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Preface

A thing of beauty is a joy for ever:

Its loveliness increases;

It will never pass into nothingness.

– John Keats (1777–1855)

Two New Bright Stars

Like the well-known Fibonacci and Lucas numbers, Pell and Pell–Lucas numbers are two
spectacularly bright stars on the mathematical firmament. They too continue to amaze the
mathematical community with their splendid beauty, ubiquity, and applicability, providing
delightful opportunities to experiment, explore, conjecture, and problem-solve. Pell and Pell–
Lucas numbers form a unifying thread intertwining analysis, geometry, trigonometry, and
various areas of discrete mathematics, such as number theory, graph theory, linear algebra,
and combinatorics. They belong to an extended Fibonacci family, and are a powerful tool for
extracting numerous interesting properties of a vast array of number sequences. Both families
share numerous fascinating properties.

A First in the Field

Pell and Pell–Lucas numbers and their delightful applications appear widely in the literature, but
unfortunately they are scattered throughout a multitude of periodicals. As a result, they remain
out of reach of many mathematicians and amateurs. This vacuum inspired me to create this
book, the first attempt to collect, organize, and present information about these integer families
in a systematic and enjoyable fashion. It is my hope that this unique undertaking will offer a
thorough introduction to one of the most delightful topics in discrete mathematics.

Audience

The book is intended for undergraduate/graduate students depending on the college or university
and the instructors in those institutions. It will also engage the intellectually curious high
schoolers and teachers at all levels. The exposition proceeds from the basics to more advanced
topics, motivating with examples and exercises in a rigorous, systematic fashion. Like the
Catalan and Fibonacci books, this will be an important resource for seminars, independent study,
and workshops.
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viii Preface

The professional mathematician and computer scientist will certainly profit from the
exposure to a variety of mathematical skills, such as pattern recognition, conjecturing, and
problem-solving techniques.

Through my Fibonacci and Catalan books, I continue to hear from a number of enthusiasts
coming from a wide variety of backgrounds and interests, who express their rewarding experi-
ences with these books. I now encourage all Pell and Pell–Lucas readers to also communicate
with me about their experiences with the Pell family.

Prerequisites

This book requires a strong foundation in precalculus mathematics; users will also need a good
background in matrices, determinants, congruences, combinatorics, and calculus to enjoy most
of the material.

It is my hope that the material included here will challenge both the mathematically
sophisticated and the less advanced. I have included fundamental topics such as the floor and
ceiling functions, summation and product notations, congruences, recursion, pattern recognition,
generating functions, binomial coefficients, Pascal’s triangle, binomial theorem, and Fibonacci
and Lucas numbers. They are briefly summarized in Chapter 1. For an extensive discussion
of these topics, refer to my Elementary Number Theory with Applications and Discrete
Mathematics with Applications.

Historical Background

The personalities and history behind the mathematics make up an important part of this book.
The study of Pell’s equation, continued fractions, and square-triangular numbers lead into the
study of the Pell family in a logical and natural fashion. The book also contains an intriguing
array of applications to combinatorics, graph theory, geometry, and mathematical puzzles.

It is important to note that Pell and Pell–Lucas numbers serve as a bridge linking number
theory, combinatorics, graph theory, geometry, trigonometry, and analysis. These numbers occur,
for example, in the study of lattice walks, and the tilings of linear and circular boards using unit
square tiles and dominoes.

Pascal’s Triangle and the Pell Family

It is well known that Fibonacci and Lucas numbers can be read directly from Pascal’s triangle.
Likewise, we can extract Pell and Pell–Lucas numbers also from Pascal’s triangle, showing the
close relationship between the triangular array and the Pell family.
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A New Hybrid Family

The closely-related Pell and Fibonacci families are employed to construct a new hybrid Pell–
Fibonacci family. That too is presented with historical background.

Opportunities for Exploration

Pell and Pell–Lucas numbers, like their closely related cousins, offer wonderful opportunities for
high-school, undergraduate and graduate students to enjoy the beauty and power of mathematics,
especially number theory. These families can extend a student’s mathematical horizons, and
offer new, intriguing, and challenging problems. To faculty and researchers, they offer the
chance to explore new applications and properties, and to advance the frontiers of mathematical
knowledge.

Most of the chapters end in a carefully prepared set of exercises. They provide opportunities
for establishing number-theoretic properties and enhancement of problem-solving skills. Starred
exercises indicate a certain degree of difficulty. Answers to all exercises can be obtained
electronically from the publisher.

Symbols and Abbreviations

For quick reference, a list of symbols and a glossary of abbreviations is included. The symbols
index lists symbols used, and their meanings. Likewise, the abbreviations list provides a gloss
for the abbreviations used for brevity, and their meanings.

Salient Features

The salient features of the book include extensive and in-depth coverage; user-friendly approach;
informal and non-intimidating style; plethora of interesting applications and properties; his-
torical context, including the name and affiliation of every discoverer, and year of discovery;
harmonious linkage with Pascal’s triangle, Fibonacci and Lucas numbers, Pell’s equation,
continued fractions, square-triangular, pentagonal, and hexagonal numbers; trigonometry and
complex numbers; Chebyshev polynomials and tilings; and the introduction of the brand-new
Pell–Fibonacci hybrid family.

Acknowledgments

In undertaking this extensive project, I have immensely benefited from over 250 sources, a list
of which can be found in the References. Although the information compiled here does not, of
course, exhaust all applications and occurrences of the Pell family, these sources provide, to the
best of my ability, a reasonable sampling of important contributions to the field.
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1

Fundamentals

1.1 Introduction

There is a vast array of integer sequences, many of which display interesting patterns and a
number of fascinating properties. Quite a few of them are within reach of high school students
and certainly number-theoretic enthusiasts. The Fibonacci and Lucas sequences, for example, are
two of the most popular and delightful number sequences. Their beauty and ubiquity continue to
amaze the mathematics community.

Our main focus here is on two such families of sequences: Pell and Pell–Lucas numbers.
Before we turn to them, we will briefly introduce some fundamental concepts, techniques, and
notations.

We begin with the floor and ceiling functions, which appear frequently in discrete mathemat-
ics, and consequently in computer science [127].

1.2 Floor and Ceiling Functions

The floor of a real number x, denoted by bxc, is the greatest integer � x; and the ceiling of x,
denoted by dxe, is the least integer � x. The functions f and g, defined by f .x/ D bxc and
g.x/ D dxe, are the floor and ceiling functions, respectively. They are also called the greatest
integer function and least integer function, respectively.

For example, b�3:45c D �4, b3:45c D 3, d�3:45e D �3, and d3:45e D 4.
The notations bxc and dxe, and the names floor and ceiling were introduced in the early

1960s by the Canadian mathematician Kenneth Eugene Iverson (1920–2004). Both notations
are slight variations of the original greatest integer notation Œx�.

Both functions satisfy a number of properties. A few of them are listed in the following
theorem. Their proofs are basic, so we omit them in the interest of brevity.

T. Koshy, Pell and Pell–Lucas Numbers with Applications, DOI 10.1007/978-1-4614-8489-9__1,
© Springer Science+Business Media New York 2014

1
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Theorem 1.1 Let x be any real number and n any integer. Then

(1) bnc D n D dne (2) dxe D bxc C 1, where x is not an integer.

(3) bx C nc D bxc C n (4) dx C ne D dxe C n

(5)
jn

2

k
C
ln

2

m
D n (6) dxe D �b�xc.

Next we turn to the popular summation and product notations used throughout this book.

1.3 Summation Notation

Sums, such as ak C akC1C � � � C am, occur very often in mathematics. They can be rewritten in
a concise form using the summation symbol † (uppercase Greek letter sigma):

iDmX

iDk

ai D ak C akC1 C � � � C am:

The summation notation was introduced in 1772 by the French mathematician Joseph Louis
Lagrange (1736–1813).

The variable i is the summation index; and the values k and m are the lower and upper limits,

respectively, of the index i . The 00i D00 above the
P

is often omitted. Thus
iDmP

iDk

ai D
mP

iDk

ai .

The index i is a dummy variable; its choice has absolutely no bearing on the sum. For

example,
mP

iDk

ai D
mP

rDk

ar D
mP

sDk

as.

The following theorem lists some results useful in evaluating finite sums. They can be
established using the principle of mathematical induction (PMI).

Theorem 1.2 Let n be any positive integer, c any real number; and a1; a2; : : : ; an and
b1; b2; : : : ; bn any two number sequences. Then

(1)
nP

iD1

c D nc (2)
nP

iD1

.cai / D c

�
nP

iD1

ai

�

(3)
nP

iD1

.ai C bi / D
nP

iD1

ai C
nP

iD1

bi (4)
nP

iD1

ai D
kP

iD1

ai C
nP

iDkC1

ai

(5)
nP

iD1

aiD
nCk�1P

j Dk

aj �kC1 (6)
nP

iD1

 
iP

j D1

aij

!

D
nP

j D1

 
nP

iDj

aij

!

D P

1�j �i�n

aij .

These results remain true for any integral lower limit.
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The following summation formulas will come in handy in our later discussions. They too
can be confirmed using PMI.

(1)
nX

iD1

i D n.nC 1/

2
(2)

nX

iD1

i2 D n.nC 1/.2nC 1/

6

(3)
nX

iD1

i3 D
�

n.nC 1/

2

�2

(4)
nP

iD1

ari�1 D a.rn�1/

r�1
; r 6D 1.

Next we turn to product notation.

1.4 Product Notation

Using the product symbol
Q

(uppercase Greek letter pi), the product akakC1 � � � am is written as
iDmQ

iDk

ai . Thus
iDmQ

iDk

ai D akakC1 � � � am. As before, the 00i D00 above the
Q

is often omitted. Thus

iDmQ

iDk

ai D
mQ

iDk

ai . Again, i is a dummy variable.

Next we present one of the most powerful and useful relations in mathematics: the
congruence relation. The theory of congruences [130] was introduced in 1801 by the outstanding
German mathematician Karl Friedrich Gauss (1777–1855), popularly known as the “prince
of mathematics.” It has marvelous applications to discrete mathematics and consequently to
computer science [129].

1.5 Congruences

Let m be an integer � 2. Then an integer a is congruent to an integer b modulo m if m j .a� b/.
Symbolically, we then write a � b (mod m); m is the modulus of the congruence relation. If a

is not congruent to b modulo m, then we write a 6� b (mod m).
For example, 6 j .17 � 5/, so 17 � 5 (mod 6); since 8 j Œ12 � .�4/�, 12 � �4 (mod 8).

Notice that 84 � 0 (mod 12), but 35 6� 5 (mod 12).
We often use the moduli (plural of modulus) 7, 12, and 24 in our daily life. For example, they

count the days of the week, hours on a 12-hour clock, and hours on a 24-hour clock.
The congruence relation satisfies a number of properties. Some of them are quite similar to

those of the equality relation; so the use of the congruence symbol �, introduced by Gauss, is
quite suggestive. Some fundamental properties are summarized in the following theorem. We
omit their proofs in the interest of brevity. But for the sake of clarity, we add:

• If r is the remainder when an integer a is divided by an integer m � 2, then, by the division
algorithm, 0 � r < m.

• .a; b/ denotes the greatest common divisor (gcd) of positive integers a and b.
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Theorem 1.3 Let a; b; c, and d be arbitrary integers, n any positive integer, and m any integer
� 2. Let a mod m denote the remainder when a is divided by m. Then

(1) a � a .mod m/. (Reflexive property)

(2) If a � b (mod m), then b � a (mod m). (Symmetric property)

(3) If a � b (mod m) and b � c (mod m), then a � c (mod m). (Transitive property)

(4) a � b (mod m) if and only if a D b C km for some integer k.

(5) a � b (mod m) if and only if a mod m = b mod m.

(6) If a � r .mod m/ and 0 � r < m, then r D a mod m.

(7) If a � b .mod m/ and c � d .mod m/, then aC c � b C d .mod m/.

(8) If a � b .mod m/ and c � d .mod m/, then ac � bd .mod m/

(9) If aC c � b C c .mod m/, then a � b .mod m/.

(10) If a � b .mod m/, then an � bn .mod m/.

(11) If ac � bc .mod m/ and .c; m/ D 1, then a � b .mod m/.

A few words about some of the properties may be useful. By property (5), if a � b .mod m/

they leave the same remainder when divided by m; its converse is also true. By properties (7)
and (8), two congruences can be added and multiplied, as in the case of equality. By property
(9), the same number can be added to and subtracted from both sides of a congruence. Property
(10) follows from (8) by PMI. Finally, by property (11), if ac � bc .mod m/, we can cancel c

from both sides only if .c; m/ D 1.
Next we present recursion, one of the most elegant problem-solving techniques used in both

discrete mathematics and computer science [127]. It may take a while to get used to recursion
and to think recursively; but once you have mastered the art of thinking and solving problems
recursively, you will appreciate its power and beauty.

1.6 Recursion

Suppose there are n guests at a party, where n � 1. Each person shakes hands with everybody
else exactly once. We would like to define recursively the total number of handshakes h.n/ made
by the guests. (This is the well-known handshake problem.)

To this end, we consider two cases:

Case 1 Suppose n D 1. Then h.1/ D 0.

Case 2 Suppose n � 2; that is, there are at least two guests at the party. Let X be one of them,
so there are n � 1 guests left at the party; see Figure 1.1. By definition, they can make h.n � 1/

handshakes among themselves. Now X can shake hands with each of the n� 1 guests; this way
an additional n � 1 handshakes can be made.

Thus the total number of handshakes made by the n guests equals h.n � 1/C .n � 1/; that
is, h.n/ D h.n � 1/C .n � 1/, where n � 2.
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X

n − 1
guests

Figure 1.1.

This formula enables us to compute h.n/, provided we know the value of h.n � 1/. For
example, suppose h.10/ D 45. Then h.11/ D h.10/C 10 D 45C 10 D 55.

The formula h.n/ D h.n � 1/C .n � 1/ is called a recurrence (or recursive formula). This,
coupled with the initial condition h.1/ D 0, yields a recursive definition of h.n/:

h.1/ D 0  initial condition
h.n/ D h.n � 1/C .n � 1/; n � 2:  recurrence

Let’s now explore the skeleton of the handshake problem. We are given a problem of size n

(n guests at the party). In Case 2, we expressed it in terms of a smaller version (size n � 1) of
itself. So the original problem can be solved if the simpler version can be solved.

Thus h.n/ can be computed if we know its predecessor value h.n � 1/. But h.n � 1/ can
be computed if we know h.n � 2/. Continuing like this, we can compute h.n/ if h.1/ is known.
But we do know the value of h.1/. Thus, by working backwards, we can compute h.n/. Such a
definition is an inductive definition. It consists of three parts:

(1) The basis clause specifies some initial values f .a/; f .aC1/; : : : ; f .aCk�1/. Equations
which define them are initial conditions.

(2) The recursive clause provides a formula for computing f .n/ using the k predecessor values
f .n � 1/; f .n � 2/; : : : ; f .n � k/.

(3) The terminal clause ensures that the only valid values of f are obtained by steps 1 and 2.
(The terminal clause is often omitted, for convenience.)

In general, in a recursive definition, the values used in the recursive clause do not need to be
predecessor values; so a recursive definition does not need to be inductive.

The next three examples illustrate the recursive definition.

Example 1.1 Consider the familiar factorial function f .n/ D nŠ, where f .0/ D 1 and n � 1.
When n � 1, nŠ D n � .n � 1/Š; so f .n/ D n � f .n � 1/. Thus the factorial function f can be
defined recursively as follows:

f .0/ D 1  initial condition
f .n/ D n � f .n � 1/; n � 1:  recurrence
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Example 1.2 ([262]) Let f WW!W such that

f .n/ D
(

n
2

if n is even

f .n�1
2

/ otherwise,

where W denotes the set of of whole numbers 0, 1, 2, 3, : : : : Compute f .23/ and f
�
22n C 1

�
.

Solution.

(1) f .23/ D f .11/ D f .5/ D f .2/ D 1

(2) f
�
22n C 1

� D f
�

22nC1�1
2

	
D f

�
22n�1

� D 22n�2.

Numbers of the form 22n C 1 are Fermat numbers, named after the French mathematician
and lawyer Pierre de Fermat (1601–1665).

Example 1.3 Suppose we would like to compute the gcd .a1; a2; : : : ; an/ of n positive integers
a1; a2; : : : ; an, where n � 3. Since gcd is a binary operator, we need to apply recursion to
compute their gcd: .a1; a2; : : : ; an/ D ..a1; a2; : : : ; an�1/; an/. This can be confirmed using
divisibility properties [130]. Now that we know how to compute the gcd of two positive integers,
we can compute the gcd of n positive integers using recursion.

For example, we have

.36; 60; 78; 165/ D ..36; 60; 78/; 165/

D ...36; 60/; 78/; 165/

D ..12; 78/; 165/

D .6; 165/ D 3:

The next three examples illustrate how recursion is useful in the study of number patterns.
To define a number sequence fang recursively, you must be good at discovering patterns. This
may require a lot of patience, perseverance, and practice, depending on the complexity of the
pattern.

Example 1.4 Define recursively the number sequence 1; 3; 7; 15; 31; 63; : : : .

Solution. Let Mn denote the nth term of the sequence. Clearly, M1 D 1. So let n � 2. Each
term Mn is one more than twice its predecessor Mn�1; that is, Mn D 2Mn�1 C 1. Thus Mn can
be defined recursively as follows:

M1 D 1

Mn D 2Mn�1 C 1; n � 2:

To explore this example a bit further, we apply iteration to conjecture an explicit formula
for Mn:
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Mn = 2Mn�1 C 1 = 21Mn�1 C 1

= 2.2Mn�2 C 1/C 1 = 22Mn�2 C 2C 1

= 22.2Mn�3 C 1/C 2C 1 = 23Mn�3 C 22 C 2C 1
:::
= 2n�1M1 C 2n�2 C � � � C 2C 1

= 2n�1 C 2n�2 C � � � C 2C 1

= 2n � 1.

We can confirm the formula Mn D 2n � 1 using PMI.

In general, the same number sequence can exhibit more than one recursive pattern. For
example, Mn can also be defined by Mn DMn�1 C 2n�1, where M1 D 1 and n � 2.

Since 2n D 1C 2C 22 C � � � C 2n�1, it follows that the binary expansion of Mn D 2n � 1

consists of n ones: 2n � 1 D
n ones

‚ …„ ƒ
11 � � � 11two. For example, 7 D 111two and 31 D 11111two.

The numbers Mn D 2n � 1 are Mersenne numbers, after the French mathematician and
Franciscan monk Marin Mersenne (1588–1648), who investigated them extensively. The name
“Mersenne numbers”was given to them by W.W. Rouse Ball of Trinity College, Cambridge,
England. They play a pivotal role in cryptography and in the study of even perfect numbers
2p�1Mp D 2p�1.2p � 1/, where p and Mp are primes [130].

The next two examples deal with defining a number sequence recursively. Although not
obvious, both examples are closely related. We will encounter them in Chapters 6 and 7.

Example 1.5 Define recursively the number sequence 1; 6; 35; 204; 1189; : : : .

Solution. This time the pattern is not that obvious. When that is the case, try to rewrite the terms
in such a way that a pattern can be created:

1 D 1

6 D 6

35 D 6 � 6 � 1

204 D 6 � 35 � 6

1189 D 6 � 204 � 35
:::

Clearly, a pattern emerges; so we can now define the nth term bn of the sequence recursively:

b1 D 1; b2 D 6

bn D 6bn�1 � bn�2; n � 3:

(There are two initial conditions here. We will find an explicit formula for bn shortly.)

Example 1.6 Define recursively the number sequence 1; 8; 49; 288; 1681; : : : .



8 1. Fundamentals

Solution. This time, the pattern is a little more complicated, so we follow the technique in the
previous example and rewrite the terms in such a way that a pattern will emerge:

1 D 1

8 D 8

49 D 6 � 8 � 1C 2

288 D 6 � 49 � 8C 2

1681 D 6 � 288 � 49C 2
:::

Using this pattern, we can define the nth term an recursively:

a1 D 1; a2 D 8

an D 6an�1 � an�2 C 2; n � 3:

(We will find an explicit formula for an in Example 1.9.)

The next example is a simple application of recursion. It appeared in the 1990 American
High School Mathematics Examination (AHSME).

Example 1.7 Let Rn D 1
2

.an C bn/, where a D 3C 2
p

2 and b D 3� 2
p

2. Prove that Rn is a
positive integer and the units digit of R12345 is 9.

Proof. Since aC b D 6 and ab D 1, we have

2.aC b/Rn D .aC b/.an C bn/

D .anC1 C bnC1/C ab.an�1 C bn�1/

6Rn D RnC1 CRn�1:

Thus Rn satisfies the recurrence RnC1 D 6Rn � Rn�1, where R0 D 1; R1 D 3, and n � 2.
Since R0 and R1 are positive integers, it follows by PMI that every Rn is a positive integer. (The
sequence fRng is 1; 3; 17; 99; 577; : : : I we will revisit it in detail in Chapter 7.)

The units digits of the sequence fRngn�0 display an interesting pattern: 1; 3; 7; 9; 7; 3
„ ƒ‚ …

;

1; 3; 7; 9; 7; 3
„ ƒ‚ …

; : : : : It again follows by PMI that Rn � RnC6 .mod 10/; so Rn and RnC6 end

in the same digit. Since 12345 D 6 � 2057C 3, it follows that R12345 ends in 9.

Next we pursue briefly the solving of recurrences.

1.7 Solving Recurrences

The recursive definition of a function f does not give an explicit formula for f .n/. Solving a
recurrence for f .n/ means finding such a formula.



1.7 Solving Recurrences 9

In Example 1.4, we employed iteration to predict an explicit formula for Mn. But this
technique has only limited scope. So we will now briefly develop a method ([127] for a detailed
discussion) for solving two large and important classes of recurrences.

1.7.1 LHRWCCs

A kth-order linear homogeneous recurrence with constant coefficients (LHRWCCs) is a
recurrence of the form

an D c1an�1 C c2an�2 C � � � C ckan�k; (1.1)

where each ci is a real number and ck 6D 0.
A few words of explanation may be helpful. The term linear means the power of every

predecessor of an on the RHS1 of equation (1.1) is at most one. A recurrence is homogeneous if
every ai has the same exponent. Since an depends on its k immediate predecessors, the order of
the recurrence is k; consequently, we will need k initial conditions to solve the LHRWCCs.

For example, the recurrence Mn D 2Mn�1C1 in Example 1.4 is linear, but not homogeneous.
The one in Example 1.6 is both linear and homogeneous; its order is 2.

In the interest of brevity and convenience, we will confine our discussion to the second-order
LHRWCCs

an D aan�1 C ban�2; (1.2)

where a and b are nonzero real numbers. Suppose this recurrence has a nonzero solution of the
form crn. Then crn D acrn�1 C bcrn�2. Since cr 6D 0, this implies that r must be a solution
of the characteristic equation

x2 � ax � b D 0 (1.3)

of recurrence (1.2). The solutions of this quadratic equation are the characteristic roots of the
recurrence.

The next theorem provides a road map for solving recurrence (1.2). We will omit its proof
for convenience.

Theorem 1.4 Let r and s be the distinct (real or complex) characteristic roots of recurrence
(1.2). Then the general solution of the recurrence is of the form an D Arn C bsn, where A and
B are constants.

The general solution is a linear combination of the basic solutions rn and sn of recurrence
(1.2), which are linearly independent. The constants A and B can be determined using the two
initial conditions.

Theorem 1.4 can be extended in an obvious way to any LHRWCCs with distinct character-
istic roots. It has to be modified if the recurrence has repeated roots [127].

The next example illustrates the various steps involved in the theorem.

1 RHS and LHS are abbreviations of right-hand side and left-hand side, respectively.
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Example 1.8 Solve the recurrence in Example 1.5.

Solution. The recurrence bn D 6bn�1 � bn�2 is a second-order LHRWCCs. Its characteristic
equation x2 � 6x C 1 D 0 has two distinct solutions: r D 3 C 2

p
2 and s D 3 � 2

p
2. By

Theorem 1.4, the general solution of the recurrence is bn D Arn C bsn, where A and B are
constants to be determined.

Using the initial conditions b1 D 1 and b2 D 6, we get the following 2 � 2 linear system:

Ar C Bs D 1

Ar2 C Bs2 D 6:

Solving this, we get A D 1

4
p

2
D �B . Thus the general solution of the recurrence is bn D rn�sn

4
p

2
,

where n � 1. (We will revisit this example in Chapter 6.)

The next example illustrates how to solve a linear nonhomogenous recurrence with constant
coefficients (LNHRWCCs).

Example 1.9 Solve the LNHRWCCs in Example 1.6.

Solution. Solving this LNHRWCCs is slightly more complicated. Fortunately, we did most of
the work in Example 1.8. The general solution of the linear homogeneous part of the recurrence
an D 6an�1 � an�2 is an D Arn C Bsn, where r D 3C 2

p
2, s D 3 � 2

p
2, and A and B are

constants to be determined using the initial conditions.
To solve the nonhomogeneous part, we look for a particular solution of the form an D C ,

where C is a constant. Substituting for an in the recurrence, we get C D 6C � C C 2, so
C D �1

2
.

Combining the general solution of the homogeneous part with this particular solution yields
the general solution of the given recurrence: an D Arn C Bsn � 1

2
.

Now we must determine the unknowns A and B . The initial conditions yield a 2 � 2 linear
system in A and B:

Ar C Bs D 3

2

Ar2 C Bs2 D 17

2
:

Solving this linear system, we get A D 1
4
D B .

Thus the desired solution is an D 1
4
.rn C sn/ � 1

2
D rnCsn�2

4
, where n � 1. (We will revisit

this example also in Chapter 6.)

More generally, we can employ the following strategy to transform a LNHRRWCCs to a
LHRRWCCs. To see this, consider the second-order recurrence xnC1 D axn C bxn�1 C c. We
can rewrite this as follows:

xnC1 D .aC 1/xn C bxn�1 C c � xn

D .aC 1/xn C bxn�1 C c � .axn�1 C bxn�2 C c/
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D .aC 1/xn C .b � a/xn�1 � bxn�2;

which is a LHRRWCCs. Example 1.11 illustrates this technique.

1.8 Generating Functions

Generating functions are a powerful tool for solving recurrences and combinatorial problems.
They were invented by the French mathematician Abraham De Moivre (1667–1754). Generating
functions are basically formal power series that keep track of the various coefficients. In other
words, they are “clotheslines on which we hang up sequences of numbers for display” [259].

More formally, let a0; a1; a2; � � � be any real numbers. Then the function

g.x/ D a0 C a1x C a2x
2 C � � � C anxn C � � � D

1X

nD0

anxn

is called the generating function of the sequence fang1nD0. In the study of generating functions,
we are not interested in the convergence of the series; xn is simply a place-holder for the
coefficient an.

Generating functions f .x/ D
1P

nD0

anxn and g.x/ D
1P

nD0

bnxn can be added, subtracted, and

multiplied, as can be expected:

f .x/˙ g.x/ D
1X

nD0

.an ˙ bn/xn

f .x/ � g.x/ D
1X

nD0

cnxn;

where cn D
nP

iD0

aibn�i . The sequence fcng is the convolution of the sequences fang and fbng; its

generating function is f .x/g.x/.

In particular, let f .x/ D
1P

nD0

xn D 1
1�x
D g.x/; so an D 1 D bn for every n. Then

cn D
nP

iD0

1 � 1 D n C 1; so every positive integer can be generated by the convolution of the

sequence of 1s with itself:

1X

nD0

.nC 1/xn D
 1X

nD0

xn

! 1X

nD0

xn

!

D 1

1 � x
� 1

1 � x
D 1

.1 � x/2
:

Suppose we let an D nC 1 and bn D 1. Then

cn D
nX

iD0

aibn�i D
nX

iD0

.i C 1/
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D .nC 1/.nC 2/

2
:

Thus the numbers2 tnC1 D .nC1/.nC2/

2
can be generated by the functions 1

.1�x/2 D
1P

nD0

.nC 1/xn

and 1
1�x
D

1P
nD0

xn; [130] that is,

1X

nD0

tnC1x
n D 1

.1 � x/2
� 1

1 � x
D 1

.1 � x/3
:

This can also be achieved by differentiating
1P

nD0

.nC 1/xn D 1

.1�x/2 with respect to x.

The next two examples illustrate how a recursive definition of a sequence fang can be used
to develop a generating function of the sequence.

Example 1.10 Find a generating function of the sequence fbng in Example 1.5.

Solution. Let g.x/ be the generating function: g.x/ D xC6x2C35x3C204x4C� � �CbnxnC� � � .
Then

6xg.x/ D 6x2 C 36x3 C 210x4 C � � � C 6bn�1x
n C � � �

x2g.x/ D x3 C 6x4 C � � � C bn�2x
n C � � �

.1 � 6x C x2/g.x/ D x

g.x/ D x

1 � 6x C x2
:

This is the desired generating function:

x

1 � 6x C x2
D 1C 6x C 35x2 C 204x3 C 1189x4 C � � � :

(We will revisit this generating function in Chapter 6.)

Example 1.11 Find a generating function of the sequence fang in Example 1.6.

Solution. We have an D 6an�1 � an�2 C 2, where a1 D 1; a2 D 8, and n � 3. Since the
recurrence is nonhomogeneous, we rewrite it to get a homogeneous one:

an D 6an�1 � an�2 C 2

D .7an�1 � an�1/ � an�2 C 2

2 tn D n.nC1/
2 is the nth triangular number.
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D 7an�1 � .6nn�2 � an�3 C 2/ � an�2 C 2

D 7an�1 � 7an�2 � an�3:

This is a third-order LHRWCCs. Thus fang can be redefined as follows:

a0 D 0; a1 D 1; a2 D 8

an D 7an�1 � 7an�2 � an�3; n � 3:

Let g.x/ D a1x C a2x
2 C a3x

3 C a4x
4 C � � � be the generating function of fang. Then

7xg.x/ D 7a1x
2 C 7a2x

3 C 7a3x
4 C � � �

7x2g.x/ D 7a1x
3 C 7a2x

4 C � � �
x3g.x/ D C a1x

4 C � � �

So

.1 � 7x C 7x2 � x3/g.x/ D a1x C .a2 � 7a1/x
2

D x C x2

g.x/ D x C x2

1 � 7x C 7x2 � x3

D x.1C x/

.1 � x/.1 � 6x C x2/
:

This gives the generating function of the sequence fang:
x.1C x/

.1 � x/.1 � 6x C x2/
D x C 8x2 C 49x3 C 288x4 C � � � :

(We will revisit this generating function also in Chapter 6.)

Next we present an abbreviated introduction to binomial coefficients. These are the coef-
ficients that occur in the binomial expansion of .x C y/n. Their earliest known occurrence is
in a tenth-century commentary by the Indian mathematician Halayudha, on Pingla’s Chandas
Shastra. Bhaskara II (1114–1185?) gives a full discussion of binomial coefficients in his famous
work Leelavati, written in 1150. However, the term “binomial coefficient”was coined by the
German algebraist Michel Stifel (1486–1567).
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1.9 Binomial Coefficients

Let n and r be nonnegative integers. The binomial coefficient3 is defined as

 
n

r

!

D nŠ

rŠ.n � r/Š
D n.n � 1/ � � � .n � r C 1/

rŠ
; (1.4)

where 0 � r � n. When r > n or r < 0,
�

n
r

�
is defined as 0. Read

�
n
r

�
as “n choose r” to be

consistent with the typesetting language Latex.
For example,

�
7
4

� D 35;
�

7
0

� D 1 D �7
7

�
; and

�
7
9

� D 0 D � 7
�3

�
.

Combinatorially,
�

n
r

�
counts the number of r-member subcommittees that can be formed from

an n-member committee. In particular, exactly
�

n
2

�
line segments can be drawn using n points on

a plane such that no three of them are collinear.
Interestingly, this special case with r D 2 is a geometric representation of the handshake

problem we studied earlier. Geometrically, each point represents a guest at the party and each
line segment a handshake. Thus h.n/ D �n

2

� D n.n�1/

2
.

Since an n-member committee has
�

n
r

�
r-member subcommittees, it follows that the

committee has a total of
nP

rD0

�
n
r

�
subcommittees;

nP

rDk

�
n
r

�
of them consist of k or more members.

We will shortly find a formula for the sum
nP

rD0

�
n
r

�
.

It follows from the definition that
�

n
0

� D 1 D �
n
n

�
,
�

n
1

� D 1 D �
n

n�1

�
, and

�
n
r

� D 1 D �
n

n�r

�
.

These can be confirmed both algebraically and combinatorially.

1.9.1 Pascal’s Identity

Binomial coefficients satisfy a multitude of properties. They include an extremely useful
recurrence, called Pascal’s identity after the French mathematician and philosopher Blaise Pascal
(1623–1662):

�
n
r

� D �n�1
r�1

�C �n�1
r

�
. Although this can be verified algebraically, we will now give

a simple combinatorial argument.
Consider an n-member committee S . It has

�
n
r

�
r-member subcommittees. We will now count

these subcommittees in a different way, by partitioning them into two disjoint families. To this
end, suppose Bob is a member of S .

Case 1 Suppose Bob belongs to a subcommittee. The remaining r � 1 members of the
subcommittee must be selected from the remaining n � 1 members of S . This can be done
in
�

n�1
r�1

�
ways; that is, there are

�
n�1
r�1

�
r-member subcommittees that include Bob.

Case 2 Suppose Bob does not belong to any r-member subcommittee. So the r members of the
subcommittee must be selected from the remaining n � 1 members of the committee. Exactly�

n�1
r

�
such subcommittees can be formed.

3 The parenthesized bi-level notation was introduced by the German mathematician and physicist Andreas von Ettinghausen
(1796–1878) in his book Die Combinatorische Analysis, published in 1826. It is also denoted by C .n; r/ and nC r .
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Thus, by Cases 1 and 2, there is a total of
�

n�1
r�1

�C �n�1
r

�
r-member subcommittees. But the

total number of such subcommittees is
�

n
r

�
. Thus

�
n
r

� D �n�1
r�1

�C �n�1
r

�
, as desired.

For example,
�

11
6

�C �11
7

� D 462C 330 D 792 D �12
7

�
.

Next we visit the well-known binomial theorem.

1.9.2 Binomial Theorem

Binomial coefficients play a central role in the development of the binomial expansion of
.x C y/n. Euclid knew the expansion for n D 2, and it appears in his classic work, Elements,
written around 300 B.C. The Indian mathematician and astronomer Aryabhata (ca.476–ca.550)
knew it for n D 2 and n D 3, while Brahmagupta (598?–670?) knew the expansion for
n D 3. The binomial theorem for positive integral exponents was known to the Persian poet
and mathematician Omar Khayyám (1048–1131). But the English mathematician and physicist
Isaac Newton (1642–1727) is credited with the discovery of the theorem in its current form.

We can prove the binomial theorem using Pascal’s identity and PMI. However, we will give
a short and elegant combinatorial proof, employing the fundamental addition and multiplication
principles from combinatorics. To this end, we let jX j denote the number of ways task X can be
done. Then

• If A and B are mutually exclusive events, then task A or B can take place in jAjCjBj different
ways (addition principle).

• Two tasks A and B can occur in that order in jAj�jBj different ways (multiplication principle).

Theorem 1.5 (The Binomial Theorem) Let x and y be any real numbers, and n any nonnega-

tive integer. Then .x C y/n D
nP

rD0

�
n
r

�
xn�ryr .

Proof. Notice that .xCy/n D .x C y/.x C y/ � � � .x C y/
„ ƒ‚ …

n factors

. Every term in the expansion is of the

form Cxn�ryr , where the constant C counts the number of times xn�ryr occurs in the expansion
and 0 � r � n. An x in xn�r can be selected from any of the n � r factors on the RHS, and a y

in yr from any of the remaining r factors. So the n� r x’s can be selected in
�

n
n�r

�
ways and the

r y’s in
�

r
r

�
ways. So, by the multiplication principle, C D �

n
n�r

��
r
r

� D �
n
r

�
. Since this is true for

every r , it follows by the addition principle that .x C y/n D
nP

rD0

�
n
r

�
xn�ryr .

For example, .xCy/4 D
4P

rD0

�
4
r

�
x4�ryr D x4C4x3yC6x2y2C4xy3Cy4 and .x�y/5 D

5P

rD0

�
5
r

�
x5�r .�y/r D x5 � 5x4y C 10x3y2 � 10x2y3 C 5xy4 � y5.

Several interesting results follow from the binomial theorem. To begin with, .1 C x/n D
nP

rD0

�
n
r

�
xr . Letting x D 1, this yields 2n D

nP

rD0

�
n
r

�
; that is, the sum of the binomial coefficients
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�
n
r

�
equals 2n. In other words, an n-member committee has a total of

nP

rD0

�
n
r

� D 2n subcommittees;

they include the null subcommittee. For example,
5P

rD0

�
5
r

� D �5
0

�C�5
1

�C�5
2

�C�5
3

�C�5
4

�C�5
5

� D 25.

Suppose we let x D 1 and y D �1 in the binomial theorem. Then we get
nP

rD0

�
n
r

�
.�1/r D 0;

that is,
P

r even

�
n
r

� D P

r odd

�
n
r

�
. In words, the sum of the binomial coefficients in “even” positions

equals that in “odd” positions.

For example, consider the sum
6P

rD0

�
6
r

�
: Then

X

r even

 
6

r

!

D
 

6

0

!

C
 

6

2

!

C
 

6

4

!

C
 

6

6

!

D 32

D
 

6

1

!

C
 

6

3

!

C
 

6

5

!

D
X

r odd

 
6

r

!

:

The two sums are equal, as expected.

Since
nP

rD0

�
n
r

� D 2n, it follows that
P

r even

�
n
r

�C P

r odd

�
n
r

� D 2n. But we just found that the two

sums are equal; so each sum equals 2n�1. For example,
P

r even

�
7
r

� D P

r odd

�
7
r

� D 64 D 26.

We highlight these properties in the following corollary.

Corollary 1.1 Let x be any real number. Then

.1C x/n D
nX

rD0

 
n

r

!

xn�r

nX

rD0

 
n

r

!

D 2n

X

r even

 
n

r

!

D
X

r odd

 
n

r

!

:

In passing, we note that an abundant number of binomial identities can be developed from
the binomial theorem using algebra and calculus.

We also note that by extending the definition of the binomial coefficient in (1.4) to negative
integers and rational numbers, we can generalize the binomial theorem to include negative and
rational exponents [137], as Newton did.
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1.9.3 Pascal’s Triangle

The binomial coefficients
�

n
r

�
can be arranged as a triangular array, as in Figure 1.2. It is called

Pascal’s triangle after Pascal, who wrote about the array in his Treatise on the Arithmetic
Triangle in 1653, but published posthumously in 1665. However, the array was known earlier in
Germany, Italy, The Netherlands, and England.

1 row 0
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

CBCs
↑

←

Figure 1.2. Pascal’s Triangle

n−1
r−1

n−1
r

n
r

Figure 1.3.

It appeared four centuries earlier in the Chinese mathematician Shi-Kié’s The Precious
Mirror of the Four Elements. According to Shi-Kié, the triangle appeared even earlier, in a 1275
book by Yang Hui Yang. The Chinese and Japanese versions are quite similar. Omar Khayyám
knew of the array around 1100, most probably from Indian sources.

Pascal’s triangle possesses many interesting properties. For instance, each internal entry is
the sum of the entries to its left and right in the previous row. This follows by virtue of Pascal’s
identity; see Figure 1.3.

By Corollary 1.1,
kP

rD0

�
k
r

� D 2k . Consequently, the sum of the numbers in row k equals 2k ,

where the top row is labeled row 0. So the cumulative sum of the numbers in rows 0 through

n � 1 equals
n�1P

kD0

2k D 2n � 1 DMn, the nth Mersenne number.

The binomial coefficients
�

2n
n

�
, which appear in the middle of the triangle, are the central

binomial coefficients (CBCs). They are generated by the function 1p
1�4x

D
1P

nD0

�
2n
n

�
xn. They

pop up in numerous places.
For example, they occur in the study of Catalan numbers [131] Cn D 1

nC1

�
2n
n

�
, which are

generated by the function 1�p
1�4x

2x
D

1P
nD0

Cnxn.

We will encounter Pascal’s triangle several times in the following chapters.
Next we present the celebrated Fibonacci and Lucas sequences [126]. These two bright

shining stars on the mathematical horizon continue to charm professionals and amateurs alike.
They are a delightful playground for exploring, conjecturing, and establishing fascinating
properties, intriguing the mathematical community with their beauty and ubiquity. Like human
twins, they enjoy strikingly similar properties.
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1.10 Fibonacci and Lucas Numbers

Although Fibonacci numbers and their recursive formulation are named after the Italian
mathematician Leonardo of Pisa (ca. 1170–ca.1250), they were known in India several centuries
prior to Fibonacci. They were discovered by Virahanka between 600 and 800 A.D.; by Gopala
before 1135 A.D.; and by Acharya Hemachandra around 1150 A.D. They also appear as a special
case of a formula discovered by Narayana Pandit (1340–1400).

1.10.1 Fibonacci’s Rabbits

There is an interesting puzzle illustrating Fibonacci numbers, which appears as a problem in
Fibonacci’s Liber Abaci, published in 1202. The puzzle runs like this:

Suppose we have a mixed pair (one male and the other female) of newborn rabbits. Each pair takes a month
to become mature. Starting at the beginning of the following month, each adult pair produces a mixed pair
every month. Assuming that the rabbits are immortal, find the number of pairs of rabbits we will have at the
end of the year.

For convenience, assume that the rabbits were born on January 1. They become mature on
February 1, so we still have one pair in February. This pair is two months old on March 1, so it
produces a mixed pair on March 1; thus there are 2 pairs of rabbits in March. On April 1, the
adult-pair produces a new baby pair; the baby pair from March becomes an adult pair; so there
are 3 pairs in April. Continuing like this, there will be 5 pairs in May, 8 pairs in June, 13 pairs in
July, and so on. In December, there will be a total of 144 mixed pairs of rabbits.

1.10.2 Fibonacci Numbers

The numbers 1; 1; 2; 3; 5; 8; : : : are the Fibonacci numbers, so called by the French mathemati-
cian François Edouard Anatole Lucas (pronounced ‘Lucah’) (1842–1891) in the 19th century.
They manifest an intriguing pattern: Every Fibonacci number Fn, except the first two, is the sum
of its two immediate predecessors, Fn�1 and Fn�2. Consequently, Fibonacci numbers can be
defined recursively:

F1 D 1 D F2

Fn D Fn�1 C Fn�2; n � 3:

The first six Fibonacci numbers are 1, 1, 2, 3, 5, and 8.

1.10.3 Lucas Numbers

Closely related to Fibonacci numbers are the Lucas numbers Ln, named after Lucas. They follow
exactly the same pattern, except that L2 D 3. So they have a nearly identical recursive definition:

L1 D 1; L2 D 3

Ln D Ln�1 C Ln�2; n � 3:
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The first six Lucas numbers are 1, 3, 4, 7, 11, and 18. Table T.1 in the Appendix lists the first
100 Fibonacci and Lucas numbers.

Using these recursive definitions, we can extend both sequences to zero and negative
subscripts: F0 D 0; L0 D 2; F�n D .�1/n�1Fn, and L�n D .�1/nLn.

1.10.4 Binet’s Formulas

Although Fibonacci and Lucas numbers are often defined recursively for the sake of simplicity,
they can be defined explicitly as well:

Fn D ˛n � ˇn

˛ � ˇ
and Ln D ˛n C ˇn;

where ˛ D 1Cp
5

2
and ˇ D 1�p

5
2

are the solutions4 of the quadratic equation x2 D x C 1. These
two formulas are called Binet’s formulas, after the French mathematician Jacques Philippe Marie
Binet (1788–1865). Both can be confirmed using PMI.

Binet found the formula for Fn in 1843. However, it was discovered in 1718 by De Moivre,
who employed generating functions to develop it. It was also discovered independently in 1844
by another French mathematician, Gabriel Lamé (1795–1870).

1.10.5 Fibonacci and Lucas Identities

Fibonacci and Lucas numbers satisfy a vast array of identities. Some of them are listed in
Table 1.1.

Table 1.1. Fibonacci and Lucas Identities

(1) FnC1 C Fn�1 D Ln (2) LnC1 C Ln�1 D 5Fn

(3) FnC2 C Fn�2 D 3Fn (4) F2n D FnLn

(5) FnC2 � Fn�2 D Ln (6) LnC2 � Ln�2 D 5Fn

(7) F 2
nC1 C F 2

n D F2nC1 (8) L2
nC1 C L2

n D 5F2nC1

(9) F 2
nC1 � F 2

n D Fn�1FnC2 (10) L2
nC1 � L2

n D Ln�1LnC2

(11) F 2
nC1 � F 2

n�1 D F2n (12) L2
nC1 � L2

n�1 D 5F2n

(13) FnC1Fn�1 � F 2
n D .�1/n (14) LnC1Ln�1 � L2

n D 5.�1/n

(15)
nP

iD1

Fi D FnC2 � 1 (16)
nP

iD1

Li D LnC2 � 3

(17)
nP

iD1

F2i�1 D F2n (18)
nP

iD1

L2i�1 D L2n � 2

(19)
nP

iD1

F2i D F2nC1 � 1 (20)
nP

iD1

L2i D L2nC1 � 1

(21)
nP

iD1

F 2
i D FnFnC1 (22)

nP

iD1

L2
i D LnLnC1 � 2

(23)
nP

iD0

�
n
i

�
FiCj D F2nCj (24)

nP

iD0

�
n
i

�
LiCj D L2nCj

4 The number ˛ is the well-known golden ratio, ˛ C ˇ D 1, and ˛ˇ D �1.
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Identities (7), (11), and (15) were developed by Lucas in 1876. Identity (13), called Cassini’s
formula, was discovered in 1680 by the Italian mathematician, Giovanni Domenico Cassini
(1625–1712).

Next we highlight a few interesting byproducts that follow from some of the identities:

(1) It follows from Cassini’s formula that every two consecutive Fibonacci numbers are
relatively prime; that is, .Fn; Fn�1/ D 1. On the other hand, identity (14) implies
that .Ln; Ln�1/ D 1 or 5. Suppose .Ln; Ln�1/ D 5. Then Ln � Ln�1 � 0

.mod 5/. But this is impossible, since the Lucas numbers modulo 5 form a cyclic pattern:
1 3 4 2„ƒ‚… 1 3 4 2„ƒ‚… 1 3 4 2„ƒ‚… : : :. Thus every two consecutive Lucas numbers are also relatively
prime.

(2) In 1964, J.H.E. Cohn established that F1 D 1 and F12 D 144 are the only two distinct
square Fibonacci numbers. Consequently, by identity (7), no two consecutive Fibonacci
numbers can be the lengths of the legs of a right triangle with integral sides. Likewise, the
same holds for any two consecutive Lucas numbers.

(3) Since F2n D FnLn, it follows that every even-numbered Fibonacci number F2n has a
nontrivial factorization, where n � 3. For example, F18 D 2584 D 34 � 76 D F9L9.

(4) Identity (21) has an interesting geometric interpretation: Every FnC1 � Fn rectangle can
be filled with Fi � Fi squares, where 1 � i � n. For example, the 21 � 13 rectangle in
Figure 1.4 can be filled with one 13 � 13 square, one 8 � 8 square, one 5 � 5 square, one
3 � 3 square, one 2 � 2 square, and two 1 � 1 squares.

On the other hand, suppose we try to cover an LnC1�Ln rectangle with distinct Li �Li

squares, where 1 � i � n. Then, by identity (22), we will have two unit squares uncovered.

For example, consider the 18 � 11 rectangle in Figure 1.5. It can be covered with one
11� 11 square, one 7� 7 square, one 4� 4 square, one 3� 3 square, and one 1� 1 square.
Unfortunately, this leaves a 2 � 1 rectangle uncovered.

13 × 1313

21

8 × 8

5 × 5
3 × 3

2 × 2 1×1

1×1

Figure 1.4.

11 × 1111

18

7 × 7

4 × 4 3 × 3

1×1

Figure 1.5.

(5) Identity (9) implies that if we remove an Fn � Fn square from an FnC1 � FnC1 square, the
remaining area equals Fn�1FnC2; see Figure 1.6. By identity (10), a similar result holds for
an LnC1 � LnC1 square; see Figure 1.7.
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5 × 58

8

5 × 3

8 × 3

Figure 1.6. Shaded areaD 13�3

7 × 7

11

11

7 × 4

11 × 4

Figure 1.7. Shaded areaD 18�4

(6) By Cassini’s formula, we can form an area FnC1Fn�1 by adding a unit area to an Fn � Fn

area if n is even, and by deleting a unit area from it if n is odd; see Figures 1.8 and 1.9. There
is a fascinating paradox based on Cassini’s formula [126]. Identity (14) can be interpreted
in a similar fashion.

8

8

5

13
(a) (b)

Figure 1.8. (a) Add One Unit Area

5

5

3

8
(a) (b)

Figure 1.9. (a) Delete One Unit Area

1.10.6 Lucas’ Formula for Fn

In 1876, Lucas developed an explicit formula for Fn:

Fn D
b.n�1/=2cX

kD0

 
n � k � 1

k

!

: (1.5)
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This can be confirmed using Pascal’s identity and PMI [11] for a combinatorial argument.
The beauty of this formula lies in the fact that Fibonacci numbers can be computed by adding

up the binomial coefficients along the northeast diagonals in Pascal’s triangle. For example,

F6 D
2P

kD0

�
5�k

k

� D �5
0

�C �4
1

�C �3
2

� D 1C 4C 3 D 8 ; see Figure 1.10.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

1
1

2
3

5
8

1 5 10 10 5 1
1 6 15 20 15 6 1

Figure 1.10.

By virtue of identity (1), Lucas numbers also can be computed from Pascal’s triangle: Add
pairs of alternate northeast diagonals; see Figure 1.11.

1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1

11

1 6 15 20 15 6 1

Figure 1.11.

Lucas’ formula, coupled with the fact that Ln D Fn�1 C FnC1, can be used to develop an
explicit formula for Lucas numbers:

Ln D
bn=2cX

kD0

n

n � k

 
n � k

k

!

:

For example, Ln D
2P

kD0

5
5�k

�
5�k

k

� D 1C 5C 5 D 11 D .1C 2/C .1C 4C 3/; see Figure 1.11.
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For the sake of clarity and expediency, we next present a partial preview of Pell and Pell–
Lucas numbers, the central figures in the development of this huge undertaking. This will help
us see a number of their occurrences in different contexts in Chapters 2–6. We will study them
in detail in Chapter 7.

1.11 Pell and Pell–Lucas Numbers: A Preview

Pell numbers are named after the English mathematician John Pell (1611–1685), since they
occur in the study of Pell’s equation x2�dy2 D .�1/n, where d is a positive nonsquare integer.
Unfortunately, this attribution to Pell is an error; see Chapter 2. Pell–Lucas numbers, on the
other hand, are named after him and Lucas, although neither had anything to do with them. Like
Fibonacci and Lucas numbers, Pell and Pell–Lucas numbers are mathematical twins; they too
are ubiquitous and share a number of similar properties. This is perhaps the only justification for
the hyphenated name for the latter family.

Pell numbers Pn and Pell–Lucas numbers Qn are also often defined recursively:

P1 D 1; P2 D 2 Q1 D 1; Q2 D 3

Pn D 2Pn�1 C Pn�2; n � 3; Qn D 2Qn�1 CQn�2; n � 3.

They both satisfy the same Pell recurrence xn D 2xn�1Cxn�2. The only difference between the
two recursive definitions is in the second initial conditions: P2 D 2, whereas Q2 D 3.

The first six Pell numbers are 1, 2, 5, 12, 29, and 70; and the first six Pell–Lucas numbers are
1, 3, 7, 17, 41, and 99. Tables T.2 and T.3 in the Appendix list the first 100 Pell and Pell–Lucas
numbers, respectively.

We will learn in Chapter 2 that the solutions of Pell’s equation x2 � 2y2 D .�1/n are
.Qn; Pn/. For example, 412 � 2 � 292 D �1 and 992 � 2 � 702 D 1.

Recall that Fibonacci and Lucas numbers can be defined by Binet’s formulas. Likewise, Pell
and Pell–Lucas numbers can be defined explicitly by similar-looking formulas.

1.11.1 Binet-like Formulas

The characteristic equation of the Pell recurrence is t 2�2t�1 D 0; solving it, we get two distinct
characteristic roots: � D 1Cp2 and ı D 1 �p2. Notice that � C ı D 2; � � ı D 2

p
2, and

�ı D �1; we will be using these facts frequently. By Theorem 1.4, the general solution of the
Pell recurrence is Pn D A�nCBın. The initial conditions P1 D 1 and P2 D 2 yield the equations
A� C Bı D 1 and A�2 C Bı2 D 2. Solving these equations, we get A D �B D 1

2
p

2
D 1

��ı
.

So Pn D �n�ın

��ı
. Similarly, Qn D �nCın

2
. Thus we have the following Binet-like formulas for Pn

and Qn:

Pn D �n � ın

� � ı
and Qn D �n C ın

2
; n � 1:
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For example,

P4 D �4 � ı4

� � ı
D .�2 � ı2/.�2 C ı2/

� � ı

D .� C ı/Œ.� C ı/2 � 2�ı� D 2.22 C 2/ D 12

Q3 D �3 C ı3

2
D .� C ı/.�2 C ı2 � �ı/

2

D .� C ı/2 � 3�ı D 7:

It follows from the Binet-like formulas that Qn C
p

2Pn D �n and Qn �
p

2Pn D ın.
Since Qn �

p
2Pn D ın, jQn �

p
2Pnj D jıjn < 1

2
. So
p

2Pn � 1
2

< Qn <
p

2Pn C 1
2
.

Since Qn is an integer, it follows that Qn D b
p

2Pn C 1
2
c. This gives an explicit formula for Qn

in terms of Pn. Likewise, Pn D 1
2
bp2Qn C 1c.

For example, Q5 D b
p

2P5 C 1
2
c D b29

p
2C 0:5c D b41:512193 � � �c D 41 and P6 D

1
2
b99
p

2C 1c D 1
2
b141:007142 � � �c D 70, as expected.

1.11.2 Example 1.7 Revisited

Recall from Example 1.7 that Rn D 1
2

.an C bn/ is a positive integer and Rn � 1; 3; 7; 9; 7;

or 3 .mod 10/, where a D 3 C 2
p

2 D �2 and b D 3 � 2
p

2 D ı2. Consequently, Rn D
1
2
.�2n C ı2n/ D Q2n.

Notice that the sequence fQn .mod 10/g is periodic with period 12: 1;3;7;7;1;9;9;7;3;3;9;1
„ ƒ‚ …

;

1; 3; 7; 7; : : :
„ ƒ‚ …

: : :. So QmC12k � Qm .mod 10/. Since 24; 690 � 12 � 2057 C 6, it follows that

R12345 � Q6 � 9 .mod 10/, as found earlier. (Notice that fQ2n .mod 10/g is periodic with
period 6: 3; 7; 9; 7; 3; 1

„ ƒ‚ …
; 3; 7; 9; 7; 3; 1
„ ƒ‚ …

: : :.)

You will encounter numerous occurrences of Pell and Pell–Lucas numbers in a variety of
unrelated contexts in Chapter 2–6. Enjoy them, and look for more in the literature.

Matrices and determinants play an important role in the study of the Pell family. We will
take advantage of their considerable power and beauty. First, we briefly introduce these related
mathematical structures. (See [6] for a detailed discussion.)

1.12 Matrices and Determinants

The foundation for the theory of matrices was laid by the English mathematicians Arthur Cayley
(1821–1895) and James Joseph Sylvester (1814–1897). Matrices are a clean, compact way to
store and study groups of data.

For example, suppose you bought 15 coconut donuts, 3 chocolate donuts, and 8 vanilla
donuts from Shop I; and 6 coconut donuts, 12 chocolate donuts, and no vanilla donuts from
Shop II. These data can be arranged in a compact form:



1.12 Matrices and Determinants 25

coconut chocolate vanilla

Shop I
Shop II

"
15 3 8

6 12 0

#

.

Suppose you remember that the first row refers to Shop I, second row to Shop II, first column
to coconut donuts, and so on. Then we can delete the row and column headings. Let M denote
the resulting array:

M D
"

15 3 8

6 12 0

#

:

Such a rectangular arrangement is a matrix.
More generally, a matrix A is a rectangular array of numbers, called elements. It is often

enclosed by brackets or parentheses to indicate its collective nature. A matrix with m rows and
n columns is an m � n (read m by n) matrix. If m D n, then A is a square matrix of order n. If
m D 1, A is a row vector; and if n D 1, it is a column vector.

For example, M is a 2 � 3 matrix;

"
2 1

1 0

#

is a square matrix of order 2; (1,2,5) is a row

vector; and

"
1

3

#

is a column vector.

Let aij denote the element in row i and column j of an m � n matrix A, where 1 � i � m

and 1 � j � n. For convenience, we then write A D .aij /m�n. If aij D 0 for every i and j , then

A is a zero matrix. For example, (0,0,0) and

"
0

0

#

are zero matrices.

Two matrices .aij /m�n and .bij /r�s are equal if and only if m D r; n D s, and aij D bij

for every i and j . For example, let

"
w 2

5 z

#

D
"

12 x

y 29

#

. Then w D 12; x D 2; y D 5, and

z D 29.
Just as we can add like things in ordinary algebra, we can add two matrices of the same size.

1.12.1 Matrix Addition

Let A D .aij /m�n and .bij /m�n. Then AC B D .aij C bij /m�n; that is, AC B is obtained by
adding the corresponding elements in A and B . For example,

"
3 5

8 13

#

C
"

5 8

13 21

#

D
"

8 13

21 34

#

:
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1.12.2 Scalar Multiplication

Suppose each donut you bought cost 75 cents. Then the costs of each type of donuts at Shops I
and II are given by the matrix

"
75 � 15 75 � 3 75 � 8
75 � 6 75 � 12 75 � 0

#

D
"

1125 225 600

450 900 0

#

:

This matrix is denoted by 75M .
More generally, let k be any scalar (real number) and A D .aij /m�n. Then the product kA

is defined by kA D .kaij /m�n. In particular, �A D .�1/A D .�aij /m�n is the negative of A.
Using the negative of a matrix, we can now define matrix subtraction: A � B D AC .�B/.

Next we turn to matrix multiplication.

1.12.3 Matrix Multiplication

Let A D .aij /m�s and .bij /s�n. Their product AB is the matrix C D .cij /m�n, where cij D
ai1b1j C ai2b2j C � � � C aisbsj . The product AB is defined if and only if the number of columns
of A equals the number of rows of B .

For example,

"
1 2

1 1

#2

D
"

1 2

1 1

#"
1 2

1 1

#

D
"

1 � 1C 2 � 1 1 � 2C 2 � 1
1 � 1C 1 � 1 1 � 2C 1 � 1

#

D
"

3 4

2 3

#

I
"

2 3

1 2

#"
7

4

#

D
"

2 � 7C 3 � 4
1 � 7C 2 � 4

#

D
"

26

15

#

:

A square matrix A D .aij /n�n is the identity matrix of order n if aij D 1 when i D j , and

zero otherwise. It is denoted by In. For example, I2 D
"

1 0

0 1

#

.

1.12.4 Invertible Matrix

A square matrix A of order n is invertible if there is a matrix B (of the same size) such that
AB D In D BA. Then B D A�1, the multiplicative inverse of A.

For example, let A D
"

a b

c d

#

and B D 1
k

"
d �b

�c a

#

, where k D ad � bc 6D 0. Then

AB D I2 D BA, so B D A�1.

Unfortunately, not every square matrix is invertible. For instance,

"
1 0

0 0

#

is not.

Next we turn to determinants, which are closely related to square matrices.
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1.12.5 Determinants

Determinants were first discovered by the Japanese mathematician Seki Kōwa (1642–1708).
However, the German mathematician Baron Gottfried Wilhelm Leibniz (1646–1716) is widely
credited with the discovery, although it came ten years after Kōwa’s. Interestingly, they both
discovered determinants while solving linear systems of equations.

A determinant is a function from the set of square matrices A D .aij /n�n to the set of real
numbers. The determinant of A is denoted by det A or jAj. The latter notation should not be
confused with the absolute value of a real number, since the argument A in jAj is a matrix, not a
number.

The determinant of the 2 � 2 matrix A D
"

a b

c d

#

is defined by

jAj D
ˇ
ˇ
ˇ
ˇ
ˇ

a b

c d

ˇ
ˇ
ˇ
ˇ
ˇ
D ad � bc:

In particular,

ˇ
ˇ
ˇ
ˇ
ˇ

5 12

12 29

ˇ
ˇ
ˇ
ˇ
ˇ
D 5 � 29 � 12 � 12 D 1, and

ˇ
ˇ
ˇ
ˇ
ˇ

2 1

1 0

ˇ
ˇ
ˇ
ˇ
ˇ
D �1.

We can evaluate the determinant of a square matrix using Laplace’s expansion, named after
the French mathematician Pierre-Simon Laplace (1749–1827).

1.12.6 Laplace’s Expansion

Let A D .aij /n�n and Aij denote the submatrix obtained by deleting row i and column j of A.
Then

jAj D
nX

j D1

.�1/iCj aij jAij j

is the Laplace expansion on jAj by row i , where 1 � i � n. (In fact, jAj can be expanded with
respect to any column also.)

For example, let

M D

2

6
4

1 2 5

12 29 70

169 408 985

3

7
5 :

Expanding jM j with respect to row 1, we get

jM j D .�1/1C1

ˇ
ˇ
ˇ
ˇ
ˇ

29 70

408 985

ˇ
ˇ
ˇ
ˇ
ˇ
C .�1/1C2 2

ˇ
ˇ
ˇ
ˇ
ˇ

12 70

169 985

ˇ
ˇ
ˇ
ˇ
ˇ
C .�1/1C3 5

ˇ
ˇ
ˇ
ˇ
ˇ

29 29

169 408

ˇ
ˇ
ˇ
ˇ
ˇ

D 5 � 2.�10/C 5.�5/ D 0:
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The det function satisfies a number of interesting properties, which can cleverly be used to
simplify the task of evaluation.

Finally, we add that a square matrix A is invertible if and only if jAj 6D 0. For example, the

matrix

"
1 2

1 1

#

is invertible, whereas the above matrix M is not.

Exercises 1

Evaluate each, where lg x D log2 x.

1.
nP

kD3

.k � 2/.k � 1/k.

2.
nP

kD1

bk=2c.

3.
nP

kD1

dk=2e.

4.
nP

kD1

lg.1C 1=k/.

5.
2nP

kD1

blg.1C 1=k/c.

6.
2nP

kD1

dlg.1C 1=k/e.

7.
nP

kD1

k � kŠ (M.S. Klamkin, 1963). Hint: k � kŠ D .k C 1/Š � kŠ:

8.
nQ

kD2

�
1 � 2

k3C1

	
(M.S. Klamkin, 1963).

9.
nQ

kD0

�
a2k C 1

	
, where a 6D 1. (C.W. Trigg, 1965).

10.
nQ

rD1

.k C r/ � 0 .mod n/.

11. n5 � n .mod 30/.
Define each sequence fang recursively.

12. 1; 2; 5; 26; 677; 458330; : : : .

13. 2; 12; 70; 408; 2378; : : : .

14. 3; 5; 17; 257; 65537; : : : .

15. 1; 1; 2; 4; 7; 13; : : : .
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16. The 91-function f on W, invented by John McCarthy5 (1927–2011), is defined recursively:

f .n/ D
(

n � 10 if n > 100

f .f .nC 11// if 0 � n � 100:

Compute f .99/ and f .f .99//.

17. Let un be an integer sequence such that u0 D 4 and un D f .un�1/, where f is a function
defined by the following table and n � 1. Compute u99999. (Mathematics Teacher 98
(2004))

x 1 2 3 4 5

f .x/ 4 1 3 5 2

Hint: First show that u4mCr D ur , where 0 � r � 3.

18. Let fang be a sequence defined by an D �an�1 � 2an�2, where a1 D 1 D �a2 and n � 3.
Prove that 2nC1 � 7a2

n�1 is a square. (E. Just, 1972)
Prove each, where ajb means a is a factor of b and n � 1.

19. .nC 1/ j �2n
n

�
.

20.
nP

rD0

�
n
r

�2 D �2n
n

�
. (Lagrange’s identity)

21.
nP

iDk

�
i
k

� D �nC1
kC1

�
.

22. FnC1 C Fn�1 D Ln.

23. LnC1 C Ln�1 D 5Fn.

24. F 2
n C F 2

nC1 D F2nC1.

25. L2
n C L2

nC1 D 5F2nC1.

26. Pn C Pn�1 D Qn.

27. Qn CQnC1 D 2PnC1.

28. PnC1 � Pn D Qn.

29. QnC1 �Qn D 2Pn.

30. PnC1 C Pn�1 D 2Qn.

31. QnC1 CQn�1 D 4Pn.
Solve each recurrence using the corresponding initial conditions, where b is an integer and
n � 3.

32. an D an�1 C an�2I a1 D 1; a2 D b.

33. an D 2an�1 C an�2I a1 D 1; a2 D b.

34. an D an�1 C an�2 � bI a1 D b C 1 D a2. Hint: Let bn D an � b.

5 McCarthy coined the term artificial intelligence while at Dartmouth College, New Hampshire.
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35. an D 2an�1 C an�2 � 2bI a1 D b C 1; a2 D 2b. Hint: Let bn D an � b.
Find a generating function for each sequence fang, which is defined recursively.

36. an D an�1 C nI a0 D 0.

37. an D 6an�1 � an�2I a0 D 0; a1 D 6.

38. an D 6an�2 � an�4I a1 D 1; a2 D 5; a3 D 11; a4 D 31.

39. an D 34an�1 � an�2 C 2I a1 D 1; a2 D 36.

Let Q D
"

1 1

1 0

#

.

40. Prove that Qn D
"

FnC1 Fn

Fn Fn�1

#

, where n � 1.

41. Deduce Cassini’s formula for Fibonacci numbers. Hint: jABj D jAj � jBj, where A and B

are square matrices of the same size.

42. Establish the addition formula FmCn D FmFnC1 C Fm�1Fn.

43. Is Q invertible? If yes, find Q�1.

44. Find .Q � I /�1, if possible.

45. Prove that F1CF2CF3C� � �CFn D FnC2�1. Hint: ICQCQ2C� � �CQn D QnC2�Q.

Let P D
"

2 1

1 0

#

.

46. Prove that P n D
"

PnC1 Pn

Pn Pn�1

#

, where n � 1.

47. Deduce that PnC1Pn�1 � P 2
n D .�1/n.

48. Prove the addition formula PmCn D PmPnC1 C Pm�1Pn.

49. Is P invertible? If yes, find P �1.
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Pell’s Equation

2.1 Introduction

In February, 1657, Fermat challenged the English mathematicians John Wallis (1616–1703) and
Lord William V. Brouncker (1620–1684) to solve the non-linear diophantine equation x2�dy2 D
1, where d is nonsquare and positive. The amateur French mathematician Bernard de Bessey (ca.
1605–1675) solved it for d � 150. This equation is now called Pell’s equation, since the great
Swiss mathematician Leonhard Euler (1707–1783) erroneously attributed Brouncker’s work to
John Pell (1611–1685) of England. In fact, Pell’s contribution to the analysis of the equation
is negligible, since he was “revising someone’s translation [Wallis’] to someone else’s algebra
[10].”

Historically, Indian mathematicians knew how to solve the equation as early as 800 A.D.
Around 650 A.D., Brahmagupta (ca. 598–ca. 670) wrote that “a person who can solve the
equation to x2 � 92y2 D 1 within a year is a mathematician.” Its least positive solution is
x D 1151; y D 120 W 11512 � 92 � 1202 D 1. Acharya Jaydeva (ca. 1000) and Bhaskara II
described a method for solving Pell’s equation.

Unfortunately, the equation has been given multiple names. Some authors called it Pellian
equation, some the Pell equation, and some the Fermat equation. In 1963, Clas-Olaf Selenius
of the University of Uppsala called it the Bhaskara–Pell equation; four years later, the Indian
mathematician C.N. Srinivasa Iyengar called it the Brahmagupta–Bhaskara equation. In 1975,
Salenius changed his mind and wrote that “perhaps the Jayadeva–Bhaskara equation would be
the best.” The Museum of Science in Boston, Massachusetts, calls it the Pell equation in its
display of the contributions of Bhaskara II.

The famous cattle problem [10] by the Greek mathematician Archimedes (287–212 B.C.)
involves solving Pell’s equation x2�4729494y2 D 1. Predictably, its solutions are so enormous,
they are too large for all scientific calculators. In fact, many doubt whether the cattle problem
was indeed proposed by Archimedes; even if he did propose it, he could not possibly have solved
it. In 1768, Lagrange provided a proof of a method for solving Pell’s equation using Euler’s work
on the topic and continued fractions.

T. Koshy, Pell and Pell–Lucas Numbers with Applications, DOI 10.1007/978-1-4614-8489-9__2,
© Springer Science+Business Media New York 2014
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Although studied by mathematicians for over 1300 years, Pell’s equation continues to be an
area of mathematical interest. H.C. Williams of the University of Calgary, Alberta, Canada, said
at the 2000 Millennial Conference on Number Theory, held at the University of Illinois, Urbana,
that over 100 articles had been published on Pell’s equation in the 1990s. As part of algebraic
number theory, Pell’s equation has applications to computer science, factoring of large integers,
and cryptography [153] and [260]. In 2003, E.J. Barbeau of the University of Toronto, Canada,
wrote a book devoted to Pell’s equation [9].

In 1991, James P. Jones of the University of Calgary and Y.V. Matijasevič of the Steklov
Mathematical Institute, Leningrad, Russia (both logic number-theorists), employed Pell’s equa-
tion x2 � dy2 D 1 to establish the recursive unsolvability of the Tenth Problem of the
great German mathematician David Hilbert (1862–1943): Find an algorithm to determine the
solvability of the diophantine polynomial equation P .x1; x2; : : : ; xn/ D 0. Hilbert proposed this
problem in 1900. Although Matijasevič had proved its unsolvability in 1970, the 1991 proof is
much shorter.

It may not seem obvious at first that there is an extremely close relationship between Pell’s
equation x2 � dy2 D 1 and continued fractions. But Chapter 3 will show that there is.

How do we solve Pell’s equation? When d D 0, it has infinitely many solutions: .˙1; y/,
where y is arbitrary. Suppose d � 2. Then x2 � dy2 � 1, except when x D y D 0. So the
only two solutions are .˙1; 0/. If d D �1, then x2 C y2 D 1; it has exactly four solutions:
.˙1; 0/; .0;˙1/. These are trivial solutions.

Suppose d is a square D2. Then Pell’s equation becomes x2 � D2y2 D 1; that is,
.x C Dy/.x � Dy/ D 1. So x C Dy D x � Dy D ˙1. Solving these two linear systems,
we will get a solution in each case.

Thus we know how to solve Pell equation when d � 0 or d is a square. So we turn to the
case when d is nonsquare and positive; we will assume this throughout our discourse. Suppose
.x; y/ is a solution. Then .x;�y/ and .�x;˙y/ are also solutions. Consequently, knowing all
positive solutions will enable us to find all solutions. So we confine our pursuit to positive integral
solutions.

The simplest Pell equation is x2 � 2y2 D 1; that is, 1C 2y2 D x2. By inspection, .˛; ˇ/ D
.3; 2/ is the solution with the least positive value of x: 32 � 2 � 22 D 1; it is the fundamental
solution. The next one is .17; 12/ W 172 � 2 � 122 D 1.

The following theorem shows how we can compute all solutions from the fundamental
solution. We omit its proof [130] for the sake of brevity.

Theorem 2.1 Let .˛; ˇ/ be the fundamental solution of Pell’s equation x2 � dy2 D 1. It has
infinitely many solutions .xn; yn/:

xn D 1

2

h
.˛ C ˇ

p
d/n C .˛ � ˇ

p
d/n

i

yn D 1

2
p

d

h
.˛ C ˇ

p
d/n � .˛ � ˇ

p
d/n

i
;

where .x1; y1/ D .˛; ˇ/ and n � 2.

The next two examples illustrate the theorem.
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Example 2.1 Find six solutions of Pell’s equation x2 � 2y2 D 1.

Solution. Since the fundamental solution is .˛; ˇ/ D .3; 2/, by Theorem 2.1, the general
solution .xn; yn/ is given by

xn D 1

2

h
.3C 2

p
2/n C .3 � 2

p
2/n
i
D �2n C ı2n

2
D Q2n

yn D 1

2
p

2

h
.3C 2

p
2/n � .3 � 2

p
2/n
i
D �2n � ı2n

� � ı
D P2n:

Then .x2; y2/ D .Q4; P4/ D .17; 12/ is a solution. Likewise, (99, 70) is a solution. The first six
solutions are listed in Table 2.1.

Table 2.1.

n xn yn

1 3 2
2 17 12
3 99 70
4 577 408
5 3363 2378
6 19601 13860

The next example presents a geometric application of the square triangular problem, studied
by M.E. Larsen of Denmark in 1987 [149]. We will study it in detail in Chapter 6.

Example 2.2 Identify the triangular arrays that contain a square number of bricks, as in
Figure 2.1.

Figure 2.1.

Solution. Let x denote the number of rows of bricks in the triangular array. The number of
bricks in the array equals tx D x.xC1/

2
. We want tx D y2 for some positive integer y. So x.x C

1/ D 2y2. Letting u D 2x C 1 and v D 2y, this yields Pell’s equation u2 � 2v2 D 1:

u2 � 2v2 D .2x C 1/2 � 2.2y/2

D 4.x2 C x � 2y2/C 1

D 1:
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By Example 2.1, the solutions of this equation are given by .un; vn/ D .Q2n; P2n/, where
.u1; v1/ D .Q2; P2/ D .3; 2/ and n � 1. Correspondingly, xn D un�1

2
and yn D vn

2
.

Table 2.2 shows the first five possible solutions .xn; yn/ of the brick problem.

Table 2.2.

n un vn xn yn

1 3 2 1 1
2 17 12 8 6
3 99 70 49 35
4 577 408 288 204
5 3363 2378 1681 1189

The next example will reappear in Chapter 6.

Example 2.3 Solve Pell’s equation x2 � 8y2 D 1.

Solution. This equation can be rewritten as x2 � 2z2 D 1, where z D 2y is even. By Example
2.1, its general solution is .xn; zn/ D .Q2n; P2n/. Consequently, the general solution of the given
equation is .xn; yn/ D .Q2n; 1

2
P2n/. (This implies that P2n is an even integer; see Chapter 7.)

In particular, .x1; y1/ D .3; 1/ and .x2; y2/ D .17; 6/ are two solutions of the given
equation.

Example 2.4 Find three solutions of Pell’s equation x2 � 7y2 D 1.

Solution. Solving the given equation amounts to solving 1C 7y2 D x2. By trial and error, we
find that .˛; ˇ/ D .8; 3/ is the fundamental solution. The remaining solutions are given by:

xn D 1

2

h
.8C 3

p
7/n C .8 � 3

p
7/n
i

yn D 1

2
p

7

h
.8C 3

p
7/n � .8 � 3

p
7/n
i

; n � 2:

When n D 2:

x2 D 1

2

h
.8C 3

p
7/2 C .8 � 3

p
7/2
i
D 127

y2 D 1

2
p

7

h
.8C 3

p
7/2 � .8 � 3

p
7/2
i
D 48:

So .x2; y2/ D .127; 48/ is a solution. Likewise, .x3; y3/ D .2024; 765/ is also a solution.

As d gets larger, it is not easy for us to find the fundamental solution by inspection. We can
resort to continued fractions, as we will see in Chapter 3.
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The next example, the problem of the square pyramid, is also a geometric application of
Pell’s equation, again studied by Larsen [149]. It was originally studied by Lucas in 1875: “The
number of cannon balls piled in a pyramid on a square base is a perfect square. Show that the
number of balls on a side of the base is 24.” The same problem is discussed by the well-known
English puzzlist Henry E. Dudeney (1857–1930) in his 1917 book, Amusements in Mathematics.
It was also investigated by the English mathematician George N. Watson (1886–1965) in 1919
[254].

Example 2.5 Consider the brick pyramid in Figure 2.2. Identify such pyramids that have the
property that the total number of bricks in each pyramid is a square.

Figure 2.2.

Solution. Let x denote the number of layers of bricks in the pyramid. Since the number of bricks

in each layer is a square, the total number of bricks in the pyramid equals
xP

iD1

i2 D x.xC1/.2xC1/

6
.

We want this to be a square y2:

x.x C 1/.2x C 1/

6
D y2: (2.1)

Clearly, .x; y/ D .1; 1/ is a solution.
The product of two consecutive positive integers is never a square. One way of solving it

is by letting 2x C 1 D u2 and x C 1 D v2. Then the equation becomes x D 6
�

y

uv

�2
; that is,

u2�1
2
D 6t2, where t D y

uv
. So u2 � 3.2t/2 D 1; that is, u2 � 3w2 D 1, where w D 2t D 2y

uv
.

By Theorem 2.1, the solutions of this Pell’s equation are given by

un D 1

2

h
.2Cp3/n C .2 �p3/n

i
(2.2)

wn D 1

2
p

3

h
.2Cp3/n � .2 �p3/n

i
:
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Knowing un, we can compute the corresponding xn from the substitution u2 D 2xC1; so we
will focus on un. Once we know xn, we can return to equation (2.1) to compute the corresponding
yn. Notice that, since u2

n D 2xn C 1, every un is odd.
From equation (2.2), u1 D 1

2
Œ.2Cp3/C .2 � p3/� D 2, which is not odd; so it is not an

acceptable solution of u2 D 2x C 1.
When n D 2, u2 D 1

2
Œ.2Cp3/2 C .2 �p3/2� D 7. This is clearly valid. Correspondingly,

2x C 1 D 49; so x D 24. Then y2 D 24�25�49
6
D 4; 900; so y D 70. Thus (24, 70) is a nontrivial

solution of equation (2.1): 24.24C1/.2�24C1/

6
D 702.

Are there other nontrivial solutions? In 1919, Watson proved that this is the only nontrivial
solution to the problem. We now add that since un is an integer and 0 < 2 �p3 < 1, it follows
that un D d.2C

p
3/n=2e.

The following example is an interesting application to statistics; it shows the occurrence of
Pell’s equation in strange and unrelated places. It was proposed as a problem in the American
Mathematical Monthly in 1989 by Jim Delany of California Polytechnic State University, San
Luis Obispo [60].

Example 2.6 The mean and standard deviation of any seven consecutive positive integers are
both integers. Find integers n.� 2/ that share this property with 7.

Solution. The mean � (Greek letter mu) of n numbers x1; x2; : : : ; xn and their standard deviation

	 (Greek letter sigma) are given by � D 1
n

nP

iD1

xi and 	 D
s

1
n

nP

iD1

.xi � �/2, respectively.

We will investigate the general case by considering the arithmetic sequence a; aCd; : : : ; aC
.n � 1/d , where a is an arbitrary integer and d the common integral difference. Their mean is

given by � D 1
n

h
naC .n�1/n

2
d
i
D aC .n�1/d

2
; and their standard deviation by

n	2 D d 2

n�1X

iD0

.i � t /2

D d 2

n�1X

iD0

.i2 � 2itC t 2/

D d 2 n.n2 � 1/

12

	 D d

2

r
n2 � 1

3
;

after some basic algebra, where t D n�1
2

.
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Case 1 Let n be odd. Then n2 � 1 .mod 8/ and .n�1/d is even; so � is integral. Consequently,

	 is integral if and only if
q

n2�1
3

is a positive even integer u; that is, if and only if .n; u/ is a

solution of Pell’s equation n2 � 3u2 D 1, where u is even.

Case 2 Let n be even. Then � is integral if and only if d is even. So 	 is integral if and only if
n2�1

3
is a square u2; this yields Pell’s equation n2�3u2 D 1, where u is an integer, not necessarily

even.

From the previous example, the solutions .nk; uk/ of Pell’s equation are given by

nk D 1

2

h
.2Cp3/k C .2 �p3/k

i
(2.3)

uk D 1

2
p

3

h
.2Cp3/k � .2 �p3/k

i
:

Since nk is an integer and 0 < 2 �p3 < 1, it follows that nk D d.2C
p

3/k=2e, where k � 1.
It follows from (2.3) by the binomial theorem that

2nk D
kX

iD0

 
k

i

!

2k�i
h
.
p

3/i C .�p3/i
i

nk D
k�1X

iD0

 
k

i

!

2k�i�1
h
.
p

3/i C .�p3/i
i
C 1

2



1C .�1/k

�
3k=2

D
b.k�1/=2cX

iD0

 
k

2i

!

2k�2i3i C 1

2



1C .�1/k

�
3k=2

D AC 1

2



1C .�1/k

�
3k=2; (2.4)

where A is even since k � 2i � 1.
It follows from (2.4) that nk is odd if and only if k is even. When nk is even, k is odd and

d even. Let k D 2j C 1, where j � 0. The smallest five such values of n2j C1 are 2, 26, 362,
5042, and 70226.

Suppose d is odd. (In particular, d can be one, as in the given problem.) Then nk is odd. So
k is even, say k D 2j , where j � 1. Correspondingly, n2j D d.7C 4

p
3/j =2e. The smallest

five values of n2j are 7, 97, 1351, 18817, and 262087.
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2.2 Pell’s Equation x2 � dy2 D .�1/n

Closely related to x2 � dy2 D 1 is Pell’s equation x2 � dy2 D �1. Not every such equation is
solvable. For example, suppose the equation x2 � 3y2 D �1 is solvable. Then x2 � �1 � 2

.mod 3/. But this congruence is not solvable, so Pell’s equation x2 � 3y2 D �1 is not solvable.
But when x2 � dy2 D �1 is solvable, its infinitely many solutions can be generated from its
fundamental solution, as the next theorem shows [130].

Theorem 2.2 Let .˛; ˇ/ be the fundamental solution of Pell’s equation x2 � dy2 D �1. It has
infinitely many solutions .xn; yn/, given by

xn D 1

2

h
.˛ C ˇ

p
d/2n�1 C .˛ � ˇ

p
d/2n�1

i

yn D 1

2
p

d

h
.˛ C ˇ

p
d/2n�1 � .˛ � ˇ

p
d/2n�1

i
;

where .x1; y1/ D .˛; ˇ/ and n � 2.

The formulas for the solution .xn; yn/ in Theorems 2.1 and 2.2, although they look simple
and elegant, are not practical. As n gets larger and larger, expanding .˛˙ˇ

p
d/n gets more and

more complicated, and simplifications become more and more tedious.
We will make this task far less cumbersome by developing a simple recursive formula for

constructing all solutions of the equation x2 � dy2 D .�1/n from its fundamental solution. Its
beauty lies in the fact that we do not have to deal with the binomial theorem or radicals. In
addition, the recursive approach can easily be implemented with a computer. But first some new
vocabulary.

2.3 Norm of a Quadratic Surd

Let x and y be rational numbers. Then the number u D x C y
p

d is a quadratic surd. Its
conjugate u is x � y

p
d . Its norm N .u/ is given by N .u/ D uu D .x C y

p
d/.x � y

p
d/ D

x2 � dy2. Clearly, N .u/ is the LHS of the equation x2 � dy2 D .�1/n.
For example, N .3C 2

p
2/ D 32 � 2 � 22 D 1 and N .17 � 6

p
8/ D 172 � 8 � 62 D 1

The conjugate and norm functions satisfy several interesting properties; some are listed
below, where u and v are quadratic surds:

(1) u D u (2) u˙ v D u˙ v

(3) uv D u v (4)
�

u
v

� D u
v
, where v 6D 0

(5) N .u/ D N .u/ (6) N .u/ D N .u/

(7) N .uv/ D N .u/N .v/ (8) N
�

u
v

� D N .u/

N .v/
, where v 6D 0.

We omit their proofs in the interest of brevity. [It follows from property (5) that N .u/ is a rational
number.]
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2.4 Recursive Solutions

The following theorem gives the desired recursive formula.

Theorem 2.3 Let .xn; yn/ be an arbitrary solution of x2 � dy2 D .�1/n, where x and y are
positive integers. Then

"
xn

yn

#

D
"

˛ dˇ

ˇ ˛

#"
xn�1

yn�1

#

;

where .x1; y1/ D .˛; ˇ/ denotes its fundamental solution and n � 2.

Proof. Assume that .xn�1; yn�1/ is a solution. Then

xn C yn

p
d D .˛xn�1 C ˇdyn�1/C .ˇxn�1 C ˛yn�1/

p
d

D .˛ C ˇ
p

d/.xn�1 C yn�1

p
d/

N .xn C yn

p
d/ D N .˛ C ˇ

p
d/ �N .xn�1 C yn�1

p
d/

x2
n � dy2

n D .˛2 � d 2ˇ2/.x2
n�1 � dy2

n�1/

D .�1/ � .�1/n�1

D .�1/n:

Since .x1; y1/ is a solution, the result follows by PMI.

For example, .˛; ˇ/ D .73; 12/ is the fundamental solution of x2 � 37y2 D 1 W 732 � 37 �
122 D 1. By Theorem 2.3,

"
x2

y2

#

D
"

73 73 � 12

12 73

#"
73

12

#

D
"

10567

1752

#

is also a solution: 105672 � 37 � 17522 D 1.
Theorem 2.3 yields two interesting byproducts:

(1) Since xn D ˛xn�1C dˇyn�1 > 1 � xn�1C d � 0 � yn�1 D xn�1 and yn D ˇxn�1C˛yn�1 >

0 � xn�1 C 1 � yn�1 D yn�1, it follows that xn; yn > 0, and that both fxng and fyng are
increasing sequences. Consequently, when Pell’s equation is solvable, it has infinitely many
solutions.

(2) When n is even, .xn; yn/ is a solution of x2 � dy2 D 1; otherwise, it is a solution of
x2 � dy2 D �1. That is, .x2n; y2n/ is a solution of x2 � dy2 D 1 and .x2n�1; y2n�1/ a
solution of x2 � dy2 D �1.
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2.4.1 A Second-Order Recurrence for .xn; yn/

Theorem 2.3, coupled with recursion and matrices, can be used to develop a second-order
recurrence for the solution .xn; yn/. To this end, first notice that

"
˛ dˇ

ˇ ˛

#2

D
"

˛2 C dˇ2 2d˛ˇ

2˛ˇ ˛2 C dˇ2

#

D
"

2˛2 � .�1/n 2d˛ˇ

2˛ˇ 2˛2 � .�1/n

#

D 2˛

"
˛ dˇ

ˇ ˛

#

� .�1/n

"
1 0

0 1

#

:

Consequently, by Theorem 2.3, we have
"

xn

yn

#

D
"

˛ dˇ

ˇ ˛

#"
xn�1

yn�1

#

D
"

˛ dˇ

ˇ ˛

#2 "
xn�2

yn�2

#

D
 

2˛

"
˛ dˇ

ˇ ˛

#

� .�1/n

"
1 0

0 1

#!"
xn�2

yn�2

#

D 2˛

"
xn�1

yn�1

#

� .�1/n

"
xn�2

yn�2

#

: (2.5)

This is the desired second-order recurrence for .xn; yn/.

2.5 Solutions of x2 � 2y2 D .�1/n

Consider Pell’s equation x2�2y2 D �1. Its fundamental solution is .x1; y1/ D .˛; ˇ/ D .1; 1/.
By Theorem 2.3, its remaining solutions are given by the recurrence

"
xn

yn

#

D
"

1 2

1 1

#"
xn�1

yn�1

#

;

where n is odd. This implies that xn D xn�1 C 2yn�1 and yn D xn�1 C yn�1, where n � 2. It
follows from these two recurrences that both xn and yn satisfy the Pell recurrence; so .xn; yn/ D
.Qn; Pn/, where n is odd.

This follows from the second-order recurrence (2.5) also when n is odd:

"
xn

yn

#

D 2

"
xn�1

yn�1

#

C
"

xn�2

yn�2

#

:
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Clearly, both xn and yn satisfy the Pell recurrence. Since x1 D 1 D Q1; x2 D 7 D Q3; y1 D
1 D P1, and y2 D 5 D P2, it follows that .xn; yn/ D .Qn; Pn/, where n � 1. Thus .x2n; y2n/ D
.Q2n; P2n/ gives solutions of x2 � 2y2 D 1 and .x2n�1; y2n�1/ D .Q2n�1; P2n�1/ solutions of
x2 � 2y2 D �1.

Since .Q2n; P2n/ is a solution of x2 � 2y2 D 1, it follows by Theorem 2.3 that

"
Q2n

P2n

#

D
"

3 4

2 3

#"
Q2n�2

P2n�2

#

:

Thus Q2n D 3Q2n�2 C 4P2n�2 and P2n D 2Q2n�2 C 3P2n�2, where n � 2.

2.5.1 An Interesting Byproduct

Since .Qn; Pn/ is a solution of x2 � 2y2 D .�1/n, it follows that Q2
n � 2P 2

n D .�1/n. (We
will revisit this identity in Chapter 7.) For example, Q2

5 � 2P 2
5 D 412 � 2 � 292 D .�1/5 and

Q2
6 � 2P 2

6 D 992 � 2 � 702 D .�1/6.
To digress a bit, consider the Pell equation x2 � 8y2 D .�1/n
; that is, x2 � 2u2 D .�1/n,

where u D 2y [7]. Every solution of x2 � 8y2 D .�1/n is of the form .xn; yn/ D .Qn; 1
2
Pn/,

where n � 1. Suppose n is even, say, n D 2m. Then .xn; yn/ D .Q2m; 1
2
P2m/ D .Q2m; PmQm/,

since P2m D 2PmQm (see Chapter 7).
On the other hand, let n D 2m C 1. Then .xn; yn/ D .Q2mC1;

1
2
P2mC1/. Since P2mC1 has

odd parity (see Chapter 7), the equation x2 � 8y2 D .�1/n has no integer solutions. The first
three such solutions are .1; 1

2
/; .7; 5

2
/, and .41; 1

29
/.

2.6 Euler and Pell’s Equation x2 � dy2 D .�1/n

Euler found that if .u; v/ is a solution of x2 � dy2 D �1, then .2u2 C 1; 2uv/ is a solution of
x2 � dy2 D 1:

.2u2 C 1/2 � d.2uv/2 D 4u2.u2 C 1/C 1 � 4du2v2

D 4u2.dy2/C 1 � 4du2v2

D 1:

Likewise, if .u; v/ is a solution of x2 � dy2 D 1, then so is .2u2 � 1; 2uv/.
In particular, let d D 2. Since .Q2n�1; P2n�1/ is a solution of x2 � 2y2 D �1, it

follows that .2Q2
2n�1 C 1; 2P2n�1Q2n�1/ is a solution of x2 � 2y2 D 1. So .2Q2

2n�1 C 1/2 �
2.2P2n�1Q2n�1/

2 D 1. On the other hand, .Q2n; P2n/ is a solution of x2 � 2y2 D 1; so is
.2Q2

2n � 1; 2P2nQ2n/. Thus .2Q2
2n � 1/2 � 2.2P2nQ2n/2 D 1.

The next example illustrates the relevance of Pell’s equation in geometry. It is well known
that the Pythagorean triangle with sides 3, 4, and 5 has two interesting properties: The sides are


 This is a special case of the Pell equation x2 � .k2 C 4/y2 D .�1/n.
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consecutive integers and the area is an integer, namely, 6 (a perfect number); see [130] for a
discussion of perfect numbers. A triangle with sides 13, 14, and 15 also has both properties. Are
there other such triangles? We will now show that there is an infinitude of such triangles.

Example 2.7 Prove that there are infinitely many triangles whose sides are consecutive integers,
and whose area is an integer.

Proof. Let a; b, and c denote the lengths of the sides of the triangle, and s its semi-perimeter.
Then, by Heron’s formula, its area A is given by A D ps.s � a/.s � b/.s � c/.

In particular, let a D t � 1; b D t , and c D t C 1, where t � 4. Then

A D
r

3t

2
� t C 2

2
� t

2
� t � 2

2

D t

4

p
3.t2 � 4/:

Since A is an integer, t must be even, say t D 2x. Then A D x
p

3.x2 � 1/. Furthermore,
3.x2 � 1/ must be a square, say, u2. Then 3.x2 � 1/ D u2 implies that 3ju. Letting u D 3y, this
yields Pell’s equation x2 � 3y2 D 1.

Since (2, 1) is its fundamental solution, by Theorem 2.2, this Pell’s equation has infinitely
many solutions, given by xn D 2xn�1 C 3yn�1; yn D xn�1 C 2yn�1, where n � 2.
Consequently, there are infinitely many triangles with sides 2xn � 1; 2xn, and 2xn C 1, and
area A D xn

p
3.x2

n � 1/ D xn

p
3.3y2

n/ D 3xnyn.

The next two triangles with the desired properties have sides 51, 52, and 53; and 193, 194,
and 195. Their areas are 1170 and 16296, respectively.

To pursue this example a bit further, it follows from the recurrences that xn � yn�1 .mod 2/

and yn � xn�1 .mod 2/. So xnC2 � xn .mod 2/ for every n � 1. But x1 is even. Therefore,
x2n�1 is even. Likewise, x2n is odd. Thus xn � n C 1 .mod 2/. Similarly, yn � n .mod 2/.
Consequently, xn and yn have opposite parity. Thus the area of every triangle in this example is
an even integer.

Another application of Theorem 2.3 is the root-mean-square problem, which appeared in the
1986 USA Mathematical Olympiad.

Example 2.8 The root-mean-square (rms) of n positive integers a1; a2; : : : ; an is given by

rms.a1; a2; � � � ; an/ D
s

a2
1 C a2

2 C � � � C a2
n

n
:

Clearly, rms(1) is the integer 1. Find, if possible, an integer n � 2 such that rms.1; 2; : : : ; n/ is
an integer.

Solution. Notice that rms(1, 2)� 1:58, rms(1,2,3)� 2:16, and rms(1,2,3,4)� 2:74; they are not
integers. Clearly, this approach is not practical.



2.6 Euler and Pell’s Equation x2 � dy2 D .�1/n 43

So we will let the power of solving Pell’s equation x2 � dy2 D 1 do the job for us. To this
end, suppose rms.1; 2; : : : ; n/ D m2 for some positive integer m; that is,

12 C 22 C 32 C � � � C n2

n
D m2:

Using summation formula (2), this yields 2n2 C 3n C 1 � 6m2 D 0. Completing the square,
the equation becomes .4n C 3/2 � 48m2 D 1; that is, x2 � 3y2 D 1, where x D 4n C 3 and
y D 4m. Thus we are looking for a solution .x; y/ of Pell’s equation x2 � 3y2 D 1, where
x � �1 .mod 4/; y � 0 .mod 4/; and x � 13.

Since .˛; ˇ/ D .2; 1/ is the fundamental solution of x2 � 3y2 D 1, by Theorem 2.3, the
remaining solutions are given by the recursive formula

"
xn

yn

#

D
"

2 3

1 2

#"
xn�1

yn�1

#

;

where n � 2. We will now use this formula to find a solution .xn; yn/ such that xn � �1

.mod 4/; yn � 0 .mod 4/; and xn � 13.
Using iteration, this matrix formula yields

"
x2

y2

#

D
"

2 3

1 2

#"
2

1

#

D
"

7

4

# "
x3

y3

#

D
"

2 3

1 2

#"
7

4

#

D
"

26

15

#

"
x4

y4

#

D
"

2 3

1 2

#"
26

15

#

D
"

97

56

# "
x5

y5

#

D
"

2 3

1 2

#"
97

56

#

D
"

362

209

#

"
x6

y6

#

D
"

2 3

1 2

#"
362

209

#

D
"

1351

780

#

.

Finally, a solution is at hand: x6 D 1351 � �1 .mod 4/ and y6 D 780 � 0 .mod 4/. Thus
(1351, 780) is a solution of x2 � 3y2 D 1, satisfying the three conditions.

Consequently, 4n C 3 D 1350 and n D 337. (We will revisit this problem in
Example 3.10.)

The following theorem also can be used to solve the equation x2� dy2 D 1. Again, we omit
its proof for the sake of brevity.

Theorem 2.4 Let .˛; ˇ/ be the fundamental solution of Pell’s equation x2 � dy2 D 1. Then all
its solutions .xn; yn/ are given by xn C yn

p
d D .˛ C ˇ

p
d/n, where .x1; y1/ D .˛; ˇ/ and

n � 1.

The next example also employs the equation u2 � 3v2 D 1 from Example 2.6 and invokes
Theorem 2.4. It was proposed as a problem in 1992 by D.M. Bloom of Brooklyn College, New
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York City [21]. Three years later, R. Drnošek, then a student at the Institute of Mathematics,
Physics, and Mechanics, Ljubljana, Slovenia, gave a simple solution to it [77].

Example 2.9 Prove that there are infinitely many positive integers a such that both a C 1 and
3a C 1 are squares. In addition, if fang denotes the increasing sequence of such integers, then
ananC1 C 1 is also a square. See [63] for a related problem.

Proof. Let aC 1 D x2 and 3aC 1 D y2. Then 3x2 � y2 D 2; so x and y have the same parity.
Suppose x D 2a and y D 2b. Then 2.3a2 � b2/ D 1, which is a contradiction. So both x and y

are odd.
The equation 3x2 � y2 D 2 can be rewritten as

6x2 � 2y2 D 4

.3x � y/2 � 3.y � x/2 D 4
�

3x � y

2

�2

� 3
�y � x

2

	2 D 1

u2 � 3v2 D 1;

where u D .3x � y/=2 and v D .y � x/=2. Since we are interested only in positive solutions,
x � y � 3x.

Since (2, 1) is the fundamental solution of Pell’s equation u2 � 3v2 D 1, by Theorem 2.4,
all its solutions .un; vn/ are given by un C vn

p
3 D .2Cp3/n, where n � 1. Let r D 2Cp3

and s D 2 � p3, the solutions of the equation t 2 � 4t C 1 D 0. Since un C vn

p
3 D rn and

un � vn

p
3 D sn, it follows that un D rnCsn

2
and vn D rn�sn

2
p

3
. So un C vn D xn and hence

an D x2
n � 1 D .un C vn/2 � 1 D 1

6

�
r2nC1 C s2nC1 � 4

�
. Since xn is an integer, so is an.

Then

ananC1 C 1 D .x2
n � 1/.x2

nC1 � 1/C 1

D 1

6

�
r2nC1 C s2nC1 � 4

� � 1
6

�
r2nC3 C s2nC3 � 4

�C 1

D 
�
r2nC2 C s2nC2 � 8

�
=6
�2

is also a square integer, as desired.

In particular, a1 C 1 D 32; a2 C 1 D 112; 3a1 C 1 D 3 � 8 C 1 D 52, and a1a2 C 1 D
8 � 120C 1 D 312.

Next we present a geometric application of Pell’s equation x2�2y2 D �1, studied by Larsen
[149].

Example 2.10 Figure 2.3 shows two triangular arrays of bricks. They have the property that the
number of bricks in one array equals twice that in the other. Identify such triangular arrays.
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Figure 2.3.

Solution. Let x denote the number of rows of bricks in one triangular array and y that in the
other array. Then array 1 contains tx D x.xC1/

2
bricks and array 2 contains ty D y.yC1/

2
bricks.

Suppose 2tx D ty . Then 2 � x.xC1/

2
D y.yC1/

2
; that is, 2x.x C 1/ D y.y C 1/. We now make

a convenient substitution: u D 2y C 1 and v D 2x C 1. Then

u2 � 2v2 D .2y C 1/2 � 2.2x C 1/2

D Œ4y.y C 1/� � 2Œ4x.x C 1/C 1�

D �1:

Clearly, its solutions are given by .un; vn/ D .Q2n�1; P2n�1/, where n � 1.
Correspondingly, the given brick problem has infinitely many solutions, given by .xn; yn/ D�

vn�1
2

; un�1
2

�
, where n � 1. Table 2.3 shows five such solutions.

Table 2.3.

n un vn xn yn 2txn D tyn

1 1 1 0 0 0
2 7 5 2 3 6
3 41 29 14 20 210
4 239 169 84 119 7,140
5 1393 985 492 696 242,556

We now stretch this example a bit further. The sequences fung and fvng satisfy the same
recursive pattern, so they can be defined recursively:

u1 D 1; u2 D 7 v1 D 1; v2 D 5

un D 6un�1 � un�2; n � 3; vn D 6vn�1 � vn�2; n � 3.

For example, u4 D 6u3 � u2 D 6 � 41 � 7 D 239 and v4 D 6v3 � v2 D 6 � 29 � 5 D 169; see
Table 2.3.

