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ABSTRACT
This is the third in a series of short books on probability theory and random processes for

biomedical engineers. This book focuses on standard probability distributions commonly en-

countered in biomedical engineering. The exponential, Poisson and Gaussian distributions are

introduced, as well as important approximations to the Bernoulli PMF and Gaussian CDF.

Many important properties of jointly Gaussian random variables are presented. The primary

subjects of the final chapter are methods for determining the probability distribution of a func-

tion of a random variable. We first evaluate the probability distribution of a function of one

random variable using the CDF and then the PDF. Next, the probability distribution for a

single random variable is determined from a function of two random variables using the CDF.

Then, the joint probability distribution is found from a function of two random variables using

the joint PDF and the CDF.

The aim of all three books is as an introduction to probability theory. The audience

includes students, engineers and researchers presenting applications of this theory to a wide

variety of problems—as well as pursuing these topics at a more advanced level. The theory

material is presented in a logical manner—developing special mathematical skills as needed.

The mathematical background required of the reader is basic knowledge of differential calculus.

Pertinent biomedical engineering examples are throughout the text. Drill problems, straight-

forward exercises designed to reinforce concepts and develop problem solution skills, follow

most sections.

KEYWORDS
Probability Theory, Random Processes, Engineering Statistics, Probability and Statistics for

Biomedical Engineers, Exponential distributions, Poisson distributions, Gaussian distributions

Bernoulli PMF and Gaussian CDF. Gaussian random variables



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK042-FM MOBK042-Enderle.cls October 30, 2006 19:55

v

Contents

5. Standard Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

5.1 Uniform Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

5.2 Exponential Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5.3 Bernoulli Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5.3.1 Poisson Approximation to Bernoulli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3.2 Gaussian Approximation to Bernoulli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.4 Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.4.1 Interarrival Times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

5.5 Univariate Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.5.1 Marcum’s Q Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.6 Bivariate Gaussian Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.6.1 Constant Contours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6. Transformations of Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 Univariate CDF Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1.1 CDF Technique with Monotonic Functions . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1.2 CDF Technique with Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Univariate PDF Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2.1 Continuous Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2.2 Mixed Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.3 Conditional PDF Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 One Function of Two Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4 Bivariate Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4.1 Bivariate CDF Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4.2 Bivariate PDF Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK042-FM MOBK042-Enderle.cls October 30, 2006 19:55

vi



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK042-FM MOBK042-Enderle.cls October 30, 2006 19:55

vii

Preface

This is the third in a series of short books on probability theory and random processes for

biomedical engineers. This text is written as an introduction to probability theory. The goal

was to prepare students at the sophomore, junior or senior level for the application of this

theory to a wide variety of problems - as well as pursue these topics at a more advanced

level. Our approach is to present a unified treatment of the subject. There are only a few key

concepts involved in the basic theory of probability theory. These key concepts are all presented

in the first chapter. The second chapter introduces the topic of random variables. The third

chapter focuses on expectation, standard deviation, moments, and the characteristic function.

In addition, conditional expectation, conditional moments and the conditional characteristic

function are also discussed. The fourth chapter introduces jointly distributed random variables,

along with joint expectation, joint moments, and the joint characteristic function. Convolution

is also developed. Later chapters simply expand upon these key ideas and extend the range of

application.

This short book focuses on standard probability distributions commonly encountered in

biomedical engineering. Here in Chapter 5, the exponential, Poisson and Gaussian distributions

are introduced, as well as important approximations to the Bernoulli PMF and Gaussian CDF.

Many important properties of jointly distributed Gaussian random variables are presented.

The primary subjects of Chapter 6 are methods for determining the probability distribution of

a function of a random variable. We first evaluate the probability distribution of a function of

one random variable using the CDF and then the PDF. Next, the probability distribution for a

single random variable is determined from a function of two random variables using the CDF.

Then, the joint probability distribution is found from a function of two random variables using

the joint PDF and the CDF.

A considerable effort has been made to develop the theory in a logical manner - developing

special mathematical skills as needed. The mathematical background required of the reader is

basic knowledge of differential calculus. Every effort has been made to be consistent with

commonly used notation and terminology—both within the engineering community as well as

the probability and statistics literature.

The applications and examples given reflect the authors’ background in teaching prob-

ability theory and random processes for many years. We have found it best to introduce this

material using simple examples such as dice and cards, rather than more complex biological
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viii PREFACE

and biomedical phenomena. However, we do introduce some pertinent biomedical engineering

examples throughout the text.

Students in other fields should also find the approach useful. Drill problems, straightfor-

ward exercises designed to reinforce concepts and develop problem solution skills, follow most

sections. The answers to the drill problems follow the problem statement in random order.

At the end of each chapter is a wide selection of problems, ranging from simple to difficult,

presented in the same general order as covered in the textbook.

We acknowledge and thank William Pruehsner for the technical illustrations. Many of the

examples and end of chapter problems are based on examples from the textbook by Drake [9].
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C H A P T E R 5

Standard Probability Distributions

A surprisingly small number of probability distributions describe many natural probabilistic

phenomena. This chapter presents some of these discrete and continuous probability distribu-

tions that occur often enough in a variety of problems to deserve special mention. We will see

that many random variables and their corresponding experiments have similar properties and

can be described by the same probability distribution. Each section introduces a new PMF or

PDF. Following this, the mean, variance, and characteristic function are found. Additionally,

special properties are pointed out along with relationships among other probability distribu-

tions. In some instances, the PMF or PDF is derived according to the characteristics of the

experiment. Because of the vast number of probability distributions, we cannot possibly discuss

them all here in this chapter.

5.1 UNIFORM DISTRIBUTIONS
Definition 5.1.1. The discrete RV x has a uniform distribution over n points (n > 1) on the

interval [a, b] if x is a lattice RV with span h = (b − a)/(n − 1) and PMF

px(α) =
{

1/n, α = kh + a, k = 0, 1, . . . , n − 1

0, otherwise.
(5.1)

The mean and variance of a discrete uniform RV are easily computed with the aid of

Lemma 2.3.1:

ηx = 1

n

n−1∑
k=0

(kh + a) = h

n

γ [2]
n

2
+ a = 1

n

b − a

n − 1

n(n − 1)

2
+ a = b + a

2
, (5.2)

and

σ 2
x = 1

n

n−1∑
k=0

(
kh − b − a

2

)2

= (b − a)2

n

n−1∑
k=0

(
k2

(n − 1)2
− k

n − 1
+ 1

4

)
. (5.3)

Simplifying,

σ 2
x = (b − a)2

12

n + 1

n − 1
. (5.4)
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FIGURE 5.1: (a) PMF and (b) characteristic function magnitude for discrete RV with uniform distri-

bution over 20 points on [0, 1].

The characteristic function can be found using the sum of a geometric series:

φx(t) = e jat

n

n−1∑
k=0

(e jht)k = e jat

n

1 − e jhnt

1 − e jht
. (5.5)

Simplifying with the aid of Euler’s identity,

φx(t) = exp

(
j

a + b

2
t

)
sin

(
b−a

2
n

n−1
t
)

n sin
(

b−a
2

1
n−1

t
) . (5.6)

Figure 5.1 illustrates the PMF and the magnitude of the characteristic function for a discrete RV

which is uniformly distributed over 20 points on [0, 1]. The characteristic function is plotted

over [0, π/h], where the span h = 1/19. Recall from Section 3.3 that φx(−t) = φ∗
x (t) and that

φx(t) is periodic in t with period 2π/h . Thus, Figure 5.1 illustrates one-half period of |φx(·)|.
Definition 5.1.2. The continuous RV x has a uniform distribution on the interval [a, b] if x has

PDF

fx(α) =
{

1/(b − a), a ≤ α ≤ b

0, otherwise.
(5.7)

The mean and variance of a continuous uniform RV are easily computed directly:

ηx = 1

b − a

b∫
a

αdα = b2 − a2

2(b − a)
= b + a

2
, (5.8)
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FIGURE 5.2: (a) PDF and (b) characteristic function magnitude for continuous RV with uniform

distribution on [0, 1].

and

σ 2
x = 1

b − a

b∫
a

(
α − b + a

2

)2

dα = (b − a)2

12
. (5.9)

The characteristic function can be found as

φx(t) = 1

b − a

b∫
a

e jαtdα = exp
(

j b+a
2

t
)

b − a

(b−a)/2∫
−(b−a)/2

e jαtdα.

Simplifying with the aid of Euler’s identity,

φx(t) = exp

(
j

a + b

2
t

)
sin

(
b−a

2
t
)

b−a
2

t
. (5.10)

Figure 5.2 illustrates the PDF and the magnitude of the characteristic function for a continuous

RV uniformly distributed on [0, 1]. Note that the characteristic function in this case is not

periodic but φx(−t) = φ∗
x (t).

Drill Problem 5.1.1. A pentahedral die (with faces labeled 0,1,2,3,4) is tossed once. Let x be a

random variable equaling ten times the number tossed. Determine: (a) px (20), (b) P(10 ≤ x ≤ 50),

(c) E(x), (d) σ 2
x .

Answers: 20, 0.8, 200, 0.2.

Drill Problem 5.1.2. Random variable x is uniformly distributed on the interval [−1, 5]. Deter-

mine: (a) Fx (0), (b) Fx(5), (c) ηx , (d) σ 2
x .

Answers: 1, 1/6, 3, 2.
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5.2 EXPONENTIAL DISTRIBUTIONS
Definition 5.2.1. The discrete RV x has a geometric distribution or discrete exponential distri-

bution with parameter p(0 < p < 1) if x has PMF

px(α) =
{

p(1 − p)α−1, α = 1, 2, . . .

0, otherwise.
(5.11)

The characteristic function can be found using the sum of a geometric series (q = 1 − p):

φx(t) = p

q

∞∑
k=1

(
q e jt

)k = pe jt

1 − q e jt
. (5.12)

The mean and variance of a discrete RV with a geometric distribution can be computed using

the moment generating property of the characteristic function. The results are

ηx = 1

p
, and σ 2

x = q

p2
. (5.13)

Figure 5.3 illustrates the PMF and the characteristic function magnitude for a discrete RV with

geometric distribution and parameter p = 0.18127.

It can be shown that a discrete exponentially distributed RV has a memoryless property:

px|x>�(α|x > �) = px(α − �), � ≥ 0. (5.14)

Definition 5.2.2. The continuous RV x has an exponential distribution with parameter λ(λ > 0)

if x has PDF

fx(α) = λe−λαu(α), (5.15)

where u(·) is the unit step function.

0 α10 20

xp (α)

.18

.09

(a)

1

x (t )φ

t0 1 2 3

(b)

FIGURE 5.3: (a) PMF and (b) characteristic function magnitude for discrete RV with geometric dis-

tribution [p = 0.18127].
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15 α

FIGURE 5.4: (a) PDF and (b) characteristic function magnitude for continuous RV with exponential

distribution and parameter λ = 0.2.

The exponential probability distribution is also a very important probability density function

in biomedical engineering applications, arising in situations involving reliability theory and

queuing problems. Reliability theory, which describes the time to failure for a system or compo-

nent, grew primarily out of military applications and experiences with multicomponent systems.

Queuing theory describes the waiting times between events.

The characteristic function can be found as

φx(t) = λ

∞∫
0

eα( j t−λ)dα = λ

λ − j t
. (5.16)

Figure 5.4 illustrates the PDF and the magnitude of the characteristic function for a continuous

RV with exponential distribution and parameter λ = 0.2.

The mean and variance of a continuous exponentially distributed RV can be obtained

using the moment generating property of the characteristic function. The results are

ηx = 1

λ
, σ 2

x = 1

λ2
. (5.17)

A continuous exponentially distributed RV, like its discrete counterpart, satisfies a memoryless

property:

fx|x>τ (α|x > τ ) = fx(α − τ ), τ ≥ 0. (5.18)

Example 5.2.1. Suppose a system contains a component that has an exponential failure rate. Reli-

ability engineers determined its reliability at 5000 hours to be 95%. Determine the number of hours

reliable at 99%.
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Solution. First, the parameter λ is determined from

0.95 = P (x > 5000) =
∞∫

5000

λe−λαdα = e−5000λ.

Thus

λ = − ln(0.95)

5000
= 1.03 × 10−5.

Then, to determine the number of hours reliable at 99%, we solve for α from

P (x > α) = e−λα = 0.99

or

α = − ln(0.99)

λ
= 980 hours. �

Drill Problem 5.2.1. Suppose a system has an exponential failure rate in years to failure with

λ = 0.02. Determine the number of years reliable at: (a) 90%, (b) 95%, (c) 99%.

Answers: 0.5, 2.6, 5.3.

Drill Problem 5.2.2. Random variable x, representing the length of time in hours to complete an

examination in Introduction to Random Processes, has PDF

fx(α) = 4

3
e− 4

3
αu(α).

The examination results are given by

g (x) =

⎧⎪⎨⎪⎩
75, 0 < x < 4/3

75 + 39.44(x − 4/3), x ≥ 4/3

0, otherwise.

Determine the average examination grade.

Answer: 80.

5.3 BERNOULLI TRIALS
A Bernoulli experiment consists of a number of repeated (independent) trials with only two

possible events for each trial. The events for each trial can be thought of as any two events which

partition the sample space, such as a head and a tail in a coin toss, a zero or one in a computer
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bit, or an even and odd number in a die toss. Let us call one of the events a success, the other

a failure. The Bernoulli PMF describes the probability of k successes in n trials of a Bernoulli

experiment. The first two chapters used this PMF repeatedly in problems dealing with games

of chance and in situations where there were only two possible outcomes in any given trial.

For biomedical engineers, the Bernoulli distribution is used in infectious disease problems and

other applications. The Bernoulli distribution is also known as a Binomial distribution.

Definition 5.3.1. A discrete RV x is Bernoulli distributed if the PMF for x is

px(k) =

⎧⎪⎨⎪⎩
(

n

k

)
pkq n−k, k = 0, 1, . . . , n

0, otherwise,

(5.19)

where p = probability of success and q = 1 − p.

The characteristic function can be found using the binomial theorem:

φx(t) =
n∑

k=0

(
n

k

)
(pe jt)kq n−k = (q + pe jt)n. (5.20)

Figure 5.5 illustrates the PMF and the characteristic function magnitude for a discrete RV with

Bernoulli distribution, p = 0.2, and n = 30.

Using the moment generating property of characteristic functions, the mean and variance

of a Bernoulli RV can be shown to be

ηx = np, σ 2
x = npq . (5.21)

0 α10 20

xp (α)

.18

.09

(a)

1

x (t )φ

t0 1 2

(b)

FIGURE 5.5: (a) PMF and (b) characteristic function magnitude for discrete RV with Bernoulli distri-

bution, p = 0.2 and n = 30.
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Unlike the preceding distributions, a closed form expression for the Bernoulli CDF is not

easily obtained. Tables A.1–A.3 in the Appendix list values of the Bernoulli CDF for p =
0.05, 0.1, 0.15, . . . , 0.5 and n = 5, 10, 15, and 20. Let k ∈ {0, 1, . . . , n − 1} and define

G(n, k, p) =
k∑

�=0

(
n

�

)
p�(1 − p)n−�.

Making the change of variable m = n − � yields

G(n, k, p) =
n∑

m=n−k

(
n

n − m

)
pn−m(1 − p)m.

Now, since (
n

n − m

)
= n!

m! (n − m)!
=

(
n

m

)
,

G(n, k, p) =
n∑

m=0

(
n

m

)
pn−m(1 − p)m −

n−k−1∑
m=0

(
n

m

)
pn−m(1 − p)m.

Using the Binomial Theorem,

G(n, k, p) = 1 − G(n, n − k − 1, 1 − p). (5.22)

This result is easily applied to obtain values of the Bernoulli CDF for values of p > 0.5 from

Tables A.1–A.3.

Example 5.3.1. The probability that Fargo Polytechnic Institute wins a game is 0.7. In a 15 game

season, what is the probability that they win: (a) at least 10 games, (b) from 9 to 12 games, (c) exactly

11 games? (d) With x denoting the number of games won, find ηx and σ 2
x .

Solution. With x a Bernoulli random variable, we consult Table A.2, using (5.22) with n = 15,

k = 9, and p = 0.7, we find

a) P (x ≥ 10) = 1 − Fx(9) = 1.0 − 0.2784 = 0.7216,

b) P (9 ≤ x ≤ 12) = Fx(12) − Fx(8) = 0.8732 − 0.1311 = 0.7421,

c) px(11) = Fx(11) − Fx(10) = 0.7031 − 0.4845 = 0.2186.

d) ηx = np = 10.5, σ 2
x = np(1 − p) = 3.15. �
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We now consider the number of trials needed for k successes in a sequence of Bernoulli trials.

Let

p(k, n) = P (k successes in n trials) (5.23)

=

⎧⎪⎨⎪⎩
(

n

k

)
pkq n−k, k = 0, 1, . . . , n

0, otherwise,

where p = p(1, 1) and q = 1 − p. Let RV nr represent the number of trials to obtain exactly

r successes (r ≥ 1). Note that

P (success in �th trial |r − 1 successes in previous � − 1 trials) = p; (5.24)

hence, for � = r, r + 1, . . . , we have

P (nr = �) = p(r − 1, � − 1)p. (5.25)

Discrete RV nr thus has PMF

pnr
(�) =

⎧⎪⎨⎪⎩
(

� − 1

r − 1

)
pr q �−r , � = r, r + 1, . . .

0, otherwise,

(5.26)

where the parameter r is a positive integer. The PMF for the RV nr is called the negative

binomial distribution, also known as the Pólya and the Pascal distribution. Note that with

r = 1 the negative binomial PMF is the geometric PMF.

The moment generating function for nr can be expressed as

Mnr
(λ) =

∞∑
�=r

(� − 1)(� − 2) · · · (� − r + 1)

(r − 1)!
pr q �−r e λ�.

Letting m = � − r , we obtain

Mnr
(λ) = e λr pr

(r − 1)!

∞∑
m=0

(m + r − 1)(m + r − 2) · · · (m + 1)(q eλ)m.

With

s (x) =
∞∑

k=0

xk = 1

1 − x
, |x| < 1,
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we have

s (�)(x) =
∞∑

k=�

k(k − 1) · · · (k − � + 1)xk−�

=
∞∑

m=0

(m + �)(m + � − 1) · · · (m + 1)xm

= �!

(1 − x)�+1
.

Hence

Mnr
(λ) =

(
pe λ

1 − q e λ

)r

, q e λ < 1. (5.27)

The mean and variance for nr are found to be

ηnr
= r

p
, and σ 2

nr
= r q

p2
. (5.28)

We note that the characteristic function is simply

φnr
(t) = Mnr

( j t) = φr
x(t), (5.29)

where RV x has a discrete geometric distribution. Figure 5.6 illustrates the PMF and the

characteristic function magnitude for a discrete RV with negative binomial distribution, r = 3,

and p = 0.18127.

1

x (t )φ

t0 1 2

(b)

0 α20 40

xp (α)

.06

.03

(a)

FIGURE 5.6: (a) PMF and (b) magnitude characteristic function for discrete RV with negative binomial

distribution, r = 3, and p = 0.18127.
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5.3.1 Poisson Approximation to Bernoulli

When n becomes large in the Bernoulli PMF in such a way that np = λ = constant, the

Bernoulli PMF approaches another important PMF known as the Poisson PMF. The Poisson

PMF is treated in the following section.

Lemma 5.3.1. We have

p(k) = lim
n→∞,np=λ

(
n

k

)
pkq n−k =

⎧⎨⎩
λke−λ

k!
, k = 0, 1, . . .

0, otherwise,

(5.30)

Proof. Substituting p = λ
n

and q = 1 − λ
n
,

p(k) = lim
n→∞

1

k!

(
λ

k

)k (
1 − λ

n

)n−k k−1∏
i=0

(n − i).

Note that

lim
n→∞ n−k

(
1 − λ

n

)−k k−1∏
i=0

(n − i) = 1,

so that

p(k) = lim
n→∞

λk

k!

(
1 − λ

n

)n

.

Now,

lim
n→∞ ln

(
1 − λ

n

)n

= lim
n→∞

ln
(
1 − λ

n

)
1
n

= −λ

so that

lim
n→∞

(
1 − λ

n

)n

= e−λ,

from which the desired result follows. �

We note that the limiting value p(k) may be used as an approximation for the Bernoulli

PMF when p is small by substituting λ = np. While there are no prescribed rules regarding the

values of n and p for this approximation, the larger the value of n and the smaller the value of p,

the better the approximation. Satisfactory results are obtained with np < 10. The motivation

for using this approximation is that when n is large, Tables A.1–A.3 are useless for finding

values for the Bernoulli CDF.
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Example 5.3.2. Suppose x is a Bernoulli random variable with n = 5000 and p = 0.001. Find

P (x ≤ 5).

Solution. Our solution involves approximating the Bernoulli PMF with the Poisson PMF

since n is quite large (and the Bernoulli CDF table is useless), and p is very close to zero.

Since λ = np = 5, we find from Table A.5 (the Poisson CDF table is covered in Section 4) that

P (x ≤ 5) = 0.6160. �

Incidentally, if p is close to one, we can still use this approximation by reversing our definition of

success and failure in the Bernoulli experiment, which results in a value of p close to zero—see

(5.22).

