property (P),

ρ
(
Any,xA

)
< ε.

This completes the proof of Theorem 3.7. �

The following example was constructed in [155].
Let X be the set of all sequences (x1, x2, . . . , xn, . . . ) such that

∑∞
i=1 |xi | ≤ 1

and set

ρ(x, y) = ρ
(
(xi), (yi)

)=
∞∑

i=1

|xi − yi |.

In other words, (X,ρ) is the closed unit ball of �1. Clearly, (X,ρ) is a complete
metric space. Define

A(x1, x2, . . . , xn, . . . ) = (x2, x2, . . . , xn, . . . ), x = (x1, x2, . . . ) ∈ X.

Then the mapping A is nonexpansive, and for each x ∈ X, Anx → 0 as n → ∞.
However, if n is a natural number and en is the n-th unit vector of X, then

ρ(Anen+1,0) = 1.



136 3 Contractive Mappings

3.7 Two Results in Metric Fixed Point Theory

In this section, which is based on [115], we establish two fixed point theorems for
certain mappings of contractive type. The first result is concerned with the case
where such mappings take a nonempty and closed subset of a complete metric space
X into X, and the second with an application of the continuation method to the case
where they satisfy the Leray-Schauder boundary condition in Banach spaces.

The following result was obtained in [115].

Theorem 3.8 Let K be a nonempty and closed subset of a complete metric space
(X,ρ). Assume that T : K → X satisfies

ρ(T x,T y) ≤ φ
(
ρ(x, y)

)
ρ(x, y) for each x, y ∈ K, (3.85)

where φ : [0,∞) → [0,1] is a monotonically decreasing function such that φ(t) < 1
for all t > 0.

Assume that K0 ⊂ K is a nonempty and bounded set with the following property:

(P1) For each natural number n, there exists xn ∈ K0 such that T ixn is defined for
all i = 1, . . . , n.

Then

(A) the mapping T has a unique fixed point x̄ in K ;
(B) For each M,ε > 0, there exist δ > 0 and a natural number k such that for each

integer n ≥ k and each sequence {xi}ni=0 ⊂ K satisfying

ρ(x0, x̄) ≤ M and ρ(xi+1, T xi) ≤ δ, i = 0, . . . , n − 1,

we have

ρ(xi, x̄) ≤ ε, i = k, . . . , n. (3.86)

Proof of Theorem 3.8(A) The uniqueness of x̄ is obvious. To establish its existence,
let xn ∈ K0 be, for each natural number n, the point provided by property (P1). Fix
θ0 ∈ K . Since K0 is bounded, there is c0 > 0 such that

ρ(θ, z) ≤ c0 for all z ∈ K0. (3.87)

Let ε > 0 be given. We will show that there exists a natural number k such that the
following property holds:

(P2) If n > k is an integer and if an integer i satisfies k ≤ i < n, then

ρ
(
T ixn, T

i+1xn

)≤ ε. (3.88)

Assume the contrary. Then for each natural number k, there exist natural numbers
nk and ik such that

k ≤ ik < nk and ρ
(
T ikxnk

, T ik+1xnk

)
> ε. (3.89)
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Choose a natural number k such that

k >
(
ε
(
1 − φ(ε)

))−1(
2c0 + ρ(θ,T θ)

)
. (3.90)

By (3.89) and (3.85),

ρ
(
T ixnk

, T i+1xnk

)
> ε, i = 0, . . . , ik. (3.91)

(Here we use the notation that T 0z = z for all z ∈ K .) It follows from (3.85), (3.91)
and the monotonicity of φ that for all i = 0, . . . , ik − 1,

ρ
(
T i+2xnk

, T i+1xnk

) ≤ φ
(
ρ
(
T i+1xnk

, T ixnk

))
ρ
(
T i+1xnk

, T ixnk

)

≤ φ(ε)ρ
(
T i+1xnk

, T ixnk

)

and

ρ
(
T i+2xnk

, T i+1xnk

)− ρ
(
T i+1xnk

, T ixnk

)

≤ (
φ(ε) − 1

)
ρ
(
T i+1xnk

, T ixnk

)
< −(1 − φ(ε)

)
ε. (3.92)

Inequalities (3.92) and (3.89) imply that

−ρ(xnk
, T xnk

) ≤ ρ
(
T ik+1xnk

, T ik xnk

)− ρ(xnk
, T xnk

)

=
ik−1∑

i=0

[
ρ
(
T i+2xnk

, T i+1xnk

)− ρ
(
T i+1xnk

, T ixnk

)]

≤ −(1 − φ(ε)ε
)
ik ≤ −k

(
1 − φ(ε)

)
ε

and

k
(
1 − φ(ε)

)
ε ≤ ρ(xnk

, T xnk
). (3.93)

In view of (3.93), (3.85) and (3.87),

k
(
1 − φ(ε)

)
ε ≤ ρ(xnk

, T xnk
)

≤ ρ(xnk
, θ) + ρ(θ,T θ) + ρ(T θ,T xnk

) ≤ c0 + ρ(θ,T θ) + c0

and

k ≤ (
ε
(
1 − φ(ε)

))−1(2c0 + ρ(θ,T θ)
)
.

This contradicts (3.90). The contradiction we have reached proves that for each
ε > 0, there exists a natural number k such that (P2) holds.

Now let δ > 0 be given. We show that there exists a natural number k such that
the following property holds:

(P3) If n > k is an integer and if integers i, j satisfy k ≤ i, j < n, then

ρ
(
T ixn, T

jxn

)≤ δ.
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To this end, choose a positive number

ε < 4−1δ
(
1 − φ(δ)

)
. (3.94)

We have already shown that there exists a natural number k such that (P2) holds.
Assume that the natural numbers n, i and j satisfy

n > k and k ≤ i, j < n. (3.95)

We claim that ρ(T ixn, T
jxn) ≤ δ.

Assume the contrary. Then

ρ
(
T ixn, T

jxn

)
> δ. (3.96)

By (P2), (3.95), (3.85), (3.96) and the monotonicity of φ,

ρ
(
T ixn, T

jxn

) ≤ ρ
(
T ixn, T

i+1xn

)+ ρ
(
T i+1xn,T

j+1xn

)+ ρ
(
T j+1xn,T

jxn

)

≤ ε + ρ
(
T i+1xn,T

j+1xn

)+ ε

≤ 2ε + φ
(
ρ
(
T ixn, T

jxn

))
ρ
(
T ixn, T

jxn

)

≤ 2ε + φ(δ)ρ
(
T ixn, T

jxn

)
.

Together with (3.94) this implies that

ρ
(
T ixn, T

jxn

)≤ 2ε
(
1 − φ(δ)

)−1
< δ,

a contradiction. Thus we have shown that for each δ > 0, there exists a natural
number k such that (P3) holds.

Let ε > 0 be given. We will show that there exists a natural number k such that
the following property holds:

(P4) If n1, n2 ≥ k are integers, then ρ(T kxn1, T
kxn2) ≤ ε.

Choose a natural number k such that

k >
((

1 − φ(ε)
)
(ε)
)−14c0 (3.97)

and assume that the integers n1 and n2 satisfy

n1, n2 ≥ k. (3.98)

We claim that ρ(T kxn1, T
kxn2) ≤ ε. Assume the contrary. Then

ρ
(
T kxn1 , T

kxn2

)
> ε.

Together with (3.85) this implies that

ρ
(
T ixn1, T

ixn2

)
> ε, i = 0, . . . , k. (3.99)
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By (3.85), (3.99) and the monotonicity of φ, we have for i = 0, . . . , k − 1,

ρ
(
T i+1xn1, T

i+1xn2

) ≤ φ
(
ρ
(
T ixn1, T

ixn2

))
ρ
(
T ixn1, T

ixn2

)

≤ φ(ε)ρ
(
T ixn1, T

ixn2

)

and

ρ
(
T i+1xn1 , T

i+1xn2

)− ρ
(
T ixn1 , T

ixn2

)

≤ (
φ(ε) − 1

)
ρ
(
T ixn1 , T

ixn2

)≤ −(1 − φ(ε)
)
ε.

This implies that

−ρ(xn1, xn2) ≤ ρ
(
T kxn1, T

kxn2

)− ρ(xn1 , xn2)

=
k−1∑

i=0

[
ρ
(
T i+1xn1 , T

i+1xn2

)− ρ
(
T ixn1 , T

ixn2

)]≤ −k
(
1 − φ(ε)

)
ε.

Together with (3.87) this implies that

k
(
1 − φ(ε)

)
ε ≤ ρ(xn1, xn2) ≤ ρ(xn1, θ) + ρ(θ, xn2) ≤ 2c0.

This contradicts (3.97). Thus we have shown that

ρ
(
T kxn1 , T

kxn2

)≤ ε.

In other words, there exists a natural number k for which (P4) holds.
Let ε > 0 be given. By (P4), there exists a natural number k1 such that

ρ
(
T k1xn1, T

k1xn2

)≤ ε/4 for all integers n1, n2 ≥ k1. (3.100)

By (P3), there exists a natural number k2 such that

ρ
(
T ixn, T

jxn

)≤ ε/4 for all natural numbers n, j, i satisfying k2 ≤ i, j < n.

(3.101)

Assume now that the natural numbers n1, n2, i and j satisfy

n1, n2 > k1 + k2, i, j ≥ k1 + k2, i < n1, j < n2. (3.102)

We claim that

ρ
(
T ixn1 , T

j xn2

)≤ ε.

By (3.100), (3.102) and (3.85),

ρ
(
T k1+k2xn1, T

k1+k2xn2

)≤ ρ
(
T k1xn1, T

k1xn2

)≤ ε/4. (3.103)

In view of (3.102) and (3.101),

ρ
(
T k1+k2xn1, T

ixn1

)≤ ε/4 and ρ
(
T k1+k2xn2, T

j xn2

)≤ ε/4.
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Together with (3.103) these inequalities imply that

ρ
(
T ixn1, T

jxn2

)

≤ ρ
(
T ixn1 , T

k1+k2xn1

)+ ρ
(
T k1+k2xn1, T

k1+k2xn2

)+ ρ
(
T k1+k2xn2, T

jxn2

)

< ε.

Thus we have shown that the following property holds:

(P5) For each ε > 0, there exists a natural number k(ε) such that

ρ
(
T ixn1, T

j xn2

)≤ ε

for all natural numbers n1, n2 ≥ k(ε), i ∈ [k(ε), n1) and j ∈ [k(ε), n2).

Consider the two sequences {T n−2xn}∞n=2 and {T n−1xn}∞n=2. Property (P5) im-
plies that both of them are Cauchy and that

lim
n→∞ρ

(
T n−1xn,T

n−2xn

)= 0.

Therefore there exists x̄ ∈ K such that

lim
n→∞ρ

(
x̄, T n−2xn

)= lim
n→∞ρ

(
x̄, T n−1xn

)= 0.

Since the mapping T is continuous, T x̄ = x̄ and assertion (A) is proved. �

Proof of Theorem 3.8(B) For each x ∈ X and r > 0, set

B(x, r) = {
y ∈ X : ρ(x, y) ≤ r

}
. (3.104)

Choose δ0 > 0 such that

δ0 < M
(
1 − φ(M/2)

)
/4. (3.105)

Assume that

y ∈ K ∩ B(x̄,M), z ∈ X and ρ(z,T y) ≤ δ0. (3.106)

By (3.106) and (3.85),

ρ(x̄, z) ≤ ρ(x̄, T y) + ρ(T y, z) ≤ ρ(T x̄, T y) + δ0

≤ φ
(
ρ(x̄, y)

)
ρ(x̄, y) + δ0. (3.107)

There are two cases:

ρ(y, x̄) ≤ M/2; (3.108)

ρ(y, x̄) > M/2. (3.109)
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Assume that (3.108) holds. By (3.107), (3.108) and (3.105),

ρ(x̄, z) ≤ ρ(x̄, y) + δ0 ≤ M/2 + δ0 < M. (3.110)

If (3.109) holds, then by (3.107), (3.106), (3.109) and the monotonicity of φ,

ρ(x̄, z) ≤ δ0 + φ(M/2)ρ(x̄, y) ≤ δ0 + φ(M/2)M

< (M/4)
(
1 − φ(M/2)

)+ φ(M/2)M ≤ M.

Thus ρ(x̄, z) ≤ M in both cases.
We have shown that

ρ(x̄, z) ≤ M for each z ∈ X and y ∈ K ∩ B(x̄,M)

satisfying ρ(z,T y) ≤ δ0. (3.111)

Since M is any positive number, we conclude that there is δ1 > 0 such that

ρ(x̄, z) ≤ ε for each z ∈ X and y ∈ K ∩ B(x̄, ε)

satisfying ρ(z,T y) ≤ δ1. (3.112)

Choose a positive number δ such that

δ < min
{
δ0, δ1, ε

(
1 − φ(ε)

)
4−1} (3.113)

and a natural number k such that

k > 4(M + 1)
(
1 − φ(ε)ε

)−1 + 4. (3.114)

Let n ≥ k be a natural number and assume that {xi}ni=0 ⊂ K satisfies

ρ(x0, x̄) ≤ M and ρ(xi+1, T xi) ≤ δ, i = 0, . . . , n − 1. (3.115)

We claim that (3.86) holds. By (3.111), (3.115) and the inequality δ < δ0 (see
(3.113)),

{xi}ki=0 ⊂ B(x̄,M). (3.116)

Assume that (3.86) does not hold. Then there is an integer j such that

j ∈ {k,n} and ρ(xj , x̄) > ε. (3.117)

By (3.117), (3.115), (3.112) and (3.113),

ρ(xi, x̄) > ε, i = 0, . . . , j. (3.118)

Let i ∈ {0, . . . , j − 1}. By (3.115), (3.118), the monotonicity of φ, (3.113) and
(3.85),
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ρ(xi+1, x̄) ≤ ρ(xi+1, T xi) + ρ(T xi, T x̄) ≤ δ + φ
(
ρ(xi, x̄)

)
ρ(xi, x̄)

≤ δ + φ(ε)ρ(xi, x̄)

and

ρ(xi+1, x̄) − ρ(xi, x̄) ≤ δ − (
1 − φ(ε)

)
ρ(xi, x̄) ≤ δ − (

1 − φ(ε)
)
ε

≤ −(1 − φ(ε)
)
ε/2.

By (3.115) and (3.117) and the above inequalities,

−M ≤ −ρ(x0, x̄) ≤ ρ(xj , x̄) − ρ(x0, x̄)

=
j−1∑

i=0

[
ρ(xi+1, x̄) − ρ(xi, x̄)

]≤ −j
(
1 − φ(ε)ε/2

)≤ −k
(
1 − φ(ε)

)
ε/2.

This contradicts (3.114). The contradiction we have reached proves (3.86) and as-
sertion (B). �

Let G be a nonempty subset of a Banach space (Y,‖ · ‖). In [64] J. A. Gatica
and W. A. Kirk proved that if T : G → Y is a strict contraction, then T must have
a unique fixed point x1, under the additional assumptions that the origin is in the
interior Int(G) of G and that T satisfies a certain boundary condition known as the
Leray-Schauder condition:

T x �= λx ∀x ∈ ∂G,∀λ > 1. (L-S)

Here G is not necessarily convex or bounded. Their proof was nonconstructive.
Later, M. Frigon, A. Granas and Z. E. A. Guennoun [61], and M. Frigon [60] proved
that if xt is the unique fixed point of tT , then, in fact, the mapping t → xt is Lip-
schitz, so it gives a partial way to approximate x1. Our second result in this sec-
tion, which was also obtained in [115], extends these theorems to the case where T

merely satisfies (3.85).

Theorem 3.9 Let G be a nonempty subset of a Banach space Y with 0 ∈ Int(G).
Suppose that T : G → X is nonexpansive and that it satisfies condition (L-S). Then
for each t ∈ [0,1), the mapping tT : G → X has a unique fixed point xt ∈ Int(G)

and the mapping t → xt is Lipschitz on [0, b] for any 0 < b < 1. If, in addition, T

satisfies (3.85), then it has a unique fixed point x1 ∈ G and the mapping t → xt is
continuous on [0,1]. In particular, x1 = limt→1− xt .

Proof In the first part of the proof we assume that T is nonexpansive, i.e., it satisfies
(3.85) with φ identically equal to one.

Let S ⊂ [0,1) be the following set:

S = {
t ∈ [0,1) : tT has a unique fixed point xt ∈ Int(G)

}
.
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Since tT is a strict contraction for each t ∈ [0,1), it has at most one fixed point. In
order to prove the first part of this theorem, we have to show that S = [0,1). Since
0 ∈ S by assumption and since [0,1) is connected, it is enough to show that S is
both open and closed.

1. S is open: Let t0 ∈ S. From the definition of S it is clear that t0 < 1, so there
is a real number q such that t0 < q < 1. Let xt0 ∈ Int(G) be the unique fixed point
of t0T .

Since Int(G) is open, there is r > 0 such that the closed ball B[xt0 , r] of radius r

and center xt0 is contained in Int(G). We have, for all x ∈ B[xt0 , r] and t ∈ [0,1),

‖tT x − xt0‖ ≤ ‖tT x − tT xt0‖ + |t − t0|‖T xt0‖ + ‖t0T xt0 − xt0‖
≤ t‖x − xt0‖ + |t − t0|‖T xt0‖ ≤ tr + |t − t0|

(‖T xt0‖ + 1
)
. (3.119)

Suppose that t ∈ [0,1) satisfies

|t − t0| < min

{
r(1 − q)

1 + ‖T xt0‖
, q − t0

}
. (3.120)

Then t < q and

|t − t0| ≤ r(1 − t)

1 + ‖T xt0‖
,

so ‖tT x − xt0‖ ≤ r by (3.119). Consequently, the closed ball B[xt0, r] is invariant
under tT , and the Banach fixed point theorem ensures that tT has a unique fixed
point xt ∈ B[xt0, r] ⊂ Int(G). Thus t ∈ S for all t ∈ [0,1) satisfying (3.120).

2. S is closed: Suppose t0 ∈ [0,1) is a limit point of S. We have to prove that
t0 ∈ S, and since 0 ∈ S we can assume that t0 > 0. There is a sequence (tn)n in [0,1)

such that t0 = limn→∞ tn, and since t0 < 1, there is 0 < q < 1 such that tn < q for n

large enough. Define

A0 := {
xt : t ∈ S ∩ [0, q]}.

The set A0 is not empty since 0 ∈ A0. In addition, if t ∈ S ∩ [0, q], then

‖xt‖ = ‖tT xt‖ ≤ q
(‖T xt − T 0‖ + ‖T 0‖)≤ qφ

(‖xt − 0‖)‖xt − 0‖ + q‖T 0‖.
Therefore

‖xt‖ ≤ q‖T 0‖
1 − φ(‖xt‖)q ≤ ‖T 0‖

1 − q
, (3.121)

so A0 is a bounded set, and since T is Lipschitz, T (A0) is also bounded, say by M .
We will show that (xtn)n is a Cauchy sequence which converges to the fixed point xt0

of t0T . Indeed, since xtn and xtm are the fixed points of tnT and tmT , respectively,
it follows that

‖xtn − xtm‖ = ‖tnT xtn − tmT xtm‖ ≤ |tn − tm|‖T xtn‖ + ‖tmT xtn − tmT xtm‖
≤ |tn − tm|M + tmφ

(‖xtn − xtm‖)‖xtn − xtm‖.
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Hence

‖xtn − xtm‖ ≤ |tn − tm|M
1 − tmφ(‖xtn − xtm‖) ≤ |tn − tm|M

1 − q
. (3.122)

Since tn → t0 as n → ∞, we see that (xtn)n is indeed Cauchy and hence con-
verges to xt0 ∈ G. Using again the equality tnT xtn = xtn , we obtain

‖t0T xt0 − xt0‖ ≤ ‖t0T xt0 − t0T xtn‖ + ‖t0T xtn − tnT xtn‖ + ‖tnT xtn − xt0‖
= t0‖T xt0 − T xtn‖ + |t0 − tn|‖T xtn‖ + ‖xtn − xt0‖
≤ ‖xt0 − xtn‖ + |t0 − tn|M + ‖xtn − xt0‖ → 0,

so t0T xt0 = xt0 , i.e., xt0 is indeed a fixed point of t0T . It remains to show that
xt0 ∈ Int(G), and this follows from the (L-S) condition: since T xt0 = 1

t0
xt0 , so (L-S)

implies that xt0 /∈ ∂G (recall that 0 < t0 < 1). Hence S is closed, as claimed.
The fact that the mapping t → xt is Lipschitz on the interval [0, b] for any 0 <

b < 1 follows from (3.122).
Suppose now that T satisfies (3.85) with φ(t) < 1 for all positive t . Let (tn)n be

a sequence in [0,1) such that tn → t0 = 1. The set A0 (and hence the set T (A0))
remain bounded also when q = 1, because if ‖xt‖ ≥ 1, then in (3.121) we get
‖xt‖ ≤ ‖T 0‖

1−φ(1)
, so in any case ‖xt‖ ≤ max (1,

‖T 0‖
1−φ(1)

) (recall that φ(t) < 1). Now,
in order to prove that x1 := limt→1−1 xt exists, note first that (xtn)n is Cauchy if
tn → 1, because otherwise there is ε > 0 and a subsequence (call it again tn) such
that ‖xt2n+1 − xt2n+2‖ ≥ ε, but from (3.122) we obtain

‖xt2n+1 − xt2n+2‖ ≤ |t2n+1 − t2n+2|M
1 − t2n+2φ(ε)

→ 0,

a contradiction. Now, all these sequences approach the same limit because for any
two such sequences

(xtn)n, (xsn)n,

the interlacing sequence (t1, s1, t2, s2, . . .) → 1, so (xt1, xs1, xt2, xs2, . . .) is also
Cauchy. The fact that x1 is a fixed point of T is proved as above (here, however,
one cannot use (L-S) to conclude that x1 ∈ Int(G), and indeed it may happen that
x1 ∈ ∂G as the mapping T : [−1,∞) → R, defined by T x = x−1

2 , shows). �

3.8 A Result on Rakotch Contractions

In this section, which is based on [160], we establish fixed point and convergence
theorems for certain mappings of contractive type which take a closed subset of a
complete metric space X into X.

Let K be a nonempty and closed subset of a complete metric space (X,ρ). For
each x ∈ X and r > 0, set

B(x, r) = {
y ∈ X : ρ(x, y) ≤ r

}
.
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In the following result, which was obtained in [160], we provide a new sufficient
condition for the existence and approximation of the unique fixed point of a con-
tractive mapping which maps a nonempty and closed subset of a complete metric
space X into X.

Theorem 3.10 Assume that T : K → X satisfies

ρ(T x,T y) ≤ φ
(
ρ(x, y)

)
ρ(x, y) for all x, y ∈ K, (3.123)

where φ : [0,∞) → [0,1] is a monotonically decreasing function such that φ(t) < 1
for all t > 0.

Assume that there exists a sequence {xn}∞n=1 ⊂ K such that

lim
n→∞ρ(xn,T xn) = 0. (3.124)

Then there exists a unique x̄ ∈ K such that T x̄ = x̄.

Proof The uniqueness of x̄ is obvious. To establish its existence, let ε ∈ (0,1) be
given and choose a positive number γ such that

γ <
(
1 − φ(ε)

)
ε/8. (3.125)

By (3.124), there is a natural number n0 such that

ρ(xn,T xn) < γ for all integers n ≥ n0. (3.126)

Assume that the integers m,n ≥ n0. We claim that ρ(xm,xn) ≤ ε. Assume the
contrary. Then

ρ(xm,xn) > ε. (3.127)

By (3.125), (3.123), (3.127), the monotonicity of φ, and (3.126),

ρ(xm,xn) ≤ ρ(xm,T xm) + ρ(T xm,T xn) + ρ(T xn, xn)

≤ 2γ + φ
(
ρ(xm,xn)

)
ρ(xm,xn) ≤ 2γ + φ(ε)ρ(xm,xn)

= ρ(xm,xn) − (
1 − φ(ε)

)
ρ(xm,xn) + 2γ

< ρ(xm,xn) − (
1 − φ(ε)

)
ρ(xm,xn) + (

1 − φ(ε)
)
ε/4

≤ ρ(xm,xn) − (
1 − φ(ε)

)
ρ(xm,xn)(3/4)

= ρ(xm,xn)
[
(1/4) + φ(ε)(3/4)

]
< ρ(xm,xn),

a contradiction.
The contradiction we have reached proves that ρ(xm,xn) ≤ ε for all integers

m,n ≥ n0, as claimed.
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Since ε is an arbitrary number in (0,1), we conclude that {xn}∞n=1 is a Cauchy se-
quence and there exists x̄ ∈ X such that limn→∞ xn = x̄. By (3.123), for all integers
n ≥ 1,

ρ(T x̄, x̄) ≤ ρ(T x̄, T xn) + ρ(T xn, xn) + ρ(xn, x̄)

≤ 2ρ(xn, x̄) + ρ(T xn, xn) → 0 as n → ∞.

This concludes the proof of Theorem 3.10. �

In the following result, which was also obtained in [160], we present another
proof of the fixed point theorem established in Theorem 1(A) of [115]. This proof
is based on Theorem 3.10.

Theorem 3.11 Let T : K → X satisfy

ρ(T x,T y) ≤ φ
(
ρ(x, y)

)
ρ(x, y) for all x, y ∈ K,

where φ : [0,∞) → [0,1] is a monotonically decreasing function such that φ(t) < 1
for all t > 0.

Assume that K0 ⊂ K is a nonempty and bounded set with the following property:
For each natural number n, there exists yn ∈ K0 such that T iyn is defined for all

i = 1, . . . , n.
Then the mapping T has a unique fixed point x̄ in K .

Proof By Theorem 3.10, it is sufficient to show that for each ε ∈ (0,1), there is
x ∈ K such that ρ(x,T x) < ε. Indeed, let ε ∈ (0,1). There is M > 0 such that

ρ(y0, yi) ≤ M, i = 1,2, . . . . (3.128)

By (3.123) and (3.128), for each integer i ≥ 1,

ρ(yi, T yi) ≤ ρ(yi, y0) + ρ(y0, T y0) + ρ(T y0, T yi) ≤ 2M + ρ(y0, T y0). (3.129)

Choose a natural number q ≥ 4 such that

(q − 1)ε
(
1 − φ(ε)

)
> 4M + 2ρ(y0, T y0). (3.130)

Set T 0z = z, z ∈ K .
We claim that ρ(T q−1yq,T qyq) < ε. Assume the contrary. Then by (3.123),

ρ
(
T iyq, T i+1yq

)≥ ε, i = 0, . . . , q − 1. (3.131)

In view of (3.123), (3.131) and the monotonicity of φ, we have for i = 0, . . . , q − 2,

ρ
(
T i+1yq,T i+2yq

) ≤ φ
(
ρ
(
T iyq, T i+1yq

))
ρ
(
T iyq, T i+1yq

)

≤ φ(ε)ρ
(
T iyq, T i+1yq

)
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and

ρ
(
T iyq, T i+1yq

)− ρ
(
T i+1yq,T i+2yq

) ≥ (
1 − φ(ε)

)
ρ
(
T iyq, T i+1yq

)

≥ (
1 − φ(ε)

)
ε. (3.132)

By (3.129) and (3.132),

2M + ρ(y0, T y0) ≥ ρ(yq, T yq) − ρ
(
T q−1yq,T qyq

)

≥
q−2∑

i=0

[
ρ
(
T iyq, T i+1yq

)− ρ
(
T i+1yq,T i+2yq

)]

≥ (q − 1)
(
1 − φ(ε)

)
ε

and

2M + ρ(y0, T y0) ≥ (q − 1)
(
1 − φ(ε)

)
ε.

This contradicts (3.130). The contradiction we have reached shows that

ρ
(
T q−1yq,T qyq

)
< ε,

as claimed. Theorem 3.11 is proved. �

In the following result, also obtained in [160], we establish a convergence re-
sult for (unrestricted) infinite products of mappings which satisfy a weak form of
condition (3.123).

Theorem 3.12 Let φ : [0,∞) → [0,1] be a monotonically decreasing function
such that φ(t) < 1 for all t > 0.

Let

x̄ ∈ K, Ti : K → X, i = 0,1, . . . , Ti x̄ = x̄, i = 0,1, . . . , (3.133)

and assume that

ρ(Tix, x̄) ≤ φ
(
ρ(x, x̄)

)
ρ(x, x̄) for each x ∈ K, i = 0,1, . . . . (3.134)

Then for each M,ε > 0, there exist δ > 0 and a natural number k such that for each
integer n ≥ k, each mapping r : {0,1, . . . , n − 1} → {0,1, . . . }, and each sequence
{xi}n−1

i=0 ⊂ K satisfying

ρ(x0, x̄) ≤ M and ρ(xi+1, Tr(i)xi) ≤ δ, i = 0, . . . , n − 1,

we have

ρ(xi, x̄) ≤ ε, i = k, . . . , n. (3.135)
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Proof Choose δ0 > 0 such that

δ0 < M
(
1 − φ(M/2)

)
/4. (3.136)

Assume that

y ∈ K ∩ B(x̄,M), i ∈ {0,1, . . . }, z ∈ X and ρ(z,Tiy) ≤ δ0. (3.137)

By (3.137) and (3.134),

ρ(x̄, z) ≤ ρ(x̄, Tiy) + ρ(Ti, z) ≤ φ
(
ρ(x̄, y)

)
ρ(x̄, y) + δ0. (3.138)

There are two cases:

ρ(y, x̄) ≤ M/2 (3.139)

and

ρ(y, x̄) > M/2. (3.140)

Assume that (3.139) holds. Then by (3.138), (3.139) and (3.136),

ρ(x̄, z) ≤ ρ(x̄, y) + δ0 ≤ M/2 + δ0 < M. (3.141)

If (3.140) holds, then by (3.138), (3.137), (3.136) and the monotonicity of φ,

ρ(x̄, z) ≤ δ0 + φ(M/2)ρ(x̄, y) ≤ δ0 + φ(M/2)M

< (M/4)
(
1 − φ(M/2)

)+ φ(M/2)M ≤ M.

Thus ρ(x̄, z) ≤ M in both cases.
We have shown that

if y ∈ K ∩ B(x̄,M), i ∈ {0,1, . . . }, z ∈ X,ρ(z,Tiy) ≤ δ0, then ρ(x̄, z) ≤ M.

(3.142)

Since M is any positive number, we conclude that there is δ1 > 0 such that

if y ∈ K ∩ B(x̄, ε), i ∈ {0,1, . . . }, z ∈ X,ρ(z,Tiy) ≤ δ1, then ρ(x̄, z) ≤ ε.

(3.143)

Now choose a positive number δ such that

δ < min
{
δ0, δ1, ε

(
1 − φ(ε)

)
4−1} (3.144)

and a natural number k such that

k > 4(M + 1)
((

1 − φ(ε)
)
ε
)−1 + 4. (3.145)
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Let n ≥ k be a natural number. Assume that r : {0, . . . , n − 1} → {0,1, . . . } and that

{xi}n−1
i=0 ⊂ K

satisfies

ρ(x0, x̄) ≤ M and ρ(xi+1, Tr(i)xi) ≤ δ, i = 0, . . . , n − 1. (3.146)

We claim that (3.135) holds. By (3.142), (3.146) and the inequality δ < δ0,

{xi}ni=0 ⊂ B(x̄,M). (3.147)

Assume to the contrary that (3.135) does not hold. Then there is an integer j such
that

j ∈ {k, . . . , n} and ρ(xj , x̄) > ε. (3.148)

By (3.148) and (3.134),

ρ(xi, x̄) > ε, i = 0, . . . , j. (3.149)

Let i ∈ {0, . . . , j − 1}. By (3.146), (3.134) and the monotonicity of φ,

ρ(xi+1, x̄) ≤ ρ(xi+1, Tr(i)xi) + ρ(Tr(i)xi, x̄) ≤ δ + φ
(
ρ(xi, x̄)

)
ρ(xi, x̄)

≤ δ + φ(ε)ρ(xi, x̄).

When combined with (3.144) and (3.49), this implies that

ρ(xi+1, x̄) − ρ(xi, x̄) ≤ δ − (
1 − φ(ε)

)
ρ(xi, x̄) ≤ δ − (

1 − φ(ε)
)
ε

< −(1 − φ(ε)
)
ε/2. (3.150)

Finally, by (3.146), (3.150) and (3.148),

−M ≤ −ρ(x0, x̄) ≤ ρ(xj , x̄) − ρ(x0, x̄)

=
j−1∑

i=0

[
ρ(xi+1, x̄) − ρ(xi, x̄)

]≤ −j
(
1 − φ(ε)

)
ε/2 ≤ −k

(
1 − φ(ε)

)
ε/2.

This contradicts (3.145). The contradiction we have reached proves (3.135) and
Theorem 3.12 itself. �

3.9 Asymptotic Contractions

In this section, which is based on [8], we provide sufficient conditions for the iterates
of an asymptotic contraction on a complete metric space X to converge to its unique
fixed point, uniformly on each bounded subset of X.
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Let (X,d) be a complete metric space. The following theorem is the main result
of Chen [40]. It improves upon Kirk’s original theorem [83]. In this connection, see
also [6] and [76].

Theorem 3.13 Let T : X → X be such that

d
(
T nx,T ny

)≤ φn

(
d(x, y)

)

for all x, y ∈ X and all natural numbers n, where φn : [0,∞) → [0,∞) and
limn→∞ φn = φ, uniformly on any bounded interval [0, b]. Suppose that φ is up-
per semicontinuous and that φ(t) < t for all t > 0. Furthermore, suppose that there
exists a positive integer n∗ such that φn∗ is upper semicontinuous and φn∗(0) = 0. If
there exists x0 ∈ X which has a bounded orbit O(x0) = {x0, T x0, T

2x0, . . . }, then
T has a unique fixed point x∗ ∈ X and limn→∞ T nx = x∗ for all x ∈ X.

Note that Theorem 3.13 does not provide us with uniform convergence of the
iterates of T on bounded subsets of X, although this does hold for many classes of
mappings of contractive type (e.g., [23, 114]). This property is important because it
yields stability of the convergence of iterates even in the presence of computational
errors [35]. In this section we show that this conclusion can be derived in the setting
of Theorem 3.13 if for each natural number n, the function φn is assumed to be
bounded on any bounded interval. To this end, we first prove a somewhat more
general result (Theorem 3.14) which, when combined with Theorem 3.13, yields
our strengthening of Chen’s result (Theorem 3.15).

Theorem 3.14 Let x∗ ∈ X be a fixed point of T : X → X. Assume that

d
(
T nx, x∗

)≤ φn

(
d(x, x∗)

)
for all x ∈ X and all natural numbers n, (3.151)

where φn : [0,∞) → [0,∞) and limn→∞ φn = φ, uniformly on any bounded inter-
val [0, b]. Suppose that φ is upper semicontinuous and φ(t) < t for all t > 0. Then
T nx → x∗ as n → ∞, uniformly on each bounded subset of X.

Theorem 3.15 Let T : X → X be such that

d
(
T nx,T ny

)≤ φn

(
d(x, y)

)

for all x, y ∈ X and all natural numbers n, where φn : [0,∞) → [0,∞) and
limn→∞ φn = φ, uniformly on any bounded interval [0, b]. Suppose that φ is up-
per semicontinuous and φ(t) < t for all t > 0. Furthermore, suppose that there
exists a positive integer n∗ such that φn∗ is upper semicontinuous and φn∗(0) = 0. If
there exists x0 ∈ X which has a bounded orbit O(x0) = {x0, T x0, T

2x0, . . . }, then T

has a unique fixed point x∗ ∈ X and limn→∞ T nx = x∗, uniformly on each bounded
subset of X.
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Proof of Theorem 3.14 We may assume without loss of generality that φ(0) = 0 and
φn(0) = 0 for all integers n ≥ 1.

For each x ∈ X and each r > 0, set

B(x, r) = {
y ∈ X : d(x, y) ≤ r

}
.

We first prove three lemmata.

Lemma 3.16 Let K > 0. Then there exists a natural number q̄ such that for all
integers s ≥ q̄ ,

T s
(
B(x∗,K)

)⊂ B(x∗,K + 1).

Proof There exists a natural number q̄ such that for all integers s ≥ q̄ ,

∣∣ψs(t) − φ(t)
∣∣< 1 for all t ∈ [0,K].

Let s ≥ q̄ be an integer. Then for all x ∈ B(x∗,K),

d
(
T sx, x∗

)≤ φs

(
d(x, x∗)

)
< φ

(
d(x, x∗)

)+ 1 < d(x, x∗) + 1 < K + 1.

Lemma 3.16 is proved. �

Lemma 3.17 Let 0 < ε1 < ε0. Then there exists a natural number q such that for
each integer j ≥ q ,

T j
(
B(x∗, ε1)

)⊂ B(x∗, ε0).

Proof There exists an integer q ≥ 1 such that for each integer j ≥ q ,

∣∣φj (t) − φ(t)
∣∣< (ε0 − ε1)/2 for all t ∈ [0, ε0]. (3.152)

Assume that

j ∈ {q, q + 1, . . . } and x ∈ B(x∗, ε1).

By (3.151) and (3.152),

d
(
T jx, x∗

) ≤ φj

(
d(x, x∗)

)
< φ

(
d(x, x∗)

)+ (ε0 − ε1)/2

≤ ε1 + (ε0 − ε1)/2 = (ε0 + ε1)/2.

Lemma 3.17 is proved. �

Lemma 3.18 Let K,ε > 0 be given. Then there exists a natural number q such that
for each x ∈ B(x∗,K),

min
{
d
(
T jx, x∗

) : j = 1, . . . , q
}≤ ε.



152 3 Contractive Mappings

Proof By Lemma 3.16, there is a natural number q̄ such that

T n
(
B(x∗,K)

)⊂ B(x∗,K + 1) for all natural numbers n ≥ q̄. (3.153)

We may assume without loss of generality that ε < K/8. Since the function t −φ(t),
t ∈ (0,∞), is lower semicontinuous and positive, there is

δ ∈ (0, ε/8) (3.154)

such that

t − φ(t) ≥ 2δ for all t ∈ [ε/2,K + 1]. (3.155)

There is a natural number s ≥ q̄ such that
∣
∣φ(t) − φs(t)

∣
∣≤ δ for all t ∈ [0,K + 1]. (3.156)

By (3.155) and (3.156), we have, for all t ∈ [ε/2,K + 1],
φs(t) ≤ φ(t) + δ ≤ t − 2δ + δ = t − δ. (3.157)

In view of (3.156) and (3.154), we have, for all t ∈ [0, ε/2],
φs(t) ≤ φ(t) + δ ≤ t + δ ≤ ε/2 + δ < (3/4)ε. (3.158)

Choose a natural number p such that

p > 4 + δ−1(K + 1). (3.159)

Let

x ∈ B(x∗,K). (3.160)

We will show that

min
{
d
(
T jx, x∗

) : j = 1,2, . . . , ps
}≤ ε. (3.161)

Assume the contrary. Then

d
(
T jx, x∗

)
> ε for all j = s, . . . , ps. (3.162)

By (3.160) and(3.153),

T jx ∈ B(x∗,K + 1), j = s, . . . , ps. (3.163)

Let a natural number i satisfy i ≤ p − 1. By (3.162) and (3.163),

d
(
T isx, x∗

)
> ε and d

(
T isx, x∗

)≤ K + 1. (3.164)

It follows from (3.151), (3.164) and (3.157) that

d
(
T s
(
T isx

)
, x∗

)≤ φs

(
d
(
T isx, x∗

))≤ d
(
T isx, x∗

)− δ.
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Thus for each natural number i ≤ p − 1,

d
(
T (i+1)sx, x∗

)≤ d
(
T isx, x∗

)− δ.

This inequality implies that

d
(
T psx, x∗

)≤ d
(
T (p−1)sx, x∗

)− δ ≤ · · · ≤ d
(
T sx, x∗

)− (p − 1)δ.

When combined with (3.163) and (3.159), this implies, in turn, that

d
(
T psx, x∗

)≤ K + 1 − (p − 1)δ < 0.

The contradiction we have reached proves (3.161) and completes the proof of
Lemma 3.18. �

Completion of the proof of Theorem 3.14 Let K,ε > 0 be given. Choose ε1 ∈ (0, ε).
By Lemma 3.17, there exists a natural number q1 such that

T j
(
B(x∗, ε1)

)⊂ B(x∗, ε) for all integers j ≥ q1. (3.165)

By Lemma 3.18, there exists a natural number q2 such that

min
{
d
(
T jx, x∗

) : j = 1, . . . , q2
}≤ ε1 for all x ∈ B(x∗,K). (3.166)

Assume that

x ∈ B(x∗,K).

By (3.166), there is a natural number j1 ≤ q2 such that

d
(
T j1x, x∗

)≤ ε1. (3.167)

In view of (3.167) and (3.165),

T j
(
T j1x

) ∈ B(x∗, ε) for all integers j ≥ q1. (3.168)

Inclusion (3.168) and the inequality j1 ≤ q2 now imply that

T ix ∈ B(x∗, ε) for all integers i ≥ q1 + q2.

Theorem 3.14 is proved. �

3.10 Uniform Convergence of Iterates

Let (X,d) be a complete metric space. The following theorem [9] is the main result
of this section. In contrast with Theorem 3.14, here we only assume that a subse-
quence of {φn}∞n=1 converges to φ.
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Theorem 3.19 Let x∗ ∈ X be a fixed point of T : X → X. Assume that

d
(
T nx, x∗

)≤ φn

(
d(x, x∗)

)
(3.169)

for all x ∈ X and all natural numbers n, where the functions φn : [0,∞) → [0,∞),
n = 1,2, . . . , satisfy the following conditions:

(i) For each b > 0, there is a natural number nb such that

sup
{
φn(t) : t ∈ [0, b] and all n ≥ nb

}
< ∞; (3.170)

(ii) there exist an upper semicontinuous function φ : [0,∞) → [0,∞) satisfying
φ(t) < t for all t > 0 and a strictly increasing sequence of natural numbers
{mk}∞k=1 such that limk→∞ φmk

= φ, uniformly on any bounded interval [0, b].
Then T nx → x∗ as n → ∞, uniformly on any bounded subset of X.

Proof Set T 0x = x for all x ∈ X. For each x ∈ X and each r > 0, set

B(x, r) = {
z ∈ X : d(x, z) ≤ r

}
. (3.171)

Let M > 0 and ε ∈ (0,1) be given. By (i), there are M1 > M and an integer n1 ≥ 1
such that

φi(t) ≤ M1 for all t ∈ [0,M + 1] and all integers i ≥ n1. (3.172)

In view of (3.169) and (3.172), for each x ∈ B(x∗,M) and each integer n ≥ n1,

d(Tnx, x∗) ≤ φn

(
d(x, x∗)

)≤ M1. (3.173)

Since the function t − φ(t) is lower semicontinuous, there is δ > 0 such that

δ < ε/8 (3.174)

and

t − φ(t) ≥ 2δ, t ∈ [ε/8,4M1 + 4]. (3.175)

By (ii), there is an integer n2 ≥ 2n1 + 2 such that

∣∣φn2(t) − φ(t)
∣∣≤ δ, t ∈ [0,4M1 + 4]. (3.176)

Assume that

x ∈ B(x∗,M1 + 4). (3.177)

If d(x, x∗) ≤ ε/8, then it follows from (3.169), (3.174), (3.176) and (3.177) that

d
(
T n2x, x∗

)≤ φn2

(
d(x, x∗)

)≤ φ
(
d(x, x∗)

)+ δ ≤ d(x, x∗) + δ < ε/4.
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If d(x, x∗) ≥ ε/8, then relations (3.169), (3.175), (3.176) and (3.177) imply that

d
(
T n2x, x∗

)≤ φn2

(
d(x, x∗)

)≤ φ
(
d(x, x∗)

)+ δ ≤ d(x, x∗)−2δ + δ = d(x, x∗)− δ.

Thus in both cases we have

d
(
T n2x, x∗

)≤ max
{
d(x, x∗) − δ, ε/4

}
. (3.178)

Now choose a natural number q > 2 such that

q > (8 + 2M1)δ
−1. (3.179)

Assume that

x ∈ B(x∗,M1 + 4) and T in2x ∈ B(x∗,M1 + 4), i = 1, . . . , q − 1. (3.180)

We claim that

min
{
d
(
T jn2x, x∗

) : j = 1, . . . , q
}≤ ε/4. (3.181)

Assume the contrary. Then by (3.178) and (3.180), for each j = 1, . . . , q , we have

d
(
T jn2x, x∗

)≤ d
(
T (j−1)n2x, x∗

)− δ

and

d
(
T qn2x, x∗

)≤ d
(
T (q−1)n2x, x∗

)− δ ≤ · · · ≤ d(x, x∗) − qδ ≤ M1 + 4 − qδ.

This contradicts (3.179). The contradiction we have reached proves (3.181).
Assume that an integer j satisfies 1 ≤ j ≤ q − 1 and

d
(
T jn2x, x∗

)≤ ε/4.

When combined with (3.178) and (3.180), this implies that

d
(
T (j+1)n2x, x∗

)≤ max
{
d
(
T jn2x, x∗

)− δ, ε/4
}≤ ε/4.

It follows from this inequality and (3.181) that

d
(
T qn2x, x∗

)≤ ε/4 (3.182)

for all points x satisfying (3.177).
Assume now that x ∈ B(x∗,M) and let an integer s be such that s ≥ n1 + qn2.

By (3.173),

T ix ∈ B(x∗,M1) for all integers i ≥ n1

and

T s−qn2x ∈ B(x∗,M1). (3.183)
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Since T sx = T qn2(T s−qn2x), it follows from (3.182) and (3.183) that

d
(
T sx, x∗

)= d
(
T qn2

(
T s−qn2x

)
, x∗

)
< ε/4.

This completes the proof of Theorem 3.19. �

The following result, which was also obtained in [9], is an extension of Theo-
rem 3.19.

Theorem 3.20 Let x∗ ∈ X be a fixed point of T : X → X. Assume that {mk}∞k=1 is
a strictly increasing sequence of natural numbers such that

d
(
T mkx, x∗

)≤ φmk

(
d(x, x∗)

)

for all x ∈ X and all natural numbers k, where T and the functions φmk
: [0,∞) →

[0,∞), k = 1,2, . . . , satisfy the following conditions:

(i) For each M > 0, there is M1 > 0 such that

T i
(
B(x∗,M)

)⊂ B(x∗,M1) for each integer i ≥ 0;
(ii) there exists an upper semicontinuous function φ : [0,∞) → [0,∞) satisfying

φ(t) < t for all t > 0 such that limk→∞ φmk
= φ, uniformly on any bounded

interval [0, b].
Then T nx → x∗ as n → ∞, uniformly on any bounded subset of X.

Proof Let i be a natural number such that i �= mk for all natural numbers k. For
each t ≥ 0, set

φi(t) = sup
{
d
(
T ix, x∗

) : x ∈ B(x∗, t)
}
.

Clearly, φi(t) is finite for all t ≥ 0. It is easy to see that all the assumptions of
Theorem 3.19 hold. Therefore Theorem 3.19 implies that T nx → x∗ as n → ∞,
uniformly on all bounded subsets of X. Theorem 3.20 is proved. �

Now we show that Theorem 3.19 has a converse.
Assume now that T : X → X, x∗ ∈ X, T nx → x∗ as n → ∞, uniformly on all

bounded subsets of X, and that T (C) is bounded for any bounded C ⊂ X. We claim
that T necessarily satisfies all the hypotheses of Theorem 3.19 with an appropriate
sequence {φn}∞n=1.

Indeed, fix a natural number n and for all t ≥ 0, set

φn(t) = sup
{
d
(
T nx, x∗

) : x ∈ B(x∗, t)
}
.

Clearly, φn(t) is finite for all t ≥ 0 and all natural numbers n, and

d
(
T nx, x∗

)≤ φn

(
d(x, x∗)

)
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for all x ∈ X and all natural numbers n. It is also obvious that φn → 0 as n → ∞,
uniformly on any bounded subinterval of [0,∞), and that for any b > 0,

sup
{
φn(t) : t ∈ [0, b], n ≥ 1

}
< ∞.

Thus all the assumptions of Theorem 3.19 hold with φ(t) = 0 identically.

3.11 Well-Posedness of Fixed Point Problems

Let (K,ρ) be a bounded complete metric space. We say that the fixed point problem
for a mapping A : K → K is well posed if there exists a unique xA ∈ K such that
AxA = xA and the following property holds:

if {xn}∞n=1 ⊂ K and ρ(xn,Axn) → 0 as n → ∞, then ρ(xn, xA) → 0 as n → ∞.
The notion of well-posedness is of central importance in many areas of Math-

ematics and its applications. In our context this notion was studied in [50], where
generic well-posedness of the fixed point problem is established for the space of
nonexpansive self-mappings of K .

In this section, which is based on [139], we first show (Theorem 3.21) that the
fixed point problem is well posed for any contractive self-mapping of K . Since it is
known that in Banach spaces (see Theorem 3.2) almost all nonexpansive mappings
are contractive in the sense of Baire’s categories, the generic well-posedness of the
fixed point problem for the space of nonexpansive self-mappings of K follows im-
mediately in this case. In our second result (Theorem 3.22) we show that the fixed
point problem is well posed as soon as the uniformly continuous self-mapping of K

has a unique fixed point which is the uniform limit of every sequence of iterates.
Let (K,ρ) be a bounded complete metric space. Define

d(K) = sup
{
ρ(x, y) : x, y ∈ K

}
. (3.184)

Recall that a mapping A : K → K is contractive if there exists a decreasing func-
tion φ : [0, d(K)] → [0,1] such that

φ(t) < 1, t ∈ (0, d(K)
]

(3.185)

and

ρ(Ax,Ay) ≤ φ
(
ρ(x, y)

)
ρ(x, y) for all x, y ∈ K. (3.186)

Theorem 3.21 Assume that a mapping A : K → K is contractive. Then the fixed
point problem for A is well posed.

Proof Since the mapping A is contractive, there exists a decreasing function φ :
[0, d(K)] → [0,1] such that (3.185) and (3.186) hold. By Theorem 3.1, there exists
a unique xA ∈ K such that

AxA = xA. (3.187)
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Let {xn}∞n=1 ⊂ K satisfy

lim
n→∞ρ(xn,Axn) = 0. (3.188)

We claim that xn → xA as n → ∞. Assume the contrary. By extracting a subse-
quence, if necessary, we may assume without loss of generality that there exists
ε > 0 such that

ρ(xn, xA) ≥ ε for all integers n ≥ 1. (3.189)

Then it follows from (3.187), (3.186), (3.189) and the monotonicity of the function
φ that for all integers n ≥ 1,

ρ(xA, xn) ≤ ρ(xA,Axn) + ρ(Axn, xn) ≤ ρ(Axn, xn) + φ
(
ρ(xn, xA)

)
ρ(xn, xA)

≤ ρ(Axn, xn) + φ(ε)ρ(xA, xn). (3.190)

Inequalities (3.190) and (3.189) imply that for all integers n ≥ 1,

ε
(
1 − φ(ε)

)≤ (
1 − φ(ε)

)
ρ(xA, xn) ≤ ρ(Axn, xn),

a contradiction (see (3.188)). The contradiction we have reached proves Theo-
rem 3.21. �

Theorem 3.22 Assume that A : K → K is a uniformly continuous mapping,
xA ∈ K , AxA = xA, and that Anx → xA as n → ∞, uniformly on K . Then the
fixed point problem for the mapping A is well posed.

Proof Let ε > 0 be given. In order to prove this theorem, it is sufficient to show that
there exists δ > 0 such that for each y ∈ K satisfying ρ(y,Ay) < δ, the inequality
ρ(y, xA) < ε is true.

There exists a natural number n0 ≥ 3 such that

ρ
(
Anx,xA

)≤ ε/8 for any x ∈ K and any integer n ≥ n0. (3.191)

Set

δ0 = ε(8n0)
−1. (3.192)

Using induction, we define a sequence of positive numbers {δi}∞i=0 such that for any
integer i ≥ 0,

δi+1 < δi (3.193)

and

if x, y ∈ K and ρ(x, y) ≤ δi+1, then ρ(Ax,Ay) ≤ δi . (3.194)

We now show that if y ∈ K satisfies ρ(y,Ay) < δn0 , then ρ(y, xA) < ε/2. Indeed,
let y ∈ K satisfy

ρ(y,Ay) < δn0 . (3.195)
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It follows from the definition of the sequence {δi}∞i=0 (see (3.193), (3.194)) and
(3.195) that for any integer j ∈ [1, n0],

ρ
(
Ajy,Aj+1y

)≤ δn0−j . (3.196)

Relations (3.196), (3.193) and (3.192) imply that

ρ
(
y,An0+1y

)≤
n0∑

j=0

ρ
(
Ajy,Aj+1y

)≤ (n0 + 1)δ0 < ε/4. (3.197)

(Here we use the notation A0x = x for all x ∈ K .) It follows from (3.197) and the
definition of n0 (see (3.191)) that

ρ(y, xA) ≤ ρ
(
y,An0+1y

)+ ρ
(
An0+1y, xA

)
< ε/4 + ε/8 < ε/2.

Thus we have indeed shown that if y ∈ K satisfies ρ(y,Ay) < δn0 , then ρ(y, xA) <

ε/2. This completes the proof of Theorem 3.22. �

3.12 A Class of Mappings of Contractive Type

Let (X,ρ) be a complete metric space. In this section, which is based on [158],
we present a sufficient condition for the existence and approximation of the unique
fixed point of a contractive mapping which maps a nonempty, closed subset of X

into X.

Theorem 3.23 Let K be a nonempty and closed subset of a complete metric space
(X,ρ). Assume that T : K → X satisfies

ρ(T x,T y) ≤ φ
(
ρ(x, y)

)
for each x, y ∈ K, (3.198)

where φ : [0,∞) → [0,∞) is upper semicontinuous and satisfies φ(t) < t for all
t > 0.

Assume further that K0 ⊂ K is a nonempty and bounded set with the following
property:

(P1) For each natural number n, there exists xn ∈ K0 such that T nxn is defined.

Then the following assertions hold.

(A) There exists a unique x̄ ∈ K such that T x̄ = x̄.
(B) Let M,ε > 0. Then there exist δ > 0 and a natural number k such that for each

integer n ≥ k and each sequence {xi}ni=0 ⊂ K satisfying

ρ(x0, x̄) ≤ M
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and

ρ(xi+1, T xi) ≤ δ, i = 0, . . . , n − 1,

the inequality ρ(xi, x̄) ≤ ε holds for i = k, . . . , n.

Proof (A) The uniqueness of x̄ is obvious. To establish its existence, we may and
shall assume that φ(0) = 0.

For each natural number n, let xn be as guaranteed by (P1). Fix θ ∈ K . Since K0
is bounded, there is c0 > 0 such that

ρ(θ, z) ≤ c0 for all z ∈ K0. (3.199)

Let ε > 0 be given. We will show that there exists a natural number k such that the
following property holds:

(P2) If n and i are integers such that k ≤ i < n, then

ρ
(
T ixn, T

i+1xn

)≤ ε.

Assume the contrary. Then for each natural number k, there exist natural numbers
nk and ik such that

k ≤ ik < nk and ρ
(
T ikxnk

, T ik+1xnk

)
> ε. (3.200)

Since the function t − φ(t) is positive for all t > 0 and lower semicontinuous, there
is γ > 0 such that

t − φ(t) ≥ γ for all t ∈ [ε/2,2c0 + ρ(θ,T θ) + ε
]
. (3.201)

Choose a natural number k such that

k > γ −1(2c0 + ρ(θ,T θ)
)
. (3.202)

Then (3.200) holds. By (3.200) and (3.198),

ρ
(
T ixnk

, T i+1xnk

)
> ε, i = 0, . . . , ik. (3.203)

(Here we use the convention that T 0z = z for all z ∈ K .) By (3.198),

ρ(xnk
, T xnk

) ≥ ρ
(
T ixnk

, T i+1xnk

)

for each integer i satisfying 0 ≤ i < ik. (3.204)

By (P1), (3.199) and (3.198),

ρ(xnk
, T xnk

) ≤ ρ(xnk
, θ) + ρ(θ,T θ) + ρ(T θ,T xnk

)

≤ c0 + ρ(θ,T θ) + c0. (3.205)
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Together with (3.203) and (3.204) this implies that

ε < ρ
(
T ixnk

, T i+1xnk

)≤ 2c0 + ρ(θ,T θ) for all i = 0, . . . , ik. (3.206)

It follows from (3.198), (3.206) and (3.201) that for all i = 0, . . . , ik − 1,

ρ
(
T i+2xnk

, T i+1xnk

)≤ φ
(
ρ
(
T i+1xnk

, T ixnk

))≤ ρ
(
T i+1xnk

, T ixnk

)− γ.

When combined with (3.205) and (3.200), this implies that

−ρ(θ,T θ) − 2c0 ≤ −ρ(xnk
, T xnk

) ≤ ρ
(
T ik+1xnk

, T ik xnk

)− ρ(xnk
, T xnk

)

=
ik−1∑

i=0

[
ρ
(
T i+2xnk

, T i+1xnk

)− ρ
(
T i+1xnk

, T ixnk

)]

≤ −γ ik ≤ −kγ

and

kγ ≤ 2c0 + ρ(θ,T θ).

This contradicts (3.202). The contradiction we have reached proves the existence of
a natural number k such that property (P2) holds.

Now let δ > 0 be given. We will show that there exists a natural number k such
that the following property holds:

(P3) If n, i and j are integers such that k ≤ i, j < n, then

ρ
(
T ixn, T

jxn

)≤ δ.

Assume to the contrary that there is no natural number k for which (P3) holds.
Then for each natural number k, there exist natural numbers nk , ik and jk such

that

k ≤ ik < jk < nk (3.207)

and

ρ
(
T ikxnk

, T jkxnk

)
> δ.

We may assume without loss of generality that for each natural number k, the fol-
lowing property holds:

If an integer j satisfies ik ≤ j < jk , then

ρ
(
T ikxnk

, T j xnk

)≤ δ. (3.208)

We have already shown that there exists a natural number k0 such that (P2) holds
with k = k0 and ε = δ.

Assume now that k is a natural number. It follows from (3.207) and (3.208) that
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δ < ρ
(
T ikxnk

, T jkxnk

)≤ ρ
(
T jkxnk

, T jk−1xnk

)+ ρ
(
T jk−1xnk

, T ik xnk

)

≤ ρ
(
T jkxnk

, T jk−1xnk

)+ δ. (3.209)

By property (P2),

lim
k→∞ρ

(
T jkxnk

, T jk−1xnk

)= 0.

When combined with (3.209), this implies that

lim
k→∞ρ

(
T ikxnk

, T jkxnk

)= δ. (3.210)

By (3.207), for each integer k ≥ 1,

δ < ρ
(
T ikxnk

, T jkxnk

)

≤ ρ
(
T ikxnk

, T ik+1xnk

)+ ρ
(
T ik+1xnk

, T jk+1xnk

)+ ρ
(
T jk+1xnk

, T jkxnk

)

≤ ρ
(
T ikxnk

, T ik+1xnk

)+ ρ
(
T jk+1xnk

, T jkxnk

)+ φ
(
ρ
(
T ikxnk

, T jkxnk

))
.

(3.211)

Since by (P2),

lim
k→∞ρ

(
T ikxnk

, T ik+1xnk

)= lim
k→∞ρ

(
T jkxnk

, T jk+1xnk

)= 0,

(3.210) and (3.211) imply that δ ≤ φ(δ), a contradiction.
The contradiction we have reached proves that there exists a natural number k

such that (P3) holds.
Let ε > 0 be given. We will show that there exists a natural number k such that

the following property holds:

(P4) If the integers n1, n2 > k, then ρ(T kxn1, T
kxn2) ≤ ε.

Assume the contrary. Then for each integer k ≥ 1, there are integers n
(k)
1 , n

(k)
2 > k

such that

ρ
(
T kx

n
(k)
1

, T kx
n

(k)
2

)
> ε. (3.212)

By (P1), (3.198) and (3.199), the sequence
{
ρ
(
T kx

n
(k)
1

, T kx
n

(k)
2

)}∞
k=1

is bounded. Set

δ = lim sup
k→∞

ρ
(
T kx

n
(k)
1

, T kx
n

(k)
2

)
. (3.213)

By definition, there exists a strictly increasing sequence of natural numbers {ki}∞i=1
such that

δ = lim
i→∞ρ

(
T ki x

n
(ki )

1
, T ki x

n
(ki )

2

)
. (3.214)
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By (3.212) and (3.213),

δ ≥ ε. (3.215)

By (3.198), for each natural number i,

ρ
(
T ki x

n
(ki )

1
, T ki x

n
(ki )

2

) ≤ ρ
(
T ki+1x

n
(ki )

1
, T ki x

n
(ki )

1

)

+ ρ
(
T ki+1x

n
(ki )

1
, T ki+1x

n
(ki )

2

)+ ρ
(
T ki+1x

n
(ki )

2
, T ki x

n
(ki )

2

)

≤ ρ
(
T ki+1x

n
(ki )

1
, T ki x

n
(ki )

1

)+ ρ
(
T ki+1x

n
(ki )

2
, T ki x

n
(ki )

2

)

+ φ
(
ρ
(
T ki x

n
(ki )

1
, T ki x

n
(ki )

2

))
. (3.216)

By property (P2),

lim
i→∞ρ

(
T ki+1x

n
(ki )

j

, T ki x
n

(ki )

j

)= 0, j = 1,2. (3.217)

Now it follows from (3.216), (3.217), (3.204) and (3.215) that ε ≤ δ ≤ φ(δ), a con-
tradiction. This contradiction implies that there is indeed a natural number k such
that (P4) holds, as claimed.

Let ε > 0 be given. By (P4), there exists a natural number k1 such that

ρ
(
T k1xn1, T

k1xn2

)≤ ε/4 for all integers n1, n2 ≥ k1. (3.218)

By (P3), there exists a natural number k2 such that

ρ
(
T ixn, T

jxn

)≤ ε/4 for all natural numbers n, i, j satisfying k2 ≤ i, j < n.

(3.219)

Assume that the natural numbers n1, n2, i and j satisfy

n1, n2 > k1 + k2, i, j ≥ k1 + k2, i < n1, j < n2. (3.220)

We claim that ρ(T ixn1, T
j xn2) ≤ ε. By (3.198), (3.218) and (3.220),

ρ
(
T k1+k2xn1, T

k1+k2xn2

)≤ ρ
(
T k1xn1, T

k1xn2

)≤ ε/4. (3.221)

In view of (3.219) and (3.220),

ρ
(
T k1+k2xn1, T

ixn1

)≤ ε/4 and ρ
(
T k1+k2xn2, T

j xn2

)≤ ε/4. (3.222)

Inequalities (3.222) and (3.221) imply that

ρ
(
T ixn1, T

j xn2

) ≤ ρ
(
T ixn1, T

k1+k2xn1

)+ ρ
(
T k1+k2xn1, T

k1+k2xn2

)

+ ρ
(
T k1+k2xn2, T

j xn2

)
< ε.

Thus we have shown that the following property holds:
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(P5) For each ε > 0, there exists a natural number k(ε) such that

ρ
(
T ixn1 , T

j xn2

)≤ ε for all natural numbers n1, n2, i and j

such that

n1, n2 > k(ε), i ∈ [k(ε), n1
)

and j ∈ [k(ε), n2
)
.

Consider now the sequences {T n−2xn}∞n=3 and {T n−1xn}∞n=3. Property (P5) im-
plies that both of them are Cauchy sequences and that

lim
n→∞ρ

(
T n−2xn,T

n−1xn

)= 0.

Hence there exists x̄ ∈ K such that

lim
n→∞ρ

(
x̄, T n−2xn

)= lim
t→∞ρ

(
x̄, T n−1xn

)= 0.

Since the mapping T is continuous, it follows that T x̄ = x̄. Thus part (A) of our
theorem is proved.

We now turn to the proof of part (B). Clearly,

inf
{
t − φ(t) : t ∈ [M/2,M]}> 0.

Choose a positive number δ0 such that

δ0 < min
{
M/2, inf

{
t − φ(t) : t ∈ [M/2,M]}/4

}
. (3.223)

For each x ∈ X and r > 0, set

B(x, r) = {
y ∈ X : ρ(x, y) ≤ r

}
.

Assume that

y ∈ K ∩ B(x̄,M), z ∈ X and ρ(z,T y) ≤ δ0. (3.224)

By (3.224) and (3.198),

ρ(x̄, z) ≤ ρ(x̄, T y) + ρ(T y, z) ≤ ρ(T x̄, T y) + δ0 ≤ φ
(
ρ(x̄, y)

)+ δ0. (3.225)

There are two cases:

ρ(y, x̄) ≤ M/2; (3.226)

ρ(y, x̄) > M/2. (3.227)

Assume that (3.226) holds. By (3.225), (3.226), (3.198) and (3.223),

ρ(x̄, z) ≤ ρ(x̄, y) + δ0 ≤ M/2 + δ0 < M.
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Assume that (3.227) holds. Then by (3.223), (3.225), (3.224) and (3.227),

ρ(x̄, z) ≤ δ0 + φ
(
ρ(x̄, y)

)
<
[
ρ(x̄, y) − φ

(
ρ(x̄, y)

)]
4−1 + φ

(
ρ(x̄, y)

)

< ρ(x̄, y) ≤ M.

Thus ρ(x̄, z) ≤ M in both cases.
We have shown that

ρ(x̄, z) ≤ M for each z ∈ X such that

there exists y ∈ K ∩ B(x̄,M) satisfying ρ(z,T y) ≤ δ0. (3.228)

Since M is an arbitrary positive number, we may conclude that there is δ1 > 0 so
that

ρ(x̄, z) ≤ ε for each z ∈ X such that

there exists y ∈ K ∩ B(x̄, ε) satisfying ρ(z,T y) ≤ δ1. (3.229)

Choose a positive number δ such that

δ < min
{
δ0, δ1,4−1 inf

{
t − φ(t) : t ∈ [ε,M + ε + 1]}} (3.230)

and a natural number k such that

k > 2(M + 1)δ−1 + 2. (3.231)

Assume that n is a natural number such that n ≥ k and that {xi}ni=0 ⊂ K satisfies

ρ(x0, x̄) ≤ M, ρ(xi+1, T xi) ≤ δ, i = 0, . . . , n − 1. (3.232)

We claim that

ρ(xi, x̄) ≤ ε, i = k, . . . , n. (3.233)

By (3.228), (3.230) and (3.232),

{xi}ni=0 ⊂ B(x̄,M). (3.234)

Assume that (3.233) does not hold. Then there is an integer j such that

j ∈ {k, . . . , n} and ρ(xj , x̄) > ε. (3.235)

By (3.229), (3.230) and (3.232),

ρ(xi, x̄) > ε, i = 0, . . . , j. (3.236)

Let i ∈ {0, . . . , j − 1}. By (3.232), (3.198), (3.234), (3.236) and (3.230),

ρ(xi+1, x̄) ≤ ρ(xi+1, T xi) + ρ(T xi, T x̄) ≤ δ + φ
(
ρ(xi, x̄)

)

< φ
(
ρ(xi, x̄)

)+ 4−1(ρ(xi, x̄) − φ
(
ρ(xi, x̄)

))
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< φ
(
ρ(xi, x̄)

)+ 2−1(ρ(xi, x̄) − φ
(
ρ(xi, x̄)

))− δ

≤ ρ(xi, x̄) − δ.

When combined with (3.232) and (3.235), this implies that

−M ≤ −ρ(x0, x̄) ≤ ρ(xj , x̄) − ρ(x0, x̄)

=
j−1∑

i=0

[
ρ(xi+1, x̄) − ρ(xi, x̄)

]≤ −jδ ≤ −kδ.

Thus

kδ ≤ M

which contradicts (3.231).
Hence (3.233) is true, as claimed, and part (B) of our theorem is also proved. �

3.13 A Fixed Point Theorem for Matkowski Contractions

Let (X,ρ) be a complete metric space. In this section, which is based on [159],
we present a sufficient condition for the existence and approximation of the unique
fixed point of a Matkowski contraction [99] which maps a nonempty and closed
subset of X into X.

Theorem 3.24 Let K be a nonempty and closed subset of a complete metric space
(X,ρ). Assume that T : K → X satisfies

ρ(T x,T y) ≤ φ
(
ρ(x, y)

)
for each x, y ∈ K, (3.237)

where φ : [0,∞) → [0,∞) is increasing and satisfies limn→∞ φn(t) = 0 for all
t > 0. Assume that K0 ⊂ K is a nonempty and bounded set with the following prop-
erty:

(P1) For each natural number n, there exists xn ∈ K0 such that T nxn is defined.

Then the following assertions hold.

(A) There exists a unique x̄ ∈ K such that T x̄ = x̄.
(B) Let M,ε > 0. Then there exists a natural number k such that for each sequence

{xi}ni=0 ⊂ K with n ≥ k satisfying

ρ(x0, x̄) ≤ M and T xi = xi+1, i = 0, . . . , n − 1,

the inequality ρ(xi, x̄) ≤ ε holds for all i = k, . . . , n.
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Proof For each x ∈ X and r > 0, set

B(x, r) = {
y ∈ X : ρ(x, y) ≤ r

}
. (3.238)

(A) Since φn(t) → 0 as n → ∞ for all t > 0, and since φ is increasing, we have

φ(t) < t for all t > 0. (3.239)

This implies the uniqueness of x̄. Clearly, φ(0) = 0.
For each natural number n, let xn be as guaranteed by property (P1). Fix θ ∈ K .

Since K0 is bounded, there is c0 > 0 such that

ρ(θ, z) ≤ c0 for all z ∈ K0. (3.240)

Let ε > 0 be given. We will show that there exists a natural number k such that
the following property holds:

(P2) If the integers i and n satisfy k ≤ i < n, then

ρ
(
T ixn, T

i+1xn

)≤ ε.

By (3.236) and (3.240), for each z ∈ K0,

ρ(z,T z) ≤ ρ(z, θ) + ρ(θ,T θ) + ρ(T θ,T z)

≤ 2ρ(z, θ) + ρ(θ,T θ) ≤ 2c0 + ρ(θ,T θ). (3.241)

Clearly, there is a natural number k such that

φk
(
2c0 + ρ(θ,T θ)

)
< ε. (3.242)

Assume now that the integers i and n satisfy k ≤ i < n.
By (3.236), (3.239), (3.241), the choice of xn, and (3.242),

ρ
(
T ixn, T

i+1xn

) ≤ ρ
(
T kxn,T

k+1xn

)≤ φk
(
ρ(xn,T xn)

)

≤ φk
(
2c0 + ρ(θ,T θ)

)
< ε.

Thus property (P2) holds for this k.
Let δ > 0 be given. We claim that there exists a natural number k such that the

following property holds:

(P3) If the integers i, j and n satisfy k ≤ i < j < n, then

ρ
(
T ixn, T

jxn

)≤ δ.

Indeed, by (3.239),

φ(δ) < δ. (3.243)

By (P2) and (3.243), there is a natural number k such that (P2) holds with ε =
δ − φ(δ).
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Assume now that the integers i and n satisfy k ≤ i < n. In view of the choice of
k and property (P2) with ε = δ − φ(δ), we have

ρ
(
T ixn, T

i+1xn

)≤ δ − φ(δ). (3.244)

Now let

x ∈ K ∩ B
(
T ixn, δ

)
. (3.245)

It follows from (3.236), (3.244) and (3.245) that

ρ
(
T x,T ixn

) ≤ ρ
(
T x,T i+1xn

)+ ρ
(
T i+1xn,T

ixn

)≤ φ
(
ρ
(
x,T ixn

))+ δ − φ(δ)

≤ δ.

Thus

T
(
K ∩ B

(
T ixn, δ

))⊂ B
(
T ixn, δ

)
,

and if an integer j satisfies i < j < n, then ρ(T ixn, T
jxn) ≤ δ. Hence property (P3)

does hold, as claimed.
Let ε > 0 be given. We will show that there exists a natural number k such that

the following property holds:

(P4) If the integers n1, n2 and i satisfy k ≤ i ≤ min{n1, n2}, then

ρ
(
T ixn1 , T

ixn2

)≤ ε.

Indeed, there exists a natural number k such that

φi(2c0) < ε for all integers i ≥ k. (3.246)

Assume now that the natural numbers n1, n2 and i satisfy

k ≤ i ≤ min{n1, n2}. (3.247)

By (3.236), (3.240) and (3.246),

ρ
(
T ixn1, T

ixn2

)≤ φi
(
ρ(xn1, xn2)

)≤ φi(2c0) < ε.

Thus property (P4) indeed holds.
Let ε > 0 be given. By (P4), there exists a natural number k1 such that

ρ
(
T ixn1, T

ixn2

)≤ ε/4 for all integers n1, n2 ≥ k1

and all integers i satisfying k1 ≤ i ≤ min{n1, n2}. (3.248)

By property (P3), there exists a natural number k2 such that

ρ
(
T ixn, T

jxn

)≤ ε/4 for all natural numbers n, i, j satisfying k2 ≤ i, j < n.

(3.249)
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Assume that the natural numbers n1, n2, i and j satisfy

n1, n2 > k1 + k2, i, j ≥ k1 + k2, i < n1, j < n2. (3.250)

We claim that

ρ
(
T ixn1 , T

j xn2

)≤ ε.

By (3.238), (3.243), (3.248) and (3.250),

ρ
(
T k1+k2xn1, T

k1+k2xn2

)≤ ρ
(
T k1xn1, T

k1xn2

)≤ ε/4. (3.251)

In view of (3.249) and (3.250),

ρ
(
T k1+k2xn1, T

ixn1

)≤ ε/4 and ρ
(
T k1+k2xn2, T

j xn2

)≤ ε/4.

When combined with (3.251), this implies that

ρ
(
T ixn1, T

j xn2

) ≤ ρ
(
T ixn1, T

k1+k2xn1

)+ ρ
(
T k1+k2xn1, T

k1+k2xn2

)

+ ρ
(
T k1+k2xn2, T

j xn2

)

≤ ε/4 + ε/4 + ε/4 < ε.

Thus we have shown that the following property holds:

(P5) For each ε > 0, there exists a natural number k(ε) such that

ρ
(
T ixn1, T

j xn2

)≤ ε

for all natural numbers n1, n2 > k(ε), i ∈ [k(ε), n1) and j ∈ [k(ε), n2).

Consider now the sequences {T n−2xn}∞n=3 and {T n−1xn}∞n=3. Property (P5) im-
plies that these sequences are Cauchy sequences and that

lim
n→∞ρ

(
T n−2xn,T

n−1xn

)= 0.

Hence there exists x̄ ∈ K such that

lim
n→∞ρ

(
x̄, T n−2xn

)= lim
n→∞ρ

(
x̄, T n−1xn

)= 0.

Since the mapping T is continuous, T x̄ = x̄ and part (A) is proved.
(B) Since T is a Matkowski contraction, there is a natural number k such that

φk(M) < ε.
Assume that a point x0 ∈ B(x̄,M), an integer n ≥ k, and that T ix0 is defined for

all i = 0, . . . , n. Then T ix0 ∈ K , i = 0, . . . , n − 1, and by (3.236),

ρ
(
T kx0, x̄

)≤ φk
(
ρ(x0, x̄)

)≤ φk(M) < ε.

By (3.236) and (3.239), we have for i = k, . . . , n,

ρ
(
T ix0, x̄

)≤ ρ
(
T kx0, x̄

)≤ ε.

Thus part (B) of our theorem is also proved. �
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3.14 Jachymski-Schröder-Stein Contractions

Suppose that (X,d) is a complete metric space, N0 is a natural number, and φ :
[0,∞) → [0,∞) is a function which is upper semicontinuous from the right and
satisfies φ(t) < t for all t > 0. We call a mapping T : X → X for which

min
{
d
(
T ix,T iy

) : i ∈ {1, . . . ,N0}
}≤ φ

(
d(x, y)

)
for all x, y ∈ X (3.252)

a Jachymski-Schröder-Stein contraction (with respect to φ).
Condition (3.252) was introduced in [78]. Such mappings with φ(t) = γ t for

some γ ∈ (0,1) have recently been of considerable interest [10, 78, 79, 100, 101,
174]. In this section, which is based on [161], we study general Jachymski-Schröder-
Stein contractions and prove two fixed point theorems for them (Theorems 3.25 and
3.26 below). In our first result we establish convergence of iterates to a fixed point,
and in the second this conclusion is strengthened to obtain uniform convergence
on bounded subsets of X. This last type of convergence is useful in the study of
inexact orbits [35]. Our theorems contain the (by now classical) results in [23] as
well as Theorem 2 in [78]. In contrast with that theorem, in Theorem 3.25 we only
assume that φ is upper semicontinuous from the right and we do not assume that
lim inft→∞(t − φ(t)) > 0. Moreover, our arguments are completely different from
those presented in [78], where the Cantor Intersection Theorem was used. We re-
mark in passing that Cantor’s theorem was also used in this context in [65] (cf. also
[68]).

Theorem 3.25 Let (X,d) be a complete metric space and let T : X → X be
a Jachymski-Schröder-Stein contraction. Assume there is x0 ∈ X such that T is
uniformly continuous on the orbit {T ix0 : i = 1,2, . . . }. Then there exists x̄ =
limi→∞ T ix0 in (X,d). Moreover, if T is continuous at x̄, then x̄ is the unique
fixed point of T .

Proof Set

T 0x = x, x ∈ X. (3.253)

We are going to define a sequence of nonnegative integers {ki}∞i=0 by induction. Set
k0 = 0. Assume that i ≥ 0 is an integer, and that the integer ki ≥ 0 has already been
defined. Clearly, there exists an integer ki+1 such that

1 ≤ ki+1 − ki ≤ N0 (3.254)

and

d
(
T ki+1x0, T

ki+1+1x0
)= min

{
d
(
T j+ki x0, T

j+ki+1x0
) : j = 1, . . . ,N0

}
. (3.255)

By (3.252), (3.254) and (3.255), the sequence {d(T kj x0, T
kj +1x0)}∞j=0 is decreas-

ing. Set

r = lim
j→∞d

(
T kj x0, T

kj +1x0
)
. (3.256)
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Assume that r > 0. Then by (3.252), (3.254) and (3.255), for each integer j ≥ 0,

d
(
T kj+1x0, T

kj+1+1x0
)≤ φ

(
d
(
T kj x0, T

kj +1x0
))

.

When combined with (3.256), the monotonicity of the sequence

{
d
(
T kj x0, T

kj +1x0
)}∞

j=0,

and the upper semicontinuity from the right of φ, this inequality implies that

r ≤ lim sup
j→∞

φ
(
d
(
T kj x0, T

kj +1x0
))≤ φ(r),

a contradiction. Thus r = 0 and

lim
j→∞d

(
T kj x0, T

kj +1x0
)= 0. (3.257)

We claim that, in fact,

lim
i→∞d

(
T ix0, T

i+1x0
)= 0.

Indeed, let ε > 0 be given. Since T is uniformly continuous on the set

Ω := {
T ix0 : i = 1,2, . . .

}
, (3.258)

there is

ε0 ∈ (0, ε) (3.259)

such that

if x, y ∈ Ω, i ∈ {1, . . . ,N0}, d(x, y) ≤ ε0, then d
(
T ix,T iy

)≤ ε. (3.260)

By (3.257), there is a natural number j0 such that

d
(
T kj x0, T

kj +1x0
)≤ ε0 for all integers j ≥ j0. (3.261)

Let p be an integer such that

p ≥ kj0 + N0.

Then by (3.254) there is an integer j ≥ j0 such that

kj < p ≤ kj + N0. (3.262)

By (3.261) and the inequality j ≥ j0,

d
(
T kj x0, T

kj +1x0
)≤ ε0.
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Together with (3.262) and (3.261), this implies that

d
(
T px0, T

p+1x0
)≤ ε.

Thus this inequality holds for any integer p ≥ kj0 + N0 and we conclude that

lim
p→∞d

(
T px0, T

p+1x0
)= 0, (3.263)

as claimed.
Now we show that {T ix0}∞i=1 is a Cauchy sequence. Assume the contrary. Then

there exists ε > 0 such that for each natural number p, there exist integers mp >

np ≥ p such that

d
(
T mpx0, T

npx0
)≥ ε. (3.264)

We may assume without loss of generality that for each natural number p,

d
(
T ix0, T

npx0
)
< ε for all integers i satisfying np < i < mp. (3.265)

By (3.264) and (3.265), for any integer p ≥ 1,

ε ≤ d
(
T mpx0, T

npx0
)≤ d

(
T mpx0, T

mp−1x0
)+ d

(
T mp−1x0, T

npx0
)

≤ d
(
T mpx0, T

mp−1x0
)+ ε.

When combined with (3.263), this implies that

lim
p→∞d

(
T mpx0, T

npx0
)= ε. (3.266)

Let δ > 0 be given. By (3.263), there is an integer p0 ≥ 1 such that

d
(
T i+1x0, T

ix0
)≤ δ(4N0)

−1 for all integers i ≥ p0. (3.267)

Let p ≥ p0 be an integer. By (3.263), there is j ∈ {1, . . . ,N0} such that

d
(
T mp+j x0, T

np+j x0
)≤ φ

(
d
(
T mpx0, T

npx0
))

. (3.268)

By the inequalities mp > np ≥ p, (3.267) and (3.268),

d
(
T mpx0, T

npx0
) ≤

j−1∑

i=0

d
(
T mp+ix0, T

mp+i+1x0
)+ d

(
T mp+j x0, T

np+j x0
)

+
j−1∑

i=0

d
(
T np+ix0, T

np+i+1x0
)

≤ 2jδ(4N0)
−1 + φ

(
d
(
T mpx0, T

npx0
))

< δ + φ
(
d
(
T mpx0, T

npx0
))

. (3.269)
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By (3.266), (3.269), (3.264), and the upper semicontinuity from the right of φ,

ε = lim
p→∞d

(
T mpx0, T

npx0
)≤ δ + lim sup

p→∞
φ
(
d
(
T mpx0, T

npx0
))≤ δ + φ(ε).

Since δ is an arbitrary positive number, we conclude that ε ≤ φ(ε). The contradic-
tion we have reached proves that {T ix0}∞i=1 is indeed a Cauchy sequence. Set

x̄ = lim
i→∞T ix0.

Clearly, if T is continuous, then T x̄ = x̄ and x̄ is the unique fixed point of T . The-
orem 3.25 is proved. �

For each x ∈ X and r > 0, set

B(x, r) = {
z ∈ X : ρ(x, z) ≤ r

}
.

Theorem 3.26 Let (X,d) be a complete metric space and let T : X → X be a
Jachymski-Schröder-Stein contraction with respect to the function φ : [0,∞) →
[0,∞). Assume that φ is upper semicontinuous, T is uniformly continuous on the
set {T ix : i = 1,2, . . . } for each x ∈ X, and that T is continuous on X. Then there
exists a unique fixed point x̄ of T such that T nx → x̄ as n → ∞, uniformly on
bounded subsets of X.

Proof By Theorem 3.25, T has a unique fixed point x̄ and

T nx → x̄ as n → ∞ for all x ∈ X. (3.270)

Let r > 0 be given. We claim that T nx → x̄ as n → ∞, uniformly on B(x̄, r).
Indeed, let

ε ∈ (0, r). (3.271)

Since T is continuous, there is

ε0 ∈ (0, ε) (3.272)

such that

if x ∈ X,d(x, x̄) ≤ ε0, i ∈ {1, . . . ,N0}, then d
(
T ix, x̄

)≤ ε. (3.273)

Since φ is upper semicontinuous, there is

δ ∈ (0, ε0) (3.274)

such that

if t ∈ [ε0, r], then t − φ(t) ≥ δ. (3.275)
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Choose a natural number N1 such that

N1δ > 2r. (3.276)

Assume that

x ∈ X, d(x̄, x) ≤ r. (3.277)

We will show that

d
(
x̄, T ix

)≤ ε for all integers i ≥ N0 + N0N1. (3.278)

To this end, set k0 = 0. Define by induction an increasing sequence of integers
{ki}∞i=1 such that

ki+1 − ki ∈ [1,N0], d
(
T ki+1x, x̄

)= min
{
d
(
T j+ki x, x̄

) : j ∈ {1, . . . ,N0}
}
.

(3.279)

By (3.252) and (3.279), the sequence {d(T ki x, x̄)}∞i=0 is decreasing. We claim that
d(T kN1 x, x̄) ≤ ε0.

Assume the contrary. Then by (3.277) and (3.252),

r ≥ d
(
T kj x, x̄

)
> ε0, j = 0, . . . ,N1. (3.280)

By (3.279), (3.252), (3.280) and (3.275), we have for j = 0, . . . ,N1,

d
(
T kj x, x̄

)− d
(
T kj +1x, x̄

)≥ d
(
T kj x, x̄

)− φ
(
d
(
T kj x, x̄

))≥ δ. (3.281)

Together with (3.277), this implies that

r ≥ d
(
T k0x, x̄

)− d
(
T kN1+1x, x̄

)≥ δ(N1 + 1),

which contradicts (3.276). The contradiction we have reached and the monotonicity
of the sequence {d(T kj x, x̄)}∞j=0 show that there is p ∈ {0,1, . . . ,N1} such that

d
(
T kj x, x̄

)≤ ε0 for all integers j ≥ p. (3.282)

Assume that i ≥ N0 + N0N1 is an integer. By (3.279), there is an integer j ≥ 0
such that

kj ≤ i < kj+1. (3.283)

By (3.279), (3.283) and the choice of p,

(j + 1)N0 > i,

j + 1 > i/N0 ≥ N1 + 1,

and

j > N1 ≥ p. (3.284)



3.15 Two Results on Jachymski-Schröder-Stein Contractions 175

By (3.284) and (3.282), d(T kj x, x̄) ≤ ε0. Together with (3.283), (3.279), (3.272)
and (3.273), this inequality implies that

d
(
x̄, T ix

)≤ ε,

as claimed. Theorem 3.26 is proved. �

3.15 Two Results on Jachymski-Schröder-Stein Contractions

Suppose that (X,d) is a complete metric space, N0 is a natural number, and φ :
[0,∞) → [0,∞) is a function. In this section we continue to study Jachymski-
Schröder-Stein contractions (with respect to φ) T : X → X for which

min
{
d
(
T ix,T iy

) : i ∈ {1, . . . ,N0}
}≤ φ

(
d(x, y)

)
for all x, y ∈ X. (3.285)

In the previous section we studied general Jachymski-Schröder-Stein contrac-
tions, where φ is upper semicontinuous from the right and satisfies φ(t) < 1 for all
positive t . In this section, which is based on [162], we study the case where φ is
increasing and satisfies

lim
n→∞φ(t)n = 0 (3.286)

for all t > 0. Here φn = φn−1 ◦ φ for all integers n ≥ 1. This condition on φ origi-
nates in Matkowski’s fixed point theorem [99].

More precisely, we establish two fixed point theorems (Theorems 3.27 and 3.28
below). In our first result we prove convergence of iterates to a fixed point, and in the
second this conclusion is strengthened to obtain uniform convergence on bounded
subsets of X.

Theorem 3.27 Let (X,d) be a complete metric space and T : X → X be
a Jachymski-Schröder-Stein contraction such that φ is increasing and satisfies
(3.286). Let x0 ∈ X. Assume there is x0 ∈ X such that T is uniformly continuous on
the orbit {T ix0 : i = 1,2, . . . }. Then there exists x̄ = limi→∞ T ix0. Moreover, if T

is continuous at x̄, then x̄ is the unique fixed point of T .

Proof Since φn(t) → 0 s n → ∞ for t > 0,

φ(ε) < ε for any ε > 0. (3.287)

Set T 0x = x, x ∈ X. Using induction, we now define a sequence of nonnegative
integers {ki}∞i=0. Set k0 = 0. Assume that i ≥ 0 is an integer and that the integer
ki ≥ 0 has already been defined. Clearly, by (3.286) there exists an integer ki+1
such that

1 ≤ ki+1 − ki ≤ N0 (3.288)
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and

d
(
T ki+1x0, T

ki+1+1x0
)= min

{
d
(
T j+ki x0, T

j+ki+1x0
) : i = 1, . . . ,N0

}
. (3.289)

By (3.285), (3.287), (3.288) and (3.289), the sequence {d(T kj x0, T
kj +1x0)}∞j=0 is

decreasing and for any integer i ≥ 0,

d
(
T ki+1x0, T

ki+1+1x0
)≤ φ

(
d
(
T ki x0, T

ki+1x0
))

. (3.290)

Since φ is indecreasing, it follows from (3.290) and (3.285) that for any integer
j ≥ 1,

d
(
T kj x0, T

kj +1x0
)≤ φj

(
d(x0, T x0)

)→ 0 as j → ∞.

Thus

lim
j→∞d

(
T kj x0, T

kj +1x0
)= 0. (3.291)

We claim that

lim
i→∞d

(
T ix0, T

i+1x0
)= 0.

Let ε > 0 be given. Since T is uniformly continuous on the set

Ω := {
T ix0 : i = 1,2, . . .

}
, (3.292)

there is

ε0 ∈ (0, ε) (3.293)

such that

if x, y ∈ Ω, i ∈ {1, . . . ,N0}, d(x, y) ≤ ε0, then d
(
T ix,T iy

)≤ ε. (3.294)

By (3.291), there is a natural number j0 such that

d
(
T kj x0, T

kj +1x0
)≤ ε0 for all integers j ≥ j0. (3.295)

Consider an integer

p ≥ kj0 + N0. (3.296)

Then by (3.288) and (3.296), there is an integer j ≥ j0 such that

kj < p ≤ kj + N0. (3.297)

By (3.295) and the inequality j ≥ j0, we have

d
(
T k+j x0, T

kj +1x0
)≤ ε0.

Together with (3.294) and (3.297) this implies

d
(
T px0, T

p+1x0
)≤ ε.
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Since this inequality holds for any integer p ≥ kj0 + N0, we conclude that

lim
p→∞d

(
T px0, T

p+1x0
)= 0, (3.298)

as claimed.
Next we show that {T ix0}∞i=1 is a Cauchy sequence. To this end, let ε > 0 be

given. By (3.287),

φ(ε) < ε. (3.299)

By (3.299), there exists ε0 > 0 such that

ε0 <
(
ε − φ(ε)

)
4−1. (3.300)

By (3.298), there exists a natural number n0 such that

if the integers i, j ≥ n0, |i − j | ≤ 2N0 + 2, then d
(
T ix0, T

j x0
)≤ ε0. (3.301)

We show that for each pair of integers i, j ≥ n0,

d
(
T ix0, T

j x0
)≤ ε.

Assume the contrary. Then there exist integers p,q ≥ n0 such that

d
(
T px0, T

qx0
)
> ε. (3.302)

We may assume without loss of generality that

p < q.

We also may assume without loss of generality that

if an integer i satisfies p ≤ i < q, then d
(
T ix0, T

px0
)≤ ε. (3.303)

By (3.302), (3.301) and (3.300),

q − p > 2N0 + 2

and

q − N0 > p + N0 + 2. (3.304)

By (3.303) and (3.304),

d
(
T q−N0x0, T

px0
)≤ ε. (3.305)

There is s ∈ {1, . . . ,N0} such that

d
(
T q−N0+sx0, T

p+sx0
)= min

{
d
(
T q−N0+j x0, T

p+j x0
) : j ∈ {1, . . . ,N0}

}
.

(3.306)
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By (3.285), (3.305) and (3.306),

d
(
T q−N0+sx0, T

p+sx0
)≤ φ

(
d
(
T q−N0x0, T

px0
))≤ φ(ε). (3.307)

Hence,

d
(
T qx0, T

px0
) ≤ d

(
T px0, T

p+sx0
)

+ d
(
T p+sx0, T

q−N0+sx0
)+ d

(
T q−N0+sx0, T

qx0
)

≤ d
(
T px0, T

p+sx0
)+ φ(ε) + d

(
T q−N0+sx0, T

qx0
)
. (3.308)

By (3.301) and (3.304) and the choice of s,

d
(
T px0, T

p+sx0
)
, d
(
T q−N0+s , T qx0

)≤ ε0. (3.309)

By (3.299), (3.300), (3.308) and (3.309),

d
(
T qx0, T

px0
)≤ 2ε0 + φ(ε) ≤ 2−1ε + 2−1φ(ε) < ε.

However, the inequality above contradicts (3.302). The contradiction we have
reached proves that

d
(
T ix0, T

j x0
)≤ ε for all integers i, j ≥ n0.

Since ε is an arbitrary positive number, we conclude that {T ix0}∞i=1 is indeed a
Cauchy sequence and there exists x̄ = limi→∞ T ix0.

Clearly, if T is continuous, then x̄ is a fixed point of T and it is the unique fixed
point of T .

This completes the proof of Theorem 3.27. �

Theorem 3.28 Let (X,d) be a complete metric space and T : X → X be
a Jachymski-Schröder-Stein contraction such that φ is increasing and satisfies
(3.286). Assume that T is continuous on X and uniformly continuous on the or-
bit {T ix : i = 1,2, . . . } for each x ∈ X. Then there exists a unique fixed point x̄ of
T and T nx → x̄ as n → ∞, uniformly on all bounded subsets of X.

Proof By Theorem 3.27, there exists a unique fixed point of T . Let r > 0 be given.
We claim that T nx → x̄ as n → ∞, uniformly on the ball B(x̄, r) = {y ∈ X :
ρ(x̄, y) ≤ r}.

Indeed, let ε ∈ (0, r). Clearly, there exists a number ε0 ∈ (0, ε) such that

if x ∈ X,d(x, x̄) ≤ ε0, i ∈ {1, . . . ,N0}, then d
(
T ix, x̄

)≤ ε. (3.310)

By (3.286), there is a natural number n0 such that

φn0(r) < ε0. (3.311)



3.15 Two Results on Jachymski-Schröder-Stein Contractions 179

Let x ∈ X satisfy d(x, x̄) ≤ r . Set k0 = 0. We now define by induction an in-
creasing sequence of integers {ki}∞i=0 such that for all integers i ≥ 0,

ki+1 − ki ∈ [1,N0],
d
(
T ki+1x, x̄

)= min
{
d
(
T ki+j x, x̄

) : j ∈ {1, . . . ,N0}
}
. (3.312)

By (3.312), (3.285) and (3.287), the sequence {d(T ki x, x̄)}∞i=1 is decreasing.
For each integer i ≥ 0,

d
(
T ki+1x, x̄

)≤ φ
(
d
(
T ki x, x̄

))
. (3.313)

By (3.313) and the choice of x, for each integer m ≥ 1,

d
(
T kmx, x̄

)≤ φm
(
d(x, x̄)

)≤ φm(r).

By (3.287) and (3.311), for each integer m ≥ n0,

d
(
T kmx, x̄

)≤ φm(r) ≤ φn0(r) < ε0. (3.314)

Assume now that i ≥ N0(n0 + 2) is an integer. By (3.312), there is an integer j ≥ 0
such that

kj ≤ i < kj+1. (3.315)

By (3.312) and (3.315),

(j + 1)N0 > i, j + 1 > iN−1
0 ≥ n0 + 2, j > n0.

Together with (3.314) this implies that

d
(
T kj x, x̄

)
< ε0.

When combined with (3.315), (3.312) and (3.310), this implies that

d
(
T ix, x̄

)
> ε.

Theorem 3.28 is proved. �



Chapter 4
Dynamical Systems with Convex Lyapunov
Functions

4.1 Minimization of Convex Functionals

In this section, which is based on [128], we consider a metric space of sequences
of continuous mappings acting on a bounded, closed and convex subset of a Ba-
nach space, which share a common convex Lyapunov function. We show that for a
generic sequence taken from that space the values of the Lyapunov function along
all trajectories tend to its infimum.

Assume that (X,‖ · ‖) is a Banach space with norm ‖ · ‖, K ⊂ X is a bounded,
closed and convex subset of X, and f : K → R1 is a convex and uniformly contin-
uous function. Set

inf(f ) = inf
{
f (x) : x ∈ K

}
.

Observe that this infimum is finite because K is bounded and f is uniformly con-
tinuous. We consider the topological subspace K ⊂ X with the relative topology.
Denote by A the set of all continuous self-mappings A : K → K such that

f (Ax) ≤ f (x) for all x ∈ K. (4.1)

Later in this chapter (see Sect. 4.4), we construct many such mappings.
For the set A we define a metric ρ : A×A → R1 by

ρ(A,B) = sup
{‖Ax − Bx‖ : x ∈ K

}
, A,B ∈A. (4.2)

Clearly, the metric space A is complete. Denote by M the set of all sequences
{At }∞t=1 ⊂ A. Members {At }∞t=1, {Bt }∞t=1 and {Ct }∞t=1 of M will occasionally be
denoted by boldface A, B and C, respectively. For the set M we consider the uni-
formity determined by the following base:

E(N,ε) = {({At }∞t=1, {Bt }∞t=1

) ∈ M×M : ρ(At ,Bt ) ≤ ε, t = 1, . . . ,N
}
,
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where N is a natural number and ε > 0. Clearly the uniform space M is metrizable
(by a metric ρw : M×M → R1) and complete (see [80]).

From the point of view of the theory of dynamical systems, each element of
M describes a nonstationary dynamical system with a Lyapunov function f . Also,
some optimization procedures in Banach spaces can be represented by elements of
M (see the first example in Sect. 4.4 and [97, 98]).

In this section we intend to show that for a generic sequence taken from the space
M the values of the Lyapunov function along all trajectories tend to its infimum.

We now present the two main results of this section. They were obtained in [128].
Theorem 4.1 deals with sequences of operators (the space M), while Theorem 4.2
is concerned with the stationary case (the space A).

Theorem 4.1 There exists a set F ⊂ M, which is a countable intersection of open
and everywhere dense sets in M, such that for each B = {Bt }∞t=1 ∈ F the following
assertion holds:

For each ε > 0, there exist a neighborhood U of B in M and a natural number
N such that for each C = {Ct }∞t=1 ∈ U and each x ∈ K ,

f (CN · · ·C1x) ≤ inf(f ) + ε.

Theorem 4.2 There exists a set G ⊂ A, which is a countable intersection of open
and everywhere dense sets in A, such that for each B ∈ G the following assertion
holds:

For each ε > 0, there exist a neighborhood U of B in A and a natural number
N such that for each C ∈ U and each x ∈ K ,

f
(
CNx

)≤ inf(f ) + ε.

The following proposition is the key auxiliary result which will be used in the
proofs of these two theorems.

Proposition 4.3 There exists a mapping A∗ ∈ A with the following property:
Given ε > 0, there is δ(ε) > 0 such that for each x ∈ K satisfying f (x) ≥

inf(f ) + ε, the inequality

f (A∗x) ≤ f (x) − δ(ε)

is true.

Remark 4.4 If there is xmin ∈ K for which f (xmin) = inf(f ), then we can set
A∗(x) = xmin for all x ∈ K .

Section 4.2 contains the proof of Proposition 4.3. Proofs of Theorems 4.1 and 4.2
are given in Sect. 4.3. Section 4.4 is devoted to two examples.
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4.2 Proof of Proposition 4.3

By Remark 4.4, we may assume that

{
x ∈ K : f (x) = inf(f )

}= ∅. (4.3)

For each x ∈ K , define an integer p(x) ≥ 1 by

p(x) = min
{
i : i is a natural number and f (x) ≥ inf(f ) + 2−i

}
. (4.4)

By (4.3), the function p(x) is well defined for all x ∈ K . Now we will define an
open covering {Vx : x ∈ K} of K . For each x ∈ K , there is an open neighborhood
Vx of x in K such that:

∣∣f (y) − f (x)
∣∣≤ 8−p(x)−1 for all y ∈ Vx (4.5)

and

if p(x) > 1 then f (y) < inf(f ) + 2−p(x)+1 for all y ∈ Vx. (4.6)

For each x ∈ K , choose ax ∈ K such that

f (ax) ≤ inf(f ) + 2−p(x)−9. (4.7)

Clearly,
⋃{Vx : x ∈ K} = K and {Vx : x ∈ K} is an open covering of K .

Lemma 4.5 Let x ∈ K . Then for all y ∈ Vx ,

f (y) ≥ inf(f ) + 2−p(x)−1 (4.8)

and
∣∣p(y) − p(x)

∣∣≤ 1. (4.9)

Proof Let y ∈ Vx . Then (4.8) follows from (4.5) and (4.4). The definition of p(x)

(see (4.4)) and (4.8) imply that p(y) ≤ p(x) + 1. Now we will show that p(y) ≥
p(x) − 1. It is sufficient to consider the case p(x) > 1. Then by the definition of Vx

(see (4.6)) and (4.4), f (y) < inf(f ) + 2−p(x)+1 and p(y) ≥ p(x). This completes
the proof of the lemma. �

Since metric spaces are paracompact, there is a continuous locally finite parti-
tion of unity {φx}x∈K on K subordinated to {Vx}x∈K (namely, suppφx ⊂ Vx for all
x ∈ K and

∑
x∈K φx(y) = 1 for all y ∈ K).

For y ∈ K , define

A∗y =
∑

x∈K

φx(y)ax. (4.10)

Clearly, the mapping A∗ is well defined, A∗(K) ⊂ K and A∗ is continuous.
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Lemma 4.6 For each y ∈ K ,

f (A∗y) ≤ f (y) − 2−p(y)−1. (4.11)

Proof Let y ∈ K . There is an open neighborhood U of y in K and x1, . . . , xn ∈ K

such that

{x ∈ K : suppφx ∩ U �= ∅} = {xi}ni=1. (4.12)

We have

A∗y =
n∑

i=1

φxi
(y)axi

. (4.13)

We may assume that there is an integer m ∈ {1, . . . , n} such that

φxi
(y) > 0 if and only if 1 ≤ i ≤ m. (4.14)

By (4.12) and (4.14),
∑m

i=1 φxi
(y) = 1. When combined with (4.13) and (4.14), this

implies that

f (A∗y) ≤ max
{
f (axi

) : i = 1, . . . ,m
}
. (4.15)

Let i ∈ {1, . . . ,m}. It follows from (4.14) and Lemma 4.5 that

y ∈ suppφxi
⊂ Vxi

and
∣∣p(y) − p(xi)

∣∣≤ 1. (4.16)

By (4.7) and (4.16),

f (axi
) ≤ inf(f ) + 2−p(xi )−9 ≤ inf(f ) + 2−p(y)−8.

Thus, by (4.15),

f (A∗y) ≤ inf(f ) + 2−p(y)−8. (4.17)

On the other hand, by (4.4), f (y) ≥ inf(f ) + 2−p(y). Together with (4.17) this im-
plies (4.11). The lemma is proved. �

Completion of the proof of Proposition 4.3 Clearly, A∗ ∈ A. Let ε > 0 be given.
Choose an integer j ≥ 1 such that 2−j < ε.

Let x ∈ K satisfy f (x) ≥ inf(f )+ε. Then by (4.4), p(x) ≤ j and by Lemma 4.6,

f (A∗x) ≤ f (x) − 2−p(x)−1 ≤ f (x) − 2−j−1.

This completes the proof of the proposition (with δ(ε) = 2−j−1). �

Remark 4.7 As a matter of fact, if ε ∈ (0,1), then the proof of Proposition 4.3 shows
that it holds with δ(ε) = ε/4.
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4.3 Proofs of Theorems 4.1 and 4.2

Set

rK = sup
{‖x‖ : x ∈ K

}
and d0 = sup

{∣∣f (x)
∣∣ : x ∈ K

}
. (4.18)

Let A∗ ∈ A be one of the mappings the existence of which is guaranteed by Propo-
sition 4.3. For each {At }∞t=1 ∈ M and each γ ∈ (0,1), we define a sequence of
mappings A

γ
t : K → K , t = 1,2, . . . , by

A
γ
t x = (1 − γ )Atx + γA∗x, x ∈ K, t = 1,2, . . . . (4.19)

It is easy to see that for each {At }∞t=1 ∈ M and each γ ∈ (0,1),

{
A

γ
t

}∞
t=1 ∈M and ρ

(
A

γ
t ,At

)≤ 2γ rK, t = 1,2, . . . . (4.20)

We may assume that the function δ(ε) of Proposition 4.3 satisfies δ(ε) < ε for all
ε > 0.

Lemma 4.8 Assume that ε, γ ∈ (0,1), {At }∞t=1 ∈ M and let an integer N ≥ 4 sat-
isfy

2−1Nγ δ(ε) > 2d0 + 1. (4.21)

Then there exists a number Δ > 0 such that for each sequence {Bt }Nt=1 ⊂ A satisfy-
ing

ρ
(
Bt ,A

γ
t

)≤ Δ, t = 1, . . . ,N, (4.22)

it follows that, for each x ∈ K ,

f (BN · · ·B1x) ≤ inf(f ) + ε. (4.23)

Proof Since the function f is uniformly continuous, there is Δ ∈ (0,16−1δ(ε)) such
that

∣∣f (y1) − f (y2)
∣∣≤ 16−1γ δ(ε) (4.24)

for each y1, y2 ∈ K satisfying ‖y1 − y2‖ ≤ Δ.
Assume that {Bt }Nt=1 ⊂ A satisfies (4.22) and that x ∈ K . We now show that

(4.23) holds.
Assume the contrary. Then

f (x) > inf(f ) + ε and f (Bn · · ·B1x) > inf(f ) + ε, n = 1, . . . ,N. (4.25)

Set

x0 = x, xt+1 = Bt+1xt , t = 0,1, . . . ,N − 1. (4.26)



186 4 Dynamical Systems with Convex Lyapunov Functions

For each t ≥ 0 satisfying t ≤ N − 1, it follows from (4.22), (4.26) and the definition
of Δ (see (4.24)) that

∥∥Bt+1xt − A
γ

t+1xt

∥∥≤ Δ (4.27)

and
∣∣f (xt+1) − f

(
A

γ

t+1xt

)∣∣= ∣∣f (Bt+1xt ) − f
(
A

γ

t+1xt

)∣∣

≤ 16−1γ δ(ε). (4.28)

By (4.19), (4.25), (4.26), the definition of δ(ε) and the properties of the mapping
A∗, we have for each t = 0, . . . ,N − 1,

f
(
A

γ

t+1xt

) = f
(
(1 − γ )At+1xt + γA∗xt

)

≤ (1 − γ )f (At+1xt ) + γf (A∗xt ) ≤ (1 − γ )f (xt ) + γ
(
f (xt ) − δ(ε)

)

= f (xt ) − γ δ(ε).

Together with (4.28) this implies that for t = 0, . . . ,N − 1,

f (xt+1) ≤ 16−1γ δ(ε) + f (xt ) − γ δ(ε).

By induction we can show that for all t = 1, . . . ,N ,

f (xt ) ≤ f (x0) − 2−1γ δ(ε)t.

Together with (4.21) and (4.18) this implies that

f (BN · · ·B1x) = f (xN) ≤ f (x0) − 2−1Nγ δ(ε)

≤ d0 − 2−1Nγ δ(ε) ≤ −d0 − 1 ≤ inf(f ) − 1.