The next example shows an interesting algebraic identity satisfied by every solution .x; y/

of Pell’s equation x2�2y2 D �1. It was originally proposed as a problem by Lt. Col. Allan J.C.
Cunningham (1842–1928) of the British Army, in the Educational Times in 1900 [56].

Example 2.11 Let .x; y/ be a solution of Pell’s equation x2 � 2y2 D �1. Prove that

13 C 33 C 53 C � � � C .2y � 1/3 D x2y2:
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Proof. Let S D 13 C 33 C 53 C � � � C .2y � 1/3. Then

S D
2y�1X

kD1

k3 � 
23 C 43 C � � � C .2y � 2/3
�

D
2y�1X

kD1

k3 � 8

y�1X

kD1

k3

D
�

.2y � 1/.2y/

2

�2

� 8

�
.y � 1/y

2

�2

D y2.2y � 1/2 � 2y2.y � 1/2

D y2.2y2 � 1/

D x2y2:

The next example, geometric in nature, appeared in the 1985 American Invitational
Mathematics Examinations (AIME). Although it is not directly related to Pell’s equation
x2 � 2y2 D �1, it will lead us to the equation, as we will see shortly.

Example 2.12 A small square is constructed inside a unit square ABCD by dividing each side
into n equal parts and then connecting its vertices to the division points closest to the opposite
vertices; see Figure 2.4. Find the value of n such that the area of the small square (see the shaded
area) is exactly 1

1985
.

A 1
n B

1
n

C
1
nD

1
n

Figure 2.4.

G
H

F

A 1
n

B
1
n

E

C
1
nD

1
n

Figure 2.5.

Solution. Label the points as in Figure 2.5 such that FH is parallel to EB . Clearly,4DCE and
4F GH are similar, so the lengths of their corresponding sides are proportional. Consequently,
F G
FH
D DC

DE
; so F G2 D DC 2

DE2 � FH 2. By the Pythagorean theorem, this implies that
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1

1985
D 12

1C �1 � 1
n

�2 �
1

n2
:

That is, n2 � n � 992 D 0; that is, .n � 32/.nC 31/ D 0. Thus n D �31 or 32. Since n > 0, it
follows that n D 32.

The following example, based on this AIME problem, was proposed as a problem indepen-
dently in 1987 by R.C. Gebhardt of the County College of Norris, Randolph, New Jersey, and
C.H. Singer of Great Neck, New York [92]. The solution given here is based on the one by W.H.
Pierce of Stonington, Connecticut, and is a fine application of Pell’s equation x2 � 2y2 D �1

[174].

Example 2.13 Let s denote the length of a side of the small square in Figure 2.6. Find all
positive integers n such that s is the reciprocal of an integer.

A 1
n

B
q

1
n

C
1
nD

1
n
E

F
q

G

Figure 2.6.

Solution. Draw F G perpendicular to BE; see Figure 2.6. Let †BF G D � . Then †ABE D � .

Notice that 4BF G and 4ABE are right triangles. From 4BF G, cos � D F G

BF
D s

1=n
D ns

and from 4ABE, cos � D AB

BE
D 1
q

1C �1 � 1
n

�2
D n
p

n2 C .n � 1/2
D np

2n2 � 2nC 1
. So

ns D np
2n2 � 2nC 1

; that is, s D 1p
2n2 � 2nC 1

. So
p

2n2 � 2nC 1 D 1
s
. But we want 1

s
to

be an integer, say, y. Then 2n2� 2nC 1 D y2. Multiplying both sides by 2 and then completing
the square, this yields Pell’s equation x2 � 2y2 D �1, where x D 2n � 1 and y D 1

s
.

The solutions .xk; yk/ of this Pell’s equation are .xk; yk/ D .Q2k�1; P2k�1/, where k � 1.
The corresponding values nk of n and sk of s are given by nk D .xk C 1/=2 D .Q2k�1 C 1/=2

and sk D 1
yk

, respectively, as desired.
Table 2.4 gives the first ten values of xk; yk , and nk .
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Table 2.4.

k 1 2 3 4 5 6 7 8 9 10

xk 1 7 41 239 1393 8119 47321 275807 1607521 9369319
yk 1 5 29 169 985 5741 33461 195025 1136689 6625109
nk 1 4 21 120 697 4060 23661 137904 803761 4684660

Additionally, we note that both xk and yk satisfy the same recurrence: zk D 6zk�1 � zk�2,
where z1 D 1 and

z2 D
(

7 if z2 D x2

5 otherwise;

and k � 3. On the other hand, nk satisfies the recurrence nk D 6nk�1 � nk�2 � 2, where
n1 D 1; n2 D 4 and k � 3. For example, n5 D 6n4 � n3 � 2 D 6 � 120 � 21 � 2 D 697, as
expected. You will see similar recurrences in Chapter 6.

We will encounter the sequences fxkg and fykg a number of times in this chapter and the
chapters that follow.

Next we investigate a close relationship between any two solutions of Pell’s equation.

2.7 A Link Between Any Two Solutions of x2 � dy2 D .�1/n

Suppose .x; y/ and .X; Y / are any two solutions of the equation x2 � dy2 D 1. How are they
related? This problem was studied by R.W.D. Christie in 1907 [44].

To see this relationship, since x2 � dy2 D 1 D X2 � dY 2,
x2 � 1

y2
D d D X2 � 1

Y 2
. So

.x2 � 1/Y 2 D .X2 � 1/y2; that is, .xY /2 C y2 D .Xy/2 C Y 2.
On the other hand, suppose .x; y/ and .X; Y / are any two solutions of x2�dy2 D �1. Then

x2 C 1

y2
D X2 C 1

Y 2
. So .xY /2 � y2 D .Xy/2 � Y 2.

We can combine these two properties into one: .xY /2 C .�1/ny2 D .Xy/2 C .�1/nY 2.
For example, .x; y/ D .17; 12/ and .X; Y / D .99; 70/ are two solutions of the equation

x2 � 2y2 D �1; see Example 2.1. Then .xY /2 C y2 D .17 � 70/2 C 122 D 1; 416; 244 D
.99 � 12/2 C 702 D .Xy/2 C Y 2.

Likewise, .x; y/ D .18; 5/ and .X; Y / D .23382; 6485/ are two solutions of the equation
x2 � 13y2 D �1. Then .xY /2 � y2 D .18 � 6485/2 � 52 D 13; 625; 892; 875 D .23382 � 5/2 �
64852 D .Xy/2 � Y 2.

We now take a different approach to arrive at the sequences fQng and fPng from Pell’s
equation x2 � 2y2 D .�1/n, similar to what Larsen did in 1987 [149]. It yields some interesting
dividends. To this end, first we factor the LHS:

.x C y
p

2/.x � y
p

2/ D .�1/n: (2.6)
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Now raise both sides to the nth power:

.x C y
p

2/n.x � y
p

2/n D .�1/n:

Using the binomial theorem, we can rewrite this as

.xn C yn

p
2/.xn � yn

p
2/ D .�1/n; (2.7)

where

xn D
bn=2cX

rD0

 
n

2r

!

2rxn�2ry2r I

yn D
b.nC1/=2cX

rD0

 
n

2r � 1

!

2r�1xn�2rC1y2r�1I

and n � 1. Since .x1; y1/ D .1; 1/ is the fundamental solution of Pell’s equation x2 � 2y2 D
.�1/n, these give us explicit formulas for Qn and Pn:

Qn D
bn=2cX

rD0

 
n

2r

!

2r (2.8)

Pn D
b.nC1/=2cX

rD0

 
n

2r � 1

!

2r�1: (2.9)

For example, Q3 D
1P

rD0

�
3
2r

�
2r D �

3
0

�
20 C �3

2

�
21 D 7 and P4 D

2P

rD1

�
4

2r�1

�
2r�1 D �

4
1

�
20 C

�
4
3

�
21 D 12. (We will revisit these two formulas in Chapter 9.)
It follows from formulas (2.8) and (2.9) that the values of Qn and Pn can be read from

Pascal’s triangle with proper weights 2k , where k � 0. For Qn, we use alternate entries on row
n beginning at

�
n
0

�
and increasing weights 20; 21; 22; : : : ; and for Pn, we use alternate entries on

row nC 1 beginning at
�

nC1
1

�
and increasing weights 20; 21; 22; : : : .

For example, Q4 D
�

4
0

�
20 C �4

2

�
21 C �4

4

�
22 D 17 (see the circled numbers in Figure 2.7) and

P5 D
�

5
1

�
20 C �5

3

�
21 C �5

5

�
22 D 29 (see the boxed numbers).

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Figure 2.7.
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Next we will show that the above recurrences for xn and yn can be recovered from formulas
(2.6) and (2.7). To see this, notice that

.xn C yn

p
2/.1Cp2/ D .xn C 2yn/C .xn C yn/

p
2:

The RHS of this equation has exactly the same form as xn C yn

p
2; furthermore, we have

.xnC2yn/C.xnCyn/.xnC2yn/
p

2�.xnCyn/
p

2 D .xn C 2yn/2 � 2.xn C yn/2

D .x2
nC4y2

nC4xnyn/�2.x2
nCy2

nC2xnyn/

D 2y2
n � x2

n

D .�1/nC1; by equation (2.7):

So, if .xn; yn/ is a solution of equation (2.7), then so is .xnC1; ynC1/ D .xn C 2yn; xn C yn/.
Thus xnC1 D xn C 2yn and ynC1 D xn C yn.

For example, .x4; y4/ D .17; 12/ is a solution. Therefore, .x5; y5/ D .17C2 �12; 17C12/ D
.41; 29/ is also a solution.

Notice that

xnC1 D xn C 2yn

D xn C 2.xn�1 C yn�1/

D xn C xn�1 C .xn�1 C 2yn�1/

D xn C xn�1 C xn

D 2xn C xn�1:

Similarly, ynC1 D 2yn C yn�1. Thus, if .xn; yn/ is a solution of x2 � 2y2 D .�1/n, then so is
.xnC1; ynC1/ D .2xn C xn�1; 2yn C yn�1/, where n � 2.

On the other hand, we can show that solutions obtained recursively this way exhaust all
solutions of the equation x2�2y2 D .�1/n. Consequently, its solutions .xn; yn/ can be computed
recursively:

x1 D 1; x2 D 3 y1 D 1; y2 D 2

xn D 2xn�1 C xn�2; n � 3; yn D 2yn�1 C yn�2; n � 3.

We will revisit these recursive definitions in Chapter 7; they define the central figures in the
development of this book.

We found a bit earlier that xn D xn�1 C 2yn�1 and yn D xn�1 C yn�1, where x1 D 1 D y1

and n � 2. Since

x2
n � 2y2

n D .xn�1 C 2yn�1/
2 � 2.xn�1 C yn�1/

2

D .x2
n�1 C 4xn�1yn�1 C 4y2

n�1/ � 2.x2
n�1 C 2xn�1yn�1 C y2

n�1/

D �.x2
n�1 � 2y2

n�1/;
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and x2
1 � 2y2

1 D �1, it follows by PMI that x2
n � 2y2

n D .�1/n for every n � 1. Thus, if xn; yn

satisfy the above recursive definitions, then .xn; yn/ is a solution of Pell’s equation x2
n � 2y2

n D
.�1/n.

These two sequences fxng and fyng provide a multitude of opportunities for exploration and
fun, as you will see in Chapters 7–13.

Since every solution of x2 � 2y2 D .�1/n is .Qn; Pn/ and (1, 1) is its fundamental solution,
it follows by Theorem 2.3 that

"
Qn

Pn

#

D
"

1 2

1 1

#"
xn�1

yn�1

#

:

Then, by iteration, we have,

"
Qn

Pn

#

D
"

1 2

1 1

#2 "
Qn�2

Pn�2

#

D
"

1 2

1 1

#3 "
Qn�3

Pn�3

#

:::

D
"

1 2

1 1

#n�1 "
Q1

P1

#

D
"

1 2

1 1

#n�1 "
1

1

#

:

This can be confirmed using PMI.
For example,

"
Q4

P4

#

D
"

1 2

1 1

#3 "
1

1

#

D
"

7 10

5 7

#"
1

1

#

D
"

17

12

#

:

It also follows from the above discussion that

"
Qn

Pn

#

D
"

1 2

1 1

#n�k "
Qk

Pk

#

:
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Notice that the matrix M D
"

1 2

1 1

#

is invertible and M �1 D
"
�1 2

1 �1

#

. So

"
Qk

Pk

#

D
"
�1 2

1 �1

#n�k "
Qn

Pn

#

:

This matrix equation can be used to compute any predecessor solution .Qk; Pk/ from the
solution .Qn; Pn/. So the process is completely reversible.

For example, .Q8; P8/ D .577; 408/. Consequently,

"
Q5

P5

#

D
"
�1 2

1 �1

#3 "
577

408

#

D
"
�7 10

5 �7

#"
577

408

#

D
"

41

29

#

:

2.8 A Preview of Chebyshev Polynomials

We can use the second-order recurrence (2.5) to introduce the family of Chebyshev polynomials,
which we will explore in detail in Chapter 19. Let .xn; yn/ be the nth solution of the equation
x2 � dy2 D 1, where n � 0. Clearly, .x0; y0/ D .1; 0/ is a solution and .x1; y1/ D .˛; ˇ/ is its
fundamental solution. It follows from equation (2.5) that

"
xn

yn

#

D 2˛

"
xn�1

yn�1

#

�
"

xn�2

yn�2

#

:

So xn D 2˛xn�1 � xn�2 and yn D 2˛yn�1 � yn�2.
Then x0 D 1; x1 D ˛; x2 D 2˛2 � 1, and x3 D 4˛3 � 3˛; and y0 D 0; y1 D ˇ; y2 D 2˛ˇ,

and y3 D ˇ.4˛2�1/. More generally, the polynomials xn and yn

ˇ
are the Chebyshev polynomials

in ˛; again see Chapter 19.
Finally, we study briefly Pell’s equation x2 � dy2 D k, where k 6D 0.

2.9 Pell’s Equation x2 � dy2 D k

There is a close link between the solutions of the equations x2 � dy2 D k and x2 � dy2 D 1,
when they are solvable . To see this, let .˛; ˇ/ be the fundamental solution of x2 � dy2 D 1 and
.u; v/ a solution of x2 � dy2 D k. Then N Œ.˛uC dˇv/C .ˇuC ˛v/

p
d � D k; so
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"
x

y

#

D
"

˛ dˇ

ˇ ˛

#"
u

v

#

is a solution of x2 � dy2 D k. This recursive formula can be used to generate infinitely many
solutions of x2 � dy2 D k associated with .u; v/; they belong to the same class of solutions.

The next example illustrates this technique.

Example 2.14 Consider the equations x2�2y2 D 1 and x2�2y2 D 9. We have .˛; ˇ/ D .3; 2/

and .u; v/ D .9; 6/. Then

"
x

y

#

D
"

3 4

2 3

#"
9

6

#

D
"

51

36

#

is a solution of x2 � 2y2 D 9, associated with (9, 6): 512 � 2 � 362 D 9. So is (297, 210).
On the other hand, consider the equation x2 � 2y2 D �7. Here .u; v/ D .5; 4/. Then

"
x

y

#

D
"

3 4

2 3

#"
5

4

#

D
"

31

22

#

is also a solution of x2 � 2y2 D �7, associated with (5, 4): 312 � 2 � 222 D �7.
So is (181, 128).

In reality, there can be more than one fundamental solution of x2 � dy2 D k. Two solutions,
.u; v/ and .u0; v0/, belong to the same class if and only if uu0 � dvv0 .mod jkj/ and uv0 � vu0
.mod jkj/.

For example, consider the solutions .u; v/ D .5; 4/ and .u0; v0/ D .31; 22/ of x2 � 2y2 D
�7. Then uu0 D 5 � 31 � 2 � 4 � 22 � dvv0 .mod 7/ and uv0 D 5 � 22 � 4 � 31 � vu0 .mod 7/.
So (5, 4) and (31, 22) belong to same class, as we already knew.

The next theorem provides bounds for the fundamental solution .u; v/ of x2 � dy2 D k.
Once again, we omit its proof [169] in the interest of brevity.

Theorem 2.5 Let .˛; ˇ/ be the fundamental solution of x2 � dy2 D 1 and .u; v/ that of x2 �
dy2 D k, where k 6D 0. Then

(1) 0 < juj �
q

k.˛C1/

2
and 0 � v � ˇ

q
k

2.˛C1/
, if k > 0;

(2) 0 � juj �
q

jkj.˛�1/

2
and 0 < v � ˇ

q jkj
2.˛�1/

, otherwise.

The next two examples illustrate this powerful theorem. We will revisit both in Chapter 5.

Example 2.15 Let .u; v/ be the fundamental solution of x2 � 2y2 D 9. Recall that the
fundamental solution of x2 � 2y2 D 1 is .˛; ˇ/ D .3; 2/. By Part 1 of Theorem 2.5, u and
v must satisfy the inequalities 0 < juj � 3

p
2 and 0 � v � 3p

2
. So �4 � u � 4 and
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0 � v � 2, except that u 6D 0. Exactly two of the possible 24 possible pairs .u; v/ are solutions
of x2 � 2y2 D 9 W .˙3; 0/. Since .�3; 0/ and (3, 0) belong to the same class, we choose
.u; v/ D .3; 0/.

Its successor solution .x2; y2/ is given by

"
x2

y2

#

D
"

3 4

2 3

#"
3

0

#

D
"

9

6

#

;

as found in Example 2.14. The next three solutions are (51, 36), (297, 210), and (1731, 1224).

Example 2.16 Let .u; v/ be the fundamental solution of the equation x2�2y2 D �7 in Example
2.14. Again .˛; ˇ/ D .3; 2/. By Part 2 of Theorem 2.5, we must have 0 � juj � p7 and
0 � v � p7; so �2 � u � 2 and 0 � v � 2, where u 6D 0. Two of the 12 possible pairs .u; v/

yield solutions of x2�2y2 D �7 W .˙1; 2/. They do not belong to the same class. Consequently,
they generate distinct classes. Their immediate successors are:

"
x

y

#

D
"

3 4

2 3

#"
�1

2

#

D
"

5

4

#

"
x

y

#

D
"

3 4

2 3

#"
1

2

#

D
"

11

8

#

:

They belong to the classes associated with .�1; 2/ and (1, 2), respectively.
Merging the two classes, we get the first six positive solutions: (1, 2), (5, 4), (11, 8), (31, 22),

(65, 46), and (181, 128); they alternate between the two classes.

Exercises 2

Let .xn; yn/ be an arbitrary positive solution of the Pell’s equation x2 � 48y2 D 1.

1. Find the fundamental solution .˛; ˇ/ of the equation.

2. Using recursion and the solution .x3; y3/ D .1351; 195/, find the next two solutions of the
Pell’s equation.

3. Using the solutions .x3; y3/ and .x4; y4/, and the second-order recurrence (2.5), compute
.x5; y5/ and .x6; y6/.

4. Define xn and yn recursively.

5. Find a generating function for fxng.
6. Find a generating function for fyng.
Let .xn; yn/ be an arbitrary positive solution of the Pell’s equation x2 � 13y2 D �1.

7. Find the fundamental solution .˛; ˇ/ of the equation.
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8. Using recursion, find the next two solutions .x2; y2/ and .x3; y3/. Hint: Use Theorem 2.3.

9. Using the second-order recurrence (2.5), define .xn; yn/ recursively.
Let .xn; yn/ be an arbitrary solution of the Pell’s equation x2 � 3y2 D 6, and .˛; ˇ/ the funda-
mental solution of x2 � 3y2 D 1.

10. Find .˛; ˇ/.

11. Find the fundamental solution .u; v/ of x2 � 3y2 D 6, if it exists. Hint: Use Theorem 2.5.

12. Find an explicit formula for .xn; yn/, if possible.
Use the Pell’s equation x2 � 3y2 D �11 for Exercises 13–15.

13. Find the number of distinct classes of solutions. Hint: Use Theorem 2.5.

14. Find two new solutions belonging to each class.

15. Find an explicit formula for the arbitrary solution .xn; yn/ in each class.

16. Find a generating function for the sequence fxng, where xn D 6xn�1�xn�2, where x1 D 1

and x2 D 7.

17. Find a generating function for the sequence fnkg, where nk D 6nk�1 � nk�2 � 2, where
n1 D 1 and n2 D 4.
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Continued Fractions

3.1 Introduction

This chapter explores fractional expressions which most people do not use or see in their
everyday life. Two such fractions are the multi-decked expressions

1C 1

2C 1

3C 1

4C 1

5

and

1C 1

1C 1

1C 1

1C 1

1C � � �

:

Such a multi-layered fraction is a continued fraction, a term coined by Wallis. The Indian
mathematician-astronomer Aryabhata (ca. 476–ca. 550) used continued fractions to solve the
linear diophantine equation (LDE) ax C by D c, where a; b; c; x; and y are integers and
.a; b/ D 1. The Italian mathematician Rafael Bombelli (1526–1573) used continued fractions to
approximate

p
13 in his L’Algebra Opera (1572). In 1613, Pietro Antonio Cataldi (1548–1626),

another Italian mathematician, employed them for approximating square roots of numbers. The
Dutch physicist and mathematician Christiaan Huygens (1629–1695) used them in the design of
a mathematical model for planets (1703).

T. Koshy, Pell and Pell–Lucas Numbers with Applications, DOI 10.1007/978-1-4614-8489-9__3,
© Springer Science+Business Media New York 2014
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The German mathematician Johann Heinrich Lambert (1728–1777), Euler, and Lagrange led
the development of the modern theory of continued fractions. Most of Euler’s work on continued
fractions appears in his De Fractionlous Continious (1737). In 1759, Euler used them to solve
the Pell’s equation x2�dy2 D 1. Lagrange’s Reśolution des équations numériques (1798) gives
a method for approximating the real roots of equations using continued fractions and properties
of periodic continued fractions. The Indian mathematical genius Srinivasa Aiyangar Ramanujan
(1887–1920) also made significant contributions to continued fractions.

In 1931, Derrick H. Lehmer (1905–1991) of Stanford University and R.E. Powers of
the Denver and Rio Grande Western Railroad developed an integer-factoring algorithm using
continued fractions. Forty-three years later, Michael A. Morrison, a graduate student at Rice
University, Houston, Texas, and John D. Brillhart of the University of Arizona exemplified its
power by factoring the Fermat number f7 D 227 C 1.

Continued fractions can be used to solve the LDE ax C by D c and the Pell equation
x2�dy2 D .�1/n, and to factor large integers. Continued fractions also play a significant role in
approximating the square roots of positive integers. This chapter will focus on solving the Pell
equation. But first, we will briefly introduce continued fractions.

3.2 Finite Continued Fractions

A finite continued fraction is an expression of the form

x D a0 C
1

a1 C
1

a2 C
1

: : : C 1

an�1 C 1

an

; (3.1)

where a0; a1; : : : ; an are real numbers, and a1; a2; : : : ; an are positive. The numbers
a1; a2; : : : ; an are the partial quotients of the continued fraction. It is a simple continued fraction
if every ai is an integer.

Because of the cumbersome notation for a continued fraction, it is often rewritten using the
compact notation Œa0I a1; a2; : : : ; an�, where the semicolon separates the integral part a0 D bxc
from the fractional part.

For example,

Œ1I 2; 3; 4; 5� D 1C 1

2C 1

3C 1

4C 1

5

D 225

157
:
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Although it is fairly obvious from equation (3.1) that every finite simple continued fraction
(FSCF) represents a rational number, this can be established using PMI. Is the converse true?
That is, can every rational number be represented by a finite simple continued fraction? This was
affirmed by Euler in 1737. The proof is an application of the well-known euclidean algorithm,
which is often used to compute the gcd of two positive integers. In lieu of giving a proof, we will
illustrate it using two simple examples.

Example 3.1 Represent
225

157
as an FSCF.

Solution. Using the euclidean algorithm, we have

225 D 1 � 157C 68

157 D 2 � 68 C 21

68 D 3 � 21 C 5

21 D 4 � 5 C 1

1 D 5 � 1 C 0:

Then

225

157
D 1C 68

157
D 1C 1

157=68

D 1C 1

2C 21

68

D 1C 1

2C 1

68=21

D 1C 1

2C 1

3C 5

21

D 1C 1

2C 1

3C 1

21=5

D 1C 1

2C 1

3C 1

4C 1

5

D Œ1I 2; 3; 4; 5�;

as expected.

The next example involves the ratio
FnC1

Fn

of two consecutive Fibonacci numbers. [Recall

from Chapter 1 that .FnC1; Fn/ D 1.]
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Example 3.2 Express
FnC1

Fn

as an FSCF.

Solution. By the Fibonacci recurrence and the euclidean algorithm, we have

FnC1 D 1 � Fn C Fn�1

Fn D 1 � Fn�1 C Fn�2

Fn�1 D 1 � Fn�2 C Fn�3

:::

F4 D 1 � F3 C F2

F3 D 1 � F2 C F1

F2 D 1 � F1 C 0:

As in Example 3.1, we now continually substitute for the ratios
FkC1

Fk

:

FnC1

Fn

D 1C Fn�1

Fn

D 1C 1

Fn=Fn�1

D 1C 1

1C Fn�2

Fn�1

D 1C 1

1C 1

Fn�1=Fn�2

D 1C 1

1C 1

1C Fn�3

Fn�2

D 1C 1

1C 1

1C 1

Fn�2=Fn�3

:::

D 1C 1

1C 1

1C 1

: : :
1

1C F1

F2

D 1C 1

1C 1

1C 1

: : :
1

1C 1

F2=F1
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D 1C 1

1C 1

1C 1

: : :
1

1C 1

1

D Œ 1I 1; 1; 1; : : : ; 1
„ ƒ‚ …

n ones

�:

The continued fraction representation of
FnC1

Fn

consists of n ones and hence n � 1 partial

quotients.

In particular,
F9

F8

D 34

21
D Œ 1I 1; 1; 1; 1; 1; 1; 1

„ ƒ‚ …
8 ones

�. You may confirm this by direct computation.

Next we introduce the concept of a convergent of the continued fraction x D
Œa0I a1; a2; : : : ; an�. Convergents can be used to approximate continued fractions. They are
obtained by chopping the continued fraction immediately after each partial quotient.

3.2.1 Convergents of a Continued Fraction

The kth convergent Ck of the continued fraction x D Œa0I a1; a2; : : : ; an� is given by
Ck D Œa0I a1; a2; : : : ; ak�, where 0 � k � n. Thus C0 D a0 and Cn D Œa0I a1; a2; : : : ; an�.

For example, the continued fraction
225

157
D Œ1I 2; 3; 4; 5� has five convergents:

C0 D 1 C1 D Œ1I 2� D 3
2
D 1:5

C2 D Œ1I 2; 3� D 10
7
� 1:42857142857 C3 D Œ1I 2; 3; 4� D 43

30
� 1:43333333333

C4 D Œ1I 2; 3; 4; 5� D 225
157
� 1:43312101911.

An interesting observation: C0 < C2 < C4 < C3 < C1. This is not just an observation, but
the pattern holds for all even-numbered convergents C2k and odd-numbered convergents C2kC1,
where k � 0: C0 < C2 < : : : < C2k < : : : < C2kC1 < : : : < C3 < C1.

As another example, the continued fraction
13

8
D Œ1I 1; 1; 1; 1; 1� has six convergents:

C0 D 1 D 1
1

C1 D Œ1I 1� D 2
1

C2 D Œ1I 1; 1� D 3
2

C3 D Œ1I 1; 1; 1� D 5
3

C4 D Œ1I 1; 1; 1; 1� D 8
5

C5 D Œ1I 1; 1; 1; 1; 1� D 13
8

.

Here also C0 < C2 < C4 < C5 < C3 < C1.
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3.2.2 Recursive Definitions of pk and qk

As k becomes larger and larger, the obvious and direct way of computing the convergent Ck D
pk

qk
can become tedious and time-consuming. Fortunately, we can employ recursion to facilitate

its computation. To see this, consider the continued fraction Œa0I a1; a2; : : : ; an�. Then

C0 D a0 D p0

q0
; so p0 D a0 and q0 D 1.

C1 D a0 C
1

a1

D a1a0 C 1

a1

D p1

q1

; so p1 D a1a0 C 1 and q1 D a1.

C2 D a0 C
1

a1 C
1

a2

D a2.a1a0 C 1/C a0

a2a1 C 1
D a2p1 C p0

a2q1 C q0

D p2

q2

;

so p2 D a2p1 C p0 and q2 D a2q1 C q0.
More generally, it follows by PMI that pk D akpk�1Cpk�2 and qk D akqk�1Cqk�2, where

2 � k � n. Consequently, the sequences fpkg and fqkg can be defined recursively:

p0 D a0 q0 D 1

p1 D a1a0 C 1 q1 D a1

pk D akpk�1 C pk�2 qk D akqk�1 C qk�2,

where 2 � k � n.
These recurrences can be combined into a matrix equation in two different ways:

h
pk qk

i
D

h
ak 1

i
"

pk�1 qk�1

pk�2 qk�2

#

"
pk qk

pk�1 qk�1

#

D
"

ak 1

1 0

#"
pk�1 qk�1

pk�2 qk�2

#

: (3.2)

The recursive definitions will enable us to compute the convergents more rapidly, as the
following example illustrates.

Example 3.3 Compute the convergents of the continued fraction [3;1,5,2,7].

Solution. We have a0 D 3; a1 D 1; a2 D 5; a3 D 2, and a4 D 7. First, we compute pk and qk

recursively, where 0 � k � 4:

p0 D a0 D 3 q0 D 1

p1 D a1a0 C 1 D 1 � 3C 1 D 4 q1 D a1 D 1

p2 D a2p1 C p0 D 5 � 4C 3 D 23 q2 D a2q1 C q0 D 5 � 1C 1 D 6

p3 D a3p2 C p1 D 2 � 23C 4 D 50 q3 D a3q2 C q1 D 2 � 6C 1 D 13

p4 D a4p3 C p2 D 7 � 50C 23 D 373 q4 D a4q3 C q2 D 7 � 13C 6 D 97.
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Accordingly, the convergents are

C0 D p0

q0

D 3 C1 D p1

q1

D 4

C2 D p2

q2

D 23

6
C3 D p3

q3

D 50

13

C4 D p4

q4

D 373

97
D Œ3I 1; 5; 2; 7�.

To pursue this example a bit further, we can compute the values of pk and qk fairly easily

using a table, such as Table 3.1. For example, p3 D 2 � 23C 4 D 50 and q3 D 2 � 6C 1 D 13 ;
see Table 3.1.

Table 3.1.

k 0 1 2 3 4

ak 3 1 5 2 7

pk 3 4 23 50 373

qk 1 1 6 13 97

Let Ck D pk

qk
be the kth convergent of the FSCF Œa0I a1; a2; : : : ; an�. Then it follows by PMI

that

pkqk�1 � qkpk�1 D .�1/k�1; (3.3)

where 1 � k � n.

For example, consider the convergents pk

qk
in Example 3.3. Notice that p3q2 � q3p2 D 50 �

6 � 13 � 23 D .�1/3�1 and p4q3 � q4p3 D 373 � 13 � 50 � 97 D .�1/4�1; see Table 3.1.
The Cassini-like formula (3.3) follows from equation (3.2) also, using the fact that jABj D

jAj � jBj, where jM j denotes the determinant of the square matrix M . It implies that .pk; qk/ D 1

for every k, and has an interesting byproduct: It can be used to solve the LDE ax C by D c.

3.3 LDEs and Continued Fractions

It is well known that the LDE axCby D c is solvable if and only if d jc, where d D .a; b/ [130].
If .x0; y0/ is a particular solution of the LDE, then it has infinitely many solutions, given by
x D x0 C .b=d/t ; y D y0 � .a=d/t , where t is an arbitrary integer.

Suppose .a; b/ D 1. Then the LDE ax C by D 1 is clearly solvable. Suppose .x0; y0/ is
a particular solution of the LDE. Then a.cx0/C b.cy0/ D c; so .cx0; cy0/ is a solution of the
LDE ax C by D c. Conversely, if .x0; y0/ is a solution of the LDE ax C by D c, then it can
be shown that .x0

c
;

y0

c
/ is a solution of axC by D 1. Consequently, we will focus on solving the

LDE ax C by D 1 using the FSCF of the rational number a
b
, where .a; b/ D 1.

The technique behind this method hinges on the Cassini-like formula (3.3). In particular, the
formula implies that pnqn�1 � qnpn�1 D .�1/n�1, where .pn; qn/ D 1. Since pn

qn
D a

b
and
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.pn; qn/ D 1 D .a; b/, it follows that pn D a and qn D b. Thus aqn�1 � bpn�1 D .�1/n�1;
that is, aqn�1 C b.�pn�1/ D .�1/n�1. If n is odd, then .x0; y0/ D .qn�1;�pn�1/ is a particular
solution of the LDE ax C by D 1; otherwise, .x0; y0/ D .�qn�1; pn�1/ is a particular solution.
In either case, the general solution of the LDE axCby D 1 is given by x D x0Cbt; y D y0�at ,
where t is an arbitrary integer.

The next two examples illustrate this method.

Example 3.4 Find the general solution of the LDE 182x C 65y D 299.

Solution. Notice that (182, 65) = 13 and 13j299. So the LDE 182x C 65y D 299 is solvable.
Dividing both sides of the LDE by 13 yields 14x C 5y D 23.

First, we will find a particular solution of the LDE 14x C 5y D 1. To this end, notice that
14
5
D Œ2I 1; 4�. So C0 D 2

1
; C1 D 3

1
, and C2 D 14

5
. Since p2q1 � q2p1 D 14 � 1 � 5 � 3 D �1,

.x0; y0/ D .�1; 3/ is a particular solution of the LDE 14x C 5y D 1. So a particular solution
of the LDE 14x C 5y D 23 is .23x0; 23y0/ D .�23; 69/. Thus the general solution of the LDE
14x C 5y D 23 is given by x D �23C 5t; y D 69 � 14t , where t is an arbitrary integer.

Example 3.5 Solve the LDE FnC1x C Fny D c, where c is a positive integer.

Solution. Since .FnC1; Fn/ D 1, the LDE is solvable. By Cassini’s formula, FnC1Fn�1 � F 2
n D

.�1/n. When n is even, .x0; y0/ D .Fn�1;�Fn/ is a particular solution of the LDE FnC1x C
Fny D 1; otherwise, .x0; y0/ D .�Fn�1; Fn/ is a particular solution. So a particular solution of
the LDE FnC1x C Fny D c is .cx0; cy0/. The general solution is given by x D x0 C Fnt; y D
x0 � FnC1t , where t is an arbitrary integer.

Next we turn to infinite simple continued fractions (ISCFs).

3.4 Infinite Simple Continued Fractions (ISCF)

Earlier, we found that a rational number represents a FSCF and vice versa. So how about
irrational numbers? To answer this, we introduce the concept of an infinite continued fraction.

An infinite continued fraction is an expression of the form

a0 C
b1

a1 C
b2

a2 C
b3

a3 C : : :

; (3.4)

where a0; a1; : : : and b1; b2; : : : are real numbers.
The first recorded infinite continued fraction is the one for 4

�
, discovered by Brouncker in

1655. He discovered it by converting the famous Wallis’ infinite product

4

�
D 3 � 3 � 5 � 5 � 7 � 7 : : :

2 � 4 � 4 � 6 � 6 � 8 : : :
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into a spectacular infinite continued fraction:

4

�
D 1C 12

2C 32

2C 52

2C 72

2C : : :

:

Although Brouncker did not provide a proof, Euler gave one in 1775.
There is an equally spectacular infinite continued fraction for its reciprocal as well:

�

4
D 1C 12

3C 22

5C 32

7C 42

9C : : :

:

Ramanujan discovered 200 infinite continued fractions. Two of the most astounding ones are

�qp
5˛ � ˛

�

e2�=5 D 1

1C e�2�

1C e�4�

1C e�6�

1C : : :

and its reciprocal

e�2�=5

pp
5˛ � ˛

D 1C 1

1C e�2�

1C e�4�

1C e�6�

1C : : :

;

discovered in 1908, where ˛ denotes the golden ratio 1Cp
5

2
.

Returning to the infinite continued fraction in (3.4), suppose a0 is a nonnegative integer,
a1; a2; : : : are positive integers, and every bi D 1. The corresponding infinite simple continued
fraction (ISCF) has the form
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a0 C
1

a1 C
1

a2 C
1

a3 C : : :

: (3.5)

Using the compact notation, we denote it by Œa0I a1; a2; : : :�.
Let Ck D Œa0I a1; a2; : : : ; ak� denote the kth convergent of this continued fraction. The

sequence fC2kg is a strictly increasing sequence, bounded above by C1; and fC2kC1g is strictly
decreasing, bounded below by C0. So both converge, and converge to the same limit ` [130].
Thus fCkg converges to `, and ` is the value of the ISCF Œa0I a1; a2; : : :�:

Œa0I a1; a2; : : :� D lim
k!1 Ck:

For example, let Ck denote the kth convergent of the ISCF Œ1I 1; 1; 1; : : :�. Earlier, we found
that Ck D FkC1

Fk
. Let x D lim

k!1
FkC1

Fk
. Then, using the Fibonacci recurrence, we have

x D lim
k!1

FkC1

Fk

D lim
k!1

Fk C Fk�1

Fk

D 1C 1

lim
k!1

Fk

Fk�1

D 1C 1

x
:

So x2 � x � 1 D 0. Solving this equation, we get x D 1˙p
5

2
. Since x > 0, it follows that

x D 1Cp
5

2
, the golden ratio. Thus

Œ1I 1; 1; 1; : : :� D 1Cp5

2
:

As another example, consider the ISCF Œ1I 2; 2; 2; : : :�. Its convergents converge to the limit
`, where ` D 1C 1

1C`
. Solving this equation, we get ` D p2.

Earlier, we found that every FSCF represents a rational number. Is there a corresponding
result for an ISCF? In fact, there is one: Every ISCF Œa0I a1; a2; : : :� represents an irrational
number; this can be confirmed using contradiction. Is its converse also true? That is, does every
irrational number have an ISCF expansion? Fortunately, the answer is yes, as the following
theorem shows. Its proof follows by PMI.
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Theorem 3.1 Let x D x0 be an irrational number. Define a sequence fakg of integers
recursively as follows:

ak D bxkc; xkC1 D 1

xk � ak

;

where k � 0. Then x D Œa0I a1; a2; : : :�.

The beauty of this theorem lies in the fact that it provides a constructive recursive algorithm
for computing the ISCF that represents the irrational number x. The next example illustrates this
algorithm. Have a good calculator handy to facilitate the computation.

Example 3.6 Express
p

19 as an ISCF.

Solution. By Theorem 3.4, we have x D x0 D
p

19; so a0 D b
p

19c D 4. Then

x1 D 1p
19 � 4

D
p

19C 4

3
; a1 D bx1c D 2

x2 D 3p
19 � 2

D
p

19C 2

5
; a2 D bx2c D 1

x3 D 5p
19 � 3

D
p

19C 3

2
; a3 D bx3c D 3

x4 D 2p
19 � 3

D
p

19C 3

3
; a4 D bx4c D 1

x5 D 5p
19 � 2

D
p

19C 2

3
; a5 D bx5c D 2

x6 D 3p
19 � 4

D
p

19C 4

1
; a6 D bx6c D 8

x7 D 1p
19 � 4

D
p

19C 4

3
; a7 D bx7c D 2.

Since x7 D x1, clearly this pattern continues. Thus

p
19 D Œ4I 2; 1; 3; 1; 2; 8

„ ƒ‚ …
; 2; 1; 3; 1; 2; 8
„ ƒ‚ …

; : : :� :

The sequence of partial quotients in this ISCF shows an interesting pattern: It is periodic with
period 6. Accordingly, we rewrite it as

p
19 D Œ4I 2; 1; 3; 1; 2; 8 �, using a bar over the smallest

repeating block to indicate its periodicity.

To pursue this example a bit further, we can compute the convergents of this ISCF using
a table, such as Table 3.2. The first seven convergents Ck D pk

qk
are 4

1
; 9

2
; 13

3
; 48

11
; 61

14
; 170

39
; 1420

326
,

and 3010
691

. Notice that 3010
691
� 4:35600578871;

p
19 � 4:35889894354, and

p
19 � 3010

691
�

0:002893154829.
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Table 3.2.

k 0 1 2 3 4 5 6 7

ak 4 2 1 3 1 2 8 2
pk 4 9 13 48 61 170 1420 3010
qk 1 2 3 11 14 39 326 691

Table 3.3 gives the ISCF of
p

d , where d is a positive nonsquare integer and 2 � d � 20.

Table 3.3.p
2 D Œ1I 2 �

p
3 D Œ1I 1; 2 �p

5 D Œ2I 4 �
p

6 D Œ2I 2; 4 �p
7 D Œ2I 1; 1; 1; 4 �

p
8 D Œ2I 1; 4 �p

10 D Œ3I 6 �
p

11 D Œ3I 3; 6 �p
12 D Œ3I 2; 6 �

p
13 D Œ3I 1; 1; 1; 1; 6 �p

14 D Œ3I 1; 2; 1; 6 �
p

15 D Œ3I 1; 6 �p
17 D Œ4I 8 �

p
18 D Œ4I 4; 8 �p

19 D Œ4I 2; 1; 3; 1; 2; 8 �
p

20 D Œ4I 2; 8 �

It appears from the table that the ISCFs of
p

d are always periodic; this is certainly true:p
d D Œa0I a1; a2; : : : ; an �, where d is a positive nonsquare integer. In addition, an D 2a0. Since

the period is n, it follows that amn D 2a0 for every integer m � 1.
For example, consider

p
19 D Œ4I 2; 1; 3; 1; 2; 8 �. Notice that a6 D 8 D 2a0. Likewise,p

13 D Œ3I 1; 1; 1; 1; 6�; here a5 D 6 D 2a0.

3.5 Pell’s Equation x2 � dy2 D .�1/n and ISCFs

We are now ready to reveal an open “secret:” We can successfully employ ISCFs to solve
the Pell’s equation x2 � dy2 D .�1/n. This can be accomplished by invoking the next three
results [37].

Theorem 3.2 Let .x; y/ be a solution of the Pell equation x2 � dy2 D 1, where d is a positive
nonsquare integer. Then x

y
is a convergent of the ISCF of

p
d .

The following example illustrates this theorem.

Example 3.7 Consider the Pell’s equation x2 � 23y2 D 1. Notice that 242 � 23 � 52 D 1, so
(24, 5) is a solution of the equation.

To see that 24
5

is a convergent of
p

23, we have
p

23 D Œ4I 1; 3; 1; 8 �. We now compute
its convergents Ck , using Table 3.4. It follows from the table that 24

5
is indeed a convergent, as

desired: 24
5
D p3

q3
D C3.
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Table 3.4.

k 0 1 2a 3

ak 4 1 3 1

pk 4 5 19 24

qk 1 1 4 5

Table 3.5.

k 0 1 2 3 4

ak 5 2 1 1 2

pk 5 11 16 27 70

qk 1 2 3 5 13

Likewise, (70, 13) is a solution of x2 � 29y2 D �1 W 702 � 29 � 132 D �1. Notice that 70
13

is
the fourth convergent of

p
29 D Œ5I 2; 1; 1; 2; 10 �; see Table 3.5.

Theorem 3.3 Let pn

qn
be a convergent of the ISCF of

p
d , where d is a positive non-

square integer. Then .pn; qn/ is a solution of one of the equations x2 � dy2 D k, where
k < 1C 2

p
d .

Example 3.8 Let d D 2. Then jkj < 1C2
p

2, so k can be˙1;˙2;˙3. The first six convergents
of the ISCF of

p
2 D Œ1I 2 � are 1

1
; 3

2
; 7

5
; 17

12
; 41

29
, and 99

70
. Then

p2
0 � 2q2

0 D �1 p2
1 � 2q2

1 D 1

p2
2 � 2q2

2 D �1 p2
3 � 2q2

3 D 1

p2
4 � 2q2

4 D �1 p2
5 � 2q2

5 D 1.

So (3, 2) is the fundamental solution of x2 � 2y2 D 1 (see Example 2.1) and (1, 1) is the
fundamental solution of x2 � 2y2 D �1 (see Example 2.10), as expected.

Recall from Chapter 2 that the general solution of the Pell’s equation x2 � 2y2 D .�1/n is

.Qn; Pn/. Since QnC1

PnC1
is the nth convergent of the ISCF of

p
2, it follows that lim

n!1
QnC1

PnC1

D p2,

where n � 0. This also follows from the property Q2
n � 2P 2

n D .�1/n.
We encountered the sequences fpng and fqng in Chapters 1 and 2. Following the lead of M.N.

Khatri of the University of Baroda, India, in 1959, we can use them to construct two intriguing
sequences fyng and fmng, where yn D pnqn [122] and

mn D
(

2q2
n if n is even

p2
n otherwise.

Table 3.6 shows the resulting sequences. Do you see anything special about them? Can you
define them recursively? Can you develop explicit formulas for them? In any case, we will revisit
them in Chapter 6.
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Table 3.6.

n yn mn

1 1 � 1 D 1 12 D 1

2 2 � 3 D 6 2 � 22 D 8

3 5 � 7 D 35 72 D 49

4 12 � 17 D 204 2 � 122 D 288

5 29 � 41 D 1189 412 D 1681

6 70 � 99 D 6930 2 � 702 D 9800

7 169 � 239 D 40391 2392 D 57121

8 408 � 577 D 235416 2 � 4082 D 332928

9 985 � 1393 D 1372105 13932 D 1940449

10 2378 � 3363 D 7997214 2 � 23782 D 11309768

Example 3.9 Let d D 7. Recall from Table 3.3 that
p

7 D Œ2I 1; 1; 1; 4 �. The period of the
continued fraction is 4. To compute the convergents pn

qn
, we construct Table 3.7. The first twelve

convergents are 2
1
; 3

1
; 5

2
; 8

3
; 37

14
; 45

17
; 82

31
; 127

48
; 590

223
; 717

271
; 1307

494
, and 2024

765
.

Table 3.7.

k 0 1 2 3 4 5 6 7 8 9 10 11 12

ak 2 1 1 1 4 1 1 1 4 1 1 1 4
pk 2 3 5 8 37 45 82 127 590 717 1307 2024 9403
qk 1 1 2 3 14 17 31 48 223 271 494 765 3554

Notice that

p2
0 � 7q2

0 D 22 � 7 � 12 D �3 p2
1 � 7q2

1 D 32 � 7 � 12 D 2

p2
2 � 7q2

2 D 52 � 7 � 22 D �3 p2
3 � 7q2

3 D 82 � 7 � 32 D 1

p2
4 � 7q2

4 D 372 � 7 � 142 D �3 p2
5 � 7q2

5 D 452 � 7 � 172 D 2

p2
6 � 7q2

6 D 822 � 7 � 312 D �3 p2
7 � 7q2

7 D 1272 � 7 � 482 D 1

p2
8 � 7q2

8 D 5902 � 7 � 2232 D �3 p2
9 � 7q2

9 D 7172 � 7 � 2712 D 2

p2
10 � 7q2

10 D 13072 � 7 � 4942 D �3 p2
11 � 7q2

11 D 20242 � 7 � 7652 D 1 .

Clearly, .p3; q3/ D .8; 3/; .p7; q7/ D .127; 48/, and .p11; q11/ D .2024; 765/ are solutions
of Pell’s equation x2 � 7y2 D 1.

An interesting observation: .p3; q3/ D .8; 3/ is the fundamental solution of the equation
x2 � 7y2 D 1. Every solution seems to be of the form .p4n�1; q4n�1/, where n � 1. (Corollary
3.2 will indeed confirm this; also see Example 3.11.)

The next powerful result paves the way for finding solutions of the Pell equation x2�dy2 D
.�1/n using the continued fraction of

p
d .
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Theorem 3.4 Let n denote the period of the ISCF of
p

d . Then the convergent pnk�1

qnk�1
satisfies

the equation p2
nk�1 � dq2

nk�1 D .�1/kn, where k � 1.

Consequently, .pnk�1; qnk�1/ is a solution of the equation x2 � dy2 D .�1/kn.

Case 1 Suppose n is even. Then .�1/kn D 1 for every k. So .pnk�1; qnk�1/ is a solution of the
Pell’s equation x2 � dy2 D 1 for every k � 1.

It now follows that if n is even, the equation x2 � dy2 D �1 has no solutions.

Case 2 Suppose n is odd. If k is even, then also .�1/kn D 1; so .p2nk�1; q2nk�1/ is a solution
of the equation x2 � dy2 D 1 for every k � 1.

On the other hand, suppose k is odd. Then .�1/kn D �1. So every solution of x2�dy2 D �1

is of the form .pnk�1; qnk�1/, where both n and k are odd.
Thus we have the following result.

Corollary 3.1 Let n be the period of the ISCF of
p

d . Then

• If n is even, then every solution of x2 � dy2 D 1 is of the form .pnk�1; qnk�1/.

• If n is even, then x2 � dy2 D �1 has no solutions.

• If n is odd and k is even, then every solution of x2 � dy2 D 1 is of the form .p2nk�1; q2nk�1/.

• If both n and k are odd, then every solution of x2 � dy2 D �1 is of the form
.pnk�1; qnk�1/.

The next result is an immediate consequence of this corollary.

Corollary 3.2 Let n be the period of the ISCF of
p

d . Then

• If n is even, then the fundamental solution of x2 � dy2 D 1 is .pn�1; qn�1/.

• If n is even, then x2 � dy2 D �1 has no solutions.

• If n is odd and k is even, then the fundamental solution of x2 � dy2 D 1 is .p2n�1; q2n�1/.

• If both n and k are odd, then the fundamental solution of x2 � dy2 D �1 is .pn�1; qn�1/.

In particular, let d D 2. Since
p

2 D Œ1I 2 �, the period of the continued fraction of
p

2 is
n D 1. So, by Corollary 3.2, the fundamental solution of the equation x2 � 2y2 D 1 is given by
.p1; q1/ D .3; 2/, as expected.

The next three examples also illustrate these two corollaries. First, we will revisit
Example 2.8.

Example 3.10 (Example 2.8 Revisited) We will use the ISCF of
p

3 to find a solution of Pell’s
equation x2 � 3y2 D 1, where x � �1 .mod 4/, y � 0 .mod 4/, and x � 13. To this end,
notice that the continued fraction of

p
3 is periodic with period 2:

p
3 D Œ1I 1; 2 �. Table 3.8

shows the first eleven convergents of the continued fractions. The convergent p11

q11
D 1351

780
satisfies

both conditions: p11 D 1351 � �1 .mod 4/ and q11 D 780 � 0 .mod 4/. So .x11; y11/ D
.1351; 780/ is a solution of Pell’s equation satisfying all three conditions. As in Example 2.7,
x11 D 1351 yields n D 337.
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Table 3.8.

k 0 1 2 3 4 5 6 7 8 9 10 11

ak 1 1 2 1 2 1 2 1 2 1 2 1
pk 1 2 5 7 19 26 71 97 265 362 989 1351
qk 1 1 3 4 11 15 41 56 153 209 571 780

Example 3.11 Find the first four solutions of Pell’s equation x2 � 7y2 D 1. (This example is
basically the same as Example 3.9.)

Solution. Recall from Example 3.9 that the continued fraction of
p

7 is periodic with period 4:p
7 D Œ2I 1; 1; 1; 4 �. Since the period is even, by Corollary 3.2, the fundamental solution of the

equation is .p3; q3/ D .8; 3/; see Table 3.7.

By Corollary 3.1, the remaining solutions are given by .p4k�1; q4k�1/, where k � 2. When
k D 2, the solution is .p7; q7/ D .127; 48/; when k D 3, the solution is .p11; q11/ D
.2024; 765/; and when k D 3, the solution is .p15; q15/ D .33257; 12192/.

Example 3.12 Find the first two solutions of each of the Pell equations x2 � 13y2 D ˙1.

Solution. Recall from Table 3.3 that the continued fraction of
p

13 is periodic with period 5:p
13 D Œ3I 1; 1; 1; 1; 3 �. Table 3.9 shows the first 15 convergents of the continued fraction.

Table 3.9.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ak 3 1 1 1 1 6 1 1 1 1 6 1 1 1 1 6
pk 3 4 7 11 18 119 137 256 393 649 4287 4936 9223 14159 23382 154451
qk 1 1 2 3 5 33 38 71 109 180 1189 1369 2558 3927 6485 42837

Since the period is odd, every solution of x2�13y2 D 1 is of the form .p10k�1; q10k�1/, where
k � 1. When k D 1, .p9; q9/ D .649; 180/ gives the fundamental solution: 6492�13�1802 D 1.
The second solution is .x2; y2/ D .p19; q19/ D .842401; 233640/, corresponding to k D 19:
8424012 � 13 � 2336402 D 1.

Since pk and qk are getting larger and larger, we can also invoke Theorem 2.4 to find the
solution .x2; y2/. It is given by

x2 C y2

p
13 D .649C 180

p
13/2

D 842401C 233640
p

13:

This yields .x2; y2/ D .842401; 233640/. (Can you find the next solution?)
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On the other hand, the solutions of x2 � 13y2 D �1 can be obtained when k is odd. Every
one of the solutions is of the form .p5k�1; q5k�1/, where k is odd. When k D 1, we get the
fundamental solution .p4; q4/ D .18; 5/: 182 � 13 � 52 D �1. The next solution .p14; q14/ D
.23382; 6485/ corresponds to k D 3: 233822 � 13 � 64852 D �1. (Can you find the next
solution?)

Table 3.10 gives the fundamental solution .pk; qk/ of the Pell equation x2 � dy2 D 1 for
2 � d � 24, where pk

qk
is some convergent of the ISCF of

p
d . It follows by Corollary 3.1 and

Table 3.3 that the equation x2 � dy2 D �1 is solvable for only five values of d � 25: 2, 5, 10,
13, and 17. The corresponding fundamental solutions are given in Table 3.11.

Table 3.10.

k d pk qk k d pk qk

1 2 3 2 3 14 15 4
1 3 2 1 1 15 4 1
1 5 9 4 1 17 33 8
1 6 5 2 1 18 17 4
3 7 8 3 5 19 170 39
1 8 3 1 1 20 9 2
1 10 19 6 5 21 55 12
1 11 10 3 5 22 197 42
1 12 7 2 3 23 24 5
9 13 649 180 1 24 5 1

Table 3.11.

k d pk qk

0 2 1 1
0 5 2 1
0 10 3 1
4 13 18 5
0 17 4 1

You may recall that not every Pell’s equation is solvable. For instance, consider x2 � 3y2 D
�1. Since

p
3 D Œ1I 1; 2 �, its period is even. So, by Corollary 3.1, it is not solvable.

Finally, we add that not every irrational number has a periodic expansion. For example, the
two Ramanujan’s continued fractions given earlier are not periodic. Neither are the following
continued fractions:

� = Œ3I 7; 15; 1; 292; 1; 1; 2; 1; 3; 1; : : :� e = Œ2I 1; 2; 1; 1; 4; 1; 1; 6; 1; 1; 8; : : :�
e�1
eC1

= Œ0I 2; 6; 10; 14; 18; : : :� e2�1

e2C1
= Œ0I 1; 3; 5; 7; 9; : : :�

log 2 =
1

1C 12

1C 22

1C 32

1C : : :

� = 3C 12

6C 32

6C 52

6C 72

6C : : :

,

where e � 2:71828182846 and denotes the base of the natural logarithm. The expansions of
e; e�1

eC1
, and e2�1

e2C1
were discovered by Euler in 1737. The last expansion of � was discovered by

L.J. Lange of the University of Missouri in 1999.
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We close this chapter with a combinatorial interpretation of the nth convergent cn D pn

qn
of

the ISCF Œa0I a1; a2; : : :�. It was studied by A.T. Benjamin and F.E. Su of Harvey Mudd College,
Claremont, California, and J.J. Quinn of Occidental College, Los Angeles, California [14].

3.6 A Simple Continued Fraction Tiling Model

Let An denote the number of ways of tiling a 1 � .nC 1/ linear board with 1 � 2 dominoes and
unit square tiles, such that there are no gaps or overlappings. The square tiles can be stacked up;
but no tiles, dominoes or squares, can be placed on top of a domino. No domino can be stacked
on anything. Suppose the n C 1 cells (square tiles) of the board are labeled 0 through n. Then
cell i can be covered by a maximum of ai square tiles, where 0 � i � n.

a0

0

a1

1

a2

2

a3

3

a4

4

an − 1

n − 1

an

n

…

Figure 3.1.

Figure 3.1 shows an empty board with the maximum possible stack sizes a0; a1; a2; : : : ; an.
Figure 3.2 shows a valid tiling of a 1� 10 board with stack sizes 5, 10, 4, 2, 5, 3, 8, 10, 2, and 4.

5

0

10

1

4

2

2

3

5

4

3

5

8

6

10

7

2

8

4

9

Figure 3.2. A Valid Tiling of a 1 � 10 Board

Next we will define An recursively. First, when n D 0, the board consists of a single cell,
namely, cell 0. So we can stack up as many as a0 square tiles at cell 0; see Figure 3.3. Hence
A0 D a0.

Suppose n D 1. Then the board consists of two cells, cells 0 and 1. There are two cases to
consider, as Figure 3.4 shows. If a tiling ends in a square tile, then square tiles must occupy both
cells; see Figure 3.4a. There are a1a0 such tilings. On the other hand, if a square tile does not
occupy cell 1, then a domino must occupy both cells 0 and 1; see Figure 3.4b. There is exactly
one such tiling. So by the addition principle, A1 D a1a0 C 1.
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Figure 3.3.
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Figure 3.4.

Suppose n � 2. Suppose a tiling ends in a square tile. Since the stack size at cell n is an,
there are anAn�1 such tilings. On the other hand, suppose a domino occupies cell n (and hence
cell n � 1); so there is exactly one way of tiling cells n and n � 1. By definition, there are An�2

ways of tiling cells 0 through n � 2. So there are 1 � An�2 D An�2 tilings ending in a domino.
Consequently, An D anAn�1 C An�2.

Thus An can be defined recursively:

A0 D a0; A1 D a1a0 C 1

An D anAn�1 C An�2; n � 2:

This is exactly the recursive definition of the numerator pn of the nth convergent of the ISCF
Œa0I a1; a2; : : :�. So An D pn.

To interpret qn combinatorially, we consider the 1 � n board in Figure 3.1, with cell 0
removed. Let Bn denote the number of ways of tiling this board with dominoes and stackable
square tiles as before. Defining B0 D 1 to denote the empty tiling, it follows by a similar
argument that

B0 D a0; B1 D a1

Bn D anBn�1 C An�2; n � 2:

Clearly, bn D qn.
For example, consider the ISCF � D Œ3I 7; 15; 1; 292; 1; 1; 2; : : :�; there are p0 D a0 D 3

ways of tiling cell 0; see Figure 3.5. There are p1 D a1a0C1 D 3�7C1 D 22 ways of tiling cells
0 and 1; and q1 D a1 D 7 ways of tiling cell 1. This yields the first convergent c1 D p1

q1
D 22

7
.

There are p2 D 15�22C3 D 333 ways of tiling cells 0, 1 and 2; and q2 D 15�7C1 D 106 ways of
tiling cells 1 and 2. This yields the second convergent c2 D p2

q2
D 333

106
. Similarly, c3 D p3

q3
D 355

113
.

Clearly, these computations can be continued indefinitely.
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Figure 3.5.

Next we investigate two special cases of the tiling problem.

3.6.1 A Fibonacci Tiling Model

Suppose ai D 1 for every i � 0; see Figure 3.6. Then p0 D 1; p1 D 2; and pn D pn�1 C pn�2,
where n � 2. So pn D FnC1. Likewise, qn D Fn. So Fn counts the number of tilings of a 1 � n

board with dominoes and stackable square tiles. Every convergent FnC1

Fn
is an approximation of

the golden ratio ˛.
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1

1

2

1

3

1

4

1

5

…

The Fibonacci Board

Figure 3.6.

3.6.2 A Pell Tiling Model

Suppose a0 D 1 and ai D 2 for every i � 1; see Figure 3.7. Then p0 D 1; p1 D 3; and
pn D 2pn�1 C pn�2, where n � 2. Likewise, q0 D 1; q1 D 2; and qn D 2qn�1 C qn�2, where
n � 2. Clearly, pn D Qn and qn D Pn. Consequently, Qn counts the number of tilings of a
1 � .nC 1/ board with dominoes and stackable square tiles, and Pn the number of such tilings
of a 1 � n board, where every stack size is 2.

Next we generalize the simple continued fraction tiling problem.
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Figure 3.7. The Pell Board

3.7 A Generalized Continued Fraction Tiling Model

Suppose we allow both dominoes and square tiles to be stacked up, dominoes over dominoes
and squares over squares. As before, suppose as many as ai square tiles can be stacked up at cell
i , where i � 0; and as many as bi dominoes can be stacked up at cells i � 1 and i , where i � 1.
Let Opn denote the number of such tilings of a 1� .nC1/ board and Oqn the number of such tilings
of a 1 � n board, with cell 0 removed. Then, as above, it follows that

Opn D an Opn�1 C bn Opn�2

Oqn D an Oqn�1 C bn Oqn�2;

where n � 2, and Op0 D a0; Op1 D a1a0 C b1; Oq0 D 1; Oq1 D a1. Then Opn

Oqn
is precisely the nth

convergent of the continued fraction (3.4).
For example, consider the infinite continued fraction expansion for �

4
we encountered earlier.

For the corresponding tiling problem, a0 D 1; ai D 2i C 1, and bi D i 2, where i � 1. Then

Op0 D 1; Op1 D 4 Oq0 D 1; Oq1 D 3

Opn D .2nC 1/ Opn�1 C n2 Opn�2 Oqn D .2nC 1/ Oqn�1 C n2 Oqn�2;

where n � 2. So Opn

Oqn
is the nth convergent of the continued fraction expansion of �

4
.

We will investigate additional tiling models in Chapters 16 and 20.

Exercises 3

Represent each rational number as a FSCF.

1.
239

169
.

2.
169

70
.

3.
577

239
.

4.
PnC1

Pn

.

5.
QnC1

Qn

.
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Compute the convergents of each continued fraction.

6. Œ2I 2; 2; 2; 2�.

7. Œ2I 2; 2; 2; 3�.
Solve each LDE, if possible, where k is a positive integer. Hint: Use convergents.

8. 70x C 29y D 169.

9. 99x C 41y D 181.

10. P2nC1x C P2nx D k. Hint: PnC1Pn�1 � P 2
n D .�1/n.

11. P2nC1x CQ2nC1x D k. Hint: PnQn�1 �QnPn�1 D .�1/n�1.
Using convergents, find three positive solutions of each Pell’s equation.

12. x2 � 6y2 D 1.

13. x2 � 11y2 D 1.

14. x2 � 6y2 D �2. Hint: Use Exercise 12 and Theorem 2.5.

15. x2 � 11y2 D �2. Hint: Use Exercise 13 and Theorem 2.5.



4

Pythagorean Triples

4.1 Introduction

The Pythagorean Theorem is one the most elegant results in euclidean geometry: The sum of
the squares of the lengths of the legs of a right triangle equals the square of the length of its
hypotenuse. Using Figure 4.1, it can be restated as follows: Let 4ABC be a right triangle,
right-angled at C ; then AC 2 C BC 2 D AB2. The converse of the Pythagorean theorem is also
true: If AC 2 C BC 2 D AB2 in a triangle ABC , then it is a right triangle, right-angled at C .
A right triangle whose sides have integral lengths is a Pythagorean triangle.

Numerous proofs of the Pythagorean theorem using various techniques can be found in the
mathematical literature. For instance, E.S. Loomis’ 1968 book, The Pythagorean Proposition
[159], gives 230 different proofs.

C

A

B

Figure 4.1. Figure 4.2. A Greek Stamp illustrating the
Pythagorean Theorem

T. Koshy, Pell and Pell–Lucas Numbers with Applications, DOI 10.1007/978-1-4614-8489-9__4,
© Springer Science+Business Media New York 2014
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4.2 Pythagorean Triples

The Pythagorean Theorem has ramifications beyond geometry. To see this, let x and y denote
the lengths of the legs of the right triangle, and z the length of its hypotenuse. Then x; y and z

satisfy the nonlinear diophantine equation x2 C y2 D z2. Such a triple x-y-z is a Pythagorean
triple. Every Pythagorean triple corresponds to a Pythagorean triangle, and vice versa.

The simplest Pythagorean triple is 3-4-5, depicted by the Greek stamp in Figure 4.2: 32 C
42 D 52. This yields infinitely many Pythagorean triples 3n-4n-5n: .3n/2 C .4n/2 D .5n/2,
where n is an arbitrary positive integer.

There are Pythagorean triples involving of four consecutive Fibonacci numbers. To see this,
we let x D FnFnC3; y D 2FnC1FnC2, and z D F 2

nC1 C F 2
nC2. Then

x2 C y2 D .FnFnC3/
2 C .2FnC1FnC2/

2

D Œ.FnC2 � FnC1/.FnC2 C FnC1/�
2 C .2FnC1FnC2/

2

D .F 2
nC2 � F 2

nC1/
2 C 4F 2

nC1F
2
nC2

D .F 2
nC2 C F 2

nC1/
2

D z2:

For example, let n D 7. Then x D F7F10 D 13 �55 D 715; y D 2F8F9 D 2 �21 �34 D 1428;

and z D F 2
8 C F 2

9 D 212C 342 D 1597. Notice that x2C y2 D 7152C 14282 D 2; 550; 409 D
15972 D z2.

Likewise, LnLnC3 - 2LnC1LnC2 - .L2
nC1CL2

nC2/ is a Pythagorean triple. For example, again
we let n D 7. Then x D L7L10 D 29 � 123 D 3567; y D 2L8L9 D 2 � 47 � 76 D 7144, and
z D L2

8 C L2
9 D 472 C 762 D 7985. Again, notice that x2 C y2 D 63; 760; 225 D z2.

More generally, let fGng be any integer sequence such that Gn D Gn�1CGn�2, where n � 3.
Let x D GnGnC3; y D 2GnC1GnC2, and z D G2

nC1CG2
nC2. Then x-y-z is a Pythagorean triple.

4.2.1 Primitive Pythagorean Triples

The Pythagorean triple 3-4-5 has the property that (3,4,5) = 1; that is, 3, 4, and 5 are pairwise
relatively prime. Such a triple x-y-z is said to be primitive. For example, 5-12-13 and 119-120-
169 are primitive Pythagorean triples.

Let x-y-z be an arbitrary Pythagorean triple and .x; y; z/ D d . Then x D du; y D dv;

and z D dw for some positive integers u; v, and w, and .u; v; w/ D 1. Since x2 C y2 D z2, it
follows that u2Cv2 D w2, where .u; v; w/ D 1; so u-v-w is a primitive Pythagorean triple. Thus
every Pythagorean triple is a positive multiple of a primitive Pythagorean triple. Consequently,
we confine our discussion to primitive Pythagorean triples.

Primitive Pythagorean triples can be characterized by the following elegant result. Again, we
omit its proof [130] in the interest of brevity.
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Theorem 4.1 Let x; y and z be arbitrary positive integers, where y is even. Then x-y-z is
a primitive Pythagorean triple if and only if there are positive integers m and n with m >

n; .m; n/ D 1, and m 6� n .mod 2/ such that x D m2 � n2; y D 2mn; and z D m2 C n2.

The integers m and n are the generators of the primitive Pythagorean triple x-y-z.
Table 4.1 shows the the primitive Pythagorean triples with m � 10. It follows from the table

that the lengths of the sides of a Pythagorean triangle can be squares; see the circled numbers.
But no two sides of a Pythagorean triangle can be squares.

Table 4.1.

Generators Primitive Pythagorean Triples
m n x D m2 � n2 y D 2mn z D m2 C n2

2 1 3 4 5

3 2 5 12 13
4 1 15 8 17

4 3 7 24 25

5 2 21 20 29

5 4 9 40 41

6 1 35 12 37
6 5 11 60 61
7 2 45 28 53
7 4 33 56 65
7 6 13 84 85

8 1 63 16 65

8 3 55 48 73
8 5 39 80 89
8 7 15 112 113

9 2 77 36 85

9 4 65 72 97

9 8 17 144 145

10 1 99 20 101
10 3 91 60 109
10 7 51 140 149
10 9 19 180 181

Can the lengths of the legs of a primitive Pythagorean triangle be consecutive integers?
Clearly, yes; 3-4-5 is the most obvious example. (It is the only Pythagorean triangle such that
the lengths of all sides are consecutive integers; this can be confirmed using basic algebra.) Are
there other primitive Pythagorean triangles such that the lengths of their legs are consecutive
integers? Table 4.1 shows one more such triangle: 21 - 20 -29.

Are there any other such primitive Pythagorean triangles? If yes, how do we find them? To
investigate such primitive Pythagorean triangles, we must have y D xC 1 or x D yC 1. So, by
Theorem 4.1, we must have 2mn D m2�n2C1 or m2�n2 D 2mnC1; so .m�n/2�2n2 D �1

or .m�n/2�2n2 D 1. These two equations can be combined into the Pell’s equation u2�2v2 D
.�1/k , where u D m � n; v D n; and m > n.
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By Examples 2.1 and 2.10, the elements of the sequence fukg are 1; 3; 7; 17; 41; 99; : : :. The
corresponding values of the sequence fvkg are 2; 5; 12; 29; 70; 169 : : :. Table 4.2 lists the first
twelve pairs of generators .m; n/ and the lengths x D m2 � n2; y D 2mn, and z D m2 C n2 of
the sides of the corresponding primitive Pythagorean triangles. The lengths of the legs of these
triangles are consecutive integers. Clearly, there are infinitely many such primitive Pythagorean
triangles. In other words, the diophantine equation x2 C .x ˙ 1/2 D z2 has infinitely many
solutions.

Table 4.2.

Primitive Pythagorean Triangles
Index Generators With Consecutive Legs

k m n x D m2 � n2 y D 2mn z D m2 C n2

1 2 1 3 4 5
2 5 2 21 20 29
3 12 5 119 120 169
4 29 12 697 696 985
5 70 29 4059 4060 5741
6 169 70 23661 23660 33461
7 408 169 137903 137904 195025
8 985 408 803761 803760 1136689
9 2378 985 4684659 4684660 6625109

10 5741 2378 27304197 27304196 38613965
11 13860 5741 159140519 159140520 225058681
12 33461 13860 927538921 927538920 1311738121

4.2.2 Some Quick Observations

We can now make some interesting and useful observations about the sequences fukg; fvkg and
fmkg, and Table 4.2.

(1) The sequences fukg and fvkg follow exactly the same recursive Pell pattern.

(2) The sequences fvkg and fmkg are the same except that the initial seed v1 is missing in the
latter sequence.

(3) The legs alternate between larger and smaller lengths; that is, if xk < yk , then xkC1 >

ykC1; and if xk > yk , then xkC1 < ykC1. These can be established using the recursive
definition of the sequence fvkg and the fact that it is an increasing sequence. For example,
if v2

k � v2
k�1 < 2vkvk�1, then v2

kC1 � v2
k > 2vkC1vk .

(4) The lengths zk of the hypotenuses are the even-numbered values of mk; that is, zk D m2k .
This follows from the facts that mk D vkC1; nk D vk , and v2

kC1 C v2
k D v2kC1.

(5) The lengths zk of the hypotenuses also satisfy a recursive pattern:

z1 D 5; z2 D 29

zk D 6zk�1 � zk�2; k � 3:

(We encountered this recurrence in Example 1.5.)
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(6) Consider the smaller of the lengths of the legs for each k. Let ak denote the resulting
sequence: 3; 20; 119; 696; 4059; 23660; : : : . It also satisfies a recursive pattern:

a1 D 3; a2 D 20

ak D 6ak�1 � ak�2 C 2; k � 3:

(We saw a similar pattern in Example 1.6.)

(7) Suppose the pair .mk; nk/ generates the kth primitive Pythagorean triple. Then 2mk C
mk�1 D mkC1 and nkC1 D 2nk C nk�1 D 2mk�1 C mk�2 D mk . Consequently, the
pair .2mkCmk�1; mk/ generates the .kC 1/st primitive Pythagorean triple whose legs are
consecutive integers, where k > 2.

This gives a quick algorithm to compute each generator from its predecessor and thus to
compute the corresponding primitive Pythagorean triple.

For example, (29, 12) generates the fourth such primitive Pythagorean triple 697-696-
985. So the fifth such triple is generated by .2 � 29C 12; 29/ D .70; 29/; see Table 4.2.

4.3 A Recursive Algorithm

Next we develop a recursive algorithm for generating all primitive Pythagorean triples such that
the lengths of the legs are consecutive integers. To this end, suppose x-y-z is such a primitive
Pythagorean triple. Then x � y D ˙1, so x2 C .x C 1/2 D z2. Let u D 3x C 2z C 1; v D
3x C 2z C 2, and w D 4x C 3z C 2. Then

u2 C v2 D 18x2 C 24xz C 8z2 C 18x C 12z C 5

D .16x2 C 8z2 C 24xz C 16x C 12z C 4/C .2x2 C 2x C 1/

D .16x2 C 8z2 C 24xz C 16x C 12z C 4/C z2

D 16x2 C 9z2 C 24xz C 16x C 12z C 4

D w2:

Consequently, u-v-w is a Pythagorean triple. It is easy to see that it is primitive also; thus it
is a primitive Pythagorean triple. Knowing primitive Pythagorean triple xn-yn-zn, this gives a
recursive algorithm to construct a primitive Pythagorean triple xnC1-ynC1-znC1 with the same
property.

Since the simplest such triple is 3-4-5, this algorithm can be defined recursively:

x1 D 3; y1 D 4; z1 D 5

xnC1 D 3xn C 2zn C 1; ynC1 D xnC1 C 1; znC1 D 4xn C 3zn C 2; n � 1: (4.1)

For example, x2 D 3x1 C 2z1 C 1 D 3 � 3 C 2 � 5 C 1 D 20; y2 D x2 C 1 D 21, and
z2 D 4x1 C 3z1 C 2 D 4 � 3C 3 � 5C 2 D 29; likewise, x3-y3-z3 = 119-120-169; see Table 4.3.
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Table 4.3. Primitive Pythagorean Triples Generated by Recursion

n xn yn zn

1 3 4 5
2 20 21 29
3 119 120 169
4 696 697 985
5 4059 4060 5741
6 23660 23661 33461
7 137904 137903 195025

Notice that in Table 4.2, the leg xn is always odd and yn is always even; but in Table 4.3,
their parities alternate.

Notice also that the sequence fxng can be defined recursively:

x1 D 3; x2 D 20

xn D 6xn�1 � xn�2 C 2; n � 3:

For example, x4 D 6x3 � x2 C 2 D 6 � 119 � 20C 2 D 696.
It follows from the recursive definition (4.1) that there are infinitely many primitive

Pythagorean triples xn-yn-zn with consecutive integral legs. Conversely, we can prove that every
primitive Pythagorean triple with consecutive integral legs can be generated using the recursive
definition (4.1) [233].

Finally, we note that the three recursive formulas in definition (4.1) can be combined into a
single matrix equation:

2

6
4

xnC1

ynC1

znC1

3

7
5 D

2

6
4

3 2 1

3 2 2

4 3 2

3

7
5

2

6
4

xn

yn

1

3

7
5 ; n � 1:

Exercises 4

Verify that each is a Pythagorean triple.

1. .17 � 41; 2 � 12 � 29; 985/.

2. .13860; 702 C 1; 3 � 702 C 1/.

3. Prove that 3-4-5 is the only primitive Pythagorean triple consisting of consecutive integers.

4. Prove that there are infinitely many Pythagorean triples.

5. Suppose x-y-z is a primitive Pythagorean triple with x even. Prove that both yz is odd.

6. Prove that the length of one leg of a Pythagorean triangle is a multiple of 3 (C.W. Trigg,
1970). Hint: Use Fermat’s little theorem [130].

Prove that each is a Pythagorean triple.

7. .2nC 1; 2n.nC 1/; 2n.nC 1/C 1/.
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8. .4n; 4n2 � 1; 4n2 C 1/.

9. .3.2nC 3/; 2n.nC 3/; 2n2 C 6nC 9/.

10. .QnQnC1; 2PnPnC1; P2nC1/.

11. .P4n; P 2
2n C 1; 3P 2

2n C 1/. Hint: Use the Pythagorean triple .2ab; a2 � b2; a2 C b2/ with
a D Q2n and b D P2n, and the identities P2n D 2PnQn and Q2

n � 2P 2
n D .�1/n.

12. The lengths of the legs of a Pythagorean triangle are QnQnC1 and 2PnPnC1. Compute the
area of the triangle. Hint: P2k D 2PkQk .

Develop a generating function for the sequence fang satisfying the given recurrence with the
corresponding initial conditions.

13. an D 6an�1 � an�2I a1 D 5; a2 D 29.

14. an D 6an�1 � an�2 C 2I a1 D 3; a2 D 20.

*15 The ratio of the area of a Pythagorean triangle to its semi-perimeter is pm, where p is a
prime and m a positive integer. Prove that there are m C 1 such triangles if p D 2, and
2mC 1 such triangles otherwise. (H. Klostergaard, 1979)
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Triangular Numbers

5.1 Introduction

The old Chinese proverb, “A picture is worth a thousand words,” is true in mathematics. We
frequently use geometric illustrations to clarify concepts and illustrate relationships in every
branch of mathematics. Figurate Numbers provide such a link between number theory and
geometry; they are positive integers that can be represented by geometric patterns. Although
the Pythagoreans are usually given credit for their discovery, the ancient Chinese seem to have
originated such representations about 500 years before Pythagoras. Many centuries later, in 1665,
Pascal wrote a book on them, Treatise on Figurate Numbers.

Polygonal numbers are a special class of figurate numbers; they are positive integers that
can be represented by regular n-gons, where n � 3. When n D 3; 4, and 5, they are called
triangular, square, and pentagonal numbers, respectively. In this chapter, we will focus on
triangular numbers.

5.2 Triangular Numbers

We often see triangular arrangements of objects in the real world. A set of the ten bowling pins
are initially set up in a triangular shape. In the game of pool, the 15 balls are also initially set up
as a triangular array. The white floral design in the tablecloth in Figure 5.1 represents the number
15; the gray spaces in between the designs represent the number 10. Grocery stores often stack
fruits, such as apples and oranges, in triangular arrangements; see Figure 5.2. The numbers 3,
10, and 15 are triangular numbers.

More generally, a triangular number tn is a positive integer that can be represented by an
equilateral triangular array. The first four triangular numbers are t1 D 1, t2 D 3, t3 D 6, and
t4 D 10. They are represented pictorially in Figure 5.3.

T. Koshy, Pell and Pell–Lucas Numbers with Applications, DOI 10.1007/978-1-4614-8489-9__5,
© Springer Science+Business Media New York 2014
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Figure 5.1. A Thai tablecloth

Figure 5.2. Oranges in Grocery Store

Figure 5.3. The First Four Triangular Numbers

Since row i in such an array contains i dots, it follows that tn D
nP

iD1

i D n.nC1/

2
.

For example, t36 D 36�37
2

= 666 (the beastly number6), and t1681 D 1681�1682
2
D 1; 413; 721 D

11897, a square.
Since tn D n.nC1/

2
D �

nC1
2

�
, triangular numbers can be read directly from Pascal’s triangle;

see the rising diagonal in Figure 5.4.
Since row n in the array contains n dots, tn can be defined recursively:

6 See the Book of Revelation in the Bible.
7 For Fibonacci enthusiasts, we note that 11 is a Lucas number and 89 a Fibonacci number; there are 1189 chapters in the

Bible, of which 89 are in the New Testament.
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triangular numbers1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Figure 5.4. Pascal’s Triangle

t1 D 1

tn D tn�1 C n; n � 2:

Triangular numbers appear in a variety of situations. For example, we can find them in the
famous carol “Twelve Days of Christmas” [130]: Suppose you send i gifts to your true love on

the i th day of Christmas; how many gifts sn would be sent on the nth day? Clearly, sn D
nP

iD1

i D
n.nC1/

2
D tn. In particular, s12 D 12�13

2
D 78 D t12, as in the carol.

5.3 Pascal’s Triangle Revisited

There is an interesting relationship between triangular numbers and Pascal’s triangle. To see
this, replace each even number by 0 and each odd number by 1. Figure 5.5 shows the resulting
Pascal’s binary triangle.

Figure 5.5. Pascal’s Binary Triangle
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Notice that some rows consist of 1s only; they are row 0 and rows labeled Mn, when n � 1.
This fact was established in 1981 by R.M. Dacic of Belgrade, Serbia [130].

Pascal’s binary triangle contains another treasure. To see this, consider the centrally located
triangles rn consisting of 0s; they point downward and have their bases on row 2n, where n � 1.
Since row n contains .2n C 1/ � 2 D Mn zeros, rn consists of Mn.MnC1/

2
D 2n�1Mn zeros. But

2n�1Mn D tMn . So triangle rn represents the triangular number tMn for every n � 1.
Since every even perfect number is of the form 2p�1Mp and 2p�1Mp D tMp , it follows that

every even perfect number is represented by the triangle rMp , where Mp is a prime.
For example, M3 D 23 � 1 D 7 and tM3 D t7 D 7�8

2
D 28, the second perfect number. It is

represented by rM3 , the third centrally located triangle pointing downward.

5.4 Triangular Mersenne Numbers

Although every even perfect number is triangular, what is the case with Mersenne numbers Mn?
Notice that M1 D t1; M2 D 3 D t2; M4 D 15 D t5, and M12 D 4095 D t90 are all triangular
numbers. But there are no additional triangular Mersenne numbers �M30. So they appear to be
sparsely populated.

In 1958, U.V. Satyanarayana of Andhra University, India, proved that there are infinitely
many Mersenne numbers which are not triangular. This can be established fairly easily using
congruence modulo 10. First, notice that every triangular number tn is congruent to 1, 3, 5, 6, or
8 modulo 10. Secondly, let n be any positive integer. Then, by the division algorithm, n � 0; 1; 2,
or 3 .mod 4/.

Case 1 Suppose n � 0 .mod 4/, so n D 4k for some integer k � 0. Then

Mn D 24k � 1 D .24/k � 1 � 6k � 1 � 6 � 1 � 5 .mod 10/:

Case 2 Suppose n � 1 .mod 4/, so n D 4k C 1 for some integer k � 0. Then

Mn D 24kC1 � 1 D 2 � .24/k � 1 � 2 � 6k � 1 � 2 � 6 � 1 � 1 .mod 10/:

Likewise, it can be shown that

Mn D
(

3 .mod 10/ if n � 2 .mod 4/

7 .mod 10/ if n � 3 .mod 4/:
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Thus

Mn D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

5 .mod 10/ if n � 0 .mod 4/

1 .mod 10/ if n � 1 .mod 4/

3 .mod 10/ if n � 2 .mod 4/

7 .mod 10/ otherwise:

Since tn � 1; 3; 5; 6; or 8 (mod 10), it follows that Mn cannot be triangular if n � 3 .mod 4/.
But there are infinitely many Mersenne numbers of the form M4kC3. Consequently, there are
infinitely many non-triangular Mersenne numbers.

5.5 Properties of Triangular Numbers

Triangular numbers satisfy a vast array of interesting properties. The simplest and most obvious
is the fact that the sum of any two consecutive triangular numbers is a square: tn C tn�1 D n2.
The proof follows algebraically.

Figure 5.6 provides a geometric illustration of this fact when n D 4 and n D 5.

t5 + t4 = 52t4 + t3 = 42

Figure 5.6.

Next we establish a criterion for two consecutive triangular numbers to have the same parity
(oddness or evenness).

Theorem 5.1 The triangular numbers tn and tnC1 have the same parity if and only if n is odd.

Proof. Suppose tn � tnC1 .mod 2/. Then tnC tnC1 D .nC 1/2 is even; so nC 1 is even. Hence
n is odd.

Conversely, let n be odd. Then n C 1 and hence .n C 1/2 are even. So tn C tnC1 is even.
Consequently, tn � tnC1 .mod 2/.

The next result, discovered by Diophantus (ca. 250), can also be established algebraically:
One more than eight times a triangular number is a square.

Theorem 5.2 (Diophantus) 8tn C 1 D .2nC 1/2.

Figure 5.7 shows a pictorial illustration of Diophantus’ result, developed in 1985 by E.G.
Landauer of the General Physics Corporation [148].
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Figure 5.7. A Visual Proof of Diophantus’ Result

The Diophantus Theorem yields an interesting byproduct. The square of every odd integer
is congruent to 1 modulo 8; that is, .2n C 1/2 � 1 .mod 8/. This theorem also implies that if
8N C 1 D .2nC 1/2, then N D n.nC1/

2
D tn. See the geometric illustration in Figure 5.7.

As another byproduct, it can be used to determine whether or not a positive integer N is
a triangular number tn; if it is, then we can identify the value of n, as the next two examples
illustrate.

Example 5.1 Determine whether or not N D 1; 983; 036 is a triangular number tn. If it is,
find n.

Solution. Assume N is a triangular number tn. Then, by Theorem 5.2, 8N C 1 D .2n C 1/2;

so n D
p

8N C1�1
2

D
p

8�1983036�1
2

must be a positive integer. Notice that
p

8�1983036�1
2

D 1991 is
indeed an integer. So N is a triangular number and N D t1991 D 1991�1992

2
.

Example 5.2 Determine whether or not N D 1; 967; 139 is a triangular number tn. If it is,
find n.

Solution. Again, assume N is a triangular number tn. Then, as in Example 5.1, n D
p

8N C1�1
2

Dp
8�1967139�1

2
must be an integer. But

p
8�1967139�1

2
� 1983:0015, a contradiction. So N is not a

triangular number.

Table 5.1 shows a list of properties of triangular numbers; they all can be confirmed
algebraically.

Table 5.1. Properties of Triangular Numbers

(1) tn C tn�1 D n2 (2) ttn C ttn�1 D t 2
n

(3) t 2
n C t 2

n�1 D tn2 (4) 8tn C 1 D .2nC 1/2

(5) 8tn�1 C 4n D .2n/2 (6) t2n D 3tn C tn�1

(7) t2nC1 D 3tn C tnC1 (8) t 2
n � t 2

n�1 D n3

(9) t2n � 2tn D n2 (10) t2n�1 � 2tn�1 D n2

(11) t 2
n D tn C tn�1tnC1 (12) 2tntn�1 D tn2�1
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Identity (8) has an interesting byproduct. It can be employed to establish the summation

formula for
nP

iD1

i3; see Exercise 19.

The properties in Table 5.1 can be illustrated pictorially, providing an enjoyable exercise.
This art has been popularized over the years by R.B. Nelsen of Lewis and Clark College,
Portland, Oregon [170, 171]. For example, Figures 5.8, 5.9, 5.10, and 5.11 provide visual
illustrations of properties (3), (5), (6), and (7), respectively.

(a)

(b)

(c)

(d)

Figure 5.8. (a) t 2
1 C t 2

2 D t4 (b) t 2
2 C t 2

3 D t9 (c) t 2
3 C t 2

4 D t16 (d) t 2
4 C t 2

5 D t25

Figure 5.9. 8tn�1 C 4n D .2n/2 Figure 5.10. 3tn C tn�1 D t2n
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Figure 5.11. 3tn C tnC1 D t2nC1

5.6 Triangular Fermat Numbers

Since

t3n D 3n.3nC 1/

2
� 2.3n/.3nC 1/ � 0 .mod 3/

t3nC1 D .3nC 1/.3nC 2/

2
� 2.3nC 1/.3nC 2/ � 1 .mod 3/

t3nC2 D .3nC 2/.3nC 3/

2
� 2.3nC 2/.3nC 3/ � 0 .mod 3/;

it follows that

tm �
(

1 .mod 3/ if m � 1 .mod 3/

0 .mod 3/ otherwise:

This congruence has an interesting consequence. To see this, consider the nth Fermat number
fn D 22n C 1, where n � 0. Notice that f0 D 3 is a triangular number. Suppose n � 1. Then
fn � .�1/2n C 1 � 1C 1 � 2 .mod 3/; so fn cannot be a triangular number when n � 1. In
other words, 3 is the only triangular Fermat number.

In 1987, S. Asadulla [5] established the same fact using PMI and the following facts, where
n � 1: 1) fn � 7 .mod 10/; and 2) tn � 1; 5; 6; or 8 .mod 10/.

5.7 The Equation x2 C .x C 1/2 D z2 Revisited

In Chapter 4 we found that the diophantine equation x2 C .x C 1/2 D z2 has infinitely many
solutions. This fact has an interesting byproduct. To see this, let .x; z/ be such a solution. Then

t 2
2x C t 2

2xC1 D
�

2x.2x C 1/

2

�2

C
�

.2x C 1/.2x C 2/

2

�2

D .2x C 1/2


x2 C .x C 1/2

�

D Œ.2x C 1/z�2:
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Since the equation x2 C .x C 1/2 D z2 has infinitely many solutions, it follows that there are
infinitely many primitive Pythagorean triangles whose legs are consecutive triangular numbers.
For example, t 2

6 C t 2
7 D .7 � 5/2; t 2

40C t 2
41 D .41 � 29/2, and t 2

238C t 2
239 D .239 � 169/2 yield three

such Pythagorean triangles.
Next we develop a generating function for triangular numbers using differentiation. This

technique works since we are not interested in the convergence of the corresponding power
series.

5.8 A Generating function For Triangular Numbers

We have

1

1 � x
D

1X

nD0

xn

1

.1 � x/2
D

1X

nD0

.nC 1/xn

1

.1 � x/3
D

1X

nD1

n.nC 1/

2
xn:

This is the desired generating function.

5.9 Triangular Numbers and Pell’s Equation

There is a close link between triangular numbers and Pell’s equation. The following example
illustrates such a relationship. We will explore this further in the next chapter.

Example 5.3 There are triangular numbers tn that differ from a square by 1; that is, jtn�m2j D
1, where m is a positive integer and jxj denotes the absolute value of the number x. For example,
jt2�22j D j3�22j D 1 and jt4�32j D j10�32j D 1. Find the next six such triangular numbers.

Solution. The condition jtn � m2j D 1 implies that n.n C 1/ � 2m2 D ˙2; that is, n2 C n �
2m2 D ˙2. Multiplying by 4 and then completing the square, we get two Pell’s equations:
x2 � 2y2 D �7 or 9, where x D 2nC 1 and y D 2m; so x � 1 .mod 2/ and y � 0 .mod 2/.

Case 1 Let x2 � 2y2 D �7. We solved this equation in Example 2.16. Table 5.2 gives the first
four solutions .x; y/, and the corresponding values of n; m; tn and m2. In each case, jtn�m2j D 1.
(Note that t0 also works, although it is not considered a triangular number.
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Table 5.2.

x y n m tn m2

1 2 0 1 0 1
5 4 2 2 3 4

11 8 5 4 15 16
31 22 15 11 120 121

Table 5.3.

x y n m tn m2

3 0 1 0 1 0
9 6 4 3 10 9

51 36 25 18 325 324
297 210 148 105 11026 11025

Case 2 Let x2 � 2y2 D 9. Using Example 2.15, we can construct a similar table; see Table 5.3.
Again, jtn �m2j D 1 in each case. (Notice that t1 is a possibility if we allow m to be zero.)

5.9.1 Two Interesting Dividends

The y-values found in Case 2 above follow an interesting pattern: 0; 6; 36; 210; 1224; : : : . This
sequence fyng can be defined recursively:

y0 D 0; y1 D 6

yn D 6yn�1 � yn�2; n � 2:

This is a homogeneous recurrence with constant coefficients. (We will encounter it in the
next chapter also.) Using the standard technique, we can solve it to find an explicit formula for

yn. The general solution is yn D 3
�

�2n�ı2n

2
p

2

	
D 3P2n, where n � 0. For example, y2 D 3P4 D

3 � 12 D 36.
A generating function for the sequence fyng is

6x

1 � 6x C x2
D 6x C 36x2 C 210x3 C 1224x4 C : : : :

Next we investigate the fxkg-values found in Case 1: 1; 5; 11; 31; 65; : : : . They too follow an
interesting pattern. Can you find it without reading any further?

The sequence fxkg can be defined recursively:

x1 D 1; x2 D 5; x3 D 11; x4 D 31

xk D 6xk�2 � xk�4; k � 5: (5.1)

For example, x6 D 6x4�x2 D 6 �31�5 D 181. Likewise, x7 D 379. Table 5.4 gives the first
eleven values of xk and yk , and the corresponding values nk and mk of n and m, respectively.
Using the recursive definition (5.1), we can extend it to include the case n D 0: x4 D 6x2 � x0;
that is, 31 D 6 � 5 � x0; so x0 must be �1.

Accordingly, we can modify the recursive definition:

x0 D �1; x1 D 1; x2 D 5; x3 D 11

xk D 6xk�2 � xk�4; k � 4: (5.2)
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Table 5.4.

k 1 2 3 4 5 6 7 8 9 10 11

xk 1 5 11 31 65 181 379 1055 2209 6149 12875
yk 2 4 8 22 46 128 268 746 1562 4348 9104
nk 0 2 5 15 32 90 189 527 1104 3074 6437
mk 1 2 4 11 23 64 134 373 781 2174 4552

This will make it easier to find an explicit formula for xk . To this end, we will solve the
recurrence (5.2).

The recurrence (5.2) is a linear homogeneous one with constant coefficients. Its characteristic
equation is z4� 6z2C 1 D 0. Solving it, we get z2 D 3˙ 2

p
2 D .1˙p2/2; so z D ˙1˙p2.

Thus there are four characteristic roots: r D �; s D ı; t D �� , and u D �ı. So the general
solution is of form xk D Ark C Bsk C C tk CDuk , where the constants A; B; C , and D are to
be determined.

The four initial conditions yield the following 4 � 4 linear system in A; B; C , and D:

AC B C C CD D �1 (5.3)

Ar C Bs C C t CDu D 1

Ar2 C Bs2 C C t2 CDu2 D 5

Ar3 C Bs3 C C t3 CDu3 D 11:

Solving this is lengthy, tedious, and time-consuming. For the sake of brevity, we will omit the
complicated computations and give only the key steps. The following values will come in handy
in the process: r � s D 2

p
2; r � t D 2 C 2

p
2; r � u D 2; r2 D t 2 D 3 C 2

p
2; s2 D u2 D

3 � 2
p

2; r3 � s3 D 10
p

2; r3 � t 3 D 14C 10
p

2; r3 � u3 D 14; and r3 C 11 D 18C 5
p

2.
These facts can be used to obtain a 3 � 3 linear system in B; C ; and D:

p
2B C .1Cp2/C CD D �2Cp2

2

B CD D �4Cp2

2
p

2
(5.4)

10
p

2B C .14C 10
p

2/C C 14D D �18 � 5
p

2:

This leads to the following linear system in B and C :

.
p

2 � 1/B C .1Cp2/C D 2 �p2

2

.5
p

2 � 7/B C .7C 5
p

2/C D 18 � 11
p

2

2
p

2
:
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Solving this linear system yields

B D �2 � 2
p

2

4
p

2
D � ı

2
p

2
and C D 6 � 4

p
2

4
p

2
D ı2

2
p

2
:

Using equation (5.4), we get D D �6C4
p

2

4
p

2
D � �2

2
p

2
. Using equation (5.3), we now can

compute A: A D 2C2
p

2

4
p

2
D �

2
p

2
.

Substituting for A; B; C , and D, we get the desired general solution satisfying the initial
conditions:

xk D �

2
p

2
� �k � ı

2
p

2
� ık C ı2

2
p

2
.��/k � �2

2
p

2
.�ı/k

D �kC1 � ıkC1

2
p

2
C .�1/k

2
p

2

h
3.�k � ık/ � 2

p
2.�k C ık/

i

D PkC1 C .�1/k.3Pk � 2Qk/; where k � 0:

For example x2 D P3 C .3P2 � 2Q2/ D 5 C .3 � 2 � 2 � 3/ D 5, as expected. Similarly,
x3 D 11.

Computing these values by hand or even with the aid of a scientific calculator is extremely
time-consuming, and a test of accuracy and patience. A computer algebra system such as
Mathematica8 can be extremely useful for such complex computations.

Using the power of matrices and Mathematicar to solve the above 4 � 4 linear system in
A; B; C , and D, we can save hours of frustration.

5.9.2 The Matrix Method Using Mathematicar

The linear system can be written as a matrix equation:

2

6
6
6
4

1 1 1 1

r s t u

r2 s2 t2 u2

r3 s3 t3 u3

3

7
7
7
5

2

6
6
6
4

A

B

C

D

3

7
7
7
5
D

2

6
6
6
4

�1

1

5

11

3

7
7
7
5

:

The coefficient matrix

M D

2

6
6
6
4

1 1 1 1

r s t u

r2 s2 t2 u2

r3 s3 t3 u3

3

7
7
7
5

8 Mathematicar is a registered trademark of Wolfram Research, Inc.
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is the 4 � 4 Vandermonde matrix, named after the French mathematician Charles Auguste
Vandermonde (1735–1796). Since jM j D .r � s/.r � t /.r � u/.t � s/.t � u/.s � u/ and no two
characteristic roots are equal, it follows that jM j 6D 0, where jM j denotes the determinant of the
matrix M . Consequently, M is invertible. Using Mathematicar,

M �1 D 1

128

2

6
6
6
4

32 � 24
p

2 �80C 56
p

2 8
p

2 16 � 8
p

2

32C 24
p

2 �80 � 56
p

2 �8
p

2 16C 8
p

2

32 � 24
p

2 80 � 56
p

2 8
p

2 �16C 8
p

2

32C 24
p

2 80C 56
p

2 �8
p

2 �16 � 8
p

2

3

7
7
7
5

:

Therefore
2

6
6
6
4

A

B

C

D

3

7
7
7
5
D 1

128

2

6
6
6
4

32 � 24
p

2 �80C 56
p

2 8
p

2 16 � 8
p

2

32C 24
p

2 �80 � 56
p

2 �8
p

2 16C 8
p

2

32 � 24
p

2 80 � 56
p

2 8
p

2 �16C 8
p

2

32C 24
p

2 80C 56
p

2 �8
p

2 �16 � 8
p

2

3

7
7
7
5

2

6
6
6
4

�1

1

5

11

3

7
7
7
5

D 1

4
p

2

2

6
6
6
4

2C 2
p

2

�2C 2
p

2

6 � 4
p

2

�6 � 4
p

2

3

7
7
7
5

:

These are exactly the same values we got earlier for A; B; C , and D by the traditional method.
We can develop a generating function g.t/ for the sequence fxkg using the recursive

definition (5.2):

5t3 C 11t2 C t � 1

t4 � 6t2 C 1
D �1C t C 5t2 C 11t3 C 31t4 C � � � C xktk C � � � :

5.9.3 Example 5.3 Revisited

The Pell equation x2 � 2y2 D 9 has an added byproduct. To see this, suppose we would like
to find three consecutive triangular numbers whose product is a square; that is, find a positive
integer n such that tn�1tntnC1 is a square. Since 1

2
.n � 1/n � 1

2
n.n C 1/ � 1

2
.n C 1/.n C 2/ D

n2.nC1/2

4
� .n�1/.nC2/

2
, this implies that .n�1/.nC2/

2
D m2 for some positive integer m. This yields

the equation x2 � 2y2 D 9, where x D 2nC 1 and y D 2m.
Since y 6D 0, the least positive solution is .x1; y1/ D .9; 6/; then n D 4. Correspondingly,

t3t4t5 D 6 � 10 � 15 D 302. With .x2; y2/ D .51; 36/, we get n D 25; then t24t25t26 D 300 � 325 �
351 D 58502. Since the Pell’s equation has infinitely many solutions, it follows that there is an
infinitude of triples of consecutive triangular numbers such that their product is a square.

We close this chapter with an unsolved problem involving triangular numbers.
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5.10 An Unsolved Problem

In 1949, the Polish mathematician K. Zarankiewicz (1902–1959) asked whether or not there are
Pythagorean triangles whose sides are triangular numbers. Interestingly, there is at least one:
t 2
132 C t 2

143 D 87782 C 102962 D 183; 060; 900 D 13; 5302 D t 2
164. It is not known if there are?

any other such Pythagorean triangles.

Exercises 5

1. Prove Diophantus’ theorem.
Determine if each integer is a triangular number tn? When it is, find n.

2. 2,025,078.

3. 1,983,037.
Evaluate each.

4.
nP

kD1

1
tk

.

5.
1P

kD1

1
tk

.