5.3.2 Gaussian Approximation to Bernoulli

Previously, the Poisson PMF was used to approximate a Bernoulli PMF under certain conditions,

that is, when n is large, p is small and np < 10. This approximation is quite useful since the

Bernoulli table lists only CDF values for n up to 20. The Gaussian PDF (see Section 5.5)

is also used to approximate a Bernoulli PMF under certain conditions. The accuracy of this

approximation is best when n is large, p is close to 1/2, and npq > 3. Notice that in some

circumstances np < 10 and npq > 3. Then either the Poisson or the Gaussian approximation

will yield good results.

Lemma 5.3.2. Let

y = x − np√
npq

, (5.31)

where x is a Bernoulli RV. Then the characteristic function for y satisfies

φ(t) = lim
n→∞ φy (t) = e−t2/2. (5.32)

Proof. We have

φy (t) = exp

(
− j

np√
npq

t

)
φx

(
t√
npq

)
.

Substituting for φx(t),

φy (t) = exp

(
− j

√
np

q
t

) (
q + p exp

(
j

t√
npq

))n

.

Simplifying,

φy (t) =
(

q exp

(
− j t

√
p

q n

)
+ p exp

(
j t

√
q

np

))n

.
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Letting

β =
√

q

p
, and α =

√
1

n
,

we obtain

lim
n→∞ ln φy (t) = lim

α→0

ln(pβ2e− j tα/β + pe jtβα)

α2
.

Applying L’Hôspital’s Rule twice,

lim
α→0

ln φy (t) = lim
α→0

− j tpβe− j tα/β + j tpβe j tβα

2α
= −t2 p − t2β2 p

2
= − t2

2
.

Consequently,

lim
n→∞ φy (t) = exp

(
lim

n→∞ ln φy (t)
)

= e−t2/2.

�

The limiting φ(t) in the above lemma is the characteristic function for a Gaussian RV

with zero mean and unit variance. Hence, for large n and a < b

P (a < x < b) = P (a ′ < y < b ′) ≈ F(b ′) − F(a ′), (5.33)

where

F(γ ) = 1√
2π

γ∫
−∞

e−α2/2dα = 1 − Q(γ ) (5.34)

is the standard Gaussian CDF,

a ′ = a − np√
npq

, b ′ = b − np√
npq

, (5.35)

and Q(·) is Marcum’s Q function which is tabulated in Tables A.8 and A.9 of the Appendix.

Evaluation of the above integral as well as the Gaussian PDF are treated in Section 5.5.

Example 5.3.3. Suppose x is a Bernoulli random variable with n = 5000 and p = 0.4. Find

P (x ≤ 2048).

Solution. The solution involves approximating the Bernoulli CDF with the Gaussian CDF

since npq = 1200 > 3. With np = 2000, npq = 1200 and b ′ = (2048 − 2000)/34.641 =
1.39, we find from Table A.8 that

P (x ≤ 2048) ≈ F(1.39) = 1 − Q(1.39) = 0.91774. �



P1: IML/FFX P2: IML

MOBK042-05 MOBK042-Enderle.cls October 30, 2006 19:51

14 ADVANCED PROBABILITY THEORY FOR BIOMEDICAL ENGINEERS

When approximating the Bernoulli CDF with the Gaussian CDF, a continuous distribution is

used to calculate probabilities for a discrete RV. It is important to note that while the approxi-

mation is excellent in terms of the CDFs—the PDF of any discrete RV is never approximated

with a continuous PDF. Operationally, to compute the probability that a Bernoulli RV takes an

integer value using the Gaussian approximation we must round off to the nearest integer.

Example 5.3.4. Suppose x is a Bernoulli random variable with n = 20 and p = 0.5. Find

P (x = 8).

Solution. Since npq = 5 > 3, the Gaussian approximation is used to evaluate the Bernoulli

PMF, px(8). With np = 10, npq = 5, a ′ = (7.5 − 10)/
√

5 = −1.12, and b ′ = (8.5 − 10)/√
5 = −0.67, we have

px(8) = P (7.5 < x < 8.5) ≈ F(−0.67) − F(−1.12) = 0.25143 − 0.13136;

hence, px(8) ≈ 0.12007. From the Bernoulli table, px(8) = 0.1201, which is very close to the

above approximation. �

Drill Problem 5.3.1. A survey of residents in Fargo, North Dakota revealed that 30% preferred a

white automobile over all other colors. Determine the probability that: (a) exactly five of the next 20

cars purchased will be white, (b) at least five of the next twenty cars purchased will be white, (c) from

two to five of the next twenty cars purchased will be white.

Answers: 0.1789, 0.4088, 0.7625.

Drill Problem 5.3.2. Prof. Rensselaer is an avid albeit inaccurate marksman. The probability she

will hit the target is only 0.3. Determine: (a) the expected number of hits scored in 15 shots, (b) the

standard deviation for 15 shots, (c) the number of times she must fire so that the probability of hitting

the target at least once is greater than 1/2.

Answers: 2, 4.5, 1.7748.

5.4 POISSON DISTRIBUTION
A Poisson PMF describes the number of successes occurring on a continuous line, typically a

time interval, or within a given region. For example, a Poisson random variable might represent

the number of telephone calls per hour, or the number of errors per page in this textbook.

In the previous section, we found that the limit (as n → ∞ and constant mean np) of a

Bernoulli PMF is a Poisson PMF. In this section, we derive the Poisson probability distribution

from two fundamental assumptions about the phenomenon based on physical characteristics.
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The following development makes use of the order notation o (h) to denote any function

g (h) which satisfies

lim
h→0

g (h)

h
= 0. (5.36)

For example, g (h) = 15h2 + 7h3 = o (h).

We use the notation

p(k, τ ) = P (k successes in interval [0, τ ]). (5.37)

The Poisson probability distribution is characterized by the following two properties:

(1) The number of successes occurring in a time interval or region is independent of the

number of successes occurring in any other non-overlapping time interval or region. Thus, with

A = {k successes in interval I1}, (5.38)

and

B = {� successes in interval I2}, (5.39)

we have

P (A ∩ B) = P (A)P (B), if I1 ∩ I2 = �. (5.40)

As we will see, the number of successes depends only on the length of the time interval

and not the location of the interval on the time axis.

(2) The probability of a single success during a very small time interval is proportional to

the length of the interval. The longer the interval, the greater the probability of success. The

probability of more than one success occurring during an interval vanishes as the length of the

interval approaches zero. Hence

p(1, h) = λh + o (h), (5.41)

and

p(0, h) = 1 − λh + o (h). (5.42)

This second property indicates that for a series of very small intervals, the Poisson process is

composed of a series of Bernoulli trials, each with a probability of success p = λh + o (h).

Since [0, τ + h] = [0, τ ] ∪ (τ, τ + h] and [0, τ ] ∩ (τ, τ + h] = �, we have

p(0, τ + h) = p(0, τ )p(0, h) = p(0, τ )(1 − λh + o (h)).
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Noting that

p(0, τ + h) − p(0, τ )

h
= −λhp(0, τ ) + o (h)

h

and taking the limit as h → 0,

d p(0, τ )

dτ
= −λp(0, τ ), p(0, 0) = 1. (5.43)

This differential equation has solution

p(0, τ ) = e−λτ u(τ ). (5.44)

Applying the above properties, it is readily seen that

p(k, τ + h) = p(k − 1, τ )p(1, h) + p(k, τ )p(0, h) + o (h),

or

p(k, τ + h) = p(k − 1, τ )λh + p(k, τ )(1 − λh) + o (h),

so that

p(k, τ + h) − p(k, τ )

h
+ λp(k, τ ) = λp(k − 1, τ ) + o (h)

h
.

Taking the limit as h → 0

d p(k, τ )

dτ
+ λp(k, τ ) = λp(k − 1, τ ), k = 1, 2, . . . , (5.45)

with p(k, 0) = 0. It can be shown ([7, 8]) that

p(k, τ ) = λe−λτ

τ∫
0

e λt p(k − 1, t)dt (5.46)

and hence that

p(k, τ ) = (λτ )ke−λτ

k!
u(τ ), k = 0, 1, . . . . (5.47)

The RV x = number of successes thus has a Poisson distribution with parameter λτ and PMF

px(k) = p(k, τ ). The rate of the Poisson process is λ and the interval length is τ .

For ease in subsequent development, we replace the parameter λτ with λ. The characteris-

tic function for a Poisson RV x with parameter λ is found as (with parameter λ, px(k) = p(k, 1))

φx(t) = e−λ
∞∑

k=0

(λe j t)k

k!
= e−λ exp(λe j t) = exp(λ(e j t − 1)). (5.48)
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FIGURE 5.7: (a) PMF and (b) magnitude characteristic function for Poisson distributed RV with

parameter λ = 10.

Figure 5.7 illustrates the PMF and characteristic function magnitude for a discrete RV with

Poisson distribution and parameter λ = 10.

It is of interest to note that if x1 and x2 are independent Poisson RVs with parameters λ1

and λ2, respectively, then

φx1+x2
(t) = exp((λ1 + λ2)(e j t − 1)); (5.49)

i.e., x1 + x2 is also a Poisson with parameter λ1 + λ2.

The moments of a Poisson RV are tedious to compute using techniques we have seen so

far. Consider the function

ψx(γ ) = E(γ x) (5.50)

and note that

ψ (k)
x (γ ) = E

(
γ x−k

k−1∏
i=0

(x − i)

)
,

so that

E

(
k−1∏
i=0

(x − i)

)
= ψ (k)

x (1). (5.51)

If x is Poisson distributed with parameter λ, then

ψx(γ ) = e λ(γ−1), (5.52)

so that

ψ (k)
x (γ ) = λke λ(γ−1);
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hence,

E

(
k−1∏
i=0

(x − i)

)
= λk . (5.53)

In particular, E(x) = λ, E(x(x − 1)) = λ2 = E(x2) − λ, so that σ 2
x = λ2 + λ − λ2 = λ.

While it is quite easy to calculate the value of the Poisson PMF for a particular number

of successes, hand computation of the CDF is quite tedious. Therefore, the Poisson CDF is

tabulated in Tables A.4-A.7 of the Appendix for selected values of λ ranging from 0.1 to 18.

From the Poisson CDF table, we note that the value of the Poisson PMF increases as the number

of successes k increases from zero to the mean, and then decreases in value as k increases from

the mean. Additionally, note that the table is written with a finite number of entries for each

value of λ because the PMF values are written with six decimal place accuracy, even though an

infinite number of Poisson successes are theoretically possible.

Example 5.4.1. On the average, Professor Rensselaer grades 10 problems per day. What is the

probability that on a given day (a) 8 problems are graded, (b) 8–10 problems are graded, and (c) at

least 15 problems are graded?

Solution. With x a Poisson random variable, we consult the Poisson CDF table with λ = 10,

and find

a) px(8) = Fx(8) − Fx(7) = 0.3328 − 0.2202 = 0.1126,

b) P (8 ≤ x ≤ 10) = Fx(10) − Fx(7) = 0.5830 − 0.2202 = 0.3628,

c) P (x ≥ 15) = 1 − Fx(14) = 1 − 0.9165 = 0.0835. �

5.4.1 Interarrival Times

In many instances, the length of time between successes, known as an interarrival time, of a

Poisson random variable is more important than the actual number of successes. For example,

in evaluating the reliability of a medical device, the time to failure is far more significant to the

biomedical engineer than the fact that the device failed. Indeed, the subject of reliability theory

is so important that entire textbooks are devoted to the topic. Here, however, we will briefly

examine the subject of interarrival times from the basis of the Poisson PMF.

Let RV tr denote the length of the time interval from zero to the r th success. Then

p(τ − h < tr ≤ τ ) = p(r − 1, τ − h)p(1, h)

= p(r − 1, τ − h)λh + o (h)
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so that

Ftr
(τ ) − Ftr

(τ − h)

h
= λp(r − 1, τ − h) + o (h)

h
.

Taking the limit as h → 0 we find that the PDF for the r th order interarrival time, that is, the

time interval from any starting point to the r th success after it, is

ftr
(τ ) = λr τ r−1e−λτ

(r − 1)!
u(τ ), r = 1, 2, . . . . (5.54)

This PDF is known as the Erlang PDF. Clearly, with r = 1, we have the exponential PDF:

ft(τ ) = λe−λτ u(τ ). (5.55)

The RV t is called the first-order interarrival time.

The Erlang PDF is a special case of the gamma PDF:

fx(α) = λr αr−1e−λα

�(r )
u(α), (5.56)

for any real r > 0, λ > 0, where � is the gamma function

�(r ) =
∞∫

0

αr−1e−αdα. (5.57)

Straightforward integration reveals that �(1) = 1 and �(r + 1) = r�(r ) so that if r is a positive

integer then �(r ) = (r − 1)!—for this reason the gamma function is often called the factorial

function. Using the above definition for �(r ), it is easily shown that the moment generating

function for a gamma-distributed RV is

Mx(η) =
(

λ

λ − η

)r

, for η < λ. (5.58)

The characteristic function is thus

φx(t) =
(

λ

λ − j t

)r

. (5.59)

It follows that the mean and variance are

ηx = r

λ
, and σ 2

x = r

λ2
. (5.60)

Figure 5.8 illustrates the PDF and magnitude of the characteristic function for a RV with

gamma distribution with r = 3 and λ = 0.2.
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FIGURE 5.8: (a) PDF and (b) magnitude characteristic function for gamma distributed RV with r = 3

and parameter λ = 0.2.

Drill Problem 5.4.1. On the average, Professor S. Rensselaer makes five blunders per lecture.

Determine the probability that she makes (a) less than six blunders in the next lecture: (b) exactly five

blunders in the next lecture: (c) from three to seven blunders in the next lecture: (d) zero blunders in

the next lecture.

Answers: 0.6160, 0.0067, 0.7419, 0.1755.

Drill Problem 5.4.2. A process yields 0.001% defective items. If one million items are produced,

determine the probability that the number of defective items exceeds twelve.

Answer: 0.2084.

Drill Problem 5.4.3. Professor S. Rensselaer designs her examinations so that the probability of at

least one extremely difficult problem is 0.632. Determine the average number of extremely difficult

problems on a Rensselaer examination.

Answer: 1.

5.5 UNIVARIATE GAUSSIAN DISTRIBUTION
The Gaussian PDF is the most important probability distribution in the field of biomedical

engineering. Plentiful applications arise in industry, research, and nature, ranging from instru-

mentation errors to scores on examinations. The PDF is named in honor of Gauss (1777–1855),

who derived the equation based on an error study involving repeated measurements of the same

quantity. However, De Moivre is first credited with describing the PDF in 1733. Applications

also abound in other areas outside of biomedical engineering since the distribution fits the

observed data in many processes. Incidentally, statisticians refer to the Gaussian PDF as the

normal PDF.
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Definition 5.5.1. A continuous RV z is a standardized Gaussian RV if the PDF is

fz(α) = 1√
2π

e− 1
2
α2

. (5.61)

The moment generating function for a standardized Gaussian RV can be found as follows:

Mz(λ) = 1√
2π

∞∫
−∞

e λα− 1
2
α2

dα

= 1√
2π

∞∫
−∞

e− 1
2

((α−λ)2−λ2)dα.

Making the change of variable β = α − λ we find

Mz(λ) = e
1
2
λ2

∞∫
−∞

fz(β)dβ = e
1
2
λ2

, (5.62)

for all real λ. We have made use of the fact that the function fz is a bona fide PDF, as treated

in Problem 42. Using the Taylor series expansion for an exponential,

e
1
2
λ2 =

∞∑
k=0

λ2k

2kk!
=

∞∑
n=0

M (n)
x (0)λn

n!
,

so that all moments of z exist and

E(z 2k) = (2k)!

2k k!
, k = 0, 1, 2, . . . , (5.63)

and

E(z 2k+1) = 0, k = 0, 1, 2, . . . . (5.64)

Consequently, a standardized Gaussian RV has zero mean and unit variance. Extending the

range of definition of Mz(λ) to include the finite complex plane, we find that the characteristic

function is

φz(t) = Mz( j t) = e− 1
2

t 2

. (5.65)

Letting the RV x = σ z + η we find that E(x) = η and σ 2
x = σ 2. For σ > 0

Fx(α) = P (σ z + η ≤ α) = Fz((α − η)/σ ),
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so that x has the general Gaussian PDF

fx(α) = 1√
2πσ 2

exp

(
− 1

2σ 2
(α − η)2

)
. (5.66)

Similarly, with σ > 0 and x = −σ z + η we find

Fx(α) = P (−σ z + η ≤ α) = 1 − Fz((η − α)/σ ),

so that fx is as above. We will have occasion to use the shorthand notation x ∼ G(η, σ 2) to

denote that the RV has a Gaussian PDF with mean η and variance σ 2. Note that if x ∼ G(η, σ 2)

then (x = σ z + η)

φx(t) = e jηte− 1
2
σ 2t2

. (5.67)

The Gaussian PDF, illustrated with η = 75 and σ 2 = 25, as well as with η = 75 and σ 2 = 9

in Figure 5.9, is a bell-shaped curve completely determined by its mean and variance. As can

be seen, the Gaussian PDF is symmetrical about the vertical axis through the expected value.

If, in fact, η = 25, identically shaped curves could be drawn, centered now at 25 instead of

75. Additionally, the maximum value of the Gaussian PDF, (2πσ 2)−1/2, occurs at α = η. The

PDF approaches zero asymptotically as α approaches ±∞. Naturally, the larger the value of the

variance, the more spread in the distribution and the smaller the maximum value of the PDF.

For any combination of the mean and variance, the Gaussian PDF curve must be symmetrical

as previously described, and the area under the curve must equal one.

Unfortunately, a closed form expression does not exist for the Gaussian CDF, which

necessitates numerical integration. Rather than attempting to tabulate the general Gaussian

CDF, a normalization is performed to obtain a standardized Gaussian RV (with zero mean

α

xf (α)

.12

65 75 85

.08

.04

FIGURE 5.9: Gaussian probability density function for η = 75 and σ 2 = 9, 25.
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and unit variance). If x ∼ G(η, σ 2), the RV z = (x − η)/σ is a standardized Gaussian RV:

z ∼ G(0, 1). This transformation is always applied when using standard tables for computing

probabilities for Gaussian RVs. The probability P (α1 < x ≤ α2) can be obtained as

P (α1 < x ≤ α2) = Fx(α2) − Fx(α1), (5.68)

using the fact that

Fx(α) = Fz((α − η)/σ ). (5.69)

Note that

Fz(α) = 1√
2π

α∫
−∞

e− 1
2
τ 2

dτ = 1 − Q(α), (5.70)

where Q(·) is Marcum’s Q function:

Q(α) = 1√
2π

∞∫
α

e− 1
2
τ 2

dτ. (5.71)

Marcum’s Q function is tabulated in Tables A.8 and A.9 for 0 ≤ α < 4 using the approximation

presented in Section 5.5.1. It is easy to show that

Q(−α) = 1 − Q(α) = Fz(α). (5.72)

The error and complementary error functions, defined by

erf(α) = 2

π

α∫
0

e−t2

dt (5.73)

and

erfc(α) = 2

π

∞∫
α

e−t2

dt = 1 − erf(α) (5.74)

are also often used to evaluate the standard normal integral. A simple change of variable reveals

that

erfc(α) = 2Q(α/
√

2). (5.75)

Example 5.5.1. Compute Fz(−1.74), where z ∼ G(0, 1).
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Solution. To compute Fz(−1.74), we find

Fz(−1.74) = 1 − Q(−1.74) = Q(1.74) = 0.04093,

using (5.72) and Table A.8.
�

While the value a Gaussian random variable takes on is any real number between negative

infinity and positive infinity, the realistic range of values is much smaller. From Table A.9,

we note that 99.73% of the area under the curve is contained between −3.0 and 3.0. From

the transformation z = (x − η)/σ , the range of values random variable x takes on is then

approximately η ± 3σ . This notion does not imply that random variable x cannot take on a value

outside this interval, but the probability of it occurring is really very small (2Q(3) = 0.0027).

Example 5.5.2. Suppose x is a Gaussian random variable with η = 35 and σ = 10. Sketch the

PDF and then find P (37 ≤ x ≤ 51). Indicate this probability on the sketch.

Solution. The PDF is essentially zero outside the interval [η − 3σ, η + 3σ ] = [5, 65]. The

sketch of this PDF is shown in Figure 5.10 along with the indicated probability. With

z = x − 35

10

we have

P (37 ≤ x ≤ 51) = P (0.2 ≤ z ≤ 1.6) = Fz(1.6) − Fz(0.2).

Hence P (37 ≤ x ≤ 51) = Q(0.2) − Q(1.6) = 0.36594 from Table A.9. �

xf (α)

.03

30 60

.02

.01

.04

0 α

FIGURE 5.10: PDF for Example 5.5.2.
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Example 5.5.3. A machine makes capacitors with a mean value of 25 μF and a standard deviation

of 6 μF. Assuming that capacitance follows a Gaussian distribution, find the probability that the value

of capacitance exceeds 31 μF if capacitance is measured to the nearest μF.

