Scheduling Theory Single-Stage Systems

Mathematics and Its Applications

Managing Editor:

M. HAZEWINKEL

Centre for Mathematics and Computer Science, Amsterdam, The Netherlands

Volume 284

Scheduling Theory.
Single-Stage Systems

by

V. S. Tanaev

V. S. Gordon

and

Y. M. Shafransky

Institute of Engineering Cybernetics,
Byelorussian Academy of Sciences,
Minsk, Byelorussia

SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.

A C.LP. Catalogue record for this book is available from the Library of Congress

ISBN 978-94-010-4520-9 ISBN 978-94-011-1190-4 (eBook)
DOI 10.1007/978-94-011-1190-4

Printed on acid-free paper

All Rights Reserved

© 1994 Springer Science+Business Media Dordrecht

Originally published by Kluwer Academic Publishers in 1994

Softcover reprint of the hardcover 1st edition 1994

No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical,

including photocopying, recording or by any information storage and

retrieval system, without written permission from the copyright owner.

CONTENTS

Preface

Introduction

Chapter 1

Elements of Graph Theory and Computational Complexity of Algorithms

1.
2.
3.

Sets, Orders, Graphs
Balanced 2-3-Trees
Polynomial Reducibility of Discrete Problems.

Complexity of Algorithms

. Bibliography and Review

Chapter 2
Polynomially Solvable Problems

1.
. Deadline-Feasible Schedules

vk N

Preemption

. Single Machine. Maximal Cost
. Single Machine. Total Cost

. Identical Machines. Maximal Completion Time.

Equal Processing Times

. Identical Machines. Maximal Completion Time.

Preemption

. Identical Machines. Due Dates.

Equal Processing Times

8. Identical Machines. Maximal Lateness.

9. Uniform and Unrelated Parallel Machines.

10.

Total and Maximal Cost

Bibliography and Review

vii

40
40
50

58
68

69
70
78
93
103

122

134

147
158

163
175

vi

Chapter 3

Priority-Generating Functions. Ordered Sets of Jobs

1.

W N O W N

Priority-Generating Functions

. Elimination Conditions

. Tree-like Order

. Series-Parallel Order

. General Case

. Convergence Conditions

. 1-Priority-Generating Functions

. Bibliography and Review

Chapter 4
NP-Hard Problems

1.
. Reducibility of the 3-Partition Problem

[=L T U

Reducibility of the Partition Problem

. Reducibility of the Vertex Covering Problem
. Reducibility of the Clique Problem
. Reducibility of the Linear Arrangement Problem

. Bibliographic Notes

Appendix

Approximation Algorithms

References

Additional References

Index

Also of Interest

186
187
196
202
213
224
233
246
249

253
253
260
280
288
297
303

312

324

354

365

371

PREFACE

Scheduling theory is an important branch of operations research. Problems studied within
the framework of that theory have numerous applications in various fields of human
activity. As an independent discipline scheduling theory appeared in the middle of the
fifties, and has attracted the attention of researchers in many countries. In the Soviet
Union, research in this direction has been mainly related to production scheduling,
especially to the development of automated systems for production control.

In 1975 Nauka (“Science”) Publishers, Moscow, issued two books providing systematic
descriptions of scheduling theory. The first one was the Russian translation of the
classical book Theory of Scheduling by American mathematicians R. W. Conway, W. L. Maxwell
and L. W. Miller. The other one was the book Introduction to Scheduling Theory by Soviet
mathematicians V. S. Tanaev and V. V. Shkurba. These books well complement each other. Both
books well represent major results known by that time, contain an exhaustive bibliography
on the subject. Thus, the books, as well as the Russian translation of Computer and
Job-Shop Scheduling Theory edited by E. G. Coffman, Jr., (Nauka, 1984) have contributed to
the development of scheduling theory in the Soviet Union.

Many different models, the large number of new results make it difficult for the
researchers who work in related fields to follow the fast development of scheduling theory
and to master new methods and approaches quickly.

Bibliography on scheduling theory includes more than 1,500 titles. Unfortunately, many
of papers and some of the books originally published in Russian are practically unknown
for the Western specialists.

In the early eighties a group of Byelorussian mathematicians made an attempt to give an
up-to-date description of standard scheduling theory. As a result, two books appeared:
Scheduling Theory. Single-Stage Systems by V. S. Tanaev, V. S. Gordon and Y. M. Shafransky
(Nauka, 1984) and Scheduling Theory. Multi-Stage Systems by V. S. Tanaev, Y. N. Sotskov

and V. A. Strusevich (Nauka, 1989). These two books cover two different major problem

vii

areas of scheduling theory and can be considered as a twe-volume monograph that provides a
systematic and comprehensive exposition of the subject.

The authors are grateful to Kluwer Academic Publishers for creating the opportunity to
publish the English translations of these two books. We are indebted to M. Hazewinkel,
J. K. Lenstra, A.'H. G. Rinnooy Kan, D. B. Shmoys and W. Szwarc for their supporting the
idea of translating the books into English.

The first of the books proposed to the reader is devoted to the problems of finding
optimal schedules for systems consisting either of a single machine or of several parallel
machines. The book describes in detail the most important statements and algorithms which
contain typical scheduling ideas and approaches. Some propositions are accompanied only
with schematic proofs. Besides that, each chapter of the book presents a bibliographic
review containing all necessary references. Some major results are grouped into three
tables given in Introduction, thus creating a visual guideline.

In the process of preparing this book for publication a number of small errors and
misprints were observed. These have been revised without special mention. To present the
results not reflected in the Russian edition, a list of additional references has been
included and corresponding amendments have been made to the bibliographic sections and to
the tables given in Introduction. The references to the additional list are marked in the
text by “*”. The list mainly contains the papers and books that appeared after 1983.
This translation also includes a specially written Appendix that presents a review of
approximation algorithms.

It should be noted that Russian and English scheduling terminologies are not quite
stable and may differ from each other. There are also some notational differences.
However, those are not significant and will not create difficulties for the reader.

It has been a pleasure to cooperate with Dr. D. J. Larner and his colleagues from
Kluwer Academic Publishers. We are also grateful to V. A. Strusevich for his assistance in
preparing this translation.

We hope this book will be of interest for different groups of readers working in
applied mathematics, production planning, flexible manufacturing systems and related
areas, and will contribute to the further development of scheduling theory as well as to

expanding spheres of its possible applications.

V. S. Tanaev
V. S. Gordon
Y. M. Shafransky

INTRODUCTION

Scheduling theory studies the problems of optimal distribution and sequencing of the
jobs of a finite set to be processed on either a deterministic single machine or in a
multi-machine system under different assumptions on the nature of this processing.

Machine tools, railway lines, classrooms, computers, etc., may be treated as
“machines”. Workpieces, trains, student teams, computer programs, etc., may be
interpreted as “jobs”. Since the nature of “machines” and “jobs” is, in fact,
immaterial, those can be numbered by the integers 1, 2,..., M and by 1, 2,..., n,
respectively. In what follows, we formulate scheduling problems in terms of the jobs of a
set N = {1, 2,..., n} to be processed in a system consisting of M machines 1, 2,..., M.

As a rule, each job ¢ € N is given a set Q(i) c {1, 2,..., M} of machines such that
each of the machines in this set either may or must process this job. If each job i is
allowed to be processed on any machine L € Q(i), then the processing system is called a
single - stage system (consisting either of one machine or of several parallel machines).

In multi — stage systems, the processing of job ¢ involves [; stages. Each job i € N at a
stage j, 1 < j < [;, is associated with some set Q;” c Q(i)of machines, so that job i at
stage j may be processed on a machine L Q;i), but on at most one machine at a time. In
any case, it is assumed that any machine can process at most one job at a time.

Ifl,-=lz2,Q§-i)=Qj,i=1,2,...,n,lean2=(Z),lgj,;éjzgl,thena
processing system is a flow-type system with parallel machines. For a job shop system, we
have |Q§i)| =1 1=1 2., n j =1, 2., l;, In a flow shop system (without
parallel machines), the machines are normally numbered so that each job is first processed

on machine 1, then on machine 2, and so on, until it is processed on machine | = M. Of

2 Introduction

some interest are open shop systems and mixed shop systems with non-fixed processing
routes of all or some jobs.

This book concentrates on single-stage processing systems in which:

(%) Q(i) = {1, 2,..,, M}, i =1, 2,..., n, ie. a machine can process any job of
set N;

(i) each job can be processed on at most one machine at a time, and each machine can
process at most one job at a time.

For each i € N, the release date d; > 0 is given (a time at which job i becomes
available for processing).

The processing time t;; > 0 of a job i € N on a machine L, 1 < L < M, is known in
advance. If t;; = apt;, ¢ = 1, 2,..., n, L = 1, 2,..., M, machine L is said to have a
processing speed equal to 1/a;. If af = 1, L = 1, 2,..., M, the machines are called
identical.

Depending on the nature of the processing system, preemption in the processing of a job
may or may not be allowed. Allowing preemption implies that the processing of a job may be
interrupted and resumed at a later time on any of the machines. Preemptions may be allowed
either at some specific times or at arbitrary times. As a rule, it is assumed that
preemption does not involve additional expenses, and their number is finite.

Processing the jobs can be described by a family s = {s\(t), s3(t),..., sy(t)} of
piecewise-constant left-semicontinuous functions s; = sy(t), L = 1, 2,...; M, each being
defined over the interval 0 < t < oo and assuming the values 0, 1,..., n. If s;(t") =
t # 0, then at time t” machine L processes job i. If s;(¢") = 0, then at time t” machine L
is idle.

Since a job cannot be processed on two or more machines at a time, the condition
sp(t’) = ¢ # 0 implies that sy(t") # i for all 1 < H # L < M. Since d; is the release date
for a job i, i = 1, 2,..., n, it follows that s;(¢) # i, L = 1, 2,...; M, for all t < d;.

If t;; is the total length of time intervals where the function s;(¢) has the value i,

M
then the relations ¥ (¢;;/t;y) = 1, 1 = 1, 2,...; n, hold. For example, if the machines
L=1

are identical, then the total length of all time intervals in which all functions s;(t),
L =1, 2,., M, have the same value ¢ must be equal to ¢,.

A family s of functions with the described properties is called a schedule for
processing the jobs of set N in a system consisting of M parallel machines.

Figure I.1 presents the diagram of a schedule s(t) for single-machine processing of the
jobs of set N = {1, 2, 3, 4}. Here d; =0, d; =2, d3 =dy =3, t; =4,t, =1, t3 = t;, =
2.

Introduction 3

4 4
i —
3 A
2} b
L H
1 i 1
1 e
1 I SN N N SN SN N
1} 1 2 3 4 5 6 7 8 9 10 11 t
Fig. I.1

If a system consists of two or more machines, the diagrams of functions s;(t) are
normally combined as in Fig. 1.2. Here ¥ = 3, the machines are identical, N = {1, 2, 3, 4,
5} di=dy =dy =0,dy =1, ds =2;¢t, =1, t, =t3 =3, ty =t = 2. Machine 1
processes job 1 in the time interval (0, 1] and job 5 in the interval (3, 4]. Machine 2
processes job 2 in the time intervals (0, 1] and (3, 5], and job 4 in the interval (1, 3].
Machine 3 processes job 3 in (0, 3] and job 5 in (4, 5].

3 5
Machine 3 [__{
2 4 2 ‘
Machine 2]' i
1 5
Machine 1
! [
0 1 2 3 4 5 6 t
Fig. I.2

A schedule s = {s,(t), sy(t),..., sy(t)} is said to be preemptive if there exist an i,
1<i<n,bothLand H,1 <L # H <M, and times t" and t*, 0 < t' <t < t” < oo, such
that at least one of the following conditions holds:

(1) sg(t) = sg(t7) =14, but sy(t) # §
(2) si(t) = su(t”) = i.

Here, if sy (t'+6) # ¢ for a sufficiently small § > 0, then the processing of job ¢ on
machine L is interrupted at time ¢ and may be resumed on another machine at the same
time.

The non-preemptive processing of jobs satisfies the following condition. A job is
processed on at most one machine at a time. If the processing of some job ¢ on a machine L
starts at time t9, then the job is processed only on machine L and is completed at time

t; = t9+t;. It is obvious that, in this case, the schedule is completely determined by

4 Introduction

distributing the jobs over the machines and assigning the starting time t to each job i.
If in job processing preemption is allowed, then an individual job can be processed “part
by part”, not necessarily on the same machine. Thus, for the schedule in Fig. 1.2,
preemption in processing job 2 and job 5 is allowed. Processing job 2 on machine 2 is
interrupted at t = 1 is resumed on the same machine at ¢ = 3. Processing job 5 on
machine 1 is interrupted at ¢ = 4, and is resumed on machine 3 at the same time. The
schedule in Fig. L1 allows preemption in processing jobs 1 and 4. In the time interval
(7, 8] the machine is idle.

In practical applications, the numbers d; and ¢;; are rational, and may be considered
to be integers by choosing an appropriate scale. In this case, we can restrict our
consideration to a class of schedules in which preemption occurs only at integer times. It
is assumed that, for each job, the starting and the resumption times are also integers.
Such schedules are specified by an M-dimensional vector with components 0, 1,..., n
determined for each unit length time interval. If, for some unit time interval, the Lth
component of the vector is 7 # 0, then in this interval machine L processes job i.
Otherwise, machine L is idle.

If preemption is allowed at arbitrary times, assuming that the number of preemptions is
finite, it is natural to assume that the duration of the continuous processing of a job is
also finite.

In addition to forbidding preemption, a schedule must satisfy other requirements which
follow from the formulation of a particular problem. Thus, for each job i, a due date D;
may be given, by which it is either necessary or desirable to complete processing this
job. A schedule in which all jobs meet their due dates is called feasible with respect to
the due dates. In a general case, such a schedule need not exist.

Situations in which some restrictions are introduced on the possible job processing
sequence are also quite common. If, according to the problem formulation, the processing
of a job j may start only after another job i is completed, then a schedule s must satisfy
the condition: if sy(t") = ¢ for some 1 < L < M and some t" > 0, then sy(t) # j for all
1<H<Mandt<

t’. Situations of this type are usually described by specifying some
precedence relation — over the set N of jobs such that the notation i — j implies that
the processing of job ¢ must be completed before the processing of job j can start. In
this case, the schedule is said to be feasible with respect to precedence relation defined
over N.

The processing of jobs may involve the consumption or usage of some additional

resources. A typical situation of this type can be described as follows. There are g types

Introduction 5

of resources which are used in job processing. At time t, there are Ri(t), k¥ = 1, 2,...,
g, units of resource of type k available. The processing of job 7 at time t requires

ra(t), . = 1, 2,..., n, k =1, 2,..., g, units of resource of type k. If at time ¢ only
l

the jobs i, 4,..., 4 are processed, then the inequality):rijk(t) < Ry(t) must hold
i=

for all k&, 1 < k < ¢. A schedule s in which the above resource constraints are satisfied
at any time t > 0 is called feasible with respect to resources.

Schedules which meet restrictions connected with machine setups, job grouping, etc.,
are also of practical interest. In such situations, a schedule is feasible if it satisfies
all requirements which follow from the formulation of a particular problem.

It should be noted that constructing a feasible schedule or even checking whether such
a schedule exists is frequently a far from trivial problem. At the same time, in many
situations constructing feasible schedules does not involve any special difficulties, and
then the problem of choosing the best (in a certain sense) schedule arises.

In scheduling theory, the quality of a schedule is normally estimated in the following
way. A schedule s is associated with the vector t(s) = (Z,(s), ta(5),.., n(s)) of the
job completion times. Here 7;(s) denotes the largest value of ¢ such that there exists a
L € {1, 2,..., M} for which s;(t) = i. A real-valued function F(x) = F(x;, x,..., X) is
specified, non-decreasing with respect to each of its n arguments. The quality of schedule
s is characterized by the value of this function evaluated at x = %(s). Among any two
schedules, that with a smaller value of F(x) is considered to be the better one. The
schedule with the smallest value of F(x) (among all feasible schedules) is called an
optimal schedule.

