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Introduction

In these notes we determine finiteness properties of two classes of groups whose
most prominent representatives are the groups

SLn.FqŒt �/ and SLn.FqŒt; t�1�/,

the special linear groups over the ring of polynomials, respectively, Laurent
polynomials, over a field with q elements.

The finiteness properties we are interested in generalize the notions of being
finitely generated and of being finitely presented. A group G is generated by a subset
S if and only if the Cayley graph Cay.G; S/ is connected. And S is finite if and only
if the quotient GnCay.G; S/ is compact. That is, G is finitely generated if and only
if it admits a connected Cayley graph that has compact quotient modulo G.

Similarly, consider a set R of relations in G, that is, words in the letters S [ S�1

which describe the neutral element in G. The Cayley 2-complex Cay.G; S; R/ is
obtained from the Cayley graph by gluing in a 2-cell for every edge loop that
is labeled by an element of R. The Cayley 2-complex is 1-connected (that is,
connected and simply connected) if and only if hS j Ri is a presentation of G. And
it has a compact quotient modulo G if both S and R are finite. That is, G is finitely
presented, if and only if G admits a 1-connected, cocompact Cayley 2-complex.

Since G is described up to isomorphism by a presentation, this is how far the
classical interest goes. But from the topological point of view one can go on and ask
whether it is possible to glue in 3-cells along “identities” I in such a way that the
resulting complex Cay.G; S; R; I / is 2-connected and cocompact.

Wall [Wal65, Wal66] developed this topological point of view and introduced
the following notion: a group G is of type Fn if it acts freely and cocompactly
on a contractible CW-complex X such that the quotient GnX.n/ of the n-skeleton
modulo G is compact. It is not hard to see that, indeed, a group is of type F1 if and
only if it is finitely generated, and is of type F2 if and only if it is finitely presented.
We say that a group is of type F1 if it is of type Fn for all n. This property is strictly
weaker than that of being of type F , namely having a cocompact classifying space.
In fact, a group that has torsion elements cannot be of type F . But if it is virtually

xi



xii Introduction

of type F , that is, if it contains a finite index subgroup that is of type F , then it is
still of type F1.

In the decades following Wall’s articles some effort has been put, on the one
hand, in determining what finiteness properties certain interesting groups have, and
on the other hand, in better understanding what the properties Fn mean by producing
separating examples. We mention just some of the results not directly related to the
present notes. Statements about arithmetic and related groups will be mentioned
further below. It will be convenient to introduce the finiteness length of a group G

defined as

�.G/ WD supfn 2 N j G is of type Fng.

Finitely generated groups that are not finitely presented have been known since
Neumann’s article [Neu37]. The first group known to be of type F2 but not of type
F3 was constructed by Stallings [Sta63]. Stallings’s example is the case n D 3 of the
following construction due to Bieri: let Ln be the direct product of n free groups on
two generators and let Kn be the kernel of the homomorphism Ln ! Z that maps
each of the canonical generators to 1. In [Bie76] Bieri showed that �.Kn/ D n� 1.
Abels and Brown [AB87, Bro87] proved that the groups Gn of upper triangular n-
by-n matrices with extremal diagonal entries equal to 1 satisfy �.Gn.ZŒ 1

p
�// D n�1

for any prime p. Brown [Bro87] also proved that Thompson’s groups and some of
their generalizations are of type F1. For the group Bn of upper triangular matrices
and a ring OS of S -integers of a global function field (defined below), Bux [Bux04]
showed that �.Bn.OS // D jS j � 1.

The general pattern of proof to determine the finiteness properties of a group
G is the same in many cases: first one produces a contractible CW-complex X on
which G acts with “good” (often finite) stabilizers. This action will typically not be
cocompact. One then constructs a filtration .Xi /i of X by cocompact subcomplexes
Xi such that the inclusions Xi ,! Xj , i � j , preserve .n � 1/-connectedness for
some fixed n. Now the n-skeleton of X0 is the n-skeleton of a contractible space
on whose n-skeleton G acts cocompactly. This would show that G is of type Fn if
the stabilizers were trivial rather than just “good.” In this situation there is a famous
criterion due to Brown [Bro87] stating not only that “good” stabilizers are good
enough to conclude that G is of type Fn, but also that the group is not of type FnC1

provided the filtration does not preserve n-connectedness in an essential way.
In some cases an appropriate space X for G to act on has been known long

before people were interested in higher finiteness properties. Thus Raghunathan
[Rag68] showed that arithmetic subgroups of semisimple algebraic groups over
number fields, like SLn.Z/, are virtually of type F . To this end he considered the
action of the arithmetic group on the symmetric space X of its ambient Lie group
and constructed a Morse function on the quotient GnX with compact sublevel sets.
It is noteworthy that this proof fits into the general pattern described above. In fact,
the filtrations mentioned before are often, and in these notes in particular, obtained
by (a discrete version of) Morse theory. This reduces the problem to understanding
certain local data, the descending links.
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There are two classes of groups that are closely related to arithmetic groups:
mapping class groups Mod.Sg/ of closed surfaces and outer automorphism groups
Out.Fn/ of finitely generated free groups. The space for Mod.Sg/ to act on is Teich-
müller space, likewise a very classical object. A proof that Teichmüller space admits
an invariant contractible cocompact subspace, and therefore Mod.Sg/ is virtually of
type F , can be found in [Iva91]. The right space to consider for Out.Fn/ is outer
space [VC86]. Unlike the previous classical spaces, outer space was not known
before Culler and Vogtman constructed it to establish that Out.Fn/ is virtually of
type F . The cited proofs for mapping class groups and outer automorphism groups
of free groups are very similar in spirit to the one for arithmetic groups and fit again
into our general pattern. An alternative to exhibiting a highly connected cocompact
subspace of the original space is to construct a cocompact partial compactification
on which the group still acts properly discontinuously. This has been done by Borel
and Serre [BS73] for arithmetic groups and by Harvey [Har79] for mapping class
groups.

A number theoretic generalization of arithmetic groups is S -arithmetic groups.
To define them, we consider a number field k and its set of places T , that is, a
maximal set of inequivalent valuations. Let T1 denote the subset of Archimedean
places, such as the usual absolute value. For an element ˛ 2 k the condition that
v.˛/ � 1 for all non-Archimedean places v describes the ring of integers of k. If
instead one imposes this condition for all but a finite set S of non-Archimedean
places, one obtains the ring of S -integers OS . Accordingly, S -arithmetic groups are
matrix groups of S -integers.

The field k admits a completion kv with respect to every valuation v 2 T . An
S -arithmetic group G.OS/ is a discrete subgroup of the locally compact groupQ

v2T1[S G.kv/. For instance, the group SLn.ZŒ 1
2
�/ is a discrete subgroup of the

group SLn.R/ � SLn.Q2/.
If G is a reductive k-group, then G.OS/ acts properly discontinuously on the

product of the spaces Xv associated with the locally compact groups G.kv/, v 2
T1 [ S . For the Archimedean places, this is again a symmetric space. For the non-
Archimedean places, the naturally associated space is a Bruhat–Tits building, which
is a locally compact cell complex with a piecewise Euclidean metric.

The action of an S -arithmetic subgroup of a reductive algebraic group over a
number field described above has been used by Borel and Serre [BS76, Théo-
rème 6.2] to show that these groups are virtually of type F .

There is the notion of a global function field which parallels that of a number
field. A global function field k is a finite extension of a field of the form Fp.t/

where Fp is the finite field with p elements and t is transcendental over Fp. Global
function fields resemble number fields in the valuations that they admit. In particular
places and S -integers can be defined analogously, with the exception that there are
no Archimedean places. As in the number field case, if G is a reductive group over k,
then G.OS/ is naturally a discrete subgroup of

Q
v2S G.kv/ and therefore acts on the

associated space X D Q
v2S Xv, which is a building since there are no Archimedean

places. The dimension d.G; S/ WD dim X can be described algebraically as the sum
of the ranks of G over the local fields kv.
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Finiteness properties of S -arithmetic subgroups of reductive groups over global
function fields differ fundamentally from the analogous properties in the number
field case that we have seen above (always F1). This is apparent already from
the smallest example: Nagao [Nag59] showed that the groups SL2.FqŒt �/ are not
finitely generated. Over the years, various mathematicians investigated other S -
arithmetic subgroups of reductive groups. In fact, it suffices to study subgroups of
almost simple groups. Behr started by determining which of the groups are finitely
generated [Beh69] and which are finitely presented [Beh98].

Concerning higher finiteness properties, Stuhler [Stu80] concentrated on the
group SL2 and showed that SL2.OS/ has finiteness length jS j � 1. In a different
direction, Abels and Abramenko [Abr87, Abe91, AA93] concentrated on the rings
OS D FqŒt � (where S contains only one place) and showed that the groups
SLnC1.FqŒt �/ have finiteness length n � 1 provided q is large enough. This was
later extended by Abramenko [Abr96] to groups G.FqŒt �/ where G is a classical
group.

All of the above results show in their specific situation that the finiteness length is

�.G.OS// D d.G; S/� 1. (�)

This caused Brown [Bro89, p. 197] (and possibly others before him) to ask whether
this would always be the case. As evidence got stronger, the assertion that (�) holds
for any almost simple group G (with some obvious exceptions) became known as
the Rank Conjecture.

That the finiteness properties cannot be better than predicted, i.e. the inequality
�.G.OS/ � d.G; S/�1, was proven by Bux and Wortman [BW07]. An alternative
proof of this fact that applies to a more general situation has been given by Gandini
[Gan12] using work of Kropholler [Kro93,KM98]. Concerning negative statements
about finiteness properties, the most recent result is by Wortman [Wor13] who
showed that G.OS / has a finite-index subgroup � with Hd .�;Fp/ infinite (p the
characteristic of k).

Continuing with positive results, Bux and Wortman [BW11] showed that (�)
holds provided G has rank one over the field k. Finally the conjecture became the
Rank Theorem by joint work [BKW13] of Bux, Köhl and the author:

Rank Theorem. Let k be a global function field. Let G be a connected, non-
commutative, absolutely almost simple k-isotropic k-group. Let d WDP

s2S rankks G
be the sum over the local ranks at places s 2 S of G. Then G.OS/ is of type Fd�1

but not of type Fd .

At this point some words about the proof are in order. We know already that
G.OS/ acts on a building X with finite stabilizers. The strategy is of course
to produce a cocompact filtration .Xi /i of X and to investigate the relative
connectivity of the Xi . To produce such a filtration, Harder’s reduction theory
[Har67, Har68, Har69] is used. This is a deep and powerful theory which describes
(an invariant family of) horoballs that can be removed from the building to obtain a
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cocompact space. However it is relatively difficult to analyze the connectivity of the
subspaces determined by Harder’s reduction theory.

For that reason, the above partial positive results can be divided into two classes,
according to how they deal with this difficulty. Stuhler’s result [Stu80] and the
result by Bux and Wortman [BW11] restrict to the case where G has global rank
one. This allows one to choose the horoballs disjointly which makes analyzing the
connectivity a little easier.

On the other hand, Abels and Abramenko [Abr87, Abe91, AA93, Abr96] restrict
the ring OS to be FqŒt � (or FqŒt; t�1� as far as the general method is concerned).
In this situation, Harder’s reduction theory can be replaced by the theory of twin
buildings which is much more explicit. In these notes we will follow the second
strategy and prove those cases of the Rank Theorem that can be treated using twin
buildings instead of reduction theory. Our goal is to prove:

Main Theorem. Let G be a connected, non-commutative, absolutely almost simple
Fq-group of Fq-rank n � 1. Then G.FqŒt �/ is of type Fn�1 but not of type Fn and
G.FqŒt; t�1�/ is of type F2n�1 but not of type F2n.

The first part of the Main Theorem is proved in Chap. 2 as Theorem 2.73. The
second part is proved in Chap. 3 as Theorem 3.35.

The general setup is the same as in the Rank Theorem. The rings FqŒt � and
FqŒt; t�1� are rings of S -integers in Fq.t/ where S D fv1g contains one place
in the first case and S D fv0; v1g contains two places in the second case. So the
groups are S -arithmetic groups and in particular are discrete subgroups of locally
compact groups G.FqŒt �/ � G.Fq..t�1/// and G.FqŒt; t�1�/ � G.Fq..t�1/// �
G.Fq..t///. Since G is almost simple, there are irreducible Bruhat–Tits buildings
X1 and X0 associated to G.Fq..t�1/// and G.Fq..t///. The group G.FqŒt �/ acts
properly discontinuously on X1 and G.FqŒt; t�1�/ acts properly discontinuously
on X1 � X0. The action is not cocompact and we want to construct a cocompact
filtration which preserves high connectivity.

What is special in the situation of the Main Theorem is that the group
G.FqŒt; t�1�/ happens to also be a Kac–Moody group. In terms of spaces this means
that the two buildings X0 and X1 that the group acts on form a twin building. That
is, there is a codistance between X0 and X1 measuring in some sense the distance
between cells in the two buildings, and this codistance is preserved by G.FqŒt; t�1�/.
In fact one can define two kinds of codistance: one is a combinatorial codistance
between the cells of X0 and of X1 and the other is a metric codistance between the
points of X0 and of X1. The group G.FqŒt �/ is the stabilizer in G.FqŒt; t�1�/ of a
cell in X0.

In [Abr96] Abramenko used the combinatorial codistance to define a Morse
function on X1 and partially obtain the first case of the Main Theorem as described
above. To ensure that the filtration preserves connectedness properties, Abramenko
had to study certain combinatorially described subcomplexes of spherical buildings,
which arose as descending links.

In our proof we use the metric codistance in a similar way to Abramenko’s use
of the combinatorial codistance. The descending links that occur in our filtration
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are metrically described subcomplexes of spherical buildings. The connectivity
properties of these have already been established by Schulz [Sch13].

Since our proof makes heavy use of the piecewise Euclidean metric on the
buildings X0 and X1 it is restricted to affine Kac–Moody groups. Abramenko’s
combinatorial proof, on the other hand, making no reference to the metric structure
of the twin building, generalizes to hyperbolic Kac–Moody groups.

In that sense we profit from working in the intersection of two worlds: that
of S -arithmetic groups and that of Kac–Moody groups. On the other hand, it is
fair to say that after proving the Main Theorem all that is additionally needed to
prove the Rank Theorem is related to reduction theory or the theory of algebraic
groups (which is not little of course). For that reason understanding the proof of the
Main Theorem is a good way to assemble the tools for the Rank Theorem without
having to deal with reduction theory. Among those tools is the flattening of level
sets that is introduced in Sects. 2.4 and 2.5. Another technique is the use of the depth
function as a secondary height function in the flattened regions. It was introduced in
[BW11] and is generalized to reducible buildings in Sect. 2.7.

In Appendix A we show that the finiteness length of an almost simple S -
arithmetic group can only grow as S gets larger (a fact that was already used in
[Abr96]). Though this is clear in the presence of the Rank Theorem, it allows one to
deduce finiteness properties (though not the full finiteness length) of some groups
even without it. For example, the following is a consequence of our Main Theorem:

Corollary. Let G be a connected, non-commutative, absolutely almost simple Fq-
group of Fq-rank n � 1. Let S be a finite set of places of Fq.t/ and let G WD G.OS/.
If S contains v0 or v1, then G is of type Fn�1. If S contains v0 and v1, then G is
of type F2n�1.

These notes are based on the author’s Ph.D. thesis [Wit11].



Chapter 1
Basic Definitions and Properties

In this first chapter we introduce notions and statements that will be needed later on
and that are more or less generally known. The focus is on developing the necessary
ideas in their natural context, proofs are generally omitted. For the reader who is
interested in more details, an effort has been made to give plenty of references.
Where less appropriate references are known to the author, the exposition is more
detailed.

An exception to this is Sect. 1.7 on buildings: there are many excellent books on
the topic but our point of view is none of the classical ones so we give a crash course
developing our terminology along the way. For this reason even experts may want
to skim through Sect. 1.7. In Sect. 1.1 on metric spaces some definitions are slightly
modified and non-standard notation is introduced. Apart from that the reader who
feels familiar with some of the topics is encouraged to skip them and refer back to
them as needed.

1.1 Metric Spaces

In this section we introduce what we need to know about metric spaces, in particular
about those which have bounded curvature in the sense of the CAT(�) inequality. We
also define cell complexes in a way that will be convenient later. The canonical and
almost exhaustive reference for the topics mentioned here is [BH99] from which
most of the definitions are taken. Other books include [Bal95] and [Pap05].

1.1.1 Geodesics

Let X be a metric space. A geodesic in X is an isometric embedding � W Œa; b�! X

from a compact real interval into X ; its image is a geodesic segment. The geodesic
issues at �.a/ and joins �.a/ to �.b/. A geodesic ray is an isometric embedding

S. Witzel, Finiteness Properties of Arithmetic Groups Acting on Twin Buildings,
Lecture Notes in Mathematics 2109, DOI 10.1007/978-3-319-06477-2__1,
© Springer International Publishing Switzerland 2014
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2 1 Basic Definitions and Properties

�W Œa;1/ ! X and is likewise said to issue at �.a/. Sometimes the image of � is
also called a geodesic ray.

A metric space is said to be geodesic if for any two of its points there is a geodesic
that joins them. It is (D-)uniquely geodesic if for any two points (of distance < D)
there is a unique geodesic that joins them.

If x; y are two points of distance < D in a D-uniquely geodesic space then we
write Œx; y� for the geodesic segment that joins x to y.

A subset A of a geodesic metric space is (D-)convex if for any two of its points
(of distance < D) there is a geodesic that joins them and the image of every such
geodesic is contained in A.

If � W Œ0; a� ! X and � 0W Œ0; a0� ! X are two geodesics that issue at the
same point, one can define the angle †�.0/.�; � 0/ between them (see [BH99,
Definition 1.12]). If X is hyperbolic or Euclidean space or a sphere, this is the
usual angle. If X is D-uniquely geodesic and x; y; z 2 X are three points with
d.x; y/; d.x; z/ < D, we write †x.y; z/ to denote the angle between the unique
geodesics from x to y and from x to z.

1.1.2 Products and Joins

The direct product
Qn

iD1 D X1 � � � � � Xn of a finite number of metric spaces
.Xi ; di /1�i�n is the set-theoretic direct product equipped with the metric d given by

d
�
.x1; : : : ; xn/; .y1; : : : ; yn/

� D �
d1.x1; y1/2 C � � � C dn.xn; yn/2

�1=2
.

The spherical join X1�X2 of two metric spaces .X1; d1/ and .X2; d2/ of diameter
at most � is defined as follows: as a set, it is the quotient .Œ0; �=2� �X1 � X2/= 	
where .	; x1; x2/ 	 .	 0; x01; x02/ if either 	 D 	 0 D 0 and x1 D x01, or 	 D 	 0 D �=2

and x2 D x02, or 	 D 	 0 … f0; �=2g and x1 D x01 and x2 D x02. The class of
.	; x1; x2/ is denoted cos 	x1Csin 	x2 and, in particular, by x1 or x2 if 	 is 0 or �=2.

The metric d on X1 � X2 is defined by the condition that for two points x D
cos 	x1 C sin 	x2 and x0 D cos 	 0x1 C sin 	 0x2 the distance d.x; x0/ be at most �

and that

cos d.x; x0/ D cos 	 cos 	 0 cos d1.x1; x01/C sin 	 sin 	 0 cos d2.x2; x02/. (1.1)

The maps Xi ! X1 � X2; xi 7! xi are isometric embeddings and so we usually
regard X1 and X2 as subspaces of X1 � X2. For three metric spaces X1, X2 and X3

of diameter at most � , the joins .X1 � X2/ � X3 and X1 � .X2 � X3/ are naturally
isometric so there is a spherical join

¨n
iD1 Xi D X1 � � � � �Xn for any finite number

n of metric spaces Xi of diameter at most � .
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1.1.3 Model Spaces

We introduce the model spaces for positive, zero, and negative curvature, see
[BH99, Chap. I.2] or [Rat94] for details. First let Rn be equipped with the standard
Euclidean scalar product h� j �i. The set Rn together with the metric induced by
h� j �i is the n-dimensional Euclidean space and as usual denoted by E

n.
The n-dimensional sphere Sn is the unit sphere inRnC1 equipped with the angular

metric. That is, the metric dSn is given by cos dSn.v; w/ D hv j wi.
Now let .� j �/ be the Lorentzian scalar product on R

nC1 that for the standard
basis vectors .ei /1�i�nC1 takes the values

.ei j ej / D
8
<

:

0 if i ¤ j

1 if 1 � i D j � n

�1 if i D j D nC 1.

The sphere of radius i with respect to this scalar product, i.e., the set

fv 2 R
nC1 j .v j v/ D �1g,

has two components. The component consisting of vectors with positive last
component is denoted by H

n and equipped with the metric dHn which is defined
by cosh dHn.v; w/ D .v j w/. The metric space H

n is the n-dimensional hyperbolic
space.

The n-sphere, Euclidean n-space, and hyperbolic n-space are the model spaces
M n

� for curvature � D 1, 0 and �1 respectively. We obtain model spaces for all
other curvatures by scaling the metrics of spherical and hyperbolic space: for � > 0

the model space M n
� is Sn equipped with the metric d� WD 1=

p
�dSn ; and for � < 0

the model space M n
� is Hn equipped with the metric d� WD 1=

p��dHn . For every
� we let D� denote the diameter of M n

� (which is independent of the dimension).
Concretely this means that D� D 1 for � � 0 and D� D �=

p
� for � > 0. Each

model space M n
� is geodesic and D�-uniquely geodesic.

By a hyperplane in M n
� we mean an isometrically embedded M n�1

� . The
complement of a hyperplane has two connected components and we call the closure
of any one of them a halfspace (in case � > 0 also hemisphere). A subspace of
a model space is an intersection of hyperplanes and is itself isometric to a model
space (or empty).

1.1.4 CAT(�)-Spaces

A CAT(�)-space is a metric space that is curved at most as much as M 2
� . The

curvature is measured by comparing triangles to those in a model space. To make
this precise, we define a geodesic triangle to be the union of three geodesic segments
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Œp; q�, Œq; r�, and Œr; p� (which need not be the unique geodesics joining these
points), called its edges, and we call p, q, and r its vertices. If 
 is the triangle just
described, a comparison triangle N
 for 
 is a geodesic triangle Œ Np; Nq�[Œ Nq; Nr�[ŒNr ; Np�

in a model space M 2
� such that d.p; q/ D d. Np; Nq/, d.q; r/ D d. Nq; Nr/, d.r; p/ D

d.Nr; Np/. If x is a point of 
, say x 2 Œp; q� then its comparison point Nx 2 Œ Np; Nq� is
characterized by d.p; x/ D d. Np; Nx/ so that also d.q; x/ D d. Nq; Nx/.

Let � be a real number. A geodesic triangle 
 is said to satisfy the CAT(�)
inequality if

d.x; y/ � d. Nx; Ny/

for any two points x; y 2 
 and their comparison points Nx; Ny 2 N
 in any
comparison triangle N
 � M� . The space X is called a CAT(�) space if every
triangle of perimeter < 2D� satisfies the CAT(�) inequality (note that the condition
on the perimeter is void if � � 0).

Lemma 1.1. Let X be a CAT(�)-space and let C be a D� -convex subset. If x 2 X

satisfies d.x; C / < D�=2 then there is a unique point prC x in C that is closest to
x. Moreover, the angle †prC x.x; y/ is at least �=2 for every y 2 C .

Proof. The proof is similar to that of Proposition II.2.4(1) in [BH99], see also
Exercise II.2.6(1). ut

1.1.5 Polyhedral Complexes

An intersection of a finite (possibly zero) number of halfspaces in some M n
� is

called an M�-polyhedron and if it has diameter < D� it is called an M�-polytope. If
HC is a halfspace that contains an M�-polyhedron � then the intersection � of the
bounding hyperplane H with � is a face of � and � is a coface of � . By definition
� is a face (and coface) of itself. The dimension dim � of � is the dimension of the
minimal subspace that contains it. The (relative) interior int � is the interior as a
subset of that space, it consists of the points of � that are not points of a proper face.
The codimension of � in � is dim � � dim � . A face of codimension 1 is a facet.

An M�-polyhedral complex consists of M�-polyhedra that are glued together
along their faces. Formally, let .�˛/˛ be a family of M�-polyhedra. Let Y D `

˛ �˛

be their disjoint union and pWY ! X be the quotient map modulo an equivalence
relation. Then X is an M�-polyhedral complex if

(PC1) for every ˛ the map p restricted to �˛ is injective, and
(PC2) for any two indices ˛; ˇ, if the images of the interiors of �˛ and of �ˇ under

p meet then they coincide and the map pj�1
int �˛
ı pjint �ˇ

is an isometry.

An M�-polyhedral complex is equipped with a quotient pseudo-metric. Bridson
[Bri91] has shown that this pseudo-metric is a metric if only finitely many shapes
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of polyhedra occur, see [BH99, Sect. I.7] for details. In the complexes we consider,
this will always be the case (in fact there will mostly be just one shape per complex).

When we speak of an M�-polyhedral complex, we always mean the metric space
together with the way it was constructed. This allows us to call the image of a face
� of some �˛ under p a cell (an i -cell if � is i -dimensional), and to call a union of
cells a subcomplex. We write � � � 0 to express that � is a face of � 0 and � Œ � 0 if
it is a proper face. The (relative) interior of a cell p.�˛/ is the image under p of the
relative interior of �˛. The carrier of a point x of X is the unique minimal cell that
contains it; equivalently it is the unique cell that contains x in its relative interior.

By a morphism of M�-polyhedral complexes we mean a map that isometrically
takes cells onto cells. Consequently, an isomorphism is an isometry that preserves
the cell structure.

Remark 1.2. Our definition of M�-polyhedral complexes differs from [BH99,
Definition I.7.37] in two points: we allow the cells to be arbitrary polyhedra while in
[BH99] they are required to be polytopes. Since any polyhedron can be decomposed
into polytopes, this does not affect the class of metric spaces that the definition
describes, but only the class of possible cell structures on them. For example, a
sphere composed of two hemispheres is included in our definition.

On the other hand our definition requires the gluing maps to be injective on cells
which the definition in [BH99] does not. Again this does not restrict the spaces one
obtains: if an M�-polyhedral complex does not satisfy this condition, one can pass to
an appropriate subdivision which does. The main reasons to make this assumption
here are, that it makes the complexes easier to visualize because the cells are actual
polyhedra, and that the complexes we will be interested in satisfy it.

If we do not want to emphasize the model space, we just speak of a polyhedron,
a polytope, or a polyhedral complex respectively.

If X is a polyhedral complex and A is a subset, the subcomplex supported by
A is the subcomplex consisting of all cells that are contained in A. If �1 and �2 are
cells of X that are contained in a common coface then the minimal cell that contains
them is denoted �1 _ �2 and called the join of �1 and �2.

By a simplicial complex, we mean a polyhedral complex whose cells are
simplices and whose face lattice is that of an abstract simplicial complex (see
[Spa66, Chap. 3] for an introduction to simplicial complexes). That is, each of its
cells is a simplex (no two faces of which are identified by (PC1)), and if two
simplices have the same proper faces then they coincide.

Note that if X1 and X2 are two M1-simplicial complexes then the simplicial join
of X1 and X2 (whose cells are pairs of cells of X1 and of X2) can be naturally
identified with the spherical join.

The flag complex of a poset .P;�/ is an abstract simplicial complex that has
P as its set of vertices and whose simplices are finite flags, that is, finite totally
ordered subsets of P . A simplicial complex is a flag complex if the corresponding
abstract simplicial complex is the flag complex of some poset. This is equivalent to
satisfying the “no triangles condition”: if v1; : : : ; vn are vertices any two of which
are joined by an edge then there is a simplex that has v1; : : : ; vn as vertices.
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The barycentric subdivision VX of a polyhedral complex X is obtained by
replacing each cell by its barycentric subdivision. This is always a flag complex,
namely the flag complex of the poset of non-empty cells of X .

If X is a simplicial complex and V is a set of vertices, the full subcomplex of V

is the subcomplex of simplices in X all of whose vertices lie in V . A subcomplex of
X is full if it is the full subcomplex of a set of vertices, i.e., if a simplex is contained
in it whenever all of its vertices are.

1.1.6 Links

Let X be a polyhedral complex and let x 2 X be a point. The local structure of X

around x is captured by the link of x which we are about to define, see also [BH99,
Definitions I.7.38, II.3.18]. On the set of geodesics that issue at x we consider the
equivalence relation 	 where � 	 � 0 if and only if � and � 0 coincide on an initial
interval; formally this means that if � is a map Œa; b�! X and � 0 is a map Œa0; b0�!
X then there is an " > 0 such that �.aC t/ D �.a0 C t/ for 0 � t < ".

The equivalence classes are called directions. The direction defined by a geodesic
� that issues at x is denoted by �x; we will also use this notation for geodesic
segments writing for example Œx; y�x .

The angle †x.�x; � 0x/ WD †x.�; � 0/ between two directions at a point x is well-
defined. Moreover, since X is a polyhedral complex, two directions include a zero
angle only if they coincide. Thus the angle defines a metric on the set of all directions
issuing at a given point x and this metric space is called the space of directions or
(geometric) link of x and denoted lkX x, or just lk x if the space is clear from the
context.

The polyhedral cell structure on X induces a polyhedral cell structure on lk x.
Namely, if � is a cell that contains x, we let � � x denote the subset of lk x of all
directions that point into � , i.e., of directions �x where � is a geodesic whose image
is contained in � . Then lk X can be regarded as an M1-polyhedral complex whose
cells are � � x with � 3 x.

If � is a cell of X then the links of all interior points of � are canonically
isometric. The (geometric) link of � , denoted lk � is the subset of any of these of
directions that are perpendicular to � . It is an M1-polyhedral complex whose cells
are the subsets � � � of directions that point into a coface � of � .

If x 2 X is a point and � is its carrier then the link of x decomposes as

lk x D .� � x/ � lk � (1.2)

where � � x can be identified with the boundary @� in an obvious way and, in
particular, is a sphere of dimension .dim � � 1/.

From a combinatorial point of view, the map � 7! � � � establishes a
bijective correspondence between the poset of (proper) cofaces of � and the poset
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of (non-empty) cells of lk � . The poset of cofaces of � is therefore called the
combinatorial link of � .