Solution. Let the RV x denote the value of a capacitor. Since we are measuring to the nearest

μF, the probability that the measured value exceeds 31 μF is

P (31.5 ≤ x) = P (1.083 ≤ z) = Q(1.083) = 0.13941,

where z = (x − 25)/6 ∼ G(0, 1). This result is determined by linear interpolation of the CDF

between equal 1.08 and 1.09. �

5.5.1 Marcum’s Q Function

Marcum’s Q function, defined by

Q(γ ) = 1√
2π

∞∫
γ

e− 1
2
α2

dα (5.76)

has been extensively studied. If the RV z ∼ G(0, 1) then

Q(γ ) = 1 − Fz(γ ); (5.77)

i.e., Q(γ ) is the complement of the standard Gaussian CDF. Note that Q(0) = 0.5, Q(∞) = 0,

and that Fz(−γ ) = Q(γ ). A very accurate approximation to Q(γ ) is presented in [1, p. 932]:

Q(γ ) ≈ e− 1
2
γ 2

h(t), γ > 0, (5.78)

where

t = 1

1 + 0.2316419γ
, (5.79)

and

h(t) = 1√
2π

t(a1 + t(a2 + t(a3 + t(a4 + a5t)))). (5.80)

The constants are

i ai

1 0.31938153

2 −0.356563782

3 1.781477937

4 −1.821255978

5 1.330274429

The error in using this approximation is less than 7.5 × 10−8.
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A very useful bound for Q(α) is [1, p. 298]√
2

π

e− 1
2
α2

α + √
α2 + 4

< Q(α) ≤
√

2

π

e− 1
2
α2

α + √
α2 + 0.5π

. (5.81)

The ratio of the upper bound to the lower bound is 0.946 when α = 3 and 0.967 when α = 4.

The bound improves as α increases.

Sometimes, it is desired to find the value of γ for which Q(γ ) = q . Helstrom [14] offers

an iterative procedure which begins with an initial guess γ0 > 0. Then compute

ti = 1

1 + 0.2316419γi

(5.82)

and

γi+1 =
(

2 ln

(
h(ti )

q

))1/2

, i = 0, 1, . . . . (5.83)

The procedure is terminated when γi+1 ≈ γi to the desired degree of accuracy.

Drill Problem 5.5.1. Students attend Fargo Polytechnic Institute for an average of four years with a

standard deviation of one-half year. Let the random variable x denote the length of attendance and as-

sume that x is Gaussian. Determine: (a) P (1 < x < 3), (b)P (x > 4), (c )P (x = 4), (d )Fx(4.721).

Answers: 0.5, 0, 0.02275, 0.92535.

Drill Problem 5.5.2. The quality point averages of 2500 freshmen at Fargo Polytechnic Institute

follow a Gaussian distribution with a mean of 2.5 and a standard deviation of 0.7. Suppose grade

point averages are computed to the nearest tenth. Determine the number of freshmen you would expect

to score: (a) from 2.6 to 3.0, (b) less than 2.5, (c) between 3.0 and 3.5, (d) greater than 3.5.

Answers: 167, 322, 639, 1179.

Drill Problem 5.5.3. Professor Rensselaer loves the game of golf. She has determined that the distance

the ball travels on her first shot follows a Gaussian distribution with a mean of 150 and a standard

deviation of 17. Determine the value of d so that the range, 150 ± d, covers 95% of the shots.

Answer: 33.32.

5.6 BIVARIATE GAUSSIAN RANDOM VARIABLES
The previous section introduced the univariate Gaussian PDF along with some general char-

acteristics. Now, we discuss the joint Gaussian PDF and its characteristics by drawing on our

univariate Gaussian PDF experiences, and significantly expanding the scope of applications.
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Numerous applications of this joint PDF are found throughout the field of biomedical engi-

neering and, like the univariate case, the joint Gaussian PDF is considered the most important

joint distribution for biomedical engineers.

Definition 5.6.1. The bivariate RV z = (x, y) is a bivariate Gaussian RV if every linear combi-

nation of x and y has a univariate Gaussian distribution. In this case we also say that the RVs x and

y are jointly distributed Gaussian RVs.

Let the RV w = ax + by , and let x and y be jointly distributed Gaussian RVs. Then

w is a univariate Gaussian RV for all real constants a and b. In particular, x ∼ G(ηx, σ
2
x ) and

y ∼ G(ηy , σ
2
y ); i.e., the marginal PDFs for a joint Gaussian PDF are univariate Gaussian. The

above definition of a bivariate Gaussian RV is sufficient for determining the bivariate PDF,

which we now proceed to do.

The following development is significantly simplified by considering the standardized

versions of x and y . Also, we assume that |ρx,y | < 1, σx �= 0, and σy �= 0. Let

z1 = x − ηx

σx

and z2 = y − ηy

σy

, (5.84)

so that z1 ∼ G(0, 1) and z2 ∼ G(0, 1). Below, we first find the joint characteristic function

for the standardized RVs z1 and z2, then the conditional PDF fz2|z1
and the joint PDF fz1,z2

.

Next, the results for z1 and z2 are applied to obtain corresponding quantities φx,y , fy |x and fx,y .

Finally, the special cases ρx,y = ±1, σx = 0, and σy = 0 are discussed.

Since z1 and z2 are jointly Gaussian, the RV t1z1 + t2z2 is univariate Gaussian:

t1z1 + t2z2 ∼ G
(
0, t2

1 + 2t1t2ρ + t2
2

)
.

Completing the square,

t2
1 + 2t1t2ρ + t2

2 = (t1 + ρt2)2 + (1 − ρ2)t2
2 ,

so that

φz1,z2
(t1, t2) = E(e j t1z1+ j t2z2 ) = e− 1

2
(1−ρ2)t2

2 e− 1
2

(t1+ρt2)2

. (5.85)

From (6) we have

fz1,z2
(α, β) = 1

2π

∞∫
−∞

I (α, t2)e− jβt2 dt2, (5.86)
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where

I (α, t2) = 1

2π

∞∫
−∞

φz1,z2
(t1, t2)e− jαt1 dt1.

Substituting (5.85) and letting τ = t1 + t2ρ, we obtain

I (α, t2) = e− 1
2

(1−ρ2)t2
2

1

2π

∞∫
−∞

e− 1
2
τ 2

e− jα(τ−ρt2)dτ,

or

I (α, t2) = φ(t2) fz1
(α),

where

φ(t2) = e jαρt2 e− 1
2

(1−ρ2)t2
2 .

Substituting into (5.86) we find

fz1,z2
(α, β) = fz1

(α)
1

2π

∞∫
−∞

φ(t2)e− jβt2 dt2

and recognize that φ is the characteristic function for a Gaussian RV with mean αρ and variance

1 − ρ2. Thus

fz1,z2
(α, β)

fz1
(α)

= fz2|z1
(β|α) = 1√

2π (1 − ρ2)
exp

(
− (β − ρα)2

2(1 − ρ2)

)
, (5.87)

so that

E(z2 | z1) = ρz1 (5.88)

and

σ 2
z2|z1

= 1 − ρ2. (5.89)

After some algebra, we find

fz1,z2
(α, β) = 1

2π (1 − ρ2)1/2
exp

(
−α2 − 2ραβ + β2

2(1 − ρ2)

)
. (5.90)

We now turn our attention to using the above results for z1 and z2 to obtain similar results for

x and y . From (5.84) we find that

x = σx z1 + ηx and y = σy z2 + ηy ,
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so that the joint characteristic function for x and y is

φx,y (t1, t2) = E(e j t1x+ j t2 y ) = E(e j t1σx z1+ j t2σy z2 )e j t1ηx+ j t2ηy .

Consequently, the joint characteristic function for x and y can be found from the joint charac-

teristic function of z1 and z2 as

φx,y (t1, t2) = φz1,z2
(σxt1, σy t2)e jηx t1 e jηy t2 . (5.91)

Using (4.66), the joint characteristic function φx,y can be transformed to obtain the joint PDF

fx,y (α, β) as

fx,y (α, β) = 1

(2π )2

∞∫
−∞

∞∫
−∞

φz1,z2
(σxt1, σy t2)e− j (α−ηx )t1 e− j (β−ηy )t2 dt1dt2. (5.92)

Making the change of variables τ1 = σxt1, τ2 = σy t2, we obtain

fx,y (α, β) = 1

σxσy

fz1,z2

(
α − ηx

σx

,
β − ηy

σy

)
. (5.93)

Since

fx,y (α, β) = fy |x(β|α) fx(α)

and

fx(α) = 1

σx

fz1

(
α − ηx

σx

)
,

we may apply (5.93) to obtain

fy |x(β|α) = 1

σy

fz2|z1

(
β − ηy

σy

∣∣∣∣α − ηx

σx

)
. (5.94)

Substituting (5.90) and (5.87) into (5.93) and (5.94) we find

fx,y (α, β) =
exp

(
− 1

2(1−ρ2)

(
(α−ηx )2

σ 2
x

− 2ρ(α−ηx )(β−ηy )

σxσy
+ (β−ηy )2

σ 2
y

))
2πσxσy (1 − ρ2)1/2

(5.95)

and

fy |x(β|α) =
exp

(
−

(
β−ηy −ρσy

α−ηx

σx

)2

2(1−ρ2)σ 2
y

)
√

2πσ 2
y (1 − ρ2)

. (5.96)
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It follows that

E(y |x) = ηy + ρσy
x − ηx

σx

(5.97)

and

σ 2
y |x = σ 2

y (1 − ρ2). (5.98)

By interchanging x with y and α with β,

fx|y (α|β) =
exp

⎛⎝−
(

α−ηx−ρσx

β−ηy

σy

)2

2(1−ρ2)σ 2
y

⎞⎠
√

2πσ 2
x (1 − ρ2)

, (5.99)

E(x|y) = ηx + ρσx
y − ηy

σy

, (5.100)

and

σ 2
x|y = σ 2

x (1 − ρ2). (5.101)

A three-dimensional plot of a bivariate Gaussian PDF is shown in Figure 5.11.

The bivariate characteristic function for x and y is easily obtained as follows. Since x and

y are jointly Gaussian, the RV t1x + t2 y is a univariate Gaussian RV:

t1x + t2 y ∼ G
(
t1ηx + t2ηy , t2

1 σ 2
x + 2t1t2σx,y + t2

2 σ 2
y

)
.

x ,yf (α, β )

.265

α = −3

α = 3

β = −3

β = 3

FIGURE 5.11: Bivariate Gaussian PDF fx,y (α, β) with σx = σy = 1, ηx = ηy = 0, and ρ = −0.8.
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Consequently, the joint characteristic function for x and y is

φx,y (t1, t2) = e− 1
2

(t2
1 σ 2

x +2t1t2σx,y +t2
2 σ 2

y )e j t1ηx+ j t2ηy , (5.102)

which is valid for all σx,y , σx and σy .

We now consider some special cases of the bivariate Gaussian PDF. If ρ = 0 then (from

(5.95))

fx,y (α, β) = fx(α) fy (β); (5.103)

i.e., RVs x and y are independent.

As ρ → ±1, from (5.97) and (5.98) we find

E(y |x) → ηy ± σy
x − ηx

σx

and σ 2
y |x → 0. Hence,

y → ηy ± σy
x − ηx

σx

in probability1. We conclude that

fx,y (α, β) = fx(α)δ

(
β − ηy ± σy

α − ηx

σx

)
(5.104)

for ρ = ±1. Interchanging the roles of x and y we find that the joint PDF for x and y may also

be written as

fx,y (α, β) = fy (β)δ

(
α − ηx ± σx

β − ηy

σy

)
(5.105)

when ρ = ±1. These results can also be obtained “directly” from the joint characteristic function

for x and y .

A very special property of jointly Gaussian RVs is presented in the following theorem.

Theorem 5.6.1. The jointly Gaussian RVs x and y are independent iff ρx,y = 0.

Proof. We showed previously that if x and y are independent, then ρx,y = 0.

Suppose that ρ = ρx,y = 0. Then fy |x(β|α) = fy (β). �

Example 5.6.1. Let x and y be jointly Gaussian with zero means, σ 2
x = σ 2

y = 1, and ρ �= ±1.

Find constants a and b such that v = ax + by ∼ G(0, 1) and such that v and x are independent.

1As the variance of a RV decreases to zero, the probability that the RV deviates from its mean by more than an

arbitrarily small fixed amount approaches zero. This is an application of the Chebyshev Inequality.
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Solution. We have E(v) = 0. We require

σ 2
v = a2 + b2 + 2abρ2

x,y = 1

and

E(vx) = a + bρx,y = 0.

Hence a = −bρx,y and b2 = 1/(1 − ρ2
x,y ), so that

v = y − ρx,y x√
1 − ρ2

x,y

is independent of x and σ 2
v = 1. �

5.6.1 Constant Contours

Returning to the normalized jointly Gaussian RVs z1 and z2, we now investigate the shape of

the joint PDF fz1,z2
(α, β) by finding the locus of points where the PDF is constant. We assume

that |ρ| < 1. By inspection of (5.90), we find that fz1,z2
(α, β) is constant for α and β satisfying

α2 − 2ραβ + β2 = c 2, (5.106)

where c is a positive constant.

If ρ = 0 the contours where the joint PDF is constant is a circle of radius c centered at

the origin.

Along the line β = qα we find that

α2(1 − 2ρq + q 2) = c 2 (5.107)

so that the constant contours are parameterized by

α = ±c√
1 − 2ρq + q 2

, (5.108)

and

β = ±c q√
1 − 2ρq + q 2

. (5.109)

The square of the distance from a point (α, β) on the contour to the origin is given by

d 2(q ) = α2 + β2 = c 2(1 + q 2)

1 − 2ρq + q 2
. (5.110)
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Differentiating, we find that d 2(q ) attains its extremal values at q = ±1. Thus, the line β = α

intersects the constant contour at

±β = α = ±c√
2(1 − ρ)

. (5.111)

Similarly, the line β = −α, intersects the constant contour at

±β = −α = ±c√
2(1 − ρ)

. (5.112)

Consider the rotated coordinates α′ = (α + β)/
√

2 and β ′ = (β − α)/
√

2, so that

α′ + β ′
√

2
= β (5.113)

and

α′ − β ′
√

2
= α. (5.114)

The rotated coordinate system is a rotation by π/4 counterclockwise. Thus

α2 − 2ραβ + β2 = c 2 (5.115)

is transformed into

α′2

1 + ρ
+ β ′2

1 − ρ
= c 2

1 − ρ2
. (5.116)

The above equation represents an ellipse with major axis length 2c /
√

1 − |ρ| and minor axis

length 2c /
√

1 + |ρ|. In the α − β plane, the major and minor axes of the ellipse are along the

lines β = ±α.

From (5.93), the constant contours for fx,y (α, β) are solutions to(
α − ηx

σx

)2

− 2ρ

(
α − ηx

σx

) (
β − ηy

σy

)
+

(
β − ηy

σy

)2

= c 2. (5.117)

Using the transformation

α′ = 1√
2

(
α − ηx

σx

+ β − ηy

σy

)
, β ′ = 1√

2

(
β − ηy

σy

− α − ηx

σx

)
(5.118)

transforms the constant contour to (5.116). With α′ = 0 we find that one axis is along

α − ηx

σx

= −β − ηy

σy
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with endpoints at

α = ±c σx√
2
√

1 + ρ
+ ηx, β = ±c σy√

2
√

1 + ρ
+ ηy ;

the length of this axis in the α − β plane is

√
2c

√
σ 2

x + σ 2
y

1 + ρ
.

With β ′ = 0 we find that the other axis is along

α − ηx

σx

= β − ηy

σy

with endpoints at

α = ±c σx√
2
√

1 − ρ
+ ηx, β = ±c σy√

2
√

1 − ρ
+ ηy ;

the length of this axis in the α − β plane is

√
2c

√
σ 2

x + σ 2
y

1 − ρ
.

Points on this ellipse in the α − β plane satisfy (5.117); the value of the joint PDF fx,y on this

curve is

1

2πσxσy

√
1 − ρ2

exp

(
− c 2

2(1 − ρ2)

)
. (5.119)

A further transformation

α′′ = α′
√

1 + ρ
, β ′′ = β ′

√
1 − ρ

transforms the ellipse in the α′ − β ′ plane to a circle in the α′′ − β ′′ plane:

α′′2 + β ′′2 = c 2

1 − ρ2
.

This transformation provides a straightforward way to compute the probability that the joint

Gaussian RVs x and y lie within the region bounded by the ellipse specified by (5.117). Letting

A denote the region bounded by the ellipse in the α − β plane and A′′ denote the image (a circle)
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in the α′′ − β ′′ plane, we have∫
A

∫
fx,y (α, β) dα dβ =

∫ ∫
1

2πσxσy

√
1 − ρ2

e− 1
2

(α′′2+β ′′2)

|J (α, β)| dα′′ dβ ′′,

where the Jacobian of the transformation is

J (α, β) =

∣∣∣∣∣∣∣∣
∂α′′

∂α

∂α′′

∂β

∂β ′′

∂α

∂β ′′

∂β

∣∣∣∣∣∣∣∣ .
Computing the indicated derivatives, we have

J (α, β) =

∣∣∣∣∣∣∣∣∣
1

σx

√
2
√

1 + ρ

1

σy

√
2
√

1 + ρ

−1

σx

√
2
√

1 − ρ

1

σy

√
2
√

1 − ρ

∣∣∣∣∣∣∣∣∣ ,
so that

J (α, β) = 1

σxσy

√
1 − ρ2

.

Substituting and transforming to polar coordinates, we find∫
A

∫
fx,y (α, β) dα dβ =

∫
A′′

∫
1

2π
e− 1

2
(α′′2+β ′′2)dα′′ dβ ′′

= 1

2π

2π∫
0

c /
√

1−ρ2∫
0

r e− 1
2

r 2

dr dθ

=
c 2/(2−2ρ2)∫

0

e−udu

= 1 − e−c 2/(2−2ρ2).

This bivariate Gaussian probability computation is one of the few which is “easily” accomplished.

Additional techniques for treating these computations are given in [1, pp. 956–958].

Drill Problem 5.6.1. Given that x and y are jointly distributed Gaussian random variables with

E(y |x) = 2 + 1.5x, E(x|y) = 7/6 + y/6, and σ 2
x|y = 0.75. Determine: (a) ηx , (b) ηy , (c) σ 2

x , (d)

σ 2
y , and (e) ρx,y .

Answers: 0.5, 1, 9, 2, 5.
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Drill Problem 5.6.2. Random variables x and y are jointly Gaussian with ηx = −2, ηy = 3,

σ 2
x = 21, σ 2

y = 31, and ρ = −0.3394. With c 2 = 0.2212 in (154), find: (a) the smallest angle

that either the minor or major axis makes with the positive α axis in the α − β plane, (b) the length

of the minor axis, (c) the length of the major axis.

Answers: 3, 2, 30◦.

Drill Problem 5.6.3. Random variables x and y are jointly Gaussian with ηx = −2, ηy = 3,

σ 2
x = 21, σ 2

y = 31, and ρ = −0.3394. Find: (a) E(y | x = 0), (b)P (1 < y ≤ 10 | x = 0),

(c )P (−1 < x < 7).

Answers: 0.5212, 0.3889, 2.1753.

5.7 SUMMARY
This chapter introduces certain probability distributions commonly encountered in biomedical

engineering. Special emphasis is placed on the exponential, Poisson and Gaussian distributions.

Important approximations to the Bernoulli PMF and Gaussian CDF are developed.

Bernoulli event probabilities may be approximated by the Poisson PMF when np < 10

or by the Gaussian PDF when npq > 3. For the Poisson approximation use η = np. For the

Gaussian approximation use η = np and σ 2 = npq .

Many important properties of jointly Gaussian random variables are presented.

Drill Problem 5.7.1. The length of time William Smith plays a video game is given by random

variable x distributed exponentially with a mean of four minutes. His play during each game is

independent from all other games. Determine: (a) the probability that William is still playing after

four minutes, (b) the probability that, out of five games, he has played at least one game for more than

four minutes.

Answers: exp(−1), 0.899.

5.8 PROBLEMS
1. Assume x is a Bernoulli random variable. Determine P (x ≤ 3) using the Bernoulli

CDF table if: (a) n = 5, p = 0.1; (b) n = 10, p = 0.1; (c) n = 20, p = 0.1; (d) n = 5,

p = 0.3; (e) n = 10, p = 0.3; (f ) n = 20, p = 0.3; (g) n = 5, p = 0.6; (h) n = 10,

p = 0.6; (i) n = 20, p = 0.6.

2. Suppose you are playing a game with a friend in which you roll a die 10 times. If the

die comes up with an even number, your friend gives you a dollar and if the die comes

up with an odd number you give your friend a dollar. Unfortunately, the die is loaded
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so that a 1 or a 3 are three times as likely to occur as a 2, a 4, a 5 or a 6. Determine:

(a) how many dollars your friend can expect to win in this game; (b) the probability of

your friend winning more than 4 dollars.

3. The probability that a basketball player makes a basket is 0.4. If he makes 10 attempts,

what is the probability he will make: (a) at least 4 baskets; (b) 4 baskets; (c) from 7 to

9 baskets; (d) less than 2 baskets; (e) the expected number of baskets.