A function F(x) is normally determined by associating each job ¢ with some
non-decreasing function, called a cost function ¢,(t), which specifies a “penalty” to be
“paid” for having this job completed by time t. The quality of a schedule is
characterized by the total or the maximal cost that must be paid for processing the jobs

according to a schedule s, i.e. Fy(s) = T @;(Ti(s)) or Fpay(s) = max{p;(t,(s))|i € N}.
ieN

In particular, if @;(t) = t, ¢ = 1, 2,...; n, then F . (s) = max{?,-(s)|i € N} is the
makespan (or the maximal completion time). In this case, Fp,,(s) is denoted by %pa(s),
and a schedule s with the smallest value of %,,,(s) is called a time-optimal schedule.

If pi(t) = t=Dy, then Fpoy(s) is denoted by Lpyay(s). We have Ly, (s) = max{Ly(s)|
i € N}, where Li(s) = t;(s)-D; is the lateness of job i with respect to the due date D;.

If ¢;(t) = max{0, t-D;}, then Fp,(s) is denoted by zm.,(s). We have z,q(s) =

max{z;(s)|i € N}, where z(s) = max{0, Ti(s)=D;} is the tardiness of job i with respect to

Introduction

the due date D;. In this case, Fy(s) = Y z(s) is the total tardiness.
ieN
If ¢;(t) = sign(max{0, t—D,}), then Fg(s) = vENu,-(s), where u;(s) = sign(z;(s)), is the
1€
number of late jobs (with respect to their due dates).

Each job i may also be given the number o; representing the “weight” of the job, and

we consider the weighted sum of job completion times ¥ o;t;(s) (or the weighted total
ieN

flow time), the weighted total tardiness ¥ oyz(s), and the weighted number of late jobs
ieN

L oyuy(s).
ieN

The described optimality criteria reflect an intention to complete each job as soon as
possible. Under these conditions, we may restrict our search to a class of schedules which
do not allow unnecessary idle times. If preemption is either forbidden or allowed only at
integer times, this class contains a finite number of schedules.

In fact, let s be a non-preemptive schedule in which the jobs are processed an a single
machine according to the sequence ™ = (i), i,,..., i,) where 7 is a permutation of the
elements of set N. The starting time t‘,-’j(s) of a job i; satisfies the inequality t‘,»’]_(s) >
max{t;

-1
2,0y M ?,-O(s) = 0. Consider a schedule s’, in which the jobs are processed according to

(s), d,-j}, while the completion time of this job is 't—,-],(s) = t?]_(s)+t,~j, Jj =1,

the same sequence 7, and t‘,’]_(s') = max{fij_l(s'), d,-]_}, ?,-],(s') = t‘,’j(s’)+tij, j=1,
2,y 1, t,-o(s') = 0. It is easy to check that t,-]_(s') < t,—]_(s), J =1, 2,.., n, and,
since function F(s) is non-decreasing, it follows that F(Z(s")) < F(%(s)). The schedule s
is uniquely specified by the permutation 7, and, hence, the search for an optimal schedule
can be restricted to the consideration of at most n! schedules.

Similarly, let s be a non-preemptive schedule for processing the jobs on M parallel
machines in which a machine L processes the jobs of set N according to the sequence
b = (&, & .., igL), L =1,2.. M Here Ny UN, U ..UNy =N, Ny n Np = g,
1<H# R <M, and it is not necessary that N;, # @. Consider the schedule s, in which the

L

starting time of a job & is z‘,-’jL = max{?ijl

Tip = Q48 J =1, 2., n ?iOL =0, L =1, 2,.., M. It is evident that
J J J

Ly d,-jL}, and its completion time is

F(t(s")) < F(t(s)). The schedule s is uniquely specified by: (i) a partition of set N
into subsets Ny, N,,..., Ny (some of them may be empty), and (i7) permutations of the
elements of these sets. Therefore, the search for an optimal schedule can be restricted to

M+n-1
n

considering at most n![] schedules, where [Z] denotes a binomial coefficient. If the

machines are identical, then the number of schedules under consideration is M! times

lower.

Introduction 7

If interruptions in job processing are allowed only at integer time moments, then, as
mentioned above, a schedule is uniquely specified by an M-dimensional vector with
components 0, 1,.., n associated with each unit time interval. Here, it suffices to
consider the time interval (called a planning interval) between min{d;|i¢ € N} and max{d,|

i e N}+ ¥ max{t;,|L = 1, 2,..., M}. Denoting the length of the planning interval by T, we
ieN

can conclude that the search for an optimal schedule can be restricted to considering at

n+l
M

If interruptions are allowed at arbitrary times, then, in general, an optimal schedule

most [JT schedules.

need not be found in a finite set of schedules. However, under certain conditions, a
finite set of schedules containing at least one optimal schedule can be determined in this
case as well.

Similar considerations can be given to various types of feasible schedules.

Therefore, as a rule, an optimal schedule can be found by enumerating a finite set of
feasible variants. The main difficulty is that the number of such variants is usually
extremely large (e.g., already 10! = 3 628 800), and this increases exponentially with the
problem dimension. Research in scheduling theory concentrates on reducing that enumeration
as much as possible, and on finding an optimal schedule requiring the least computational
effort.

If the volume of calculations is limited by some polynomial of the length of the
problem input, the problem is said to belong to the class of polynomially solvable
problems. The corresponding algorithms are called polynomial-time ones. On the other hand,
so-called NP-hard problems are known for which polynomial-time algorithms are unlikely to

exist.

This book presents the state-of-the-art in research on single-stage scheduling systems.
Chapter 1 contains some auxiliary information. In Section 1, some facts from combinatorial
analysis and graph theory are given which will be useful for further consideration.
Section 2 gives a description of a specific data representation using so-called 2-3-trees.
Section 3 introduces the main concepts of computational complexity of combinatorial
optimization problems and their solution algorithms.

Chapter 2 describes computationally effective algorithms for finding optimal schedules.
Section 1 establishes sufficient conditions for the existence of optimal schedules without
preemption at times different from d;, ¢« = 1, 2,..., n. Section 2 presents the necessary

and sufficient conditions for the existence of schedules that are feasible with respect to

8 Introduction

the given due dates D;, ¢« = 1, 2,..., n, and describes algorithms for finding such
schedules. The problem of minimizing the maximal cost F,.(s) for single-machine
processing is considered in Section 3. Section 4 studies effective algorithms for finding
optimal schedules for a number of problems of minimizing the total cost Fyx(s) for
single-machine processing. Sections 5 and 6 consider the problem of finding time-optimal
schedules for processing a partially ordered set of jobs in a system consisting of
identical parallel machines. Section 7 describes algorithms for finding deadline-feasible
schedules for processing a partially ordered set of jobs with equal processing times on
parallel machines. The problems of minimizing the maximal lateness for identical parallel
machines are presented in Section 8. In Section 9, the problems of minimizing the total
and the maximal costs for unrelated parallel machines are discussed.

Chapter 3 is devoted to the problems of minimizing the so-called priority-generating
functions over permutations of elements of an ordered finite set N. Many scheduling
problems are naturally formulated in terms of minimizing priority-generating functions.
Such examples are given in Section 1. This section also introduces the concept of a
priority-generating function. Section 2 describes transformations of graph G, which is the
reduction graph of a precedence relation defined over set N. These transformations provide
a basis for the algorithms for minimizing the priority-generating functions discussed in
subsequent sections. Sections 3 and 4 study the cases when G is a tree-like graph and a
series-parallel graph, respectively. The situation when G is an arbitrary graph is
considered in Sections 5 and 6. Section 7 introduces the concept of the so-called
1-priority-generating function and discusses the methods for minimizing such functions.

In Chapter 4, a number of scheduling problems are proved to be NP-hard. Most of these
problems are shown to be NP-hard in the strong sense.

Each chapter is accompanied by a bibliographic review. The review given in Chapter 4 is
supplemented with information on enumeration methods used for solving NP-hard problems.
The interested reader can find some additional information on results in scheduling theory
as well as on the methods for finding optimal and near-optimal schedules in a number of
surveys [20, 24, 25, 37-39, 61, 65, 92, 95, 182, 208, 211, 243, 281, 314, 325, 340, 341,
347, 374, 377, 382, 384, T, 10%, 11, 66%, 78%, 114%, 117*-119*] and monographs [12, 78,
89, 110, 115, 118, 120, 122, 126, 127, 143, 144, 158, 162, 185, 192, 193, 239, 345, 368,
38*]. An extensive list of references in scheduling theory is given in the classified
bibliography [303].

In order to facilitate the search for information on any particular problem in which

the reader could be interested, the tables provided below contain data on most of the

Introduction 9

problems discussed in this book. Only some problems mainly described in Chapter 3 are
omitted.

Polynomially solvable problems are given in Table I.1; Table 1.2 contains NP-hard
problems. Table 1.3 presents information on approximation algorithms for solving NP-hard
problems discussed in Appendix.

The first five columns of each table give problem descriptions using appropriate
notation. The last column contains references either to the corresponding sections of this
book (Tables 1.1 and I.2) or to the cited literature (Table 1.3).

The first column gives the number of machines.

The second column describes two parameters: “processing time” and “release dates”.
The “processing time” parameter may have the following values:

“t;” - corresponds to the situation in which all machines are identical;

“ayt,” - the processing system consists of machines of different speeds (uniform
machines);

“t;i" - the machines are unrelated parallel;

“t; = t” - the machines are identical, the processing times for all jobs are the same
(and equal to t);

“t;y = ay” - the machines operate at different speeds, the processing times of each
job on a machine H are the same (and equal to ay);

“t; € {c}, cgy..., ¢} - the machines are identical, job processing times may have
only the values in the indicated set;

“[t;y])” - the processing times are integers.

The “release date” parameter is either equal to “d; = 0” or to “d;” depending on
whether the release dates are the same. If the release dates are integers, the notation
“[d;]” is used.

The third column contains the values of three parameters: “preemption”, “precedence”,
and “resources”.

The “preemption” parameter is equal either to “Pr” or to “[Pr]” depending on whether
preemption is allowed at arbitrary or only at integer times. If none of these values is
indicated, then preemption is forbidden.

Depending on the type of the reduction graph of precedence relation — defined over set
N of jobs, the “precedence” parameter may have one of the following values:

“G” - the reduction graph of relation — is an arbitrary circuit-free graph;

“w-SP” - the reduction graph is an w-series-parallel graph;

“SP” - is a series—parallel graph;

10 Introduction

“T” - is a tree;

“T*" —is a forest of outtrees;

“7" - is a forest of intrees;

“C” - each connected component of the reduction graph is a chain.

If none of these values is indicated, then the set N is not ordered.

The “resource” parameter has the value Rs(q) only if there are resource constraints
and the number of resource types is gq.

In the fourth column, additional conditions are given. For example, the notation
“D; = D” implies that all due dates are the same (and equal to D); the notation “t; =
GCD(d;)” implies that processing times are the same for all jobs and coincide with the
greatest common divisor of the release dates d; i = 1, 2,..., n; the notation “ry e {c1,
Cg...y ¢}" says that r; may have only the values in the indicated set. The notation
“(dit, tit, Did, ogd)” implies that the jobs of set N can be numbered in such a way that
d; < diyy, ti < by, Di < Diyy, o 2y, @ = 1, 2,..., n—1. The notation “p;4” has a
similar meaning, and here ¢; < ¢;,, implies that ¢;(t) < @;,,(t) for all ¢ from the
planning interval. The notation “[D,]” indicates that due dates are integers. The
notation “M = M(N, D)” implies that the number of machines M is a variable that is
dependent on the set N of jobs and the common due date D.

Most of the problems presented in the tables involve minimizing a function whose form
is indicated in the fifth column. Symbols F,, and Fy_py denote priority-generating and 1-
priority- generating functions, respectively. Some problems are to find a schedule that is
feasible with respect to deadlines (the notation is “¢; < D,”). Some problems involve
minimizing a certain function over a set of schedules that are feasible with respect to
deadlines D;. In this case, the function notation is supplemented with “z; < D,”. If the
problem requires that inequalities ¢;(s) < D; must hold only for i € Q c N, the previous
notation accompanied by the condition “ € Q”.

The sixth column of Table I.1 gives estimates of the running times for solution
algorithms (accurate up to a constant factor). Here the notation “LP” implies that the
corresponding scheduling problem is reduced to a linear programming problem. The asterisk
(*) in Table I.1 indicates problems in which allowing preemption does not reduce an
optimal value of the objective function.

In Table 1.2, the asterisk (*) marks NP-hard problems for which pseudopolynomial
algorithms are known, and (**) indicates NP-hard problems for which pseudopolynomial
algorithms are unknown, but NP-hardness in the strong sense is not established.

Table L.3 contains information on polynomial-time approximation algorithms presenting

Introduction 11

the estimate of the running time of an algorithm (if known) in column 6, and the
performance guarantee (column 7). In column 6 of this table we use the notation “P(-, -)”
to stress that the running time of an algorithm polynomially depends on the mentioned
parameters. As a rule, column 7 provides the bound on the relative error of an obtained
solution A = |FO~F*|/|F*|, where F® is the value of the objective function for an
approximate solution, and F* is the optimal value.

In Tables 1.1 and L.3, as well as elsewhere throughout the book, all logarithms are
taken to the base 2 (unless stated otherwise).

In the tables, the following notation is used:
= max{t;y|i € N, H = 1, 2,..., M};
= min{t;yli e N, H = 1, 2,..., M};

ts = ¥ t; - for a single machine or identical parallel machines;
ieN

lmax
tmin

The values Dpaxy Dpiny ©max €tc., are defined analogously.

Estimates of the running time of algorithms given in the tables are valid, assuming
that the precedence relation defined over the set of jobs (if the relation is not empty)
is represented by its reduction graph. Note that transformation of an arbitrary circuit-
free graph into its transitive closure or into the reduction graph requires at most O(n?)
time [7], where n is the number of vertices of a graph.

As a rule, no special cases of the problems considered are included in Table I.1 unless
simpler solution algorithms are known for them. A special case of a problem A is such a
problem B that the set of all inputs of problem A contains all inputs of problem B as a
subset. For example, the problem of minimizing a function F(s) is a special case of the
problem of minimizing F(s) over the set of all schedules, satisfying the additional
constraint ti(s) < D;, ¢ = 1, 2,..., n. To see this, it suffices to take D; = W, where W
is a sufficiently large number.

Some polynomial-time solvable problems are not included in Table I.1 due to other
reasons. It is easy to check that a schedule minimizing L,,,(s) simultaneously provides
the minimum to functions z,q,(s) and max{p(t,(s) - D;) |1 € N}, where ¢(x) is a non-decreasing
function for x > 0. Therefore, if Table I.1 contains the problem with the objective
function L,g.(s), then the problems with the objective functions 2zp.,(s) and
max{p(t;(s)-D;)|1 € N} are omitted.

Table 1.2 includes only “minimal” NP-hard problems, i.e., problems whose special cases
are either polynomially solvable or have not been proved NP-hard. It is obvious that

a problem with an NP-hard special case is NP-hard itself.