This problem was proposed by Huygens to the German mathematician Gottfried Wilhelm
Leibniz (1646–1716) during the former’s stay in Paris at the invitation of Louis XIV. This
problem led to the development of Leibniz’s harmonic triangle [137].

6. Prove that ftn .mod 10/g is periodic with period 20.

7–18. Prove identities 1–12 in Table 5.1.

19. Using identity (8) in Table 5.1, develop a summation formula for
nP

iD1

i3.

20. Solve the recurrence yn D 6yn�1 � yn�2, where y0 D 0; y1 D 6, and n � 2.

21. Using the recursive definition of yn in Exercise 19, find a generating function for fyng.
22. Develop a generating function for the sequence fxng, where xn D 6xn�2�xn�4; x1 D 1,

x2 D 5; x3 D 11; x4 D 31, and n � 5.
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Square-Triangular Numbers

6.1 Introduction

In the preceding chapter we introduced triangular numbers and some of their properties,
including some visual representations. This chapter focuses on a special class of triangular
numbers, which has major ramifications.

To begin with, we ask if there are triangular numbers that are also squares. Certainly. We saw
two such triangular numbers in the previous chapter: t1 D 1 D 12 and t1681 D 1; 413; 721 D
11892. So there are at least two square-triangular numbers. Are there any others? If yes, how
many are there? How do we find them? We will answer these questions now.

Finding square-triangular numbers by trial and error is not practical, so we will take
advantage of Diophantus’ theorem: 8tnC1 D .2nC1/2. Thus every triangular number tn has the
property that 8tnC1 is a square. In addition, we want tn to be a square m2; then 8m2C1 also must
be a square. So we must select integers n and m such that Pell’s equation .2nC 1/2 � 8m2 D 1

is satisfied.

6.2 Infinitude of Square-Triangular Numbers

Recall from Example 2.3 that Pell’s equation x2 � 8y2 D 1 has infinitely many solutions
.xn; yn/ D .Q2n; 1

2
P2n/, where n � 1. Consequently, there are infinitely many square-triangular

numbers y2
k , as Euler discovered in 1730.

Table 6.1 gives fifteen solutions .xk; yk/ of the equation, the first fifteen square-triangular
numbers y2

k , and their corresponding subscripts nk .

T. Koshy, Pell and Pell–Lucas Numbers with Applications, DOI 10.1007/978-1-4614-8489-9__6,
© Springer Science+Business Media New York 2014
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Table 6.1.

Square-Triangular Corresponding Subscript
k xk yk Number y2

k nk in tnk

1 3 1 1 1
2 17 6 36 8
3 99 35 1225 49
4 577 204 41616 288
5 3363 1189 1413721 1681
6 19601 6930 48024900 9800
7 114243 40391 1631432881 57121
8 665857 235416 55420693056 332928
9 3880899 1372105 1882672131025 1940449

10 22619537 7997214 63955431761796 11309768
11 131836323 46611179 2172602007770041 65918161
12 768398401 271669860 73804512832419600 384199200
13 4478554083 1583407981 2507180834294496361 2239277041
14 26102926097 9228778026 85170343853180456676 13051463048
15 152139002499 53789260175 2893284510173841030625 76069501249

The formula for the square-triangular number y2
k can be written in different ways:

y2
k D

1

4
P 2

2k D
1

32

h
.1Cp2/4k C .1 �p2/4k � 2

i

D 1

32

h
.3C 2

p
2/2k C .3 � 2

p
2/2k � 2

i
D 1

16
.Q4k � 1/

D 1

32

h
.17C 12

p
2/k C .17 � 12

p
2/k � 2

i
:

Knowing a square-triangular number y2
k , how do we know which triangular number tnk

it is?
To answer this, again we return to Diophantus’ theorem. If y2

k is the triangular number tnk
, then

we must have 8y2
k C 1 D .2nk C 1/2; so nk D

q
8y2

k
C1�1

2
. Thus y2

k D tp
8y2

k
C1�1

2

.

For example, consider the square-triangular number y2
3 D 1225. Then n3 D

p
8�1225C1�1

2
D

49. So 1225 D t49, the 49th triangular number; see Table 6.1.
We now make some interesting observations about Table 6.1:

(1) The sequence fykg D 1; 6; 35; 204; 1189; : : : contains two hidden treasures. To see this,
we can factor each yk as yk D PkQk:

1 D 1 � 1

6 D 2 � 3

35 D 5 � 7

204 D 12 � 17

1189 D 29 � 41::: " "
Pk Qk
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We encountered the sequences fPng and fQng in a variety of contexts in Chapter 2–5 and
will explore them at length in Chapters 7–15, where we will show that .Pn; Qn/ D 1.

(2) Recall from Example 1.5 that the sequence fykg is defined recursively as follows:

y1 D 1; y2 D 6

yk D 6yk�1 � yk�2; k � 3:

It follows by Example 1.8 that yk D rk � sk

4
p

2
, where r D 3C 2

p
2 and s D 3� 2

p
2.

But r D �2 and s D ı2; so

yk D �2k � ı2k

4
p

2
D 1

2
P2k: (6.1)

For example, y3 D 1
2
P6 D 1

2
.70/ D 35, as expected; see Table 6.1.

(3) The ratios ykC1

yk
follow an interesting pattern; see Table 6.2. It appears that the ratios

approach a finite limit as k approaches1. In fact, lim
k!1

ykC1

yk
D �2; see Exercise 3.

Table 6.2.

k yk
ykC1

yk

1 1 6.00000000000
2 6 5.83333333333
3 35 5.82857142857
4 204 5.82843137255
5 1189 5.82842724979
6 6930 5.82842712843
7 40391 5.82842712485
8 235416 5.82842712475
9 1372105 5.82842712475

10 7997214 5.82842712475

(4) The sequence fxkg in Column 1 follows exactly the same recursive pattern, but with
different initial conditions:

x1 D 3; x2 D 17

xk D 6xk�1 � xk�2; k � 3:

Solving this LHRWCCs, we get

xk D 1

2

h
.3C 2

p
2/k C .3 � 2

p
2/k
i
D Q2k: (6.2)

For example, x3 D Q6 D 99, as expected.
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(5) Consider the sequence of subscripts of the square-triangular numbers in Column 5:
1; 8; 49; 288; 1681; : : :. This is the same sequence fnkg we studied in Example 1.6. It is
defined by

n1 D 1; n2 D 8

nk D 6nk�1 � nk�2 C 2; k � 3:

It follows by Example 1.9 that nk D rk C sk � 2

4
, where r D 3 C 2

p
2 and s D

3 � 2
p

2. Since r D �2 and s D ı2,

nk D 1

4

�
�2k C ı2k � 2

� D 1

2
.Q2k � 1/: (6.3)

For example, n4 D 1
2
.Q8 � 1/ D 1

2
.577 � 1/ D 288, as expected. That is, t288 D

1; 413; 712; see Table 6.1.
In 1972, D.C.D. Potter of Hillcroft School, London, England, found an interesting

relationship between two successive members of the sequence fnkg: .nk C nk�1 � 1/2 D
8nknk�1, where k � 2 [177]. This can be confirmed using PMI.

For example, .n5 C n4 � 1/2 D .1681C 288 � 1/2 D 3; 873; 024 D 8 � 1681 � 288 D
8n5n4. Using this property and PMI, Potter also showed that n2

k C nk D 2y2
k from the

recursive definitions of the sequences fnkg and fykg, a fact we already knew.

(6) The ratios nkC1

nk
also exhibit an interesting pattern: They too seem to approach a finite limit

as k approaches1; see Table 6.3. As before, lim
k!1

nkC1

nk
D �2; see Exercise 4.

Table 6.3.

k yk
nkC1

nk

1 1 8.00000000000
2 8 6.12500000000
3 49 5.87755102041
4 288 5.83680555556
5 1681 5.82986317668
6 9800 5.82867346939
7 57121 5.82846938954
8 332928 5.82843437620
9 1940449 5.82842836890

10 11309768 5.82842733821

(7) The ratios nk
yk

also display an interesting pattern: They approach
p

2 � 1:4142135623 � � � ;
see Table 6.4 and Exercise 5.
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Table 6.4.

k nk yk
nk

yk

1 1 1 1.0000000000
2 8 6 1.3333333333
3 49 35 1.4000000000
4 288 204 1.4117647058
5 1681 1189 1.4137931035
6 9800 6930 1.4142011834
7 57121 40391 1.4142011834
8 332928 235416 1.4142114385
9 1940449 1372105 1.4142131980

10 11309768 7997214 1.4142134999

6.2.1 An Alternate Method

Since 1C 8y2
k D .2nk C 1/2, it follows that

2nk C 1 D
q

1C 8y2
k

lim
k!1

�

2 � nk

yk

C 1

yk

�

D lim
k!1

s
1

y2
k

C 8

2 lim
k!1

nk

yk

C 0 D p
0C 8

lim
k!1

nk

yk

D p
2:

(8) Now consider the square-triangular numbers ck D y2
k: 1; 36; 1225; 41616; 1413721; : : : .

They too can be defined recursively:

c1 D 1; c2 D 36

ck D 34ck�1 � ck�2 C 2; k � 3: (6.4)

For example, c5 D 34 � 41616 � 1225C 2 D 1; 413; 721, as expected.
We can solve this nonhomogeneous recurrence using the same technique as in (5), by

splitting it into homogeneous and nonhomogeneous parts. It can be shown that

ck D 1

32

�
�4k C ı4k � 2

� D 1

16
.Q4k � 1/ D 1

4
P 2

2k: (6.5)

(We omit the details in the interest of brevity.)

As an example, c3 D 1
4
P 2

6 D 1
4
.70/ D 1225, as expected.
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Since k is arbitrary, formula (6.5) also implies that there are infinitely many square-
triangular numbers.

(9) The ratios of consecutive square-triangular numbers ckC1

ck
also manifest an interesting

pattern: They approach �4 D 17C 12
p

2 � 33:9705627485; see Table 6.5 and Exercise
6. The fact that ckC1

ck
� 34 follows easily from the recurrence (6.4).

Table 6.5.

k ck
ckC1

ck

1 1 36.0000000000
2 8 34.0277777778
3 49 33.9722448980
4 288 33.9706122645
5 1681 33.9705642061
6 9800 33.9705627914
7 57121 33.9705627497

(10) Finally, notice that the sequence fxkg is a subsequence of the sequence we encountered in
Example 2.1, while solving Pell’s equation x2 � 2y2 D 1.

Next we extract the ends of the numbers xk; yk; y2
k , and nk .

6.2.2 The Ends of xk ; yk ; y2
k , and nk

Returning to Table 6.1, we find that it contains four additional treasures:

(1) The sequence fxk .mod 10/g shows an interesting periodic pattern with period 6:
3 7 9 7 3 1„ ƒ‚ … 3 7 9 7 3 1„ ƒ‚ … � � �

That is,

xk �

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

3 .mod 10/ if k � 1 .mod 6/

7 .mod 10/ if k � 2 .mod 6/

9 .mod 10/ if k � 3 .mod 6/

7 .mod 10/ if k � 4 .mod 6/

3 .mod 10/ if k � 5 .mod 6/

1 .mod 10/ otherwise.

(2) yk D PkQk �

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

1 .mod 10/ if k � 1 .mod 6/

6 .mod 10/ if k � 2 .mod 6/

5 .mod 10/ if k � 3 .mod 6/

4 .mod 10/ if k � 4 .mod 6/

9 .mod 10/ if k � 5 .mod 6/

0 .mod 10/ otherwise.
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(3) y2
k D P 2

k Q2
k �

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

1 .mod 10/ if k � 1 .mod 6/

6 .mod 10/ if k � 2 .mod 6/

5 .mod 10/ if k � 3 .mod 6/

6 .mod 10/ if k � 4 .mod 6/

1 .mod 10/ if k � 5 .mod 6/

0 .mod 10/ otherwise.

(4) nk �

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

1 .mod 10/ if k � 1 .mod 6/

8 .mod 10/ if k � 2 .mod 6/

9 .mod 10/ if k � 3 .mod 6/

8 .mod 10/ if k � 4 .mod 6/

1 .mod 10/ if k � 5 .mod 6/

0 .mod 10/ otherwise.

These properties can be confirmed using induction and the corresponding recursive definitions.
In 1999, D. Sengupta of Elizabeth City State University of New Jersey computed the first

forty-nine square-triangular numbers [229]. One of them is the 26-digit number t2584123765441,
which does not contain a single zero: t2584123765441 D 3; 338; 847; 817; 559; 778; 254; 844; 961.
On the other hand, the 33-digit square-triangular number t17380816062160328 D 151; 046; 383; 493;

325; 234; 090; 009; 219; 613; 956 contains five 0s, but no 7s.
Next we pursue another recurrence for yk , developed by T. Cross of Wolverley High School,

Wolverley, England, in 1991 [55]. It yields two interesting dividends.

6.2.3 Cross’ Recurrence for yk

Let dk D nk � yk . Table 6.6 shows the first ten values of the sequences fnkg; fykg, and fdkg.

Table 6.6.

k nk yk dk

1 1 1 0
2 8 6 2
3 49 35 14
4 288 204 84
5 1681 1189 492
6 9800 6930 2870
7 57121 40391 16730
8 332928 235416 97512
9 1940449 1372105 568344

10 11309768 7997214 3312554
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It follows from observations (1) and (4) above that

2.nkC1 � nk/ D .1Cp2/2kC1 C .1 �p2/2kC1

D 2.ykC1 C yk/:

So nkC1 � nk D ykC1 C yk . Thus nkC1 � ykC1 D nk C yk; that is, dkC1 D nk C yk .
For example, n4 C y4 D 288C 204 D 492 D d5.

Since tnk
D y2

k , 1C8y2
k D .2nkC1/2; so nk D 1

2

�q
1C 8y2

k � 1

�

. Consequently, we have

dkC1 D 1

2

�q
1C 8y2

k � 1

�

C yk

D 1

2

�

.2yk � 1/C
q

1C 8y2
k

�

: (6.6)

For example,

1

2

�

.2y5 � 1/C
q

1C 8y2
5

�

D 1

2

�
2 � 1189 � 1C

p
1C 8 � 11892

	

D 2870 D d6:

Since tnr D y2
r , we have 1

2
nkC1.nkC1 C 1/ D .nkC1 � dkC1/

2. This yields the quadratic
equation n2

kC1 � .1C 4dkC1/nkC1 C 2d 2
kC1 D 0. Solving this, we get

nkC1 D 1

2

�

1C 4dkC1 ˙
q

.1C 4dkC1/2 � 8d 2
kC1

�

D 1

2

�

1C 4dkC1 ˙
q

1C 8dkC1 C 8d 2
kC1

�

:

Since nkC1 > 0, we choose the positive root:

nkC1 D 1

2

�

1C 4dkC1 C
q

1C 8dkC1 C 8d 2
kC1

�

: (6.7)

Substituting for dkC1 and nkC1 from equations (6.6) and (6.7) in the equation ykC1 D nkC1�
dkC1, and after a lot of algebra, we get a recurrence relation for ykC1:

ykC1 D yk C 1

2

q
1C 8y2

k C
1

2

r

1C 24y2
k C 8yk

q
1C 8y2

k: (6.8)
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For example,

y4 D 35C 1

2

p
1C 8 � 352 C 1

2

q

1C 24 � 352 C 8 � 35
p

1C 8 � 352

D 35C 1

2
� 99C 1

2
� 239 D 204; as expected.

Formula (6.7) yields an interesting dividend. To see this, notice that lim
k!1

1
yk
D 0. So

lim
k!1

ykC1

yk

D lim
k!1

0

@1C 1

2

s

8C 1

y2
k

C 1

2

v
u
u
t 1

y2
k

C 24C 8

s
1

y2
k

C 8

1

A

D 1C 1

2

p
8C 0C 1

2

q

0C 24C 8
p

0C 8

D 1Cp2Cp2.1Cp2/

D 3C 2
p

2 D �2:

We also note the remarkable fact that the sequence
n

ykC1

yk

o
converges to the limit 3 C 2

p
2

very fast. For example, y8

y7
� 5:82842712485, and y9

y8
� 5:82842712475.

Consequently, ykC1 can also be defined by a much simpler recurrence:

y1 D 1

yk D d3C 2
p

2yk�1e; k � 2:

For example, y5 D d3C 2
p

2 � 204e D 1189.
Since 1C 8y2

k D .2nk C 1/2, formula (6.8) can be rewritten as follows:

ykC1 D yk C 1

2
.2nk C 1/C 1

2

q
1C 24y2

k C 8yk.2nk C 1/: (6.9)

For example,

y3 D y2 C 1

2
.2n2 C 1/C 1

2

q
1C 24y2

2 C 8y2.2n2 C 1/

D 6C 1

2
.2 � 8C 1/C 1

2

p
1C 24 � 36C 8.2 � 8C 1/ � 6

D 6C 17

2
C 41

2
D 35:
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6.3 The Infinitude of Square-Triangular Numbers Revisited

We can establish the infinitude of square-triangular numbers without resorting to Pell’s equation.
First, let tn be a square-triangular number. Then 4tn is a square, and so is 8tnC 1 by Diophantus’
theorem. Consequently, 4tn.8tnC1/ is also a square. But 4tn.8tnC1/ D .8tn/.8tnC1/

2
D t8tn is also

a triangular number. Thus, if tn is a square, then so is t8tn . Since t1 is a square-triangular number, it
follows that there are infinitely many square-triangular numbers. (Notice that t8tn D 4tn.2nC1/2,
by Diophantus’ theorem.)

This short and elegant proof [245] was given in 1962 by A.V. Sylvester of the U.S. Naval
Ordinance Laboratory, Corona, California, as a proof for a problem proposed in 1961 by J.L.
Pietenpol of Columbia University [175].

In 1961, the Polish mathematician W. Sierpiński (1882–1969) proved that if tx D y2 is a
square-triangular number, then t3xC4yC1 D .2xC3yC1/2 is the next square-triangular number.
Again, since t1 is a square-triangular number, this formula also establishes the infinitude of
square-triangular numbers. For example, t8 D 62 is a square-triangular number; the next one is
t3�8C4�6C1 D t49 D 352.

In 1962, E. Just of Bronx Community College, Bronx, New York, also gave a short and neat
proof [119]: Recall that Pell’s equation x2 � 2y2 D 1 has infinitely many solutions; that is,
the equation x2�1

2
D y2 has infinitely many solutions. In other words, there are infinitely many

squares of the form 1
2
.x2 � 1/. So there exist infinitely many squares of the form .x2�1/x2

2
; that

is, there are infinitely many square-triangular numbers tx2�1.
For example, recall again that (17, 12) is a solution of the Pell equation x2 � 2y2 D 1. So

t172�1 D t288 D 288�289
2
D 41616 D 2042 is a square-triangular number, as we already know.

6.4 A Recursive Definition of Square-Triangular Numbers

Sylvester’s proof provides an elegant algorithm for computing square-triangular numbers t
.s/
n

recursively:

t
.s/
1 D 1

t .s/
n D 4t

.s/
n�1

�
8t

.s/
n�1 C 1

	
; n � 2:

The first four such triangular numbers are

t
.s/
1 D 1 D 12 D t 2

1

t
.s/
2 D 4 � 1.8 � 1C 1/ D 36 D 62 D t 2

8�1
t
.s/
3 D 4 � 36.8 � 36C 1/ D 41; 616 D 2042 D t 2

8�36

t
.s/
4 D 4 � 41; 616.8 � 41; 616C 1/ D 55; 420; 693; 056 D 235; 4162 D t 2

8�41;616.

In 1942, W. Ljunggren established that there are exactly two triangular numbers whose
squares are also triangular numbers. They are t1 and t6: t 2

1 D 1 D t1 and t 2
6 D 36 D t8. He

also showed that no triangular number is the fourth power of an integer [233].
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6.5 Warten’s Characterization of Square-Triangular Numbers

Next we present a different characterization of square-triangular numbers, developed by R.M.
Warten in 1958, when he was an undergraduate at Brooklyn College, New York. The gist of his
technique lies in the algorithm developed by the Pythagoreans for solving the Pell equations
2u2 � v2 D ˙1.

Before we can present it, we need two simple lemmas.

Lemma 6.1 A positive integer d is square-triangular if and only if there are positive integers u

and v such that d D u2v2 and 2u2 � v2 D ˙1.

Proof. Suppose d D u2v2.

Case 1 Let 2u2 � v2 D 1. Then d D v2.v2C1/

2
is clearly square-triangular.

Case 2 Let 2u2 � v2 D �1. Then d D .v2�1/v2

2
is also square-triangular.

Thus, in both cases, d is square-triangular.
Conversely, suppose d D n.nC1/

2
D y2 is square-triangular.

Case 1 Suppose n is even. Then n
2

and nC 1 are relatively prime;
�

n
2
; nC 1

� D 1. Since d is a
square, suppose d D .q1q2 � � � qk/2, where each qi is a distinct prime-power p

ei
i . Without loss of

generality, we can assume that n
2
D .q1q2 � � � qr/

2 and nC 1 D .qrC1qrC2 � � � qk/2. Let u2 D n
2

and v2 D nC 1. Then d D u2v2 and 2u2 � v2 D n � .nC 1/ D �1, as desired.

Case 2 Suppose n is odd. A similar argument will show that d D u2v2 and 2u2 � v2 D 1.
Thus, d is square-triangular if and only if d D u2v2 and 2u2 � v2 D ˙1.

For example, recall that d D 36 D t8 is square-triangular: d D 2232, where 2 �22�32 D �1.
Likewise, d D 1225 D t49 is square-triangular: d D 5272, where 2 � 52 � 72 D 1.

Lemma 6.2 Let u and v be integers > 1 such that 2u2 � v2 D ˙1. Then 2u > v > u.

Proof (by contradiction). Assume 2u2 � v2 D ˙1.

(1) Suppose u � v. Then u2 � uv � v2 > 1. Therefore, 2u2 � u2 C v2 > v2 C 1, so
2u2 � v2 > 1. This is a contradiction; so v > u.

(2) Suppose v � 2u. Since v > u, v � uC 1. Thus v � 2u and v � uC 1. Consequently, we
have

v2 � 2u.uC 1/

D 2u2 C 2u

> 2u2 C 1; since u > 1:

So 2u2 � v2 < �1, again a contradiction. So 2u > v.
Thus 2u > v > u.
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We are now ready to present Warten’s characterization of square-triangular numbers [253].

Theorem 6.1 Let fNkg be a sequence of positive integers, defined recursively as follows:

(1) N1 D u2
1v

2
1 , where u1 D 1 D v1.

(2) Nk D u2
kv2

k , where uk D uk�1 C vk�1; vk D 2uk�1 C vk�1, and k � 2.

Then the sequence fNkg consists of all square-triangular numbers.

Proof. The proof consists of two parts. First, we will show that every Nk is a square-triangular
number. We will then show that every square-triangular number belongs to the sequence fNkg.
(The proof of the second half is a bit long, and requires some patience to follow the logic.)

(1) We will establish this part using PMI. To this end, first notice that N1 is square-triangular.
Now assume that Nk is a square-triangular number for an arbitrary integer k � 1.

Then, by Lemma 6.1, there exist positive integers uk and vk such that Nk D u2
kv2

k , where
2u2

k � v2
k D ˙1. Then

NkC1 D u2
kC1v

2
kC1

D .u2
k C v2

k/.2uk C vk/2

and

2.uk C vk/2 � .2uk C vk/2 D 2.2u2
k C v2

k C 4ukvk/ � .4u2
k C v2

k C 4ukvk/

D �.2u2
k � v2

k/

D 	1:

Consequently, by Lemma 6.1, NkC1 is also a square-triangular number. Thus, by PMI,
Nk is a square-triangular for every integer k � 1.

(2) We will now prove the second-half using contradiction. To this end, suppose there is a
square-triangular number S1 that is not in the sequence fNkg. Then, by Lemma 6.1, there are
integers a1; b1 > 1 such that S1 D a2

1b2
1 and 2a2

1�b2
1 D ˙1. By Lemma 6.2, 2a1 > b1 > a1.

Let S2 D a2
2b2

2 , where a2 D b1�a1 and b2 D 2a1� b1. Then 2a2
2 � b2

2 D 2.b1�a1/
2�

.2a1 � b1/
2 D �.2a2

1 � b2
1/ D 	1. Since b1 > a1; a2 � 1; since 2a1 > b1, it follows that

b2 � 1. Thus, by Lemma 6.1, S2 is a square-triangular number. In addition, since 2a1 > b1,
a1 > b1 � a1; so a1 > a2. Since 2b1 > 2a1; b1 > 2a1 � b1; that is, b1 > b2. Thus a1 > a2

and b1 > b2. Consequently, S2 D a2
2b2

2 is square-triangular and S1 > S2 > 0.
Continuing like this, we can generate a sequence of square-triangular numbers fSig

such that S1 > S2 > � � � > 0.
Earlier we assumed that S1 does not belong to the sequence fNkg. Suppose S2 belongs

to the sequence fNkg. We have a2 D b1 � a1 and b2 D 2a1 � b1. So a2C b2 D .b1 � a1/C
2a1 � b1 D a1 and 2a2 C b2 D 2.b1 � a1/C .2a1 � b1/ D b1. Consequently, S1 exists in
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the sequence fNkg, which is a contradiction. So S2 does not belong to the sequence fNkg.
It now follows that no Si belongs to the sequence fNkg.

Let S` be the least positive term in the sequence fSig. Suppose S` 6D 1. Then, by Lemma
6.1, there are positive integers a` and b` such that S` D a2

`b2
` , where 2a2

` � b2
` D ˙1. We

now claim that both a` and b` must be greater than 1.
To see this, suppose a` D 1. Then 2 � b2

` D ˙1, so b2
` D 2	 1. Then either b` D

p
3

or b` D 1. Both cases are clearly unacceptable.
On the other hand, suppose b` D 1. Then 2a2

` D 1 ˙ 1, so a` D 1 or a` D 0. Again,
both these cases are unacceptable.

Thus a`; b` > 1. So they can be used to construct a new square-triangular number S`C1

such that S` > S`C1 > 0. But this violates the hypothesis that S` is the least term of the
sequence fSig. So S` D 1 and S1 belongs to the sequence fNkg.

Thus the sequence fNkg consists of all square-triangular numbers, as desired.

Although there are infinitely many square-triangular numbers, there is only one triangular
number that is also a cube, namely, 1. Euler proved this in 1738 [70].

We close this chapter with a short discussion of the generating functions for square-
triangular numbers y2

k and their subscripts nk , and fykg.

6.6 A Generating Function For Square-Triangular Numbers

The recursive definition (6.4) can be used to develop a generating function for square-triangular
numbers ck D y2

k . Notice that recurrence (6.4) is a NHRWCCs. But we can modify it slightly to
make it homogeneous:

ck D 35ck�1 � 35ck�2 C ck�3: (6.10)

Thus the recursive definition (6.4) can be rewritten with a LHRWCCs:

c0 D 0; c1 D 1; c2 D 36

ck D 35ck�1 � 35ck�2 C ck�3: (6.11)

For example, c3 D 35c2�35c1Cc0 D 35�36�35�1C0 D 1; 225 and c4 D 35c3�35c2Cc1 D
35 � 1225 � 35 � 36C 1 D 41; 616.

With these tools, we can develop a generating function for square-triangular numbers:

x.1C x/

.1 � x/.1 � 34x C x2/
D x C 36x2 C 1225x3 C 41616x4 C � � � :

This was originally developed in 1992 by S. Plouffe of the University of Quebec, Canada.

Next we find a generating function for the subscripts nk of square-triangular numbers y2
k .
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6.6.1 A Generating Function For fnkg
It follows by Example 1.11 that the generating function of the sequence fnkg is

x.1C x/

.1 � x/.1 � 6x C x2/
D x C 8x2 C 49x3 C 288x4 C � � � :

Next we develop a generating function for the sequence fykg W 1; 6; 35; 204; 1189; : : : :

6.6.2 A Generating Function For fykg
Recall that yn D 6yn�1 � yn�2, where y1 D 1 and y2 D 6. Notice that y0 D 0. It follows by
Example 1.10 that the desired generating function is

x

1 � 6x C x2
D 1C 6x C 35x2 C 204x3 C 1189x4 C � � � :

Exercises 6

Confirm that each is a square-triangular number.

1. 1,413,721

2. 48,024,900
Confirm each.

3. lim
k!1

ykC1

yk
D �2.

4. lim
k!1

nkC1

nk
D �2.

5. lim
k!1

nk
yk
D p2.

6. lim
k!1

ckC1

ck
D �4.

7. Rewrite the NHRWCCs ck D 34ck�1 � ck�2 C 2 as a LHRWCCs.

8. Solve the recurrence xn D 35xn�1 � 35xn�2 C xn�3, where x0 D 0; x1 D 1, and x2 D 36.

9. Develop a generating function for the sequence fxng in Exercise 8.

10. Define the sequence fdng recursively. Hint: Use Table 6.6.

11. Re-define the sequence fdng using a LHRWCCs.

12. Develop a generating function for the sequence fdng. Hint: Use Exercise 11.



7

Pell and Pell–Lucas Numbers

7.1 Introduction

Like Fibonacci and Lucas numbers, the Pell family is ubiquitous. Pell and Pell–Lucas numbers
also provide boundless opportunities to experiment, explore, and conjecture; they are a lot of fun
for inquisitive amateurs and professionals alike. In this chapter, we formally introduce the family,
and cite their occurrences in earlier chapters, as well as some of their fundamental properties. In
Chapter 12, we will find geometric interpretations of both Pell and Pell–Lucas numbers, and in
Chapter 16 some combinatorial interpretations.

7.2 Earlier Occurrences

Recall that in Chapters 2–6, we found several coincidences. In our study of the Pell equation
x2 � 2y2 D 1, we encountered two prominent number sequences: fQ2ng and fP2ng. While
solving the equation x2 � 2y2 D �1, we came across two related number sequences: fQ2n�1g
and fP2n�1g. Then we found that the solutions of the equation x2 � 2y2 D .�1/n are .Qn; Pn/.

Recall from Example 3.8 that the convergents cn D pn

qn
of the ISCF for

p
2 are

1
1
; 3

2
; 7

5
; 17

12
; 41

29
; : : : . The numerators and denominators of the convergents are QnC1, and PnC1,

respectively, where n � 0.
When we investigated primitive Pythagorean triangles with consecutive legs, we encoun-

tered the sequence 5; 29; 169; 985; 5741; : : :; see Table 4.2. This is the same as the sequence
fP2nC1g.

In our study of square-triangular numbers, we came across the sequence fykg D
1; 6; 35; 204; 1189; 6930; : : : : From Chapter 3, yk D PkQk , the product of the numerator
and denominator of the kth convergent ck of the continued fraction of

p
2 (see Table 3.6):

T. Koshy, Pell and Pell–Lucas Numbers with Applications, DOI 10.1007/978-1-4614-8489-9__7,
© Springer Science+Business Media New York 2014
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Table 7.1.

1 = 1 � 1

6 = 2 � 3

35 = 5 � 7

204 = 12 � 17

1189 = 29 � 41

6930 = 70 � 99
::: " "

Pk Qk

The subscripts nk of square-triangular numbers y2
k in Table 3.6 reveal another spectacular

coincidence; see Table 7.2. Suppose k is odd. Then the numbers
p

nk generate the sequence
1; 7; 41; 239; 1393; : : :. They are the numerators of the even-numbered convergents c2i of the
continued fraction expansion of

p
2, where i � 0.

Table 7.2.

k nk k nk

1 12 = 1 2 2 � 22 = 8
3 72 = 49 4 2 � 122 = 288
5 412 = 1681 6 2 � 702 = 9800
7 2392 = 57121 8 2 � 4082 = 332928
9 13932 = 1940449 10 2 � 23782 = 11309768

On the other hand, suppose k is even. Then the numbers
q

nk
2

also generate an interesting
sequence: 2; 12; 70; 408; 2378; : : :. They are the denominators of the odd-numbered convergents
c2i�1 of continued fraction expansion of

p
2, where i � 1.

Interestingly, each of these number sequences is either fPng; fQng or their subsequences.
Because of the close-knit relationship between the sequence fPng and the Pell equation x2 �
2y2 D �1, the numbers Pn are called Pell numbers; they correspond to Fibonacci numbers. On
the other hand, the sequence fQng is closely related to the equation x2 � 2y2 D 1; the numbers
Qn are called Pell–Lucas numbers. Like Fibonacci and Lucas numbers, Pell and Pell–Lucas
numbers are also very closely related, just like twins; so always look for similarities.

We now define Pell and Pell–Lucas numbers recursively.

7.3 Recursive Definitions

Recall from Chapters 1 and 2 that both Pn and Qn satisfy the same Pell recurrence: xn D
2xn�1Cxn�2, where n � 3; they satisfy the same first initial condition also. The only distinction
between the two definitions is in the second initial condition: P2 D 2, but Q2 D 3.

The Pell recurrence can be translated into a matrix equation:

"
xn

xn�1

#

D
"

2 1

1 0

#"
xn�1

xn�2

#

;

where n � 3. We will take advantage of this matrix equation in the next chapter.
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Table 7.3 gives the first twelve Pell and Pell–Lucas numbers.

Table 7.3.

n 1 2 3 4 5 6 7 8 9 10 11 12

Pn 1 2 5 12 29 70 169 408 985 2378 5741 13860
Qn 1 3 7 17 41 99 239 577 1393 3363 8119 19601

As in the case of Fibonacci and Lucas numbers, the Pell families also can be extended to zero
and negative subscripts: P0 D 0 and P�n D .�1/n�1Pn; and Q0 D 1 and Q�n D .�1/nQn.

Next we make some simple observations from Table 7.3:

(1) Every even-numbered Pell number has even parity.

(2) Every Pell–Lucas number has odd parity.

(3) Qn can end in any odd digit, except 5. This can indeed be confirmed. Notice that the
sequence fQn .mod 5/g shows an interesting pattern:

1 3 2 2 1 4 4 2 3 3 4 1„ ƒ‚ … 1 3 2 2 1 4 4 2 3 3 4 1„ ƒ‚ … � � �

It is periodic, with period 12. Furthermore, no zero occurs in the first block and hence none
in succeeding blocks; so Qn 6� 0 .mod 5/ for every n. Thus no Qn ends in a 5.

(4) The siblings Pn and Qn are relatively prime: .Pn; Qn/ D 1. This follows from the fact that
QnC1

PnC1
is the nth convergent of the ISCF of

p
2, and .Qn; Pn/ D 1 by formula (3.3). (We

will reprove this also later.)

(5) P3n � 0 .mod 5/. We will give a simple and short proof later.

7.4 Alternate Forms for � and ı

We now digress slightly to show how the numbers � D 1Cp2 and ı D 1 �p2 are related to
continued fractions. To see this relationship, we let b D Œ2I 2 �. Then b D 2C 1

b
; so b2�2b�1 D 0

and hence b D 1˙p2. Since b > 0, b D 1Cp2 D � . Thus � D Œ2I 2 �.
Since 1 �p2 D ı D � 1

�
, it follows that ı D 1 �p2 D �Œ0I 2 �.

The powers of � reveal an interesting pattern:

� D 0C 1�

�2 D 1C 2�

�3 D 2C 5�
:::

More generally, it follows by PMI that �n D Pn�1 C Pn� ; so � D n
p

Pn�1 C Pn� .
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Repeated substitution for � yields a complex radical expression for � :

� D n

r

Pn�1 C Pn
n

q

Pn�1 C Pn
n
p

Pn�1 C � � �:

In particular, when n D 2, this gives

� D
r

1C 2

q

1C 2
p

1C � � �:

Similarly, since � D 2 C 1
�

, again it follows by PMI that �n D PnC1 C Pn
�

, where n � 1.
This gives rise to another cumbersome radical expression for � :

� D n

s

PnC1 C Pn

�

D n

v
u
u
tPnC1 C Pn

n

q
PnC1 C Pn

n
p

PnC1C���
:

In particular,

� D
v
u
u
u
u
t

5C 2
s

5C 2p
5C � � �

:

More generally, let t be a positive real number. It follows from �2 D 2� C 1 that .t�/2 D
2t2� C t 2; so t� D pt 2 C 2t.t�/ and t� D 2t C t2

t�
. Continued substitution of the latter for t�

inside the radical yields the following radical continued fraction for t� :

t� D
v
u
u
u
u
t

5t2 C 2t3

s

5t2 C 2t3

p
5t2 C � � �

:

Next, we give a geometric interpretation of the characteristic equation of the Pell recurrence.

7.5 A Geometric Confluence

Recall that the Pell recurrence yields the characteristic equation t 2 D 2tC1; that is, t .t�2/ D 1.
So t

1
D 1

t�2
. This equation has an interesting geometric interpretation.
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To see this, consider a t � 1 rectangle; see Figure 7.1. Now remove two unit squares from
it. By virtue of the equality t

1
D 1

t�2
, the remaining rectangle has the same ratio of length to its

width as the original rectangle.

1 1

t

t − 2

1

Figure 7.1.

7.6 Pell’s equation x2 � 2y2 D �1 Revisited

In 1993, Z. Zaiming of Yuxi Teachers’ College, Yuxi, Yunnan, China, proposed the next example
as a problem [264]. It shows that Pell numbers can appear in unexpected places.

Example 7.1 Find all pairs .m; n/ of positive integers such that 1C 2C � � � Cm D .mC 1/C
.mC 2/C � � �n.

Solution. Using the summation formula (1), the given equation yields

m.mC 1/

2
D .n �m/mC .n �m/.n �mC 1/

2

m.mC 1/ D .n �m/.n �mC 1/

2m.mC 1/ D n.nC 1/

u2 � 2v2 D �1;

where u D 2nC 1 and v D 2mC 1.
Recall from Example 2.11 that the solutions of this Pell equation are given by .uk; vk/ D

.Q2k�1; P2k�1/. Consequently, nk D 1
2

.Q2k�1 � 1/ and mk D 1
2

.P2k�1 � 1/, where k � 2.
For instance, n5 D 1

2
.Q9 � 1/ D 696 and m5 D 1

2
.P9 � 1/ D 492. Notice that 1 C 2 C

� � � C 492 D .492C 1/C .492C 2/C � � � C 696 D 121; 278.

The next example is an application of the Binet-like formulas; P. Mana of the University of
New Mexico, Albuquerque, New Mexico proposed it as a problem in 1970 [162]. The solution
presented here is based on the one given in the following year by L. Carlitz of Duke University,
Durham, North Carolina [40].

Example 7.2 Show that there is a sequence fAkg such that PnC2k D PnCkAk � .�1/kPn, and
define Ak recursively.
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Solution. We have

.� � ı/ŒPnC2k C .�1/kPn� D .�nC2k � ınC2k/C .�1/k.�n � ın/

D .�nC2k � ınC2k/C .�ı/k.�n � ın/

D .�nC2k � ınC2k/C �nCkık � �kınCk

D .�nCk � ınCk/.�k C ık/

PnC2k C .�1/kPn D 2PnCkQk;

as desired. So Ak D 2Qk .
Since Q1 D 1 and Q2 D 3, A1 D 2 and A2 D 6. Furthermore,

2Ak�1 C Ak�2 D 4Qk�1 C 2Qk�2

D 2.2Qk�1 CQk�2/

D 2Qk D Ak:

Thus Ak satisfies the Pell recurrence. So Ak can be defined recursively:

A1 D 2; A2 D 6

Ak D 2Ak�1 C Ak�2; k � 3:

The next example is an interesting confluence of geometry and the Pell family. It appeared
in the International Mathematical Olympiad in 1979.

Example 7.3 Suppose there is a frog at vertex A of the octagon ABCDEF GH in Figure 7.2.
From any vertex, except E, it can jump to either of the two adjacent vertices. When the frog
reaches E, it stops and stays there. Find the number an of distinct paths with exactly n jumps
ending at E.

A
H B

G C

F D
E

Figure 7.2.

Solution. The number of jumps needed from A to E is always even. So a2n�1 D 0 for every
n � 1.

The frog cannot reach E from A in two steps; so a2 D 0. From A, it can reach E in four
steps in two different ways: ABCDE and AHGFE; so a4 D 2.
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Next we will find a recurrence for a2n, where n � 3. To this end, let bn denote the number
of distinct paths from C (or G) to E. There are four different moves the frog can make with two
jumps: A � B � A; A �H � A; A � B � C , and A �H �G.

Suppose the frog returns to A after two jumps. Since there are 2n�2 jumps left, it follows by
definition and symmetry that there are 2a2n�2 such moves to reach E. Suppose it reaches C (or
G) in two steps. Then it takes 2b2n�2 jumps to reach E. Consequently, by the addition principle,

a2n D 2a2n�2 C 2b2n�2: (7.1)

We will now find another recurrence satisfied by both a2n and b2n. Suppose the frog is at C .
There are three possible moves it can make, assuming it does not land at E: A�B�C ; C�D�C ,
and C � B � A. This implies that

b2n D 2b2n�2 C a2n�2: (7.2)

Since b2n�2 D 1
2
.a2n � 2a2n�2/ from (7.1), this yields a second-order recurrence for a2n:

a2nC2 D 4a2n � 2a2n�2: (7.3)

This implies that a4 D 4a2 � 2a0; so a0 D �1.
The characteristic equation of recurrence (7.3) is x2 � 4x C 2 D 0, with characteristic rootsp

2� and
p

2ı. So the general solution of (7.3) is a2n D A.
p

2�/n C B.�p2ı/n, where A and
B are constants and n � 0.

Using the initial conditions a0 D �1 and a2 D 0, we get A D � ı
2

and A D ��

2
. Thus we

have

a2n D �ı

2
.
p

2�/n � �

2
.�p2ı/n

D 2.n�2/=2


�n�1 � .�ı/n�1

�

D
(

2.nC1/=2Pn�1 if n is odd

2n=2Qn�1 otherwise:

For example, a6 D 22P2 D 8, and a8 D 22Q3 D 28.

Next, we present some fundamental identities satisfied by Pell and Pell–Lucas numbers.
Most of them can be established using Binet-like formulas. We will prove a few of them and
leave the others as straightforward exercises for Pell enthusiasts. You will find the following facts
useful in the proofs: � C ı D 2; �ı D �1; � � ı D 2

p
2; .� � ı/2 D 8; � C 1 D p2�; ı C 1 D

�p2ı; �2C ı2 D .�C ı/2�2�ı D 6; �3 D �.2�C1/ D 2�2C� D 2.2�C1/C� D 5�C2,
and similarly, ı3 D 5ı C 2.
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7.7 Fundamental Pell Identities

(1) Pn C Pn�1 D Qn. Since P1 > 0, it follows by PMI that Pn < Qn for every n � 2.

(2) Qn CQn�1 D 2Pn. Consequently, Qn � Qn�1 .mod 2/. But Q1 is odd. So every Qn is
odd.

(3) Pn CQn D PnC1.

(4) 2Pn CQn D QnC1.

(5) 2Qn C 3Pn D PnC2.

(6) 3Qn C 4Pn D QnC2.

(7) QnC1 �Qn D 2Pn.

(8) PnC1 C Pn�1 D 2Qn.

(9) QnC1 CQn�1 D 4Pn.

(10) Pn C PnC1 C PnC3 D 3PnC2.

(11) Qn CQnC1 CQnC3 D 3QnC2.

(12) PnC1 � Pn�1 D 2Pn.

(13) QnC1 �Qn�1 D 2Qn.

(14) PnC2 C Pn�2 D 6Pn.

(15) QnC2 CQn�2 D 6Qn.

(16) PnC2 � Pn�2 D 4Qn.

(17) QnC2 �Qn�2 D 8Pn.

(18) P 2
nC1 C P 2

n D P2nC1.
More generally, we have the following identity, discovered in 1992 by H.T. Freitag of

Roanoke, Virginia [88].

(19) P 2
mCn � .�1/nP 2

m D P2mCnPn.

Thus P2mCnPn D
(

P 2
mCn C P 2

m if n is odd

P 2
mCn � P 2

m if n is even.
Consequently, P 2

mCn C P 2
m is always

factorable.
For example, P 2

5C7 C P 2
5 D 192; 100; 441 D P2�5C7P7 and P 2

5C6 � P 2
5 D

32; 958; 240 D P2�5C6P6.
Identity (19) has a counterpart for Pell–Lucas numbers, also discovered by Freitag in

1992. Its proof follows similarly.

(20) Q2
mCn�.�1/nQ2

m D 2P2mCnPn. For example, Q2
5C7CQ2

5 D 384; 200; 882 D 2P2�5C7P7

and Q2
5C6 �Q2

5 D 65; 916; 480 D 2P2�5C6P6.
It follows from identities (18) and (19) that 2P 2

mCn �Q2
mCn D .�1/n.2P 2

m �Q2
m/.

(21) Q2
nC1 CQ2

n D 2P2nC1.

(22) P 2
nC1 � P 2

n D QnC1Qn.

(23) Q2
nC1 �Q2

n D 4PnC1Pn; that is, Q2
nC1 �Q2

n D Q2nC1 � .�1/n.

(24) 4.P 2
n CQ2

n/ D 3Q2n C .�1/n.

(25) 2Pn CQn D QnC1. This also implies that every Qn is odd.
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(26) 2Pn CQnC2 D 3QnC1.

(27) PnC1 CQn�1 D 3Pn.

(28) P2n D 2PnQn. This corresponds to the identity F2n D FnLn.
It implies:

• P2n has even parity; that is, P2n � 0 .mod 2/.

• P2n is factorable, where n � 2.

• P2kn D 2kPnQnQ2n � � �Q2k�1n, where n; k � 1.
Since P2n is even and Q2n is odd, it follows by the identity P2n C P2n�1 D Q2n

that P2n�1 is odd. Thus Pn � n .mod 2/. Consequently, Q2
1 CQ2

2 C � � � CQ2
n � P 2

n

.mod 2/. More generally, Qk
1 CQk

2 C � � � CQk
n � P k

n .mod 2/, where k is a positive
integer.

(29) P3n � 0 .mod 5/. Since P2n � 0 .mod 2/ and P3n � 0 .mod 5/, it follows that P6n � 0

.mod 10/.

(30) Q2
n C 2P 2

n D Q2n.

(31) Q2
n � 2P 2

n D .�1/n; that is,

ˇ
ˇ
ˇ
ˇ
ˇ

Qn Pn

2Pn Qn

ˇ
ˇ
ˇ
ˇ
ˇ
D .�1/n, where jM j denotes the determinant of

the square matrix M . This result reconfirms a fact we already learned in Chapter 3: QnC1

PnC1

is the nth convergent of the ISCF of
p

2; that is, .QnC1; PnC1/ is a solution of the Pell
equation x2 � 2y2 D .�1/n, where n � 0.

This result has several additional interesting byproducts:

• The triangular numbers t12 and t412 share an interesting property: t12 D 12 and
t412 D 11892. In fact, there are infinitely many square-triangular numbers with square
subscripts n. To see this, let tn D m2 and n D x2 for some positive integers m

and x. Then x2 � 2t2 D �1, where t D m=x. Its solutions are given by .x; t/ D
.Q2k�1; P2k�1/. So m D P2k�1Q2k�1 D 1

2
P2k�2. Thus tQ2

2k�1
D 1

4
P 2

2k�2. For example,

tQ
72 D t2392 D 1; 631; 432; 881 D 40; 3912 D 1

4
P 2

14.

• Since 2P 2
2nC1 D Q2

2nC1 C 1, we have

tQ2nC1�2 C tQ2nC1�1 C tQ2nC1 C tQ2nC1C1

D .Q2nC1 � 2/.Q2nC1 � 1/

2
C .Q2nC1 � 1/Q2nC1

2

CQ2nC1.Q2nC1 C 1/

2
C .Q2nC1 C 1/.Q2nC1 C 2/

2

D 1

2
Œ.Q2nC1 � 1/.2Q2nC1 � 2/C .Q2nC1 C 1/.2Q2nC1 C 2/�

D .Q2nC1 � 1/2 C .Q2nC1 C 1/2

D 2Q2
2nC1 C 2

D 4P 2
2nC1:
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Thus .2P2nC1/
2 can be expressed as the sum of four consecutive triangular numbers,

as K.S. Bhanu and M.N. Deshpande found in 2008 [18].
In particular, let n D 5. Then

4P 2
11 D 4 � 57412 D 131; 836; 324

D 32; 946; 903C 32; 955; 021C 32; 963; 140C 32; 971; 260

D t8117 C t8118 C t8119 C t8120 D tQ11�2 C tQ11�1 C tQ11 C tQ11C1:

More generally, let x be an arbitrary integer � 2. Then

2 .tx�2 C tx�1 C tx C txC1/ D .x � 2/.x � 1/C .x � 1/x C x.x C 1/

C.x C 1/.x C 2/

D 2Œ.x � 1/2 C .x C 1/2� D 4.x2 C 1/

tx�2 C tx�1 C tx C txC1 D 2.x2 C 1/:

Since .xn; yn/ D .Q2nC1; P2nC1/ is a solution of the equation x2 � 2y2 D �1,
it follows that yn D P2nC1 has the property that 4y2

n D 4P 2
2nC1 is the sum of four

consecutive triangular numbers.

• Consider the diophantine equation

x2.3x � 1/2 D 8y2 C 4: (7.4)

Letting X D x.3x � 1/=2, it can be rewritten as X2 � 2y2 D 1. Since its solutions
.x; y/ are given by .Q2n; P2n/, it follows that .x; y/ is a solution of (7.4) if and only if
x.3x � 1/=2 D Q2n and y D P2n for some integer n � 0.

Solving the equation 3x2 � x � 2Q2n D 0, we get x D 1˙p
1C24Q2n

6
. Clearly,

the negative root is not acceptable, so x D 1Cp
1C24Q2n

6
. We will establish later that

1 C 24Qk is a square if and only if k D 0 or 1. When n D 0, X D Q0 D 1; y D
P0 D 0; so (1, 0) is a nonnegative solution of the diophantine equation. When n D 1,
.X; y/ D .Q3; P2/ D .3; 2/; but (3, 2) is not a solution. Thus (1, 0) is the only
nonnegative solution of (7.4).

It follows similarly that (1, 1) is the only nonnegative solution of the diophantine
equation x2.3x � 1/2 D 8y2 � 4.

• Consider the diophantine equation

2x2 D y2.3y � 1/2 � 2: (7.5)

It can be rewritten as x2 � 2Y 2 D �1, where Y D y.3y � 1/=2. The solutions of
x2�2Y 2 D �1 are given by .Q2nC1; P2nC1/; so .x; y/ is a solution of (7.5) if and only
if x D Q2nC1 and y.3y � 1/=2 D P2nC1 for some integer n � 0.
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Solving the equation 3y2 � y � 2P2nC1 D 0 yields y D 1Cp
1C24P2nC1

6
as before.

Again, we will establish later that 1C 24Pk is a square if and only if k D 0; 1; 2; 3; 4;

or 6; so 1 C 24P2nC1 is a square if and only if n D 0 or 1. When n D 0, .x; y/ D
.Q1; .1Cp1C 24P1/=6/ D .1; 1/. Likewise, when n D 1, .x; y/ D .7; 2/. Thus the
diophantine equation 2x2 D y2.3y � 1/2 � 2 has exactly two positive solutions: (1, 1)
and (7, 2).

A similar argument will confirm that the diophantine equation 2x2 D y2.3y�1/2C
2 has exactly two nonnegative solutions: (1, 0) and (17, 3).

• Since Q2
2k D 1 C 2P 2

2k , the subscript nk of the square-triangular number tnk
D y2

k

(see Chapter 6) is given by nk D 1
2

�q
8y2

k C 1 � 1

�

D 1
2

�q
2P 2

2k C 1 � 1

�

D
1
2
.Q2k � 1/. Consequently, tnk

D tQ2k�1

2

.

• Recall from Chapter 2 that if .x; y/ and .X; Y / are two solutions of the Pell equation
x2 � 2y2 D .�1/n, then .xY /2 C .�1/ny2 D .Xy/2 C .�1/nY 2. Consequently, since
.Qk; Pk/ and .Qm; Pm/ are solutions of x2 � 2y2 D .�1/n, it follows that .QkPm/2C
.�1/nP 2

k D .QmPk/2 C .�1/nP 2
m.

For example, .Q4; P4/ D .17; 12/ and .Q8; P8/ D .577; 408/ are solutions of
x2�2y2 D 1. Then .Q4P8/

2CP 2
4 D .17 �408/2C122 D 48; 108; 240 D .577 �12/2C

4082 D .Q8P4/
2CP 2

8 . Likewise, .Q5P9/
2�P 2

5 D 1; 630; 947; 384 D .Q9P5/
2�P 2

9 .

• Since Q2
n � 1 .mod 2/, the identity reconfirms the odd parity of every Qn.

• We have Q2
n D 2P 2

n C .�1/n. So 2P 2
n C .�1/n is always a square.

(32) Q2n D 2Q2
n � .�1/n. We will use this identity in our study of pentagonal Pell–Lucas

numbers later. It follows from this identity that Q2n � .�1/n�1 .mod Qn/.

(33) Q2n D 4P 2
n C .�1/n. This identity implies that Q2n � .�1/n .mod 4/. It follows by PMI

that Qn � .�1/bn=2c .mod 4/.
For example, Q7 D 239 � �1 � .�1/b7=2c .mod 4/ and Q8 D 577 � 1 � .�1/b8=2c

.mod 4/.
This identity has an interesting byproduct. To see this, note that 4P 2

2n D Q4n � 1; so
Q4n � 1 is a square. On the other hand, 4P 2

2n�1 D Q4n�2 C 1; so Q4n�2 C 1 is also a
square. Thus, if 4jn, Qn � 1 is a square; and if 2jn and 46 jn, then Qn C 1 is a square. For
example, Q8 � 1 D 577 � 1 D .2 � 12/2 and Q6 C 1 D 99C 1 D .2 � 5/2.

(34) PnC1Pn�1 � P 2
n D .�1/n. This is the Cassini-like formula for Pell numbers. It has

an interesting byproduct. To see this, let d D .PnC1; Pn/. Then d jPnC1 and d jPn. So
d j.PnC1Pn�1�P 2

n /; that is, d j.�1/n. So d D 1. Thus, as in the case of Fibonacci numbers,
every two consecutive Pell numbers are relatively prime. For example, .P6; P7/ D
.70; 169/ D 1 D .985; 2378/ D .P10; P11/.

(35) QnC1Qn�1 �Q2
n D 2.�1/n�1. This is the Cassini-like formula for Pell–Lucas numbers.

It follows from the formula that d j2, where d D .QnC1; Qn/; so d D 1 or 2. But every
Qn is odd; so d D 1. Thus every two consecutive Pell–Lucas numbers are also relatively
prime. For example, .Q6; Q7/ D .99; 239/ D 1 D .3363; 8119/ D .Q10; Q11/.
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(36) PnQn�1 � QnPn�1 D .�1/n�1. This formula has two immediate consequences:
.Pn; Pn�1/ D 1 D .Qn; Qn�1/, as we already knew. Since Pn C Pn�1 D Qn, it also
follows that .Pn; Qn/ D 1.
This formula looks strikingly similar to the one satisfied by the convergents qn

pn
of the

ISCF of
p

N : pnqn�1 � qnpn�1 D .�1/n�1.

(37) PnQn�1 CQnPn�1 D P2n�1.

(38) 2.P 2
nC1 C P 2

n / D Q2n C Q2nC1. Using identity (18), this implies that Q2n C Q2nC1 D
2P2nC1.

(39) 2.Q2
nC1 C Q2

n/ D Q2n C Q2nC2. Since Q2n C Q2nC2 D 4P2nC1, by identity (9), this
implies that Q2

n CQ2
nC1 D 2P2nC1.

(40) QnQnC1 � 2PnPnC1 D .�1/n.

(41) PnPnC3 � PnC1PnC2 D 2.�1/n�1.

(42) QnQnC3 �QnC1QnC2 D 4.�1/n.

(43) P 2
nC3 C P 2

n D 5P2nC3.

(44) Q2
nC3 CQ2

n D 10P2nC3.

(45) In Chapter 6, we learned that 1
2
P2n D PnQn satisfies the recurrence yn D 6yn�1 � yn�2,

n � 3.

(46) We also learned that 1
2

.Q2n � 1/ satisfies the recurrence xn D 6xn�1 � xn�2 C 2, where
n � 3. Consequently, Q2n satisfies the recurrence Q2n D 6Q2n�2 �Q2n�4, where n � 2;
see Example 2.13.

(47) Since Q2n D 2Q2
n� .�1/n (identity 32), this yields a recurrence for Q2

n W Q2
n D 6Q2

n�1�
Q2

n�2 C 4.�1/n; again, see Chapter 8.

Identities (31) and (33) provide a delightful application9. To see this, let A D
"

Q2 P2

2P2 Q2

#

.

Then it follows by PMI that An D
"

Q2n P2n

2P2n Q2n

#

for every n � 1. (Since jAj
 D 1, this

implies that jAnj D jAjn D 1; that is, Q2
2n � 2P 2

2n D 1, a fact that we already knew.) So

An � I D
"

Q2n � 1 P2n

2P2n Q2n � 1

#

.

Let dn D .Q2n� 1; P2n; 2P2n; Q2n� 1/, the gcd of all the entries in the matrix An� I . Then
dn D .Q2n � 1; P2n/.

Since Q2
2n � 1 D 2P 2

2n, .Q2n � 1/
�

Q2nC1

2

	
D P 2

2n. But every Qk is odd; so this implies that

.Q2n � 1/ j P 2
2n. Consequently, dn � pQ2n � 1. Thus, dn !1 as n!1; that is, the gcd of

all entries in An � I approaches1 as n!1.
The next example also illustrates the fact that Pell numbers can pop up in quite unexpected

places. It employs identities (28), (31), and (33).

9 Based on the 1994 William L. Putnam Mathematical Competition, Mathematical Association of America [4].

 jM j denotes the determinant of the square matrix M .
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Example 7.4 Find the positive integers n such that
nX

iD1

.4i � 3/ is a square.

Solution. Since
nX

iD1

.4i � 3/ D 4 � n.nC 1/

2
� 3n D 2n2 � n, we want 2n2 � n D m2 for some

positive integer m. This yields the familiar Pell’s equation x2 � 2y2 D 1, where x D 4n� 1 and
y D 2m.

Recall that this Pell’s equation has infinitely many solutions .xk; yk/ D .Q2k; P2k/.
Correspondingly, 4nk � 1 D Q2k , and hence nk D Q2kC1

4
, where k � 1. But nk is an integer

if and only if Q2k � 3 .mod 4/. By identity (32), Q2k � 3 .mod 4/ if and only if k is odd.
So nk is an integer if and only if k is odd. Consequently, if k is odd and nk D Q2kC1

4
, then the

corresponding sum Sk is a square.

For example, we have

n1 = 3C1
4
D 1 D 12; S1 = 12 D .1 � 1/2

n3 = 99C1
4
D 25 D 52; S3 = 352 D .5 � 7/2

n5 = 3363C1
4
D 841 D 292; S5 = 11892 D .29 � 41/2

n7 = 114243C1
4

D 28561 D 1692; S7 = 403912 D .169 � 239/2

7.7.1 Two Interesting Byproducts

These two patterns hold for any odd positive integer k:

• By identity (33), Q2k C 1 D 4P 2
k . So nk D P 2

k .

• By identity (31), we have

Sk D nk.2nk � 1/ D Q2k C 1

4
� Q2k � 1

2

D Q2
2k � 1

8
D P 2

2k

4

D .PkQk/2; as observed above:

The next example was proposed by B.A. Reznick of the University of Illinois at Urbana-
Champagne in 1987 [182]. It provides a delightful bridge linking analytic geometry, calculus,
combinatorics, and the Pell family. The featured proof is based on the one by the students of the
1987 Mathematical Olympiad team at United States Military Academy, West Point, New York
[241].
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Example 7.5 Let fCngn�0 be a sequence of circles on the cartesian plane such that:

(i) C0 is the unit circle x2 C y2 D 1; and

(ii) the circle CnC1 lies in the upper half-plane, and is tangent to both Cn and the two branches
of the hyperbola x2 � y2 D 1, where n � 0.

Let rn denote the length of the radius of Cn. Show that rn is an integer, and rn D Q2n.

Proof. Let n � 1. Symmetry guarantees that the center of Cn must lie on the y-axis. Let it be
.0; an/; so the equation of Cn is x2 C .y � an/2 D r2

n .

Since Cn is tangent to Cn�1, it follows that

an � an�1 D rn C rn�1: (7.6)

The y-coordinates yn of the points of tangency between Cn and the hyperbola are given by
y2 C 1C .y � an/2 D r2

n ; that is,

2y2 � 2any C a2
n � r2

n C 1 D 0: (7.7)

By symmetry, the two y-coordinates must be equal; that is, this equation has a double root.
Consequently, its derivative with respect to y must be zero; so yn D an

2
.

Substituting this value of y in (7.7) yields the recurrence

a2
n D 2r2

n � 2: (7.8)

This implies that a2
n � a2

n�1 D 2.r2
n � r2

n�1/. This, coupled with (7.6), yields an C an�1 D
2.rn � rn�1/. Adding this to (7.6) gives 2an D 3rn � rn�1. Substituting for an in (7.6) yields the
recurrence

rn D 6rn�1 � rn�2; (7.9)

where n � 2. (We encountered this recurrence in Chapters 1, 2, 4, 5, and 6.) Since a0 D 0; r0 D
1, and r1 > 0, it follows by (7.6) and (7.8) that r1 D 3. Since both r0 and r1 are integers, it
follows by (7.9) that rn is an integer for every n � 0.

Using the initial conditions r0 D 1, and r1 D 3, it follows from (7.9) that rn D 1
2
.�2nCı2n/ D

Q2n, as desired.

As a byproduct, it follows by (7.8) and identity (31) that a2
n D 2.Q2

2n � 1/ D 2.2P 2
2n/ D

4P 2
2n; so an D 2P2n and hence yn D P2n for n � 0.
Table 7.4 shows the values of an; yn, and rn for 0 � n � 10.
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Table 7.4.

n 0 1 2 3 4 5 6 7 8 9 10

an 0 4 48 280 1632 9512 55440 323128 1883328 10976840 63977712
yn 0 1 12 70 408 2378 13860 80782 470832 2744210 15994428
rn 1 3 17 99 577 3363 19601 114243 665857 3880899 22619537

7.8 Pell Numbers and Primitive Pythagorean Triples

We can use identities (28), (30), and (36) to generate a family of primitive Pythagorean triples.
Recall from Chapter 4 that primitive Pythagorean triples are generated by .2ab; a2�b2; a2Cb2/,
where .a; b/ D 1. By properties (28) and (30), we have 2Q2nP2n D P4n and Q2

2n � P 2
2n D

P 2
2n C 1; so we let a D Q2n and b D P2n. By identity (36), .Q2n; P2n/ D 1. Then 2ab D

P4n; a2 � b2 D P 2
2n C 1, and a2 C b2 D Q2

2n C P 2
2n D .2P 2

2n C 1/C P 2
2n D 3P 2

2n C 1. Thus,
.P4n; P 2

2n C 1; 3P 2
2n C 1/ is a primitive Pythagorean triple, as found by M. Wachtel of Zurich,

Switzerland in 1989 [251].
For example, let n D 2. Then .P8; P 2

4 C 1; 3P 2
4 C 1/ D .408; 145; 433/ is a primitive

Pythagorean triple: 4332 D 4082 C 1452, where the generators a D Q4 D 17 and b D P4 D 12

are relatively prime.

7.9 A Harmonic Bridge

Next we will study an interesting link between the two Pell families. To this end, first we need
the identity P2n D 2PnC1Qn�1 C 2.�1/n (see Exercise 48).

This identity can be used to derive a simple formula for the harmonic mean of Pn and Qn.

The harmonic mean h of two positive numbers x and y is given by 1
h
D 1

2

�
1
x
C 1

y

	
; that is,

h D 2xy

xCy
.

Consequently, the harmonic mean of Pn and Qn is given by

2PnQn

Pn CQn

D P2n

PnC1

D 2PnC1Qn�1 C 2.�1/n

PnC1

D 2Qn�1 C 2.�1/n

PnC1

:

For example, the harmonic mean of P5 and Q5 is 2Q4 � 2
P6
D 2 � 17 � 2

70
D 1189

35
�

33:9714286.
Next, we return to square-triangular numbers, and establish some interesting relationships

within the Pell family.
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7.10 Square-Triangular Numbers with Pell Generators

First, we will show that .PnQn/2 D 1
4
P 2

2n is a triangular number. By identity (30), we have

2P 2
n D Q2

n � .�1/n. So .PnQn/2 D Q2
n



Q2

n � .�1/n
�

2
. Thus .PnQn/2 is a triangular number

for n � 1. (It is true even when n D 0.)
For example, .P9Q9/

2 D .408 � 1393/2 D 166464�166465
2

is a triangular number.
Since Q2

n D 2P 2
n C .�1/n, this formula can be rewritten as .PnQn/2 D P 2

n



2P 2

n C .�1/n
�
;

that is, P 2
2n D 4P 2

n



2P 2

n C .�1/n
�
. It now follows that the area of the right triangle with legs

Q2
n and 2P 2

n D Q2
n � .�1/n is .PnQn/2.

We will now develop another explicit formula for the triangular number .PnQn/2. Notice
that

4P 2
m D Q2m � .�1/m: (7.10)

This is true since 4P 2
m D 1

2



�2m C ı2m � 2.�ı/m

� D Q2m � .�1/m, where m � 0.

In particular, 4P 2
2n D Q4n � 1, so .PnQn/2 D Q4n � 1

16
, a second explicit formula for the

triangular number .PnQn/2 D 1

4
P 2

2n.

For example,

Q12 � 1

16
D 1225 D 49 � 50

2
D .5 � 7/2:

and

Q16 � 1

16
D 41; 616 D 288 � 289

2
D .12 � 17/2:

It follows from formula (7.10) that Q4n � 1 (mod 16). For example, Q16 D 665; 857 � 1

(mod 16).
Although Q2n � 1 (mod 16) if n is even, it can be shown by induction that Q2n � 3 (mod

16) if n is odd. Thus

Q2n �
(

1 .mod 16/ if n is even

3 .mod 16/ otherwise.

For example, Q8 D 577 � 1 (mod 16) and Q10 D 3363 � 3 (mod 16).
Next, we express Q2n in terms of a triangular number, as the next theorem shows. To this

end, we let

�n D
(

1 if n is even

3 otherwise.

Using the Binet-like formulas, we can show that Rk D
kP

iD1

Pi D QkC1�1

2
; see Chapter 10.
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Theorem 7.1 Q2n D 16tRn�1 C�n.

Proof. We have

tRn�1 D
Rn�1 .Rn�1 C 1/

2

D
Qn�1

2

�
QnC1

2

	

2

D Q2
n � 1

8
:

Therefore,

16tRn�1 C�n D 16 � Q
2
n � 1

8
C�n

D 2.Q2
n � 1/C�n

D 2Q2
n � .�1/n

D Q2n;

as desired.

For example,

16tR6 C 3 D 16t1C2C5C12C29C70 D 16t119 C 3

D 16 � 119 � 120

2
C 3 D 114; 243

D Q14:

The next two corollaries follow from this theorem.

Corollary 7.1
Q2n ��n

16
is a triangular number. More specifically,

Q4n � 1

16
D tR2n�1 and

Q4n�2 � 3

16
D tR2n�2 .

Corollary 7.2

Q2n �
(

1 .mod 16/ if n is even
3 .mod 16/ otherwise.

Next, we pursue a similar formula for tSn�1 , where Sk D
kX

iD0

Qi . Again, using the Binet-like

formulas, we can show that Sk D PkC1. (This also follows from the fact that PnCQn D PnC1.)
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Since Sn�1 D Pn, it follows that

tSn�1 D tPn D
Pn .Pn C 1/

2
:

But

8Pn.Pn C 1/ D .�n � ın/ Œ.�n � ın/C .� � ı/�

D .�2n C ı2n/C .�nC1 C ınC1/C .�n�1 C ın�1/C 2.�1/n�1

D 2Q2n C 2QnC1 C 2Qn�1 � 2.�1/n

tSn�1 D
Q2n CQnC1 CQn�1 � .�1/n

8

tPn D
Q2n C 4Pn � .�1/n

8
; (7.11)

since QnC1 CQn�1 D 4Pn.
For example, tS6 D t1C1C3C7C17C41 D t70 D Q12C4P6�1

8
D 19601C4�70�1

8
D 2; 485 D tP6 .

It follows from formula (7.11) that Q2n CQnC1 CQn�1 D Q2n C 4Pn � .�1/n (mod 8).
Since Pn CQn D PnC1, it follows from (7.11) that

tPn CQn D Q2nC2 C 4PnC1 C .�1/n

8

and hence Q2nC2 C 4PnC1 � .1/n�1 (mod 8).
As above, it can be shown that 2Qn.Qn C 1/ D Q2n C 2Qn C .�1/n, so

tQn D
Q2n C 2Qn C .�1/n

4
: (7.12)

For example,

Q6 C 2Q3 � 1

4
D 99C 2 � 7 � 1

4
D 28 D t7 D tQ3:

It follows from (7.12) that Q2n C 2Qn � .�1/n�1 (mod 4).
Finally, it is well known that 16tnC1 can be a square. For example, 16 �3C1 is a square, but

16 � 6C 1 is not. Since 16.PnQn/2 C 1 D Q4n, it would be interesting to find those n for which
Q4n is a square. For example, Q0 is a square, but Q4; Q8; Q12; Q16; Q20, and Q24 are not.

In fact, since Q2n D 4P 2
n C .�1/n, it follows that Q2n is not a square, when n � 0.

Consequently, 16.PnQn/2 C 1 D Q4n is not a square, when n � 1.
Next, we return to primitive Pythagorean triples with consecutive legs, and investigate their

relationship with Pell numbers.
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7.11 Primitive Pythagorean Triples With Consecutive Legs
Revisited

Recall from Chapter 3 that there are infinitely many primitive Pythagorean triples such that the
lengths of their legs are consecutive integers. In other words, the diophantine equation x2C .x˙
1/2 D z2 has infinitely many solutions. We found that the generators m and n of the first ten such
triangles are the Pell numbers 2; 5; 12; : : : ; 5741 and 1; 2; 5; : : : ; 2378, respectively; the lengths
of their hypotenuses are the Pell numbers 5; 29; 169; : : : ; 38613965; see Table 4.2. We also found
that the generators must satisfy Pell’s equation .m � n/2 � 2n2 D ˙1; that is, u2 � 2v2 D ˙1.

This makes us curious. Are these just accidental coincidences? Or are they always the case?
Fortunately, we have done all the necessary groundwork in Chapters 2 and 3 to answer this. All
we have to do is pick up the right pieces and assemble them.

To this end, recall that the solutions of the equation u2 � 2v2 D ˙1 are given by .uk; vk/ D
.Qk; Pk/, where k � 1. The corresponding generators mk; nk are given by mk �nk D uk D Qk

and nk D vk D Pk . So mk D nkCQk D PkCQk D PkC1. Thus the generators of the primitive
Pythagorean triples with consecutive legs are given by the consecutive Pell numbers PkC1 and
Pk , where k � 1, as we saw in Table 4.2.

The lengths xk and yk of the corresponding legs are given by xk D m2
k�n2

k D P 2
kC1�P 2

k D
.PkC1 C Pk/.PkC1 � Pk/ D QkC1Qk and yk D 2mknk D 2PkC1Pk; see columns 4 and 5 of
Table 4.2. The length of the corresponding hypotenuse is given by zk D m2

kCn2
k D P 2

kC1CP 2
k D

P2kC1; see Column 6 of Table 4.2. Consequently, we have the identity

.QkQkC1/
2 C .2PkPkC1/

2 D P 2
2kC1:

Thus, if xk D QkC1Qk and yk D 2PkC1Pk are consecutive integer lengths of the primitive
Pythagorean triple, then .uk; vk/ is a solution of the Pell equation u2 � 2v2 D ˙1, where uk D
mk � nk D Qk and vk D nk D Pk .

Conversely, suppose .uk; vk/ D .Qk; Pk/ is a solution the Pell equation u2 � 2v2 D ˙1 W
Q2

k � 2P 2
k D ˙1. Then mk � nk D Qk; nk D Pk; mk D nk CQk D Pk CQk D PkC1, and

mk C nk D PkC1 C Pk D QkC1. So

xk D m2
k � n2

k

D .mk � nk/.mk C nk/

D QkQkC1;

and yk D 2mknk D 2PkPkC1. Then xk �yk D QkQkC1�2PkPkC1 D .�1/k , by identity (40);
that is, jxk�ykj D 1. In other words, xk and yk are consecutive integral lengths, as we observed
earlier.

The next example shows a totally unexpected occurrence of Pell–Lucas numbers. It was
proposed as a problem in 1963 by Leo Moser of the University of Alberta, Alberta, Canada
[168]. The proof given here is based on one given in the following year by Henry W. Gould of
West Virginia University, Morgantown, West Virginia [95]. It employs the binomial expansion
in Corollary 1.1.
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Example 7.6 Prove that
2n�1X

rD1

 
4n � 2

2r

!

2r�1 is a square.

Proof. Since .1C x/n D
nP

rD0

�
n
r

�
xr , we have

.1C x/4n�2 C .1 � x/4n�2 D 2

2n�1X

rD0

 
4n � 2

2r

!

x2r :

Letting x D p2, this sum yields

2n�1X

rD0

 
4n � 2

2r

!

2r D Q4n�2

2n�1X

rD1

 
4n � 2

2r

!

2r D Q4n�2 � 1

2n�1X

rD1

 
4n � 2

2r

!

2r�1 D Q4n�2 � 1

2

D Q2
2n�1;

where we have used identity (32). Thus, not only that the given sum is a square, it is the square
of the Pell–Lucas number Q2n�1. (We will revisit this result in Chapter 11.)

For example, let n D 4. Then

2n�1X

rD1

 
14

2r

!

2r�1 D 57; 121 D 2392 D Q2
7:

Next we investigate the square of a Pell Sum, studied by Díaz-Barerro of Barcelona, Spain,
in 2007 [67].

7.12 Square of a Pell Sum

Let a and b be any real numbers. Then a4 C b4 C .a C b/4 D 2.a2 C ab C b2/2; this can be
confirmed algebraically.

This algebraic identity has an interesting application to the Pell family. To see this, let fxng
be an integer sequence satisfying the Pell recurrence. Suppose we let a D xn and b D 2xnC1.
Then

x4
n C 16x4

nC1 C x4
nC2 D 2.x2

n C 2xnxnC1 C 4x2
nC1/

2:
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In particular, this gives the following Pell identities:

P 4
n C 16P 4

nC1 C P 4
nC2 D 2.P 2

n C 2PnPnC1 C 4P 2
nC1/

2

Q4
n C 16Q4

nC1 CQ4
nC2 D 2.Q2

n C 2QnQnC1 C 4Q2
nC1/

2:

For example, let n D 5. Then

P 4
5 C 16P 4

6 C P 4
7 D 294 C 16 � 704 C 1694

D 1; 200; 598; 002

D 2.292 C 2 � 29 � 70C 4 � 702/2

D 2.P 2
5 C 2P5P6 C 4P 2

6 /2:

Likewise, Q4
5C16Q4

6CQ4
7 D 4; 802; 588; 018 D 2.49003/2 D 2.412C2�41�99C4�2392/2 D

2.Q2
5 C 2Q5Q6 C 4Q2

7/2.
To digress a bit, suppose we let a D Fn and b D FnC1. Since F 2

n C F 2
nC1 D F2nC1 and

L2
n C L2

nC1 D 5L2nC1, the identity yields the following Fibonacci and Lucas identities:

F 4
n C F 4

nC1 C F 4
nC2 D 2.FnFnC1 C F2nC1/

2

L4
n C L4

nC1 C L4
nC2 D 2.LnLnC1 C 5L2nC1/

2:

The next example presents a congruence, developed by R. Fecke of North Texas State
University, Denton, Texas, in 1973 [83]. It shows that the sum of every three consecutive Pell
numbers Pk with weights 2k is always divisible by 5. We will establish it using the strong version
of PMI.

Example 7.7 Prove that
nC2P

kD1

2kPk � 0 .mod 5/, where n is any positive integer.

Proof (by PMI). Since 2P1 C 4P2 C 8P3 D 1 � 1 C 4 � 2 C 8 � 5 D 50 � 0 .mod 5/ and
4P2 C 8P3 C 16P4 D 4 � 2C 8 � 5C 16 � 12 D 240 � 0 .mod 5/, the congruence is true when
n D 1 and n D 2.

Assume it is true for all positive integers < n. Then

nC2X

kD1

2kPk D 2nPn C 2nC1PnC1 C 2nC2PnC2

D 4
�
2n�2Pn C 2n�1PnC1 C 2nPnC2

�

D 4


2n�2.2Pn�1 C Pn�2/C 2n�1.2Pn C PnC1/C 2n.2PnC C Pn/

�

D 4
�
2n�1Pn�1 C 2nPn C 2nC1PnC1

�C 4
�
2n�2Pn�2 C 2n�1Pn�1 C 2nPn

�

D 4 � 0C 4 � 0 .mod 5/; by the inductive hypothesis

D 0 .mod 5/:
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Consequently, it follows by PMI that the congruence is true for every integer n � 1.

In particular, let n D 5. Then

25P5 C 26P6 C 27P7 D 25 � 29C 26 � 70C 27 � 169

D 2 � .�1/C .�1/ � 0C 3 � .�1/ .mod 5/

D 0 .mod 5/:

7.13 The Recurrence xnC2 D 6xnC1 � xn C 2 Revisited

Next we pursue a close relationship between the recurrence xnC2 D 6xnC1 � xn C 2 that we
studied in Chapter 6, and the Pell family. It was discovered by M.N. Deshpande of Nagpur, India,
in 2007 [64]. The proof presented is based on the one by H.-E. Seiffert of Berlin, Germany, a
prolific problem proposer and solver [221].

Example 7.8 Consider the integer sequence fxng, defined by xnC2 D 6xnC1 � xn C 2, where

x1 D 1; x2 D 10, and n � 1. Prove that
8xn.xn C 1/C 20

.P2n � P2n�2/2
D 9.

Proof. It follows by the Pell recurrence that P2nC4 D 6P2nC2�P2n and Q2nC4 D 6Q2nC2�Q2n;
see Exercise 49.

Let an D 3P2n � 3
2
Q2n � 1

2
. Then a1 D 3P2 � 3

2
Q2 � 3

2
D 3 � 2 � 1

2
� 3 � 1

2
D 1 D x1, and

a2 D 3P4 � 3
2
Q4 � 1

2
D 3 � 12 � 3

2
� 17 � 1

2
D 10 D x2. Furthermore, we have

6anC1 � an C 2 D 6

�

3P2nC2 � 3

2
Q2nC2 � 1

2

�

�
�

3P2n � 3

2
Q2n � 1

2

�

C 2

D 3.6P2nC2 � P2n/ � 3

2
.6Q2nC2 �Q2n/ � 1

2

D 3P2nC4 � 3

2
Q2nC4 � 1

2
D anC2:

Consequently, an satisfies the same recursive definition as xn; so an D xn. Thus, xn D 3P2n �
3
2
Q2n � 1

2
.

Then, by identities (2) and (31), we have

8xn.xn C 1/ D 8

4
.6P2n � 3Q2n � 1/.6P2n � 3Q2n C 1/

D 2
h
9 .2P2n �Q2n/2 � 1

i

8xn.xn C 1/C 20 D 2
h
9 .2P2n �Q2n/2 C 9

i

D 18
h
.2P2n �Q2n/2 C 1

i
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D 18
�
Q2

2n�1 C 1
�

D 18 � 2P 2
2n�1:

Consequently,

8xn.xn C 1/C 20

.P2n � P2n�2/2
D 18 � 2P 2

2n�1

4P 2
2n�1

D 9; as desired.

For a specific case, let n D 5. Since x5 D 2089, we have

8x5.x5 C 1/C 20

.P10 � P8/2
D 8 � 2089 � 2090C 20

.2378 � 408/2

D 99207716

3880900
D 9:

As a byproduct of this example, it follows that 2xn.xn C 1/C 5 is a square for every n � 1.
For instance, 2x6.x6 C 1/C 5 D 2 � 12178 � 12179C 5 D 296; 631; 729 D 17; 2332.

In this example, we found that xn D 3P2n � 3
2
Q2n � 1

2
satisfies the recurrence xnC2 D

6xnC1 � xn C 2. Interestingly enough, yn D 3Q2n � 3
2
P2n satisfies the homogeneous portion of

this recurrence: ynC2 D 6ynC1 � yn. We encountered this recurrence also in Chapter 6.
As before, this can be established as follows:

6ynC1 � yn D 6

�

3Q2nC2 � 3

2
P2nC2

�

�
�

3Q2n � 3

2
P2n

�

D 3 .6Q2nC2 �Q2n/ � 3

2
.6P2nC2 � P2n/

D 3Q2nC4 � 3

2
P2nC4

D ynC2:

To digress a bit, note that the first five elements of the sequence fyng are 6, 33, 192, 1119,
and 6522. Using the recurrence, we could define y0 D 3.

Clearly, 3jyn for every n � 0. It follows from the recurrence that ynC2 � �yn .mod 6/. So
6jynC2 if and only if 6jyn. Since 6jy1, it follows by PMI that 6jy2nC1 for every n � 0.

Recall from Chapter 6 that yn D ArnCBsn, where r D 3C2
p

2 D �2 and s D 3�2
p

2 D
ı2. Using the initial conditions, we get A D 3.11�8

p
2/

4.4�3
p

2/
and B D 3.5�4

p
2/

4.4�3
p

2/
. Thus

yn D 3

4.4 � 3
p

2/

h
.11 � 8

p
2/�2n C .5 � 4

p
2/ı2n

i
;

where n � 0.
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It is well known that the ratios of consecutive Fibonacci and Lucas numbers approach

the golden ratio: lim
n!1

FnC1

Fn
D lim

n!1
LnC1

Ln
D ˛ D 1Cp

5
2

. We will now explore the ratios of

consecutive Pell and Pell–Lucas numbers.

7.14 Ratios of Consecutive Pell and Pell–Lucas Numbers

Let lim
n!1

PnC1

Pn

D �. Since PnC1 D 2Pn C Pn�1, it follows that

PnC1

Pn

D 2C 1

Pn=Pn�1

lim
n!1

PnC1

Pn

D 2C 1

lim
n!1 .Pn=Pn�1/

� D 2C 1

�
:

So �2 � 2� � 1 D 0. Solving this, we get � D 1 ˙ p2. Since � > 0, it follows that � D � .

Thus lim
n!1

PnC1

Pn

D � . Similarly, lim
n!1

QnC1

Qn

D � . Thus the ratios of consecutive Pell and Pell–

Lucas numbers approach the irrational number � � 2:4142135624. Consequently, PnC1

Pn
� 1 and

QnC1

Qn
� 1 are good approximations of

p
2, as n gets larger and larger.

For example, P12
P11
� 1 D 13860

5741
� 1 � 1:4142135517 � p2 and Q12

Q11
� 1 D 19601

8119
� 1 �

1:4142135731 � p2.
Next we investigate a close relationship between polygonal numbers and the Pell family.

First, we look for Pell numbers that are also triangular numbers.

7.15 Triangular Pell Numbers

Clearly, P1 D 1 D t1 is a triangular number. Are there others? If there are, how many are there?
How do we find them? We will answer these questions shortly.

Recall from Chapter 5 that a positive integer N is a triangular number if and only if 8N C 1

is a square. So Pn is a triangular number if and only if 8Pn C 1 is a square > 1. Consequently,
it suffices to find those positive integers n such that 8Pn C 1 is a square.

In 1996, W.L. McDaniel of the University of Missouri at St. Louis proved that P1 D 1 is
the only triangular Pell number [167]. His proof is based on the following identities and four
lemmas:

P�n D .�1/nC1Pn; Q�n D .�1/nQn

PmCn D PmPnC1 C Pm�1Pn (7.13)

D 2PmQn � .�1/nPm�n (7.14)

P2t n D Pn.2Qn/.2Q2n/.2Q4n/ � � � .2Q2t�1n/
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Q2
n D 2P 2

n C .�1/n

Q2n D 2Q2
n � .�1/n

D 4P 2
n C .�1/n (7.15)

.Pm; Qn/ D
(

Q.m;n/ if m
.m;n/

is even

1 otherwise.

Suppose t � 2. Then, by identity (7.15), Q2t D 4P 2
2t�1 C 1. Since P2n � 0 .mod 2/, this

implies that Q2t � 1 .mod 8/, when t � 2.
Using identity (7.14), we will now prove the following results.

Lemma 7.1 Let n; k, and t be any nonnegative integers, and g any odd positive integer. Then
(1) PnC2kt � .�1/t.kC1/Pn .mod Qk/ and (2) P2kg � .�1/.g�1/=2P2k .mod Q2k/.

Proof. (1) We will prove this by induction on t . The congruence is clearly true when t D 0.
Since PnC2k D P.nCk/Ck D 2PnCkQk � .�1/kPn � .�1/kC1Pn .mod Qk/, it is also true
when t D 1.

Now assume it is true for all nonnegative integers � t . Then

PnC2k.tC1/ D P.nC2kt/C2k

D 2PnC2ktQ2k � .�1/2kPnC2k.t�1/

� 2.�1/t.kC1/Pn



2Q2

k � .�1/k
� � .�1/.t�1/.kC1/Pn .mod Qk/

� 

2.�1/.tC1/.kC1/ � .�1/.tC1/.kC1/

�
Pn .mod Qk/

� .�1/.tC1/.kC1/Pn .mod Qk/:

So the congruence is also true for t C 1. Thus, the result follows by the strong version of PMI.

(2) By identity (7.14), we have

P2kg D P2k.g�1/C2k

D 2P2k.g�1/Q2k � .�1/2kP2k.g�2/

� .�1/1P2k.g�2�1/ .mod Q2k/

� .�1/2P2k.g�2�2/ .mod Q2k/

� .�1/3P2k.g�2�3/ .mod Q2k/;

and so on. More generally, P2kg � .�1/rP2k.g�2r/ .mod Q2k/. This process can be continued
until g � 2r D 1. This yields P2kg � .�1/.g�1/=2P2k .mod Q2k/, as desired.
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For example, let n D 3 D t and k D 2. Then

(1) PnC2kt D P15 D 195; 025 � 1 � .�1/3�35 .mod 3/.

(2) In addition, let g D 7. Then P2k D P4 D 12, Q2k D Q4 D 17, and P2kg D P28 D
18; 457; 556; 052 � 5 � .�1/.7�1/=212 .mod 17/.

The proofs of the next two lemmas involve the Jacobi symbol
�

a
m

�
[130]; so we omit their

proofs in the interest of brevity.

Lemma 7.2 Let k D 2t , where t � 1. Then
�

8P2kC1

Q2k

	
D
��8P2kC1

Q2k

	
.

Lemma 7.3 Let k D 2t , where t � 2. Then
�

8PkCQk

33

	
D �1; that is, 8PkCQk

33
is not a square.

For example, 8P8 CQ8 D 8 � 408C 577 D 3841 is not a square.

Lemma 7.4 If n � m .mod 24/, then Pn � Pm .mod 9/.

Proof. Since P24 D 543; 339; 720 � 0 .mod 9/ and P25 D 1; 311; 738; 121 � 1 .mod 9/, by
identity (7.13), PnC24 D PnP25CPn�1P24 � PnC0 � Pn .mod 9/. By PMI, the desired result
now follows.

For example, let n D 23 and m D 3. Then P27 D 7; 645; 370; 045 � 5 � P3 .mod 9/.
Using these lemmas and the Jacobi symbol, McDaniel proved that 8PnC 1 is not a square if

n > 1. Since 8P1 C 1 D 9 is a square, it follows that P1 D 1 is the only triangular Pell number.
Next we investigate Pell and Pell–Lucas numbers that are also pentagonal numbers. But

before we do, we will give a very brief introduction to pentagonal numbers.

7.16 Pentagonal Numbers

Just like triangular numbers, pentagonal numbers pn are polygonal numbers. They are positive
integers that can be represented geometrically by regular pentagons. The first ten pentagonal
numbers are 1, 5, 12, 22, 35, 51, 70, 92, 117, and 145. Figure 7.3 shows the geometric
representations of the first four pentagonal numbers.

Figure 7.3.
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Pentagonal numbers can also be defined recursively:

p1 D 1

pn D pn�1 C 3.n � 1/C 1; n � 2:

See Figure 7.4. Clearly, this recurrence can be rewritten as pn D pn�1 C 3n � 2. Explicitly,
pn D n.3n � 1/=2, where n � 1; this can be confirmed easily using PMI.

Figure 7.4.

For example, p7 D p6 C 19 D 51C 19 D 70. Likewise, p8 D 92.
We are now ready to search for Pell numbers that are also pentagonal.

7.17 Pentagonal Pell Numbers

Four of the first ten pentagonal numbers are also Pell numbers: 1 , 5 , 12 , and 70 . Are
there others? If there are, how many are there? How do we find them? We will answer these
questions shortly.

In 2002, V.S.R. Prasad and B.S. Rao of Osmania University, Hyderbad, India, established
that 1, 5, 12, and 70 are the only pentagonal Pell numbers. The proof is fairly long and involves
the Jacobi symbol, so in the interest of brevity, we will highlight just the key steps [178].

To begin with, we need a few additional properties. First, notice that identity (32) can be
generalized:

QmCn D 2QmQn � .�1/nQm�n: (7.16)

This identity, discovered by Prasad and Rao, follows by the Binet-like formula for Qk .
It follows by this identity, and identities (31) and (32) that

Q3n D 2Q2nQn � .�1/nQn

D 2QnŒ2Q2
n � .�1/n� � .�1/nQn

D Q3
n C 3QnŒQ2

n � .�1/n�

D Qn.Q2
n C 6P 2

n /: (7.17)
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The sequence fQ2kC1 .mod 8/g is periodic: 1 7„ƒ‚… 1 7„ƒ‚… : : :; fQ6kC3 .mod 8/g is also
periodic: 7 1„ƒ‚… 7 1„ƒ‚… : : :. It now follows by equation (7.17) that

Q2
m C 6P 2

m � 7 .mod 8/; (7.18)

where m is odd. When m is odd, we also have

Pm � 1 .mod 4/ and Qm �
(

1 .mod 4/ if m � 1 .mod 4/

�1 .mod 4/ if m � 3 .mod 4/:
(7.19)

The identity P2m D 2PmQm also can be generalized:

PmCn D 2PmQn � .�1/nPm�n: (7.20)

This also follows by the Binet-like formula for Pk .
This identity has an interesting consequence, as the following lemma shows.

Lemma 7.5 Let n; k; and m be nonnegative integers. Then PnC2km � .�1/.kC1/mPn

.mod Qk/.

Proof (by PMI on m). Clearly, the congruence holds when m D 0. By identity (7.20), PnC2k D
P.nCk/Ck D 2PnCkQk � .�1/kP.nCk/�k � .�1/kC1Pn .mod Qk/. so it also true when m D 1.

Now assume that the congruence holds for all nonnegative integers � m, where m � 1.
Then, by identity (7.20) and the inductive hypothesis, we have

PnC2k.mC1/ D P.nC2km/C2k

D 2PnC2kmQ2k � .�1/2kPnC2k.m�1/

� 2.�1/.kC1/mPnQ2k � .�1/.kC1/.m�1/Pn .mod Qk/

� 2.�1/.kC1/mPn.�1/kC1 � .�1/.kC1/.m�1/Pn .mod Qk/; by identity (32)

� 

2.�1/.kC1/.mC1/ � .�1/.kC1/.mC1/

�
Pn .mod Qk/

� .�1/.kC1/.mC1/Pn .mod Qk/:

So the result holds for mC 1 also.
Thus, by the strong version of PMI, the congruence holds for every m � 0.

For example, let n D 3; k D 4; and m D 3. Then P3 D 5; Qk D Q4 D 17; PnC2km D P27 D
7; 645; 370; 045 � 12 � .�1/5�35 .mod 17/.

It follows from the explicit formula for pentagonal numbers that Pn is a pentagonal number
m.3m � 1/=2 if and only if 24Pn C 1 D .6m � 1/2. Consequently, we need to identify those
positive integers n such that 24Pn C 1 is a square.

The following eight lemmas will pave the way for identifying such integers. The Jacobi
symbol plays a pivotal role in their proofs.
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Lemma 7.6 Let n � ˙1 .mod 22 � 5/. Then 24Pn C 1 is a square if and only if n D ˙1.

Lemma 7.7 Let n � ˙3 .mod 24/. Then 24Pn C 1 is a square if and only if n D ˙3.

Lemma 7.8 Let n � 4 .mod 22 � 5/. Then 24Pn C 1 is a square if and only if n D 4.

Lemma 7.9 Let n � 2 .mod 22 � 5 � 7/. Then 24Pn C 1 is a square if and only if n D 2.

Lemma 7.10 Let n � 6 .mod 22 � 3 � 5 � 7/. Then 24Pn C 1 is a square if and only if n D 6.

Lemma 7.11 Let n � 0 .mod 2 � 3 � 72 � 13/. Then 24Pn C 1 is a square if and only if n D 0.

Lemma 7.12 Let n � 0;˙1; 2;˙3; 4; or 6 .mod 24 � 3 � 5 � 72 � 13/. Then 24PnC 1 is a square
if and only if n D 0;˙1; 2;˙3; 4; or; 6.

Lemma 7.13 Suppose n 6� 0;˙1; 2;˙3; 4; or 6 .mod 24 � 3 � 5 � 72 � 13/. Then 24Pn C 1 is not
a square.

Tying all the pieces together, we get the following delightful result.

Theorem 7.2 (Prasad and Rao, 2002) Pn is a pentagonal number if and only if n D 1; 3; 4, or 6.

Proof. This follows by Lemmas 7.12 and 7.13.

7.18 Zeitlin’s Identity

Recall that identity (7.20), and hence Lemma 7.5, played an important role in identifying
pentagonal Pell numbers. As an added bonus, the identity can be used to develop another Pell
identity, discovered by D. Zeitlin of Minneapolis, Minnesota, in 1996 [269]. The following
example features it. The proof is based on the one given by Seiffert [209] in the following year.

Example 7.9 Find integers a; b; c; and d such that Pn D Pn�a C 444Pn�b C Pn�c C Pn�d ,
where 1 < a < b < c < d .

Proof. By identity (7.20), we have PrCs D 2PrQs � .�1/sPr�s, where r and s are arbitrary
integers. Using rCs D m, this can be rewritten as Pm D 2Pm�sQs�.�1/sPm�2s. Consequently,
we have

Pn D P.n�b/Cb D 2Pn�bQb � .�1/bPn�2b

Pn�bCk D P.n�b/Ck D 2Pn�bQk � .�1/kPn�b�k:
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Subtracting, we get

Pn � Pn�bCk D 2Pn�b.Qb �Qk/ � .�1/bPn�2b C .�1/kPn�b�k:

Choosing b to be odd and k even, this yields

Pn D Pn�bCk C 2Pn�b.Qb �Qk/C Pn�b�k C Pn�2b:

Now we need to make a clever choice for b and k. Since we want Qb�Qk D 222 D 239�17,
we choose b D 7 and k D 4. We then let a D b � k D 3; c D b C k D 11, and 2b D 14. Thus

Pn D Pn�3 C 444Pn�7 C Pn�11 C Pn�14: (7.21)

For example, let n D 17. Then

P14 C 444P10 C P6 C P3 D 80782C 444 � 2378C 70C 5

D 1; 136; 689

D P17:

Next we investigate Pell–Lucas numbers that are also pentagonal.

7.19 Pentagonal Pell–Lucas Numbers

Returning to identity (7.16), it also has an interesting consequence, as the following lemma
shows [179].

Lemma 7.14 (Prasad and Rao, 2001). Let n and k be nonnegative integers, and m an even
integer. Then QnC2km � .�1/kQn .mod Qm/.

Proof (by PMI on k). Clearly, the congruence holds when k D 0. By identity (7.16), QnC2m D
Q.nCm/Cm D 2QnCmQm � .�1/mQn; so the congruence is true when k D 1 also, since m is
even.

Assume the result holds for all nonnegative integers � k, where k � 1. Then, by identity
(7.16), we have

QnC2.kC1/m D 2QnC2kmQ2m �QnC2.k�1/m

D 2.�1/kQnQ2m � .�1/k�1Qn .mod Qm/

D .�1/k.2Q2m C 1/Qn .mod Qm/
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� .�1/k.�1/Qn .mod Qm/, by identity (32)

� .�1/kC1Qn .mod Qm/:

So the result also holds for k C 1.
Thus, by the strong version of PMI, the congruence holds for every k � 0.

For example, let n D 2; k D 3; and m D 4. Then Qn D Q5 D 41; Qm D Q4 D 17; and
QnC2km D Q26 D 4; 478; 554; 083 � 14 � �3 � .�1/3Q2 .mod Q4/, as expected.

As before, Qn is a pentagonal number m.3m � 1/=2 if and only if 24Qn C 1 is a square,
where n � 1. We will show that 24QnC 1 is a square only when n D 1 or 3. Its proof hinges on
the next four lemmas; again, we omit their proofs in the interest of brevity [179].

Lemma 7.15 Suppose n � 0 or 1 .mod 22 �32/. Then 24QnC1 is a square if and only if n D 0

or 1.

Lemma 7.16 Suppose n � 3 .mod 22 � 32 � 7/. Then 24QnC 1 is a square if and only if n D 3.

Lemma 7.17 Suppose n � 0, 1 or 3 .mod 23 � 32 � 5 � 7/. Then 24Qn C 1 is a square only if
n D 0; 1, or 3.

Lemma 7.18 24Qn C 1 is not a square if n 6� 0; 1; or 3 .mod 23 � 32 � 5 � 7/.

With these tools, we can now establish the desired result.

Theorem 7.3 Q1 is the only pentagonal Pell–Lucas number.

Proof. It follows by Lemmas 7.17 and 7.18 that 24QnC1 is a square only when n D 1 or 3. But
Q3 D 7 is not pentagonal. But Q1 D 1 is pentagonal. Thus, Q1 is the only pentagonal number.

7.20 Heptagonal Pell Numbers

Next we investigate Pell numbers that are also heptagonal. A heptagonal number is a positive
integer of the form m.5m�3/

2
, where m is a positive integer. The first six heptagonal numbers are

1, 7, 18, 34, 55, and 81. Like triangular and pentagonal numbers, they also can be represented
geometrically; see Figure 7.5.

Figure 7.5.
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A positive integer N is heptagonal if and only if N D m.5m�3/

2
. Then 2N D 5m2 � 3m; so

40N C 9 D 100m2 � 60m C 9 D .10m � 3/2. Thus N is heptagonal if and only if 40N C 9

is a positive square. Consequently, Pn is heptagonal if and only if 40Pn C 9 is a square > 1.
Clearly, P1 D 1 is heptagonal. Are there others? In 2005 Rao established that P1 is the only
such number. His proof employs three lemmas and the following fundamental properties, some
of which we have already seen [181]:

Q2
n D 2P 2

n C .�1/n

Q3n D Qn.Q2
n C 6P 2

n /

PmCn D 2PmQn � .�1/nPm�n

PnC2kt � .�1/t.kC1/Pn .mod Qk/

2jPn if and only if 2jn, and 2 6 jQn for any n:

3jPn if and only if 4jn, and 3jQn if and only if n � 2 .mod 4/:

5jPn if and only if 3jn, and 5 6 jQn for any n:

9jPn if and only if 12jn, and 9jQn if and only if n � 6 .mod 12/:

Let n be odd. Then

• Qm � ˙1 .mod 4) according as m � ˙1 .mod 4/;

• Pm � 1 .mod 4/; and

• Q2
m C 6P 2

m � 7 .mod 8/.

The proofs of the following lemmas require the Jacobi symbol, so we will omit them for the
sake of brevity.

Lemma 7.19 Suppose n � ˙1 .mod 22 � 5/. Then 40PnC 9 is a square if and only if n D ˙1.

Lemma 7.20 Suppose n � 6 .mod 22 � 53 � 72/. Then 40PnC 9 is a square if and only if n D 6.

When n D 6, notice that 40Pn C 9 D 40P6 C 9 D 40 � 70C 9 D 532, a square.

Lemma 7.21 Suppose n � 0 .mod 2 � 7 � 53/. Then 40Pn C 9 is a square if and only if n D 0.

When n D 0, notice that 40Pn C 9 D 40P0 C 9 D 40 � 0C 9 D 32, again a square.
The following result follows from these three lemmas.

Corollary 7.3 Suppose n � 0;˙1, or 6 .mod 22 � 53 � 72/. Then 40Pn C 9 is a square if and
only if n D 0;˙1, or 6.