4. The probability that Professor Rensselaer bowls a strike is 0.2. Determine the probability

that: (a) 3 of the next 20 rolls are strikes; (b) at least 4 of the next 20 rolls are strikes;

(c) from 3 to 7 of the next 20 rolls are strikes. (d) She is to keep rolling the ball until

she gets a strike. Determine the probability it will take more than 5 rolls. Determine

the: (e) expected number of strikes in 20 rolls; (f ) variance for the number of strikes in

20 rolls; (g) standard deviation for the number of strikes in 20 rolls.

5. The probability of a man hitting a target is 0.3. (a) If he tries 15 times to hit the target,

what is the probability of him hitting it at least 5 but less than 10 times? (b) What

is the average number of hits in 30 tries? (c) What is the probability of him getting

exactly the average number of hits in 30 tries? (d) How many times must the man try

to hit the target if he wants the probability of hitting it to be at least 2/3? (e) What is

the probability that no more than three tries are required to hit the target for the first

time?

6. In Junior Bioinstrumentation Lab, one experiment introduces students to the transistor.

Each student is given only one transistor to use. The probability of a student destroying

a transistor is 0.7. One lab class has 5 students and they will perform this experiment

next week. Let random variable x show the possible numbers of students who destroy

transistors. (a) Sketch the PMF for x. Determine: (b) the expected number of destroyed

transistors, (c) the probability that fewer than 2 transistors are destroyed.

7. On a frosty January morning in Fargo, North Dakota, the probability that a car parked

outside will start is 0.6. (a) If we take a sample of 20 cars, what is the probability that

exactly 12 cars will start and 8 will not? (b) What is the probability that the number of

cars starting out of 20 is between 9 and 15.

8. Consider Problem 7. If there are 20,000 cars to be started, find the probability that: (a)

at least 12,100 will start; (b) exactly 12,000 will start; (c) the number starting is between

11,900 and 12,150; (d) the number starting is less than 12,500.

9. A dart player has found that the probability of hitting the dart board in any one throw

is 0.2. How many times must he throw the dart so that the probability of hitting the

dart board is at least 0.6?
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10. Let random variable x be Bernoulli with n = 15 and p = 0.4. Determine E(x2).

11. Suppose x is a Bernoulli random variable with η = 10 and σ 2 = 10/3. Determine:

(a) q, (b) n, (c) p.

12. An electronics manufacturer is evaluating its quality control program. The current

procedure is to take a sample of 5 from 1000 and pass the shipment if not more than 1

component is found defective. What proportion of 20% defective components will be

shipped?

13. Repeat Problem 1, when appropriate, using the Poisson approximation to the Bernoulli

PMF.

14. A certain intersection averages 3 traffic accidents per week. What is the probability that

more than 2 accidents will occur during any given week?

15. Suppose that on the average, a student makes 6 mistakes per test. Determine the

probability that the student makes: (a) at least 1 mistake; (b) from 3 to 5 mistakes;

(c) exactly 2 mistakes; (d) more than the expected number of mistakes.

16. On the average, Professor Rensselaer gives 11 quizzes per quarter in Introduction to

Random Processes. Determine the probability that: (a) from 8 to 12 quizzes are given

during the quarter; (b) exactly 11 quizzes are given during the quarter; (c) at least 10

quizzes are given during the quarter; (d) at most 9 quizzes are given during the quarter.

17. Suppose a typist makes an average of 30 mistakes per page. (a) If you give him a one

page letter to type, what is the probability that he makes exactly 30 mistakes? (b) The

typist decides to take typing lessons, and, after the lessons, he averages 5 mistakes per

page. You give him another one page letter to type. What is the probability of him

making fewer than 5 mistakes. (c) With the 5 mistakes per page average, what is the

probability of him making fewer than 50 mistakes in a 25 page report?

18. On the average, a sample of radioactive material emits 20 alpha particles per minute.

What is the probability of 10 alpha particles being emitted in: (a) 1 min, (b) 10 min?

(c) Many years later, the material averages 6 alpha particles emitted per minute. What

is the probability of at least 6 alpha particles being emitted in 1 min?

19. At Fargo Polytechnic Institute (FPI), a student may take a course as many times as

desired. Suppose the average number of times a student takes Introduction to Random

Processes is 1.5. (Professor Rensselaer, the course instructor, thinks so many students

repeat the course because they enjoy it so much.) (a) Determine the probability that a

student takes the course more than once. (b) The academic vice-president of FPI wants

to ensure that on the average, 80% of the students take the course at most one time. To

what value should the mean be adjusted to ensure this?
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20. Suppose 1% of the transistors in a box are defective. Determine the probability that

there are: (a) 3 defective transistors in a sample of 200 transistors; (b) more than 15

defective transistors in a sample of 1000 transistors; (c) 0 defective transistors in a

sample of 20 transistors.

21. A perfect car is assembled with a probability of 2 × 10−5. If 15,000 cars are produced

in a month, what is the probability that none are perfect?

22. FPI admits only 1000 freshmen per year. The probability that a student will major in

Bioengineering is 0.01. Determine the probability that fewer than 9 students major in

Bioengineering.

23. (a) Every time a carpenter pounds in a nail, the probability that he hits his thumb is

0.002. If in building a house he pounds 1250 nails, what is the probability of him hitting

his thumb at least once while working on the house? (b) If he takes five extra minutes

off every time he hits his thumb, how many extra minutes can he expect to take off in

building a house with 3000 nails?

24. The manufacturer of Leaping Lizards, a bran cereal with milk expanding (exploding)

marshmallow lizards, wants to ensure that on the average, 95% of the spoonfuls will

each have at least one lizard. Assuming that the lizards are randomly distributed in the

cereal box, to what value should the mean of the lizards per spoonful be set at to ensure

this?

25. The distribution for the number of students seeking advising help from Professor Rens-

selaer during any particular day is given by

P (x = k) = 3ke−3

k!
, k = 0, 1, . . . .

The PDF for the time interval between students seeking help for Introduction to

Random Processes from Professor Rensselaer during any particular day is given by

ft(τ ) = e−τ u(τ ).

If random variable z equals the total number of students Professor Rensselaer helps

each day, determine: (a) E(z), (b) σz.

26. This year, on its anniversary day, a computer store is going to run an advertising cam-

paign in which the employees will telephone 5840 people selected at random from the

population of North America. The caller will ask the person answering the phone

if it’s his or her birthday. If it is, then that lucky person will be mailed a brand

new programmable calculator. Otherwise, that person will get nothing. Assuming that
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the person answering the phone won’t lie and that there is no such thing as leap year,

find the probability that: (a) the computer store mails out exactly 16 calculators, (b) the

computer store mails out from 20 to 40 calculators.

27. Random variable x is uniform between −2 and 3. Event A = {0 < x ≤ 2} and B =
{−1 < x ≤ 0} ∪ {1 < x ≤ 2}. Find: (a) P (−1 < x < 0), (b) ηx , (c) σx , (d) fx|A(α|A),

(e) Fx|A(α|A), (f ) fx|B(α|B), (g) Fx|B(α|B).

28. The time it takes a runner to run a mile is equally likely to lie in an interval from 4.0 to

4.2 min. Determine: (a) the probability it takes the runner exactly 4 min to run a mile,

(b) the probability it takes the runner from 4.1 to 4.15 min.

29. Assume x is a standard Gaussian random variable. Using Tables A.9 and A.10, de-

termine: (a) P (x = 0), (b) P (x < 0), (c) P (x < 0.2), (d) P (−1.583 ≤ x < 1.471),

(e) P (−2.1 < x ≤ −0.5), (f ) P (x is an integer).

30. Repeat Problem 1, when appropriate, using the Gaussian approximation to the

Bernoulli PMF.

31. A light bulb manufacturer distributes light bulbs that have a length of life that is

normally distributed with a mean equal to 1200 h and a standard deviation of 40 h.

Find the probability that a bulb burns between 1000 and 1300 h.

32. A certain type of resistor has resistance values that are Gaussian distributed with a

mean of 50 ohms and a variance of 3. (a) Write the PDF for the resistance value. (b)

Find the probability that a particular resistor is within 2 ohms of the mean. (c) Find

P (49 < r < 54).

33. Consider Problem 32. If resistances are measured to the nearest ohm, find: (a) the

probability that a particular resistor is within 2 ohms of the mean, (b) P (49 < r < 54).

34. A battery manufacturer has found that 8.08% of their batteries last less than 2.3 years

and 2.5% of their batteries last more than 3.98 years. Assuming the battery lives are

Gaussian distributed, find: (a) the mean, (b) variance.

35. Assume that the scores on an examination are Gaussian distributed with mean 75 and

standard deviation 10. Grades are assigned as follows: A: 90–100, B: 80–90, C : 70–80,

D: 60–70, and F : below 60. In a class of 25 students, what is the probability that grades

will be equally distributed?

36. A certain transistor has a current gain, h , that is Gaussian distributed with a mean of 77

and a variance of 11. Find: (a) P (h > 74), (b) P (73 < h ≤ 80), (c) P (|h − ηh | < 3σh ).

37. Consider Problem 36. Find the value of d so that the range 77 + d covers 95% of the

current gains.
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38. A 250 question multiple choice final exam is given. Each question has 5 possible answers

and only one correct answer. Determine the probability that a student guesses the correct

answers for 20–25 of 85 questions about which the student has no knowledge.

39. The average golf score for Professor Rensselaer is 78 with a standard deviation of 3.

Assuming a Gaussian distribution for random variable x describing her golf game,

determine: (a) P (x = 78), (b) P (x ≤ 78), (c) P (70 < x ≤ 80), (d) the probability that

x is less than 75 if the score is measured to the nearest unit.

40. Suppose a system contains a component whose length is normally distributed with a

mean of 2.0 and a standard deviation of 0.2. If 5 of these components are removed from

different systems, what is the probability that at least 2 have a length greater than 2.1?

41. A large box contains 10,000 resistors with resistances that are Gaussian distributed. If

the average resistance is 1000 ohms with a standard deviation of 200 ohms, how many

resistors have resistances that are within 10% of the average?

42. The RV x has PDF

fx(α) = a exp

(
− 1

2σ 2
(α − η)2

)
.

(a) Find the constant a . (Hint: assume RV y is independent of x and has PDF fy (β) =
fx(β) and evaluate Fx,y (∞, ∞).) (b) Using direct integration, find E(x). (c) Find σ 2

x

using direct integration.

43. Assume x and y are jointly distributed Gaussian random variables with x ∼ G(−2, 4),

y ∼ G(3, 9), and ρx,y = 0. Find: (a) P (1 < y < 7 | x = 0), (b) P (1 < y < 7),

(c) P (−1 < x < 1, 1 < y < 7).

44. Suppose x and y are jointly distributed Gaussian random variables with E(y |x) =
2.8 + 0.32x, E(x|y) = −1 + 0.5y , and σy |x = 3.67. Determine: (a) ηx , (b) ηy , (c) σx ,

(d) σy , (e) ρx,y , (f ) σx,y .

45. Assume x ∼ G(3, 1), y ∼ G(−2, 1), and that x and y are jointly Gaussian with ρx,y =
−0.5. Draw a sketch of the joint Gaussian contour equation showing the original and

the translated-rotated sets of axes.

46. Consider Problem 45. Determine: (a) E(y |x = 0), (b) fy |x(β|0), (c) P (0 < y < 4|x = 0),

(d) P (3 < x < 10).

47. Assume x and y are jointly Gaussian with x ∼ G(2, 13), y ∼ G(1, 8), and ρx,y =
−5.8835. (a) Draw a sketch of the constant contour equation for the standardized RVs

z1 and z2. (b) Using the results of (a), Draw a sketch of the joint Gaussian constant

contour for x and y .
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48. Consider Problem 47. Determine: (a) E(y | x = 0), (b) fy | x(β | 0), (c) P (0 <

y < 4|x = 0), (d) P (3 < x < 10).

49. Assume x and y are jointly Gaussian with x ∼ G(−1, 4), y ∼ G(1.6, 7), and ρx,y =
0.378. (a) Draw a sketch of the constant contour equation for the standardized RVs z1

and z2. (b) Using the results of (a), Draw a sketch of the joint Gaussian contour for x

and y .

50. Consider Problem 49. Determine: (a) E(y | x = 0), (b) fy |x(β | 0), (c) P (0 <

y < 4|x = 0), (d) P (−3 < x < 0).

51. A component with an exponential failure rate is 90% reliable at 10,000 h. Determine

the number of hours reliable at 95%.

52. Suppose a system has an exponential failure rate in years to failure with η = 2.5. De-

termine the number of years reliable at: (a) 90%, (b) 95%, (c) 99%.

53. Consider Problem 52. If 20 of these systems are installed, determine the probability

that 10 are operating at the end of 2.3 years.

54. In the circuit shown in Figure 5.12, each of the four components operate independently

of one another and have an exponential failure rate (in hours) with η = 105. For suc-

cessful operation of the circuit, at least two of these components must connect A with

B. Determine the probability that the circuit is operating successfully at 10,000 h.

55. The survival rate of individuals with a certain type of cancer is assumed to be exponential

with η = 4 years. Five individuals have this cancer. Determine the probability that at

most three will be alive at the end of 2.0433 years.

56. Random variable t is exponential with η = 2. Determine: (a) P (t > η), (b) fz(α) if

z = t − T, where T is a constant.

57. William Smith is a varsity wrestler on his high school team. Without exception, if he

does not pin his opponent with his trick move, he loses the match on points. William’s

3

1 2

4

A B

FIGURE 5.12: Circuit for Problem 54.
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trick move also prevents him from ever getting pinned. The length of time it takes

William to pin his opponent in each period of a wrestling match is given by:

period 1 : fx(α) = 0.4598394 exp(−0.4598394α)u(α),

period 2 : fx|A(α|A) = 0.2299197 exp(−0.2299197α)u(α),

period 3 : fx|A(α|A) = 0.1149599 exp(−0.1149599α)u(α),

where A = {Smith did not pin his opponent during the previous periods}. Assume

each period is 2 min and the match is 3 periods. Determine the probability that William

Smith: (a) pins his opponent during the first period: (b) pins his opponent during the

second period: (c) pins his opponent during the third period: (d) wins the match.

58. Consider Problem 57. Find the probability that William Smith wins: (a) at least 4 of

his first 5 matches, (b) more matches than he is expected to during a 10 match season.

59. The average time between power failures in a Coop utility is once every 1.4 years.

Determine: (a) the probability that there will be at least one power failure during the

coming year, (b) the probability that there will be at least two power failures during the

coming year.

60. Consider Problem 59 statement. Assume that a power failure will last at least 24 h. Sup-

pose Fargo Community Hospital has a backup emergency generator to provide auxilary

power during a power failure. Moreover, the emergency generator has an expected time

between failures of once every 200 h. What is the probability that the hospital will be

without power during the next 24 h?

61. The queue for the cash register at a popular package store near Fargo Polytechnic

Institute becomes quite long on Saturdays following football games. On the average,

the queue is 6.3 people long. Each customer takes 4 min to check out. Determine: (a)

your expected waiting time to make a purchase, (b) the probability that you will have

less than four people in the queue ahead of you, (c) the probability that you will have

more than five people in the queue ahead of you.

62. Outer Space Adventures, Inc. prints brochures describing their vacation packages as

“Unique, Unexpected and Unexplained.” The vacations certainly live up to their ad-

vertisement. In fact, they are so unexpected that the length of the vacations is random,

following an exponential distribution, having an average length of 6 months. Suppose

that you have signed up for a vacation trip that starts at the end of this quarter. What

is the probability that you will be back home in time for next fall quarter (that is, 9

months later)?
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63. A certain brand of light bulbs has an average life-expectancy of 750 h. The failure rate

of these light bulbs follows an exponential PDF. Seven-hundred and fifty of these bulbs

were put in light fixtures in four rooms. The lights were turned on and left that way for

a different length of time in each room as follows:

ROOM TIME BULBS LEFT ON, HOURS NUMBER OF BULBS

1 1000 125

2 750 250

3 500 150

4 1500 225

After the specified length of time, the bulbs were taken from the fixtures and placed

in a box. If a bulb is selected at random from the box, what is the probability that it is

burnt out?
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C H A P T E R 6

Transformations of Random Variables

Functions of random variables occur frequently in many applications of probability theory. For

example, a full wave rectifier circuit produces an output that is the absolute value of the input.

The input/output characteristics of many physical devices can be represented by a nonlinear

memoryless transformation of the input.

The primary subjects of this chapter are methods for determining the probability dis-

tribution of a function of a random variable. We first evaluate the probability distribution of

a function of one random variable using the CDF and then the PDF. Next, the probability

distribution for a single random variable is determined from a function of two random variables

using the CDF. Then, the joint probability distribution is found from a function of two random

variables using the joint PDF and the CDF.

6.1 UNIVARIATE CDF TECHNIQUE
This section introduces a method of computing the probability distribution of a function of

a random variable using the CDF. We will refer to this method as the CDF technique. The

CDF technique is applicable for all functions z = g (x), and for all types of continuous, discrete,

and mixed random variables. Of course, we require that the function z : S �→ R∗, with z(ζ ) =
g (x(ζ )), is a random variable on the probability space (S, �, P ); consequently, we require z to

be a measurable function on the measurable space (S, �) and P (z(ζ ) ∈ {−∞, +∞}) = 0.

The ease of use of the CDF technique depends critically on the functional form of g (x).

To make the CDF technique easier to understand, we start the discussion of computing the

probability distribution of z = g (x) with the simplest case, a continuous monotonic function

g . (Recall that if g is a monotonic function then a one-to-one correspondence between g (x)

and x exists.) Then, the difficulties associated with computing the probability distribution of

z = g (x) are investigated when the restrictions on g (x) are relaxed.

6.1.1 CDF Technique with Monotonic Functions

Consider the problem where the CDF Fx is known for the RV x, and we wish to find the CDF

for random variable z = g (x). Proceeding from the definition of the CDF for z, we have for a
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monotonic increasing function g (x)

Fz(γ ) = P (z = g (x) ≤ γ ) = P (x ≤ g−1(γ )) = Fx(g−1(γ )), (6.1)

where g−1(γ ) is the value of α for which g (α) = γ . As (6.1) indicates, the CDF of random

variable z is written in terms of Fx(α), with the argument α replaced by g−1(γ ).

Similarly, if z = g (x) and g is monotone decreasing, then

Fz(γ ) = P (z = g (x) ≤ γ ) = P (x ≥ g−1(γ )) = 1 − Fx(g−1(γ )−). (6.2)

The following example illustrates this technique.

Example 6.1.1. Random variable x is uniformly distributed in the interval 0 to 4. Find the CDF

for random variable z = 2x + 1.

Solution. Since random variable x is uniformly distributed, the CDF of x is

Fx(α) =

⎧⎪⎨⎪⎩
0, α < 0

α/4, 0 ≤ α < 4

1, 4 ≤ α.

Letting g (x) = 2x + 1, we see that g is monotone increasing and that g−1(γ ) = (γ − 1)/2.

Applying (6.1), the CDF for z is given by

Fz(γ ) = Fx

(
γ − 1

2

)
=

⎧⎪⎨⎪⎩
0, (γ − 1)/2 < 0

(γ − 1)/8, 0 ≤ (γ − 1)/2 < 4

1, 4 ≤ (γ − 1)/2.

Simplifying, we obtain

Fz(γ ) =

⎧⎪⎨⎪⎩
0, γ < 1

(γ − 1)/8, 1 ≤ γ < 9

1, 9 ≤ γ,

which is also a uniform distribution. �

6.1.2 CDF Technique with Arbitrary Functions

In general, the relationship between x and z can take on any form, including discontinuities.

Additionally, the function does not have to be monotonic, more than one solution of z = g (x)

can exist—resulting in a many-to-one mapping from x to z. In general, the only requirement

on g is that z = g (x) be a random variable. In this general case, Fz(γ ) is no longer found by

simple substitution. In fact, under these conditions it is impossible to write a general expression

for Fz(γ ) using the CDF technique. However, this case is conceptually no more difficult than
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the previous case, and involves only careful book keeping.

Let

A(γ ) = {x : g (x) ≤ γ }. (6.3)

Note that A(γ ) = g−1((−∞, γ ]). Then

Fz(γ ) = P (g (x) ≤ γ ) = P (x ∈ A(γ )). (6.4)

Partition A(γ ) into disjoint intervals {Ai (γ ) : i = 1, 2, . . .} so that

A(γ ) =
∞⋃

i=1

Ai (γ ). (6.5)

Note that the intervals as well as the number of nonempty intervals depends on γ . Since the

Ai ’s are disjoint,

Fz(γ ) =
∞∑

i=1

P (x ∈ Ai (γ )). (6.6)

The above probabilities are easily found from the CDF Fx . If interval Ai (γ ) is of the form

Ai (γ ) = (ai (γ ), bi (γ )], (6.7)

then

P (x ∈ Ai (γ )) = Fx(bi (γ )) − Fx(ai (γ )). (6.8)

Similarly, if interval Ai (γ ) is of the form

Ai (γ ) = [ai (γ ), bi (γ )], (6.9)

then

P (x ∈ Ai (γ )) = Fx(bi (γ )) − Fx(ai (γ )−). (6.10)

The success of this method clearly depends on our ability to partition A(γ ) into disjoint intervals.