This obvious contradiction proves (4.23) and the lemma itself. �

By Lemma 4.8, for each A = {At }∞t=1 ∈ M, each γ ∈ (0,1) and each integer
q ≥ 1, there exist an integer N(A, γ, q) ≥ 4 and an open neighborhood U(A, γ, q)

of {Aγ
t }∞t=1 in M such that the following property holds:

(a) For each {Bt }∞t=1 ∈ U(A, γ, q) and each x ∈ K ,

f (BN(A,γ,q) · · ·B1x) ≤ inf(f ) + 4−q .

Proof of Theorem 4.1 It follows from (4.20) that the set
{{

A
γ
t

}∞
t=1 : {At }∞t=1 ∈M, γ ∈ (0,1)

}

is everywhere dense in M. Define

F =
∞⋂

q=1

⋃{
U(A, γ, q) : A ∈M, γ ∈ (0,1)

}
.

Clearly, F is a countable intersection of open and everywhere dense sets in M.
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Assume that {Bt }∞t=1 ∈ F and that ε > 0. Choose an integer q ≥ 1 such that

4−q < ε. (4.29)

There exist {At }∞t=1 ∈ M and γ ∈ (0,1) such that

{Bt }∞t=1 ∈ U
({At }∞t=1, γ, q

)
. (4.30)

It follows from (4.29) and property (a) that for each {Ct }∞t=1 ∈ U(A, γ, q) and each
x ∈ K ,

f (CN(A,γ,q) · · ·C1x) ≤ inf(f ) + 4−q < inf(f ) + ε.

This completes the proof of Theorem 4.1. �

Proof of Theorem 4.2 For each A ∈ A, define

Ât = A, t = 1,2, . . . . (4.31)

Clearly, {Ât }∞t=1 ∈M for A ∈ A, and for each A ∈A and each γ ∈ (0,1),

Â
γ
t x = (1 − γ )Ax + γA∗x, x ∈ K, t = 1,2, . . . (4.32)

(see (4.19)). By property (a) (which follows from Lemma 4.8), for each A ∈ A,
each γ ∈ (0,1) and each integer q ≥ 1, there exist an integer N(A,γ, q) ≥ 4 and an
open neighborhood U(A,γ, q) of the mapping (1 − γ )A + γA∗ in A such that the
following property holds:

(b) For each B ∈ U(A,γ, q) and each x ∈ K ,

f
(
BN(A,γ,q)x

)≤ inf(f ) + 4−q .

Clearly, the set
{
(1 − γ )A + γA∗ : A ∈A, γ ∈ (0,1)

}

is everywhere dense in A. Define

G =
∞⋂

q=1

⋃{
U(A,γ, q) : A ∈A, γ ∈ (0,1)

}
.

It is clear that G is a countable intersection of open and everywhere dense sets in A.
Assume that B ∈ G and ε > 0. Choose an integer q ≥ 1 such that (4.29) is valid.
There exist A ∈ A and γ ∈ (0,1) such that B ∈ U(A,γ, q). It now follows from
(4.29) and property (b) that for each C ∈ U(A,γ, q) and each x ∈ K ,

f
(
CN(A,γ,q)x

)≤ inf(f ) + 4−q < inf(f ) + ε.

Theorem 4.2 is established. �
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4.4 Examples

Let (X,‖ · ‖) be a Banach space. In this section we consider examples of contin-
uous mappings A : K → K satisfying f (Ax) ≤ f (x) for all x ∈ K , where K is a
bounded, closed and convex subset of X and f : K → R1 is a convex function.

Example 4.9 Let f : X → R1 be a convex uniformly continuous function satisfying

f (x) → ∞ as ‖x‖ → ∞.

Evidently, the function f is bounded from below. For each real number c, let Kc =
{x ∈ X : f (x) ≤ c}. Fix a real number c such that Kc �= ∅. Clearly, the set Kc is
bounded, closed and convex. We assume that the function f is strictly convex on
Kc , namely,

f
(
αx + (1 − α)y

)
< αf (x) + (1 − α)f (y)

for all x, y ∈ Kc, x �= y, and all α ∈ (0,1).
Let V : Kc → X be any continuous mapping. For each x ∈ Kc , there is a unique

solution of the following minimization problem:

f (z) → min, z ∈ {x + αV (x) : α ∈ [0,1]}.
This solution will be denoted by Ax. Since f (Ax) ≤ f (x) for all x ∈ Kc , we con-
clude that A(Kc) ⊂ Kc .

We will show that the mapping A : Kc → Kc is continuous. To this end, con-
sider a sequence {xn}∞n=1 ⊂ Kc such that limn→∞ xn = x∗. We intend to show
that limn→∞ Axn = Ax∗. For each integer n ≥ 1, there is αn ∈ [0,1] such that
Axn = xn + αnV xn. There is also α∗ ∈ [0,1] such that Ax∗ = x∗ + α∗V (x∗). We
may assume without loss of generality that the limit ᾱ = limn→∞ αn exists. By the
definition of A,

f (Ax∗) ≤ f
(
x∗ + ᾱV (x∗)

)
.

Since the function f is strictly convex, to complete the proof it is sufficient to show
that

f (Ax∗) = f
(
x∗ + α∗V (x∗)

)= f
(
x∗ + ᾱV (x∗)

)
. (4.33)

Assume the contrary. Then

lim
n→∞f

(
xn + α∗V (xn)

) = f
(
x∗ + α∗V (x∗)

)

< f
(
x∗ + ᾱV (x∗)

)= lim
n→∞f

(
xn + αnV (xn)

)
,

and for all large enough n,

f
(
xn + α∗V (xn)

)
< f

(
xn + αnV (xn)

)= f (Axn).
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This contradicts the definition of A. Hence (4.33) is true and the mapping A is
indeed continuous.

Example 4.10 Let K be a bounded, closed and convex subset of X and f : K → R1

be a convex continuous function which is bounded from below. For each x0, x1 ∈ K

satisfying f (x0) > f (x1), we will construct a continuous mapping A : K → K such
that f (Ax) ≤ f (x) for all x ∈ K and Ax = x1 for all x in a neighborhood of x0.

Indeed, let x0, x1 ∈ K with f (x0) > f (x1). There are numbers r0, ε0 such that

f (x) − ε0 > f (x1) for all x ∈ K satisfying ‖x − x0‖ ≤ r0. (4.34)

Now we define an open covering {Vx : x ∈ K} of K . Let x ∈ K . If ‖x − x0‖ < r0
we set

Vx = {
y ∈ K : ‖y − x0‖ < r0

}
and ax = x1.

If ‖x − x0‖ ≥ r0, then there is rx ∈ (0,4−1r0) and ax ∈ K such that

f (ax) ≤ f (y) for all y ∈ {z ∈ K : ‖z − x‖ ≤ rx
}
. (4.35)

In this case we set

Vx = {
y ∈ K : ‖y − x‖ < rx

}
.

Clearly,
⋃{Vx : x ∈ K} = K . There is a continuous locally finite partition of unity

{φx}x∈K on K subordinated to {Vx}x∈K (namely, suppφx ⊂ Vx for all x ∈ K). For
y ∈ K , define

Ay =
∑

x∈K

φx(y)ax.

Evidently, the mapping A is well defined, A : K → X and A is continuous. Since∑
x∈K φx(y) = 1 for all y ∈ K and K is convex, we see that A(K) ⊂ K .
We will now show that f (Ay) ≤ f (y) for all y ∈ K and that Ay = x1 if ‖y −

x0‖ ≤ 4−1r0.
Let y ∈ K . There are z1, . . . , zn ∈ K and a neighborhood U of y in K such that

{z ∈ K : U ∩ suppφz �= ∅} = {z1, . . . , zn}.
We have

Ay =
n∑

i=1

φzi
(y)azi

,

n∑

i=1

φzi
(y) = 1, f (Ay) ≤

n∑

i=1

φzi
(y)f (azi

). (4.36)

We may assume without loss of generality that there is p ∈ {1, . . . , n} such that

φzi
(y) > 0 if and only if 1 ≤ i ≤ p. (4.37)

Let 1 ≤ i ≤ p. Then

y ∈ suppφzi
⊂ Vzi

(4.38)
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and by the definition of Vzi
and azi

(see (4.34) and (4.35)), f (y) ≥ f (azi
). When

combined with (4.36) and (4.37), this implies that f (Ay) ≤ f (y).
Assume in addition that ‖y − x0‖ ≤ 4−1r0. Then it follows from the definition of

{Vz : z ∈ K} and (4.38) that ‖zi − x0‖ < r0 and azi
= x1 for each i = 1, . . . , p. By

(4.36) and (4.37), Ay = x1. Thus we have indeed constructed a continuous mapping
A : K → K such that f (Ay) ≤ f (y) for all y ∈ K , and Ay = x1 for all y ∈ K

satisfying ‖y − x0‖ ≤ 4−1r0.

4.5 Normal Mappings

Assume that (X,‖ · ‖) is a Banach space with norm ‖ · ‖, K ⊂ X is a nonempty,
bounded, closed and convex subset of X, and f : K → R1 is a convex and uniformly
continuous function. Set

inf(f ) = inf
{
f (x) : x ∈ K

}
.

Observe that this infimum is finite because K is bounded and f is uniformly con-
tinuous. We consider the topological subspace K ⊂ X with the relative topology.
Denote by A the set of all self-mappings A : K → K such that

f (Ax) ≤ f (x) for all x ∈ K (4.39)

and by Ac the set of all continuous mappings A ∈ A. In Sect. 4.4 we constructed
many mappings which belong to Ac.

We equip the set A with a metric ρ :A×A → R1 defined by

ρ(A,B) = sup
{‖Ax − Bx‖ : x ∈ K

}
, A,B ∈A. (4.40)

Clearly, the metric space A is complete and Ac is a closed subset of A. In the sequel
we will consider the metric space (Ac, ρ). Denote by M the set of all sequences
{At }∞t=1 ⊂ A and by Mc the set of all sequences {At }∞t=1 ⊂ Ac. Members {At }∞t=1,
{Bt }∞t=1 and {Ct }∞t=1 of M will occasionally be denoted by boldface A, B and C,
respectively. For the set M we will consider two uniformities and the topologies
induced by them. The first uniformity is determined by the following base:

Ew(N,ε) = {({At }∞t=1, {Bt }∞t=1

) ∈ M×M :
ρ(At ,Bt ) ≤ ε, t = 1, . . . ,N

}
, (4.41)

where N is a natural number and ε > 0. Clearly the uniform space M with this
uniformity is metrizable (by a metric ρw : M×M → R1) and complete (see [80]).
We equip the set M with the topology induced by this uniformity. This topology
will be called weak and denoted by τw . Clearly Mc is a closed subset of M with
the weak topology.
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The second uniformity is determined by the following base:

Es(ε) = {({At }∞t=1, {Bt }∞t=1

) ∈M×M : ρ(At ,Bt ) ≤ ε, t ≥ 1
}
, (4.42)

where ε > 0. Clearly this uniformity is metrizable (by a metric ρs : M × M →
R1) and complete (see [80]). Denote by τs the topology induced by this uniformity
in M. Since τs is clearly stronger than τw , it will be called strong. We consider the
topological subspace Mc ⊂ M with the relative weak and strong topologies.

In Sects. 4.1–4.3 we showed that for a generic sequence taken from the space
Mc, the sequence of values of the Lyapunov function f along any trajectory tends
to the infimum of f .

A mapping A ∈ A is called normal if given ε > 0, there is δ(ε) > 0 such that for
each x ∈ K satisfying f (x) ≥ inf(f ) + ε, the inequality

f (Ax) ≤ f (x) − δ(ε)

is true.
A sequence {At }∞t=1 ∈ M is called normal if given ε > 0, there is δ(ε) > 0 such

that for each x ∈ K satisfying f (x) ≥ inf(f )+ε and each integer t ≥ 1, the inequal-
ity

f (Atx) ≤ f (x) − δ(ε)

holds.
In this chapter we show that a generic element taken from the spaces A, Ac, M

and Mc is normal. This is important because it turns out that the sequence of values
of the Lyapunov function f along any (unrestricted) trajectory of such an element
tends to the infimum of f on K .

For α ∈ (0,1), A = {At }∞t=1, B = {Bt }∞t=1 ∈ M define αA + (1 − α)B = {αAt +
(1 − α)Bt }∞t=1 ∈ M.

We can easily prove the following fact.

Proposition 4.11 Let α ∈ (0,1), A,B ∈ M and let A be normal. Then αA + (1 −
α)B is also normal.

In this chapter we will prove the following results obtained in [63].

Theorem 4.12 Let A = {At }∞t=1 ∈ M be normal and let ε > 0. Then there exists a
neighborhood U of A in M with the strong topology and a natural number N such
that for each C = {Ct }∞t=1 ∈ U , each x ∈ K and each r : {1,2, . . .} → {1,2, . . .},

f (Cr(N) · · ·Cr(1)x) ≤ inf(f ) + ε.

Theorem 4.13 Let A = {At }∞t=1 ∈ M be normal and let ε > 0. Then there exists a
neighborhood U of A in M with the weak topology and a natural number N such
that for each C = {Ct }∞t=1 ∈ U and each x ∈ K ,

f (CN · · ·C1x) ≤ inf(f ) + ε.



192 4 Dynamical Systems with Convex Lyapunov Functions

Theorem 4.14 There exists a set F ⊂ M which is a countable intersection of open
and everywhere dense sets in M with the strong topology and a set Fc ⊂ F ∩Mc

which is a countable intersection of open and everywhere dense sets in Mc with the
strong topology such that each A ∈F is normal.

Theorem 4.15 There exists a set F ⊂ A which is a countable intersection of open
and everywhere dense sets in A and a set Fc ⊂ F ∩Ac, which is a countable inter-
section of open and everywhere dense sets in Ac such that each A ∈ F is normal.

4.6 Existence of a Normal A ∈Ac

If there is xmin ∈ K for which f (xmin) = inf(f ), then we can set A(x) = xmin for
all x ∈ K and this A is normal. Therefore in order to show the existence of a normal
A ∈ Ac we may assume that

{
x ∈ K : f (x) = inf(f )

}= ∅. (4.43)

The existence of a normal A ∈ Ac follows from Michael’s selection theorem.

Proposition 4.16 There exists a normal A∗ ∈Ac .

Proof We may assume that (4.43) is true. Define a set-valued map a : K → 2K as
follows: for each x ∈ K , denote by a(x) the closure (in the norm topology of X) of
the set

{
y ∈ K : f (y) < 2−1(f (x) + inf(f )

)}
. (4.44)

It is clear that for each x ∈ K , the set a(x) is nonempty, closed and convex. We will
show that a is lower semicontinuous.

Let x0 ∈ K , y0 ∈ a(x0) and let ε > 0 be given. In order to prove that a is lower
semicontinuous, we need to show that there exists a positive number δ such that for
each x ∈ K satisfying ‖x − x0‖ < δ,

a(x) ∩ {
y ∈ K : ‖y − y0‖ < ε

} �= ∅.

By the definition of a(x0), there exists a point y1 ∈ K such that

f (y1) < 2−1(f (x0) + inf(f )
)

and ‖y1 − y0‖ < ε/2.

Since the function f is continuous, there is a number δ > 0 such that for each x ∈ K

satisfying ‖x − x0‖ < δ,

f (y1) < 2−1(f (x) + inf(f )
)
.

Hence y1 ∈ a(x) by definition. Therefore a is indeed lower semicontinuous. By
Michael’s selection theorem, there exists a continuous mapping A∗ : K → K such
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that A∗x ∈ a(x) for all x ∈ K . It follows from the definition of a (see (4.44)) that
for each x ∈ K ,

f (A∗x) ≤ 2−1(f (x) + inf(f )
)
.

This implies that A∗ is normal. This completes the proof of Proposition 4.16. �

4.7 Auxiliary Results

By Proposition 4.16, there exists a normal mapping A∗ ∈ Ac. For each {At }∞t=1 ∈M
and each γ ∈ (0,1), we define a sequence of mappings Aγ = {Aγ

t }∞t=1 ∈M by

A
γ
t x = (1 − γ )Atx + γA∗x, x ∈ K, t = 1,2, . . . . (4.45)

Clearly, for each A = {At }∞t=1 ∈ Mc and each γ ∈ (0,1), Aγ ∈ Mc. By (4.45) and
Proposition 4.11, Aγ is normal for each A ∈ M and each γ ∈ (0,1). It is obvious
that for each A ∈M,

Aγ → A as γ → 0+ in the strong topology. (4.46)

Lemma 4.17 Let A = {At }∞t=1 ∈ M be normal and let ε > 0 be given. Then there
exist a neighborhood U of A in M with the strong topology and a number δ > 0
such that for each B = {Bt }∞t=1 ∈ U , each x ∈ K satisfying

f (x) ≥ inf(f ) + ε (4.47)

and each integer t ≥ 1,

f (Btx) ≤ f (x) − δ.

Proof Since A is normal, there is δ0 > 0 such that for each integer t ≥ 1 and each
x ∈ K satisfying (4.47),

f (Atx) ≤ f (x) − δ0. (4.48)

Since f is uniformly continuous, there is δ ∈ (0,4−1δ0) such that
∣∣f (y) − f (z)

∣∣≤ 4−1δ0 (4.49)

for each y, z ∈ K satisfying ‖y − z‖ ≤ 2δ. Set

U = {
B ∈M : (A,B) ∈ Es(δ)

}
. (4.50)

Assume that B = {Bt }∞t=1 ∈ U , let t ≥ 1 be an integer and let x ∈ K satisfy
(4.47). By (4.47) and the definition of δ0, (4.48) is true. The definitions of δ and U

(see (4.49) and (4.50)) imply that

‖Atx − Btx‖ ≤ δ and
∣∣f (Atx) − f (Btx)

∣∣≤ δ0/4.
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When combined with (4.48), this implies that

f (Btx) ≤ f (x) + 4−1δ0 − δ0 ≤ f (x) − δ.

This completes the proof of the lemma. �

4.8 Proof of Theorem 4.12

Assume that A = {At }∞t=1 ∈ M is normal and let ε > 0 be given. By Lemma 4.17,
there exist a neighborhood U of A in M with the strong topology and a number
δ > 0 such that the following property holds:

(Pi) For each {Bt }∞t=1 ∈ U , each integer t ≥ 1 and each x ∈ K satisfying (4.47), the
inequality

f (Btx) ≤ f (x) − δ (4.51)

holds.

Choose a natural number N ≥ 4 such that

δN > 2(ε + 1) + 2 sup
{∣∣f (z)

∣∣ : z ∈ K
}
. (4.52)

Assume that

C = {Ct }∞t=1 ∈ U, x ∈ K and r : {1,2, . . .} → {1,2, . . .}. (4.53)

We claim that

f (Cr(N) · · ·Cr(1)x) ≤ inf(f ) + ε. (4.54)

Assume the contrary. Then

f (x) > inf(f ) + ε, f (Cr(n) · · ·Cr(1)x) > inf(f ) + ε, n = 1, . . . ,N. (4.55)

It follows from (4.55), (4.53) and property (Pi) that

f (Cr(1)x) ≤ f (x) − δ,

f (Cr(n+1)Cr(n) · · ·Cr(1)x) ≤ f (Cr(n) · · ·Cr(1)x) − δ, n = 1, . . . ,N − 1.

This implies that

f (Cr(n) · · ·Cr(1)x) ≤ f (x) − Nδ ≤ −2 − sup
{∣∣f (z)

∣∣ : z ∈ K
}
,

a contradiction. Therefore (4.54) is valid and Theorem 4.12 is proved.
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4.9 Proof of Theorem 4.13

Assume that A = {At }∞t=1 ∈M is normal and let ε > 0 be given. Since A is normal,
there is δ ∈ (0,1) such that for each integer t ≥ 1 and each x ∈ K satisfying

f (x) ≥ inf(f ) + ε, (4.56)

the following inequality is valid:

f (Atx) ≤ f (x) − δ. (4.57)

Choose a natural number N > 4 for which

N > 4δ−1 + 4δ−1 sup
{∣∣f (z)

∣∣ : z ∈ K
}
. (4.58)

Since f is uniformly continuous, there is Δ ∈ (0,4−1δ) such that

∣∣f (z) − f (y)
∣∣≤ 8−1δ (4.59)

for each y, z ∈ K satisfying ‖z − y‖ ≤ 4Δ. Set

U = {
B ∈ M : (A,B) ∈ Ew(N,Δ)

}
. (4.60)

Assume that

C = {Ct }∞t=1 ∈ U and x ∈ K. (4.61)

We claim that

f (CN · · ·C1x) ≤ inf(f ) + ε. (4.62)

Assume the contrary. Then

f (x) > inf(f ) + ε, f (Cn · · ·C1x) > inf(f ) + ε, n = 1, . . . ,N. (4.63)

Define C0 : K → K by C0x = x for all x ∈ K . Let t ∈ {0, . . . ,N − 1}. It follows
from (4.63) and the definition of δ (see (4.56) and (4.57)) that

f (At+1Ct · · ·C0x) ≤ f (Ct · · ·C0x) − δ. (4.64)

The definition of U (see (4.60)) and (4.61) imply that ‖At+1Ct · · ·C0x −Ct+1Ct · · ·
C0x‖ ≤ Δ. By this inequality and the definition of Δ (see (4.59)),

∣∣f (At+1Ct · · ·C0x) − f (Ct+1Ct · · ·C0x)
∣∣≤ 8−1δ.

When combined with (4.64), this implies that

f (Ct+1Ct · · ·C0x) ≤ f (Ct · · ·C0x) − 2−1δ.
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Since this inequality is true for all t ∈ {0, . . . ,N − 1}, we conclude that

f (CN · · ·C1x) ≤ f (x) − 2−1Nδ.

Together with (4.58) this implies that

− sup
{∣∣f (z)

∣∣ : z ∈ K
} ≤ sup

{∣∣f (z)
∣∣ : z ∈ K

}− 2−1δN

≤ −2 − sup
{∣∣f (z)

∣∣ : z ∈ K
}
,

a contradiction. Therefore (4.62) does hold and Theorem 4.13 is proved.

4.10 Proof of Theorem 4.14

Let A ∈ M, γ ∈ (0,1) and let i ≥ 1 be an integer. Consider the sequence Aγ ∈ M
defined by (4.45). By Proposition 4.11, Aγ is normal. By Lemma 4.17, there ex-
ists an open neighborhood U(A, γ, i) of Aγ in M with the strong topology and a
number δ(A, γ, i) > 0 such that the following property holds:

(Pii) For each B = {Bt }∞t=1 ∈ U(A, γ, i), each integer t ≥ 1 and each x ∈ K satis-
fying f (x) ≥ inf(f ) + 2−i ,

f (Btx) ≤ f (x) − δ(A, γ, i).

Define

F =
∞⋂

i=1

⋃{
U(A, γ, i) : A ∈M, γ ∈ (0,1)

}
(4.65)

and

Fc =
[ ∞⋂

i=1

⋃{
U(A, γ, i) : A ∈Mc, γ ∈ (0,1)

}
]

∩Mc.

Clearly, Fc ⊂ F , F is a countable intersection of open and everywhere dense sets
in M with the strong topology, and Fc is a countable intersection of open and
everywhere dense sets in Mc with the strong topology.

Assume that B = {Bt }∞t=1 ∈F . We will show that B is normal.
Let ε > 0 be given. Choose an integer i ≥ 1 such that

2−i < ε/8. (4.66)

By (4.65), there exist A ∈M and γ ∈ (0,1) such that

B ∈ U(A, γ, i). (4.67)
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Let t ≥ 1 be an integer, x ∈ K , and f (x) ≥ inf(f ) + ε. Then by (4.66), (4.67) and
property (Pii),

f (Btx) ≤ f (x) − δ(A, γ, i).

Thus B is indeed normal and Theorem 4.14 is proved.
The proof of Theorem 4.15 is analogous to that of Theorem 4.14.

4.11 Normality and Porosity

In this section, which is based on [133], we continue to consider a complete metric
space of sequences of mappings acting on a bounded, closed and convex subset K

of a Banach space which share a common convex Lyapunov function f . In previous
sections, we introduced the concept of normality and showed that a generic element
taken from this space is normal. The sequence of values of the Lyapunov uniformly
continuous function f along any (unrestricted) trajectory of such an element tends
to the infimum of f on K . In the present section, we first present a convergence
result for perturbations of such trajectories. We then show that if f is Lipschitzian,
then the complement of the set of normal sequences is σ -porous.

Assume that (X,‖ · ‖) is a Banach space with norm ‖ · ‖, K ⊂ X is a nonempty,
bounded, closed and convex subset of X, and f : K → R1 is a convex and uniformly
continuous function. Observe that the function f is bounded because K is bounded
and f is uniformly continuous. Set

inf(f ) = inf
{
f (x) : x ∈ K

}
and sup(f ) = sup

{
f (x) : x ∈ K

}
.

We consider the topological subspace K ⊂ X with the relative topology. Denote
by A the set of all self-mappings A : K → K such that

f (Ax) ≤ f (x) for all x ∈ K

and by Ac the set of all continuous mappings A ∈A.
For the set A we define a metric ρ : A×A → R1 by

ρ(A,B) = sup
{‖Ax − Bx‖ : x ∈ K

}
, A,B ∈A.

It is clear that the metric space A is complete and Ac is a closed subset of A. We will
study the metric space (Ac, ρ). Denote by M the set of all sequences {At }∞t=1 ⊂ A
and by Mc the set of all sequences {At }∞t=1 ⊂ Ac. For the set M we define a metric
ρM : M×M → R1 by

ρM
({At }∞t=1, {Bt }∞t=1

)= sup
{
ρ(At ,Bt ) : t = 1,2, . . .

}
, {At }∞t=1, {Bt }∞t=1 ∈ M.

Clearly, the metric space M is complete and Mc is a closed subset of M. We will
also study the metric space (Mc, ρM).

We recall the following definition of normality.
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A mapping A ∈ A is called normal if given ε > 0, there is δ(ε) > 0 such that for
each x ∈ K satisfying f (x) ≥ inf(f ) + ε, the inequality

f (Ax) ≤ f (x) − δ(ε)

is true.
A sequence {At }∞t=1 ∈ M is called normal if given ε > 0, there is δ(ε) > 0 such

that for each x ∈ K satisfying f (x) ≥ inf(f )+ε and each integer t ≥ 1, the inequal-
ity

f (Atx) ≤ f (x) − δ(ε)

holds.
We now present two theorems which were obtained in [133]. Their proofs are

given in the next two sections.

Theorem 4.18 Let {At }∞t=1 ∈ M be normal and let ε be positive. Then there exist
a natural number n0 and a number γ > 0 such that for each integer n ≥ n0, each
mapping r : {1, . . . , n} → {1,2, . . .} and each sequence {xi}ni=0 ⊂ K which satisfies

‖xi+1 − Ar(i+1)xi‖ ≤ γ, i = 0, . . . , n − 1,

the inequality f (xi) ≤ inf(f ) + ε holds for i = n0, . . . , n.

Theorem 4.19 Let F be the set of all normal sequences in the space M and let

F = {
A ∈A : {At }∞t=1 ∈ F where At = A, t = 1,2, . . .

}
.

Assume that the function f is Lipschitzian. Then the complement of the set F is a
σ -porous subset of M and the complement of the set F ∩Mc is a σ -porous subset
of Mc. Moreover, the complement of the set F is a σ -porous subset of A and the
complement of the set F ∩Ac is a σ -porous subset of Ac .

4.12 Proof of Theorem 4.18

We may assume that ε < 1. Since {At }∞t=1 is normal, there exists a function δ :
(0,∞) → (0,∞) such that for each s > 0, each x ∈ K satisfying f (x) ≥ inf(f )+ s

and each integer t ≥ 1,

f (Atx) ≤ f (x) − δ(s). (4.68)

We may assume that δ(s) < s, s ∈ (0,∞). Choose a natural number

n0 > 4
(
1 + sup(f ) − inf(f )

)
δ
(
8−1ε

)−1
. (4.69)
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Since f is uniformly continuous, there exists a number γ > 0 such that for each
y1, y2 ∈ K satisfying ‖y1 − y2‖ ≤ γ , the following inequality holds:

∣∣f (y1) − f (y2)
∣∣≤ δ

(
8−1ε

)
8−1(n0 + 1)−1. (4.70)

We claim that the following assertion is true:
(A) Suppose that

{xi}n0
i=0 ⊂ K,r : {1, . . . , n0} → {1,2, . . .},

‖xi+1 − Ar(i+1)xi‖ ≤ γ, i = 0, . . . , n0 − 1. (4.71)

Then there exists an integer n1 ∈ {1, . . . , n0} such that

f (xn1) ≤ inf(f ) + ε/8. (4.72)

Assume the contrary. Then

f (xi) > inf(f ) + ε/8, i = 1, . . . , n0. (4.73)

By (4.73) and the definition of δ : (0,∞) → (0,∞) (see (4.68)), for each i =
1, . . . , n0 − 1, we have

f (Ar(i+1)xi) ≤ f (xi) − δ
(
8−1ε

)
. (4.74)

It follows from (4.71) and the definition of γ (see (4.70)) that for i = 1, . . . , n0 − 1,

∣∣f (xi+1) − f (Ar(i+1)xi)
∣∣≤ δ

(
8−1ε

)
8−1(n0 + 1)−1.

When combined with (4.74), this inequality implies that for i = 1, . . . , n0 − 1,

f (xi+1) − f (xi) ≤ f (xi+1) − f (Ar(i+1)xi) + f (Ar(i+1)xi) − f (xi)

≤ δ
(
8−1ε

)
8−1(n0 + 1)−1 − δ

(
8−1ε

)≤ (−1/2)δ
(
8−1ε

)
.

This, in turn, implies that

inf(f ) − sup(f ) ≤ f (xn0) − f (x1) ≤ (n0 − 1)(−1/2)δ
(
8−1ε

)
,

a contradiction (see (4.69)). Thus there exists an integer n1 ∈ {1, . . . , n0} such that
(4.72) is true. Therefore assertion (A) is valid, as claimed.

Assume now that we are given an integer n ≥ n0, a mapping

r : {1, . . . , n} → {1,2, . . .} (4.75)

and a finite sequence

{xi}ni=0 ⊂ K such that ‖xi+1 − Ar(i+1)xi‖ ≤ γ, i = 0, . . . , n − 1. (4.76)
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It follows from assertion (A) that there exists a finite sequence of natural numbers
{jp}qp=1 such that

1 ≤ j1 ≤ n0, 1 ≤ jp+1 − jp ≤ n0 if 1 ≤ p ≤ q − 1, n − jq < n0,

f (xjp ) ≤ inf(f ) + ε/8, p = 1, . . . , q.
(4.77)

Let i ∈ {n0, . . . , n}. We will show that f (xi) ≤ inf(f ) + ε/2. There exists p ∈
{1, . . . , q} such that

0 ≤ i − jp ≤ n0.

If i = jp , then by (4.77), f (xi) = f (xjp ) ≤ inf(f )+ ε/8. Thus we may assume that
i > jp . For all integers jp ≤ s < i, it follows from (4.76) and the definition of γ (see
(4.70)) that

f (Ar(s+1)xs) ≤ f (xs),

∣
∣f (xs+1) − f (Ar(s+1)xs)

∣
∣≤ δ

(
8−1ε

)
8−1(n0 + 1)−1

and

f (xs+1) ≤ f (Ar(s+1)xs) + δ
(
8−1ε

)
8−1(n0 + 1)−1

≤ f (xs) + δ
(
8−1ε

)
8−1(n0 + 1)−1.

Thus

f (xs+1) − f (xs) ≤ δ
(
8−1ε

)
8−1(n0 + 1)−1, jp ≤ s < i.

This implies that

f (xi) ≤ f (xjp ) + δ
(
8−1ε

)
8−1(n0 + 1)−1(n0 + 1)

≤ inf(f ) + ε/8 + 8−1δ
(
8−1ε

)≤ inf(f ) + ε/2.

Therefore f (xi) ≤ inf(f ) + ε/2 for all integers i ∈ [n0, n] and Theorem 4.18 is
proved.

4.13 Proof of Theorem 4.19

Since f : K → R1 is assumed to be Lipschitzian, there exists a constant L(f ) > 0
such that

∣∣f (x) − f (y)
∣∣≤ L(f )‖x − y‖ for all x, y ∈ K. (4.78)

By Proposition 4.16, there exist a normal continuous mapping A∗ : K → K and a
function φ : (0,∞) → (0,∞) such that for each ε > 0 and each x ∈ K satisfying
f (x) ≥ inf(f ) + ε, the inequality f (A∗x) ≤ f (x) − φ(ε) holds.
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Let ε > 0 be given. We say that a sequence {At }∞t=1 ∈ M is (ε)-quasinormal if
there exists δ > 0 such that if x ∈ K satisfies f (x) ≥ inf(f ) + ε, then f (Atx) ≤
f (x) − δ for all integers t ≥ 1.

Recall that F is defined to be the set of all normal sequences in M. For each in-
teger n ≥ 1, denote by Fn the set of all (n−1)-quasinormal sequences in M. Clearly,

F =
∞⋂

n=1

Fn. (4.79)

Set

d(K) = sup
{‖z‖ : z ∈ K

}
. (4.80)

Let n ≥ 1 be an integer. Choose α ∈ (0,1) such that

2L(f )α < (1 − α)φ
(
n−1)8−1(d(K) + 1

)−1
. (4.81)

Assume that 0 < r ≤ 1 and {At }∞t=1 ∈ M. Set

γ = (1 − α)r8−1(d(K) + 1
)−1

(4.82)

and define for each integer t ≥ 1, the mapping Atγ : K → K by

Atγ x = (1 − γ )Atx + γA∗x, x ∈ K. (4.83)

It is clear that {Atγ }∞t=1 ∈ M and

ρM
({At }∞t=1, {Atγ }∞t=1

)≤ 2γ sup
{‖z‖ : z ∈ K

}≤ 2γ d(K). (4.84)

Note that {Atγ }∞t=1 ∈ Mc if {At }∞t=1 ∈ Mc and that Atγ = A1γ , t = 1,2, . . . , if
At = A1, t = 1,2, . . . .

Assume that

{Ct }∞t=1 ∈M and ρM
({Atγ }∞t=1, {Ct }∞t=1

)≤ αr. (4.85)

Then by (4.85), (4.84) and (4.82),

ρM
({At }∞t=1, {Ct }∞t=1

)≤ αr + 2γ d(K) ≤ αr + (1 − α)r/2

= r(1 + α)/2 < r. (4.86)

Assume now that x ∈ K satisfies

f (x) ≥ inf(f ) + n−1 (4.87)

and that t ≥ 1 is an integer. By (4.87), the properties of A∗ and φ, and (4.83),

f (A∗x) ≤ f (x) − φ
(
n−1),

f (Atγ x) ≤ (1 − γ )f (Atx) + γf (A∗x)

≤ (1 − γ )f (x) + γ
(
f (x) − φ

(
n−1))= f (x) − γφ

(
n−1).

(4.88)
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By (4.85), ‖Ctx − Atγ x‖ ≤ αr . Together with (4.78) this inequality yields
∣∣f (Ctx) − f (Atγ x)

∣∣≤ L(f )αr.

By the latter inequality, (4.88), (4.82) and (4.81),

f (Ctx) ≤ f (Atγ x) + L(f )αr

≤ L(f )αr + f (x) − γφ
(
n−1)

≤ f (x) − φ
(
n−1)(1 − α)r8−1(d(K) + 1

)−1 + L(f )αr

≤ f (x) − L(f )αr.

Thus for each {Ct }∞t=1 ∈ M satisfying (4.85), inequalities (4.86) hold and
{Ct }∞t=1 ∈ Fn. Summing up, we have shown that for each integer n ≥ 1, M \ Fn

is porous in M, Mc \Fn is porous in Mc, the complement of the set

{
A ∈A : {At }∞t=1 ∈Fn with At = A for all integers t ≥ 1

}

is porous in A and the complement of the set

{
A ∈ Ac : {At }∞t=1 ∈ Fn with At = A for all integers t ≥ 1

}

is porous in Ac.
Combining these facts with (4.79), we conclude that M \ F is σ -porous in M,

Mc \F is σ -porous in Mc, A \ F is σ -porous in A and Ac \ F is σ -porous in Ac .
This completes the proof of Theorem 4.19.

4.14 Convex Functions Possessing a Sharp Minimum

In this section, which is based on the paper [7], we are given a convex, Lipschitz
function f , defined on a bounded, closed and convex subset K of a Banach space
X, which possesses a sharp minimum. A minimization algorithm is a self-mapping
A : K → K such that f (Ax) ≤ f (x) for all x ∈ K . We show that for most of these
algorithms A, the sequences {Anx}∞n=1 tend to this sharp minimum (at an exponen-
tial rate) for all initial values x ∈ K .

Let K ⊂ X be a nonempty, bounded, closed and convex subset of a Banach
space X. For each A : K → X, set

Lip(A) = sup
{‖Ax − Ay‖/‖x − y‖ : x, y ∈ K such that x �= y

}
. (4.89)

Assume that f : K → R1 is a convex, Lipschitz function such that Lip(f ) > 0.
We have

∣∣f (x) − f (y)
∣∣≤ Lip(f )‖x − y‖ for all x, y ∈ K.
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Assume further that there exists a point x∗ ∈ K and a number c0 > 0 such that

inf(f ) := inf
{
f (x) : x ∈ K

}= f (x∗)

and

f (x) ≥ f (x∗) + c0‖x − x∗‖ for all x ∈ K. (4.90)

In other words, we assume that the function f possesses a sharp minimum (cf.
[26, 109]).

Denote by A the set of all self-mappings A : K → K such that Lip(A) < ∞ and

f (Ax) ≤ f (x) for all x ∈ K. (4.91)

We equip the set A with the uniformity determined by the base

E(ε) = {
(A,B) ∈A×A : ‖Ax − Bx‖ ≤ ε for all x ∈ K and Lip(A − B) ≤ ε

}
,

where ε > 0. Clearly, the uniform space A is metrizable and complete.

Theorem 4.20 There exists an open and everywhere dense subset B ⊂ A such that
for each B ∈ B, there exist an open neighborhood U of B in A and a number
λ0 ∈ (0,1) such that for each C ∈ U , each x ∈ K , and each natural number n,

∥∥Cnx − x∗
∥∥≤ c−1

0 λn
(
f (x) − f (x∗)

)
.

Proof Let γ ∈ (0,1) and A ∈ A be given. Set

Aγ x = (1 − γ )Ax + γ x∗, x ∈ K. (4.92)

Clearly, for all x ∈ K ,

f (Aγ x) ≤ (1 − γ )f (Ax) + γf (x∗) (4.93)

and

Aγ ∈ A. (4.94)

Next, we prove the following lemma.

Lemma 4.21 Let A ∈A, γ ∈ (0,1) and B ∈ A. Then for each x ∈ K ,

f (Bx) − f (x∗) ≤ [
(1 − γ ) + Lip(f )Lip(B − Aγ )c−1

0

](
f (x) − f (x∗)

)
.

Proof Let x ∈ K . By (4.93), the relations Aγ x∗ = Bx∗ = x∗ and (4.90),

f (Bx) − f (x∗) = f (Aγ x) − f (x∗) + f (Bx) − f (Aγ x)

≤ (1 − γ )
(
f (x) − f (x∗)

)+ Lip(f )‖Bx − Aγ x‖
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≤ (1 − γ )
(
f (x) − f (x∗)

)+ Lip(f )Lip(B − Aγ )‖x − x∗‖
≤ (1 − γ )

(
f (x) − f (x∗)

)

+ Lip(f )Lip(B − Aγ )c−1
0

(
f (x) − f (x∗)

)

≤ [
(1 − γ ) + Lip(f )Lip(B − Aγ )c−1

0

](
f (x) − f (x∗)

)
.

The lemma is proved. �

Completion of the proof of Theorem 4.20 Let A ∈ A and γ ∈ (0,1) be given.
Choose r(γ ) > 0 such that

λγ := (1 − γ ) + Lip(f )r(γ )c−1
0 < 1. (4.95)

Denote by U(A,γ ) the open neighborhood of Aγ in A such that

U(A,γ ) ⊂ {
B ∈A : (Aγ ,B) ∈ E

(
r(γ )

)}
. (4.96)

Set

B =
⋃{

U(A,γ ) : A ∈A, γ ∈ (0,1)
}
. (4.97)

Clearly, we have for each A ∈A,

Aγ → A as γ → 0+.

Therefore B is an everywhere dense, open subset of A. Let B ∈ A. There are A ∈A
and γ ∈ (0,1) such that

B ∈ U(A,γ ). (4.98)

Assume that

C ∈ U(A,γ ) and x ∈ K. (4.99)

By Lemma 4.21, (4.99), (4.96) and (4.95),

f (Cx) − f (x∗) ≤ [
(1 − γ ) + Lip(f )Lip(C − Aγ )c−1

0

](
f (x) − f (x∗)

)

≤ λγ

(
f (x) − f (x∗)

)
.

This implies that for each x ∈ K and each natural number n,

f
(
Cnx

)− f (x∗) ≤ λn
γ

(
f (x) − f (x∗)

)
.

When combined with (4.90), this last inequality implies, in its turn, that for each
x ∈ K and each integer n ≥ 1,

∥
∥Cnx − x∗

∥
∥≤ c−1

0

(
f
(
Cnx

)− f (x∗)
)≤ c−1

0 λn
γ

(
f (x) − f (x∗)

)
.

This completes the proof of Theorem 4.20. �



Chapter 5
Relatively Nonexpansive Operators with Respect
to Bregman Distances

5.1 Power Convergence of Operators in Banach Spaces

The following problem often occurs in functional analysis and optimization theory,
as well as in other fields of pure and applied mathematics: given a nonempty, closed
and convex subset K of a Banach space X and an operator T : K → K , do the
sequences iteratively generated in K by the rule xk+1 = T xk converge to a fixed
point of T no matter how the initial point x0 ∈ K is chosen? It is well known that
this indeed happens, in some sense, for “standard” classes of operators (e.g., cer-
tain nonexpansive operators and operators of contractive type which were studied
in Chaps. 2 and 3, and in [24, 68]). Note that in [27, 38, 122] it was shown that the
question asked above has an affirmative answer even if the operator T is not con-
tractive in any standard sense, but still satisfies some requirements which make the
orbits of T behave like the orbits of contractive operators. A careful analysis shows
that the operators discussed in these papers share the following property:

There exists a convex function f : X → R1 ∪ {∞} such that K is a subset of the
interior of

dom(f ) = {
x ∈ X : f (x) < ∞}

,

and for some zT ∈ K , we have

Df (zT , T x) ≤ Df (zT , x) (5.1)

for all x ∈ K , where Df : D×D0 → [0,∞) denotes the Bregman distance [37, 39]
with respect to f (here D = dom(f ) and D0 is the interior of D) defined by

Df (y, x) = f (y) − f (x) + f 0(x, x − y), (5.2)

where

f 0(x, v) = lim
t→0+ t−1(f (x + tv) − f (x)

)
. (5.3)

Operators satisfying (5.1) will be called nonexpansive with respect to f in the
sequel. In general, operators which are nonexpansive with respect to some totally

S. Reich, A.J. Zaslavski, Genericity in Nonlinear Analysis,
Developments in Mathematics 34, DOI 10.1007/978-1-4614-9533-8_5,
© Springer Science+Business Media New York 2014

205

http://dx.doi.org/10.1007/978-1-4614-9533-8_5


206 5 Relatively Nonexpansive Operators with Respect to Bregman Distances

convex function f are not nonexpansive in the usual sense of the term, that is, they
do not necessarily satisfy the condition

‖T x − Ty‖ ≤ ‖x − y‖, (5.4)

or even the condition Df (T x,T y) ≤ Df (x, y) for all x, y ∈ K . Examples of this
phenomenon can be found in [28]. Also, it may happen that the orbits of an operator
T which is nonexpansive with respect to some convex function f are not convergent
or do not converge to fixed points of T , although such an operator T must have fixed
points (zT is a fixed point of T because of (5.1)). Moreover, even if all the orbits
of T converge to fixed points of T , it may happen that the limits of these orbits are
not equal to the point zT in (5.1). For instance, take X = R1, f (x) = x2, K = [0,1]
and T x = x2. Then T is nonexpansive with respect to f and zT = 0 satisfies (5.1).
However, the orbit of T starting at x0 = 1 converges to 1 (a fixed point of T which
does not satisfy (5.1)).

The convergence of orbits of significant classes of operators satisfying (5.1) was
studied because of its importance in optimization theory and in other fields. Our aim
in this chapter is to show that strong convergence is not the exception, but the rule.
More precisely, we show that in appropriate complete metric spaces of operators
which are nonexpansive with respect to a uniformly convex function f , there exists
a subset which is a countable intersection of open and everywhere dense sets such
that for any operator belonging to this subset, all its orbits converge strongly.

The practical meaning of our results is that whenever one applies iterative al-
gorithms of the form xk+1 = T xk to compute a fixed point of an operator T , then
there is a good chance that the convergence of the resulting sequence {xk} is actually
strong. This conclusion is consistent with many computational experiments despite
the fact that the study of particular classes of operators T satisfying (5.1) has not yet
produced general strong convergence theorems.

5.2 Power Convergence for a Class of Continuous Mappings

Let (X,‖ · ‖) be a Banach space, K ⊂ X a nonempty, closed and convex subset
of X, and let f : X → R1 ∪ {∞} be convex. Let D be the domain of f and let
Df : D × D0 → [0,∞) denote the Bregman distance with respect to f defined
by (5.2). We assume in the sequel that K ⊂ D0.

Denote by M the set of all mappings T : K → K which are bounded on bounded
subsets of K . For the set M we consider the uniformity determined by the following
base:

E(N,ε) = {
(T1, T2) ∈ M×M : ‖T1x − T2x‖ ≤ ε

for all x ∈ K satisfying ‖x‖ ≤ N
}
, (5.5)

where N,ε > 0. Clearly, this uniform space is metrizable and complete. We equip
the space M with the topology induced by this uniformity. Denote by Mc the set
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of all continuous T ∈ M. Clearly, Mc is a closed subset of M. We consider the
topological subspace Mc ⊂ M with the relative topology.

Denote by M0 the set of all T ∈ Mc for which there is zT ∈ K such that the
following assumptions hold:

A(i)

T zT = zT , Df (zT , ·) : K → R1 is convex,

Df (zT , T x) ≤ Df (zT , x) for all x ∈ K;
A(ii) for any ε > 0, there exists δ > 0 such that if x ∈ K and Df (zT , x) ≤ δ, then

‖zT − x‖ ≤ ε;
A(iii) Df (zT , ·) : K → R1 is Lipschitzian in a neighborhood of zT .

Denote by M̄0 the closure of M0 in M. We consider the topological subspace
M̄0 ⊂ M with the relative topology.

Note that A(iii) holds if the function Df (zT , ·) : D0 → R1 is convex. Note also
that A(ii) holds if the function f is uniformly convex. Examples of such functions
f can be found in [28]. Let ξ ∈ K be given. Denote by M0,ξ the set of all T ∈M0
such that Assumption A holds with zT = ξ and denote by M̄0,ξ the closure of M0,ξ

in M. We consider the topological subspace M̄0,ξ ⊂ M with the relative topology.
In this chapter we prove the following six results, which were obtained in [30].

Theorem 5.1 Let xj ∈ K , j = 1, . . . , p, where p is a natural number. Then there
exists a set F ⊂ M̄0, which is a countable intersection of open and everywhere
dense sets in M̄0 such that for each T ∈ F , the following assertions hold:

1. There exists z∗ ∈ K such that T nxj → z∗ as n → ∞ for each j = 1, . . . , p.
2. For each ε > 0, there exist an integer N ≥ 1, a neighborhood U of T in M and

neighborhoods Vj of xj in K for j = 1, . . . , p such that for j = 1, . . . , p,
∥∥Sny − z∗

∥∥≤ ε for each S ∈ U , each y ∈ Vj and each integer n ≥ N.

Theorem 5.2 Let ξ ∈ K and xj ∈ K , j = 1, . . . , p, where p is a natural number.
Then there exists a set Fξ ⊂ M̄0,ξ which is a countable intersection of open and
everywhere dense sets in M̄0,ξ such that for each T ∈ Fξ ,

lim
n→∞T nxj = ξ, j = 1, . . . , p,

and the following assertion holds:
For each ε > 0, there exist an integer N ≥ 1, a neighborhood U of T in M and

neighborhoods Vj of xj in K for j = 1, . . . , p such that for j = 1, . . . , p,
∥∥Sny − ξ

∥∥≤ ε for each S ∈ U , each y ∈ Vj and each integer n ≥ N.

Let ξ ∈ K be given. We equip the topological spaces K × M, K × M̄0 and
K × M̄0,ξ with the appropriate product topologies.
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Theorem 5.3 There exists a set F ⊂ K × M̄0 which is a countable intersection of
open and everywhere dense sets in K × M̄0 such that for each (x, T ) ∈ F , there
exists limn→∞ T nx and the following assertion holds:

For each ε > 0, there exists an integer N ≥ 1 and a neighborhood U of (x, T ) in
K ×M such that for each (y, S) ∈ U and each integer i ≥ N ,

∥∥∥Siy − lim
n→∞T nx

∥∥∥≤ ε.

Our next theorem is an analog of Theorem 5.3 for the space M̄0,ξ ⊂ M̄0.

Theorem 5.4 Let ξ ∈ K be given. Then there exists a set Fξ ⊂ K × M̄0,ξ which is
a countable intersection of open and everywhere dense sets in K × M̄0,ξ such that
for each (x, T ) ∈Fξ , limn→∞ T nx = ξ and the following assertion holds:

For each ε > 0, there exists an integer N ≥ 1 and a neighborhood U of (x, T ) in
K ×M such that for each (y, S) ∈ U and each integer i ≥ N ,

∥∥Siy − ξ
∥∥≤ ε.

Theorem 5.5 Let K0 be a nonempty, separable and closed subset of K . Then there
exists a set F ⊂ M̄0 which is a countable intersection of open and everywhere dense
sets in M̄0 such that for each B ∈ F , there exist xB ∈ K and a set KB ⊂ K0 which
is a countable intersection of open and everywhere dense sets in K0 with the relative
topology such that the following assertions hold:

1. limn→∞ Bnx = xB for each x ∈ KB .
2. For each x ∈ KB and each ε > 0, there exist an integer N ≥ 1 and a neigh-

borhood U of (x,B) in K × M such that for each (y, S) ∈ U and each integer
i ≥ N ,

∥∥Siy − xB

∥∥≤ ε.

Theorem 5.6 Let K0 be a nonempty, separable and closed subset of K , and let
ξ ∈ K be given. Then there exists a set Fξ ⊂ M̄0,ξ which is a countable intersection
of open and everywhere dense sets in M̄0,ξ such that for each B ∈ Fξ , there exists
a set KB ⊂ K0 which is a countable intersection of open and everywhere dense sets
in K0 with the relative topology such that the following assertions hold:

1. limn→∞ Bnx = ξ for each x ∈KB .
2. For each x ∈ KB and each ε > 0, there exist an integer N ≥ 1 and a neigh-

borhood U of (x,B) in K × M such that for each (y, S) ∈ U and each integer
i ≥ N ,

∥∥Siy − ξ
∥∥≤ ε.
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5.3 Preliminary Lemmata for Theorems 5.1–5.6

With the notions and notations of Sects. 5.1 and 5.2, assume that T ∈M, zT ∈ K ,

T zT = zT , Df (zT , ·) : K → R1 is convex,

Df (zT , T x) ≤ Df (zT , x) for all x ∈ K,
(5.6)

and that

for any ε > 0, there exists δ > 0 such that if x ∈ K and

Df (zT , x) ≤ δ, then ‖zT − x‖ ≤ ε. (5.7)

For any γ ∈ (0,1), define a mapping Tγ : K → K by

Tγ x = γ zT + (1 − γ )T x, x ∈ K. (5.8)

Clearly, for each γ ∈ (0,1),

Tγ ∈M and if T ∈Mc, then Tγ ∈Mc, (5.9)

and

Tγ → T in M as γ → 0+. (5.10)

Lemma 5.7 Let γ ∈ (0,1) be given. Then Tγ zT = zT and

Df (zT , Tγ x) ≤ (1 − γ )Df (zT , x) for all x ∈ K. (5.11)

Proof Evidently, Tγ zT = zT . Assume that x ∈ K . Then by (5.8) and (5.6),

Df (zT , Tγ x) = Df

(
zT , γ zT + (1 − γ )T x

)

≤ γDf (zT , zT ) + (1 − γ )Df (zT , T x) ≤ (1 − γ )Df (zT , x),

as claimed. �

Lemma 5.8 Assume that the function Df (zT , ·) : K → R1 is Lipschitzian in a
neighborhood of zT . Let ε, γ ∈ (0,1). Then there exist a number δ ∈ (0, ε) and
a neighborhood U of Tγ in M such that for each S ∈ U and each x ∈ K satisfying
‖x − zT ‖ ≤ δ, the inequality ‖Snx − zT ‖ ≤ ε holds for all integers n ≥ 0 (note that
S0x = x).

Proof We may assume without loss of generality that there is c0 > 1 such that
∣∣Df (zT , y1) − Df (zT , y2)

∣∣≤ c0‖y1 − y2‖ (5.12)

for each y1 and y2 ∈ K satisfying

‖yi − zT ‖ ≤ 8ε, i = 1,2. (5.13)
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By (5.7), there exists Δ ∈ (0, ε) such that

‖zT − y‖ ≤ ε for each y ∈ K satisfying Df (zT , y) ≤ Δ. (5.14)

Choose a positive number

δ < (4c0)
−1(1 − γ )γΔ (5.15)

and set

U = {
S ∈M : ‖Sy − Tγ y‖ ≤ δ for all y ∈ K

satisfying ‖y − zT ‖ ≤ 4
}
. (5.16)

Assume that

S ∈ U , x ∈ K and ‖x − zT ‖ ≤ δ. (5.17)

We intend to show that
∥∥Snx − zT

∥∥≤ ε for all integers n ≥ 1. (5.18)

By (5.14), in order to prove (5.18), it is sufficient to show that

Df

(
zT , Snx

)≤ Δ for all integers n ≥ 1. (5.19)

It follows from (5.17), (5.12), (5.13) and (5.15) that

Df (zT , x) ≤ Df (zT , zT ) + c0‖zT − x‖ ≤ c0δ < Δ. (5.20)

Assume that (5.19) is not true. Then by (5.20), there exists an integer m ≥ 0 such
that

Df

(
zT , Six

)≤ Δ, i = 0, . . . ,m, and Df

(
zT , Sm+1x

)
> Δ. (5.21)

Inequalities (5.21) and (5.14) imply that
∥∥zT − Smx

∥∥≤ ε. (5.22)

By Lemma 5.7,

Df

(
zT , Tγ

(
Smx

))≤ (1 − γ )Df

(
zT , Smx

)
. (5.23)

It follows from (5.23) and (5.21) that Df (zT , Tγ (Smx)) ≤ Δ. Together with (5.14)
this inequality implies that

∥∥zT − Tγ

(
Smx

)∥∥≤ ε. (5.24)

Note that (5.22), (5.16) and (5.17) imply that
∥∥Tγ

(
Smx

)− Sm+1x
∥∥≤ δ. (5.25)
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When combined with (5.24) and (5.15), this inequality implies that
∥∥zT − Sm+1x

∥∥≤ ε + δ ≤ 2ε. (5.26)

By (5.24), (5.26), (5.12), (5.13) and (5.25),
∣∣Df

(
zT , Tγ

(
Smx

))− Df

(
zT , Sm+1x

)∣∣≤ c0
∥∥Tγ

(
Smx

)− Sm+1x
∥∥≤ c0δ. (5.27)

It follows from (5.27) and (5.23) that

Df

(
zT , Sm+1x

)≤ c0δ +Df

(
zT , Tγ

(
Smx

))≤ c0δ + (1 − γ )Df

(
zT , Smx

)
. (5.28)

There are two cases: (i) Df (zT , Smx) ≤ 2−1Δ; (ii) Df (zT , Smx) > 2−1Δ.
Consider first case (i). Then by (5.28) and (5.15),

Df

(
zT , Sm+1x

)≤ c0δ + 2−1(1 − γ )Δ < Δ,

a contradiction (see (5.21)).
Consider now case (ii). Then by (5.28) and (5.15),

Df

(
zT , Smx

)− Df

(
zT , Sm+1x

)≥ γDf

(
zT , Smx

)− c0δ ≥ 2−1γΔ − c0δ > 0,

so that Df

(
zT , Sm+1x

)
< Df

(
zT , Smx

)
,

a contradiction (see (5.21)). Thus in both cases we have reached a contradic-
tion. Therefore (5.19) is valid and (5.18) is also true. This completes the proof of
Lemma 5.8. �

Lemma 5.9 Assume that the mapping T : K → K is continuous and that γ > 0.
Then for each x ∈ K , each ε > 0 and each integer n ≥ 1, there exist a number
δ > 0 and a neighborhood U of Tγ in M such that for each S ∈ U and each y ∈ K

satisfying ‖y − x‖ ≤ δ, the inequality ‖(Tγ )nx − Sny‖ ≤ ε holds.

Proof We prove this lemma by induction. It is clear that for n = 1 it is valid. Assume
that m ≥ 1 is an integer and that the lemma is true for n = m. We will show that it
is also true for n = m + 1.

Let x ∈ K and ε > 0 be given. Since the lemma is true for n = 1, there are
a neighborhood U0 of Tγ in M and a number δ0 > 0 such that for each y ∈ K

satisfying ‖y − (Tγ )mx‖ ≤ δ0 and each S ∈ U0, the following inequality holds:

∥∥Sy − Tγ

(
(Tγ )mx

)∥∥≤ 4−1ε. (5.29)

Since we assume that the lemma is true for n = m, there exist a number δ > 0 and
a neighborhood U of Tγ in M such that U ⊂ U0 and for each y ∈ K satisfying
‖y − x‖ ≤ δ and each S ∈ U , the inequality

∥∥Smy − (Tγ )mx
∥∥≤ 2−1δ0 (5.30)

is true.
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Assume that

S ∈ U , y ∈ K and ‖y − x‖ ≤ δ. (5.31)

By (5.31) and the definition of U , (5.30) is true. By (3.30) and the definition of U0
and δ0 (see (5.29)),

∥
∥S
(
Smy

)− Tγ

(
(Tγ )my

)∥∥≤ 4−1ε. (5.32)

Therefore for each S ∈ U and each y ∈ K satisfying (5.31), inequality (5.32) holds.
Thus the lemma is true for n = m + 1. This completes the proof of Lemma 5.9. �

Lemma 5.10 Assume that the function Df (zT , ·) : K → R1 is Lipschitzian in a
neighborhood of zT and that the mapping T : K → K is continuous. Let γ, ε ∈
(0,1) and x ∈ K be given. Then there exist a neighborhood U of Tγ in M, a number
δ > 0 and an integer N ≥ 1 such that for each y ∈ K satisfying ‖y − x‖ ≤ δ, each
S ∈ U and each integer n ≥ N ,

∥∥Sny − zT

∥∥≤ ε.

Proof By Lemma 5.8, there are a number Δ ∈ (0, ε) and a neighborhood U0 of Tγ

in M such that the following property holds:

A(i) For each S ∈ U0 and each y ∈ K satisfying ‖y − zT ‖ ≤ Δ, the following rela-
tion holds:

∥∥Sny − zT

∥∥≤ ε for all integers n ≥ 1.

By (5.7), there is δ0 > 0 such that

‖zT − y‖ ≤ 4−1Δ if y ∈ K and Df (zT , y) ≤ δ0. (5.33)

By Lemma 5.7, there exists an integer N ≥ 1 such that

Df

(
zT , (Tγ )Nx

)≤ δ0.

When combined with (5.33), this inequality implies that
∥∥zT − (Tγ )Nx

∥∥≤ 4−1Δ. (5.34)

By Lemma 5.9, there exist a neighborhood U ⊂ U0 of Tγ in M and a number δ > 0
such that for each y ∈ K satisfying ‖y − x‖ ≤ δ and each S ∈ U ,

∥∥SNy − (Tγ )Nx
∥∥≤ 4−1Δ.

By the definition of U , δ and (5.34), the following property holds:

A(ii) For each y ∈ K satisfying ‖y − x‖ ≤ δ and each S ∈ U ,
∥∥SNy − zT

∥∥≤ 2−1Δ.
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By properties A(i) and A(ii), for each S ∈ U and each y ∈ K satisfying ‖y −x‖ ≤ δ,
∥
∥Sny − zT

∥
∥≤ ε for all integers n ≥ N.

Lemma 5.10 is proved. �

5.4 Proofs of Theorems 5.1–5.6

Proofs of Theorems 5.1 and 5.2 Let ξ, xj ∈ K , j = 1, . . . , p, where p is a natural
number. With each T ∈ M0, we associate a point zT ∈ K satisfying Assumption A.
If T ∈M0,ξ , then zT = ξ .

By Lemma 5.7, for each T ∈ M0 and each γ ∈ (0,1), Tγ ∈ M0 and Tγ ∈ M0,ξ

if T ∈ M0,ξ .
By Lemma 5.10, for each T ∈ M0, each γ ∈ (0,1) and each integer i ≥ 1, there

exist a natural number N(T ,γ, i), a real number δ(T , γ, i) > 0 and an open neigh-
borhood U(T , γ, i) of Tγ in M such that the following property holds:

C(i) For each S ∈ U(T , γ, i), each j ∈ {1, . . . , p}, each y ∈ K satisfying ‖y−xj‖ ≤
δ(N,γ, i) and each integer n ≥ N(T ,γ, i),

∥∥Sny − zT

∥∥≤ 2−i .

Define

F =
[ ∞⋂

q=1

⋃{
U(T , γ, i) : T ∈M0, γ ∈ (0,1), i = q, q + 1, . . .

}
]

∩ M̄0,

Fξ =
[ ∞⋂

q=1

⋃{
U(T , γ, i) : T ∈ M0,ξ , γ ∈ (0,1), i = q, q + 1, . . .

}
]

∩ M̄0,ξ .

It is clear that F (respectively, Fξ ) is a countable intersection of open and every-
where dense sets in M̄0 (respectively, M̄0,ξ ), and that Fξ ⊂ F .

Let B ∈ F and ε > 0 be given. Choose an integer q ≥ 1 such that

2−q < 4−1ε. (5.35)

There exist T ∈ M0 (T ∈ M0,ξ if B ∈ Fξ ), γ ∈ (0,1) and an integer i ≥ q such
that

B ∈ U(T , γ, i). (5.36)

It follows from property C(i) and (5.35) that the following property holds:

C(ii) For each S ∈ U(T , γ, i), each j ∈ {1, . . . , p}, each y ∈ K satisfying ‖y −
xj‖ ≤ δ(N,γ, i) and each integer n ≥ N(T ,γ, i),

∥∥Sny − zT

∥∥≤ 4−1ε. (5.37)
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Since ε is an arbitrary positive number, we conclude that for each j = 1, . . . , p,
{Bnxj }∞n=1 is a Cauchy sequence and there exists limn→∞ Bnxj . Inequality (5.37)
implies that

∥∥∥ lim
n→∞Bnxj − zT

∥∥∥≤ 4−1ε, j = 1, . . . , p. (5.38)

(If B ∈Fξ , then T ∈M0,ξ , zT = ξ and since (5.38) holds for any ε > 0, we see that
limn→∞ Bnxj = ξ , j = 1, . . . , p.)

Since (5.38) holds for any ε > 0, we conclude that

lim
n→∞Bnxj = lim

n→∞Bnx1, j = 1, . . . , p.

It follows from property C(ii) and (5.38) that for each S ∈ U(T , γ, i), each j =
1, . . . , p, each y ∈ K satisfying ‖y − xj‖ ≤ δ(N,γ, i) and each integer r ≥
N(T ,γ, i),

∥∥∥Sry − lim
n→∞Bnxj

∥∥∥≤ 2−1ε.

This completes the proofs of Theorems 5.1 and 5.2. �

Now we are going to show that Theorems 5.3 and 5.4 are also true.

Proofs of Theorems 5.3 and 5.4 With each T ∈M0 we associate a point zT ∈ K sat-
isfying Assumption A. If T ∈ M0,ξ , then zT = ξ . By Lemma 5.7, for each T ∈ M0
and each γ ∈ (0,1), Tγ ∈ M0 and Tγ ∈ M0,ξ if T ∈ M0,ξ . By Lemma 5.10, for
each (x, T ) ∈ K × M0, each γ ∈ (0,1) and each integer i ≥ 1, there exist an inte-
ger N(x,T , γ, i) ≥ 1 and an open neighborhood U(x,T , γ, i) of (x, Tγ ) in K ×M
such that the following property holds:

C(iii) For each (y, S) ∈ U(x,T , γ, i) and each integer n ≥ N(x,T , γ, i),
∥∥Sny − zT

∥∥≤ 2−i .

Define

F =
[ ∞⋂

q=1

⋃
{U(x,T , γ, i) : x ∈ K,T ∈M0,

γ ∈ (0,1), i = q, q + 1, . . . }
]

∩ (K × M̄0),

Fξ =
[ ∞⋂

q=1

⋃
{U(x,T , γ, i) : x ∈ K,T ∈M0,ξ ,

γ ∈ (0,1), i = q, q + 1, . . . }
]

∩ (K × M̄0,ξ ).
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Clearly, F (respectively, Fξ ) is a countable intersection of open and everywhere
dense sets in K × M̄0 (respectively, K × M̄0,ξ ) and Fξ ⊂ F .

Let (z,B) ∈F and ε > 0 be given. Choose an integer q ≥ 1 such that

2−q < 4−1ε. (5.39)

There exist x ∈ K , T ∈ M0 (T ∈ M0,ξ if (z,B) ∈ Fξ ), γ ∈ (0,1) and an integer
i ≥ q such that

(z,B) ∈ U(x,T , γ, i). (5.40)

It follows from property C(iii) and (5.39) that the following property also holds:

C(iv) For each (y, S) ∈ U(x,T , γ, i) and each integer n ≥ N(x,T , γ, i),
∥∥Sny − zT

∥∥≤ 4−1ε. (5.41)

Note that zT = ξ if (z,B) ∈Fξ . Since ε is an arbitrary positive number, we conclude
that {Bnz}∞n=1 is a Cauchy sequence and there exists limn→∞ Bnz. Inequality (5.41)
implies that

∥∥∥ lim
n→∞Bnz − zT

∥∥∥≤ 4−1ε. (5.42)

(If (z,B) ∈ Fξ , then zT = ξ and since (5.42) holds for any ε > 0, we conclude that
limn→∞ Bnz = ξ .)

It follows from property C(iv) and (5.42) that for each (y, S) ∈ U(x,T , γ, i) and
each integer j ≥ N(x,T , γ, i),

∥∥∥Sjy − lim
n→∞Bnz

∥∥∥≤ 2−1ε.

This completes the proofs of Theorems 5.3 and 5.4. �

Proof of Theorem 5.5 Assume that K0 is a nonempty, closed and separable subset
of K . Let the sequence {xj }∞j=1 ⊂ K0 be dense in K0 and let p be a natural number.

By Theorem 5.1, there exists a set Fp ⊂ M̄0, which is a countable intersection of
open and everywhere dense sets in M̄0 such that, for each T ∈ Fp , the following
two properties hold:

C(v) For j = 1, . . . , p there exists limn→∞ T nxj and

lim
n→∞T nxj = lim

n→∞T nx1, j = 1, . . . , p;

C(vi) For each ε > 0, there exist a neighborhood U of T in M, a real number δ > 0
and a natural number N ≥ 1 such that, for each S ∈ U , each j = 1, . . . , p,
each y ∈ K satisfying ‖y − xj‖ ≤ δ and each integer m ≥ N ,

∥∥∥Smy − lim
i→∞T ixj

∥∥∥≤ ε.
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Set

F =
∞⋂

p=1

Fp. (5.43)

It is clear that F is a countable intersection of open and everywhere dense sets
in M̄0.

Assume next that T ∈ F . By (5.43) and C(v), there exists xT ∈ K such that

lim
n→∞T nxj = xT , j = 1,2, . . . . (5.44)

Now we construct the set KT ⊂ K0. To this end, observe that property C(vi), (5.44)
and (5.43) imply that for each pair of natural numbers (q, i) there exist a neighbor-
hood U(q, i) of T in M, a number δ(q, i) > 0 and a natural number N(q, i) such
that the following property holds:

C(vii) For each S ∈ U(q, i), each y ∈ K satisfying ‖y − xq‖ ≤ δ(q, i) and each
integer m ≥ N(q, i),

∥∥Smy − xT

∥∥≤ 2−i .

Define

KT =
∞⋂

n=1

⋃{{
y ∈ K0 : ‖y − xq‖ < δ(q, i)

} : q ≥ 1, i ≥ n
}
. (5.45)

Clearly, KT is a countable intersection of open and everywhere dense sets in K0.
Assume that x ∈KT and ε > 0 are given. Choose an integer n ≥ 1 such that

2−n < 4−1ε. (5.46)

By (5.45), there exist a natural number q and an integer i ≥ n such that

‖x − xq‖ < δ(q, i). (5.47)

Combining (5.46) with property C(vii), we see that the following property is also
true:

C(viii) For each S ∈ U(q, i), each y ∈ K satisfying ‖y − xq‖ ≤ δ(q, i) and each
integer m ≥ N(q, i),

∥∥Smy − xT

∥∥≤ 4−1ε.

Using this fact and (5.47), we get
∥∥T mx − xT

∥∥≤ 4−1ε for all integers m ≥ N(q, i).

Since ε is an arbitrary positive number we conclude that {T mx}∞m=1 is a Cauchy
sequence and

lim
m→∞T mx = xT . (5.48)
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Applying property C(viii) and (5.35), it follows that for each S ∈ U(q, i), each
y ∈ K satisfying ‖y − x‖ < δ(q, i) − ‖x − xq‖ and each integer m ≥ N(q, i),

∥∥Smy − xT

∥∥≤ 4−1ε.

This completes the proof of Theorem 5.5. �

We omit the proof of Theorem 5.6 because it is analogous to that of Theorem 5.5.

5.5 A Class of Uniformly Continuous Mappings

Denote by A the set of all mappings T : K → K which are uniformly continuous
on bounded subsets of K . Clearly any T ∈ A is bounded on bounded subsets of K

and A is a closed subset of the complete uniform space M defined in Sect. 5.2. We
consider the topological subspace A ⊂ M with the relative topology.

Denote by A∗ the set of all T ∈A for which there is a point zT ∈ K such that the
following three properties hold:

B(i)

T zT = zT , Df (zT , ·) : K → R1 is convex,

Df (zT , T x) ≤ Df (zT , x) for all x ∈ K;
B(ii) The function Df (zT , ·) is bounded from above on any bounded subset of K ;
B(iii) For any ε > 0 there exists δ > 0 such that if x ∈ K and Df (zT , x) ≤ δ, then

‖zT − x‖ ≤ ε.

Denote by Ā∗ the closure of A∗ in the space A. We consider the topological sub-
space Ā∗ ⊂ A with the relative topology.

We note that B(iii) holds if the function f is uniformly convex.

Theorem 5.11 There exists a set F ⊂ Ā∗, which is a countable intersection of open
and everywhere dense sets in Ā∗, such that for each T ∈ F , the following two as-
sertions hold:

1. There exists z∗ ∈ K such that T nx → z∗ as n → ∞ for all x ∈ K .
2. For each ε > 0 and each bounded set C ⊂ K , there exist an integer N ≥ 1 and a

neighborhood U of T in A such that for each S ∈ U and each x ∈ C,

∥∥Snx − z∗
∥∥≤ ε for all integers n ≥ N.

Let ξ ∈ K be given. Denote by Aξ the set of all T ∈ A which satisfy Property B
with zT = ξ and denote by Āξ the closure of Aξ in A. We consider the topological
subspace Āξ ⊂ A with the relative topology.
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Theorem 5.12 There exists a set Fξ ⊂ Āξ , which is a countable intersection of
open and everywhere dense sets in Āξ , such that for each T ∈Fξ , the following two
assertions hold:

1. T nx → ξ as n → ∞ for all x ∈ K .
2. For each ε > 0 and each bounded set C ⊂ K , there exists an integer N ≥ 1 and

a neighborhood U of T in A such that for each S ∈ U and each x ∈ C,

∥∥Snx − ξ
∥∥≤ ε for all integers n ≥ N.

5.6 An Auxiliary Result

This section is devoted to an auxiliary result which will be used in the next section.

Proposition 5.13 Let K0 be a bounded subset of K , T ∈ A, ε > 0 and let n ≥ 1 be
an integer. Then there exists a neighborhood U of T in A such that for each S ∈ U
and each x ∈ K0, the inequality ‖T nx − Snx‖ ≤ ε holds.

Proof We prove this proposition by induction. Clearly, it is valid for n = 1. Assume
that m ≥ 1 is an integer and that the proposition is true for n = m. We now show
that it is also true for n = m + 1.

Since the proposition is true for n = m, there is a neighborhood U0 of T in A
such that

Δ0 = sup
{∥∥Smx

∥∥ : S ∈ U0, x ∈ K0
}

< ∞. (5.49)

Set

K1 = {
x ∈ K : ‖x‖ ≤ Δ0 + 1

}
(5.50)

and define

U1 = {
S ∈ U0 : ‖T x − Sx‖ ≤ 8−1ε for all x ∈ K1

}
. (5.51)

Since the mapping T is uniformly continuous on K1, there is δ > 0 such that

‖T x − Ty‖ ≤ 8−1ε (5.52)

for each x, y ∈ K1 satisfying ‖x − y‖ ≤ δ. Since the proposition is true for n = m,
there is a neighborhood U of T in A such that

U ⊂ U1 (5.53)

and for each S ∈ U and each x ∈ K0, the following inequality holds:

∥∥T mx − Smx
∥∥≤ δ. (5.54)
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Assume that S ∈ U and x ∈ K0. Then
∥∥T m+1x − Sm+1x

∥∥≤ ∥∥T m+1x − T
(
Smx

)∥∥+ ∥∥T
(
Smx

)− Sm+1x
∥∥. (5.55)

By the definition of U , inequality (5.54) is true. Now (5.49), (5.53), (5.51) and (5.50)
imply that

T mx,Smx ∈ K1. (5.56)

It follows from (5.54), (5.56) and the definition of δ (see (5.52)) that
∥∥T

(
Smx

)− T m+1x
∥∥≤ 8−1ε. (5.57)

By (5.53), (5.51) and (5.56),
∥∥T

(
Smx

)− Sm+1x
∥∥≤ 8−1ε. (5.58)

Combining (5.57), (5.58) and (5.55), we obtain that ‖T m+1x − Sm+1x‖ ≤ 2−1ε.
Proposition 5.13 is proved. �

5.7 Proofs of Theorems 5.11 and 5.12

Let T ∈ A∗, γ ∈ (0,1) and let zT ∈ K satisfy Property B. Define a mapping Tγ :
K → K by

Tγ x = γ zT + (1 − γ )T x, x ∈ K. (5.59)

Clearly, Tγ ∈A. By Lemma 5.7, Tγ ∈ A∗ with zT (γ ) = zT and

Df (zT , Tγ x) ≤ (1 − γ )Df (zT , x) for all x ∈ K. (5.60)

It is clear that for each T ∈ A∗,

Tγ → T as γ → 0 in A. (5.61)

We precede the proof of Theorems 5.11 and 5.12 by the following lemma.

Lemma 5.14 Let T ∈ A∗, ε, γ ∈ (0,1) and let zT ∈ K satisfy Property B. Let K0
be a nonempty and bounded subset of K . Then there exist a natural number N and a
neighborhood U of Tγ in A such that for each S ∈ U , each x ∈ K0 and each integer
n ≥ N ,

∥
∥Snx − zT

∥
∥≤ ε. (5.62)

Proof We may assume without any loss of generality that

{
x ∈ K : ‖x − zT ‖ ≤ 1

}⊂ K0. (5.63)
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According to Property B, there exists δ ∈ (0, ε) such that

if x ∈ K and Df (zT , x) ≤ 2δ, then ‖zT − x‖ ≤ 2−1ε. (5.64)

Also by Property B, there exists a number c0 > 0 such that

Df (zT , x) ≤ c0 for all x ∈ K0. (5.65)

Choose a natural number N such that

(1 − γ )N(c0 + 1) ≤ 2−1δ. (5.66)

It follows from (5.66), (5.65) and (5.61) that for each x ∈ K0, and each integer
n ≥ N ,

Df

(
zT , T n

γ x
)≤ (1 − γ )nDf (zT , x) ≤ (1 − γ )Nc0 ≤ 2−1δ.

This inequality and (5.64) imply that for each x ∈ K0 and each integer n ≥ N , we
have

∥∥zT − T n
γ x
∥∥≤ 2−1ε. (5.67)

Proposition 5.13 guarantees that there exists a neighborhood U of Tγ in A such that
for each x ∈ K0, all integers n = N,N + 1, . . . ,4N , and each S ∈ U ,

∥∥T n
γ x − Snx

∥∥≤ 4−1ε. (5.68)

Assume that S ∈ U and x ∈ K0. We claim that for all integers n ≥ N , we have
∥∥Snx − zT

∥∥≤ ε. (5.69)

In order to show this, suppose, by way of contradiction, that the claim is false.
Then there is an integer q ≥ N such that

∥∥Sqx − zT

∥∥> ε. (5.70)

It follows from the definition of U (see (5.68)) and (5.67) that
∥∥zT − Sny

∥∥≤ 3 · 4−1ε for all y ∈ K0 and all n = N,N + 1, . . . ,4N. (5.71)

Inequalities (5.70) and (5.71) imply that q > 4N . Note that we may assume without
loss of generality that

∥∥zT − Six
∥∥≤ ε for all i = N, . . . , q − 1. (5.72)

Together with (5.63) this implies that Sq−Nx ∈ K0. Combining this with (5.71), we
see that

∥∥zT − Sqx
∥∥= ∥∥zT − SN

(
Sq−N

)
x
∥∥≤ 3 · 4−1ε,
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which contradicts (5.70). Thus (5.69) is true for all integers n ≥ N . This completes
the proof of Lemma 5.14. �

Now we proceed to prove Theorems 5.11 and 5.12.

Proofs of Theorems 5.11 and 5.12 Fix θ ∈ K . For each natural number i, set

Ki = {
x ∈ K : ‖x − θ‖ ≤ i

}
. (5.73)

With each T ∈ A∗, we associate a point zT ∈ K satisfying Property B. If T ∈ Aξ ,
then zT = ξ .

By Lemma 5.14, for each T ∈ A∗, γ ∈ (0,1) and for each integer i ≥ 1, there
exist a natural number N(T ,γ, i) and an open neighborhood U(T , γ, i) of Tγ in A
such that the following property holds:

P(i) for each S ∈ U(T , γ, i), each x ∈ K2i and each integer n ≥ N(T ,γ, i),
∥∥Snx − zT

∥∥≤ 2−i .

Define

F =
[ ∞⋂

q=1

⋃{
U(T , γ, i) : T ∈ A∗, γ ∈ (0,1), i = q, q + 1, . . .

}
]

∩ Ā∗,

Fξ =
[ ∞⋂

q=1

⋃{
U(T , γ, i) : T ∈Aξ , γ ∈ (0,1), i = q, q + 1, . . .

}
]

∩ Āξ .

Evidently, F (respectively, Fξ ) is a countable intersection of open and everywhere
dense sets in Ā∗ (respectively, Āξ ) and Fξ ⊂ F .

Let C be a bounded subset of K and let B ∈ F , ε > 0 be given. There exists an
integer q ≥ 1 such that

C ⊂ K2q and 2−q < 4−1ε. (5.74)

There exist T ∈ A∗ (T ∈Aξ if B ∈Fξ ), γ ∈ (0,1) and an integer i ≥ q such that

B ∈ U(T , γ, i). (5.75)

It follows from property P(i), (5.75) and (5.74) that the following property holds:

P(ii) For each x ∈ C, each S ∈ U(T , γ, i) and each integer n ≥ N(T ,γ, i),
∥∥Snx − zT

∥∥≤ 4−1ε.

Note that zT = ξ if B ∈Fξ .
Relation (5.75) and property P(ii) imply that for each x ∈ C and each integer

n ≥ N(T ,γ, i),
∥∥Bnx − zT

∥∥≤ 4−1ε. (5.76)
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Since ε is an arbitrary positive number and C is an arbitrary bounded set in K , we
conclude that for each x ∈ K , {Bnx}∞n=1 is a Cauchy sequence. Therefore for each
x ∈ K , there exists limn→∞ Bnx. Inequality (5.76) implies that

∥∥∥ lim
n→∞Bnx − zT

∥∥∥≤ 4−1ε for all x ∈ C. (5.77)

Again, since ε is an arbitrary positive number and C is an arbitrary bounded subset
of K , (5.77) implies that there is z∗ ∈ K such that

z∗ = lim
n→∞Bnx for all x ∈ K. (5.78)

By (5.78) and (5.77),
∥∥z∗ − zT

∥∥≤ 4−1ε. (5.79)

(If B ∈ Fξ , then T ∈ Aξ , zT = ξ and since the inequality above is true for any
ε > 0, we obtain that z∗ = ξ .) It follows from property P(ii) and (5.79) that for each
S ∈ U(T , γ, i), each x ∈ C and each integer n ≥ N(T ,γ, i), ‖Snx − z∗‖ ≤ 2−1ε.
This completes the proofs of Theorems 5.11 and 5.12. �

5.8 Mappings with a Uniformly Continuous Bregman Function

In this section we use the definitions and notations from Sects. 5.1 and 5.2 and the
complete uniform spaces M and Mc introduced there.

Denote by M∗ the set of all T ∈ M for which there is zT ∈ K such that the
following assumptions hold:

C(i)

T zT = zT , Df (zT , ·) : K → R1 is convex,

Df (zT , T x) ≤ Df (zT , x) for all x ∈ K;
C(ii) The function Df (zT , ·) is uniformly continuous on any bounded subset of K ;
C(iii) For any ε > 0, there exists δ > 0 such that if x ∈ K and Df (zT , x) ≤ δ, then

‖zT − x‖ ≤ ε;
C(iv) For each α > 0, the level set {y ∈ K : Df (zT , y) ≤ α} is bounded.

Set M∗c = Mc ∩ M∗. Denote by M̄∗ the closure of M∗ in the space M and by
M̄∗c the closure of M∗c in the space M. We consider the topological subspaces
M̄∗c and M̄∗ ⊂ M with the relative topologies.

Again we note that C(iii) holds if the function f is uniformly convex.

Theorem 5.15 There exists a set F ⊂ M̄∗, which is a countable intersection of
open and everywhere dense sets in M̄∗, and a set Fc ⊂ F ∩M̄c∗, which is a count-
able intersection of open and everywhere dense sets in M̄∗c, such that for each
T ∈ F , the following assertions hold:
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1. There exists z∗ ∈ K such that T nx → z∗ as n → ∞ for all x ∈ K .
2. For each ε > 0, and each bounded set C ⊂ K , there exist an integer N ≥ 1 and

a neighborhood U of T in M such that for each S ∈ U and each x ∈ C,

∥∥Snx − z∗
∥∥≤ ε for all integers n ≥ N.

Let ξ ∈ K . Denote by Mξ the set of all T ∈ M which satisfy Assumption C
with zT = ξ . Set Mξc = Mξ ∩ Mc. Denote by M̄ξ the closure of Mξ in M and
by M̄ξc the closure of Mξc in M. We consider the topological subspaces M̄ξ and
M̄ξc ⊂ M with the relative topologies.

Theorem 5.16 There exists a set Fξ ⊂ M̄ξ (respectively, Fξc ⊂ M̄ξc ∩Fξ ), which
is a countable intersection of open and everywhere dense sets in M̄ξ (respectively,
in M̄ξc), such that for each T ∈ Fξ , the following assertions hold:

1. T nx → ξ as n → ∞ for all x ∈ K .
2. For each ε > 0 and each bounded set C ⊂ K , there exist an integer N ≥ 1 and a

neighborhood U of T in M such that for each S ∈ U and each x ∈ C,

∥∥Snx − ξ
∥∥≤ ε for all integers n ≥ N.

5.9 Proofs of Theorems 5.15 and 5.16

Let T ∈ M∗, γ ∈ (0,1) and let zT ∈ K satisfy Assumption C. Define a mapping
Tγ : K → K by

Tγ x = (1 − γ )T x + γ zT , x ∈ K. (5.80)

Clearly,

Tγ ∈ M and if T ∈ Mc, then Tγ ∈Mc. (5.81)

By Lemma 5.7, Tγ ∈M∗ with z(Tγ ) = z(T ) and

Df (zT , Tγ x) ≤ (1 − γ )Df (zT , x) for all x ∈ K. (5.82)

Evidently, for each T ∈M∗,

Tγ → T as γ → 0 in M. (5.83)

Lemma 5.17 Let T ∈M∗, ε, γ ∈ (0,1) and let zT satisfy Assumption C. Let K0 be
a bounded subset of K . Then there exist a natural number N and a neighborhood
U of Tγ in M such that for each S ∈ U , each x ∈ K0 and each integer n ≥ N ,

∥∥Snx − zT

∥∥≤ ε.
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Proof By Assumption C, there exist δ ∈ (0, ε), c0 > 1 and c1 > 0 such that

if x ∈ K and Df (zT , x) ≤ 2δ, then ‖zT − x‖ ≤ 2−1ε, (5.84)

Df (zT , x) ≤ c0 for all x ∈ K0 (5.85)

and

‖x‖ ≤ c1 for all x ∈ K satisfying Df (zT , x) ≤ c0 + 2. (5.86)

Set

K1 = {
x ∈ K : ‖x‖ ≤ c1

}
and K2 = {

x ∈ K : ‖x‖ ≤ c1 + 2
}
. (5.87)

Clearly, K0 ⊂ K1. By Assumption C, the function Df (zT , ·) is uniformly continu-
ous on K2. Therefore there is δ0 ∈ (0,4−1δ) such that

∥∥Df (zT , x1) − Df (zT , x2)
∥∥≤ γ δ8−1 (5.88)

for each x1, x2 ∈ K2 satisfying ‖x1 − x2‖ ≤ δ0.
Choose a natural number N such that

8−1Nγ δ > c0 + 2 (5.89)

and define

U = {
S ∈ M : ‖Sx − Tγ x‖ ≤ δ0 for all x ∈ K1

}
. (5.90)

Assume that S ∈ U and x ∈ K0. We claim that

∥∥Snx − zT

∥∥≤ ε for all integers n ≥ N. (5.91)

By the definition of δ (see (5.84)), in order to prove (5.91), it is sufficient to show
that

Df

(
zT , Snx

)≤ 2δ for all integers n ≥ N. (5.92)

First we will show by induction that for all integers n ≥ 0,

Df

(
zT , Snx

)≤ c0 (5.93)

and

Df

(
zT , Sn+1x

)≤ (1 − γ )Df

(
zT , Snx

)+ 8−1γ δ for all integers n ≥ 0. (5.94)

Clearly, by (5.85), inequality (5.93) is valid for n = 0. (Note that S0x = x.)
Assume that (5.93) is true for some integer n ≥ 0. We will show that (5.94) is

also true. By (5.87), (5.86) and (5.93),

Snx ∈ K1 and
∥∥Snx

∥∥≤ c1. (5.95)
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Combining (5.95) and (5.90), we see that
∥∥Sn+1x − Tγ Snx

∥∥≤ δ0. (5.96)

By (5.82) and (5.93),

Df

(
zT , Tγ

(
Snx

))≤ (1 − γ )Df

(
zT , Snx

)≤ (1 − γ )c0. (5.97)

Together with (5.86) this implies that
∥∥Tγ

(
Snx

)∥∥≤ c1. (5.98)

Combining (5.96), (5.98) and (5.87), we see that

Tγ

(
Snx

) ∈ K1 and Sn+1x ∈ K2. (5.99)

It follows from (5.99), (5.96) and the definition of δ0 (see (5.88)) that
∥∥Df

(
zT , Sn+1x

)− Df

(
zT , Tγ Snx

)∥∥≤ 8−1γ δ. (5.100)

By (5.100) and (5.97),

Df

(
zT , Sn+1x

) ≤ 8−1γ δ + (1 − γ )Df

(
zT , Snx

)

≤ 8−1γ δ + (1 − γ )c0 ≤ γ + (1 − γ )c0 ≤ c0.

Thus (5.94) is true and Df (zT , Sn+1x) ≤ c0. Therefore both inequalities (5.93) and
(5.94) are valid for all integers n ≥ 0.

Let n ≥ 0 be an integer. If Df (zT , Snx) ≤ δ, then by (5.94) we have

Df

(
zT , Sn+1x

)≤ (1 − γ )δ + 8−1γ δ ≤ δ.

Therefore in order to prove (5.92), it is sufficient to show that Df (zT , Snx) ≤ δ for
some integer n ∈ [0,N].

If this were not true, then it would follow that Df (zT , Snx) > δ, n = 0, . . . ,N .
Thus according to (5.94), for n = 0, . . . ,N , we would get

Df

(
zT , Snx

)− Df

(
zT , Sn+1x

)≥ γDf

(
zT , Snx

)− 8−1γ δ ≥ 2−1γ δ.

When combined with (5.89), this would yield

Df (zT , x) ≥ Df (zT , x) − Df

(
zT , SN+1x

)≥ 2−1γ δN > c0 + 2,

which contradicts (5.93). Hence (5.92) and therefore (5.91) are valid for all integers
n ≥ N . This completes the proof of Lemma 5.17. �

Proofs of Theorems 5.15 and 5.16 The proofs of Theorems 5.15 and 5.16 follows
the pattern of the proofs of Theorems 5.11 and 5.12. The main difference is that we
use Lemma 5.17 instead of Lemma 5.14. �
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5.10 Generic Power Convergence to a Retraction

We continue to consider the problem of whether and under what conditions, rela-
tively nonexpansive operators T defined on, and with values in, a nonempty, closed
and convex subset K of a Banach space (X,‖ · ‖) have the property that the se-
quences {T kx}∞k=1 converge strongly to fixed points of T , whenever x ∈ K . For a
given nonempty, closed and convex subset F of K , we consider complete metric
spaces of self-mappings of K which fix all the points of F and are relatively non-
expansive with respect to a given convex function f on X. We show (under certain
assumptions on f ) that the iterates of a generic mapping in these spaces converge
strongly to a retraction onto F .

These results were obtained in [33].
We say that an operator T : K → K is relatively nonexpansive with respect to

the convex function f : X → R1 ∪ {∞} if K is a subset of the algebraic interior D0

of the domain of f ,

D := dom(f ) = {
x ∈ X : f (x) < ∞}

,

the function f is lower semicontinuous on K and there exists a point z ∈ K such
that, for any x ∈ K , we have

Df (z,T x) ≤ Df (z, x), (5.101)

where Df : X ×D0 → [0,∞) stands for the Bregman distance given by

Df (y, x) = f (y) − f (x) + f 0(x, x − y), (5.102)

and f 0(x, d) denotes the right-hand derivative of f at x in the direction d . In this
case, the point z is called a pole of T with respect to f .

Let M = M(f,K,F ) be the set of all operators T : K → K which are relatively
nonexpansive with respect to the same convex function f : X → R1 ∪ {∞} and
which have a nonempty, closed and convex set F of common poles. We assume that
the function f satisfies the following conditions:

A(i) For any nonempty bounded set E ⊂ K and any ε > 0, there exists δ > 0 such
that

if x ∈ E,z ∈ F and Df (z, x) ≤ δ, then ‖z − x‖ ≤ ε. (5.103)

A(ii) There exists θ ∈ F such that the restriction to K of the function g(·) :=
Df (θ, ·) has the following property: for any subset E ⊂ K , g(E) is bounded
if and only if E is bounded.

A(iii) For any z ∈ F , the function Df (z, ·) : K → R1 is convex and lower semicon-
tinuous.

A(iv) For any x ∈ K , there exists a vector Px ∈ F such that

Df (Px,x) ≤ Df (z, x) for all z ∈ F. (5.104)
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In practical situations one also uses the following stronger version of A(i):
For any nonempty and bounded set E ⊂ K , inf{νf (x, t) : x ∈ E} is positive for

all t > 0, where

νf (x, t) = inf
{
Df (y, x) : y ∈ X and ‖y − x‖ = t

}
. (5.105)

In [28] this condition is termed sequential compatibility of the function f with
the relative topology of the set K . We will show (see Lemma 5.18 below) that se-
quential compatibility implies A(i). In its turn, condition A(i) implies that all z ∈ F

are common fixed points of the operators in M. Condition A(ii) guarantees that any
operator T ∈ M is bounded on bounded subsets of K (a feature which is essential
in our proofs) because, for any bounded set E ⊂ K , we have

Df (θ,T x) ≤ Df (θ, x), (5.106)

where, according to condition A(ii), the function Df (θ, ·) is bounded on E, and
therefore so is the set {T x : x ∈ E}. Condition A(ii), even taken in conjunction with
A(i), is satisfied by many useful functions and, among them, by many functions
which are sequentially compatible with the relative topology of K . In contrast, con-
dition A(iii) is quite restrictive. However, it does hold for many functions f which
are of interest in current applications (see the examples below). The vector Px sat-
isfying (5.104) was termed the Bregman projection with respect to f of x onto F in
[38].

Condition A(iv) is automatically satisfied when X is reflexive and f is totally
convex on K (in particular, when f is sequentially compatible with the relative
topology of K) as follows from Proposition 2.1.5(i) of [28]. In this case, if f is
differentiable on the algebraic interior of its domain, then, for each x ∈ K , there
exists a unique vector Px in F which satisfies (5.104). We now mention four typical
situations in which all the conditions A(i)–A(iv) are satisfied simultaneously.

(i) (cf. [28]) X is a Hilbert space, K and F are nonempty closed convex subsets
of X such that F ⊂ K and f (x) = ‖x‖2;

(ii) (cf. [29]) F ⊂ K ⊂ Rn++ and f is the negentropy;
(iii) (cf. [31]) X is a Lebesgue space Lp or lp , 1 < p ≤ 2, f (x) = ‖x‖p and K

consists of either nonnegative or nonpositive functions;
(iv) (cf. [32]) X is smooth and uniformly convex, F is a singleton {z}, and f (x) =

‖x − z‖r with r > 1.

We provide the set M = M(f,K,F ) with the uniformity determined by the
following base:

E(N,ε) = {
(T1, T2) ∈ M×M : ‖T1x − T2x‖ ≤ ε

for all x ∈ K satisfying ‖x‖ ≤ N
}
,

where N,ε > 0. Clearly, this uniform space is metrizable and complete. We equip
the space M with the topology induced by this uniformity. Let Mc be the set of
all operators in M which are continuous on K . This is a closed subset of M and
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we endow it with the relative topology. The subset of Mc consisting of those oper-
ators which are uniformly continuous on bounded subsets of K is denoted by Mu.
Again, this set is closed in M and we endow it with the relative topology. We will
show that the sequence of powers of a generic mapping T in Mu, Mc and M,
respectively, converges in the uniform topology to a relatively nonexpansive opera-
tor which belongs to the same space and is a retraction onto F . Consequently, the
sequences {T kx}∞k=1 generated by a generic mapping T are strongly convergent to
points in F , i.e., to fixed points of T .

In this chapter we have shown that the iterates of a generic operator in certain
other spaces of relatively nonexpansive operators converge strongly to its unique
fixed point. As we have just noted above, in the different situation considered now,
the iterates of a generic operator converge to a retraction onto its fixed point set F .

5.11 Two Lemmata

This section is devoted to two lemmata. The first one shows that sequential com-
patibility implies condition A(i), while the second shows that the retraction, the
existence of which is stipulated in condition A(iv), belongs to M.

Lemma 5.18 If the convex function f is sequentially compatible with the relative
topology of K , then it satisfies condition A(i).

Proof Let the convex function f be sequentially compatible with the relative topol-
ogy of K . For any nonempty set E ⊂ K and any t ≥ 0, set

νf (E, t) = inf
{
Df (y, x) : x ∈ E,y ∈ X and ‖y − x‖ = t

}
.

Since f is assumed to be sequentially compatible with the relative topology of K ,
νf (E, t) > 0 for any nonempty and bounded set E ⊂ K , and any t > 0, and the
function νf (x, ·) is strictly increasing (see Proposition 1.2.2 of [28]).

Assume now that we are given a nonempty and bounded subset M of K and an
ε > 0. Let δ = νf (M,ε). If x ∈ M , y ∈ F and Df (y, x) ≤ δ, then

νf

(
x,‖y − x‖)≤ Df (y, x) ≤ δ ≤ νf (x, ε).

Since the function νf (x, ·) is strictly increasing, we conclude that ‖y − x‖ ≤ ε.
Lemma 5.18 is proved. �

Note that the functions in the examples (i)–(iv) listed in the previous section
are all sequentially compatible with the relative topology of any closed and convex
subset of their respective domains.

Lemma 5.19 Let an operator P : K → F be as guaranteed in condition A(iv).
Then for any x ∈ K and for any z ∈ F , we have

Df (z,Px) ≤ Df (z, x). (5.107)
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Proof Fix x ∈ K and z ∈ F . Denote x̂ = Px and let

u(α) = x̂ + α(z − x̂) (5.108)

for any α ∈ [0,1]. Observe that Df (·, x) and f are convex and, therefore, the fol-
lowing limits exist, and for all y ∈ K and d ∈ X,

[
Df (·, x)

]0
(y, d)

= lim
t→0+

[
Df (y + td, x) − Df (y, x)

]
/t

= lim
t→0+

[
f (y + td) − f (x) + f 0(x, x − y − td)

− (
f (y) − f (x) + f 0(x, x − y)

)]
/t

= lim
t→0+

[
f (y + td) − f (y)

]
/t + lim

t→0+
[
f 0(x, x − y − td) − f 0(x, x − y)

]
/t

= f 0(y, d) + lim
t→0+

[
f 0(x, x − y − td) − f 0(x, x − y)

]
/t.

The function f 0(x, ·) is subadditive and positively homogeneous because f is
convex. Consequently, we have

f 0(x, x − y) ≤ f 0(x, x − y − td) + tf 0(x, d).

Combining this inequality and the previous formula, we get

[
Df (·, x)

]0
(y, d) ≥ f 0(y, d) − f 0(x, d). (5.109)

Now since x̂ = Px, we have by (5.104) and (5.109) that for any α ∈ (0,1],

0 ≥ Df (x̂, x) − Df

(
u(α), x

)≥ [
Df (·, x)

]0(
u(α), x̂ − u(α)

)

= [
Df (·, x)

]0(
u(α),−α(z − x̂)

)= α
[
Df (·, x)

]0(
u(α), x̂ − z

)

≥ α
[
f 0(u(α), x̂ − z

)− f 0(x, x̂ − z)
]
.

Hence, for any α ∈ (0,1], we get

f 0(x, x̂ − z) ≥ f 0(u(α), x̂ − z
)
. (5.110)

Note that by A(iii), the function φ(x) = f 0(x, x − z), x ∈ K , is lower semicontinu-
ous. Hence the function φ(u(α)), α ∈ [0,1], is also lower semicontinuous. Since

φ
(
u(α)

)= f 0(u(α),u(α) − z
)= (1 − α)f 0(u(α), x̂ − z

)
, α ∈ [0,1),

the function α → f 0(u(α), x̂ − z), α ∈ [0,1), is lower semicontinuous too.
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Applying lim infα→0+ to both sides of inequality (5.110), we see that

f 0(x, x̂ − z) ≥ f 0(x̂, x̂ − z).

This, in turn, implies that

f (z) − f (x̂) + f 0(x, x̂ − z) ≥ Df (z, x̂).

Since f 0(x, ·) is sublinear, it follows that

f (z) − f (x̂) + f 0(x, x̂ − x) + f 0(x, x − z) ≥ Df (z, x̂).

Hence

Df (z, x) + [
f (z) − f (x̂) − f (z) + f (x) + f 0(x, x̂ − x)

]≥ Df (z, x̂). (5.111)

Note that the quantity between square brackets is exactly

−[f (x̂) − f (x) − f 0(x, x̂ − x)
]≤ 0

because f is convex. This inequality and (5.111) imply (5.107). The proof of
Lemma 5.19 is complete. �

In the remaining sections of this chapter we use the following notation.
For each x ∈ K and each nonempty G ⊂ K , set

ρf (x,G) := inf
{
Df (z, x) : z ∈ G

}
. (5.112)

5.12 Convergence of Powers of Uniformly Continuous Mappings

We assume that the operator P , the existence of which is stipulated in condition
A(iv), belongs to Mu, and that the following condition holds:

For each bounded set K0 ⊂ K and each ε > 0, there is δ > 0

such that if x ∈ K0, z ∈ F and ‖z − x‖ ≤ δ, then Df (z, x) ≤ ε. (5.113)

Remark 5.20 Note that condition (5.113) indeed holds if the function f is Lips-
chitzian on each bounded subset of K .

Theorem 5.21 There exists a set F ⊂ Mu, which is a countable intersection of
open and everywhere dense subsets of Mu, such that for each B ∈F , the following
assertions hold:

(i) There exists PB ∈ Mu such that PB(K) = F and Bnx → PBx as n → ∞,
uniformly on bounded subsets of K ;
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(ii) for each ε > 0 and each bounded set C ⊂ K , there exist a neighborhood U of
B in Mu and an integer N ≥ 1 such that for each S ∈ U , each x ∈ C and each
integer n ≥ N ,

∥
∥Snx − PBx

∥
∥≤ ε.

This theorem is established in Sect. 5.15.

5.13 Convergence to a Retraction

In this section we assume that the function Df (·, ·) : F × K → R1 is uniformly
continuous on bounded subsets of F × K and state two theorems, the proofs of
which will be given in Sect. 5.16.

Theorem 5.22 There exists a set F ⊂ M, which is a countable intersection of open
and everywhere dense subsets of M, such that for each B ∈F , the following asser-
tions hold:

1. There exists PB ∈ M such that PB(K) = F and Bnx → PBx as n → ∞, uni-
formly on bounded subsets of K ; if B ∈Mc , then PB ∈Mc.

2. For each ε > 0 and each nonempty bounded set C ⊂ K , there exist a neighbor-
hood U of B in M and a natural number N such that for each S ∈ U and each
x ∈ C, there is z(S, x) ∈ F such that ‖Snx − z(S, x)‖ ≤ ε for all integers n ≥ N .

Moreover, if P ∈Mc , then there exists a set Fc ⊂ F ∩Mc, which is a countable
intersection of open and everywhere dense subsets of Mc.

Theorem 5.23 Let the set F ⊂ M be as guaranteed in Theorem 5.22, B ∈ F ∩
Mc, PBz = limn→∞ Bnz, z ∈ K , and let x ∈ K , ε > 0 be given. Then there exist
a neighborhood U of B in M, a number δ > 0 and a natural number N such
that for each y ∈ K satisfying ‖x − y‖ ≤ δ, each S ∈ U and each integer n ≥ N ,
‖Sny − PBx‖ ≤ ε.

5.14 Auxiliary Results

In this section we prove two lemmata which will be used in the proofs of our theo-
rems. We use the convention that S0x = x for each x ∈ K and each S ∈M.

For each γ ∈ (0,1) and each T ∈M, define a mapping Tγ : K → K by

Tγ x = γPx + (1 − γ )T x, x ∈ K (5.114)

(see condition A(iv)).
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Lemma 5.24 Let T ∈ M and γ ∈ (0,1). Then Tγ ∈ M. If T ,P ∈ Mu (respec-
tively, T ,P ∈Mc), then Tγ ∈ Mu (respectively, Tγ ∈Mc).

Proof Clearly Tγ ∈ M and Tγ x = x for all x ∈ F . By (5.114), A(iii), (5.101), A(iv)
and Lemma 5.19, for each z ∈ F and each x ∈ K ,

Df (z,Tγ x) = Df

(
z, γPx + (1 − γ )T x

)

≤ γDf (z,Px) + (1 − γ )Df (z,T x) ≤ Df (z, x).

Thus Tγ ∈ M. Clearly, Tγ ∈ Mu if T ,P ∈ Mu and Tγ ∈ Mc if T ,P ∈ Mc.
Lemma 5.24 is proved. �

It is obvious that for each T ∈ M,

Tγ → T as γ → 0+ in M. (5.115)

Lemma 5.25 Let T ∈M, γ ∈ (0,1) and let x ∈ K . Then

ρf (Tγ x,F ) ≤ (
1 − γ 2)ρf (x,F ). (5.116)

Proof Let ε > 0 be given. There exists y ∈ F such that (see (5.112))

Df (y, x) ≤ ρf (x,F ) + ε. (5.117)

It follows from (5.114), A(iv), Lemma 5.19, A(iii) and (5.101) that

ρf (Tγ x,F ) = ρf

(
γPx + (1 − γ )T x,F

)

≤ Df

(
γPx + (1 − γ )y, (1 − γ )T x + γPx

)

≤ γDf

(
Px,γPx + (1 − γ )T x

)+ (1 − γ )Df

(
y, γPx + (1 − γ )T x

)

≤ γ 2Df (Px,Px) + γ (1 − γ )Df (Px,T x)

+ (1 − γ )γDf (y,Px) + (1 − γ )2Df (y,T x)

≤ γ (1 − γ )Df (Px, x) + (1 − γ )γDf (y,Px) + (1 − γ )2Df (y,T x).

(5.118)

It follows from (5.118), A(iv), Lemma 5.19 and (5.117) that

ρf (Tγ x,F ) ≤ γ (1 − γ )ρf (x,F ) + (1 − γ )γDf (y, x) + (1 − γ )2Df (y, x)

≤ ε + (
1 − γ 2)ρf (x,F ).

Since ε is an arbitrary positive number, we conclude that (5.116) holds. This com-
pletes the proof of Lemma 5.25. �
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5.15 Proof of Theorem 5.21

We begin with the following lemma.

Lemma 5.26 Let T ∈Mu, γ ∈ (0,1), ε > 0 and let K0 be a nonempty and bounded
subset of K . Then there exist a neighborhood U of Tγ in Mu and a natural number
N such that for each x ∈ K0, there exists Qx ∈ F such that for each integer n ≥ N

and each S ∈ U ,
∥∥Snx − Qx

∥∥≤ ε.

Proof Set

K1 =
⋃{

Si(K0) : S ∈M, i ≥ 0
}
. (5.119)

Assumption A(ii) and (5.101) imply that the set K1 is bounded. Evidently,

S(K1) ⊂ K1 for all S ∈ M(F ). (5.120)

By A(i), there exists ε0 ∈ (0, ε) such that

if x ∈ K1, z ∈ F and Df (z, x) ≤ ε0, then ‖z − x‖ ≤ 4−1ε. (5.121)

By (5.113), there is ε1 ∈ (0,2−1ε0) such that

if x ∈ K1, z ∈ F and ‖x − z‖ ≤ 2ε1, then Df (z, x) ≤ 2−1ε0. (5.122)

By A(i), there is ε2 ∈ (0,2−1ε1) such that

if x ∈ K1, z ∈ F and Df (z, x) ≤ 2ε2, then ‖x − z‖ ≤ 2−1ε1. (5.123)

Set

c0 = sup
{
ρf (x,F ) : x ∈ K1

}
. (5.124)

By A(ii), c0 < ∞. Choose a natural number N ≥ 4 such that

(
1 − γ 2)N(c0 + 1) ≤ 2−1ε2. (5.125)

It follows from Lemma 5.25, (5.124) and (5.125) that for each x ∈ K1,

ρf

(
T N

γ x,F
)≤ (

1 − γ 2)Nρf (x,F ) ≤ (
1 − γ 2)Nc0 < 2−1ε2.