12 Introduction
Table 1.1
Number |[Processing Preemption,
of times, precedence Additional |Objective|Running Section
machi- release and resource| conditions function t ime oiozze
nes dates constraints
1 t;;d;i=0 ;iSDi nlogn Ch.2;2.5(%)
1 ti;d; Pr _,SDi nlogn Ch.2;2.5
1 tisd; (did,D;4) t;<D; nlogn |Ch.2;2.5(*)
1 ti;dg Pr; G T;<D; n? Ch.2;3.7
1 ti=t;d; G ?isDi nlogn Ch.2;10.1
1 G maxwi(Ti) n? Ch.2;3.2(*)
1 eit maxwi(7i) nlogn Ch.2;3.3(%)
1 Linax n Ch.2;10.2
1 ti=1;d;= G Lypax n Ch.2510.2
1 Lnax nlogn Ch.2;3.3(%)
1 T Lnax nlogn |[Ch.3;8,3(*)
1 ti;di=0 SP Lnax nlogn Ch.3;8,4(%*)
1 ti;d; D;= Liax nlogn Ch.2;3.4
1 tisd; G D;=D Lmax n? Ch.2;3.4
1 SP p(ti+ty)= ma X nlogn Ch.3;8,4(*)
et +e(ta); [{e(ti)+
p(t)20,t>0 Bi}
1 ti;di=0 spP e(ty+ty)= maXx nlogn Ch.3;8,4(%*)
Pl Hewe(Tany
1 t;=t;d; G 7max- nlogn Ch.2;10.1
t;<D;
1 tisdy Pr Lypax nlogn Ch.2;10.1
1 ti=t;d; G Lmax Ch.2;10.1

(to be continued)

Introduction 13
Table I.1
Number |Processing Preemption,
) L A) . Section
of times, precedence |Additional|Objective[Running f th
machi- release and resource|conditions|function t ime ob ke
nes dates constraints °°
1 tisd; Pr;G maxwi(Ti) n2 Ch.2;3.5,3.6
1 [til;0d;] |G t;=GCD(d;) |maxe;(t;)|n? Ch.2;3.8(%)
1 t;id; max nlogn Ch.2;3.8(*)
pi(ti-d;)
1 SP tie(-o,®) tmax nlogn Ch.3;1,4
1 ti;d;=0 w-SP tie(-o,0) |tmax n Ch.3;1,5,6
1 T Fpg nlogn Ch.3;1,3(*)
1 t;;d;=0 SP Fpg nlogn Ch.3;1,4(*)
1 ti;di=0 w-SP Fpg nt Ch.3;1,5,6(%)
1 ti;di=0 Fl~py nlogn Ch.3;7(%*)
1 ti;di=0 Z‘P(Ti) nlogn Ch.3;7(%*)
1 t;;d;=0 spP Yot nlogn |Ch.3;1,4(%*)
1 ti;d;=0 w-SP Yoit; nt Ch.3;1,5,6(%)
1 t;;d;=0 SP)) oy x_ nlogn Ch.3;1,4(%*)
exp(~vt;)
1 t;;di=0 w-SP Y oaix n?t Ch.3;1,5,6(*)
exp(vt;)
1 t;;dj Pr E‘P(Ti) nlogn Ch.2;4.6
1 ti;di=0 Te(ti), |n? Ch.2;10.1
7,’50,’
1 ti=1;[d;] Yei(ti), |[nd Ch.2;4.5(*)
?,-sD,-
1 ti;di=0 Yu; nlogn Ch.2;4.3a(*)
1 t;=1;d;=0 Yu; n Ch.2510.2
(to be continued)

14 Introduction
Table 1.1
Number |Processing| Preemption, .
i - . . . Section
of times, precedence Additional |Objective Running f th
machi- release [and resource| conditions function time ob ke
nes dates constraints °°
1 tisdy (d;?,D;1) Yu; nlogn Ch.2;10.2
n Ch.2;4.3c(*)
1 ti;d;=0 (tid, o) Youg nlogn Ch.2;4.3b(*)
1 t;;d;=0 (tit, o, Yojuy, nlogn Ch.2;4.4(*)
ieN\0) ti<D;,ie0
1 tid; (dit, t; 4, Yojuyg nlogn [Ch.2;4.3d(*)
Dt o;d)
1 t;;d; (di?, D4 0¥ | Dojuj nlogn Ch.2;4.3e(*)
tiSdjyq-d;)
1 tiid; (di=d; _q+t, |[Yoju; nlogn |Ch.2;4.3f(%*)
Dit, ot
2(n-i)t<t;<
2(n-t)t+t)
1 tiid; (di?,D;%, Yu;, n? Ch.2;10.2
ieN\Q) t;<D;,ieQ
1 tiid; (di?,D;%, Yojug, nlogn Ch.2;10.2
tit, o) <Dy, ieQ
1 ti;d; (d;?,D;4, Yoiug, nlogn Ch.2;10.2
oV, ti<dj q-|t;<D;,ieQ
d;)
1 Yz; nlogn Ch.2510.2
2 G ti<D; n? Ch.2;7.3
2 ti=1;d; G D;=D T ;<D; n? Ch.2;7.3
2 ti=1;1d;] |G T <D, n? Ch.2;10.1
2 ti=1;d;=0 Rs(gq) D;=D TISD,- qn2+ Ch.25;10.1
5/2
n
2 tin=ay; Rs(1) D;=D t;<D; nlogn |Ch.2;10.1

(to be continued)

Introduction 15
Table 1.1
Number |Processing Preemption, .
. L. . R) Section
of times, precedence Additional |Objective|Running t th
o e
machi- release and resource| conditions function t ime book
oo
nes dates constraints
2 Pr;G t;<D; n? Ch.2;10.1
2 Pr;G D;=D T;<D; n? Ch.2;10.1
2 Pr;G 7isD, n3 Ch.2;10.1
z G tmax n? Ch.2;5.4,5.5
2 G tmax n Ch.2;10.2
2 tie{1,2}; |T- Tmax nlogn |Ch.2;10.2
d;=0
2 tie{1,3}; |T- Tmax nZlogn [Ch.2;10.2
d;i=0
2 G tmax» nzlogn Ch.2;7.3
t;<D;
2 t;=1;(d;] |G tmax ndlogn [Ch.2;10.1,
7.3
t;<D;
2 G Lmax n? Ch.2;8.2
2 G Lmax n3logn Ch.2;10.1
2 G tmax n? Ch.2;8.4,8.2
2 ti=1;d;= Rs(q) tmax qn?+ Ch.2;10.1
ns/2
2 ti;d;=0 Pr;G tmax n? Ch.2;6.3-6.6
2 tiH=AH; Rs(1) tmax nlogn |Ch.2;10.1
d;=
2 Pr;G tmax n? Ch.2;10.1
2 Pr;G Lmax n? Ch.2;10.1
2 Pr;G tmax n? Ch.2;10.1

(to be

continued)

16 Introduction
Table I.1
Number |[Processing Preemption, .
: C . . . Section
of times, precedence |Additional|Objective|Running f th
o e
machi- release and resource|conditions|function t ime book
oo
nes dates constraints
2 agti;ld;] [[Pr] [til,leyg), |Lmax nxrgin Ch.2;510.1
[D;] {n%/ay,
log n-
log apy+
log
tmax)
2 apgti;d; Pr;G Lpmax n® Ch.2;10.1
2 ayt;;d;=0 |Pr E“i nt Ch.2510.1
M ildil t;<D; nlogn |Ch.2;10.1
M t,=t;d; T,SDi nslogn Ch.2;10.1
M T+ D;=D t;<D; n Ch.2;5.3
M T- D;=D t <Dy n Ch.2;5.2,5.3
M T- T <D; nlogn |Ch.2;7.2
M Tt D;=D ‘t <Dy nlogn |[Ch.2;7.2,7.3
M Pr Di=D T <Dy n Ch.2;2.6
M t;;d;=0 Pr 7150i nlogn Ch.2;2.8
M t;;d; Pr D;=D t<D; nlogn |Ch.2;2.7,2.8
nM Ch.2;10.1
M tiid; pPr ti<D; n3 Ch.2;2.3
M ti; pr;T* Di=D T i<D; n? Ch.2;6.5-6.7
nlogM Ch.2510.1
M t;;di=0 pr;T- D= t <Dy n? Ch.2;6.5-6.7
nlogM Ch.2;10,6.7
M pr;T" T <D, n? Ch.2;10.1
M tiidg pr;T* D;=D ti<D; n? Ch.2;10.1
M tig=ay; Rs(1) rie{0,1}; |t;<D; n3 Ch.2;10.1
d;=0 D;=

(to be continued)

Introduction 17
Table I.1
Number |Processing Preemption, i
. L. . . . Section
of times, precedence |Additional|Objective| Running ¢ th
machi- release and resource|conditions|function t ime ob ke
o
nes dates constraints °
M agti;di=0 |Pr Dy=D Ti<D; n+MlogM |Ch.2;10.1
M agti;dy Pr D;=D T,SD,— nlogn+Mn |Ch.2;10.1
M agti;d;=0 |Pr ‘t;<D; nlogn+Mn |Ch.2;10.1
M agyt;;d; Pr t;<D; M2ntinS Ch.2;10.1
M tigidi= Pr T <Dy LP Ch.2;10.1
M tigid; Pr D;=D T;<D; LP Ch.2;10.1
M ti=1;[d;] [D;] t;<D; n Ch.2;10.2
M t;=1;d;=0 |T* tmax n Ch.2;5.2,5.3
M ti=1;d;=0 (T~ tmax n Ch.2;5.2,5.3
M ti=1;[d;] tmax> nlogn Ch.2;10.1
t;<D;
" ti=t;d; Lmax n3log?n |[Ch.2;10.1
M t;=1;d;=0 maxwi(Ti) n3 Ch.2;9.4
M ti=1;d;=0 TI- Limax nlogn Ch.2;8.2
M ti=1;d; T+ tmax nlogn Ch.2;8.2,8.4
M t;;d;=0 Pr tmax n Ch.2;6.2
M tiid; Pr tmax n? Ch.2;10,8.4
nM Ch.2;10.1
M ti;d;=0 Pr Lmax n? Ch.2;10.1
nM Ch.2;10,8.4
M [ti);ld;] |Pr [D;] Lmax nimax{n?,|Ch.2;8.3
logn+log
tmin}t
(to be continued)

18 Introduction
Table I.1
Number |Processing Preemption,
. L . . . Section
of times, precedence |Additional [Objective|Running f th
t
machi- release and resource|conditions|function time ob ke
nes dates constraints °°
P pri Tt Tmax n? Ch.2;6.3-6.7
nlogM Ch.2;10.1
M ti;d;=0 pri T tmax n? Ch.2;6.3-6.7
nlogM Ch.2;10,6.7
M ti; pPr;T - Limax n? Ch.2;10.1
M tiid; pr; Tt Tmax n? Ch.2;10,8.4
M tig=apg;d ;=0 - maxwi(7i) n3 Ch.2;9.4
M tig=ay;d;=0|Rs(1) rie{0,1} | tmax nd Ch.2;10.1
M tig=ay;d;=0 Eai?i nlogn Ch.2;10.2
M tiy=ay;d;=0 Eai"i nlogn Ch.2;10.2
M tg=ap;d;=0)¥23 nlogn Ch.2;10.2
M tiy=ayg;d;=0 E]Li‘p nlogn Ch.2;10.2
M tig=ay;d;=0 E¢(7i) n+MlogM |Ch.2;10.2
M tig=agid; Yt mn2Mtl ch.2:10.2
M tig=ag;di=0 max @(t;)|n? Ch.2;10.2
M tig=ay;d;=0 Lmax nlogn Ch.2;10.2
M tig=ay;d; t max nlogn Ch.2;9.3
M tyg=ay;d;=0 max «;z; ((logn/m+|Ch.2;10.2
logoymg x)
nlogn
M tig=ag;d; |Pr t distinct|Lpgx tn? Ch.2;10.2
machine
speeds apgy
M agti;d Pr Tmax n+MlogM [Ch.2;10.1
M ayti;dy Pr 7max Mnlogn+ |Ch.2;10.1
M2n

(to

be continued)

Introduction 19
Table I.1
Number [Processing| Preemption, .
. s N . . Section
of times, precedence |Additional|Objective| Running f th
machi- release |and resource|conditions|function t ime Ob ke
nes dates constraints oo
M agt;;d;=0 |Pr Lypax Mnlogn+ Ch.2;10.1
M2n
M agt;;[d;] |Pr lagl, [ti], | Lmax (n?+log Ch.2;10.1
[D;] (tg+
Dmax) -
nlogapy)x
(M2n4+n5)
M tigidg Pr tmax LP Ch.2;9.6,9.
M tig;d;=0 Pr Lpax LP Ch.2;9.7
M {D;] Zoz,-ui nlogn Ch.2;9.5
M 271 nlogn Ch.2;9.3(%*)
" Tei(ti) n3 Ch.2;9.4
M Y, nlogn Ch.2;10.1
M agt;;d;=0 |Pr Yt nlogn+Mn |Ch.2;10.1
M apt;;d;=0 |Pr (tit, o ¥) Eoz,-t, nlogn+Mn [(Ch.2;10.1
M agt;;d;=0 |Pr Z“i n3M-3 Ch.25;10.1
M tigidi=0 Yt n3 Ch.2;9.2

20 Introduction
Table I.2
Number | Processing Preemption,
. L Section
of times, precedence Additional Objective ‘ N
t
machi- release and resource conditions function Ob ke
nes dates constraints °°
1 tisd; TisDi Ch.4;4.8,6
1 ti;dg Lmax Ch.4;1.1,
1.5, 6
1 t;;d; Zmax Ch.4;1.9,6
1 tysd; Yu; Ch.4;1.9,6
1 ti;di=0 D{2D; Yui, t;<D{ |Ch.4;6
1 t;;d;=0 D;= You; Ch.4;1.1,
1.6(*)
1 t;;d;=0 Pr D;=D You; Ch.4;1.9(%*)
1 tisd; Tt; Ch.4;2.1,2.5
1 tiid; Pr Yt;,,t;<D; |[Ch.4;6
1 ti;d; D= Yz; Ch.4;2.14
1 Yz Ch.4;6(*)
1 Pr Yzg Ch.4;6(*)
1 c Yz; Ch.4;6
1 [Pr];C Yz; Ch.4;6
1 ti=1;d;=0 Pr;c Yz Ch.4;6
1 Ymin{z;,t;}|Ch.4;6(%)
1 tisd; Pr Yot Ch.4;2.1,2.6
1 ti;d; Pr D;= Yo z; Ch.4;2.14
1 ti=1;d; c Yot Ch.4;2.1,2.7
1 [til:ldq] [Pr];C Yoty Ch.4;2.15
1 ti=1;d; c D;= Yojz; Ch.4;2.14
1 [t;1;01d;1 [Pr];C D;=D Yoizg Ch.4;2.15

(to be continued)

Introduction 21
Table 1.2
Number | Processing Preemption, .
. s . . Section
of times, precedence Additional Objective f th
o €
machi- release and resource conditions function book
nes dates constraints oo
1 t;;d;=0 Yoz Ch.4;2.1,2.8
1 t;;d;=0 Pr Yoz Ch.4;2.14
1 ti;d;=0 D;= Yo,z Ch.4;6(**)
1 ti;d;=0 Pr D;= Yoz Ch.4;6(**)
1 tid; Pr Yo, t; Ch.4;2.1,2.6
1 ti;d;=0 Yo;t;, t;<D;|Ch.452.1,2.9
1 ti=1;d;=0 [o} Yoiti, ti<D;|Ch.4;2.1,2.9
1 [til;d;=0 [pr];c Yo;t;,04<D;|Ch.4;2.15
1 t;=1;d;=0 [ef E“i Ch.4;2.1,
2.10
1 [t;]5d;=0 [Pr];C Yu; Ch.4;2.15
1 Pr;c Yu; Ch.4;2.14
1 G Yz Ch.4;4.1,4.2
1 [t;]5d;=0 [Pr];G Yz Ch.4;4.7
1 Pr;G Yz Ch.4;4.7
1 G aje{A,A+1,A+2}, | Yot Ch.4;5.1,5.2
Ae{0,+1,+2 .}
1 [t;];d;=0 [Pr};G oge{A, A+1,A+2}, | Yoty Ch.4;5.5
Ae{0,+1,%2,...}
1 ti=1;d;=0 Pr;G aje{A,A+1,A+2}, | Yoyt Ch.4;5.5
Ae{0,+1,+2,...}
1 ti=1;d;=0 G D;=D, Yoz Ch.4;5.5
oz;e{A,A+1,A+2},
1 [t;];d;=0 (Pr];G D;=D, Eaizi Ch.4;5.5
oye{A, A+1,A+2},
Aef{0,+1,%2,...}
(to be continued)

