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To Scott and to Greg
Réquiem ætérnam dona eis,
requiéscant in pace.





Foreword

There have been many recent expositions of the fascinating sequence

1, 1, 2, 5, 14, 42, . . .

of Catalan numbers. Indeed, I myself have just completed a monograph on this

topic. Steven Roman does an admirable job of providing an introduction to Catalan

numbers of a different nature from the previous ones. In particular, he gives

complete details of the background information necessary to understand various

aspects of Catalan numbers. He has made an excellent choice of topics in order to

convey the flavor of Catalan combinatorics. For instance, the discussion of interval

structures, stack-sortability, and semiorders provides introductions to these topics

not readily available elsewhere in such a straightforward form. The reader who has

successfully absorbed the material here may want to try next my own book, which

proceeds at a less leisurely pace. Even for those who wish to go no further, they will

acquire a good feeling for why so many mathematicians are enthralled by the

remarkable ubiquity and elegance of Catalan numbers.

March 12, 2015 Richard Stanley
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Preface

On page 219 of Richard Stanley’s book Enumerative Combinatorics, Volume II

(Cambridge University Press), there is an exercise with 66 parts (surely a student’s

nightmare). Each part defines a finite set of mathematical objects that is counted by

the Catalan numbers. Moreover, Stanley has recently completed a monograph

called simply Catalan Numbers that describes 214 objects counted by the Catalan

numbers, along with an additional 68 in the problem sets. The monograph (also

Cambridge University Press) will appear sometime in the early part of 2015.

The purpose of the present little book is to provide an introduction to these

remarkable numbers. We will look at a smorgasbord of the more prominent

combinatorial objects that are counted by the Catalan numbers, after we have

discussed the numbers themselves.

The organization of this book is by topic, as a glance at the table of contents will

immediately reveal. For example, one chapter is devoted to Catalan numbers and

trees and another chapter is devoted to Catalan numbers and permutations. I have

endeavored to place the more accessible topics in the earlier part of the book to

provide a gradual acclivity in mathematical sophistication.

For those wishing to test their grasp of the subject matter, I have included some

exercises at the end of the book. These exercises come primarily from Richard

Stanley’s books Enumerative Combinatorics (Volume II) and Catalan Numbers.
The relevant citation from these books is given with each problem. I also provide

hints or solutions to these exercises.

Irvine, CA, USA Steven Roman
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Introduction 1

The Binary Decomposition Model

Speaking very generally, many finitary combinatorial objects are stitched together
in some orderly manner from smaller objects of the same type. For instance, the

Cartesian product A� B of two finite sets A and B is a simple example of stitching

together smaller objects to make a larger object of the same type.

Viewed from the opposite direction, many combinatorial objects can be

decomposed into smaller objects of the same type. For example, a full binary tree

with n > 1 vertices can be decomposed (with some loss) into its left subtree and its

right subtree, as shown in Figure 1.1.

(A full binary tree is a binary tree in which each vertex has either zero or two

children. For more details, please visit the Appendix.) Again speaking very gener-

ally, suppose that widgits come in nonnegative integral sizes and letWn be the finite

family of widgits of size n. We wish to count the number of widgits in Wn.

Suppose further that the family Wn can be partitioned into blocks:

Pn ¼ Wn,k

��‘ � k � u
� �

Figure 1.1 Decomposition of a binary tree
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Thus, by definition, each block is nonempty, the blocks are pairwise disjoint, and

their union is Wn. Suppose further that for each k, there is a bijection:

θn,k : Wn,k ! W f n;kð Þ � Wg n;kð Þ

where f n; kð Þ < n and g n; kð Þ < n. Thus, θn,k decomposes each widgitW2Wn,k into

a pair of smaller widgits:

θn,k Wð Þ ¼ W1;W2ð Þ
where W12W f n;kð Þ and W22Wg n;kð Þ. It follows that

Wn,kj j ¼ W f n;kð Þ
�� �� Wg n;kð Þ

�� ��

and the numbers Dn ¼ Wnj j satisfy the recurrence relation

Dn ¼
Xu

k¼‘

Df n;kð ÞDg n;kð Þ ½1:1�

It is often the case that

f n; kð Þ þ g n; kð Þ ¼ nþ α

where α ¼ 0, 1, � 1, but this is not essential. Let us refer to the partition Pn and

the family of bijections θn,k as a binary decomposition model for the family Wn.

We will also refer to equation [1.1] as the recurrence relation associated to the
decomposition model.

Defining a binary decomposition model first involves determining the partition

Pn and this usually involves identifying a specific property of widgits that is

indexed by the integers k. For example, for full binary trees with n vertices, we

can index on the number of vertices in the left subtree, which may be any number

k between 0 and n� 1.

The next step is to define the bijections θn,k and this usually involves finding a

link or nexus within a widgit’s structure at which the widgit can be broken into

smaller widgits. For example, the root vertex (and its edges) form a nexus for

decomposing a full binary tree into its left and right subtrees. Notice that the

decomposition process causes a loss of one vertex (the root) and so, in the

symbolism above, we have

f n; kð Þ ¼ k and g n; kð Þ ¼ n� k � 1

whence

f n; kð Þ þ g n; kð Þ ¼ n� 1

2 1 Introduction



Note also that we must assign a root to each of the subtrees because the smaller

objects must be of the same type as the larger object from whence they came. In this

case, it is natural to declare the two vertices that were adjacent to the original root as

the roots of the subtrees.

In general, a decomposition map θn,k will be injective if the decomposition is

reversible and surjective if the recombination process can be applied to any pair of
smaller widgits of size f(n, k) and g(n, k) to produce a widgit of size n. For example,

the decomposition of a full binary tree into its left and right subtrees is clearly

reversible: We can simply reintroduce a root vertex and connect it to the root

vertices of each subtree (in the proper left/right orientation, of course). Also, the

recombination process applies to any pair of appropriately sized full binary trees.

As we will see, a binary decomposition model applies to many classes of

combinatorial objects, such as certain types of trees, permutations, partitions,

integer sequences, geometric objects, algebraic objects, partially ordered sets,

families of intervals, and more. Perhaps the most well-behaved binary decomposi-

tion model occurs when

‘ ¼ 0, u ¼ n� 1, f n; kð Þ ¼ k and g n; kð Þ ¼ n� 1� k

in which case the associated recurrence relation is the elegant

Cn ¼
Xn�1

k¼0

CkCn�1�k ½1:2�

This happens to be the recurrence relation that defines the Catalan numbers (along

with the initial condition C0 ¼ 1) and perhaps this is why the Catalan numbers

count such a large variety of elegant combinatorial objects. Equation [1.2] is called

the Catalan recurrence relation.

Thus, one way to show that a sequence Dn of integers is the Catalan sequence Cn

is to show that D0 ¼ 1 and the underlying widgits have a binary decomposition

model whose associated recurrence relation is the Catalan recurrence. This is one of

our two primary counting techniques. We describe the other technique next.

Counting by Characterization

The most direct, and one could argue the only way to count, is to find a bijection

between the set Awhose size we wish to determine and a set B whose size is already

known.

Put a bit more colorfully, if f : A ! B is a bijection, then we can say that the

elements of A are characterized or represented by the elements of B. To be sure,

in simple cases, this language is a bit too colorful. For example, even though there is

a bijection a; b; cf g ! 1; 2; 3f g one would generally not expect to hear the phrase

“the letters a, b and c are characterized by the numbers 1, 2, and 3.”

Counting by Characterization 3



On the other hand, it is not uncommon to say that the subsets of a set of size n are
characterized by binary strings of length n, that real polynomials of degree n or less
are characterized by ordered (n+ 1)-tuples of real numbers, that graphs (of the

combinatorial variety) are characterized by their adjacency matrices and that finite

cyclic groups are characterized by the positive integers, to name but a few.

We will encounter several examples of sets of objects that can be characterized

as sets of other objects whose quantity we have already determined.

Words Over an Alphabet

Before starting our journey into the Catalan numbers, we need to establish a few

preliminaries. There are some additional “preliminaries” in the Appendix for those

who might wish to partake.

A word over a set S ¼ a1; . . . ; akf g is a sequence of members of A,
written without punctuation. For example, if S ¼ A;Bf g, then the following is a

word over S,

w ¼ BAABA

The length len(w) of w is the number of symbols in w. For example, the word

w¼ BAABA has length 5. The set S is called the alphabet. The set of all words over
S is denoted by S* and the set of all words over S of length k is denoted by Sk.
Concatenation (juxtaposition) is a binary operation on S*. It is associative but not
commutative. The empty word E with no elements is the identity under

concatenation.

Our interest centers around alphabets of size two, often taken to be {A,B}.
However, we must attend to an important technical detail. Depending on the

application, we will use symbols other than A and B for the two letters in the

alphabet and since the letters do not play a symmetric role in the upcoming

discussions, we need a way to distinguish them. Accordingly, we will order the

alphabet by writing it as an ordered pair (A,B) and refer to the first letter A as the

dominant letter in the alphabet. Thus, for example, when we speak of a word over

the alphabet ((,)), we mean a word whose letters are the two parentheses (and),

such as

ðÞ�� ðÞð Þ
with the left parenthesis being dominant. (This is the only case where the notation

((,)) is rather dreadful.)

Let Wa,b be the set of all words over (A,B) that contain a dominant letters and

b nondominant letters. We will need the following concepts. Let ω2 A;Bð Þ*.

4 1 Introduction
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1) The complement w0 of w is the word formed by replacing A with B and B with

A throughout the word. For example,

w ¼ AABA ) w0 ¼ BBAB

2) The prefix or initial segment of w of length k is denoted by [w]k. Thus,

w ¼ a1� � �an ) w½ �k ¼ a1� � �ak
for 1 � k � n.

3) The number of A’s inw is denoted by NA(w) and the number of B’s by NB(w). We

refer to NA([w]k) as the A-count ofw at position k and similarly for the B-count.
For example, if

w ¼ AABBBA

then the A-count at position 3 is two and the B-count is one. The count

difference is the function

ΔA,B w½ �k
� � ¼ NA w½ �k

� �� NB w½ �k
� �

Some Notation

We will write [n] for the set {1, 2, . . ., n}. If S;�ð Þ is a totally ordered set, then a

closed interval in S is a set of the form

a; b½ � ¼ x2S
��a � x � b

� �

and an open interval is a set of the form

a; bð Þ ¼ x2S
��a < x < b

� �

The interior I∘ of an interval I is the largest open interval contained in I and so

a; b½ �∘ ¼ a; bð Þ. We write Int(S) for the poset of all closed intervals in S, ordered by
set inclusion, that is,

Int Sð Þ ¼ a; b½ ���a, b2S
� �

Whenever readability is not affected, we will write sequences as words a1a2� � �an,
rather than in the more traditional notation a1, a2, . . ., an.

Some Notation 5



Dyck Words 2

The German mathematician Walther Franz Anton von Dyck (1856–1934) studied

words inWa,b fora ¼ bwith the property that the A-count is at all times greater than

or equal to the B-count, that is, for which

ΔA,B w½ �k
� � � 0

for all k. Those words have since become known as Dyck words.

Incidentally, von Dyck has the distinction of being the first person to define

(in 1882) the notion of a mathematical group in the modern fully axiomatic sense,
by making explicit the notion of inverse. Prior to von Dyck’s work on groups, both

Cauchy and Cayley had contributed to the axiomatic definition of a group, but had

not specifically axiomatized the notion of an inverse. (To Galois, a group was

simply a table of ordered arrangements.)

Since we do not want to require initially that a ¼ b and for other reasons as well,
we make the following definition, which is not standard in the literature.

Definition 2.1

1) A strong Dyck word w2Wa,b is a word whose A-count is always greater
than its B-count, that is,

ΔA,B w½ �k
� �

> 0

for all k. We will assume that a > b, lest the set be empty.

2) A weak Dyck wordw2Wa,b is a word whose A-count is always greater than
or equal to its B-count, that is,

ΔA,B w½ �k
� � � 0

for all k. We will assume that a � b. □
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Now it should be clear why we order the alphabet and define a dominant letter—

the phrase “strong Dyck word over {X,Y}” must give the same result as the phrase

“strong Dyck word over {Y,X}” and so we do not know which letter is intended to

be more copious than the other.

To count the number of strongDyck words, as often happens, it is easier to count
what we do not want and then subtract that from the total. Now, since all Dyck

words start with an A, we take our universe to be the set Wa,b Að Þ of all words in
Wa,b that start with an A. This particular universe has size

Wa,b Að Þj j ¼ aþ b� 1

b

� �

The set that we do not want is the set T of all words in w2Wa,b Að Þ for which

ΔA,B w½ �k
� � � 0

for some k. But since ΔA,B wð Þ ¼ a� b > 0 and since ΔA,B([w]k) changes by only

one as k increases, there must be a value k for which

ΔA,B w½ �k
� � ¼ 0

that is, there must be a tie in the letter counts at some point. Thus, T is the set of all

words in Wa,b Að Þ that have a tie in the letter counts at some point.

Let w2Wa,b Að Þ and let k ¼ 2m be the position of the last tie in w, where
2 � k < aþ b. Then w has the form

w ¼ w½ �kα
where α 6¼ E, NA αð Þ ¼ a� m, and NB αð Þ ¼ b� m. If we replace α by its comple-

ment to get

w1 ¼ w½ �kα0

then

NA w1ð Þ ¼ mþ b� mð Þ ¼ b and NB w1ð Þ ¼ mþ a� mð Þ ¼ a

and sow12Wb,a Að Þ. Clearly, the map θ : T↦Wb,a Að Þ sendingw tow1 is injective.

To see that θ is surjective, note that if u2Wb,a Að Þ, then since u starts with an

A but has more Bs than As, it must also have a last tie, say at position k ¼ 2m, in
which case

u ¼ u½ �kα
and so θ sends [u]kα0 to u. Thus, θ is a bijection from T to Wb,a Að Þ and so the

number of strong Dyck words is

8 2 Dyck Words



Wa,b Að Þj j � Tj j ¼ Wa,b Að Þj j � Wb,a Að Þj j

¼ aþ b� 1

b

� �
� aþ b� 1

a

� �
¼ a� b

aþ b

aþ b
a

� �
ð2:1Þ

To find the number of weak Dyck words, we simply observe thatw2Wa,b is a weak

Dyck word if and only if Aw2Waþ1,b is a strong Dyck word. Therefore, since the

prefix map w↦Aw is a bijection, Equation [2.1] with a replaced by aþ 1 gives

aþ 1� b

aþ 1þ b

aþ 1þ b
aþ 1

� �
¼ aþ 1� b

aþ 1

aþ b

a

� �

Theorem 2.1

1) The number of strong Dyck words with a A s and b B s is

Dst
a,b ¼

a� b

aþ b

aþ b
a

� �

2) The number of weak Dyck words with a A s and b B s is

Dwk
a,b ¼

aþ 1� b

aþ 1

aþ b
a

� �
□

Bertrand’s Ballot Problem

Dyck words (which generalize Catalan words) can be applied in a variety of

situations but since our main interest is in Catalan numbers, we will be brief.

Bertrand’s ballot problem (from 1887) can be described as follows. Consider

an election with two candidates A and B. There are n voters in the election and their
votes are tallied one at a time. Hence, a voting history is just a word w of length

n over the alphabet {A,B}. For instance, the voting history

w ¼ ABAABBBA

means Voter 1 voted for Candidate A, Voter 2 voted for Candidate B, and so on.

Bertrand’s ballot problem is to determine the probability (assuming that all

voting histories are equally likely) that Candidate A is always ahead of Candidate

B in the election. A voting history in which this happens is precisely a strong Dyck

word. We can also inquire about the probability that Candidate A is never behind

Candidate B. These possibilities correlate bijectively to weak Dyck words.

Bertrand’s Ballot Problem 9



Thus, the answer to Bertrand’s ballot problem is an immediate consequence of

Theorem 2.1.

Corollary 2.1

Consider an election with two candidates A and B where A receives a votes
and B receives b votes, with a � b. Assume that all voting histories are
equally likely.

1) The probability that Candidate A is always ahead of Candidate B is

a� b

aþ b

2) The probability that Candidate A is never behind Candidate B is

aþ 1� b

aþ 1
□

Counting Paths

Dyck words can be characterized as certain types of paths in the plane. Here are two

examples.

Monotonic Paths

Figure 2.1 shows an 8� 6 grid. A path in this grid consists of a sequence of edges

starting at the lower left corner (the origin) that move up (U ) or to the right (R) one
square at a time, ending at the upper right corner.

Figure 2.1 A path that does not intersect the diagonal
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A path can therefore be described as a word over the alphabet (R,U ). For

example, the path in Figure 2.1 is

w ¼ RRU RRUU RU RU RRU

Suppose the grid has size n� k where n � k. Then a path that does not cross

(although may intersect) the diagonal line emanating from the origin corresponds to

a weak Dyck word with n Rs and k Us and there are Dwk
n;k such words. A path that

does not intersect the diagonal corresponds to a strong Dyck word with n Rs and k
Us and there are Dst

n;k such words.

Dyck Paths

Consider the path shown in Figure 2.2.

This path starts at the origin (0, 0) and moves either one unit up (U ) diagonally or

one unit down (D) diagonally for each tick mark on the x-axis. The paths that never
drop below the x-axis correspond bijectively to weak Dyck words over the alphabet
(U,D). These paths (especially those that end on the x-axis) are called Dyck paths.

Hence, if there are nþ 1 tick marks, the Dyck words have length n and if the ending
point is (n, k), then there are k more ups than downs and so there are a total of

Dwk
nþkð Þ=2, n�kð Þ=2 Dyck paths.

The paths that never touch the x-axis (except at the origin) correspond bijectively
to strong Dyck words over (U,D) and so there are a total ofDst

nþkð Þ=2, n�kð Þ=2 of these
so-called elevated Dyck paths.

Figure 2.2 A Dyck path

Counting Paths 11



The Catalan Numbers 3

The most important special case of Dyck words comes when a ¼ b so that the

words have the same number of dominant and nondominant letters. A slight

variation on these Dyck words is ballot sequences, which we also define here for

completeness.

Definition 3.1

a) We will refer to a weak Dyck word inWn,n as a Catalan word (no confondre

amb paraules en l’idioma català). For n ¼ 3, the five Catalan words over

(A,B) are

AAABBB, AABABB, AABBAB, ABAABB, ABABAB

Let Cn A;Bð Þ denote the set of Catalan words over (A,B) of length 2n. The
numbers

Cn ¼ Cn A;Bð Þj j
are called the Catalan numbers (although there are many other equivalent

definitions of these numbers). Note that C0 ¼ 1, since the empty word is a

Catalan word.

b) A ballot sequence is a sequence of n ones and n negative ones such that every
partial sum is nonnegative. For n ¼ 3, writing a plus sign forþ1 and a minus

sign for �1, the ballot sequences are

þþþ��� , þþ�þ�� , þþ��þ� , þ�þþ�� , þ�þ�þ�

(This notation suggests that a more appropriate term for these sequences

might be charge sequence: a sequence of positive and negative electric

charges for which the total charge up to any point in the sequence is

nonnegative.) □
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Catalan numbers were named by the mathematician John Riordan in 1948 after

the Belgian mathematician Eugène Charles Catalan (1814–1894), who worked in

a variety of areas of mathematics, including continued fractions, number theory,

and combinatorics. Catalan showed (in 1838) that the Catalan number

Cn ¼ 2nð Þ!
n! nþ 1ð Þ!

counts the number of ways to fully parenthesize a string of nþ 1 letters. We will

revisit this application later in the book.

Actually, the Catalan numbers were known to the Mongolian mathematician

Minggantu (1692–1763). He used these numbers to express sin(2x) and sin(4x) in
terms of sin(x), to wit,

sin 2xð Þ ¼ 2 sin xð Þ �
X1
k¼1

Ck�1

4k�1
sin 2kþ1 xð Þ

As an aside, Eugène Catalan is also known for his Catalan conjecture, namely that

23 ¼ 8 and 32 ¼ 9 are the only pairs of powers of positive integers that differed

by 1, that is, the equation xj � yk ¼ 1 has only one solution in positive integers.