Using this method, any function g and CDF Fx is amenable to a solution for Fz(γ ). The

following examples illustrate various aspects of this technique.

Example 6.1.2. Random variable x has the CDF

Fx(α) =

⎧⎪⎨⎪⎩
0, α < −1

(3α − α3 + 2)/4, −1 ≤ α < 1

1, 1 ≤ α.

Find the CDF for the RV z = x2.
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Solution. Letting g (x) = x2, we find

A(γ ) = g−1((−∞, γ ]) =
{

∅, γ < 0

[−√
γ ,

√
γ ], γ ≥ 0.

so that

Fz(γ ) = Fx(
√

γ ) − Fx((−√
γ )−).

Noting that Fx(α) is continuous and has the same functional form for −1 < α < 1, we obtain

Fz(γ ) =

⎧⎪⎨⎪⎩
0, γ < 0

(3
√

γ − (
√

γ )3)/2, 0 ≤ γ < 1

1 1 ≤ γ. �

Example 6.1.3. Random variable x is uniformly distributed in the interval −3 to 3. Random

variable z is defined by

z = g (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−1, x < −2

3x + 5, −2 ≤ x < −1

−3x − 1, −1 ≤ x < 0

3x − 1, 0 ≤ x < 1

2, 1 ≤ x.

Find Fz(γ ).

Solution. Plots for this example are given in Figure 6.1. The CDF for random variable x is

Fx(α) =

⎧⎪⎨⎪⎩
0, α < −3

(α + 3)/6, −3 ≤ α < 3

1, 3 ≤ α.

Let A(γ ) = g−1((−∞, ∞)). Referring to Figure 6.1 we find

A(γ ) =

⎧⎪⎪⎨⎪⎪⎩
∅, γ < −1(

−∞,
γ − 5

3

]
∪

[−γ − 1

3
,
γ + 1

3

]
, −1 ≤ γ < 2

R 2 ≤ γ.

Consequently,

Fz(γ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, γ < −1

Fx

(
γ − 5

3

)
+ Fx

(
γ + 1

3

)
− Fx

((−γ − 1

3

)−)
, −1 ≤ γ < 2

1 2 ≤ γ.
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−3 −1 1 3

1
zF (γ )

−3 −1 1 3

1
xF (α)

−3 −1 1 3

4

x

g(x)

2

−1

γ

α

FIGURE 6.1: Plots for Example 6.1.3.

Substituting, we obtain

Fz(γ ) =

⎧⎪⎪⎨⎪⎪⎩
0, γ < −1

1

6

(
γ − 5

3
+ 3 + γ + 1

3
− −γ − 1

3

)
= γ + 2

6
, −1 ≤ γ < 2

1 2 ≤ γ.

Note that Fz(γ ) has jumps at γ = −1 and at γ = 2. �

Whenever random variable x is continuous and g (x) is constant over some interval or

intervals, then random variable z can be continuous, discrete or mixed, dependent on the CDF

for random variable x. As presented in the previous example, random variable z is mixed due to

the constant value of g (x) in the intervals −3 ≤ x < −2 and 1 ≤ x < 3. In fact, z is a mixed

random variable whenever g (α) is constant in an interval where fx(α) 
= 0. This results in a

jump in Fz and an impulse function in fz. Moreover, z = g (x) is a discrete random variable if

g (α) changes values only on intervals where fx(α) = 0. Random variable z is continuous if x is

continuous and g (x) is not equal to a constant over any interval where fx(α) 
= 0.
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Example 6.1.4. Random variable x has the PDF

fx(α) =
{

(1 + α2)/6, −1 < α < 2

0, otherwise.

Find the PDF of random variable z defined by

z = g (x) =

⎧⎪⎨⎪⎩
x − 1, x ≤ 0

0, 0 < x ≤ 0.5

1, 0.5 < x.

Solution. To find fz, we evaluate Fz first, then differentiate this result. The CDF for random

variable x is

Fx(α) =

⎧⎪⎨⎪⎩
0, α < −1

(α3 + 3α + 4)/18, −1 ≤ α < 2

1, 2 ≤ α.

Figure 6.2 shows a plot of g (x). With the aid of Figure 6.2, we find

A(γ ) = {x : g (x) ≤ γ } =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−∞, γ + 1], γ ≤ −1

(−∞, 0], −1 ≤ γ < 0

(−∞, 0.5], 0 ≤ γ < 1

(−∞, ∞), 1 ≤ γ.

Consequently,

Fz(γ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Fx(γ + 1), γ ≤ −1

Fx(0), −1 ≤ γ < 0

Fx(0.5), 0 ≤ γ < 1

1, 1 ≤ γ.

−1 1 2 x

1

−1

g(x )

−2

FIGURE 6.2: Transformation for Example 6.1.4.
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Substituting,

Fz(γ ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, γ < −2

((γ + 1)3 + 3γ + 7)/18, −2 ≤ γ < −1

2/9, −1 ≤ γ < 0

5/16, 0 ≤ γ < 1

1, 1 ≤ γ.

Note that Fz(γ ) has jumps at γ = 0 and γ = 1 of heights 13/144 and 11/16, respectively.

Differentiating Fz,

fz(γ ) = 3γ 2 + 6γ + 6

18
(u(γ + 2) − u(γ + 1)) + 13

144
δ(γ ) + 11

16
δ(γ − 1). �

Example 6.1.5. Random variable x is uniformly distributed in the interval from 0 to 10. Find the

CDF for random variable z = g (x) = − ln(x).

Solution. The CDF for x is

Fx(α) =

⎧⎪⎨⎪⎩
0, α < 0

α/10, 0 ≤ α < 10

1, 10 ≤ α.

For γ > 0, we find

A(γ ) = {x : − ln(x) ≤ γ } = (e−γ , ∞),

so that Fz(γ ) = 1 − Fx((e−γ )−). Note that P (x ≤ 0) = 0, as required since g (x) = − ln(x) is

not defined (or at least not real–valued) for x ≤ 0. We find

Fz(γ ) =
{

0, γ < ln(0.1)

1 − e−0.1γ , ln(0.1) ≤ γ. �

The previous examples illustrated evaluating the probability distribution of a function

of a continuous random variable using the CDF technique. This technique is applicable for

all functions z = g (x), continuous and discontinuous. Additionally, the CDF technique is

applicable if random variable x is mixed or discrete. For mixed random variables, the CDF

technique is used without any changes or modifications as shown in the next example.

Example 6.1.6. Random variable x has PDF

fx(α) = 0.5(u(α) − u(α − 1)) + 0.5δ(α − 0.5).

Find the CDF for z = g (x) = 1/x2.
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Solution. The mixed random variable x has CDF

Fx(α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, α < 0

0.5α, 0 ≤ α < 0.5

0.5 + 0.5α, 0.5 ≤ α < 1

1, 1 ≤ α.

For γ < 0, Fz(γ ) = 0. For γ > 0,

A(γ ) = {x : x−2 ≤ γ } =
(

−∞, − 1√
γ

]
∪

[
1√
γ

, ∞
)

,

so that

Fz(γ ) = Fx(−1/
√

γ ) + 1 − Fx((1/
√

γ )−).

Since Fx(−1/
√

γ ) = 0 for all real γ , we have

Fz(γ ) = 1 −

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, (1/

√
γ )− < 0

0.5γ −1/2, 0 ≤ (1/
√

γ )− < 0.5

0.5 + 0.5γ −1/2, 0.5 ≤ (1/
√

γ )− < 1

1, 1 ≤ (1/
√

γ )−.

After some algebra,

Fz(γ ) =

⎧⎪⎨⎪⎩
0, γ < 1

0.5 − 0.5γ −1/2, 1 ≤ γ < 4

1 − 0.5γ −1/2, 4 ≤ γ.
�

Drill Problem 6.1.1. Random variable x is uniformly distributed in the interval −1 to 4. Random

variable z = 3x + 2. Determine: (a) Fz(0), (b)Fz(1), (c ) fz(0), (c ) fz(15).

Answers: 0, 2/15, 1/15, 1/15.

Drill Problem 6.1.2. Random variable x has the PDF

fx(α) = 0.5α(u(α) − u(α − 2)).

Random variable z is defined by

z =

⎧⎪⎨⎪⎩
−1, x < 1

x, −1 ≤ x ≤ 1

1, x > 1.

Determine: (a) Fz(−1/2), (b)Fz(1/2), (c )Fz(3/2), (d ) fz(1/2).

Answers: 0, 1, 1/16, 1/4.
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Drill Problem 6.1.3. Random variable x has the PDF

fx(α) = 0.5α(u(α) − u(α − 2)).

Random variable z is defined by

z =

⎧⎪⎨⎪⎩
−1, x ≤ 0.5

x + 0.5, 0.5 < x ≤ 1

3, x > 1.

Determine: (a) Fz(−1), (b)Fz(0), (c )Fz(3/2), (d )Fz(4).

Answers: 1/4, 1/16, 1/16, 1.

Drill Problem 6.1.4. Random variable x has PDF

fx(α) = e−α−1u(α + 1).

Random variable z = 1/x2 . Determine: (a) Fz(1/8), (b)Fz(1/2), (c )Fz(4), (d ) fz(4).

Answers: 0.0519, 0.617, 0.089, 0.022.

6.2 UNIVARIATE PDF TECHNIQUE
The previous section solved the problem of determining the probability distribution of a function

of a random variable using the cumulative distribution function. Now, we introduce a second

method for calculating the probability distribution of a function z = g (x) using the probability

density function, called the PDF technique. The PDF technique, however, is only applicable

for functions of random variables in which z = g (x) is continuous and does not equal a constant

in any interval in which fx is nonzero. We introduce the PDF technique for two reasons. First,

in many situations it is much simpler to use than the CDF technique. Second, we will find the

PDF method most useful in extensions to multivariate functions. In this section, we discuss

a wide variety of situations using the PDF technique with functions of continuous random

variables. Then, a method for handling mixed random variables with the PDF technique is

introduced. Finally, we consider computing the conditional PDF of a function of a random

variable using the PDF technique.

6.2.1 Continuous Random Variable

Theorem 6.2.1. Let x be a continuous RV with PDF fx(α) and let the RV z = g (x) . Assume g

is continuous and not constant over any interval for which fx 
= 0 . Let

αi = αi (γ ) = g−1(γ ), i = 1, 2, . . . , (6.11)
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denote the distinct solutions to g (αi ) = γ . Then

fz(γ ) =
∞∑

i=1

fx(αi (γ ))

|g (1)(αi (γ ))| , (6.12)

where we interpret

fx(αi (γ ))

|g (1)(αi (γ ))| = 0,

if fx(αi (γ ) = 0.

Proof. Let h > 0 and define

I (γ, h) = {x : γ − h < g (x) ≤ γ }.
Partition I (γ, h) into disjoint intervals of the form

Ii (γ, h) = (ai (γ, h), bi (γ, h)), i = 1, 2, . . . ,

such that

I (γ, h) =
∞⋃

i=1

Ii (γ, h).

Then

Fz(γ ) − Fz(γ − h) =
∞∑

i=1

(Fx(bi (γ, h)) − Fx(ai (γ, h)))

By hypothesis,

lim
h→0

ai (γ, h) = lim
h→0

bi (γ, h) = αi (γ ).

Note that (for all γ with fx(αi (γ )) 
= 0)

lim
h→0

bi (γ, h) − ai (γ, h)

h
= lim

h→0

bi (γ, h) − ai (γ, h)

|g (bi (γ, h)) − g (ai (γ, h))| = 1

|g (1)(αi (γ ))| ,

and that

lim
h→0

Fx(bi (γ, h)) − Fx(ai (γ, h))

bi (γ, h) − ai (γ, h)
= fx(αi (γ )).

The desired result follows by taking the product of the above limits. The absolute value ap-

pears because by construction we have bi > ai and h > 0, whereas g (1) may be positive or

negative. �
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Example 6.2.1. Random variable x is uniformly distributed in the interval 0–4. Find the PDF for

random variable z = g (x) = 2x + 1.

Solution. In this case, there is only one solution to the equation γ = 2α + 1, given by α1 =
(γ − 1)/2. We easily find g (1)(α) = 2. Hence

fz(γ ) = fx((γ − 1)/2)/2 =
{

1/8, 1 < γ < 9

0, otherwise. �

Example 6.2.2. Random variable x has PDF

fx(α) = 0.75(1 − α2)(u(α + 1) − u(α − 1)).

Find the PDF for random variable z = g (x) = 1/x2.

Solution. For γ < 0, there are no solutions to g (αi ) = γ , so that fz(γ ) = 0 for γ < 0. For

γ > 0 there are two solutions to g (αi ) = γ :

α1(γ ) = − 1√
γ

, and α2(γ ) = 1√
γ

.

Since γ = g (α) = α−2, we have g (1)(α) = −2α−3; hence, |g (1)(αi )| = 2/|αi |3 = 2|γ |3/2, and

fz(γ ) = fx(−γ −1/2) + fx(γ −1/2)

2γ 3/2
u(γ ).

Substituting,

fz(γ ) = 0.75(1 − γ −1)(u(1 − γ −1/2) − 0 + 1 − u(γ −1/2 − 1))

2γ 3/2
u(γ ).

Simplifying,

fz(γ ) = 0.75(1 − γ −1)(u(γ − 1) − 0 + 1 − u(1 − γ ))

2γ 3/2
u(γ ),

or

fz(γ ) = 0.75(γ
− 3

2 − γ
− 5

2 )u(γ − 1). �

Example 6.2.3. Random variable x has PDF

fx(α) = 1

6
(1 + α2)(u(α + 1) − u(α − 2)).

Find the PDF for random variable z = g (x) = x2.
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Solution. For γ < 0 there are no solutions to g (αi ) = γ , so that fz(γ ) = 0 for γ < 0. For

γ > 0 there are two solutions to g (αi ) = γ :

α1(γ ) = −√
γ , and α2(γ ) = √

γ .

Since γ = g (α) = α2, we have g (1)(α) = 2α; hence, |g (1)(αi )| = 2|αi | = 2
√

γ , and

fz(γ ) = fx(−√
γ ) + fx(

√
γ )

2
√

γ
u(γ ).

Substituting,

fz(γ ) = 1 + γ

12
√

γ
(u(1 − √

γ ) − u(−2 − √
γ ) + u(

√
γ + 1) − u(

√
γ − 2))u(γ ).

Simplifying,

fz(γ ) = 1 + γ

12
√

γ
(u(1 − γ ) − 0 + 1 − u(γ − 4))u(γ ),

or

fz(γ ) =

⎧⎪⎨⎪⎩
(γ −1/2 + γ 1/2)/6, 0 < γ < 1

(γ −1/2 + γ 1/2)/12, 1 < γ < 4

0, elsewhere. �

6.2.2 Mixed Random Variable

Consider the problem where random variable x is mixed, and we wish to find the PDF for

z = g (x). Here, we treat the discrete and continuous portions of fx separately, and then combine

the results to yield fz. The continuous part of the PDF of x is handled by the PDF technique.

To illustrate the use of this technique, consider the following example.

Example 6.2.4. Random variable x has PDF

fx(α) = 3

8
(u(α + 1) − u(α − 1)) + 1

8
δ(α + 0.5) + 1

8
δ(α − 0.5).

Find the PDF for the RV z = g (x) = e−x .

Solution. There is only one solution to g (α) = γ :

α1(γ ) = − ln(γ ).

We have g (1)(α1) = −e ln(γ ) = −γ . The probability masses of 1/8 for x at −0.5 and 0.5 are

mapped to probability masses of 1/8 for z at e 0.5 and e−0.5, respectively. For all γ > 0 such that
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|α1(γ ) ± 0.5| > 0 we have

fz(γ ) = fx(− ln(γ ))

γ
.

Combining these results, we find

fz(γ ) = 3

8γ
(u(γ − e−1) − u(γ − e )) + 1

8
δ(γ − e 0.5) + 1

8
δ(γ − e−0.5). �

6.2.3 Conditional PDF Technique

Since a conditional PDF is also a PDF, the above techniques apply to find the conditional PDF

for z = g (x), given event A. Consider the problem where random variable x has PDF fx , and

we wish to evaluate the conditional PDF for random variable z = g (x), given that event A

occurred. Depending on whether the event A is defined on the range or domain of z = g (x),

one of the following two methods may be used to determine the conditional PDF of z using

the PDF technique.

(i) If A is an event defined for an interval on z, the conditional PDF, fz|A, is computed by first

evaluating fz using the technique in this section. Then, by the definition of a conditional

PDF, we have

fz|A(γ |A) = fz(γ )

P (A)
, γ ∈ A, (6.13)

and fz|A(γ |A) = 0 for γ 
 ∈A.

(ii) If A is an event defined for an interval on x, we will use the conditional PDF of x to evaluate

the conditional PDF for z as

fz|A(γ |A) =
∞∑

i=1

fz|A(αi (γ )|A)

|g (1)(αi (γ ))| . (6.14)

Example 6.2.5. Random variable x has the PDF

fx(α) = 1

6
(1 + α2)(u(α + 1) − u(α − 2)).

Find the PDF for random variable z = g (x) = x2, given A = {x : x > 0}.
Solution. First, we solve for the conditional PDF for x and then find the conditional PDF for

z, based on fx|A. We have

P (A) = 1

6

∫ 2

0

(1 + α2)dα = 7

9
,
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so that

fx|A(α|A) = 3

14
(1 + α2)(u(α) − u(α − 2)).

There is only one solution to γ = g (α) = α2 on the interval 0 < α < 2 where fx|A 
= 0. We

have α1(γ ) = √
γ and |g (1)(α1(γ ))| = 2

√
γ . Consequently,

fz|A(γ |A) = 3

28

(√
γ + 1√

γ

)
(u(γ ) − u(γ − 4)). �

Drill Problem 6.2.1. Random variable x has a uniform PDF in the interval 0–8. Random variable

z = 3x + 1 .Use the PDF method to determine: (a) fz(0), (b) fz(6), (c )E(z), (d )σ 2
z .

Answers: 13, 48, 0, 1/24.

Drill Problem 6.2.2. Random variable x has the PDF

fx(α) =

⎧⎪⎨⎪⎩
9α2, 0 ≤ α < 0.5

3(1 − α2), 0.5 ≤ α ≤ 1

0, otherwise.

Random variable z = x3 .Use the PDF method to determine: (a) fz(1/27), (b) fz(1/4), (c ) fz|z>1/8

(1/4|z > 1/8), (d ) fz(2).

Answers: 1.52, 0, 3, 2.43.

Drill Problem 6.2.3. Random variable x has the PDF

fx(α) = 2

9
α(u(α) − u(α − 3)).

Random variable z = (x − 1)2. Use the PDF method to determine: (a) fz(1/4), (b) fz(9/4), (c )

fz|z≤1 (1/4|z ≤ 1), (d )E(z|z ≤ 1).

Answers: 4/9, 5/27, 1/3, 1.

Drill Problem 6.2.4. Random variable x has the PDF

fx(α) = 2

9
(α + 1)(u(α + 1) − u(α − 2)).

Random variable z = 2x2 and event A = {x : x ≥ 0}. Determine: (a) P (A), (b) fx|A (1|A), (c )

fz|A(2|A),(d ) fz|A(9|A).

Answers: 0, 1/2, 1/8, 8/9.
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6.3 ONE FUNCTION OF TWO RANDOM VARIABLES
Consider a random variable z = g (x, y) created from jointly distributed random variables x

and y . In this section, the probability distribution of z = g (x, y) is computed using a CDF

technique similar to the one at the start of this chapter. Because we are dealing with regions in

a plane instead of intervals on a line, these problems are not as straightforward and tractable as

before.

With z = g (x, y), we have

Fz(γ ) = P (z ≤ γ ) = P (g (x, y) ≤ γ ) = P ((x, y) ∈ A(γ )), (6.15)

where

A(γ ) = {(x, y) : g (x, y) ≤ γ }. (6.16)

The CDF for the RV z can then be found by evaluating the integral

Fz(γ ) =
∫

A(γ )

dFx,y (α, β). (6.17)

This result cannot be continued further until a specific Fx,y and g (x, y) are considered. Re-

member that in the case of a single random variable, our efforts primarily dealt with algebraic

manipulations. Here, our efforts are concentrated on evaluating Fz through integrals, with the

ease of solution critically dependent on g (x, y).

The ease in solution for Fz is dependent on transforming A(γ ) into proper limits of

integration. Sketching the support region for fx,y (the region where fx,y 
= 0, or Fx,y is not

constant) and the region A(γ ) is often most helpful, even crucial, in the problem solution. Pay

careful attention to the limits of integration to determine the range of integration in which the

integrand is zero because fx,y = 0. Let us consider several examples to illustrate the mechanics

of the CDF technique and also to provide further insight.

Example 6.3.1. Random variables x and y have joint PDF

fx,y (α, β) =
{

1/4, 0 < α < 2, 0 < β < 2

0, otherwise.

Find the CDF for z = x + y .