If X is a simplicial complex and � � � � X are simplices, one sometimes
writes � n � to denote the complement of � in � (this alludes to abstract simplicial
complexes). Using this notation, there is a bijective correspondence � 7! � n �

between the combinatorial link and the subcomplex of X of simplices � 0 which are
such that � \ � 0 D ; but � _ � 0 exists.

1.1.7 Visual Boundary

Let .X; d/ be a CAT(0)-space. A geodesic ray � in X defines a Busemann function
ˇ� by

ˇ�.x/ D lim
t!1.t � d.x; �.t///

(note the reversed sign compared to [BH99, Definition II.8.17]). Two geodesic rays
�; �0 in X are asymptotic if they have bounded distance, i.e., if there is a bound
R > 0 such that d.�.t/; �0.t// < R for every t � 0. If two rays define the same
Busemann function then they are asymptotic. Conversely the Busemann functions
ˇ�, ˇ�0 defined by two asymptotic rays � and �0 may differ by an additive constant.
A point at infinity is the class �1 of rays asymptotic to a given ray � or, equivalently,
the class ˇ1 of Busemann functions that differ from a given Busemann function ˇ

by an additive constant. The visual boundary X1 consists of all points at infinity. It
becomes a CAT(1) space via the angular metric

dX1.�1; �01/ D †.�; �0/

(see [BH99, Chap. II.9]).
We say that a geodesic ray � tends to �1, or that �1 is the limit point of �, and

that a Busemann function ˇ is centered at ˇ1.

Proposition 1.3 ([BH99, Proposition II.8.12]). Let X be a CAT(0)-space. If x is
a point and 
 is a point at infinity of X then there is a unique geodesic ray � that
issues at x and tends to 
.

In the situation of the proposition we denote the image of � by Œx; 
/.

1.2 Spherical Geometry

In this section we discuss some spherical geometry, that is, geometry of spheres Sn

of curvature 1. We start with configurations that are essentially two-dimensional and
then extend them to higher dimensions.
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First we recall the Spherical Law of Cosines:

Proposition 1.4 ([BH99, I.2.2]). Let a, b and c be points on a sphere, let Œc; a�

and Œc; b� be geodesic segments that join c to a respectively b (which may not be
uniquely determined if a or b has distance � to c), and let � be the angle in c

between these segments. Then

cos d.a; b/ D cos d.a; c/ cos d.b; c/C sin d.a; c/ sin d.b; c/ cos � .

1.2.1 Spherical Triangles

For us a spherical triangle is given by three points a, b and c any two of which have
distance < � and that are not collinear (i.e., do not lie in a common 1-sphere). Note
that this implies in particular that all angles and all edge lengths have to be positive.
The spherical triangle itself is the convex hull of a, b and c.

Observation 1.5. Let a, b and c be points on a sphere any two of which have
distance < � . Write the respective angles as ˛ D †a.b; c/, ˇ D †b.a; c/ and
� D †c.a; b/.

(i) If d.a; b/ D �=2 and d.b; c/; d.a; c/ � �=2 then � � �=2.
(ii) If d.a; b/ D �=2 and ˇ D �=2 then d.a; c/ D � D �=2.

If d.a; b/ D �=2 and ˇ < �=2 then d.a; c/ < �=2.
(iii) If d.a; b/ D d.a; c/ D �=2 and b ¤ c then ˇ D � D �=2.
(iv) If ˇ D � D �=2 and b ¤ c then d.a; b/ D d.a; c/ D �=2.

Proof. All properties can be deduced from the Spherical Law of Cosines. But they
can also easily be verified geometrically. We illustrate this for the fourth statement.
Put b and c on the equator of a 2-sphere. The two great circles that meet the equator
perpendicularly in b and c only meet at the poles, which have distance �=2 from
the equator. ut

The following statements are less obvious:

Proposition 1.6. If in a spherical triangle the angles are at most �=2 then the edges
have length at most �=2.

If in addition two of the edges have length < �=2 then so has the third.

Proof. Let a, b and c be the vertices of the triangle and set x WD cos d.b; c/, y WD
cos d.a; c/ and z WD cos d.a; b/. Then the Spherical Law of Cosines implies that

z � xy; x � yz; and y � xz.

Substituting y in the first inequality gives z � x2z, i.e., z.1 � x2/ � 0. Since x ¤ 1

by our non-degeneracy assumption for spherical triangles, this implies that z � 0.
Permuting the points yields the statement for the other edges.
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For the second statement assume that there is an edge, say Œa; b�, that has length
�=2. Then cos d.a; b/ D 0. By what we have just seen, all terms in the Spherical
Law of Cosines are non-negative so one factor in each summand has to be zero. This
implies that at least one of d.a; c/ and d.b; c/ is �=2. ut

1.2.2 Decomposing Spherical Simplices

Now we want to study higher dimensional simplices. We first study simplicial cones
in Euclidean space.

Let V be a Euclidean vector space of dimension nC 1 and let HC0 ; : : : ; HCn be
linear halfspaces with bounding hyperplanes H0; : : : ; Hn. We assume that the Hi

are in general position, i.e., that any k of them meet in a subspace of dimension
nC 1� k. For 0 � i � n we set Li WD T

j¤i Hj and LCi WD Li \HCi and call the

latter a bounding ray. In this situation S WD T
i HCi is a simplicial cone that is the

convex hull of the bounding rays.
For every i let vi be the unit vector in LCi . We define the angle between LCi

and LCj to be the angle between vi and vj . Similarly, for two halfspaces HCi and

HCj let N be the orthogonal complement of Hi \Hj . The angle between HCi and

HCj is defined to be the angle between HCi \N and HCj \N . We are particularly
interested in when two halfspaces or bounding rays are perpendicular, i.e., include
an angle of �=2.

So assume that there are index sets I and J that partition f0; : : : ; ng such that
HCi is perpendicular to HCj for every i 2 I and j 2 J . Then V decomposes as an
orthogonal sum

V D VI ˚ VJ with VI WD
\

i2I

Hi , VJ WD
\

j2J

Hj

where the vj ; j 2 J form a basis for VI and vice versa. In particular, LCi is
perpendicular to LCj for i 2 I and j 2 J .

By duality we see that conversely if I and J partition f0; : : : ; ng so that LCi is
perpendicular to LCj for every i 2 I and j 2 J then also HCi is perpendicular to

every HCj for i 2 I and j 2 J .
This shows:

Observation 1.7. Let S be a simplicial cone in E
nC1 and let S1, S2 be faces of S

that span complementary subspaces of V . The following are equivalent:

(i) S1 and S2 span orthogonal subspaces.
(ii) every bounding ray of S1 is perpendicular to every bounding ray of S2.

(iii) every facet of S that contains S1 is perpendicular to every facet of S that
contains S2. ut
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Now we translate the above to spherical geometry. We start with the angles. The
definition is perfectly analogous to that made above in Euclidean space. Passage to
the link plays the role of intersecting with the orthogonal complement.

Let � be a spherical polyhedron. Let �1 and �2 be faces of � of same dimension
k such that � WD �1 \ �2 has codimension 1 in both. Then �1 and �2 span a sphere
S of dimension k C 1. We look at the 1-sphere lkS � . The subset lk�\S � is a one-
dimensional polyhedron with vertices �1 � � and �2 � � . The diameter of this
polyhedron is called the angle †.�1; �2/ between �1 and �2.

Remark 1.8. Note that, in particular, if �1 and �2 are two vertices (faces of
dimension 0 that meet in their face ; of dimension �1) then the angle between
them is just the length of the edge that joins them, i.e., their distance.

A spherical simplex of dimension n is a spherical polytope of dimension n that is
the intersection of nC1 hemispheres (and of the n-dimensional sphere that it spans).
Faces of spherical simplices are again spherical simplices. Spherical simplices of
dimension 2 are spherical triangles. If � is a face of a simplex � , its complement (in
�) is the face � 0 whose vertices are precisely the vertices that are not vertices of � .
In that case � and � 0 are also said to be complementary faces of � .

We can now restate Observation 1.7 as

Observation 1.9. Let � be a spherical simplex and let �1, �2 be two complementary
faces of � . These are equivalent:

(i) � D �1 � �2.
(ii) d.�1; �2/ D �=2.

(iii) d.v; w/ D �=2 for any two vertices v of �1 and w of �2.
(iv) †.�1; �2/ D �=2 for any two facets �1 and �2 that contain �1 respectively �2.

ut
Combinatorially this can be expressed as follows: Let vt � denote the set of

vertices and ft � denote the set of facets of a spherical simplex � . On vt � we define
the relation 	v of having distance ¤ �=2 and on ft � the relation 	f of having
angle¤ �=2. Both relations are obviously reflexive and symmetric. There is a map
vt � ! ft � that takes a vertex to its complement. It is not generally clear how this
map behaves with respect to the relations but Observation 1.9 states that it preserves
their transitive hulls. More precisely:

Observation 1.10. Let � be a spherical simplex and let 	v be the relation on vt �

and 	f the relation on ft � defined above. Let 
v and 
f be their transitive hulls.
If v1 and v2 are vertices with complements �1 and �2 then

v1 
v v2 if and only if �1 
f �2. ut

The reason why we dwell on this is that if � is the fundamental simplex of a
finite reflection group, the relation 	f will give rise to the Coxeter diagram while
the relation 	v will be seen to be an equivalence relation. We just chose to present
the statements in greater generality.
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[x, p
1 ]p1

[p2,
p1]p1 σ1 = p1

x

σ2

p2

lk σ1

lk σ2

Fig. 1.1 The picture
illustrates the identification of
links. The cell �2 is an edge
and �1 is one of its vertices.
The link of the vertex
�2 � �1 D Œp2; p1�p1 is
identified with the link of �2.
The direction from p2 toward
x, which is an element of
lk �2, is identified with the
direction from Œp2; p1�p1

toward Œx; p1�p1

1.2.3 Spherical Polytopes with Non-obtuse Angles

Let � be a spherical polytope. We have defined angles †.�1; �2/ for any two faces
�1 and �2 of � that have same dimension and meet in a common codimension-1
face. In what follows, we are interested in polytopes where all of these angles are
at most �=2. We say that such a polytope has non-obtuse angles. Our first aim is to
show that it suffices to restrict the angles between facets, all other angles will then
automatically be non-obtuse. Second we observe that if � has non-obtuse angles
then the relation 	v on the vertices of having distance ¤ �=2 is an equivalence
relation.

First however, we need to note another phenomenon:

Observation 1.11. Let � be a polyhedron and let �1 � �2 be faces. Then there is a
canonical isometry

lk �2 ! lk �2 � �1

that takes lk� �2 to lk���1 �2 � �1. ut
To describe this isometry let p2 be an interior point of �2 (that has distance < �=2

to �1 and) that projects onto an interior point p1 of �1 (see Fig. 1.1). If � is a point of
lk �2 then there is a geodesic segment Œp2; x� representing it. For every y 2 Œp2; x�

the geodesic segment Œp1; y� represents a direction at p1 that is a point of lk �1. All
these points form a segment in lk �1 that defines a point � of lk �2��1. The isometry
takes � to �. Formally (using the notation from Sect. 1.1) this can be written as:

Œp2; x�p2 7! ŒŒp1; p2�p1 ; Œp1; x�p1 �Œp1;p2�p1
.
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Proposition 1.12. If a spherical polytope � has the property that the angle between
any two facets is at most �=2 then it has non-obtuse angles.

Proof. Proceeding by induction, it suffices to show that if �1 and �2 are faces of
codimension 2 in � that meet in a face � WD �1 \ �2 of codimension 3 then
†.�1; �2/ � �=2. In that situation lk� � is a spherical polygon in the 2-sphere lk � .
As described above lk �i can be identified with lk �i �� in such a way that directions
into � are identified with each other.

Under this identification angles between facets of � that contain � are identified
with the angles between edges of the polygon described above. Since the sum of
angles of a spherical n-gon is > .n � 2/� but the sum of angles of our polygon is
� n.�=2/ we see that n < 4 hence the polygon is a triangle.

Since the angle †.�1; �2/ is the distance of the vertices �1 � � and �2 � � , the
statement follows from Proposition 1.6. ut

Along the way we have seen that if � has non-obtuse angles then it is simple
(links of vertices are simplices). In fact more is true:

Lemma 1.13 ([Dav08, Lemma 6.3.3]). A spherical polytope that has non-obtuse
angles is a simplex.

Note that if � has non-obtuse angles then any two vertices have distance � �=2,
cf. Remark 1.8.

Observation 1.14. If � is a spherical simplex that has non-obtuse angles then the
relation 	v on the vertices of having distance < �=2 is an equivalence relation.

Proof. Let a, b and c be vertices of � . We have to show that if d.a; c/ < �=2 and
d.c; b/ < �=2 then d.a; b/ < �=2. Consider the triangle spanned by a, b and c.
Since � has non-obtuse angles, the angles in this triangle are at most �=2. Now the
statement is the second statement of Proposition 1.6. ut

This suggests to call a spherical simplex with non-obtuse angles irreducible if it
has diameter < �=2. Then Observations 1.14 and 1.9 show that such a simplex is
irreducible if and only if it can not be decomposed as the join of two proper faces.

The following is easy to see and allows us to include polyhedra in our discussion:

Observation 1.15. A spherical polyhedron � decomposes as a join S � � of its
maximal subsphere S and a polytope � . If the angle between any two facets of � is
non-obtuse, the same is true of � . ut

To sum up we have shown the following:

Theorem 1.16. Let � be a spherical polyhedron that has the property that any two
of its facets include an angle of at most �=2. Then � D S�� where S is the maximal
sphere contained in � and � is a spherical simplex that has non-obtuse angles.

Moreover, � decomposes as a join �1 � � � � � �k of irreducible faces and two
vertices of � lie in the same join factor if and only if they have distance < �=2.
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1.3 Finiteness Properties

In this section we collect the main facts about the topological finiteness properties
Fn. Topological finiteness properties of groups were introduced by Wall [Wal65,
Wal66]. A good reference on the topic is [Geo08], where also other properties such
as finite geometric dimension are introduced. At the end of the section we briefly
describe the relation between topological and homological finiteness properties. A
good reference for homological finiteness properties is [Bie76]. The standard book
on homology of groups is [Bro82].

Let Dn denote the closed unit-ball in R
n as a topological space and let Sn�1 �

Dn denote the unit sphere also regarded as a topological space. In particular, S�1 D
;. An n-cell is a space homeomorphic to Dn and its boundary is the subspace that
is identified with Sn�1.

Recall that a CW-complex X is a topological space that is obtained from
the empty set by inductively gluing in cells of increasing dimension along their
boundary, see [Hat01, Chap. 0] for a proper definition. Under the gluing process,
the cells need not be embedded in X but nonetheless we call their images cells.
A subcomplex of X is the union of some of its cells. The union of all cells up to
dimension n is called the n-skeleton of X and denoted X.n/.

When we speak of a CW-complex we always mean the topological space together
with its decomposition into cells. Furthermore, by an action of a group on a CW-
complex we mean an action that preserves the cell structure.

A topological space X is n-connected if for �1 � i � n every map Si ! X

extends to a map DiC1 ! X . In other words a space is n-connected if it is non-
empty and �i .X/ is trivial for 0 � i � n. We say that X is n-aspherical if it satisfies
the same condition except possibly for i D 1. A CW-complex is n-spherical if it is
n-dimensional and .n � 1/-connected and it is properly n-spherical if in addition it
is not n-connected (equivalently if it is not contractible).

A connected CW-complex X is called a classifying space for a group G or
a K.G; 1/ complex if the fundamental group of X is (isomorphic to) G and all
higher homotopy groups are trivial (cf. [Bre93, Sects. VII.11, 12], [Geo08, Chap. 7],
[Hat01, Sect. 1.B]). The latter condition means that every map Sn ! X extends to
a map DnC1 ! X for n � 2. Yet another way to formulate it is to require the
universal cover QX to be contractible. Classifying spaces exist for every group and
are unique up to homotopy equivalence. If X is a classifying space for G we can
identify G with the fundamental group of X and obtain an action of G on QX (which
can be made to preserve the cell structure); we may sometimes do this implicitly.

We can now define the topological finiteness properties that we are interested in.
A group G is of type Fn if there is a K.G; 1/ complex that has finite n-skeleton (here
“finite” means “having a finite number of cells”, topologically this is equivalent to
the complex being compact). A group that is of type Fn for every n 2 N is said to
be of type F1.
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There are a few obvious reformulations of this definition:

Lemma 1.17. Let G be a group and let n � 2. These are equivalent:

(i) G is of type Fn.
(ii) G acts freely on a contractible CW-complex X2 that has finite n-skeleton

modulo the action of G.
(iii) there is a finite, .n � 1/-aspherical CW-complex X3 with fundamental group

G.
(iv) G acts freely on an .n�1/-connected CW-complex X4 that is finite modulo the

action of G.

Proof. Assume that G is of type Fn and let X1 be a K.G; 1/ complex with finite
n-skeleton.

We may take X2 to be the universal cover of X1. Indeed QX1 is contractible and G

acts on it freely by deck transformations. Since QX1=G D X1 we see that it also has
finite n-skeleton modulo the action of G.

The space X3 may be taken to be the n-skeleton of X1: By assumption X
.n/
1

is finite and has fundamental group G. Since the .i � 1/th homotopy group only
depends on the i -skeleton, we see that it is also .n � 1/-aspherical.

Finally the space X4 may be taken to be the n-skeleton of the universal cover of
X1 as one sees by combining the arguments above.

Conversely if X2 is given, one obtains a K.G; 1/ complex with finite n-skeleton
by taking the quotient modulo the action of G.

If X3 is given, one may kill the higher homotopy groups by gluing in cells from
dimension n C 1 on. The homotopy groups up to �n�1.X3/ are unaffected by this
because they only depend on the n-skeleton.

If X4 is given, one may G-equivariantly glue in cells from dimension nC1 on to
get a contractible space on which G acts freely and then take the quotient modulo
this action. ut

The maximal n in N [ f1g such that G is of type Fn is called the
finiteness length of G.

Until now the properties of being of type Fn may seem fairly arbitrary so the
following should serve as a motivation:

Proposition 1.18. Every group is of type F0. A group is of type F1 if and only if it
is finitely generated and is of type F2 if and only if it is finitely presented.

Proof. Given a group presentation G D hS j Ri a K.G; 1/ complex can be
constructed as follows: Start with one vertex. Glue in a 1-cell for every element
of S (at this stage the fundamental group is the free group generated by S ) and
pick an orientation for each of them. Then glue in 2-cells for every element r of
R, along the boundary as prescribed by the S -word r (cf. [ST80, Chap. 6]). Finally
kill all higher homotopy by gluing in cells from dimension 3 on. This gives rise to
a K.G; 1/ complex and it is clear that it has finite 1-skeleton if S is finite and finite
2-skeleton if R is also finite.
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Conversely assume we are given a K.G; 1/ complex. Its 1-skeleton is a graph so
it contains a maximal tree T . Factoring this tree to a point is a homotopy equivalence
([Spa66, Corollary 3.2.5]), so we obtain a K.G; 1/ complex that has only one vertex,
which shows the first statement. Moreover, we can read off a presentation of G as
follows: Take one generator for each 1-cell. Again, after an orientation has been
chosen for each 1-cell, a relation for each 2-cell can be read off the way the 2-cell is
glued in. If the 1-skeleton was finite, the obtained presentation is finitely generated,
if the 2-skeleton was finite, the obtained presentation is finite. ut

There is another, stronger, finiteness property: a group G is of type F if there is
a finite K.G; 1/ complex. Clearly if a group is of type F then it is of type F1, but
the converse is false:

Fact 1.19 ([Geo08, Corollary 7.2.5, Proposition 7.2.12]). Every finite group is of
type F1 but is not of type F unless it is the trivial group. In fact every group of type
F is torsion-free.

To give examples of groups of type F by definition means to give examples of
finite classifying spaces:

Example 1.20. (i) For every n 2 N the free group Fn generated by n elements
is of type F : it is the fundamental group of a wedge of n circles which is a
classifying space because it is 1-dimensional.

(ii) For every n 2 N the free abelian group Z
n generated by n elements is of

type F : it is the fundamental group of an n-torus, which is a classifying space
because its universal cover is Rn.

(iii) For every g � 1 the closed oriented surface Sg of genus g is a classifying space
because it is two-dimensional and contains no embedded 2-sphere. Hence its
fundamental group �1.Sg/ is of type F .

The properties Fn have an important feature that the property F has not:

Fact 1.21 ([Geo08, Corollary 7.2.4]). For every n, if G is a group and H is a
subgroup of finite index then H is of type Fn if and only if G is of type Fn.

The analogous statement fails for F by Fact 1.19 since finite groups contain the
trivial group as a finite-index subgroup.

A group is said to virtually have some property if it has a subgroup of finite index
that has that property. So one implication of Fact 1.21 can be restated by saying that
a group that is virtually of type Fn is of type Fn. Note in particular, that a group that
is virtually of type F is itself of type F1.

The definition of the properties Fn is not easy to work with mainly for two
reasons: for a given group one often knows the “right” space to act on, but the
action is not free but only “almost free” for example in the sense that cell stabilizers
are finite. Sometimes the group has a torsion-free subgroup of finite index which
then acts freely. But, for example, the groups we want to study in these notes are not
virtually torsion-free. Another problem that is not so obvious to deal with from the
definition is how to prove that a group is not of type Fn.
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For this situation Brown [Bro87] has given a criterion which allows one to
determine the precise finiteness length of a given group. Below we state Brown’s
Criterion in full generality, even though we only need a special case.

We need some notation. Let X be a CW-complex on which a group G acts. By
a G-invariant filtration we mean a family of G-invariant subcomplexes .X˛/˛2I ,
where I is some directed index set, such that X˛ � Xˇ whenever ˛ � ˇ, and such
that

S
˛2I X˛ D X .

A directed system of groups is a family of groups .G˛/˛2I , indexed by some
directed set I , together with morphisms f

ˇ
˛ WG˛ ! Gˇ for ˛ � ˇ, such that

f
�

ˇ f
ˇ

˛ D f
�

˛ whenever ˛ � ˇ � � . A directed system of groups is said to be

essentially trivial if for every ˛ there is a ˇ � ˛ such that f
ˇ

˛ is the trivial morphism.
Clearly for every homotopy functor �i , a filtration .X˛/˛2I induces a directed

system of groups .�i .X˛//˛2I . We can now state Brown’s Criterion:

Theorem 1.22 ([Bro87, Theorem 2.2, Theorem 3.2]). Let G be a group that acts
on an .n � 1/-connected CW-complex X . Assume that for 0 � k � n, the stabilizer
of every k-cell of X is of type Fn�k . Let .X˛/˛2I be a filtration of G-invariant
subcomplexes of X that are compact modulo the action of G. Then G is of type Fn

if and only if the directed system .�i .X˛//˛2I is essentially trivial for 0 � i < n.

Note that it is no problem to give meaning to .�0.X˛//˛ being essentially trivial.
However, if the individual spaces are not connected, a little care has to be taken
concerning basepoints. This need not concern us because we will only be using the
following weaker version:

Corollary 1.23. Let G be a group that acts on a contractible CW-complex X .
Assume that the stabilizer of every cell is finite. Let .Xk/k2N be a filtration of G-
invariant subcomplexes of X that are compact modulo the action of G. Assume that
the maps �i .Xk/ ! �i .XkC1/ are isomorphisms for 0 � i < n � 1 and that
the maps �n�1.Xk/ ! �n�1.XkC1/ are surjective and infinitely often not injective.
Then G is of type Fn�1 but not of type Fn.

Proof. Since X is contractible it is, in particular, .n � 1/-connected. The finite cell
stabilizers are of type F1 by Fact 1.19. The directed systems .�i .Xk//k2N; 0 � i <

n � 1 of isomorphisms have trivial limit and therefore must be trivial. It remains
to look at the directed system .�n�1.Xk//k2N. Let ˛; ˇ 2 N be such that ˇ � ˛.
Let � � ˇ be such that �n�1.X�/ ! �n�1.X�C1/ is not injective. Then �n�1.X�/

is non-trivial. Thus, since �n�1.X˛/ ! �n�1.X�/ is surjective and factors through
�n�1.X˛/! �n�1.Xˇ/, the latter cannot be trivial. ut

Brown’s original proof is algebraic using the relation between topological
and homological finiteness properties (see below). A topological proof based on
rebuilding a CW-complex within its homotopy type is sketched in [Geo08].

The homological finiteness properties we want to introduce now are closely
related to, but slightly weaker than, the topological finiteness properties discussed
above—as is homology compared to homotopy. We will not actually use them and
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therefore give a rather brief description. The interested reader is referred to [Bro82]
and [Bie76].

Let G be a group. The ring ZG consists of formal sums of the form
P

g2G ngg

where the ng are elements of Z and all but a finite number of them is 0. Addition and
multiplication are defined in the obvious way. The ring Z becomes a ZG-module by
letting G act trivially, i.e., via .

P
g2G ngg/ �m DP

g2G ngm. A partial resolution
of length n of the ZG-module Z is an exact sequence

Fn ! � � � ! F1 ! F0 ! Z! 0 (1.3)

of ZG-modules (this is not to be confused with a resolution of length n which would
have a leading 0). The partial resolution is said to be free, projective, or of finite type
if the modules are free, projective, or finitely generated respectively.

The group G is said to be of type FPn if there is a partial free resolution of length
n of finite type of the ZG-module Z. This is equivalent to the existence of a partial
projective resolution of length n of finite type ([Bro82, Proposition VIII.4.3]).

The following is not hard to see from the way the homology of G is defined:

Observation 1.24. If G is of type FPn then Hi G is finitely generated for i � n.
ut

Now we describe the relation between the properties Fn and FPn we mentioned
earlier:

Fact 1.25. If a group is of type Fn then it is of type FPn. It is of type F1 if and only
if it is of type FP1. For n � 2 it is of type Fn if and only if it is of type F2 and of type
FPn. There are groups that are of type FP2 but not of type F2.

Proof of the First Statement. Let G be a group. Let X be a K.G; 1/ complex
with finite n-skeleton. Let QX be its universal cover. Then G acts freely on QX so
its augmented chain complex consists of free ZG-modules (cf. [Bro82, Sect. I.4]).
Since QX is contractible and thus has trivial homology, the augmented chain complex
is a resolution of the ZG-module Z. That QX has finite n-skeleton modulo G implies
that the resolution is finitely generated up to the n-th term. ut

The second statement is Proposition 2.1 in [Bie76] (together with Proposi-
tion 1.18). The third statement follows from Theorem 4 in [Wal66]. The fourth
statement is a celebrated result of [BB97], specifically Example 6.3(3).

1.4 Simplicial Morse Theory

We have seen in the last section that finiteness properties of groups are intimately
related to connectivity properties of spaces. A tool that is often useful in proving
that a space is highly connected (especially if a sub- or superspace is known to
be highly connected) is combinatorial Morse theory as introduced by Bestvina and
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Brady [BB97] (see also [Bes08]). We state it here in a way that makes it easy to
apply later on.

Let P be a totally ordered set and let X be a simplicial complex. A map
f W vt X ! P is a Morse function on X if

(Mor1) f .v/ ¤ f .w/ for two adjacent vertices v and w and
(Mor2) the image of f is order-equivalent to a subset of Z.

We sometimes speak of f .v/ as the height of v.
If f is a Morse function on X then every simplex � has a unique vertex v on

which f is maximal. The descending link lk# v of a vertex v is the subcomplex
of simplices � � v such that v is the vertex of maximal height of � . By condition
(Mor1) this is the full subcomplex of vertices w adjacent to v such that f .w/ < f .v/

(speaking in terms of the combinatorial link).
For J � P we let XJ denote the full subcomplex of f �1.J /.
The corestriction to its image of a Morse function f as above may by (Mor2) be

regarded as a map vt X ! R with discrete image. Since X is a simplicial complex,
this map induces a map fRWX ! R that is cell-wise affine. Moreover, by (Mor1)
fR is non-constant on cells of dimension � 1. Hence it is a Morse function in the
sense of [BB97].

The following two statements are at the core of Morse theory. Using our con-
struction of fR above, they are immediate consequences of Lemma 2.5 respectively
Corollary 2.6 in [BB97].

Lemma 1.26 (Morse Lemma). Let f W vt X ! P be a Morse function. Let r; s 2
P be such that r < s and f .vt X/\.r; s/ D ;. Then X.�1;s� is homotopy equivalent
to X.�1;r � with copies of lk# v coned off for v 2 Xfsg.

Corollary 1.27. Let f W vt X ! P be a Morse function. Assume that there is an
R 2 P such that lk# v is .n � 1/-connected for every v with f .v/ > R.

Let s; r 2 P [ f1g be such that s � r � R. Then the inclusion X.�1;r � ,!
X.�1;s� induces an isomorphism in �i for 0 � i � n � 1 and an epimorphism
in �n. ut

Finally we state an elementary fact that will be useful for verifying that a function
is a Morse function.

Observation 1.28. Let P D R�� � ��R with the lexicographic order. Let Q � P be
such that pr1 Q is discrete and pri Q is finite for i > 1. Then Q is order-isomorphic
to a subset of Z. ut

1.5 Number Theory

The aim of this section is to motivate and define the ring of S -integers of a set S of
places over a global function field. Polynomial rings and Laurent Polynomial rings
are special cases which explains the relationship between our Main Theorem and the
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Rank Theorem. The proof of the Main Theorem does not depend on the contents of
this section. The exposition does not follow any particular book, but most references
are to [Wei74]. Other relevant books include [Art67, Cas86, Ser79].

1.5.1 Valuations

Let k be a field. A valuation (or absolute value) on k is a function vW k ! R such that

(Val1) v.a/ � 0 for all a 2 k with equality only for a D 0,
(Val2) v.ab/ D v.a/ � v.b/ for all a; b 2 k, and
(Val3) v.aC b/ � v.a/C v.b/ for all a; b 2 k.

If it satisfies the stronger ultrametric inequality

(VAL30) v.aC b/ � maxfv.a/; v.b/g for all a; b 2 k,

then it is said to be non-Archimedean, otherwise Archimedean.
The valuation with v.0/ D 0 and v.a/ D 1 for a ¤ 0 is called the trivial

valuation.
Two valuations v1 and v2 are equivalent if v1.a/ � 1 if and only if v2.a/ � 1 for

every a 2 k. If this is the case then there is a constant c > 0 such that v1 D vc
2. The

equivalence class Œv� of a valuation v is called a place. Note that it makes sense to
speak of a (non-)Archimedean place.