This conjecture lay unproven for 58 years, until it was finally justified by Preda

Mihailescu, using some very sophisticated tools from number theory!

Our discussion of Dyck words immediately yields the following.

Corollary 3.1 The number of Catalan words of length 2n is

Cn ¼ 1

nþ 1

2n
n

� �
□

The first few Catalan numbers (starting with C0) are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845

and as you can see, the Catalan numbers grow large very quickly.

Basic Properties of the Catalan Numbers

Before looking at what the Catalan numbers can count, we wish to establish some

properties of these numbers. The following formulas are a more or less direct

consequence of Corollary 3.1.
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Theorem 3.1 For the Catalan numbers Cn, we have the following:

1) Cn ¼ 2n
n

� �
� 2n

n� 1

� �

2) Cn ¼ 1
nþ1

Xn
k¼0

n
k

� �2

3) Nonlinear recurrence relation

Cnþ1 ¼ 2 2nþ 1ð Þ
nþ 2

Cn, C0 ¼ 1

4) Asymptotic expression

Cn

. 4nffiffiffi
π

p
n3=2

� �
! 1 as n ! 1

Proof. For 2), we know that

Cn ¼ 1

nþ 1

2n
n

� �

and the Vandermonde convolution formula gives

Cn ¼ 1

nþ 1

2n
n

� �
¼ 1

nþ 1

Xn
k¼0

n
k

� �2

For 4), Stirling’s approximation to n! is

n! �
ffiffiffiffiffiffiffiffi
2πn

p n

e

� �n
and so

Cn ¼ 1

nþ 1

2nð Þ!
n!n!

� 1

nþ 1

2
ffiffiffiffiffi
πn

p
2n
e

� �2n
2πn n

e

� �2n ¼ 1

nþ 1

1ffiffiffiffiffi
πn

p 4n � 1

n

1ffiffiffiffiffi
πn

p 4n ¼ 4nffiffiffi
π

p
n3=2

□
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Integral Representation

The Catalan numbers also have an integral representation. A useful approach when

a recurrence formula such as

Cnþ1 ¼ 2 2nþ 1ð Þ
nþ 2

Cn, C0 ¼ 1

is available is to start with an integral of the form

In ¼
ð u
‘

xnþα aþ bxð Þβdx

for n � 0 and integrate by parts for n � 1. Let

du ¼ aþ bxð Þβdx and v ¼ xnþα

Then

u ¼ 1

b β þ 1ð Þ aþ bxð Þβþ1
and dv ¼ nþ αð Þxn�1þα

Hence,

In ¼ 1

b β þ 1ð Þx
nþα aþ bxð Þβþ1

				
u

‘

� nþ α

b β þ 1ð Þ
ð u
‘

xn�1þα aþ bxð Þβþ1dx

At this point, we set the limits of integration so that the first term on the right is zero,

‘ ¼ 0 and u ¼ �a

b

The integral on the right can be expanded

ð
xn�1þα aþ bxð Þβþ1dx ¼ a

ð
xn�1þα aþ bxð Þβdxþ b

ð
xnþα aþ bxð Þβdx

¼ aIn�1 þ bIn

and so we get

In ¼ � nþ α

b β þ 1ð Þ aIn�1 þ bInð Þ

or finally,

In ¼ � a nþ αð Þ
b β þ 1þ nþ αð Þ In�1
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for n � 1. Now we need to select the parameters so that the desired recurrence and

initial conditions

Cn ¼ 2 2nþ 1ð Þ
nþ 2

Cn, C0 ¼ 1

are obtained. Taking the naive view, we set

a nþ αð Þ ¼ 2 2n� 1ð Þ and �b β þ 1þ nþ αð Þ ¼ nþ 1

Thus,

a ¼ 4, α ¼ �1=2, b ¼ �1, β ¼ 1=2

and so

In ¼ 2 2n� 1ð Þ
nþ 1ð Þ In�1

for n � 1. To deal with the initial conditions, we multiply In by an appropriate

constant. Since

I0 ¼
ð4
0

x�1=2 4� xð Þ1=2dx ¼ 2π

the appropriate constant is 1/2π, giving the following integral representation.

Theorem 3.2 The Catalan numbers have the integral representation

Cn ¼ 1

2π

ð4
0

xn�1=2 4� xð Þ1=2dx

for n � 0. □

Recurrence Relation and Generating Function

The key to finding a binary decomposition model for Catalan words is that all

Catalan words must have a tie at some point, even if that point comes only at the

very end of the word. To save ink, let us write Cn for Cn A;Bð Þ. If the first tie
occurring in a Catalan word w2Cn is at position 2k, then we can write

w ¼ w½ �2kv
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where v2Cn�k, since we are in a sense starting fresh at position 2k þ 1. Moreover,

[w]2k must start with an A and end with a B and so

w½ �2k ¼ AxB

where x2Ck�1. Thus, we conclude that all Catalan words have the form

w ¼ AxBv

where x2Ck�1 and v2Cn�k. The two letters A and B above provide the nexus for a

decomposition of w into the pair x; vð Þ2Ck�1 � Cn�k. Note that we lose both A and

B in the decomposition. Specifically, if Cn,k is the family of Catalan words whose

first tie is at position k, then we define a map

θn,k : Cn,k ! Ck�1 � Cn�k

by

θn,k AxBvð Þ ¼ x; vð Þ
This map is injective since the decomposition is clearly reversible and surjective

since every pair x; vð Þ2Ck�1 � Cn�k can be recomposed into a Catalan word AxBv in
Cn.

Hence, the associated recurrence relation is

Cn ¼
Xn
k¼1

Ck�1Cn�k ¼
Xn�1

k¼0

CkCn�1�k

with C0 ¼ 1, which is the Catalan recurrence. In other words, the Catalan numbers

satisfy the Catalan recurrence relation.

Generating Function

The right side of the Catalan recurrence relation might look familiar: It is the

coefficient of xn�1 in the product

X1
k¼0

Ckx
k

 !2

So if the generating function of the Catalan numbers is

C xð Þ ¼
X1
k¼0

Ckx
k
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then for all n � 0,

coefxn�1 C2 xð Þ� � ¼ Cn

or equivalently,

coefxn xC2 xð Þ� � ¼ Cn

for n � 1. For n ¼ 0, the left side is 0 and the right side is 1 and so

xC2 xð Þ ¼ C xð Þ � 1

This quadratic can be formally solved for C(x) to get

C xð Þ ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x

p

2x

Expanding
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x

p
in a Taylor series shows that we must take the negative sign in

order to get positive terms in the expansion and so we arrive at the generating

function for the Catalan numbers.

Theorem 3.3

1) The Catalan numbers Cn satisfy the Catalan recurrence relation

Cn ¼
Xn�1

k¼0

CkCn�k�1

for n � 1, with C0 ¼ 1.

2) The generating function of the Catalan numbers is

C xð Þ ¼
X1
k¼0

Ckx
k ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4x
p

2x
□

Wewill frequently encounter a shifted Catalan recurrence relation of the form

Dn ¼
Xn�1�a

k¼0

DkþaDn�k�1, Da ¼ 1

for n � aþ 1. Setting Fn�a ¼ Dn gives F0 ¼ Da ¼ 1 and

Fn�a ¼
Xn�1�a

k¼0

FkFn�k�1�a
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Then replacing n by nþ a gives the Catalan recurrence

Fn ¼
Xn�1

k¼0

FkFn�k�1

for n � 1, whence Dnþa ¼ Fn ¼ Cn.

Theorem 3.4 If a sequence Dn of integers satisfies the recurrence relation

Dn ¼
Xn�1�a

k¼0

DkþaDn�k�1, Da ¼ 1

for n � aþ 1, then

Dn ¼ Cn�a

for all n � a: □
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Catalan Numbers and Paths 4

We begin our examination of the types of objects that are counted by the Catalan

numbers with paths, because the work has already been done.

Monotone Paths

We have seen that a Catalan word of length 2n over (U,R) can be described as a

monotonic path in an n� n grid that does not rise above the diagonal, as shown in

Figure 4.1.

Theorem 4.1

Cn counts the number of monotonic paths in an n� n grid that do not rise
above the diagonal. □

Figure 4.1 A

monotonic path
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Dyck Paths

We have also seen that a Catalan word over (U,D) of length 2n can be characterized
as a Dyck path of length 2n that ends on the horizontal axis, as shown in Figure 4.2.
These are usually referred to simply as Dyck paths.

Theorem 4.2

Cn counts the number of Dyck paths of length 2n that end on the horizontal
axis. □

Path Summary

Theorem 4.3

Cn counts the number of

1) monotonic paths in an n� n grid that do not rise above the diagonal,
2) Dyck paths of length 2n that end on the horizontal axis. □

Figure 4.2 A Dyck path ending on the horizontal axis
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Catalan Numbers and Trees 5

The Catalan numbers excel at counting a variety of types of trees. (The Appendix of

this book contains a brief introduction to the subject of trees for those who are

interested.)

Ordered Trees

Let Rn be the family of all ordered trees with n vertices. If n � 2 and if T2Rn is

an ordered tree whose root has degree d > 0, then each of the d edges incident

with the root will also be incident with a distinct subtree of the root (perhaps

consisting of a single vertex only). Figure 5.1 shows a tree whose root has degree 3.

Since d > 0, the root vertex will have a leftmost subtree T‘ and we can use the

edge connecting the root with that subtree as the nexus with which to decompose

T into two disjoint subtrees T‘ and Tr, as shown in Figure 5.1. Here Tr is the

complement of T‘, excluding the nexus edge but including the original root.

However, in order that the left subtree be of the same type as the original tree, we

need to specify its root, which we take to be the vertex incident with the nexus.

Figure 5.1 A decomposition of a rooted tree
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Thus, if Rn,k is the family of all members of Rn whose left subtree has size k,
then we can define a map

θn,k : Rn,k ! Rk �Rn�k

by

θn,k Tð Þ ¼ T‘; Trð Þ

where T‘ has size k, and Tr has size n� k and 1 � k � n� 1 (for n � 2). It is clear

that θn,k is a bijection. Specifically, θn,k is injective because the decomposition is

clearly reversible. Also, θn,k is surjective because we can recombine any two

ordered trees T12Rk and T22Rn�k by reversing the decomposition process,

specifically, by placing the root of T1 at level 1 and the root of T2 at level 0 and

then connecting the two roots with a new edge, declaring the root of T2 to be the root
of the new tree.

Thus, if Dn is the number of ordered trees on n vertices, then since D1 ¼ 1, the

decomposition model yields the recurrence

Dn ¼
Xn�1

k¼1

DkDn�k ¼
Xn�2

k¼0

Dkþ1Dn�k�1

for n � 2, which is a shifted Catalan recurrence (Theorem 3.4 with a ¼ 1) and so

Dnþ1 ¼ Cn

for all n � 0.

Theorem 5.1

Cn counts the number of ordered trees with nþ 1 vertices. □

Binary Trees

Let Bn be the family of binary trees with n vertices for n � 1. If T2Bn then we can

use the root vertex together with its incident edges as our nexus, decomposing

T into a (possibly empty) left subtree T‘ with k vertices and a (possibly empty) right

subtree Tr with n� k � 1 vertices, thereby losing the original root, as shown in

Figure 5.2. The roots for the subtrees are the vertices adjacent to the original root.
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If Bn,k is the family of all members of Bn that have a left subtree of size k, for
0 � k � n� 1, then this decomposition into a left and right subtrees defines a

family of bijections

θn,k : Bn,k ! Bk � Bn�k�1

by

θn,k Tð Þ ¼ T‘; Trð Þ

Hence, the number Dn of binary trees with n vertices satisfies the recurrence

Dn ¼
Xn�1

k¼0

DkDn�k�1

for n � 1. SinceD0 ¼ 1, this is the Catalan recurrence and soDn ¼ Cn for all n � 0.

By the way, lest it should seem that we are cheating by arbitrarily takingD0 ¼ 1

simply to make things work out in a Catalan fashion, note that D0 ¼ 1 is required
for the count. For example, if there is no right subtree, we still want to count the

decomposition into a nonempty left subtree and an empty right subtree and so D0

must equal 1.

Theorem 5.2

Cn counts the number of binary trees with n vertices. □

Full Binary Trees

A full binary tree T consists of a root vertex together with both a left and a right

subtree, both empty or both nonempty. Note that T must have an odd number of

vertices, a fact easily proved by induction. Let Fn be the family of full binary trees

with 2nþ 1vertices (forn � 0) and letFn,k be the members ofFnwhose left subtree

has size 2k þ 1, for 0 � k � n� 1 (and n � 1).

Figure 5.2 Decomposition of a binary tree
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If T2F n, then we can again use the root vertex and its incident edges as our

nexus, decomposing T into a full left subtree T‘ with 2k þ 1 vertices and a full right

subtree Tr with

2nþ 1ð Þ � 2k þ 1ð Þ � 1 ¼ 2n� 2k � 1

vertices, thereby losing the original root vertex, as shown in Figure 5.3.

This decomposition defines a bijection

θn,k : F n,k ! F k �F n�k�1

by

θn,k Tð Þ ¼ T‘; Trð Þ

for 0 � k � n� 1 and so the number Dn of full binary trees with 2nþ 1 vertices

satisfies the recurrence

Dn ¼
Xn�1

k¼0

DkDn�k�1, D0 ¼ 1

for n � 1, which is the Catalan recurrence.

Theorem 5.3

Cn counts the number of full binary trees with 2nþ 1 vertices. □

Noncrossing, Alternating Trees

Here is another, somewhat more unusual example of counting trees. These trees can

be characterized in other interesting ways, as we will see in the sequel. As shown in

Figure 5.4, suppose we draw n points on a line, label them 1, . . ., n, and connect two

Figure 5.3 Decomposition of a full binary tree
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integers i and j by an edge that does not drop below the line and with the following

properties.

1) Noncrossing property: No two edges intersect except possibly at vertices of the

graph.

2) Alternating property: At each vertex, the edges all exit in one direction (all exit

to the left or all exit to the right).

Let G be the resulting graph. Figure 5.5 shows the five noncrossing, alternating

graphs with four vertices.

Now, it is clear that G is acyclic, since any vertex in a cycle would have edges

exiting in both directions. Therefore, the maximum number of edges in G is n� 1.

Also,G is connected and is therefore a tree if and only if it has preciselyn� 1 edges.

Let us assume that G is a tree. Such trees are called noncrossing, alternating

trees. The term “alternating” comes from the fact that if we follow any path in the

tree, the vertex labels alternate in relative size: larger, smaller, larger, smaller, . . .
(or smaller, larger, smaller, larger, . . .).

To save trees, we will refer to noncrossing, alternating trees as NA-trees. We

wish to determine the size of the family T n of all NA-trees with n vertices.

Note first that any T2T n must contain the edge {1, n}. For if not, then we may

suppose that the largest vertex adjacent to vertex 1 is vertex k < n. But then the

noncrossing property implies that vertices 1, . . ., k are isolated from vertices

k þ 1, . . . , n, since any edge {i, j} with i � k and j � k þ 1 would intersect the

edge {1, k} at a nonvertex. This implies that the graph is not connected, a definite

falsehood.

If we remove edge {1, n} from the NA-tree T, the resulting graph consists of

exactly two connected components. (This is true for any tree.) Let T1 be the

component that contains the vertex 1 and let Tn be the component that contains

the vertex n. Since the properties that define an NA-tree pass to subtrees, both T1
and Tn are NA-trees and so {1, k} is an edge in T1 and k þ 1, nf g is an edge in Tn.
Hence, the vertex set for T1 is [1, k] and the vertex set for Tn is k þ 1, n½ �.

Thus, if T n,k is the family of all NA-trees of size n with largest vertex k, then we
have a family of evidently injective maps

Figure 5.4 A noncrossing

alternating tree

Figure 5.5 The five noncrossing, alternating trees with four vertices
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θn,k : T n,k ! T k � T n�k

defined by

θn,k Tð Þ ¼ T1; Tnð Þ

To see that θn,k is also surjective, observe that if T1 and Tn are any NA-trees with

vertex set [1, k] and k þ 1, n½ �, respectively, then we can draw them as described

above and stitch them together by adding the edge {1, n} to get an NA-tree with

n vertices.

Hence, if Dn denotes the number of NA-tree on n vertices, we have

Dn ¼
Xn�1

k¼1

DkDn�k ¼
Xn�2

k¼0

Dkþ1Dn�k�1

which is a shifted Catalan recurrence (Theorem 3.4 with a ¼ 1) and so Dnþ1 ¼ Cn.

Theorem 5.4

Cn counts the number of noncrossing, alternating trees with nþ 1

vertices. □

Tree Summary

Theorem 5.5

Cn counts the number of

1) ordered trees with nþ 1 vertices,
2) binary trees with n vertices,
3) full binary trees with 2nþ 1 vertices,
4) noncrossing, alternating trees with nþ 1 vertices. □
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Catalan Numbers and Geometric Widgits 6

Catalan numbers can also count a variety of geometric objects.

Nonintersecting Chords

Consider the vertices of a convex 2n-gon, as shown on the left in Figure 6.1. There

are many ways to draw chords connecting pairs of vertices in such a way that all

vertices are incident with a chord and that no two chords intersect (even at the

vertices). We call this a nonintersecting chording of the polygon.

Figure 6.2 shows the five possible nonintersecting chordings of a hexagon

n ¼ 3ð Þ.

Figure 6.1 Chording a convex polygon

Figure 6.2 Nonintersecting chordings of a hexagon
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To count the number Dn of ways to chord a convex 2n-gon P, we fix a root

vertex and label it v1. Then we label the remaining vertices in counterclockwise

order v2 through v2n.
In any nonintersecting chording, the root vertex v1 is incident with a chord that

we call the root chord. The root chord must be incident with a vertex v2k of even
index, so that there are an even number of vertices on each side of the root chord.

LetPn be the family of all rooted chorded 2n-gons and letPn,k be the members ofPn

whose root vertex is adjacent to the vertex v2k, for 1 � k � n.
If P∈Pn,k, then the root chord and its incident vertices define the nexus for a

decomposition of P into two smaller convex polygons P‘ of size 2k � 2 and Pr of

size 2n� 2k, as shown in Figure 6.1. Note that if the root vertex is adjacent to either
v2 or v2n, then either P‘ or Pr will be empty. In any case, if P‘ or Pr is nonempty,

then it is properly chorded and we declare the root of P‘ to be the vertex v2 and the

root of Pr to be the vertex v2n.
Thus, for each 1 � k � n, we have an injective map

θn,k : Pn,k ! Pk�1 � Pn�k

defined by

θn,k Pð Þ ¼ P‘;Prð Þ

The map θn,k is also surjective, since any two chorded rooted polygons can be

recombined by the addition of a nexus chord (and concomitant vertices) to produce

a new larger rooted chorded polygon. Note that we must connect the roots of P1 and

P2 to the new root of the larger polygon.

Thus, if Dn ¼ Pnj j, then the associated recurrence relation is precisely the

Catalan recurrence

Dn ¼
Xn

k¼1

Dk�1Dn�k ¼
Xn�1

k¼0

DkDn�1�k

and since D0 ¼ 1, we have Dn ¼ Cn for all n � 0.

Theorem 6.1

Cn counts the number of ways to chord a convex 2n-gon with nonintersecting
chords. □

For example, since C6 ¼ 132, there are 131 other ways to partition the dodeca-

gon in Figure 6.1. Just in case you think this sort of problem is frivolous, consider

that we have just proved that if you are sitting at a round table with 11 mutual

strangers, there are exactly 132 ways in which every stranger can shake hands with

another stranger at the same time without interference from the arms of the others

seated at the table! Enough said.
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Tilings of a Staircase

The far left portion of Figure 6.3 shows an inverted staircase. This staircase has

size 3� 3 because it fits over a 3� 3 grid of equal-sized squares.

There are several ways in which an inverted staircase of size n� n can be tiled

with exactly n rectangular tiles. The five ways that this can be done for the case

n ¼ 3 are also shown in Figure 6.3. Let us count the ways.

Note first that each tile can contain at most one diagonal square and since there

are n diagonal squares and n tiles, it follows that each tile must contain exactly one
diagonal square.