We will need one more lemma.
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Lemma 7.22 If n 6� 0;˙1, or 6 .mod 22 � 53 � 72/. Then 40Pn C 9 is not a square.

For example, let n D 17. Then 40Pn C 9 D 40P17 C 9 D 40 � 1136689C 9 D 45; 467; 569

is not a square.
With these tools, we can now prove that P1 is the only heptagonal Pell number.
It follows by Corollary 7.3 and Lemma 7.22 that 40PnC9 is a square if and only if n D 0;˙1,

or 6; but �1 and 0 are not acceptable, since n � 1. When n D 6; 40Pn C 9 D 40P6 C 9 D
40 � 70C 9 D 532; this must equal to .10m� 3/2 for some m � 1; but .10m� 3/2 D 532 implies
that m D �5, which is not admissible. This leaves n D 1; so P1 is the only heptagonal Pell
number; see Table 7.5.

Table 7.5.

n 0 ˙1 6

Pn 0 1 70
40Pn C 9 32 72 532

m 0 1 �5

This discourse has an interesting consequence for the theory of diophantine equations. To
this end, consider the diophantine equation 2x2 D y2.5y � 3/2 � 2, which can be rewritten as

x2 D 2
h

y.5y�3/

2

i2 � 1. Its solutions are given by .Qk; Pk/, where k is odd. From Table 7.1,

the only admissible value of y is 1. Correspondingly, x D ˙1. Thus, .˙1; 1/ are the only two
solutions of the diophantine equation 2x2 D y2.5y � 3/2 � 2.

Likewise, the diophantine equation 2x2 D y2.5y � 3/2 C 2 can be rewritten as x2 D
2
h

y.5y�3/

2

i2C 1; its solutions are given by .Qk; Pk/, where k is even. From Table 7.1, n D 0 or

6. The corresponding solutions are .˙1; 0/ and .˙99;�5/.

Exercises 7

Prove the following identities.

1. Pn C Pn�1 D Qn.

2. Qn CQn�1 D 2Pn.

3. Pn CQn D PnC1.

4. 2Pn CQn D QnC1.

5. 2Qn C 3Pn D PnC2.

6. 3Qn C 4Pn D QnC2.

7. QnC1 �Qn D 2Pn.

8. PnC1 C Pn�1 D 2Qn.

9. QnC1 CQn�1 D 4Pn.
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10. Pn C PnC1 C PnC3 D 3PnC2. Hint: Use the Pell recurrence.

11. Qn CQnC1 CQnC3 D 3QnC2.

12. PnC1 � Pn�1 D 2Pn.

13. QnC1 �Qn�1 D 2Qn.

14. PnC2 C Pn�2 D 6Pn.

15. QnC2 CQn�2 D 6Qn.

16. PnC2 � Pn�2 D 4Qn. Hint: Use Exercise 8.

17. QnC2 �Qn�2 D 8Pn.

18. P 2
nC1 C P 2

n D P2nC1.

19. P 2
mCn � .�1/nP 2

m D P2mCnPn. Hint: Use the Binet-like formula.

20. Q2
mCn � .�1/nQ2

m D 2P2mCnPn.

21. Q2
nC1 CQ2

n D 2P2nC1. Hint: Use identity (20).

22. P 2
nC1 � P 2

n D QnC1Qn. Hint: Use identity (3).

23. Q2
nC1 �Q2

n D 4PnC1Pn.

24. 4.P 2
n CQ2

n/ D 3Q2n C .�1/n. Hint: Use the Binet-like formulas.

25. 2Pn CQn D QnC1.

26. 2Pn CQnC2 D 3QnC1. Hint: Use identity (25) and Pell recurrence.

27. PnC1 CQn�1 D 3Pn.

28. P2n D 2PnQn.

29. Q2
n C 2P 2

n D Q2n. Hint: Use the Binet-like formulas.

30. Q2
n � 2P 2

n D .�1/n.

31. Q2n D 2Q2
n � .�1/n.

32. Q2n D 4P 2
n C .�1/n.

33. PnC1Pn�1 � P 2
n D .�1/n. Hint: Use matrices, PMI, or the Binet-like formula.

34. QnC1Qn�1 �Q2
n D 2.�1/n�1.

35. PnQn�1 �QnPn�1 D .�1/n�1.

36. PnQn�1 CQnPn�1 D P2n�1.

37. 2.P 2
nC1 C P 2

n / D Q2n CQ2nC1.

38. 2.Q2
nC1 CQ2

n/ D Q2n CQ2nC2.

39. QnQnC1 � 2PnPnC1 D .�1/n.

40. PnPnC3 � PnC1PnC2 D 2.�1/n�1. Hint: Use the Binet-like formula for Pn and the fact
that �3 C ı3 D 14.

41. QnQnC3 �QnC1QnC2 D 4.�1/n.

42. P 2
nC3 C P 2

n D 5P2nC3. Hint: Use the Pell recurrence and identity (19).

43. Q2
nC3 CQ2

n D 10P2nC3.
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44. PnQn D 6Pn�1Qn�1 � Pn�2Qn�2.

45. Q2n D 6Q2n�2 �Q2n�4.

46. Q2
n D 6Q2

n�1 �Q2
n�2 C 4.�1/n.

47. P3n � 0 .mod 5/.

48. 2PnC1Qn�1 C 2.�1/n D P2n.

49. P2nC4 D 6P2nC2 � P2n.

50. PmCn D 2PmQn � .�1/nPm�n.

51. QmCn D 2QmQn � .�1/nQm�n.

52. The number of digits in Pn equals dn log � � 1:5 log 2e.
53. The number of digits in Qn equals dn log � � log 2e.
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Additional Pell Identities

8.1 Introduction

In the preceding chapter, we studied some fundamental identities of the Pell family. We now
present some additional ones. Again, for the sake of brevity, we will prove only some of them,
but will add some comments on others when needed. We will revisit some of these results in
Chapter 11, when we study generating functions for the Pell family.

We begin our pursuit with a common recurrence for even-numbered Pell and Pell–Lucas
numbers. To this end, suppose xn satisfies the Pell recurrence. Then

6x2n�2 � x2n�4 D 5x2n�2 C .x2n�2 � x2n�4/

D 5x2n�2 C 2x2n�3

D 5x2n�2 C 2.x2n�1 � 2x2n�2/

D x2n�2 C 2x2n�1

D x2n:

In particular, we have

(1) P2n D 6P2n�2 � P2n�4.

(2) Q2n D 6Q2n�2 �Q2n�4.
For example, P10 D 2378 D 6 � 408 � 70 D 6P8 � P6 and Q10 D 239 D 6 � 41 � 7 D
6Q8 �Q6.
Both identities will enable us to develop their generating functions in Chapter 11.

The recurrence for Q2n has an interesting consequence. To see this, recall from Chapter
6 that the subscript nk of the square-triangular number y2

k is given by nk D 1
2
.Q2k � 1/.

Consequently, we have

T. Koshy, Pell and Pell–Lucas Numbers with Applications, DOI 10.1007/978-1-4614-8489-9__8,
© Springer Science+Business Media New York 2014
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6nk�1 � nk�2 C 2 D 6

2
.Q2k�2 � 1/ � 1

2
.Q2k�4 � 1/C 2

D 1

2
.6Q2k�2 �Q2k�4 � 1/

D 1

2
.Q2k � 1/ D nk;

as found in Chapter 6.

(3) P 2
n D 6P 2

n�1 � P 2
n�2 � 2.�1/n.

This can be established using the recurrence and the Cassini-like formula for Pn:

P 2
n D .2Pn�1 C Pn�2/

2

D 4P 2
n�1 C P 2

n�2 C 4Pn�1Pn�2

D 4P 2
n�1 C P 2

n�2 C 2Pn�2.Pn � Pn�2/

D 4P 2
n�1 � P 2

n�2 C 2PnPn�2

D 6P 2
n�1 � P 2

n�2 C 2.PnPn�2 � P 2
n�1/

D 6P 2
n�1 � P 2

n�2 C 2.�1/n�1

D 6P 2
n�1 � P 2

n�2 � 2.�1/n:

(8.1)

For example, 6P 2
5 � P 2

4 � 2.�1/6 D 6 � 292 � 122 � 2 D 4900 D 702 D P 2
6 .

Formula (8.1) shows that the squares of Pell numbers can be defined recursively:

P 2
1 D 1; P 2

2 D 4

P 2
n D 6P 2

n�1 � P 2
n�2 � 2.�1/n; n � 3:

8.2 An Interesting Byproduct

This recurrence has a delightful byproduct: It can be used to confirm the recurrence for the
square-triangular numbers ck D y2

k we studied in Chapter 6. By identity (8.1), we have

P 2
2k D 6P 2

2k�1 � P 2
2k�2 � 2

D 6.6P 2
2k�2 � P 2

2k�3 C 2/ � P 2
2k�2 � 2

D 35P 2
2k�2 � 6P 2

2k�3 C 10

D 34P 2
2k�2 C .P 2

2k�2 � 6P 2
2k�3 C 2/C 8

D 34P 2
2k�2 � P 2

2k�4 C 8:

Since ck D 1
2
P2k , this implies that ck D 34ck�1 � ck�2 C 2, as desired.
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The next result shows that Qn enjoys a similar property. It can be established using a similar
argument.

(4) Q2
n D 6Q2

n�1 �Q2
n�2 C 4.�1/n.

Consequently, Q2
n also can be defined recursively:

Q2
1 D 1; Q2

2 D 9

Q2
n D 6Q2

n�1 �Q2
n�2 C 4.�1/n; n � 3:

These two identities can be deduced from the formula

X2
nC2 � .a2 � 2b/X2

nC1 C b2X2
n D 2bnC1.X2

1 � aX1X0 C bX2
0 /;

where fXng satisfies the recurrence XnC2 D aXnC1 � bXn. This was established by
D. Zeitlin of Minneapolis, Minnesota in 1965 [265]. With a D 2; b D �1, and Xn D Pn,
identity (3) follows. Likewise, With a D 2; b D �1, and Xn D Qn, identity (4) also
follows.

The above recurrences for P 2
n and Q2

n are not homogeneous. We will now take a
different approach to derive a common homogeneous recurrence. To this end, suppose xn

satisfies the Pell recurrence. Then

x2
nC3 D .2xnC2 C xnC1/

2

D 4x2
nC2 C 4xnC2xnC1 C x2

nC1

D 4x2
nC2 C x2

nC1 C 2xnC1.2xnC1 C xn/C xnC2.xnC2 � xn/

D 5x2
nC2 C 5x2

nC1 � xn.xnC2 � 2xnC1/

D 5x2
nC2 C 5x2

nC1 � x2
n; (8.2)

where n � 0. Thus x2
n satisfies the third-order recurrence snC3 D 5snC2C5snC1�sn, with

characteristic roots �1; �2 and ı2.
For example, let xn D Pn. Then s0 D P 2

0 D 0; s1 D P 2
1 D 1, and s2 D P 2

2 D 4.
Consequently, s3 D P 2

3 D 5 � 4C 5 � 1 � 0 D 52. On the other hand, let xn D Qn. Then
s4 D Q2

4 D 5 � 72 C 5 � 33 � 162 D 172.
We will invoke recurrence (8.2) for developing generating functions for the sequences

fP 2
n g and fQ2

ng in Chapter 11.

(5) 4.QnQnC1 � PnPnC1/ D Q2nC1 C 3.�1/n.

(6) 2QnQnC1 D Q2nC1 C .�1/n.

(7) Pn D PkQn�k CQkPn�k , where 1 � k � n.
In particular, this identity gives two dividends we already know: P2n D 2PnQn and Pn D
Pn�1 CQn�1.
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(8) We can use the recurrence for Pn to generate an interesting pattern:

Pn D 1Pn

D 2Pn�1 C Pn�2 D 2.2Pn�2 C Pn�3/C Pn�2

D 5Pn�2 C 2Pn�3 D 5.2Pn�3 C Pn�4/C 2Pn�3

D 12Pn�3 C 5Pn�4

:::

More generally, we can conjecture that Pn D PkC1Pn�k C PkPn�k�1. This can be
confirmed using induction on k or using the Binet-like formula for Pn.

Using a similar argument, we can show that Qn D PkC1Qn�k C PkQn�k�1.
For example, P4P7 C P3P6 D 12 � 169C 5 � 70 D 2; 378 D P10 and Q4Q7 CQ3Q6 D
12 � 239C 5 � 99 D 3; 363 D Q10.

(9) 4.P 2
n CQ2

n/ D 3Q2n C .�1/n.

The next two identities follow from this one.

(10) 4.3P 2
n CQ2

n/ D 5Q2n � .�1/n.

(11) 3Q2
n C 2P 2

n D 2Q2n C .�1/n.

(12) PmCnPmCr � PmCnCrPm D .�1/mPnPr .
This was proposed as a problem in 1969 by M.N.S. Swamy of Nova Scotia Technical
College, Halifax, Canada, and C.A. Vespe of the University of New Mexico, Albuquerque,
New Mexico [244]. The proof follows algebraically in a straightforward fashion.

For example, we have

P4C7P4C5 � P4C5C7P4 D P11P9 � P16P4 D 5741 � 985 � 470832 � 12

D 4901 D .�1/4 � 29 � 169 D .�1/4P5P7:

This formula has two interesting byproducts:

• Changing n to n � m and letting r D 1, it yields PnPmC1 � PnC1Pm D .�1/mPn�m.
Switching the variables m and n, we get

PmPnC1 � PmC1Pn D .�1/nPm�n: (8.3)

When m D n � 1, this yields the Cassini-like formula for Pell numbers.
Identity (8.3) has a Fibonacci counterpart: FmFnC1 � FmC1Fn D .�1/nFm�n. It is

called d’Ocagne’s identity, after the French mathematician Philbert Maurice d’Ocagne
(1862–1938); when m D n � 1, it yields Cassini’s formula.

• When r D �n, the formula yields a generalization of the Cassini-like formula:

PmCnPm�n � P 2
m D .�1/mCn�1P 2

n ; (8.4)

where we have used the fact that P�k D .�1/k�1Pk . In particular, this yields the
Cassini-like formula PmC1Pm�1 � P 2

m D .�1/m.
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It has two other interesting special cases:

P 2
2m � P3mPm D .�1/mP 2

m (8.5)

PmC1PnC1 � PmPn D PmCnC1: (8.6)

We will revisit the latter identity later.
The next result is the counterpart of identity (12) for Pell–Lucas numbers. Its proof

follows along the same lines.

(13) QmCnQmCr �QmCnCrQm D 2.�1/m�1PnPr . For example, Q5C7Q5C3 �Q5C7C3Q5 D
Q12Q8 �Q15Q5 D 19601 � 577 � 275807 � 41 D 1690 D 2 � 169 � 5 D 2.�1/5�1P7P3.
In particular, we have

QmQnCr �QmCrQn D 2.�1/n�1Pm�nPr

QmQnC1 �QmC1Qn D 2.�1/n�1Pm�n

QmCnQm�n �Q2
m D 2.�1/mCnP 2

n

QmC1Qm�1 �Q2
m D 2.�1/m�1

QmC1QnC1 � 2PmPn D QmCnC1:

(14) P 2
n C P 2

nC3 D 5P2nC3.
This result has a counterpart for Pell–Lucas numbers.

(15) Q2
n CQ2

nC3 D 10P2nC3.
For example, Q2

5 CQ2
8 D 412 C 5772 D 334; 610 D 10 � 33461 D 10P13.

(16) 4.4P 2
n C P 2

n�1 C 2PnPn�1/ D 2Q2nC1 CQ2n�2 � .�1/n.

Proof.

LHS D 4Œ4P 2
n C Pn�1.2Pn C Pn�1/� D 4.4P 2

n C PnC1Pn�1/

D 4Œ.PnC1 � Pn�1/
2 C PnC1Pn�1� D 4.P 2

nC1 C P 2
n�1 � PnC1Pn�1/

D 4ŒPnC1.PnC1 � Pn�1/C P 2
n�1� D 4.PnC1 � 2Pn C P 2

n�1/

D 4.2PnPnC1 C P 2
n�1/

2.LHS/ D 2.�n � ın/.�nC1 � ınC1/C .�n�1 � ın�1/2

D 2Œ�2nC1 C ı2nC1 � 2.�1/n�C Œ�2n�2 C ı2n�2 C 2.�1/n�

D 4Q2nC1 C 2Q2n�2 � 2.�1/n

LHS D 2Q2nC1 CQ2n�2 � .�1/n D RHS:

For example, 4.4P 2
5 C P 2

4 C 2P5P4/ D 4.4 � 292 C 122 C 2 � 29 � 12/ D 16; 816 D
2 � 8119C 577C 1 D 2Q11 CQ8 � .�1/5.

The next identity can be proved similarly.
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(17) 2.4Q2
nCQ2

n�1C 2QnQn�1/ D 2Q2nC1CQ2n�2C .�1/n. For example, 2.4Q2
5CQ2

4C
2Q5Q4/ D 2.4�412C172C2�41�17/ D 16; 814 D 2�8119C577�1 D 2Q11CQ8C.�1/5.

8.3 A Pell and Pell–Lucas Hybridity

In the book, Pell’s Equation [9], the author gives an interesting number pattern and asks the
reader to predict the underlying formula for the pattern and then establish it:

34 � 5 � 42 D 1

74 � 24 � 102 D 1

174 � 145 � 242 D 1

414 � 840 � 582 D 1
:::

Factoring the numbers 5; 24; 145; 840; : : : in column 2 and the numbers 4; 10; 24; 58; : : : in
column 3 reveals the formula behind this fascinating pattern: Q4

nC1 � PnPnC2.2PnC1/
2 D 1.

We could establish this property using the Binet-like formulas; but this approach will involve
a lot of messy algebra. Instead, we will let identity (31) in Chapter 7 and determinants do the job
for us; the resulting proof is both short and elegant.

Proof. We have

Q4
nC1 � PnPnC2.2PnC1/

2 D
ˇ
ˇ
ˇ
ˇ
ˇ

Q2
nC1 4PnPnC2

P 2
nC1 Q2

nC1

ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

Q2
nC1 C 0 4ŒP 2

nC1 C .�1/nC1�

P 2
nC1 Q2

nC1

ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

Q2
nC1 4P 2

nC1

P 2
nC1 Q2

nC1

ˇ
ˇ
ˇ
ˇ
ˇ
C
ˇ
ˇ
ˇ
ˇ
ˇ

0 4.�1/nC1

P 2
nC1 Q2

nC1

ˇ
ˇ
ˇ
ˇ
ˇ

D .Q4
nC1 � 4P 4

nC1/ � 4.�1/nC1P 2
nC1

D .Q2
nC1 � 2P 2

nC1/.Q
2
nC1 C 2P 2

nC1/ � 4.�1/nC1P 2
nC1

D .�1/nC1.Q2
nC1 C 2P 2

nC1/ � 4.�1/nC1P 2
nC1

D .�1/nC1.Q2
nC1 � 2P 2

nC1/

D .�1/nC1 � .�1/nC1

D 1;

as desired.
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8.4 Matrices and Pell Numbers

As is the case with Fibonacci numbers, we can also use matrices to generate Pell numbers.
Consequently, matrices are helpful in extracting properties of Pell numbers. To this end, consider
the matrix

P D
"

2 1

1 0

#

:

Then

P 2 D
"

5 2

2 1

#

D 2P C I ;

where I denotes the 2 � 2 identity matrix. So P satisfies the matrix equation M 2 D 2M C I .
Notice also that

P D
"

P2 P1

P1 P0

#

and P 2 D
"

P3 P2

P2 P1

#

:

More generally, we have the following result. We will prove it by PMI.

Theorem 8.1 Let n be any positive integer. Then

P n D
"

PnC1 Pn

Pn Pn�1

#

:

Proof. The result is clearly true when n D 1. Now assume that it is true for an arbitrary integer
k � 1:

P k D
"

PkC1 Pk

Pk Pk�1

#

:

Then, using the Pell recurrence, we have

P kC1 D P k � P

D
"

PkC1 Pk

Pk Pk�1

#"
P2 P1

P1 P0

#

D
"

2PkC1 C Pk PkC1

2Pk C Pk�1 Pk

#

D
"

PkC2 PkC1

PkC1 Pk

#

:

So the result is true when n D k C 1. Thus, by PMI, the result is true for every integer n � 1.
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It follows by the theorem that the powers of the matrix P can be used to generate all Pell
numbers.

An immediate consequence of Theorem 8.1 is the Cassini-like formula for Pn, which we
derived earlier. We now rederive it by invoking the fact that jA � Bj D jAj � jBj, where jM j
denotes the determinant of the square matrix M . Then

jP jn D jP nj D
ˇ
ˇ
ˇ
ˇ
ˇ

PnC1 Pn

Pn Pn�1

ˇ
ˇ
ˇ
ˇ
ˇ
D PnC1Pn�1 � P 2

n :

But jP j D �1; so jP jn D .�1/n. Thus PnC1Pn�1 � P 2
n D .�1/n, as desired.

Theorem 8.1 has additional byproducts.
(1) First, we will prove the addition formula

PmCn D PmPnC1 C Pm�1Pn: (8.7)

Proof. Since P mCn D P mP n, by Theorem 8.1, we have

"
PmCnC1 PmCn

PmCn PmCn�1

#

D
"

PmC1 Pm

Pm Pm�1

#"
PnC1 Pn

Pn Pn�1

#

D
"

PmC1PnC1 C PmPn PmC1Pn C PmPn�1

PmPnC1 C Pm�1Pn PmPn C Pm�1Pn�1

#

:

The addition formula follows by equating the lower left-hand elements from both sides.

For example, P10 D P4C6 D P4P7 C P3P6 D 12 � 169C 5 � 70 D 2; 378.
Notice that Pell’s recurrence follows from the addition formula; so the addition formula is a

generalization of the Pell recurrence.
Formula (8.7) yields three interesting dividends:

(a) Suppose we let m D n. Then formula (8.7) yields

P2n D PnPnC1 C Pn�1Pn D Pn.PnC1 C Pn�1/

D Pn.2Qn/ D 2PnQn;

a fact we already knew.

(b) Next we claim that 13jP7n for every integer n � 1.
We will prove this using PMI. First, notice that P7 D 169 and 13jP7. Assume the claim
holds for an arbitrary positive integer n. Then, by formula (8.7), P7.nC1/ D P7nC7 D
P7nP8 C P7n�1P7. Since 13jP7n by the inductive hypothesis, it follows that 13jP7.nC1/.
Thus, by PMI, the result is true for every n � 1.

More generally, suppose qjPm, where q is a prime. Then it follows by a similar
argument that qjPmn for every integer n. For example, 17jP8 and 17jP16.
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(c) Suppose we let m D 2n in formula (8.7). Then

P3n D P2nPnC1 C P2n�1Pn

D 2PnQnPnC1 C P2n�1Pn

D .2QnPnC1 C P2n�1/Pn:

So PnjP3n for every positive integer n.
For example, P5jP15, where P5 D 29 and P15 D 195; 025.

(2) More generally, we have the following theorem, which we will establish using PMI.

Theorem 8.2 Let n be any positive integer. Then PmjPmn.

Proof. Since the statement is clearly true when n D 1, assume it is true for an arbitrary integer
n � 1. Then, by formula (8.7), we have

Pm.nC1/ D PmnCm

D PmnPmC1 C Pmn�1Pm:

Since PmjPmn by the inductive hypothesis, it follows that PmjPm.nC1/. Thus, by PMI, PmjPmn

for every integer n � 1.

Fortunately, the converse is also true, as the next theorem shows.

Theorem 8.3 If PmjPn, then mjn.

Proof. By the division algorithm, let n D mk C r , where 0 � r < m. Then, by formula (8.7),
we have

Pn D PmkCr

D PmkPrC1 C Pmk�1Pr :

Since PmjPn and PmjPmk , it follows that PmjPmk�1Pr . Since .Pmk; Pmk�1/ D 1, it follows that
Pm6 jPmk�1. Consequently, PmjPr . But this is impossible, unless r = 0. Thus n D mk and hence
mjn, as desired.

Combining Theorems 8.3 and 8.4, we have the following result.

Theorem 8.4 PmjPn if and only if mjn.

(3) Next we will show how Theorem 8.1 and the convergents of the ISCF of
p

2 are closely
related.
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8.5 Convergents of the ISCF of
p

2 Revisited

It is well known that every square matrix M satisfies its characteristic equation jM � �I j D 0,
where � denotes the eigenvalue of M and I the identity matrix of the same size as
M . This is the celebrated Cayley–Hamilton theorem, named after the English mathemati-
cian Arthur Cayley (1821–1895) and the Irish mathematician William Rowan Hamilton
(1805–1865).

The characteristic equation jP n � �I j D 0 of P n gives us a surprising dividend. Substitute
for P n from Theorem 8.1:

ˇ
ˇ
ˇ
ˇ
ˇ

PnC1 � � Pn

Pn Pn�1 � �

ˇ
ˇ
ˇ
ˇ
ˇ
D 0

.PnC1 � �/.PnC1 � �/ � P 2
n D 0

�2 � .PnC1 C Pn�1/�C .PnC1Pn�1 � P 2
n / D 0

�2 � 2Qn�C .�1/n D 0:

Solving this quadratic equation, we get

� D 2Qn ˙
p

4Q2
n � 4.�1/n

2

D Qn ˙
q

Q2
n � .�1/n

D Qn ˙
q

2P 2
n

D Qn ˙ Pn

p
2:

But QnCPn

p
2 D �nCın

2
C �n�ın

2
D �n, and similarly, Qn�Pn

p
2 D ın. Thus the characteristic

roots of the equation jP n � �I j D 0 are �n and ın.
Recall from Example 3.8 that QnC1

PnC1
is the nth convergent of the ISCF of

p
2. Consequently,

the nth convergent of the ISCF of
p

2 can be used to compute the characteristic roots of the
equation jP n � �I j D 0.

The addition formula (8.7) can be used to derive a formula for Pm�n. Changing n to �n, it
yields

Pm�n D PmP�.n�1/ C Pm�1P�n

D .�1/n�2PmPn�1 C .�1/n�1Pm�1Pn

D .�1/n.PmPn�1 � Pm�1Pn/: (8.8)

For example, P4 D P7�3 D .�1/3.P7P2 � P6P3/ D �.162 � 2 � 70 � 5/ D 12:

Formula (8.8) can be confirmed using the Binet-like formula for Pell numbers.
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8.5.1 An Alternate Method

Interestingly, Theorem 8.1 can also be used to derive formula (8.8). As is well known, the 2 � 2

matrix M D
"

a b

c d

#

is invertible if and only if jM j D ad � bc 6D 0. When it is invertible, the

inverse is given by

M �1 D 1

jM j

"
d �b

�c a

#

:

Since jP j D �1 6D 0, the matrix P is invertible; so is P n. The inverse P �n is given by

P �n D 1

j�j

"
Pn�1 �Pn

�Pn PnC1

#

;

where � D PnC1Pn�1 � P 2
n D .�1/n. So

P �n D .�1/n

"
Pn�1 �Pn

�Pn PnC1

#

:

Thus,

P m�n D P m � P �n

D .�1/n

"
PmC1 Pm

Pm Pn�1

#"
Pn�1 �Pn

�Pn PnC1

#

"
Pm�nC1 Pm�n

Pm�n Pm�n�1

#

D .�1/n

"
PmC1Pn�1 � PmPn PmPnC1 � PmC1Pn

PmPn�1 � Pm�1Pn Pm�1PnC1 � PmPn

#

:

This matrix equation yields two formulas for Pm�n:

Pm�n D .�1/n.PmPnC1 � PmC1Pn/

D .�1/n.PmPn�1 � Pm�1Pn/:

Notice that these formulas result in the Cassini-like formula for Pell numbers when m D
nC 1.

Next we investigate the powers of the matrix

Q D
"

3 1

1 1

#

D
"

Q2 Q1

Q1 Q0

#

:
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Although the powers of Q also follow an interesting pattern, the pattern is slightly more
complicated:

Q1 =

"
3 1

1 1

#

=

"
Q2 Q1

Q1 Q0

#

Q2 = 2

"
5 2

2 1

#

= 21

"
P3 P2

P2 P1

#

Q3 = 2

"
17 7

7 3

#

= 21

"
Q4 Q3

Q3 Q2

#

Q4 = 4

"
29 12

12 5

#

= 22

"
P5 P4

P4 P3

#

.

More generally, we claim that

Qn D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

2n=2

"
PnC1 Pn

Pn Pn�1

#

if n is even

2bn=2c
"

QnC1 Qn

Qn Qn�1

#

otherwise.

(8.9)

This can be confirmed using PMI as follows.

Proof (by PMI). Clearly, the formula works when n D 1 and n D 2. Assume it works for all
positive integers < n, where n is an arbitrary integer � 2.

Case 1 Let n be even. Then

Qn D Qn�1 �Q

D 2.n�2/=2

"
Qn Qn�1

Qn�1 Qn�2

#"
3 1

1 1

#

D 2.n�2/=2

"
3Qn CQn�1 Qn CQn�1

3Qn�1 CQn�2 Qn�1 CQn�2

#

D 2.n�2/=2

"
QnC1 CQn Qn CQn�1

Qn CQn�1 Qn�1 CQn�2

#

D 2.n�2/=2

"
2PnC1 2Pn

2Pn 2Pn�1

#

D 2n=2

"
PnC1 Pn

Pn Pn�1

#

:

The case for odd n follows similarly; see Exercise 16. So the formula works for n also.
Thus, by PMI, the result is true for all positive integers n.

Formula (8.9) has two delightful consequences. To see them, first we invoke a useful fact
from the theory of matrices: Let A D .aij /m�m and B D k.aij /m�m D .kaij /m�m. Then
jBj D kmjAj, where jM j denotes the determinant of the matrix M .
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Case 1 Suppose n is even. By formula (8.9), we have

jQnj D
�
2bn=2c	2

ˇ
ˇ
ˇ
ˇ
ˇ

PnC1 Pn

Pn Pn�1

ˇ
ˇ
ˇ
ˇ
ˇ
:

But jQnj D jQjn D 2n. So

2n

ˇ
ˇ
ˇ
ˇ
ˇ

PnC1 Pn

Pn Pn�1

ˇ
ˇ
ˇ
ˇ
ˇ
D 2n

PnC1Pn�1 � P 2
n D 1 D .�1/n:

Case 2 On the other hand, suppose n is odd. Then, as in Case 1, we have

2n�1

ˇ
ˇ
ˇ
ˇ
ˇ

QnC1 Qn

Qn Qn�1

ˇ
ˇ
ˇ
ˇ
ˇ
D 2n

QnC1Qn�1 �Q2
n D 2 D 2.�1/n�1:

8.6 Additional Addition Formulas

Formula (8.9) can be used to develop addition formulas for PmCn and QmCn in special cases. To
this end, we have QmCn D Qm �Qn.

Case 1 Suppose both m and n are odd. Then, by formula (8.9), we have

2.mCn/=2

"
PmCnC1 PmCn

PmCn PmCn�1

#

D 2.m�1/=22.n�1/=2

"
QmC1 Qm

Qm Qm�1

#"
QnC1 Qn

Qn Qn�1

#

D 2.mCn�2/=2

"
QmC1QnC1 CQmQn QmC1Qn CQmQn�1

QmQnC1 CQm�1Qn QmQn CQm�1Qn�1

#

:

This yields the formula

2PmCn D QmQnC1 CQm�1Qn; (8.10)

where both m and n are odd.
For example, Q3Q6 CQ2Q5 D 7 � 99C 3 � 41 D 816 D 2 � 408 D 2P8 D 2P3C5.
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Case 2 Suppose m is odd and n is even. Then formula (8.9) yields

2.mCn�1/=2

"
QmCnC1 QmCn

QmCn QmCn�1

#

D 2.m�1/=22n=2

"
QmC1 Qm

Qm Qm�1

#"
PnC1 Pn

Pn Pn�1

#

"
QmCnC1 QmCn

QmCn QmCn�1

#

D 2.mCn�1/=2

"
QmC1PnC1 CQmPn QmC1Pn CQmPn�1

QmPnC1 CQm�1Pn QmPn CQm�1Pn�1

#

:

This implies that

QmCn D QmC1Pn CQmPn�1

D QmPnC1 CQm�1Pn;

where m is odd and n is even.
For example, let m D 3 and n D 6. Then Q4P6 CQ3P5 D 17 � 70C 7 � 29 D 1393 D Q9.

Likewise, Q3P7 CQ2P6 D 1393 D Q9.

Case 3 Suppose m is even and n is odd. Then formula (8.9) yields
"

QmCnC1 QmCn

QmCn QmCn�1

#

D
"

PmC1 Pm

Pm Pm�1

#"
QnC1 Qn

Qn Qn�1

#

D
"

PmC1QnC1 C PmQn PmC1Qn C PmQn�1

PmQnC1 C Pm�1Qn PmQn C Pm�1Qn�1

#

:

This yields

QmCn D PmC1Qn C PmQn�1

D PmQnC1 C Pm�1Qn;

where m is even and n is odd.
For example, let m D 4 and n D 7. Then P5Q7 C P4Q6 D 29 � 239C 12 � 99 D 8119 D

Q11 D P4Q8 C P3Q7.

Case 4 Suppose m and n are both even. This case yields to formula (8.7), found earlier.

8.6.1 Formula (8.10) Revisited

Although formula (8.10) is restricted to odd integers m and n, it is true for all nonnegative
integers m and n. This follows by the Binet-like formulas:

4.QmQnC1 CQm�1Qn/ D .�m C ım/.�nC1 C ınC1/C .�m�1 C ım�1/.�n C ın/

D �mCn

�

� C 1

�

�

C ımCn

�

ı C 1

ı

�

C �mın

�

ı C 1

�

�

C�nım

�

� C 1

ı

�
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D �mCn.� � ı/ � ımCn.� � ı/

D .� � ı/.�mCn � ımCn/ D 8PmCn

QmQnC1 CQm�1Qn D 2PmCn: (8.11)

For example, Q4Q8 CQ3Q7 D 17 � 577C 7 � 239 D 11; 482 D 2 � 5741 D 2P11 D 2P4C7.
Suppose we let m D nC 1 in identity (8.11). Then it yields Q2

nC1 CQ2
n D 2P2nC1, which

is identity (21) in Chapter 7.
Changing n to �n, identity (8.11) yields

2Pm�n D .�1/n�1.QmQn�1 �Qm�1Qn/: (8.12)

For example, Q9Q4 �Q8Q5 D 1393 � 17 � 577 � 41 D 24 D 2 � 12 D 2 � P9�5.
Notice that the Cassini-like formula for Pell–Lucas numbers follows from formula (8.12) by

letting m D nC 1.
The formula QmCn D QmC1PnCQmPn�1 can be used to extract an interesting fact. To this

end, we have

Q2n D QnC1Pn CQnPn�1

D .2Qn CQn�1/Pn CQnPn�1

D Qn.2Pn C Pn�1/C PnQn�1

D QnPnC1 C PnQn�1:

Suppose QnjQ2n. Then QnjPnQn�1. But .Pn; Qn/ D 1. So QnjQn�1, which is impossible.
Consequently, Qn6 jQ2n.

The identity

2PnQn�k D P2n�k�rQr CQ2n�k�rPr C .�1/n�kPk (8.13)

can be established fairly easily using the Binet-like formulas
Identity (8.13) has a number of special cases. When k D �1; 0, and 1, it yields

2PnQnC1 D P2n�rC1Qr CQn�2rC1Pr � .�1/n (8.14)

P2n D P2n�rQr CQn�2rPr (8.15)

2PnQn�1 D P2n�r�1Qr CQn�2r�1Pr � .�1/n: (8.16)

Suppose we let r D 3 in (8.14) and (8.16). Then we get

2PnQnC1 D 7P2n�2 C 5Q2n�2 � .�1/n (8.17)

2PnQn�1 D 7P2n�4 C 5Q2n�4 � .�1/n: (8.18)
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In particular, these yield the following identities, discovered by K.S. Bhanu and M.N.
Deshpande in 2008 [18, 19]:

2P2nC2Q2nC3 D 7P4nC2 C 5Q4nC2 � 1

2P2nC2Q2nC1 D 7P4n C 5Q4n � 1:

For example, let n D 6 in (8.17). Then 7P10 C 5Q10 � 1 D 7 � 2378 C 5 � 3363 � 1 D
33; 460 D 2 � 70 � 239 D 2P6Q7. Likewise, 7P12 C 5PQ12 C 1 D 195; 026 D 2P7Q8.

It is well known that Fibonacci numbers satisfy the property that .Fm; Fn/ D F.m;n/.
Interestingly, the same property holds for Pell numbers as well; we will establish it shortly.

8.7 Pell Divisibility Properties Revisited

In Chapter 7, we found that .Pm; Pm�1/ D 1. Using Theorem 8.2, we can generalize it, as the
following lemma shows.

Lemma 8.1 .Pqn�1; Pn/ D 1, where q is a positive integer.

Proof. Let d D .Pqn�1; Pn/. Then d jPqn�1 and d jPn. But, by Theorem 8.2, PnjPqn; so d jPqn.
Thus d jPqn and d jPqn�1. But .Pqn; Pqn�1/ D 1. So d j1 and hence d D 1. Thus .Pqn�1; Pn/ D
1, as desired.

We need one more lemma before we can prove the desired property.

Lemma 8.2 Let m D qnC r , where 0 � r � n. Then .Pm; Pn/ D .Pn; Pr/.

Proof. Using identity (8.7) and Lemma 8.1, we have

.Pm; Pn/ D .PqnCr ; Pn/

D .PqnPrC1 C Pqn�1Pr ; Pn/

D .Pqn�1Pr ; Pn/ D .Pr ; Pn/

D .Pn; Pr/:

For example, let m D 15 and n D 6. Clearly, q D 2 and r D 3. Then .P15; P6/ D
.195025; 70/ D 5 D .70; 5/ D .P6; P3/.

We are now ready to establish the property mentioned earlier. The essence of the proof lies
in the well-known euclidean algorithm [130].

Theorem 8.5 .Pm; Pn/ D P.m;n/.

Proof. Without loss of generality, we can assume that m � n. Then, by the euclidean algorithm,
we get the following sequence of equations:
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m D q0nC r1; 0 � r1 < n

n D q1r1 C r2; 0 � r2 < r1

r1 D q2r2 C r3; 0 � r3 < r2

:::

rn�2 D qn�1rn�1 C rn; 0 � rn < rn�1

rn�1 D qnrn C 0:

It follows from a repeated application of Lemma 8.2 that .Pm; Pn/ D .Pn; Pr1/ D .Pr1; Pr2/ D
� � � D .Prn�2; Prn�1/ D .Prn�1; Prn/. Since rn�1 D qnrn; .Prn�1; Prn/ D .Pqnrn; Prn/. By
Theorem 8.2, PrnjPqnrn . So .Pqnrn; Prn/ D Prn . But rn D .m; n/. So .Pqnrn; Prn/ D P.m;n/.
Thus .Pm; Pn/ D P.m;n/, as desired.

This theorem gives a quick and efficient algorithm for computing the gcd of any two Pell
numbers. A scientific calculator such as TI-86 or higher will come in handy, because it has a
built-in gcd function.

For example, .P21; P14/ D .38613965; 80782/ D 169 D P7 D P.21;14/.
It follows by Theorem 8.5 that the least common denominator (lcm) ŒPm; Pn� of Pm and Pn

also can be computed quickly:

ŒPm; Pn� D PmPn

.Pm; Pn/
D PmPn

P.m;n/

:

For example, ŒP15; P10� D Œ195025; 2378� D 195025�2378
P5

D 195025�2378
29

D 15; 992; 050.
When Pm and Pn are fairly small, we could invoke the built-in function lcm to compute their

lcm.
We would like to emphasize that Theorem 8.5 does not hold for Pell–Lucas numbers:

.Qm; Qn/ 6D Q.m;n/ in general. For example, .Q12; Q6/ D .19601; 99/ D 1, whereas
Q.12;6/ D Q6 D 99.

Theorem 8.5 has an immediate byproduct. To see this, suppose m and n are relatively prime;
that is, .m; n/ D 1. Then .Pm; Pn/ D P.m;n/ D P1; so Pm and Pn are relatively prime.
Conversely, if Pm and Pn are relatively prime, then so are m and n. Thus we have the following
result.

Corollary 8.1 .Pm; Pn/ D 1 if and only if .m; n/ D 1.

This corollary can be used to reconfirm the infinitude of primes, first established by the
Greek mathematician Euclid (ca. 330–275 B.C.), the father of number theory and geometry. The
proof given next is adapted from the one given in 1965 by M. Wunderlich of the University of
Colorado for Fibonacci numbers [263].

Corollary 8.2 There are infinitely many primes.
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Proof. Suppose there are exactly k primes, q1; q2; : : : ; qk . Consider the Pell numbers
Pq1; Pq2; : : : ; Pqk

. Since .qi ; qj / D 1; .Pqi ; Pqj / D 1 by Corollary 8.1, where i 6D j . Since there
are only k primes by our assumption, this implies that each Pqi has exactly one prime factor.
But this is a contradiction, since P17 D 1136689 D 137 � 8297, where 137 and 8297 are primes.
So P17 has two distinct prime factors. (Notice that P23 D 225058681 D 229 � 982789 also has
two distinct prime factors.) Since this is a contradiction, it follows that there are infinitely many
primes.

8.8 Additional Identities

Algebraic identities can be used to develop new Pell and Pell–Lucas identities. For example,
consider the identity .x C y/3 � x3 � y3 D 3xy.x C y/. Letting x D 2Pn and y D Pn�1, it
yields the identity

P 3
nC1 � 8P 3

n � P 3
n�1 D 6PnC1PnPn�1:

Similarly, we have

Q3
nC1 � 8Q3

n �Q3
n�1 D 6QnC1QnQn�1:

For example, P 3
6 �8P 3

5 �P 3
4 D 703�8 �293�123 D 146; 160 D 6 �70 �29 �12 D 6P6P5P4

and Q3
6 � 8Q3

5 �Q3
4 D 993 � 8 � 413 � 173 D 414; 018 D 6 � 99 � 41 � 17 D 6Q6Q5Q4.

The identities .xC y/5 � x5 � y5 D 5xy.xC y/.x2C xyC y2/ and .xC y/7 � x7 � y7 D
7xy.x C y/.x2 C xy C y2/ can be employed to derive the following identities:

P 5
nC1 � 32P 5

n � P 5
n�1 D

5

2
PnC1PnPn�1Œ5Q2n � .�1/n�

Q5
nC1 � 32Q5

n �Q5
n�1 D 10QnC1QnQn�1Œ2Q2n C .�1/n�

P 7
nC1 � 128P 7

n � P 7
n�1 D

5

8
PnC1PnPn�1Œ5Q2n � .�1/n�2

Q7
nC1 � 128Q7

n �Q7
n�1 D 10QnC1QnQn�1Œ5Q2n C .�1/n�2:

Using the identities .x C y/2 C x2 C y2 D 2.x2 C y2 C xy/ and .x C y/4 C x4 C y4 D
2.x2 C y2 C xy/2, it can be shown that

P 2
nC1 C 4P 2

n C P 2
n�1 D

1

2
Œ2Q2nC1 CQ2n�2 � .�1/n�

Q2
nC1 C 4Q2

n CQ2
n�1 D 2Q2nC1 CQ2n�2 C .�1/n�

P 4
nC1 C 16P 4

n C P 4
n�1 D

1

8
Œ2Q2nC1 CQ2n�2 � .�1/n�2

Q4
nC1 C 16P 2

n CQ2
n�1 D

1

2
Œ2Q2nC1 CQ2n�2 C .�1/n�2:
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8.9 Candido’s Identity and the Pell Family

Let x and y be any two real numbers. Then



x2 C y2 C .x C y/2

�2 D 2


x4 C y4 C .x C y/4

�
:

This is Candido’s identity, named after the Italian mathematician Giacomo Candido (1871–
1941).

As can be predicted, Candido’s identity has an interesting geometric interpretation. To see
this, consider three line segments AB; BC , and CD such that AB D x2; BC D y2 and CD D
.x C y/2. Now form the square ADEF ; see Figure 8.1. Then

Area ADEF D 

x2 C y2 C .x C y/2

�2

D 2


x4 C y4 C .x C y/4

�

D 2.sum of three shades areas/:

x2 y2 (x + y)2

x4

A B C D

EF

y4

(x + y)4

Figure 8.1. Pascal’s Triangle

25 576 841

625

331,776

707,282

Figure 8.2.

Let x D Pn�2 and y D 2Pn�1. Then Candido’s identity yields the Pell identity

�
P 2

n�2 C 4P 2
n�1 C P 2

n

�2 D 2
�
P 4

n�2 C 16P 4
n�1 C P 4

n

�
: (8.19)

For example, let n D 5. Then

LHS D .P 2
3 C 4P 2

4 C P 2
5 /2 D .52 C 4 � 122 C 292/2

D 2; 079; 364 D 2.54 C 16 � 124 C 294/

D 2.P 4
3 C 16P 4

4 C P 4
5 / D RHS:

See Figure 8.2.
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Letting x D Qn�2 and y D 2Qn�1. Then Candido’s identity yields the Pell–Lucas identity

�
Q2

n�2 C 4Q2
n�1 CQ2

n

�2 D 2
�
Q4

n�2 C 16Q4
n�1 CQ4

n

�
: (8.20)

For example, let n D 5. Then LHS = .Q2
3 C 4Q2

4 C Q2
5/2 D .72 C 4 � 172 C 412/2 D

8; 328; 996 D 2.74 C 16 � 174 C 414/ D 2.Q4
3 C 16Q4

4 CQ4
5/ D RHS; as expected.

8.10 Pell Determinants

We can evaluate special determinants containing Pell and Pell–Lucas numbers by using basic
algebra, and the Pell recurrence and identities. For example, suppose we would like to evaluate
the determinant

D D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

PnC3 PnC2 PnC1 Pn

PnC2 PnC3 Pn PnC1

PnC1 Pn PnC3 PnC2

Pn PnC1 PnC2 PnC3

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

:

This looks like the determinant

A D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

a b c d

b a d c

c d a b

d c b a

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

:

This determinant was first evaluated in 1866 [173]:

A D .aC b C c C d/.aC b � c � d/.a � b C c � d/.a � b � c C d/:

Using this formula,

D D .PnC3 C PnC2 C PnC1 C Pn/.PnC3 C PnC2 � PnC1 � Pn/.PnC3 � PnC2 C PnC1 � Pn/

� .PnC3 � PnC2 � PnC1 C Pn/:

For convenience, we will now simplify each factor separately:

PnC3 C PnC2 C PnC1 C Pn D PnC2 C 3PnC2 D 4PnC2

PnC3 C PnC2 � PnC1 � Pn D 2PnC2 C 2PnC1 D 2QnC2

PnC3 � PnC2 C PnC1 � Pn D 2QnC2 � 2QnC1 D 2.QnC2 �QnC1/

D 2.2PnC1/ D 4PnC1

PnC3 � PnC2 � PnC1 � Pn D 2PnC2 � PnC2 � Pn D PnC2 C Pn:

D 2QnC1:
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Thus

D D 4PnC2 � 2QnC2 � 4PnC1 � 2QnC1

D 4.2PnC2QnC2/ � 4.2PnC1QnC1/

D 4P2nC4 � 4P2nC2 D 16P2nC2P2nC4:

Similarly we have

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

QnC3 QnC2 QnC1 Qn

QnC2 QnC3 Qn QnC1

QnC1 Qn QnC3 QnC2

Qn QnC1 QnC2 QnC3

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D 4QnC2 � 4PnC2 � 4PnC1 � 4QnC1

D 8.2PnC2QnC2/ � 8.2PnC1QnC1/

D 64P2nC2P2nC4:

Exercises 8

Establish the following identities, where fxng satisfies the Pell recurrence.

1. Q2
n D 6Q2

n�1�Q2
n�2C4.�1/n. Hint: Use the Pell recurrence and Cassini’s formula for Qn.

2. 4.QnQnC1 � PnPnC1/ D Q2nC1 C 3.�1/n.

3. 2QnQnC1 D Q2nC1 C .�1/n.

4. Pn D PkQn�k CQkPn�k , where 1 � k � n.

5. Pn D PkC1Pn�k C PkPn�k�1. Hint: Use PMI or the Binet-like formula for Pn.

6. Qn D PkC1Qn�k C PkQn�k�1.

7. 4.P 2
n CQ2

n/ D 3Q2n C .�1/n.

8. 4.3P 2
n CQ2

n/ D 5Q2n � .�1/n.

9. 3Q2
n C 2P 2

n D 2Q2n C .�1/n.

10. PmCnPmCr � PmCnCrPm D .�1/mPnPr .

11. PmCnPm�n � P 2
m D .�1/mCn�1P 2

n .

12. QmCnQmCr �QmCnCrQm D 2.�1/m�1PnPr .

13. P 2
n C P 2

nC3 D 5P2nC3.

14. Q2
n CQ2

nC3 D 10P2nC3.

15. 2.4Q2
n CQ2

n�1 C 2QnQn�1/ D 2Q2nC1 CQ2n�2 C .�1/n. Hint: Use the Pell recurrence
and the Binet-like formula for Pn.
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16. Qn D 2bn=2c
"

QnC1 Qn

Qn Qn�1

#

, where Q D
"

3 1

1 1

#

and n is odd.

17. x3
nC1 � 8x3

n � x3
n�1 D 6xnC1xnxn�1.

18. .x2
n�2 C 4x2

n�1 C x2
n/2 D 2.x4

n�2 C 16x4
n�1 C x4

n/.

19. Candido’s identity.

20. Evaluate the determinant

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

a b c d

b a d c

c d a b

d c b a

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

.
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Pascal’s Triangle and the Pell Family

9.1 Introduction

Recall from Chapter 1 that Fibonacci and Lucas numbers are given by the explicit formulas

Fn D
b.n�1/=2cX

j D0

 
n � j � 1

j

!

and Ln D
bn=2cX

j D0

n

n � j

 
n � j

j

!

;

where n � 1. Furthermore, both families can be extracted from Pascal’s triangle.
Correspondingly, there are explicit formulas for Pell and Pell–Lucas numbers as well. They

too can be extracted from Pascal’s triangle.
The following theorem gives an explicit formula for Pn, which resembles closely the Lucas

formula for Fn. We will establish the formula using strong induction.

Theorem 9.1

Pn D
b.n�1/=2cX

j D0

 
n � j � 1

j

!

2n�2j �1: (9.1)

Proof. Since

0X

j D0

 
0

0

!

20 D 1 D P1 and
0X

j D0

 
1 � j

j

!

21�2j D 2 D P2;

the formula works when n D 1 and n D 2.

T. Koshy, Pell and Pell–Lucas Numbers with Applications, DOI 10.1007/978-1-4614-8489-9__9,
© Springer Science+Business Media New York 2014

173
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Suppose the formula works for all positive integers n � k, where k is an arbitrary integer
� 2. We will now show that it works when n D k C 1.

By the Pell recurrence, we have

PkC1 D 2Pk C Pk�1

D 2

b.k�1/=2cX

j D0

 
k � j � 1

j

!

2k�2j �1 C
b.k�2/=2cX

j D0

 
k � j � 2

j

!

2k�2j �2: (9.2)

Case 1 Let k D 2mC 1 be odd. Then, by (9.2) and Pascal’s identity, we have

PkC1 D
mX

j D0

 
2m � j

j

!

22m�2j C1 C
m�1X

j D0

 
2m � j � 1

j

!

22m�2j �1

D
mX

j D0

 
2m � j

j

!

22m�2j C1 C
mX

j D1

 
2m � j

j � 1

!

22m�2j C1

D
mX

j D0

 
2m � j

j

!

22m�2j C1 C
mX

j D0

 
2m � j

j � 1

!

22m�2j C1

D
mX

j D0

" 
2m � j

j

!

C
 

2m � j

j � 1

!#

22m�2j C1

D
mX

j D0

 
2m � j C 1

j

!

22m�2j C1:

Case 2 Let k D 2m be even. Then (9.2) yields

PkC1 D
m�1X

j D0

 
2m � j � 1

j

!

22m�2j C
m�1X

j D0

 
2m � j � 2

j

!

22m�2j �2

D
m�1X

j D0

 
2m � j � 1

j

!

22m�2j C
mX

j D1

 
2m � j � 1

j � 1

!

22m�2j

D
mX

j D0

 
2m � j � 1

j

!

22m�2j C
mX

j D0

 
2m � j � 1

j � 1

!

22m�2j

D
mX

j D0

" 
2m � j � 1

j

!

C
 

2m � j � 1

j � 1

!#

22m�2j

D
mX

j D0

 
2m � j

j

!

22m�2j :
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It follows by Cases 1 and 2 that the formula also works when n D kC1. Thus, by the strong
version of PMI, the formula is true for every positive integer n.

It follows by the theorem that Pn can be computed by multiplying the binomial coefficients�
n�j �1

j

�
along the northeast diagonal beginning at

�
n�1

0

�
in row n � 1 with weights 2n�2j �1 and

then adding up the products.
For example,

P7 D
3X

j D0

 
6 � j

j

!

26�2j D
 

6

0

!

26 C
 

5

1

!

24 C
 

4

2

!

22 C
 

3

3

!

20

D 1 � 26 C 5 � 24 C 6 � 22 C 1 � 20

D 64C 80C 24C 1 D 169; as expected.

See the circled numbers in Figure 9.1.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Figure 9.1.

Likewise, P6 D
�

5
0

�
25 C �4

1

�
23 C �3

2

�
21 D 1 � 32C 4 � 8C 3 � 2 D 70:

Northeast diagonal elements: 1 4 3

Weights: 25 23 21

Multiply: 32 32 6
Sum: 70

See the boxed numbers in Figure 9.1.
Notice that formula (9.1) can be rewritten as

b.n�1/=2cX

j D0

 
n � j � 1

j

!

D 1

2n�1
Pn: (9.3)

(We will use this result in Chapter 14 to develop yet another formula for Pn.)
Theorem 9.1 implies that Pell numbers can be extracted from the rising diagonals of a

modified Pascal triangle. To this end, consider the triangular array in Figure 9.2; the elements
on its i th descending diagonal are obtained by multiplying the elements of the corresponding
diagonal in Pascal’s triangle by 2i , where i � 0.
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1
2 1

4 4 1
8 12 6 1

16 32 24 8 1
32 80 80 40 10 1

64 192 240 160 60 12 1

descending diagonal 0

Figure 9.2.

Now, add the elements along the rising northeast diagonals; interestingly, each sum is a Pell
number Pn. See Figure 9.3.

1

2 1
4 4 1

8 12 6 1
16 32 24 8 1

1
2

5
12

29
70

32 80 80 40 10 1

64 192 240 160 60 12 1

Figure 9.3.

For example, P5 D 16C 12C 1 D 29 and P6 D 32C 32C 6 D 70.
Notice, for instance, that

P7 D 169 D 64C 80C 24C 1

D 1 � 26 C 5 � 24 C 6 � 22 C 1 � 20

D
 

6

0

!

26 C
 

5

1

!

24 C
 

4

2

!

22 C
 

3

3

!

20:

The array A in Figure 9.3 has two interesting properties:

1) Each element A.n; r/ can be defined recursively:

A.n; r/ D

8
ˆ̂
<

ˆ̂
:

2n if r D 0

2A.n � 1; r/C A.n � 1; r � 1/ if 0 < r < n

1 if r D n:

For example, 2A.4; 3/C A.4; 2/ D 2 � 8C 24 D 40 D A.5; 3/; see Figure 9.3.
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2) The nth row sum is 3n, where n � 0.

3) The elements in row n of array A are the coefficients in the binomial expansion of .2C x/n:

.2C x/n D
nP

rD0

�
n
r

�
2n�rxr .

9.2 An Alternate Approach

The odd-numbered binomial coefficients in row n with proper weights also can be used to
compute Pell numbers, as D. Lind of Cambridge, England, did in 1970:

.� � ı/Pn D �n � ın D .1Cp2/n � .1 �p2/n

D
nX

j D0

 
n

j

!


2j =2 � .�1/j 2j =2

� D 2
p

2

b.n�1/=2cX

j D0

 
n

2r C 1

!

2r

Pn D
b.n�1/=2cX

rD0

 
n

2r C 1

!

2r : (9.4)

For example, P5 D
2P

rD0

�
5

2rC1

�
2r D �5

1

�
20C�5

3

�
21C�5

5

�
22 D 5 �20C 10 �21C 1 �22 D 29.

See the circled numbers in row 5 in Figure 9.4.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Figure 9.4.

Using Pascal’s identity, we can rewrite formula (9.4) in a different way:

Pn D
b.n�1/=2cX

rD0

 
n

2r C 1

!

2r

D
b.n�1/=2cX

rD0

" 
n � 1

2r

!

C
 

n � 1

2r C 1

!#

2r

D
b.n�1/=2cX

rD0

 
n � 1

2r

!

2r C
b.n�1/=2cX

rD0

 
n � 1

2r C 1

!

2r
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D
X

s even

 
n � 1

s

!

2s=2 C
X

s odd

 
n � 1

s

!

2.s�1/=2

D
X

s even

 
n � 1

s

!

2bs=2c C
X

s odd

 
n � 1

s

!

2bs=2c

D
n�1X

rD0

 
n � 1

r

!

2br=2c: (9.5)

The beauty of this formula lies in the fact that we can compute Pn using the binomial
coefficients

�
n�1

r

�
in row n � 1 of Pascal’s triangle with weights 2br=2c.

For example,

P5 D
4X

rD0

 
4

r

!

2br=2c D
 

4

0

!

20 C
 

4

1

!

20 C
 

4

2

!

21 C
 

4

3

!

21 C
 

4

4

!

22

D 1 � 1C 4 � 1C 6 � 2C 4 � 1C 1 � 4 D 29 :

See Figure 9.5.

Row 4:

Weights:
Multiply:

4

20

4

6

21

12

4

21

8

1

22

4
Sum:

1

20

1
29

Figure 9.5.

Next we develop an explicit formula for Qn using its Binet-like version. We will then use
the formula to compute Qn from Pascal’s triangle.

9.3 Another Explicit Formula for Qn

Using the Binet-like formula for Qn and Corollary 1.1, we can show that

Qn D
bn=2cX

j D0

 
n

2j

!

2j : (9.6)

Thus Qn can be computed using the even-numbered binomial coefficients
�

n
2j

�
with weights 2j ,

where 0 � j � bn=2c.
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For example,

Q6 D
3X

j D0

 
6

2j

!

2j

D
 

6

0

!

� 20 C
 

6

2

!

� 21 C
 

6

4

!

� 22 C
 

6

6

!

� 23

D 1 � 1C 15 � 2C 15 � 4C 1 � 8 D 99:

See the boxed numbers in row 6 in Figure 9.6.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Figure 9.6.

It follows from formula (9.6) that Qn D 1C
bn=2cP

j D1

�
n

2j

�
2j � 1 .mod 2/. So every Qn is odd,

a fact we already knew.
It also follows from formula (9.6) that

Q2n D
nX

j D0

 
2n

2j

!

2j (9.7)

Q2n�1 D
n�1X

j D0

 
2n � 1

2j

!

2j : (9.8)

Next we employ the Binet-like formula for Pn to find a recurrence for P2n, as Lind did in 1970
[157].

9.4 A Recurrence for Even-numbered Pell Numbers

Using Corollary 1.1, we can establish that

P2n D
nX

j D0

 
n

j

!

2j Pj : (9.9)
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Consequently, P2n can be computed using the binomial coefficients
�

n
j

�
in row n with weights

2j Pj , where 0 � j � n.
For example,

P8 D
4X

j D0

 
n

j

!

2j Pj D
 

4

0

!

20P0 C
 

4

1

!

21P1 C
 

4

2

!

22P2 C
 

4

3

!

23P3 C
 

4

4

!

24P4

D 0C 4 � 2 � 1C 6 � 4 � 2C 4 � 8 � 5C 1 � 16 � 12 D 408 :

See Figure 9.7.

Row 4:
Weights:
Multiply:

4
2 ⋅ 1

8

6
4 ⋅ 2
48

4
8 ⋅ 5
160

1
16 ⋅ 12

192
Sum:

1
1 ⋅ 0

0
408

Figure 9.7.

We now develop an explicit formula for even-numbered Pell numbers.

9.5 Another Explicit Formula for P2n

Using the Binet-like formula for Pn and Corollary 1.1, it follows that

P2n D
nX

j D1

 
2n

2j � 1

!

2j �1: (9.10)

This gives an explicit formula for P2n in terms of the odd-numbered binomial coefficients
�

2n
2j �1

�

with weights 2j �1.
For example,

P6 D
3X

j D1

 
6

2j � 1

!

2j �1 D
 

6

1

!

20 C
 

6

3

!

21 C
 

6

5

!

22

D 6 � 1C 60 � 2C 6 � 4 D 70:

9.6 An Explicit Formula for P2n�1

We can use formulas (9.10) and (9.6), coupled with identity (3) in Chapter 7, to extract a formula
for odd-numbered Pell numbers:



9.7 Explicit Formulas for P2
n and Q2

n 181

P2n�1 D P2n�2 CQ2n�2

D
n�1X

j D1

 
2n � 2

2j � 1

!

2j �1 C
n�1X

j D0

 
2n � 2

2j

!

2j

D
n�2X

j D0

" 
2n � 2

2j C 1

!

C
 

2n � 2

2j

!#

2j C
 

2n � 2

2n � 2

!

2n�1

D
n�2X

j D0

 
2n � 1

2j C 1

!

2j C
 

2n � 1

2n � 1

!

2n�1

D
n�1X

j D0

 
2n � 1

2j C 1

!

2j : (9.11)

It follows from formula (9.11) that we can compute the odd-numbered Pell numbers P2n�1

using the odd-numbered binomial coefficients
�

2n�1
2j C1

�
in row 2n � 1 with weights 2j .

For example:

P7 D
n�1X

j D0

 
2n � 1

2j C 1

!

2j D
 

7

1

!

20 C
 

7

3

!

21 C
 

7

5

!

22 C
 

7

7

!

23

D 7C 35 � 2C 21 � 4C 8 D 169; as expected.

Next we develop formulas for P 2
n and Q2

n, again using binomial coefficients.

9.7 Explicit Formulas for P2
n and Q2

n

By identity (32) in Chapter 7 and formula (9.7), we have

2Q2
n D Q2n C .�1/n

D
nX

j D0

 
2n

2j

!

2j C .�1/n

D
nX

j D1

 
2n

2j

!

2j C 1C .�1/n

Q2
n D

8
ˆ̂
<

ˆ̂
:

nP

j D1

�
2n
2j

�
2j �1 C 1 if n is even

nP

j D1

�
2n
2j

�
2j �1 otherwise.

(9.12)
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For example, Q2
5 D

5P

j D1

�
10
2j

�
2j �1 D 45C 210 � 2C 210 � 4C 45 � 8C 1 � 16 D 1681 D 412.

Likewise, using identity (31) in Chapter 7, we have

2P 2
n D

8
ˆ̂
<

ˆ̂
:

nP

j D1

�
2n
2j

�
2j �1 if n is even

nP

j D1

�
2n
2j

�
2j �1 C 1 otherwise.

(9.13)

For example, 2P 2
5 D

5P

j D1

�
10
2j

�
2j �1 C 1 D 1681C 1; so P 2

5 D 841 D 292.

As byproducts of formulas (9.12) and (9.13), it follows that
nP

j D1

�
2n
2j

�
2j �1C1 and

nP

j D1

�
2n
2j

�
2j

are squares if n is even; and so are
nP

j D1

�
2n
2j

�
2j �1 and1

2

"
nP

j D1

�
2n
2j

�
2j �1 C 1

#

if n is odd.

For example, 1
2

"
7P

j D1

�
14
2j

�
2j �1 C 1

#

D 1
2
.57; 122/ D 28; 561 D 1692 and

7P

j D1

�
14
2j

�
2j �1 D

57; 121 D 2392.

It now follows that
2n�1P

j D1

�
4n�2

2j

�
2j �1 is always a square, as we saw in Example 7.6.

We will now develop another method for computing Pell–Lucas numbers and odd-numbered
Pell numbers from Pascal’s triangle. In the process, we will show how Lucas numbers and odd-
numbered Fibonacci numbers can be extracted from the array. To this end, we need an identity
that can be obtained from the binomial theorem.

9.8 Lockwood’s Identity

Let x and y be arbitrary real numbers. Then, by the binomial theorem, we have

x C y D .x C y/

x2 C y2 D .x C y/2 � 2xy

x3 C y3 D .x C y/3 � 3.xy/.x C y/

x4 C y4 D .x C y/4 � 4.xy/.x C y/2 C 2.xy/2

x5 C y5 D .x C y/5 � 5.xy/.x C y/3 C 5.xy/2.x C y/:

In each case, the expression xnC yn is expressed as a sum of bn=2cC 1 terms in xy and xC y.
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More generally, we have the following identity, developed by E.H. Lockwood in 1967 [15]:

xn C yn D .x C y/n C
bn=2cX

kD1

.�1/k

" 
n � k

k

!

C
 

n � k � 1

k � 1

!#

.xy/k.x C y/n�2k;

where n � 1. This identity can be confirmed using strong induction, Pascal’s identity, and a lot
of algebra:

Proof. When n D 1:

RHS D .x C y/1 C
0X

kD1

.�1/k

" 
1 � k

k

!

C
 

0 � k

k � 1

!#

.xy/k.x C y/1�2k

D .x C y/C 0 D LHS:

When n D 2:

RHS D .x C y/2 C
1X

kD1

.�1/k

" 
2 � k

k

!

C
 

1 � k

k � 1

!#

.xy/k.x C y/2�2k

D .x C y/2 �
" 

1

1

!

C
 

0

0

!#

.xy/.x C y/0 D .x C y/2 � 2xy

D x2 C y2 D LHS:

So the identity is true when n D 1 and n D 2.
Now assume that it is true for all positive integers � n, where n is an arbitrary integer � 2;

that is, assume that

.x C y/n D xn C yn �
bn=2cX

kD1

.�1/k

" 
n � k

k

!

C
 

n � k � 1

k � 1

!#

.xy/k.x C y/n�2k:

Then

.x C y/nC1 D xnC1 C ynC1 C xny C xyn �
bn=2cX

kD1

.�1/k

" 
n � k

k

!

C
 

n � k � 1

k � 1

!#

� .xy/k.x C y/nC1�2k:

Case 1 Let n be even; say, n D 2m. Then,

.x C y/2mC1 D x2mC1 C y2mC1 C x2my C xy2m

�
mX

kD1

.�1/k

" 
2m � k

k

!

C
 

2m � 1 � k

k � 1

!#

.xy/k.x C y/2mC1�2k
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D x2mC1 C y2mC1 C x2my C xy2m

�
mX

kD1

.�1/k

" 
2m � k

k

!

C
 

2m � 1 � k

k � 1

!#

.xy/k.x C y/2mC1�2k

�.xy/.x C y/2m�1 C .xy/.x C y/2m�1

D x2mC1 C y2mC1

�
mX

kD1

.�1/k

" 
2m � k

k

!

C
 

2m � 1 � k

k � 1

!#

.xy/k.x C y/2mC1�2k C

m�1X

kD1

.�1/k

" 
2m � 1 � k

k

!

C
 

2m � 2 � k

k � 1

!#

.xy/kC1.x C y/2m�1�2k

C.xy/.x C y/2m�1

D x2mC1 C y2mC1 C
" 

2m � 1

1

!

C
 

2m � 2

0

!

C 1

#

.xy/.x C y/2m�1

�
mX

kD2

.�1/k

" 
2m � k

k

!

C
 

2m � 1 � k

k � 1

!#

.xy/k.x C y/2mC1�2k

C
mX

kD2

.�1/k

" 
2m � k

k � 1

!

C
 

2m � 1 � k

k � 2

!#

.xy/k.x C y/2mC1�2k

D x2mC1 C y2mC1 C
" 

2m

1

!

C
 

2m � 1

0

!#

.xy/.x C y/2m�1

C
mX

kD2

.�1/k

(" 
2m � k

k

!

C
 

2m � k

k � 1

!#

C
" 

2m � 1 � k

k � 1

!

C
 

2m � 1 � k

k � 2

!#)

.xy/k.x C y/2mC1�2k

D x2mC1 C y2mC1 C
" 

2m

1

!

C
 

2m � 1

0

!#

.xy/.x C y/2m�1

C
mX

kD2

.�1/k

" 
2mC 1 � k

k

!

C
 

2m � k

k � 1

!#

.xy/k.x C y/2mC1�2k
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D x2mC1 C y2mC1 C
mX

kD1

.�1/k

" 
2mC 1 � k

k

!

C
 

2m � k

k � 1

!#

.xy/k.x C y/2mC1�2k

D xnC1 C ynC1 C
b.nC1/=2cX

kD1

.�1/k

" 
nC 1 � k

k

!

C
 

n � k

k � 1

!#

.xy/k.x C y/nC1�2k:

So the formula works for nC 1, when n is even.
Similarly, we can show that the formula works when n is odd. Thus, by PMI, the identity

works for all positive integers n.

Lockwood’s identity can be rewritten as follows:

xn C yn D
bn=2cX

kD0

.�1/k

" 
n � k

k

!

C
 

n � k � 1

k � 1

!#

.xy/k.x C y/n�2k: (9.14)

where
�

r
�1

� D 0. It follows from equation (9.14), for example, that

x7 C y7 D .x C y/7 � 7.xy/.x C y/5 C 14.xy/2.x C y/3 � 7.xy/3.x C y/:

9.9 Lucas Numbers and Pascal’s Triangle

Lockwood’s identity yields several interesting dividends. First, we can extract Lucas numbers
from Pascal’s triangle. To see this, we let x D ˛ and y D ˇ in (9.14). Then it yields

Ln D
bn=2cX

kD0

.�1/k

" 
n � k

k

!

C
 

n � k � 1

k � 1

!#

.�1/k

D
bn=2cX

kD0

" 
n � k

k

!

C
 

n � k � 1

k � 1

!#

: (9.15)

Consequently, Ln can be computed by adding up the elements along two alternate rising

diagonals. For example, L7 D
3P

kD0

h�
7�k

k

�C �6�k
k�1

�i D
h�

7
0

�C � 6
�1

�iC
h�

6
1

�C �5
0

�iC
h�

5
2

�C �4
1

�iC
h�

4
3

�C �3
2

�i D .1C0/C.6C1/C.10C4/C.4C3/ D .0C1C4C3/C.1C6C10C4/ D 29 .

See the bold-faced numbers Figure 9.8.
Notice that formula (9.14) can also be written as follows:

xn C yn D
bn=2cX

kD0

.�1/k n

n � k

 
n � k

k

!

.xy/k.x C y/n�2k: (9.16)
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1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1

71 21 35 35 21 7 1
1 6 15 20 15 6 1

29

Figure 9.8.

Consequently,

Ln D
bn=2cX

kD0

n

n � k

 
n � k

k

!

: (9.17)

Thus Ln can be computed using the elements on the rising diagonal beginning at
�

n
0

�
with weights

n
n�k

. For example, L7 D
3P

kD0

7
7�k

�
7�k

k

� D 7
7

�
7
0

�C 7
6

�
6
1

�C 7
5

�
5
2

�C 7
4

�
4
3

� D 1C 7C 14C 7 D 29,

as expected.
Formula (9.15), coupled with Lucas’ formula, yields a well-known formula connecting

Fibonacci and Lucas numbers:

Ln D
bn=2cX

kD0

 
n � k � 1

k � 1

!

C
bn=2cX

kD0

 
n � k

k

!

D
b.n�2/=2cX

iD0

 
n � i � 2

i

!

C
bn=2cX

kD0

 
n � k

k

!

D Fn�1 C FnC1:

This can also be established using Binet’s formulas; this approach is a lot simpler [126].
Next we turn to Pell and Pell–Lucas numbers.

9.10 Pell–Lucas Numbers and Pascal’s Triangle

We can extract Pell–Lucas numbers also from Pascal’s triangle with proper weights. To see this,
we let x D � and y D ı in (9.14). Then:

Qn D
bn=2cX

kD0

" 
n � k

k

!

C
 

n � k � 1

k � 1

!#

2n�2k�1 (9.18)

D
bn=2cX

kD0

n

n � k

 
n � k

k

!

2n�2k�1: (9.19)
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For example, Q7 D
3P

kD0

h�
7�k

k

�C �6�k
k�1

�i
26�2k D

h�
7
0

�C � 6
�1

�i
26 C

h�
6
1

�C �5
0

�i
24 C

h�
5
2

�C �4
1

�i
22C

h�
4
3

�C �3
2

�i
20 D .1C 0/ � 26C .6C 1/ � 24C .10C 4/ � 22C .4C 3/ � 20 D 239.

Consequently, we can compute Q7 by multiplying the sums of the entries inside the loops
beginning at

�
7
0

�
in Figure 9.9 by the weights 26; 24; 22 and 20, respectively, and then adding

up the products.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

Figure 9.9.

Likewise, Q6 D .1C 0/ � 25C .5C 1/ � 23C .6C 3/ � 21C .1C 1/ � 2�1 D 99; see the dotted
loops in Figure 9.9.

9.11 Odd-Numbered Fibonacci Numbers and Pascal’s Triangle

Next we will show that odd-numbered Fibonacci numbers can be computed from Pascal’s
triangle in a different way. To this end, we let n be odd and change y to �y in (9.14). Then

xn � yn D
.n�1/=2X

kD0

.�1/k

" 
n � k

k

!

C
 

n � k � 1

k � 1

!#

.�xy/k.x � y/n�2k: (9.20)

Letting x D ˛ and y D ˇ, this yields

.˛ � ˇ/Fn D
.n�1/=2X

kD0

.�1/k

" 
n � k

k

!

C
 

n � k � 1

k � 1

!#

.˛ � ˇ/n�2k

Fn D
.n�1/=2X

kD0

.�1/k

" 
n � k

k

!

C
 

n � k � 1

k � 1

!#

5.n�2k�1/=2 (9.21)

D
.n�1/=2X

kD0

.�1/k n

n � k

 
n � k

k

!

5.n�2k�1/=2;

where n is odd.
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For example, F7 D
3P

kD0

.�1/k
h�

7�k
k

�C �6�k
k�1

�i
53�k D

h�
7
0

�C � 6
�1

�i
53 �

h�
6
1

�C �5
0

�i
52 C

h�
5
2

�C �4
1

�i
51 �

h�
4
3

�C �3
2

�i
50 D .1C 0/ � 53 � .6C 1/ � 52C .10C 4/ � 51 � .4C 3/ � 50 D 13.

See the solid loops in Figure 9.9.

9.12 Odd-Numbered Pell Numbers and Pascal’s Triangle

Using formula (9.20), we can compute odd-numbered Pell numbers from Pascal’s triangle. To
see this, letting x D � and y D ı, formula (9.20) yields

.� � ı/Pn D
.n�1/=2X

kD0

.�1/k

" 
n � k

k

!

C
 

n � k � 1

k � 1

!#

.��ı/k.� � ı/n�2k

Pn D
.n�1/=2X

kD0

.�1/k

" 
n � k

k

!

C
 

n � k � 1

k � 1

!#

.2
p

2/n�2k�1

D
.n�1/=2X

kD0

.�1/k

" 
n � k

k

!

C
 

n � k � 1

k � 1

!#

8.n�2k�1/=2 (9.22)

D
.n�1/=2X

kD0

.�1/k n

n � k

 
n � k

k

!

8.n�2k�1/=2;

where n is odd. Thus, Pn can be computed using the same loops for Fn, but with different
weights, where n is odd.

For example, P7 D
3P

kD0

.�1/k
h�

7�k
k

�C �6�k
k�1

�i
83�k D .1C 0/ � 83 � .6C 1/ � 82C .10C 4/ �

81 � .4C 3/ � 80 D 169. See the loops in Figure 9.9.

9.13 Pell Summation Formulas

Just as we developed Fibonacci and Lucas summation formulas using Corollary 1.1, we can
develop similar Pell summation formulas.

Theorem 9.2

nX

iD0

 
n

i

!

Pi D
(

2n=2Pn if n is even
2.n�1/=2Qn otherwise:

(9.23)
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Proof. By Corollary 1.1, we have

.� � ı/ � LHS D
nX

iD0

 
n

i

!

.� i � ıi /

D
nX

iD0

 
n

i

!

�i �
nX

iD0

 
n

i

!

ıi

D .1C �/n � .1C ı/n

D .
p

2�/n � .�p2ı/n

D 2n=2 Œ�n � .�ı/n�

LHS D
8
<

:

2n=2Pn if n is even

2n=2 �nCın

��ı
otherwise

D
(

2n=2Pn if n is even

2.n�1/=2Qn otherwise

D RHS:

For example,
4P

iD0

�
4
i

�
Pi D

�
4
0

�
P0 C

�
4
1

�
P1 C

�
4
2

�
P2 C

�
4
3

�
P3 C

�
4
4

�
P4 D 1 � 0C 4 � 1C 6 � 2C

4 � 5C 1 � 12 D 48 D 4P4; and similarly,
3P

iD0

�
3
i

�
Pi D 14 D 2Q3.

As in Theorem 9.2, a quite similar formula for
nP

iD0

�
n
i

�
Qi can be developed:

nX

iD0

 
n

i

!

Qi D
(

2n=2Qn if n is even

2.nC1/=2Pn otherwise:
(9.24)

For example,
4P

iD0

�
4
i

�
Qi D

�
4
0

�
Q0 C

�
4
1

�
Q1 C

�
4
2

�
Q2 C

�
4
3

�
Q3 C

�
4
4

�
Q4 D 1 � 1 C 4 � 1C

6 � 3C 4 � 7C 1 � 17 D 68 D 22Q4; and similarly,
5P

iD0

�
5
i

�
Qi D 232 D 23P5.

Corollary 1.1 can also be employed to develop formulas for
nP

iD0

.�1/i
�

n
i

�
Pi and

nP

iD0

.�1/i
�

n
i

�
Qi :

nX

iD0

.�1/i

 
n

i

!

Pi D
(

0 if n is even
�2.n�1/=2 otherwise

(9.25)
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nX

iD0

.�1/i

 
n

i

!

Qi D
(

2n=2 if n is even
0 otherwise:

(9.26)

For example,
4P

iD0

.�1/i
�

4
i

�
Pi D 1 � 0� 4 � 1C 6 � 2� 4 � 5C 1 � 12 D 0, and

5P

iD0

.�1/i
�

5
i

�
Qi D

1 � 1 � 5 � 1C 10 � 3 � 10 � 7C 5 � 17 � 1 � 41 D 0.
The following theorem gives a summation formula for the numbers P 2

i with the binomial
coefficients

�
n
i

�
as the corresponding weights.

Theorem 9.3

nX

iD0

 
n

i

!

P 2
i D

(
2.3n�4/=2Qn if n is even

23.n�1/=2Pn otherwise.

Proof. Again, by Corollary 1.1, we have

8

nX

iD0

 
n

i

!

P 2
i D

nX

iD0

 
n

i

!
�
�i � ıi

�2

D
nX

iD0

 
n

i

!


�2i C ı2i � 2.�1/i

�

D
nX

iD0

 
n

i

!

�2i C
nX

iD0

 
n

i

!

ı2i � 2 � 0

D �
1C �2

�n C �1C ı2
�n

D .2
p

2�/n C .�2
p

2ı/n

D
(

.2
p

2/n � 2Qn if n is even

.2
p

2/n � 2p2Pn otherwise

nX

iD0

 
n

i

!

P 2
i D

(
2.3n�4/=2Qn if n is even

23.n�1/=2Pn otherwise.

Similarly, it can be shown that

nX

iD0

 
n

i

!

Q2
i D

(
2.3n�2/=2Qn if n is even

2.3n�1/=2Pn otherwise.

For example,
4P

iD0

�
4
i

�
P 2

i D 272 D 16 � 17 D 2.3�4�4/=2Q4, and
4P

iD0

�
4
i

�
Q2

i D 544 D 32 � 17 D
2.3�4�2/=2Q4.
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Finally, using Corollary 1.1, we can develop formulas for
nP

iD0

.�1/i
�

n
i

�
P 2

i and
nP

iD0

.�1/i
�

n
i

�
Q2

i :

nX

iD0

.�1/i

 
n

i

!

P 2
i D 2n�2 Œ.�1/nQn � 1�

nX

iD0

.�1/i

 
n

i

!

Q2
i D 2n�1 Œ.�1/nQn C 1� :

For example,
5P

iD0

.�1/i
�

5
i

�
P 2

i D �336 D 8.�41 � 1/ D 25�2


.�1/5Q5 � 1

�
and

4P

iD0

.�1/i
�

4
i

�
Q2

i D 144 D 8.17C 1/ D 24�1


.�1/4Q4 C 1

�
.

Exercises 9

1. Establish the recurrence A.n; r/ D 2A.n � 1; r/ C A.n � 1; r � 1/ for the array A in
Figure 9.3.

2. Define A.n; r/ recursively.

3. Find an explicit formula for A.n; r/.
Prove each.

4.
nP

rD0

A.n; r/ D 3n.

5. A.n; 0/ D 2n, where n � 0.

6. A.n; n/ D A.n � 1; n � 1/, where n � 1.

7. A.n; n/ D 1, where n � 1.

8. A.n; n � 1/ D 2n, where n � 1.

9. Let Dn denote the nth rising diagonal sum of array A. Then Dn D PnC1, where n � 0.
Prove the following Pell summation formulas.

10. Qn D
bn=2cP

j D0

�
n

2j

�
2j .

11. P2n D
nP

j D0

�
n
j

�
2j Pj .

12. P2n D
nP

j D1

�
2n

2j �1

�
2j �1.

13. 2P 2
n D

8
ˆ̂
<

ˆ̂
:

nP

j D1

�
2n
2j

�
2j �1 if n is even

nP

j D1

�
2n
2j

�
2j �1 C 1 otherwise.
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14.
nP

iD0

�
n
i

�
Qi D

(
2n=2Qn if n is even
2.nC1/=2Pn otherwise:

15.
nP

iD0

.�1/i
�

n
i

�
Pi D

(
0 if n is even
�2.n�1/=2 otherwise:

16.
nP

iD0

.�1/i
�

n
i

�
Qi D

(
2n=2 if n is even
0 otherwise:

17.
nP

iD0

�
n
i

�
Q2

i D
(

2.3n�2/=2Qn if n is even

2.3n�1/=2Pn otherwise.

18.
nP

iD0

.�1/i
�

n
i

�
P 2

i D 2n�2 Œ.�1/nQn � 1�.

19.
nP

iD0

.�1/i
�

n
i

�
Q2

i D 2n�1 Œ.�1/nQn C 1�.
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Pell Sums and Products

10.1 Introduction

In this chapter we investigate some finite and infinite Pell and Pell–Lucas sums; some infinite
sums involving the Fibonacci and Pell families; a Pell inequality; and then an infinite product
involving Pell numbers. In Chapter 14, we will study additional Pell and Pell–Lucas sums.

10.2 Pell and Pell–Lucas Sums

Telescoping sums, the fundamental identities, Corollary 1.1, and PMI can be used to derive a
number of Pell and Pell–Lucas summation formulas. Some of them are

nX

iD1

Pi D QnC1 � 1

2
(10.1)

nX

iD1

Qi D PnC1 � 1 (10.2)

nX

iD1

P2i�1 D P2n

2
(10.3)

nX

iD1

P2i D P2nC1 � 1

2
(10.4)

nX

iD1

Q2i�1 D Q2n � 1

2
(10.5)

nX

iD1

Q2i D Q2nC1 � 1

2
(10.6)

T. Koshy, Pell and Pell–Lucas Numbers with Applications, DOI 10.1007/978-1-4614-8489-9__10,
© Springer Science+Business Media New York 2014
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nX

iD1

P 2
i D

8
<

:

2P2nC1�Q2nC1

8
if n is odd

2P2nC1�Q2n�1

8
otherwise

(10.7)

nX

iD1

Q2
i D

8
<

:

2P2nC1�Q2n�3

4
if n is odd

2P2nC1�Q2n�1

4
otherwise

(10.8)

nX

iD1

PiPiC1 D Q2
n � 1

4
(10.9)

nX

iD1

QiQiC1 D
8
<

:

Q2
n�3

4
if n is odd

Q2
n�1

4
otherwise.

(10.10)

In the interest of brevity, we will not prove them; see Exercises 1–10.
Since Q2n D 4P 2

n C .�1/n and Q2
n D 2P 2

n C .�1/n, formula (10.5) can be rewritten as
follows:

nX

kD0

Q2kC1 D
4P 2

nC1 � 1 � .�1/n

2

D
(

2P 2
nC1 if n is odd

2P 2
nC1 � 1 otherwise

D
(

2P 2
nC1 if n is odd

Q2
nC1 otherwise.

(10.11)

This formula reveals the interesting pattern we observed in Table 3.6:

1 D 12

1C 7 D 2 � 22

1C 7C 41 D 72

1C 7C 41C 239 D 2 � 122

1C 7C 41C 239C 1393 D 412

1C 7C 41C 239C 1393C 8119 D 2 � 702

1C 7C 41C 239C 1393C 8119C 47321 D 2392:

It follows by the Binet-like formula for Pk and (10.11) that

4

nX

kD0

PkPkC1 D
nX

kD0

Q2kC1 �
nX

kD0

.�1/k
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D
8
<

:

2P 2
nC1 if n is odd

Q2
nC1 � 1 otherwise;

nX

kD0

PkPkC1 D
8
<

:

1
2
P 2

nC1 if n is odd

Q2
nC1�1

4
otherwise.

For example,
5P

kD0

PkPkC1 D 2450 D 1
2
P 2

6 and
4P

kD0

PkPkC1 D 420 D Q2
5�1

4
.

Since 2QkQkC1 D Q2kC1 C .�1/k , it follows by (10.11) that

nX

kD0

QkQkC1 D
8
<

:

P 2
nC1 if n is odd

Q2
nC1C1

2
otherwise.

For example,
3P

kD0

QkQkC1 D 144 D P 2
4 and

4P

kD0

QkQkC1 D 841 D Q2
5C1

2
.

The following interesting problem was proposed in 2009 by Brian Bradie of Christopher
Newport University, Newport News, Virginia [24].

Example 10.1 Let an D
�

2
nP

iD0

Qi

�2

� 2
nP

iD0

Q2iC1, where i � 0. Evaluate
1P

iD0

an
nŠ

.

Solution. Using formula (10.1),
nP

iD0

Qi D PnC1. By formula (10.5), 2
nP

iD0

Q2iC1 D Q2nC2 � 1.

Using identity (33) in Chapter 7, we can rewrite this as 2
nP

iD0

Q2iC1 D 4P 2
nC1�1� .�1/n. Thus,

an D 4P 2
nC1 �



4P 2

nC1 � 1 � .�1/n
�

D 1C .�1/n

1X

iD0

an

nŠ
D

1X

iD0

1

nŠ
C

1X

iD0

.�1/n

nŠ

D e C 1

e

� 3:08616126963:

10.3 Infinite Pell and Pell–Lucas Sums

Using the identities we have developed thus far, we can evaluate infinite sums involving members
of the Pell family. The next two examples illustrate this.
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Example 10.2 Evaluate the infinite sum
1X

nD1

Qn

PnC1Pn

.

Solution. Since Qn D PnC1 � Pn, we have

Qn

PnC1Pn

D PnC1 � Pn

PnC1Pn

D 1

Pn

� 1

PnC1

kX

nD1

Qn

PnC1Pn

D
kX

nD1

�
1

Pn

� 1

PnC1

�

D 1 � 1

PkC1

1X

nD1

Qn

PnC1Pn

D lim
k!1

�

1 � 1

PkC1

�

D 1 � 0

D 1;

where we have used the telescoping sum
nP

kD1

.ak � ak�1/ D an � a0.

Similarly, we can show that

1X

nD1

Pn

QnC1Qn

D 1

2
:

Example 10.3 Evaluate the infinite sum
1X

nD2

Pn

PnC1Pn�1

.

Solution. Let Sn D
nX

kD2

2Pk

PkC1Pk�1

. Using the Pell recurrence, we have

Sn D
nX

kD2

PkC1 � Pk�1

PkC1Pk�1

D
nX

kD2

�
1

Pk�1

� 1

PkC1

�
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D
nX

kD2

��
1

Pk�1

� 1

Pk

�

C
�

1

Pk

� 1

PkC1

��

D
nX

kD2

�
1

Pk�1

� 1

Pk

�

C
nX

kD2

�
1

Pk

� 1

PkC1

�

D
�

1 � 1

Pn

�

C
�

1

2
� 1

PnC1

�

D 3

2
� 1

Pn

� 1

PnC1

1X

nD2

Pn

PnC1Pn�1

D 1

2
lim

n!1 Sn

D 1

2

�
3

2
� 0 � 0

�

D 3

4
:

Likewise, using the identities P 2
nC1 � P 2

n D QnC1Qn and Q2
nC1 �Q2

n D 4PnC1Pn, we can

show that
1P

nD1

QnC1Qn

P 2
nC1P 2

n
D 1 and

1P
nD1

PnC1Pn

Q2
nC1Q2

n
D 1

4
.

The next infinite sum was studied by Br. J. Mahon of Australia in 2010 [160]. The solution
presented is based on the one by Bruckman [36].

Example 10.4 Evaluate the infinite sum
1X

kD1

.�1/k�1P6kC3

P 2
3kP 2

3kC3

.

Solution. It follows by identity (43) in Chapter 7 that P 2
3k C P 2

3kC3 D 5P6kC3. Consequently,
we have

nX

kD1

.�1/k�1P6kC3

P 2
3kP 2

3kC3

D
nX

kD1

.�1/k�1
P 2

3k C P 2
3kC3

5P 2
3kP 2

3kC3

D 1

5

nX

kD1

"
.�1/k�1

P 2
3k

� .�1/k

P 2
3kC3

#

(10.12)

D 1

5

"
1

P 2
3

� .�1/n

P 2
3nC3

#

D 1

125
� .�1/n

5P 2
3nC3

;

where we have used the fact that the sum in equation (10.12) is a telescoping sum. Thus
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1X

kD1

.�1/k�1P6kC3

P 2
3kP 2

3kC3

D 1

125
� 0 D 1

125
:

(The limiting process is justified since the limit exists.)
Similarly, it follows that

1X

kD1

.�1/k�1Q6kC3

Q2
3kP 2

3kC3

D 1

490
:

Next we pursue an example proposed as a problem in 1994 by R. Euler of Northwest
Missouri State University, Maryville, Missouri [80].

Example 10.5 Evaluate the infinite sum
1X

nD0

n2nQn

5n
.

Solution. The sum implicitly hints that we investigate the infinite series f .x/ D
1P

nD0

nQnxn.

Recall from Chapter 1 that the power series
1P

nD0

nxn is generated by the function x

.1�x/2 ; it

converges to the sum x

.1�x/2 for jxj < 1. So the series
1P

nD0

n.�x/n converges to �x

.1��x/2 if

jxj < 1=� ; that is, if jxj <
p

2 � 1. Similarly, the series
1P

nD0

n.ıx/n converges to ıx

.1�ıx/2 if

jxj < p2C 1. Consequently, both series converge when jxj < p2 � 1.

Since the sum of two convergent series is convergent, it follows that

f .x/ D
1X

nD0

n.�n C ın/

2
xn

D 1

2

" 1X

nD0

n.�x/n C
1X

nD0

n.ıx/n

#

D 1

2

�
�x

.1 � �x/2
C ıx

.1 � ıx/2

�

D �x.1 � ıx/2 C ıx.1 � �x/2

2Œ.1 � �x/.1 � ıx/�2

D x.1C 2x � x2/

.1 � 2x � x2/2
;

where jxj < p2 � 1.

In particular, let x D 2
5
, which is less than

p
2 � 1. Then

1X

nD0

n2nQn

5n
D f .2=5/ D 410.
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10.4 A Pell Inequality

The next example features a Pell inequality, studied by J. Díaz-Barrero and J. Egozcue of
Barcelona, Spain in 2003 [68]. Although the inequality looks a bit overwhelming, the proof
is a straightforward application of the binomial theorem, and the power series 1

.1�x/rC1 D
1P

nD0

�
nCr

n

�
xn, which converges when jxj < 1.

Example 10.6 Let m and n be positive integers. Prove that

nX

kD0

 
mC k C 1

k C 1

!2

4
kC1X

j D0

.�1/kC1�j

 
k C 1

j

!

P j �k�1
n

3

5 � P mC1
n � 1: (10.13)

Proof. By the binomial theorem, we have

kC1X

j D0

.�1/kC1�j

 
k C 1

j

!

P j �k�1
n D .�1/kC1

P kC1
n

kC1X

j D0

 
k C 1

j

!

.�Pn/j

D .�1/kC1

P kC1
n

.1 � Pn/kC1

D .1 � 1=Pn/kC1:

Therefore, since 1
Pn
� 1, we have

nX

kD0

 
mC k C 1

k C 1

!2

4
kC1X

j D0

.�1/kC1�j

 
k C 1

j

!

P j �k�1
n

3

5 D
nX

kD0

 
mC k C 1

k C 1

!

.1 � 1=Pn/kC1

D
nC1X

rD1

 
mC r

r

!

.1 � 1=Pn/r

�
1X

rD1

 
mC r

r

!

.1 � 1=Pn/r

D 1

Œ1 � .1 � 1=Pn/�mC1
� 1

D P mC1
n � 1; as claimed.

Notice that equality holds in (10.13) when n D 1.
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In particular, let m D 5 and n D 2. Then

LHS D
2X

kD0

 
6C k

k C 1

!2

4
kC1X

j D0

.�1/kC1�j

 
k C 1

j

!

2j �k�1

3

5

D
 

6

1

!
1X

j D0

.�1/1�j

 
1

j

!

2j �1 C
 

7

2

!
2X

j D0

.�1/2�j

 
2

j

!

2j �2 C
 

8

3

!
3X

j D0

.�1/3�j

 
3

j

!

2j �3

D 6 � 1
2
� 21 � 1

4
C 56 � 1

8
D 19

8

< 26 � 1; as expected.

Returning to inequality (10.13), we note that there is nothing sacred about the choice of Pn.

Since the power series
1P

nD0

�
nCr

n

�
xn converges for every real number x where jxj < 1, the

inequality holds for every such x, as K.B. Davenport of Frackville, Pennsylvania, observed in
2004 [58]. For example,

nX

kD0

 
mC k C 1

k C 1

!2

4
kC1X

j D0

.�1/kC1�j

 
k C 1

j

!

Qj �k�1
n

3

5 � QmC1
n � 1:

10.5 An Infinite Pell Product

The next example features an infinite Pell product, studied by M. Catalani of the University of
Turin, Italy, in 2004 [42]. The solution employs the Binet-like formula for Qn, and identity (31)
from Chapter 7: Q2

n D 2P 2
n C .�1/n; so Q2

2k D 2P 2
2k C 1, where k � 1.

Example 10.7 Evaluate
1Q

kD1

 

1C 1q
2P 2

2k
C1

!

, if it exists.

Solution. We have

1
q

2P 2
2k C 1

D 1
q

Q2
2k

D 1

Q2k

D 2

�2k C ı2k

D 2

�2k
Œ1C ı2k

.�ı/2k
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D 2.�ı/2k

1C ı2kC1

1C 1
q

2P 2
2k C 1

D 1C 2ı2k

1C ı2kC1

D
�
1C ı2k

	2

1C ı2kC1

nY

kD1

0

B
@1C 1

q
2P 2

2k C 1

1

C
A D .1C ı2/2

1C ı4
� .1C ı4/2

1C ı8
� � �
�
1C ı2n�2

1C ı2nC1

D 1C ı2

1C ı2nC1
� .1C ı2/.1C ı4/ � � � .1C ı2n

/

D 1C ı2

1C ı2nC1
� 1 � ı2nC1

1 � ı2

D 1C ı2

1 � ı2
� 1 � ı2nC1

1C ı2nC1

1Y

kD1

0

B
@1C 1

q
2P 2

2k C 1

1

C
A D 1C ı2

1 � ı2
� lim

n!1
1 � ı2nC1

1C ı2nC1
:

Since jıj < 1, lim
n!1

1�ı2nC1

1Cı2nC1 D 1�0
1C0
D 1; so the limit exists and hence the given infinite product

converges. Consequently,

1Y

kD1

0

B
@1C 1

q
2P 2

2k C 1

1

C
A D 1C ı2

1 � ı2

D ı2.ı � �/

ı.�� � ı/
D � � ı

� C ı

D 2
p

2

2
D p2:

As a bonus, it follows from the solution that
1Q

kD1

�
1CQ

2k

Q
2k

	
exists and equals

p
2.
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Next we investigate the convergence of the power series
1P

nD0

Pnxn and
1P

nD0

Qnxn, and then

evaluate each sum at two distinct positive rational numbers x. This will yield some surprising
Pell dividends. In the process, we will encounter primitive Pythagorean triples and the Pell’s
equation u2 � 2n2 D 1 as well.

To this end, first we will identify the radii of convergence of both power series.

10.6 Radii of Convergence of the Series

To minimize our exposition, let fSng denote an integer sequence satisfying the Pell recurrence.
Then Sn D A�n C Bın, where A and B are constants. So

1X

nD0

Snxn D A

1X

nD0

�nxn C B

1X

nD0

ınxn:

We need to know exactly when the series on the LHS can be evaluated. The two series on
the RHS converge if and only if jxj < 1

j� j and jxj < 1
jıj ; that is, if and only if jxj <

min
�

1
j� j ;

1
jıj
	

. Since min
�

1
j� j ;

1
jıj
	
D �ı, it follows that the series

1P
nD0

Snxn converges if and

only if ı < x < �ı. Consequently, the series
1P

nD0

Pnxn and
1P

nD0

Qnxn converge if and only if

ı < x < �ı.

10.6.1 Sum of the Series
1P

nD0
Pn

nx

We now look for positive rational numbers x such that f .x/ D
1P

nD0

Pnxn is a rational number r ,

where ı < x < �ı. We then have

x

1 � 2x � x2
D r

rx2 C .2r C 1/x � r D 0

x D �.2r C 1/˙p.2r C 1/2 C .2r/2

2r
:

Since x has to be rational, we will employ primitive Pythagorean triples to simplify the
radicand. To this end, we choose 2r C 1 D m2 � n2 and 2r D 2mn, where m > n � 1 and
.m; n/ D 1. Then .2r C 1/2 C .2r/2 D .m2 C n2/2. So

x D �.m2 � n2/˙ .m2 C n2/

2mn

D n

m
;�m

n
:

Since we want x > 0, we will choose x D n
m

.
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The equation m2 � n2 D 2mn C 1 implies that .m � n/2 D 2n2 C 1. This yields the Pell
equation u2 � 2n2 D 1, where u D m � n. Recall that its solutions are given by .uk; nk/ D
.Q2k; P2k/, where k � 0. Then mk D nk CQ2k D P2k CQ2k D P2kC1.

Since

nk

mk

D P2k

P2kC1

D �2k � ı2k

�2kC1 � ı2kC1
<

�2k � ı2k

�2kC1

<
�2k

�2kC1
D 1

�

D �ı;

the series
1P

nD0

Pnxn converges when x D P2k
P2kC1

.

Using the Cassini-like formula for Pm, we then have

1X

nD0

Pn

�
P2k

P2kC1

�n

D
P2k

P2kC1

1 � 2 P2k
P2kC1

� P 2
2k

P 2
2kC1

D P2kP2kC1

P2kC1.P2kC1 � 2P2k/ � P 2
2k

D P2kP2kC1

P2kC1P2k�1 � P 2
2k

D P2kP2kC1

.�1/2k

D P2kP2kC1; an even integer.

For example,
1P

nD0

Pn.2
5
/n D 2 � 5 D 10 and

1P
nD0

Pn.12
29

/n D 12 � 29 D 348. Notice that

86P

nD0

Pn.2
5
/n � 9:5 and

6445P

nD0

Pn.12
29

/n � 347:5, so the convergence is very slow.

Suppose we let x D Q2k�1

Q2k
. Then also ı < x < �ı. So

1P
nD0

Pnxn converges when x D Q2k�1

Q2k

also. Consequently, it follows by the Cassini-like formula for Qm that

1X

nD0

Pn

�
Q2k�1

Q2k

�n

D Q2k�1Q2k

2
;

where k � 1. (Since every Qn is odd, this sum is not an integer.)
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For example,
1P

nD0

Pn

�
1
3

�n D 1�3
2
D 1:5 and

1P
nD0

Pn

�
7
17

�n D 7�17
2
D 59:5. Notice that

23P

nD0

Pn.1
3
/n � 1:5 and

1195P

nD0

Pn. 7
17

/n � 59:5; again the convergence is extremely slow.