Solution. We have A(γ ) = {(α, β) : α + β ≤ γ }. We require the volume under the surface

fx,y (α, β) where α ≤ γ − β:

Fz(γ ) =
∫ ∞

−∞

∫ γ−β

−∞
fx,y (α, β)dα dβ.
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(a ) 0 < γ < 2 (b ) 2 < γ < 4

α0

β

2

2

γ

γ

2

2−γ

β

0 α

2

2γ

γ
−γ

FIGURE 6.3: Plots for Example 6.3.1.

For γ < 0 we have Fz(γ ) = 0. For 0 ≤ γ < 2, with the aid of Figure 6.3(a) we obtain

Fz(γ ) =
∫ 2

0

∫ γ−β

0

1

4
dαdβ = 1

8
γ 2.

For 2 ≤ γ < 4, referring to Figure 6.3(b), we consider the complementary region (to save some

work):

Fz(γ ) = 1 −
∫ 2

γ−2

∫ 2

γ−β

1

4
dαdβ = 1 − 1

8
(4 − γ )2.

Finally, for 4 ≤ γ , Fz(γ ) = 1.
�

Example 6.3.2. Random variables x and y have joint PDF

fx,y (α, β) =
{

1, 0 < α < 1, 0 < β < 1

0, otherwise.

Find the PDF for z = x − y .

Solution. We have A(γ ) = {(α, β) : α − β ≤ γ }. We require the volume under the surface

fx,y (α, β) where α ≤ γ + β:

Fz(γ ) =
∫ ∞

−∞

∫ γ+β

−∞
fx,y (α, β)dαdβ.

For γ < −1 we have Fz(γ ) = 0 and fz(γ ) = 0. With the aid of Figure 6.4(a), for −1 ≤ γ < 0,

Fz(γ ) =
∫ 1

−γ

∫ γ+β

0

dαdβ = 1

2
(1 + γ )2,
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β

0 α

1

1

1

γγ

β

0 α

1

11+

−γ − γ

(a) −1 < γ < 0 (b) 0 < γ < 1

FIGURE 6.4: Plots for Example 6.3.2.

so that fz(γ ) = 1 + γ . For 0 ≤ γ < 1, we consider the complementary region shown in Fig-

ure 6.4(b) (to save some work):

Fz(γ ) = 1 −
∫ 1−γ

0

∫ 1

γ+β

dαdβ = 1 − 1

2
(1 − γ )2,

so that fz(γ ) = 1 − γ . Finally, for 1 ≤ γ , Fz(γ ) = 1, so that fz(γ ) = 0. �

Example 6.3.3. Find the CDF for z = x/y, where x and y have the joint PDF

fx,y (α, β) =
{

1/α, 0 < β < α < 1

0, otherwise.

Solution. We have A(γ ) = {(α, β) : α/β ≤ γ }. Inside the support region for fx,y , we have

α/β > 1; hence, for γ < 1 we have Fz(γ ) = 0. As shown in Figure 6.5 it is easiest to integrate

with respect to β first: for 1 ≤ γ ,

Fz(γ ) =
∫ 1

0

∫ α

α/γ

1

α
dβdα = 1 − 1

γ
. �

β

γ

0 α

1

1

1

FIGURE 6.5: Integration region for Example 6.3.3.
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Example 6.3.4. Find the CDF for z = x2 + y2, where x and y have the joint PDF

fx,y (α, β) =
{

3α, 0 < β < α < 1

0, otherwise.

Solution. We have A(γ ) = {(α, β) : α2 + β2 ≤ γ }. For γ < 0, we obtain Fz(γ ) = 0. Trans-

forming to polar coordinates: α = r cos(θ ), β = r sin(θ ),

Fz(γ ) =
∫ 2π

0

∫
r 2≤γ

fx,y (r cos(θ ), r sin(θ ))r dr dθ.

Referring to Figure 6.6(a), for 0 ≤ γ < 1,

Fz(γ ) =
∫ π/4

0

∫ √
γ

0

3r 2 cos(θ )dr dθ = 1√
2
γ

3
2 .

For 1 ≤ γ < 2, we split the integral into two parts: one with polar coordinates, the other using

rectangular coordinates. With

sin(θ1) =
√

γ − 1√
γ

,

we find with the aid of Figure 6.6(b) that

Fz(γ ) =
∫ π/4

θ1

∫ √
γ

0

3r 2 cos(θ )dr dθ +
∫ 1

0

∫ α
√

γ−1

0

3αdβ dα,

or

Fz(γ ) = 1√
2
γ

3
2 − (γ − 1)

3
2 .

Finally, we have Fz(γ ) = 1 for 2 ≤ γ .
�

(a) 0 < γ < 1 (b) 1 < γ < 2

β

0 α

1

1γ

γ

α0

β

1

1 γ

γ

1−γ

FIGURE 6.6: Integration regions for Example 6.3.4.



P1: IML/FFX P2: IML

MOBK042-06 MOBK042-Enderle.cls October 30, 2006 19:53

TRANSFORMATIONS OF RANDOM VARIABLES 63

Drill Problem 6.3.1. Random variables x and y have joint PDF

fx,y (α, β) = e−αe−βu(α)u(β).

Random variable z = x − y . Find (a) Fz(−1/3), (b) fz(−1), (c )Fz(1), and (d) fz(1).

Answers: 1
4
e−1, 3

4
e−1, 1 − 3

4
e−1, 3

4
e−1.

6.4 BIVARIATE TRANSFORMATIONS
In this section, we find the joint distribution of random variables z = g (x, y) and w = h(x, y)

from jointly distributed random variables x and y . First, we consider a bivariate CDF technique.

Then, the joint PDF technique for finding the joint PDF for random variables z and w formed

from x and y is described. Next, the case of one function of two random variables is treated by

using the joint PDF technique with an auxiliary random variable. Finally, the conditional joint

PDF is presented.

6.4.1 Bivariate CDF Technique

Let x and y be jointly distributed RVs on the probability space (S, �, P ), and let z = g (x, y)

and w = h(x, y). Define A(γ, ψ) to be the region of the x − y plane for which z = g (x, y) ≤ γ

and w = h(x, y) ≤ ψ ; i.e.,

A(γ, ψ) = {(x, y) : g (x, y) ≤ γ, h(x, y) ≤ ψ}. (6.18)

Note that

A(γ, ψ) = g−1((−∞, γ ]) ∩ h−1((−∞, ψ]). (6.19)

Then

Fz,w(γ, ψ) =
∫

A(γ,ψ)

∫
dFx,y (α, β). (6.20)

It is often difficult to perform the integration indicated in (6.20).

Example 6.4.1. Random variables x and y have the joint PDF

fx,y (α, β) =
{

0.25, 0 ≤ α ≤ 2, 0 ≤ β ≤ 2

0, otherwise.

With z = g (x, y) = x + y and w = h(x, y) = y, find the joint PDF fz,w.

Solution. We have

g−1((−∞, γ ]) = {(x, y) : x + y ≤ γ }
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y

x

ψ

γ

γ ψ−

FIGURE 6.7: Integration region for Example 6.4.1.

and

h−1((−∞, ψ]) = {(x, y) : y ≤ ψ}.

The intersection of these regions is

A(γ, ψ) = {(x, y) : y ≤ min(γ − x, ψ)},

which is illustrated in Figure. 6.7. With the aid of Figure 6.7 and (6.20) we find

Fz,w(γ, ψ) =
∫ ψ

−∞

∫ γ−β

−∞
d Fx,y (α, β).

Instead of carrying out the above integration and then differentiating the result, we differentiate

the above integral to obtain the PDF fz,w directly. We find

∂ Fz,w(γ, ψ)

∂γ
= lim

h1→0

1

h1

∫ ψ

−∞

∫ γ−β

γ−h1−β

d Fx,y (α, β),

and

∂2 Fz,w(γ, ψ)

∂ψ ∂γ
= lim

h2→0
lim

h1→0

1

h1h2

∫ ψ

ψ−h2

∫ γ−β

γ−h1−β

dFx,y (α, β).

Performing the indicated limits, we find that fz,w(γ, ψ) = fx,y (γ − ψ, ψ); substituting, we

obtain

fz,w(γ, ψ) =
{

0.25, 0 < γ − ψ < 2, 0 < ψ < 2

0, otherwise. �

When the RVs x and y are jointly continuous, it is usually easier to find the joint PDF

fz,w than to carry out the integral indicated in (6.20).



P1: IML/FFX P2: IML

MOBK042-06 MOBK042-Enderle.cls October 30, 2006 19:53

TRANSFORMATIONS OF RANDOM VARIABLES 65

6.4.2 Bivariate PDF Technique

A very important special case of bivariate transformations is when the RVs x and y are jointly

continuous RVs and the mapping determined by g and h is continuous with g and h having

continuous partial derivatives. Let h1 > 0, h2 > 0 and define

I (γ, h1, ψ, h2) = g−1((γ − h1, γ ]) ∩ h−1((ψ − h2, ψ]). (6.21)

Partition I into disjoint regions so that

I (γ, h1, ψ, h2) =
⋃

i

Ii (γ, h1, ψ, h2). (6.22)

Let (αi , βi ) denote the unique element of

lim
h1→0

lim
h2→0

Ii (γ, h1, ψ, h2).

Then for small h1 and small h2 we have

h1h2 fv,w(γ, ψ) ≈
∑

i

fx,y (αi , βi )

∫
Ii (γ,h1,ψ,h2)

dα dβ. (6.23)

Dividing both sides of the above by h1h2 and letting h1 → 0 and h2 → 0, the approximation

becomes an equality. The result is summarized by the theorem below.

Theorem 6.4.1. Let x and y be jointly continuous RVs with PDF fx,y , and let z = g (x, y) and

w = h(x, y) . Let

(αi (γ, ψ), βi (γ, ψ)), i = 1, 2, . . . , (6.24)

be the distinct solutions to the simultaneous equations

g (αi , βi ) = γ (6.25)

and

h(αi , βi ) = ψ. (6.26)

Define the Jacobian

J (α, β) =

∣∣∣∣∣∣∣∣∣
∂g (α, β)

∂α

∂g (α, β)

∂β

∂h(α, β)

∂α

∂h(α, β)

∂β

∣∣∣∣∣∣∣∣∣ , (6.27)
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where the indicated partial derivatives are assumed to exist. Then

fz,w(γ, ψ) =
∞∑

i=1

fx,y (αi , βi )∣∣J (αi , βi )
∣∣ . (6.28)

The most difficult aspects to finding fz,w using the joint PDF technique are solving the si-

multaneous equations γ = g (αi , βi ) and ψ = h(αi , βi ) for αi and βi , and determining the

support region for fz,w. Let us consider several examples to illustrate the mechanics of this

PDF technique.

Example 6.4.2. Random variables x and y have the joint PDF

fx,y (α, β) =
{

1/4, 0 < α < 2, 0 < β < 2

0, otherwise.

Find the joint PDF for z = g (x, y) = x + y and w = h(x, y) = y .

Solution. There is only one solution to γ = α + β and ψ = β: α1 = γ − ψ and β1 = ψ . The

Jacobian of the transformation is

J =
∣∣∣∣∣1 1

0 1

∣∣∣∣∣ = 1 · 1 − 1 · 0 = 1.

Applying Theorem 1, we find

fz,w(γ, ψ) = fx,y (α1, β1)

|J | = fx,y (γ − ψ, ψ).

Substituting, we obtain

fz,w(γ, ψ) =
{

1/4, 0 < γ − ψ < 2, 0 < ψ < 2

0, otherwise.

The region of support for fz,w is illustrated in Figure 6.8. �

Example 6.4.3. Random variables x and y have the joint PDF

fx,y (α, β) =
{

12αβ(1 − α), 0 < α < 1, 0 < β < 1

0, otherwise.

Find the joint PDF for z = g (x, y) = x2 y and w = h(x, y) = y .
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ψ

1 2 3 4 γ0

1

2

FIGURE 6.8: Support region for Example 6.4.2.

Solution. Solving γ = α2β and ψ = β, we find α1 = √
γ /ψ and β1 = ψ . The other solution

α2 = −α1 is not needed since fx,y (α, β) = 0 for α < 0. The Jacobian is

J1 =
∣∣∣∣∣2α1β1 α2

1

0 1

∣∣∣∣∣ = 2α1β1 = 2
√

γψ.

Applying Theorem 1, we find

fz,w(γ, ψ) = fx,y (
√

γ /ψ, ψ)

2
√

γψ

=
{

6(1 − √
γ /ψ), 0 <

√
γ /ψ < 1, 0 < ψ < 1

0, otherwise. �

Example 6.4.4. Random variables x and y have the joint PDF

fx,y (α, β) =
{

0.25(α + 1), −1 < α < 1, −1 < β < 1

0, otherwise.

Find the joint PDF for z = g (x, y) = xy and w = h(x, y) = y/x.

Solution. Solving γ = αβ and ψ = β/α, we find α = γ /β = β/ψ , so that β2 = γψ . Let-

ting β1 = √
γψ we have α1 = √

γ /ψ . Then β2 = −√
γψ and α2 = −√

γ /ψ . Note that the

solution (α1, β1) is in the first quadrant of the α − β plane; the solution (α2, β2) is in the third

quadrant of the α − β plane. We find

J =
∣∣∣∣∣ β α

−β/α2 1/α

∣∣∣∣∣ = 2
β

α
,

so that J1 = 2ψ = J2. Hence

fz,w(γ, ψ) = fx,y (
√

γ /ψ,
√

γψ)

2|ψ | + fx,y (−√
γ /ψ, −√

γψ)

2|ψ | .



P1: IML/FFX P2: IML

MOBK042-06 MOBK042-Enderle.cls October 30, 2006 19:53

68 ADVANCED PROBABILITY THEORY FOR BIOMEDICAL ENGINEERS

In the γ − ψ plane,

fx,y (
√

γ /ψ,
√

γψ)

2|ψ |
has support region specified by

0 <
√

γ /ψ < 1 and 0 <
√

γψ < 1,

or

0 <
γ

ψ
< 1 and 0 < γψ < 1.

Similarly,

fx,y (−√
γ /ψ, −√

γψ)

2|ψ |
has support region specified by

−1 < −
√

γ /ψ < 0 and − 1 < −
√

γψ < 0,

or

0 <
γ

ψ
< 1 and 0 < γψ < 1.

Consequently, the two components of the PDF fz,w have identical regions of support in

the γ − ψ plane. In the first quadrant of the γ − ψ plane, this support region is easily seen to be

0 < γ < ψ < γ −1. Similarly, in the third quadrant, the support region is γ −1 < ψ < γ < 0.

This support region is illustrated in Figure 6.9. Finally, we find

fz,w(γ, ψ) =
{

1/(4|ψ |), 0 < γ < ψ < γ −1, or γ −1 < ψ < γ < 0

0, otherwise. �

Auxiliary Random Variables

The joint PDF technique can also be used to transform random variables x and y with joint

PDF fx,y to random variable z = g (x, y) by introducing auxiliary random variable w = h(x, y)

to find fz,w and then finding the marginal PDF fz using

fz(γ ) =
∫ ∞

−∞
fz,w(γ, ψ)dψ. (6.29)

It is usually advisable to let the auxiliary random variable w equal a quantity which allows

a convenient solution of the Jacobian and/or the inverse equations. This method is an alternative

to the CDF technique presented earlier.
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FIGURE 6.9: Support region for Example 6.4.4.

Example 6.4.5. Random variables x and y have the joint PDF

fx,y (α, β) =
{

4αβ, 0 < α < 1, 0 < β < 1

0, otherwise.

Find the PDF for z = g (x, y) = x2.

Solution. Let auxiliary variable w = h(x, y) = y . Solving γ = α2 and ψ = β, we find α =
±√

γ and β = ψ . The only solution inside the support region for fx,y is α = √
γ and β = ψ .

The Jacobian of the transformation is

J =
∣∣∣∣∣2α 0

0 1

∣∣∣∣∣ = 2α,

so that

fz,w(γ, ψ) = fx,y (
√

γ , ψ)

2
√

γ
=

⎧⎨⎩
4
√

γψ

2
√

γ
= 2ψ, 0 < γ < 1, 0 < ψ < 1

0, otherwise.

We find the marginal PDF for z as

fz(γ ) =
∫ ∞

−∞
fz,w(γ, ψ)dψ =

∫ 1

0

2ψ dψ.

for 0 < γ < 1 and fz(γ ) = 0, otherwise. �
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1 20

1

γ

ψ

FIGURE 6.10: Support region for Example 6.4.6.

Example 6.4.6. Random variables x and y have the joint PDF

fx,y (α, β) =
{

4αβ, 0 < α < 1, 0 < β < 1

0, otherwise.

Find the PDF for z = g (x, y) = x + y .

Solution. Let auxiliary variable w = h(x, y) = y . Solving γ = α + β and ψ = β, we find

α = γ − ψ and β = ψ . We find

J =
∣∣∣∣∣1 1

0 1

∣∣∣∣∣ = 1,

so that

fz,w(γ, ψ) = fx,y (γ − ψ, ψ) =
{

4(γ − ψ)ψ, 0 < γ − ψ < 1, 0 < ψ < 1

0, otherwise.

The support region for fz,w is shown in Figure 6.10. Referring to Figure 6.10, for 0 < γ < 1,

fz(γ ) =
∫ γ

0

4(γ − ψ)ψ dψ = 2

3
γ 3.

For 1 < γ < 2,

fz(γ ) =
∫ 1

γ−1

4(γ − ψ)ψ dψ = −2

3
γ 3 + 4γ − 8

3
.

Otherwise, fz = 0. �

Conditional PDF Technique

Since a conditional PDF is also a PDF, the above techniques apply to find the conditional PDF

for z = g (x, y), given event A. Consider the problem where random variables x and y have joint
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PDF fx,y , and we wish to evaluate the conditional PDF for random variable z = g (x, y), given

that event A occurred. Depending on whether the event A is defined on the range or domain of

z = g (x, y), one of the following two methods may be used to determine the conditional PDF

of z using the bivariate PDF technique.

i. If A is an event defined for an interval on z, the conditional PDF, fz|A, is computed by first

evaluating fz using the technique in this section. Then, by the definition of a conditional

PDF, we have

fz|A(γ |A) = fz(γ )

P (A)
, γ ∈ A. (6.30)

ii. If A is an event defined for a region in the x − y plane, we will use the conditional PDF

fx,y |A to evaluate the conditional PDF fz|A as follows. First, introduce an auxiliary random

variable w = h(x, y), and evaluate

fz,w|A(γ, ψ |A) =
∞∑

i=1

fx,y |A(αi (γ, ψ), βi (γ, ψ)|A)

|J (αi (γ, ψ), βi (γ, ψ))| , (6.31)

where (αi , βi ), i = 1, 2, . . ., are the solutions to γ = g (α, β) and ψ = h(α, β) in region

A. Then evaluate the marginal conditional PDF

fz|A(γ |A) =
∫ ∞

−∞
fz,w|A(γ, ψ |A)dψ. (6.32)

Example 6.4.7. Random variables x and y have joint PDF

fx,y (α, β) =
{

3α, 0 < β < α < 1

0, otherwise.

Find the PDF for z = x + y, given event A = {max(x, y) ≤ 0.5}.

Solution. We begin by finding the conditional PDF for x and y , given A. From Figure 6.11(a)

we find

P (A) =
∫

A

∫
fx,y (α, β)dα dβ =

∫ 0.5

0

∫ α

0

3α dβ dα = 1

8
;

consequently,

fx,y |A(α, β|A) =
⎧⎨⎩

fx,y (α, β)

P (A)
= 24α, 0 < β < α < 0.5

0, otherwise.
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FIGURE 6.11: Support region for Example 6.4.7.

Letting the auxiliary random variable w = h(x, y) = y , the only solution to γ = g (α, β) =
α + β and ψ = h(α, β) = β is α = γ − ψ and β = ψ . The Jacobian of the transformation is

J = 1 so that

fz,w|A(γ, ψ |A) = fx,y |A(γ − ψ, ψ |A)

1
.

Substituting, we find

fz,w|A(γ, ψ |A) =
{

24(γ − ψ), 0 < ψ < γ − ψ < 0.5

0, otherwise.

The support region for fz,w|A is illustrated in Figure 6.11(b). The conditional PDF for z, given

A, can be found from

fz|A(γ |A) =
∫ ∞

−∞
fz,w|A(γ, ψ |A)dψ.

The integration is easily carried out with the aid of Figure 6.11(b). For 0.5 < γ < 1 we have

fz|A(γ |A) =
∫ 0.5γ

0

24(γ − ψ)dψ = 9γ 2.

For 0.5 < γ < 1 we obtain

fz|A(γ |A) =
∫ 0.5γ

γ−0.5

24(γ − ψ)dψ = 3(1 − γ 2).

For γ < 0 or γ > 1, fz|A(γ |A) = 0. �



P1: IML/FFX P2: IML

MOBK042-06 MOBK042-Enderle.cls October 30, 2006 19:53

TRANSFORMATIONS OF RANDOM VARIABLES 73

Drill Problem 6.4.1. Random variables x and y have joint PDF

fx,y (α, β) = e−α−βu(α)u(β).

Random variable z = x and w = xy. Find: (a) fz,w(1, 1), (b) fz,w(−1, 1).

Answers: 0, e−2.