The upper left tile, that is, the tile that contains the upper left corner of the

staircase, can be used as a nexus to decompose the tiling into two smaller tilings as

follows. With reference to Figure 6.4, if the upper left tile has size r � c (r rows and
c columns of squares), then it is easy to see that

c ¼ nþ 1� r

and so we can use r to uniquely indentify the upper left tile, where 1 � r � n.
Let T n be the family of tilings of an n� n inverted staircase and let T n, r be the

members of T n for which the upper left tile has size r � nþ 1� rð Þ. By removing

this upper left tile, we decompose the original n� n tiling T into an r � 1ð Þ �
r � 1ð Þ tiling T1 and an n� rð Þ � n� rð Þ tiling T2, as shown in Figure 6.4.

Figure 6.3 Tiling with n tiles

Figure 6.4 The decomposition

Tilings of a Staircase 31



If r ¼ 1 or r ¼ n, then one of these tilings is empty. Now, it is clear that this

decomposition is reversible, that is, the map

θn, r : T n,k 7! T r�1 � T n�r

defined by

θn, r Tð Þ ¼ T1; T2ð Þ

is injective. Moreover, θn,r is surjective since any pair of tilings of sizes r � 1ð Þ
� r � 1ð Þ and n� rð Þ � n� rð Þ can be recombined using a tiling of size

r � nþ 1� rð Þ. Hence, if Dn is the number of n� n tilings, then taking D0 ¼ 1,

we have

Dn ¼
Xn

r¼1

Dr�1Dn�r ¼
Xn�1

r¼0

DrDn�r�1

and so Dn ¼ Cn.

Theorem 6.2

Cn counts the number of staircase tilings of an n� n grid using n tiles. □

Noncrossing, Alternating Chords

If we start with a noncrossing, alternating tree, such as the one on the far left in

Figure 6.5 and carefully move the vertices as shown in the figure, the result is a

chorded convex polygon P whose vertices are the vertices of the NA-tree.

Figure 6.5 Morphing an NA-tree into an NA-chorded polygon
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Moreover, the noncrossing and alternating properties carry over to the polygon,

that is,

1) Noncrossing property: The chords do not intersect except perhaps at a vertex

of P.
2) Alternating property: No integer in [n] is adjacent (that is, connected by a

chord) to both a smaller vertex and a larger vertex.

For instance, in the example in Figure 6.5, vertex 2 is adjacent to a larger vertex

only and vertex 3 is adjacent to smaller vertices only.

Theorem 6.3

Cn counts the number of chorded convex (n+ 1)-gons with n chords and with
the following properties.

1) Noncrossing property: The chords do not intersect except perhaps at a
vertex of P.

2) Alternating property: No integer in nþ 1½ � is adjacent to both a smaller
vertex and a larger vertex. □

Triangulations of a Convex Polygon

A triangulation of a convex polygon is a division of the interior of the polygon into

triangles using noncrossing chords that connect vertices of the polygon. Figure 6.6

shows the triangulations of a hexagon.

Figure 6.6 Triangulations of a hexagon
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In the 18th century, the famous mathematician Leonhard Euler took an interest

in determining the number of triangulations of a convex n-gon. We do as well.

Note that the first two triangulations in Figure 6.6 are considered distinct even

though each can be obtained from the other by a mere rotation. This is because the

vertices (and edges) of the polygon are considered distinguishable. To make this

plain, referring to the left-hand side of Figure 6.7, let us assume that the vertices are

labeled v1 through vn in clockwise order. We refer to the edge connecting v1 and vn
as the root edge, with right root vertex v1 and left root vertex vn. The triangle

containing the root edge is the root triangle and the third vertex of the root triangle

is the opposite vertex.

The following terminology will also come in handy. As on the left in Figure 6.7,

when the vertices are equally spaced around a circle, with the root edge placed

horizontally at the top, we say that the polygon is in center standard position.

Now, it is clear that we may nudge the vertices of the polygon around the circle

without affecting the triangulation, as long as we do not change the order of the

vertices. If we cram the vertices into the left half of the circle as shown in the middle

of Figure 6.7, with the root edge having a large negative slope, we say that the

triangulated polygon is in left standard position. Similarly, right standard posi-

tion is shown on the right in Figure 6.7.

Let Pn be the family of all rooted triangulated n-gons. As shown in Figure 6.8,

each P∈Pn can be decomposed into a rooted triangulated polygon P‘ of size k that
is in left standard position and a rooted triangulated polygon Pr of size j that is in
right standard position as follows.

1) Put the polygon in center standard position.

2) Delete the root edge.

3) Split the opposite vertex vk into two vertices vk
0 and vk

00.
4) Nudge the vertices vn�1, . . . , vkþ1 and vk

0 so that P‘ is in left standard position.

Nudge the vertices v1, . . . , vk�1 and vk
00 so that Pr is in right standard position.

5) The remaining edges of the original root triangle become the roots of P‘ and Pr.

Figure 6.7 Vertex positions

34 6 Catalan Numbers and Geometric Widgits



Figure 6.8 shows two examples of the decomposition process for a hexagon. The

root triangles are shaded.

For the two extreme cases where the root triangle has two edges on the polygon,
as on the right in Figure 6.8, the decomposition is into a line segment (a 1-gon) and

an (n� 1)-gon, with no net change in edge count.

For the other cases, the decomposition results in a k-gon P‘ and an (n� k+ 1)-
gon Pr, where 3 � k � n� 2, for a net gain of one edge. Hence, the possibilities for

the sizes P‘

��,
��Pr

�� ��� �
of the constituent polygons are

1, n� 1ð Þ, n� 1, 1ð Þ and k,n� k þ 1ð Þ3�k�n�2

If Pn,k is the set of triangulated n-gons for which P‘ has size k, for 3 � k � n� 2,

the map

θn,k : Pn,k ! Pk � Pn�kþ1

defined by

θn,k Pð Þ ¼ P‘;Prð Þ

is injective, since the decomposition is reversible.

This map is also surjective. To see this, suppose that P1 is a rooted triangulated

k-gon and P2 is a rooted triangulated (n� k+ 1)-gon. Place P1 in left standard

position and place P2 in right standard position on the same circle. Then combine

the two polygons by connecting the left root vertex of P1 to the right root vertex of

P2 and combining the right root vertex of P‘ with the left root vertex of Pr.

As to the extreme cases, k ¼ 1 and k ¼ n� 1, it is easy to see that both families

Pn, 1 and Pn,n�1 are in bijection with Pn�1.

Therefore, ifDn ¼
��Pn

��, then settingD2 ¼ 1 and including all of the possibilities

for k, we get the recurrence relation

Dn ¼ 2Dn�1 þ
Xn�2

k¼3

DkDn�kþ1 ¼
Xn�1

k¼2

DkDn�kþ1 ¼
Xn�3

k¼0

Dkþ2Dn�k�1

for n � 3. Since D3 ¼ 1, this is the recurrence for a shifted Catalan recurrence

(Theorem 3.4 with a ¼ 2) and so Dnþ2 ¼ Cn.

Figure 6.8 Decomposing a triangulation at the root edge
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Theorem 6.4

Cn counts the number of triangulations of a convex polygon with n þ 2

sides. □

Disk Stacking

Sometimes it is easier to find a characterization of one type of object in terms of

another type of object whose count we already know than to directly count the

original objects. Here is an example.

Figure 6.9 shows one way to stack equal-sized disks in the plane, a task that we

often find ourselves wishing to do. Let Dn be the number of possible disk stackings,

where the bottom row has n disks.

At first glance, it looks like we might be able to characterize a stack of disks by a

Dyck path. To this end, call a disk exposed if a perfectly vertical rainstorm falling

from above bedashes the disk. As shown in Figure 6.10, a path connecting the

centers of the exposed disks is almost a Dyck path: the problem is the flats in the

path.

The key to dealing with this is the fact that this type of path does not have any

V-formations because, as shown in Figure 6.11, a V-formation implies that the path

goes through a nonexposed disk.

Figure 6.9 A disk stacking

Figure 6.10 Flats problem
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Referring to Figure 6.12, let us add a new row of nþ 1 disks to the bottom of the

stack.

Now we can eliminate the flats with the two-step process shown in Figure 6.13. In

particular, between each pair of adjacent disks involved in a flat, add an additional

vertex at the point of tangency and then drop the vertex down one level to create a

V. Because of the additional row, this will always be possible. Note that this step is

reversible precisely because there were no Vs in the original path.

The result of this manipulation is a Dyck path, as shown in Figure 6.14.

Figure 6.11 No V’s in

the path

Figure 6.12 Add a bottom row

Figure 6.13 Removing flats

Figure 6.14 Redraw path with no flats
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Moreover, since the manipulations are reversible, the map from stacks of disks

with n disks on the bottom row to Dyck paths of width nþ 1 is injective.

To see that it is also surjective, let us remove all disks whose centers do not

contact the path, as shown in Figure 6.15. This step is also reversible and it seems

pretty clear that there is essentially no difference between the path and the collec-

tion of disks.

Finally, since there are nþ 1 disks on the bottom row, the Dyck path, which

advances one disk radius horizontally for each step, has length 2n.

Theorem 6.5

Cn counts the number of ways to stack equal-sized disks with n disks on the
bottom row. □

Geometric Widgit Summary

Theorem 6.6

Cn counts the number of

1) ways to chord a convex 2n-gon with nonintersecting chords,
2) staircase tilings of an n� n grid using n tiles,
3) noncrossing, alternating, chorded convex (nþ 1)-gons with n chords,
4) triangulations of a convex polygon with nþ 2 sides,
5) ways to stack equal-sized disks with n disks on the bottom row. □

Figure 6.15 The final result
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Catalan Numbers and Algebraic Widgits 7

Correct Parenthesizing Under a Nonassociative Binary Operation

Consider a binary operation defined on a setA that is represented by juxtaposition.

If the operation is not associative, then a word of the form abcd is not well defined

unless we insert parentheses. For the word abcd, there are five ways this can be

done:

abð Þcð Þd, abð Þ cdð Þ, a bcð Þð Þd, a bcð Þdð Þ, a b cdð Þð Þ
We would like to count the number of ways there are to fully parenthesize a word

w ¼ a1a2� � �an
of length n. We will assume that a full parenthesizing does not include parentheses

surrounding the entire word, as in (a(bc)) or parentheses surrounding a single letter,
as in a((b)c). A full parenthesization contains just enough parentheses to disambig-

uate the expression.

Let F n be the family of fully parenthesized words of length n over A. Assume

that n � 3. We can use the first pair of matching parentheses as the nexus to

decompose a fully parenthesized word w into smaller fully parenthesized words.

In particular, w has the form

w ¼ α βð Þγ ð7:1Þ
where α, β, and γ are fully parenthesized words, and len βð Þ > 1 and the parentheses

shown are the first matching pair, that is, the open parenthesis is the first open

parenthesis in w and the closing parenthesis matches the open parenthesis.

Note first that one of α or γ must be the empty word, since otherwise w is not

fully parenthesized, for it is not possible to further parenthesize this expression in
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order to group α and β together or β and γ together without introducing an open

parenthesis somewhere to the left of the first open parenthesis.

Moreover, α must have length 0 or 1, since otherwise w would have the form

w ¼ a1a2� � � βð Þγ
with no open parenthesis to the left of the one showing and so wwould not be fully

parenthesized.

If α is the empty word, then w ¼ βð Þγ and there are two possibilities for γ:

w ¼ βð Þg if γ ¼ g2A
βð Þ γ0ð Þ if γ has length > 1

(

where β and γ0 are fully parenthesized. On the other hand, if len αð Þ ¼ 1 then γ must

be the empty word and w has the form

w ¼ a βð Þ
where a2A and β is fully parenthesized.

In summary, w has one of the following forms

w ¼ a βð Þ or w ¼ βð Þg or w ¼ βð Þ γ0ð Þ
where a, g2A, len βð Þ > 1, len γ0ð Þ > 1, and both β and γ0 are fully parenthesized.

The first two cases are easy to enumerate, since there are evident bijections between

the fully parenthesized words of length n and of type a(β) (or type (β)g) and the

fully parenthesized words of length n� 1.

For 2 � k � n� 2, let F n,k be the subfamily of F n consisting of those fully

parenthesized words of type

w ¼ βð Þ γ0ð Þ
where

len βð Þ ¼ k and len γ0ð Þ ¼ n� k

Then the map

θn,k : F n,k ! F k � F n�k

defined by

θn,k wð Þ ¼ β; γ0ð Þ
is bijective, its inverse map being β; γð Þ 7! βð Þ γð Þ.
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Letting Dn ¼
��F n

�� and D1 ¼ 1, we have the associated recurrence relation

Dn ¼ 2Dn�1 þ
Xn�2

k¼2

DkDn�k ¼
Xn�1

k¼1

DkDn�k ¼
Xn�2

k¼0

Dkþ1Dn�k�1

for n � 2. This is the recurrence for a shifted Catalan recurrence (Theorem 3.4 with

a ¼ 1) and so

Dnþ1 ¼ Cn

for all n � 0.

Theorem 7.1

Cn counts the number of ways to fully parenthesize a word of length nþ 1

under a nonassociative binary operation. □

Balanced Parentheses

An inductive characterization of Catalan words can sometimes be useful in solving

a counting problem. The key to the inductive definition is that every Catalan word

starts with A and so it must contain the subword AB. Moreover, the removal of any

such subword simply produces a shorter Catalan word.

Theorem 7.2

A wordw of length 2n over the alphabet (A,B) is a Catalan word if and only if
it comes from the empty word E or from a Catalan word of length2n� 2by the
insertion of the subword AB at any location within the word. □

Consider a string consisting of n opening parentheses and n closing parentheses,
such as

ðÞð Þð Þ or
�ðÞðÞ� or

������
In the first string, the parentheses are correctly matched, or balanced but in the

second string, they are not. What does it mean to say that a string of parentheses is

balanced?

In examining a string w of parentheses, perhaps the most natural way to

determine whether or not it is balanced is to repeatedly remove adjacent matched

pairs of parentheses, that is, substrings of the form () until we reach a point where
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the string is either empty, in which case w is balanced or is nonempty but we can

reduce no further, in which case w is not balanced.

This provides an inductive definition of balanced: A wordwof length 2n over the
alphabet ((,)) is balanced if and only if it comes from the empty word E or from a

balanced string of length 2n� 2 by the insertion of the subword (). But this is

precisely the inductive characterization of Catalan words given earlier.

Theorem 7.3

Cn counts the number of balanced strings of parentheses of length 2n. □

Null Sums in ℤnþ1

Here is another algebraic arena in which the Catalan numbers appear. Let

ℤnþ1 ¼ 0; 1; . . . ; nf g be the integers modulo nþ 1. A multiset M over ℤnþ1 has

null sum if the sum of its elements is zero modulo nþ 1. For example, if

n ¼ 5, the multiset

S ¼ 1; 1; 2; 4; 4f g
has sum 12 � 0 mod 6 and so S has null sum. Let Zn be the family of all multisets

over ℤnþ1 of size n (counting multiplicities of the elements) that have null sum.

Thus, S2Z5.

Here is an elegant method for determining the size ofZn due to Richard Stanley.

Define a binary relation on Zn by saying that S ¼ a1; . . . ; anf g is related to each of

its translations,

Sþ k ¼ a1 þ k, . . . , an þ kf g
for k2ℤnþ1. This is easily seen to be an equivalence relation on Zn.

Now, the nþ 1 translates

S, Sþ 1, . . . , Sþ n

are all distinct because n and nþ 1 are relatively prime. To see this, suppose that

Sþ k ¼ Sþ j, where 0 � j � k � n. Using the notation
X

X for the sum of the

elements in the set X we have

X
Sþ kð Þ � nk mod nþ 1ð Þ

and
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X
Sþ jð Þ � nj mod nþ 1ð Þ

Then Sþ k ¼ Sþ j implies that nk � nj mod nþ 1ð Þ, that is,

nþ 1
��n k � jð Þ

and since n and nþ 1 are relatively prime, we deduce that k ¼ j. Therefore, each
equivalence class has size nþ 1.

Now, the total number of multisets is equal to the multiset coefficient

nþ 1

n

� �� �
¼ 2n

n

� �

and so there are precisely

1

nþ 1

2n
n

� �

equivalence classes inMn. However, because n and nþ 1 are relatively prime, the

sums for each multiset in a given equivalence class are all different and so exactly

one of the multisets in each equivalence class has null sum.

Theorem 7.4

Cn counts the number of multisets of size n in ℤnþ1 with null sum. □

Algebraic Widgit Summary

Theorem 7.5

Cn counts the number of

1) ways to fully parenthesize a word of length nþ 1 under a nonassociative
binary operation,

2) balanced strings of parentheses of length 2n,
3) multisets of size n in ℤnþ1 with null sum. □
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Catalan Numbers and Interval Structures 8

There are many interesting families of intervals counted by the Catalan numbers.

First, however, let us make a remark about antichains in the poset Int([n]) of

intervals on [n]. If A is such an antichain, then no two intervals in A can share a

common left endpoint or a common right endpoint. Moreover, if we order the

intervals so that the left endpoints are strictly increasing, then the right endpoints

must also be strictly increasing. In fact, a family

F ¼ ai; bi½ ���1 � i � n
� �

of intervals in Int([n]) is an antichain if and only if both the left endpoint sequence

a1� � �an and the right endpoint sequence b1� � �bn can be ordered at the same time in
strictly increasing order, in symbols, F is an antichain if and only if (after

simultaneous reindexing of the a’s and b’s if necessary)

a1 < � � � < an, b1 < � � � < bn, ai � bi

for all i.

Separated Families of Intervals

The following concept will prove useful later.

Definition 8.1

Let j; n½ � � ℤ. A family F of intervals in Int([ j, n]) is separated if any two

intervals inF are either disjoint or else one interval is contained in the interior of

the other. Let S j;n½ � be the collection of all separated families in Int([ j, n]). □
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To count the number Dn of separated families in S 1;n½ �, we partition the families

into groups.

1) For 1 � k � n, let S k
1;n½ � be the set of separated families that contain the

interval [k, n].
2) Let SØn

1;n½ � be the set of separated families for which n is not in any interval of the

family.

Since SØn
1;n½ � ¼ S 1,n�1½ �, we have

SØn
1;n½ �

���
��� ¼ Dn�1

The members ofS1
1;n½ � contain the interval [1, n] and so correspond bijectively to the

members of S 2,n�1½ � and the members of S n
1;n½ � contain the interval [n, n] and so

correspond bijectively to the members of S 1,n�1½ �.
For 2 � k � n� 1, a family F 2S k

1;n½ � can be decomposed into two smaller

families using the nexus interval [k, n], because any interval i; j½ �2F other than

[k, n] must be either disjoint from [k, n], that is, contained in 1, k � 1½ � or else

contained in k; n½ �� ¼ k þ 1, n� 1½ �. Hence, F can be written as a disjoint union

F ¼ F 1 [ F 2 [ k; n½ �f g
where F 12S 1,k�1½ � and F 22S kþ1,n�1½ �. This defines a family of injective maps

θn,k : S k
1;n½ � ! S 1,k�1½ � � S kþ1,n�1½ �

by

θn,k F 1 [ F 2 [ k; n½ �f gð Þ ¼ F 1;F 2ð Þ
Moreover, since any pair F 1;F 2ð Þ2S 1,k�1½ � � S kþ1,n�1½ � can be combined into a

family F 1 [ F 2 [ k; n½ �f g in S k
1;n½ � the map θn,k is a bijection.

Set D�1 ¼ D0 ¼ 1. Also, D1 ¼ 2 since both the empty family and the family

{[1]} are separated. The recurrence relation that arises from the decomposition

model is then

Dn ¼ Dn�1 þ Dn�2 þ Dn�1 þ
Xn�1

k¼2

Dk�1Dn�k�1 ¼
Xn
k¼0

Dk�1Dn�k�1

This is the recurrence for a shifted Catalan recurrence (Theorem 3.4 with a ¼ �1)

and so

Dn ¼ Cnþ1
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Theorem 8.1

Cn counts the number of separated families of intervals in Int n� 1½ �ð Þ. □

Covering Antichains in Int([n])

The Catalan numbers count the number of covering antichains in the interval poset Int

([n]), that is, antichains in Int([n])with the property that every element of [n] is contained
in some interval of the antichain. Figure 8.1 contains an example for n ¼ 7.

