The

Pragmatic
rogrammers

Pragmatic
nit Testing

In C* with NUnit

The Pragmatic Starter Kit - Volume I

—

/

Andrew Hunt David Thomas

What readers are saying about
Pragmatic Unit Testing. . .

“This book starts out with a nice introduction discussing
what unit testing is as well as why we should do it. I like the
anecdotes peppered throughout the book illustrating the
point of why one should bother. ... I also really liked the
analogies you use. It puts the code into a real-world context.”

> Sharee L. Johnson,
Project Lead, Applications Development

“I wish I had a copy back when I started doing test-first
development as part of Extreme Programming.”

» Al Koscielny, Software Developer

“I'm not totally new to testing, but I've struggled with many
aspects of it. I think this book does a good job of bringing
those along who are completely new to unit testing, but still
has enough advanced material to assist those of us who have
dabbled in testing and floundered once we've hit obstacles.”

» Andrew Thompson,
Consultant, Greenbrier & Russel

“When I'm on a project that needs to be doing unit testing
better (which is often the case), I'd like to have this book
available as a simple reference to suggest to the team.”

» Bobby Woolf, Consulting I/T Specialist,
IBM Software Services for Websphere

“I am a firm believer in unit testing and I would want all
team members I work with to be religiously practicing the
techniques recommended in this book. I think there is a lot
of good, practical information in this book that any
professional software engineer should be incorporating into
their daily work.”

» James J. O’Connor III,
Lead System Design Engineer

in C# with NUnit

Andy Hunt

Dave Thomas

The Pragmatic Bookshelf

Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and The Pragmatic Programmers, LLC was aware of a trademark
claim, the designations have been printed in initial capital letters or in all
capitals.

Every precaution was taken in the preparation of this book. However, the
publisher assumes no responsibility for errors or omissions, or for damages
that may result from the use of information (including program listings) con-
tained herein.

Our Pragmatic courses, workshops and other products can help you and your
team create better software and have more fun. For more information, as well
as the latest Pragmatic titles, please visit us at:

http://www.pragmaticprogrammer.com

Copyright © 2003, 2004 The Pragmatic Programmers, LLC. All rights re-
served. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechani-
cal, photocopying, recording, or otherwise, without the prior consent of the
publisher.

Printed in the United States of America.

ISBN 0-9745140-2-0

Text printed on acid-free paper.
First printing, March 2004
Version: 2004-3-5

http://www.pragmaticprogrammer.com

About the Starter Kit

Preface

1

2

3

Introduction

1.1 Coding With Confidence
1.2 Whatis Unit Testing?
1.3 Why Should I Bother with Unit Testing?
1.4 What Do I Want to Accomplish?
1.5 How Do I Do Unit Testing?
1.6 Excuses For NotTesting.
1.7 Roadmap

Your First Unit Tests

2.1 PlanningTests
2.2 Testing a Simple Method
2.3 Running Tests with NUnit
2.4 Running the Example
2.5 MoreTests

Writing Tests in NUnit

3.1 Structuring UnitTests
3.2 NUnitAsserts
3.3 NUnit Framework
3.4 NUnit Test Selection
3.5 NUnit Custom Asserts
3.6 NUnit and Exceptions
3.7 Temporarily Ignoring Tests

M

NN N

12

13
14
15
16
22
26

CONTENTS <« vi

4 What to Test: The Right-BICEP 44
4.1 AretheResultsRight? 45
4.2 Boundary Conditions 48
4.3 Check Inverse Relationships 49
4.4 Cross-check Using Other Means 49
4.5 Force Error Conditions 50
4.6 Performance Characteristics 51

5 CORRECT Boundary Conditions 53
5.1 Conformance 54
52 Ordering, 55
53 Range e, 57
54 Reference, 60
5.5 Existence, 61
5.6 Cardinality 62
5.7 Time e 64
58 TryltYourself.................... 66

6 Using Mock Objects 70
6.1 SimpleStubs, 71
6.2 Mock Objects 72
6.3 Formalizing Mock Objects 76
6.4 WhenNotToMock 90

7 Properties of Good Tests 92
7.1 Automatic 000000 93
7.2 Thorough 94
7.3 Repeatable, 96
74 Independent. 96
7.5 Professional 97
7.6 TestingtheTests 99

8 Testing on a Project 102
8.1 WheretoPutTestCode 102
82 TestCourtesy 105
83 TestFrequency 106
8.4 Testsand Legacy Code 107
8.5 Testsand Reviews 110

Prepared exclusively for Donald Viahovic

CONTENTS <« vii

9 Design Issues 113
9.1 Designing for Testability 113
9.2 Refactoring for Testing 115
9.3 Testing the Class Invariant 126
9.4 Test-DrivenDesign. 128
9.5 Testing Invalid Parameters 130
A Gotchas 132
A.1 AsLong As The Code Works 132
A2 “Smoke”Tests 132
A.3 “Works On My Machine”. 133
A.4 Floating-Point Problems 133
A5 TestsTakeTooLong 134
A.6 TestsKeepBreaking 134
A.7 Tests Fail on Some Machines 135
B Resources 136
B.1 OnTheWeb 136
B.2 Bibliography 138
C Summary: Pragmatic Unit Testing 139
D Answers to Exercises 140

Prepared exclusively for Donald Viahovic

—Aboutthe StarterKit

Our first book, The Pragmatic Programmer: From Journeyman
to Master, is a widely-acclaimed overview of practical topics in
modern software development. Since it was first published in
1999, many people have asked us about follow-on books, or
sequels. We'll get around to that. But first, we thought we’d
go back and offer a prequel of sorts.

Over the years, we've found that many of our pragmatic read-
ers who are just starting out need a helping hand to get their
development infrastructure in place, so they can begin form-
ing good habits early. Many of our more advanced pragmatic
readers understand these topics thoroughly, but need help
convincing and educating the rest of their team or organiza-
tion. We think we've got something that can help.

The Pragmatic Starter Kit is a three-volume set that covers
the essential basics for modern software development. These
volumes include the practices, tools, and philosophies that
you need to get a team up and running and super-productive.
Armed with this knowledge, you and your team can adopt
good habits easily and enjoy the safety and comfort of a well-
established “safety net” for your project.

Volume I, Pragmatic Version Control, describes how to use ver-
sion control as the cornerstone of a project. A project with-
out version control is like a word processor without an UNDO
button: the more text you enter, the more expensive a mis-
take will be. Pragmatic Version Control shows you how to use
version control systems effectively, with all the benefits and
safety but without crippling bureaucracy or lengthy, tedious
procedures.

ABOUT THE STARTER KIT < ix

This volume, Pragmatic Unit Testing, is the second volume in
the series. Unit testing is an essential technique as it provides
real-world, real-time feedback for developers as we write code.
Many developers misunderstand unit testing, and don’t real-
ize that it makes our jobs as developers easier. This volume
is available in two different language versions: in Java with
JUnit, and in C# with NUnit.

Volume III, Pragmatic Automation,! covers the essential prac-
tices and technologies needed to automate your code’s build,
test, and release procedures. Few projects suffer from having
too much time on their hands, so Pragmatic Automation will
show you how to get the computer to do more of the mun-
dane tasks by itself, freeing you to concentrate on the more
interesting—and difficult—challenges.

These books are created in the same approachable style as
our first book, and address specific needs and problems that
you face in the trenches every day. But these aren’'t dummy-
level books that only give you part of the picture; they’ll give
you enough understanding that you’ll be able to invent your
own solutions to the novel problems you face that we haven'’t
addressed specifically.

For up-to-date information on these and other books, as well
as related pragmatic resources for developers and managers,
please visit us on the web at:

http://www.pragmaticprogrammer.com

Thanks, and remember to make it fun!

IExpected to be published in 2004.

Prepared exclusively for Donald Viahovic

_ DPreface

Welcome to the world of developer-centric unit testing! We
hope you find this book to be a valuable resource for yourself
and your project team. You can tell us how it helped you—
or let us know how we can improve—by visiting the Pragmatic
Unit Testing page on our web site? and clicking on “Feedback.”

Feedback like that is what makes books great. It’s also what
makes people and projects great. Pragmatic programming is
all about using real-world feedback to fine tune and adjust
your approach.

Which brings us to unit testing. As we’ll see, unit testing is
important to you as a programmer because it provides the
feedback you need. Without unit testing, you may as well be
writing programs on a yellow legal pad and hoping for the best
when they’re run.

That’s not very pragmatic.

This book can help. It is aimed primarily at the C# program-
mer who has some experience writing and designing code, but
who does not have much experience with unit testing.

But while the examples are in C#, using the NUnit framework,
the concepts remain the same whether you are writing in C++,
Fortran, Ruby, Smalltalk, or VisualBasic. Testing frameworks
similar to NUnit exist for over 60 different languages; these
various frameworks can be downloaded for free.3

2h‘ctp 1/ /www.pragmaticprogrammer.com/sk/ut/
3http 1/ /www.Xprogramming.com/software.htm

http://www.xprogramming.com/software.htm

PREFACE d xi

For the more advanced programmer, who has done unit test-
ing before, we hope there will be a couple of nice surprises for
you here. Skim over the basics of using NUnit and concen-
trate on how to think about tests, how testing affects design,
and how to handle certain team-wide issues you may be hav-
ing.

And remember that this book is just the beginning. It may be
your first book on unit testing, but we hope it won’'t be your
last.

Where To Find The Code

Throughout the book you’ll find examples of C# code; some
of these are complete programs while others are fragments of
programs. If you want to run any of the example code or look
at the complete source (instead of just the printed fragment),
look in the margin: the filename of each code fragment in the
book is printed in the margin next to the code fragment itself.

Some code fragments evolve with the discussion, so you may
find the same source code file (with the same name) in the
main directory as well as in subdirectories that contain later
versions (revl, rev?2, and so on).

All of the code in this book is available via the Pragmatic Unit
Testing page on our web site.

Typographic Conventions

italic font Indicates terms that are being defined, or
borrowed from another language.

computer font Indicates method names, file and class
names, and various other literal strings.

XXX XX XX; Indicates unimportant portions of source
code that are deliberately omitted.
The “curves ahead” sign warns that this
material is more advanced, and can safely
be skipped on your first reading.

Prepared exclusively for Donald Viahovic

PREFACE < xii

\/ “Joe the Developer,” our cartoon friend,
N asks a related question that you may find
- useful.
A break in the text where you should stop
@ and think about what’s been asked, or try
an experiment live on a computer before
continuing.

Language-specific Versions

As of this printing, Pragmatic Unit Testing is available in two
programming language specific versions:

e in Java with JUnit

e in C# with NUnit

Acknowledgments

We'd especially like to thank the following Practitioners for
their valuable input, suggestions, and stories: Mitch Amiano,
Nascif Abousalh-Neto, Andrew C. Oliver, Jared Richardson,
and Bobby Woolf.

Thanks also to our reviewers who took the time and energy
to point out our errors, omissions, and occasionally-twisted
writing: Gareth Hayter, Dominique Plante, Charlie Poole,
Maik Schmidt, and David Starnes.

Thanks to all of you for your hard work and support.

Andy Hunt and Dave Thomas
March, 2004
pragprog@pragmaticprogrammer.com

Prepared exclusively for Donald Viahovic

Chapter 1

There are lots of different kinds of testing that can and should
be performed on a software project. Some of this testing re-
quires extensive involvement from the end users; other forms
may require teams of dedicated Quality Assurance personnel
or other expensive resources.

But that’s not what we're going to talk about here.

Instead, we're talking about unit testing: an essential, if often
misunderstood, part of project and personal success. Unit
testing is a relatively inexpensive, easy way to produce better
code, faster.

Many organizations have grand intentions when it comes to
testing, but tend to test only toward the end of a project, when
the mounting schedule pressures cause testing to be curtailed
or eliminated entirely.

Many programmers feel that testing is just a nuisance: an
unwanted bother that merely distracts from the real business
at hand—cutting code.

Everyone agrees that more testing is needed, in the same way
that everyone agrees you should eat your broccoli, stop smok-
ing, get plenty of rest, and exercise regularly. That doesn’t
mean that any of us actually do these things, however.

But unit testing can be much more than these—while you
might consider it to be in the broccoli family, we're here to tell

CODING WITH CONFIDENCE - 2

you that it’s more like an awesome sauce that makes every-
thing taste better. Unit testing isn’t designed to achieve some
corporate quality initiative; it’s not a tool for the end-users,
or managers, or team leads. Unit testing is done by program-
mers, for programmers. It’s here for our benefit alone, to make
our lives easier.

Put simply, unit testing alone can mean the difference be-
tween your success and your failure. Consider the following
short story.

1.1 Coding With Confidence

Once upon a time—maybe it was last Tuesday—there were
two developers, Pat and Dale. They were both up against
the same deadline, which was rapidly approaching. Pat was
pumping out code pretty fast; developing class after class and
method after method, stopping every so often to make sure
that the code would compile.

Pat kept up this pace right until the night before the deadline,
when it would be time to demonstrate all this code. Pat ran
the top-level program, but didn’'t get any output at all. Noth-
ing. Time to step through using the debugger. Hmm. That
can’t be right, thought Pat. There’s no way that this variable
could be zero by now. So Pat stepped back through the code,
trying to track down the history of this elusive problem.

It was getting late now. That bug was found and fixed, but Pat
found several more during the process. And still, there was
no output at all. Pat couldn’t understand why. It just didn’t
make any sense.

Dale, meanwhile, wasn't churning out code nearly as fast.
Dale would write a new routine and a short test to go along
with it. Nothing fancy, just a simple test to see if the routine
just written actually did what it was supposed to do. It took a
little longer to think of the test, and write it, but Dale refused
to move on until the new routine could prove itself. Only then
would Dale move up and write the next routine that called it,
and so on.

Prepared exclusively for Donald Viahovic

WHAT 1S UNIT TESTING? < 3

Dale rarely used the debugger, if ever, and was somewhat puz-
zled at the picture of Pat, head in hands, muttering various
evil-sounding curses at the computer with wide, bloodshot
eyes staring at all those debugger windows.

The deadline came and went, and Pat didn’t make it. Dale’s
code was integrated and ran almost perfectly. One little glitch
came up, but it was pretty easy to see where the problem was.
Dale fixed it in just a few minutes.

Now comes the punch line: Dale and Pat are the same age,
and have roughly the same coding skills and mental prowess.
The only difference is that Dale believes very strongly in unit
testing, and tests every newly-crafted method before relying
on it or using it from other code.

Pat does not. Pat “knows” that the code should work as writ-
ten, and doesn’t bother to try it until most of the code has
been written. But by then it's too late, and it becomes very
hard to try to locate the source of bugs, or even determine
what’s working and what’s not.

1.2 What is Unit Testing?

A unit test is a piece of code written by a developer that ex-
ercises a very small, specific area of functionality of the code
being tested. Usually a unit test exercises some particular
method in a particular context. For example, you might add
a large value to a sorted list, then confirm that this value ap-
pears at the end of the list. Or you might delete a pattern of
characters from a string and then confirm that they are gone.

Unit tests are performed to prove that a piece of code does
what the developer thinks it should do.

The question remains open as to whether that’s the right thing
to do according to the customer or end-user: that’s what ac-
ceptance testing is for. We're not really concerned with formal
validation and verification or correctness just yet. We're re-
ally not even interested in performance testing at this point.
All we want to do is prove that code does what we intended,
and so we want to test very small, very isolated pieces of func-
tionality. By building up confidence that the individual pieces

Prepared exclusively for Donald Viahovic

WHY SHOULD I BOTHER WITH UNIT TESTING? <d 4

work as expected, we can then proceed to assemble and test
working systems.

After all, if we aren’t sure the code is doing what we think,
then any other forms of testing may just be a waste of time.
You still need other forms of testing, and perhaps much more
formal testing depending on your environment. But testing,
as with charity, begins at home.

1.3 Why Should I Bother with Unit Testing?

Unit testing will make your life easier. It will make your de-
signs better and drastically reduce the amount of time you
spend debugging.

In our tale above, Pat got into trouble by assuming that lower-
level code worked, and then went on to use that in higher-level
code, which was in turn used by more code, and so on. With-
out legitimate confidence in any of the code, Pat was building
a “house of cards” of assumptions—one little nudge at the
bottom and the whole thing falls down.

When basic, low-level code isn’t reliable, the requisite fixes
don’t stay at the low level. You fix the low level problem, but
that impacts code at higher levels, which then need fixing,
and so on. Fixes begin to ripple throughout the code, getting
larger and more complicated as they go. The house of cards
falls down, taking the project with it.

Pat keeps saying things like “that’s impossible” or “I don’t un-
derstand how that could happen.” If you find yourself think-
ing these sorts of thoughts, then that’s usually a good indica-
tion that you don’t have enough confidence in your code—you
don’t know for sure what'’s working and what’s not.

In order to gain the kind of code confidence that Dale has,
you’'ll need to ask the code itself what it is doing, and check
that the result is what you expect it to be.

That simple idea describes the heart of unit testing: the single
most effective technique to better coding.

Prepared exclusively for Donald Viahovic

WHAT DO I WANT TO ACCOMPLISH? <« 5}

1.4 What Do I Want to Accomplish?

It's easy to get carried away with unit testing because it’'s so
much fun, but at the end of the day we still need to produce
production code for customers and end-users, so let’s be clear
about our goals for unit testing. First and foremost, you want
to do this to make your life—and the lives of your teammates—
easier.

Does It Do What I Want?

Fundamentally, you want to answer the question: “Is the code
fulfilling my intent?” The code might well be doing the wrong
thing as far as the requirements are concerned, but that’s a
separate exercise. You want the code to prove to you that it's
doing exactly what you think it should.

Does It Do What I Want All of the Time?

Many developers who claim they do testing only ever write one
test. That's the test that goes right down the middle, taking
the “one right path” through the code where everything goes
perfectly.

But of course, life is rarely that cooperative, and things don’t
always go perfectly: exceptions get thrown, disks get full,
network lines drop, buffers overflow, and—heaven forbid—we
write bugs. That’s the “engineering” part of software develop-
ment. Civil engineers must consider the load on bridges, the
effects of high winds, of earthquakes, floods, and so on. Elec-
trical engineers plan on frequency drift, voltage spikes, noise,
even problems with parts availability.

You don’t test a bridge by driving a single car over it right
down the middle lane on a clear, calm day. That’s not suffi-
cient. Similarly, beyond ensuring that the code does what you
want, you need to ensure that the code does what you want
all of the time, even when the winds are high, the parameters
are suspect, the disk is full, and the network is sluggish.

Prepared exclusively for Donald Viahovic

WHAT Do I WANT TO ACCOMPLISH? <d 6

Can I Depend On It?

Code that you can’t depend on is useless. Worse, code that
you think you can depend on (but turns out to have bugs) can
cost you a lot of time to track down and debug. There are
very few projects that can afford to waste time, so you want to
avoid that “one step forward two steps back” approach at all
costs, and stick to moving forward.

No one writes perfect code, and that’s okay—as long you know
where the problems exist. Many of the most spectacular soft-
ware failures that strand broken spacecraft on distant planets
or blow them up in mid-flight could have been avoided sim-
ply by knowing the limitations of the software. For instance,
the Arianne 5 rocket software re-used a library from an older
rocket that simply couldn’t handle the larger numbers of the
higher-flying new rocket.! It exploded 40 seconds into flight,
taking $500 million dollars with it into oblivion.

We want to be able to depend on the code we write, and know
for certain both its strengths and its limitations.

For example, suppose you've written a routine to reverse a
list of numbers. As part of testing, you give it an empty list—
and the code blows up. The requirements don’t say you have
to accept an empty list, so maybe you simply document that
fact in the comment block for the method and throw an ex-
ception if the routine is called with an empty list. Now you
know the limitations of code right away, instead of finding out
the hard way (often somewhere inconvenient, such as in the
upper atmosphere).

Does it Document my Intent?

One nice side-effect of unit testing is that it helps you commu-
nicate the code’s intended use. In effect, a unit test behaves as
executable documentation, showing how you expect the code
to behave under the various conditions you've considered.

IFor aviation geeks: The numeric overflow was due to a much larger “hor-
izontal bias” due to a different trajectory that increased the horizontal velocity
of the rocket.

Prepared exclusively for Donald Viahovic

How Do I Do UNIT TESTING? < 7

Team members can look at the tests for examples of how to
use your code. If someone comes across a test case that you
haven’t considered, they’ll be alerted quickly to that fact.

And of course, executable documentation has the benefit of
being correct. Unlike written documentation, it won’t drift
away from the code (unless, of course, you stop running the
tests).

1.5 How Do I Do Unit Testing?

Unit testing is basically an easy practice to adopt, but there
are some guidelines and common steps that you can follow to
make it easier and more effective.

The first step is to decide how to test the method in question—
before writing the code itself. With at least a rough idea of how
to proceed, you proceed to write the test code itself, either
before or concurrently with the implementation code.

Next, you run the test itself, and probably all the other tests
in that part of the system, or even the entire system’s tests
if that can be done relatively quickly. It’s important that all
the tests pass, not just the new one. You want to avoid any
collateral damage as well as any immediate bugs.

Every test needs to determine whether it passed or not—it
doesn’t count if you or some other hapless human has to read
through a pile of output and decide whether the code worked
or not. You want to get into the habit of looking at the test
results and telling at a glance whether it all worked. We'll talk
more about that when we go over the specifics of using unit
testing frameworks.

1.6 Excuses For Not Testing

Despite our rational and impassioned pleas, some developers
will still nod their heads and agree with the need for unit test-
ing, but will steadfastly assure us that they couldn’t possibly
do this sort of testing for one of a variety of reasons. Here are
some of the most popular excuses we've heard, along with our
rebuttals.

Prepared exclusively for Donald Viahovic

EXCUSES FOR NOT TESTING 8

1/{ Joe Asks...
Y, ,
_=__What’s collateral damage?

Collateral domage is what happens when a new fea-
tfure or a bug fix in one part of the system causes a
bug (damage) to another, possibly unrelated part of
the system. I[t's an insidious problem that, if allowed to
continue, can quickly render the entire system broken
beyond anyone’s ability to fix.

We sometime call this the “Whac-a-Mole” effect. In
the carnival game of Whac-a-Mole, the player must
strike the mechanical mole heads that pop up on the
playing field. But they don’t keep their heads up for
long; as soon as you move 1o strike one mole, it re-
tfreats and another mole pops up on the opposite side
of the field. The moles pop up and down fast enough
that it can be very frustrating to fry to connect with
one and score. As a result, players generally flail help-
lessly at the field as the moles continue to pop up
where you least expect them.

Widespread collateral damage to a code base can
have a similar effect.

It takes too much time to write the tests This is the num-
ber one complaint voiced by most newcomers to unit testing.
It’s untrue, of course, but to see why we need to take a closer
look at where you spend your time when developing code.

Many people view testing of any sort as something that hap-
pens toward the end of a project. And yes, if you wait to begin
unit testing until then it will definitely take too long. In fact,
you may not finish the job until the heat death of the universe
itself.

At least it will feel that way: it’s like trying to clear a couple of
acres of land with a lawn mower. If you start early on when
there’s just a field of grasses, the job is easy. If you wait
until later, when the field contains thick, gnarled trees and
dense, tangled undergrowth, then the job becomes impossibly
difficult.

Prepared exclusively for Donald Viahovic

EXCUSES FOR NOT TESTING 9

PAY-AS-YOU-GO SINGLE TEST PHASE

Productivity -
Productivity -

Figure 1.1: Comparison of Paying-as-you-go vs. Having a Sin-
gle Testing Phase

Instead of waiting until the end, it’s far cheaper in the long
run to adopt the “pay-as-you-go” model. By writing individual
tests with the code itself as you go along, there’s no crunch
at the end, and you experience fewer overall bugs as you are
generally always working with tested code. By taking a little
extra time all the time, you minimize the risk of needing a
huge amount of time at the end.

You see, the trade-off is not “test now” versus “test later.” It's
linear work now versus exponential work and complexity try-
ing to fix and rework at the end: not only is the job larger
and more complex, but now you have to re-learn the code you
wrote some weeks or months ago. All that extra work kills
your productivity, as shown in Figure 1.1.

Notice that testing isn’t free. In the pay-as-you-go model,
the effort is not zero; it will cost you some amount of effort
(and time and money). But look at the frightening direction
the right-hand curve takes over time—straight down. Your
productivity might even become negative. These productivity
losses can easily doom a project.

So if you think you don’t have time to write tests in addition to
the code you're already writing, consider the following ques-
tions:

Prepared exclusively for Donald Viahovic

ExcusgEs FOR NOT TESTING < 10

1. How much time do you spend debugging code that you
or others have written?

2. How much time do you spend reworking code that you
thought was working, but turned out to have major, crip-
pling bugs?

3. How much time do you spend isolating a reported bug to
its source?

For most people who work without unit tests, these numbers
add up fast, and will continue to add up even faster over the
life of the project. Proper unit testing dramatically reduces
these times, which frees up enough time so that you’ll have
the opportunity to write all of the unit tests you want—and
maybe even some free time to spare.

It takes too long to run the tests It shouldn’t. Most unit
tests should execute extremely quickly, so you should be able
to run hundreds, even thousands of them in a matter of a
few seconds. But sometimes that won’t be possible, and you
may end up with certain tests that simply take too long to
conveniently run all of the time.

In that case, you’ll want to separate out the longer-running
tests from the short ones. Only run the long tests once a day,
or once every few days as appropriate, and run the shorter
tests constantly.

It’s not my job to test my code Now here’s an interesting
excuse. Pray tell, what is your job, exactly? Presumably your
job, at least in part, is to create working code. If you are
throwing code over the wall to some testing group without any
assurance that it’s working, then you're not doing your job.
It’'s not polite to expect others to clean up our own messes,
and in extreme cases submitting large volumes of buggy code
can become a “career limiting” move.

On the other hand, if the testers or QA group find it very
difficult to find fault with your code, your reputation will grow
rapidly—along with your job security!

Prepared exclusively for Donald Viahovic

EXCcUSES FOR NOT TESTING <« 11

I don’t really know how the code is supposed to behave so
I can’t test it If you truly don’t know how the code is sup-
posed to behave, then maybe this isn’t the time to be writing
it. Maybe a prototype would be more appropriate as a first
step to help clarify the requirements.

If you don’t know what the code is supposed to do, then how
will you know that it does it?

But it compiles! Okay, no one really comes out with this as
an excuse, at least not out loud. But it's easy to get lulled
into thinking that a successful compile is somehow a mark of
approval, that you've passed some threshold of goodness.

But the compiler’s blessing is a pretty shallow compliment. It
can verify that your syntax is correct, but it can’t figure out
what your code should do. For example, the C# compiler can
easily determine that this line is wrong;:

statuc void Main() {

It's just a simple typo, and should be static, not statuc.
That’s the easy part. But now suppose you've written the
following:
public void Addit(Object anObject) {
List myList = new List();
myList.Add(anObject);

myList.Add(anObject);
// more code. ..

}

Did you really mean to add the same object to the same list
twice? Maybe, maybe not. The compiler can’t tell the differ-
ence, only you know what you've intended the code to do.2

Main.cs

I'm being paid to write code, not to write tests By that
same logic, you're not being paid to spend all day in the de-
bugger, either. Presumably you are being paid to write worl-
ing code, and unit tests are merely a tool toward that end, in
the same fashion as an editor, an IDE, or the compiler.

2Automated testing tools that generate their own tests based on your ex-
isting code fall into this same trap—they can only use what you wrote, not
what you meant.

Prepared exclusively for Donald Viahovic

RoapMAP d 12

I feel guilty about putting testers and QA staff out of work
Not to worry, you won’'t. Remember we're only talking about
unit testing, here. It’s the barest-bones, lowest-level testing
that’s designed for us, the programmers. There’s plenty of
other work to be done in the way of functional testing, accep-
tance testing, performance and environmental testing, valida-
tion and verification, formal analysis, and so on.

My company won’t let me run unit tests on the live sys-
tem Whoa! We're talking about developer unit-testing here.
While you might be able to run those same tests in other con-
texts (on the live, production system, for instance) they are no
longer unit tests. Run your unit tests on your machine, using
your own database, or using a mock object (see Chapter 6).

If the QA department or other testing staff want to run these
tests in a production or staging environment, you might be
able to coordinate the technical details with them so they can,
but realize that they are no longer unit tests in that context.

1.7 Roadmap

Chapter 2, Your First Unit Tests, contains an overview of test
writing. From there we’ll take a look at the specifics of Writing
Tests in NUnit in Chapter 3. We'll then spend a few chapters
on how you come up with what things need testing, and how
to test them.