Drill Problem 6.4.2. Random variables x and y have joint PDF

fx,y (α, β) =
{

4αβ, 0 < α < 1, 0 < β < 1

0, otherwise.

Random variable z = x + y and w = y2. Determine: (a) fz,w(1, 1/4), (b) fz(−1/2), (c ) fz(1/2),

(d ) fz(3/2).

Answers: 0, 1/12, 1, 13/12.

Drill Problem 6.4.3. Random variables x and y have joint PDF

fx,y (α, β) =
{

1.2(α2 + β), 0 < α < 1, 0 < β < 1

0, otherwise.

Random variable z = x2 y. Determine: (a) fz(−1), (b) fz(1/4), (c ) fz(1/2), (d ) fz(3/2).

Answers: 0.7172, 0, 0, 1.3.

Drill Problem 6.4.4. Random variables x and y have joint PDF

fx,y (α, β) =
{

2β, 0 < α < 1, 0 < β < 1

0, otherwise.

Random variable z = x − y and event A = {(x, y) : x + y ≤ 1}. Determine: (a) fz|A(−3/

2|A), (b) fz|A(−1/2|A), (c )Fz|A(0|A), (d ) fz|A(1/2|A).

Answers: 0, 3/4, 15/16, 3/16.

6.5 SUMMARY
This chapter presented a number of different approaches to find the probability distribution of

functions of random variables.

Two methods are presented to find the probability distribution of a function of one random

variable, z = g (x). The first, and the most general approach, is called the CDF technique. From

the definition of the CDF, we write

Fz(γ ) = P (z ≤ γ ) = P (g (x) ≤ γ ) = P (x ∈ A(γ )), (6.33)
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where A(γ ) = {x : g (x) ≤ γ }. By partitioning A(γ ) into disjoint intervals, the CDF Fz may be

found using the CDF Fx . The second approach, called the PDF technique, involves evaluating

fz(γ ) =
∞∑

i=1

fx(αi (γ ))∣∣g (1)(αi (γ ))
∣∣ , (6.34)

where

αi = αi (γ ) = g−1(γ ), i = 1, 2, . . . , (6.35)

denote the distinct solutions to g (αi ) = γ . Typically, the PDF technique is much simpler to

use than the CDF technique. However, the PDF technique is applicable only when z = g (x)

is continuous and does not equal a constant in any interval in which fx is nonzero.

Next, we evaluated the probability distribution of a random variable z = g (x, y) created

from jointly distributed random variables x and y using two approaches. The first approach, a

CDF technique, involves evaluating

Fz(γ ) = P (z ≤ γ ) = P (g (x, y) ≤ γ ) = P ((x, y) ∈ A(γ )), (6.36)

where

A(γ ) = {(x, y) : g (x, y) ≤ γ }. (6.37)

The CDF for the RV z can then be found by evaluating the integral

Fz(γ ) =
∫

A(γ )

dFx,y (α, β). (6.38)

The ease of solution here involves transforming A(γ ) into proper limits of integration. We wish

to remind the reader that the special case of a convolution integral is obtained when random

variables x and y are independent and z = x + y . The second approach involves introducing

an auxiliary random variable and using the PDF technique applied to two functions of two

random variables.

To find the joint probability distribution of random variables z = g (x, y) and w = h(x, y)

from jointly distributed random variables x and y , a bivariate CDF as well as a joint PDF

technique were presented. Using the joint PDF technique, the joint PDF for z and w can be

found as

fz,w(γ, ψ) =
∞∑

i=1

fx,y (αi , βi )∣∣J (αi , βi )
∣∣ , (6.39)

where

(αi (γ, ψ), βi (γ, ψ)), i = 1, 2, . . . , (6.40)
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are the distinct solutions to the simultaneous equations

g (αi , βi ) = γ (6.41)

and

h(αi , βi ) = ψ. (6.42)

The Jacobian

J (α, β) =

∣∣∣∣∣∣∣∣
∂g (α, β)

∂α

∂g (α, β)

∂β

∂h(α, β)

∂α

∂h(α, β)

∂β

∣∣∣∣∣∣∣∣ , (6.43)

where the indicated partial derivatives are assumed to exist. Typically, the most difficult aspect

of the joint PDF technique is in solving the simultaneous equations. The joint PDF technique

can also be used to find the probability distribution for z = g (x, y) from fx,y by introducing an

auxiliary random variable w = h(x, y) to find fz,w, and then integrating to obtain the marginal

PDF fz.

6.6 PROBLEMS
1. Let random variable x be uniform between 0 and 2 with z = exp(x). Find Fz using the

CDF technique.

2. Given

fx(α) =
{

0.5(1 + α), −1 < α < 1

0, otherwise,

and

z =
{

x − 1, x < 0

x + 1, x > 0.

Use the CDF technique to find Fz.

3. Suppose random variable x has the CDF

Fx(α) =

⎧⎪⎨⎪⎩
0, α < 0

α2, 0 ≤ α < 1

1, 1 ≤ α

and z = exp(−x). Using the CDF technique, find Fz.
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4. The PDF of random variable x is

fx(α) = 1

2
e− 1

2
(α+2)u(α + 2).

Find Fz using the CDF technique when z = |x|.
5. Suppose random variable x has the PDF

fx(α) =
{

2α, 0 < α < 1

0, otherwise.

Random variable z is defined by

z =

⎧⎪⎨⎪⎩
−1, x ≤ −1

x, −1 < x < 1

1, x ≥ 1.

Using the CDF method, determine Fz.

6. Random variable x represents the input to a half-wave rectifier and z represents the

output, so that z = u(x). Given that x is uniformly distributed between −2 and 2, find:

(a) E(z) using fx , (b) Fz using the CDF method, (c) fz, (d) E(z) using fz (compare

with the answer to part a).

7. Random variable x represents the input to a full-wave rectifier and z represents the

output, so that z = |x|. Given that x is uniformly distributed between −2 and 2, find:

(a) E(z) using fx , (b) Fz using the CDF method, (c) fz, (d) E(z) using fz (compare

with the answer to part a).

8. Random variable x has the PDF fx(α) = e−αu(α). Find Fz for z = x2 using the CDF

method.

9. Given

fx(α) = a

1 + α2

and

z =

⎧⎪⎨⎪⎩
−1, x < −1

x, −1 ≤ x ≤ 2

2, x > 2.

Determine: (a) a , (b) Fz.
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10. Random variables x and z are the input and output of a quantizer. The relationship

between them is defined by:

z =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, x < 0.5

1, 0.5 ≤ x < 1.5

2, 1.5 ≤ x < 2.5

3, 2.5 ≤ x < 3.5

4, x ≥ 3.5.

Given that the input follows a Gaussian distribution with x ∼ G(2.25, 0.49), find fz

using the CDF method.

11. Random variable x has the PDF fx(α) = e−αu(α). With z = 100 − 25x, find: (a) Fz

using the CDF technique, (b) Fz using the PDF technique.

12. Random variable x has the following PDF

fx(α) =
{

4α3, 0 < α < 1

0, otherwise.

Find the PDFs for the following random variables: (a) z = x3, (b) z = (x − 1/2)2, (c)

z = (x − 1/4)2.

13. Random variable x has the CDF

Fx(α) =

⎧⎪⎨⎪⎩
0, α < −1

(α2 + 2α + 1)/9, −1 ≤ α < 2

1, 2 ≤ α

and

z =

⎧⎪⎨⎪⎩
x, x < −0.5

0, −0.5 ≤ x ≤ 0

x, 0 < x.

Determine Fz.

14. Suppose

fx(α) =
{

(1 + α2)/6, −1 < α < 2

0, otherwise.

Let z = 1/x2. Use the CDF technique to determine Fz.
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z g(x )=

x3

1

−1

21−1−2

FIGURE 6.12: Plot for Problem 15.

15. Random variable x has the CDF

Fx(α) =

⎧⎪⎨⎪⎩
0, α < −1

0.25(α + 1), −1 ≤ α < 3

1, 3 ≤ α.

Find the CDF Fz, with RV z = g (x), and g (x) shown in Figure 6.12. Assume that

g (x) is a second degree polynomial for x ≥ 0.

16. The voltage x in Figure 6.13 is a random variable which is uniformly distributed from

−1 to 2. Find the PDF fz. Assume the diode is ideal.

17. The voltage x in Figure 6.14 is a Gaussian random variable with mean ηx = 0 and

standard deviation σx = 3. Find the PDF fz. Assume the diodes are ideal.

18. The voltage x in Figure 6.15 is a Gaussian random variable with mean ηx = 1 and

standard deviation σx = 1. Find the PDF fz. Assume the diode and the operational

amplifier are ideal.

19. Random variable x is Gaussian with mean ηx = 0 and standard deviation σx = 1. With

z = g (x) shown in Figure 6.16, find the PDF fz.

+

z

−

+

x

−

3K Ω

1K Ω

FIGURE 6.13: Circuit for Problem 16.
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+

z

−

+

x

−

R

2 V 3 V

FIGURE 6.14: Circuit for Problem 17.

20. Random variable x has the following PDF

fx(α) =
{

α + 0.5δ(α − 0.5), 0 < α < 1

0, otherwise.

Find Fz if z = x2.

21. Random variable x is uniform in the interval 0 to 12. Random variable z = 4x + 2.

Find fz using the PDF technique.

22. Find fz if z = 1/x2 and x is uniform on −1 to 2.

23. Random variable x has the PDF

fx(α) =
{

2(α + 1)/9, −1 < α < 2

0, otherwise.

Find the PDF of z = 2x2 using the PDF technique.

24. Let z = cos(x). Find fz if:

(a) fx(α) =
{

1/π, |α| < π/2

0, otherwise.

1K Ω

5K Ω

x z

FIGURE 6.15: Circuit for Problem 18.
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−2 −1 1 x

1.4

z g(x )=

2

−0.5

FIGURE 6.16: Transformation for Problem 19.

(b) fx(α) =
{

8α/π2, 0 < α < π/2

0, otherwise.

25. Given that x has the CDF

Fx(α) =

⎧⎪⎨⎪⎩
0, α < 0

α, 0 ≤ α < 1

1, 1 ≤ α.

Find the PDF of z = −2 ln(x) using the PDF technique.

26. Random variable x has the PDF

fx(α) =
{

2α/9, 0 < α < 3

0, otherwise.

Random variable z = (x − 1)2 and event A = {x : x ≥ 1/2}. Find the PDF of random

variable z, given event A.

27. Random variable x is uniform between −1 and 1. Random variable

z =
{

x2, x < 0

x, x ≥ 0.

Using the PDF technique, find fz.

28. A voltage v is a Gaussian random variable with ηv = 0 and σv = 2. Random variable

w = v2/R represents the power dissipated in a resistor of R
 with v volts across the

resistor. Find (a) fw, (b) fw|A if A = {v ≥ 0}.



P1: IML/FFX P2: IML

MOBK042-06 MOBK042-Enderle.cls October 30, 2006 19:53

TRANSFORMATIONS OF RANDOM VARIABLES 81

29. Random variable x has an exponential distribution with mean one. If z = e−x , use

the PDF technique to determine: (a) fz|A(γ |A) if A = {x : x > 2}, (b) fz|B(γ |B) if

B = {z : z < 1/2}.
30. Find fz if z = 1/x and

fx(α) = 1

π (α2 + 1)
.

31. Given that random variable x has the PDF

fx(α) =

⎧⎪⎨⎪⎩
α, 0 < α < 1

2 − α, 1 < α < 2

0, otherwise.

Using the PDF technique, find the PDF of z = x2.

32. Suppose

fx(α) =
{

2α, 0 < α < 1

0, otherwise,

and z = 8x3. Determine fz using the PDF technique.

33. Given

fx(α) =

⎧⎪⎨⎪⎩
9α2, 0 < α < 0.5

3(1 − α2), 0.5 < α < 1

0, otherwise,

and z = −2 ln(x). Determine: (a) fz, (b) Fz, (c) E(z), (d) E(z2).

34. Using the PDF technique, find fz if z = |x| and x is a standard Gaussian random

variable.

35. Suppose RV x has PDF fx(α) = 0.5α(u(α) − u(α − 2)). Find a transformation g such

that z = g (x) has PDF

fz(γ ) = c γ 2(u(γ ) − u(γ − 1)).

36. Let

fx(α) =
{

0.75(1 − α2), −1 < α < 1

0, otherwise,

and z = x2. Determine fz using the PDF technique.
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37. Find fz if z = sin(x) and

fx(α) =
{

1/(2π ), 0 ≤ α < 2π

0, otherwise.

38. Random variable x has the PDF

fx(α) =

⎧⎪⎨⎪⎩
0.5, −1 < α < 0

0.5 − 0.25α, 0 < α < 2

0, otherwise.

(a) Find the transformation z = g (x) so that

fz(γ ) =

⎧⎪⎨⎪⎩
1 − 0.25γ, 0 < γ < 1

0.5 − 0.25γ, 1 < γ < 2

0, otherwise.

(b) Determine fz if z = (2x + 2)u(x).

39. Let random variable x have the PDF

fx(α) =
{

1/12, −2 < α < 1

1/4, 1 < α < 2;

in addition, P (x = −2) = P (x = 2) = 0.25. If z = 1/x, find fz.

40. Random variable x has PDF

fx(α) = 1

4
δ(α + 1) + 1

4
δ(α) + (u(α) − u(α − 2)).

Random variable z = g (x), with g shown in Figure 6.17. Find the PDF fz.

41. Random variable x has PDF

fx(α) = α2

3
(u(α + 1) − u(α − 2)).

−1 1 x

2

z = g(x)

2

1

0

FIGURE 6.17: Transformation for Problem 40.
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−1 1

2

z = g(x)

2

1

0 x

FIGURE 6.18: Transformation for Problem 41.

Random variable z = g (x), with g shown in Figure 6.18. Use the PDF technique to

find: (a) fz, (b) fz|A with A = {x > 0}.
42. The PDF for random variable x is fx(α) = e−αu(α). With z = e−x , determine: (a)

fz|A(γ |A) where A = {x : x > 2}, (b) fz|B(γ |B) where B = {z : z < 1/2}.
43. The joint PDF of x and y is

fx,y (α, β) =
{

e−α, 0 < β < α

0, otherwise.

With z = x + y , write an expression(s) for Fz(γ ) (do not solve, just write the integral(s)

necessary to find Fz.

44. If z = x/y , find Fz when x and y have the joint PDF

fx,y (α, β) =
{

0.25α, 0 < β < α < 1

0, otherwise.

45. Resistors R1 and R2 have values r1 and r2 which are independent RVs uniformly

distributed between 1 
 and 2 
. With r denoting the equivalent resistance of a series

connection of R1 and R2, find the PDF fr using convolution.

46. Resistors R1 and R2 have values r1 and r2 which are independent RVs uniformly

distributed between 1 
 and 2 
. With g denoting the equivalent conductance of a

parallel connection of R1 and R2, find the PDF fg using convolution.

47. Suppose the voltage v across a resistor is a random variable with PDF

fv(α) =
{

6α(1 − α), 0 < α < 1

0, otherwise,
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and that resistance r is a random variable with PDF

fr (β) =
{

1/12, 94 < β < 106

0, otherwise.

Moreover, suppose that v and r are independent random variables. Find the PDF for

power, p = v2/r .

48. The joint PDF for random variables x and y is

fx,y (α, β) =
{

α + β, 0 < α < 1, 0 < β < 1

0, otherwise.

Let z = 2x + y and w = x + 2y . Find fz,w.

49. The joint PDF for random variables x and y is

fx,y (α, β) =
{

4αβ, 0 < α < 1, 0 < β < 1

0, otherwise.

Let z = x2 and w = xy . Find: (a) fz,w, (b) fz.

50. The joint PDF for random variables x and y is

fx,y (α, β) =
{

3(α2 + β2), 0 < β < α < 1

0, otherwise.

Find the joint PDF for random variables z = x + y and w = x − y .

51. The joint PDF for random variables x and y is

fx,y (α, β) =
{

0.5βe−α, 0 < α, 0 < β < 2

0, otherwise.

With z = y/x, find fz.

52. The joint PDF for random variables x and y is

fx,y (α, β) =
{

8αβ, 0 < α2 + β2 < 1, 0 < α, 0 < β

0, otherwise.

Let A = {(x, y) : x > y}, z = x and w = x2 + y2. Find: (a) fz,w|A, (b) fz|A.

53. The joint PDF for random variables x and y is

fx,y (α, β) =
{

1/α, 0 < β < α < 1

0, otherwise.

Let z = x/y and w = y . Find fz,w.
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54. The joint PDF for random variables x and y is

fx,y (α, β) =
{

α sin(β), 0 < α < 1, 0 < β < π

0, otherwise.

Let z = x2 and w = cos(y). Find fz,w.

55. The joint PDF for random variables x and y is

fx,y (α, β) =
{

12αβ(1 − α), 0 < α < 1, 0 < β < 1

0, otherwise.

Let z = x2 y . Find fz.

56. The joint PDF for random variables x and y is

fx,y (α, β) =
{

e−α−β, 0 < α, 0 < β

0, otherwise.

Let z = x + y and w = x/(x + y). Find: (a) fz,w, (b) fz.

57. The joint PDF for random variables x and y is

fx,y (α, β) =
{

0.25(α + β), |α| < 1, |β| < 1

0, otherwise.

Let z = xy and w = y/x. Find fz,w using the joint CDF technique.
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A P P E N D I X A

Distribution Tables

TABLE A.1: Bernoulli CDF for n = 5 and n = 10

n = 5

p k +0 +1 +2 +3 +4

0.05 0 0.773781 0.977408 0.998842 0.999970 1.000000

0.1 0 0.590490 0.918540 0.991440 0.999540 0.999990

0.15 0 0.443705 0.835210 0.973388 0.997773 0.999924

0.2 0 0.327680 0.737280 0.942080 0.993280 0.999680

0.25 0 0.237305 0.632813 0.896484 0.984375 0.999023

0.3 0 0.168070 0.528220 0.836920 0.969220 0.997570

0.35 0 0.116029 0.428415 0.764831 0.945978 0.994748

0.4 0 0.077760 0.336960 0.682560 0.912960 0.989760

0.45 0 0.050328 0.256218 0.593127 0.868780 0.981547

0.5 0 0.031250 0.187500 0.500000 0.812500 0.968750

n = 10

p k +0 +1 +2 +3 +4

0.05 0 0.598737 0.913862 0.988496 0.998971 0.999936

5 0.999997 1.000000 1.000000 1.000000 1.000000

0.1 0 0.348678 0.736099 0.929809 0.987205 0.998365

5 0.999853 0.999991 1.000000 1.000000 1.000000

0.15 0 0.196874 0.544300 0.820197 0.950030 0.990126

5 0.998617 0.999865 0.999991 1.000000 1.000000

(Continued )
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TABLE A.1: Bernoulli CDF for n = 5 and n = 10 (Continued)

n = 10

p k +0 +1 +2 +3 +4

0.2 0 0.107374 0.375810 0.677800 0.879126 0.967206

5 0.993631 0.999136 0.999922 0.999996 1.000000

0.25 0 0.056314 0.244025 0.525593 0.775875 0.921873

5 0.980272 0.996494 0.999584 0.999970 0.999999

0.3 0 0.028248 0.149308 0.382783 0.649611 0.849732

5 0.952651 0.989408 0.998410 0.999856 0.999994

0.35 0 0.013463 0.085954 0.261607 0.513827 0.751495

5 0.905066 0.973976 0.995179 0.999460 0.999972

0.4 0 0.006047 0.046357 0.167290 0.382281 0.633103

5 0.833761 0.945238 0.987705 0.998322 0.999895

0.45 0 0.002533 0.023257 0.099560 0.266038 0.504405

5 0.738437 0.898005 0.972608 0.995498 0.999659

0.5 0 0.000977 0.010742 0.054688 0.171875 0.376953

5 0.623047 0.828125 0.945313 0.989258 0.999023

TABLE A.2: Bernoulli CDF for n = 15

n = 15

p k +0 +1 +2 +3 +4

0.05 0 0.463291 0.829047 0.963800 0.994533 0.999385

5 0.999947 0.999996 1.000000 1.000000 1.000000

10 1.000000 1.000000 1.000000 1.000000 1.000000

0.1 0 0.205891 0.549043 0.815939 0.944444 0.987280

5 0.997750 0.999689 0.999966 0.999997 1.000000

10 1.000000 1.000000 1.000000 1.000000 1.000000
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TABLE A.2: Bernoulli CDF for n = 15 (Continued)