Next we evaluate the sum
1P

nD0

Qnxn at two special values of x.

10.6.2 Sum of the Series
1P

nD0
Qn

nx

Suppose we choose x D Q2k�1

Q2k
. Since ı < x < �ı, it follows again by the Cassini-like formula

for Qm that

1X

nD0

Qn

�
Q2k�1

Q2k

�n

D P2k�1Q2k;

where k � 1.
Likewise, we also have

1X

nD0

Qn

�
P2k

P2kC1

�n

D Q2kP2kC1;

where k � 1.

For example,
1P

nD0

Qn. 7
17

/n D 5 � 17 D 85 and
1P

nD0

Qn.41
99

/n D 29 � 99 D 2871; and

1P
nD0

Qn.2
5
/n D 3 � 5 D 15 and

1P
nD0

Qn.12
29

/n D 17 � 29 D 493.

Exercises 10

Prove the following summation formulas.

1.
nP

iD1

Pi D QnC1�1

2
. Hint: Use the identity QiC1 �Qi D 2Pi .

2.
nP

iD1

Qi D PnC1 � 1. Hint: Use the identity PiC1 � Pi D Qi .

3.
nP

iD1

P2i�1 D P2n
2

. Hint: Use the recurrence P2i � P2i�2 D 2P2i�1.

4.
nP

iD1

P2i D P2nC1�1

2
. Hint: Use the fact that

nP

iD1

P2i D
2nP

iD1

Pi �
nP

iD1

P2i�1.

5.
nP

iD1

Q2i�1 D Q2n�1

2
. Hint: Use the recurrence Q2i �Q2i�2 D 2Q2i�1.
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6.
nP

iD1

Q2i D Q2nC1�1

2
. Hint: Use the fact that

nP

iD1

Q2i D
2nP

iD1

Qi �
nP

iD1

Q2i�1.

7.
nP

iD1

P 2
i D

(
Q2nC1C1

8
if n is odd

Q2nC1�1

8
otherwise.

Hint: Use the identity 4P 2
i D Q2i � .�1/i .

8.
nP

iD1

Q2
i D

(
Q2nC1�3

4
if n is odd

Q2nC1�1

4
otherwise.

Hint: Use the identity Q2
i D 2P 2

i C .�1/i .

9.
nP

iD1

PiPiC1 D Q2
n�1

4
. Hint: Use the identity 4PiPiC1 D Q2

i �Q2
i�1.

10.
nP

iD1

QiQiC1 D
(

Q2
n�3

4
if n is odd

Q2
n�1

4
otherwise.

Hint: Use the identity QiQiC1 D 2PiPiC1 C .�1/i .

11.
1P

nD1

Pn
QnC1Qn

D 1
2
.

12.
1P

nD1

QnC1Qn

P 2
nC1P 2

n
D 1.

13.
1P

nD1

PnC1Pn

Q2
nC1Q2

n
D 1

4
.

14.
1P

kD1

.�1/k�1P6kC3

Q2
3k

Q2
3kC3

D 1
490

. Hint: Use identity 44 in Chapter 7.
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Generating Functions for the Pell Family

11.1 Introduction

In this chapter we will develop generating functions for Pell and Pell–Lucas numbers; their
squares; and odd- and even-numbered Pell and Pell–Lucas numbers. Along the way, we will
study some interesting applications. We begin with the generating functions for Pell and Pell–
Lucas numbers.

11.2 Generating Functions for the Pell and Pell–Lucas
Sequences

To streamline the process, we introduce a larger integer family fAng, which satisfies the Pell
recurrence, where A0 D a, an arbitrary integer, and A1 D 1.

Let A.x/ denote the generating function for sequence fAng. Then

A.x/ D aC x C A2x
2 C A3x

3 C � � � C Anxn C � � �
2xA.x/ D 2ax C 2x2 C 2A2x

3 C � � � C 2An�1x
n C � � �

x2A.x/ D ax2 C x3 C � � � C An�2x
n C � � �

.1 � 2x � x2/A.x/ D aC .1 � 2a/x

A.x/ D aC .1 � 2a/x

1 � 2x � x2
: (11.1)

Case 1 Let a D 0, so An D Pn. Correspondingly, we have

x

1 � 2x � x2
D 1C 2x C 5x2 C 12x3 C 29x4 C � � � C Pnxn C � � � :

T. Koshy, Pell and Pell–Lucas Numbers with Applications, DOI 10.1007/978-1-4614-8489-9__11,
© Springer Science+Business Media New York 2014
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Case 2 Let a D 1. Then An D Qn. Then, by equation (11.1), we have

1 � x

1 � 2x � x2
D 1C 3x C 7x2 C 17x3 C 41x4 C � � � CQnxn C � � � :

The next example combines the generating function for Pell numbers and identity (18) in
Chapter 7 without acknowledging the presence of Pell numbers. This example appeared in the
1999 William Lowell Putnam Mathematical Competition [106].

Example 11.1 Prove that the series

1

1 � 2x � x2
D a0 C a1x C a2x

2 C a3x
3 C � � � C anxn C � � �

has the property that the sum of the squares of the coefficients of every two consecutive terms
occurs later as the coefficient of a term in the series.

Proof. (Since the problem does not say anything about Pell numbers, we will ignore them and
proceed accordingly. The proof simply reverses the process we developed to establish the desired
identity.)

Let 1�2x�x2 D .1��x/.1�ıx/, where � D 1Cp2; ı D 1�p2; �Cı D 2; ��ı D 2
p

2

and �ı D �1. (We are using the same Greek symbols to avoid any possible confusion.) Since

1

1 � 2x � x2
D 1

� � ı

�
�

1 � �x
� ı

1 � ıx

�

D
1X

iD0

�nC1 � ınC1

� � ı
xn;

it follows that

an D �nC1 � ınC1

� � ı
:

Then

8.a2
n C a2

nC1/ D
�
�nC1 � ınC1

�2 C ��nC2 � ınC2
�2

D 

�2nC2 C ı2nC2 � 2.�1/nC1

�C 
�2nC4 C ı2nC4 � 2.�1/nC2
�

D �2nC3

�

� C 1

�

�

C ı2nC3

�

ı C 1

ı

�

D �2nC3.� � ı/ � ı2nC3.� � ı/ D .� � ı/2a2nC2

a2
n C a2

nC1 D a2nC2;

where n � 0; see identity (18) in Chapter 7. Thus the sum of the squares of every two
consecutive coefficients in the given power series is also a coefficient of a subsequent term
of the series and the generating function for the Pell numbers, where a0 D 1 D P1 and
a1 D 2 D P2.
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Clearly, we can adapt this example to use the power series expansion of

1 � x

1 � 2x � x2
D b0 C b1x C b2x

2 C b3x
3 C � � � C bnxn C � � �

to establish that b2
n C b2

nC1 D 2anC2, as the following example shows.

Example 11.2 Using the power series expansion

1 � x

1 � 2x � x2
D b0 C b1x C b2x

2 C b3x
3 C � � � C bnxn C � � �

show that the sum of the squares of the coefficients of every two consecutive terms in the series
equals twice a coefficient in the expansion of 1

1�2x�x2 in the previous example.

Proof. As before, we let 1 � 2x � x2 D .1 � �x/.1 � ıx/. So

1X

nD0

bnxn D .1C x/.1 � �x/�1.1 � ıx/�1

D .1C x/

 1X

iD0

� ixi

!0

@
1X

j D0

ıj xj

1

A :

Equating the coefficients of xn from both sides, we get

bn D
X

iCj Dn

� iıj C
X

iCj C1Dn

� iıj C1 D
nX

iD0

� iın�i C
n�1X

iD0

� iın�i�1

D ın

nX

iD0

.�=ı/i C ın�1

n�1X

iD0

.�=ı/i D ın

�
1 � .�=ı/nC1

1 � �=ı

�

C ın�1

�
1 � .�=ı/n

1 � �=ı

�

D �nC1 � ınC1

� � ı
C �n � ın

� � ı
D

�nC1
�
1C 1

�

	
� ınC1

�
1C 1

ı

�

� � ı

D �nC1.1 � ı/ � ınC1.1 � �/

� � ı
D
p

2.�nC1 C ınC1/

� � ı

D �nC1 C ınC1

2
:

Consequently, we have

4
�
b2

n C b2
nC1

� D �
�nC1 C ınC1

�2 C ��nC2 C ınC2
�2 D �2nC2 C ı2nC2 C �2nC4 C ı2nC4

D �2nC3

�

� C 1

�

�

C ı2nC2

�

ı C 1

ı

�

D �2nC3.� � ı/ � ı2nC3.� � ı/

D .� � ı/
�
�2nC3 � ı2nC3

�

b2
n C b2

nC1 D 2 � �
2nC3 � ı2nC3

� � ı
D 2a2nC2; as desired.
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It follows from the given generating function that bn D QnC1 and Q2
nC1CQ2

nC2 D 2P2nC3; see
identity (21) in Chapter 7.

Returning to the generating function (11.1), we can rewrite it as

A.x/ D 1

� � ı

�
C

1 � �x
� D

1 � ıx

�

D
1X

nD0

Anxn; (11.2)

where C D 1 � 2aC a� and D D 1 � 2aC aı. When a D 0; An D Pn, and C D 1 D D; and
when a D 1; An D Qn, CD D �2, and C 2 D 2 D D2.

Using the power of generating functions, we will now develop formulas for
nP

kD0

A2k;

nP

kD0

A2kC1;
nP

kD0

AkAn�k;
nP

kD0

A2kA2n�2k ,
nP

kD0

A2kC1A2n�2kC1, and
nP

kD0

A2kA2n�2kC1.

11.3 Formulas for
nP

kD0
A2k and

nP

kD0
A2kC1

Consider the even function

Ae.x/ D A.x/C A.�x/

2
D

1X

nD0

A2nx2n:

By equation (11.1), we have

A.x/C A.�x/ D aC .1 � 2a/x

1 � 2x � x2
C a � .1 � 2a/x

1C 2x � x2

1X

nD0

A2nx2n D a.1 � x2/C 2.1 � 2a/x2

1 � 6x2 C x4
:

This yields the following generating functions:

2x2

1 � 6x2 C x4
D

1X

nD0

P2nx2n

1 � 3x2

1 � 6x2 C x4
D

1X

nD0

Q2nx2n:
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Similarly, using the odd function

Ao.x/ D A.x/ � A.�x/

2
D

1X

nD0

A2nC1x
2nC1 D 2ax C .1 � 2a/.x � x3/

1 � 6x2 C x4
;

we can find the generating functions for fP2nC1g and fQ2nC1g:

x � x3

1 � 6x2 C x4
D

1X

nD0

P2nC1x
2nC1

x C x3

1 � 6x2 C x4
D

1X

nD0

Q2nC1x
2nC1:

11.4 A Formula for
nP

kD0
AkAn�k

From (11.2), we have

A2.x/ D
1X

nD0

 
nX

kD0

AkAn�k

!

xn: (11.3)

But we also have

A2.x/ D 1

8

�
C 2

.1 � �x/2
C D2

.1 � ıx/2
� 2CD

.1 � �x/.1 � ıx/

�

D 1

8

�
C 2

.1 � �x/2
C D2

.1 � ıx/2
� 2CD

2
p

2x

�
1

1 � �x
� 1

1 � ıx

��

D 1

8

" 1X

nD0

.nC 1/.C 2�n CD2ın/xn � 2CD

x

1X

nD0

�n � ın

2
p

2
xn

#

D 1

8

" 1X

nD0

.nC 1/.C 2�n CD2ın/xn � 2CD

1X

nD0

PnC1x
n

#

D 1

8

1X

nD0



.nC 1/.C 2�n CD2ın/xn � 2CDPnC1x

n
�

: (11.4)

Equating the coefficients of xn from (11.3) and (11.4), we get

8

nX

kD0

AkAn�k D .nC 1/
�
C 2�n CD2ın

� � 2CDPnC1: (11.5)



212 11. Generating Functions for the Pell Family

In particular, this implies that

4

nX

kD0

PkPn�k D .nC 1/Qn � PnC1

2

nX

kD0

QkQn�k D .nC 1/Qn C PnC1:

For example, 4
4P

kD0

PkP5�k D 176 D 6Q5�P6 and 4
5P

kD0

QkQ5�k D 316 D 6Q5CP6; see

Figure 11.1.

2 ⋅ 4(0 ⋅ 29 + 1 ⋅ 12 + 2 ⋅ 5) = 176

2 5 12 29 10 1 1 3 7 17 41

4(1 ⋅ 41 + 1 ⋅ 17 + 3 ⋅ 7) = 316

Figure 11.1.

Next we will develop a formula for
nP

kD0

A2kA2n�2k .

11.5 A Formula for
nP

kD0
A2kA2n�2k

Consider the even function

Ae.x/ D A.x/C A.�x/

2
D

1X

nD0

A2nx2n:

Then

A2
e.x/ D

1X

nD0

 
nX

kD0

A2kA2n�2k

!

x2n: (11.6)

Since

Ae.x/ D 1

4
p

2

��
C

1 � �x
� D

1 � ıx

�

C
�

C

1C �x
� D

1C ıx

��

D 1

2
p

2

�
C

1 � �2x2
� D

1 � ı2x2

�

;
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we have

A2
e.x/ D 1

8

�
C 2

.1 � �2x2/2
C D2

.1 � ı2x2/2
� 2CD

.1 � �2x2/.1 � ı2x2/

�

D 1

8

�
C 2

1 � �2x2
C D2

1 � ı2x2
� CD

2
p

2

�
1

1 � �2x2
� 1

1 � ı2x2

��

D 1

8

" 1X

nD0

.nC 1/
�
C 2�2n CD2ı2n

�
x2n � CD

x2

1X

nD0

P2nx2n

#

D 1

8

1X

nD0



.nC 1/

�
C 2�2n CD2ı2n

� � CDP2nC2

�
x2n: (11.7)

Equating the coefficients of x2n from (11.6) and (11.7), we get

8

nX

kD0

A2kA2n�2k D .nC 1/
�
C 2�2n CD2ı2n

� � CDP2nC2: (11.8)

In particular, this yields

8

nX

kD0

P2kP2n�2k D 2.nC 1/Q2n � P2nC2

4

nX

kD0

Q2kQ2n�2k D 2.nC 1/Q2n C P2nC2:

For example, 8
4P

kD0

P2kP8�2k D 3; 392 D 10 � 577 � 2378 D 2 � 5Q8 � P10 and

4
4P

kD0

Q2kQ8�2k D 8; 148 D 10 � 577C 2378 D 2 � 5Q8 C P10; see Figure 11.2.

0 1 2 5 12 29 70 169 408

1 1 3 7 17 41 99 239 577

8(0 ⋅ 408 + 2 ⋅ 70 + 12 ⋅ 12 + 70 ⋅ 2 + 408 ⋅ 0) = 3, 392

4(1 ⋅ 577 + 3 ⋅ 99 + 17 ⋅ 17 + 99 ⋅ 3 + 577 ⋅ 1) = 8, 148

Figure 11.2.

We will now develop the corresponding formula for odd-numbered products A2kC1A2n�2kC1.
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11.6 A Formula for
nP

kD0
A2kC1A2n�2kC1

Consider the odd function

Ao.x/ D A.x/ � A.�x/

2
D

1X

nD0

A2nC1x
2nC1:

Then

A2
o.x/ D

1X

nD0

 
nX

kD0

A2kC1A2n�2kC1

!

x2nC2: (11.9)

Since

Ao.x/ D 1

4
p

2

��
C

1 � �x
� D

1 � ıx

�

�
�

C

1C �x
� D

1C ıx

��

D 1

2
p

2

�
C �x

1 � �2x2
� Dıx

1 � ı2x2

�

;

we also have

A2
e.x/ D 1

8

�
C 2�2x2

.1 � �2x2/2
C D2ı2x2

.1 � ı2x2/2
C 2CDx2

.1 � �2x2/.1 � ı2x2/

�

D 1

8

�
C 2�2x2

1 � �2x2
C D2ı2x2

1 � ı2x2
C CD

2
p

2

�
1

1 � �2x2
� 1

1 � ı2x2

��

D 1

8

" 1X

nD0

.nC 1/
�
C 2�2nC2 CD2ı2nC2

�
x2nC2 C CD

1X

nD0

P2nx2n

#

D 1

8

1X

nD0



.nC 1/

�
C 2�2nC2 CD2ı2nC2

�C CDP2nC2

�
x2nC2: (11.10)

From (11.9) and (11.10), we have

8

nX

kD0

A2kC1A2n�2kC1 D .nC 1/.C 2�2nC2 CD2ı2nC2/C CDPnC1: (11.11)
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This implies that

8

nX

kD0

P2kC1P2n�2kC1 D 2.nC 1/Q2nC2 C P2nC2

4

nX

kD0

Q2kC1Q2n�2kC1 D 2.nC 1/Q2nC2 � P2nC2:

For example, 8
4P

kD0

P2kC1P9�2k D 36; 008 D 10 � 3363 C 2378 D 2 � 5Q10 C P10; and

4
4P

kD0

Q2kC1Q9�2k D 31; 252 D 10 � 3363 � 2378 D 2 � 5Q10 � P10 (see Figure 11.3).

1 1 3 7 17 41 99 239 577 1393

Figure 11.3.

Using the generating functions Ae.x/ and Ao.x/, we can develop a formula for the hybrid

sum
nP

kD0

A2kA2n�2kC1.

11.7 A Formula for the Hybrid Sum
nP

kD0
A2kA2n�2kC1

Using the generating functions Ae.x/ and Ao.x/, we have

Ae.x/Ao.x/ D
1X

nD0

 
nX

kD0

A2kA2n�2kC1

!

x2nC1: (11.12)

We also have

Ae.x/Ao.x/ D 1

2
p

2

�
C

1 � �2x2
� D

1 � ı2x2

�

� 1

2
p

2

�
C �x

1 � �2x2
� Dıx

1 � ı2x2

�

D 1

8

�
C 2�x

.1 � �2x2/2
C D2ıx

.1 � ı2x2/2
� 2CDx

.1 � �2x2/.1 � ı2x2/

�

D 1

8

�
C 2�x

.1 � �2x2/2
C D2ıx

.1 � ı2x2/2
� CD

2
p

2x

�
1

1 � �2x2
� 1

1 � ı2x2

��
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D 1

8

" 1X

nD0

.nC 1/
�
C 2�2nC1 CD2ı2nC1

�
x2nC1 � CD

x

1X

nD0

P2nx2n

#

D 1

8

1X

nD0

"

.nC 1/
�
C 2�2nC1 CD2ı2nC1

� � CD

1X

nD0

P2nC2

#

x2nC1: (11.13)

It now follows from (11.12) and (11.13) that

8

nX

kD0

A2kA2n�2kC1 D .nC 1/.C 2�2nC1 CD2ı2nC1/ � CDPnC2: (11.14)

This yields the following results:

8

nX

kD0

P2kP2n�2kC1 D 2.nC 1/Q2nC1 � P2nC2

4

nX

kD0

Q2kQ2n�2kC1 D 2.nC 1/Q2nC2 C P2nC2:

For example, 8
4P

kD0

P2kP9�2k D 11; 552 D 10 � 1393 � 2378 D 2 � 5Q9 � P10; and

4
4P

kD0

Q2kQ9�2k D 16; 308 D 10 � 1393C 2378 D 2 � 5Q9 C P10; see Figure 11.4.

0 1 2 5 12 29 70 169 408 985

1 1 3 7 17 41 99 239 577 1393

Figure 11.4.

Next we pursue generating functions for the squares of Pell and Pell–Lucas numbers.

11.8 Generating Functions for fP2
ng and fQ2

ng
Since both fP 2

n g and fQ2
ng satisfy the same recurrence (8.2), in the interest of brevity, we will

first find a generating function s.x/ for the sequence fsng, where fsng satisfies the recurrence
sn D 5sn�1 C 5sn�2 � sn�3, and sn equals fP 2

n g or fQ2
ng, depending on the context. To this

end, let
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s.x/ D s0 C s1x C s2x
2 C s3x

3 C � � � C snxn C � � � : Then

5xs.x/ D 5s0x C 5s1x
2 C 5s2x

3 C � � � C 5sn�1x
n C � � �

5x2s.x/ D 5s0x
2 C 5s1x

3 C � � � C 5sn�2x
n C � � �

x3s.x/ D s0x
3 C � � � C sn�3x

n C � � �
.1 � 5x � 5x2 C x3/s.x/ D s0 C .s1 � 5s0/x C .s2 � 5s1 � 5s0/x

2

s.x/ D s0 C .s1 � 5s0/x C .s2 � 5s1 � 5s0/x
2

1 � 5x � 5x2 C x3
:

Case 1 Suppose sn D P 2
n . Then the generating function g.x/ for the sequence fP 2

n g is given by

g.x/ D P 2
0 C .P 2

1 � 5P 2
0 /x C .P 2

2 � 5P 2
1 � 5P 2

0 /x2

1 � 5x � 5x2 C x3

D x � x2

.1C x/.1 � 6x C x2/
:

Thus

x � x2

.1C x/.1 � 6x C x2/
D 12x C 22x2 C 52x3 C 122x4 C � � � C P 2

n xn C � � � :

Case 2 Suppose sn D Q2
n. Then the generating function g.x/ for the sequence fQ2

ng is given by

g.x/ D Q2
0 C .Q2

1 � 5Q2
0/x C .Q2

2 � 5Q2
1 � 5Q2

0/x2

.1C x/.1 � 6x C x2/

D 1 � 4x � x2

.1C x/.1 � 6x C x2/
:

Thus

1 � 4x � x2

.1C x/.1 � 6x C x2/
D 12 C 12x C 32x2 C 72x3 C 172x4 C � � � CQ2

nxn C � � � :

11.9 Generating Functions for fP2nC1g; fQ2ng; fQ2nC1g, and fP2ng
Revisited

It is worth noting that the generating functions for fP2nC1g; fQ2ng; fQ2nC1g, and fP2ng can be
found in other ways; see Exercises 5–8.

With the resources we already have, we can develop the generating functions for products of
pairs of consecutive Pell and Pell–Lucas numbers.
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11.10 Generating Functions for fPnPnC1g and fQnQnC1g
Using the identity 4PnC1Pn D Q2

nC1�Q2
n and the generating function for fQ2

kg, we can develop
a generating function for fPnPnC1g:

4PnC1Pn D Q2
nC1 �Q2

n

1X

nD0

4PnC1Pnxn D
1X

nD0

Q2
nC1x

n �
1X

nD0

Q2
nxn

D 1

x

�
1 � 4x � x2

.1C x/.1 � 6x C x2/
� 1

�

� 1 � 4x � x2

.1C x/.1 � 6x C x2/

D 8x

.1C x/.1 � 6x C x2/
:

So

2x

.1C x/.1 � 6x C x2/
D

1X

nD0

PnPnC1x
n:

Likewise, we can show that

.1 � x/2

.1C x/.1 � 6x C x2/
D

1X

nD0

QnQnC1x
n

1 � 5x

.1C x/.1 � 6x C x2/
D

1X

nD0

PnC1Pn�1x
n

1C 8x � 3x2

.1C x/.1 � 6x C x2/
D

1X

nD0

QnC1Qn�1x
nI

see Exercises 9–11.
Next we develop yet another explicit formula for Pn.

11.11 Another Explicit Formula for Pn

In 1993, Seiffert developed yet another explicit formula Pn[200]:

Pn D
X

0�k�n�1
46 j .2nCk/

.�1/b.3kC3�2n/=4c2b3k=2c
 

nC k

2k C 1

!

(11.15)
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The proof featured below is based on the one given by Bruckman in the following year and is
a bit long [31]. It uses a lot of algebra, complex numbers, and the generating function for Pell
numbers.

Proof. Recall that the function x
f .x/
D x

1�2x�x2 generates the Pell numbers Pn.

Let Sn denote the expression on the RHS of (11.15) and g.x/ D
1P

nD0

Snxn. So Sn D Pn if

and only if g.x/ D x
f .x/

. Consequently, it suffices to show that g.x/ D x
f .x/

.
We have

g.x/ D
1X

nD1

2

6
4

X

0�k�n�1
46 j .2nCk/

.�1/b.3kC3�2n/=4c2b3k=2c
 

nC k

2k C 1

!
3

7
5 xn:

Letting n D mC k C 1, this becomes

g.x/ D
X

k;m�0
46 j .2mC3kC2/

.�1/b.kC1�2m/=4c2b3k=2c
 

mC 2k C 1

2k C 1

!

xmCkC1:

Considering the cases that m can be even (say, m D 2u) or odd (say, m D 2uC 1), this yields

g.x/ D
X

k;u�0
46 j .3kC2/

.�1/b.kC1/=4cCu2b3k=2c
 

2uC 2k C 1

2u

!

x2uCkC1 C

X

k;u�0
46 j 3k

.�1/b.k�1/=4cCu2b3k=2c
 

2uC 2k C 2

2uC 1

!

x2uCkC2:

Letting j D k C 1, this can be rewritten as

g.x/ D
X

j �1
46 j .j C1/

.�1/bj =4c2b3.j �1/=2cxj
X

u�0

.�1/u

 
�2j

2u

!

x2u �

X

j �1
46 j .j �1/

.�1/b.j �2/=4c2b3.j �1/=2cxj
X

u�0

.�1/u

 
�2j

2uC 1

!

x2uC1; (11.16)

where we have used the fact that
��n

r

� D .�1/r
�

nCr�1
r

�
.
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Now let e
 D 1
2

Œ1C .�1/
� and z D 1C ix, where i D p�1. Since .1C t /�n D
1P

rD0

��n
r

�
t r ,

we have

X

u�0

.�1/u

 
�2j

2u

!

x2u D
X


�0

e


 
�2j




!

.ix/


D 1

2

�
z�2j C z�2j

	

D Re
�
z�2j

�
; (11.17)

where w denotes the conjugate of the complex number w and Re.w/ its real part.
Letting o
 D 1

2
Œ1 � .�1/
�, we have

X

u�0

.�1/u

 
�2j

2uC 1

!

x2uC1 D �i
X


�0

o


 
�2j




!

.ix/


D 1

2i

�
z�2j � z�2j

	

D Im
�
z�2j

�
; (11.18)

where Im.w/ denotes the imaginary part of w.
Now let

U .x/ D
X

j �1
46 j .j C1/

.�1/bj =4c2b3.j �1/=2cxj z�2j (11.19)

V .x/ D
X

j �1
46 j .j �1/

.�1/b.j �2/=4c2b3.j �1/=2cxj z�2j : (11.20)

It then follows by equation (11.16) that

g.x/ D ReŒU .x/C iV .x/�:

We now let j D 4rC s, where r � 0 and s D 1; 2, or 4 in (11.19). (Notice that s 6D 3.) Then
U .x/ can be rewritten as

U .x/ D
�

x

z2
C 2x2

z4
� 16x4

z8

�

h.x/;

where h.x/ D
1P

rD0

.�1/r26rx4rz�8r D
�
1C 64x4

z8

	�1 D z8

z8C64x4 .

So

U .x/ D x.z6 C 2xz4 � 16x3/

z8 C 64x4
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D x.z4 C 4xz2 C 8x2/.z2 � 2x/

.z4 C 4xz2 C 8x2/.z4 � 4xz2 C 8x2/

D x.z2 � 2x/

z4 � 4xz2 C 8x2
:

Similarly, letting s D 2; 3, or 4 in (11.20) yields

V .x/ D
�

2x2

z4
C 8x3

z6
C 16x4

z8

�

h.x/

D 2x2.z4 C 4xz2 C 8x2/

z8 C 64x4

D 2x2.z4 C 4xz2 C 8x2/

.z4 C 4xz2 C 8x2/.z4 � 4xz2 C 8x2/

D 2x2

z4 � 4xz2 C 8x2
:

But z2 D 1C 2ix � x2 D 1� 2x � x2C 2.1C i/x D f C 2.1C i/x, where f D f .x/. So

z4 D f 2 C 4.1C i/xf C 8ix2

D f Œf C 4.1C i/x�C 8ix2

z2 � 4xz2 C 8x2 D f Œf C 4.1C i/x�C 8ix2 � 4xŒf C 2.1C i/x�C 8x2

D f .f C 4ix/:

Therefore, we have

U .x/C iV .x/ D x.z2 � 2x C 2ix/

f .f C 4ix/

D x.f C 4ix/

f .f C 4ix/

D x

f
:

Thus, U .x/ C iV .x/ is real; so g.x/ D ReŒU .x/ C iV .x/� D U .x/ C iV .x/ D x
f .x/

, as
desired.

For example, we have

P5 D
X

0�k�4
46 j .10Ck/

.�1/b.3k�7/=4c2b3k=2c
 

5C k

2k C 1

!
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D
X

0�k�4
46 j .kC2/

.�1/b.3kC1/=4c2b3k=2c
 

5C k

2k C 1

!

D 1 �
 

5

1

!

� 2 �
 

6

3

!

C 16 �
 

8

7

!

� 64 �
 

9

9

!

D 5 � 40C 128 � 64 D 29; as expected.

11.12 Hoggatt’s Array

The next example is interesting in its own right. Hoggatt proposed it as a problem in 1977 [103].

Example 11.3 Row 0 in the array in Figure 11.5 consists of the Pell numbers Pn and each
succeeding row is obtained by taking the absolute differences of adjacent elements in the
previous row. Let fdng1nD0 denote the leftmost diagonal sequence, where d0 D 1 D d1; d2 D
2 D d3; d4 D 4 D d5; d6 D 8 D d7; � � � . Prove each:

(1) d2n D d2nC1 D 2n, where n � 0.

(2) d.x/ D 1
x
g
�

x
1Cx

�
, where d.x/ denotes the generating function of the sequence fdng, and

g.x/ that of the Pell sequence.

1 2 5 12 29 70
1 3 7 17 41

2 4 10 24
2 6 14

4 8
4

…

…

Figure 11.5.

Proof. Notice that Row 1 of the array consists of the Pell–Lucas numbers Qn. This should not
be a surprise, since PnC1 � Pn D Qn.

We will now confirm a key observation: Every row of the array satisfies the same Pell
recurrence. To see this, consider the sequence fxng defined by the recurrence xnC2 D axnC1 C
bxn, and fyng a sequence defined by yn D xnC1 � xn. Then

aynC1 C byn D a.xnC2 � xnC1/C b.xnC1 � xn/

D .axnC2 C bxnC1/ � .axnC1 C bxn/
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D xnC3 � xnC2

D ynC2:

Consequently, the sequence fyng satisfies the same recurrence as fxng.
In particular, let a D 2 and b D 1. Thus dn satisfies the Pell recurrence.
We will now prove parts (1) and (2):

(1) Let feng1nD0 denote the second southeast diagonal from the left: 2; 3; 4; 6; 8; : : :. We will
prove by PMI that d2n D d2nC1 D 2n, e2n D 2d2n, and e2nC1 D 3d2nC1 for every integer
n � 0.

Clearly, e0 D 2 D 2d0 and e1 D 3 D 3d1; e2 D 4 D 2d2 and e3 D 6 D 3d3, the
formulas work when n D 0 and n D 1.

Now assume that they are true for all nonnegative integers < n, where n � 2. Since
d2n�2 D d2n�1 D 2n�1, and e2n�1 D 3d2n�1, d2n D e2n�1 � d2n�1 D 3d2n�1 � d2n�1 D
2d2n�1 D 2n and d2nC1 D e2n � d2n D 2 � 2n � 2n D 2n. Thus, by PMI, the formulas hold
for all integers n � 0.

To digress a bit, note that the elements of the .2k/th and .2k C 1/st rows of the array
reveal an interesting pattern:

1 � 2k 2 � 2k 5 � 2k 12 � 2k 29 � 2k � � �
1 � 2k 3 � 2k 7 � 2k 17 � 2k

Row 2k is made up of the sequence f2kPng and row 2k C 1 is made up of the sequence
f2kQng. These can be confirmed using the properties PnC1 �Pn D Qn and QnC1 �Qn D
2Pn.

(2) To prove part (2), recall that g.x/ D x

1�2x�x2 is the generating function of Pell numbers.
Then

g

�
x

1C x

�

D x C x2

1 � 2x2
:

We will now show that the function 1
x
g
�

x
1Cx

�
generates the sequence fdng.

To this end, let d.x/ D
1P

nD0

dnxn. Since d2n D 2n D d2nC1, we have

d.x/ D
1X

nD0

2n.x2n C x2nC1/

D 1C x C
1X

nD1

2n.x2n C x2nC1/

2x2d.x/ D
1X

nD0

2nC1.x2nC2 C x2nC3/
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D
1X

nD1

2n.x2n C x2nC1/

.1 � 2x2/d.x/ D 1C x

d.x/ D 1C x

1 � 2x2

D 1

x
g

�
x

1C x

�

; as desired.

Thus the sequence fdng is generated by the function d.x/ D 1
x
g
�

x
1Cx

� D 1Cx

1�2x2 :

1C x

1 � 2x2
D 1C x C 2x2 C 2x3 C 22x4 C 22x5 C 23x6 C � � � :

Suppose row 1 in Figure 11.5 begins with the number 0 D P0. The resulting array, studied
by Piero Filipponi in 1993, shows an additional pattern; see Figure 11.6.

0 12 29 70
1 7 17 41

0

1 2 5
1 3

2 4 10 24
2 2 6 14

0 4 8
4 4

0

…

…

Figure 11.6.

Let fang1nD0 denote the left most diagonal sequence of this array. Since ak D ek � 2dk , it
follows that a2n D e2n � 2d2n D 2d2n � 2d2n D 0 and a2nC1 D e2nC1 � 2d2nC1 D 3d2nC1 �
2d2nC1 D 2n.

The sequence fang is generated by the function x

1�2x2 :

x

1 � 2x2
D x C 2x3 C 22x5 C 23x7 C � � � :

Exercises 11

Develop a generating function for each sequence fang, where:

1. an D P2nC1. Hint: Use the odd function Ao.x/.

2. an D Q2nC1.

3. an D P2n. Hint: Use the even function Ae.x/.

4. an D Q2n.
Find a generating function for:
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5. fP2nC1g, using the the identity P 2
nC1 C P 2

n D P2nC1 and the generating function for fP 2
n g.

6. fQ2ng, using the identity Q2n D 2Q2
n � .�1/n and the generating function for fQ2

ng.
7. fQ2nC1g, using the identity QnC1 D 2PnC1 �Qn.

8. fP2ng, using the generating functions for fQ2ng and fP2nC1g, and the identity Pn CQn D
PnC1.

Develop a generating function for each sequence:

9. fQnC1Qng. Hint: P 2
nC1 � P 2

n D QnC1Qn.

10. fPnC1Pn�1g. Hint: Use Cassini-like formula for Pn.

11. fQnC1Qn�1g. Hint: Use Cassini-like formula for Qn.
Using Seiffert’s formula (11.15), compute each Pell number.

12. P6.

13. P11.
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Pell Walks

12.1 Introduction

Like the Fibonacci family [126], the Pell family has delightful applications to combinatorics.
This chapter presents several such applications. In the process, we will revisit Fibonacci
numbers, and encounter a new family that arises in combinatorics.

To begin with, we introduce some basic vocabulary for clarity. A lattice point on the cartesian
plane is a point .x; y/ with integral coordinates x and y. For example, .3; 5/ and .8;�13/ are
lattice points, whereas .0;

p
2/ and .�;��/ are not. A lattice path is a sequence of connected

horizontal, vertical, or diagonal unit steps PiPiC1, where both Pi and PiC1 are lattice points; it
often emanates from the origin. The number of unit steps in the path is its length.

x

y

O

A

B

Lattice paths

Figure 12.1.

For example, Figure 12.1 shows two lattice paths, one a solid path and the other a dotted
path. The solid path, originating at O and ending at A, consists of one unit step in the easterly

T. Koshy, Pell and Pell–Lucas Numbers with Applications, DOI 10.1007/978-1-4614-8489-9__12,
© Springer Science+Business Media New York 2014

227
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direction (E), followed by two in the northerly direction (N ), two in the easterly direction (E),
one in the northerly direction (N ), and one in the easterly direction (E). Its length is seven and
is denoted by the “word”ENNEENE. Likewise, the dotted path NNNEEN from O to B is
of length six.

The height of a lattice path is the height of its final step above the x-axis. For example, the
height of the solid path in Figure 12.1 is three and that of the dotted path is four. Let n denote
the length of a lattice path and h its height. Then 0 � h � n.

The examples we will study shortly deal with applications of Pell and Pell–Lucas numbers to
the study of lattice paths. The first example was studied by Richard P. Stanley of Massachusetts
Institute of Technology, Cambridge, Massachusetts [238], and Asamoah Nkwanta and Louis W.
Shapiro of Howard University, Washington, D.C. The next two were studied by Nkwanta and
Shapiro, who called the paths Pell walks [172].

Example 12.1 Starting at the origin on the cartesian plane, suppose we walk n unit steps east
(E), north (N ), or west (W ), such that no E-step follows immediately a W-step or vice versa;
that is, no word can contain EW or WE as a subword. Find the number an of such lattice paths
possible.

Let qn;h denote the number of such paths with height h. Clearly, q0;0 D 1 D a0 D Q1; see
Figure 12.2. There are exactly two such paths of length n � 1 and height zero: EE � � �E„ ƒ‚ …

n E s

and

W W � � �W„ ƒ‚ …
n W s

; see Figure 12.3. So qn;0 D 2 for every n � 1. Consequently, a1 D 1 C 2 D 3 D
Q2 D q0;0 C q1;0. Furthermore, there is a unique path of height n: NN � � �N„ ƒ‚ …

n N s

; so qn;n D 1 for

every n � 0; see Figure 12.4.

n = 0

Figure 12.2.

. . . .
EE EE

n Es

. . . .
WW WW

n Ws
h = 0

… …

Figure 12.3.

..

.

NN NN

n Ns
n = h

…

Figure 12.4.
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h = 0
n = 0

h = 0 h = 1
n = 1

h = 0 h = 1 h = 2
n = 2

h = 0 h = 1 h = 2 h = 3
n = 3

Figure 12.5.

Table 12.1.

h

n 0 1 2 3 4 5

0 1

1 2 1

2 2 4 1

3 2 8 6 1

4 2 12 18 8 1

5 2 16 38 32 10 1

Array Q

row sums

1

3

7

17

41

99

Qn+1

↑

Figure 12.5 shows the possible paths of length n and height h, where a thick dot indicates
the origin and 0 � n � 3. The corresponding values of qn;h can be summarized in a table
Q D .qn;h/n;h�0, as in Table 12.1, where 0 � h � n � 5. Nkwanta and Shapiro developed this
array in 2005.

The row sums of this array exhibit an interesting pattern: The nth row sum is QnC1, where

n � 0; that is,
nX

hD0

qn;h D QnC1. We will now establish this using strong induction.
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Proof. Notice that a path of length nC 1 and height h can be obtained in two different ways:

(1) Appending an N to a path of length n and height h � 1.

(2) Appending an N to paths of length � n and height h � 1, followed by an appropriate
sequence of Es or W s.

Consequently, the array elements qn;h can be defined recursively:

q0;0 D 1

qnC1;h D qn;h�1 C 2
X

j �1

qn�j ;h�1; (12.1)

where it is understood that qn;h D 0 if h > n, and n � 0.
For example, q4;2 D q3;1 C 2

P

j �1

q3�j ;1 D q3;1 C 2.q2;1 C q1;1/ D 8C 2.4C 1/ D 18 ; see

Table 12.1. Likewise, q5;3 D q4;2 C 2.q3;2 C q2;2/ D 18C 2.6C 1/ D 32 .

We are now ready to present the proof. Clearly, a0 D 1 D
0P

hD0

q0;h D Q1 and a1 D 3 D
1P

hD0

q1;h D Q2. So the formula works when n D 0 and n D 1.

Now assume that it works for all nonnegative integers < n, where n is an arbitrary integer
� 1. Using the recurrence (12.1), we then have

nC1X

hD0

qnC1;h D qnC1;0 C
nX

hD1

qnC1;h C qnC1;nC1

D qn;0 C
nX

hD1

qn;h�1 C 2

nX

hD1

X

j �1

qn�j ;h�1 C qn;n

D
 

n�1X

hD0

qn;h C qn;n

!

C 2

nX

hD1

X

j �1

qn�j ;h�1 C qn;0

D
nX

hD0

qn;h C 2
X

j �1

nX

hD1

qn�j ;h�1 C qn;0

D QnC1 C 2

n�1X

hD0

qn�1;h C 2
X

j �2

nX

hD1

qn�j ;h�1 C qn;0

D QnC1 C
n�1X

hD0

qn�1;h C
nX

hD1

qn�1;h�1 C 2
X

j �2

nX

hD1

qn�j ;h�1 C qn;0
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D QnC1 CQn C
nX

hD1

0

@qn�1;h�1 C 2
X

j �2

qn�j ;h�1

1

AC qn;0

D QnC1 CQn C
nX

hD1

0

@qn�1;h�1 C 2
X

k�1

qn�1�k;h�1

1

AC qn;0

D QnC1 CQn C
nX

hD1

qn;h C qn;0 D QnC1 CQn C
nX

hD0

qn;h

D QnC1 CQn CQnC1 D 2QnC1 CQn

D QnC2:

So the formula also works for nC 1.
Thus, by the strong version of PMI, it works for n � 0; that is, an D QnC1 for n � 0.

This fact can be expressed as a matrix equation, where the blanks indicate zeros:

2

6
6
6
6
6
6
6
4

1

2 1

2 4 1

2 8 6 1

2 12 18 8 1

� � �

3

7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
4

1

1

1

1

1

� � �

3

7
7
7
7
7
7
7
5

D

2

6
6
6
6
6
6
6
4

1

3

7

17

41

� � �

3

7
7
7
7
7
7
7
5

:

12.2 Interesting Byproducts

The fact that an D QnC1 has several interesting byproducts:

(1) Suppose we would like to find the number of paths bn of length n ending in N . Figure 12.6
shows the possible paths for 1 � n � 4. Notice that b1 D 1 D Q1; b2 D 3 D Q2; b3 D
7 D Q3, and b4 D 17 D Q4. So we conjecture that bn D Qn for every n � 1.

To confirm this notice that every path of length n ending in N must be of the form
w1w2 � � �wn�1N , where wn�1 can be E; N , or W . Consequently, the number of such paths
equals the number of paths of length n�1. By part (1), there are Qn paths of length n�1;
so bn D Qn. (Consequently, there are Qn such paths beginning with N .)
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h = 1
n = 1

h = 1
n = 2

h = 2 h = 1 h = 2
n = 3

h = 3

h = 1 h = 2

h = 3 h = 4
n = 4

Figure 12.6.

For example, there are Q2 D 3 such walks of length 2: EN ; NN , and W N ; and Q3 D
7 such walks of length 3: EEN ; ENN ; NEN ; NNN ; N W N ; W NN , and W W N ; see
Figure 12.5.

(2) Since every path of length n ending in NN is of the form w1w2 � � �wn�2NN , it now
follows that there are Qn�1 such Pell walks, where n � 2; see Figure 12.6.

(3) Suppose we would like to find the number of lattice paths cn of length n ending in E.
Figure 12.7 shows the possible paths, where 1 � n � 4. It follows from the figure that
c1 D 1 D P1; c2 D 2 D P2; c3 D 5 D P3, and c4 D 12 D P4. So we conjecture that
cn D Pn for every n � 1.

Since there are an D QnC1 Pell paths of length n and bn D Qn of them end in N , it
follows that 2cn D an � bn D QnC1 �Qn D 2Pn; so cn D Pn, as desired. (This can also
be confirmed using PMI.)

Therefore, there are Pn paths beginning with E. For instance, there are P3 D 5

paths of length three that begin with E: EEE; EEN ; ENE; ENN , and EN W ; see
Figure 12.5.

(4) It follows by property (3) that there are Pn�1 paths w1w2 � � �wn�2EE, ending in EE,
where n � 2; see Figure 12.8.

(5) Since there are Pn�1 paths of length n ending in EE, Pn�1 paths ending in W W , and
Qn�1 paths ending in NE, the total number of walks of length n ending in EE; W W , or
NE is given by Pn�1 C .Pn�1 C Qn�1/ D Pn�1 C Pn D Qn; see Figure 12.9, where
n D 3.

(6) Suppose we would like to find the number of walks beginning with N and ending in W .
Such a path is of the form Nw2 � � �wn�2wn�1W , where wn�1 6D E. Since there are PnC1
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h = 0
n = 1

h = 0
n = 2

h = 1 h = 0 h = 1
n = 3

h = 2

h = 0 h = 1

h = 2 h = 3
n = 4

Figure 12.7.

h = 0
n = 2

h = 0
n = 3

h = 1

h = 0 h = 1
n = 4

h = 2

h = 0 h = 1

h = 2 h = 3
n = 5

Figure 12.8.

h = 0 h = 1 h = 2
n = 3

Figure 12.9.

paths not ending in W , it follows that there are QnC1 � PnC1 D Pn paths ending in W .
They are of the form w1 � � �wn�1W , where w1 can be N ; E, or W , and wn�1 6D E.
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Suppose w1 D N D wn�1. By property (2) above, there are Qn�2 such paths. On the
other hand, let wn�1 D W . Such a path is of the form Nw2 � � �wn�2W W . Since w2 can
be N ; E, or W , there are Pn�2 such paths. Thus there are Qn�2CPn�2 D Pn�1 paths that
begin with N and end in W , where n � 2.

For example, there are exactly P2 D 2 paths of length three that begin with N and
end in W : NN W and N W W ; see Figure 12.5. Likewise, there are P3 D 5 such paths of
length five: NEN W ; NNN W ; NN W W ; N W N W , and N W W W .

(7) There are Qn paths beginning with N , and Pn�1 paths that begin with N and end in W .
So there are Qn � Pn�1 D Pn paths that begin with N and do not end in W .

For instance, there are P3 D 5 such paths of length three: NEE; NEN ; NNE; NNN ,
and N W N ; see Figure 12.5.

(8) Recall that there are Qn paths beginning with N , and Qn�1 paths beginning with and
ending in N . Thus we have

 
Number of walks beginning

with and not ending in N

!

D Qn �Qn�1

D 2Pn�1:

For example, there are 2P3�1 D 2P2 D 4 such walks of length three: NEE; NNE;

NN W , and N W W .

(9) We have

 
Number of walks
not ending in W

!

D
 

total number
of walks

!

�
 

number of walks
ending in W

!

D QnC1 � Pn

D PnC1:

Consequently, the number of paths that do not end in W , but begin with W , equals Pn �
Pn�1 D Qn�1, where n � 2.

For instance, there are P3C1 D P4 D 12 paths of length three that do not end in
W : EEE; EEN ; ENE; ENN ; NEE; NEN ; NNE; NNN ; N W N ; W NE; W NN , and
W W N ; exactly, Q2 D 3 of them begin with W : W W N ; W NE, and W NN .

(10) The number of paths of length n not ending in N is given by

 
Total number

of paths

!

�
 

number of paths
ending in N

!

D QnC1 �Qn

D 2Pn:
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As an example, there are 2P3 D 10 Pell walks of length three that do not end in
N : EEE; NEE; ENE, EN W ; NNE; NN W ; N W W ; W NE; W N W , and W W W ; see
Figure 12.5.

(11) The number of Pell walks ending in W is given by

 
Total number

of paths

!

�
 

number of paths
not ending in W

!

D QnC1 � PnC1

D Pn:

For instance, there are exactly P3 D 5 paths of length three that end in
W : EN W ; NN W ; N W W , W N W , and W W W ; see Figure 12.5.

(12) Every walk that begins with and end in NN is of the form NNw3 � � �wn�2NN . Since
both w3 and wn�2 can be E; N , or W , there are exactly Qn�3 such paths, where n � 4.

For example, there are Q6�3 D Q3 D 7 such paths of length six: NNNNNN ;

NNNENN , NNN W NN ; NNEENN ; NNENNN ; NNNENN , and NNN W NN .
Next we develop a recurrence for the number of Pell walks that begin with and end

in E.

12.3 Walks Beginning with and Ending in E

Let fn denote the number Pell walks Ew2 � � �wn�1E, where w2; wn�1 6D W . Clearly, f1 D 1 D
f2.

Case 1 Let wn�1 D E. Such a path is of the form Ew2 � � �E„ ƒ‚ …
l D n�1

E. By definition, there are fn�1

such Pell walks.

Case 2 Let wn�1 D N . Such a Pell word is of the form Ew2 � � �wn�2„ ƒ‚ …
l D n�2

NE, where wn�2 is

arbitrary. There are Pn�2 such paths that begin with E.
Combining the two cases yields a recurrence for fn:

fn D fn�1 C Pn�2; (12.2)

where f1 D 1 and n � 2.
For example, there are f5 D f4 C P3 D 4 C 5 D 9 Pell walks of length 5

that begin with and end in E: EEEEE, EEENE, EENEE, EENNE, ENEEE, ENENE, ENNEE,
ENNNE, and EN W NE. Likewise, there are f6 D 21 such walks of length 6.



236 12. Pell Walks

Interestingly, the first-order recurrence (12.2) can be rewritten as a second-order recurrence:

fn D .fn�2 C Pn�3/C Pn�2

D fn�2 C .Pn�3 C Pn�2/

D fn�2 CQn�2; (12.3)

where f1 D 1 D f2 and n � 3.
For example, f5 D f3 CQ3 D 2C 7 D 9, as expected.
Recurrence (12.2), coupled with the summation formula for Pell numbers, can be used to

develop an explicit formula for fn. Since P0 D 0, it follows by iteration from (12.2) that

fn D 1C
n�2X

kD1

Pk

D 1C Qn�1 � 1

2

D Qn�1 C 1

2
: (12.4)

For example, f6 D Q5C1

2
D 21.

As a byproduct, it follows from (12.4) also that every Pell–Lucas number has odd parity.
Using the summation formulas for Pell–Lucas numbers, the explicit formula (12.4) can be

obtained from (12.3) as well.
Recurrence (12.3) has an interesting consequence: it can be used to find a recurrence for the

number of walks gn of length n that begin with and end in EE W EEw3 � � �wn�2EE. It follows
from the recurrence that gn D gn�2 CQn�4, where g4 D 1; g5 D 2, and n � 4.

For example, there are g6 D g4 C Q2 D 1 C 3 D 4 such walks of length 6:
EEEEEE; EEENEE, EENEEE, and EENNEE. Likewise, there are g7 D 9 walks of
length 7: EEEEEEE; EEEENEE, EEENEEE; EEENNEE; EENEEEE; EENENEE;

EENNEEE; EENNNEE, and EEN W NEE.
Next we find the number of paths beginning with E and ending in W .

12.4 Paths Beginning with E and Ending in W

Let xn denote the number of paths E w2 � � �wn�1„ ƒ‚ …
l D n�2

W , where w2 6D W and wn�1 6D E. Clearly,

x2 D 0; x3 D 1, and x4 D 3.
There are four cases that we need to investigate. In the interest of brevity, we will omit all

details.
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Suppose w2 D E and wn�1 D N . There are Pn�3 paths E Ew3 � � �wn�2„ ƒ‚ …
l D n�3

N W ; on the other

hand, let w2 D E and wn�1 D W . By definition, there are xn�2 paths E Ew3 � � �wn�2W„ ƒ‚ …
l D n�2

W ;

Suppose w2 D N D wn�1. There are Qn�3 paths EN w3 � � �wn�2„ ƒ‚ …
l D n�4

N W ; and if w2 D N and

wn�1 D W , there are Pn�3 paths EN w3 � � �wn�2„ ƒ‚ …
l D n�4

W W , where wn�2 6D E.

Thus we have

xn D xn�2 C .2Pn�3 CQn�3/

D xn�2 CQn�2; (12.5)

where n � 2.
It follows from (12.5) by iteration, and the summation formulas for Pell–Lucas numbers, that

xn D Qn�1�1

2
, where n � 2.

For example, there are x5 D Q4�1

2
D 8 Pell walks beginning with E and end-

ing in W : EEEN W ; EENN W ; EEN W W ; ENEN W ; ENNN W ; ENN W W ; EN W N W ,
and EN W W W .

Next we find the number of Pell walks that begin with E, but do not end in W .

12.5 Paths Beginning with E, but not Ending in W

Let yn denote the number of Pell paths Ew2 � � �wn�1wn, where wn D E or N .
Suppose wn D E. There are Qn�1C1

2
paths Ew2 � � �wn�1E. On the other hand, let wn D N .

Such a path is of the form Ew2 � � �wn�1„ ƒ‚ …
l D n�1

N , where wn�1 is arbitrary. By part (3), there are Pn�1

such walks.
Thus, we have

yn D Qn�1 C 1

2
C Pn�1

D .2Pn�1 CQn�1/C 1

2

D Qn C 1

2
: (12.6)

For example, there are y4 D Q4C1

2
D 9 Pell walks of length 4 that begin with E, but

do not end in W : EEEE; EEEN ; EENE; EENN ; ENEE; ENEN ; ENNE; ENNN , and
EN W N . Similarly, there are y5 D 21 such walks of length five.

Finally, we find the number of Pell walks that do not begin with or end in E.
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12.6 Paths not Beginning with or Ending in E

Let zn denote the number of Pell walks w1w2 � � �wn�1wn, where w1; wn 6D E.
Briefly, there are Qn�1 paths N w2 � � �wn�1„ ƒ‚ …

l D n�2

N , where w2 and wn�1 are arbitrary; by part

(4), there are Pn�1 paths Nw2 � � �wn�1W„ ƒ‚ …
l D n

, beginning with N and ending in W ; there are Qn�1C1

2

paths W w2 � � �wn�1W„ ƒ‚ …
l D n

that begin with and end in W ; and by part (3), there are Pn�1 paths

W w2 � � �wn�1„ ƒ‚ …
l D n�1

N .

Combining the four cases, we get

zn D Qn�1 C Pn�1 C Qn�1 C 1

2
C Pn�1

D .2Pn�1 CQn�1/C Qn�1 C 1

2

D Qn C Qn�1 C 1

2

D .2Qn CQn�1/C 1

2

D QnC1 C 1

2
: (12.7)

For example, there are z3 D Q4C1

2
D 9 walks of length three that do not begin with or end

in E: NEN ; NNN ; NN W ; N W N ; N W W ; W NN ; W N W ; W W N , and W W W . Similarly,
there are z4 D 21 such walks of length four.

The next example, studied by Nkwanta and Shapiro, also deals with Pell walks, but with an
added condition.

Example 12.2 Suppose we add the restriction that no paths can end in a W. Figure 12.10 shows
the possible paths, where 0 � n � 3.

Summarizing the data for 0 � n � 4 yields another Pascal-like triangle; see Table 12.2.
Let dn;h denote the number of Pell walks of length n and height h that do not end in W . For

example, d3;2 D 5; see Figure 12.10. Since every path with height zero goes east, dn;0 D 1. As
before, there is a unique path of height h D n; so dn;n D 1.

The array D D .dn;h/n;h�0 in Table 12.2 also can be defined recursively:

dn;0 D 1; dn;n D 1; n � 0

dnC1;h D dn;h C dn;h�1 C dn�1;h�1; (12.8)

where 1 � h � n.
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h = 0
n = 0

h = 0 h = 1
n = 1

h = 0 h = 1 h = 2
n = 2

h = 0 h = 1

h = 2 h = 3
n = 3

Figure 12.10.

Table 12.2.

h

n 0 1 2 3 4

0 1

1 1 1

2 1 3 1

3 1 5 5 1

4 1 7 13 7 1

Array D

row sums

1

2

5

12

29

Pn+1

↑

For example, d4;2 D d3;2 C d3;1 C d2;1 D 5C 5C 3 D 13 ; see Table 12.2.
The row sums of array D also exhibit an interesting pattern: The nth row sum rn equals

PnC1, where n � 0. We can prove this by strong induction and recurrence (12.8). But we will
take a much shorter route:

 
Number of Pell walks

not ending in W

!

D
 

number of Pell walks ending in E

C number of Pell walks ending in N

!

D Pn CQn

D PnC1:

[This also follows by the fact that an D QnC1 and property (11) above.]
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For example, let n D 3. Then there are P4 D 12 Pell walks that do not end in W ; they end
in E or N ; see Figure 12.5.
The fact that rn D PnC1 also can be expressed as a matrix equation:

2

6
6
6
6
6
6
6
6
6
4

1

1 1

1 3 1

1 5 5 1

1 7 13 7 1

� � �

3

7
7
7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
4

1

1

1

1

1

� � �

3

7
7
7
7
7
7
7
5

D

2

6
6
6
6
6
6
6
4

1

2

5

12

29

� � �

3

7
7
7
7
7
7
7
5

:

We note, as an aesthetic curiosity, that array D in Table 12.2 can be rewritten as a symmetric
triangle, as Figure 12.11 shows. By virtue of the recurrence (12.8) (see the diamond in the figure)
and the initial conditions, it is relatively easy to construct this modified form. For example,

3C 5C 5 D 13 .

1
1 1

1 3 1
1 5 5 1

1 7 13 7 1
1 9 25 25 9 1

1 11 41 63 41 11 1

Figure 12.11.

12.7 A Hidden Treasure

We return to array D, which contains a delightful treasure. The entries dn;h are the Delannoy
numbers, named after the French mathematician Henri Auguste Delannoy (1833–1915). The

central elements d2n;n are the central Delannoy numbers 1; 3; 13 ; 63 ; 321; 1683; 8989; 48639;

265729; � � � . Combinatorially, they count the number of lattice paths from the origin to the lattice
point .n; n/ on the cartesian plane, using only the single steps N ; NE, or E. Figure 12.12 shows
all possible such paths, where 0 � n � 3.



12.7 A Hidden Treasure 241

n = 0 n = 1 n = 2

n = 3

Figure 12.12.

The central Delannoy numbers dn D d2n;n can also be computed as a sum of products of
binomial coefficients [47]:

dn D
nX

kD0

 
n

k

! 
nC k

k

!

: (12.9)
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For example,

d3 D
3X

kD0

 
3

k

! 
3C k

k

!

D
 

3

0

! 
3

0

!

C
 

3

1

! 
4

1

!

C
 

3

2

! 
5

2

!

C
 

3

3

! 
6

3

!

D 1 � 1C 3 � 4C 3 � 10C 1 � 20 D 63 ; as expected.

The sum (12.9) counts the number of lattice points from the origin to the point .2n; 0/ using
the single steps NE; EE D D and SE (southeast). Figure 12.13 shows the d2 D 13 possible
paths from the origin to the point .4; 0/.

D

D D D
D

D
D

Figure 12.13.

The central Delannoy numbers can also be defined recursively [239]:

d0 D 1; d2 D 3

dn D 3.2n � 1/dn�1 � .n � 1/dn�2; n � 3:

For example, d4 D 3 � 7d3 � 3d2 D 21 � 63 � 3 � 13 D 321.
The Delannoy numbers dn can be generated by the function 1p

1�6xCx2
[239]:

1p
1 � 6x C x2

D 1C 3x C 13x2 C 63x3 C 321x4 C � � � :

More generally, the Delannoy number dm;n counts the number of lattice paths from the origin
to the lattice point .m; n/ on the cartesian plane, using the single steps N ; NE, or E. Table 12.3
shows the Delanny numbers dm;n, where 0 � m � n � 5; it is called the Delannoy array.
Notice that the northeast diagonals of the Delannoy array are the same as the rows of array D in
Table 12.3.
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Table 12.3.

n

m 0 1 2 3 4 5

0 1 1 1 1 1 1

1 1 3 5 7 9 11

2 1 5 13 25 41 61

3 1 7 25 63 129 231

4 1 9 41 129 321 377

5 1 11 61 231 681 1683

Delannoy Array D

Delannoy numbers also can be defined recursively [47]:

d0;0 D 1

dm;n D dm�1;n C dm;n�1 C dm�1;n�1; m; n � 1:

For example, d4;3 D d3;3 C d4;2 C d3;2 D 63C 41C 25 D 129; see Table 12.3.
The numbers dm;n can be computed using the following summation formulas [47] as well:

dm;n D
mX

kD0

 
n

k

! 
mC n � k

n

!

D
mX

kD0

2k

 
n

k

! 
m

k

!

:

For example,

d4;3 D
3X

kD0

 
3

k

! 
7 � k

3

!

D
 

3

0

! 
7

3

!

C
 

3

1

! 
6

3

!

C
 

3

2

! 
5

3

!

C
 

3

3

! 
4

3

!

D 1 � 35C 3 � 20C 3 � 10C 1 � 4 D 129

and

4X

kD0

2k

 
3

k

! 
4

k

!

D 20

 
3

0

! 
4

0

!

C 21

 
3

1

! 
4

1

!

C 22

 
3

2

! 
4

2

!

C 23

 
3

3

! 
4

3

!

C 24

 
3

4

! 
4

4

!

D 1C 24C 72C 32C 0 D 129

D d4;3:
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Finally, the Delannoy numbers can be generated by a function in two variables x and y [47]:

1

1 � x � y � xy
D

X

m;n�0

dm;nxmyn:

12.8 Example 12.2 Revisited

Using Example 12.2, we can now determine the number of Pell walks un that do not begin with
E or end in W :

Number of paths not ending in W D PnC1
 

Number of walks beginning
with E and not ending in W

!

D Qn C 1

2

un D PnC1 � Qn C 1

2

D .2PnC1 �Qn/ � 1

2

D .QnC2 �QnC1/ �Qn � 1

2

D .QnC1 CQn/ �Qn � 1

2

D QnC1 � 1

2
:

For example, there are u3 D Q4�1

2
D 8 walks that do not begin with E or end in W :

NEE; NEN ; NNE; NNN ; N W N ; W NE; W NN , and W W N .
Next we pursue a different family of Pell walks.

Example 12.3 Let an denote the number of lattice paths of length n, using unit steps N ; E,
or double E-steps (of length 2) which are denoted by D. Figure 12.14 shows such paths for
0 � n � 3.

Summarizing the data for 0 � h � n � 4 yields the triangular array S in Table 12.4.
The elements sn;h of array S can be defined recursively:

s0;0 D 1

s1;0 D 1 D s1;1

sn;h D sn�1;h C sn�1;h�1 C sn�2;h; (12.10)

where 0 � h � n and n � 2. Once again, it is understood that sn;h D 0 if h < 0 or h > n.

For example, s4;2 D s3;2 C s3;1 C s2;2 D 3C 5C 1 D 9 ; see Table 12.4.
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h = 0
n = 0

h = 0
n = 1

h =1 h = 0 D
n = 2

n = 3

h = 1 h = 2

h = 0
D D

D

h = 1
D

h = 2 h = 3

Figure 12.14.

Table 12.4.

h

n 0 1 2 3 4

0 1

1 1 1

2 2 2 1

3 3 5 3 1

4 5 10 9 4 1

Fn+1

↑

row sums

1

2

5

12

29

Pn+1

↑

Array S shows two delightful patterns:

(1) Column 0 consists of Fibonacci numbers: sn;0 D FnC1.

(2) The nth row sum is PnC1:
nX

hD0

sn;h D PnC1.

We will now establish that both patterns do hold.

(1) Consider a lattice path of length n and height 0. The problem of using E-steps and EE-
steps corresponds to climbing a ladder of n rungs, taking one rung or two rungs at each step,
where n � 0. There are FnC1 such ways we can climb up the ladder [126]. Consequently,
sn;0 D FnC1, where n � 0.
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(2) We will establish this pattern using strong induction. Since
0X

hD0

s0;h D 1 D P1 and

1X

hD0

s1;h D 2 D P2, the formula works for n D 0 and n D 1.

Now assume that it is true for all nonnegative integers < n, where n is an arbitrary
integer � 2. Then, by the recurrence (12.10), we have

nX

hD0

sn;h D
nX

hD0

sn�1;h C
nX

hD0

sn�1;h�1 C
nX

hD0

sn�2;h

D
n�1X

hD0

sn�1;h C
n�1X

hD0

sn�1;h C
n�2X

hD0

sn�2;h

D Pn C Pn C Pn�1 D 2Pn C Pn�1

D PnC1:

So the formula works for n also.
Thus, by the strong version of PMI, sn D PnC1 for every integer n � 0.
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Pell Triangles

13.1 Introduction

Pell and Pell–Lucas numbers can be used to construct a Pascal-like Pell triangle, developed in
2005. The top northeast and southeast diagonals consist of Pell numbers, and the next northeast
and southeast diagonals Pell–Lucas numbers. Each remaining element is obtained by adding
twice its immediate predecessor in the same diagonal to the one immediately before that in the

very same diagonal; see Figure 13.1. For example, 46 D 2 � 19C 8 D 2 � 17C 12.

0 row 0
1 1

2 1 2
5 3 3 5

12 7 8 7 12
29 17 19 19 17 29

70 41 46 45 46 41 70

Qn Pn

←

Figure 13.1.

Accordingly, the Pell triangle can be defined recursively:

g.0; 0/ D 0; g.1; 0/ D g.1; 1/ D g.2; 1/ D 1

g.n; 0/ D 2g.n � 1; 0/C g.n � 2; 0/; if n � 2

g.n; n/ D 2g.n � 1; n � 1/C g.n � 2; n � 2/; if n � 2

T. Koshy, Pell and Pell–Lucas Numbers with Applications, DOI 10.1007/978-1-4614-8489-9__13,
© Springer Science+Business Media New York 2014
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g.n; j / D 2g.n � 1; j /C g.n � 2; j /; if 1 � j � n � 2 (13.1)

D 2g.n � 1; j � 1/C g.n � 2; j � 2/; if 2 � j � n � 1: (13.2)

Notice that the Pell array is symmetric about the vertical line through the apex; that is,
g.n; j / D g.n; n � j /. Also, g.n; 0/ D Pn D g.n; n/ for every n � 0.

Applying the recurrence (13.1) successively, we have

g.n; j / D 2g.n � 1; j /C g.n � 2; j /

D 5g.n � 2; j /C 2g.n � 3; j /

D 12g.n � 3; j /C 5g.n � 4; j /

D 29g.n � 4; j /C 12g.n � 5; j /:

More generally,

g.n; j / D PkC1 � g.n � k; j /C Pk � g.n � k � 1; j /; (13.3)

where 1 � k � n � j � 1. This can be confirmed by induction.
In particular, let j D 1 and k D n � 2. Then

g.n; 1/ D Pn�1 � g.2; 1/C Pn�2 � g.1; 1/

D Pn�1 C Pn�2 D Qn�1

and g.n; n � 1/ D g.n; 1/ D Qn�1 by symmetry. Accordingly, the second northeast and
southeast diagonals consist of Pell–Lucas numbers; see Figure 13.1.

When k D n � j � 1, we have

g.n; j / D Pn�j � g.j C 1; j /C Pn�j �1 � g.j ; j /

D Pn�j �Qj C Pn�j �1Pj

D Pn�j Qj C Pn�j �1Pj : (13.4)

Using this property, we can compute any element in the array directly from Pell and Pell–Lucas
numbers.

Next we investigate the central elements of the array.

13.2 Central Elements in the Pell Triangle

Let Kn denote the central element in row 2n in the Pell triangle; it is the nth central element,
counting from the apex. Using formula (13.4),

Kn D Pn �Qn C Pn�1 � Pn
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D Pn.Pn C Pn�1/C Pn�1Pn

D P 2
n C 2PnPn�1: (13.5)

This formula enables us to compute the central elements in the Pell triangle directly from Pell
numbers; see the boxed numbers in Figure 13.1.

For example, K4 D P 2
4 C 2P4P3 D 144C 2 � 12 � 5 D 264.

Using Pell recurrence, we can rewrite formula (13.5) in an alternate way:

Kn D P 2
n C Pn�1.PnC1 � Pn�1/

D P 2
n � P 2

n�1 C Pn�1PnC1

D PnC1Pn�1 CQnQn�1:

Using identities (22), (31), and (34) in Chapter 7, we can develop a shorter formula for Kn:

Kn D ŒP 2
n C .�1/n�C .P 2

n � P 2
n�1/

D Œ2P 2
n C .�1/n� � P 2

n�1

D Q2
n � P 2

n�1:

For example, K3 D 45 D 72 � 22 D Q2
3 � P 2

2 .
We can use formula (13.4) to compute the two middle elements in row n, where n is odd.

Letting j D bn=2c, it yields

g.n; bn=2c/ D Pn�bn=2cQbn=2c C Pn�bn=2c�1Pbn=2c

D g.n; n � bn=2c/
D Pbn=2cQn�bn=2c C Pbn=2c�1Pn�bn=2c:

13.3 An Alternate Formula for g(n, j)

We can use formula (13.4) to derive an alternate formula for g.n; j /:

g.n; j / D Pn�j Qj C Pn�j �1Pj

D �n�j � ın�j

2
p

2
� �

j C ıj

2
C �n�j �1 � ın�j �1

2
p

2
� �

j � ıj

2
p

2

D .�n � ın/C .�ı/j .�n�2j � ın�2j /

4
p

2
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C.�n�1 C ın�1/ � .�ı/j .�n�2j �1 C ın�2j �1/

8

D Pn C .�1/j Pn�2j

2
C Qn�1 � .�1/j Qn�2j �1

4
: (13.6)

For example,

g.5; 2/ D P5 C P1

2
C Q4 �Q0

8

D 29C 1

2
C 17 � 1

4
D 19:

It follows from formula (13.6) that

Qn � .�1/j Qn�2j .mod 8/

� .�1/bn=2cQn�2bn=2c .mod 8/:

So Q2n � .�1/nQ0 � 2.�1/n (mod 8) and Q2nC1 � .�1/nQ1 � 2.�1/n (mod 8). Thus
Qn � ˙2 (mod 8) for every n.

Formula (13.6) can be used to develop an alternate formula for the central element:

Kn D P2n C .�1/nP0

2
C Q2n�1 � .�1/nQ�1

4

D 1

2
P2n C Q2n�1 C .�1/n

4
: (13.7)

For example,

K3 D 1

2
P6 C Q5 C .�1/3

4

D 70

2
C 41 � 1

4
D 45:

It follows from formulas (13.5) and (13.7) that

1

2
P2n C Q2n�1 C .�1/n

4
D P 2

n C 2PnPn�1

2P2n CQ2n�1 D 4.P 2
n C 2PnPn�1/ � .�1/n:

Using the identities Pm�1 C PmC1 D 2Qm and Qm�1 CQmC1 D 4Pm, we can rewrite this in
two other ways:

5P2n C P2n�2 D 8.P 2
n C 2PnPn�1/ � 2.�1/n

Q2nC1 C 3Q2n�1 D 8.P 2
n C 2PnPn�1/ � 2.�1/n:
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13.4 A Recurrence for K n

We can use formula (13.1) to find a recurrence for Kn:

Kn D g.2n; n/

D 2g.2n � 1; n � 1/C g.2n � 2; n � 2/

D 2g.2n � 1; n � 1/C 2g.2n � 3; n � 2/C g.2n � 4; n � 2/

D 2Œg.2n � 1; n � 1/C g.2n � 3; n � 2/�CKn�2: (13.8)

Thus Kn can be computed by adding twice the sum of the southwest and northwest neighbors of
Kn�1to compute Kn�2; see Figure 13.2.

g(2n − 1, n − 1)

g(2n − 3, n − 2) g(2n − 3, n − 1)

g(2n − 1, n)

Kn−2

Kn

Kn−1

Figure 13.2.

Using (13.4), formula (13.8) yields

Kn D 2
�
PnQn�1 C Pn�1Qn�2 C P 2

n�1 C P 2
n�2

�CKn�2

D 2 .PnQn�1 C Pn�1Qn�2 C P2n�3/CKn�2: (13.9)

For example,

K4 D 2.P4Q3 C P3Q2 C P5/CK2

D 2.12 � 7C 5 � 3C 29/C 8 D 264:

It follows from formula (13.9) that twice the sum of the southwest and northwest neighbors
of Kn�1 is 2.PnQn�1CPn�1Qn�2CP2n�3/, where n � 2. For example, 2.19C 3/ D 2.5 � 3C
2 � 1C 5/.

Finally, it follows from (13.5) and (13.9) that

2.PnQn�1 C Pn�1Qn�2 C P2n�3/CKn�2 D P 2
n C 2PnPn�1:
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Thus

Kn D P 2
nC2 C 2PnC2PnC1 � 2.PnC2QnC1 C PnC1Qn C P2nC1/:

For instance,

K3 D P 2
5 C 2P5P4 � 2.P5Q4 C P4Q3 C P7/

D 292 C 2 � 29 � 12 � 2.29 � 17C 12 � 7C 169/ D 45; as desired:

13.5 DiDomenico’s Triangles

In the early 1990s, Angelo S. DiDomenico of Milford, Massachusetts, developed the triangular
array A in Figure 13.3 [72].

1
1 1

2 3 1
4 8 5 1

8 20 18 7 1

1
1

3
7
17

41

16 48 56 32 9 1

Figure 13.3.

The rising diagonal sums in Figure 13.3 yield the Pell numbers Qn, where n � 0; see
Exercise 2.

In 2005, DiDomenico developed two additional triangular arrays; see Figures 13.4 and 13.5.
Clearly, both arrays can be defined recursively. They manifest several interesting properties. For
example, the nth row sum in Figure 13.4 is Pn, and that in Figure 13.5 is Qn.

row sums
11
211
5131

1 5 5 1 12
1 7 13 7 1 29

1 9 25 25 9 1 70

Pn

Figure 13.4.
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row sums
11
101
3021

1 4 2 0 7
1 6 8 2 0 17

1 8 18 12 2 0 41

Qn

Figure 13.5.

Exercises 13

1. Define recursively the array A in Figure 13.3.

2. Let Dn denote the nth rising diagonal sum of array A. Prove that Dn D Qn, where n � 0.

3. Let An denote the nth row sum of array A. Prove that An D 2 � 3n�1, where n � 1.

4. Define recursively the array B in Figure 13.4.

5. Let Bn denote the nth row sum of array B . Prove that Bn D Pn, where n � 1.

6. Define recursively the array C in Figure 13.4.

7. Let Cn denote the nth row sum of array C . Prove that Cn D Qn, where n � 0.
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Pell and Pell–Lucas Polynomials

14.1 Introduction

Pell numbers and Pell–Lucas numbers are specific values of Pell polynomials pn.x/ and Pell–
Lucas polynomials qn.x/, respectively. Both families were studied extensively in 1985 by A.F.
Horadam of the University of New England, Armidale, Australia, and Bro. J.M. Mahon of
the Catholic College of Education, Sydney, Australia [108]. Both families are often defined
recursively:

p0.x/ = 0, p1.x/ D 1 q0.x/ = 2, q1.x/ D 2x

pn.x/ = 2xpn�1.x/C pn�2.x/; qn.x/ = 2xqn�1.x/C qn�2.x/,

where n � 3. The first ten Pell and Pell–Lucas polynomials are given in Table 14.1.

Table 14.1. Pell and Pell–Lucas Polynomials

n pn.x/ qn.x/

1 1 2x

2 2x 4x2 C 2

3 4x2 C 1 8x3 C 6x

4 8x3 C 4x 16x4 C 16x2 C 2

5 16x4 C 12x2 C 1 32x5 C 40x3 C 10x

6 32x5 C 32x3 C 6x 64x6 C 96x4 C 36x2 C 2

7 64x6 C 80x4 C 24x2 C 1 128x7 C 224x5 C 112x3 C 14x

8 128x7 C 192x5 C 80x3 C 8x 256x8 C 512x6 C 320x4 C 64x2 C 2

9 256x8 C 448x6 C 240x4 C 40x2 C 1 512x9 C 1152x7 C 864x5 C 240x3 C 18x

10 512x9 C 1024x7 C 672x5 C 160x3 C 10x 1024x10 C 2560x8 C 2240x6 C 800x4 C 100x2 C 2

T. Koshy, Pell and Pell–Lucas Numbers with Applications, DOI 10.1007/978-1-4614-8489-9__14,
© Springer Science+Business Media New York 2014
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14.2 Special Cases

Fibonacci and Pell numbers are special values of Pell polynomials, and Lucas and Pell–Lucas
numbers are special cases of Pell–Lucas polynomials: pn.1=2/ D Fn; pn.1/ D Pn; qn.1=2/ D
Ln, and qn.1/ D 2Qn.

More generally, the Fibonacci polynomials fn.x/ and Lucas polynomials [126] ln.x/ are
special cases of pn.x/ and qn.x/, respectively. They were studied by the Belgian mathematician
Eugene Charles Catalan (1814–1894) in 1883, and the German mathematician Ernst Jacobsthal
(1882–1965). They were also studied extensively by M.N.S. Swamy of the University of
Saskatchwan in Canada: fn.x/ D pn.x=2/ and ln.x/ D qn.x=2/. So Fn D fn.1/ D pn.1=2/

and Ln D ln.1/ D qn.1=2/. Since fn.�x/ D .�1/n�1fn.x/ and ln.�x/ D .�1/nln.x/, it
follows that pn.�x/ D .�1/n�1pn.x/ and qn.�x/ D .�1/nqn.x/. The Fibonacci and Lucas
polynomials are often defined recursively:

f1.x/ = 1; f2.x/ D x; l1.x/ = x; l2.x/ D x2 C 2

fn.x/ = xfn�1.x/C fn�2.x/; n � 3; ln.x/ = xln�1.x/C ln�2.x/; n � 3.

They have their own Binet-like versions:

fn.x/ D ˛n.x/ � ˇn.x/

˛.x/ � ˇ.x/
and ln.x/ D ˛n.x/C ˇn.x/;

where ˛.x/ D xCp
x2C4
2

and ˇ.x/ D x�p
x2C4
2

are the solutions of the equation t 2�xt � 1 D 0.
Clearly, ˛.1/ D ˛ and ˇ.1/ D ˇ; ˛.2/ D � , and ˇ.2/ D ı.

They can be defined explicitly as well:

fn.x/ D
b.n�1/=2cX

j D0

 
n � j � 1

j

!

xn�2j �1 and ln.x/ D
bn=2cX

j D0

n

n � j

 
n � j

j

!

xn�2j ;

where n � 1. These can be confirmed using strong induction.
The first ten Fibonacci and Lucas polynomials are listed in Table 14.2.

Table 14.2. Fibonacci and Lucas Polynomials

n fn.x/ ln.x/

1 1 x

2 x x2 C 2

3 x2 C 1 x3 C 3x

4 x3 C 2x x4 C 4x2 C 2

5 x4 C 3x2 C 1 x5 C 5x3 C 5x

6 x5 C 4x3 C 3x x6 C 6x4 C 9x2 C 2

7 x6 C 5x4 C 6x2 C 1 x7 C 7x5 C 14x3 C 7x

8 x7 C 6x5 C 10x3 C 4x x8 C 8x6 C 20x4 C 16x2 C 2

9 x8 C 7x6 C 15x4 C 10x2 C 1 x9 C 9x7 C 27x5 C 30x3 C 9x

10 x9 C 8x7 C 21x5 C 20x3 C 5x x10 C 10x8 C 35x6 C 50x4 C 25x2 C 2
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14.3 Gauthier’s Formula

In 2012, Napoleon Gauthier of the Royal Military College, Kingston, Ontario, Canada,
developed an interesting formula for Pn using the Fibonacci polynomial fn.z/ of a complex
variable z [91]. To see this, we let � D �.z/ D pz2 C 4. Clearly, �.2i/ D 0; 2˛.z/ D z C�,
and 2ˇ.z/ D z ��, where i D p�1.

We will now evaluate fn.2i/ using Binet’s formula:

fn.z/ D 1

2n�
Œ.z C�/n � .z ��/n�

D 1

2n�1

X

r odd

 
n

r

!

zn�r�r�1

fn.2i/ D 1

2n�1
� n.2i/n�1 � 1C 0

D nin�1:

Using the explicit formula for fn.z/, we then have

fn.2i/ D
b.n�1/=2cX

j D0

 
n � j � 1

j

!

.2i/n�2j �1

nin�1 D .2i/n�1

b.n�1/=2cX

j D0

 
n � j � 1

j

!
.�1/j

4j

n

2n�1
D

b.n�1/=2cX

j D0

 
n � j � 1

j

!
.�1/j

4j
(14.1)

By formula (9.1), we have

1

2n�1
Pn D

b.n�1/=2cX

j D0

 
n � j � 1

j

!
1

4j
: (14.2)

Adding formulas (14.1) and (14.2), we get

1

2n�1
.Pn C n/ D

b.n�1/=2cX

j D0

1

4j

 
n � j � 1

j

!

Œ1C .�1/j �

D 2
X

j even

 
n � j � 1

j

!
1

4j
:
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This yields Gauthier’s formula:

1

2n
.Pn C n/ D

b.n�1/=4cX

kD0

 
n � 2k � 1

2k

!
1

16k
: (14.3)

Similarly, it follows from (14.1) and (14.2) that

1

2n�2
.Pn � n/ D

b.n�3/=4cX

kD0

 
n � 2k � 2

2k C 1

!
1

16k
: (14.4)

For example,

P9 C 9

512
D 497

256
D

2X

kD0

 
8 � 2k

2k

!
1

16k

P8 � 8

64
D 25

4
D

1X

kD0

 
6 � 2k

2k C 1

!
1

16k
:

Using similar steps with Binet’s formula and the explicit formula for ln.x/, and formula
(9.18) for Qn, we can derive the corresponding formulas for Qn:

1

2n
.Qn C 1/ D

bn=4cX

kD0

n

n � 2k

 
n � 2k

2k

!
1

16k
(14.5)

1

2n�2
.Qn � 1/ D

b.n�2/=4cX

kD0

n

n � 2k � 1

 
n � 2k � 1

2k C 1

!
1

16k
: (14.6)

For example,

Q9 C 1

512
D 697

256
D

2X

kD0

9

9 � 2k

 
9 � 2k

2k

!
1

16k

Q6 � 1

16
D 49

8
D

1X

kD0

6

5 � 2k

 
5 � 2k

2k C 1

!
1

16k
:

14.4 Binet-like Formulas

Using standard tools such as generating functions and solving recurrences, we can derive the
Binet-like formulas for pn.x/ and qn.x/:

pn.x/ D �n � ın

� � ı
and qn.x/ D �n C ın;
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where � D �.x/ D x C px2 C 1 and ı D ı.x/ D x � px2 C 1 are the solutions of the
quadratic equation �2 D 2x� C 1. They can be confirmed using induction also. Notice that
� C ı D 2x; � � ı D 2

p
x2 C 1, and �ı D �1.

The next example features an interesting Pell polynomial identity, discovered by Seiffert in
2000 [213].

Example 14.1 Let x be any nonzero real number 6D 1 and n any positive integer. Then

nX

kD1

 
n

k

!

.1 � x/n�kpk.x/ D xn�1pn.1=x/: (14.7)

Proof. Notice that .1�x/C� D 1Cpx2 C 1 and .1�x/Cı D 1�px2 C 1, where � D �.x/

and ı D ı.x/. By the Binet-like formula for pk.x/ and the the binomial theorem, we have

2
p

x2 C 1

"
nX

kD1

 
n

k

!

.1 � x/n�kpk.x/

#

D
nX

kD1

 
n

k

!

.1 � x/n�k.�k � ık/

D
nX

kD1

 
n

k

!

.1 � x/n�k�k �
nX

kD1

 
n

k

!

.1 � x/n�kık

D Œ.1 � x/C ��n � 1� � Œ.1 � x/C ı/n � 1�

D .1C
p

x2 C 1/n � .1 �
p

x2 C 1/n

D 2
p

x2 C 1 � xn�1pn.1=x/:

This yields the desired identity.

In particular, when x D 2, identity (14.7) yields an interesting Pell–Fibonacci identity:

nX

kD1

 
n

k

!

.�1/n�kpk.2/ D 2n�1Fn: (14.8)

For example,
5P

kD1

�
5
k

�
.�1/5�kpk.2/ D 5�1�10�4C10�17�5�72C1�305 D 80 D 24�5 D 24F5,

as expected.
A similar argument can be used to develop the following Pell–Lucas identity, where

q0.x/ D 2:

nX

kD0

 
n

k

!

.1 � x/n�kqk.x/ D xnqn.1=x/: (14.9)
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In particular, this yields the following Pell–Lucas identity:

nX

kD0

 
n

k

!

.�1/n�kqk.2/ D 2nLn: (14.10)

For instance,
5P

kD0

�
5
k

�
.�1/5�kqk.2/ D �1 � 2C 5 � 4� 10 � 18C 10 � 76� 5 � 322C 1 � 1364 D

352 D 25 � 11 D 25L5, as expected.

14.5 A Pell Divisibility Test

Next we study an interesting divisibility test for a small class of Pell numbers, developed by
Seiffert in 2000 [211, 212]. To this end, we need the next two results.

Lemma 14.1 Let q be a prime. Then
�

q�1
r

� � .�1/r .mod q/, where 1 � r < q.

Proof. It is well known that qj�q
k

�
, where 1 � k � q�1. So, by Pascal’s identity,

�
q�1

r

� � ��q�1
r�1

�

.mod q/. Since
�

q�1
1

� D q � 1 � �1 � ��q�1
0

�
.mod q/, the desired result follows by PMI.

The following lemma gives an interesting formula for Qn.

Lemma 14.2

Qn D 2b�n=2c X

0�k�n
46 j .nC2kC2/

.�1/b.n�2kC1/=4c
 

2n

2k

!

: (14.11)

Proof. Let z 6D 1 be any complex number, i D p�1, and x D 2i � 1Cz
1�z

. Then

2˛.x/ D 2i � 1C z

1 � z
C 2

1 � z

p
.1 � z/2 � .1C z/2

D 2i � 1C z

1 � z
C 2

1 � z

p�4z D 2i.1Cpz /2

1 � z

˛.x/ D i.1Cpz /2

1 � z
:

Changing
p

z to �pz, it follows that ˇ.x/ D i.1�p
z /2

1�z
.

By the Binet-like formula for ln.x/ and the binomial theorem, we have

ln

�

2i � 1C z

1 � z

�

D in

.1 � z/n



.1Cpz /n C .1Cpz /n

�

D 2in

.1 � z/n

nX

kD0

 
2n

2k

!

zk:
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Now let z D �i . Since 1�i
1Ci
D �i ; 1

1Ci
D 1�i

2
;�i D 1

i
, and ln.2/ D 2Qn, this formula

implies that

Qn D 2�n

nX

kD0

 
2n

2k

!

in�k.1 � i/n:

But, by Euler’s formula, i D ei�=2; and by De Moivre’s theorem10, 1�i D p2e�i�=4. So this
yields

Qn D 2�n

nX

kD0

 
2n

2k

!

ei.n�k/�=2 � 2n=2e�in�=4

D 2�n=2

nX

kD0

 
2n

2k

!

ei.n�2k/�=4:

Equating the real parts of both sides, we get

Qn D 2�n=2

nX

kD0

 
2n

2k

!

An�2k;

where

Aj D cos.j �=4/

D
(

.�1/b.j C1/=4c2b.j =2c�j =2 if j 6� 2 .mod 4/

0 otherwise,

and j is an integer.
So

An�2k D
(

.�1/b.n�2kC1/=4c2b.n�2k/=2c�.n�2k/=2 if nC 2k 6� 2 .mod 4/

0 otherwise

D
(

.�1/b.n�2kC1/=4c2bn=2c�n=2 if nC 2k 6� 2 .mod 4/

0 otherwise.

10 .cos � C i sin �/n D cos n� C i sin n� , where i D p�1 and � is any angle.
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Thus

Qn D 2�n=2
X

0�k�n
46 j .nC2kC2/

.�1/b.n�2kC1/=4c
 

2n

2k

!

2bn=2c�n=2

D 2b�n=2c X

0�k�n
46 j .nC2kC2/

.�1/b.n�2kC1/=4c
 

2n

2k

!

;

as desired.

For example, we have

Q3 D 2b�3=2c X

0�k�3
46 j .5C2k/

.�1/b.4�2k/=4c
 

6

2k

!

D 2�2

"

.�1/�1

 
6

0

!

C .�1/0

 
6

2

!

C .�1/0

 
6

4

!

C .�1/�1

 
6

6

!#

D 1

4
.�1C 15C 15 � 1/ D 7; as expected.

We are now ready to present the divisibility test.

Theorem 14.1 (Seiffert, 2000) Let q be a prime such that q � 1 .mod 8/. Then q j P.q�1/=4 if
and only if 2.q�1/=4 � .�1/.q�1/=8 .mod q/.

Proof. Since q � 1 .mod 8/, q D 8j C 1 for some positive integer j . Letting n D .q � 1/=2 in
Lemma 14.2, we have

Q.q�1/=2 D 2�2j
X

0�k�4j
46 j .4j C2kC2/

.�1/bj �.2k�1/=4c
 

q � 1

2k

!

2.q�1/=4Q.q�1/=2 �
X

0�k�4j
46 j .4j C2kC2/

.�1/bj �.2k�1/=4c.�1/2k .mod q/;

by Lemma 14.1. But 4 6 j .4j C 2k C 2/ if and only if 4 6 j 2.k C 1/; that is, if and ony if k is
even. So this congruence can be rewritten as

2.q�1/=4Q.q�1/=2 �
X

0�k�4j
k even

.�1/bj �.2k�1/=4c .mod q/:
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Let k D 2r . Then this becomes

2.q�1/=4Q.q�1/=2 �
2jX

rD0

.�1/bj �rC 1
4 c .mod q/

�
2jX

rD0

.�1/j �r � .�1/j .mod q/:

That is,

2.q�1/=4Q.q�1/=2 � .�1/.q�1/=8 .mod q/: (14.12)

But 4P 2
m D Q2m � .�1/m, by identity (33) in Chapter 7. Using m D .q � 1/=4, this yields

Q.q�1/=2 D 4P 2
.q�1/=4 C .�1/.q�1/=4. Consequently, congruence (14.12) can be rewritten as

2.qC7/=4P 2
.q�1/=4 � .�1/.q�1/=8 � 2.q�1/=4 .mod q/:

Thus, qjP.q�1/=4 if and only if qj 
.�1/.q�1/=8 � 2.q�1/=4
�
; that is, if and only if 2.q�1/=4 �

.�1/.q�1/=8 .mod q/, as desired.

For example, let q D 17; so q � 1 .mod 8/. Then P.q�1/=4 D P4 D 12, and 176 jP4. Notice
that 2.q�1/=4 D 24 D 16 6� 1 � .�1/2 � .�1/.q�1/=8 .mod 17/.

On the other hand, let q D 41 � 1 .mod 8/. Then 2.q�1/=4 D 210 D �1 � .�1/5 �
.�1/.q�1/=8 .mod 41/. Notice that 41jP10, where P10 D 2378, as expected. The next such prime
that works is q D 113 D 8 � 14C 1.

14.6 Generating Functions for pn.x/ and qn.x/

Using the standard techniques, we can find generating functions for the sequences fpn.x/g and
fqn.x/g:

y

1 � 2xy � y2
D

1X

nD0

pn.x/yn

2.1 � xy/

1 � 2xy � y2
D

1X

nD0

qn.x/yn:
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14.7 Elementary Properties of pn.x/ and qn.x/

Next we list a few elementary properties of pn.x/ and qn.x/. They can be established using the
Binet-like formulas:

pnC1.x/C pn�1.x/ D qn.x/

2xpn.x/C 2pn�1.x/ D qn.x/

qnC1.x/C qn�1.x/ D 4.x2 C 1/pn.x/ (14.13)

pn.x/qn.x/ D p2n.x/ (14.14)

q2
n.x/C 4.x2 C 1/p2

n.x/ D 2q2n.x/

pnC1.x/pn�1.x/ � p2
n.x/ D .�1/n (14.15)

qnC1.x/qn�1.x/ � q2
n.x/ D 4.�1/n�1.x2 C 1/ (14.16)

p2
nC1.x/ � p2

n�1.x/ D 2xp2n.x/

4.x2 C 1/p2
n.x/ � q2

n.x/ D 4.�1/n�1:

Formulas (14.15) and (14.16) are the Cassini-like formulas for Pell and Pell–Lucas polynomials,
respectively.

14.8 Summation Formulas

We can use these fundamental properties to derive the following summation formulas:

nP

iD1

p2i .x/ =
p2nC1.x/ � 1

2x

nP

iD1

p2i�1.x/ =
p2n.x/

2x

nP

iD1

pi .x/ =
pnC1.x/C pn.x/ � 1

2x

nP

iD1

q2i .x/ =
q2nC1.x/ � 2x

2x

nP

iD1

q2i�1.x/ =
q2n.x/ � 2

2x

nP

iD1

qi .x/ =
qnC1.x/C qn.x/ � 2x � 2

2x
.

For example, we have

3X

iD1

p2i .x/ D p2.x/C p4.x/C p6.x/

D 2x C .8x3 C 4x/C .32x5 C 32x3 C 6x/ D 32x5 C 40x3 C 12x

D .64x6 C 80x4 C 24x C 1/ � 1

2x
D p7.x/ � 1

2x
I

4X

iD1

qi .x/ D q1.x/C q2.x/C q3.x/C q4.x/
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D 2x C .4x2 C 2/C .8x3 C 6x/C .16x4 C 16x2 C 2/

D 16x4 C 8x3 C 20x2 C 8x C 4

D .32x5 C 40x3 C 10x/C .16x4 C 16x2 C 2/ � 2x � 2

2x

D q5.x/C q4.x/ � 2x � 2

2x
:

14.9 Matrix Generators for pn.x/ and qn.x/

The matrix

P D
"

2x 1

1 0

#

can be used to generate Pell and Pell–Lucas polynomials, and we can use it to establish a number
of properties of both families, just as Horadam and Mahon did [108].

Using induction, we can show that

P n D
"

pnC1.x/ pn.x/

pn.x/ pn�1.x/

#

;

where n � 1. Consequently,

ˇ
ˇ
ˇ
ˇ
ˇ

pnC1.x/ pn.x/

pn.x/ pn�1.x/

ˇ
ˇ
ˇ
ˇ
ˇ
D jP nj D jP jn D .�1/n:

This yields the Cassini-like formula for pn.x/:

pnC1.x/pn�1.x/ � p2
n.x/ D .�1/n:

Since
"

pnC1.x/

pn.x/

#

D P n

"
1

0

#

it follows that

pn.x/ D
h

1 0
i

P n�1

"
1

0

#

:

Since
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qn.x/ D 2xpn.x/C 2pn�1.x/

D
"

pn.x/

pn�1.x/

#"
2x

2

#

;

it follows that
"

qnC1.x/

qn.x/

#

D
"

pnC1.x/ pn.x/

pn.x/ pn�1.x/

#"
2x

2

#

D P n

"
2x

2

#

:

Consequently,

qn.x/ D
h

1 0
i

P n�1

"
2x

2

#

:

14.10 Addition Formulas

The matrix approach can be used effectively to derive an addition formula for pmCn.x/:

pmCn.x/ D pm�1.x/pn.x/C pm.x/pnC1.x/: (14.17)

This can be achieved as follows:

RHS D
h

pm.x/ pm�1.x/
i
"

pnC1.x/

pn.x/

#

D
h

pm.x/ pm�1.x/
i

P n

"
1

0

#

D
h

1 0
i
"

pm.x/ pm�1.x/

pm�1.x/ pm�2.x/

#

� P n

"
1

0

#

D
h

1 0
i

P m�1 � P n

"
1

0

#

D
h

1 0
i

P mCn�1

"
1

0

#

D pmCn.x/ D LHS:

Similarly, it can be shown that
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qmCn.x/ D pm�1.x/qn.x/C pm.x/qnC1.x/: (14.18)

It follows from identity (14.17) with m D nC 1 that

p2
nC1.x/C p2

n.x/ D p2nC1.x/: (14.19)

This can also be established using matrices:

p2
nC1.x/C p2

n.x/ D
h

pnC1.x/ pn.x/
i
"

pnC1.x/

pn.x/

#

D
h

pnC1.x/ pn.x/
i
� P n

"
1

0

#

D
h

1 0
i

P n � P n

"
1

0

#

D
h

1 0
i

P 2n

"
1

0

#

D p2nC1.x/; as claimed.

Similarly,

q2
nC1.x/C q2

n.x/ D 4.x2 C 1/p2nC1.x/: (14.20)

It follows from (14.19) and (14.20) that P 2
n CP 2

nC1 D P2nC1 and Q2
nCQ2

nC1 D 2P2nC1, as
we learned in Chapter 7. [Recall that qk.1/ D 2Qk .]

Table 14.3 lists some additional polynomial extensions of the identities we encountered in
Chapter 7 and 8. They can be confirmed using the Binet-like formulas or matrices.

Next, we study a delightful Pell–Lucas congruence, developed by A. Dorp of Brooklyn, New
York, in 2000 [73]. The featured solution is based on the one by Seiffert [214] and the identity

P.nC2/aCb D 2QaP.nC1/aCb C PnaCb: (14.21)

This follows from the polynomial identity

p.nC2/aCb.x/ D p.nC1/aCb.x/C .�1/a�1pnaCb.x/;

discovered by Horadam and Mahon in 1985, when a is odd [108].

Example 14.2 Find integers a; b, and m such that Ln � PnaCb .mod m/, where n is an
arbitrary integer.

Solution. Let a be an odd integer, and m D .2Qa � 1; Pb � 2; PaCb � 1/, where .x; y/ denotes
the greatest common divisor of x and y. (The reason for this choice of m would become clear
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Table 14.3.

pmCn.x/C pm�n.x/ =

(
pm.x/qn.x/ if n is even

qm.x/pn.x/ otherwise

qmCn.x/C qm�n.x/ =

(
qm.x/qn.x/ if n is even

4.x2 C 1/pm.x/pn.x/ otherwise

pmCn.x/ � pm�n.x/ =

(
qm.x/pn.x/ if n is even

pm.x/qn.x/ otherwise

qmCn.x/ � qm�n.x/ =

(
4.x2 C 1/pm.x/pn.x/ if n is even

qm.x/qn.x/ otherwise

p2
mCn.x/ � p2

m�n.x/ = p2m.x/p2n.x/

q2
mCn.x/ � q2

m�n.x/ = 4.x2 C 1/p2m.x/p2n.x/

pmnCr .x/ =

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

pn.x/q.m�1/nCr .x/C .�1/np.m�2/nCr .x/

if n is even

p.m�1/nCr .x/qn.x/C .�1/n�1p.m�2/nCr .x/

otherwise

qmnCr .x/ = q.m�1/nCr .x/qn.x/C .�1/n�1q.m�2/nCr .x/

pmCn.x/pm�n.x/ � p2
m.x/ = .�1/m�n�1p2

n.x/

qmCn.x/qm�n.x/ � q2
m.x/ = 4.�1/m�n.x2 C 1/p2

n.x/

pmCn.x/pmCk.x/ � pm.x/pmCnCk.x/ = .�1/mpn.x/pk.x/

qmCn.x/qmCk.x/ � qm.x/qmCnCk.x/ = 4.�1/m�1.x2 C 1/pn.x/pk.x/

pmCn.x/qmCk.x/ � pm.x/qmCnCk.x/ = .�1/mpn.x/qk.x/.

shortly.) Then mj.2Qa � 1/; so 2Qa � 1 .mod m/. Consequently, by identity (14.21),

P.nC2/aCb � P.nC1/aCb C PnaCb .mod m/: (14.22)

Now let An D Ln � PnaCb. Then, by the Lucas recurrence and identity (14.22), we have

AnC2 D LnC2 � P.nC2/aCb

� .LnC1 C Ln/ � 
P.nC1/aCb C PnaCb

�
.mod m/

� 

LnC1 � P.nC1/aCb

�C .Ln � PnaCb/ .mod m/

� AnC1 C An .mod m/: (14.23)

But A0 D L0 � Pb D 2 � Pb � 0 .mod m/, since mj.Pb � a/. Likewise, A1 D 1 � PaCb � 0

.mod m/.
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Consequently, it follows by PMI and congruence (14.23) that An � 0 .mod m/ for every
integer n. Thus, Ln � PnaCb .mod m/ for every integer n, as desired.

For example, let a D 5 and b D 10. Then m D .2Q5 � 1; P10 � 2; P15 �
1/ D .81; 2376; 195024/ D 3; so Ln � P5nC10 .mod 3/ and fLn .mod 3/gn�0 D
fP5nC10 .mod 3/gn�0 D 2 1 0 1 1 2 0 2„ ƒ‚ … 2 1 0 1 1 2 0 2„ ƒ‚ … 2 1 0 : : :.