The intervals in this case are

1; 2½ �, 3; 4½ �, 4; 6½ �, 6; 7½ �
We can characterize covering antichains as monotonic paths as follows. First, draw

ann� ngrid of squares, as shown in Figure 8.2. Denote the cell at row r and column

c by C(r, c).
Place the interval [k, j] in row k, starting in the diagonal cell C(k, k) and ending in

the cell C(k, j). Then construct a path in the grid as follows. First include the bottom
border of the lowest occupied cells in each column. Since the intervals cover [n],
there is an integer in every column of the table and so there is a lower border in every

column. Then connect these line segments with vertical lines to complete the path.

Figure 8.1 A covering antichain in Int([7])

Figure 8.2 Path created

from Figure 8.1
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The resulting path will not cross the diagonal because if it did cross the diagonal,

its next move to the right would be under an empty cell, which it does not do. Note

that because the path does not cross the diagonal, it has zero or more upper left
corners and one or more lower right corners, also shown in Figure 8.2.

We thus have a map θ from covering antichainsA in Int([n]) to monotonic paths

in an n� n grid that do not cross the diagonal. To recover the antichainA from the

path θ Að Þ, for each row r that has a lower right corner at cell C(r, c), include the

interval [r, c]. Thus, θ is injective.

To see that θ is also surjective, we must show that anymonotone path P that does

not cross the diagonal comes from a covering antichain A of intervals, that is,

θ Að Þ ¼ P. Let

A ¼ r; c½ ���C r; cð Þ contains a lower right corner of P
� �

These intervals form an antichain since both the left endpoints and the right

endpoints increase as we examine the intervals from the bottom row up. It is also

clear that the intervals cover [n], since the path moves horizontally across every
column and so every column number is contained in an interval.

Thus, A is a covering antichain.

Theorem 8.2

Cn counts the number of covering antichains in Int([n]). □

Antichains in Int([n� 1])

Not only do the Catalan numbers count the number of covering antichains in

Int([n]), but they also count the number of all antichains A in Int n� 1½ �ð Þ.
The key is that a Catalan word can be completely described by giving the A-count

and B-count at certain points only. Specifically, letw be a word over (A,B). We refer

to an instance of A in w as new if it occurs immediately following a B.
Every Catalan word w over (A,B) of length 2n has k new As, where

0 � k � n� 1. Moreover, w can be completely characterized by giving the

sequence α1α2� � �αk of A-counts and the sequence β1β2� � �βk of B-counts for the
new As only.

To see this, consider two consecutive new As, with letter counts αj, βj, and αjþ1,

βjþ1, respectively. Then the substring u of w that lies exclusively between these new

As must consist of consecutive As followed by consecutive Bs, as pictured below:

AA � � � AB � � � B|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}A
u
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Moreover, the positions pj and pjþ1 of the two consecutive new As are

pj ¼ αj þ βj and pjþ1 ¼ αjþ1 þ βjþ1

and the A and B counts for u are

NA uð Þ ¼ αjþ1 � αj � 1

NB uð Þ ¼ βjþ1 � βj � 1

Hence, the positions of the new As and the letter counts between each pair of

consecutive new As are completely determined by the sequences α1α2 . . . αk and
β1β2 . . . βk. In other words, w is completely determined by these two sequences.

For example, let n ¼ 6 and consider the count sequences

α1; α2; α3ð Þ ¼ 3; 5; 6ð Þ and β1; β2; β3ð Þ ¼ 1; 3; 4ð Þ
Then the new-A positions are

p1; p2; p3ð Þ ¼ 4; 8; 10ð Þ
and a fill-in-the-gaps construction will construct the unique word wwith these count

sequences. First, we insert the new As where they belong:

w ¼ A
1 2 3 4

A
5 6 7 8

A
9 10 11 12

Then we compute the number of As between consecutive new As (and before the

first new A and after the last new A):

α1 � 1 ¼ 2

α2 � α1 � 1 ¼ 1

α3 � α2 � 1 ¼ 0

n� α3 ¼ 0

Now we can fill in the gaps to get the Catalan word:

w ¼ A
1
A
2
B
3
A
4
A
5
B
6
B
7
A
8
B
9
A
10

B
11

B
12

It is clear that both count sequences α1� � �αk and β1� � �βk are strictly increasing

because each gap between new As must include at least one B. Moreover, the

Catalan property implies that

1 � βi < αi � n ð8:1Þ

for all i, with strict inequality because Δa,b w½ �p
� �

> 0 at each new-A position p.
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Now let Cn,k be the set of all Catalan words over (A,B) of length 2n that have

k new As. Define a map θn,k by setting

θn,k wð Þ ¼ α1� � �αk, β1� � �βkð Þ
This map is an injection from Cn,k to the family of pairs of strictly increasing

sequences of length k for which [8.1] holds.

To see that θn,k is also surjective, let α1� � �αk and β1� � �βk be two increasing

sequences satisfying [8.1]. Construct a word w as follows. Begin w with α1 � 1 As
followed by β1 Bs, followed by a (new) A. Since β1 � α1 � 1, the A-count does not
fall below the B-count at any point in this construction. Next, appendα2 � α1 � 1As
followed byβ2 � β1 Bs, followed by a (new) A. Sinceβ2 � α2 � 1, the A-count does
not fall below the B-count at any point in the word thus far constructed. Continuing
in this manner will produce a Catalan word w whose A and B counts at each new

A are given by the sequences α1� � �αk and β1� � �βk. Thus, θn,k is a bijection.
It is tempting to consolidate these two sequences into a family of intervals

F k ¼ β1; α1½ �, . . . , βk; αk½ ���1 � βi < αi � n
� �

thus producing an antichain F k in Int([n]). Note that since βi < αi, the family F k

contains no singleton intervals. But if we reduce each αi by 1 (a reversible opera-

tion), we obtain an antichain

Ak ¼ β1; α1½ �, . . . , βk; αk½ ���1 � βi < αi � n� 1
� �

in Int n� 1½ �ð Þ with no restrictions on interval size.

Theorem 8.3

Cn counts the number of antichains (equivalently, down sets) in the interval
poset Int n� 1½ �ð Þ.

Interval Summary

Theorem 8.4

Cn counts the number of

1) separated families of intervals in Int([n]),
2) noncrossing, alternating families of n intervals in nþ 1½ �,
3) covering antichains in Int([n]),
4) antichains (equivalently, down sets) in Int n� 1½ �ð Þ.
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Catalan Numbers and Partitions 9

Noncrossing Partitions

Catalan numbers count the number of noncrossing partitions of the set [n].

Definition 9.1

A partition P ¼ B1; . . . ;Bmf g of [n] is noncrossing if whenever

1 � i < j < k < ‘ � n

we cannot have i, k2Bu and j, ‘2Bv for u 6¼ v. □

This concept is most easily visualized by placing n equally spaced points around
a circle and using unbroken regions interior to the circle to indicate the blocks of

the partition. For example, the partition of {1, . . ., 5} on the left in Figure 9.1 is

noncrossing but the partition on the right is crossing.

(Note that this use of the term “noncrossing” is a bit different than earlier uses.

For example, two edges of a noncrossing, alternating tree may intersect at their

vertices. However, two blocks of a partition are always disjoint as sets).

Figure 9.1 Crossing and

noncrossing partitions of

{1, . . ., 5}
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We want to show that the number of noncrossing partitions of [n] is the Catalan
number Cn. To this end, let us make the following definition.

Definition 9.2

Let P be a noncrossing partition of [n].

1) The principal block R of P is the block containing the integer n. The set of
nonprincipal blocks of P is denoted by P 0.

2) The extent of a nonprincipal block B2P is the interval

e Bð Þ ¼ min Bf g,max Bf g½ �
We denote the lower bound of e(B) by ‘(B) and the upper bound by u(B) and
so

e Bð Þ ¼ ‘ Bð Þ, u Bð Þ½ �
3) The family of extents of a partition P is the family of extends of the

nonprincipal blocks of P. □

If B is a nonprincipal block of P and we place the integers 1 through n� 1 in a

line, then B has a form similar to the blob (with apologies to Mary Katherine

Linaker) shown in Figure 9.2.

Note that the endpoints of an extent [‘(B), u(B)] are contained in the defining

block B. As a consequence, the endpoints of two distinct extents are disjoint, as are
the endpoints of an extent and the nonprincipal block R.

Theorem 9.1

If P is a noncrossing partition of [n], then the following hold:

1) The family I of extents of P is separated.
2) The extents do not intersect the principal block R.

Figure 9.2 The extent of a

block
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Proof If F is any family of intervals whose endpoints are distinct, then F is either

crossing or separated. For the second statement, if x2 ‘ Bð Þ, u Bð Þ½ � \ R, then x =2B
and so n2R implies that

‘ Bð Þ < x < u Bð Þ < n

violates the noncrossing property. □

Note that the converse of this theorem does not hold. For example, as shown in

Figure 9.3, the partition

P ¼ � 2; 4f g, 1; 3; 5f g, 6f gf g
of [6] is crossing but the family of extents {[2, 4], [1, 5]} is separated and R ¼ 6f g
does not intersect any other block of the partition.

Next we observe that the blocks ofP can be recovered from the family of extents.

Note that ifF is a separated family of intervals, then I � J� is equivalent to I � J for
I, J2F .

Theorem 9.2

Let P be a noncrossing partition of [n]. Then any nonprincipal block B of P
can be written in the form

B ¼ e Bð Þ\
[
C2P 0

e Cð Þ � e Bð Þ

e Cð Þ

0
B@

1
CA

Hence, the partition P is completely determined by its family of extents.

Proof Figure 9.4 shows an extent e(B) for a nonprincipal block B.

Figure 9.3 Counterexample
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The simple fact is that every nonprincipal block C for which e Cð Þ � e Bð Þ is

entirely contained within one of the gaps in e(B), lest the noncrossing property be

violated. Therefore, since R \ e Bð Þ ¼ ∅, if we remove all such extents e(C), what
remains must be B itself.

For those who are not convinced by this argument, here are the explicit details.

Let S be the set on the right. If C2P 0 is one of the blocks in the union defining S,
that is, if e Cð Þ � e Bð Þ, then e(C) is disjoint from B, for if b2B \ e Cð Þ then

‘ Bð Þ < ‘ Cð Þ < b < u Cð Þ
which violates the noncrossing property. It follows that B � S.

For the reverse inclusion, suppose that x2S but x =2B. Then x2e Bð Þ\B and

since R \ e Bð Þ ¼ ∅, it follows that x =2R. Hence, x2C for some nonprincipal

blockC2P 0 other than B. Since e(C) and e(B) are not disjoint (both containing x),
we must have either e Cð Þ � e Bð Þ or e Bð Þ � e Cð Þ. If e Cð Þ � e Bð Þ, then e(C) is one
of the extents that is removed from S and so x =2 S, a contradiction. On the other

hand, if e Bð Þ � e Cð Þ, then x2e Bð Þ\B implies that

‘ Cð Þ < ‘ Bð Þ < x < u Bð Þ < u Cð Þ
which violates the noncrossing property. Thus, neither case is possible and so

x2B. □

Theorem 9.2 implies that the map θ sending any noncrossing partition P to its

family of extents is injective. The following result shows that θ is also surjective.

Theorem 9.3

Any separated family F of intervals in Int n� 1½ �ð Þ is the family of extents for
a noncrossing partition P of [n]. The nonprincipal blocks of P are the sets

BI ¼ I\
[
J � I

J

 !

for all I2ℐ and the principal block is the rest of [n],

R ¼ n½ �\
[
I2F

BI

Figure 9.4 An extent e(B)
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Proof Consider the intersection of two blocks

BI \ BK ¼ I\
[
J � I

J

 !" #
\ K\

[
J � K

J

 !" #

If I and K are disjoint, then clearly so are BI and BK. If I and K are not disjoint, then

we can assume that I � K, in which case I is one of the intervals that is removed in

defining BK and so I \ BK ¼ ∅, which implies a fortiori that BI \ BK ¼ ∅. Thus,

the family

P ¼ BI

�� I2I� � [ Rf g
is a partition of [n].

To see that P is noncrossing, suppose that

1 � i < j < k < ‘ � n

If i, k2BI and j, ‘2BJ for I 6¼ J, then i, k2 I and j, ‘2J and since I and J are
intervals, we have

j; kf g � i; k½ � � I and j; kf g � j; ‘½ � � J

whence j, k2 I \ J. Hence, one of I or J is contained in the interior of the other. If

J � I, then BI \ J ¼ ∅, contradicting the fact that k2BI \ J. Similarly, if I � J,
then BJ \ I ¼ ∅, contradicting the fact that j2BJ \ I. Hence, no two nonprincipal

blocks cross.

On the other hand, if i, k2BI, and j, ‘2R, then j2 I \ R. Since j2R, it is not in any
of the blocks BK. In particular, j =2BI and since j2 I, it follows that j is in some

interval I1 properly contained in I. But j =2BI1 and since j2 I1, it follows that j is in
some interval I2 properly contained in I1. This argument is clearly headed straight

for a contradiction. Hence, no nonprincipal block crosses R and so P is

noncrossing. □

Thus, the map θ sending noncrossing partitions of [n] to a separated family in

Int n� 1½ �ð Þ is a bijection. We can now invoke Theorem 8.1.

Theorem 9.4

Cn counts the number of noncrossing partitions of the set [n]. □
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Noncrossing Partitions and Davenport-Schinzel Sequences

Davenport-Schinzel sequences where first described by H. Davenport and

A. Schinzel in their paper “A Combinatorial Problem Connected with Differential

Equations,” American Journal of Mathematics, Vol. 87, No. 3, July, 1965,

pp. 684–694. We consider a special case of these sequences.

First a bit of terminology. For any sequence w ¼ a1� � �am of integers,

the underlying set U(w) of w is the set of distinct elements of w. For instance, if
w ¼ 1231234 then U wð Þ ¼ 1; 2; 3; 4f g. A sequence of integers is said to be abab-
avoiding if it contains no subsequence of the form abab. For instance, the sequence

123452674

is not abab-avoiding because it contains the subsequence 2424. Patterns of the form
abab� � �ab of length 2k consisting of k pairs ab are called alternating patterns

of length 2k. Finally, if I, J � ℤ, we write I < J if every element of I is less than
every element of J.

Definition 9.3

Let I � ℤ be a nonempty subset of integers. A Davenport-Schinzel sequence

(or DS sequence) over the set I is a sequence w over I with the following

properties:

1) No two consecutive elements of w are the same.

2) w is abab-avoiding.

A normalized Davenport-Schinzel sequence (or NDS sequence) is a DS

sequence w with the following additional properties:

3) U wð Þ ¼ I, that is, every element of I appears in w.
4) The first occurrences in w of each integer in I are in increasing order.

A maximal normalized Davenport-Schinzel sequence (or MNDS

sequence) is an NDS sequence over I that is not a proper subsequence of another
NDS sequence over I. Let NDS(I) denote the family of NDS sequences over

I and let MNDS(I) denote the family of MNDS sequences over I. We use the

notation (M )NDS(I) to represent either NDS(I) or MNDS(I ). □

In the literature, I is usually the set [n]. We will write DS(n) for DS([n]) and DS
(k, n) for DS([k, n]). Also, Davenport and Schinzel’s original definition of DS

sequences involves another parameter k by specifying that a DS sequence has no

alternating pattern abab� � �ab of length 2k.
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Here are the NDS(4) sequences. The C3 ¼ 5 sequences in MNDS(4) are marked

with an asterisk.

1213141*
121341

1213431*
123141

1232141*
123241

1232421*
123421

123431

1234321*
123431

Our interest is in determining the size of the set MNDS(n). We leave it as an

exercise (which might be better attempted after finishing this section) to show that

the sequences in MNDS(n) have length 2n� 1.

DS Sequences and Partitions

We can view MNDS sequences in the following light. Let

w ¼ b1 � � � b2n�12MNDS nð Þ. Define a partition P of 2n� 1½ � with n blocks by

specifying that bk is the block number of the integer k. The normality condition

ensures that the blocks are both nonempty and indistinguishable, as they must be in

a partition. Maximality simply ensures that we are partitioning a single integer

2n� 1.

For example, for 12134312MNDS 4ð Þ, we write the block numbers below the

integers 1 through 7,

1 2 3 4 5 6 7

1 2 1 3 4 3 1

which shows clearly that the concomitant partition is

P ¼ 1; 3; 7f g; 2f g; 4; 6f g; 5f gf g
Now, requirement 1) in the definition of DS sequences is equivalent to the statement

that no block ofP contains two consecutive integers and the abab-pattern avoidance
of w is equivalent to the fact that P is noncrossing. Thus, MNDS(n) sequences
characterize noncrossing partitions of 2n� 1½ � with the additional property that no

block contains two consecutive integers.
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Counting MNDS Sequences

It is clear that the underlying set I of MNDS(I) is not really relevant to the

combinatorial properties of MNDS(I). Put more technically, if w ¼ a1� � �am2 Mð Þ
NDS Ið Þ and if σ : I ! J � ℤ is an order-preserving bijection, then the induced map

σw ¼ αa1ð Þ� � � σamð Þ2 Mð ÞNDS Jð Þ
is a bijection from (M)NDS(I) to (M)NDS(J ). In particular, if

��I�� ¼ n, then

Mð ÞNDS Ið Þj j ¼ Mð ÞNDS nð Þj j

Theorem 9.5

Suppose that w2NDS nð Þ.

1) Then w starts with 1 and if w is also maximal, then it ends with 1.

2) If we expose all of the occurrences of 1, that is, if

w ¼ 1x11x2� � �1xr 1ð Þ
where 1 =2U xið Þ, then there are integers p1, . . . , pr�1 for which

x12NDS 2; p1ð Þ
x22NDS p1 þ 1, p2ð Þ
x32NDS p2 þ 1, p3ð Þ

⋮
xr2NDS pr�1 þ 1, nð Þ

Moreover, w is maximal if and only if each xi is maximal.

Proof For part 1), normality implies that w starts with 1. Moreover, if w is

maximal but

w ¼ 1� � �u
where u 6¼ 1, then w1 will be in NDS(n) provided that it does not have an a1a1
pattern using the trailing 1. But ifw has this pattern, then it also has the 1a1a pattern
using the leading 1, which is not the case. Hence, w12NDS nð Þ, which contradicts

the maximality of w. We conclude that w ends in 1.

For part 2), it is clear that each xi is a DS sequence satisfying part 4) of the

definition. As to the underlying sets, if a2U xið Þ \ U xj
� �

for some i 6¼ j, then

w contains the proscribed pattern 1a1a. Hence, the sets U(xi) are pairwise disjoint

and partition the set [2, n]. Moreover, if a2U xið Þ and b2U xj
� �

where i < j but
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a > b, then normality implies that b must also appear before a, say b2U x‘ð Þ for

‘ � i < j, which contradicts the disjointness of the underlying sets. Thus,

i < j ) U xið Þ < U xj
� �

and so the sets U(xi) must have the desired form.

For the final statement of part 2), since the underlying sets are disjoint, insertion

of an integer a2U xið Þ into xi will create a forbidden pattern in xi if and only if it

creates a forbidden pattern in w. □

We can now decompose a member of MNDS(n) using the first internal appear-
ance of 1 (if there is such an appearance). Specifically, Theorem 9.5 implies that

any w2MNDS nð Þ has one of the following two forms:

1) w ¼ 1x1, where x2MNDS 2; nð Þ
2) w ¼ 1x1y1, where

x2MNDS 2; kð Þ and 1y12MNDS 1f g [ k þ 1, n½ �ð Þ
for some 2 � k � n� 1.

Let MNDS1(n) be the members of MNDS(n) of type 1 and let MNDS2,k(n) be the

members of MNDS(n) of type 2 with x2MNDS 2; kð Þ. Let Dn ¼ MNDS nð Þ
�� ��.