Thus for each x ∈ K1, there is Qx ∈ F such that Df (Qx,T N
γ x) ≤ 2−1ε2. When

combined with (5.120) and (5.123), the last inequality implies that

∥∥T N
γ x − Qx

∥∥≤ 2−1ε1 for all x ∈ K1. (5.126)
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By Proposition 5.13, there exists a neighborhood U of Tγ in Mu such that for each
x ∈ K1 and each S ∈ U ,

∥
∥SNx − T N

γ x
∥
∥≤ 4−1ε1. (5.127)

Assume that x ∈ K0 and S ∈ U . Evidently, {Six}∞i=0 ⊂ K1. By (5.126) and
(5.127), ‖SNx − Qx‖ ≤ 3 · 4−1ε1. It follows from this inequality and (5.122) that
Df (Qx,SNx) ≤ 2−1ε0. Since S ∈ Mu, it follows from the last inequality that
Df (Qx,Snx) ≤ 2−1ε0 for all integers n ≥ N . When combined with (5.121), this
implies that ‖Qx − Snx‖ ≤ ε for all integers n ≥ N . Lemma 5.26 is proved. �

Proof of Theorem 5.21 By (5.115), the set {Tγ : T ∈ Mu, γ ∈ (0,1)} is an every-
where dense subset of Mu. For each natural number i, set

Ki = {
x ∈ K : ‖x − θ‖ ≤ i

}
. (5.128)

By Lemma 5.26, for each T ∈ Mu, each γ ∈ (0,1) and each integer i ≥ 1, there
exist an open neighborhood U(T , γ, i) of Tγ in Mu and a natural number N(T ,γ, i)

such that the following property holds:

P(i) For each x ∈ K2i , there is Qx ∈ F such that

∥
∥Snx − Qx

∥
∥≤ 2−i for all integers n ≥ N(T ,γ, i) and all S ∈ U(T , γ, i).

Define

F :=
∞⋂

q=1

⋃{
U(T , γ, q) : T ∈Mu, γ ∈ (0,1)

}
.

Clearly, F is a countable intersection of open and everywhere dense subsets of Mu.
Let B ∈ F , ε > 0 and let C be a bounded subset of K . There exists an integer

q ≥ 1 such that

C ⊂ K2q and 2−q < 4−1ε. (5.129)

There also exist T ∈ Mu and γ ∈ (0,1) such that

B ∈ U(T , γ, q). (5.130)

It now follows from Property P(i), (5.129) and (5.130) that the following property
also holds:

P(ii) For each x ∈ C, there is Qx ∈ F such that

∥∥Snx − Qx
∥∥≤ 4−1ε

for each integer n ≥ N(T ,γ, q) and each S ∈ U(T , γ, q).
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Property P(ii) and (5.130) imply that for each x ∈ C and each integer n ≥
N(T ,γ, q),

∥∥Bnx − Qx
∥∥≤ 4−1ε. (5.131)

Since ε is an arbitrary positive number and C is an arbitrary bounded subset of K ,
we conclude that for each x ∈ K , {Bnx}∞n=1 is a Cauchy sequence. Therefore for
each x ∈ K , there exists

PBx = lim
n→∞Bnx. (5.132)

By (5.131) and (5.132), for each x ∈ C,

‖PBx − Qx‖ ≤ 4−1ε. (5.133)

Once again, since ε is an arbitrary positive number and C is an arbitrary bounded
subset of K , we conclude that

PB(K) = F. (5.134)

It now follows from property (Pii) and (5.133) that for each x ∈ C, each S ∈
U(T , γ, q) and each integer n ≥ N(T ,γ, q),

∥∥Snx − PBx
∥∥≤ 2−1ε.

This completes the proof of Theorem 5.21. �

5.16 Proofs of Theorems 5.22 and 5.23

We begin with four lemmata.

Lemma 5.27 Let K0 be a nonempty and bounded subset of K , and let β be a posi-
tive number. Then the set {(z, y) ∈ F × K0 : Df (z, y) ≤ β} is bounded.

Proof If this assertion were not true, then there would exist a sequence {(zi,

xi)}∞i=1 ⊂ F × K0 such that

Df (zi, xi) ≤ β, i = 1,2, . . . , and ‖zi‖ → ∞ as i → ∞. (5.135)

By (5.101), Df (zi,P xi) ≤ β , i = 1,2, . . . . Clearly, the sequence {Pxi}∞i=1 is
bounded. We may assume that ‖zi −Pxi‖ ≥ 16, i = 1,2, . . . . For each integer i ≥ 1,
there exists αi > 0 such that

∥∥[(1 − αi)Pxi + αizi

]− Pxi

∥∥= 1. (5.136)

Clearly, αi → 0 as i → ∞. It is easy to see that for each integer i ≥ 1,

Df

(
(1 − αi)Pxi + αizi,P xi

)≤ αiDf (zi,P xi) ≤ αiβ → 0 as i → ∞.
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When combined with A(i), this implies that ‖Pxi − [(1 − αi)Pxi + αizi]‖ →
0 as i → ∞. Since this contradicts (5.136), Lemma 5.27 follows. �

Lemma 5.28 Let T ∈ M, γ, ε ∈ (0,1) and let K0 be a nonempty and bounded
subset of K . Then there exists a neighborhood U of Tγ in M such that for each
S ∈ U and each x ∈ K0 satisfying ρf (x,F ) > ε, the following inequality holds:

ρf (Sx,F ) ≤ ρf (x,F ) − εγ 2/4. (5.137)

Proof Set

K1 =
⋃{

Si(K0) : S ∈M, i ≥ 0
}
. (5.138)

Assumption A(ii) and (5.101) imply that the set K1 is bounded. Evidently, S(K1) ⊂
K1 for all S ∈ M. By A(ii), there exists c0 > 0 such that

4 + sup
{
Df (θ, x) : x ∈ K1

}
< c0. (5.139)

By Lemma 5.27, there exists a number c1 > 0 such that

if (z, x) ∈ F × K1 and Df (z, x) ≤ c0 + 2, then ‖z‖ ≤ c1. (5.140)

We may assume without loss of generality that

c1 > sup
{‖Px‖ : x ∈ K1

}
. (5.141)

Since Df (·, ·) is uniformly continuous on bounded subsets of F × K , there exists a
number δ ∈ (0,2−1) such that for each pair of points,

(z, x1), (z, x2) ∈ {ξ ∈ F : ‖ξ‖ ≤ c1
}× K1

satisfying ‖x1 − x2‖ ≤ δ, the following inequality holds:
∣∣Df (z, x1) − Df (z, x2)

∣∣≤ 4−1εγ 2. (5.142)

Set

U = {
S ∈ M : ‖Sx − Tγ x‖ ≤ δ for all x ∈ K1

}
. (5.143)

It is clear that U is a neighborhood of Tγ in M.
Assume that

S ∈ U, x ∈ K0 and ρf (x,F ) > ε. (5.144)

We claim that (5.137) is valid. By Lemma 5.25,

ρf (Tγ x,F ) ≤ (
1 − γ 2)ρf (x,F ). (5.145)

Let

Δ ∈ (0,4−1γ 2ε
)
. (5.146)
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There is z ∈ F such that

Df (z,Tγ x) ≤ (
1 − γ 2)ρf (x,F ) + Δ. (5.147)

By (5.147), (5.146), (5.139) and (5.140),

Df (z,Tγ x) ≤ c0 and ‖z‖ ≤ c1. (5.148)

By (5.143) and (5.144),

‖Tγ x − Sx‖ ≤ δ. (5.149)

By (5.148) and (5.142),

(z, Tγ x), (z, Sx) ∈ {ξ ∈ F : ‖ξ‖ ≤ c1
}× K1. (5.150)

By (5.150), (5.149) and the definition of δ (see (5.142)),

∣∣Df (z,Tγ x) − Df (z,Sx)
∣∣≤ 4−1εγ 2.

When combined with (5.147) and (5.146), this implies that

ρf (Sx,F ) ≤ Df (z,Sx) ≤ 4−1εγ 2 + Df (z,Tγ x)

≤ 4−1εγ 2 + (
1 − γ 2)ρf (x,F ) + Δ

≤ (
1 − γ 2)ρf (x,F ) + 2−1εγ 2.

Thus

ρf (Sx,F ) ≤ (
1 − γ 2)ρf (x,F ) + 2−1εγ 2.

Inequality (5.137) follows from this inequality and (5.144). Lemma 5.28 is
proved. �

Lemma 5.29 Let T ∈ M, γ, ε ∈ (0,1) and let K0 be a nonempty and bounded
subset of K . Then there exist a neighborhood U of Tγ in M and a natural number
N such that for each S ∈ U and each x ∈ K0,

ρf

(
SNx,F

)≤ ε. (5.151)

Proof Define the set K1 by (5.138). Assumption A(ii) and (5.101) imply that the set
K1 is bounded. Clearly, S(K1) ⊂ K1 for all S ∈ Mu. By A(ii), there is a positive
number c0 such that (5.139) is valid. By Lemma 5.28, there exists a neighborhood
U of Tγ in M such that for each S ∈ U and each x ∈ K1 satisfying ρf (x,F ) > ε,
the following inequality holds:

ρf (Sx,F ) ≤ ρf (x,F ) − εγ 2/4. (5.152)
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Choose a natural number N for which

8−1εγ 2N > c0 + 1. (5.153)

Assume that S ∈ U and x ∈ K0. We claim that inequality (5.151) is valid. If
it were not, then we would have ρ(Six,F ) > ε for all i = 0, . . . ,N . When com-
bined with the definition of U (see (5.152)), these inequalities imply that for all
i = 0, . . . ,N − 1,

ρf

(
Si+1x,F

)≤ ρf

(
Six,F

)− εγ 2/4.

Therefore

ρf

(
SNx,F

)≤ ρf (x,F ) − εγ 2N/4.

By this inequality, (5.139) and (5.153),

0 ≤ ρf

(
Snx,F

)≤ c0 − 4−1εγ 2N ≤ −1.

This contradiction proves (5.151) and Lemma 5.29 follows. �

Lemma 5.30 Let T ∈ M, γ, ε ∈ (0,1) and let K0 be a nonempty and bounded
subset of K . Then there exist a neighborhood U of Tγ in M and a natural number
N such that for each S ∈ U and each x ∈ K0, there is z(S, x) ∈ F such that

∥∥Six − z(S, x)
∥∥≤ ε for all integers i ≥ N. (5.154)

Proof Define K1 by (5.138). Assumption A(ii) and (5.101) imply that K1 is
bounded. By Assumption A(i), there exists δ ∈ (0,1) such that

if x ∈ K1, z ∈ F and Df (z, x) ≤ δ, then ‖x − z‖ ≤ 2−1ε. (5.155)

By Lemma 5.29, there exists a neighborhood U of Tγ in M and a natural number
N such that

ρf

(
SNx,F

)≤ δ/2 for each S ∈ U and x ∈ K1.

This implies that for each x ∈ K0 and each S ∈ U , there is z(S, x) ∈ F for which
Df (z(S, x), SNx) < δ. When combined with (5.155) this implies that for each
x ∈ K0, each S ∈ U , and each integer i ≥ N ,

Df

(
z(S, x), Six

)
< δ and

∥∥Six − z(S, x)
∥∥≤ 2−1ε.

Lemma 5.30 is proved. �

Proof of Theorem 5.22 By (5.115), the set {Tγ : T ∈ M, γ ∈ (0,1)} is an every-
where dense subset of M and if P ∈ Mc, then {Tγ : T ∈ Mc, γ ∈ (0,1)} is an
everywhere dense subset of Mc. For each natural number i, set

Ki = {
x ∈ K : ‖x − θ‖ ≤ i

}
. (5.156)
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By Lemma 5.30, for each T ∈ M, each γ ∈ (0,1), and each integer i ≥ 1, there
exist an open neighborhood U(T , γ, i) of Tγ in M and a natural number N(T ,γ, i)

such that the following property holds:

P(iii) For each x ∈ K2i and each S ∈ U(T , γ, i), there is z(S, x) ∈ F such that
∥∥Snx − z(S, x)

∥∥≤ 2−i for all integers n ≥ N(T ,γ, i).

Define

F :=
∞⋂

q=1

⋃{
U(T , γ, q) : T ∈M, γ ∈ (0,1)

}
.

Clearly, F is a countable intersection of open and everywhere dense subsets of M.
If P ∈Mc, then we define

Fc :=
[ ∞⋂

q=1

⋃{
U(T , γ, q) : T ∈ Mc, γ ∈ (0,1)

}
]

∩Mc.

In this case, Fc ⊂ F and Fc is a countable intersection of open and everywhere
dense subsets of Mc.

Let B ∈ F , ε > 0, and let C be a bounded subset of K . There exists an integer
q ≥ 1 such that

C ⊂ K2q and 2−q < 4−1ε. (5.157)

There also exist T ∈ M and γ ∈ (0,1) such that

B ∈ U(T , γ, q). (5.158)

Note that if P ∈ Mc and B ∈Fc, then T ∈ Mc.
It follows from Property P(iii), (5.157) and (5.158) that the following property

also holds:

P(iv) For each S ∈ U(T , γ, q) and each x ∈ C, there is z(S, x) ∈ F such that ‖Snx−
z(S, x)‖ ≤ 4−1ε for each integer n ≥ N(T ,γ, q).

Relation (5.158) and property P(iv) imply that for each x ∈ C and each integer
n ≥ N(T ,γ, q),

∥∥Bnx − z(B,x)
∥∥≤ 4−1ε. (5.159)

Since ε is an arbitrary positive number and C is an arbitrary bounded subset of K ,
we conclude that for each x ∈ K , {Bnx}∞n=1 is a Cauchy sequence. Therefore for
each x ∈ K , there exists

PBx = lim
n→∞Bnx.

Now (5.159) implies that for each x ∈ C,
∥∥PBx − z(B,x)

∥∥≤ 4−1ε. (5.160)
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Once again, since ε is an arbitrary positive number and C is an arbitrary bounded
subset of K , we conclude that

PB(K) = F.

It follows from (5.159) and (5.160) that for each x ∈ C and each integer n ≥
N(T ,γ, q),

∥∥Bnx − PBx
∥∥≤ 2−1ε.

This implies that PB ∈ M and if B ∈ Mc, then PB ∈ Mc. Theorem 5.22 is estab-
lished. �

We will use the next lemma in the proof of Theorem 5.23.

Lemma 5.31 Let B ∈ Mc, x ∈ K , ε ∈ (0,1) and let N ≥ 1 be an integer. Then
there exist a neighborhood U of B in M and a number δ > 0 such that for each
S ∈ U and each y ∈ K satisfying ‖y − x‖ ≤ δ, the following inequality holds:

∥∥Sny − Bnx
∥∥≤ ε.

This lemma is proved by induction on n.

Proof of Theorem 5.23 By Theorem 5.22, there exist a natural number N and a
neighborhood U0 of B in M such that
∥∥PBy − Bny

∥∥≤ 8−1ε for each y ∈ K satisfying ‖y − x‖ ≤ 1 and each n ≥ N;
(5.161)

and for each S ∈ U0 and each y ∈ K satisfying ‖y − x‖ ≤ 1, there is z(S, y) ∈ F

such that
∥∥Sny − z(S, y)

∥∥≤ 8−1ε for all integers n ≥ N. (5.162)

By Lemma 5.31, there exist a number δ ∈ (0,1) and a neighborhood U of B in M
such that U ⊂ U0 and
∥∥SNy − BNx

∥∥≤ 8−1ε for each S ∈ U and each y ∈ K for which ‖y − x‖ ≤ δ.

(5.163)

Assume that

y ∈ K, ‖x − y‖ ≤ δ and S ∈ U. (5.164)

By (5.164), (5.163) and (5.161),
∥∥SNy − BNx

∥∥≤ 8−1ε,
∥∥SNy − z(S, y)

∥∥≤ 8−1ε and
∥∥PBx − BNx

∥∥≤ 8−1ε.
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These inequalities imply that
∥∥z(S, y) − PBx

∥∥≤ 3 · 8−1ε.

When combined with (5.162), the last inequality implies that
∥∥Sny − PBx

∥∥≤ 2−1ε for all integers n ≥ N.

This completes the proof of Theorem 5.23. �

5.17 Convergence of Powers for a Class of Continuous Operators

In this section we assume that P ∈Mc and that the function

Df (z, ·) : K → R1 is continuous for all z ∈ F. (5.165)

Theorem 5.32 Let x ∈ K . Then there exists a set F ⊂ Mc, which is a countable
intersection of open and everywhere dense subsets of Mc, such that for each B ∈F ,
the following assertions hold:

1. There exists limn→∞ Bnx ∈ F .
2. For each ε > 0, there exist a neighborhood U of B in Mc , a natural number N

and a number δ > 0 such that for each S ∈ U , each y ∈ K satisfying ‖y −x‖ ≤ δ

and each integer n ≥ N , ‖Sny − limi→∞ Bix‖ ≤ ε.

We equip the space K ×Mc with the product topology.

Theorem 5.33 There exists a set F ⊂ K × Mc, which is a countable intersection
of open and everywhere dense subsets of K × Mc, such that for each (z,B) ∈ F ,
the following assertions hold:

1. There exists limn→∞ Bnz ∈ F .
2. For each ε > 0, there exist a neighborhood U of (z,B) in K ×Mc and a natural

number N such that for each (y, S) ∈ U and each integer n ≥ N ,
∥∥∥Sny − lim

i→∞Biz

∥∥∥≤ ε.

Theorem 5.34 Assume that the set K0 is a nonempty, separable and closed subset
of K . Then there exists a set F ⊂ Mc, which is a countable intersection of open
and everywhere dense subsets of Mc, such that for each T ∈ F , there exists a set
KT ⊂ K0, which is a countable intersection of open and everywhere dense subsets
of K0 with the relative topology, such that the following assertions hold:

1. For each x ∈KT , there exists limn→∞ T nx ∈ F .
2. For each x ∈ KT and each ε > 0, there exist an integer N ≥ 1 and a neighbor-

hood U of (x, T ) in K × Mc such that for each (y, S) ∈ U and each integer
i ≥ N , ‖Siy − limn→∞ T nx‖ ≤ ε.
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5.18 Proofs of Theorems 5.32–5.34

We precede the proofs of Theorems 5.32 and 5.33 by the following lemma.

Lemma 5.35 Let T ∈Mc, γ, ε ∈ (0,1) and let x ∈ K . Then there exist a neighbor-
hood U of Tγ in Mc, a natural number N , a point ẑ ∈ F and a number δ > 0 such
that for each S ∈ U , each y ∈ K satisfying ‖y − x‖ ≤ δ and each integer n ≥ N ,

∥∥Sny − ẑ
∥∥≤ ε. (5.166)

Proof Define

K1 :=
⋃{

Si
({y ∈ K : ‖y − x‖ ≤ 1}) : S ∈ M, i = 0,1, . . .

}
. (5.167)

By A(ii) and (5.101), the set K1 is bounded. By A(i), there is ε0 ∈ (0, ε/2) such that

if z ∈ F,y ∈ K1 and Df (z, y) ≤ 2ε0, then ‖z − y‖ ≤ ε/2. (5.168)

Choose a natural number N for which

(
1 − γ 2)N (ρf (x,F ) + 1

)
< ε0/8. (5.169)

By Lemma 5.25, this implies that

ρf

(
T N

γ x,F
)≤ (

1 − γ 2)Nρf (x,F ) < ε0/8.

Therefore there exists ẑ ∈ F for which

Df

(
ẑ, T N

γ x
)
< ε0/8. (5.170)

Since the function Df (̂z, ·) : K → R1 is continuous (see (5.165)), there exists ε1 ∈
(0, ε0/2) such that

Df (̂z, ξ) < ε0/8 for all ξ ∈ K satisfying
∥∥ξ − T N

γ x
∥∥≤ ε1. (5.171)

It follows from the continuity of Tγ that there exist a neighborhood U of Tγ in
Mc and a number δ ∈ (0,1) such that for each S ∈ U and each y ∈ K satisfying
‖y − x‖ ≤ δ,

∥∥SNy − T N
γ x

∥∥≤ ε1 (5.172)

(see Lemma 5.31).
Assume that

S ∈ U, y ∈ K, and ‖y − x‖ ≤ δ.

By the definition of U and δ, inequality (5.172) is valid. By (5.172) and (5.173),
Df (̂z, SNy) < ε0/8. This implies that Df (̂z, Sny) < ε0/8 for all integers n ≥ N .
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When combined with (5.168), this implies that ‖̂z−Sny‖ ≤ ε for all integers n ≥ N .
Lemma 5.35 is proved. �

Proof of Theorem 5.32 Let x ∈ K be given. By Lemma 5.35, for each T ∈ Mc,
each γ ∈ (0,1) and each integer i ≥ 1, there exist an open neighborhood U(T , γ, i)

of Tγ in Mc, a natural number N(T ,γ, i), a point z(T , γ, i) ∈ F and a number
δ(T , γ, i) > 0 such that the following property holds:

(Pv) For each S ∈ U(T , γ, i), each y ∈ K satisfying ‖x − y‖ ≤ δ(T , γ, i) and each
integer n ≥ N(T ,γ, i),

∥∥Sny − z(T , γ, i)
∥∥≤ 2−i .

Define

F :=
∞⋂

q=1

⋃{
U(T , γ, q) : T ∈Mc, γ ∈ (0,1)

}
.

Clearly, F is a countable intersection of open and everywhere dense subsets of Mc.
Let B ∈ F and ε > 0 be given. There exists an integer q ≥ 1 such that

2−q < 4−1ε. (5.173)

There also exist T ∈ Mc and γ ∈ (0,1) such that

B ∈ U(T , γ, q). (5.174)

It follows from property (Pv) and (5.173) that the following property also holds:

(Pvi) For each S ∈ U(T , γ, q), each y ∈ K satisfying ‖y−x‖ ≤ δ(T , γ, q) and each
integer n ≥ N(T ,γ, q),

∥∥Sny − z(T , γ, q)
∥∥≤ 4−1ε. (5.175)

Since ε is an arbitrary positive number, we conclude that {Bnx}∞n=1 is a Cauchy
sequence and there exists limn→∞ Bnx. Inequality (5.175) implies that

∥∥∥ lim
n→∞Bnx − z(T , γ, q)

∥∥∥≤ 4−1ε.

Since ε is an arbitrary positive number, we conclude that limn→∞ Bnx belongs to F .
It follows from this inequality and property (Pvi) that for each S ∈ U(T , γ, q), each
y ∈ K satisfying ‖y − x‖ ≤ δ(T , γ, q), and each integer n ≥ N(T ,γ, q),

∥
∥∥Sny − lim

i→∞Bix

∥
∥∥≤ 2−1ε.

Theorem 5.32 is proved. �
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Proof of Theorem 5.33 By Lemma 5.35, for each (x, T ) ∈ K ×Mc, each γ ∈ (0,1),
and each integer i ≥ 1, there exist an open neighborhood U(x,T , γ, i) of (x, Tγ ) in
K ×Mc, a natural number N(x,T , γ, i) and a point z(x,T , γ, i) ∈ F such that the
following property holds:

(Pvii) For each (y, S) ∈ U(x,T , γ, i) and each integer n ≥ N(x,T , γ, i),
∥∥Sny − z(x,T , γ, i)

∥∥≤ 2−i .

Define

F :=
∞⋂

q=1

⋃{
U(x,T , γ, q) : (x, T ) ∈ K ×Mc, γ ∈ (0,1)

}
.

Clearly, F is a countable intersection of open and everywhere dense subsets of
K ×Mc.

Let (z,B) ∈F and ε > 0 be given. There exists an integer q ≥ 1 such that

2−q < 4−1ε. (5.176)

There exist x ∈ K , T ∈Mc, and γ ∈ (0,1) such that

(z,B) ∈ U(x,T , γ, q). (5.177)

By (5.176) and property (Pvii), the following property also holds:

(Pviii) For each (y, S) ∈ U(x,T , γ, q) and each integer n ≥ N(x,T , γ, q),
∥∥Sny − z(x,T , γ, q)

∥∥≤ 4−1ε. (5.178)

Since ε is an arbitrary positive number, we conclude that {Bnz}∞n=1 is a Cauchy
sequence and there exists limn→∞ Bnz. Property (Pviii) and (5.177) now imply that

∥∥∥ lim
n→∞Bnz − z(x,T , γ, q)

∥∥∥≤ 4−1ε. (5.179)

Since ε is an arbitrary positive number, we conclude that limn→∞ Bnz ∈ F . It fol-
lows from (5.179) and property (Pviii) that for each (y, S) ∈ U(x,T , γ, q) and each
integer n ≥ N(x,T , γ, q),

∥∥∥Sny − lim
i→∞Biz

∥∥∥≤ 2−1ε.

This completes the proof of Theorem 5.33. �

Proof of Theorem 5.34 Assume that K0 is a nonempty, closed and separable subset
of K . Let {xj }∞j=1 ⊂ K0 be a sequence such that K0 is the closure of {xj }∞j=1. For
each integer p ≥ 1, there exists by Theorem 5.32 a set Fp ⊂ Mc which is a count-
able intersection of open and everywhere dense subsets of Mc such that for each
T ∈ Fp , the following properties hold:
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C(i) There exists limn→∞ T nxp ∈ F .
C(ii) For each ε > 0, there exist a neighborhood U of T in Mc, a number δ > 0

and a natural number N such that for each S ∈ U , each y ∈ K satisfying
‖y − xp‖ ≤ δ and each integer m ≥ N ,

∥∥∥Smy − lim
n→∞T nxp

∥∥∥≤ ε.

Set

F =
∞⋂

p=1

Fp. (5.180)

Clearly, F is a countable intersection of open and everywhere dense subsets of Mc.
Assume that T ∈ F . Then for each p ≥ 1, there exists limn→∞ T nxp ∈ F .
Now we construct the set KT ⊂ K0. By property C(ii), for each pair of natural

numbers q , i, there exist a neighborhood U(q, i) of T in Mc, a number δ(q, i) > 0
and a natural number N(q, i) such that the following property holds:

C(iii) For each S ∈ U(q, i), each y ∈ K satisfying ‖y − xq‖ ≤ δ(q, i), and each
integer m ≥ N(q, i),

∥∥∥Smy − lim
n→∞T nxq

∥∥∥≤ 2−i .

Define

KT :=
∞⋂

n=1

⋃{{
y ∈ K0 : ‖y − xq‖ < δ(q, i)

} : q ≥ 1, i ≥ n
}
. (5.181)

Clearly, KT is a countable intersection of open and everywhere dense subsets of K0.
Assume that x ∈KT and ε > 0 are given. There exists an integer n ≥ 1 such that

2−n < 4−1ε. (5.182)

By (5.181), there exist a natural number q and an integer i ≥ n such that

‖x − xq‖ < δ(q, i). (5.183)

It follows from (5.182) and C(iii) that the following property also holds:

C(iv) For each S ∈ U(q, i), each y ∈ K satisfying ‖y − xq‖ ≤ δ(q, i), and each
integer m ≥ N(q, i),

∥∥∥Smy − lim
j→∞T jxq

∥∥∥≤ 4−1ε.

By property C(iv) and (5.183),
∥∥∥T mx − lim

j→∞T jxq

∥∥∥≤ 4−1ε
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for all integers m ≥ N(q, i). Since ε is an arbitrary positive number, we conclude
that {T mx}∞m=1 is a Cauchy sequence and there exists limm→∞ T mx. We also have

∥∥∥ lim
m→∞T mx − lim

m→∞T mxq

∥∥∥≤ 4−1ε. (5.184)

Since limm→∞ T mxq ∈ F , we conclude that limm→∞ T mx also belongs to F . By
(5.184) and property C(iv), for each S ∈ U(q, i), each y ∈ K satisfying ‖y − x‖ <

δ(q, i) − ‖x − xq‖, and each integer m ≥ N(q, i), we have

∥∥∥Smy − lim
j→∞T jx

∥∥∥≤ 2−1ε.

Theorem 5.34 is proved. �



Chapter 6
Infinite Products

6.1 Nonexpansive and Uniformly Continuous Operators

In this section we discuss several results concerning the asymptotic behavior of (ran-
dom) infinite products of generic sequences of nonexpansive as well as uniformly
continuous operators on bounded, closed and convex subsets of a Banach space.
These results were obtained in [129]. In addition to weak ergodic theorems, we also
study convergence to a unique common fixed point and more generally, to a non-
expansive retraction. Infinite products of operators find application in many areas
of mathematics (see, for example, [17, 18, 38, 57] and the references mentioned
there). More precisely, we show that in appropriate spaces of sequences of opera-
tors there exists a subset which is a countable intersection of open and everywhere
dense sets such that for each sequence belonging to this subset, the corresponding
infinite product converges.

Let X be a Banach space normed by ‖ · ‖ and let K be a nonempty, bounded,
closed and convex subset of X with the topology induced by the norm ‖ · ‖.

Denote by A the set of all sequences {At }∞t=1, where each At : K → K is a
continuous operator, t = 1,2, . . . . Such a sequence will occasionally be denoted by
a boldface A.

For the set A we consider the metric ρs :A×A → [0,∞) defined by

ρs

({At }∞t=1, {Bt }∞t=1

)= sup
{‖Atx − Btx‖ : x ∈ K, t = 1,2, . . .

}
,

{At }∞t=1, {Bt }∞t=1 ∈A. (6.1)

It is easy to see that the metric space (A, ρs) is complete. The topology generated
in A by the metric ρs will be called the strong topology.

In addition to this topology on A, we will also consider the uniformity deter-
mined by the base

E(N,ε) = {({At }∞t=1, {Bt }∞t=1

) ∈A×A :
‖Atx − Btx‖ ≤ ε, t = 1, . . . ,N,x ∈ K

}
, (6.2)
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where N is a natural number and ε > 0. It is easy to see that the space A with this
uniformity is metrizable (by a metric ρw : A × A → [0,∞)) and complete. The
topology generated by ρw will be called the weak topology.

An operator A : K → K is called nonexpansive if

‖Ax − Ay‖ ≤ ‖x − y‖ for all x, y ∈ K.

Define

Ane = {{At }∞t=1 ∈A : At is nonexpansive for t = 1,2, . . .
}
. (6.3)

Clearly, Ane is a closed subset of A in the weak topology. We will consider the
topological subspace Ane ⊂ A with both the relative weak and strong topologies.

We will show (Theorem 6.1) that for a generic sequence {Ct }∞t=1 in the space Ane

with the weak topology,

‖CT · · · · · C1x − CT · · · · · C1y‖ → 0,

uniformly for all x, y ∈ K . We will also prove Theorem 6.2 which shows that for
a generic sequence {Ct }∞t=1 in Ane with the strong topology, this type of uniform
convergence holds for random products of the operators {Ct }∞t=1. (Such results are
usually called weak ergodic theorems in the population biology literature [43].)

We will say that a set E of operators A : K → K is uniformly equicontinuous
(ue) if for any ε > 0, there exists δ > 0 such that ‖Ax − Ay‖ ≤ ε for all A ∈ E and
all x, y ∈ K satisfying ‖x − y‖ ≤ δ.

Define

Aue = {{At }∞t=1 ∈A : {At }∞t=1 is a (ue) set
}
. (6.4)

It is clear that Aue is a closed subset of A in the strong topology.
We will consider the topological subspace Aue ⊂ A with the relative weak and

strong topologies.
Denote by A∗

ne the set of all {At }∞t=1 ∈ Ane such that

∞⋂

t=1

{x ∈ K : Atx = x} �= ∅,

and denote by Ā∗
ne the closure of A∗

ne in the strong topology of the space Ane.
Denote by A∗

ue the set of all A = {At }∞t=1 ∈ Aue for which there exists x(A) ∈ K

such that for each integer t ≥ 1,

Atx(A) = x(A),
∥∥Aty − x(A)

∥∥≤ ∥∥y − x(A)
∥∥ for all y ∈ K,

and denote by Ā∗
ue the closure of A∗

ue in the strong topology of the space Aue.
We will consider the topological subspaces Ā∗

ne and Ā∗
ue with the relative strong

topologies and show (Theorems 6.3 and 6.4) that for a generic sequence {Ct }∞t=1
in the space Ā∗

ne (Ā∗
ue, respectively), there exists a unique common fixed point x∗
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and all random products of the operators {Ct }∞t=1 converge to x∗, uniformly for all
x ∈ K .

Assume that F is a nonempty, closed and convex subset of K , and Q : K → F

is a nonexpansive operator such that

Qx = x, x ∈ F. (6.5)

(Such an operator Q is usually called a nonexpansive retraction of K onto F [68].)
Denote by A(F )

ne the set of all {At }∞t=1 ∈ Ane such that

Atx = x, x ∈ F, t = 1,2, . . . . (6.6)

It is clear that A(F )
ne is a closed subset of Ane in the weak topology.

We will consider the topological subspace A(F )
ne ⊂ Ane with both the relative

weak and strong topologies.
We will show (see Theorem 6.5) that for a generic sequence of operators {Bt }∞t=1

in the space A(F )
ne with the weak topology, there exists a nonexpansive retraction

P∗ : K → F such that

Bt · · · · · B1x → P∗x as t → ∞,

uniformly for all x ∈ K . We will also prove Theorem 6.6, which shows that for a
generic sequence of operators {Bt }∞t=1 in the space A(F )

ne with the strong topology,
all its random products

Br(t) · · · · · Br(1)x

also converge to a nonexpansive retraction Pr : K → F , uniformly for all x ∈ K ,
where r : {1,2, . . .} → {1,2, . . .}. Finally, we will prove Theorem 6.7, which extends
Theorem 6.6 to a larger class of operators described in Sect. 6.3.

In Sect. 6.4 we also point out that our results can, in fact, be extended to all
hyperbolic spaces.

6.2 Asymptotic Behavior

In this section we will first formulate precisely our weak ergodic theorems [129].

Theorem 6.1 There exists a set F ⊂ Ane , which is a countable intersection of
open (in the weak topology) everywhere dense (in the strong topology) subsets of
Ane, such that for each {Bt }∞t=1 ∈ F and each ε > 0, there exist a neighborhood U

of {Bt }∞t=1 in Ane with the weak topology and a natural number N such that:
For each {Ct }∞t=1 ∈ U , each x, y ∈ K and each integer T ≥ N ,

‖CT · · · · · C1x − CT · · · · · C1y‖ ≤ ε.

Theorem 6.2 There exists a set F ⊂ Ane , which is a countable intersection of
open everywhere dense (in the strong topology) subsets of Ane , such that for each
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{Bt }∞t=1 ∈ F and each ε > 0, there exist a neighborhood U of {Bt }∞t=1 in Ane with
the strong topology and a natural number N such that:

For each {Ct }∞t=1 ∈ U , each x, y ∈ K , each integer T ≥ N and each mapping
r : {1, . . . , T } → {1,2, . . .},

‖Cr(T ) · · · · · Cr(1)x − Cr(T ) · · · · · Cr(1)y‖ ≤ ε.

The following theorems [129] establish generic convergence to a unique fixed
point.

Theorem 6.3 There exists a set F ⊂ Ā∗
ne , which is a countable intersection of

open everywhere dense (in the strong topology) subsets of Ā∗
ne , such that for each

{Bt }∞t=1 ∈ F , there exists x∗ ∈ K for which the following assertions hold:
1. Btx∗ = x∗, t = 1,2, . . . .
2. For each ε > 0, there exist a neighborhood U of {Bt }∞t=1 in Ā∗

ne with the strong
topology and a natural number N such that for each {Ct }∞t=1 ∈ U , each integer
T ≥ N , each mapping r : {1, . . . , T } → {1,2, . . .} and each x ∈ K ,

‖Cr(T ) · · · · · Cr(1)x − x∗‖ ≤ ε.

Theorem 6.4 There exists a set F ⊂ Ā∗
ue, which is a countable intersection of

open everywhere dense (in the strong topology) subsets of Ā∗
ue, such that for each

{Bt }∞t=1 ∈ F , there exists x∗ ∈ K for which the following assertions hold:
1. Btx∗ = x∗, t = 1,2, . . . ,

‖Bty − x∗‖ ≤ ‖y − x∗‖, y ∈ K, t = 1,2, . . . .

2. For each ε > 0, there exist a neighborhood U of {Bt }∞t=1 in Ā∗
ue with the strong

topology and a natural number N such that for each {Ct }∞t=1 ∈ U , each integer
T ≥ N , each mapping r : {1, . . . , T } → {1,2, . . .} and each x ∈ K ,

‖Cr(T ) · · · · · Cr(1)x − x∗‖ ≤ ε.

One can easily construct an example of a sequence of operators {At }∞t=1 ∈ A∗
ue

for which the convergence properties described in Theorems 6.1–6.3 do not hold.
Namely, they do not hold for a sequence each term of which is the identity operator.

6.3 Nonexpansive Retractions

In this section we assume that F is a nonempty, closed and convex subset of K , and
that Q : K → F is a nonexpansive retraction, namely

Qx = x, x ∈ F, (6.7)

‖Qx − Qy‖ ≤ ‖x − y‖, x, y ∈ K. (6.8)
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The following two theorems [129] establish generically uniform convergence of
(random) infinite products to nonexpansive retractions.

Theorem 6.5 There exists a set F ⊂ A(F )
ne , which is a countable intersection of

open (in the weak topology) everywhere dense (in the strong topology) subsets of
A(F )

ne , such that for each {Bt }∞t=1 ∈F , the following two assertions hold:
1. There exists an operator P∗ : K → F such that

lim
t→∞Bt · · · · · B1x = P∗x for each x ∈ K.

2. For each ε > 0, there exist a neighborhood U of {Bt }∞t=1 in A(F )
ne with the weak

topology and a natural number N such that for each {Ct }∞t=1 ∈ U , each integer
T ≥ N and each x ∈ K ,

‖CT · · · · · C1x − P∗x‖ ≤ ε.

Theorem 6.6 There exists a set F ⊂ A(F )
ne , which is a countable intersection of

open everywhere dense subsets of A(F )
ne (in the strong topology), such that for each

{Bt }∞t=1 ∈ F , the following two assertions hold:
1. For each r : {1,2, . . .} → {1,2, . . .}, there exists an operator Pr : K → F such

that

lim
T →∞Br(T ) · · · · · Br(1)x = Prx for each x ∈ K.

2. For each ε > 0, there exist a neighborhood U of {Bt }∞t=1 in the space A(F )
ne

with the strong topology and a natural number N such that for each {Ct }∞t=1 ∈ U ,
each mapping r : {1,2, . . .} → {1,2, . . .}, each integer T ≥ N and each x ∈ K ,

‖Cr(T ) · · · · · Cr(1)x − Prx‖ ≤ ε.

In our next result [129] we extend Theorem 6.6 to a subspace of Aue consisting
of sequences of quasi-nonexpansive operators. More precisely, we now assume that
F is a nonempty, closed and convex subset of K and Q : K → F is a uniformly
continuous operator such that

Qx = x, x ∈ F, ‖Qy − x‖ ≤ ‖y − x‖, y ∈ K,x ∈ F. (6.9)

Denote by A(F )
ue the set of all {At }∞t=1 ∈ Aue such that for each integer t ≥ 1,

Atx = x, x ∈ F, ‖Aty − x‖ ≤ ‖y − x‖, y ∈ K,x ∈ F. (6.10)

It is clear that A(F )
ue is a closed subset of Aue in the strong topology.

We will consider the topological subspace A(F )
ue with the relative strong topology

and establish the following result.
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Theorem 6.7 There exists a set F ⊂ A(F )
ue , which is a countable intersection of

open everywhere dense subsets of A(F )
ue (in the strong topology), such that for each

{Bt }∞t=1 ∈ F , the following two assertions hold:
1. For each mapping r : {1,2, . . .} → {1,2, . . .}, there exists a uniformly continu-

ous operator Pr : K → F such that

lim
T →∞Br(T ) · · · · · Br(1)x = Prx for each x ∈ K.

2. For each ε > 0, there exist a neighborhood U of {Bt }∞t=1 in the space A(F )
ue

with the strong topology and a natural number N such that for each {Ct }∞t=1 ∈ U ,
each mapping r : {1,2, . . .} → {1,2, . . .}, each integer T ≥ N and each x ∈ K ,

‖Cr(T ) · · · · · Cr(1)x − Prx‖ ≤ ε.

6.4 Preliminary Results

In this section we will prove three auxiliary lemmas which will be used in the proofs
of Theorems 6.1–6.7.

For each bounded operator A : K → X, we set

‖A‖ = sup
{‖Ax‖ : x ∈ K

}
. (6.11)

For each x ∈ K and each E ⊂ X, we set

d(x,E) = inf
{‖x − y‖ : y ∈ E

}
, rad(E) = sup

{‖y‖ : y ∈ E
}
. (6.12)

Lemma 6.8 Assume that F is a nonempty, closed and convex subset of K , Q :
K → F and A : K → K are continuous operators such that

Qx = x, x ∈ F, ‖Qy − x‖ ≤ ‖y − x‖ for all y ∈ K and x ∈ F,

Ax = x, x ∈ F, ‖Ay − x‖ ≤ ‖y − x‖ for all y ∈ K and x ∈ F,
(6.13)

and γ ∈ (0,1). Define an operator B : K → K by

Bx = (1 − γ )Ax + γQx, x ∈ K.

Then

Bx = x, x ∈ F, ‖By − x‖ ≤ ‖y − x‖ for all y ∈ K and x ∈ F,

and

d(Bx,F ) ≤ (1 − γ )d(x,F ), x ∈ K. (6.14)

Moreover, if A and Q are nonexpansive, then B is nonexpansive.
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Proof It is sufficient to show that (6.14) is valid. Let x ∈ K and ε > 0 be given.
There exists z ∈ F such that

‖x − z‖ ≤ d(x,F ) + ε.

It is easy to verify that γQx + (1 − γ )Az ∈ F . Hence

d(Bx,F ) ≤ ∥∥((1 − γ )Ax + γQx
)− (

γQx + (1 − γ )Az
)∥∥

≤ (1 − γ )‖x − z‖ ≤ (1 − γ )d(x,F ) + (1 − γ )ε.

Since ε is any positive number, we conclude that (6.14) holds. The lemma is
proved. �

Lemma 6.9 Assume that E is a nonempty uniformly continuous set of operators
A : K → K , N is a natural number and ε is a positive number. Then there exists
a number δ > 0 such that for each sequence {At }Nt=1 ⊂ E, each sequence {Bt }Nt=1,
where the (not necessarily continuous) operators Bt : K → K , t = 1, . . . ,N , satisfy

‖Bt − At‖ ≤ δ, t = 1, . . . ,N, (6.15)

and each x ∈ K , the following inequality holds:

‖BN · · · · · B1x − AN · · · · · A1x‖ ≤ ε. (6.16)

Proof Set

εN = (4N)−1ε. (6.17)

By induction we define a sequence of positive numbers {εi}Ni=0 such that for each
i ∈ {1, . . . ,N},

εi−1 < (4N)−1εi, (6.18)

and for each A ∈ E and each x, y ∈ K satisfying ‖x − y‖ ≤ εi−1, the following
inequality holds:

‖Ax − Ay‖ ≤ 2−1εi . (6.19)

Set δ = ε0.
Assume that {At }Nt=1 ⊂ E, Bt : K → K , t = 1, . . . ,N , and that (6.15) holds. We

will show that (6.16) is valid for each x ∈ K .
Let x ∈ K . We will show by induction that for t = 1, . . . ,N ,

‖Bt · · · · · B1x − At · · · · · A1x‖ ≤ εt . (6.20)

Inequalities (6.15) and (6.18) imply that ‖B1x − A1x‖ < ε1.
Assume that t ∈ {1, . . . ,N}, t < N , and

‖Bt · · · · · B1x − At · · · · · A1x‖ ≤ εt .
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It follows from the definition of εt (see (6.18), (6.19)) and (6.15) that

‖At+1Bt · · · · · B1x − At+1At · · · · · A1x‖ ≤ 2−1εt+1,

‖At+1Bt · · · · · B1x − Bt+1Bt · · · · · B1x‖ ≤ δ

and

‖At+1At · · · · · A1x − Bt+1Bt · · · · · B1x‖ ≤ εt+1.

Thus we have shown by induction that (6.20) holds for t = 1, . . . ,N . This implies
that (6.16) is valid and the lemma is proved. �

Lemma 6.10 Assume that F is a nonempty, closed and convex subset of K , Q :
K → F is a uniformly continuous operator such that

Qx = x, x ∈ F, ‖Qy − x‖ ≤ ‖y − x‖ for all y ∈ K and x ∈ F,

ε > 0, γ ∈ (0,1) and E is a nonempty uniformly continuous set of operators A :
K → K such that for each A ∈ E, the following relations hold:

Ax = x, x ∈ F, ‖Ay − x‖ ≤ ‖y − x‖ for all y ∈ K and x ∈ F.

Let N ≥ 1 be an integer such that

(1 − γ )N
(
rad(K)

)
< 16−1ε. (6.21)

For each A ∈ E, define an operator Aγ : K → K by

Aγ x = (1 − γ )Ax + γQx, x ∈ K.

Then the set {Aγ : A ∈ E} is uniformly continuous and there exists a number δ > 0
such that for each sequence {Ct }Nt=1 ⊂ {Aγ : A ∈ E}, each sequence of (not neces-
sarily continuous) operators Bt : K → K , t = 1, . . . ,N , satisfying

‖Bt − Ct‖ ≤ δ, t = 1, . . . ,N, (6.22)

the following inequality holds:

d(BN · · · · · B1x,F ) ≤ ε, x ∈ K.

Proof Evidently, the set {Aγ : A ∈ E} is uniformly continuous. By Lemma 6.8 and
(6.21), for each sequence {Ct }Nt=1 ⊂ {Aγ : A ∈ E} and each x ∈ K , the following
inequality holds:

d(CN · · · · · C1x,F ) ≤ (1 − γ )Nd(x,F ) < 8−1ε. (6.23)

Applying Lemma 6.9 with the uniformly continuous set {Aγ : A ∈ E}, we obtain
that there exists a number δ > 0 such that for each sequence {Ct }Nt=1 ⊂ {Aγ : A ∈ E}
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and each sequence of operators Bt : K → K , t = 1, . . . ,N , satisfying (6.22), the
following inequality holds:

‖BN · · · · · B1x − CN · · · · · C1x‖ ≤ 8−1ε, x ∈ K. (6.24)

Assume that {Ct }Nt=1 ⊂ {Aγ : A ∈ E}, Bt : K → K , t = 1, . . . ,N , and that (6.22)
holds. Then (6.23) and (6.24) are valid for each x ∈ K . This implies that

d(BN · · · · · B1x,F ) ≤ ε, x ∈ K.

The lemma is proved. �

6.5 Proofs of Theorems 6.1 and 6.2

Fix x∗ ∈ K . Let {At }∞t=1 ∈ Ane and γ ∈ (0,1). For t = 1,2, . . . , define Atγ : K →
K by

Atγ x = (1 − γ )Atx + γ x∗, x ∈ K. (6.25)

Clearly, {Atγ }∞t=1 ∈ Ane and

‖Atγ x − Atγ y‖ ≤ (1 − γ )‖x − y‖, x, y ∈ K, t = 1,2, . . . . (6.26)

It is easy to see that the set

{{Atγ }∞t=1 : {At }∞t=1 ∈ Ane, γ ∈ (0,1)
}

is an everywhere dense subset of Ane in the strong topology.

Proof of Theorem 6.1 Let {At }∞t=1 ∈ Ane , γ ∈ (0,1) and let i ≥ 1 be an integer.
Choose a natural number N(γ, i) such that

(1 − γ )N(γ,i) rad(K) ≤ 2−i−4. (6.27)

Inequalities (6.26) and (6.27) imply that

‖AT γ · · · · · A1γ x − AT γ · · · · · A1γ y‖ ≤ 2−i−3

for all x, y ∈ K and all integers T ≥ N(γ, i). (6.28)

By Lemma 6.9, there exists an open neighborhood U({At }∞t=1, γ, i) of {Atγ }∞t=1
in the space Ane with the weak topology such that for each {Bt }∞t=1 ∈ U({At }∞t=1,

γ, i) and each x ∈ K ,

‖AN(γ,i)γ · · · · · A1γ x − BN(γ,i) · · · · · B1x‖ ≤ 2−i−3.
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Together with (6.28) this implies that for each {Bt }∞t=1 ∈ U({At }∞t=1, γ, i), each
x, y ∈ K and each integer T ≥ N(γ, i),

‖BT · · · · · B1x − BT · · · · · B1y‖ ≤ 2−i−1. (6.29)

Define

F =
∞⋂

q=1

⋃{
U
({At }∞t=1, γ, i

) : {At }∞t=1 ∈Ane, γ ∈ (0,1), i = q, q + 1, . . .
}
.

Evidently F is a countable intersection of open (in the weak topology) everywhere
dense (in the strong topology) subsets of Ane.

Assume that {Bt }∞t=1 ∈ F and ε > 0. Choose a natural number q such that

24−q < ε. (6.30)

There exist {At }∞t=1 ∈ Ane, γ ∈ (0,1) and an integer i ≥ q such that

{Bt }∞t=1 ∈ U
({At }∞t=1, γ, i

)
.

It follows from (5.29) and (6.30) that for each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i), each pair
of points x, y ∈ K and each integer T ≥ N(γ, i),

‖CT · · · · · C1x − CT · · · · · C1y‖ ≤ 2−i−1 ≤ 2−q−1 < ε.

This completes the proof of the theorem. �

Proof of Theorem 6.2 Let {At }∞t=1 ∈ Ane , γ ∈ (0,1) and let i ≥ 1 be an integer.
Choose a natural number N(γ, i) such that (6.27) is valid. Inequalities (6.26) and
(6.27) imply that for each integer T ≥ N(γ, i), each r : {1, . . . , T } → {1,2, . . .} and
each x, y ∈ K ,

‖Ar(T )γ · · · · · Ar(1)γ x − Ar(T )γ · · · · · Ar(1)γ y‖ ≤ 2−i−3. (6.31)

By Lemma 6.9, there is an open neighborhood U({At }∞t=1, γ, i) of {Atγ }∞t=1 in
the space Ane with the strong topology such that for each {Ct }∞t=1 ∈ U({At }∞t=1,

γ, i), each x ∈ K and each r : {1, . . . ,N(γ, i)} → {1,2, . . .}, the following inequal-
ity holds:

‖Ar(N(γ,i))γ · · · · · Ar(1)γ x − Cr(N(γ,i)) · · · · · Cr(1)x‖ ≤ 2−i−3.

Together with (6.31) this implies that the following property holds:
(a) For each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i), each integer T ≥ N(γ, i), each x, y ∈ K

and each r : {1, . . . , T } → {1,2, . . .}, the following inequality is valid:

‖Cr(T ) · · · · · Cr(1)x − Cr(T ) · · · · · Cr(1)y‖ ≤ 2−i−1. (6.32)
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Define

F =
∞⋂

q=1

⋃{
U
({At }∞t=1, γ, i

) : {At }∞t=1 ∈Ane, γ ∈ (0,1), i = q, q + 1, . . .
}
.

Evidently, F is a countable intersection of open everywhere dense (in the strong
topology) subsets of Ane .

Assume that {Bt }∞t=1 ∈ F and ε > 0 are given. Choose a natural number q which
satisfies (5.30).

There exist {At }∞t=1 ∈ Ane, γ ∈ (0,1) and an integer i ≥ q such that

{Bt }∞t=1 ∈ U
({At }∞t=1, γ, i

)
.

The validity of Theorem 6.2 now follows from property (a) and (6.30). �

6.6 Proofs of Theorems 6.3 and 6.4

Here we prove Theorem 6.4. Theorem 6.3 is proved analogously.

Proof of Theorem 6.4 For each A = {At }∞t=1 ∈A∗
ue, there exists x(A) ∈ K such that

Atx(A) = x(A), t = 1,2, . . . ,
∥∥Aty − x(A)

∥∥≤ ∥∥y − x(A)
∥∥, y ∈ K, t = 1,2, . . . .

(6.33)

Let {At }∞t=1 ∈A∗
ue and γ ∈ (0,1). For t = 1,2, . . . , define Atγ : K → K by

Atγ x = (1 − γ )Atx + γ x(A), x ∈ K. (6.34)

It is easy to see that {Atγ }∞t=1 ∈Aue,

Atγ x(A) = x(A), t = 1,2, . . .

and
∥∥Atγ (y) − x(A)

∥∥≤ (1 − γ )
∥∥y − x(A)

∥∥, y ∈ K, t = 1,2, . . . . (6.35)

Therefore {Atγ }∞t=1 ∈ A∗
ue. It is easy to see that the set

{{Atγ }∞t=1 : {At }∞t=1 ∈ A∗
ue, γ ∈ (0,1)

}

is an everywhere dense subset of A∗
ue in the strong topology.

Let {At }∞t=1 ∈A∗
ue, γ ∈ (0,1), and let i ≥ 1 be an integer. Choose a natural num-

ber N(γ, i) such that

(1 − γ )N(γ,i) rad(K) ≤ 4−i−2. (6.36)
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Inequalities (6.35) and (6.36) imply that the following property holds:
(a) For each integer T ≥ N(γ, i), each r : {1, . . . , T } → {1,2, . . .} and each

x ∈ K ,
∥∥Ar(T )γ · · · · · Ar(1)γ x − x(A)

∥∥≤ 2−2i−3.

By Lemma 6.9, there exists an open neighborhood U({At }∞t=1, γ, i) of {Atγ }∞t=1
in Ā∗

ue with the strong topology such that:
For each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i),

ρs

({Ct }∞t=1, {Atγ }∞t=1

)
< 4−i−2. (6.37)

For each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i), each x ∈ K and each mapping

r : {1, . . . ,N(γ, i)
}→ {1,2, . . .},

the following inequality holds:

‖Ar(N(γ,i))γ · · · · · Ar(1)γ x − Cr(N(γ,i)) · · · · · Cr(1)x‖ ≤ 2−2i−3.

Together with property (a) this implies that the following property holds:
(b) For each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i), each r : {1, . . . ,N(γ, i)} → {1,2, . . .}

and each x ∈ K , the following inequality holds:
∥∥Cr(N(γ,i)) · · · · · Cr(1)x − x(A)

∥∥≤ 4−i−1.

Define

F :=
∞⋂

q=1

⋃{
U
({At }∞t=1, γ, i

) : {At }∞t=1 ∈ A∗
ue, γ ∈ (0,1), i = q, q + 1, . . .

}
.

Evidently, F is a countable intersection of open everywhere dense (in the strong
topology) subsets of Ā∗

ue.
Assume that {Bt }∞t=1 ∈ F and ε > 0 are given. Choose a natural number q such

that

26−q < ε. (6.38)

There exist {At }∞t=1 ∈ A∗
ue, γ ∈ (0,1), and an integer i ≥ q such that

{Bt }∞t=1 ∈ U
({At }∞t=1, γ, i

)
.

By (6.38) and property (b), for each pair of integers t ≥ 1, p ≥ N(γ, i), and each
x ∈ K ,

∥∥(Bt )
px − x(A)

∥∥≤ 4−i−1 < ε. (6.39)

Since ε is an arbitrary positive number, this implies that for each integer t ≥ 1 and
each x ∈ K , there exists limp→∞(Bt )

px. Together with (6.39) this implies that for
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each integer t ≥ 1 and each x ∈ K ,
∥∥∥ lim

p→∞(Bt )
px − x(A)

∥∥∥≤ 4−i−1 < ε.

Since ε is an arbitrary positive number, this implies, in turn, that there exists x∗ ∈ K

such that

Btx∗ = x∗, t = 1,2, . . . ,
∥
∥x(A) − x∗

∥
∥≤ 4−i−1 < ε. (6.40)

It follows from (6.37), (6.40), (6.35) and (6.38) that for each integer t ≥ 1 and each
y ∈ K ,

‖Bty − x∗‖ ≤ ∥∥Atγ y − x(A)
∥∥+ ‖Bty − Atγ y‖ + ∥∥x(A) − x∗

∥∥

≤ 4−i−1 + 4−i−2 + (1 − γ )
∥∥y − x(A)

∥∥

≤ ‖y − x∗‖ + 21−2i < ‖y − x∗‖ + ε.

Since ε is an arbitrary positive number, we conclude that for each integer t ≥ 1 and
each y ∈ K ,

‖Bty − x∗‖ ≤ ‖y − x∗‖.
Therefore (6.38), (6.40) and property (b) now imply that for each {Ct }∞t=1 ∈

U({At }∞t=1, γ, i), each integer T ≥ N(γ, i), each r : {1, . . . , T } → {1,2, . . .} and
each x ∈ K ,

‖Cr(T ) · · · · · Cr(1)x − x∗‖ ≤ ∥
∥x∗ − x(A)

∥
∥+ ∥

∥Cr(T ) · · · · · Cr(1)x − x(A)
∥
∥

≤ 2−2i−1 < ε.

This completes the proof of Theorem 6.4. �

6.7 Proofs of Theorems 6.5, 6.6 and 6.7

In this section we prove Theorems 6.5 and 6.6. The proof of Theorem 6.7 is analo-
gous to that of Theorem 6.6.

Let {At }∞t=1 ∈A(F )
ne and γ ∈ (0,1). For t = 1,2, . . . , define Atγ : K → K by

Atγ x = (1 − γ )Atx + γQx, x ∈ K. (6.41)

It is easy to see that

{Atγ }∞t=1 ∈A(F )
ne and ρs

({At }∞t=1, {Atγ }∞t=1

)≤ 2γ rad(K). (6.42)

Let i ≥ 1 be an integer. Choose a natural number N(γ, i) such that

(1 − γ )N(γ,i) rad(K) ≤ 4−i−2. (6.43)
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By Lemmata 6.9 and 6.10, there exists a number δ({At }∞t=1, γ, i) > 0 such that
the following property holds:

(a) For each r : {1, . . . ,N(γ, i)} → {1,2, . . .} and each sequence of (not neces-
sarily continuous) operators Ct : K → K , t = 1, . . . ,N(γ, i), satisfying

‖Ct − Ar(t)γ ‖ ≤ δ
({At }∞t=1, γ, i

)
, t = 1, . . . ,N(γ, i),

the following relations hold:

d(CN(γ,i) · · · · · C1x,F ) ≤ 4−i , x ∈ K,

‖CN(γ,i) · · · · · C1x − Ar(N(γ,i))γ · · · · · Ar(1)γ x‖ ≤ 4−i−2, x ∈ K.

Proof of Theorem 6.5 Let {At }∞t=1 ∈ A(F )
ne , γ ∈ (0,1) and let i ≥ 1 be an integer.

There exists an open neighborhood U({At }∞t=1, γ, i) of {Atγ }∞t=1 in the space A(F )
ne

with the weak topology such that for each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i),

‖Ct − Atγ ‖ < 4−1δ
({At }∞t=1, γ, i

)
, t = 1, . . . ,N(γ, i). (6.44)

Define

F :=
∞⋂

q=1

⋃{
U
({At }∞t=1, γ, i

) : {At }∞t=1 ∈A(F )
ne , γ ∈ (0,1), i = q, q + 1, . . .

}
.

Clearly, F is a countable intersection of open (in the weak topology) everywhere
dense (in the strong topology) subsets of A(F )

ne .
Assume that {Bt }∞t=1 ∈ F and ε > 0 are given. Choose a natural number q such

that

26−q < ε. (6.45)

There exist {At }∞t=1 ∈ A(F )
ne , γ ∈ (0,1) and an integer i ≥ q such that

{Bt }∞t=1 ∈ U
({At }∞t=1, γ, i

)
. (6.46)

It follows from (6.44) and property (a) that the following property holds:
(b) For each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i),

d(CN(γ,i) · · · · · C1x,F ) ≤ 4−i , x ∈ K.

When combined with (6.46) and (6.45), this implies that for each x ∈ K , there is
f (x) ∈ F such that

∥∥BN(γ,i) · · · · · B1x − f (x)
∥∥≤ 2 · 4−i < ε. (6.47)
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Since {Bt }∞t=1 ∈ A(F )
ne , (6.47) and (6.45) imply that for each pair of integers

T ,S ≥ N(γ, i), and each x ∈ K ,

∥∥BT · · · · · B1x − f (x)
∥∥,
∥∥BS · · · · · B1x − f (x)

∥∥< 2 · 4−i ,

‖BT · · · · · B1x − BS · · · · · B1x‖ < 41−i < ε.
(6.48)

Since ε is an arbitrary positive number, we conclude that there exists an operator
P∗ : K → K such that

P∗x = lim
t→∞Bt · · · · · B1x, x ∈ K, (6.49)

and
∥∥P∗x − f (x)

∥∥≤ 2 · 4−i , x ∈ K.

It is clear that the operator P∗ : K → K is nonexpansive and P∗x = x, x ∈ F . Since
ε is an arbitrary positive number, (6.49) and (6.45) imply that P∗(K) ⊂ F .

By (6.49) and (6.47), for each x ∈ K ,
∥∥BN(γ,i) · · · · · B1x − P∗(x)

∥∥≤ 41−i . (6.50)

Property (a), (6.50), (6.44) and (6.45) imply that for each

{Ct }∞t=1 ∈ U
({At }∞t=1, γ, i

)
,

each x ∈ K , and each integer T ≥ N(γ, i),
∥∥CT · · · · · C1x − P∗(x)

∥∥

≤ ∥∥CN(γ,i) · · · · · C1x − P∗(x)
∥∥

≤ ∥∥BN(γ,i) · · · · · B1x − P∗(x)
∥∥+ ‖CN(γ,i) · · · · · C1x − AN(γ,i)γ · · · · · A1γ x‖

+ ‖AN(γ,i)γ · · · · · A1γ x − BN(γ,i) · · · · · B1x‖ ≤ 41−i + 2 · 4−2−i < ε.

This completes the proof of Theorem 6.5. �

Proof of Theorem 6.6 Let {At }∞t=1 ∈ A(F )
ne , γ ∈ (0,1), and let i ≥ 1 be an integer.

There exists an open neighborhood U({At }∞t=1, γ, i) of {Atγ }∞t=1 in the space A(F )
ne

with the strong topology such that for each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i),

‖Ct − Atγ ‖ < 4−1δ
({At }∞t=1, γ, i

)
, t = 1,2, . . . . (6.51)

Define

F :=
∞⋂

q=1

⋃{
U
({At }∞t=1, γ, i

) : {At }∞t=1 ∈A(F )
ne , γ ∈ (0,1), i = q, q + 1, . . .

}
.
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It is easy to see that F is a countable intersection of open everywhere dense (in the
strong topology) subsets of A(F )

ne .
Assume that {Bt }∞t=1 ∈ F and ε > 0 are given. Choose a natural number q for

which (6.45) holds. There exist {At }∞t=1 ∈ A(F )
ne , γ ∈ (0,1), and an integer i ≥ q

such that

{Bt }∞t=1 ∈ U
({At }∞t=1, γ, i

)
. (6.52)

Assume that r : {1,2, . . .} → {1,2, . . .}. It follows from (6.52), (6.45), (6.51) and
property (a) that for each x ∈ K , there is f (x) ∈ F such that

∥∥Br(N(γ,i)) · · · · · Br(1)x − f (x)
∥∥< 2 · 4−i < ε. (6.53)

Since {Bt }∞t=1 ∈ A(F )
ne , (6.53) and (6.45) imply that for each pair of integers T ,S ≥

N(γ, i) and each x ∈ K ,

∥∥Br(T ) · · · · · Br(1)x − f (x)
∥∥,
∥∥Br(S) · · · · · Br(1)x − f (x)

∥∥< 2 · 4−i ,

‖Br(T ) · · · · · Br(1)x − Br(S) · · · · · Br(1)x‖ ≤ 41−i < ε.

Since ε is an arbitrary positive number, we conclude that there exists an operator
Pr : K → K such that for each x ∈ K ,

Prx = lim
t→∞Br(t) · · · · · Br(1)x,

∥∥Prx − f (x)
∥∥≤ 2 · 4−i < ε. (6.54)

Clearly, the operator Pr : K → K is nonexpansive and Prx = x, x ∈ F . Since ε is
an arbitrary positive number, (6.54) implies that Pr(K) ⊂ F .

By (6.54) and (6.53), for each x ∈ K ,

∥∥Br(N(γ,i)) · · · · · Br(1)x − Pr(x)
∥∥≤ 41−i . (6.55)

Property (a), (6.55), the definition of U({At }∞t=1, γ, i) (see (6.51)) and (6.45) now
imply that for each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i), each r : {1,2, . . .} → {1,2, . . .},
each integer T ≥ N(γ, i) and each x ∈ K ,

∥∥Cr(T ) · · · · · Cr(1)x − Pr(x)
∥∥

≤ ∥∥Cr(N(γ,i)) · · · · · Cr(1)x − Pr(x)
∥∥

≤ ‖Cr(N(γ,i)) · · · · · Cr(1)x − Ar(N(γ,i))γ · · · · · Ar(1)γ x‖
+ ‖Ar(N(γ,i))γ · · · · · Ar(1)γ x − Br(N(γ,i)) · · · · · Br(1)x‖
+ ‖Br(N(γ,i)) · · · · · Br(1)x − Prx‖

≤ 2 · 4−2−i + 41−i < ε.

This completes the proof of Theorem 6.6. �
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6.8 Hyperbolic Spaces

Let (X,ρ) be a complete hyperbolic space (see Sect. 1.1) and let K be a bounded,
closed and ρ-convex subset of X.

Analogously to the case of a bounded, closed and convex subset K of a Banach
space (see Sects. 6.1, 6.2 and 6.3), we may define the hyperbolic analogs of the
spaces Ane , Aue, Ā∗

ne , Ā∗
ue, A(F )

ne and A(F )
ue . One can then easily formulate exten-

sions of Theorems 6.1–6.7 to this case and verify that these extensions can be es-
tablished by arguments similar to those we have used in the present chapter. These
extensions provide a partial answer to a question raised in [121].

6.9 Infinite Products of Order-Preserving Mappings

Order-preserving mappings find application in many areas of mathematics. See,
for example, [3, 4, 62, 107] and the references mentioned there. We study the
asymptotic behavior of (random) infinite products of generic sequences of order-
preserving continuous mappings on intervals of an ordered Banach space. More
precisely, we show that in appropriate spaces of sequences of operators there exists
a subset which is a countable intersection of open and everywhere dense sets such
that for each sequence belonging to this subset, the corresponding infinite products
converge.

Let (X,‖ · ‖) be a Banach space ordered by a closed and convex cone X+ such
that ‖x‖ ≤ ‖y‖ for each x, y ∈ X+ satisfying x ≤ y. For each u,v ∈ X such that
u ≤ v denote

〈u,v〉 := {x ∈ X : u ≤ x ≤ v}.
For each x, y ∈ X+, we define

λ(x, y) := sup{r ≥ 0 : rx ≤ y}. (6.56)

Let b ∈ X+ \ {0}. We consider the space 〈0, b〉 ⊂ X with the topology induced by
the norm ‖ · ‖. Denote by A the set of all continuous operators A : 〈0, b〉 → 〈0, b〉
such that

Ax ≤ Ay for each x, y ∈ 〈0, b〉 satisfying x ≤ y

and

A(αz) ≥ αAz for each z ∈ 〈0, b〉 and each α ∈ [0,1].
For the space A we define a metric ρ :A×A → [0,∞) by

ρ(A,B) = sup
{‖Ax − Bx‖ : x ∈ 〈0, b〉}, A,B ∈A. (6.57)

It is easy to see that the metric space A is complete.
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We will show (see Theorem 6.11 below) that for a generic operator B in the
space A, there exists a unique fixed point xB and the powers of B converge to xB ,
uniformly for all x ∈ 〈0, b〉.

Assume now that b is an interior point of the cone X+. Define

‖x‖b = inf
{
r ∈ [0,∞) : −rb ≤ x ≤ rb

}
, x ∈ X. (6.58)

Clearly, ‖ · ‖b is a norm on X which is equivalent to the norm ‖ · ‖.
Denote by M the set of all sequences {At }∞t=1, where each At ∈ A, t = 1,2, . . . .

Such a sequence will occasionally be denoted by a boldface A. For the set M we
consider the metric ρs :M×M → [0,∞) defined by

ρs

({At }∞t=1, {Bt }∞t=1

)= sup
{‖Atx − Btx‖b : x ∈ 〈0, b〉, t = 1,2, . . .

}
,

{At }∞t=1, {Bt }∞t=1 ∈M. (6.59)

It is easy to see that this metric space (M, ρs) is complete. The topology generated
in M by the metric ρs will be called the strong topology.

In addition to this topology on M, we will also consider the uniformity which is
determined by the base

E(N,ε) = {({At }∞t=1, {Bt }∞t=1

) ∈M×M :
‖Atx − Btx‖b ≤ ε, t = 1, . . . ,N,x ∈ 〈0, b〉}, (6.60)

where N is a natural number and ε > 0. It is easy to see that the space M with
this uniformity is metrizable (by a metric ρw : M × M → [0,∞)) and complete.
The topology generated by ρw will be called the weak topology. We will show (see
Theorem 6.16) that for a generic sequence {Ct }∞t=1 in the space M with the weak
topology,

λ
(
CT · · · · · C1x,CT · · · · · C1(0)

)→ 1,

uniformly for all x ∈ 〈0, b〉. We will also establish Theorem 6.17, which shows that
for a generic sequence {Ct }∞t=1 in M with the strong topology, this type of uniform
convergence holds for random products of the operators {Ct }∞t=1.

Let a ∈ 〈0, b〉 be an interior point of X+. Denote by Ma the set of all sequences
{At }∞t=1 ∈ M such that

Ata = a, t = 1,2, . . . .

Clearly, Ma is a closed subset of M with the weak topology. We consider the
topological subspace Ma ⊂ M with the relative weak and strong topologies.

We will show (Theorem 6.18) that for a generic sequence of operators {Ct }∞t=1 in
the space Ma with the weak topology,

‖CT · · · · · C1z − a‖b → 0 as T → ∞,

uniformly for all x ∈ 〈0, b〉. We will also establish Theorem 6.19, which shows
that for a generic sequence of operators {Ct }∞t=1 in the space Ma with the strong
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topology, all its random products

Cr(T ) · · · · · Cr(1)z → a as T → ∞,

uniformly for all x ∈ 〈0, b〉. Here r : {1,2, . . .} → {1,2, . . .} is arbitrary.
Finally, denote by M∗ the set of all sequences {At }∞t=1 ∈ M such that

Ata = a, t = 1,2, . . .

for some a ∈ 〈0, b〉 such that a is an interior point of X+. Denote by M̄∗ the clo-
sure of M∗ in the space M with the strong topology and consider the topological
subspace M̄∗ ⊂ M with the relative strong topology. We will show (Theorem 6.20)
that for a generic sequence {Ct }∞t=1 in the space M̄∗, there exists a unique common
fixed point x∗, which is an interior point of the cone X+ and all random products of
the operators {Ct }∞t=1 converge to x∗, uniformly for all x ∈ 〈0, b〉.

Theorems 6.11 and 6.16–6.20 appeared in [127].

6.10 Existence of a Unique Fixed Point

In this section we will prove the following result.

Theorem 6.11 There exists a set F ⊂ A, which is a countable intersection of open
and everywhere dense sets in A, such that for each B ∈F , the following two asser-
tions hold:

1. There exists xB ∈ 〈0, b〉 such that BxB = xB ,

BT x → xB as T → ∞, uniformly on 〈0, b〉.
2. For each ε > 0, there exist a neighborhood U of B in A and an integer N ≥ 1

such that for each C ∈ U , z ∈ 〈0, b〉 and each integer T ≥ N ,
∥∥CT z − xB

∥∥≤ ε. (6.61)

Before proving Theorem 6.11 we need several preliminary lemmata.

Lemma 6.12 Let n ≥ 1 be an integer, and let A ∈ A, ε > 0, and z ∈ 〈0, b〉 be given.
Then there exists a neighborhood U of A in A such that for each C ∈ U ,

∥∥Cnz − Anz
∥∥< ε. (6.62)

Proof We prove the assertion of the lemma by induction. For n = 1 the assertion of
the lemma is valid. Assume that the assertion of the lemma is valid for an integer
n ≥ 1. We will show that this implies that the lemma also holds for n + 1.

There exists

δ ∈ (0,8−1ε
)

(6.63)
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such that
∥∥Ay − A

(
Anz

)∥∥≤ 8−1ε (6.64)

for each y satisfying ‖y − Anz‖ ≤ δ. There exists a neighborhood U0 of A in A
such that for each C ∈ U0,

∥∥Cnz − Anz
∥∥< δ.

Set

U := {
C ∈ U0 : ρ(C,A) < 8−1ε

}
. (6.65)

Let C ∈ U . The definition of U implies that
∥∥An+1z − Cn+1z

∥∥ ≤ ∥∥An+1z − ACnz
∥∥+ ∥∥ACnz − Cn+1z

∥∥

≤ ∥∥An+1z − ACnz
∥∥+ 8−1ε. (6.66)

By the definition of U0,
∥∥Anz − Cnz

∥∥< δ.

It follows from this inequality and the definition of δ (see (6.63) and (6.64)) that
∥∥ACnz − A

(
Anz

)∥∥≤ 8−1ε.

Together with (6.66) this implies that
∥∥An+1z − Cn+1z

∥∥≤ 4−1ε.

This completes the proof of the lemma. �

For each A ∈A and each γ ∈ (0,1), define

Aγ : 〈0, b〉 → 〈0, b〉
by

Aγ x := (1 − γ )Ax + γ b, x ∈ 〈0, b〉. (6.67)

It is easy to see that Aγ ∈ A for each A ∈A and each γ ∈ (0,1), and that the set
{
Aγ : A ∈A, γ ∈ (0,1)

}

is everywhere dense in A.

Lemma 6.13 Let A ∈ A and γ ∈ (0,1) be given. Then for each integer t ≥ 0,

At+1
γ (0) ≥ At

γ (0), At+1
γ (b) ≤ At

γ (b), At
γ (0) ≤ At

γ (b) (6.68)

and

lim
t→∞λ

(
At

γ (b),At
γ (0)

)= 1. (6.69)
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Proof Clearly, (6.68) is valid for each integer t ≥ 0. We show that (6.69) holds.
To this end, let t ≥ 0 be an integer. By (6.68),

λ
(
At

γ (b),At
γ (0)

)≤ 1.

It follows from (6.67) that

At+1
γ (0) = Aγ

(
At

γ (0)
)= (1 − γ )A

(
At

γ (0)
)+ γ b

= γ b + (1 − γ )A
(
λ
(
At

γ (b),At
γ (0)

)
At

γ (b)
)

≥ γ b + (1 − γ )λ
(
At

γ (b),At
γ (0)

)
A
(
At

γ (b)
)

= λ
(
At

γ (b),At
γ (0)

)(
(1 − γ )A

(
At

γ (b)
)+ γ b

)

+ (
1 − λ

(
At

γ (b),At
γ (0)

))
γ b

≥ λ
(
At

γ (b),At
γ (0)

)
At+1

γ b + (
1 − λ

(
At

γ (b),At
γ (0)

))
γAt+1

γ b

= [
λ
(
At

γ (b),At
γ (0)

)+ γ
(
1 − λ

(
At

γ (b),At
γ (0)

))]
At+1

γ b.

Hence

λ
(
At+1

γ (b),At+1
γ (0)

)≥ λ
(
At

γ (b),At
γ (0)

)+ γ
(
1 − λ

(
At

γ (b),At
γ (0)

))
. (6.70)

By (6.70), the limit

Λ = lim
t→∞λ

(
At

γ (b),At
γ (0)

)

exists and

1 ≥ Λ ≥ Λ + γ (1 − Λ).

Therefore Λ = 1 and the lemma is proved. �

Lemma 6.14 Let A ∈A and γ ∈ (0,1) be given. Then there exists x(A,γ ) ∈ 〈0, b〉
such that Aγ x(A,γ ) = x(A,γ ) and

lim
t→∞At

γ (0) = lim
t→∞At

γ (b) = x(A,γ ). (6.71)

Proof By Lemma 6.13,

lim
t→∞

(
At

γ (b) − At
γ (0)

)= 0

and {At
γ (0)}∞t=1, {At

γ (b)}∞t=1 are Cauchy sequences. This yields (6.71) and the
lemma itself. �

Let A ∈A, γ ∈ (0,1) and let i ≥ 1 be an integer. By Lemma 6.14 there exists an
integer N(A,γ, i) ≥ 2 such that

∥∥AN(A,γ,i)
γ (0) − AN(A,γ,i)

γ (b)
∥∥≤ 8−i . (6.72)
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By Lemma 6.12, there exists an open neighborhood U(A,γ, i) of Aγ in A such that
for each C ∈ U(A,γ, i),

∥
∥CN(A,γ,i)(0) − AN(A,γ,i)

γ (0)
∥
∥,
∥
∥CN(A,γ,i)(b) − AN(A,γ,i)

γ (b)
∥
∥≤ 8−i . (6.73)

Lemma 6.15 Let A ∈ A, γ ∈ (0,1) and let i ≥ 1 be an integer. Assume that C ∈
U(A,γ, i), z ∈ 〈0, b〉 and that T ≥ N(A,γ, i) is an integer. Then

∥∥CT z − x(A,γ )
∥∥≤ 6 · 8−i .

Proof It is easy to see that

CT z ∈ 〈CT (0),CT (b)
〉⊂ 〈

CN(A,γ,i)(0),CN(A,γ,i)(b)
〉
. (6.74)

By Lemma 6.14, the definition of N(A,γ, i) (see (6.72)) and (6.73),
∥∥CN(A,γ,i)(0) − x(A,γ )

∥∥

≤ ∥∥CN(A,γ,i)(0) − AN(A,γ,i)
γ (0)

∥∥+ ∥∥AN(A,γ,i)
γ (0) − x(A,γ )

∥∥

≤ 8−i + ∥∥AN(A,γ,i)
γ (b) − AN(A,γ,i)

γ (0)
∥∥≤ 2 · 8−i ,

∥
∥CN(A,γ,i)(b) − x(A,γ )

∥
∥

≤ ∥∥CN(A,γ,i)(b) − AN(A,γ,i)
γ (b)

∥∥+ ∥∥AN(A,γ,i)
γ (b) − x(A,γ )

∥∥

≤ 8−i + ∥∥AN(A,γ,i)
γ (b) − AN(A,γ,i)

γ (0)
∥∥≤ 2 · 8−i .

It follows from these inequalities and (6.74) that
∥∥CT z − x(A,γ )

∥∥ ≤ ∥∥CT z − CN(A,γ,i)(0)
∥∥+ ∥∥CN(A,γ,i)(0) − x(A,γ )

∥∥

≤ ∥∥CN(A,γ,i)(b) − CN(A,γ,i)(0)
∥∥+ 2 · 8−i ≤ 6 · 8−i .

The lemma is proved. �

Proof of Theorem 6.11 Define

F :=
∞⋂

q=1

⋃{
U(A,γ, i) : A ∈A, γ ∈ (0,1), i = q, q + 1, . . .

}
.

Clearly, F is a countable intersection of open everywhere dense sets in A.
Assume that B ∈ F and ε > 0 are given. Choose an integer q ≥ 1 such that

6 · 2−q < 64−1ε. (6.75)

There exist A ∈ A, γ ∈ (0,1) and an integer i ≥ q such that

B ∈ U(A,γ, i). (6.76)
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By Lemma 6.15, (6.75) and (6.76) for each z ∈ 〈0, b〉 and each integer T ≥
N(A,γ, i),

∥∥BT z − x(A,γ )
∥∥≤ 6 · 8−i < 64−1ε. (6.77)

Since ε is an arbitrary positive number, we conclude that all the trajectories of B

converge and there is xB ∈ 〈0, b〉 for which

BxB = xB. (6.78)

Relations (6.77) and (6.78) imply that

∥∥x(A,γ ) − xB

∥∥≤ 6 · 8−i , (6.79)

and that for each z ∈ 〈0, b〉 and each integer T ≥ N(A,γ, i),

∥∥BT z − xB

∥∥≤ 12 · 8−i < 32−1ε.

Since ε is an arbitrary positive number, we conclude that

Btx → xB as T → ∞, uniformly on 〈0, b〉.

Finally, assume that C ∈ U(A,γ, i), z ∈ 〈0, b〉 and that T ≥ N(A,γ, i) is an integer.
It follows from (6.79), Lemma 6.15 and (6.75) that

∥∥CT z − xB

∥∥ ≤ ∥∥CT z − x(A,γ )
∥∥+ ∥∥x(A,γ ) − xB

∥∥

< 6 · 8−i + 6 · 8−i < 32−1ε.

The proof of the theorem is complete. �

6.11 Asymptotic Behavior

In this section we assume that b is an interior point of the cone X+. We will first
formulate precisely our weak ergodic theorems.

Theorem 6.16 There exists a set F ⊂ M, which is a countable intersection of open
(in the weak topology) everywhere dense (in the strong topology) sets in M, such
that for each {Bt }∞t=1 ∈F , the following assertion holds:

For each ε ∈ (0,1), there exist a neighborhood U of {Bt }∞t=1 in M with the weak
topology and an integer N ≥ 1 such that for each {Ct }∞t=1 ∈ U , each integer T ≥ N

and each x ∈ 〈0, b〉,

λ
(
CT · · · · · C1x,CT · · · · · C1(0)

)≥ 1 − ε.
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Theorem 6.17 There exists a set F ⊂ M, which is a countable intersection of open
everywhere dense sets in M with the strong topology, such that for each {Bt }∞t=1 ∈
F , the following assertion holds:

For each ε ∈ (0,1), there exists a neighborhood U of {Bt }∞t=1 in M with the
strong topology and an integer N ≥ 1 such that for each {Ct }∞t=1 ∈ U , each r :
{1,2, . . .} → {1,2, . . .}, each integer T ≥ N and each x ∈ 〈0, b〉,

λ
(
Cr(T ) · · · · · Cr(1)x,Cr(T ) · · · · · Cr(1)(0)

)≥ 1 − ε.

Let a ∈ 〈0, b〉 be an interior point of X+. Now we present the theorems which
establish generic convergence to a unique fixed point in the space Ma .

Theorem 6.18 There exists a set F ⊂ Ma , which is a countable intersection of
open (in the relative weak topology) everywhere dense (in the relative strong topol-
ogy) sets in Ma , such that the following assertion holds:

For each {Bt }∞t=1 ∈ F and each ε > 0, there exist a neighborhood U of {Bt }∞t=1
in Ma with the relative weak topology and a natural number N such that for each
{Ct }∞t=1 ∈ U , each integer T ≥ N and each z ∈ 〈0, b〉,

‖CT · · · · · C1z − a‖b ≤ ε.

Theorem 6.19 There exists a set F ⊂ Ma , which is a countable intersection of
open everywhere dense sets in Ma with the relative strong topology, such that the
following assertion holds:

For each {Bt }∞t=1 ∈ F and each ε > 0, there exist a neighborhood U of {Bt }∞t=1
in Ma with the relative strong topology and a natural number N such that for
each {Ct }∞t=1 ∈ U , each r : {1,2, . . .} → {1,2, . . .}, each integer T ≥ N and each
z ∈ 〈0, b〉,

‖Cr(T ) · · · · · Cr(1)z − a‖b ≤ ε.

The next theorem establishes generic uniform convergence of random infinite
products to a unique common fixed point in the space M̄∗.

Theorem 6.20 There exists a set F ⊂ M̄∗, which is a countable intersection of
open everywhere dense sets in M̄∗, such that for each {Bt }∞t=1 ∈ F , the following
two assertions hold:

1. There exists an interior point x(B) ∈ 〈0, b〉 of the cone X+ which satisfies

Btx(B) = x(B), t = 1,2, . . . .

2. For each ε > 0, there exist a neighborhood U of {Bt }∞t=1 in M̄∗ and a natural
number N such that for each {Ct }∞t=1 ∈ U , each r : {1,2, . . .} → {1,2, . . .}, each
integer T ≥ N and each z ∈ 〈0, b〉,

∥∥Cr(T ) · · · · · Cr(1)z − x(B)
∥∥

b
≤ ε.
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6.12 Preliminary Lemmata for Theorems 6.16–6.20

For the space A we define a metric ρ : A×A → [0,∞) by

ρ(A,B) := sup
{‖Ax − Bx‖b : x ∈ 〈0, b〉}, A,B ∈A.

Fix a ∈ 〈0, b〉 such that a is an interior point of X+. Clearly,

0 < λ(b, a) ≤ 1. (6.80)

For each A = {At }∞t=1 and each γ ∈ (0,1), define A(a)
γ = {A(a)

tγ }∞t=1, where A
(a)
tγ :

〈0, b〉 → 〈0, b〉, t = 1,2, . . . , is defined by

A
(a)
tγ x := (1 − γ )Atx + γ a, x ∈ 〈0, b〉, t = 1,2, . . . . (6.81)

It is easy to see that {A(a)
tγ }∞t=1 ∈ M for each {At }∞t=1 ∈ M and each γ ∈ (0,1), and

that the set
{{

A
(a)
tγ

}∞
t=1 : {At }∞t=1 ∈ M, γ ∈ (0,1)

}
(6.82)

is everywhere dense in M with the strong topology.
For each ε and γ ∈ (0,1), we choose a natural number Q(γ, ε) such that

Q(γ, ε) > 4
(
εγ λ(b, a)

)−1 + 4. (6.83)

Lemma 6.21 Let {At }∞t=1 ∈ M, ε, γ ∈ (0,1) and let r : {1,2, . . .} → {1,2, . . .}.
Then

λ
(
A

(a)
r(Q(γ,ε))γ · · · · · A(a)

r(1)γ (b),A
(a)
r(Q(γ,ε))γ · · · · · A(a)

r(1)γ (0)
)
> 1 − ε.

Proof It is clear that for each integer T ≥ 1,

1 ≥ λ
(
A

(a)
r(T )γ

· · · · · A(a)
r(1)γ

b,A
(a)
r(T )γ

· · · · · A(a)
r(1)γ

)

and

λ
(
A

(a)
r(T +1)γ · A(a)

r(T )γ · · · · · A(a)
r(1)γ b,A

(a)
r(T +1)γ · A(a)

r(T )γ · · · · · A(a)
r(1)γ (0)

)

≥ λ
(
A

(a)
r(T )γ · · · · · A(a)

r(1)γ (b),A
(a)
r(T )γ · · · · · A(a)

r(1)γ (0)
)
. (6.84)

For each integer T ≥ 1, we have by (6.81), (6.84) and (6.80),

A
(a)
r(T +1)γ A

(a)
r(T )γ · · · · · A(a)

r(1)γ (0)

= A
(a)
r(T +1)γ

(
A

(a)
r(T )γ · · · · · A(a)

r(1)γ (0)
)

= (1 − γ )Ar(T +1)

(
A

(a)
r(T )γ · · · · · A(a)

r(1)γ (0)
)+ γ a
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= γ a + (1 − γ )Ar(T +1)

(
λ
(
A

(a)
r(T )γ · · · · · A(a)

r(1)γ b,

A
(a)
r(T )γ · · · · · A(a)

r(1)γ (0)
)
A

(a)
r(T )γ · · · · · A(a)

r(1)γ (b)
)

≥ γ a + (1 − γ )λ
(
A

(a)
r(T )γ · · · · · A(a)

r(1)γ b,

A
(a)
r(T )γ · · · · · A(a)

r(1)γ (0)
)
Ar(T +1) · A(a)

r(T )γ · · · · · A(a)
r(1)γ (b)

≥ λ
(
A

(a)
r(T )γ · · · · · A(a)

r(1)γ b,

A
(a)
r(T )γ · · · · · A(a)

r(1)γ (0)
)[

(1 − γ )Ar(T +1)

(
A

(a)
r(T )γ · · · · · A(a)

r(1)γ b
)+ γ a

]

+ (
1 − λ

(
A

(a)
r(T )γ · · · · · A(a)

r(1)γ b,A
(a)
r(T )γ · · · · · A(a)

r(1)γ (0)
))

γ a

= λ
(
A

(a)
r(T )γ · · · · · A(a)

r(1)γ b,

A
(a)
r(T )γ

· · · · · A(a)
r(1)γ

(0)
)
A

(a)
r(T +1)γ

· A(a)
r(T )γ

· · · · · A(a)
r(1)γ

(b)

+ (
1 − λ

(
A

(a)
r(T )γ

· · · · · A(a)
r(1)γ

(b),A
(a)
r(T )γ

· · · · · A(a)
r(1)γ

(0)
))

γ a

≥ [
λ
(
A

(a)
r(T )γ · · · · · A(a)

r(1)γ b,

A
(a)
r(T )γ · · · · · A(a)

r(1)γ (0)
)+ γ λ(b, a)

(
1 − λ

(
A

(a)
r(T )γ · · · · · A(a)

r(1)γ b,

A
(a)
r(T )γ · · · · · A(a)

r(1)γ (0)
))]

A
(a)
r(T +1)γ A

(a)
r(T )γ · · · · · A(a)

r(1)γ (b)

and

λ
(
A

(a)
r(T +1)γ A

(a)
r(T )γ · · · · · A(a)

r(1)γ b,A
(a)
r(T +1)γ A

(a)
r(T )γ · · · · · A(a)

r(1)γ (0)
)

≥ λ
(
A

(a)
r(T )γ · · · · · A(a)

r(1)γ b,A
(a)
r(T )γ · · · · · A(a)

r(1)γ (0)
)

+ γ
(
1 − λ

(
A

(a)
r(T )γ · · · · · A(a)

r(1)γ b,A
(a)
r(T )γ · · · · · A(a)

r(1)γ (0)
))

λ(b, a). (6.85)

Assume now that

λ
(
A

(a)
r(Q(γ,ε))γ · · · · · A(a)

r(1)γ b,A
(a)
r(Q(γ,ε))γ · · · · · A(a)

r(1)γ (0)
)≤ 1 − ε. (6.86)

Inequalities (6.86), (6.85) and (6.84) imply that for each integer T ∈ [1,N],
λ
(
A

(a)
r(T +1)γ A

(a)
r(T )γ · · · · · A(a)

r(1)γ b,A
(a)
r(T +1)γ A

(a)
r(T )γ · · · · · A(a)

r(1)γ (0)
)

≥ λ
(
A

(a)
r(T )γ · · · · · A(a)

r(1)γ b,A
(a)
r(T )γ · · · · · A(a)

r(1)γ (0)
)+ γ ελ(b, a).

Together with (6.83) this implies that

λ
(
A

(a)
r(Q(γ,ε))γ · · · · · A(a)

r(1)γ (b),A
(a)
r(Q(γ,ε))γ · · · · · A(a)

r(1)γ (0)
)

≥ λ(b, a)γ ε
(
Q(γ, ε) − 1

)
> 4.

Since this contradicts (6.86), the lemma is proved. �
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Lemma 6.22 Let {At }∞t=1 ∈ M, ε, γ ∈ (0,1) be given, and let n ≥ 1 be an integer.
Then there is Δ > 0 such that for each r : {1,2, . . . , n} → {1,2, . . .}, each sequence
{Ci}ni=1 ⊂ A satisfying

ρ
(
Ci,A

(a)
r(i)γ

)≤ Δ, i = 1, . . . , n,

and each z ∈ 〈0, b〉, the inequality

∥∥Cn · · · · · C1z − A
(a)
r(n)γ · · · · · A(a)

r(1)γ z
∥∥

b
≤ ε

holds.

Proof We will prove the assertion of the lemma by induction. Clearly for n = 1 the
assertion of the lemma is valid. Assume that the assertion of the lemma is valid for
an integer n ≥ 1. To prove that the assertion also holds for n + 1, choose first a
positive number

δ < 8−1γ 2ελ(b, a)2. (6.87)

Since the assertion of the lemma holds for n, there exists Δ0 > 0 such that for each
r : {1, . . . , n} → {1,2, . . .}, each {Ci}ni=1 ⊂ A satisfying

ρ
(
Ci,A

(a)
r(i)γ

)≤ Δ0, i = 1, . . . , n,

and each z ∈ 〈0, b〉, the inequality

∥∥Cn · · · · · C1z − A
(a)
r(n)γ · · · · · A(a)

r(1)γ z
∥∥

b
≤ δ

holds. Set

Δ := 8−1 min
{
Δ0,8−1ε

}
. (6.88)

Assume that {Ci}n+1
i=1 ⊂ A, r : {1, . . . , n + 1} → {1,2, . . .},

ρ
(
Ci,A

(a)
r(i)γ

)≤ Δ, i = 1, . . . , n + 1, (6.89)

and that z ∈ 〈0, b〉. Relations (6.88) and (6.89) imply that

∥
∥A(a)

r(n+1)γ · A(a)
r(n)γ · · · · · A(a)

r(1)γ z − Cn+1 · Cn · · · · · C1z
∥
∥

b

≤ ∥∥A(a)
r(n+1)γ · A(a)

r(n)γ · · · · · A(a)
r(1)γ z − A

(a)
r(n+1)γ · Cn · · · · · C1(z)

∥∥
b

+ ∥∥A(a)
r(n+1)γ · Cn · · · · · C1z − Cn+1 · Cn · · · · · C1z

∥∥
b

≤ ∥∥A(a)
r(n+1)γ · A(a)

r(n)γ · · · · · A(a)
r(1)γ z − A

(a)
r(n+1)γ · Cn · · · · · C1z

∥∥
b
+ 8−1ε. (6.90)

By (6.88), (6.89) and the definition of Δ0,

∥∥A(a)
r(n)γ · · · · · A(a)

r(1)γ z − Cn · · · · · C1z
∥∥

b
≤ δ. (6.91)
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It follows from (6.91) and (6.81) that

Cn · · · · · C1z ≥ A
(a)
r(n)γ · · · · · A(a)

r(1)γ z − δb

≥ A
(a)
r(n)γ · · · · · A(a)

r(1)γ z − λ(b, a)−1δ
(
γ −1A

(a)
r(n)γ · · · · · A(a)

r(1)γ z
)

= (
1 − δγ −1λ(b, a)−1)A(a)

r(n)γ · · · · · A(a)
r(1)γ z,

A
(a)
r(n)γ · · · · · A(a)

r(1)γ z ≥ Cn · · · · · C1z − δb

≥ Cn · · · · · C1z − λ(b, a)−1δγ −1(A(a)
r(n)γ · · · · · A(a)

r(1)γ z
)

and

A
(a)
r(n)γ · · · · · A(a)

r(1)γ ≥ (
1 + λ(b, a)−1δγ −1)−1

Cn · · · · · C1z.

Together with (6.87) this implies that

A
(a)
r(n+1)γ · A(a)

r(n)γ · · · · · A(a)
r(1)γ z ≥ (

1 + 8γ −1λ(b, a)−1)−1
A

(a)
r(n+1)γ · Cn · · · · · C1z,

A
(a)
r(n+1)γ · Cn · · · · · C1z ≥ (

1 − λ(b, a)−1δγ −1)A(a)
r(n+1)γ · A(a)

r(n)γ · · · · · A(a)
r(1)γ z,

((
1 + λ(b, a)−1δγ −1)−1 − 1

)
b

≤ A
(a)
r(n+1)γ · A(a)

r(n)γ · · · · · A(a)
r(1)γ z − A

(a)
r(n+1)γ · Cn · · · · · C1z

≤ δγ −1λ(b, a)−1b

and
∥∥A(a)

r(n+1)γ · A(a)
r(n)γ · · · · · A(a)

r(1)γ z − A
(a)
r(n+1)γ · Cn · · · · · C1z

∥∥
b

≤ λ(b, a)−1δγ −1 < 8−1ε.

It follows from this and (6.90) that
∥∥A(a)

r(n+1)γ · A(a)
r(n)γ · · · · · A(a)

r(1)γ z − Cn+1 · Cn · · · · · C1z
∥∥

b
≤ 4−1ε.

This completes the proof of the lemma. �

Lemma 6.23 Let {At }∞t=1 ∈ M and γ, ε ∈ (0,1) be given. Then there exist an inte-
ger Q ≥ 4 and a number Δ > 0 such that for each r : {1, . . . ,Q} → {1,2, . . .} and
each {Ci}Qi=1 ⊂ A satisfying

ρ
(
Ci,A

(a)
r(i)γ

)≤ Δ, i = 1, . . . ,Q, (6.92)

the following inequality holds:

λ
(
CQ · · · · · C1(b),CQ · · · · · C1(0)

)≥ 1 − ε. (6.93)
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Proof Choose a positive number ε0 such that

ε0 < 8−1εγ 2λ(b, a) (6.94)

and
(
1 − ε0

(
γ λ(b, a)

)−1)
(1 − ε0)

(
1 + ε0

(
γ λ(b, a)

)−1)
> (1 − ε).

Set

Q = Q(γ, ε0) (6.95)

(see (6.83)). By Lemma 6.21, for each r : {1,2, . . .} → {1,2, . . .},

λ
(
A

(a)
r(Q)γ · · · · · A(a)

r(1)γ (b),A
(a)
r(Q)γ · · · · · A(a)

r(1)γ (0)
)
> 1 − ε0. (6.96)

By Lemma 6.22, there is Δ > 0 such that for each r : {1, . . . ,Q} → {1,2, . . .}, each
sequence {Ci}Qi=1 ⊂ A satisfying (6.92) and each z ∈ 〈0, b〉, the following inequality
holds:

∥∥CQ · · · · · C1z − A
(a)
r(Q)γ

· · · · · A(a)
r(1)γ

z
∥∥

b
≤ ε0. (6.97)

Assume that r : {1, . . . ,Q} → {1,2, . . .}, {Ci}Qi=1 ⊂ A and that (6.92) is valid.
Then (6.96) is valid too. It follows from the definition of Δ (see (6.97)), (6.92),
(6.81), (6.96) and (6.94) that

CQ · · · · · C1(0) ≥ A
(a)
r(Q)γ · · · · · A(a)

r(1)γ (0) − ε0b

≥ A
(a)
r(Q)γ · · · · · A(a)

r(1)γ (0) − λ(b, a)−1ε0γ
−1A

(a)
r(Q)γ · · · · · A(a)

r(1)γ (0)

= (
1 − ε0

(
γ λ(b, a)

)−1)
A

(a)
r(Q)γ · · · · · A(a)

r(1)γ (0)

≥ (
1 − ε0γ

−1λ(b, a)−1)(1 − ε0)A
(a)
r(Q)γ · · · · · A(a)

r(1)γ (b),

A
(a)
r(Q)γ · · · · · A(a)

r(1)γ (b) ≥ CQ · · · · · C1(b) − ε0b

≥ CQ · · · · · C1b − λ(b, a)−1ε0γ
−1A

(a)
r(Q)γ · · · · · A(a)

r(1)γ (b),

A
(a)
r(Q)γ

· · · · · A(a)
r(1)γ

b ≥ (
1 + λ(b, a)−1ε0γ

−1)−1
CQ · · · · · C1(b)

and

CQ · · · · · C1(0) ≥ (
1 − λ(b, a)−1ε0γ

−1)

· (1 − ε0)
(
1 + λ(b, a)−1ε0γ

−1)−1
CQ · · · · · C1(b)

≥ (1 − ε)CQ · · · · · C1(b).

This completes the proof of the lemma. �



276 6 Infinite Products

6.13 Proofs of Theorems 6.16 and 6.17

Set a = b.
Let A = {At }∞t=1 ∈ M, γ ∈ (0,1) and let j ≥ 1 be an integer. By Lemma 6.23,

there exist an integer Q(A, γ, j) ≥ 4 and a number Δ(A, γ, j) > 0 such that the
following property holds:

(a) for each r : {1, . . . ,Q(A, γ, j)} → {1,2, . . .} and each {Ci}Q(A,γ,j)

i=1 ⊂ A sat-
isfying

ρ
(
Ci,A

(b)
r(i)γ

)≤ Δ(A, γ, j), i = 1, . . . ,Q(A, γ, j),

the inequality

λ
(
CQ(A,γ,j) · · · · · C1(b),CQ(A,γ,j) · · · · · C1(0)

)≥ 1 − 16−j

holds.

Proof of Theorem 6.16 For each {At }∞t=1 ∈ M, each γ ∈ (0,1) and each integer

j ≥ 1, there exists an open neighborhood U(A, γ, j) of {A(b)
tγ }∞t=1 in the space M

with the weak topology such that

U(A, γ, j) ⊂ {{Ct }∞t=1 ∈M : ∥∥A(b)
tγ x − Ctx

∥∥
b
≤ Δ(A, γ, j),

x ∈ 〈0, b〉, t = 1, . . . ,Q(A, γ, j)
}
. (6.98)

Define

F :=
∞⋂

q=1

⋃{
U(A, γ, j) : A ∈ M, γ ∈ (0,1), j = q, q + 1, . . .

}
.

Clearly, F is a countable intersection of open (in the weak topology) everywhere
dense (in the strong topology) subsets of M.

Assume that {Bt }∞t=1 ∈ F and ε ∈ (0,1) are given. Choose an integer q ≥ 1 for
which

2−q < 64−1ε. (6.99)

There exists {At }∞t=1 ∈M, γ ∈ (0,1) and an integer j ≥ q such that

{Bt }∞t=1 ∈ U
({At }∞t=1, γ, j

)
.

It follows from (6.98), (6.99) and property (a) that for each

{Ct }∞t=1 ∈ U
({At }∞t=1, γ, j

)
,

the following relation holds:

λ
(
CQ(A,γ,j) · · · · · C1(b),CQ(A,γ,j) · · · · · C1(0)

)≥ 1 − 16−j > 1 − 2−1ε.

This completes the proof of the theorem. �
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Proof of Theorem 6.17 For each {At }∞t=1 ∈ M, each γ ∈ (0,1) and each integer
j ≥ 1, we first define

U(A, γ, j) = {{Bt }∞t=1 ∈ M : ρs

({
A

(b)
tγ

}∞
t=1, {Bt }∞t=1

)
< Δ(A, γ, j)

}
. (6.100)

Next we set

F :=
∞⋂

q=1

⋃{
U(A, γ, j) : A ∈ M, γ ∈ (0,1), j = q, q + 1, . . .

}
.

It is clear that F is a countable intersection of open and everywhere dense subsets
of M with the strong topology.

Assume that {Bt }∞t=1 ∈ F and ε ∈ (0,1) are given. Choose an integer q ≥ 1 for
which (6.99) holds. There exist {At }∞t=1 ∈ M, γ ∈ (0,1) and an integer j ≥ q such
that

{Bt }∞t=1 ∈ U
({At }∞t=1, γ, j

)
.

It follows from (6.100), (6.99) and property (a) that for each

{Ct }∞t=1 ∈ U
({At }∞t=1, γ, j

)

and each r : {1,2, . . .} → {1,2, . . .},
λ
(
Cr(Q(A,γ,j)) · · · · · Cr(1)(b),Cr(Q(A,γ,j)) · · · · · Cr(1)(0)

)

≥ 1 − 16−j > 1 − 2−1ε.

The theorem is proved. �

6.14 Proofs of Theorems 6.18 and 6.19

It is easy to see that {A(a)
tγ }∞t=1 ∈ Ma for each {At }∞t=1 ∈ Ma and each γ ∈ (0,1),

and that the set
{{

A
(a)
tγ

}∞
t=1 : {At }∞t=1 ∈Ma, γ ∈ (0,1)

}

is everywhere dense in Ma with the strong topology.
Let A = {At }∞t=1 ∈ M, γ ∈ (0,1) and let j ≥ 1 be an integer. By Lemma 6.23,

there exist an integer Q(A, γ, j) ≥ 4 and a number Δ(A, γ, j) > 0 such that the
following property holds:

(a) For each r : {1, . . . ,Q(A, γ, j)} → {1,2, . . .} and each {Ci}Q(A,γ,j)

i=1 ⊂ A sat-
isfying

ρ
(
Ci,A

(a)
r(i)γ

)≤ Δ(A, γ, j), i = 1, . . . ,Q(A, γ, j),

the following inequality holds:

λ
(
CQ(A,γ,j) · · · · · C1(b),CQ(A,γ,j) · · · · · C1(0)

)≥ 1 − 16−j .
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Proof of Theorem 6.18 For each {At }∞t=1 ∈ Ma , each γ ∈ (0,1) and each integer

j ≥ 1, there exists an open neighborhood U(A, γ, j) of {A(a)
tγ }∞t=1 in the space Ma

with the relative weak topology such that

U(A, γ, j) ⊂ {{Ct }∞t=1 ∈Ma : ∥∥A(a)
tγ x − Ctx

∥∥
b
≤ Δ(A, γ, j),

x ∈ 〈0, b〉, t = 1, . . . ,Q(A, γ, j)
}
. (6.101)

Define

F :=
∞⋂

q=1

⋃{
U(A, γ, j) : A ∈ Ma, γ ∈ (0,1), j = q, q + 1, . . .

}
.

Clearly, F is a countable intersection of open (in the relative weak topology) every-
where dense (in the relative strong topology) sets in Ma .

Assume that {Bt }∞t=1 ∈ F and ε > 0 are given. Choose a natural number q for
which

2−q < 64−1ε. (6.102)

There exist A = {At }∞t=1 ∈ Ma , γ ∈ (0,1) and an integer j ≥ q such that

{Bt }∞t=1 ∈ U(A, γ, j). (6.103)

Assume that {Ct }∞t=1 ∈ U(A, γ, j). It follows from property (a) and (6.101) that

λ
(
CQ(A,γ,j) · · · · · C1(b),CQ(A,γ,j) · · · · · C1(0)

)≥ 1 − 16−j . (6.104)

Since Cta = a, t = 1,2, . . . , it follows from (6.104) that

CQ(A,γ,j) · · · · · C1(0) ≤ a ≤ CQ(A,γ,j) · · · · · C1(b),

CQ(A,γ,j) · · · · · C1(0) ≥ (
1 − 16−j

)
a

and

a ≥ (
1 − 16−j

)
CQ(A,γ,j) · · · · · C1(b).

By these relations and (6.102), for each integer T ≥ Q(A, γ, j) and each z ∈ 〈0, b〉,
we have

CT · · · · · C1(0) ≥ (
1 − 16−j

)
a, a ≥ (

1 − 16−j
)
CT · · · · · C1(b),

CT · · · · · C1z − a ∈ 〈CT · · · · · C1(0) − a,CT · · · · · C1(b) − a
〉

and finally,

‖CT · · · · · C1z − a‖b ≤ ‖CT · · · · · C1b − a‖b + ∥∥CT · · · · · C1(0) − a
∥∥

b

≤ 2 · 16−j < ε,

as claimed. �
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Proof of Theorem 6.19 For each {At }∞t=1 ∈ Ma , each γ ∈ (0,1) and each integer
j ≥ 1, define

U(A, γ, j) = {{Bt }∞t=1 ∈Ma : ρs

({
A

(a)
tγ

}∞
t=1, {Bt }∞t=1

)
< Δ(A, γ, j)

}
, (6.105)

and set

F =
∞⋂

q=1

⋃{
U(A, γ, j) : A ∈Ma, γ ∈ (0,1), j = q, q + 1, . . .