Remark 1.29. Usually only a weaker version of (Val3) is required. But since we are
only interested in places, our definition suffices (see [Art67, Theorem 3]).

Example 1.30. (i) The usual absolute value v.a/ WD jaj is a valuation on Q, it is
Archimedean.

(ii) Let p be a prime. Every a 2 Q can be written in a unique way as pm.b=c/ with
b, c integers not divisible by p, c positive, and m an integer. Setting vp.a/ WD
p�m defines a valuation on Q that is non-Archimedean. It is called the p-adic
valuation.

Given a valuation v on a field k, we can define a metric d W k � k ! R by
d.a; b/ D v.a � b/ and have metric and topological concepts that come with it.
In particular, k may be complete or locally compact with respect to v. Note that
neither the topology nor whether a sequence is a Cauchy-sequence depends on the
particular valuation of a place so we may say that a field is for example locally
compact or complete with respect to a place.

The completion kv of k with respect to v is a field that is complete with respect
to v0 and contains k as a dense subfield such that v0jk D v. The extension v0 of
the valuation v is usually also denoted v. Completions exist, are unique up to k-
isomorphism, and can be constructed as R is constructed from Q.
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Example 1.31. The completion of Q with respect to the absolute value is R. The
completion of Q with respect to the p-adic valuation vp is Qp, the field of p-adic
numbers.

1.5.2 Discrete Valuations

Unlike one might expect, a discrete valuation is not just a valuation with discrete
image but rather it is the logarithm of such a valuation. It is clear that this notion
cannot produce anything essentially new compared to that of a valuation, but we
mention it because it is commonly used in the algebraic theory of local fields (and
rings).

A discrete valuation on a field k is a

(DVal1) homomorphism �W k� ! R that has discrete image, and
(DVal2) satisfies �.aC b/ � minf�.a/; �.b/g.

Two discrete valuations �1 and �2 are called equivalent if �1 D c � �2 for some
c 2 R

�.
One often makes the convention that �.0/ D 1. Note that if v is a non-

Archimedean valuation on k then the map that takes a to � log v.a/ is a homo-
morphism. Its image is a subgroup of R, thus either discrete or dense. In the first
case it is a discrete valuation. Conversely if � is a discrete valuation and 0 < r < 1

then the map a 7! r�.a/ is a non-Archimedean valuation. Both constructions are
clearly inverse to each other up to equivalence. In particular, a discrete valuation �

defines a place and gives rise to a metric and we also denote the completion of k

with respect to this metric by k� .

Example 1.32. (i) Every a 2 Fq.t/ can be written in a unique way as a D b=c

with b; c 2 FqŒt � and c having leading coefficient 1. Setting �1.a/ WD
deg.c/� deg.b/ defines a discrete valuation on Fq.t/. The completion of Fq.t/

with respect to �1 is Fq..t�1//, the field of Laurent series in t�1. Its ring of
integers is FqŒŒt�1��, the ring of power series, which is a compact open subring.

(ii) Let p 2 FqŒt � be irreducible. Every element in a 2 Fq.t/ can be written in a
unique way as pm.b=c/ with m an integer, b; c 2 FqŒt � such that the leading
coefficient of c is 1 and b and c are not divisible by p. Setting �p.a/ WD m

defines a discrete valuation on Fq.t/. The completion of Fq.t/ with respect to
�p is Fq..p.t///.

Let � be a non-trivial discrete valuation on a field k. Since its image is infinite
cyclic, � can be considered as a surjective homomorphism k� ! Z (obscuring
the distinction between equivalent discrete valuations). In what follows we adopt
this point of view.

The topology defined by � can be understood algebraically: The ring A WD fa 2
k j �.a/ � 0g is a discrete valuation ring, i.e., an integral domain that has a unique
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maximal ideal and this ideal is non-zero and principal. Its maximal ideal is m WD
fa 2 A j �.a/ � 1g. For n 2 N the ideals mn are open and closed in A and in fact
they form a basis for the neighborhood filter of 0. Since A is open and closed in k

this also describes the topology of k.
The completion of A is the inverse limit lim A=mn and the completion of k is

the field of fractions of the completion of A (see [Eis94, Sect. 7]).
The field A=m is the residue field of k with respect to �.

Remark 1.33. The term “discrete valuation ring” reflects the following fact: Let A

be a discrete valuation ring with maximal ideal m and field of fractions k. Let � be
an element that generates m. For every a 2 k� there is a u 2 A� and an l 2 Z such
that a D u�l (see [Eis94, Proposition 11.1]). The number l is uniquely determined
and the map a 7! l is a discrete valuation.

1.5.3 Local Fields

A local field is a non-discrete locally compact field.
Let K be a local field and let � denote a Haar measure on .K;C/ (which is

unimodular since the group is abelian). For a 2 K� the map b 7! ab is an
automorphism of .K;C/, so the measure �a defined by �a.A/ D �.aA/ is again
a Haar measure. By uniqueness of the Haar measure, there is a constant mod.a/,
called the module of a such that �a D mod.a/�. Setting mod.0/ D 0 we obtain a
map modWK ! R which is easily seen to satisfy (Val1) and (Val2). In fact it is a
valuation ([Wei74, Theorem I.3.4]) and the topology on K is the topology defined
by mod ([Wei74, Corollary I.2.1]). Thus:

Proposition 1.34. A field is a local field if and only if it is equipped with a valuation
with respect to which it is locally compact.

So one can distinguish local fields by their valuations. In the Archimedean case
we obtain:

Theorem 1.35 ([Wei74, Theorem I.3.5]). If K is locally compact with respect
to an Archimedean valuation v then K is isomorphic to either R or C and v is
equivalent to the usual absolute value.

The non-Archimedean case offers more examples:

Theorem 1.36 ([Wei74, Theorem I.3.5, Theorem I.4.8]). If K is locally compact
with respect to a non-Archimedean valuation then either

(i) K is a completion of a finite extension of Q and isomorphic to a finite extension
of some Qp, or

(ii) K is a completion of a finite extension of Fq.t/ and isomorphic (as a field) to
Fqk ..t// for some k.
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This suggests to introduce the following notion: a global field is either a global
number field, that is, a finite extension of Q, or a global function field, that is, a
finite extension of some Fq.t/. Then Theorems 1.35 and 1.36 can be restated to say
that every local field is the completion of a global field with respect to some place.
A partial converse is:

Theorem 1.37 ([Wei74, Theorem I.3.5, Theorem II.1.2]). Every non-trivial
place of Q is one of those described in Example 1.31. Every non-trivial place
of Fq.t/ is one of those described in Example 1.32.

Let k be one of Q and Fq.t/. If k0 is a finite extension of k and v0 is a valuation on
k0 then obviously v WD v0jk is a valuation on k. What v0 can look like if one knows v
can be understood by studying how k0 embeds into the algebraic closure of kv, see
[Wei74, Theorem II.1.1] and (for number fields) [PR94, page 4].

1.5.4 S -Integers

Let k be a global field and let S be a finite subset of the set of places of k. If k is
a number field, assume that S contains all Archimedean places. If it is a function
field, assume that S is non-empty. The subring

OS WD fa 2 k j v.a/ � 1 for all Œv� … Sg

is called the ring of S -integers of k. Informally one may think of it as the ring of
elements of k that are integer except possibly at places in S . Indeed:

Theorem 1.38 ([vdW91, Theorem 17.6]). If k is a number field and S is the set
of Archimedean places then OS is the ring of algebraic integers of k.

Example 1.39. (i) Let k D Q, let v1 be the absolute value and let vp be the
p-adic valuation for some prime p. If S D fŒv1�; Œvp�g then OS D ZŒ1=p�.
More generally if vp1 ; : : : vpk

are the valuations for primes p1 to pk and
S D fŒv1�; Œvp1 �; : : : ; Œvpk

�g then OS D ZŒ1=.p1 � � �pk/�.
(ii) Let k D Fq.t/, let v1 be the valuation at infinity and for a 2 Fq let va be the

valuation corresponding to the irreducible polynomial t � a. If S D fŒva�g then
OS D FqŒ.t � a/�1�, in particular if a D 0 then OS D FqŒt�1�. If S D fŒv1�g
then OS D FqŒt �, the polynomial ring over Fq . Finally, if S D fŒv1�; Œv0�g then
OS D FqŒt; t�1�, the Laurent polynomial ring over Fq .

The last two examples show that the Main Theorem is indeed a special case of the
Rank Theorem: the polynomial ring FqŒt � and the Laurent polynomial ring FqŒt; t�1�

over a finite field Fq are examples of rings of S -integers of Fq.t/.
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1.6 Affine Varieties and Linear Algebraic Groups

In this section we try to introduce linear algebraic groups with as little theory as
possible. In particular, we only consider subvarieties of affine space without giving
an intrinsic definition. There are three standard books on linear algebraic groups,
[Bor91, Hum81, Spr98], which are recommended to the reader who is looking for a
proper introduction.

1.6.1 Affine Varieties

Let k be a field and let K be an algebraically closed field that contains it. Affine n-
space is defined to be An WD Kn. Let A WD KŒt1; : : : ; tn� be the ring of polynomials
in n variables over K and let Ak WD kŒt1; : : : ; tn� be the ring of polynomials in n

variables over k. For a subset M � A, we define the set

V.M / WD f.x1; : : : ; xn/ 2 A
n j f .x1; : : : ; xn/ D 0 for all f 2M g.

Clearly if I is the ideal generated by M then V.I / D V.M /.
We see at once that V.0/ D A

n and V.A/ D ;. If I1 and I2 are two ideals of A

then V.I1 \ I2/ D V.I1/[ V.I2/ and if .Ii /i is a family of ideals then V.
P

i Ii / DT
i V .Ii /. This shows that the sets of the form V.I / are the closed sets of a topology

on A
n, called the Zariski topology.

If X is a closed subset of An, we denote by J.X/ the ideal of polynomials in A

vanishing on X and by Jk.X/ the ideal of polynomials in Ak vanishing on X . We
call AŒX� WD A=J.X/ the affine algebra of X and analogously define AkŒX� WD
Ak=Jk.X/.

If in the definition of the Zariski topology above, we replace A by Ak , we obtain a
coarser topology, called the k-Zariski topology. Subsets that are closed respectively
open with respect to this topology are called k-closed respectively k-open. A k-
closed subset X is said to be defined over k if the homomorphism K ˝k AkŒX�!
AŒX� is an isomorphism. This is always the case if k is perfect (in particular, if k is
finite or of characteristic 0).

If X � A
n is a closed subset, we can equip it with the topology induced by

the Zariski topology which we also call Zariski topology. If X is k-closed, we may
similarly define the k-Zariski topology on X and accordingly say that a subset of X

is k-closed or k-open.
A closed subset of An is called an affine variety. It is said to be irreducible if it is

not empty and is not the union of two distinct proper non-empty closed subsets.
If X is a closed subset of An and Y is a closed subset of Am then X � Y is a

closed subset of AnCm. Moreover, if X and Y are irreducible then so is X � Y .
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The elements of the affine algebra AŒX� of an affine variety X can be regarded
as K-valued functions on X . These functions are called regular. Let X and Y

be affine varieties. A map ˛WX ! Y is a morphism if its components are
regular functions, that is, ˛.x1; : : : ; xn/ D .f1.x1; : : : ; xn/; : : : ; fm.x1; : : : ; xn//

with f1; : : : ; fm 2 AŒX�. The morphism is said to be defined over k or to be a
k-morphism if f1; : : : ; fm 2 AkŒX�. A (k-)morphism is a (k-)isomorphism if there
is a (k-)morphism that is its inverse.

If O is a subring of K then On is an O-submodule of A
n. If X � A

n is an
affine variety then we denote by X.O/ the intersection X \ On and call it the set
of O-rational points of X . A k-isomorphism X ! X 0 induces a bijection X.O/!
X 0.O/ if O contains k.

1.6.2 Linear Algebraic Groups

Example 1.40. The special linear group is the affine variety

SLn WD

8
<̂

:̂

0

B
@

x1;1 � � � x1;n

:::
: : :

:::

xn;1 � � � xn;n

1

C
A 2 A

n2

ˇ
ˇ
ˇ
ˇ det.xi;j / D 1

9
>=

>;

defined over k with multiplication being matrix multiplication. The general linear
group is the affine variety

GLn WD

8
<̂

:̂

0

B
@

0

B
@

x1;1 � � � x1;n

:::
: : :

:::

xn;1 � � � xn;n

1

C
A ; d

1

C
A 2 A

n2C1

ˇ
ˇ
ˇ
ˇ d � det.xi;j / D 1

9
>=

>;

with componentwise multiplication. Clearly SLn is isomorphic to a closed subgroup
of GLn (defined by d D 1). Similarly GLn is isomorphic to a closed subgroup of
SLnC1 (defined by xi;j D 0 for i < n D j or j < n D i ).

For our purposes, a linear algebraic group is a closed subgroup of GLn. If it
is defined over k, we also say briefly that it is a k-group. A morphism of linear
algebraic groups is a map that is at the same time a homomorphism and a morphism
of affine varieties. An isomorphism of linear algebraic groups is a map that is an
isomorphism of groups as well as of affine varieties. An (iso-)morphism of k-groups
is a morphism of linear algebraic groups that is defined over k (and whose inverse
exists and is defined over k).

Example 1.41. The group GL1 is also denoted Gm. The group Gm.k/ of k-rational
points is isomorphic to the multiplicative group k�.
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Define

Ga WD
��

1 x1;2

0 1

�

2 SL2

�

.

The group of k-rational points Ga.k/ is isomorphic to the additive group k.

Let G be a linear algebraic group. If G contains no non-trivial proper connected
closed normal subgroup then it is said to be almost simple. If G contains no non-
trivial connected closed normal solvable subgroup then it is said to be semisimple.
Being almost simple seems to be more restrictive than being semisimple but there
are exceptions: namely G may be connected, almost simple and commutative and
then fails to be semisimple. This is the case for example if G is isomorphic to Gm

or Ga. We will mostly want to exclude these cases.
From now on assume G to be semisimple. A subgroup T of G is a torus if it

is isomorphic to Gm � � � � � Gm. The number of factors is the dimension of T. The
torus T is k-split, if it is defined over k and k-isomorphic to Gm � � � � �Gm.

The (absolute) rank of G is the dimension of a maximal torus that it contains.
The k-rank of G is the dimension of a maximal k-split torus that it contains. If the
(k-)rank of G is 0 then G is said to be (k-)anisotropic, otherwise (k-)isotropic.

There is a rich structure theory for semisimple linear algebraic groups. Devel-
oping that theory is way beyond the scope of this introduction, so we refer to the
articles [BT65,Tit66,Bor66,Spr79]. Instead, we will discuss some examples below,
see [Die63] for a more general account. We will mostly be interested in groups that
are defined over a finite field because these are the ones that enter the Main Theorem.
Also, we will freely exclude characteristic 2 whenever this is a simplification.

The following examples arise from bilinear forms on kn so let f W kn�kn ! k be
one. We say that f is degenerate if there is a vector x such that f .x; y/ D 0 for all
y and non-degenerate otherwise. A subspace U of kn is isotropic if the restriction of
f to U �U is constant 0. A vector x 2 kn is isotropic if f .x; x/ D 0 in which case
it spans an isotropic subspace. The maximal dimension of an isotropic subspace is
the (Witt) index of f .�; �/. The form is isotropic if it admits a non-trivial isotropic
subspace, i.e. has Witt index at least 1 and is anisotropic otherwise.

Two bilinear forms f1; f2 are equivalent if there is an automorphism uW kn ! kn

such that f1.x; y/ D f2.u.x/; u.y// for all x; y 2 kn.
If f is symmetric, i.e. f .x; y/ D f .y; x/, then it gives rise to a quadratic form

q.x/ D f .x; x/. The bilinear form can be recovered from the quadratic form unless
the characteristic of k is 2. If f .x; x/ D 0 for all x then f is alternating. This
implies that f is skew-symmetric, i.e. f .x; y/ D �f .y; x/ but the converse is true
only if the characteristic of k is not 2.

It will be useful to use matrices to describe bilinear forms. For that purpose we
introduce the n-by-n matrices

In WD
0

@
1

: : :
1

1

A and Jn WD
0

@
1

: :
:

1

1

A .
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Example 1.42. Let Q be an invertible symmetric n-by-n matrix over k. This gives
rise to a non-degenerate symmetric bilinear form f .x; y/ D P

i;j xi Qi;j yj . The
associated special orthogonal group is

SO.f / WD fg 2 SLn j 8x; y 2 kn f .g:x; g:y/ D f .x; y/g
D fg 2 SLn j gT Qg D Qg.

The orthogonal group O.f / is obtained by replacing SLn by GLn. Both SO.f / and
O.f / are defined over k.

If ` is an extension of k (contained in K), a bilinear form fk on kn naturally
gives rise to a bilinear f` form on `n D `˝k kn. Then SO.fk/ and SO.f`/ are the
same, as `-groups. However, the Witt index of f` may be bigger than that of fk .
This illustrates how the `-rank of SO.f / can be bigger than its k-rank. In particular,
the (absolute) rank of SO.f / is always bn=2c since an n-dimensional symmetric
bilinear form over an algebraically closed field has Witt index bn=2c.
Observation 1.43. Let Q and Q0 be two non-degenerate symmetric n-by-n matri-
ces over k and denote by f and f 0 the corresponding bilinear forms. If Q and Q0
are equivalent then the groups SO.f / and SO.f 0/ are k-isomorphic.

Proof. If Q0 D AT QA then g 7! AT gA defines a k-regular isomorphism from
SO.f / to SO.f 0/. ut

We will see in Example 1.47 below that the converse of the observation is
not true. Still, the classification of orthogonal groups is directly connected to the
classification of quadratic forms. In particular, it greatly depends on the field of
definition. For example, if k is algebraically closed then any two non-degenerate
symmetric bilinear forms on kn are equivalent. So up to isomorphisms over an
algebraically closed field, there is only one orthogonal group for each n. Its rank
is m D bn=2c.

All one can say about symmetric bilinear forms over general fields is the
following, see for example [Lan65, Corollary XIV.6.5]:

Proposition 1.44. Any non-degenerate symmetric bilinear form is equivalent to
a form

f .x; y/ D x1yn C � � �xi yn�iC1 C f0.x; y/

where f0 is an anisotropic form on hxi ; : : : ; xn�i i.
Example 1.45 (Continuation of Example 1.42). The k-rank of SO.f / and of O.f /

is the Witt index of f : By Proposition 1.44 f is equivalent to the bilinear form f 0
associated to a matrix
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Q0 D
0

@
Jm

R

Jm

1

A

where m is the Witt index of f and R defines an anisotropic form. It is now easy to
check that

0
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B
B
B
B
B
B
B
B
B
B
@

d1

: : :

dm

In�2m

d�1
m

: : :

d�1
1

1

C
C
C
C
C
C
C
C
C
C
C
A

is a k-split torus in SO.f 0/. For a detailed explanation of this example see [Bor66,
Example 6.6(3)].

For finite fields one can be much more precise, see [Jac74, Theorem 6.9]:

Proposition 1.46. Let k be a finite field of odd characteristic. Up to equivalence
there are two non-degenerate symmetric bilinear forms on kn. They can be
distinguished by whether or not the determinant of the associated matrix is a square
or not.

In what follows we will use the matrix Dı WD
�

1

ı

�

.

Example 1.47. Let k be a finite field of odd characteristic p and let ˛ be a non-
square. If n is odd and f is any non-degenerate symmetric bilinear form on kn

then f̨ is not equivalent to f according to Proposition 1.46. But clearly f and f̨

define the same orthogonal group (as does every multiple of f ). Thus there is only
one class of orthogonal groups up to isomorphism defined over k.

Now let fı be the bilinear form on k2 associated to Dı . The two forms f1 and f˛

are representatives of the two equivalence classes mentioned in Proposition 1.46.
If �1 is a square in k (i.e. if p � 1 mod 4), say �1 D i2, then .1; i/ is an

isotropic vector for f1. It is not hard to see that f˛ is anisotropic in this case.
On the other hand, if �1 is not a square in k (i.e. if p � 3 mod 4) then we may

take ˛ D �1. Then .1; 1/ is an isotropic vector for f˛ and f1 is aniostropic.
We see that two inequivalent forms on k2 have different Witt index and therefore

the associated orthogonal groups have different k-rank. In particular, they are not
isomorphic over k.

If fı is isotropic (i.e. ı and�1 are either both squares or are both not squares), the
associated k-group is denoted OC2 . If fı is aniostropic (i.e. exactly one of ı and �1

is a square), the associated k-group is denoted O�2 . The special orthogonal groups
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are denoted SOC2 and SO�2 , respectively. The group SOC2 is isomorphic over k to
Gm. The group SO�2 is isomorphic to Gm over K but not over k. In other words,
SO�2 is a torus that is not k-split.

Now let n D 2.mC 1/ and let hı be the symmetric bilinear form associated to
the block matrix

Qı WD
0

@
Jm

Dı

Jm

1

A .

The subspace spanned by the first m basis vectors is visibly isotropic. If moreover
f˛ is isotropic then h˛ is equivalent to the form associated to Jn and in particular
has Witt index mC 1. The corresponding orthogonal group is denoted OCn . For the
sake of concreteness we write

OCn WD fg 2 GLn j gt Jng D Jng.

If f˛ is anisotropic then h˛ has Witt index m. The corresponding orthogonal
group is denoted O�n . An explicit description is

O�n WD fg 2 GLn j gt Qıg D Qıg

where ı is a square precisely if �1 is not. The group O�n has absolute rank m C 1

but k-rank m.
A maximal torus of O�n consists of matrices

0

B
B
B
B
B
B
B
B
B
B
B
@

d1

: : :

dm

M

d�1
m

: : :

d�1
1

1

C
C
C
C
C
C
C
C
C
C
C
A

with M 2 SO�2 . A maximal k-split torus consists of matrices of the same structure
with M D I2.

For alternating forms the situation is somewhat analogous to that of symmetric
forms. The all-important difference is that any two non-degenerate alternating forms
over any field are equivalent as soon as they are of the same dimension (which has
to be even), see for example [Lan65, Corollary XIV.9.1]. As a consequence we only
get a single family of examples in this case:
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Example 1.48. For n 2 N the 2m-dimensional symplectic group is

Sp2m WD fg 2 SL2m j gt Qg D Qg with Q D
�

Im

�Im

�

.

Its rank is the Witt index of Q which is m.

We have seen that the k-rank of an orthogonal group over a field k can be smaller
than its absolute rank. For a general field it is even possible for the orthogonal group
to be k-anisotropic while being absolutely isotropic; in fact, this is the case for the
classical orthogonal groups On over R. However, we have seen in Example 1.47
that this cannot happen if k is finite (unless the group is commutative and therefore
not semisimple). That this is true more generally for semisimple groups over finite
fields is a consequence of a theorem due to Lang [Lan56], see [Bor91, Sect. V.16]
together with [Spr98, Proposition 16.2.2]:

Theorem 1.49. A semisimple group G defined over a finite field k is quasi-split. In
particular, it is k-isotropic.

1.6.3 S -Arithmetic Groups

Let k be a global field and let K be its algebraic closure. Let G � GLn be a linear
algebraic group. Let S be a set of places of k that contains all Archimedean places
if k is a number field and is non-empty if k is a function field, and let OS denote the
ring of S -integers of k. A group of the form G.OS / is called an S -arithmetic group.

Example 1.50. Let G be an algebraic group defined over a finite field k D Fq .
Take the algebraically closed field K to contain Fq.t/. Then G is naturally an Fq.t/-
group.

We have seen in Example 1.39 that the polynomial ring FqŒt � and the Laurent
polynomial ring FqŒt; t�1� are rings of S -integers of Fq.t/. Thus the groups G.FqŒt �/

and G.FqŒt; t�1�/ are S -arithmetic groups.

1.7 Buildings

The possible points of view on buildings are quite various. They can be regarded
combinatorially as edge-colored graphs or geometrically as metric spaces. The
concept that mediates between the two is the building as a simplicial complex.

Buildings were developed by Tits at first to provide geometries for the excep-
tional Lie groups [Tit55, Tit56, Tit57]. He then extended the construction to
semisimple Lie groups and to semisimple algebraic groups [Tit59, Tit62a, Tit63].
Eventually the concept of a BN-pair of an abstract group evolved [Tit62b, Tit64]
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(these references, except maybe for the last, are most easily found in [Tit13]). Much
of the theory of spherical buildings can be found in [Tit74].

Euclidean buildings were introduced by Bruhat and Tits [BT66, BT72b, BT84a,
BT84b, BT87] because they naturally arise from algebraic groups over local fields,
which is also why we will be interested in them.

Twin trees were initially studied by Ronan and Tits [Tit92,RT94,RT99] and then
also mainly by Mühlherr and Abramenko, see for example [MR95, AR98].

The standard reference on buildings today is [AB08], it develops the different
viewpoints on buildings and also the theory of twin buildings. Its predecessor
[Bro89] is a beautiful introduction to buildings as simplicial complexes and is
probably the best book with which to start learning the topic (also it is available
online). The books [Wei04] and [Wei09] develop the theory of spherical respectively
affine buildings in terms of edge-colored graphs and, in particular, contain (together
with [TW02]) a revision of the classification of buildings of these types. The same
language is used in [Ron89]. For twin buildings [Abr96] has long been the standard
reference.

We consider buildings as cell complexes that are equipped with a metric, to
be more precise as M�-polyhedral complexes in the terminology of Sect. 1.1. Our
exposition is motivated by Kleiner and Leeb [KL97] but changed so as to keep the
terminology and results in [AB08] within reach.

1.7.1 Spherical Coxeter Complexes

We start by introducing spherical Coxeter complexes, see [AB08, Sect. 1] and
Fig. 1.2.

Let ˙ WD S
n be a sphere. A reflection of ˙ is an involutory isometry that fixes

a hyperplane. A finite subgroup W of Isom ˙ that is generated by reflections is a
(finite or) spherical reflection group. A hyperplane H that is the fixed point set of
some reflection in W is called a wall. The closure of a connected component of
the complement of all walls is a polyhedron that is called a chamber, its facets are
panels. Every closed hemisphere defined by a wall is a root. Two points or cells of
˙ are called opposite if they are mapped onto each other by the antipodal map.

The action of W on ˙ is simply transitive on chambers, see [AB08, Theo-
rem 1.69]. Therefore the restriction of the projection ˙ ! W n ˙ to chambers
is an isometry. We call cmod WD W n˙ the model chamber of ˙ .

The chambers induce a cell structure on ˙ so that it becomes an M1-polyhedral
complex. We call ˙ equipped with this structure a spherical Coxeter complex.
Combinatorially the Coxeter complex is a simplicial complex, that is, its face lattice
is that of an abstract simplicial complex. To be more precise, cmod is clearly a
polyhedron whose facets include angles at most �=2. Thus it decomposes as in
Theorem 1.16 as a join of a sphere and a simplex with non-obtuse angles. The
simplex decomposes further into irreducible simplices. By Kleiner and Leeb [KL97,
Sect. 3.3] this decomposition induces a decomposition of ˙ . So ˙ decomposes as
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A1

A2

A3

B2 = C2

B3 = C3

Fig. 1.2 Some spherical
Coxeter complexes. To the
left of each complex is its
name and its diagram
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a join of a sphere and a spherical Coxeter complex whose cells are simplices with
non-obtuse angles (in particular, diameter� �=2). The simplicial complex is called
the essential part and ˙ essential if it equals its essential part. The essential part
decomposes further as a join of irreducible spherical Coxeter complexes, that is, of
Coxeter complexes whose cells have diameter < �=2.

From now on all spherical Coxeter complexes are assumed to be essential.
There is a structure theory (including classification) of reflection groups that puts

the following into a broader context. We refer the reader to [Bou02,GB85,Hum90].
Let I be the set of vertices of cmod. For a cell � of ˙ we define typ � to be the

image of the vertex set of � under the projection ˙ ! cmod and call it the type of � .
The cotype of a cell is the complement of typ � in I . Given two walls H1; H2, the
fact that the group generated by the reflections at these walls is finite implies that the
angle between them can only be �=n with n � 2 an integer. The Coxeter diagram
typ ˙ of ˙ is a graph whose vertex set is I , and where there is an edge between i

and j if the complements of i and j in cmod are not perpendicular. In that case they
include an angle of �=n for n � 3 and the edge is labelled by n. An edge labelled 4

is often drawn doubled, an edge labelled 6 is drawn trippled. By Observation 1.9 the
irreducible join factors of ˙ correspond to connected components of typ ˙ ; more
explicitly: if J � I is the vertex set of a connected component of typ ˙ then the
cells � with typ � � J form an irreducible join factor of ˙ .

Fix a chamber c0 � ˙ . Let S be the set of reflections at walls that bound c0.
Note that every s 2 S corresponds to a panel of c0 and any two of these panels have
different cotype. Let ı.c0; c/ be the element of W that takes c0 to c. Using simple
transitivity, this can be extended to define a Weyl-distance: if d1 and d2 are arbitrary
chambers, we can write d1 D w0c0 and d2 D w0wc0. Then ı.d1; d2/ D w. Every
element w 2 W can be assigned a length, namely the number of walls that separate
c0 from wc0. Replacing c0 by a different chamber corresponds to conjugating the
Weyl-distance by an element of W . This conjugation takes S to a set S 0 in a type-
preserving way. So if we regard the pair .W; S/ as an abstract Coxeter system and
identify I with S , we get a Weyl-distance that is independent of a fixed chamber.

1.7.2 Euclidean Coxeter Complexes

Now we turn to Euclidean Coxeter complexes, see [AB08, Sect. 10] and Fig. 1.3.
Let ˙ WD E

n be a Euclidean space. A reflection of ˙ is an involutory isometry
that fixes a hyperplane. A subgroup QW of Isom ˙ that is discrete, generated by
reflections, and has no proper invariant subspace (in particular, no fixed point)
is called a Euclidean reflection group (cf. [Cox33], [AB08, Theorem 10.9]). A
hyperplane that is the fixed point set of some reflection in QW is called a wall.
As before the walls define a cell structure on ˙ and we call ˙ with this cell
structure a Euclidean Coxeter complex. The maximal cells are called chambers,
the codimension-1-cells panels. A root is a closed halfspace defined by some wall.
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Ã1

Ã2

C̃2

Fig. 1.3 Some (excerpts of) affine Coxeter complexes. To the left of each complex is its name and
its diagram

A Euclidean Coxeter complex is called irreducible if it is a simplicial complex
and an arbitrary Euclidean Coxeter complex decomposes as a direct product of its
irreducible Coxeter subcomplexes.