Next we’ll look at the important properties of good tests in
Chapter 7. We then talk about what you need to do to use
testing effectively in your project in Chapter 8. This chap-
ter also discusses how to handle existing projects with lots
of legacy code. Chapter 9, Design Issues. then looks at how
testing can influence your application’s design (for the better).

The appendices contain additional useful information: a look
at common unit testing problems, a note on installing NUnit,
and a list of resources including the bibliography. We finish
off with a summary card containing highlights of the book’s
tips and suggestions.

So sit back, relax, and welcome to the world of better coding.

Prepared exclusively for Donald Viahovic

Chapter 2

As we said in the introduction, a unit test is just a piece of
code. It’s a piece of code you write that happens to exercise
another piece of code, and determines whether the other piece
of code is behaving as expected or not.

How do you do that, exactly?

To check if code is behaving as you expect, you use an as-
sertion, a simple method call that verifies that something is
true. For instance, the method IsTrue checks that the given
boolean condition is true, and fails the current test if it is not.
It might be implemented like the following.
public void IsTrue(bool condition) {
if (!condition) {
abort();

}
}

You could use this assert to check all sorts of things, including
whether numbers are equal to each other:

AssertTrue.cs

int a = 2;

IsTrue(a == 2);
If for some reason a does not equal 2 when the method IsTrue
is called, then the program will abort.

Since we check for equality a lot, it might be easier to have an
assert just for numbers. To check that two integers are equal,

PLANNING TESTS «d 14

for instance, we could write a method that takes two integer
parameters:

public void AreEqual(int a, int b) {

IsTrue(a == b);

}
Armed with just these two asserts, we can start writing some
tests. We'll look at more asserts and describe the details of
how you use asserts in unit test code in the next chapter. But
first, let’s consider what tests might be needed before we write
any code at all.

AssertTrue.cs

2.1 Planning Tests

We'll start with a simple example, a single, static method de-
signed to find the largest number in a list of numbers:

static int Largest(int[] list);

In other words, given an array of numbers such as [7, 8,
9], this method should return 9. That’s a reasonable first
test. What other tests can you think of, off the top of your
head? Take a minute and write down as many tests as you
can think of for this simple method before you continue read-
ing.

Think about this for a moment before reading on. . . @

How many tests did you come up with?

It shouldn’t matter what order the given list is in, so right off
the bat you've got the following test ideas (which we've written
as “what you pass in” - “what you expect”).

e [7, 8, 9] -9
e [8, 9, 7] -9
e [9, 7, 8] -9
What happens if there are duplicate largest numbers?

.[7! 9’ 8! 9]—>9

Prepared exclusively for Donald Viahovic

TESTING A SIMPLE METHOD < 15

Since these are int types, not objects, you probably don’t care
which 9 is returned, as long as one of them is.

What if there’s only one number?
e [1] -1

And what happens with negative numbers:
e [-9, -8, -7] - -7

It might look odd, but indeed -7 is larger than -9. Glad we
straightened that out now, rather than in the debugger or in
production code where it might not be so obvious.

To make all this more concrete, lets actually write a “largest”
method and test it. Here’s the code for our first implementa-
tion:
Line 1 public class Cmp {

Vezs

/// <summary>
5 /// Return the largest element in a list.
/// </summary>
/// <param name="1list"> A list of integers </param>
/// <returns>
- /// The largest number in the given list
10 /// </returns>
- V4
public static int Largest(int[] list) {
int index, max=Int32.MaxValue;
for (index = 0; index < list.Length-1; index++) {

15 if (list[index] > max) {
max = list[index];
}
}

- return max; b
20 } g
- =

} S

Now that we've got some ideas for tests, we’ll look at writing
these tests in C#, using the NUnit framework.

2.2 Testing a Simple Method

Normally you want to make the first test you write incredi-
bly simple, because there is much to be tested the first time
besides the code itself: all of that messy business of class
names, assembly references, and making sure it compiles.
You want to get all of that taken care of and out of the way with

Prepared exclusively for Donald Viahovic

RUNNING TESTS WITH NUNIT < 16

the very first, simplest test; you won’t have to worry about it
anymore after that, and you won’t have to debug complex in-
tegration issues at the same time you're debugging a complex
test!

First, let’s just test the simple case of passing in a small array
with a couple of unique numbers. Here’s the complete source
code for the test class. We’ll explain all about test classes
in the next chapter; for now, just concentrate on the assert
statements:

using NUnit.Framework;

[TestFixture]
public class TestLargest {

[Test]
public void LargestOf3() {
Assert.AreEqual(9, Cmp.Largest(new int[] {8,9,7}));

}
}
C# note: the odd-looking syntax to create an anonymous ar-
ray is just for your authors’ benefit, as we are lazy and do not
like to type. If you prefer, the test could be written this way
instead (although the previous syntax is idiomatic):

TestLargest.cs

[Test]
public void LargestOf3Alt() {
int[] arr = new int[3];
arr[0] = 8;
arr[1l] = 9;
arr[2] = 7;
Assert.AreEqual (9, Cmp.Largest(arr));

}
That'’s all it takes, and you have your first test.

TestLargest.cs

We want to run this simple test and make sure it passes; to
do that, we need to take a quick look at running tests using
NUnit.

2.3 Running Tests with NUnit

NUnit is a freely available,! open source product that provides
a testing framework and test runners. It's available as C#
source code that you can compile and install yourself, and
also as a Microsoft Installer (MSI) file.

1http://www.nunit.org

Prepared exclusively for Donald Viahovic

RUNNING TESTS WITH NUNIT < 17

1/{ Joe Asks...
Y _ ,

What is open source, exactly? Open source refers to
soffware where the source code is made freely avail-
able. Typically this means that you can obtain the
product for free, and that you are also free to modify
it, add to it, give it to your friends, and so on.

Is it safe to use? For the most part, open source prod-
ucts are safer to use than their commercial, closed-
source counterparts, because they are open to ex-
amination by thousands of other interested develop-
ers. Malicious programs, spyware, viruses, and other
similar problems are rare to non-existent in the open
source community.

Is it legal? Absolutely. Just as you are free to write a
song or a book and give it away (or sell i), you are
free to write code and give it away (or sell it). There
are a variety of open source licenses that clarify the
freedoms involved. Before you distribute any code
that includes open source components, you should
carefully check the particular license agreements in-
volved.

Can | contribute? We certainly hope so! The strength
of open source comes from people all over the world:
People just like you, who know how to program and
have a need for some particular feature. Would you
like to add a feature to NUnit? You can! You can
edit the source code to the library or one of the test
runners and change it, and use those changes your-
self. You can e-mail your changes to the maintainers
of the product, and they may even incorporate your
changes into the next release.

Prepared exclusively for Donald Viahovic

RUNNING TESTS WITH NUNIT < 18

The easiest way to install NUnit is to run the MSI file, which
will launch a familiar Windows Installer wizard. Note that
MSI support is built in to Windows 2000 and XP; for Win-
dows 95, 98, ME and NT4.0, you’ll need to download the in-
staller service from Microsoft’s web site for your particular op-
erating system (search for “Windows Installer Redistributable”
on www.microsoft.com). Linux fans may want to look at at
Mono, an open-source port of .NET for the Linux environment.
It ships with its own version of NUnit.

Next, you need to compile the code we've shown. If you're
using Visual Studio, create a new project for this sample code
of type Class Library. Type our “production” code into a file
named Largest.cs, and our new test code into a file named
TestLargest.cs. If you'd rather not type these programs in
from scratch, you’ll be pleased to know that all of the source
code for this book is available from our website.2)

Notice that the test code uses NUnit.Framework; you'll need
to add a reference to nunit.framework.dll in order to com-
pile this code. In Visual Studio, select “Project” from the main
menu and then select “Add Reference...”. Once there, select
“nunit.framework” from the .NET tab, and press the SELECT
button to add the dll to the component list as shown in Figure
2.1. Press OK, and now your project will be able to use the
functionality of the NUnit framework.

Go ahead and build the project as you normally would (In
Visual Studio, CTRL-SHIFT-B works well). Now you've got an
assembly. But it’s just a library. How can we run it?

Test Runners to the rescue! A test runner knows to look for
the [TestFixture] attribute of a class, and for the [Test]
methods within it. The runner will run the tests, accumulate
some statistics on which tests passed and failed, and report
the results back to you.

There are three main ways to use a test runner:

1. NUnit GUI
2. NUnit command line
3. Add-in to Visual Studio

2http 1/ /www.pragmaticprogrammer.com/sk/ut/

Prepared exclusively for Donald Viahovic

www.microsoft.com

RUNNING TESTS

dd Relerence

NET |COM |Prolects|

Browse
Component Mame | Yersion | Path |;|

msddslmp 7033000 C\Program Files\Microsoft. NET. Selec) |
msddsp 7.0.3300.0 C\Program Files\Microsoft. NETY..
nonamespacs-assemhly 2.1.40 CMURit2, 1%bininonamespace-as..
natestiitures-assembly 2.1.40 CAMURit2, 1%bininotestiidures-ass...
nunit. extensions 2.1.40 CNUit2. 1Whininunit. extensions. dil

nunit tests : CANURit2, Twhintnunit.tests. dil

nunit.Likit . CANURit2, Twhininunit. vikit. dil

nunit. il 2.1.40 CANURit2, Twhintnunit. util.dll

office 7.0.3300.0 CWYINNTMicrosoft. NETWFrame
RegCode 1.0.5000.0 CWYINNTMicrosoft. NETWFrame.

stdole 7.0.3300.0 C\Program Files\Microsoft. NET.. Ll

Selected Compaonents:

Component Mame Type Source | Remove

nunit framewark NET CANURIEZ, Tbintnunit framework. dil

OK Cancel Help

Figure 2.1: Adding NUnit Assembly Reference

B8 NUnit BE

“Rilli) St |
Save iilrs) = =—
U
Sove fe rrars and Fallures |Tests Mot Runl Congole.Error Conso\e_Out' _I
Felosd AR
Recent Files i
Exit -
[l | 3
Kl _>|_I
Unloaded Test Cages: 0 ‘ |
%

Figure 2.2: Creating a new NUnit Project

Prepared exclusively for Donald Viahovic

RUNNING TESTS WITH NUNIT < 20

B8 cs.dll - NUnit

FEile View Project Tools Help

TestLargest Run e

Errars and Failures |Tests Mot Run | Console Error | Console Outl

-

cedll

< 0 | _I_I

TestCases: 4 |

Ready

Figure 2.3: NUnit Loaded and Ready

NUnit GUI

The NUnit GUI can be started from the desktop icon or from
the Windows Start menu. When the GUI comes up, you've
got a couple of choices. You can create a new NUnit project
as shown in Figure 2.2 on the page before; navigate to your
source directory and create the NUnit project file. Then under
the “Project” menu, add assemblies or Visual Studio projects
to your NUnit project.>

Alternatively, you can just Open an assembly (a .d11 file)
directly. In Figure 2.3, we've loaded our test directly from the
dll. It’s ready to be tested by pressing the “Run” button.

When you run a selected test, the GUI will display a large,
colored, status bar. If all the tests pass, the bar is a happy
shade of bright green. If any test fails, the bar becomes an
angry red. If the bar is a cautionary yellow, that means some
tests were skipped (more on that later).

3Visual Studio support can be enabled using a preference located under
Tools/Options.

Prepared exclusively for Donald Viahovic

RUNNING TESTS WITH NUNIT < 21

System Properties : j ﬂ ﬂ

Genera\l Newvork\damilicanunl Harchware | User Profiles Advanced |

i~ Performanc

Performance optians cantral haw applications use memary, which
affscts the speed of your computer

Perfarmance Options

i~ Enviranment Variabl
@ Environment variables tell your computer where to find certain

typee of information
Enviranment Variahles.
[S - nvironment Variables

Startup and recaovery option:
whatto do if an error causes

i~ User variables for Administratar

Variable [value

incluce C:\CSharp\SDKiwL, 1hincludel;ci\oraclel, .

lib C:\CSharp\SDK\wL. 1y ibh;c:yoracke\oras..

MSDevDir CAVCShdio\MSDevos

PALMTOPCENTE... Cr\Qtopia z 7

aK | |pan VSN - diit System Variable 2] x]
M ariale [path
—System variables—— WaribleYalue: [ci\Program FilestUnit 2, 1\pinciubyein

Variable value s

o0s Windows_N

Os2LibPath CAWINNT

path Crubbinic andy\pinic gk 310, . —

PATHEXT LCOM;.EXE; BAT.CMD; ¥BS; VBE, JS; 1...

PROCESSOR_AR... x86 j
new. | e | oskete |

Ok Cancel

Figure 2.4: Adding to the Windows System Path

NUnit Command Line

NUnit can also be run from the command line, which comes in
very handy when automating the project build and test. You'll
need to add the NUnit bin directory to your path (that is, the
directory path to wherever you installed the NUnit application,
plus “\bin”).

For the current shell, you can set your path variable at the
command line, as in the following example.

C:\> set "PATH=%PATH%;C:\Program Files\Nunit V2.2\bin"
For more permanent use, go to Control Panel/System/Advan-

ced/Environment Variable and add NUnit’s bin directory to
the Path variable (see Figure 2.4).

Prepared exclusively for Donald Viahovic

RUNNING THE EXAMPLE < 22

] Shell

C:\> nunit-console cs.d11

NUnit version 2.1.4

Copyright (C) 2002-2003 James W. Newkirk, Michael C. Two, Alexei A. Vorontsov,
Charlie Poole.

Copyright (C) 2000-2003 Philip Craig.

ATl Rights Reserved.

+éé£s run: 4, Failures: 0, Not run: 0, Time: 0.046875 seconds

C:\>

Figure 2.5: NUnit Command Line Usage

To run from the command line, type the command nunit-
console followed by an NUnit project file or a dll. You'll see
output something like that shown in Figure 2.5.

NUnit Add-in to Visual Studio

Finally, there are several add-ins that integrate NUnit with Vi-
sual Studio.* nunit-addin adds the ability to run any test
just by right-clicking on the source code and selecting “Run
Test(s)”; the output from the tests are reported in Visual Stu-
dio’s output pane. Other similar projects add visual reporting
of tests and other features.

2.4 Running the Example

You should be ready to run this first test now.

Try running this example before reading on. . . @

4Such as http://www.mutantdesign.co.uk/nunit-addin/

Prepared exclusively for Donald Viahovic

RUNNING THE EXAMPLE < 23

Having just run that code, you probably saw an error similar
to the following:

Failures:
1) TestLargest.LargestOf3

expected:<9>

but was:<2147483647>

at TestlLargest.LargestOf3() in c:\testlargest.cs:line 6

Whoops! That didn’t go as expected. Why did it return such
a huge number instead of our 9? Where could that very large
number have come from? It almost looks like the largest num-
ber... oh, it’s a small typo: max=Int32.MaxValue on line 2
should have been max=0. We want to initialize max so that
any other number instantly becomes the next max. Let’s fix
the code, recompile, and run the test again to make sure that

it works.

Next we’ll look at what happens when the largest number ap-
pears in different places in the list—first or last, and some-
where in the middle. Bugs most often show up at the “edges.”
In this case, edges occur when when the largest number is at
the start or end of the array that we pass in. We can lump all
three of these asserts together in one test, but let’s add the
assert statements one at a time. We already have the case
with the largest in the middle:

using NUnit.Framework;

[TestFixture]
public class TestLargest {
[Test]
public void LargestOf3() { 8
Assert.AreEqual(9, Cmp.Largest(new int[] {8,9,7})); g
} 3
} 8
Now try it with the 9 as the first value (we’ll just add an addi-
tional assertion to the existing LargestOf3 () method):
[Test]
public void LargestOf3() { 8
Assert.AreEqual(9, Cmp.Largest(new int[] {9,8,7})); %
Assert.AreEqual(9, Cmp.Largest(new int[] {8,9,7})); 3
} ©

We're on a roll. One more, just for the sake of completeness,
and we can move on to more interesting tests:

Prepared exclusively for Donald Viahovic

RUNNING THE EXAMPLE <« 24

[Test]

public void LargestOf3() {
Assert.AreEqual(9, Cmp.Largest(new int[] {9,8,7}));
Assert.AreEqual(9, Cmp.Largest(new int[] {8,9,7}));
Assert.AreEqual(9, Cmp.Largest(new int[] {7,8,9}));

TestLargest.cs

}

Try running this example before reading on. . .

Failures:
1) TestLargest.LargestOf3

expected:<9>

but was:<8>

at TestLargest.LargestOf3() in c:\testlargest.cs:line 5

Why did the test get an 8 as the largest number? It's almost
as if the code ignored the last entry in the list. Sure enough,
another simple typo: the for loop is terminating too early.
This is an example of the infamous “off-by-one” error. Our
code has:

for (index = 0; index < list.Length-1; index++) {

But it should be one of:

for (index = 0; index <= list.Length-1; index++) {
for (index = 0; index < list.Length; index++) {

The second expression is idiomatic in languages descended
from C (including Java and C#), but as you can see, it's
prone to off-by-one errors. Make the changes and run the
tests again, but consider that this sort of bug is telling you
something: it would be better to use an iterator (using the C#
foreach statement) here instead. That way you could avoid
this kind of off-by-one error in the future.

Let’s check for duplicate largest values; type this in and run
it (we’ll only show the newly added methods from here on):
[Test]

public void TestDups() {
Assert.AreEqual(9, Cmp.Largest(new int[] {9,7,9,8}));

}

So far, so good. Now the test for just a single integer:

TestLargest.cs

[Test]
public void TestOne() {
Assert.AreEqual(l, Cmp.Largest(new int[] {1}));

TestLargest.cs

}

Prepared exclusively for Donald Viahovic

RUNNING THE EXAMPLE < 25

Hey, it worked! You're on a roll now, surely all the bugs we
planted in this example have been exorcised by now. Just one
more check with negative values:

[Test] @
public void TestNegative() { o
int [] neglist = new int[] {-9, -8, -7}; S
Assert.AreEqual (-7, Cmp.Largest(negList)); g
} i
Try running this example before reading on. . . @
Failures:
1) TestLargest.TestNegative :
expected:<-7>
but was:<0>
at TestLargest.TestNegative() in c:\testlargest.cs:line 4
Whoops! Where did zero come from?
Looks like choosing O to initialize max was a bad idea; what we
really wanted was MinValue, so as to be less than all negative
numbers as well:
max = Int32.MinValue
Make that change and try it again—all of the existing tests
should continue to pass, and now this one will as well.
Unfortunately, the initial specification for the method “largest”
is incomplete, as it doesn’'t say what should happen if the
array is empty. Let’s say that it’s an error, and add some code
at the top of the method that will throw a runtime-exception
if the list length is zero:
public static int Largest(int[] list) {
int index, max=Int32.MaxValue;
if (list.Length == 0) {
throw new ArgumentException("Empty 1list"); 8
} 5
V72 5

Notice that just by thinking of the tests, we've already realized
we need a design change. That's not at all unusual, and in
fact is something we want to capitalize on. So for the last test,
we need to check that an exception is thrown when passing in
an empty array. We'll talk about testing exceptions in depth
on page 41, but for now just trust us:

Prepared exclusively for Donald Viahovic

MORE TEsTs <« 26

[Test, ExpectedException(typeof(ArgumentException))]
public void TestEmpty() {
Cmp.Largest(new int[] {});

TestLargest.cs

}

Finally, a reminder: all code—test or production—should be
clear and simple. Test code especially must be easy to under-
stand, even at the expense of performance or verbosity.

2.5 More Tests

We started with a very simple method and came up with a
couple of interesting tests that actually found some bugs.
Note that we didn’t go overboard and blindly try every pos-
sible number combination; we picked the interesting cases
that might expose problems. But are these all the tests you
can think of for this method?

What other tests might be appropriate?

Since we’ll need to think up tests all of the time, maybe we
need a way to think about code that will help us to come up
with good tests regularly and reliably. We’ll talk about that
after the next chapter, but first, let’s take a more in-depth
look at using NUnit.

Prepared exclusively for Donald Viahovic

We've looked at writing tests somewhat informally in the last
chapter, but now it’s time to take a deeper look at the differ-
ence between test code and production code, all the various
forms of NUnit’s assertions, the structure and composition of
NUnit tests, and so on.

3.1 Structuring Unit Tests

If you have a method named CreateAccount that you want
to test, then your first test method might be named something
like CreateSimpleAccount. The method CreateSimple-
Account will call CreateAccount with the necessary parame-
ters and verify that CreateAccount works as advertised. You
can, of course, have many test methods that exercise Create-
Account (not all accounts are simple, after all).

The relationship between these two pieces of code is shown in
Figure 3.1 on the following page.

The test code is for our internal use only. Customers or end-
users will never see it or use it. The production code—that
is, the code that will eventually be shipped to a customer and
put into production—must therefore not know anything about
the test code. Production code will be thrust out into the cold
world all alone, without the test code. (This typically means
that test code is placed under a different project, in its own
assembly).

STRUCTURING UNIT TESTS < 28

TestAccount.cs

Account.cs

CreateSimpleAccount()
CreateDefaultAccount () » CreateAccount()
CreateDupAccount ()
(Delivered)
(Internal Only)

Figure 3.1: Test Code and Production Code

The test code must be written to do a few things:

e Set up all conditions needed for testing (create any re-
quired objects, allocate any needed resources, etc.)

e Call the method to be tested
e Verify that the tested method functioned as expected
e Clean up after itself

You write test code and compile it in the normal fashion, as
you would any other bit of source code in your project. It
might happen to use some additional libraries, but otherwise
there’s no magic—it’s just regular code.

When it’s time to execute the code, remember that you never
actually run the production code directly; at least, not the way
a user would. Instead, you run the test code, which in turn
exercises the production code under very carefully controlled
conditions.

Now, although you could write all your tests from the ground
up, that’s not terribly efficient. For for the rest of this book
we’ll assume that you're using the NUnit framework. More
specifically, we’ll be showing the specific method calls and
classes for NUnit 2.2, using C#, in our examples. Earlier or
later versions may have slight differences from the details pre-
sented here, but the general concepts are the same across all
versions, and indeed for any testing framework in any lan-
guage or environment.

Prepared exclusively for Donald Viahovic

NUNIT ASSERTS «d 29

3.2 NUnit Asserts

As we've seen, there are some helper methods that assist you
in determining whether a method under test is performing
correctly or not. Generically, we call all these methods asser-
tions. They let you assert that some condition is true; that
two bits of data are equal, or not, and so on. We'll take a look
at each one of the assert methods that NUnit provides next.

All of the following methods will record failures (that’s when
the assertion is false) or errors (that’s when you get an unex-
pected exception), and report these through the NUnit classes.
For the text version, that means an error message will be
printed to the console. The GUI version will show a red bar
and supporting details to indicate a failure.

When a failure or error occurs, execution of the current test
method is aborted. Other tests within the same test fixture
will still be run.

Asserts are the fundamental building block for unit tests; the
NUnit library provides a number of different forms of assert
as static methods in the Assert class.

AreEqual

Assert.AreEqual (expected, actual [, string message])

This is the most-often used form of assert. expected is a value
you hope to see (typically hard-coded), and actual is a value
actually produced by the code under test. message is an op-
tional message that will be reported in the event of a failure.
You can omit the message argument and simply provide the
expected and actual values.

Any kind of object may be tested for equality; the appropriate
equals method will be used for the comparison. In particular,
you can compare the contents of strings using this method.
Different method signatures are also provided for all the na-
tive types (int, decimal, etc.) and Object.

Computers cannot represent all floating-point numbers ex-
actly, and will usually be off a little bit. Because of this, if you
are using an assert to compare floating point numbers (floats
or doubles in C#), you need to specify one additional piece of

Prepared exclusively for Donald Viahovic

NUNIT ASSERTS <«

information, the tolerance. This specifies just how close to
“equals” you need the result to be.

Assert.AreEqual (expected,
actual,
tolerance [, string message])

For business applications, 4 or 5 decimal places is probably
enough. For scientific apps, you may need greater precision.

As an example, the following assert will check that the actual
result is equal to 3.33, but only look at the first two decimal
places:

Assert.AreEqual(3.33, 10.0/3.0, 0.01, "Wanted 3 1/3");

IsNull

Assert.IsNull(object [, string message])
Assert.IsNotNull(object [, string message])

Asserts that the given object is null (or not null), failing
otherwise. The message is optional.

AreSame

Assert.AreSame(expected, actual [, string message])

Asserts that expected and actual refer to the same object, and
fails the test if they do not. The message is optional.

IsTrue

Assert.IsTrue(bool condition [, string message])

Asserts that the given boolean condition is true, otherwise the
test fails. The message is optional.

If you find test code that is littered with the following:

Assert.IsTrue(true);

then you should rightfully be concerned. Unless that con-
struct is used to verify some sort of branching or exception
logic, it’s probably a bad idea. In particular, what you really
don’t want to see is a whole page of “test” code with a single
Assert.IsTrue(true) at the very end (i.e., “the code made
it to the very end without blowing up therefore it must work”).
That’s not testing, that’s wishful thinking.

Prepared exclusively for Donald Viahovic

NUNIT FRAMEWORK <« 31

In addition to testing for true, you can also test for false:

Assert.IsFalse(bool condition [, string message])

Asserts that the given boolean condition is false, otherwise the
test fails. The message is optional.

Fail

Assert.Fail([string message])

Fails the test immediately, with the optional message. This
might be used to mark sections of code that should not be
reached, but isn’t really used much in practice.

Using Asserts

You usually have multiple asserts in a given test method, as
you prove various aspects and relationships of the method(s)
under test. When an assert fails, that test method will be
aborted—the remaining assertions in that method will not be
executed this time. But that shouldn’t be of any concern; you
have to fix the failing test before you can proceed anyway. And
you fix the next failing test. And the next. And so on.

You should normally expect that all tests pass all of the time.
In practice, that means that when you introduce a bug, only
one or two tests fail. Isolating the problem is usually pretty
easy in that environment.

Under no circumstances should you continue to add features
when there are failing tests! Fix any test as soon as it fails,
and keep all tests passing all of the time.

To maintain that discipline, you'll need an easy way to run all
the tests—or to run groups of tests, particular subsystems,
and so on.

3.3 NUnit Framework

So far, we've just looked at the assert methods themselves.
But you can'’t just stick assert methods into a source file and
expect it to work; you need a little bit more of a framework
than that. Fortunately, it’s not too much more.

Prepared exclusively for Donald Viahovic

NUNIT FRAMEWORK <« 32

Here is a very simple piece of test code that illustrates the
minimum framework you need to get started.

Line 1 using NUnit.Framework;
- [TestFixture]
public class TestSimple {
- [Test]
5 public void LargestOf3() {
Assert.AreEqual(9, Cmp.Largest(new int[] {8,9,7}));

}
}

This code is pretty straightforward, but let’s take a look at
each part in turn.

TestSimple.cs

First, the using statement on line 1 brings in the necessary
NUnit classes. The NUnit framework provides the unit-testing
functionality that we’ll need, including all of the assert meth-
ods we described above. (Remember you’ll need to add a ref-
erence in your project to the NUnit DLL in order for the using
statement to work).

Next, we have the class definition itself on line 3: each class
that contains tests must be annotated with a [TestFixture]
attribute as shown. The class must be declared public (so
that the test runners can find it), and it must have a public,
no-parameter, constructor (the default constructor is fine).

Finally, the test class contains individual methods annotated
with [Test] attributes. In the example, we've got one test
method named LargestOf3 on line 5. Any public method
specified with a [Test] attribute will be run automatically by
NUnit.

In the previous example, we showed a single test, using a
single assert, in a single test method. Of course, inside a test
method, you can place any number of asserts:

using NUnit.Framework;
[TestFixture]
public class TestSimple {
[Test]
public void LargestOf3() {
Assert.AreEqual(9, Cmp.Largest(new int[] {8,9,7}));
Assert.AreEqual (100, Cmp.Largest(new int[] {100,4,25}));
Assert.AreEqual (64, Cmp.Largest(new int[] {1,64,38}));

}
}

TestSimple.cs

Prepared exclusively for Donald Viahovic

NUNIT TEST SELECTION < 33

Here we have three calls to Assert.AreEqual inside a test
method.

3.4 NUnit Test Selection

As we've seen so far, a fixture (that is, a class marked with
the [TestFixture] attribute) contains test methods; each
method contains one or more assertions. Multiple test fix-
tures can be included into an assembly.

You will normally run all of the tests within an assembly just
by specifying the assembly to the test runner. You can also
choose to run individual test fixtures within an assembly us-
ing either the NUnit command line or GUI.

From the GUI, you can select an individual test, a single test
fixture, or the entire assembly by clicking on it, and all the
appropriate tests will be run.

From the command line, you can specify the assembly and a
particular test fixture as follows:

c: \> nunit-console assemblyname.dll /fixture:ClassName

Given this flexibility, you may want to think a bit about how to
organize test methods into individual assemblies and fixtures
to make testing easier.