Corresponding to the well-known De Moivre theorem in trigonometry, we have two
Fibonacci–Lucas identities [102, 126]:

 
Lm C

p
5Fn

2

!n

D Lmn C
p

5Fmn

2
(14.24)

 
Lm �

p
5Fn

2

!n

D Lmn �
p

5Fmn

2
: (14.25)

Interestingly, these two identities are special cases of the following Pell polynomial
identities, respectively:

h
qm.x/C 2

p
x2 C 1pm.x/

in D 2n�1
h
qmn.x/C 2

p
x2 C 1pmn.x/

i
(14.26)

h
qm.x/ � 2

p
x2 C 1pm.x/

in D 2n�1
h
qmn.x/ � 2

p
x2 C 1pmn.x/

i
: (14.27)

When x D 1=2, these two identities yield the Fibonacci–Lucas formulas (14.24) and (14.25),
respectively.

Suppose we let x D 1 in identity (14.26). Then

h
qm.1/C 2

p
2pm.1/

in D 2n�1
h
qmn.1/C 2

p
2pmn.1/

i

.2Qm C 2
p

x2 C 1Pm/n D 2n�1.2Qm C 2
p

2Pm/n

.Qm C
p

2Pm/n D Qmn C
p

2Pmn: (14.28)

Likewise, identity (14.27) yields [or simply change
p

2 to �p2 in (14.28).]

.Qm �
p

2Pm/n D Qmn �
p

2Pmn: (14.29)

For example, let m D 5 and n D 3. We have Q5 D 41; P5 D 29; Q15 D 275; 807, and
P15 D 195; 025. Then

.Q5 C
p

2P5/
3 D .41C 29

p
2/3

D 413 C 3 � 412 � p2 � 29C 3 � 41 � 2 � 292 C 2
p

2 � 293

D .413 C 3 � 41 � 2 � 292/C .3 � 412 � 29C 2 � 293/
p

2

D 275807C 195025
p

2 D Q15 C 2
p

2P15; as expected.
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Consequently, .Q5 �
p

2P5/
3 D 275807 � 195025

p
2 D Q15 �

p
2P15. (You may verify this

independently.)

14.11 Explicit Formulas for pn.x/ and qn.x/

Using strong induction, we can establish the following explicit formulas for pn.x/ and qn.x/:

pn.x/ D
b.n�1/=2cX

rD0

 
n � r � 1

r

!

.2x/n�2r�1 (14.30)

qn.x/ D
bn=2cX

rD0

n

n � r

 
n � r

r

!

.2x/n�2r : (14.31)

For example, formula (14.30) is trivially true when n D 1 and when n D 2. Assume it is true
for all positive integers � k, where k � 3. Then

pkC1.x/ D 2xpk.x/C pk�1.x/

D
b.k�1/=2cX

rD0

 
k � r � 1

r

!

.2x/k�2r C
b.k�2/=2cX

rD0

 
k � r � 2

r

!

.2x/k�2r�2:

Suppose k is even, say, k D 2t . Then, using Pascal’s identity, we have

pkC1.x/ D
tX

rD0

 
2t � r � 1

r

!

.2x/2t�2r C
t�1X

rD0

 
2t � r � 2

r

!

.2x/2t�2r�2

D
tX

rD0

 
2t � r � 1

r

!

.2x/2t�2r C
tX

rD1

 
2t � r � 1

r � 1

!

.2x/2t�2r

D
 

2t � 1

0

!

.2x/2t C
tX

rD1

" 
2t � r � 1

r

!

C
 

2t � r � 1

r � 1

!#

.2x/2t�2r

D
 

2t

0

!

.2x/2t C
tX

rD1

 
2t � r

r

!

.2x/2t�2r

D
tX

rD0

 
2t � r

r

!

.2x/2t�2r

D
bk=2cX

rD0

 
k � r

r

!

.2x/k�2r :
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Thus formula (14.30) holds by strong induction when k is even. Similarly, it is also true when k

is odd. Thus, it is true for every integer n � 1.
We omit the proof of (14.31) in the interest of brevity; see Exercise 32.
For example, we have

p6.x/ D
2X

rD0

 
5 � r

r

!

.2x/5�2r D 32x5 C 32x3 C 6x

q5.x/ D
2X

rD0

5

5 � r

 
5 � r

r

!

.2x/5�2r D 32x5 C 40x3 C 10x:

As an application of formula (14.31), we now express Lk.2nC1/ as a polynomial in L2nC1,
where k � 0. The key in this endeavor is to show that qk.L2nC1=2/ D Lk.2n C 1/. We will
establish this using PMI.

Since q0.L2nC1=2/ D 2 D L0.2nC 1/ and q1.L2nC1=2/ D 2.L2nC1=2/ D L2nC1, the result
is true when k D 0 and k D 1.

Now assume that it works for all nonnegative integers � k. Then

qkC1.L2nC1=2/ D 2.L2nC1=2/qk.L2nC1=2/C qk�1.L2nC1=2/

D L2nC1Lk.2nC1/ C L.k�1/.2nC1/:

Using the fact [126] that LaCb � La�b D LaLb when b is odd, this implies that
qkC1.L2nC1=2/ D L.kC1/.2nC1/. Thus the formula works for every k � 0.

By (14.31), we now have

qk.L2nC1=2/ D
bk=2cX

rD0

k

k � r

 
k � r

r

!

Lk�2r
2nC1:

That is,

Lk.2nC1/=2 D
bk=2cX

rD0

k

k � r

 
k � r

r

!

Lk�2r
2nC1; (14.32)

as discovered by Piero Filipponi in 1989.
In particular, we have

L2.2nC1/ = L2
2nC1 C 2 L3.2nC1/ = L3

2nC1 C 3L2nC1

L4.2nC1/ = L4
2nC1 C 4L2

2nC1 C 2 L5.2nC1/ = L5
2nC1 C 5L3

2nC1 C 5L2nC1.
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14.12 Pell Polynomials from Rising Diagonals

Interestingly, Pell polynomials can be generated from the rising diagonals of a triangular array.
To see this, consider the array in Table 14.4, where row n represents the various terms in the
expansion of .2x C 1/n:

.2x C 1/n D
nX

rD0

 
n

r

!

.2x/n�r :

Table 14.4.

r

n 0 1 2 3 4 5

0 1

1 2x 1

2 4x2 4x 1

3 8x3 12x2 6x 1

4 16x4 32x3 24x2 8x 1

5 32x5 80x4 80x3 40x2 10x 1

We will now show that the rising diagonal sum dn.x/ on the northeast diagonal n is the Pell
polynomial pn.x/.

To this end, we have .2x C 1/n D
nP

rD0

�
n
r

�
.2x/n�r D

nP

rD0

a.n; r/xn�r , where a.n; r/ D
�

n
r

�
2n�r : So dn.x/ D

bn=2cP

rD0

a.n � r; r/xn�2r D
bn=2cP

rD0

�
n�r

r

�
.2x/n�2r D pn.x/, as desired.

For example, d5.x/ D
2P

rD0

�
5�r

r

�
.2x/5�2r D �5

0

�
.2x/5C�4

1

�
.2x/3C�3

2

�
.2x/ D 32x5C32x3C

6x D p5.x/.

14.13 Pell–Lucas Polynomials from Rising Diagonals

Next, we will show that Pell–Lucas polynomials also can be generated from the rising diagonals
of another triangular array. To this end, consider the array in Table 14.5, where row n represents
the various terms in the expansion of .2x C 1/n.2x C 2/, where n � 0.
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Table 14.5.

r

n 0 1 2 3 4 5 6

0 2x 2

1 4x2 6x 2

2 8x3 16x2 10x 2

3 16x4 40x3 36x2 14x 2

4 32x5 96x4 112x3 64x2 18x 2

5 64x6 224x5 320x4 240x3 100x2 22x 2

Notice that

.2x C 1/n.2x C 2/ D .2x C 1/nC1 C .2x C 1/n

D
nC1X

rD0

 
nC 1

r

!

.2x/nC1�r C
nX

rD0

 
n

r

!

.2x/n�r

D
nC1X

rD0

 
nC 1

r

!

.2x/n�rC1 C
nC1X

rD1

 
n

r � 1

!

.2x/n�rC1

D
nC1X

rD0

b.n; r/xn�rC1;

where

b.n; r/ D
" 

nC 1

r

!

C
 

n

r � 1

!#

2n�rC1

D .nC 1/Š

rŠ.nC 1 � r/Š

�

1C r

nC 1

�

2n�rC1

D nC r C 1

nC 1

 
nC 1

r

!

2n�rC1: (14.33)

Thus

.2x C 1/n.2x C 2/ D
nC1X

rD0

nC r C 1

nC 1

 
nC 1

r

!

.2x/n�rC1:

For instance, .2x C 1/3.2x C 2/ D
4P

rD0

4Cr
4

�
4
r

�
.2x/4�r D 16x4 C 40x3 C 36x2 C 14x C 2.

Let Sn denote the nth northeast diagonal sum of the array in Table 14.5. Then, using formula
(14.33), we have
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Sn.x/ D
b.nC1/=2cX

rD0

b.n � r; r/xn�2rC1

D
b.nC1/=2cX

rD0

nC 1

n � r C 1

 
n � r C 1

r

!

.2x/n�2rC1

D qn.x/;

by formula (14.31). Thus every diagonal sum is a Pell–Lucas polynomial.
Next, we arrange the coefficients in the Pell polynomials pn.x/ in increasing order of powers

j of x, where n � 1 and 0 � j � n � 1. This results in the array in Table 14.6. Notice that

pn.x/ D
b.n�1/=2cX

rD0

 
n � r � 1

r

!

.2x/n�2r�1: (14.34)

The change in the formula was necessitated by the relabeling of the rows in Table 14.4.

Table 14.6.

j

n 0 1 2 3 4 5 6 97 8

1 1

2 0 2

3 1 0 4

4 0 4 0 8

5 1 0 12 0 16

6 0 6 0 32 0 32

7 1 0 24 0 80 0 64

8 0 8 0 80 0 192 0 128

9 1 0 40 0 240 0 448 0 256

10 0 10 0 160 0 672 0 1024 0 512

Let p.n; j / denote the entry in row n and column j . It satisfies several interesting properties:

p.2n � 1; 0/ D 1 (14.35)

p.2n; 2j / D 0 (14.36)

p.2n � 1; 2j � 1/ D 0 (14.37)

p.2n; 2j � 1/ D
 

nC j � 1

n � j

!

22j �1; 1 � j � n � 1 (14.38)

p.2n � 1; 2j / D
 

nC j � 1

n � j � 1

!

22j ; 0 � j � n � 1: (14.39)
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These properties can easily be established using formula (14.34).
It follows from properties (14.38) and (14.39) that p.2n; 2n�1/ D 22n�1 and p.2n�1; 2n�

2/ D 22n�2; thus p.n; n�1/ D 2n�1, where n � 1. Consequently, the farthest southeast diagonal
in Table 14.6 consists of the various powers of 2.

14.14 Summation Formulas

Using properties (14.35) through (14.39), we can derive the following summation formulas:

n�1X

j D0

p.2n � j � 1; j / D 3n�1 (14.40)

2nX

iD1

p.i ; 2j � 1/ D 1

2
p.2nC 1; 2j / (14.41)

2nX

iD1

p.i ; 2j / D 1

2
p.2n; 2j C 1/ (14.42)

2n�1X

iD1

p.i ; 2j � 1/ D 1

2
p.2n � 1; 2j / (14.43)

2n�1X

iD1

p.i ; 2j / D 1

2
p.2n; 2j C 1/: (14.44)

Table 14.7.

j

n 0 1 2 3 4 5 6 7 8 9 10

1 0 2

2 2 0 4

3 0 6 0 8

4 2 0 16 0 16

5 0 10 0 40 0 32

6 2 0 36 0 96 0 64

7 0 14 0 112 0 224 0 128

8 2 0 18 0 320 0 512 0 256

9 0 18 0 148 0 864 0 1152 0 512

10 2 0 54 0 616 0 2240 0 2560 0 1024

The coefficients of the Pell–Lucas polynomials qn.x/ can also be arranged in a triangular
array, as in Table 14.7, where the coefficients q.n; j / of xj are arranged in increasing powers j .
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The array can be defined by the recurrence

q.n; j / D 2q.n � 1; j � 1/C q.n � 2; j /: (14.45)

It follows from the property qn.x/ D pnC1.x/C pn�1.x/ D 2xpn.x/C 2pn�1.x/ that

q.n; j / D p.nC 1; j /C p.n � 1; j / D 2p.n; j � 1/C 2p.n � 1; j /: (14.46)

For example, p.7; 4/ C p.5; 4/ D 80 C 16 D 96 D q.6; 4/ and 2p.7; 2/ C 2p.6; 3/ D
2 � 24C 2 � 32 D 112 D q.7; 3/.

It follows from the property qnC1.x/C qn�1.x/ D 4.x2 C 1/pn.x/ that

q.nC 1; j /C q.n � 1; j / D 4p.n; j /C 4p.n; j � 2/: (14.47)

For example, q.5; 3/C q.3; 3/ D 40C 8 D 48 D 4 � 8C 4 � 4 D 4p.4; 3/C 4p.4; 1/.
Since q.1; 1/ D 2, it follows by induction and the recurrence (14.45) that q.n; n/ D 2n for

every n � 1. It also follows from property (14.46), since p.n; n/ D 2n�1 and p.n � 1; n/ D 0.
Using Pascal’s identity, and properties (14.38), (14.39), and (14.46), we have

q.2n; 2j / D 2p.2n; 2j � 1/C 2p.2n � 1; 2j /

D
 

nC j � 1

n � j

!

22j C 2 �
 

nC j � 1

n � j � 1

!

22j

D
(" 

nC j � 1

n � j

!

C
 

nC j � 1

n � j � 1

!#

C
 

nC j � 1

n � j � 1

!)

22j

D
" 

nC j

n � j

!

C
 

nC j � 1

n � j � 1

!#

22j : (14.48)

For example,

q.8; 6/ D
" 

4C 3

4 � 3

!

C
 

4C 3 � 1

4 � 3 � 1

!#

26

D 64

" 
7

1

!

C
 

6

0

!#

D 64.7C 1/ D 512:

See Table 14.7.
Notice that q.2n; 2j / D b.nC j � 1; n � j /.
Using Pascal’s identity, and formulas (14.38), (14.39), and (14.46), we also have

q.2n � 1; 2j C 1/ D 2p.2n � 1; 2j /C 2p.2n � 2; 2j C 1/
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D 2

 
nC j � 1

n � j � 1

!

� 22j C 2

 
nC j � 1

n � j � 2

!

� 22j C1

D
" 

nC j

n � j � 1

!

C
 

nC j � 1

n � j � 2

!#

22j C1: (14.49)

For example,

q.7; 5/ D
" 

4C 2

4 � 2 � 1

!

C
 

4C 2 � 1

4 � 2 � 1

!#

� 25

D
" 

6

1

!

C
 

5

0

!#

� 25 D 7 � 32 D 224:

See Table 14.7.
Notice that q.2n � 1; 2j C 1/ D b.nC j � 1; n � j � 1/.
Next we investigate Pythagorean triples with Pell generators.

14.15 Pell Polynomials and Pythagorean Triples

Recall that pn.x/ satisfies the Cassini-like formula pnC1.x/pn�1.x/ � p2
n.x/ D .�1/n; so

.pn.x/; pnC1.x// D 1. In addition, p2
nC1.x/Cp2

n.x/ D p2nC1.x/. We will need both properties
shortly.

Let gn.x/ be pn.x/ or qn.x/. It follows by basic algebra that

Œg2
nC1.x/ � g2

n.x/�2 C Œ2gnC1gn.x/�2 D Œg2
nC1.x/C g2

n.x/�2: (14.50)

This implies that Œp2
nC1.x/ � p2

n.x/�2 C Œ2pnC1pn.x/�2 D p2
2nC1.x/. Consequently a-b-c is

a generalized Pythagorean triple, generated by pnC1.x/ and pn.x/, where a D p2
nC1.x/ �

p2
n.x/; b D 2pnC1pn.x/, and c D p2nC1.

Since q2
nC1.x/C q2

n.x/ D .x2C 1/Œp2
nC1.x/C p2

n.x/� D .x2C 1/p2nC1.x/, if follows from
(14.50) that the Pell–Lucas polynomial family fqn.x/g satisfies the Pythagorean identity

Œq2
nC1.x/ � q2

n.x/�2 C Œ2qnC1.x/qn.x/�2 D .x2 C 1/2p2
2nC1.x/: (14.51)

This generates another family of Pythagorean triples, generated by qnC1.x/ and qn.x/, where
.qnC1.x/; qn.x// D 1.

14.16 Pythagorean Triples with Pell Generators

Since P 2
nC1 � P 2

n D .PnC1C Pn/.PnC1 � Pn/ D QnC1Qn and P 2
nC1C P 2

n D P2nC1, it follows
from identity (14.51) that
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.QnQnC1/
2 C .2PnPnC1/

2 D P 2
2nC1: (14.52)

For example, .239 � 577/2 C .2 � 169 � 408/2 D 195; 0252.
Obviously, PnC1 > Pn and they have different parity. Furthermore, it follows by the Cassini-

like formula Pn�1PnC1 � P 2
n D .�1/n that .Pn; PnC1/ D 1. Consequently, a-b-c = QnQnC1-

2PnPnC1-P2nC1 is a primitive Pythagorean triple, generated by PnC1 and Pn.
Table 14.8 lists the first ten such triplets.

Table 14.8.

n 1 2 3 4 5 6 7 8 9 10

a 3 21 119 697 4059 23661 137903 803761 4684659 27304197
b 4 20 120 696 4060 23660 137904 803760 4684660 27304196
c 5 29 169 985 5741 33461 195025 1136689 6625109 38613965

Since every Qi is odd, and Pi and PiC1 have opposite parity, it follows that QnQnC1 is odd
and PnPnC1 is even. Thus the triplet a-b-c has the property that a is odd and 4jb. Consequently,
c is odd.

The legs of these Pythagorean triangles manifest an interesting pattern: a D QnQnC1 and
b D 2PnPnC1 are consecutive integers. This can be confirmed as follows:

4.QnQnC1 � 2PnPnC1/ D .�n C ın/
�
�nC1 C ınC1

� � .�n � ın/
�
�nC1 � ınC1

�

D 2.� C ı/.�1/n D 4.�1/n

QnQnC1 � 2PnPnC1 D .�1/n: (14.53)

Thus, QnQnC1 and 2PnPnC1 are consecutive integers; thus .QnQnC1; 2PnPnC1/ D 1,
Consequently, the area of the Pythagorean triangle, given by 1

2
ab D 1

2
.QnQnC1/.2PnPnC1/

D PnPnC1QnQnC1, is a triangular number. Since area = .PnQn/.PnC1QnC1/ D 1
4
P2nP2nC2,

2jP2k , and 4 6 jP2k implies 4jP2kC2; so the area has even parity.
The Pythagorean triangle satisfy several other intriguing properties:

(1) Since the product of the lengths of the legs of a Pythagorean triangle is divisible by 12, it
follows that PnQnPnC1QnC1 � 0 (mod 6).

For example, P5P6Q5Q6 D 29 � 41 � 70 � 99 � 0 (mod 6).

(2) The product of the lengths of the sides of a Pythagorean triangle is divisible by 60; so
.QnQnC1/.2PnPnC1/ .2P2nC1/ D P2nP2nC1P2nC2 � 0 (mod 60).

For example, P10P11P12 D 2378 � 5741 � 13860 � 0 (mod 60).

(3) The area of a Pythagorean triangle cannot be an integral square. So the triangular number
number .PnQn/.PnC1QnC1/ D 1

4
P2nP2nC2 is not a square. Consequently, P2nP2nC2 is

not a square.
For example, P5Q5P6Q6 D 29 � 41 � 70 � 99 D 8; 239; 770 is not a square.

(4) The difference c � a is twice the square of a Pell number: P2nC1 �QnQnC1 D 2P 2
n .

(5) The difference c � b is the square of a Pell-Lucas number: P2nC1 � 2PnPnC1 D Q2
n.
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(6) The difference a � b is˙1: QnQnC1 � 2PnPnC1 D Q2
n � 2P 2

n D .�1/n.

(7) The sum aC b is a Pell-Lucas number: 2PnPnC1 CQnQnC1 D Q2nC1.

(8) The sum b C c is the square of a Pell-Lucas number: 2PnPnC1 C P2nC1 D Q2
nC1.

(9) The sum c C a is twice the square of a Pell number: QnQnC1 C P2nC1 D 2P 2
nC1.

(10) Perimeter = 2P 2
nC1 C 2PnC1Pn D 2PnC1.PnC1 C Pn/ D 2PnC1QnC1 D P2nC2.

(11) Let r denote the inradius of the triangle. Since area = 1
2
.a C b C c/r , it follows that

r D 2.area/

aCbCc
D 1

2
P2n.

(12) The circumradius R of the triangle is given by R D c
2
D 1

2
P2nC1.

Since QnQnC1 D P 2
nC1 � P 2

n ; 2PnPnC1 D Q2
nC1�Q2

n

2
, and P 2

n C P 2
nC1 D P2nC1, identity

(14.52) can be rewritten as

4
�
P 2

nC1 � P 2
n

�2 C �Q2
nC1 �Q2

n

�2 D 4
�
P 2

nC1 C P 2
n

�2
: (14.54)

For example, 4
�
292 � 122

�2 C �412 � 172
�2 D 4

�
292 C 122

�2
; that is,



2
�
292 � 122

��2 C
�
412 � 172

�2 D 
2 �292 C 122
��2

.
Suppose we choose u D Q2

nC1 � Q2
n; v D 2QnC1Qn, and w D Q2

nC1 C Q2
n. Since u D

2b; v D 2a, and w D 2c, it follows that .u; v; w/ D .2b; 2a; 2c/ D 2.b; a; c/ D 2 � 1 D
2. Consequently, each triple u-v-w equals twice the corresponding triple b-a-c. For example,
8120 -8118 -11482 = 2(4060-4059-5741). Thus, although u-v-w is a Pythagorean triple, it is not
primitive.

Since Q2
nC1 �Q2

n D Q2nC1 � .�1/n and Q2
nC1 CQ2

n D 2P2nC1, the identity

�
Q2

nC1 �Q2
n

�2 C .2QnC1Qn/2 D �Q2
nC1 CQ2

n

�2
(14.55)

can be rewritten as

ŒQ2nC1 � .�1/n�2 C .2QnC1Qn/2 D 4P 2
2nC1: (14.56)

For example, .8119C 1/2 C .2 � 99 � 41/2 D 4 � 57412.

Exercises 14

Establish each formula.

1. Formula (14.5).

2. Formula (14.8).

3. Formula (14.10).
Verify each for n D 10 and 11.
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4. Formula (14.5).

5. Formula (14.8).

6. Formula (14.10).

7. Derive a generating function for fpn.x/g.
8. Derive a generating function for fqn.x/g.

Establish the following properties of pn.x/ and qn.x/. Hint: Use the Binet-like formulas.

9. pnC1.x/C pn�1.x/ D qn.x/.

10. 2xpn.x/C 2pn�1.x/ D qn.x/.

11. qnC1.x/C qn�1.x/ D 4.x2 C 1/pn.x/.

12. pn.x/qn.x/ D p2n.x/.

13. q2
n.x/C 4.x2 C 1/p2

n.x/ D 2q2n.x/.

14. pnC1.x/pn�1.x/ � p2
n.x/ D .�1/n.

15. qnC1.x/qn�1.x/ � q2
n.x/ D 4.�1/n�1.x2 C 1/.

16. p2
nC1.x/ � p2

n�1.x/ D 2xp2n.x/.

17. 4.x2 C 1/p2
n.x/ � q2

n.x/ D 4.�1/n�1.
Derive the following summation formulas.

18.
nP

iD1

p2i .x/ D p2nC1.x/ � 1

2x
.

19.
nP

iD1

p2i�1.x/ D p2n.x/

2x
.

20.
nP

iD1

pi .x/ D pnC1.x/C pn.x/ � 1

2x
.

21.
nP

iD1

q2i .x/ D q2nC1.x/ � 2x

2x
.

22.
nP

iD1

q2i�1.x/ D q2n.x/ � 2

2x
.

23.
nP

iD1

qi .x/ D qnC1.x/C qn.x/ � 2x � 2

2x
.

Deduce a formula for each sum using the formulas in Exercises 18–23.

24.
nP

iD1

P2i .

25.
nP

iD1

P2i�1.

26.
nP

iD1

Pi .
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27.
nP

iD1

Q2i .

28.
nP

iD1

Q2i�1.

29.
nP

iD1

Qi .

Prove the following polynomial identities.

30. qmCn.x/ D pm�1.x/qn.x/C pm.x/qnC1.x/.

31. q2
nC1.x/C q2

n.x/ D 4.x2 C 1/p2nC1.x/.

32. qn.x/ D
bn=2cP

rD0

n
n�r

�
n�r

r

�
.2x/n�2r . Hint: Use Exercise 10.

33–37. Identities (14.35) through (14.39).

38–42. Establish the summation formulas (14.40) through (14.44).
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Pellonometry

15.1 Introduction

A number of properties bridge the Pell family with trigonometry. To study them, we will
frequently need to rely on an important formula in trigonometry, Euler’s formula: eix D
cos x C i sin x, where x is any real number and i D p�1.

To establish the first link, we will need the following result.

Example 15.1 Prove that 2PnPnC1 ŒQ2nC1 C .�1/n� D QnQnC1 ŒQ2nC1 � .�1/n�.

Proof. Using the Binet-like formulas, we have

8.LHS/ D .�n � ın/.�nC1 � ınC1/


.�2nC1 C ı2nC1 C 2.�1/n

�

D 

�2nC1 C ı2nC1 � 2.�1/n

� 

.�2nC1 C ı2nC1 C 2.�1/n

�

D �
�2nC1 C ı2nC1

�2 � 4

8.RHS/ D .�n C ın/.�nC1 C ınC1/


.�2nC1 C ı2nC1 � 2.�1/n

�

D 

�2nC1 C ı2nC1 C 2.�1/n

� 

.�2nC1 C ı2nC1 � 2.�1/n

�

D �
�2nC1 C ı2nC1

�2 � 4 D 8.LHS/:

So LHS = RHS, as claimed.

For example, let n D 6. Then

LHS D 2P6P7.Q13 C 1/ D 2 � 70 � 169 � 47322

D 1; 119; 638; 520 D 99 � 239 � 47320

D Q6Q7.Q13 � 1/ D RHS:

T. Koshy, Pell and Pell–Lucas Numbers with Applications, DOI 10.1007/978-1-4614-8489-9__15,
© Springer Science+Business Media New York 2014
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Likewise, when n D 5, LHS = 2P5P6.Q11 � 1/ D 32; 959; 080 D Q5Q6.Q11 C 1/ = RHS.
We are now ready to present two relationships connecting the Pell family and the inverse

tangent function. They were developed by Robert W.D. Christie in 1906 [44].

Example 15.2 Prove the following identities:

2 tan�1 Pn

PnC1

C .�1/n tan�1 1

Q2nC1

D �

4
(15.1)

2 tan�1 Qn

QnC1

� .�1/n tan�1 1

Q2nC1

D �

4
: (15.2)

Proof. In the interest of brevity, we will prove identity (15.1), and leave the other for Pell
enthusiasts to pursue.

To Prove Identity (15.1):

Case 1 Let n be even. Let �n D 2 tan�1 Pn
PnC1

. Using the double-angle formula tan 2� D 2 tan �

1�tan2 �

and identity (22) in Chapter 7, we have

tan �n D tan

�

2 tan�1 Pn

PnC1

�

D
2Pn

PnC1

1 � P 2
n

P 2
nC1

D 2PnPnC1

P 2
nC1 � P 2

n

D 2PnPnC1

QnQnC1

:

Let �n D 2 tan�1 Pn
PnC1
C tan�1 1

Q2nC1
. Then, by the sum formula tan.AC B/ D tan ACtan B

1�tan A tan B

and Example 15.1, we have

tan �n D
2PnPnC1

QnQnC1
C 1

Q2nC1

1 � 2PnPnC1

QnQnC1
� 1

Q2nC1

D 2PnPnC1Q2nC1 CQnQnC1

QnQnC1Q2nC1 � 2PnPnC1

D 1

�n D �

4
; as desired.

Case 2 Let n be odd. Letting �n D 2 tan�1 Pn
PnC1
� tan�1 1

Q2nC1
, as above we get

tan �n D 2PnPnC1Q2nC1 �QnQnC1

QnQnC1Q2nC1 C 2PnPnC1
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D 1

�n D �

4
; as desired.

Identity (15.2) follows by a similar argument.

15.2 Euler’s and Machin’s Formulas

Identities (15.1) and (15.2) have interesting consequences. For example, when n D 1, identity

(15.1) yields Euler’s formula: 2 tan�1 1

2
� tan�1 1

7
D �

4
.

When n D 1, identity (15.2) yields Machin’s formula, discovered by the English mathemati-

cian John Machin (1680–1751): 2 tan�1 1

3
C tan�1 1

7
D �

4
.

It follows from these two formulas that tan�1 1

2
C tan�1 1

3
D �

4
.

When n D 3, identity (15.1) yields 2 tan�1 5

12
� tan�1 1

239
D �

4
; that is,

4 tan�1 1

5
� tan�1 1

239
D �

4
. Machin discovered this formula in 1706.

15.3 Identities (15.1) and (15.2) Revisited

Recall from Chapter 7 that Q2
n � 2P 2

n D .�1/n, and that QnC1

PnC1
is the nth convergent of the ISCF

of
p

2. Consequently, identities (15.1) and (15.2) can be stated in terms of the solutions of Pell’s
equation x2 � 2y2 D .�1/n, or the convergents of ISCF of

p
2.

15.4 An Additional Byproduct of Example 15.2

Taking limits of both sides of identity (15.1) as n!1, we get

2 tan�1

�

lim
n!1

Pn

PnC1

�

C 0 D �

4

tan�1

�
1

�

�

D �

8

tan�1.�ı/ D �

8
;

where we have used the fact that tan�1 is a continuous function in the interval .��=2; �=2/.
Formula (15.2) also yields the same result.

Next we develop a host of interesting relationships linking the Pell polynomial family and
the inverse tangent function.
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First, let �n D tan�1 1
p2n.x/

� tan�1 1
p2nC2.x/

. Then, by the sum formula, tan.x � y/ D
tan x�tan y

1Ctan x tan y
and the Cassini-like formula (14.9), we have

tan �n D
1

p2n.x/
� 1

p2nC2.x/

1C 1
p2n.x/

� 1
p2nC2.x/

D p2nC2.x/ � p2n.x/

1C p2n.x/p2nC2.x/

D 2xp2nC1.x/

p2
2nC1.x/

D 2x

p2nC1.x/

�n D tan�1 2x

p2nC1.x/
:

Thus, we have the following result.

Theorem 15.1 tan�1 1
p2n.x/

� tan�1 1
p2nC2.x/

D tan�1 2x
p2nC1.x/

.

In particular, this implies that

tan�1 1

P2n

� tan�1 1

P2nC2

D tan�1 2

P2nC1

and

tan�1 1

F2n

� tan�1 1

F2nC2

D tan�1 1

F2nC1

:

Theorem 15.1 has another interesting byproduct:

nX

kD1

tan�1 2x

p2kC1.x/
D

nX

kD1

�

tan�1 1

p2k.x/
� tan�1 1

p2kC2.x/

�

D tan�1 1

p2.x/
� tan�1 1

p2nC2.x/
:

Consequently,

1X

kD1

tan�1 2x

p2kC1.x/
D tan�1 1

2x
� 0

D tan�1 1

2x
:

This gives us the next result.
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Theorem 15.2
1P

kD1

tan�1 2x
p2kC1.x/

D tan�1 1
2x

.

This yields the following two results:

1X

nD1

tan�1 2

P2nC1

D tan�1 1

2
� 26:5650511771

1X

nD1

tan�1 2

F2nC1

D �

4
:

The American mathematician Derrick H. Lehmer (1905–1991) discovered this Fibonacci result
[126] in 1936 when he was at Lehigh University, Pennsylvania.

We will now prove a formula for Pell–Lucas polynomials, similar to Theorem 15.1.

Theorem 15.3 tan�1 q2nC1.x/

q2n.x/
C tan�1 q2nC1.x/

q2nC2.x/
D tan�1 p4nC2.x/.

Proof. Let �n D tan�1 q2nC1.x/

q2n.x/
C tan�1 q2nC1.x/

q2nC2.x/
. Then, by the sum formula, tan.x C y/ D

tan xCtan y

1Ctan x tan y
, and identities (14.7) and (14.8), we have

tan �n D
q2nC1.x/

q2n.x/
C q2nC1.x/

q2nC2.x/

1 � q2
2nC1.x/

q2n.x/q2nC2.x/

D Œq2n.x/C q2nC2.x/� q2nC1.x/

q2n.x/q2nC2.x/ � q2
2nC1.x/

D 4.x2 C 1/p2nC1.x/q2nC1.x/

4.x2 C 1/

D p2nC1.x/q2nC1.x/

D p4nC2.x/

�n D tan�1 p4nC2.x/; as claimed:

This theorem has two interesting byproducts, as the following corollary shows. They follow
by letting x D 1 and x D 1=2 in the theorem.

Corollary 15.1

tan�1 Q2nC1

Q2n

C tan�1 Q2nC1

Q2nC2

D tan�1 P4nC2

tan�1 L2nC1

L2n

C tan�1 L2nC1

L2nC2

D tan�1 F4nC2:
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The next theorem and two corollaries follow by similar arguments. We omit their proofs for
the sake of brevity.

Theorem 15.4

tan�1 pnC1.x/

pnC2.x/
� tan�1 pn.x/

pnC1.x/
D tan�1 .�1/n

p2nC2.x/

tan�1 qn.x/

qnC1.x/
� tan�1 qnC1.x/

qnC2.x/
D tan�1 .�1/n

p2nC2.x/
:

Corollary 15.2

tan�1 PnC1

PnC2

� tan�1 Pn

PnC1

D tan�1 .�1/n

P2nC2

tan�1 FnC1

FnC2

� tan�1 Fn

FnC1

D tan�1 .�1/n

F2nC2

tan�1 Qn

QnC1

� tan�1 QnC1

QnC2

D tan�1 .�1/n

P2nC2

tan�1 Ln

LnC1

� tan�1 LnC1

LnC2

D tan�1 .�1/n

F2n

:

Corollary 15.3

nP

kD0

tan�1
.�1/k

p2kC2.x/
= tan�1 pnC1.x/

pnC2.x/

nP

kD0

tan�1
.�1/k

P2kC2

= tan�1 PnC1

PnC2

1P
kD0

tan�1
.�1/k

P2kC2

= tan�1 1
�

nP

kD0

tan�1
.�1/k

F2kC2

= tan�1 FnC1

FnC2

1P
kD0

tan�1
.�1/k

F2kC2

= tan�1 1
˛

nP

kD0

tan�1
.�1/k

p2kC2.x/
= tan�1 1

2x2C1
� tan�1 qnC1.x/

qnC2.x/

1P
kD0

tan�1
.�1/k

P2kC2

= tan�1 1
3

1P
kD0

tan�1
.�1/k

F2kC2

= tan�1 2
3
� tan�1 1

˛
.

15.5 Shapiro’s Formula

Next we study an interesting trigonometric formula for Pn:

Pn D 2bn=2c
b.n�1/=2cY

kD1

�

3C cos
2k�

n

�

; (15.3)
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where n � 1. It was discovered by Shapiro in 1994 while he was finding one for the special case
P23 [231]. This special case was proposed as a problem in the previous year by C. Cooper and
R.E. Kennedy of Central Missouri State University, Warrensburg, Missouri [53].

The proof of (15.3) uses the notion of a primitive nth root of unity, so we will first define
it. A complex number w is an nth root of unity if wn D 1; w is a primitive nth root of unity
is wn D 1, and wm 6D 1 for 0 < m < n. For example, the complex number i is a fourth root
of unity, since i 4 D 1. It is also a primitive fourth root of unity since im 6D 1 for 0 < m < 4.
Clearly, e2�i=n is an nth root of unity.

We are now ready to present a proof of (15.3).

Proof. The proof employs the fact that the polynomial xn � yn can be factored using primitive
nth roots of unity:

xn � yn D
n�1Y

kD0

.x � wky/;

where x and y are real numbers, and w is a primitive nth root of unity. In particular, let n be
odd. Then

xn � yn D .x � y/

n�1Y

kD1

.x � wky/

D .x � y/

.n�1/=2Y

kD1

.x � wky/.x � w�ky/

D .x � y/

.n�1/=2Y

kD1

�

x2 � 2xy cos
2k�

n
C y2

�

:

Choosing x D � and y D ı, this yields

Pn D
.n�1/=2Y

kD1

�

6C 2 cos
2k�

n

�

D 2.n�1/=2

.n�1/=2Y

kD1

�

3C cos
2k�

n

�

:

It follows similarly that

Pn D 2n=2

.n�2/=2Y

kD1

�

3C cos
2k�

n

�

;

when n is even. Combining the two cases, we get formula (15.3).
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For example, P4 D 4.3C cos �
2
/ D 12, and

P5 D 4

2Y

kD1

�

3C cos
2k�

5

�

D 4

�

3C cos
2�

5

��

3C cos
4�

5

�

D 4

 

3C �1Cp5

4

!8
<

:
3C

2

42

 
�1Cp5

4

!2

� 1

3

5

9
=

;

D 29; as expected.

Shapiro’s formula also follows from the following result, [266] discovered by D. Zeitlin in
1967:

Zn D
n�1Y

kD1

�

d � 2
p

c cos
k�

n

�

;

where Zn satisfies the recurrence ZnC1 D dZnC1 � cZn, and Z0 D 0 and Z1 D 1.

15.6 Seiffert’s Formulas

Next we will study two other spectacular formulas, one for odd-numbered Pell numbers, and one
for even-numbered Pell–Lucas numbers; both were discovered by Seiffert in 2008 [224]:

P2n�1 D 2n�2.4n�1 C 1/ � 22�n

b.n�3/=4cX

kD0

 
4n � 2

2n � 8k � 5

!

(15.4)

Q2n D 2n�1.22n�1 C 1/ � 22�n

b.n�2/=4cX

kD0

 
4n

2n � 8k � 4

!

: (15.5)

The proof that follows is a bit long; it is based on the one given by G.C. Greubel of Newport
News, Virginia in 2010 [96]. In addition to Euler’s formula, the proof employs the binomial
theorem.

Proof. Consider the sums

Sm D
b.m�4/=8cX

kD0

 
2m

m � 8k � 4

!

and

Vm.x/ D
mX

kD0

 
2m

m � k

!

xk D
mX

kD0

 
2m

k

!

xm�k D
2mX

kDm

 
2m

k

!

xk�m;
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where m is an arbitrary positive integer. Then

Vm.x/C Vm.x�1/ D
mX

kD0

 
2m

k

!

xm�k C
mX

kD0

 
2m

k

!

xk�m

D
mX

kD0

 
2m

k

!

xm�k C
2mX

kDm

 
2m

k

!

xm�k

D
2mX

kD0

 
2m

k

!

xm�k C
 

2m

m

!

D
�p

x C 1p
x

�2m

C
 

2m

m

!

: (15.6)

By Euler’s formula,

7X

rD0

en�i=4 D
(

0 if 46 jn
8 otherwise.

Consequently, we have

8Sm D
mX

kD0

 
2m

m � k

!
7X

rD0

er.k�4/�=4

D
mX

kD0

 
2m

m � k

!
7X

rD0

e�r�ierk�i=4

D
mX

kD0

 
2m

m � k

!
7X

rD0

.�1/rerk�i=4

D
7X

rD0

.�1/r

"
mX

kD0

 
2m

m � k

!

erk�i=4

#

D
7X

rD0

.�1/rVm

�
er�i=4

�
: (15.7)

A similar argument shows that

8Sm D
7X

rD0

.�1/rVm

�
e�r�i=4

�
: (15.8)
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Adding equations (15.7) and (15.8), we get

16Sm D
7X

rD0

.�1/r


Vm

�
er�i=4

�C Vm

�
e�r�i=4

��

D
7X

rD0

.�1/r

"
�
er�i=8 C e�r�i=8

�2m C
 

2m

m

!#

; by equation (15.6)

D 4m

7X

rD0

.�1/r cos2m.r�=8/C
 

2m

m

!
7X

rD0

.�1/r

D 4m

7X

rD0

.�1/r cos2m.r�=8/C
 

2m

m

!

� 0

Sm D 4m�2

7X

rD0

.�1/r cos2m.r�=8/:

From basic trigonometry, we have

cos �=8 D
p

2Cp
2

2
D
pp

2�

2
; cos 2�=8 D 1p

2
; cos 3�=8 D

p
2�p

2

2
D
p

�p
2ı

2
; cos 4�=8 D

0; cos 5�=8 D �
p

2�p
2

2
D �
p

�p
2ı

2
; cos 6�=8 D � 1p

2
, and cos 7�=8 D �

p
2Cp

2

2
D �
pp

2�

2
.

So

Sm D 4m�2

�

1C 2

�
1

2m
C 1

2m

�

� 2

23m=2
Œ�m C .�1/mım�




D 4m�2

�

1C 1

2m�1
� 1

23m=2�1
Œ�m C .�1/mım�




:

Therefore,

�m C .�1/mım D 2
3m
2 �1 C 2

m
2 � 23� m

2 Sm: (15.9)

Case 1 Let m be an odd integer, say, m D 2n � 1. Then equation (15.9) gives

P2n�1 D 1

2
p

2

�
23.2n�1/=2�1 C 2n�1=2

� � 22�nS2n�1

D 23n�4 C 2n�2 � 22�nS2n�1

D 2n�2
�
4n�1 C 1

� � 22�n
X

k�0

 
4n � 2

2n � 8k � 5

!

:
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Since 8k � 2n � 5, k � b.n � 3/=4c. Thus

P2n�1 D 2n�2.4n�1 C 1/ � 22�n

b.n�3/=4cX

kD0

 
4n � 2

2n � 8k � 5

!

; as claimed.

Case 2 Let m D 2n be an even integer. Then equation (15.9) gives

Q2n D 23n�2 C 2n�1 � 22�nS2n

D 2n�1
�
22n�1 C 1

� � 22�n
X

k�0

 
4n

2n � 8k � 4

!

:

Since 8k � 2n � 4, k � b.n � 2/=4c. Thus

Q2n D 2n�1.22n�1 C 1/ � 22�n

b.n�2/=4cX

kD0

 
4n

2n � 8k � 4

!

;

as desired.

For example, let n D 5. Then P9 D 23.44 C 1/ � 2�3
�

18
5

� D 985, and Q10 D 24.29 C 1/ �
2�3

�
20
6

� D 3363, as expected.

15.6.1 Additional Seiffert Formulas

In 2008, Seiffert discovered additional formulas for the Pell family [225, 226]:

P2n�1 D 2�n

2n�1X

kD0

.�1/b.2n�5k�5/=4c
 

4n � 1

k

!

(15.10)

Q2n�1 D 21�n
X

0�k�2n�1
2n�k�2;3;6;7.mod 8/

.�1/b.2n�5k�1/=4c
 

4n � 1

k

!

(15.11)

P2n D 2�n
X

0�k�2n
2n�k�1;2;5;6 .mod 8/

.�1/b.2n�5kC4/=4c
 

4nC 1

k

!

(15.12)

Q2n D 2�n

2nX

kD0

.�1/b.2n�5k/=4c
 

4nC 1

k

!

: (15.13)
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Their proofs employ Fibonacci polynomials fn.x/, Euler’s formula, and the identity

nX

kD0

 
2nC 1

n � k

!

f2kC1.z/ D .z2 C 4/n; (15.14)

also discovered by Seiffert in 2003, where z is a complex variable [215].
We are now ready for the proof.

Proof. Let z D i
p
�p2ı. Since sin �

8
D
p

2�p
2

2
D
p

�p
2ı

2
; z D 2i sin �

8
. Then z2 C 4 D

4 � 4 sin2 �
8
D 4Cp2ı D p2� . We also have

2˛.z/ D 2i sin
�

8
C
r

4 � 4 sin2 �

8

˛.z/ D cos
�

8
C i sin

�

8
D e�i=8:

Similarly, ˇ.z/ D �e�i=8. Thus, by Binet’s formula, we have

fn.z/ D ˛n.z/ � ˇn.z/

˛.z/ � ˇ.z/

D en�i=8 C e�n�i=8

2 cos �
8

D cos n�
8

cos �
8

:

Thus, by identity (15.14),

nX

kD0

 
2nC 1

n � k

!

ak D .
p

2�/n; (15.15)

where ak D cos.2kC1/�=8

cos �=8
.

The sequence fakg1kD0 satisfies the recurrence akC4 D �ak , where a0 D 1 D 1Cp2�0; a1 Dp
2 � 1 D �1 C p2 � 1; a2 D 1 � p2 D 1 C p2 � .�1/, and a3 D �1 D �1 C p2 � 0. So

ak D .�1/b5k=4c Cp2bk , where

bk D
(

.�1/b.5kC4/=4c if k � 1; 2; 5; 6.mod 8/

0 otherwise.

Case 1 Replacing n with 2n � 1 in (15.15), we get

2n�1X

kD0

 
4n � 1

2n � 1 � k

!

ak D .
p

2�/2n�1: (15.16)
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From the Binet-like formulas for Pk and Qk , �2n�1 D 1
2
.Q2n�1 C 2

p
2P2n�1/. Therefore,

2n�1X

kD0

 
4n � 1

2n � 1 � k

!

ak D 2.n�3/=2.Q2n�1 C 2
p

2P2n�1/

D 2nP2n�1 C 2n�2
p

2Q2n�1:

Equating the rational and irrational parts from both sides, we get

P2n�1 D 2�n

2n�1X

kD0

.�1/b5k=4c
 

4n � 1

2n � 1 � k

!

(15.17)

Q2n�1 D 21�n
X

0�k�2n�1
2n�k�2;3;6;7 .mod 8/

b2n�1�k

 
4n � 1

2n � 1 � k

!

: (15.18)

Replacing 2n � 1 � k with k, (15.17) yields

P2n�1 D 2�n

2n�1X

kD0

.�1/b.10n�5k�5/=4c
 

4n � 1

k

!

D 2�n

2n�1X

kD0

.�1/b.2n�5k�5/=4c
 

4n � 1

k

!

:

Similarly, (15.18) yields

Q2n�1 D 21�n
X

0�k�2n�1
2n�k�2;3;6;7 .mod 8/

.�1/b.2n�5k�1/=4c
 

4n � 1

k

!

: (15.19)

Case 2 Similarly, replacing n with 2n in (15.15), we get formulas (15.12) and (15.13).

For example, let n D 3. Then

P5 D 2�3

5X

kD0

.�1/b.1�5k/=4c
 

11

k

!

D 29

P6 D 2�3
X

0�k�6
k�0;1;4;5 .mod 8/

.�1/b.2�5k/=4c
 

13

k

!

D 70
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Q5 D 2�2
X

0�k�5
k�0;3;4 .mod 8/

.�1/b.5�5k/=4c
 

11

k

!

D 41

Q6 D 2�3

6X

kD0

.�1/b.6�5k/=4c
 

13

k

!

D 99:

Next we will find four infinite series involving Fibonacci, Lucas, Pell, and Pell–Lucas
numbers.

15.7 Roelants’ Expansions of �
4

In 2008, H. Roelants of Leuven, Belgium, developed a delightful infinite series expansion of �
4

in terms of the elements of the sequence fung, defined recursively:

u0 D 0; u1 D 1

un D pun�1 C qun�2;

where p; q > 0 and n � 2:

�

4
D

1X

nD0

.�1/nu2nC1

.2nC 1/.p2 C 4q/n
t2nC1; (15.20)

where t D 2

1C
r

p2C8q

p2C4q

.

We will establish this result using the technique employed by Greubel in 2010 [97];

Gregory’s series11 tan�1.x/ D
1P

nD0

.�x/n

2nC1
, which converges when jxj < 1; and the fact that

tan�1 x�tan�1 y D tan�1
�

x�y

1Cxy

	
. We will also employ the fact that if the series

1P
nD0

an converges

to A and
1P

nD0

bn to B , then
1P

nD0

.an C bn/ converges to AC B .

Proof. Solving the recurrence for un, we get the Binet-like formula un D rn�sn

r�s
, where 2r D

p C �; 2s D p � �; � Dpp2 C 4q D r � s and rs D �q.
Next we will show that the series in (15.20) converges. Let � D p

p2 C 8q; so � > p and
t D 2

1C�=�
D 2�

�C�
. Let

an D .�1/nu2nC1

.2nC 1/.p2 C 4q/n
t2nC1:

11 The Scottish mathematician James Gregory (1638–1675) discovered this series in 1671.
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Then
ˇ
ˇ
ˇ
ˇ
anC1

an

ˇ
ˇ
ˇ
ˇ D

t 2

�2
� 2nC 1

2nC 3
� u2nC3

u2nC1

lim
n!1

ˇ
ˇ
ˇ
ˇ
anC1

an

ˇ
ˇ
ˇ
ˇ D

t 2

�2
� lim

n!1
2nC 1

2nC 3
� lim

n!1
u2nC3

u2nC1

D t 2

�2
� 1 � r2 D t 2

�2

�
2�

�C �

�2

D
�

2r

�C �

�2

D
�

�C p

�C �

�2

< 1; since p < �:

Therefore, by the ratio test, the series converges to a limit S .
We will now show that S D �

4
. Using the Binet-like formula for un above, we have

S D
1X

nD0

.�1/n
�
r2nC1 � s2nC1

�
t 2nC1

.2nC 1/�2nC1

D
1X

nD0

.�1/n

2nC 1

�
rt

�

�2nC1

�
1X

nD0

.�1/n

2nC 1

�
st

�

�2nC1

D tan�1

�
rt

�

�

� tan�1

�
st

�

�

D tan�1

� rt
�
� st

�

1C rt
�
� st

�

�

D tan�1

�
�2t

�2 � qt2

�

:

Next we will evaluate the argument of tan�1:

�2t

�2 � qt2
D 2�3.�C �/

�2.�C �/2 � 4q�2

D 2�.�C �/

�2 C 2��C .�2 � 4q/

D 2�.�C �/

�2 C 2��C �2
D 1:

Consequently, S D tan�1 1 D �
4

, as desired.

Next we investigate four interesting special cases of formula (15.20).



298 15. Pellonometry

15.7.1 Special Cases

(1) Let p D 1 D q. Then t D
p

5

˛2 . When un D Fn, formula (15.20) yields

�

4
D p5

1X

nD0

.�1/nF2nC1

.2nC 1/˛4nC2
: (15.21)

(2) Let p D 2 and q D 1. Then t D 2
p

2p
2Cp

3
. Suppose un D Pn. Then formula (15.20) gives

�

4
D 2
p

2

1X

nD0

.�1/nP2nC1

.2nC 1/.
p

2Cp3/2nC1
: (15.22)

Similar series exist for Lucas and Pell–Lucas numbers. But we need to be a bit careful, since
Ln D ˛nCˇn and Qn D 1

2
.�nCın/. Then, using the formula tan�1 xCtan�1 y D tan�1

�
xCy

1�xy

	
,

we have

tan�1 1

3
D

1X

nD0

.�1/nL2nC1

.2nC 1/˛4nC2
(15.23)

�

12
D

1X

nD0

.�1/nQ2nC1

.2nC 1/.
p

2Cp3/2nC1
: (15.24)

15.8 Another Explicit Formula for Pn

In 1996, Seiffert discovered yet another explicit formula for Pn. To this end, he first developed
the following formula for fnC1.x/:

fnC1.x/ D
nX

kD0

 
nC k C 1

2k C 1

!

�k cos ˛k; (15.25)

where � D px2 C 4 and ˛k D .n� k/�=2� k arccos.x=�/. Its proof requires a knowledge of
Jacobi polynomials, differentiation, Taylor’s theorem, and Euler’s formula; so we omit it in the
interest of brevity [207, 208].

When x D 2; x
�
D 2p

4C4
D 1p

2
; arccos

�
x
�

� D �
4

. So ˛k D .n� k/�
2
� k � �

4
D .2n� 3k/�

4
.

Thus, when x D 2, formula (15.25) yields
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PnC1 D
nX

kD0

 
nC k C 1

2k C 1

!

23k=2 cos .2n � 3k/
�

4

D 2n

nX

kD0

 
nC k C 1

2k C 1

!

2.3k�2n/=2 cos.3k � 2n/
�

4

D 2n

nX

kD0

 
nC k C 1

2k C 1

!

A3k�2n;

where Aj D 2j =2 cos j �

4
and j is an integer.

It follows by the addition formula for the cosine function that A4r D .�1/r22r ; A4rC1 D
.�1/r22r ; A4rC2 D 0, and A4rC3 D .�1/rC122rC1; that is,

Aj D
(

.�1/b.j C1/=4c2bj =2c if j 6� 2 .mod 4/

0 otherwise.

Since b.3k � 2n/=2c D b3k=2c � n, we have

2nA3k�2n D 2n.�1/b.3k�2nC1/=4c2b3k=2c�n

D .�1/b.3k�2nC1/=4c2b3k=2c;

where 3k � 2n 6� 2 .mod 4/. So

PnC1 D
nX

kD0

 
nC k C 1

2k C 1

!

.�1/b.3k�2nC1/=4c2b3k=2c:

Replacing n with n � 1, we get another summation formula for Pn:

Pn D
X

0�k�n�1
3k 6�2n .mod 4/

 
nC k

2k C 1

!

.�1/b.3k�2nC3/=4c2b3k=2c: (15.26)

For example, we have

P4 D
X

0�k�3
k 6�0 .mod 4/

 
4C k

2k C 1

!

.�1/b.3k�5/=4c2b3k=2c

D
 

5

3

!

.�1/�121 C
 

6

5

!

.�1/023 �
 

7

7

!

.�1/124

D �20C 48 � 16 D 12:
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15.9 pn.x/; qn.x/; and Hyperbolic Functions

Both Pell polynomials and Pell–Lucas polynomials are related to the hyperbolic functions sinh
and cosh. In 1963, P.F. Byrd showed [38] that p2n.x/ D sinh 2nt

cosh t
and p2nC1.x/ D cosh .2nC1/t

cosh t
,

where x D sinh t .
Consequently, q2n.x/ D p2nC1.x/ C p2n�1.x/ D cosh .2nC1/t

cosh t
C cosh .2n�1/t

cosh t
D 2 cosh 2nt .

Likewise, q2nC1.x/ D 2 sinh.2nC 1/t .
Finally, we will see more close links between the Pell family and trigonometry in Chapter 18.

Exercises 15

Prove the following identities.

1. 2 tan�1
Qn

QnC1

� .�1/n tan�1
1

Q2nC1

D �

4
.

2. tan�1
pnC1.x/

pnC2.x/
� tan�1

pn.x/

pnC1.x/
D tan�1

.�1/n

p2nC2.x/
.

3. tan�1
qn.x/

qnC1.x/
� tan�1

qnC1.x/

qnC2.x/
D tan�1

.�1/n

p2nC2.x/
.

4. tan�1
PnC1

PnC2

� tan�1
Pn

PnC1

D tan�1
.�1/n

P2nC2

.

5. tan�1
FnC1

FnC2

� tan�1
Fn

FnC1

D tan�1
.�1/n

F2nC2

.

6. tan�1
Qn

QnC1

� tan�1
QnC1

QnC2

D tan�1
.�1/n

P2nC2

.

7. tan�1
Ln

LnC1

� tan�1
LnC1

LnC2

D tan�1
.�1/n

F2n

.

8.
nP

kD0

tan�1
.�1/k

p2kC2.x/
D tan�1

pnC1.x/

pnC2.x/
.

9.
nP

kD0

tan�1
.�1/k

P2kC2

D tan�1
PnC1

PnC2

.

10.
1P

kD0

tan�1
.�1/k

P2kC2

D tan�1
1

�
.
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11.
nP

kD0

tan�1
.�1/k

F2kC2

D tan�1
FnC1

FnC2

.

12.
1P

kD0

tan�1
.�1/k

F2kC2

D tan�1
1

˛
.

13.
nP

kD0

tan�1
.�1/k

p2kC2.x/
D tan�1

1

2x2 C 1
� tan�1

qnC1.x/

qnC2.x/
.

14.
1P

kD0

tan�1
.�1/k

P2kC2

D tan�1
� � 3

3� C 1
.

15.
1P

kD0

tan�1
.�1/k

F2kC2

D tan�1
2

3
� tan�1

1

˛
.

16. Using Shapiro’s formula (15.3), compute P6 and P8.

17. Using Seiffert’s formula (15.4), compute P5 and P7.

18. Using Seiffert’s formula (15.5), compute Q6 and Q8.

19. Using formula (15.17), compute P5 and P7.

20. Using formula (15.19), compute Q3 and Q7.

21. Using formula (15.26), compute P5 and P6.
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Pell Tilings

16.1 Introduction

In Chapter 12 we studied some interesting applications of the Pell family to combinatorics,
in particular, to the theory of lattice-walking. This chapter presents additional applications to
combinatorics, including the theory of partitioning.

To begin with, we present a simple combinatorial interpretation of Fibonacci numbers. This
will provide a smooth transition to the Pell applications.

16.2 A Combinatorial Model for Fibonacci Numbers

In 1974, Krishnaswami Alladi12 (1955 –) of Vivekananda College, Madras (now Chennai), Tamil
Nadu, India, and Vernon Emil Hoggatt, Jr. (1921–1980) of then San Jose State College, San Jose,
California, studied ordered sums of 1s and 2s that yield the positive integer n [2]. Such sums are
called compositions. For example, 1C2 and 2C1 are two different compositions of the integer 3.

Table 16.1 shows the compositions of the integers 1 through 6. It appears from the table
that the number of compositions Cn of n is the Fibonacci number FnC1. The following theorem,
established by Alladi and Hoggatt in 1974, confirms this observation.

12 Currently at the University of Florida at Gainesville.

T. Koshy, Pell and Pell–Lucas Numbers with Applications, DOI 10.1007/978-1-4614-8489-9__16,
© Springer Science+Business Media New York 2014
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Table 16.1.

n Compositions of n Cn

1 1 1

2 1 + 1, 2 2

3 1 + 1 + 1, 1 + 2, 2 + 1 3

4 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 2 + 1, 2 + 1 + 1, 2 + 2 5

5 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 2, 1 + 1 + 2 + 1, 1 + 2 + 1 + 1, 2 + 1 + 1 + 1, 8

1 + 2 + 2, 2 + 1 + 2, 2 + 2 + 1

1 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 2, 1 + 1 + 1 + 2 + 1, 1 + 1 + 2 + 1 + 1,

6 1 + 2 + 1 + 1 + 1, 2 + 1 + 1 + 1 + 1, 1 + 1 + 2 + 2, 1 + 2 + 1 + 2, 1 + 2 + 2 + 1, 13

2 + 1 + 2 + 1, 2 + 2 + 1 + 1, 2 + 1 + 1 + 2, 2 + 2 + 2

Theorem 16.1 The number of compositions Cn of the positive integer n is FnC1, where n � 1.

Proof. It follows from Table 16.1 that C1 D 1 D F2 and C2 D 2 D F3. So we let n � 3.

Case 1 Suppose the composition of n ends in 1. Deleting this 1 yields a composition of n � 1:

� � �„ ƒ‚ …
A composition of n�1

C 1

By definition, there are Cn�1 such compositions. Consequently, there are Cn�1 compositions of
n that end in 1. (Notice that there are C4 D 5 D F5 compositions of 5 ending in 1.)

Case 2 Suppose the composition of n ends in 2. Deleting this 2 yields a composition of n � 2:

� � �„ ƒ‚ …
A composition of n�2

C 2

Again, by definition, there are Cn�2 such compositions. So there are Cn�2 compositions of n

that end in 2. (Notice that there are C3 D 3 D F4 compositions of 5 ending in 2.)
Since every composition ends in 1 or 2, it follows by the addition principle that Cn D Cn�1C

Cn�2, where n � 3. Since C1 D F2 and C2 D F3, and Cn D Cn�1 C Cn�2, it follows that
Cn D FnC1, as desired.

We can extend the definition of Cn to include the case n D 0. Since C0 denotes the number
of empty compositions of 0 and there is exactly one such composition, we define C0 D 1 D F1.
So the theorem holds for every integer n � 0.



16.4 A Combinatorial Model For Pell Numbers 305

16.3 A Fibonacci Tiling Model

Interestingly, this theorem has a delightful geometric interpretation [11]. To this end, consider a
1 � n board (an array of n unit squares). Suppose we would like to cover it with 1 � 1 tiles (unit
squares) and 1 � 2 tiles (dominoes); such a process is called a tilings of the board.

Figure 16.1 shows the tilings of a 1 � n board with square tiles and dominoes, where 1 �
n � 5. Clearly, they are geometric representations of the compositions in Table 16.1. Since this
process is completely reversible, it follows by the theorem that there are FnC1 ways of tiling a
1 � n board.

n = 1
1

Number
of tilings

n = 2
2

n = 3
3

n = 4
5

n = 5

8

Figure 16.1.

We now turn to interpreting the Pell numbers Pn combinatorially.

16.4 A Combinatorial Model For Pell Numbers

Suppose, for argument’s sake, a square tile costs twice as much as a domino. So we assign a
weight of 2 to each square (tile) and a weight of 1 to each domino. The weight of a tiling is the
product of the weights of its tiles. The weight of the empty tiling is defined as 1. Figure 16.2
shows the weights of the tiles, weights of the tilings, and the sums of the weights of all tilings of
length n, where 0 � n � 5.
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Sum of
the Weights

1

2

2 2

2 2

4

1

1 5

2 2 2

8

2 1

2

1 2

2 12

2 2 2 2

16

2 2 1

4

2 1 2

4

1 2 2

4

1 1

1 29

2 2 2 2 2

32

2 2 2 1

8

2 2 1 2

8

2 1 2 2

8 70

1 2 2 2

8

2 1 1

2

1 2 1

2

1 1 2

2

Figure 16.2.

We observe the Pell pattern in this model: The sums of weights of tilings of length n is PnC1,
where n � 0.

The following theorem confirms this interesting observation. Its proof follows basically the
same argument as that of Theorem 16.1.

Theorem 16.2 The sum of the weights of the tilings of a 1 � n board with square tiles and
dominoes is PnC1, where n � 0.

Proof. Let Sn denote the sum of the weights of the tilings of the board. Clearly, S0 D 1 D P1

and S1 D 2 D P2.

Consider an arbitrary tiling of length n, where n � 2.

Case 1 Suppose the tiling ends in a square. Such a tilings is composed of a tiling of length n�1,
followed by a square of weight 2:

� � �„ ƒ‚ …
A tiling of length n�1

2

The sum of the weights of such tilings is 2Sn�1.
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Case 2 Suppose the tiling ends in a domino. It consists of a tiling of length n� 2 and a domino:

� � �„ ƒ‚ …
A tiling of length n�2

1

Since the weight of the domino is 1, such tilings have a total weight of Sn�2.
So, by the addition principle, Sn D 2Sn�1CSn�2. Thus Sn satisfies the Pell recurrence, with

the initial conditions S0 D P1 and S1 D P2. So Sn D PnC1, as desired.

This proof provides a constructive algorithm for finding all tilings of length n from those of
lengths n� 1 and n� 2: to the tilings of length n� 2, append a domino of weight 1; to those of
length n � 1, append a square of weight 2. (Unfortunately, this will produce duplicate tilings.)

The next theorem gives a combinatorial proof of the explicit formula for PnC1 in Theorem

9.1: PnC1 D
bn=2cP

kD0

�
n�k

k

�
2n�2k .

Theorem 16.3 Establish the formula PnC1 D
bn=2cP

kD0

�
n�k

k

�
2n�2k , using a combinatorial argu-

ment.

Proof. We will establish this formula using weighted tilings of a 1 � n board with square tiles
and dominoes.

Suppose a tiling has exactly k dominoes. Then it has n� 2k squares, where 0 � k � bn=2c.
So it has a weight of .1k/.2n�2k/ D 2n�2k .

Since there are exactly k dominoes in a tiling, it uses a total of .n�2k/Ck D n�k tiles. So
the k dominoes can be placed in any k of the n� k positions; that is, they can be placed in

�
n�k

k

�

different ways. In other words, there are
�

n�k
k

�
tilings, each containing exactly k dominoes. The

weight of such a tiling is
�

n�k
k

�
2n�2k , where 0 � k � bn=2c. So the sum of the weights of all

tilings of length n is
bn=2cP

kD0

�
n�k

k

�
2n�2k . By Theorem 16.2, the sum of the weights is PnC1. Thus,

PnC1 D
bn=2cP

kD0

�
n�k

k

�
2n�2k , as desired.

In Chapter 8, we established the addition formula PmCn D PmPnC1 C Pm�1Pn; see identity
(8.7). We now have the tools to confirm it combinatorially, as the next theorem shows.

To this end, first we introduce the concept of breakability. A tiling is breakable at cell k if a
domino does not occupy cells k and k C 1; otherwise, it is unbreakable at cell k. Thus a tiling
is breakable at cell k if and only if it can be split up into two sub-tilings, one covering cells 1
through k and the other covering cells k C 1 through n.

For example, the tiling in Figure 16.3 is not breakable at cell 4, whereas that in Figure 16.4
is breakable at cell 4.
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Figure 16.3. Figure 16.4.

Theorem 16.4 Let m; n � 0. Then PmCn D PmPnC1 C Pm�1Pn.

Proof. Consider a board of length mC n. By Theorem 16.2, the sum of the weights of its tilings
equals PmCnC1.

Consider an arbitrary tiling T of length mC n.

Case 1 Suppose it is breakable at cell m. This yields a sub-tiling of length m and a sub-tiling of
length n:

� � �„ ƒ‚ …
A tiling of length m

� � �„ ƒ‚ …
A tiling of length n

By Theorem 16.2, the sum of their weights are PmC1 and PnC1, respectively. So, by the
multiplication principle, the sum of the weights of such tilings T equals PmC1PnC1.

Case 2 Suppose the tiling T is not breakable at cell m. So a domino occupies cells m and mC1.
This results in two tilings, one of length m � 1 and the other of length n � 1:

� � �„ ƒ‚ …
A tiling of length m�1

� � �„ ƒ‚ …
A tiling of length n�1

By the multiplication principle, the sum of the weights of such tilings T equalsCPmPn.
Combining the two cases, we have PmCnC1 D PmC1PnC1 C PmPn. Changing m to m � 1,

the desired result follows.

Next we investigate Pell tilings, where square tiles are available in two different colors.

16.5 Colored Tilings

Suppose square tiles come in two colors, black and white. Earlier we assigned a weight of 2 to
a square and a weight of 1 to a domino; but this time we assign the same weight 1 to each tile,
square or domino. (So we can safely ignore their weights.) The weight of a colored tiling, as
before, is the product of the weights of the tiles. Since each tile has weight 1, it follows that the
weight of each colored tiling is also 1.

Figure 16.5 shows the resulting colored tilings of length n, and the number of such tilings,
where 0 � n � 4. The black square tiles are lightly shaded in the figure.

Based on the experimental data from Figure 16.5, we conjecture that the number of colored
tilings of length n is PnC1, where n � 0. The following theorem confirms this observation.



16.5 Colored Tilings 309

Number of
colored tilings

1

2

5

12

29

Figure 16.5.

Although it follows from Theorem 16.4, we will give an independent proof, using the same
argument as in the proof of Theorem 16.4; but it is slightly longer because of colored tiles.

Theorem 16.5 The number of colored tilings of length n is PnC1, where n � 0.

Proof. Let Cn denote the number of colored tilings of length n. It follows from Figure 16.5 that
C0 D 1 D P1 and C1 D 2 D P2.

Consider an arbitrary colored tiling of length n � 3.

Case 1 Suppose the tiling ends in a square tile.
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Subcase 1 Suppose the square is black. Deleting this black tile results in a colored tiling of
length n � 1:

� � �„ ƒ‚ …
A colored tiling of length n�1

1

By definition, there are Cn�1 such tilings. So there are Cn�1 tilings ending in a black square tile.

Subcase 2 Suppose the square is white:

� � �„ ƒ‚ …
A colored tiling of length n�1

1

As in Subcase 1, there are Cn�1 tilings ending in a white square tile.

So, by the addition principle, there are Cn�1 C Cn�1 D 2Cn�1 colored tilings of length n

ending in a square tile, black or white. (Notice that in Figure 16.5, there are 12 D C3 tilings of
length 4 ending in a black square and 12 D C3 tilings ending in a white square.)

Case 2 Suppose the colored tiling ends in a domino. Deleting this domino yields a colored tiling
of length n � 2:

� � �„ ƒ‚ …
A colored tiling of length n�2

There are Cn�2 colored tilings of length n � 2; so there are Cn�2 colored tilings of length n � 2

ending in a domino.
Thus, by the addition principle, there are Cn D 2Cn�1 C Cn�2 colored tilings of length n.

Since Cn satisfies the Pell recurrence with C0 D P1 and C1 D P2, it follows that Cn D PnC1.

Next we give three combinatorial interpretations of the Pell–Lucas number Qn.

16.6 Combinatorial Models for Pell–Lucas Numbers

Recall that the recursive definitions of Pell and Pell–Lucas numbers differ only in the second
initial condition: P2 D 2, but Q2 D 3. So in the uncolored tilings we investigated in Theorem
16.2, we keep the weight 2 for unit squares and 1 for dominoes, with one major exception: If a
tiling begins with a square tile, it is assigned a weight of 1.

What can we say about the sum of the weights of such tilings of length n? Before we answer
this, we will do some experiments, collect data, look for a pattern, and then make a conjecture.

Figure 16.6 shows such tilings of length n and their weights, where 0 � n � 5. Notice that
the tilings in Figure 16.2 and 16.6 are closely related. There is just one difference between the
two: If the tiling begins with a square, then its weight in Figure 16.2 is 2 and that in Figure 16.6
is 1.
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Sums of
the weights

1

1

1 1

1 2

2

1

1 3

1 2 2

4

1 1

1

1 2

2 7

1 2 2 2

8

1 2 1

2

1 1 2

2

1 2 2

4

1 1

1 17

1 2 2 2 2

16

1 2 2 1

4

1 2 1 2

4

1 1 2 2

4 41

1 2 2 2

8

1 1 1

1

1 2 1

2

1 1 2

2

Figure 16.6.

Using the data from the figure, we conjecture that the sum of the weights of the tilings of
length n is Qn. The following theorem confirms this observation.

Theorem 16.6 Suppose the uncolored tilings of a 1 � n board are made up of squares and
dominoes. Suppose the weight of a square is 2 and that of a domino is 1, except that if the tiling
begins with a square, its weight is 1. The sum of the weights of the tilings of length n is Qn,
where n � 0.

Proof. Let Sn denote the sum of the weights of the tilings of length n. Then, by Figure 16.6,
S0 D 1 D Q0 and S1 D 1 D Q1.

Now consider an arbitrary tiling of length n � 2.

Case 1 Suppose the tiling ends in a square; the weight of this square is 2. Deleting this square
yields a tiling of length n � 1:

� � �„ ƒ‚ …
A tiling of length n�1

2

It follows by definition that the sum of the weights of such tilings equals 2Sn�1.



312 16. Pell Tilings

Case 2 Suppose the tiling ends in a domino; its weight is 1:

� � �„ ƒ‚ …
A tiling of length n�2

1

Deleting this domino results in a tiling of length n � 2. Again, it follows by definition that the
sum of the weights of such tilings equals 1 � Sn�2 D Sn�2.

Thus, by the addition principle, Sn D 2Sn�1 C Sn�2, where n � 2.
Since Sn satisfies exactly the same recursive definition as Qn, it follows that Sn D Qn, where

n � 0.

It follows from the proof of this theorem that there are exactly FnC1 such tilings of length n;
this follows by changing the weight of a square from 2 to 1. See Figure 16.1 also.

The concept of breakability, introduced earlier, can be employed to reconfirm the addition
formula QmCn D QmC1PnCQmPn�1 that we developed in Chapter 8, as the following theorem
shows.

Theorem 16.7 Let m; n � 0. Then QmCn D QmC1Pn CQmPn�1.

Proof. Consider an uncolored tiling of length m C n, which is composed of squares and
dominoes. By Theorem 16.6, there are QmCn such tilings.

Consider an arbitrary tiling of length mC n.

Case 1 Suppose it is breakable at cell m. This yields two sub-tilings, one of length m and the
other of length n:

� � �„ ƒ‚ …
A tiling of length m

� � �„ ƒ‚ …
A tiling of length n

By Theorem 16.6, the sum of the weights of tilings of length m is Qm; and by Theorem 16.2,
the sum of the weights of tilings of length n is PnC1. So the sum of the weights of such tilings
of length mC n is QmPnC1.

Case 2 Suppose the tiling is not breakable at cell m. So a domino occupies cells m and mC 1.
This creates a sub-tiling A of length m � 1, followed by the domino and a subtiling B of length
n � 1:

� � �„ ƒ‚ …
A tiling of length m�1

1 � � �„ ƒ‚ …
A tiling of length n�1

By Theorem 16.6, the sum of the weights of tilings of type A is Qm�1; and by Theorem 16.2, the
sum of the weights of tilings of type B is Pn. So the sum of the weight of such tilings of length
mC n equals Qm�1 � 1 � Pn D Qm�1Pn.

Combining the two cases, we get QmCn D Qm�1Pn CQmPnC1. Changing m to mC 1 and
n to n � 1, the desired result follows.
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We now present a second combinatorial interpretation of Pell–Lucas numbers, using colored
tiles.

16.7 Colored Tilings Revisited

In this model, there are black and white square tiles, and dominoes. Each has weight 1, with one
exception: If a tiling begins with a white square, then the tile has weight 2.

Sum of the
weights of tilings

1

2

2

1

1 3

2 1
2

12 1
2

11 1
1

1 11 1
1

1
1 7

2 1 1
2

12 1 1
2

12 1 1
2

1 1 11 1 1
1

1 12 1 1
2

1 11 1 1
1

1 11 1 1
1

1 1 11 1 1
1

17

2 1
2

11 1
1

1 1
1

11 1
1

2 1 1 1

2

12 1 1

2

12 1 1 1

2

12 1 1 1

2

11 1 1 1

1

1 12 1 1 1
2

12 1 1 1
2

1 11 1 1 1
1

1 12 1 1 1
2

1 11 1 1 1
1

1 11 1 1 1
1

1 1 12 1 1 1
2

1 1 11 1 1 1
1

1 1 11 1 1 1
1

1 1 11 1 1 1
1 41

1 1 1 11 1 1 1
1

2 1 1
1

12 1 1
1

11 1 1
1

1 11 1 1
1

2 1 1
2

12 1 1
2

11 1 1
1

1 11 1 1
1

1 1 1
1

11 1 1
1

11 1 1
1

1 11 1 1
1

1 1
1

Figure 16.7.

Figure 16.7 shows such tilings and the sum of the weights for 0 � n � 4, where black squares
are shaded in light gray. Based on the experimental data we have collected, we conjecture that
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the sum of the weights of colored tilings of length n in this model is QnC1, where 0 � n � 4.
The following theorem establishes this observation.

Theorem 16.8 Suppose the colored tiling of a 1 � n board is made up of square tiles (black
or white) and dominoes, where n � 0. Every square tile and domino has weight 1, with one
exception: If a tiling begins with a white square tile, then the tile has weight 2. Then the sum of
the weights of the tilings of length n is QnC1.

Proof. Let Sn denote the sum of the weights of the tilings of length n. It follows from Figure
16.7 that S0 D 1 D Q1 and S1 D 3 D Q2.

Consider an arbitrary colored tiling of length n � 2.

Case 1 Suppose the tiling begins with a square tile.

Subcase 1 Suppose the tile is white. Then its weight is 2. Deleting this white square results in a
sub-tiling of length n � 1:

2 � � �„ ƒ‚ …
A colored tiling of length n�1

By Theorem 16.5, there are Pn such sub-tilings; so the sum of the weights of tilings beginning
with a white square tile is 2Pn.

Subcase 2 Suppose the tile is black. Its weight is 1. Deleting this square yields a colored sub-
tiling of length n � 1:

1 � � �„ ƒ‚ …
A colored tiling of length n�1

The weight of this sub-tiling is 1. Again by Theorem 16.5, since there are Pn such sub-tilings,
the sum of the weights of such tilings is Pn.

Case 2 Suppose the tiling begins with a domino. Deleting this domino yields a colored sub-tiling
of length n � 2 to its right:

1 � � �„ ƒ‚ …
A colored tiling of length n�2

It follows by Theorem 16.5, there are Pn�1 such sub-tilings, each with weight 1. So the sum
of the weights of tilings beginning a domino is Pn�1.
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Thus, by Cases 1 and 2, and the addition principle, we have

Sn D 2Pn C Pn C Pn�1 D Pn C .2Pn C Pn�1/

D Pn C PnC1 D QnC1;

as desired.

Theorem 16.8 has an interesting byproduct. Before we discuss it, let’s return to Figure 16.7
to see a fascinating fact: let f .n/ denote the number of colored tilings of length n. Notice that
f .0/ D 1 D P1; f .1/ D 2 D P2; f .2/ D 5 D P3; f .3/ D 12 D P4, and f .4/ D 29 D P5. So
we conjecture that f .n/ D PnC1. This can be confirmed fairly easily, as the following corollary
shows.

Corollary 16.1 The number of colored tilings of length n in Theorem 16.8 is PnC1.

Proof. Suppose we assign the weight 1 to every square and domino. Then the weight of every
colored tiling is 1. So the sum of the weights of all colored tilings of length n equals the number
of tilings of length n. So, by Cases 1, 2, and 3 in Theorem 16.8, we have:

Number of colored tilings of length n beginning with a white square = Pn

Number of colored tilings of length n beginning with a black square = Pn

Number of colored tilings of length n beginning with a domino = Pn�1

Therefore, the total number of colored tilings of length n equals 2Pn C Pn�1 D PnC1.

For example, there are 5 D P3 colored tilings of length 2, and 12 D P4 colored tilings of
length 3; see Figure 16.7.

Finally, we present a circular tiling model for the Pell–Lucas numbers Qn.

16.8 Circular Tilings and Pell–Lucas Numbers

Consider a circular board of n cells (in lieu of a linear board of length n), often called a bracelet.
Suppose the cells are ordered 1 through n in the counterclockwise direction. We would like to
tile it. (Although squares and dominoes are not circular in reality, we will be using the same
terminology for lack of a better one.) Every square has weight 2, and every domino 1. But the
weight of the initial domino is 2.

Figure 16.8 shows the circular tilings of length n and the sum of their weights, where 1 �
n � 4.

It appears from the figure that the sum of the weights of the circular tilings of length n is
2Qn. The following theorem confirms this observation.

Theorem 16.9 The sum of the weights of the circular tilings of length n is 2Qn, where the weight
of a square is 2 and that of a domino is 1, except that the weight of the initial domino is 2.
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Sum of
the weights2

2 = 2 ⋅ 1

2

2

2

6 = 2 ⋅ 3

2

2

2 2

1 1
2

1

2

14 = 2 ⋅ 7

2

22

2 2

1

2
1

2

2

34 = 2 ⋅ 17

1

22

2

2
1

1

1

11

Figure 16.8.

Proof. Let Sn denote the sum of the weights of the circular tilings of length n. Then S1 D 2 D
2Q1 and S2 D 6 D 2Q2.

Consider an arbitrary circular tiling of length n � 3.

Case 1 Suppose the tiling begins with a square. It has weight 2. Deleting this square yields a
circular tiling of length n � 1. Since the sum of the weights of tilings of length n � 1 is Sn�1, it
follows that the sum of the weights of tilings of length n that begins with a square is 2Sn�1.

Case 2 Suppose the tiling begins with a domino. Since its weight is 1, it follows as in Case 1
that the sum of the weights of such tilings of length n is 1 � Sn�2 D Sn�2.

So, by the addition principle, Sn D 2Sn�1 C Sn�2, where n � 3. Since Sn satisfies the Pell
recurrence with S1 D 2 D 2Q1 and S2 D 6 D 2Q2, if follows that Sn D 2Qn.
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This theorem has an interesting consequence. It can be used to develop the explicit formula
(9.18) for Qn, as the next theorem shows. The gist of its proof lies in counting the number of
circular tilings with exactly k dominoes for every possible value of k � 0.

Theorem 16.10

Qn D
bn=2cX

kD0

n

n � k

 
n � k

k

!

2n�2k�1:

Proof. Consider a circular tiling of length n. By Theorem 16.9, the sum of the weights of circular
tilings of length n is 2Qn.

Suppose the tiling contains exactly k dominoes. So it contains n � 2k square tiles.

Case 1 Suppose a domino occupies cells n and 1:

��

��

��

�	��
1 1
n
��

There are .n�2k/Ck�1 D n�k�1 tiles covering cells 2 through n�1. So the remaining
k � 1 dominoes can be placed in

�
n�k�1

k�1

�
different ways; that is, there are

�
n�k�1

k�1

�
bracelets with

a domino occupying cells n and 1.

Case 2 Suppose a domino does not occupy cells n and 1. Then the circular board can be
considered a linear board of length n, containing exactly k dominoes:

1 n

Since it contains n � 2k squares and k dominoes, it takes a total of .n � 2k/C k D n � k

tiles. So the k dominoes can be placed in
�

n�k
k

�
different ways; that is, there are exactly

�
n�k

k

�

bracelets without a domino in cells n and 1.
By Cases 1 and 2, there are

�
n�k�1

k�1

�C �n�k
k

� D n
n�k

�
n�k

k

�
bracelets, each containing exactly

k dominoes. Each such tiling contains n � 2k squares. Since each square has weight 2 and
each domino 1, the weight of such a tiling is 2n�2k � 1k D 2n�2k . So the sum of the weights of
circular tilings with exactly k domonies is n

n�k

�
n�k

k

�
2n�2k . Consequently, the sum of the weights

of circular tilings of length n is
bn=2cP

kD0

n
n�k

�
n�k

k

�
2n�2k .

But the cumulative sum of the weights is 2Qn; so

2Qn D
bn=2cX

kD0

n

n � k

 
n � k

k

!

2n�2k

Qn D
bn=2cX

kD0

n

n � k

 
n � k

k

!

2n�2k�1;

as desired.
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For example, consider the tilings of length n D 4 in Figure 16.8. There is 4
4�0

�
4�0

0

� D 1 tiling
with 0 dominoes; its weight is 24 D 16. There are 4

4�1

�
4�1

1

� D 4 tilings, each with exactly 1
domino; each tiling has weight 22; so the sum of the weights of the tilings with exactly 1 domino
is 4 � 22 D 16. Finally, there are 4

4�2

�
4�2

2

� D 2 tilings, with exactly 2 dominoes each; each tiling
has weight 1; so the sum of the weights of the tilings with exactly 2 dominoes is 2 � 1 D 2.

Thus the cumulative sum of the weights is 16C 16C 2 D 34 D 2Q4 D
2P

kD0

4
4�k

�
4�k

k

�
24�2k , as

expected.
Theorem 16.10 can be used to compute the number of circular tilings of length n, as the

following corollary shows.

Corollary 16.2 The number of circular tilings of length n is Ln.

Proof. Assign a weight 1 to every square in Theorem 16.10. Then the sum of the weights of the
circular tilings of length n equals the number of circular tilings. From the proof of the theorem,

it follows that the number of circular tilings of length n is
bn=2cP

kD0

n
n�k

�
n�k

k

�
.

Recall from Chapter 10 that this sum is Ln. Thus the number of circular tilings of length n

is Ln.

For example, consider Figure 16.8. There are 4 D L3 circular tilings of three cells, and
7 D L4 tilings of 4 cells.

Next we will construct combinatorial models for the Pell polynomial family, by extending
the ones we developed thus far for Pell and Pell–Lucas numbers. This is achieved by assigning
suitable weights for the tiles.

16.9 Combinatorial Models for the Pell Polynomial pn.x/

Suppose we would like to tile a 1� n linear board of n cells with square tiles and dominoes. We
assign a weight of 2x to each square and 1 to each domino. As before, the weight of a tiling is
the product of the weights of the tiles. The weight of the empty tiling is again defined as 1.

Figure 16.9 shows the resulting tilings of a 1 � n board, the corresponding weights, and the
sum of the weights of tilings of length n, where 0 � n � 5.

The sum of the weights of the tilings of length n seems to be the Pell polynomial pnC1.x/.
The next theorem confirms this observation. Since its proof is nearly identical to that of Theorem
16.2, we omit it.
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Sum of
the weights

1

2x

2x 2x

2x 2x

4x 2 4x 2 +1

2x 2x 2x

8x 3 8x 3 + 4x

16x 4 + 12x2 +1

32x 5 + 32x3 + 6x

2x 2x 2x

16x 4

2x 2x 2x

32x 5

1 2x

8x 3

1

1

2x 1

2x
1 2x

2x

2x 2x 2x 1

4x 2

2x 1 2x

4x 2

1 2x 2x

4x 2

1 1

1

2x 2x 2x 2x 2x 1

8x 3

2x 2x 1 2x

8x 3

2x 1 2x 2x

8x 3

2x 2x 2x 1 1

2x

1 2x 1

2x

1 1 2x

2x

Figure 16.9.

Theorem 16.11 The sum of the weights of the tilings of a 1 � n board with square tiles and
dominoes is the Pell polynomial pnC1.x/, where the weight of a square is 2x and that of a
domino is 1, where n � 0.

Suppose a tiling has exactly k dominoes, where k � 0. Then it has n � 2k squares and a
weight of .2x/n�2k � 1k D .2x/n�2k . Since there are exactly

�
n�k

k

�
such tilings, it follows that

the sum of the weights of tilings of length n is
bn=2cP

kD0

�
n�k

k

�
.2x/n�2k . This, coupled with Theorem

16.11, yields the explicit formula (14.24) for pnC1.x/.

Theorem 16.12 Let n � 0. Then

pnC1.x/ D
bn=2cX

kD0

 
n � k

k

!

.2x/n�2k:

As in the case of Theorem 16.14, the concept of breakability can be invoked to derive the
addition formula for Pell polynomials. Since the reasoning is quite similar, again we omit its
proof.

Theorem 16.13 Let m; n � 0. Then pmCn.x/ D pm.x/pnC1.x/C pm�1.x/pn.x/.

For the next combinatorial model for the Pell polynomial family, we turn to colored tilings.
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16.10 Colored Tilings and Pell Polynomials

Suppose square tiles are available in two colors, black and white. We assign every square a
weight x and every domino 1. Figure 16.10 shows such colored tilings of length n, where 0 �
n � 4.

Sum of the
weights tilings

1

x x

x x x x x x x x 1

x x x x x x x x x x x x

x x x x x x x x x x x x

x 1 x 1 1 x 1 x

x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x

x x x x x x 1 x x 1 x x 1 x x 1

x 1 x x 1 x x 1 x x 1 x 1 x x

1 x x 1 x x 1 x x 1 1

2x

4x 2 +1

8x 3 + 4x

16x 4 + 12x2 +1

Figure 16.10.

Reasoning as in Theorem 16.5, we now establish that the sum of the weights of such colored
tilings of length n is pnC1.x/. Because of the close similarity of the proofs, we will give only
the essence of its proof.

Theorem 16.14 The sum of the weights of colored tilings of length n is pnC1.x/, where the
weight of a square tile is x and that of a domino is 1, and n � 0.

Proof. Let Sn.x/ denote the sum of the weights of colored tilings of length n. Then, from
Figure 16.10, S0.x/ D 1 D p1.x/ and S1.x/ D 2x D p2.x/.

Consider an arbitrary colored tiling of length n � 3.
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Case 1 Suppose it ends in a square tile. Since it can be black or white, the sum of the weights
of such tilings is 2xSn�1.x/.

Case 2 Suppose it ends in a domino. The sum of such tilings is Sn�2.x/.
Thus, by Cases 1 and 2, Sn.x/ D 2xSn�1.x/ C Sn�2.x/, where S0.x/ D 1 D p1.x/,

S1.x/ D 2x D p2.x/, and n � 3. So Sn.x/ D pnC1.x/, as desired.

Next we pursue combinatorial interpretations of Pell–Lucas polynomial qn.x/.

16.11 Combinatorial Models for Pell–Lucas Polynomials

For the first such model, we return to the tilings in Theorem 16.11, where the weight of every
square was 2x. We now make one exception: If a tiling begins with a square tile, it is assigned a
weight of x. The weight of a domino remains 1.

Figure 16.11 shows such tilings of length n, where 0 � n � 5.

Sums of
the weights

1

x

x x

x 2x 1

1

x 2x 2x x 1
x

1 2x

2x

x 2x 2x 2x x 2x 1 x 1 2x 1 2x 2x 1 1

1

x 2x 2x 2x 2x x 2x 2x 1 x 2x 1 2x x 1 2x 2x

1 2x 2x 2x x 1 1

x

1 2x 1

2x

1 1 2x

2x

2x 2 2x 2 +1

8x 4 2x 2 2x 2

4x 3 + 3x

8x 4 + 8x2 + 1

16x 5 + 20x3 + 5x16x 5

8x 3

4x 3

4x 3

4x 2

4x 3 4x 3

Figure 16.11.

Using the reasoning in the proof of Theorem 16.6, we can establish the following result.

Theorem 16.15 Suppose the weight of a square is 2x and that of a domino is 1, except that if
the tiling begins with a square tile, its weight is x. Then the sum of the weights of the tilings of a
1 � n board is 1

2
qn.x/, where n � 0.



322 16. Pell Tilings

In particular, let x D 1. Then the sum of the weights is 1
2
qn.1/ D Qn, as we found in

Theorem 16.6.
Using the concept of breakability and the reasoning in the proof of Theorem 16.7, we can

prove the addition formula (14.18) for Pell–Lucas polynomials.

Theorem 16.16 Let m; n � 0. Then qmCn.x/ D qmpn�1.x/C qmC1.x/pn.x/.

The next model consists of circular tilings with proper weights for the tiles.

16.12 Bracelets and Pell–Lucas Polynomials

In the circular tilings of bracelets, every square has weight 2x and every domino has weight 1.
But the initial domino has weight 2. So does the empty tiling. Figure 16.12 shows such circular
tilings of a circular board with n cells and the sum of their weights, where 0 � n � 4.

The following theorem shows that the sum of the weights of the circular tilings of n cells
with the assigned weights is qn.x/. Its proof employs the same reasoning as in Theorem 16.9;
so we again omit the proof in the interest of brevity.

Sum of
the weights

2

2x

2x

2x

2

2x

2x

2x 2x

1 1

2x
1

2x

2x

4x 2 + 2

8x 3 + 6x

Figure 16.12. (continued)
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1
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2x

1

2x2x

2x

2x
1

1

1

11

16x 4 + 16x2 + 2

Figure 16.12.

Theorem 16.17 The sum of the weights of the circular tilings of n cells is qn.x/, where the
weight of every square is 2x and that of a domino is 1, except that the initial domino has weight 2.

Finally, this theorem can be employed to develop the explicit formula for qn.x/ in
Chapter 14. Its proof follows exactly the same argument as in Theorem 16.10. Although it would
be a good exercise to derive it, we omit its proof also for the sake of brevity.

Theorem 16.18 Let n � 0. Then qn.x/ D
bn=2cP

kD0

n
n�k

�
n�k

k

�
.2x/n�2k .

Clearly, the explicit formula for Qn in Theorem 16.10 follows from this result.
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Pell–Fibonacci Hybridities

17.1 Introduction

The Pell and Fibonacci families coexist in perfect harmony, and share a number of charming
properties. In this chapter we will study a number of their bridging relationships.

17.2 A Fibonacci Upper bound

First, we present an upper bound for Pn in terms of a suitable Fibonacci number. It was
discovered by Seiffert in 1995 [205]. The proof, an interesting application of PMI, is based
on the one given by P.S. Bruckman of Highwood, Illinois, in the following year [32].

Example 17.1 Prove that Pn < Fb.11nC2/=6c, where n � 4.

Proof. (Notice that the inequality does not hold if n < 4. For example, P3 D 5 D F5 D
Fb.11�3C2/=6c. But P4 D 12 < 13 D Fb.11�4C2/=6c.)

Since � D 1 C p2, �6 D 70� C 29; so �12 D 13860� C 5741 D 198 � 70� C 5741 D
198.�6 � 29/C 5741 D 198�6 � 1. Consequently, we have

�nC12 D 198�nC6 � �n (17.1)

ınC12 D 198ınC6 � ın: (17.2)

It follows by equations (17.1) and (17.2) that PnC12 D 198PnC6 � Pn for every n � 1.
Likewise, it can be shown that FnC22 D 199FnC11 C Fn.

Next we make a very useful observation:
j

11.nC6/C2

6

k
D �11nC2

6

˘C 11.

Let S denote the set of integers� 4 for which the inequality holds. It follows from Table 17.1
that it is true for 4 � n � 15.

T. Koshy, Pell and Pell–Lucas Numbers with Applications, DOI 10.1007/978-1-4614-8489-9__17,
© Springer Science+Business Media New York 2014
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Table 17.1.

n 4 5 6 7 8 9 10 11 12 13 14 15

Pn 7 9 11 13 15 16 18 20 22 24 26 27
b 11.nC6/C2

6
c 12 29 70 169 408 985 2378 5741 13860 33461 80782 195025

Fb 11.nC6/C2
6 c 13 34 89 233 610 987 2584 6765 17711 46368 121393 196418

Suppose the inequality holds for an arbitrary integer n � 4 and n C 6; that is, Pn <

Fb.11nC2/=6c and PnC6 < FbŒ11.nC6/C2/=6�c D Fb.11nC2/=6cC11. Then

PnC12 D 198PnC6 � Pn

< 198PnC6

< 198Fb.11nC2/=6cC11

< 199Fb.11nC2/=6cC11 C Fb.11nC2/=6c
< Fb.11nC2/=6cC22

D FbŒ11.nC12/C2�c=6:

Thus, if n; nC 6 2 S , then nC 12 2 S . So, by PMI, the inequality holds for n � 4.

The next example also deals with an inequality linking Fibonacci and Pell numbers. It was
proposed as a problem by M.J. DeLeon of Florida Atlantic University, Boca Raton, Florida [61].
The proof presented here is based on the one by David Zeitlin of Minneapolis, Minnesota [268].

Example 17.2 Prove that P6n < F11n, where n � 1.

Proof. We will now establish the inequality in six steps:

(a) Let r be a solution of the equation x2 D x C 1. Then it follows by PMI that rm D rFm C
Fm�1 for every integer m � 1 [126].

(b) Consequently, we have

r22 � 199r11 � 1 D .rF22 C F21/ � 199.rF11 C F10/ � 1

D .F22 � 199F11/r C .F21 � 199F10 � 1/

D .17711 � 199 � 89/r C .10946 � 199 � 55 � 1/

D 0 � r C 0 D 0:

(c) Let s be a solution of the equation x2 D 2x C 1. Then, it can be confirmed by PMI that
sm D sPm C Pm�1, where m � 1. Consequently,

s12 � 198s6 C 1 D .sP12 C P11/ � 198.sP6 C P5/C 1

D .P12 � 198P6/s C .P11 � 198P5 C 1/
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D .13860 � 198 � 70/s C .5741 � 198 � 29C 1/

D 0 � s C 0 D 0:

(d) Let yn D F11n. By Binet’s formula for Fk , yn D ˛11n�ˇ11n

˛�ˇ
. So,

.˛ � ˇ/.ynC2 � 199ynC1 � yn/ D 

˛11.nC2/ � ˇ11.nC2/

� � 199


˛11.nC1/ � ˇ11.nC1/

�

� 
˛11n � ˇ11n/
�

D �
˛11nC22 � 199˛11nC11 � ˛11n

�

� �ˇ11nC22 � 199ˇ11nC11 � ˇ11n
�

D ˛11n.˛22 � 199˛11 � 1/ � ˇ11n.ˇ22 � 199ˇ11 � 1/

D ˛11n � 0 � ˇ11n � 0 D 0:

Since ˛ 6D ˇ, this implies that ynC2 � 199ynC1 � yn D 0.

(e) Next, we let zn D P6n D �6n�ı6n

��ı
. Then

.� � ı/.znC2 � 198znC1 C zn/ D 

�6.nC2/ � ı6.nC2/

� � 198


�6.nC1/ C ı6.nC1/

�

C 
�6n � ı6n/
�

D �6n.�12 � 198�6 C 1/ � ı6n.ı12 � 198ı6 C 1/

D �6n � 0 � ı6n � 0 D 0:

This implies that znC2 � 198znC1 C zn D 0.

(f) Finally, we let wn D zn � yn D P6n � F11n. Then

wnC2 D znC2 � ynC2

D 198.znC1 � ynC1/ � ynC1 � yn � zn

wnC2 � 198wnC1 D �ynC1 � yn � zn

< 0:

That is, wn < 198wn�1, where n � 2. This implies, by PMI, that wn < 198n�1w1 for every
n � 2.

But w1 D P6 � F11 D 70 � 89 < 0. Consequently, wn < 0 for every n � 1. That is,
P6n < F11n for every integer n � 1, as desired.

The next example is a somewhat related problem, also proposed by DeLeon in the same year
[62]. The featured argument is based on the one by P. Mana and W. Vucenic of the University of
New Mexico, Albuquerque, New Mexico [164].

Example 17.3 Prove or disprove that F11n < P6nC1, where n � 1.
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Solution. We will disprove this inequality. To this end, notice that j˛j > jˇj and j� j > jıj. So

lim
n!1

F11n

P6nC1

D lim
n!1

˛11n � ˇ11n

˛ � ˇ
� � � ı

�6nC1 � ı6nC1

D 1 � ı=�

˛ � ˇ
� lim

n!1

�
˛11

�6

�n

;

where 1�ı=�

˛�ˇ
is a positive constant. But ˛11 D F11˛ C F10 D F11.1Cp

5/C2F10

2
D L11CF11

p
5

2
D

199C89
p

5
2

� 199:0050 and �6 D P6� C P5 D 70� C 29 D 70.1Cp2/C 29 D 99C 70
p

2 �
197:9949. So ˛11 > �6. Consequently, lim

n!1
�

˛11

�6

	n

is infinite. Thus, when n is sufficiently large,

F11n > P6nC1.
As a concrete counterexample, it has been found, with the aid of a computer, that when

n D 128, F11n > 8 � 10293 > P6nC1.

17.3 Cook’s Inequality

The next bridge is a cubic inequality linking Fibonacci, Lucas, and Pell numbers, studied by
C.K. Cook of Sumter, South Carolina, in 2009, [51, 52]

F 3
n C L3

n C P 3
n C 3FnLnPn > 2.Fn C Ln/2Pn; (17.3)

where n > 3. The inequality fails when n D 1; 2, or 3; however, it is true when n D 0. But it
works when n D 4: 33 C 73 C 123 C 3 � 3 � 7 � 12 D 2854 > 2400 D 2 � .3C 7/2 � 12.

Proof. First, we will prove by PMI that Pn > 2Ln C Fn, where n � 5. Clearly, this is the case
when n D 5 and n D 6. Assume that is true for all integers � n, where n � 6. Then

PnC1 D 2Pn C Pn�1

> 2.2Ln C Fn/C .2Ln�1 C Fn�1/

D 2.2Ln C Ln�1/C .2Fn C Fn�1/

D 2.Ln C LnC1/C .Fn C FnC1/

> 2LnC1 C FnC1:

Thus, by the strong version of PMI, Pn > 2Ln C Fn, for every n � 5.
Assume n � 5 for the rest of the proof. Since PnC2Ln > Ln and Pn�2Ln > Fn, it follows

that P 2
n � 4L2

n > FnLn; so P 2
n � FnLn > 4L2

n and hence

Pn.P 2
n � FnLn/ > 4L2

nPn: (17.4)

Since LnPn > 0, LnPn C LnFn > LnFn. But Pn > Fn and Pn > Ln. So
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Ln.2Pn � Ln/C Fn.2Pn � Fn/ > LnFn

2.Ln C Fn/Pn > L2
n C F 2

n C LnFn

2.Ln C Fn/.Ln � Fn/Pn > .L2
n C F 2

n C LnFn/.Ln � Fn/

2.L2
n � F 2

n /Pn > L3
n � F 3

n

.2Pn � Ln/L2
n > .2Pn � Fn/F 2

n

2.2Pn � Ln/L2
n > .2Pn � Fn/F 2

n C .2Pn � Ln/L2
n

4PnL2
n > .2Pn � Fn/F 2

n C .2Pn � Ln/L2
n:

Using (17.4), this implies that

Pn.P 2
n � FnLn/ > 2Pn.F 2

n C L2
n/ � F 3

n � L3
n:

This yields the desired inequality.