The action of QW is simply transitive on chambers. To define the type of cells
let us first assume that ˙ is irreducible. The restriction of the projection ˙ !
cmod WD QW n ˙ to chambers is an isometry. This allows us as before to assign a
type typ � � I to every cell � of ˙ where I is the set of vertices of cmod. The walls
of ˙ still include angles �=n with n � 3 ([Cox33, Lemma 4.2]) but now they can
in addition be parallel. The Coxeter diagram typ ˙ is defined to be the graph with
vertices I where there is an edge from i to j if conv.I n i/ and conv.I n j / are
either disjoint or meet in an angle < �=2. If the angle is �=n in the latter case, the
edge is labeled by n, and in the former case it is labeled by1.



34 1 Basic Definitions and Properties

If ˙ is not irreducible, the Coxeter diagram typ ˙ is the disjoint union of the
Coxeter diagrams of the individual factors and the type of a cell �1 � � � � � �n is the
union typ �1 [ � � � [ typ �n.

The action of QW on ˙ induces an action on the visual boundary ˙1 which is
a sphere. We denote the image of QW in Isom ˙1 by W . The group W is a finite
reflection group that turns ˙1 into a spherical Coxeter complex. Let v be a vertex
of ˙ and let QWv be its stabilizer in QW . Then QWv acts on ˙1 as a subgroup of W and
we call v special if it acts as all of W . In that case, since QWv acts simply transitively
on chambers that contain v and acts simply transitively on chambers of ˙1, the
link of v is isomorphic to ˙1. A sector is the convex hull of a special vertex v and
a chamber C of ˙1, i.e., the union of geodesic rays Œv; 
/ with 
 2 C .

Let c0 be a chamber and let S be the set of reflections at walls bounding c0.
Considering . QW ; S/ as an abstract Coxeter system, we obtain as before a Weyl-
distance ı for ˙ with values in QW . The elements w 2 QW have a length which is, as
before, defined to be the number of walls that separate c0 from wc0.

1.7.3 General Coxeter Complexes

In analogy to Euclidean reflection groups one can define hyperbolic reflection
groups. They give rise to hyperbolic Coxeter complexes, see [Dav08, Chap. 6]. An
example is shown in Fig. 2.2. In general, a Coxeter group is defined to be a group
admitting a presentation

˝
si ; i 2 I j .si sj /mi;j D 1

˛

where the mi;j form a symmetric matrix with ones on the diagonal and entries at
least 2 everywhere else. This definition combinatorially captures the essence of
reflection groups: one may think of si and sj as reflections that include an angle
of �=mi;j . For most Coxeter groups W there does not exist a constant curvature
manifold ˙ such that W is a discrete subgroup of Isom ˙ with compact quotient
W n˙ . Instead, Davis has shown that there is always a CAT(0) space ˙ with
these properties, called the Davis-realization, see [Dav08, Chap. 7]. For Euclidean
and hyperbolic reflection groups, the Davis-realization is essentially the Euclidean
respectively hyperbolic space. For spherical reflection groups it is the full ball
instead of the sphere.

1.7.4 Buildings

We now define spherical and Euclidean buildings based on our previous definition
of spherical and Euclidean Coxeter complexes, cf. [AB08, Sect. 4].
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A building X is an M�-polytopal complex that can be covered by subcomplexes
˙ 2 A, called apartments, subject to the following conditions:

(B0) All apartments are Coxeter complexes.
(B1) For any two points of X there is an apartment that contains them both.
(B2) Whenever two apartments ˙1 and ˙2 contain a common chamber, there is an

isometry ˙1 ! ˙2 that takes cells onto cells of the same type and restricts to
the identity on ˙1 \˙2.

A set A of apartments, i.e., of subcomplexes for which (B0) to (B2) are satisfied,
is called an apartment system for X . The axioms imply that all apartments are of
the same type.

A building is spherical if its apartments are spherical Coxeter complexes (so that
the building is an M1-polytopal complex) and is Euclidean if its apartments are
Euclidean Coxeter complexes (so that the building is an M0-polytopal complex).
We usually denote spherical buildings by 
 and Euclidean buildings by X .

Let 
 be a spherical building. Two points or cells are opposite in 
 if there
is an apartment that contains them and in which they are opposite. The apartment
that contains two given opposite chambers is unique. This can be used to show that
spherical buildings have a unique apartment system.

In general, a union of apartment systems is again an apartment system (see
[AB08, Theorem 4.54]), so there is a maximal apartment system, called the
complete system of apartments. It is characterized by the fact that it contains every
subcomplex that is isomorphic to an apartment. If we talk about apartments without
specifying the apartment system, we mean the complete system of apartments.

Chambers, panels, walls, roots of a building are chambers, panels, walls, roots
of any of its apartments. If X is a Euclidean building then a vertex is special if it is
a special vertex of an apartment that contains it and a sector of X is a sector of one
of its apartments. Note that if X is not spherical then the notions of walls, roots and
sectors depend on the apartment system.

For every apartment ˙ there is a quotient map onto the model chamber cmod. By
(B2) these fit together to define a projection �W
! cmod. In particular, every cell �

of X can be given a well defined type typ � and the building has a Coxeter diagram
typ X .

A building is thick if every panel is contained in at least three chambers. A
building is thin if every panel is contained in precisely two chambers, i.e., it is a
Coxeter complex. A building is irreducible if its apartments are irreducible.

Throughout, actions on buildings are assumed to be type preserving, i.e., the
induced action on cmod is trivial. The action of a group on a building is said to
be strongly transitive if it is transitive on pairs .c; ˙/ where c is a chamber of an
apartment ˙ . For spherical buildings, this is the same as to say that the action is
transitive on pairs of opposite chambers.

Fact 1.51. Every spherical building 
 decomposes as a spherical join 
 D

1 � � � � � 
n of irreducible spherical buildings 
i . Every Euclidean building X

decomposes as a direct product X D X1 � � � � � Xn of irreducible Euclidean
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buildings Xi . In both cases the irreducible factors are the subcomplexes of the form
typ�1 � where � is a connected component of the Coxeter diagram.

In the case of a spherical building 
 this will be important later, so we make the
statement a bit more explicit. Note first that a join decomposition of 
 gives rise to
a join decomposition of cmod. The converse is also true:

Proposition 1.52 ([KL97, Proposition 3.3.1]). Let 
 be a spherical building and
let �W
 ! cmod be the projection onto the model chamber. If the model chamber
decomposes as cmod D c1�� � ��cn then the building decomposes as 
 D 
1�� � ��
n

where 
i D ��1.ci /.

Together with Observations 1.9 and 1.14 this gives us two ways to determine
whether two adjacent vertices lie in the same join factor:

Observation 1.53. Let 
 be a spherical building. Two adjacent vertices v and w
lie in the same irreducible join factor of 
 if the following equivalent conditions are
satisfied:

(i) there is an edge path in typ 
 that connects typ v to typ w.
(ii) d.v; w/ < �=2. ut

Let X be either a spherical or a Euclidean building. In Sect. 1.1 we described
a natural cell structure on the link lk � of a cell � consisting of � � � where �

is a coface of � . Moreover, for every apartment ˙ of X the subspace lk˙ � of
directions that point into ˙ form a subcomplex. The following is fundamental, cf.
Proposition 4.9 in [AB08]:

Fact 1.54. Let X be a spherical or Euclidean building and let � � X be a cell.
Then lk � is a spherical building with apartment system lk˙ � where ˙ ranges
over the apartments that contain � . Its Coxeter diagram is obtained from typ X by
removing typ � .

It is shown in [AB08, Theorem 11.16] that Euclidean buildings are CAT(0)
spaces and it can be shown similarly that spherical buildings are CAT(1) spaces.

A statement similar to Fact 1.54 holds for the asymptotic structure of Euclidean
buildings. To describe it, we need a further notion. Let X be a Euclidean building.
An apartment system A of X is called a system of apartments if given any two
sectors S1 and S2 there exist subsectors S 0i of Si and an apartment ˙ that contains S 01
and S 02. Note that asymptotically this implies that S1i D S 01i and that ˙1 contains
S 0i
1. Thus

S
˙2A ˙1 � X1 is covered by the spherical Coxeter complexes ˙1

for ˙ 2 A. The Coxeter complexes allow to define a cell structure on
S

˙2A ˙1
which turns out to be a spherical building. We only state this for the complete system
of apartments which covers all of X1 (see Theorem 11.79 in [AB08]):

Fact 1.55. The visual boundary of a Euclidean building is a spherical building.
More precisely if X is a Euclidean building equipped with the complete system
of apartments then X1 is a spherical building whose chambers are the visual
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boundaries of sectors and whose apartment system consists of visual boundaries
of apartments.

We collect some general facts about buildings:

Fact 1.56. Let X be a spherical or Euclidean building.

(i) The Weyl-distances on the apartments fit together to define a well-defined Weyl-
distance ı on the chambers of X . That is, if ı˙ denotes the Weyl-distance on
an apartment ˙ then ı˙.c; d/ is the same for every apartment ˙ that contains
c and d .

(ii) If c is a chamber of X and � is an arbitrary cell then there is a unique
chamber d � � such that ı.c; d/ has minimal length. This element is called
the projection of c to � and denoted pr� c. It has the property that every
apartment that contains c and � also contains d . If � is an arbitrary cell then
the projection of � to � is pr� � WDT

c�� pr� c.
(iii) If ˙ is an apartment of X and c is a chamber of ˙ , the retraction onto

˙ centered at c, denoted �˙;c , is the map that (isometrically and in a
type preserving way) takes a chamber d to the chamber d 0 of ˙ that is
characterized by ı.c; d/ D ı.c; d 0/. It is an isometry on apartments that
contain c and is generally distance non-increasing (both, in the metric sense
and in terms of Weyl-distance).

The existence of the objects is shown in Proposition 4.81, Proposition 4.95, and
Proposition 4.39 of [AB08] respectively.

In the remainder of this paragraph we will be concerned with the relation between
the asymptotic and the local structure of Euclidean buildings. The results are either
general facts about CAT(0) spaces or can be reduced to the study of a single
apartment using:

Lemma 1.57. Let X be a Euclidean building and let � be a geodesic ray in X .
There is an apartment in the complete system of apartments of X that contains �.

Proof. Let ˛1 be a root of X1 that contains �1. There is a corresponding root ˛

of X that contains a subray of �. Moving the wall that bounds ˛ backwards along
� produces a subcomplex of X that is itself isomorphic to a root and thus a root in
the sense of [AB08, Definition 5.80]. It is therefore contained in an apartment by
Abramenko and Brown [AB08, Proposition 5.81(2)], which makes it again a root in
our sense. Iterating this procedure one obtains a root that fully contains �. ut
Observation 1.58. Let X be a Euclidean building. A decomposition as a direct
product X D X1 � � � � �Xn induces

(i) for every point x D .x1; : : : ; xn/ 2 X a decomposition lk x D lkX1 x1 � � � � �
lkXn xn.

(ii) for every cell � D �1 � � � � ��n a decomposition lk � D lkX1 �1 � � � � � lkXn �n.
(iii) a decomposition X1 D X11 � � � � �X1n . ut

Let x 2 X be a point. By Proposition 1.3 there is a projection from the building
at infinity onto lk x. Namely if 
 is a point of X1, there is a unique geodesic ray
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� that issues at x and tends to 
. The direction �x defined by this ray will also be
called the direction defined by 
 and denoted 
x .

Observation 1.59. Let X be a Euclidean building and x 2 X . The projection
X1 ! lk x that takes 
 to 
x maps cells to (but generally not onto) cells.

Proof. Using Lemma 1.57 we may consider an apartment ˙ that contains x and 
.
So what remains to be seen is that the cell structure of ˙1 is at least as fine as that
of lk˙ x but that is clear from the definition. ut

This projection is compatible with the join decompositions in Observation 1.58.
In particular:

Observation 1.60. Let X D X1 � � � � �Xn be a Euclidean building and let x 2 X .
A point at infinity 
 2 X1 has distance < �=2 to X1i if and only if the direction

x it defines at x has distance < �=2 to lkXi x. In that case the direction defined by
the projection of 
 to X1i is the same as the projection of 
x to lkXi x. ut
Observation 1.61. Let X be a Euclidean building and let � � X be a cell. Let

 be a point at infinity of X and let ˇ be a Busemann function centered at 
. The
restriction of ˇ to � is constant if and only if 
x is perpendicular to � for every
interior point x of � . In particular, in that case 
x is a direction of lk � .

Proof. We use again Lemma 1.57 to obtain an apartment ˙ that contains 
 and
x (and thus �). On that apartment ˇ is just an affine form whose level sets are
perpendicular to the direction towards 
. ut

1.7.5 Twin Buildings

Twin buildings generalize spherical buildings. The crucial feature of spherical
buildings is the opposition relation. An approach to twin buildings founded on the
existence of an opposition relation has been described in [AvM01]. We will use this
approach but we will not strive for a minimal list of axioms.

Twin buildings will be defined to be pairs of polyhedral complexes and we fix
some shorthand notation concerning such pairs: by a point, cell, etc. of a pair .A; B/

of polyhedral complexes we mean a point, cell, etc. of either A or B . We also write
x 2 .A; B/, � � .A; B/ and the like. A map .A; B/ ! .A0; B 0/ between pairs of
polyhedral complexes is a pair of maps A! A0 and B ! B 0. The letter " refers to
eitherC or � and, in each statement, �" refers to the other of the two.

For us a twin building is a pair .XC; X�/ of (disjoint) buildings of same type
together with an opposition relation op � XC � X� subject to the following
conditions: there exists a set A of twin apartments .˙C; ˙�/, which are pairs of
subcomplexes ˙" of X", satisfying

(TB0) every ˙" with .˙C; ˙�/ 2 A is a Coxeter complex of the same type as X".
(TB1) any two points x; y 2 .XC; X�/ are contained in a common twin apartment
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(TB2) the relation op restricted to a twin apartment .˙C; ˙�/ induces a type-
preserving isomorphism of polyhedral complexes ˙C $ ˙�.

(TB3) if �C and �� are opposite panels then being non-opposite is a bijective
correspondence between the chambers that contain �C and the chambers
that contain ��.

Two points xC 2 XC and x� 2 X� are opposite if xC op x�. To give a meaning
to the last axiom, we have to observe that the opposition relation naturally induces
an opposition relation on the cells: namely if �C � XC and �� � X� are cells,
we say that �C is opposite �� if op induces a bijection �C $ ��. By (TB1) and
(TB2) this is equivalent to the condition that �C and �� contain interior points that
are opposite. If this is the case, we also write �C op ��.

The buildings XC and X� are called the positive and the negative half of
.XC; X�/. The type typ.XC; X�/ of the twin building is the type of its halves.
In particular, it may be spherical or Euclidean. We denote the Weyl-distance
[Fact 1.56(i)] on XC, respectively X�, by ıC, respectively ı�.

A group acts on a twin building if it acts on each of the buildings and preserves
the opposition relation. The action is said to be strongly transitive if it is transitive
on pairs .c; .˙C; ˙�// where c is a chamber of a twin apartment .˙C; ˙�/. As
for spherical buildings this is equivalent to the action being transitive on pairs of
opposite chambers.

Let .˙C; ˙�/ be a twin apartment of a twin building .XC; X�/. Let cC � ˙C
and c� � ˙� be chambers. By (TB2) there is a unique chamber d� in ˙� that
is opposite cC. The Weyl-codistance ı�.cC; c�/ in .˙C; ˙�/ between cC and c�
is defined to be the Weyl-distance from d� to c�. Note that this is the same as the
Weyl-distance from cC to the unique chamber in .˙C; ˙�/ opposite c�. The Weyl-
codistance ı�.c�; cC/ is the inverse of ı�.cC; c�/.

It is clear that every twin building according to the definition in [AB08, Sect. 5.8]
gives rise to a twin building according to our definition and the converse follows
from [AvM01]. Thus we may use results about twin buildings from [AB08]. From
these we need the following:

Fact 1.62. Let .XC; X�/ be a spherical or Euclidean twin building.

(i) The Weyl-codistances on the twin apartments fit together to define a well-
defined Weyl-codistance ı� on the chambers of .XC; X�/. That is, if
ı�.˙C;˙�/ denotes the Weyl-distance on a twin apartment .˙C; ˙�/ then
ı�.˙C;˙�/.c"; c�"/ is the same for every twin apartment .˙C; ˙�/ that contains
two given chambers c" and c�".

(ii) If c � X" is a chamber and � � X�" is an arbitrary cell then there is a unique
chamber d � � such that ı�.c; d / has maximal length. This element is called
the projection of c to � and denoted pr� c. It has the property that every twin
apartment that contains c and � also contains d . If � � X" is an arbitrary cell
then the projection of � to � is pr� � WD T

c�� pr� c.
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(iii) If .˙C; ˙�/ is a twin apartment of X and c is a chamber of .˙C; ˙�/, the
retraction onto .˙C; ˙�/ centered at c, denoted �.˙C;˙�/;c , is the map that
(isometrically and in a type preserving way) takes a chamber d to the chamber
d 0 of .˙C; ˙�/ that is characterized by ı".c; d / D ı".c; d 0/, respectively
ı�.c; d / D ı�.c; d 0/, depending on whether c and d lie in the same half of the
twin building. It is an opposition-preserving isometry on twin apartments that
contain c and generally contracting (both, in the usual sense and in terms of
Weyl-distance).

The first statement is implied by Abramenko and van Maldeghem [AvM01].
The existence of the projection is shown in Lemma 5.149 and the statement about
the containment in a twin apartment in Lemma 5.173 of [AB08].

1.8 Buildings and Groups

Buildings are a tool to better understand groups. The link is via strongly transitive
actions as introduced in the last section. In this section we give an overview of how
one obtains for a given group a building and a strongly transitive action thereon. The
definitions are taken from the Chaps. 6 and 7 of [AB08] which provide a thorough
introduction.

1.8.1 BN-Pairs

Let G be a group. A tuple .G; B; N; S/ is said to be a Tits system and .B; N / is
said to be a BN-pair if G is generated by B and N , the intersection T WD B \ N

is normal in N , the set S is a generating set for W WD N=T , and the following
conditions hold:

(BN1) For s 2 S and w 2 W ,

sBw � BswB [ BwB .

(BN2) For s 2 S ,

sBs�1 6� B .

Fact 1.63 ([AB08, Theorem 6.56]). Let .G; B; N; S/ be a Tits system. Let T WD
B \ N and W WD N=T . The pair .W; S/ is a Coxeter system and there is a thick
building 
 of type .W; S/ on which G acts strongly transitively. The group B is the
stabilizer of a chamber and the group N stabilizes an apartment, which contains
this chamber, and acts transitively on its chambers.
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If G is a semisimple algebraic group defined over a field k then G.k/ admits
a BN-pair of spherical type, see [Tit74, Sect. 5] (see any of the books [Bor91,
Hum81, Spr98] for the notions from the theory of algebraic groups). Assume for
simplicity that G is k-split, i.e., there is a maximal torus T that is k-split. Let N be
its normalizer and B a Borel group that contains T . Then .B.k/; N.k// is a BN-pair
for G.k/. Its type is that of the root system associated to G.

1.8.2 Twin BN-Pairs

Let BC, B�, and N be subgroups of a group G such that BC\N D B�\N DW T .
Assume that N normalizes T and set W WD N=T . A tuple .G; BC; B�; N; S/ is a
twin Tits system and .BC; B�; N / is a twin BN-pair if S � W is such that .W; S/

is a Coxeter system and the following hold for " 2 fC;�g:
(TBN0) .G; B"; N; S/ is a Tits system.
(TBN1) If l.sw/ < l.w/ then B"sB"wB�" D B"swB�".
(TBN2) BCs \ B� D ;.

Here l.w/ denotes the length of an element w 2 W when written as a product of
elements of S .

Fact 1.64 ([AB08, Theorem 6.87]). Let .G; BC; B�; N; S/ be a twin Tits system of
type .W; S/. There is a thick twin building .XC; X�/ of type .W; S/ on which G acts
strongly transitively. The groups BC and B� are stabilizers of opposite chambers.
The group N stabilizes an apartment and acts transitively on the chambers of
each half.

We need to mention one more notion which is that of an RGD system (“RGD”
stands for “root group datum”). We will not define RGD systems here, they are
discussed in detail in [AB08, Sect. 7,8]. The main importance for us is that they
give rise to twin BN-pairs and thus to twin buildings:

Fact 1.65 ([AB08, Theorems 8.80, 8.81]). Let G be a group. An RGD system for
G gives rise to a twin BN-pair. As a consequence, if G admits an RGD system then
it acts strongly transitively on a thick twin building. Moreover, the twin building has
the Moufang property. If the root groups are finite then the twin building is locally
finite.

The reason we mention RGD systems here is that twin BN-pairs will arise in the
next section via RGD systems.

1.8.3 BN-Pairs of Groups over Local Fields

Let G be a group defined over a field k and assume for simplicity that G is semi-
simple, connected and simply connected. If k is equipped with a non-Archimedean
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valuation then G.k/ carries another BN-pair besides the one discussed above.
It is of Euclidean type and the theory around it was developed by Iwahori and
Matsumoto [IM65] in the split case and widely generalized by Bruhat and Tits in
[BT72b, BT84a], see also [Rou77].

We call the Euclidean building X associated to G.k/ with a valuation on k a
Bruhat–Tits building. The spherical building associated to G.k/ can be identified
with a subspace of the building at infinity of X , see [BKW13].

1.9 Affine Kac–Moody Groups

We have seen in the last section that a group with a twin BN-pair (or an RGD
system) acts on a twin building, which is the geometric object we are after. We close
the introductory chapter by showing that if G is a connected, simply connected,
absolutely almost simple Fq-group then G.FqŒt; t�1�/ admits a twin BN-pair. In fact,
we show that it is a Kac–Moody group and admits a twin BN-pair for that reason.
This is somewhat similar to the fact, mentioned before, that every semisimple
algebraic group admits a spherical BN-pair. This section is based on [BGW10].
The arguments use a lot of theory mostly from [Rém02]. Abramenko exhibits
RGD systems using explicit computations in the cases where G is split [Abr96,
Example 3, p. 18] and some non-split cases [Abr96, pp. 107–111].

Proposition 1.66. Let k be a field and let G be a non-commutative, connected,
simply connected, almost simple, split k-group. Then the functor G.�Œt; t�1�/ is a
Kac–Moody functor.

The functor in question is the functor that assigns to a field ` the group of
`Œt; t�1�-points of G.

Proof. By Springer [Spr98, Theorem 16.3.2] and Chevalley [Che55, §II], a non-
commutative, connected, simply connected, almost simple k-group that splits over
k is k-isomorphic to a Chevalley group. We can therefore take the group scheme G
to be defined over Z. Hence the functor G.�Œt; t�1�/ can be defined for all fields.

A Kac–Moody functor is associated to a root datum D, the main part of which is
a generalized Cartan matrix A. Kac–Moody functors were defined by Tits [Tit87] in
the case where the generalized Cartan matrix defines an arbitrary Coxeter group.

In order to recognize G.�Œt; t�1�/ as a Kac–Moody functor, we have to correctly
identify its defining datum D. Since the group G is simply connected, we only
have to identify the generalized Cartan matrix A. We claim that we can take the
unique generalized Cartan matrix of affine type associated to the spherical Cartan
matrix of G.

To show that G.�Œt; t�1�/ is the Kac–Moody functor associated to D, one needs
to verify the axioms (KMG 1) through (KMG 9) in [Tit87]. All axioms are straight-
forward to check; however (KMG 5) and (KMG 6) involve the complex Kac–Moody
algebra L.A/ associated to the given Cartan matrix. To verify these, one needs to
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know that L.A/ is the universal central extension of the Lie algebra g.CŒt; t�1�/

where g is the Lie algebra associated to G. See e.g., [Kac90, Theorem 9.11] or
[PS86, Sect. 5.2]. ut

In [Rém02], Rémy has extended the construction to non-split groups using the
method of Galois descent.

Proposition 1.67. Let G be a non-commutative, connected, simply connected,
almost simple group defined over the finite field Fq . Then the functor G.�Œt; t�1�/

is an almost split Fq-form of a Kac–Moody group defined over the algebraic
closure NFq .

Proof. First, G splits over NFq . Hence, G.�Œt; t�1�/ is a Kac–Moody functor over NFq

by the preceding proposition. Let D be the associated root datum.
Note that the conditions (KMG 6) through (KMG 9) ensure that the “abstract” and

“constructive” Kac–Moody functors associated to D coincide [Tit87, Theorem 1’],
which holds in particular for G.�Œt; t�1�/. This is relevant as Rémy discusses Galois
descent for constructive Kac–Moody functors.

The claim follows from [Rém02, Chap. 11] once the following conditions have
been verified:

(PREALG 1) [p. 257] One needs to know that UD is the Z-form of the universal
enveloping algebra of L.A/. Its Fq-form is obtained by the Galois action.

(PREALG 2) [p. 257] Clear.
(SGR) [p. 266] Clear.
(ALG 1) [p. 267] Use Definition 11.2.1 on page 261.
(ALG 2) [p. 267] Clear.
(PRD) [p. 273] Observe that the Galois group acts trivially on t and t�1. ut

Finally, we verify that Kac–Moody groups admit the group theoretic structure
that gives rise to twin buildings.

Proposition 1.68. Let G be as in Proposition 1.67. The group G.FqŒt; t�1�/ has an
RGD system with finite root groups.

Proof. This follows from [Rém02, Theorem 12.4.3]; but once again, we need to
verify hypotheses. This time, we have to deal with only two:

(DCS1) [p. 284] This holds as G splits already over a finite field extension of Fq .
(DCS2) [p. 284] This follows from Fq being a finite, and hence perfect field. ut
Proposition 1.69. Let G be a non-commutative, connected, simply connected,
absolutely almost simple group defined over the finite field Fq (i.e., G is as in
Proposition 1.67). Then there is a thick, locally finite, irreducible Euclidean twin
building .XC; X�/ on which G.FqŒt; t�1�/ acts strongly transitively with finite
kernel.

Proof. By the preceding proposition, the group G.FqŒt; t�1�/ has an RGD system.
By Fact 1.65 we find an associated thick twin building upon which the group acts
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strongly transitively. The type is that of the generalized Cartan matrix A back in the
proof of Proposition 1.66, which is irreducible because G is almost simple.

The twin building is locally finite because the root groups U˛ are finite, see
[AB08, Theorem 8.81]. Let GC D hU˛i. The kernel of the action is the centralizer
of GC by Abramenko and Brown [AB08, Proposition 8.82]. In the split case this is
(the Fq-points of) a central torus by Rémy [Rém02, Proposition 8.4.1]. In general,
it is still (the Fq-points of) an Fq-group by Rémy [Rém02, Lemme 12.3.2]. In any
case, it is finite. ut

The two buildings XC and X� in Proposition 1.69 are isomorphic to the Bruhat–
Tits buildings associated to G.Fq..t�1/// and G.Fq..t///. In fact more is true:

Fact 1.70. The two halves XC and X� of the twin building .XC; X�/ in Proposi-
tion 1.69 can be identified with the Bruhat–Tits buildings associated to G.Fq..t�1///

and G.Fq..t/// in an G.FqŒt; t�1�/-equivariant way.

That the buildings associated to G.Fq.t// with respect to the valuations s1 and
s0 are those associated to G.Fq..t�1/// and G.Fq..t/// follows from functoriality,
see [Rou77, 5.1.2]. It remains to compare twin BN-pair of the Kac–Moody group
G.FqŒt; t�1�/ to the BN-pairs of G.Fq.t// with respect to the valuations s1 and
s0. This amounts to tracing the definitions of UC, U�, and T through the above
constructions. Again the result is shown for most cases in [Abr96].



Chapter 2
Finiteness Properties of G.FqŒt�/

It is a common situation to have a group G that acts on a polyhedral complex X

with the properties that X is contractible and the stabilizers of cells are finite but
X is not compact modulo the action of G. One is then interested in a G-invariant
subspace X0 of X that is compact modulo G and still has some desirable properties,
in our case to be highly connected.

A useful technique to produce such a subspace is combinatorial Morse-theory
which was developed by Bestvina and Brady. To apply it, one has to construct
a G-invariant Morse-function whose sublevel sets are G-cocompact and whose
descending links are highly connected. The Morse lemma then shows that the
sublevel sets are highly connected and one can take X0 to be one of them. Of course
there has to remain some work to be done, which is to construct an appropriate
Morse-function and analyze the descending links. This is what we will do in
this chapter. But first we translate our algebraically described problem into this
geometric setting.

Let G be a connected, non-commutative, absolutely almost simple Fq-group. In
this chapter we determine the finiteness length of G.FqŒt �/ where G is a connected,
non-commutative, absolutely almost simple Fq-group. We have seen in Sect. 1.9 that
G.FqŒt; t�1�/ acts strongly transitively on a locally finite irreducible Euclidean twin
building and we will see that G.FqŒt �/ is the stabilizer in G.FqŒt; t�1�/ of a point of
the twin building. Our goal is therefore to prove:

Theorem 2.1. Let .XC; X�/ be an irreducible, thick, locally finite Euclidean twin
building of dimension n. Let E be a group that acts strongly transitively on
.XC; X�/ and assume that the kernel of the action is finite. Let a� 2 X� be a
point and let G WD Ea�

be the stabilizer of a�. Then G is of type Fn�1 but not of
type Fn.

Throughout the chapter we fix an irreducible, thick, locally finite Euclidean twin
building .XC; X�/ of dimension n and a point a� 2 X�. We consider the action of
the stabilizer G of a� in the automorphism group of .XC; X�/ on X WD XC. Our
task is to define a G-invariant Morse function on X that has G-cocompact sublevel
sets and whose descending links are .n � 2/-connected.