}
.

Clearly, F is a countable intersection of open and everywhere dense subsets of Ma

with the relative strong topology.
Assume that {Bt }∞t=1 ∈F and ε > 0 are given. Choose an integer q ≥ 1 for which

(6.102) is valid. There exist {At }∞t=1 ∈Ma , γ ∈ (0,1) and an integer j ≥ q such that

{Bt }∞t=1 ∈ U
({At }∞t=1, γ, j

)
.

Assume that {Ct }∞t=1 ∈ U({At }∞t=1, γ, j) and r : {1,2, . . .} → {1,2, . . .}. It follows
from (6.105) and property (a) that

λ
(
Cr(Q(A,γ,j)) · · · · · Cr(1)(b),Cr(Q(A,γ,j)) · · · · · Cr(1)(0)

)≥ 1 − 16−j . (6.106)

Since Cta = a, t = 1,2, . . . , it follows from (6.106) that

Cr(Q(A,γ,j)) · · · · · Cr(1)(0) ≤ a ≤ Cr(Q(A,γ,j)) · · · · · Cr(1)(b),

Cr(Q(A,γ,j)) · · · · · Cr(1)(0) ≥ (
1 − 16−j

)
a,

and

a ≥ (
1 − 16−j

)
Cr(Q(A,γ,j)) · · · · · Cr(1)(b).

By these relations and (6.102), for each integer T ≥ Q(A, γ, j) and each z ∈ 〈0, b〉,

Cr(T ) · · · · · Cr(1)(0) ≥ (
1 − 16−j

)
a, a ≥ (

1 − 16−j
)
Cr(T ) · · · · · Cr(1)(b),

Cr(T ) · · · · · Cr(1)(z) − a ∈ 〈Cr(T ) · · · · · Cr(1)(0) − a,Cr(T ) · · · · · Cr(1)(b) − a
〉
,

and finally,

∥∥Cr(T ) · · · · · Cr(1)(z) − a
∥∥

b
≤ ∥∥Cr(T ) · · · · · Cr(1)(b) − a

∥∥
b

+ ∥∥Cr(T ) · · · · · Cr(1)(0) − a
∥∥

b

≤ 2 · 16−j < ε,

as required. This completes the proof of Theorem 6.19. �
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6.15 Proof of Theorem 6.20

Let {At }∞t=1 ∈M∗. There exists x(A) ∈ 〈0, b〉 which is an interior point of the cone
X+ such that

At

(
x(A)

)= x(A), t = 1,2, . . . . (6.107)

For each A = {At }∞t=1 ∈M∗ and each γ ∈ (0,1), we set

Atγ = A
(x(A))
tγ , t = 1,2, . . . . (6.108)

It is easy to see that {Atγ }∞t=1 ∈ M∗ for each {At }∞t=1 ∈ M∗ and each γ ∈ (0,1),
and that the set

{{Atγ }∞t=1 : {At }∞t=1 ∈ M∗, γ ∈ (0,1)
}

is everywhere dense in M̄∗.
Let A = {At }∞t=1 ∈ M∗ and γ ∈ (0,1), and let j ≥ 1 be an integer. By

Lemma 6.23, there exist an integer Q(A, γ, j) ≥ 4 and a number Δ1(A, γ, j) > 0
such that the following property holds:

(a) For each r : {1, . . . ,Q(A, γ, j)} → {1,2, . . .} and each {Ci}Q(A,γ,j)

i=1 ⊂ A sat-
isfying

ρ(Ci,Ar(i)γ ) ≤ Δ1(A, γ, j), i = 1, . . . ,Q(A, γ, j),

the following inequality holds:

λ
(
CQ(A,γ,j) · · · · · C1(b),CQ(A,γ,j) · · · · · C1(0)

)≥ 1 − 16−j .

Choose now a positive number

δ(A, γ, j) < 16−j γ 2λ
(
b, x(A)

)
. (6.109)

By Lemma 6.22, there is a number Δ2(A, γ, j) > 0 such that the following property
holds:

(b) For each r : {1, . . . ,Q(A, γ, j)} → {1,2, . . .}, each sequence

{Ci}Q(A,γ,j)

i=1 ⊂ A

satisfying

ρ(Ci,Ar(i)γ ) ≤ Δ2(A, γ, j), i = 1, . . . ,Q(A, γ, j),

and each z ∈ 〈0, b〉, the following inequality holds:

‖CQ(A,γ,j) · · · · · C1z − Ar(Q(Aγ,j))γ · · · · · Ar(1)γ z‖b ≤ δ(A, γ, j).

Define

U(A, γ, j) = {{Bt }∞t=1 ∈ M̄∗ :
ρs

({Atγ }∞t=1, {Bt }∞t=1

)
< inf

{
Δ1(A, γ, j),Δ2(A, γ, j)

}}
(6.110)
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and

F =
∞⋂

q=1

⋃{
U(A, γ, j) : A ∈M∗, γ ∈ (0,1), j = q, q + 1, . . .

}
.

Clearly, F is a countable intersection of open and everywhere dense sets in M̄∗.
Assume that {Bt }∞t=1 ∈F and ε > 0 are given. Choose a natural number q such that

2−q < 64−1ε. (6.111)

There exist A = {At }∞t=1 ∈ M∗, γ ∈ (0,1) and an integer j ≥ q such that

{Bt }∞t=1 ∈ U(A, γ, j). (6.112)

It follows from property (a) that for each r : {1, . . . ,Q(A, γ, j)} → {1,2, . . .} and
each z ∈ 〈0, b〉,

∥∥Ar(Q(A,γ,j))γ · · · · · Ar(1)γ z − x(A)
∥∥

b
≤ 2 · 16−j . (6.113)

Together with property (b), (6.110) and (6.109) this implies that the following prop-
erty holds:

(c) For each {Ct }∞t=1 ∈ U(A, γ, j), each r : {1, . . . ,Q(A, γ, j)} → {1,2, . . .} and
each z ∈ 〈0, b〉,

∥∥Cr(Q(A,γ,j)) · · · · · Cr(1)z − x(A)
∥∥

b
≤ 3 · 16−j . (6.114)

Property (c), when combined with (6.112) and (6.111), implies that for each integer
τ ≥ 1, each integer T ≥ r(Q(A, γ, j)) and each z ∈ 〈0, b〉,

∥∥BT
τ z − x(A)

∥∥
b
≤ 3 · 16−j ≤ ε. (6.115)

Since ε is an arbitrary positive number, we conclude that there exists x(B) ∈ 〈0, b〉
such that

lim
T →∞BT

τ z = x(B) for each integer τ ≥ 1 and each z ∈ 〈0, b〉. (6.116)

Clearly,

Bt

(
x(B)

)= x(B), t = 1,2, . . . . (6.117)

By (6.115) and (6.116),
∥
∥x(B) − x(A)

∥
∥

b
≤ 3 · 16−j . (6.118)

We will show that x(B) is an interior point of X+. To this end, note that property
(b), (6.112), (6.110), (6.107), (6.109) and (6.117) yield

∥∥x(B) − AQ(A,γ,j)γ · · · · · A1γ

(
x(B)

)∥∥
b
≤ δ(A, γ, j),
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x(B) ≥ −δ(A, γ, j)b + AQ(A,γ,j) · · · · · A1γ

(
x(B)

)

≥ γ x(A) − δ(A, γ, j)b ≥ γ x(A) − 16−j γ 2x(A).

This implies that x(B) is indeed an interior point of X+.
Assume that {Ct }∞t=1 ∈ U(A, γ, j) and r : {1,2, . . .} → {1,2, . . .} are given. It

follows from property (c), (6.118) and (6.111) that for each z ∈ 〈0, b〉 and each
integer T ≥ Q(A, γ, j),

∥∥Cr(T ) · · · · · Cr(1)z − x(A)
∥∥

b
≤ 3 · 16−j

and
∥∥Cr(T ) · · · · · Cr(1)z − x(B)

∥∥
b
≤ 6 · 16−j < ε.

This completes the proof of Theorem 6.20.

6.16 Infinite Products of Positive Linear Operators

Infinite products of linear operators are of interest in many areas of mathematics
and its applications. See, for instance, [5, 22, 55–58, 71, 72, 91, 95, 110, 175] and
the references mentioned there. Since many linear operators between Banach spaces
arising in classical and modern analysis are, in fact, positive operators, the theory of
positive linear operators and its applications have drawn the attention of more and
more mathematicians. See, for example, [3, 86, 96, 170] and the references cited
therein.

In this section we study (random) infinite products of generic sequences of pos-
itive linear operators on an ordered Banach space. In addition to a weak ergodic
theorem (Theorem 6.27), we also obtain generic convergence to an operator of the
form f (·)η, where f is a bounded linear functional and η is a common fixed point.
More precisely, having chosen an appropriate space of sequences of positive lin-
ear operators, we construct a subset which is a countable intersection of open and
everywhere dense sets such that for each sequence belonging to this subset, the cor-
responding infinite products converge.

Let (X,‖ · ‖) be a real Banach space with norm ‖ · ‖, which is ordered by a closed
and convex cone X+. For each u,v ∈ X such that u ≤ v, we define

〈u,v〉 = {z ∈ X : u ≤ z ≤ v}.
For each set E ⊂ X, we denote by int(E) the interior of E. We assume that the cone
X+ has a nonempty interior int(X+) and that for each x, y ∈ X+ satisfying x ≤ y,
the inequality ‖x‖ ≤ ‖y‖ holds.

Fix an interior point η of the cone X+ and define

‖x‖η := inf
{
r ∈ [0,∞) : −rη ≤ x ≤ rη

}
, x ∈ X. (6.119)

It is clear that ‖ · ‖η is a norm on X which is equivalent to the original norm ‖ · ‖.
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Let X′ be the space of all linear continuous functionals f : X → R1. Define

X′+ := {
f ∈ X′ : f (x) ≥ 0 for all x ∈ X+

}
.

Denote by A the set of all linear operators A : X → X such that A(X+) ⊂ X+.
Let M be the set of all sequences {At }∞t=1, where At ∈ A, t = 1,2, . . . . Such a
sequence will occasionally be denoted by a boldface A. Define

Mη := {{At }∞t=1 ∈M : Atη = η, t = 1,2, . . .
}
. (6.120)

For the set Mη we consider the metric ρs : Mη ×Mη → [0,∞) defined by

ρs

({At }∞t=1, {Bt }∞t=1

)= sup
{‖Atx − Btx‖η : x ∈ 〈0, η〉, t = 1,2, . . .

}
,

{At }∞t=1, {Bt }∞t=1 ∈ Mη. (6.121)

It is easy to see that the metric space (Mη, ρs) is complete. We shall refer to the
topology generated by the metric ρs as the strong topology. For the set Mη we also
consider the uniformity which is determined by the base

E(N,ε) = {({At }∞t=1, {Bt }∞t=1

) ∈Mη ×Mη :
‖Atx − Btx‖η ≤ ε, t = 1, . . . ,N,x ∈ 〈0, η〉},

where N is a natural number and ε > 0. The topology generated by this uniformity
on Mη will be called the weak topology. It is easy to see that the space Mη with
this uniformity is metrizable (by a metric ρw : Mη ×Mη → [0,∞)) and complete
([80]).

We now state our first two results [125]. The second one deals with random
products.

Theorem 6.24 There exists a set F ⊂ Mη, which is a countable intersection of
open (in the weak topology) everywhere dense (in the strong topology) sets in Mη,
such that for each B = {Bt }∞t=1 ∈F , the following two assertions hold:

1. There exists a continuous linear functional fB : X → R1 such that

lim
T →∞BT · · · · · B1x = fB(x)η for each x ∈ X.

2. For each ε > 0, there exists a neighborhood U of B = {Bt }∞t=1 in Mη with
the weak topology and a natural number N such that for each {Ct }∞t=1 ∈ U , each
integer T ≥ N and each x ∈ 〈−η,η〉,

∥∥CT · · · · · C1x − fB(x)η
∥∥

η
≤ ε.

Theorem 6.25 There exists a set F ⊂ Mη, which is a countable intersection of
open everywhere dense in the strong topology sets in Mη, such that for each B =
{Bt }∞t=1 ∈ F , the following two assertions hold:
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1. For each r : {1,2, . . .} → {1,2, . . .}, there exists a linear functional fr ∈ X′+
such that

lim
T →∞Br(T ) · · · · · Br(1)x = fr(x)η for each x ∈ X.

2. For each ε > 0, there exists a neighborhood U of {Bt }∞t=1 in Mη with the
strong topology and a natural number N such that for each {Ct }∞t=1 ∈ U , each
integer T ≥ N , each r : {1,2, . . .} → {1,2, . . .} and each x ∈ 〈−η,η〉,

∥∥Cr(T ) · · · · · Cr(1)x − fr(x)η
∥∥

η
≤ ε.

We now turn our attention to another metric space of sequences.
Define

Mb := {{At }∞t=1 ∈ M : sup
{‖Atη‖η : t = 1,2, . . .

}
< ∞}

. (6.122)

For the set Mb we consider the metric ρs :Mb ×Mb → [0,∞) defined by

ρs

({At }∞t=1, {Bt }∞t=1

)= sup
{‖Atx − Btx‖η : x ∈ 〈0, η〉, t = 1,2, . . .

}
,

{At }∞t=1, {Bt }∞t=1 ∈ Mb. (6.123)

It is easy to see that the metric space (Mb, ρs) is complete.
Denote by M∗

b the set of all {At }∞t=1 ∈Mb such that there exists an interior point
ξA of X+ for which

AtξA = ξA, t = 1,2, . . . .

Finally, denote by M̄∗
b the closure of M∗

b in Mb .

Theorem 6.26 There exists a set F ⊂ M̄∗
b , which is a countable intersection of

open and everywhere dense sets in M̄∗
b , such that for each B = {Bt }∞t=1 ∈ F , there

exists an interior point ξB of X+ satisfying

BtξB = ξB, t = 1,2, . . . , ‖ξB‖η = 1,

and the following two assertions hold:
1. For each r : {1,2, . . .} → {1,2, . . .}, there exists a linear functional fr ∈ X′+

such that

lim
T →∞Br(T ) · · · · · Br(1)x = fr(x)ξB, x ∈ X.

2. For each ε > 0, there exist a neighborhood U of {Bt }∞t=1 in M̄∗
b and a natural

number N such that for each {Ct }∞t=1 ∈ U ∩ M∗
b , each integer T ≥ N , each r :

{1,2, . . .} → {1,2, . . .} and each x ∈ 〈−η,η〉,
∥∥Cr(T ) · · · · · Cr(1)x − fr(x)ξB

∥∥
η

≤ ε.
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For each x, y ∈ X+, define

λ(x, y) = sup
{
r ∈ [0,∞) : rx ≤ y

}
,

r(x, y) = inf
{
λ ∈ [0,∞) : y ≤ λx

}
.

(6.124)

Here we use the usual convention that the infimum of the empty set is ∞.
Denote by Mreg the set of all sequences A = {At }∞t=1 ∈ M such that there exist

positive constants c1 < c2 satisfying

c2η ≥ AT · · · · · A1η ≥ c1η, T = 1,2, . . . . (6.125)

For the set M we consider the uniformity which is determined by the base

E(N,ε) = {({At }∞t=1, {Bt }∞t=1

) ∈M×M :
‖Atx − Btx‖η ≤ ε, t = 1, . . . ,N,x ∈ 〈0, η〉},

where N is a natural number and ε > 0. It is easy to see that the space M with this
uniformity is metrizable (by a metric ρw : M × M → [0,∞)) and complete. The
topology generated by this uniformity on M will be called the weak topology.

For the set M we also consider the uniformity which is determined by the fol-
lowing base:

E(ε) = {({At }∞t=1, {Bt }∞t=1

) ∈M×M :
‖Atx − Btx‖η ≤ ε, t = 1,2, . . . , x ∈ 〈0, η〉},

where ε > 0. It is easy to see that the space M with this uniformity is metrizable
(by a metric ρs : M × M → [0,∞)) and complete. The topology generated by
this uniformity on M is obviously stronger than the weak topology defined above.
Therefore we will refer to it as the strong topology.

Denote by M̄reg the closure of Mreg in the space M with the weak topology
generated by the metric ρw . We consider the topological subspace M̄reg ⊂ M with
the relative weak and strong topologies. Our next result is a weak ergodic theorem
in the sense of [43].

Theorem 6.27 There exists a set F ⊂ M̄reg , which is a countable intersection of
open (in the weak topology) and everywhere dense (in the strong topology) subsets
of M̄reg , such that for each B = {Bt }∞t=1 ∈ F , the following two assertions hold:

1. BT · · · · · B1η is an interior point of X+ for each integer T ≥ 1.
2. For each ε ∈ (0,1), there exist a neighborhood U of {Bt }∞t=1 in M̄reg with the

relative weak topology and a natural number N such that for each {Ct }∞t=1 ∈ U , the
point CT · · · · · C1η ∈ int(X+) for all T ∈ {1, . . . ,N}, and

r(CN · · · · ·C1η,CN · · · · ·C1x)−λ(CN · · · · ·C1η,CN · · · · ·C1x) ≤ ε, x ∈ 〈εη,η〉.
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For the set A itself we can also define a metric ρ(·, ·) by

ρ(A,B) := sup
{‖Ax − Bx‖η : x ∈ 〈0, η〉}, A,B ∈A.

It is clear that the metric space (A, ρ) is complete.
For each interior point ξ of X+, define

Aξ := {A ∈A : Aξ = ξ}.
Clearly, Aξ is a closed subset of A for each ξ ∈ int(X+). For such ξ , we equip the
topological subspace Aξ ⊂ A with the relative topology.

Denote by A∗ the set of all A ∈A such that

Aξ = ξ for some ξ ∈ int(X+).

Let Ā∗ be the closure of A∗ in A. The topological subspace Ā∗ ⊂ A is also
equipped with the relative topology.

We can now formulate our last two results. The second one deals with powers of
a single operator.

Theorem 6.28 Let ξ be an interior point of X+. Then there exists a set F ⊂ Aξ ,
which is a countable intersection of open and everywhere dense sets in Aξ , such that
for each B ∈ F , there exists a continuous linear functional fB : X → R1 satisfying

fB(Bx) = fB(x), x ∈ X, fB(x) ≥ 0, x ∈ X+, fB(ξ) = 1,

lim
T →∞BT x = fB(x)ξ, x ∈ X,

and the following assertion holds:
For each ε > 0, there exist a neighborhood U of B in Aξ and a natural number

N such that for each {Ct }∞t=1 ∈ U , each integer T ≥ N and each x ∈ 〈−η,η〉,
∥∥CT · · · · · C1x − fB(x)ξ

∥∥
η

≤ ε.

Theorem 6.29 There exists a set F ⊂ Ā∗, which is a countable intersection of open
and everywhere dense sets in Ā∗, such that for each B ∈ F , there exists an interior
point ξB of X+ satisfying BξB = ξB , ‖ξB‖η = 1, and the following two assertions
hold:

1. There exists fB ∈ X′+ such that

lim
T →∞BT x = fB(x)ξB, x ∈ X.

2. For each ε > 0, there exist a neighborhood U of B in Ā∗ and a natural number
N such that for each C ∈ U ∩A∗, each integer T ≥ N and each x ∈ 〈−η,η〉,

∥∥CT x − fB(x)ξB

∥∥≤ ε.
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Note that Theorems 6.24–6.29 were obtained in [125]. Theorems 6.24, 6.26 and
6.27 will be proved in the next three sections. The proof of Theorem 6.28 is anal-
ogous to that of Theorem 6.24, while the proofs of Theorems 6.25 and 6.29 are
analogous to the proof of Theorem 6.26. Therefore these proofs will be omitted.

6.17 Proof of Theorem 6.24

Recall that X′ is the space of all continuous linear functionals f : X → R1 and that
X′+ is the cone of all f ∈ X′ such that f (x) ≥ 0, x ∈ X+.

Lemma 6.30 Let A ∈ A satisfy Aη = η. Then there is fA ∈ X′ such that

fA(x) ≥ 0, x ∈ X+, fA(η) = 1 and fA ◦ A = fA. (6.126)

Proof Define S = {f ∈ X′ : f (x) ≥ 0, x ∈ X+, f (η) = 1}. Clearly, the nonempty
set S is convex and compact in the weak topology. The operator A′ defined by
A′(f ) = f ◦ A, f ∈ X′, is weakly continuous and A′(S) ⊂ S. By Tychonoff’s fixed
point theorem, there exists fA ∈ S for which fA ◦A = fA. This completes the proof
of the lemma. �

By Lemma 6.30, for each A ∈ A satisfying Aη = η, there exists fA ∈ X′ which
satisfies (6.126). For each A = {At }∞t=1 ∈ Mη and each γ ∈ (0,1), we define Aγ =
{Atγ }∞t=1 ∈Mη by

Atγ x := γfAt (x)η + (1 − γ )Atx, x ∈ X, t = 1,2, . . . . (6.127)

It is clear that the set
{{Atγ }∞t=1 : {At }∞t=1 ∈ Mη, γ ∈ (0,1)

}

is everywhere dense in the space Mη with the strong topology.

Lemma 6.31 Let {At }∞t=1 ∈ Mη and let γ ∈ (0,1). Then for each integer T ≥ 1,
there is γT ∈ X′+ such that for each x ∈ X,

AT γ · · · · · A1γ x = (1 − γ )T AT · · · · · A1x + γT (x)η. (6.128)

Proof We will show by induction that for each integer T ≥ 1, there is γT ∈ X′+ such
that (6.128) holds for all x ∈ X. It is clear that for T = 1 equality (6.128) is valid
with γ1 = γfA1 .

Assume that for some integer T ≥ 1 and γT ∈ X′+ equality (6.128) holds for all
x ∈ X. Then by (6.128) and (6.127), we have, for every x ∈ X,

A(T +1)γ · AT γ · · · · · A1γ x

= A(T +1)γ

(
(1 − γ )T AT · · · · · A1x + γT (x)η

)
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= γT (x)η + A(T +1)γ

(
(1 − γ )T AT · · · · · A1x

)

= γT (x)η + (1 − γ )T γfAT +1(AT · · · · · A1x)η

+ (1 − γ )T +1AT +1AT · · · · · A1x

= (1 − γ )T +1AT +1 · AT · · · · · A1x

+ γT (x)η + (1 − γ )T fAT +1(AT · · · · · A1x)η.

This implies that (6.128) holds for T + 1 too. The lemma follows. �

Lemma 6.32 Let {At }∞t=1 ∈ Mη and let γ, ε ∈ (0,1). Then there exist a neighbor-
hood U of {Atγ }∞t=1 in the space Mη with the weak topology, a functional l ∈ X′+
and an integer N ≥ 1 such that for each {Ct }∞t=1 ∈ U , each x ∈ 〈−η,η〉 and each
integer T ≥ N ,

−εη ≤ CT · · · · · C1x − l(x)η ≤ εη. (6.129)

Proof Choose a natural number N ≥ 2 for which

(1 − γ )N < 64−1ε. (6.130)

By Lemma 6.31, there exists l ∈ X′+ such that for each x ∈ X,

ANγ · · · · · A1γ x = (1 − γ )NAN · · · · · A1x + l(x)η. (6.131)

Choose

ε0 ∈ (0, (64N)−1ε
)
, (6.132)

and define

U := {{Bt }∞t=1 ∈ Mη : ‖Btx − Atγ x‖η ≤ ε0,

t = 1, . . . ,N,x ∈ 〈0, η〉}. (6.133)

Assume that {Ct }∞t=1 ∈ U and x ∈ 〈0, η〉. To prove the lemma it is sufficient to show
that

−8−1εη ≤ CN · · · · · C1x − l(x)η ≤ 8−1εη. (6.134)

By induction we will show that for s = 1, . . . ,N ,

−sε0η ≤ Cs · · · · · C1x − Asγ · · · · · A1γ x ≤ sε0η. (6.135)

It is clear that (6.135) is valid for s = 1.
Assume now that (6.135) is valid for some natural number s < N . Then it follows

from (6.135) and (6.133) that

Cs+1 · Cs · · · · · C1x − A(s+1)γ Asγ · · · · · A1γ x

= (Cs+1 − A(s+1)γ )Cs · · · · · C1x + A(s+1)γ (Cs · · · · · C1x − Asγ · · · · · A1γ x)
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∈ 〈−ε0η, ε0η〉 + A(s+1)γ

(〈−sε0η, sε0η〉)

⊂ 〈−(s + 1)ε0η, (s + 1)ε0η
〉
.

Therefore (6.135) holds for all s = 1, . . . ,N . Together with (6.130), (6.131) and
(6.132) this implies that

CN · · · · · C1x − l(x)η

= CN · · · · · C1x − ANγ · · · · · A1γ x + ANγ · · · · · A1γ x − l(x)η

∈ 〈−64−1εη,64−1εη
〉+ 〈−(1 − γ )Nη, (1 − γ )Nη

〉⊂ 32−1〈−εη, εη〉.
This implies (6.134). The lemma is proved. �

Construction of the set F : Let {At }∞t=1 ∈ Mη, γ ∈ (0,1) and let i ≥ 1 be an inte-
ger. By Lemma 6.32, there exist an open neighborhood U({At }∞t=1, γ, i) of {Atγ }∞t=1

in the space Mη with the weak topology, a functional l
(A)
γ i ∈ X′+ and a natural num-

ber N({At }∞t=1, γ, i) such that the following property holds:
(a) for each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i), each x ∈ 〈−η,η〉 and each integer T ≥

N({At }∞t=1, γ, i),
∥∥CT · · · · · C1x − l

(A)
γ,i (x)η

∥∥
η

≤ 4−i . (6.136)

Define

F =
∞⋂

q=1

⋃{
U
({At }∞t=1, γ, i

) : {At }∞t=1 ∈ Mη,

γ ∈ (0,1), i = q, q + 1, . . .
}
. (6.137)

Clearly F is a countable intersection of open (in the weak topology) everywhere
dense (in the strong topology) sets in Mη.

Assume that {Bt }∞t=1 ∈ F and ε ∈ (0,1). Choose an integer q ≥ 1 such that

64 · 2−q < ε. (6.138)

There exist {At }∞t=1 ∈ Mη, γ ∈ (0,1) and an integer i ≥ q such that

{Bt }∞t=1 ∈ U
({At }∞t=1, γ, i

)
. (6.139)

It follows from property (a), (6.139) and (6.138) that for each x ∈ 〈−η,η〉 and each
integer T ≥ N({At }∞t=1, γ, i),

∥∥BT · · · · · B1x − l
(A)
γ,i (x)η

∥∥
η

≤ 4−i < 64−1ε. (6.140)

Since ε is an arbitrary positive number, we conclude that there exists a linear oper-
ator P : X → X such that

lim
T →∞BT · · · · · B1x = Px, x ∈ X. (6.141)
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By (6.140) and (6.141), for each x ∈ 〈−η,η〉,
∥∥Px − l

(A)
γ,i (x)η

∥∥
η

≤ 4−i < 64−1ε. (6.142)

Once again, since ε is an arbitrary positive number, we conclude that there is a linear
functional fB : X → R1 such that

Px = fB(x)η, x ∈ X. (6.143)

It is clear that fB ∈ X+. It follows from (6.143), (6.142), (6.138) and property (a)
that for each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i), each x ∈ 〈−η,η〉 and each integer T ≥
N({At }∞t=1, γ, i),

∥∥CT · · · · · C1x − fB(x)η
∥∥

η
≤ 2 · 4−i < 32−1ε.

This completes the proof of Theorem 6.24.

6.18 Proof of Theorem 6.26

Assume that A ∈ A and Aξ = ξ for some ξ ∈ int(X+). Then by Lemma 6.30 there
exists fA ∈ X′+ such that

fA ◦ A = fA, fA(ξ) = 1. (6.144)

For each A = {At }∞t=1 ∈ M∗
b , there exist ξA ∈ int(X+) and a real number MA ≥ 2

such that

AtξA = ξA, t = 1,2, . . . , ‖ξA‖η = 1, and MAξA ≥ η. (6.145)

For each A = {At }∞t=1 ∈M∗
b and each γ ∈ (0,1) we define {Atγ }∞t=1 ∈M∗

b by

Atγ x = γfAt (x)ξA + (1 − γ )Atx, x ∈ X, t = 1,2, . . . . (6.146)

Clearly, the set {{Atγ }∞t=1 : {At }∞t=1 ∈ M∗
b, γ ∈ (0,1)} is everywhere dense in the

space M̄∗
b .

Let A = {At }∞t=1 ∈ M∗
b , γ ∈ (0,1) and let i ≥ 1 be an integer. Choose a natural

number N(A, γ, i) ≥ 4 for which

(1 − γ )N(A,γ,i) < 64−18−i (MA + 1)−6, (6.147)

and then choose a real number δ(A, γ, i) such that

δ(A, γ, i) ∈ (0,64−18−i (MA + 1)−6N(A, γ, i)−14−N(A,γ,i)
)

(6.148)

and

δ(A, γ, i) < M−2
A .
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Now define

U(A, γ, i) = {{Bt }∞t=1 ∈ M̄∗
b : ρs

({Atγ }∞t=1, {Bt }∞t=1

)
< δ(A, γ, i)

}
(6.149)

and

F =
∞⋂

q=1

⋃{
U
({At }∞t=1, γ, i

) : {At }∞t=1 ∈ M∗
b,

γ ∈ (0,1), i = q, q + 1, . . .
}
. (6.150)

It is clear that F is a countable intersection of open everywhere dense subsets of
M̄∗

b .

Lemma 6.33 Let {At }∞t=1 ∈ M∗
b , γ ∈ (0,1) and let i ≥ 1 be an integer. Assume

that r : {1,2, . . .} → {1,2, . . .}. Then there exists l ∈ X′+ such that

l(ξA) < 1 (6.151)

and for each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i) and each x ∈ 〈0, η〉,

Cr(N(A,γ,i)) · · · · · Cr(1)x − l(x)ξA ∈ 32−18−i (MA + 1)−4〈−η,η〉. (6.152)

Proof Set

N = N
({At }∞t=1, γ, i

)
and δ = δ

({At }∞t=1, γ, i
)
. (6.153)

By Lemma 6.31, there exists l ∈ X′+ such that for each x ∈ X,

Ar(N)γ · · · · · Ar(1)γ = (1 − γ )NAr(N) · · · · · Ar(1)x + l(x)ξA. (6.154)

Let

x ∈ 〈0, η〉 and {Ct }∞t=1 ∈ U
({At }∞t=1, γ, i

)
. (6.155)

We will show by induction that for s = 1, . . . ,N ,

−4sδM2
AξA ≤ Cr(s) · · · · · Cr(1)x − Ar(s)γ · · · · · Ar(1)γ x ≤ M2

A4sδξA. (6.156)

Clearly for s = 1 the induction assumption is valid. Assume now that (6.156) is
valid for a natural number s < N . Then it follows from (6.155), (6.156), (6.145),
(6.149), (6.148) and (6.153) that

Cr(s+1)Cr(s) · · · · · Cr(1)x − Ar(s+1)γ Ar(s)γ · · · · · Ar(1)γ

= (Cr(s+1) − Ar(s+1)γ )Cr(s) · · · · · Cr(1)x

+ Ar(s+1)γ (Cr(s) · · · · · Cr(1)x − Ar(s)γ · · · · · Ar(1)γ x)

∈ (Cr(s+1) − Ar(s+1)γ )
〈
0,M2

A4sδξA + MAξA
〉
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+ Ar(s+1)γ

〈
4−sδM2

AξA,M2
A4sδξA

〉

⊂ MA
(
1 + 4sδMA

)
δMA〈−ξA, ξA〉 + 〈

4−sδM2
AξA,M2

A4sδξA
〉

⊂ (
4s+1δM2

A

)〈−ξA, ξA〉.
Therefore (6.156) is valid for all s = 1, . . . ,N . When combined with (6.154),
(6.145), (6.153), (6.148) and (6.147), this implies that for each x ∈ 〈0, η〉,

Cr(N) · · · · · Cr(1)x − l(x)ξA

∈ M2
A4Nδ〈ξA, ξA〉 + (1 − γ )NMA〈0, ξA〉

⊂ 64−1 · 8−i (MA + 1)−4〈−ξA, ξA〉 + 64−1 · 8−i (MA + 1)−2〈0, ξA〉
⊂ 32−1 · 8−i (MA + 1)−4〈−ξA, ξA〉
⊂ 32−1 · 8−i (MA + 1)−4〈−η,η〉.

The lemma is proved. �

Lemma 6.34 Let {At }∞t=1 ∈ M∗
b and γ ∈ (0,1), let i ≥ 1 be an integer and let

r : {1,2, . . .} → {1,2, . . .}. Let l ∈ X′+ be as guaranteed by Lemma 6.33. Assume
that

{Ct }∞t=1 ∈ U
({At }∞t=1, γ, i

)
, y ∈ X+,

‖y‖η = 1, and Cty = y, t = 1,2, . . . . (6.157)

Then

‖y − ξA‖η ≤ 16−18−i , y ∈ int(X+), (6.158)

and for each x ∈ 〈0, η〉 and each integer T ≥ N(A, γ, i),
∥
∥Cr(T ) · · · · · Cr(1)x − l(x)y

∥
∥

η
≤ 8−i (6.159)

and
∥∥Cr(T ) · · · · · Cr(1)x − l(x)ξA

∥∥
η

≤ 2 · 8−i . (6.160)

Proof By Lemma 6.33 and the definition of l, for each x ∈ 〈0, η〉,
l(ξA) ≤ 1 (6.161)

and

Cr(N(A,γ,i)) · · · · · Cr(1)x − l(x)ξA ∈ 32−1 · 8−i (MA + 1)−4〈−η,η〉. (6.162)

Together with (6.157) and (6.145) this implies that
∥∥y − l(y)ξA

∥∥
η

≤ 32−1 · 8−i (MA + 1)−4, (6.163)
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∣∣l(y) − 1
∣∣≤ ∥∥l(y)ξA − y

∥∥
η

≤ 32−1 · 8−i (MA + 1)−4, (6.164)

‖y − ξA‖η ≤ 16−1 · 8−i (MA + 1)−4, (6.165)

and

y ≥ ξA − 16−1 · 8−i (MA + 1)−4η ≥ (
M−1

A − 16−1 · 8−i (MA + 1)−4)η. (6.166)

It follows from (6.145), (6.161), (6.162), (6.165) and (6.157) that for each x ∈ 〈0, η〉
and each integer T ≥ N(A, γ, i),

l(x) ≤ l(η) ≤ MAl(ξA) ≤ MA (6.167)

and
∥∥Cr(N(A,γ,i)) · · · · · Cr(1)x − l(x)y

∥∥
η

≤ ∥∥Cr(N(A,γ,i)) · · · · · Cr(1)x − l(x)ξA
∥∥

η
+ ∥∥l(x)(ξA − y)

∥∥
η

≤ 32−1 · 8−i (MA + 1)−4 + 16−1 · 8−iMA(MA + 1)−4

≤ 8−i−1(MA + 1)−3. (6.168)

By (6.157), (6.168) and (6.166),

Cr(T ) · · · · · Cr(1)x − l(x)y

= Cr(T ) · · · · · Cr(N(A,γ,i)+1)

(
Cr(N(A,γ,i)) · · · · · Cr(1)x − l(x)y

)

∈ Cr(T ) · · · · · Cr(N(A,γ,i)+1)

(〈−8−i−1(MA + 1)−3η,8−i−1(MA + 1)−3η
〉)

⊂ 8−i−1(MA + 1)−3(M−1
A − 16−18−i (MA + 1)−4)−1〈−y, y〉

⊂ (MA + 1)−28−i〈−y, y〉 ⊂ 8−i (MA + 1)−2〈−η,η〉. (6.169)

Now by using (6.169), (6.167) and (6.165), we deduce that
∥∥Cr(T ) · · · · · Cr(1)x − l(x)ξA

∥∥
η

≤ 8−i (MA + 1)−2 + ∣∣l(x)
∣∣‖y − ξA‖η

≤ 8−i (MA + 1)−2 + MA16−18−i (MA + 1)−4 < 2 · 8−i .

The lemma is proved. �

Completion of the proof of Theorem 6.26: Assume that {Bt }∞t=1 ∈ F . There exist

A(k) = {A(k)
t }∞t=1 ∈ M∗

b , k = 1,2, . . . , {γk}∞k=1 ⊂ (0,1), and a strictly increasing
sequence of natural numbers {ik}∞k=1 such that

{Bt }∞t=1 ∈ U
({

A
(k)
t

}∞
t=1, γk, ik

)
, k = 1,2, . . . , (6.170)
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and

U
({

A
(k+1)
t

}∞
t=1, γk+1, ik+1

)⊂ U
({

A
(k)
t

}∞
t=1, γk, ik

)
, k = 1,2, . . . .

By Lemma 6.34, {ξA(k)}∞k=1 is a Cauchy sequence and there exists

ξB = lim
k→∞ ξA(k) . (6.171)

It follows from (6.170), (6.149), (6.148), (6.145) and (6.171) that for t = 1,2, . . . ,

A
(k)
t ξA(k) − BtξB = (

A
(k)
t − Bt

)
(ξA(k) ) + Bt(ξA(k) − ξB) → 0 as k → ∞.

Together with (6.145) and (6.171) this implies that

BtξB = ξB, t = 1,2, . . . , and ‖ξB‖η = 1. (6.172)

Lemma 6.34, (6.170) and (6.172) imply that ξB is an interior point of X+.
Let ε > 0 be given. There is an integer k ≥ 1 such that

2−ik < 64−1ε. (6.173)

Assume that r : {1,2, . . .} → {1,2, . . .}. By Lemma 6.34, there exists l ∈ X′+ such
that the following property holds:

(a) Assume that {Ct }∞t=1 ∈ U({A(k)
t }∞t=1, γk, ik), y ∈ X′+,

‖y‖η = 1, and Cty = y, t = 1,2, . . . .

Then y is an interior point of X+, ‖y − ξA(k)‖η ≤ 16−18−ik and for each x ∈ 〈0, η〉
and each integer T ≥ N(A(k), γk, ik),

∥∥Cr(T ) · · · · · Cr(1)x − l(x)y
∥∥

η
≤ 8−ik

and
∥∥Cr(T ) · · · · · Cr(1)x − l(x)ξA(k)

∥∥
η

≤ 2 · 8−ik .

It follows from property (a), (6.170), (6.172) and (6.173) that

‖ξB − ξA(k)‖ ≤ 16−18−ik , (6.174)

and for each x ∈ 〈0, η〉 and each integer T ≥ N(A(k), γk, ik),
∥∥Br(T ) · · · · · Br(1)x − l(x)ξB

∥∥
η

≤ 8−ik < 64−1ε. (6.175)

Since ε is any positive number, we conclude that

lim
T →∞Br(T ) · · · · · Br(1)x = fr(x)ξB, x ∈ X, (6.176)

where fr ∈ X′+.
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By (6.176), (6.175), (6.172) and (6.173),
∣∣l(x) − fr(x)

∣∣≤ 8−ik < 64−1ε, x ∈ 〈0, η〉. (6.177)

There is M0 > 1 such that

η ≤ M0ξB. (6.178)

We may assume that

2−ik < 64−1ε(4 + M0)
−1. (6.179)

Assume that {Ct }∞t=1 ∈ U({A(k)
t }∞t=1, γk, ik) ∩ M∗

b , T ≥ N(A(k), γ, i) is an integer
and x ∈ 〈0, η〉. To complete the proof of the theorem it is sufficient to show that

∥∥Cr(T ) · · · · · Cr(1)x − fr(x)ξB
∥∥

η
≤ 4−1ε. (6.180)

Indeed, it follows from property (a), (6.145), (6.177), (6.174), the definition of M0
(see (6.173)), (6.176) and (6.179) that

∥∥Cr(T ) · · · · · Cr(1)x − fr(x)ξB
∥∥

η

≤ ∥∥Cr(T ) · · · · · Cr(1)x − l(x)ξA(k)

∥∥
η

+ ∥∥l(x)ξA(k) − fr(x)ξA(k)

∥∥
η
+ ∣∣fr(x)

∣∣‖ξA(k) − ξB‖η

≤ 2 · 8−ik + 8−ik + 16−18−ik fr (η)

≤ 2 · 8−ik + 8−ik + 16−1 · 8−ikM0 < 64−1ε.

This completes the proof of Theorem 6.26.

6.19 Proof of Theorem 6.27

Fix f ∈ X′+ such that f (η) = 1. Assume that {At }∞t=1 ∈ Mreg , 0 < c1 < 1 < c2,
γ ∈ (0,1) and

c2η ≥ AT · · · · · A1η ≥ c1η, T = 1,2, . . . . (6.181)

Define a sequence of operators A
γ
t : X → X, t = 1,2, . . . , by

A
γ

1 x := (1 − γ )A1x + γ
(
f (η)

)−1
f (x)A1η, x ∈ X,

A
γ

t+1x := (1 − γ )At+1x

+ γ
(
f (At · · · · · A1η)

)−1
f (x)At+1At · · · · · A1η,

x ∈ X, t = 1,2, . . . .

(6.182)

Clearly,
{
A

γ
t

}∞
t=1 ∈M. (6.183)
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Lemma 6.35 For each integer T ≥ 1,

A
γ

T · · · · · Aγ

1 η = AT · · · · · A1η. (6.184)

Proof We will prove the lemma by induction. Clearly for T = 1, (6.181) is valid.
Assume that T ≥ 1 is an integer and that (6.184) holds. It follows from (6.184) and
(6.182) that

A
γ

T +1A
γ

T · · · · · Aγ

1 η = A
γ

T +1AT · · · · · A1η

= (1 − γ )AT +1AT · · · · · A1η + γAT +1AT · · · · · A1η.

This completes the proof of the lemma. �

We omit the easy proof of our next lemma.

Lemma 6.36 For each integer T ≥ 1,

sup
{∥∥AT x − A

γ

T x
∥∥

η
: x ∈ 〈0, η〉}≤ 2γ c−1

1 c2.

Lemma 6.37 For each integer T ≥ 1, there exists fT ∈ X′+ such that

A
γ

T · · · · · Aγ

1 x = (1 − γ )T AT · · · · · A1x + fT (x)AT · · · · · A1η, x ∈ X. (6.185)

Proof We will prove the lemma by induction. Clearly for T = 1 the assertion of the
lemma is valid. Assume that there is fT ∈ X′+ such that (6.185) holds. It follows
from (6.185), (6.182) and Lemma 6.35 that for each x ∈ X,

A
γ

T +1A
γ

T · · · · · Aγ

1 x

= A
γ

T +1

(
A

γ

T · · · · · Aγ

1 x
)

= (1 − γ )T A
γ

T +1(AT · · · · · A1x) + fT (x)A
γ

T +1AT · · · · · A1η

= (1 − γ )T
(
(1 − γ )AT +1AT · · · · · A1x

+ γf (AT · · · · · A1η)−1f (AT · · · · · A1x)AT +1AT · · · · · A1η
)

+ fT (x)AT +1AT · · · · · A1η

= (1 − γ )T +1AT +1AT · · · · · A1x

+ [
(1 − γ )T γf (AT · · · · · A1η)−1f (AT · · · · · A1x)

+ fT (x)
]
AT +1AT · · · · · A1η.

This completes the proof of the lemma. �

Lemma 6.38 Let ε ∈ (0,2−1) and let N be a natural number for which

(1 − γ )N < 2−1ε. (6.186)
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Then for each x ∈ 〈0, η〉,
r
(
AN · · · · ·A1η,A

γ

N · · · · ·Aγ

1 x
)−λ

(
AN · · · · ·A1η,A

γ

N · · · · ·Aγ

1 x
)≤ 2−1ε. (6.187)

Proof By Lemma 6.37 there is fN ∈ X′+ such that (6.185) holds with T = N . To-
gether with Lemma 6.35 this implies that

fN(η)AN · · · · · A1η = (
1 − (1 − γ )N

)
AN · · · · · A1, fN(η) = −(1 − γ )N + 1,

(6.188)

and for each x ∈ X+,

fN(x)AN · · · · · A1η

≤ A
γ

N · · · · · Aγ

1 x

≤ fN(x)AN · · · · · A1η + (1 − γ )T r(x, η)AN · · · · · A1η. (6.189)

If x ∈ 〈0, η〉, then (6.187) follows from (6.189) and (6.186). The lemma is proved. �

Lemma 6.39 Let 0 < Δ1 < 1 < Δ2, Γ > 1, and let n ≥ 1 be an integer. Then there
is a number δ > 0 such that for each sequence {Bi}ni=1 ⊂ A satisfying

sup
{∥∥Bix − A

γ

i x
∥
∥

η
: x ∈ 〈0, η〉, i = 1, . . . , n

}≤ δ (6.190)

and for each z ∈ X+ satisfying

z ∈ 〈0,Δ2η〉 and z ≥ Δ1η, (6.191)

the following relation holds:

Bn · · · · · B1z ∈ 〈Γ −1A
γ
n · · · · · Aγ

1 z,Γ A
γ
n · · · · · Aγ

1 z
〉
. (6.192)

Proof We will prove this lemma by induction. Let n = 1. Choose a positive number
δ such that

c−1
1 Δ−1

1 δΔ2 < γ (Γ − 1)Γ −1. (6.193)

Assume that

B1 ∈A, sup
{∥∥B1x − A

γ

1 x
∥∥

η
: x ∈ 〈0, η〉}≤ δ,

z ∈ 〈0,Δ2η〉 and z ≥ Δ1η.
(6.194)

It follows from (6.194) that

∥∥B1z − A
γ

1 z
∥∥

η
≤ δΔ2 and B1z ∈ 〈Aγ

1 z − δΔ2η,A
γ

1 z + δΔ2η
〉
. (6.195)
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By (6.182), (6.194), (6.181) and (6.193),

A
γ

1 z ≥ γ
(
f (η)

)−1
f (z)A1η ≥ γΔ1A1η ≥ γΔ1c1η

and

δΔ2η ≤ γ (Γ − 1)Γ −1c1Δ1η ≤ (Γ − 1)Γ −1A
γ

1 z.

Together with (6.195) this implies that

B1z ∈ 〈Γ −1A
γ

1 z,Γ A
γ

1 z
〉
.

Thus for n = 1 the assertion of the lemma is true.
Assume now that the assertion of the lemma holds for n = 1, . . . , k. Choose a

positive number Γ0 satisfying

1 < Γ0 < Γ 1/2. (6.196)

Since the assertion of the lemma holds for n = k, there is a number δ0 > 0 such that
for each sequence {Bi}ki=1 ⊂ A satisfying

sup
{∥∥Bix − A

γ

i x
∥∥

η
: x ∈ 〈0, η〉, i = 1, . . . , k

}≤ δ0, (6.197)

and each z ∈ X+ satisfying (6.191), the following relation holds:

Bk · · · · · B1z ∈ 〈Γ −1
0 A

γ

k · · · · · Aγ

1 z,Γ0A
γ

k · · · · · Aγ

1 z
〉
. (6.198)

Choose a number δ ∈ (0, δ0) such that

δΔ2c2c
−1
1 Δ−1

1 ≤ γ (Γ0 − 1)Γ −1
0 . (6.199)

Assume that {Bi}k+1
i=1 ⊂ A,

sup
{∥∥Bix − A

γ

i x
∥∥

η
: x ∈ 〈0, η〉, i = 1, . . . , k + 1

}≤ δ, (6.200)

and that z ∈ X+ satisfies (6.191). Then (6.198) is valid. This implies that

Bk+1Bk · · · · · B1z ∈ 〈Γ −1
0 Bk+1A

γ

k · · · · · Aγ

1 z,Γ0Bk+1A
γ

k · · · · · Aγ

1 z
〉
. (6.201)

It follows from (6.191), (6.182), Lemma 6.35 and (6.200) that

A
γ

k+1A
γ

k · · · · · Aγ

1 z,A
γ

k · · · · · Aγ

1 z ∈ 〈Δ1c1η, c2Δ2η〉, (6.202)
∥∥Bk+1A

γ

k · · · · · Aγ

1 z − A
γ

k+1A
γ

k · · · · · Aγ

1 z
∥∥

η
≤ δc2Δ2 (6.203)

and

Bk+1A
γ

k · · · · · Aγ

1 z ∈ 〈Aγ

k+1A
γ

k · · · · · Aγ

1 z − δc2Δ2η,A
γ

k+1A
γ

k · · · · · Aγ

1 z + δc2Δ2η
〉
.
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By (6.199), (6.202) and (6.203),

δc2Δ2c1η ≤ c1Δ1γ (Γ0 − 1)Γ −1
0 η ≤ (Γ0 − 1)Γ −1

0 A
γ

k+1A
γ

k · · · · · Aγ

1 z

and

Bk+1A
γ

k · · · · · Aγ

1 z ∈ 〈Γ −1
0 A

γ

k+1A
γ

k · · · · · Aγ

1 z,Γ0A
γ

k+1A
γ

k · · · · · Aγ

1 z
〉
.

It follows from this last relation, (6.201) and (6.196) that

Bk+1Bk · · · · · B1z ∈ 〈Γ −1A
γ

k+1A
γ

k · · · · · Aγ

1 z,Γ A
γ

k+1A
γ

k · · · · · Aγ

1 z
〉
.

This completes the proof of Lemma 6.39. �

Lemma 6.40 Let 0 < Δ < 1, 0 < ε < Δ/2 and let N be a natural number for
which

(1 − γ )N < 2−1ε. (6.204)

Then there exist a neighborhood U of {Aγ
t }∞t=1 in M and a number κ > 0 such that

for each {Bt }∞t=1 ∈ U , the following two assertions hold:
1. BT · · · · · B1η ≥ κη, T = 1, . . . ,N .
2. For each x ∈ 〈Δη,η〉,

r(BN · · · · ·B1η,BN · · · · ·B1x)−λ(BN · · · · ·B1η,BN · · · · ·B1x) ≤ (3/4)ε. (6.205)

Proof By Lemma 6.38, for each x ∈ 〈0, η〉,
r
(
AN · · · · ·A1η,A

γ

N · · · · ·Aγ

1 x
)−λ

(
AN · · · · ·A1η,A

γ

N · · · · ·Aγ

1 x
)≤ 2−1ε. (6.206)

Choose a real number Γ for which

Γ > 1 and
(
Γ 2 − 1

)
< 8−1ε. (6.207)

By Lemma 6.39, there exists a neighborhood U of {Aγ
t }∞t=1 in M such that for each

{Bt }∞t=1 ∈ U , each z ∈ 〈Δη,η〉 and each integer T ∈ [1,N],

BT · · · · · B1z ∈ 〈Γ −1A
γ

T · · · · · Aγ

1 z,Γ A
γ

T · · · · · Aγ

1 z
〉
. (6.208)

Assume that {Bt }∞t=1 ∈ U . It follows from the definition of U (see (6.208)),
Lemma 6.35 and (6.181) that for T = 1, . . . ,N ,

BT · · · · · B1η ≥ Γ −1A
γ

T · · · · · Aγ

1 η = Γ −1AT · · · · · A1η ≥ Γ −1c1η. (6.209)

Therefore assertion 1 holds with κ = Γ −1c1. Now we will show that assertion 2
holds too.

Assume that

{Bt }∞t=1 ∈ U and x ∈ 〈Δη,η〉. (6.210)
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Then (6.206) is valid. By (6.210) and the definition of U (see (6.208)),

BN · · · · · B1x ∈ 〈Γ −1A
γ

N · · · · · Aγ

1 x,Γ A
γ

N · · · · · Aγ

1 x
〉

(6.211)

and

BN · · · · · B1η ∈ 〈Γ −1A
γ

N · · · · · Aγ

1 η,Γ A
γ

N · · · · · Aγ

1 η
〉
.

It follows from (6.211), Lemma 6.35 and (6.144) that

r(BN · · · · · B1η,BN · · · · · B1x) ≤ r
(
Γ −1AN · · · · · A1η,Γ A

γ

N · · · · · Aγ

1 x
)

= Γ 2r
(
AN · · · · · A1η,A

γ

N · · · · · Aγ

1 x
)

and

λ(BN · · · · · B1η,BN · · · · · B1x) ≥ λ
(
Γ AN · · · · · A1η,Γ −1A

γ

N · · · · · Aγ

1 x
)

= λ
(
AN · · · · · A1η,A

γ

N · · · · · Aγ

1 x
)
Γ −2.

By these inequalities, (6.206), (6.210) and (6.207),

r(BN · · · · · B1η,BN · · · · · B1x) − λ(BN · · · · · B1η,BN · · · · · B1x)

≤ Γ 2r
(
AN · · · · · A1η,A

γ

N · · · · · Aγ

1 x
)− Γ −2λ

(
AN · · · · · A1η,A

γ

N · · · · · Aγ

1 x
)

≤ r
(
AN · · · · · A1η,A

γ

N · · · · · Aγ

1 x
)− λ

(
AN · · · · · A1η,A

γ

N · · · · · Aγ

1 x
)

+ (
Γ 2 − 1

)
r(η, x) + (

1 − Γ −2)r
(
AN · · · · · A1η,A

γ

N · · · · · Aγ

1 x
)

≤ 2−1ε + 2
(
Γ 2 − 1

)
< 3ε/4.

This completes the proof of Lemma 6.40. �

Completion of the proof of Theorem 6.27: By Lemmas 6.36 and 6.35 and by
(6.181) and (6.183), the set {{Aγ

t }∞t=1 : {At }∞t=1 ∈ Mreg, γ ∈ (0,1)} is an every-
where dense subset of M̄reg with the strong topology.

Let {At }∞t=1 ∈ Mreg , γ ∈ (0,1) and let i ≥ 1 be an integer. By Lemma 6.40, there
exist an open neighborhood U(A, γ, i) of {Aγ

t }∞t=1 in the space M̄reg with the weak
topology and an integer N(A, γ, i) ≥ 2i +2 such that for each {Ct }∞t=1 ∈ U(A, γ, i),
the following two properties hold:

(a) CT · · · · · C1η is an interior point of X+ for T = 1, . . . ,N(A, γ, i);
(b) for each x ∈ 〈4−iη, η〉,

r(CN(A,γ,i) · · · · · C1η,CN(A,γ,i) · · · · · C1x)

− λ(CN(A,γ,i) · · · · · C1η,CN(A,γ,i) · · · · · C1x) ≤ 8−i . (6.212)

Define

F :=
∞⋂

q=1

⋃{
U(A, γ, i) : A ∈ Mreg, γ ∈ (0,1), i = q, q + 1, . . .

}
.
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Clearly, F is a countable intersection of open (in the weak topology) everywhere
dense (in the strong topology) sets in M̄reg . Let {Bt }∞t=1 belong to F . It is easy to
verify that assertion 1 of Theorem 6.27 holds. We will show that assertion 2 of the
theorem is valid too.

Let ε ∈ (0,1). Choose an integer q ≥ 1 such that

2−q < ε/64. (6.213)

There are {At }∞t=1 ∈Mreg , γ ∈ (0,1) and an integer i ≥ q such that

{Bt }∞t=1 ∈ U(A, γ, i). (6.214)

Assume that {Ct }∞t=1 ∈ U(A, γ, i) and that

x ∈ 〈εη,η〉. (6.215)

Then property (a) holds. It follows from property (b), (2.215) and (6.213) that
(6.212) is also valid. This completes the proof of Theorem 6.27.

6.20 Homogeneous Order-Preserving Mappings

In this section we study the asymptotic behavior of (random) infinite products of
generic sequences of homogeneous order-preserving mappings on a cone in an or-
dered Banach space. Infinite products of such mappings have been studied by Fuji-
moto and Krause [62] and by Nussbaum [106, 107]. The interest in their asymptotic
behavior stems, for instance, from population biology (see [43]). We show that in
appropriate spaces of sequences of mappings there exists a subset which is a count-
able intersection of open and everywhere dense sets such that for each sequence
belonging to this subset the corresponding infinite products converge.

Let (X,‖ · ‖) be a Banach space ordered by a closed cone X+ with a nonempty
interior such that ‖x‖ ≤ ‖y‖ for each x, y ∈ X+ satisfying x ≤ y. When u,v ∈ X

and u ≤ v we set

〈u,v〉 = {x ∈ X : u ≤ x ≤ v}.
For each x, y ∈ X+ we define

λ(x, y) = sup
{
r ∈ [0,∞) : rx ≤ y

}
,

r(x, y) = inf
{
λ ∈ [0,∞) : y ≤ λx

}
.

(6.216)

(We assume that the infimum of the empty set is ∞.) Note that other authors use the
notations m(y/x) and M(y/x) instead of λ(x, y) and r(x, y), respectively.

For an interior point η of the cone X+ we define

‖x‖η = inf
{
r ∈ [0,∞) : −rη ≤ x ≤ rη

}
. (6.217)

Clearly, ‖ · ‖η is a norm on X which is equivalent to the norm ‖ · ‖.
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Denote by A the set of all mappings A : X+ → X+ such that

Ax ≤ Ay for each x ∈ X+ and each y ≥ x,

A(αz) = αAz for each α ∈ [0,∞) and each x ∈ X+.
(6.218)

Fix an interior point η of the cone X+.
For the space A we define a metric ρ :A×A → [0,∞) by

ρ(A,B) := sup
{‖Ax − Bx‖η : x ∈ 〈0, η〉}, A,B ∈A. (6.219)

It is easy to see that the metric space (A, ρ) is complete.
Denote by M the set of all sequences {At }∞t=1 ⊂ A. A member of M will oc-

casionally be denoted by a boldface A. For the set M we consider the uniformity
which is determined by the following base:

E(N,ε) = {({At }∞t=1, {Bt }∞t=1

) ∈ M×M : ρ(At ,Bt ) ≤ ε, t = 1, . . . ,N
}
,

(6.220)

where N is a natural number and ε > 0. It is easy to see that the uniform space M
is metrizable (by a metric ρw : M × M → [0,∞)) and complete. This uniformity
generates a topology which we call the weak topology in M.

For the set M we also consider the uniformity which is determined by the fol-
lowing base:

E(N,ε) = {({At }∞t=1, {Bt }∞t=1

) ∈M×M : ρ(At ,Bt ) ≤ ε, t = 1,2, . . .
}
, (6.221)

where ε > 0. It is easy to see that the space M with this uniformity is metrizable
(by a metric ρs : M × M → [0,∞)) and complete. This uniformity generates a
topology which we call the strong topology in M. We do not write down the explicit
expressions for the metrics ρw and ρs because we are not going to use them in the
sequel.

Denote by Mreg the set of all sequences {At }∞t=1 ∈ M for which there exist
positive constants c1 < c2 such that for each integer T ≥ 1,

c2η ≥ AT · · · · · A1η ≥ c1η.

Denote by M̄reg the closure of Mreg in M with the weak topology. We consider
the topological subspace M̄reg ⊂ M with the relative weak and strong topologies.

We now list the results which were obtained in [130].

Theorem 6.41 There exists a set F ⊂ M̄reg which is a countable intersection of
open (in the weak topology) everywhere dense (in the strong topology) sets in M̄reg

such that for each {Bt }∞t=1 ∈ F the following two assertions hold:
1. BT · · · · · B1η is an interior point of X+ for each integer T ≥ 1.
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2. For each Δ > 1 and each ε ∈ (0,1), there exist an integer N ≥ 1 and an open
neighborhood U of {Bt }∞t=1 in M̄reg with the weak topology such that for each
{Ct }∞t=1 ∈ U ,

CT · · · · · C1η

is an interior point of X+ for all T ∈ {1, . . . ,N} and

r(CN · · · · · C1η,CN · · · · · C1x) − λ(CN · · · · · C1η,CN · · · · · C1x) ≤ ε

for all x ∈ 〈0,Δη〉.

Such results are usually called weak ergodic theorems in the population biology
literature [43, 107]. This result shows that a weak ergodic theorem holds for most of
the elements in M̄reg . Clearly, if such a theorem holds for a sequence {At }∞t=1 it also
holds for all sequences of the form {atAt }∞t=1, where {at }∞t=1 ⊂ R1 is a positive se-
quence. Therefore Theorem 6.41 shows that a weak ergodic theorem actually holds
for most of those elements {At }∞t=1 ∈ M for which there exists a positive constant c

such that for each integer T ≥ 1,

‖AT · · · · · A1η‖−1
η AT · · · · · A1η ≥ cη.

Let 0 < c1 < c2. Denote by M(c1, c2) the set of all sequences {At }∞t=1 ∈M such
that

AT · · · · · A1η ∈ 〈c1η, c2η〉 for all integers T ≥ 1.

It is easy to verify that M(c1, c2) is a closed subset of M with the weak topology.
We first consider the topological subspace M(c1, c2) ⊂ M with the relative weak
and strong topologies.

Theorem 6.42 There exists a set F0 ⊂ M(c1, c2) which is a countable intersection
of open (in the weak topology) and everywhere dense (in the strong topology) sets
in M(c1, c2) such that for each {Bt }∞t=1 ∈F0 assertion 2 of Theorem 6.41 is valid.

Denote by int(X+) the set of interior points of the cone X+. Let M∗ be the set
of all {At }∞t=1 ∈M for which there exists a point ξ ∈ int(X+) such that

Atξ = ξ, t = 1,2, . . . .

Denote by M̄∗ the closure of M∗ in the strong topology. Next we consider the
topological subspace M̄∗ ⊂ M with the relative strong topology.

Theorem 6.43 There exists a set F ⊂ M̄∗ which is a countable intersection of
open everywhere dense sets in M̄∗ such that for each {Bt }∞t=1 ∈ F there exists an
interior point ξB of X+ satisfying

BtξB = ξB, t = 1,2, . . . , ‖ξB‖η = 1,
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and the following two assertions hold:
1. For each s : {1,2, . . .} → {1,2, . . .} there exists a function gs : X+ → [0,∞)

such that

lim
T →∞Bs(T ) · · · · · Bs(1)x = gs(x)ξB, x ∈ X+.

2. For each ε > 0, there exist a neighborhood U of {Bt }∞t=1 in M̄∗ and an
integer N ≥ 1 such that for each {Ct }∞t=1 ∈ U ∩ M∗, each integer T ≥ N , each
s : {1,2, . . .} → {1,2, . . .} and each x ∈ 〈0, η〉,

∥∥Cs(T ) · · · · · Cs(1)x − gs(x)ξB

∥∥
η

≤ ε.

Denote by Mη the set of all sequences {At }∞t=1 ∈ M such that Atη = η,
t = 1,2, . . . . Clearly Mη is a closed subset of M with the weak topology. We
now consider the topological subspace Mη ⊂ M with the relative weak and strong
topologies and state the following two results.

Theorem 6.44 There exists a set F ⊂ Mη which is a countable intersection of
open (in the weak topology) everywhere dense (in the strong topology) sets in Mη

such that for each {Bt }∞t=1 ∈ F the following two assertions holds:
1. There exists f : X+ → R1 such that

lim
T →∞BT · · · · · B1x = f (x)η, x ∈ X+.

2. For each ε > 0, there exist a neighborhood U of {Bt }∞t=1 in Mη with the weak
topology and an integer N ≥ 1 such that for each {Ct }∞t=1 ∈ U , each integer T ≥ N

and each x ∈ 〈0, η〉,
∥∥CT · · · · · C1x − f (x)η

∥∥
η

≤ ε.

Theorem 6.45 There exists a set F ⊂ Mη which is a countable intersection of
open everywhere dense sets in Mη with the strong topology such that for each
{Bt }∞t=1 ∈ F the following two assertions hold:

1. For each s : {1,2, . . .} → {1,2, . . .}, there exists a function gs : X+ → R1 such
that

lim
T →∞Bs(T ) · · · · · Bs(1)x = gs(x)η, x ∈ X+.

2. For each ε > 0, there exist a neighborhood U of {Bt }∞t=1 in Mη with the strong
topology and an integer N ≥ 1 such that for each {Ct }∞t=1 ∈ U , each integer T ≥ N ,
each s : {1,2, . . .} → {1,2, . . .} and each x ∈ 〈0, η〉,

∥∥Cs(T ) · · · · · Cs(1)x − gs(x)η
∥∥

η
≤ ε.

Denote by A∗ the set of all A ∈ A such that there is an interior point ξA of X+
satisfying AξA = ξA. Denote by Ā∗ the closure of A∗ in A. We equip the topological
subspace Ā∗ ⊂ A with the relative topology.
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Theorem 6.46 There exists a set F ⊂ Ā∗ which is a countable intersection of open
everywhere dense sets in Ā∗ such that for each B ∈ F there exists an interior point
ξB of X+ satisfying

BξB = ξB, ‖ξB‖η = 1,

and the following two assertions hold:
1. There exists a function gB : X+ → R1 such that

lim
T →∞BT x = gB(x)ξB, x ∈ X+.

2. For each ε > 0, there exist a neighborhood U of B in Ā∗ and an integer N ≥ 1
such that for each C ∈ U ∩A∗, each integer T ≥ N and each point x ∈ 〈0, η〉,

∥∥CT x − gB(x)ξB

∥∥
η

≤ ε.

Finally, denote by Aη the set of all A ∈ A satisfying Aη = η. Clearly Aη is a
closed subset of A. We endow the topological subspace Aη ⊂ A with the relative
topology.

Theorem 6.47 There exists a set F ⊂ Aη which is a countable intersection of open
everywhere dense sets in Aη such that for each B ∈ F the following two assertions
hold:

1. There exists a functional gB : X+ → R1 such that

lim
T →∞BT x = gB(x)η, x ∈ X+.

2. For each ε > 0, there exist a neighborhood U of B in Aη and an integer N ≥ 1
such that for each C ∈ U , each integer T ≥ N and each x ∈ 〈0, η〉,

∥∥CT x − gB(x)η
∥∥

η
≤ ε.

In the next sections we prove Theorems 6.41–6.43. Theorem 6.44 is proved by
a simple modification of the proof of Theorem 6.41 while Theorems 6.45–6.47 can
be proved by slightly modifying the proof of Theorem 6.43.

6.21 Preliminary Lemmata for Theorems 6.41–6.43

We begin with the following simple observation.

Lemma 6.48 Assume that {At }∞t=1 ∈ M and that for each integer T ≥ 1,

c2η ≥ AT · · · · · A1η ≥ c1η
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with some constants c2 > c1 > 0 which do not depend on T . Let ξ be an interior
point of X+. Then there exist constants c2ξ , c1ξ > 0 such that for each integer T ≥ 1,

c2ξ ξ ≥ AT · · · · · A1ξ ≥ c1ξ ξ.

Clearly, for each interior point ξ of X+ (see (6.216), (6.217)), we have

r(ξ, y) = ‖y‖ξ , y ∈ X+. (6.222)

Assume that ξ is an interior point of X+, {At }∞t=1 ∈ M and that there are numbers
c1 ∈ (0,1), c2 > 1 such that for each integer T ≥ 1,

c2ξ ≥ AT · · · · · A1ξ ≥ c1ξ. (6.223)

Let γ ∈ (0,1). Clearly,

0 < λ(η, ξ). (6.224)

Define a sequence of operators A
γ
t : X+ → X+, t = 1,2, . . . , by

A
γ

1 x = (1 − γ )A1x + γ r(ξ, x)A1ξ, x ∈ X+,

A
γ

t+1x = (1 − γ )At+1x + γ r(At · · · · · A1ξ, x)At+1 · At · · · · · A1ξ,

x ∈ X+, t = 1,2, . . . .

(6.225)

Clearly,
{
A

γ
t

}∞
t=1 ∈M. (6.226)

Lemma 6.49 For each integer T ≥ 1,

A
γ

T · · · · · Aγ

1 ξ = AT · · · · · A1ξ. (6.227)

Proof We will prove the lemma by induction. Clearly, for T = 1 (6.227) is valid.
Assume that T ≥ 1 is an integer and (6.227) holds. It follows from (6.227), (6.225)
and (6.222) that

A
γ

T +1 · Aγ

T · · · · · Aγ

1 ξ = A
γ

T +1 · AT · · · · · A1ξ

= (1 − γ )AT +1 · AT · · · · · A1ξ + γAT +1 · AT · · · · · A1ξ

= AT +1 · AT · · · · · A1ξ.

This completes the proof of the lemma. �

Lemma 6.50 For each integer T ≥ 1,

ρ
(
AT ,A

γ

T

)≤ γ c−1
1 c2λ(η, ξ)−1r(η, ξ).
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Proof Let x ∈ 〈0, η〉. Then by (6.216), (6.217) and (6.219),

0 ≤ x ≤ η ≤ λ(η, ξ)−1ξ ≤ c−1
1 λ(η, ξ)−1AT · · · · · A1ξ, T = 1,2, . . . , (6.228)

A
γ

1 x − A1x = γ r(ξ, x)A1ξ − γA1x

∈ 〈−γ λ(η, ξ)−1c2r(η, ξ)η, γ λ(η, ξ)−1c2r(η, ξ)η
〉 (6.229)

and
∥∥Aγ

1 x − A1x
∥∥

η
≤ γ λ(η, ξ)−1c2r(η, ξ).

For each T ≥ 1, it now follows from (6.225), (6.228) and (6.223) that

A
γ

T +1x − AT +1x = γ r(AT · · · · · A1ξ, x)AT +1 · AT · · · · · A1ξ − γAT +1x

∈ 〈−γ λ(η, ξ)−1c−1
1 c2ξ, γ c−1

1 λ(η, ξ)−1c2ξ
〉

⊂ 〈−γ λ(η, ξ)−1c−1
1 c2r(η, ξ)η, γ c−1

1 λ(η, ξ)−1c2r(η, ξ)η
〉

and
∥∥Aγ

T +1x − AT +1x
∥∥

η
≤ γ c−1

1 c2λ(η, ξ)−1r(η, ξ).

This completes the proof of the lemma. �

Lemma 6.51 For each x ∈ X+,

λ
(
A1ξ,A

γ

1 x
)≥ (1 − γ )λ(ξ, x) + γ r(ξ, x), r

(
A1ξ,A

γ

1 x
)≤ r(ξ, x), (6.230)

and for each integer T ≥ 1,

λ
(
AT +1 · AT · · · · · A1ξ,A

γ

T +1 · Aγ

T · · · · · Aγ

1 x
)

≥ (1 − γ )λ
(
AT · · · · · A1ξ,A

γ

T · · · · · Aγ

1 x
)

+ γ r
(
AT · · · · · A1ξ,A

γ

T · · · · · Aγ

1 x
)

(6.231)

and

r
(
AT +1 · AT · · · · · A1ξ,A

γ

T +1 · Aγ

T · · · · · Aγ

1 x
)

≤ r
(
AT · · · · · A1ξ,A

γ

T · · · · · Aγ

1 x
)
. (6.232)

Proof By (6.225), we have for each x ∈ X+,

A
γ

1 x = (1 − γ )A1x + γ r(ξ, x)A1ξ ≥ (1 − γ )A1
(
λ(ξ, x)ξ

)+ γ r(ξ, x)A1ξ

= [
(1 − γ )λ(ξ, x) + γ r(ξ, x)

]
A1ξ,

λ
(
A1ξ,A

γ

1 x
)≥ (1 − γ )λ(ξ, x) + γ r(ξ, x);
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A
γ

1 x ≤ (1 − γ )A1
(
r(ξ, x)ξ

)+ γ r(ξ, x)A1ξ = r(ξ, x)A1ξ,

r
(
A1ξ,A

γ

1 x
)≤ r(ξ, x).

Again by (6.225), we also have for each integer T ≥ 1 and each x ∈ int(X+),

A
γ

T +1 · Aγ

T · · · · · Aγ

1 x

= (1 − γ )AT +1 · Aγ

T · · · · · Aγ

1 x

+ γ r
(
AT · · · · · A1ξ,A

γ

T · · · · · Aγ

1 x
)
AT +1 · AT · · · · · A1ξ

≥ (1 − γ )AT +1
(
λ
(
AT · · · · · A1ξ,A

γ

T · · · · · Aγ

1 x
)
AT · · · · · A1ξ

)

+ γ r
(
AT · · · · · A1ξ,A

γ

T · · · · · Aγ

1 x
)
AT +1 · AT · · · · · A1ξ

= [
(1 − γ )λ

(
AT · · · · · A1ξ,A

γ

T · · · · · Aγ

1 x
)

+ γ r
(
AT · · · · · A1ξ,A

γ

T · · · · · Aγ

1 x
)]

AT +1 · AT · · · · · A1ξ,

λ
(
AT +1 · AT · · · · · A1ξ,A

γ

T +1 · Aγ

T · · · · · Aγ

1 x
)

≥ (1 − γ )λ
(
AT · · · · · A1ξ,A

γ

T · · · · · Aγ

1 x
)

+ γ r
(
AT · · · · · A1ξ,A

γ

T · · · · · Aγ

1 x
)

and

A
γ

T +1 · Aγ

T · · · · · Aγ

1 x

≤ (1 − γ )AT +1
(
r
(
AT · · · · · A1ξ,A

γ

T · · · · · Aγ

1 x
)
AT · · · · · A1ξ

)

+ γ r
(
AT · · · · · A1ξ,A

γ

T · · · · · Aγ

1 x
)
AT +1 · AT · · · · · A1ξ

= r
(
AT · · · · · A1ξ,A

γ

T · · · · · Aγ

1 x
)
AT +1 · AT · · · · · A1ξ.

Thus

r
(
AT +1 · AT · · · · · A1ξ,A

γ

T +1 · Aγ

T · · · · · Aγ

1 x
)≤ r

(
AT · · · · · A1ξ,A

γ

T · · · · · Aγ

1 x
)

and the lemma is proved. �

Lemma 6.52 Let 0 < ε < Δ and let N be a natural number for which

Δ(1 − γ )N < 2−1ε. (6.233)

Then for each x ∈ 〈0,Δξ 〉,
r
(
AN · · · · · A1ξ,A

γ

N · · · · · Aγ

1 x
)− λ

(
AN · · · · · A1ξ,A

γ

N · · · · · Aγ

1 x
)≤ 2−1ε.

Proof Let x ∈ X+ satisfy

0 ≤ x ≤ Δξ. (6.234)
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Set

r0 = r(ξ, x), λ0 = λ(ξ, x),

rt = r
(
At · · · · · A1ξ,A

γ
t · · · · · Aγ

1 x
)
,

λt = λ
(
At · · · · · A1ξ,A

γ
t · · · · · Aγ

1 x
)
, t = 1,2, . . . .

(6.235)

By (6.216), (6.234) and Lemma 6.51,

r0 ≤ Δ, rt ≥ λt , t = 0,1, . . . ,

rt+1 ≤ rt , λt+1 ≥ λt , t = 0,1, . . .

and

λt+1 ≥ (1 − γ )λt + γ rt , t = 0,1, . . . .

Together with (6.233) this implies that for all t = 0,1, . . . ,

rt+1 − λt+1 ≤ (1 − γ )(rt − λt )

and

rN − λN ≤ (1 − γ )N(r0 − λ0) = (1 − γ )NΔ < 2−1ε.

This completes the proof of the lemma. �

Lemma 6.53 Let 0 < Δ1 < 1 < Δ2, Γ > 1 and let n ≥ 1 be an integer. Then there
is a number δ > 0 such that for each sequence {Bi}ni=1 ⊂ A satisfying

ρ
(
Bi,A

γ

i

)≤ δ, i = 1, . . . , n, (6.236)

and each z ∈ 〈0,Δ2ξ 〉 satisfying r(ξ, z) ≥ Δ1, the following relation holds:

Bn · · · · · B1z ∈ 〈Γ −1A
γ
n · · · · · Aγ

1 z,Γ A
γ
n · · · · · Aγ

1 z
〉
.

Proof We prove this lemma by induction. Let n = 1. Choose a positive number δ

such that

c−1
1 Δ−1

1 δΔ2r(η, ξ)λ(η, ξ)−1 < γ (Γ − 1)Γ −1. (6.237)

Assume that B1 ∈ A,

z ∈ 〈0,Δ2ξ 〉, ρ
(
B1,A

γ

1

)≤ δ and r(ξ, z) ≥ Δ1. (6.238)

It follows from (6.238), (6.216) and (2.219) that

z ≤ Δ2ξ ≤ Δ2r(η, ξ)η,
∥∥B1z − A

γ

1 z
∥∥

η
≤ δΔ2r(η, ξ) (6.239)
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and

B1z ∈ 〈Aγ

1 z − δΔ2r(η, ξ)η,A
γ

1 z + δΔ2r(η, ξ)η
〉

⊂ 〈
A

γ

1 z − δΔ2r(η, ξ)λ(η, ξ)−1ξ,A
γ

1 z + δΔ2r(η, ξ)λ(η, ξ)−1ξ
〉
. (6.240)

By (6.238), Lemma 6.49, (6.223), (6.237) and (6.225),

A
γ

1 z ≥ γ r(ξ, z)A1ξ ≥ γΔ1c1ξ

and

δΔ2r(η, ξ)λ(η, ξ)−1ξ ≤ γ
(
1 − Γ −1)Δ1c1ξ1.

Together with (6.240) this implies that

B1z ∈ 〈Γ −1A
γ

1 z,Γ A
γ

1 z
〉
.

Thus for n = 1 the assertion of the lemma is valid.
Assume now that the assertion of the lemma holds for n = 1, . . . , k. We now

show that the assertion of the lemma also holds for n = k + 1. To this end, choose a
positive number Γ0 > 1 such that

1 < Γ0 < Γ 1/2. (6.241)

Since the assertion of the lemma holds for n = k, there is a number δ0 > 0 such that
for each sequence {Bi}ki=1 ⊂ A satisfying

ρ
(
Bi,A

γ

i

)≤ δ0, i = 1, . . . , k,

and each z ∈ 〈0,Δ2ξ 〉 satisfying r(ξ, z) ≥ Δ1 the following relation holds:

Bk · · · · · B1z ∈ 〈Γ −1
0 A

γ

k · · · · · Aγ

1 z,Γ0A
γ

k · · · · · Aγ

1 z
〉
. (6.242)

Choose a number δ ∈ (0, δ0) such that

δΔ2c2r(η, ξ)λ(ξ, η)−1c−1
1 Δ−1

1 ≤ γ (Γ0 − 1)Γ −1
0 . (6.243)

Assume that {Bi}k+1
i=1 ⊂ A,

ρ
(
Bi,A

γ

i

)≤ δ, i = 1, . . . , k + 1,

z ∈ 〈0,Δ2ξ 〉 and r(ξ, z) ≥ Δ1.
(6.244)

Then relation (6.242) is valid. This implies that

Bk+1 · Bk · · · · · B1z

∈ 〈Γ −1
0 Bk+1 · Aγ

k · · · · · Aγ

1 z,Γ0Bk+1 · Aγ

k · · · · · Aγ

1 z
〉
. (6.245)
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It follows from (6.244), (6.223), (6.225), (6.219) and Lemma 6.49 that

A
γ

1 z ≥ γΔ1A1ξ, A
γ

k+1 · Aγ

k · · · · · Aγ

1 z ≥ Δ1c1γ ξ,

A
γ

k · · · · · Aγ

1 z ∈ 〈Δ1c1γ ξ,Δ2c2ξ 〉,
∥∥Aγ

k · · · · · Aγ

1 z
∥∥

η
≤ Δ2c2r(η, ξ),

∥
∥Bk+1 · Aγ

k · · · · · Aγ

1 z − A
γ

k+1 · Aγ

k · · · · · Aγ

1 z
∥
∥

η
≤ δΔ2c2r(η, ξ)

(6.246)

and

Bk+1 · Aγ

k · · · · · Aγ

1 z

∈ 〈Aγ

k+1 · Aγ

k · · · · · Aγ

1 z − δΔ2c2r(η, ξ)η,

A
γ

k+1 · Aγ

k · · · · · Aγ

1 z + δΔ2c2r(η, ξ)η
〉
. (6.247)

By (6.216), (6.217), (6.244), Lemma 6.49, (6.243) and (6.246),

δΔ2c2r(η, ξ)η ≤ δΔ2c2r(η, ξ)λ(η, ξ)−1ξ

≤ δΔ2c2r(η, ξ)λ(ξ, η)−1c−1
1 Δ−1

1 γA
γ

k+1 · Aγ

k · · · · · Aγ

1 z

≤ (Γ0 − 1)Γ −1
0 A

γ

k+1 · Aγ

k · · · · · Aγ

1 z.

Together with (6.247) this implies that

Bk+1 · Aγ

k · · · · · Aγ

1 z ∈ 〈Γ −1
0 A

γ

k+1 · Aγ

k · · · · · Aγ

1 z,Γ0A
γ

k+1 · Aγ

k · · · · · Aγ

1 z
〉
.

It follows from this relation, (6.245) and (6.241) that

Bk+1 · Bk · · · · · B1z ∈ 〈Γ −1A
γ

k+1 · Aγ

k · · · · · Aγ

1 z,Γ A
γ

k+1 · Aγ

k · · · · · Aγ

1 z
〉
.

This completes the proof of the lemma. �

Lemma 6.54 Let 1 < Δ, 0 < ε < 1 and let N be a natural number for which

Δ(1 − γ )N < 2−1ε. (6.248)

Then there exist a neighborhood U of {Aγ
t }∞t=1 in M with the weak topology and a

number κ > 0 such that for each {Bt }∞t=1 ∈ U , the following two assertions hold:
1. BT · · · · · B1ξ ≥ κξ , T = 1, . . . ,N .
2. For each x ∈ 〈0,Δξ 〉,

r(BN · · · · · B1ξ,BN · · · · · B1x) − λ(BN · · · · · B1ξ,BN · · · · · B1x)

≤ (3/4)ε. (6.249)
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Proof By Lemma 6.52 for each x ∈ 〈0,Δξ 〉,
r
(
AN · · · · · A1ξ,A

γ

N · · · · · Aγ

1 x
)− λ

(
AN · · · · · A1ξ,A

γ

N · · · · · Aγ

1 x
)

≤ ε/2. (6.250)

Choose a number Γ for which

Γ > 1 and
(
Γ 2 − 1

)
Δ < 8−1ε. (6.251)

By Lemma 6.53, there exists a neighborhood U of {Aγ
t }∞t=1 in M such that for each

{Bt }∞t=1 ∈ U , each z ∈ 〈0,Δξ 〉 satisfying r(ξ, z) ≥ ε/2 and each integer T ∈ [1,N],

BT · · · · · B1z ∈ 〈Γ −1A
γ

T · · · · · Aγ

1 z,Γ A
γ

T · · · · · Aγ

1 z
〉
. (6.252)

Assume that {Bt }∞t=1 ∈ U . It follows from the definition of U (see (6.252)),
Lemma 6.49 and (6.223) that for T = 1, . . . ,N ,

BT · · · · · B1ξ ≥ Γ −1A
γ

T · · · · · Aγ

1 ξ = Γ −1AT · · · · · A1ξ ≥ Γ −1c1ξ. (6.253)

Therefore assertion 1 holds with κ = Γ −1c1. Now we will show that assertion 2
also holds.

Assume that

{Bt }∞t=1 ∈ U and x ∈ 〈0,Δξ 〉. (6.254)

Then (6.250) is valid. We will show that (6.249) holds. To this end, we may assume
without loss of generality that r(ξ, η) ≥ ε/2. By (6.254) and the definition of U (see
(6.252)),

BN · · · · · B1x ∈ 〈Γ −1A
γ

N · · · · · Aγ

1 x,Γ A
γ

N · · · · · Aγ

1 x
〉

(6.255)

and

BN · · · · · B1ξ ∈ 〈Γ −1A
γ

N · · · · · Aγ

1 ξ,Γ A
γ

N · · · · · Aγ

1 ξ
〉
.

It follows from (6.255), Lemma 6.49 and (6.216) that

r(BN · · · · · B1ξ,BN · · · · · B1x) ≤ r
(
Γ −1AN · · · · · A1ξ,Γ A

γ

N · · · · · Aγ

1 x
)

≤ Γ 2r
(
AN · · · · · A1ξ,A

γ

N · · · · · Aγ

1 x
)
,

λ(BN · · · · · B1ξ,BN · · · · · B1x) ≥ λ
(
Γ AN · · · · · A1ξ,Γ −1A

γ

N · · · · · Aγ

1 x
)

= Γ −2λ
(
AN · · · · · A1ξ,A

γ

N · · · · · Aγ

1 x
)
.

By these relations, (6.250), (6.254) and (6.251),

r(BN · · · · · B1ξ,BN · · · · · B1x) − λ(BN · · · · · B1ξ,BN · · · · · B1x)

≤ Γ 2r
(
AN · · · · · A1ξ,A

γ

N · · · · · Aγ

1 x
)− Γ −2λ

(
AN · · · · · A1ξ,A

γ

N · · · · · Aγ

1 x
)
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≤ r
(
AN · · · · · A1ξ,A

γ

N · · · · · Aγ

1 x
)− λ

(
AN · · · · · A1ξ,A

γ

N · · · · · Aγ

1 x
)

+ (
Γ 2 − 1

)
r(ξ, x) + (

1 − Γ −2)r
(
AN · · · · · A1ξ,A

γ

N · · · · · Aγ

1 x
)

≤ 2−1ε + 2
(
Γ 2 − 1

)
r(ξ, x) ≤ 2−1ε + (

Γ 2 − 1
)
Δ2 ≤ (3/4)ε.

Thus (6.249) is indeed valid and this completes the proof of the lemma. �

Our next claim is a direct consequence of (6.225).

Lemma 6.55 Assume that Atξ = ξ , t = 1,2, . . . . Then

A
γ
t x = (1 − γ )Atx + γ r(ξ, x)ξ, x ∈ X+, t = 1,2, . . . .

Lemma 6.51 implies the following fact.

Lemma 6.56 Assume that Atξ = ξ , t = 1,2, . . . , s : {1,2, . . .} → {1,2, . . .} and
x ∈ X+. Then

λ
(
ξ,A

γ

s(1)x
)≥ (1 − γ )λ(ξ, x) + γ r(ξ, x),

and for each integer T ≥ 1,

λ
(
ξ,A

γ

s(T +1) · Aγ

s(T ) · · · · · Aγ

s(1)x
) ≥ (1 − γ )λ

(
ξ,A

γ

s(T ) · · · · · Aγ

s(1)x
)

+ γ r
(
ξ,A

γ

s(T ) · · · · · Aγ

s(1)x
)
.

By using Lemma 6.56 and an analogue of the proof of Lemma 6.52, we can prove
the following lemma.

Lemma 6.57 Assume that Atξ = ξ , t = 1,2, . . . . Let 0 < ε < Δ and let N be a
natural number for which

Δ(1 − γ )N < 2−1ε.

Then for each x ∈ 〈0,Δξ 〉 and each s : {1,2, . . .} → {1,2, . . .},
r
(
ξ,A

γ

s(N)
· · · · · Aγ

s(1)
x
)− λ

(
ξ,A

γ

s(N)
· · · · · Aγ

s(1)
x
)≤ 2−1ε.

Analogously to the proof of Lemma 6.53 we can also establish our last prelimi-
nary result.

Lemma 6.58 Assume that Atξ = ξ , t = 1,2, . . . . Let 0 < Δ1 < 1 < Δ2, Γ > 1
and let n be a natural number. Then there exists a number δ > 0 such that for each
s : {1,2, . . .} → {1,2, . . .}, each sequence {Bi}ni=1 ⊂ A satisfying

ρ
(
Bi,A

γ

s(i)

)≤ δ, i = 1, . . . , n,

and each z ∈ 〈0,Δ2ξ 〉 satisfying r(ξ, z) ≥ Δ1, the following relation holds:

Bn · · · · · B1z ∈ 〈Γ −1A
γ

s(n) · · · · · Aγ

s(1)z,Γ A
γ

s(n) · · · · · Aγ

s(1)z
〉
.
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6.22 Proofs of Theorems 6.41 and 6.42

In this section we use the notations of Sects. 6.20 and 6.21 with ξ = η. For each
{At }∞t=1 ∈ Mreg and each γ ∈ (0,1), define a sequence of operators {Aγ

t }∞t=1 by
(6.225) with ξ = η. By (6.226), Lemmas 6.49 and 6.50, the set

{{
A

γ
t

}∞
t=1 : {At }∞t=1 ∈ M, γ ∈ (0,1)

}⊂ M

is an everywhere dense subset of M̄reg with the strong topology.
Let {At }∞t=1 ∈ Mreg , γ ∈ (0,1) and i ≥ 1 be an integer. By Lemma 6.54, there

exist an open neighborhood U(A, γ, i) of {Aγ
t }∞t=1 in the space M̄reg with the weak

topology and an integer N(A,γ, i) ≥ 2i +2 such that for each {Ct }∞t=1 ∈ U(A, γ, i),
the following two properties hold:

(a) CT · · · · · C1η is an interior point of X+ for T = 1, . . . ,N(A, γ, i);
(b) for each x ∈ 〈0,4iη〉,

r(CN(A,γ,i) · · · · · C1η,CN(A,γ,i) · · · · · C1x)

− λ(CN(A,γ,i) · · · · · C1η,CN(A,γ,i) · · · · · C1x) ≤ 8−i . (6.256)

Proof of Theorem 6.41 Define

F :=
∞⋂

q=1

⋃{
U(A, γ, i) : A ∈Mreg, γ ∈ (0,1), i = q, q + 1, . . .

}
.

Clearly F is a countable intersection of open (in the weak topology) everywhere
dense (in the strong topology) sets in M̄reg .

Assume that {Bt }∞t=1 ∈ F . It is easy to verify that assertion 1 of Theorem 6.41
holds. We now show that assertion 2 of Theorem 6.41 is also valid.

Let Δ > 1 and ε ∈ (0,1) be given. Choose an integer q ≥ 1 such that

2q > max
{
Δ,ε−1}. (6.257)

There are {At }∞t=1 ∈Mreg , γ ∈ (0,1) and an integer i ≥ q such that

{Bt }∞t=1 ∈ U(A, γ, i). (6.258)

Assume that {Ct }∞t=1 ∈ U(A, γ, i) and

x ∈ 〈0,Δη〉. (6.259)

Then property (a) holds. It follows from property (b), (6.259) and (6.257) that rela-
tion (6.256) is valid. Since 8−i < ε, this completes the proof of the theorem. �

Proof of Theorem 6.42 Let F be defined as in the proof of Theorem 6.41. By
(6.226), Lemmas 6.49 and 6.50,

{{
A

γ
t

}∞
t=1 : {At }∞t=1 ∈M(c1, c2), γ ∈ (0,1)

}
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is an everywhere dense subset of M(c1, c2) with the strong topology. Define

F0 :=
∞⋂

q=1

⋃{
U(A, γ, i) ∩M(c1, c2) :

A ∈M(c1, c2), γ ∈ (0,1), i = q, q + 1, . . .
}
.

Clearly, F0 is a countable intersection of open (in the weak topology) everywhere
dense (in the strong topology) sets in M(c1, c2). Since F0 ⊂ F we conclude that
assertion 2 of Theorem 6.41 is valid for each {Bt }∞t=1 ∈F0. The proof is complete. �

6.23 Proof of Theorem 6.43

Assume that A = {At }∞t=1 ∈M∗. There exists an interior point ξA of X+ such that

AtξA = ξA, t = 1,2, . . . , and ‖ξA‖η = 1. (6.260)

For each γ ∈ (0,1), define {Aγ
t }∞t=1 by (6.225) with η = ξA. The sequence

{Aγ
t }∞t=1 ∈M by (6.226). Lemma 6.55 implies that

A
γ
t x = (1 − γ )Atx + γ r(ξA, x)ξA, x ∈ X+, t = 1,2, . . . . (6.261)

Together with (6.260) this implies that

A
γ
t ξA = ξA, t = 1,2, . . . . (6.262)

By (6.262) and Lemma 6.30, the set

{{
A

γ
t

}∞
t=1 : {At }∞t=1 ∈M∗, γ ∈ (0,1)

}

is everywhere dense in M̄∗.
Let A = {At }∞t=1 ∈ M∗, γ ∈ (0,1) and let i ≥ 1 be an integer. Choose a natural

number N(A, γ, i) ≥ 4 for which

2 · 16iλ(η, ξA)−1(1 − γ )N(A,γ,i)

< 64−1 · 16−i
(
λ(η, ξA)−1 + 1

)−4
λ(η, ξA). (6.263)

Fix a number Γ (A, γ, i) such that

Γ (A, γ, i) > 1 and

2
(
Γ (A, γ, i) − Γ (A, γ, i)−1)16iλ(η, ξA)−1

< 64−1 · 16−i
(
λ(η, ξA)−1 + 1

)−4
λ(η, ξA).

(6.264)
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By Lemma 6.58, there exists a number δ(A, γ, i) ∈ (0,8−i ) such that for each s :
{1,2, . . .} → {1,2, . . .}, each sequence {Bi}N(A,γ,i)

i=1 ⊂ A satisfying

ρ
(
Bi,A

γ

s(i)

)≤ δ(A, γ, i), i = 1, . . . ,N(A, γ, i), (6.265)

and each z ∈ 〈0,16iλ(η, ξA)−1η〉 satisfying r(ξA, z) ≥ 16−iλ(η, ξA), the following
relations hold:

BN(A,γ,i) · · · · · B1z

∈ 〈Γ −1(A, γ, i)A
γ

s(N(A,γ,i))
· · · · · Aγ

s(1)z,

Γ (A, γ, i)A
γ

s(N(A,γ,i))
· · · · · Aγ

s(1)
z
〉
. (6.266)

Set

U(A, γ, i) = {{Bt }∞t=1 ∈ M̄∗ : ρs

({
A

γ
t

}∞
t=1, {Bt }∞t=1

)
< δ(A, γ, i)

}
. (6.267)

Define

F :=
∞⋂

q=1

⋃{
U(A, γ, i) : A ∈ M∗, γ ∈ (0,1), i = q, q + 1, . . .

}
. (6.268)

It is clear that F is a countable intersection of open everywhere dense subsets in
M̄∗.

Lemma 6.59 Let {At }∞t=1 ∈ M∗, γ ∈ (0,1), s : {1,2, . . .} → {1,2, . . .}, and let
i ≥ 1 be an integer. Define

fs(x) := r(ξA,As(N(A,γ,i)) · · · · · As(1)x), x ∈ X+. (6.269)

Then for each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i) and each

x ∈ 〈0,16iλ(η, ξA)−1ξA
〉

satisfying

r(ξA, x) ≥ 16−iλ(η, ξA),

the following inequality holds:
∥∥Cs(N(A,γ,i)) · · · · · Cs(1)x − fs(x)ξA

∥∥
η

≤ λ(η, ξA)32−116−i
(
λ(η, ξA)−1 + 1

)−4
. (6.270)

Proof Set

N = N(A, γ, i), δ = δ(A, γ, i) and Γ = Γ (A, γ, i). (6.271)
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It follows from (6.271), (6.260), the definition of N(A, γ, i) (see (6.263)), and
Lemma 6.57 that for each x ∈ 〈0,16iλ(η, ξA)−1ξA〉, the following inequality holds:

r
(
ξA,A

γ

s(N) · · · · · Aγ

s(1)x
)− λ

(
ξA,A

γ

s(N) · · · · · Aγ

s(1)x
)

≤ λ(η, ξA)64−116−i
(
λ(η, ξA)−1 + 1

)−4
. (6.272)

Assume that {Ct }∞t=1 ∈ U({At }∞t=1, γ, i) and that

x ∈ 〈0,16iλ(η, ξA)−1ξA
〉
, r(ξA, x) ≥ 16−iλ(η, ξA). (6.273)

We will show that (6.270) holds. Clearly (6.272) holds. By (6.269), (6.272), (6.271)
and (6.260),

∥∥Aγ

s(N) · · · · · Aγ

s(1)(x) − fs(x)ξA
∥∥

η

≤ r
(
ξA,A

γ

s(N) · · · · · Aγ

s(1)x
)− λ

(
ξA,A

γ

s(N) · · · · · Aγ

s(1)x
)

≤ 64−116−i
(
λ(η, ξA)−1 + 1

)−4
λ(η, ξA). (6.274)

We now estimate
∥∥Cs(N) · · · · · Cs(1)x − A

γ

s(N)
· · · · · Aγ

s(1)
x
∥∥

η
.

It follows from (6.267), the definition of δ(A, γ, i) (see (6.265), (6.266)), (6.271),
(6.264), (6.273) and (6.262) that

Cs(N) · · · · · Cs(1)x ∈ 〈Γ −1A
γ

s(N) · · · · · Aγ

s(1)x,Γ A
γ

s(N) · · · · · Aγ

s(1)x
〉
,

∥∥Cs(N) · · · · · Cs(1)x − A
γ

s(N)
· · · · · Aγ

s(1)
x
∥∥

η

≤ 2
(
Γ − Γ −1)∥∥Aγ

s(N)
· · · · · Aγ

s(1)
x
∥∥

η

≤ 2
(
Γ − Γ −1)16iλ(η, ξA)−1 < 64−1 · 16−i

(
λ(η, ξA)−1 + 1

)−4
λ(η, ξA).

Together with (6.274) this implies inequality (6.270). The proof of the lemma is
complete. �

Lemma 6.60 Let {At }∞t=1 ∈ M∗, γ ∈ (0,1), s : {1,2, . . .} → {1,2, . . .} and let
i ≥ 1 be an integer. Let fs : X+ → R1 be defined by (6.269).

Assume that

{Ct }∞t=1 ∈ U
({At }∞t=1, γ, i

)
, y ∈ X+,

‖y‖η = 1, Cty = y, t = 1,2, . . . .
(6.275)

Then

‖y − ξA‖η ≤ 16−i−1, y is an interior point of X+,

y ≥ 2−1λ(η, ξA)η
(6.276)
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and for each x ∈ 〈0, η〉 and each integer T ≥ N(A, γ, i),
∥∥Cs(T ) · · · · · Cs(1)x − fs(x)y

∥∥
η

≤ 4 · 16−i−1 (6.277)

and
∥∥Cs(T ) · · · · · Cs(1)x − fs(x)ξA

∥∥
η

≤ 5 · 16−i−1. (6.278)

Proof It follows from (6.275) that

y ≤ η ≤ λ(η, ξA)−1ξA, r(ξA, y) ≥ 1 ≥ λ(η, ξA). (6.279)

By Lemma 6.59, for each x ∈ X+ which satisfies

x ∈ 〈0,16iλ(η, ξA)−1ξA
〉

and r(ξA, x) ≥ 16−iλ(η, ξA) (6.280)

relation (6.270) holds. Together with (6.279), (6.275) and (6.260) this implies that

∥∥y − fs(y)ξA
∥∥

η
≤ 32−1λ(η, ξA)16−i

(
λ(η, ξA)−1 + 1

)−4
,

∣∣fs(y) − 1
∣∣≤ ∥∥fs(y)ξA − y

∥∥
η
,

‖y − ξA‖η ≤ ∥∥y − fs(y)ξA
∥∥

η
+ ∣∣fs(y) − 1

∣∣≤ 2
∥∥fs(y)ξA − y

∥∥
η
,

(6.281)

y − ξA, ξA − y ≤ 16−i−1λ(η, ξA)
(
λ(η, ξA)−1 + 1

)−4
η (6.282)

and

y ≥ λ(η, ξA)
(
1 − 16−i−1)(λ(η, ξA)−1 + 1

)−4
η. (6.283)

It follows from the definition of fs (see (6.269)), (6.270) and (6.282) that for each
x ∈ 〈0, η〉 and each integer T ≥ N(A, γ, i),

fs(x) ≤ fs(η) ≤ fs

(
λ(η, ξA)−1ξA

)= λ(η, ξA)−1 (6.284)

and
∥∥Cs(N(A,γ,i)) · · · · · Cs(1)x − fs(x)y

∥∥
η

≤ ∥∥Cs(N(A,γ,i)) · · · · · Cs(1)x − fs(x)ξA
∥∥

η
+ fs(x)‖ξA − y‖η

≤ 32−1λ(η, ξA)16−i
(
λ(η, ξA)−1 + 1

)−4 + 16−i−1(λ(η, ξA)−1 + 1
)−4

≤ 2 · 16−i−1(λ(η, ξA)−1 + 1
)−3

. (6.285)

We also have by (6.275) and (6.283),

Cs(T ) · · · · · Cs(1)x − fs(x)y

= Cs(T ) · · · · · Cs(N(A,γ,i)+1)

(
Cs(N(A,γ,i)) · · · · · Cs(1)x − fs(x)y

)
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∈ Cs(T ) · · · · · Cs(N(A,γ,i)+1)

(
2 · 16−i−1(λ(η, ξA)−1 + 1

)−3〈−η,η〉)

⊂ 2 · 16−i−1(λ(η, ξA)−1 + 1
)−3 · 2λ(η, ξA)−1〈−y, y〉

⊂ 4 · 16−i−1[λ(η, ξA)−1 + 1
]−2〈−η,η〉.

Hence

∥∥Cs(T ) · · · · · Cs(1)x − fs(x)y
∥∥

η
≤ 4 · 16−i−1[λ(η, ξA)−1 + 1

]−2
. (6.286)

Let x ∈ 〈0, η〉 and let T ≥ N(A, γ, i) be an integer. By (6.284), (6.285), (6.286)
and (6.282),

∥∥Cs(T ) · · · · · Cs(1)x − fs(x)ξA
∥∥

η

≤ ∥∥Cs(T ) · · · · · Cs(1)x − fs(x)y
∥∥

η
+ fs(x)‖y − ξA‖η

≤ 4 · 16−i−1[λ(η, ξA)−1 + 1
]−2 + 16−i−1[λ(η, ξA)−1 + 1

]−4

≤ 5 · 16−i−1[λ(η, ξA)−1 + 1
]−2

.

The lemma is proved. �

Assume that {Bt }∞t=1 ∈ F . There exist A(k) = {A(k)
t }∞t=1 ∈ M∗, k = 1,2, . . . ,

{γk}∞k=1 ⊂ (0,1), and a strictly increasing sequence of natural numbers {ik}∞k=1 such
that for all integers k ≥ 1,

{Bt }∞t=1 ∈ U
(
A(k), γk, ik

)
and

U
(
A(k+1), γk+1, ik+1

)⊂ U
(
A(k), γk, ik

)
.

(6.287)

By Lemma 6.60, {ξA(k)}∞k=1 is a Cauchy sequence and there exists

ξB = lim
k→∞ ξA(k) , where ξB ∈ int(X+). (6.288)

It follows from (6.288) and (6.287) that for t = 1,2, . . . ,

A
(k)
t ξA(k) − BtξB = (

A
(k)
t − Bt

)
(ξA(k) ) + Bt(ξA(k) − ξB) → 0 (6.289)

as k → ∞. Together with (6.260) and (6.288) this implies that

BtξB = ξB, t = 1,2, . . . , ‖ξB‖η = 1. (6.290)

Let ε > 0 be given. There is an integer k ≥ 1 such that

2−ik < 64−1ε
(
4 + λ(η, ξB)−1)−1 · 4−1. (6.291)
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Assume that s : {1,2, . . .} → {1,2, . . .}. Define fs : X+ → R1 by

fs(x) = r
(
ξA(k) ,A

(k)

s(N(A(k),γk,ik))
· · · · · A(k)

s(1)
x
)
, x ∈ X+. (6.292)

By Lemma 6.60 the following property holds:
(a) Assume that {Ct }∞t=1 ∈ U({A(k)

t }∞t=1, γk, ik), y ∈ X+, ‖y‖η = 1 and Cty = y,
t = 1,2, . . . . Then y is an interior point of X+, ‖y −ξA(k)‖η ≤ 16−1−ik , and for each
x ∈ 〈0, η〉 and each integer T ≥ N(A(k), γk, ik),

∥∥Cs(T ) · · · · · Cs(1)x − fs(x)y
∥∥

η
≤ 4 · 16−ik ,

and
∥∥Cs(T ) · · · · · Cs(1)x − fs(x)ξA(k)

∥∥
η

≤ 5 · 16−ik .

It follows from property (a), (6.287), (6.290) and (6.291) that

‖ξB − ξA(k)‖ = 16−ik−1, (6.293)

and for each x ∈ 〈0, η〉 and each integer T ≥ N(A(k), γk, ik),
∥∥Bs(T ) · · · · · Bs(1)x − fs(x)ξB

∥∥
η

≤ 4 · 16−ik < ε · 64−1. (6.294)

Since ε is any positive number, we conclude that there exists gs : X+ → R1 such
that

lim
T →∞Bs(T ) · · · · · Bs(1)x = gs(x)ξB, x ∈ X+. (6.295)

By (6.294) and (6.295),
∣∣gs(x) − fs(x)

∣∣≤ 4 · 16−ik , x ∈ 〈0, η〉. (6.296)

Assume that {Ct }∞t=1 ∈ U({A(k)
t }∞t=1, γk, ik) ∩ M∗, T ≥ N(A(k), γk, ik) is a nat-

ural number, and x ∈ 〈0, η〉. To complete the proof of the theorem it is sufficient to
show that

∥∥Cs(T ) · · · · · Cs(1)x − gs(x)ξB
∥∥

η
≤ 4−1ε. (6.297)

Indeed it follows from property (a), (6.296), (6.293), (6.295), (6.290) and (6.291)
that

∥∥Cs(T ) · · · · · Cs(1)x − gs(x)ξB
∥∥

η

≤ ∥∥Cs(T ) · · · · · Cs(1)x − fs(x)ξA(k)

∥∥
η

+ ∥∥fs(x)ξA(k) − gs(x)ξA(k)

∥∥
η
+ gs(x)‖ξA(k) − ξB‖η

≤ 5 · 16−ik + 4 · 16−ik + 16−ik−1gs(η)

≤ 9 · 16−ik + 16−ik−1λ(η, ξB)−1 < 4−1ε.

This completes the proof of Theorem 6.43.
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6.24 Infinite Products of Affine Operators

In this section we study the asymptotic behavior of random infinite products of
generic sequences of affine uniformly continuous operators on bounded, closed and
convex subsets of a Banach space. More precisely, we show that in appropriate
spaces of sequences of operators there exists a subset which is a countable intersec-
tion of open and everywhere dense sets such that for each sequence belonging to this
subset, the corresponding random infinite products converge. We remark in passing
that common fixed point theorems for families of affine mappings (e.g., those of
Markov-Kakutani and Ryll-Nardzewski) have applications in various mathematical
areas. See, for example, [48] and the references mentioned there.

Let (X,‖ · ‖) be a Banach space and let K be a nonempty, bounded, closed and
convex subset of X with the topology induced by the norm ‖ · ‖.

Denote by A the set of all sequences {At }∞t=1, where each At : K → K is a
continuous operator, t = 1,2, . . . . Such a sequence will occasionally be denoted by
a boldface A.

We equip the set A with the metric ρs :A×A → [0,∞) defined by

ρs

({At }∞t=1, {Bt }∞t=1

)= sup
{‖Atx − Btx‖ : x ∈ K, t = 1,2, . . .

}
,

{At }∞t=1, {Bt }∞t=1 ∈A. (6.298)

It is easy to see that the metric space (A, ρs) is complete. We will always consider
the set A with the topology generated by the metric ρs .

We say that a set E of operators A : K → K is uniformly equicontinuous (ue)
if for any ε > 0, there exists δ > 0 such that ‖Ax − Ay‖ ≤ ε for all A ∈ E and all
x, y ∈ K satisfying ‖x − y‖ ≤ δ.