22 Introduction
Table 1.2
Number | Processing Preemption,
i . . . Section
of times, precedence Additional Objective f th
machi- release and resource conditions function ob ke
nes dates constraints oo
1 ti=1;d;=0 Pr;G D;=D, Yojzg Ch.4;5.5
aje{A, A+1,A+2},
Ae{0,+1,+2,...}
1 tie{1,2}; G Yt Ch.4;5.1,5.3
d;=0
1 t;e{1,2}; Pr;G Tt Ch.4;5.5
d;=0
1 tie{1,2}); G D;=D Yz Ch.4;5.1,5.3
d;=0
1 tie{1,2}; Pr;G D= Yz, Ch.4;5.5
d;=0
1 tie{0,1}; G Te; Ch.4;5.1,5.4
d;=0
1 [t;];d;=0 [Pr];G Tt Ch.4;5.5
1 t;e{0,1}; Pr;G Yt Ch.4;5.5
d;=0
1 t;e{0,1}; G D;= Yz, Ch.4;5.5
d;=0
1 [t;l;d;=0 [Pr];G D;=D Yz; Ch.4;5.5
1 t;e{0,1}; Pr;G Di= Yz Ch.4;5.5
d;=
1 ti=1;d; G aje{0,1} Yo, t; Ch.4;5.1,5.4
1 [t;];d;=0 [Pr];G o;e{0,1} Yot Ch.4;5.5
1 Pr;G o;e{0,1} ZaiTi Ch.4;5.5
1 ti=1;d;=0 G D;=D;o;e{0,1} Yoz Ch.4;5.5
1 [t;l;d;=0 [Pr];G D;=D;o;€{0,1} Yoz Ch.4;5.5
1 0 Pr;G D;=D;o;€{0,1} Eaili Ch.4;5.5
1 Di=D<ty L|ti-D;| Ch.4;6(**)
1 D;=D Log|ti-D;| |Ch.a;6(**)

(to be

continued)

Introduction 23

Table 1.2
Number | Processing Preemption, X
i A . . Section
of times, precedence Additional Objective f th
o e
machi- release and resource conditions function book
nes dates constraints °°
2 tid D;=D T<D; Ch.4;4.8(*)
2 t;gy=ay;d;=0 [Rs(gq) Rg=1,7;ike{0,1}; TI-SD,» Ch.4;6
D;=D
2 ti;d;=0 c D;=D T;<D; Ch.4;6
2 tig;d;=0 Pr; T D;=D t;<D; Ch.4;6
2 tig;di=0 pr;T* D;=D t;<D; Ch.4;6
2 tie{1,2}; G D;=D t;<D; Ch.4;4.8
d;=0
2 tie{tP|p20}, |T~ D;=D t;<D; Ch.4;6(**)
t>1;d;=0
2 tie{t?|p20}, [T D;=D t;<D; Ch.4;6(**)
t>1;d;=0
2 ti=1;d;=0 C:Rs (1) Ry=1,r;e{0,1}; |t;<D; Ch.4;4.8
D;=D
2 [tilidi=0 [Pr];C;Rs(1)|Ry=1,r;e{0,1}; |t;<D; Ch.4;4.8
D;=D
2 t;;d;=0 tmax Ch.4;1.1,
1.2(*)
2 ti;di=0 c tmax Ch.4;6
2 tie{tP|p20}, |7 Tmax Ch.4;6(**)
t>1;d;=0
2 tie{tP|p20}, [T Tmax Ch.4;6(**)
t>1;d;=0
2 tig;d;=0 pr; T tmax Ch.4;6
2 tig;di=0 pr; Tt Tmax Ch.4;6
2 Dy=D Zmax Ch.4;1.9(*)
2 c D;=D Zmax Ch.4;6
2 D;=D Lmax Ch.4;1.9(*)

(to be continued)

24 Introduction
Table 1.2
Number | Processing Preemption,
. L . . Section
of times, precedence Additional Objective ¢ th
machi- release and resource conditions function Ob ke
o0
nes dates constraints
2 ti;d;=0 c D;=D Linax Ch.4;6
2 tig=ap;d;=0 [Rs(q) Rp=1,7i1e{0,1} |tmax Ch.4;6
2 tig=ag;d;j=0 |Rs(q) Ryg=1,7;,€{0,1} [Lpgyx Ch.4;6
D;=D
2 tig=ay;d;=0 [Rs(gq) Rp=1,7;k€{0,1};] 2max Ch.4;6
D;=D
2 tig;di=0 Pr;7 - D;=D Lmax Ch.4;6
2 tig;d;=0 Pr;T " D;=D Zmax Ch.4;6
2 tig;d;i=0 Pr;T* D;=D Linax Ch.4;6
2 tig;di=0 pr;T% D;=D Zmax Ch.4;6
2 tie{1,2}; G tmax Ch.4;4.1,4.3
d;=0
2 tie{1,2}; G D= Lipax Ch.4;4.7
d;=0
2 tie{tP|p20}, |7 D;= Lax Ch.4;6(**)
t>1;d;=0
2 tie{tP|p20}, |T* D;=D Limax Ch.4;6(**)
t>1;d;=0
2 t;e{1,2}; G D;= Zmax Ch.4;4.7
d;=0
2 tie{tP|p20}, |7 D;=D Zmax Ch.4;6(%*)
t>1;d;=0
2 tye{tP|p2o0}, |T* D= Zmax Ch.4;6(**)
t>1;d;=0
2 ti=1;d;=0 CiRs (1) Ri=1,71;€{0,1} |tmax Ch.4;2.1,2.12
2 [t;1;d;=0 [Pr];C;Rs(1)|Ry=1,7r;€{0,1} |tmax Ch.4;2.15
2 t;=1;d;=0 C;Rs(1) Ri=1,r;e{0,1} Lmax Ch.4;2.14

D;=D

(to be

continued)

Introduction 25
Table 1.2
Number | Processing Preemption, .
L . . Section
of times, precedence Additional Objective ¢ th
o e
machi- release and resource conditions function book
nes dates constraints °°
2 [t;);d;=0 [Pr};C;Rs(1)|Ry=1,7r;€{0,1} Lmax Ch.4;2.15
D;=D
2 ti=1;d;=0 C;Rs (1) Ry=1,7;€{0,1}; Zmax Ch.4;2.14
D;=D
2 [t;];d;=0 [Pr];C;Rs(1)|Ry=1,7;€{0,1}; Zmax Ch.4;2.15
- D;=D
2 ti;d;=0 D;=D Yz; Ch.4;1.9(*)
2 t;;di=0 c D;=D Yz Ch.4;6
2 tiid; Pr D;= Yz Ch.4;6
2 ty;d;=0 D= Yu; Ch.4;1.9(*)
2 ti;d;=0 c D;= Yu; Ch.4;6
2 tis;dg Pr Yu; Ch.4;6
2 Tait; Ch.4;1.1,
1.4(*)
2 ti;d;=0 pr Yo, t; Ch.4;1.9(%)
2 Pr Dy=D Yoz Ch.4;6(*)
2 c Tt Ch.4;6
2 ti;d;=0 pr;T - Le; Ch.4;6
2 t;;d;=0 pr; Tt Te; Ch.4;6
2 tisd; Pr Lt; Ch.4;6
2 ti;d;=0 pr;J - D;=D Yz, Ch.4;6
2 t;;d;=0 pr;T¥ D;=D Yz, Ch.4;6
2 tig=ay;d;=0 |Rs(q) Rg=1,7;x€{0,1};|¥Tz; Ch.4;6
D;=D
(to be continued)

26 Introduction
Table 1.2
Number| Processing Preemption, .
R - . . Section
of times, precedence Additional Objective f th
(o}
machi- release and resource conditions function b ke
(o}
nes dates constraints °
2 tig=ay;d;=0 |Rs(gq) Rp=1,r,;xe{0,1}; [Lu; Ch.4;6
D;=D
2 tig=ay;d;=0 |Rs(q) Rg=1,r;xefo,1} |¥¢; Ch.4;6
2 tie{1,2}; G D;=D Yz; Ch.4;4.7
d;=0
2 tie{tP|p20},|T" D;=D Tz, Ch.4;6(**)
t>1;d;=0
2 tie{tP|p20}, |T* D;= Yz, Ch.4;6(**)
t>1;d;=0
2 tie{1,2}; G D;=D Yu; Ch.4;4.7
d;=0
2 t;e{t?P|p20}, |7 D;=D Yu, Ch.4;6(**)
t>1;d;=0
2 tye{tP|p20}, |T D;=D Tu; Ch.4;6(**)
t>1;d;=0
2 t;e{1,2}; G Ch.4;4.1,4.4
d;=0
2 ti=1;d;=0 C;Rs(1) Ri=1,r;e{0,1} Yz, Ch.4;2.14
D;=D
2 [t;];d;=0 [Pr];C;Rs(1)|Ry=1,7;€{0,1} Yz Ch.4;2.15
D;=D
2 t;=1;d;=0 CiRs(1) Ri=1,r;e{0,1} Yu; Ch.4;2.14
D;=D
2 [t;1;d;=0 [Pr];C;Rs(1)|Ry=1,r;e{0,1} Yu; Ch.4;2.15
D;=D
2 ti=1;d;=0 C;Rs(1) Ri=1,r;e{0,1} Yt Ch.4;2.1,2.13
2 [t;];di=0 [Pr];C;Rs(1)|Ry=1,1;€{0,1} Yt Ch.4;2.15
2 t;;d;=0 tmax Lti Ch.4;1.1,
1.3(%)

(to be

continued)

Introduction 27
Table 1.2
Number| Processing Preemption,
L . . Section
of times, precedence Additional Objective ‘ h
t
machi- release and resource conditions function ob ke
nes dates constraints oo
2 ti;d;=0 D;=D Zmax L% Ch.4;1.9(**)
2 ti;d;=0 D;=D Lmax LLi Ch.4;1.9(*%*)
3 ti=1;d;=0 Rs(1) D;=D T i<D; Ch.4;4.8
3 [t;];d;=0 [Pr];Rs(1) |D;=D T <D; Ch.4;4.8
3 t;=1;d;=0 Rs(gq) Rp=1,r;xe{0,1};|t;<D; Ch.4;6
D;=D
3 [ti);d;=0 [Pr1;Rs(q) |Rg=1,r;xe{0,1}; |t sD; Ch.4;6
D;=
3 ti=1;d;=0 Rs(1) Tmax Ch.4;2.1,2.3
3 [Pr];Rs(1) tmax Ch.4;2.15
3 Rs(q) Ri=1,71;x{0,1} |tmax Ch.4;6
3 [Pr1;Rs(g) |Rg=1,r;xe{0,1} |tmax Ch.4;6
3 Rs(1) D= Lmax Ch.4;2.14
3 [Pr];Rs(1) D;= Lmax Ch.4;2.15
3 Rs(q) Rp=1,7;£€{0,1} [Lpay Ch.4;6
D;=D
3 [t;];d;=0 [Pr];Rs(gq) Rrp=1,7;ke{0,1} |Lpgyx Ch.4;6
D;=
3 t;=1;d;=0 Rs(1) D;=D Zmax Ch.4;2.14
3 [t;];d;=0 [Pr];Rs(1) |D;=D Zmax Ch.4;2.15
3 ti=1;d;=0 Rs(gq) Rg=1,7;5€{0,1};| zpax Ch.4;6
D;=
3 [t;];d;=0 {Pr]};Rs(q) Ryp=1,7;5€{0,1};| 24y Ch.456
D;=
3 ti=1;d;=0 Rs(1) D;= Yz; Ch.4;2.14

(to be

continued)

28 Introduction
Table 1.2
Number{ Processing Preemption,

s A . . Section
of times, precedence Additional Objective f th
machi- release and resource conditions function Ob ke

nes dates constraints o0

3 [t;];d;=0 [Pr];Rs(1) D;=D Yz, Ch.4;2.15

3 t;=1;d;=0 Rs(q) Rp=1,7;pe{0,1}; Ezi Ch.4;6
D;=D

3 [t;];d;= [Pr];Rs(q) Rp=1,7;,€{0,1}; Ezi Ch.4;6
D;=D

3 Rs(1) D;=D Yu; Ch.4;2.14

3 [Pr];Rs(1) D;=D Yu; Ch.4;2.15

3 Rs(q) Rg=1,7;x€{0,1}; |Lu; Ch.4;6
D;=D

3 [t;];d;=0 [Pr];Rs(q) Rp=1,7;€{0,1}; |Tu; Ch.4;6
D;=D

3 Rs(1) Te; Ch.4;2.1,2.4

3 [Prl;Rs(1) Tt Ch.4;2.15

3 ti=1;d;=0 Rs(q) Rp=1,r;rke{0,1} |XT¢; Ch.4;6

3 [t;];d;=0 [Pr];Rs(q) Rg=1,7;re{0,1} |Xt; Ch.4;6

M T T;<D; Ch.4;4.8

M [Pr); T T <D; Ch.4;4.8

M T- D;=D T <D Ch.4;6

M [Pr; T D;=D T i<D; Ch.4;6

M ti;=1;d;= T D;=D ti<D; Ch.4;6

M [t;l;d;=0 [Pr); T D;= i<D; Ch.4;6

M tie{1,t}; T- D;=D t;<D; Ch.4;6

d;=0
M tie{1,t}; Tt Di=D ti<D; Ch.4;6
d;=0

(to be

continued)

Introduction 29
Table I.2
Number | Processing Preemption, .
: P . Section
of times, precedence Additional Objective ¢ th
t
machi- release and resource conditions function Ob ke
o
nes dates constraints °
M t;=1;d;=0 PriG D;=D 1;<D; Ch.4;6
M ti;di=0 ‘tmax Ch.4;6
M T- tmax Ch.4;6
M [pr1;T - tmax Ch.4;6
M D;=D Linax Ch.4;6
M Tt Limax Ch.4;3.1,3.3
M [Pr]; T Lmax Ch.4;3.4
M ti=1;d; T D;=D Lmax Ch.4;6
M [tilsldg] [Pr);T- D;= Lmax Ch.4;6
M ti=1;d;= T D;=D Lmax Ch.4;6
M [t;];d;=0 (pr;T D;=D Lmax Ch.4;6
M tie{i,t}; I~ D;=D Lmax Ch.4;6
d;=
M tie{l,t}; Tt D;=D Lmax Ch.4;6
d;=
M t;;d;=0 D;=D Zmax Ch.4;6
M ti=1;d;=0 T+ Zmax Ch.4;3.4
M [ty];di=0 [Pr1;T* Zmax Ch.4;3.4
M ti=1;d;=0 T D;=D Zmax Ch.4;6
M [ti]l;d;=0 rpr); T D;=D Zmax Ch.4;6
M tief{l,t}; T- D;=D Zmax Ch.4;6
d;=0
M tie{1,t}; T D;=D Zmax Ch.4;6
d;=0
(to be continued)

30 Introduction

Table 1.2

Number| Processing Preemption,

: L . . Section

of times, precedence Additional Objective f th

machi- release and resource conditions function ob ke

(o]
nes dates constraints °
M ti=1;d; T- D;=D Zmax Ch.4;6
M [t;1;0d;] [pPr];T ™ D;= Zmax Ch.4;6
M ti=1;d;=0 T tmax Ch.4;6
M [t;1;d;=0 (Pr1;T Tmax Ch.4;6
M tie{l,t}; T- tmax Ch.4;6
d;=0
M tie{l,t}; T+ tmax Ch.4;6
d;=0

M ti=1;d;=0 PriG Tmax Ch.4;6
M t Pr;G D;=D Lmax Ch.4;6
M t Pr;G D;=D Zmax Ch.4;6
M ti;d;=0 D;=D Yz; Ch.4;6
M t;=1;d;=0 T+ Yz; Ch.4;3.4
M [t;];d;=0 [Pr);T* Ezz' Ch.4;3.4
M ti=1;d; T- D;=D Yz, Ch.4;6
M [etilsldg) [pPr];7" D;=D Lz, Ch.4;6
M D;=D Yu; Ch.4;6
M Pr Yu; Ch.4;6(**)
M Pr Yu; Ch.4;6
M T+ Tu; Ch.4;3.4
M [pr1; 7 Yu; Ch.4;3.4
M ti=1;d; 7" D;=D Tu; Ch.4;6
M [ti];0d;] [Pr; T~ D;=D Yu, Ch.4;6
M ti=1;d;=0 T D;= Yz, Ch.4;6

