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Preface

The theory of partial differential equations is without a doubt one of the branches
of analysis in which ideas and methods of different fields of mathematics manifest
themselves and are interlaced—from functional and harmonic analysis to differ-
ential geometry and topology. Because of that, the study of this topic represents
a constant endeavour and requires undertaking several challenges. The main aim
of this book is to explain many of the fundamental ideas underlying the theory of
distributions.

This book consists of ten chapters. Chapter 1 deals with the well-known classical
theory regarding the space ¥, the Schwartz space and the convolution of locally
integrable functions. It may also serve as an introduction to typical questions
related to cones in R". Chapter 2 collects the definitions of distributions, their
order, sequences, support and singular support, and multiplication by ¢*° functions.
In Chaps.3 and 4 we introduce differentiation and homogeneous distributions.
The notion of direct multiplication of distributions is developed in Chap.5. The
following two chapters, 6 and 7, deal with specific problems about convolutions and
tempered distributions. In Chaps. 8 and 9 we collected basic material and problems
regarding integral transforms. Sobolev spaces are discussed in Chap. 10, the final
chapter.

This volume is aimed at graduate students and mathematicians seeking an
accessible introduction to some aspects of the theory of distributions, and is well
suited for a one-semester lecture course.

It is a pleasure to acknowledge the great help I received from Professor Mokhtar
Kirane, University of La Rochelle, La Rochelle, France, who made valuable
suggestions that have been incorporated in the text.

I express my gratitude in advance to anybody who will inform me about mistakes,
misprints, or express criticism or other comments, by writing to the e-mail addresses
svetlingeorgievl @gmail.com, sgg2000bg @yahoo.com.

Paris, France Svetlin G. Georgiev
January 2015


http:svetlingeorgiev1@gmail.com
http:sgg2000bg@yahoo.com
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Chapter 1
Introduction

1.1 The Spaces ¢;° and .

Let X C R” be an open set.

Definition 1.1 We call space of basic functions the space %;°(X) of smooth
functions with compact support defined on X.

With N" U {0} we denote the space of multi-indices ¢ = (a1, a2,...,®,), ¢ €
NU{OLk=12,....,n.8etD = (D\,Ds,....,Dy), Dk = 7=, k = 1,2,....n,
D¥= 2 _IfKCXisa compact set we shall write K CC X. The following

ol ...
conventilonzs will also be used throughout the book: U(xp, R) is the open ball of
radius R with centre at the point xg, S(xo, R) = dU(xo, R) is the sphere of radius R
with centre at xy, and Ug = U(0, R), Sk = S(0, R).
If A and B are sets in R”, by dist(A, B) we shall denote the distance between the sets
A and B, that is

dist(A, B) = infyea yeg|x — y|.

We shall use A€ to denote the e-neighbourhood of a set A, i.e. A* = A + U.. If A is
an open set A will designate the set of points in A that are more than € away from
the boundary 04, i.e. A = {x : x € A, dist(x, dA) > €}.

We use intA to denote the set of interior points of the set A.

Definition 1.2 The set A is called convex if for any points x and y in A the segment
Ax + (1 —24)y, A€ 0,1],

lies entirely in A.

We will write ch A to denote the convex hull of a set A.

© Springer International Publishing Switzerland 2015 1
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2 1 Introduction

Definition 1.3 We say that the sequence {¢;}72, of elements of ;°(X) converges

to the function ¢ € 6°(X) if there exists a compact set K C X such that suppgy C

K for every k € N and klim D¢ (x) = D*¢(x) uniformly for every multi-index
—>00

a € N" U {0}.
Example 1.1 The function

2

€
T 22 <
0 (x) = Cee <—1*, |x| <k,
0, |x| > €,

where € > 0 and the constant C, is chosen so that fR,, we(x)dx = 1, belongs in
%y °(R").

Example 1.2 Take ¢ € G°(R'). The sequence {%q&(x)},f":l converges to 0 in
¢ (RY), while {%(ﬁ(%)},‘(’il does not converge to 0 in 65°(R).

For every set X; C X and every € > 0 there exists a function ¢ € ¥°°(R") such
that ¢.(x) = 1 when x € X7, ¢.(x) = 0 when x € R”\X3€, and 0 < ¢.(x) < 1,
|D*¢(x)| < Kye! for every multi-index & € N U {0}. In fact, if Qxff is the
characteristic function of the set X3, i.e. leze (x) = 1 for x € X3¢ and leze x)=0

for x ¢ X?¢, we have

309 = [ b ot—ndy= [ wix=ay.

Definition 1.4 We say that the sequence {n(x)}o2, in 65°(R") converges to 1 in
R" if

1. for every o € N" U {0} there exists a constant ¢, > 0 such that |[D*n;(x)| < ¢4
for every k € N and every x € R”,

2. for every compact set K in R” there exists N = N(K) € N such that n;(x) = 1
forevery k > Nand x € K.

Such sequences do exist. Indeed, choose n € °(R") so that n(x) = 1 for x| < 1.
o0
Then the sequence {nk(x) = n(%)} tends to 1 in R".
k=1
With .7 (R") we denote the space of ¥’ functions ¢ such that
sup [x|?|D*¢(x)] < o0 Ya e N"U{0},8 e NU{0}.

x€R"

Here |x| = (2 +x2 +---+x2)2 and x = (x1,%2, ..., %,). By || - |, p € N we shall
indicate the norm

lpll, = sup (14 RP2ID"¢@] ¢ € SR,

x€R" |a|<p
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Definition 1.5 We say that the sequence {¢;}72, of elements of ./(R") converges
to 0 in .(R"), if for every p € N U {0} and every o € N" U {0} we have

lim (1 + [x%)2 D% (x)| = 0
k—>00

uniformly.

The space €5°(R") is a subset of ./(R") and if ¢y—>1—000 in €5°(R"), then
Or —k—>00 01in Z(R"). The inclusion, moreover, is proper: 65°(R") # #(R").
For instance, e * € Z(R")\ €5°(R").

Yet the space ¢;°(R") is dense in .#(R"). In fact, let ¢ € .#(R") and n € €5°(R")
be chosen so that n = 1 when |x| < 1. Consider the sequence {¢(x) =
d()n(7)}i2 ;- Then ¢y € 67°(R") and ¢y —>1—o00 ¢ in 65°(R"), 50 Pt —>1—>00
¢ in #(R") as well.

By .7,(R") we will denote the completion of the space .#'(R") with respect to ||- ||,
Note that the .%,(R"), p € NU{0}, are Banach spaces fitting in a chain of continuous
and compact embeddings

JHR") D FA(R") D AR) D -

Let, in fact, M be an infinitely-bounded set in .#, 1 (R"). Then there exists a constant
C > O such that ||¢]|,+1 < C for every ¢ € M. Hence

0
| =D =c
3xj
for every x € R", @ € N" U {0}, |a| < p, ¢ € M. Therefore

(L+ P10 _

1+ [x]»)2|D” = i = ‘
( [x[7)2 [D* ¢ (x)] (1 4+ |x?)2 (1 + [x[?)2

|x|—>00 0.
Let {R}72, be a sequence of positive numbers such that

(1+ x)ID%(x)| < — for |x| > Ry, || <p.

1=

By Ascoli’s lemma there exists a sequence {qu(l) }j'il of elements of M that converges

in %(ﬁRl ). We may then find a sequence {¢>j(2) }]?’il converging in €7 (Ug,), and so

on. The sequence {¢,£k)},f‘;1 converges in .7, (R").
If ¢ € €7(R") and |[x|’D¥¢(x) —>|x—o00 0 for @ € N" U {0}, |a| < p, then
¢ € 7, (R"). To prove this assertion we choose a sequence {1}z, of elements in
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€5 °(R") such that gy —>— 00 1inR”. Since |x|?|D*$ (x)| —> |y —so0 O, it follows
that for every € > 0 there exists R = R(¢) > 0 such that the inequality

(14 X3 D¢ ()] < e

holds for |x| > R. As y —>;—c0 1 in R”, there exists N € N such that n; = 1 for
every k > N and |x| < R + 1. Now define

5100 = [ 90103y
Observe that {qb% Nkyoe, is a sequence in €;°(R") and
16— ®ymillp = sup.cer (1 + [x)3 D% (§ — by 0|
= suppgzen (1 + ) 2D (D = gy )]
- sup - (14 )5 1D% (6 — gy )|
= suppizen (1+ ) FD(H = gy )]
supugpst (1) (1D ()14 S (5) 17 D"
< €t supieen (1 + 1x|%)5|D¢ ()]
- supp-ni (14 )2 35, ()PP 61 D" P i)
= 2¢ + supirrt (14 )2 D"y ()

= 2¢ + supprrt (1 + [xP)7 oo DD (= y)ly 0]y
a|=p

<2etsuppnn | (14 l=y)2 + )ID*D (=)o} 0)ldy

| <p R"
< 3¢

for k large enough. Consequently

¢% Mk —>k—s00 @
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in .#,(R"). Using the fact that .#},(R") is a Banach space, we conclude ¢ € .%,.
Note that

SRY= [ SHRY.
PpENU{0}
The maps ¢ —> D%, « € N" U {0}, and ¢p(x) —> ¢ (Ax + b), where A is an
n x n matrix with detA # 0, are linear and continuous maps from . (R") to itself.
Note that if a € ¥°°(R") and ¢ € S (R"), it does not follow that ap € .#(R").
Take for instance a(x) = e e F*°([R") and ¢(x) = e H e < (R"). Then
a(x)p(x) =1 ¢ S(R").

Definition 1.6 By &), we denote the space of functions ¢ € €°°(R”") for which
there exist constants Cy > 0 and my € N such that

ID*p ()| < Cp(1 + |x])™

for every & € N" U {0}. Such functions are called multipliers of .#(R").

Exercise 1.1 Let a € ®y,. Prove that ¢ —> a¢ is a continuous function from
Z(R") to L (R").
1.2 Convolution of Locally Integrable Functions
Definition 1.7 Suppose that f and g are locally integrable functions on R”, i.e.

[ <o, [ lelar< oo

K K
for every compact set K in R”. If the integral

| sty = [ ror=y

exists for almost every x € R" and defines a locally integrable function in R”, it is
called the convolution of the functions f and g, written

rrsw = [ fa=neoiy= [ 006

We will consider two cases in which the convolution f * g does exist.
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Case 1. Letf and g be locally integrable functions on R” with suppf, suppg C A,
where A is a compact set in R”. Then

/ = y)gO)dy = / = y)g0)dy.
R” A

As f and g are locally integrable in R”, also fg is locally integrable on R”".
Therefore the integral [, f(x — y)g(y)dy exists. Now we will check that this
integral defines a locally integrable function on R”. Indeed,

Jeo 1F % g@0)ldx = [pu| [uf(x = ¥)g(v)dy|dx
< Joo Lo 1= 2)1g()|dydx
= [ Jro 17 = )ldxlg(y)|dy

(using z = x —y)
= [y Jw [f(@dzlg(y)ldy
= [ 1f@ldz [za 1g)|dy
= [, 1f@ldz [, 1g()ldy < o0,

showing that the convolution f * g exists.
Case2. Letp>1,g>1and 117 + é > 1, then take f € I”(R"), g € LY(R"). We
will show that f * g exists in R” and f * g € L"(R"), where

111
= — -1
"

S
<

Let us choose @ > 0, 8 > 0,s > 1,1 > 1 in the following way:

=1, ar=p=0—-a)s, Pr=qg=(1-p)

Then

=, (1.1)

P
(04
0+ % =a(14) =q(1+55) =4 = (12)
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Applying Holder’s inequality with % + % + % = 1 and |[f(y)|*|g(x — y)|?,
|f(y)|l_a7 |g(x_y)|1_ﬂ7 gives

fRn |f * g(x)lrdx = fRn

Jenf (2 = y)g(y)dy’rdx

< Juo (foo FONIgCr= ldy) ax

< Jro (S L7018 = P LFON' 8= )| P ) dx
= Jeo (oo PO = 91y (Jeo 1Ot

X(fRn Ig(x—y)l“‘ﬂ”dy)?dx
(ar=p, PBr=gq, (I-a)s=p, (1-=Brt=gq)

r
t

= Jio (e LI =917 (fro LFOIP) (o laCe = pledy) s
1A i S L= P11y f g @17d)

= 1£115 1glly frr 18O fro 1 = )Py

= 11715 gl 17112 fro 18O 1%y

= 117115 llglly Nglle

2 A+
=11£11; "llellg .
Hence, using (1.1), (1.2), we get
[ 17 eras < g,
R"l
ie.,

1 gl < 111151l
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Therefore

I1f = gllr = 11f1lpllgllg < o0 (1.3)

Let K be a compact set in R”. Holder’s inequality for % + % = 1 tells

1

/K | % go)lax = ( /K 17ax)" /K 7+ glds) = ()"l gl < oo,

where u(K) = [, x dx is the measure of K. Consequently the convolution f * g is
well defined.

Exercise 1.2 Take f, g € 45°(R") and prove that f * g is well defined.

Example 1.3 The convolution of e and 1 equals

2 o 2 © 2 & 2
e xl= / e gy = —/ eV d(x—y) = / e Cdz= /.

00 . o
Below are some properties of convolutions, where we assume that all terms exist:
L fxg=gxf,

2. fx(g+h)=fxg+f=h,

3. a(f * g) = (af) x g = f * (ag) forevery a € C,

4. fx(gxh) = (f*g)xh,

5.fxg=[*g.

Definition 1.8 If f is a locally integrable function in R", the function

fe =f* o

is called the regularization of f.

More substantional introduction to the spaces L” and their applications may be
found in [3, 7-13, 20, 22-26, 28, 31-33, 36]

1.3 ConesinR"

Definition 1.9 A cone in R" with vertex at 0 is a set " with the property that if
x € I', then Ax € I" for every A > 0. The symbol prI” will denote the intersection
of I with the unit sphere centred at 0. A cone I’ is called compact in the cone I if
prI”7 C prI", in which case we write I'" CC I". The cone

I*={cR":(£,x)>0 VYxell,

where (-, -) is the standard inner product on R”, is called the conjugate cone of I".
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Exercise 1.3 Prove that I'* is a closed convex cone with vertex at 0.
With chI” we will denote the convex hull of I".
Exercise 1.4 Prove (I'*)* = chI.

Definition 1.10 A cone I" is said to be acute if for any e € pr int/"* the set {x :
0 < (e,x) < 1,x € chl'} is bounded in R".

Example 1.4 Let{ey,ey,...,e,} be abasisin R". Then
I' ={xeR":(e,x) >0,k=1,2,...,n}

18 an acute cone.

Exercise 1.5 Let I" be an acute cone. Prove that ch/” does not contain a straight
line.

Exercise 1.6 Suppose chl” does not contain a straight line. Prove that int/™* # @.

Exercise 1.7 Let intI"* # @. Prove that for every C’ CC intI"™ there exists a
constant 0 > 0 such that

(§.x) = o|&]lx|
for every £ € C’' and every x € chl".

Definition 1.11 The function
pr(§) = — inf (§,x)
x€prl”

is called the indicator of the cone I".
Exercise 1.8 Prove that i1 (£) is a convex function.

Definition 1.12 Let I C R” be a closed, convex, acute cone. A smooth (n — 1)-
dimensional surface without boundary S C R”" is said to be C-like if each straight
line x = xg + te, —00 < t < 00, e € prl’, intersects S in one point only.

Every C-like surface S cuts R” in two unbounded regions S+ and S_ such that

1. S4 lies “above” S,
2. S_ lies “below” S,
3.R"=8yUSUS_.

Exercise 1.9 Let I" be a closed, convex, acute cone and suppose S is a C-like
surface. Prove that

S, =S+T.
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1.4 Exercises

Problem 1.1 Let X; C R", X, C R™ be open sets. Prove that for every ¢ €
Gy (X1 x X») there exist sequences {¢x e C G5 (X1 xX>2) and {Njo2, C NU{0}
such that

Ni
$u(x,y) = D @),  (r.y) € X1 x Xa,

i=1

and ¢k —>k—>00 ¢ in %OO(XI X Xz).

Proof Letsuppp CC X; xX, CC X| x X}, CC X; x X,. By the Weierstrass theorem
there exists a sequence of polynomials Py (x,y), k = 1,2, ..., such that

1 .
D*Pi(x,y) — D% (x,y)| < A le] <k, (x,y) € X] xX,.

Choose functions § € 65°(X)) so that £(x) = 1 forx € X1, 1 € E°(X}) so that
n(y) = 1fory € X,. Define

Pi(x.y) = ENOPe(x.y), k=1.2,....

We have suppg, C X| x X} CC X; x X, and

-

if (x,y) S Xl X}Zz,
D9 (x.) = Dux.y)| =
L if (x,y) € X] X X5

for |@| < k. Here the constants ¢, are obtained by using, for § < «,
Dﬁn(y)‘. Therefore ¢ —>k—o00 ¢ in € (X1 X X2).

max,ey, ‘Dﬁ £(x) } and maxyex,

Problem 1.2 Prove that for every function ¢; € % °(R') there exists a function
¢ € G°(RY) such that ¢i(x) = @5(x), for every x € R!, if and only if
ffzo o1 (x)dx = 0.

Proof

1. Let ¢1 € €°(R!) and f_ozo ¢1(x)dx = 0. We consider the function

Pa(x) = /_X ¢1(s)ds, xeRL.
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Since ¢; € 6°(R") it follows that ¢, € €>°(RY). If suppg; C [a,b] C R!,
a < b, then ¢,(x) = 0 for x < a. Therefore suppg, C [a, 00). Since ¢,(c0) =
f_ozo ¢1(x)dx = 0, there exists ¢ > a such that suppg, C [a, c].
2. Let ¢y € 6°RY), ¢ € €°(R!) and
$1(x) = ¢5(x) for xeR'.

Integrating from —oo to x gives
| e = g2t (14)
—00
Since ¢ € ¢°(R'), we have ¢, (c0) = 0. Hence using (1.4) we obtain

[:m@mzo

Problem 1.3 Prove that for every ¢ € % °(R!) there exists a function ¢ €
%°(R!) such that

Mﬂ=%®[:¢®w+ﬁw,xew,

o0
where ¢ € €°(R"), if and only if/ do(s)ds = 1.
—00

Proof
1. Let ¢y € €°(R") and ffzo ¢o(s)ds = 1. Consider the function

@m=[:¢@m—[ %@m[ ¢ (5)ds. (1.5)

Since ¢, ¢y € C°(RY), it follows ¢ € F°(R'). Let suppg, suppdy C [a,b] C
R', a < b. Then ¢ (x) = 0 for x < a. Therefore suppp; C [a, o0). From (1.5),
for x = oo, we have

pioor = [ Za&(s)ds— / O;d’o(s)ds [ Z«p(s)ds -/ O;¢(s>ds— | Z«p(s)ds o,

Consequently there exists ¢ > 0 such that suppgp; C [a, c], and therefore ¢ €
cgooo (Rl).
2. Let ¢y € °(RY) and

%w=¢@—%m[:¢@m,xew, (1.6)
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for ¢ € €°(R'). We integrate equation (1.6) from —oo to oo and get

/_Z 1 ()dx = /_Zq&(x)dx— /_Z ¢0(x)dx/_c:¢(x)dx’

that is,

0= /_Zqﬁ(x)dx(l - /_: ¢>0(x)dx)

for every ¢ € 6°(RY). In particular, the last equation is valid for every ¢ €
% (RY) for which [ ¢ (x)dx = 1. For such ¢ we obtain

[:%@sz

Problem 1.4 Prove that for every ¢ € % °(R!) there exists a function ¢ €
£2°(R') such that

6 = () /_ /_ $(0)drds + $)(x), xR,

o0
where ¢ € ¢¢°(R"), if and only if/ dr1(x)dx = 1.
—0o0

Problem 1.5 Prove that for every ¢ € %;* (R') there exists a function ¢, €
¢ (R!) such that

$() = 1) /_ /_ $(0)drds + $(). xR,

o0 s
where ¢ € ¢°(R"), if and only if/ / ¢1(t)dtds = 1.
—00 J —0O0

Problem 1.6 Prove that for every ¢ € 4°(R!) there exists ¢35 € 6 °(R!) such
that

o(x) = qbl(x)/_ /_ ¢ (t)drds + qbé(x)/_ /_ #(t)drds + ¢5(x), xeR',

o0 s 1 o0
where ¢, ¢y € ‘60°°(R1), if and only if/ / ¢1(v)drds = —, / P2 (x)
| —oo0 J—o0 2 —o0

dx = —.
2
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Problem 1.7 Prove that for every ¢ € G °(R') there exists ¢3 € €>°(R!) such
that

6 = 61 () /_ /_ ¢ (1)drds + $() /_ /_ $(D)drds + $l(). xR,

o0 N o0
where ¢, ¢ € €°(RY), if and only if/ / ¢1(v)drds + / Pa(x)dx = 1.
—o0 J—00 —00

Problem 1.8 Prove that for every ¢ € 4 °(R!) there exists ¢4 € G °(R!) such
that

d(x) = ¢y (x) + /_ /_ 1 /_ ’ ¢(t)drdsrdsi (1(x) + ¢5(x) + ¢ (x)), xe€R,

where @1, ¢, 93 € 65° (RY), if and only if

/_: /_:o /_: ¢1(t)drdsydsy + /_Z /_;o $2(t)drds + /_Z d3(s)ds = 1.

Problem 1.9 Prove that for every ¢ € G °(R') there exists ¢3 € €°(R') such
that

s =60+ [ [ [ p@uacdsdn 610+ $i00). xeR!
where ¢1, ¢ € 65° (RY), if and only if

/00 /Sl /SZ ¢1(t)dtds,ds) + /00 /S ¢o(t)drds = 1.

Problem 1.10 Prove that for every ¢ € €°(R!) there exists ¢3 € 6°(R!) such
that

d(x) = @5 (x) + /_ /_l /_2 ¢ (7)dtds,ds; (¢1 (x) + ¢>£/(x)), xeR!,

o0 S1 52
where ¢1,¢» € EP°(R!Y), if and only if / / / ¢1(t)drdsyds; +
—o00 J—00 J—00

/_: ¢r(v)dr = 1.
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Problem 1.11 Prove that for every ¢ € €°(R!) there exists ¢3 € 6°(R!) such
that

60 = $' () + /_ /_ | /_ © g (0)drdsads (¢ () + (). xeR.,

[e.]

o0 S
where ¢1, ¢» € 6°(R"), if and only if/ / o1 (t)drds; +/ dx(t)dT = 1.
—o00 J —o00

—00

Problem 1.12 Prove that for every ¢ € € °(R') there exists ¢, € 6 °(R') such
that

d(x) = ¢ (x) + d1(x) /_ /_ ! /_ ? ¢ (v)drdsrds;, xeR!,

o0 S 52
where ¢ € ¢°(R"), if and only if/ / / ¢1(t)drdsrds; = 1.
—00 J—00 J—00

Problem 1.13 Prove that for every ¢ € €°(R!) there exists ¢ € €°(R!) such
that

$() = 6 () + B,(0) /_ /_ /_ " p(0)dedssdsy, xR,

o0 51
where ¢; € 62°(R"), if and only if/ / ¢1(v)drds) = 1.
—00 J —0O0

Problem 1.14 Prove that for every ¢ € 4 °(R!) there exists ¢ € 62°(R!) such
that

$() = B () + B (x) /_ /_ | / " $(0)dedsads;, xR,

o0
where ¢ € ¢°(R"), if and only if/ o1(v)dr = 1.
—00

Problem 1.15 Let / be an open interval in R!, V a Banach space with norm || - ||,
f : 1 —> V a smooth map. Prove

LASO) =fOI < |y = xl supepo p 1S/ (x + 1y =), x.y €1,
2. 1fO) =f @) = vy =9l < |y = xl sup,eo iy 1/ (x + 1y —x)) — v, v € V.

1. Proof
Let M = sup,epo ) ||f'(x + t(y — x))||. We define the set

E={r:0=i=1 [IfG+10—x)—fWIl = Mily - ).



1.4 Exercises 15

Since f is a continuous function, E is a closed subset of the interval [0, 1]. On the
other hand,

I1f(x+0.00 =x) —f ]|
= |[f&) —f@I] = M.0.|y —x].

so 0 belongs to E. From this we conclude that E is compact, so it has a maximal
element s, and we suppose that s < 1. Then we can find ¢ > s such that r — s is
sufficiently small. Hence

I1f(x+ 1y —x) —f ()]

= [lf(x+ 1 —x) —fx + 5@y —x) +fx + sy —x) =]

S IfG+1—x) —fx+sG =D+ [1f(x+ 5O —x) = fW
< M(t—9)|y — x| + Msly — x| = Mt|y — x|,

which contradicts the assumption that s is maximal. Therefore s = 1. For t = 1
we obtain

IIf@) =/l = sgpl] 1f' e+ 1 = )11y — .

2. Hint. Use the function g(x) = f(x) — xv and part 1.

Problem 1.16 Let / be an open interval in R!, V a Banach space with norm || - ||,
f I — V a continuous map that is differentiable on /\F, where F is a closed
subset of / where f(x) = 0. Prove thatif x € F, f'(y) —>,—x 0,y € I\F, then f'(x)
exists, and is zero, for every x € I.

Proof Lety € F. Then f(y) — f(x) = 0. From this, f'(x) exists for every x € F and
f'(x) =0 forevery x € F.

Now take y ¢ F and let z be the point in F N [x, y] closest to y. From the previous
problem we have

IfO) =f@I = I/ ) =f@) +f@) —f@Il < [lFO) =f @

and

I1fO) =f@I = Iy -z SEP” I1f'(z + 1y = 2Dl
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The last inequality implies
1fO) —f@I = o(ly —x[)

when y —> x. Therefore

lim
h—>0

) —

HMH =0 Vyel\F.

Consequently f”(x) exists for every x € I, and actually f'(x) = 0 for every x € I.
Problem 1.17 Let P be a polynomial and define

P(l)e_% for x>0,

X

f&) =
0 for x<0.
Prove that
1. f(x) is a differentiable function and f'(0) = 0,
2. f € €°RY).

Hint. Use the previous problem with F = {0}, ] = R!.

Problem 1.18 Prove that there exists a continuous function ¢ € ¢5°(R") for which
¢(0) > 0.

Hint. Use the function

1
Tk for x| < 1
X) = {e ’
4 0 for |x|>1

and the previous problem.

Problem 1.19 Define

B:{xeR”:|x|<R}

and take f € €*(B), k > 1. Prove

L f(x) =f(0) = X, xf(x). f; € €*7(B),
2. 0f;(0) = 3*9;f (O)%m for every multi-index « such that || < k,

96| < sups| 0

3. supg , | <R
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Proof We will prove the assertions for k = 1, as for kK > 1 one can use induction.

1. Setting

£ = /—#mm

we get

—/1 atdt—/ldt— 0
waw-ogh%ﬂ@——oﬂﬂamkﬂ)

J

We note that f; € €*~1(B).
2. From the definition of the functions f; it follows that

£0) = £1(0),

3:0) = 335557(0).

3. The definition of the f; implies

lfil = /)—f(tX)‘dK/O |;u£e

From this,

ﬂmM<WFﬂW
0x;
0
sup £ = sup| ().
B B 10X
Problem 1.20 Let X be a subset of R”, and f, g € %' (X) maps satisfying

mezéww

for every ¢ € 6;°(X). Prove that f = g on X.
Proof We have

Auno—anmowuzo (1.7)

forevery ¢ € 6;°(X). Set h(x) = f(x)—g(x) and suppose that there exists a € X for
which h(a) > 0. Since A(x) is continuous on X, there exists a neighbourhood U (a)
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of the point a such that 4(x) > 0 for every x € U(a). We may choose the function
¢ (x) € 65°(U(a)) such that ¢ (x) > 0. Then

/ h(x)¢ (x)dx = / h(x)¢ (x)dx > 0,
X U(a)

contradicting (1.7). Consequently f = g on X.
Problem 1.21 Let X C R",f, g € L} _(X) with

loc

[ roax= [ gpax

for every ¢ € €;°(X). Prove that f = g almost everywhere on X.

Proof Let h(x) = f(x) — g(x). We have

/ h(x)$ (x)dx = 0 (1.8)
X

forevery ¢ € 65°(X). Now we choose a function ¢ (x) so that suppg = {x x| < 1}
and [y ¢(x)dx = 1. Then

Therefore

h(x) = h(x).1 = h(x)tln/qu(x_y)dy

t

=& [0 =1]s () a5 [ 1000 ( oy

X—y
t

/Xh(y)q&(x:y)dy - 0.

We take ¢ small enough so that < 1. For this 7, using (1.8), we have

Consequently,

po =g [ [ - ]e(*E )
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whence

t—>0 "

h(x) = lim ~ /| _y‘q[h(x) —h(y)]q&(x%y)dy -0,

i.e., f(x) = g(x) almost everywhere on X.

Problem 1.22 Take amap M(x) € % ([a, b]) such that fab M (x)n(x)dx = 0 for every
n € €"(a,b]), n®(a) = n® () = 0fork = 0,1,...,m. Prove that M = 0 on
[a, b].

Proof We suppose there exists ¢ € (a,b) for which M(c) > 0. Since M(x) is
continuous on [a, b], there exists € € (0,1) so that M(x) > O for every x €
[c — €, ¢ + €]. Let n(x) be defined by

2(m+1)
] for xe€lc—¢€,c+¢€,

[62—(X—C)2
n(x) =
0 for x€[a,b]\[c—¢€,c+ €]

The function 7(x) satisfies all conditions of this problem. Therefore

2(m+1)
] dx > 0,

0= / bM(x)n(x)dx - / _+ M(x) [62 — (=)

which is a contradiction. Consequently M(x) = 0 for each x € [a, b].

Problem 1.23 Let {¢y(x) }Z;%) be a linearly independent system of real, piecewise-
continuous functions on [a, b], M(x) a real, piecewise-continuous map on [a, b] with

/h M(x)é(x)dx =0

for every piecewise-continuous function £ (x) such that

b
/ EX)Pr(x)dx =0, k=0,1,...,n—1.

Prove that

n—1

M(x) = chqbk(x), cr = const.

k=0
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Proof Let &(x) = M(x) — ZZ;(I) crgr(x), where ¢ are constants that will be
determined using the conditions

b
/ E0(X)r(x)dx =0, k=0,1,...,n—1.

From these relations, using the definition of &y(x), we get
0= fab M (x)¢po(x)dx — Z;z) Ck fab O (x)po(x)dx,

0= "M@ ()dx — 12h ek [ du ()1 (x)dlx,

0= [P M)pu1 ()dx — Y i2b ci [V ¢ (X) i ()dx.
By setting
b b
M= [ Mg and ay= [ g was
foreveryj =0,1,...,n— 1, we obtain the system
> =6 ckaro = Mo

n—1
Y im0 Ckaki = My

n—1
Y ke Ckrn—1 = M.

n—1

Since {d)k (x)} is a linearly independent system, the previous system has a unique
k=0

solution ¢g, c1, . .., ¢,—1. Moreover,

(M)~ Sz en0)] = B0)[ME@ — Sizh et .

n—1

[0 - Y an]ae= [ saomeoa - S [ acaneac=o
¢ ¢ k=0

k=0 a
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From that follows
n—1
M(x) = Z i (x).
k=0

Problem 1.24 Let M(x) be a piecewise-continuous function on [a, b] and n(x) a
piecewise-smooth function on [a, b] satisfying n(a) = n(b) = 0,

/b M) (x)dx = 0.

Prove that M(x) = const.
Hint. Use the previous problem with n = 1, ¢o(x) = 1, £(x) = 7'(x).

Problem 1.25 Let M(x, y) be a continuous function on the bounded domain D with

//D M (x,y)¢ (x, y)dxdy = 0

for every {(x,y) € €"(D), {(x,y)|,, = 0. Prove that M(x,y) = 0 on D.
Problem 1.26 Let K be a compact set in R” and take M (x) € ¥ (K) with

/ M(x)n(x)dx =0
K

for every n € ¢"(K), % =0,k=0,1,....,m i =1,2,...,n. Prove that

K

M =0onKk.
Forany a, B € N*U{(0,...,0)}and [, k,m € N U {0}, we set

x*DPf (x)

)

qap(f) = SUDP,eRn
415 () = SUPly <y SUP,ere [ DPF ()|

qz,ﬁ(f) = .[Rn

X DIf ()

(1+ ) D70

[flem = SUP|g| <m SUPxeRrn
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Problem 1.27 Prove that the following assertions are equivalent

1. f € S(R"),

2. qzﬁ(f) < oo forany o, B € N* U {(0,...,0)},

3. | flen < oo forany k,m € N U {0},

4. q1p(f) <ooforanyle NU{0},VB e N'U{(0.,...,0)},
5. gap(f) <ooforany o, B € N"U{(0,...,0)}.

Problem 1.28 Prove that (f,g) — f * g from .”(R") x .Z(R") to #(R") is a
continuous map.

Problem 1.29 Prove that (f, g) — fg is a continuous map on .¥(R").

Problem 1.30 Prove that .(R") embeds continuously in every space L”(R"), p >
1.

Proof Letf € .7 (R"). Then

[ AR ds
[ ireopar= [ SR a1, [ < e,

where ¢y is a constant. Let {f,,} -, be a sequence in .#’(R") such that

Ifm _f|n,0 —>m—>00 0.

‘We obtain

Ilfm _fIIU’ f C|fm _fln,O —>m—>00 0, C = const.