For instance, you may want to run all the database-related
tests at once, or all of the tests that Fred wrote (Fred is still
on probation from the last project, and you want to keep an
eye on him).

But suppose you have the database-related tests in one fix-
ture, and Fred’s tests in another fixture, and you'd like to run
both of these fixtures together. It's a bit of a pain to have to
manually select both fixtures each time (whether you're using
the command line or the GUI), and you don’t want Fred to
write all of his tests in your database fixture.

Fortunately, you can combine existing test fixtures into a test
suite. A test suite is a collection of TextFixture classes. Any
test class can contain a static method that is marked with the
attribute [Suite]. This method returns a TestSuite, which
is a collection of TestFixture classes.

Prepared exclusively for Donald Viahovic

NUNIT TEST SELECTION <« 34

using NUnit.Framework;

using NUnit.Core; // Requires nunit.core.dll
[TestFixture]

public class TestClassSuite {

[Suite]
public static TestSuite Suite {

get {
TestSuite suite = new TestSuite("Name of Suite");
suite.Add(new DatabaseTests());
suite.Add(new FredsTests());
// add others. ..
return suite;

}

The classes you add to the suite (DatabaseTests, Freds-
Tests and so on) are marked as [TestFixture] classes.
Within each of these classes you still have the [Test] at-
tribute on individual methods, and the framework will run
those automatically. The suite facility doesn’t stop you run-
ning the individual fixtures when you want. But they also let
you group those fixtures: by running the one Suite(), you
can now run a whole bunch of test fixtures at once.

Suites are a useful mechanism for composing tests hierar-
chically, which can be handy for coordinating sets of tests
especially for an unattended build.

But it’s not that useful a mechanism for day-to-day testing.
You’d like to be able to cross-cut across all the tests and select
or exclude certain kinds of tests from the vast pool of existing
tests you've written.

Fortunately, NUnit has another mechanism you can use to
categorize and classify individual test methods and fixtures.

Categories

NUnit provides an easy way to mark and run individual tests
and fixtures by using categories. A category is just a name
that you define. You can associate different test methods with
one or more categories, and then select which categories you
want to run when running the tests.

Suppose among your tests you've got a method to find the
shortest route that our traveling salesman, Bob, can take to

Prepared exclusively for Donald Viahovic

NUNIT TEST SELECTION <« 35

visit the top n cities in his territory. The funny thing about
the Traveling Salesman algorithm is that for a small number
of cities it works just fine, but it’s an exponential algorithm.
That means that a few hundred cities might take 20,000 years
to run, for example. Even 50 cities takes a few hours, so you
probably don’t want to to include that test by default.

You can use NUnit categories to help sort out short tests that
you can run constantly versus long-running tests that you'd
rather only run during the nightly build.

A category is specified as an attribute. You provide a string
to identify the category when you declare the method. Then
when you run the tests, you can specify which categories you
want to run (you can specify more than one).

For instance, suppose you've got a few methods that only take
a few seconds to run, but one method that takes a long time to
run. You can annotate them using the category names “Short”
and “Long” (you might also consider making a category "’Fred”
if you still want to keep an eye on him.)

Line 1 using NUnit.Framework;
using NUnit.Core;

- [TestFixture]
5 public class TestShortestPath {

[Test]
[Category("Short")]
public void Use5Cities() {

10 TSP tsp = new TSP(); // Load with default cities
- Assert.AreEqual (140, tsp.ShortestPath(5));

}
- [Test, Category("Short")] // Can specify either way
15 public void UselOCities() {

TSP tsp = new TSP(); // Load with default cities
Assert.AreEqual (586, tsp.ShortestPath(10));

}

20 // This one takes a while. ..
- [Test]

[Category("Long") 1]

public void Use50Cities() {

TSP tsp = new TSP(); // Load with default cities
25 Assert.AreEqual (2300, tsp.ShortestPath(50));
- }
}

Notice that you can specify multiple attributes (in this case,
Test and Category) on two separate lines as shown around

TestShortestPath.cs

Prepared exclusively for Donald Viahovic

NUNIT TEST SELECTION < 36

EH cs.dll - NUnit
Filla “iew Project Tools Help

Tests Categaries |

Run (=] ieje] | Wihcs.dll
[Available Categories

Shart ‘

Errars and Failures |Tests Nat Run | CansoleErar | Cansale Out'

Add Rermove |
[Selected Categories
Long i
Kl »

¥ Exclude these categories =
| .rl

TestCases: 24 ‘ ‘ ‘

Reach

Figure 3.2: NUnit Category Selection

line 8, or combined into one line as shown on line 14.

Now if you choose to run just “Short” methods, the two meth-
ods Use2Cities and UselOCities will be selected to run.
If you choose “Long” methods, only Use50Cities will be se-
lected. You can also select both categories to run all three of
these methods.

In the GUI, you select which categories to run on the tab as
shown in Figure 3.2 on the current page. Just select each
category you're interested and press the ADD button.

From the command line, you can specify individual categories
to include as well. Just add the following parameter to the
command line:

/include=string;string, ...

Note that multiple category names are separated by a semi-
colon (“;7).

You can also choose to exclude the listed categories so all
other tests except those in the named categories run. There’s

Prepared exclusively for Donald Viahovic

NUNIT TEST SELECTION < 37

a check box in the GUI for this; the command line option is,
oddly enough, /exclude.

But this isn’t quite enough: it turns out that some categories
of tests should be run when no categories are selected, while
others should run only when explicitly selected.

To support this, you can specify the Explicit property to the
[Category] attribute:

[Category("SpecialEquipmentNeeded", Explicit=true)]

This syntax automatically excludes the category from a run
that doesn’t specify any categories. By default, your run will
include tests without categories and tests with non-explicit
categories. However, if even one category is specified in the
GUI or the command line, then only that single category will
be run.

In addition to marking individual test methods as belonging to
a category, you can also mark entire fixtures. For instance, if
we wanted to flag our entire test fixture as long-running (with-
out having to mark each and every test method), we could do
Sso.

Line 1 using NUnit.Framework;
using NUnit.Core;

[TestFixture, Category("Long")]
5 public class TestShortestPath2 {

[Test]
public void Use50Cities() {
TSP tsp = new TSP(); // Load with default cities

10 Assert.AreEqual (2300, tsp.ShortestPath(50));
- }
[Test]
- public void Usel00Cities() {
15 TSP tsp = new TSP(); // Load with default cities
- Assert.AreEqual (4675, tsp.ShortestPath(100));
}
- [Test] 2
20 public void Usel50Cities() { o
TSP tsp = new TSP(); // Load with default cities 5
Assert.AreEqual (5357, tsp.ShortestPath(150)); E
} 2
- 2]
25} 2

Now you can quickly exclude the whole fixture using a cate-
gory name.

Prepared exclusively for Donald Viahovic

NUNIT TEST SELECTION <« 38

Per-method Setup and Teardown

Each test should run independently of every other test; this
allows you to run any individual test at any time, in any order.

To accomplish this feat, you may need to reset some parts of
the testing environment in between tests, or clean up after a
test has run. NUnit lets you specify two methods to set up
and then tear down the test’s environment using attributes:

[SetUp]
public void MySetup() {

}

[TearDown]
public void MyTeardown() {

}

In this example, the method MySetup() is called before each
one of the [Test] methods is executed, and the method My-
Teardown() is called after each test method is executed.

For example, suppose you needed some sort of database con-
nection object for each test. Rather than including code in
each test method that connects to and disconnects from the
database, you could simply use setup and teardown methods.

[TestFixture]
public class TestDB {
private Connection dbConn;

[SetUp]

public void MySetup() {
dbConn = new Connection("”oracle", 1521, user, pw);
dbConn.Connect();

}

[TearDown]

public void MyTeardown() {
dbConn.Disconnect();
dbConn = null;

}

[Test]
public void TestAccountAccess() {
// Uses dbConn

L XX MRKXANWI XY XXX DONRKAL,
DA S SIS /& SEPION 0. SENGED D SN IOND A

}

[Test]

public void TestEmployeeAccess() {
// Uses dbConn
AW XX XKW XK XXX IAWONXXKAL,
LAh¥ N XX ¥ W XXX,

—
TestDB.cs

Prepared exclusively for Donald Viahovic

NUNIT TEST SELECTION

1. OneTimeSetup () Per-method)

2 MySetup() /) setup runs

3 test method 1 before each One-time setup

4 MyTeardown() — test method, runs at start of

and teardown all tests, and

5. MySetup ()) teardown runs
tost thod 2 runs after

6 est metho each method. at very end.

7 MyTeardown() —

8. OneTimeTeardown() —

Figure 3.3: Execution Order of Setup Code

In this example, the method MySetup () will be called before
TestAccountAccess(). After TestAccountAccess() has
finished, MyTearDown() will be called. MySetup() will be
called again, followed by TestEmployeeAccess() and then
MyTeardown() again.

Per-class Setup and Teardown

Normally per-method setup is all you need, but in some cir-
cumstances you may need to set something up or clean up
after the entire test class has run; for that, you need per-class
setup and teardown (the difference between per-test and per-
class execution order is shown in Figure 3.3 on this page).
All you need to do is annotate your setup methods with the
following attributes:

[TestFixtureSetUp]
public void OneTimeSetup() {

}

[TestFixtureTearDown]
public void OneTimeTeardown() {

}

Note that you can use both per-class and per-test methods in
the same class.

Prepared exclusively for Donald Viahovic

NUNIT CUSTOM ASSERTS <« 40

3.5 NUnit Custom Asserts

The standard asserts that NUnit provides are usually suffi-
cient for most testing. However, you may run into a situation
where it would be handy to have your own, customized as-
serts. Perhaps you've got a special data type, or a common
sequence of actions that is done in multiple tests.

The worst thing you can do is slavishly copy the same se-
quence of test code over and over again.

“Copy and paste” of common code in the tests can be a fatal
disease. Instead, tests should be written to the same high
standards as regular code, which means honoring good cod-
ing practices such as the DRY principle,! decoupling, orthog-
onality, and so on. Factor out common bits of test harness
into real methods, and use those methods in your test cases.

Don’t be afraid to write your own assertion-style methods. For
instance, suppose you are testing a financial application and
virtually all of the tests use a data type called Money.

using System;
using NUnit.Framework;
public class MoneyAssert {
/7% *
* Assert that the amount of money is an even
* number of dollars (no cents)
-,'.‘/
public static void AssertNoCents(Money amount,
String message) {
Assert.AreEqual(

amount .AsDecimal(),
Decimal .Truncate (amount.AsDecimal()),

message);
VA
* Assert that the amount of money is an even
* number of dollars (no cents)
:%/
8
public static void AssertNoCents(Money amount) { b
AssertNoCents(amount, ""); 2
})
(=
[}
} >

IDRY stands for “Don’t Repeat Yourself.” It's a fundamental technique
that demands that every piece of knowledge in a system must have a single,
unambiguous, and authoritative representation [HT00].

Prepared exclusively for Donald Viahovic

NUNIT AND EXCEPTIONS <« 41

Note that we provide both forms of assert: one that takes a
string and one that does not. Note also that we didn’t copy
any code in doing so; we merely forward the call on.

Now any other test classes in the project that need to test
Money can use our own custom assertion method.

using NUnit.Framework;

[TestFixture]
public class TestSomething {

[Test]
public void CountDeMonet() {
Money m = new Money(42.00);
m.Add(2);
MoneyAssert.AssertNoCents(m) ;
}
}

TestSomething.cs

3.6 NUnit and Exceptions
We might be interested in two different kinds of exceptions:
1. Expected exceptions resulting from a test

2. Unexpected exceptions from something that’s gone hor-
ribly wrong

Contrary to what you might think, exceptions are really good
things—they tell us that something is wrong. Sometimes in a
test, we want the method under test to throw an exception.
Consider a method named ImportList(). It's supposed to
throw an ArgumentException if passed a null list. We must
test for that explicitly.

To test for expected exceptions, NUnit provides the [Expect-
edException] attribute:

[TestFixture]
public class TestException {
[Test, ExpectedException(typeof(ArgumentException))]
public void TestForException() {
WhitePages.ImportList(null);
// Shouldn’t get to here

}

TestException.cs

}

This test method is now expected to throw an exception (from
the call to ImportList()). If it doesn’t, the test will fail. If
the exception fires as expected, the test passes. Note that

Prepared exclusively for Donald Viahovic

TEMPORARILY IGNORING TESTS <« 42

once the expected exception fires, any remaining code in the
test method will be skipped.

In general, you should test a method for every expected excep-
tion, and make sure that the method throws it when it should.
That covers us for expected exceptions, but what about unex-
pected exceptions?

NUnit will take care of those for you. For instance, suppose
you are reading a file of test data. Rather than catching the
possible I/0 exceptions yourself, just let them propagate out
to the test framework.

[Test]
public void TestDatal() {

StreamReader sr = new StreamReader("data.txt");
XX W¥X AKX WXL XXX,

}

The NUnit framework will catch any thrown exception and
report it as an error, without any extra effort on your part.
Even better, NUnit will report the entire stack trace right down
to the bug itself, not just to some failed assert, which helps
when trying to figure out why a test failed.

3.7 Temporarily Ignoring Tests

Normally, you want all tests to pass all of the time. But sup-
pose you've thought up a bunch of tests first, written them,
and are now working your way through implementing the
code required to pass the tests. What about all those new
tests that would fail now?

You can go ahead and write these tests, but you don’t want the
testing framework to run these tests just yet. NUnit provides
the [Ignore] attribute:

[Test, Ignore("Not ready to test this yet")]
public void TestSomething() {

AW XX MK XWX X3
}

NUnit will report that this method was skipped (and show a
yellow bar in the GUI version), so that you won’t forget about
it later.

TestException.cs

In other testing frameworks and languages, you'd have to ei-
ther name the method differently or comment it out. When

Prepared exclusively for Donald Viahovic

TEMPORARILY IGNORING TESTS < 43

using JUnit in Java, for instance, methods whose names start
with “test” (as in testSomething) will be run as tests; you
have to name the method something else until you're ready
to tackle it. In any language, the code still has to compile
cleanly; if it’'s not ready for that yet, then you should com-
ment out the offending parts.

What you want to avoid at all costs is the habit of ignoring
failing test results.

Now that you've got a good idea of how to write tests, it’s time
to take a closer look at figuring out what to test.

Prepared exclusively for Donald Viahovic

Chapter 4

What to Test:

It can be hard to look at a method or a class and try to come
up with all the ways it might fail; to anticipate all the bugs
that might be lurking in there. With enough experience, you
start to get a feel for those things that are “likely to break,”
and can effectively concentrate on testing in those areas first.
But without a lot of experience, it can be hard and frustrating
trying to discover possible failure modes. End-users are quite
adept at finding our bugs, but that’s both embarrassing and
damaging to our careers! What we need are some guidelines,
some reminders of areas that might be important to test.

Let’s take a look at six specific areas to test that will strength-
en your testing skills, using your RIGHT-BICEP:

¢ Right — Are the results right?
e B — Are all the boundary conditions CORRECT?
e I — Can you check inverse relationships?

e C — Can you cross-check results using other means?

E — Can you force error conditions to happen?

P — Are performance characteristics within bounds?

ARE THE RESULTS RIGHT? < 45

4.1 Are the Results Right?

The first and most obvious area to test is simply to see if the BICEP
expected results are right—to validate the results.

We've seen simple data validation already: the tests in Chap-
ter 2 that verify that a method returns the largest number
from a list.

These are usually the “easy” tests, and many of these sorts of
validations may even be specified in the requirements. If they
aren’t, you'll probably need to ask someone. You need to be
able to answer the key question:

If the code ran correctly, how would I know?

If you cannot answer this question satisfactorily, then writing
the code—or the test—may be a complete waste of time. “But
wait,” you may say, “that doesn’t sound very agile! What if
the requirements are vague or incomplete? Does that mean
we can’t write code until all the requirements are firm?”

No, not at all. If the requirements are truly not yet known,
or complete, you can always invent some as a stake in the
ground. They may not be correct from the user’s point of
view, but you now know what you think the code should do,
and so you can answer the question.

Of course, you must then arrange for feedback with users to
fine-tune your assumptions. The definition of “correct” may
change over the lifetime of the code in question, but at any
point, you should be able to prove that it's doing what you
think it ought.

Using Data Files

For sets of tests with large amounts of test data, you might
want to consider putting the test values and/or results in a
separate data file that the unit test reads in. This doesn’t
need to be a very complicated exercise—and you don’t even
need to use XML.! Figure 4.1 on the next page is a version
of TestLargest that reads in all of the tests from a data file.

I This is clearly a joke. XML is mandatory on all projects today, isn’t it?

Prepared exclusively for Donald Viahovic

ARE THE RESULTS RIGHT? < 46

using System;

using System.IO;

using System.Collections;
using NUnit.Framework;

[TestFixture]
public class TestLargestDataFile {

/% Run all the tests in testdata.txt (does not test
* exception case). We’ll get an error if any of the
* file I/0 goes wrong.

:%/
[Test]
public void TestFromFile() {
String line;
StreamReader rdr =
new StreamReader("../../testdata.txt");
while ((line = rdr.ReadLine()) != null) {
if (line.StartsWith("#")) { // Ignore comments
continue;

}

String[] tokens = line.Split(null);

// Get the expected value

String val = tokens[O0];

int expected = Int32.Parse(val);

// And the arguments to Largest

ArraylList argument_list = new ArrayList();

for (int i=1; i < tokens.Length; i++) {
argument_list.Add(Int32.Parse(tokens[i]));

}

// Convert to native array
int[] args = (int[])argument_list.ToArray(
typeof(int));
// And run the assert
Assert.AreEqual (expected,
Cmp.Largest(args));

Figure 4.1: TestLargestDataFile: Reading test specifications
from a file.
]

Prepared exclusively for Donald Viahovic

ARE THE RESULTS RIGHT? <« 47

The data file has a very simple format; each line contains a
set of numbers. The first number is the expected answer, the
numbers on the rest of the line are the arguments with which
to test. We'll allow a pound-sign (#) for comments, so that you
can put meaningful descriptions and notes in the test file.

The test file can then be as simple as:

#

Simple tests:
#

97809

9 987

9 989

#

Negative number tests:
#

-7 -7 -8 -9

-7 -8 -7 -8

-7 -9 -7 -8

#

Mixture:

#

7 -9 -7 -87 6 4
9 -109 -7 4

#

Boundary conditions:
#

11

00

2147483647 2147483647
-2147483648 -2147483648

testdata.txt

For just a handful of tests, as in this example, it’s probably
not worth the effort. But say this was a more advanced appli-
cation, with tens or even hundreds of test cases in this form.
Then the data file approach becomes a very compelling choice.

Be aware that test data, whether it’'s in a file or in the test
code itself, might well be incorrect. In fact, experience sug-
gests that test data is more likely to be incorrect than the
code you're testing, especially if the data was hand-calculated
or obtained from a system we're replacing (where new fea-
tures may deliberately cause new results). When test data
says you're wrong, double- and triple-check that the test data
is right before attacking the code.

Something else to think about: the code as presented does
not test any exception cases. How might you implement that?

Do whatever makes it easiest for you to prove that the method
is right.

Prepared exclusively for Donald Viahovic

BOUNDARY CONDITIONS <« 48

4.2 Boundary Conditions

In the previous “largest number” example, we discovered sev- rignt [B]icep
eral boundary conditions: when the largest value was at the

end of the array, when the array contained a negative number,

an empty array, and so on.

Identifying boundary conditions is one of the most valuable
parts of unit testing, because this is where most bugs gen-
erally live—at the edges. Some conditions you might want to
think about:

e Totally bogus or inconsistent input values, such as a file
name of " ! *W:X\&Gi/w~>g/h#WQa".

e Badly formatted data, such as an e-mail address without
a top-level domain ("fred@foobar.").

¢ Empty or missing values (such as 0, 0.0, "", or null).

e Values far in excess of reasonable expectations, such as
a person’s age of 10,000 years.

e Duplicates in lists that shouldn’t have duplicates.

e Ordered lists that aren’t, and vice-versa. Try handing a
pre-sorted list to a sort algorithm, for instance—or even
a reverse-sorted list.

¢ Things that arrive out of order, or happen out of expected
order, such as trying to print a document before logging
in, for instance.

An easy way to think of possible boundary conditions is to
remember the acronym CORRECT. For each of these items,
consider whether or not similar conditions may exist in your
method that you want to test, and what might happen if these
conditions were violated:

e Conformance — Does the value conform to an expected
format?

e Ordering — Is the set of values ordered or unordered as
appropriate?

e Range — Is the value within reasonable minimum and
maximum values?

Prepared exclusively for Donald Viahovic

CHECK INVERSE RELATIONSHIPS <«

e Reference — Does the code reference anything external
that isn’t under direct control of the code itself?

¢ Existence — Does the value exist (e.g., is non-null, non-
zero, present in a set, etc.)?

e Cardinality — Are there exactly enough values?

e Time (absolute and relative) — Is everything happening
in order? At the right time? In time?

We'll examine all of these boundary conditions in the next
chapter.

4.3 Check Inverse Relationships

Some methods can be checked by applying their logical in- rigntB[1]cer
verse. For instance you might check a method that calculates
a square root by squaring the result, and testing that it is
tolerably close to the original number:

[Test]

public void SquareRootUsingInverse() {

double x = MyMath.SquareRoot(4.0);
Assert.AreEqual(4.0, x*x, 0.0001);

}

You might check that some data was successfully inserted

TestRoofts.cs

into a database by then searching for it, and so on.

Be cautious when you’ve written both the original routine
and it’s inverse, as some bugs might be masked by a com-
mon error in both routines. Where possible, use a different
source for the inverse test. In the square root example, we're
just using regular multiplication to test our method. For the
database search, we’ll probably use a vendor-provided search
routine to test our insertion.

4.4 Cross-check Using Other Means

You might also be able to cross-check results of your method rignt Bif c|ep
using different means.

Usually there is more than one way to calculate some quan-
tity; we might pick one algorithm over the others because it
performs better, or has other desirable characteristics. That’s

Prepared exclusively for Donald Viahovic

FORCE ERROR CONDITIONS <« 50

the one we’ll use in production, but we can use one of the
other versions to cross-check our results in the test system.
This technique is especially helpful when there’s a proven,
known way of accomplishing the task that happens to be too
slow or too inflexible to use in production code.

We can use that somewhat lesser version to our advantage
to check that our new super-spiffy version is producing the
same results:2

[Test]

public void SquareRootUsingStd() {
double number = 3880900.0;
double rootl MyMath.SquareRoot (number) ;
double root2 Math.Sqrt(number) ;
Assert.AreEqual (root2, rootl, 0.0001);

}

Another way of looking at this is to use different pieces of
data from the class itself to make sure they all “add up.” For
instance, suppose you were working on a library’s database
system (that is, a brick-and-mortar library that lends out real
books). In this system, the number of copies of a particular
book should always balance. That is, the number of copies
that are checked out plus the number of copies sitting on the
shelves should always equal the total number of copies in the
collection. These are separate pieces of data, and may even
be reported by objects of different classes, but they still have
to agree, and so can be used to cross-check one another.

TestRoofts.cs

4.5 Force Error Conditions

In the real world, errors happen. Disks fill up, network lines rignt Bic[E]p
drop, e-mail goes into a black hole, and programs crash. You

should be able to test that your code handles all of these real-

world problems by forcing errors to occur.

That’s easy enough to do with invalid parameters and the like,
but to simulate specific network errors—without unplugging

2Some spreadsheet engines (as found in Microsoft Excel™, etc.) employ
similar techniques to check that the models and methods chosen to solve
a particular problem are appropriate, and that the answers from different
applicable methods agree with each other.

Prepared exclusively for Donald Viahovic

PERFORMANCE CHARACTERISTICS <« 51

any cables—takes some special techniques. We’'ll discuss one
way to do this using Mock Objects in Chapter 6 on page 70.

But before we get there, consider what kinds of errors or other
environmental constraints you might introduce to test your
method? Make a short list before reading further.

Think about this for a moment before reading on. . . @

Here are a few environmental things we’'ve thought of.

¢ Running out of memory
e Running out of disk space
¢ Issues with wall-clock time

e Network availability and errors

System load

Limited color palette

Very high or very low video resolution

4.6 Performance Characteristics

One area that might prove beneficial to examine is perfor- rigtBice[P]
mance characteristics—not performance itself, but trends as

input sizes grow, as problems become more complex, and so

on.

What we'd like to achieve is a quick regression test of per-
formance characteristics. All too often, we might release one
version of the system that works okay, but somehow by the
next release it has become dead-dog slow. We don’t know
why, or what change was made, or when, or who did it, or
anything. And the end users are screaming bloody murder.

To avoid that awkward scenario, you might consider some
rough tests just to make sure that the performance curve re-
mains stable. For instance, suppose we've written a filter that
identifies web sites that we wish to block (using our new prod-
uct to view naughty pictures might get us in all sorts of legal
trouble, after all.)

Prepared exclusively for Donald Viahovic

PERFORMANCE CHARACTERISTICS < 52

The code works fine with a few dozen sample sites, but will it
work as well with 10,000? 100,000? Let’s write a unit test to
find out.

[Test]

public void FilterRanges() {
Timer timer = new Timer();
String naughty_url = "http://www. sx<.coonvx<.com™,

// First, check a bad URL against a small 1list
URLFilter filter = new URLFilter(small_list);

timer.Start();
filter.Check(naughty_url);
timer.End();

Assert.IsTrue(timer.ElapsedTime < 1.0);

// Next, check a bad URL against a big list
filter = new URLFilter(big_list);

timer.Start();
filter.Check(naughty_url);
timer.End();

Assert.IsTrue(timer.ElapsedTime < 2.0);

// Finally, check a bad URL against a huge list
filter = new URLFilter(huge_1list);

timer.Start();
filter.Check(naughty_url);
timer.End();

Assert.IsTrue(timer.ElapsedTime < 3.0);

}

This gives us some assurance that we're still meeting perfor-
mance targets. But because this one test takes 6-7 seconds
to run, we may not want to run it every time. As long as we
run it nightly or every couple of days, we’ll quickly be alerted
to any problems we may introduce, while there is still time to
fix them.

TestFilter.cs

Prepared exclusively for Donald Viahovic

Chapter 5

CORRECT

Many bugs in code occur around “boundary conditions,” that
is, under conditions where the code’s behavior may be differ-
ent from the normal, day-to-day routine.

For instance, suppose you have a function that takes two in-
tegers:

public int Calculate(int a, int b) {
return a / (a+b);

}
Most of the time, this code will return a number just as you
expect. But if the sum of a and b happens to equal zero,
you will get a DivideByZeroException instead of a return
value. That is a boundary condition—a place where things
might suddenly go wrong, or at least behave differently from
your expectations.

To help you think of tests for boundary conditions, we’ll use
the acronym CORRECT:

e Conformance — Does the value conform to an expected
format?

e Ordering — Is the set of values ordered or unordered as
appropriate?

TestRoots.cs

CONFORMANCE < 54

e Range — Is the value within reasonable minimum and
maximum values?

e Reference — Does the code reference anything external
that isn’t under direct control of the code itself?

¢ Existence — Does the value exist (e.g., is non-null, non-
zero, present in a set, etc.)?

e Cardinality — Are there exactly enough values?

e Time (absolute and relative) — Is everything happening
in order? At the right time? In time?

Let’s look at each one of these in turn. Remember that for
each of these areas, you want to consider data that is passed
in as arguments to your method as well as internal data that
you maintain inside your method and class.

The underlying question that you want to answer fully is:
What else can go wrong?

Once you think of something that could go wrong, write a test
for it. Once that test passes, again ask yourself, “what else
can go wrong?” and write another test, and so on.

5.1 Conformance

Many times you expect or produce data that must conform to [c|orrecr
some specific format. An e-mail address, for instance, isn’t
just a simple string. You expect that it must be of the form:

name@somewhere.com

With the possibility of extra dotted parts:

firstname.lastname@subdomain.somewhere.com

And even oddballs like this one:

firstname.lastname%somewhere@subdomain. somewhere.com

Suppose you are writing a method that will extract the user’s
name from their e-mail address. You'll expect that the user’s
name is the portion before the “@” sign. What will your code

Prepared exclusively for Donald Viahovic

ORDERING <« 55

do if there is no “@” sign? Will it work? Throw an exception?
Is this a boundary condition you need to consider?!