An operator A : K → K is called uniformly continuous if the singleton {A} is a
(ue) set.

Define

Aue := {{At }∞t=1 ∈A : {At }∞t=1 is a (ue) set
}
. (6.299)

It is clear that Aue is a closed subset of A.
We endow the topological subspace Aue ⊂ A with the relative topology.
We say that an operator A : K → K is affine if

A
(
αx + (1 − α)y

)= αAx + (1 − α)Ay

for each x, y ∈ K and all α ∈ [0,1].
Denote by M the set of all uniformly continuous affine mappings A : K → K .

For the space M we consider the metric

ρ(A,B) = sup
{‖Ax − Bx‖ : x ∈ K

}
, A,B ∈ M.

It is easy to see that the metric space (M, ρ) is complete.
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In the next sections we analyze the convergence of infinite products of operators
in M and other mappings of affine type and prove several convergence results which
were obtained in [126].

We begin by showing (Theorem 6.61) that for a generic operator B in the space
M there exists a unique fixed point xB and the powers of B converge to xB for all
x ∈ K . We continue with a study of the asymptotic behavior of infinite products of
this kind of operators and prove a weak ergodic theorem. Finally, we present several
theorems on the generic convergence of infinite product trajectories to a common
fixed point and to a common fixed point set, respectively.

Denote by Aaf
ue the set of all {At }∞t=1 ∈Aue such that for each integer t ≥ 1, each

x, y ∈ K and all α ∈ [0,1],
At

(
αx + (1 − α)y

)= αAtx + (1 − α)Aty.

Clearly, Aaf
ue is a closed subset of Aue. We consider the topological subspace Aaf

ue ⊂
Aue with the relative topology.

We will show (Theorem 6.63) that for a generic sequence {Ct }∞t=1 in the space

Aaf
ue ,

‖Cr(T ) · · · · · Cr(1)x − Cr(T ) · · · · · Cr(1)y‖ → 0,

uniformly for all x, y ∈ K and all mappings r : {1,2, . . .} → {1,2, . . .}. Such results
are usually called weak ergodic theorems in the population biology literature [43].

Denote by A0
ue the set of all A = {At }∞t=1 ∈ Aue for which there exists xA ∈ K

such that

AtxA = xA, t = 1,2, . . . , (6.300)

and for each γ ∈ (0,1), x ∈ K and each integer t ≥ 1,

At

(
γ xA + (1 − γ )x

)= λt (γ, x)xA + (
1 − λt (γ, x)

)
Atx (6.301)

with some constant λt (γ, x) ∈ [γ,1].
Denote by Ā0

ue the closure of A0
ue in the space Aue. We will consider the topo-

logical subspace Ā0
ue with the relative topology and show (Theorem 6.64) that for

a generic sequence {Ct }∞t=1 in the space Ā0
ue, there exists a unique common fixed

point x∗ and all random products of the operators {Ct }∞t=1 converge to x∗, uniformly
for all x ∈ K . We will also show that this convergence of random infinite products
to a unique common fixed point holds for a generic sequence from certain subspaces
of the space Ā0

ue.
Assume now that F ⊂ K is a nonempty, closed and convex set, Q : K → F is a

uniformly continuous operator such that

Qx = x, x ∈ F, (6.302)

and for each y ∈ K , x ∈ F and α ∈ [0,1],
Q
(
αx + (1 − α)y

)= αx + (1 − α)Qy. (6.303)
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Denote by A(F,0)
ue the set of all {At }∞t=1 ∈Aue such that

Atx = x, t = 1,2, . . . , x ∈ F,

and for each integer t ≥ 1, each y ∈ K , x ∈ F and α ∈ (0,1],
At

(
αx + (1 − α)y

)= αx + (1 − α)Aty.

Clearly, A(F,0)
ue is a closed subset of Aue.

The topological subspace A(F,0)
ue ⊂ Aue will be equipped with the relative topol-

ogy.
We will show (Theorem 6.67) that for a generic sequence of operators {Ct }∞t=1 in

the space A(F,0)
ue , all its random infinite products

Cr(t) · · · · · Cr(1)x

tend to the set F , uniformly for all x ∈ K . Moreover, under a certain additional
assumption on F , these random products converge to a uniformly continuous re-
traction Pr : K → F , uniformly for all x ∈ K (Theorem 6.69).

For each bounded operator A : K → X, we set

‖A‖ = sup
{‖Ax‖ : x ∈ K

}
. (6.304)

For each x ∈ K and each E ⊂ X, we set

d(x,E) = inf
{‖x − y‖ : y ∈ E

}
, rad(E) = sup

{‖y‖ : y ∈ E
}
. (6.305)

6.25 A Generic Fixed Point Theorem for Affine Mappings

This section is devoted to the proof of the following result.

Theorem 6.61 There exists a set F ⊂ M, which is a countable intersection of open
and everywhere dense subsets of M, such that for each A ∈ F , the following two
assertions hold:

1. There exists a unique xA ∈ K such that AxA = xA;
2. For each ε > 0, there exist a neighborhood U of A in M and a natural number

N such that for each {Bt }∞t=1 ⊂ U and each x ∈ K ,

‖BT · · · · · B1x − xA‖ ≤ ε for all integers T ≥ N.

In the proof of Theorem 6.61 we will need the following lemma.

Lemma 6.62 Let B ∈ M and ε ∈ (0,1) be given. Then there exist Bε ∈ M, an
integer q ≥ 1 and yε ∈ K such that

ρ(B,Bε) ≤ ε,
∥∥Bt

εyε − yε

∥∥≤ ε, t = 1, . . . , q,
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and for each z ∈ K the following inequality holds:

∥∥Bq
ε z − yε

∥∥≤ ε.

Proof Choose a number γ ∈ (0,1) for which

8γ
(
rad(K) + 1

)≤ ε, (6.306)

and then an integer q ≥ 1 such that

(1 − γ )q
(
rad(K) + 1

)≤ 16−1ε (6.307)

and a natural number N such that

16qN−1(rad(K) + 1
)≤ 8−1ε. (6.308)

Fix x0 ∈ K and define a sequence {xt }∞t=0 ⊂ K by

xt+1 = Bxt , t = 0,1, . . . . (6.309)

For each integer k ≥ 0, define

yk = N−1
k+N−1∑

i=k

xi . (6.310)

It is easy to see that

Byk = yk+1, k = 0,1, . . . , (6.311)

and for each k ∈ {0, . . . , q},

‖y0 − yk‖ ≤ 2kN−1 rad(K) ≤ 2qN−1 rad(K). (6.312)

Define Bε : K → K by

Bεz := (1 − γ )Bz + γy0, z ∈ K. (6.313)

It is easy to see that

Bε ∈M and ρ(B,Bε) < 2−1ε. (6.314)

Now let z be an arbitrary point in K . We will show by induction that for each integer
n ≥ 1,

Bn
ε z = (1 − γ )nBnz +

n−1∑

i=0

cniyi, (6.315)
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where

cni > 0, i = 0, . . . , n − 1, and
n−1∑

i=0

cni + (1 − γ )n = 1. (6.316)

It is easy to see that for n = 1 our assertion holds.
Assume that it is also valid for an integer n ≥ 1. It follows from (6.313), (6.315),

(6.316), (6.314) and (6.311) that

Bn+1
ε z = γy0 + (1 − γ )B

(
Bn

ε z
)

= γy0 + (1 − γ )

[

(1 − γ )nBn+1z +
n−1∑

i=0

cniByi

]

= (1 − γ )n+1Bn+1z + γy0 + (1 − γ )

n−1∑

i=0

cniyi+1.

This implies that our assertion is also valid for n + 1. Therefore for each integer
n ≥ 1, equality (6.315) holds with some constants cni , i = 0, . . . , n − 1, satisfying
(6.316).

Now we will show that
∥∥Bq

ε z − y0
∥∥≤ ε.

We have already shown that there exist positive numbers cqi > 0, i = 0, . . . , q − 1,
such that

q−1∑

i=0

cqi + (1 − γ )q = 1 and Bq
ε z = (1 − γ )qBqz +

q−1∑

i=0

cqiyi . (6.317)

By (6.317), (6.312), (6.307) and (6.308),

∥∥Bq
ε z − y0

∥∥ ≤ (1 − γ )q
∥∥Bqz − y0

∥∥+
q−1∑

i=0

cqi‖y0 − yi‖

≤ 2(1 − γ )q rad(K) + 2qN−1 rad(K)

< 16−1ε + 8−1ε < 2−1ε.

Thus we have shown that
∥∥Bq

ε z − y0
∥∥≤ 2−1ε for each z ∈ K.

Let t ∈ {1, . . . , q}. To finish the proof we will show that
∥∥Bt

εy0 − y0
∥∥≤ ε.
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By (6.315) and (6.316), there exist positive numbers cti , i = 0, . . . , t − 1, such that

t−1∑

i=0

cti + (1 − γ )t = 1 and Bt
εy0 = (1 − γ )tBty0 +

t−1∑

i=0

ctiyi .

Together with (6.311), (6.312) and (6.308) this implies that

∥∥y0 − Bt
εy0

∥∥ =
∥∥∥∥∥
y0 −

t−1∑

i=0

ctiyi − (1 − γ )tyt

∥∥∥∥∥

≤ 4qN−1 rad(K) < 8−1ε.

This completes the proof of Lemma 6.62 (with yε = y0). �

Proof of Theorem 6.61 To begin the construction of the set F , let B ∈ M and let
i ≥ 1 be an integer. By Lemma 6.62, there exist C(B,i) ∈ M, y(B, i) ∈ K and an
integer q(B, i) ≥ 1 such that

ρ
(
B,C(B,i)

)≤ 8−i ,

∥
∥(C(B,i)

)t
y(B, i) − y(B, i)

∥
∥≤ 8−i , t = 0, . . . , q(B, i),

(6.318)

and
∥
∥(C(B,i)

)q(B,i)
z − y(B, i)

∥
∥≤ 8−i for each z ∈ K. (6.319)

By Lemma 6.9, there exists an open neighborhood U(B, i) of C(B,i) in M such that
for each {Aj }q(B,i)

j=1 ⊂ U(B, i) and each z ∈ K ,

∥∥Aq(B,i) · · · · · A1z − (
C(B,i)

)q(B,i)
z
∥∥≤ 64−i . (6.320)

It follows from (6.319) and (6.320) that for each {Ai}q(B,i)

j=1 ⊂ U(B, i) and each
z ∈ K ,

∥∥Aq(B,i) · · · · · A1z − y(B, i)
∥∥≤ 8−i + 64−i . (6.321)

Define

F :=
∞⋂

k=1

⋃{
U(B, i) : B ∈M, i = k, k + 1, . . .

}
.

It is easy to see that F is a countable intersection of open and everywhere dense
subsets of M.

Assume that A ∈ F and ε > 0. Choose a natural number k for which

64 · 2−k < ε. (6.322)
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There exist B ∈ M and an integer i ≥ k such that

A ∈ U(B, i). (6.323)

When combined with (6.321) and (6.322), this implies that for each z ∈ K ,
∥∥Aq(B,i)z − y(B, i)

∥∥≤ 8−i + 64−i < ε.

Since ε is an arbitrary positive number, we conclude that there exists a unique
xA ∈ K such that AxA = xA. Clearly,

∥∥xA − y(B, i)
∥∥≤ 8−i + 64−i .

Together with (6.321) and (6.322) this last inequality implies that for each
{Aj }∞j=1 ⊂ U(B, i), each z ∈ K and each integer T ≥ q(B, i),

‖AT · · · · · A1z − xA‖ ≤ 2
(
8−i + 64−i

)
< ε.

This completes the proof of Theorem 6.61. �

6.26 A Weak Ergodic Theorem for Affine Mappings

In this section we will prove the following result.

Theorem 6.63 There exists a set F ⊂ Aaf
ue , which is a countable intersection of

open and everywhere dense subsets of Aaf
ue , such that for each {Bt }∞t=1 ∈F and each

ε > 0, there exist a neighborhood U of {Bt }∞t=1 in Aaf
ue and a natural number N such

that for each {Ct }∞t=1 ∈ U , each integer T ≥ N , each r : {1, . . . , T } → {1,2, . . .} and
each x, y ∈ K ,

‖Cr(T ) · · · · · Cr(1)x − Cr(T ) · · · · · Cr(1)y‖ ≤ ε.

Proof Fix y∗ ∈ K . Let {At }∞t=1 ∈ Aaf
ue and γ ∈ (0,1). For t = 1,2, . . . , define Atγ :

K → K by

Atγ x = (1 − γ )Atx + γy∗, x ∈ K.

Clearly,

{Atγ }∞t=1 ∈Aaf
ue , ρs

({At }∞t=1, {Atγ }∞t=1

)≤ 2γ rad(K). (6.324)

Let i ≥ 1 be an integer. Choose a natural number N(γ, i) ≥ 4 such that

(1 − γ )N(γ,i)
(
rad(K) + 1

)
< 16−14−i . (6.325)

We will show by induction that for each integer T ≥ 1, the following assertion holds:
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For each r : {1, . . . , T } → {1,2, . . .}, there exists yr,T ∈ K such that

Ar(T )γ · · · · · Ar(1)γ x

= (1 − γ )T Ar(T ) · · · · · Ar(1)x + (
1 − (1 − γ )T

)
yr,T (6.326)

for each x ∈ K .
It is clear that for T = 1 this assertion is true. Assume that it is also true for an

integer T ≥ 1. It follows from (6.327) that for each r : {1, . . . , T + 1} → {1,2, . . .}
and each x ∈ K ,

Ar(T +1)γ · · · · · Ar(1)γ x

= Ar(T +1)γ [Ar(T )γ · · · · · Ar(1)γ x]
= Ar(T +1)γ

[
(1 − γ )T Ar(T ) · · · · · Ar(1)x + (

1 − (1 − γ )T
)
yr,T

]

= γy∗ + (1 − γ )Ar(T +1)

[
(1 − γ )T Ar(T ) · · · · · Ar(1)x + (

1 − (1 − γ )T
)
yr,T

]

= (1 − γ )T +1Ar(T +1) · · · · · Ar(1)x + (1 − γ )
(
1 − (1 − γ )T

)
Ar(T +1)yr,T

+ γy∗.

This implies that the assertion is also valid for T + 1. Therefore we have shown that
our assertion is true for any integer T ≥ 1. Together with (6.325) this implies that
the following property holds:

(a) For each integer T ≥ N(γ, i), each r : {1, . . . , T } → {1,2, . . .} and each
x, y ∈ K ,

‖Ar(T )γ · · · · · Ar(1)γ x − Ar(T )γ · · · · · Ar(1)γ y‖
≤ 2(1 − γ )T rad(K) ≤ 8−1 · 4−i .

By Lemma 6.9, there is an open neighborhood U({At }∞t=1, γ, i) of {Atγ }∞t=1 in

Aaf
ue such that for each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i), each

r : {1, . . . ,N(γ, i)
}→ {1,2, . . .}

and each x ∈ K ,

‖Cr(N(γ,i)) · · · · · Cr(1)x − Ar(N(γ,i))γ · · · · · Ar(1)γ x‖ ≤ 64−1 · 4−i .

When combined with property (a) this implies that the following property also
holds:

(b) For each integer T ≥ N(γ, i), each r : {1, . . . , T } → {1,2, . . .}, each x, y ∈ K

and each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i),

‖Cr(T ) · · · · · Cr(1)x − Cr(T ) · · · · · Cr(1)y‖ ≤ 4−i−1. (6.327)
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Define

F :=
∞⋂

q=1

⋃{
U
({At }∞t=1, γ, i

) : {At }∞t=1 ∈ Aaf
ue , γ ∈ (0,1), i = q, q + 1, . . .

}
.

Clearly, F is a countable intersection of open and everywhere dense subsets of Aaf
ue .

Let {Bt }∞t=1 ∈ F and ε > 0 be given. Choose a natural number q for which

64 · 2−q < ε. (6.328)

There exist {At }∞t=1 ∈ Aaf
ue , γ ∈ (0,1) and an integer i ≥ q such that

{Bt }∞t=1 ∈ U
({At }∞t=1, γ, i

)
.

By property (b) and (6.328), for each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i), each T ≥ N(γ, i),
each r : {1, . . . , T } → {1,2, . . .} and each x, y ∈ K ,

‖Cr(T ) · · · · · Cr(1)x − Cr(T ) · · · · · Cr(1)y‖ ≤ 4−i−1 < ε.

This completes the proof of Theorem 6.63. �

6.27 Affine Mappings with a Common Fixed Point

In this section we will state three theorems which will be proved in the next section.

Theorem 6.64 There exists a set F ⊂ Ā0
ue, which is a countable intersection of

open and everywhere dense subsets of Ā0
ue, such that F ⊂ A0

ue and for each B =
{Bt }∞t=1 ∈ F , the following assertion holds:

Let xB ∈ K , BtxB = xB, t = 1,2, . . . , and let ε > 0. Then there exist a neigh-
borhood U of B = {Bt }∞t=1 in Ā0

ue and a natural number N such that for each
{Ct }∞t=1 ∈ U , each integer T ≥ N , each r : {1, . . . , T } → {1,2, . . .} and each x ∈ K ,

‖Cr(T ) · · · · · Cr(1)x − xB‖ ≤ ε.

Denote by A(1)
ue the set of all A = {At }∞t=1 ∈ Aue for which there exists xA ∈ K

such that

AtxA = xA, t = 1,2, . . . , (6.329)

and for each α ∈ (0,1), x ∈ K and an integer t ≥ 1,

At

(
αxA + (1 − α)x

)= αxA + (1 − α)Atx.

Denote by Ā(1)
ue the closure of A(1)

ue in the space Aue. We equip the topological
subspace Ā(1)

ue ⊂ Aue with the relative topology.
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Theorem 6.65 Let a set F ⊂ Ā0
ue be as guaranteed in Theorem 6.64. There exists

a set F (1) ⊂ F ∩ A(1)
ue which is a countable intersection of open and everywhere

dense subsets of Ā(1)
ue .

Denote by Aaf

ue,0 the set of all A = {At }∞t=1 ∈ Aaf
ue for which there exists xA ∈ K

such that (6.329) holds.
Denote by Āaf

ue,0 the closure of Aaf

ue,0 in the space Aue. We also consider the

topological subspace Āaf

ue,0 ⊂ Aue with the relative topology.

Theorem 6.66 Let a set F (1) be as guaranteed in Theorem 6.65. There exists a set
F∗ ⊂ F (1) ∩Aaf

ue,0 which is a countable intersection of open and everywhere dense

subsets of Āaf

ue,0.

Theorems 6.65 and 6.66 show that the generic convergence established in Theo-
rem 6.64 is also valid for certain subspaces of Ā0

ue.

6.28 Proofs of Theorems 6.64, 6.65 and 6.66

Proof of Theorem 6.64 Let A = {At }∞t=1 ∈A0
ue and γ ∈ (0,1). There exists xA ∈ K

such that

AtxA = xA, t = 1,2, . . . , (6.330)

and for each integer t ≥ 1, x ∈ K and α ∈ (0,1),

At

(
αxA + (1 − α)x

)= λt (α, x)xA + (
1 − λt (α, x)

)
Atx (6.331)

with some constant λt (α, x) ∈ [α,1].
For t = 1,2, . . . , define Atγ : K → K by

Atγ x = (1 − γ )Atx + γ xA, x ∈ K. (6.332)

Clearly,

{Atγ }∞t=1 ∈ Aue, Atγ xA = xA, t = 1,2, . . . . (6.333)

Let x ∈ K , α ∈ [0,1) and let t ≥ 1 be an integer. Then there exists λt (α, x) ∈ [α,1]
such that (6.331) holds. Also, by (6.331) and (6.332),

Atγ

(
αxA + (1 − α)x

)

= (1 − γ )At

(
αxA + (1 − α)x

)+ γ xA

= γ xA + (1 − γ )
[
λt (α, x)xA + (

1 − λt (α, x)
)
Atx

]
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= (1 − γ )
(
1 − λt (α, x)

)
Atx + [

γ + (1 − γ )λt (α, x)
]
xA

= (
1 − λt (α, x)

)
Atγ x + [

γ + (1 − γ )λt (α, x) − γ
(
1 − λt (α, x)

)]
xA

= (
1 − λt (α, x)

)
Atγ x + λt (α, x)xA. (6.334)

Thus property (6.301) is satisfied and therefore

{Atγ }∞t=1 ∈ A0
ue. (6.335)

Let z ∈ K . We will show by induction that for each integer T ≥ 1 and each
r : {1, . . . , T } → {1,2, . . .}, there exists λ(z,T , r) ∈ [0, (1 − γ )T ] such that

Ar(T )γ · · · · · Ar(1)γ z

= λ(z,T , r)Ar(T ) · · · · · Ar(1)z + (
1 − λ(z,T , r)

)
xA. (6.336)

It is clear that for T = 1 our assertion is valid.
Assume that it is also valid for an integer T ≥ 1. Let r : {1, . . . , T + 1} →

{1,2, . . .}. There exists λ(z,T , r) ∈ [0, (1 − γ )T ] such that (6.336) is valid. It fol-
lows from (6.336) and (6.334) that

Ar(T +1)γ · · · · · Ar(1)γ z

= Ar(T +1)γ

[
λ(z,T , r)Ar(T ) · · · · · Ar(1)z + (

1 − λ(z,T , r)
)
xA
]

= (1 − γ )(1 − κ)Ar(T +1)Ar(T ) · · · · · Ar(1)z + [
γ + (1 − γ )κ

]
xA

with κ ∈ [1 − λ(z,T , r),1]. Set

λ(z,T + 1, r) = (1 − γ )(1 − κ).

It is easy to see that

0 ≤ λ(z,T + 1, r) ≤ (1 − γ )λ(z,T , r) ≤ (1 − γ )T +1

and

Ar(T +1)γ · · · · · Ar(1)γ z

= λ(z,T + 1, r)Ar(T +1) · · · · · Ar(1)z + (
1 − λ(z,T + 1, r)

)
xA.

Therefore the assertion is valid for T + 1. Thus we have shown that for each integer
T ≥ 1 and each r : {1, . . . , T } → {1,2, . . .}, there exists λ(z,T , r) ∈ [0, (1 − γ )T ]
such that (6.336) holds.

Let i ≥ 1 be an integer. Choose a natural number N(γ, i) for which

64(1 − γ )N(γ,i)
(
rad(K) + 1

)
< 8−i . (6.337)

We will show that for each z ∈ K , each integer T ≥ N(γ, i) and each r :
{1, . . . , T } → {1,2, . . .},

‖Ar(T )γ · · · · · Ar(1)γ z − xA‖ ≤ 8−i−1. (6.338)



332 6 Infinite Products

Let T ≥ N(γ, i) be an integer, z ∈ K and r : {1, . . . , T } → {1,2, . . .}. There exists
λ(z,T , r) ∈ [0, (1 − γ )T ] such that (6.336) holds. It is easy to see that (6.336) and
(6.337) imply (6.338).

By Lemma 6.9, there exists a number

δ
({At }∞t=1, γ, i

) ∈ (0,16−18−i
)

(6.339)

such that for each {Ct }∞t=1 ∈ Ā0
ue satisfying

ρs

({Ct }∞t=1, {Atγ }∞t=1

)≤ δ
({At }∞t=1, γ, i

)
,

each r : {1, . . . ,N(γ, i)} → {1,2, . . .} and each x ∈ K ,

‖Cr(N(γ,i)) · · · · · Cr(1)x − Ar(N(γ,i))γ · · · · · Ar(1)γ x‖ ≤ 16−1 · 8−i . (6.340)

Set

U
({At }∞t=1, γ, i

)

= {{Ct }∞t=1 ∈ Ā0
ue : ρs

({Ct }∞t=1, {Atγ }∞t=1

)
< δ

({At }∞t=1, γ, i
)}

. (6.341)

It follows from (6.341), the choice of δ({At }∞t=1, γ, i) (see (6.339), (6.340)) and
(6.338) that the following property holds:

(a) For each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i), each integer T ≥ N(γ, i), each r :
{1, . . . , T } → {1,2, . . .} and each x ∈ K ,

‖Cr(T ) · · · · · Cr(1)x − xA‖ ≤ 8−i .

Define

F :=
∞⋂

q=1

⋃{
U
({At }∞t=1, γ, i

) : {At }∞t=1 ∈ A0
ue, γ ∈ (0,1), i = q, q + 1, . . .

}
.

It is easy to see that F is a countable intersection of open and everywhere dense
subsets of Ā0

ue.
Assume now that B = {Bt }∞t=1 ∈ F and ε > 0. Choose a natural number q such

that

64 · 2−q < ε. (6.342)

There exist {At }∞t=1 ∈ A0
ue, γ ∈ (0,1) and an integer i ≥ q such that

{Bt }∞t=1 ∈ U
({At }∞t=1, γ, i

)
. (6.343)

By property (a), (6.343) and (6.342), for each x ∈ K , each integer T ≥ N(γ, i) and
each integer τ ≥ 1,

∥∥BT
τ x − xA

∥∥≤ 8−i < ε. (6.344)
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Since ε is an arbitrary positive number, we conclude that there exists xB ∈ K such
that

lim
T →∞BT

τ x = xB

for each x ∈ K and each integer τ ≥ 1. It is easy to see that

BtxB = xB, t = 1,2, . . . ,‖xB − xA‖ ≤ 8−i < ε. (6.345)

It follows from property (a), (6.345) and (6.342) that for each sequence {Ct }∞t=1 ∈
U({At }∞t=1, γ, i), each integer T ≥ N(γ, i), each r : {1, . . . , T } → {1,2, . . .} and
each x ∈ K ,

‖Cr(T ) · · · · · Cr(1)x − xB‖ < ε. (6.346)

We will show that for each integer t ≥ 1, x ∈ K and α ∈ (0,1), there exists λ ∈ [α,1]
such that

Bt

(
αxB + (1 − α)x

)= λxB + (1 − λ)Btx. (6.347)

Let t ≥ 1 be an integer, x ∈ K and let α ∈ (0,1). By (6.331) and (6.334), there exists
λε ∈ [α,1] such that

Atγ

(
αxA + (1 − α)x

)= λεxA + (1 − λε)Atγ x. (6.348)

Since ε is an arbitrary positive number, it follows from (6.348), (6.345), (6.343),
(6.341), (6.339) and (6.342) that for each ε > 0, there exist λε ∈ [α,1] and zε ∈ K

such that

‖zε − xB‖ ≤ ε,
∥∥Bt

(
αzε + (1 − α)x

)− (
λεxB + (1 − λε)Btx

)∥∥≤ ε.

This implies that (6.347) holds with some λ ∈ [α,1] and completes the proof of
Theorem 6.64. �

Proof of Theorem 6.65 Let F be as constructed in the proof of Theorem 6.64. Let
A = {At }∞t=1 ∈ A(1)

ue , γ ∈ (0,1) and let i ≥ 1 be an integer. There exists xA ∈ K

such that (6.340) holds, and for each x ∈ K , each integer t ≥ 1 and each α ∈ [0,1],
equality (6.331) holds with λt (α, x) = α. For t = 1,2, . . . , define Atγ : K → K by

(6.332). It is easy to see that {Atγ }∞t=1 ∈ A(1)
ue . Choose a natural number N(γ, i) for

which (6.337) holds. Let δ({At }∞t=1, γ, i) and U({At }∞t=1, γ, i) be defined as in the
proof of Theorem 6.64. Set

F (1) :=
[ ∞⋂

q=1

⋃{
U
({At }∞t=1, γ, i

) :

{At }∞t=1 ∈ A(1)
ue , γ ∈ (0,1), i = q, q + 1, . . .

}
]

∩ Ā(1)
ue .
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Clearly, F (1) is a countable intersection of open and everywhere dense subsets of
Ā(1)

ue and F (1) ⊂ F . Arguing as in the proof of Theorem 6.64, we can show that
F (1) ⊂ A(1)

ue . This completes the proof of Theorem 6.65. �

The proof of Theorem 6.66 is analogous to that of Theorem 6.65.

6.29 Weak Convergence

In this section we present two theorems concerning the space A(F,0)
ue defined in

Sect. 6.24. Recall that F is a nonempty, closed and convex subset of K for which
there exists a uniformly continuous operator Q : K → F such that

Qx = x, x ∈ F, (6.349)

and for each y ∈ K , x ∈ F and α ∈ [0,1],
Q
(
αx + (1 − α)y

)= αx + (1 − α)Qy. (6.350)

We now state our first theorem.

Theorem 6.67 There exists a set F ⊂ A(F,0)
ue which is a countable intersection

of open everywhere dense sets in A(F,0)
ue and such that for each {Bt }∞t=1 ∈ F , the

following assertion holds:
For each ε > 0, there exist a neighborhood U of {Bt }∞t=1 in the space A(F,0)

ue

and a natural number N such that for each {Ct }∞t=1 ∈ U , each integer T ≥ N , each
r : {1,2, . . . , T } → {1,2, . . .} and each x ∈ K ,

d(Cr(T ) · · · · · Cr(1)x,F ) ≤ ε.

Assume now that for each x, y ∈ K and α ∈ [0,1],
Q
(
αx + (1 − α)y

)= αQx + (1 − α)Qy. (6.351)

Denote by A(F,1)
ue the set of all {At }∞t=1 ∈Aue such that

Atx = x, t = 1,2, . . . , x ∈ F,

and for each t ∈ {1,2, . . .}, each x, y ∈ K and each α ∈ [0,1],
At

(
αx + (1 − α)y

)= αAtx + (1 − α)Aty.

It is clear that A(F,1)
ue is a closed subset of A(F,0)

ue . We consider the topological sub-
space A(F,1)

ue ⊂ A(F,0)
ue with the relative topology.

Here is our second theorem.
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Theorem 6.68 Let the set F be as guaranteed in Theorem 6.67. Then there exists
a set F1 ⊂ F ∩ A(F,1)

ue which is a countable intersection of open everywhere dense
subsets of A(F,1)

ue .

6.30 Proofs of Theorems 6.67 and 6.68

Proof of Theorem 6.67 Let {At }∞t=1 ∈ A(F,0)
ue and γ ∈ (0,1) be given. For t =

1,2, . . . we define Atγ : K → K by

Atγ x = (1 − γ )Atx + γQx, x ∈ K. (6.352)

It is easy to see that

{Atγ }∞t=1 ∈A(F,0)
ue . (6.353)

Let z ∈ K . By induction we will show that for each integer T ≥ 1, the following
assertion holds:

For each r : {1, . . . , T } → {1,2, . . .},
Ar(T )γ · · · · · Ar(1)γ z = (1 − γ )T Ar(T ) · · · · · Ar(1)z + (

1 − (1 − γ )T
)
yT (6.354)

for some yT ∈ F .
Clearly, for T = 1 our assertion is valid. Assume that it is also valid for T ≥ 1

and that r : {1, . . . , T +1} → {1,2, . . .}. Evidently, (6.354) holds with some yT ∈ F .
By (6.354), (6.353) and (6.352),

Ar(T +1)γ · · · · · Ar(1)γ z

= Ar(T +1)γ

[
(1 − γ )T Ar(T ) · · · · · Ar(1)z + (

1 − (1 − γ )T
)
yT

]

= (1 − γ )T Ar(T +1)γ [Ar(T ) · · · · · Ar(1)z] + (
1 − (1 − γ )T

)
yT

= (1 − γ )T +1Ar(T +1) · · · · · Ar(1)z

+ γ (1 − γ )T Q[Ar(T ) · · · · · Ar(1)z] + (
1 − (1 − γ )T

)
yT

= (1 − γ )T +1Ar(T +1) · · · · · Ar(1)z

+ (
1 − (1 − γ )T +1)[(1 − (1 − γ )T +1)−1

γ (1 − γ )T

× Q[Ar(T ) · · · · · Ar(1)z] + (
1 − (1 − γ )T +1)−1(1 − (1 − γ )T

)
yT

]
.

This implies that our assertion also holds for T + 1.
Therefore we have shown that it is valid for all integers T ≥ 1.
Let i ≥ 1 be an integer. Choose a natural number N(γ, i) for which

64(1 − γ )N(γ,i)
(
rad(K) + 1

)
< 8−i . (6.355)
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It follows from (6.354) that for each z ∈ K , each integer T ≥ N(γ, i) and each
r : {1, . . . , T } → {1,2, . . .},

d(Ar(T )γ · · · · · Ar(1)γ z,F ) ≤ 8−i−1. (6.356)

By Lemma 6.9, there exists an open neighborhood U({At }∞t=1, γ, i) of {Atγ }∞t=1 in

A(F,0)
ue such that the following property holds:
(a) for each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i), each r : {1, . . . ,N(γ, i)} → {1,2, . . .}

and each x ∈ K ,

‖Cr(N(γ,i)) · · · · · Cr(1)x − Ar(N(γ,i))γ · · · · · Ar(1)γ x‖ ≤ 16−18−i .

It follows from the definition of U({At }∞t=1, γ, i) and (6.356) that the following
property is also true:

(b) For each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i), each integer T ≥ N(γ, i), each r :
{1, . . . , T } → {1,2, . . .} and each x ∈ K ,

d(Cr(T ) · · · · · Cr(1)x,F ) ≤ 8−i .

Define

F :=
∞⋂

q=1

⋃{
U
({At }∞t=1, γ, i

) : {At }∞t=1 ∈ A(F,0)
ue , γ ∈ (0,1), i = q, q + 1, . . .

}
.

It is easy to see that F is a countable intersection of open and everywhere dense
subsets of A(F,0)

ue .
Assume that {Bt }∞t=1 ∈ F and ε > 0. Choose a natural number q such that

64 · 2−q < ε. (6.357)

There exist {At }∞t=1 ∈ A(F,0)
ue , γ ∈ (0,1) and an integer i ≥ q such that {Bt }∞t=1 ∈

U({At }∞t=1, γ, i). By (6.357) and property (b), for each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i),
each integer T ≥ N(γ, i), each r : {1, . . . , T } → {1,2, . . .} and each x ∈ K ,

d(Cr(T ) · · · · · Cr(1)x,F ) ≤ ε.

This completes the proof of Theorem 6.67. �

Analogously to the proof of Theorem 6.65 we can prove Theorem 6.68 by mod-
ifying the proof of Theorem 6.67.

6.31 Affine Mappings with a Common Set of Fixed Points

In this section we assume that F is a nonempty, closed and convex subset of K , and
Q : K → F is a uniformly continuous retraction satisfying (6.350).
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We assume, in addition, that there exists a number Δ > 0 such that

{
x ∈ X : d(x,F ) < Δ

}⊂ K.

In this setting we can strengthen Theorem 6.67.

Theorem 6.69 Let the set F ⊂ A(F,0)
ue be as constructed in the proof of Theo-

rem 6.67. Then for each {Bt }∞t=1 ∈ F , the following two assertions hold:
1. For each r : {1,2, . . .} → {1,2, . . .}, there exists a uniformly continuous oper-

ator Pr : K → F such that

lim
T →∞Br(T ) · · · · · Br(1)x = Prx for each x ∈ K.

2. For each ε > 0, there exist a neighborhood U of {Bt }∞t=1 in the space A(F,0)
ue

and a natural number N such that for each {Ct }∞t=1 ∈ U , each r : {1,2, . . .} →
{1,2, . . .} and each integer T ≥ N ,

‖Cr(T ) · · · · · Cr(1)x − Prx‖ ≤ ε for all x ∈ K.

Proof As in the previous section, given {At }∞t=1 ∈ A(F,0)
ue , γ ∈ (0,1) and an in-

teger i ≥ 1, we define {Atγ }∞t=1 ∈ A(F,0)
ue (see (6.352)), a natural number N(γ, i)

(see (6.355)) and an open neighborhood U({At }∞t=1, γ, i) of {Atγ }∞t=1 in A(F,0)
ue (see

property (a)). Again, as in the previous section, we define a set F which is a count-
able intersection of open and everywhere dense sets in A(F,0)

ue by

F :=
∞⋂

q=1

⋃{
U
({At }∞t=1, γ, i

) : {At }∞t=1 ∈ A(F,0)
ue , γ ∈ (0,1), i = q, q + 1, . . .

}
.

Assume that {Bt }∞t=1 ∈ F and ε ∈ (0,1). Choose a number ε0 such that

ε0 < 64−1(min{ε,Δ}), 8ε0Δ
−1(rad(K) + 1

)
< 8−1ε. (6.358)

Choose a natural number q such that

64 · 2−q < ε0. (6.359)

There exist {At }∞t=1 ∈ A(F,0)
ue , γ ∈ (0,1) and an integer i ≥ q such that

{Bt }∞t=1 ∈ U
({At }∞t=1, γ, i

)
. (6.360)

It was shown in the previous section (see (6.356)) that the following property holds:
(c) For each z ∈ K , each integer T ≥ N(γ, i) and each r : {1, . . . , T } →

{1,2, . . .},
d(Ar(T )γ · · · · · Ar(1)γ z,F ) ≤ 8−i−1.
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By the definition of U({At }∞t=1, γ, i) (see Sect. 6.30 and property (a)), the following
property holds:

(d) for each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i), each r : {1, . . . ,N(γ, i)} → {1,2, . . .}
and each x ∈ K ,

‖Cr(N(γ,i)) · · · · · Cr(1)x − Ar(N(γ,i))γ · · · · · Ar(1)γ x‖ ≤ 16−1 · 8−i .

Assume that r : {1,2, . . .} → {1,2, . . .}. Then by property (c), for each x ∈ K

there exists fr(x) ∈ K such that
∥∥Ar(N(γ,i))γ · · · · · Ar(1)γ x − fr(x)

∥∥≤ 2 · 8−i−1. (6.361)

We will show that for each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i), each integer T ≥ N(γ, i)

and each x ∈ K ,
∥∥Cr(T ) · · · · · Cr(1)x − fr(x)

∥∥≤ 8−1ε. (6.362)

Let {Ct }∞t=1 ∈ U({At }∞t=1, γ, i) and let x ∈ K . By (6.361) and property (d),

∥∥Cr(N(γ,i)) · · · · · Cr(1)x − fr(x)
∥∥≤ 8−i

(
16−1 + 4−1). (6.363)

Set

z = fr(x) + 8iΔ
[
Cr(N(γ,i)) · · · · · Cr(1)x − fr(x)

]
. (6.364)

It follows from (6.363), (6.364) and the definition of Δ that z ∈ K and

Cr(N(γ,i)) · · · · · Cr(1)x = 8−iΔ−1z + (
1 − 8−iΔ−1)fr(x). (6.365)

It follows from (6.365), (6.358) and (6.359) that for each integer T > N(γ, i),

Cr(T ) · · · · · Cr(1)x = 8−iΔ−1Cr(T ) · · · · · Cr(N(γ,i)+1)z + (
1 − 8−iΔ−1)fr(x).

Together with (6.366) and (6.358) this implies that for each integer T ≥ N(γ, i),
∥∥Cr(T ) · · · · · Cr(1)x − fr(x)

∥∥≤ 2 rad(K)8−iΔ−1 < 8−1ε.

Therefore we have shown that for each r : {1,2, . . .} → {1,2, . . .} and each x ∈ K ,
there exists fr(x) ∈ F such that the following property holds:

(e) For each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i), each integer T ≥ N(γ, i) and each
x ∈ K , inequality (6.362) is valid.

Since ε is an arbitrary positive number, this implies that for each r : {1,2, . . .} →
{1,2, . . .}, there exists an operator Pr : K → K such that

lim
T →∞Br(T ) · · · · · Br(1)x = Prx, x ∈ K. (6.366)

Let r : {1,2, . . .} → {1,2, . . .} be given. By (6.366), property (e) and (6.362),
∥∥Prx − fr(x)

∥∥≤ 8−1ε, x ∈ K,
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and for each {Ct }∞t=1 ∈ U({At }∞t=1, γ, i), each integer T ≥ N(γ, i) and each x ∈ K ,
∥∥Cr(T ) · · · · · Cr(1)x − Pr(x)

∥∥≤ 4−1ε.

This completes the proof of Theorem 6.69. �

6.32 Infinite Products of Resolvents of Accretive Operators

Accretive operators and their resolvents play an important role in nonlinear func-
tional analysis [16, 20, 24, 46]. Infinite products of resolvents of accretive operators
and their applications were investigated, for example, in [21, 25, 70, 104, 120, 167,
172].

We use Baire’s category to study the asymptotic behavior of infinite products of
resolvents of a generic m-accretive operator on a general Banach space X. We prove
a weak ergodic theorem (Theorem 6.71) and Theorem 6.72, which provides strong
convergence of infinite products to the unique zero of such an operator. These re-
sults were obtained in [134]. More precisely, we consider two spaces of m-accretive
operators on X. The first space is the space of all m-accretive operators endowed
with an appropriate complete metrizable uniformity. The second space is the closure
in the first space of all those operators which have a zero. For the first space we con-
struct a subset which is a countable intersection of open and everywhere dense sets
such that for each operator belonging to this subset, all infinite products of resol-
vents have the same asymptotics. For the second space we again construct a subset
which is a countable intersection of open and everywhere dense sets such that for
each operator belonging to this subset, all infinite products of resolvents converge
uniformly on bounded subsets of X to the unique zero of the operator.

Let (X,‖ · ‖) be a Banach space. We denote by I : X → X the identity operator
on X (that is, Ix = x, x ∈ X). Recall that a set-valued operator A : X → 2X with a
nonempty domain

D(A) = {x ∈ X : Ax �= ∅}
and range

R(A) = {
y ∈ X : y ∈ Ax for some x ∈ D(A)

}

is said to be accretive if

‖x − y‖ ≤ ∥∥x − y + r(u − v)
∥∥ (6.367)

for all x, y ∈ D(A), u ∈ Ax, v ∈ Ay and r > 0. When the operator A is accretive,
then it follows from (6.367) that its resolvents

JA
r = (I + rA)−1 : R(I + rA) → D(A) (6.368)

are single-valued nonexpansive operators for all positive r . In other words,
∥∥JA

r x − JA
r y

∥∥≤ ‖x − y‖ (6.369)
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for all x and y in D(JA
r ) = R(I + rA). As usual, the graph of the operator A is

defined by

graph(A) = {
(x, y) ∈ X × X : y ∈ Ax

}
.

Note that if A is accretive, then the operator Ā : X → 2X , the graph of which is the
closure of graph(A) in the norm topology of X × X, is also accretive. We will say
that the operator A is closed if its graph is closed in X × X.

An accretive operator A : X → X is said to be m-accretive if

R(I + rA) = X for all r > 0.

Note that if X is a Hilbert space (H, 〈·, ·〉), then an operator A is accretive if and
only if it is monotone; that is, if and only if

〈u − v, x − y〉 ≥ 0 for all (x,u), (y, v) ∈ graph(A).

It is well known that in a Hilbert space an operator A is m-accretive if and only
if it is maximal monotone. It is not difficult to see that in any Banach space an
m-accretive operator is maximal accretive; that is, if Ã : X → X is accretive and
graph(A) ⊂ graph(Ã), then Ã = A. However, the converse is not true in general.

In the sequel we are going to use a certain topology on the space of nonempty
closed subsets of Y = X × X. We will now define this topology in a more general
setting (cf. [11]). Let (Y,ρ) be a complete metric space. Fix θ ∈ Y . For each r > 0,
define

Yr = {
y ∈ Y : ρ(y, θ) ≤ r

}
.

For each y ∈ Y and each E ⊂ Y , define

ρ(y,E) = inf
{
ρ(y, z) : z ∈ E

}
.

Denote by S(Y ) the set of all nonempty and closed subsets of Y . For F,G ∈ S(Y )

and an integer n ≥ 1, define

hn(F,G) = sup
y∈Yn

∣∣ρ(y,F ) − ρ(y,G)
∣∣.

Clearly, hn(F,G) < ∞ for each integer n ≥ 1 and each pair of sets F,G ∈ S(Y ).
For the set S(Y ) we consider the uniformity generated by the following base:

Ẽ(n) = {
(F,G) ∈ S(Y ) × S(Y ) : hn(F,G) < n−1}, n = 1,2, . . . . (6.370)

This uniform space is metrizable by the metric

h(F,G) =
∞∑

n=1

2−n
[
hn(F,G)/

(
1 + hn(F,G)

)]
(6.371)

and the metric space (S(Y ),h) is complete.
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From now on we apply the above to the space Y = X × X with the metric

ρ
(
(x1, x2), (z1, z2)

)= ‖x1 − z1‖ + ‖x2 − z2‖, xi, zi ∈ X, i = 1,2,

and with θ = (0,0).
Denote by Ma the set of all closed accretive operators A : X → 2X . For each

A,B ∈ Ma , define

ha(A,B) = h
(
graph(A),graph(B)

)
. (6.372)

Clearly, (Ma, ha) is a metric space and the set {graph(A) : A ∈ Ma} is a closed
subset of S(X × X). Therefore (Ma, ha) is a complete metric space. Denote by
Mm the set of all m-accretive operators A ∈Ma .

Proposition 6.70 Mm is a closed subset of Ma .

Proof Suppose that {Ai}∞i=1 ⊂ Mm, A ∈ Ma , and that Ai → A as i → ∞ in Ma .
Assume that r is a positive number. We have to show that R(I + rA) = X. To this
end, let z ∈ X. For each integer n ≥ 1, there exists yn ∈ X for which

z ∈ (I + rAn)yn or, equivalently, yn = (I + rAn)
−1z. (6.373)

We will show that the sequence {yn}∞n=1 is bounded. To this end, fix (x,u) ∈
graph(A). There is a sequence {(xn,un)}∞n=1 ⊂ X × X such that

(xn,un) ∈ graph(An), n = 1,2, . . . , and lim
n→∞(xn,un) = (x,u). (6.374)

For each integer n ≥ 1,

xn = (I + rAn)
−1(xn + run) and ‖xn − yn‖ ≤ ‖xn + run − z‖. (6.375)

By (6.374) and (6.375), the sequence {yn}∞n=1 is indeed bounded. By (6.373), for
each integer n ≥ 1, there exists vn for which

vn ∈ An(yn) and z = yn + rvn. (6.376)

Clearly, the sequence {(yn, vn)}∞n=1 is also bounded. There exists a sequence

{
(ỹn, ṽn)

}∞
n=1 ⊂ graph(A)

such that

‖ỹn − yn‖ + ‖ṽn − vn‖ → 0 as n → ∞. (6.377)

Set, for all integers n ≥ 1,

zn = ỹn + rṽn ∈ (I + rA)ỹn. (6.378)
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By (6.376)–(6.378),

lim
n→∞ zn = z and ‖zn − zk‖ ≥ ‖ỹn − ỹk‖ for all integers n, k.

Therefore the sequence {(ỹn, ṽn)}∞n=1 converges to (y, v) ∈ graph(A). Clearly, z =
y + rv. Proposition 6.70 is proved. �

Denote by M∗
m the set of all A ∈ Mm such that there exists xA for which 0 ∈

A(xA) and denote by M̄∗
m the closure of M∗

m in Mm. The two complete metric
spaces (Mm,ha) and (M̄∗

m,ha) are the focal points of our investigations. Finally,
we denote by M∗

0 the set of all A ∈ M∗
m for which there exists xA ∈ X such that

0 ∈ A(xA) and
(
JA

1

)n
(x) → xA as n → ∞ for all x ∈ X.

Let {r̄n}∞n=1 be a sequence of positive numbers such that

r̄n < 1, n = 1,2, . . . , lim
n→∞ r̄n = 0 and

∞∑

n=1

r̄n = ∞ (6.379)

and let r̃ > 1.

Theorem 6.71 There exists a set F ⊂ Mm, which is a countable intersection of
open and everywhere dense sets in Mm such that for each A ∈ F , each δ > 0 and
each K > 0 the following assertion holds:

There exist a neighborhood U of A in Mm and an integer n0 ≥ 1 such that
for each sequence of positive numbers {rn}∞n=1 satisfying r̃ > rn ≥ r̄n, n = 1,2, . . . ,
each B ∈ U and each x, y ∈ X satisfying ‖x‖,‖y‖ ≤ K , we have

∥∥JB
rn

· JB
rn−1

· · · · · JB
r1

x − JB
rn

· JB
rn−1

· · · · · JB
r1

y
∥∥≤ δ

for all integers n ≥ n0.

We remark in passing that such a result is called a weak ergodic theorem in
population biology [43]. It means that for a generic operator in Mm all infinite
products of its resolvents become eventually close to each other.

Theorem 6.72 There exists a set F ⊂ M∗
0 ∩M̄∗

m, which is a countable intersection
of open and everywhere dense sets in M̄∗

m such that for each A ∈ F , the following
two assertions hold:

(i) There exists a unique xA ∈ X such that 0 ∈ A(xA).
(ii) For each δ > 0 and each K > 0, there exist a neighborhood U of A in Mm and

an integer n0 ≥ 1 such that for each sequence of positive numbers {rn}∞n=1 sat-
isfying r̃ > rn ≥ r̄n, n = 1,2, . . . , each B ∈ U ∩M∗

0 and each x ∈ X satisfying
‖x‖ ≤ K , we have

∥∥JB
rn

· JB
rn−1

· · · · · JB
r1

x − xA

∥∥≤ δ

for all integers n ≥ n0.
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This result means that a generic operator in M̄∗
m has a unique zero and all the

infinite products of its resolvents converge uniformly on bounded subsets of X to
this zero.

6.33 Auxiliary Results

Let {r̄n}∞n=1 ⊂ (0,1) satisfy (6.379) and let r̃ > 1.

Lemma 6.73 Let A ∈ Mm, K0 > 0 and let n0 ≥ 2 be an integer. Then there exist a
neighborhood U of A in Mm and a number c0 > 0 such that for each B ∈ U , each
sequence {ri}n0−1

i=1 ⊂ (0, r̃) and each sequence {xi}n0
i=1 ⊂ X satisfying ‖x1‖ ≤ K0,

xi+1 = JB
ri

(xi), i = 1, . . . , n0 − 1, we have ‖xi‖ ≤ c0 for all i = 1, . . . , n0.

Proof Choose (xA,uA) ∈ graph(A). There exists a neighborhood U of A in Mm

such that for each B ∈ U there exists (xB,uB) ∈ graph(B) satisfying

‖xB − xA‖ + ‖uA − uB‖ < 1. (6.380)

Assume that B ∈ U ,

{ri}n0−1
i=1 ⊂ (0, r̃), x1 ∈ X, ‖x1‖ ≤ K0 and

xi+1 = JB
ri

(xi), i = 1, . . . , n0 − 1.
(6.381)

We will estimate ‖xi‖ for i = 1, . . . , n0. To this end, set

zi = xB + riuB, i = 1, . . . , n0 − 1. (6.382)

For such i we clearly have by (6.380)–(6.382),

xB = JB
ri

(zi), ‖xB − xi+1‖ ≤ ‖zi − xi‖
and

‖xi+1‖ ≤ ‖xB‖ + ‖xi‖ + ‖zi‖ ≤ ‖xi‖ + ‖xA‖ + 1 + ‖xB + riuB‖
≤ ‖xi‖ + 1 + ‖xA‖ + ‖xB‖ + r̃‖uB‖
≤ ‖xi‖ + 1 + 2‖xA‖ + 1 + r̃

(‖uA‖ + 1
)
.

This implies that for i = 1, . . . , n0 − 1,

‖xi+1‖ ≤ i
(
2‖xA‖ + 2 + r̃

(‖uA‖ + 1
))+ K0.

The proof of Lemma 6.73 is complete. �

Assumption (6.379) and Lemma 6.73 imply the following result.
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Lemma 6.74 Let A ∈ Mm, K0 > 0 and let n0 ≥ 2 be an integer. Then there exist
a neighborhood U of A in Mm and a number c1 > 0 such that for each B ∈ U ,
each sequence ri ∈ [r̄i , r̃), i = 1, . . . , n0 − 1, and each two sequences {xi}n0

i=1 ⊂ X,
{yi}n0

i=2 ⊂ X satisfying

‖x1‖ ≤ K0, xi+1 = JB
ri

(xi),

xi = xi+1 + riyi+1, yi+1 ∈ B(xi+1), i = 1, . . . , n0 − 1,

the following two estimates hold:

‖xi‖ ≤ c1, i = 1, . . . , n0, and ‖yi‖ ≤ c1, i = 2, . . . , n0.

Lemma 6.75 Let A ∈ Mm, x∗ ∈ X, 0 ∈ A(x∗), ε > 0 and let n0 ≥ 2 be an integer.
Then there exists a neighborhood U of A in Mm such that for each B ∈ U and each
sequence ri ∈ (0, r̃), i = 1, . . . , n0 − 1, there exists a sequence {xi}n0

i=1 ⊂ X such
that

xi+1 = JB
ri

(xi), i = 1, . . . , n0 − 1, and ‖xi − x∗‖ ≤ ε, i = 1, . . . , n0.

Proof Choose a natural number p such that

p > 4 + n0 + ‖x∗‖ and p > r̃(n0 + 1)
(
inf{1, ε})−1 (6.383)

and define

U = {
B ∈ Mm : hp

(
graph(A),graph(B)

)
< p−1}. (6.384)

Assume that B ∈ U and ri ∈ (0, r̃), i = 1, . . . , n0 − 1. By (6.383) and (6.384), there
exists (x1, y1) ∈ graph(B) such that

‖x1 − x∗‖ + ‖y1‖ < p−1. (6.385)

Set

ξi = x1 + riy1, i = 1, . . . , n0 − 1. (6.386)

Then

x1 = JB
ri

(ξi) and ‖x1 − ξi‖ < r̃/p, i = 1, . . . , n0 − 1. (6.387)

Set

xi+1 = JB
ri

(xi), i = 1, . . . , n0 − 1. (6.388)

Since for i = 1, . . . , n0 − 1, JB
ri

is a nonexpansive operator, it follows from (6.385)–
(6.388) that for each integer k ∈ [2, n0], we have

‖xk − x1‖ ≤ ‖xk−1 − ξk−1‖ ≤ ‖xk−1 − x1‖ + r̃‖y1‖
< ‖xk−1 − x1‖ + r̃/p, ‖xk − x1‖ ≤ kr̃/p
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and

‖xk − x∗‖ < ‖xk − x1‖ + ‖x1 − x∗‖ < (k + 1)r̃/p ≤ (n0 + 1)r̃/p < ε.

This completes the proof of Lemma 6.75. �

6.34 Proof of Theorem 6.71

For each A ∈ Mm, ξ ∈ X and each positive number γ , let the operator Aγ,ξ be
defined by

Aγ,ξ x = Ax + γ (x − ξ), x ∈ X.

We begin the proof with the following three observations.

Lemma 6.76 If A ∈Mm, ξ ∈ X and γ > 0, then Aγ,ξ ∈Mm.

Lemma 6.77 Let A ∈ Mm, ξ ∈ X, γ, r > 0 and let x, y ∈ X. Then

∥∥J
Aγ,ξ
r (x) − J

Aγ,ξ
r (y)

∥∥≤ (1 + γ r)−1‖x − y‖.

Lemma 6.78 For each fixed ξ ∈ X, the set {Aγ,ξ : A ∈ Mm,γ ∈ (0,1)} is every-
where dense in Mm.

In the rest of the proof we assume that (cf. (6.379))

r̃ > 1, {r̄n}∞n=1 ⊂ (0,1), lim
n→∞ r̄n = 0 and

∞∑

n=1

r̄n = ∞. (6.389)

Lemma 6.79 Let A ∈ Mm, ξ ∈ X, γ ∈ (0,1) and δ,K > 0. Then there exist a
neighborhood U of Aγ,ξ in Mm and an integer n0 ≥ 4 such that for each B ∈ U ,
each sequence of numbers ri ∈ [r̄i , r̃), i = 1, . . . , n0 − 1, and each x, y ∈ X satisfy-
ing ‖x‖,‖y‖ ≤ K , the following estimate holds:

∥∥JB
rn0−1

· JB
rn0−2

· · · · · JB
r1

x − JB
rn0−1

· JB
rn0−2

· · · · · JB
r1

y
∥∥≤ δ. (6.390)

Proof Choose a number γ0 such that

γ0 ∈ (0, γ ). (6.391)

Clearly

n∏

i=1

(1 + γ0r̄i ) → ∞ as n → ∞. (6.392)
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Therefore there exists an integer n0 ≥ 4 such that

(2K + 2)

n0−1∏

i=1

(1 + γ0r̄i )
−1 < δ/2. (6.393)

By Lemma 6.74, there exist a neighborhood U1 of Aγ,ξ in Mm and a number c1 > 0
such that for each B ∈ U1, each sequence ri ∈ [r̄i , r̃i ), i = 1, . . . , n0 − 1, and each
pair of sequences {xi}n0

i=1 ⊂ X and {ui}n0
i=2 ⊂ X satisfying

‖x1‖ ≤ K, xi+1 = JB
ri

(xi), xi = xi+1 + riui+1,

ui+1 ∈ B(xi+1), i = 1, . . . , n0 − 1,
(6.394)

the following estimates hold:

‖xi‖ ≤ c1, i = 1, . . . , n0, and ‖ui‖ ≤ c1, i = 2, . . . , n0. (6.395)

Choose a natural number m1 such that

m1 > 4
(
n0 + 8(c1 + 1)

)
,

[
(1 + γ0r̄i )

−1 − (1 + γ r̄i)
−1]δ > 2(2 + r̃)m−1

1 , i = 1, . . . , n0,
(6.396)

and set

U = {
B ∈ U1 : hm1

(
graph(Aγ,ξ ),graph(B)

)
< m−1

1

}
. (6.397)

Assume that B ∈ U , ri ∈ [r̄i , r̃), i = 1, . . . , n0 − 1, and

x, y ∈ X and ‖x‖,‖y‖ ≤ K. (6.398)

Set

x1 = x, y1 = y,

xi+1 = JB
ri

(xi) and yi+1 = JB
ri

(yi), i = 1, . . . , n0 − 1.
(6.399)

For each i = 1, . . . , n0 − 1, there exist ui+1 and vi+1 ∈ X such that

ui+1 ∈ B(xi+1), vi+1 ∈ B(yi+1),

xi = xi+1 + riui+1 and yi = yi+1 + rivi+1.
(6.400)

It follows from the definition of U1 (see (6.394)) and (6.400) that

‖xi‖,‖yi‖ ≤ c1, i = 1, . . . , n0 and ‖ui‖‖vi‖ ≤ c1, i = 2, . . . , n0. (6.401)

To prove the lemma it is sufficient to show that

‖xn0 − yn0‖ ≤ δ. (6.402)
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Assume the contrary. Then

‖xi − yi‖ > δ, i = 1, . . . , n0. (6.403)

Let i ∈ {1, . . . , n0 − 1}. It follows from (6.400), (6.401), (6.397) and (6.396) that
there exist

(x̄i+1, ūi+1) ∈ graph(Aγ,ξ ) and (ȳi+1, v̄i+1) ∈ graph(Aγ,ξ ) (6.404)

such that

‖x̄i+1 − xi+1‖ + ‖ūi+1 − ui+1‖ < m−1
1 and

‖ȳi+1 − yi+1‖ + ‖v̄i+1 − vi+1‖ < m−1
1 .

(6.405)

Set

x̄i = x̄i+1 + ri ūi+1 and ȳi = ȳi+1 + ri v̄i+1. (6.406)

By Lemma 6.77, (6.404) and (6.406),

‖x̄i+1 − ȳi+1‖ = ∥∥J
Aγ,ξ
ri x̄i − J

Aγ,ξ
ri ȳi

∥∥≤ (1 + γ ri)
−1‖x̄i − ȳi‖

≤ (1 + γ r̄i)
−1‖x̄i − ȳi‖. (6.407)

It follow from (6.406), (6.400) and (6.405) that

‖x̄i − xi‖ ≤ ‖x̄i+1 − xi+1‖ + ri‖ūi+1 − ui+1‖ ≤ m−1
1 (1 + r̃) (6.408)

and

‖ȳi − yi‖ ≤ ‖ȳi+1 − yi+1‖ + ri‖v̄i+1 − vi+1‖ ≤ m−1
1 (1 + r̃).

By (6.405), (6.407) and (6.408),

‖xi+1 − yi+1‖ ≤ ‖x̄i+1 − ȳi+1‖ + 2m−1
1 ≤ 2m−1

1 + (1 + γ r̄i)
−1‖x̄i − ȳi‖

≤ 2m−1
1 + (1 + γ r̄i)

−1(‖xi − yi‖ + 2m−1
1 (1 + r̃)

)

≤ (1 + γ r̄i)
−1‖xi − yi‖ + 2m−1

1

(
1 + (1 + γ r̄i)

−1(1 + r̃)
)

≤ (1 + γ r̄i)
−1‖xi − yi‖ + 2m−1

1 (2 + r̃). (6.409)

Now (6.409), (6.396) and (6.403) imply that

‖xi+1 − yi+1‖ ≤ (1 + γ0r̄i )
−1‖xi − yi‖

and since these inequalities are valid for all i ∈ {1, . . . , n0 − 1}, it follows from
(6.398), (6.399) and (6.393) that

‖xn0 − yn0‖ ≤ 2K

n0−1∏

i=1

(1 + γ0r̄i )
−1 < δ/2.

This contradicts (6.403). Therefore (6.402) is true and Lemma 6.79 is proved. �
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Completion of the proof of Theorem 6.71 Let A ∈ Mm, ξ = 0, γ ∈ (0,1) and let
i ≥ 1 be an integer. By Lemma 6.79, there exist an open neighborhood U(A,γ, i)

of Aγ,0 in Mm and an integer q(A,γ, i) ≥ 4 such that for each B ∈ U(A,γ, i),
each sequence of numbers ri ∈ [r̄i , r̃), i = 1, . . . , q(A,γ, i) − 1, and each x, y ∈ X

satisfying ‖x‖,‖y‖ ≤ 2i+1, the following estimate holds:
∥∥JB

rq(A,γ,i)−1
· · · · · JB

r1
x − JB

rq(A,γ,i)−1
· · · · · JB

r1
y
∥∥≤ 2−i−1.

Define

F :=
∞⋂

n=1

⋃{
U(A,γ, i) : A ∈Mm,γ ∈ (0,1), i ≥ n

}
.

Clearly (see Lemma 6.78), F is a countable intersection of open and everywhere
dense sets in Mm. Let A ∈ F , δ > 0 and K > 0 be given. Choose an integer n >

2K +2+8δ−1. There exist C ∈ Mm, γ ∈ (0,1) and i ≥ n such that A ∈ U(C,γ, i).
The validity of Theorem 6.71 now follows from the definitions of U(C,γ, i) and
q(C,γ, i).

6.35 Proof of Theorem 6.72

Let

r̃ > 1, {r̄n}∞n=1 ⊂ (0,1), lim
n→∞ r̄n = 0 and

∞∑

n=1

r̄n = ∞. (6.410)

By definition, for each A ∈M∗
m there exists xA ∈ X such that

0 ∈ A(xA). (6.411)

Recalling the definition of Aγ,ξ at the beginning of Sect. 6.34, we will use in this
section the operator Aγ,xA

. In other words,

Aγ,xA
x = Ax + γ (x − xA), x ∈ X. (6.412)

By Lemma 6.76 and (6.411), for each A ∈ M∗
m and each γ ∈ (0,1),

Aγ,xA
∈M∗

m and 0 ∈ Aγ,xA
(xA). (6.413)

The following observation is also clear.

Lemma 6.80 The set {Aγ,xA
: A ∈M∗

m,γ ∈ (0,1)} is everywhere dense in M̄∗
m.

Let A ∈ M∗
m, γ ∈ (0,1) and let i ≥ 1 be an integer. By Lemma 6.79 with

ξ = xA, there exist an open neighborhood U1(A,γ, i) of Aγ,xA
in Mm and an inte-

ger n(A,γ, i) ≥ 4 such that the following property holds:
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(a) For each B ∈ U1(A,γ, i), each sequence

rj ∈ [r̄j , r̃), j = 1, . . . , n(A,γ, i) − 1

and each x, y ∈ X satisfying

‖x‖,‖y‖ ≤ 8i+1(4 + 4‖xA‖), (6.414)

the following estimate holds:
∥∥JB

rn(A,γ,i)−1
· · · · · JB

r1
x − JB

rn(A,γ,i)−1
· · · · · JB

r1
y
∥∥≤ 8−i−1. (6.415)

By Lemma 6.75, there exists an open neighborhood U(A,γ, i) of Aγ,xA
in Mm

such that

U(A,γ, i) ⊂ U1(A,γ, i) (6.416)

and the following property holds:
(b) For each B ∈ U(A,γ, i) and each sequence

rj ∈ (0, r̃), j = 1, . . . ,8n(A,γ, i) − 1,

there exists a sequence {xj : j = 1, . . . ,8n(A,γ, j)} ⊂ X such that

xj+1 = JB
rj

(xj ), j = 1, . . . ,8n(A,γ, i) − 1, (6.417)

and

‖xj − xA‖ ≤ 8−i−1, j = 1, . . . ,8n(A,γ, i).

We will now show that the following property also holds:
(c) For each B ∈ U(A,γ, i), each x ∈ X satisfying ‖x‖ ≤ 8i+1(2 + 2‖xA‖) and

each integer m ≥ n(A,γ, i) − 1,
∥∥(JB

1

)m
(x) − xA

∥∥≤ 2 · 8−i−1. (6.418)

Indeed, let B ∈ U(A,γ, i). By property (b), there exists a sequence

{
x̄j : j = 1, . . . ,8n(A,γ, i)

}⊂ X (6.419)

such that

x̄j+1 = JB
1 (x̄j ), j = 1, . . . ,8n(A,γ, i) − 1, (6.420)

and

‖x̄j − xA‖ < 8−i−1, j = 1, . . . ,8n(A,γ, i).

Let x ∈ X with

‖x‖ ≤ 8i+1(2 + 2‖xA‖) (6.421)
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and consider the sequence {(JB
1 )j (x)}∞j=1. Since the operator JB

1 is nonexpansive,
it follows from (6.420) and (6.421) that for j = 1, . . . ,8n(A,γ, i) − 1,

∥∥(JB
1

)j
x
∥∥ ≤ ‖x̄j+1‖ + ∥∥(JB

1

)j
x − x̄j+1

∥∥

≤ ‖xA‖ + ‖x̄j+1 − xA‖ + ∥
∥(JB

1

)j
x − (

JB
1

)j
(x̄1)

∥
∥

≤ ‖xA‖ + 8−i−1 + ‖x − x̄1‖
≤ 2

(‖xA‖ + 8−i−1)+ ‖x‖
≤ 8i+1(2 + 2‖xA‖)+ 2

(‖xA‖ + 2−1)

< 8i+1(4 + 4‖xA‖). (6.422)

We now show by induction that (6.418) is valid for all integers m ≥ n(A,γ, i) − 1.
Let m = n(A,γ, i) − 1. Then by property (a) and (6.420),

∥∥(JB
1

)m
(x) − xA

∥∥ ≤ ∥∥(JB
1

)
(x) − (

JB
1

)m
(x̄1)

∥∥+ ∥∥(JB
1

)m
(x̄1) − xA

∥∥

≤ 8−i−1 + ‖x̄m+1 − xA‖ ≤ 2 · 8−i−1.

Therefore for m = n(A,γ, i) − 1 (6.418) is valid. Assume that q ≥ n(A,γ, i) − 1
and that (6.418) is valid for all integers m ∈ [n(A,γ, i) − 1, q]. Consider

y = (
JB

1

)p
(x) with p = q − (

n(A,γ, i) − 1
)+ 1. (6.423)

It follows from (6.418), which is valid by our inductive assumption for all integers
m ∈ [n(A,γ, i) − 1, q], and (6.422), which holds for all j = 1, . . . ,8n(A,γ, i) − 1,
that

‖y‖ ≤ 8i+1(4 + 4‖xA‖).
By this estimate, (6.423), (6.420) and property (a),

∥∥(JB
1

)q+1
(x) − xA

∥∥

= ∥∥(JB
1

)n(A,γ,i)−1
(y) − xA

∥∥

≤ ∥∥(JB
1

)n(A,γ,i)−1
y − (

JB
1

)n(A,γ,i)−1
(x̄1)

∥∥+ ‖x̄n(A,γ,i) − xA‖
≤ 2 · 8−i−1.

Therefore (6.418) is valid for all integers m ≥ n(A,γ, i)− 1 and property (c) holds.
Next we define

F :=
[ ∞⋂

k=1

⋃{
U(A,γ, i) : A ∈M∗

m,γ ∈ (0,1), i ≥ k
}
]

∩ M̄∗
m.

Clearly, F is a countable intersection of open and everywhere dense sets in M̄∗
m.

We will show that F ⊂ M∗
0.
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Let A ∈ F . Then there exist sequences {Ak}∞k=1 ⊂ M∗
m, {γk}∞k=1 ⊂ (0,1) and a

strictly increasing sequence of natural numbers {ik}∞k=1 such that A ∈ U(Ak, γ, ik)

for all natural numbers k. Property (c) implies that there exists xA ∈ X such that

lim
j→∞

(
JA

1

)j
(x) = xA for all x ∈ X.

Clearly, 0 ∈ A(xA) and if y ∈ X satisfies 0 ∈ A(y), then y = xA. Therefore
F ⊂ M∗

0.
Let δ,K > 0 be given. Choose a natural number q such that

4q > 4K + 4 and 4q > δ−1, (6.424)

and consider the open set U(Aq, γq, iq).
Let ri ∈ [r̄i , r̃), i = 1,2, . . . , and let

B ∈M∗
0 ∩ U(Ag, γq, iq). (6.425)

There exists a unique xB ∈ X such that

0 ∈ B(xB) (6.426)

and
(
JB

1

)n
y → xB as n → ∞ for all y ∈ X. (6.427)

It follows from (6.427) and property (c) that

‖xA − xAq ‖,‖xB − xAq ‖ ≤ 2 · 8−iq−1. (6.428)

Let x ∈ X with

‖x‖ ≤ K. (6.429)

Set n̄ = n(Aq, γq, iq). It follows from (6.425), (6.428), (6.429), (6.424) and property
(a) that

∥∥JB
rn̄−1

· · · · · JB
r1

x − JB
rn̄−1

· · · · · JB
r1

xB

∥∥≤ 8−iq−1. (6.430)

By (6.426), (6.430) and (6.428), we now have, for each integer n ≥ n̄,
∥∥JB

rn−1
· · · · · JB

r1
x − xB

∥∥≤ ∥∥JB
rn̄−1

· · · · · JB
r1

x − xB

∥∥≤ 8−iq−1

and
∥∥JB

rn−1
· · · · · JB

r1
x − xA

∥∥≤ 5 · 8−iq−1 < δ.

This completes the proof of Theorem 6.72.



Chapter 7
Best Approximation

7.1 Well-Posedness and Porosity

Given a nonempty closed subset A of a Banach space (X,‖ · ‖) and a point x ∈ X,
we consider the minimization problem

min
{‖x − y‖ : y ∈ A

}
. (P)

It is well known that if A is convex and X is reflexive, then problem (P) always has
at least one solution. This solution is unique when X is strictly convex.

If A is merely closed but X is uniformly convex, then according to classical
results of Stechkin [173] and Edelstein [59], the set of all points in X having a
unique nearest point in A is Gδ and dense in X. Since then there has been a lot
of activity in this direction. In particular, it is known [84, 88] that the following
properties are equivalent for any Banach space X:

(A) X is reflexive and has a Kadec-Klee norm.
(B) For each nonempty closed subset A of X, the set of points in X \A with nearest

points in A is dense in X \ A.
(C) For each nonempty closed subset A of X, the set of points in X \A with nearest

points in A is generic (that is, a dense Gδ subset) in X \ A.

A more recent result of De Blasi, Myjak and Papini [52] establishes well-
posedness of problem (P) for a uniformly convex X, closed A and a generic x ∈ X.

In this connection we recall that the minimization problem (P) is said to be well
posed if it has a unique solution, say a0, and every minimizing sequence of (P)
converges to a0.

A more precise formulation of the De Blasi-Myjak-Papini result mentioned
above involves the notion of porosity.

Using this terminology and denoting by F the set of all points such that the
minimization problem (P) is well posed, we note that De Blasi, Myjak and Papini
[52] proved, in fact, that the complement X \ F is σ -porous in X.

However, the fundamental restriction in all these results is that they hold only
under certain assumptions on the space X. In view of the Lau-Konjagin result
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mentioned above these assumptions cannot be removed. On the other hand, many
generic results in nonlinear functional analysis hold in any Banach space. Therefore
the following natural question arises: can generic results for best approximation
problems be obtained in general Banach spaces? In [138] we answer this question
in the affirmative. In this chapter we present the results obtained in [138].

To this end, we change our point of view and consider a new framework. The
main feature of this new framework is that the set A in problem (P) may also vary. In
our first result (Theorem 7.3) we fix x and consider the space S(X) of all nonempty
closed subsets of X equipped with an appropriate complete metric, say h. We then
show that the collection of all sets A ∈ S(X) for which problem (P) is well posed
has a σ -porous complement.

In the second result (Theorem 7.4) we consider the space of pairs S(X) × X

with the metric h(A,B) + ‖x − y‖, where A,B ∈ S(X) and x, y ∈ X. Once again
we show that the family of all pairs (A,x) ∈ S(X) × X for which problem (P) is
well-posed has a σ -porous complement.

In our third result (Theorem 7.5) we show that for any nonempty, separable and
closed subset X0 of X, there exists a subset F of (S(X),h) with a σ -porous com-
plement such that any A ∈ F has the following property:

There exists a dense Gδ subset F of X0 such that for any x ∈ F , the minimization
problem (P) is well posed.

In order to prove these results we now provide more information on porous sets.
Let (Y,ρ) be a metric space. We denote by Bρ(y, r) the closed ball of center

y ∈ Y and radius r > 0.
The following simple observation was made in [180].

Proposition 7.1 Let E be a subset of the metric space (Y,ρ). Assume that there
exist r0 > 0 and β ∈ (0,1) such that the following property holds:

(P1) For each x ∈ Y and each r ∈ (0, r0], there exists z ∈ Y \E such that ρ(x, z) ≤
r and Bρ(z,βr) ∩ E = ∅.

Then E is porous with respect to ρ.

Proof Let x ∈ Y and r ∈ (0, r0]. By property (P1), there exists z ∈ Y \ E such that

ρ(x, z) ≤ r/2 and Bρ(z,βr/2) ∩ E = ∅.

Hence Bρ(z,βr/2) ⊂ Bρ(x, r) \ E and Proposition 7.1 is proved. �

As a matter of fact, property (P1) can be weakened.

Proposition 7.2 Let E be a subset of the metric space (Y,ρ). Assume that there
exist r0 > 0 and β ∈ (0,1) such that the following property holds:

(P2) For each x ∈ E and each r ∈ (0, r0], there exists z ∈ Y \E such that ρ(x, z) ≤
r and Bρ(z,βr) ∩ E = ∅.

Then E is porous with respect to ρ.
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Proof We may assume that β < 1/2. Let x ∈ Y and r ∈ (0, r0]. We will show that
there exists z ∈ Y \ E such that

ρ(x, z) ≤ r and Bρ(z,βr/2) ∩ E = ∅. (7.1)

If Bρ(x, r/4) ∩ E = ∅, then (7.1) holds with z = x. Assume now that Bρ(x, r/4) ∩
E �= ∅. Then there exists

x1 ∈ Bρ(x, r/4) ∩ E. (7.2)

By property (P2), there exists z ∈ Y \ E such that

ρ(x1, z) ≤ r/2 and Bρ(z,βr/2) ∩ E = ∅. (7.3)

The relations (7.2) and (7.3) imply that

ρ(x, z) ≤ ρ(x, x1) + ρ(x1, z) ≤ 3r/4.

Thus there indeed exists z ∈ Y \ E satisfying (7.1). Proposition 7.2 is now seen to
follow from Proposition 7.1. �

The following definition was introduced in [180].
Assume that a set Y is equipped with two metrics ρ1 and ρ2 such that ρ1(x, y) ≤

ρ2(x, y) for all x, y ∈ Y and that the metric spaces (Y,ρ1) and (Y,ρ2) are complete.
We say that a set E ⊂ Y is porous with respect to the pair (ρ1, ρ2) if there exist

r0 > 0 and α ∈ (0,1) such that for each x ∈ E and each r ∈ (0, r0], there exists
z ∈ Y \ E such that ρ2(z, x) ≤ r and Bρ1(z,αr) ∩ E = ∅.

Proposition 7.2 implies that if E is porous with respect to (ρ1, ρ2), then it is
porous with respect to both ρ1 and ρ2.

A set E ⊂ Y is called σ -porous with respect to (ρ1, ρ2) if it is a countable union
of sets which are porous with respect to (ρ1, ρ2).

As a matter of fact, it turns out that our results are true not only for Banach
spaces, but also for all complete hyperbolic spaces.

Let (X,ρ,M) be a complete hyperbolic space. For each x ∈ X and each A ⊂ X,
set

ρ(x,A) = inf
{
ρ(x, y) : y ∈ A

}
.

Denote by S(X) the family of all nonempty closed subsets of X. For each A,B ∈
S(X), define

H(A,B) := max
{
sup

{
ρ(x,B) : x ∈ A

}
, sup

{
ρ(y,A) : y ∈ B

}}
(7.4)

and

H̃ (A,B) := H(A,B)
(
1 + H(A,B)

)−1
.

It is easy to see that H̃ is a metric on S(X) and that the space (S(X), H̃ ) is complete.
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Fix θ ∈ X. For each natural number n and each A,B ∈ S(X), we set

hn(A,B) = sup
{∣∣ρ(x,A) − ρ(x,B)

∣
∣ : x ∈ X and ρ(x, θ) ≤ n

}
(7.5)

and

h(A,B) =
∞∑

n=1

[
2−nhn(A,B)

(
1 + hn(A,B)

)−1]
.

Once again it is not difficult to see that h is a metric on S(X) and that the metric
space (S(X),h) is complete. Clearly,

H̃ (A,B) ≥ h(A,B) for all A,B ∈ S(X).

We equip the set S(X) with the pair of metrics H̃ and h.
We now state the following three results which were obtained in [138]. Their

proofs are given later in this chapter.

Theorem 7.3 Let (X,ρ,M) be a complete hyperbolic space and let x̃ ∈ X. Then
there exists a set Ω ⊂ S(X) such that its complement S(X) \ Ω is σ -porous with
respect to the pair (h, H̃ ) and such that for each A ∈ Ω , the following property
holds:

(C1) There exists a unique ỹ ∈ A such that ρ(x̃, ỹ) = ρ(x̃,A). Moreover, for each
ε > 0, there exists δ > 0 such that if x ∈ A satisfies ρ(x̃, x) ≤ ρ(x̃,A) + δ,
then ρ(x, ỹ) ≤ ε.

To state the following result we endow the Cartesian product S(X) × X with the
pair of metrics d1 and d2 defined by

d1
(
(A,x), (B,y)

)= h(A,B) + ρ(x, y),

d2
(
(A,x), (B,y)

)= H̃ (A,B) + ρ(x, y), x, y ∈ X,A,B ∈ S(X).

Theorem 7.4 Let (X,ρ,M) be a complete hyperbolic space. There exists a set Ω ⊂
S(X) × X such that its complement [S(X) × X] \ Ω is σ -porous with respect to the
pair (d1, d2) and such that for each (A, x̃) ∈ Ω , the following property holds:

(C2) There exists a unique ỹ ∈ A such that ρ(x̃, ỹ) = ρ(x̃,A). Moreover, for each
ε > 0, there exists δ > 0 such that if z ∈ X satisfies ρ(x̃, z) ≤ δ, B ∈ S(X) sat-
isfies h(A,B) ≤ δ, and y ∈ B satisfies ρ(y, z) ≤ ρ(z,B)+δ, then ρ(y, ỹ) ≤ ε.

In classical generic results the set A was fixed and x varied in a dense Gδ subset
of X. In our first two results the set A is also variable. However, in our third result
we show that if X0 is a nonempty, separable and closed subset of X, then for every
fixed A in a dense Gδ subset of S(X) with a σ -porous complement, the set of all
x ∈ X0 for which problem (P) is well posed contains a dense Gδ subset of X0.
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Theorem 7.5 Let (X,ρ,M) be a complete hyperbolic space. Assume that X0 is a
nonempty, separable and closed subset of X. Then there exists a set F ⊂ S(X) such
that S(X) \ F is σ -porous with respect to the pair (h, H̃ ) and such that for each
A ∈ F , the following property holds:

(C3) There exists a set F ⊂ X0 which is a countable intersection of open and ev-
erywhere dense subsets of X0 with the relative topology such that for each
x̃ ∈ F , there exists a unique ỹ ∈ A for which ρ(x̃, ỹ) = ρ(x̃,A). Moreover, if
{yi}∞i=1 ⊂ A satisfies limi→∞ ρ(x̃, yi) = ρ(x̃,A), then yi → ỹ as i → ∞.

7.2 Auxiliary Results

Let (X,ρ,M) be a complete hyperbolic space and let S(X) be the family of all
nonempty closed subsets of X.

Lemma 7.6 Let A ∈ S(X), x̃ ∈ X and let r, ε ∈ (0,1). Then there exists x̄ ∈ X such
that ρ(x̄,A) ≤ r and for the set Ã = A ∪ {x̄} the following properties hold:

ρ(x̃, x̄) = ρ(x̃, Ã);
if x ∈ Ã and ρ(x̃, x) ≤ ρ(x̃, Ã) + εr/4, then ρ(x̄, x) ≤ ε.

Proof If ρ(x̃,A) ≤ r , then the lemma holds with x̄ = x̃ and Ã = A∪ {x̃}. Therefore
we may restrict ourselves to the case where

ρ(x̃,A) > r. (7.6)

Choose x0 ∈ A such that

ρ(x̃, x0) ≤ ρ(x̃,A) + r/2. (7.7)

There exists

x̄ ∈ {γ x̃ ⊕ (1 − γ )x0 : γ ∈ (0,1)
}

(7.8)

such that

ρ(x̄, x0) = r and ρ(x̃, x̄) = ρ(x̃, x0) − r. (7.9)

Set Ã = A ∪ {x̄}. We have by (7.9) and (7.7),

ρ(x̃, x̄) = ρ(x̃, x0) − r ≤ ρ(x̃,A) + r/2 − r = ρ(x̃,A) − r/2.

Therefore ρ(x̃, x̄) = ρ(x̃, Ã), and if x ∈ Ã and ρ(x̃, x) < ρ(x̃, Ã)+r/2, then x = x̄.
This completes the proof of Lemma 7.6. �

Before stating our next lemma we choose, for each ε ∈ (0,1) and each natural
number n, a number

α(ε,n) ∈ (0,16−n−2ε
)
. (7.10)
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Lemma 7.7 Let A ∈ S(X), x̃ ∈ X and let r, ε ∈ (0,1). Suppose that n is a natural
number, let

α = α(ε,n) (7.11)

and assume that

ρ(x̃, θ) ≤ n and
{
x ∈ X : ρ(x, θ) ≤ n

}∩ A �= ∅. (7.12)

Then there exists x̄ ∈ X such that ρ(x̄,A) ≤ r and such that the set Ã = A∪{x̄} has
the following two properties:

ρ(x̃, x̄) = ρ(x̃, Ã); (7.13)

if

ỹ ∈ X, ρ(ỹ, x̃) ≤ αr, (7.14)

B ∈ S(X), h(Ã,B) ≤ αr, (7.15)

and

z ∈ B, ρ(ỹ, z) ≤ ρ(ỹ,B) + εr/16, (7.16)

then

ρ(z, x̄) ≤ ε. (7.17)

Proof By Lemma 7.6, there exists x̄ ∈ X such that

ρ(x̄,A) ≤ r (7.18)

and such that for the set Ã = A ∪ {x̄}, equality (7.13) is true and the following
property holds:

If x ∈ Ã and ρ(x̃, x) ≤ ρ(x̃, Ã) + εr/8, then ρ(x̄, x) ≤ ε/2. (7.19)

Assume that ỹ ∈ X satisfies (7.14) and B ∈ S(X) satisfies (7.15). We will show
that

ρ(ỹ,B) < ρ(x̃, Ã) + 4αr16n. (7.20)

By (7.14),
∣∣ρ(ỹ, Ã) − ρ(x̃, Ã)

∣∣≤ αr.

When combined with (7.13), this implies that
∣∣ρ(ỹ, Ã) − ρ(x̃, x̄)

∣∣≤ αr. (7.21)

Relations (7.13) and (7.12) imply that

ρ(x̃, x̄) ≤ ρ(x̃,A) ≤ 2n and ρ(x̄, θ) ≤ 3n. (7.22)
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It follows from (7.5) and (7.15) that

h4n(Ã,B)
(
1 + h4n(Ã,B)

)−1 ≤ 24nh(Ã,B) ≤ 24nαr.

When combined with (7.10) and (7.11), this inequality implies that

h4n(Ã,B) ≤ 24nαr
(
1 − 24nαr

)−1
< 24n+1αr. (7.23)

Since x̄ ∈ Ã, it now follows from (7.23), (7.22) and (7.5) that ρ(x̄,B) < 24n+1αr

and there exists ȳ ∈ X such that

ȳ ∈ B and ρ(x̄, ȳ) < 2αr16n. (7.24)

By (7.24), (7.14) and (7.13),

ρ(ỹ,B) ≤ ρ(ỹ, ȳ) ≤ ρ(ỹ, x̄) + ρ(x̄, ȳ)

< ρ(ỹ, x̃) + ρ(x̃, x̄) + 2αr16n

≤ 2αr16n + αr + ρ(x̃, Ã).

This certainly implies (7.20), as claimed.
Assume now that z ∈ B satisfies (7.16). It follows from (7.16), (7.20), (7.11) and

(7.10) that

ρ(ỹ, z) ≤ ρ(ỹ,B) + εr/16 ≤ ρ(x̃, Ã) + 4αr16n + εr/16

≤ ρ(x̃, Ã) + εr/8. (7.25)

Relations (7.25), (7.22) and (7.14) imply that

ρ(ỹ, z) ≤ ρ(x̃, Ã) + εr/8 ≤ 2n + r/8. (7.26)

By (7.26), (7.14), (7.11) and (7.12),

ρ(z, θ) ≤ ρ(z, ỹ) + ρ(ỹ, θ) ≤ 2n + r/8 + ρ(ỹ, θ)

≤ 2n + r/8 + ρ(ỹ, x̃) + ρ(x̃, θ)

≤ 2n + r/8 + αr + n ≤ 4n. (7.27)

It follows from (7.23), (7.5), (7.16) and (7.27) that

ρ(z, Ã) = ∣∣ρ(z, Ã) − ρ(z,B)
∣∣≤ h4n(Ã,B) < 2αr16n.

Hence there exists z̃ ∈ X such that

z̃ ∈ Ã and ρ(z, z̃) < 2αr16n. (7.28)

By (7.14), (7.28) and (7.16) we have
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ρ(x̃, z̃) ≤ ρ(x̃, ỹ) + ρ(ỹ, z) + ρ(z, z̃)

≤ αr + ρ(ỹ, z) + 2αr16n

≤ αr + 2αr16n + ρ(ỹ,B) + εr/16.

It follows from this inequality, (7.20), (7.11) and (7.10) that

ρ(x̃, z̃) ≤ αr + 2αr16n + εr/16 + ρ(x̃, Ã) + 4αr16n

≤ ρ(x̃, Ã) + 8αr16n + εr/16 ≤ ρ(x̃, Ã) + εr/8.

Thus

ρ(x̃, z̃) ≤ ρ(x̃, Ã) + εr/8.

Using this inequality, (7.28) and (7.19), we see that ρ(x̄, z̃) ≤ ε/2. Combining this
fact with (7.28), (7.11) and (7.10), we conclude that

ρ(z, x̄) ≤ ρ(z, z̃) + ρ(z̃, x̄) ≤ 2αr16n + ε/2 ≤ ε.

Thus (7.17) holds and Lemma 7.7 is proved. �

7.3 Proofs of Theorems 7.3–7.5

Proof of Theorem 7.3 For each integer k ≥ 1, denote by Ωk the set of all A ∈ S(X)

which have the following property:

(P3) There exist xA ∈ X and δA > 0 such that if x ∈ A satisfies ρ(x, x̃) ≤ ρ(x̃,A)+
δA, then ρ(x, xA) ≤ 1/k.

Clearly, Ωk+1 ⊂ Ωk , k = 1,2, . . . . Set

Ω =
∞⋂

k=1

Ωk.

First we will show that S(X) \ Ω is σ -porous with respect to the pair (h, H̃ ). To
meet this goal it is sufficient to show that S(X) \ Ωk is σ -porous with respect to
(h, H̃ ) for all sufficiently large integers k.

There exists a natural number k0 such that ρ(θ, x̃) ≤ k0. Let k ≥ k0 be an integer.
We will show that the set S(X) \ Ωk is σ -porous with respect to (h, H̃ ). For each
integer n ≥ k0, set

Enk = {
A ∈ S(X) \ Ωk : {z ∈ X : ρ(z, θ) ≤ n

}∩ A �= ∅}.

By Lemma 7.7, the set Enk is porous with respect to (h, H̃ ) for all integers n ≥ k0.
Since S(X)\Ωk =⋃∞

n=k0
Enk , we conclude that S(X)\Ωk is σ -porous with respect

to (h, H̃ ). Therefore S(X) \ Ω is also σ -porous with respect to (h, H̃ ).
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Let A ∈ Ω be given. We will show that A has property (C1). By the definition
of Ωk and property (P3), for each integer k ≥ 1, there exist xk ∈ X and δk > 0 such
that the following property holds:

(P4) If x ∈ A satisfies ρ(x, x̃) ≤ ρ(x̃,A) + δk , then ρ(x, xk) ≤ 1/k.

Let {zi}∞i=1 ⊂ A be such that

lim
i→∞ρ(x̃, zi) = ρ(x̃,A). (7.29)

Fix an integer k ≥ 1. It follows from property (P4) that for all large enough natural
numbers i,

ρ(x̃, zi) ≤ ρ(x̃,A) + δk

and

ρ(zi, xk) ≤ 1/k.

Since k is an arbitrary natural number, we conclude that {zi}∞i=1 is a Cauchy se-
quence which converges to some ỹ ∈ A. It is clear that ρ(x̃, ỹ) = ρ(x̃,A). If the
minimizer ỹ were not unique, we would be able to construct a nonconvergent mini-
mizing sequence {zi}∞i=1. Thus ỹ is the unique solution to problem (P) (with x = x̃)
and any sequence {zi}∞i=1 ⊂ A satisfying (7.29) converges to ỹ. This completes the
proof of Theorem 7.3. �

Proof of Theorem 7.4 For each integer k ≥ 1, denote by Ωk the set of all (A, x̃) ∈
S(X) × X which have the following property:

(P5) There exist x̄ ∈ X and δ̄ > 0 such that if x ∈ X satisfies ρ(x, x̃) ≤ δ̄, B ∈
S(X) satisfies h(A,B) ≤ δ̄, and y ∈ B satisfies ρ(y, x) ≤ ρ(x,B) + δ̄, then
ρ(y, x̄) ≤ 1/k.

Clearly Ωk+1 ⊂ Ωk , k = 1,2, . . . . Set

Ω =
∞⋂

k=1

Ωk.

First we will show that [S(X)×X] \Ω is σ -porous with respect to the pair (d1, d2).
For each pair of natural numbers n and k, set

Enk = {
(A,x) ∈ [S(X) × X

] \ Ωk : ρ(x, θ) ≤ n,Bρ(θ,n) ∩ A �= ∅}.
By Lemma 7.7, the set Enk is porous with respect to (d1, d2) for all natural numbers
n and k. Since

[
S(X) × X

] \ Ω =
∞⋃

k=1

([
S(X) × X

] \ Ωk

)=
∞⋃

k=1

∞⋃

n=1

Enk,

the set [S(X) × X] \ Ω is σ -porous with respect to (d1, d2), by definition.
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Let (A, x̃) ∈ Ω . We will show that (A, x̃) has property (C2).
By the definition of Ωk and property (P5), for each integer k ≥ 1, there exist

xk ∈ X and δk > 0 with the following property:

(P6) If x ∈ X satisfies ρ(x, x̃) ≤ δk , B ∈ S(X) satisfies h(A,B) ≤ δk , and y ∈ B

satisfies ρ(y, x) ≤ ρ(x,B) + δk , then ρ(y, xk) ≤ 1/k.

Let {zi}∞i=1 ⊂ A be such that

lim
i→∞ρ(x̃, zi) = ρ(x̃,A). (7.30)

Fix an integer k ≥ 1. It follows from property (P6) that for all large enough natural
numbers i,

ρ(x̃, zi) ≤ ρ(x̃,A) + δk

and

ρ(zi, xk) ≤ 1/k.

Since k is an arbitrary natural number, we conclude that {zi}∞i=1 is a Cauchy se-
quence which converges to some ỹ ∈ A. Clearly, ρ(x̃, ỹ) = ρ(x̃,A). It is not difficult
to see that ỹ is the unique solution to the minimization problem (P) with x = x̃.

Let ε > 0 be given. Choose an integer k > 4/min{1, ε}. By property (P6),

ρ(ỹ, xk) ≤ 1/k. (7.31)

Assume that z ∈ X satisfies ρ(z, x̃) ≤ δk , B ∈ S(X) satisfies h(A,B) ≤ δk and
y ∈ B satisfies ρ(y, z) ≤ ρ(z,B) + δk . Then it follows from property (P6) that
ρ(y, xk) ≤ 1/k. When combined with (7.31), this implies that ρ(y, ỹ) ≤ 2/k < ε.
This completes the proof of Theorem 7.4. �

Proof of Theorem 7.5 Let {xi}∞i=1 ⊂ X0 be an everywhere dense subset of X0. For
each natural number p, there exists a set Fp ⊂ S(X) such that Theorem 7.3 holds
with x̃ = xp and Ω = Fp . Set F =⋂∞

p=1 Fp . Clearly, S(X) \ F is σ -porous with
respect to the pair (h, H̃ ).

Let A ∈F and let p ≥ 1 be an integer. By Theorem 7.3, which holds with x̃ = xp

and Ω = Fp , there exists a unique x̄p ∈ A such that

ρ(xp, x̄p) = ρ(xp,A) (7.32)

and the following property holds:

(P7) For each integer k ≥ 1, there exists δ(p, k) > 0 such that if x ∈ A satisfies
ρ(x, xp) ≤ ρ(xp,A) + 4δ(p, k), then ρ(x, x̄p) ≤ 1/k.

For each pair of natural numbers p and k, set

V (p, k) = {
z ∈ X0 : ρ(z, xp) < δ(p, k)

}
.
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It follows from property (P7) that for each pair of integers p,k ≥ 1, the following
property holds:

(P8) If x ∈ A, z ∈ X0, ρ(z, xp) ≤ δ(p, k) and ρ(z, x) ≤ ρ(z,A) + δ(p, k), then
ρ(x, x̄p) ≤ 1/k.

Set

F :=
∞⋂

k=1

[⋃{
V (p, k) : p = 1,2, . . .

}]
.

Clearly, F is a countable intersection of open and everywhere dense subsets of X0.
Let x ∈ F be given. Consider a sequence {xi}∞i=1 ⊂ A such that

lim
i→∞ρ(x, xi) = ρ(x,A). (7.33)

Let ε > 0. Choose a natural number k > 8−1/min{1, ε}. There exists an integer
p ≥ 1 such that x ∈ V (p, k). By the definition of V (p, k), ρ(x, xp) < δ(p, k). It
follows from this inequality and property (P8) that for all sufficiently large integers
i, ρ(x, xi) ≤ ρ(x,A) + δ(p, k) and ρ(xi, x̄p) ≤ 1/k < ε/2. Since ε is an arbitrary
positive number, we conclude that {xi}∞i=1 is a Cauchy sequence which converges to
ỹ ∈ A. Clearly, ỹ is the unique minimizer of the minimization problem z → ρ(x, z),
z ∈ A. Note that we have shown that any sequence {xi}∞i=1 ⊂ A satisfying (7.33)
converges to ỹ. This completes the proof of Theorem 7.5. �

7.4 Generalized Best Approximation Problems

Given a closed subset A of a Banach space X, a point x ∈ X and a continuous func-
tion f : X → R1, we consider the problem of finding a solution to the minimization
problem min{f (x − y) : y ∈ A}. For a fixed function f , we define an appropriate
complete metric space M of all pairs (A,x) and construct a subset Ω of M, which
is a countable intersection of open and everywhere dense sets such that for each pair
in Ω , our minimization problem is well posed.

Let (X,‖ · ‖) be a Banach space and let f : X → R1 be a continuous function.
Assume that

inf
{
f (x) : x ∈ X

}
is attained at a unique point x∗ ∈ X, (7.34)

lim‖u‖→∞f (u) = ∞, (7.35)

if {xi}∞i=1 ⊂ X and lim
i→∞f (xi) = f (x∗), then lim

i→∞xi = x∗, (7.36)

and that for each integer n ≥ 1, there exists an increasing function φn : (0,1) →
(0,1) such that

f
(
αx + (1 − α)x∗

)≤ φn(α)f (x) + (
1 − φn(α)

)
f (x∗) (7.37)
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for all x ∈ X satisfying ‖x‖ ≤ n and all α ∈ (0,1). It is clear that (7.37) holds if f

is convex.
Given a closed subset A of X and a point x ∈ X, we consider the minimization

problem

min
{
f (x − y) : y ∈ A

}
. (P)

This problem was studied by many mathematicians mostly in the case where
f (x) = ‖x‖. We recall that the minimization problem (P) is said to be well posed
if it has a unique solution, say a0, and every minimizing sequence of (P) converges
to a0. In other words, if {yi}∞i=1 ⊂ A and limi→∞ f (x − yi) = f (x − a0), then
limi→∞ yi = a0.

Note that in the studies of problem (P) [52, 59, 84, 88, 173], the function f is the
norm of the space X. There are some additional results in the literature where either
f is a Minkowski functional [51, 93] or the function ‖x − y‖, y ∈ A, is perturbed
by some convex function [42].

However, the fundamental restriction in all these results is that they only hold
under certain assumptions on either the space X or the set A. In view of the Lau-
Konjagin result mentioned above, these assumptions cannot be removed. On the
other hand, many generic results in nonlinear functional analysis hold in any Banach
space. Therefore a natural question is whether generic existence results for best ap-
proximation problems can be obtained for general Banach spaces. Positive answers
to this question in the special case where f = ‖ · ‖ can be found in Sects. 7.1–7.3.
In the next sections, which are based on [143], we answer this question in the affir-
mative for a general function f satisfying (7.34)–(7.37).

To this end, we change our point of view and consider another framework, the
main feature of which is that the set A in problem (P) can also vary. We prove four
theorems which were established in [143]. In our first result (Theorem 7.8), we fix
x and consider the space S(X) of all nonempty closed subsets of X equipped with
an appropriate complete metric, say h. We then show that the collection of all sets
A ∈ S(X) for which problem (P) is well posed contains an everywhere dense Gδ

set. In the second result (Theorem 7.9), we consider the space of pairs S(X) × X

with the metric h(A,B) + ‖x − y‖, A,B ∈ S(X), x, y ∈ X. Once again, we show
that the family of all pairs (A,x) ∈ S(X) × X for which problem (P) is well posed
contains an everywhere dense Gδ set. In our third result (Theorem 7.10), we show
that for any separable closed subset X0 of X, there exists an everywhere dense Gδ

subset F of (S(X),h) such that any A ∈ F has the following property: there exists
a Gδ dense subset F of X0 such that for any x ∈ F , problem (P) is well posed.

In our fourth result (Theorem 7.11), we show that a continuous coercive convex
f : X → R1 which has a unique minimizer and a certain well-posedness property
(on the whole space X) has a unique minimizer and the same well-posedness prop-
erty on a generic closed subset of X.
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7.5 Theorems 7.8–7.11

We recall that (X,‖ · ‖) is a Banach space, f : X → R1 is a continuous function
satisfying (7.34)–(7.36) and that for each integer n ≥ 1, there exists an increasing
function φn : (0,1) → (0,1) such that (7.37) is true.

For each x ∈ X and each A ⊂ X, set

ρ(x,A) = inf
{
ρ(x, y) : y ∈ A

}
(7.38)

and

ρf (x,A) = inf
{
f (x − y) : y ∈ A

}
. (7.39)

Denote by S(X) the collection of all nonempty closed subsets of X. For each
A,B ∈ S(X), define

H(A,B) := max
{
sup

{
ρ(x,B) : x ∈ A

}
, sup

{
ρ(y,A) : y ∈ B

}}
(7.40)

and

H̃ (A,B) := H(A,B)
(
1 + H(A,B)

)−1
.

Here we use the convention that ∞/∞ = 1.
It is not difficult to see that the metric space (S(X), H̃ ) is complete.
For each natural number n and each A,B ∈ S(X), we set

hn(A,B) := sup
{∣∣ρ(x,A) − ρ(x,B)

∣∣ : x ∈ X and ‖x‖ ≤ n
}

(7.41)

and

h(A,B) :=
∞∑

n=1

[
2−nhn(A,B)

(
1 + hn(A,B)

)−1]
.

Once again, it is not difficult to see that h is a metric on S(X) and that the metric
space (S(X),h) is complete. Clearly, H̃ (A,B) ≥ h(A,B) for all A,B ∈ S(X).

We equip the set S(X) with the pair of metrics H̃ and h. The topologies induced
by the metrics H̃ and h on S(X) will be called the strong topology and the weak
topology, respectively.

We now state Theorems 7.8–7.11.

Theorem 7.8 Let x̃ ∈ X. Then there exists a set Ω ⊂ S(X), which is a countable in-
tersection of open (in the weak topology) everywhere dense (in the strong topology)
subsets of S(X), such that for each A ∈ Ω , the following property holds:

(C1) There exists a unique ỹ ∈ A such that f (x̃ − ỹ) = ρf (x̃,A). Moreover,
for each ε > 0, there exists δ > 0 such that if x ∈ A satisfies f (x̃ − x) ≤
ρf (x̃,A) + δ, then ‖x − ỹ‖ ≤ ε.
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To state our second result we endow the Cartesian product S(X) × X with the
pair of metrics d1 and d2 defined by

d1
(
(A,x), (B,y)

)= h(A,B) + ρ(x, y),

d2
(
(A,x), (B,y)

)= H̃ (A,B) + ρ(x, y), x, y ∈ X,A,B ∈ S(X).

We will refer to the topologies induced on S(X) × X by d2 and d1 as the strong and
weak topologies, respectively.

Theorem 7.9 There exists a set Ω ⊂ S(X) × X, which is a countable intersection
of open (in the weak topology) everywhere dense (in the strong topology) subsets of
S(X) × X, such that for each (A, x̃) ∈ Ω , the following property holds:

(C2) There exists a unique ỹ ∈ A such that f (x̃ − ỹ) = ρf (x̃,A). Moreover, for
each ε > 0, there exists δ > 0 such that if z ∈ X satisfies ‖z − x̃‖ ≤ δ, B ∈
S(X) satisfies h(A,B) ≤ δ, and y ∈ B satisfies f (z− y) ≤ ρf (z,B)+ δ, then
‖y − ỹ‖ ≤ ε.

In most classical generic results the set A was fixed and x varied in a dense Gδ

subset of X. In our first two results the set A is also variable. However, our third
result shows that for every fixed A in a dense Gδ subset of S(X), the set of all x ∈ X

for which problem (P) is well posed contains a dense Gδ subset of X.

Theorem 7.10 Assume that X0 is a closed separable subset of X. Then there exists
a set F ⊂ S(X), which is a countable intersection of open (in the weak topology) ev-
erywhere dense (in the strong topology) subsets of S(X), such that for each A ∈F ,
the following property holds:

(C3) There exists a set F ⊂ X0, which is a countable intersection of open and ev-
erywhere dense subsets of X0 with the relative topology, such that for each
x̃ ∈ F , there exists a unique ỹ ∈ A for which f (x̃ − ỹ) = ρf (x̃,A). More-
over, if {yi}∞i=1 ⊂ A satisfies limi→∞ f (x̃ − yi) = ρf (x̃,A), then yi → ỹ as
i → ∞.

Now we will show that Theorem 7.8 implies the following result.

Theorem 7.11 Assume that g : X → R1 is a continuous convex function such that
inf{g(x) : x ∈ X} is attained at a unique point y∗ ∈ X, lim‖u‖→∞ g(u) = ∞, and if
{yi}∞i=1 ⊂ X and limi→∞ g(yi) = g(y∗), then yi → y∗ as i → ∞. Then there exists
a set Ω ⊂ S(X), which is a countable intersection of open (in the weak topology) ev-
erywhere dense (in the strong topology) subsets of S(X), such that for each A ∈ Ω ,
the following property holds:

(C4) There is a unique yA ∈ A such that g(yA) = inf{g(y) : y ∈ A}. Moreover, for
each ε > 0, there exists δ > 0 such that if y ∈ A satisfies g(y) ≤ g(yA) + δ,
then ‖y − yA‖ ≤ ε.



7.6 A Basic Lemma 367

Proof Define f (x) = g(−x), x ∈ X. Clearly, f is convex and satisfies (7.34)–
(7.36). Therefore Theorem 7.8 is valid with x̃ = 0 and there exists a set Ω ⊂ S(X),
which is a countable intersection of open (in the weak topology) everywhere dense
(in the strong topology) subsets of S(X), such that for each A ∈ Ω , the following
property holds:

There is a unique ỹ ∈ A such that

g(ỹ) = f (−ỹ) = inf
{
f (−y) : y ∈ A

}= inf
{
g(y) : y ∈ A

}
.

Moreover, for each ε > 0, there exists δ > 0 such that if x ∈ A satisfies

g(x) = f (−x) ≤ ρf (0,A) + δ = inf
{
f (−y) : y ∈ A

}+ δ = inf
{
g(y) : y ∈ A

}+ δ,

then ‖x − ỹ‖ ≤ ε. Theorem 7.11 is proved. �

It is easy to see that in the proofs of Theorems 7.8–7.10 we may assume without
loss of generality that inf{f (x) : x ∈ X} = 0. It is also not difficult to see that we
may assume without loss of generality that x∗ = 0. Indeed, instead of the function
f (·) we can consider f (·+x∗). This new function also satisfies (7.34)–(7.37). Once
Theorems 7.8–7.10 are proved for this new function, they will also hold for the
original function f because the mapping (A,x) → (A,x +x∗), (A,x) ∈ S(X)×A,
is an isometry with respect to both metrics d1 and d2.

7.6 A Basic Lemma

Lemma 7.12 Let A ∈ S(X), x̃ ∈ X, and let r, ε ∈ (0,1). Then there exists Ã ∈
S(X), x̄ ∈ Ã, and δ > 0 such that

H̃ (A, Ã) ≤ r, f (x̃ − x̄) = ρf (x̃, Ã), (7.42)

and such that the following property holds:
For each ỹ ∈ X satisfying ‖ỹ − x̃‖ ≤ δ, each B ∈ S(X) satisfying h(B, Ã) ≤ δ,

and each z ∈ B satisfying

f (ỹ − z) ≤ ρf (ỹ,B) + δ, (7.43)

the inequality ‖z − x̄‖ ≤ ε holds.