Consequently f,, —>—>o00 f in LP(R").
Problem 1.31 Letu € (fg(R”). Prove
1. uxv e R forvelLl (R,

. loc
2. uxv € CTHR") forv € CFRY).
1. Proof Sinceu € ‘Ké(R”), there exists a compact set K C R” such that suppu C K.
On the other hand,

(5 0) () = /R o= [

KU{x

}u(x —yv(y)dy.

From here, using that v € L (R"), we get

loc

wx) ()] < /

KU{x

|”(X_Y)||U(Y)|d)’§cl/ lv(y)|dy < C, c¢1,C = const.
} KU{x}

Consequently the convolution u * v(x) exists for every x € R".
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Since D'u € %,(R") and D'(u * v) = D'u * v, as above, we conclude that
D' (u * v)(x) exists for every x € R" and every [ = 0, 1,2,...,j.

If {v,}°2, is a sequence of elements of L] (R") converging to v in L (R"),
then

D'(u * v,) — D'(u * v)‘ = }Dlu * (v, — V)| < eaf|v, — v||L]1 ®") —>n—o0 0,
ie.
D! (u % v,) —>p—s00 D'(u % V).

Consequently u * v € C/(R").
2. Hint. Use that D' (u x v) = Dlux D"vforl =0,1,...,j,m=0,1,... k.

Problem 1.32 Let ¢ € 65°(R"), [pn¢(x)dx = 1,¢ > Oand ¢ € ‘Ké(R”). Prove
that

1. upy =ux¢ e 6 R"),

2. sup‘ao‘u - 8"‘u¢‘ — 0, o] <},
when suppgp —> {0}.

Proof 1. Let « be an arbitrary multi-index. From
“up = 0"(ux ) =ux*d

and the fact that ¢ € €°(R"), it follows that uy € T°°(R"). Now we will show
that ug has compact support. For this purpose we will use that

supp(u * ¢) C suppu + suppg.
Because u and ¢ have compact support, using the last relation, we conclude that
ug has compact support.
2. We have
ug(x) = 0ux ¢(x) = [p, " ulx —y)p()dy,

u(x) = 0%u(x).1 = 0%u(x) [, ¢ (y)dy.

Hence

®uy — 8“u) < Jrn

9u(x = ) = 0°u(0) || )]y,
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Let suppp C {y eR": |yl < 8}, 8 —> 0. Then

‘30‘u¢ (%) — ao‘u(x)‘ < ‘slup
yl=é

*u(x—y) — %ux)| — 0

as § — 0.

Problem 1.33 Let ¢ € 65°(R"), fR" ¢x)dx =1, ¢ > 0. Take v € L”(R") and let
vy = v * ¢. Prove that

1. vy € *R"),
2. vy — vinI’(R"), 1 < p < 00, as suppp —> {0}.

Hint. Use 65° — L7.
Problem 1.34 Let Xy, ..., X, be open sets in R” and ¢ € € (UKX;). Prove that

1. there exist functions ¢; € 65°(X;),j = 1,2, ...k, such that

k

on a neighbourhood of supp¢,
2. ¢;>0if¢p > 0.

Hint. Use the functions ¢1 = ¢y, ¢; = ¢¥:(1 — Y1), where ¥; € €° (X)),
0 < v¢; < 1, ¥; = 1 on a neighbourhood of X;.

Problem 1.35 Let I" be an acute cone in R”, and ¢ > 0 a constant such that
(£.x) = olé|lx] V& e, Vxechl
for every C' CC intI"*. Prove that
B, ={x:0<(e,x) < l,xeﬁ}

is a bounded set for any e € pr(int"*).

Problem 1.36 Let I" be a cone in R” and suppose the set
B, ={x:0<(e,x) <1l,xechl'}

is bounded for every e € pr(int/"*). Prove that I" is an acute cone.

Problem 1.37 Let I" be a convex cone. Prove I’ = 1" + I'.
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Problem 1.38 Let I" be a cone in R”. Show
pwr(€) < penr (§).
Problem 1.39 Let I" be a convex cone in R”. Prove that for every a > 0
Epur@ <ay=T"+Us.

Problem 1.40 Let I" be a closed, convex, acute cone and S a C-like surface. Prove
that for every R > 0 there exists a constant R'(R) > 0 such that

Tr ={(x,y):xeS,yeTl |x+y| <R} C Uy CR™



Chapter 2
Generalities on Distributions

2.1 Definition

Let X be an open set in R”, n € N a fixed integer.

Definition 2.1 Every linear continuous map u : %;°(X) +— C is called a
distribution or generalized function. In other words, a distribution is a linear map
u : 65°(X) — C such that u(¢,) — o0 u(¢) for every sequence {¢,}°2, in
%57 (X) converging to ¢ € 65°(X) as n —> oo.

The space of distributions on X will be denoted by 2(X). We will write u(¢) or
(u, @) for the value of the functional (generalized function, distribution) u € 2'(X)
on the element ¢ € 65°(X).

Example 2.1 Suppose 0 € X and take the map u : 65°(X) —> C defined as follows

u(@) = ¢(0) for ¢ e 25°(X).

Let ¢1,¢2 € €5°(X) and aq, a5 € C. As
u(p1) = ¢1(0), u(é) =¢2(0),
u(a1gr + o) = (191 + a22)(0) = 11 (0) + a2¢2(0) = au(ey) + azu(ehs),

u : 65°(X) — Cis linear. Let {¢,}2, be a sequence in 6;°(X) for which
O —n—s00 ¢ in E5°(X). Then there exists a compact set K C X such that
suppp, C K for every n € N and D*¢, —> D*¢ uniformly in X for every
multi-index ¢« € N U {0}. In particular, ¢,(0) —,— o ¢(0), and therefore
u(¢p) —n—s00 u(¢). Consequently the linear map u : G5°(X) +— C is
continuous, in other words it is a distribution on X.

© Springer International Publishing Switzerland 2015 27
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Exercise 2.1 Let 0 € X. For each multi-index o prove that the map u : ¢5°(X) —
C, defined by

u(¢p) = D*¢(0) for ¢ € G7°(X),

is a distribution on €;° (X).

Exercise 2.2 Denote by §, or §(x — a), a € C", Dirac’s “delta” function at the
point a:

8a(¢) = ¢(a) for ¢ € CKOOO(X)

Prove that §, is a distribution on 6;°(X).

Exercise 2.3 Prove that the map 1 : 65°(X) — C, defined by

1(¢) = /qu(x)dx for ¢ € 65°(X),

is a distribution on €5 (X).

Exercise 2.4 Foru € L} (X),p > 1, we define u : €°(X) —> C by

loc

u(@) = /X u(x)p (D).

Prove that u is a distribution on %;°(X).

Exercise 2.5 Let P% 1 657 (X) — C be the map defined by
1 —
P—(¢) =P.V. / PO =9O) ) for ¢ € 6 (X).
X X X

Prove that P% € 7X).
Definition 2.2 The distributions u, v € 2’(X) are said to be equal if
u(¢) = v(¢)

for any ¢ € 65°(X).

Definition 2.3 The linear combination Au 4+ pv of the distributions u, v € 2'(X)
is the functional acting by the rule

(Au+ po)(@) = Au(g) + nv(@). ¢ € 67 (X).

This makes the set 2’(X) a vector space.
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Definition 2.4 Let u € 2'(X). We define a distribution u € 2'(X), called the
complex conjugate of u, by

a¢) =u@). ¢ <€GEX).
The distributions

Re(u) = HTM Im(u) = 2

are respectively called the real and imaginary parts of u. Equivalently,
u = Re(u) + ilm(u), u = Re(u) — ilm(u).

If Im(x#) = 0, u is said to be a real distribution.
Exercise 2.6 Prove that the delta function is a real distribution.
Here are elementary properties of distributions. If u;, u, € 2’(X), then

1. 731 + Uy € @/(X),
2. qu; € 2'(X) for VaeC.

These properties follow from the definition, so their proof is omitted.
Foru € 2(X) anda € C", |a| # 0,b € C, b # 0, we define following
distributions

Lou(@)(x+a) =u(p(x—a)(x) V¢ € E°X),
2. u(¢)(bx) = Wu(qﬁ(;—;))(x) Vo € 6(X).

Example 2.2 For ¢ € 62°(R") we have
() x4+ 1—=2i) =68(px— 14 2i))(x) = d(—1 + 2i),

5@) i) = 18(#(3)) 0 = 16(0).
Exercise 2.7 Compute
8(¢)(2x + 3i)
for ¢ € €X°(R).

Answer %qﬁ(—%)
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If u is a distribution on X, then for every compact subset K of X there exist constants
C and k so that the inequality

()| =€ 3 sup

|| <k

qus(x)) 2.1)

holds for every ¢ € 65°(K). Actually, we suppose there exists a compact set K in
X so that

u@)| >n Y- sup|[ D"y () 22)

aeNtufoy K
holds for ¢, € 6;°(K). We set

Pn(x) '
n ZaeN”U{O} Supg ‘Da¢n () )

Y (-x) =

From (2.2) we obtain

lu(Ym)| = 1. (2.3)

By the definition of v, (x) it follows that v, —,—0 0 in 5°(X). Since u :
%5°(X) — C is continuous, we have

u(Y) —n—s00 0,

which contradicts (2.3).

If u : 5°(X) — Cis a linear map such that for every compact set K in X there
exist constants C > 0 and k € N U {0} for which (2.1) holds, then u is a distribution
on X. To show this we will prove that u : ;°(X) — C is continuous at 0. Let
{$n352, be a sequence in 65 (X) with ¢, —,c0 0in G°(X). Then

sup ‘D"qﬁn (x) } — 00 0
K

for every || < k. Hence with (2.1) we conclude
u($n) —>n—s0 0.
Exercise 2.8 The function H(x), x € R!, defined by
1 for x>0,

H(x) =
0 for x<0O
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is called Heaviside function. We define
H) = [ Hep,

¢ € 65° (R"). Using inequality (2.1) prove that H € &'(R").

2.2 Order of a Distribution

Definition 2.5 If inequality (2.1) holds for some integer k independent of the
compact set K C X, the distribution u is said to be of finite order. The smallest
such k is called the order of the distribution u.

The space of distributions on X of finite order is denoted by D/ (X), and the space
of distributions of order < k is denoted by D’ k (X). Then

Dp(x) =D ).
k

Example 2.3 Dirac’s § function is a distribution of order 0.

Exercise 2.9 Prove that P% has order 1 on R!.

Exercise 2.10 Prove that P% is of order 0 on R'\{0}.
Let

2
wc(a(x)) = | Cee “70F when |a(x)| <,
0 when J|a(x)| > €

for a(x) € €' (X) and C. a constant. It is easy to see that
d(a(x)) = lim wc(a(x)).
e—>0
If a(x) € €' (R") has isolated simple zeros xi, x, . . ., then

8(x — xx)

) = .
@) =2 o)

It is enough to prove the assertion on a neighbourhood of the simple zero x;. Since
X 1s an isolated simple zero of a(x), there exists €, > 0 such that a(x) # O for every
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X € (xk — €, X + €k), X # X, a(xg) = 0. As

(5a@).6®) = [7 8(ax)¢ (dx =

k—€k

= limc—o [} * 0 (@) @dx  (a(x) =)

(xx+ex)
= lim,—9 fa e e (y) |$22—12§))))| y

(Xk—€k)

a(xk+ek) A C163)))
= lim—s [} e 7@ am @Y

(cx—€x)
_ o) o $G—xk)
= Wl = (wm)\ Px ))
for ¢ € 65°(xx — €k, xx + €), it follows that

8(x — xx)

S = Tl

on a neighbourhood of the point x;.

Example 2.4 Let us consider §(cosx). Here a(x) = cosx and its isolated zeros are
= w, k € Z. We notice that

la’ ()| =1 for keZ,

SO

§(cosx) = Za( (2"“)”)

Exercise 2.11 Compute §(x* — 1).
S(—1)+5(+1)
e

Answer
2.3 Sequences
o0

Definition 2.6 The sequence {un} _ of elements of D’ (X) tends to the distribution
u defined on X if "

lim_u,(9) = u(g) Vg € 670X,
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If so we write

Iim u, =u or Up —>n—so00 U.
n—oo

If {u, )22, and {v,} 2, are two sequences of distributions on X that converge to the
distributions u and v respectively, then {au, 4+ Bv,}°2, converges to cu + fv on X.
Here a, B € C. Indeed, let ¢ € 6;°(X) be arbitrary. Then

Un(P) —>n—s00 (@), Vu(P) —n—sc0 V().

Hence,
(cup + Bun) (@) = (aun)(P) + (Bva) ()
= aun(@) + Bua(9) —>n—o00 du(g) + fv(9).
Example 2.5 Letx € R! and
|

3 for |x] <,

Je(x) =

0 for |x]|>e.

We will compute
im0
in 2'(RY). Let ¢ € €°(R") be arbitrary. Then
lime—s 40 fe (¢) () = lime—s 4o [, 2 (0)dx (x =€)
= 3lime—s 4o [ <, P(ey)dy

= ¢(0) = 8(¢)(x).

Consequently
lim e(0) = 5(x)

in 7'(R").
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Exercise 2.12 Find
2¢

lim ————.
e—+0 T (x2 + €2)

Answer 2§(x).

2.4 Support

Definition 2.7 A distribution u € 2’(X) is said to vanish on an open set X; C X
if its restriction to X is the zero functional in 2'(X)), i.e., u(¢) = 0 for all ¢ €
%y °(X1). This is written u(x) = 0, x € X.

Suppose a distribution u € 2'(X) vanishes on X. Then it vanishes on the
neighbourhood of every point in X. Conversely, let # € 2'(X) vanishes on a
neighbourhood U(x) C X of every point x in X. Consider the cover {U(x),x € X}
of X. We will construct a locally finite cover {X;} such that X} is contained in some
U(x). Let

xfccxycc.... Uxi=x
k>1

By the Heine-Borel lemma, the compact set Y} is covered by a finite number of
neighbourhoods U(x), say U(x;), U(xz), ..., U(xy,). Similarly, the compact set

)_(;\Xll is covered by a finite number of neighbourhoods U(xy,+1), - .., U(xn,+n,),
and so on. We set

Xk=U(xk)ﬂX1, k=1,2,...,N1,

—l1
X = Ul NXG\XD), k=N +1,...,N| + N,

and so forth. In this way we obtain the required cover {X;}. Let {e;} be the partition
of unity corresponding to the cover {X;} of X. Then

supp(¢er) =0

for every ¢ € €;°(X). This implies

u@) = u(Yger) = D uger) = 0.

k>1 k>1

Consequently the distribution # vanishes on the whole X.
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The union of all neighbourhoods where a distribution u € %’(X) vanishes forms an
open set X,,, called the zero set of the distribution u. Therefore u = 0 on X,,, and X,
is the largest open set where u vanishes.

Definition 2.8 The support of a distribution u € 2’(X) is the complement suppu =
X\X, of X, in X.

Note that suppu is a closed subset in X.

Definition 2.9 The distribution u € %’(X) is said to have compact support if
suppu CC X.

Example 2.6 suppH = [0, 00).
Exercise 2.13 Find suppl.

Let A be a closed set in X. With 9’(X,A) we denote the subset of distributions
on X whose supports are contained in A, endowed with the following notion of
convergence: uy —> 0 in 2'(X,A) as k —> oo, if uyy —> 0in 2'(X) as k —> oo
and suppuy, C A forevery k = 1,2, .. .. For simplicity 2’(A) will denote 2’ (R", A).
Now suppose that for every point y € X there is a neighbourhood U(y) CC X
on which a given distribution u, is defined. Assume further that u,, (x) = u,,(x) if
x € Uly1) N U(y2) # . Then there exists a unique distribution u € 2’(X) so that
u = uy in U(y) for every y € X. To see this we construct, starting as previously
with the cover {U(y),y € X}, the locally finite cover {X;}, Xix C U(y), and the
corresponding partition of unity {e;}. We also set

w(@) =Y uy(per). ¢ € CCX). (2.4)

k>1

The number of summands in the right-hand side of (2.4) is finite and does not depend
on ¢ € ¢5°(X’), for any X’ CC X. By definition (2.4) u is linear and continuous on
C5°(X), i.e., u € Z'(X). Furthermore if ¢ € 65°(U(y)), then ¢er € €5°(U(yi)).
From (2.4),

u@) = u(¢ 3 e) = w(@).

k>1

i, u = u, on U(y). If we suppose there are two distributions « and i such that
u=uyandu = u,onU(y) foreveryy € X,thenu—iut = Oon U(y) forevery y € X.
Therefore u — u = 0 in X, showing that the distribution u is unique.

The set of distributions with compact support in X will be denoted by &”(X), and
we set &%(X) = & (X) N 2'%(X).
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2.5 Singular Support

Definition 2.10 The set of points of X not admitting neighbourhoods where u €
2'(X) coincides with a € function is called the singular support of u, written
singsuppu.

Hence u coincides with a € function on X\singsuppu.

Example 2.7 Letf € ¥°°(X). We define the functional u in the following manner:

u@) = [ Fpd ¢ € GE.
X
For ¢1, ¢ € 65°(X) and a1, o, € C, we have
u(arr + oagn) = [y f(X) (@11 (x) + o2 (x))dx
= [x(aif ()1 (x) + af (x) 2 (x))dx
=y [y f)P1(0)dx + o [y f(X)pa(x)dx

= au(py) + aru(pn).

Therefore u is a linear functional on 6;°(X). For ¢ € %;°(X), moreover, there
exists a compact subset K of X such that supp¢ C K and

@) = | [ 0P| = | [y FIP @]

< [ F®Il¢@)ldx < [i [f (¥)|dx sup,e ¢ (x)] < o0.

Consequently the linear functional u : 65°(X) — C is well defined. Let {¢,}°2,
be a sequence in €5°(X) such that ¢, — ¢, n — 00, ¢ € €5°(X), in €5°(X).
Then

u(dn) = /X FOn()dx —> o0 () = /X FOP ().

Therefore u : €°(X) — C is a linear continuous functional, i.e., u € 2’(X). Note
that u = f € ¥°°(X) and therefore singsuppu = Q.
Exercise 2.14 Find singsuppP;I( for x € R1\{0}.

Exercise 2.15 Determine singsuppP% forx e R

Exercise 2.16 Compute singsuppPﬁ for x € R1\{0}.
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Exercise 2.17 Find singsuppPZ for x € R'.

Definition 2.11 The distribution u € 2/(X) is called regular if there exists f €
L .(X) such that

u@) = [ I for ¥ € G0,

In this case we will write u = uy. If no such f exists, u is called singular.

Example 2.8 Letf = x € R!. The map u : 62°(X) —> C,

_1_
1+x2°
u@) = [ FOp0s 6 EGERD,

is a regular distribution.

Example 2.9 Consider §(x), x € R!, and suppose that § is a regular distribution.
Then there exists f € L] (R'") such that uy = §. Choose p € °(R") for which

loc

supp(p) C B1(0), p(0) = 1. Define the sequence {p,}2, by

pn(x) = p(nx).

Then supp(p,) C B1(0) and p,(0) = 1. In addition,

8(pn) = pu(0) =1

and

B1(0)

n

V=0l = |[__rpmoa] < [ ycaliomoas

< Sup.eg! [P(¥)] [f(x)|dx —n—0 O,
B%(O)
which is a contradiction. Therefore § € 2’(R') is a singular distribution.

Exercise 2.18 Let u;, uy € 2'(X) be regular distributions. Prove that aju; + apun
is a regular distribution for every o, o € C.

Exercise 2.19 Show that singular distributions form a vector subspace of 2'(X)
over C.
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2.6 Measures

Definition 2.12 A measure on a Borel set A is a complex-valued additive function

p(E) = /Eu(dx),

that is finite (| (E)| < co) on any bounded Borel subset E of A.

The measure w(E) of A can be represented in a unique way in terms of four
nonnegative measures (;(E) > 0,i = 1,2, 3, 4, on A in the following way

o= (1 — p2) + i(ps — ha)

and

[ @0 = [ @0 [ +i [ pat@o i [ o

The measure p(E) on the open set X determines a distribution i on X as follows
w@) = [ dwp@. ¢ 00,
b'¢

where [ is the Lebesgue-Stieltjes integral. From the integral’s properties it follows
that u € 2'(X). Every measure p of X for which pu(dx) = f(x)dx, f € L} .(X),
defines a regular distribution.

Let u € 2'(X) defines a measure p of X. Then

@l = || ponn]| = [ i sup jocol

X X€EX|

for every X; CC X and every ¢ € 6°(X,). Hence u € 2"°(X).
Now we suppose u € 2"°(X), i.e., for every X; CC X

lu(@)| = C(X1) sup ¢ ()1,

where C(X1) is a constant which depends on X;. Let {Xi}72, be a family of open
sets such that X CC Xpy1, UgXy = X. Since 65°(Xx) is d@se in o(Xy), the
Riesz-Radon theorem implies that there exists a measure (i of X; such that

u(@) = /X SO, ¢ € G(Xe).
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Therefore the measures pu; and g+ coincide on Xj. From this we conclude that
there is a measure p on X which coincides with p; on X; and with the distribution
uonX.

Definition 2.13 The distribution u € 2’(X) is called nonnegative on X if u(¢) > 0
for every ¢ € 65°(X), ¢(x) > 0, x € X.

Example 2.10 The distribution 1 is nonnegative.
Exercise 2.20 Prove that the distribution H is nonnegative.

Exercise 2.21 Prove that the distribution 1 is a measure.

2.7 Multiplying Distributions by %> Functions

Definition 2.14 The product of a distribution u € 2’(X) by a function b € €*°(X)
is defined by

bu($) = u(bp) for ¢ € EP(X).

We have

bu(o191 + aa¢2) = u(b(ar 1 + a2¢h2))

= u(1bP1 + oabgy) = au(bgy) + aru(bpn)

= a1bu(¢r) + axbu(¢s)
for oy, a0 € C, ¢1, ¢ € 65°(X), i.e., bu is a linear map on %;5°(X). Let {¢,}°2,
be a sequence in 6;°(X) such that ¢, —, 500 @, ¢ € G5°(X), in E5°(X). Then
by —n—s00 bp in 65°(X). Since u € 7'(X), we have

u(bn) —>n—soc0 u(beh),

SO

bu(pn) —>n—so00 bu().

Consequently bu is a continuous functional on %°(X) and bu € 2'(X).

Example 2.11 Take x>8. Then
8(p) = 8(¢) = 0°$(0) =0

for ¢ € 6£°(X). Therefore x*§ = 0.
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Exercise 2.22 Compute (x*> + 1)§.
Answer §.
Letoy, 0 € C, by, by € €°(X) and uy, u; € 2'(X). Then

1. (albl(x) + Oézbz(x))ul = ozlbl(x)ul + Olzbz(x)ul,
2. bl(x)(otlul + apuy) = albl(x)ul + Oézbl(x)uz.

Let us prove that this multiplication is neither associative nor commutative. Suppose
the contrary, so

x8(¢) = 8(xp) = 0¢(0) = 0(¢),
xPL($) = PL(xp) = P.V. [ p(0)dx = 1(¢)
for ¢ € €°(R"). Hence
0 =0P! = (())PL = BWNPL = 5(x)(xPL) = 5(x)1 = §(x),

a contradiction.

2.8 Exercises

Problem 2.1 Let o be a multi-index and set u(¢) = D*¢(x¢), ¢ € €¢5°(X) for a
given xo € X. Prove that u is a distribution of order |«|.

Proof Let ¢y, ¢ € 65°(X) and a, b € C. Then

u(agy +bgy) = D*(ap1 +bg,)(xo) = aD* ¢y (x0) +bDPa(x0) = au(¢p) + bu(e,).

Consequently u is a linear map on %;°(X). Let K be a compact subset of X and
¢ € 65°(K). Since supp ¢ C K we have to consider two cases: xo € K and xo ¢ K.
If xo € K,

u@l<c Y s;p)Dﬂu(qs)(x)\ 2.5)
1BI<|e|

for C > 1.If xo ¢ K, then u(¢)) = 0. Therefore inequality (2.5) holds, and then
u € 9'(X). Using the definition of u and (2.5) we conclude that u has order |«]|.
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Problem 2.2 Take f € ¢'(R") and a multi-index «. Let D*f be defined on 6°(R")
as follows:

D(@) = 0 [ feptwas

Prove that D*f is a distribution of order |«|.
Problem 2.3 Show §, € D'°(R").
Problem 2.4 Let P be defined on 45°(R") by

1 < ¢(x) —¢(0)
P(@)=P.V. /_oo .

Prove that Pé is a distribution.

Problem 2.5 Define u by

u(p) = Pp)dx V¢ € 670 (RY).

[x[<1

Prove that u € D'(R").
Problem 2.6 Define

u(@) = /| D9 Vg GER,

where « is a multi-index. Show that u € D'(R").
Problem 2.7 Prove that H € D'°(R}).
Problem 2.8 Let

u@) =2 99(2) vo e EEO.D.
=0

Prove that u belongs to D’'(0, 1) but not to D.(0, 1).

Problem 2.9 Let P(x,D) = Zlalfq ay(x)D%, where ¢ € N U {0} is fixed, and
a € € (R"). Let u be defined on 45°(R") by

u(g) = /R ()P D) ().

Prove that u € D'Y(R").
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Problem 2.10 Letu € D'(X) and suppose u(¢p) > 0 for every nonnegative function
¢ € 65°(X). Prove that u is a measure, i.e., a distribution of order 0.

Proof Let K C X be a compact set. Then there exists a function y € %;°(X) such
that 0 < y(x) < lonXand y = 1 on K. Then

xsup gl £¢ =0
for every ¢ € 6;°(K), and therefore
u(xsup 9]+ ¢) = 0. (2.6)
On the other hand,
u(yx sup ol £¢) = sup |plu(y) + u(@).
Consequently, using (2.6),

+u(p) < u(y) sgp |#].

Therefore u € D’O(X), i.e., u is a measure.

Problem 2.11 Take ¢(x,y) € €°°(X x Y), where Y is an open set in R”, m > 1.
Suppose there is a compact set K C X such that ¢ (x,y) = 0 for every x ¢ K. Prove
that the map

y > u(p(-.y))
is a €’ function for every u € D'(X) and
Du($(-.y)) = u(Di¢ (-, y))

for every multi-index «.

Proof Since u € 7'(X) and ¢ € 65°(X x Y), we have that u(¢ (x, y)) is continuous
in the variable y. We will prove

%u(qﬁ(x, y) = u(aiyjqb(x, y)) for xeK
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andj € {l,...,m}. Fory € Y given,
Py +h) =p(x.y) + Zh ) +o(|h]?)

for¢ € €5°(K xY). Leth=(0,...,0,h;,0,...,0). Then

¢(X,y+ h) —¢(X,y) — a_d)
h dy;

(x,y) + %o(hjz).

Since u is linear, we have

u(¢(x,y + hz —¢(x,y)) _ u(g_;ﬁ;(x’y)) n %u(o(hf)).

From this equality we obtain

ad ad
(59w ) = 5@ @)
as h — 0. By induction

u(DIp(x.y)) = Diu(g(x. ).

Problem 2.12 Prove that a linear map u : 6;°(X) — C is a distribution if and
only if u(¢;) — 00 0 for every sequence {¢j}f§1 of elements of 6°(X) with

o0
Proof Letu € D'(X) and {qbn} be a sequence in 63°(X) tending to 0 in €5° (X).

There is a compact subset K of X such that supp ¢, C K for every natural number
n and D*¢, —,—oo 0 for every multi-index «. Hence using (2.1) there exist
constants C and & for which

—>n—s00 0.

()

<CZsup

loe| <k

D¢y

o0
Now suppose that for every sequence {q&n} » in ¢5°(X) tending to 0 in 65°(X),

we have u(¢,) —>,—oc0 0. Let us assume there exists a compact subset K of X
such that

lu(p,)| > C Z sup‘D bn

loe| <k
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for every constants C > 0 and k € N U {0}. When C = n and k = n, we get

()l > n 3 sup|DF(6)

loe| <n
Let
Pn
Yo = ———.

2 lal<n [P Pn

Since u is linear on €;5°(X), we obtain
)”(%) S R n,
Zlalfn D¢,

which is a contradiction because
Vi —j—00 0
in 65°(X) and u(Y;) —j—00 0.

Problem 2.13 Prove that a linear map u : ¢;°(X) — C is a distribution if and
only if there exist functions p, € € (X) such that

u()] = 3 sup

DG Vi € (K, 27

for every compact set K C X, and only a finite number of the p, vanish identically.
Proof

1. Let u be a linear map from %;°(X) to C and p, € %' (X) be such that inequality
(2.7) holds for every ¢ € 6;°(X) and every compact K. Since p, € €' (X), there
exists a constant C such that

sup |pe| < C.
K

From this and (2.7) it follows that

D%¢|.

u(@)] = €Y sup

As only finitely many p, are zero, there is a constant k such that

u(@)| = € 3 sup|D“p)].

|or| <k

ie.,ue 7' (X).
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2. Letu € D'(X) and {K;} be compact subsets of X such that any compact subset is
contained in some K;. Take maps y; € 6;°(X) with y; = 1 on K; and define

Vi=xi—x- Jj>1,
Y1 = X1

Any ¢ € 65°(X) satisfies
¢ = vip. (2.8)
=1

Note that only a finite number of summands in (2.8) vanish identically. Moreover,

Y #0 on Kj\K;—; for j>1,
Y1 #0 on K.

Consequently

supp(¥j¢) C suppy;.

As ;¢ has compact support, for every compact K there are constants C and k;
such that

u(vi)| = € 37 sup|D (99|

|| <k;

From this and (2.8) we obtain
@) = | X, uvid)| < X luwg)
=C Zj Z\a\gkj supK‘D"‘ (W;d’)‘

Supg

< CF) Ylatety L () sup DY

Do‘_ﬁq&‘.

If we set
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we obtain

u(@)] = €3 sup|opD" Vg

p=a

Problem 2.14 Prove that u € D’ k(X) can be extended in a unique way to a linear
map on %, (X) so that inequality (2.1) holds for every ¢ € €1 (X).

Proof Since the space 6;°(X) is everywhere dense in ‘fé‘(X), for every ¢ € ‘fé‘(X)
o0
there exists a sequence {qbn} in €°(X) for which ¢, —>,—00 ¢ in CF(X).

Hence

lu(pn) — ulg)| = CZ\a\gk supg|D*$n — D* 1| —>n1—o00 0.
o0
Therefore {u(q&n)} 1 is a Cauchy sequence in R!, and as such it converges to, say,

u(@) = tim_u(g,). 2.9)

o0

The claim is that (2.9) is consistent. In fact, let {d),,}
in €5°(X) for which

o0
, {Iﬁn} be two sequences
1 n=1

n=

lim ¢, = Lim ¥, =¢
n—>-o00

n—-00

in €5 (X). Then u(¢p) = limy—soo t(yn) = limy—soo u(¢s) = limy—soo u(yr),
where {yn} _ {qbn} B {Wn} _ . For the sequence y, we have

3

)

<c) sup [D* yn
ol<k

SO

u(q&)‘ <C Z sup‘D“qb‘

la|<k

when n — 0.

Problem 2.15 Let u, € D'(X), u,(¢) > 0 for every nonnegative ¢ € ¢;°(X) and
Uy —>n—>so00 U in D'(X). Prove that u > 0 and u,(¢) —>—00 u(¢p) for every

¢ € C(X).
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Problem 2.16 Prove that the functions
l.f=e

2. f =e2,
3.f=em, meN

==

T

do not define distributions, i.e. f & D’(R'\{0}) in all cases.

1. Proof Take f(x) = ev and suppose—by contradiction—that f € D'(R'\{0}).
Pick ¢9 € ¢¢°(R'\{0}) such that ¢(x) > 0 for every x # 0, ¢o(x) = 0 for
x < landx > 2,and

o0
/ Po(x)dx = 1.
—0o0
o0
Define the sequence {(;Sk}k_l by

Bu(x) = ™2 kgho (k).
It satisfies
$i(X) —>t—s00 0
in 9°(R'\{0}), so
F@1) — 100 0.

On the other hand,

oo

Fle()) = / ot b

3

2 3
= [0 Dpmar = [T D goas = et [ ponras
1 1 1
By this and the definition of ¢y (x) we conclude
lim f(¢i(x)) = oo,
k—>00

which is a contradiction.
2. Hint. Use

$e(x) = ¢ ko (k).
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3. Hint. Use

) = e (3 kgho (k).

Problem 2.17 Given constants m € N, a;,i = 1,2,...,m, prove that

f= ares + azefz + et ape ¢ D'(R'\{0}).
Hint. Use the previous problem.

Problem 2.18 Show that

1. lime—sg [ 22%0x = in(0) + P.V. [ 2Qdx, ¢ € G°RY),
2. lime g [ £ dx = —ing(0) + P.V. [o 22dx, ¢ € G2 RY).

1. Proof Take ¢ € 6 °(R") with supp ¢ C [-R, R]. Then

fro 892 g = (R Gtiodw g

x—i€ T2t

= [k CHIGE 9O oy (R (HOYO)

From this

LR Gt i0Gm -gO) [P 6w
e—0 J_p X2+ €2 -0 X

What is more,

.  (x + i€)¢ (0)
im —_—

. . R . .
Jm | Tere dx = 2i¢(0) €h_n)l0 arctgz = inp(0) = ind(¢p).