S. Witzel, Finiteness Properties of Arithmetic Groups Acting on Twin Buildings,
Lecture Notes in Mathematics 2109, DOI 10.1007/978-3-319-06477-2__2,
© Springer International Publishing Switzerland 2014
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In Sect. 2.1 we describe an important result that indicates the preferable structure
of descending links. In Sects. 2.2 and 2.3 we construct a function that almost works
and sketch the further course of action. Sections 2.4–2.8 are devoted to rectifying the
flaws of the first function. In Sects. 2.9 and 2.10 the descending links are analyzed
and in Sect. 2.11 the theorem is proved.

2.1 Hemisphere Complexes

Schulz [Sch13] has investigated subcomplexes of spherical buildings that he
expected to occur as descending links of Morse-functions in Euclidean buildings.
As we will see, these hemisphere complexes are indeed just the right class of
subcomplexes and we will make heavy use of Schulz’s results. Here we only
describe his main result. Partial results that need slight generalizations will be
discussed in Sect. 2.9.

Let 
 be a thick spherical building. If A is a subset of 
 we write 
.A/ for the
subcomplex supported by A. Recall that this is the subcomplex of all cells of 
 that
are fully contained in A.

We fix a point n 2 
 which we call the north pole of 
. The closed hemisphere
S��=2 is the set of all points of 
 that have distance � �=2 from n. The open
hemisphere S>�=2 is defined analogously. In other words S��=2 is 
 with the open
ball of radius �=2 around n removed and S>�=2 is 
 with the closed ball of radius
�=2 around n removed. The equator SD�=2 is the set of all points that have distance
precisely �=2 from n, i.e., SD�=2 D S��=2 n S>�=2.

The closed hemisphere complex is the subcomplex 
��=2 WD 
.S��=2/ sup-
ported by the closed hemisphere. The open hemisphere complex is the subcomplex

>�=2 WD 
.S>�=2/ supported by the open hemisphere. The equator complex is the
subcomplex 
D�=2 WD 
.SD�=2/ supported by the equator.

Observation 2.2. The open hemisphere complex, the closed hemisphere complex
and the equator complex each is a full subcomplex of 
. ut
Proof. For every simplex � there is an apartment ˙ that contains n and � . The
result follows from the fact that S��=2 \˙ is �-convex and � is the convex hull of
its vertices, where 	 is either of �, >, andD. ut

Recall that 
 decomposes as a spherical join 
 D 
1 � � � � � 
k of irreducible
subbuildings. The horizontal part 
hor is defined to be the join of all join factors
that are contained in the equator complex. The vertical part 
ver is the join of all
remaining join factors. So there is an obvious decomposition


 D 
hor �
ver. (2.1)

We can now state Schulz’s main result, see [Sch13, Theorem B]:
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Theorem 2.3. Let 
 be a thick spherical building with north pole n 2 
.
The closed hemisphere complex 
��=2 is properly .dim 
/-spherical. The open
hemisphere complex 
>�=2 is properly .dim 
ver/-spherical.

Recall that a CW-complex is properly k-spherical if it is k-dimensional, .k� 1/-
connected and not k-connected.

To determine whether a simplex lies in the horizontal link or not, we have the
following criterion (cf. [BW11, Lemma 4.2]):

Lemma 2.4. Let 
 be a spherical building with north pole n. Let v 2 
 be a vertex.
These are equivalent:

(i) v 2 
hor.
(ii) d.v; w/ D �=2 for every non-equatorial vertex w adjacent to v.

(iii) typ v and typ w lie in different connected components of typ 
 for every non-
equatorial vertex w adjacent to v.

The statement remains true, if in the second and third statement w ranges over the
non-equatorial vertices of a fixed chamber that contains v.

Proof. The implications (i) H) (ii)” (iii) follow from Observation 1.53.
For (ii) H) (i) it remains to see that if c is a chamber and 
1 is a join factor of


 that contains n then c \ 
1 contains a non-equatorial vertex. This follows from
the fact that c \ 
1 has the same dimension as 
1 while 
D�=2 \ 
1 has strictly
lower dimension. ut
Lemma 2.5. Let 
 be a spherical building with north pole n. Assume that the
building decomposes as a spherical join 
 D¨

i 
i of (not necessarily irreducible)
subbuildings 
i . Let I be the set of indices i such that 
i is not entirely contained
in 
D�=2. Then


hor D�
i2I


hor
i ��

i…I


i

where the north pole of 
i is the point ni closest to n.

Proof. First note that the subbuildings 
i are �-convex and if i 2 I then
d.n; 
i/ < �=2, so ni WD pr
i

n exists by Lemma 1.1. Note further that it suffices
to show that


D�=2 D�
i2I



D�=2
i ��

i…I


i

because the decomposition of 
 into irreducible factors is clearly a refinement of
the decomposition

¨
i 
i .

The north pole n can be written as a convex combination of the ni ; i 2 I and
none of the coefficients is zero. It thus follows from the definition of the spherical
join (1.1), that a vertex v in a join factor 
i has distance �=2 from n if and only if
it has distance �=2 from ni . Clearly every vertex of 
 is contained in some 
i . The
result therefore follows from the fact that 
D�=2 is a full subcomplex. ut
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2.2 Metric Codistance

We want to define a metric codistance on the twin building .XC; X�/, i.e., a metric
analogue of the Weyl-codistance.

Let xC 2 XC and x� 2 X� be points. Let ˙ D .˙C; ˙�/ be a twin apartment
that contains both. We define d �̇.xC; x�/ to be the distance from xC to the unique
point in ˙ that is opposite x�. It is clear that this is the same as the distance from
x� to the unique point in ˙ that is opposite xC.

Observation 2.6. Let c be a chamber and let ˙ and ˙ 0 be twin apartments that
contain c. Let �˙;c and �˙ 0 ;c be the retractions centered at c onto ˙ respectively ˙ 0.
Then �˙;c j˙ 0 and �˙ 0;c j˙ are isomorphisms of thin twin buildings that are inverse
to each other. In particular, they preserve Weyl- and metric distance and opposition.

Lemma 2.7. Let ˙ and ˙ 0 be two twin apartments that contain xC and x�. Then
d �̇.xC; x�/ D d�

˙ 0.xC; x�/.

Proof. Let cC � ˙ be a chamber that contains xC and let c� � ˙ 0 be a chamber
that contains x�. Let ˙ 00 be a twin apartment that contains cC and c�.

By Observation 2.6 the map �˙ 00;c�
j˙ is an isometry that takes the point opposite

x� in ˙ to the point opposite x� in ˙ 00. Thus d �̇.xC; x�/ D d �̇ 00.xC; x�/.
Applying the same argument to �˙ 00 ;cC

j˙ 0 yields d �̇ 0.xC; x�/ D d �̇ 00.xC; x�/. ut
Thus we obtain a well-defined metric codistance d� by taking d�.xC; x�/ to be

d �̇.xC; x�/ for any twin apartment ˙ that contains xC and x�.
An important feature of the metric codistance is that it gives rise to a unique

direction toward infinity that we describe now. We consider as before points xC 2
XC and x� 2 X� and a twin apartment .˙C; ˙�/ that contains them. We assume
that the two points are not opposite, i.e., that d�.xC; x�/ ¤ 0.

We define the geodesic ray in ˙ from xC to x� to be the geodesic ray in ˙C that
issues at xC and moves away from the point opposite x�. As a set we denote it by
ŒxC; x�/˙ .

Lemma 2.8. Let ˙ and ˙ 0 be two twin apartments that contain xC and x�. Then
ŒxC; x�/˙ � ˙ 0. That is, ŒxC; x�/˙ D ŒxC; x�/˙ 0 .

Proof. Let y be a point of A WD ŒxC; x�/˙ \˙ 0. We will show that a neighborhood
of y in ŒxC; x�/˙ is also contained in A, which is therefore open. On the other hand
it is clearly closed and since ŒxC; x�/˙ is connected we deduce that A D ŒxC; x�/˙ .

First note that ŒxC; y� � A because the positive half of ˙ 0 is convex. Let c� be
a chamber that contains x� and let � be the carrier of y. Let d be the projection of
c� to � . The chamber c0 opposite c� contains the point x0 opposite x� in ˙ . Since
ŒxC; x�/˙ moves away from x0, an initial part of it is contained in the chamber over
xC furthest away from c0, but this is just d . The result now follows because d � ˙ 0
by Fact 1.62(ii). ut
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By the lemma setting ŒxC; x�/ WD ŒxC; x�/˙ for any twin apartment ˙ that
contains xC and x� defines a well-defined ray in the Euclidean building. The ray
Œx�; xC/ is defined in the same way.

2.3 Height: A First Attempt

After the introduction of the metric codistance in Sect. 2.2 an obvious height
function on XC imposes itself, namely

h0.x/ WD d�.x; a�/.

This function has a gradient rh0 that is defined by letting rxh0 be the direction of
Œx; a�/ for every x 2 XC with h0.x/ > 0. It is a gradient in the following sense:

Observation 2.9. Let x be such that h0.x/ > 0. Let � be a geodesic that issues at x.
The direction �x points into h0�1.Œ0; h0.x///, i.e., h0 ı � is descending on an initial
interval, if and only if †.rxh0; �x/ > �=2. In other words, the set of directions
of lk x that are locally descending is an open hemisphere complex with north pole
rxh0.

Proof. We may assume � to be sufficiently short such that its image is contained
in a chamber c that contains x. Let ˙ D .˙C; ˙�/ be an apartment that contains
c and a� and let aC be the point opposite a� in ˙ . The level set of x in ˙C is a
round sphere around aC. The gradient rxh0 is the direction away from aC. So it is
clear that �x points into the sphere if and only if it includes an obtuse angle with
rxh0. ut

The height function h0 is almost enough to make the strategy sketched at the
beginning of the chapter work: It is G-invariant and its sublevel sets are compact
modulo G. Moreover, Observation 2.9 shows that a direction �x issuing at some
point x is descending if and only if it includes an obtuse angle with the gradient at
x. Let us call this the local angle criterion. So the space of directions that are locally
descending is an open hemisphere complex and therefore spherical by Theorem 2.3.
However this is not the same as the descending link. The difference is indicated in
Fig. 2.1: There are adjacent vertices such that for both vertices the direction toward
the other vertex is locally descending and yet at most one of them can actually be
descending for the other. So what we need instead of Observation 2.9 is a criterion
stating that if v and w are adjacent vertices then h.w/ < h.v/ if and only if the
angle in v between the gradient and w is obtuse. We call this the angle criterion.
The macroscopic condition that h.w/ < h.v/ replaces the local condition that
the direction from v to w be descending by demanding that the direction remain
descending all the way from v to w.

There would be no difference between being locally descending and being
macroscopically descending if the level sets in every apartment ˙C were
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a+

v w

Fig. 2.1 The picture shows part of an apartment ˙C where .˙C; ˙�/ is a twin apartment that
contains a�. The point aC is opposite a�. The arrows at the vertices v and w indicate the gradients.
The shaded regions show the locally descending links. One can see that the direction from v toward
w is locally descending, as is the direction from w toward v

hyperplanes. The hope that h0 works after some modifications is nourished by the
observation that the actual level sets, which are spheres, become flatter and flatter
with increasing height and thus locally look more and more like a hyperplane. In
fact, if we fix a point and consider spheres through that point whose radii tend to
infinity, in the limit we get a horosphere which in Euclidean space is the same as a
hyperplane.

Before we descend from this philosophical level to deal with the actual problem
at hand, let us look how far our hope goes in the hyperbolic case (that would be
interesting when studying finiteness properties of hyperbolic Kac–Moody groups).
If .X 0C; X 0�/ is a twin building of compact hyperbolic type, we can define a metric
codistance just as we have done for Euclidean twin buildings. So if .˙ 0C; ˙ 0�/ is
a twin apartment that contains a� then the level sets of codistance from a� are
still spheres in ˙ 0C. It is also true that as a limit of spheres we get a horosphere.
What is not true is that a horosphere in hyperbolic space is the same as a subspace,
see Fig. 2.2. So even if the level set were a horosphere, the angle criterion would
be false. In other words, metric codistance looks much less promising as a Morse
function for hyperbolic twin buildings. This matches an unpublished result by
Abramenko according to which the cell stabilizer in a hyperbolic twin building can
have finiteness length less than dimension minus one (this should be compared to
the exceptions in Proposition 7 of [Abr96]):

Theorem 2.10 (Abramenko). Let .W; S/ be the Coxeter system consisting of
generators S D fs1; s2; s3g and the group W D ˝

si j s2
i D 1; .si sj /4 D 1; i ¤ j

˛
.

Let .X 0C; X 0�/ be a twin building of type .W; S/ in which every panel is contained
in exactly three chambers and let G be a group acting strongly transitively on
.X 0C; X 0�/. The stabilizer in G of a point in X 0� is not finitely generated.
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Fig. 2.2 A hyperbolic Coxeter complex. The shaded region is the star of the central vertex. The
circle is a horosphere, i.e., the level set of a Busemann function. The picture shows that the angle
criterion does not hold for Busemann functions in hyperbolic space: there are descending vertices
that include acute angles with the gradient

So we return to our Euclidean twin building and have a closer look at where the
problems occur. Let v and w be adjacent vertices of XC so that Œv; w� is an edge (look
again at Fig. 2.1). Let .˙C; ˙�/ be a twin apartment that contains Œv; w� and a� and
let aC be the point opposite a� in .˙C; ˙�/. Let L be the line in ˙C spanned by v
and w. We distinguish two cases:

In the first case the projection of aC onto L does not lie in the interior of Œv; w�.
In that case precisely one of the gradients rvh

0 and rwh0 includes an obtuse angle
with Œv; w� and the edge is indeed descending for that vertex.

In the second case aC projects into the interior of Œv; w� and both gradients
include an obtuse angle with the edge but the edge can only be descending for at
most one of them. This is the problematic case.

Consider a hyperplane H perpendicular to L that contains aC. The fact that the
projection of aC to L lies in the interior of Œv; w� can be rephrased to say that H

meets the interior of Œv; w�.
Now there is a finite number of parallelity classes of edges in ˙C. Let

H1; : : : ; Hm be the family of hyperplanes through aC that are perpendicular to
one of these classes (see Fig. 2.3). The cells in which the angle criterion fails are
precisely those that meet one of the Hi perpendicularly in an interior point.

We will resolve this problem by introducing a new height function h that
artificially flattens the problematic regions. So adjacent vertices between which the
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a+

Fig. 2.3 The setting is as in Fig. 2.1. Drawn are hyperplanes through aC that are perpendicular to
a parallelity class of edges. Every edge that meets such a hyperplane perpendicularly is problematic

gradient of h0 does not decide correctly will have same height with respect to h. We
then introduce a secondary height function to decide between points of same height.

2.4 Zonotopes

In the last section a hyperplane arrangement of problematic regions turned up.
Corresponding to a hyperplane arrangement there is always a zonotope Z (zono-
topes will be defined below, see also [McM71, Zie95]). To each of the individual
hyperplanes H corresponds a zone of the zonotope, which is the set of faces of Z

that contain an edge perpendicular to H as a summand. This suggests that zonotopes
can be helpful in flattening the height function in the problematic regions. Indeed
they will turn out to be a very robust tool for solving a diversity of problems
concerning the height function.

Let E be a Euclidean vector space with scalar product h� j �i and metric d .
Recall that the relative interior int F of a polyhedron F in E is the interior of F in
its affine span. It is obtained from F by removing all proper faces.

Let Z � E be a convex polytope. We denote by prZ the closest point-projection
onto Z, i.e., prZ x D y if y is the point in Z closest to x. The normal cone of a
non-empty face F of Z is the set

N.F / WD fv 2 E j hv j xi D max
y2Z
hv j yi for every x 2 F g.

The significance of this notion for us is (see Fig. 2.4):
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intZ

in
tF

intF + N(F )

Fig. 2.4 The decomposition given by Observation 2.11: the shaded regions are the classes of the
partition. The boundary points are drawn in black and belong to the shaded region they touch

Observation 2.11. The space E decomposes as a disjoint union

E D
[

;¤F�Z

int F CN.F /

with .F � F / \ .N.F / � N.F // D f0g and if x is written in the unique way as
f C n according to this decomposition then prZ x D f . ut

We are interested in the situation where Z is a zonotope (see Fig. 2.5). For our
purposes a zonotope is described by a finite set D � E and defined to be

Z.D/ D
X

z2D

Œ0; z�

where the sum is the Minkowski sum (C1CC2 D fv1Cv2 j v1 2 C1; v2 2 C2g). The
faces of zonotopes are themselves translates of zonotopes, they have the following
nice description:

Lemma 2.12. If F is a face of Z.D/ and v 2 int N.F / then

F D Z.Dv/C
X

z2Dhvjzi>0

z,

where Dv WD fz 2 D j hv j zi D 0g.
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D

Fig. 2.5 A two-dimensional zonotope spanned by a set of vectors D (left) and a three-dimensional
zonotope with a zone highlighted (right)

Proof. For a convex set C let C v be the set of points of C on which the linear form
hv j �i attains its maximum. By linearity

� X

z2D

Œ0; z�

�v

D
X

z2D

Œ0; z�v.

The result now follows from the fact that Œ0; z�v respectively equals f0g, Œ0; z�, or fzg
depending on whether hv j zi is negative, zero, or positive. ut

It is a basic fact from linear optimization that the relative interiors of normal
cones of non-empty faces of Z partition E, so for every non-empty face F a vector
v as in the lemma exists and vice versa.

We will make use of the following property:

Proposition 2.13. Let � be a polytope and let D be a finite set of vectors that has
the property that w � v 2 D for any two vertices v; w of � . Then for every point x

of Z.D/ there is a parallel translate of � through x contained in Z.D/.
More precisely for a vertex v of � let Ev be the set of vectors w � v for vertices

w ¤ v of � . Then there is a vertex v of � such that x CZ.Ev/ � Z.D/.

This is illustrated in Fig. 2.7.

Proof. We first show the second statement. It is not hard to see that we may assume
that D contains precisely the vectors w � v with v; w vertices of � and we do so.
Write

x D
X

z2D

˛zz (2.2)
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with 0 � ˛z � 1. We consider the complete directed graph whose vertices are the
vertices of � and label the edge from v to w by ˛w�v.

If there is a cycle in this graph, all edges of which have a strictly positive label,
we set

C WD fw� v j the cycle contains an edge from v to wg,

which is a subset of D. For z 2 C let kz be the number of edges in the cycle from a
vertex v to a vertex w with w � v D z. Let m be the minimum over the ˛z=kz with
z 2 C . We may then subtract kz �m from ˛z for every z 2 C and (2.2) remains true.
Moreover, at least one edge in the cycle is now labeled by 0. Iterating this procedure
we eventually obtain a graph that does not contain any cycles with strictly positive
labels. In particular, there is a vertex whose outgoing edges are all labeled by 0

because there are only finitely many vertices.
Let v be such a vertex. Then ˛z D 0 for z 2 Ev. Thus x D P

z2DnEv
˛zz and

x CZ.Ev/ � Z.D/.
For the first statement note that x 2 xC.��v/ � xCZ.Ev/ because xCZ.Ev/

is convex and contains all vertices of x C .� � v/. ut
We say that a finite set of vectors D is sufficiently rich for a polytope � if it

satisfies the hypothesis of Proposition 2.13, i.e., if for any two distinct vertices v and
w of � the vector w � v is in D. Trivially if D is sufficiently rich for � then it is
sufficiently rich for the convex hull of any set of vertices of � . Note that the property
in the conclusion of Proposition 2.13 is not hereditary in that way: for example, a
square contains a parallel translate of itself through each of its points, but it does not
contain a parallel translate of a diagonal through each of its points.

Proposition 2.14. If D is sufficiently rich for a polytope � then among the points of
� closest to Z.D/ there is a vertex. Moreover, the points farthest from Z.D/ form
a face of � .

Proof. Let x 2 � be a point that minimizes distance to Z.D/. Proceeding
inductively it suffices to find a point in a proper face of � that has the same distance.
Let Nx D prZ.D/ x. By Proposition 2.13 Z.D/ contains a translate � 0 of � through
Nx. All points in � \ .x � Nx C � 0/ have the same distance to Z.D/ as x. And since
this set is the non-empty intersection of � with a translate of itself, it contains a
boundary point of � .

For the second statement note that if d.Z.D/;�/ attains its maximum over
conv V in a relatively interior point then it is in fact constant on conv V by convexity.
Now if V is a set of vertices of � on which d.Z.D/;�/ is maximal, we apply the
first statement to conv V and see that an element of V is in fact a minimum and
thus d.Z.D/;�/ is constant on conv V . Since conv V contains an interior point of
the minimal face � of � that contains V , this shows that d.Z.D/;�/ is constant
on � . ut



56 2 Finiteness Properties of G.Fq Œt �/

Now let W be a finite linear reflection group of E. The action of W induces a
decomposition of E into cones, the maximal of which we call W -chambers. Clearly
if D is W -invariant then so is Z.D/. To this situation we will apply:

Lemma 2.15. Let Z be a W -invariant polytope. Let v 2 E be arbitrary and let
n D v � prZ.v/. Every W -chamber that contains v also contains n.

Proof. Let f D prZ.v/ so that v D nCf . It suffices to show that there is no W -wall
H that separates f from n, i.e., is such that f and n lie in different components of
E nH . Assume to the contrary that there is such a wall H .

Let �H 2 W denote the reflection at H . Since f is a point of Z and Z is W -
invariant, �H .f / is a point of Z as well. The vector �H .f / � f is orthogonal to
H and lies on the same side as n (the side on which f does not lie). Thus hn j
�H .f / � f i > 0 which can be rewritten as hn j �H .f /i > hn j f i. This is a
contradiction because hn j �i attains its maximum over Z in f . ut

Note that the lemma allows the case where n is contained in a wall and v is not,
but not the other way round. The precise statement will be important.

2.5 Height

With the tools from Sect. 2.4 we can in this section define the actual height function
we will be working with. Recall that we fixed a Euclidean twin building .XC; X�/

and a point a� 2 X� and that the space we are interested in is X WD XC.
Let W be the spherical Coxeter group associated to X1. Let E be a Euclidean

vector space of the same dimension as X and let W act on E as a linear reflection
group. The action of W turnsE1 into a spherical Coxeter complex. Every apartment
˙C of XC (or ˙� of X�) can be isometrically identified with E in a way that
respects the asymptotic structure, i.e., such that the induced map ˙1C ! E

1 is a
type preserving isomorphism. This identification is only unique up to the action of
W and the choice of the base point of E so we have to take care that nothing we
construct depends on the concrete identification.

Let D be a finite subset of E. We will make increasingly stronger assumptions
on D culminating in the assumption that it be rich as defined in Sect. 2.10 (page 76)
but for the moment we only assume that D is W -invariant and centrally symmetric
(D D �D). In the last section we have seen how D defines a zonotope Z WD
Z.D/. It follows from the assumptions on D that Z is W -invariant and centrally
symmetric.

Let ˙ D .˙C; ˙�/ be a twin apartment and let xC 2 ˙C and y� 2 ˙� be
points. We identify E with ˙C which allows us to define the polytope xCCZ. This
is well-defined because Z is W -invariant.

Let yC be the point opposite y� in ˙ . We define the Z-perturbed codistance
between xC and y� in ˙ to be

d�Z;˙ .xC; y�/ WD d.xC CZ; yC/, (2.3)
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Fig. 2.6 The figure shows two points xC and x� that lie in a twin apartment .˙C; ˙�/. The
halves ˙C and ˙� are identified with each other via op and with E. Each of the dashed lines
represents the Z-perturbed codistance of xC and x�

i.e., the minimal distance from a point in xC C Z to yC. This is again independent
of the chosen twin apartment:

Lemma 2.16. If ˙ and ˙ 0 are twin apartments that contain points xC and y� then
d�Z;˙ .xC; y�/ D d�Z;˙ 0.xC; y�/.

Proof. Let y0C be the point opposite y� in ˙ 0. As in Lemma 2.7 one sees that there
is a map from ˙ to ˙ 0 that takes y� as well as xC to themselves and preserves
distance and opposition. Thus it also takes yC to y0C and xC C Z to itself. This
shows that the configuration in ˙ 0 is an isometric image of the configuration in ˙ ,
hence the distances agree. ut

We may therefore define the Z-perturbed codistance of two points xC 2 XC
and y� 2 X� to be d�Z.xC; y�/ WD d�Z;˙ .xC; y�/ for any twin apartment ˙ that
contains xC and y�.

Observation 2.17. If xC and yC are two points of E then

d.xC CZ; yC/ D d.xC; yC CZ/.

In particular, d�Z.xC; y�/ D d.xC; yC CZ/ in the situation of (2.3).

This is illustrated in Fig. 2.6.
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Proof. If v is a vector in Z then d.xC C v; yC/ D d.xC; yC � v/. The statement
now follows from the fact that Z is centrally symmetric. ut

It is clear that we might as well have identified E with the negative half of a twin
apartment and taken the distance there.

We can now define the height function. The height of a point x 2 X is defined to
be the Z-perturbed codistance from the fixed point a�:

h.x/ WD d�Z.x; a�/.

Observation 2.18. The set h.vt X/ is discrete.

Proof. Let c� be a chamber that contains a� and let .˙C; ˙�/ be a twin apartment
that contains c�. Let � WD �.˙C;˙�/;c�

be the retraction onto .˙C; ˙�/ centered at
c�. Then h D hj˙C

ı �jX . And hj˙C
is clearly a proper map. So every compact

subset of R meets h.vt X/ in a finite set. ut
Proceeding as in Sect. 2.2 we next want to define a gradient for h.
Consider again a twin apartment ˙ WD .˙C; ˙�/ and let xC 2 ˙C and y� 2 ˙�

be points. Let yC be the point opposite y� in ˙ . Assume that d�Z.xC; y�/ > 0, i.e.,
that xC … yC C Z. The ray ŒxC; y�/Z;˙ is defined to be the ray in ˙C that issues
at xC and moves away from (the projection point of xC onto) yC CZ.

Proposition 2.19. Let ˙ and ˙ 0 be twin apartments that contain points xC and
y�. If d�Z.xC; y�/ > 0 then ŒxC; y�/Z;˙ D ŒxC; y�/Z;˙ 0 .

Proof. To simplify notation we identify E with ˙C in such a way that the origin of
E gets identified with xC. Let v be the vector that points from yC to xC, let f be
the vector that points from yC to the projection point of xC onto yC C Z, and let
n D v � f .

Then ŒxC; y�/ is the geodesic ray spanned by v and ŒxC; y�/Z;˙ is the geodesic
ray spanned by n. By Lemma 2.8 the ray ŒxC; y�/ is a well-defined ray in the
building, in particular, it defines a point at infinity ŒxC; y�/1 that is contained in
(the visual boundary of) every twin apartment that contains xC and y�. Hence
also the carrier � of ŒxC; y�/1 in X1C is contained in every such twin apartment.
By Lemma 2.15 the ray spanned by n lies in every chamber in which v lies, so
ŒxC; y�/1Z;˙ lies in � .

This shows that if ˙ 0 contains xC and y� then it also contains ŒxC; y�/Z;˙ . Thus
ŒxC; y�/Z;˙ D ŒxC; y�/Z;˙ 0 . ut

We call the set ŒxC; y�/Z WD ŒxC; y�/Z;˙ the Z-perturbed ray from xC to y�
where ˙ is any twin apartment that contains xC and y�. It is well-defined by the
proposition. The Z-perturbed ray Œy�; xC/Z from y� to xC is defined analogously.

The gradient rh of h is given by letting rxh be the direction in lk x defined by
Œx; a�/Z . The asymptotic gradient r1h is given by letting r1x h be the limit point
of Œx; a�/Z .
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2.6 Flat Cells and the Angle Criterion

In the last section we introduced a height function by perturbing the metric
codistance. In this section we describe in which way the perturbation influences
the resulting height function.

We start with a property that is preserved by the perturbation.

Observation 2.20. Let .˙C; ˙�/ be a twin apartment that contains a�. The
restriction of h to ˙C is a convex function. In particular, if � � X is a cell then
among the h-maximal points of � there is a vertex.

Proof. On ˙C the function h is distance from a convex set. The second statement
follows by choosing a twin apartment .˙C; ˙�/ that contains � and a�. ut

Another property that is preserved is the local angle criterion that we know from
Observation 2.9:

Observation 2.21. Let � be a geodesic that issues at a point x 2 X with h.x/ > 0.
The function h ı � is strictly decreasing on an initial interval if and only if
†x.rxh; �/ > �=2.

Proof. Let ˙ D .˙C; ˙�/ be a twin apartment that contains a� and an initial
segment of the image of � . The statement follows from the fact that h restricted
to ˙C measures distance from a convex set and rh is the direction away from
that set. ut

We now come to a phenomenon that arises from the perturbation: the existence of
higher-dimensional cells of constant height. A cell � is called flat if hj� is constant.

Observation 2.22. If � is flat then the (asymptotic) gradient of h is the same for all
points x of � . It is perpendicular to � .

Proof. Let ˙ D .˙C; ˙�/ be a twin apartment that contains a� and � . Let aC be
the point opposite a� in ˙ . If h is constant on � then the projection of � to aCCZ

is a parallel translate and the flow lines away from it are parallel to each other and
perpendicular to � . ut

The observation allows us to define the (asymptotic) gradient (r1� h)r� h at a flat
cell � to be the (asymptotic) gradient of either of its interior points. Note that since
r� h is perpendicular to � it defines a direction in lk � . We take this direction to be
the north pole of lk � and define the horizontal link lkhor � , the vertical link lkver �

and the open hemisphere link lk>�=2 � according to Sect. 2.1. The decomposition
(2.1) then reads:

lk � D lkhor � � lkver � . (2.4)

Finally we turn our attention to what we have gained by introducing the zonotope.
Let ˙C be an apartment of XC and identify E with ˙C as before. We say that D

is almost rich if it contains the vector v � w for any two adjacent vertices v and
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e

e′

Z
D

Fig. 2.7 The zonotope Z of an almost rich set D. Since D is almost rich, it is sufficiently rich for
the edge e. Hence Z contains a parallel translate of e through each of its points. For example, e0 is
a parallel translate through every point of the projection of e onto Z

w of ˙C (see Fig. 2.7). Note that this condition is independent of the apartment as
well as of the identification.

Proposition 2.23. Assume that D is almost rich and let � be a cell. Among the
h-minima of � there is a vertex and the set of h-maxima of � is a face.

The statement remains true if � is replaced by the convex hull of some of its
vertices.