(to be

continued)

Introduction 31
Table 1.2
Number Processing Preemption, .
) . i . Section
of times, precedence Additional Objective ¢ th
machi- release and resource conditions function Ob ke
nes dates constraints o0
M [t;l;d;=0 [pr];T D= Yz; Ch.4;6
M tie{l,t}; T~ D;=D Yz, Ch.4;6
d;=0
M tie{1,t}; T+ D;= Yz, Ch.4;6
d;=0
M Pr;G D;=D Yz Ch.4;6
M T D;= Yu; Ch.4;6
M [pr T D;=D Yu; Ch.4;6
M T~ D;=D Yu; Ch.4;6
M Tt D;=D Yu; Ch.4;6
M Pr;G D;= Yu; Ch.4;6
M G Tt Ch.4;4.1.4.6
M G Tt; Ch.4;4.7
M machine speedsy E?, Ch.4;6(**)
M machine speedsy |} z; Ch.4;6(**)
D;=D
M ti5d;i=0 M Ch.4;6(**)
T E a;)x
Jj=1 teN
J
) Nti)
1€]
M M=M(N,D) M;t;<D Ch.4;1.1,

7:;6

32 Introduction
Table 1.3
Num-{| Proces- Preemp- Sec-
ber sing tion; re- [Additi-|Objec— Running Per formance tion
of times; source and onal tive of
ma-— release|precedence|condi— |func— t ime guarantee the
chi- dates constra- tions tion book
nes ints
1 t;id; Lmax n2logn (FO-F*) /(F*+ A.10
. Dmax) < min{1/2,
tmax/ tx, 1-
2tmin/ tx}
. 2 0 * *
1 t;;dy Lpax n“logn (F'-F*) [(F*+ A.10
Dpax) < 1/3
2 |t;;d;=0 tmax |7 A<1/11 A2
2 ti=ay; G Tmax n? A < 1-minf{ay, A.5
d;=0 ag}/max{a;,az}
2 |tig;di=0 Tmax |7 A<1/2 A.6
2 |t;g;di=0 tmax |nlogn A< (Vs-1)/2 A6
Mo |ti;d;=0 tmax |7 A<1 - 1/M A2
M |tyidi=0 tmax |nlogn A< 1/3 - 1/(3m)|Aa.2
" k
M tmax nlogn+ A< p + 1/2 A.2
knlogM 1/7,M=2
2/13,M=3
p=43/17 ,Me{4,5,
6,7}
1/5,M28
Mo |t;idi=0 Tmax |mlogn+ A< 11/61 + 1/25[a.2
knlogM
- klogk
M tmax | (kn)" °F A< 1/k +1/2F A2
M |t;;d;=0 tmax |mlogn A <37/160 A2
M |t;id;i=o0 tmax |n(Mi+logn) |a < 35/192 A2
M t;;d;=0 ?max nlogn FO_F* < (1~ A.2
1/M)tpmax
(to be continued)

Introduction 33
Table 1.3
Num-| Proces~ Preemp- Sec-
ber sing tion; re- |Additi-|Objec— Running Performance tion
of times; source and| omnal tive of
ma-— release|precedence|condi— |func— t ime guarantee the
chi- dates constra- tions tion book
nes ints
M t;sd; 7"“11 nlogn FO_p* < (2- A.2
]/M)Lmax
Mo |t;d; tmax |nlogn A<min {(2M-1)/M, |A.2
(2M-1) typax/ty}
M |t;;d;=0 |G tmax |72 A< 1-1/M A.3
Mo |ty d;=0 (T- Tmax |nlogn FO-F* < (1- A3
1/M)t max
M t;;d;=0 (T~ tmax nlogn A< 1-2/(M+1) A.3
Moty d;=0 |T7 tmex |mlogn A< 1-2/(M+1) A.3
M |t;;d;=0 |C tmax |nlogn A< 2/3 A.3
Moo ti=1; G tmax A3
1 =
d;=0 A< /3, M=2
1-1/M, M23
M tie{l, G tmax 1/3, t=2 A.3
t};d;=0 a s 1/2-1/(2t),
t>3
Mo |t;=1, G tmax |T2 A< 1-2/M A.3
d;=0
M |t;id;=0 |Pr;c tmax |2 A< 1-2/M A3
M tiapy; ?,"ax nlogM A. 4
5- =
d;= A< (Vs-1)/2, M=2
VaM-2/2,M23
M tyay; tmax Afamg x/Amin A.4
di=0 1/ (aminZlay) ™)
Mo tyay; Tmax |mlogM asVi —1vout/ 4y |Aala
d;=0
1

(to

be continued)

34 Introduction

Table .3
Num- Proces- Preemp- Sec-
ber sing tion; re- |Additi-|Objec— Running Performance tion
of times; source and onal tive of
ma— release|precedence|condi— |func— t ime guarantee the
chi- dates constra- tions tion book
nes ints
Mo |tiap; T, logn A4
i0H; max nlog (‘/—1_‘7‘3)/‘%M=2
d;= As
1-2/(M+1),M>3
M tiapy; Tmax nlogn A<l -2/ (M+1) A4
d;=0
M tiay; Tmax nlogn AT /12 A.4
d;=0
M t; H T, nlogn+ A4
dzaHv max knli M (‘/17_3)/4+
L & 172k, m=3
A 1/2-1/(2M)+
- 1/2", Me{4,5}
2/5+1/2% M>6
M t;ay; 7,1“1, nlogn+ ASI—I/M+1/2k A.4
d;= knlogM
M tiapy; 7max nlogn+M A<l /2 A.4
d;=
: ; 1; 7 nlogM A.4
M tiag; am< max g (v“ 1)/2,M=2
d;= apg=1, A<
H=M 2-4/(M+1),M>3
M tiay; ay<l; 7"“1, nlogn 7 3)/4,M=2|A.4
di= ag=1, Pavs 1/2»1/(2M),
H=M M>3
M t;ay; ay<l; tmax nlogn+ W 2)/2+1/2 -4
d;= ag=1, knlogM M2
pay
H= (Vi7-3) /4
+1/2 , M>3
M tiay; ay<l; 7",“, nlogn+ 7 3)/4 A.4
d;= ag=1, knlogM AL +1/2 , M=2
f=u 2—1+1/2 , M>3

(to be continued)

Introduction 35
Table 1.3
Num-| Proces- Preemp- Sec~
ber sing tion; re- |Additi-|Objec— Running Performance tion
of times; source and| onal tive of
ma— release|precedence|condi— |func— t ime guarantee the
chi- dates constra- tions tion book
nes ints
. . . 1 ‘/'—‘ k
M tiay; ay>1; tmax nlogn+ A<(V17-3)/4+1/2"[A. 4
d;=0 ay=1, knlogM
HzM
M t;ay; ag=1, ?max nlogn (May+1-3ay)/ |A.4
d;=0 H=zM (2apy),ay<1/2;
(2May+1-day)/

A< (zay+1),
ayel1/2,1];
1/ay+1/(May+
l-ay),ay>1

" 2 M .
M t;,ay; G t n _ .5
i%H max A<1-1/ ¥ (a7t
d;=0 H=1
" 2
Mo |tiay; Pr;G tmax |7 asVsm/2 -1 A.s
d;=0
M tiay; Pr;G ?max AsVM -1/2 A.S
d;=0
M tiay; Pr;G ajfay Tmax rz2 (M-1)/2 A.5
E max{a,/
d;=0 < <ay H=1
a2H-1:92/azn}
+a1/aM—1,

A<4 M -o0dd;

M/2

E max{a;/

H=1

a2H-1,02/a2h}

-1,M-even

M ti=apy; Rs(1) aj<ay Tmax nlogn (M-1)/2 A.5
Y max{a;/
d;=0 < <ay H=1

a2H-1,92/02y}

+a1/am—1,

A{ M -o0dd;

M/2

Y max{a;/
H=1
agH-1,22/a2n}
\—I,M—even

(to be continued)

36 Introduction
Table 1.3
Num- Proces-~ Preemp- Sec-
ber sing tion; re- [Additi-[Objec— Running Performance tion
of times; source and| onal tive of
ma— release|precedence|condi— | func— t ime guarantee the
chi- dates constra- tions tion book
nes ints
M | tigid;=0 Tmax |Mnlogn A<V eMV3 [Vl A.6
M tig;d;=0 ?max Mnlogn ASZVFI—I A.6
M| tigsd,=0 Tmax |MMiMnlogn |a<V2M+1/VeM A6
M| tigidi=0 tmax |Mn? AsM -1 A.6
M| tigsdi=0 Tmax | P(n,M) A<t A6
M | tigid;=0|G tmax |Mnin? A<M - 1 A6
M t;;d;=0 |Rs(q) tmax nlogn A<min{(M-1)/2, AT
g+1-(2¢+1)/M}
M| ty=1; Rs(1) tmax |nlogn AS17/10-12/(5M)+|A.7
d;=0 2 /| F*
M i=1; Rs(1) tmax |nlogn As1-2/M+1 [F* AT
d;=0
M ti=1; Rs(q) 7,,“” qn2+n5/2 Aer/21-1 AT
d;=0
M t;=1; Rs(gq) E?, qn+n5/2 AS[‘M/Z-]—I AT
d;=0
M |t;;d;=0 |G;Rs(q) tmax |n? A<M - 1 A.8
M |t;;di=0 |G;Rs(1) Tmax |n? A<M -1 A.8
M| t=1; G;Rs(q) max 7| tmax A<min{M-1,q+1- |A.8
d;=0 7 3 (g+1)/M}
=L.rij
J=1
M| =15 G;Rs(q) M2n tmax |n? A<q (1+F*) /2 A9
d;=0
Mo |t=1; G;Rs(q) M2n tmax |n? A<17q/10 A9
;=0 L

(to be continued)

Introduction 37
Table 1.3
Num- Proces- Preemp- Sec-
ber sing tion; re- |Additi-|Objec— Running Performance tion
of times; source and| onal tive of
ma-— release|precedence|condi— func— t ime guarantee the
chi- dates constra- |tions tion book
nes ints
Mo |tg=1; G;Rs(q) Mzn; tmax Asgq A9
d;=0 max r;;j
Jj g
=j;1rlj
M ti=1; Rs(q) M>n; Tm“ nlogM A<q-3/10+5/(2F*)|A.9
d;=0
M ti=1; Rs(q) M2n; ?max ng+nlogn A<q-2/3 A.9
d;=0
Mo |t=1; Rs(1) M>n; tmax |nlogM A<T/10+1/F* A9
d;=
Mo |t=1; Rs(1) M2n; tmax |n? A<1/3+1/F* A.9
d;=
|
M t;;d;=0 |Rs(q) M2n; 7max nlogM A<Lq A.9
M |t;id;=0 Lmax |nlogn FO-F*<(2M A1l
’”tmax/M
M ti;d;i=0 Lmax logn (FO-F*)/ (F*+ A 11
Dmax) < 1-1/M
Mo |tiidy Lymax |mlogn (FO-F*)/(F*+ AL 11
Dpax) < min{4/3-
1/(3M)-Mtpin/ty,
1/3-1/(3M)-
~M(Dmox-DPmin/tx}
M ti=t; Lmax nlogn FO-F*<t A.11
d;=0
Mo (tiidi=0 Yoa;t; |[nlogn A<(M-1)/(2M) A12
M lt;id;=o0 Ta;t; |nlogn As(Vz-1)/2 A 12
M t;;d;=0 Tei/ nlogn A<(M-1)/(M+1) A.12
tmax

(to be continued)

38 Introduction
Table 1.3
Num- Proces- Preemp- Sec-
ber sing tion; re- |Additi-|Objec— Running Performance tion
of times; source and| onal tive of
ma— release| precedence|condi— func— time guarantee the
chi- dates constra- tions tion book
nes ints
2
M ti;d;=0 YT nlogn A<1/24 A.12
Mo |t;;d;=0 M=M(N, |M;t;<D|nlogM A<T/10+1/F* Al
D)
M lt;;d=0 M=M(N, |M;t;<D|nlogn A<2/9+4/F* Al
D)
1 Yo (1-|n?/e Ase A.13
u;) —
max
1 ti;dg=0 |T D;=D Yo;(1-|n?/e Ase A.13
u;) —>
max
1 t;;d;=0 Yoju; n?logn+n?/e|Ase A.13
1 t;;dy dj<dj= Youjg n2logn+n?/e|ase A.13
DiSDj
1 tiid; Lmax |n(1/€)P+ (FO-F*)/(F*+ A 13
nlogn; Dpax) <€
p=16/e2+8/¢
1 tiidg Lmax |2P(n/e)3*P | (FO-F*)/(F*+ A.13
p=4/¢€ Dpax) <€
1 Ezi n7/s A<e A.13
1 Yz, n®/e+n%logn|ase A.13
1 t;;d;=0 Yo,;min nslogn+n3/5 Ax<e A.13
{ti,
z;}
1 |t;;d;=0 Y min [n2/¢ Ase A.13
{ti,
zi}
2 |t;3d;=0 ti<D; |n/e (t;(s%)-D;)/Di<e|A. 13
2 t;;d;=0 ?max min{n/e,n+ |A<e A.13

1/e2}

(to be continued)

Introduction 39
Table I.3
Num- Proces- Preemp- Sec-
ber sing tion; re- |Additi-|{Objec— Running Performance tion
of times; source and onal tive of
ma-— release|{precedence|condi— |func— time guarantee the
chi- dates constra- tions tion book
nes ints
2 tiay; Tmaz min{n/e,n+ |A<e A.13
d;=0 1/¢%}
2 | tig;d;i=0 tmax |n%le Ase A.13
2 t;;d;=0 Eo‘i-‘_i n?/e A<e A.13
2 |tiidi= D;=D Yz, nd/e (FO-F*)/(F*+ A.13
Dmax)<e
n 1 0
2 t;;d;=0 Lmax < (log +n) | (F -F*)/(F*+ A.13
Dpax)<e
2 tiay; Pr Yoju; (P(n,1/¢€) Axe A.13
d;=0
M |t;;d;=0 tmax | n2M 17eM-1 | Ace A.13
M t;;d;=0 tmax nM/eM_1 A<e A.13
Ty<D
1
Mo |t;;d;=0 Lmax |(log_ +n)x (FO-F*)/(F*+ A.13
"M/EM—I Dmqx) <€
M |t;id;=0 Tmax X|nM/eM Axe A.13
Loty
M| t;id;=0 YTh nMyeM Ase A.13
M |t;id;=0 Ti<p; |aMyeM-1 (t;(s%)-D;)/Dj<e|A.13
M tiay; 7,,”“‘ nzm/em_l As<e A.13
di=
- 2
M| tiay; tmax |Mn3%t10/€ Ase A.13
d;=
M tiay; Eo:,-?,- n2M-2,M-1 | Ace A.13
d;=
M | t;;di=0 Yo;t; [nM/eM Ase A.13
M | ti;d;=0 Yot |[n2M-17eM-1 | Ace A.13

CHAPTER 1

ELEMENTS OF GRAPH THEORY AND
COMPUTATIONAL COMPLEXITY OF ALGORITHMS

This chapter is of auxiliary nature. It contains a number of facts from various areas
of modern discrete mathematics. This information is widely used in further consideration.

Section 1 presents basic concepts of binary relations theory and graph theory. Various
graph representations are discussed, and “effective” techniques for implementing some
operations on graphs are described.

Section 2 considers a specific data structure, called balanced 2-3 trees. This
structure is widely used in constructing fast algorithms for solving various problems
discussed in Chapters 2 and 3.