2. Hint. Use the solution of part 1.
Problem 2.19 Prove that

. 1 1 . 1
=ind + P(—), — = —ind + P(—).
X—1 X x4+ i0 X
Hint. Use the previous problem.
Problem 2.20 Prove that
1. lime—s 49 ; = 6(x), hme_,+0 —sinZ = §(x),
2ﬁexp 46
2. lime_, 401 —m = §(x), lime— 40 =55 sin? £ = §(x),
3. im0 iXp;(; = 27i8(x), lim; 00 2 l(';' = 0,
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. exp”" _ . ex
im0 5 = 0, lim— o0 x+10 = —2mid(x),

lim; 00 " exp™ = 0, m > 0, lim; o0 P(_t) =0,

lime—; o éw(f) = d(x), lim,— o0 n(l_ﬁ—nzxz)z 8(x),

N s

lim"—>°°n(1+nzx2) §(x), limy— 00 ~— 1 i’ nx 2 = §(x),
% for |x| < }1
8. lim,— 00 fu(x) = 8(x), where f,(x) =
0 otherwise,
222 .
9. lim,— % exp” 2 = §(x), lim,— o0 = = 8(x),

10, Timy,— o0 2nexp™H = §(x), lim,— o0 %W §(x),
11 1m0 /Zexp™ = 8(x), limy— 0 e = S

1. Proof Take ¢(x) € € °(R"). Then there exists R > 0 such that suppg C [—R, R].
Now,

(e E.00) = [, SE g

o ) Az) o).,

S e [0 — g0 a4+ 22 [, dx

2
I J<if) RICEIUPN +¢(0)IR (z%)zd(zxé)

L
v

2
_ 1 (R 7<7) <>¢(0> $(0) -2
_J_Ef_Re o P dx + f . e dy.

Therefore
hme—>0 ( 2«/7 (X))

R e_(zfﬁ

= lims_,oﬁ I NG

)2
2= ¢(0)dx + ‘f}oﬁ lim.—so f Ve e_yzdy
e

= &\/%) [ e dy = ¢(0) = 5().

Problem 2.21 Let {X;};c; be an open cover of R”, and suppose u; € D’'(X;) satisfy
u; = uj on X; () X;. Prove that there exists a unique distribution u € D’(X) such that

u, = u; forevery i € 1.
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Proof Take ¢ € 65°(X) and ¢; € 65°(X;) and define
b= ¢i
and

w(@) =) ui). (2.10)

1

We claim that definition (2.10) does not depend on the choice of the sequence {¢;}.
For this purpose it is enough to prove that

implies |
(L) =0
Set |

K = suppg,

clearly a compact set. There exist functions ¥, € 65°(Xy) such that 0 < ¢y < 1
and

Zwkzl on K.
k

By compactness only a finite number of the above summands are different from
zero. Moreover,

Vi € 65 (Xk m Xi)
and

ur (Vi) = ui(Yigpi).
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Therefore

>ouilg) =, Mi(zk %dh’) =2 2w = 3 D u (Vi)

= ¥ Y ui) = Y (Vi X 91) = Xy m(0) = 0.

Consequently definition (2.10) is consistent.
Let ¢ € 65°(K). Then

o= ¢
k

and

ui(pvi)

u@)| = | T uvio)| < ¥,

<2 Ci ) i<k SUP 30‘(451#1')} <G <k sup}a"q&‘

’

< C Z\a\fk Sup)aaqﬁ
showing u is a distribution. We also have
u=1u; on Xi.

Now we will prove the uniqueness of u. Suppose there are two distributions « and u
with the previous properties. We conclude

SO
(u— ﬁ)lx,- =0 Vi

Since X is open in R”, it follows that

Il
Ny
]
=]
>

u

proving uniqueness.
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Problem 2.22 Take u € D’(X) and let F be a relatively open subset of X with
suppu C F. Prove there exists a unique linear map # on

{¢> L € €°(X), F N suppp C X}

such that

L) = u(@) for ¢ e EE(X),
2. 04(p) =0 for ¢ € €>®°(X),FNsuppp = B.

Proof

1. (uniqueness) Let ¢ € ¥°°(X) and F N supp¢ = K. As K is compact, there
exists 7 € €;°(X) such that Y = 1 on a neighbourhood of K. Let

¢o = Vo,

pr=(1-v)¢
50

¢ = o+ ¢1. (2.11)
Therefore

() = u(go) + u(¢1).
Note u(¢;) = 0, so
u(@) = (o) = u(¢o).

Now suppose that there are two such distributions i, ii. Then

() = ii(go),
(@) = u(gho),

and consequently
i(p) = u($)

for every ¢ € €°°(X) so that F N suppgp = @. Therefore it = it.
2. (existence) Let

¢ = ¢+ ¢
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be another decomposition of kind (2.11) and define

X = do— .
Then
X €65°(X), FnNsuppy =F Nsupp(¢r — ;) =D
and so
u(y) = u(go) — u(dy) = 0.
Define () by

u(@) = u(go).

This makes sense since
u(p) = u(e) = ulgo),

@) =0 if ¢ € F>°X), FNsuppp = 3.
Problem 2.23 Prove that suppé = {0}.

Problem 2.24 Let ¢ € 65°(X) and supp(u) () supp(¢) = @. Prove that u(¢) = 0.

Proof Since supp(u) (|supp(¢) = @, we have ¢ € G5°(X\supp(u)). If x €
supp(u), then ¢ (x) = 0, so u(¢p) = 0. If x € X\supp(u), then u(¢p)(x) = 0.

Problem 2.25 Prove that the set of distributions on X with compact support
coincides with the dual space of ¥°°(X) with the topology

’

=3 s;p}a“qs

|| <k

where K is a compact set in X.

Proof Let u be a distribution with compact support and take ¢ € €°°(X) and ¥ €
¢5°(X), ¥ = 1 on a neighbourhood of suppu. Then

¢=v¢+10-v)¢

and

u(@) = u(d + (1 =v)¢) = u(Y¢) + u((1 = ¥)p) = u(ye).
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Define u on ¢°°(X) via

u(@) = u(Yp)

for ¢ € €°°(X). Since u is a distribution and ¢ € €;°(X), we have

“¢

(@) = luty9)] = C 3 sup|d (@] = €1 3

loe| <k lor| <k

Now we suppose that v is a linear operator on ¢°*°(X) for which

g <c Y sg{p\a%

|| <k

for ¢ € €°°(X) and K a compact set. Then

v(@) =0

when suppp N K = @.If ¢ € 65°(X) C €*°(X), v is a distribution. Therefore
there exists a unique distribution u € D’ (X) such that

u(@) = v(4)

for every ¢ € €°°(X).

Problem 2.26 Let u be a distribution with a compact support of order < k, ¢ a €*
map with d%¢ (x) = 0 for || < k, x € suppu. Prove that u(¢) = 0.

Proof Let y. € 65°(X), x = 1 on a neighbourhood U of suppu, while y. = 0 on
X\U. Define the set M, € > 0 by

M, = {y: lx—y| <e, xe€ suppu},

making M, an e-neighbourhood of suppu. Moreover,

3“)(6) <Ce . o| <k
for some positive constant C. Since

suppu N supp(l — yo)¢p = @,
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we have

u(@) = u(pye) + u((l — xe)p) = u(@xe),
(@) = C[Lpgee sup(#610)|

fCHZmHWQMWWWHWk

6|04|—k

¢

< C2 2 jul+1p1<k SUP —>e—0, o <k

Consequently u(¢) = 0.

Problem 2.27 Let u be a distribution of order k with support {y}. Prove that u(¢) =
Z\a\sk aaaa(ﬁ(y), ¢) S (gk.

Proof For ¢ € €* we have

(x —y)*
o!

) = > p(y)

|| <k

+ ¥ (),

where
Y(y) =0 for |a|<k.
Hence,
u(y) = 0.

Therefore

u(@ () = (Lo PO G + v ()

= (Lt 0O G ) + uy ()

= Yoz t( U525 ) 070 0).
Let

ar = (822,
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Then

wg) = Y aud*p ().

|| <k

Problem 2.28 Write x = (¥, x”") € R". Prove that for every distribution u € D'(R")
of order k with compact support contained in the plane x' = 0, we have

W) = Y alda), (2.12)

|or| <k

where @ = (&, 0), u, is a distribution in the variables x”, of order k — |«|, with
compact support and @ (x") = 0@ (', x"),

Proof For ¢ € €°° we have

=0"

x/O[
P =Y, FPON) -+ W),

|| <k,a” =0
where

"D(x),_, =0 for |a| <k

=0
This implies
u(®) = 0.

Since u is a distribution,

o

= Y u(#0.)

|/ |<k,a” =0

Now let

o

na(@#) = (@ 0.4) = ).

We want to show u, is a distribution of order & — |«|. Set

o

Y(x) = ¢(O,x’/));;' +Oo(X Y for ¥ — 0.
Then

u(W) = ug(¢) for W € € (2.13)
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and
Zsup)E)W))fC Z sup)aﬂlﬁ),
i<k X Bl<k—lal ¥
SO
sup|9° ‘<c ‘aﬂ )
up|°¢| < > sup| 3y
[Bl<k—la|
Consequently

W) =C Y suplofy]

K
|Bl<k—lal

for every ¥ € €™, proving u, is a distribution of order k — |«| in the variable x”.
From (2.13) it follows that u, has compact support.

Problem 2.29 Let K be a compact set in R” which cannot be written as union of
finitely many compact connected domains. Prove that there exists a distribution u €
&’ (K) of order 1 that does not satisfy

, ¢ eFPX)

u(¢)§CZs1;p3¢

| <k

for any constants C and k.

Problem 2.30 Let K be a compact set in R” and u,, |¢| < k, continuous functions
on K. For || < k we set

_ )8
we@ = Yty ) S eyt

Un(x,y) =
|
|Bl<k—|e| p!

for x,y € K,x # y, and Uy(x,x) = 0 for x € K. Supposing every function U,,
|| < k, is continuous on K x K, prove that there exists v € ¢*(R") such that
0%v(x) = uy(x) forx € K, || < k. Then prove that v can be chosen so that

Z sup|d®v| < C(Z sup U, + Z supua),
K

ol <k ol <k KK ol <k

where C is a constant depending on K only.
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Problem 2.31 Prove that

lu(@)| < C(Z\a\gk Supx,yeK,x;éy‘aa(ab(x) - Z|ﬂ|§k—|a| aa+ﬂ¢@)(x,_g—f)ﬁ

X =y 4 Y supg 06| ). @ € ERR),

for every distribution « of order k with compact support K C R".

Problem 2.32 Let K be a compact set in R” with finitely many connected compo-
nents, such that every two points x and y in the same component can be joined by
a rectifiable curve in K of length < C|x — y|. Prove that for every distribution u of
order k with suppu C K the estimate
u@)l = C Y sup|g|. ¢ € TR
K

|| <k

holds.
Problem 2.33 Leta € C". Prove that 6,(x), x € R", is a singular distribution.

Problem 2.34 Let uy, u, € 2'(X) with u; regular and u, singular. Prove that
ajuy + agu

is singular for every a, oy € C.

Problem 2.35 Letf,,f € L. (X) and

loc

R E—
K
for every compact subset K of X. Prove that

Jo —n—o00 f

in 2’ (X).
Problem 2.36 Prove that
1. 8(—x) = 8(x),

2. (8(ax —xp),9) = q&(’%), for any ¢ € ;°(X) and any constant a # 0.
Proof
1. Let ¢ € 65°(X). Then

(80 9) = (50.4(=0) = $(0) = (5(x). ¢ (x)).
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Consequently
3(—x) = 5(x).

2. Let ¢ € €5°(X). Then

(S(ax — Xo), (;S(x)) (ax =y + xp)

- (0005 =)

Problem 2.37 Prove that

1. §(x* —a®) = ﬁ[(?(x— a)+ §(x+ a)], a#0,

2. 8(sinx) = Y 72 8(x —km).

Problem 2.38 Prove that §(x), x € R!, is a measure.
Problem 2.39 Prove that H(x), x € R!, is a measure.

Problem 2.40 Let {f,}°2 | be a sequence in &’ (X) such that | f,(¢)| < ¢, for every
¢ € 6°(X), and {¢,}°2, C €5°(X) a sequence converging to 0 in 65°(X) as
n —> oo. Prove that f,(¢,) — 0, n —> 0.

Proof We suppose the contrary. Then there exists a constant ¢ > 0 such that

|fn(¢n)| >c>0,

for n large enough. Since ¢, — 0 in G5°(X) as n —> oo, there exists a compact
set X’ such that suppg, C X’ for every n and

D¢y —n—>00 0,
for every x € X and every o € N" U {0}. Hence

1
|D*¢,(x)| < e | <n=0,1,2,...,

for n large enough and every x € X’. We set

wn = 2n¢n-

We have suppy,, C X’ and
1
IDYn()] = 5. el =n=0.12,..., (2.14)

|| = 2" fu(Pu)| = 2"¢ —>)—00 0O. (2.15)
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Let us find subsequences {fi, }°2, of {f,}°2, and {y, }52, of {¥,}°2, so that
|foo W) = 2" forv = 1,2,.... As Y% — koo 0 in E5°(X), we have
S (Ur) —>k—s00 0 forj = 1,2,...,v — 1. Therefore there exists N € N such
that for every k > N

1
[ fi; (Y| < j=12,...,v—1. (2.16)

—= 2‘}_]- )

We note that | fi (V)| < cx,j = 1,2,...,v—1.From (2.15), we can choose k, > N
so that

foo W) = > e +v+ 1 2.17)

I<j<v—1
From (2.16) and (2.17) we have

1

[ fi; (Y, )| < et j=1,2,...,v—1, (2.18)
o ) = D 1fi (W) +v + 1. (2.19)
I<j=<v—1

We set

V= Zlﬁkj-

Jj=1

From (2.14) it follows that v is a convergent series, ¥ € 6;°(X) and

S @) =foWe) + Y fi (W)

jz1j#v

Therefore
i, 1 = 1, D) = oyt Wi D] = g 1 (V)]
2v4+1-Y 7 =V

and then

(fto» ¥) —v—00 0,

which contradicts | fi, ()| < cy.



2.8 Exercises 61

Problem 2.41 Let {f,}°2, be a sequence in Z’(X) such that {f,(¢)}5, converges
for every ¢ € 6;°(X). Prove that the functional

f@) = lm f(¢). ¢ €EEX)

is an element of 2’(X).
Proof Letay,a, € Cand ¢y, ¢, € 65°(X). Then

flaigr + aagn) = lim, o0 (@101 + 02¢2) = lim,, o0 (0t1fi (1) + @2fin(¢2))

= oy limy—s oo fu(@1) + a2 lim, oo f(2) = a1f (1) + ctaf (¢2).

Therefore f is a linear map on %;°(X). Now we will prove that f is a continuous
functional on 6;°(X). Let {¢,}°2, be a sequence in 6;°(X) such that ¢, —, o
0 in 65°(X). We claim f(¢,) —> o0 0, so suppose the contrary. There exists a
constant @ > 0 such that

lf(¢v)| > a,

foreveryv = 1,2,.... Since
f(py) = klim Je(dy),
—>00
there is k, € N such that

|/, (@0)| = a

for every v = 1,2,..., which is in contradiction with the result of the previous
problem. Consequently f(¢,) —>—00 0 and f € 2'(X).

Problem2.42 Let u € 2'(X) and b € €°°(X) be such that b(x) = 1 on a
neighbourhood of suppu. Show

u = b(x)u.

Proof For the function 1 — b(x) we have that 1 — b(x) = 0 on suppu. Then for
¢ € 65°(X) we have

0 =u((1=b(x))9) = u(¢p —b(x)$) = u(p) — u(b(x)p) = u(¢) — b(x)u(¢),
SO
u(@) = bx)u()

for every ¢ € €;°(X). Therefore u = b(x)u.
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Problem 2.43 Compute
4,2 ! 1
(x"+x"+3)8(x) +xP—, xeR'.
X

Answer 36 + 1.
Problem 2.44 Let b € ¥*°(R'). Compute

b(x)§(x), xeR.

Answer b(0)§.
Problem 2.45 Leta € €°°(X), u € D'(X). Prove that supp(au) C suppa N suppu.

Problem 2.46 Letf, u € D'(X) and singsuppu N singsuppf = @. Prove thatfou €
D'(X).

Problem 2.47 Letf € €*°(X), u € D'(X) and suppu N suppf CC X. Prove that
u(f) can be defined by u(f) = (fu)(1).

Problem 2.48 Let f € €%(X), u € D'*(X). Prove that fu € D’*(X).
Problem 2.49 Solve the equation
x—=3)u=0
in 7' (X).
Solution Let ¢ € 6 °(R!). Then we have
(x=3)u(@) =0 or u((x—3)p)=0. (2.20)

Letnow ¢ € 6°(R'), and choose 7 € ¢°(R!) so thatn = 1 on [3—¢,3 + €] and

LAC et/ [CINAE)]

n = 0onR'"\[3—¢,3+¢], for a small enough € > 0. Then the function 3

belongs in 6°(R"). From this and (2.20) we have that

YO 1V e))

u((x -3) )

Hence

u(y) = u((x = 3) LG 4y (3))
= u((x = LD 4 (v (3)

=¥ Bu(n) = Cy3) = C8(x—3)(¥).
Here C = u(n) = const. Since ¥ € °(R') was chosen arbitrarily, u = C§(x—3).



2.8 Exercises 63

Problem 2.50 Solve the equation

1
—3)u=P—
(x=3)u 3

in 7'(RY).

Solution By using the previous problem the corresponding homogeneous equation
(x —3)u = 0is solved by u = Cé(x — 3), C = const, and a particular solution is
P—L_ . Therefore

(x=3)2"

1

Problem 2.51 Solve the equations

. x—1Dx—2)u=0,

2. x*u=2,

3. (sinx)u = 0.

Answer

1. u=Cié(x—1) 4+ C6(x —2), Cy, C; = const,
2. u = Cod(x) + C18'(x) + 2P, Co., C) = const,
3.3 2 Ci8(x — km), Cp = const.

k=—00



Chapter 3
Differentiation

3.1 Derivatives

Let X be an open set in R”.
Definition 3.1 For u € D’(X) and o € N" U {0}, we define D%u as follows:

D u(¢) = (=) lu(D"¢) (3.1)

for every ¢ € €5°(X).

Since the operation ¢ +— D“¢ is linear and continuous on %;°(X), the functional
D”u, determined by (3.1), is linear and continuous, i.e., D*u € 2’'(X).

1. The operation u —> D%u : 9'(X) —> 2’(X) is linear and continuous.
We start by showing linearity. Let o1, 00 € C, u,up € 2'(X) and ¢ € 65°(X).
Then
(aruy + 02u2) (@) —> D*(cyur + azuz) ()

= (=) (oyuy + a2u2) (D)

(=D oyu (D) + (—=1)luy(D*¢)

a1 D%ui (@) + caD%ur ().

Continuity: let {u,}°2, be a sequence in 2’(X) such that u, —,— 0 in
2'(X). Then

Dup(9) = (=1 (D*$) —>1—00 0
for ¢ € €5°(X). Consequently D*u,, —>,—00 0 in 2’ (X).

© Springer International Publishing Switzerland 2015 65
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Example 3.1 Let us consider the Heaviside function H(x), x € R':
D*H(¢) = (-)*H(D"¢)
= (=1)* [T H@)D*¢(x)dx
(3.2)
= (1) [;° D*¢(x)dx
= (=)D"YL = (=)D (0)

for ¢ € €°(R!) and @ € N U {0}.

Example 3.2 Let us compute
lim D*w.(x) in 2'(R'), for «aeN.
e—>0
Let ¢ € 62°(R'). Then
lime—s D*wc(¢p) = (—1)* lime—0 0 (D*¢)
= (=) lime—g /"o @c(x)D* (x)dx
&
= (=1)%lim— fmse e -1 DY (x)dx
= (=D*D*¢(0) = (-1)*8(D"¢)

= D*5(¢).
Therefore lime— w(x) = §(x) in 2’ (X).
Exercise 3.1 Find §®(x), x e R, k € N.
Answer (—1)*¢®(0), ¢ € € R).
If the series

Z “k(x) = S(x)7 Ui € Llloc(X)’

k>1

is uniformly convergent on every compact subset K of X, it may be differentiated
term by term any number of times, and the resulting series will converge in
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2'(X). We have

> D u(x) = DS ().

k>1

2. Every distribution u € 2'(X) is differentiable infinitely many times, since
u(D*¢) exists for every o € N” U {0} and every ¢ € €;°(X).
3. We have
D*TPy = D*(DPu)

for every a, € N" U {0} and every u € Z'(X). Let in fact ¢ € 65°(X) be
arbitrary. Then

DHPu(g) = (=D)lHPlu(D P g) = (—1)l (=) Plu(DF (D*9))
= (=D D u(D*¢) = D*(DF (u))(¢)-
4. We have
D*(auy + azup) = a1 D*uy + oD% uy
for uj,u, € 2'(X), ay,a2 € C, @ € N" U {0}. The proof of this assertion is left

to the reader.
5. Ifue 2'(X),a € €°(X), we have

D*(au) = Z (; ) DPaD* Pu,

B=a

for every @ € N" U {0}. We will prove the simple case

0 (au) du n da
—(au) =a— + —u
i axi axi
for some i € {1,2,...,n}. Using induction, the reader can deduce the general

case. If ¢ € 65°(X),
L (@)@) = —au( ) = —u(at:0) = —u((a9) - 120)
= —u( @) +u($4) = 2(ap) + 2u(@)

= (@) + u(g) = (a2 + ) (@),

(au) —u+a 1n.@’(X)
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6. For every u € 2'(X) and every o € N" U {0},
suppD“u C suppu.

To see this, let u € Z'(X), ¢ € ¢5°(X) and suppg N suppu = @. Then D¢ €
€5 °(X) and suppD“¢ N suppu = @. Hence

Du(p) = (—=)"lu(D*¢) =0,

and the assertion follows.

3.2 The Primitive of a Distribution

Letu € 9'(a,b), ¢ € 65°(a,b) and xy € (a, b) be arbitrary but fixed. We also fix
€ > 0 such that € < min{xy — a, b — x¢}. The function ¢ can be represented as

B0 =¥ +or—) [ pe (3.3)
where ¥ is determined by the equality
v = [ (90w [ sende)as G4

Suppose suppp C [a',b'] C (a,b). Since ¢ € 65°(a,b) and w. € €*(a.b), we
have that ¥ € ¥ (a, b). Moreover, ¥ (x) = 0if x < @’ = min{d’, x) — €}. As
€ < {xo—a,b—xy},it follows € < xy—a and a < xo — €, and since [@’, V'] C (a, b),
we geta < d’ and @” > a. For x > b"” = max{V’, xo + €} < b, using (3.4), we have

Y = 7 ($06) - 0 (s —x0) [, $(E)dE )ds
= [ ()5 — [ 2, 0cls — x0) [°2, B (E)deds
= % ()5 — [ 2, wcls — x0)ds [ 2, §(E)dE

= [% d(s)ds — [ p(£)dE = 0.

Therefore suppy C [a”,b"] and ¥ € 65°(a, b).

Definition 3.2 A distribution ™" € %'(a,b) is said to be a primitive of the
distribution u if

(u(_l))/ =u in 2'(a,b).
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We assume that the primitive u(~! of the distribution u € 2’ (a, b) exists in ' (a, b).
Then we have the representation

WD) = a0 (W + 0l = x0) [72, BEVE)
= D) +u D (wel— x0) [, (6)d)

= (1) ) + 1D el x0)) [, BENE,
where ¢ € €°(a.b) and ¥ € € (a., b) satisfy (3.4). Setting
C = u"Y(w(x — x0)) = const
we obtain

U@) = —u(y) + C /_ $ (€)dE. (3.5)

Now we will show that if the functional u~" satisfies (3.5) for an arbitrary constant
C, then it is first of all a distribution in &' (a, b), and also a primitive foru € 2’ (a, b).
Letay, a0 € C, 1, ¢ € (fooo(cl, b). Take Yy, ¥, € Cgooo(cl, b) such that

UV (1) = —u(¥y) + C %2, di(§)dE.
UV (ho) = —u(y) + C %2 $a(E)dE,
Y1) = [ ($16) = 0els = x0) [, 1 (€0 )ds,

V20 = [0 (#20) — 0cls = x0) [, $2(E)dE ) ds.
Then we get
WD (@11 + @aps) = —uern + aay) + C [To (@i (§) + o (§))dE
= —au(yn) — () + Can [, p1(§)dE + Cas [72, $2(§)dE
= aqu(¢1) + aau(ga).

Consequently #~V is a linear functional on €°(a, b).
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Let now {¢,}°2, be a sequence in 65°(a, b) with ¢, —> 0, n —> 00, in €;°(a, b).
Choose ¥, € 65°(a, b) so that

u () = —uyn) + C [, du(§)dE,

Ua @) = [ ($005) = 0cls — x0) 2, $(€)dE ) ds.
Then v, — 0, n — 00, in 6;°(a, b). From here,
u(_l)(¢n) —>n—>00 0.

Therefore u(~Y is a linear continuous functional on °(a, b), i.e., u”™" € Z'(a, b).
Now we show u(~1 is a primitive of u. Replace ¢ by ¢’ in (3.5), giving

U@ = —u(y) + C /_ #(E)dE = —u(y). (3.6)

where

10 = [ (pO-ot-m [ doa)s= [ yoan=pw.

—00

The last relation and (3.6) imply
W) = —u(@),
)
() @) = ~u().
i.e.
() (9) = u(@).
Since ¢ € 6;°(a, b) was arbitrary we conclude

/
(u(_l)) = u.

The solution to the equation

W =f (37



3.4 Exercises 71

foru,f € 2'(a, b), can be represented in the form

u=fCY 4, (3.8)
where C is an arbitrary constant. If f € %(a,b), (3.8) is a classical solution of
equation (3.7).

Proceeding as above, we can define successive primitives #(™ using the relation-
ship u(™" = (=D,

3.3 Double Layers on Surfaces

Let S be a piecewise-smooth two-sided surface with normal n, and v a continuous
function on S.

Definition 3.3 Define the functional —- (VSS) on %;°(X) in the following way

d
2 wbs)($) = / 0P, g e gex).

Exercise 3.2 Prove that —;—n(vé’g) € 2'X).
Exercise 3.3 Prove that supp(—g—n(v&)) cS

Definition 3.4 The distribution —%(v ds) is called a double layer on the surface S.

Physically, a double layer on S describes the spatial density of charges correspond-
ing to the distribution of dipoles oriented coherently with the normal n of S.

3.4 Exercises

Problem 3.1 Compute

3

d—3|.x|, XGRI.
X

Answer 2§'(x).
Problem 3.2 Compute

*"80 (x).
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Answer

0 for k<m,

—_1y™ =
xmg(k)(x): ( 1) 15 for k m,

(G ( k ) m!8%=m  for k> m.
m

Problem 3.3 Prove that
S +8(x—1)+8"(x—2)+---

converges in D'(X) and that it has finite order.

Proof Let ¢ € €°(X). Then
Y2087 () = X2 (— 1 (),
52087@)] = DE s ()| < o0

Since ¢ has compact support, only a finite number of terms in 220‘¢(j) ( j)‘ are
nonzero. Therefore §(x) + 8’(x — 1) + - - - has finite order.

Problem 3.4 Prove that
o0
ZNWM
k=—00

where |a;| < A(1 + |k|)" for some positive constant A, converges in D'(R!).

Hint. Prove that the series

aox’"+2

ake
(m+2)! Z (lk)”’*‘2

is uniformly convergentin 2’(R'). Then differentiate it m + 2 times.

Problem 3.5 Letf(x) be a function defined on (a, b) that is piecewise-differentiable
with continuity. Call {x;} the points in (a, b) where f(x) or its derivative have jump
discontinuities. Write

[flo =+ 0) = fx — 0),
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and denote by {f'} the classical derivative of f at x € (a, b). Prove
fr=A ;[fhka(x —x0)-
Proof For ¢ € €°(a. b), we have
f1@) = (@) = = [ F(0)e' (x)dx
= Y [0 00— Yoy £l — 00 () —F i+ 0 (x|
= [/08@dx + X[ £+ 0) = f o = 0) o)

={/1@) + 2l d(x — x) ().

Problem 3.6 Prove

1 )
o e =" " §(x — 2km).
k k
Proof The function
hw =2 0<r<a
W= T TN
has Fourier series
g 1 ek
h =32
k0

Using the formulas of the previous problem, we have

. ik

, o e _l_x

D ==02 =370
k#£0

and

2

1 _L i/c\f__i —
Jo () = #ZOE = 2ﬂ+2k:5(x 2kr).
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From the last equation we obtain

1
erk

et = Zé’(x — 2km).
k

Problem 3.7 Prove that
1232 cos(2k + Dx = Y2 (—1)FS(x — k),

2. |sinx|” + |sinx] =23 22 8(x — k).
Problem 3.8 Prove
1. d—‘ilog x| = P}—lc,
2. 4pl = _pL,
3. 4L = ind(x) - P,
4. 4o = —ind/(x) — P%.
Hint.
3. Use
1 1
=P-+ind
x—1.0 X tim
4,
1
— = P— —iné
x+1i0 X

Problem 3.9 Compute the first and the second derivative of the following functions
in 7'(RY)

sinx x>0,

1. u(x) =

cosx—1 x>0,

x—1 x>0,
2.u(x)y=9-1 —-1=<x=<0,

-2 x<l,

o —1l<x<1,
3.u(x):{

0 |x|>1,

C+x+1 —1<x<l1,
4.u(x):{

0 |x|>1.
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1. Solution.  Let ¢ € 6°(R!). Then

W () = —u(@) = — [Z5, u(x)¢’ (x)dx
= —fo sin x¢’ (x)dx— f (cosx — 1)¢’ (x)dx
=— smx¢>(x)‘ +f0 cosx¢(x)dx

—(cosx — 1) (x) ) oo SN X (x)dx
= H(x)(cosx¢) — H(—x) (sm x¢ (x))
= cosxH (x)(¢) — sinxH(—x)(¢).

Since ¢ € €°(R!) is arbitrary, we conclude that
u' = cosxH(x) — H(—x) sin x.

As H'(x) = §(x), H (—x) = §(—x), cosx8(x) = 8(x), sinx8(x) = 0, the second
derivative reads

u’ = —sinxH(x) + cos xH'(x) — cos xH(—x) + sinxH'(—x)
= —sinxH(x) 4+ cos x§(x) — cos xH(—x) + sinx8(x)
= —sinxH(x) — cos xH(—x) + §(x).

2. Answer.

—2xH(—x—1) + H(x),
—2H(—x—1) + 26(—x— 1) + §(x),

3. Answer.

W=-8x—1)+8x+1)+4Hx+1)—43Hx—1),
W =-8x-1)+8x+1)+12x°Hx+ 1)
—12x°H(x— 1) —48(x + 1) —48(x — 1),

4. Answer.

W =-3x—1)+8x+1)+2x+1DHKx+ 1) —(2x+ DHH(Xx — 1),
W =-3(x—1)+8x+1)+2Hx+1)—2H(x—1) —8(x+ 1) —36(x— 1).
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Problem 3.10 Compute

L L H(x+ 1),
2. d—‘i(xsignx),
3. d—‘i ((sinx + cosx)H (x + 2))

in the space 2'(R").

Answer
1. §8"(x+ 1),
2. H(x) — H(—x),

3. (cos2 —sin2)d(x —2) + (cosx — sinx)H (x + 2).

Problem 3.11 Compute the first, second and third derivatives of the function
u(x) = |x| sin(2x)

in the space 2'(R").
Answer

1. v = —(sin(2x) + 2xcos(2x))H(—x) + (sin(2x) + 2x cos(2x))H (x),
2. u’ = —4(cos(2x) — xsin(2x))H(—x) + 4(cos(2x) — xsin(2x))H (x),
3. u” = 4(3sin(2x) + 2xcos(2x))H(—x) — 4(3 sin(2x) + 2xcos(2x))H (x) + 85(x).

Problem 3.12 Let £2 C R” be a bounded domain with boundary d§2 = S and write
£2 = R"\£2,. Consider

fe€ (2)NE (2).[flskx) = Jim f(x)— Jim f(x”) xX€eS.

x enl ”EQ

With { }(x) i=1,2,...,n,we will denote the classical derivatives of f at x € R",

x ¢ S, while W’ i = 1,2,...,n, will denote derivatives in 2’(R"). Prove that for
everyi=1,2,...,n,

ad a

T TN f fscostnbs. £ e DR,

ox; ox;

where n is the outer normal to S.
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Proof Let ¢ € G°(R"). The Gauss theorem tells us that
L) =~f(3) = ~ S @5 ()ax
= — [of () FEWdx — [ F()FE ()dx
= — o) 2 @ax — [o 1Y g 0 + [ | L} (g (o)
— Jo, S 2 @x — o LN g 0 + [ {2 ) (o)
= [ilAlscos(n. x) (s + [ { 2} (0P ()

= [fls cos(n, x)85(9) + { £} (@).
As ¢ € €5°(R") was arbitrary, we conclude

g_fi - {g_fl} + [f]s cos(n, x;)és.