Proof. Let ˙ D .˙C; ˙�/ be a twin apartment that contains � and a�. Let aC
be the point opposite a� in ˙ . The restriction of h to ˙C measures distance from
aC CZ.D/. Since D is almost rich, it is sufficiently rich for � . The statement now
follows from Proposition 2.14. ut

This implies the angle criterion:

Corollary 2.24. Assume that D is almost rich. Let v and w be adjacent vertices.
The restriction of h to Œv; w� is monotone. In particular, h.v/ > h.w/ if and only if
†v.rvh; w/ > �=2.

Proof. The restriction of h to Œv; w� is monotone because it is convex (Observa-
tion 2.20) and attains its minimum in a vertex (Proposition 2.23). Let � be the
geodesic path from v to w. Since h ı � is monotone and convex, it is descending
if and only if it is descending on an initial interval. The second statement therefore
follows from Observation 2.21. ut

A more convenient version is:

Corollary 2.25. Assume that D is almost rich. Let � be a flat cell and � � � . Then
� is the set of h-maxima of � if and only if � � � � lk>�=2 � .
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Proof. The implication) is clear from Observation 2.21. Conversely let � � � be
such that � � � � lk>�=2 � . Then †x.rxh; y/ > �=2 for every point x of � and
every point y of � not in � . To see this consider a twin apartment .˙C; ˙�/ that
contains a� and use that ˙C is Euclidean. In particular, if v is a vertex of � and
w is a vertex of � not in � then †v.rvh; w/ > �=2. Thus Corollary 2.24 implies
h.v/ > h.w/. ut

Flat cells obviously prevent h from being a Morse function. To obtain a Morse
function, we need a secondary height function that decides for any two vertices of
a flat cell � which one should come first. In fact we will actually define the Morse
function on the barycentric subdivision of X so the secondary height function will
have to decide which of � and its faces should come first.

One has to keep in mind however that the descending link of � with respect to
the Morse function should be a hemisphere complex with north pole r� h. What is
more, according to Theorem 2.3 the full horizontal part of lk v has to be descending
to obtain maximal connectivity.

In the next section we will provide the means to define a secondary height
function that takes care of this in the case where the primary height function is
a Busemann function. The connection to our height function h is that, informally
speaking, around a flat cell � it looks like a Busemann function centered at r1� h.

2.7 Secondary Height: The Game of Moves

Bux and Wortman in Sect. 5 of [BW11] have devised a machinery that for a Buse-
mann function on a Euclidean building produces a secondary Morse function such
that the descending links are either contractible or closed hemisphere complexes.
It would be possible at this point to refer to their article. However since in Chap. 3
we will need a generalization of their method to arbitrary Euclidean buildings, we
directly prove this generalization here.

Much of the argument in [BW11] is carried out in the Euclidean building
even though most of the statements are actually statements about links, which are
spherical buildings. Here we take a local approach, arguing as much as possible
inside the links.

This section is fairly independent from our considerations so far and can be used
separately, as has been done in [BKW13].

Throughout the section let X D Q
i Xi be a finite product of irreducible

Euclidean buildings. Since X is in general not simplicial, it cannot be a flag
complex, however it has the following property reminiscent of flag complexes:

Observation 2.26. If �1; : : : ; �k are cells in a product of flag-complexes and for
1 � l < m � k the cell �l _ �m exists then �1 _ � � � _ �k exists.

Proof. Write �l D Q
i � l

i and �m D Q
i �m

i . Then �l _ �m exists if and only if
�l

i _�m
i exists for every i . The statement is thus translated to a family of statements,

one for each factor, that hold because the factors are flag-complexes. ut
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Let ˇ be a Busemann function on X centered at 
 2 X1. A cell on which ˇ is
constant is called flat. If � is flat then the direction from any point of � toward 
 is
perpendicular to � (see Observation 1.61) so that it defines a point n in lk � . This
point shall be our north pole and the notions from Sect. 2.1 carry over accordingly.
In particular, the horizontal link lkhor � is the join of all join factors of lk � that are
perpendicular to n. Note that the north pole does not actually depend on ˇ but only
on 
.

We write

� ( � if � � � � lkhor �

and say for short that � lies in the horizontal link of � . Note that this, in particular,
requires � to be flat but is a stronger condition. If we want to emphasize the point
at infinity 
 with respect to which � lies in the horizontal link of � then we write
� (
 � .

The next observation deals with the interaction of 
 and its projections onto the
factors of X1.

Observation 2.27. Let � D Q
i �i and � D Q

i �i be non-empty flat cells. Let I be
the set of indices i such that d.
; X1i / ¤ �=2. Then

� (
 � if and only if �i (
i �i for every i 2 I ,

where 
i WD prX1

i

. In other words

lkhor � D .�
i2I

lkhor �i / � .�
i…I

lk �i /

where the north pole of lk �i is the direction toward 
i .

Proof. By Observation 1.60 it makes no difference whether we first take the
direction toward 
 and then project it to a join factor or we first project 
 to a join
factor and then take the direction toward that point. The result therefore follows
from its local analogue, Lemma 2.5. ut

For each factor we have:

Lemma 2.28. Let Xi be an irreducible Euclidean building and 
 2 X1i . If cells
�1, �2, and � of Xi satisfy � (
 �1 and � (
 �2 then �1 \ �2 ¤ ;.

Proof. Let ˇ be a Busemann function that defines 
. Let c be a chamber that
contains � and let v be a vertex of c with ˇ.v/ ¤ ˇ.�/. We take the quotient of
c modulo directions in �1 and �2 (i.e., we factor out the linear span of �1 � �1

and �2 � �2). The images of � , v, �1, and �2 under this projection are denoted
� , v, �1, and �2 respectively. If �1 and �2 did not meet then �1 and �2 would be
distinct points. In any case v is distinct from both. By Lemma 2.4 we would have
†�1

.�2; v/ D †�2
.�1; v/ D �=2 which is impossible. ut
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For the rest of the section all horizontal links are taken with respect to a fixed
Busemann function ˇ centered at a point 
. We say that ˇ is in general position if
it is not constant on any (non-trivial) factor of X . This is equivalent to the condition
that 
 is not contained in any (proper) join factor of X1 and in that case we also
call 
 in general position. Combining Observation 2.27 and Lemma 2.28 we see:

Observation 2.29. Assume that 
 is in general position. If � ( �1 and � ( �2

then �1 \ �2 ¤ ;. ut
The assumption that 
 be in general position is crucial as can be seen in the most

elementary case:

Example 2.30. Consider the product X1�X2 of two buildings of type QA1 (i.e. trees).
Let ˇ be such that ˇ1 2 X11 . Let v1 2 X1 be a vertex and c2 � X2 be a chamber
with vertices v2 and w2. The links of .v1; v2/ and of .v1; w2/ are of type A1 �A1 and
fv1g � c2 lies in the horizontal link of both.

We are now ready to state a technical tool that we will use throughout the section.
We will give two proofs at the end.

Proposition 2.31. The relation ( (that is, (
) has the following properties:

(i) If � ( � and � � � 0 � � then � 0 ( � .
(ii) If � ( � and � _ � 0 exists and is flat then � _ � 0 ( � _ � 0. In particular, if

� ( � and � � � 0 � � then � ( � 0.
(iii) If � ( � 0 and � 0 ( � then � ( � , i.e., ( is transitive.
(iv) If � ( �1 and � ( �2 and �1 \ �2 ¤ ; then � ( �1 \ �2.

A key observation in [BW11] is that for every flat cell � , among its faces � with
� ( � there is a minimal one provided X is irreducible. Observation 2.29 allows
us to replace the irreducibility assumption by the assumption that 
 be in general
position:

Lemma 2.32. Assume that 
 is in general position. Let � be a flat cell of X . The set
of � � � such that � ( � is an interval, i.e., it contains a minimal element �min and

� ( � if and only if �min � � � � .

In particular, � ( �min.

Proof. Let T WD f� � � j � ( �g, which is finite. If �1 and �2 are in T then
since ˇ is in general position, Observation 2.29 implies that �1 \ �2 ¤ ;. So by
Proposition 2.31(iv) �1 \ �2 2 T . Hence there is a minimal element �min, namely
the intersection of all elements of T . If � 0 satisfies �min � � 0 � � then � 0 2 T by
Proposition 2.31(ii). ut

To see what can go wrong if 
 is not in general position we need a slightly bigger
example than Example 2.30:
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Example 2.33. Let X D X1�X2 where the first factor is of type QA1 and the second
is of type QA2. The factor X2 has three parallelism classes of edges. Let ˇ be a
Busemann function that is constant on X1 and on one class of edges in X2. Consider
a square � that is flat. Its two edges in the X2-factor have a link of type A1 � A1

and � lies in the horizontal link of each of them. Hence if there were to be a �min it
would have to be the empty simplex. However every vertex of � has a link of type
A1 � A2 and � does not lie in the horizontal link of any of them.

To understand this example note that if a Busemann function is constant on some
factor then in this factor �min D ; for all cells � . But being empty does not behave
well with respect to taking products: a product is empty if one of the factors is empty,
not if all of the factors are empty. In other words the face lattice of a product of
simplices is not the product of the face lattices of the simplices. But the face lattice
of a product of simplices without the bottom element is the product of the face
lattices of the simplices without the bottom elements: F.

Q
i �i />; D Q

i F.�i />;.
Lemma 2.32 generalizes [BW11, Lemma 5.2] except for the explicit description

in terms of orthogonal projections. We will see that transitivity of ( suffices to
replace the explicit description. For the rest of the section we assume that 
 is in
general position.

We define going up by

� % � if �min D � ¤ �

and going down by

� & � if � Œ � but not � ( � .

A move is either going up or going down. The main result of this section is:

Proposition 2.34. There is a bound on the lengths of sequences of moves that only
depends on the dimensions of the Xi . In particular, no sequence of moves enters a
cycle.

The results in [BW11] for which the arguments do not apply analogously are
Observation 5.3 and the Lemmas 5.10 and 5.13. They correspond to Observa-
tion 2.36, Lemmas 2.41, and 2.43 below. For the convenience of the reader we also
give proofs of the statements that can be easily adapted from those in [BW11].
Observation 2.37 is new and simplifies some arguments.

A good starting point is of course:

Observation 2.35. There do not exist cells � and � such that � % � and � & � .

Proof. If � % � then in particular � ( � which contradicts � & � . ut
We come to the first example of how transitivity of ( replaces the explicit

description of �min:

Observation 2.36. If � ( � then �min D �min. In particular, .�min/min D �min.



2.7 Secondary Height: The Game of Moves 65

Proof. We have � ( �min and � � � � �min so by Proposition 2.31(i) � ( �min,
i.e., �min � �min. Conversely � ( � ( �min so by Proposition 2.31(iii) � ( �min,
i.e., �min � �min. ut

We call a cell � significant if �min D � .

Observation 2.37. If � is significant and � � � is a proper flat coface then either
� % � or � & � .

Proof. If � ( � then �min D �min D � by Observation 2.36 so � % � . Otherwise
� & � . ut

The next two lemmas show transitivity of% and& so that we can restrict our
attention to alternating sequences of moves.

Lemma 2.38. It never happens that �1 % �2 % �3. In particular,% is transitive.

Proof. Suppose �1 % �2 % �3. Then by Observation 2.36 �1 D �min
2 D

.�min
3 /min D �min

3 D �2 contradicting �1 ¤ �2. ut
Lemma 2.39. The relation& is transitive.

Proof. Assume �1 & �2 & �3 but not �1 & �3. Clearly �1 � �3. So �1 ( �3 and
by Proposition 2.31(i) �2 ( �3, contradicting �2 & �3. ut

Now we approach the proof that the length of an alternating sequences of moves
is bounded.

Lemma 2.40. If

�1 % �1 & �2

then

�1 D .�1 _ �2/
min and �1 _ �2 & �2.

In particular, �1 % �1 _ �2 & �2 unless �1 & �2.

Proof. By Proposition 2.31(i) �1 _ �2 ( �1 so �1 D .�1 _ �2/
min by Observa-

tion 2.36. And �1 D �min
1 6� �2 whence �2 Œ �1 _ �2 so that �1 _ �2 & �2. ut

Lemma 2.41. If � � � are flat cells then .�min _ �/ � � � lkver � .

Proof. Write .�min _ �/ � � D .�v � �/ _ .�h � �/ with �v � � � lkver � and
�h � � � lkhor � . We want to show that �v D �min _ � .

Since �h ( � , Proposition 2.31(ii) implies

�min _ � D �h _ �v ( � _ �v D �v.

And since � ( �min _ � , Proposition 2.31(iii) implies � ( �v. Thus �min � �v as
desired. ut
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Corollary 2.42. If

�1 % �1 & �2 % �2

then �2 _ �1 exists.

Proof. By assumption �2 � �2 � lkhor �2. Since �1 D �min
1 , Lemma 2.41 shows that

.�1 _ �2/ � �2 � lkver �2. Hence .�2 � �2/ _ ..�1 _ �2/ � �2/ exists and so does
�1 _ �2. ut
Lemma 2.43. If

�1 % �1 & �2 % �2

then .�2 _ �1/
min D �1.

Proof. By assumption �2 ( �2 so Proposition 2.31(ii) implies that �2 _ �1 (
�2 _ �1. Moreover, �1 ( �2_�1 so .�2_�1/min D �min D �1 by Observation 2.36.
Thus .�2 _ �1/

min D �1 again by Observation 2.36. ut
Lemma 2.44. An alternating chain

�1 % �1 & �2 % �2

can be shortened to either

�1 % �1 _ �2 & �2 or �1 % �1 & �2.

Proof. We know by assumption that �min
2 D �2 and Lemma 2.43 implies .�1 _

�2/
min D �1. Since by Observation 2.35 �1 ¤ �2 this implies �2 ¤ �1 _ �2 so that

�1 _ �2 & �2.
If �1 ¤ �1 _ �2 then �1 % �1 _ �2. If �1 D �1 _ �2 then �1 � �1 � �2 so that

�1 & �2. ut
Corollary 2.45. No sequence of moves enters a cycle.

Proof. Since% and& are transitive by Lemma 2.38 respectively 2.39, a cycle of
minimal length must be alternating. Thus by Lemma 2.44 it can go up at most once.
But then it would have to be of the form ruled out by Observation 2.35. ut
Lemma 2.46. If

�1 % �1 & � � � & �k�1 % �k�1 & �k

then �1 _ � � � _ �k exists.

Proof. First we show by induction that �1 _ �k exists. If k D 2 this is obvious.
Longer chains can be shortened using Lemma 2.44.
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Applying this argument to subsequences we see that �i _ �j exists for any two
indices i and j . So by Observation 2.26 �1 _ � � � _ �k exists. ut
Proof of Proposition 2.34. We first consider the case of alternating sequences. By
Lemma 2.46 for any alternating sequence of moves, the join of the lower elements
(to which there is a move going down or from which there is a move going up)
exists. This cell has at most N WD Q

i .2
dim.Xi /C1 � 1/ non-empty faces. Since by

Corollary 2.45 the alternating sequence cannot contain any cycles, N is also the
maximal number of moves.

The maximal number of successive moves down is dim.X/ DP
i dim.Xi/ while

there are no two consecutive moves up by Lemma 2.38.
So an arbitrary sequence of moves can go up at most N times and can go down

at most dim.X/ �N times making .dim.X/C 1/ �N a bound on its length (counting
moves, not cells). ut

2.7.1 Proof of Proposition 2.31 Using Spherical Geometry

In this paragraph we prove Proposition 2.31 using spherical geometry. This proof
has the advantage of being elementary but on the other hand it is quite technical.
The main tool will be the equivalence (i)” (ii) of Lemma 2.4:

Reminder 2.47. Let 
 be a spherical building with north pole n. Let v 2 
 be a
vertex. These are equivalent:

(i) v 2 
hor.
(ii) d.v; w/ D �=2 for every non-equatorial vertex w adjacent to v.

We will repeatedly be in the situation where we have a cell � and two adjacent
vertices v and w and want to compare†� .� _v; � _w/ to d.v; w/. In the case where
� is a vertex, this is essentially a two-dimensional problem and comes down to a
statement about spherical triangles. For higher dimensional cells it is possible to
consider the projections of v and w onto � and obtain a statement about spherical
3-simplices. The argument then becomes a little less transparent. For that reason,
we prefer to carry out an induction on cells of the Euclidean space that allows us to
keep the spherical arguments two-dimensional.

Before we start with the actual proof, we need to record one more fact. Recall
that if X is a spherical or Euclidean building and � � � are cells then the link of �

in X can be identified with the link of � � � in lk � .

Observation 2.48. Let ˇ be a Busemann function on X and let � � � be cells that
are flat with respect to ˇ. Let n� and n� be the north poles determined by ˇ in lk �

and lk � respectively. The identification of lk � with lk.� � �/ identifies n� with the
direction toward n� .

Moreover, a vertex v adjacent to � � � in lk � is equatorial in lk � if and only if
it is equatorial as a vertex of lk.� � �/.
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Proof. The first statement is clear. For the second note that � � � is equatorial in
lk � , i.e., that d.n� ; � � �/ D �=2. Let p be a point in � � � that is closest to v
(if d.v; �/ < �=2 this is the unique projection point, otherwise any point). Then
the distance in lk � between the direction toward v and the direction toward n� is
†p.v; n� /. Now Observation 1.5(ii) and (iii) imply that v is equatorial if and only if
†p.v; n� / D �=2. ut

Now we start with the proof of Proposition 2.31. The first statement is trivial.

Proof of Proposition 2.31 (ii). Let 
 be the link of � with the north pole given by

. Assume first that � is a facet of � 0 _ � . Let � 0 D .� _ � 0/ � � , which is a vertex.

We identify lk.� _ � 0/ with lk � 0. By Observation 2.48 this identification
preserves being equatorial. So we may take a vertex w of � � � other than � 0
(that corresponds to a vertex of .� _ � 0/ � .� _ � 0/) and a non-equatorial vertex
v adjacent to it (corresponding to a non-equatorial vertex of lk � _ � 0) and by
Reminder 2.47 our task is to show that †� 0.v; w/ D �=2 (meaning that the distance
of the corresponding vertices in lk � _ � 0 is �=2).

Since by assumption � ( � , we know by Reminder 2.47, that d.v; w/ D �=2.
Thus the triangle with vertices v, w, and � 0 satisfies d.v; w/ D �=2 and the angle

at � 0 can be at most �=2 because we are considering cells in a Coxeter complex.
Hence by Observation 1.5(i) it has to be precisely �=2 as desired.

For the general case set � 00 WD � 0 _ � and inductively take � 0iC1 to be a facet of
� 0i that contains � until � 0n D � for some n.

By assumption � D � _ � 0n ( � _ � 0n D � and the above argument applied to
� 0n�1 shows that � _� 0n�1 ( � _� 0n�1. Proceeding inductively we eventually obtain
� _ � 00 ( � _ � 00 which is what we want. ut
Proof of Proposition 2.31 (iii). Let 
 be the link of � and let � 0 D � 0 � � .

We identify lk � 0 with lk � 0. Let w be a vertex of � � � that is not contained
in � 0 (and corresponds to a vertex of � � � 0) and let v be a non-equatorial vertex
adjacent to it (corresponding to a non-equatorial vertex of lk � 0). From the fact that
� ( � 0 we deduce using Reminder 2.47 that †.� 0 _ v; � 0 _ w/ D �=2. Similarly,
d.� 0; v/ D �=2 because � 0 ( � . We want to show that d.v; w/ D �=2.

Let p be the projection of w to � 0 if it exists or otherwise take any point of � 0.
Then Œp; w� is perpendicular to � 0 by the choice of p and Œp; v� is perpendicular to
� 0 because d.v; � 0/ D �=2. Thus †.� 0 _ v; � 0 _ w/ D †p.v; w/.

We consider the triangle with vertices v, w, and p. We know that d.v; p/ D
�=2 and that †p.v; w/ D �=2. From this we deduce that d.v; w/ D �=2 using
Observation 1.5(ii). ut
Proof of Proposition 2.31 (iv). We assume first that �1 \ �2 is a facet of both, �1

and �2. Because we have already proven transitivity of ( it suffices to show that
�1 ( �1 \ �2.

Let 
 be the link of �1 \ �2 and let �i D �i � .�1 \ �2/ for i 2 f1; 2g. Note that
�1 and �2 are distinct vertices. Let v be a non-equatorial vertex in 
 adjacent to �1.

Using our criterion Reminder 2.47, we have to show that d.v; �1/ D �=2. We
identify lk �1 with lk �1 and lk �2 with lk �2. Since v corresponds to a non-equatorial
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vertex in both of lk �1 and lk �2, the criterion implies that †�2
.v; �1/ D �=2 D

†�1
.v; �2/. So the statement follows at once from Observation 1.5(iv).

Now we consider the more general case where �1 \ �2 is a facet of �2 but need
not be a facet of �1. Set �0

2 WD �1 _ �2 and let �iC1
2 be a facet of �i

2 that contains
�2 until �n

2 D �2 for some n. Also let �i
1 D �1 \ �i�1

2 for 1 � i � n and note
that �i

1 D �i�1
1 \ �i�1

2 . Then �i
1 \ �i

2 is a facet of �i
1 and of �i

2 for 1 � i � n. By
assumption � ( �1 and Proposition 2.31(ii) shows that � ( �i

2 for 0 � i � n.
Thus the argument above applied inductively shows that �1 ( �1 \ �2.

An analogous induction allows to drop the assumption that �1 \ �2 be a facet
of �2. ut

2.7.2 Proof of Proposition 2.31 Using Coxeter Diagrams

In this paragraph we prove Proposition 2.31 using Coxeter diagrams. We use the
equivalence (i)” (iii) of Lemma 2.4:

Reminder 2.49. Let 
 be a spherical building with north pole n. Let v 2 
 be a
vertex and let c be a chamber that contains v. These are equivalent:

(i) v 2 
hor.
(ii) typ v and typ w lie in different connected components of typ 
 for every non-

equatorial vertex w of c.

As in the last paragraph, we need a statement about the compatibility of north-
poles of links of cells that are contained in each other. Let ˇ be a Busemann function
on X , let � 0 � � be flat cells (with respect to ˇ). Then ˇ defines a north pole in
lk � 0 as well as in lk � . If � is a coface of � 0 then � � � is equatorial if and only if �

is flat if and only if � � � 0 is equatorial.
In the above situation typ lk � 0 can be considered as the sub-diagram obtained

from typ lk � by removing typ � 0 (or more precisely typ.� 0 � �/). What we have
just seen is:

Observation 2.50. Let c be a chamber that contains flat cells � 0 � � . If typ v D
typ v0 for vertices v of c � � and v0 of c � � 0 then v is equatorial if and only if
v0 is. ut
So once we have chosen a chamber c and a non-empty flat face � , we may think of
being equatorial as a property of the nodes of typ lk � .

We come to the proof of Proposition 2.31. The first statement is again trivial.

Proof of Proposition 2.31 (ii). Let c be a chamber that contains � _ � 0. Let v be a
non-equatorial vertex of c � � _ � 0 and let w be a vertex of .� _ � 0/ � .� _ � 0/.
Note that typ.lk � _ � 0/ is obtained from typ lk � by removing typ � 0.

Assume that there were a path in typ lk.� _� 0/ that connects typ w to typ v. Then
this would, in particular, be a path in typ lk � from a vertex of typ.� � �/ to the
type of a non-equatorial vertex. But by Reminder 2.49 there cannot be such a path
because � ( � . Hence Reminder 2.49 implies that � _ � 0 ( � _ � 0. ut
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Proof of Proposition 2.31 (iii). Let c be a chamber that contains � , let v be a non-
equatorial vertex of c � � and let w be a vertex of � � � . Note that typ lk � 0 is
obtained from typ lk � by removing typ � 0.

Assume that there were a path in typ lk � from typ v to typ w. Then either this
path does not meet typ � 0, thus lying entirely in typ lk � 0 and therefore contradicting
� ( � 0 by Reminder 2.49. Or there would be a first vertex in the path that lies
in typ � 0, say typ w0. Then the subpath from typ v to typ w0 would lie in typ lk � and
thus contradict � 0 ( � by Reminder 2.49. Since no such path exists, Reminder 2.49
implies that � ( � . ut
Proof of Proposition 2.31 (iv). Let c be a chamber that contains � , let v be a non-
equatorial vertex of c�.�1\�2/ and let w be a vertex of ��.�1\�2/. Again typ lk �i

is obtained from typ lk.�1\�2/ by removing typ �i . Note also that typ.�1�.�1\�2//

and typ.�2 � .�1 \ �2// are disjoint.
Assume that there were a path in typ lk.�1\�2/ from typ v to typ w. Let typ w0 be

the first vertex in typ.�1 � .�1 \ �2//[ typ.�2 � .�1 \ �2// that the path meets and
assume without loss of generality that typ w0 2 typ.�1�.�1\�2//. Then the subpath
from typ v to typ w0 lies entirely in typ lk �2 contradicting � ( �2 by Reminder 2.49.
Hence no such path exists and Reminder 2.49 implies that � ( .�1 \ �2/. ut

2.8 The Morse Function

In this section we define the Morse function we will be using. Recall from Sect. 2.5
that the definition of h involves a set D of vectors in E. We assume from now on
that this set is almost rich.

Then Proposition 2.23 implies that for every cell � , the set of points of maximal
height form a cell. We denote this cell by O� and call it the roof of � . The roof of any
cell is clearly a flat cell and the roof of a flat cell is the cell itself.

If � is flat, we can apply the results of the last section with respect to the point
at infinity r1� h. Note that the condition that r1� h be in general position is void
because X is irreducible. Thus by Lemma 2.32 a flat cell � has a unique face �min

that is minimal with the property that � lies in its horizontal link.
We define the depth dp � of a cell � as follows: if � is flat then dp � is the

maximal length of a sequence of moves (with respect to r1� h) that starts with � ,
which makes sense by Proposition 2.34. If � is not flat then dp � WD dp O� � 1=2.

Note that if � is a coface that is flat with respect to a Busemann function centered
at r1� h then it still need not be flat with respect to h. But the important thing is that
if � is flat with respect to h then r1� h D r1� h so, in particular, � is flat with respect
to the Busemann function centered at that point. Therefore � and � share the same
notion of moves. In particular:

Observation 2.51. If � � � are flat and there is a move � % � then dp � > dp � .
If there is a move � & � then dp � > dp � . ut
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Let VX be the flag complex of X . Vertices of VX are cells of X . The Morse function

f on VX is defined to be

f W vt VX ! R � R �R

� 7! .max hj� ; dp �; dim �/

where the range is ordered lexicographically.

Cells of VX are flags of X so, in particular, if � and � 0 are adjacent vertices in
VX then either � Œ � 0 or � 0 Œ � . So dim � ¤ dim � 0, which shows that f takes

different values on any two adjacent vertices of f . Note further that max hj� is
the height of some vertex of � (Observation 2.20). So the first component of the
image of f is h.vt X/ which is discrete by Observation 2.18. Dimension and, by
Proposition 2.34, depth can take only finitely many values. Thus Observation 1.28
shows that the image of f is order-isomorphic to Z and thus f is indeed a Morse
function in the sense of Sect. 1.4.

We identify the flag complex VX with the barycentric subdivision of X by
identifying � with its barycenter V� . Note however, that h. V�/ only depends on � ,
not on the point V� , so instead of V� we might as well take any other interior point
of � . The reason for this identification is to make the following distinction: if we
write lk � , we mean the link of the cell � in X . If we write lk V� , we mean the link
of the vertex V� in VX . Here lk V� is the combinatorial link, i.e., the poset of cofaces

of V� (which can be identified to the full subcomplex of VX of vertices adjacent to V�).
A join decomposition of lk V� is understood to be a join decomposition of simplicial
complexes.

Let � � X be a cell. The link of its barycenter in X decomposes as lkX V� D
@� � lk � by (1.2). Passage to the barycentric subdivision VX induces a barycentric
subdivision on each of the join factors:

lk VX V� D lk@ V� � lkı V� (2.5)

where lk@ V� is the barycentric subdivision of @� and called the face part and lkı V�
is the barycentric subdivision of lk � and called the coface part of lk V� and the join
is a simplicial join.

The descending link lk# V� of a vertex V� is the full subcomplex of lk V� of
vertices V� 0 with f . V� 0/ < f . V�/ (see Sect. 1.4). Since the descending link is a full
subcomplex, the decomposition (2.5) immediately induces a decomposition

lk# V� D lk#@ V� � lk#ı V� (2.6)

into the descending face part lk#@ V� D lk# V� \ lk@ V� and the descending coface part

lk#ı V� D lk# V� \ lkı V� .
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2.9 More Spherical Subcomplexes of Spherical Buildings

Before we analyze the descending links of our Morse function and finish the proof
of Theorem 2.1, we have to extend the class of subcomplexes of spherical buildings
which we know to be highly connected slightly beyond hemisphere complexes.

Observation 2.52. Let M WD M m
� be some model space. Let P �M be a compact

polyhedron that is not all of M . Let U �M be a proper open and convex subset. If
P \ U ¤ ; then P n U strongly deformation retracts onto .@P / n U .

Remark 2.53. The statement about compact polyhedra may seem a little strange. It
applies to polytopes if � � 0 and to arbitrary polyhedra that are not the whole space
if � > 0. This ensures that the boundary of P actually bounds P .

Proof. Since U is open, the intersection U \P contains a (relatively) interior point
of P . Let x be such a point. The geodesic projection P ! @P away from x takes
P n U onto .@P / n U because U is convex. ut
Proposition 2.54. Let � be an M�-polytopal complex. Let U � � be an open
subset of � that intersects each cell in a convex set. Then there is a strong
deformation retraction

�W� n U ! �.� n U /

from the complement of U onto the subcomplex supported by that complement.

Proof. The proof is inductively over the skeleta of �: For i 2 N we show that
�.i/ nU strongly deformation retracts onto �.i/.�.i/ nU /[ .�.i�1/ nU /. For i D 0

there is nothing to show. For i > 0 we apply Observation 2.52 to each i -cell that
meets U but is not contained in it to obtain the desired strong deformation retraction.