Proof There are two cases: either ρ(x̃,A) ≤ r or ρ(x̃,A) > r . Consider the first
case where

ρ(x̃,A) ≤ r. (7.44)

Set

x̄ = x̃ and Ã = A ∪ {x̃}. (7.45)
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Clearly, (7.42) is true. Fix an integer n > ‖x̃‖. By (7.36), there is ξ ∈ (0,1) such
that

if z ∈ X and f (z) ≤ 4ξ, then ‖z‖ ≤ ε/2. (7.46)

Using (7.34), we choose a number δ ∈ (0,1) such that

δ < 2−n−4 min{ε, ξ} (7.47)

and

if z ∈ X and ‖z‖ ≤ 2n+4δ, then f (z) ≤ ξ. (7.48)

Let

ỹ ∈ X, ‖ỹ − x̃‖ ≤ δ, B ∈ S(X), h(B, Ã) ≤ δ (7.49)

and let z ∈ B satisfy (7.43). By (7.49) and (7.41), hn(Ã,B)(1+hn(Ã,B))−1 ≤ 2nδ.
This implies that hn(Ã,B)(1 − 2nδ) ≤ 2nδ. When combined with (7.47), this in-
equality shows that hn(Ã,B) ≤ 2n+1δ. Since n > ‖x̃‖, the last inequality, when
combined with (7.44) and (7.41), implies that ρ(x̃,B) ≤ 2n+1δ. Hence there is
x0 ∈ B such that ‖x̃ − x0‖ ≤ 2n+2δ. This inequality and (7.49) imply in turn that
‖ỹ − x0‖ ≤ 2n+3δ. The definition of δ (see (7.48)) now shows that f (ỹ − x0) ≤ ξ .
Combining this inequality with (7.43), (7.47) and the inclusion x0 ∈ B , we see that

f (ỹ − z) ≤ δ + f (ỹ − x0) ≤ ξ + δ ≤ 2ξ. (7.50)

It now follows from (7.46) that ‖z− ỹ‖ ≤ ε/2. Hence (7.47), (7.49) and (7.45) imply
that ‖x̄ − z‖ ≤ ε. This concludes the proof of the lemma in the first case.

Now we turn our attention to the second case where

ρ(x̃,A) > r. (7.51)

For each t ∈ [0, r], set

At = {
v ∈ X : ρ(v,A) ≤ t

} ∈ S(X) (7.52)

and

μ(t) = ρf (x̃,At ). (7.53)

By (7.51) and (7.36),

μ(t) > 0, t ∈ [0, r]. (7.54)

It is clear that μ(t), t ∈ [0, r], is a decreasing function. Choose a number

t0 ∈ (0, r/4) (7.55)

such that μ is continuous at t0. By (7.35), there exists a natural number n which
satisfies the following conditions:

n > 4‖x̃‖ + 8 (7.56)
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and

if z ∈ X,f (x) ≤ μ(0) + 1, then ‖z‖ ≤ n/4. (7.57)

Let φn : (0,1) → (0,1) be an increasing function for which (7.37) is true. Choose a
positive number γ ∈ (0,1) such that

γ < μ(t0)
(
1 − φ(1 − 2r/n)

)
/8. (7.58)

Next, choose a positive number δ0 < 1/4 such that

2n+3δ0 < min{ε, γ }, (7.59)

[t0 − 4δ0, t0 + 4δ0] ⊂ (0, r/4), (7.60)

and
∣∣μ(t) − μ(t0)

∣∣≤ γ, t ∈ [t0 − 4δ0, t0 + 4δ0]. (7.61)

Finally, choose a vector x0 such that

x0 ∈ At0 and f (x̃ − x0) ≤ μ(t0) + γ. (7.62)

It follows from (7.62), (7.52) and (7.55) that

‖x0 − x̃‖ ≥ ρ(x̃,A) − ρ(x0,A) ≥ ρ(x̃,A) − t0 ≥ ρ(x̃,A) − r/2, (7.63)

and hence by (6.51),

‖x0 − x̃‖ > r/2. (7.64)

It follows from (7.62) and (7.57) that

‖x0 − x̃‖ ≤ n/4. (7.65)

There exist x̄ ∈ {αx0 + (1 − α)x̃ : α ∈ (0,1)} and α0 ∈ (0,1) such that

‖x̄ − x0‖ = r/2 (7.66)

and

x̄ = α0x0 + (1 − α0)x̃. (7.67)

By (7.67) and (7.66), r/2 = ‖x̄−x0‖ = ‖α0x0 +(1−α0)x̃−x0‖ = (1−α0)‖x̃−x0‖
and

α0 = 1 − r
(
2‖x̃ − x0‖

)−1
. (7.68)

Relations (7.68) and (7.65) imply that

α0 ≤ 1 − r/(2n/4) = 1 − 2r/n. (7.69)
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Set

Ã = At0 ∪ {x̄}. (7.70)

Now we will estimate f (x̃ − x̄). By (7.67), (7.65), (7.37), (7.62) and (7.69),

f (x̃ − x̄) = f
(
x̃ − (

α0x0 + (1 − α0)x̃
))= f

(
α0(x̃ − x0)

)

≤ φn(α0)f (x̃ − x0) ≤ φn(α0)
(
μ(t0) + γ

)

≤ φn(1 − 2r/n)
(
μ(t0) + γ

)
.

Thus

f (x̃ − x̄) ≤ φn(1 − 2r/n)
(
μ(t0) + γ

)≤ μ(t0)φn(1 − 2r/n) + γ. (7.71)

By (7.70), (7.53), (7.58) and (7.71), for each x ∈ Ã \ {x̄} ⊂ At0 ,

f (x̃ − x) ≥ μ(t0) > f (x̃ − x̄) (7.72)

and therefore

f (x̃ − x̄) = ρf (x̃, Ã). (7.73)

There exists δ ∈ (0, δ0) such that

2n+4δ < δ0 (7.74)

and

∣∣f (z) − f (x̃ − x̄)
∣∣≤ γ /4

for all z ∈ X satisfying
∥∥z − (x̃ − x̄)

∥∥≤ 2n+3δ. (7.75)

By (7.70), (7.40), (7.66), (7.62), (7.55) and (7.52),

H̃ (Ã,A) ≤ H(Ã,A) ≤ r. (7.76)

Relations (7.76) and (7.73) imply (7.42). Assume now that

ỹ ∈ X, ‖ỹ − x̃‖ ≤ δ (7.77)

and

B ∈ S(X) and h(Ã,B) ≤ δ. (7.78)

First we will show that

ρf (ỹ,B) ≤ μ(t0)φn(1 − 2r/n) + 2γ. (7.79)
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By (7.78) and the definition of h (see (7.41)), hn(Ã,B)(1 + hn(Ã,B))−1 ≤ 2nδ.
When combined with (7.74), this inequality implies that

hn(Ã,B) ≤ 2nδ
(
1 − 2nδ

)−1 ≤ 2n+1δ. (7.80)

It follows from (7.41) and the definition of n (see (7.57), (7.56)) that ‖x̃ − x̄‖ ≤ n/2
and ‖x̄‖ ≤ n. When combined with (7.70) and (7.80), this implies that ρ(x̄,B) ≤
2n+1δ. Therefore there exists ȳ ∈ B such that ‖x̄ − ȳ‖ ≤ 2n+2δ. Combining this
inequality with (7.77), we see that ‖(ȳ− ỹ)−(x̄− x̃)‖ ≤ ‖x̄− ȳ‖+‖ỹ− x̃‖ ≤ 2n+3δ.
It follows from this inequality and (7.75) that f (ỹ − ȳ) ≤ f (x̃ − x̄) + γ /4. By the
last inequality and (7.71), f (ỹ − ȳ) ≤ μ(t0)φn(1 − 2r/n)+ 2γ . This implies (7.79).

Assume now that z ∈ B satisfies (7.43). To complete the proof of the lemma it is
sufficient to show that ‖x̄ − z‖ ≤ ε. Assume the contrary. Then

‖x̄ − z‖ > ε. (7.81)

We will show that there exists z̄ ∈ Ã such that

‖z − z̄‖ ≤ 2n+2δ. (7.82)

We have already shown that (7.80) holds. By (7.43), (7.79), (7.58) and (7.74),

f (ỹ − z) ≤ ρf (ỹ,B) + δ ≤ φn(1 − 2r/n)μ(t0) + 2γ + δ ≤ μ(0) + 1/2.

Hence ‖z − ỹ‖ ≤ n/4 by (7.57), and by (7.77) and (7.56),

‖z‖ ≤ n/4 + ‖ỹ‖ ≤ n/4 + ‖x̃‖ + ‖ỹ − x̃‖ ≤ n.

Thus ‖z‖ ≤ n. The inclusion z ∈ B and (7.80) now imply that ρ(z, Ã) ≤ hn(B, Ã) ≤
2n+1δ. Therefore there exists z̄ ∈ Ã such that (7.82) holds. It follows from (7.82),
(7.81), (7.70), (7.74) and (7.59) that

z̄ ∈ At0 . (7.83)

By (7.82) and (7.77), ‖z + x̃ − ỹ − z̄‖ ≤ ‖x̃ − ỹ‖ + ‖z − z̄‖ ≤ 2n+2δ + δ ≤ 2n+3δ.
It follows from this inequality, (7.83), (7.52) and (7.74) that

ρ(z + x̃ − ỹ,A) ≤ ‖z + x̃ − ỹ − z̄‖ + ρ(z̄,A) ≤ 2n+3δ + t0 ≤ t0 + δ0.

Thus z + x̃ − ỹ ∈ At0+δ0 . By this inclusion, (7.52), (7.53) and (7.61),

f (ỹ − z) = f
(
x̃ − (z + x̃ − ỹ)

)≥ ρf (x̃,At0+δ0) = μ(t0 + δ0) ≥ μ(t0) − γ.

Hence, by (7.43), (7.79), (7.59) and (7.74),

μ(t0) − γ ≤ f (ỹ − z) ≤ ρf (ỹ,B) + δ ≤ φn(1 − 2r/n)μ(t0) + 2γ + δ

≤ φn(1 − 2r/n)μ(t0) + 3γ.

Thus μ(t0)−γ ≤ φn(1−2r/n)μ(t0)+3γ , which contradicts (7.58). This completes
the proof of Lemma 7.12. �
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7.7 Proofs of Theorems 7.8–7.11

The cornerstone of our proofs is the property established in Lemma 7.12.
By Lemma 7.12, for each (A,x) ∈ S(X) × X and each integer k ≥ 1, there exist

A(x, k) ∈ S(X), x̄(A, k) ∈ A(x, k), and δ(x,A, k) > 0 such that

H̃
(
A,A(x, k)

)≤ 2−k, f
(
x − x̄(A, k)

)= ρf

(
x,A(x, k)

)
, (7.84)

and the following property holds:

(P1) For each y ∈ X satisfying ‖y − x‖ ≤ 2δ(x,A, k), each B ∈ S(X) satisfying
h(B,A(x, k)) ≤ 2δ(x,A, k) and each z ∈ B satisfying f (y − z) ≤ ρf (y,B)+
2δ(x,A, k), the inequality ‖z − x̄(A, k)‖ ≤ 2−k holds.

For each (A,x) ∈ S(X) × X and each integer k ≥ 1, define

V (A,x, k) = {
(B,y) ∈ S(X) × X :

h
(
B,A(x, k)

)
< δ(x,A, k) and ‖y − x‖ < δ(x,A, k)

}
(7.85)

and

U(A,x, k) = {
B ∈ S(X) : h(B,A(x, k)

)
< δ(x,A, k)

}
. (7.86)

Now set

Ω =
∞⋂

n=1

⋃{
V (A,x, k) : (A,x) ∈ S(X) × X,k ≥ n

}
, (7.87)

and for each x ∈ X let

Ωx =
∞⋂

n=1

⋃{
U(A,x, k) : A ∈ S(X), k ≥ n

}
. (7.88)

It is easy to see that Ωx × {x} ⊂ Ω for all x ∈ X, Ωx is a countable intersection
of open (in the weak topology) everywhere dense (in the strong topology) subsets of
S(X) for all x ∈ X, and Ω is a countable intersection of open (in the weak topology)
everywhere dense (in the strong topology) subsets of S(X) × X.

Completion of the proof of Theorem 7.9 Let (A, x̃) ∈ Ω . We will show that (A, x̃)

has property (C2). By the definition of Ω (see (7.87)), for each integer n ≥ 1, there
exist an integer kn ≥ n and a pair (An, xn) ∈ S(X) × X such that

(A, x̃) ∈ V (An, xn, kn). (7.89)

Let {zi}∞i=1 ⊂ A be such that

lim
i→∞f (x̃ − zi) = ρf (x̃,A). (7.90)
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Fix an integer n ≥ 1. It follows from (7.89), (7.85) and property (P1) that for all
large enough integers i,

f (x̃ − zi) < ρf (x̃,A) + δ(xn,An, kn)

and
∥∥zi − x̄n(An, kn)

∥∥≤ 2−n.

Since n ≥ 1 is arbitrary, we conclude that {zi}∞i=1 is a Cauchy sequence which con-
verges to some ỹ ∈ A. Clearly f (x̃ − ỹ) = ρf (x̃,A). If the minimizer ỹ were not
unique we would be able to construct a nonconvergent minimizing sequence {zi}∞i=1.
Thus ỹ is the unique solution to problem (P) (with x = x̃).

Let ε > 0 be given. Choose an integer n > 4/min{1, ε}. By property (P1), (7.89)
and (7.85),

∥∥ỹ − x̄n(An, kn)
∥∥≤ 2−n. (7.91)

Assume that z ∈ X satisfies ‖z − x̃‖ ≤ δ(xn,An, kn), B ∈ S(X) satisfies h(A,B) ≤
δ(xn,An, kn), and y ∈ B satisfies f (z − y) ≤ ρf (z,B) + δ(xn,An, kn). Then

h
(
B,An(xn, kn)

)≤ 2δ(xn,An, kn) and
∥∥z − x̄n(An, kn)

∥∥≤ 2δ(xn,An, kn)

by (7.89) and (7.85). Now it follows from property (P1) that

∥∥y − x̄n(An, kn)
∥∥≤ 2−n.

When combined with (7.91), this implies that

‖y − ỹ‖ ≤ 21−n < ε.

The proof of Theorem 7.9 is complete. �

Theorem 7.8 follows from Theorem 7.9 and the inclusion Ωx̃ × {x̃} ⊂ Ω .
Although a variant of Theorem 7.10 also follows from Theorem 7.9 by a classi-

cal result of Kuratowski and Ulam [87], the following direct proof may also be of
interest.

Proof of Theorem 7.10 Let the sequence {xi}∞i=1 ⊂ X0 be everywhere dense in X0.
Set F = ⋂∞

p=1 Ωxp . Clearly, F is a countable intersection of open (in the weak
topology) everywhere dense (in the strong topology) subsets of S(X).

Let A ∈ F and let p,n ≥ 1 be integers. Clearly, A ∈ Ωxp and by (7.88) and
(7.86), there exist An ∈ S(X) and an integer kn ≥ n such that

h
(
A,An(xp, kn)

)
< δ(xp,An, kn) with A ∈ S(X). (7.92)

It follows from this inequality and property (P1) that the following property holds:



374 7 Best Approximation

(P2) For each y ∈ X satisfying ‖y − xp‖ ≤ δ(xp,An, kn) and each z ∈ A satisfying
f (y − z) ≤ ρf (y,A)+ 2δ(xp,An, kn), the inequality ‖z− x̄p(An, kn)‖ ≤ 2−n

holds.

Set W(p,n) = {z ∈ X0 : ‖z − xp‖ < δ(xp,An, kn)} and

F =
∞⋂

n=1

⋃{
W(p,n) : p = 1,2, . . .

}
.

It is clear that F is a countable intersection of open and everywhere dense subsets
of X0.

Let x ∈ F be given. Consider a sequence {zi}∞i=1 ⊂ A such that

lim
i→∞f (x − zi) = ρf (x,A). (7.93)

Let ε > 0. Choose an integer n > 8/min{1, ε}. There exists an integer p ≥ 1 such
that x ∈ W(p,n). By the definition of W(p,n), ‖x −xp‖ < δ(xp,An, kn). It follows
from this inequality, (7.93) and property (P2) that for all sufficiently large integers
i, f (x − zi) ≤ ρf (x,A) + δ(xp,An, kn) and ‖zi − x̄p(An, kn)‖ ≤ 2−n < ε. Since
ε > 0 is arbitrary, we conclude that {zi}∞i=1 is a Cauchy sequence which converges to
ỹ ∈ A. Clearly, ỹ is the unique minimizer of the minimization problem z → f (x −
z), z ∈ A. Note that we have shown that any sequence {zi}∞i=1 ⊂ A satisfying (7.93)
converges to ỹ. This completes the proof of Theorem 7.10. �

7.8 A Porosity Result in Best Approximation Theory

Let D be a nonempty compact subset of a complete hyperbolic space (X,ρ,M) and
denote by S(X) the family of all nonempty closed subsets of X. We endow S(X)

with a pair of natural complete metrics and show that there exists a set Ω ⊂ S(X)

such that its complement S(X) \ Ω is σ -porous with respect to this pair of metrics
and such that for each A ∈ Ω and each x̃ ∈ D, the following property holds: the set
{y ∈ A : ρ(x̃, y) = ρ(x̃,A)} is nonempty and compact, and each sequence {yi}∞i=1 ⊂
A which satisfies limi→∞ ρ(x̃, yi) = ρ(x̃,A) has a convergent subsequence. This
result was obtained in [147].

Let (X,ρ,M) be a complete hyperbolic space. For each x ∈ X and each A ⊂ X,
set

ρ(x,A) = inf
{
ρ(x, y) : y ∈ A

}
.

Denote by S(X) the family of all nonempty closed subsets of X. For each A,B ∈
S(X), define

H(A,B) := max
{
sup

{
ρ(x,B) : x ∈ A

}
, sup

{
ρ(y,A) : y ∈ B

}}
(7.94)

and

H̃ (A,B) := H(A,B)
(
1 + H(A,B)

)−1
.
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Here we use the convention that ∞/∞ = 1. It is easy to see that H̃ is a metric on
S(X) and that the metric space (S(X), H̃ ) is complete.

Fix θ ∈ X. For each natural number n and each A,B ∈ S(X), we set

hn(A,B) = sup
{∣∣ρ(x,A) − ρ(x,B)

∣∣ : x ∈ X and ρ(x, θ) ≤ n
}

(7.95)

and

h(A,B) =
∞∑

n=1

[
2−nhn(A,B)

(
1 + hn(A,B)

)−1]
.

Once again, it is not difficult to see that h is a metric on S(X) and that the metric
space (S(X),h) is complete. Clearly,

H̃ (A,B) ≥ h(A,B) for all A,B ∈ S(X).

We equip the set S(X) with the pair of metrics H̃ and h and prove the following
theorem which is the main result of [147].

Theorem 7.13 Given a nonempty compact subset D of a complete hyperbolic space
(X,ρ,M), there exists a set Ω ⊂ S(X) such that its complement S(X) \ Ω is σ -
porous with respect to the pair of metrics (h, H̃ ), and such that for each A ∈ Ω and
each x̃ ∈ D, the following property holds:

The set {y ∈ A : ρ(x̃, y) = ρ(x̃,A)} is nonempty and compact and each sequence
{yi}∞i=1 ⊂ A which satisfies limi→∞ ρ(x̃, yi) = ρ(x̃,A) has a convergent subse-
quence.

7.9 Two Lemmata

Let (X,ρ,M) be a complete hyperbolic space and let D be a nonempty compact
subset of X. In the proof of Theorem 7.13 we will use the following two lemmata.

Lemma 7.14 Let q be a natural number, A ∈ S(X), ε ∈ (0,1), r ∈ (0,1], and let
Q = {ξ1, . . . , ξq} be a finite subset of D. Then there exists a finite set {ξ̃1, . . . , ξ̃q} ⊂
X such that

ρ(ξ̃i ,A) ≤ r, i = 1, . . . , q, (7.96)

and such that the set Ã := A ∪ {ξ̃1, . . . , ξ̃q} has the following properties:

ρ
(
ξi, {ξ̃1, . . . , ξ̃q})= ρ(ξi, Ã), i = 1, . . . , q; (7.97)

(P3) if i ∈ {1, . . . , q}, x ∈ Ã, and ρ(ξi, x) ≤ ρ(ξi, Ã) + εr/4, then

ρ
(
x, {ξ̃1, . . . , ξ̃q})≤ ε.
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Proof Let i ∈ {1, . . . , q}. There are two cases: (1) ρ(ξi,A) ≤ r ; (2) ρ(ξi,A) > r . In
the first case we set

ξ̃i = ξi . (7.98)

In the second case, we first choose xi ∈ A for which

ρ(ξi, xi) ≤ ρ(ξi,A) + r/4, (7.99)

and then choose

ξ̃i ∈ {γ xi ⊕ (1 − γ )ξi : γ ∈ (0,1)
}

(7.100)

such that

ρ(ξ̃i , xi) = r and ρ(ξ̃i , ξi) = ρ(xi, ξi) − r. (7.101)

Clearly, (7.96) holds. Consider now the set Ã = A ∪ {ξ̃1, . . . , ξ̃q}.
Let i ∈ {1, . . . , q}. It is not difficult to see that if ρ(ξi,A) ≤ r , then the assertion

of the lemma is true. Consider the case where ρ(ξi,A) > r . It follows from (7.99)
and (7.101) that

ρ
(
ξi, {ξ̃1, . . . , ξ̃q}) ≤ ρ(ξi, ξ̃i ) = ρ(xi, ξi) − r

≤ ρ(ξi,A) + r/4 − r = ρ(ξi,A) − 3r/4.

Therefore

ρ
(
ξi, {ξ̃1, . . . , ξ̃q})= ρ(ξi, Ã),

and if x ∈ Ã and ρ(ξi, x) ≤ ρ(ξi, Ã) + r/2, then x ∈ {ξ̃1, . . . , ξ̃q}. This completes
the proof of Lemma 7.14. �

For each ε ∈ (0,1) and each natural number n, choose a number

α(ε,n) ∈ (0,16−n−2ε
)

(7.102)

and a natural number n0 such that

ρ(x, θ) ≤ n0, x ∈ D. (7.103)

Lemma 7.15 Let n ≥ n0 be a natural number, A ∈ S(X), ε ∈ (0,1), r ∈ (0,1], and

α = α(ε,n). (7.104)

Assume that
{
z ∈ A : ρ(z, θ) ≤ n

} �= ∅. (7.105)

Then there exist a natural number q and a finite set {ξ̃1, . . . , ξ̃q} ⊂ X such that

ρ(ξ̃i ,A) ≤ r, i = 1, . . . , q, (7.106)



7.9 Two Lemmata 377

and if Ã := A ∪ {ξ̃1, . . . , ξ̃q}, u ∈ D, B ∈ S(X),

h(Ã,B) ≤ αr, (7.107)

and

z ∈ B, ρ(u, z) ≤ ρ(u,B) + εr/16, (7.108)

then

ρ
(
z, {ξ̃1, . . . , ξ̃q})≤ ε. (7.109)

Proof Since D is compact, there are a natural number q and a finite subset
{ξ1, . . . , ξq} of D such that

D ⊂
q⋃

i=1

{
z ∈ X : ρ(z, ξi) < αr

}
. (7.110)

By Lemma 7.14, there exists a finite set {ξ̃1, . . . ξ̃q} ⊂ X such that (7.106) holds, and
the set Ã := A ∪ {ξ̃1, . . . , ξ̃q} satisfies (7.97) and has the following property:

(P4) If i ∈ {1, . . . , q}, x ∈ Ã, and ρ(ξi, x) ≤ ρ(ξi, Ã) + εr/8, then

ρ
(
x, {ξ̃1, . . . , ξ̃q})≤ ε/2.

Assume that u ∈ D, B ∈ S(X), and that (7.107) holds. By (7.110), there is j ∈
{1, . . . , q} such that

ρ(ξj , u) < αr. (7.111)

We will show that

ρ(u,B) < ρ(ξj , Ã) + 4 · 16nαr. (7.112)

Indeed, there exists p ∈ {1, . . . , q} such that

ρ(ξj , ξ̃p) = ρ
(
ξj , {ξ̃1, . . . , ξ̃q}).

By (7.97),

ρ(ξj , ξ̃p) = ρ(ξj , Ã). (7.113)

By (7.111),
∣∣ρ(u, Ã) − ρ(ξj , Ã)

∣∣≤ αr. (7.114)

When combined with (7.113), this inequality implies that
∣∣ρ(u, Ã) − ρ(ξj , ξ̃p)

∣∣≤ αr. (7.115)

Now (7.113), (7.105) and (7.103) imply that

ρ(ξj , ξ̃p) ≤ ρ(ξj ,A) ≤ 2n and ρ(ξ̃p, θ) ≤ 3n. (7.116)
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It follows from (7.95) and (7.107) that

h4n(Ã,B)
(
1 + h4n(Ã,B)

)−1 ≤ 24nh(Ã,B) ≤ 24nαr,

and when combined with (7.104) and (7.102), this inequality yields

h4n(Ã,B) ≤ 24nαr
(
1 − 24nαr

)−1
< 24n+1αr. (7.117)

Since ξ̃p ∈ Ã, it follows from (7.117), (7.116) and (7.97) that ρ(ξ̃p,B) < 24n+1αr

and there exists v ∈ X such that

v ∈ B and ρ(ξ̃p, v) < 2αr16n. (7.118)

By (7.118), (7.111), (7.113) and (7.118),

ρ(u,B) ≤ ρ(u, v) ≤ ρ(u, ξ̃p) + ρ(ξ̃p, v) ≤ ρ(u, ξj ) + ρ(ξj , ξ̃p) + ρ(ξ̃p, v)

< αr + ρ(ξj , Ã) + 2 · 16nαr.

Hence (7.112) is valid.
Now let (7.108) hold. Then by (7.108), (7.112) and (7.102),

ρ(z,u) ≤ ρ(u,B) + εr/16 < ρ(ξj , Ã) + 4 · 16nαr + εr/16

< ρ(ξj , Ã) + εr/8. (7.119)

Therefore (7.119) and (7.116) imply that

ρ(z,u) ≤ ρ(ξj , Ã) + εr/8 ≤ 2n + r/8.

It follows from this inequality, (7.111) and (7.103) that

ρ(z, θ) ≤ ρ(z,u) + ρ(u, θ) ≤ 2n + r/8 + ρ(u, θ)

≤ 2n + r/8 + ρ(u, ξj ) + ρ(ξj , θ) ≤ 2n + r/8 + αr + n ≤ 4n.

Since z ∈ B , it follows from (7.97) and (7.117) that

ρ(z, Ã) = ∣∣ρ(z, Ã) − ρ(z,B)
∣∣≤ h4n(Ã,B) < 2 · 16nαr.

Therefore there exists z̃ ∈ Ã such that

ρ(z, z̃) < 2 · 16nαr. (7.120)

By (7.111), (7.120), (7.108), (7.112) and (7.102),

ρ(z̃, ξj ) ≤ ρ(ξj , u) + ρ(u, z) + ρ(z, z̃) < αr + ρ(u, z) + 2 · 16nαr

≤ αr + 2 · 16nαr + ρ(u,B) + εr/16
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< εr/16 + αr + 2 · 16nαr + ρ(ξj , Ã) + 4 · 16nαr

≤ ρ(ξj , Ã) + 8 · 16nαr + εr/16 ≤ ρ(ξj , Ã) + εr/8

and

ρ(z̃, ξj ) < ρ(ξj , Ã) + εr/8. (7.121)

Since z̃ ∈ Ã, it follows from (7.121) and property (P4) that ρ(z̃, {ξ̃1, . . . , ξ̃q}) ≤ ε/2.
When combined with (7.120) and (7.102), this inequality implies that

ρ
(
z, {ξ̃1, . . . , ξ̃q})≤ ε.

This completes the proof of Lemma 7.15. �

7.10 Proof of Theorem 7.13

For each integer k ≥ 1, denote by Ωk the set of all A ∈ S(X) which have the follow-
ing property:

(P5) There exist a nonempty finite set Q ⊂ X and a number δ > 0 such that if
u ∈ D, x ∈ A and ρ(u, x) ≤ ρ(u,A) + δ, then ρ(x,Q) ≤ 1/k.

It is clear that Ωk+1 ⊂ Ωk , k = 1,2, . . . . Set Ω =⋂∞
k=1 Ωk .

Let k ≥ n0 (see (7.103)) be an integer. We will show that S(X) \ Ωk is σ -porous
with respect to the pair (h, H̃ ). For any integer n ≥ k, define

Enk = {
A ∈ S(X) \ Ωk : {z ∈ A : ρ(z, θ) ≤ n

} �= ∅}.

By Lemma 7.15, Enk is porous with respect to the pair (h, H̃ ) for all integers n ≥ k.
Thus S(X)\Ωk =⋃∞

n=k Enk is σ -porous with respect to (h, H̃ ). Hence S(X)\Ω =⋃∞
k=n0

(S(X) \ Ωk) is also σ -porous with respect to the pair of metrics (h, H̃ ).
Let A ∈ Ω . Since A ∈ Ωk for each integer k ≥ 1, it follows from property (P5)

that for any integer k ≥ 1, there exist a nonempty finite set Qk ⊂ X and a number
δk > 0 such that the following property also holds:

(P6) If u ∈ D, x ∈ A, and ρ(u, x) ≤ ρ(x,A) + δk , then ρ(x,Qk) ≤ 1/k.

Let u ∈ D. Consider a sequence {xi}∞i=1 ⊂ A such that limi→∞ ρ(u, xi) =
ρ(u,D). By property (P6), for each integer k ≥ 1, there exists a subsequence
{x(k)

i }∞i=1 of {xi}∞i=1 such that the following two properties hold:

(i) {x(k+1)
i }∞i=1 is a subsequence of {x(k)

i }∞i=1 for all integers k ≥ 1;

(ii) for any integer k ≥ 1, ρ(x
(k)
j , x

(k)
s ) ≤ 2/k for all integers j, s ≥ 1.

These properties imply that there exists a subsequence {x∗
i }∞i=1 of {xi}∞i=1 which

is a Cauchy sequence. Therefore {x∗
i }∞i=1 converges to a point x̃ ∈ A which satisfies

ρ(x̃, u) = limi→∞ ρ(xi, u) = ρ(u,D). This completes the proof of Theorem 7.13.



380 7 Best Approximation

7.11 Porous Sets and Generalized Best Approximation Problems

Given a closed subset A of a Banach space X, a point x ∈ X and a Lipschitzian (on
bounded sets) function f : X → R1, we consider the problem of finding a solution
to the minimization problem min{f (x − y) : y ∈ A}. For a fixed function f , we
define an appropriate complete metric space M of all pairs (A,x) and construct a
subset Ω of M, with a σ -porous complement M \ Ω , such that for each pair in Ω ,
our minimization problem is well posed.

Let (X,‖ · ‖) be a Banach space and let f : X → R1 be a Lipschitzian (on
bounded sets) function. Assume that

inf
{
f (x) : x ∈ X

}
is attained at a unique point x∗ ∈ X, (7.122)

lim‖u‖→∞f (u) = ∞, (7.123)

if {xi}∞i=1 ⊂ X and lim
i→∞f (xi) = f (x∗), then lim

i→∞xi = x∗, (7.124)

f
(
αx + (1 − α)x∗

)≤ αf (x) + (1 − α)f (x∗)

for all x ∈ X and all α ∈ (0,1), (7.125)

and that for each natural number n, there exists kn > 0 such that
∣∣f (x) − f (y)

∣∣≤ kn‖x − y‖ for each x, y ∈ X satisfying ‖x‖,‖y‖ ≤ n. (7.126)

Clearly, (7.125) holds if f is convex.
Given a closed subset A of X and a point x ∈ X, we consider the minimization

problem

min
{
f (x − y) : y ∈ A

}
. (P)

For each x ∈ X and each A ⊂ X, set

ρ(x,A) = inf
{‖x − y‖ : y ∈ A

}

and

ρf (x,A) = inf
{
f (x − y) : y ∈ A

}
.

Denote by S(X) the collection of all nonempty closed subsets of X. For each
A,B ∈ S(X), define

H(A,B) := max
{
sup

{
ρ(x,B) : x ∈ A

}
, sup

{
ρ(y,A) : y ∈ B

}}
(7.127)

and

H̃ (A,B) := H(A,B)
(
1 + H(A,B)

)−1
.

Here we use the convention that ∞/∞ = 1.
It is not difficult to see that the metric space (S(X), H̃ ) is complete.
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For each natural number n and each A,B ∈ S(X), we set

hn(A,B) := sup
{∣∣ρ(x,A) − ρ(x,B)

∣∣ : x ∈ X and ‖x‖ ≤ n
}

(7.128)

and

h(A,B) :=
∞∑

n=1

[
2−nhn(A,B)

(
1 + hn(A,B)

)−1]
.

Once again, it is not difficult to see that h is a metric on S(X) and that the metric
space (S(X),h) is complete. Clearly, H̃ (A,B) ≥ h(A,B) for all A,B ∈ S(X).

We equip the set S(X) with the pair of metrics H̃ and h. The topologies induced
by the metrics H̃ and h on S(X) will be called the strong topology and the weak
topology, respectively.

Let A ∈ S(X) and x̃ ∈ X be given. We say that the best approximation problem

f (x̃ − y) → min, y ∈ A,

is strongly well posed if there exists a unique x̄ ∈ A such that

f (x̃ − x̄) = inf
{
f (x̃ − y) : y ∈ A

}

and the following property holds:
For each ε > 0, there exists δ > 0 such that if z ∈ X satisfies ‖z − x̃‖ ≤ δ, B ∈

S(X) satisfies h(A,B) ≤ δ, and y ∈ B satisfies f (z − y) ≤ ρf (z,B) + δ, then ‖y −
x̄‖ ≤ ε.

We now state four results obtained in [151]. Their proofs will be given in the next
sections.

Theorem 7.16 Let x̃ ∈ X be given. Then there exists a set Ω ⊂ S(X) such that its
complement S(X) \ Ω is σ -porous with respect to (h, H̃ ) and for each A ∈ Ω , the
problem f (x̃ − y) → min, y ∈ A, is strongly well posed.

To state our second result, we endow the Cartesian product S(X) × X with the
pair of metrics d1 and d2 defined by

d1
(
(A,x), (B,y)

)= h(A,B) + ‖x − y‖,
d2
(
(A,x), (B,y)

)= H̃ (A,B) + ‖x − y‖, x, y ∈ X,A,B ∈ S(X).

We will refer to the metrics induced on S(X) × X by d2 and d1 as the strong and
weak metrics, respectively.

Theorem 7.17 There exists a set Ω ⊂ S(X)×X such that its complement (S(X)×
X) \ Ω is σ -porous with respect to (d1, d2) and for each (A, x̃) ∈ Ω , the minimiza-
tion problem

f (x̃ − y) → min, y ∈ A,

is strongly well posed.
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In most classical generic results the set A was fixed and x varied in a dense
Gδ subset of X. In our first two results the set A is also variable. However, our
third result shows that for every fixed A in a subset of S(X) which has a σ -porous
complement, the set of all x ∈ X for which problem (P) is strongly well posed
contains a dense Gδ subset of X.

Theorem 7.18 Assume that X0 is a closed separable subset of X. Then there exists
a set F ⊂ S(X) such that its complement S(X) \ F is σ -porous with respect to
(h, H̃ ) and for each A ∈F , the following property holds:

There exists a set F ⊂ X0, which is a countable intersection of open and every-
where dense subsets of X0 with the relative topology, such that for each x̃ ∈ F , the
minimization problem

f (x̃ − y) → min, y ∈ A,

is strongly well posed.

Now we will show that Theorem 7.16 implies the following result.

Theorem 7.19 Assume that g : X → R1 is a convex function which is Lipschitzian
on bounded subsets of X and that inf{g(x) : x ∈ X} is attained at a unique point
y∗ ∈ X, lim‖u‖→∞ g(u) = ∞, and if {yi}∞i=1 ⊂ X and limi→∞ g(yi) = g(y∗), then
yi → y∗ as i → ∞. Then there exists a set Ω ⊂ S(X) such that its complement
S(X) \ Ω is σ -porous with respect to (h, H̃ ) and for each A ∈ Ω , the following
property holds:

There is a unique yA ∈ A such that g(yA) = inf{g(y) : y ∈ A}. Moreover, for
each ε > 0, there exists δ > 0 such that if y ∈ A satisfies g(y) ≤ g(yA) + δ, then
‖y − yA‖ ≤ ε.

Proof Define f (x) = g(−x), x ∈ X. It is clear that f is convex and satisfies
(7.122)–(7.126). Therefore Theorem 7.16 is valid with x̃ = 0 and there exists a set
Ω ⊂ S(X) such that its complement S(X) \ Ω is σ -porous with respect to (h, H̃ )

and for each A ∈ Ω , the following property holds:
There is a unique ỹ ∈ A such that

g(ỹ) = f (−ỹ) = inf
{
f (−y) : y ∈ A

}= inf
{
g(y) : y ∈ A

}
.

Moreover, for each ε > 0, there exists δ > 0 such that if B ∈ S(X) satisfies
h(A,B) ≤ δ and x ∈ B satisfies

g(x) = f (−x) ≤ ρf (0,B) + δ = inf
{
f (−y) : y ∈ B

}+ δ = inf
{
g(y) : y ∈ B

}+ δ,

then ‖x − ỹ‖ ≤ ε. Theorem 7.19 is proved. �

It is easy to see that in the proofs of Theorems 7.16–7.18 we may assume without
any loss of generality that inf{f (x) : x ∈ X} = 0. It is also not difficult to see that we
may assume without loss of generality that x∗ = 0. Indeed, instead of the function
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f (·) we can consider f (· + x∗). This new function also satisfies (7.122)–(7.126).
Once Theorems 7.16–7.18 are proved for this new function, they will also hold
for the original function f because the mapping (A,x) → (A,x + x∗), (A,x) ∈
S(X) × X, is an isometry with respect to both metrics d1 and d2.

7.12 A Basic Lemma

Let m and n be two natural numbers. Choose a number

cm > sup
{
f (u) : u ∈ X and ‖u‖ ≤ 2m + 4

}+ 2 (7.129)

(see (7.126)). By (7.123), there exists a natural number

am > m + 2

such that

if u ∈ X and f (u) ≤ cm, then ‖u‖ ≤ am. (7.130)

By (7.126), there is km > 1 such that
∣
∣f (x) − f (y)

∣
∣≤ km‖x − y‖

for each x, y ∈ X satisfying ‖x‖,‖y‖ ≤ 4am + 4. (7.131)

By (7.131), there exists a positive number

α(m,n) < 2−4am−416−1n−1 (7.132)

such that

if u ∈ X satisfies f (u) ≤ 320amα(m,n), then ‖u‖ ≤ (4n)−1. (7.133)

Finally, we choose a positive number

ᾱ(m,n) < α(m,n)
[
(km + 1)−12−4am−16]. (7.134)

Lemma 7.20 Let

α = α(m,n), ᾱ = ᾱ(m,n), (7.135)

A ∈ S(X), x̃ ∈ X, r ∈ (0,1], and assume that

‖x̃‖ ≤ m and
{
z ∈ X : ‖z‖ ≤ m

}∩ A �= ∅. (7.136)

Then there exists x̄ ∈ X such that

ρ(x̄,A) ≤ r/8 (7.137)
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and for the set Ã := A ∪ {x̄}, the following property holds:
If

B ∈ S(X), h(Ã,B) ≤ ᾱr, (7.138)

ỹ ∈ X, ‖ỹ − x̃‖ ≤ ᾱr, (7.139)

and

z ∈ B, f (ỹ − z) ≤ ρf (ỹ,B) + αr, (7.140)

then

h(A,B) ≤ r (7.141)

and

‖z − x̄‖ ≤ n−1. (7.142)

Proof First we choose x̄ ∈ X. There are two cases: (1) ρ(x̃,A) ≤ r/8; (2) ρ(x̃,A) >

r/8. If

ρ(x̃,A) ≤ r/8, (7.143)

then we set

x̄ = x̃ and Ã = A ∪ {x̃}. (7.144)

Now consider the second case where

ρ(x̃,A) > r/8. (7.145)

First, choose x0 ∈ A such that

f (x̃ − x0) ≤ ρf (x̃,A) + α(m,n)r (7.146)

and then choose

x̄ ∈ {γ x̃ + (1 − γ )x0 : γ ∈ (0,1)
}

(7.147)

such that

‖x̄ − x0‖ = r/8 and ‖x̃ − x̄‖ = ‖x̃ − x0‖ − r/8. (7.148)

Finally, set

Ã = A ∪ {x̄}. (7.149)

Clearly, there is γ ∈ (0,1) such that

x̄ = γ x̃ + (1 − γ )x0. (7.150)

It is easy to see that in both cases (7.137) holds and

H̃ (A, Ã) ≤ H(A, Ã) ≤ r/8. (7.151)
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Now assume that z ∈ X satisfies

z ∈ Ã and f (x̃ − z) ≤ ρf (x̃, Ã) + 8α(m,n)r. (7.152)

We will show that ‖x̄ − z‖ ≤ (2n)−1. First consider case (1). Then by (7.152),
(7.144) and (7.149),

f (x̄ − z) = f (x̃ − z) ≤ 8α(m,n)r.

When combined with (7.133), this inequality implies that

‖x̄ − z‖ ≤ (4n)−1.

Now consider case (2). We first estimate f (x̃ − x̄). By (7.150) and (7.125) (with
x∗ = 0 and f (x∗) = 0),

f (x̃ − x̄) = f
(
x̃ − γ x̃ − (1 − γ )x0

)

= f
(
(1 − γ )(x̃ − x0)

)≤ (1 − γ )f (x̃ − x0). (7.153)

By (7.136), there is z0 ∈ X such that

z0 ∈ A and ‖z0‖ ≤ m. (7.154)

Thus (7.146), (7.132), (7.154) and (7.136) imply that

f (x̃ − x0) ≤ ρf (x̃, Ã) + 1 ≤ f (x̃ − z0) + 1

≤ sup
{
f (u) : u ∈ X,‖u‖ ≤ 2m + 1

}+ 1 < cm. (7.155)

Relations (7.155) and (7.130) imply that

‖x0 − x̃‖ ≤ am. (7.156)

It follows from (7.148), (7.150) and (7.156) that

‖x̃ − x0‖ − r/8 = ‖x̃ − x̄‖ = ∥∥x̃ − γ x̃ − (1 − γ )x0
∥∥

= (1 − γ )‖x̃ − x0‖,
1 − γ = (‖x̃ − x0‖ − r/8

)‖x̃ − x0‖−1 = 1 − r
(
8‖x̃ − x0‖

)−1

≤ 1 − r(8am)−1

and that

1 − γ ≤ 1 − r(8am)−1. (7.157)

By (7.153) and (7.157),

f (x̃ − x̄) = (1 − γ )f (x̃ − x0) ≤ (
1 − r(8am)−1)f (x̃ − x0). (7.158)
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Relations (7.152) and (7.158) now imply that

f (x̃ − z) ≤ f (x̃ − x̄) + 8αr ≤ 8αr + (
1 − r(8am)−1)f (x̃ − x0). (7.159)

There are two cases:

f (x̃ − x0) ≥ 8 · 18αam (7.160)

and

f (x̃ − x0) ≤ 8 · 18αam. (7.161)

Assume that (7.160) holds. Then it follows from (7.159), (7.146) and (7.160) that

f (x̃ − z) ≤ 8αr + f (x̃ − x0) − r(8am)−1f (x̃ − x0)

≤ 8αr + ρf (x̃,A) + αr − 8−1 · 18αr < ρf (x̃,A).

Thus z /∈ A and by (7.152) and (7.149),

z = x̄. (7.162)

Now assume that (7.161) is true. By (7.161) and (7.152),

f (x̃ − z) ≤ f (x̃ − x0) + 8αr ≤ 8 · 18αam + 8α ≤ 160αam.

When combined with (7.133), (7.148) and (7.161), this estimate implies that

‖x̃ − z‖ ≤ (4n)−1, ‖x̃ − x0‖ ≤ (4n)−1,

‖x̃ − x̄‖ < ‖x̃ − x0‖ < (4n)−1,

and

‖x̄ − z‖ < (2n)−1.

Thus in both cases,

‖x̄ − z‖ < (2n)−1.

In other words, we have shown that the following property holds:

(P1) If z ∈ X satisfies (7.152), then ‖x̄ − z‖ ≤ (2n)−1.

Now assume that (7.138)–(7.140) hold. By (7.136) and (7.139), we have

‖x̃‖ ≤ m and ‖ỹ‖ ≤ m + 1. (7.163)

Relation (7.136) implies that there is z0 ∈ X such that

z0 ∈ A and ‖z0‖ ≤ m. (7.164)
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It follows from (7.128), (7.138), (7.164), (7.134) and (7.128) that

h4am+4(Ã,B)
(
1 + h4am+4(Ã,B)

)−1 ≤ 24am+4h(Ã,B) ≤ 24am+4ᾱr,

h4am+4(Ã,B) ≤ 24am+4ᾱr
(
1 − 24am+4ᾱr

)≤ 24am+5ᾱr
(7.165)

and

ρ(z0,B) ≤ ρ(z0, Ã) + ∣
∣ρ(z0,B) − ρ(z0, Ã)

∣
∣

≤ h4am+4(Ã,B) ≤ 24am+5ᾱr. (7.166)

Inequalities (7.166), (7.134) and (7.132) imply that ρ(z0,B) < 1, and that there is
z̃0 ∈ X such that

z̃0 ∈ B and ‖z̃0 − z0‖ < 1. (7.167)

Clearly, by (7.164) and (7.167),

‖z̃0‖ < m + 1. (7.168)

Let
{
(L, l)

} ∈ {(Ã, x̃), (B, ỹ)
}
. (7.169)

By (7.136), (7.163), (7.164), (7.168) and (7.167),

‖l‖ ≤ m + 1 (7.170)

and there is ū ∈ X such that

ū ∈ L and ‖ū‖ ≤ m + 1. (7.171)

Relations (7.171), (7.170) and (7.129) imply that

ρf (l,L) ≤ f (l − ū) ≤ sup
{
f (u) : u ∈ X,‖u‖ ≤ 2m + 2

}≤ cm − 2. (7.172)

Also, relations (7.172), (7.130) and (7.170) imply the following property:

(P2) If u ∈ L and f (l−u) ≤ ρf (l,L)+2, then ‖l−u‖ ≤ am and ‖u‖ ≤ ‖l‖+am ≤
2am.

Now assume that Li ∈ S(X) and li ∈ X, i = 1,2, satisfy
{
(L1, l1), (L2, l2)

}= {
(Ã, x̃), (B, ỹ)

}
. (7.173)

Let

u ∈ L1 be such that f (l1 − u) ≤ ρf (l1,L1) + 2. (7.174)

By (7.174), (7.173) and property (P2),

‖u‖ ≤ 2am. (7.175)



388 7 Best Approximation

Relations (7.174), (7.173), (7.175), (7.165) and (7.128) imply that

ρ(u,L2) = ∣∣ρ(u,L1) − ρ(u,L2)
∣∣≤ h2am(L1,L2)

≤ h4am+4(Ã,B) ≤ 24am+5ᾱr.

When combined with (7.132) and (7.134), this inequality implies that there is v ∈ X

such that

v ∈ L2 and ‖u − v‖ ∈ 24am+6ᾱr ≤ 1. (7.176)

Inequalities (7.175) and (7.176) imply that

‖v‖ ≤ 1 + 2am. (7.177)

By (7.177), (7.175), (7.173) and (7.163),

‖l1 − u‖,‖l2 − v‖ ≤ 1 + 2am + m + 1 < 3am. (7.178)

It follows from (7.176), (7.139) and (7.173) that
∥∥(l1 − u) − (l2 − v)

∥∥≤ ᾱr + 24am+6ᾱr. (7.179)

By (7.179), (7.178), (7.134) and the definition of km (see (7.131)),
∣∣f (l1 − u) − f (l2 − v)

∣∣ ≤ km

∥∥(l1 − u) − (l2 − v)
∥∥

≤ kmᾱr
(
1 + 24am+6)≤ rα2−9. (7.180)

Inequalities (7.180) and (7.176) imply that

ρf (l2,L2) ≤ f (l2 − v) ≤ f (l1 − u) + 2−9αr

and

ρf (l2,L2) ≤ 2−9αr + f (l1 − u). (7.181)

Since (7.181) holds for any u satisfying (7.174), we conclude that

ρf (l2,L2) ≤ 2−9αr + ρf (l1,L1).

This fact implies, in turn, that
∣∣ρf (l1,L1) − ρf (l2,L2)

∣∣= ∣∣ρf (x̃, Ã) − ρf (ỹ,B)
∣∣≤ 2−9αr. (7.182)

By property (P2), (7.169) and (7.140),

‖ỹ − z‖ ≤ am and ‖z‖ ≤ 2am. (7.183)

It follows from (7.140), (7.183), (7.165) and (7.128) that



7.13 Proofs of Theorems 7.16–7.18 389

ρ(z, Ã) ≤ ρ(z,B) + ∣∣ρ(z,B) − ρ(z, Ã)
∣∣

= ∣
∣ρ(z,B) − ρ(z, Ã)

∣
∣≤ h4am+4(Ã,B) ≤ 24am+5ᾱr.

Thus there exists z̃ ∈ X such that

z̃ ∈ Ã and ‖z − z̃‖ ≤ 24am+6ᾱr. (7.184)

By (7.136), (7.183), (7.184), (7.134) and (7.132), we have

‖x̃ − z̃‖ ≤ ‖x̃‖ + ‖z̃‖ ≤ m + ‖z‖ + ‖z̃ − z‖
≤ m + 2am + 24am+6ᾱr ≤ 3am + 1.

When combined with (7.134), (7.184), (7.139), (7.140) and (7.182), this inequality
implies that

f (x̃ − z̃) ≤ f (ỹ − z) + ∣∣f (x̃ − z̃) − f (ỹ − z)
∣∣

≤ f (ỹ − z) + km

∥∥x̃ − z̃ − (ỹ − z)
∥∥≤ f (ỹ − z)

≤ km‖x̃ − ỹ‖ + km‖z̃ − z‖ ≤ f (ỹ − z) + kmᾱr + km24am+6ᾱr

≤ ρf (ỹ,B) + αr + kmᾱr
(
1 + 24am+6)

≤ αr + kmᾱr
(
1 + 24am+6)+ ρf (x̃, Ã) + 2−9αr ≤ αr + αr + ρf (x̃, Ã).

Thus we see that

f (x̃ − z̃) ≤ ρf (x̃, Ã) + 2αr. (7.185)

It follows from property (P1), (7.152), (7.185) and (7.184) that

‖z̃ − x̄‖ ≤ (2n)−1.

When combined with (7.184), (7.134) and (7.132), this inequality implies that

‖z − x̄‖ ≤ ‖z − z̃‖ + ‖z̃ − x̄‖ ≤ 24am+6ᾱr + (2n)−1 ≤ n−1.

Thus (7.142) is proved. Inequality (7.141) follows from (7.138), (7.151), (7.134)
and (7.132). Thus we have shown that (7.138)–(7.140) imply (7.141) and (7.142).
Lemma 7.20 is proved. �

7.13 Proofs of Theorems 7.16–7.18

We use the notations and the definitions from the previous section.
For each natural number n, denote by Fn the set of all (x,A) ∈ X × S(X) such

that the following property holds:
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(P3) There exist y ∈ A and δ > 0 such that for each x̃ ∈ X satisfying ‖x̃ − x‖ ≤ δ,
each B ∈ S(X) satisfying h(A,B) ≤ δ, and each z ∈ B satisfying f (x̃ − z) ≤
ρf (x̃,B) + δ, the inequality ‖z − y‖ ≤ n−1 holds.

Set

F =
∞⋂

n=1

Fn. (7.186)

Lemma 7.21 If

(x,A) ∈F , (7.187)

then the problem f (x − y) → min, y ∈ A, is strongly well posed.

Proof Let (x,A) ∈ F and let n be a natural number. Since (x,A) ∈ F ⊂ Fn, there
exist xn ∈ A and δn > 0 such that the following property holds:

(P4) For each x̃ ∈ X satisfying ‖x̃ − x‖ ≤ δn, each B ∈ S(X) satisfying h(A,B) ≤
δn, and each z ∈ B satisfying f (x̃ − z) ≤ ρf (x̃,B) + δn, the inequality ‖z −
xn‖ ≤ n−1 holds.

Suppose that

{zi}∞i=1 ⊂ A and lim
i→∞f (x − zi) = ρf (x,A). (7.188)

Let n be any natural number. By (7.188) and property (P4), for all sufficiently large
i we have

f (x − zi) ≤ ρf (x,A) + δn and ‖zi − xn‖ ≤ n−1. (7.189)

The second inequality of (7.189) implies that {zi}∞i=1 is a Cauchy sequence and there
exists

x̄ = lim
i→∞ zi . (7.190)

Limits (7.190) and (7.188) imply that

f (x − x̄) = ρf (x,A).

Clearly, x̄ is the unique solution of the problem f (x − z) → min, z ∈ A. Otherwise
we would be able to construct a nonconvergent sequence {zi}∞i=1 satisfying (7.188).
By (7.190) and (7.189),

‖x̄ − xn‖ ≤ n−1, n = 1,2, . . . . (7.191)

Let ε > 0 be given. Choose a natural number

n > 8ε−1. (7.192)



7.13 Proofs of Theorems 7.16–7.18 391

Assume that

x̃ ∈ X, ‖x̃ − x‖ ≤ δn, B ∈ S(X), h(A,B) ≤ δn,

z ∈ B, and f (x̃ − z) ≤ ρf (x̃,B) + δn.

By Property (P4), ‖z − xn‖ ≤ 1/n. When combined with (7.192) and (7.191), this
inequality implies that

‖z − x̄‖ ≤ ‖z − xn‖ + ‖xn − x̄‖ ≤ (2n)−1 < ε.

Thus the problem f (x − z) → min, z ∈ A, is strongly well posed. Lemma 7.21 is
proved. �

Proof of Theorem 7.16 For each integer n ≥ 1, set

Ωn := {
A ∈ S(X) : (x̃,A) ∈Fn

}
(7.193)

and let

Ω :=
∞⋂

n=1

Ωn. (7.194)

By Lemma 7.21, (7.193) and (7.194), for each A ∈ Ω , the problem f (x̃ −z) → min,
z ∈ A, is strongly well posed. In order to prove the theorem, it is sufficient to show
that for each natural number n, the set S(X)\Ωn is σ -porous with respect to (h, H̃ ).
To this end, let n be any natural number.

Fix a natural number

m0 > ‖x̃‖. (7.195)

For each integer m ≥ m0, define

Em := {
A ∈ S(X) : A ∩ {

z ∈ X : ‖z‖ ≤ m
} �= ∅}. (7.196)

Since

S(X) \ Ωn =
∞⋃

m=m0

(Em \ Ωn),

in order to prove the theorem, it is sufficient to show that for any natural number
m ≥ m0, the set Em \ Ωn is porous with respect to (h, H̃ ). Let m ≥ m0 be a natural
number. Define

α∗ = ᾱ(m + 1, n)/2 (7.197)

(see (7.132) and (7.134)). Let A ∈ S(X) and r ∈ (0,1]. There are two cases:
case (1), where

A ∩ {
z ∈ X : ‖z‖ ≤ m + 1

}= ∅ (7.198)
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and case (2), where

A ∩ {
z ∈ X : ‖z‖ ≤ m + 1

} �= ∅. (7.199)

Consider the first case.
Let

B ∈ S(X) be such that h(A,B) ≤ 2−m−2. (7.200)

We claim that B /∈ Em. Assume the contrary. Then there is u ∈ X such that

u ∈ B and ‖u‖ ≤ m. (7.201)

By (7.201) and (7.128),

ρ(u,A) ≤ ρ(u,B) + ∣∣ρ(u,B) − ρ(u,A)
∣∣≤ hm(A,B). (7.202)

The definition of hm (see (7.128)) and (7.200) imply that

hm(A,B)
(
1 + hm(A,B)

)−1 ≤ h(A,B)2m ≤ 2−2,

hm(A,B) ≤ hm(A,B)2−2 + 2−2

and

hm(A,B) ≤ 1/3.

When combined with (7.202), this implies that there is v ∈ A such that ‖u − v‖ ≤
1/2. Together with (7.201) this inequality implies that ‖v‖ ≤ m + 1/2, a contradic-
tion (see (7.198)). Therefore B /∈ Em, as claimed. Thus we have shown that

{
B ∈ S(X) : h(A,B) ≤ 2−m−2}∩ Em = ∅. (7.203)

Now consider the second case. Then by Lemma 7.20, (7.195) and (7.199), there
exists x̄ ∈ X such that

ρ(x̄,A) ≤ r/8

and such that for the set Ã = A ∪ {x̄}, the following property holds:

(P5) if B ∈ S(X), h(Ã,B) ≤ ᾱ(m + 1, n)r , ỹ ∈ X, ‖ỹ − x̃‖ ≤ ᾱ(m + 1, n)r , and
z ∈ B satisfies

f (ỹ − z) ≤ ρf (ỹ,B) + ᾱ(m + 1, n),

then

‖z − x̄‖ ≤ n−1 and h(A,B) ≤ r.

Clearly,

H̃ (A, Ã) ≤ r/8.
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Property (P5), (7.193) and the definition of Fn (see (P3)) imply that
{
B ∈ S(X) : h(Ã,B) ≤ ᾱ(m + 1, n)r/2

}⊂ Ωn.

Thus in both cases we have
{
B ∈ S(X) : h(Ã,B) ≤ α∗r/2

}∩ (Em \ Ωn) = ∅. (7.204)

(Note that in the first case (7.204) is true with Ã = A.)
Therefore we have shown that the set Em \ Ωn is porous with respect to (h, H̃ ).

Theorem 7.16 is proved. �

Proof of Theorem 7.17 By Lemma 7.21, in order to prove the theorem, it is sufficient
to show that for any natural number n, the set (X × S(X)) \ Fn is σ -porous in
X × S(X) with respect to (h, H̃ ). To this end, let n be a natural number. For each
natural number m, define

Em = {
(x,A) ∈ X × S(X) : ‖x‖ ≤ m and A ∩ {

z ∈ X : ‖z‖ ≤ m
} �= ∅}. (7.205)

Since

(
X × S(X)

) \Fn =
∞⋃

m=1

Em \Fn,

in order to prove the theorem it is sufficient to show that for each natural number m,
the set Em \Fn is porous in X × S(X) with respect to (h, H̃ ).

Let m be a natural number. Define α∗ by (7.197). Assume that (x̃ × A) ∈ X ×
S(X) and r ∈ (0,1].

There are three cases:
case (1), where

‖x̃‖ > m + 1,

case (2), where

‖x̃‖ ≤ m + 1 and
{
z ∈ A : ‖z‖ ≤ m + 1

}= ∅, (7.206)

and case (3), where

‖x̃‖ ≤ m + 1 and
{
z ∈ A : ‖z‖ ≤ m + 1

} �= ∅. (7.207)

In the first case,
{
(y,B) ∈ X × S(X) : d1

(
(x̃,A), (y,B)

)≤ 2−1}∩ Em = ∅. (7.208)

Next, consider the second case. In the proof of Theorem 7.16 we have shown that

if B ∈ S(X) satisfies h(A,B) ≤ 2−m−2, then

B ∩ {
z ∈ X : ‖z‖ ≤ m

}= ∅
and
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{
(y,B) ∈ X × S(X) : d1

(
(y,B), (x̃,A)

)≤ 2−m−2}∩ Em = ∅. (7.209)

Finally, consider the third case. Then by Lemma 7.20, there exists x̄ ∈ X such that
ρ(x̄,A) ≤ r/8 and such that for the set Ã = A ∪ {x̄}, property (P5) holds. Clearly,

d2
(
(x̃,A), (x̃, Ã)

)= H̃ (A, Ã) ≤ r/8.

Property (P5) implies that
{
(ỹ,B) ∈ X × S(X) : d1

(
(ỹ,B), (x̃, Ã)

)≤ ᾱ(m + 1, n)r/2
}⊂ Fn.

Hence in all three cases we have
{
(ỹ,B) ∈ X × S(X) : d1

(
(ỹ,B), (x̃, Ã)

)≤ α∗r
}∩ (Em \Fn) = ∅. (7.210)

Note that in the first and second cases, (7.210) is true with A = Ã. Therefore we
have shown that the set Em \Fn is porous with respect to (d1, d2). Theorem 7.17 is
proved. �

Proof of Theorem 7.18 Let {xi}∞i=1 be a countable dense subset of X0. By countable
dense subset of X0. By Theorem 7.16, for each Fi ⊂ S(X) such that S(X)\Fi is σ -
porous in S(X) with respect to (h, H̃ ) and such that for each A ∈ S(X), the problem
f (xi − z) → min, z ∈ X, is strongly well posed. Set

F :=
∞⋂

i=1

Fi . (7.211)

Clearly, S(X) \F is a σ -porous subset of S(X) with respect to (h, H̃ ).
Let A ∈ F . Assume that n and i are natural numbers. Since the problem f (xi −

z) → min, z ∈ A, is strongly well posed, there exists a number δin > 0 and a unique
x̄i ∈ A such that

f (xi − x̄i ) = ρf (xi,A) (7.212)

and the following property holds:

(P6) if y ∈ X satisfies ‖y − xi‖ ≤ δin, B ∈ S(X) satisfies h(A,B) ≤ δin, and z ∈ B

satisfies

f (y − z) ≤ ρf (y,B) + δin, (7.213)

then ‖z − x̄i‖ ≤ (2n)−1.

Define

F =
∞⋂

q=1

⋃{{
z ∈ X : ‖z − xi‖ < δin

} : i = 1,2, . . . , n = q, q + 1, . . .
}∩ X0.

(7.214)
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Clearly, F is a countable intersection of open everywhere dense subsets of X0. Let

x̃ ∈ F. (7.215)

For each natural number q , there exist natural numbers nq ≥ q and iq such that

‖x̃ − xiq‖ < δiqnq . (7.216)

Assume that

{yk}∞k=1 ⊂ A and lim
k→∞f (x̃ − yk) = ρf (x̃,A). (7.217)

Let q be a natural number. Then for all sufficiently large natural numbers k,

f (x̃ − yk) ≤ ρf (x̃,A) + δiqnq ,

and by property (P6) and (7.216),

‖yk − x̄iq ‖ ≤ (2nq)−1 ≤ (2q)−1. (7.218)

This implies that {yk}∞k=1 is a Cauchy sequence and there exists x̄ = limk→∞ yk .
By (7.217), f (x̃− x̄) = ρf (x̃,A). Clearly, x̄ is the unique minimizer for the problem
f (x̃ − z) → min, z ∈ A. Otherwise, we would be able to construct a nonconvergent
sequence {yk}∞k=1. By (7.218),

‖x̄ − xiq ‖ ≤ (2q)−1, q = 1,2, . . . . (7.219)

Let ε > 0 be given. Choose a natural number

q > 8ε−1.

Set

δ = δiqnq − ‖x̃ − xiq ‖. (7.220)

By (7.216), δ > 0. Assume that

y ∈ X, ‖y − x̃‖ ≤ δ, B ∈ S(X), h(A,B) ≤ δ, (7.221)

and

z ∈ B, f (y − z) ≤ ρf (y,B) + δ.

By (7.220) and (7.221),

‖y − xiq ‖ ≤ ‖y − x̃‖ + ‖x̃ − xiq ‖ ≤ δiqnq . (7.222)

By (7.222), (7.220) and property (P6), ‖z − x̄iq ‖ ≤ (2q)−1. When combined with
(7.219), this inequality implies that ‖z − x̄‖ ≤ q−1 < ε. This completes the proof of
Theorem 7.18. �



Chapter 8
Descent Methods

8.1 Discrete Descent Methods for a Convex Objective Function

Given a Lipschitzian convex function f on a Banach space X, we consider a com-
plete metric space A of vector fields V on X with the topology of uniform conver-
gence on bounded subsets. With each such vector field we associate two iterative
processes. We introduce the class of regular vector fields V ∈ A and prove (under
two mild assumptions on f ) that the complement of the set of regular vector fields
is not only of the first category, but also σ -porous. We then show that for a locally
uniformly continuous regular vector field V and a coercive function f , the values
of f tend to its infimum for both processes. These results were obtained in [136].

Assume that (X,‖ · ‖) is a Banach space with norm ‖ · ‖, (X∗,‖ · ‖∗) is its dual
space with the norm ‖ · ‖∗, and f : X → R1 is a convex continuous function which
is bounded from below. Recall that for each pair of sets A,B ⊂ X∗,

H(A,B) = max
{

sup
x∈A

inf
y∈B

‖x − y‖∗, sup
y∈B

inf
x∈A

‖x − y‖∗
}

is the Hausdorff distance between A and B .
For each x ∈ X, let

∂f (x) := {
l ∈ X∗ : f (y) − f (x) ≥ l(y − x) for all y ∈ X

}

be the subdifferential of f at x. It is well known that the set ∂f (x) is nonempty and
bounded (in the norm topology). Set

inf(f ) := inf
{
f (x) : x ∈ X

}
.

Denote by A the set of all mappings V : X → X such that V is bounded on every
bounded subset of X (i.e., for each K0 > 0 there is K1 > 0 such that ‖V x‖ ≤ K1 if
‖x‖ ≤ K0), and for each x ∈ X and each l ∈ ∂f (x), l(V x) ≤ 0. We denote by Ac

the set of all continuous V ∈ A, by Au the set of all V ∈ A which are uniformly

S. Reich, A.J. Zaslavski, Genericity in Nonlinear Analysis,
Developments in Mathematics 34, DOI 10.1007/978-1-4614-9533-8_8,
© Springer Science+Business Media New York 2014

397

http://dx.doi.org/10.1007/978-1-4614-9533-8_8


398 8 Descent Methods

continuous on each bounded subset of X, and by Aau the set of all V ∈A which are
uniformly continuous on the subsets

{
x ∈ X : ‖x‖ ≤ n and f (x) ≥ inf(f ) + 1/n

}

for each integer n ≥ 1. Finally, let Aauc = Aau ∩Ac.
Next we endow the set A with a metric ρ: For each V1,V2 ∈ A and each integer

i ≥ 1, we first set

ρi(V1,V2) := sup
{‖V1x − V2x‖ : x ∈ X and ‖x‖ ≤ i

}
(8.1)

and then define

ρ(V1,V2) :=
∞∑

i=1

2−i
[
ρi(V1,V2)

(
1 + ρi(V1,V2)

)−1]
. (8.2)

Clearly (A, ρ) is a complete metric space. It is also not difficult to see that the
collection of the sets

E(N,ε) = {
(V1,V2) ∈A×A : ‖V1x − V2x‖ ≤ ε, x ∈ X,‖x‖ ≤ N

}
, (8.3)

where N,ε > 0, is a base for the uniformity generated by the metric ρ. Evidently
Ac, Au, Aau and Aauc are closed subsets of the metric space (A, ρ). In the sequel
we assign to all these spaces the same metric ρ.

To compute inf(f ), we are going to associate with each vector field W ∈ A two
gradient-like iterative processes (see (8.5) and (8.7) below).

The study of steepest descent and other minimization methods is a central topic in
optimization theory. See, for example, [2, 19, 44, 47, 69, 73, 103] and the references
mentioned therein. Note, in particular, that the counterexample studied in Sect. 2.2
of Chap. VIII of [73] shows that, even for two-dimensional problems, the simplest
choice for a descent direction, namely the normalized steepest descent direction,

V (x) = argmin
{

max
l∈∂f (x)

〈l, d〉 : ‖d‖ = 1
}
,

may produce sequences the functional values of which fail to converge to the infi-
mum of f . This vector field V belongs to A and the Lipschitzian function f attains
its infimum. The steepest descent scheme (Algorithm 1.1.7) presented in Sect. 1.1
of Chap. VIII of [73] corresponds to any of the two iterative processes we consider
below.

In infinite dimensions the problem is even more difficult and less understood.
Moreover, positive results usually require special assumptions on the space and the
functions. However, as shown in our paper [135] (under certain assumptions on the
function f ), for an arbitrary Banach space X and a generic vector field V ∈ A, the
values of f tend to its infimum for both processes. In that paper, instead of consid-
ering a certain convergence property for a method generated by a single vector field
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V , we investigated it for the whole space A and showed that this property held for
most of the vector fields in A.

Here we introduce the class of regular vector fields V ∈ A. Our first result, The-
orem 8.2, shows (under the two mild assumptions A(i) and A(ii) on f stated below)
that the complement of the set of regular vector fields is not only of the first cate-
gory, but also σ -porous in each of the spaces A, Ac, Au, Aau and Aauc. We then
show (Theorem 8.3) that for any regular vector field V ∈Aau, if the constructed se-
quence {xi}∞i=0 ⊂ X has a bounded subsequence (in the case of the first process) or
is bounded (in the case of the second one), then the values of the function f tend to
its infimum for both processes. If, in addition to A(i) and A(ii), f also satisfies the
assumption A(iii), then this convergence result is valid for any regular V ∈A. Note
that if the function f is coercive, then the constructed sequences will always stay
bounded. Thus we see, by Theorem 8.2, that for a coercive f the set of divergent
descent methods is σ -porous. Our last result, Theorem 8.4, shows that in this case
we obtain not only convergence, but also stability.

Our results are established in any Banach space and for those convex functions
which satisfy the following two assumptions.

A(i) There exists a bounded (in the norm topology) set X0 ⊂ X such that

inf(f ) = inf
{
f (x) : x ∈ X

}= inf
{
f (x) : x ∈ X0

};
A(ii) for each r > 0, the function f is Lipschitzian on the ball {x ∈ X : ‖x‖ ≤ r}.

Note that we may assume that the set X0 in A(i) is closed and convex. It is clear
that assumption A(i) holds if lim‖x‖→∞ f (x) = ∞.

We say that a mapping V ∈ A is regular if for any natural number n, there exists
a positive number δ(n) such that for each x ∈ X satisfying

‖x‖ ≤ n and f (x) ≥ inf(f ) + 1/n,

and each l ∈ ∂f (x), we have

l(V x) ≤ −δ(n).

Denote by F the set of all regular vector fields V ∈ A.
It is not difficult to verify the following property of regular vector fields. It means,

in particular, that G = A \ F is a face of the convex cone A in the sense that if a
non-trivial convex combination of two vector fields in A belongs to G, then both of
them must belong to G.

Proposition 8.1 Assume that V1,V2 ∈ A, V1 is regular, φ : X → [0,1], and that for
each integer n ≥ 1,

inf
{
φ(x) : x ∈ X and ‖x‖ ≤ n

}
> 0.

Then the mapping x → φ(x)V1x + (1 − φ(x))V2x, x ∈ X, also belongs to F .
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Our first result shows that in a very strong sense most of the vector fields in A
are regular.

Theorem 8.2 Assume that both A(i) and A(ii) hold. Then A \ F (respectively,
Ac \F , Aau \ F and Aauc \ F ) is a σ -porous subset of the space A (respectively,
Ac, Aau and Aauc). Moreover, if f attains its infimum, then the set Au \ F is also
a σ -porous subset of the space Au.

Now let W ∈A. We associate with W two iterative processes.
For x ∈ X we denote by PW(x) the set of all

y ∈ {x + αWx : α ∈ [0,1]}

such that

f (y) = inf
{
f (x + βWx) : β ∈ [0,1]}. (8.4)

Given any initial point x0 ∈ X, one can construct a sequence {xi}∞i=0 ⊂ X such that
for all i = 0,1, . . . ,

xi+1 ∈ PW(xi). (8.5)

This is our first iterative process.
Next we describe the second iterative process.
Given a sequence a = {ai}∞i=0 ⊂ (0,1] such that

lim
i→∞ai = 0 and

∞∑

i=0

ai = ∞, (8.6)

we construct for each initial point x0 ∈ X, a sequence {xi}∞i=0 ⊂ X according to the
following rule:

xi+1 = xi + aiW(xi) if f
(
xi + aiW(xi)

)
< f (xi),

xi+1 = xi otherwise,
(8.7)

where i = 0,1, . . . .
We will also make use of the following assumption:

A(iii) For each integer n ≥ 1, there exists δ > 0 such that for each x1, x2 ∈ X satis-
fying

‖x1‖,‖x2‖ ≤ n, f (xi) ≥ inf(f ) + 1/n, i = 1,2, and

‖x1 − x2‖ ≤ δ,

the following inequality holds:

H
(
∂f (x1), ∂f (x2)

)≤ 1/n.
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This assumption is certainly satisfied if f is differentiable and its derivative is
uniformly continuous on those bounded subsets of X over which the infimum of f

is larger than inf(f ).
Our next result is a convergence theorem for those iterative processes associated

with regular vector fields. It is of interest to note that we obtain convergence when
either the regular vector field W or the subdifferential ∂f enjoy a certain uniform
continuity property.

Theorem 8.3 Assume that W ∈ A is regular, A(i), A(ii) are valid and that at least
one of the following conditions holds: 1. W ∈ Aau; 2. A(iii) is valid. Then the fol-
lowing two assertions are true:

(i) Let the sequence {xi}∞i=0 ⊂ X satisfy (8.5) for all i = 0,1, . . . . If

lim inf
i→∞ ‖xi‖ < ∞,

then limi→∞ f (xi) = inf(f ).
(ii) Let a sequence a = {ai}∞i=0 ⊂ (0,1] satisfy (8.6) and let the sequence {xi}∞i=0 ⊂

X satisfy (8.7) for all i = 0,1, . . . . If {xi}∞i=0 is bounded, then

lim
i→∞f (xi) = inf(f ).

Finally, we impose an additional coercivity condition on f and establish the fol-
lowing stability theorem. Note that this coercivity condition implies A(i).

Theorem 8.4 Assume that f (x) → ∞ as ‖x‖ → ∞, V ∈ A is regular, A(ii) is valid
and that at least one of the following conditions holds: 1. V ∈ Aau; 2. A(iii) is valid.

Let K,ε > 0 be given. Then there exist a neighborhood U of V in A and a natural
number N0 such that the following two assertions are true:

(i) For each W ∈ U and each sequence {xi}N0
i=0 ⊂ X which satisfies ‖x0‖ ≤ K and

(8.5) for all i = 0, . . . ,N0 − 1, the inequality f (xN0) ≤ inf(f ) + ε holds.
(ii) For each sequence of numbers a = {ai}∞i=0 ⊂ (0,1] satisfying (8.6), there exists

a natural number N such that for each W ∈ U and each sequence {xi}Ni=0 ⊂
X which satisfies ‖x0‖ ≤ K and (8.7) for all i = 0, . . . ,N − 1, the inequality
f (xN) ≤ inf(f ) + ε holds.

8.2 An Auxiliary Result

Assume that K is a nonempty, closed and convex subset of X. We consider the
topological subspace K ⊂ X with the relative topology. For each function h : K →
R1 define inf(h) := inf{h(x) : x ∈K}.
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Proposition 8.5 Let g : K → R1 be a convex, bounded from below, function which
is uniformly continuous on bounded subsets of K. Assume that there exists a
bounded and convex set K0 ⊂ K such that for each x ∈ K, there exists y ∈ K0 for
which g(y) ≤ g(x).

Then there exists a continuous mapping Ag : K → K0 which satisfies g(Agx) ≤
g(x) for all x ∈ K and has the following two properties:

B(i) For each integer n ≥ 1, the mapping Ag is uniformly continuous on the set

{
x ∈K : ‖x‖ ≤ n and g(x) ≥ inf(g) + 1/n

};
B(ii) if g(x) ≥ inf(g) + ε for some ε > 0 and x ∈ K, then

g(Agx) ≤ g(x) − ε/2.

Proof If there exists x ∈ K for which g(x) = inf(g), then there exists x∗ ∈ K0 for
which g(x∗) = inf(g) and we can set Ag(y) = x∗ for all y ∈ K. Therefore we may
assume that

{
x ∈ K : g(x) = inf(g)

}= ∅.

For each integer i ≥ 0, there exists yi ∈K0 such that

g(yi) ≤ (
4(i + 1)

)−1 + inf(g). (8.8)

Consider now the linear segments which join y0, y1, . . . , yn, . . . (all contained in
K0 by the convexity of K0), represented as a continuous curve γ : [0,∞) → K0 and
parametrized so that

γ (t) = yi + (t − i)(yi+1 − yi) if i ≤ t < i + 1 (i = 0,1,2, . . . ). (8.9)

The curve γ is Lipschitzian because the set K0 is bounded. Define

Agx = γ
(
g(x) − (

inf(g)
)−1)

, x ∈K. (8.10)

It is easy to see that Agx ∈ K0 for all x ∈ K, the mapping Ag is continuous on K
and that it is uniformly continuous on the subsets

{
x ∈ K : ‖x‖ ≤ n and g(x) ≥ inf(g) + 1/n

}

for each integer n ≥ 1.
Assume that

x ∈ K, ε > 0 and g(x) ≥ inf(g) + ε. (8.11)

There is an integer i ≥ 0 such that

g(x) − inf(g) ∈ ((i + 1)−1, i−1] (8.12)
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(here 0−1 = ∞). Then

(
g(x) − inf(g)

)−1 ∈ [i, i + 1) (8.13)

and by (8.10), (8.9) and (8.13),

Agx = γ
(
g(x) − (

inf(g)
)−1)= yi + ((

g(x) − inf(g)
)−1 − i

)
(yi+1 − yi).

It follows from this relation, (8.8), (8.11), (8.12) and the convexity of g that

g(Agx) ≤ max
{
g(yi), g(yi+1)

}≤ inf(g) + (
4(i + 1)

)−1

≤ inf(g) + 4−1(g(x) − inf(g)
)= g(x) − 3 · 4−1(g(x) − inf(g)

)

≤ g(x) − 3 · 4−1ε.

This completes the proof of Proposition 8.5. �

8.3 Proof of Theorem 8.2

We first note the following simple lemma.

Lemma 8.6 Assume that V1,V2 ∈A, φ : X → [0,1], and that

V x = (
1 − φ(x)

)
V1x + φ(x)V2x, x ∈ X.

Then V ∈A. If V1,V2 ∈Ac and φ is continuous on X, then V ∈ Ac. If V1,V2 ∈ Au

(respectively, Aau, Aauc) and φ is uniformly continuous on bounded subsets of X,
then V ∈Au (respectively, Aau, Aauc).

For each pair of integers m,n ≥ 1, denote by Ωmn the set of all V ∈A such that

‖V x‖ ≤ m for all x ∈ X satisfying ‖x‖ ≤ n + 1 (8.14)

and

sup
{
l(V x) : x ∈ X,‖x‖ ≤ n,f (x) ≥ inf(f ) + 1/n, l ∈ ∂f (x)

}= 0. (8.15)

Clearly,
∞⋃

m=1

∞⋃

n=1

Ωmn = A \F . (8.16)

Therefore in order to prove Theorem 8.2 it is sufficient to show that for each pair of
integers m,n ≥ 1, the set Ωmn (respectively, Ωmn ∩Ac, Ωmn ∩Aau, Ωmn ∩Aauc)
is a porous subset of A (respectively, Ac, Aau, Aauc), and if f attains its minimum,
then Ωmn ∩Au is a porous subset of Au.
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By assumption A(i), there is a bounded and convex set X0 ⊂ X with the follow-
ing property:

C(i) For each x ∈ X, there is x0 ∈ X0 such that f (x0) ≤ f (x). If f attains its mini-
mum, then X0 is a singleton.

By Proposition 8.5, there is a continuous mapping Af : X → X such that

Af (X) ⊂ X0, f (Af x) ≤ f (x) for all x ∈ X, (8.17)

and which has the following two properties:

C(ii) If x ∈ X, ε > 0 and f (x) ≥ inf(f ) + ε, then f (Af x) ≤ f (x) − ε/2;
C(iii) for any natural number n, the mapping Af is uniformly continuous on the set

{
x ∈ X : ‖x‖ ≤ n and f (x) ≥ inf(f ) + 1/n

}
.

Let m,n ≥ 1 be integers. In the sequel we will use the piecewise linear function
φ : R1 → R1 defined by

φ(x) = 1, x ∈ [−n,n], φ(x) = 0, |x| ≥ n + 1 (8.18)

and

φ(−n − 1 + t) = t, t ∈ [0,1], φ(n + t) = 1 − t, t ∈ [0,1].
By assumption A(ii), there is c0 > 1 such that

∣∣f (x) − f (y)
∣∣≤ c0‖x − y‖ (8.19)

for all x, y ∈ X satisfying ‖x‖,‖y‖ ≤ n + 2. Choose α ∈ (0,1) such that

αc02n+2 < (2n)−12−1(1 − α)
(
m + n + 2 + sup

{‖x‖ : x ∈ X0
})−1

. (8.20)

Assume that V ∈ Ωmn and r ∈ (0,1]. Let

γ = 2−1(1 − α)r
(
m + n + 2 + sup

{‖x‖ : x ∈ X0
})−1 (8.21)

and define Vγ : X → X by

Vγ x = (
1 − γφ

(‖x‖))V x + γφ
(‖x‖)(Af x − x), x ∈ X. (8.22)

By Lemma 8.6, Vγ ∈ A and moreover, if V ∈ Ac (respectively, Aau, Aauc), then
Vγ ∈ Ac (respectively, Aau, Aauc), and if V ∈ Au and f attains its minimum, then
Af is constant (see C(i)) and Vγ ∈Au.

Next we estimate the distance ρ(Vγ ,V ). It follows from (8.22) and the definition
of φ (see (8.18)) that Vγ x = V x for all x ∈ X satisfying ‖x‖ ≥ n + 1 and

ρi(Vγ ,V ) = ρn+1(Vγ ,V ) for all integers i ≥ n + 1.
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Since V ∈ Ωmn, the above equality, when combined with (8.2), (8.1), (8.22), (8.18)
and (8.17), yields

ρ(Vγ ,V ) ≤
∞∑

i=1

2−iρi(V ,Vγ ) ≤ ρn+1(V ,Vγ )

= sup
{‖V x − Vγ x‖ : x ∈ X,‖x‖ ≤ n + 1

}

≤ sup
{
γφ

(‖x‖)(‖V x‖ + ‖Af x − x‖) : x ∈ X,‖x‖ ≤ n + 1
}

≤ γ (m + 1) + γ (n + 1) + γ sup
{‖x‖ : x ∈ X0

}
. (8.23)

Assume that W ∈A with

ρ(W,Vγ ) ≤ αr. (8.24)

By (8.24), (8.23) and (8.21),

ρ(W,V ) ≤ αr + γ
(
m + n + 2 + sup

{‖x‖ : x ∈ X0
})≤ 2−1(1 + α)r < r. (8.25)

Assume now that

x ∈ X, ‖x‖ ≤ n, f (x) ≥ inf(f ) + 1/n and l ∈ ∂f (x). (8.26)

Inequality (8.19) implies that

‖l‖∗ ≤ c0.

By (8.22), (8.26), the definition of φ (see (8.18)) and C(ii),

l(Vγ x) = l
((

1 − γφ
(‖x‖))V x + γφ

(‖x‖)(Af x − x)
)≤ γφ

(‖x‖)l(Af x − x)

= γ l(Af x − x) ≤ γ
(
f (Af x) − f (x)

)≤ −γ (2n)−1. (8.27)

It follows from (8.26) and (8.1) that

‖Wx − Vγ x‖ ≤ ρn(W,Vγ ). (8.28)

By (8.24), (8.28) and the inequality ‖l‖∗ ≤ c0, we have

2−nρn(W,Vγ )
(
1 + ρn(W,Vγ )

)−1 ≤ ρ(W,Vγ ) ≤ αr,

ρn(W,Vγ )
(
1 + ρn(W,Vγ )

)−1 ≤ 2nαr,

ρn(W,Vγ )
(
1 − 2nαr

)≤ 2nαr, ‖Wx − Vγ x‖ ≤ 2nαr
(
1 − 2nαr

)−1
,

(8.29)

and
∣∣l(Wx) − l(Vγ x)

∣∣≤ c02nαr
(
1 − 2nαr

)−1
. (8.30)

By (8.30), (8.27), (8.21) and (8.20),
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l(Wx) ≤ l(Vγ x) + c02nαr
(
1 − 2nαr

)−1

≤ −γ (2n)−1 + c02nαr
(
1 − 2nαr

)−1

= c02nαr
(
1 − 2nαr

)−1

− (2n)−12−1(1 − α)r
(
m + n + 2 + sup

{‖x‖ : x ∈ X0
})−1

≤ −r
[−c02nα · 2 + (2n)−12−1(1 − α)

(
m + n + 2 + sup

{‖x‖ : x ∈ X0
})−1]

≤ −2rc02nα.

Thus
{
W ∈ A : ρ(W,Vγ ) ≤ αr

}∩ Ωmn = ∅.

In view of (8.25), we can conclude that Ωmn is porous in A, Ωmn ∩Ac is porous in
Ac, Ωmn ∩Aau is porous in Aau, Ωmn ∩Aauc is porous in Aauc, and if f attains its
minimum, then Ωmn∩Au is porous in Au. This completes the proof of Theorem 8.2.

8.4 A Basic Lemma

The following result is our key lemma.

Lemma 8.7 Assume that V ∈ A is regular, A(i), A(ii) are valid and that at least
one of the following conditions holds: 1. V ∈Aau; 2. A(iii) is valid.

Let K̄ and ε̄ be positive. Then there exist a neighborhood U of V in A and
positive numbers ᾱ and γ such that for each W ∈ U , each x ∈ X satisfying

‖x‖ ≤ K̄, f (x) ≥ inf(f ) + ε̄, (8.31)

and each β ∈ (0, ᾱ],
f (x) − f (x + βWx) ≥ βγ. (8.32)

Proof There exists K0 > K̄ + 1 such that

‖V x‖ ≤ K0 if x ∈ X and ‖x‖ ≤ K̄ + 2. (8.33)

By Assumption A(ii), there exists a constant L0 > 4 such that
∣∣f (x1) − f (x2)

∣∣≤ L0‖x1 − x2‖ (8.34)

for all x1, x2 ∈ X satisfying ‖x1‖,‖x2‖ ≤ 2K0 + 4. Since V is regular, there exists
a positive number δ0 ∈ (0,1) such that

ξ(Vy) ≤ −δ0 (8.35)
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for each y ∈ X satisfying ‖y‖ ≤ K0 + 4, f (y) ≥ inf(f ) + ε̄/4, and each ξ ∈ ∂f (y).
Choose δ1 ∈ (0,1) such that

4δ1(K0 + L0) < δ0. (8.36)

There exists a positive number ᾱ such that the following conditions hold:

8ᾱ(L0 + 1)(K0 + 1) < min{1, ε̄}; (8.37)

(a) if V ∈Aau, then for each x1, x2 ∈ X satisfying

‖x1‖,‖x2‖ ≤ K̄ + 4, min
{
f (x1), f (x2)

}≥ inf(f ) + ε̄/4,

and ‖x1 − x2‖ ≤ ᾱ(K0 + 1),
(8.38)

the following inequality is true:

‖V x1 − V x2‖ ≤ δ1; (8.39)

(b) if A(iii) is valid, then for each x1, x2 ∈ X satisfying (8.38), the following
inequality is true:

H
(
∂f (x1), ∂f (x2)

)
< δ1. (8.40)

Next choose a positive number δ2 such that

8δ2(L0 + 1) < δ1δ0. (8.41)

Now choose a positive number γ such that

γ < δ0/8 (8.42)

and define

U := {
W ∈A : ‖Wx − V x‖ ≤ δ2, x ∈ X and ‖x‖ ≤ K̄

}
. (8.43)

Assume that W ∈ U , x ∈ X satisfies (8.31), and that β ∈ (0, ᾱ]. We intend to
show that (8.32) holds. To this end, we first note that (8.31), (8.33), (8.37), (8.43)
and (8.41) yield

‖x + βV x‖ ≤ K̄ + βK0 ≤ K̄ + ᾱK0 ≤ K̄ + 1

and

‖x + βWx‖ ≤ δ2β + ‖x + βV x‖ ≤ K̄ + 1 + ᾱδ2 ≤ K̄ + 2.

By these inequalities, the definition of L0 (see (8.34)) and (8.43),

∣∣f (x + βV x) − f (x + βWx)
∣∣≤ L0β‖Wx − V x‖ ≤ L0βδ2. (8.44)
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Next we will estimate f (x) − f (x + βV x). There exist θ ∈ [0, β] and l ∈ ∂f (x +
θV x) such that

f (x + βV x) − f (x) = l(V x)β. (8.45)

By (8.31), (8.33) and (8.37),

‖x‖ ≤ K̄, ‖V x‖ ≤ K0, ‖θV x‖ ≤ ᾱK0, and

‖x + θV x‖ ≤ K̄ + 1.
(8.46)

It follows from (8.46) and the definition of L0 (see (8.34)) that

‖l‖∗ ≤ L0. (8.47)

It follows from (8.46), the definition of L0 (see (8.34)), (8.37) and (8.31) that

f (x + θV x) ≥ f (x) − L0‖θV x‖
≥ f (x) − L0ᾱK0 ≥ f (x) − 8−1ε̄ ≥ inf(f ) + ε̄/2. (8.48)

Consider the case where V ∈Aau. By (8.47), condition (a), (8.46), (8.31) and (8.48),

βl(V x) ≤ βl
(
V (x + θV x)

)+ β‖l‖∗
(∥∥V (x + θV x) − V x

∥∥)

≤ βl
(
V (x + θV x)

)+ βL0
∥∥V (x + θV x) − V x

∥∥

≤ βl
(
V (x + θV x)

)+ βL0δ1. (8.49)

By (8.46), (8.48) and the definition of δ0 (see (8.35)),

l
(
V (x + θV x)

)≤ −δ0.

When combined with (8.49) and (8.36), this inequality implies that

βl(V x) ≤ −βδ0 + βL0δ1 ≤ −βδ0/2.

By these inequalities and (8.45),

f (x + βV x) − f (x) ≤ −βδ0/2. (8.50)

Assume now that A(iii) is valid. It then follows from condition (b), (8.46), (8.31)
and (8.48) that

H
(
∂f (x), ∂f (x + θV x)

)
< δ1.

Therefore there exists l̄ ∈ ∂f (x) such that ‖l̄− l‖∗ ≤ δ1. When combined with (8.45)
and (8.46), this fact implies that

f (x + βV x) − f (x) = βl(V x) ≤ βl̄(V x) + β‖l̄ − l‖∗‖V x‖
≤ βl̄(V x) + βδ1K0. (8.51)
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It follows from the definition of δ0 (see (8.35)) and (8.31) that βl̄(V x) ≤ −βδ0.
Combining this inequality with (8.51) and (8.36), we see that

f (x + βV x) − f (x) ≤ −βδ0 + βδ1K0 ≤ −βδ0/2.

Thus in both cases (8.50) is true. It now follows from (8.50), (8.44), (8.41) and
(8.42) that

f (x + βWx) − f (x) ≤ f (x + βV x) − f (x) + f (x + βWx) − f (x + βV x)

≤ −βδ0/2 + L0βδ2 ≤ −βδ0/4 ≤ −γβ.

Thus (8.32) holds. Lemma 8.7 is proved. �

8.5 Proofs of Theorems 8.3 and 8.4

Proof of Theorem 8.3 To show that assertion (i) holds, suppose that

{xi}∞i=0 ⊂ X, xi+1 ∈ PWxi, i = 0,1, . . . , and lim inf
i→∞ ‖xi‖ < ∞. (8.52)

We will show that

lim
i→∞f (xi) = inf(f ). (8.53)

Assume the contrary. Then there exists ε > 0 such that

f (xi) ≥ inf(f ) + ε, i = 0,1, . . . . (8.54)

There exists a number S > 0 and a strictly increasing sequence of natural numbers
{ik}∞k=1 such that

‖xik‖ ≤ S, k = 1,2, . . . . (8.55)

By Lemma 8.7, there exist numbers α,γ ∈ (0,1) such that for each x ∈ X satisfying

‖x‖ ≤ S, f (x) ≥ inf(f ) + ε, (8.56)

and each β ∈ (0, α],
f (x) − f (x + βWx) ≥ γβ. (8.57)

It follows from (8.52), (8.4), (8.5), the definitions of α and γ , (8.55) and (8.54) that
for each integer k ≥ 1,

f (xik ) − f (xik+1) ≥ f (xik ) − f (xik + αWxik ) ≥ γ α.
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Since this inequality holds for all integers k ≥ 1, we conclude that

lim
n→∞

(
f (x0) − f (xn)

)= ∞.

This contradicts our assumption that f is bounded from below. Therefore (8.53) and
assertion (i) are indeed true, as claimed.

We turn now to assertion (ii). Let a = {ai}∞i=0 ⊂ (0,1] satisfy (8.6) and let a
bounded {xi}∞i=0 ⊂ X satisfy (8.7) for all integers i ≥ 0. We will show that (8.53)
holds. Indeed, assume that (8.53) is not true. Then there exists ε > 0 such that (8.54)
holds. Since the sequence {xi}∞1=0 is bounded, there exists a number S > 0 such that

S > ‖xi‖, i = 0,1, . . . . (8.58)

By Lemma 8.7, there exist numbers α,γ ∈ (0,1) such that for each x ∈ X satisfying
(8.56) and each β ∈ (0, α], inequality (8.57) holds. Since ai → 0 as i → ∞, there
exists a natural number i0 such that

ai < α for all integers i ≥ i0. (8.59)

Let i ≥ i0 be an integer. Then it follows from (8.58), (8.54), the definitions of α

and γ , and (8.59) that

f (xi) − f (xi + aiWxi) ≥ γ ai, xi+1 = xi + aiWxi,

and

f (xi) − f (xi+1) ≥ γ ai.

Since
∑∞

i=0 ai = ∞, we conclude that

lim
n→∞

(
f (x0) − f (xn)

)= ∞.

The contradiction we have reached shows that (8.53), assertion (ii) and Theorem 8.3
itself are all true. �

Proof of Theorem 8.4 Let

K0 > sup
{
f (x) : x ∈ X,‖x‖ ≤ K + 1

}
(8.60)

and set

E0 = {
x ∈ X : f (x) ≤ K0 + 1

}
. (8.61)

Clearly, E0 is bounded and closed. Choose

K1 > sup
{‖x‖ : x ∈ E0

}+ 1 + K. (8.62)

By Lemma 8.7, there exist a neighborhood U of V in A and numbers α,γ ∈ (0,1)

such that for each W ∈ U , each x ∈ X satisfying

‖x‖ ≤ K1, f (x) ≥ inf(f ) + ε, (8.63)
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and each β ∈ (0, α],
f (x) − f (x + βWx) ≥ γβ. (8.64)

Now choose a natural number N0 which satisfies

N0 > (αγ )−1(K0 + 4 + ∣∣inf(f )
∣∣). (8.65)

First we will show that assertion (i) is true. Assume that W ∈ U , {xi}N0
i=0 ⊂ X,

‖x0‖ ≤ K, and xi+1 ∈ PWxi, i = 0, . . . ,N0 − 1. (8.66)

Our aim is to show that

f (xN0) ≤ inf(f ) + ε. (8.67)

Assume that (8.67) is not true. Then

f (xi) > inf(f ) + ε, i = 0, . . . ,N0. (8.68)

By (8.66) and (8.60)–(8.62), we also have

‖xi‖ ≤ K1, i = 0, . . . ,N0. (8.69)

Let i ∈ {0, . . . ,N0 − 1}. It follows from (8.69), (8.68) and the definitions of U , α

and γ (see (8.63) and (8.64)) that

f (xi) − f (xi+1) ≥ f (xi) − f (xi + αWxi) ≥ γ α.

Summing up from i = 0 to N0 − 1, we conclude that

f (x0) − f (xN0) ≥ N0γ α.

It follows from this inequality, (8.60), (8.65) and (8.66) that

inf(f ) ≤ f (xN0) ≤ f (x0) − N0γ α ≤ K0 − N0γ α ≤ −4 − ∣∣inf(f )
∣∣.

Since we have reached a contradiction, we see that (8.67) must be true and assertion
(i) is proved.

Now we will show that assertion (ii) is also valid. To this end, let a sequence
a = {ai}∞i=0 ⊂ (0,1] satisfy

lim
i→∞ai = 0 and

∞∑

i=0

ai = ∞. (8.70)

Evidently, there exists a natural number N1 such that

ai ≤ α for all i ≥ N1. (8.71)
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Choose a natural number N > N1 + 4 such that

γ

N−1∑

i=N1

ai > K0 + 4 + ∣∣inf(f )
∣∣. (8.72)

Now assume that W ∈ U , {xi}Ni=0 ⊂ X, ‖x0‖ ≤ K , and that (8.7) holds for all i =
0, . . . ,N − 1. We claim that

f (xN) ≤ inf(f ) + ε. (8.73)

Assume the contrary. Then

f (xi) > inf(f ) + ε, i = 0, . . . ,N. (8.74)

Since ‖x0‖ ≤ K , we see by (8.7) and (8.60)–(8.62) that

‖xi‖ ≤ K1, i = 0, . . . ,N. (8.75)

Let i ∈ {N1, . . . ,N − 1}. It follows from (8.75), (8.74), (8.71) and the definitions of
α and γ (see (8.63) and (8.64)) that

f (xi) − f (xi + aiWxi) ≥ γ ai.

This implies that

f (xN1) − f (xN) ≥ γ

N−1∑

i=N1

ai .

By this inequality, (8.7), the inequality ‖x0‖ ≤ K , (8.60) and (8.72), we obtain

inf(f ) ≤ f (xN) ≤ f (xN1) − γ

N−1∑

i=N1

ai

≤ K0 − γ

N−1∑

i=N1

ai < −4 − | inf(f )|.

The contradiction we have reached proves (8.73) and assertion (ii). This completes
the proof of Theorem 8.4. �

8.6 Methods for a Nonconvex Objective Function

Assume that (X,‖ · ‖) is a Banach space, (X∗,‖ · ‖∗) is its dual space, and f : X →
R1 is a function which is bounded from below and Lipschitzian on bounded subsets
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of X. Recall that for each pair of sets A,B ⊂ X∗,

H(A,B) = max
{

sup
x∈A

inf
y∈B

‖x − y‖∗, sup
y∈B

inf
x∈A

‖x − y‖∗
}

is the Hausdorff distance between A and B . For each x ∈ X, let

f 0(x,h) = lim sup
t→0+,y→x

[
f (y + th) − f (y)

]
/t, h ∈ X, (8.76)

be the Clarke derivative of f at the point x [41],

∂f (x) = {
l ∈ X∗ : f 0(x,h) ≥ l(h) for all h ∈ X

}
(8.77)

the Clarke subdifferential of f at x, and

Ξ(x) := inf
{
f 0(x,h) : h ∈ X and ‖h‖ = 1

}
. (8.78)

It is well known that the set ∂f (x) is nonempty and bounded. It should be mentioned
that the functional Ξ was introduced in [176] and used in [182] in order to study
penalty methods in constrained optimization.

Set inf(f ) = inf{f (x) : x ∈ X}. Denote by A the set of all mappings V : X →
X such that V is bounded on every bounded subset of X, and for each x ∈ X,
f 0(x,V x) ≤ 0. We denote by Ac the set of all continuous V ∈ A and by Ab the set
of all V ∈ A which are bounded on X. Finally, let Abc = Ab ∩Ac. Next we endow
the set A with two metrics, ρs and ρw . To define ρs , we set, for each V1,V2 ∈ A,
ρ̃s(V1,V2) = sup{‖V1x − V2x‖ : x ∈ X} and

ρs(V1,V2) = ρ̃s(V1,V2)
(
1 + ρ̃s(V1,V2)

)−1
. (8.79)

(Here we use the convention that ∞/∞ = 1.) It is clear that (A, ρs) is a complete
metric space. To define ρw , we set, for each V1,V2 ∈A and each integer i ≥ 1,

ρi(V1,V2) := sup
{‖V1x − V2x‖ : x ∈ X and ‖x‖ ≤ i

}
, (8.80)

ρw(V1,V2) :=
∞∑

i=1

2−i
[
ρi(V1,V2)

(
1 + ρi(V1,V2)

)−1]
. (8.81)

Clearly, (A, ρw) is a complete metric space. It is also not difficult to see that the
collection of the sets

E(N,ε) = {
(V1,V2) ∈A×A : ‖V1x − V2x‖ ≤ ε, x ∈ X,‖x‖ ≤ N

}
,

where N,ε > 0, is a base for the uniformity generated by the metric ρw . It is easy
to see that ρw(V1,V2) ≤ ρs(V1,V2) for all V1,V2 ∈A. The metric ρw induces on A
a topology which is called the weak topology and the metric ρs induces a topology
which is called the strong topology. Clearly, Ac is a closed subset of A with the
weak topology while Ab and Abc are closed subsets of A with the strong topology.
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We consider the subspaces Ac, Ab and Abc with the metrics ρs and ρw which induce
the strong and the weak topologies, respectively.

When the function f is convex, one usually looks for a sequence {xi}∞i=1 which
tends to a minimum point of f (if such a point exists) or at least such that
limi→∞ f (xi) = inf(f ). If f is not necessarily convex, but X is finite-dimensional,
then we expect to construct a sequence which tends to a critical point z of f ,
namely a point z for which 0 ∈ ∂f (z). If f is not necessarily convex and X is
infinite-dimensional, then the problem is more difficult and less understood be-
cause we cannot guarantee, in general, the existence of a critical point and a con-
vergent subsequence. To partially overcome this difficulty, we have introduced the
function Ξ : X → R1. Evidently, a point z is a critical point of f if and only if
Ξ(z) ≥ 0. Therefore we say that z is ε-critical for a given ε > 0 if Ξ(z) ≥ −ε.
We look for sequences {xi}∞i=1 such that either lim infi→∞ Ξ(xi) ≥ 0 or at least
lim supi→∞ Ξ(xi) ≥ 0. In the first case, given ε > 0, all the points xi , except possi-
bly a finite number of them, are ε-critical, while in the second case this holds for a
subsequence of {xi}∞i=1.

We show, under certain assumptions on f , that for most (in the sense of Baire’s
categories) vector fields W ∈ A, the iterative processes defined below (see (8.84)
and (8.85)) yield sequences with the desirable properties. Moreover, we show that
the complement of the set of “good” vector fields is not only of the first category,
but also σ -porous. These results, which were obtained in [141], are stated in this
section. Their proofs are relegated to subsequent sections.

For each set E ⊂ X, we denote by cl(E) the closure of E in the norm topology.
Our results hold for any Banach space and for those functions which satisfy the
following two assumptions.

A(i) For each ε > 0, there exists δ ∈ (0, ε) such that

cl
({

x ∈ X : Ξ(x) < −ε
})⊂ {

x ∈ X : Ξ(x) < −δ
};

A(ii) for each r > 0, the function f is Lipschitzian on the ball {x ∈ X : ‖x‖ ≤ r}.
We say that a mapping V ∈ A is regular if for any natural number n, there exists

a positive number δ(n) such that for each x ∈ X satisfying ‖x‖ ≤ n and Ξ(x) <

−1/n, we have f 0(x,V x) ≤ −δ(n).
This concept of regularity is a non-convex analog of the regular vector fields

introduced in [136]. We denote by F the set of all regular vector fields V ∈A.

Theorem 8.8 Assume that both A(i) and A(ii) hold. Then A \ F (respectively,
Ac \F , Ab \ F and Abc \ F ) is a σ -porous subset of the space A (respectively,
Ac, Ab and Abc) with respect to the pair (ρw,ρs).

Now let W ∈ A. We associate with W two iterative processes. For x ∈ X we
denote by PW(x) the set of all y ∈ {x + αWx : α ∈ [0,1]} such that

f (y) = inf
{
f (x + βWx) : β ∈ [0,1]}. (8.82)
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Given any initial point x0 ∈ X, one can construct a sequence {xi}∞i=0 ⊂ X such that
for all i = 0,1, . . . ,

xi+1 ∈ PW(xi). (8.83)

This is our first iterative process. Next we describe the second iterative process.
Given a sequence a = {ai}∞i=0 ⊂ (0,1) such that

lim
i→∞ai = 0 and

∞∑

i=0

ai = ∞, (8.84)

we construct for each initial point x0 ∈ X, a sequence {xi}∞i=0 ⊂ X according to the
following rule:

xi+1 = xi + aiW(xi) if f
(
xi + aiW(xi)

)
< f (xi),

xi+1 = xi otherwise, where i = 0,1, . . . .
(8.85)

In the sequel we will also make use of the following assumption:

A(iii) For each integer n ≥ 1, there exists δ > 0 such that for each x1, x2 ∈ X satis-
fying ‖x1‖,‖x2‖ ≤ n, min{Ξ(xi) : i = 1,2} ≤ −1/n, and ‖x1 − x2‖ ≤ δ, the
following inequality holds: H(∂f (x1), ∂f (x2)) ≤ 1/n.

We denote by Card(B) the cardinality of a set B .

Theorem 8.9 Assume that W ∈ A is regular, and that A(i), A(ii) and A(iii) are all
valid. Then the following two assertions are true:

(i) Let the sequence {xi}∞i=0 ⊂ X satisfy (8.83) for all i = 0,1, . . . . If {xi}∞i=0 is
bounded, then lim infi→∞ Ξ(xi) ≥ 0.

(ii) Let a sequence a = {ai}∞i=0 ⊂ (0,1) satisfy (8.84) and let the sequence
{xi}∞i=0 ⊂ X satisfy (8.85) for all i = 0,1, . . . . If {xi}∞i=0 is bounded, then

lim sup
i→∞

Ξ(xi) ≥ 0.

Theorem 8.10 Assume that f (x) → ∞ as ‖x‖ → ∞, V ∈ A is regular, and that
A(i), A(ii) and A(iii) are all valid. Let K,ε > 0 be given. Then there exist a neigh-
borhood U of V in A with the weak topology and a natural number N0 such that
the following two assertions are true:

(i) For each W ∈ U , each integer n ≥ N0 and each sequence {xi}ni=0 ⊂ X which
satisfies ‖x0‖ ≤ K and (8.83) for all i = 0, . . . , n − 1, we have

Card
{
i ∈ {0, . . . ,N − 1} : Ξ(xi) ≤ −ε

}≤ N0.

(ii) For each sequence of numbers a = {ai}∞i=0 ⊂ (0,1) satisfying (8.84), there
exists a natural number N such that for each W ∈ U and each sequence
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{xi}Ni=0 ⊂ X which satisfies ‖x0‖ ≤ K and (8.85) for all i = 0, . . . ,N − 1, we
have

max
{
Ξ(xi) : i = 0, . . . ,N

}≥ −ε.

8.7 An Auxiliary Result

For each positive number λ, set

Eλ := {
x ∈ X : Ξ(x) < −λ

}
. (8.86)

Proposition 8.11 Let ε > 0 be given. Suppose that

cl(Eε) ⊂ Eδ(ε) (8.87)

for some δ(ε) ∈ (0, ε). Then there exists a locally Lipschitzian vector field V ∈ Ab

such that f 0(y,Vy) < −δ(ε) for all y ∈ X satisfying Ξ(y) < −ε.