Problem 3.13 Let 2 C R” be a bounded domain with boundary 02 = S, 2 =
R"\$2,,f € %l(ﬁ). By {%}(x),i =1,2,...,n, we denote the classical derivatives
of f at the pointx € R”, x ¢ S, and by 3%_,1' =1,2,...,n, the derivatives in Z’(R").
Suppose f = 0 on ?1 Prove that foreveryi = 1,2,...,n,

i { af

= = g} —fcos(n,x)8s, f e D(R"), (3.9)

where 7 is the outer normal to S.

Problem 3.14 Let 2 C R”" be a bounded domain with boundary 902 = S,
Q = R\Q2,,f € €'(2)). By {%}(x), i = 1,2,...,n, we denote the classical

derivatives of f at x € R", x ¢ S, and by %, i = 1,2,...,n, the derivatives in
2'(R"). Assume f = 0 on §2 and prove that forevery i = 1,2,...,n,

) )

v {—f} +feos(n.x)ds, f e DR,

axi BXL'

where n is the outer normal to S.
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Problem 3.15 Let 2 C R” be a bounded domain with boundary 02 = S, 2 =
R™\ 2y,

FeC@NE (@), [fsk) = S =, lim fO). xes,

{ }(x) { frtr }(x) i,j=1,2,...,n, we denote the classical derivatives of f at
the point x € R", x ¢ S, [{ }] x) = llmx/—>xx’€91{ax }(x’) — limy s eq

{a'—x,.}(X”), x € 8, i = 1,2,...,n and by _3)(,-3)(]" . ij = 1,2,....n, the

corresponding derivatives in D’ (R"). Prove that for every i,j € {1,2,...,n},

1. af,zaij = {aizg} + i([f]s cos(n, x;) 8y ) + [{i}]scos(n,xi)é’g,
2. af = {Af} + Sy & (Ifls costnxds) + Xy [{2}] costr s
Here n is the outer normal to S.

Problem 3.16 Let 2 C R” be a bounded domain with boundary 02 = S, 2 =
R\, f € €%(R2). By { }() {axax }(x) i,j = 1,2,...,n, we shall denote

2
the classical derivatives of f at the point x € R", x ¢ S, and by %&xj’ 8%, i,j =

1,2,...,n, the corresponding derivatives in D'(R"). We suppose that f = 0 on ﬁl
Prove that for every i,j € {1,2,...,n},

Lok = (o)~ %(f cosn, 1)8,) — {2} cos(n, )3,
i j

J
2. Af = {Af} Yo o (fcos(n x,)SS) . {;ﬁ}cos(n X;)Ss.
Here n is the outer normal to S.

Problem 3.17 Let 2 C R” be a bounded domain with boundary 02 = S, 2 =
R\21, f € €X(2). By{ }() {axax}(x) ij = 1,2,....n, we will denote

2
the classical derivatives of f at the point x € R", x ¢ S, and by %&xj’ 8%, i,j =

1,2,...,n, the corresponding derivatives in D’(R"). We suppose that f = 0 on Q.
Prove that for every i,j € {1,2,...,n},

1. 322({9 = {afzg;/} + (fcos(n X;) 0 ) {af/} cos(n, x;)8s,
2. Af = {Af} +y0, o (fcos(n xl)SS) +y 1{ s } cos(n, x;)ds.
Here n is the outer normal to S.

Problem 3.18 Let 2 C R” be a bounded domain with boundary 02 = S, 2 =
R™\$2,,

fe€'@nE@). Ukw= lm @)= lim @), xes.
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By {g—f;}(x), i = 1,2,...,n, we denote the classical derivatives of f at the point
x € R", x ¢ S, and by Bix," i = 1,2,...,n, the derivatives in 2'(R"). If n is the
outer normal to S, 31 is the normal derivative, [gi’:]s(x) = limy_—,veg, %(x’ ) —
limy s req 0 and [ (] @ = limy—sveq {£L}0) — limo e

{3'7,.}(?//), x€S,i=12,...,n Prove

LY, %i([f]s cos(n,xi)Ss) = i([f]sfss), feD'RY,
2. ZLI[{%}]Scos(n,xi)Sg = [ n] 8s.

Problem 3.19 Let 2 C R” be a bounded domain with boundary 02 = S, 2 =
R"\ £,

[ e (2)Ne*(2y), [fls() =, lim_ f(X)— CONNE LR

{ }( ), { s }(x) i,j=1,2,...,n, we will denote the classical derivatives of
f at the point x € R”, x ¢ S, and by 3)( 3)( , ax i,j=1, 2 , n, the corresponding

derivatives in D'(R"). If n is the outer normal to S, 3, 18 the normal derivative,

I:ﬁ:l (x) = hmx’—)x,x’EQl ﬁ(xl) - hmx”—n(x”eg n (X”) forx € S. Prove
N

af a / n
ar ={aff + [ 5-] 85+ 5 (U11sss). e DR,
Problem 3.20 Let £2 C R” be a bounded domain with boundary 02 = S, let also,
2 = R"\$2,,

fe@@NE@). Ukw= lm @)=  lim (). xes.

{ }( ), { e }(x) i,j=1,2,...,n,we will denote the classical derivatives of
f at the point x € R", x ¢ S, and by ﬁ, % ij = 1,2,...,n, the corresponding
derivatives in D'(R™). If n is the outer normal to S, 3. 1ndlcates the normal derivative,
[E] (x) = limy_, veq, 3'—(x’) —limy . en a‘—f(x”) forx € S. Assume f = 0
s » n ” n

on §21. Prove

ar = {ar) — Lss - Lgsy)



80 3 Differentiation

Problem 3.21 Let 2 C R” be a bounded domain with boundary 02 = S, 2 =
R™\ 2y,

FeC@NE (@), [fsk) = oS = lim (). xes.

{ }(x) {ax 7 }(x) i,j=1,2,...,n,we will denote the classical derivatives of

fatx e R, x ¢S, and by 3x-3x , 3x i,j=1,2,...,n, the corresponding derivatives

in D'(R"). If n is the outer normal to S, -2 3, 1s the normal derivative, [%] x) =
s

limy_ s\ veg, %(x/) —limy_ e %(x”) for x € S. Suppose f = 0 on £2. Prove

ar={ar)+ Ly gsy)

Problem 3.22 Consider the plane R? with complex coordinate z = x + iy, and the
differential form dz = dx + idy annihilating the Cauchy-Riemann operator

d 1,0 )
7= 20 i)

Let £2 be a bounded domain in R? with piecewise-smooth boundary S. We take f €
€'(2) with f = 0on R2\ 2. If 3-—[ is the derivative of f in the sense of distributions

and { } is the classical derivative of f at z, z ¢ S, prove that

af_{af

0z oz

} — %f(cos(nx) + iCOS(ny))(SS
Proof As

oL iy

= — =, 3.10
dz 20dx 20y ( )

applying (3.9) to and glves

o _
T =

gi; _ {B_f} — fcos(n,y)ds.

31} — f cos(n, x)ds,
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From these and (3.10) follows
¥ %{?} + 5{?} — Lf cos(n, x)8s — if cos(n, )3

— {g—;} — % (cos(n,x) + icos(n,y))5s-

Problem 3.23 Consider the plane R? with complex coordinate z = x + iy, and the
differential form dz = dx + idy annihilating the Cauchy-Riemann operator

d 1 ( d +i d )
—==|l=+i).
dz 2 \0x dy
Let £2 be a bounded domain in R? with piecewise-smooth boundary S. Take f €

E(2)NE (RX\Q). If g—{; is the distribution derivative of f and {gi;} is the classical
derivative of f at z, z ¢ S, prove that

I of 1 .

% {8_2} + E[f]g(cos(nx) + zcos(ny))8s.
Problem 3.24 Prove

il = 76(x,y).

07 7

Problem 3.25 Letu € D'(R') and ' = 0 in the sense of the distributions. Prove
that u is a constant.

Proof Let ¢ € 6£°(R"). Then u/(¢p) = 0, whereupon u(¢’) = 0 for every ¢ €
E°(RY). Take ¥ € G°(RY), so there exists a ¥ € G°(R") such that

V0 = v [ v+ v, xR
for Yo € G°(R!) such that [ Yo(x)dx = 1. Then u(y;) = 0 and
u() = (Vo [, ¥ @dx + ) = [ ¥ @drulpo) + u(v)

= [Zoe V@ dxu(o) = C [Z, ¥ (0)dx = C1(y) = C(¥),

where C = u(y). Consequently u = C. If C € C is arbitrary, then u = C solves
W =0.
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Problem 3.26 Take u € 2'(X), where X C R! is an open set, and consider
W +au=f

for given f € €(X), a € €>(X). Prove that u € €' (X).

Proof (Firstcase) Leta =0, so
W =f.
Since f € €(X), f has a primitive v € € (X), so v’ = f and
w—v)Y =u -V =f—f=0.
Using previous problem we conclude that u — v = C = const, and
u=v+Ce%X).
(Second case) Suppose a is not identically zero and define
E(x) = PECLS

Since a € € (X), then E € ¥°°(X). The product Eu is well defined and the
chain rule says

(Eu) = E'u + Eu' = E(—au + f) + Eau = Ef € €(X),

because f € €' (X). Therefore Eu € €' (X). Since E € €>°(X), we obtain that
u € €1(X).

Problem 3.27 Let X C R! be an open set, and suppose u = (u1,us, ..., u,) €
PX)XPX)x...xDX),f = 1./, fn) ECX)XEX) x ... xEX),
a(x) = {ay(0)}] =, aj € € (X), satisfy

W +au=f.

Prove that u € €' (X) x €' (X) x ... x €' (X).
Hint. Use the previous problem.

Problem 3.28 Let X C R! be an open set where u € 2/'(X), a; € €*(X), i =
0,1,....,m—1,f € €(X) satisfy

u™ + apu™ Y a4 aou =f.

Prove that u € €™ (X).
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Proof Setting
u; = u(j_l), j=12,...,m,
we have
uj’- =y = upr for j=12,....m—1,

and

U™ 4 @ity + -+ + ayun + aou =f.
The previous problem tells us that u; € ' (X)forj=1,2,...,m. Using

U™ = —a ty — - — aytty — Ao +f

we conclude that u™ € € (X), so u € €™ (X).

Problem 3.29 Solve the equation
W'=0

in 7' (X).
Solution Set ¥’ = v, so that v/ = 0 and therefore v = Cy, Cy = const. Hence
u' = Cy. The solution of the homogeneous equation ' = 0is u = Cy, C; = const.
A particular solution of ' = Cy is u = Cox. Therefore the general solution reads
u=Cox—+ C;
Problem 3.30 Solve
u™ =0, m>3,
in 2/(R").
Answer u = Cp_ X' +.-- 4+ Cix + Cy, where C; = const,i = 0,1,...,m— 1.

Problem 3.31 Solve the following equations

1. xu' =1,

2. xu = P;I(,

3. 22w =0,

4. xu = signx,

5. (sinx)u =0,

6. (cosx)u =0,

7. X'u™ =0, n>m,
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8. u =68,
9. x*u = 1.

Answer

. ¢l + cH(x) +log|x|, ¢ =const,i=1,2,

e+ Hx) =P ¢ =const,i=1,2,

. c1 F+ eH(x) 4+ ¢38(x) — P%, ci=const,i =1,2,3,

. cd(x) + Pﬁ, ¢ = const,

. Y ck8(x — k), cx = const,

S ck8<x— w» cx = const,

o cH)X" 4 S 56m (x) + SR did, e, di = const,
. xH(x) + c1x 4+ ¢z, ¢; = const, i = 1,2,

. Pé ~+ ¢18(x), ¢c; = const.

XN N AW~

Problem 3.32 Let u € D'(R!), u(x) = 0 when x < x, for some given xy in R!.
Prove that there exists a unique primitive U~ of u for which U~! = 0 when x < x,.

Problem 3.33 Let {/,}°°, C D'(R!) converges to f € D'(R"). Prove

b b
/ f;l(x + t)dt —>n—>00 / f(x + t)dl

in D', where a < b are arbitrary fixed constants.

Problem 3.34 Let ) 2, g,(x) be convergent. Prove

b 9 0 b
/ Zgn(x+t)dt:Z/ gn(x + 1)dt,
a ,—1 n=1v9

where a < b are arbitrary fixed numbers.

Problem 3.35 Prove that the functions D*§(x), || = m, m = 0, 1, .. ., are linearly
independent.

Problem 3.36 Let Y be an open set in R"™!, I an open interval of R!, and take
u e 9'(Y x I) with %u = 0. Prove that

u(p) = /u0(¢(x1,x2, v X)Xy, ¢ € C°(Y x 1), up € D'(Y).
I
Proof Choose Yy € 65°(I) so that [, yo(x)dx = 1. Given g € 65°(Y) we write
go(x) = gx1,, .., X)) Vo (), x= (X1,x2,...,%),

uo(g) = u(go)-
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We have that uy € 2'(Y). Let ¢ € 65°(Y x I) and

Idp(x1, ..., xp—1) = /¢(x1, ey X1, X)Xy
i

The function ¢ — (I¢)1 has a primitive @ with respect to the variable x,, i.e.,

dx) —Ip(x1, ..., x0—1)Y0(x,) = ai D(x1,...,Xp).
Therefore
B — Iho() = - D(x).

0x,

so u(¢p — Ipy) = u(%dﬁ), whence u(¢) — u(lpy) = —%u(dﬁ) and then u(¢) —
u0(¢) =0,i.e.

u@) = w( [ $ee . nandn) = [w@ @),

Problem 3.37 Let X C R” be an open set, u,f € € (X) with %u = f, for some
7
j=1,2,...,n,in 2'(X). Prove that %u exists at every point x € X and g—)’; =f.
J

Proof Since f € €' (X), it has a primitive v with respect to the variable x;,

0
3xnv =f.
We consider u — v. Then
d d d
8x,,(u_v) n 8x,,u_ 8x,,v =/=r=0

Let X = Y x I, where Y is open in R"~! and I a real open interval. Then
u—v)(¢p) = /uo(qﬁ(xl,xz, e X1, Xp) )X
I

As v and u are piecewise-differentiable in x, and %v = f, we conclude that u is

piecewise-differentiable in x, and U= f.



Chapter 4
Homogeneous Distributions

4.1 Definition and Properties

Definition 4.1 A distribution u € 2’(R"\{0}) is said homogeneous of degree a if

u(p(x)) = t“u(t”d)(tx)), x e RM\{0}, 1> 0,

for every ¢ € 6;°(R"\{0}).
We introduce the notation ¢,(x) = "¢ (1x) for x € R"\{0}, ¢ € E5°(R"\{0}).
Example 4.1 Take ¢ € ¢3°(R'\{0}) and a € C, Rea > —1. Define the function

and the functional

1) = ¥ (§) = / 29 (o).
0
Then
() = [ xp()dx = [ 1yt (ty)dy

=1 [° ¥t (ty)dy = X% (1 (tx)) = X%, (¢r)

for £ > 0. Consequently x4 is a homogeneous distribution of degree a.
Exercise 4.1 Let a € C with Rea > —1. Prove that the function x is a locally

integrable function.
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Exercise 4.2 Take a € C with Re(a) > —1, and distinct points x;,x, € R'\{0}.
Prove that ;4 # x4 .

Exercise 4.3 Leta € C with Re(a) > —1. Prove that x4 € 2/(R'\{0}).

4.2 Exercises

Problem 4.1 Prove that the function a — 1,(¢), ¢ € ‘KOW(RI\{O}), is analytic
when Re(a) > —1.

Problem 4.2 Let Re(a) > 0. Show that for every ¢ € €°(R'\{0})
1,(9) = —al,—1(9).
Proof Let ¢ € °(R'\{0}). Then
L(¢) = /0 oox“dqb(x) =-a /0 oox“_lqﬁ(x)dx = —al,_1(¢).

Problem 4.3 Let Re(a) > —1 and k € N. Prove that for every ¢ € ¢°(R'\{0})

1
@+1...(a+k’

1(#) = (DL (9Y) (“.1)

Proof Let ¢ € 62°(R'\{0}). From the previous problem, we have

_Ia-l—l (¢/)

(¢) = -8

and

Loy2(9") .

Ia+l(¢/) = - a+2

Therefore we get

Loy2(¢")

— (_1)2
L(¢) = (=1) @t Da+2)

Using induction, we obtain

Ia+k(¢(k))
(@+D@+2)...(a+k’

L($) = (=)
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Problem 4.4 Let a € N U {0}. Prove that I, can alternatively be defined as the
analytic continuation with respect to a.

Hint. Use (4.1).

Problem 4.5 Leta € C, Re(a) > —1. Prove that I, € 2’*(R'\{0}).
Hint. Use (4.1).

Problem 4.6 Given k € N show that

S(k_l)(x)
k—1)"

lim (a + k)x} = (=1t x € RI\{0}. 4.2)
Proof Let ¢ € 62°(R'\{0}). Then, using (4.1), we have

limg—s (@ + k) Lo(¢) = limg—s—(—1)* Lot (¢(k) ) @I Th

‘ Io| o® . ®
= (-1 =0 =k+D)..(=1) _(k—1)110(¢ )

X=0Q0
- _(k—ll)! Jo ¢P@)dx = _ﬁd’(k_l)(x))ﬁo

_ ¢ Vo _ 1 8(¢(k—1)) _ (—l)k‘15(k—1)(¢)'

G—DT — G=1) k=11
Since ¢ € ¢°(R"\{0}) was chosen arbitrarily, we conclude that

EV suny, xR0},

M@+ 05 = G

Problem 4.7 Let k € N. Prove that

. ¢4 DO)y [P (logn)p®(x) . ¢p*H(0) 1
6h_11)10(1a(¢)— m) - _/0 (k—1)! dx + (k—1)! ;; (4.3)

x € RI\{0}, for ¢ € C°(R'\{0}). Here a + k = €.
Proof Let ¢ € 65° (R'\{0}). Using (4.1) we can represent I,(¢) in the following

form
(6)

PRI
l@) = (=1 (e+1—=k)...€e
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Then

_ I\ ¢ >) _
. *k=1) (@ ( *k=1) (@
lime_¢ (la(¢) - ¢(k—l)(!s)) = lime—o (( 1 Tl h.c ¢(k—l)(!s))

— koo _x4Ww koo _oWm
—llme—>0((_1) 0 (5:_1 k)x ed _( 1) fO (s+l—1)c()...€dx

k—1 1 1 :
+¢( )(0)((k—l—s)...(l—€) - (k—l)!)z)

X —l)¢(k)(x

. k 00( k—1 1 \1
—hme—>0((_1) fo (cF1—h).< dx + ¢ )(O)((k = e) 1=9 (k—l)!)z)

= — i e logxp O (dx + 94V (0) T Lty
We set

—k 1 ®) TN S S
SO =T / log x¢® (x)dx + ¢ (O)j;j T (4.4)
fork € Nand ¢ € 6°(R'\{0}).

Problem 4.8 Let £k € N. Prove that x:_k, defined by (4.4), is an element of
7" R'\{0}).

Problem 4.9 Let k € N. Prove

lim (dix++ka 1)_( 1)/(5/‘()()'

a—>—k

Proof We have, using (4.2),
timg— g (6, + ka1 ) = limy oy (@ 4 ket

= lim,—(a + k) = lim,— oy (a + k + Dt = (100

Problem 4.10 Let k € N. Prove

d
dx

5")()

—xF =~k 4 (=D R\ {0}.
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Problem 4.11 Let k € N. Prove

910

T o P GTRNOY. >0

@) = (@) + log 1 ———=

Proof Let ¢ € 62°(R'\{0}). Using (4.4), for t > 0 we have

349 = — g [0z x($10) v+ 90y T
= —ﬁ 15 (log x)tgp® (£x)dx + ¢(k_1)(0)ﬁ Zf;ll %

= — iy Ji Gog(ex) —log Ng® (1) (tx) + ¢4 (0) gl T, 1

= — i 2 log(t)g® () (1) + U (0) gty T, +
+ log tﬁ fooo ¢ ® (tx)d (tx)
(x=y)

= — 2 Jo T logyd® (y)dy + ¢V O0) i YT+ w2 o ¢ P (»)dy

= X+ (d)) + (lioglt)' 0 ¢(k)(y)dy

= x74(0) — 7250 00).

Problem 4.12 Fix a ¢ Z~ and take the smallest k € N so that k + Re(a) > —1. We
define, for € > 0 and ¢ € €>°(R'\{0}),

Hoo($) = / 2 (),

Prove that there exist unique constants Co, B, j = 0,1, ...,k — 1, such that
k—1
Hye(¢) = Co + ZBjE_ 7+ o0(1) when €¢— 0,
j=0

where Aj = —(a +j + 1).
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Proof Let ¢ € CX°(R'\{0}). We integrate H,(¢) by parts k times, to the effect
that

Hoe(d) = [ ()dx = 17 [ ¢p(0dx™!

f:o x 1 (x)dx

= a+1xa+l¢(x)dx) _. Tl

— 1 _atl 1 00 +2

= —a1€"" 1) ~ ey Jo 0

_ 1 _a+1 ( )_ 1 xa+2 /( )x=oo+ 1 fooxa+2 //( )d
= —71¢" 9 — T P (x rme T@rD@t?) Je ¢" (x)dx

_ 1 _at1 1 +2 1 0 3
= =€ 0O + e O + G Jo ¢ W

(=D* +k 4 (k (AR G) +j+1
= @+D(a+2). (a+h) f x ¢( )(x)dx—i— Z—O @ D@t @€ e

(=DF +k 4 (k (=1 Tlet)(0) +j+1
= ervernnarn Jo X MO mdx + 5 s e P + o).

Now let

(=DF +h 4 (k
Co = T @¥n Jo v X O (x)dx,

(=DiT1¢D(0) C_
B = ety /=0 Lo k=L

Using the above expression of H, ((¢) we obtain

k—1
Hae(¢) = Co+ Y _Bje ™™ +o(l).

J=0

Suppose
k—1
Hae(p) = Do+ Y Q™ +o(1),
J=0

where Dy, Q;,j = 0,1,2,...,k— 1, are constants. Then

k1
Co— Dy + Z(Bj — Q)N — 0.
=0
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Since A; # Ajfori # j,Rel; > 0,i,j =0,1,...,k—1, the above limit exists if and
onlyif Co—Dy=0,B;—Q;=0,j=0,1,2,....k— 1.

Problem 4.13 Let k € N, k > 2. Prove that there exist unique constants A;, j =
0,1,...,k—2, such that

Hoyo(®) = =g Jo~ logxg® (x)dx + 640 (0) 2 21 +

+ Y0 AipD(0)e T E — ES 80D (0) + o(1)  when € —> 0,

for every ¢ € E°(R\{0}).
Hint. Use the previous problem.

Problem 4.14 Leta € C, Re(a) > —1 and define

0 x>0,

x| x<O.
Prove
Y(9) =4 (D). P() = p(—x).
for every ¢ € €°(R'\{0}).
Problem 4.15 Leta € Canda ¢ Z~ U {0}. Prove that

(ri0)* = lim (r£ie)’ =xf + efmaxs  xeR

Problem 4.16 Prove
§k=1) ] §*k=1)

—k
Gtrat—1  Tu=n

ejFi”“x‘j_ + — ek (—l)l‘x+ .

Proof By (4.3) and the definition of x}* we have

(—l)k_l5(k_l)(x)

: —_ K
Jim (2 m) =y (4-5)

Using (4.5) and

™ = (=) F mi(a + k) + O(a + k)*) when a—> —k, (4.6)
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we have
. : (—DF18% V() -
lim ejF’”“(x“ - —) = (=D*xgk
a——k T k=Dla+k) =Dy
Now, using (4.6), we get
Fi Fima (1180
ermxy — et G—Dla+h)
— T k(=D %D )
—e maxx_zl_ _(_1) m
k(D18 Dy (DR 18D () 2
Therefore

) X . _)k—lgk—1)
lim,— (ﬁmﬂ — eTimal (k)_—l)-!(a_+k)(X))

. . _)k—1gk—1)
— hma_>_k(ejF’”“x‘_‘{_ _ (_1)k( (lk)—l)!(a+k)(X)

Dk 1gk—1) () . _k—15Gk—1)
+(=1)H (k)—l)!(a+k)(X)’”(a +h) =+ (k)—l)!(a+k)(X) O(a + k)z)

. . k=1 gl—1) kgt ()
- hma—>—k(€$'mxli ~ (D e = D (X)”’)

= (— l)kx;k.

Problem 4.17 Prove

(@£i0) ™ =2 + (DT £ in(-p .
(k—1)!
Proof Since
(xxi0)* =x4 + etimaya
we have
L0 = T @
Moreover,

et (x £1.0)" — 4y (=) (x £1.0)7F (4.8)
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and

8(k l)(x)
k—1)! .

:Fma a

X — e (— 1)kx:_k +im

From (4.7), (4.8) and (4.9) we then get

(k=1)
(—DF(x £ 2.0) ™ = x7 4 (k£ 84D (x)

Problem 4.18 Prove

5% (x)

(x+i.0) 7 = (x—i.0)™ = 2im(~1)* k=1

Proof From the previous problem, we have

o B B e
(x +i.0) k= x+" + (—1)kx_k + (_1)kl” 8(/{_1;!),

LA\ — — — . §k=D(y
(x—i0)F =xF + (=Dhxh - (—1)km(k_—1§!),

and immediately

§E=D0
k=1

(x+i.0)F — (x —i.0)* = 2in(-1)*
Problem 4.19 Prove
d Y - ya—1
—(xxi0) =alx+i0) .
dx

Problem 4.20 Define

4 4i0)F+ (x—i0)k
X = .

- 2
Prove that
1. x™ —x+ + (—1)kxzk,
d ( .—k —k—1
2 () = e
3. xx k= xI7k,

Problem 4.21 Show that

x—l

Th—nr

95

(4.9)
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Problem 4.22 Define the function x4 as follows

o
=

T+ 1)
fora € C, Re(a) > —1. Prove

L 25@) = x5 (9). Re(@)>—1, ¢ € PR,
2. 7 =80 D).

Problem 4.23 Let u be a homogeneous distribution of degree a on R*\ {0} and
A= Z Xjaj.
J
Prove
au— Au = 0.

Hint. Differentiate with respect to ¢ the equality

u(@ () = "u(f"¢(tx))

for ¢ € E°(R"\{0}).

Problem 4.24 Let v € ¥ (R"\{0}) be a homogeneous function of degree b
and u € 2'(R"\{0}) a homogeneous distribution of degree a. Prove that Yu is a
homogeneous distribution of degree a + b in R"\{0}.

Problem 4.25 Let u be a homogeneous distribution of degree @ on R"\{0}, ¢ €
¢s° (R"\{0}) and

o0
/ Ty (dr = 0, x = rw € R"\{0}.
0
Prove

u(@) = 0.

Hint. Use au = Au. Deduce u((a + n)¢(x) + A¢(x)) = 0 for every ¢ €

¢s° (R"\{0}). Then rewrite the last equality in polar coordinates and multiply by

ra+n—1.

Problem 4.26 Let u € 2/(R"\{0}) be homogeneous of degree a. Prove that %,
7

j=1,2,...,n, are homogeneous distributions of degree @ — 1 on R"\{0}.
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Problem 4.27 Letu € 2'(R"\{0}) be homogeneous of degree a and « € N". Prove
that D*u is homogeneous of degree a — || on R"\{0}.

Problem 4.28 Let u; € 2'(R"\{0}), j = 1,2, be homogeneous of degree a;. Find
conditions on ay, a; so that the combination aju; + o, u, becomes homogeneous on
R"\{0}, for any o, a, € C.

Answer a; = a,.

Problem 4.29 Let u € 2’(R"\{0}) be homogeneous of degree a. Prove that xju is
a homogeneous distribution of degree @ + 1 on R"\{0}), foranyj = 1,2,...,n.



Chapter 5
Direct Product of Distributions

5.1 Definition

Definition 5.1 Let X; C R", X, C R”™ be open sets. The direct product of the
distributions u; € 2'(X1), u» € 2'(X») is defined through

ur(x) X u2(y)(9) = w1 (x) (u2(y) (9 (x. )
uz(y) X u1(0)(9) = w2 () (1 () (p(x,y))), ¢ € 65°(Xi X X3).

Take X' CC X; x X, and ¢ € 65°(X’). Since suppp C X' CC X; x X is compact,
there exist open sets X| CC X, X, CC X5 such that X’ CC X xX). Letx € X;\X].
Then ¢(x,y) = O for every y € X,. Hence, ¥(x) = ux(y)(¢(x,y)) = 0, ie,
¥ (x) = 0 on X;\X;|. We may choose an open set X so that X| CC X, CC X), and
consequently suppyr C )fl.

Take x € X; and let {x;};2, be a sequence in X; tending to x as k —> oo.
Then ¢ (x,y) —k—s00 ¢(x,y) in €5°(X>) for every ¢ € 65°(X1 x X»). In fact,

€X.
suppe (xx,y) C X; CC Xz and Dy e (xx, y) = DS ¢ (xi, y), k —> oo, for every
multi-index & € N™. Because u, € 2'(X5), we have

Y (0) = us(0(P (. y)) —>k—s00 2(¥) (P (x. ) = ¥ (%),
i.e., ¥ (x) is continuous in x. Since x € X; was completely arbitrary we conclude

that 1// S %(X])

Letnow e¢; = (1,0,...,0) and consider the function

10) = 1 G+ her,) = $x.3)

© Springer International Publishing Switzerland 2015 99
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for x € X;. For it we have suppy; C Xé CC X, and

YEX:

2 9 (x,
D () 25 pe 220,

h 0,
8x1 —

for every @ € N™. Because uy € 2'(X,), we have

YLD 4 1y () (b (x + her, ) = 12 ($ (x.7)) )

= () (LD ) = 1y (3) (1) —> 10 1) (305 )

By induction, we conclude that
Dy () = w () (D (x.9))

for every o € N" U {0} and ¢ € 65°(X; x X,). Therefore ¢ € (50"0(}51) for ¢ €
C(X).
Let ¢ € 65°(X') and x € X;. Then D¢p(x,y) € 65°(X,), X, CC X,. Since
uy € 9'(X,), there exist constants C > 0 and m € NU {0}, C = C(uz), m = m(up),
such that

ID“Y )|l (0)(DFP(x,y)| < C max  |DEDI(x,y)]

yexj.|Bl<m

for x € X;. Now, we consider the operation

P(x.y) — ¥ (x) = ux(y) (¢ (x.y)) (5.1

from 65° (X1 x X») to 65°(X1). If ¢1, ¢ € 65°(X1 x X») and o, p € C, then
a1pr + oy —> ua(y)(e11(x, y) + o2 (x,y))
= a1z (y)(¢1(x,y)) + a2uz (v) (¢2(x,y))

= o1 Y1(x) + 292 (x),

i.e., the operation ¢ — u(y)(¢) from 6;°(X; x X») to 65° (X)) is linear.

Let now {¢,}°2, be a sequence in 65°(X; x X») such that ¢, —>, 0 0 in
%5° (X1 x X»). Then there exists a compact set X3 C X; x X5 such that suppg, C X;
for every n € N and

DD, (x, 1) 2,000
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for every @ € N", B € N™. From here, we conclude that there exists a compact

set X; C X, such that suppy, C X} for every n € N and D, (x)—>0, n —>
00, and ¥, —>p—00 0 in €5°(X1). Therefore (5.1) is a linear and continuous
operation from €;°(X; x X») to 65°(X,). It follows that u; (x)(u2(y)(-)) is a linear
and continuous functional on 65° (X x X3), so u1 X uz € Z'(Xi x X3).

In a similar way it can be proved that uy(y) X u;(x)(-) € 2'(X> X X1).

Example 5.1 Let us consider §(x) x 8(y)(¢ (x.y)) for ¢ € €°(R! x R!). We have
§(x) x 8(N(P(x.y)) = () () (¢(x, ) = §(x)(¢(x,0)) = ¢(0,0).
Exercise 5.1 Compute
H'(x) x 8(0)(9(x,)), ¢ € G (R xR).

Answer ¢(0,0).

Exercise 5.2 Compute

§(x—2) x H())(@(x.y)), ¢ €C°R' xR).

Answer ¢(2,0).

5.2 Properties

1. Commutativity
() X ur(y) = ur(y) x u1(x), w1 € 2'(X1),us € 7'(X,).
To prove the property we take ¢ € 6;°(X;xX>), so there exist sequences {72,
in 65°(X1 x X5) and {N}72, in N U {0} such that
Nk
G y) = Y P ()V()
i=1

and ¢y —>1—s o0 ¢ in €° (X1 X X»). From here, for (x,y) € X; x X, we get

w1 (x) X ur(y) (¢ (x, ) = u1(x) (w2 (y) (¢ (x. y)))

Ni
= lim @)@ ) = lim w()e)() ¢xtvu)

i=1



102 5 Direct Product of Distributions

Nk Nk
= Hm (x) (Z Pix()u2(y) (Vi (v))) = m ; uy () (Pix (x))uz () (Vi (v))

i=1

N Ni

= im0 (G0 =l 3 )90 )9 )
N Ni

= im0 (OMBN) =l 3 ) ) 9 ¥ 0)

Ni
= lim_ w0) @ (Y ge@Ya0)) = lim_ 1) (0 (@) ($(x. 1))

i=1

= uz2(y) (1 () (¢ (x.y))) = ua(y) X ur (x) (¢ (x.y)).