Validating formatted string data such as e-mail addresses,
phone numbers, account numbers, or file names is usually
straightforward. But what about more complex structured
data? Suppose you are reading some sort of report data that
contains a header record linked to some number of data rec-
ords, and finally to a trailer record. How many conditions
might we have to test?

e What if there’s no header, just data and a trailer?
e What if there’s no data, just a header and trailer?
e What if there’s no trailer, just a header and data?
e What if there’s just a trailer?

e What if there’s just a header?

e What if there’s just data?

Just as with the simpler e-mail address example, you have to
consider what will happen if the data does not conform to the
structure you think it should.

And of course, if you are creating something like an e-mail
address (possibly building it up from different sources) or the
structured data above, you want to test your result to make
sure it conforms.

5.2 Ordering

Another area to consider is the order of data, or the position c[o]rrecr
of one piece of data within a larger collection. For instance,
in the Largest() example in the previous chapter, one bug
manifested itself depending on whether the largest number
you were searching for was at the beginning or end of the list.

That’s one aspect of ordering. Any kind of search routine
should be tested for conditions where the search target is first
or last, as many common bugs can be found that way.

lE-mail addresses are actually very complicated. A close reading of
RFC822 may surprise you.

Prepared exclusively for Donald Viahovic

ORDERING <« 56

For another aspect of ordering, suppose you are writing a
method that is passed a collection containing a restaurant
order. You would probably expect that the appetizers will ap-
pear first in the order, followed by the salad (and that all-
important dressing choice), then the entree and finally a deca-
dent dessert involving lots of chocolate.

What happens to your code if the dessert is first, and the
entree is last?

If there’s a chance that sort of thing can happen, and if it’s the
responsibility of your method to deal with it if it does, then you
need to test for this condition and address the problem. Now,
it may be that this is not something your method needs to
worry about. Perhaps this needs to be addressed at the user
input level (see “Testing Invalid Parameters” later on).

If you're writing a sort routine, what might happen if the set
of data is already ordered? Or worse yet, sorted in precisely
reverse order? Ask yourself if that could cause trouble—if
these are conditions that might be worth testing, too.

If you are supposed to maintain something in order, check
that it is. For example, if your method is part of the GUI that is
sending the dinner order back to the kitchen, you should have
a test that verifies that the items are in the correct serving
order:

[Test]
public void KitchenOrder() {
Order order = new Order();
FoodItem dessert = new Dessert("Chocolate Decadence");
FoodItem entree = new Entree("Beef Oscar");
FoodItem salad = new Salad("Parmesan Peppercorn");

// Add out of order
order.AddFoodItem(dessert);
order.AddFoodItem(entree);
order.AddFoodItem(salad);

// But should come out in serving order
IEnumerator itr = order.GetEnumerator();

Assert.AreEqual(salad, itr.Current);
itr.MoveNext();

Assert.AreEqual (entree, itr.Current);
itr.MoveNext();

Assert.AreEqual (dessert, itr.Current);
itr.MoveNext();

// No more left
Assert.IsFalse(itr.MoveNext());

TestKitchen.cs

Prepared exclusively for Donald Viahovic

Of course, from a human factors standpoint, you’d need to
modify the code so that it’s flexible enough to allow people to
eat their ice cream first, if so desired. In which case, you'd
need to add a test to prove that your four-year old nephew’s
ice cream comes with everyone else’s salads, but Grandma’s
ice cream comes at the end with your cappuccino.

5.3 Range

Range is a convenient catch-all word for the situation where a co[g [recr
variable’s type allows it to take on a wider range of values than

you need—or want. For instance, a person’s age is typically
represented as an integer, but no one has ever lived to be

200,000 years old, even though that’s a perfectly valid integer

value. Similarly, there are only 360 degrees in a circle, even

though degrees are commonly stored in an integer.

In good object oriented design, you do not use a raw native
type (e.g., an int or Int32) to store a bounded-integer value
such as an age, or a compass heading.

using System;

//
// Compass bearing

//
public class Bearing {

protected int bearing; // 0..359

//
// Initialize a bearing to a value from 0..359
//
public Bearing(int num_degrees) {
if (num_degrees < 0 || num_degrees > 359) {
throw new ArgumentException("Bad bearing");
}
bearing = num_degrees;
}
//

// Return the angle between our bearing and another.
// May be negative.
//
public int AngleBetween(Bearing anOther) {
return bearing - anOther.bearing;

}

Bearing.cs

}

Notice that the angle returned is just an int, as we are not
placing any range restrictions on the result (it may be nega-
tive, etc.)

Prepared exclusively for Donald Viahovic

By encapsulating the concept of a bearing within a class,
you've now got one place in the system that can filter out bad
data. You cannot create a Bearing object with out of range
values. Thus, the rest of the system can use Bearing objects
and be assured that they contain only reasonable values.

Other ranges may not be as straightforward. For instance,
suppose you have a class that maintains two sets of x, y co-
ordinates. These are just integers, with arbitrary values, but
the constraint on the range is such that the two points must
describe a rectangle with no side greater than 100 units. That
is, the allowed range of values for both x, y pairs is interdepen-
dent. You'll want a range test for any method that can affect a
coordinate to ensure that the resulting range of the x, y pairs
remains legitimate. For more information on this topic, see
“invariants” in the Design Issues chapter on page 113.

Since you will likely call this from a number of different tests,
it probably makes sense to make a new assert method:

public const int MAX_DIST = 100;
static public void AssertPairInRange(Point one,
Point two,
String message) {
Assert.IsTrue(Math.Abs(one.X - two.X) <= MAX_DIST,
message);
Assert.IsTrue(Math.Abs(one.Y - two.Y) <= MAX_DIST,
message);

}

But the most common ranges you’ll want to test probably de-
pend on physical data structure issues, not application do-
main constraints. Take a simple example like a stack class
that implements a stack of Strings using an array:

public class MyStack {
public MyStack() {
stack = new String[100];
nextIndex = 0;

}
public String Pop() {
return stack[--nextIndex];
}
// Delete n items from the stack en-masse
public void Delete(int n) {

nextIndex -= n;

}

public void Push(String aString) {
stack[nextIndex++] = aString;

}

TestPair.cs

Prepared exclusively for Donald Viahovic

public String Top() {
return stack[nextIndex-11];

}
private int nextIndex; %
private String[] stack; 2
} s
There are some potential bugs lurking here, as there are no
checks at all for either an empty stack or a stack overflow.
However we manipulate the index variable nextIndex, one
thing is supposed to be always true: (next.index >= 0 &&
next_index < stack.Length). We'd like to check to make
sure this expression is true.
Now both nextIndex and stack are private variables; you
don’t want to have to expose those just for the sake of testing.
There are several ways around this problem; for now we’ll just
make a special method in Stack named CheckInvariant():
public void CheckInvariant() {
if (!(nextIndex >= 0 &&
nextIndex < stack.Length)) {
throw new InvariantException(
"nextIndex out of range: " + nextIndex +
" for stack length " + stack.Length); é
Q
)
} >
Now a test method can call CheckInvariant() to ensure that
nothing has gone awry inside the guts of the stack class, with-
out having direct access to those same guts.
using NUnit.Framework;
[TestFixture]
public class TestMyStack {
[Test]
public void Empty() {
MyStack stack = new MyStack();
stack.CheckInvariant();
stack.Push("sample");
stack.CheckInvariant();
// Popping last element ok
Assert.AreEqual("sample"”, stack.Pop());
stack.CheckInvariant();
// Delete from empty stack 4
stack.Delete(1l); ¥
stack.CheckInvariant(); %
} s
8

Prepared exclusively for Donald Viahovic

REFERENCE <« 60

When you run this test, you’ll quickly see that we need to add
some range checking!

TestCase ’'TestMyStack.Empty’ failed: InvariantException
nextIndex out of range: -1 for stack length 100
mystack.cs(34,0): at MyStack.CheckInvariant()
testmystack.cs(20,0): at TestMyStack.Empty()
It’s much easier to find and fix this sort of error here in a sim-

ple testing environment instead of buried in a real application.

Almost any indexing concept (whether it's a genuine integer
index or not) should be extensively tested. Here are a few
ideas to get you started:

e Start and End index have the same value

First is greater than Last

Index is negative

Index is greater than allowed

Count doesn’t match actual number of items

5.4 Reference

What things does your method reference that are outside the cor[r]ecr
scope of the method itself? Any external dependencies? What

state does the class have to have? What other conditions must

exist in order for the method to work?

For example, a method in a web application to display a cus-
tomer’s account history might require that the customer is
first logged on. The method Pop () for a stack requires a non-
empty stack. Shifting the transmission in your car to Park
from Drive requires that the car is stopped.

If you have to make assumptions about the state of the class
and the state of other objects or the global application, then
you need to test your code to make sure that it is well-behaved
if those conditions are not met. For example, the code for
the microprocessor-controlled transmission might have unit
tests that check for that particular condition: the state of the
transmission (whether it can shift into Park or not) depends
on the state of the car (is it in motion or stopped).

Prepared exclusively for Donald Viahovic

EXISTENCE <« 61

[Test]

public void JamItIntoPark() {
transmission.Shift(DRIVE);
car.AccelerateTo(35);
Assert.AreEqual (DRIVE, transmission.CurrentGear);

// should silently ignore
transmission.Shift (PARK) ;
Assert.AreEqual (DRIVE, transmission.CurrentGear);

car.AccelerateTo(0); // i.e., stop
car.BrakeToStop();

// should work now
transmission.Shift (PARK);
Assert.AreEqual (PARK, transmission.CurrentGear);

}

The preconditions for a given method specify what state the
world must be in for this method to run. In this case, the pre-
condition for putting the transmission in park is that the car’s
engine (a separate component elsewhere in the application’s
world) must be at a stop. That’s a documented requirement
for the method, so we want to make sure that the method
will behave gracefully (in this particular case, just ignore the
request silently) in case the precondition is not met.

At the end of the method, postconditions are those things that
you guarantee your method will make happen. Direct results
returned by the method are one obvious thing to check, but if
the method has any side-effects then you need to check those
as well. In this case, applying the brakes has the side effect
of stopping the car.

Some languages even have built-in support for preconditions
and postconditions; interested readers might want to read
about Eiffel in Object-Oriented Software Construction [Vey97].

5.5 Existence

A large number of potential bugs can be discovered by asking corg[E]cr
the key question “does some given thing exist?”.

For any value you are passed in or maintain, ask yourself
what would happen to the method if the value didn’t exist—if
it were null, or blank, or zero.

Many C# library methods will throw an exception of some sort
when faced with non-existent data. The problem is that it’s
hard to debug a generic runtime exception buried deep in

Prepared exclusively for Donald Viahovic

CARDINALITY <« 62

some library. But an exception that reports “Age isn’'t set”
makes tracking down the problem much easier.

Most methods will blow up if expected data is not available,
and that’s probably not what you want them to do. So you
test for the condition—see what happens if you get a null in-
stead of a CustomerRecord because some search failed. See
what happens if the file doesn’t exist, or if the network is un-
available.

Ah, yes: things in the environment can wink out of existence
as well—networks, files’ URLs, license keys, users, printers—
you name it. All of these things may not exist when you expect
them to, so be sure to test with plenty of nulls, zeros, empty
strings and other nihilist trappings.

Make sure your method can stand up to nothing.

5.6 Cardinality

Cardinality has nothing to do with either highly-placed reli- corre|c|r
gious figures or small red birds, but instead with counting.

Computer programmers (your humble authors included) are
really bad at counting, especially past 10 when the fingers
can no longer assist us. For instance, answer the following
question quickly, off the top of your head, without benefit of
fingers, paper, or UML:

If you've got 12 feet of lawn that you want to fence,
and each section of fencing is 3 feet wide, how many
fence posts do you need?

If you're like most of us, you probably answered “4” without
thinking too hard about it. Pity is, that’s wrong—you need five
fence posts as shown in Figure 5.1 on page 64. This model,
and the subsequent common errors, come up so often that
they are graced with the name “fence post errors.”

It's one of many ways you can end up being “off by one;” an
occasionally fatal condition that afflicts all programmers from
time to time. So you need to think about ways to test how
well your method counts, and check to see just how many of
a thing you may have.

Prepared exclusively for Donald Viahovic

CARDINALITY <« 63

It’s a related problem to Existence, but now you want to make
sure you have exactly as many as you need, or that you've
made exactly as many as needed. In most cases, the count of
some set of values is only interesting in these three cases:

1. Zero
2. One
3. More than one

It’s called the “O-1-n Rule,” and it’s based on the premise that
if you can handle more than one of something, you can prob-
ably handle 10, 20, or 1,000 just as easily. Most of the time
that’s true, so many of our tests for cardinality are concerned
with whether we have 2 or more of something. Of course there
are situations where an exact count makes a difference—10
might be important to you, or 250.

Suppose you are maintaining a list of the Top-Ten food items
ordered in a pancake house. Every time an order is taken, you
have to adjust the top-ten list. You also provide the current
top-ten list as a real-time data feed to the pancake boss’s PDA.
What sort of things might you want to test for?

e Can you produce a report when there aren’t yet ten items
in the list?

e Can you produce a report when there are no items on
the list?

e Can you produce a report when there is only one item on
the list?

e Can you add an item when there aren’t yet ten items in
the list?

e Can you add an item when there are no items on the list?

e Can you add an item when there is only one item on the
list?

e What if there aren’t ten items on the menu?
e What if there are no items on the menu?

Having gone through all that, the boss now changes his mind
and wants a top-twenty list instead. What do you have to
change?

Prepared exclusively for Donald Viahovic

_Af|

12 feet >||

Figure 5.1: A Set of Fence posts

The correct answer is “one line,” something like the following:

public MaxEntries {
get { return 20; }

}
Now, when the boss gets overwhelmed and pleads with you to
change this to be a top-five report (his PDA is pretty small, af-
ter all), you can go back and change this one number. The test
should automatically follow suit, because it uses the same
property.
So in the end, the tests concentrate on boundary conditions
of 0, 1, and n, where n can—and will—change as the business
demands.

5.7 Time

The last boundary condition in the CORRECT acronym is
Time. There are several aspects to time you need to keep
in mind:

¢ Relative time (ordering in time)

¢ Absolute time (elapsed and wall clock)

e Concurrency issues

CORREC

Prepared exclusively for Donald Viahovic

TIME <« 65

Some interfaces are inherently stateful; you expect that Lo-
gin() will be called before Logout(), that PrepareState-
ment () is called before ExecuteStatement(), Connect()
before Read () which is before Close(), and so on.

What happens if those methods are called out of order? Maybe
you should try calling methods out of the expected order. Try
skipping the first, last and middle of a sequence. Just as order
of data may have mattered to you in the earlier examples (as
we described in “Ordering” on page 55), now it’s the order of
the calling sequence of methods.

Relative time might also include issues of timeouts in the
code: how long your method is willing to wait for some ephem-
eral resource to become available. As we’ll discuss shortly,
you’ll want to exercise possible error conditions in your code,
including things such as timeouts. Maybe you've got con-
ditions that aren’t guarded by timeouts—can you think of a
situation where the code might get “stuck” waiting forever for
something that might not happen?

This leads us to issues of elapsed time. What if something you
are waiting for takes “too much” time? What if your method
takes too much time to return to the caller?

Then there’s the actual wall clock time to consider. Most of
the time, this makes no difference whatsoever to code. But
every now and then, time of day will matter, perhaps in subtle
ways. Here’s a quick question, true or false: every day of the
year is 24 hours long?

The answer is “it depends.” In UTC (Universal Coordinated
Time, the modern version of Greenwich Mean Time, or GMT),
the answer is YES. In areas of the world that do not observe
Daylight Savings Time (DST), the answer is YES. In most of
the U.S. (which does observe DST), the answer is NO. In April,
you’ll have a day with 23 hours (spring forward) and in Oc-
tober you’ll have a day with 25 (fall back). This means that
arithmetic won’t always work as you expect; 1:45AM plus 30
minutes might equal 1:15, for instance.

But you've tested any time-sensitive code on those boundary
days, right? For locations that honor DST and for those that
do not?

Prepared exclusively for Donald Viahovic

TRY IT YOURSELF < 66

Oh, and don’t assume that any underlying library handles
these issues correctly on your behalf. Unfortunately, when it
comes to time, there’s a lot of broken code out there.

Finally, one of the most insidious problems brought about
by time occurs in the context of concurrency and synchro-
nized access issues. It would take an entire book to cover de-
signing, implementing, and debugging multi-threaded, con-
current programs, so we won't take the time now to go into
details, except to point out that most code you write in most
languages today will be run in a multi-threaded environment.

So ask yourself, what will happen if multiple threads use this
same object at the same time? Are there global or instance-
level data or methods that need to be synchronized? How
about external access to files or hardware? Be sure to add
the lock keyword to any data element or method that needs
it, and try firing off multiple threads as part of your test.

5.8 Try It Yourself

Now that we've covered the Right-BICEP and CORRECT way
to come up with tests, it’s your turn to try.

For each of the following examples and scenarios, write down
as many possible unit tests as you can think of.

Exercises

1. A simple stack class. Push String objects onto the stack, Answer
and Pop them off according to normal stack semantics. This °% 141
class provides the following methods:

using System;
public interface StackExercise {

/// <summary>

/// Return and remove the most recent item from
/// the top of the stack.

/// </summary>

/// <exception cref="StackEmptyException'>

/// Throws exception if the stack is empty.

/// </exception>

String Pop();

/// <summary>
/// Add an item to the top of the stack.
/// </summary>

Prepared exclusively for Donald Viahovic

TRY IT YOURSELF < 67

/// <param name="item">A String to push
/// on the stack</param>

void Push(String item);

/// <summary>

/// Return but do not remove the most recent
/// item from the top of the stack.

/// </summary>

/// <exception cref="StackEmptyException'>
/// Throws exception if the stack is empty.
/// </exception>

String Top();

/// <summary>

/// Returns true if the stack is empty.
/// </summary>

bool IsSEmpty();

}

Here are some hints to get you started: what is likely to break?
How should the stack behave when it is first initialized? After
it’s been used for a while? Does it really do what it claims to
do?

StackExercise.cs

2. A shopping cart. This class lets you add, delete, and count Answer

the items in a shopping cart. on 142
What sort of boundary conditions might come up? Are there
any implicit restrictions on what you can delete? Are there any
interesting issues if the cart is empty?
public interface ShoppingCart {

/// <summary>

/// Add this many of this item to the

/// shopping cart.

/// </summary>

/// <exception cref="NegativeCountException">

/// </exception>

void AddItems(Item anItem, int quantity);

/// <summary>

/// Delete this many of this item from the

/// shopping cart

/// </summary>

/// <exception cref="NegativeCountException">

/// </exception>

/// <exception cref="NoSuchItemException">

/// </exception>

void Deleteltems(Item anItem, int quantity);

/// <summary>

/// Count of all items in the cart

/// (that is, all items x qty each)

/// </summary> 3

int ItemCount { get; } §

/// Return iterator of all items .g

IEnumerable GetEnumerator(); g

} &

Prepared exclusively for Donald Viahovic

TRY IT YOURSELF < 68

3. A fax scheduler. This code will send faxes from a specified file Answer
name to a U.S. phone number. There is a validation require- °" 143
ment; a U.S. phone number with area code must be of the form
xnn-nnn-nnnn, where x must be a digit in the range [2..9] and
ncanbe [0..9]. The following blocks are reserved and are not
currently valid area codes: x11, x9n, 37n, 96mn.

The method’s signature is:

V4

/// Send the named file as a fax to the

/// given phone number.

/// <exception cref="MissingOrBadFileException">
/// </exception>

/// <exception cref="PhoneFormatException">

/// </exception>

/// <exception cref="PhoneAreaCodeException">
/// </exception>

public bool SendFax(String phone, String filename)

Given these requirements, what tests for boundary conditions
can you think of?

4. An automatic sewing machine that does embroidery. The Answer
class that controls it takes a few basic commands. The co- ©°" 144
ordinates (0,0) represent the lower-left corner of the machine.

x and y increase as you move toward the upper-right corner,
whose coordinates are x = TableSize.Width - 1andy = Ta-
bleSize.Height - 1.

Coordinates are specified in fractions of centimeters.

public void MoveTo(double x, double y);

public void SewTo(double x, double y);

public void SetWorkpieceSize(double width,
double height);

public Size WorkpieceSize { get; }

public Size TableSize { get; }

There are some real-world constraints that might be interest-
ing: you can't sew thin air, of course, and you can't sew a
workpiece bigger than the machine.

Given these requirements, what boundary conditions can you
think of?

5. Audio/Video Editing Transport. A class that provides meth- Answer
ods to control a VCR or tape deck. There’s the notion of a °" 145
“current position” that lies somewhere between the beginning
of tape (BOT) and the end of tape (EOT).

You can ask for the current position and move from there to
another given position. Fast-forward moves from current posi-

Prepared exclusively for Donald Viahovic

TRY IT YOURSELF < 69

tion toward EOT by some amount. Rewind moves from current
position toward BOT by some amount.

When tapes are first loaded, they are positioned at BOT auto-
matically.

using System;

public interface AVTransport {
/// Move the current position ahead by this many
/// seconds. Fast-forwarding past end-of-tape

/// leaves the position at end-of-tape
void FastForward(double seconds);

/// Move the current position backwards by this
/// many seconds. Rewinding past zero leaves
/// the position at zero

void Rewind(double seconds);

/// Return current time position in seconds
double CurrentTimePosition();

/// Mark the current time position with label
void MarkTimePosition(String name);

/// Change the current position to the one
/// associated with the marked name
void GotoMark(String name);

}

6. Audio/Video Editing Transport, Release 2.0. As above, but Answer
now you can position in seconds, minutes, or frames (there are °" 146
exactly 30 frames per second in this example), and you can
move relative to the beginning or the end.

AVTransport.cs

Prepared exclusively for Donald Viahovic

Chapter 6

The objective of unit testing is to exercise just one method
at a time, but what happens when that method depends on
other things—hard-to-control things such as the network, or
a database, or even the latest Microsoft stock price?

What if your code depends on other parts of the system—
maybe even many other parts of the system? If youre not
careful, you might find yourself writing tests that end up ini-
tializing nearly every system component just to give the tests
enough context in which to run. Not only is this time consum-
ing, it also introduces a ridiculous amount of coupling into the
testing process: someone goes and changes an interface or a
database table, and suddenly the setup code for your poor
little unit test dies mysteriously. Even the best-intentioned
developers will become discouraged after this happens a few
times, and eventually may abandon all testing. But there are
techniques we can use to help.

In movie and television production, crews will often use stand-
ins or doubles for the real actors. In particular, while the
crews are setting up the lights and camera angles, they’ll
use lighting doubles: inexpensive, unimportant people who
are about the same height and complexion as the expensive,
important actors lounging safely in their luxurious trailers.

The crew then tests their setup with the lighting doubles,
measuring the distance from the camera to the stand-in’s
nose, adjusting the lighting until there are no unwanted shad-

SIMPLE STUBS «d 71

ows, and so on, while the obedient stand-in just stands there
and doesn’t whine or complain about “lacking motivation” for
their character in this scene.

So what we're going to do in unit testing is similar to the use
of lighting doubles in the movies: we’ll use a cheap stand-in
that is kind of close to the real thing, at least superficially,
but that will be easier to work with for our purposes.

6.1 Simple Stubs

What we need to do is to stub out all those uncooperative
parts of the rest of the real world and replace each of them
with a more complicit ally—our own version of a “lighting dou-
ble.” For instance, perhaps we don’t want to test against the
real database, or with the real, current, wall-clock time. Let’s
look at a simple example.

Suppose throughout your code you call your own Now prop-
erty to return the current date and time. It might be defined
to look something like this:

public DateTime Now {

get {
return DateTime.Now;

}
}

(In general, we usually suggest wrapping calls to facilities out-
side the scope of the application to better encapsulate them—
and this is a good example.) Since the concept of current time
is wrapped in code of your own writing, you can easily change
it to make debugging a little easier:

SystemEnvironment.cs

public DateTime Now {

get {
if (DEBUG)
return currentTime;
else
return DateTime.Now;
}

}

You might then have other debug routines to manipulate the
system’s idea of “current time” to cause events to happen that
you'd have to wait around for otherwise.

Examples.cs

Prepared exclusively for Donald Viahovic

MoOCK OBJECTS «d 72

This is one way of stubbing out the real functionality, but it’s
messy. First of all, it only works if the code consistently calls
your own Now and does not call DateTime . Now directly. What
we need is a slightly cleaner—and more object-oriented—way
to accomplish the same thing.

6.2 Mock Objects

Fortunately, there’s a testing pattern that can help: mock ob-
Jjects. A mock object is simply a debug replacement for a real-
world object. There are a number of situations that come up
where mock objects can help us. Tim Mackinnon [MFCO1]
offers the following list:

e The real object has nondeterministic behavior (it pro-
duces unpredictable results, like a stock-market quote
feed.)

e The real object is difficult to set up.

e The real object has behavior that is hard to trigger (for
example, a network error).

e The real object is slow.
e The real object has (or is) a user interface.

e The test needs to ask the real object about how it was
used (for example, a test might need to confirm that a
callback function was actually called).

e The real object does not yet exist (a common problem
when interfacing with other teams or new hardware sys-
tems).

Using mock objects, we can get around all of these problems.
The three key steps to using mock objects for testing are:

1. Use an interface to describe the object
2. Implement the interface for production code
3. Implement the interface in a mock object for testing

The code under test only ever refers to the object by it’s in-
terface, so it can remain blissfully ignorant as to whether it
is using the real object or the mock. Let’s take another look

Prepared exclusively for Donald Viahovic

MoCK OBJECTS «d 73

at our time example. We'll start by creating an interface for
a number of real-world environmental things, one of which is
the current time:

public interface Environmental {
DateTime Now {
get;

// Other methods omitted...

}

Next, we create the real implementation:

Environmental.cs

public class SystemEnvironment : Environmental {

}
}

And finally, the mock implementation:

. . 8
public DateTime Now { g
get { £
return DateTime.Now; g

} g

£

o

&

using System;
public class MockSystemEnvironment : Environmental {
private DateTime currentTime;

public MockSystemEnvironment(DateTime when) {
currentTime = when;
}

public DateTime Now {

get {
return currentTime;

}
}

public void IncrementMinutes(int minutes) {
currentTime = currentTime.AddMinutes(minutes);

}

Note that in the mock implementation, we pass the DateTime

MockSystemEnvironment.cs

to be used as the initial current value to the constructor, and
the constructor tucks this away in an instance variable. This
is the value we’ll return when we're asked for the current time.
We also provide a method IncrementMinutes which adds the
given number of minutes to this time. This allows you to con-
trol date and time returned by the mock object.

Now suppose we've written an application with a new method,
Reminder (), which plays the “go home” whistle if called after
5pm. (Fans of the Flintstones will remember that this was

Prepared exclusively for Donald Viahovic

MoOCK OBJECTS d 74

Fred’s cue to jump from the cab and surf down the back of
his dinosaur). Among other things, this method depends on
the Now property. Some details are omitted, but the part we're
interested in looks like this:
Line 1 using System;

public class Checker {

Environmental env;

public Checker(Environmental env) {
this.env = env;

}
10 public void Reminder() {
DateTime now = env.Now;
if (now.Hour >= 17) {
env.PlayWavFile("quit_whistle.wav"); "
(8]
15 } 5
} :
} o

In the production environment—the real world code that gets
shipped to customers—an object of this class would be initial-
ized by passing in a real SystemEnvironment. The test code,
on the other hand, uses a MockSystemEnvironment.

The code under test that uses env.Now doesn’t know the dif-
ference between a test environment and the real environment,
as they both implement the same interface. You can now write
tests that exploit the mock object by setting the time to known
values and checking for the expected behavior.

In addition to the Now property that we've shown, the Envi-
ronmental interface also supports a PlayWavFile () method
call (used on line 14 in Checker.cs above). With a bit of extra
support code in our mock object, we can also add tests to see
if the PlayWavFile() method was called without having to
listen to the computer’s speaker.

private bool soundWasPlayed = false;

public void PlayWavFile(string fileName) {
soundWasPlayed = true;

}

// For convenience, check the sound played
// flag and reset it in one method call
public bool CheckAndResetSound() {

bool value = soundWasPlayed;

soundWasPlayed = false;

return value;

}

Prepared exclusively for Donald Viahovic

MockSystemEnvironment.cs

MocK OBJEcTS «d 75

Putting all of this together, a test using this setup would go
something like this:

Line 1 using System;
- using NUnit.Framework;

[TestFixture]
5 public class TestChecker {

[Test]
public void QuittingTime() {

10 DateTime when = new DateTime(2004,10,1,16,55,0);
- MockSystemEnvironment env;

env = new MockSystemEnvironment(when) ;

Checker checker = new Checker(env);

15 // No alarm sounds at 16:55
- checker.Reminder();
Assert.IsFalse(env.CheckAndResetSound(), "16:55");

// Now try 17:00

20 env.IncrementMinutes(5);
checker.Reminder();
Assert.IsTrue(env.CheckAndResetSound(), "17:00");

- // And finally 19:00

25 env.IncrementMinutes(120);

- checker.Reminder();
Assert.IsTrue(env.CheckAndResetSound(), "19:00");

}
}

The code creates a DateTime object containing the time to be
used for our first test, and passes that object to a new mock
system environment that we’ll use to run the tests.