The main concepts of the theory of the polynomial reducibility of discrete problems and
the computational complexity of algorithms are introduced in Section 3. It should be noted
that, unlike the first two sections, understanding Section 3 requires some preliminary
background. The material in this section is used mainly in Chapter 4. To be able to follow
the rest of the book it suffices to be aware of the concept of the running time of an

algorithm.

1. Sets, Orders, Graphs

This section presents some facts from set theory and graph theory which are used in
further considerations. We assume that the reader is familiar with such concepts as a set,

a subset, union, intersection, difference of sets, etc.

1.1. In the following, only finite sets (i.e. the sets with a finite number of

elements) are considered.

40

Elements of Graph Theory and Computational Complexity 41

The Cartesian product of two non-empty sets X and Y (notation: XxY) is the set of all
ordered pairs (x, y) such that x € X, y € Y. A subset U € XxY is called a binary relation
between X and Y. A subset U € XxX is called a binary relation over X. We write xUy if and
only if (x, y) € U. The binary relation U™! is the inverse of U: (x, y) € U™ if and only
if (y, x) e U.

A binary relation U defined over set X is:

(¢) Transitive if for any x, y, z in X, such that xUy and yUz, the relation xUz
holds.
(i) Reflexive if for any x € X the relation xUx holds;
(118) Antireflexive if the relation xUx does not hold for any x € X;
() Symmetric if for any x, y in X, such that xUy, the relation yUx holds;
(v) Asymmetric if for any x, y of X at least one of the relations xUy or yUx does not
hold;
(vi) Antisymmetric if for any x, y of X such that if xUy and yUx hold simultaneously,
it follows that x = y.

(vit) Total if for any x, y, in X, x # y, at least, one of the relations xUy and yUx
holds.

A transitive relation defined over set X is called a pseudo-order relation (or
a pseudo-order). In this case, set X is said to be pseudo-ordered.

A transitive and reflexive relation defined over set X is called a quasi-order relation
(or a quasi-order). In this case, set X is said to be quasi-ordered.

A transitive and antireflexive relation defined over set X is called a strict order
relation (or a strict order). In this case, set X is said to be strictly ordered.

A transitive, reflexive and antisymmetric relation defined over set X is called a
non-strict order relation (or a non-strict order). In this case, set X is said to be
non-strictly ordered.

A (pseudo-, quasi-, strictly, or non-strictly ordered) set X is called total if the
binary relation defined over it is total.

A strictly ordered set X is said to be linearly ordered if the order is total.
Otherwise, an ordered set X is called partially ordered.

Let X be a set of n-dimensional vectors x = (x;, x,,..., x,), where x; are real
numbers. We define the relation > over set X as follows: for x, y € X, x > y, if x; > y;,

1=1, 2,..., n

1.2. The pair consisting of a set X and a binary relation U defined over X is called a

42 Chapter 1

directed graph (notation: G = (X, U)). The elements of set X are called vertices of graph
G, while the pairs (x, y) € U are called arcs. For an arc (x, y), the vertex x is its
beginning, and the vertex y is its end. In this case, an arc (x, y) is said to leave the
vertex x and to enter the vertex y. An arc (x, x) is called a loop.

If O is a set of non-ordered pairs of the elements of set X, then the pair G = (X, (7)
is called a non-directed graph. In this case, the pairs (x, y) € 0 are called edges of
graph é.

A graph G = (X, U) is called a complete graph if (x, y) € U for all x,y€ X, x #y.

Along with the notation G = (X, U) for directed graphs and G = (X, l7) for non-directed
graphs, we use the notation G = (X, 17) in the formulation of statements which hold for
both directed and non-directed graphs.

If (x,y) e 17, the vertices x and y are said to be adjacent, and the arc (edge) (x, y)
is said to be incident to the vertices x and y.

Two graphs G = (X, 17) and G = (X7, 17') are called isomorphic if there exists a one-
to-one mapping ¢ of the set X into the set X" such that (x, y) € U if and only if (p(x)),
wly)) € 17', where ¢(x) and ¢(y) are the images of the elements x and y in mapping ¢. In
this case, mapping ¢ is called an isomorphism of graph G onto graph G

A graph G = (X, U’) is called a subgraph of a graph G = (X, U) if X’ c X and
(x, y) € U implies that (x, y) € U. If, for any x, y € X, it follows from (x, y) € U
that (x, y) € 17', then G’ is called an induced subgraph.

A route in a graph G = (X, /) is a sequence of vertices Xy, Xg,..., X, such that either
(Xgy Xg41) € U or (Xks1, Xx) € 17, k =1, 2,..., r—1. In this case, the vertices x; and x,
are said to be connected by a route. 4 path in a directed graph G = (X, U) is a sequence of
arcs of the form (xy, x3), (%3, X3)y..., (Xp_1, %), or, equivalently, a route x;, x,,...,
x, such that (xg, xz,1) € U, k = 1, 2,..., r—1. Here x, is the beginning and x, is the end
of the path. The number r is called the length of a path. In what follows, by a “path” is
meant a simple path, i.e., a path in which all vertices are distinct. A circuit is a path
where x; = x,.

In a directed graph G, a vertex x is called a predecessor of a vertex vy, if there is a
path from x to y in G. In this case, vertex y is called a successor of vertex x. If G
contains a circuit, then the same vertex x may be a predecessor and a successor of some
vertex y at the same time. A vertex x of the directed graph G = (X, U) is called a direct
predecessor of a vertex y if (x, y) € U and G has no path from x to y without the arc
(x, y). In this case, vertex y is called a direct successor of vertex x. Let Bg(x) (or

Ag(x), respectively) denote the set of all predecessors (successors) of vertex x in graph

Elements of Graph Theory and Computational Complexity 43

G. The set of all direct predecessors (direct successors) of vertex x is denoted by BZ(x)
(or by A%(x)). Sometimes, if no confusion arises, the index G is omitted.

A connected component of a graph G = (X, U) is its induced subgraph such that, if it
contains a vertex x, it does not contain a vertex which is not connected with x by a
route. The connected components of a graph G determine a partition of set X into subsets.
The graph consisting of a single connected component is called connected.

The number of arcs (edges) incident to a vertex in a graph is the degree of a vertex.
If a graph is directed, then the number of arcs leaving (entering) a vertex is called the
outdegree (the indegree, respectively) of this vertex.

A vertex of a directed graph is called: (i) initial, if its indegree is zero;
(it) terminal or a leaf, if its outdegree is equal to zero; or (i) isolated, if its
degree is zero. The vertices which are not terminal are called intermediate. The adjacency
matrix of a graph G = (X, U) is a square (0,1)-matrix [m;;] of order | X| such that m;; = 1

if and only if (x;, x;) € u.

1.3. In what follows, we mainly consider directed circuit-free graphs.

The vertices of any circuit-free graph G = (X, U) can be distributed by ranks (levels).
The first rank includes all initial vertices. Eliminating the vertices of the first rank
from the graph (together with the incident arcs) yields some subgraph. If this subgraph is
not empty, assign the set of all its initial vertices to the second rank of the original
graph. The procedure is repeated until each vertex of the original graph is given a rank.
If the graph is given by its adjacency matrix, then distributing of its vertices by ranks
can be implemented in at most O(|X|2) time."

The height of a vertex of a circuit-free directed graph is the length of the longest
path from x to a leaf. The height of a terminal vertex is 1.

A chain C = (x;, X,,..., x,) is a directed graph G = (X, U) such that X = {x;, x,,...,
X}, U = {(x1, %x3), (X3, X3),n (Xpoy, Xn)}. The vertex x; is the beginning and x, is
the end of chain C. In a chain C, a vertex x is said to be on the left of a vertex y if
the path from x, to x is shorter than that from x, to y.

The chain C* = (xy, X;, Xgy..., X,) 1s said to be obtained from a chain C = (x,
Xg,..., Xp) by joining the vertex x, from the left. The operation of joining a vertex from

the right is defined similarly. If C; = (x;, %3,..., %), C; = (¥, ¥Y2,---, ¥s) are such

1

Here and throughout the book O(f(x)) denotes a function g(x) for which there exists a
9(x) _ .
f(x)

constant C such that lim sup
X0

44 Chapter 1

chains that the sets of their vertices do not intersect, then (C;, C,) denotes the chain
C = (X1, X500y Xps V15 Yaseees Vo)

A graph is called an outtree (denoted by 7*) if it is connected, has a single initial
vertex (called a root), and any other vertex has exactly one direct predecessor.

A subtree with a root x of an outtree 7+ is a subgraph of the graph 7+ induced by the
vertex x and by all its successors. For a vertex x of an outtree 7+, the subtrees with
the roots that are the direct successors of vertex x are called subtrees of vertex x.

A graph is called an intree (denoted by 7~) if the opposite orientation of all its arcs
gives an outtree. A subtree with a root x of an intree 7, as well as subtrees of a vertex
x of an intree 7~ are defined analogously.

By definition, an isolated vertex is an outtree and an intree at the same time.

A graph 7 will be called a tree-like graph (or a forest) if each of its connected
components is either an outtree or an intree).

An arc (x, y) of a graph is transitive if in this graph there is a path which goes from
vertex x to vertex y and does not contain the arc (x, ¥). A graph G is transitive if, for
any of its vertices x, y such that x € Bg(y), graph G contains arc (x, y). The transitive
graph G = (X, U) is called a transitive closure of a graph G = (X, U) if U ¢ U and any arc
(x, y) € U\U is transitive.

A graph G = (X, U) is called a parallel composition of graphs G, = (X,, Y;) and
G, = (X,, Y,) such that X; n X, = @, if X = X; U X, and U = U, u U,. This is denoted by
G = G,pG,.

A graph G = (X, U) is a series composition of graphs G, = (X;, U;) and G, = (X,, U,)
such that X; N X, = @, if X = X; U X, and U = U, u U, U X{ x X;, where X{ is the set of
all terminal vertices of the graph G, and X, is the set of all initial vertices of the
graph G,. This is denoted by G = G}5G,.

A graph G is said to be obtained by implementing parallel or series composition of
graphs G, and G, if G = G pG, or G = G,5G,, respectively.

Let G! denote the graph obtained from a graph G by the successive removal of all
transitive arcs of G. A graph G is called series-parallel if the graph G' can be obtained
by successive implementation of series and parallel compositions of single-vertex graphs
¢ = (xi, @), x; € X, i =1, 2,..., |X|. A single-vertex graph is series-parallel by
definition. It can be easily seen that any tree-like graph is series-parallel.

A graph G is called decomposable if the graph G' can be represented as a series or
parallel composition of two graphs. If otherwise, G is called non-decomposable. Let the

graphs G,, G,,..., G,, be such that the graph G can be obtained from them by successive

Elements of Graph Theory and Computational Complexity 45

implementation of m -1 operations of series and parallel composition. Then these graphs are
called decomposition components of G, and a so-called decomposition tree of the graph G
can be constructed which shows how G can be obtained from G,, G,,..., G, by successive
implementation of composition operations.

A decomposition tree T(G) of a graph G is a binary outtree (each intermediate vertex
has exactly two direct successors) with m terminal vertices. The graphs G,, G,,..., G, are
associated with the terminal vertices. The intermediate vertices called operational, and
these are associated with the indices (s or p) of the operations of series or parallel
composition, respectively. A decomposition tree T(G) of a graph G is defined iteratively.
Suppose that either G = G{sG; or G = GipGj, and the trees T(G;) and T(G;) have been
constructed. Then construct a new vertex O to be the direct predecessor of the roots of
the trees T(G;) and T(G;). The vertex O is given the index s (if G = G{sG;) or p (if
G = G{pGj;). The vertex O is now the root of the constructed tree T(G). If either G; or G,
is a non-decomposable graph, its decomposition tree is assumed to consist of a single
vertex associated with the corresponding graph Gi or Gj, respectively.

Since the operation of series composition is not commutative (G{sG; # G;sGy), the
method of representing a tree T(G) should be specified. We assume that tree T(G) is
embedded in the plane such that the vertices of one rank, and only these, are placed at
the same horizontal level. The root of the tree T(Gj) is assumed to be on the right of the
root of the tree T(G;) with respect to the observer located at the operational vertex O.

Note that any decomposition tree with m terminal vertices has exactly m—1 operational
vertices. This can be easily proved by induction with respect to m.

In what follows, we do not distinguish between the terminal vertices of a tree T(G) and
the corresponding decomposition components of graph G, since no confusion arises.

Let us consider the procedure for reconstructing the graph G by its decomposition tree
T(G). Find, in T(G), an operation vertex O adjacent to two terminal vertices G; and Gj.
Remove the vertices G; and G, with the incident arcs from T(G), and associate the vertex O
either with G{sG, or with G{pG; depending on what operational index is assigned to the
vertex O. The resulting decomposition tree T'(G) of graph G has one terminal vertex less
than the previous one. Repeat the described procedure until the decomposition tree is
found that consists of a single vertex. The graph corresponding to this vertex is,
in fact, the graph G.

In the following, a decomposition tree T(G) of a graph G is not distinguished from a
decomposition tree of the graph G. It is obvious that the graph reconstructed by the tree

T(G) can differ from the graph G by the transitive arcs. If G = G?, then G is uniquely

46 Chapter 1

reconstructed by T(G).

A decomposition tree T(G) of a graph G is called complete if non-decomposable graphs
correspond to all its terminal vertices.

The definition of a series-parallel graph implies that single-vertex graphs (any of
which can be just considered as an element of set X) correspond to the terminal vertices
of its complete decomposition tree. Note that the construction of the complete
decomposition tree of a series-parallel graph G requires at most O(|X|2) time (see, e.g.,
[429, 430]).

Figure 1.1 gives an example of series-parallel graph G and its complete decomposition
tree T(G).

AN OUIVERN
N N
<4 L "‘/2?:./@\}. S BN
@/7 14.‘/ 15
11 @12 B./ \@
/
11./@1\2‘. -

Fig. 1.1

1.4. Let a binary relation U” ¢ XxX be specified over the set X. The directed graph
G" = (X, U) is called the graph of this relation. If U’ is a transitive relation, then
the graph G = (X, U) obtained from the graph G” after elimination of all its transitive
arcs is called a reduction graph of the relation U’

If U” is a strict order relation, then the graph G’ has neither a loop nor a circuit.
If U’ is a non-strict order relation, then the graph G’ has no circuit but contains loops
(x, x) for all x € X. The graph G’ of a quasi-order includes loops (x, x) for all x € X
and may have circuits. The graph G” of a pseudo-order may contain circuits and loops
(x, x) but not necessarily for all x € X. In any case, the graph G’ is transitively
closed, i.e., for a path from a vertex x to a vertex y, it also contains the arc (x, y).

Let a total pseudo-order relation — be defined over set X. An element x° € X is called
a minimal element of set X (with respect to —), if the relation x — x° holds for any

0

x € X. An element x° € X is a maximal element of X, if xX® — x holds for any x e X.

If G is the reduction graph of a total pseudo-order relation and x° is a minimal (or a

Elements of Graph Theory and Computational Complexity 47

maximal) element of set X with respect to =, then, for any vertex x € X, G contains a

0 € X may be

path from x to x° (or from x° to x). It is clear that the same element x
minimal and maximal at the same time. In particular, if G is a circuit, then any element
x € X is both minimal and maximal.

Let a strict order relation — be defined over set X, and G = (X, U) be the reduction
graph of this relation. It is obvious that, if x — y, then G contains a path from the
vertex x to the vertex y. If (x, y) € U, then we use notation x >» y. In this case, we
have x — y and no z € X exists such that x — z and z — y. If none of the relations
x — y and y — x holds (i.e., there is neither path from x to y nor from y to x in G),
then we write x ~ y and call the elements x and y incomparable.

In what follows, the notation x S Vv, X S y, and x g y is frequently used along with
x — vy, x >> ¥y, and x ~ y, respectively. Here, the index G shows that the graph G is the
reduction graph of the relation —.