Since ¢ € 65°(X| x X3) was arbitrary, u; (x) X uz(y) = ua(y) X u; (x).
2. Associativity

(u1(x) X u2(y)) X uz(z) = u1(x) x (u2(y) x uz(z))
for up € .@/(Xl),uz (S .@/(Xz),u3 (S .@/(X3),

where X3 C R¥ is an open set.
Let ¢ € 65° (X1 x X» x X3). Then

(u1(x) X uz(y)) x u3(2) (¢ (x.y,2)) = (u1(x) X uz(y)) (u3(2) (¢ (x,y,2)))
= uy (x) (u2(y) (u3(2) (@ (x, ¥, 2)))) = ur(x) ((u2(y) x u3(2)) (¢ (x,y,2)))
= u1(x) X (ua(y) X u3(2)) (¢ (x,y,2)).

Since ¢ € C€5° (X1 x X» x X3) was arbitrary, (u1(x) X uz(y)) x u3(z) = ui(x) x
(u2(y) x u3(2)) for (x,y,2) € Xi X Xp x X3.

Exercise 5.3 Let u; € 2'(X1), uz € 2'(X»). Prove that the operator

w1 (x) > up (x) X uz(y)

defined from 2’(X;) to 2’(X; x X>) is linear and continuous.
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Definition 5.2 We will say that the distribution u(x,y) € 2'(X; x X,) does not
depend on the variable y if there exists a distribution u; (x) € 2’(X;) such that

u(x,y) = ur(x) x 1(y).
If this is the case, u € 2'(X; x R™) and for ¢ € €°(X; x R™)
u(x, ) (@ (x.y) = ui(x) X 1(0) (¢ (x,y))
= w1 () (1()(P(x, ) = 1 () ([ P (¥, ¥)dy)
= 1() x 1 () (P (x.y)) = 1)1 () (@ (X, ) = [ 1 (x) (@ (x,¥))dly.

ie.,

w@ ([ senas) = [ @

Exercise 5.4 Let (a,b) C R!, a < b, and take u(x,y) € 2'(X; x (a,b)) not
depending on y. Prove that

u(x,y+h) =u(x,y) VxeX;,Vy,y+he(ab).
Proof There exists a distribution u (x) € 2’(X;) such that
u(x,y) = ui(x) x 1(y).
Since 1(y) = 1(y + h) forevery y,y + h € (a, b), we have
u(x,y) = u;(x) x 1(y + h) = u(x,y + h).
Foru € 2'(X; x X») and ¢ € 65°(X1) we define the distribution uy on €5°(X>) by
up() = u@ @Y () for ¥ € EP(Xa).

Definition 5.3 The distribution u € 2’ (X; x X;) is said to be an element of €7 (X3),
p=0,1,2,..,if forevery ¢ € 65°(X1) we have uy € €7 (X>).

Exercise 5.5 Prove D%uy = (D‘;‘ u) .
¢
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Solution Choose ¥ € 6;°(X>) arbitrarily. Then
Dug() = (=D lug(D*¥ (y)) = (=)™ (D (P ¥ ()

= Dulp v ) = (Dju) ().

5.3 Exercises

Problem 5.1 Let X; C R”, X, C R™ be open sets and take u; € 2'(X), up €
2'(X3). Prove that

supp(u; X up) = suppuj X suppis.

Proof Let (xo,yo) € suppu;xsuppu, be arbitrary, and suppose U is a neighbourhood
of the point (xy, yp) contained in X; x X,. Let U; C X; be a neighbourhood of
x0, Uy C X, a neighbourhood of yy. As (xg,y9) € suppu; X suppus, there exist
¢1 € 65°(U1), ¢ € 65°(U>) such that ui(¢pr) # 0, us(¢) # 0. Therefore,

uy X uz(h192)(x0, y0) = u1(d1)(xo)uz2(¢h2)(vo) # 0 by definition of direct product.
Consequently (xo, yo) € supp(u; X uy), so we conclude

suppu; X suppuz C supp(u; X uz). 5.2)
Let now ¢ € 65°(X1 x X») be chosen so that suppg C X; x X>\ (suppu; X suppus).
Then there exists a neighbourhood U; of suppu; such that suppe (x, y) C X, \suppua
for every x € Us. Consequently, ¥ (x) = u2(y)(¢(x,y)) = 0 forx € Us. As suppy N
suppu; = 9,
X1 X X\ (suppuy X suppuz) C Xy x Xp\(supp(u1 X u2)),
from which

supp(u1 X up) C suppu; X suppus.

From the latter and (5.2) we get

supp(u; X up) = suppu; X suppus.
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Problem 5.2 Let X; C R", X, C R™ be open sets, u; € D'(Xy), up € D'(X»).
Prove

1.
D2 uy (x1) x D uy(x2) = D% D (uy(x1) X u(x2))

for any @ € N" U {0}, B € N" U {0}.
2.

a(x1)b(x2) (u1(x1) X uz(x2)) = (a1 (x)ur(x1)) X (b(x2)uz(x2)),

where a € €% (X)), b € € (X»).

Problem 5.3 Let X; C R” be an open set and (a,b) C R, a < b. Take u €
2' (X1 x (a, b)) satisfying u(x,y) = u(x,y + h) for every x € X;,y,y + h € (a,b).
Prove

0
—u(x,y) =0 on X Xx(a,b).
dy

Proof Since for every (x,y), (x,y + h) € X; X (a,b), h # 0, we have

ux,y +h) —u(x.y)
m =

hh—>0 h 0.
Then
d
@ 0 on X;x(a,b).
dy

Problem 5.4 Let X; C R" be an open set, (a,b) C R!, and u € 2'(X; x (a, b)) and
g—z = 0 on X; X (a, b). Prove that u does not depend on y.

Proof Let ¢ € €5°(X;1 x (a,b)). From here

ou
a—y(¢) =0
ie.
d¢ _
M(a—y) =0 (5.3)
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for every ¢ € 65°(X x (a,b)). Let ¢ € 65°(X; x (a,b)). Then there exists | €
€5° (X1 x (a, b)) such that

9 : b
p = D o6 [ pide

We define the distribution u; € 2'(X;) by

ur(Y2) = u(@e(y — yo)y2(x)) for v € 657 (Xy).

Using (5.3),
u(W) = u( D+ oy = yo) [} ¥ (x. £)d)
= u(282) + u(wcly = y0) f; ¥ (x.E)dE)
= (f] yx. £)d),

u(x,y) = up(x) x 1(y).

Problem 5.5 Let X; C R” be an open set and F € 2'(X; x R'). Prove that the
distribution u € 2’(X; x R'), defined by

w(@) = F(y) +1(x) x8()(¢), ¢ € G5°(X1 xR,
satisfies the equation
yu(x,y) = F(x.y).
Here f € 2'(X)),

(xy) = i(czs(x, ¥ — 1096 (x.0)).

and n € ¢°(R") equals 1 on a neighbourhood of y = 0.

Problem 5.6 Let X; C R", X, C R™ be open sets, u € €(X3) in y. Prove that for
every y € X there exists u,(x) € 2'(X;) such that

up(y) = uy(¢). ¢ € 65" (Xy).
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Problem 5.7 Let X; C R", X, C R™ be open sets, u € 2'(X; x X3), u € €(X») in
y. Prove that for every ¢ € 65°(X;), every y € X, and every € N

D (@) = (D) (9).

Problem 5.8 Let X; C R", X, C R™ be opensets, u € 2'(X; x X3), u € €(X3) in
y. Prove that the operation

¥ = uy (Y (x,y)

is linear and continuous from %3° (X x X») to 6p(X2).

Problem 5.9 Let X; C R", X, C R" be open sets, u € 2'(X) x X»), u € €(X3).
Prove that

u(y) = /X uy (Y (. 3))dy

for every ¥ € 65° (X1 x X»).
Problem 5.10 Compute

L 22 where H(x) = H(x1) -+ H(x,),
2. 8(x1) X -0 X 8(xp),

3. — 3,2H(X t) where H(x,t) = H(x)H(?),
4. v(x) x §(r), where v € € (R}),

5. —v(x) x §'(1), where v € F(R?).
Answer

L (—1)"8y; X 85y X +++ X by,

2. §(x),

3. H(x) x §'(1),

4. v(x)é;,

5. —v(x) 46,

Problem 5.11 Let X; C R", X, C R™, X3 C R be open sets, u; € 2'(Xy),
Uy € @/(Xz), us € @/(X3). Prove

uy X (ug + uz) = uyp X up + uy X u3.
Problem 5.12 Letu € 2’(R") and o € N". Determine
D (u(x) x 1(y)).

Answer 0.



Chapter 6
Convolutions

6.1 Definition

Consider uy,u, € 2'(R") and a sequence {n(x,y)}22, in € >°(R?") converging to
1 in R?" as k —> oo. Suppose that

dim g () X w2 () (7 (x, )9 (2 + 3) = w1 (0) X u2(9) (P (x + 3))

exists for every ¢ € 6;°(R") and does not depend on the choice of sequence.

Definition 6.1 The convolution of the distributions #; and u; is defined by
u * ur(P) = ur(x) X ur(y)(@(x + )

= limg—s o0 11 (%) X w2 (y) (i (x, y)p (x + y))
for any ¢ € 65°(R").
For ¢1, ¢ € 65°(R") and a1, o € C we have

uy * wp (a1 + o2¢h2) = limp—s oo u1 (x) X 12 (0) (M (x, y) (@11 (x + y) + 222(x + )
= Ty oo (0101 (9) X 10.0) (0 V)0 (6 + 1)) + 2101 () X 12 3) (e, ¥) o (x + 1))
= oy limg—s o0 11 (%) X 12 () (i (x, )1 (x + 3)) + 02 limy—s 00 11 (¥) X 12(3) (i, )2 (x + ¥))

= aqu; * ur (1) + ooy * ur (),

proving the convolution * is a linear functional on ;°(R").

© Springer International Publishing Switzerland 2015 109
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Let now {¢,}°2, be a sequence in 6;°(R") which tends to 0 in 635°(R"). Then
limy,—so w1 * 2 () = limy—s o0 limg—s o0 11 (x) X 2 () (Mic(x, )P (x + ¥))
= limyg—s oo limy—s 00 11 (x) X u2(¥) (i (X, )P (x + ¥))

= limg—s o0 u1 (x) X u2(y)(0) = 0.

Consequently u; * u, € 9'(R").

Exercise 6.1 Letuy,u; € 2'(R") and assume u; * uy exists. Prove that
Uy > Uy * up (6.1)

is a linear map from 2’(R") to itself.

Example 6.1 The operation defined in (6.1) is not continuous on 2’(R"), because
d(x—k) ——00 0
but
1*8(x—k) =1.
Exercise 6.2 Let uj, u; € 2'(R") and assume u; * u; exists. Prove
supp(u1 * uz) C suppu; + suppiz.
Solution Pick ¢ € 4;°(R") so that
supp$ N suppu; + suppuy = @.

Then, since supp(u; X u;) = suppu; X suppua,

supp(u1 X uz) N supp(i(x, ) (x + ¥))

C (suppu; x suppus) N {(x,y) € R* : x + y € suppg} = @.
Eventually,

supp(u; * up) C suppu; + suppus.
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6.2 Properties

Letu;, uy € 2'(R") and suppose u; * u, € 2'(R") exists.

1. Commutativity.
uy * uz (@) = limg—s o0 w1 (x) X uz2(y) (e (x, ¥) (x + )
= limg—s o0 12 (y) X w1 (X) (i (x, )P (x + ¥))

= u(y) X1 () (P (x +y)) = uz *u1 (@), ¢ € ¢7°(R").

2. Convolution with the § function.
ur % 8(¢) = u1(x) x S()(P(x +y))
= lim—s o0 u1(x) X 8(3) (1 (x, ¥)$ (x + )
= limy—s 00 u1 (1) (6(¥) (M (x, Y)p (x + y)))
= limy—, w1 (x) (e (x, 0) (%))

=ui(p), ¢ €% (R,

and analogously, § * u; = uj.
3. Translation.
Let h € R". Then for ¢ € €°(R"), we have

ur(x + ) * up(x)($) = w1 (x + h) X ux(y) (¢ (x +y))
= limg—s 0 1 (x + 1) X uz(3) (e (x, )@ (x + ¥))
= limy—s o0 11 (x) X u2(Y) (i (x — 1, y)p (x — 1 + y))

= up x ua(p(x — h)) = (u1 * uz)(x — h)(¢).
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Moreover,
11 (=) % us(=x)(9) = 11 (=) X uz(=y)($(x + y))
= limp— 00 u1 (—x) X u2(=y) (e (x, y) (x + y))
= limg—s o0 11 (x) X 12() (=%, =) (=x — )
= w1 % up((—x) = (1 % w)(=0)(P), ¢ € G R").
4. Leta € N* U {0}. Then D%u; * us, u; * D%us exist and satisfy
D% (u; * up) = D%y % up = uy % D%us.
In fact, for ¢ € E2°(R") we have
D (uy % u)(¢) = (—D)luy % up(D*¢p)
= (=Dl () 3 w () (DLP (x + )

= (=) limg—s 00 u1 () X () (i (x, ) D (x + ¥))

= (=) limy oo 11 (5) X 12() (D2 (0, V)b x + 7))
S () D iz D4 )

= (=) img—s 00 11 (x) X 2 () (DY (e, Y)$ (x + ¥))

o

_(_1)|05| limg—s 00 ul(x) X MZ(Y) (Zﬁ«x (’3

) DY P (e, y)DEp (x + y))

(here we use that 7;(x,y) = 1 on a neighbourhood of suppu x suppu for k large
enough)

= limy—s 00 D*u1 (x) X ua (y) (i (x, )@ (x + y))
= D%ui(x) x ua(y)(¢(x +y))

= D”‘ul * u2(¢).
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Similarly one shows that
D% (uy * up) = uy *x D%u,.
Example 6.2 For (H(x) * §)’, x € R! we have
(H(x) * 8(x)) = H'(x) * 8(x) = 8(x) * 8(x) = §(x).
As a consequence
H(x) * §'(x) = §(x).

Exercise 6.3 Compute (x*> * §(x))’, x € Rl
Answer 2x.

Exercise 6.4 Compute (H(x) * P(x))"”, x € R!, where P(x) is a polynomial of
degree n € N.

Answer P’ (x).

5. Letuz € 2'(R") and suppose u; * up * uz, uy * uy, uy * uz and u, * uz exist. Then
Uy * Uy * uz = (uy * up) * uz = uy * (up * uz). (6.2)

Exercise 6.5 Prove (6.2).

6.3 Existence

Let X, B C R" be open sets and A C R” a closed set. By 2(R", A) we shall indicate
the space of distributions u € 2’ (R") with support contained in A.

Definition 6.2 The sequence {fi}{2, C 2’'(R",A) converges to 0 in 2'(R",A) if
suppf; C A for every [ € N and fi(¢) —>— O for every ¢ € € °(R").

Given R > 0 we set
Tr = {(x,y) :x €A,y € B, |x+y| <R}

Foru; € 9'(R",A), up € 2'(B) the convolution u; *u; exists and can be represented
in the form

up x up(p) = w1 (x) X wa(NE@NMPx+y). ¢ € %GR,

where £, € €°(R") and £(x) = 1 on A%, n(y) = 1 on B¢, £(x) = 0 on R"\A%,
n(y) = 0 on R"\B*. To prove this fact we take ¢ € 6 °(Ug) and set out to show
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that the limit
Jim g (0 X w2 () (i (x, ) (x + 3))

exists and does not depend on 7x(x, y). Since supp(u; X u2) = suppu; X suppuy, we
have

supp((u1 (x) X u2(y))p (x + y)) C Tk.

Because Tk is a bounded set, there exists N = N(Tg) € N such that n;(x,y) = 1 in
Tg for every k > N. From here,

limy—s 00 11 (x) X u2(y) (Mic(x, )P (x + y))

= limy— 00 (1 (x) X u2(y)) (x + y) (i (x, )

= (1 (x) X uz(y)¢ (x + y) (v (x, )

= (u1(x) X uz2()) (@ (x + y) v (x, y))

= (u1(x) X u2(y) (@ (x + y)).
Consequently the limit limg—, o0 21 (x) X u2(y)(nx(x, )¢ (x + y)) exists and does
not depend on {nx(x, y)}2,. Therefore we can choose ni(x, y) = & (x)7,(y), where
£(0), 71, (y) € EO(RY), E(x) = 1 on A, 7j,(y) = 1 on B, &(x) = 0 on R"\A™,

ix(») = 0 on R"\B%. We set £(x) = &v(x) and 1(y) = 7 (). Thus
dm un () X ur () (ke )@ (x4 ) = w1 () x n)ECN (P (x + ).
In addition, we have u; * u, € 2'(A + B) because supp(u; X us) C A + B.
Exercise 6.6 Letu; € 2'(R",A), uy € 2'(B). Prove that
Uy —> Uy * Uy

is a continuous operation from 2’(R",A) to 2'(A + B).

Exercise 6.7 Let u; € 2'(R"), up € &' (R"). Prove that the convolution u; * u,
exists and can be represented in the form

uy x ux(9) = w1 (X) X wx(MMOP(x +y), ¢ €657 (RY),

where € °(R"), n = 1 in (suppu»)€ and n = 0 in R"\ (suppu»)?.
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Ifu; € €°°(R") and uy € &'(R"), the convolution u; * uy € €*°(R") exists and can
be represented as

up * up(x) = iz (y)(ur(x —y)), (6.3)

where i, is a continuation of u; on €°°(R").
If uy € F°R"\{0}) and u, € &'(R"), then the convolution u; * u; €
¢*° (R"\suppuy) exists and can be represented in form (6.3).

6.4 The Convolution Algebras ¥’(I' +) and 2’ (I")

Let I" be a closed cone.

Definition 6.3 We say that the set A C R” is bounded by the side of the cone I" if
A C I' 4 K for some compact set K C R".

A compact set A in R” falls under this definition by taking I = {0}.
With 2’ (I" +) we will indicate the space of distributions with supports bounded by
the side of the cone I".

Definition 6.4 We say that the sequence {u,}°2, in 2'(I"+) converges to 0 in
92'(I" +) if there exists a compact set K C R” such that suppu, C I' + K and
Uy —>pn—s00 0in 2’ (R™).

If I is a closed, convex, acute cone, C = intl"*, S is an (n — 1)-dimensional C-like
surface and we take u; € 9'(I'+), up € 2’'(S+), then the convolution u; * u, exists
in 2'(R") and can be written

ur xux(@) = w1 (¥) X wx(ME@NMP(x+y). ¢ € 6°(RY), (6.4)
where £, € 65°(R") and § = 1 on (suppu;)¢, n = 1 on (suppur)‘, § = 0 on
R"\(suppu1)*, 17 = 0 on R"\ (suppuz)*. In addition, if suppu; C I" + K, where K
is compact in R”, then supp(u; * uy) C S+ + K and the operations

Uy —> Uy * up and Uy —> U * Up,
are continuous from 2'(I" +) and, respectively, 2'(S+) to 2'(S+ + K).
Ifu; € 9'(I'+), uy € 2'(I'+), the convolution u; * u, exists in 2'(I"'+) and can
be represented as in (6.4). The operation

Uy —> uy * Up

is a continuous map from 2'(I" +) to 2'(I" 4). Taking the convolution as multipli-
cation turns 2’(I"+) into a commutative and associative algebra.
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The space of distributions in 2’(R") with support in a subset of I" will be written
2" (). M uy,uy € 2'(I'), then

supp(u; * uz) C suppu; +suppu, =" + 1" =1
Therefore 2'(I") is a subalgebra of 2’ (I"+).

Exercise 6.8 Letuy,us, u3 € 2’'(I'+). Prove that the convolution u; * u, * uz exists
in 2'(I" +) and the operation

Uy —— Uy * Uy * U3

from 2'(I"'+) to 9’'(I"+) is continuous.
Exercise 6.9 Generalize the previous exercise.

Some applications of the convolution algebras 2’ (I"+) and 2’(I") can be found
in [19, 27].

6.5 Regularization of Distributions

Let X C R” be an open set and consider u; € 2'(X), up € &' (X) with suppus C
U. C X. The convolution

uy x ux(@) = u1(x) X wx()(MO)P(x +y)). ¢ € GTRY), (6.5)
where 1 € 65°(Xc) is 1 on (suppu)., is well defined, and does not depend on the

choice of n. We know u; * up = up * uy, u; * § = uy and that u; — u; * u and
upy > uj * uy are continuous. In particular, for ¢ € €°°(X,), the convolution

up * o(x) = ury(ee(x —y))

exists and belongs in €*°(X,).
The distribution

Ule = UL * We

is called the regularization of the distribution u;.
Since w, —>¢—¢ § in Z'(X), we have

Ule = U] * W —>e—s0 Ul * 8 = Uy,

showing that any distribution can be considered as a weak limit of its regularization.
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Exercise 6.10 Prove that the space 63 (X) is dense in Z'(X).

Proof Take u € 9'(X) and let u be its regularization. Define

117

X CCX,CCX3CC...CCX,CC..., U,f‘jrle = X, ¢ = dist(Xy, BX),

with n; € €5°(Xk) such that n, = 1 on X;_;. We consider the sequence {1, }72,

for which

limy—s 00 Mt (@) = limg—s oo tte, (Midh)

= lim— oo Ue (@) =u(p), ¢e CKOOO(X)

Since u € 2'(X) is arbitrary, 6;°(X) is dense in 2’ (X).

6.6 Fractional Differentiation and Integration

The space 2’ (R ) will be denoted 2/, for short.
Definition 6.5 Let o € R'. We define

H(x)x2™!

1
@ for a>0,x€eR,,

Ja(x) =

2 () for @>0,xeR,,neN.

Exercise 6.11 Prove thatf, € 7/,

Exercise 6.12 Prove that

S = s |
P X) = ————
T T@r®) Js
Exercise 6.13 Prove f, * f3 = futp.
Proof
Casel. o>0,8>0.
We take y = tx in (6.4):
A=l _ _
fo 6 fp () = B [0 P11 = )%

_ H(x))ca+ﬁ H(x)xu-‘rﬁ—l _ -
= Torp B@.B) = ragp— =fers(d). xR,

Case2. o <0,8>0.

YWl x—y)*ldy, xe R},_,oz >0,6>0.

(6.6)
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Then

Ja(x) = fé'_?n(x), a+n>0neN,xe E

We fix n and get

(n)
fo % 1@ = £+ f50) = (farn #f3) (0

(now we invoke Case 1 because @ + n > 0 and 8 > 0)

(n) H(x) a+p+n—1 (n)
(fa+ﬁ+n) () = (116(24_—,34_,[))

_ H@(a+B+n—1)..(a+p)xTh!
- I (a+p+n)

H(x)x2 A1 ol
= (I{)(a—+ﬂ) :fa_HS(X), XER}’_.

Case3. o >0,8<0.

6 Convolutions

We omit the proof and leave it to the reader, since it merely reproduces that of

Case 2.
Case4. o <0,8<0.
Let ny,n, € N be fixed so that

fo =S80 Sy =S am > 0. 4y > 0.

Then
(1) (2)
Ja *fﬁ(x) fa+n1 * ,3+n2(x)

) (n1+n2) )

= (fa+n1 * fB+n,

(n1+n2)
) x

= (fa+ﬂ+n1+n2

(n1+n2)
— 1 +B+m+na—1
m(H(x)xa premt: )

H(x)

at+p—
— H)x* TP (x)

FaTh forp(x), x€ Rﬂ_.

m(d+ﬂ+n1+n2—1)...(06+,3)x”‘+ﬁ_1(x)
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Example 6.3 Let us consider f. We have

H(x)
ra

o) =filx) = ( )/ = §(x).

Since @jr is a commutative convolution algebra,

fo # foa(®) = fol) = 8(x), xR

for & € R!. Consequently ;! = f-,.
Forn € Z~ we have

o=ty " =8,
SO

fixu=8"swu=38%u = 4"

for u € 7' . In the case when n € Z we have f,,(x) = H([)i)(x:)_l ,X € E Hence,
(n)
()0 = £ o)
_ (H(x)xu—l)(”) _ H/(X)(xu—l)(”_l)
= * u(x) = —Fw % u(x)

= § * u(x) = u(x), xe@.

7
forue 7.

Definition 6.6 When o < 0 the operator f, * is called fractional differentiation in
the sense of Riemann-Liouville. When « > 0 it is known as fractional integration
or Abel operator.

Letk € (0,1). Then
Du = D(Dk—lu) = D(fl_k * u) (6.7)

!
foru € _@+.



120

6 Convolutions

Let ¢ € ‘K‘X’(R ), E n € 2, be chosen so thatE 1 on (suppfi—x)¢, n = 1 on
(suppu)€, § = 0 on RL \ (suppfi_1)*, n = 0 on RY \ (suppf;_)*. Then

Si—k * u(¢p)

= /i) X u(y)EX)n ()¢ (x + y))

= M9 (Eup) ()P + )

= 1 (£ [25 w09 (e + )dy)

= Fi Jo X [0 () (x + y)dydx

= 15/
= k)f

ra-n

i [ T+ du()dy (e y =2)

Coo ) [z =y (2)dzdy

S =)@ ()dxdy

“oo Jo uO)(x = y) T dyg (x)dx

= i Jo 1O =) dy(@).x € R}

As ¢ € 65° (R ) was chosen arbitrarily we conclude

Sik kux) =

1 x s —
m/o u(y)(x —y)~*dy, xeRl.

The latter representation and (6.7) imply

Dru(x) =

If [ € N, then

7
forue 7.

k)d

/ u(y)(x—y)*dy, ke (0,1), xERﬂ_.

DH—ku — Dl(DkM)
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Exercise 6.14 Compute D:H (x),x e E

2 H
Answer T

Exercise 6.15 Compute D3 8(x),x € E

1 d -1
Answer T%)E(H(x)x 3).

Exercise 6.16 Letk € (0,1) and u € &', , and call u_; the kth primitive of u. Prove
that

u = firu= % / -9 lu()dy, xeRY.

Exercise 6.17 Letk € (0,1),/ € Nandu € .@Q_. Prove that
1 X X1 XI—1 Xi i1 —1
U = —— (xx; =) uly)dydx;...dx;, xeR,.
mal ol +

6.7 Exercises
Problem 6.1 Let u(x,7) € D'(R" x R!). Find

(D”‘S(x) x §(8) (t)) s u(x, 1),

where @ € N", 8 € N.

Answer
D% D’,3 u(x, ).

Problem 6.2 Compute

. H(x) * H(x)x?,

. H(x) x H(x) sinx,

. H(x) * H(x)x?,

. H(x) x H(x)(x + cosx),

- H) * HX)f (x), f € €P°RY)

in 7'(RY).

[ I SO T SR
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1. Solution.

6 Convolutions

Fix ¢ € 6°(R!) and choose £,7 € €°(R') so that § = 1 on

(supp(H(x)x*))¢, 7 = 1 on (suppH (x))*, £ = 0 on R'\ (supp(H (x)x*))*, n = 0
on R"\ (suppH(x))%. Then

H(x) x Hx)X(¢) = Hx) x HO)Y (E@n0)(x + ¥))
= [P H®) [Zog HO)Y$ (x + y)E(On(y)dydx

= % [P HOHO)Y ¢ (x + y)dydx  (y+x=2)
= [ [% H®H(z —x)(z — x)*$ (2)dzdx

= [%,¢(2) [°0 HW)H (z — x)(z — x)2dxdz

= [T H®) [5(z =0 dx (2)dz

= [*L HQ)5¢()dz

= H0% (9).

Since ¢ € ¢°(R!) was arbitrary,

2. Solution.
3. Solution.

4. Solution.

5. Solution.

x3
H(x) * Hx)x* = H(x)?.

2H (x) sin’ 2
HE@?Y.

H()c)(%2 + sinx),
H(x) f(ff(x — t)dt.

Problem 6.3 Compute

[ I SN T \SR

in 7'(R").

. H(x)x x H(x)x?,

. H(x)x % H(x) sin x,

. H(x) cosx x H(x)x?,

. H(x)x x H(x)e™,

- H@)f () * H)g(x), f. g € €°R')
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1. Solution. Let ¢ € %XR!Y), &n € EPR!) such that £ = 1 on

(supp(H(x)x))%, n = 1 on (supp(H(x)x*))", § = 0 on R"\(supp(H(x)x))*",
n = 0 on R"\ (supp(H (x)x?))?. Then

H(x)x * HE)x(¢) = Hx)x x HO)Y*E@ 1) (x+ )
=[S H@)x [22 HOYE @) (x + y)dydx

= [T HWx [  HOY (x4 y)dydx  (x+y=72)
= [ H@)x [% H(z —x)(z — x)*¢p(2)dzdx

— [Zo0 $ (@) [ oo HX)H (2 — x)x(z — x)?dxdz

=[S $@H(Q) [5 x(z — x)?dxdz

= [%L H@) 56 (2)dz

= H(»)5(¢).

Therefore
4
H(x)x % Hx)x> = H(x)z.

2. Solution.  H(x)(x — sinx),
3. Solution.  H(x)(3x*> + 6cosx — 6),

4. Solution.  H(x) (x —1+ e_"),

5.Solution.  H(x) [; f(y)g(x — y)dy.

Problem 6.4 Prove

1. 8(x—a) *8(x—b) =8(x —a—b),x € R',a,b = const,
2. 8™ (x — ) * (5<k> (x— b) % u(x)) — u*tmM (x—q—p), x €R!,
ue 2'(RY,a,b = const, k,m € N.

Problem 6.5 In D'(R?) compute

1. H(at — |x]) * (H(t) x 8(x)), a>0,

2. H(ar — |x|) (8(;) x 8(x)), a>0,

3. H(at — |x|) * (H(t) sint x 5(x)), a0,

4. H(ar — |x]) * (H(t)(t2 Fi41)x 8(x)), a>0,
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5. H(at — |x|) * (H(t)(l + cost) x 5(x)), a>0,
6. H(ar — |x|) (f(t) x S(x)), a>0,
where f € €(t > 0) andf = 0 fort < 0.

Answer
1. H(t)(t— %)
2. H(at — |x|),

3. Hiar — |x])2sin*(4 = 1),
s HO(3( ) () ),
5. HO(1— 1+ sin(r - 1)),

6. H(at — |x|) fo"% f(v)dr.

Problem 6.6 Let X; C R™, X, C R™ be open sets and K € D'(X; x X;). Define
the map %" : €5°(X») —> D'(X1) by

H (@) = / K o) ()do, ¢ € 6°00).

X2
Prove that

1. ¢ is continuous if and only if ¢, —>j o0 01in D' (X)) as ¢ —>j— 00 0in
Gy (X2),
2.

H W) =KW x¢), ¢ €67 (Xa). ¥ € C5°(X).

Hint Use the definition of distribution and direct product by % functions.
Definition 6.7 The distribution K (x;, x,) is called the kernel of the map ¢

Problem 6.7 Let X; C R” be an open set and X = X, x X;. Prove that the support
of the kernel of the continuous linear map % : 65°(X) — D'(X) is {(x,x) € X} if
and only if #'¢p = )", a,0%¢, where a, € D'(X) and the sum is locally finite.

Solution Let

H W) =Y as(“$)V).

From the previous problem it follows that the kernel of the above operator is

PIACTIESIT)

o
y=x
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Hence the support of K is the set {(x,x) : x € X}.

Conversely, let {(x,x) : x € X} be the support of the kernel K of .#". Using (2.12)
we have

Hp = ayd"p.

Problem 6.8 Let X; C R™, X, C R" be open sets and K € D' (X; x X;) the kernel
of the operator . . Prove that

supp-#u C suppK - suppu,
where
suppK - suppu = {xl € X : 3x; € suppu such that (x1,x;) € suppK }

Solution Let x; ¢ suppK - suppu. Then there exists a neighbourhood V of x; such
that

V N suppK - suppu = Q.

Ifv e €°(V),

(supp(v X u)) N suppK C (V X suppu) N suppK = @.
Consequently
Hu(v) =0,
i.e., Zu = 0in V. Therefore
supp-#u C suppK - suppu.

Problem 6.9 Let X; C R™, X, C R™ be open sets, K € €°°(X; x X,), and define
H Cgoo(Xz) — ‘K“(Xl) by

f¢(x1) Z/ K(xl,xZ)(P(XQ)de.

X2

Prove that % can be extended to a map from &’ (X3) to €°(X;)

Hu(x) = u(K(xl, -)), ue & X)), x €Xi.
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Problem 6.10 Let u; € D’k(R”), uy € 6,°(R"). Prove that u; * u, defines a
continuous function

x = up(up(x —-)).
Problem 6.11 Take u;,u, € D'(X), up, with compact support. Prove that
singsupp(u; * up) C singsuppu; + singsuppu,.

Solution Let u; € &'(R"), ¥ € 65°(R") such that ¥ = 1 on a neighbourhood of
singsuppu,. Then

uy = (1 =Y)uz + Yuy.

By definition of v it follows that (1 — ¥ )u, € %5°(R"). Therefore u; * ((1 — ¥ )uy)
is a ¥° function on

{x: {x} — supp(Yuz) C singsuppul}.
Consequently

singsupp(u; * uy) = singsupp(u; * (Yuz)) C singsuppu; + singsupp(Yuz).

We also have

singsupp(Yu,) C singsuppuy,

and the claim follows.