For case 1), we define the decomposition map

θn, 1 : MNDS1 nð Þ ! MNDS 2; nð Þ
by

θn, 1 1x1ð Þ ¼ x

This map is clearly a bijection and so

MNDS1 nð Þj j ¼ Dn�1

For case 2), we define the decomposition map

θn,k : MNDS2,k nð Þ ! MNDS 2; kð Þ 	MNDS 1f g [ k þ 1, n½ �ð Þ
by

θn,k 1x1y1ð Þ ¼ x, 1y1ð Þ
which is also a bijection and so
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MNDS2,k nð Þj j ¼ MNDS 2; kð Þj j 	 MNDS 1f g [ k þ 1, n½ �ð Þj j ¼ Dk�1Dn�kþ1

Thus, we are led to the recurrence relation (setting D1 ¼ 1)

Dn ¼ Dn�1 þ
Xn�1

k¼2

Dk�1Dn�kþ1 ¼
Xn
k¼2

Dk�1Dn�kþ1 ¼
Xn�2

k¼0

Dkþ1Dn�kþ1

which is a shifted Catalan recurrence (Theorem 3.4 with a ¼ 1) and so

Cn ¼ Dnþ1 ¼ MNDS nþ 1ð Þj j
for all n 
 0.

Theorem 9.6

Cn counts the number of

1) maximal normalized Davenport-Schinzel sequences on nþ 1½ �
2) noncrossing partitions of 2nþ 1½ � into nþ 1 blocks, none of which contain

two consecutive integers. □

Partition Summary

Theorem 9.7

Cn counts the number of

1) noncrossing partitions of the set [n].
2) noncrossing partitions of 2nþ 1½ � into nþ 1 blocks, none of which contain

two consecutive integers (equivalently, members of MNDS nþ 1ð Þ). □
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Catalan Numbers and Permutations 10

We turn now to a vast subject called pattern avoiding permutations that

is currently the subject of much research. Let Sn denote the set of all

permutations of [n].
A pattern of length k is a permutation of the set [k], whose entries are meant to

indicate relative order. For example, the pattern 312 means “an integer followed by

a smaller integer followed by an integer between the first two integers.” The pattern

12345 means an increasing sequence of five integers. The numbers in the pattern

have no meaning in absolute terms—3 does not mean 3—it only means “something

bigger than what is represented by 2 and smaller than what is represented

by 4.”

A subsequence of a permutation π ¼ a1a2� � �an2Sn of length k is the permuta-

tion obtained simply by deleting n� k elements from π. This preserves the order of
the elements in the subsequence. Note that the elements of the subsequence need

not be consecutive within the original permutation.

If b1b2� � �bk is a pattern of length k � n, then a permutation π2Sn is b1b2� � �bk‐
avoiding if it contains no subsequence with this pattern. For instance, the permuta-

tion 2154376 is 312-avoiding, although it may take a moment or two to see this.

As mentioned, the subject of counting pattern avoiding permutations is quite

complex and is an active area of current research in combinatorics. We will

determine the number of pattern-avoiding permutations in Sn for all patterns of

length three. Guess what?

Permutations Obtained from Stacks and Queues

A stack is a data structure that stores objects in a linear array and for which

insertion and removal occur only at one end of the array, known as the top of the

stack because the stack is often visualized as a vertical column of objects. The

prototypical example of a stack is a stack of dinner plates: a new plate is inserted at

the top of the stack only and a plate is removed from the top of the stack only.
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Adding an object to the top of a stack is referred to as pushing and removing an

object from the top is called popping.

On the other hand, a queue is a data structure that stores objects in a linear array
and for which insertion is done at the end of the queue and removal is done at the

beginning of the queue. The prototypical example of a queue is the long, long, long

line at the bank.

Now, consider a game that has an input queue, an output queue, and a stack, as

shown on the left in Figure 10.1.

As shown on the right in Figure 10.1, initially the output queue and stack are

empty and the input queue contains a permutation b1� � �bn of [n]. At any stage in the
game, we can do one of the two things: push the item at the front of the input queue

onto the stack or pop an item off the stack onto the end of the output queue. Both

operations are shown in Figure 10.2.

Let us agree that the reading order of the two queues is from left to right and the

reading order of the stack is from bottom to top. The undecorated term order will
refer to reading order.

We refer to a sequence of pushes and pops that results in the entire input

permutation being moved to the output queue as a legal procedure. In general,

there are many legal procedures, each of which must consist of exactly n pushes and
n pops. Once a legal procedure is completed, the permutation in the output queue is

called the output permutation. Here is an example, where the input queue is 1234.

Figure 10.1 The game and its initial configuration

Figure 10.2 The push and pop operations
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Output Stack Input

0) ∅ ∅j j 1234

1) ∅ |1|  234

2) ∅ 2

1

����

����
 34

3) 2  |1| 34

4) 21  ∅j j 34

5) 21 |3|  4

6) 213  ∅j j 4

7) 213 |4|  ∅j j
8) 2134  ∅j j ∅

Thus, the output permutation is 2134.

If we denote a push operation by U and a pop operation by O, then a legal

procedure can be described by a word w over the alphabet (U,O). However, not all
words describe a legal procedure. For example, we cannot start with a pop operation

since the stack is initially empty. Also, at any stage, the number of pops cannot

exceed the number of pushes, since the stack is not a hot-air popper. (Sorry.) Of

course, at the end, the number of pops must equal the number of pushes. Does all

this sound familiar?

Thus, a legal procedure is just a Catalan word of length 2n over (U,O).
Conversely, any Catalan word w over (U,O) of length 2n represents a legal

procedure. To see this, note that the first letter in w is a U and we may certainly

perform this push operation. Suppose that we have performed the first k stack

operations specified by w. The issue is whether or not we can perform the k þ 1ð Þ
st stack operation specified by w.

If the k þ 1ð Þst operation is a push, then we have done at most n� 1 prior pushes

and so the input queue is not empty and we can perform the required push. If the

k þ 1ð Þst operation is a pop, then since w½ �kþ1 is a weak Dyck word, [w]k is a strong
Dyck word, that is,

NO wk½ �ð Þ < NU wk½ �ð Þ
which means that we have not popped off the stack as many integers as we have

pushed onto the stack and so there is at least one integer available for popping.

Thus, we can always perform the next operation in w and so w is a legal procedure.

Thus, legal procedures are characterized by Catalan words and so for any given

input permutation of length n, there are precisely Cn possible output permutations.

Stack Permutations

Now let us suppose that the input queue for the game is the permutation 12� � �n. In
this case, output permutations are called stack permutations. We note the follow-

ing for future reference:
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1) The integers on the stack at any time are in increasing (reading) order.

2) The integers on the stack at any time are smaller than the integer at the end of the

output queue.

3) Everything in the input queue is larger than everything in the stack or the output

queue.

We can characterize stack permutations using pattern avoidance. In fact, a stack

permutation σ is 312-avoiding. To see this, suppose that σ contains the pattern

31, that is,

σ ¼ � � �c� � �a� � � where c > a

At the moment that a is popped off the stack, everything else on the stack is smaller

than a and everything in the input queue is larger than c and so there are no integers
between a and c available to add to the output permutation. Hence, σ cannot have

the 312 pattern.

Conversely, any 312-avoiding permutation σ ¼ a1� � �an is a stack permutation.

Clearly, we can place a1 first in the output queue using an appropriate sequence of

pushes and pops. Suppose that we have just popped ak onto the output queue, as

shown below:

a1� � �ak su
⋮
s1

������

������

b1� � �bv

Then

s1 < � � � < su < ak

and we must show that akþ1 can be moved to the output queue immediately

following ak.
First note that akþ1 cannot be buried in the stack, because then

akþ1 < su < ak

But su is not equal to any of a1, . . ., ak or akþ1 and so σ has the form

σ ¼ a1� � �akakþ1� � �su� � �
which has the forbidden 312 pattern. This leaves two possibilities. If akþ1 is on the

top of the stack, we can certainly pop it onto the end of the output queue following

ak. Also, if akþ1 is in the input queue, then we can push integers onto the stack until
akþ1 is at the top of the stack and then pop it onto the output queue. Thus, nothing

can prevent us from placing akþ1 on the output queue immediately following ak.
Hence, σ is a stack permutation.
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Theorem 10.1

1) A permutation is a stack permutation if and only if it is 312-avoiding.
2) Cn counts the number of stack permutations of [n]. □

But there is more that we can say. First, we need a couple of definitions.

The reverse πR of a permutation π2Sn is the permutation formed by reversing

the order of the integers in π. For example, if π ¼ 14253 then πR ¼ 35241. The

reverse operation is clearly a bijection on Sn. The complement of π2Sn is the

permutation π0 formed by replacing each integer k in π by nþ 1� k. For example,

the complement ofπ ¼ 14253 isπ0 ¼ 52413. This operation is also a bijection on Sn.
Here is the reason for these definitions:

1) A permutation π2Sn is 312-avoiding if and only if its reverse πR is

213-avoiding.

2) A permutation π2Sn is 312-avoiding if and only if its complement

is 132-avoiding.

3) A permutation π2Sn is 312-avoiding if and only if its reverse complement is

231-avoiding.

Theorem 10.2

Cn counts the sizes of each of the following sets:

1) The set of 312-avoiding permutations,
2) The set of 213-avoiding permutations,
3) The set of 132-avoiding permutations,
4) The set of 231-avoiding permutations. □

Stack-Sortable Permutations

Let us look again at 231-avoiding permutations. A permutation σ of [n] is

stack-sortable if there is a legal procedure that produces the output permutation

12� � �n from the input σ.
If σ is stack-sortable, then any procedure that produces the output 12� � �n must

adhere to the following simple rule:

always keep the stack in decreasing order from bottom to top ½10:1�
For if k > j and k appears higher on the stack than j, then k will appear in the output
before j and so we can never achieve the required output 12� � �n.

It is easy to see that the presence of the 231 pattern will cause a violation of this

rule at some stage in the procedure. For suppose that σ has the 231 pattern, say
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σ ¼ � � �ai� � �aj� � �ak� � � for ak < ai < aj

Then if rule [10.1] has been followed up to the point at which aj is about to be

pushed onto the stack, the smaller aimust already be in the output queue. But then it

is too late to place ak in the output queue ahead of the larger ai. Thus, if σ is stack-

sortable, it must be 231-avoiding.

For the converse, we show that any 231-avoiding permutation σ is stack-sortable

using a procedure that adheres to rule [10.1]. The first step is to show that we can

place the integer 1 at the front of the output queue. But since σ is 231-avoiding, the

integers that come before 1 in σ must be in decreasing order and so we can push

those integers onto the stack without violating rule [10.1] until we reach the integer

1, which can then be moved to the front of the output queue.

Now assume that we have placed the integers 12� � �k in the output queue in order,
all the while adhering to rule [10.1]. Thus, the situation is as follows just after
popping k onto the output queue,

12� � �k
su
⋮
s1

������

������
b1� � �bv

where

s1 > s2 > � � � > su

We must show that k þ 1 can be placed onto the output queue immediately

following k. Note that k þ 1 cannot be anywhere on the stack except at the top, in

which case we simply pop it onto the output queue.

On the other hand, suppose that k þ 1 is in the input queue, say

12� � �k
su
⋮
s1

������

������
b1� � �bj k þ 1ð Þ� � �

Since the integers b1, . . ., bj (if any) are larger than k þ 1, they must appear in

decreasing order from left to right in order to avoid the 231 pattern. Moreover, these

integers are smaller than anything on the stack and so we can push them onto the

stack without violating rule [10.1]. Then we can move k þ 1 to its rightful position

on the output queue.

Theorem 10.3

1) A permutation σ is stack-sortable if and only if it is 231-pattern avoiding.
2) Cn counts the number of stack-sortable permutations of [n]. □
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321-Avoiding and 123-Avoiding Permutations

Theorem 10.2 accounts for four of the six three-term patterns. We are left with the

patterns 321 and 123. But since the reverse map sends a 321-avoiding permutation

to a 123-avoiding permutation, we can restrict attention to 321-avoiding

permutations. These are the permutations that do not have a three-term decreasing
subsequence. Let F n denote the set of all 321-avoiding permutations of [n].

We begin with the observation that if we divide the permutation 12� � �n into two
subsequences b1b2� � �bk and c1c2� � �cn�k and then interlace these two sequences in

any manner (retaining the increasing order of each subsequence), the result is a

permutation σ ¼ a1� � �an that is 321-avoiding. This is a simple application of the

pigeonhole principle: Given any three integers ai, aj, and ak in σ with i < j < k, at
least two of them must belong to one of the increasing subsequences and so we

cannot have ai > aj > ak.
This raises the question of whether all 321-avoiding permutations are

constructed in this manner. To address this question, note that if

σ ¼ a1a2� � �an2F n, then we can easily find one increasing subsequence simply

by taking each integer in σ that is larger than any integer that came before it. For

example, in the permutation

σ ¼ 41237856

each of the integers 4, 7, and 8 is larger than any integer that comes before it and so

the subsequence 478 is increasing.

Let us pause for a few definitions. If a is an integer in σ, let p(a) denote the

position of a in σ. For example, if σ ¼ 41237865, then p 3ð Þ ¼ 4.

Definition 10.1

Let σ ¼ a1a2� � �an be in Sn.

1) The integer ak is superior if it is the largest integer in the initial segmenta1� � �ak.
The superior subsequence σsup of σ is the subsequence consisting of the

superior integers.

2) The integer ak is inferior if it is not superior. The inferior subsequence σinf of σ
is the subsequence consisting of the inferior integers. □

For example, for the permutation

σ ¼ 41237856

we have

σsup ¼ 478 and σinf ¼ 12356

As it happens, the 321-avoiding condition is equivalent to the inferior subsequence

being increasing.
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Theorem 10.4

Let σ ¼ a1a2� � �an2Sn.

1) a) The superior subsequence σsup ¼ c1� � �ck of σ is increasing.
b) For all i,

ci � p cið Þ
c) The length of the superior sequence satisfies

1 � len σsup
� � � n

with equality possible.
2) a) The inferior subsequence σinf ¼ b1� � �bk of σ is increasing if and only if

σ is 321-avoiding.

b) If σ is 321-avoiding, then

bi < p bið Þ
for all i.

c) The length of the inferior sequence satisfies

0 � len σinf
� � � n� 1

with equality possible.

Proof. For part 1), it is clear that σsup is increasing. Moreover, ifci < p cið Þ for some

i, then there are p cið Þ � 1 positions in σ to the left of ci but only ci � 1 < p cið Þ � 1

positive integers smaller than ci and so one of the integers occurring before ci must

be larger than ci, in contradiction to its superiority. Thus, ci � p cið Þ for all i. As
to the length of the superior subsequence, n is always superior and so

1 � len σsup
� � � n. Finally, all integers in the permutation 12� � �n are superior and

only one integer in the permutation n n� 1ð Þ� � �1 is superior.

For part 2), if σinf is increasing then as discussed earlier, σ is 321-avoiding. For

the converse, suppose that σ is 321-avoiding. Then since any inferior integer is

preceded by something larger, it cannot be followed by anything smaller without

creating a 321 pattern. Hence, the inferior subsequence of a 321-avoiding permuta-

tion must be increasing.

Moreover, if σ is 321-avoiding and bi � p bið Þ for some i, then since bi is inferior,
the first integer cj greater than bi must occur before bi and must be superior. The

number of positions in σ to the left of bi, not including cj, is p bið Þ � 2, but there are

bi � 1 � p bið Þ � 1 positive integers less than bi and so one of these integers ak
must occur later than bi, in which case cjbiak is decreasing, a contradiction.
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Finally, the statement about length follows from part 1) and the fact that

len σinf
� �þ len σsup

� � ¼ n. □

Thus, we see that any 321-avoiding permutation σ is indeed composed of two

interlaced increasing sequences—its inferior subsequence and its superior subse-

quence—and that bi < p bið Þ for all inferior integers bi. Moreover, given only the

inferior subsequence of a permutation, along with the position of each inferior

integer, we can reconstruct the permutation. All we need to do is place the inferior

integers in their proper position and then fill in the gaps with the rest of the integers,

in increasing order.

To illustrate, the permutation

σ ¼ 412378562S38
can be described by the inferior/position sequences

S ¼ 12356; 23478ð Þ
To reconstruct σ, we place the inferior integers in their correct positions:

=123==56

and then insert the remaining (superior) integers 4, 7, and 8 in the empty positions,

in increasing order. Let us call this process the interlacing procedure.

The interlacing procedure and Theorem 10.4 imply that the map θ taking a

321-avoiding permutation σ2Sn to the pair of increasing sequences

θ σð Þ ¼ b1� � �bk, p b1ð Þ� � �p bkð Þð Þ
where σinf ¼ b1� � �bk is injective. Let us show that θ is also surjective.

Theorem 10.5

Let

b1� � �bk, p1� � �pkð Þ
be a pair of increasing sequences in [n] with bi < pi for all i. Then b1� � �bk is
the inferior subsequence of a 321-avoiding permutation σ with p bið Þ ¼ pi
for all i.

Proof Begin the creation of σ by placing each bi at position pi. Then fill in the gaps
with the remaining integers
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c1; . . . ; cn�kf g ¼ n½ �\ b1; . . . ; bkf g
in increasing order. Since σ is composed of two interleaved increasing sequences, it

is 321-avoiding.

To see that each bi is inferior, note that there are p bið Þ � 1 > bi � 1 positions to

the left of bi and onlybi � 1 integers less than bi and so at least one integer to the left
of bi must be greater than bi. Hence, bi is inferior.

To see that each ci is superior, suppose that ci is inferior for some i > 1 (c1 is
superior). Then ci must be preceded by a larger integer, which must be one of the

b0s, say bj > ci precedes ci. But since bj is inferior, it must be preceded by a ck > bj
and so we have

ck > bj > ci

which is a contradiction to the increasing nature of the c0s. Thus, b1� � �bk is the

inferior subsequence of σ. □

Thus, the map θ taking the 321-avoiding permutations in F n to pairs of

increasing sequences

b1� � �bk, p1� � �pkð Þ, bi < pi

is bijective. Of course, such pairs of sequences can be characterized as antichains of

intervals

F ¼ bi; pi½ ���1 � i � k
� �

in Int([n]) with no singletons. By reducing pi by one, these correspond bijectively to
antichains

A ¼ bi, pi � 1½ ���1 � i � k
� �

on Int n� 1½ �ð Þ with no restrictions. Theorem 8.3 then gives the following.

Theorem 10.6

Cn counts the number of

1) 321-avoiding permutations of size n
2) 123-avoiding permutations of size n □
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Permutation Summary

Theorem 10.7

Cn counts the number of abc-avoiding permutations of [n], for any given
three-digit pattern abc. □
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Catalan Numbers and Semiorders 11

(The Appendix of this book contains a brief introduction to the subject of partial

orders for those who are interested.)

The Definition of Semiorder

Semiorders are intended to model personal preference and play a large role in

decision theory. A lack of preference between two items is referred to as indiffer-

ence. For convenience, we will say that two items are indifferent when we really

mean that the decision maker is indifferent to the two items.

One aspect of personal preference that seems to be born out by observation is

that indifference is not transitive. For example, we are surely indifferent to two

pieces of identical chocolate whose weights differ by 10�10 grams because this

difference is totally imperceptible. Therefore, if indifference were transitive, then

we would be indifferent to two pieces of chocolate whose weights differed by one

ounce. How ridiculous is that?

In 1956, R. Duncan Luce proposed the following definition for a semiorder.

Definition 11.1

Let� and� be two binary relations on a nonempty finite set S. Read a � b as “b
is preferred to a” and a � b as “b is indifferent to a.” Then �;�ð Þ is a semiorder

on S if the following hold:

S1) (Indifference corresponds to nonpreference) For each pair a, b2S, exactly
one of the following holds:

a � b, b � a or a � b
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S2) (Indifference is reflexive) For all a2S,

a � a

S3) (Indifference is compatible with transitivity) For a, b, c, d2S,

a � b � c � d ) a � d

S4) (Indifference is not too liberal) If a � b � c, then no d2S can be indifferent
to all three elements a, b, and c.