It is clear that y € Ag(x) if and only if x — y, and y € Bg(x) if and only if y — x.
Similarly, y € A%(x) if and only if x S y, and y € B&(x) if and only if y S x. We use
the notation Eg(x) to denote the set of all those y € X for which x g y. If no confusion
arises, the index G is omitted.

If a graph G is given by its adjacency matrix, then finding the set Az(x) (or the set
Bg(x)) requires at most O(|X|2) time. To see this, observe that to obtain the set Ag(x)
(or the set Bg(x)), it is sufficient to make at most |X| steps. In the first step, direct
successors (or direct predecessors) of the vertex x are to be found. In any subsequent
step, all direct successors (or direct predecessors) of each vertex determined in the
previous step are to be found. In order to find all direct successors (or direct
predecessors) of a vertex, it is necessary to find all unit entries in the corresponding
row (or column) of the adjacency matrix. Finding the unit entries requires O(|X|) time.

0 € X is called a minimal element of set X (with respect to —) if there is

An element x
no x € X such that x — x. An element x° € X is a maximal element of set X if there is no
x € X such that x — x. In the graph G, the terminal vertices correspond to the minimal
elements, while the initial vertices correspond to the maximal elements. It is evident
that the element corresponding to an isolated vertex of the graph G is both minimal and
maximal. We denote the set of all minimal (maximal) elements of set X by X~ (or X*,
respectively).

In many situations, it is convenient to represent the reduction graph G = (X, U) of a

strict order relation —> by the lists of predecessors and/or successors of its vertices.

In particular, this representation allows us to find the set of all minimal (maximal)

48 Chapter 1

elements of set X with respect to — in at most O('X]) time. Removing a certain minimal
(maximal) element from X also requires at most O(| X]|) time.

If graph G is given by the list of predecessors, then its vertices are numbered by the
integers 1, 2,..., |X|, and two one-dimensional arrays Qp and Sg are constructed. The

array Qp contains |X| elements, its kth element equal b; shows how many direct

1X|
predecessors the vertex k has. The array Sp consists of Y b; elements, and its positions
=1

-1 k-1 k
I);lbl«}—l, I§1b1+2,..., I;b, contain the numbers of direct predecessors of the vertex k

taken in an arbitrary order.
If a graph G is given by the list of successors, the arrays Q4 and S, are constructed.

The kth position of the array Q4 is equal to the number a; = |A%(k)|, while the positions
k-1 k-1 k

Ya+l, ¥ a+2,.., T q of the array S, contain the numbers of the direct successors of
1=1 1=1 1=1

the vertex k.

For finding the set of all minimal (maximal) elements of set X, it suffices to know
array Oy (or Q). An element k is minimal (maximal) if and only if the kth position of
array Q4 (or of array Qg) contains zero.

Let the elements of X (as well as vertices of G) be numbered by the integers 1, 2,...,
|X|, and an element k be a minimal element of set X. To remove this element from X

(maintaining the adopted representation form of the remaining subset), it suffices to know

the arrays Op and Sp as well as the array Q4. In this case, find the set of all direct
k-1 k-1 k

predecessors of a kth element by scanning the positions ¥ b+1, T b+2,..., Y b of
1=1 1=1 1=1

the array Sp, and, for each found element j, decrease the number a; located in the jth
position of the array Q4 by 1. Mark the element k, for example, by placing the number (-1)
in the kth position of the array Q4. Removing a certain maximal element from set X can be
implemented in a similar way; in this case, it suffices to know the arrays Qp, Q4, and Sa.

It is evident that removing a minimal (maximal) element from X followed by an
appropriate correction of the array Q4 requires at most O(|X]|) time.

Note that, if graph G is an outtree (or an intree), it can be represented only by the
array (4 (or the array Qg). To see this, suppose that the elements of set X are numbered
in the following way. The root of a tree is given the number 1. Let G contain r, vertices
of the vth rank. Then the vertices of the second rank are numbered by 2, 3,..., ry+1. The
vertices of the third rank are numbered by ry+2, ry+3,..., r,4+73+1, all successors of the
vertex 2 being numbered first, followed by all successors of the vertex 3, and so on. The

vertices of the other ranks are successively numbered in a similar way. In such a

Elements of Graph Theory and Computational Complexity 49

numbering, the direct successors of a vertex k (if it is not terminal) are the vertices

k-1 k-1 k
with the numbers ¥ ¢,+2, } q;+3,..., ¥ q;+1, and a direct predecessor of this vertex is
1=1 1=1 =1

r-1 r-1
a vertex with the number r such that ¥ ¢j+2 <k < Y g +1.
1=1 1=1

For an intree, the numbering can be implemented similarly. It starts from the root
followed by numbering all of vertices with the height equal to two, then the vertices with

the height three are numbered, and so on. In this case, the direct predecessors of a

k-1 k-1
vertex k (if it is not initial) are the vertices with the numbers Y b,+2, ¥ b+3,...,
1=1 1=1
k ' r-1
Y b+1, and its direct successor is a vertex with the number r that ¥} h+2 < k <
=1 =1

T b+l
=1

An outtree (an intree) can also be represented by a single array Sg (or S4) because
each vertex different form the root has exactly one direct predecessor (or direct
successor). Jt is not necessary to use a special numbering of the vertices. Such
representation, however, does not suit for finding a minimal (in the case of an intree) or

a maximal (in the case of an outtree) element of set X.

1.5. Let X = {x, %y,..., Xn}. A permutation of the length r of the elements of set X
is an ordered sequence of r elements of this set. We suppose that 7 < m and there is no
repetition in a permutation. If 7 = m, a permutation of the elements of set X is called
complete. If r < m, a permutation is partial.

A symbolic expression for this construction is m, = (x’i’ Xijpeeos x,-r) or . = ([1],
[2],..., [r]), where x;, or [k] is the element located at the kth position from the left
in permutation 7,. If the nature of the elements of set X is immaterial, it is often more
convenient to deal with the numbers of elements rather than with the elements themselves.
In this case, m,. = (%), i3,..., %), where m, is a permutation of the length r of elements
of the set {1, 2,..., m}.

Sometimes, a permutation of the elements of set X" X is denoted by 7y The length of

this permutation is equal to |X’|. If ™ = mx-, then {7} denotes the set X", i.e., {7} = X".

If n = (xil’ Xiyeens x‘p)’ T’ = (le, Xjy0eees qu) are permutations of the set X
elements and {7} N {n”} = @, then 7 = (7', 7”) denotes the permutation (x'i‘ Xiseeos
xl-p, Xj5 Xjyoees x]-q).

Let a strict order relation — be defined over a set X, and G = (X, U) be the reduction

graph of this relation. A permutation 7 = (x; , %; ,..., x;) is called feasible with

50 Chapter 1

respect to the relation — or, equivalently, with respect to the graph G, if for all £ and

I, 1<k, I <r the condition Xi = % implies that & < [.

2. Balanced 2-3-Trees

The material presented in this section can be used to develop effective algorithms for
solving a wide range of discrete optimization problems including scheduling problems.

The data structure described below allows the implementation of a number of operations
on a totally pseudo-ordered finite set X in at most O(log|X|) time. Such operations
include, in particular, finding a minimal (or a maximal) element of set X with respect to
a defined pseudo-order, deleting an element from X, and finding the union of subsets of
set X.

2.1. An outtree is called a 2-3-tree if either two or three arcs leave from each of
its non-terminal vertices. An outtree is balanced if all paths from the root to terminal
vertices are of equal length. The height of a tree is the height of its root.

Let us estimate the height of a balanced 2-3-tree. Any 2-3-tree with m terminal
vertices has at most m-1 intermediate vertices. In fact, the maximal number of
intermediate vertices is attained if each intermediate vertex has exactly two leaving
arcs. In this case, the number of intermediate vertices is equal to m-1, which can be
easily verified by induction with respect to m.

The given definitions imply that there must be at least 2" vertices of rank k in a
balanced 2-3-tree. Let m be the number of the terminal vertices, and ¢ denote the number

of the ranks of a balanced 2-3-tree. Then 2m—1 is the maximal number of the vertices and
2m-1 > i2"'1 = 29-1, which yields g < log2m. Therefore, the height of a balanced
k=1

2-3-tree does not exceed 1+logm.

2.2. Let a total pseudo-order relation —s be specified over a set X = {x;, %g,...; X}
Let (X', =) denote a subset X" < X such that the pseudo-order defined over set X is
maintained over X".

Let Tp(X) denote a balanced 2-3-tree with m terminal vertices, each of which is in
one-to-one correspondence with an element of set X. Thus, the terminal vertices of tree
T4(X) may be assumed to be numbered by the integers from 1 to m. In what follows, we do

not distinguish between the elements of set X and the terminal vertices of T,(X). The

Elements of Graph Theory and Computational Complexity 51

intermediate vertices of tree T;(X) are assumed to be numbered by the integers in the set
{m+1, m+2,..., 2m~1}.

An intermediate vertex v of tree Tp(X) is connected by paths with some terminal
vertices. The set of all such terminal vertices is denoted by X,. Assign two labels v,
and Vp,, to vertex v, where v, is the number of one of the minimal elements of the set
(Xy, =>), and v, is the number of one of the maximal elements of this set.

A balanced 2-3-tree Tp(X) can be conveniently represented by a table (see Table 2.1)
consisting of five rows and at most 2m -1 columns. The first row of the table contains the
numbers of the vertices of 2-3-tree T,(X). The kth cell of the second row contains the
number of the direct predecessor of vertex k. In the kth cell of the third and fourth
rows, the labels k,;, and kg, respectively, are shown. The numbers of direct successors
of vertex k (there are at most three such vertices) are written in the kth cell of the
fifth row. Table 2.1 corresponds to the situation in which m = 7 (the procedure for

constructing a balanced 2-3-tree is considered later).

Table 2.1

I The number 1 2 3 4 5 6 7 8 9 10 11
of a vertex

11 The number of 8 8 9 . 9 10 10 10 11 11 11
direct predecessor
1 4 7 7
111 The label vpy;ip
v The label wvp,y 1 3 6 3
v The number of 1 3 5 8
direct successors 2 4 6
7 10

It is obvious that a balanced 2-3-tree can be specified by filling the first and second
rows of the table. The fifth row is an auxiliary one, and this is used for labeling the

vertices as well as for implementing some operations on 2-3-trees.

2.3. Given a set X, the following procedure for constructing a tree Ty(X) can be
applied. We split this procedure into several stages. The number of the stages is equal to
the height of Tp(X) minus 1. At the first stage, the first m cells of the second row of
the table are filled in. Put the number m+1 in cells 1 and 2, fill cells 3 and 4 with the
number m+2, and so on. If m is even, put the number m+m/2 in cell m. If m is odd, fill

cell m (as well as cells m-2 and m~1) with the number m+(m—-1)/2.

52 Chapter 1

Let |x| denote the largest integer not exceeding x. At the second stage, the cells from
m+1up to m+ |m/2|are filled. Put the number m+ |m/2| +1 in cells m+1 and m+2, fill cells
m+3 and m+4 with the number m+ |[m/2| +2, and so on. If the number of cells filled at the
second stage is odd, the last three cells contain the same number. At the last stage of
this process, there are either two or three cells to be filled. At this stage, the number
placed in the cells of the second row is the number of the root of the tree. As can be
easily seen, the table obtained this way uniquely specifies a balanced 2-3-tree (with no
labels).

Tables 2.2 and 2.3 give examples of filling the first two rows for m = 11 and
m = 8, respectively. The dotted lines separate the stages. In the first example, the root

of the tree is vertex 19, while in the second example, the root is vertex 15.

Table 2.2

IT|12)12|13|{13|14(14|15|15[16|16]|16 1717181818 19119

Table 2.3
I 1 2 3 4 5 6 7 8 9|10f11 12|13(14 15
11 9 9 10101111 (12[12 213 13{14 14|15(15

The fifth row of the table can be filled simultaneously with the second row: while a
number ! is placed in the kth cell of the second row, the number £ is placed in the Ith
cell of the fifth row. The first m cells of the fifth row of the table representing a tree
Ty(X) are, obviously, empty.

The labeling of the intermediate vertices of a balanced 2-3-tree is implemented level
by level starting from the level g~1 (here ¢ is the height of the tree). At the (¢-I)th
level, 1 <[< g—1, take the number of an arbitrary minimal (or maximal) element of the
set (X', =) as the label v, (respectively, v,,,) for each vertex v. Here, for [= 1, we
have X’ = X,, while for [> 2 set X" is the set of the elements whose numbers are the
minimal (or maximal) labels of the direct successors of vertex v. Since |X’| < 3, at most
two comparisons are required for finding label v, (or vg.). For finding all direct
successors of a vertex v, the fifth row of the table can be used.

It is obvious that the vertices m+1, m+2,..., m+ |m/2| belong to the (¢—1)th level, the
vertices m+ |m/2] +1, .., m+ |m/2| + |m/4] belong to the (¢—2)th level, etc.

Elements of Graph Theory and Computational Complexity 53

As can easily be seen, the implementation of this procedure for constructing the tree
Ty(X) and labeling its vertices requires at most O(m) time.

Table 2.1 gives a balanced 2-3-tree for the set X = {1, 2, 3, 4, 5, 6, 7} assuming that
the relation = is defined over this set in the following way (here we write (x;, x;)
instead of x; — x;): (1, 2), (1, 4), (1, 5), (1, 6), (1, 7), (2, 1), (2, 4), (2, 5),
2, 6), (2, 1), (3, 1), (3, 2), (3, 4), (3, 5), (3, 6), (3, T), (4, 5), (4, 6), (4, T),
(5, 7), (6, 5), (6, 7).

Note that, in general, a totally pseudo-ordered set may contain more than one minimal
and more than one maximal element. This implies that the values of the labels v,;, and
Umax are not uniquely specified. For example, in the eighth cells of the third and fourth
rows of Table 2.1 (or in any of them), the number 2 could be placed.

For finding either a minimal or a maximal element of set (X, —) represented by the

tree Tp(X), it suffices to check either the label v0;, or v,, of the root v°.

2.4. We now consider the procedure for finding the union of two subsets of the X,
provided that each of them is represented by a balanced 2-3-tree. Let X,, X, be non-empty
subsets of a set X such that X; n X, = @, | X,| = my, | X;| = my, and Ty(X,) and Ty(X,) be
balanced 2-3-trees of the heights ¢, and g, representing these sets. Without loss of
generality, we may assume that ¢; > g,. To find the union of sets X, and X, represented by
the trees Tp(X;) and Ty(X,), we construct the tree T)(X; U X,).

If g, = ¢, then for constructing Tp(X; U X,) it suffices to introduce a new vertex v°
and make the roots of T(X;) and T(X,) direct successors of v°. The constructed tree is a
balanced 2-3-tree with the root v®. It is not difficult to find the labels v3;, and v0,,
by the corresponding labels of the roots of the trees Tp(X;) and Ty(X,)-

If ¢, > ¢, then find in Ty(X,) a vertex v of the height ¢g,+1. If v has only two direct
successors, make the root of the tree Tj(X,) its third successor. In the obtained balanced
2-3-tree, recalculate the labels of the vertex v and of all its predecessors (there are at
most logm, of them). If the chosen vertex v has three direct successors, take one of them,
say, vertex v’, and remove the arc (v, v’) from T,(X;). As a result, we obtain two
balanced 2-3-trees: what is left from T,(X,) (let us denote this tree by T4(X;)) and the
subtree with the root v”. Unite the latter tree and the tree T,(X;) (their heights are
equal) and denote the resulting tree by T,(X;). The labels are not recalculated until the
union of Ty(X;) and Tp(X,) is found. Note that the height of T,(X;) is equal to g,+1.
Attempt to unite the trees T,(X;) and Tp(X;) in the way described. If ¢; > ¢,+1, then the

direct predecessor of vertex v in T,(X]) can be chosen as a vertex of the height g,+2.

54 Chapter 1

There may be at most logm; such “attempts” to unite the trees. When T,(X; U X,) is
constructed, find the new labels of vertex v and those of all its predecessors, as well as
the labels of the new vertices. The total number of labels to be recalculated does not

exceed O(logm,).