Problem 6.12 Let P be a differential operator with constant coefficients
P = Z aq,0%.
o

Prove

1. Pu = P(8) * u foru € D'(R"),
2. P(uy * up) = P(uy) % uy = uy * P(up)

for uy, u, € D'(X), where uy has compact support.
Solution
1. We have

P(u) = Zaa(aaa x u) - Z(aaaa(s x u) - (Zaaaa(s) xu = P(8) * u.

o o
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2. We have

P(uy *up) = Zaaa"‘(ul xUp) = Zaaaaul *Upy = (Zaua"ul)*uz = P(uy) *uy.

At the same time

P(up xup) = Zaaaa(ul *Up) = Zaaul * 0% = up * (Zaaa“m) = u; *P(uy).

o

Problem 6.13 Let u;,uy € D'(R"), up, with compact support. Suppose that for
every y € suppu, we can find an integer j > 0 and an open neighbourhood V,
of y for which

1. up e D'(§{x} =V —y),
2. up € € (V —v)

or

1. uy € %’f+j({x} — Vy),
2. up € DU(Vy).

Prove that u; x up € ¥*on a neighbourhood of x.
Problem 6.14 Given f € ¥ (R"), compute f * 3s.

Answer
/S HOOF (= 2)ds..
Problem 6.15 Let - (v8s) € D'(R"), f € €' (R"). Find

d
o (0ds).

where v is a piecewise-continuous function.

Answer
d
- /S v(y)a—i(x —y)ds,.

Problem 6.16 Let y € € (R"). Find

1. |x|*" % uds, n >3,
2. log |x| % ués, n = 2.



128 6 Convolutions

Answer

L [on@)|x—yl*"ds,,
2. — [ n(y) log |x — ylds,.

Problem 6.17 Let &,(x) = |x|>™, n > 3 and g € L' (R"). Compute

1.V, =6&,%g,
2. An(8y % 8).

Answer

L [on 8Ol — yP™"dy,
2. —(n—2)pu(x: x| =1,x e R")g.

Wesetc, = (n—2)u(x: |x|] = 1,x € R").
Problem 6.18 Compute

1. |)C|2 * 5S(R)7

2. sin |)C|2 k 8S(R),
3. elx‘z * (SS(R),

4. |x| * (SS(R),

5. fIx[) * 8swy.

where f(x) € €([0,00)) and S(R) = {x € R? : [x| = R}, x € R®.
Answer
1. 471R2(|x|2 + Rz),

8 (cos((R -+ 1)) —cos( (R - 1)),

o (—e(R‘W + elfHhD 2),

2.
3.
4 47R(3R + |xP),
5. TTIT fo”f(\/R2 + |x|* — 2R|x]| cos 9) sin 6d0,

where
y1 = Rcos¢cosf,y, = Rsingpcosf,y; = Rsinf, ¢ €[0,2x], 0 €][0,n].

Problem 6.19 Let w(¢) be a continuous function on ¢ > 0 and w(¢) = 0 for ¢ < 0.
Define &(x, 1) = 2D g, (x). Find & (1) * w(r).

4t

Answer

w(t — |x])
477 |x|
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Problem 6.20 Let
&1(x, 1) = %H(t— |x]),

&(x, 1) = H(—|x])

27 A/ 12—|x|? ’
E(x.1) = T8 (x).

Also let ii(x) € F(RY), i = 1,2,3. Find &(x. 1) = ii(x), i = 1,2, 3.

Answer
12O ) dz,
7. H® i)

I |x—z|§t\/t2_— mdz,
3. 40 Jste BE)E.

Problem 6.21 Let f(x,7) € D’ (R; X R,l ), i = 1,2, 3, be a distribution for which
suppf C {(x,) :t>0}.Find & xf,i =1,2,3.

Answer

i= 1 L e .

. 1t Sf(En)
=2 fo f|x—§|5r mdédn,
=3, 3% fyun €t — |x—EDdE.

Problem 6.22 Letf(1) € €'(A > 0), f(0) = 0. Find

ad
—f(Ix]) * a—n5S(R>-
Answer

7R [ FHDT 1 /T) 9
= an.
2x] Jg=ixp2 VA On

Problem 6.23 Let u;, us,...,u, € %). Prove that

|y ug -k uy (0)] < e[y - - [|uanl |, »
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where
1 .
—+—4+-+—=n-1, 1=<p;<o0,j=12,---,n

Hint Distinguish two cases: k = 2 and k > 2.

Problem 6.24 Let1 <p; <oo,j=1,2,--- ,nand

1 1 1
— 4+ —=n—14+-, 1<g=<oo.
P1 Pn q

Take u; € 6p,i = 1,2,--- ,n, and prove
[y s vz s - s un|lg < [ur]lp, - [|unl|p,-

Problem 6.25 Let k,(y) = |y|« and L + 1 =1, L+ =1L1<p<d,

u e L*® NIP. Prove

4 P

r -
ks % ulloo = Callul llulloo ™

Solution Let R > 0 be fixed. Then
ko 40| = | fro ko = )| = | o kau = )|

n

< Jpo DI E U = )ldy = [l <p V174wl = W)y + flyj=p VI 4 Jux = y)|dy.

For
/ = e = y)ldy
[ylI<R
we have the following estimate
n R n n
/ 1 e = ldy < exlullos / P Ndp = lullwcaR . (6.8)
[yI<R 0

For

/ 1 e — y) dy
[y|=R
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we have the following estimate

\‘._.

Sy 1 e =1y < il fy g 150" ay)”
(6.9)

1
= lfully(e3 f2 o™ =5 dp)" = callull[,RY "
Combining (6.8) and (6.9),
ko ()] = C(R™5 lulloo + RY % ul] ).

We choose R so that

n
Re = fullpm—r—-
"l oo
Then
n—2 % _5
R = {|ul|p" [[ullos”
n—2 aL’ l_aﬂ’
R alulloo = [fulls" I[l]ulloo .
i AT
R lullp = [ull5 |ulloo -
Consequently

5ok
lka * u(x)| < Cllul|p [|ulloo -

Problem 6.26 Letu € L'(R") and s be a positive number. Prove that

1. u can be written as

o0
u:v—i—g W,
k=1

where
o0
ol + Y lwille < 3lulli. [v@)] < 2%,
k=1

2. for every sequence of pairwise disjoint cubes [y we have wy(x) = 0 for x € I,
S Wi dx = 0,5 302, (L) < [ully.
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Solution Let us subdivide R” into cubes I, such that p(f,) > % Jgo luldx. Then

spL(In)>/ |u|dx:Z/|u|dx>/ |udx,
R T Jh In

ie.,

|uldx < s.
H(In) I,

Now we divide I; into equal parts so that the average of |u| on each one is greater
than or equal to s. Therefore

slin) < [y, luldx < [ |uldx < sp(l) = 2"spu(ly).

Let

v(x) udy, x € Iy, (6.10)

o) I,
and

u(x) —v(x) for x ey,
Wik = (6.11)
0 for x ¢ Iy.

Now we divide I, into equal parts so that the average of |u| on each is greater than
or equal to s. Formulas (6.10) and (6.11) are valid for this decomposition, so we can
iterate. In this way we produce a sequence of functions wy, and a sequence of cubes
L.

J

Now we make (6.10) explicit:
v(x) = u(x) for x¢ O = UL.

Then

u=v+2wk.

1

We also have

k

/(Ivl + Iwk|>dx§ 3/ luldx.
I 1
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Therefore
S0y Ioldx + 52, fy Iweldx < 3552, luld
S T0ldx + 3252wl [y < 3 ul
Since I N I; = @, k # 1, we have wy(x) = 0 for x ¢ I, v = u on O and
|v| <2"s for xe€O.

If x ¢ O, there exist sufficiently small cubes containing x on each of which the
average of |u/| is less than s. Consequently

lu(x)| <s a.e.

From the inequality
sply) < | |uldx,
we obtain

s ) < [lullr.

k=1

Problem 6.27 Let I be a cube with centre at the origin, I* a cube with the same
centre and twice the edge. Take w € L', suppw C I, [ wdx = 0. Prove

1
([ o widx)* < Calwls.
I*

Solution We have
sw] = | [ ka=pw )] = [ ka0 < O~ |l

when x ¢ I'*. Hence

1

(/ |k * WI“dx)a < const||w||p1.
cr
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Problem 6.28 Prove
u{x: kg  u| > t}t” < Callulle,

fort > 0,a > 0.

Solution Let us suppose ||u||; = 1 (otherwise, we may consider m). Then u can
be represented as

We also have (whenp = 1)

1
ko % v < c|[v]]i < cyse.

Let s satisfy

1 t
cisea = —.
)
Then
|k * ul >t
implies
> t
D lkaxowi| > 5
k=1
Let

0 = UI},

where I}" is the cube with twice the edge of I;. We have
M(O) < %v ./.CO(ZIT;JI |ka * Wkl) dx =cy,

—a
,u{x DY re ) ke xowi| > %} < % + C(%) < ¢,
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1 1 _ 1
Problem 6.29 Letl<a<oo,1<p<q<oo,;+5—l+;.Prove
||kq * “||q = Cp,a”"‘”p

forueD'.

Solution For convenience we will suppose that

[ull, = 1.
Let
u() = p,{x s ke * wix)| > t}.
Then
) )
o sulty = [ o ulvas = [t == [~ o
Set
u=v-+w,
where
v=u for |ul<s,
w=u for |ul>s.
Then

1-2 2
[lka % V||oo < cs~ @ = cs4.

Now we choose s so that

If
lkq *x w| >t
we have

t
lkq % w| > =,
2
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and consequently

pu(r) < 't |wllf,

1

|lkq * ul|d < ¢” [ a1 (f\u\>s |u|dx>th < c”(f(leul t‘i_l_“dt)a|u|dx)q.

We note that

/ 7170 s 17,
s<|u|

When s = |u| we have

(_
/ AV | = |l
s=|ul

Consequently

p q q
ey < [ 17 ax)" = e [ lupax)” = cluly

and
”ka * u”q E Cp,a””“[)'

Problem 6.30 Let © € D'(X) and X an open set in R”, 1 < p < n. Consider
du e Ll (X),j= 1,2,...,n,[§= %, + L Proveu € L] (X).

loc loc

Solution Let

%log |x| for n =2,
E =

—|x|2_” c,,(nl—Z) for n>3,

denote the fundamental solution to the Laplace equation

AE =3§.
Notice
%E = Z1F
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Then

X p
0, :/( ] Yar<e<oo
X Lie K |X|nCn

for every compact subset of R. In other words, 0,;E € Lfoc, j=12,...,n If we
write E; = 0;E then

R
|Ej| =

n

Since %6 is everywhere dense in I”, we obtain
[1Ej % vl|g < c||v]l,, velIllné&. (6.12)
Let y € €5°(X) be 1 on a sufficiently large subset ¥ of X. Then
qu=8% yu=AEx yu=E x A(yu) = E % ), 87 (yu) = Y_,(E % 97 (yu))
= D (E % 0i(xw) = 3_,(Ej * (Ojxu + xou)) = 3, Ej * (xu) + 3, Ej * (9 xu).

Since d;u € L, we have yd;u € L, . From this and inequality (6.12) we conclude

that E; * (xdju) € L7. We also know
singsupp(E; * (4d;y)) C singsuppE; + singsupp(ud; x),
SO
E;* (udjy) € €°(7),
and consequently
E;* (ud;x) € L.
Hence

yu € L9,



138 6 Convolutions

and eventually

uelLl ().

Problem 6.31 Letu € D'(R"), 1 < p < n, du € I’(R"),j = 1,2,....n. Prove

that there exists a constant C such that u — C € LY(R"), where [17 = é + %

Solution Let E be the fundamental solution of the Laplace equation, and set E; =
0;E and

vV = ZEJ * Bju.
J

As in the solution of the previous problem, we have v € LY(R"). Let y € €;°(R")
be chosen such that 0 < y < 1 and y = 1 on a neighbourhood of the origin. We set

E; (x) = x(ex)E;j(x), € > 0.
Then we have
Ef xw—c o Ejxw

in L7(R") for w € L. We also have

The constant c is independent of € for w € €. Consequently

Exwl| < cliwllo.
L4

Ef xw=E*w
on every compact set for every € small enough. We have
|ES *w| € LY,
v = lim5_>0 E; * aju,

8kv = lim5_>0 ZJE; * 8k8ju = lim5_>0 Zj B,Ej * aku
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in D'(R"), and
2 0E; = X(ex)AE + €}, xi(ex)E; = & + € ), yi(ex)E}.
Since
| xj(€X)E; * Oxu||ra < c[|dul|r < 00
as € —> 0, we have

0V = Eli_n)loz 8 * Ogu + € Z )(j(ex)Ej * Opu = Oxlt,
J J

i.e.,
ou=0v for k=1,2,...,n.

Consequently v = u — C. We note that u — C € L9.

Problem 6.32 Let k € €' (R"\{0}) be a homogeneous function of degree -4 1=
pfooand0<)/=n<l—£—[17) < 1. Prove

Sl;ép |k u(x) =k * u()|lx —y[™" < clfull,
XFYy

forue I’ Né&'.
Solution Let 2 = |x — y|. We have

k% u(x) — k % u(0) = f(k(x —y) - k(y))u(y)dy

= [z (kG =) = (=) Yu)dy + [y, (K = ) = k(=) Ju(r)dy.

Now we consider

/Iyszh (k(x —¥ - k(_Y))“(Y)dy.



140 6 Convolutions
Then

(K =) = k(=) Ju)ay|

ne
7

= (f\y|52h )k(x —y) — k(=) ‘p/dy) ! (f\y|52h lu(y) |pdy)1%

= C||M||p(f|y\52h |k(Y)|p/dy)p (6.13)
(-4)s
< cllullph "7
= ch’.
As we saw earlier, using the mean value theorem we obtain
[ (k=)= k0 Juras | = el
ly|=2h
From here and (6.13) we find
sup |k * u(x) — k x u(y)| < ch”||u|l".
xFy
Problem 6.33 Letu € D'(X),p >n,du €L} ,j=1,2,...,n Prove
sup MO ZuOL
x#y;x,y€K |X - y|}/ p
Problem 6.34 Letu € D'(X), 1 <p < co,m € N. Let 3°u € L}, (X) for |a| = m.

Prove that for |a| < m we have

1. %uell

loc

(X)ifg < oo, b <14 mlel,

2. 0%u is Holder continuous of order y, where 0 < y < 1 and 11—) < (m—|o|— y)%.

Problem 6.35 In 2’'(R') compute
1. (j—x)Z (H(x) % 5(x)),
2. (%) 'H (x).
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Answer
1 H(x)

. s
1"(%)):7I

p Y. (€
F(%)x

Problem 6.36 In 2’(R!) compute

U

1. limg— 00 8(x + k),
2. limg—s o0 6(x — k),
3. 6(x+ k) *8(x—k),keR.

Answer

1.0,
2. 0,
3. 8(x).

Problem 6.37 Let

xeRY o> 0.

Ja(x) =
Prove that f, € 2'(R!) and

JaxIp =1 Jape
Problem 6.38 Let

1

— xeRl,a>0.
Tt +x

Ja(x) =
Prove that f, € 2'(R!) and

f o * f B = f atp-
Problem 6.39 Prove that the function

sin T /" g )
0

E ST

u(x) =

solves

/ u() —dE = g(x), g(0)=0, ge?'(x>0),
0o =98

O<a<l.

141
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Problem 6.40 Prove

ef xe"g =e™(fxg), f.geD,.

Problem 6.41 Let f € 2'(R"). Prove that the convolution f * 1 exists and is
constant.

Problem 6.42 Letu € D'(R"), ¢ € 65°(R"). Prove

1. u*¢ € €°RY),

2. supp(u * ¢) C suppu + suppe,
3. 0%u*x @) = 0%uxd =ux*xd"¢p

for every o € N".

2. Solution. Let u x ¢(x) 7# 0. Then x —y € supp¢, so x € suppu + supp¢. Since
X is arbitrary in suppu * ¢, we conclude that

suppu * ¢ C suppu + suppg.
3. Solution. From the definition of d%u, it follows that
% *@p) =0%ux¢p =uxdp.
Problem 6.43 Letu € D'(R"), ¢,V € €;5°(R"). Prove
wk (@ ¥) = (u* ) * v

Solution
(¢ % ¥)(x) = limy_so u(Z plr—-— kh)hw(kh))
= limy—o 3 (u * §) (x — ki)W (k)"

= [u*x)x— )Y )dy = (u* ) * .
Problem 6.44 Let ¢ € €°(R"), ¢ > 0 on R”, fan&(x)dx = 1,u € D'(R").
Prove

1. up =ux¢ € €°R"),
2. uy — u

in D'(R") when suppp —> {0}.
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Solution For ¢ € €°(R"), ¥/ (x) = ¥ (—x), we have

u(y) = ux Y (0),

us (V) = ug % Y (0) = ux ¢+ ¥(0).
Since

¢ * ¥(0) — ¥(0)
when suppg —> {0}, we conclude
up (V) —> ux Y (0) = u(y)

when suppgp —> {0}.

Problem 6.45 Let u € D'(X). Prove that there exists a sequence {u;} in €;5°(X)
such that

Ui —>j—s00 U

in D'(X), implying that 6°(X) is everywhere dense in D' (X).

Solution We choose a sequence {y;}2; in 47°(R") such that for every natural
number N < j we have y; = 1 on every compact subset of R". Now choose a
sequence ¢; in €;°(R") with the following properties:

¢ =0, / ¢jdx =1, suppp; —> {0}.

By definition of y; we have

xiu € &' (RY).
Consequently

(xju) * ¢; € € (R").

Since y;u and ¢; have compact support,

uj = (yu) * ¢
has compact support too. Now let us redefine the ¢; so that

suppe; + suppy; C X
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and |x| < Jl for x € suppg;. For ¢ € €;°(X), we have

(V) = uj % $(0) = (yju) ¢y Y (0) = yju(dy* ¥) = u(x;($j * ).
Since supp(d?i * 1) contains an arbitrary neighbourhood of suppy/, then
H(Gi*v) = x v
for j large enough. Also, suppcfﬁj —>j—>00 10}. Therefore
uj(Y) —j—oc0 u(V).

Problem 6.46 Let u,v € D'(X), where X is a real open interval. Prove

1. «’ > 0 if and only if u defines a nondecreasing function,
2. v” > 0if and only if v defines a convex function.

Problem 6.47 Let v € D’(X), where X is an open set in R". Prove that the
inequality

Z Zyjykajakv >0 VeR"

holds if and only if v defines a continuous convex function.

Solution Without loss of generality we will suppose that X is a convex set. Then
d? dsd d
d7v(_x —+ [y) = E(Ev(x + [y)) = E‘ Zk:ykakv = Zj: Zk:yjykajakv >0

for x + ty € X. Consequently v is a convex function. Let v € D’ (X). We consider an
even function ¥ € 6°(X) with [ ¥dx = 1. Then

v () = / v(x — )V ()dy.

which is convex and does not decrease as € increases. Therefore we can use the
argument of the previous problem.

For the function vy we have

J

Z ZYiykajakU¢ > 0.
k
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The function vy * V. is convex and not decreasing as € increases. Consequently
v * Y is convex and nondecreasing as € increases, and

v * Yo —> vg,€ | 0,

vo(tx + (1 —1)y) < tvo(x) + (1 —vo(y), O0<t<1, x,yeX.

Therefore vy is almost everywhere bounded and upper semi-continuous. We have
that v is a continuous function since

vo(x + y) — vo(x) = A(vo(x) —vo(x —y)) = —ch, 0<h <1

for y small enough.
If v is a continuous convex function, by convexity we have

Zzajvf)kv > 0.
ik

Problem 6.48 Let X be an open set in R”. Consider u € D'(X), Au > 0. Prove that
u defines a subharmonic function uy, i.e., a function that is semi-continuous from
above, with values in [—o0, 00), and for which

1
M(x,r) = 0_/|| luo()c+ra))da)
n w|[=

is an nondecreasing function of »r whenx € X and 0 < r < d(x, CX).
Solution

1. Letu € °°, Au > 0. We consider 0 < r < R. We set
0 for |x|>R,
v(x) = 4 e(R)—E(x) for r<|x| <R,
e(R)—e(r) for |x|<r,
where

% log|x| for n=2,
E(x) =
x> for n>2,
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E(x) = e(]x|). By definition v(x) is continuous, and

0 for |x| >R,
gradv = § —gradE(x) for r < |x| <R,
0 for |x|<r

and
X dSR dSr

ds (— dE,—)dS - - .
) k(e N - R

X
x|

Av = divgradv = —(gradE, —| |
X

If d(x, CX) > R, from Au > 0 and v > 0 we infer
0<Auxv=ux*xAv=M(x,R)—M(x,r).

Consequently M(x,r) is nondecreasing in r, for r > 0. Since M(x,r) is
continuous, M (x, r) does not decrease with respect to r for r > 0 too.
Let0 <y € €%, [Y(x)dx = 1 and ¥ = ¥ (|x|). Then

ws v = [ute=envoas
is nondecreasing in €, because M(x, r) is nondecreasing in r and

usk Yo = ! u(x — erw)yr (rw) "L dw.

lwl=1
What is more,

[ ulx 4+ rw)dw = f(u(x) + 730 widu + é D Dk wiwidj0ku + 0(r3))dw

= C, (u(x) + rzzﬁ” + 0(r3)).
Here we used [ wywidw = 0 for j # k, fwj?dw = ¢,. Therefore
(M(x,r)—u(x))
r2

Au = lim,—2n

= lim, o % (é [ uo(x + rwydw — u(x))
= lim,_¢ f—;’ (u + rz% + 0(r3) — u)

= Au > 0.
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Eventually
M(x,r) > u(x).
2. Letu € D'(X) and Au > 0. Alsolet 0 < ¢ € € with [ ¢(x)dx = 1. We set
Up =ux¢ € €.
Then
Auy = Aux ¢ >0,

and uy * Y. does not decrease in €. Then as suppg¢ — {0} the function u * .
is not decreasing in €, and

/(u * We)(x + rw)dw
is not decreasing in r. Consequently

ux¢. bup as €0

where u is a semi-continuous function in r, 0 < r < d(x, CX), and
(u, y) = /uo(x))((x)dx for 0<ye % X).

ie., up € L (X).

Problem 6.49 Let uy, be an upper semi-continuous function with values in
[—00, 00). Suppose it is not identically —oo on any connected component of X.
Take up(x) < M(x,r) for 0 < r < d(x, CX). Prove that uy € LIIOC(X), and that

the distribution u defined by uy satisfies Au > 0. Show that the function defines a
unique distribution u at every point. Prove that

sup up = Sup ugp
aK K

for every compact K C X.

Solution If uy(x) > —oo0, up is integrable on a ball of radius » < d(x, CX) about x.
Let Xo C X be a set of points on whose neighbourhood i is integrable. By definition
X is closed.
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Let x € X be a limit point of Xj. Then there exists y € Xy such that uy(y) > —oo
and |x — y| < d(y, CX). Consequently Xo = X, so ug € L}

loc*

Now we suppose that 0 < ¢ € € and [ ¥ (x)dx = 1. Then

uo(x) < ug * Ve
and

lim ug * Ye < ug.
e—>0

Since uy is upper semi-continuous, we have
Uy * Yo —>c—50 Uo.
Consequently u( defines the distribution u( * ¥ and we conclude
0 < A(ug * V) = Aug * Ye —>c—s0 Auyp.

Now we suppose supg 1y = 0. Since uy is upper semi-continuous, we have uy(x) =
0 for some x € K. Let r = dist(x, 0K). Consequently

0 =up(x) < uo(x + rw)dw

)
Jwi=1@w Jjwi=1

and there exists wg for which x + rwy € oK. If up(x + rwg) < 0, we have ug < 0 on
a neighbourhood of the point x 4 rwy. Consequently # < 0 in K, and

/uo(x + rw)dw < 0

which is a contradiction. Therefore uo(x+rw) = 0, and it follows that supg up = 0.
In case supg up = C # 0, we may consider ity = uy — C and repeat the argument.

Problem 6.50 Let {v;} be a sequence of subharmonic functions, defined on a
connected open set X C R”, that are uniformly bounded from above on compact
subsets. Prove that if the sequence {v;} does not tend to —oo uniformly on every
compact subset, there exists a subsequence {v;, } converging in L] _(X).

Solution There exist indices {j;} and points {x;} belonging to some compact set
such that the sequence {v;, (x;)} is bounded. Suppose xy — xo € X, and for
convenience assume j; = k.
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Let B be a closed ball in X with centre xo. We will prove that the sequence { I3 vkdx}

is bounded from below. Consider closed balls By, centred at x; suchthat B C By C X
and u(By) — u(B) as k —> oo. Then

/dex = / vrdx = / vkdx—/ vidx > ,u(Bk)vk(xk) — vrdx.
B Bi\(Bi\B) By By\B Bi\B

By assumption u(By) —> u(B), so

/ vrdx —> 0,
Bi\B

/ dex
B

is lower bounded for every closed ball B C X. As vy is uniformly bounded,

/ |vk|dx
B

is bounded for every ball B inside X. Consequently the sequence {v;} is bounded in

Llloc, and there exists a sequence {vj, } which converges in Llloc(X). The limit v is a

subharmonic function and v;, — v in L] (X).

since vy is bounded. Therefore



Chapter 7
Tempered Distributions

7.1 Definition

Definition 7.1 A linear continuous functional on .#(R") is called a tempered
distribution. The space of tempered distributions is indicated by .#’(R").

Definition 7.2 A sequence {u,}°2, in */(R") is said to converge in .#/(R") to
u € ' (R if u,(¢) —>n—s o0 u(¢p) forevery ¢ € .Z(R").

Note that convergence in .’ (R") implies convergence in 2'(R").

Definition 7.3 A set M’ C .%’(R") is called weakly bounded if for every ¢ €
& (R") there is a constant Cy4 such that [u(¢)| < Cg4 for every u € M'.

If M C &’ (R") is a weakly bounded set, there exist constants K > 0 and m € N
such that

(@) < Kl|¢plln. ueM.¢ec SR

In order to show this let us suppose that the assertion is false, i.e., that there exist
sequences {ux}o, in M’ and {¢}72 | in . (R") such that

lu(@e)| > k| Prl k- (7.1)
We define functions
1 ¢i(x)
Vi(x) = —= -,
Vi e Ik
so ¥ € .Z(R") and
1[Il
allp = —= ==
Vi el
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Moreover,

1 @xllp =< 11kl I

for every k > p. Hence,

1
IIWka < —= ——w0

Vi

for k > p. Since p € N was arbitrary and .¥ = ﬂpGNU{O} Sp, wehave Y —> 100
0 in .(R"). Using techniques of the sort of (2.14)—(2.19), we conclude that

we(Yr) —>k—>00 0. (7.2)
On the other hand, using (7.1), we have
()| = VIV K] il |k
from which
()| = Vk —>—00 00,
contradicting (7.2).
From this we also deduce that any tempered distribution u has finite order m. It can

be extended to a linear continuous functional from the smallest dual space ., and

(@) < [lull-ml|Plm:

where ||u||—, is the functional norm in ..

Example 7.1 Let u be defined on R” and suppose

@)
/Rn TENEI

for some m > 0. Define the functional on .’ (R")

u@) = [ upeds. ¢ e s ®) @3
Rll
This is well defined. In fact, let ¢ € .#(R") and C be a positive constant such that

S;ﬁ((l + [xD™¢p )| < C.
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Then
4)] = [ for DI = fr [0 ()

— u(x m u(x
= Joo i (14 K™I¢ @) dx < C fo liimd < oo,

It is a linear and continuous functional on . (R"), so u € .%/(R").

Exercise 7.1 Prove that ¢* ¢ ./ (R').
Exercise 7.2 Prove that cos (6‘) belongs to .#”(R") but not to .7 (R").

Exercise 7.3 Show that .’/ (R") is a C-vector space.

7.2 Direct Product

We remark that the function ¥ (x) = u;(y)(¢(x,y)), where ¢ € Z(R"™"), u; €
S (R™), satisfies

DY (x) = (DS (x.y))

for every @ € N" U {0}. Since u; € %/ (R™), there exist ¢ € N and a positive
constant C,, such that

q
ID*Y ()| < Cyy sup  (1+ [y*)2|DIDI(x,y).
YER™,|Bl<q

Therefore
1]y = SUP,ernjaj<p (1 + X132 (D4 (1)]

P q o
<Cy sup  (1+ P20+ [y)2IDDEG(x. )|
(x,y)ER”J””
le|<p.|Bl<q

< Cullpllp+g ¢ € SRHM),
forp,qg € N.Let u; € .7'(R"), u; € .’(R™). Then the functional

u (Y) = w1 (x) (2(5) (¢ (x, y)))

is linear and continuous on . (R"*™).
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Definition 7.4 The direct product of «; and u; is

w1 (x) X w (@) = w1 ()W) (P(x.)), ¢ € SR™").

Notice u; (x) x uz(y) € &/ (R"T™M).

Since €;5°(R") is dense in .#(R"), all properties of direct products in &’ carry over
to ..

Exercise 7.4 Letu; € .’ (R"), uy € #’(R™). Prove that the operation
uy(x) = up(x) x ux(y)

from ./(R") to #/(R"T™) is linear and continuous.

7.3 Convolution

Take uy, up; € .#'(R") so that the convolution u; * uy exists in 2’(R").
1. Letu; € ' (R"), u, € &' (R"). Since u; * uy exists in 2’(R"), we have
up x uz(@) = w1 (x) X wx(Y)(P(x+y), ¢ € SR,
where € €5°(R") and n = 1 on (suppur)*. As u; € /'(R"), u € &'(R"),
the direct product u; (x) x us(y) exists in .7’ (R?"). Then the convolution u; * u,

exists in ./(R"). We claim that ¢ —— 7(y)¢(x + y) is a continuous operation
on . (R"). In fact we have

NG+ Iy < PGy eron <, (1 + 1K + [ 2D (1) (x + )|

< CoSUP(yyexon jojp (1 + 1P + [y 21D (x + )|

= Co||p|lp, Co = const.
Therefore the map ¢ — n(y)¢(x + y) from . (R") to itself is continuous, and
uy > uy * up is continuous from .’ (R") to ./ (R").

2. Now we suppose u; € .7'(I"'+) and u € .#”(S+). The convolution u; * u, exists
in #’(R") and can be represented as

up * uz(p) = w1 (x) x wp(V)E@Nme(x +y). ¢ € SR,

where £, € 65°(R"), § = 1 on (suppui), n = 1 on (suppuz) and £ = 0 on
R™\(suppu1)*, n = 0 on R"\(suppuy)*. If K is compact in R" and suppu; C
inI" + K, the map u; —> u * u, is continuous from .’ (I" + K) to .#'(S+ + K).
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The set /(I"+) is a convolution subalgebra of 2'(I"'+) and .¥'(I") is a
convolution subalgebra of .#/(I" +).

3. Letu € ./(R") and n € .#(R"). Then the convolution u; * 7 exists in @y. It
can be represented in the form

uxn(@) =um*¢(-x)), ¢eSR").
We note that there exists a natural number m such that
ID*(ux D)) < Cull+ D) 2 [l lmtja, X R

Here C, = const. In fact, let {ni(x,y)}2, be a sequence in 6°(R*") such that
Nk —k—s00 1in R?" and ¢ € .7(R"). Then

[ 1m0+ 9y —sice [ 10)96 4
R” R”
in Z(R"). Since u * 7 exists in 2’(R"), we have

(@) = lim—soo u(x) X NG (X, )P (x + 1))

= 1m0 () (o 1O, 1) + )y )

= 1) (fr 1Y + 1)) = () frw $E(E — X))

= u() (7 % $(—)).
We note that ¢n € . (R*") and

frn@) = / FEE = x)$E)dE.
Rl’l

But ¢ € .#(R") was chosen arbitrarily, so

uxn=uy)(nx—y)).
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If m is the order of u, then,
|D* (% n)(x)] < Cul[DEN(x = y)||m
= Cusupyeejpizn (1 + YD ¥ 1DED 0 (x = )]
= CuSUPgepn p<m (1 + [x = E7) 2 [D* (8]
< Cu(1+ 1x1)3 supgegn 1< (1 + 1€ 1D (8)]

= Cu(l + |x|2)%||n||m+|a|-

7.4 Exercises

Problem 7.1 Prove that for every distribution u € .%/(R") there exist constants
K > 0 and m € N such that

lu(@)| < K||pllm. ¢ €L R").

Problem 7.2 Prove that any tempered distribution has finite order.

Problem 7.3 Prove

Sy Hcce-cs = ) 7.
pENU{0}
Problem 7.4 Prove that the embedding ., C ., , is continuous for any p € N.
Problem 7.5 Prove that every weakly convergent sequence in ./, p € N,
converges in the norm of ., ,.

Problem 7.6 Prove that 5’;,’ , P € N, is a weakly complete space.

Problem 7.7 Show that .’ (R") is a complete space.

Problem 7.8 Letu € &'(R"). Prove that u € .%/(R") and u(¢) = u(n¢) for every
¢ € S (R"), where n € 65°(R") and n = 1 on a neighbourhood of suppu.

Definition 7.5 A measure ¢ on R” is called tempered if

[R ) () < oo

for some m > 0.
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Problem 7.9 Let i be a tempered measure on R” and define the functional

p@) = [ peou. ¢ es®)

Prove that u € ./(R").
Problem 7.10 Letu € .%/(R"). Prove

1. D*u € ' (R") for every @ € N" U {0},
2. the map u +> Du is a linear continuous operation on .’ (R").

Problem 7.11 Letu € .%/(R"), A an invertible n X n matrix. Prove that u(Ax+b) €
' (R"), where b = (by,b,...,b,), by = const, [ = 1,2,...,n, and the map
u(x) — u(Ax + b) is a linear and continuous operation on ./ (R").