TestChecker.cs

On line 16 we can run the Reminder () call, which will (unwit-
tingly) use the mock environment. The Assert.IsFalse()
call on the next line checks that the .wav file has not been
played yet, as it is not yet quitting time in the mock object
environment. But we’ll fix that in short order; line 20 puts
the mock time exactly equal to quitting time (a good boundary
condition, by the way). We then call the Reminder () method
again, This time, the sound should have been played, so we
call Assert.IsTrue on line 22 to make sure that the .wav
file did play this time around.

Finally, we’ll test the Reminder () method one more time, set-
ting the mock clock forward by two hours. Notice how easy
it is to alter and check conditions in the mock environment—
you don’t have to bend over and listen to the PC’s speaker, or
reset the clock, or pull wires, or anything like that.

Prepared exclusively for Donald Viahovic

FORMALIZING MOCK OBJECTS d 76

Because we've got an established interface to all system func-
tions, people will (hopefully) be more likely to use it instead of
calling things such as DateTime.Now() directly, and we now
have control over the behavior behind that interface.

And that’s all there is to mock objects: fake out parts of the
real world so you can concentrate on testing your own code.

6.3 Formalizing Mock Objects

In the old days, just having the ability to call subroutines was
a great advance. Then libraries of code became popular—
everything had to be library. Nowadays, libraries aren’t good
enough. You've got to have a framework to be taken seriously.

In the case of .NET, there are several alternative mock ob-
ject frameworks to choose from (a good list can be found at
http://www.mockobjects.org). In this section we’ll look at
one of these, DotNetMock.!

The DotNetMock framework is actually three things in one:

1. It's a framework (not surprisingly), allowing you to create
mock objects in a structured way.

2. It contains a (small) set of predefined mock objects that
you can use out of the box to test your application.

3. Finally, it comes with a technology, dynamic mocks, that
let’s you construct mock objects without all that messy
coding.

Let’s look at each of these in turn. But before we do, it’s worth
noting that because were in .NET's CLR environment, this
same framework can be used to mock objects for any .NET
language.

DotNetMock Framework

When you think about it, there’s really not too much to a mock
object: it’s simply some object that implements a particular
interface, returns values you want it to return, and which

1http ://sourceforge.net/projects/dotnetmock

Prepared exclusively for Donald Viahovic

http://www.mockobjects.org
http://sourceforge.net/projects/dotnetmock

FORMALIZING MOCK OBJECTS < 77

allows you to check that it was used in a certain way. As
a result, the basic frameworks for creating mock objects are
also correspondingly simple.

To illustrate this, let’s look at using the DotNetMock frame-
work to help us test an access control library. We’'ll start with
a pretty trivial class, AccessController. Each AccessCon-
troller object is responsible to controlling access to a par-
ticular resource—we give the name of the resource to the con-
structor. To determine if a particular user can use the re-
source, we call the object’s CanAccess () method, passing in
the user’s name and password. The code for this class might
look something like this:

using System;
public class AccessController {
private ILogger logger;
private String resource;
public AccessController(String resource,
ILogger logger) {
this.logger = logger;
this.resource = resource;
logger.SetName("AccessControl");

}

public bool CanAccess(String user, String password) {
logger.Log("Checking access for " + user +
" to " + resource);
if (password == null || password.Length == 0) {
logger.log("Missing password. Access denied");
return false;

}
// more checks. ..

logger.Log("Access granted");
return true;

}
}

We'd like to test this access control code, but notice that it’s
calling some external logger object. This isn’'t a major prob-
lem: the logger is called via an interface.

AccessController.cs

using System;

public interface ILogger {
void SetName(String name);
void Log(String msg);

}

We can mock up that interface pretty easily: we just need to
implement two methods, one used to set the name of the thing
doing the logging, and the other to log the actual messages.

Prepared exclusively for Donald Viahovic

ILogger.cs

FORMALIZING MOCK OBJECTS < 78

o
Q
9]
o)
o)
o)
—
=4
[9)
o)
=

using System;

public class MockLoggerl : ILogger {
public void SetName(String name) {
}

public void Log(String msg) {

}
}

Given this, we can now write a basic unit test. For our first
test, we’ll check that the access controller correctly denies
access if we don’t pass in a password.

using System;

using NUnit.Framework;
[TestFixture]

public class TestAccessController {

[Test]
public void MissingPasswordl() {
MockLoggerl logger = new MockLoggerl();
AccessController access =
new AccessController("secrets"”, logger);
Assert.IsFalse(access.CanAccess("dave"”, null));
Assert.IsFalse(access.CanAccess("dave”, ""));

}

TestAccessController.cs

}

However, this test does not verify that our access controller
is logging the correct messages. This is where the mock ob-
jects framework might help—one of its main features is that it
makes it easy to manage expectations:? the framework makes
it easy to record things that we expect to happen, and then to
verify that they actually did happen.

To start with, let’s extend our mock object to verify that the
access controller is correctly setting its name into the logger.
We do this by adding expectations to our MockLogger class.

using System;

using DotNetMock;

public class MockLogger2 : MockObject, ILogger {

private ExpectationValue _name =
new ExpectationValue("name");

// Mock control interface

public String ExpectedName {
set { _name.Expected = value; }

}

2We clearly need more frameworks like this to help us deal with some of
our more demanding end users.

Prepared exclusively for Donald Viahovic

FORMALIZING MOCK OBJECTS < 79

// Implement ILogger interface
public void SetName(String name) {

_name.Actual = name; 3

} o
5

public void Log(String msg) { 2

) =
3

} b=

A couple of things have changed. First, we now use the Dot-
NetMock namespace, and have our MockLogger extend the
MockObject class. To get this to compile, we've also added
a reference to DotNetMock.d1ll to our project. This DLL is
available in the DotNetMock package at the SourceForge URL
given previously.

Next, we've added an ExpectationValue instance variable to
our class. An expectation is basically a variable that holds two
values: its expected value and its actual, current value. At the
end of running a test, we can call a Verify method, and the
mock objects framework checks that the expected and actual
values in all the expectation objects match. If they do, our
code must have worked as expected. If not, Verify raises an
assertion error, and the unit test fails.

Third, we need to provide a way of setting the expected and
actual values. The actual value is set via the standard ILog-
ger SetName() method: when a caller invokes SetName(),
we need to change the value associated with the name.

To set the expected value, though, we need a new method—
one that’s not part of the ILogger interface. We provide an
accessor called ExpectedName to allow us to set this.

With this all in place, we can now test that the access con-
troller is correctly setting its name into the logger object.

[Test]

public void MissingPassword2() {
MockLogger?2 logger = new MockLogger2();
logger.ExpectedName = "AccessControl";
AccessController access =

new AccessController("secrets”, logger);

Assert.IsFalse(access.CanAccess("dave”, null));
logger.Verify();

}

Note how this test sets the expected value of the logger’'s name
into the mock logger object before creating the access con-

TestAccessController.cs

Prepared exclusively for Donald Viahovic

FORMALIZING MOCK OBJECTS < 80

troller. After the test runs, it then calls the mock object’s
Verify() method to confirm that the actual value agrees with
this expectation. Running the test, we get our green line: all
is well.

However, we're still not testing that the access controller is
writing the correct messages to the logger: we're hoping that
it will say “Checking access for dave to secrets,” followed by
“Missing password. Access denied.” Here we have an expecta-
tion that has two values. Fortunately, the framework gives us
expectation collection classes to deal with this. We’ll update
our mock logger to use them.

Line 1 using System;
using DotNetMock;

public class MockLogger3 : MockObject, ILogger {

private ExpectationValue _name =
new ExpectationValue("name");

private ExpectationArraylList _msgs =
10 new ExpectationArraylist("msgs");

// Mock control interface

public String ExpectedName {
15 set { _name.Expected = value; }

}

public void AddExpectedMsg(String msg) {
- _msgs.AddExpected(msg);
20 }
// Implement ILogger interface
public void SetName(String name) {
- _name.Actual = name;
25 }
public void Log(String msg) {
_msgs.AddActual(msg);
}

0}

MockLogger3.cs

At line 9 we've created a new expectation collection called
msgs. As with an ExpectationValue, this holds both ac-
tual and expected values; it just allows us to hold a number
of both. The method AddExpectedMsg at line 18 lets us add
to the list of expected values, and we change the actual Log
call to add to the list of actual values.

Now we can change the test to verify that the correct log mes-
sages are generated.

Prepared exclusively for Donald Viahovic

FORMALIZING MOCK OBJECTS <« 81

[Test]
public void MissingPassword3() {
MockLogger3 logger = new MockLogger3();
logger.ExpectedName = "AccessControl";
logger.AddExpectedMsg(
"Checking access for dave to secrets");
logger.AddExpectedMsg(
"Missing password. Access denied");
AccessController access =
new AccessController("secrets”, logger);
Assert.IsFalse(access.CanAccess("dave”, null));
logger.Verify();

}
Note that we’ve added two calls to AddExpectedMsg(). When
Verify() is called at the end of the test, the mock logger will
check that the access controller actually logged exactly these
messages.

TestAccessController.cs

Sometimes a mock object has to be able to handle a larger
number of calls. For example, you might want to verify that a
sales reporting method iterates over all 50 states in the United
States without actually having to add each state by name to
an ExpectationArrayList. Fortunately, the framework im-
plements an ExpectationCounter class. You can set an ex-
pected count value, and then invoke its Inc () method to in-
crement the actual counter.

Supplied Mock Objects

One of the nice things about using a standardized framework
for testing is that you can start to build a library of standard
mock objects and reuse these across projects. In fact, in the
open source world, you might even find that other folks have
mocked up the interfaces that you need and made them freely
available. The DotNetMock package actually comes with a
(small) number of these off-the-shelf mock object packages,
available in DotNetMock.Framework. Here we’ll look at one
of these, Data, which implements many of the interfaces in
.NET’s System.Data.

Let’s start by implementing more of our access controller. Af-
ter verifying that a password has been supplied, we’ll now go
to a database table and verify that a row exists giving this
user, identified with the given password, access to our re-
source.

Prepared exclusively for Donald Viahovic

FORMALIZING MOCK OBJECTS < 82

NUnit’s Built-in Mocks

NUnit 2.2 includes a built-in, lightweight, dynamic
mock object facility. See the documentation that
comes with NUnit for full details, but the built-in system
has the following features:

e Dynamically create a default mock implemen-
tation of any intferface or MarshalByReference
class

e Allow arbitrary calls, or reject any method calls
that weren’t explicitly expected

e Expect that methods will be called in the given
order

e Expect that a method will not be called

e Specify the return value for a method called with
a particular set of arguments, or for any arbitrary
arguments

e Specify an exception to be thrown for a method
called with a particular set of arguments, or for
any arbitrary arguments

e Override DynamicMock in order to provide a cus-
tom implementation for any method

If you'd like to experiment with mock objects with-
out having to download and learn a larger, more
fully-featured product, then this might be the perfect
place to start.

Prepared exclusively for Donald Viahovic

FORMALIZING MOCK OBJECTS

using System;
using System.Data;
using System.Data.SqlClient;

public class AccessControllerl {
private ILogger logger;
private String resource;
private IDbConnection conn;

public static readonly String CHECK_SQL =
"select count(*) from access where " +
"user=@user and password=@password " +
"and resource=@resource";

public AccessControllerl(String resource,
ILogger logger,
IDbConnection conn) {
this.logger logger;
this.resource = resource;
this.conn = conn;
logger.SetName("AccessControl");

}

public bool CanAccess(String user, String password) {
logger.Log("Checking access for " + user +
" to " + resource);
if (password == null || password.Length == 0) {

logger.log("Missing password. Access denied");
return false;

}

IDbCommand cmd = conn.CreateCommand();
cmd . CommandText = CHECK_SQL;
cmd . Parameters.Add(
new SglParameter("@Quser”, user));
cmd . Parameters.Add(
new SglParameter("@password”, password));
cmd . Parameters.Add(
new SglParameter("@resource”, resource));
IDataReader rdr = cmd.ExecuteReader();
int rows = 0;
if (rdr.Read())
rows = rdr.GetInt32(0);
cmd .Dispose();

if (rows == 1) {
logger.Log("Access granted");
return true;

}

else {
logger.Log("Access denied");
return false;

}
}
}

The test code for this is somewhat more complicated than the
previous cases, mostly because we want to knit together all
the various objects used to access the database (the connec-

AccessController1.cs

tion, the command, various parameters, and the reader that

Prepared exclusively for Donald Viahovic

FORMALIZING MOCK OBJECTS

returns the result). We also want to set up a reasonable set of
expectations to ensure that the underlying code is calling the
database layer correctly.

Line 1 using System;

- using NUnit.Framework;
using DotNetMock.Framework.Data;

a0

[TestFixture]

- public class TestAccessControllerl {

- [Test]

- public void TestValidUser() {

- MockLogger3 logger = new MockLogger3();
10 logger.ExpectedName = "AccessControl";

- logger.AddExpectedMsg(

- "Checking access for dave to secrets");
- logger.AddExpectedMsg("Access granted");

15 // set up the mock database

- MockDbConnection conn = new MockDbConnection();
- MockCommand cmd = new MockCommand();

- MockDataReader rdr = new MockDataReader();

20 conn. SetExpectedCommand (cmd) ;

- cmd. SetExpectedCommandText (

- AccessControllerl.CHECK_SQL);
- cmd.SetExpectedExecuteCalls(1l);
- cmd.SetExpectedParameter(

25 new MockDataParameter("@user", "dave'"));

- cmd . SetExpectedParameter(

- new MockDataParameter("@password”, "shhh"));

- cmd.SetExpectedParameter(

- new MockDataParameter("@resource”, "secrets"));

- cmd.SetExpectedReader (rdr);

- object [,] rows = new object[1l,1];
- rows[0, 0] = 1;

- rdr.SetRows(rows);

- AccessControllerl access =
- new AccessControllerl("secrets”, logger, conn);
- Assert.IsTrue(access.CanAccess("dave"”, "shhh'"));
- logger.Verify();

40 conn.Verify();
- cmd.Verify();

TestAccessControllerl.cs

On line 3 we bring in the DotNetMock framework’s Data com-
ponents. In the body of the test method, we start by creating
and setting up a mock logger as before. At line 16 we cre-
ate three mock database objects: the connection, a command
(used to issue SQL queries into the database), and a reader
(used to return the results of a query).

We now need to associate these three objects together. Line 20
tells the connection object that when it is asked to generate a

Prepared exclusively for Donald Viahovic

FORMALIZING MOCK OBJECTS < 85

Itisn’t all perfect

Observant readers may be wondering why our new
AccessController class went to the trouble of using a
Reader oObject to get the count back from executing
the query. Why didn’t we just use the ExecuteScalar
method of the command object to return the count
directly?

Unfortunately, the mock object implementation of
IDbCommand isn‘t quite complete (at least at the
time of writing). Although ExecuteScalar is imple-
mented, it always returns a null value. This means
that we couldn’t use it in our tests.

command object it should return our mock command object,
cmd. We then set up that command object’s expectations: the
SQL it should receive, the number of times it will be executed,
and the parameters it should expect to receive.

Line 31 starts the stanza that sets up the reader object. It
is first associated with the command (so that when the mock
command is executed it will return this reader object). We
then set up its result set, a two dimensional array of objects,
containing the rows returned by the query and the columns
in each row. In our case, the result set contains just a single
row containing a single column, the count, but we still need
to wrap it in the two-dimensional array.

Finally, on line 36, we create our access controller and check
to see if “dave” can access the resource “secrets” by using the
password “shhh.” Because these values correspond to the
values we set up for the query, the access controller will be
able to use our mock database objects, which will return a
count of “1” and the access will be accepted. At the end of the
test, we then verify that the logger, connection, and command
mock objects were used correctly by our method under test.

Prepared exclusively for Donald Viahovic

FORMALIZING MOCK OBJECTS <« 86

Dynamic Mock Objects

There’ll be times when you need to test something that uses
an existing interface and there are no pre-written mock ob-
jects lying around. Often, you can just jump right on in and
create a new mock object. But what if the interface that you're
mocking is enormous, with dozens of methods and accessors?
That could mean a lot of work producing a mock object that
implements the interface. This is particularly galling if you
only need one or two methods from the interface to run your
tests.

This is where dynamic mock objects come in. They let you
create an object that responds as if it implemented a full in-
terface, but in reality it is totally generic. You only need to tell
this object how to respond to the method calls that your code
uses. This can represent a considerable saving in time. It’ll
also give you less code to maintain in the future.

To make this more concrete, let’s imagine we have an applica-
tion that has something to do with customers. At some point,
a developer created a monstrous ICustomer interface which
defines a whole bunch of accessors to get to information about
a customer. It looks something like this.

using System;
public interface ICustomer {

String Title { get; }

String FirstName { get; }

String MiddleInitial { get; }

String LastName { get; }

String NameSuffix { get; }

String SSN { get; }

{ }

{ }

}

}

Address HomeAddress get;
Address WorkAddress get;
Date FirstContacted { get;
Date LastContacted { get;

int ContactCount { get; }

// and so on, and so on, for 30 more accessors

}

Our current job is to implement a class that can generate mail
to these customers. As part of that task, we need to be able
to generate both long and short forms of the greeting (so our
mail could say “Mr Joe Smith, III” on the envelope and “Dear
Mr Smith” on the letter). Our code looks something like this.

Prepared exclusively for Donald Viahovic

ICustomer.cs

FORMALIZING MOCK OBJECTS < 87

using System;
using System.Text;

public class Mailer {
private ICustomer customer;

public Mailer(ICustomer customer) {
this.customer = customer;

}
public String ShortGreeting() {

return customer.Title + " " + customer.LastName;
}

public String FullGreeting() {
StringBuilder result = new StringBuilder();
Append(result, customer.Title);
Append(result, customer.FirstName);
Append(result, customer.MiddleInitial);
Append(result, customer.LastName);
if (customer.NameSuffix.Length > 0)
result.Append("”, " + customer.NameSuffix);
return result.ToString();
}
private void Append(StringBuilder result,
String field) {
if (field !'= null && field.Length > 0)
if (result.Length > 0)
result.Append("” ");
result.Append(field);

}
}

To test this code, we’d need to create some kind of customer
object and pass it to our routine. This could be a lot of work,
because the interface is fairly large. This is where dynamic
mock objects can help.

Mailer.cs

The dynamic mock packages® operate by creating proxy ob-
jects. These are objects that are designed to stand in for their
real-world counterparts. In the dynamic mock object context,
this means that we can use a proxy in place of a real object
in our tests. However, we still need to be able to control this
generated proxy object—we need to be able to tell it how to
respond. This is where the controller comes in.

The controller is in charge of a dynamic mock object. You use
the controller to create an instance of the mock, and to tell the

3There are two that we've come across at the time of writing. One, which
we’ll show here, comes with the DotNetMock framework. The other is NMock
(http://nmock. truemesh.com/). The two share much underlying code, al-
though the NMock API differs slightly from the DotNetMock one.

Prepared exclusively for Donald Viahovic

http://nmock.truemesh.com/

FORMALIZING MOCK OBJECTS < 88

mock what do do. In the code that follows, the controller is the
object of type IMock, created on line 13. On the next line, we
tell the controller to create the actual mock object—the object
that implements the TCustomer interface.

Line 1 using System;

- using DotNetMock.Dynamic;
using NUnit.Framework;

O

[TestFixture]
- public class TestCalculator {

- [Test]
10 public void AgeCalculation() {

- IMock mock =
- new DynamicMock(typeof(ICustomer));
- ICustomer customer = (ICustomer)mock.Object;

15 mock.SetValue("Title", "Mr.");

- mock.SetValue("FirstName", "Fred");

- mock.SetValue("MiddleInitial", "E");

- mock.SetValue("LastName", "Bloggs");
- mock.SetValue("NameSuffix", "IIT");

- Mailer mailer = new Mailer(customer);

- Assert.AreEqual("Mr. Bloggs",

- mailer.ShortGreeting());
- Assert.AreEqual("Mr. Fred E Bloggs, III",
25 mailer.FullGreeting());

- }

-}
Once we have the controller, we can also program up the way
we want the mock object to behave. For the purposes of our
test, that’s pretty simple: we simply want it to return given
values for the various components of the customer’s name.
The controller's SetValue calls starting on line 15 set that
up. We then pass this mock-customer into the calculator and
test some age calculations.

TestMailer.cs

One of the key things to notice is that we didn’'t have to im-
plement all the various methods in the ICustomer interface.
Instead, we just set up the ones that we knew we were going
to be using. This makes life a lot simpler, and is one of the
key advantages of the dynamic mock style of testing.

You can do more with dynamic mock objects than merely set
the return value of a method call. The various Expect...
calls can be used to program a sequence of actions and re-
sponses into a mock object. The code that follows is somewhat
artificial, but it illustrates some of the uses of Expect.

Prepared exclusively for Donald Viahovic

FORMALIZING MOCK OBJECTS < 89

Line 1 using System;
- using NUnit.Framework;
- using DotNetMock.Dynamic;

5 interface ITaxCalculator {
- decimal CalculateTax(decimal amount, String state);

-}
- public class ExpectExamples {

- public ExpectExamples() {
- IMock mock = new DynamicMock(typeof(ITaxCalculator));

15 mock.ExpectAndReturn("CalculateTax",7.25,100, "TX");
- mock.ExpectAndReturn("CalculateTax",7.00,100, "NC");
- mock.ExpectAndThrow("CalculateTax",

- new ArgumentOutOfRangeException(), 100, "XX");

20 ITaxCalculator calc = (ITaxCalculator)mock.Object;

- // The following asserts simply illustrate
- // how the mock object would be used.
- // This is not a typical test.
25 Assert.AreEqual(7.25,
- calc.CalculateTax (100, "IX"));
- Assert.AreEqual(7.0,
- calc.CalculateTax(100, "NC"));

30 try {
- calc.CalculateTax(100, "XX");
- Assert.Fail("Should have thrown an exception');

: }

- catch (ArgumentOutOfRangeException) { ; }

- mock.Verify();

ExpectExamples.cs

The code creates a mock object for a (silly) sales tax calculator
on line 13. The three lines starting on line 15 then program
this mock object to expect three calls to the method Calcu-
lateTax(). On the first call, the method should expect to be
passed the parameters 100 and “TX”, and should return the
value 7.25. On the next call, it should return 7.0 after be-
ing passed 100 and “NC”. On the last call, it should instead
throw an ArgumentOutOfRangeException, because it will be
passed an invalid state abbreviation (“XX”).

Normally we’'d then pass this mock object into some other
object under test. However, to keep this example short, here
we're just running some assertions against it directly. As we
use the object, it verifies that the CalculateTax () method is
indeed called three times, and that the expected parameters
are passed in each time. It also causes the mock object to

Prepared exclusively for Donald Viahovic

WHEN NoT To Mock < 90

return the desired values (or throw the required exception) on
each call.

6.4 When Not To Mock

Mock objects are an appealing technology, but because they
involve writing code, they represent a definite cost to your
project. Whenever you find yourself thinking that you want
to write a mock object to help with testing, stop and consider
alternatives for a couple of seconds. In particular, ask your-
self the simple question: “do I need to write a mock object at
all?” Sometimes you can eliminate the need for a mock object
through some simple refactoring.

As a (somewhat contrived) example, let’s imagine that we're
writing code that downloads files to a handheld device over a
relatively slow wire. Because of some hardware restrictions,
after we've sent a block of data, we have to wait a while before
trying to talk with the device again. The length of time we have
to wait depends on the amount of data sent—the hardware
guys gave us a table of values to use.

We might start off by writing a routine that waits a length of
time dependent on the size of data sent:
public void WaitForData(int dataSize) {
int timeToWait;
if (dataSize < 100)
timeToWait = 50;
else if (dataSize < 250)
timeToWait = 100;
else if (dataSize < 600)
timeToWait = 150;

else
timeToWait = 200;

Thread.Sleep(timeToWait);

}

Now we want to test this method, but there’s a problem. The
only way to see if it works is to check to see if it sleeps for
the right amount of time for various values of the dataSize
parameters. That's not an easy test to write: we’d have to
build in a fudge factor, because the time we measure for the
wait won't be exact. We might even have to set up some kind
of watchdog thread to ensure that the sleep doesn’t go on too
long. There’s also the elapsed time to consider: if running our

Example.cs

Prepared exclusively for Donald Viahovic

WHEN NoT To Mock <« 91

tests causes Thread.Sleep to be called multiple times, our
unit tests will take longer to complete—we won’t be popular.

After reading this chapter, your first though might be to solve
these problems using a mock object. If we replace Thread
with some kind of mock object, we can verify that its Sleep ()
method was called with the expected values. Class Thread
is not an interface, and even if it were, it has a boatload of
properties and members.

This is the time to reflect: could we redesign our code slightly
to make it easier to test? Of course we can!

public int HowLongToWait(int dataSize) {
int timeToWait;
if (dataSize < 100)
timeToWait = 50;
else if (dataSize < 250)
timeToWait = 100;
else if (dataSize < 600)
timeToWait = 150;
else
timeToWait = 200;

return timeToWait;

public void WaitForData(int dataSize) {
Thread.Sleep(HowLongToWait(dataSize));

}

In this code we've split the waiting into two methods. One cal-
culates the number of milliseconds to wait based on the data’s
size, and the other calls it to get the parameter to pass the
Thread.Sleep(). If we assume that the framework Sleep()
method works, then there’s probably no need to test this sec-
ond method: we can eyeball it and see it does what it says
it should. That leaves us with the simple task of testing the
method that calculates the time to wait.

[Test]

void WaitTimes() {
Waiter w = new Waiter();
Assert.AreEqual(50, w.HowLongToWait(0));
Assert.AreEqual (50, .HowLongToWait(99));
Assert.AreEqual (100, .HowLongToWait(100));
Assert.AreEqual (100, .HowLongToWait(249));
Assert.AreEqual (150, .HowLongToWait(250));
Assert.AreEqual (150, .HowLongToWait(599));
Assert.AreEqual (200, .HowLongToWait(600)) ;

}

A simple refactoring has led us to a better design, and elimi-
nated a whole lot of pain associated with coding up the tests.

Prepared exclusively for Donald Viahovic

Example.cs

w
w
w
w
w
w

Example.cs

Chapter 7

Properties of

— CoodTests

Unit tests are very powerful magic, and if used badly can
cause an enormous amount of damage to a project by wast-
ing your time. If unit tests aren’t written and implemented
properly, you can easily waste so much time maintaining and
debugging the tests themselves that the production code—and
the whole project—suffers.

We can’t let that happen; remember, the whole reason you're
doing unit testing in the first place is to make your life easier!
Fortunately, there are only a few simple guidelines that you
need to follow to keep trouble from brewing on your project.

Good tests have the following properties, which makes them
A-TRIP:

e Automatic

e Thorough

e Repeatable
e Independent
¢ Professional

Let’s look at what each of these words means to us.

AvuTtoMATIC <« 93

7.1 Automatic

Unit tests need to be run automatically. We mean “automat- [a]rr
ically” in at least two ways: invoking the tests and checking
the results.

It must be really easy for you to invoke one or more unit tests,
as you will be doing it all day long, day in and day out. So it
really can’t be any more complicated than pressing one button
in the IDE or typing in one command at the prompt in order
to run the tests you want. Some IDEs can even be set up to
run the unit tests continually in the background.

It’'s important to maintain this environment: don’t introduce
a test that breaks the automatic model by requiring manual
steps. Whatever the test requires (database, network connec-
tions, etc.), make these an automatic part of the test itself.
Mock objects, as described in Chapter 6, can help insulate
you from changes in the real environment.

But you're not the only one running tests. Somewhere a ma-
chine should be running all of the unit tests for all checked-in
code continuously. This automatic, unattended check acts as
a “back stop”; a safety mechanism to ensure that whatever
is checked in hasn’t broken any tests, anywhere. In an ideal
world, this wouldn’t be necessary as you could count on every
individual developer to run all the necessary tests themselves.

But this isn’t an ideal world. Maybe an individual didn’t run
some necessary test in a remote corner of the project. Perhaps
they have some code on their own machine that makes it all
work—but they haven’t checked that code in, so even though
the tests work on their own machine, those same tests fail
everywhere else.

You may want to investigate systems such as Cruise Con-
trol' and other open source products that manage continuous
building and testing.