Proof It easily follows from definitions (8.76) and (8.78) that Eλ is an open set
for all λ > 0. Let x ∈ Eδ(ε). Then there exist hx ∈ X such that ‖hx‖ = 1 and
f 0(x,hx) < −δ(ε), and (see (8.76)) an open neighborhood Ux of x in X such that

f 0(y,hx) < −δ(ε) for all y ∈ Ux. (8.88)

For x ∈ X \ Eδ(ε), set

hx = 0 and Ux = X \ cl(Eε). (8.89)

Clearly, {Ux}x∈X is an open covering of X. Since any metric space is paracompact,
there is a locally finite refinement {Qα : α ∈ A} of {Ux : x ∈ X}, i.e., an open cov-
ering of X such that each x ∈ X has a neighborhood Q(x) with Q(x) ∩ Qα �= ∅
only for finitely many α ∈ A, and such that for each α ∈ A, there exists xα ∈ X

with Qα ⊂ U(xα). Let α ∈ A. Define μα : X → [0,∞) by μα(x) = 0 if x /∈ Qα

and by μα(x) = inf{‖x − y‖ : y ∈ ∂Qα} otherwise. (Here ∂B is the boundary of
a set B ⊂ X.) The function μα is clearly Lipschitzian on all of X with Lipschitz
constant 1. Let ωα(x) = μα(x)(

∑
β∈A μβ(x))−1, x ∈ X. Since {Qα : α ∈ A} is lo-

cally finite, each ωα is well defined and locally Lipschitzian on X. Define a locally
Lipschitzian, bounded mapping V : X → X by

V (y) :=
∑

α∈A

ωα(y)hxα , y ∈ X. (8.90)

Let y ∈ X. There are a neighborhood Q of y in X and α1, . . . , αn ∈ A such that

{α ∈ A : Qα ∩ Q �= ∅} = {α1, . . . , αn}. (8.91)
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We have

V (y) =
n∑

i=1

ωαi
(y)hxαi

,

n∑

i=1

ωαi
(y) = 1, (8.92)

f 0(y,Vy) = f 0

(

y,

n∑

i=1

ωαi
(y)hxαi

)

≤
n∑

i=1

ωαi
(y)f 0(y,hxαi

). (8.93)

Let i ∈ {1, . . . , n} with ωαi
(y) > 0. Then

y ∈ supp{ωαi
} ⊂ Qαi

⊂ Uxαi
. (8.94)

If xαi
∈ X \ Eδ(ε), then by (8.89), hxαi

= 0 and f 0(y,hxαi
) = 0. If xαi

∈ Eδ(ε), then

by (8.88) and (8.94), f 0(y,hxαi
) < 0. Therefore f 0(y,hxαi

) ≤ 0 in both cases and

f 0(y,Vy) ≤ 0. Thus V ∈ A. Assume that y ∈ Eε , i ∈ {1, . . . , n} and ωαi
(y) > 0.

Then (8.94) holds. We assert that xαi
∈ Eδ(ε). Assume the contrary. Then xαi

∈ X \
Eδ(ε) and by (8.89), Uxαi

= X\cl(Eε). When combined with (8.94), this implies that
y ∈ Eε ∩Uxαi

= Eε ∩(X\cl(Eε)), a contradiction. Thus xαi
∈ Eδ(ε), as asserted. By

the definition of Uxαi
(see (8.88)) and (8.94), f 0(y,hxαi

) < −δ(ε). When combined

with (8.93), this implies that f 0(y,Vy) < −δ(ε). �

8.8 Proof of Theorem 8.8

For each pair of integers m,n ≥ 1, denote by Ωmn the set of all V ∈A such that

‖V x‖ ≤ m for all x ∈ X satisfying ‖x‖ ≤ n + 1 and (8.95)

sup
{
f 0(x,V x) : x ∈ X,‖x‖ ≤ n,Ξ(x) < −1/n

}= 0. (8.96)

Clearly,
∞⋃

m=1

∞⋃

n=1

Ωmn = A \F . (8.97)

Therefore in order to prove Theorem 8.8 it is sufficient to show that for each pair of
integers m,n ≥ 1, the set Ωmn (respectively, Ωmn ∩Ac, Ωmn ∩Ab, Ωmn ∩Abc) is a
porous subset of A (respectively, Ac, Ab , Abc) with respect to the pair (ρw,ρs). Let
m,n ≥ 1 be integers. By Proposition 8.11, there exists a vector field V∗ ∈ A such
that (i) V∗ is bounded on X and V∗ is locally Lipschitzian on X; (ii) there exists
δ∗ ∈ (0,1) such that

f 0(y,V∗y) < −δ∗ for all y ∈ X satisfying Ξ(y) < −(4n)−1. (8.98)

By assumption A(ii), there is c0 > 1 such that
∣∣f (x) − f (y)

∣∣≤ c0‖x − y‖ (8.99)
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for all x, y ∈ X satisfying ‖x‖,‖y‖ ≤ n + 2. Choose α ∈ (0,1) such that

αc02n+2 < (2n)−12−1(1 − α)δ∗
(
m + 1 + sup

{‖V∗x‖ : x ∈ X
})−1

. (8.100)

Assume that V ∈ A and r ∈ (0,1]. There are two cases: (a) sup{‖V x‖ : x ∈
X,‖x‖ ≤ n + 1} ≤ m + 1; (b) sup{‖V x‖ : x ∈ X,‖x‖ ≤ n + 1} > m + 1. We first
assume that (b) holds. Let W ∈ A with ρw(W,V ) ≤ 2−n−4. Then ρn+1(W,V )(1 +
ρn+1(V ,W))−1 ≤ 8−1, ρn+1(W,V ) ≤ 1/7, and sup{‖Wx‖ : x ∈ X,‖x‖ ≤ n+ 1} >

m. Thus {W ∈ A : ρw(W,V ) ≤ 2−n−4} ∩ Ωmn = ∅. Assume now that (a) holds. Let

γ = 2−1(1 − α)r
(
m + 1 + sup

{‖V∗x‖ : x ∈ X
})−1 (8.101)

and define Vγ ∈A by

Vγ x = V x + γV∗x, x ∈ X. (8.102)

If V ∈ Ac (respectively, Ab , Abc), then Vγ ∈ Ac (respectively, Ab , Abc). Next we
estimate the distance ρs(Vγ ,V ). It follows from (8.102), (8.101) and (8.76) that

ρs(Vγ ,V ) ≤ ρ̃s(Vγ ,V ) ≤ γ sup
{∥∥V∗(x)

∥∥ : x ∈ X
}≤ 2−1(1 − α)r. (8.103)

Assume that W ∈A with

ρw(W,Vγ ) ≤ αr. (8.104)

By (8.104) and (8.103),

ρw(W,V ) ≤ ρw(W,Vγ ) + ρw(Vγ ,V ) ≤ αr + 2−1(1 − α)r

≤ 2−1(1 + α)r < r. (8.105)

Assume now that

x ∈ X, ‖x‖ ≤ n, Ξ(x) < −1/n and l ∈ ∂f (x). (8.106)

Inequality (8.99) implies that

‖l‖∗ ≤ c0. (8.107)

By (8.102), (8.98) and (8.106),

l(Vγ x) = l(V x) + γ l
(
V∗(x)

)≤ γ l(V∗x) ≤ γf 0(x,V∗x) ≤ γ (−δ∗). (8.108)

It follows from (8.106) and (8.80) that

‖Wx − Vγ x‖ ≤ ρn(W,Vγ ). (8.109)

By (8.104) and (8.81), we have 2−nρn(W,Vγ )(1 + ρn(W,Vγ ))−1 ≤ ρw(W,Vγ ) ≤
αr , ρn(W,Vγ )(1 + ρn(W,Vγ ))−1 ≤ 2nαr , and ρn(W,Vγ )(1 − 2nαr) ≤ 2nαr .
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When combined with (8.109), the last inequality implies that ‖Wx − Vγ x‖ ≤
2nαr(1 − 2nαr)−1, and when combined with (8.107), this implies that

∣∣l(Wx) − l(Vγ x)
∣∣≤ c02nαr

(
1 − 2nαr

)−1
. (8.110)

By (8.110), (8.108), (8.101) and (8.100),

l(Wx) ≤ l(Vγ x) + c02nαr
(
1 − 2nαr

)−1 ≤ −γ δ∗ + c02nαr
(
1 − 2nαr

)−1

= c02nαr
(
1 − 2nαr

)−1

− δ∗
[
2−1(1 − α)r

(
m + 1 + sup

{‖V∗x‖ : x ∈ X
})]−1

= −r
[−c02nα

(
1 − 2nαr

)−1

+ δ∗2−1(1 − α)
(
m + 1 + sup

{‖V∗x‖ : x ∈ X
})−1]

≤ −2rc02nα.

Since l is an arbitrary element of ∂f (x), we conclude that f 0(x,Wx) ≤ −2rc02nα.
Thus {W ∈ A : ρw(W,Vγ ) ≤ αr} ∩ Ωmn = ∅. Recall that in case (b), {W ∈ A :
ρw(W,V ) ≤ 2−n−4}∩Ωmn = ∅. Therefore Ωmn is porous in A, Ωmn ∩Ac is porous
in Ac , Ωmn ∩Ab is porous in Ab , and Ωmn ∩Abc is porous in Abc , as asserted.

8.9 A Basic Lemma for Theorems 8.9 and 8.10

Lemma 8.12 Assume that V ∈ A is regular, and that A(i), A(ii) and A(iii) are all
valid. Let K̄ and ε̄ be positive. Then there exist a neighborhood U of V in A with
the weak topology and positive numbers ᾱ and γ such that for each W ∈ U , each
x ∈ X satisfying

‖x‖ ≤ K̄ and Ξ(x) ≤ −ε̄, (8.111)

and each β ∈ (0, ᾱ], we have

f (x) − f (x + βWx) ≥ βγ. (8.112)

Proof There exists K0 > K̄ + 1 such that

‖V x‖ ≤ K0 if x ∈ X and ‖x‖ ≤ K̄ + 2. (8.113)

By Assumption A(ii), there exists a constant L0 > 4 such that
∣∣f (x1) − f (x2)

∣∣≤ L0‖x1 − x2‖ (8.114)

for all x1, x2 ∈ X satisfying ‖x1‖,‖x2‖ ≤ 2K0 + 4. There is δ0 ∈ (0,1) such that

f 0(y,Vy) ≤ −δ0 (8.115)
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for each y ∈ X satisfying ‖y‖ ≤ K0 + 4 and Ξ(y) ≤ −ε̄/4. Choose δ1 ∈ (0,1) such
that

4δ1(K0 + L0) < δ0. (8.116)

By A(iii), there is a positive ᾱ such that the following conditions hold:

8ᾱ(L0 + 1)(K0 + 1) < min{1, ε̄}; (8.117)

for each x1, x2 ∈ X satisfying

‖x1‖,‖x2‖ ≤ K̄ + 4, min
{
Ξ(x1),Ξ(x2)

}≤ −ε̄/4,

‖x1 − x2‖ ≤ ᾱ(K0 + 1),
(8.118)

the following inequality is true:

H
(
∂f (x1), ∂f (x2)

)
< δ1/2. (8.119)

Next, choose a positive number δ2 such that

8δ2(L0 + 1) < δ1δ0. (8.120)

Finally, choose a positive number γ and define a neighborhood U such that

γ < δ0/4, (8.121)

U = {
W ∈A : ‖Wx − V x‖ ≤ δ2, x ∈ X and ‖x‖ ≤ K̄

}
. (8.122)

Assume that W ∈ U , x ∈ X satisfies (8.111), and that β ∈ (0, ᾱ]. We intend to
show that (8.112)) holds. To this end, we first note that (8.111), (8.113), (8.117)
and (8.122) yield

‖x + βV x‖ ≤ K̄ + βK0 ≤ K̄ + ᾱK0 ≤ K̄ + 1,

‖x + βWx‖ ≤ δ2β + ‖x + βV x‖ ≤ K̄ + 1 + ᾱδ2 ≤ K̄ + 2.
(8.123)

By these inequalities, the definition of L0 (see (8.114)) and (8.122),
∣∣f (x + βV x) − f (x + βWx)

∣∣≤ L0β‖Wx − V x‖ ≤ L0βδ2. (8.124)

Next we estimate f (x)−f (x +βV x). By [89], there exist θ ∈ [0, β] and l ∈ ∂f (x +
θV x) such that

f (x + βV x) − f (x) = l(V x)β. (8.125)

By (8.111), (8.114) and (8.117),

‖x‖ ≤ K̄, ‖V x‖ ≤ K0, ‖θV x‖ ≤ ᾱK0, and

‖x + θV x‖ ≤ K̄ + 1.
(8.126)
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Note that (8.126) and the definition of L0 (see (8.114)) imply that

‖l‖∗ ≤ L0. (8.127)

It also follows from (8.111), (8.126) and the definition of ᾱ (see (8.118) and (8.119))
that H(∂f (x), ∂f (x + θV x)) < δ1. Therefore there exists l̄ ∈ ∂f (x) such that ‖l̄ −
l‖∗ ≤ δ1. When combined with (8.125) and (8.126), this fact implies that

f (x + βV x) − f (x) = βl(V x) ≤ βl̄(V x) + β‖l̄ − l‖∗‖V x‖
≤ βl̄(V x) + βδ1K0. (8.128)

It follows from the definition of δ0 (see (8.115)) and (8.111) that βl̄(V x) ≤ −βδ0.
Combining this inequality with (8.128) and (8.116), we see that f (x + βV x) −
f (x) ≤ −βδ0 + βδ1K0 ≤ −βδ0/2. It now follows from this inequality, (8.120),
(8.124) and (8.121) that f (x + βWx) − f (x) ≤ f (x + βV x) − f (x) + f (x +
βWx) − f (x + βV x) ≤ −βδ0/2 + L0βδ2 ≤ −βδ0/4 ≤ −γβ . Thus (8.112) holds
and Lemma 8.12 is proved. �

8.10 Proofs of Theorems 8.9 and 8.10

Proof of Theorem 8.9 To show that assertion (i) holds, suppose that

{xi}∞i=0 ⊂ X, xi+1 ∈ PWxi, i = 0,1, . . . ,

sup
{‖xi‖ : i = 0,1, . . .

}
< ∞.

(8.129)

We claim that

lim inf
i→∞ Ξ(xi) ≥ 0. (8.130)

Assume the contrary. Then there exist ε > 0 and a strictly increasing sequence of
natural numbers {ik}∞k=1 such that

Ξ(xik ) ≤ −ε, k = 1,2, . . . . (8.131)

Choose a number S > 0 such that

‖xi‖ ≤ S, i = 1,2, . . . . (8.132)

By Lemma 8.12, there exist numbers α,γ ∈ (0,1) such that for each x ∈ X satisfy-
ing

‖x‖ ≤ S and Ξ(x) ≤ −ε, (8.133)

and each β ∈ (0, α], we have

f (x) − f (x + βWx) ≥ γβ. (8.134)



422 8 Descent Methods

It follows from (8.129), (8.82), (8.83), the definitions of α and γ , (8.132) and (8.131)
that for each integer k ≥ 1, f (xik ) − f (xik+1) ≥ f (xik ) − f (xik + αWxik ) ≥ γ α.
Since this inequality holds for all integers k ≥ 1, we conclude that limn→∞(f (x0)−
f (xn)) = ∞. This contradicts our assumption that f is bounded from below. There-
fore (8.130) and assertion (i) are indeed true, as claimed.

We turn now to assertion (ii). Let a = {ai}∞i=0 ⊂ (0,1) satisfy (8.84) and let a
bounded {xi}∞i=0 ⊂ X satisfy (8.85) for all integers i ≥ 0. We will show that

lim sup
i→∞

Ξ(xi) ≥ 0. (8.135)

Indeed, assume that (8.135) is not true. Then there exist ε > 0 and an integer i1 ≥ 0
such that

Ξ(xi) ≤ −ε, i ≥ i1. (8.136)

Since the sequence {xi}∞1=0 is bounded, there exists a number S > 0 such that

S > ‖xi‖, i = 0,1, . . . . (8.137)

By Lemma 8.12, there exist numbers α,γ ∈ (0,1) such that for each x ∈ X satisfy-
ing (8.133) and each β ∈ (0, α], inequality (8.134) holds. Since ai → 0 as i → ∞,
there exists a natural number i0 ≥ i1 such that

ai < α for all integers i ≥ i0. (8.138)

Let i ≥ i0 be an integer. Then it follows from (8.137), (8.136), the definitions of
α and γ , and (8.138) that f (xi) − f (xi + aiWxi) ≥ γ ai , xi+1 = xi + aiWxi , and
f (xi) − f (xi+1) ≥ γ ai . Since

∑∞
i=0 ai = ∞, we conclude that limn→∞(f (x0) −

f (xn)) = ∞. The contradiction we have reached shows that (8.135), assertion (ii)
and Theorem 8.9 itself are all true. �

Proof of Theorem 8.10 Let

K0 > sup
{
f (x) : x ∈ X,‖x‖ ≤ K + 1

}
, (8.139)

E0 = {
x ∈ X : f (x) ≤ K0 + 1

}
. (8.140)

It is clear that E0 is bounded and closed. Choose

K1 > sup
{‖x‖ : x ∈ E0

}+ 1 + K. (8.141)

By Lemma 8.12, there exist a neighborhood U of V in A and numbers α,γ ∈ (0,1)

such that for each W ∈ U , each x ∈ X satisfying

‖x‖ ≤ K1 and Ξ(x) ≤ −ε, (8.142)

and each β ∈ (0, α],
f (x) − f (x + βWx) ≥ γβ. (8.143)



8.10 Proofs of Theorems 8.9 and 8.10 423

Now choose a natural number N0 which satisfies

N0 > (αγ )−1(K0 + 4 + ∣∣inf(f )
∣∣). (8.144)

Let W ∈ U , {xi}ni=0 ⊂ X, where the integer n ≥ N0,

‖x0‖ ≤ K, and xi+1 ∈ PWxi, i = 0, . . . , n − 1, (8.145)

B = {
i ∈ {0, . . . , n − 1} : Ξ(xi) ≤ −ε

}
and m = Card(B). (8.146)

By (8.145) and (8.139)–(8.141), we have

‖xi‖ ≤ K1, i = 0, . . . , n. (8.147)

Let i ∈ B . It follows from (8.147), (8.146) and the definitions of U , α and γ (see
(8.142) and (8.143)) that f (xi)−f (xi+1) ≥ f (xi)−f (xi +αWxi) ≥ γ α. Summing
up from i = 0 to n − 1, we conclude that

f (x0) − f (xn) ≥ γ α Card(B) = mγα.

It follows from this inequality, (8.139), (8.145) and (8.144) that

m ≤ [∣∣inf(f )
∣∣+ K0

]
(αγ )−1 < N0.

Thus we see that assertion (i) is proved.
To prove assertion (ii), let a sequence a = {ai}∞i=0 ⊂ (0,1) satisfy

lim
i→∞ai = 0 and

∞∑

i=0

ai = ∞. (8.148)

Clearly, there exists a natural number N1 such that

ai ≤ α for all i ≥ N1. (8.149)

Choose a natural number N > N1 + 4 such that

γ

N−1∑

i=N1

ai > K0 + 4 + ∣∣inf(f )
∣∣. (8.150)

Now assume that W ∈ U , {xi}Ni=0 ⊂ X, ‖x0‖ ≤ K , and that (8.85) holds for all
i = 0, . . . ,N − 1. We will show that

max
{
Ξ(xi) : i = 0, . . . ,N

}≥ −ε. (8.151)

Assume the contrary. Then

Ξ(xi) ≤ −ε, i = 0, . . . ,N. (8.152)
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Since ‖x0‖ ≤ K , we see by (8.85) and (8.139)–(8.141) that

‖xi‖ ≤ K1, i = 0, . . . ,N. (8.153)

Let i ∈ {N1, . . . ,N −1}. It follows from (8.153), (8.152), (8.149) and the definitions
of α and γ (see (8.142)) and (8.143)) that

f (xi) − f (xi + aiWxi) ≥ γ ai.

This implies that

f (xN1) − f (xN) ≥ γ

N−1∑

i=N1

ai .

By this inequality, (8.85), the inequality ‖x0‖ ≤ K , (8.139) and (8.150), we obtain
that

inf(f ) ≤ f (xN) ≤ f (xN1) − γ

N−1∑

i=N1

ai ≤ K0 − γ

N−1∑

i=N1

ai < −4 − ∣∣inf(f )
∣∣.

The contradiction we have reached proves (8.151) and assertion (ii). �

8.11 Continuous Descent Methods

Let (X∗,‖ · ‖∗) be the dual space of the Banach space (X,‖ · ‖), and let f : X → R1

be a convex continuous function which is bounded from below. Recall that for each
pair of sets A,B ⊂ X∗,

H(A,B) = max
{

sup
x∈A

inf
y∈B

‖x − y‖∗, sup
y∈B

inf
x∈A

‖x − y‖∗
}

is the Hausdorff distance between A and B .
For each x ∈ X, let

∂f (x) := {
l ∈ X∗ : f (y) − f (x) ≥ l(y − x) for all y ∈ X

}

be the subdifferential of f at x. It is well known that the set ∂f (x) is nonempty and
norm-bounded. Set

inf(f ) := inf
{
f (x) : x ∈ X

}
.

Denote by A the set of all mappings V : X → X such that V is bounded on every
bounded subset of X (that is, for each K0 > 0, there is K1 > 0 such that ‖V x‖ ≤ K1
if ‖x‖ ≤ K0), and for each x ∈ X and each l ∈ ∂f (x), l(V x) ≤ 0. We denote by Ac

the set of all continuous V ∈ A, by Au the set of all V ∈ A which are uniformly
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continuous on each bounded subset of X, and by Aau the set of all V ∈A which are
uniformly continuous on the subsets

{
x ∈ X : ‖x‖ ≤ n and f (x) ≥ inf(f ) + 1/n

}

for each integer n ≥ 1. Finally, let Aauc = Aau ∩Ac.
Our results are valid in any Banach space and for those convex functions which

satisfy the following two assumptions.

A(i) There exists a bounded set X0 ⊂ X such that

inf(f ) = inf
{
f (x) : x ∈ X

}= inf
{
f (x) : x ∈ X0

};
A(ii) for each r > 0, the function f is Lipschitzian on the ball {x ∈ X : ‖x‖ ≤ r}.

Note that assumption A(i) clearly holds if lim‖x‖→∞ f (x) = ∞.
We recall that a mapping V ∈ A is regular if for any natural number n, there

exists a positive number δ(n) such that for each x ∈ X satisfying

‖x‖ ≤ n and f (x) ≥ inf(f ) + 1/n,

and for each l ∈ ∂f (x), we have

l(V x) ≤ −δ(n).

Denote by F the set of all regular vector fields V ∈ A.
Let T > 0, x0 ∈ X and let u : [0, T ] → X be a Bochner integrable function. Set

x(t) = x0 +
∫ t

0
u(s) ds, t ∈ [0, T ].

Then x : [0, T ] → X is differentiable and x′(t) = u(t) for almost every t ∈ [0, T ].
Recall that the function f : X → R1 is assumed to be convex and continuous, and
therefore it is, in fact, locally Lipschitzian. It follows that its restriction to the set
{x(t) : t ∈ [0, T ]} is Lipschitzian. Indeed, since the set {x(t) : t ∈ [0, T ]} is compact,
the closure of its convex hull C is both compact and convex, and so the restriction
of f to C is Lipschitzian. Hence the function (f · x)(t) := f (x(t)), t ∈ [0, T ], is
absolutely continuous. It follows that for almost every t ∈ [0, T ], both the derivatives
x′(t) and (f · x)′(t) exist:

x′(t) = lim
h→0

h−1[x(t + h) − x(t)
]
,

(f · x)′(t) = lim
h→0

h−1[f
(
x(t + h)

)− f
(
x(t)

)]
.

We continue with the following fact.

Proposition 8.13 Assume that t ∈ [0, T ] and that both the derivatives x′(t) and
(f · x)′(t) exist. Then

(f · x)′(t) = lim
h→0

h−1[f
(
x(t) + hx′(t)

)− f
(
x(t)

)]
. (8.154)
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Proof There exist a neighborhood U of x(t) in X and a constant L > 0 such that

∣∣f (z1) − f (z2)
∣∣≤ L‖z1 − z2‖ for all z1, z2 ∈ U . (8.155)

Let ε > 0 be given. There exists δ > 0 such that

x(t + h), x(t) + hx′(t) ∈ U for each h ∈ [−δ, δ] ∩ [−t, T − t], (8.156)

and such that for each h ∈ [(−δ, δ) \ {0}] ∩ [−t, T − t],
∥∥x(t + h) − x(t) − hx′(t)

∥∥< ε|h|. (8.157)

Let

h ∈ [(−δ, δ) \ {0}]∩ [−t, T − t]. (8.158)

It follows from (8.156), (8.155) and (8.157) that

∣∣f
(
x(t +h)

)−f
(
x(t)+hx′(t)

)∣∣≤ L
∥∥x(t +h)−x(t)−hx′(t)

∥∥< Lε|h|. (8.159)

Clearly,

[
f
(
x(t + h)

)− f
(
x(t)

)]
h−1 = [

f
(
x(t + h)

)− f
(
x(t) + hx′(t)

)]
h−1

+ [
f
(
x(t) + hx′(t)

)− f
(
x(t)

)]
h−1. (8.160)

Relations (8.159) and (8.160) imply that

∣∣[f
(
x(t + h)

)− f
(
x(t)

)]
h−1 − [

f
(
x(t) + hx′(t)

)− f
(
x(t)

)]
h−1

∣∣

≤ ∣∣f
(
x(t + h)

)− f
(
x(t) + hx′(t)

)∣∣∣∣h−1
∣∣≤ Lε.

Since ε is an arbitrary positive number, we conclude that (8.154) holds. �

Assume now that V ∈ A and that the differentiable function x : [0, T ] → X sat-
isfies

x′(t) = V
(
x(t)

)
for a.e. t ∈ [0, T ]. (8.161)

Then by Proposition 8.13, (f · x)′(t) ≤ 0 for a.e. t ∈ [0, T ], and f (x(t)) is decreas-
ing on [0, T ].

In the sequel we denote by μ(E) the Lebesgue measure of E ⊂ R1.
In the next two sections, we prove the following two results which were obtained

in [148].

Theorem 8.14 Let V ∈ A be regular, let x : [0,∞) → X be differentiable and sup-
pose that

x′(t) = V
(
x(t)

)
for a.e. t ∈ [0,∞). (8.162)
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Assume that there exists a positive number r such that

μ
({

t ∈ [0, T ] : ∥∥x(t)
∥∥≤ r

})→ ∞ as T → ∞. (8.163)

Then limt→∞ f (x(t)) = inf(f ).

Theorem 8.15 Let V ∈ A be regular, let f be Lipschitzian on bounded subsets of
X, and assume that lim‖x‖→∞ f (x) = ∞. Let K0 and ε > 0 be positive. Then there
exist N0 > 0 and δ > 0 such that for each T ≥ N0 and each differentiable mapping
x : [0, T ] → X satisfying

∥∥x(0)
∥∥≤ K0 and

∥∥x′(t) − V
(
x(t)

)∥∥≤ δ for a.e. t ∈ [0, T ],

the following inequality holds for all t ∈ [N0, T ]:

f
(
x(t)

)≤ inf(f ) + ε.

8.12 Proof of Theorem 8.14

Assume the contrary. Since f (x(t)) is decreasing on [0,∞), this means that there
exists ε > 0 such that

lim
t→∞f

(
x(t)

)
> inf(f ) + ε. (8.164)

Then by Proposition 8.13 and (8.162), we have for each T > 0,

f
(
x(T )

)− f
(
x(0)

) =
∫ T

0
(f · x)′(t) dt

=
∫ T

0
f 0(x(t), x′(t)

)
dt =

∫ T

0
f 0(x(t),V

(
x(t)

))
dt

≤
∫

ΩT

f 0(x(t),V
(
x(t)

))
dt, (8.165)

where

ΩT = {
t ∈ [0, T ] : ∥∥x(t)

∥∥≤ r
}
. (8.166)

Since V is regular, there exists δ > 0 such that for each x ∈ X satisfying

‖x‖ ≤ r + 1 and f (x) ≥ inf(f ) + ε/2, (8.167)

and each l ∈ ∂f (x), we have

l(V x) ≤ −δ. (8.168)



428 8 Descent Methods

It follows from (8.165), (8.166), (8.164), the definition of δ (see (8.167) and (8.168))
and (8.163) that for each T > 0,

f
(
x(T )

)− f
(
x(0)

)≤
∫

ΩT

f 0(x(t),V
(
x(t)

))
dt ≤ −δμ(ΩT ) → −∞

as T → ∞, a contradiction. The contradiction we have reached proves Theo-
rem 8.14.

8.13 Proof of Theorem 8.15

We may assume without loss of generality that ε < 1/2. Choose

K1 > sup
{
f (x) : x ∈ X and ‖x‖ ≤ K0 + 1

}
. (8.169)

The set
{
x ∈ X : f (x) ≤ K1 + ∣∣inf(f )

∣∣+ 4
}

(8.170)

is bounded. Therefore there exists

K2 > K0 + K1

such that

if f (x) ≤ K1 + ∣∣inf(f )
∣∣+ 4, then ‖x‖ ≤ K2. (8.171)

There exists a number K3 > K2 + 1 such that

sup
{
f (x) : x ∈ X and ‖x‖ ≤ K2 + 1

}+ 2

< inf
{
f (x) : x ∈ X and ‖x‖ ≥ K3

}
. (8.172)

There exists a number L0 > 0 such that

∣∣f (x1) − f (x2)
∣∣≤ L0‖x1 − x2‖ (8.173)

for each x1, x2 ∈ X satisfying

‖x1‖,‖x2‖ ≤ K3 + 1. (8.174)

Fix an integer

n > K3 + 8/ε. (8.175)

There exists a positive number δ(n) < 1 such that:



8.13 Proof of Theorem 8.15 429

(P1) for each x ∈ X satisfying

‖x‖ ≤ n and f (x) ≥ inf(f ) + 1/n,

and each l ∈ ∂f (x), we have

l(V x) ≤ −δ(n).

Choose a natural number N0 > 8 such that

8−1δ(n)N0 >
∣∣inf(f )

∣∣+ sup
{∣∣f (z)

∣∣ : z ∈ X and ‖z‖ ≤ K2
}+ 4 (8.176)

and a positive number δ which satisfies

8δ(N0 + 1)(L0 + 1) < ε and (1 + L0)δ < δ(n)/2. (8.177)

Let T ≥ N0 and let x : [0, T ] → X be a differentiable function such that

∥∥x(0)
∥∥≤ K2 (8.178)

and
∥∥x′(t) − V

(
x(t)

)∥∥≤ δ for a.e. t ∈ [0, T ]. (8.179)

We claim that
∥∥x(t)

∥∥≤ K3, t ∈ [0,min{2N0, T }]. (8.180)

Assume the contrary. Then there exists t0 ∈ (0,min{2N0, T }] such that
∥∥x(t)

∥∥≤ K3, t ∈ [0, t0) and
∥∥x(t0)

∥∥= K3. (8.181)

It follows from Proposition 8.13, the convexity of directional derivatives, the in-
equality f 0(x(t),V x(t)) ≤ 0, which holds for all t ∈ [0, T ], (8.181), the definition
of L0 (see (8.173), (8.174) and (8.179)) that

f
(
x(t0)

)− f
(
x(0)

)

=
∫ t0

0
(f · x)′(t) dt =

∫ t0

0
f 0(x(t), x′(t)

)
dt

≤
∫ t0

0
f 0(x(t),V

(
x(t)

))
dt +

∫ t0

0
f 0(x(t), x′(t) − V

(
x(t)

))
dt

≤
∫ t0

0
f 0(x(t), x′(t) − V

(
x(t)

))
dt ≤

∫ t0

0
L0
∥∥x′(t) − V

(
x(t)

)∥∥dt ≤ t0L0δ.

Thus by (8.177),

f
(
x(t0)

)≤ f
(
x(0)

)+ 2N0L0δ < f
(
x(0)

)+ 1.
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Since ‖x(0)‖ ≤ K2 (see (8.178)) and ‖x(t0)‖ = K3, the inequality just obtained
contradicts (8.172). The contradiction we have reached proves (8.180).

We now claim that there exists a number

t0 ∈ [1,N0] (8.182)

such that

f
(
x(t0)

)≤ inf(f ) + ε/8. (8.183)

Assume the contrary. Then

f
(
x(t)

)
> inf(f ) + ε/8 and

∥∥x(t)
∥∥≤ K3, t ∈ [1,N0]. (8.184)

It follows from (8.184), Property (P1) and (8.175) that

f 0(x(t),V
(
x(t)

))≤ −δ(n), t ∈ [1,N0]. (8.185)

By (8.185), (8.184), (8.179), (8.177), the convexity of the directional derivatives of
f , and the definition of L0 (see (8.173) and (8.174)), we have, for almost every
t ∈ [1,N0],

f 0(x(t), x′(t)
) ≤ f 0(x(t),V

(
x(t)

))+ f 0(x(t), x′(t) − V
(
x(t)

))

≤ −δ(n) + L0
∥∥x′(t) − V

(
x(t)

)∥∥≤ −δ(n) + L0δ

≤ −δ(n)/2. (8.186)

It follows from the convexity of the directional derivatives of f , the inclusion
V ∈ A, (8.179), (8.180) and the definition of L0 (see (8.173) and (8.174)), that for
almost every t ∈ [0,1],

f 0(x(t), x′(t)
) ≤ f 0(x(t),V

(
x(t)

))+ f 0(x(t), x′(t) − V
(
x(t)

))

≤ f 0(x(t), x′(t) − V
(
x(t)

))≤ L0
∥∥x′(t) − V

(
x(t)

)∥∥

≤ L0δ. (8.187)

Inequalities (8.178), (8.186) and (8.187) imply that

inf(f ) − sup
{
f (z) : z ∈ X,‖z‖ ≤ K2

}

≤ f
(
x(N0)

)− f
(
x(0)

)

=
∫ N0

0
f 0(x(t), x′(t)

)
dt =

∫ 1

0
f 0(x(t), x′(t)

)
dt +

∫ N0

1
f 0(x(t), x′(t)

)
dt

≤ −2−1δ(n)N0/2 + 1.

This contradicts (8.176). The contradiction we have reached yields the existence of
a point t0 which satisfies both (8.182) and (8.183). Clearly, ‖x(t0)| ≤ K2. Having
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established (8.180) and the existence of such a point t0 for an arbitrary mapping x

satisfying both (8.178) and (8.179), we now consider the mapping x0(t) = x(t + t0),
t ∈ [0, T − t0]. Evidently, (8.178) and (8.179) hold true with x replaced by x0 and
T replaced by T − t0. Hence, if T − t0 ≥ N0, then we have

∥∥x(t)
∥∥= ∥∥x0(t − t0)

∥∥≤ K3, t ∈ [t0, t0 + min{2N0, T }],

and there exists

t1 ∈ [t0 + 1, t0 + N0]
for which

f
(
x(t1)

)≤ inf(f ) + ε/8.

Repeating this procedure, we obtain by induction a finite sequence of points {ti}qi=0
such that

t0 ∈ [1,N0], ti+1 − ti ∈ [1,N0], i = 0, . . . , q − 1, T − tq < N0,

f
(
x(ti)

)≤ inf(f ) + ε/8, i = 0, . . . , q,
∥∥x(t)

∥∥≤ K3, t ∈ [t0, T ].

Let i ∈ {0, . . . , q}, t ≤ T , and 0 < t − ti ≤ N0. Then by Proposition 8.13, the con-
vexity of the directional derivative of f , the inclusion V ∈ A, the definition of L0

(see (8.173) and (8.174)), (7.177) and (8.179), we have

f
(
x(t)

)− f
(
x(ti)

) =
∫ t

ti

f 0(x(t), x′(t)
)
dt

≤
∫ t

ti

f 0(x(t),V
(
x(t)

))
dt +

∫ t

ti

f 0(x(t), x′(t) − V
(
x(t)

))
dt

≤
∫ t

ti

f 0(x(t), x′(t) − V
(
x(t)

))
dt

≤
∫ t

ti

L0
∥∥x′(t) − V

(
x(t)

)∥∥dt

≤ L0δ(t − ti ) ≤ 2N0L0δ < ε/4

and hence

f
(
x(t)

)≤ f
(
x(ti)

)+ ε/4 ≤ inf(f ) + ε/2.

This completes the proof of Theorem 8.15.



432 8 Descent Methods

8.14 Regular Vector-Fields

In the previous sections of this chapter, given a continuous convex function f on
a Banach space X, we associate with f a complete metric space A of mappings
V : X → X such that f 0(x,V x) ≤ 0 for all x ∈ X. Here f 0(x,u) is the right-
hand derivative of f at x in the direction of u ∈ X. We call such mappings descent
vector-fields (with respect to f ). We identified a regularity property of such vector-
fields and showed that regular vector-fields generate convergent discrete descent
methods. This has turned out to be true for continuous descent methods as well. Such
results are significant because most of the elements in A are, in fact, regular. Here by
“most” we mean an everywhere dense Gδ subset of A. Thus it is important to know
when a given descent vector-field V : X → X is regular. In [163] we established
necessary and sufficient conditions for regularity: see Theorems 8.18–8.21 below.

More precisely, let (X,‖ · ‖) be a Banach space and let (X∗,‖ · ‖∗) be its dual.
For each h : X → R1, set inf(h) = {h(z) : z ∈ X}.
Let U be a nonempty, open subset of X and let f : U → R1 be a locally Lips-

chitzian function.
For each x ∈ U , let

f 0(x,h) = lim sup
t→0+,y→x

[
f (y + th) − f (y)

]
/t, h ∈ X, (8.188)

be the Clarke derivative of f at the point x, and let

∂f (x) = {
l ∈ X∗ : f 0(x,h) ≥ l(h) for all h ∈ X

}
(8.189)

be the Clarke subdifferential of f at x.
For each x ∈ U , set

Ξf (x) := inf
{
f 0(x,u) : u ∈ X,‖u‖ ≤ 1

}
. (8.190)

Clearly, Ξf (x) ≤ 0 for all x ∈ X and Ξf (x) = 0 if and only if 0 ∈ ∂f (x).
For each x ∈ U , set

Ξ̃f (x) = inf
{
f 0(x,h) : h ∈ X,‖h‖ = 1

}
. (8.191)

Let x ∈ U . Clearly, Ξ̃f (x) ≥ Ξf (x) and 0 ∈ ∂f (x) if and only if Ξ̃f (x) ≥ 0.
In the next section we prove the following two propositions.

Proposition 8.16 Let x ∈ U . If Ξ̃f (x) ≥ 0, then Ξf (x) = 0. If Ξ̃f (x) < 0, then
Ξf (x) = Ξ̃f (x).

Proposition 8.17 For each x ∈ U ,

Ξf (x) = − inf
{‖l‖∗ : l ∈ ∂f (x)

}
. (8.192)
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Assume now that f : X → R1 is a continuous and convex function which is
bounded from below. It is known that f is locally Lipschitzian. It is also known (see
Chap. 2, Sect. 2 of [41]) that in this case

f 0(x,h) = lim
t→0+

[
f (x + th) − f (x)

]
/t, x,h ∈ X.

Recall that a mapping V : X → X is called regular if V is bounded on every
bounded subset of X, f 0(x,V x) ≤ 0 for all x ∈ X, and if for any natural number n,
there exists a positive number δ(n) such that for each x ∈ X satisfying ‖x‖ ≤ n and
f (x) ≥ inf(f ) + 1/n, we have

f 0(x,V x) ≤ −δ(n).

We now present four results which were established in [163]. Their proofs are
given in subsequent sections.

Theorem 8.18 Let f : X → R1 be a convex and continuous function which is
bounded from below, let x̄ ∈ X satisfy

f (x̄) = inf
{
f (z) : z ∈ X

}
, (8.193)

and let the following property hold:

(P1) for every sequence {yi}∞i=1 ⊂ X satisfying limi→∞ f (yi) = f (x̄),
limi→∞ yi = x̄ in the norm topology.

For each natural number n, let φn : [0,∞) → [0,∞) be an increasing function
such that φn(0) = 0 and the following property holds:

(P2) for each ε > 0, there exists δ := δ(ε, n) > 0 such that for each t ≥ 0 satisfying
φn(t) ≤ δ, the inequality t ≤ ε holds.

If V : X → X is bounded on bounded subsets of X,

f 0(x,V x) ≤ 0 for all x ∈ X, (8.194)

and if for each natural number n and each x ∈ X satisfying ‖x‖ ≤ n, we have

f 0(x,V x) ≤ −φn

(−Ξf (x)
)
, (8.195)

then V is regular.

Theorem 8.19 Assume that f : X → R1 is a convex and continuous function,
x̄ ∈ X,

f (x̄) = inf(f ),

property (P1) holds and the following property also holds:
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(P3) if {xi}∞i=1 ⊂ X converges to x̄ in the norm topology, then

lim
i→∞Ξf (xi) = 0.

Assume that V : X → X is regular and let n ≥ 1 be an integer. Then there exists
an increasing function φn : [0,∞) → [0,∞) such that φn(0) = 0, property (P2)
holds, and for each x ∈ X satisfying ‖x‖ ≤ n, we have

f 0(x,V x) ≤ −φn

(−Ξf (x)
)
.

Assume now that f : X → R1 is merely locally Lipschitzian. Recall that in this
case a mapping V : X → X is called regular if V is bounded on every bounded
subset of X,

f 0(x,V x) ≤ 0 for all x ∈ X, (8.196)

and for any natural number n, there exists δ(n) > 0 such that for each x ∈ X satis-
fying ‖x‖ ≤ n and Ξf (x) ≤ −1/n, we have f 0(x,V x) ≤ −δ(n).

Theorem 8.20 Let f : X → R1 be a locally Lipschitzian function. For each natural
number n, let φn : [0,∞) → [0,∞) be an increasing function such that φn(0) = 0
and property (P2) holds.

Assume that V : X → X is bounded on every bounded subset of X,

f 0(x,V x) ≤ 0 for all x ∈ X,

and for each natural number n and each x ∈ X satisfying ‖x‖ ≤ n, we have

f 0(x,V x) ≤ −φn

(−Ξf (x)
)
. (8.197)

Then V is regular.

Theorem 8.21 Assume that the function f : X → R1 is locally Lipschitzian and
that V : X → X is regular.

Then for each natural number n, there exists an increasing function φn :
[0,∞) → [0,∞) such that (P2) holds and for each natural number n and each
x ∈ X satisfying ‖x‖ ≤ n, (8.197) holds.

8.15 Proofs of Propositions 8.16 and 8.17

Proof of Proposition 8.16 Assume that Ξ̃f (x) ≥ 0. Then 0 ∈ ∂f (x) and Ξf (x) = 0.
Assume that Ξ̃f (x) < 0. Then by definition (see (8.191)),

inf
{
f 0(x,h) : h ∈ X,‖h‖ = 1

}= Ξ̃f (x) < 0. (8.198)
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By (8.198) and the homogeneity of f 0(x, ·),

f 0(x,h) ≥ Ξ̃f (x)‖h‖ for all h ∈ X. (8.199)

By (8.198), (8.191), (8.190) and (8.199),

0 > Ξ̃f (x) ≥ Ξf (x) = inf
{
f 0(x,h) : h ∈ X,‖h‖ ≤ 1

}

≥ inf
{
Ξ̃f (x)‖h‖ : h ∈ X,‖h‖ ≤ 1

}= Ξ̃f (x).

This implies that

Ξ̃f (x) = Ξf (x),

as claimed. Proposition 8.16 is proved. �

We precede the proof of Proposition 8.17 with the following lemma.

Lemma 8.22 Let x ∈ U and c > 0 be given. Then the following statements are
equivalent:

(i) Ξf (x) ≥ −c;
(ii) Ξ̃f (x) ≥ −c;

(iii) there is l ∈ ∂f (x) such that ‖l‖∗ ≤ c.

Proof By Proposition 8.16,

Ξf (x) ≥ −c if and only if Ξ̃f (x) ≥ −c.

It follows from (8.191) that Ξ̃f (x) ≥ −c if and only if

f 0(x,h) ≥ −c for all h ∈ X satisfying ‖h‖ = 1,

which is, in its turn, equivalent to the following relation:

f 0(x,h) ≥ −c‖h‖ for all h ∈ X.

Rewriting this last inequality as

f 0(x,h) + c‖h‖ ≥ 0 for all h ∈ X,

we see that it is equivalent to the inclusion

0 ∈ ∂f (x) + c
{
l ∈ X∗ : ‖l‖∗ ≤ 1

}
.

Thus we have proved that (ii) is equivalent to (iii). This completes the proof of
Lemma 8.22. �
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Proof of Proposition 8.17 Clearly, equality (8.192) holds if either one of its sides
equals zero. Therefore we only need to prove (8.192) in the case where

Ξf (x) < 0 and inf
{‖l‖∗ : l ∈ ∂f (x)

}
> 0. (8.200)

Assume that (8.200) holds. By Lemma 8.22, there is l̄ such that

l̄ ∈ ∂f (x) and ‖l̄‖∗ ≤ −Ξf (x). (8.201)

Hence

− inf
{‖l‖∗ : l ∈ ∂f (x)

}≥ −‖l̄‖∗ ≥ Ξf (x). (8.202)

Let ε be any positive number. There is lε ∈ ∂f (x) such that

‖lε‖∗ ≤ inf
{‖l‖∗ : l ∈ ∂f (x)

}+ ε. (8.203)

By (8.203) and Lemma 8.22,

Ξf (x) ≥ −ε − inf
{‖l‖∗ : l ∈ ∂f (x)

}
.

Since ε is any positive number, we conclude that

Ξf (x) ≥ − inf
{‖l‖∗ : l ∈ ∂f (x)

}
.

When combined with (8.202), this inequality completes the proof of Proposi-
tion 8.17. �

8.16 An Auxiliary Result

Proposition 8.23 Let g : X → R1 be a convex and continuous function, x̄ ∈ X,

g(x̄) = inf
{
g(z) : z ∈ X

}
, (8.204)

and let the following property hold:

(P4) for any sequence {yi}∞i=1 ⊂ X satisfying limi→∞ g(yi) = g(x̄), we have
limi→∞ ‖yi − x̄‖ = 0.

Assume that {xi}∞i=1 ⊂ X,

sup
{‖xi‖ : i = 1,2, . . .

}
< ∞ and lim

i→∞Ξg(xi) = 0. (8.205)

Then limi→∞ ‖xi − x̄‖ = 0.
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Proof By (8.205) and Proposition 8.17, there exists a sequence {li}∞i=1 ⊂ X∗ such
that

lim
i→∞‖li‖∗ = 0 and li ∈ ∂g(xi) for all integers i ≥ 1. (8.206)

Choose a number M > 0 such that

‖xi‖ ≤ M for all integers i ≥ 1 (8.207)

and let i ≥ 1 be an integer. By (8.206),

g(z) − li (z) ≥ g(xi) − li (xi) for all z ∈ X. (8.208)

It follows from (8.208), (8.207) and (8.206) that

g(x̄) − g(xi) = g(x̄) − li (x̄) − (
g(xi) − li (xi)

)+ li (x̄ − xi)

≥ li (x̄ − xi) ≥ −‖li‖‖x̄ − xi‖ ≥ −‖li‖
(
M + ‖x̄‖)→ 0 as i → ∞

and therefore

lim inf
i→∞

(
g(x̄) − g(xi)

)≥ 0.

Together with (P4) this implies that limi→∞ ‖xi − x̄‖ = 0. Proposition 8.23 is
proved. �

8.17 Proof of Theorem 8.18

To show that V is regular, let n be a natural number. We have to find a positive
number δ = δ(n) such that for each x ∈ X satisfying ‖x‖ ≤ n and f (x) ≥ inf(f ) +
1/n,

f 0(x,V x) ≤ −δ.

Assume the contrary. Then for each natural number k, there exists xk ∈ X satis-
fying

‖xk‖ ≤ n, f (xk) ≥ inf(f ) + 1/n, (8.209)

and

f 0(xk,V xk) > −1/k. (8.210)

It follows from (8.210), (8.209) and (8.195) that for each natural number k,

−k−1 < f 0(xk,V xk) ≤ −φn

(−Ξf (xk)
)

and hence φn(−Ξf (xk)) < k−1.
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Together with (P2) this inequality implies that limk→∞ Ξf (xk) = 0. When com-
bined with Proposition 8.23 and (8.209), this implies limk→∞ ‖xk − x̄‖ = 0. Since
f is continuous,

lim
k→∞f (xk) = f (x̄) = inf(f ).

This, however, contradicts (8.209). The contradiction we have reached proves that
V is indeed regular, as asserted.

8.18 Proof of Theorem 8.19

In what follows we make the convention that the infimum over the empty set is
infinity. Set φn(0) = 0 and let t > 0. Put

φn(t) = min
{
inf
{−f 0(x,V x) : x ∈ X,‖x‖ ≤ n and Ξf (x) ≤ −t

}
,1
}
. (8.211)

Clearly, φn : [0,∞) → [0,1] is well defined and increasing.
We show that for each x ∈ X satisfying ‖x‖ ≤ n,

f 0(x,V x) ≤ −φn

(−Ξf (x)
)
. (8.212)

Let x ∈ X with ‖x‖ ≤ n. If Ξf (x) = 0, then it is obvious that (8.212) holds.
Assume now that

Ξf (x) < 0. (8.213)

Then by (8.211)), (8.213) and the inequality ‖x‖ ≤ n,

φn

(−Ξf (x)
) = min

{
inf
{−f 0(y,Vy) : y ∈ X,‖y‖ ≤ n and Ξf (y) ≤ Ξf (x)

}
,1
}

≤ min
{
1,−f 0(x,V x)

}≤ −f 0(x,V x)

and hence

f 0(x,V x) ≤ −φn

(−Ξf (x)
)
.

Thus (8.212) holds for each x ∈ X satisfying ‖x‖ ≤ n.
Next we show that (P2) holds. To this end, let ε > 0 be given. We claim that there

is δ > 0 such that for each t ≥ 0 satisfying φn(t) ≤ δ, the inequality t ≤ ε holds.
Assume the contrary. Then for each natural number i, there exists ti ≥ 0 such

that

φn(ti) ≤ (4i)−1, ti > ε. (8.214)

By (8.214) and (8.211), for each natural number i, there exists a point xi ∈ X such
that

‖xi‖ ≤ n, Ξf (xi) ≤ −ti < −ε, (8.215)
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and

f 0(xi,V xi) ≥ −(2i)−1. (8.216)

Now it follows from (8.215), (8.216) and the definition of regularity that

lim
i→∞f (xi) = f (x̄).

Together with (P1) this implies that limi→∞ ‖xi − x̄‖ = 0. When combined with
(P3), this inequality implies that limi→∞ Ξf (xi) = 0. This, however, contradicts
(8.215). The contradiction we have reached proves Theorem 8.19.

8.19 Proof of Theorem 8.20

Let n be a given natural number. We need to show that there exists δ > 0 such that
for each x ∈ X satisfying

‖x‖ ≤ n and Ξf (x) < −1/n, (8.217)

we have

f 0(x,V x) ≤ −δ.

Assume the contrary. Then for each natural number k, there exists xk ∈ X such that

‖xk‖ ≤ n, Ξf (xk) ≤ −1/n, (8.218)

and

f 0(xk,V xk) > −1/k.

By (8.218) and (8.197),

−1/k < f 0(xk,V xk) ≤ −φn

(−Ξf (xk)
)

and

φ
(−Ξf (xk)

)≤ 1/k. (8.219)

It now follows from (8.219) and property (P2) that

lim sup
k→∞

(−Ξf (xk)
)= 0

and

lim
k→∞Ξf (xk) = 0.

The last equality contradicts (8.218) and this contradiction proves Theorem 8.20.
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8.20 Proof of Theorem 8.21

Set φn(0) = 0 and let t > 0. Define

φn(t) = min
{
inf
{−f 0(x,V x) : x ∈ X,‖x‖ ≤ n,Ξf (x) ≤ −t

}
,1
}
. (8.220)

Clearly, φ : [0,∞) → [0,1] is well defined and increasing.
We show that for each x ∈ X satisfying ‖x‖ ≤ n,

f 0(x,V x) ≤ −φn

(−Ξf (x)
)
. (8.221)

Consider x ∈ X with

‖x‖ ≤ n. (8.222)

If Ξf (x) = 0, then (8.221) clearly holds. Assume that

Ξf (x) < 0. (8.223)

Then by (8.220), (8.221), (8.222) and (8.223),

φn

(−Ξf (x)
) = min

{
inf
{−f 0(y,Vy) : y ∈ X,‖y‖ ≤ n,Ξf (y) ≤ Ξf (x)

}
,1
}

≤ min
{
1,−f 0(x,V x)

}≤ −f 0(x,V x)

and hence (8.221) holds for all x ∈ X satisfying ‖x‖ ≤ n, as claimed.
Now we show that property (P2) also holds. To this end, let ε be positive.
We claim that there is δ > 0 such that for each t ≥ 0 satisfying φn(t) ≤ δ, the

inequality t ≤ ε holds.
Assume the contrary. Then for each natural number i, there exists ti ≥ 0 such

that

φ(ti) ≤ (4i)−1, ti > ε. (8.224)

Let i be a natural number. By (8.224) and (8.220), there exists xi ∈ X such that

‖xi‖ ≤ n, Ξf (xi) ≤ −ti < −ε, (8.225)

and

−f 0(xi,V xi) ≤ (2i)−1.

Clearly,

f 0(xi,V xi) ≥ −(2i)−1. (8.226)

Choose a natural number p such that

p > n and 1/p < ε. (8.227)

Since V is regular, there is δ > 0 such that

if x ∈ X,‖x‖ ≤ p and Ξf (x) < −1/p, then f 0(x,V x) < −δ. (8.228)
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Choose a natural number j such that

1/j < δ. (8.229)

Then for all integers i ≥ j , it follows from (8.225) and (8.227) that

Ξf (xi) < −ε < −1/p and ‖xi‖ ≤ p.

Together with (8.228) and (8.229), this implies that for all integers i ≥ j ,

f 0(xi,V xi) < −δ < −j−1 < −(i)−1.

Since this contradicts (8.226), the proof of Theorem 8.21 is complete.

8.21 Most Continuous Descent Methods Converge

Let (X,‖·‖) be a Banach space and let f : X → R1 be a convex continuous function
which satisfies the following conditions:

C(i) lim‖x‖→∞ f (x) = ∞;
C(ii) there is x̄ ∈ X such that f (x̄) ≤ f (x) for all x ∈ X;
C(iii) if {xn}∞n=1 ⊂ X and limn→∞ f (xn) = f (x̄), then

lim
n→∞‖xn − x̄‖ = 0.

By C(iii), the point x̄, where the minimum of f is attained, is unique.
For each x ∈ X, let

f 0(x,u) = lim
t→0+

[
f (x + tu) − f (x)

]
/t, u ∈ X. (8.230)

Let (X∗,‖ · ‖∗) be the dual space of (X,‖ · ‖).
For each x ∈ X, let

∂f (x) = {
l ∈ X∗ : f (y) − f (x) ≥ l(y − x) for all y ∈ X

}

be the subdifferential of f at x. It is well known that the set ∂f (x) is nonempty and
norm-bounded.

For each x ∈ X and r > 0, set

B(x, r) = {
z ∈ X : ‖z − x‖ ≤ r

}
and B(r) = B(0, r). (8.231)

For each mapping A : X → X and each r > 0, put

Lip(A, r) := sup
{‖Ax − Ay‖/‖x − y‖ : x, y ∈ B(r) and x �= y

}
. (8.232)
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Denote by Al the set of all mappings V : X → X such that Lip(V , r) < ∞ for
each positive r (this means that the restriction of V to any bounded subset of X is
Lipschitzian) and f 0(x,V x) ≤ 0 for all x ∈ X.

For the set Al we consider the uniformity determined by the base

Es(n, ε) = {
(V1,V2) ∈Al ×Al : Lip(V1 − V2, n) ≤ ε

and ‖V1x − V2x‖ ≤ ε for all x ∈ B(n)
}
. (8.233)

Clearly, this uniform space Al is metrizable and complete. The topology induced
by this uniformity in Al will be called the strong topology.

We also equip the space Al with the uniformity determined by the base

Ew(n, ε) = {
(V1,V2) ∈ Al ×Al : ‖V1x − V2x‖ ≤ ε

for all x ∈ B(n)
}

(8.234)

where n, ε > 0. The topology induced by this uniformity will be called the weak
topology.

The following existence result is proved in the next section.

Proposition 8.24 Let x0 ∈ X and V ∈ Al . Then there exists a unique continuously
differentiable mapping x : [0,∞) → X such that

x′(t) = V x(t), t ∈ [0,∞),

x(0) = x0.

In the subsequent sections we prove the following result which was obtained
in [1].

Theorem 8.25 There exists a set F ⊂ Al which is a countable intersection of open
(in the weak topology) everywhere dense (in the strong topology) subsets of Al such
that for each V ∈ F , the following property holds:

For each ε > 0 and each n > 0, there exist Tεn > 0 and a neighborhood U of
V in Al with the weak topology such that for each W ∈ U and each differentiable
mapping y : [0,∞) → X satisfying

∣
∣f
(
y(0)

)∣∣≤ n and y′(t) = Wy(t) for all t ≥ 0,

the inequality ‖y(t) − x̄‖ ≤ ε holds for all t ≥ Tεn.

8.22 Proof of Proposition 8.24

Since V is locally Lipschitzian, there exists a unique differentiable function x : I →
X, where I is an interval of the form [0, b), b > 0, such that

x(0) = x0, x′(t) = V x(t), t ∈ I. (8.235)
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We may and will assume that I is the maximal interval of this form on which the
solution exists.

We need to show that b = ∞. Suppose, by contradiction, that b < ∞.
By Proposition 8.13 and the relation V ∈ Al , the function f (x(t)) is decreasing

on I . By C(i), the set {x(t) : t ∈ [0, b)} is bounded. Thus there is K0 > 0 such that
∥
∥x(t)

∥
∥≤ K0 for all t ∈ [0, b). (8.236)

Since V is Lipschitzian on bounded subsets of X, there is K1 > 0 such that

if z ∈ X,‖z‖ ≤ K0, then ‖V z‖ ≤ K1. (8.237)

Let ε > 0 be given. Then it follows from (8.235), (8.236) and (8.237) that for each
t1, t2 ∈ [0, b) such that 0 < t2 − t1 < ε/K1,

∥∥x(t2) − x(t1)
∥∥ =

∥∥∥∥

∫ t2

t1

x′(t) dt

∥∥∥∥=
∥∥∥∥

∫ t2

t1

V x(t) dt

∥∥∥∥

≤
∫ t2

t1

∥∥V x(t)
∥∥dt ≤

∫ t2

t1

K1 dt = K1(t2 − t1) < ε.

Hence there exists z0 = limt→b− x(t) in the norm topology. It follows that there
exists a unique solution of the initial value problem

z′(t) = V z(t), z(b) = z0,

defined on a neighborhood of b, and this implies that our solution x(·) can be ex-
tended to an open interval larger than I . The contradiction we have reached com-
pletes the proof of Proposition 8.24.

8.23 Proof of Theorem 8.25

For each V ∈Al and each γ ∈ (0,1), set

Vγ x = V x + γ (x̄ − x), x ∈ X. (8.238)

We first prove several lemmata.

Lemma 8.26 Let V ∈Al and γ ∈ (0,1). Then Vγ ∈Al .

Proof Clearly, Vγ is Lipschitzian on any bounded subset of X. Let x ∈ X. Then by
(8.238), the subadditivity and positive homogeneity of the directional derivative of
a convex function, the relation V ∈Al , and C(ii),

f 0(x,Vγ x) = f 0(x,V x + γ (x̄ − x)
)≤ f 0(x,V x) + γf 0(x, x̄ − x)

≤ γf 0(x, x̄ − x) ≤ γ
(
f (x̄) − f (x)

)≤ 0.

This completes the proof of Lemma 8.26. �
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It is easy to see that the following lemma also holds.

Lemma 8.27 Let V ∈Al . Then limγ→0+ Vγ = V in the strong topology.

Lemma 8.28 Let V ∈ Al , γ ∈ (0,1), ε > 0, and let x ∈ X satisfy f (x) ≥ f (x̄)+ ε.
Then f 0(x,Vγ x) ≤ −γ ε.

Proof It follows from (8.238), the properties of the directional derivative of a convex
function, and the relation V ∈ Al that

f 0(x,Vγ x) = f 0(x,V x + γ (x̄ − x)
)≤ f 0(x,V x) + γf 0(x, x̄ − x)

≤ γf 0(x, x̄ − x) ≤ γ
(
f (x̄) − f (x)

)≤ −εγ.

The lemma is proved. �

Lemma 8.29 Let V ∈Al , γ ∈ (0,1), and let x ∈ C1([0,∞);X) satisfy

x′(t) = Vγ x(t), t ∈ [0,∞). (8.239)

Assume that T0, ε > 0 are such that

T0 >
(
f
(
x(0)

)− f (x̄)
)
(γ ε)−1. (8.240)

Then for each t ≥ T0, f (x(t)) ≤ f (x̄) + ε.

Proof Since the function f (x(·)) is decreasing on [0,∞) (see Proposition 8.13,
Lemma 8.26 and (8.239)), it is sufficient to show that

f
(
x(T0)

)≤ f (x̄) + ε. (8.241)

Assume the contrary. Then f (x(T0)) > f (x̄) + ε, and since f (x(·)) is decreasing
on [0,∞), we have

f
(
x(t)

)
> f (x̄) + ε for all t ∈ [0, T0]. (8.242)

When combined with Lemma 8.28, inequality (8.242) implies that

f 0(x(t),Vγ

(
x(t)

)≤ −γ ε for all t ∈ [0, T0]. (8.243)

It now follows from Proposition 8.13, (8.239) and (8.243) that

f
(
x(T0)

)− f
(
x(0)

) =
∫ T0

0
(f ◦ x)′(t) dt =

∫ T0

0
f 0(x(t), x′(t)

)
dt

=
∫ T0

0
f 0(x(t),Vγ x(t)

)
dt ≤ T0(−γ ε),
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whence

T0γ ε ≤ f
(
x(0)

)− f
(
x(T0)

)
< f

(
x(0)

)− f (x̄).

This contradicts (8.240). The contradiction we have reached proves the lemma. �

Lemma 8.30 Let V ∈ Al , γ ∈ (0,1), ε > 0 and n > 0. Then there exist a neighbor-
hood U of Vγ in Al with the weak topology and τ > 0 such that for each W ∈ U
and each continuously differentiable mapping x : [0,∞) → X satisfying

x′(t) = Wx(t), t ∈ [0,∞), (8.244)

and
∣
∣f
(
x(0)

)∣∣≤ n, (8.245)

the following inequality holds:
∥∥x(t) − x̄

∥∥≤ ε for all t ≥ τ. (8.246)

Proof By C(i), there is n1 > n such that

if z ∈ X,f (z) ≤ n, then ‖z‖ ≤ n1. (8.247)

By C(iii), there is δ1 > 0 such that

if z ∈ X and f (z) ≤ f (x̄) + δ1, then ‖z − x̄‖ ≤ ε. (8.248)

Since f is continuous, there is ε1 > 0 such that
∣∣f (x̄) − f (z)

∣∣≤ δ1 for each z ∈ X satisfying ‖z − x̄‖ ≤ ε1. (8.249)

In view of C(iii), there exists δ0 ∈ (0,1) such that

if z ∈ X and f (z) ≤ f (x̄) + δ0, then ‖z − x̄‖ ≤ ε1/4. (8.250)

Since Vγ ∈ Al , there is L > 0 such that

‖Vγ z1 − Vγ z2‖ ≤ L‖z1 − z2‖ for all z1, z2 ∈ B(n1). (8.251)

Fix

τ >
(
n − f (x̄) + 1

)
(γ δ0)

−1 + 1 (8.252)

and choose a positive number Δ such that

ΔτeLτ ≤ ε1/4. (8.253)

Set

U = {
W ∈ Al : ‖Wz − Vγ z‖ ≤ Δ for all z ∈ B(n1)

}
. (8.254)
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Assume that

W ∈ U (8.255)

and that x ∈ C1([0,∞);X) satisfies (8.244) and (8.245). We have to prove (8.246).
In view of (8.248), it is sufficient to show that

f
(
x(t)

)≤ f (x̄) + δ1 for all t ≥ τ.

Since the function f (x(·)) is decreasing on [0,∞), in order to prove the lemma we
only need to show that

f
(
x(τ)

)≤ f (x̄) + δ1.

By (8.249), this inequality will follow from the inequality

∥∥x(τ) − x̄
∥∥≤ ε1. (8.256)

We now prove (8.256).
To this end, consider a continuously differentiable mapping y : [0,∞) → X

which satisfies

y′(t) = Vγ y(t), t ∈ [0,∞), (8.257)

and

y(0) = x(0). (8.258)

Since the functions f (x(·)) and f (y(·)) are decreasing on [0,∞), we obtain by
(8.258) and (8.245) that for each s ≥ 0,

f
(
x(s)

)
, f
(
y(s)

)≤ f
(
x(0)

)≤ n.

When combined with (8.247), this inequality implies that

∥∥x(s)
∥∥,
∥∥y(s)

∥∥≤ n1 for all s ≥ 0. (8.259)

It follows from Lemma 8.29 (with x = y, ε = δ0), (8.258), (8.257), (8.252) and
(8.245) that

f
(
y(τ)

)≤ f (x̄) + δ0.

This inequality and (8.250) imply that
∥∥y(τ) − x̄

∥∥≤ ε1/4. (8.260)

Now we estimate ‖x(τ) − y(τ)‖. It follows from (8.257), (8.244) and (8.258) that
for each s ∈ [0, τ ],
∥∥y(s) − x(s)

∥∥ =
∥∥∥∥y(0) +

∫ s

0
Vγ y(t) dt −

(
x(0) +

∫ s

0
Wx(t) dt

)∥∥∥∥
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=
∥∥∥∥

∫ s

0

(
Vγ y(t) − Wx(t)

)
dt

∥∥∥∥≤
∫ s

0

∥∥Vγ y(t) − Wx(t)
∥∥dt

≤
∫ s

0

∥
∥Vγ y(t) − Vγ x(t)

∥
∥dt +

∫ s

0

∥
∥Vγ x(t) − Wx(t)

∥
∥dt. (8.261)

By (8.259) and (8.254), for each s ∈ (0, τ ], we have

∫ s

0

∥
∥Vγ x(t) − Wx(t)

∥
∥dt ≤

∫ s

0
Δdt ≤ Δs ≤ Δτ. (8.262)

By (8.259) and (8.251), for each s ∈ [0, τ ],
∫ s

0

∥
∥Vγ y(t) − Vγ x(t)

∥
∥dt ≤

∫ s

0
L
∥
∥y(t) − x(t)

∥
∥dt. (8.263)

It follows from (8.261), (8.262) and (8.263) that for each s ∈ [0, τ ],
∥∥y(s) − x(s)

∥∥≤ Δτ +
∫ s

0
L
∥∥y(t) − x(t)

∥∥dt. (8.264)

Applying Gronwall’s inequality, we obtain that

∥∥y(τ) − x(τ)
∥∥≤ Δτe

∫ τ
0 Ldt = ΔτeLτ .

When combined with (8.253), this inequality implies that

∥
∥y(τ) − x(τ)

∥
∥≤ ε1/4.

Together with (8.260), this implies that ‖x(τ) − x̄‖ ≤ ε1/2. Lemma 8.30 is
proved. �

Completion of the proof of Theorem 8.25 Let V ∈ Aγ , γ ∈ (0,1), and let i be a
natural number. By Lemma 8.30, there exist an open neighborhood U(V , γ, i) of
Vγ in Al with the weak topology and a positive number τ (V, γ, i) such that the
following property holds:

(P) For each W ∈ U(V , γ, i) and each continuously differentiable mapping x :
[0,∞) → X satisfying

x′(t) = Wx(t), t ∈ [0,∞),
∣∣f
(
x(0)

)∣∣≤ i,

the following inequality holds:

∥∥x(t) − x̄
∥∥≤ i−1 for all t ≥ τ (V, γ, i).
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Set

F :=
∞⋂

i=1

⋃{
U(V , γ, i) : V ∈Al , γ ∈ (0,1)

}
. (8.265)

By Lemma 8.27, F is a countable intersection of open (in the weak topology) ev-
erywhere dense (in the strong topology) subsets of Al .

Let Ṽ ∈F and let n, ε > 0 be given. Choose a natural number i such that

i > n, i > ε−1. (8.266)

By (8.265), there are V ∈ Al and γ ∈ (0,1) such that

Ṽ ∈ U(V , γ, i). (8.267)

We claim show that the assertion of Theorem 8.15 holds with U = U(V , γ, i) and
Tεn = τ (V, γ, i).

Assume that W ∈ U(V , γ, i) and that the continuously differentiable mapping
y : [0,∞) → X satisfies

∣∣f
(
y(0)

)∣∣≤ n, y′(t) = Wy(t) for all t ≥ 0. (8.268)

Then by (8.268), (8.266) and property (P), it follows that
∥∥y(t) − x̄

∥∥≤ i−1 for all t ≥ τ (V, γ, i).

When combined with (8.266), this inequality implies that ‖y(t) − x̄‖ ≤ ε for all
t ≥ τ (V, γ, i). Theorem 8.25 is established. �



Chapter 9
Set-Valued Mappings

9.1 Contractive Mappings

We begin this chapter with a few results on single-valued contractive mappings,
which will be used in subsequent sections.

Let (X,ρ) be a complete metric space. Recall that an operator A : X → X is said
to be nonexpansive if

ρ(Ax,Ay) ≤ ρ(x, y) for all x, y ∈ X.

We denote by A the set of all nonexpansive operators A : X → X. We assume that
X is bounded and set

d(X) = sup
{
ρ(x, y) : x, y ∈ X

}
< ∞.

We equip the set A with the metric ρA defined by

ρA(A,B) := sup
{
ρ(Ax,Bx) : x ∈ X

}
, A,B ∈A. (9.1)

It is clear that the metric space (A, ρA) is complete.
Denote by A the set of all sequences {At }∞t=1, where At ∈ A, t = 1,2, . . . .

A member of A will occasionally be denoted by boldface A.
For the set A we define a metric ρA by

ρA
({At }∞t=1, {Bt }∞t=1

)= sup
{
ρ(Atx,Btx) : t = 1,2, . . . and x ∈ X

}
. (9.2)

Clearly, the metric space (A, ρA) is also complete.
A sequence {At }∞t=1 ∈A is called contractive if there exists a decreasing function

φ : [0, d(X)] → [0,1] such that

φ(t) < 1 for all t ∈ (0, d(X)
]

(9.3)

and

ρ(Atx,Aty) ≤ φ
(
ρ(x, y)

)
ρ(x, y) for all x, y ∈ X and all integers t ≥ 1. (9.4)
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An operator A ∈ A is called contractive if the sequence {At }∞t=1 with At = A,
t = 1,2, . . . , is contractive.

It is known that the iterates of any contractive mapping converge to its unique
fixed point (see Chap. 3). The following theorem, which was obtained in [144],
extends this result to infinite products.

Theorem 9.1 Assume that the sequence {At }∞t=1 is contractive and that ε > 0. Then
there exists a natural number N such that for each integer T ≥ N , each mapping
h : {1, . . . , T } → {1,2, . . .} and each x, y ∈ X,

ρ(Ah(T ) · · · · · Ah(1)x,Ah(T ) · · · · · Ah(1)y) ≤ ε. (9.5)

Proof There exists a decreasing function φ : [0, d(X)] → [0,1] such that inequali-
ties (9.3) and (9.4) hold. Choose a natural number N > 4 such that

d(X)φ(ε)N < ε. (9.6)

Assume that T ≥ N is an integer, h : {1, . . . , T } → {1,2, . . .} and that x, y ∈ X are
given. We intend to show that (9.5) holds. Assume it does not. Then

ρ(x, y) > ε and ρ(Ah(n) · · · · · Ah(1)x,Ah(n) · · · · · Ah(1)y) > ε,

n = 1, . . . ,N. (9.7)

It follows from (9.7) and (9.4) that

ρ(Ah(1)x,Ah(1)y) ≤ φ
(
ρ(x, y)

)
ρ(x, y) ≤ φ(ε)ρ(x, y)

and that for all integers i = 1, . . . ,N − 1,

ρ(Ah(i+1)Ah(i) · · · · · Ah(1)x,Ah(i+1)Ah(i) · · · · · Ah(1)y)

≤ φ(ε)ρ(Ah(i) · · · · · Ah(1)x,Ah(i) · · · · · Ah(1)y).

When combined with (9.6), this inequality implies that

ρ(Ah(N) · · · · · Ah(1)x,Ah(N) · · · · · Ah(1)y) ≤ φ(ε)Nρ(x, y) ≤ d(X)φ(ε)N < ε,

a contradiction. This completes the proof of Theorem 9.1. �

Corollary 9.2 Assume that the sequence {At }∞t=1 is contractive. Then

ρ(Ah(T ) · · · · · Ah(1)x,Ah(T ) · · · · · Ah(1)y) → 0 as T → ∞,

uniformly in h : {1,2, . . .} → {1,2, . . .} and in x, y ∈ X.

We remark in passing that such results are called weak ergodic theorems in the
population biology literature [43].
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9.2 Star-Shaped Spaces

We say that a complete metric space (X,ρ) is star-shaped if it contains a point
x∗ ∈ X with the following property:

For each x ∈ X, there exists a mapping

t → tx ⊕ (1 − t)x∗ ∈ X, t ∈ (0,1), (9.8)

such that for each t ∈ (0,1) and each x, y ∈ X,

ρ
(
tx ⊕ (1 − t)x∗, ty ⊕ (1 − t)x∗

)≤ tρ(x, y) (9.9)

and

ρ
(
tx ⊕ (1 − t)x∗, x

)≤ (1 − t)ρ(x, x∗). (9.10)

For each A ∈A and each γ ∈ (0,1), define Aγ ∈A by

Aγ x = (1 − γ )Ax ⊕ γ x∗, x ∈ X. (9.11)

For each A = {At }∞t=1 ∈A, let Aγ = {Aγ t }∞t=1, where

Aγ tx = (1 − γ )Atx ⊕ γ x∗, x ∈ X, t = 1,2, . . . . (9.12)

Theorem 9.3 Assume that B is a closed subset of A such that for each A ∈ B and
each γ ∈ (0,1), the sequence Aγ ∈ B. Then there exists a set F which is a countable
intersection of open and everywhere dense subsets of B (with the relative topology)
such that each A ∈ F is contractive.

Proof It follows from (9.10) that for each A = {At }∞t=1 ∈ B, each γ ∈ (0,1) and
each x ∈ X,

ρ(Aγ tx,Atx) ≤ γρ(Atx, x∗).

This implies that Aγ → A in B as γ → 0+ and that the set {Aγ : A ∈ B, γ ∈ (0,1)}
is everywhere dense in B.

Let A = {At }∞t=1 ∈ B and γ ∈ (0,1) be given. Inequality (9.9) implies that

ρ(Aγ tx,Aγ ty) ≤ (1 − γ )ρ(x, y) (9.13)

for all x, y ∈ X and all integers t ≥ 1. For each integer i ≥ 1, choose a positive
number

δ(A, γ, i) < (4i)−1d(X)γ (9.14)

and define

U(A, γ, i) = {
B ∈ B : ρA(Aγ ,B) < δ(A, γ, i)

}
. (9.15)

Let i ≥ 1 be an integer. We claim that the following property holds:
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P(1) For each B ∈ U(A, γ, i), each x, y ∈ X satisfying ρ(x, y) ≥ i−1d(X) and each
integer t ≥ 1, the inequality ρ(Btx,Bty) ≤ (1 − γ /2)ρ(x, y) is valid.

Indeed, assume that B ∈ U(A, γ, i), the points x, y ∈ X satisfy

ρ(x, y) ≥ i−1d(X), (9.16)

and that t ≥ 1 is an integer. It follows from the definition of U(A, γ, i) (see (9.15)
and (9.14)), (9.13) and (9.16) that

ρ(Btx,Bty) ≤ ρ(Aγ tx,Aγ ty) + 2δ(A, γ, i)

< 2δ(A, γ, i) + (1 − γ )ρ(x, y) ≤ (1 − γ )ρ(x, y) + (2i)−1γ d(X)

≤ (1 − γ )ρ(x, y) + 2−1γρ(x, y) ≤ (1 − γ /2)ρ(x, y).

Thus

ρ(Btx,Bty) ≤ (1 − γ /2)ρ(x, y). (9.17)

Now define

F :=
∞⋂

i=1

⋃{
U(A, γ, i) : A ∈ B, γ ∈ (0,1)

}
. (9.18)

It is clear that F is a countable intersection of open and everywhere dense subsets
of B (equipped with the relative topology). We claim that any B ∈ F is contractive.
To show this, assume that i is a natural number. There exist A ∈ B and γ ∈ (0,1)

such that B ∈ U(A, γ, i). By property P(1), for each x, y ∈ X satisfying ρ(x, y) ≥
i−1d(X) and each integer t ≥ 1, inequality (9.17) holds. Since i is an arbitrary
natural number we conclude that B is contractive. Theorem 9.3 is proved. �

Theorem 9.4 Assume that B is a closed subset of A such that for each A ∈ B and
each γ ∈ (0,1), the mapping Aγ ∈B. Then there exists a set F which is a countable
intersection of open and everywhere dense subsets of B (with the relative topology)
such that each A ∈F is contractive.

Proof For each A ∈ B denote by Q(A) the sequence A = {At }∞t=1 with At = A,
t = 1,2, . . . . Set

B = {
Q(A) : A ∈B

}
.

It is easy to see that B is a closed subset of A and that for each A ∈ B and each
γ ∈ (0,1), the sequence Aγ ∈ B. Now Theorem 9.4 follows from Theorem 9.3 and
the equality

ρA(A,B) = ρA
(
Q(A),Q(B)

)
. �
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9.3 Convergence of Iterates of Set-Valued Mappings

Assume that (E,‖ · ‖) is a Banach space, K is a nonempty, bounded and closed
subset of E, and there exists θ ∈ K such that for each point x ∈ K ,

tx + (1 − t)θ ∈ K, t ∈ (0,1).

We consider the star-shaped complete metric space K with the metric ‖x − y‖,
x, y ∈ K . Denote by S(K) the set of all nonempty closed subsets of K . For x ∈ K

and A ⊂ K , set

ρ(x,A) = inf
{‖x − y‖ : y ∈ A

}
,

and for each A,B ∈ S(K), let

H(A,B) = max
{

sup
x∈A

ρ(x,B), sup
y∈B

ρ(y,A)
}
. (9.19)

We equip the set S(K) with the Hausdorff metric H(·, ·). It is well known that the
metric space (S(K),H) is complete. Clearly, {θ} ∈ S(K).

For each subset A ∈ S(K) and each t ∈ [0,1], define

tA ⊕ (1 − t)θ := {
tx + (1 − t)θ : x ∈ A

} ∈ S(K). (9.20)

It is easy to see that the complete metric space (S(K),H) is star-shaped.
Denote by A the set of all nonexpansive operators T : S(K) → S(K). For the set

A we consider the metric ρA defined by

ρA(T1, T2) := sup
{
H
(
T1(A),T2(A)

) : A ∈ S(K)
}
, T1, T2 ∈A. (9.21)

Denote by M the set of all mappings T : K → S(K) such that

H
(
T (x), T (y)

)≤ ‖x − y‖, x, y ∈ K. (9.22)

A mapping T ∈ M is called contractive if there exists a decreasing function φ :
[0, d(K)] → [0,1] such that

φ(t) < 1 for all t ∈ (0, d(K)
]

(9.23)

and

H
(
T (x), T (y)

)≤ φ
(‖x − y‖)‖x − y‖ for all x, y ∈ K. (9.24)

Assume that T ∈ M. For each A ∈ S(K), denote by T̃ (A) the closure of the set⋃{T (x) : x ∈ A} in the norm topology.

Proposition 9.5 Assume that T ∈ M. Then the mapping T̃ belongs to A.
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Proof Let A,B ∈ S(K). We claim that

H
(
T̃ (A), T̃ (B)

)≤ H(A,B). (9.25)

Given ε > 0, there exist x1 ∈ T̃ (A) and x2 ∈ T̃ (B) such that

max
{
ρ
(
x1, T̃ (B)

)
, ρ
(
x2, T̃ (A)

)}+ ε/2 > H
(
T̃ (A), T̃ (B)

)
. (9.26)

We may assume that

ρ
(
x1, T̃ (B)

)≥ ρ
(
x2, T̃ (A)

)
.

Therefore

ρ
(
x1, T̃ (B)

)+ ε/2 > H
(
T̃ (A), T̃ (B)

)
. (9.27)

We may assume that x1 ∈ T (A). There exist points x0 ∈ A such that x1 ∈ T (x0) and
y0 ∈ B such that

‖x0 − y0‖ < ρ(x0,B) + ε/2 ≤ H(A,B) + ε/2.

Therefore inequality (9.22) implies that

ρ
(
x1, T̃ (B)

)≤ ρ
(
x1, T (y0)

)≤ H
(
T (x0), T (y0)

)≤ ‖x0 − y0‖ < H(A,B) + ε/2.

Now (9.27) yields

H
(
T̃ (A), T̃ (B)

)
< H(A,B) + ε.

Since ε is an arbitrary positive number, we conclude that (9.25) holds. Proposi-
tion 9.5 is proved. �

Proposition 9.6 Assume that T ∈ M. Then the mapping T̃ is contractive if and
only if the mapping T is contractive.

Proof It is clear that T is contractive if T̃ is contractive. Assume now that the map-
ping T is contractive. Then there exists a decreasing function φ : [0, d(K)] → [0,1]
such that (9.23) and (9.24) hold.

Let A,B ∈ S(K). We assert that

H
(
T̃ (A), T̃ (B)

)≤ max
{
1/2, φ

(
H(A,B)/4

)}
H(A,B). (9.28)

To see this, we may assume that H(A,B) > 0 and that

H
(
T̃ (A), T̃ (B)

)
> H(A,B)/2. (9.29)

Let

ε ∈ (0,H(A,B)/4
)
. (9.30)
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By the definition of the Hausdorff metric, there exist x1 ∈ T̃ (A) and x2 ∈ T̃ (B) such
that

max
{
ρ
(
x1, T̃ (B)

)
, ρ
(
x2, T̃ (A)

)}+ ε/2 > H
(
T̃ (A), T̃ (B)

)
. (9.31)

We may assume that

ρ
(
x1, T̃ (B)

)≥ ρ
(
x2, T̃ (A)

)
.

Therefore

ρ
(
x1, T̃ (B)

)+ ε/2 > H
(
T̃ (A), T̃ (B)

)
. (9.32)

We may also assume that x1 ∈ T (A). There exist x0 ∈ A such that x1 ∈ T (x0) and
y0 ∈ B such that

‖x0 − y0‖ < ρ(x0,B) + ε/2 ≤ H(A,B) + ε/2. (9.33)

Therefore (9.24) implies that

ρ
(
x1, T̃ (B)

)≤ ρ
(
x1, T (y0)

)≤ H
(
T (x0), T (y0)

)≤ φ
(‖x0 − y0‖

)‖x0 − y0‖
≤ φ

(‖x0 − y0‖
)(

H(A,B) + ε/2
)
. (9.34)

Combining this with (9.32), we see that

−ε/2 + H
(
T̃ (A), T̃ (B)

)
< φ

(‖x0 − y0‖
)(

H(A,B) + ε/2
)
. (9.35)

It follows from (9.22), (9.32), (9.29) and (9.30) that

‖x0 − y0‖ ≥ H
(
T (x0), T (y0)

)≥ ρ
(
x1, T (y0)

)≥ ρ
(
x1, T̃ (B)

)

≥ −ε/2 + H
(
T̃ (A), T̃ (B)

)
> −ε/2 + H(A,B)/2 ≥ H(A,B)/4.

Thus

‖x0 − y0‖ ≥ H(A,B)/4.

Combining this last inequality with (9.35), we can deduce that

−ε/2 + H
(
T̃ (A), T̃ (B)

)
< φ

(
H(A,B)/4

)(
H(A,B) + ε/2

)
.

Since ε is an arbitrary positive number, we conclude that

H
(
T̃ (A), T̃ (B)

)≤ φ
(
H(A,B)/4

)(
H(A,B)

)
.

This completes the proof of Proposition 9.6. �

We equip the set M with the metric ρM defined by

ρM(T1, T2) := sup
{
H
(
T1(x), T2(x)

) : x ∈ K
}
, T1, T2 ∈M. (9.36)

It is not difficult to verify that the metric space (M, ρM) is complete.
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For each T ∈M, set P(T ) = T̃ . It is easy to see that for each T1, T2 ∈ M,

ρA
(
P(T1),P (T2)

)= ρM(T1, T2). (9.37)

Denote

B= {
P(T ) : T ∈M

}
. (9.38)

It is clear that the metric spaces (B, ρA) and (M, ρM) are isometric.
For each T ∈A and each γ > 0, define

Tγ (A) = (1 − γ )T (A) ⊕ γ θ.

It is easy to see that Tγ ∈ A for each T ∈ A and each γ > 0, and moreover, Tγ ∈ B

if T ∈ B. Now we can apply Theorem 9.4 and obtain the following result.

Theorem 9.7 There exists a set F which is a countable intersection of open and
everywhere dense subsets of (M, ρM) such that each T ∈ F is contractive.

Theorem 3.1 and Proposition 9.6 imply the following result.

Theorem 9.8 Assume that the operator T ∈ M is contractive. Then there exists
a unique set AT ∈ S(K) such that T̃ (AT ) = AT and (T̃ )n(B) → AT as n → ∞,
uniformly for all B ∈ S(K).

Let T ∈M. A sequence {xn}Nn=1 ⊂ K with N ≥ 1 (respectively, {xn}∞n=1 ⊂ K) is
called a trajectory of T if xi+1 ∈ T (xi), i = 1, . . . ,N −1 (respectively, i = 1,2, . . .).

Theorem 9.8 leads to the following results.

Theorem 9.9 Let the operator T ∈M be contractive and let the set AT ∈ S(K) be
as guaranteed by Theorem 9.8. Then for each ε > 0, there exists a natural number
n such that for each trajectory {xi}ni=1 ⊂ K of T , ρ(xn,AT ) < ε.

Theorem 9.10 Let the operator T ∈ M be contractive and let the set AT ∈ S(K)

be as guaranteed by Theorem 9.8. Then for each ε > 0, there exists a natural number
n such that for each z ∈ K and each x ∈ AT , there exists a trajectory {xi}ni=1 ⊂ K

of T such that x1 = z and ρ(xn, x) < ε.

Corollary 9.11 Let the operator T ∈ M be contractive and let the set AT ∈ S(K)

be as guaranteed by Theorem 9.8. Then for each x ∈ AT , there is a trajectory
{xi}∞i=1 ⊂ AT such that x1 = x and lim infi→∞ ‖xi − x‖ = 0.

Corollary 9.12 Let the operator T ∈ M be contractive and let the set AT ∈ S(K)

be as guaranteed by Theorem 9.8. Assume that the set AT is separable. Then for
each x ∈ AT , there is a trajectory {xi}∞i=1 ⊂ AT such that x1 = x and for each
y ∈ AT , lim infi→∞ ‖xi − y‖ = 0.
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9.4 Existence of Fixed Points

We consider a complete metric space of nonexpansive set-valued mappings acting
on a closed and convex subset of a Banach space with a nonempty interior, and show
that a generic mapping in this space has a fixed point. We then prove analogous
results for two complete metric spaces of set-valued mappings with convex graphs.
These results were obtained in [145].

Let (X,‖ · ‖) be a Banach space and denote by S(X) the set of all nonempty,
closed and convex subsets of X. For x ∈ X and A ⊂ X, set

ρ(x,A) = inf
{‖x − y‖ : y ∈ A

}
,

and for each A,B ∈ S(X), let

H(A,B) = max
{

sup
x∈A

ρ(x,B), sup
y∈B

ρ(y,A)
}
. (9.39)

The interior of a subset A ⊂ X will be denoted by int(A). For each x ∈ X and
each r > 0, set B(x, r) = {y ∈ X : ‖y − x‖ ≤ r}. For the set S(X) we consider the
uniformity determined by the following base:

G(n) = {
(A,B) ∈ S(X) × S(X) : H(A,B) ≤ n−1}, (9.40)

n = 1,2, . . . . It is well known that the space S(X) with this uniformity is metrizable
and complete. We endow the set S(X) with the topology induced by this uniformity.

Assume now that K is a nonempty, closed and convex subset of X and denote
by S(K) the set of all A ∈ S(X) such that A ⊂ K . It is clear that S(K) is a closed
subset of S(X). We equip the topological subspace S(K) ⊂ S(X) with its relative
topology.

Denote by Mne the set of all mappings T : K → S(K) such that T (x) is bounded
for all x ∈ K and

H
(
T (x), T (y)

)≤ ‖x − y‖, x, y ∈ K. (9.41)

In other words, the set Mne consists of those nonexpansive set-valued self-
mappings of K which have nonempty, bounded, closed and convex point images.

Fix θ ∈ K . For the set Mne we consider the uniformity determined by the fol-
lowing base:

E(n) = {
(T1, T2) ∈Mne ×Mne : H (

T1(x), T2(x)
)≤ n−1

for all x ∈ K satisfying ‖x − θ‖ ≤ n
}
, n = 1,2, . . . . (9.42)

It is not difficult to verify that the space Mne with this uniformity is metrizable and
complete.

The following result is well known [45, 102]; see also [116].
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Theorem 9.13 Assume that T : K → S(K), γ ∈ (0,1), and

H
(
T (x), T (y)

)≤ γ ‖x − y‖, x, y ∈ K.

Then there exists xT ∈ K such that xT ∈ T (xT ).

The existence of fixed points for set-valued mappings which are merely non-
expansive is more delicate and was studied by several authors. See, for example,
[67, 94, 119] and the references therein.

We prove the following result which shows that if int(K) is nonempty, then a
generic nonexpansive mapping does have a fixed point.

Theorem 9.14 Assume that int(K) �= ∅. Then there exists an open and everywhere
dense set F ⊂ Mne with the following property: for each Ŝ ∈ F , there exist x̄ ∈ K

and a neighborhood U of Ŝ in Mne such that x̄ ∈ S(x̄) for each S ∈ U .

For our second result we assume, in addition, that the closed and convex subset
K ⊂ X is bounded. Denote by Ma the set of all mappings T : K → S(K) such that

αT (x1) + (1 − α)T x2 ⊂ T
(
αx1 + (1 − α)x2

)
(9.43)

for each x1, x2 ∈ K and all α ∈ (0,1). In other words, the set Ma consists of all set-
valued self-mappings of K with convex graphs. Note that convex-valued mappings
and, in particular, mappings with convex graphs, as well as spaces of convex sets,
find application in several areas of mathematics. See, for example, [54, 90, 92, 166,
168, 169, 177] and the references mentioned there. We denote by Mac the set of all
those continuous mappings T : K → S(K) which belong to Ma .

For the set Ma we consider the uniformity determined by the following base:

Ea(n) = {
(T1, T2) ∈Ma ×Ma : H (

T1(x), T2(x)
)≤ n−1

for all x ∈ K
}
, n = 1,2, . . . . (9.44)

It is easy to see that the space Ma with this uniformity is metrizable and complete.
It is clear that Mac is a closed subset of Ma . We endow the topological subspace
Mac ⊂ Ma with its relative topology and prove the following result [145].

Theorem 9.15 Assume that K is bounded and int(K) �= ∅. Then there exists an
open and everywhere dense subset Fa of Ma with the following property: for each
Ŝ ∈Fa , there exist x̄ ∈ K and a neighborhood U of Ŝ in Ma such that x̄ ∈ S(x̄) for
each S ∈ U .

Moreover, Fa contains an open and everywhere dense subset Fac of Mac .

Usually a generic result is obtained when it is shown that the set of “good” points
in a complete metric space contains a dense Gδ subset. Note that our results are
stronger because in each one of them we construct an open and everywhere dense
subset of “good” points.
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In both Theorems 9.14 and 9.15 we assume that the interior of K is nonempty.
The following proposition, which will be proved in the next section, shows that this
situation is typical.

Proposition 9.16 The set of all elements of S(X) (respectively, Sb(X)) with a
nonempty interior contains an open and everywhere dense subset of S(X) (respec-
tively, Sb(X)).

9.5 An Auxiliary Result and the Proof of Proposition 9.16

We need the following auxiliary result (see Proposition 5.1 of [179] for the finite
dimensional case). If (Y,‖ · ‖) is a normed linear space, x ∈ Y and r > 0, then we
denote by B(x, r) the closed ball of radius r centered at x.

Lemma 9.17 Let (Y,‖ · ‖) be a normed linear space and let r > 0 be given. Assume
that C is a closed and convex subset of Y such that for all y ∈ B(0, r),

inf
x∈C

‖y − x‖ ≤ r. (9.45)

Then 0 ∈ C.

Proof If 0 /∈ C, then by the separation theorem there exists a bounded linear func-
tional l ∈ Y ∗ such that ‖l‖ = 1 and

p = inf
{
l(x) : x ∈ C

}
> 0.

There is y0 ∈ B(0, r) such that l(−y0) > r − p/2. By (9.45), there is x0 ∈ C such
that ‖y0 − x0‖ < r + p/2. Now we have

p ≤ l(x0) = l(y0) + l(x0 − y0) < −r + p/2 + ‖x0 − y0‖
< −r + p/2 + r + p/2 = p.

Since we have reached a contradiction, we conclude that the origin does belong
to C. �

Proof of Proposition 9.16 Let A ∈ S(X) and ε > 0 be given. Denote by Ã the
closure of the set A + {y ∈ X : ‖y‖ ≤ ε}. Clearly, Ã ∈ S(X) (if A ∈ Sb(X), then
Ã ∈ Sb(X)) and H(A, Ã) ≤ ε. To complete the proof, it is sufficient to show that
each B ∈ S(X) for which H(Ã,B) ≤ ε/2 has a nonempty interior.

To this end, let B ∈ S(X) and H(B, Ã) ≤ ε/2. We claim that each point of A

belongs to the interior of B . To see this, let x ∈ A and y ∈ B(x, ε/2).
Then B − y is a closed and convex subset of X, B(0, ε/2) ⊂ Ã − y and H(B −

y, Ã − y) ≤ ε/2. By Lemma 9.17, 0 ∈ B − y and y ∈ B . Thus B(x, ε/2) ⊂ B . This
completes the proof of Proposition 9.16. �
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9.6 Proof of Theorem 9.14

Fix x∗ ∈ int(K). There exists r∗ ∈ (0,1) such that

B(x∗, r∗) ⊂ K. (9.46)

Let T ∈Mne and γ ∈ (0,1) be given. Define Tγ : K → S(K) by

Tγ (x) = (1 − γ )T x + γ x∗, x ∈ K. (9.47)

It is clear that Tγ ∈ Mne and H(Tγ (x), Tγ (y)) ≤ γ ‖x − y‖ for all x, y ∈ K . By
Theorem 9.13, there exists a point xT,γ ∈ K such that

Tγ (xT,γ ) = xT,γ . (9.48)

Consider the set

Tγ (K) =
⋃{

Tγ (y) : y ∈ K
}⊂ {

(1 − γ )y + γ x∗ : y ∈ K
}
.

It follows from this inclusion and (9.46) that for each z ∈ Tγ (K),

B(z, γ r∗) ⊂ K. (9.49)

For each x ∈ K , denote by T̃γ (x) the closure of Tγ (x) + B(0, γ r∗) in the norm
topology. By (9.49), T̃γ (x) ∈ S(K) for all x ∈ K . It is easy to see that T̃γ ∈ Mne .
By (9.48),

B(xT,γ , γ r∗) ⊂ T̃γ (xT ,γ ). (9.50)

Since the point images of the nonexpansive mapping T are bounded, the image un-
der T of any bounded subset of K is also bounded. Therefore T̃γ → T as γ → 0+.

Let T ∈ Mne and γ ∈ (0,1). There exists an open neighborhood U(T ,γ ) of T̃γ

in Mne such that for each S ∈ U(T ,γ ),

H
(
T̃γ (xT ,γ ), S(xT ,γ )

)≤ γ r∗. (9.51)

Define

F :=
⋃{

U(T ,γ ) : T ∈Mne, γ ∈ (0,1)
}
.

It is clear that F is an open and everywhere dense subset of Mne.
Assume that Ŝ ∈ F . There exist a mapping T ∈ Mne and a number γ ∈ (0,1)

such that Ŝ ∈ U(T ,γ ). Let S ∈ U(T ,γ ). Then (9.51) and (9.50) hold. Consider now
the sets T̃γ (xT ,γ ) − xT,γ and S(xT,γ ) − xT,γ . By (9.51),

H
(
T̃γ (xT ,γ ) − xT,γ , S(xT ,γ ) − xT,γ

)≤ γ r∗. (9.52)

By (9.50),

B(0, γ r∗) ⊂ T̃γ (xT ,γ ) − xT,γ . (9.53)

It follows from (9.52), (9.53) and Lemma 9.17 that 0 ∈ S(xT,γ ) − xT,γ . In other
words, xT,γ ∈ S(xT,γ ) and Theorem 9.14 is proved.
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9.7 Proof of Theorem 9.15

Lemma 9.18 Let T ∈ Ma and ε > 0 be given. Then there exist points z1 ∈ K and
z2 ∈ T (z1) such that ‖z1 − z2‖ ≤ ε.

Proof Consider any sequence {yi}∞i=1 ⊂ K such that yi+1 ∈ T (yi), i = 0,1, . . . .
Choose a natural number n such that

nε > 2 sup
{‖x‖ : x ∈ K

}
.

Set z1 = n−1∑n−1
i=0 yi and z2 = n−1∑n

i=1 yi . It is clear that z2 ∈ T (z1). By the
choice of n,

‖z1 − z2‖ ≤ n−1‖yn − y0‖ ≤ 2n−1 sup
{‖x‖ : x ∈ K

}
< ε,

as asserted. Lemma 9.18 is proved. �

Fix x∗ ∈ int(K). There exists r∗ ∈ (0,1) such that

B(x∗, r∗) ⊂ K. (9.54)

Let T ∈Ma and γ ∈ (0,1) be given. Define Tγ : K → S(K) by

Tγ (x) = (1 − γ )T x + γ x∗, x ∈ K. (9.55)

It is obvious that Tγ ∈ Ma and Tγ ∈Mac if T ∈ Mac.
Consider now the set

Tγ (K) =
⋃{

Tγ (y) : y ∈ K
}⊂ {

(1 − γ )y + γ x∗ : y ∈ K
}
.

It follows from this inclusion and (9.54) that for each z ∈ Tγ (K),

B(z, γ r∗) ⊂ K. (9.56)

For each x ∈ K denote by T̃γ (x) the closure of Tγ (x) + B(0, γ r∗) in the norm
topology. Clearly, T̃γ ∈ Ma and T̃γ ∈ Mac if T ∈ Mac. By Lemma 9.18, there
exist xT,γ ∈ K and x̄T ,γ ∈ Tγ (xT,γ ) such that

‖x̄T ,γ − xT,γ ‖ ≤ 2−1γ r∗.

It follows from this inequality and the definition of T̃γ (xT ,γ ) that

B
(
xT,γ ,2−1γ r∗

)⊂ T̃γ (xT ,γ ). (9.57)

There exists an open neighborhood U(T ,γ ) of T̃γ in Ma such that for each S ∈
U(T ,γ ),

H
(
T̃γ (xT ,γ ), S(xT ,γ )

)≤ 2−1γ r∗. (9.58)

Note that T̃γ → T as γ → 0+.
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Define

Fa :=
⋃{

U(T ,γ ) : T ∈Ma, γ ∈ (0,1)
}

and

Fac :=
[⋃{

U(T ,γ ) : T ∈Mac, γ ∈ (0,1)
}]∩Mac.

It is clear that Fa is an open and everywhere dense subset of Ma , and Fac is an
open and everywhere dense subset of Mac.

Assume that Ŝ ∈ Fa . There exist T ∈ Ma and γ ∈ (0,1) such that Ŝ ∈ U(T ,γ ).
Let S ∈ U(T ,γ ). Then (9.58) and (9.57) hold. Consider the sets T̃γ (xT ,γ ) − xT,γ

and S(xT,γ ) − xT,γ . By (9.58),

H
(
T̃γ (xT ,γ ) − xT,γ , S(xT ,γ ) − xT,γ

)≤ 2−1γ r∗. (9.59)

By (9.57),

B
(
0,2−1γ r∗

)⊂ T̃γ (xT ,γ ) − xT,γ . (9.60)

It follows from (9.59), (9.60) and Lemma 9.17 that 0 ∈ S(xT,γ ) − xT,γ and xT,γ ∈
S(xT,γ ). This completes the proof of Theorem 9.15.

9.8 An Extension of Theorem 9.15

Consider the complete uniform space S(X) defined in the previous section. Assume
that K is a nonempty, closed and convex (not necessarily bounded) subset of X.
Denote by Ma the set of all mappings T : K → S(X) such that

αT x1 + (1 − α)T x2 ⊂ T
(
αx1 + (1 − α)x2

)
(9.61)

for all x1, x2 ∈ K and each α ∈ (0,1). As we have already mentioned, such map-
pings find application in many areas. We denote by Mac the set of all continuous
mappings T : K → S(X) which belong to Ma .

For the set Ma we consider two uniformities, strong and weak, and the strong
and weak topologies generated by them. (The weak uniformity is weaker than the
strong one.) The strong uniformity is determined by the following base:

Es(n) = {
(T1, T2) ∈Ma ×Ma : H (

T1(x), T2(x)
)≤ n−1

for all x ∈ K
}
, n = 1,2, . . . . (9.62)

It is not difficult to see that the space Ma with this uniformity is metrizable and
complete, and that Mac is a closed subset of Ma .

Fix θ ∈ K . For the set Ma we also consider the weak uniformity determined by
the following base:

Ew(n) = {
(T1, T2) ∈Ma ×Ma : H (

T1(x), T2(x)
)≤ n−1

for all x ∈ K satisfying ‖x − θ‖ ≤ n
}
, n = 1,2, . . . . (9.63)
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It is not difficult to verify that the space Ma with this weaker uniformity is also
metrizable and complete, and that Mac is, once again, a closed subset of Ma .

Denote by M∗
a the set of all T ∈ Ma such that there exists a bounded sequence

{xi}∞i=0 ⊂ K with xi+1 ∈ T (xi), i = 0,1, . . . . Set M∗
ac = M∗

a ∩ Mac . Denote by
M̄∗s

a the closure of M∗
a in the space Ma with the strong topology, by M̄∗w

a the
closure of M∗

a in the space Ma with the weak topology, by M̄∗s
ac the closure of M∗

ac

in the space Ma with the strong topology and by M̄∗w
ac the closure of M∗

ac in the
space Ma with the weak topology. We equip the topological subspaces M̄∗s

a , M̄∗w
a ,

M̄∗s
ac, M̄∗w

ac ⊂ Ma with both the weak and strong relative topologies.
In this section we prove the following result [145].

Theorem 9.19 There exists an open everywhere dense (in the weak topology) subset
Fw

a of M̄∗w
a with the following property: for each A ∈ Fw

a , there exist z∗ ∈ K and
a neighborhood W of A in Ma with the weak topology such that z∗ ∈ S(z∗) for
each S ∈ W . Moreover, there exists an open (in the weak topology) and everywhere
dense (in the strong topology) subset F s

a of M̄∗s
a , an open (in the weak topology)

and everywhere dense (in the strong topology) subset F s
ac of M̄∗s

ac, and an open
everywhere dense (in the weak topology) subset Fw

ac of M̄∗w
ac such that F s

ac ⊂ F s
a ⊂

Fw
a and F s

ac ⊂ Fw
ac ⊂ Fw

a .

In the proof of Theorem 9.19 we will use the following auxiliary result (cf.
Lemma 9.18).

Lemma 9.20 Let T ∈ M∗
a and ε > 0 be given. Then there exist z1 ∈ K and z2 ∈

T (z1) such that ‖z1 − z2‖ ≤ ε.

Proof of Theorem 9.19 Let T ∈ Ma and γ ∈ (0,1) be given. For each x ∈ K , denote
by Tγ (x) the closure of T x + B(0, γ ) in the norm topology. Clearly, Tγ ∈ Ma and
Tγ ∈ Mac if T ∈ Mac . It is easy to see that for each T ∈ Ma , Tγ → T as γ → 0+
in the strong topology.

Let T ∈M∗
a and γ ∈ (0,1). By Lemma 9.20, there exists xT,γ ∈ K such that

B
(
xT,γ ,2−1γ

)⊂ Tγ (xT,γ ). (9.64)

There also exists an open neighborhood U(T ,γ ) of Tγ in Ma with the weak topol-
ogy such that for each S ∈ U(T ,γ ),

H
(
Tγ (xT,γ ), S(xT ,γ )

)≤ 2−1γ. (9.65)

Define

F s
a :=

[⋃{
U(T ,γ ) : T ∈M

∗
a, γ ∈ (0,1)

}]∩ M̄
∗s
a ,

Fw
a :=

[⋃{
U(T ,γ ) : T ∈M

∗
a, γ ∈ (0,1)

}]∩ M̄
∗w
a ,

F s
ac :=

[⋃{
U(T ,γ ) : T ∈M

∗
ac, γ ∈ (0,1)

}]∩ M̄
∗s
ac
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and

Fw
ac :=

[⋃{
U(T ,γ ) : T ∈ M

∗
ac, γ ∈ (0,1)

}]∩ M̄
∗w
ac .

Clearly, F s
ac ⊂ F s

a ⊂ Fw
a and F s

ac ⊂ Fw
ac ⊂ Fw

a . It is easy to see that F s
a is an open

(in the weak topology) and everywhere dense (in the strong topology) subset of
M̄s∗

a , Fw
a is an open everywhere dense (in the weak topology) subset of M̄w∗

a , F s
ac

is an open (in the weak topology) and everywhere dense (in the strong topology)
subset of M̄∗s

ac , and Fw
ac is an open everywhere dense (in the weak topology) subset

of M̄∗w
ac .

Assume that A ∈ Fw
a . Then there exist T ∈ M∗

a and γ ∈ (0,1) such that A ∈
U(T ,γ ). By (9.64),

B
(
0,2−1γ

)⊂ Tγ (xT,γ ) − xT,γ . (9.66)

Let S ∈ U(T ,γ ). By (9.65),

H
(
Tγ (xT,γ ) − xT,γ , S(xT ,γ ) − xT,γ

)≤ 2−1γ. (9.67)

It follows from (9.66), (9.67) and Lemma 9.17 that 0 ∈ S(xT,γ ) − xT,γ and xT,γ ∈
S(xT,γ ). This completes the proof of Theorem 9.19. �

9.9 Generic Existence of Fixed Points

Let (X,d) be a complete metric space. For x ∈ X and a nonempty subset A of X,
set d(x,A) = infa∈A d(x, a).