Interestingly, Cook’s inequality also works for Pell–Lucas numbers:

F 3
n C L3

n CQ3
n C 3FnLnQn > 2.Fn C Ln/2Qn; (17.5)

where n > 3. Its proof follows the above argument, with Pn replaced with Qn.
For example, F 3

4 C L3
4 C Q3

4 C 3F4L4Q4 D 6; 354 > 3; 400 D 2.F4 C L4/
2Q4 and

F 3
5 C L3

5 CQ3
5 C 3F5L5Q5 D 77; 142 > 20; 992 D 2.F5 C L5/

2Q5.
The next two congruences were also discovered by Seiffert in 1994 [201].

Example 17.4 Prove that P3n�1 � FnC2 .mod 13/ and P3nC1 � .�1/b.nC1/=2cF4n�1 .mod 7/,
where n � 1.

Proof. (1) First, notice that the sequence fPn .mod 13/g is periodic with period 28:

1 2 5 12 3 5 0 5 10 12 8 2 12 0 12 11 8 1 10 8 0 8 3 1 5 11 1 0„ ƒ‚ … 1 2 5 12 � � � 1 0„ ƒ‚ … � � �

The sequence fP3n�1 .mod 13/g is also periodic with period 28:

2 3 5 8 0 8 8 3 11 1 12 0 12 12 11 10 8 5 0 5 5 10 2 12 1 0 1 1„ ƒ‚ … 2 3 5 � � � 1 1„ ƒ‚ … � � �

On the other hand, fFnC2 .mod 13/g is exactly the same periodic sequence with period 28:

2 3 5 8 0 8 8 3 11 1 12 0 12 12 11 10 8 5 0 5 5 10 2 12 1 0 1 1„ ƒ‚ … 2 3 5 � � � 1 1„ ƒ‚ … � � �

Since both sequences have exactly the same repeating cycle, it follows that P3n�1 � FnC2

.mod 13/.
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(2) The sequence fP3nC1 .mod 7/g is periodic with period 2: 5 1„ƒ‚… 5 1„ƒ‚… : : :, whereas

the sequence fF4n�1 .mod 7/g is periodic with period 4: 2 6 5 1„ƒ‚… 2 6 5 1„ƒ‚… : : :. So

f.�1/b.nC1/=2cF4n�1 .mod 7/g is periodic with the repeating cycle �2 � 6 5 1„ ƒ‚ …; but this

is the same as 5 1„ƒ‚… 5 1„ƒ‚… modulo 7. So the sequence fF4n�1 .mod 7/g is also periodic

with the same repeating cycle as fP3nC1 .mod 7/g. Thus P3nC1 � .�1/b.nC1/=2cF4n�1

.mod 7/, as desired.

Seiffert also found that P6n�4 � .�1/b.n�1/=2cF5nC21 .mod 11/, where n � 1.
The next congruence, also studied by Seiffert, appeared in 1995 [204]. The proof here is

based on the one given by L. Somer of the Catholic University of America, Washington, D.C.,
in 1996 [235]. We omit a few details for the sake of brevity.

Example 17.5 Prove that
Fkn

Fk

� Pkn

Pk

.mod Qk � Lk/, where n � 0 and k � 1.

Proof. Since FkjFkn and PkjPkn (see Theorem 8.2), both Fkn
Fk

and Pkn
Pk

are integers.
We will prove a more general result and then deduce the desired result from it. To this end,

consider the sequences fAng1nD0 and fBng1nD0, defined recursively as follows:

AnC2 D aAnC1 � bAn; A0 D 0; A1 D 1I
BnC2 D cBnC1 � bBn; B0 D 0; B1 D 1;

where a; b, and c are nonzero integers. Assume that AnBn 6D 0 for every n � 0.

Let fCng be a sequence satisfying the same recurrence as An, but with the initial conditions
C0 D 2 and C1 D a. Let fDng be a sequence satisfying the same recurrence as Bn, but with
the initial conditions D0 D 2 and D1 D c. Then both Akn

Ak
and Bkn

Bk
are integers. We will now

establish by PMI that

Akn

Ak

� Bkn

Bk

.mod Ck �Dk/ (17.6)

for n � 0.
The sequences

n
Akn
Ak

o
and

n
Bkn
Bk

o
satisfy the recurrences

xnC2 D CkxnC1 � bkxk (17.7)

and

ynC2 D DkynC1 � bkyk (17.8)

respectively [151].
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To establish congruence (17.6):
Clearly, Ak�0

Ak
D 0 � Bk�0

Bk
.mod Ck �Dk/ and Ak�1

Ak
D 1 � Bk�1

Bk
.mod Ck �Dk/. So (17.6) holds

when n D 0 and n D 1.
Now assume it is true for every nonnegative integer < n. Then, by (17.7), (17.8), and the

inductive hypothesis, we have

Ak.nC1/

Ak

D CkAkn � bkAk.n�1/

Ak

Bk.nC1/

Bk

D DkBkn � bkBk.n�1/

Bk

� Dk � Akn

Ak

� bk � Ak.n�1/

Ak

� CkAkn � bkAk.n�1/

Ak

.mod Ck �Dk/

� Ak.nC1/

Ak

.mod Ck �Dk/;

where we have used the fact that Ck � Dk .mod Ck �Dk/.
Thus, by the strong version of PMI, congruence (17.6) holds for every n � 0.
In particular, let a D 2 and b D �1 D �c. Then AnC2 D 2AnC1 C An and BnC2 D

2BnC1 C Bn; so An D Pn and Bn D Fn. Thus, the desired result follows.

17.4 Pell–Fibonacci Congruences

The next example presents a congruence linking Pell and Fibonacci families. It was found by
Seiffert in 2007 [222]. The solution is based on the one by P.S. Bruckman [35].

Example 17.6 Let r; s, and n be arbitrary positive integers, and m D .Pr ; Fs; Pr�1 � Fs�1/,
where .a; b; c/ denotes the gcd of the integers a; b, and c.

(1) Prove that FnPnCr � PnFnCs .mod m/.

(2) Show that FnPnC8 � PnFnC18 .mod 68/.

(3) Find integers r and s such that FnPnCr � PnFnCs .mod 13/.

Solution.

(1) To establish the congruence, we will need the following addition formulas:

PnCr D PnC1Pr C PnPr�1

FnCs D FnC1Fs C FnFs�1:

We then have

FnPnCr � PnFnCs D Fn.PnC1Pr C PnPr�1/ � Pn.FnC1Fs C FnFs�1/

D FnPnC1Pr � PnFnC1Fs C FnPn.Pr�1 � Fs�1/:
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Since mjPr; mjFs, and mj.Pr�1�Fs�1/, it follows that mjRHS. So mjLHS. This yields the
desired congruence.

(2) Choose r D 8, and s D 18. Then m D .P8; F18; P7�F17/ D .408; 2584; 169�1597/ D 68.
So FnPnC8 � PnFnC18 .mod 68/, by part (1).

(3) Clearly, m D 13 D .Pr ; Fs; Pr�1 � Fs�1/ for some positive integers r and s. Now 13jPr if
and only if 7jr ; this follows by the addition formula and PMI. We have 13 D F7, and F7jFs

if and only if 7js. So 13jFs if and only if 7js.

Let r D 7. Suppose we choose s D 7. Then P6 � F6 D 70� 6 D 62; but 13 6 j 62. So s 6D 7.
Likewise, s 6D 14. Now try s D 21. Then P6 � F20 D 70 � 6765 D �6695 D 13.�515/; so
13j.P6 � F20/. Thus, r D 7 and s D 21 works by part (1).

The next congruence also links Pell and Fibonacci numbers.

Example 17.7 Prove that

F4nCmP4nCm � FmPm C 3nFmPmC2 C 6nFmC2Pm .mod 9/; (17.9)

where m is an arbitrary integer.

Proof. Since ˛4 D 3˛2 � 1 and ˇ4 D 3ˇ2 � 1, it follows by Binet’s formula and the binomial
theorem that

p
5F4nCm D ˛4nCm � ˇ4nCm

D ˛m.3˛2 � 1/n � ˇm.3ˇ2 � 1/n

D ˛m

nX

rD0

.�1/n�r3r

 
n

r

!

˛2r � ˇm

nX

rD0

.�1/n�r3r

 
n

r

!

ˇ2r

D
nX

rD0

.�1/n�r3r

 
n

r

!
�
˛2rCm � ˇ2rCm

�

F4nCm D
nX

rD0

.�1/n�r3r

 
n

r

!

F2rCm

� .�1/n .Fm � 3nFmC2/ .mod 9/:

Similarly, since �4 D 6�2 � 1 and ı4 D 6ı2 � 1, we have

2
p

2P4nCm D
nX

rD0

.�1/n�r6r

 
n

r

!
�
�2rCm � ı2rCm

�

P4nCm D
nX

rD0

.�1/n�r6r

 
n

r

!

P2rCm

� .�1/n .Pm � 6nPmC2/ .mod 9/:
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So

F4nCmP4nCm � .Fm � 3nFmC2/ .Pm � 6nPmC2/ .mod 9/

� FmPm C 3nFmPmC2 C 6nFmC2Pm .mod 9/;

as claimed.

For example, let n D 2 and m D 3. Then

F3P3 C 6F3P5 C 12F5P3 D 2 � 5C 6 � 2 � 29C 12 � 5 � 5
� 1 � 89 � 5741 .mod 9/

� F11P11 .mod 9/:

Congruence (17.9) has four interesting byproducts. When m D 0; 1; 2, and 3, it yields the
following congruences, where Wn D FnPn:

W4n � 0 .mod 9/ W4nC1 � 0 .mod 9/

W4nC2 � 2 .mod 9/ W4nC3 � 1 .mod 9/.

Corresponding to (17.9), we have a Pell–Lucas congruence:

L4nCmP4nCm � LmPm C 3nLmPmC2 C 6nLmC2Pm .mod 9/: (17.10)

This was found by C. Georghiou of the University of Patras, Greece, in 1991 [93]. Its proof
follows the same argument as before, so we omit it.

For example, let n D 2 and m D 3. Then

L3P3 C 6L3P5 C 12L5P3 D 4 � 5C 6 � 4 � 29C 12 � 11 � 5
� 8 � 199 � 5741 .mod 9/

� L11P11 .mod 9/:

Congruence (17.9) also has four interesting byproducts; they correspond to m D 0; 1; 2, and
3, where Xn D LnPn:

X4n � 3n .mod 9/ X4nC1 � 3nC 1 .mod 9/

X4nC2 � 3nC 6 .mod 9/ X4nC3 � 3nC 2 .mod 9/.

These were found by Seiffert in 1990 [196].
Congruences (17.9) and (17.10) have their counterparts for Pell–Lucas numbers. Since

Q4nCm � .�1/n .Qm C 3nQmC2/ .mod 9/, we have

F4nCmQ4nCm � .Fm � 3nFmC2/ .Qm C 3nQmC2/ .mod 9/

� FmQm C 3nFmQmC2 C 6nFmC2Qm .mod 9/ (17.11)
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L4nCmQ4nCm � .Lm � 3nLmC2/ .Qm C 3nQmC2/ .mod 9/

� LmQm C 3nLmQmC2 C 6nLmC2Qm .mod 9/: (17.12)

Congruences (17.11) and (17.12) yield the following special cases, where Yn D FnQn and
Zn D LnQn:

Y4n � 6n .mod 9/ Y4nC1 � 6nC 1 .mod 9/

Y4nC2 � 6nC 3 .mod 9/ Y4nC3 � 6nC 5 .mod 9/

Z4n � 2 .mod 9/ Z4nC1 � 1 .mod 9/

Z4nC2 � 0 .mod 9/ Z4nC3 � 1 .mod 9/.

17.4.1 A Generalization

Let fAng and fBng be two integer sequences satisfying the Fibonacci and Pell recurrences,
respectively. Then, it follows by congruences (17.9)–(17.12) that

A4nCmB4nCm � AmBm C 3nAmBmC2 C 6nAmC2Bm .mod 9/: (17.13)

17.5 Israel’s Congruence

The Pell–Fibonacci congruence

Pn � .�1/n


.18n2 C 21nC 2/Fn C 12FnC1

�
.mod 27/ (17.14)

was discovered by R.B. Israel of the University of British Columbia, Canada, in 1991, where
n � 0 [207]. We will now prove this by showing that Rn D .�1/n



.18n2 C 21nC 2/FnC

12FnC1� satisfies the Pell recursive definition modulo 27. The proof is a bit tedious, and depends
on the Fibonacci recurrence and modular arithmetic.

Proof. Since P0 D 0 D F0, the congruence is clearly true when n D 0. Since �.18C 21C 2/ �
1C 12 � 1 D �26 � 1 .mod 27/, it also true when n D 1.

We will now show that Rn satisfies the Pell recurrence. Since

2RnC1 CRn D 2.�1/nC1
˚


18.nC 1/2 C 21.nC 1/C 2
�

FnC1 C 12.nC 1/FnC2

�C
.�1/n



.18n2 C 21nC 2/Fn C 12FnC1

�
:

Then

.�1/nŒ2RnC1 CRn� D �Œ36.n2 C 2nC 1/C 42.nC 1/C 4�FnC1 � 24.nC 1/FnC2 C
.18n2 C 21nC 2/Fn C 12nFnC1

D .�36FnC1 C 18Fn/n2 � .72C 42/nFnC1 � 24nFnC2 C 21nFn C
12nFnC1 C 26FnC1 � 24FnC2 C 2Fn
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� 18n2.FnC1 C Fn/C 21n.FnC1 C Fn/ � 24nFnC2 C 12nFnC1 C
26FnC1 C 3FnC2 C 2Fn .mod 27/

� 18n2FnC2 C 21nFnC2 � 24nFnC2 C 12nFnC1 C 26FnC1 C
30FnC2 C 2Fn .mod 27/

� 18n2FnC2 C 24nFnC2 C 12nFnC1 C 24.FnC1 C FnC2/C
6FnC2 C 2.FnC1 C Fn/.mod 27/

� 18n2FnC2 C 12nFnC2 C 12n.FnC2 C FnC1/C 24FnC3

C8FnC2 .mod 27/

� 18n2FnC2 C 12nFnC2 C 12nFnC3 C 24FnC3 C 8FnC2 .mod 27/

� .18n2 C 12nC 8/FnC2 C 12.nC 2/FnC3 .mod 27/

� 

18.nC 2/2 C 21.nC 2/C 2/FnC2 C 12.nC 2/FnC3

�
.mod 27/

� .�1/nC2RnC2 .mod 27/:

Thus Rn satisfies the same recursive definition as Pn, modulo 27. This establishes congruence
(17.14).

For example, let n D 5. Then

RHS � .�1/5Œ.18 � 52 C 21 � 5C 2/ � 5C 12 � 5 � 8� .mod 27/

� 2 � 29 .mod 27/

� P29 .mod 27/:

17.6 Seiffert’s Congruence

Using congruence (17.14), we will prove the following congruence, discovered by Seiffert in
1989 [195]:

6.nC 1/Pn�1 C PnC1 � .�1/nC1.9n2 � 7/FnC1 .mod 27/: (17.15)

Proof. By congruence (17.14), we have

.�1/nC1.LHS/ � 6.nC 1/
˚
Œ18.n � 1/2 C 21.n � 1/C 2�Fn�1 C 12.n � 1/Fn

�C
Œ18.nC 1/2 C 21.nC 1/C 2�FnC1 C 12.nC 1/FnC2 .mod 27/

� Œ0C 18.n2 � 1/C 12.nC 1/�Fn�1 C 18.n2 � 1/Fn C
Œ18.nC 1/2 C 21.nC 1/C 2�FnC1 C 12.nC 1/FnC2 .mod 27/
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� 18n2.Fn�1 C Fn C FnC1/C .12Fn�1 C 3FnC1 C 12FnC2/n �
6Fn�1 � 18Fn C 14FnC1 C 12FnC2 .mod 27/

� 36n2FnC1 C Œ12Fn�1 C 3FnC1 C 12.FnC1 C Fn/�n �
6.Fn�1 C Fn/C 14FnC1 C 12.FnC2 � Fn/.mod 27/

� 9n2FnC1 C Œ12Fn�1 C 15.Fn C Fn�1/C 12Fn�n �
6FnC1 C 14FnC1 C 12FnC1 .mod 27/

� 9n2FnC1 C 0C 20FnC1 .mod 27/

� .9n2 � 7/FnC1 .mod 27/

LHS � .�1/nC1.9n2 � 7/FnC1 .mod 27/; as desired:

For example, let n D 10. Then

LHS D 6 � 11 � P9 C P11 D 66 � 985C 5741 � 11 � .�1/11.9 � 102 � 7/F11 .mod 27/:

17.6.1 Israel’s and Seiffert’s Congruences Revisited

Since Lucas and Fibonacci numbers satisfy the same recurrence, it follows from the proof of
congruence (17.14) that .�1/n



.18n2 C 21nC 2/Ln C 12nLnC1

�
.mod 27/ also satisfies the

Pell recurrence. When n D 0, this yields 4 � 4Q0 .mod 27/. So the corresponding congruence
for Pell–Lucas numbers is

4Qn � .�1/n


.18n2 C 21nC 2/Ln C 12nLnC1

�
.mod 27/:

For example, .�1/5


.18 � 52 C 21 � 5C 2/L5 C 12 � 5L6

� � 4Q5 .mod 27/.
This implies that Seiffert’s congruence (17.15) also has a counterpart for Pell–Lucas

numbers. It is obtained by replacing Fk with Lk , and Pk with 4Qk:

24.nC 1/Qn�1 C 4QnC1 � .�1/nC1.9n2 � 7/LnC1 .mod 27/:

That is,

4QnC1 � 3.nC 1/Qn�1 � .�1/nC1.9n2 � 7/LnC1 .mod 27/:

For example, 4Q6 � 3 � 6Q4 � 9 � .�1/6.9 � 52 � 7/L6 .mod 27/.

17.7 Pell–Lucas Congruences

The next example presents a Pell–Lucas congruence, found by Seiffert [188]. The solution
presented here is based on the one by L.A.G. Dresel of the University of Reading, England
[75].
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Example 17.8 Prove that PnC3 C PnC1 C Pn � 3.�1/nLn .mod 9/.

Proof. First, notice that

PnC3 C PnC1 C Pn D .2PnC2 C PnC1/C PnC1 C Pn

D 2PnC2 C .2PnC1 C Pn/

D 3PnC2:

Next we will show that Kn D .�1/nLn satisfies the same recurrence as PnC2 modulo 3. To
this end, recall that Ln D Ln�1 C Ln�2; so .�1/nLn D .�1/nLn�1 C .�1/nLn�2; that is,
Kn D �Kn�1 C Kn�2 � 2Kn�1 C Kn�2 .mod 3/. Since Pn D 2Pn�1 C Pn�2 .mod 3/, both
Pn and Kn satisfy the same recurrence modulo 3. But K1 D �L1 D �1 � 2 � P3 .mod 3/

and K2 D L2 D 3 � 12 � P4 .mod 3/. So PnC2 � Kn .mod 3/ for every integer n � 1.
Consequently, 3PnC2 � 3Kn .mod 9/; this yields the desired congruence.

For example, we have

P10 C P8 C P7 D 2378C 408C 169

D 2995 � 3 .mod 9/

� �87 � �3 � 29 .mod 9/

� 3.�1/7L7 .mod 9/:

Our next example investigates five congruences linking Lucas and Pell–Lucas numbers. They
were originally studied by S. Rabinowitz of Westford, Massachusetts, in 1998 [180]. Their proofs
are based on the ones given by D.M. Bloom of Brooklyn College, New York, in 1999 [22].

Example 17.9 Let n be any nonnegative integer.

(1) Prove that 2Q7n � Ln .mod 159/.

(2) Find an integer m � 2 such that 2Q11n � Ln .mod m/.

(3) Find an integer a such that 2Qan � Ln .mod 31/.

(4) Find an integer m � 2 such that 2Q19n � Ln .mod m/.

(5) Show that there is no integer a such that 2Qan � Ln .mod 7/.

Proof. The proofs and solutions hinge on the identity

QnCk C .�1/kQn�k D 2QnQk: (17.16)

where k � 0. It can be established by PMI.
Using this identity, we will now prove the following result by PMI:

If a is odd and 2Qa � 1.mod m/; then 2Qan � Ln.mod m/ for every n: (17.17)
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Clearly, the congruence is true when n D 0 and n D 1. Assume it is true for nonnegative
integers n � j , where j � 1. Then, by identity (17.16) and the inductive hypothesis, we have

2Qa.j C1/ D 2Qa.j �1/ C .2Qaj /.2Qa/

� Lj �1 C Lj � 1 � Lj C1 .mod m/:

So the congruence holds when n D j C 1. Thus, by the strong version of PMI, it holds for every
n � 0.

We can now deduce all results from property (17.17):

(1) Let a D 7 and m D 159. Then 2Q7 D 2 � 239 D 478; so 2Q7 � 1 D 477 D 3 � 159.
Consequently, 2Q7n � Ln .mod 159/.

(2) We need to choose an integer m such that 2Q11 � 1 .mod m/. Since 2Q11 D 2 � 8119 D
2 � 23 � 353, the smallest integer m � 2 that works is m D 13: 2Q11n � Ln .mod 13/.

(3) First, we will choose an odd integer a such that 2Qa � 1.mod 31/. By trial and error,
a D 17 works: 2Q17 D 2�1607521 � 1 .mod 31/. So, by congruence (17.17), 2Q17n � Ln

.mod 31/.

(4) When n D 1, we must have 2Q19 � 1.mod m/. Since 2Q19 D 2 �9369319 D 18; 738; 638,
we can choose m D 2Q19 � 1 D 18; 738; 637.

(5) Suppose there is an integer a such that 2Qan � Ln .mod 7/ for every n. In particular,
2Qn � L1 � 1.mod 7/. But this is impossible, since the sequence f2Qn .mod 7/g1nD0

follows the pattern 2 2 6 0 6 5„ ƒ‚ … 2 2 6 0 6 5„ ƒ‚ … � � � and the repeating cycle does not contain the
residue 1.

17.8 Seiffert’s Pell–Lucas Congruences

The next two congruences link Pell and Lucas numbers modulo 5. It follows from Table 17.2
that the sequence fPn .mod 5/g is periodic with period 12, whereas fLn .mod 5/g is periodic
with period 4. Since [12,4] = 12, it suffices to consider the first 12 terms in each sequence, where
Œa; b� denotes the least common multiple (lcm) of a and b. Since P1 � L1 .mod 5/; P4 � L4

.mod 5/; P7 � L7 .mod 5/, and P10 � L10 .mod 5/ (see Table 17.2), it follows that P3nC1 �
L3nC1 .mod 5/. Likewise, P3nC2 � 4L3nC2 .mod 5/. These two congruences were found by
Seiffert in 1992 [198].

Table 17.2.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Pn .mod 5/ 0 1 2 0 2 4 0 4 3 0 3 1 0 1

Ln .mod 5/ 2 1 3 4 2 1 3 4 2 1 3 4 2 1
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Table 17.3.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Pn .mod 5/ 0 1 2 0 2 4 0 4 3 0 3 1 0 1 2
Fn .mod 5/ 0 1 1 2 3 0 3 3 1 4 0 4 4 3 2

n 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Pn .mod 5/ 0 2 4 0 4 3 0 3 1 0 1 2 0 2 4
Fn .mod 5/ 0 2 2 4 1 0 1 1 2 3 0 3 3 1 4

n 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
Pn .mod 5/ 0 4 3 0 3 1 0 1 2 0 2 4 0 4 3
Fn .mod 5/ 0 4 4 3 2 0 2 2 4 1 0 1 1 2 3

n 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
Pn .mod 5/ 0 3 1 0 1 2 0 2 4 0 4 3 0 3 1
Fn .mod 5/ 0 3 3 1 4 0 4 4 3 2 0 2 2 4 1

We can use a similar technique to extract congruences linking Pell and Fibonacci numbers
modulo 5. It follows from Table 17.3 that fFn .mod 5/g is periodic with period 20. So it suffices
to study only the first 60 D Œ12; 20� terms of the sequences fPn .mod 5/g and fFn .mod 5/g to
extract such relationships. It follows from the table that

P15nCr � F15nCr .mod 5/ P15nC4r � 4F15nC4r .mod 5/

2P15nC2r � 4F15nC2r .mod 5/ 2P15nC7r � 4F15nC7r .mod 5/.

where r D �1, 0 or 1. These congruences repeat every 15 entries since PnC15 � 2Pn .mod 5/

and FnC15 � 2Fn .mod 5/; see Table 17.3.

17.9 Hybrid Sums

The next bridge deals with the sum
nP

kD0

AkPk , where fAkg is an integer sequence satisfying the

Fibonacci recurrence. We will prove by PMI that

3

nX

kD0

AkPk D AnPnC1 C AnC1Pn � �; (17.18)

where � D
(

0 if Ak D Fk

2 if Ak D Lk:

Proof. Suppose n D 0.

Case 1. Let Ak D Fk . Then LHS = 0 D 1 � 1C A1 � 0 � 0 = RHS.

Case 2. Let Ak D Lk . Then LHS = 0 D 2 � 1C A1 � 0 � 2 = RHS.
Thus, the formula works when n D 0.
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Suppose it is true for an arbitrary nonnegative integer n. Then

3

nC1X

kD0

AkPk D 3

nX

kD0

AkPk C 3AnC1PnC1

D .AnPnC1 C AnC1Pn � �/C 3AnC1PnC1

D AnC1.2PnC1 C Pn/C .AnC1 C An/ � �

D AnC1PnC2 C AnC2PnC1 � �:

So it also works for nC 1.
Thus, by PMI, it is true for every n � 0.

For example, let n D 4. Then

3

4X

kD0

FkPk D 3.0 � 0C 1 � 1C 1 � 2C 2 � 5C 3 � 12/ D 147 D 3 � 29C 5 � 12 D F4P5 C F5P4 � 0:

Likewise, 3
4P

kD0

LkPk D 333 D L4P5 C L5P4 � 2.

It follows from formula (17.18) that

AnPnC1 C AnC1Pn � � .mod 3/: (17.19)

Thus FnPnC1 C FnC1Pn � 0 .mod 3/ and LnPnC1 C LnC1Pn � 2 .mod 3/. We will employ
these two congruences a bit later.

Interestingly, (17.18) has a companion formula for Pell–Lucas numbers:

3

nX

kD0

AkQk D AnQnC1 C AnC1Qn � 
; (17.20)

where 
 D
(

1 if Ak D Fk

�3 if Ak D Lk:
Its proof also follows by PMI.

For example, let n D 5. Then

3

5X

kD0

FkQk D 3.0 �1C1 �1C1 �3C2 �7C3 �17C5 �41/ D 822 D 5 �99C8 �41�1 D F5Q6CF6Q5�1:

Similarly, 3
5P

kD0

LkQk D 1830 D L5Q6 C L6Q5 C 3.

It follows from formula (17.20) that FnQnC1 C FnC1Qn � 1 .mod 3/ and LnQnC1 C
LnC1Qn � 0 .mod 3/. These two congruences also will come in handy shortly.
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17.9.1 Weighted Hybrid Sums

Next we derive a summation formula for the weighted sum
nP

kD0

kAkPk , where fAkg is again an

integer sequence satisfying Fibonacci recurrence. To this end, first notice that

AnC3PnC3 D .AnC2 C AnC1/.2PnC2 C PnC1/

D 2AnC2PnC2 C AnC2PnC1 C 2AnC1PnC2 C AnC1PnC1

D AnC2PnC2 C AnC2.PnC2 C PnC1/C 2AnC1PnC2 C AnC1PnC1

D AnC2PnC2 C AnC2.3PnC1 C Pn/C 2AnC1PnC2 C AnC1PnC1

D AnC2PnC2 C 3AnC2PnC1 C AnC2Pn C 2AnC1PnC2 C AnC1PnC1

D AnC2PnC2 C 3.AnC2PnC1 C AnC1PnC2/ � AnC1PnC2 C
AnC2Pn C AnC1PnC1

D AnC2PnC2 C 3.AnC2PnC1 C AnC1PnC2/ � AnC1.2PnC1 C Pn/C
.An C AnC1/Pn C AnC1PnC1

D AnC2PnC2 C 3.AnC2PnC1 C AnC1PnC2/ � AnC1PnC1 C AnPn:

Thus

AnC2PnC2 C 3.AnC2PnC1 C AnC1PnC2/C AnPn D AnC3PnC3 C AnC1PnC1: (17.21)

Using this identity and PMI, we will now prove that

9

nX

kD0

kAkPk D 3.nC 1/.AnPnC1 C AnC1Pn/ � AnC2PnC2 � AnPn C �; (17.22)

where � D
(

2 if Ak D Fk

0 if Ak D Lk:
This formula was developed by Seiffert in 1988 [193].

Proof. Suppose n D 0. When Ak D Fk , RHS = 0 = LHS. On the other hand, when Ak D Lk ,
RHS = 0 = LHS. So the formula works when n D 0.

Now assume it is true for an arbitrary nonnegative integer n. Since

AnPnC1 C AnC1Pn C 3AnC1PnC1 D .AnPnC1 C AnC1PnC1/C AnC1.2PnC1 C Pn/

D AnC2PnC1 C AnC1PnC2;

we have

AnPnC1 C AnC1Pn D AnC2PnC1 C AnC1PnC2 � 3AnC1PnC1:
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Then, by the inductive hypothesis and formula (17.21), we have

9

nC1X

kD0

kAkPk D 9

nX

kD0

kAkPk C 9.nC 1/AnC1PnC1

D Œ3.nC 1/.AnPnC1 C AnC1Pn/ � AnC2PnC2 � AnPn C ��C
9.nC 1/AnC1PnC1

D 3.nC 1/.AnC1PnC2 C AnC2PnC1 � 3AnC1PnC1/ � AnC2PnC2 �
AnPn C 9.nC 1/AnC1PnC1 C �

D 3.nC 1/.AnC1PnC2 C AnC2PnC1/ � AnC2PnC2 � AnPn C �

D 3.nC 2/.AnC1PnC2 C AnC2PnC1/ �
Œ3.AnC1PnC2 C AnC2PnC1/C AnC2PnC2 C AnPn�C �

D 3.nC 2/.AnC1PnC2 C AnC2PnC1/ � AnC3PnC3 � AnC1PnC1�C �:

So the formula also works for nC 1.
Thus, by PMI, it works for every n � 0.

For example, let n D 5 and Ak D Fk . Then

LHS D 9

5X

kD0

kAkPk

D 9.1 � 1 � 1C 2 � 1 � 2C 3 � 2 � 5C 4 � 3 � 12C 5 � 5 � 29/ D 8; 136

D .3 � 6/.5 � 70C 8 � 29/ � 13 � 169 � 5 � 29C 2

D RHS:

Likewise, 9
5P

kD0

kLkPk D 18; 036 D .3 � 6/.L5P6 C L6P5/ � L7P7 � L5P5.

17.10 Congruence Byproducts

Formula (17.22) has interesting byproducts. Since AnPnC1CAnC1Pn � � .mod 3/ by formula
(17.19), it follows by (17.22) that

FnC2PnC2 C FnPn � 2 .mod 9/ (17.23)

LnC2PnC2 C LnPn � 6.nC 1/ .mod 9/: (17.24)

Now multiply (17.23) by Lm and (17.24) by Fm, and add the resulting congruences, where
m is any integer. Then

.FmLnC2 C LmFnC2/PnC2 C .FmLn C LmFn/Pn � 2Lm C 6.nC 1/Fm .mod 9/:
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Using the addition formula [126] FmLk C LmFk D 2FmCk , this becomes

2FmCnC2PnC2 C 2FmCnPn � 2Lm C 6.nC 1/Fm .mod 9/:

Since 2 and 9 are relatively prime, this implies that

FmCnC2PnC2 C FmCnPn � 3.nC 1/FmLm .mod 9/: (17.25)

For example, let m D 3 and n D 5. Then

LHS D 55 � 169C 21 � 29 � 4 .mod 9/

� 3 � 6 � 2C 4 .mod 9/

� RHS:

On the other hand, multiplying (17.23) by 5Fm and (17.24) by Lm, and then adding the
resulting congruences, we get

.5FmFnC2 C LmLnC2/PnC2 C .5FmFn C LmLn/Pn � 10Fm C 6.nC 1/Lm .mod 9/:

Using the addition formula [126] 5FmFk C LmLk D 2LmCk , this yields

2LmCnC2PnC2 C 2LmCnPn � 10Fm C 6.nC 1/Lm .mod 9/

LmCnC2PnC2 C LmCnPn � 5Fm C 3.nC 1/Lm .mod 9/: (17.26)

For example, when m D 3 and n D 5,

L10P7 C L8P5 D 123 � 169C 47 � 29 � 1 � 5 � 2C 3 � 6 � 5F3 C 3 � 6L3 .mod 9/:

17.10.1 Special Cases

Congruences (17.25) and (17.26) have intriguing special cases:

(1) Let m D �n in (17.25). Since F�n D .�1/nC1Fn and L�n D .�1/nLn, it implies that
PnC2 � .�1/nC1Œ3.nC 1/Fn � Ln� .mod 9/.

(2) Letting m D �.n C 1/ in (17.25), we get PnC2 C Pn � 3.n C 1/.�1/nC1FnC1 C
.�1/nC1LnC1 .mod 9/. That is, Qn � .�1/nC1.3nFn � Ln/ .mod 9/.

(3) Letting m D �.n C 1/ in (17.26), it yields 2PnC1 � .�1/nC1Œ3.n C 1/LnC1 � 5FnC1

.mod 9/. That is, 2Pn � .�1/n.3nLn � 5Fn/ .mod 9/.

(4) Let m D �n in (17.26). Then it yields 3PnC2C2Pn � .�1/nŒ3.nC1/Ln�5Fn� .mod 9/.
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17.11 A Counterpart for Pell–Lucas Numbers

Formula (17.22) has a similar-looking counterpart for Pell–Lucas numbers:

9

nX

kD0

kAkQk D 3.nC 1/.AnQnC1 C AnC1Qn/ � AnC2QnC2 � AnQn C �; (17.27)

where � D
(

0 if Ak D Fk

2 if Ak D Lk:
Its proof follows similarly.

For example,

9

5X

kD0

kFkQk D 11; 502 D .3 � 6/.F5Q6 C F6Q5/ � F7Q7 � F5Q5 C 0

9

5X

kD0

kLkQk D 25; 506 D .3 � 6/.L5Q6 C L6Q5/ � L7Q7 � L5Q5 C 2:

As can be expected, formula (17.27) also has interesting congruence consequences. First,
recall from formula (17.20) that FnQnC1CFnC1Qn � 1 .mod 3/ and LnQnC1CLnC1Qn � 0

.mod 3/. So, it follows from (17.27) that

FnC2QnC2 C FnQn � 0 .mod 3/ (17.28)

LnC2QnC2 C LnQn � 2 .mod 3/: (17.29)

As before, using the addition formula for Fibonacci numbers, these two yield:

2FmCnC2QnC2 C 2FmCnQn � 0 � Lm C 2Fm .mod 3/

FmCnC2QnC2 C 2FmCnQn � Fm .mod 3/: (17.30)

For example, let m D 3 and n D 5. Then LHS = = 55 � 239C 21 � 41 � 2 � F3 .mod 3/.
It follows from (17.28) and (17.29) that

.5FmFnC2 C LmLnC2/QnC2 C .5FmFn C LmLn/Qn � 0 � 5Fm C 2Lm .mod 3/:

Using the addition formula for Lucas numbers, this implies that

2LmCnC2QnC2 C 2LmCnQn � 2Lm .mod 3/

LmCnC2QnC2 C LmCnQn � Lm .mod 3/: (17.31)

For example, when m D 3 and n D 5, LHS = 123 � 239C 47 � 41 � 1 � L3 .mod 3/.
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17.11.1 Special Cases

As before, congruences (17.30) and (17.31) also have interesting special cases:

(1) Letting m D �n in (17.30) yields QnC2 � .�1/n�1Fn .mod 3/.

(2) Suppose we let m D �.nC1/ in (17.30). Then we get QnC2CQn � .�1/nFnC1 .mod 3/.
That is,

4Pn � .�1/n�1Fn .mod 3/

Pn � .�1/n�1Fn .mod 3/:

(3) Let m D �.nC 1/ in (17.31). Then QnC2 �Qn � .�1/nC1LnC1 .mod 3/. This implies
that Qn � .�1/n�1Ln .mod 3/.

(4) Letting m D �n in (17.31), we get 3QnC2 C 2Qn � .�1/n�1Ln .mod 3/.

The next bridge is a generalization of a Pell–Fibonacci sum, studied by Seiffert in 1986, when
he was a student [188, 189]. The proof, based on the one by Bruckman, illustrates a delightful
technique in the theory of finite differences [26, 27].

Example 17.10 Let fAng be an integer sequence satisfying Pell recurrence. Prove that

9

nX

kD1

AkFk D AnC2Fn C AnC1FnC2 C AnFn�1 � An�1FnC1 � �; (17.32)

where � D
(

0 if Ai D Pi

4 if Ai D Qi:

Proof. Let Rn D AnC2Fn C AnC1FnC2 C AnFn�1 � An�1FnC1. Using Pell and Fibonacci
recurrences, we can simplify this sum:

Rn D .2AnC1 C An/Fn C AnC1.FnC1 C Fn/C An.FnC1 � Fn/ � .AnC1 � 2An/FnC1

D 3.AnC1Fn C AnFnC1/:

Let �Rn D RnC1 �Rn. Then

�Rn D 3.AnC2FnC1 C AnC1FnC2/ � 3.AnC1Fn C AnFnC1/

D 3 Œ.2AnC1 C An/FnC1 C AnC1.FnC1 C Fn/� � 3.AnC1Fn C AnFnC1/

D 9AnC1FnC1:



346 17. Pell–Fibonacci Hybridities

Now let Sn denote the sum on the LHS of equation (17.32): Sn D 9
nP

kD1

AkFk . Then

�Sn D SnC1 � Sn

D 9

 
nC1X

kD1

AkFk �
nX

kD1

AkFk

!

D 9AnC1FnC1:

Since �Rn D �Sn, it follows that Rn D Sn C C , where C is a constant independent of n.
In particular, R1 D S1 C C .

Case 1. Let Ai D Pi . Since P0 D 0 D F0 and P1 D 1 D F1, S1 D 9P1F1 D 9 and R1 D 9.
Consequently, C D 0.

Case 2. Let Ai D Qi . Since Q0 D 1; F0 D 0; Q1 D 1 D F1, S1 D 9Q1F1 D 9 and R1 D 13.
So R1 D S1 C C implies that C D 4.
Combining these two cases, we get the desired formula.

The corresponding formula involving Lucas numbers is given by

9

nX

kD1

AkLk D AnC2Ln C AnC1LnC2 C AnLn�1 � An�1LnC1 � �; (17.33)

where � D
(

6 if Ai D Pi

9 if Ai D Qi:

This can be established using an argument similar to the one in Example 17.1. Using the
same notations as before, we have �Rn D 9AnC1LnC1 D �Sn and Rn D SnCC 0, where C 0 is
a constant independent of n. In particular, R1 D S1 C C 0.

Case 1. Let Ai D Pi . Then S1 D 9P1F1 D 9 and R1 D P3L1 C P2L3 C P1L0 � P0L2 D
5 � 1C 2 � 4C 1 � 2 � 0 D 15; so C 0 D 6.

Case 2. Let Ai D Qi . Then S1 D 9Q1F1 D 9 and R1 D Q3L1 CQ2L3 CQ1L0 �Q0L2 D
7 � 1C 3 � 4C 1 � 2 � 1 � 3 D 18. So C 0 D 9.

These two cases together give us formula (17.33).
As a byproduct, it follows from formula (17.33) that AnC2Ln C AnC1LnC2 C AnLn�1 �

An�1LnC1 � 0 .mod 3/, where Ai D Pi or Qi . In particular, QnC2LnCQnC1LnC2CQnLn�1�
Qn�1LnC1 � 0 .mod 9/.

For example, let Ai D Pi and n D 5. Then

LHS D P7L5 C P6L7 C P5L4 � P4L6

D 169 � 11C 70 � 29C 29 � 7 � 12 � 18

D 3876 D 0 .mod 3/:
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Likewise, Q7L5 CQ6L7 CQ5L4 �Q4L6 D 239 � 11C 99 � 29C 41 � 7 � 17 � 18 D 5481

.mod 9/.
Next we investigate two infinite sums studied by Seiffert in 1994 [202]. They involve

Fibonacci, Lucas, Pell, and Pell–Lucas numbers. Their proofs are a bit long, and are based on
the ones given by N. Jensen of Kiel, Germany, in the following year [116].

Example 17.11 Prove that

(1)
1X

nD1

F2nQ2n

2.L2nP2n/2 � 5.F2nQ2n/2
D 1

6

(2)
1X

nD1

L2nP2n

2.L2nP2n/2 � 5.F2nQ2n/2
D 8 � 3

p
2

12
.

Proof. We will establish both results in small steps. First, recall from Chapter 1 that Fn D ˛n�ˇn

˛�ˇ

and Ln D ˛nCˇn, where ˛ D 1Cp
5

2
; ˇ D 1�p

5
2

; ˛ˇ D �1, and n � 1; and from Chapter 7 that
�n D Pn�1 C Pn� .

Next we will show that

1X

nD1

x2n

1 � x2nC1
D x2

1 � x2
; (17.34)

where jxj < 1. To this end, we will need the fact that the series
1P

kD1

x2k is absolutely convergent

with limit x2

1�x2 , when jxj < 1. Consequently, we can add up the terms of this series in an
arbitrary order, without affecting the convergence or the limit. So

1X

kD1

x2k D
1X

nD1

1X

mD0

x2n.2mC1/

D
1X

nD1

x2n
1X

mD0

x2nC1m

D
1X

nD1

x2n

1 � x2nC1
:

Therefore, the series
1X

kD1

x2n

1 � x2nC1
also converges and converges to the sum

x2

1 � x2
, as claimed.
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We will find the following product also useful for the brevity of the proofs:

.�2 � ˛2/.�2 � ˇ2/ D �4 � .˛2 C ˇ2/�2 C .˛ˇ/2

D .5C 12�/ � 3.1C 2�/C 1

D 3C 6�

D 9C 6
p

2: (17.35)

Next we will prove that

p
2L2nP2n �p5F2nQ2n D .�=˛/2n

Œ1 � .˛=�/2nC1
�: (17.36)

We have

p
8L2nP2n D

�
˛2n C ˇ2n

	 �
�2n � ı2n

	

D .˛�/2n � .˛ı/2n C .ˇ�/2n � .ˇı/2n

and

2
p

5F2nQ2n D
�
˛2n � ˇ2n

	 �
�2n C ı2n

	

D .˛�/2n C .˛ı/2n � .ˇ�/2n � .ˇı/2n
:

So

p
8L2nP2n � 2

p
5F2nQ2n D 2

h
.ˇ�/2n � .˛ı/2n

i

p
2L2nP2n �p5F2nQ2n D .�=˛/2n

h
1 � .˛=�/2nC1

i
;

as desired.
Changing

p
5 to �p5, (17.36) yields the following result:

p
2L2nP2n Cp5F2nQ2n D .�=ˇ/2n

Œ1 � .ˇ=�/2nC1
�: (17.37)

With these tools at hand, we are now ready to confirm both results.
Replacing x with ˛=� in formula (17.34) and using formula (17.36), we get

1X

nD1

1p
2L2nP2n �p5F2nQ2n

D
1X

nD1

.˛=�/2n

1 � .˛=�/2n

D .˛=�/2

1 � .˛=�/2

D ˛2

�2 � ˛2
: (17.38)
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Changing
p

5 to �p5, this yields

1X

nD1

1p
2L2nP2n Cp5F2nQ2n

D ˇ2

�2 � ˇ2
: (17.39)

(1) Since the difference of two convergent series is also convergent, it follows from (17.38) and
(17.39) that

1X

nD1

2
p

5F2nQ2n

2.L2nP2n/2 � 5.F2nQ2n/2
D ˛2

�2 � ˛2
� ˇ2

�2 � ˇ2

D .˛2 � ˇ2/�2

.�2 � ˛2/.�2 � ˇ2/

D
p

5.1C 2�/

9C 6
p

2
D
p

5.3C 2
p

2/

9C 6
p

2
1X

nD1

F2nQ2n

2.L2nP2n/2 � 5.F2nQ2n/2
D 3C 2

p
2

2.9C 6
p

2/
D 1

6
; as desired.

(2) Adding the series (17.38) and (17.39), we get

1X

nD1

2
p

2L2nP2n

2.L2nP2n/2 � 5.F2nQ2n/2
D ˛2

�2 � ˛2
C ˇ2

�2 � ˇ2

D .˛2 C ˇ2/�2 � 2.˛ˇ/2/

.�2 � ˛2/.�2 � ˇ2/

D 3.1C 2�/ � 2

9C 6
p

2
D 1C 6�

9C 6
p

2

D 7C 6
p

2

9C 6
p

2
1X

nD1

L2nP2n

2.L2nP2n/2 � 5.F2nQ2n/2
D 1

2
p

2
� 7C 6

p
2

9C 6
p

2

D 8 � 3
p

2

12
; again as desired.

17.12 Catalani’s Identities

Next we study two identities linking Fibonacci and Lucas numbers with Pell numbers; they were
discovered in 2004 by Mario S. Catalani of the University of Torino, Italy [43].
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Let Un D FPn and Vn D LPn , where n � 0. Then U0 D FP0 D 0 and U1 D FP1 D 1.
Likewise, V0 D 2 and V1 D 1.

We will now establish the following identities:

2UnC2 D UnŒV 2
nC1 � 2.�1/nC1�C UnC1VnC1

q
5U 2

n C 4.�1/n (17.40)

2VnC2 D VnŒV 2
nC1 � 2.�1/nC1�C UnC1VnC1

q
5V 2

n � 20.�1/n: (17.41)

Their proofs employ the following facts: the addition formulas 2FaCb D FaLb C FbLa

and 2LaCb D LaLb C 5FaFbIPn � n .mod 2/IL2
n � 5F 2

n D 4.�1/nIFnLn D F2n; and
L2

n � 2.�1/n D L2n [126], as Bruckman did in 2005 [34]. Consequently, 5U 2
n C 4.�1/n D

V 2
n ; 5V 2

n � 20.�1/n D 25U 2
n ; UnC1VnC1 D F2PnC1 and V 2

nC1 � 2.�1/nC1 D L2PnC1 . Then

UnŒV 2
nC1 � 2.�1/nC1�C UnC1VnC1

q
5U 2

n C 4.�1/n D FPnL2PnC1 C F2PnC1LPn

D 2F2PnC1CPn D 2FPnC2

D 2UnC2I

VnŒV 2
nC1 � 2.�1/nC1�C UnC1VnC1

q
5V 2

n � 20.�1/n D LPnL2PnC1 C 5F2PnC1FPn

D 2L2PnC1CPn D 2LPnC2

D 2VnC2, as desired.

For example, let n D 3. Then U3 D FP3 D F5 D 5; U4 D FP4 D F12 D 144; V3 D LP3 D
L5 D 11, and V4 D LP4 D L12 D 322. Then, by identities (17.40) and (17.41), we have

2U5 D U3ŒV
2

4 � 2.�1/4�C U4V4

q
5U 2

3 C 4.�1/3

D 5.3222 � 2/C 144 � 322
p

5 � 52 � 4

D 518; 410C 510; 048 D 1; 028; 458

U5 D 514; 229 D FP5I

2V5 D V3ŒV
2

4 � 2.�1/4�C U4V4

q
5V 2

3 � 20.�1/3

D 11.3222 � 2/C 144 � 322
p

5 � 112 C 20

D 1; 140; 502C 1; 159; 200 D 2; 299; 702

V5 D 1; 149; 851 D LP5 , as expected.
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Clearly, identities (17.40) and (17.41) can be extended to the sequences fFg.m/g and fLg.m/g,
where the sequence fg.m/g satisfies the Pell recurrence. For example, let An D FQn and Bn D
LQn . Then

2AnC2 D An



B2

nC1 � 2.�1/nC1
�C AnC1BnC1

q
5A2

n C 4.�1/n (17.42)

2BnC2 D Bn



B2

nC1 � 2.�1/nC1
�C AnC1BnC1

q
5B2

n � 20.�1/n: (17.43)

For example, let n D 3. Then A3 D FQ3 D F7 D 13; A4 D FQ4 D F17 D 1597; B3 D
LQ3 D L7 D 29; B4 D LQ4 D L17 D 3571. so

2A5 D 13.35712 � 2/C 1597 � 3571
p

5 � 132 � 4

D 331; 160; 230

A5 D 165; 580; 115I
2B5 D 29.35712 � 2/C 1597 � 3571

p
5 � 292 C 20

D 740; 496; 786

B5 D 370; 248; 393:

17.13 A Fibonacci–Lucas–Pell Bridge

In 2001, J.L. Díaz-Barrero of Barcelona, Spain, developed an intriguing formula linking the
Fibonacci, Lucas, and Pell families [65]:

Fn C LnPn

.Fn � Ln/.Fn � Pn/
C Ln C FnPn

.Ln � Fn/.Ln � Pn/
C Pn C FnLn

.Pn � Fn/.Pn � Ln/
D 1;

where n � 2. Its proof requires a knowledge of operator theory, so we omit it [33]. But we will
illustrate it with a simple numeric example.

Let n D 5. Then

LHS D F5 C L5P5

.F5 � L5/.F5 � P5/
C L5 C F5P5

.L5 � F5/.L5 � P5/
C P5 C F5L5

.P5 � F5/.P5 � L5/

D 5C 11 � 29

.5 � 11/.5 � 29/
C 11C 5 � 29

.11 � 5/.11 � 29/
C 29C 5 � 11

.29 � 5/.29 � 11/

D 324

144
� 156

108
C 84

432
D 1; as expected.
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17.14 Recurrences for fFnPng, fLnPng, fFnQng, and fLnQng
Using the sequences fFng1nD0 and fPng1nD0, we can form a hybrid sequence fAng D fFnPng W
0; 1; 2; 10; 36; 145; : : : . Likewise, using Lucas and Pell numbers, we can form the hybrid
sequence fBng D fLnPng W 0; 1; 6; 20; 84; 319; : : : . Similarly, we can form two additional
sequences fCng and fDng:

fCng D fFnQng D 0; 1; 3; 14; 51; 205; : : :

fDng D fLnQng D 2; 1; 9; 28; 119; 451; : : : :

We will now develop recurrences for the sequences fAng; fBng; fCng, and fDng as special
cases of a recurrence for fzng, where zn D xnyn, and xn and yn satisfy the recurrences xnC2 D
axnC1 C bxn, ynC2 D cynC1 C dyn; ac 6D 0, and n � 0. Then

znC4 D xnC4ynC4

D .axnC3 C bxnC2/.cynC3 C dynC2/

D acznC3 C bdznC2 C adxnC3ynC2 C bcxnC2ynC3

D acznC3 C bdznC2 C adynC2.axnC2 C bxnC1/C bcxnC2.cynC2 C dynC1/

D acznC3 C .a2d C bc2 C bd/znC2 C abdxnC1.cynC1 C dyn/

CbcdxnC2

�
ynC2 � dyn

c

�

D acznC3 C .a2d C bc2 C 2bd/znC2 C abcdznC1 C abd 2xnC1yn

�bd 2yn.axnC1 C bxn/

D acznC3 C .a2d C bc2 C 2bd/znC2 C abcdznC1 � b2d 2zn: (17.44)

Thus zn satisfies a recurrence of order four.
Now choose a; b; c, and d cleverly: a D b D d D 1 and c D 2. Then fxng satisfies the

Fibonacci recurrence and fyng the Pell recurrence. Thus we have

znC4 D 2znC3 C 7znC2 C 2znC1 � zn; (17.45)

as Seiffert discovered in 1988 [191]. This recurrence reappeared in a slightly different fashion
in a problem proposed by J.L. Díaz-Barrero and J.L. Egozcue of Spain in 2003 [69]. We will
revisit it later.

Since Fibonacci and Lucas numbers satisfy the same recurrence, it follows that the sequences
fAng, fBng, fCng, and fDng satisfy the same recurrence (17.45). The corresponding initial
conditions are A0 D 0; A1 D 1; A2 D 2, and A3 D 10; and B0 D 0; B1 D 1; B2 D 6, and
B3 D 20; C0 D 0; C1 D 1; C2 D 3, and C3 D 14; and D0 D 2; D1 D 1; D2 D 9, and D3 D 28,
respectively.



17.15 Generating Functions for fAng; fBng; fCng; and fDng 353

Let zn D An; Bn; Cn, or Dn. Since lim
n!1

FnC1

Fn

D ˛ D lim
n!1

LnC1

Ln

, and lim
n!1

PnC1

Pn

D � D

lim
n!1

QnC1

Qn

, it follows that lim
n!1

znC1

zn

D ˛� � 3:9062796000.

For example, A20
A19
D 6765�15994428

4181�6625109
� 3:9062795383. So the convergence of the sequence

n
AnC1

An

o1
nD1

is extremely fast.

Since lim
n!1

zn

znC1

D 1

˛�
D ˇı, it follows by the ratio test that the series

1P
nD1

1
zn

converges,

and converges to the limit ˇı � 0:2589980601.
The recurrence (17.45), coupled with the four sets of initial conditions, can be used to

develop generating functions a.x/; b.x/; c.x/, and d.x/, for the sequences fAng; fBng; fCng;
and fDng, respectively. The first two were also discovered by Seiffert in 1988.

17.15 Generating Functions for fAng; fBng; fCng; and fDng
Let f .z/ D

1P
nD0

znzn be a generating function of fzng, where zn satisfies the recurrence (17.45).

Then, by virtue of the recurrence (17.45), we have

.1 � 2z � 7z2 � 2z3 C z4/f .z/ D z0 C .z1 � 2z0/z C .z2 � 2z1 � 7z0/z
2

C.z3 � 2z2 � 7z1 � 2z0/z
3

f .z/ D z0C .z1� 2z0/zC .z2� 2z1� 7z0/z
2C .z3� 2z2� 7z1� 2z0/z

3

1� 2z� 7z2� 2z3C z4
:

Using the initial values of the sequences fAng; fBng; fCng; and fDng, this yields the desired
generating functions:

a.x/ =
z � z3

1 � 2z � 7z2 � 2z3 C z4
b.x/ =

z C 4z2 C z3

1 � 2z � 7z2 � 2z3 C z4

c.x/ =
z C z2 C 5z3

1 � 2z � 7z2 � 2z3 C z4
d.x/ =

2 � 3z � 7z2 � z3

1 � 2z � 7z2 � 2z3 C z4
.

The next example is a generalization of a Pell–Fibonacci identity discovered by Díaz-Barrero
in 2005 [66]. It builds another bridge between Pell and Fibonacci families. The featured proof is
based on the one given for the special case by H. Kwong of the State University of New York at
Fredonia, New York, in 2006 [146].

Example 17.12 Let fAng be an integer sequence satisfying Pell recurrence, where A1 D 1; A2 �
3, and n be a positive integer. Prove that

ˇ
ˇ
ˇ

jFn�Lnj
F2n

C 2FnC1

F2n
� 2

An

ˇ
ˇ
ˇC jFn�Lnj

F2n
C 2FnC1

F2n
C 2

An

max
n

1
Fn

; 1
Ln

; 1
An

o D 4:
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Proof. It follows by the strong version of PMI that Fn � Ln � An for every n � 1.

Consequently, max
n

1
Fn

; 1
Ln

; 1
An

o
D 1

Fn
.

Let Rn denote the fractional expression on the LHS. Then

R1 D
ˇ
ˇ
ˇ
ˇ
jF1 � L1j

F2

C 2F2

F2

� 2

A1

ˇ
ˇ
ˇ
ˇC
jF1 � L1j

F2

C 2F2

F2

C 2

A1

D 4:

Similarly, R2 D 4.
Now let n � 3. Then, using the fact [126] that Fk�1 C FkC1 D Lk , we have

jFn � Lnj
F2n

C 2FnC1

F2n

D Ln � Fn C 2FnC1

F2n

D Ln C .FnC1 � Fn/C FnC1

F2n

D Ln C .Fn�1 C FnC1/

F2n

D 2Ln

FnLn

D 2

Fn

� 2

An

:

Consequently,
jFn � Lnj

F2n

C 2FnC1

F2n

� 2

An

� 0.

Thus

LHS D Fn

�
Ln � Fn

F2n

C 2FnC1

F2n

� 2

An

C Ln � Fn

F2n

C 2FnC1

F2n

C 2

An

�

D 2Fn

F2n

� .Ln � Fn C 2FnC1/ D 2Fn

F2n

� 2Ln

D 4; as desired:

In particular, the result holds when An D Pn, as Díaz-Barrero found, and when An D Qn.
The following two results are quite similar. Their proofs use the facts that P2n D

2PnQn; Qn � Pn D Pn�1, and PnC1 C Pn�1 D 2Qn. Since they follow a parallel argument, we
omit them for convenience:

ˇ
ˇ
ˇ

jPn�Qnj
P2n

C PnC1

P2n
� 2

Pn

ˇ
ˇ
ˇC jPn�Qnj

P2n
C PnC1

P2n
C 2

Pn

max
n

1
Pn

; 1
Qn

o D 2I

ˇ
ˇ
ˇ

jPn�Qnj
P2n

C PnC1

P2n
� 1

Qn

ˇ
ˇ
ˇC jPn�Qnj

P2n
C PnC1

P2n
C 1

Qn

max
n

1
Pn

; 1
Qn

o D 2:
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The next example evaluates a complicated-looking Pell–Fibonacci determinant. It was
studied by Cook in 2006 [49, 50].

Example 17.13 Evaluate the determinant jM j, where M denotes the matrix

2

6
4

F 2
n C L2

n � P 2
n �Q2

n 2.LnPn � FnQn/ 2.FnPn C LnQn/

2.FnQn C LnPn/ F 2
n � L2

n C P 2
n �Q2

n 2.PnQn � FnLn/

2.LnQn � FnPn/ 2.FnLn C PnQn/ F 2
n � L2

n � P 2
n CQ2

n

3

7
5 :

Solution. Let A and B be two square matrices of the same order. Then it is well known [6] that
jABj D jAj � jBj. Also, jAT j D jAj, where AT denotes the transpose of A.

Let K D F 2
n C L2

n C P 2
n CQ2

n. Using these two properties, we have

jM j2 D jM j � jM T j
D jM �M T j

D

2

6
4

K2 0 0

0 K2 0

0 0 K2

3

7
5

D K6:

So jM j D ˙K3.
To determine the correct sign, notice that when n D 0,

jM j D

2

6
4

0 0 2

0 �2 0

2 0 0

3

7
5 D 8

is positive. So jM j D K3 D .F 2
n C L2

n C P 2
n CQ2

n/3, where n � 0.

The above determinant jM j is a special case of the determinant

� D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

a2 C b2 � c2 � d 2 2bc � 2ad 2bd C 2ac

2bc C 2ad a2 � b2 C c2 � d 2 2cd � 2ab

2bd � 2ac 2cd C 2ab a2 � b2 � c2 C d 2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

studied by C.W. Trigg of San Diego, California, in 1970 [247]. Using the same argument as in
the example, � D .a2 C b2 C c2 C d 2/3. Consequently, when a D Fn; b D Ln; c D Pn, and
d D Qn, jM j D .F 2

n C L2
n C P 2

n CQ2
n/3.

Next we investigate an ISCF which contains Fibonacci, Lucas, Pell, and Pell–Lucas numbers
as special cases.
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17.16 ISCF Revisited

Recall from Chapter 3 that the nth convergent pn

qn
of the ISCF Œa0I a1; a2; a3; : : :� can be computed

using the following recursive definitions, where n � 2:

p0 = a0 q0 = 1

p1 = a1a0 C 1 q1 = a1

pn = anpn�1 C pn�2; qn = anqn�1 C qn�2.

In particular, let a2k D a and a2kC1 D b. (This special case was studied by Seiffert in 1992.)
Then

p0 = a q0 = 1

p1 = ab C 1 q1 = b

p2n = ap2n�1 C p2n�2 q2n = anq2n�1 C q2n�2

p2nC1 = bp2n C p2n�1; q2nC1 = bnq2n C q2n�1,

where n � 2.
Then the sequences fp2ng and fq2ng can be defined recursively, where n � 2:

p0 = a q0 = 1

p2 = a.ab C 2/ q2 = ab C 1

p2n = .ab C 2/p2n�2 � p2n�4; q2n = .ab C 2/q2n�2 � q2n�4:

So both p2n and q2n satisfy the same recurrence. Its characteristic equation is x2�.abC2/xC1 D
0, with characteristic roots r D 1

2
.abC2C�/ and s D 1

2
.abC2��/, where � Dpab.ab C 4/.

The general solution of the recurrence is ArnC bsn. Using the two sets of initial conditions,
the solutions are given by

p2n D a

�

�
rnC1 � snC1

�
and q2n D 1

�
Œ.r � 1/rn � .s � 1/sn� :

Since r > s, this implies that

lim
n!1

p2n

q2n

D lim
n!1

a
�
rnC1 � snC1

�

.r � 1/rn � .s � 1/sn

D lim
n!1

a


1 � .s=r/nC1

�

.r � 1/=r � Œ.s � 1/=r�.s=r/n

D ar

r � 1
:

Since �p2nC1 D .ab C 1 � s/rnC1 C .r � ab � 1/snC1 and �q2nC1 D b
�
rnC1 � snC1

�
, it

follows that

lim
n!1

p2nC1

q2nC1

D ab C 1 � s

b
D a

1 � s
D ar

r � 1
:
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Consequently, lim
n!1

pn

qn
D ar

r�1
irrespective of the parity of n. Thus the ISCF ŒaI b; a �

converges to ar
r�1

.
Since we have established the convergence of the ISCF, we can compute the limit in a

different way. To this end, let ` D ŒaI b; a �. Then b`2 � ab` � a D 0, so ` D ab˙p
a2Cb2C4ab

2b
.

But ` > 0; so ` D a
2

�

1C
q

1C 4
ab

�

.

We will now study seven special cases.

17.16.1 Special Cases

(1) Let a D Pn D b. Then ŒPnIPn � D Pn
2

h
1C

q
1C 4

P 2
n

i
D 1

2

h
Pn C

p
P 2

n C 4
i
.

(2) Let a D Qn D b. Then ŒQnIQn � D 1
2

h
Qn C

p
Q2

n C 4
i
.

(3) Let a D Pn and b D Qn. Then we get ŒPnIQn; Pn � D Pn
2

h
1C

q
1C 8

P2n

i
.

(4) Let a D Qn and b D Pn. Then ŒQnIPn; Qn � D Qn

2

h
1C

q
1C 8

P2n

i
.

(5) Let a D Fn D b, we get ŒFnIFn � D 1
2

h
Fn C

p
F 2

n C 4
i
.

(6) Let a D Fn and b D Ln. Then ŒFnILn; Fn � D Fn
2

h
1C

q
1C 4

F2n

i
. (This continued

fraction was studied by L. Kupiers of Sierre, Switzerland, in 1991 [143].)

(7) Finally, let a D 1 D b. Then we get Œ1I 1 � D ˛, the golden ratio, as we learned in Chapter 3.

Finally, we turn to a truly delightful application of Fibonacci and Pell numbers to the study
of domino tilings of a graph. But before we begin, we present a brief introduction to basic
terminology in graph theory.

17.17 Basic Graph-theoretic Terminology

Let V be a finite nonempty set, and E a set of unordered pairs fv; wg of elements v and w from
V . Then the ordered pair .V ; E/ is a graph G: G D .V ; E/. The elements in V are the vertices
(or nodes) of the graph, and the unordered pairs fv; wg are its edges. The edge fv; wg is also
denoted by v � w. Since fv; wg D fw; vg, every edge is undirected. Vertices v and w are the
endpoints of the edge fv; wg. A vertex v is adjacent to vertex w if there is an edge v � w.

Geometrically, G is a nonempty set of points (vertices), together with arcs or line segments
joining them.

For example, the graph in Figure 17.1 has four vertices – A; B; C , and D – and seven edges.
It has edges with the same endpoints; such edges are parallel edges. For instance, edges x and y

are parallel edges. On the other hand, the graph in Figure 17.2 has no parallel edges. But it has
an edge z with the same endpoint; such an edge is a loop.
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A

B

x y

D

C

Figure 17.1.

z

Figure 17.2. Figure 17.3.

A loop-free graph that contains no parallel edges is a simple graph. The graph in Figure 17.3
is a simple graph.

A path graph consists of n vertices vi , and edges vi � viC1, where 1 � i � n � 1; it is
denoted by Pn. Figure 17.4 shows the path graphs P1; P2; P3, and P4.

x

P1

x y

P2

a b c

P3

a b c d

P4

Figure 17.4.

A cycle graph Cn consists of n vertices vi and edges vi � viC1 such that vnC1 D v1, where
1 � i � n � 1. So the vertices of a cycle graph can be placed on a circle. Figure 17.5 shows the
cycle graphs C3 and C4.

C3 C4

Figure 17.5.

w

W3

w

W4

Figure 17.6.

A wheel graph Wn consists of n vertices vi , a special vertex w, and edges vi � viC1 and
vi � w for every i . So Wn is the cycle graph Cn such that every vertex vi is adjacent to the hub
w. Figure 17.6 shows the wheel graphs W3 and W4.

Next we present the concept of the product of two graphs.
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17.18 Cartesian Product of Two Graphs

The cartesian product G1 � G2 of two graphs G1 D .V1; E1/ and G2 D .V2; E2/ has vertex set
V1�V2 such that the vertex .v1; v2/ 2 V1�V2 is adjacent to the vertex .w1; w2/ 2 V1�V2 if and
only if:

(1) v1 D w1 and v2 is adjacent to w2 in G2; or

(2) v2 D w2 and v1 is adjacent to w1 in G1.

It follows from the definition that G1 �G2 contains exact copies of G2 at each vertex of G1 and
those of G1 at each vertex of G2.

For example, consider the path graphs P2 and P3 in Figure 17.4. Figure 17.7 shows the
cartesian products P2 � P2 and P2 � P3, where we have denoted the vertex .v; w/ by vw for
notational brevity; they are 2 � 2 and 2 � 3 grids, respectively. More generally, the cartesian
product Pm � Pn is the m � n grid on the cartesian plane. Such graphs play an important role in
the theory of communications.

yx

xx

yy

xy

P2 � P2

ya

xa

yb

xb

yc

xc

P2 � P3

Figure 17.7.

Figure 17.8 shows the cartesian products W4�P1 and W4�P2. You may confirm both using
the definition.

dx

ax

cx

ex

bx

dx

ax

cx

dy

ay

W4 � P2

W4 � P1

ex

bx

cy

ey

by

Figure 17.8.
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17.19 Domino Tilings of W4 � Pn�1

In 1988, F.J. Faase [82] of the University of Twente, Netherlands, investigated the domino tilings
of the product W4 � Pn�1, where n � 2. He found that the number of tilings Cn can be defined
recursively:

C2 D 2; C3 D 10; C4 D 36; C5 D 145I
CnC4 D 2CnC3 C 7CnC2 C 2CnC1 � Cn; (17.46)

where n � 2.
Although the numbers 2; 10; 36; 145; 560; � � � do not appear to reveal any obvious pattern,

they do contain a hidden gem. To see this treasure, notice that

2 = 1 � 2

10 = 2 � 5

36 = 3 � 12

145 = 5 � 29

560 = 8 � 70

" "
Fn Pn

In each case, the first factor on the RHS is a Fibonacci number, and the second factor a Pell
number.

More specifically, we have the following result, established in 2002 by James A. Sellers of
Pennsylvania State University, University Park, Pennsylvania [228].

Theorem 17.1 Let Cn denote the number of domino tilings of the cartesian product W4 �Pn�1,
where n � 2. Then Cn D FnPn.

Proof. Clearly, FnPn satisfies the four initial conditions. So it suffices to verify that FnPn

satisfies recurrence (17.46). To this end, first notice that.

FnC2 D Fn C FnC1; FnC3 D Fn C 2FnC1, and FnC4 D 2Fn C 3FnC1; and

PnC2 D Pn C 2PnC1; PnC3 D 2Pn C 5PnC1, and PnC4 D 5Pn C 12PnC1. Then

2CnC3 C 7CnC2 C 2CnC1 � Cn D 2FnC3PnC3 C 7FnC2PnC2 C 2FnC1PnC1 � FnPn

D 2.Fn C 2FnC1/.2Pn C 5PnC1/C 7.Fn C FnC1/.Pn C 2PnC1/C
2FnC1PnC1 � FnPn

D .4C 7 � 1/FnPn C .8C 7/FnC1Pn C .10C 14/FnPnC1 C
.20C 14C 2/FnC1PnC1

D 10FnPn C 15FnC1Pn C 24FnPnC1 C 36FnC1PnC1
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D 5Pn.2Fn C 3FnC1/C 12PnC1.2Fn C 3FnC1/

D .2Fn C 3FnC1/.5Pn C 12PnC1/

D FnC4PnC4

D CnC4; as desired.

Exercises 17

1. Let x be a real number such that x2 D x C 1. Prove that xn D xFn C Fn�1, where n � 1.

2. Let x be a real number such that x2 D 2xC 1. Prove that xn D xPnCPn�1, where n � 1.

3. Verify Cook’s inequality (17.3) for n D 5 and 6.

4. Verify inequality (17.5) for n D 5 and 6.

5. Confirm inequality (17.5) for n > 3.

6. Establish congruence (17.10).

7. Verify congruence (17.10) for m D 3 D n.

8. Establish congruence (17.11).

9. Establish congruence (17.12).

10. Prove identity (17.16). Hint: Use PMI or the Binet-like formula for Qn.

Prove the following Fibonacci–Lucas identities.

11. FmLn C FnLm D 2FmCn.

12. LmLn C 5FmFn D 2LmCn.

13. L2
n � 5F 2

n D 4.�1/n.

14. L2
n � 2.�1/n D L2n.

Define each integer sequence fzng recursively.

15. 0; 1; 3; 14; 51; 205; 792; : : :.

16. 2; 1; 9; 28; 119; 451; 1782; : : :.

Deduce from formula (17.44) a recurrence satisfied by

17. F 2
n .

18. L2
n.

19. P 2
n .

20. Q2
n.

21. PnQn.

22. P2n.
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An Extended Pell Family

18.1 Introduction

This chapter presents an extended Pell family of polynomial functions gn.x/, which includes
the Fibonacci, Lucas, Pell, and Pell–Lucas polynomials. Using the power of matrices and
determinants, we will develop a Cassini-like formula for this extended family, from which the
corresponding formulas for the four sub-families will follow fairly quickly.

We begin with the definition of gn.x/.

18.2 An Extended Pell Family

The extended Pell polynomial functions gn.x/ are defined recursively as follows:

g0.x/ D a; g1.x/ D b

gn.x/ D 2xgn�1.x/C gn�2.x/;

where a D a.x/ and b D b.x/, and n � 2.
When a.x/ D 0 and b.x/ D 1, gn.x/ D pn.x/; so gn.1/ D pn.1/ D Pn. When a.x/ D 2

and b.x/ D 2x, gn.x/ D qn.x/; then gn.1/ D qn.1/ D 2Qn. Recall from Chapter 14 that
pn.x=2/ D fn.x/ and qn.x=2/ D ln.x/.

Notice that

g2.x/ D 2xb C a D a � 1C b.2x/ D ap1.x/C bp2.x/

g3.x/ D 2x.2bx C a/C b D a.2x/C b.4x2 C 1/ D ap2.x/C bp3.x/

g4.x/ D 2x.4bx2 C 2ax C b/ D a.4x2 C 1/C b.8x3 C 4x/ D ap3.x/C bp4.x/:

More generally, we conjecture that gn.x/ D apn�1.x/ C bpn.x/, where n � 0. We will now
establish this using strong induction. To this end, notice that p�1.x/ D 1.

T. Koshy, Pell and Pell–Lucas Numbers with Applications, DOI 10.1007/978-1-4614-8489-9__18,
© Springer Science+Business Media New York 2014
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Lemma 18.1 gn.x/ D apn�1.x/C bpn.x/ for every n � 0.

Proof (by PMI). When n D 0, RHS D ap�1.x/C bp0.x/ D a � 1C b � 0 D a D g0.x/ D LHS.
Likewise, when n D 1, RHS D ap0.x/C bp1.x/ D a � 0C b � 1 D b D g1.x/ D LHS. So the
formula works when n D 0 and n D 1.

Now assume that it works for all nonnegative integers < n, where n is an arbitrary integer
� 2. Then

gn.x/ D 2xgn�1.x/C gn�2.x/

D 2xŒapn�2.x/C bpn�1.x/�C Œapn�3.x/C bpn�2.x/�

D aŒ2xpn�2.x/C pn�3.x/�C bŒ2xpn�1.x/C pn�2.x/�

D apn�1.x/C bpn.x/:

So the formula also works for n.
Thus, by the strong version of PMI, the result is true for all integers n � 0.

Interestingly, gn.x/ satisfies a Binet-like formula. To establish this, we need the following result
also.

Lemma 18.2

pnC1.x/pn�2.x/ � pn.x/pn�1.x/ D 2.�1/n�1x:

Proof. Using the Binet-like formula for pk.x/, we have

.� � ı/2 � LHS D �
�nC1 � ınC1

� �
�n�2 � ın�2

� � .�n � ın/
�
�n�1 � ın�1

�

D 
��3.�ı/n�2 � ı3.�ı/n�2
� � 
��.�ı/n�1 � ı.�ı/n�1

�

D .�1/n�1.�3 C ı3 C � C ı/

D .�1/n�1.� C ı/


.�2 C ı2/ � �ı C 1

�

D .�1/n�1.2x/


.� C ı/2 C 4

�

D 2.�1/n�1x.4x2 C 4/

D 8.�1/n�1x.x2 C 1/

LHS D 2.�1/n�1x, as desired.

It follows from this lemma that PnC1Pn�2 � PnPn�1 D 2.�1/n�1. For example, P7P4 �
P6P5 D 169 � 12 � 70 � 29 D �2 D 2.�1/6�1.

We will now use these two lemmas to establish a Cassini-like formula for gn.x/.

Theorem 18.1

gnC1.x/gn�1.x/ � g2
n.x/ D .�1/n�1.a2 � b2 C 2abx/: (18.1)
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Proof. Using Lemmas 18.1 and Lemmas 18.2, we have

LHS D Œapn.x/C bpnC1.x/�Œapn�2.x/C bpn�1.x/� � Œapn�1.x/C bpn.x/�2

D a2Œpn.x/pn�2.x/ � p2
n�1.x/�C b2ŒpnC1.x/pn�1.x/ � p2

n.x/�C
abŒpnC1.x/pn�2.x/ � pn�1.x/pn.x/�

D a2.�1/n�1 C b2.�1/n C ab


2.�1/n�1x

�

D .�1/n�1.a2 � b2 C 2abx/

D RHS, as desired.

In particular, the following Cassini-like identities follow from formula (18.1):

pnC1.x/pn�1.x/ � p2
n.x/ D .�1/n

qnC1.x/qn�1.x/ � q2
n.x/ D 4.�1/n�1.x2 C 1/

fnC1.x/fn�1.x/ � f 2
n .x/ D .�1/n

lnC1.x/ln�1.x/ � l2
n.x/ D 5.�1/n�1.x2 C 4/:

For example, we have

q5.x/q3.x/ � q2
4.x/ D .32x5 C 40x3 C 10x/.8x3 C 6x/ � .16x4 C 16x2 C 2/2

D �4.x2 C 1/ D 4.�1/4�1.x2 C 1/:

These formulas yield the familiar Cassini-like identities for Pell, Pell–Lucas, Fibonacci, and
Lucas numbers, respectively.

18.3 A Generalized Cassini-like Formula

Next, we pursue a generalized Cassini-like formula for gn.x/. To this end, we need the next two
results from the theory of matrices [125].

Theorem 18.2

(1) Let A; B , and C be n � n identical matrices, except that their i th rows (or columns) are
different, and that the i th row (or column) of C is the sum of the i th rows (or columns) of
A and B . Then jC j D jAj C jBj, where jM j denotes the determinant of the square matrix
M .

(2) Let A and C be n�n identical matrices, except that the i th row (or column) of C is k times
the i th row (or column) of A. Then jC j D kjAj.

Combining these two properties, we have the following result.
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Theorem 18.3 Let A; B , and C be n � n identical matrices, except that their i th rows (or
columns) are different, and that the i th row (or column) of C is the sum of k times the i th row
(or column) of A and the i th row (or column) of B . Then jC j D kjAj C jBj.

Next we introduce two families of matrices. First, let

A�1.x/ D
"

gn.x/ gn�1.x/

gnC1.x/ gn.x/

#

and

A0.x/ D
"

gn.x/ gn.x/

gnC1.x/ gnC1.x/

#

:

Notice that jA0.x/j D 0.
We now construct the matrix Ai.x/ recursively from Ai�1.x/ and Ai�2.x/ as follows:

multiply column 2 of Ai�1.x/ by 2x and add column 2 of Ai�2.x/ to the resulting matrix.
For example,

A1.x/ D
"

gn.x/ 2xgn.x/C gn�1.x/

gnC1.x/ 2xgnC1.x/C gn.x/

#

D
"

gn.x/ gnC1.x/

gnC1.x/ gnC2.x/

#

and

A2.x/ D
"

gn.x/ 2xgnC1.x/C gn.x/

gnC1.x/ 2xgnC2.x/C gnC1.x/

#

D
"

gn.x/ gnC2.x/

gnC1.x/ gnC3.x/

#

;

where jA1.x/j D .�1/n.a2 � b2 C 2abx/ by Theorem 18.1.
More generally, it follows by induction that

Ar.x/ D
"

gn.x/ gnCr .x/

gnC1.x/ gnCrC1.x/

#

:

By virtue of Theorem 18.3, jAr.x/j D 2xjAr�1.x/j C jAr�2.x/j, where jA0.x/j D 0 and
jA1.x/j D .�1/n.a2�b2C2abx/. In other words, jAr.x/j satisfies the same recurrence as gr.x/

does, with a.x/ D 0 and b.x/ D .�1/n.a2 � b2 C 2abx/. Therefore, by Lemma 18.1, we have

jAr.x/j D 0 � pr�1.x/C 
.�1/n.a2 � b2 C 2abx/
�

pr.x/

D .�1/n.a2 � b2 C 2abx/pr.x/:
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We now introduce the second family of matrices Bs.x/. To this end, we let

B0.x/ D
"

gn.x/ gn.x/

gn�r .x/ gn�r .x/

#

and

B1.x/ D
"

gnC1.x/ gn.x/

gn�rC1.x/ gn�r .x/

#

:

Notice that jB0.x/j D 0. The array B1.x/ is obtained by changing n to n � r in AT
r .x/,

and switching the rows and then the columns of the resulting matrix, where M T denotes the
transpose of the matrix M . So jB1.x/j D .�1/n�r .a2 � b2 C 2abx/pr.x/.

Now construct Bi.x/ recursively from Bi�1.x/ and Bi�2.x/ as follows: multiply column 1
of Bi�1.x/ by 2x and add column 1 of Bi�2.x/ to the resulting matrix. For example,

B2.x/ D
"

gnC2.x/ gn.x/

gn�rC2.x/ gn�r .x/

#

and

B3.x/ D
"

gnC3.x/ gn.x/

gn�rC3.x/ gn�r .x/

#

:

More generally, it follows by induction that

Bs.x/ D
"

gnCs.x/ gn.x/

gn�rCs.x/ gn�r .x/

#

:

Again, by Theorem 18.3, jBs.x/j D 2xjBs�1.x/j C jBs�2.x/j, where jB0.x/j D 0 and
jB1.x/j D .�1/n�r .a2 � b2 C 2abx/pr.x/. In other words, jBs.x/j satisfies the same recursive
definition as gs.x/ with a.x/ D 0 and b.x/ D .�1/n�r .a2 � b2 C 2abx/pr.x/. Consequently,
by Lemma 18.1,

jBs.x/j D 0 � ps�1.x/C 
.�1/n�r .a2 � b2 C 2abx/pr.x/
�

ps.x/

D .�1/n�r .a2 � b2 C 2abx/pr.x/ps.x/:

That is,

gnCs.x/gn�r .x/ � gn�rCs.x/gn.x/ D .�1/n�r .a2 � b2 C 2abx/pr.x/ps.x/:
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Let m D n � r C s. Then this becomes

gmCr .x/gn�r .x/ � gm.x/gn.x/ D .�1/n�r .a2 � b2 C 2abx/pr.x/pm�nCr .x/: (18.2)

18.3.1 Two Interesting Special Cases

(1) Suppose a.x/ D 0 and b.x/ D 1. Then gn.x/ D pn.x/ and formula (18.2) becomes

pmCr .x/pn�r .x/ � pm.x/pn.x/ D .�1/n�r�1pr.x/pm�nCr .x/:

Since pn.x=2/ D fn.x/, this implies that

fmCr .x/fn�r .x/ � fm.x/fn.x/ D .�1/n�r�1fr.x/fm�nCr .x/:

In particular, these two formulas yield the following Pell and Fibonacci identities:

PmCrPn�r � PmPn D .�1/n�r�1PrPm�nCr

FmCrFn�r � FmFn D .�1/n�r�1FrFm�nCr : (18.3)

Suppose we let r D 1 and replace n with nC 1 in identity (18.3). We then get

FmC1Fn � FmFnC1 D .�1/nFm�n:

This is called d’Ocagne’s identity, after the French mathematician Philbert Maurice d’Ocagne
(1862–1938).

(2) On the other hand, suppose a.x/ D 2 and b.x/ D 2x. Then gn.x/ D qn.x/ and formula
(18.2) yields the following identities:

qmCr .x/qn�r .x/ � qm.x/qn.x/ D 4.�1/n�r .x2 C 1/pr.x/pm�nCr .x/

lmCr .x/ln�r .x/ � lm.x/ln.x/ D .�1/n�r .x2 C 4/fr.x/fm�nCr .x/

qmCrqn�r � qmqn D 2.�1/n�rPrPq�nCr

LmCrLn�r � LmLn D 5.�1/n�rFrFm�nCr :

When m D n, the generalized Cassini-like formula (18.2) yields the following identity for
the extended Pell family:

gnCr .x/gn�r .x/ � g2
n.x/ D .�1/n�r .a2 � b2 C 2abx/p2

r .x/:

This yields the following special cases:

pnCr .x/pn�r .x/ � p2
n.x/ D .�1/n�r�1p2

r .x/

qnCr .x/qn�r .x/ � q2
n.x/ D 4.�1/n�r .x2 C 1/p2

r .x/ (18.4)

fnCr .x/fn�r .x/ � f 2
n .x/ D .�1/n�r�1f 2

r .x/
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lnCr .x/ln�r .x/ � l2
n.x/ D 4.�1/n�r .x2 C 4/f 2

r .x/

PnCrPn�r � P 2
n D .�1/n�r�1P 2

r

QnCrQn�r �Q2
n D 2.�1/n�rP 2

r

FnCrFn�r � F 2
n D .�1/n�r�1F 2

r (18.5)

LnCrLn�r � L2
n D 5.�1/n�rF 2

r :

For example,

p7.x/p3.x/ � p2
5.x/ D .64x6 C 80x4 C 24x2 C 1/.4x2 C 1/ � .16x4 C 12x2 C 1/2

D 4x2 D .�1/5�2�1p2
2.x/I

and P14P4 � P 2
9 D 80; 782 � 12 � 9852 D �841 D �292 D .�1/9�5�1P 2

5 ;

q6.x/q2.x/ � q2
4.x/ D .64x6 C 96x4 C 36x2 C 2/.4x2 C 2/ � .16x4 C 16x2 C 2/2

D 16x2.x2 C 1/ D 4.x2 C 1/.2x/2

D 4.�1/4�2.x2 C 1/p2
2.x/I

and Q10Q4 �Q2
7 D 3363 � 17 � 2392 D 50 D 2 � 52 D 2.�1/7�3P 2

3 ;

f8.x/f2.x/ � f 2
5 .x/ D .x7 C 6x5 C 10x3 C 4x/x � .x4 C 3x2 C 1/2

D �.x2 C 1/2 D .�1/5�3�1f 2
3 .x/I

and F11F5 � F 2
8 D 89 � 5 � 212 D 4 D .�1/8�3�1F 2

3 ; and

l8.x/l2.x/ � l2
5 .x/ D .x8 C 8x6 C 20x4 C 16x2 C 2/.x2 C 2/ � .x5 C 5x3 C 5x/2

D x6 C 6x4 C 9x2 C 4 D .�1/5�3.x2 C 4/f 2
3 .x/I

and L11L5 � L2
8 D 199 � 11 � 472 D �20 D 5.�1/8�3F 2

3 .
Identity (18.5) is Catalan’s identity, named after the Belgian mathematician Eugene Charles

Catalan (1814–1894). The ubiquitous Catalan numbers are named after him [131].
Letting r D n in (18.4), we get the identity

2q2n.x/ D q2
n.x/C 4.x2 C 1/p2

n.x/: (18.6)

For example,

q2
3.x/C 4.x2 C 1/p2

3.x/ D .8x3 C 6x/2 C 4.x2 C 1/.4x2 C 1/2

D 128x6 C 192x4 C 72x2 C 4 D 2q6.x/:

In particular, it follows from (18.6) that Q2n D Q2
n C 2P 2

n , as we saw in Chapter 7.
For example, Q2

6 C 2P 2
6 D 992 C 2 � 702 D 19; 601 D Q12.
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Chebyshev Polynomials

19.1 Introduction

Pell and Pell–Lucas polynomials are related to the well-known Chebyshev polynomials, named
after the eminent Russian mathematician Pafnuty Lvovich Chebyshev (1821–1894). Just as the
Pell polynomial family consists of two closely related sub-families fpn.x/g and fqn.x/g, the
Chebyshev family is made up of two closely related sub-families fTn.x/g and fUn.x/g. (The
letter T comes from the French transliteration, Tchebycheff or the German one, Tschebyscheff.)
Chebyshev polynomials have applications to approximation theory, combinatorics, Fourier
series, numerical analysis, geometry, graph theory, number theory, and statistics [184].

This chapter presents a brief introduction to Chebyshev polynomials of both kinds. They are
closely related to the Pell equation u2 � dv2 D 1, trigonometry, and the tilings of 1 � n linear
and circular boards.

We begin our discussion with the Chebyshev polynomials fTn.x/g.

19.2 Chebyshev Polynomials of the First Kind

Chebyshev polynomials of the first kind Tn.x/ are often defined recursively:

T0.x/ D 1; T1.x/ D x

Tn.x/ D 2xTn�1.x/ � Tn�2.x/; (19.1)

where n � 2.
For example, T2.x/ D 2xT1.x/ � T0.x/ D 2x � x � 1 D 2x2 � 1 and T3.x/ D 2x

.2x2 � 1/ � x D 4x3 � 3x.
Table 19.1 shows the first ten Chebyshev polynomials of the first kind.

T. Koshy, Pell and Pell–Lucas Numbers with Applications, DOI 10.1007/978-1-4614-8489-9__19,
© Springer Science+Business Media New York 2014
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Table 19.1.

T0.x/ = 1 T5.x/ = 16x5 � 20x3 C 5x

T1.x/ = x T6.x/ = 32x6 � 48x4 C 18x2 � 1

T2.x/ = 2x2 � 1 T7.x/ = 64x7 � 112x5 C 56x3 � 7x

T3.x/ = 4x3 � 3x T8.x/ = 128x8 � 256x6 C 160x4 � 32x2 C 1

T4.x/ = 8x4 � 8x2 C 1 T9.x/ = 256x9 � 576x7 C 432x5 � 120x3 C 9x

We will now show how the polynomials Tn.x/ and qn.x/ are closely related. To this end,
first notice that q1.x/ D 2x D 2i4x D 2.�i/.ix/ D 2.�i/T1.x/; and q2.x/ D 4x2 C 2 D
2.2x2 C 1/ D 2i4.2x2 C 1/ D 2.�i/2Œ2.ix/2 � 1� D 2.�i/2T2.ix/, where i denotes the
imaginary number

p�1.
More generally, suppose qn.x/ D 2.�i/nTn.ix/ for all nonnegative integer < n, where n is

an arbitrary integer � 2. Then, by Chebyshev recurrence (19.1), we have

Tn.ix/ D 2.ix/Tn�1.ix/ � Tn�2.ix/

D 2ix

�
qn�1.x/

2.�i/n�1

�

� qn�2.x/

2.�i/n�2

D 2xqn�1.x/

2.�i/n
C qn�2.x/

2.�i/n

D 2xqn�1.x/C qn�2.x/

2.�i/n

D qn.x/

2.�i/n

2.�i/nTn.ix/ D qn.x/:

Thus, by the strong version of PMI, qn.x/ D 2.�i/nTn.ix/ for n � 0.

For example,

2.�i/5T5.ix/ D �2iŒ16.ix/5 � 20.ix/3 C 5.ix/�

D �2i.16ix5 C 20ix3 C 5ix/

D 32x5 C 40x3 C 10x

D q5.x/; as expected.

19.3 Pell–Lucas Numbers Revisited

Since qn.1/ D 2Qn, it now follows that 2Qn D 2.�i/nTn.i/; so Qn D jTn.i/j, where jzj
denotes the absolute value of the complex number z.

For example, Q5 D .�i/5T5.i/ D �i.16i5 � 20i3 C 5i/ D 16C 20C 5 D 41. Similarly,
.�i/6T6.i/ D 99D Q6.
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Next we develop an explicit formula for Tn.x/ from its recurrence.

19.4 An Explicit Formula for Tn.x/

The characteristic equation of recurrence (19.1) is t 2 � 2xt C 1 D 0. Its solutions are
2x˙p

4x2�4
2

D x ˙ px2 � 1. So the general solution of the recurrence is given by Tn.x/ D
A.x Cpx2 � 1/n C B.x �px2 � 1/n, where A D A.x/ and B D B.x/ are to be determined.
Using the two initial conditions, we get A D B D 1

2
. Thus the desired explicit formula is

Tn.x/ D .x Cpx2 � 1/n C .x �px2 � 1/n

2
; (19.2)

where n � 0.
For example,

2T3.x/ D .x C
p

x2 � 1/3 C .x �
p

x2 � 1/3

D 2Œx3 C 3x.x2 � 1/� D 2.4x3 � 3x/

T3.x/ D 4x3 � 3x:

Formula (19.2) can also be used to prove that jTn.i/j D Qn:

2Tn.i/ D .i C
p

i 2 � 1/n C .i �
p

i 2 � 1/n

D .i C i
p

2/n C .i � i
p

2/n

D in.�n C ın/

jTn.i/j D �n C ın

2
; since ji j D 1

D Qn; as desired.

The next example shows an interesting property of the Chebyshev polynomials Tn.x/.

Example 19.1 Prove that 2Tm.x/Tn.x/ D TmCn.x/C Tjm�nj.x/.

Proof. Suppose m � n � 0. For convenience, we let
p

x2 � 1 D r ; so x2 � r2 D 1.

4Tm.x/Tn.x/ D Œ.x C r/m C .x � r/m� Œ.x C r/n C .x � r/n�

D 

.x C r/mCn C .x � r/mCn

�C .x C r/m.x � r/n C .x � r/m.x C r/n

D 2TmCn.x/C .x C r/n.x � r/n Œ.x C r/m�n C .x � r/m�n�

D 2TmCn.x/C .x2 � r2/n � 2Tm�n.x/

D 2TmCn.x/C 2Tm�n.x/

2Tm.x/Tn.x/ D TmCn.x/C Tm�n.x/:
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Similarly, it can be shown that 2Tm.x/Tn.x/ D TmCn.x/C Tn�m.x/ when n > m. Thus the
desired result follows by combining the two cases.

For example, let m D 5 and n D 3. Then

RHS D T8.x/C T2.x/

D .128x8 � 256x6 C 160x4 � 32x2 C 1/C .2x2 � 1/

D 128x8 � 256x6 C 160x4 � 30x2

D 2.16x5 � 20x3 C 5x/.4x3 � 3x/

D 2T5.x/T3.x/:

Suppose we let n D 1 and assume that m � 1. Then the formula yields

TmC1.x/C Tm�1.x/ D 2Tm.x/T1.x/

D 2xTm.x/:

This is the Chebyshev recurrence (19.1). So the formula in Example 19.1 is a generalization of
this recurrence.

Next we develop another explicit formula for Tn.x/ using formula (19.2) and the binomial
theorem.

19.5 Another Explicit Formula for Tn.x/

Again, we let
p

x2 � 1 D r for brevity and clarity. By the binomial theorem, we have

2Tn.x/ D .x C r/n C .x � r/n

D
nX

kD0

Œ1C .�1/k�

 
n

k

!

xn�krk

D 2

bn=2cX

kD0

 
n

2k

!

xn�2kr2k

Tn.x/ D
bn=2cX

kD0

 
n

2k

!

.x2 � 1/kxn�2k: (19.3)

For example,

T3.x/ D
1X

kD0

 
3

2k

!

.x2 � 1/kx3�2k
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D
 

3

0

!

x3 C
 

3

2

!

.x2 � 1/x

D x3 C 3x.x2 � 1/

D 4x3 � 3x:

We can derive an explicit formula for Qn from (19.3):

Qn D
bn=2cX

kD0

 
n

2k

!

2k: (19.4)

This is the same as formula (9.6) in Chapter 9.
Formula (19.4) shows that the sum of the absolute values of the coefficients in Tn.x/ is Qn.

For example, consider T4.x/ D 8x4� 8x2C 1. The sum of the absolute values of its coefficients
equals 8C 8C 1 D 17 D Q4.

19.5.1 Two Interesting Byproducts

We can extract two interesting properties of Tn.x/ from formula (19.3):

(1) The highest term in x from the factor .x2 � 1/k is x2k . So the highest power of x in
.x2 � 1/kxn�2k equals x2kCn�2k D xn. Consequently, Tn.x/ is a polynomial of degree n.

(2) The coefficient of xn in Tn.x/ is given by
bn=2cP

kD0

�
n
2k

�
. But by Corollary 1.1,

P

r even

�
n
r

� D
P

r odd

�
n
r

� D 2n�1. So the coefficient of xn is 2n�1; that is, the leading coefficient in Tn.x/ is

2n�1.

For example, the leading coefficient of T5.x/ equals 16 D 24 and that of T6.x/ is 32 D 25.
Next we exhibit a close relationship between Tn.x/ and the Pell’s equation u2 � .x2 � 1/

v2 D 1.

19.6 Tn.x/ and the Pell Equation u2 � .x2 � 1/v2 D 1

Clearly, .u1; v1/ D .x; 1/ is the fundamental solution of the Pell equation u2 � .x2 � 1/v2 D 1,
where x2 � 1 > 0 and is nonsquare. Its solutions .un; vn/ are given by

"
un

vn

#

D
"

x x2 � 1

1 x

#"
un�1

vn�1

#

D 2x

"
un�1

vn�1

#

�
"

un�2

vn�2

#

;



376 19. Chebyshev Polynomials

where n � 2. [Notice that .u0; v0/ D .1; 0/ is also a solution.] It follows by formula (19.2) that
un D Tn.x/. (We will revisit this Pell equation a bit later.)

Next we display an interestingly close relationship between the polynomials Tn.x/ and
trigonometry.

19.7 Chebyshev Polynomials Tn.x/ and Trigonometry

Let u; v, and � be any three angles, where 0 � � � � . Using the Euler’s formula, ei� D
cos � C i sin � , we have

ei.uCv/ D eiu � eiv

cos.uC v/C i sin.uC v/ D .cos uC i sin u/.cos v C i sin v/

D .cos u cos v � sin u sin v/C i.sin u cos v C cos u sin v/:

Equating the real and imaginary parts, we get the addition formulas for the cosine and sine
functions:

cos.uC v/ D cos u cos v � sin u sin v (19.5)

sin.uC v/ D sin u cos v C cos u sin v: (19.6)

Since sin2 � C cos2 � D 1, formula (19.5) yields the double-angle formula cos 2� D cos
.�C�/ D cos2 � � sin2 � D cos2 � � .1� cos2 �/ D 2 cos2 � �1. It follows from formula (19.6)
that sin 2� D 2 sin � cos � . Consequently,

cos 3� D cos.2� C �/

D cos 2� cos � � sin 2� sin �

D .2 cos2 � � 1/ cos � � .2 sin � cos �/ sin �

D 2 cos3 � � cos � � 2 cos �.1 � cos2 �/

D 4 cos3 � � 3 cos �:

Similarly, cos 4� D 8 cos4 � � 8 cos2 � C 1.
Table 19.2 shows the first eight multiple-angle formulas for the cosine function. They

manifest an interesting pattern: The RHS of cos n� is a polynomial in cos � with exactly the
same coefficients as in Tn.x/, where 0 � n � 7; that is, cos n� D Tn.cos �/, where 0 � n � 7.

Table 19.2.

cos 0� = 1 cos 4� = 8 cos4 � � 8 cos2 � C 1

cos 1� = cos � cos 5� = 16 cos5 � � 20 cos3 � C cos �

cos 2� = 2 cos2 � � 1 cos 6� = 32 cos6 � � 48 cos4 � C 18 cos2 � � 1

cos 3� = 4 cos3 � � 3 cos � cos 7� = 64 cos7 � � 112 cos5 � C 56 cos3 � � 7 cos �
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Is this true in general? That is, is cos n� D Tn.cos �/ for every n � 0? Fortunately, the
answer is yes. We will confirm this using induction and the well-known De Moivre theorem:

First, notice that

cos 2� D 2 cos2 � � 1

D 2 cos �.cos 1�/ � cos 0�

D 2 cos �T1.cos �/ � T0.cos �/:

Likewise,

cos 3� D 4 cos3 � � 3 cos �

D 2 cos �.2 cos2 � � 1/ � cos �

D 2 cos � cos 2� � cos �

D 2 cos �T2.cos �/ � T1.cos �/:

We are now ready to confirm the observation. Since T0.cos �/ D 1 D cos 0� and
T1.cos �/ D cos � , the statement is true when n D 0 and n D 1. It remains to show that
cos n� satisfies the same recurrence as Tn.cos �/.

Assume that it is true for all integers < n, where n is an arbitrary positive integer. Let a D ei�

and b D e�i� . Then a C b D 2 cos � and ab D 1. By De Moivre’s theorem, ak D eik� and
bk D e�ik� ; so ak C bk D 2 cos k� . Substituting for a and b in the algebraic identity

an C bn D .aC b/.an�1 C bn�1/ � ab.an�2 C bn�2/;

we get

2 cos n� D 2 cos � � 2 cos .n � 1/� � 1 � 2 cos .n � 2/�

cos n� D 2 cos �Œcos .n � 1/�� � cos .n � 2/�

D 2 cos � � Tn�1.cos �/ � Tn�2.cos �/

D Tn.cos �/:

Thus, by the strong version of PMI, Tn.cos �/ D cos n� for every n � 0. Thus cos n� is a
Chebyshev polynomial function of cos � .

Since 0 � � � � , �1 � cos � � 1; that is, �1 � x � 1. So Tn.x/ D cos n� D
cos.n arccos x/, where 0 � arccos x � � .

19.8 Chebyshev Recurrence Revisited

Interestingly, the Chebyshev recurrence (19.1) can be obtained using the sum identity

cos uC cos v D 2 cos
uC v

2
cos

u � v

2
:



378 19. Chebyshev Polynomials

To see this, let u D n� and v D .n � 2/� . Then

cos n� C cos .n � 2/� D 2 cos .n � 1/� cos �

Tn.x/C Tn�2.x/ D 2xTn�1.x/:

This is the desired recurrence.
Let x D cos � . Then the fact that cos n� D Tn.x/ can be used to derive several properties

of the Chebyshev polynomial Tn.x/, as the following three examples illustrate. We leave their
proofs as exercises.

Example 19.2 Prove that Tm.Tn.x// D Tmn.x/, where m and n are nonnegative integers.

For example, let m D 3 and n D 2. Then T2.x/ D 2x2 � 1 and T3.x/ D 4x3 � 3x. So

T3.T2.x// D 4.2x2 � 1/3 � 3.2x2 � 1/

D 4.8x6 � 12x4 C 6x2 � 1/ � 6x2 C 3

D 32x6 � 48x4 C 18x2 � 1

D T6.x/:

Similarly, T2.T3.x// D 32x6 � 48x4 C 18x2 � 1 D T6.x/.
The next example reconfirms the identity in Example 19.1 in a much quicker way, using a

trigonometric identity.

Example 19.3 Reconfirm the identity 2Tm.x/Tn.x/ D TmCn.x/ C Tjm�nj.x/, where m and n

are nonnegative integers.

The next example also shows the power and beauty of the trigonometric relationship in
establishing properties of the Chebyshev polynomials.