It is now a matter of routine to deduce the statement, cf. for example [Hat01,
Proposition 0.16]: If Hi is the strong deformation retraction from �.i/.�.i/ n U / to
�.i/.�.i/nU /[.�.i�1/nU /, we obtain a deformation retraction H from �nU onto
�.� n U / by performing Hi in time Œ1=2i ; 1=2i�1�. Continuity in 0 follows from
the fact that for a cell � � �.i/ the retraction H is constant on � � Œ0; 1=2i �. ut
Proposition 2.55. Let 
 be a spherical building and let c � 
 be a chamber. Let
U � 
 be an open subset such that for every apartment ˙ that contains c, the
intersection U \ ˙ is a proper convex subset of ˙ . Then the set E WD 
 n U as
well as the subcomplex 
.E/ supported by it are .dim 
 � 1/-connected.

Proof. First note that E and 
.E/ are homotopy equivalent by Proposition 2.54, so
it suffices to prove the statement for E .

We have to contract spheres of dimensions up to dim 
 � 1. Let S � E be such
a sphere. Since S is compact in 
, it is covered by a finite family of apartments
that contain c. We apply [vH03, Lemma 3.5] to obtain a finite sequence ˙1; : : : ; ˙k

of apartments that satisfies the following three properties: each ˙i contains c, the
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sphere S is contained in the union
S

i ˙i , and for i � 2 the intersection ˙i \ .˙1[
� � � [˙i�1/ is a union of roots, each of which contains c.

For 1 � i � k set �i WD ˙1[ � � �[˙i so that S � �k nU . Then �i is obtained
from �i�1 by gluing in the set Ai WD ˙i n .˙1 [ � � � [˙i�1/ along its boundary.
Note that Ai is an n-dimensional polyhedron.

Now we study how the inductive construction above behaves when U is cut out.
To start with, �1 n U D ˙1 n U is contractible or a .dim 
/-sphere. The space
�i n U is obtained from �i�1 n U by gluing in A n U along .@A/ n U . If A

and U are disjoint then this is gluing in an n-cell along its boundary. Otherwise
Observation 2.52 implies that A n U deformation retracts onto .@A/ n U , so that
�inU is a deformation retract of �i�1nU . In the end, the sphere S can be contracted
inside �k n U . ut
Remark 2.56. Proposition 2.55 has some interesting special cases:

(i) In the case where U D ;, the proposition becomes the Solomon–Tits theorem
that a spherical building is spherical (in the topological sense).

(ii) In the case where U is the open �=2-ball around a point of c, it becomes
Schulz’s statement that closed hemisphere complexes are spherical (Theo-
rem 2.3).

(iii) In fact Schulz proved the proposition in the case where U is convex (see
[Sch13, Theorem A]) and our proof is an extension of his.

2.10 Descending Links

It remains to show that the descending link of every vertex of VX is .n�1/-connected.
To do so we have to put all the bits that we have amassed in the last sections together.

Using (2.6), we can study the face part and the coface part of VX separately.
Recall that a cell on which h is constant is called flat. A flat cell � has a face

�min and we say that � is significant if � D �min. A cell � that is not significant,
i.e., either not flat or flat but not equal to �min is called insignificant. Using that �

coincides with its roof O� if and only if it is flat we can say more concisely that � is
insignificant if � ¤ O�min. These cells are called so because:

Lemma 2.57. If � is insignificant then the descending link of V� is contractible. More
precisely lk#@ V� is already contractible.

Proof. Consider the full subcomplex � of lk@ V� of vertices V� with O�min 6� � Œ
� : this is the barycentric subdivision of @� with the open star of O�min removed.
Therefore it is a punctured sphere and, in particular, contractible. We claim that
lk#@ V� deformation retracts onto �.

So let V� be a vertex of �. Then

max hj� � max hj� D max hjO�min
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so h either makes V� descending or is indifferent. As for depth, the fact that O�min 6� �

implies of course that O�min 6� O� . So there is a move O� & O� which implies dp O� <

dp O� � 1=2. Therefore

dp � � dp O� < dp O� � 1=2 � dp �

so V� is descending. This shows that � � lk#@ V� .
On the other hand . O�min/ı is not descending: Height does not decide because

max hjO�min D max hjO� D max hj� . As for depth, we have

dp � � dp O� � dp O�min.

If � is not flat then the first inequality is strict. If � is flat, then there is a move
O�min % O� D � so the second inequality is strict. In either case . O�min/ı is ascending.

So geodesic projection away from . O�min/ı defines a deformation retraction of
lk#@ V� onto �. ut
Lemma 2.58. If � is significant then all of lk@ V� is descending. So lk#@ V� is a
.dim � � 1/-sphere.

Proof. Let � Œ � be arbitrary. We have max hj� D max hj� because � is flat.
Moreover � Œ � D �min so that, in particular, �min 6� � . Hence there is a move
� & � which implies dp � > dp � so that V� is descending. ut

Let � be a significant cell. To study the coface part lkı V� it is tempting to argue
that lk � decomposes as lkver � � lkhor � by (2.4) and that this decomposition induces
a decomposition of lkı V� . However this is impossible simplicially and metrically at
least not clear, because lkı V� contains barycenters of cells in lk � that have vertical
as well as horizontal vertices. We will see that, as a consequence of our choice of
height function, the descending coface part does in fact decompose as a join of its
horizontal and vertical part. Even better: the set lk#ı V� is a subcomplex of lk � and
that subcomplex decomposes into its horizontal and vertical part.

Recall Observations 2.36 and 2.37:

Reminder 2.59. (i) If � is flat and �min � � � � then �min D �min.
(ii) If � is significant and � � � is flat then there is either a move � % � or a move

� & � .

Proposition 2.60. Let � be significant. The descending coface part lk#ı V� is a
subcomplex of lk � . That is, for cofaces � � � 0 � � , if V� is descending then V� 0
is descending.

Proof. Let � � � 0 � � and assume that f . V�/ < f . V�/. By inclusion of cells we
have

max hj� � max hj� 0 � max hj�
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and since V� is descending max hj� � max hj� so equality holds. Clearly dim � >

dim � so since V� is descending we conclude dp � < dp � . We have inclusions of flat
cells

O� � O� 0 � � .

If the second inclusion is equality then � 0 ¤ � D O� 0 so dp � 0 < dp O� 0 D dp �

and V� 0 is descending. Otherwise O� is a proper coface of � so by Reminder 2.59(ii)
there is a move � % O� or a move O� & � . In the latter case we would have dp � �
dp O� � 1=2 > dp � contradicting the assumption that V� is descending. Hence the
move is � % O� , that is, � D O�min. It then follows from Reminder 2.59(i) that also
O� 0min D � so that there is a move � % O� 0. Thus dp � 0 � dp O� 0 < dp O� . ut

Instead of studying the descending part of the subdivision lk#ı V� of the link of a
significant cell � we may now study the descending link lk# � of � of all cells � ��

with f .�/ < f .�/.
We define the horizontal descending link lkhor #� D lkhor � \ lk# � and the

vertical descending link lkver #� D lkver � \ lk# � . Beware that we do not know
yet whether lk# � decomposes as a join of these two subcomplexes. One inclusion
however is clear: lk# � � lkhor #� � lkver #� .

Lemma 2.61. If � is significant then lkver #� is an open hemisphere complex with
north pole r� h.

Proof. Let lk>�=2 � denote the open hemisphere complex with north pole r� h. By
Corollary 2.25 lk>�=2 � � lkver #� .

Conversely assume that � � � is such that � � � contains a vertex that includes
a non-obtuse angle with r� h. Then either

max hj� D max hjO� > max hj�
or O� is a proper flat coface of � . In the latter case since O� does not lie in the horizontal
link of � there is a move O� & � so that

dp � � dp O� � 1

2
> dp � .

In both cases � is not descending. ut
Observation 2.62. If � is significant and � � � is such that � � � � lkhor � then
these are equivalent:

(i) � is flat.
(ii) � is descending.

(iii) hj� � h.�/.
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Proof. If � is flat then clearly max hj� D h.�/. Moreover �min D �min by
Reminder 2.59(i). Thus there is a move � D �min D �min % � so that dp � > dp �

and � is descending.
If � is not flat then it contains vertices of different heights. Since � � � lies

in the horizontal link it in particular includes a right angle with r� h. So by the
angle criterion Corollary 2.24 no vertex has lower height than � . Hence max hj� >

max hj� and � is not descending. ut
Proposition 2.63. If � is significant then the descending link decomposes as a join

lk# � D lkhor #� � lkver #�

of the horizontal descending link and the vertical descending link.

Proof. Let �h and �v be proper cofaces of � such that �h lies in the horizontal
descending link, �v lies in the vertical descending link and � WD �h _ �v exists.
We have to show that � is descending.

By Lemma 2.61 �v includes an obtuse angle with r� h so by Proposition 2.25
O�v D � . On the other hand �h is flat by Observation 2.62. Thus O� D �h so that
dp � D dp �h � 1=2 and � is descending because �h is. ut

Before we analyze the horizontal descending link, we strengthen our assumption
on D: we say that D is rich if v�w 2 D for any two vertices v and w whose closed
stars meet.

We fix a significant cell � � X and a twin apartment .˙C; ˙�/ that contains �

and a�. We set

L" WD fv 2 vt ˙C j v is adjacent to � and h.v/ > h.�/g

and let QA be the convex hull of L".

Observation 2.64. Assume that D is rich. Then min hj QA > h.�/.

Proof. Since D is rich it is sufficiently rich for QA. So by Proposition 2.14 h attains
its minimum over QA in a vertex, i.e. in a point of L". But the elements of L" all
have height strictly larger than h.�/. ut

We assume from now on that D is rich. Since QA is closed, there is an " > 0 such
that the "-neighborhood of QA in ˙C still contains no point of height h.�/. Fix such
an " and denote the open "-neighborhood of QA by QB . Let B be the set of directions
of lk˙C

� toward QB .

Observation 2.65. The set B is open, convex and is such that a coface � of � that
is contained in ˙C contains a point of height strictly above h.�/ if and only if � ��

meets B . ut
We want to extend this statement to the whole horizontal link of � . To do so, we

fix a chamber c� � ˙� that contains a� and set cC WD pr� c�. We set ˙ WD lk˙C
�

and c WD cC � � .



2.10 Descending Links 77

Observation 2.66. Let .˙ 0C; ˙ 0�/ be a twin apartment that contains � and c�. Then
lk˙ 0

C

� is an apartment of lk � and every apartment of lk � that contains c is of this
form.

Proof. For the first statement we observe that cC is contained in .˙ 0C; ˙ 0�/ by
Fact 1.62(ii).

Let ˙ 0 be an apartment of lk � that contains c. Let d � � be the chamber such
that d � � is opposite c. Let .˙ 0C; ˙ 0�/ be a twin apartment that contains d and
c�. Then lk˙ 0

C

� contains the opposite chambers d � � and cC � � and therefore
equals ˙ . ut
Observation 2.67. Let .˙ 0C; ˙ 0�/ be a twin apartment that contains a�. Every
isomorphism .˙ 0C; ˙ 0�/! .˙C; ˙�/ that takes a� to itself preserves height. ut

This observation is of course of particular interest to us in the situation where
.˙ 0C; ˙ 0�/ contains � and the map takes � to itself. The restriction of the retraction
�.˙C;˙�/c�

to .˙ 0C; ˙ 0�/ is such a map.
Let � WD �˙;c be the retraction of lk � onto ˙ centered at c.

Observation 2.68. Let .˙ 0C; ˙ 0�/ be a twin apartment that contains c� and � and
let ˙ 0 D lk˙ 0

C

� . The diagram

(Σ ′
+,Σ ′

−)
ρ(Σ+,Σ−),c−� (Σ+,Σ−)

Σ ′
� ρΣ,c � Σ,

�

where the vertical maps are the projections onto the link, commutes. ut
Let U WD ��1.B/.

Lemma 2.69. The set U is open and meets every apartment of lk � that contains
c in a convex set. Moreover it has the property that if � is a coface of � such that
� � � � lkhor � then � is flat if and only if � � � is disjoint from U .

Proof. That U is open is clear from continuity of �. If ˙ 0 is an apartment of lk �

that contains c then U \˙ 0 D �j�1
˙ 0 .B/ is the isometric image of B which is convex.

Let � � � be such that � � � � lkhor � . Let ˙ 0 be an apartment that contains
� and c. By Observation 2.66 there is a twin apartment .˙ 0C; ˙ 0�/ that contains c�
and � such that ˙ 0 D lk˙ 0

C

� . Moreover by Observation 2.68 � is induced by the
retraction �.˙C;˙�/;c�

which is height preserving by Observation 2.67. Hence � is
flat if and only if �.˙C;˙�/;c�

.�/ is. And � � � meets U if and only if �.� � �/

meets B . Thus the statement follows from Observation 2.65. ut
Lemma 2.70. If � is significant then lkhor #� is spherical.
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Proof. Let � � � be such that � �� � lkhor � . By Observation 2.62 � is descending
if and only if it is flat. And by Lemma 2.69 this is the case if and only if � is disjoint
from U . In other words, the horizontal descending link is the full subcomplex of the
horizontal link supported by the complement of U . The statement now follows from
Proposition 2.55 where the building is taken to be lkhor � , the chamber is c\ lkhor � ,
and the subset is U \ lkhor � . ut
Proposition 2.71. Assume that D is rich. If � is significant then the descending link
lk# V� is spherical. If the horizontal link is empty, it is properly spherical.

Proof. The descending link decomposes as a join

lk# V� D lk#@ V� � lkver #� � lkhor #�

of the descending face part, the vertical descending link, and the horizontal
descending link by (2.6), Propositions 2.60 and 2.63. The descending face part is a
sphere by Lemma 2.58. The descending vertical link is an open hemisphere complex
by Lemma 2.61 which is properly spherical by Theorem 2.3. The horizontal
descending link is spherical by Lemma 2.70. ut

2.11 Proof of the Main Theorem for G.FqŒt�/

After we have established the sphericity of the descending links, the finiteness length
of G follows by standard arguments. We want to apply Brown’s criterion. For the
finiteness of cell stabilizers the following will be useful:

Lemma 2.72. Let .XC; X�/ be a locally finite twin building and let �C � XC and
�� � X� be cells. The pointwise stabilizer of �C [ �� in the full automorphism
group of .XC; X�/ is finite.

Proof. If cC and c� are opposite chambers then the pointwise stabilizer of cC, c�
and all chambers adjacent to c� is trivial by Theorem 5.205 of [AB08] which also
applies to twin buildings by Remark 5.208. Since the building is locally finite, this
implies that the stabilizer of two opposite chambers is finite. Local finiteness then
also implies that the stabilizer of any two cells in distinct halves of the twin building
is finite. ut
Theorem 2.1. Let .XC; X�/ be an irreducible, thick, locally finite Euclidean twin
building of dimension n. Let E be a group that acts strongly transitively on
.XC; X�/ and assume that the kernel of the action is finite. Let a� 2 X� be a
point and let G WD Ea�

be the stabilizer of a�. Then G is of type Fn�1 but not of
type Fn.



2.11 Proof of the Main Theorem for G.Fq Œt �/ 79

Proof. Set X WD XC and consider the action of G on the barycentric subdivision
VX . We want to apply Corollary 1.23 and check the premises. The space VX is CAT(0)

hence contractible.
The stabilizer of a cell � of X in G is the simultaneous stabilizer of � and the

carrier of a� in E . Since the stabilizer of these two cells in the full automorphism
group of the twin building is finite (by the lemma above) and the action of E has

finite kernel, this stabilizer is finite. That the stabilizer of a cell of VX is then also
finite is immediate.

Let f be the Morse function on VX as defined in Sect. 2.8 based on a rich set
of directions D. Its sublevel sets are G-invariant subcomplexes. The group G acts
transitively on points opposite a� by strong transitivity of E . Since X is locally
finite, this implies that G acts cocompactly on any sublevel set of f .

The descending links of f are .dim n � 1/-spherical by Lemma 2.57 and
Proposition 2.71. If � is significant then the descending link of V� is properly
.dim n� 1/-spherical provided the horizontal part is empty. This is the generic case
and happens infinitely often.

Applying Corollary 1.27 we see that the induced maps �i .Xk/! �i .XkC1/ are
isomorphisms for 0 � i < n� 2 and are surjective and infinitely often not injective
for i D n � 1. So it follows from Corollary 1.23 that G is of type Fn�1 but not Fn.

ut
Now we make the transition to S -arithmetic groups based on Sect. 1.9:

Theorem 2.73. Let G be a connected, non-commutative, absolutely almost simple
Fq-group of Fq-rank n � 1. The group G.FqŒt �/ is of type Fn�1 but not of type Fn.

Proof. Let QG be the universal cover of G (see Proposition 2.24 and Définition 2.25
of [BT72a]). Let .XC; X�/ be the thick locally finite irreducible n-dimensional
Euclidean twin building associated to QG.FqŒt; t�1�/ by Proposition 1.69. Since the
isogeny QG.FqŒt; t�1�/! G.FqŒt; t�1�/ is central, the action of QG.FqŒt; t�1�/ on the
twin building factors through it. Let G be the image of QG.FqŒt �/ under the map
QG.FqŒt �/ ! G.FqŒt �/. By Behr [Beh68, Satz 1] G has finite index in G.FqŒt �/,
hence both have the same finiteness length.

Fact 1.70 shows that X� may be regarded as the Bruhat–Tits building associated
to QG.Fq..t///. The compact subring of integers of Fq..t// is FqŒŒt ��. Thus QG.FqŒŒt ��/ is
a maximal compact subgroup of QG.Fq..t/// hence the stabilizer of a vertex v 2 X�
in QG.Fq..t///. Consequently, QG.FqŒt �/ D QG.FqŒt; t�1�/ \ QG.FqŒŒt ��/ is the stabilizer
of v in QG.FqŒt; t�1�/. The statement now follows from Theorem 2.1. ut



Chapter 3
Finiteness Properties of G.FqŒt; t�1�/

Let G be a connected, non-commutative, absolutely almost simple Fq-group. In this
chapter we want to determine the finiteness length of G.FqŒt; t�1�/. We have already
seen that there is a locally finite irreducible Euclidean twin building on which the
group acts strongly transitively so in geometric language we have to show:

Theorem 3.1. Let .XC; X�/ be an irreducible, thick, locally finite Euclidean twin
building of dimension n. Let G be a group that acts strongly transitively on
.XC; X�/ and assume that the kernel of the action is finite. Then G is of type F2n�1

but not of type F2n.

We fix an irreducible, thick, locally finite Euclidean twin building .XC; X�/

on which a group G acts strongly transitively and let n denote its dimension.
We consider the action of G on X WD XC � X�. Again we have to construct
a G-invariant Morse-function on X with highly connected descending links and
cocompact sublevel sets. The construction is very similar to that in the last chapter:
essentially the point a� that was fixed there is allowed to vary now.

One difference is that the Euclidean building X is not irreducible any more so
this time we actually use the greater generality of Sect. 2.7 compared to [BW11,
Sect. 5].

A technical complication concerns the analysis of the horizontal descending
links. To describe it we note first:

Observation 3.1. If .˙C; ˙�/ is a twin apartment of .XC; X�/ then ˙C � ˙� is
an apartment of X . For every chamber of X there is an apartment of this form that
contains it.

Proof. Let c � X be a chamber. Write c D cC � c� with cC � XC and c� � X�.
If .˙C; ˙�/ is a twin apartment that contains cC and c� then ˙C �˙� contains c.

ut
However the set of apartments of .XC; X�/ that arise in the above form from

twin apartments is far from being an apartment system for X : in fact if c is cC � c�
with cC op c� then the apartment ˙C �˙� that contains it and comes from a twin
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apartment is unique. In particular, if � is a cell and c � � is a chamber, the link of
� is generally not covered by apartments that are induced from twin apartments that
contain c. Before we can translate the argument for the horizontal descending link
from Sect. 2.10 we will therefore have to extend the class of apartments to study. For
the time being however, the apartments coming from twin apartments will suffice.

3.1 Height

As before let W be the spherical Coxeter group associated to X1C which is the
same as that of X1� and let E be a Euclidean vector space of dimension n D
dim XC D dim X� on which W acts faithfully as a linear reflection group. Let
.˙C; ˙�/ be a twin apartment of .XC; X�/. We may as before identify E with ˙C
as well as with ˙� in such a way that the W -structure at infinity is respected. In

fact the opposition relation induces a bijection ˙C
op ! ˙� so there is a natural

way to make both identifications at the same time. To prevent confusion we will this
time make the identifications explicit by choosing maps �"W˙" ! E such that the
following diagram commutes:

Σ+ � op � Σ−

E
� ι−

ι+ �

(3.1)

With these identifications the metric codistance of two points xC 2 ˙C and
x� 2 ˙� is d�.xC; x�/ D d.�C.xC/; ��.x�//. In other words it is the length of the
vector �C.xC/� ��.x�/.

This is the first occurrence of the projection

�WE � E! E

.x; y/ 7! x � y.

It will turn out that even though X is 2n-dimensional, most problems are essentially
n-dimensional because the height function apartment-wise factors through � .

For two finite subsets D1 and D2 of E we define

D1 #D2 WD .D1 CD2/ [D1 [D2.

Note that D1 #D2 D ..D1[f0g/C.D2[f0g//nf0g if D1 and D2 do not contain 0.
Recall from Sect. 2.4 that a set D is sufficiently rich for a polytope � if v � w 2 D

for any two vertices of � . With the above notation we get:
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Observation 3.2. Let �1 and �2 be polytopes in E and let � be the convex hull of
some of the vertices of �1 � �2. If D1 is sufficiently rich for �1 and D2 is sufficiently
rich for �2 then D1 #D2 is sufficiently rich for �.�/. In particular, it is sufficiently
rich for �1 � �2.

Proof. Every vertex of �.�/ is of the form v1 � v2 for vertices vi of �i . So if v and
w are distinct vertices of � then v � w D .v1 � w1/ C .w2 � v2/ where vi and wi

may or may not be distinct. If they are distinct for i D 1; 2 then v � w 2 D1 CD2.
If wi D vi for some i then v � w 2 D3�i . In any case v � w 2 D1 #D2. The last
statement is obtained by taking � D �1 � �2. ut

Let D � E be finite, W -invariant and centrally symmetric. As before we will
eventually require D to be rich but for the moment no such assumption is made.

Let Z WD Z.D #D/ be the zonotope as defined in Sect. 2.4. The height function
h that we consider on X is just Z-perturbed codistance (see Sect. 2.2):

h WD d�Z .

Observation 3.3. Let x D .xC; x�/ 2 X and let .˙C; ˙�/ be a twin apartment
such that ˙C � ˙� contains x. Then h.x/ D d.�.�C.xC/; ��.x�//; Z/ with
identifications as in (3.1). ut

Note that Observation 3.1 implies that if � is a path in X then there is an
apartment ˙C�˙� with .˙C; ˙�/ a twin apartment that contains an initial segment
of � . If � issues at x we may interpret this as saying that ˙C �˙� contains x and
the direction �x.

Let X0 WD h�1.0/ be the set of points of height 0. If .˙C; ˙�/ is a twin apartment
and identifications as in (3.1) are made, the set X0 \ .˙C � ˙�/ is the set of
points .yC; y�/ with �C.yC/ � ��.y�/ 2 Z which is a strip along the “diagonal”
f.xC; x�/ j xC op x�g (see Fig. 3.1).

Let x D .xC; x�/ be a point of ˙C �˙�. Let

ZC WD .op.˙C;˙�/ x�/C ��1C .Z/ and Z� WD .op.˙C;˙�/ xC/C ��1� .Z/,

where op.˙C;˙�/ denotes the map that assigns to a point of .˙C; ˙�/ its opposite
point in .˙C; ˙�/.

The sets ZC�fx�g and Z��fxCg are slices of X0\.˙C�˙�/ and by definition,
h.xC; x�/ is the distance to either one of them, i.e., the distance to .prZC

xC; x�/

and to .xC; prZ�

x�/. The point in X0\.˙C�˙�/ closest to xC; x� is the midpoint

prX0\.˙C�˙�/.xC; x�/ D 1

2
.prZC

xC; x�/C 1

2
.xC; prZ�

x�/

of these two projection points. This shows:

Observation 3.4. If x 2 X is a point and .˙C; ˙�/ is a twin apartment such that
˙ WD ˙C �˙� contains x then h.x/ D p2 � d.x; X0 \˙/. ut
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Σ+

Σ−
{(x+, x−) | x+ op x−}

X0 ∩ Σ

x

prX0∩Σ x

Σ+ × {x−}

{x+} × Σ−

Z+ × {x−}

h(x)

Fig. 3.1 The set X0 in an
apartment ˙ WD ˙C �˙�

where .˙C; ˙�/ is a twin
apartment

That h on ˙C�˙� looks like distance to X0 (up to a constant factor) immediately
suggests that the gradient should be the direction away from X0.

Assume that h.x/ > 0. Recall that we defined in Sect. 2.5 the Z-perturbed ray
from xC to x� which is the ray that issues at xC and moves away from ZC. It is a
well defined ray inside XC. Let �x�

xC

be this ray as a map, i.e., the image of �x�

xC

is

ŒxC; x�/Z . Analogously let �
xC

x�
be the Z-perturbed ray from x� to xC. Then the ray

�.xC;x�/ in ˙C�˙� that issues at .xC; x�/ and moves away from X0\ .˙C�˙�/

is given by

�.xC;x�/.t/ D
�

�x�

xC

� 1p
2

t
	
; �x�

xC
� 1p

2
t
	�

.

Since �x�

xC

and �
xC

x�
are well-defined rays in XC respectively X� we get:

Observation 3.5. For every point x 2 X with h.x/ > 0 the ray �x is a well-
defined ray in X (i.e., independent of the chosen twin apartment). If .˙C; ˙�/ is a
twin apartment such that ˙ WD ˙C �˙� contains x then �x lies in ˙ and moves
away from X0 \˙ . ut

The asymptotic gradient r1h of h is defined by letting r1x h be the limit of �x .
Similarly, the gradient rh of h is defined by letting rxh be the direction .�x/x in
lk x defined by �x.

Recall that the link decomposes as a spherical join lkX x D lkXC
xC � lkX�

x�.
In this decomposition rxh is the midpoint of the two points .�x�

xC

/xC
and .�

xC

x�
/x�

.
Similarly, the visual boundary of X decomposes as a spherical join X1 D

X1C �X1� of irreducible join factors. The asymptotic gradientr1x h is the midpoint
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of .�x�

xC

/1 and .�
xC

x�
/
1

. Recall from Sect. 2.7 that a point at infinity 
 2 X1 is in
general position if it is not contained in any proper join factor. So we have just seen:

Observation 3.6. Let x 2 X with h.x/ > 0. The asymptotic gradient r1x h is in
general position. ut

3.2 Flat Cells and the Angle Criterion

In this section we show how the condition that D is almost rich implies the angle
criterion. The argument is entirely parallel to that in Sect. 2.6.

We begin with properties of h that hold irrespective of richness such as convexity:

Observation 3.7. Let .˙C; ˙�/ be a twin apartment. The restriction of h to ˙C �
˙� is convex. In particular, if � � X is a cell then among the h-maximal points of
� there is a vertex.

Proof. By Observation 3.4 the restriction of h to ˙C � ˙� is, up to a constant,
distance from the convex set X0 \ .˙C � ˙�/. The second statement follows by
choosing a twin apartment .˙C; ˙�/ such that � � ˙C �˙�. ut

Moreover we have the local angle criterion:

Observation 3.8. Let � be a path in X that issues at a point x with h.x/ > 0.
The function h ı � is strictly decreasing on an initial interval if and only if
†x.rxh; �x/ > �=2.

Proof. Let .˙C; ˙�/ be a twin apartment such that ˙C � ˙� contains an initial
interval of � . The statement follows from the fact that on ˙C � ˙� the function
h up to a constant measures distance from X0 and rxh is the direction that points
away from X0. ut

As before we call a cell � � X flat if hj� is constant.

Observation 3.9. If � is flat then the (asymptotic) gradient is the same for all points
x of � . It is perpendicular to � .

Proof. Let again .˙C; ˙�/ be a twin apartment such that ˙C � ˙� contains � .
Since the restriction of h to ˙C �˙� essentially measures distance to X0, the cell
� can be of constant height only if its projection onto X0 \ .˙C �˙�/ is a parallel
translate by a vector perpendicular to � . ut

Let � be a flat cell. We define the asymptotic gradient r1� h of h at � to be the
asymptotic gradient of any of its interior points. The observation implies that the
gradient rxh of an interior point x of � is a direction in lk � and independent of x.
We define the gradient r� h of h at � to be that direction. We take the gradient at
� to be the north pole of lk � and obtain accordingly a horizontal link lkhor � and a
vertical link lkver � and an open hemisphere link lk>�=2 � .
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Let .˙C; ˙�/ be a twin apartment of .XC; X�/ and make identifications as in
(3.1). We say that D is almost rich if �C.v/ � �C.w/ 2 D whenever v and w are
vertices of ˙C that are contained in a common cell. We say that D is rich if �C.v/�
�C.w/ 2 D whenever v and w are vertices of ˙C whose closed stars meet. Note that
we might as well have taken vertices in ˙� or any other twin apartment instead,
since only the Coxeter complex structure matters.

Proposition 3.10. Assume that D is almost rich and let � be a cell of X . Among the
h-minima of � there is a vertex and the set of h-maxima of � is a face. The statement
remains true if � is replaced by the convex hull of some of its vertices.

Proof. Write � D �C � �� and let .˙C; ˙�/ be a twin apartment that contains �C
and ��. Make identifications as in (3.1). Consider N� WD �.�C.�C/; ��.��//. Since
D is sufficiently rich for �C.�C/ as well as for ��.��/ Observation 3.2 shows that
D #D is sufficiently rich for N� . Hence we may apply Proposition 2.14 to conclude
that among the points of N� closest to Z there is a vertex and that the set of points of
N� farthest from Z form a face.

Observation 3.3 implies that h on � is nothing but the composition of the affine
map � ı .�C� ��/ and distance from Z. The result now follows from the fact that the
preimage of a face of N� under � ı.�C� ��/ is a face of � (see [Zie95, Lemma 7.10]).