Finally, by “automatic” we mean that the test must determine
for itself whether it passed or failed. Having a person (you or
some other hapless victim) read through the test output and

1http ://ccnet.thoughtworks.com

Prepared exclusively for Donald Viahovic

http://ccnet.thoughtworks.com

THOROUGH < 94

determine whether the code is working or not is a recipe for
project failure. It’s an important feature of consistent regres-
sion to have the tests check for themselves. We humans aren’t
very good at those repetitive tasks, and besides we've got more
important things to do—remember the project?

This idea of having the tests run by themselves and check
themselves is critical, because it means that you don’t have to
think about it—it just happens as part of the project. Testing
can then fulfill its role as a major component of our project’s
safety net. (Version control and automation are the other two
major components of the “safety net.”) Tests are there to catch
you when you fall, but they're not in your way. You'll need all
of your concentration as you cross today’s high-wire.

7.2 Thorough

Good unit tests are thorough; they test everything that’s likely a[r|rp
to break. But just how thorough? At one extreme, you can

aim to test every line of code, every possible branch the code

might take, every exception it throws, and so on. At the other
extreme, you test just the most likely candidates—boundary
conditions, missing and malformed data, and so on. It's a
question of judgment, based on the needs of your project.

If you want to aim for more complete coverage, then you may
want to invest in code coverage tools to help. (For instance
“NCover,” http://workspaces.gotdotnet.com/ncover).

These tools can help you determine how much of the code
under test is actually being exercised.

It's important to realize that bugs are not evenly distributed
throughout the source code. Instead, they tend to clump
together in problematic areas (for an interesting story along
these lines, see the sidebar on the following page).

This phenomenon leads to the well-known battle cry of “don’t
patch it, rewrite it.” Often, it can be much cheaper and less
painful to throw out a piece of code that has a clump of bugs
and rewrite it from scratch. And of course, it’'s much safer to
rewrite code from scratch now: you’ll have a set of unit tests
that can confirm the new code works as it should.

Prepared exclusively for Donald Viahovic

http://workspaces.gotdotnet.com/ncover

THOROUGH <« 95

Reported Bugs vs. Unit Test Coverage
We had a client recently that didn’t quite believe in
the power of unit tests. A few members of the team
were very good and disciplined at writing unit tests for
their own modules, many were somewhat sporadic
about it, and a few refused to be bothered with unit
tests at all.

As part of the hourly build process, we whipped up
a simple Ruby script that performed a quick-and-dirty
analysis of test coverage: it tallied up the ratio of test
code asserts to production code methods for each
module. Well-tested methods may have 3, 4, or more
asserts each; untested methods will have none at alll.
This analysis ran with every build and produced a bar-
graph, ranking the most-tested modules at the top
and the untested modules at the bottom.

After a few weeks of gathering figures, we showed
the bargraph to the project manager, without initial
explanation. He was very surprised to see all of the
“problem modules” lumped together at the bottom—
he thought we had somehow produced this graph
based on bug reports from QA and customer sup-
port. Indeed, the modules at the top of the graph
(well tested) were nearly unknown to him; very few, if
any, problems had ever been reported against them.
But the clump of modules at the bottom (that had
no unit tests) were very well known to him, the sup-
port managers, and the local drugstore which had
resorted to stocking extra-large supplies of antacid.

The results were very nearly linear: the more unit-
tested the code, the fewer problems.

Prepared exclusively for Donald Viahovic

REPEATABLE <« 96

7.3 Repeatable

Just as every test should be independent from every other ar[r]wr
test, they must be independent of the environment as well.

The goal remains that every test should be able to run over

and over again, in any order, and produce the same results.

This means that tests cannot rely on anything in the external
environment that isn’t under your direct control.

Use mock objects as necessary to isolate the item under test
and keep it independent from the environment. If you are
forced to use some element from the real world (a database,
perhaps), make sure that you won't get interference from any
other developer. Each developer needs their own “sandbox”
to play in, whether that’s their own database instance within
Oracle, or their own webserver on some non-standard port.

Without repeatability, you might be in for some surprises at
the worst possible moments. What’s worse, these sort of sur-
prises are usually bogus—it’s not really a bug, it’s just a prob-
lem with the test. You can’t afford to waste time chasing down
phantom problems.

Each test should produce the same results every time. If it
doesn’t, then that should tell you that there’s a real bug in
the code.

7.4 Independent

Tests need to be kept neat and tidy, which means keeping axr[1]p
them tightly focused, and independent from the environment

and each other (remember, other developers may be running

these same tests at the same time).

When writing tests, make sure that you are only testing one
thing at a time.

Now that doesn’t mean that you use only one assert in a test,
but that one test method should concentrate on a single pro-
duction method, or a small set of production methods that,
together, provide some feature.

Prepared exclusively for Donald Viahovic

PROFESSIONAL <« 97

Sometimes an entire test method might only test one small as-
pect of a complex production method—you may need multiple
test methods to exercise the one production method fully.

Ideally, you’d like to be able to have a traceable correspon-
dence between potential bugs and test code. In other words,
when a test fails, it should be obvious where in the code the
underlying bug exists.

Independent also means that no test relies on any other test;
you should be able to run any individual test at any time, and
in any order. You don’t want to have to rely on any other test
having run first.

We've shown mechanisms to help you do this: the per-test
setup and teardown methods and the per-class setup and
teardown methods. Use these methods to ensure that every
test gets a fresh start—and doesn’t impact any test that might
run next.

Remember, you aren’t guaranteed that NUnit tests will run in
any particular order, and as you start combining tests and
suites in ever-increasing numbers, you really can’t afford to
carry ordering dependencies along with you.

John Donne may have been right about people, but not about
unit tests: every test should be an island.

7.5 Professional

The code you write for a unit test is real; some may argue a1rip]
it’s even more real than the code you ship to customers. This

means that it must be written and maintained to the same
professional standards as your production code. All the usual

rules of good design—maintaining encapsulation, honoring

the DRY principle, lowering coupling, etc.—must be followed

in test code just as in production code.

It's easy to fall into the trap of writing very linear test code;
that is, code that just plods along doing the same thing over
and over again, using the same lines of code over and over
again, with nary a function or object in sight. That’s a bad
thing. Test code must be written in the same manner as real
code. That means you need to pull out common, repeated bits

Prepared exclusively for Donald Viahovic

PROFESSIONAL <« 98

of code and put that functionality in a method instead, so it
can be called from several different places.

You may find you accumulate several related test methods
that should be encapsulated in a class. Don’t fight it! Go
ahead and create a new class, even if it’s only ever used for
testing. That’s not only okay, it’s encouraged: test code is real
code. In some cases, you may even need to create a larger
framework, or create a data-driven testing facility (remember
the simple file reader for TestLargest on page 467).

Don’t waste time testing aspects that won’t help you. Remem-
ber, you don’t want to create tests just for the sake of creating
tests. Test code must be thorough in that it must test ev-
erything interesting about a method that is likely to contain
a bug. If it’s not likely to contain a bug, don’t bother testing
it. That means that usually you shouldn’t waste time testing
things like simple property accessors:

public Money Balance {
get { return balance; }

}

Frankly, there’s just not much here to go wrong that the com-
piler can’t catch. Testing methods such as these is just a
waste of time. However, if the accessor is doing some work
along the way, then suddenly it becomes interesting—and we
will want to test it:

public Money Balance {

get {
return posted.GetBalance() -
unposted.GetDebits() +
unposted.GetCredits();

}
}

That’s probably worth testing.

Finally, expect that there will be at least as much test code
written as there will be production code. Yup, you read that
right. If you've got 20,000 lines of code in your product, then
it would be reasonable to expect that there would be 20,000
lines or more of unit test code to exercise it. That’s a lot of
test code, which is partly why it needs to be kept neat and
tidy, well designed and well-factored, just as professional as
the production code.

Prepared exclusively for Donald Viahovic

TESTING THE TEsTS < 99

7.6 Testing the Tests

There is one major conceptual weakness in our plans so far.
Testing code to make sure it works is a great idea, but you
have to write code to perform the tests. What happens when
there are bugs in our test code? Does that mean you have to
write test code to test the tests that test the code??? Where
will it all end?

Fortunately, you don’t need to go to that extreme. There are
two things you can do to help ensure that the test code is
correct:

e Improve tests when fixing bugs

e Prove tests by introducing bugs

How to Fix a Bug

The steps you take when fixing a bug are very important to
unit testing. Many times, an existing test will expose a bug in
the code, and you can then simply fix the code and watch the
vigilant test pass.

When a bug is found “in the wild” and reported back, that
means there’s a hole in the net—a missing test. This is your
opportunity to close the hole, and make sure that this bug
never escapes again. All it takes is four simple steps:

1. Identify the bug.
. Write a test that fails, to prove the bug exists.

Fix the code such that the test now passes.

pow o

Verify that all tests still pass (i.e., you didn’t break any-
thing else as a result of the fix).

This simple mechanism of applying real-world feedback to
help improve the tests is very effective. Over time, you can
expect that your test coverage will steadily increase, and the
number of bugs that escape into the wild from existing code
will decrease.

Of course, as you write new code, you'll undoubtedly intro-
duce new bugs, and new classes of bugs, that aren’t being

Prepared exclusively for Donald Viahovic

TESTING THE TESTS < 100

[Test]
public void Add() {
// Create a new account object
Account acct = new Account();
// Populate with our test person
acct.SetPerson(TEST_PERSON_1);
// Add it to the database
DatabaseHandler.Add(acct);
// Should find it
Assert.IsTrue(DatabaseHandler.Search(TEST_PERSON_1);

Figure 7.1: Test Adding a Person to a Database

caught by the tests. But when fixing any bug, ask yourself
the key question:

Could this same kind of problem happen any-

where else?
Then it doesn’t matter whether you're fixing a bug in an older
feature or a new feature; either way, apply what you've just
learned to the whole project. Encode your new-found knowl-
edge in all the unit tests that are appropriate, and you've done
more than just fix one bug. You've caught a whole class of
bugs.

Spring the Trap

If you're not sure that a test is written correctly, the easiest
thing to do is to “spring the trap”: cause the production code
to exhibit the very bug you're trying to detect, and verify that
the test fails as expected.

For instance, suppose you've got a test method that adds a
customer account to the database and then tries to find it,
something like the code in Figure 7.1. Perhaps you're not cer-
tain that the “finding” part is really working or not—it might
be reporting success even if the record wasn’t added correctly.

So maybe you'll go into the Add() method for Database-
Handler and short-circuit it: just return instead of actually
adding the record to the database. Now you should see the
assertion fail, because the record has not been added.

Prepared exclusively for Donald Viahovic

TESTING THE TEsTs <« 101

But wait, you may cry, what about a leftover record from a
previous test run? Won't that be in the database? No, it won't,
for several reasons:

¢ You may not really be testing against a live database.
The code exercised by the above test case lies between
the add method shown and the actual low-level database
calls. Those database calls may well be handled by a
mock object, whose data is not held persistently in be-
tween runs.

e Tests are independent. All tests can be run in any or-
der, and do not depend on each other, so even if a real
database is part of this test, the setup and tear-down
must ensure that you get a “clean sandbox” to play in.
The attempt above to spring the trap can help prove that
this is true.

Now the Extreme Programming folks claim that their disci-
plined practice of test-first development avoids the problem
of poor tests that don’t fail when they should. In test-first
development, you only ever write code to fix a failing test. As
soon as the test passes, then you know that the code you just
added fixed it. This puts you in the position where you always
know with absolute certainty that the code you introduced
fixes the failing test that caused you to write the code in the
first place.

But there’s many a slip 'twixt the cup and the lip, and while
test-first development does improve the situation dramatical-
ly, there will still be opportunities to be mislead by coinci-
dences. For those occasions, you can satisfy any lingering
doubts by deliberately “springing the trap” to make sure that
all is as you expect.

Finally, remember to write tests that are A-TRIP (Automatic,
Thorough, Repeatable, Independent, Professional); keep add-
ing to your unit tests as new bugs and types of bugs are dis-
covered; and check to make sure your tests really do find the
bugs they target.

Then sit back and watch problems on your project disappear
like magic.

Prepared exclusively for Donald Viahovic

Chapter §

Up to now we've talked about testing as an individual, solitary
exercise. But of course, in the real world you'll likely have
teammates to work with. You’ll all be unit testing together,
and that brings up a couple of issues.

8.1 Where to Put Test Code

On a small, one-person project, the location of test code and
encapsulation of the production code may not be very impor-
tant, but on larger projects it can become a critical issue.
There are several different ways of structuring your produc-
tion and test code that we’ll look at here.

In general, you don’t want to break any encapsulation for the
sake of testing (or as Mom used to say, “don’t expose your pri-
vates!”). Most of the time, you should be able to test a class
by exercising its public methods. If there is significant func-
tionality that is hidden behind private or protected access,
that might be a warning sign that there’s another class in
there struggling to get out. When push comes to shove, how-
ever, it’s probably better to break encapsulation with working,
tested code than it is to have good encapsulation of untested,
non-working code.

WHERE TO PuT TEST CODE <« 103

Same directory

Suppose you are writing a class named:

com.pragprog.wibble.Account

with a corresponding test in:

com.pragprog.wibble.TestAccount

The first and easiest method of structuring test code is to sim-
ply include it right in the same project and assembly alongside
the production code.

This has the advantage that TestAccount can access inter-
nal and protected internal member variables and meth-
ods of Account. But the disadvantage is that the test code
is lying around, cluttering up the production code directory.
This may or may not be a problem depending on your method
of creating a release to ship to customers.

Most of the time, it’s enough of a problem that we prefer one
of the other solutions. But for small projects, this might be
sufficient.

Separate Assemblies

The next option is to create your tests in a separate assembly
from the production code.

This has the advantage of keeping a clean separation between
code that you ship and code for testing.

The disadvantage is that now the test code is in a different
assembly; You won’t be able to access internal or protected
internal members unless your test code uses a subclass of
the production code that exposes the necessary members. For
instance, suppose the class you want to test looks like this:

namespace FacilitiesManagment {

public class Pool {
protected Date lastCleaned;

public void »xx.c nx {
WEX A3 XA

b

Prepared exclusively for Donald Viahovic

WHERE TO PuT TEST CODE <« 104

com.acme.Pool

protected
method in

roduction
P \ #LastCleaned()

code

ProDUCTION CODE
TEST CODE

com.acme.test.PoolForTesting

public in test

code
\ +LastCleaned()

Figure 8.1: Subclasses Expose Methods for Testing

You need to get at that non-public bit of data that tells you
when the pool was last cleaned for testing, but there’s no ac-
cessor for it. (If there were, the pool association would prob-
ably sue us; they don’t like to make that information public.)
So you make a subclass that exposes it just for testing.

using FacilitiesManagment;

namespace FacilitiesManagmentTesting {
public class PoolForTesting : Pool {
public Date LastCleaned {
get { return lastCleaned; }

}
}
}

You then use PoolForTesting in the test code instead of us-
ing Pool directly (see Figure 8.1). In fact, you could make
this class private to the test code (to ensure that we don’t get
sued).

Whatever convention the team decides to adopt, make sure it
does so consistently. You cannot have some of the tests in
the system set up one way, and other tests elsewhere set up
a different way. Pick a style that looks like it will work in your
environment and stick with it for all of the system’s unit tests.

Prepared exclusively for Donald Viahovic

TEST COURTESY < 105

8.2 Test Courtesy

The biggest difference between testing by yourself and testing
with others lies in synchronizing working tests and code.

When working with other members of a team, you will be
using some sort of version control system, such as Visual
SourceSafe or CVS. (If you aren’t familiar with version con-
trol, or would like some assistance in getting it set up and
working correctly, please see [THO3].)

In a team environment (and even in a personal environment)
you should make sure that when you check in code (or other-
wise make it available to everyone) that it has complete unit
tests, and that is passes all of them. In fact, every test in the
whole system should continue to pass with your new code.

The rule is very simple: As soon as anyone else can access
your code, all tests everywhere need to pass. Since you should
normally work in fairly close synchronization with the rest of
the team and the version control system, this boils down to
“all tests pass all the time.”

Many teams institute policies to help “remind” developers of
the consequences of breaking the build, or breaking the tests.
These policies might begin by listing potential infractions in-
volving code that you have checked in (or otherwise made
available to other developers):

e Incomplete code (e.g., checking in only one class file but
forgetting to check in other files it may depend upon).

e Code that doesn’t compile.

e Code that compiles, but breaks existing code such that
existing code no longer compiles.

e Code without corresponding unit tests.
e Code with failing unit tests.

e Code that passes its own tests, but causes other tests
elsewhere in the system to fail.

If found guilty of any of these heinous crimes, you may be sen-
tenced to providing donuts for the entire team the next morn-
ing, or beer or soda, or frozen margaritas, or maybe you’ll have

Prepared exclusively for Donald Viahovic

TEST FREQUENCY <« 106

to nursemaid the build machine, or some other token, menial
task.

A little lighthearted law enforcement usually provides enough
motivation against careless accidents. But what happens if
you have to make an incompatible change to the code, or if
you make a change that does cause other tests to fail else-
where in the system?

The precise answer depends on the methodology and process
you're using on the project, but somehow you need to coordi-
nate your changes with the folks who are responsible for the
other pieces of code—which may well be you! The idea is to
make all of the necessary changes at once, so the rest of the
team sees a coherent picture (that actually works) instead of
a fragmented, non-functional “work in progress.” (For more
information on how to use version control to set up experi-
mental developer branches, see [THO3].)

Sometimes the real world is not so willing, and it might take a
few hours or even a few days to work out all of the incompati-
ble bits and pieces, during which time the build is broken. If it
can’t be helped, then make sure that it is well-communicated.
Make sure everyone knows that the build will be broken for
the requisite amount of time so that everyone can plan around
it as needed. If you're not involved, maybe it would be a good
time to take your car in for an oil change or slip off to the
beach for a day or two. If you are involved, get it done quickly
so everyone else can come back from the beach and get to
work!

8.3 Test Frequency

How often should you run unit tests? It depends on what
you're doing, and your personal habits, but here are some
general guidelines that we find helpful. You want to perform
enough testing to make sure you're catching everything you
need to catch, but not so much testing that it interferes with
producing production code.

Write a new method
Compile and run local unit tests.

Prepared exclusively for Donald Viahovic

TESTS AND LEGACY CODE <« 107

Fix a bug
Run tests to demonstrate bug; fix and re-run unit tests.

Any successful compile
Run local unit tests.

Each check-in to version control
Run all module or system unit tests.

Continuously
A dedicated machine should be running a full build and
test, from scratch, automatically throughout the day (ei-
ther periodically or on check-in to version control).

Note that for larger projects, you might not be able to compile
and test the whole system in under a few hours. You may only
be able to run a full build and test overnight. For even larger
projects, it may have to be every couple of days—and that’s a
shame, because the longer the time between automatic builds
the longer the “feedback gap” between creation of a problem
and it’s identification.

The reason to have a more-or-less continuous build is so that
it can identify any problems quickly. You don’t want to have to
wait for another developer to stumble upon a build problem if
you can help it. Having a build machine act as a constant de-
veloper increases the odds that it will find a problem, instead
of a real developer.

When the build machine does find a problem, then the whole
team can be alerted to the fact that it’s not safe to get any new
code just yet, and can continue working with what they have.
That’s better than getting stuck in a situation where you've
gotten fresh code that doesn’t work.

For more information on setting up automatic build and test-
ing systems, nightly and continuous builds, and automation
in general please see [Cla04].

8.4 Tests and Legacy Code

So far, we've talked about performing unit tests in the context
of new code. But we haven’t said what to do if your project
has a lot of code already—code that doesn’t have unit tests.

Prepared exclusively for Donald Viahovic

TESTS AND LEGACY CODE <« 108

It all depends on what kind of state that code is in. If it’s rea-
sonably well-factored and modular, such that you can get at
all of the individual pieces you need to, then you can add unit
tests fairly easily. If, on the other hand, it’s just a “big ball of
mud” all tangled together, then it might be close to impossi-
ble to test without substantial rewriting. Most older projects
aren’t perfectly factored, but are usually modular enough that
you can add unit tests.

For new code that you write, you'll obviously write unit tests
as well. This may mean that you’ll have to expose or break out
parts of the existing system, or create mock objects in order
to test your new functionality.

For existing code, you might choose to methodically add unit
tests for everything that is testable. But that’s not very prag-
matic. It’s better to add tests for the most broken stuff first,
to realize a better return on investment of effort.

The most important aspect of unit tests in this environment
is to prevent back-sliding: to avoid the death-spiral where
maintenance fixes and enhancements cause bugs in existing
features. We use NUnit unit tests as regression tests during
normal new code development (to make sure new code doesn’t
break anything that had been working), but regression testing
is even more important when dealing with legacy code.

And it doesn’t have to cover the entire legacy code base, just
the painful parts. Consider the following true story from a
pragmatic developer (the team in question happened to be us-
ing Java and JUnit for this particular project, but they could
just as easily have been using C#, Cobol, C++, Ruby, or any
other programming language):

Regression Tests Save the Day

“Tibbert Enterprises! ships multiple applications,

all of which are based on a common Lower Level

Library that is used to access the object database.
One day I overheard some application develop-

ers talking about a persistent problem they were

INot their real name.

Prepared exclusively for Donald Viahovic

TESTS AND LEGACY CODE <« 109

having. In the product’s Lower Level interface, you
can look up objects using the object name, which
includes a path to the object. Since the application
has several layers between it and the Lower Level
code, and the Lower Level code has several more
layers to reach the object database, it takes a while
to isolate a problem when the application breaks.

And the application broke. After half the ap-
plication team spent an entire day tracking down
the bug, they discovered the bug was in the Lower
Level code that accessed the database. If you had
a space in the name, the application died a violent,
messy death. After isolating the Lower Level code
related to the database access, they presented the
bug to the owner of the code, along with a fix. He
thanked them, incorporated their fix, and commit-
ted the fixed code into the repository.

But the next day, the application died. Once
again, a team of application developers tracked it
down. It took only a half-a-day this time (as they
recognized the code paths by now), and the bug
was in the same place. This time, it was a space
in the path to the object that was failing, instead of
a space in the name itself. Apparently, while inte-
grating the fix, the developer had introduced a new
bug. Once again, they tracked it down and pre-
sented him with a fix. It's Day Three, and the ap-
plication is failing again! Apparently the developer
in question re-introduced the original bug.

The application manager and I sat down and
figured out that the equivalent of nearly two man-
months of effort had been spent on this one issue
over the course of one week by his team alone (and
this likely affected other teams throughout the com-
pany). We then developed JUnit tests that tested
the Lower Level API calls that the application prod-
uct was using, and added tests for database access
using spaces in both the object name and in the
path. We put the product under the control of our
continuous-build-and-test program (using Cruise-
Control) so that the unit tests were run automat-

Prepared exclusively for Donald Viahovic

TESTS AND REVIEWS <« 110

ically every time code got committed back to the
repository.

Sure enough, the following week, the test failed
on two successive days, at the hands of the original
developer. He actually came to my office, shook my
hand, and thanked me when he got the automatic
notification that the tests had failed.

You see, without the JUnit test, the bad code
made it out to the entire company during the night-
ly builds. But with our continuous build and test,
he (and his manager and tester) saw the failure at
once, and he was able to fix it immediately before
anyone else in the company used the code. In fact,
this test has failed half a dozen times since then.
But it gets caught, so its not a big deal anymore.
The product is now stable because of these tests.

We now have a rule that any issue that pops
up twice must have a JUnit test by the end of the
week.”

In this story, Tibbert Enterprises aren’t using unit testing to
prove things work so much as they are using it to inoculate
against known issues. As they slowly catch up, they’ll even-
tually expand to cover the entire product with unit tests, not
just the most broken parts.

When you come into a shop with no automated tests of any
kind, this seems to be a very effective approach. Remember,
the only way to eat an elephant is one bite at a time.

8.5 Tests and Reviews

Teams that enjoy success often hold code reviews. This can
be an informal affair where a senior person just gives a quick
look at the code. Or perhaps two people are working on the
code together, using Extreme Programming’s “Pair Program-
ming” practice. Or maybe it’s a very formal affair with check-
lists and a small committee.

However you perform code reviews (and we suggest that you
do), make the test code an integral part of the review process.

Prepared exclusively for Donald Viahovic

TESTS AND REVIEWS <« 111

Since test code is held up to the same high standards as pro-
duction code, it should be reviewed as well.

In fact, it can sometimes be helpful to expand on the idea of
“test-first design” to include both writing and reviewing test
code before writing production code. That is, code and review
in this order:

1. Write test cases and/or test code.
. Review test cases and/or test code.
. Revise test cases and/or test code per review.

. Write production code that passes the tests.

o s~ W N

. Review production and test code.
6. Revise test and production code per review.

Reviews of the test code are incredibly useful. Not only are
reviews more effective than testing at finding bugs in the first
place, but by having everyone involved in reviews you can
improve team communication. People on the team get to see
how others do testing, see what the team’s conventions are,
and help keep everyone honest.

You can use the checklists on page 139 of this book to help
identify possible test cases in reviews. But don’t go overboard
testing things that aren’t likely to break, or repeat essentially
similar tests over and over just for the sake of testing.

Finally, you may want to keep track of common problems
that come up again and again. These might be areas where
more training might be needed, or perhaps something else
that should be added to your standard review checklist.

For example, at a client’s site several years ago, we discovered
that many of the developers misunderstood exception han-
dling. The code base was full of fragments similar to the fol-
lowing:
try {
DatabaseConnection dbc = new DatabaseConnection();
InsertNewRecord(dbc, record);

dbc.Close();
} catch (Exception) {}

Prepared exclusively for Donald Viahovic

TESTS AND REVIEWS <« 112

That is to say, they simply ignored any exceptions that might
have occurred. Not only did this result in random miss-
ing records, but the system leaked database connections as
well—any error that came up would cause the Close to be
skipped.

We added this to the list of known, typical problems to be
checked during reviews. As code was reviewed, any of these
infamous catch statements that were discovered were first
identified, then proper unit tests were put in place to force
various error conditions (the “E” in RIGHT-BICEP), and the
code was fixed to either propagate or handle the exception.
System stability increased tremendously as a result of this
simple process.

Prepared exclusively for Donald Viahovic

Chapter 9

So far we have discussed unit testing as it helps you to un-
derstand and verify the functional, operational characteristics
of your code. But unit testing offers several opportunities to
improve the design and architecture of your code as well.

In this chapter, we’ll take a look at the following design-level
issues:

e Better separation of concerns by designing for testability
¢ Clarifying design by defining class invariants
e Improving interfaces with test-driven design

¢ Establishing and localizing validation responsibilities

9.1 Designing for Testability

“Separation of Concerns” is probably the single most impor-
tant concept in software design and implementation. It's the
catch-all phrase that encompasses encapsulation, orthogo-
nality, coupling, and all those other computer science terms
that boil down to “write shy code” |].

You can keep your code well-factored (i.e., “shy”) and easier to
maintain by explicitly designing code to be testable. For ex-
ample, suppose you are writing a method that will sleep until
the top of the next hour. You've got a bunch of calculations
and then a Sleep():

DESIGNING FOR TESTABILITY <« 114

public void SleepUntilNextHour() {
int howlong;

XX WRFX U NXKL WX L XXX
// Calculate how long to wait...
X L n¥ K XKL 3 X W

XX WRFX VU NXKL LX L XXX

Thread.Sleep(Chowlong);
return;

}

How will you test that? Wait around for an hour? Set a timer,
call the method, wait for the method to return, check the
timer, handle the cases when the method doesn’t get called
when it should—this is starting to get pretty messy. We saw
something similar back in Chapter 6, but this issue is impor-
tant enough to revisit. Once again, we’ll refactor the method
in order to make testing easier.

Instead of combining the calculation of how many millisec-
onds to sleep with the Sleep() method itself, split them up:
public void SleepUntilNextHour() {
int howlong = MilliSecondsToNextHour(DateTime.Now);

Thread.Sleep(Chowlong);
return;

}

What's likely to break? The system’s Sleep call? Or our code
that calculates the amount of time to wait? It's probably a
fair bet to say that C#'s Thread.Sleep() works as adver-
tised (even if it doesn’t, our rule is to always suspect our own
code first). So for now, you only need to test that the number
of milliseconds is calculated correctly, and what might have
been a hairy test with timers and all sorts of logic (not to men-
tion an hour’s wait) can be expressed very simply as:

Assert.AreEqual (10000, MilliSecondsToNextHour (DATE_1));

If we're confident that MilliSecondsToNextHour () works to
our satisfaction, then the odds are that SleepUntilNext-
Hour () will be reliable as well—if it is not, then at least we
know that the problem must be related to the sleep itself,
and not to the numerical calculation. You might even be able
to reuse the MilliSecondsToNextHour () method in some
other context.