n = 15

p k +0 +1 +2 +3 +4

0.15 0 0.087354 0.318586 0.604225 0.822655 0.938295

5 0.983190 0.996394 0.999390 0.999919 0.999992

10 0.999999 1.000000 1.000000 1.000000 1.000000

0.2 0 0.035184 0.167126 0.398023 0.648162 0.835766

5 0.938949 0.981941 0.995760 0.999215 0.999887

10 0.999988 0.999999 1.000000 1.000000 1.000000

0.25 0 0.013363 0.080181 0.236088 0.461287 0.686486

5 0.851632 0.943380 0.982700 0.995807 0.999205

10 0.999885 0.999988 0.999999 1.000000 1.000000

0.3 0 0.004748 0.035268 0.126828 0.296868 0.515491

5 0.721621 0.868857 0.949987 0.984757 0.996347

10 0.999328 0.999908 0.999991 1.000000 1.000000

0.35 0 0.001562 0.014179 0.061734 0.172696 0.351943

5 0.564282 0.754842 0.886769 0.957806 0.987557

10 0.997169 0.999521 0.999943 0.999996 1.000000

0.4 0 0.000470 0.005172 0.027114 0.090502 0.217278

5 0.403216 0.609813 0.786897 0.904953 0.966167

10 0.990652 0.998072 0.999721 0.999975 0.999999

0.45 0 0.000127 0.001692 0.010652 0.042421 0.120399

5 0.260760 0.452160 0.653504 0.818240 0.923071

10 0.974534 0.993673 0.998893 0.999879 0.999994

0.5 0 0.000031 0.000488 0.003693 0.017578 0.059235

5 0.150879 0.303619 0.500000 0.696381 0.849121

10 0.940765 0.982422 0.996307 0.999512 0.999969
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TABLE A.3: Bernoulli CDF for n = 20

n = 20

p k +0 +1 +2 +3 +4

0.05 0 0.358486 0.735840 0.924516 0.984098 0.997426

5 0.999671 0.999966 0.999997 1.000000 1.000000

10 1.000000 1.000000 1.000000 1.000000 1.000000

15 1.000000 1.000000 1.000000 1.000000 1.000000

0.1 0 0.121577 0.391747 0.676927 0.867047 0.956825

5 0.988747 0.997614 0.999584 0.999940 0.999993

10 0.999999 1.000000 1.000000 1.000000 1.000000

15 1.000000 1.000000 1.000000 1.000000 1.000000

0.15 0 0.038760 0.175558 0.404896 0.647725 0.829847

5 0.932692 0.978065 0.994079 0.998671 0.999752

10 0.999961 0.999995 0.999999 1.000000 1.000000

15 1.000000 1.000000 1.000000 1.000000 1.000000

0.2 0 0.011529 0.069175 0.206085 0.411449 0.629648

5 0.804208 0.913307 0.967857 0.990018 0.997405

10 0.999437 0.999898 0.999985 0.999998 1.000000

15 1.000000 1.000000 1.000000 1.000000 1.000000

0.25 0 0.003171 0.024313 0.091260 0.225156 0.414842

5 0.617173 0.785782 0.898188 0.959075 0.986136

10 0.996058 0.999065 0.999816 0.999970 0.999996

15 1.000000 1.000000 1.000000 1.000000 1.000000

0.3 0 0.000798 0.007637 0.035483 0.107087 0.237508

5 0.416371 0.608010 0.772272 0.886669 0.952038

10 0.982855 0.994862 0.998721 0.999739 0.999957

15 0.999994 0.999999 1.000000 1.000000 1.000000

0.35 0 0.000181 0.002133 0.012118 0.044376 0.118197

5 0.245396 0.416625 0.601027 0.762378 0.878219

10 0.946833 0.980421 0.993985 0.998479 0.999689

15 0.999950 0.999994 0.999999 1.000000 1.000000
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TABLE A.3: Bernoulli CDF for n = 20 (Continued)

n = 20

p k +0 +1 +2 +3 +4

0.4 0 0.000037 0.000524 0.003611 0.015961 0.050952

5 0.125599 0.250011 0.415893 0.595599 0.755337

10 0.872479 0.943474 0.978971 0.993534 0.998388

15 0.999683 0.999953 0.999995 1.000000 1.000000

0.45 0 0.000006 0.000111 0.000927 0.004933 0.018863

5 0.055334 0.129934 0.252006 0.414306 0.591361

10 0.750711 0.869235 0.941966 0.978586 0.993566

15 0.998469 0.999723 0.999964 0.999997 1.000000

0.5 0 0.000001 0.000020 0.000201 0.001288 0.005909

5 0.020695 0.057659 0.131588 0.251722 0.411901

10 0.588099 0.748278 0.868412 0.942341 0.979305

15 0.994091 0.998712 0.999799 0.999980 0.999999

TABLE A.4: Poisson CDF for λ = 0.1, 0.2, . . . , 1, 1.5, 2, . . . , 4.5

λ k +0 +1 +2 +3 +4

0.1 0 0.904837 0.995321 0.999845 0.999996 1.000000

0.2 0 0.818731 0.982477 0.998852 0.999943 0.999998

0.3 0 0.740818 0.963064 0.996400 0.999734 0.999984

0.4 0 0.670320 0.938448 0.992074 0.999224 0.999939

0.5 0 0.606531 0.909796 0.985612 0.998248 0.999828

5 0.999986 0.999999 1.000000 1.000000 1.000000

0.6 0 0.548812 0.878099 0.976885 0.996642 0.999605

5 0.999961 0.999997 1.000000 1.000000 1.000000

0.7 0 0.496585 0.844195 0.965858 0.994247 0.999214

5 0.999910 0.999991 0.999999 1.000000 1.000000

(Continued )
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TABLE A.4: Poisson CDF for λ = 0.1, 0.2, . . . , 1, 1.5, 2, . . . , 4.5 (Continued)

λ k +0 +1 +2 +3 +4

0.8 0 0.449329 0.808792 0.952577 0.990920 0.998589

5 0.999816 0.999979 0.999998 1.000000 1.000000

0.9 0 0.406570 0.772482 0.937143 0.986541 0.997656

5 0.999656 0.999957 0.999995 1.000000 1.000000

1 0 0.367879 0.735759 0.919699 0.981012 0.996340

5 0.999406 0.999917 0.999990 0.999999 1.000000

1.5 0 0.223130 0.557825 0.808847 0.934358 0.981424

5 0.995544 0.999074 0.999830 0.999972 0.999996

2 0 0.135335 0.406006 0.676676 0.857123 0.947347

5 0.983436 0.995466 0.998903 0.999763 0.999954

2.5 0 0.082085 0.287297 0.543813 0.757576 0.891178

5 0.957979 0.985813 0.995753 0.998860 0.999723

10 0.999938 0.999987 0.999998 1.000000 1.000000

3 0 0.049787 0.199148 0.423190 0.647232 0.815263

5 0.916082 0.966491 0.988095 0.996197 0.998897

10 0.999708 0.999929 0.999984 0.999997 0.999999

3.5 0 0.030197 0.135888 0.320847 0.536633 0.725445

5 0.857614 0.934712 0.973261 0.990126 0.996685

10 0.998981 0.999711 0.999924 0.999981 0.999996

4 0 0.018316 0.091578 0.238103 0.433470 0.628837

5 0.785130 0.889326 0.948866 0.978637 0.991868

10 0.997160 0.999085 0.999726 0.999924 0.999980

4.5 0 0.011109 0.061099 0.173578 0.342296 0.532104

5 0.702930 0.831051 0.913414 0.959743 0.982907

10 0.993331 0.997596 0.999195 0.999748 0.999926

15 0.999980 0.999995 0.999999 1.000000 1.000000
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TABLE A.5: Poisson CDF for λ = 5, 5.5, . . . , 8.5

λ k +0 +1 +2 +3 +4

5 0 0.006738 0.040428 0.124652 0.265026 0.440493

5 0.615961 0.762183 0.866628 0.931906 0.968172

10 0.986305 0.994547 0.997981 0.999302 0.999774

15 0.999931 0.999980 0.999995 0.999999 1.000000

5.5 0 0.004087 0.026564 0.088376 0.201699 0.357518

5 0.528919 0.686036 0.809485 0.894357 0.946223

10 0.974749 0.989012 0.995549 0.998315 0.999401

15 0.999800 0.999937 0.999981 0.999995 0.999999

6 0 0.002479 0.017351 0.061969 0.151204 0.285057

5 0.445680 0.606303 0.743980 0.847238 0.916076

10 0.957379 0.979908 0.991173 0.996372 0.998600

15 0.999491 0.999825 0.999943 0.999982 0.999995

6.5 0 0.001503 0.011276 0.043036 0.111850 0.223672

5 0.369041 0.526524 0.672758 0.791573 0.877384

10 0.933161 0.966120 0.983973 0.992900 0.997044

15 0.998840 0.999570 0.999849 0.999949 0.999984

7 0 0.000912 0.007295 0.029636 0.081765 0.172992

5 0.300708 0.449711 0.598714 0.729091 0.830496

10 0.901479 0.946650 0.973000 0.987189 0.994283

15 0.997593 0.999042 0.999638 0.999870 0.999956

7.5 0 0.000553 0.004701 0.020257 0.059145 0.132062

5 0.241436 0.378155 0.524639 0.661967 0.776408

10 0.862238 0.920759 0.957334 0.978435 0.989740

15 0.995392 0.998041 0.999210 0.999697 0.999889

20 0.999961 0.999987 0.999996 0.999999 1.000000

(Continued )
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TABLE A.5: Poisson CDF for λ = 5, 5.5, . . . , 8.5 (Continued)

λ k +0 +1 +2 +3 +4

8 0 0.000335 0.003019 0.013754 0.042380 0.099632

5 0.191236 0.313374 0.452961 0.592547 0.716624

10 0.815886 0.888076 0.936203 0.965819 0.982743

15 0.991769 0.996282 0.998406 0.999350 0.999747

20 0.999906 0.999967 0.999989 0.999996 0.999999

8.5 0 0.000203 0.001933 0.009283 0.030109 0.074364

5 0.149597 0.256178 0.385597 0.523105 0.652974

10 0.763362 0.848662 0.909083 0.948589 0.972575

15 0.986167 0.993387 0.996998 0.998703 0.999465

20 0.999789 0.999921 0.999971 0.999990 0.999997

TABLE A.6: Poisson CDF for λ = 9, 9.5, 10, 11, 12, 13

λ k +0 +1 +2 +3 +4

9 0 0.000123 0.001234 0.006232 0.021226 0.054964

5 0.115691 0.206781 0.323897 0.455653 0.587408

10 0.705988 0.803008 0.875773 0.926149 0.958534

15 0.977964 0.988894 0.994680 0.997574 0.998944

20 0.999561 0.999825 0.999933 0.999975 0.999991

9.5 0 0.000075 0.000786 0.004164 0.014860 0.040263

5 0.088528 0.164949 0.268663 0.391824 0.521826

10 0.645328 0.751990 0.836430 0.898136 0.940008

15 0.966527 0.982273 0.991072 0.995716 0.998038

20 0.999141 0.999639 0.999855 0.999944 0.999979

10 0 0.000045 0.000499 0.002769 0.010336 0.029253

5 0.067086 0.130141 0.220221 0.332820 0.457930

10 0.583040 0.696776 0.791556 0.864464 0.916542
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TABLE A.6: Poisson CDF for λ = 9, 9.5, 10, 11, 12, 13 (Continued)

λ k +0 +1 +2 +3 +4

15 0.951260 0.972958 0.985722 0.992813 0.996546

20 0.998412 0.999300 0.999704 0.999880 0.999953

11 0 0.000017 0.000200 0.001211 0.004916 0.015105

5 0.037520 0.078614 0.143192 0.231985 0.340511

10 0.459889 0.579267 0.688697 0.781291 0.854044

15 0.907396 0.944076 0.967809 0.982313 0.990711

20 0.995329 0.997748 0.998958 0.999536 0.999801

25 0.999918 0.999967 0.999987 0.999995 0.999998

12 0 0.000006 0.000080 0.000522 0.002292 0.007600

5 0.020341 0.045822 0.089505 0.155028 0.242392

10 0.347229 0.461597 0.575965 0.681536 0.772025

15 0.844416 0.898709 0.937034 0.962584 0.978720

20 0.988402 0.993935 0.996953 0.998527 0.999314

25 0.999692 0.999867 0.999944 0.999977 0.999991

13 0 0.000002 0.000032 0.000223 0.001050 0.003740

5 0.010734 0.025887 0.054028 0.099758 0.165812

10 0.251682 0.353165 0.463105 0.573045 0.675132

15 0.763607 0.835493 0.890465 0.930167 0.957331

20 0.974988 0.985919 0.992378 0.996028 0.998006

25 0.999034 0.999548 0.999796 0.999911 0.999962

TABLE A.7: Poisson CDF for λ = 14, 15, 16, 17, 18

λ k +0 +1 +2 +3 +4

14 0 0.000001 0.000012 0.000094 0.000474 0.001805

5 0.005532 0.014228 0.031620 0.062055 0.109399

10 0.175681 0.260040 0.358458 0.464448 0.570437

(Continued )
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TABLE A.7: Poisson CDF for λ = 14, 15, 16, 17, 18 (Continued)

λ k +0 +1 +2 +3 +4

15 0.669360 0.755918 0.827201 0.882643 0.923495

20 0.952092 0.971156 0.983288 0.990672 0.994980

25 0.997392 0.998691 0.999365 0.999702 0.999864

30 0.999940 0.999974 0.999989 0.999996 0.999998

15 0 0.000000 0.000005 0.000039 0.000211 0.000857

5 0.002792 0.007632 0.018002 0.037446 0.069854

10 0.118464 0.184752 0.267611 0.363218 0.465654

15 0.568090 0.664123 0.748859 0.819472 0.875219

20 0.917029 0.946894 0.967256 0.980535 0.988835

25 0.993815 0.996688 0.998284 0.999139 0.999582

30 0.999803 0.999910 0.999960 0.999983 0.999993

16 0 0.000000 0.000002 0.000016 0.000093 0.000400

5 0.001384 0.004006 0.010000 0.021987 0.043298

10 0.077396 0.126993 0.193122 0.274511 0.367527

15 0.466745 0.565962 0.659344 0.742349 0.812249

20 0.868168 0.910773 0.941759 0.963314 0.977685

25 0.986881 0.992541 0.995895 0.997811 0.998869

30 0.999433 0.999724 0.999869 0.999940 0.999973

17 0 0.000000 0.000001 0.000007 0.000041 0.000185

5 0.000675 0.002062 0.005433 0.012596 0.026125

10 0.049124 0.084669 0.135024 0.200873 0.280833

15 0.371454 0.467738 0.564023 0.654958 0.736322

20 0.805481 0.861466 0.904728 0.936704 0.959354

25 0.974755 0.984826 0.991166 0.995016 0.997273

30 0.998552 0.999253 0.999626 0.999817 0.999913
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TABLE A.7: Poisson CDF for λ = 14, 15, 16, 17, 18 (Continued)

λ k +0 +1 +2 +3 +4

18 0 0.000000 0.000000 0.000003 0.000018 0.000084

5 0.000324 0.001043 0.002893 0.007056 0.015381

10 0.030366 0.054887 0.091669 0.142598 0.208077

15 0.286653 0.375050 0.468648 0.562245 0.650916

20 0.730720 0.799124 0.855090 0.898890 0.931740

25 0.955392 0.971766 0.982682 0.989700 0.994056

30 0.996669 0.998187 0.999040 0.999506 0.999752

TABLE A.8: Marcum’s Q function for α = 0, 0.01, . . . , 1.99

α +0.00 +0.01 +0.02 +0.03 +0.04

0.00 0.500000 0.496011 0.492022 0.488033 0.484046

0.05 0.480061 0.476078 0.472097 0.468119 0.464144

0.10 0.460172 0.456205 0.452242 0.448283 0.444330

0.15 0.440382 0.436441 0.432505 0.428576 0.424655

0.20 0.420740 0.416834 0.412936 0.409046 0.405165

0.25 0.401294 0.397432 0.393580 0.389739 0.385908

0.30 0.382089 0.378281 0.374484 0.370700 0.366928

0.35 0.363169 0.359424 0.355691 0.351973 0.348268

0.40 0.344578 0.340903 0.337243 0.333598 0.329969

0.45 0.326355 0.322758 0.319178 0.315614 0.312067

0.50 0.308538 0.305026 0.301532 0.298056 0.294598

0.55 0.291160 0.287740 0.284339 0.280957 0.277595

0.60 0.274253 0.270931 0.267629 0.264347 0.261086

0.65 0.257846 0.254627 0.251429 0.248252 0.245097

(Continued )
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TABLE A.8: Marcum’s Q function for α = 0, 0.01, . . . , 1.99 (Continued)

α +0.00 +0.01 +0.02 +0.03 +0.04

0.70 0.241964 0.238852 0.235762 0.232695 0.229650

0.75 0.226627 0.223627 0.220650 0.217695 0.214764

0.80 0.211855 0.208970 0.206108 0.203269 0.200454

0.85 0.197662 0.194894 0.192150 0.189430 0.186733

0.90 0.184060 0.181411 0.178786 0.176186 0.173609

0.95 0.171056 0.168528 0.166023 0.163543 0.161087

1.00 0.158655 0.156248 0.153864 0.151505 0.149170

1.05 0.146859 0.144572 0.142310 0.140071 0.137857

1.10 0.135666 0.133500 0.131357 0.129238 0.127143

1.15 0.125072 0.123024 0.121001 0.119000 0.117023

1.20 0.115070 0.113140 0.111233 0.109349 0.107488

1.25 0.105650 0.103835 0.102042 0.100273 0.098525

1.30 0.096801 0.095098 0.093418 0.091759 0.090123

1.35 0.088508 0.086915 0.085344 0.083793 0.082264

1.40 0.080757 0.079270 0.077804 0.076359 0.074934

1.45 0.073529 0.072145 0.070781 0.069437 0.068112

1.50 0.066807 0.065522 0.064256 0.063008 0.061780

1.55 0.060571 0.059380 0.058208 0.057053 0.055917

1.60 0.054799 0.053699 0.052616 0.051551 0.050503

1.65 0.049471 0.048457 0.047460 0.046479 0.045514

1.70 0.044565 0.043633 0.042716 0.041815 0.040929

1.75 0.040059 0.039204 0.038364 0.037538 0.036727

1.80 0.035930 0.035148 0.034379 0.033625 0.032884

1.85 0.032157 0.031443 0.030742 0.030054 0.029379

1.90 0.028716 0.028067 0.027429 0.026803 0.026190

1.95 0.025588 0.024998 0.024419 0.023852 0.023295
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TABLE A.9: Marcum’s Q function for α = 3, 3.01, . . . , 3.99

α +0.00 +0.01 +0.02 +0.03 +0.04

2.00 0.022750 0.022216 0.021692 0.021178 0.020675

2.05 0.020182 0.019699 0.019226 0.018763 0.018309

2.10 0.017864 0.017429 0.017003 0.016586 0.016177

2.15 0.015778 0.015386 0.015003 0.014629 0.014262

2.20 0.013903 0.013553 0.013209 0.012874 0.012545

2.25 0.012224 0.011911 0.011604 0.011304 0.011011

2.30 0.010724 0.010444 0.010170 0.009903 0.009642

2.35 0.009387 0.009137 0.008894 0.008656 0.008424

2.40 0.008198 0.007976 0.007760 0.007549 0.007344

2.45 0.007143 0.006947 0.006756 0.006569 0.006387

2.50 0.006210 0.006037 0.005868 0.005703 0.005543

2.55 0.005386 0.005234 0.005085 0.004940 0.004799

2.60 0.004661 0.004527 0.004397 0.004269 0.004145

2.65 0.004025 0.003907 0.003793 0.003681 0.003573

2.70 0.003467 0.003364 0.003264 0.003167 0.003072

2.75 0.002980 0.002890 0.002803 0.002718 0.002635

2.80 0.002555 0.002477 0.002401 0.002327 0.002256

2.85 0.002186 0.002118 0.002052 0.001988 0.001926

2.90 0.001866 0.001807 0.001750 0.001695 0.001641

2.95 0.001589 0.001538 0.001489 0.001441 0.001395

3.00 0.001350 0.001306 0.001264 0.001223 0.001183

3.05 0.001144 0.001107 0.001070 0.001035 0.001001

3.10 0.000968 0.000936 0.000904 0.000874 0.000845

3.15 0.000816 0.000789 0.000762 0.000736 0.000711

3.20 0.000687 0.000664 0.000641 0.000619 0.000598

3.25 0.000577 0.000557 0.000538 0.000519 0.000501

3.30 0.000483 0.000467 0.000450 0.000434 0.000419

(Continued )
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TABLE A.9: Marcum’s Q function for α = 3, 3.01, . . . , 3.99 (Continued)

α +0.00 +0.01 +0.02 +0.03 +0.04

3.35 0.000404 0.000390 0.000376 0.000362 0.000350

3.40 0.000337 0.000325 0.000313 0.000302 0.000291

3.45 0.000280 0.000270 0.000260 0.000251 0.000242

3.50 0.000233 0.000224 0.000216 0.000208 0.000200

3.55 0.000193 0.000185 0.000179 0.000172 0.000165

3.60 0.000159 0.000153 0.000147 0.000142 0.000136

3.65 0.000131 0.000126 0.000121 0.000117 0.000112

3.70 0.000108 0.000104 0.000100 0.000096 0.000092

3.75 0.000088 0.000085 0.000082 0.000078 0.000075

3.80 0.000072 0.000070 0.000067 0.000064 0.000062

3.85 0.000059 0.000057 0.000054 0.000052 0.000050

3.90 0.000048 0.000046 0.000044 0.000042 0.000041

3.95 0.000039 0.000037 0.000036 0.000034 0.000033