If �;�ð Þ is a semiorder on S, we say that S is semiordered by �;�ð Þ or that
S;�;�ð Þ is a semiordered set. □

In the theory of partial order, if S;�ð Þ is a partially ordered set, we say that a,
b2S are comparable if a � b or b � a. Thus, an element is comparable to itself,

which certainly reflects the natural meaning of the term comparable. However,
since preference is a strict relation, no element is preferred to itself and so we will

shun the term comparable.
Instead, for a semiordered set S;�;�ð Þ, we say that a, b2S are preferentially

related if a � b or b � a. In view of property S1), we do not need a new symbol for

preferential relationships, since

a � b or b � að Þ iff a≁ b

In this case, we also say that the pair (a, b) is preferentially related. Thus, an element

of S is not preferentially related to itself.

Here are some direct consequences of the axioms of a semiorder.

1) Preference is transitive and irreflexive and is thus a strict partial order on S.
2) Preference determines indifference and so completely determines the semiorder,

since being indifferent is equivalent to being non-preferentially related, in

symbols,

a � b iff a �= b and b �= að Þ
3) Indifference is symmetric.

In view of these facts, we can adopt an equivalent definition of semiorder that

places the concept in the more familiar context of partially ordered sets. Specifi-

cally, a semiordered set S;�ð Þ is a partially ordered set S;�ð Þ under the “preference
or equality” partial order

a � b if a ¼ b or a � bð Þ
Moreover, preference satisfies the additional properties S1)–S4).
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Conversely, if S;�ð Þ is a partially ordered set, then we can define a relation� by

a � b iff a ¼ b or akbð Þ
Then properties S1) and S2) are automatically satisfied. If S3) and S4) also hold,

then S; <;�ð Þ is a semiordered set. This makes it clear that a semiordered set is just

a special type of partially ordered set.

Definition 11.2 (Semiorder as a Special Type of Partial Order)

Let S;�ð Þ be a partially ordered set. Define a relation � on S by

a � b iff a ¼ b or akbð Þ
Then <;�ð Þ is a semiorder on S if the following hold:

S3) For a, b, c, d2S,

a < b � c < d ) a < d

S4) If a < b < c, then no d2S can satisfy d � a, d � b, and d � c.

If S3 and S4 hold, then � is called indifference. □

Characterization by Maximal Completely Indifferent Subsets

Let �;�ð Þ be a semiorder on S. We say that a subset C � S is completely

indifferent (CI) if every pair of elements of C are indifferent. We say that a subset

M � S is maximal completely indifferent (MCI) if it is CI and no superset is also

CI. LetM be the family of all MCI subsets of S. The maximality of each member of

M implies that M is an antichain in the power set ℘(S). In particular, if M 6¼ M
0

are in M, then both of the set differences M \M0 and M0 \M are nonempty.

The family M has several interesting properties. Let M,M0,M00 2M.

P1) M completely determines indifference, to wit,a � b if and only if a and b lie in
the same MCI set (although they may also be in different MCI sets).

If a � b then {a, b} is CI and so is contained in some MCI set. Conversely, if

a and b are in the same MCI set, then a � b.
P2) Existence of preferentially related pairs I: Let M 6¼ M0.

a) Then

a2M \M0 ) ∃b2M0\M that is preferentially related to a

In particular, there exists a preferentially related pair a; bð Þ2M �M0.
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b) All preferentially related pairs a; a0ð Þ2M �M0 satisfy a � a0 or all prefer-
entially related pairs a; a0ð Þ2M �M

0
satisfy a0 � a.

For part a), if not, then a is indifferent to every element ofM0 and soM0 [ af g
is CI, which contradicts the maximality of M0. For part b), if a; a0ð Þ2M �M

0

satisfies a � a0 and b; b0ð Þ2M �M0 satisfies b0 � b, then

a � a0 � b0 � b

and so S3 implies that a � b, which is false.

P3) M can be totally ordered.

Property P2 implies that we can define a binary relation � on M by setting

M � M
0

if a � a0 for some a2M, a0 2M0ð Þ
Moreover, exactly one of the following holds:

M � M0 or M0 � M or M ¼ M0

Hence, the relation is irreflexive. To see that it is transitive, suppose that

M � M0 � M00. Then there are elements

m12M, m21,m222M0, m32M00

for which

m1 � m21 � m22 � m3

and so S3 implies that m1 � m3, whenceM � M00. Thus, � is a strict total order on
M, say

M ¼ M1 � M2 � 	 	 	 � Mmf g
P4) M completely determines the preference order and therefore the semiorder

on S.
Let a, b2S. Then a � b if and only if a and b are in the same member ofM.

If indifference is ruled out, then a � b if and only if a; bð Þ2M �M0 for some

M � M0.
P5) Existence of preferentially related pairs II: If M � M0, then

a2M \ M0 ) ∃b2M0 \ M with a � b

a2M0 \ M ) ∃a2M \ M0 with a � b

P6) Interval structure: If M � M0 � M00, then

M \M00 � M0
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Moreover, if M \M00 6¼ ∅, then

M \M00 � M0 � M [M00

and so

M0 \ M � M00

If x2M \M00 but x =2 M0, then,x2M \ M0 and x2M00 \M0 and so P5 implies that

there exista0, b0 2M0 for which x � a0 � b0 � x, which implies by S3 that x � x,
a blatant falsehood.

Next, suppose that b2M0 but b =2 M [M00. Then b2M0 \ M and b2M0 \ M00

and so there is an a2M and a c2M00 for which a � b � c. However, any
x2M \M00 is also inM \M0 \M00 and so is indifferent to all three elements a,
b, and c, in contradiction to S4.

Property P6 is the key to showing that there is a total order < on S with the

following properties:

O1) The order is preference compatible, that is, a � b implies that a < b.
O2) Each set M2M is an interval under the total order <.

Hence, under this total order, M is a covering antichain in Int(S).
We first note that the elements ofU2 ¼ M1 [M2 can be totally ordered following

properties O1 and O2, as shown in Figure 11.1. Specifically, we place the elements

of M1 \M2 first (in any order), then the elements of M1 \M2, and finally the

elements of M2 \ M1.

Suppose that we have totally ordered the elements of Uk�1 ¼ M1 [ 	 	 	 [Mk�1

satisfying properties O1 and O2. We want to include the elements of Mk in

this ordering. The elements of Mk that are not yet included, that is, the elements

ofMk\Uk�1 can be attached to the end of the current list in any order. The problem

is that some of the elements of Mk may already be in Uk�1, that is,Mk \ Uk�1 may

not be empty and these elements must be “pushed” to the end of the current list so

that they can form an interval with the other elementsMk\Uk�1. Let us refer to the

elements of Mk \ Uk�1 as potential offenders.

Property P6 will come to our aid here, since it implies that if x2Mk \Mi for

some i � k � 1, then x2Mk�1. Hence, the potential offenders all lie in the largest

interval Mk�1 in the current list Uk�1, that is,

Figure 11.1 Ordering M1 [M2
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Mk \ Uk�1 � Mk�1

Assume that x is the smallest element in Mk \ Uk�1 and that Mi ¼ a; b½ 
 is the

smallest interval containing x. There are two possibilities to consider.

The first possibility is thatMi ¼ Mk�1. In this case,Mk \ Uk�1 does not intersect

any interval comprising Uk�1 other than the largest one Mk�1. This is pictured in

Figure 11.2. Now, we may reorder the elements of Mk�1\Mk�2 arbitrarily because
these elements are pairwise indifferent and so their reordering does not destroy

preference compatibility and because they do not cross an interval boundary and so

their reordering does not destroy the interval structure created thus far. In particular,

we may push all of the potential offenders Mk \ Uk�1 to the far right and so, as

discussed above, we can adjoin Mk to Uk�1 as a new interval.

The second possibility is that Mi � Mk�1, as shown in Figure 11.3. Then

Mi � Mk�1 � Mk and so P6 implies that Mk�1\Mi � Mk. In other words, all of
the elements of Mk�1\Mi are potential offenders, which is good, because these

potential offenders are already “pushed” against the right endpoint of Mk�1.

Moreover, we can reorder the elements in the interval [x, b] (see Figure 11.3) in
any way we desire for the reasons discussed earlier. Hence, we can push all of the

elements of Mi \ Uk�1 up against the right endpoint of Mi and so, as shown by the

shaded portions of Figure 11.4, the elements ofMk \ Uk�1 form an interval at the far

right end of Uk�1.

Figure 11.2

Figure 11.3
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Thus, we have shown that there is a preference-compatible total ordering < of

S under which M is a covering antichain in Int(S). To be sure, there is some

ambiguity in how the total order on S is defined because indifferent elements that do

not cross interval borders can be reordered at will. However, we may assume that

some method is selected that removes this ambiguity. For example, we may assume

that S has a preexisting total order� (such as the usual order on the set S ¼ n½ 
) and
that whenever the elements a, b2S with a � b can be placed in either order when

defining <, we always choose the order a < b. Simply put, we assure whenever

possible that < is compatible with �.

Again we observe that the semiorder is completely characterized by the covering

antichain M of intervals as follows:

a � b iff a, b2M for some M2M
a � b iff a≁ b and a; bð Þ2M �M0 where M � M0

Now suppose we fix a finite set S, which may as well be S ¼ n½ 
. As we scan

through all of the semiorders on [n], we can jot them down using the total order to

label n equally spaced dots on a horizontal line and then drawing the intervals inM
on that line.

For example, let n ¼ 4 and consider the semiorder given by

a � a for all a2 4½ 

2 � 3 � 4

1 � 2, 1 � 3, 1 � 4

Under the usual total order on [4], this semiorder is shown on left-hand side of

Figure 11.5.

Figure 11.4 Mk is now an interval

Figure 11.5 Two

semiorders
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As another example, consider the semiorder given by

a � a for all a2 4½ 

1 � 3 � 4

2 � 1, 2 � 3, 2 � 4

Under the total order 2 � 1 � 3 � 4 on [4], this semiorder is shown on the right-

hand side of Figure 11.5.

It should be clear that there is no significant difference between these two

semiorders, because their interval structures are the same, to wit, an interval of

length one that is less than an interval of length three. More precisely, the bijection

θ að Þ ¼ b, θ bð Þ ¼ a, θ cð Þ ¼ c, θ dð Þ ¼ d

preserves the semiorder structure (both indifference and preference) and so these

two semiorders are order isomorphic.

Therefore, as we scan the semiorders on [n], we are really interested in jotting

down a complete list of nonisomorphic semiorders. Let us be a bit more precise

about this.

Canonical Forms for Semiordered Sets

It is easy to show that order isomorphism is an equivalence relation on the familySn

of all semiordered sets on [n]. This equivalence relation induces a partition on Sn,

the blocks of which are called isomorphism classes. For example, the isomorphism

class that contains the two isomorphic semiorders in Figure 11.5 contains 4! ¼ 24

semiorders on [4]—just leave the intervals in the left side of Figure 11.5 alone but

permute the four integers in [4].

Therefore, to get a complete but nonredundant picture of the semiorder

structures on [n], we need a single representative from each isomorphism

class. Such a representative is called a canonical form, a term that is used

extensively in linear algebra. A complete set of canonical forms, that is, a set

consisting of one canonical form from each isomorphism class, is referred to as a

set of canonical forms.

Fortunately, we can construct a set of canonical forms for the semiorders on [n]
quite easily (at least in theory) by selecting that element of each isomorphism class

for which the dots are labeled in the usual order 1, 2, . . ., n. (This is the first one in
Figure 11.5.)

From the opposite point of view, we can construct “all” semiorders on [n] by
writing down n equally spaced dots in a line and numbering them from left to right

in the usual order 1, 2, . . ., n. We then lay out all possible covering antichains of

intervals over these dots. Of course, we must show that any covering antichain of

[n] belongs to an isomorphism class, that is, defines a semiorder on [n].
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Figure 11.6 shows an example of a covering antichain:

I ¼ ui; vi½ 
��1 � i � k
� �

Let us refer to the intervals in I as indifference intervals.

We define a semiorder �;�ð Þ on [n] by

a � b iff a, b2 I for some I2I
a � b iff a≁ b and a < b

Referring to the definition of semiorder, it is clear that S1 and S2 are satisfied. As to

S3), if a � b � c � d, then b and c are in the same indifference interval I ¼ vi; vi½ 

anda < ui and vi < d. Therefore, a and d cannot be in the same indifference interval

and so a � d.
As to S4), if a � b � c and d is indifferent to a, b, and c, then there are three

distinct indifference intervals for which

a, d2 I ¼ ui; vi½ 
, b, d2J ¼ uj; vj
� �

and c, d2K ¼ uk; vk½ 

As to the relative position of these intervals,a � b implies that a and b are not in the
same interval and a < b. Therefore, ui < uj, that is, I, lies at least partially to the left
of J. Similarly, b � c implies that J lies at least partially to the left of K. However,
since d is in all three intervals, they must overlap, as in Figure 11.7.

But where does this leave b? It cannot be in J without being in either I or K, both
of which are untrue. This contradiction implies that S4 holds. Thus, we have a

semiorder.

Of course, our interest here is in counting the number of nonisomorphic

semiorders on [n], that is, the number of isomorphism classes. We have proved

that this is just the number of covering antichains on [n].

Figure 11.7

Figure 11.6 A covering antichain
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Theorem 11.1

Cn counts the number of semiorders on [n], up to order isomorphism. □

More on Semiorders

As mentioned earlier, there are a variety of ways to characterize semiorders, each of

which gives another counting application of the Catalan numbers.

Characterization by Forbidden Subposet

Theorem 11.2

Let S;�ð Þ be a partially ordered set and define a binary relation on S by

a � b iff a ¼ b or a
����b

� �

Then S;�;�ð Þ is a semiordered set if and only if S has no induced subposets
of the form 2þ 2 or 3þ 1, as pictured in Figure 11.8.

Proof Suppose first that S is semiordered by �;�ð Þ. If a � b and c � d, with no

other preferences between a, b, c and d, then

a � b � c � d

But then S3 implies that so a � d, a contradiction. Thus, S does not have an induced
subposet2þ 2. Also, ifa � b � c, then S4 implies that for anyd2S, there must be a

preference between d and at least one of a, b, or c and so the induced subposet {a, b,
c, d} is not 3þ 1.

For the converse, suppose that S;�ð Þ has no forbidden subposets. Then S1) and

S2) hold. Also, S4) is a direct consequence of the fact that S has no induced

subposet of the form 3þ 1. As to S3), suppose that

Figure 11.8 Forbidden

subposets
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a � b � c � d

We must rule out the possibilities that d � a and a � d.

1) If d � a, then

c � d � a � b

and so transitivity implies that c � b, which is false.

2) If a � d, then we have the situation shown in Figure 11.9, where the wavy line

indicates indifference.

As to the relationship between a and c, if a � c, then a � c � d and so a � d,
which is false. If c � a then c � a � b which implies that c � b, also false.

Hence, a � c. A similar argument shows that b � d and so the induced subposet
{a, b, c, d} is 2þ 2, contrary to assumption.

Thus, we have ruled out the two undesirable possibilities and are left with a � d,
which is S3. □

Characterization by Unit Interval Order

Let us say that the interval [i, j] is completely to the left of the interval [k, ‘] if j < k.

Definition 11.3

1) A poset P; <ð Þ is said to have an interval order if each a2P can be assigned an

interval Ia ¼ ‘a; ra½ 
 on the real line in such a way that a < b if and only if Ia is
completely to the left of Ib.

2) A poset P; <ð Þ is said to have a unit interval order if each a2P can be assigned

a unit interval Ia ¼ ‘a, ‘a þ 1½ 
 on the real line in such a way that a < b if and

only if Ia is completely to the left of Ib. □

Figure 11.10 shows a unit interval order on [6].

Figure 11.9
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This order is given by

1 < 3, 4, 5, 6

2 < 3, 4, 5, 6

3 < 6

4 < 6

and nothing else.

The Scott-Suppes theorem says that a poset P; <ð Þ has a unit interval order if

and only if it is a semiorder, where indifference is the union of equality and

noncomparability.

Theorem 11.3 (Scott-Suppes Theorem)

A finite poset P;�ð Þ has a unit interval order if and only if <;�ð Þ is a
semiorder on P, where

a � b iff a ¼ b or a
����b

� �

Proof Suppose first that P;�ð Þ has a unit interval order, with unit intervals

I ¼ Ik ¼ ‘k, ‘k þ 1½ 
��k ¼ 1, . . . ,m
� �

Note that a ¼ b or a
����b if and only if Ia \ Ib 6¼ ∅. We survey the definition of

semiorder. It is clear that S1 and S2 hold. As to S3), suppose that

a < b
����c < d

If x2 Ib \ Ic, then Ia is completely to the left of x and Id is completely to the right

of x, whence Ia is completely to the left of Id, that is, a < b. As to S4, suppose that

a < b < c

Then since the intervals Ia, Ib, and Ic all have unit length and do not intersect

pairwise, it is clear that no other unit interval can overlap all three of these intervals.

Thus, < ,
����� �

is a semiorder on P.

For the converse, it is sufficient to show that a semiorder <;�ð Þ on [n] is a unit
interval order and this we do by induction on n. If n ¼ 1, then the result is clear.

Assume that the result holds for all m < n.

Figure 11.10 A unit interval

order on [6]
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Let A be the covering antichain in Int([n]) associated with the semiorder. Thus,

a � b iff a, b2 I for some I2A
a � b iff a≁ b and a < b

We wish to identify the maximal elements of [n] under the semiorder on [n] (not the
usual order on [n]). If the interval in A that contains n is [k, n], then every element

a2 k; n½ 
 is a maximal element in [n] because there are no integers greater than n.
But if a =2 k; n½ 
, then a and n cannot be in the same interval of the antichain and so

a � n. Hence, [k, n] is the set of maximal elements of S under the semiorder.

Suppose that the second largest interval inA is [i,m]. Then i < k andm < n. Let
us remove from A the interval [k, n], along with the integers larger than m, so that

the remaining intervals form a covering antichain A0
on [m]. We can now identify

three groups of elements.

1) mþ 1, . . . , nf g: The maximal elements of [n] that are lost when we cut back

from [n] to [m].
2) {k, . . .,m}: The maximal elements of [n] (if any) that survive the cut and are

therefore maximal in [m].
3) i, . . . , k � 1f g: The newmaximal elements, that is, elements maximal in [m] but

not in [n].

Now, the induction hypothesis implies that the inherited semiorder on [m] is a
unit interval orderF . As illustrated in Figure 11.11, let Ii, . . ., Ik be the unit intervals
corresponding to the new maximal elements {i, . . ., k} and let Ik, . . ., Im be the unit

intervals corresponding to the surviving maximal elements {k, . . .,m}.

Note that the right endpoints of the maximal unit intervals do not intersect any

nonmaximal unit intervals and so we may extend any of these maximal unit

intervals to the right as far as desired without affecting the semiorder in [m].

Figure 11.11
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So as shown in Figure 11.11, let us extend the new maximal unit intervals

Ii, . . . , Ik�1 to a point u greater than any existing right endpoint and extend the

surviving maximal unit intervals to a point v > u. Then we can reintroduce

the elements mþ 1, . . . , n that were cut from [n] by adding new unit intervals

Imþ1, . . . , In in such a manner that each new interval has its left endpoint in the open

interval (u, v). The new unit intervals therefore overlap the surviving unit intervals

and each other and no others.

Hence, the indifference relation induced by the totality of unit intervals is that of

the original semiorder on [n]. Moreover, since the preference order on [m] is

induced by the original semiorder on [n] and since the maximality of mþ 1, . . . , n
is reflected in the unit interval order, the original semiorder is represented by the

unit interval order on [n]. □

Note that there was nothing special about the fact that all of the intervals in the

interval order had unit length. The only salient point is that all intervals have the

same length.

Semiorder Summary

Theorem 11.4

Cn counts the number of

1) semiorders on [n],
2) partial orders on [n] with no induced subposets of the form 2þ 2 or 3þ 1,
3) unit interval orders on [n]. □
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Recap

Here is a recap of the objects that we have counted using the Catalan numbers.