In the space X, an open ball and a closed ball of center a and radius r > 0 are
denoted by SX(a, r) and SX[a, r], respectively.

Set

B(X) = {A ⊂ X : A is nonempty closed and bounded}.
The space B(X) is equipped with the Hausdorff metric

h(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b,A)
}
, A,B ∈ B(X).

Note that h(·, ·) is, in fact, defined for all pairs of nonempty subsets of X (not
necessarily bounded and closed).

A map F : X → B(X) is said to be nonexpansive (respectively, strictly contrac-
tive with a constant LF ∈ [0,1)) if it satisfies

h
(
F(x),F (y)

)≤ d(x, y)
(
resp. h

(
F(x),F (y)

)≤ LF d(x, y)
)

for all x, y ∈ X.

The set fix(F ) = {x ∈ X : x ∈ F(x)} is called the fixed point set of F .
We say that most (or typical) elements of X have a given property P if the set X̃

of all x ∈ X having P is residual in X, i.e., X \ X̃ is of the first Baire category in X.
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Let E be a real Banach space with norm ‖ · ‖. Set

X (E) = {A ⊂ E : A is nonempty and compact}
and

E(E) = {A ⊂ E : A is nonempty, compact and convex}.
The spaces X (E) and E(E) are equipped with the Hausdorff metric h under

which each one of them is complete.
For any star-shaped set A ⊂ E, st(A) denotes the set of all a ∈ A such that ta +

(1 − t)x ∈ A for every x ∈ A and t ∈ [0,1].
In this section we prove that most compact-valued nonexpansive map from a

closed bounded star-shaped subset of a Banach space E into itself have fixed points.
This result was obtained in [53].

Let E be a real Banach space. For a nonempty, closed, bounded and star-shaped
set D ⊂ E, define

XD = {
A ∈X (E) : A ⊂ D

}
.

Under the Hausdorff metric h the space XD is complete. Set

M = {F : D → XD : F is nonexpansive},
N = {G : D → XD : G is strictly contractive}.

The space M is equipped with the metric of uniform convergence

ρ(F1,F2) = sup
x∈D

h
(
F1(x),F2(x)

)
, F1,F2 ∈ M (9.68)

under which it is complete.
Given F : D →XD and A ∈XD , set

ΦF (A) =
⋃

x∈A

F(x). (9.69)

Lemma 9.21 Let F : D →XD satisfy

h
(
F(x),F (y)

)≤ LF ‖x − y‖ (Lf ≥ 0) for all x, y ∈ D.

Then (9.69) defines a map ΦF :XD → XD satisfying

h
(
φF (A),φF (B)

)≤ LF h(A,B) for all A,B ∈XD. (9.70)

Proof It is evident that ΦF (A) ∈ XD for each A ∈ XD . To prove (9.70), let
A,B ∈XD . Let u ∈ φF (A). Then u ∈ F(x) for some x ∈ A. Since B is compact,
there is a point y ∈ B such that ‖x − y‖ = d(x,B). We have

d
(
u,ΦF (B)

)≤ d
(
u,F (y)

)≤ d
(
u,F (x)

)+ h
(
F(x),F (y)

)

≤ LF ‖x − y‖ ≤ LF d(x,B).



466 9 Set-Valued Mappings

Thus

d
(
u,ΦF (B)

)≤ LF h(A,B) for each u ∈ ΦF (A) (9.71)

and similarly,

d
(
u,ΦF (A)

)≤ LF h(A,B) for each u ∈ ΦF (B). (9.72)

Combining (9.71) and (9.72), we get (9.70), as asserted. �

Lemma 9.22 Let F,G ∈M be such that ρ(F,G) < δ, where δ > 0. Then

h
(
ΦF (A),ΦG(A)

)
< δ for each A ∈XD. (9.73)

Proof Let A ∈ XD and ε > 0 be given. Since A is compact, and F and G are uni-
formly continuous, there exist a finite set {ai}Ni=1 ⊂ A and σ > 0 such that, setting
Ai = A ∩ SD[ai, σ ], one has

h
(
F(x),F (ai)

)≤ ε, h
(
G(x),G(ai)

)≤ ε for every x ∈ Ai, i = 1,2, . . . ,N.

Hence

h
(
ΦF (Ai),F (ai)

)≤ ε, h
(
ΦG(Ai),G(ai)

)≤ ε, i = 1, . . . ,N.

Therefore

h
(
ΦF (A),ΦG(A)

)= h

(
N⋃

i=1

ΦF (Ai),

N⋃

i=1

φG(Ai)

)

≤ max
1≤i≤N

h
(
ΦF (Ai),ΦG(Ai)

)

≤ max
1≤i≤N

[
h
(
ΦF (Ai),F (ai)

)+ h
(
F(ai),G(ai)

)

+ h
(
G(ai),ΦG(Ai)

)]

≤ 2ε + ρ(F,G),

which implies h(ΦF (A),ΦG(A)) ≤ ρ(F,G) < δ. Since A ∈ XD is arbitrary, in-
equality (9.73) indeed holds as claimed. �

Lemma 9.23 The set N is dense in M.

Proof Let F ∈M. For a natural number n, define Gn : D →XD by

Gn(x) = n−1a + (
1 − n−1)F(x), x ∈ D,

where a ∈ st(D). Since Gn ∈ N and ρ(Gn,F ) → 0 as n → ∞, the result follows.
�
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Lemma 9.24 Let G ∈ N and let ε > 0 be given. Then there exists 0 < δG(ε) < ε

such that

if F ∈ SM
(
G,δG(ε)

)
, then h

(
Φn

F (A),Φn
G(A)

)
< ε for every A ∈XD

and all natural numbers n. (9.74)

Proof Let G ∈ N be strictly contractive with constant 0 ≤ LG < 1 and let ε > 0
be given. By Lemma 9.21, ΦG : XD → XD is strictly contractive with the same
constant LG. We claim that (9.74) holds with δG(ε) = δ, where 0 < δ < (1 − LG)ε.

Let F ∈ SM(G, δ). By Lemma 9.22, (9.73) is satisfied. Let A ∈ XD be arbitrary.
By (9.73),

h
(
ΦF

(
ΦF (A)

)
,ΦG

(
ΦF (A)

))≤ δ

and thus

h
(
Φ2

F (A),Φ2
G(A)

)≤ h
(
ΦF

(
ΦF (A)

)
,ΦG

(
ΦF (A)

))

+ h
(
ΦG

(
ΦF (A)

)
,ΦG

(
ΦG(A)

))

< δ + LGh
(
ΦF (A),ΦG(A)

)≤ δ(1 + Lg).

Using induction, we obtain, for any natural number n,

h
(
Φn

F (A),Φn
G(A)

)≤ δ
(
1 + LG + · · · + Ln−1

G

)
.

Thus

h
(
Φn

F (A),Φn
G(A)

)≤ δ(1 − LG)−1

for every A ∈ XD and any natural number n.

Since δ < (1 − LG)ε, (9.74) holds, as claimed. �

Put

M0 = {
F ∈M : fix(F ) is compact nonempty

}
.

Theorem 9.25 The set M0 is residual in M.

Proof For G ∈N and any natural number k, let SM(G, δG(1/k)), where δG(1/k) <

1/k exists according to Lemma 9.24. Define

M∗ :=
∞⋂

k=1

⋃

G∈N
SM

(
G,δG(1/k)

)
.

Clearly, M∗ is residual in M, since M∗ is the countable intersection of sets which
are open and, by Lemma 9.23, dense in M. The theorem is an immediate conse-
quence of the following assertion.
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Claim.

M∗ ⊂ M0.

Let F ∈ M∗ be given. By the definition of M∗, there exists a sequence
{Gk}∞k=1 ⊂ N such that

F ∈ SM
(
Gk, δGk

(1/k)
)

for every natural number k. (9.75)

Thus by Lemma 9.24, for each natural number k,

h
(
Φn

F (A),Φn
Gk

(A)
)
< 1/k

for every A ∈ XD and every natural number n. (9.76)

According to Lemma 9.21, ΦGk
: XD →XD is strictly contractive, for Gk ∈ N , and

hence for each natural number k, there exists Zk ∈XD such that

Zk = ΦGk
(Zk).

(j) {Zk}∞k=1 ⊂ XD is a Cauchy sequence.

To see this, let ε > 0 be given. Let k, k′ > 4/ε be arbitrary natural numbers and
let A ∈ XD . Since Φn

Gk
(A) → Zk and Φn

Gk′ (A) → Zk′ as n → ∞, there exists a
natural number m such that

h
(
Φn

Gk
(A),Zk

)
< ε/4, h

(
Φn

Gk′ (A),Zk′
)
< ε

for every integer n ≥ m. (9.77)

In view of (9.77) and (9.76), one has

h(Zk,Zk′) ≤ h
(
Zk,Φ

m
Gk

(A)
)+ h

(
Φm

Gk
(A),Φm

F (A)
)

+ h
(
Φm

F (A),Φm
Gk′ (A)

)+ h
(
Φm

Gk′ (A),Zk′
)

< ε/4 + 1/k + (
k′)−1 + ε/4 < ε,

for 1/k + 1/k′ < ε/2. As k, k′ > 4/ε are arbitrary, (j) is proved.
Since {Zk}∞k=1 ⊂ XD is a Cauchy sequence and XD is a complete metric space,

there exists Z ∈XD such that Zk → Z as k → ∞
(jj) For each A ∈XD , the sequence {Φn

F (A)} converges to Z as n → ∞. Moreover,
Z = ΦF (Z) is the unique fixed point of ΦF .

Let A ∈ XD . Given ε > 0, fix a natural number k > 3/ε large enough so that
h(Zk,Z) < ε/3. Hence by (9.76), for every natural number n, one has

h
(
Φn

F (A),Z
)≤ h

(
Φn

F (A),Φn
Gk

(A)
)+ h

(
Φn

Gk
(A),Zk

)+ h(Zk,Z)

< 1/k + h
(
Φn

Gk
(A),Zk

)+ ε/3.



9.9 Generic Existence of Fixed Points 469

Since h(Φn
Gk

(A),Zk) tends to zero as n → ∞, there is a natural number n0 such
that h(Φn

Gk
(A),Zk) < ε/3 for all n ≥ n0. Moreover, 1/k < ε/3, and thus

h
(
Φn

F (A),Z
)
< ε for every n ≥ n0.

This shows that Φn
F (A) → Z as n → ∞. The second statement of (jj) is obvious.

(jjj) The fixed point set fix(F ) is a nonempty compact subset of D.

First we show that the set fix(F ) is nonempty. As Gk ∈ N , by Nadler’s theorem
[102], for each natural number k, there is a point ak ∈ D such that

ak ∈ Gk(ak), k = 1,2, . . . . (9.78)

For each natural number k,

ak ∈ Φn
Gk

(ak) for every natural number n. (9.79)

This is obvious if n = 1 because ΦGk
(ak) = Gk(ak). Assuming that (9.79) is valid

for n, then for n + 1 one has ak ∈ ΦGk
(ak) ⊂ ΦGk

(Φn
Gk

(ak)) = Φn+1
Gk

(ak) and thus
(9.79) holds for every natural number n. Since Φn

Gk
(ak) → Zk as n → ∞, it follows

that ak ∈ Zk . On the other hand, Zk → Z implies d(ak,Z) → 0 as k → ∞. Since Z

is compact, there is a subsequence {akn}∞n=1 which converges to some a ∈ D.
We have a ∈ F(a). In fact, (9.75) implies that

h
(
F(x),Gkn(x)

)
< δGkn

(1/kn)

for every x ∈ D and any natural number n. (9.80)

In view of (9.78) and (9.80), one has

d
(
a,F (a)

)≤ ‖a − akn‖ + d
(
akn,Gkn(akn)

)

+ h
(
Gkn(akn),F (akn)

)+ h
(
F(akn),F (a)

)

< ‖a − akn‖ + δGkn
(1/kn) + h

(
F(akn),F (a)

)≤ 2‖a − akn‖ + 1/kn

because δGkn
(1/kn) < 1/kn. As n → ∞, the right-hand side tends to zero and thus

d(a,F (a)) = 0, i.e. a ∈ F(a). Hence fix(F ) �= ∅, as claimed. It remains to show
that fix(F ) is compact. To see this, let x ∈ fix(F ). Then x ∈ Φn

F (x) for every nat-
ural number n. Since by (jj), Φn

F (x) → Z as n → ∞, it follows that z ∈ Z. Thus
fix(F ) ⊂ Z, which implies that fix(F ) is compact for so is Z and fix(F ) is closed.
Hence (jjj) holds. Therefore F ∈ M0. This completes the proof of the claim and of
Theorem 9.25 itself. �

For a nonempty, closed, bounded and star-shaped set D ⊂ E, let

ED = {
A ∈ E(E) : A ⊂ D

}
. (9.81)

When endowed with the Hausdorff metric h, the space Ed is complete. Define

U = {F : D → ED : F is nonexpansive}. (9.82)
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The set U is endowed with the metric ρ of uniform convergence (9.68) under which
it is complete. Set

U0 = {
F ∈ U : fix(F ) is nonempty and compact

}
. (9.83)

Using the same argument as in the proof of Theorem 9.25, one can also prove the
following result.

Theorem 9.26 The set U0 is residual in U .

9.10 Topological Structure of the Fixed Point Set

In this section, which is based on [53], we study the topological structure of the
fixed point set for a typical compact-and convex-valued nonexpansive map from a
closed, convex and bounded subset of a Banach space into itself.

Let E be a real Banach space. In this section D denotes a closed, convex and
bounded subset of E with a nonempty interior int(D). Set

S = {
x ∈ E : ‖x‖ ≤ 1

}
.

Let ED , U and U0 be given by (9.81), (9.82) and (9.83) with D as above.
Define

U1 := {
F ∈ U : there is αF such that F(x) + σF S ⊂ D,x ∈ D

}
. (9.84)

Lemma 9.27 The set U1 is open and dense in U .

Proof First we show that U1 is open in U . Let F ∈ U1 and let σF > 0 be the corre-
sponding number in (9.84). For 0 < ε < σF /2 we have SU (F, ε) ⊂ U1. In fact, each
G ∈ SU (F, ε) satisfies G(x) ⊂ F(z) + εS for each x ∈ D. Thus, taking σG = σF /2,
one has

G(x) + σGS ⊂ F(x) + (ε + σG)S ⊂ F(x) + σF S ⊂ D for each x ∈ D.

Hence SU (F, ε) ⊂ U1. Thus U1 is indeed open in U .
Next we show that U1 is dense in U . Let F ∈ U , 0 < ε < 1 and let a ∈ int(D).

Then SE[a, θ ] ⊂ D for some θ > 0. Fix λ such that 0 < λ < ε/(2M), where M =
supx∈D ‖x‖ + 1, and define G : D → ED by

G(x) = λa + (1 − λ)F (x), x ∈ D.

Clearly, G ∈ U , and ρ(G,F ) < ε since for each x ∈ D,

h
(
λa + (1 − λ)F (x),F (x)

)= h
(
λa + (1 − λ)F (x), λF (x) + (1 − λ)F (x)

)

≤ λh
(
a,F (x)

)
< 2λM < ε.
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Furthermore, taking 0 < σG < λθ , for each x ∈ D, one has

G(x) + σGS ⊂ λ
(
a + σGλ−1S

)+ (1 − λ)F (x) ⊂ λSE[a, θ ] + (1 − λ)D ⊂ D

and thus G ∈ U1. Since ρ(G,F ) < ε it follows that U1 is dense in U , as asserted.
�

Set

BD = {A ⊂ D : A is nonempty, closed and convex}.
The following result is a special case of a theorem due to Ricceri [165].

Lemma 9.28 Let F : D → BD be strictly contractive. Then the fixed point set
fix(F ) of F is a nonempty absolute retract.

We call the subset of a metric space an Rδ-set if it is the intersection of a de-
scending sequence of absolute retracts.

Theorem 9.29 The fixed point set fix(F ) of most F ∈ U is a nonempty and compact
Rδ-set.

Proof Let U0 and U1 be defined by (9.83) and (9.84), respectively. By Theorem 9.26
and Lemma 9.27, the set U∗ = U0 ∩U1 is residual in U . Our theorem is therefore an
immediate consequence of the following assertion.

Claim. For each F ∈ U∗, the set fix(F ) is a nonempty and compact Rδ-set.
Let F ∈ U∗. Since F ∈ U1, there exists σF > 0 such that

F(x) + σF S ⊂ D for each x ∈ D. (9.85)

Let a ∈ int(D). Then SE[a, θ ] ⊂ D for some θ > 0. For a natural number n, define
Gn : D → ED by

Gn(x) = (
2−n

)
a + (

1 − 2−n
)
F(x), x ∈ D.

In addition, for a natural number n, set

Qn(x) = Gn(x) + (1/n)S, x ∈ D. (9.86)

Let n0 be a natural number such that n ≥ n0 implies (1/n)/(1 − 2−n) < σF . For
n ≥ n0 and x ∈ D, one has

Qn(x) = (
2−n

)
a + (

1 − 2−n
)[

F(x) + (1/n)
(
1 − (1/2)n

)−1
S
]

⊂ 2−na + (
1 − 2−n

)(
F(x) + σF S

)⊂ 2−na + (
1 − 2−n

)
D

by (9.84).
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Therefore Qn(x) ⊂ D and thus Qn(x) ∈ BD for each x ∈ D. It follows that for
each natural number n ≥ n0, (9.86) defines a map Qn : D → BD which is a strict
contraction and, moreover, ρ(Qn,F ) → 0 as n → ∞. Fix n1 ≥ n0 so that

n(n + 1)2−nM < 1 for every n ≥ n1, where M = sup
x∈D

‖x‖. (9.87)

We claim that for each integer n ≥ n1, one has

F(x) ⊂ Qn+1(x) ⊂ Qn(x) for every x ∈ D. (9.88)

To see this, let n ≥ n1 and x ∈ D be arbitrary. Then

Qn+1(x) + (1/n)S

= (
1 − 2−n−1)F(x) + 2−n−1a + (n + 1)−1S + (1/n)S

= (
1 − 2−n

)
F(x) + (

2−n − 2−n−1)F(x) + 2−na − (
2−n + 2n+1)a

+ (n + 1)−1S + n−1S

and thus

Qn+1(x) + (1/n)S ⊂ Qn(x) + 2−n2−1(F(x) − a
)+ (n + 1)−1S. (9.89)

Now,
(
F(x) − a

)
/2 ⊂ (D − a)/2 ⊂ MS

and hence by (9.87),

2−n
(
F(x) − a

)⊂ (
n(n + 1)

)−1
S. (9.90)

Combining (9.90) with (9.89), we obtain

Qn+1(x) + (1/n)S ⊂ Qn(x) + (1/n)S.

It now follows from Radström’s cancellation law [113] that

Qn+1(x) ⊂ Qn(x).

It remains to be shown that F(x) ⊂ Qn+1x. Clearly,

F(x) + (n + 1)−1S = (
1 − 2−n−1)F(x) + 2−n−1F(x) + 2−n−1a

− 2−n−1a + (n + 1)−1S

= Qn+1(x) + 2−n
(
F(x) − a

)
/2 ⊂ Qn+1(x) + (n + 1)−1S,

since by (9.90),

(
1/2n

)(
F(x) − a

)
/2 ⊂ (

n(n + 1)
)−1

S ⊂ (n + 1)−1S.

Therefore by Radström’s cancellation law F(x) ⊂ Qn+1(x) and thus (9.89) is valid.
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For each integer n ≥ n1, Qn : D → BD is a strict contraction and by Lemma 9.27
its fixed point set fix(Qn) is a nonempty absolute retract. On the other hand, the set
fix(F ) is nonempty and compact because F ∈ U∗ ⊂ U0. By (9.88),

fix(F ) ⊂ fix(Qn+1) ⊂ fix(Qn) for every n ≥ n1,

which implies that

fix(F ) ⊂
⋂

n≥n1

fix(Qn).

On the other hand, let x ∈ fix(Qn) for every n ≥ n1. Then x ∈ F(x) because

d
(
x,F (x)

)≤ d
(
x,Qn(x)

)+ h
(
Qn(x),F (x)

)≤ ρ(Qn,F )

and ρ(Qn,F ) → ∞ as n → ∞. Hence

fix(F ) =
⋂

n≥n1

fix(Qn)

and thus fix(F ) is a nonempty and compact Rδ-set. Therefore our claim is valid and
this completes the proof of Theorem 9.29. �

9.11 Approximation of Fixed Points

In this section, which is based on [53], we consider iterative schemes for approxi-
mating fixed points of closed-valued strict contractions in metric spaces.

Throughout this and the next section of this chapter, (X,ρ) is a complete metric
space and T : X → 2X \ {∅} is a strict contraction such that T (x) is a closed set for
each x ∈ X. Thus T satisfies

h
(
T (x), T (y)

)≤ cρ(x, y) for all x, y ∈ X, (9.91)

where 0 ≤ c < 1.
For each x ∈ X and each nonempty set A ⊂ X, let

ρ(x,A) = inf
{
ρ(x, y) : y ∈ A

}
.

Theorem 9.30 Let T : X → 2X \ {∅} be a strict contraction such that T (x) is a
closed set for each x ∈ X and T satisfies (9.91) with 0 ≤ c < 1. Assume that x0 ∈ X,
{εi}∞i=0 ⊂ (0,∞),

∑∞
i=0 εi < ∞, and that for each integer i ≥ 0,

xi+1 ∈ T (xi), ρ(xi, xi+1) ≤ ρ
(
xi, T (xi)

)+ εi . (9.92)

Then {xi}∞i=0 converges to a fixed point of T .
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Proof First, we claim that {xi}∞i=0 is a Cauchy sequence. Indeed, let i ≥ 0 be an
integer. Then by (9.92) and (9.91),

ρ(xi+1, xi+2) ≤ ρ
(
xi+1, T (xi+1)

)+ εi+1 ≤ h
(
T (xi), T (xi+1)

)+ εi+1

and

d(xi+1, xi+2) ≤ cρ(xi, xi+1) + εi+1. (9.93)

By (9.93),

ρ(x1, x2) ≤ cρ(x0, x1) + ε1

and

ρ(x2, x3) ≤ cρ(x1, x2) + ε2 ≤ c2ρ(x0, x1) + cε1 + ε2. (9.94)

Now we use induction to show that for each integer n ≥ 1,

ρ(xn, xn+1) ≤ cnρ(x0, x1) +
n−1∑

i=0

ciεn−i . (9.95)

In view of (9.94), inequality (9.95) is valid for n = 1,2.
Assume that k ≥ 1 is an integer and that (9.95) holds for n = k. When combined

with (9.93), this implies that

ρ(xk+1, xk+2) ≤ cρ(xk, xk+1) + εk+1 ≤ ck+1ρ(x0, x1) +
k−1∑

i=0

ci+1εk−i + εk+1

= ck+1ρ(x0, x1) +
k∑

i=0

ciεk+1−i .

Thus (9.95) holds with n = k + 1 and therefore (9.95) holds for all integers n ≥ 1.
By (9.95),

∞∑

n=1

ρ(xn, xn+1) ≤
∞∑

n=1

(

cnρ(x0, x1) +
n∑

i=1

cn−iεi

)

≤ ρ(x0, x1)

∞∑

n=1

cn +
∞∑

i=1

( ∞∑

j=0

cj

)

εi

≤
( ∞∑

n=0

cn

)[

ρ(x0, x1) +
∞∑

n=1

εn

]

< ∞.

Thus {xn}∞n=0 is indeed a Cauchy sequence and there exists

x∗ = lim
n→∞xn. (9.96)
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We claim that x∗ ∈ T (x∗). Let ε > 0 be given. By (9.96), there is an integer
n0 ≥ 1 such that for each integer n ≥ n0,

ρ(xn, x∗) ≤ ε/8. (9.97)

Let n ≥ n0 be an integer. By (9.91),

h
(
T (xn), T (x∗)

)≤ cρ(xn, x∗) ≤ cε/8. (9.98)

By (9.92),

xn+1 ∈ T (xn).

When combined with (9.98), this implies that

ρ
(
xn+1, T (x∗)

)≤ cε/8.

Hence there is

y ∈ T (x∗) (9.99)

such that ρ(xn+1, y) ≤ εc/4. Together with (9.97) and (9.99), this implies that

ρ
(
x∗, T (x∗)

)≤ ρ(x∗, y) ≤ ρ(x∗, xn+1) + ρ(xn+1, y) ≤ ε/8 + ε/4.

Since ε is an arbitrary positive number, we conclude that

x∗ ∈ T (x∗),

as claimed. Theorem 9.30 is proved. �

Theorem 9.31 Let T : X → 2X \ {∅} be a strict contraction such that T (x) is a
closed set for all x ∈ X and T satisfies (9.91) with 0 ≤ c < 1. Let ε > 0 be given.
Then there exists δ > 0 such that if x ∈ X and ρ(x,T (x)) < δ, then there is x̄ ∈ X

such that x̄ ∈ T (x̄) and ρ(x, x̄) ≤ ε.

Proof Choose a positive number δ such that

4δ(1 − c)−1 < ε. (9.100)

Consider

x ∈ X such that ρ
(
x,T (x)

)
< δ. (9.101)

Set

x0 = x. (9.102)

By (9.101), there is

x1 ∈ T (x0) (9.103)
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such that

ρ(x0, x1) < δ. (9.104)

For each integer n ≥ 1, choose

xn+1 ∈ T (xn) (9.105)

such that

ρ(xn+1, xn) ≤ ρ
(
xn,T (xn)

)
(1 + c)/(2c). (9.106)

By (9.91), (9.103), (9.105) and (9.106), for each integer n ≥ 1,

ρ(xn, xn+1) ≤ (1 + c)h
(
T (xn−1), T (xn)

)
/(2c) ≤ (

(1 + c)/2
)
ρ(xn, xn−1).

When combined with (9.104), this implies that for each integer n ≥ 1,

ρ(xn, xn+1) ≤ [
(1 + c)/2

]n
ρ(x0, x1) ≤ [

(1 + c)/2
]n

δ. (9.107)

Therefore
∞∑

n=0

ρ(xn, xn+1) < ∞,

{xn}∞n=0 is a Cauchy sequence and there exists x̄ ∈ X such that

x̄ = lim
n→∞xn. (9.108)

Since xn+1 ∈ T (xn) for all integers n ≥ 0, (9.108) implies that

x̄ ∈ T (x̄).

By (9.100), (9.107) and (9.108),

ρ(x0, x̄) = lim
n→∞ρ(x0, xn) ≤

∞∑

n=0

ρ(xi, xi+1)

≤
∞∑

i=0

[
(1 + c)/2

]i
δ = 2δ/(1 − c) < ε/2.

This completes the proof of Theorem 9.31. �

The conclusions of the following two theorems hold uniformly for all those rele-
vant sequences {xi}∞i=0 the initial point of which lies in a closed ball of center θ ∈ X

and radius M > 0.

Theorem 9.32 Let T : X → 2X \ {∅} be a strict contraction such that T (x) is a
closed set for all x ∈ X and T satisfies (9.91) with 0 ≤ c < 1. Fix θ ∈ X. Let ε > 0
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and M > 0 be given. Then there exist δ ∈ (0, ε) and an integer n0 ≥ 1 with the
following property:

for each sequence {xi}∞i=0 ⊂ X such that ρ(x0, θ) ≤ M and such that for each
integer n ≥ 0,

xn+1 ∈ T (xn) and ρ(xn+1, xn) ≤ δ + ρ
(
xn,T (xn)

)
,

we have

ρ(xn+1, xn) < ε for all integers n ≥ n0.

Proof Choose δ ∈ (0,1) such that

δ(1 − c)−1 < ε/2 (9.109)

and a natural number n0 such that

cn0
(
2M + 1 + ρ

(
θ, a(θ)

))
< ε/2. (9.110)

Let x0 ∈ X,

{xn}∞n=0 ⊂ X, ρ(x0, θ) ≤ M, (9.111)

and assume that for each integer n ≥ 0,

xn+1 ∈ T (xn), ρ(xn+1, xn) ≤ ρ
(
xn,T (xn)

)+ δ. (9.112)

We now estimate ρ(x0, T (x0)). By (9.91) and (9.111),

ρ
(
x0, T (x0)

)≤ ρ(x0, θ) + ρ
(
θ,T (θ)

)+ h
(
T (θ), T (x0)

)

≤ ρ(x0, θ) + ρ
(
θ,T (θ)

)+ ρ(θ, x0) ≤ 2M + ρ
(
θ,T (θ)

)
. (9.113)

By (9.112) and (9.113),

ρ(x0, x1) ≤ ρ
(
x0, T (x0)

)+ δ ≤ 2M + 1 + ρ
(
θ,T (θ)

)
. (9.114)

By (9.112) and (9.91), for each integer n ≥ 0,

ρ(xn+2, xn+1) ≤ ρ
(
xn+1, T (xn+1)

)+ δ

≤ h
(
T (xn), T (xn+1)

)+ δ ≤ cρ(xn, xn+1) + δ. (9.115)

Next, we show by induction that for each integer n ≥ 1,

ρ(xn+1, xn) ≤ δ

n−1∑

i=0

ci + cnρ(x0, x1). (9.116)
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By (9.115), inequality (9.116) holds for n = 1. Assume that k ≥ 1 is an integer and
that (9.116) holds with n = k. Then by (9.115),

ρ(xk+2, xk+1) ≤ cρ(xk, xk+1) + δ ≤ δ

k∑

i=0

ci + ck+1ρ(x0, x1).

Thus (9.116) holds with n = k + 1 and therefore it holds for all integers n ≥ 1. By
(9.116) and (9.114), for all natural numbers n,

ρ(xn+1, xn) ≤ δ(1 − c)−1 + cn
(
2M + 1 + ρ

(
θ,T (θ)

))
. (9.117)

Finally, by (9.117), (9.109) and (9.110), we obtain, for all integers n ≥ n0,

ρ(xn, xn+1) ≤ δ(1 − c)−1 + cn0
(
2M + 1 + ρ

(
θ,T (θ)

))
< ε.

Theorem 9.32 is proved. �

Theorems 9.30 and 9.31 imply the following additional result.

Theorem 9.33 Let T : X → 2X \ {∅} be a strict contraction such that T (x) is a
closed set for all x ∈ X and T satisfies (9.91) with 0 ≤ c < 1. Let positive numbers
ε and M be given. Then there exist δ > 0 and an integer n0 ≥ 1 such that if a
sequence {xi}∞i=0 ⊂ X satisfies

ρ(x0, θ) ≤ M, xn+1 ∈ T (xn) and ρ(xn, xn+1) ≤ ρ
(
xn,T (xn)

)+ δ

for all integers n ≥ 0, then for each integer n ≥ n0, there is a point y ∈ X such that
y ∈ T (y) and ρ(y, xn) < ε.

The following example shows that Theorem 9.33 cannot be improved in the sense
that the fixed point y, the existence of which is guaranteed by the theorem, is not, in
general, the same for all integers n ≥ n0.

Example 9.34 Let X = [0,1], ρ(x, y) = |x −y| and T (x) = [0,1] for all x ∈ [0,1].
Let δ > 0 be given. Choose a natural number k such that 1/k < δ. Put

x0 = 0, xi = i/k, i = 0, . . . , k,

xi+k = 1 − i/k, i = 0, . . . , k,

and for all integers p ≥ 0 and any i ∈ {0, . . . ,2k}, put

x2pk+i = xi.

Then {xi}∞i=0 ⊂ X and for any integer i ≥ 0, we have

xi+1 ∈ T (xi) and |xi − xi+1| ≤ k−1 < δ.
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On the other hand, for all x ∈ X and any integer p ≥ 0,

max
{|x − xi | : i = 2kp, . . . ,2pk + 2k

}≥ 1/2.

9.12 Approximating Fixed Points in Caristi’s Theorem

We begin this section by recalling the following two versions of Caristi’s fixed point
theorem [36].

Theorem 9.35 ([82], Theorem 3.9) Suppose that (X,ρ) is a complete metric space
and T : X → X is a continuous mapping which satisfies for some φ : X → [0,∞),

ρ(x,T x) ≤ φ(x) − φ(T x), x ∈ X.

Then {T nx}∞n=1 converges to a fixed point of T for each x ∈ X.

Theorem 9.36 ([82], Theorem 4.1) Suppose that (X,ρ) is a complete metric space,
φ : X → R1 is a lower semicontinuous function which is bounded from below, and
T : X → X satisfies

ρ(x,T x) ≤ φ(x) − φ(T x), x ∈ X.

Then T has a fixed point.

We now present and prove a set-valued analog of Caristi’s theorem with compu-
tational errors.

Theorem 9.37 Assume that (X,ρ) is a complete metric space, T : X → 2X \ {∅},
graph(T ) := {(x, y) ∈ X × X : y ∈ T (x)} is closed, φ : X → R1 ∪ {∞} is bounded
from below, and that for each x ∈ X,

inf
{
φ(y) + ρ(x, y) : y ∈ T (x)

}≤ φ(x). (9.118)

Let {εn}∞n=0 ⊂ (0,∞),
∑∞

n=0 εn < ∞, and let x0 ∈ X satisfy φ(x0) < ∞. Assume
that for each integer n ≥ 0,

xn+1 ∈ T (xn) (9.119)

and

φ(xn+1) + ρ(xn, xn+1) ≤ inf
{
φ(y) + ρ(x, y) : y ∈ T (xn)

}+ εn. (9.120)

Then {xn}∞n=0 converges to a fixed point of T .
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Proof Clearly, φ(xn) < ∞ for all integers n ≥ 0. By (9.120), for each integer n ≥ 0,

ρ(xn, xn+1) ≤ −φ(xn+1) + εn + inf
{
φ(y) + ρ(x, y) : y ∈ T (xn)

}

≤ −φ(xn+1) + φ(xn) + εn. (9.121)

By (9.121), for each integer m ≥ 1,

m∑

i=0

ρ(xi, xi+1) ≤ φ(x0) − φ(xm) +
∞∑

i=0

εi

≤ φ(x0) − inf(φ) +
∞∑

i=0

εi < ∞.

Thus {xi}∞i=0 is a Cauchy sequence and there exists x̄ = limi→∞ xi . Since the graph
of T is closed, it follows that

(x̄, x̄) = lim
i→∞(xi, xi+1) ∈ graph(T ).

This completes the proof of Theorem 9.37. �



Chapter 10
Minimal Configurations in the Aubry-Mather
Theory

10.1 Preliminaries

In this chapter, which is based on [181], we study (h)-minimal configurations in
the Aubry-Mather theory, where h : R2 → R1 belongs to a complete metric space
of functions M. Such minimal configurations have a definite rotation number. We
establish the existence of a set F ⊂ M, which is a countable intersection of open
and everywhere dense subsets of M, and such that, for each h ∈ F and each ratio-
nal number α = p/q with p and q relatively prime, the following properties hold:
(i) there exist (h)-minimal configurations x(+), x(−) and x(0) with rotation number
α such that x

(+)
i−q +p > x

(+)
i , x

(−)
i−q +p < x

(−)
i and x

(0)
i−q +p = x

(0)
i for all integers i;

(ii) any (h)-minimal configuration with rotation number α is a translation of one of
the configurations x(+), x(−), x(0).

Let Z be the set of all integers. A configuration is a bi-infinite sequence x =
(xi)i∈Z ∈ RZ . The set RZ will be endowed with the product topology and the partial
order defined by x < y if and only if xi < yi for all i ∈ Z.

There is an order preserving action T : Z2 × RZ → RZ defined by

T (k, x) = Tkx = y iff k = (k1, k2) ∈ Z2,

x, y ∈ RZ and yi = xi−k1 + k2 for all i ∈ Z. (10.1)

Let x, y ∈ RZ . We say that y is a translation of x if there is n = (n1, n2) ∈ Z2 such
that y = Tnx.

Let h : R2 → R1 be a continuous function. We extend h to arbitrary finite seg-
ments (xj , . . . , xk), j < k, of configurations x ∈ RZ by

h(xj , . . . , xk) :=
k−1∑

i=j

h(xi, xi+1). (10.2)

A segment (xj , . . . , xk) is called (h)-minimal if
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h(xj , . . . , xk) ≤ h(yj , . . . , yk)

whenever xj = yj and xk = yk .
We assume that h has the following properties [14, 15]:

(H1) For all (ξ, η) ∈ R2, h(ξ + 1, η + 1) = h(ξ, η).
(H2) lim|η|→∞ h(ξ, ξ + η) = ∞, uniformly in ξ .
(H3) If ξ1 < ξ2, η1 < η2, then

h(ξ1, η1) + h(ξ2, η2) < h(ξ1, η2) + h(ξ2, η1).

(H4) If (x−1, x0, x1) �= (y−1, y0, y1) are (h)-minimal segments and x0 = y0, then

(x−1 − y−1)(x1 − y1) < 0.

A configuration x ∈ RZ is (h)-minimal if for each pair of integers j , k satisfying
j < k and each finite segment {yi}ki=j ⊂ R1 satisfying yj = xj and yk = xk , the
inequality h(xj , . . . , xk) ≤ h(yj , . . . , yk) holds. Denote by M(h) the set of all (h)-
minimal configurations. It is known that the set M(h) is closed [12, 14].

We briefly review the definitions, notions and some basic results from the Aubry-
Mather theory [12, 14].

We say that x ∈ RZ and x∗ ∈ RZ cross

(a) at i ∈ Z if xi = x∗
i and (xi−1 − x∗

i−1)(xi+1 − x∗
i+1) < 0;

(b) between i and i + 1 if (xi − x∗
i )(xi+1 − x∗

i+1) < 0.

We say that x ∈ RZ is periodic with period (q,p) ∈ (Z \ {0})×Z if T(q,p)x = x.

Remark 10.1 Assume that h = h(ξ1, ξ2) ∈ C2(R2) and (∂2h/∂ξ1 ∂ξ2)(u, v) < 0 for
all (u, v) ∈ R2. It is not difficult to show that (H3) and (H4) hold. Moreover, we can
show that if h ∈ C2(R2), then (H3) holds if and only if

{
(u, v) ∈ R2 : (∂2h/∂ξ1 ∂ξ2

)
(u, v) < 0

}

is an everywhere dense subset of R2.

We recall the following result (see Corollary 3.16 and Theorem 3.17 of [14]).

Proposition 10.2 There exists a continuous function α(h) : M(h) → R1 with the
following properties:

For all x ∈ M(h) and i ∈ Z we have
∣∣xi − x0 − iα(h)(x)

∣∣< 1.

If x ∈ M(h) is periodic with period (q,p) ∈ Z2, then α(h)(x) = p/q .
For all α ∈ R1, the set {x ∈M(h) : α(h)(x) = α} �= ∅.

Remark 10.3 We call α(h)(x) the rotation number of x ∈ M(h).
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For each α ∈ R1, define

M(h,α) := {
x ∈M(h) : α(h)(x) = α

}
. (10.3)

We study M(h,α) with rational α ∈ R1.
Let a rational number α = p/q be an irreducible fraction, where q ≥ 1 and p are

integers. Denote by Mper (h,α) the set of all periodic (h)-minimal configurations
x ∈ M(h,α) which satisfy T(q,p)x = x, equivalently, xi−q + p = xi for all i ∈ Z.
For the proof of the following result see [12, 14].

Proposition 10.4 Mper (h,α) is a nonempty, closed and totally ordered set. More-
over, if x ∈Mper (h,α), then x is a minimizer of hqp : Pqp → R1, where

hqp(x) = h(x0, . . . , xq), Pqp = {
x ∈ RZ : T(q,p)x = x

}
. (10.4)

Two elements of Mper (h,α) are called (h)-neighboring if there does not exist
an element of Mper (h,α) between them. The following two propositions describe
the structure of the set M(h,α). For their proofs see [14].

Proposition 10.5 Suppose that x− < x+ are (h)-neighboring elements of the set
Mper (h,α). Then there exist y(1), y(2) ∈M(h,α) such that

x− < y(1) < x+, x− < y(2) < x+,

lim
i→−∞y

(1)
i − x−

i = 0, lim
i→∞y

(1)
i − x+

i = 0,

lim
i→−∞y

(2)
i − x+

i = 0, lim
i→∞y

(2)
i − x−

i = 0.

Suppose that x− < x+ are (h)-neighboring elements of Mper (h,α). Define

M+(h,α, x−, x+)

=
{
x ∈ M(h,α) : lim

i→−∞xi − x−
i = 0, lim

i→∞xi − x+
i = 0

}
,

M−(h,α, x−, x+)

=
{
x ∈M(h,α) : lim

i→−∞xi − x+
i = 0, lim

i→∞xi − x−
i = 0

}
.

We denote by M+(h,α) (respectively, M−(h,α)) the union of the sets
M+(h,α, x−, x+) (respectively, M−(h,α, x−, x+)) extended over all pairs of
(h)-neighboring elements x− < x+ of Mper (h,α).

Proposition 10.6

1. If x ∈ M−(h,α, x−, x+) ∪M+(h,α, x−, x+), where x−, x+ ∈Mper (h,α) are
(h)-neighboring and x− < x+, then x− < x < x+.

2. M(h,α) = Mper (h,α) ∪M+(h,α) ∪M−(h,α).
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3. The sets Mper (h,α) ∪ M+(h,α) and Mper (h,α) ∪ M−(h,α) are totally or-
dered.

4. M+(h,α) = {x ∈ M(h,α) : x > T(q,p)x},

M−(h,α) = {
x ∈ M(h,α) : x < T(q,p)x

}
.

Let k ≥ 2 be an integer. In this chapter we consider a complete metric space of
functions h : R2 → R1 which belong to Ck(R2). This space is defined in the next
section and is denoted by Mk . We prove the existence of a set F ⊂ Mk , which is a
countable intersection of open and everywhere dense subsets of Mk , and such that
for each h ∈ F and each rational number α = p/q with p and q relatively prime,
the following properties hold:

(i) there exist (h)-minimal configurations x(+), x(−) and x(0) with rotation number
α such that x

(+)
i−q + p > x

(+)
i , x

(−)
i−q + p < x

(−)
i and x

(0)
i−q + p = x

(0)
i for all

integers i;
(ii) any (h)-minimal configuration with rotation number α is a translation of one of

the configurations x(+), x(−), x(0).

This result was obtained in [181].

10.2 Spaces of Functions

Let k ≥ 2 be an integer. For f = f (x1, x2) ∈ Ck(R2) and q = (q1, q2) ∈ {0, . . . , k}2

satisfying q1 + q2 ≤ k, we set

|q| = q1 + q2, Dqf = ∂ |q|f/∂x
q1
1 ∂x

q2
2 .

Denote by Mk the set of all h ∈ Ck(R2) which have property (H1), satisfy

(
∂2h/∂x1 ∂x2

)
(ξ1, ξ2) ≤ 0 for all (ξ1, ξ2) ∈ R2 (10.5)

and also have the following property:

(H5) There exist δh ∈ (0,1) and ch > 0 such that

h(x1, x2) ≥ δh(x1 − x2)
2 − ch for all (x1, x2) ∈ R2.

It is clear that (H5) implies (H2).
Denote by Mk0 the set of all h ∈ Mk such that

(
∂2h/∂x1 ∂x2

)
(ξ1, ξ2) < 0 for all (ξ1, ξ2) ∈ R2. (10.6)
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For each N,ε > 0, we set

Ek(N, ε) = {
(h1, h2) ∈ Mk ×Mk : ∣∣Dqh1(x1, x2) − Dqh2(x1, x2)

∣∣≤ ε

for each q ∈ {0, . . . , k}2 satisfying |q| ≤ k

and each (x1, x2) ∈ R2 satisfying |x1|, |x2| ≤ N
}

∩ {
(h1, h2) ∈ Mk ×Mk : ∣∣h1(x1, x2) − h2(x1, x2)

∣∣

< ε + ε max
{∣∣h1(x1, x2)

∣
∣,
∣
∣h2(x1, x2)

∣
∣} for all (x1, x2) ∈ R2}. (10.7)

Using the following simple lemma, we can easily show that for the set Mk , there
exists a uniformity which is determined by the base Ek(N, ε), N,ε > 0.

Lemma 10.7 Let a, b ∈ R1, ε ∈ (0,1) such that |a − b| < ε + ε max{|a|, |b|}. Then

|a − b| < ε + ε2(1 − ε)−1 + ε(1 − ε)−1 min
{|a|, |b|}.

It is not difficult to see that the uniformity determined by the base Ek(N, ε),
N,ε > 0, is metrizable (by a metric dk) and complete. For the set Mk , we consider
the topology induced by the metric d2, which is called the weak topology, and the
topology induced by the metric dk , which is called the strong topology.

The following result, which was obtained in [181], shows that a generic function
in Mk belongs to Mk0 and, by Remark 10.1, has properties (H1)–(H4).

Theorem 10.8 There exists a set F0 ⊂ Mk0, which is a countable intersection of
open (in the weak topology) and everywhere dense (in the strong topology) subsets
of Mk .

Proof For h ∈ Mk and γ ∈ (0,1), define hγ : R2 → R1 by

hγ (x1, x2) = h(x1, x2) + γ (x1 − x2)
2, (x1, x2) ∈ R2.

It is easy to see that for h ∈ Mk and γ ∈ (0,1), hγ ∈ Mk0 and
(
∂2hγ /∂x1 ∂x2

)
(ξ1, ξ2) ≤ −2γ, (ξ1, ξ2) ∈ R2 (10.8)

and hγ → h as γ → 0+ in the strong topology.
Let f ∈ Mk , γ ∈ (0,1) and let i ≥ 1 be an integer. By (10.7) and (10.8), there

exists an open neighborhood U(f, γ, i) of fγ in Mk with the weak topology such
that the following property holds:

(P1) For each g ∈ U(f, γ, i) and each (ξ1, ξ2) ∈ R2 satisfying |ξ1|, |ξ2| ≤ i, the
inequality ∂2g/∂x1 ∂x2(ξ1, ξ2) ≤ −γ holds.

Define

F0 :=
∞⋂

n=1

⋃{
U(f, γ, i) : f ∈ Mk, γ ∈ (0,1), i ≥ n

}
.
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Clearly, F0 is a countable intersection of open (in the weak topology) and every-
where dense (in the strong topology) subsets of Mk . We claim that F0 ⊂ Mk0. Let
h ∈ F0, (ξ1, ξ2) ∈ R2. Choose a natural number n such that |ξ1| + |ξ2| < n. There
exist f ∈ Mk , γ ∈ (0,1) and an integer i ≥ n such that h ∈ U(f, γ, i). It follows
from property (P1) and the choice of n that (∂2h/∂x1 ∂x2)(ξ1, ξ2) ≤ −γ . Therefore
h ∈ Mk0. This completes the proof of Theorem 10.8. �

10.3 The Main Results

In the subsequent sections we prove the following result [181].

Theorem 10.9 Let k ≥ 2 be an integer and α be a rational number. Then there exists
a set Fα ⊂ Mk0, which is a countable intersection of open (in the weak topology)
and everywhere dense (in the strong topology) subsets of Mk such that, for each
f ∈Fα , the following assertions hold:

1. If x, y ∈ Mper (f,α), then there exist integers m, n such that yi = xi−m + n for
all i ∈ Z.

2. If x, y ∈ M+(f,α), then there exist integers m, n such that yi = xi−m + n for
all i ∈ Z.

3. If x, y ∈ M−(f,α), then there exist integers m, n such that yi = xi−m + n for
all i ∈ Z.

It is not difficult to see that Theorem 10.9 implies the following result.

Theorem 10.10 Let k ≥ 2 be an integer. Then there exists a set F ⊂ Mk0, which is
a countable intersection of open (in the weak topology) and everywhere dense (in
the strong topology) subsets of Mk , such that for each rational number α and each
f ∈F , assertions 1–3 of Theorem 10.9 hold.

Theorem 10.9 follows from the next two propositions.

Proposition 10.11 Let k ≥ 2 be an integer and α be a rational number. Then there
exists a set Fα+ ⊂ Mk0, which is a countable intersection of open (in the weak
topology) and everywhere dense (in the strong topology) subsets of Mk , such that
for each f ∈Fα+ , assertions 1 and 2 of Theorem 10.9 hold.

Proposition 10.12 Let k ≥ 2 be an integer and α be a rational number. Then there
exists a set Fα− ⊂ Mk0, which is a countable intersection of open (in the weak
topology) and everywhere dense (in the strong topology) subsets of Mk , such that
for each f ∈Fα− , assertions 1 and 3 of Theorem 10.9 hold.

We prove Proposition 10.11. Proposition 10.12 can be proved analogously.
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10.4 Preliminary Results for Assertion 1 of Theorem 10.9

Let m ≥ 1 be an integer. Consider the manifold (R1/Z)m and the canonical mapping
Pm : Rm → (R1/Z)m. We first recall the following result (see Proposition 6.2 of
[178]).

Proposition 10.13 Let Ω be a closed subset of (R1/Z)2. Then there exists a non-
negative function φ ∈ C∞((R1/Z)2) such that Ω = {x ∈ (R1/Z)2 : φ(x) = 0}.

Corollary 10.14 Let Ω be a closed subset of R1/Z. Then there exists a nonnegative
function φ ∈ C∞(R1/Z) such that Ω = {x ∈ R1/Z : φ(x) = 0}.

In this section we assume that k ≥ 2 is an integer and α = p/q is an irreducible
fraction where q ≥ 1 and p are integers.

For each f ∈Mk0, define

Eα(f ) =
q−1∑

i=0

f (xi, xi+1) where x ∈ Mper (f,α) (10.9)

(see Proposition 10.4).

Proposition 10.15 Let f ∈ Mk , Q be a natural number and let D,ε > 0 be given.
Then there exists a neighborhood U of f in Mk with the weak topology such that
for each g ∈ U , each pair of integers n1, n2 ∈ [n1 + 1, n1 + Q] and each sequence
{xi}n2

i=n1
⊂ R1 which satisfies

min

{
n2−1∑

i=n1

f (xi, xi+1),

n2−1∑

i=n1

g(xi, xi+1)

}

≤ D, (10.10)

the inequality
∣
∣∣∣∣

n2−1∑

i=n1

f (xi, xi+1) −
n2−1∑

i=n1

g(xi, xi+1)

∣
∣∣∣∣
≤ ε

holds.

Proof By (H5), there exist δ0 ∈ (0,1) and c0 > 0 such that

f (x1, x2) ≥ δ0(x1 − x2)
2 − c0 for all (x1, x2) ∈ R2. (10.11)

Choose a positive number ε1 for which

ε1[Q + c0Q + D] < 4−1 min{1, ε} (10.12)
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and a positive number ε0 < 1 which satisfies

ε0 + ε2
0(1 − ε0)

−1 + ε0(1 − ε0)
−1 < 4−1ε1. (10.13)

Define

U = {
g ∈Mk : (f, g) ∈ Ek(1, ε0)

}
(10.14)

(see (10.7)).
Assume that g ∈ U , n1, n2 ∈ Z, n2 ∈ [n1 + 1, n1 + Q], {xi}n2

i=n1
⊂ R1 and that

(10.10) holds. By (10.7) and (10.14), for every (z1, z2) ∈ R2,
∣∣f (z1, z2) − g(z1, z2)

∣∣< ε0 + ε0 max
{∣∣f (z1, z2)

∣∣,
∣∣g(z1, z2)

∣∣}. (10.15)

It follows from (10.15), (10.13) and Lemma 10.7 that for every (z1, z2) ∈ R2,

∣∣f (z1, z2) − g(z1, z2)
∣∣< ε0 + ε2

0(1 − ε0)
−1

+ ε0(1 − ε0)
−1 min

{∣∣f (z1, z2)
∣∣,
∣∣g(z1, z2)

∣∣}

< 4−1ε1 + 4−1ε1 min
{∣∣f (z1, z2)

∣∣,
∣∣g(z1, z2)

∣∣}. (10.16)

Inequalities (10.16) and (10.11) imply that for every (z1, z2) ∈ R2,

g(z1, z2) ≥ f (z1, z2) − 4−1ε1 − 4−1ε1
∣∣f (z1, z2)

∣∣≥ −4−1ε1 − 2c0. (10.17)

Set

λi = min
{
f (xi, xi+1), g(xi, xi+1)

}
, i = n1, . . . , n2 − 1. (10.18)

It follows from (10.16), (10.11), (10.17) and (10.18) that for i = n1, . . . , n2 − 1,
∣∣f (xi, xi+1) − g(xi, xi+1)

∣∣

< 4−1ε1 + 4−1ε1 min
{
f (xi, xi+1) + 2c0, g(xi, xi+1) + 4c0 + 2

}

≤ 4−1ε1 + 4−1ε1λi + c0ε1 + ε1/2.

By these inequalities, (10.18), (10.10) and (10.12),

∣∣∣∣∣

n2−1∑

i=n1

(
f (xi, xi+1) − g(xi, xi+1)

)
∣∣∣∣∣

≤ (n2 − n1)
[
4−1ε1 + 2−1ε1 + ε1c0

]+ 4−1ε1

n2−1∑

i=n1

λi

≤ (n2 − n1)[ε1 + ε1c0] + 4−1ε1D ≤ Q(ε1 + ε1c0) + 4−1ε1D < ε.

This completes the proof of Proposition 10.15. �
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Corollary 10.16 Let f ∈ Mk0 and ε > 0 be given. Then there exists a neighbor-
hood U of f in Mk with the weak topology such that for each g ∈ U ∩ Mk0,
Eα(g) ≤ Eα(f ) + ε.

Proposition 10.17 Assume that f ∈Mk0, fn ∈Mk0, n = 1,2, . . . , limn→∞ fn = f

in the weak topology,

x(n) ∈M(fn), n = 1,2, . . . , x ∈ RZ and

lim
n→∞x

(n)
i = xi for all i ∈ Z.

(10.19)

Then x ∈M(f ).

Proof Assume the contrary. Then there exist integers i1 < i2 and a sequence
{yi}i2i=i1

⊂ R1 such that

yi1 = xi1, yi2 = xi2,

i2−1∑

i=i1

f (yi, yi+1) <

i2−1∑

i=i1

f (xi, xi+1). (10.20)

Set

Δ =
i2−1∑

i=i1

[
f (xi, xi+1) − f (yi, yi+1)

]
. (10.21)

For each integer n ≥ 1, define a finite sequence {y(n)
i }i2i=i1

⊂ R1 as follows:

y
(n)
i1

= x
(n)
i1

, y
(n)
i2

= x
(n)
i2

, y
(n)
i = yi, i ∈ {i1, . . . , i2} \ {i1, i2}. (10.22)

It follows from (10.19), (10.22), (10.20), (10.21) and the continuity of f that

lim
n→∞

[
i2−1∑

i=i1

f
(
x

(n)
i , x

(n)
i+1

)−
i2−1∑

i=i1

f
(
y

(n)
i , y

(n)
i+1

)
]

=
i2−1∑

i=i1

f (xi, xi+1) −
i2−1∑

i=i1

f (yi, yi+1) = Δ > 0. (10.23)

In view of (10.19) and (10.23), the sequences

{
i2−1∑

i=i1

f
(
x

(n)
i , x

(n)
i+1

)
}∞

n=1

,

{
i2−1∑

i=i1

f
(
y

(n)
i , y

(n)
i+1

)
}∞

n=1
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are bounded. It follows from this fact, Proposition 10.15 and the equality f =
limn→∞ fn in the weak topology that

lim
n→∞

[
i2−1∑

i=i1

f
(
x

(n)
i , x

(n)
i+1

)−
i2−1∑

i=i1

fn

(
x

(n)
i , x

(n)
i+1

)
]

= 0, (10.24)

lim
n→∞

[
i2−1∑

i=i1

f
(
y

(n)
i , y

(n)
i+1

)−
i2−1∑

i=i1

fn

(
y

(n)
i , y

(n)
i+1

)
]

= 0. (10.25)

By (10.23)–(10.25),

lim
n→∞

[
i2−1∑

i=i1

fn

(
x

(n)
i , x

(n)
i+1

)−
i2−1∑

i=i1

fn

(
y

(n)
i , y

(n)
i+1

)
]

= Δ > 0.

There is an integer n0 ≥ 1 such that for each integer n ≥ n0,

i2−1∑

i=i1

fn

(
x

(n)
i , x

(n)
i+1

)−
i2−1∑

i=i1

fn

(
y

(n)
i , y

(n)
i+1

)
> Δ/2.

This fact contradicts the (fn)-minimality of x(n) for all n ≥ n0. The contradiction
we have reached proves Proposition 10.17. �

Proposition 10.18 Let f ∈ Mk0, fn ∈ Mk0, n = 1,2, . . . , limn→∞ fn = f in the
weak topology, x(n) ∈ Mper (fn,α), n = 1,2, . . . , and let the sequence {x(n)

0 }∞n=1 be
bounded. Then the following assertions hold:

1. There exists x ∈ RZ and a strictly increasing sequence of natural numbers
{nj }∞j=1 such that

xi+q = xi + p, i ∈ Z, (10.26)

x
(nj )

i → xi as j → ∞ for all i ∈ Z. (10.27)

2. Assume that x ∈ RZ and {nj }∞j=1 is a strictly increasing sequence of natural
numbers such that (10.26) and (10.27) hold. Then x ∈Mper (f,α) and

Eα(f ) =
q−1∑

i=0

f (xi, xi+1) = lim
j→∞

q−1∑

i=0

fnj

(
x

(nj )

i , x
(nj )

i+1

)

= lim
j→∞Eα(fnj

). (10.28)

Proof By Proposition 10.2, the sequence {x(n)
i }∞n=1 is bounded for each i ∈ Z.

This fact implies that there exist a strictly increasing sequence of natural numbers
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{nj }∞j=1 and x ∈ RZ such that (10.26) and (10.27) are valid. Therefore assertion 1
is true.

Now we prove assertion 2. Assume that x ∈ RZ and {nj }∞j=1 is a strictly increas-
ing sequence of natural numbers such that (10.26) and (10.27) hold. By Proposi-
tion 10.17 and (10.26), x ∈ Mper (f,α). Since limn→∞ fn = f in the weak topol-
ogy it follows from Corollary 10.16 that the sequence {Eα(fn)}∞n=1 is bounded
from above. Therefore the sequence {∑q−1

i=0 fn(x
(n)
i , x

(n)
i+1)}∞n=1 is also bounded from

above. It follows from this fact, the equality limn→∞ fn = f in the weak topology
and Proposition 10.15 that

lim
n→∞

[
q−1∑

i=0

fn

(
x

(n)
i , x

(n)
i+1

)−
q−1∑

i=0

f
(
x

(n)
i , x

(n)
i+1

)
]

= 0. (10.29)

By (10.9), (10.26), (10.27), (10.29) and Corollary 10.16,

Eα(f ) ≤
q−1∑

i=0

f (xi, xi+1) = lim
j→∞

q−1∑

i=0

f
(
x

(nj )

i , x
(nj )

i+1

)

= lim
j→∞

q−1∑

i=0

fnj

(
x

(nj )

i , x
(nj )

i+1

)= lim
j→∞Eα(fnj

) ≤ Eα(f ).

These relations imply (10.28). Thus Proposition 10.18 is proved. �

Proposition 10.18 and Corollary 10.16 imply the following result.

Proposition 10.19 The function f → Eα(f ) is continuous on Mk0 with the relative
weak topology.

Proposition 10.20 Assume that f ∈Mk0 and that the following property holds:
If x(1), x(2) ∈ Mper (f,α), then there exists n = (n1, n2) ∈ Z2 such that x(2) =

Tnx
(1).

Then there exists n̄ = (n̄1, n̄2) ∈ Z2 such that for each x ∈Mper (f,α),

Tn̄x > x,
{
y ∈ Mper (f,α) : x < y < Tn̄x

}= ∅.

Proof Let x̄ ∈ Mper (f,α). Then

Mper (f,α) = {
Tnx̄ : n = (n1, n2) ∈ Z2}

= {
Tnx̄ : n = (n1, n2) ∈ Z2,0 ≤ n1 ≤ q − 1

}
. (10.30)

By (10.30), the set
{
y ∈Mper (f,α) : x̄ < y < T(0,1)x̄

}
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is either finite or empty. Therefore there exists x̄+ ∈ Mper (f,α) such that

x̄ < x̄+,
{
y ∈ Mper (f,α) : x̄ < y < x̄+}= ∅. (10.31)

There exists n̄ = (n̄1, n̄2) ∈ Z2 such that

Tn̄x̄ = x̄+. (10.32)

Let x ∈Mper (f,α). There exists n = (n1, n2) ∈ Z2 such that

x = Tnx̄. (10.33)

In view of (10.33), (10.32) and (10.31), we have

Tn̄x = Tn̄(Tnx̄) = Tn(Tn̄x̄) = Tnx̄
+ > Tnx̄ = x

and

Tn̄x > x. (10.34)

Assume that

y ∈Mper (f,α), x < y < Tn̄x. (10.35)

Then

T−nx < T−ny < T−n(Tn̄x) (10.36)

where −n = (−n1,−n2). If follows from (10.36), (10.33) and (10.32) that

x̄ < T−ny < Tn̄(T−nx) = Tn̄x̄ = x̄+,

a contradiction (see (10.31)). Therefore
{
y ∈Mper (f,α) : x < y < Tn̄x

}= ∅.

This completes the proof of Proposition 10.20. �

Corollary 10.21 Assume that f ∈ Mk0 and that the following property holds:
If x(1), x(2) ∈ Mper (f,α), then there exists n = (n1, n2) ∈ Z2 such that Tnx

(1) =
x(2).

Then there exists a number κ > 0 such that for each x, x+ ∈ Mper (f,α) satisfy-
ing

x < x+,
{
y ∈Mper (f,α) : x < y < x+}= ∅,

the inequality x+
i − xi > κ holds for all i ∈ Z.

Proposition 10.22 Assume that f ∈Mk0, x̄ ∈Mper (f,α),

Mper (f,α) = {
Tnx̄ : n = (n1, n2) ∈ Z2} (10.37)
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and that ε > 0 is given. Then there exists a neighborhood U of f in Mk with the
weak topology such that for each g ∈ U ∩ Mk0 and each x ∈ Mper (g,α), there is
m = (m1,m2) ∈ Z2 such that |xi − (Tmx̄)i | ≤ ε, i ∈ Z.

Proof Assume the contrary. Then there exist a sequence {fj }∞j=1 ⊂ Mk0 satisfying

limj→∞ fj = f in the weak topology and a sequence x(j) ∈ Mper (fj ,α), j =
1,2, . . . , such that for each natural number j and each n = (n1, n2) ∈ Z2,

sup
{∣∣x(j)

i − (Tnx̄)i
∣∣ : i ∈ {0,1, . . . , q}}> ε. (10.38)

We may assume without loss of generality that the sequence {x(j)

0 }∞j=1 is bounded.
By Proposition 10.18, there exist x ∈Mper (f,α) and a strictly increasing sequence
of natural numbers {js}∞s=1 such that

x
(js)
i → xi as s → ∞ for all i ∈ Z. (10.39)

By (10.37), there exists m = (m1,m2) ∈ Z2 such that x = Tmx̄. It follows from
this equality and (10.39) that x

(js)
i → (Tmx̄)i as s → ∞ for all i ∈ Z. This fact

contradicts (10.38). The contradiction we have reached proves Proposition 10.22.
�

10.5 Preliminary Results for Assertion 2 of Theorem 10.9

In this section we assume that k ≥ 2 is an integer and α = p/q is an irreducible
fraction, where q ≥ 1 and p are integers. Assume that f ∈ Mk0,

x̄, x̄+ ∈ Mper (f,α), x̄ < x̄+, (10.40)
{
y ∈Mper (f,α) : x̄ < y < x̄+}= ∅ (10.41)

and

Mper (f,α) = {
Tnx̄ : n = (n1, n2) ∈ Z2}. (10.42)

By Corollary 10.21, there exists a number κ > 0 such that

x+
i − xi > 2κ, i ∈ Z, (10.43)

for each x, x+ ∈ Mper (f,α) which satisfy

x < x+,
{
y ∈ Mper (f,α) : x < y < x+}= ∅. (10.44)

Lemma 10.23 Let ε ∈ (0, κ/2) be given. Then there exists a neighborhood U of f

in Mk0 with the weak topology such that the following property holds:
For each g ∈ U ∩ Mk0 and each y ∈ Mper (g,α), there exists a unique x ∈

Mper (f,α) such that

|xi − yi | < ε, i ∈ Z. (10.45)
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Proof By Proposition 10.22, there exists a neighborhood U of f in Mk with the
weak topology such that the following property holds:

For each g ∈ U ∩ Mk0 and each y ∈ Mper (g,α), there exists x ∈ Mper (f,α)

such that (10.45) holds.
Assume that g ∈ U ∩Mk0,

y ∈Mper (g,α), x(1), x(2) ∈Mper (f,α),

∣
∣x(j)

i − yi

∣
∣< ε, i ∈ Z,j = 1,2.

(10.46)

To complete the proof of the lemma, it is sufficient to show that x(1) = x(2). Assume
the contrary. We may assume without loss of generality that x(1) < x(2). By our
choice of κ (see (10.43), (10.44)) and Proposition 10.20,

inf
{
x

(2)
i − x

(1)
i : i ∈ Z

}
> 2κ. (10.47)

On the other hand, it follows from (10.46) that for all i ∈ Z,

∣∣x(2)
i − x

(1)
i

∣∣≤ ∣∣x(2)
i − yi

∣∣+ ∣∣yi − x
(1)
i

∣∣< 2ε < κ,

a contradiction. The contradiction we have reached proves Lemma 10.23. �

Lemma 10.24 Let ε ∈ (0, κ/2) and let a neighborhood U of f in Mk with the weak
topology be as guaranteed in Lemma 10.23. Assume that

g ∈ U ∩Mk0, y(1), y(2) ∈Mper (g,α), y(1) < y(2), (10.48)
{
z ∈ Mper (g,α) : y(1) < z < y(2)

}= ∅, (10.49)

x(1), x(2) ∈ Mper (f,α),
∣∣x(j)

i − y
(j)
i

∣∣< ε, i ∈ Z,j = 1,2. (10.50)

Then either x(1) = x(2) or

x(1) < x(2),
{
z ∈ Mper (f,α) : x(1) < z < x(2)

}= ∅.

Proof Assume that x(1) �= x(2). By (10.50) and (10.48), for all i ∈ Z,

x
(2)
i − x

(1)
i = x

(2)
i − y

(2)
i + y

(2)
i − y

(1)
i + y

(1)
i − x

(1)
i > −2ε > −κ

and

x
(2)
i − x

(1)
i > −κ for all i ∈ Z.

It follows from this inequality, (10.43) and Proposition 10.20 that x(1) < x(2). To
complete the proof of the lemma, we need to show that the set

{
z ∈Mper (f,α) : x(1) < z < x(2)

}= ∅.
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Assume the contrary. Then by Proposition 10.20, there exist x(3) ∈ Mper (f,α) such
that

x(1) < x(3) < x(2),

{
z ∈ Mper (f,α) : x(1) < z < x(3)

}= ∅.
(10.51)

It follows from Proposition 10.20, (10.51) and our choice of κ (see (10.43), (10.44))
that

x
(2)
i − x

(3)
i > 2κ, x

(3)
i − x

(1)
i > 2κ, i ∈ Z. (10.52)

By (10.42), there exists m = (m1,m2) ∈ Z2 for which

x(3) = Tmx(1). (10.53)

Set

y(3) = Tmy(1). (10.54)

Clearly, y(3) ∈ Mper (g,α). It follows from (10.54), (10.53), (10.50) and (10.52)
that for all i ∈ Z,

y
(3)
i − y

(1)
i = y

(3)
i − x

(3)
i + x

(3)
i − x

(1)
i + x

(1)
i − y

(1)
i

= y
(1)
i−m1

+ m2 − (
x

(1)
i−m1

+ m2
)+ x

(3)
i − x

(1)
i + x

(1)
i − y

(1)
i

> −2ε + 2κ > κ.

Analogously, it follows from (10.54), (10.53), (10.50) and (10.52) that for all i ∈ Z,

y
(2)
i − y

(3)
i = y

(2)
i − x

(2)
i + x

(2)
i − x

(3)
i + x

(3)
i − y

(3)
i

= y
(2)
i − x

(2)
i + x

(2)
i − x

(3)
i + x

(1)
i−m1

+ m2 − (
y

(1)
i−m1

+ m2
)

> −2ε + 2κ > κ.

Therefore y(1) < y(3) < y(2). This fact contradicts (10.49). The contradiction we
have reached proves Lemma 10.24. �

Suppose that ε ∈ (0, κ/2), g ∈Mk0, y ∈ M+(g,α), y+, y− ∈Mper (g,α),

y− < y < y+, lim
i→∞yi − y+

i = 0, lim
i→−∞yi − y−

i = 0.

We say that y is regular with respect to (ε, g) if there exist x−, x+ ∈ Mper (f,α)

such that

∣∣x−
i − y−

i

∣∣< ε,
∣∣x+

i − y+
i

∣∣< ε, i ∈ Z, (10.55)

x− < x+,
{
z ∈ Mper (f,α) : x− < z < x+}= ∅. (10.56)
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We assume that there exists x̂ ∈ M+(f,α) such that

x̄ < x̂ < x̄+, (10.57)

M+(f,α) = {
Tnx̂ : n = (n1, n2) ∈ Z2}. (10.58)

Lemma 10.25 Let a neighborhood U of f in Mk with the weak topology be
as guaranteed in Lemma 10.23 with ε = κ/4. Assume that {fn}∞n=1 ⊂ U ∩ Mk0,
limn→∞ fn = f in the weak topology and that x(n) ∈ M+(fn,α) is regular with
respect to (κ/4, fn), n = 1,2, . . . . Then there exist a strictly increasing sequence of
natural numbers {nj }∞j=1 and a sequence s(j) = (s

(j)

1 , s
(j)

2 ) ∈ Z2, j = 1,2, . . . , such
that

Ts(j)x
(nj )

i → x̂i as j → ∞ for all i ∈ Z. (10.59)

Proof By (10.40), (10.41) and (10.57),

lim
i→−∞ x̂i − x̄i = 0, lim

i→∞ x̂i − x̄+
i = 0. (10.60)

Let n ≥ 1 be an integer. There exist

x(n+), x(n−) ∈ Mper (fn,α) (10.61)

such that

x(n−) < x(n) < x(n+), (10.62)

lim
i→−∞x

(n−)
i − x

(n)
i = 0, lim

i→∞x
(n+)
i − x

(n)
i = 0. (10.63)

Since fn ∈ U , it follows from the definition of U and Lemma 10.23 that there exist
unique z(n−), z(n+) ∈ Mper (f,α) such that

∣∣z(n−)
i − x

(n−)
i

∣∣≤ κ/4,
∣∣z(n+)

i − x
(n+)
i

∣∣< κ/4, i ∈ Z. (10.64)

Since x(n) is regular with respect to (κ/4, fn), we have

z(n−) < z(n+),
{
z ∈ Mper (f,α) : z(n−) < z < z(n+)

}= ∅. (10.65)

Since limn→∞ fn = f in the weak topology, it follows from Lemma 10.23 that

lim
n→∞ sup

{∣∣z(n−)
i − x

(n−)
i

∣∣,
∣∣z(n+)

i − x
(n+)
i

∣∣ : i ∈ Z
}= 0. (10.66)

Now it follows from (10.65), (10.40)–(10.43) and Proposition 10.20 that there is
l ∈ Z2 such that z(n−) = Tlx̄ and z(n+) = Tlx̄

+. We may assume without loss of
generality that

z(n−) = x̄, z(n+) = x̄+, n = 1,2, . . . . (10.67)
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It follows from (10.64), (10.67) and the definition of κ (see (10.43), (10.44)) that
for any integer n ≥ 1 and any integer i,

x
(n+)
i − x

(n−)
i ≥ x

(n+)
i − z

(n+)
i + z

(n+)
i − z

(n−)
i + z

(n−)
i − x

(n−)
i

> −κ/2 + x̄+
i − x̄i > 3κ/2

and

x
(n+)
i − x

(n−)
i > 3κ/2. (10.68)

Let n ≥ 1 be an integer. It follows from (10.62), (10.63) and (10.68) that there exists
an integer tn such that

x
(n)
tn

− x
(n−)
tn

≤ κ/2, x
(n)
tn+1 − x

(n−)
tn+1 > κ/2. (10.69)

Using translations, we may assume without loss of generality that

tn ∈ [0, q]. (10.70)

In view of (10.62), (10.64) and (10.67), for all integers n ≥ 1 and all i ∈ Z,

x̄i − κ/4 < x
(n−)
i < x

(n)
i < x

(n+)
i < x̄+

i + κ/4.

Therefore for any i ∈ Z, the sequence {x(n)
i }∞n=1 is bounded. Together with (10.70)

this implies that there exist u ∈ RZ and a strictly increasing sequence of natural
numbers {nj }∞j=1 such that

x
(nj )

i → ui as j → ∞ for all i ∈ Z, tnj
= tn1, j = 1,2, . . . . (10.71)

It follows from (10.71), (10.62), (10.66) and (10.67) that for all i ∈ Z,

ui = lim
j→∞x

(nj )

i ∈
[

lim
j→∞x

(n−
j )

i , lim
j→∞x

(n+
j )

i

]
= [

x̄i , x̄
+
i

]
. (10.72)

By Proposition 10.17, u ∈ M(f ). Since x(n) ∈ M+(fn,α), n = 1,2, . . . , we have
x(n) > T(q,p)x

(n), n = 1,2, . . . . Therefore x
(n)
i > x

(n)
i−q +p for any integer n ≥ 1 and

any integer i. When combined with (10.71), this fact implies that ui ≥ ui−q + p for
all i ∈ Z and that

u ∈ Mper (f,α) ∪M+(f,α). (10.73)

It follows from (10.71), (10.72) and (10.69) that

ut1 − x̄t1 = lim
j→∞x

(nj )

t1
− lim

j→∞x
(n−

j )

t1
≤ κ/2,

ut1+1 − x̄t1+1 = lim
j→∞x

(nj )

t1+1 − lim
j→∞x

(n−
j )

t1+1 ≥ κ/2.
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By these relations, (10.72), the definition of κ (see (10.43) and (10.44)), (10.40) and
(10.41), u /∈ {x̄, x̄+}. When combined with (10.72), (10.73), (10.40) and (10.41),
this fact implies that u ∈ M+(f,α). By (10.58), there exists m = (m1,m2) ∈ Z2

such that Tmx = x̂. This completes the proof of Lemma 10.25. �

Lemma 10.26 Let Q ≥ 1 be an integer and let ε ∈ (0, κ/4) be given. Then there
exists a neighborhood U of f in Mk with the weak topology such that for each
g ∈ U ∩Mk0 and each y ∈M+(g,α), one of the following properties holds:

(a) There exists n = (n1, n2) ∈ Z2 such that

∣∣(Tny)i − x̄i

∣∣< ε, i ∈ Z.

(b) There exists n = (n1, n2) ∈ Z2 such that

∣∣(Tny)i − x̂i

∣∣< ε, i = −Q, . . . ,Q.

Proof Assume the contrary. Then there exists a sequence {fs}∞s=1 ⊂ Mk0 such
that lims→∞ fs = f in the weak topology and a sequence y(s) ∈ M+(fs, α),
s = 1,2, . . . , such that for any integer s ≥ 1, the following properties hold:

(c) For any n = (n1, n2) ∈ Z2

sup
{∣∣(Tny

(s)
)
i
− x̄i

∣∣ : i ∈ Z
}≥ ε.

(d) For any n = (n1, n2) ∈ Z2

sup
{∣∣(Tny

(s)
)
i
− x̂i

∣∣ : i = −Q, . . . ,Q
}≥ ε.

By Lemmata 10.23 and 10.24 and (10.42), y(s) is regular with respect to (fs, ε/2)

for all sufficiently large integers s.
By Lemma 10.25, there exist a strictly increasing sequence of natural num-

bers {sj }∞j=1 and a sequence n(j) = (n
(j)

1 , n
(j)

2 ) ∈ Z2, j = 1,2, . . . , such that

(Tn(j)y(sj ))i → x̂i as j → ∞ for all i ∈ Z, a contradiction (see (d)). The contra-
diction we have reached proves Lemma 10.26. �

Lemma 10.27 Let ε ∈ (0, κ/4) be given. Then there exists a neighborhood U of
f in Mk with the weak topology such that for each g ∈ U ∩ Mk0 and each y ∈
M+(g,α), one of the following properties holds:

(i) There exists m = (m1,m2) ∈ Z2 such that

∣∣(Tmy)i − x̄i

∣∣< ε, i ∈ Z.

(ii) There exists m = (m1,m2) ∈ Z2 such that

∣∣(Tmy)i − x̂i

∣∣< ε, i ∈ Z.
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Proof Choose a positive number

ε0 < min{ε/6, κ/8}. (10.74)

By (10.57), (10.40) and (10.41), there exists a natural number Q > 8q + 8 such that
∣∣̂xi − x̄+

i

∣∣< ε0/4 for all integers i ≥ Q/2, (10.75)

|̂xi − x̄i | < ε0/4 for all integers i ≤ −Q/2. (10.76)

By Lemmata 10.23 and 10.24, there exists a neighborhood U1 of f in Mk with the
weak topology such that the following properties hold:

(iii) For each g ∈ U1 ∩ Mk0 and each y ∈ Mper (g,α), there exists a unique
x ∈Mper (f,α) such that |xi − yi | < ε0 for all i ∈ Z.

(iv) Let g ∈ U1 ∩Mk0, y(1), y(2) ∈Mper (g,α),

y(1) < y(2),
{
z ∈Mper (g,α) : y(1) < z < y(2)

}= ∅,

x(1), x(2) ∈ Mper (f,α),
∣∣x(j)

i − y
(j)
i

∣∣< ε0, i ∈ Z,j = 1,2.

Then either x(1) = x(2) or

x(1) < x(2) and
{
z ∈Mper (f,α) : x(1) < z < x(2)

}= ∅.

By Lemma 10.26, there exists a neighborhood U of f in Mk with the weak topology
such that U ⊂ U1 and for each g ∈ U ∩ Mk0 and each y ∈ M+(g,α), one of the
following properties holds:

(v) There exists m = (m1,m2) ∈ Z2 such that |(Tmy)i − x̄i | < ε0 for all i ∈ Z.
(vi) There exists m = (m1,m2) ∈ Z2 such that |(Tmy)i − x̂i | < ε0, i =

−Q, . . . ,Q.
Let

g ∈ U ∩Mk0, y ∈M+(g,α). (10.77)

If (v) is true, then (ii) also holds. Therefore we may assume that (v) does not hold.
Then by the definition of U and (10.77), property (vi) holds. We may assume without
loss of generality that (vi) holds with m = (0,0). Thus

|yi − x̂i | < ε0, i = −Q, . . . ,Q. (10.78)

There exist

y−, y+ ∈ Mper (g,α) (10.79)

such that

y− < y < y+, lim
i→−∞y−

i − yi = 0, lim
i→∞y+

i − yi = 0. (10.80)

By property (iii), (10.77) and (10.79), there exist unique

x−, x+ ∈ Mper (f,α) (10.81)
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such that
∣∣x−

i − y−
i

∣∣< ε0,
∣∣x+

i − y+
i

∣∣< ε0, i ∈ Z. (10.82)

By property (iv), (10.77), (10.79), (10.80), (10.81) and (10.82), either x− = x+ or

x− < x+ and
{
z ∈Mper (f,α) : x− < z < x+}= ∅. (10.83)

If x− = x+, then (10.80) and (10.82) imply that for all i ∈ Z,

yi − x+
i = yi − y+

i + y+
i − x+

i < y+
i − x+

i < ε0,

yi − x+
i = yi − x−

i = yi − y−
i + y−

i − x−
i > y−

i − x−
i > −ε0,

∣∣yi − x+
i

∣∣< ε0

and combining this with (10.42), we see that property (v) holds. The contradiction
we have reached proves that (10.83) holds. It follows from (10.80) and (10.82) that
for all i ∈ Z,

x−
i − ε0 < y−

i < yi < y+
i < x+

i + ε0. (10.84)

We claim that x+ = x̄+, x− = x̄.
By (10.78) and (10.75), for i = Q − 4q, . . . ,Q,

∣∣yi − x̄+
i

∣∣≤ |yi − x̂i | +
∣∣̂xi − x̄+

i

∣∣< ε0 + ε0/4 (10.85)

and for i = −Q, . . . ,−Q + 4q ,

|yi − x̄i | ≤ |yi − x̂i | + |̂xi − x̄i | < ε0 + ε0/4. (10.86)

It follows from (10.85), (10.84) and (10.86) that for i = Q − 4q, . . . ,Q,

x̄+
i − ε0 − ε0/4 < yi < x+

i + ε0

and that for i = −Q, . . . ,−Q + 4q ,

x−
i − ε0 < yi < x̄i + ε0 + ε0/4.

Thus

x̄+
i < x+

i + 2ε0 + ε0/4, i = Q − 4q, . . . ,Q,

x−
i < x̄i + 2ε0 + ε0/4, i = −Q, . . . ,−Q + 4q.

It follows from these inequalities, the inequality Q > 8q + 8, (10.40), (10.81),
(10.74) and the definition of κ (see (10.43), (10.44)) that

either x̄+ < x+ or x̄+ = x+ (10.87)

and

either x̄− < x̄ or x− = x̄. (10.88)
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When combined with (10.40), (10.41), (10.42), (10.81) and (10.83), this fact implies
that

either x̄ = x−, x̄+ = x+ or x̄+ < x+,

x̄ < x− or x+ < x̄+, x− < x̄.
(10.89)

By (10.87)–(10.89),

x̄ = x−, x+ = x̄+, (10.90)

as claimed.
Next we show that

|yi − x̂i | < ε (10.91)

for all i ∈ Z. By (10.78), it is sufficient to show that (10.91) is valid for all integers
i satisfying |i| > Q.

Assume that i > Q is an integer. Then there exist integers s, j such that

s > 1, j ∈ [Q − 2q,Q − q], i = j + sq. (10.92)

By (10.78),

|yj − x̂j | < ε0. (10.93)

It follows from (10.75) that

∣∣̂xi − x̄+
i

∣∣< ε0/4,
∣∣̂xj − x̄+

j

∣∣< ε0/4. (10.94)

By (10.77), (10.79), (10.80), (10.82), (10.90), (10.94) and (10.93),

0 < y+
j − yj = y+

j − x+
j + x+

j − x̂j + x̂j − yj

< ε0 + x̄+
j − x̂j + x̂j − yj < ε0 + ε0/4 + ε0 < 3ε0

and

0 < y+
j − yj < 3ε0. (10.95)

Since y ∈M+(g,α), it follows from (10.95), (10.79), (10.92) and (10.80) that

3ε0 > y+
j − yj > y+

j − (T(−q,−p)y)j > y+
j − (

(T(−q,−p))
sy
)
j

= y+
j − yj+sq + sp = y+

j+sq − yj+sq = y+
i − yi > 0.

Thus we have shown that

0 < y+
i − yi < 3ε0 for all integers i > Q. (10.96)

By (10.94), (10.82) and (10.96), for all integers i > Q,
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|̂xi − yi | ≤
∣∣̂xi − x̄+

i

∣∣+ ∣∣x̄+
i − y+

i

∣∣+ ∣∣y+
i − yi

∣∣

< ε0/4 + ε0 + 3ε0

and |̂xi − yi | < 5ε0 < ε.
Analogously, we show that (10.91) holds for all integers i < −Q. Assume now

that i < −Q is an integer. Then there exist integers s, j such that

s > 1, j ∈ [−Q + q,−Q + 2q], i = j − sq. (10.97)

By (10.78), inequality (10.93) is valid. It follows from (10.76) that

|̂xi − x̄i | < ε0/4, |̂xj − x̄j | < ε0/4. (10.98)

By (10.80), (10.93), (10.90), (10.82) and (10.98),

0 < yj − y−
j = yj − x̂j + x̂j − x̄j + x̄j − y−

j < ε0 + ε0/4 + x̄j − y−
j

= ε0 + ε0/4 + x−
j − y−

j < ε0 + ε0/4 + ε0 < 3ε0

and

0 < yj − y−
j < 3ε0. (10.99)

Since y ∈M+(g,α), it follows from (10.99), (10.79), (10.97) and (10.80) that

3ε0 > yj − y−
j > (T(q,p)y)j − y−

j >
(
(T(q,p))

sy
)
j
− y−

j

= yj−sq + sp − y−
j = yj−sq − y−

j−sq = yi − y−
i > 0.

Thus we have shown that

0 < yi − y−
i < 3ε0.

It follows from this inequality, (10.98), (10.82) and (10.90) that for all integers
i < −Q,

|̂xi − yi | ≤ |̂xi − x̄i | +
∣∣x̄i − y−

i

∣∣+ ∣∣y−
i − yi

∣∣

< ε0/4 + ε0 + 3ε0 < 5ε0 < ε.

This completes the proof of Lemma 10.27. �

10.6 Proof of Proposition 10.11

Let k ≥ 2 be an integer and α = p/q be an irreducible fraction, where q ≥ 1 and p

are integers.



10.6 Proof of Proposition 10.11 503

Let f ∈ Mk0. Choose x(f ) ∈ M(per)(f,α) such that |x(f )

0 | ≤ 1. By Corol-
lary 10.14, there exists a nonnegative function φf ∈ C∞((R1/Z)) such that

{
z ∈ R1/Z : φf (z) = 0

}= {
P1
(
x

(f )
i

) : i ∈ Z
}
. (10.100)

Let γ ∈ (0,1) be given. Define fγ : R2 → R1 by

fγ (ξ1, ξ2) = f (ξ1, ξ2) + γφf

(
P1(ξ1)

)
, (ξ1, ξ2) ∈ R2. (10.101)

It is not difficult to see that fγ ∈ Mk0. It follows from (10.9), (10.101), (10.100)
that

Eα(f ) ≤ Eα(fγ ) ≤
q−1∑

i=0

fγ

(
x

(f )
i , x

(f )

i+1

)

=
q−1∑

i=0

f
(
x

(f )
i , x

(f )

i+1

)+ γ

q−1∑

i=0

φf

(
P1
(
x

(f )
i

))

=
q−1∑

i=0

f
(
x

(f )
i , x

(f )

i+1

)= Eα(f )

and that

Eα(f ) = Eα(fγ ) =
q−1∑

i=0

fγ

(
x

(f )
i , x

(f )

i+1

)=
q−1∑

i=0

f
(
x

(f )
i , x

(f )

i+1

)
. (10.102)

Assume that y ∈Mper (fγ ,α). Relations (10.9), (10.102), (10.101) and (10.100)
imply that

q−1∑

i=0

f (yi, yi+1) + γ

q−1∑

i=0

φf

(
P1(yi)

)=
q−1∑

i=0

fγ (yi, yi+1)

= Eα(fγ ) = Eα(f ) ≤
q−1∑

i=0

f (yi, yi+1),

q−1∑

i=0

f (yi, yi+1) =
q−1∑

i=0

fγ (yi, yi+1) = Eα(fγ ) = Eα(f )

and

y ∈ Mper (fγ ,α), P1(yi) ∈ {P1
(
x

(f )
j

) : j = 0, . . . , q − 1
}
, i = 0, . . . , q − 1.

Since the set Mper (fγ ,α) is totally ordered, we conclude that y is a translation
of x(f ). Thus

Mper (fγ ,α) = {
Tnx

(f ) : n = (n1, n2) ∈ Z2}. (10.103)
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By Proposition 10.20 and (10.103), there exist

x(f +) ∈Mper (fγ ,α) (10.104)

such that

x(f ) < x(f +),
{
z ∈Mper (fγ ,α) : x(f ) < z < x(f +)

}= ∅. (10.105)

Proposition 10.5 implies that there exists

y(f γ ) ∈M+(fγ ,α) (10.106)

such that

x(f ) < y(f γ ) < x(f +), (10.107)

lim
i→∞y

(f γ )

i − x
(f +)
i = 0, lim

i→−∞y
(f γ )

i − x
(f )
i = 0. (10.108)

Define

Ω = {
P1
(
y

(f γ )

i

) : i ∈ Z
}∪ {

P1
(
x

(f )
i

) : i ∈ Z
}
. (10.109)

It is easy to see that Ω is a closed subset of R1/Z.
By Corollary 10.14, there exists a nonnegative function ψf γ ∈ C∞(R1/Z) such

that
{
z ∈ R1/Z : ψf γ (z) = 0

}= Ω. (10.110)

Let μ ∈ (0,1). Define fγμ : R2 → R1 by

fγμ(ξ1, ξ2) = fγ (ξ1, ξ2) + μψf γ

(
P1(ξ1)

)
, (ξ1, ξ2) ∈ R2. (10.111)

It is easy to see that fγμ ∈ Mk0. Relations (10.111), (10.110), (10.109), (10.102)
and (10.9) imply that

Eα(fγ ) ≤ Eα(fγμ) ≤
q−1∑

i=0

fγμ

(
x

(f )
i , x

(f )

i+1

)

=
q−1∑

i=0

fγ

(
x

(f )
i , x

(f )

i+1

)+ μ

q−1∑

i=0

ψf γ

(
P1
(
x

(f )
i

))

=
q−1∑

i=0

fγ

(
x

(f )
i , x

(f )

i+1

)= Eα(f ) = Eα(fγ )
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and

Eα(fγμ) = Eα(fγ ) = Eα(f ) =
q−1∑

i=0

fγμ

(
x

(f )
i , x

(f )

i+1

)

=
q−1∑

i=0

fγ

(
x

(f )
i , x

(f )

i+1

)=
q−1∑

i=0

f
(
x

(f )
i , x

(f )

i+1

)
. (10.112)

Assume that

y ∈Mper (fγμ,α). (10.113)

By (10.111), (10.113), (10.112) and (10.9),

q−1∑

i=0

fγ (yi, yi+1) +
q−1∑

i=0

μψf γ

(
P1(yi)

)=
q−1∑

i=0

fγμ(yi, yi+1)

= Eα(fγμ) = Eα(fγ ) ≤
q−1∑

i=0

fγ (yi, yi+1),

q−1∑

i=0

fγ (yi, yi+1) = Eα(fγ )

and y ∈ Mper (fγ ,α). Now (10.103) implies that y is a translation of x(f ). Thus

Mper (fγμ,α) = {
Tnx

(f ) : n = (n1, n2) ∈ Z2}. (10.114)

Lemma 10.28 Let z ∈ M+(fγμ,α). Then there exists m = (m1,m2) ∈ Z2 such
that Tmy(f γ ) = z.

Proof By (10.114), (10.105), Proposition 10.20 and the definition of M+(h,α)

with h satisfying (H1)–(H4) (see Sect. 10.1), we may assume without loss of gener-
ality that

x(f ) < z < x(f +). (10.115)

Then it follows from Propositions 10.5 and 10.6, the definition of M+(h,α) with h

satisfying (H1)–(H4) and (10.5) that

lim
i→∞x

(f +)
i − zi = 0, lim

i→−∞x
(f )
i − zi = 0. (10.116)

Since the set M+(fγμ,α) is totally ordered (see Proposition 10.6), in order to prove
the lemma, it is sufficient to show that there exist m = (m1,m2) ∈ Z2 and i ∈ Z such
that zi = (Tmy(f γ ))i . Assume the contrary. Then

{P1zi : i ∈ Z} ∩ {
P1y

(f γ )

i : i ∈ Z
}= ∅. (10.117)
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Since the set M+(fγμ,α)∪Mper (fγμ,α) is totally ordered (see Proposition 10.5),

{P1zi : i ∈ Z} ∩ {
P1x

(f )
i : i ∈ Z

}= ∅. (10.118)

Relations (10.118), (10.117) and (10.109) imply that

{P1zi : i ∈ Z} ∩ Ω = ∅. (10.119)

Relations (10.119) and (10.110) imply that

ψf γ (P1zi) > 0 for all i ∈ Z. (10.120)

Choose a positive number

Δ < 8−1μ

q∑

i=−q

ψf γ (P1zi). (10.121)

By Proposition 10.2,

|zi − z0 − iα| < 1 for all i ∈ Z, (10.122)
∣∣y(f γ )

i − y
(f γ )

0 − iα
∣∣< 1 for all i ∈ Z. (10.123)

Since the functions fγ , fγμ are continuous and periodic, there exists a number
ε ∈ (0,1) such that for each ξ1, ξ2, ξ3, ξ4 ∈ R1 satisfying

|ξ1 − ξ2|, |ξ3 − ξ4| ≤ 2|α| + 8,

|ξ1 − ξ3| ≤ 2ε, |ξ2 − ξ4| ≤ 2ε,
(10.124)

the following inequality holds:
∣∣h(ξ1, ξ2) − h(ξ3, ξ4)

∣∣≤ Δ/16, h ∈ {fγ ,fγμ}. (10.125)

It follows from (10.116) and (10.108) that there exists an integer m0 > 4 + 4q such
that

∣∣zi − y
(f γ )

i

∣∣< ε/2 for all integers i satisfying |i| ≥ m0. (10.126)

Define u ∈ RZ as follows:

ui = zi, i ∈ [(−∞,−m0 − 1] ∪ [m0 + 1,∞)
]∩ Z,

ui = y
(f γ )

i , i ∈ [−m0,m0] ∩ Z.
(10.127)

We will show that

m0∑

i=−m0−1

fγμ(zi, zi+1) −
m0∑

i=−m0−1

fγμ(ui, ui+1) > 0.
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It follows from (10.127) that

m0∑

i=−m0−1

fγμ(zi, zi+1) −
m0∑

i=−m0−1

fγμ(ui, ui+1)

=
m0∑

i=−m0−1

fγμ(zi, zi+1) − fγμ

(
z−m0−1, y

(f,γ )
−m0

)

− fγμ

(
y

(f γ )
m0 , zm0+1

)−
m0−1∑

i=−m0

fγμ

(
y

(f γ )

i , y
(f γ )

i+1

)
. (10.128)

By the definition of ε (see (10.124), (10.125)), (10.126), (10.122) and (10.123),
∣∣fγμ(z−m0−1, z−m0) + fγμ(zm0 , zm0+1)

− fγμ

(
z−m0−1, y

(f γ )
−m0

)− fγμ

(
y

(f γ )
m0 , zm0+1

)∣∣≤ Δ/8.

This inequality, (10.128), (10.111), (10.110), (10.109) and (10.121) imply that

m0∑

i=−m0−1

fγμ(zi, zi+1) −
m0∑

i=−m0−1

fγμ(ui, ui+1)

≥
m0−1∑

i=−m0

fγμ(zi, zi+1) −
m0−1∑

i=−m0

fγμ

(
y

(f γ )

i , y
(f γ )

i+1

)− 8−1Δ

= −8−1Δ +
m0−1∑

i=−m0

fγ (zi, zi+1) + μ

m0−1∑

i=−m0

ψf γ (P1zi) −
m0−1∑

i=−m0

fγ

(
y

(f γ )

i , y
(f γ )

i+1

)

> 7Δ +
m0−1∑

i=−m0

fγ (zi, zi+1) −
m0−1∑

i=−m0

fγ

(
y

(f γ )

i , y
(f γ )

i+1

)
. (10.129)

Define

vi = zi, i = −m0, . . . ,m0,

v−m0−1 = y
(f γ )

−m0−1, vm0+1 = y
(f γ )

m0+1.
(10.130)

Since y(f γ ) ∈M(fγ ,α), it follows from (10.123), the definition of ε (see (10.124),
(10.125)) and (10.126) that

0 ≤
m0∑

i=−m0−1

fγ (vi, vi+1) −
m0∑

i=−m0−1

fγ

(
y

(f γ )

i , y
(f γ )

i+1

)

≤
m0−1∑

i=−m0

fγ (zi, zi+1) −
m0−1∑

i=−m0

fγ

(
y

(f γ )

i , y
(f γ )

i+1

)
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+ fγ

(
y

(f γ )

−m0−1, z−m0

)+ fγ

(
zm0 , y

(f γ )

m0+1

)

− fγ

(
y

(f γ )

−m0−1, y
(f γ )
−m0

)− fγ

(
y

(f γ )
m0 , y

(f γ )

m0+1

)

≤
m0−1∑

i=−m0

fγ (zi, zi+1) −
m0−1∑

i=−m0

fγ

(
y

(f γ )

i , y
(f γ )

i+1

)+ Δ/8.

By these inequalities and (10.129),

m0∑

i=−m0−1

fγμ(zi, zi+1) −
m0∑

i=−m0−1

fγμ(ui, ui+1) > 7Δ + (−Δ/8) > 6Δ,

a contradiction. The contradiction we have reached proves Lemma 10.28. �

Completion of the proof of Proposition 10.11 By Theorem 10.8, there exists a set
F0 ⊂ Mk0, which is a countable intersection of open (in the weak topology) and
everywhere dense (in the strong topology) subsets of Mk . It is easy to see that for
each f ∈ Mk0, limγ→0+ fγ = f in the strong topology and that for each f ∈ Mk0
and each γ ∈ (0,1), limμ→0+ fγμ = fγ in the strong topology. Therefore the set

D := {
fγμ : f ∈ Mk0, γ,μ ∈ (0,1)

}
(10.131)

is an everywhere dense subset of Mk with the strong topology.
Let g ∈ D. By (10.131), (10.114), Propositions 10.5 and 10.20, and Lem-

ma 10.28, there exist x(g), x(g+) ∈ Mper (g,α) and y(g) ∈M+(g,α) such that

Mper (g,α) = {
Tnx

(g) : n = (n1, n2) ∈ Z2}, (10.132)

M+(g,α) = {
Tny

(g) : n = (n1, n2) ∈ Z2}, (10.133)

x(g) < y(g) < x(g+),
{
z ∈Mper (g,α) : x(g) < z < x(g+)

}= ∅. (10.134)

Let j ≥ 1 be an integer. By Proposition 10.22 and Lemma 10.27, there is an open
neighborhood U(g, j) of g in Mk with the weak topology such that the following
properties hold:

(a) For each f ∈ U(g, j) ∩ Mk0 and each x ∈ Mper (f,α), there exists m =
(m1,m2) ∈ Z2 such that |xi − (Tmx(g))i | < (2j)−1 for all i ∈ Z.

(b) For each f ∈ U(g, j) ∩ Mk0 and each y ∈ M+(f,α), there exists m =
(m1,m2) ∈ Z2 such that |(Tmy)i −x

(g)
i | < (2j)−1 for all i ∈ Z or |(Tmy)i −y

(g)
i | <

(2j)−1 for all i ∈ Z.
Define

Fα+ := F0 ∩
[ ∞⋂

n=1

⋃{
U(g, j) : g ∈ D, j ≥ n

}
]

.

It is not difficult to see that Fα+ is a countable intersection of open (in the weak
topology) and everywhere dense (in the strong topology) subsets of Mk .
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Let f ∈ Fα+ . For each integer n ≥ 1, there exist an integer sn ≥ n and gn ∈ D
such that

f ∈ U(gn, sn). (10.135)

Let x, y ∈ Mper (f,α). We will show that y is a translation of x. It follows
from the property (a) and (10.35) that for each integer n ≥ 1, there exists m(n) =
(m

(n)
1 ,m

(n)
2 ) ∈ Z2 such that

∣∣yi − (Tm(n)x)i
∣∣< s−1

n ≤ 1/n for all i ∈ Z. (10.136)

By the periodicity of y and x, we may assume without loss of generality that

m
(n)
1 ∈ [0, q] for all integers n ≥ 1. (10.137)

Then (10.136) implies that the sequence {m(n)
2 }∞n=1 is bounded. By extracting a sub-

sequence we may assume without loss of generality that

m(n) = m(1), n = 1,2, . . . .

Again (10.136) implies that for all integers n ≥ 1,
∣∣yi − (Tm(1)x)i

∣∣< 1/n, i ∈ Z.

Therefore y = Tm1x. Fix x̄ ∈ Mper (f,α). We have shown that

Mper (f,α) = {
Tnx̄ : n = (n1, n2) ∈ Z2}. (10.138)

Proposition 10.20 implies that there exists x̄+ such that

x̄+ ∈Mper (f,α),

x̄ < x̄+,
{
z ∈Mper (f,α) : x̄ < z < x̄+}= ∅.

(10.139)

By (10.139) and Proposition 10.5, there exists y(0) ∈ M+(f,α) such that

x̄ < y(0) < x̄+. (10.140)

Assume that y ∈ M+(f,α). We will show that y is a translation of y(0). By the
definition of M+(f,α), Proposition 10.20 and (10.138), we may assume without
loss of generality that

x̄ < y < x̄+. (10.141)

By (10.135) and property (b), for each integer n ≥ 1, there exist r(n) = (r
(n)
1 , r

(n)
2 ) ∈

Z2 and l(n) = (l
(n)
1 , l

(n)
2 ) ∈ Z2 such that

∣∣y(0)
i − (

Tr(n)y
(gn)

)
i

∣∣< (2sn)
−1 ≤ (2n)−1 for all i ∈ Z (10.142)
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or
∣∣y(0)

i − (
Tr(n)x

(gn)
)
i

∣∣< (2sn)
−1 ≤ (2n)−1 for all i ∈ Z; (10.143)

∣∣yi − (
Tl(n)y

(gn)
)
i

∣∣< (2sn)
−1 ≤ (2n)−1 for all i ∈ Z (10.144)

or
∣∣yi − (

Tl(n)x
(gn)

)
i

∣∣< (2sn)
−1 ≤ (2n)−1 for all i ∈ Z. (10.145)

Define

E = {
n ∈ Z : n ≥ 1 and (10.145) holds

}
. (10.146)

Assume that the set E is infinite. By the periodicity of x(gn), n ≥ 1, we may assume
without loss of generality that

l
(n)
1 ∈ [0, q], n ∈ E. (10.147)

Recall that |x(gn)

0 | ≤ 1, n = 1,2, . . . . Together with Proposition 10.2 this implies
that for each i ∈ Z,

∣∣x(gn)
i

∣∣≤ ∣∣x(gn)

0

∣∣+ |i||α| + 1, n = 1,2, . . . . (10.148)

It follows from (10.145), (10.146), (10.147) and (10.148) that the set {l(n)
2 : n ∈ E} is

bounded. Therefore the set {l(n) : n ∈ E} is bounded. There exists an infinite set F ⊂
E such that l(n1) = l(n2) for each n(1), n(2) ∈ F . When combined with (10.145) and
(10.146), this fact implies that |(Tly)i − x

(gn)
i | < (2n)−1 for all i ∈ Z and all n ∈ F

with some l ∈ Z2. This implies that y ∈ Mper (f,α), a contradiction. Therefore E

is finite. Since y is an arbitrary element of M+(f,α), the set

{
n ∈ Z : n ≥ 1 and (10.143) holds

}

is finite. We may assume without loss of generality that (10.142) and (10.144) hold
for any integer n ≥ 1. This fact implies that for each integer n ≥ 1, there exists
j (n) = (j

(n)
1 , j

(n)
2 ) ∈ Z2 such that

∣∣yi − (
Tj(n)y

(0)
)
i

∣∣< 1/n for all i ∈ Z. (10.149)

It follows from (10.149), (10.140), (10.141), (10.139) and the definition of
M+(f,α) that

lim
i→−∞ x̄i − y

(0)
i = 0, lim

i→−∞ x̄i − yi = 0,

lim
i→∞ x̄+

i − y
(0)
i = 0, lim

i→∞ x̄+
i − yi = 0.

(10.150)

By (10.149) and (10.150), for each integer n ≥ 1,
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lim
i→∞

[(
Tj(n) x̄

+)
i
− (

Tj(n)y
(0)
)
i

]= 0,

lim sup
i→∞

[∣∣x̄+
i − (

Tj(n) x̄
+)

i

∣∣]≤ lim
i→∞

∣∣x̄+
i − yi

∣∣+ lim sup
i→∞

[∣∣yi − (
Tj(n)y

(0)
)
i

∣∣]

+ lim
i→∞

[(
Tj(n)y

(0)
)
i
− (

Tj(n) x̄
+)

i

]

≤ 1/n.

Since x̄+ is periodic, we obtain that for any integer n ≥ 1,
∣∣x̄+

i − (
Tj(n) x̄

+)
i

∣∣≤ 1/n, i ∈ Z. (10.151)

By Corollary 10.16 and (10.138), there exists κ ∈ (0,1) such that for each
z(1), z(2) ∈ Mper (f,α) satisfying z(1) �= z(2),

∣∣z(1)
i − z

(2)
i

∣∣> 2κ, i ∈ Z. (10.152)

By (10.152) and (10.151), for any integer n > 2κ−1,

x̄+ = Tj(n) x̄
+, x̄+

i = x̄+
i−j

(n)
1

+ j
(n)
2 for all i ∈ Z

and that the rotation number α of x̄+ satisfies α = p/q = j
(n)
2 /j

(n)
1 . Since p/q is an

irreducible fraction, we obtain that for any integer n > 2κ−1, there is an integer an

such that

an(p, q) = j (n). (10.153)

We have three cases:

(1) there exists a strictly increasing sequence of natural numbers {nt }∞t=1 such that
limt→∞ ant = ∞.

(2) there exists a strictly increasing sequence of natural numbers {nt }∞t=1 such that
limt→∞ ant = −∞.

(3) there exists a strictly increasing sequence of natural numbers {nt }∞t=1 such that
ant = an1 for all integers t ≥ 1.

Assume that case (1) holds. Then by (10.153), (10.138) and (10.150), for any
integer i,

(
Tj(nt )y

(0)
)
i
= (

Tant (q,p)y
(0)

i
= y

(0)
i−ant q

+ ant p,

(
Tj(nt )y

(0)
)
i
− x̄i = y

(0)
i−ant q

+ ant p − (x̄i−ant q
+ ant p)

= y
(0)
i−ant q

− x̄i−ant q
→ 0 as t → ∞

and
(
Tj(nt )y

(0)
)
i
− x̄i → 0 as t → ∞ for all i ∈ Z.

This contradicts (10.149). Therefore case (1) does not hold.
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Analogously, we show that case (2) also does not hold. Indeed, assume that case
(2) holds. Then by (10.153), (10.138) and (10.150), for any integer i,

(
Tj(nt )y

(0)
)
i
= (

Tant (q,p)y
(0)
)
i
= y

(0)
i−ant q

+ ant p,

(
Tj(nt )y

(0)
)
i
− x̄+

i = y
(0)
i−ant q

+ ant p − (
x̄+
i−ant q

+ ant p
)

= y
(0)
i−ant q

− x̄+
i−ant q

→ 0 as t → ∞

and
(
Tj(nt )y

(0)
)
i
− x̄+

i → 0 as t → ∞ for all i ∈ Z.

This contradicts (10.149). Therefore case (2) indeed does not hold. Thus we have
shown that case (3) is valid. Then it follows from (10.149) and (10.153) that for all
i ∈ Z and any integer t ≥ 1,

1/n >
∣∣yi − (

Tant (q,p)y
(0)
)
i

∣∣= ∣∣yi − (
Tan1 (q,p)y

(0)
)
i

∣∣

and y = Tan1 (q,p)y
(0). Proposition 10.11 is proved. �
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76. Jachymski, J. R., & Jóźwik, I. (2004). Journal of Mathematical Analysis and Applications,

300, 147–159.
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