The second statement is proved analogously. ut
The angle criterion follows as before:

Corollary 3.11. Assume that D is almost rich. Let v and w be two vertices that are
contained in a common cell. The restriction of h to Œv; w� is monotone. In particular,
h.v/ > h.w/ if and only if †v.rvh; w/ > �=2. ut
Corollary 3.12. Assume that D is almost rich. Let � be a flat cell and � � � . Then
� is the set of h-maxima of � if and only if � � � � lk>�=2 � . ut

3.3 The Morse Function

From now on we assume that D is almost rich. Then by Proposition 3.10 the set of
h-maxima of any cell � is a face which we call the roof of � and denote by O� .

Let � be a flat cell. By Observation 3.6 r1� h is in general position. So we may
apply the results of Sect. 2.7 with respect to r1� h. In particular, by Lemma 2.32
�min exists: the unique minimal face of � in the horizontal link of which it lies.

Also, we can define the depth dp � of � to be the maximal length of a sequence
of moves (with respect to r1� h) that starts with � . It exists by Proposition 2.34. If
� is not flat, we define dp � WD dp O� � 1=2.

If � is flat and � is a face then r1� D r1� , so:

Observation 3.13. If � � � are flat and there is a move � % � then dp � > dp � .
If there is a move � & � then dp � > dp � . ut
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Let VX be the flag complex of X . Note that VX is a simplicial complex (as flag
complexes always are), even though X is not. We define the Morse function

f on VX by

f W vt VX ! R � R �R

� 7! .max hj� ; dp �; dim �/

and order the range lexicographically.
As in Sect. 2.8 one verifies that f is indeed a Morse function in the sense of

Sect. 1.4.
We identify VX with the barycentric subdivision of X and write lk V� to mean the

link in VX as opposed to lk � which is the link of the cell � in X .

The link of a vertex V� of VX decomposes as a (simplicial) join

lk V� D lk@ V� � lkı V�

of the face part and the coface part.
The descending link lk# V� is the full subcomplex of vertices V� 0 with f . V� 0/ <

f . V�/. As a full subcomplex the descending link decomposes as a simplicial join

lk# V� D lk#@ V� � lk#ı V� (3.2)

of the descending face part and the descending coface part.

3.4 Beyond Twin Apartments

Before we proceed to the analysis of the descending links we have to address the
problem mentioned in the introduction of the chapter, namely that it does not suffice
to understand twin apartments.

To make this more precise consider cells �C � ˙C and �� � ˙� in a twin
apartment .˙C; ˙�/. By a twin wall H we mean a pair of walls HC of ˙C and H�
of ˙� such that HC is opposite H�. Assume that �C and �� do not lie in a common
twin wall. Then for every twin wall H that contains �C, every chamber d � �� lies
on the same side of H . Hence cC WD pr�C

�� is a chamber. Similarly c� WD pr��

�C
is a chamber. So every twin apartment that contains �C and �� contains cC and c�.
In other words every apartment of lk.�C � ��/ that comes from a twin apartment
contains the chamber .cC � �C/ � .c� � ��/. An immediate consequence is:

Observation 3.14. Let �C � XC and �� � X� be cells such that cC WD pr�C

��
and c� WD pr��

�C are chambers. Then every apartment of lk.�C � ��/ that
contains c WD .cC � �C/ � .c� � ��/ is of the form lk˙C�˙�

.�C � ��/ for some
twin apartment .˙C; ˙�/.
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Proof. Let ˙ be an apartment that contains c. Let .dC � �C/ � .d� � ��/ be the
chamber in ˙ opposite c. Let .˙C; ˙�/ be a twin apartment that contains dC and
d�. Since .˙C; ˙�/ also contains cC and c�, necessarily ˙ D lk˙C�˙�

.�C���/.
ut

If �C and �� do lie in a common twin wall, there is no chamber in lk.�C � ��/

such that every apartment containing this chamber comes from a twin apartment.
Thus we have to extend the class of apartments to consider. To do so, we have to
break the twin structure, that is, we have to consider symmetries of the individual
buildings that are not symmetries of the twin building. The aim is to show that the
height function is to some extent preserved under such symmetries.

The first statement, which contains all technicalities, deals with the archetype of
a symmetry, reflection at a wall:

Lemma 3.15. Assume that D is rich. Let .˙C; ˙�/ be a twin apartment. Let H D
.HC; H�/ be a twin wall of .˙C; ˙�/, i.e., HC � ˙C and H� � ˙� are walls
such that HC is opposite H�. Let rH denote the reflection at H . If vC 2 ˙C and
v� 2 ˙� are vertices each adjacent to a cell of H (or contained in H ) then

h.rH .vC/; v�/ D h.vC; v�/ D h.vC; rH .v�//.

To prove this we want to say that D #D is sufficiently rich for the geodesic
segment e WD �C.ŒvC; rH .vC/�/ � ��.Œv�; rH .v�/�/. This time however, it is not
enough that Z contains a parallel translate through every projection point of e. We
want that all of e linearly projects onto Z. The reason for this to be true is of course
that v� and vC are both close to the wall H . Before we can make this precise, we
need some elementary statements about the arithmetic of zonotopes:

Observation 3.16. Let E be a Euclidean vector space and let D, E , D1, and D2

be finite subsets. Then

(i) D � E implies Z.D/ � Z.E/.
(ii) Z.D1 [D2/ � Z.D1/CZ.D2/ with equality if D1 \D2 D ;.

(iii) Z.D1/CZ.D2/ � Z.D1 #D2/.

Proof. The first and second statement are clear from the definition. The third is a
case distinction similar to Observation 3.2. ut
Proof of Lemma 3.15. We make identifications as in (3.1). Note that �C and ��
induce the same Coxeter structure on E and that �C.HC/ D ��.H�/ is a wall which
we also denote by H . We reduce notation by taking the origin of E to lie in H .
Also we make the identifications via �C and �� implicit so that vC; v� 2 E. Let H?
denote the orthogonal complement of H . Our goal is to show that ŒvC; rH .vC/� �
Œv�; rH .v�/� linearly projects onto Z.

We write E WD D #D and consider the subsets

E0 WD fz 2 E j z … H?g and D? WD fz 2 D j z 2 H?g.
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Note that D?#D? and E0 are disjoint subsets of E . Therefore Observation 3.16
implies

Z.E/ � Z..D?#D?/ [E0/

D Z.D?#D?/CZ.E0/ � Z.D?/CZ.D?/CZ.E0/. (3.3)

Let NvC WD 1=2vC C 1=2rH.vC/ be the projection of vC onto H and let Nv�
be the projection of v� onto H . Note that since E is W -invariant it is, in particular,
invariant by rH . Thus Z is also rH -invariant. This together with the fact that NvC�Nv�
lies in H implies that the projection x WD prZ NvC � Nv� also lies in H .

We claim that x already has to lie in Z.E0/. Indeed write

x D
X

z2E0

˛zzC
X

z2E\H ?

˛zz.

Invariance under rH implies that we can also write

x D
X

z2E0

˛rH .z/zC
X

z2E\H ?

�˛zz.

Taking the mean of both expressions gives x DP
z2E0 1=2.˛z C ˛rH .z//z.

Next note that vC � rH .vC/ lies in H?. Moreover, if �C � H is a cell to
which vC is adjacent, which exists by assumption, then rH .vC/ is adjacent to �C
as well. This shows that the closed stars of vC and rH .vC/ meet. So richness of D

implies that vC � rH .vC/ lies in D and thus in D?. In the same way one sees that
v� � rH .v�/ 2 D?.

Thus ŒvC; rH .vC/� � NvC C Z.D?/ and Œv�; rH .v�/� � Nv� C Z.D?/.
Consequently

ŒvC; rH .vC/� � Œv�; rH .v�/� � .NvC � Nv�/CZ.D?/CZ.D?/.

Now x C Z.D?/ C Z.D?/ is fully contained in Z D Z.E/ by (3.3). So the
closest point projection onto Z takes .NvC � Nv�/C Z.D?/C Z.D?/ linearly onto
x CZ.D?/CZ.D?/. ut
Corollary 3.17. Assume that D is rich. Let .˙C; ˙�/ be a twin apartment and let
QWC respectively QW� be the Euclidean reflection groups of ˙C respectively ˙�. Let

�C � ˙C and �� � ˙� be cells and let �C WD pr�C

�� and �� WD pr��

�C be the
projections of one onto the other. Let RC respectively R� be the stabilizer of �C in
QWC respectively of �� in QW�. Then

h.vC; v�/ D h.wCvC; w�v�/
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for all group elements wC 2 RC and w� 2 R� and all vertices vC adjacent to �C
and v� adjacent to ��.

Proof. The affine span of �C in ˙C is the intersection of the positive halves of
twin walls that contain �C and ��. Similarly, the affine span of �� in ˙� is the
intersection of negative halves of twin walls that contains �C and ��. The group
RC � R� is therefore generated by the reflections described in Lemma 3.15. ut

Note that Corollary 3.17 is essentially a statement about a spherical reflection
group: it says that the stabilizer of �C � �� in the group of symmetries of st˙C

�C �
st˙�

��, which is the reflection group of lk˙C
�C � lk˙�

��, preserves height (on
vertices).

In the remainder of the section we want to use this result to show how height is
preserved in the twin building .XC; X�/. First we look at symmetries that preserve
the twin structure:

Observation 3.18. Let .˙C; ˙�/ and .˙ 0C; ˙ 0�/ be twin apartments. Any isomor-
phism �W .˙C; ˙�/! .˙ 0C; ˙ 0�/ of thin twin buildings preserves height in the sense
that h.xC; x�/ D h.�.xC/; �.x�//.

Proof. The restriction of h to .˙C; ˙�/ respectively .˙ 0C; ˙ 0�/ are the intrinsically
defined height functions of these thin twin buildings. ut

Again we are particularly interested in retractions:

Observation 3.19. Let �C � XC and �� � X� be cells such that cC WD pr�C

��
and c� WD pr��

�C are chambers. Let .˙C; ˙�/ be a twin apartment that contains
�C and �� and therefore cC. Let � WD �.˙C;˙�/cC be the retraction onto .˙C; ˙�/

centered at cC. If xC lies in the closed star of �C and x� lies in the closed star of
�� then

h.xC; x�/ D h.�.xC/; �.x�//.

Proof. Let .˙ 0C; ˙ 0�/ be a twin apartment that contains xC and �C as well as x�
and ��. Then it also contains cC. Hence �j.˙ 0

C
;˙ 0

�
/ is an isomorphism of thin twin

buildings. ut
Remark 3.20. There is an apparent asymmetry in the last observation between cC
and c�. To explain why the statement is in fact symmetric we consider a more
general setting. Let �C � XC and �� � X� be arbitrary cells and let �C WD pr�C

��
and �� WD pr��

�C be the projections of one onto the other (by “arbitrary” we mean
that these are not required to be chambers).

The first thing to note is that if cC contains �C then not only does c� WD pr��

cC
contain �� (which is clear from the definition of ��), but also cC D pr�C

c�.
Secondly, if cC and c� are as above projections of each other then for every

chamber d � �� we have ı�.cC; d / D ı�.cC; c�/ı�.c�; d / and the same is
true with the roles of cC and c� exchanged (recall that ıC and ı� denote the
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Weyl-distance on XC and X�, respectively). This shows that the retractions centered
at cC and centered at c� coincide on st �C and st ��.

So had we replaced � by the retraction centered at c� in the observation then
the statement would not only have remained true, but would have been the same
statement.

Now we incorporate Corollary 3.17 to get the result we were aiming for:

Proposition 3.21. Assume that D is rich. Let �C � XC and �� � X� be cells. Let
cC � pr�C

�� be a chamber and let .˙C; ˙�/ be a twin apartment that contains
cC and ��. Let � WD �.˙C;˙�/;cC

be the retraction onto .˙C; ˙�/ centered at cC.
Then

h.vC; v�/ D h.�.vC/; �.v�//

for every vertex vC adjacent to �C and every vertex v� adjacent to ��.

Proof. Let .˙ 00C; ˙ 00�/ be a twin apartment that contains vC and �C as well as
v� and ��. Let c� � ˙ 00� be a chamber that contains pr��

�C. Let .˙ 0C; ˙ 0�/

be a twin apartment that contains cC and c�. Let �0 WD �.˙ 0

C
;˙ 0

�
/c�. Applying

Observation 3.19 first to �0j.˙ 00

C
;˙ 00

�
/ and then to �j.˙ 0

C
;˙ 0

�
/ we find that

h.vC; v�/ D h.� ı �0.vC/; � ı �0.v�//. (3.4)

It remains to compare the heights of .� ı �0.vC/; � ı �0.v�// and .�.vC/; �.v�// in
the twin apartment .˙C; ˙�/.

Let d be a chamber of ˙ 00C that contains vC and �C and let e WD pr�C

d . Let wC
be the element of the Coxeter group of ˙C that takes � ı�0.e/ to �.e/. Note that wC
fixes �C. We claim that wC takes � ı �0.d/ to �.d/. More precisely we claim that

ıC.� ı �0.d/; � ı �0.e// D ıC.d; e/ D ıC.�.d/; �.e//.

The first equation follows from �0j˙ 00

C

and �j˙ 0

C

being isomorphisms. The second
follows by an analogous argument for an apartment that contains d and cC.

This shows that wC indeed takes � ı �0.d/ to �.d/: the former is the unique
chamber in ˙C that has distance ıC.d; e/ to � ı �0.e/, the latter is the unique
chamber in ˙C that has distance ıC.d; e/ to �.e/. In particular, wC takes � ı�0.vC/

to �.vC/.
Arguing in the same way produces an element w� that takes � ı �0.v�/ to �.v�/.
Applying Corollary 3.17 we get

h.� ı �0.vC/; � ı �0.v�// D h.wC� ı �0.vC/; w�� ı �0.v�// D h.�.vC/; �.v�//

which together with (3.4) proves the claim. ut
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3.5 Descending Links

With the tools from the last section the analysis of the descending links runs fairly
parallel to that in Sect. 2.10. In fact many proofs carry over in verbatim. We still
reproduce them because we have to check that they apply even though X is not
simplicial.

Recall from (3.2) that the descending link of a vertex V� decomposes as a join
lk# V� D lk#@ V� � lk#ı V� of the descending face part and the descending coface part.

Recall also that � is flat if hj� is constant. If � is flat then it has a face �min. The
roof O� of any cell � is flat. We say that � is significant if � D O�min and that it is
insignificant otherwise.

Lemma 3.22. If � is insignificant then the descending link of V� is contractible. More
precisely lk#@ V� is already contractible.

Proof. Consider the full subcomplex � of lk@ V� of vertices V� with O�min 6� � Œ
� : this is the barycentric subdivision of @� with the open star of O�min removed.
Therefore it is a punctured sphere and, in particular, contractible. We claim that
lk#@ V� deformation retracts on �.

So let V� be a vertex of �. Then

max hj� � max hj� D max hjO�min

so h either makes V� descending or is indifferent. As for depth, the fact that O�min 6� �

implies of course that O�min 6� O� . So there is a move O� & O� which implies dp O� <

dp O� � 1=2. Therefore

dp � � dp O� < dp O� � 1=2 � dp �

so V� is descending. This shows that � � lk#@ V� .
On the other hand . O�min/ı is not descending: Height does not decide because

max hjO�min D max hjO� D max hj� . As for depth, we have

dp � � dp O� � dp O�min.

If � is not flat then the first inequality is strict. If � is flat then there is a move
O�min % O� D � so the second inequality is strict. In either case . O�min/ı is ascending.

So geodesic projection away from . O�min/ı defines a deformation retraction of
lk#@ V� onto �. ut
Lemma 3.23. If � is significant then all of lk@ V� is descending. So lk#@ V� is a
.dim � � 1/-sphere.
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Proof. Let � Œ � be arbitrary. We have max hj� D max hj� because � is flat.
Moreover, � Œ � D �min so that, in particular, �min 6� � . Hence there is a move
� & � which implies dp � > dp � so that V� is descending. ut

We recall Observations 2.36 and 2.37:

Reminder 3.24. (i) If � is flat and �min � � � � then �min D �min.
(ii) If � is significant and � � � is flat then there is either a move � % � or a move

� & � .

Proposition 3.25. Let � be significant. The descending coface part lk#ı V� is a
subcomplex of lk � . That is, for cofaces � � � 0 � � , if V� is descending then V� 0
is descending.

Proof. Let � � � 0 � � and assume that f . V�/ < f . V�/. By inclusion of cells we have

max hj� � max hj� 0 � max hj�
and since V� is descending max hj� � max hj� so equality holds. Clearly dim � >

dim � so since V� is descending we conclude dp � < dp � . We have inclusions of
flat cells

O� � O� 0 � � .

If the second inclusion is equality then � 0 ¤ � D O� 0 so dp � 0 < dp O� 0 D dp �

and V� 0 is descending. Otherwise O� is a proper coface of � so by Reminder 3.24(ii)
there is a move � % O� or a move O� & � . In the latter case we would have dp � �
dp O� � 1=2 > dp � contradicting the assumption that V� is descending. Hence the
move is � % O� , that is, � D O�min. It then follows from Reminder 3.24(i) that also
O� 0min D � so that there is a move � % O� 0. Thus dp � 0 � dp O� 0 < dp O� . ut

Let � � X be a significant cell. We define the descending link lk# � of � to be the
subcomplex of cells ��� with f .�/ < f .�/. As a set, this is by Proposition 3.25 the
same as lk#ı V� . We define the horizontal descending link lkhor #� WD lkhor � \ lk# �

and the vertical descending link lkver #� WD lkver � \ lk# � in the obvious way. We
see immediately that lk# � � lkhor #� � lkver #� and will show the converse later.

Lemma 3.26. If � is significant then lkver #� is an open hemisphere complex with
north pole r� h.

Proof. Let lk>�=2 � denote the open hemisphere complex with north pole r� h. By
Corollary 3.12 lk>�=2 � � lkver #� .

Conversely assume that � � � is such that � � � contains a vertex that includes
a non-obtuse angle with r� h. Then either

max hj� D max hjO� > max hj�
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or O� is a proper flat coface of � . In the latter case since O� does not lie in the horizontal
link of � there is a move O� & � so that

dp � � dp O� � 1

2
> dp � .

In both cases � is not descending. ut
Observation 3.27. If � is significant and � � � is such that � � � � lkhor � then
these are equivalent:

(i) � is flat.
(ii) � is descending.

(iii) hj� � h.�/.

Proof. If � is flat then clearly max hj� D h.�/. Moreover, �min D �min by
Reminder 3.24(i). Thus there is a move � D �min D �min % � so that dp � > dp �

and � is descending.
If � is not flat then it contains vertices of different heights. Since � � � lies

in the horizontal link it in particular includes a right angle with r� h. So by the
angle criterion Corollary 3.11 no vertex has lower height than � . Hence max hj� >

max hj� and � is not descending. ut
Proposition 3.28. If � is significant then the descending link decomposes as a join

lk# � D lkhor #� � lkver #�

of the horizontal descending link and the vertical descending link.

Proof. Let �h and �v be proper cofaces of � such that �h lies in the horizontal
descending link, �v lies in the vertical descending link and � WD �h _ �v exists.
We have to show that � is descending.

By Lemma 3.26 �v includes an obtuse angle with r� h so by Proposition 3.12
O�v D � . On the other hand �h is flat by Observation 3.27. Thus O� D �h so that
dp � D dp �h � 1=2 and � is descending because �h is. ut

It remains to study the horizontal descending links of significant cells. As before
we want to eventually apply Proposition 2.55. We will be able to do so thanks to the
results of the last section. So essentially we have to understand what happens inside
one apartment.

We assume from now on that D is rich. We fix a significant cell � � X and
write � D �C � �� with �C � XC and �� � X�. We also fix a twin apartment
.˙C; ˙�/ that contains �C and �� and let Q̇ D ˙C �˙�. Let further ˙ WD lk Q̇ �

be the apartment of lk � defined by Q̇ .
We set

L" WD fv 2 vt Q̇ j v _ � exists and h.v/ > h.�/g

and let QA be the convex hull of L".
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Observation 3.29. The minimum of h over QA is strictly higher than h.�/.

Proof. Make identifications for .˙C; ˙�/ as in (3.1). Since D is rich, it contains
all vectors of the form �C.vC/ � �C.v0C/ where vC and v0C are vertices adjacent to
�C. It also contains all vectors of the form ��.v�/ � ��.v0�/ for v� and v0� vertices
adjacent to v�. Therefore D #D contains all vectors of the form v� v0 where v and
v0 lie in � ı .�C � ��/.L"/. All this is just to say that D #D is sufficiently rich for
� ı .�C � ��/. QA/.

Thus by Proposition 2.14 distance from Z attains its minimum over � ı .�C �
��/. QA/ in a vertex. Consequently, h attains its minimum over QA in a vertex. That
vertex is an element of L" and hence has height strictly higher than h.�/. ut

Since QA is closed, there is an " > 0 such that the "-neighborhood of QA in Q̇
still has height strictly higher than h.�/. We fix such an " and let QB denote the
corresponding neighborhood. We let B denote the set of directions in ˙ that point
toward points of QB \ st � .

Observation 3.30. The set B is a proper, open, convex subset of ˙ and has the
property that a coface � of � that is contained in Q̇ contains a point of height
strictly above h.�/ if and only if � � � meets B .

Proof. Note that QB \ st � is convex as an intersection of convex sets, and is disjoint
from � by choice of ". It follows that B is convex. To see that B is open in lk � note
that it can also be described as the set of directions toward QB \ .@ st �/ which is
open in @ st � .

If � contains a point of height strictly above h.�/ then by Observation 3.7 it
also contains a vertex with that property. That vertex therefore lies in L" and the
direction toward it defines a direction in B \ .� � �/.

Conversely assume that x lies in QB \ st � and defines a direction in � � � . Since
x 2 st � , this implies that x 2 � . ut

The transition from ˙ to the full link of � is via retractions. So let cC � �C and
c� � �� be chambers of .˙C; ˙�/ such that pr�C

c� D cC and pr��

cC D c�. Let
c WD .cC � �C/ � .c� � ��/ be the chamber of ˙ defined by cC and c�.

Let Q� WD �.˙C;˙�/;cC
and recall from Remark 3.20 that Q� restricts to the same

map on st �C[ st �� as the retraction centered at c�. Let � WD �˙;c be the retraction
onto ˙ centered at c.

Observation 3.31. The diagram

stσ
ρ̃× ρ̃� Σ̃ ∩ stσ

lkσ
� ρ � Σ

�

where the vertical maps are projection onto the link, commutes. ut
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Let U WD ��1.B/.

Observation 3.32. The set U is open and meets every apartment that contains c

in a proper convex subset. Moreover, it has the property that if � � � is such that
� � � � lkhor � then � is flat if and only if � � � is disjoint from U .

Proof. We repeatedly apply Observation 3.30. That U is open follows from B

being open by continuity of �. If ˙ 0 is an apartment that contains c then �j˙ 0 is
an isometry, so ˙ 0 \ U is convex as an isometric image of B .

Let � � � be such that � �� lies in the horizontal link of � . By Observation 3.27,
� is flat if and only if it does not contain a point of height > h.�/. Write � D �C���.
By Proposition 3.21 � is flat if and only if Q�.�C/� Q�.��/ is flat. By Observation 3.31
this is precisely the cell that defines �.�/ and is therefore flat if and only if �.�/ is
disjoint from B . This is clearly equivalent to � being disjoint from U . ut
Lemma 3.33. If � is significant then lkhor #� is .dim lkhor � � 1/-connected.

Proof. If � � � is such that .� � �/ � lkhor � then by Observation 3.27 � is
descending if and only if it is flat. Let U be as before. By Observation 3.32 � is
flat if and only if it is disjoint from U . We may therefore apply Proposition 2.55 to
lkhor � and U \ lkhor � from which the result follows. ut
Proposition 3.34. Assume that D is rich. If � is significant then the descending link
lk# V� is spherical. If the horizontal link is empty, it is properly spherical.

Proof. The descending link decomposes as a join

lk# V� D lk#@ V� � lkver #� � lkhor #�

of the descending face part, the vertical descending link, and the horizontal
descending link by (3.2), Propositions 3.25 and 3.28. The descending face part is a
sphere by Lemma 3.23. The descending vertical link is an open hemisphere complex
by Lemma 3.26 which is properly spherical by Theorem 2.3. The horizontal
descending link is spherical by Lemma 3.33. ut

3.6 Proof of the Main Theorem for G.FqŒt; t�1�/

Theorem 3.1. Let .XC; X�/ be an irreducible, thick, locally finite Euclidean twin
building of dimension n. Let G be a group that acts strongly transitively on
.XC; X�/ and assume that the kernel of the action is finite. Then G is of type F2n�1

but not of type F2n.

Proof. Let X WD XC � X� and note that dim X D 2n. Consider the action of G

on the barycentric subdivision VX . We want to apply Corollary 1.23 and check the
premises. The space X is contractible being the product of two contractible spaces.
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If � � X is a cell, we can write � D �C � �� with �C � XC and �� � X�.
The stabilizer of � in G is the simultaneous stabilizer of �C and �� which is finite
because the center of the action of G is finite by assumption and the stabilizer in

the full automorphism group is finite by Lemma 2.72. The stabilizer of a cell of VX
stabilizes any cell of X that contains it and is thus also finite.

Let f be the Morse function on VX as defined in Sect. 3.3 based on a rich set
of directions D. Its sublevel sets are G-invariant subcomplexes. The group G acts
transitively on chambers cC � c� with cC op c� by strong transitivity. Since X is
locally finite, this implies that G acts cocompactly on any sublevel set of f .

The descending links of f are .2n � 1/-spherical by Lemma 3.22 and
Proposition 3.34. If � is significant then the descending link of V� is properly
.2n � 1/-spherical provided the horizontal part is empty. This is the generic case
and happens infinitely often.

Applying Corollary 1.27 we see that the induced maps �i .Xk/! �i .XkC1/ are
isomorphisms for 0 � i < n� 2 and are surjective and infinitely often not injective
for i D n�1. So it follows from Corollary 1.23 that G is of type F2n�1 but not F2n.

ut
The statement about S -arithmetic groups is even easier to deduce this time.

Theorem 3.35. Let G be a connected, non-commutative, absolutely almost sim-
ple Fq-group of rank n � 1. The group G.FqŒt; t�1�/ is of type F2n�1 but
not of type F2n.

Proof. Let QG be the universal cover of G. By Proposition 1.69 there is a thick locally
finite irreducible n-dimensional Euclidean twin building .XC; X�/ associated to
QG.FqŒt; t�1�/. The action on .XC; X�/ factors through the map QG.FqŒt; t�1�/ !
G.FqŒt; t�1�/ and the image has finite index in G.FqŒt; t�1�/. Thus the statement
follows from Theorem 3.1. ut



Appendix A
Adding Places

In this paragraph we show that augmenting the set of places can only increase the
finiteness length of an S -arithmetic subgroup of an almost simple group. Since the
proof of the Rank Conjecture in [BKW13], the finiteness length of any such group
is known, so one can verify the statement by just looking at the number there. Still
it is interesting to observe that this fact is clear a priori for relatively elementary
reasons. The proof works as in the special case considered in [Abr96].

Theorem A.1. Let k be a global function field, G a k-isotropic, connected, almost
simple k-group, and S a non-empty, finite set of places of k. If G.OS/ is of type Fn

and S 0 � S is a larger finite set of places then G.OS 0/ is also of type Fn.

Proof. Proceeding by induction it suffices to prove the case where only one place is
added to S , i.e., S 0 D S [ fsg for some place s. Also note that as far as finiteness
properties are concerned, we may (and do) assume that G is simply connected.

Let Xs be the Bruhat–Tits building that belongs to G.ks/. The group G.OS 0/ �
G.ks/ acts continuously on Xs . We claim that this action is cocompact and that cell
stabilizers are abstractly commensurable to G.OS/. With these two statements the
result follows from Theorem 1.22.

Note that the stabilizer of a cell is commensurable to the stabilizers of its
faces and cofaces since the building is locally finite. Also all cells of same type
are conjugate by the action of G.ks/. Hence it remains to see that some cell-
stabilizer is commensurable to G.OS/. To see this note that G.Os/ is a maximal
compact subgroup of G.ks/. The Bruhat–Tits Fixed Point Theorem [BT72b, Lemme
3.2.3] (see also [BH99, Corollary II.2.8]) implies that it has a fixed point and
by maximality the fixed point is a vertex and G.Os/ is its full stabilizer. Now
G.OS/ D G.OS 0/ \G.Os/ so G.OS / is the stabilizer in G.OS 0/ of that vertex.

For cocompactness we use that G.OS 0/ is dense in G.ks/, see Lemma A.2 below.
Let x be an interior point of some chamber of Xs . The orbit G.ks/:x is a discrete
space which, by strong transitivity, contains one point from every chamber of Xs .
The orbit map G.ks/ ! G.ks/:x is continuous by continuity of the action, so the
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image of the dense subgroup G.OS 0/ is dense in the discrete space G.ks/:x. Hence
G.OS 0/ acts transitively on chambers and, in particular, cocompactly. ut

It remains to provide the density statement used in the proof. It is known and a
consequence of the Strong Approximation Theorem:

Lemma A.2. Let k be a global field and let G be a k-isotropic, connected, simply
connected, absolutely almost simple k-group. Let S be a non-empty finite set of
places and let s … S . Then G.OS[fsg/ is dense in G.ks/.

Proof. For a place s of k let ks denote the local field at s and Os the ring of integers
in ks . For a finite set S of places of k let AS DQ

s2S ks �Q
s…S Os denote the ring

of S -adeles. Recall that the ring of adeles is A D limS AS (see [Wei82]).
We know that GS WD Q

s2S G.ks/ is non-compact by Margulis [Mar91,
Proposition 2.3.6].

Recall that ks embeds into A at s, and that k discretely embeds into A diagonally.
With these identifications G.k/�GS is dense in G.A/ by Prasad [Pra77, Theorem A],
that is, if U is an open subset of G.A/ then G.k/\ U GS ¤ ;.

If V is an open subset of G.ks/ then

U D V �
Y

s02S

G.ks0/ �
Y

s0…S[fsg
G.Os0/

is open in G.A/. Hence there is a g 2 G.k/ with g 2 V and g 2 G.OS[fsg/
(where we now consider G.k/ and G.OS[fsg/ as subgroups of G.ks/). Thus V \
G.OS[fsg/ ¤ ; as desired. ut

Theorem A.1 is the natural generalization to higher finiteness properties of Behr’s
Proposition 2 in [Beh98], the proof of which is not given but attributed to Kneser
[Kne64].
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