This is what we mean when we claim that you can improve
the design of code by making it easier to test. By changing
code so that you can get in there and test it, you'll end up

Prepared exclusively for Donald Viahovic

REFACTORING FOR TESTING <« 115

~Recipes ~Ingredients

ICheeseburger Search | 1/4 b ground zirlain

3 slices VYermont cheddar cheese
2 slices maple-cured bacon

Adl

EE e

SENVE Exit |

Acheeseburger bt i

Figure 9.1: Recipes GUI Screen

with a cleaner design that’s easier to extend and maintain as
well as test.

But instead of boring you with examples and techniques, all
you really need to do is remember this one fundamental ques-
tion when writing code:

How am I going to test this?

If the answer is not obvious, or if it looks like the test would be
ugly or hard to write, then take that as a warning signal. Your
design probably needs to be modified; change things around
until the code is easy to test, and your design will end up
being far better for the effort.

9.2 Refactoring for Testing

Let’s look at a real-life example. Here are excerpts from a
novice’s first attempt at a recipe management system. The
GUI, shown in Figure 9.1, is pretty straightforward. There’s
only one class, with GUI behavior and file I/O intermixed.

Prepared exclusively for Donald Viahovic

REFACTORING FOR TESTING <« 116

Recipes

name
ingredients

Load()
Save()
ShowGUI ()

Figure 9.2: Original Recipes Static Class Diagram

It reads and writes individual recipes to files, using a line-
oriented format, somewhat like an INI or properties file:

NAME=Cheeseburger

INGREDIENTS=3

1/4 1b ground sirloin

3 slices Vermont cheddar cheese
2 slices maple-cured bacon

cheeseburger.txt

And here’s the code, in it’s entirety. As is, this is pretty hard to
test. You've got to run the whole program and operate the GUI
to get at any part of it. All of the file I/O and search routines
access the widgets directly, and so are tightly coupled to the
GUI code (see, for instance, lines 138, 150, 157, and 166). In
fact, the UML diagram for this class, shown in Figure 9.2, is
kind of embarrassing—it’s just one big class!

Line 1 using System;
- using System.Drawing;
- using System.Collections;
- using System.ComponentModel;
5 using System.Windows.Forms;
- using System.Data;
- using System.IO;

- public class Recipes : Form {
10 private Button exitButton = new Button();
- private StatusBar statusBar = new StatusBar();
- private GroupBox groupBoxl = new GroupBox();
- private TextBox titleText = new TextBox();
- private Button searchButton = new Button();
15 private ListBox searchlist = new ListBox();
- private GroupBox groupBox2 = new GroupBox();
- private ListBox ingredientsList = new ListBox();
- private Button removeButton = new Button();
- private TextBox ingredientsText = new TextBox();
20 private Button saveButton = new Button();
- private Button addButton = new Button();

Prepared exclusively for Donald Viahovic

REFACTORING FOR TESTING

- public Recipes() {
- InitializeComponent();
25 }

- private void InitializeComponent() {
- exitButton.Location =
- new System.Drawing.Point(120, 232);
30 exitButton.Size = new System.Drawing.Size(48, 24);
- exitButton.Text = "Exit";
- exitButton.Click +=
- new System.EventHandler(exitButton_Click);

35 statusBar.Location = new System.Drawing.Point(0, 261);
- statusBar.Size = new System.Drawing.Size(400, 16);

- groupBox1l.Controls.Add(searchlList);
- groupBox1.Controls.Add(searchButton);

40 groupBox1l.Controls.Add(titleText);
- groupBoxl.Location = new System.Drawing.Point(8, 8);
- groupBoxl.Size = new System.Drawing.Size(176, 216);
- groupBox1l.TabStop = false;
- groupBoxl.Text = "Recipes";

- searchlist.Location = new System.Drawing.Point(16, 56);
- searchlist.Size = new System.Drawing.Size(144, 147);

- searchlist.SelectedIndexChanged +=

- new System.EventHandler(

50 searchlist_SelectedIndexChanged);

- searchButton.Location = new System.Drawing.Point(112, 24);
- searchButton.Size = new System.Drawing.Size(48, 24);
- searchButton.Text = "Search";
55 searchButton.Click +=
- new System.EventHandler(searchButton_Click);

- titleText.Location = new System.Drawing.Point(16, 24);
- titleText.Size = new System.Drawing.Size(88, 20);

- groupBox2.Controls.Add(addButton);
- groupBox2.Controls.Add(ingredientsText);
- groupBox2.Controls.Add(removeButton) ;
- groupBox2.Controls.Add(ingredientsList);
65 groupBox2.Location = new System.Drawing.Point(200, 8);
- groupBox2.Size = new System.Drawing.Size(192, 248);
- groupBox?2.TabStop = false;

- groupBox2.Text = "Ingredients";

70 addButton.Location = new System.Drawing.Point(136, 176);
- addButton.Size = new System.Drawing.Size(48, 23);
- addButton.Text = "Add";

- addButton.Click +=
- new System.EventHandler(addButton_Click);

75

- ingredientsText.Location = new System.Drawing.Point(16, 176);
- ingredientsText.Size = new System.Drawing.Size(112, 20);

- removeButton.Enabled = false;

80 removeButton.Location = new System.Drawing.Point(16, 208);

- removeButton.Size = new System.Drawing.Size(168, 32);

- removeButton.Text = "Remove";

- removeButton.Click +=

- new System.EventHandler(removeButton_Click);

85

Prepared exclusively for Donald Viahovic

REFACTORING FOR TESTING

- ingredientsList.Location = new System.Drawing.Point(16, 24);
- ingredientslList.Size = new System.Drawing.Size(160, 134);

- ingredientsList.SelectedIndexChanged +=

- new System.EventHandler(

90 ingredientsList_SelectedIndexChanged) ;

- saveButton.Enabled = false;
- saveButton.Location = new System.Drawing.Point (40, 232);
- saveButton.Size = new System.Drawing.Size(48, 24);
95 saveButton.Text = "Save";
- saveButton.Click +=
- new System.EventHandler(saveButton_Click);

- AutoScaleBaseSize = new System.Drawing.Size(5, 13);
100 ClientSize = new System.Drawing.Size(400, 277);

- Controls.Add(saveButton);

- Controls.Add(groupBox2);

- Controls.Add(groupBox1);

- Controls.Add(statusBar);
105 Controls.Add(exitButton);

- groupBox1.ResumeLayout(false);

- groupBox?2.ResumelLayout(false);

- Resumelayout(false);

- }
- [STAThread]
- static void Main() {
- Directory.SetCurrentDirectory(@"..\..\recipes\");
- Application.Run(new Recipes());
115 }
- private void exitButton_Click(object sender,
- System.EventArgs e) {

- Application.Exit();
120 }

- private void searchButton_Click(object sender,
- System.EventArgs e) {

- String toMatch = "#*" + titleText.Text + "*";
125
- try {
- string [] matchingFiles = Directory.GetFiles(@".", toMatch);
- searchlList.DataSource = matchingFiles;
- }
130 catch (Exception error) {

- statusBar.Text = error.Message;
- }
- }
135 private void
- searchlList_SelectedIndexChanged(object sender,
- System.EventArgs e) {

- string file = (string)searchlList.SelectedItem;
- string line;
140 char [] delim = new char[] { ’=’ };

- statusBar.Text = file;

- using (StreamReader reader =
145 new StreamReader(file)) {

Prepared exclusively for Donald Viahovic

REFACTORING FOR TESTING <119

- while ((line = reader.ReadLine()) != null) {

- string [] parts = line.Split(delim, 2);

- switch (parts[0]) {

- case "NAME":
150 titleText.Text = parts[1l];

- break;

- case "INGREDIENTS":

- try {

- int count = Int32.Parse(parts[1l]);
165 ingredientslist.Items.Clear();

- for (dnt i = 0; i < count; i++)

- ingredientsList.Items.Add(reader.ReadLine());

- }

- catch (Exception error) {

160 statusBar.Text = "Bad ingredient count: " +
- error.Message;
- return;
- }
- break;
165 default:
- statusBar.Text = "Invalid recipe line: " + line;
- return;
- }

- }
170 }
- saveButton.Enabled = false;
- }
- private void removeButton_Click(object sender,
175 System.EventArgs e) {
- int index = ingredientsList.SelectedIndex;
- if (index >= 0) {

- statusBar.Text = "Removed " +
- ingredientsList.SelectedItem;

180 ingredientsList.Items.RemoveAt(index) ;
- saveButton.Enabled = true;

185 private void addButton_Click(object sender,

- System.EventArgs e) {
- string newIngredient = ingredientsText.Text;

- if (newIngredient.Length > 0) {

- ingredientslList.Items.Add(newIngredient);

190 saveButton.Enabled = true;
- }
: }
- private void
195 ingredientslist_SelectedIndexChanged(object sender,

- System.EventArgs e) {
- int index = ingredientslList.SelectedIndex;
- if (index < 0)
- removeButton.Enabled = false;
200 else {

- removeButton.Text = "Remove " +
- ingredientsList.SelectedItem;
- removeButton.Enabled = true;

Prepared exclusively for Donald Viahovic

REFACTORING FOR TESTING <« 120

205 }

- private void saveButton_Click(object sender,
- System.EventArgs e) {
- string fileName = titleText.Text + ".txt";
210 ICollection items = ingredientslist.Items;
- using (StreamWriter file =
- new StreamWriter(fileName, false)) {
- file.WriteLine("NAME={0}", titleText.Text);
- file.WriteLine("INGREDIENTS={0}", items.Count);

215 foreach (string line in items) {
- file.WriteLine(line);
- }
, } «
- statusBar.Text = "Saved " + fileName; %
220 } a
[}
R } &
We clearly need to improve this code. Let’s begin by making a
separate object to hold a recipe, so that we can construct test
recipe data easily and toss it back and forth to the screen,
disk, network, or wherever. This is just a simple data holder,
with accessors for the data members.
Line 1 using System;
- using System.Collections;
- public class Recipe : IEnumerable {
5 protected String name;
- protected Arraylist ingredients;
- public Recipe() {
- name = "";
10 ingredients = new ArrayList();
: }
- public Recipe(Recipe another) {
- name = another.name;
15 ingredients = new Arraylist(another.ingredients);
: }
- public String Name {
- get { return name; }
20 set { name = value; }
: }
- public void AddIngredient(String aThing) {
- ingredients.Add(aThing);
25 }
- public IEnumerator GetEnumerator() {
- return ingredients.GetEnumerator();
- }
30 public int NumIngredients {
- get { return ingredients.Count; } 8
B g
[0}
R 1 2

Prepared exclusively for Donald Viahovic

REFACTORING FOR TESTING < 121

Next, we need to pull the code out from the original Recipes
class to save and load a file to disk.

To help separate file I/O from any other kind of I/O, we’ll per-
form the file I/O in a helper class that uses Recipe. We want
to take out all of the GUI widget references from the original
source code, and use instance member variables instead.

lnel public class RecipeFile {

- public Recipe Load(String fileName) {
- Recipe result = new Recipe();

5 string line;

- char [] delim = new char[] { ’=’ };

- using (StreamReader reader = new StreamReader(fileName)) {
- while ((line = reader.ReadLine()) != null) {

10 string [] parts = line.Split(delim, 2);

- switch (parts[0]) {

- case "TITLE":

- result.Name = parts[1l];

- break;
15 case "INGREDIENTS":

- try {

- int count = Int32.Parse(parts[1l]);

- for (dnt i = 0; i < count; i++)

- result.AddIngredient(reader.ReadlLine());
20 } catch (Exception error) {

- throw new RecipeFormatException(

- "Bad ingredient count: " + error.Message);

- }

- break;
25 }

- }

- }

- return result;

- }

- public void Save(String fileName, Recipe recipe) {
- using (StreamWriter file =
- new StreamWriter(fileName, false)) {
- file.WriteLine("NAME={0}", recipe.Name);
35 file.WriteLine("INGREDIENTS={0}",
- recipe.NumIngredients);
- foreach (String line in recipe) {
- file.WriteLine(line);
- }
40 }
- }
-}
Now we're in a position where we can write a genuine test case

that will test reading and writing to disk, without using any
GUI code.

RecipefFile.cs

Prepared exclusively for Donald Viahovic

REFACTORING FOR TESTING - 122

Line 1 using System;
- using System.Collections;
- using System.IO;
- using NUnit.Framework;

- [TestFixture]
- public class TestRecipe {

- [Test]
10 public void SaveandRestore() {

- const String test_name =

- "Cheeseburger";

- const String test_ingl
15 "1/4 1b ground sirloin";

- const String test_ing2 =

- "3 slices Vermont cheddar cheese";

- const String test_ing3 =

- "2 slices maple-cured bacon";

- // Save one out

- Recipe rec = new Recipe();

- rec.Name = test_name;

- rec.AddIngredient(test_ingl);
25 rec.AddIngredient(test_ing2);

- rec.AddIngredient(test_ing3);

- RecipeFile filer = new RecipeFile();
- filer.Save("test.recipe"”", rec);

- try {

- // Now get it back

- Recipe rec2 = new Recipe();

- filer = new RecipeFile();

35 rec2 = filer.Load("test.recipe");

- Assert.AreEqual (test_name, rec?2.Name);
- IEnumerator itr = rec2.GetEnumerator();

40 Assert.AreEqual(test_ingl, itr.Current);

- itr.MoveNext();

- Assert.AreEqual(test_ing2, itr.Current);

- itr.MoveNext();

- Assert.AreEqual(test_ing3, itr.Current);

45 itr.MoveNext();

- Assert.IsFalse(itr.MoveNext());

- } finally {

- File.Delete("test.recipe');

- }

50)

)
At line 13 we’ll declare some constant strings for testing. Then
we make a new, empty object and populate it with the test
data beginning at line 23. We could just pass literal strings di-
rectly into the object instead, and not bother with const data
members, but since we’ll need to check the results against

these strings, it makes sense to put them in common con-

TestRecipe.cs

Prepared exclusively for Donald Viahovic

REFACTORING FOR TESTING < 123

stants that we can reference from both spots.

With a Recipe data object now fully populated, we’ll call the
Save () method to write the recipe to disk at line 29. Now we
can make a brand-new Recipe object, and ask the helper to
load it from that same file at line 35.

With the restored object in hand, we can now proceed to run
a whole bunch of asserts to make sure that the test data we
set in the rec object has been restored in the rec2 object.

Finally, at line 48 we play the part of a good neighbor and
delete the temporary file we used for the test. Note that we
use a finally clause to ensure that the file gets deleted, even
if one of our assertions fails.

Now we can run the unit test in the usual fashion to make
sure that the code is reading and writing to disk okay.

Try running this example before reading on. . . @

Failures:

1) TestRecipe.SaveandRestore :
String lengths differ. Expected length=12, but was length=0.
Strings differ at index O.

expected:<"Cheeseburger">
but was:<"">

at TestRecipe.SaveandRestore() in testrecipe.cs:line 37

Whoops! Seems that wasn’t working as well as we thought—
we're not getting the name line of the recipe back. When we
save the file out in RecipeFile.cs, the code is using the key
string "NAME" to identify the field, but when we read it back
in (line 12 of Load()), it’s trying to use the string "TITLE".
That’s just not going to work. We can easily change that to
read "NAME", to match the key used for the save, but stop
and ask yourself the critical question:

Could this happen anywhere else in the code?

Using strings as keys is a fine idea, but it does open the door
to introduce errors due to misspellings or inconsistent naming
as we've seen here. So perhaps this failing test is trying to tell
you something more—perhaps you should refactor the code

Prepared exclusively for Donald Viahovic

REFACTORING FOR TESTING <« 124

and pull out those literal strings into constants. The class
then looks like this:

lnel public class RecipeFile {

- const String NAME_TOK = "NAME";
- const String INGREDIENTS_TOK = "INGREDIENTS";
5
public Recipe Load(String fileName) {
- Recipe result = new Recipe();
- string line;
- char [] delim = new char[] { ’=’ };

- using (StreamReader reader = new StreamReader(fileName)) {
- while ((line = reader.ReadLine()) != null) {

- string [] parts = line.Split(delim, 2);

- switch (parts[0]) {

15 case NAME_TOK:

- result.Name = parts[1l];

- break;

- case INGREDIENTS_TOK:

- try {

20 int count = Int32.Parse(parts[1l]);

- for (dnt i = 0; i < count; i++)

- result.AddIngredient(reader.ReadlLine());
- } catch (Exception error) {

- throw new RecipeFormatException(

25 "Bad ingredient count: " + error.Message);
- }

- break;

- }

- }

30 }

- return result;

- }

- public void Save(String fileName, Recipe recipe) {

35 using (StreamWriter file =

- new StreamWriter(fileName, false)) {
- file.WriteLine("{0}={1}",

- NAME_TOK, recipe.Name) ;

- file.WriteLine("{0}={1}",

40 INGREDIENTS_TOK, recipe.NumIngredients);
- foreach (String line in recipe) {

- file.WriteLine(line);

- }

- }

45 }

-}

RecipefFile.cs

Prepared exclusively for Donald Viahovic

REFACTORING FOR TESTING < 125

Recipe RecipeGUI
name
ingredients ShowGUI ()
RecipeFile
Load()
Save()

Figure 9.3: Refactored Recipes Static Class Diagram

We've improved the original program a lot with these simple
changes. In order to test the file I/O, we:

e Made Recipe a first-class object

e Moved file I/O routines out of the GUI and into Recipe-
File

¢ Pulled literals into constants to avoid bugs from typos

Finally, now that we have unit tests that provide the basic ca-
pabilities of a Recipe, we need to re-integrate the new Recipe
class into the GUI itself and tend to the file I/O. We'd like to
end up with something like Figure 9.3.

Now RecipeGUI holds an object of type Recipe, and uses
the helper class RecipeFile to read and write recipes to
disk. When the user presses the save button, the GUI will
set values from the widgets in the Recipe object and call
RecipeFile.Save(). When a new recipe is loaded in, the
GUI will get the proper values from the Recipe object re-
turned from RecipeFile.Load().

Testing GUI’s is hard, and isn’t always worth the extreme ef-
fort. By separating the pure GUI from the guts of the appli-

Prepared exclusively for Donald Viahovic

TESTING THE CLASS INVARIANT < 126

cation, you can easily add and test business features without
involving the GUI.

The main GUI class RecipeGUI (formerly known as Recipes)
should now contain nothing but GUI-oriented code: widgets,
callbacks, and so on. Thus, all of the “business logic” and file
I/0 can be in non-GUI, fully testable classes.

And we've got a clean design as an added bonus.

9.3 Testing the Class Invariant @

Another way to improve the design of a class is by defining
and verifying the “class invariant.”!

A class invariant is an assertion, or some set of assertions,
about objects of a class. For an object to be valid, all of these
assertions must be true. They cannot vary.

For instance, a class that implements a sorted list may have
the invariant that its contents are in sorted order. That means
that no matter what else happens, no matter what methods
are called, the list must always be in sorted order—at least as
viewed from outside the object. Within a method, of course,
the invariant may be momentarily violated as the class per-
forms whatever housekeeping is necessary. But by the time
the method returns, or the object is otherwise available for
use (as in a multi-threaded environment), the invariant must
hold true or else it indicates a bug.

That means it’s something you could check for as part of every
unit test for this class.

The invariant is generally an artifact of implementation: inter-
nal counters, the fact that certain member variables are pop-
ulated, and so on. The invariant is not the place to check for
user input validation or anything of that sort. When writing
tests, you want to test just your one thing, but at the same
time you want to make sure the overall state of the class is
consistent—you want to make sure you have not inflicted any
collateral damage.

IFor more information on pre-conditions, post-conditions and invariants,
see [Mey97].

Prepared exclusively for Donald Viahovic

TESTING THE CLASS INVARIANT < 127

Here are some possible areas where class invariants might
apply.

Structural

The most common invariants are structural in nature. That
is, they refer to structural properties of data. For instance, in
an order-entry system you might have invariants such as:

¢ Every line item must belong to an order
¢ Every order must have one or more line items

When working with arrays of data, you'll typically maintain
a member variable that acts as an index into the array. The
invariants on that index would include:

¢ index must be >=0
¢ index must be < array length

You want to check the invariant if any of these conditions
are likely to break. Suppose you are performing some sort of
calculation on the index into an array; you'd want to check the
invariant throughout your unit tests to make sure the class
is never in an inconsistent state. We showed this in the stack
class example on page 58.

Structural errors will usually cause the program to throw an
exception and/or terminate abruptly. For that matter, so will
failing the invariant check. The difference is that when the
invariant is violated, you know about it right away—right at
the scene of the crime. You'll probably also know exactly what
condition was violated. Without the invariant, the failure may
occur far from the original bug, and backtracking to the cause
might take you anywhere from a few minutes to a few days.

More importantly, checking the invariant makes sure that you
aren’t passing the tests based just on luck. It may be that
there’s a bug that the tests aren’t catching that will blow up
under real conditions. The invariant might help you catch
that early, even if an explicit test does not.

Prepared exclusively for Donald Viahovic

TEST-DRIVEN DESIGN < 128

Mathematical

Other constraints are more mathematical in nature. Instead
of verifying the physical nature of data structures, you may
need to consider the logical model. For example:

e Debits and credits on a bank account match the balance.

e Amounts measured in different units match after con-
version (an especially popular issue with spacecratft).

This starts to sound a lot like the boundary conditions we
discussed earlier, and in a way they are. The difference is
that an invariant must always be true for the entire visible
state of a class. It’s not just a fleeting condition; it’s always
true.

Data Consistency

Often times an object may present the same data in different
ways—a list of items in a shopping cart, the total amount of
the sale, and the total number of items in the cart are closely
related. From a list of items with details, you can derive the
other two figures. It must be an invariant that these figures
are consistent. If not, then there’s a bug.

9.4 Test-Driven Design

Test-driven development is a valuable technique where you
always write the tests themselves before writing the methods
that they test [BecOO]. As a nice side benefit of this style of
working, you can enjoy “test-driven design” and significantly
improve the design of your interfaces.

You'll get better interfaces (or API's) because you are “eating
your own dog food,” as the saying goes—you are able to apply
feedback to improve the design.

That is, by writing the tests first, you have now placed yourself
in the role of a user of your code, instead of the implementor of
your code. From this perspective, you can usually get a much
better sense of how an interface will really be used, and might
see opportunities to improve its design.

Prepared exclusively for Donald Viahovic

TEST-DRIVEN DESIGN

For example, suppose you're writing a routine that does some
special formatting for printed pages. There are a bunch of
dimensions that need to be specified, so you code up the first

version like this:
AddCropMarks(PSStream str,

double
double
double
double

paper_width,
paper_height,
body_width,
body_height);

Then as you start to write the tests (based on real-world data)
you notice that a pattern emerges from the test code:

public Process() {

XX W% K703 X A3 XK 2 XX WX T2 XX XX W2

Xy ¥ L XXy %X W¥X XL XXy XXX
AddCropMarks(str, 8.5, 11.0, 6.0, 8.5);

XX Wh¥ X WX T XK 2 KXT XX WX XM XX WX

X W2 XX XXX 3 XKW XXX XXX WX X XX X;
AddCropMarks(str, 8.5, 11.0, 6.0, 8.5);

XX Wh XX 2 XX WA XKW XXX IXX WAXX o XX 2 X<,

X AW XX TOXNXKL XX XXX XKL XX WA XY XX
AddCropMarks(str, 8.5, 11.0, 6.0, 8.5);

XL WX LTAXNXKL WX X XX AKX e XXUL XXXL WX O AWAEXX,
XX 2 XX XKL WXL WXX MAXK WAEX VILOX LN
AddCropMarks(str, 5.0, 7.0, 4.0, 5.5);

XX WA XU XX O XX WX MK ANWAX X XX XX WX
XL WX KXW R N6 XK AWXX L NXX O WAEX XX 2 Xt
AddCropMarks(str, 5.0, 7.0, 4.0, 5.5);

XX Wih XX MWW XL W XK AWXX hN XWX X WX

X pJ PAGEDID / SEPIOND 0. SRS *X hN XAWh XX,

}

As it turns out, there are only a handful of common paper
sizes in use, but you still need to allow for odd-ball sizes as
necessary. So the first thing to do—just to make the tests
easier, of course—is to factor out the size specification into a

separate object.

PaperSpec standardPaperl = new PaperSpec(8.5, 11.0,
6.0, 8.5);
PaperSpec standardPaper2 = new PaperSpec(5.0, 7.0,
4.0, 5.5);
XL WX KTAXXKL WX X WXX AKX I XXUL XXX WX O AWAEXX,
XX 2 XX XKL WXL WXX MAXK O WAEX O WIOX LN
AddCropMarks(str, standardPaperl);
AddCropMarks(str, standardPaperl);
XX ¥ LS XX XX WX X WX Ta¥ X X XX N A
XX W% LW A3 XK WxX TONXX WAL FX XX 3 XAa
AddCropMarks(str, standardPaper2);

Now the tests are much cleaner and easier to follow, and the

application code that uses this will be cleaner as well.

Since these standard paper sizes don’t vary, we can make
a factory class that will encapsulate the creation of all the

standard paper sizes.

<129

Prepared exclusively for Donald Viahovic

TESTING INVALID PARAMETERS

public class StandardPaperFactory {
public static PaperSpec LetterInstance;
public static PaperSpec A4Instance;

public static PaperSpec LegalInstance;
ANRFEXL AKXy FXADAXEX T XX OARWXX XD
ANRFEXL AKXy FXADAXEX T XX OARWTX XD

}

By making the tests cleaner and easier to write, you will make
the real code cleaner and easier to write as well.

Try it
Exercises

7. Design an interest calculator that calculates the amount of in- Answer
terest based on the number of working days in-between two °" 146
dates. Use test-first design, and take it one step at a time.

9.5 Testing Invalid Parameters

One question that comes up when folks first start testing is:
“Do I have to test whether my class validates it parameters?”
The answer, in best consultant fashion, is “it depends....”

Is your class supposed to validate its parameters? If so, then
yes, you need to test that this functionality is correct. But
there’s a larger question here: Who’s responsible for validat-
ing input data?

In many systems, the answer is mixed, or haphazard at best.
You can't really trust that any other part of the system has
checked the input data, so you have to check it yourself—or at
least, that aspect of the input data that particularly concerns
you. In effect, the data ends up being checked by everyone
and no one. Besides being a grotesque violation of the DRY
principle [HTO0O0], it wastes a lot of time and energy—and we
typically don’t have that much extra to waste.

In a well-designed system, you establish up-front the parts of
the system that need to perform validation, and localize those
to a small and well-known part of the system.

So the first question you should ask about a system is, “who
is supposed to check the validity of input data?”

Prepared exclusively for Donald Viahovic

TESTING INVALID PARAMETERS <« 131

Generally we find the easiest rule to adopt is the “keep the
barbarians out at the gate” approach. Check input at the
boundaries of the system, and you won’t have to duplicate
those tests inside the system. Internal components can trust
that if the data has made it this far into the system, then it
must be okay.

It's sort of like a hospital operating room or industrial “clean
room” approach. You undergo elaborate cleaning rituals be-
fore you—or any tools or materials—can enter the room, but
once there you are assured of a sterile field. If the field be-
comes contaminated, it's a major catastrophe; you have to
re-sterilize the whole environment.

Any part of the software system that is outward-facing (a Ul,
or interface to another system) needs to be robust, and not
allow any incorrect or unvalidated data through. What defines
“correct” or valid data should be part of specification you're
testing against.

What does any of this have to do with unit testing?

It makes a difference with regard to what you need to test
against. As we mentioned earlier, if it isn’t your code’s respon-
sibility to check for input data problems, then don’'t waste
time checking for it. If it is your responsibility, then you need
to be extra vigilant—because now the rest of the system is
potentially relying on you, and you alone.

But that’s okay. You've got unit tests.

Prepared exclusively for Donald Viahovic

Appendix A

_ Cofchas

Here are some popular “gotchas,” that is, issues, problems, or
misconceptions that have popped up over and over again to
trap the unwary.

A.1 As Long As The Code Works

Some folks seem to think that it’s okay to live with broken unit
tests as long as the code itself works. Code without tests—
or code with broken tests—is broken. You just don’t know
where, or when. In this case, you've really got the worst of
both worlds: all that effort writing tests in the first place is
wasted, and you still have no confidence that the code is doing
what it ought.

If the tests are broken, treat it just as if the code were broken.

A.2 “Smoke” Tests

Some developers believe that a “smoke test” is good enough
for unit testing. That is, if a method makes it all the way to
the end without blowing up, then it passed.