Theorem 1

Cn counts the number of

1) monotonic paths in an n� n grid that do not rise above the diagonal,
2) Dyck paths of length 2n that end on the horizontal axis,
3) ordered trees with nþ 1 vertices,
4) binary trees with n vertices,
5) full binary trees with 2nþ 1 vertices,
6) noncrossing, alternating trees with nþ 1 vertices,
7) ways to chord a convex 2n-gon with nonintersecting chords,
8) staircase tilings of an n� n grid using n tiles,
9) noncrossing, alternating, chorded convex (n+ 1)-gons with n chords,

10) triangularizations of a convex polygon with nþ 2 sides,
11) ways to stack equal-sized disks with n disks on the bottom row,
12) ways to fully parenthesize a word of length nþ 1 under a nonassociative

binary operation,
13) balanced strings of parentheses of length 2n,
14) multisets of size n in ℤnþ1 with null sum,
15) separated families of intervals in Int([n]),
16) covering antichains in Int([n]),
17) antichains (down sets) in Int n� 1½ �ð Þ,
18) noncrossing partitions of [n],
19) noncrossing partitions of 2nþ 1½ � into nþ 1 blocks, none of which

contain two consecutive integers,
20) maximal normalized Davenport-Schinzel sequences on nþ 1½ �,
21) abc ‐ avoiding permutations of [n], for any given three-digit pattern abc,
22) semiorders on [n] (up to isomorphism),
23) partial orders on [n] with no induced subposets of the form2þ 2or3þ 1,
24) unit interval orders on [n]. □
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Exercises

As mentioned in the Preface, the following exercises come primarily from Richard

Stanley’s book Enumerative Combinatorics, Volume II, herein denoted by ECII or

from his book Catalan Numbers, herein denoted by CN. Hints or solutions (that is,

longer hints) follow the exercise set.

In each case, show that the Catalan number Cn counts the size of the set
described in the exercise.

Paths

1. Figure 1 shows theC3 ¼ 5Dyck paths of length 2n for n ¼ 3. Note that there are

a total of 14 ¼ C4 bottom points, that is, points on the horizontal axis. Hmm.

2. (CN 32) Dyck paths of length 4n such that every descent (sequence of consecu-

tive edges with negative slope) has length 2.

Figure 1 The five Dyck paths of length 2n for n ¼ 3

Figure 2 The case n ¼ 3
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3. (ECII 6.19.k, CN 27) Dyck paths from (0, 0) to 2nþ 2, 0ð Þ with no peaks (local

maxima) at height two.

4. The left side of Figure 4 shows the various ways to chord a 4-gon (sometimes

also known as a square) with nonintersecting chords where in this case we do not

require that all vertices be incident with a chord. The right side of the figure

shows the number of paths where we can move diagonally up, diagonally down,

or straight ahead. These paths are called Motzkin paths.

Show that the number of ways chordings of a convex n-gon or Motzkin paths

of length n is

Mn ¼
Xn=2½ �

k¼0

n
2k

� �
Ck

These are called Motzkin numbers.

Figure 3 The case n ¼ 3

Figure 4
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Trees

5. (ECII 6.19f, CN 7) Planted trivalent trees with 2nþ 2 vertices. A tree is planted

if its root has degree one and trivalent if all nonleaf vertices (except the root)

have degree 3.

6. (ECII 6.19g, CN 8) Ordered trees withnþ 2vertices such that the rightmost path

of each subtree of the root has an even number of vertices.

7. (CN 13) Ordered trees for which every vertex has 0, 1, or 3 children and for

which the total number of vertices with 0 or 1 children is nþ 1.

8. (ECII 6.19.o, CN 61) Show that the Catalan number Cn counts the number of

ways to connect 2n points lying on a line in the plane with n nonintersecting arcs
with the property that each arc connects two points and lies above the line. This

is called a noncrossing complete matching of the vertices.

Figure 5 The case n ¼ 3

Figure 6 The case n ¼ 3

Figure 7 The case n ¼ 3
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9. (ECII 6.19.q, CN 63) (Compare with noncrossing, alternating trees.) Show that

the Catalan number Cn counts the number of ways to drawnþ 1points lying on a

horizontal line L in the plane and n arcs connecting those points with the

following properties: (1) the arcs do not pass below L, (2) the graph thus formed

is a tree, (3) no arc (including its endpoints) lies strictly below another arc, (4) at

every point, all of the arcs exit in the same direction.

Geometry

10. (CN 75) There are a total of C3 ¼ 5 disjoint chordings shown in Figure 6.2,

repeated here in Figure 10. There are also a total of five horizontal chords in

these chording. Intriguing, isn’t it?

11. (CN 2) Figure 11 shows the 14 triangulations of the hexagon. The triangles

marked with a X are the triangles with the property that their vertices consist of

vertex 1 together with two other consecutive vertices of the hexagon. How

many such triangles are there? Is this a coincidence?

Figure 8 The case n ¼ 3

Figure 9 The case n ¼ 3

Figure 10 The disjoint chordings of a hexagon
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12. (ECII 6.19.l, CN 57) Sets of two monotonic paths on the same square grid with

the following properties: (1) both paths start at (0, 0) and end at the same point

(a, b), (2) each path has nþ 1 steps, and (3) the paths intersect only at their

endpoints (0, 0) and (a, b). These regions are called parallelogram

polyominoes

13. (ECII 6.19.ggg, CN 60)

a) Ways to join some of the vertices of a rooted convex (n� 1)-gon using

disjoint line segments and circling a subset of the other vertices.

b) Prove Touchard’s identity:

Cnþ1 ¼
X
k�0

n
2k

� �
Ck2

n�2k

Figure 12 The case n ¼ 3

Figure 11

Figure 13 A few of the C5 ¼ 42 possibilities
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Integer Sequences

14. (ECII 6.19.s, CN 78) Integer sequences

1 � a1 � a2 � � � � � an

for which ai � i for all i ¼ 1, 2, . . . , n.

15. (ECII 6.19.t, CN 79) Strictly increasing positive integer sequences a1a2� � �an�1

for which 1 � ai � 2i for all i ¼ 1, 2, . . . , n.

16. (ECII 6.19.u, CN 80) Positive integer sequences a1a2� � �an for whicha1 ¼ 0 and

0 � aiþ1 � ai þ 1 for all i ¼ 1, 2, . . . , n� 1.

Permutations

17. (ECII 6.19.cc, CN 113) Permutations of the multiset

1; 1; 2; 2; 3; 3; . . . ; n; nf g
(there are two copies of each integer in [n]) of length 2n with the following

properties: (1) the first occurrences of each distinct integer in [n] occur in

increasing order and (2) there are no subsequences of the form abab. Here are
the permutations for n ¼ 3:

112233, 112332, 122331, 123321, 122133

18. (ECII 6.19.dd, CN 114) Permutations of the set [2n] for which the following

hold:

a) The odd integers appear in increasing order.

b) The even integers appear in increasing order.

c) 2k � 1 appears before 2k for 1 � k � n.

19. (CN 120) Figure 14 shows a structure that has m queues q1, . . ., qm in parallel

with an input (source) and an output (sink). The input can be any permutation in

Sn and the output is also a permutation in Sn. There are two legal operations
associated with this structure: (1) move the next integer from the front of the

input onto the end of one of the queues and (2) move an integer from the

beginning of one of the queues to the end of the output.
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A permutation σ2Sn is m-queue sortable if it is possible to produce the output

π ¼ 12� � �n from the input σ using legal operations. If σ2Sn, let d(σ) denote the

length of the longest decreasing subsequence in σ. Prove that a permutation is

m-queue sortable if and only if d σð Þ � m, that is, if and only if avoids the pattern

m m� 1ð Þ� � �1. In particular, the number of 2-queue sortable permutations is Cn.

Partitions

20. Prove that the Davenport-Schinzel sequences in MNDS(n) have length 2n� 1.

21. (ECII 6.19.uu, CN 164) Nonnesting partitions, that is, partitions of [n] such
that if i < j < k < ‘ and i, ‘, 2B and j, k2C where B and C are distinct blocks

then there is an x2B for which j < x < k.

Miscellaneous

22. (ECII 6.19.uu, CN 187) Binary relations R on [n] that are reflexive and

symmetric and for which if 1 � i < j < k � n and iRk then iRj and jRk.
These relations are called similarity relations. Here are the similarity relations

for n ¼ 3:

R1 ¼ ∅f g
R2 ¼ 1; 1ð Þ; 2; 2ð Þ; 3; 3ð Þ; 1; 2ð Þ; 2; 1ð Þf g
R3 ¼ 1; 1ð Þ; 2; 2ð Þ; 3; 3ð Þ; 2; 3ð Þ; 3; 2ð Þf g
R4 ¼ R2 [ R3

R5 ¼ 3½ � � 3½ �

Figure 14 A queue-based

sorting structure
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Solutions and Hints

1. Hint: To count the number of bottom points in all of the paths, for each path of

length n, choose a bottom point, insert a diagonal up-step immediately after that

point, and then insert a diagonal down-step at the end of the path. Examine the

associated map from bottom points to paths of length nþ 2.

2. Such a path has exactly n� 1 valleys (down-step immediately followed by an

up-step). To see this, let u be the number of up-steps, let d be the number of

down-steps, and let v be the number of valleys. Then u ¼ d and uþ d ¼ 4n and
so d ¼ 2n. But v ¼ d=2� 1 ¼ n� 1, since the last pair of down-sets does not

make a valley. Now, given such a path, delete the first and last steps and every

valley (with apologies to Handel). The result is a path of length 4n� 2 n� 1ð Þ
�2 ¼ 2n and this gives a bijection to the Dyck paths of length 2n. How do you

reverse the deletion of a valley?

4. This result is due to Paul Peart and Wen-Jin Woan and can be found in the

Journal of Integer Sequences 4 (2001), Article 01.1.3. Here is an outline of

their proof using generating functions. They also present a bijection between

Dyck paths of length 2nþ 2 with no peaks at height 2 and all Dyck path of

length 2n.
a) First, show that the generating function C(x) for the Catalan numbers

satisfies

1

1� x2C2 xð Þ ¼
C xð Þ

1þ xC xð Þ
b) Let Dn,m be the number of Dyck paths of length 2n that have no peaks at

height m and let Dm(x) be the generating function for Dn,m. Show that

Dm xð Þ ¼ 1

1� xDm�1 xð Þ
form � 2.Hint: Any Dyck path of length 2nwith no peaks at heightm starts with

an up-step from level 0 to level 1, followed by a Dyck path of length 2k starting
and ending at level 1 and with no peak at heightm� 1, followed by a down-step

back to level 0, followed by a Dyck path of length 2n� 2� 2k with no peak at

height m. Show that the corresponding recurrence for this decomposition is
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Dn,m ¼
Xn�1

k¼0

Dk,m�1Dn�1�k,m

c) We must now consider Dn�1. Show that

Dn, 1 ¼
Xn�1

k¼1

CkDn�1�k, 1

Note the lower limit of summation. Show that

D1 xð Þ ¼ 1

1� x2C2 xð Þ ¼
C xð Þ

1þ xC xð Þ
d) Thus,

D2 xð Þ ¼ 1

1� xD1 xð Þ ¼ 1þ xC xð Þ

and so for n � 1,

Dnþ1,2 ¼ Cn

5. Hint: Removing the root gives a full binary tree.

6. Hint: Stanley says that there is “an elegant bijection” between these trees and

ordered trees with nþ 1 vertices, given to him in a private communication in

1996 by F. Bernhardt.

7. Call a vertex small if it has 0 or 1 children. Letℬn be the family of all such trees

with n small vertices and letBn ¼ ℬnj j. LetT2ℬn have root r. Decompose T by

throwing away r. There are two cases (for n � 2). First, if r is small, then it has

degree 1 and so the decomposition yields a single member of ℬn�1. Second, if

r is not small, it has degree 3 and the decomposition yields three trees, say in

ℬi,ℬj, andℬk where iþ jþ k ¼ n because the root was (and is) not small. It is

also clear that this decomposition is bijective. Hence, for n � 2,

Bn ¼ Bn�1 þ
X

iþjþk¼n

BiBjBk

If the generating function is b xð Þ ¼
X
n�0

Bnx
n, then

b xð Þ ¼ xþ xb xð Þ þ b3 xð Þ
since B1 ¼ 1 and B0 ¼ 0. Now, if the generating function of the Catalan

numbers is c(x), then let u xð Þ ¼ xc xð Þ. Since xc2 xð Þ � c xð Þ þ 1 ¼ 0, it

follows that u2 xð Þ � u xð Þ þ x ¼ 0 and so u3 xð Þ � u2 xð Þ þ xu xð Þ ¼ 0, whence

u xð Þ ¼ xþ xu xð Þ þ u3 xð Þ and so xc xð Þ ¼ u xð Þ ¼ b xð Þ. Thus, Bnþ1 ¼ Cn.
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8. Hint: Relate these objects to nonintersecting chordings of 2n evenly placed

points on a circle by cutting the circle at some location on its circumference

(not at one of the points) and straightening it into a straight line.

9. Hint: This may be a bit hard.

10. Count incidences of chords and slopes. From the point of view of chords, each

of the nCn chords is incident with one slope. From the point of view of slopes,

all slopes occur the same number x of times, as can be seen by rotating all of the

2n-gons so that one slope value is “rotated” into another. Hence, Hence,

xn ¼ nCn and so x ¼ Cn.

11. Hint: How many triangulations are there that involve a triangle with vertices

1, i, iþ 1? Answer: Ci�1Cn�iþ1. Then use the recurrence relation.

12. Let L1, . . .,Lk be the columns of the polyomino. Let ai be the number of squares

in column Li and let bi be the number of squares in common to columns Li and
Liþ1. Set b0 ¼ bk ¼ 1. Define a sequence of charges by

σ ¼ þð Þa1�b0þ1 �ð Þa1�b1þ1
h i

þð Þa2�b1þ1 �ð Þa2�b2þ1
h i

� � � þð Þak�bk�1þ1 �ð Þak�bkþ1
h i

where exponentiation means repetition. Then the number of plus signs and

minus signs in σ is

Nþ ¼
Xk
i¼1

ai � bi�1 þ 1ð Þ ¼
Xk
i¼1

ai �
Xk
i¼1

bi�1 þ k ¼
Xk
i¼1

ai �
Xk�1

i¼1

bi þ k � 1

and

N� ¼
Xk
i¼1

ai � bi þ 1ð Þ ¼
Xk
i¼1

ai �
Xk
i¼1

bi þ k ¼
Xk
i¼1

ai �
Xk�1

i¼1

bi þ k � 1

whence Nþ ¼ N�. Moreover, the sum

Xk
i¼1

ai �
Xk�1

i¼1

bi

is equal to the number of squares that remain after tossing out all squares that

have a neighbor square to its left. Hence, this sum is equal to the number of

up-steps in the top path. But k is the number of right steps and soNþ is equal to

one less than the number of steps in each path, that is,

Nþ ¼ N� ¼ n

As to the charge at any point, note that the total charge within the ith square

bracket defining σ above is
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ai � bi�1 þ 1ð Þ � ai � bi þ 1ð Þ ¼ bi � bi�1

and so the total charge after m such terms is

Xm
i¼1

bi � bi�1ð Þ ¼ bm � b0 ¼ bm � 1 � 0

Since these are the worst-case scenarios, it follows that the charge is nonnega-

tive at all points in σ. Thus, σ is a charge sequence.

13. Let Sn denote the family of all possible configurations described in part a) and

let sk ¼ Skj j. Then grouping by the number of chords gives

Snj j ¼
X
k�0

n
2k

� �
Ck2

n�2k

To show that Snj j ¼ Cnþ1, letSn,k be the members ofSn whose root vertex v1 is
connected to vertex vk by a chord. Then removal of vertices v1 and vk and the

chord produces a member of Sk�1 and a member of Sn�2�k. It follows that

Sn,kj j ¼
Xn�2

k¼0

sksn�2�k

Let S
0
n be the members of Sn for which the root vertex v1 is not connected to a

chord and not circled. Then removal of the root vertex produces a member of

S0
n�1 and so S0

n

���
��� ¼ Sn�1j j. Similarly, ifS00

n is the set of members ofSn for which

the root vertex v1 is circled, then S00
n

���
��� ¼ Sn�1j j. Hence,

sn ¼
Xn�2

k¼0

sksn�2�k þ 2sn�1

If the generating function for the sequence Sn is

S xð Þ ¼
X
n�0

snx
n

then the previous summation shows that

S xð Þ ¼ 1þ 2xS xð Þ þ x2S2 xð Þ
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Multiplying both sides by x and letting U xð Þ ¼ xS xð Þ, we get

U xð Þ ¼ x 1þ 2U xð Þ þ U2 xð Þ� � ¼ x 1þ U xð Þð Þ2

and so if V xð Þ ¼ U xð Þ þ 1 ¼ xS xð Þ þ 1, then

V xð Þ � 1 ¼ xV2 xð Þ
whence V xð Þ ¼ C xð Þ, the Catalan generating function and so

C xð Þ ¼ 1þ xS xð Þ
from which the result follows.

14. Hint: Figure 15 shows the five monotonic paths that do not cross the diagonal

along with the five integer sequences described in the problem. Feel free to

generalize.

15. This follows fairly easily from Exercise 14, to wit, subtract i� 1 from ai and
append a 1 at the beginning of the sequence.

16. Let bi ¼ ai � aiþ1 þ 1 and replace ai with a single 1 followed by bi �1s for

1 � i � n (where anþ1 ¼ 0). This produces a ballot sequence.

17. There is a simple bijection between these permutations and the graphs in

Exercise 8. Place 2n points on a horizontal line and label then with the integers
in the permutation in order. Then connect like-labeled points with an arc above

the line. Figure 16 shows the process for n ¼ 3.

18. Hint: Replace each odd number byþand each even number by� to get a charge

sequence.

Figure 15

Figure 16
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19. First, we observe that if a smaller integer is ever sent through a given queue qk
at some time after a larger integer has gone through qk, then the output cannot

be π. But if d σð Þ > m, then this must happen. Hence, if σ is m ‐ queue sortable,
then d σð Þ � m. For the converse, suppose that d σð Þ � m. Consider the follow-
ing procedure for loading up the queues with all of the integers in σ.
a) Place the first integer in queue q1. Note that the entries at the end of each

queue are in decreasing order, since there is only one entry at the end of the

queues.

b) Assume that we have placed a1, . . . , ak�1 in the queues in such a way that,

scanning the last entries in queues q1 through qm in that order, the resulting

sequence b1� � �bm is decreasing. Place ak in the first queue qj (queue with

smallest index j) for which bj < ak. There must be such a queue since

otherwise the decreasing subsequence b1� � �bmak of σ would have length

greater than m. Moreover, the last queue entries are now

b1� � �bj�1akbjþ1� � �bm
where

bm < � � � < bjþ1 < bj < ak < bj�1 < � � �b1
and so are still in decreasing order.

Thus, we may move all of the input integers onto the queues in such a way

that each queue contains an increasing sequence of integers (read from the

beginning to the end). It is then a simple matter to move the integers to the

output to produce the permutation π.
20. Use induction. The result holds for n ¼ 1. Assume that it holds for sequences

shorter than n. If w2MNDS nð Þ, then w has one of the forms w ¼ 1x1 where

x2MNDS 2; nð Þ or w ¼ 1x1y1, where

x2MNDS 2; kð Þ and 1y 1 2 MNDS 1f g [ k þ 1, n½ �ð Þ
for some 2 � k � n� 1. In the former case,

len wð Þ ¼ 2þ len xð Þ ¼ 2þ 2 n� 1ð Þ � 1 ¼ 2n� 1

In the latter case,

len wð Þ ¼ 1þ len xð Þ þ len yð Þ ¼ 1þ 2 k � 1ð Þ � 1þ 2 n� k þ 1ð Þ � 1 ¼ 2n� 1

21. Let P be a nonnesting partition of [n]. Write the elements of a block B of P in

increasing order

B ¼ b1 < b2 < � � � < buf g
LetAP be the family of all intervals bi; biþ1½ �, for all blocks B ofP. It is not hard
to see that AP is an antichain in [n]. Clearly, no two intervals in AP that come

from the same block of P have a subset relationship. If bi; biþ1½ � comes from

block B and cj; cjþ1

� �
come from a different block C of P and
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bi; biþ1½ � � cj; cjþ1

� �

then the endpoints must be distinct since B and C are disjoint. Thus,

cj < bi < biþ1 < cjþ1

and so the nonnesting property implies that there is a c2C for which

cj < bi < c < biþ1 < cjþ1

contradicting the fact that cj; cjþ1

� �
is inA. Hence,AP is an antichain. Note also

that all intervals in AP have length at least 2.