Problem 7.12 Letu € .¥/(R"),a € Oy. Prove thatau € .’ (R") and that u —> au
is a linear and continuous operation from ./ (R") to ./ (R").

Problem 7.13 Leta, € C, |a,| < C(1+|n|)N for some constants C > 0 and N > 0,
n=1,2,.... Prove that

> adx—k) € S RY.
k=1

Problem 7.14 Letu € .%/(R"). Prove that there exists a tempered function g in R”
and a constant m € N such that

u(x) = DI'Dy ... D;'g(x).
Proof Since u € ./(R") there exist p € N and a positive constant C,, such that

u(@)] < Cullpllp = Cusup,ernjoi<p (1 + 622 [D*p ()]
(7.4)

< C,maxjy|<p frs|D1Ds .. .Dn((l n |x|2)%’Da¢(x)))dx, ¢ € SR,

We define functions
Vul) = DiDy. . Dy((1+ KPEDG ), ¢ € SR,

In this way we have a one-to-one mapping ¢ —> {y,} from . (R") to the direct
sum 69\04 < L'(R") equipped with norm

/eI = max || fol |1 e
loe|=p
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Call

M= v} 6 € SR,
Then M is a subset of @\a\ < L'(R"), on which we define the functional

u(Wed) =u(@). W eM.

Using (7.4), we get

()| = @) = G,

o
DIDZ...Dn((1+|x|2)2D ¢(x))HL1(R”) =G

Vo)

We conclude that #* is continuous. We also recall that L>°(R") is the dual space to
L'(R™). By the Hahn-Banach and Riesz theorems there exists a vector-valued map
{Xa} € Djuj<, L (R") such that

u ({%}) = > Xe@Va(¥)dx.

lal<p

Hence

u@) = 3 [ oDiDs 0,01+ WD 90 Jax

a|<p
loe| <

for ¢ € . (R"). Integrating by parts we infer the existence of functions g, || <
P+ 2, 84 € L (R"), such that

u@) = 17 [

R

Y &@DTDYT L DY),

le|<(p+2)n

Since ¢ € . (R"), we conclude that

u@) = (=1t Y DYDY D (v).

le|<(p+2)n

Problem 7.15 Let u € .#/(R"). Prove that there exists p € N U {0} such that for
every positive € there are functions g, € .(R"), |o| < p, such that g, = 0 on
R\ (suppu)€ and

u(x) = Z D%y (x). (7.5)

a|<p
loe| <



7.4 Exercises 159

Proof Lete > Oandn € @y, n = 1 for x € (suppu)3, n = 0 on R™\(suppu)©.
Using the previous problem, there exist m € N U {0} and g € .¥/(R") such that

u(x) = DV'Dy ... D)/g(x).

Since u(x) = n(x)u(x),

u(x) = n(¥)DYDy ... Dyg(x) = DYDY ... Di(n(0g) — Y n.x)D*g(),

|| <mn—1

where 1, € Oy, ny(x) = 0 for x ¢ (suppu)€. The function n,(x)D*g(x) we
represent in the form

N (X)D*g(x) = D*(na(x)g(x)) — F(x),
and so forth; note that we obtain (7.5) for p = mn and g, . = Y48, Where y, € Oy
and suppy, C (suppu)©.

Problem 7.16 Letu; € ./ (R™). Prove that D*Y (x) = u;(y)(D%¢(x,y)) for every
¢ € S(R"™™) and @ € N" U {0}.
Problem 7.17 Prove that . (R") is dense in ./ (R").

Proof Letu € .’(R") and consider u, = u * w.. Then u, € Oy and u, —>c—o u
in &/ (R"). Since the space .#(R") is dense in ®), we have ae~h’ ¢ 7 (R"),
€ > 0, and ae—<h’® —> 0 ain .’ (R"). The claim follows.



Chapter 8
Integral Transforms

8.1 Fourier Transform in .7 (R")

Definition 8.1 The Fourier transform of ¢ € .#(R") is the integral
F@)0 = [ e
RFI

where x§ = x1&; + 086 + -+ + x,€,.

Note that .7 (¢) is bounded and continuous on R”. Furthermore, .# (¢) € €*°(R")
and

D*F($)(x) = [ru(=iE)* e ™ (§)dE = F ((—i6)*¢) (),
F (D)) = [pu D¢ (§)e™"¥dE = (ix)* F (9)(x)

for every @« € N" U {0}. In particular, % (¢)(x) is an integrable function on R".
Observe that every function ¢ € .(R") can be represented by means of its Fourier
transform .% (¢p) and inverse Fourier transform

FPE = s [, dwas
(27{ ) R?
as follows:
¢ =T (F @) =F (T @)
© Springer International Publishing Switzerland 2015 161
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Explicitly

P(x) =

(thﬁfw@@

(1 + R F @)@ < 0+ P e 7))
= )fR”(l - A)[p%]((—ix)“¢>(x))e—l>f§dx)

< Csupyepe(1 + )"

pt!1
2

(1 - 2l Fl g )

for p € N, it follows that

Z @l < CpllplIp+n+1:

where C, is a constant independent of ¢. By the last estimate we conclude that
¢ —> F(¢) is a linear and continuous on ./(R"). Every element ¢ € . (R")
can be represented as Fourier transform of the function ¥ = .#~!(¢) € .Z(R"),
where ¢ = .7 (Y). If #(¢p) = 0, then ¢ = 0. Therefore the map ¢ —> F(¢) is
one-to-one on . (R").

Exercise 8.1 Compute .7 (e“”‘z), x € R, a = const > 0.

=2
Answer /Ze” .

Exercise 8.2 Let A be a positive definite n X n matrix. Prove that

j(ei(Ax,x))z TP iEEATED R

/det A

Here (-, -) is the inner product in R”.

8.2 Fourier Transform in ./ (R")

Definition 8.2 The Fourier transform of the distribution u € ./ (R") is
Fu) (@) =u(F(¢)) for ¢ SR").

Since the map ¢ — F(¢p) : L (R") — (R") is linear and continuous, the
operation u — % (u) is linear and continuous from .’ (R") to itself.
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For u € ./(R") we define the operator .% ~! in the following manner:

1

g1 —
7w = 55

F (1) (—x).

As ¢ — F(¢) is continuous and goes from .7 (R") to .(R"), and . (R") is dense
in &/ (R"), we conclude that

FNFw)=F(F w))=u ue S R".

It follows that for every distribution u € .%’(R") there exists a distribution v €
Z'(R") such that v = .#~!(u) and u = .F (v). If F(u) = 0, then u = 0.

Example 8.1 Let us determine . (). Take ¢ € .(R"), so
F(6)(¢) = 8(F(9)) = F($)(0) = [p. ¢(x)dx.

This implies .% (§) = 1.

Exercise 8.3 Compute .7 (H(x)e ™), x € R!.
1

Answer "

Letu(x,y) € ./(R"*™), x € R", y € R™. We introduce the Fourier transform .%, (1)
with respect to the variable x = (x, x2, ..., x;) by

Fou)(9) = u(Fe(¢)), ¢ € SR™™),

where
Zi@w) = [ e

The map ¢ (£, y) > F¢(¢) is an isomorphism from .7 (R"*"™) to itself, and .7, (u) €
S (R"™) for u € .#'(R"*™). The inverse Fourier transform T !'is defined by

1
@m)"

F ) = Fe(w(=§,))(x,y).

The map u + .%,(u) is an automorphism of .7 (R"*).

Example 8.2 Leta = const € R".
F(8(x—a))(¢) =8(x—a)(F(9)) = F(P)(a) = /R e (&, y)dE.

Since ¢ € .7 (R"*") is arbitrary, .7 (§)(x — a) = e %9,
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Exercise 8.4 Prove that

dx—a)+8(x+a)

(5

) = cos(af), a = const,

in.7'(RY).

8.3 Properties of the Fourier Transform in .7’ (R")

1. Forany u € .#'(R"),a € N"
D*F (u) = F((—ix)u).
Example 8.3 Let ¢ € .#(R"). Then
F @) (@) = O F (=0 1)(p) = ()'D*F(1)(¢),
a € N" U {0}. On the other hand,
F(8)(¢) = 1(9).

Using the inverse Fourier transform, we get

() = F(D(p) e F()(P) = (2n)"5().

@m)
Therefore
F (@) = @n)")1D8(9),
in other words
F () = 2m)" (i)' D"5(6).
2. Forany u € '(R"), € N" U {0}
F(D%u) = (i§)* F ().

Example 8.4 Let us find .# (§”) in .#”(R!). Take ¢ € .#(R') and compute

F (" (9) () = ()>F (8(¢)) = (i§)*8(F (¢))

= (952, ¢S dx) = ()? [°2, ().
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NY)
F(8")(x) = (ix)*.
3. Forany u € .%/(R")
F (u(x — x0)) = e 5% (u).
4. For any u € .%/(R")
FW)(E + &) = F (™ u)(§).
5. For any nonsingular n X n matrix A

F (u(Ax)) = mﬂ(u)(A_ng), ue. R").
6. Forany u € ./(R"),v € .7/ (R™)
F(ux) x v(y)) = F(ux) x F(v)(1))
= F(F W) () x v(y) = Fu§) x F(v)(n).
7. Forany u € &'(R"*", o € N" U {0}, B € N" U {0}
DEDY T (u) = F((—ix)* D).
F (DDl u) = (i£)* DY F(u).

The proofs of the above properties are left to the reader.

8.4 Fourier Transform of Distributions with Compact
Support

If we take u € &'(R") we know already that u € ./(R"), so it admits a Fourier
transform in .’ (R™). What is more, the Fourier transform exists in ®; and can be
represented in the form

F W) (€) = ulx)(n(x)e ), (8.1)

where £ € €°(R") and £ = 1 on a neighbourhood of suppu. We claim there are
constants C, > 0 and m € N such that

ID*F ()(§)| < ||ull-nCa(l + |62, & €R", @ € N"U{0}.
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Indeed, let ¢ € . (R") be arbitrary, so
D*F(u)(¢) = (DT w)(D¢) = (=D u(F (D*¢))

= (=1 (@) F () = 1) (o 1) (i) (§)e )

= Jro 1) (n) (i) ) p (€
and therefore
D*F (u)(§) = u()(n(x)(—ix)*e ™), a € N"U {0}, (8.2)
From here we obtain (8.1) for & = 0. But (8.2) implies
DT ) (©)] = |u(x) (n() (—ix)e™)|
= [l -l I (—ix)e 5] |,

= [full-msup g (1 + [P E DL () (—ie)e )]

1Bl <m
< ||ul|—mCa(1 + [E]»)3.

Therefore .7 (u) € O;.

8.5 Fourier Transform of Convolutions

Letu € /(R") and v € &'(R"), so the convolution u * v is defined in ./ (R").
Choose ¢ € 7(R") and n € 6°(R") so that n = 1 on a neighbourhood of suppv.
Then

uxv(@) = u(x) x v(y) (P x+y).
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and

F(ux v)(¢) = @) 0 (10).F (@ + )

= u() (v0) (1) frw d©)e ) )

= u() (e VO NP (6

= u(0)(fro F@)E)e ¥ P (E)dE)

= T (FW)$) = FW(FW)$) = FWF (v)(@).
Consequently

Fuxv)=FwF ).

8.6 Laplace Transform

8.6.1 Definition

Definition 8.3 Let I be a closed, convex, acute cone in R” with vertex at 0, and set
C = intlI'*, so C # @ is an open convex cone. Define

TC=R"+iC={z=x+iy:xeR",ye C}.
The Laplace transform of u € .'(I" +) is
L) (z) = F u(§)e”) (). (8.3)
This is well defined. Indeed, pick n € €¥°°(R") with the following properties :

|D*n(€)] < cq, n(€) = 1 on (suppu)¢ and n = 0 on R"\(suppu)*, and € > 0
arbitrary. Since n(§)e € .7 (R") forevery y € C,

w€)e® = u@nE)e’ e S ('+).

We conclude that (8.3) is well defined. It has the following representation

L(u)(z) = u(§)(n(€)e™™). (8.4)
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Observe that the Laplace transform does not depend on the choice of 7. Indeed, let
¢ € .7(I" +) be arbitrary. Then 7(£)e* ¢ (x)e ™ € .(R*") and

L(u)(2) = F u(€)e*)(¢p) = u(§)e* F(¢)
= ”(E)eyg (fR" ¢(x)e_ix$dx) = u(§) (n(g)eyé fRu ¢(X)e_ix$dx)

= u(®)(fr (@) = [ u(®) (e E0(©) ) ().

Equation (8.4) now follows.

Example 8.5 Let us compute L(§(§ — &y)). With ¢ € /(" +),
L(3(& — £0))(¢) = F(8(E — £0)e¥)(¢) = 8(§ — &) (e F ()

= 8(6 = 0) (¢ fro P @x) = 85 — 0)(frw T F P ()

= 8§(—€ + &) (fR,, eizfqb(x)dx) = fR” eiZE°¢(x)dx.
Since ¢ € .S (I"+) is arbitrary, we find

L((S(E - EO)) = eizft)'

8.6.2 Properties

Let us write v(z) = L(u). Since n(§)e~" is a continuous function in the variable
z€TCin S (I'+),forz,z0 € T¢

n(E)e ™ — gy (§)e "
in . (I"+). Hence

v(2) = wE)(1(E)e™™) —>—sgy uE(ME)e™™") = v(z0)

and v(z) is continuous in z € T€.
Take e; = (1,0,..., 0) and z € T€ and consider

xn(€) = %(n(é)f"‘”’“”f —n(E)e™ ) —>h—s0 N(E)(—ik1)e ™
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in.(I"+). Then
U — () (n(§)e ) — u(@) (n(§)e )

= u(§)(xn(€)) —>n—so u(€)(n(§)(—i&)e™)
= (—ikDu(®)(n(§)e ™),

SO
dv : —iz§
5, = CEuE)(n(Ee™))
<1
and finally
D*L(u) = L((—i€)*u) Va € N"U{0}.
Definition 8.4 The distribution u € .#/(I"+) for which v = L(u) is called a

spectral function of v.

If a spectral function u exists it must be unique, and we have a representation

u(®) = T (v + iv)(§).

Using the features of Fourier transforms one can easily deduce the following
properties for the Laplace transform.

1. L(D%u) = (iz)*L(u) foranyu € ' (I'+),a € N" U {0}.
Example 8.6

L(D*8(5 — &) = (id)" ™.

. L(u(&)e ™) = L(u)(z +a) foranyu € .#'(I'+),a € C,Ima € C.

- L(u(E + &) = e*L(u)(z). ,

. L(u(A%)) = mL(u)(A_sz) forz € T, where A is invertible of order .

L@y X )(z,§) = L) (@) L(u2)(§)  forany uy € '(I'+), ur € " (I3+),
(Z, é-) c TCIXC2.

6. L(u1 * up) = L(u1)L(up)  for any uy,ur € 7' (I'+).

[ I S US I \S
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Example 8.7 Let us compute L(H(§) sin(w§)) in #'(I'+), ® € C,n = 1. Let
¢ € S (I"'+). Then

L(H(#) sin(w§))(¢) = F (H(E) sin(wE)e**) (4)
= H(E) sin(§)e" (F(¢)) = H(E) sin(@E)e’ [°3 e ¢ (x)dx
= Jo° oo sin(@§)ee g ()dnds = [, p(x) [i7 sin(w§)eFdEdx
= [T P ()dx.
This proves that

L(H(§) sin(w§)) =

wr—2

Exercise 8.5 Compute L(H(§) cos(wé)) in .'(I'+),n=1,w € C.

Answer ——f.
Exercise 8.6 Compute L(H(£)e%)) in.”/(I'+),n=1,w € C.

Answer P

Exercise 8.7 Compute L(H(£)e ™€) in . (I'+),n =1, w € C.

Answer ——.
I—w

8.7 Exercises
Problem 8.1 Compute in .(R!)
2
ﬁ(e‘f cos(ax)), a = const.

Answer

_$2+a2
~2me” 7z ch(af).

Problem 8.2 Letu,v € . (R"). Prove

/ F (1) (x)v(x)dx =/ u(x).# (v)(x)dx.
R"l R"l
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Solution
Jorn Z@@0@)dx = fon fpn e Cu(E)dEV@)dX = [on [rn e Cu(E)v(x)dEdx
= Jon t(®) [pn e v (x)dxdt = [p, u(§)F (v)(E)dE.

Problem 8.3 Prove that

FF'=F'F =1 in SR.

Problem 8.4 Let A, (1) denote the polynomials defined by the identity
> a” 2
ZAn(A)_ =@ +20A
et n!

and set
$e() = 2D P A, (Ve T
Prove that
F(Ppn)(A) = (=) @n.
Problem 8.5 Let
1= Gl )
Prove that
FAf)A) = —AF (M), fe S R).

Problem 8.6 Letf € .”(R") and prove that

1.
1.
. < sinx
lim —dx=d
el0 J X
exists.
2.
1
¢« sinR
im [ g =g
el0 J X

for every R > 0.
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3.
. Ow[f(y —n) —|2-f(y +n) o) sinkn o
4.
4df() = lim_ /_ Z ( /_ 1; eiU_x)kf(k)dk) dx
5.
o) = 7 L e
2

6. d = 7 incasef(x) = e 2.
Problem 8.7 Letu,v € . (R"). Prove

/ F(u)(x)F (v)(x)dx = (27t)"/ u(x)v(—x)dx.
Rll R”
Problem 8.8 Show

F(f*xg =F()F(g)
forf, g € .7 (R").
Problem 8.9 Prove

forf € .7 (R").

Problem 8.10 Letf € .(R") be such thatf > 0, [%° f(x)dx = 1, [0 xf(x)dx =
0, F(§) = v2nf(§).

1. Prove that
FO)=1, F(0)=0, F'(0)=-2a<0

and |F(§)| < 1 for & # 0.
2. Prove that there exist A > 0 and G € ¥°°([—A, A)]) such that

f€) =G

for |€| < A, and G(0) = 1, G’(0) = G"(0) = 0.
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3. Let Fp(§) = F”(%) Prove that

Fo6) = e—“sz"(%) for £l <AV,

1—01
4. If |&| < n"5, show

() =0

fora € (0, %) and n large enough.
5. Prove that

lim F,(€) = e’
n—oo

in L'(R).
6. Prove that

1 1
lim ——F,(¢) = ¢ i

n—>00 /21 Vama

in ¥°(R) and L' (R).
Problem 8.11 Letf € .(R!). Prove

L. Z(f(—x) = y(f)(;é&),

2. Z(f(ax + b)) = %e’?éﬁz(f)@), a,b,c = const,a > 0,

3. Z(ef(x)) = Z(f)(E —a),a = const # 0,

4. F (e (bx + ) = Lelit=0 7 f)(%“), a,b,c = const, b > 0.

Problem 8.12 In.#’(R') compute .% (1) when

1. u=H(1—|x|),
2. u= 8_4"2,
3.u= ei"z,

4. u = e_ixz,

5. u=H(x)e ™™,

6. u = H(—x)e*,

7. u= e_zl"‘,

8. u= H—sz’

9. u= H(x)e_z’”‘w_1

T@)"
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1.

O 0 N O Ui A W

Problem 8.13 In.’(R') compute .% (1) when

b

10.
11.
12.
13.
14.

PN A W

Solution. Fix an arbitrary ¢ € .7(R"), so

FHA = x)(¢) = H1 = x)(F (9))

8 Integral Transforms

= H(1 = XD (/% e g @)t ) = [1, [%% e p(E)dgdx

= %2 B J1 e e dxdt = [°7, 2725 p(§)dE = 25 (9).

Hence

_&
. Answer. 4e 16,
[l
. Answer. \/me' T,
.22 —n
.Answer. |/me™T
1
. Answer. T
1
. Answer. =
4
. Answer. m ,
. Answer. 2751,
. Answer. L

u = H(x—a),a = const,
u = signx,
u :P)—I(,

_ 1
U= 1o
u = |x|,
u :H(x)x",kEN,
u= |x|k,k€N,k22,
u=xPl keN,
u =P}%,
u=xk§(x), k €N,

u=Pg,
X
u=H1?(x),

for some m > 2.

X)) =2—.

u=xk§"(x), k,m e N,m > k,

U=y 72 . ad(x—k),ar = const, lax| < C(1 + [k|)™, C = const > 0,
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Answer
1. nS(E)—ie_i“fP%,
2. 2iPg,
3. imsign§,
4. *im — imsigné,
5 —zpiz,
(k)
6. (78 —iPt) .
& k : et k=1 1\® :
7. *278®(£) when k is even, whilst i 2(P§) when £ is odd,
8. 2 1 §*=D(§),
9‘ _T[|S|7
10. 0,
k+m __m! m— k
11. i+ = k),f
12 l”f|§|
S,
ny A\ (01 ixt
13. ﬁ(1+zd$)'f0 ey,
14. 30 ae™™,

Problem 8.14 Prove

F(H(xx)) = 78(5) F P%

in ./ (RY).
Hint Use

1
= Fins(x) + P-.
TE0 - T+ P

Problem 8.15 Prove

in .’ (R!), where

Problem 8.16 Prove
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in .’ (R?), where

Pt = [ 2920, [ 9. serm)
|X|2 Jx|<1 |-x|2 [x|>1 |x|2
"1 = Jo(w) > Jo(u)
co = /0 — du _/1 Tdu,

Jo being the familiar Bessel function.

Problem 8.17 Prove

H(1 — |x]) sin |§|
ﬁ( m) 2

T

in .'(R?).
Problem 8.18 Prove

[EF™,0 <k <n

in ' (R").
Problem 8.19 Prove

L Z(8(x. 1) = 1(§) x 8(p),
2. FH( — |x) = 2H(@)sin L, n =1,

in /(R (x, 1), (x,1) = (x1,%2, ..., %p, 1).
Problem 8.20 Prove

Z—1 —£2) _ HO —=
1. Fi (H(t)e )— e

2. ﬂgl(H(t)@) = LH(t— |x])
in ' (R").
Problem 8.21 Show

Sin(lélt)) H(r —|x|)

A N e

7! (H(t)

in 7/ (R3).
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Problem 8.22 Prove

L(H(§)Jo(§)) =

1-272

in"(C'+),n=1.
Problem 8.23 Using the Laplace transform in ./ (I"+), n = 1, prove

£
sing = / Jo(E — 0)J—)(t)dt, £ > 0.
0

Hint Show H(§)siné = H(§)Jo(§) x H(E)Jy(§) first.

Problem 8.24 Using the Laplace transform, solve the following Cauchy problems
in(Il'+),n=1:

1. W/ () + 3u(t) = e, u(0) = 0,
2. u’(t) + 54/ (t) + 6u(t) = 12, u(0) = 2, u/(0) = 0,

3.
w'(t) + Su(t) + 2v(r) = e,
V(1) + 2v(r) 4+ 2u(r) = 0,
u(0) = 1,v(0) = 0.
Answer
Lou(t) =e 2 —e¥,
2. u(t) =2,
3. u) = z%e_r + %te_’ + %6‘_6t, v(t) = —%e_’ — %te_’ + %8_6’.

Problem 8.25 Using the Laplace transform solve the following equations in
S (C+),n=1:

1. (H(@) sint) * u(t) = §(2),
2. (H(t) cost) x u(t) = (1),
3. u(t) + 2(H(t) cost) x u(t) = 8(1),

4,
H(t) * ui(¢) + 6'(¢) * ua(t) = 6(2)
8(t) % u1(t) + 8'(r) * up(r) = 0.

Answer

1. u(t) = 68'(t) + H(1),

2. u(t) = 8" (¢) + 38(r) + 4H(1)she,

3. u(t) = 8(r) — 2H(t)e' (1 — 1),

4. uy(t) = —6(r) — H@)e', ur () = H(r)e'.



Chapter 9
Fundamental Solutions

9.1 Definition and Properties

Let us write

P(D) = Z agD*, a, = const, Z |ae| # 0.

lor| <m loe|=m

Definition 9.1 Given P as above, the distribution u € D'(R") is called fundamental

solution if

P(D)u = 6.
Consider the polynomial
PE) = ) aut”.
lor| <m

There exists a transformation
£ = Ag', with detA # 0,A = (ay).
under which P reads

PE) =at" + Z P&, ..., S;)S{k, a = const # 0.

0<k<m—1

© Springer International Publishing Switzerland 2015
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There exists a constant k = k(m) such that for every point § € R” there is k €
N U {0} satisfying

k
|P(§1 +irZ,§z,...,§n)l >ak, |t|=1. 9.2)

The classical Malgrange-Ehrenpreis theorem asserts that every differential operator
with constant coefficients has a fundamental solution in 2’'(R"). Without loss of
generality we suppose

m—1
P¢) = af" + ZPk(Ez, . EDEF, a=const> 0.

k=0

We will prove the Malgrange-Ehrenpreis theorem for the polynomial P(i§). Let

0, P1. P2, . ... Pm € G5°(R") be chosen so that Y ;—, ¢(€) = 1, ¢(€) > O for
& € R”, and ¢ (&) = O for those £ € R” for which

k
min |P(i§, —t—,i&, ..., iE)| < ak.
|r]=1 m

If L(¢) denotes the Laplace transform of ¢ € €5°(R"), we set

u(p) =

I v 1 L@)E + itk 6. .. £) de
(zn)n Z R” ¢k($)2_7” /1:|=1 P(& - T%, l'gz, e, [%‘n) ?dé (93)

k=0

We fix ¢ € 5°(R") and choose R > 0 so that suppg C Ug. Since L(¢) is an entire
function, by the Paley-Wiener-Schwartz theorem we have

(@)1 + itk &, E)| <

(L4 &+ TP + &1 4+ &)™ maxjozy eRn [ (1 =AYV (x)]dx
9.4)

forevery N > 0. Fixing N > 3 ensures that

k
[t ie Pl 4k )M <
Rn
We note that

k
min |P(i§ — t—,i&, ..., iE)| > ak
lt=1 m



9.1 Definition and Properties 181

for £ € R" with ¢ (£) # 0 and forevery k = 0, 1,2, ..., m. Then, using (9.4),

T \L(¢)(§+ L. é‘n)\
(@) < g feo Pe) "= O e )]

minjg|=1 |POEI—T &, 152 ..... i)
k . B
< G Lo maxiej=y R L (L4 (€ + itk P+ £ 4+ £2) Ve

X [iyer |(1 = AV (x)|dx.
Let

1 - _
Ksz |f|a’§elRer‘ /(1+|g+n—|2+g2 c EHTVGE,

SO

()] < Ky / (1= AV ()| dx

|x|<R
for every ¢ € ‘KOM(U_R). Therefore u is a linear and continuous functional on

EXR").

Moreover,

P(D)u($) = u(P(=D)¢)

1 m 1 L(P(— D)¢)(El+tr £2,bn) @
- o) Zk=0 fR” ¢k(‘§)ﬁ fltl 1 P(EI—T X i2,....iE0) Ids

L(P(-D)$) (&1 + itk &.... E) = P(iEs — T£. 60, E)L(D)
= o Y foo B2k S L@ En + iTE o ) L
(applying Cauchy’s  theorem)

= b5 Yo fo SO F B )E = b fro F (@) ()
(using the inverse Fourier transform)

=¢(0) = 8(9).

so finally

P(D)u(¢) = 5().



182 9 Fundamental Solutions

Since ¢ € 6;°(R") was chosen arbitrarily,
PDu=3§

follows, showing that u is a fundamental solution for P(D).

Example 9.1 The distribution u(f) = H(f)e™™ € 2'(R'), a = const > 0, is a
fundamental solution for the operator % +a.
Indeed, let ¢ € €°(R") be arbitrary but fixed. Then

(4 +a)u@) = (4 +a)H (@)
= S(H@Oe ™) ($) + aH (e " ($)

= —H(t)e™(¢') + a [y e "p(t)dt
=— [T e P (t)dt + a [;° e~ P(r)dt
= ¢(0) =5(¢).

Hence (d% + a)u(t) = §(1).

Exercise 9.1 Prove that H (x)% € 2'(R") is a fundamental solution for % +a?,
a = const # 0.
Exercise 9.2 Prove that

—1

H(x)e™ e 1)!,m

=2,3,...,a = const,
is a fundamental solution for the operator
d m
— F a) .
(dx

For applications of the fundamental solutions we refer to [4-6, 14-16, 20, 23, 30,
34, 35].

9.2 Exercises

Problem 9.1 Using (9.3) find a fundamental solution for the following operators

d? d
' @ +4$’
d d
2. i 45 41,

3045 434 1)

dx?
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2
47%—4%+i
5.4 1,

3 2
6. 4 —34; 24,
7. &,

4 2
8. 4 —24 +1.
Answer
1. H(x) =™,

2. H(x)xe",

3. Hx)(e™ —e™ %),

4. H(x)e* sinx,

5. @(e" —e 3 (cos “/Tgx + +/3sin “/Tgx)),
6. (1 — e,

7. @(shx — sinx),

8. 2 (xchx — sh).

Problem 9.2 Prove that

H() — G+0?
u(x,t) = e 4
=) 2wt
is a fundamental solution for the operator
a0 d |
ot ox?2  ox

Problem 9.3 Prove that
—H(t)H(—x)e'™
is a fundamental solution for the operator

N
0xdt Ox ot '

Problem 9.4 Letn = 2. Prove
Alog |x| = 27wé(x).

Problem 9.5 Letn > 3. Show that

= —(n—2)0,6(x).

|_x|n—2
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Problem 9.6 Letn = 3. Prove that

satisfies the equation
Au + KPu = §(x).

Problem 9.7 Demonstrate that

H() _m?
u(x,t) = e d4a’t
(x.1) 2a+/mt
solves
du )
E—a Au=68(x,1), xeR,teR,
and
u(x, r) —>—+40 6(x)
in 2’(R").

Problem 9.8 Prove that
1
u(x,t) = —H(at — |x|)
2a
satisfies the equation
2 1 1
Uy — a uy = 8(x,1), x€R',teR,

and

2
au(z));, 1) 0 SO, 7 u(x, r)

u(x,t) ——400,

in 2/(R").
Problem 9.9 Prove that

1

=
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satisfies the equation

Problem 9.10 Prove that

solves

1
U
i

Problem 9.11 Define

and suppose

(@ + z@) = 5(x, y).

1
2\ ox dy

— Au=46(x,1), xeR'“reR

H(t) _ \5‘7\’2
PNz

u(x,t) =

F(x) :/0 u(x, r)dt,

exists for any t > 0 and almost every x € R". Prove

AF = =§(x,1).
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Chapter 10
Sobolev Spaces

10.1 Definitions

Definition 10.1 Let A be an opensetin R", m € Nand 1 < p < 4o00. The Sobolev
space W"”(A) consists of functions in L”(A) whose partial derivatives up to order
m, in the sense of distributions, can be identified with functions in L7 (A).

Equivalently,
WP (A) = {u € LPW : D*u € LP™ for any & € N" U {0}, || < m}.

Notice that clearly W*9(A) = Li(A).

For p = 2, the symbol W™2(A) is generally replaced by H"(A), and in case
A = R”, we can use the Fourier transform £ — .7 (u)(§) of u € L*(A) to give the
following characterisation

W (R") = H"(R") = {u € ’(R") : § = (1 + )2 Fw)(§) € LP(R")}.

Example 10.1 Let U = U; = U(0, 1) C R?. We seek conditions on 8 > 0 so that
the function u(x, y) = x(x> 4+ y?)~# is, away from the origin, an element of H'(U).
In polar coordinates x = rcos ¢,y = rsing, 0 <r < 1, ¢ € [0,2x]:
u(x,y) = x(x> +y?) 7P = "7 cos ¢,
lu(x,y)I> = r~* cos’ ¢,
w(x,y) = (¢ +y) P =220 + )P =P (1 = 2B cos’ §),
e, )P = (1 = 2B cos’ §)?,
uy(x,y) = —2Bxy(x* + y?) P! = —28r 7% cos ¢ sin ¢,
TNES Y)|? = 4% cos® ¢ sin® ¢,
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188 10 Sobolev Spaces
substituting which produces

[y u(x, y)|2dxdy = fol f02” P4 cos pdpdr < oo <= B < 1,

Sy luxe, y) Pdxdy = [ [ r =4 (1 — 2 cos® ¢) dedr < oo <= f < 1,

o luy G, y) Pdxdy = 482 [i} [ r'=4 cos? § sin® gpdedr < 0o <= f < 1.

Consequently u € H'(U)if 0 < B < 1.

Exercise 10.1 Consider U = U; C R% u(x,y) = xy(x* + y) 7P, (x.y) €
U\{(0,0)}, B > 0. Find conditions on the parameter f so that u € H'(U).

Answer 0 < 8 < 1.

Exercise 10.2 Let U = Uy inR", r? = }"'_| x?. Define u on U by
u(x) = (1= r)f(=log(1—r)*, xeU,

where o, B > 0 are real. Find conditions for « and B so that u € W'?(U), 1 < p <
0.

Answer 8>1—L a>—-2 orB=1-1 2 <cg<—-1p>1.
ﬁ P’ P’ ﬁ P’ » p,p

10.2 Elementary Properties

One can endow Sobolev spaces with a norm

1

P .
(Zog\a\gp IIDO{“H[[)p(A)) if 1<p<oo,
||M||Wm.p(A) =

maxo<e|<m | [D*u][100 ().