Example 19.4 Prove that ŒTmCn.x/ � 1�ŒTm�n.x/ � 1� D ŒTm.x/ � Tn.x/�2.

19.9 A Summation Formula For Tn.x/

Using the binomial theorem and De Moivre’s theorem, we can now derive a summation formula
for Tn.x/:

.cos � C i sin �/n D
nX

rD0

i r

 
n

r

!

cosn�r � sinr �

cos n� C i sin n� D cosn � C i

 
n

1

!

cosn�1 � sin � �
 

n

2

!

cosn�2 � sin2 � C � � �
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Equating the real parts from both sides, we get

cos n� D cosn � �
 

n

2

!

cosn�2 � sin2 � C
 

n

4

!

cosn�4 � sin2 � C � � � C

.�1/bn=2c
 

n

2bn=2c

!

cosn�2bn=2c � sin2bn=2c �

D
bn=2cX

kD0

.�1/k

 
n

2k

!

cosn�2k � sin2k �

D
bn=2cX

kD0

.�1/k

 
n

2k

!

cosn�2k �.1 � cos2 �/k

D
bn=2cX

kD0

.�1/k

 
n

2k

!

cosn�2k �

2

4
kX

j D0

.�1/j

 
k

j

!

cos2j �

3

5

D
bn=2cX

kD0

.�1/k

bn=2cX

j Dk

 
n

2j

! 
j

k

!

cosn�2k �;

after a lot of algebra [184]. This implies that

Tn.x/ D
bn=2cX

kD0

.�1/k

bn=2cX

j Dk

 
n

2j

! 
j

k

!

xn�2k: (19.7)

For example,

T3.x/ D
1X

kD0

.�1/k

1X

j Dk

 
3

2j

! 
j

k

!

x3�2k

D
1X

j D0

 
3

2j

! 
j

0

!

x3 �
1X

j D1

 
3

2

! 
j

1

!

x

D .1C 3/x3 � 3x

D 4x3 � 3x:

Formula (19.7) also implies that Tn.x/ is a polynomial of degree n. Its leading coefficient,
by Corollary 1.1, equals

bn=2cX

j D0

 
n

2j

! 
j

0

!

D
bn=2cX

j D0

 
n

2j

!

D 2n�1:
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19.9.1 A Summation Formula For Qn

Formula (19.7) gives an interesting byproduct:

Qn D
bn=2cX

kD0

bn=2cX

j Dk

 
n

2j

! 
j

k

!

: (19.8)

Consequently, we can compute Qn using the even-numbered binomial coefficients in row n of
Pascal’s triangle.

For example,

Q5 D
2X

kD0

2X

j Dk

 
5

2j

! 
j

k

!

D
2X

j D0

 
5

2j

! 
j

0

!

C
2X

j D1

 
5

2j

! 
j

1

!

C
2X

j D2

 
5

2j

! 
j

2

!

D
" 

5

0

! 
0

0

!

C
 

5

2

! 
1

0

!

C
 

5

4

! 
2

0

!#

C
" 

5

2

! 
1

1

!

C
 

5

4

! 
2

1

!#

C
 

5

4

! 
2

2

!

D .1C 10C 5/C .10C 10/C 5 D 41 , as expected.

See Table 19.3 as well.

Table 19.3.

Even-numbered entries in row 5: 1 10 5 1 10 5 1 10 5

Weights:

 
0

0

!  
1

0

!  
2

0

!

�
 

1

1

!  
2

1

!

� �
 

2

2

!

Multiply: 1 10 5 � 10 10 � � 5

Add: 16 20 5

Cumulative sum: 41

Likewise,

Q4 D
2X

kD0

2X

j Dk

 
4

2j

! 
j

k

!

D 8C 8C 1 D 17:

Next we present the closely-related Chebyshev polynomials of the second kind; they satisfy
the same recurrence as Tn.x/.
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19.10 Chebyshev Polynomials of the Second Kind

Chebyshev polynomials of the second kind Un.x/ are also often defined recursively:

U0.x/ D 1; U1.x/ D 2x

Un.x/ D 2xUn�1.x/ � Un�2.x/; (19.9)

where n � 2.
Table 19.4 shows the first ten Chebyshev polynomials of the second kind.

Table 19.4.

U0.x/ = 1 U5.x/ = 32x5 � 32x3 C 6x

U1.x/ = 2x U6.x/ = 64x6 � 80x4 C 24x2 � 1

U2.x/ = 4x2 � 1 U7.x/ = 128x7 � 192x5 C 80x3 � 8x

U3.x/ = 8x3 � 4x U8.x/ = 256x8 � 448x6 C 240x4 � 40x2 C 1

U4.x/ = 16x4 � 12x2 C 1 U9.x/ = 512x9 � 1024x7 C 672x5 � 160x3 C 10x

Just as Chebyshev polynomials of the first kind Tn.x/ and Pell–Lucas polynomials qn.x/

are closely related, so are the Chebyshev polynomials of the second kind Un.x/ and the Pell
polynomials pn.x/. To see this relationship, first notice that

p1.x/ D 1 D .�i/0 � 1 D .�i/0U0.ix/

p2.x/ D 2x D .�i/.2ix/ D .�i/1U1.ix/

p3.x/ D 4x2 C 1 D .�i/2Œ4.ix/2 � 1� D .�i/2U2.ix/:

More generally, we claim that pn.x/ D .�i/n�1Un�1.ix/, where n � 1. To this end, suppose
that it is true for all positive integers � n, where n is an arbitrary integer � 2. Then, by the
recurrence (19.9), we have

Un.ix/ D 2ixUn�1.ix/ � Un�2.ix/

D 2ix

�
pn.x/

.�i/n�1

�

� pn�1.x/

.�i/n�2

D 2xpn.x/

.�i/n
C pn�1.x/

.�i/n

.�i/nUn.ix/ D 2xpn.x/C pn�1.x/

D pnC1.x/:

Thus, by the strong version of PMI, it follows that pn.x/ D .�i/n�1Un�1.ix/ for every n � 1.
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For example,

.�i/5U5.ix/ D �i


32.ix/5 � 32.ix/3 C 6.ix/

�

D 32x5 C 32x3 C 6x

D p6.x/:

19.11 Pell Numbers Revisited

Since Pn D pn.1/, it follows from the formula pn.x/ D .�i/n�1Un�1.ix/ that Pn D
.�i/n�1Un�1.i/; so Pn D jUn�1.i/j = sum of the absolute values of the coefficients in Un�1.x/.

For example, P5 D .�i/4U4.i/ D 16i4 � 12i2 C 1 D 16 C 12 C 1 D 29. Similarly,
P7 D .�i/6U6.i/ D 169.

Next we find an explicit formula for Un.x/ from the recurrence (19.9).

19.12 An Explicit Formula for Un.x/

Since both Tn.x/ and Un.x/ satisfy the same recurrence, it follows from our earlier discussion
that

Un.x/ D A.x C
p

x2 � 1/n C B.x �
p

x2 � 1/n;

where A D A.x/ and B D B.x/ are to be determined. Using the initial conditions U0.x/ D 1

and U1.x/ D 2x, we get

Un.x/ D .x Cpx2 � 1/nC1 � .x �px2 � 1/nC1

2
p

x2 � 1
; (19.10)

where n � 0.
For example,

U3.x/ D .x Cpx2 � 1/4 � .x �px2 � 1/4

2
p

x2 � 1

D
.2x/2

p
x2 � 1

nh
x2 C .x2 � 1/C 2x

p
x2 � 1

i
C
h
x2 C .x2 � 1/ � 2x

p
x2 � 1

io

2
p

x2 � 1

D 2x.4x2 � 2/

D 8x3 � 4x;

where we have used the fact that a4 � b4 D .aC b/.a � b/.a2 C b2/.
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Interestingly, formula (19.10) can also be used to establish that Pn D jUn�1.i/j:

2
p

2Un�1.i/ D .i C
p

i 2 � 1/n � .i �
p

i 2 � 1/n

D .i C i
p

2/n � .i � i
p

2/n

D in.�n � ın/

jUn�1.i/j D �n � ın

2
p

2

D Pn; as expected.

19.13 Another Explicit Formula for Un.x/

Formula (19.10), coupled with the binomial theorem, can be used to develop a second explicit
formula for Un.x/. For convenience, we let r D px2 � 1. Then

2rUn.x/ D .x C r/nC1 � .x � r/nC1

D
nC1X

kD0

 
nC 1

k

!

Œ1 � .�1/k�xn�kC1rk

D 2
X

k odd

 
nC 1

k

!

xn�kC1rk

D 2

bn=2cX

kD0

 
nC 1

2k C 1

!

xn�2kr2kC1

Un.x/ D
bn=2cX

kD0

 
nC 1

2k C 1

!

.x2 � 1/kxn�2k: (19.11)

For example,

U3.x/ D
1X

kD0

 
4

2k C 1

!

.x2 � 1/kx3�2k

D
 

4

1

!

x3 C
 

4

3

!

.x2 � 1/x

D 8x3 � 4x:
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19.13.1 An Explicit Formula for Pn

It follows from formula (19.11) that

Pn D
b.n�1/=2cX

kD0

 
n

2k C 1

!

2k: (19.12)

This is the same as formula (9.4) in Chapter 9.
Returning to formula (19.11), we note that it implies that Un.x/ is a polynomial of degree n.

Its leading coefficient is given by

bn=2cX

kD0

 
nC 1

2k C 1

!

D
X

r odd

 
nC 1

r

!

D 2n:

For example, U7.x/ is a polynomial of degree 7, with leading coefficient 128 D 27.
When x D 1, formula (19.11) yields

Un.1/ D
 

nC 1

1

!

C
X

k�2

 
nC 1

2k � 1

!

� 0 D nC 1:

For example, U4.1/ D 16 � 12C 1 D 5.
On the other hand, suppose we let x D �1. Then the formula yields

Un.�1/ D
 

nC 1

1

!

.�1/n C
X

k�2

 
nC 1

2k � 1

!

� 0 D .nC 1/.�1/n:

For example, U4.�1/ D 16.�1/4 � 12.�1/2C 1 D 5 D .4C 1/.�1/4; similarly, U5.�1/ D
�6 D .5C 1/.�1/5.

Suppose we let n D 2m in formula (19.11). Then

U2m.x/ D
mX

kD0

 
2mC 1

2k C 1

!

.x2 � 1/kx2m�2k:

So we can obtain the constant term in U2m.x/ when k D m, namely,
�

2mC1
2mC1

�
.�1/m D .�1/m.

Thus the constant term in Un.x/ is .�1/n=2, when n is even.
For example, the constant term in U6.x/ is �1 D .�1/3 and that in U8.x/ is 1 D .�1/4.
On the other hand, suppose we let n D 2mC 1 in formula (19.11). Then

U2mC1.x/ D
mX

kD0

 
2mC 2

2k C 1

!

.x2 � 1/kx2m�2kC1:

So we can obtain the coefficient of x in U2mC1.x/ when k D m, namely,
�

2mC2
2mC1

�
.�1/m D

.2mC 2/.�1/m. Thus, when n is odd, the coefficient of x in Un.x/ is .nC 1/.�1/.n�1/=2.
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For example, the coefficient of x in U5.x/ is 6 D .5 C 1/.�1/.5�1/=2 and that in U7.x/ is
�8 D .7C 1/.�1/.7�1/=2.

The next four examples establish some properties satisfied by the two Chebyshev families.

Example 19.5 Prove that Un.x/ � Un�2.x/ D 2Tn.x/, where n � 2.

For example,

U7.x/ � U5.x/ D .128x7 � 192x5 C 80x3 � 8x/ � .32x5 � 32x3 C 6x/

D 2.64x7 � 112x5 C 56x3 � 7x/

D 2T7.x/:

The following example will need the value of U�1.x/; so we will find it now. It follows
from the recurrence (19.9) that U1.x/ D 2xU0.x/ � U�1.x/; that is, 2x D 2x � 1 � U�1.x/. So
U�1.x/ D 0.

Example 19.6 Prove that Un.x/ � xUn�1.x/ D Tn.x/, where n � 0.

For example,

U7.x/ � xU6.x/ D .128x7 � 192x5 C 80x3 � 8x/ � x.64x6 � 80x4 C 24x2 � 1/

D 64x7 � 112x5 C 56x3 � 7x

D T7.x/:

19.14 Pell’s Equation Revisited

Next we show that .Tn.x/; Un�1.x// is a solution of the Pell equation u2 � .x2 � 1/v2 D 1,
where x2 � 1 > 0 and is nonsquare.

Example 19.7 Show that T 2
n .x/ � .x2 � 1/U 2

n�1.x/ D 1, where n � 1.

Proof. We will let the explicit formulas for Tn.x/ and Un�1.x/ do the job for us. For
convenience, once again we let

p
x2 � 1 D r ; so x2 � r2 D 1. Then

4T 2
n .x/ D Œ.x C r/n C .x � r/n�2

D .x C r/2n C .x � r/2n C 2

4.x2 � 1/U 2
n�1 D Œ.x C r/n � .x � r/n�2

D .x C r/2n C .x � r/2n � 2

4


T 2

n .x/ � .x2 � 1/U 2
n�1

� D 4

T 2
n .x/ � .x2 � 1/U 2

n�1 D 1:
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Consequently, .Tn.x/; Un�1.x// is a solution of the Pell equation u2 � .x2 � 1/v2 D 1.

For example, consider the polynomials T4.x/ D 8x4�8x2C1 and U3.x/ D 8x3�4x. Then

T 2
4 .x/ � .x2 � 1/U 2

3 .x/ D .8x4 � 8x2 C 1/2 � .x2 � 1/.8x3 � 4x/2

D .64x8 � 128x6 C 80x4 � 16x2 C 1/ � .64x8 � 128x6 C 80x4 � 16x2/

D 1, as expected.

Conversely, is every solution of the equation u2 � .x2 � 1/v2 D 1 of the form
.Tn.x/; Un�1.x//? To answer this, recall that every solution .un; vn/ is given by

"
un

vn

#

D 2x

"
un�1

vn�1

#

�
"

un�2

vn�2

#

;

where n � 2. Clearly, un D Tn.x/. Is vn D Un.x/? Not quite! Although we might be tempted
to think so, notice that vn D Un�1.x/, where n � 1.

Thus every solution of the Pell’s equation u2�.x2�1/v2 D 1 is of the form .Tn.x/; Un�1.x//.
Next we study the relationship between the polynomials Un.x/ and trigonometry.

19.15 Un.x/ and Trigonometry

Earlier, we studied the relationship between Chebyshev polynomial Tn.x/ and trigonometry
by exploring the multiple-angle formulas for the cosine function. To see a similar relationship
between the polynomial Un.x/ and trigonometry, we can follow a hunch and explore the
multiple-angle formulas for the sine function:

sin 1� = 1 � sin �

sin 2� = .2 cos �/ sin �

sin 3� = .4 cos2 � � 1/ sin �

sin 4� = .8 cos3 � � 4 cos �/ sin �

sin 5� = .16 cos4 � � 12 cos2 � C 1/ sin �

sin 6� = .32 cos5 � � 32 cos3 � C 6 cos �/ sin � .

Substituting x for cos � , these formulas yield the following equations

sin 1�

sin �
= 1

sin 2�

sin �
= 2x

sin 3�

sin �
= 4x2 � 1

sin 4�

sin �
= 8x3 � 4x
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sin 5�

sin �
= 16x4 � 12x2 C 1

sin 6�

sin �
= 32x5 � 32x3 C 6x.

Our intuition seems to work: sin.nC1/�

sin �
D Un.x/, where x D cos � and 0 � n � 5. We will now

confirm this observation.
Using the addition formula for the sine function and Example 19.6, we have

sin.nC 1/� D sin n� cos � C cos n� sin �

D xUn�1.x/ sin � C Tn.x/ sin �

sin.nC 1/�

sin �
D xUn�1.x/C Tn.x/

D Un.x/:

Since this result works when n D 0 and n D 1, by PMI it works for all integers n � 0.

19.16 Chebyshev Recurrence for Un.x/ Revisited

We can now obtain the recurrence for Un.x/ using the sum identity sin u C sin v D
2 sin uCv

2
cos u�v

2
. To this end, let u D .nC 1/� and v D .n � 1/� . Then

sin.nC 1/� C sin.n � 1/� D 2 sin n� cos �:

Dividing both sides by sin � , this yields the desired recurrence:

Un.x/C Un�2.x/ D 2xUn�1.x/:

Using the trigonometric relationship, we can develop a number of identities satisfied by
the Chebyshev families, as the following examples illustrate. Again, we leave their proofs as
exercises.

Example 19.8 Prove that TmCn.x/ � Tm�n.x/ D 2.x2 � 1/Um�1.x/Un�1.x/, where m � n.

19.16.1 An Interesting Special Case

We will now explore this identity a bit further. Since qn.x/ D 2.�i/nTn.ix/, it yields an
interesting Pell–Lucas polynomial identity:

qmCn.x/

2.�i/mCn
� qm�n.x/

2.�i/m�n
D 2Œ.ix/2 � 1�

pm.x/

.�i/m�1
� pn.x/

.�i/n�1
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1

2.�i/mCn
ŒqmCn.x/ � .�1/nqm�n.x/� D �2.x2 C 1/pm.x/pn.x/

.�i/mCn�2

qmCn.x/ � .�1/nqm�n.x/ D 4.x2 C 1/pm.x/pn.x/: (19.13)

For example, let m D 5 and n D 3. Then

LHS D q8.x/C q2.x/

D .256x8 C 512x6 C 320x4 C 64x2 C 2/C .4x2 C 2/

D 256x8 C 512x6 C 320x4 C 68x2 C 4

D 4.x2 C 1/.16x4 C 12x2 C 1/.4x2 C 1/

D 4.x2 C 1/p5.x/p3.x/ D RHS:

Identity (19.13) has two interesting byproducts:

(1) Suppose we let x D 1. Since qk.1/ D 2Qk and pk.1/ D Pk , it yields the hybrid Pell
identity

QmCn � .�1/nQm�n D 4PmPn: (19.14)

For example, when m D 8 and n D 5, LHS = Q13 C Q3 D 47321 C 7 D 47328 D
4 � 408 � 29 D 4P8P5 = RHS; and similarly, when m D 10 and n D 4, LHS = Q14 �Q6 D
114114 D 4P10P5 = RHS.

Notice that identity (19.14) yields the identity QmC1 C Qm�1 D 4Pm, as we saw in
Chapter 7.

(2) Suppose we let x D 1=2 in identity (19.13). Since qk.1=2/ D Lk and pk.1=2/ D Fk , it
yields the Fibonacci–Lucas identity

LmCn � .�1/nLm�n D 5FmFn: (19.15)

For example, when m D 8 and n D 5, LHS = L13 C L3 D 521C 4 D 525 D 5 � 21 � 5 D
5F8F5 = RHS; and similarly, when m D 10 and n D 4, LHS = L14 �L6 D 825 D 5F10F4

= RHS.

Example 19.9 Prove that UmCn.x/C Um�n.x/ D 2Um.x/Tn.x/, where m � n.

Similarly, it can be shown that

UmCn.x/ � Um�n.x/ D 2TmC1.x/Un�1.x/: (19.16)
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For example, let m D 6 and n D 3. Then

U9.x/ � U3.x/ D .512x9 � 1024x7 C 672x5 � 160x3 C 10x/ � .8x3 � 4x/

D 512x9 � 1024x7 C 672x5 � 168x3 C 14x

D 2.64x7 � 112x5 C 56x5 � 7x/.4x2 � 1/

D 2T7.x/U2.x/:

19.16.2 An Interesting Byproduct

Since pk.x/ D .�i/k�1Uk�1.ix/ and qk.x/ D .�i/kTk.ix/, identity (19.16) can be used to
derive an identity for Pell polynomials:

pmCnC1.x/

.�i/mCn
� pm�nC1.x/

.�i/m�n
D 2

qmC1.x/pn.x/

2.�i/mC1.�i/n�1

1

.�i/mCn
ŒpmCnC1.x/ � .�1/npm�nC1.x/� D qmC1.x/pn.x/

.�i/mCn

pmCnC1.x/ � .�1/npm�nC1.x/ D qmC1.x/pn.x/:

Changing m to m � 1, this yields

pmCn.x/ � .�1/npm�n.x/ D qm.x/pn.x/: (19.17)

For example, let m D 5 and n D 3. Then

p8.x/C p2.x/ D .128x7 C 192x5 C 80x3 C 8x/C 2x

D 128x7 C 192x5 C 80x3 C 10x

D .32x5 C 40x3 C 10x/.4x2 C 1/

D q5.x/p3.x/:

Identity (19.17) has two interesting special cases:

(1) Suppose we let x D 1. Since pk.1/ D Pk and qk.1/ D 2Qk , it yields the hybrid Pell
identity

PmCn � .�1/nPm�n D 2QmPn: (19.18)

For example, when m D 8 and n D 5, LHS = P13 C P3 D 33;466 D 2Q8P5 = RHS;
and when m D 10 and n D 4, LHS = P14 � P6 D 80;712 D 2Q10P4 = RHS.

(2) Let x D 1=2. Since pk.1=2/ D Fk and qk.1=2/ D Lk , it yields the Fibonacci–Lucas
identity

FmCn � .�1/nFm�n D LmFn: (19.19)
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For example, when m D 7 and n D 4, LHS = F11 C F3 D 87 D L7F4 = RHS; and
when m D 12 and n D 7, LHS = F19 C F5 D 4186 D L12F7 = RHS.

The following example is somewhat a counterpart of Example 19.2 for Un.x/.

Example 19.10 Prove that Um�1.Tn.x//Un�1.x/ D Umn�1.x/, where m; n � 1.

For example, let m D 5 and n D 2. Then

T2.x/ D 2x2 � 1

U4.x/ D 16x4 � 12x2 C 1

U4.T2.x// D 16.2x2 � 1/4 � 12.2x2 � 1/2 C 1

D 256x8 � 512x6 C 336x4 � 80x2 C 5

U4.T2.x//U1.x/ D .256x8 � 512x6 C 336x4 � 80x2 C 5/.2x/

D 512x9 � 1024x7 C 672x5 � 160x3 C 10x

D U5�2�1.x/:

Suppose we let OUk.x/ D Uk.x/. Then the identity in Example 19.10 can be rewritten as
OUm.Tn.x// OUn.x/ D OUmn.x/, which looks better stylistically.

Next we establish the addition formulas for both Chebyshev polynomials. Again, we will let
the sine and cosine functions do the job for us.

Example 19.11 Prove that TmCn.x/ D Tm.x/Un.x/ � Tm�1.x/Un�1.x/, where m; n � 1.

Proof. Using the addition formulas (19.5) and (19.6), we have

sin � � RHS D cos m� sin.nC 1/� � cos.m � 1/� sin n�

D cos m�.sin n� cos � C cos n� sin �/ � sin n�.cos m� cos � C sin m� sin �/

D .cos m� cos n� � sin m� sin n�/ sin �

D cos.mC n/� sin �

RHS D cos.mC n/�

D TmCn.x/

D LHS:

For example, let m D 3 and n D 5. Then

T3.x/U5.x/ � T2.x/U4.x/ D .4x3 � 3x/.32x5 � 32x3 C 6x/ � .2x2 � 1/.16x4 � 12x2 C 1/

D 128x8 � 256x6 C 160x4 � 32x2 C 1

D T3C5.x/:
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Since qk.x/ D 2.�i/kTk.ix/ and pk.x/ D .�i/k�1Uk�1.ix/, it follows from Example
19.11 that

qmCn.x/

2.�i/mCn
D qm.x/

2.�i/m
� pnC1.x/

.�i/n
� qm�1.x/

2.�i/m�1
� pn.x/

.�i/n�1

qmCn.x/ D qm.x/pnC1.x/C qm�1.x/pn.x/: (19.20)

This is the addition formula for Pell–Lucas polynomials, found in Chapter 14.
For example, when m D 3 and n D 5, we have

q3.x/p6.x/C q2.x/p5.x/ D .8x3 C 6x/.32x5 C 32x3 C 6x/C .4x2 C 2/.16x4 C 12x2 C 1/

D 256x8 C 512x6 C 320x4 C 64x2 C 1

D q8.x/:

In particular, formula (19.20) yields the addition formula QmCn D QmPnC1 CQm�1Pn for
Pell–Lucas numbers, as we learned in Chapter 8.

The following example gives the addition formula for Uk.x/.

Example 19.12 Prove that UmCn.x/ D Um.x/Un.x/ � Um�1.x/Un�1.x/, where m; n � 1.

Proof. Using the product formula 2sin u sin v D cos.u � v/ � cos.uC v/, we have

sin2 � � RHS D sin.mC 1/� sin.nC 1/� � sin m� sin n�

D 1

2
Œcos.m � n/� � cos.mC nC 2/�� � 1

2
Œcos.m � n/� � cos.mC n/��

D 1

2
Œcos.mC n/� � cos.mC nC 2/��

D sin.mC nC 1/� sin �

RHS D sin.mC nC 1/�

sin �

D UmCn.x/

D LHS:

For example, let m D 3 and n D 5. Then

U3.x/U5.x/ � U2.x/U4.x/ D .8x3 � 4x/.32x5 � 32x3 C 6x/ � .4x2 � 1/.16x4 � 12x2 C 1/

D 256x8 � 448x6 C 240x4 � 40x2 C 1

D U3C5.x/:
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Since pk.x/ D .�i/k�1Uk�1.ix/, it follows from this example that

pmCnC1.x/

.�i/mCn
D pmC1.x/

.�i/m
� pnC1.x/

.�i/n
� pm.x/

.�i/m�1
� pn.x/

.�i/n�1

pmCnC1.x/ D pmC1.x/pnC1.x/C pm.x/pn.x/:

That is,

pmCn.x/ D pm.x/pnC1.x/C pm�1.x/pn.x/; (19.21)

which is the addition formula for Pell polynomials, as we found in Chapter 14.
In particular, this implies that PmCn D PmPnC1 C Pm�1Pn; see formula (8.7).
Interestingly, both Chebyshev polynomials also satisfy Cassini-like formulas. In the interest

of brevity, we will leave their proofs as routine exercises.

19.17 Cassini-like Formulas for Chebyshev Polynomials

TnC1.x/Tn�1.x/ � T 2
n .x/ D x2 � 1 (19.22)

UnC1.x/Un�1.x/ � U 2
n .x/ D �1: (19.23)

For example,

T5.x/T3.x/ � T 2
4 .x/ D .16x5 � 20x3 C 5x/.4x3 � 3x/ � .8x4 � 8x2 C 1/2

D .64x8 � 128x6 C 80x4 � 15x2/ � .64x8 � 128x6 C 80x4 � 16x2 C 1/

D x2 � 1I
U5.x/U3.x/ � U 2

4 .x/ D .16x4 � 12x2 C 1/.4x2 � 1/ � .8x3 � 4x/2

D .64x6 � 64x4 C 16x2 � 1/ � .64x6 � 64x4 C 16x2/

D �1:

19.18 Generating Functions for Chebyshev Polynomials

Finally, using standard techniques, it is relatively easy to develop generating functions for
Chebyshev polynomials; see Exercises 20 and 21:

1 � xy

1 � 2xy C y2
D

1X

nD0

Tn.x/yn:

1

1 � 2xy C y2
D

1X

nD0

Un.x/yn:
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Exercises 19

Prove each, where Tn.x/ and Un.x/ denote Chebyshev polynomials of the first and second kinds,
respectively.

1. 2Tm.x/Tn.x/ D TmCn.x/CTn�m.x/, where m < n. Hint: Let r D px2 � 1; use formula
(19.2).

2. Qn D
bn=2cP

kD0

�
n
2k

�
2k: Hint: Use formula (19.3).

3. Tm.Tn.x// D Tmn.x/, where m and n are nonnegative integers. Hint: Tk.x/ D cos k� .

4. Confirm the identity in Example 19.1 using the fact that Tn.x/ D cos n� . Hint: Use the
identity cos uC cos v D 2 cos uCv

2
cos u�v

2
.

5. ŒTmCn.x/ � 1�ŒTm�n.x/ � 1� D ŒTm.x/ � Tn.x/�2.

6. Qn D
bn=2cP

kD0

bn=2cP

j Dk

�
n

2j

��
j
k

�
. Hint: Let x D i in formula (19.7).

7. Derive the explicit formula (19.10) for Un.x/. Hint: Using the initial conditions, find A

and B .

8. Deduce the explicit formula (19.12) for Pn from (19.11).

9. Un.x/ � Un�2.x/ D 2Tn.x/, where n � 2. Hint: Show that 1
2
ŒUn.x/ � Un�2.x/� satisfies

the recursive definition of Tn.x/.

10. Un.x/ � xUn�1.x/ D Tn.x/, where n � 0.

11. TmCn.x/ � Tm�n.x/ D 2.x2 � 1/Um�1.x/Un�1.x/, where m � n. Hint: Use the identity
cos v � cos u D 2 sin uCv

2
sin u�v

2
.

12. UmCn.x/CUm�n.x/ D 2Um.x/Tn.x/, where m � n. Hint: Use the identity sin uCsin v D
2 sin uCv

2
cos u�v

2
.

13. UmCn.x/ � Um�n.x/ D 2TmC1.x/Un�1.x/, where m � n.

14. Um�1.Tn.x//Un�1.x/ D Umn�1.x/, where m; n � 1. Hint: Let Tn.x/ D cos n� and
t D cos � . Then Um�1.t/ D .1 � t 2/�1=2 sin.m arccos t /.

15. T 0
n.x/ D nUn�1.x/, where the prime indicates differentiation with respect to x.

Let y D Tn.x/ D cos n� . Then:

16. .1 � x2/y00 � xy0 C n2y D 0: Hint: Differentiate y0 D sin n�
sin �

with respect to x.

17. .1 � x2/U 00
n .x/ � 3xU 0

n.x/C n.nC 2/Un.x/ D 0.

18. Establish the Cassini-like formula TnC1.x/Tn�1.x/ � T 2
n .x/ D x2 � 1. Hint: Use the

explicit formula for Tn.x/.
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19. Establish the Cassini-like formula UnC1.x/Un�1.x/ � U 2
n .x/ D �1.

Develop a generating function for:

20. Tn.x/. Hint: Let fSn.x/g be a sequence of polynomial functions satisfying the Chebyshev
recurrence.

21. Un.x/.



20

Chebyshev Tilings

20.1 Introduction

In Chapter 16, we studied different combinatorial models for Pell and Pell–Lucas polynomials
by constructing linear and circular tilings of boards with n cells. In each case, our success hinged
on a clever assignment of weights to square tiles and dominoes. Since the Pell family is a sub-
family of the Chebyshev family, we are tempted to ask whether the Pell tiling models can be
extended to the larger family. Fortunately, the answer is yes. We will begin our investigation
with the Chebyshev tiling models for the polynomials Un.x/ of the second kind.

20.2 Combinatorial Models for Un.x/

Recall from Chapter 19 that the nonzero constant term in a Chebyshev polynomial of each type
can be 1 or �1. This implies that some tiles in the Chebyshev tilings must be assigned a weight
of �1. More specifically, we assign to each square a weight of 2x and to each domino �1.

Figure 20.1 shows the resultant tilings of a linear board with n cells and the sum of their
weights, where 0 � n � 5. In each case, the sum of the weights of the tilings is the polynomial
Un.x/.

More generally, we have the following result, discovered by Shapiro in 1981 [230]. Since
its proof follows the same reasoning as that of Theorem 16.2, we omit it for the sake of brevity.
(In fact, most of the results in this chapter can be proved by following the argument of the
corresponding result in Chapter 16. So we will omit many of the proofs, although proving each
would be a good exercise in its own right.)

T. Koshy, Pell and Pell–Lucas Numbers with Applications, DOI 10.1007/978-1-4614-8489-9__20,
© Springer Science+Business Media New York 2014
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Sum of
the weights

1

2x

2x

2x 2x −1

−1

2x 2x 2x 2x −1

− 2x

− 1 2x
−2x

2x 2x 2x 2x 2x 2x −1 2x −1 2x −1 2x 2x −1 −1

1

2x 2x 2x 2x 2x 2x 2x 2x −1 2x 2x −1 2x 2x −1 2x 2x

−1 2x 2x 2x 2x −1 −1

2x

−1 2x −1

2x

−1 −1 2x

2x

2x

4x 2 − 1

8x 3 − 4x

16x 4 − 12x2 + 1

32x 5 − 32x3 + 6x

8x 3

4x 2

16x 4 −4x 2 −4x 2

−8x 3

−4x 2

32x 5 −8x 3 −8x 3 −8x 3

Figure 20.1.

Theorem 20.1 The sum of the weights of the tilings of a 1 � n board with square tiles and
dominoes is Un.x/, where the weight of a square tile is 2x and that of a domino is �1, and
n � 0.

Suppose a tiling has k dominoes. Then it has n � 2k squares and takes a total of n � k tiles.
So there are

�
n�k

k

�
tilings of a 1 � n board, each containing exactly k dominoes. The weight

of each such tiling is .�1/k.2x/n�2k . So the sum of the weights of tilings of a 1 � n board is
bn=2cP

kD0

�
n�k

k

�
.�1/k.2x/n�2k . This fact, coupled with Theorem 20.1, yields an explicit formula for

Un.x/, as the following theorem shows.

Theorem 20.2 Let n � 0. Then Un.x/ D
bn=2cP

kD0

�
n�k

k

�
.�1/k.2x/n�2k .

For example,

U3.x/ D
1X

kD0

 
3 � k

k

!

.�1/k.2x/3�2k

D .2x/3 � 2.2x/

D 8x3 � 4x:
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Theorem 20.2 has interesting byproducts, as the next five corollaries show. We will leave
their proofs as routine exercises.

Corollary 20.1 Un.ix/ D inpnC1.x/, where pk.x/ denotes the kth Pell polynomial, i D p�1,
and n � 0.

In particular, we have the following result.

Corollary 20.2 Un.i/ D inPnC1 and jUn.i/j D PnC1, where n � 0.

The following result also follows from Theorem 20.2.

Corollary 20.3 Un.ix=2/ D infnC1.x/; jUn.ix=2/j D fnC1.x/, and jUn.i=2/j D FnC1, where
n � 0.

For example, we have

U5.x/ D 32x5 � 32x3 C 6x

U5.ix=2/ D 32.ix=2/5 � 32.ix=2/3 C 6.ix=2/

D i 5x5 � 4i3x3 C 3ix D i.x5 C 4x3 C 3x/

D i 5f6.x/:

So jU5.ix=2/j D x5 C 4x3 C 3x D f6.x/ and jU5.i=2/j D 8 D F6.

Corollary 20.4 The sum of the weights of tilings of a 1 � n board with an even number of
dominoes minus that with an odd number of dominoes is Un.x/; that is,

Un.x/ D
X

k even

 
n � k

k

!

.2x/n�2k �
X

k odd

 
n � k

k

!

.2x/n�2k:

For example, consider the tilings of a 1 � 5 board in Figure 20.1. There is exactly one tiling
with 0 dominoes; its weight is 32x5. There are three tilings with 2 dominoes each; the sum of
their weights is 2x C 2x C 2x D 6x. So the sum of the weights of tilings with an even number
of dominoes is 32x5 C 6x.

On the other hand, there are four tilings with exactly one domino each; the sum of their
weights is 8x3 C 8x3 C 8x3 C 8x3 D 32x3.

The difference of the two sums is .32x5 C 6x/ � 32x3 D 32x5 � 32x3 C 6x D U5.x/, as
expected.

The next result follows from Corollary 20.4.
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Corollary 20.5 The sum of the weights of tilings of a 1 � n board with an even number of
dominoes minus that with an odd number of dominoes is Un.x/, where the weight of a square is
2 and that of a domino is �1; that is,

Un.1/ D
X

k even

 
n � k

k

!

2n�2k �
X

k odd

 
n � k

k

!

2n�2k:

For example, consider the tilings of the 1 � 5 board in Figure 20.1. From the previous
paragraph, we have

U5.1/ D 32 � 32C 6 D 6

X

k even

 
5 � k

k

!

25�2k D
 

5

0

!

25 C
 

3

2

!

2 D 38

X

k odd

 
5 � k

k

!

25�2k D
 

4

1

!

23 D 32

X

k even

 
5 � k

k

!

25�2k �
X

k odd

 
5 � k

k

!

25�2k D 38 � 32 D 6

D U5.1/:

Likewise,
P

k even

�
6�k

k

�
26�2k � P

k odd

�
6�k

k

�
26�2k D 88 � 81 D 7 D U6.1/.

We can use the concept of breakability to develop the addition formula for Uk.x/, as in
Theorem 16.4.

Theorem 20.3 Let m; n � 1. Then UmCn.x/ D Um.x/Un.x/ � Um�1.x/Un�1.x/.

For example, let m D 5 and n D 2. Then

U7.x/ D U5.x/U2.x/ � U4.x/U1.x/

D .32x5 � 32x3 C 6x/.4x2 � 1/ � .16x4 � 12x2 C 1/.2x/

D 128x7 � 192x5 C 80x3 � 8x:

Suppose we change x to ix in the addition formula. Then, by Corollary 20.1, we get

UmCn.ix/ D Um.ix/Un.ix/ � Um�1.ix/Un�1.ix/

imCnpmCnC1.x/ D imCnpmC1.x/pnC1.x/ � imCn�2pm.x/pn.x/

pmCnC1.x/ D pmC1.x/pnC1.x/C pm.x/pn.x/:
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Changing m to m � 1, this yields the addition formula (14.17) for Pell polynomials:

pmCn.x/ D pm.x/pnC1.x/C pm�1.x/pn.x/:

In particular, PmCn D PmPnC1 C Pm�1Pn, as we found in Chapter 8; see formula (8.7).

20.3 A Colored Combinatorial Model for Un.x/

In the second model for Un.x/, we assume that square tiles come in two colors, black and white.
Each is assigned a weight of x, while the weight of a domino remains the same, namely �1, as
in the previous model.

Figure 20.2 shows the resulting tilings of a 1 � n board, where 0 � n � 4.

Sum of
the weights

1

x x

x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x

x x x −1−1

−1

−1−1 −1

−1−1 −1 −1−1

−1

−1

−1

−1

−1

−1

−1 −1 x

x x x x x x x x x x x x x v x x x x x x

x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x

x x x x x x

2x

4x 2 − 1

8x 3 − 4x

16x 4 − 12x2 + 1

Figure 20.2.
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Recall from Theorem 16.5 that there are PnC1 such colored tilings of a 1�n board. The next
theorem shows that the sum of their weights is Un.x/.

Theorem 20.4 The sum of the weights of colored tilings of a 1 � n board is Un.x/, where the
weight of a square (black or white) is x and that of a domino is �1, and n � 0.

This theorem has an interesting corollary, quite similar to Corollary 20.5. To this end, we let
x D 1 in this model; that is, each square gets weight 1. So a colored tiling with exactly k

dominoes has weight .�1/k . Consequently, Un.1/ counts the difference of the number of tilings
with an even number of dominoes and that with an odd number of dominoes. Since Un.1/ D
nC 1, this difference is nC 1. Thus we have the following result.

Corollary 20.6 The difference of the number of tilings of a 1� n board with an even number of
dominoes and that with an odd number of dominoes is Un.1/ D n C 1, where the weight of a
square (black or white) is x and that of a domino is �1, and n � 0.

For example, consider the colored tilings of the 1 � 4 board in Figure 20.2. There are 17
tilings with an even number of dominoes, and 12 tilings with an odd number of dominoes. So
the difference is 17 � 12 D 5 D U4.1/.

Next we present four combinatorial models for Chebyshev polynomials of the first kind.

20.4 Combinatorial Models for Tn.x/

In the first model for Tn.x/, we use uncolored tiles – squares and dominoes – to tile a linear
board of n cells. As in Figure 20.1, we assign a weight of 2x to each square and �1 to each
domino, but with one exception: if a tiling begins with a square, then the tile gets a weight of x.

Figure 20.3 shows the possible tilings of a 1 � n board, the corresponding sum of their
weights, and 0 � n � 5. In each case, the sum is Tn.x/. The next theorem confirms this.

Theorem 20.5 The sum of the weights of all uncolored tilings of a 1 � n board is Tn.x/, where
if the initial title is a square, its weight is x, and all other squares have weight 2x; and every
domino has weight �1.

As in Theorem 16.7, we can establish the addition formula for Tn.x/ (see Example 19.11) using
the concept of breakability.

Theorem 20.6 Let m; n � 1. Then TmCn.x/ D Tm.x/Un.x/ � Tm�1.x/Un�1.x/.

Recall from Chapter 19 that Tn.cos �/ D cos n� . In light of Theorem 20.5, we can now
interpret this result combinatorially. By Theorem 20.5, Tn.cos �/ is the sum of the weights of
all tilings of a 1 � n board, where every domino has weight �1 and every square has weight
2x D 2 cos � ; but if a tiling begins with a square, then its weight is x D cos � . So cos n� is the
sum of the weights of all tilings of a 1 � n board.
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Sums of
the weights

1

x

x x

x 2x − 1

−1

x 2x 2x x −1 −1 2x

x 2x 2x 2x x 2x −1 x −1 2x −1 2x 2x −1 −1

1

x 2x 2x 2x 2x x 2x 2x −1 x 2x −1 2x x − 1 2x 2x

−1 2x 2x 2x x −1 −1

x

−1 2x −1

2x

− 1 − 1 2x

2x

2x 2 − 1

4x 2 − 3x

8x 4 − 8x2 + 1

16x 5 − 20x 3 + 5x

−x −2x

2x 2

4x 3

8x 4 −2x 2 −2x 2 −4x 2

16x 5 −4x 2

−8x 3

−4x 3 −4x 3

Figure 20.3.

In the second model for Tn.x/, we introduce colored square tiles. Every square has weight x

and every domino �1. But no tiling can begin with a black square.
Figure 20.4 shows the possible colored tilings of a 1� n board and the sum of their weights,

where 0 � n � 4. Again, in each case, the sum of the weights is Tn.x/.
The next theorem generalizes this observation. We will give only a skeleton proof.

Theorem 20.7 The sum of the weights of all colored tilings of a 1�n board is Tn.x/, where the
weight of a square (black or white) is x and that of a domino is �1, and no tiling begins with a
black square tile.

Proof. Let Sn.x/ denote the sum of the weights of a 1 � n board. Then S0.x/ D 1 D T0.x/ and
S1.x/ D x D T1.x/.

Consider an arbitrary colored tiling of a 1 � n board, where n � 2. Suppose it ends in a
square. Since it can be black or white, the sum of the weights of such tiles is 2xSn�1.

On the other hand, suppose the tiling ends in a domino. The sum of the weights of such
tilings is �Sn�2.

Thus, Sn D 2xSn�1 � Sn�2. This, along with the initial conditions, implies that Sn.x/ D
Tn.x/, as claimed.
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Sum of
the weights

1

xx

x x x x −1

−1 −1

−1 −1

−1−1−1−1

−1−1 −1

−1

x x x x x x x x x x x x

x x x

x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x x x x x x x 1 x x

x x

2x 2 − 1

4x 3 − 3x

8x 4 − 8x2 + 1

Figure 20.4.

The next theorem shows that the number of colored tilings of a 1 � n board in this model
is Qn.

Theorem 20.8 The number of colored tilings of a 1 � n board is Qn, where the weight of a
square (black or white) is x and that of a domino is �1, no tiling begins with a black square tile,
and n � 0.

Proof. Let Sn denote the number of colored tilings of a 1 � n board. Then S0 D 1 D Q0 and
S1 D 1 D Q1.

Let the weight of a square tile be 1 and that of a domino be 1. Then each tiling has weight 1;
so Sn is the number of tilings of length n.

Using the reasoning in Theorem 20.7, it follows that Sn D 2Sn�1CSn�2, where n � 3. This,
coupled with the two initial conditions, implies that Sn D Qn.

For example, consider the tilings in Figure 20.4. There are 7 D Q3 tilings of length 3 and
17 D Q4 tilings of length 4.

In the third model, we allow the initial square to be white or black. As before, the weight
of each square is x, except that the initial square has weight x

2
. The weight of a domino is �1.

Figure 20.5 shows such tilings of 1� n board and the sum of their weights, where 0 � n � 3. In
each case, the sum is the Chebyshev polynomial Tn.x/.

More generally, we have the following result. Its proof follows as in Theorem 20.7.



20.5 A Combinatorial Proof that Tn.cos �/ D cos n� 403

Sum of
the weights

1

x

x x x x − 1

x x x x x x x x − 1 x x

x x x x x x − 1 − 1 x − 1 x

x
2

x
2

x
2

x
2

x
2

x
2

x
2

x
2

x
2

x
2

x
2

x
2

x
2

x
2

x
2

x
2

2x 2 − 1

4x 3 − 3x

Figure 20.5.

Theorem 20.9 The sum of the weights of colored tilings of a 1 � n board is Tn.x/, where the
weight of a domino is �1 and that of a square is x, except that the weight of the initial square
is x

2
.

Next we establish combinatorially that Tn.cos �/ D cos n� . It follows by Theorem 20.5 that
Tn.cos �/ is the sum of the weights of all uncolored tilings of length n, where a domino has
weight �1; and a square has weight 2 cos � , but with one exception: an initial square has weight
cos � .

By Euler’s formula, 2 cos � D ei�Ce�i� . Consequently, we can assign the weight ei�Ce�i�

to every square, except the initial one, which has weight ei� Ce�i�

2
.

20.5 A Combinatorial Proof13 that Tn.cos �/ D cos n�

We now introduce colored squares into the tiling scheme, with different weights for squares
of opposite color. White squares have weight ei� and black squares have weight e�i� . If the
initial square is white, its weight is ei�

2
; otherwise, its weight is e�i�

2
. The weight of a domino

remains �1.
For example, the tiling in Figure 20.6 has weight 1

2
ei� .

2 eiq eiq e−iq e−iqeiqe−iqeiq
−1−1

Figure 20.6.

13 A.T. Benjamin and D. Walton developed this proof in 2007, the 300th anniversary of Euler’s birth [13].
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Figure 20.7 shows the colored tilings of length n and the corresponding weights, where 0 �
n � 3.

Sum of the weights

1

cosq

eiq

eiq

eiq

eiq

eiq

eiq

eiq e−iq

e−iq

e−iq

e−iq

e−iq

e−iq

e−iqe−iqe−iq

e−iq

e−iq

eiq

eiq

eiqeiq

−1

−1

−1 −1−1

cos 2q

cos 3q

eiq

2

eiq

2
eiq

2

eiq

2
eiq

2
eiq

2
eiq

2
eiq

2

e−iq

2

e−iq

2

e−iq

2
e−iq

2

e−iq

2

e−iq

2
e−iq

2
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Figure 20.7.

More generally, by Theorem 20.9, Tn.cos �/ is the sum of the weights of all such colored
tilings of length n.

Next we introduce the concept of an impure tiling. A colored tiling is impure if it contains
two adjacent squares of different colors or a domino; otherwise, it is pure. For example, the tiling
in Figure 20.6 has impurities at cells 3 and 4; 5 and 6; 7 and 8; and 9 and 10.

We will now show that the sum of the weights of all impure tilings is zero. To this end, let X

be an arbitrary impure tiling with its first impurity at cells k and k C 1.

Case 1 Let k � 2.

Subcase 1 Suppose cells k and k C 1 are occupied by squares of opposite color. Let X 0 be the
tiling obtained by replacing these two squares with a domino, leaving the other tiles untouched.
Since ei� � e�i� D 1 and the weight of a domino is �1, it follows that weight(X ) C weight(X 0)
D 0.

Subcase 2 Suppose cells k and k C 1 are covered by a domino. Let X 0 be the tiling obtained
by replacing the domino with two squares of opposite color such that cells k and k � 1 have the
same color. Again, weight(X )C weight(X 0)D 0.

Thus, corresponding to every impure tiling X , there is a tiling X 0 such that the sum of their
weights is zero, where k � 2.

Case 2 Let k D 1. So the first impurity in X occurs at cells 1 and 2; this involves three
possibilities:

−1 ……eiq

2 e−iq …eiq

2
e−iq

2
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Consequently, given such a tiling X , we can create two tilings X1 and X2 such that X D
X1 D X2, except for the first two cells. The sum of their weights is 1

2
ei� � e�i� �wC 1

2
e�i� � ei� �

w C .�1/ � w D 0, where w denotes the weight of the subtiling in cells 3 through n.
Thus, by Cases 1 and 2, the sum of the weights of all impure tilings is zero.
Consequently, Tn.cos �/ equals the sum of the weights of the two remaining pure tilings, one

consisting of n white squares and the other consisting of n black squares:

…
2

…eiq

2 e−iq e−iq e−iq e−iqeiq eiq eiqeiq e−iq

Their weights are 1
2
ein� and 1

2
e�in� , respectively. Thus, Tn.cos �/ D 1

2

�
ein� C e�in�

� D cos n� ,
as desired.

For example, let n D 3. From Figure 20.7, there are six tilings with the first impurity at cells
1 and 2; the sum of their weights is 1

2
ei�C 1

2
e�i�C 1

2
ei�C 1

2
e�i��ei��e�i� D 0. There are four

tilings with the first impurity at cells 2 and 3; the sum of their weights is 1
2
ei� C 1

2
e�i� � 1

2
ei� �

1
2
e�i� D 0. The sum of the weights of the two pure tilings is 1

2
ei� �ei� �ei�C 1

2
e�i� �e�i� �e�i� D

cos 3� , as expected.
Finally, using the formula sin � D ei� �e�i�

2i
, it can be shown that Un.cos �/ D sin.nC1/�

sin �
.

20.6 Two Hybrid Chebyshev Identities

Before we present the fourth model for Tn.x/, we will present two Chebyshev identities
involving both polynomials. To this end, first notice that

xU3.x/C T4.x/ D x.8x3 � 4x/C .8x4 � 8x2 C 1/

D 16x4 � 12x2 C 1

D U4.x/:

This result can be interpreted combinatorially. To see this, consider the colored tilings of the
1�4 board in Figure 20.2. There are exactly 12.D P4/ tilings that begin with a black square; the
sum of their weights is 8x4�4x2 D x.8x3�4x/ D xU3.x/. There are exactly 17.D Q4/ tilings
that do not begin with a black square; the sum of their weights is 8x4� 8x2C 1 D T4.x/. So the
sum of the weights of all tilings of length 4 is xU3.x/C T4.x/ D 16x4 � 12x2 C 1 D U4.x/.

More generally, we claim that xUn�1.x/ C Tn.x/ D Un.x/, where n � 1. This can be
confirmed using PMI, and the explicit formulas for Tn.x/ and Un.x/. But we will now give a
combinatorial proof, taking advantage of Theorems 20.4 and 20.7.

Theorem 20.9 xUn�1.x/C Tn.x/ D Un.x/, where n � 1.

Proof. Recall from Theorem 20.4 that the sum of all colored tilings of a 1 � n board is Un.x/.
We will now compute this sum in a different way, by considering two disjoint cases.
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Case 1 Suppose the tiling begins with a black square. Dropping this yields a sub-tiling of a
1 � .n � 1/ board, which may not begin with a black square:

x …

A colored tiling of a 1 × (n−1) board

By Theorem 20.4, the sum of the weights of such sub-tilings is Un�1.x/; so the sum of the
weights of all tilings of a 1 � n board that begin with a black square is xUn�1.x/.

Case 2 Suppose the tiling does not begin with a black square. By Theorem 20.7, the sum of the
weights of such tilings of 1 � n board is Tn.x/.

Thus, by the addition principle, xUn�1.x/C Tn.x/ D Un.x/, as desired.

Next notice that

xU3.x/ � U2.x/ D x.8x3 � 4x/ � .4x2 � 1/

D 8x4 � 8x2 C 1

D T4.x/:

This result also can be interpreted combinatorially. Again, consider the colored tilings of 1�4

board in Figure 20.4. The sum of their weights is 8x4 � 8x2 C 1 D T4.x/; see also Theorem
20.7.

We will now count this sum in a different way. There are exactly 10.D 2P3/ tilings that
begin with a square; the sum of their weights is 8x4 � 4x2. There are 5.D P3/ tilings that begin
with a domino; the sum of their weights is �4x2 C 1. So the sum of the weights of all tilings of
a 1 � 4 board is .8x4 � 4x2/C .�4x2 C 1/ D 8x4 � 8x2 C 1 D T4.x/, as expected.

This observation leads us to the next Chebyshev polynomial identity.

Theorem 20.10 Tn.x/ D xUn�1.x/ � Un�2.x/, where n � 1.

Proof. By Theorem 20.7, the sum of the weights of colored tilings of 1� n board is Tn.x/. Now
consider an arbitrary tiling of a 1 � n board, where n � 2.

Case 1 Suppose the tiling begins with a (black) square. Then it is followed by a sub-tiling of a
1 � .n � 1/ board:

x …

A tiling of a 1 × (n−1) board

Since this sub-tiling can begin with a square (black or white) or a domino, it follows by Theorem
20.4 that the sum of the weights of such tilings is xUn�1.x/.
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Case 2 Suppose the tiling begins with a domino:

−1 …

A tiling of a 1 × (n−2) board

As in Case 1, the sum of the weights of such tilings is �Un�2.x/.

The desired result now follows by the addition principle.

Notice that this result follows quickly from Theorem 20.9:

Tn.x/ D Un.x/ � xUn�1.x/

D Œ2xUn�1.x/ � Un�2.x/� � xUn�1.x/

D xUn�1.x/ � Un�2.x/:

Next we turn to the fourth model for Tn.x/, where we count the circular tilings of bracelets
of n cells. Every square has weight 2x and every domino �1, with one exception: The weight of
the domino is �2 when n D 2.

Figure 20.8 shows all circular tilings of n cells and the sum of their weights, where 1 � n �
4. Unlike the earlier models, the sum of the weights appears to be 2Tn.x/. The next theorem
confirms that this is indeed the case. The proof follows the same reasoning as in Theorem 16.9.

Sum of
the weights

2x

2x

2x

2x

−2

2x

2x

2x 2x

−1 −1

2x
−1

2x

4x 2 − 2

8x 3 − 6x

Figure 20.8. (continued)
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2x

2x2x

2x 2x

−1

2x

−1

2x

2x

−1

2x2x

2x

2x
−1

−1

−1

−1
−1

16x 4 − 16x2 + 2

Figure 20.8.

Theorem 20.11 The sum of the weights of tilings of a 1�n bracelet is 2Tn.x/, where the weight
of a square is 2x and that of a domino is �1, except that the weight of the domino is �2 when
n D 2.

The next result (see Example 19.5) is an interesting consequence of this theorem. Its proof
follows by considering the cases where a domino may or may not occupy cells n and 1, and by
invoking Theorem 20.1.

Theorem 20.12 Let n � 2. Then 2Tn.x/ D Un.x/ � Un�2.x/.

For example,

U5.x/ � U3.x/ D .32x5 � 32x3 C 6x/ � .8x3 � 4x/

D 2.16x5 � 20x3 C 5x/

D 2T5.x/:

Theorem 20.11 has another interesting byproduct. Counting the number of circular tilings
with exactly k dominoes each for k � 0, we can develop an explicit formula for Tn.x/; use the
same reasoning as in Theorem 16.10.

Theorem 20.13 Let n � 1. Then

2Tn.x/ D
bn=2cX

kD0

n

n � k

 
n � k

k

!

.�1/k.2x/n�2k:

For example,

2T5.x/ D
2X

kD0

5

5 � k

 
5 � k

k

!

.�1/k.2x/5�2k

D .2x/5 � 5.2x/3 C 5.2x/
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D 32x5 � 40x3 C 10x

T5.x/ D 16x5 � 20x3 C 5x:

As in the case of Theorem 20.1, this result also has several interesting byproducts, as the
next four corollaries show.

Corollary 20.7 2Tn.ix/ D inqn.x/, where n � 0.

In particular, this implies the next result, as we found in Chapter 19.

Corollary 20.8 Tn.i/ D inQn and jTn.i/j D Qn, where n � 0.

The next result follows from this corollary.

Corollary 20.9 2Tn.ix=2/ D inln.x/; 2jTn.ix=2/j D ln.x/, and 2jTn.i=2/j D Ln, where
n � 0.

For example,

T5.ix=2/ D 16.ix=2/5 � 20.ix=2/3 C 5.ix=2/

D i

2
x5 C 5i

2
x3 C 5i

2
x D i

2
.x5 C x3 C x/

2jTn.ix=2/j D x5 C 5x3 C 5x D l5.x/

2jT5.i=2/j D 11 D L5:

Finally, notice that the formula in Theorem 20.13 can be rewritten as follows:

2Tn.x/ D
X

k even

n

n � k

 
n

n � k

!

.2x/n�2k �
X

k odd

n

n � k

 
n

n � k

!

.2x/n�2k:

This can be re-stated in words, as the following corollary shows.

Corollary 20.10 2Tn.x/ counts the sum of the weights of circular tilings of a 1�n bracelet with
an even number of dominoes and with an odd number of dominoes.

For example, consider the tilings of the 1�4 bracelet in Figure 20.8. The sum of the weights
of the tilings with an even number of dominoes equals 16x4 C 2, and that with an odd number
of dominoes equals �16x2. Their sum is .16x4C 2/C .�16x2/ D 16x4 � 16x2C 2 D 2T4.x/,
as expected.
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Exercises 20

Prove each.

1. Corollary 20.1. Hint: Use Theorem 20.2.

2. Corollary 20.2. Hint: Use Theorem 20.2.

3. Corollary 20.3. Hint: Use Theorem 20.2.

4. Corollary 20.4. Hint: Use Theorem 20.2.

5. Corollary 20.5. Hint: Use Corollary 20.4.

6. Theorem 20.3.

7. Theorem 20.4.

8. Theorem 20.5.

9. Theorem 20.6.

10. Theorem 20.9.

11. Theorem 20.12.

12. Theorem 20.13.

13. Corollary 20.7. Hint: Use Theorem 20.13.

14. Corollary 20.8. Hint: Use Corollary 20.7.

15. Corollary 20.9. Hint: Use Theorem 20.13.
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Appendix A.1. The First 100 Pell and Pell–Lucas Numbers

n Pn Qn

1 1 1
2 2 3
3 5 7
4 12 17
5 29 41
6 70 99
7 169 239
8 408 577
9 985 1,393

10 2,378 3,363

11 5,741 8,119
12 13,860 19,601
13 33,461 47,321
14 80,782 114,243
15 195,025 275,807
16 470,832 665,857
17 1,136,689 1,607,521
18 2,744,210 3,880,899
19 6,625,109 9,369,319
20 15994,428 22,619,537

21 38,613,965 54,608,393
22 93,222,358 131,836,323
23 225,058,681 318,281,039
24 543,339,720 768,398,401
25 1,311,738,121 1,855,077,841
26 3,166,815,962 4,478,554,083
27 7,645,370,045 10,812,186,007
28 18,457,556,052 26,102,926,097
29 44,560,482,149 63,018,038,201
30 107,578,520,350 152,139,002,499

T. Koshy, Pell and Pell–Lucas Numbers with Applications, DOI 10.1007/978-1-4614-8489-9,
© Springer Science+Business Media New York 2014
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Appendix A.1. The First 100 Pell and Pell–Lucas Numbers (Continued)

n Pn Qn

31 259,717,522,849 367,296,043,199
32 627,013,566,048 886,731,088,897
33 1,513,744,654,945 2,140,758,220,993
34 3,654,502,875,938 5,168,247,530,883
35 8,822,750,406,821 12,477,253,282,759
36 21,300,003,689,580 30,122,754,096,401
37 51,422,757,785,981 72,722,761,475,561
38 124,145,519,261,542 175,568,277,047,523
39 299,713,796,309,065 423,859,315,570,607
40 723,573,111,879,672 1,023,286,908,188,737

41 1,746,860,020,068,409 2,470,433,131,948,081
42 4,217,293,152,016,490 5,964,153,172,084,899
43 10,181,446,324,101,389 14,398,739,476,117,879
44 24,580,185,800,219,268 34,761,632,124,320,657
45 59,341,817,924,539,925 83,922,003,724,759,193
46 143 263 821 649 299 118 202,605,639,573,839,043
47 345,869,461,223,138,161 489,133,282,872,437,279
48 835,002,744,095,575,440 1,180,872,205,318,713,601
49 2,015,874,949,414,289,041 2,850,877,693,509,864,481
50 4,866,752,642,924,153,522 6,882,627,592,338,442,563

51 11,749,380,235,262,596,085 16,616,132,878,186,749,607
52 28,365,513,113,449,345,692 40,114,893,348,711,941,777
53 68,480,406,462,161,287,469 96,845,919,575,610,633,161
54 165,326,326,037,771,920,630 233,806,732,499,933,208,099
55 399,133,058,537,705,128,729 564,459,384,575,477,049,359
56 963,592,443,113,182,178,088 1,362,725,501,650,887,306,817
57 2,326,317,944,764,069,48,4905 3,289,910,387,877,251,662,993
58 5,616,228,332,641,321,147,898 7,942,546,277,405,390,632,803
59 13,558,774,610,046,711,780,701 19,175,002,942,688,032,928,599
60 32,733,777,552,734,744,709,300 46,292,552,162,781,456,490,001

61 79,026,329,715,516,201,199,301 111,760,107,268,250,945,908,601
62 190,786,436,983,767,147,107,902 269,812,766,699,283,348,307,203
63 460,599,203,683,050,495,415,105 651,385,640,666,817,642,523,007
64 1,111,984,844,349,868,137,938,112 1,572,584,048,032,918,633,353,217
65 2,684,568,892,382,786,771,291,329 3,796,553,736,732,654,909,229,441
66 6,481,122,629,115,441,680,520,770 9,165,691,521,498,228,451,812,099
67 15,646,814,150,613,670,132,332,869 22,127,936,779,729,111,812,853,639
68 37,774,750,930,342,781,945,186,508 53,421,565,080,956,452,077,519,377
69 91,196,316,011,299,234,022,705,885 128,971,066,941,642,015,967,892,393
70 220,167,382,952,941,249,990,598,278 311,363,698,964,240,484,013,304,163
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Appendix A.1. The First 100 Pell and Pell–Lucas Numbers (Continued)

n Pn Qn

71 531,531,081,917,181,734,0039,02,441 751,698,464,870,122,983,994,500,719
72 1,283,229,546,787,304,717,998,403,160 1,814,760,628,704,486,452,002,305,601
73 3,097,990,175,491,791,170,000,708,761 4,381,219,722,279,095,887,999,111,921
74 7,479,209,897,770,887,057,999,820,682 10,577,200,073,262,678,228,000,529,443
75 18,056,409,971,033,565,286,000,350,125 25,535,619,868,804,452,344,000,170,807
76 43,592,029,839,838,017,630,000,520,932 61,648,439,810,871,582,916,000,871,057
77 105,240,469,650,709,600,546,001,391,989 148,832,499,490,547,618,176,001,912,921
78 254,072,969,141,257,218,722,003,304,910 359,313,438,791,966,819,268,004,696,899
79 613,386,407,933,224,037,990,008,001,809 867,459,377,074,481,256,712,011,306,719
80 1,480,845,785,007,705,294,702,019,308,528 2,094,232,192,940,929,332,692,027,310,337

81 3,575,077,977,948,634,627,394,046,618,865 5,055,923,762,956,339,922,096,065,927,393
82 8,631,001,740,904,974,549,490,112,546,258 12,206,079,718,853,609,176,884,159,165,123
83 20,837,081,459,758,583,726,374,271,711,381 29,468,083,200,663,558,275,864,384,257,639
84 50,305,164,660,422,142,002,238,655,969,020 71,142,246,120,180,725,728,612,927,680,401
85 121,447,410,780,602,867,730,851,583,649,421 171,752,575,441,025,009,733,090,239,618,441
86 293,199,986,221,627,877,463,941,823,267,862 414,647,397,002,230,745,194,793,406,917,283
87 707,847,383,223,858,622,658,735,230,185,145 1,001,047,369,445,486,500,122,677,053,453,007
88 1,708,894,752,669,345,122,781,412,283,638,152 2,416,742,135,893,203,745,440,147,513,823,297
89 4,125,636,888,562,548,868,221,559,797,461,449 5,834,531,641,231,893,991,002,972,081,099,601
90 9,960,168,529,794,442,859,224,531,878,561,050 14,085,805,418,356,991,727,446,091,676,022,499

91 24,045,973,948,151,434,586,670,623,554,583,549 34,006,142,477,945,877,445,895,155,433,144,599
92 58,052,116,426,097,312,032,565,778,987,728,148 82,098,090,374,248,746,619,236,402,542,311,697
93 140,150,206,800,346,058,651,802,181,530,039,845 198,202,323,226,443,370,684,367,960,517,767,993
94 338,352,530,026,789,429,336,170,142,047,807,838 478,502,736,827,135,487,987,972,323,577,847,683
95 816,855,266,853,924,917,324,142,465,625,655,521 1,155,207,796,880,714,346,660,312,607,673,463,359
96 1,972,063,063,734,639,263,984,455,073,299,118,880 2,788,918,330,588,564,181,308,597,538,924,774,401
97 4,760,981,394,323,203,445,293,052,612,223,893,281 6,733,044,458,057,842,709,277,507,685,523,012,161
98 11,494,025,852,381,046,154,570,560,297,746,905,442 16,255,007,246,704,249,599,863,612,909,970,798,723
99 27,749,033,099,085,295,754,434,173,207,717,704,165 39,243,058,951,466,341,909,004,733,505,464,609,607

100 66,992,092,050,551,637,663,438,906,713,182,313,772 94,741,125,149,636,933,417,873,079,920,900,017,937
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Appendix A.2. The First 100 Fibonacci and Lucas Numbers

n Fn Ln

1 1 1
2 1 3
3 2 4
4 3 7
5 5 11
6 8 18
7 13 29
8 21 47
9 34 76

10 55 123

11 89 199
12 144 322
13 233 521
14 377 843
15 610 1,364
16 987 2,207
17 1,597 3,571
18 2,584 5,778
19 4,181 9,349
20 6,765 15,127

21 10,946 24,476
22 17,711 39,603
23 28,657 64,079
24 46,368 103,682
25 75,025 167,761
26 121,393 271,443
27 196,418 439,204
28 317,811 710,647
29 514,229 1,149,851
30 832,040 1,860,498
31 1,346,269 3,010,349
32 2,178,309 4,870,847
33 3,524,578 7,881,196
34 5,702,887 12,752,043
35 9,227,465 20,633,239
36 14,930,352 33,385,282
37 24,157,817 54,018,521
38 39,088,169 87,403,803
39 63,245,986 141,422,324
40 102,334,155 228,826,127
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Appendix A.2. The First 100 Fibonacci and Lucas Numbers (Continued)

n Fn Ln

41 165,580,141 370,248,451
42 267,914,296 599,074,578
43 433,494,437 969,323,029
44 701,408,733 1,568,397,607
45 1,134,903,170 2,537,720,636
46 1,836,311,903 4,106,118,243
47 2,971,215,073 6,643,838,879
48 4,807,526,976 10,749,957,122
49 7,778,742,049 17,393,796,001
50 12,586,269,025 28,143,753,123

51 20,365,011,074 45,537,549,124
52 32,951,280,099 73,681,302,247
53 53,316,291,173 119,218,851,371
54 86,267,571,272 192,900,153,618
55 139,583,862,445 312,119,004,989
56 225,851,433,717 505,019,158,607
57 365,435,296,162 817,138,163,596
58 591,286,729,879 1,322,157,322,203
59 956,722,026,041 2,139,295,485,799
60 1,548,008,755,920 3,461,452,808,002

61 2,504,730,781,961 5,600,748,293,801
62 4,052,739,537,881 9,062,201,101,803
63 6,557,470,319,842 14,662,949,395,604
64 10,610,209,857,723 23,725,150,497,407
65 17,167,680,177,565 38,388,099,893,011
66 27,777,890,035,288 62,113,250,390,418
67 44,945,570,212,853 100,501,350,283,429
68 72,723,460,248,141 162,614,600,673,847
69 117,669,030,460,994 263,115,950,957,276
70 190,392,490,709,135 425,730,551,631,123

71 308,061,521,170,129 688,846,502,588,399
72 498,454,011,879,264 1,114,577,054,219,522
73 806,515,533,049,393 1,803,423,556,807,921
74 1,304,969,544,928,657 2,918,000,611,027,443
75 2,111,485,077,978,050 4,721,424,167,835,364
76 3,416,454,622,906,707 7,639,424,778,862,807
77 5,527,939,700,884,757 12,360,848,946,698,171
78 8,944,394,323,791,464 20,000,273,725,560,978
79 14,472,334,024,676,221 32,361,122,672,259,149
80 23,416,728,348,467,685 52,361,396,397,820,127
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Appendix A.2. The First 100 Fibonacci and Lucas Numbers (Continued)

n Fn Ln

81 37,889,062,373,143,906 84,722,519,070,079,276
82 61,305,790,721,611,591 137,083,915,467,899,403
83 99,194,853,094,755,497 221,806,434,537,978,679
84 160,500,643,816,367,088 358,890,350,005,878,082
85 259,695,496,911,122,585 580,696,784,543,856,761
86 420,196,140,727,489,673 939,587,134,549,734,843
87 679,891,637,638,612,258 1,520,283,919,093,591,604
88 1,100,087,778,366,101,931 2,459,871,053,643,326,447
89 1,779,979,416,004,714,189 3,980,154,972,736,918,051
90 2,880,067,194,370,816,120 6,440,026,026,380,244,498

91 4,660,046,610,375,530,309 10,420,180,999,117,162,549
92 7,540,113,804,746,346,429 16,860,207,025,497,407,047
93 12,200,160,415,121,876,738 27,280,388,024,614,569,596
94 19,740,274,219,868,223,167 44,140,595,050,111,976,643
95 31,940,434,634,990,099,905 71,420,983,074,726,546,239
96 51,680,708,854,858,323,072 115,561,578,124,838,522,882
97 83,621,143,489,848,422,977 186,982,561,199,565,069,121
98 135,301,852,344,706,746,049 302,544,139,324,403,592,003
99 218,922,995,834,555,169,026 489,526,700,523,968,661,124

100 354,224,848,179,261,915,075 792,070,839,848,372,253,127
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Kōwa, S. (1642–1708), 27
Kwong, H., 353

L
Lagrange, J.L. (1736–1813)

continued fractions, 31, 58
solving Pell’s equation, 31, 58
summation notation, 2

Lagrange’s identity, 2, 29
Lambert, J.H. (1728–1777), 58
Lamé, G. (1795–1870), 19
Lamé’s theorem, 19
Landauer, E.G., 91
Lange, L.J., 73
Laplace, P.-S. (1749–1827), 27
Laplace’s expansion, 27–28
Larsen, M.E., 33, 35, 44, 48
Lattice. See Pell walks

height, 228, 245
length, 227, 242, 244, 245
path, 227, 232, 240, 242, 244, 245
point, 227, 240, 242

Least common denominator (lcm), 167, 338
Least integer function, 1
Leelavati, 13
Lehmer, D.H. (1905–1991), 58, 287
Leibniz, G.W. (1646–1716), 100

Leibniz triangle, 100



Index 427

Lenstra, H.W.
Solving the Pell Equation, 32

Leonardo of Pisa. See Fibonacci numbers
LHRRWCCs, 10
Lind, D., 177
Linear, 9, 74, 315, 317, 318, 371, 395, 400
Linear diophantine equation (LDE)

general solution, 64
particular solution, 63, 64

Linear nonhomogenous recurrence with constant
coefficients (LNHRWCCs), 10, 113

Ljunggren, W., 110
LNHRRWCCs. See Linear nonhomogenous recurrence

with constant coefficients (LNHRWCCs)
Lockwood, E.H., 183
Lockwood’s identity, 182–185
Loomis, E.S., 79

The Pythagorean Proposition, 79
Loop, 187, 188, 357
Louis XIV, 100
Lucas, F.E.A. (1842–1891), 18
Lucas formula

Fibonacci–Lucas connection, 22, 186, 269
Pascal’s identity, 22

Lucas numbers, 17–23, 88, 115–117, 138, 173, 182,
185–186, 338, 344, 346, 349, 352, 365

Pascal’s triangle, 17, 22, 173, 182, 185–186

M
Machin, J. (1680–1751), 285

Machin’s formula, 285
Mahon, J.M., 197, 255, 265, 267
Mana, P., 119, 327
Mathematica, 98–99
Mathematical induction, 2
Mathematics Teacher, 29
Matijasevi, Y.V., 32
Matrices and Pell numbers, 157–159
Matrix

addition, 25
Cayley, A., 24
Cayley�Hamilton theorem, 160
characteristic equation, 160
column vector, 25
definition, 84, 116, 363
eigenvalue, 160
elements, 26
equal, 25
Hamilton, W.R., 160
identity, 26, 157, 160
inverse, 26, 161
invertible, 26, 28, 52, 99, 161
MathematicaR, 98–99

multiplication, 26
multiplicative inverse, 26
negative of, 26
product of, 26, 123
row vector, 25
scalar multiplication, 25
square matrix, 25–28, 30, 63, 123, 126, 158, 160,

355, 365
determinant, 26, 27, 63, 123, 126, 158, 365

transpose, 355, 367
Vandermonde, 99
zero, 25, 26, 231

McCarthy, J. (1927–2011), 29
91-function, 29

McDaniel, W.L., 138, 140
Mean, 36
Mersenne, M. (1588–1648), 7
Mersenne number(s)

cryptography, 7
even perfect, 7, 90
infinitely many, 91
Pascal’s binary triangle, 17
Pascal triangle, 17
Pell’s equation, 7, 90, 91
triangular, 90–91

Millennial Conference on Number Theory (2000), 32
Morrison, M.A., 58
Moser, L., 133
Multiple-angle formula, 376, 386
Multiplication principle, 15, 308
Museum of Science, Boston, 31

N
Newton, I. (1642–1727)

binomial theorem, 15, 16
Nelsen, R.B., 93

NHRWCCs, 113
Nkwanta, A., 228, 238
Number(s)

beastly, 88
Catalan, 369
even perfect, 7, 90
Fermat, 6, 58, 94
Fibonacci, 17–23, 30, 59, 80, 88, 115–117, 125, 138,

157, 166, 167, 173, 182, 187–188, 227, 245,
296, 303–304, 325, 326, 328, 332, 336, 338,
344, 347, 349, 352, 355, 357, 360, 365

figurate, 87
heptagonal, 145
heptagonal Pell, 145–149
Lucas, 17–23, 88, 115–117, 138, 173, 182, 185–186,

338, 344, 346, 349, 351, 365
Mersenne, 7, 17, 90, 91



428 Index

Number(s) (cont.)
pentagonal, 87, 140, 142, 145
pentagonal Pell, 140–143
pentagonal Pell–Lucas, 125, 144–145
perfect, 42, 89
polygonal, 87, 138, 140
square-triangular, 101–115, 123, 125, 129–132, 151,

152
triangular, 11, 87–102, 110, 123, 124, 129–131, 138,

140, 278
triangular Mersenne, 90–91

Number of composition, 303

P
Pandit, Narayana (1340–1400), 79
Parallel edges, 357–358
Parity, 41, 42, 44, 91, 117, 123, 125, 132, 278, 357
Pascal, Blaise (1623–1662)

Treatise on Figurate Numbers, 87
Treatise on the Arithmetic Triangle, 16

Pascal’s identity
binomial theorem, 15, 182
Lucas formula, 22, 186, 269
Pell numbers, 177, 260

Pascal’s triangle
binary triangle, 89
Catalan numbers, 17
central binomial coefficients, 13–14, 17, 241
Fibonacci numbers, 182, 187–188
history, 16–17, 89–90, 173–191
Lucas formula, 22–23, 173, 186, 344
Mersenne number, 17
modified Pascal triangle, 175
Pell–Lucas numbers, 173, 182, 186–187
Pell numbers, 173–191

Path, 120, 227, 228, 231, 232, 234–240, 242–245, 356
Path graph, 358, 359
Pell, John (1611–1685), 23, 31
Pell and Pell–Lucas polynomials

Pascal’s identity, 14, 15, 17, 22, 174, 177, 183, 260,
270, 276

Pell generators, 130–132, 277–279
Pythagorean triples, 79–84, 129, 132–134, 202,

277–279
recurrence, 275, 381
summation formulas, 264, 275–277

Pell and Pell–Lucas sums, products
Binet-like formula, 197, 202
Cassini-like formula, 205, 206
inequality, 193–195
infinite Pell product, 200–202

power series convergence, 95, 202
primitive Pythagorean triples, 193–204
recurrence, 196, 202
telescoping, 193, 196, 198

Pell–Fibonacci congruence, 331–335
Pellian equation, 31
Pell identities

Candido’s identity, 169, 170
determinants, 156, 170
d’Ocagne’s identity, 154
fundamental, 121–129
generating functions, 153, 207–224
matrices and Pell numbers, 157–159
Pascal’s identity, 14–15
Pell–Lucas numbers, 121–128, 134, 153
recurrence, 134, 153, 249, 351
square-triangular numbers, 125

Pell inequality, 199–200
Pell–Lucas numbers

Cassini-like formula, 125, 165
determinant, 170–171
Fibonacci numbers, 18–23, 116, 182, 336
generating function, 207–210, 216
generators, 133
harmonic mean, 129
identities, 121–129, 155
lattice paths, 227–228
Pascal’s triangle, 186–187
Pell triangle, 247–253
pentagonal, 125, 140, 144–145
polynomials, 255–279, 287, 300, 321–323, 381, 390
primitive Pythagorean triples, 80–84, 128, 132–134,

202
recurrence, 23, 116, 118, 121, 137, 153, 170, 222,

236, 248, 290, 310, 336, 337, 372
square triangular, 101–114
triangular, 115, 125, 138, 140

Pell numbers
addition formula, 319, 388, 389
binomial coefficients, 177, 181
Cassini-like formula, 125, 154, 161, 165
determinants, 170–171
divisibility test, 260–263
Fibonacci numbers, 18–23, 116, 157, 166, 338
fundamental Pell identities, 121–129
geometric interpretation, 118, 169
harmonic mean, 129
heptagonal, 145–149
Lucas formula,–23
matrices, 157–159
modified Pascal triangle, 175
pentagonal, 140–143



Index 429

primitive Pythagorean triples, 80–82, 129, 132
recurrence, 153, 170
recursive definitions, 62–63, 310, 334
square-triangular numbers, 154
summation formulas, 188–191, 236, 237
sum of squares, 208
triangular, 138–140

Pell problems
cattle problem, 31
mean and standard deviation, 36
root-mean-square, 42
square pyramid, 35

Pell’s equation
cattle problem, 31
equation x2 � dy2 D k, 52–54
equation x2 � 2y2 D �1, 33, 44, 45
history, 31
multiple names of, 31
Museum of Science, Boston, 31
primitive Pythagorean triangles, 81
solutions

fundamental, 32–33, 38, 43, 44, 49
general, 69
nontrivial, 36
recursive, 39–40
trivial, 32, 36

square-triangular numbers, 101, 110, 111
Pell tiling model

application, 76–77, 357
central elements, 248–249
Pascal’s triangle, 76–77
recurrence, 307, 310, 316
recursive definition, 310, 312

Pell triangle
central elements, 248–249
construction, 247
DiDomenico triangles, 252–253
recurrence, 248, 249, 251

Pell Walks, Delannoy numbers
array, 242
central, 240, 242
Fibonacci numbers, 227, 245
lattice paths, 240, 242
recursion, 240, 242, 243

Pentagonal numbers, 87, 140, 142–145
Pentagonal Pell–Lucas numbers, 144–145
Pentagonal Pell numbers, 140–143
Perfect number, 7, 42, 90
Pierce, W.H., 47
Pietenpol, J.L., 110
Plouffe, S., 113
PMI. See Principle of mathematical induction (PMI)
Polygonal numbers, 138, 140
Polynomials

Chebyshev, 52, 369–390
Fibonacci, 256, 294
Jacobi, 298
Lucas, 255, 256, 363
Pell, 255–279, 285, 300, 318–321, 363, 371, 381,

388, 391, 395, 397, 399
Pell–Lucas, 255–279, 287, 300, 321–323, 363, 371,

381, 387, 390, 395
Positive integer, 2–4, 6, 8, 11, 24, 33–36, 39, 42–44, 58,

59, 64, 65, 80, 81, 87, 90, 92, 95, 99, 111–113,
119, 123, 127, 135, 138, 139, 142, 145, 158,
159, 162, 166, 174, 175, 183, 185, 199, 259,
262, 270, 291, 304, 331, 332, 353, 377, 381

Potter, D.C.D., 104
Powers, R.E., 58
Prasad, V.S.R., 141, 143, 144
Principle of mathematical induction (PMI), 2–4, 7, 8,

15, 19, 22, 39, 50, 51, 59, 62, 63, 66, 94, 104,
112, 117, 118, 122, 125, 126, 135, 137, 139,
140, 142, 144, 157–159, 162, 175, 185, 193,
223, 231, 232, 246, 260, 268, 271, 325–327,
330–332, 337–342, 353, 364, 372, 377, 381,
387

Problem of the square pyramid, 35
Product notation, 2, 3
Property

reflexive, 4
symmetric, 4
transitive, 4

Putnam Mathematical Competition, 1994, 1999, 126,
208

Pythagoras, 87
Pythagoreans, 87, 111
Pythagorean Theorem, Greek stamp, 79
Pythagorean Triangle

Loomis, E.S.
The Pythagorean Proposition, 79

Pythagorean triples
ancient methods, 87
Fibonacci numbers, 80
generators, 81–83
Pell equation, 81
Pell generators, 128, 130, 133, 277
Pell recurrence, 134, 202
primitive, 80–84, 129, 132–134, 202
recursive algorithm, 83–84

Q
Quadratic surd

conjugate, 38
norm, 38

Quinn, J.J., 73



430 Index

R
Rabinowit, S., 337
Ramanujan, Srinivasa Aiyangar (1887–1920)

continued fractions, 58, 73
infinite continued fractions, 65

Rao, B.S., 141, 143, 144, 146
Recurrence

characteristic
equation, 9, 23, 118, 121, 356, 373
roots, 9, 23, 97, 99, 121, 153, 356

LHRWCCs, 8–10, 12, 103, 113
linear, 8–10
LNHRWCCs, 10
order, 8–10, 40, 52, 54, 55, 121, 153, 236, 352

Recursion
basis clause, 5
definition, 4
Fibonacci numbers, 18
Fibonacci polynomials, 256, 257

handshake problem, 4, 5, 14
initial condition(s), 5, 7
Lucas numbers, 18–19
Lucas polynomials, 255, 256
Pell–Lucas numbers, 1, 23, 24, 115–147, 255, 290,

296, 298, 310–313, 315–318, 329, 333, 336,
337, 340, 343–349, 355, 372, 391

Pell–Lucas polynomials, 255–279, 287, 300,
321–323, 363, 369, 379, 385, 388, 393

Pell numbers, 23, 116, 117, 119, 125, 126, 128, 132,
133, 138–143, 145–147, 152, 154, 157–161,
166, 168, 175, 177, 179–182, 188, 193, 208,
219, 222, 236, 247, 249, 252, 255, 260, 278,
290, 305–308, 326, 328, 349, 351, 357, 360,
382

Pell polynomials, 255, 258, 269, 271–273, 277, 285,
300, 318–321, 363, 371, 381, 388, 392, 397,
399

recursive clause, 5
terminal clause, 5

Recursive formula, 5, 17, 38, 39, 43, 53, 84
Reflexive property, 4
Reznick, B.A., 127
Roelant, H., 296
Root-mean-square (rms), 42

problem, 42
Row vector, 25

S
Satyanarayana, U.V., 90
Seiffert, H.-E., 136, 143, 218, 259, 260, 262, 267,

290–296, 325, 329–331, 333, 335–336,
338–339, 341, 345, 352, 356

Seiffert’s congruence, 335–336
Seiffert’s formula, 290–296

Selenius, Clas-Olaf, 31
Sengupta, D., 107

square-triangular numbers, 107
Shapiro, L.W., 228, 238, 289, 395
Shie-Kie, 16

Precious Mirror of the Four Elements, 16
Sierpinski, W. (1882–1969), 110

square-triangular number, 101–114
Simple graph, 358
Singer, C.H., 46
Square matrix, 25–28, 63, 123, 126, 158, 160, 365
Square-triangular numbers

Diophantus Theorem, 101, 102, 110
generating function, 113–114
Jacobi symbol, 140–142, 146
Pell generators, 129–132
recursive definition, 104, 107, 110

Standard deviation, 36
Stanley, Richard P., 228
Stifel, Michel (1486–1567), 13
Su, F.E., 73
Sum formula, 284, 286, 287
Sum identity, 377, 387
Summation notation

dummy variable, 2
index, 2
lower limit, 2
upper limit, 2

Summation symbol, 2
Sum of the weights of the tilings, 306, 311, 312, 318,

319, 321, 395, 409
Surd

conjugate, 38
norm, 38
quadratic, 38

Swamy, M.N.S., 154, 256
Sylvester, A.V., 110

square-triangular numbers, 110
Sylvester, James Joseph (1814–1897), 24

matrices, 24–26
Symmetric property, 4

T
Taylor’s theorem, 298
Telescoping sum, 193, 196, 198
Tiling

breakability, 307
Chebyshev, 395–409
circular, 315–318, 322, 323, 371, 395, 407, 409
Fibonacci, 76, 305
pure/impure, 403–405
weight of, 305, 307, 308, 310–323, 395–397,

400–403, 405–407, 409



Index 431

Transitive property, 4
Transpose, 355, 367
Triangular numbers

parity, 42, 91
Pascal’s binary triangle, 89, 90
Pascal’s triangle, 16–17, 22, 49, 89–90, 173–191,

238, 247, 380
Pell numbers, 382
primitive Pythagorean triangles, 80–84, 95, 115, 129
square triangular, 101–114
summation formula, 236, 237
triangular Fermat, 94
triangular Mersenne, 90–91
triangular numbers and Pell’s equation, 95–100
triangular Pell, 138–140
Twelve Days of Christmas, 89
unsolved problem, 100
visual representations, 101

Trigg, C.W., 28, 355

U
Unbreakable, 307
United States Military Academy, 127
USA Mathematical Olympiad, 1986, 42, 127

V
Vandermonde, Charles Auguste (1735–1796), 99
Vandermonde matrix, 99

computing using MathematicaR, 99
Vector

column, 25
row, 25

Vespe, C.A., 154
Virahanka, 17
von Ettinghausen, Andreas (1796–1878), 13
Vucenic, W., 327

W
Wachtel, M., 129
Wallis, John (1616–1703), 31, 57, 64
Warten, R.M., 111–113

square-triangular numbers, 101–114
Watson, George N. (1886–1965), 35, 36
Wheel graph, 358
Wilhelm, Baron Gottfried (1646–1716), 27, 100
William, H.C., 32
William L. Putnam Mathematical Competition, 1999,

126, 208
Wunderlich, M., 167

Y
Yang, Hui Yang, 16

Z
Zaiming, Z., 119
Zarankiewicz, K. (1902–1959), 100
Zeitlin, D., 143–144, 153, 290, 326
Zero matrix, 25


	Preface
	Two New Bright Stars
	A First in the Field
	Audience
	Prerequisites
	Historical Background
	Pascal's Triangle and the Pell Family
	A New Hybrid Family
	Opportunities for Exploration
	Symbols and Abbreviations
	Salient Features
	Acknowledgments

	Contents
	List of Symbols
	Abbreviations
	1 Fundamentals
	1.1 Introduction
	1.2 Floor and Ceiling Functions
	1.3 Summation Notation
	1.4 Product Notation
	1.5 Congruences
	1.6 Recursion
	1.7 Solving Recurrences
	1.7.1 LHRWCCs

	1.8 Generating Functions
	1.9 Binomial Coefficients
	1.9.1 Pascal's Identity
	1.9.2 Binomial Theorem
	1.9.3 Pascal's Triangle

	1.10 Fibonacci and Lucas Numbers
	1.10.1 Fibonacci's Rabbits
	1.10.2 Fibonacci Numbers
	1.10.3 Lucas Numbers
	1.10.4 Binet's Formulas
	1.10.5 Fibonacci and Lucas Identities
	1.10.6 Lucas' Formula for Fn

	1.11 Pell and Pell–Lucas Numbers: A Preview
	1.11.1 Binet-like Formulas
	1.11.2 Example 1.7 Revisited

	1.12 Matrices and Determinants
	1.12.1 Matrix Addition
	1.12.2 Scalar Multiplication
	1.12.3 Matrix Multiplication
	1.12.4 Invertible Matrix
	1.12.5 Determinants
	1.12.6 Laplace's Expansion

	Exercises 1

	2 Pell's Equation
	2.1 Introduction
	2.2 Pell's Equation x2 - dy2 = (-1)n
	2.3 Norm of a Quadratic Surd
	2.4 Recursive Solutions
	2.4.1 A Second-Order Recurrence for (xn,yn)

	2.5 Solutions of x2 - 2y2 = (-1)n
	2.5.1 An Interesting Byproduct

	2.6 Euler and Pell's Equation x2 - dy2 = (-1)n
	2.7 A Link Between Any Two Solutions of x2 - dy2 = (-1)n
	2.8 A Preview of Chebyshev Polynomials
	2.9 Pell's Equation x2 - dy2 = k
	Exercises 2

	3 Continued Fractions
	3.1 Introduction
	3.2 Finite Continued Fractions
	3.2.1 Convergents of a Continued Fraction
	3.2.2 Recursive Definitions of pk and qk

	3.3 LDEs and Continued Fractions
	3.4 Infinite Simple Continued Fractions (ISCF)
	3.5 Pell's Equation x2 - dy2 = (-1)n and ISCFs
	3.6 A Simple Continued Fraction Tiling Model
	3.6.1 A Fibonacci Tiling Model
	3.6.2 A Pell Tiling Model

	3.7 A Generalized Continued Fraction Tiling Model
	Exercises 3

	4 Pythagorean Triples
	4.1 Introduction
	4.2 Pythagorean Triples
	4.2.1 Primitive Pythagorean Triples
	4.2.2 Some Quick Observations

	4.3 A Recursive Algorithm
	Exercises 4

	5 Triangular Numbers
	5.1 Introduction
	5.2 Triangular Numbers
	5.3 Pascal's Triangle Revisited
	5.4 Triangular Mersenne Numbers
	5.5 Properties of Triangular Numbers
	5.6 Triangular Fermat Numbers
	5.7 The Equation x2 + (x +1)2 = z2 Revisited
	5.8 A Generating function For Triangular Numbers
	5.9 Triangular Numbers and Pell's Equation
	5.9.1 Two Interesting Dividends
	5.9.2 The Matrix Method Using Mathematica"472
	5.9.3 Example 5.3 Revisited

	5.10 An Unsolved Problem
	Exercises 5

	6 Square-Triangular Numbers
	6.1 Introduction
	6.2 Infinitude of Square-Triangular Numbers
	6.2.1 An Alternate Method
	6.2.2 The Ends of xk, yk, yk2, and nk
	6.2.3 Cross' Recurrence for yk

	6.3 The Infinitude of Square-Triangular Numbers Revisited
	6.4 A Recursive Definition of Square-Triangular Numbers
	6.5 Warten's Characterization of Square-Triangular Numbers
	6.6 A Generating Function For Square-Triangular Numbers
	6.6.1 A Generating Function For {nk}
	6.6.2 A Generating Function For {yk}

	Exercises 6

	7 Pell and Pell–Lucas Numbers
	7.1 Introduction
	7.2 Earlier Occurrences
	7.3 Recursive Definitions
	7.4 Alternate Forms for γ and δ
	7.5 A Geometric Confluence
	7.6 Pell's equation x2 - 2y2 = -1 Revisited
	7.7 Fundamental Pell Identities
	7.7.1 Two Interesting Byproducts

	7.8 Pell Numbers and Primitive Pythagorean Triples
	7.9 A Harmonic Bridge
	7.10 Square-Triangular Numbers with Pell Generators
	7.11 Primitive Pythagorean Triples With Consecutive Legs Revisited
	7.12 Square of a Pell Sum
	7.13 The Recurrence  xn+2 = 6xn+1 - xn + 2 Revisited
	7.14 Ratios of Consecutive Pell and Pell–Lucas Numbers
	7.15 Triangular Pell Numbers
	7.16 Pentagonal Numbers
	7.17 Pentagonal Pell Numbers
	7.18 Zeitlin's Identity
	7.19 Pentagonal Pell–Lucas Numbers
	7.20 Heptagonal Pell Numbers
	Exercises 7

	8 Additional Pell Identities
	8.1 Introduction
	8.2 An Interesting Byproduct
	8.3 A Pell and Pell–Lucas Hybridity
	8.4 Matrices and Pell Numbers
	8.5 Convergents of the ISCF of 2 Revisited
	8.5.1 An Alternate Method

	8.6 Additional Addition Formulas
	8.6.1 Formula (8.10) Revisited

	8.7 Pell Divisibility Properties Revisited
	8.8 Additional Identities
	8.9 Candido's Identity and the Pell Family
	8.10 Pell Determinants
	Exercises 8

	9 Pascal's Triangle and the Pell Family
	9.1 Introduction
	9.2 An Alternate Approach
	9.3 Another Explicit Formula for Qn
	9.4 A Recurrence for Even-numbered Pell Numbers
	9.5 Another Explicit Formula for P2n
	9.6 An Explicit Formula for P2n-1
	9.7 Explicit Formulas for Pn2 and Qn2
	9.8 Lockwood's Identity
	9.9 Lucas Numbers and Pascal's Triangle
	9.10 Pell–Lucas Numbers and Pascal's Triangle
	9.11 Odd-Numbered Fibonacci Numbers and Pascal's Triangle
	9.12 Odd-Numbered Pell Numbers and Pascal's Triangle
	9.13 Pell Summation Formulas
	Exercises 9

	10 Pell Sums and Products
	10.1 Introduction
	10.2 Pell and Pell–Lucas Sums
	10.3 Infinite Pell and Pell–Lucas Sums
	10.4 A Pell Inequality
	10.5 An Infinite Pell Product
	10.6 Radii of Convergence of the Series
	10.6.1 Sum of the Series n=0∞Pnxn
	10.6.2 Sum of the Series n=0∞Qnxn

	Exercises 10

	11 Generating Functions for the Pell Family
	11.1 Introduction
	11.2 Generating Functions for the Pell and Pell–Lucas Sequences
	11.3 Formulas for k=0nA2k and k=0nA2k+1
	11.4 A Formula for k=0nAkAn-k
	11.5 A Formula for k=0nA2kA2n-2k
	11.6 A Formula for k=0nA2k+1A2n-2k+1
	11.7 A Formula for the Hybrid Sum k=0nA2kA2n-2k+1
	11.8 Generating Functions for {Pn2} and {Qn2}
	11.9 Generating Functions for {P2n+1}, {Q2n}, {Q2n+1}, and {P2n} Revisited
	11.10 Generating Functions for {PnPn+1} and {QnQn+1}
	11.11 Another Explicit Formula for Pn
	11.12 Hoggatt's Array
	Exercises 11

	12 Pell Walks
	12.1 Introduction
	12.2 Interesting Byproducts
	12.3 Walks Beginning with and Ending in E
	12.4 Paths Beginning with E and Ending in W
	12.5 Paths Beginning with E, but not Ending in W
	12.6 Paths not Beginning with or Ending in E
	12.7 A Hidden Treasure
	12.8 Example 12.2 Revisited

	13 Pell Triangles
	13.1 Introduction
	13.2 Central Elements in the Pell Triangle
	13.3 An Alternate Formula for g(n,j)
	13.4 A Recurrence for Kn
	13.5 DiDomenico's Triangles
	Exercises 13

	14 Pell and Pell–Lucas Polynomials
	14.1 Introduction
	14.2 Special Cases
	14.3 Gauthier's Formula
	14.4 Binet-like Formulas
	14.5 A Pell Divisibility Test
	14.6 Generating Functions for pn(x) and qn(x)
	14.7 Elementary Properties of pn(x) and qn(x)
	14.8 Summation Formulas
	14.9 Matrix Generators for pn(x) and qn(x)
	14.10 Addition Formulas
	14.11 Explicit Formulas for pn(x) and qn(x)
	14.12 Pell Polynomials from Rising Diagonals
	14.13 Pell–Lucas Polynomials from Rising Diagonals
	14.14 Summation Formulas
	14.15 Pell Polynomials and Pythagorean Triples
	14.16 Pythagorean Triples with Pell Generators
	Exercises 14

	15 Pellonometry
	15.1 Introduction
	15.2 Euler's and Machin's Formulas
	15.3 Identities (15.1) and (15.2) Revisited
	15.4 An Additional Byproduct of Example 15.2
	15.5 Shapiro's Formula
	15.6 Seiffert's Formulas
	15.6.1 Additional Seiffert Formulas

	15.7 Roelants' Expansions of π4
	15.7.1 Special Cases

	15.8 Another Explicit Formula for Pn
	15.9 pn(x), qn(x), and Hyperbolic Functions
	Exercises 15

	16 Pell Tilings
	16.1 Introduction
	16.2 A Combinatorial Model for Fibonacci Numbers
	16.3 A Fibonacci Tiling Model
	16.4 A Combinatorial Model For Pell Numbers
	16.5 Colored Tilings
	16.6 Combinatorial Models for Pell–Lucas Numbers
	16.7 Colored Tilings Revisited
	16.8 Circular Tilings and Pell–Lucas Numbers
	16.9 Combinatorial Models for the Pell Polynomial pn(x)
	16.10 Colored Tilings and Pell Polynomials
	16.11 Combinatorial Models for Pell–Lucas Polynomials
	16.12 Bracelets and Pell–Lucas Polynomials

	17 Pell–Fibonacci Hybridities
	17.1 Introduction
	17.2 A Fibonacci Upper bound
	17.3 Cook's Inequality
	17.4 Pell–Fibonacci Congruences
	17.4.1 A Generalization

	17.5 Israel's Congruence
	17.6 Seiffert's Congruence
	17.6.1 Israel's and Seiffert's Congruences Revisited

	17.7 Pell–Lucas Congruences
	17.8 Seiffert's Pell–Lucas Congruences
	17.9 Hybrid Sums
	17.9.1 Weighted Hybrid Sums

	17.10 Congruence Byproducts
	17.10.1 Special Cases

	17.11 A Counterpart for Pell–Lucas Numbers
	17.11.1 Special Cases

	17.12 Catalani's Identities
	17.13 A Fibonacci–Lucas–Pell Bridge
	17.14 Recurrences for {FnPn}, {LnPn}, {FnQn}, and {LnQn}
	17.15 Generating Functions for {An}, {Bn}, {Cn}, and {Dn}
	17.16 ISCF Revisited
	17.16.1 Special Cases

	17.17 Basic Graph-theoretic Terminology
	17.18 Cartesian Product of Two Graphs
	17.19 Domino Tilings of W4Pn-1
	Exercises 17

	18 An Extended Pell Family
	18.1 Introduction
	18.2 An Extended Pell Family
	18.3 A Generalized Cassini-like Formula
	18.3.1 Two Interesting Special Cases


	19 Chebyshev Polynomials
	19.1 Introduction
	19.2 Chebyshev Polynomials of the First Kind
	19.3 Pell–Lucas Numbers Revisited
	19.4 An Explicit Formula for Tn(x)
	19.5 Another Explicit Formula for Tn(x)
	19.5.1 Two Interesting Byproducts

	19.6 Tn(x) and the Pell Equation u2 - (x2 - 1)v2 = 1
	19.7 Chebyshev Polynomials Tn(x) and Trigonometry
	19.8 Chebyshev Recurrence Revisited
	19.9 A Summation Formula For Tn(x)
	19.9.1 A Summation Formula For Qn

	19.10 Chebyshev Polynomials of the Second Kind
	19.11 Pell Numbers Revisited
	19.12 An Explicit Formula for Un(x)
	19.13 Another Explicit Formula for Un(x)
	19.13.1 An Explicit Formula for Pn

	19.14 Pell's Equation Revisited
	19.15 Un(x) and Trigonometry
	19.16 Chebyshev Recurrence for Un(x) Revisited
	19.16.1 An Interesting Special Case
	19.16.2 An Interesting Byproduct

	19.17 Cassini-like Formulas for Chebyshev Polynomials
	19.18 Generating Functions for Chebyshev Polynomials
	Exercises 19

	20 Chebyshev Tilings
	20.1 Introduction
	20.2 Combinatorial Models for Un(x)
	20.3 A Colored Combinatorial Model for Un(x)
	20.4 Combinatorial Models for Tn(x)
	20.5 A Combinatorial Proof that Tn(cos θ) = cos nθ
	20.6 Two Hybrid Chebyshev Identities
	Exercises 20

	Appendix
	References
	Index