You can readily identify this sort of a test: there are no asserts
within the test itself, just one big Assert.IsTrue at the end.
Maybe the slightly more adventurous will have multiple As-
sert.IsTrue’s throughout, but no more than that. All they
are testing is, “did it make it this far?”

“WORKS ON MY MACHINE” <« 133

And that’s just not enough. Without validating any data or
other behavior, all you're doing is lulling yourself into a false
sense of security—you might think the code is tested, but it is
not.

Watch out for this style of testing, and correct it as soon as
possible. Real testing checks results. Anything else is just
wasting everyone’s time.

A.3 “Works On My Machine”

Another pathologic problem that turns up on some projects
is that old excuse, “It’s not broken, it works on my machine.”
This points to a bug that has some correlation with the envi-
ronment. When this happens, ask yourself:

e Is everything under version control?

e Is the development environment consistent on the af-
fected machines?

e Is it a genuine bug that just happens to manifest itself
on another machine (because it’s faster, or has more or
less memory, etc.)?

End users, in particular, don't like to hear that the code works
on your machine and not theirs.

All tests must pass on all machines; otherwise the code is
broken.

A.4 Floating-Point Problems

Quite a few developers appear to have missed that one day in
class when they talked about floating-point numbers. It’'s a
fact of life that there are floating point numbers that can only
be approximately represented in computer hardware. The
computer only has so many bits to work with, so something
has to give.

This means that 1.333 + 1.333 isn’t going to equal 2.666
exactly. It will be close, but not exact. That’s why the NUnit
floating-point asserts require you to specify a tolerance along
with the desired values (see the discussion on page 29).

Prepared exclusively for Donald Viahovic

TESTS TAKE Too LoNnG <« 134

But still you need to be aware that “close enough” may be
deceptive at times. Your tests may be too lenient for the real
world’s requirements, for instance. Or you might puzzle at an
error message that says:

Failures:
1) TestXyz.TestMe :
expected:<1.00000000>
but was:<1.00000000>
at TestXyz.TestMe() in TestXyz.cs:line 10
“Gosh, they sure look equal to me!” But they aren’t—there
must a difference that’s smaller than is being displayed by

the print method.

As a side note, you can get a similar problem when using
date and time types. Two dates might look equal as they are
normally displayed—but maybe the milliseconds aren’t equal.

A.5 Tests Take Too Long

Unit tests need to run fairly quickly. After all, you'll be run-
ning them a lot. But suddenly you might notice that the tests
are taking too long. It’s slowing you down as you write tests
and code during the day.

That means it’s time to go through and look at your tests with
a fresh eye. Cull out individual tests that take longer than
average to run, and group them together somewhere.

You can run these optional, longer-running tests once a day
with the build, or when you check in, but not have to run
them every single time you change code.

Just don’t move them so far out of the way that they never get
run.

A.6 Tests Keep Breaking

Some teams notice that the tests keep breaking over and over
again. Small changes to the code base suddenly break tests
all over the place, and it takes a remarkable amount of effort
to get everything working again.

Prepared exclusively for Donald Viahovic

TESTS FAIL ON SOME MACHINES <« 135

This is usually a sign of excessive coupling. Test code might
be too tightly-coupled to external data, to other parts of the
system, and so on.

As soon as you identify this as a problem, you need to fix it.
Isolate the necessary parts of the system to make the tests
more robust, using the same techniques you would use to
minimize coupling in production code. See [HTOO0] for more
details on orthogonality and coupling, or [FBB'99] for infor-
mation on refactoring and design smells, and don’t forget to
use Mock Objects (Chapter 6) to decouple yourself from the
real world.

A.7 Tests Fail on Some Machines

Here’s a common nightmare scenario: all the tests run fine—
on most machines. But on certain machines they fail consis-
tently. Maybe on some machines they even fail intermittently.

What on earth could be going on? What could be different on
these different machines?

The obvious answer is differences in the version of the oper-
ating system, libraries, the C# runtime engine, the database
driver; that sort of thing. Different versions of software have
different bugs, workarounds, and features, so it’s quite possi-
ble that machines configured differently might behave differ-
ently.

But what if the machines are configured with identical soft-
ware, and you still get different results?

It might be that one machine runs a little faster than the
other, and the difference in timing reveals a race condition
or other problem with concurrency. The same thing can show
up on single vs. multiple-processor machines.

It’s a real bug, it just happened not to have shown up before.
Track it down on the affected machine using the usual meth-
ods. Prove the bug exists on that machine as best you can,
and verify that all tests pass on all machines when you are
done.

Prepared exclusively for Donald Viahovic

Appendix B

B.1 On The Web

Cruise Control .NET
= http://ccnet.thoughtworks.com

CruiseControl. NET is an automated Continuous Integration server
for the Microsoft .NET platform that integrates with Nant, NUnit, and
most major open source and proprietary version control systems.

DotNetMock
= http://sourceforge.net/projects/dotnetmock

A repository for Mock Object information in the .NET environment,
as well as testing in general.

NCover
= http://workspaces.gotdotnet.com/ncover

A simple code coverage tool that runs from the command line and
outputs an XML file with the code coverage statistics. Requires
pdb files for monitored assemblies, and produces line-by-line visit
counts. Also includes a simple XSLT transform to make the output
readable in a browser.

NMock
= http://nmock.truemesh.com

NMock is a dynamic mock-object library for .NET.

NUnit
= http://nunit.org

This xUnit-based unit testing tool for Microsoft .NET is written en-
tirely in C# and has been completely redesigned to take advantage
of many .NET language features, including custom attributes and

http://ccnet.thoughtworks.com
http://sourceforge.net/projects/dotnetmock
http://workspaces.gotdotnet.com/ncover
http://nmock.truemesh.com
http://nunit.org

ON THE WEB

other reflection related capabilities. NUnit brings xUnit to all .NET
languages.

NUnit-Addin
= http://www.mutantdesign.co.uk/nunit-addin

Visual-Studio integration for NUnit.

Pragmatic Programming
= http://www.pragmaticprogrammer.com

Home page for Pragmatic Programming and your authors. Here you'll
find all of the source code examples from this book, additional re-
sources, updated URLs and errata, and news on additional volumes
in this series and other resources.

xUnit
= http://www.xprogramming.com/software.htm

Unit testing frameworks for many, many different languages and en-
vironments.

Prepared exclusively for Donald Viahovic

http://www.mutantdesign.co.uk/nunit-addin
http://www.pragmaticprogrammer.com
http://www.xprogramming.com/software.htm

BIBLIOGRAPHY <« 138

B.2 Bibliography

[BecO0O] Kent Beck. Extreme Programming Explained: Em-
brace Change. Addison-Wesley, Reading, MA,
2000.

[Cla04] Mike Clark. Pragmatic Automation. The Pragmatic
Programmers, LLC, Raleigh, NC, and Dallas, TX,
(planned for) 2004.

[FBBt99] Martin Fowler, Kent Beck, John Brant, William
Opdyke, and Don Roberts. Refactoring: Improv-
ing the Design of Existing Code. Addison Wesley
Longman, Reading, MA, 1999.

[HTOO] Andrew Hunt and David Thomas. The Pragmatic
Programmer: From Journeyman to Master. Addi-
son-Wesley, Reading, MA, 2000.

[Mey97] Bertrand Meyer. Object-Oriented Software Con-
struction. Prentice Hall, Englewood Cliffs, NJ, sec-
ond edition, 1997.

[MFCO1] Tim Mackinnon, Steve Freeman, and Philip Craig.
Endo-testing: Unit testing with mock objects.
In Giancarlo Succi and Michele Marchesi, edi-
tors, Extreme Programming Examined, chapter 17,
pages 287-302. Addison Wesley Longman, Read-
ing, MA, 2001.

[THO3] Dave Thomas and Andy Hunt. Pragmatic Ver-
sion Control. The Pragmatic Programmers, LLC,
Raleigh, NC, and Dallas, TX, 2008.

Prepared exclusively for Donald Viahovic

Pragmatic Unit Testing: Summary

[General Principles:] l Questions to Ask:

O Test anything that might break O If the code ran correctly, how

O Test everything that does break would I know?

O New code is guilty until proven innocent U How am I going to test this?

O Write at least as much test code as O What else can go wrong?
production code O Could this same kind of problem

O Run local tests with each compile happen anywhere else?

O Run all tests before check-in to repository

[What to Test: Use Your RIGHT-BICEP] [Good tests are A TRIP]
O Are the results right? O Automatic
O Are all the boundary conditions CORRECT? 0O Thorough
O Can you check inverse relationships? O Repeatable
O Can you cross-check results using other O Independent
means? O Professional

O Can you force error conditions to happen?

O Are performance characteristics within
bounds?

CORRECT Boundary Conditions

O Conformance — Does the value conform to an expected format?
O Ordering — Is the set of values ordered or unordered as appropriate?
0O Range — Is the value within reasonable minimum and maximum values?

O Reference — Does the code reference anything external that isn’t under direct
control of the code itself?

0O Existence — Does the value exist? (e.g., is non-null, non-zero, present in a set, etc.)
O Cardinality — Are there exactly enough values?

O Time (absolute and relative) — Is everything happening in order? At the right time?
In time?

http://www.pragmaticprogrammer.com/sk/ut

http://www.pragmaticprogrammer.com/sk/ut

Appendix D

Exercise 1: from page 66

A simple stack class. Push String objects onto the stack, and Pop
them off according to normal stack semantics. This class provides
the following methods:

using System;
public interface StackExercise {

/// <summary>

/// Return and remove the most recent item from
/// the top of the stack.

/// </summary>

/// <exception cref="StackEmptyException'>

/// Throws exception if the stack is empty.

/// </exception>

String Pop();

/// <summary>

/// Add an item to the top of the stack.
/// </summary>

/// <param name="item">A String to push
/// on the stack</param>

void Push(String item);

/// <summary>

/// Return but do not remove the most recent
/// item from the top of the stack.

/// </summary>

/// <exception cref="StackEmptyException">
/// Throws exception if the stack is empty.
/// </exception>

String Top();

/// <summary>

/// Returns true if the stack is empty.

/// </summary>
bool IsEmpty();

StackExercise.cs

APPENDIX D. ANSWERS TO EXERCISES < 141

Here are some hints to get you started: what is likely to break? How
should the stack behave when it is first initialized? After it's been
used for a while? Does it really do what it claims to do?

Answer 1:

e For a brand-new stack, IsEmpty() should be true, Top() and
Pop () should throw exceptions.

e Starting with an empty stack, call Push() to push a test string
onto the stack. Verify that Top() returns that string several
times in a row, and that IsEmpty() returns false.

e Call Pop() to remove the test string, and verify that it is the
same string.! IsEmpty() should now be true. Call Pop()
again verify an exception is thrown.

e Now do the same test again, but this time add multiple items to
the stack. Make sure you get the rights ones back, in the right
order (the most recent item added should be the one returned).

e Push a null onto the stack and Pop it; confirm you get a null
back.

e Ensure you can use the stack after it has thrown exceptions.

Exercise 2: from page 67
A shopping cart. This class lets you add, delete, and count the items
in a shopping cart.

What sort of boundary conditions might come up? Are there any im-
plicit restrictions on what you can delete? Are there any interesting
issues if the cart is empty?

public interface ShoppingCart {

/// <summary>

/// Add this many of this item to the

/// shopping cart.

/// </summary>

/// <exception cref="NegativeCountException">
/// </exception>

void AddItems(Item anItem, int quantity);

/// <summary>

/// Delete this many of this item from the
/// shopping cart

/// </summary>

/// <exception cref="NegativeCountException">
/// </exception>

/// <exception cref="NoSuchItemException'>

In this case, Assert.AreEqual() isnt good enough; you need
Assert.AreSame() to ensure it’s the same object.

Prepared exclusively for Donald Viahovic

APPENDIX D. ANSWERS TO EXERCISES <« 142

/// </exception>
void DeleteItems(Item anItem, int quantity);

/// <summary>
/// Count of all items in the cart
/// (that is, all items x gty each)

/// </summary> 8

int ItemCount { get; } §

/// Return iterator of all items .g

IEnumerable GetEnumerator(); 2

} &
Answer 2:

e Call AddItems with quantity of O and ItemCount should re-
main the same.

e Call DeleteItem with quantity of O and ItemCount should
remain the same.

e Call AddItems with a negative quantity and it should raise an
exception.

e Call DeleteItem with a negative quantity and it should raise
an exception.

e Call AddItems and the item count should increase, whether
the item exists already or not.

e Call DeleteItem where the item doesn’t exist and it should
raise an exception.

e Call DeleteItem when there are no items in the cart and
ItemCount should remain at O.

e Call DeleteItem where the quantity is larger than the number
of those items in the cart and it should raise an exception.

e Call GetEnumerator when there are no items in the cart and
it should return an empty iterator (i.e., it's a real IEnumerable
object (not null) that contains no items).

e Call AddItem several times for a couple of items and verify that
contents of the cart match what was added (as reported via
GetEnumerator() and ItemCount()).

Hint: you can combine several of these asserts into a single test. For
instance, you might start with an empty cart, add 3 of an item, then
delete one of them at a time.

Prepared exclusively for Donald Viahovic

APPENDIX D. ANSWERS TO EXERCISES <« 143

Exercise 3: from page 68

A fax scheduler. This code will send faxes from a specified file name
to a U.S. phone number. There is a validation requirement; a U.S.
phone number with area code must be of the form xnn-nnn-nnnn,
where x must be a digit in the range [2..9] and n can be [0..9].
The following blocks are reserved and are not currently valid area
codes: x11, x9n, 37n, 96n.

The method’s signature is:

V4

/// Send the named file as a fax to the

/// given phone number.

/// <exception cref="MissingOrBadFileException'>
/// </exception>

/// <exception cref="PhoneFormatException">

/// </exception>

/// <exception cref="PhoneAreaCodeException">
/// </exception>

public bool SendFax(String phone, String filename)

Given these requirements, what tests for boundary conditions can
you think of?

Answer 3:

e Phone numbers with an area code of 111, 211, up to 911, 290,
291, etc, 999, 370-379, or 960-969 should throw a Phone-
AreaCodeException.

e A phone number with too many digits (in one of each set of
number, area code, prefix, number) should throw a Phone-
FormatException.

e A phone number with not enough digits (in one of each set)
should throw a PhoneFormatException.

e A phone number with illegal characters (spaces, letters, etc.)
should throw a PhoneFormatException.

e A phone number that’s missing dashes should throw a Phone-
FormatException.

e A phone number with multiple dashes should throw a Phone-
FormatException.

e A null phone number should throw a PhoneFormatExcep-
tion.

e A file that doesn’t exist should throw a MissingOrBadFile-
Exception.

e A null filename should also throw that exception.

An empty file should throw a MissingOrBadFileException.

Prepared exclusively for Donald Viahovic

APPENDIX D. ANSWERS TO EXERCISES <« 144

e A file that’s not in the correct format should throw a Missing-
OrBadFileException.

Exercise 4: from page 68

An automatic sewing machine that does embroidery. The class
that controls it takes a few basic commands. The coordinates (0,0)
represent the lower-left corner of the machine. x and y increase as
you move toward the upper-right corner, whose coordinates are x =
TableSize.Width - 1andy = TableSize.Height - 1.

Coordinates are specified in fractions of centimeters.

public void MoveTo(double x, double y);

public void SewTo(double x, double y);

public void SetWorkpieceSize(double width,
double height);

public Size WorkpieceSize { get; }

public Size TableSize { get; }

There are some real-world constraints that might be interesting: you
can’t sew thin air, of course, and you can’'t sew a workpiece bigger
than the machine.

Given these requirements, what boundary conditions can you think
of?

Answer 4:

e Huge value for one or both coordinates

e Huge value for workpiece size

e Zero or negative value for one or both coordinates
e Zero or negative value for workpiece size

e Coordinates that move off the workpiece

e Workpiece bigger than the table

Exercise 5: from page 68

Audio/Video Editing Transport. A class that provides methods to
control a VCR or tape deck. There’s the notion of a “current position”
that lies somewhere between the beginning of tape (BOT) and the end
of tape (EOT).

You can ask for the current position and move from there to another
given position. Fast-forward moves from current position toward
EOT by some amount. Rewind moves from current position toward
BOT by some amount.

Prepared exclusively for Donald Viahovic

APPENDIX D. ANSWERS TO EXERCISES <« 145

When tapes are first loaded, they are positioned at BOT automati-
cally.

using System;
public interface AVTransport {

/// Move the current position ahead by this many
/// seconds. Fast-forwarding past end-of-tape
/// leaves the position at end-of-tape

void FastForward(double seconds);

/// Move the current position backwards by this
/// many seconds. Rewinding past zero leaves
/// the position at zero

void Rewind(double seconds);

/// Return current time position in seconds
double CurrentTimePosition();

/// Mark the current time position with label
void MarkTimePosition(String name);

/// Change the current position to the one E

/// associated with the marked name §

void GotoMark(String name); 6

} 2
Answer 5:

e Verify that the initial position is BOT.

e Fast forward by some allowed amount (not past end of tape),
then rewind by same amount. Should be at initial location.

e Rewind by some allowed amount amount (not past beginning of
tape), then fast forward by same amount. Should be at initial
location.

e Fast forward past end of tape, then rewind by same amount.
Should be before the initial location by an appropriate amount
to reflect the fact that you can’t advance the location past the
end of tape.

e Try the same thing in the other direction (rewind past begin-
ning of tape).
e Mark various positions and return to them after moving the

current position around.

e Mark a position and return to it without moving in between.

Exercise 6: from page 69

Audio/Video Editing Transport, Release 2.0. As above, but now
you can position in seconds, minutes, or frames (there are exactly
30 frames per second in this example), and you can move relative to
the beginning or the end.

Prepared exclusively for Donald Viahovic

APPENDIX D. ANSWERS TO EXERCISES < 146

Answer 6: Cross-check results using different units: move in one
unit and verify your position using another unit; move forward in
one unit and back in another, and so on.

Exercise 7: from page 130

Design an interest calculator that calculates the amount of interest
based on the number of working days in-between two dates. Use
test-first design, and take it one step at a time.

Answer 7: Here’s a possible scenario of steps you might take.
There is no right answer; this exercise is simply to get you to think
about test-first design.

1. Begin by simply calculating the days between any two dates
first. The tests might include:

e Use the same value for first date and last date.
e Try the normal case where first date < last date.
e Try the error case where first date > last date.

e Try dates that span a year boundary (from October 1 2003
to March 1, 2004 for instance).

e Try dates more than a year apart (from October 1 2003 to
December 1, 2006).

2. Next, exclude weekends from the calculation, using the same
sorts of tests.

3. Now exclude public and/or corporate holidays. This raises a
potentially interesting question: how do you specify holidays?
You had to face that issue when writing the tests; do you think
doing so improved your interface?

4. Finally, perform the interest calculation itself. You might start
off with tests such as:
e Interest amount should never be negative (an invariant).

¢ Interest when first date equals last date should be 0.0.

Prepared exclusively for Donald Viahovic

Svmbols

O—lv—n rule, 63

A

A-TRIP, 92
A/V transport exercise, see
Exercises, A/V transport

AccessController class, 77
Accessors, 98
Actual, 29
AddCropMarks(), 129
ADO (mock objects), 81
Agile, 45
Amount of test code, 98
Anonymous array, 16
Arianne 5 rocket, 6
Assert

custom, 58

definition, 29
Assert class, 29
AreEqual(), 29
Assert.AreEqual(), 13
Assert.AreSame(), 30
Assert.Fail(), 31
Assert.IsFalse(), 31
Assert.IsNull(), 30
Assert.IsTrue(), 30
Assert.IsTrue(), 13, 132
Assumptions, 60
Automatic, 93
Automation, ix

B

Bad magic, 92
Bearing.cs, 57

Big ball of mud, 108
Blank, 61

Boolean conditions, 13, 30
Boundary conditions, 48, 53
Breaking the build/tests, 105
Broccoli, 1
Bugs
clumping, 94, 95
elusive, 135
fixing, 99
identifying likely, 44
in sort routines, 56
isolating, 10, 31
list position, 24, 55
memory, 133
phantom, 96
rewriting due to, 10
traceable to unit tests, 97
Build machine, 93
Business logic, 64, 126

C

C#

library versions, 135
C# Exception, see Exception
Cardinality, 62
Career limiting move, 10
[Category], 35
Checker.cs, 74
checkInvariant(), 59
Class Invariant, see Invariant
Clean room, 131
Code examples

finding the source to, xi
Collateral damage, 126

definition, 8
Concurrency, 64, 66, 135
Confidence, 3
Conformance, 54

CONTINUOUS BUILD/INTEGRATION LONG-RUNNING TESTS

Continuous build/integration, External dependencies, 60, 135
93, 107 Extreme Programming, 101, 110

Copy and paste, 40, 98

CORRECT, 53 F

Costs, 10

Factory class, 129

Failing tests, see Test code,
broken

Fax machine exercise, see
Exercises, fax machine

D Feedback, x, 99, 107, 128

Fence post errors, 62

Data structures, 58 FilterRanges(), 52

DateTime, 71 Finally, 123

Daylight savings time, 65 Floating-point numbers, 29, 133

Debugging, 2, 10 Formal testing, 4

Dependencies, 60, 135

Coupling, 70, 135
Cross-checking, 49
CruiseControl, 93, 136
CVS, 105

Developer sandbox, 96, 101

Donne, John, 97 G

DotNetMock, 7691, 136 GMT, 65

DRY principle, 97, 130 Good neighbor, 123
definition, 40n

Dynamic mock objects, 86 H

E House of cards, 4

E-mail address format, 54 I

Elephant

IDE, 11, 93
Improving tests, 99
Independent, 38, 96
Indexing concepts, 60
Input data validation, 130
Interest calculator exercise, see
Exercises, interest
calculator
Invariant, 58, 59, 126
on an index, 127
Inverse relationships, 49

how to eat, 110
Encapsulation, 57, 71, 102
Engineering, 5
Environment, see Test code,

environment
Environmental.cs, 73
Environmental constraints, 51
Equality, 13

deceptive, 134
Error conditions, 50
Examples, see Code examples
Exception, 25, 29, 41, 42, 61,

111 J

Excuses, 7 JamItIntoPark(), 60
Exercises
A/V transport, 68, 144 K

fax machine, 68, 143
interest calculator, 130
sewing machine, 68, 144

KitchenOrder(), 56

shopping cart, 67, 141 L

stack, 66, 140 Largest(), 14-26
Existence, 61 Largest.cs, 15
Expectation (mock objects), 79 Legacy code, 107, 108
Expected, 29 Lighting doubles, 70

[ExpectedException], 41, 42 Long-running tests, 134

MESSAGE

SIDE-EFFECTS

M

Message, 29
Mock Objects, 70-91
dynamic, 86
Mock objects, 12, 93, 135
definition, 72
steps to using, 72
MockObject class, 79
MockSystemEnvironment.cs,
73
MockSystemEnvironment, 74
MoneyAssert.cs, 40
MP3 player exercise, see
Exercises, MP3 player
MyStack.cs, 58-60

N

NCover, 94, 136
NMock, 87n, 136

Now, 71
Null, 30, 61
Numeric overflow, 6n
NUnit, 136
attributes, 32, 33, 35, 38,
41, 42

custom asserts, 40

and exceptions, 41

minimum framework, 32

order of tests, 97

selecting tests, 33
NUnit-Addin, 137

O

Object identity, 30
Off-by-one errors, 24, 62
Open Source

definition, 17
Ordering, 55

P

Pair programming, 110
Pay-as-you go model, 9
Performance, 51
Phantom bugs, 96
Postconditions

definition, 61
Pragmatic Automation, ix
Pragmatic Programmers

email address, xii

website, xn

Pragmatic Programming, 137
Pragmatic Starter Kit, viii
Pragmatic Version Control, viii,
105
Preconditions
definition, 61
Private access, 102
Production code, 5, 97
definition, 27
Production system, 12
Professional, 97, 111
Properties file, 116
Property accessors, see Accessors
Protected access, 102
Prototype, 11
Public access, 102

R

Range, 57
Recipe.cs, 120
RecipeFile.cs, 121
Recipes.cs, 116-120
Refactoring, 115, 135
Reference, 60
Regression, 51
Repeatable, 96
Requirements, 6, 25, 45, 64, 134
Restaurant order, 55
Results

analyzing, 7, 93, 133
Retrospectives, 110
Return on investment, 108
Reviews, 110
Right, 45
RIGHT-BICEP, 44

S

Sandbox, 96, 101
Scientific applications, 30
SendFax(), 68, 143
Separation of concerns, 113
[SetUp], 38
Setup code
execution order, 39
Sewing machine exercise, see
Exercises, sewing
machine
Shopping cart exercise, see
Exercises, shopping cart
“Shy” code, 113
Side-effects, 61

SINGLE TESTING PHASE

WALL-CLOCK TIME

Single testing phase, 9

sleep, 114

SleepUntilNextHour(), 113

Smoke test, 132

Software engineering, 5

Sort routines, 56

SQL (mock objects), 81

Stack exercise, see Exercises,
stack machine

Stand-ins, 70

StandardPaperFactory, 129

String constants, 124

Stubs, 71

[Suite], 33

Synchronized, 66

Syntax vs. semantics, 11

System.Data, 81

SystemEnvironment.cs, 73

T

Team communication, 111
Team environment, 105
[TearDown], 38
Teardown code
execution order, 39
[Test], 32
Test code
and property accessors, 98
broken, 31, 132, 134
cleanup, 123
compiling, 28
correlate to bugs, 97
and data files, 45
environment, 133
first test, 15
invoking, 93
linear, 97
locating, 102
long running, 134
ordering, 97
vs. production code, 28, 98
required actions, 28
results, 7
reviewing, 111
selecting, 33
testing, 99
Test coverage analysis tools, 94,
95
Test data, 47
Test setup
per-class, 39

per-test, 38
Test suites

definition, 33
Test-driven design, 111, 128
TestAdd (), 100
[TestFixture], 32
Testing

acceptance, 3, 12

and design, architecture,

25,113

courtesy, 105

environment, 133

excuses, 7

formal, 4

frequency, 106

functional, 12

GUI, 125

metrics, 95

performance, 3, 12

regression, 51, 108

responsibility, 131
TestLargest.cs, 16
TestLargest, 26
TestLargestDataFile, 46
TestMyStack(), 59
TestRecipe.cs, 121
TestSimple.cs, 32
Thorough, 94
Time, 8, 10, 64, 134
Timeouts, 65
Tolerance, 133
Traveling salesman algorithm, 35

U

Unit testing
definition, 3
intentional sabotage, 100
potential dangers, 92
using, 32
UTC, 65

A\

Validation, 45
and verification, 3, 12
formatted data, 55
input data, 130
user input, 130
Version control, viii, 105

W

Wall-clock time, 65

WHAC-A-MOLE ZERO

Whac-a-Mole, 8 xUnit, 137

X Z

XML, 45 Zero, 61

	About the Starter Kit
	Preface
	Introduction
	Coding With Confidence
	What is Unit Testing?
	Why Should I Bother with Unit Testing?
	What Do I Want to Accomplish?
	How Do I Do Unit Testing?
	Excuses For Not Testing
	Roadmap

	Your First Unit Tests
	Planning Tests
	Testing a Simple Method
	Running Tests with NUnit
	Running the Example
	More Tests

	Writing Tests in NUnit
	Structuring Unit Tests
	NUnit Asserts
	NUnit Framework
	NUnit Test Selection
	NUnit Custom Asserts
	NUnit and Exceptions
	Temporarily Ignoring Tests

	What to Test: The Right-BICEP
	Are the Results Right?
	Boundary Conditions
	Check Inverse Relationships
	Cross-check Using Other Means
	Force Error Conditions
	Performance Characteristics

	CORRECT Boundary Conditions
	Conformance
	Ordering
	Range
	Reference
	Existence
	Cardinality
	Time
	Try It Yourself

	Using Mock Objects
	Simple Stubs
	Mock Objects
	Formalizing Mock Objects
	When Not To Mock

	Properties of Good Tests
	Automatic
	Thorough
	Repeatable
	Independent
	Professional
	Testing the Tests

	Testing on a Project
	Where to Put Test Code
	Test Courtesy
	Test Frequency
	Tests and Legacy Code
	Tests and Reviews

	Design Issues
	Designing for Testability
	Refactoring for Testing
	Testing the Class Invariant
	Test-Driven Design
	Testing Invalid Parameters

	Gotchas
	As Long As The Code Works
	``Smoke'' Tests
	``Works On My Machine''
	Floating-Point Problems
	Tests Take Too Long
	Tests Keep Breaking
	Tests Fail on Some Machines

	Resources
	On The Web
	Bibliography

	Summary: Pragmatic Unit Testing
	Answers to Exercises