We can describe the blocks of P in terms of the antichainAP by saying that

the blocks of P are composed of the maximal sequences of the form

α : a1 < a2 < � � �au
for which each of the intervals ai; aiþ1½ � is inAP . Moreover, since i and j are in
the same block ofP if and only if there is such a maximal sequence containing

i and j, the map P 7!AP is injective.

Now letA be an antichain in Int([n]) with the property that all intervals have
size at least 2. Note that no two distinct intervals in A have a common left

endpoint or a common right endpoint. Consider the family PA of all maximal

sequences of the form

α : a1 < a2 < � � � < au

for which each of the intervals ai; aiþ1½ � is in A. If

β : b1 < b2 < � � � < bv

is another such maximal sequence and the two sequences have a term x ¼ ai
¼ bj in common, then this equality will propagate throughout the sequences as

much as possible, that is,

ai�1 ¼ bj�1 and aiþ1 ¼ bjþ1

assuming that these terms exist. Put another way, all of the integers in the

intersection a1; au½ � \ b1; bv½ � that belong to one of the sequences also belong to
the other. Now, ifa1 < b1, thenb12 as; asþ1½ � for some s and so we could extend
β by prefixing it with the appropriate choice of a1 < � � � < as�1 or

a1 < � � � < as, which is impossible. Continuing this argument shows that the

two sequences are equal. Hence, the maximal sequences in PA are disjoint.

Note that since every interval inA is part of some maximal sequence, we can

recover the antichain A from the partition P and so the map A 7!PA from

antichains to partitions is injective.

We have shown that the number of nonnesting partitions of [n] is the same as

the number of antichains in Int([n]) that have no singleton intervals, which is

the same as the number of antichains in Int n� 1½ �ð Þ, which number is Cn.
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22. Since a similarity relation is symmetric, it is completely determined by its

lower half, that is, by the values iRj for i � j.

The left side of Figure 17 shows the lower half of the graph of a reflexive and

symmetric relation R on [n] for n ¼ 8. For each k2 n½ �, let

sk ¼ min i2 n½ ���iRk	 


Then the similarity condition is equivalent to the following two properties:

1) Each k2 n½ � is related to every integer between sk and k (the vertical lines in
Figure 17 have no breaks).

2) s1 � � � � � sn
To prove this, first assume that R is a similarity relation. Then skRk implies

that property 1) holds. As for property 2), if sk ¼ k, then

sk�1 � k � 1 < k ¼ sk

and if sk < k then skRk implies that skR k � 1ð Þ and so sk�1 � sk. Conversely,
suppose that R is reflexive and symmetric and satisfies these two properties. If

iRk and i < j < k, then property 2) implies that

si � sj � sk � i < j < k

and so property 1) implies that iRj and jRk.
Now, superimposing an appropriate grid over the left side of Figure 17 gives

the right side of Figure 17 and so we glean a bijective correspondence between

similarity relations and monotonic paths that do not cross the diagonal.

Figure 17
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Appendix

A Brief Introduction to Partially Ordered Sets

For those who are not familiar with partially ordered sets, here is a very brief

introduction—just what we need for this book (well, perhaps a tiny bit more). For

those who wish a deeper look into this fascinating subject, please allow me to

recommend my book Lattices and Ordered Sets, published by Springer.

Definition 1

Let A be a nonempty set. A binary relation on A is a subset R of the cartesian

product A� A. We write a; bð Þ2R as a 	 b. A binary relation is

1) reflexive if for all a2A,

a 	 a

2) irreflexive if for all a2A,

a ≁ a

3) symmetric if for all a, b2A,

a 	 b ) b 	 a

4) asymmetric if for all a, b2A,

a 	 b ) b ≁ a

5) antisymmetric if for all a, b2A,

a 	 b, b 	 a, ) a ¼ b

6) transitive if for all a, b2A,

a 	 b, b 	 c, ) a 	 c □

# The Author 2015
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Note that asymmetry implies irreflexivity, since asymmetry and a 	 a imply

a ≁ a, which is absurd. Moreover, if 	 is transitive, then the converse holds. In

particular, f 	 is irreflexive and a 	 b, then b 	 a implies that a 	 b 	 a and

transitivity give a 	 a, which is false. Thus, 	 is asymmetric.

Definition 2 A partial order (or just an order) on a nonempty set P is a binary

relation � on P that is reflexive, antisymmetric, and transitive, specifically, for all

x, y, z2P:

1) (reflexive)

x � x

2) (antisymmetric)

x � y, y � x ) x ¼ y

3) (transitive)

x � y, y � z ) x ¼ z

The pair P;�ð Þ is called a partially ordered set or poset, although it is often

said that P is a poset, when the order relation is understood. If x � y, then x is less
than or equal to y or y is greater than or equal to x. If x � y but x 6¼ y, we write
x < y or y > x. If x � y or y � x, then x and y are said to be comparable. Otherwise,

x and y are incomparable, denoted by a
����b. □

If S and T are subsets of a poset P, thenS � Tmeans that s � t for all s2S, t2T. If
T ¼ tf g, then S � tf g is written S � t and similarly for s � T.

Definition 3 A poset P;�ð Þ is totally ordered or linearly ordered if every x, y2P
are comparable, that is,

x � y or y � x

In this case, the order is said to be total or linear. □

Example 1
1) Let ℕ ¼ 0; 1; . . .f g be the set of natural numbers. Then ℕ;�ð Þ is a poset under

the ordinary order. Also, ℕ;
��� �
is a poset under division, that is, where x

��ymeans

that y ¼ kx for some k2ℕ, that is, x divides y.
2) If X is a nonempty set, then the power set ℘(X) of X is the set of all subsets of X.

It is well known that ℘(X) is a poset under set inclusion.
3) The set P of all partitions of a nonempty set X is a poset, where λ � σ if λ is a

refinement of σ, that is, if every block of σ is a union of blocks of λ. Put another
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way, the blocks of λ are constructed by further partitioning some (or none) of the

blocks of σ.
4) The set n ¼ 0, 1, . . . , n� 1f g is linearly ordered by ordinary order. □

The Product and Sum of Posets

The cartesian product P� Q of two posets P;�ð Þ and Q;
ð Þ can be made into a

poset in two natural ways. The product order on P� Q is defined by

p1; q1ð Þ � p2; q2ð Þ if p1 � p2 and q1 
 q2

The set P� Q with this order is called the product of P and Q. On the other

hand, the lexicographic order on the cartesian product P� Q is defined by

p1; q1ð Þ � p2; q2ð Þ if p1 < p2 or p1 ¼ p2 and q1 
 q2ð Þ
This is also a partial order on P� Q.

If P;�ð Þ and Q;
ð Þ are posets, their sumPþ Q is the poset formed by taking the

disjoint unionP[þ Qof P andQ (to avoid any duplicate elements). As to the order on

P[þ Q, two elements that both belong to P or both belong to Q have the same

relationship that they had in either P;�ð Þ or Q;
ð Þ and that p
����q for all p2P and

q2Q.

Induced Subposets

If P;�ð Þ is a poset and S � P, then the order relation is also a binary relation on

S and so S;�ð Þ is a poset in its own right. It is called the subposet of P induced by S.

Strict Orders

To every partial order on a set P there corresponds a strict partial order.

Definition 4 A binary relation < on a nonempty set P is called a strict partial

order (or strict order) if it is asymmetric and transitive, or equivalently, irreflexive

and transitive. □

Given a partially ordered set P;�ð Þ, we may define a strict order < by

x < y if x � y and x 6¼ y

Conversely, if < is a strict order on a nonempty set P, then the binary relation

defined by

x � y if x < y or x ¼ y
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is a partial order and so P;�ð Þ is a poset. Thus, there is a one-to-one correspondence
between partial orders and strict partial orders on a nonempty set P and so a

partially ordered set can be defined as a nonempty set with a strict order relation.

Chains and Antichains

Totally ordered subsets of a poset play an important role in the theory of partial

orders.

Definition 5 Let P;�ð Þ be a poset.

1) A nonempty subset S of P is a chain in P if S is totally ordered by �. A finite

chain with n elements can be written in the form

c1 < c2 < � � � < cn

Such a chain is said to have length n� 1. If a < b, then a chain from a to b in

P is a chain in P whose smallest element is a and whose largest element is b. A
maximal chain from a to b is a chain from a to b that is not contained in a larger
(in the sense of set inclusion) chain from a to b.

2) A nonempty subset S of P is an antichain in P if every two elements of S are

incomparable. An antichain with n elements is said to have width n. Amaximal
antichain is an antichain that is not contained in a larger (in the sense of set

inclusion) antichain. □

Maximal and Minimal Elements

Maximal and maximum elements can be defined in posets.

Definition 6 Let P;�ð Þ be a partially ordered set.

1) An element m2P is maximal if no element of P is larger than m, that is,

p2P, m � p ) m ¼ p

An element m2P is maximum (largest or greatest) if it is greater than every

other element of P, that is,

p2P ) p � m

2) An element n2P is minimal if no element is smaller than n, that is,
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p2P, p � n ) p ¼ n

An element n2P is minimum (smallest or least) if it is smaller than all other

elements of P, that is,

p2P ) n � p

A partially ordered set is bounded if it has both a 0 and a 1. □

Definition 7 If a poset P has a smallest element 0, then any cover of 0 is called an

atom or point of P. The set of all atoms of a poset P is denoted by A Pð Þ. A poset

with 0 is atomic if every nonzero element contains an atom. If P has a 1, then any

element covered by 1 is called a coatom or copoint of P. □

Upper and Lower Bounds

Upper and lower bounds can be defined in a poset.

Definition 8 Let P;�ð Þ be a partially ordered set and let S � P.

1) An upper bound for S is an element x2P for which

S � x

2) A lower bound for S is an element x2P for which

x � S □

Topological Sorting

It is often useful to be able to write down the elements of a finite poset P;�ð Þ one at
a time with the property that if a2P is written down before b2P, then either a < b

ora
����b. The act of writing down the elements of P in a linear fashion is equivalent to

defining a total order 
 on P and the property stated above is that

a < b ) a 
 b

For a finite poset, a compatible total order can be found using a simple algorithm

called topological sorting, implemented by simply taking a minimal element at

each stage. In this way, larger (or smaller) elements are input first.
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Down-Sets

Definition 9 A down-set (also called an order ideal by some authors) in a partially

ordered set P;�ð Þ is a nonempty subset I � P with the property that

s2 I, p � s ) p2 I

Note that a down-set I � P is also a poset in its own right under the same binary

relation �. □

Definition 10 If S � P, then the down-set generated by S is the set of all elements

in P that are less than or equal to at least one element of S, that is,

# S ¼ p2P
��p � s f or some s2S

	 

□

A down-set I in a finite poset P;�ð Þ is generated by the collection MI of all

maximal elements of I, where we mean maximal within the poset I, not the poset P.
Note thatMI is an antichain in P. In fact, given any antichain A in P, the set # A is a

down-set whose maximal elements are the elements of A. Since each down-set I is
uniquely determined by its maximal elements MI, the down map A 7! # Að Þ is a

bijection between antichains A in P and down-sets I of P.

Monotone Maps

Order-preserving maps are defined as follows.

Definition Let P and Q be posets and let f : P ! Q.

1) f is order-preserving or monotone if

x � y ) f xð Þ � f yð Þ
and strictly monotone if

x < y ) f xð Þ < f yð Þ
2) f is an order embedding if

x � y , f xð Þ � f yð Þ
Note that such a map must be injective.

3) An order embedding f is an order isomorphism if it is also surjective. If f is an
order isomorphism, we say that P and Q are order isomorphic. □
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Note that if f : P ! Q is a monotone bijection, then f�1 need not be monotone,

that is, f need not be an order isomorphism. (Map two incomparable elements to two

comparable elements.)

A Brief Introduction to Graphs and Trees

For those who are not familiar with graphs and trees, here is a very brief introduc-

tion—just what we need for this book (well, perhaps a tiny bit more).

Definition 11

1) A graph G ¼ V;Eð Þ is an ordered pair, where V is any nonempty finite set and

E is a set of two-element subsets of V.
2) The elements of V are called the vertices or nodes of the graph and the elements

of E are called the edges of the graph. We denote the set of edges of G by ℰ(G)

and the set of vertices by V Gð Þ. The number Gj j ¼ V Gð Þj j of vertices of G is

called the size of the graph.

3) Some definitions of a graph allow for loops, that is, subsets of V of size 1. Also,

some definitions allow for multiple edges between vertices. A graph with no

loops or multiple edges is called a simple graph. Our graphs will be simple

unless explicitly stated otherwise. □

It is customary to draw graphs in the plane, where each vertex is represented by a

point and each edge by a line segment between the two vertices in the edge. For

example, the graph in Figure 18 has seven vertices, labeled v1, . . ., v7, and eight

edges, one of which is {v1, v2}. There is also a loop at vertex v7.

One of the most important classes of graphs are the complete graphs. The

complete graph of order n, denoted by Kn, is the graph that has n vertices and

one edge connecting each pair of distinct vertices. Some examples of complete

graphs are shown in Figure 19.

Figure 18 A graph with

seven vertices
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Graphs are extremely useful in applications ranging from mathematics to urban

planning, but we will give only two examples.

Example 2 Graphs can be used to describe finite partially ordered sets, such as the

power set℘(S) of a set S. As an example, the graph in Figure 20 describes the power

set of the set S ¼ 1; 2; 3f g. Note that the edges of the graph describe the covering

relation on ℘(S). □

Example 3 In 1857, the mathematician Arthur Cayley (1821–1895) used graphs to

help describe and enumerate the number of isomers of the hydrocarbon molecules

CnH2nþ2. (Isomers are compounds that have the same chemical formula but differ-

ent structural formulas.) As an example, the molecule C4H10 has two isomers,

called butane and isobutane, as shown in Figure 21. □

Figure 19 Complete graphs

Figure 20 The lattice

structure of the power set ℘
({1, 2, 3})
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Adjacency, Incidence, and Degree

Definition 12 Let G be a graph, with vertex set V Gð Þ and edge set E (G). Two

vertices v,w2V Gð Þ are adjacent if v;wf g2E Gð Þ. Two edges of G are adjacent if

they share a common vertex. A vertex v2V Gð Þ and an edge e2E Gð Þ are incident if
v2e. □

Definition 13 The degree of a vertex v, denoted by deg(v), is simply the number of

times an edge of G meets v. This is not quite the same as the number of edges that

are incident with v, since we must count any loops at v twice when determining the

degree of v. A vertex of degree zero has no edges incident with it and so it is called

an isolated vertex. □

You might enjoy proving that if G is a graph and if V Gð Þ ¼ v1; v2; . . . ; vnf g then

deg v1ð Þ þ deg v2ð Þ þ � � � þ deg vnð Þ ¼ 2 ℰ Gð Þj j
Subgraphs

A graph H is called a subgraph of a graph G if H is obtained from G by removing

some (or no) edges and some (or no) vertices. However, if a vertex is removed, then

all edges incident with that vertex must also be removed. Of course, a graph is a

subgraph of itself. A subgraph H of G that is not equal to G is called a proper
subgraph of G.

Walks, Trails, and Paths

Let u and v be vertices of a graph G. Awalk from u to v is a sequence of edges ofG,
each edge incident with the previous edge

Figure 21 Isomers of C4H10
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v1; v2f g, v2; v3f g, . . . , vn�1; vnf g
where v1 ¼ u and vn ¼ v. The edges in a walk need not be distinct. A walk is closed

if the first and last vertices are the same; otherwise it is open.

A trail is a walk in which repeated edges are not allowed. However, a vertex

may be crossed more than once. A path is a trail in which no vertex is crossed more

than once. A closed trail is called a circuit and a closed path is called a cycle. The
length of a path is the number of edges in the path.

A graph is acyclic if it has no cycles. An acyclic graph is often called a forest.

Connectedness

Two vertices u and v in a graph G are connected if there is a path in G from u to v.
A graph G in which every pair of vertices is connected is called a connected graph.
A graph that is not connected is said to be disconnected. The relation of connect-

edness on the vertex set V Gð Þ is an equivalence relation and thus partitions the

vertices into blocks, called the connected components of the graph. Thus, the

connected components are the maximal connected subgraphs of G. The following
can be proved by induction.

Theorem 2

Any connected graph with n vertices must have at least n� 1 edges. □

Trees

Recall that an acyclic graph is called a forest. An acyclic, connected graph is called
a tree. Figure 22 is an example.

Figure 22 A tree
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There are several ways to characterize trees. A bridge in a connected graph is an

edge e whose removal results in a disconnected graph. Here is a variety of facts

about trees.

Theorem 3

1) Any tree T with more than one vertex must have at least two end vertices.
2) A tree with n vertices has exactly n� 1 edges.
3) A connected graph G with n vertices is a tree if and only if it has exactly

n� 1 edges.
4) An acyclic graph G with n vertices is a tree if and only if it has exactly

n� 1 edges.
5) A connected graph G is a tree if and only if every edge of G is a bridge.
6) A graph G with no loops is a tree if and only if it has the property that any

two distinct vertices in G are connected by exactly one path.
7) A graph G is a tree if and only if it is acyclic and has the property that the

addition of any new edge to G creates exactly one cycle. □

Rooted Trees

Trees are often arranged in levels as shown in Figure 23.

A single vertex is selected and called the root. It is placed at the highest level,

which is level 0. The vertices adjacent to the root are placed at level 1 and so

on. When the tree is drawn in this fashion, it corresponds to a family tree and so it is

customary to borrow terminology from that concept. For example, vertex u is a

child of vertex v, vertex v is a parent of vertex u, and vertex w is a descendant of

vertex v. A tree drawn in this form is called a rooted tree. For a rooted tree, a vertex
with no children is called a leaf.

Subtrees

If v is a nonleaf vertex, then the graph consisting of a single child of v and all of the
descendants of that child is called a subtree of v. For instance, the root r of the tree
on the left in Figure 24 has three subtrees, also shown in the figure. The vertex v has
two subtrees.

Figure 23 A rooted tree
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Binary Trees

A binary tree is a rooted tree for which each vertex has at most two children and in
which we distinguish between left and right subtrees. Thus, for example, the five

binary trees with 3 vertices are shown in Figure 25. Note that the second and third

trees are distinct as binary trees because the second binary tree has a left subtree but

no right subtree whereas the third binary tree has a right subtree and no left subtree.

A binary tree in which every nonleaf has exactly two children is called a full

binary tree. It is also convenient to consider the empty tree as a binary tree.

Ordered Trees

It is often desirable to distinguish order in a rooted tree (as we do in a binary tree, for

example). For instance, we may want to think of the two trees in Figure 26 as

different because the subtrees of the root are in a different order.

To do this, we define the concept of an ordered tree, which is a rooted tree

drawn in the plane in such a way that edges can intersect only at vertices, where we

consider the subtrees of each nonleaf as being ordered from left to right. For

Figure 25 The five binary

trees with 3 vertices

Figure 26 Different or the

same?

Figure 24 Subtrees
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instance, we would refer to the subtrees in Figure 24, reading from left to right, as

the first subtree, second subtree, and third subtree of the root vertex. Using this

concept, the two ordered trees in Figure 26 are different because, for example, the

second subtrees of their root vertices are different. Ordered trees are also referred to

as plane trees.

Note that there is a distinction between binary trees and ordered trees. For

instance, the second and third trees in Figure 25 are distinct as binary trees,

which distinguish left from right but the same as ordered trees, which distinguish

only leftmost from rightmost.
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