In particular, the space H"(A) admits an inner product

)= Y (D"u.D"v)).

0<|a|<m

Exercise 10.3 Check that || - ||wm»(4) fulfils the axioms for being a norm.
Exercise 10.4 Check that (u, v) is indeed an inner product.

Definition 10.2 A sequence {u};2, in W™ (A) converges to u € W™ (A) if

[lux — wt||wmra) —k—>o0 O.
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Definition 10.3 A sequence {u;};2, in W"?(A) converges to u € W"P(A) in
Wil (A) if uy —>k—»o00 u in W™ (V) for every V CC A.

Definition 10.4 We denote by W, ”(A) the closure of C°(A) in WP (U).
In particular, H'(A) = W (A).

Exercise 10.5 Prove that u € W;”(A) if and only if there exist functions u; €
C3°(A) such that uy —> 00 u in W7 (A).

Now we set out to prove a number of elementary, but important properties of
Sobolev spaces.

1. Letu € W™P(A). Forany 0 < || < m we have D% € W"~1*l7(A) and
DP(D%u) = D*(DPu) = D*TPu

for 0 < |a| + |B| < m.

To prove this property we observe that u € W"#(A) implies that D%u is a well-

defined distribution, and D*u € [P(A) for 0 < |a| < m. Moreover, D*u €

Wm—lelr (A) if DP(D%u) exists and belongs to L”(A) for 0 < |B| < m — |«.
Pick ¢ € €5°(A). Then for 0 < |o| + |B| < m we have

[, D*uDPpdx = (—)*! [, uD*(DP ¢)dx
= (0l [, uD* P pax = (=1)IP! [, D*+Pugadx.

On the other hand,
/ D*uDPpdx = (—1)I! / D? (D u)¢dx,
A A

so overall
DP(D%u) = D*Pu.

Exercise 10.6 Prove that D*(DPu) = D**FPy.

As a consequence, when 0 < |B| < m — || the derivative Df (D%u) exists in
the sense of the distributions and belongs to I”(A). We conclude that D*u €
wr=lelr(A).

2. For any u, v € W™ (A) and constants A, t, Au + pv € W"P(A).
For this, let ¢ € €;°(A) be arbitrary. As u, v € W"?(A), for 0 < || < m we
have D*u, D*v € L(A) and

[, D*(Au + pv)pdx = (—1)l [, (Au + pv)D*¢dx



190

—
=)

Sobolev Spaces
= A=D1l [, uD*¢dx + p(=1)1 [, vD*¢pdx
= A [, D*u¢pdx + j1 [, D*vgpdx

= [,(AD*u + uD*v)¢dx.
3. If u € W"P(A) and V is open in A, then u € WP (V).
Exercise 10.7 Prove this property.
4. (Leibniz formula) If { € 6;°(A) and u € W"P(A), then {u € WP (A) and

DCuy =Y (; ) DPeDPu.

B=a

First of all fix ¢ € 65°(A). Then for || = 1
[, D*(u¢)pdx = — [, ulD*¢pdx
= — [, u(D*({$) — D*)dx

= [,(D°ul + uD"¢)ax.

Let [ < m. We suppose that the assertion holds for || < [ and prove it for
|| =1+ 1.Leta = B + y, where || = land |y| = 1. Then

/ utD*¢dx = / utDP (DY ¢)dx = (—1)/P! / DP(ut)D” pdx
A A A

so by induction hypothesis

=D 3 (ﬁ)D {DF=ouD? px

Sy (ﬁ) DY (D°£DP~7 ) phidx

= DY, (g) DV+”;D/3 u 4+ DOLDP+Y—0 )¢dx
wsing (,£)) + () = ()

= D Y (i) D7 LD ugd,

proving the assertion.
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5. Foreverym =1,2,...,1 < p < oo, W"P(A) is a Banach space.
We shall prove the statement for p < 0o, and leave the reader to see to p = oo.
Let {u;}2, C W™P(A) be a fundamental sequence. Then for every / € N and
0<|af=m
[1D%u1+q — D*uil |14y —>g—>00 0.
Therefore the sequence {D“u;}{2, is fundamental in L”(A), for any « such that
0 < |a| < m. Since L?(A) is a Banach space, this sequences converges in L (A)

to some uy, for any 0 < |a| < m.
Let uy = u. We claim that D*u = u, for any 0 < || < m. In fact,

/AuD“qﬁ = lgnoo/AuzD”‘d)dx = (=1l lgnoo/AD”‘uzq&dx = (=) /Aua¢>dx,
S0 DU = uy, 0 < |a| < m. As
[[D%ur — D*ul| 1) —>1—00 0
for every 0 < || < m, we conclude that
[l — u||wmr@) —>1—00 0.

Exercise 10.8 Prove that H"(A) is a Hilbert space for any m € N.

Exercise 10.9 Prove that if u € W!?(0, 1) for some 1 < p < 1, then

ju(x) —u)| < x =" (/01 Iu/lf'dt)l%

fora.e. x,y € [0, 1].

10.3 Approximation by Smooth Functions

Lete > 0 and A C R" be open. We define
U = we * u

foru € W"P(A) and x € A..
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1. If u € W™P(A), then u¢ € €*°(A,).
To see this, let o be an arbitrary multi-index. Then

Duf (x) = D* [, we(x — y)u(y)dy
= [, D¢wc(x — y)u(y)dy

= (=Dl [, D*w (x — yu(y)dy, x €A,
from which

D%uf(x) = /we(x—y)D“u(y)dy =we * D*u, x€A,
A
and
0w ()] = |, Ds e = D)y

< [, IDwc(x — y)||u(y)|dy

1 1
=( [y ID2 0= y)l2dy)* ([, luG)Pdy)”
< Cllullwm.p(A), X € A.
2. Ifu € W7 (A), then
ut —e—0 U

in W= (A).

loc

Let o be given. From the previous property D*u¢ exists, and if V CC A then

1
1 = ullwmes = (Sjaizn o ID%0 = D)

(Minkowski’s inequality)
(10.1)

=

= Xlalzm (fv |D*u¢ — Dau|pdx)

= Z‘W‘Sm ||DOLM€ — Dau”Lﬂ(V).
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Since (D*u)¢ = D*u¢ and D*u € L?(V), 0 < || < m, using the properties of
the convolution we see that

[1D*u® — D*ul|Lr(v)y —>c—0 0.
Hence u¢ —>— u in W.'(A).
3. If A is a bounded set in R"” and u € W”'”(A), there exists a sequence {u;}{2, in
E*°(A) N W™P(A) such that
U —>1—oco U
in WP (A).
We claimA = U2, A;. Infact, if x € A, then x & 0A. Therefore there exists i € N
such that dist(x, 0A) > %, sox € A; and x € U2 A;. Consequently A C U2 A;.
Conversely, if x € U2, A, there exists j € N such that x € A;. Therefore x € A
and dist(x, 0A) > jl., so we conclude U2 A; C A.
Let V; = Aiy3\A;, i = 1,2,..., and choose V; CC A. Then, as above, A =
U2V
Let {¢;}2, be a sequence of smooth functions such that

LeEEV), 041 Y &=L
=0

We define ¢; > 0and § > 0, u' = ({;u) * w, so that
! — Ciu|lwmo(ay < %
suppu' C W; = Airs\A; D Vi
Note that {;u € W™P(A). From the properties of the convolution we know
u' —>—>0 Cilt

in W"P(A).
Let

o0
v:E u'.

i=0
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Since Y 2 ¢ = 1, we have that u = Y 2, u. Let V. CC A. Only a finite
number of elements are different from zero in V, so v € ¥°°(A). Therefore

1o = ullwmogny = || 52w = L2 G

‘ Wwmp (V)

= || = g = g = Gullwmoy)

Wmp (V)
0 1
<4 Zi:O ST = 8,
and consequently

sup ||v — ullwmrvy < 6.
vccu

Let v; be the function which corresponds to the space W™ (V;). Then
[lvr — u||wmr 4y —>1—00 O.

Exercise 10.10 Let A be a bounded set with 4! boundary dA. Prove that if u €
W™P(A), 1 < p < oo, there exists a sequence {u;}%, in ¢'*°(A) such that

[t — u||wmra) —1—o00 O.

Solution Let x° € 9A. Since 0A is €', there exists a radius r > 0 and a €' function
y : R"!' — R such that

ANUE, P ={xeURr) x>y, %, ... X1}
Let V. =ANU(", %) and define
xX*=x+Aee,, xe€V,e>0,A1>0,¢,=(0,0,...,n).

There exists a large enough A > 0 and a small enough € > 0 such that U(x¢, €) lies
inA N UK, r) forevery x € V. Let uf(x) = u(x¢) and define

V¢ = W, * Ue.
Take || < m, so
[[IDv¢ — D*ul|pvy = ||D*v¢ — D%ue + D*ue — D*ul|rr(v)

(10.2)
< ||D*v¢ — D*uc||rr(vy + ||[D*ue — D*ul|Lr(v)-
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We have

[|ID*v — D%ucl|rr(v) —>e—s0 0 (10.3)
and

[ID*ue — D%ul|pr(v) —>e—>0 0. (10.4)
From (10.1), (10.3) and (10.4) follows

[|D*v¢ — D*ul|Lr(vy —>e—s0 0 for 0 < |a| <m.
Consequently
[[v¢ = ullwmev)y —>e—s0 0.

Since_E)A is compact, there exist finitely many points x?, radii r; and functions v; €
“>*°(V) (i=1,2,...,N) for which

ri
0A C UL U, 5), [lvi — ullwmr(vy <8,
where
o i
Vi=AN U(x,-,z).
Let Vo CC U. Then
AcC U V.

There exist functions §;, i = 0,1,...,N, such that §; € 65°(V;), 0 < { < 1 and
Zf.vzo ¢; = 1. Now we define the function

N
v = Z C,’U,’.
i=0

Then
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and
N N
[|D*v — D%ul|pay = || D_jmo D* (Gi(vi — u)) |y < Dimo 1D (Ci(vi — )]0 (a)
= Zf\]:() ||D"‘vi _DQMIIU’(V,-) < Zf\]:() ||vi — M||Wm.p(vi) <S§(N+1)

for 0 < || < m.

10.4 Extensions

Theorem 10.1 (Extension Theorem) Let A CC V be bounded subsets of R" and
assume the boundary 0A is €. There exists a linear operator E : W'?(A) —
WP (R") such that

1. Eu = ufor any u € W'r(A),
2. suppE C 'V,
3. ||Eullwrrrey < Cllullwipa-

Proof Fix x° € 0A.

Casel. u€ E>®(A).
First of all, we suppose that locally, around x°, the boundary dA belongs to {x, =
0}. Since 0A is €, there is a ball U such that

Ut =UN{x, >0} CA,
U™ =UnN{x, <0} CR"A.
Now define

u(x) for xeUT,
ux) =

=3u(xy, X2, .o Xym1, —Xp) + du(xy, %2, ... Xp—1,—%) for xe U™.

We will show that # € €' (U). In fact, let us define

+

wo= ulxnzo.xezﬂr s U= U cover—
We have
+ —
u —_n u(xlv-x27 e 7xn—170)7
|xn—()

= —3u(x, x2,...,%—1,0)+4u(x;, x2, ..., x—1,0)=ulxy, x2, ..., x,—1,0).

|)c,1 =0
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Consequently
uIXn=0 = ul«\‘n=07
and then
dut ou~ .
—_— = — , i=1,2,...,n—1.
0x; [p=0 0x; [p=0
On the other hand,
aut —
X |y, —o e
Qu— — 3.0 _pou = du
T O |, —o 0% |y, —o 0% [, —o”
so overall,
du™ ou~
axn IXn=0 ax” IXn=0
and D"u; _ = D"‘u‘+ , is well defined for 0 < la| < 1.Hence s € €' (V).
| xXxn = xp =
Additionally,

@l lwirwy < Cllullwirw+) < Cllullwir-
If dA does not belong on such hyperplane locally (in a neighbourhood of x°),
since the boundary is %! there exists a function @ with inverse ¥, say x = @(y),
y = ¥(x), that maps a neighbourhood of x° to a neighbourhood of ¥ (x°) in such

a way that, locally, ¥(9A) lies on {y, = 0}. Let u'(y) = u(x) = u(®(y)). As
above, we construct a function ' such that

||ﬁl||wl~n(U) = C||M1||W11P(U+) = C||M1||W1-I’(A)s
andu' =u' inUT.IfW = ¥(U)
[allwrrwy < Cllullwripg)-
Now we define the operator
Eu =u.

Since u is bounded in W'?(A), the map u + Eu is linear and bounded.
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Because dA is compact, there exist finitely many points x(l), xg, cees xR,, open sets
W;, extensions u; of u on W; such that if we take Wy, CC A,

A C UL W, Ac UL w.

Let {¢ ,}fv= o be the partition of unity corresponding to the system Wy, Wy, ..., Wy.
Now we put 1y = u. Then

N
=) L
i=0

and

el = [| S0 e

N _ N _

< D imo St lwiowey = 2_izo 1St lwioew,
N - N

< Yo a@llwirawy < 2 im0 Cllullwir)

= CN||ul{wra)-

Case2. Letu € W!P(A). Then there exists a sequence {w}iy, in EXA) N
W' (A) such that u; —> u, [ — oo, in W'?(A). For u; we apply case 1. We
also have

||Eum — Eulllwl.p(Rn) = ||E(I/lm — M1)| |Wl.p(Rn) < C| |I/lm — ulIIWI'I’(A) —>l,m—>00 0.
Consequently {Eu,,}°2_, is a fundamental sequence in the Banach space W' (A),
so it converges to some % € W'?(A). But as Eu,, = uon A, we have i = u on A.

Definition 10.5 We call Eu an extension of u to R”.

Exercise 10.11 Let A CC V C R" be bounded sets with A of class €. Then there
is a linear operator E : W2?(A) —> W?#(R") such that

1. Eu = uforu € W*?(A),

2. suppE C V,

3. |[Eullw2r®ey < Cllullw2ray-

Exercise 10.12 Extend u € W'”((0, 00)) onto (—00, 0) by setting #(x) = u(—x).
Prove that this extension % is an element of W'#(R).
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10.5 Traces

Theorem 10.2 (Trace Theorem) Let A be a bounded set in R" with €' boundary
0A. There exists a linear bounded operator T : W'"*(A) —> W'?(3A) such that

Tu=wu, if ue WP(A) N € (A)
and
1 Tullr@u) < Cllullwira)-
Proof We assume u € €' (A) and take x° € 9A. We also suppose that dA intersected
with some neighbourhood of x° lies on the plane {x, = 0}. Let » > 0 be such that
ANUEK, r) C {x, = 0}. We consider U(x°, 3)and call I' = d(A N UQ®, 3)). We
choose ¢ € €°(U°,r)) sothat0 < ¢ < 1on U(x%r),{ = 1on U(xo,g .
By denoting
X =X, ..., x%_1) R ={x, =0}

we have

S ulPdy < [y _oy Elulde = — 4 (Clul)y, dx

(10.5)
= — Jy+ ColulPdx = p fyi ¢lup~ (signuuy,dx.
Young’s inequality, with 11) + é =1, gives
p—1yq P
|u|p—1|ux”| < (|”|q ) + |u, | < C(lul]” + |DulP).
From this and (10.5) we deduce
/ |ulPdx < C/ (|ul’ + |Dul?)dx,
r ut
SO
lullrcry < Cllullwiow+) < Cllullwiray- (10.6)

If we cannot find a neighbourhood of x° the restriction of dA to which belongs in
{x, = 0}, there exist a ¢! map @, with inverse ¥, mapping a neighbourhood of x°
to a neighbourhood of y* = ¥ (x°) so that, locally, ¥ (dA) lies in {y, = ¥(x,) = 0}.
Since A is compact, there exists a finite number of points x%, xJ, .. ., x% and balls
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U, r;) = V; such that 9A C UY_,V;, Vo CC A and
AcC UL V.
From (10.6),

uller(ry = Cllullwrrw)-

Let {;}Y_, be the partition of unity of the system {V;}_,. Then

lallran = || i Gou|

1 (94)
N N
< im0 ISl lray = D io ey (10.7)

< Cllullwrr)-
Now define the operator 7 : W!?(A) — W!*(dA) by
Tu = uy,,.
Using (10.7) we see that
| Tullr@ay < Cllullwiray-

Let u € W'?(A) N € (A). There exists a sequence {u,,}°°, in €°°(A) such that
Uy —> uin W'P(A) as m — oo. From (10.7) we have

[|Tum — Tl |1 04y < Cllttm — willwira) —>mi—so0 0.

Therefore the sequence {Tu,,}o~, is fundamental in the Banach space L”(dA), and
as such it converges in L7 (0A):

lim Tu,, = Tu.
m—>00

As Tu,, = uy,,, we infer that Tu = u,,, and T is a bounded operator.
Definition 10.6 We call Tu the trace of u on dU.

Exercise 10.13 Let A be a bounded set in R" and assume 9A is €. Prove that Tu
vanishes on A, provided u € W,” (A).

Hint Use the fact that there exists a sequence {u,,}o— in ¢;°(A) such that u,, —
uin W'?(A), as m —> oo. Since Tu,, is zero on A, we also have Tu = 0 on 0A.
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Exercise 10.14 Let A be a bounded set in R” and let dA be €. Take u € W' (A)
with Tu = 0 on dA. Prove that

/ lu(x, x,)[Pdx’ < Cx2™! / / |Dul|Pdx’dt
Rr—1 0 Rr—1

fora.e. x, > 0. Here X’ = (x1,x2,...,%—1).

Hint Use the extension theorem, then choose {u,,}°_, in ¢! (ﬁi) such that u,, —>
uin Wi» (1_3’:_), as m —> oo. Then use the identity

U (¥, X)) — (X, 0) = / umxn(x/,s)ds.
0

Here 1_2’:_ is the closure of {x = (x1,x2,...,x,) € R" : x,, > 0}.

Exercise 10.15 Let A be a bounded set in R” with A of class ¢’!. Take u € W' (A)
with Tu = 0 on dA. Prove that u € W,”(A).

Hint Use the extension theorem. Consider the function ¢ € ¥°°(R) suchthat{ = 1
on[0,1],0 < ¢ < 1onR, ¢ = 0onR\[0,2], and the sequences {,,(x) = ¢(mx,),
Wi (x) = u(x)(1 —{p(x)), x € R Prove that wy, —>—s00 uin whp (R",). Mollify
Wi to produce functions u,, € 65°(R’}) such that u,, —,—s o0 u in wlr (R7).

10.6 Sobolev Inequalities

Definition 10.7 Let 1 < p < n. The Sobolev conjugate p* of p is defined by

1 1 1
_* - = .

p p n

1. (Gagliardo-Nirenberg-Sobolev inequality) Let u € %, (R"). Then
1 ey < ClDUlr e

for some constant C > 0,1 < p < n.

Proof Case I. p = 1.Then p* = -5 and we have to prove that

il oy < D1 oy,
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Our first observation is

lu(x)| = ‘ff"oo Uy (X1 ooy Xim 1y Vi Xik s+ - - 5 Xn)dYi

=< ffoo [, (X1, -« oy Xim 1y Vi Xik D -+« 5 Xn)|dYi
= f_ozo |Du(y)|dy;, i=1,2,...,n.

Then

(e} 1

Du(yldy)"™, i=1.2,.m,
oo

(@7 < (/

i.e.,

n—

)77 < (/52 1Duty)ldy)

n—

)77 < (/%2 1Duty2)ldy2)

n—

@] =1 < (%, 1Duty)ldyn)

We multiply the above inequalities and get

i = TT( [ 1puia) ™
i=1 7%

Now we integrate in the variable x;, then apply the generalized Holder’s
inequality and obtain

1

S @l rdy < 22 T (%5 1Dutnldyi) ™~ dx

1 1

< (ffzo IDM(Yl)Iﬁlyl)ﬁ Hi’iz(fi’io I%% |D“(yi)|dyidx1)” 1
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Integrating now in x;, and using the generalized Holder’s inequality again
gives

L2 22 |u(x) |71 dxydix

1 1

=/ <ISZ° |Du@l)|dyl)m [T, (ffio S |Du(yi)|d)’idxl)n_l dx,

1

< (IS Duts ) ™ (1% % 1wt i)

1

< TTics (/2% S5 [0 1DuGD dyidvida) ™

Iterating,

n

|u(x)|7=Tdx < C(/ |Du|dx)”_l, (10.8)
Rll

R”

and hence

il gy < 11Dl

Case 2. Letp > 1. Weputv = |u|”, where y will be determined subsequently.
We apply inequality (10.8) to v and get

n—1

(fRu Iu(X)InVT"ldx) " < C [ [u]"7! | Duldx.

By Holder’s inequality

n—l1 p—1

n o =bp
(/ |u(x)|#dx) < c(/ lu| 7 dx) ” |1 Dul |- (10.9)
Rn n

Now we take y > 0 such that

yn _ (y="Dp
n—1 p—1"~
SO
_pin=1  yn pn .

n—p n—1 n—p
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From (10.9) we find

p=t
( Jucor” ax) f G dx) 7 [1Dullrwe,
and then
||“||U*(R") = C”D"‘”U’(R”)‘

Exercise 10.16 Let 1 < p < n and consider A bounded in R” with &' boundary.
For u € W'?(A) prove

ull e 4y < Nullwroga)-

Hint Apply the Extension theorem so to ensure the existence of the extension
% € W'P(R") of u. Then choose a sequence {u,,}°°_, in 6°(R") such that u,, —>

uin W'P(R") as m —> oo. Apply the Gagliardo- N1renberg Sobolev inequality
to u,, — u; and conclude that {u,,}°2 | converges to u in L’ (RY). Eventually, the
Gagliardo-Nirenberg-Sobolev inequality on u,, gives the desired result.

Exercise 10.17 Let A be a bounded set in R” with dA of class €', u € Wé’p A)
for I < p < n.Prove

[lul|zaay < C||Dul|1ra)

for some constant C > 0 and for every g € [1, p*].
Hint Use approximation and the Gagliardo-Nirenberg-Sobolev inequality.

2. (Morrey inequality) Let n < p < co. Then for every u € €' (R") there exists a
constant C = C(n, p) > 0 such that

IIMII(/)OV(R”) = C||“||W1P(R”)’
wherey = 1— ;’;.

Proof Let U(x,r) C R" be an arbitrary ball, » > 0. Fix w € dU(0, 1), so

|u(x + sw) —u(x)| =

o g+ tw)dt‘ =

Y Du(x + tw) - wdt

< [y IDutx + tw) - widt < [ |Du(x + tw)|dt,
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which we integrate on dU(0, 1) and get
Sovo 140G+ sw) —u(0)dS < [yy04) Jo |Dulx + tw)|didS
=l faU(o,l) |Du(x + tw)|dSdt = [ Jovo. 1y [Du(x + w)|L = o dSdt
(x+mw=y)
=h fBU(x,t) |D“(Y)|stydf = fU(x,x) IDu(y)IWdy

< Joten IDUO) i

_y‘rt l
From here,
s / [u(x + sw) — u(x)|dS < 5" / |Du(y)| ————dy.
AU(0,1) U, |x — |”
Therefore

/ " 1/ |u(x+sw)—u(x)|des</ " 1/ [Du(y)| ————dyds
AU(0,1) Ux,r) lx— |

SO

/ n=1 / lu(x 4+ sw) — u(x)|dSds < — [Du(y)|-————dvd,
au(0,1) U(x,r)

IXyW

and substituting x 4 sw =y finally

rﬂ
/ / )~ u@ldsids < = [ ipu iy
AU (x,s) U(x,r) | In
and
1
L ) —umldy <t [ DuG)——ay.
™ Ju(xr) n Jux,r) |-x )7|

We set ,in /; Uler) ()dy = TU(H) (-)dy. Then there exists a constant C > 0 such that

/ () — u(@)ldy < C / |Duy)|———— (10.10)
U(x,r)

Y.
U(x,r) Ix y|n !
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On the other hand,
@] = [y lu@ldy = [y @) — u@) + u()ldy
< [y @) — u@)ldy + [y lu)ldy
< [ |10 = u@)ldy + Cllul @i
< [y 1) — u()dy + Cllul|r@n by (10.10)

= Lo 22540 dy + Cllul |

=

< Cfyen )0 gy + C|ul | 1p gy

o=y~

(Holder’s  inequality)

1 p—l
= (fyger IDUOPAY)” (fger ﬁdy) " 4 Cllullpre

[x=yl

(=bp _,
p—1

< C(||u||lrwry + ||1Dul|r®n)) < Cllullwrpwrn-
Therefore

sup |u(x)| < Cllullwirrn).
x€R"

Let x, y € R” be arbitrary points and W = U(x,r) N U(y, r). Then
u(x) — u)| = [y lu) —u@)lde = [lux) — u@) + u@) — u()ldz

< [ylu@) — u@ldz + [ luz) — u(y)|dz.
(10.11)
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The inequality (10.10) allows us to estimate
Jwlu@) —u@ldz < [, ,lu@) —u@)dz

= C fuen Du@)| j-(Holder’s  inequality)

[x—z|"—1

p—1

=C (fwx,r) |DM(Z)|PdZ)%(fU<X " <,, — e dZ)T (10.12)

|x—z| »

n—(nil)p P%l -2
C(” ”“) [1Dul|pp iy < Clx—y|" 7 ||Dul|rp®n

IA

Clx = y"[|1Dul|p®ey = Clox = y[7|[Dul [y e

Hence we deduce

[ 1009 =@z = Clr =317 1Dl
From the latter, (10.11) and (10.12) we get

|u(x) —u()| < Clx = y["||ullwrore)-
NoJ

|u(x) —u(y)|

< Cllullwrrgn
=y ®

x7#y,x,yERM |-x

or

[ull g0y ®ry < Cllullwirwey-
3. (Poincaré inequalities) We begin with an important interpolation inequality for
the L"-norm.

Lemma 10.1 Let A be an open bounded set inR", 1 <s <r <t < oo and

1_
+Te, 0<6<l.

v |

1
,
The any u € L*(A) N L'(A) belongs in L' (A) and

el Lra) < ||u||LX(A)||u||L,(A)
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Proof We have

fA Iulrdx — fA |u|0r+(1—0)rdx — fA |u|0r|u|(l—0)rdx

(Holder’s  inequality for p= % ¢g= U_—r@)r)

o r(1—=0)

< (fululdx) " (fy lufax) *
from which

0 1-6
el Lra) < ||u||Ls(A)||”||Lt(A)-

Definition 10.8 The Banach space X is said to be compactly embedded in the
Banach space Y, which we write X — Y, if

a. ||x|ly < Cl|x||x, x € X, for some positive constant C,
b. any bounded sequence {x;}{2, in X has a subsequence {x;, }72, that converges
inY.

Theorem 10.3 (Rellich-Kondrachov Compactness Theorem) Let A be a
bounded open set in R" with €' boundary and 1 < p < n. Then
WP (A) < Li(A)

for every 1 < g < p*, where p* is the Sobolev conjugate of p.

For the proof of this important theorem we refer the reader to [1, 2, 5, 6, 17, 18,
29, 31] listed in the references.

Exercise 10.18 Let A be a bounded open set in R” with €' boundary. Prove that
WIP(A) < LP(A).

Definition 10.9 One calls
Wi = o7 [ uona
ua=— [ u y
VIR

the average of u over A.

Theorem 10.4 (Poincaré Inequality) Let A be a bounded, connected, open set in
R", 1 < p < oo. Then for every u € W'?(A) there exists a constant C = C(u, p,A)
such that

[l = (Wallray < ClIDul|Lra).
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Proof Let us suppose that there exists a function u; € W' (A) such that

lux = (ui)allray > Kl |Dug] | a).- (10.13)
Let
up — (Ug)a
vy = —.
[ — (ue)allera)

Then

(V)a = Huk—%uk)-A” S Gt — (uge)a)dy

pr=mni (f attkdy — (s [ Ady)

= T (s — ()a) =0
and

up — (Ug)a [tk — (ui)all
oelloren = |

= = 1‘
H [lux — ()allr @) [luk — (ur)allzr @)

From (10.13) we infer

1 IDuellpay  _ IIDGue—(u) ) l1p (4
k Nux—()allp@y — Nue—)allr @)
(10.14)
_ ug—(ui)a —
H Ta—G@oallr e ‘— DVl lzr(a)-

Consequently {vx}2, is a bounded sequence in L”(A) and W'’(A). By the
Rellich-Kondrachov compactness theorem W'?(A) <> [P(A). Therefore there is
a subsequence {vkj}]?'il that converges to some v € L”(A). From (10.14) we have

hm IIkajIIU’(A) =0.
J—>00

Fix an arbitrary ¢ € 6°(A). Then

/vqﬁx,.dx = lim /vquﬁxl.dx =— lim /vijiqﬁdx =0
A J7>00 JA J7>00 JA

and Dv = 0. Consequently v € W!'?(A). Since A is connected and Dv = 0, it
follows that v = const. Let v = [ Because ||vk|| = 1, we have ||v||pr@u) = 1.
From (vi)a = 0, we conclude that (v)4 = 0,s0! = 0, ||v||zr@) = 0, which is a
contradiction.
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Exercise 10.19 (Poincaré inequality on the ball) Given 1 < p < oo, there exists a
constant C = C(u, p, A) such that

[lu — W ven e < CrllDullp -

Hint Consider the function v(y) = u(x + ry), y € U(0,1). Use the Poincaré
inequality for U(0, 1) and change variables y = “=.

10.7 The Space H™*

Definition 10.10 We denote by H—*(R”"), for any 0 < s < oo, the dual space to
H{(R"). In other words, f € H*(R") is a bounded linear functional on Hj(R").
We also set

H™®(R") = Uyep H'(R").

Theorem 10.5 (Characterization of H~*) For any given 0 < s < 0o, any element
u e ' (R") N H*(R") can be written as

w= Y Dy, with hy€L*R").

|| <s

Proof We have that

f=0+E)2F W) e LA(R").

Then
F) = 1+ [P = (1+ D), Il ) AR
)
= (1 + 2 |§i|s)g =g+ &‘;(%Isg),
where
2 5
g = M c LZ(Rn)
(1+ 2 16r)
We set

&P

§= e LR h=F"). h=F"().
]
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Then h, h; € L2(R”),j =1,2,...,n,s0
F () = F(h) + ) EF(h) = F(h) + ) F(Dhy),
j=1 J=1
and therefore
u=h+Yy Dh;
j=1

Exercise 10.20 Prove that H~*°(R") C .%/(R").

10.8 Exercises

Problem 10.1 Let k > 0 be given, and set
U={(xy) eR*:0<x<1x<y<2x,

u(x,y) = y*, (x,y) € U. Find conditions on « so thatu € H"(U),m = 1,2,....
Answer (2o —2m + 1)k > —1.

Problem 10.2 Let U = U, be a subset of R”, u(x) = |x|™, x € U, x # 0. Find
conditions on & > 0, n and p so that u € W'?(U).

Answer o < %

Problem 10.3 Show that e " € H°(R") if and only if s < 3.

Problem 10.4 Prove that § € H*(R") if and only if s < —3.
Problem 10.5 Letn > 1. Prove that u = log log(l + ‘l) belongs to W' (Uy).

x|

Problem 10.6 Prove the following interpolation inequality

/A|Du|2dx < (/A |u|2dx);(/A |D2u|2dx)%,

for every u € €;°(A), A C R" open and bounded. Using approximation, prove it
foru € H'(A) N H)(A).

Problem 10.7 Prove the interpolation inequality

/A|Du|pdx < (/A |u|de)é(/A |D2u|de)%
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for 2 < p < oo and every u € W>7(A) N Wy”(A), where A C R” is open and
bounded.

Problem 10.8 Prove that any u € W'”((a, b)) can be extended to W' (R).

Problem 10.9 Let A be an open bounded set in R" with ¢! boundary, take u €
W"P(A), m < ;’—). Prove that u € LY(A), where [lj = 11) — =, and

[ullzaay < Cllul|wmr(ay.

Hint Use the fact that D*u € LP(A) for any u € W"P(A) and every « such that
|| < m. Applying the Gagliardo-Nirenberg-Sobolev inequality deduce

1024l 2y < CID“ulliriay < Cllullwmoca

for some constant C > 0, |¢| = mand |f| = m — 1, &= = 1 — 1 Conclude
P P

u e W' (A). Then using again the Gagliardo-Nirenberg-Sobolev inequality,
prove that

||Dy“||yr**(A) = C||Dﬂ“||yr*(,4) =< Cllullwmr)-

Deduce that u € Wm_z’”**, where p% = [% — % = [17 — %, and so forth. Eventually

conclude that u € W%4(A) and that the given inequality holds.

Problem 10.10 Let A be an open bounded set in R" with €’ boundary. Take u €
WmP(A), m > 127 and prove

ue %m‘[ﬁ]”*@,
where

" e .
[;] +1-— > if 5 1s not an integer

y:

any positive number<1, otherwise.
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Also show that u satisfies the inequality

[l 1 < Clullwnra
il “

for some positive constant C.

Hint Use the Extension theorem, Morrey’s inequality and the Gagliardo-Nirenberg-
Sobolev inequality.

Problem 10.11 Prove HT® = Nz H*(RY).
Problem 10.12 Show HT*°(R") C €*°(R").
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