2.5. We now consider how to implement the described process of constructing Ty(X, U X,)
followed by correcting the labels assuming that a balanced 2-3-tree is represented by the
table. The implementation of this process in at most O(logm,) time requires that both
trees Tp(X,) and Ty(X,) are represented by a common table, and that the numbers of the
roots of these trees are known.

Let (1) and v(? be the roots of the trees T,(X;) and T,(X,), respectively. We assume
that both trees are represented by a common table having 2m—1 columns. Without loss of
generality, we may assume that the empty columns of the table are at the right-hand side,
and m’ is the number of the first of them.

The heights ¢, and g, of the trees Tj(X;) and T»(X,) can be determined by finding a
path from the root of a tree to some of its terminal vertices, which can easily be done
using the fifth row of the table. Therefore, finding ¢, and ¢, requires at most O(logm,)
time.

If ¢, = g5, then for constructing T,(X, U X,) it suffices to place the number m” in
cells v and v(® of the second row, to put the numbers v(") and v(® in cell m’ of the
fifth row, and then to fill the cells m” of the third and fourth rows as usual.

If ¢, > g5, then using the fifth row (moving from the root of the tree T(X,)), find a
vertex v of height g,+1. If in cell v of the fifth row there are two numbers, place the
number v(2) in this cell as the third one. Then correct the labels of vertex v and those
of all its predecessors. If the chosen cell of the fifth row contains three numbers, then
remove one of them and place it along with the number v(?) in cell m” of the fifth row.
Put the number m’ in cell v(2) of the second row, and replace the number m’ by v in the
cell corresponding to the removed vertex. Keep the labels unchanged. Taking m” as the root
of the second tree (the root of the first tree is v(V)), attempt to unite these trees. The
direct predecessor of vertex v (to be found in cell v of the second row) can be taken as a
vertex of the first tree having the height g,+2.

While constructing the tree T4(X; U X;), store the numbers of the vertices whose labels
are to be either defined or corrected. Note that such vertices are the vertex v, all its
predecessors, as well as the new vertices added to the second tree. The process of

constructing labels starts from the vertex with the minimal number.

Elements of Graph Theory and Computational Complexity 55

It can be easily seen that the described method of implementing the procedure for
finding the union of two balanced 2-3-trees followed by an appropriate correction of the

labels requires at most O(logm,) time.

2.6. Let us consider the procedure for deleting an element from a set X represented by
a balanced 2-3-tree Tj(X). Let X € X be the element to be deleted. The procedure for
deleting X0 from X constructs a balanced 2-3-tree T,,(X\xio),

In the tree T,(X), let v denote the predecessor of the vertex i corresponding to the
element X0 such that the path from v to i® has the length [+1. If ¢ is the height of the
tree T4(X), then v0_; is the root of this tree.

If the vertex v9 (i.e., the direct predecessor of the vertex i°) has three direct
successors, then for constructing the tree Tb(X\xiu) it suffices to delete the vertex °
from the tree T,(X) (along with the arc (v}, i®)) and to correct the labels of the
vertices 0§, v},..., v3_;.

If the tree T4(X) is given by the table, this can be implemented as follows. Remove the
number i® from cell v{ of the fifth row of the table and the number v} from the cell i° of
the second row. Determine the new labels of the vertices v}, ©3,..., v),. It is clear
that, in this case, the deletion of an element from the set X requires at most O(logm)
time, where m = | X].

Suppose that v} has only two direct successors, i and i’. Then the tree T()) arising
from T,(X) after the vertex i has been deleted, is no longer a 2-3-tree (in this tree,
the vertex v} has only one direct successor). Thus, additional transformations are
required to obtain Tb(X\xio)~ In this case, correcting the labels starts only after these
transformations are completed.

In the tree T(1), find a direct successor of the vertex v3, say, vertex v’ If v" has
three direct successors, make one of them (say, vertex ¢”) a direct successor of the
vertex v{ after the arc (v, ¢”) is removed. It is evident that the resulting tree is a
balanced 2-3-tree. Correct the labels of the vertices v’, v}, v3,..., vJ;.

If v* has two direct successors, make ¢" a direct successor of the vertex v” and delete
the vertex v} from the tree. If, in the constructed tree T(?), the vertex v has two
direct successors, then T(2) is the desired tree Tb(X\x‘_O), and we only have to correct
the labels of the vertices v’, v§,..., v),. If otherwise, then T(® is not a balanced
2-3-tree, and the vertex v is the only its intermediate vertex having one direct
successor. Transform T(2) in a similar way as for tree T(1). The only difference is that

now the vertex v} acts as the vertex vJ, the vertex v acts as vy, and the vertex v’ acts

56 Chapter 1

as the vertex i" (some direct successor v” of the vertex v} plays the role of the vertex
v’). If, in the tree T(®) obtained from T(2) by these transformations, the vertex v§ has
only one direct successor, transform T(3) in a similar way, and so on. It may turn out
that a tree is obtained with the root having only one direct successor. In this case, the
root is deleted and the vertex vg_z becomes the new root.

The implementation of this procedure for deleting an element requires storing the
vertices such that their direct successors have been changed by the described
transformations. There are at most ¢ such vertices and their predecessors. Thus, the

procedure for deleting an element can be implemented in at most O(logm) time.

2.7. A permutation 7 = (x,«‘, Xigyeers x,»m) of the elements of a totally pseudo-ordered
set X is called non-increasing (or non-decreasing) with respect to = if, for any v and g,
v =1 2., m p =1, 2., m, the condition ¥ < g implies that X, = %, (or
xi“ i xiu).

We present the procedure for constructing a monotone (either non-increasing or
non-decreasing) with respect to = permutation of the elements of set X. There is
one-to-one correspondence between the permutations of the elements of set X and the
permutations of their numbers. Therefore, we may talk about non-increasing or
non-decreasing (with respect to a total pseudo-order defined over set X) permutations of
the numbers of the elements of set X .

To find a non-increasing permutation (i, ?,..., %,) of the numbers of the elements of
set X it suffices to know a balanced 2-3-tree Tj(X) in which each intermediate vertex v is
given only one label v,,,. Define i, to be equal to the number of the element of set X
that is the label of the root of tree T,(X). Remove ¢, from tree T,(X) and, without
transforming the resulting tree T(!) into a balanced 2-3-tree, find the new labels of its
vertices. Define i, to be equal to the number of the element of set X that is the label of
the root of tree T(!), and so on.

Since the height of the tree T,(X) does not exceed 1+logm, to find a non-increasing
permutation of the elements of set X requires at most O(mlogm) time.

A non-decreasing permutation of the numbers of the elements of set X can be found in a
similar way using a balanced 2-3-tree in which each intermediate vertex v is given one

label vn.

2.8. It may be that solving a problem does not require finding a maximal (a minimal)

element of a pseudo-ordered set X, but involves application one of the following

Elements of Graph Theory and Computational Complexity 57

procedures: given x’, x” € X, find a maximal element of the set X; = {x € X|x"=> x} ora
minimal element of the set X, = {x € X|x = x”}. To implement these procedures in O(logm)
time, we need to modify the data structure under consideration.

A balanced 2-3-tree is called ordered if for any two of its vertices v and v” of the
same rank either Vpgy <= Umin OF Upmin = Umay holds. For constructing an ordered balanced
2-3-tree it suffices to find a non-decreasing (or non-increasing) permutation of the
elements of set X and then to use the procedure described in Section 2.3. The latter
procedure has to be implemented in such a way as if the elements of X were renumbered
according to this permutation.

It is obvious that the construction of an ordered balanced 2-3-tree requires O(logm)
time.

The search for a maximal element of the set X, using the ordered tree T)(X) is executed
as follows (here we assume that the relation x” = x" does not hold, since otherwise, x
is the desired element). Find a direct successor of the root, say, vertex v(!), such that
vild <= x" and v{l) — x” (or v§l) = x°). Then, find a direct successor of the vertex
v say, vertex v(®), which satisfies analogous conditions, and so on, until the desired
element of set X, is found. At some step in the described procedure, it may turn out that
the required vertex does not exist. In this case, among the vertices to be considered at
this step, there exists a vertex v” such that v,;, = x" If the number of vertices under
consideration is two, and these are v” and v”, then v,., is the desired element. If the
number of the vertices under consideration is equal to three, and these are v’, v”, and

v, then two cases are possible: (1) either v, <= x" and vV gy <= Vpin, OF Upay <= X~

and v, = x7; (2) either Vg, =x" and vj5y = Vpmin, OF Umax <= x" and v/, = x". In

the first case, the desired element is v,,,,, while in the second case, the desired element

iS Vpmax-

A minimal element of the set X, can be found in a similar way.

It is easy to verify that the described procedure for finding a maximal element of the
set X, or a minimal element of the set X, requires O(logm) time.

For X" c X, let Ty(X’) be an ordered balanced 2-3-tree. We present the procedure for
constructing an ordered tree Tp(X U x°), where x° € X\X".

1. Find a maximal element x” of the set X" = {x € X'|x «=x%}.

2. If the direct predecessor v of the vertex x” has two direct successors, then make x°
the third successor. Correct the labels of the vertex v and of all of its predecessors in
the usual way.

3. If v has three direct successors x’, x” and x™, then find a non-decreasing

58 Chapter 1

permutation of the elements x° x’, x” and x™. Make the vertices corresponding to the
first two elements of the permutation direct successors of the vertex v (if they are not)
and correct the labels of v. Introduce a new vertex ©°, and make the vertices
corresponding to the last two elements of the permutation direct successors of v°. If the
direct predecessor v” of the vertex v has two direct successors, make v® the third one and
correct the labels. If v” has three direct successors, find a permutation 7 of these
successors and of the vertex v° such that v, = v, for any vertices v” and v with

v” being on the left of v™ in 7. Then the procedure is similar to the case of the

elements x, x”, x™ and x°. It may be that X” = @. In this case, take the vertex min
as the vertex x” where v is the root of the tree Ty(X').

The procedure for constructing an ordered tree Tj(X" U x°) can be implemented in at
most O(log|X’|) time.

Finally, we present the procedure for constructing an ordered tree T,(X\x®) where
x" € X. If the direct predecessor of the vertex x° has three direct successors, then for
constructing T,(X\x") it suffices to delete from T,(X) the vertex x° together with the
entering arc and to correct the labels. If the number of the direct successors is equal to
two, we can follow the procedure for deleting an element from a set described in
Section 2.6, keeping the tree ordered whenever one of the direct successors of a vertex is
“transferred” to another vertex.

Sometimes, the relation = is defined over a set X by associating each element x; € X
with a real number «;. Here x; — x; if and only if o4 > a; (in other situations if and
only if o4 < «;). In this case, the problem arises of finding a minimal element of the set
X" = {x; € X|o; 2 B} or that of finding a maximal element of the set X" = {x; € X|
o; < B}. Here § is a given real number and, in the general case, 4 need not belong to the
set {0y, Qy,..., o4,}. For solving such problems it is also convenient to use an ordered
balanced 2-3-tree assigning the corresponding o; along with the labels to intermediate

vertices of the tree.

3. Polynomial Reducibility of Discrete Problems.
Complexity of Algorithms

The theory of polynomial reducibility is of great importance for understanding the
nature of those difficulties which arise in solving a wide range of discrete (both

extremal and decision) problems. Many decision problems which have been traditionally

Elements of Graph Theory and Computational Complexity 59

considered as hard (e.g., the problem of determining whether a graph is Hamiltonian, the
problem of the existence of a complete subgraph (a clique) with a prescribed number of
vertices in a given graph, etc.) are, in fact, closely related. The existence or
non-existence of an efficient algorithm for solving at least one of these so-called
NP-complete problems implies the existence (or non-existence) of such an algorithm for all
other problems. Here, an algorithm is said to be efficient if its running time is bounded
by a polynomial of the input length of the problem.

A similar situation also occurs for many extremal problems (belonging to the class of
so-called NP-hard problems). The existence of an efficient algorithm for solving at least
one of the NP-hard problems implies the existence of such an algorithm for any NP-hard

problem. The traveling salesman problem is an example of an NP-hard problem.

3.1. To introduce the concepts of an algorithm and that of its time complexity
formally, we need a certain computation model. A so-called Turing machine serves as a
convenient model of this type. We start with some auxiliary definitions.

An alphabet is an arbitrary finite set of characters called letters. A word in this
alphabet is a finite non-empty sequence of the letters. The length of a word is the number
of letters it includes (each letter is counted as many times as it appears in a word).

A deterministic Turing machine (DTM) consists of a tape, a control device, and a
read-write head.

The tape is divided into cells and is potentially infinite from both sides. The cells
are numbered ..., -2, -1, 0, 1, 2,... . Any cell can be in one of the states, each of
which is in one-to-one correspondence with a letter of the alphabet € (called an external
alphabet). The total number of states is finite. The letter ¢, € € is called blank symbol.

At any time, the control device is in one of the states (number of which is finite),
each denoted by a letter of the inner alphabet 9 and called an inner machine state. Note
that € N 9 = @. Two special states are distinguished: the initial state denoted by q,, and
the final state denoted by qy.

The read-write head of the machine can move along the tape and scan exactly one of its
cells at a time. The head can read a symbol in the cell and, if necessary, replace it by
another.

As a rule, an input alphabet D is defined as a proper subset of ©. In particular,
c ¢ D.

One step of a DTM consists of performing all or some of the actions listed below,

depending on the control device state and the state of the tape cell being scanned:

60 Chapter 1

(1) change the inner state of the machine;

(2) change the state of the cell being scanned;

(3) move the read-write head one cell to the left (L) or one cell to the right (R), or
leave it at its current place ().

In what follows, we do not distinguish between the state of a tape cell (or the state
of the control device) and the corresponding letter of alphabet € (or of alphabet D).

As a mathematical object, a DTM is determined by a string of the form (9, €, D, &, c,,
G0, Gf)- Here, & is the mapping of some non-empty subset of the set Ox@ (which does not
contain pairs of the form (qy,c;) for ¢; € €) to the set OxBx{L, R, S}. The mapping & is
called the transition function.

A state of a DTM is determined by:

(a) the sequence Cipy Ciyreony c,—p of the states of all tape cells, ¢, € G r =1,
2,..., p, (all the cells on the left of the cell having the state < and on the right of
the cell having the state c,~p are empty and are omitted from the sequence, ;) # Co
Ci, # o);

(b) the inner state ¢ € 9 of the control device at a given time;

(c) the state Ciy of the cell being scanned;

At a time, a state of a DTM is uniquely determined by a description which is a word
cilciz...qcik...cip in alphabet € U 9. Here, the symbol g € 9 precedes the symbol denoting
the state of the cell being scanned at this time. The state of a DTM determined by the
description of the form Ci1ci2"'qfcik""cip is called final (the control device is in the
final state qs). The machine stops if it reaches the final state.

Each step of a DMT can be considered as a transition of the machine from one state to
another that is uniquely determined by the transition function &. It is assumed that the
machine can be driven to any prescribed state.

A DTM can be used for processing words written in alphabet 9. Let ¢;c,...c,, be a word
written in that alphabet. Drive the machine to the state determined by the description
Qo€1Cz---C, and let it start processing. If, after some finite number of steps, the
control device reaches the state gy, the machine stops. In this case, the DTM is said to
accept the initial word. The result of processing the initial word is the word obtained
from the description of the DTM in the final state, the characters ¢, and gy being
deleted.

If, after some steps, the machine reaches a state c{c;...q°c;...c, where q" # 95 and
the pair q’cy does not belong to the domain of &, then the machine also stops. In this

case, however, the result is not determined, and the machine does not accept the initial

Elements of Graph Theory and Computational Complexity 61

word. Situations are possible in which the machine, having started in a certain state,
never stops. In this case, the result of processing is not determined either.

A non-deterministic Turing machine (NDTM) is specified by a string of the form (2, €,
D, A, ¢y, 99,) where the symbols 2, G, D, ¢, o, G5 have the same meaning as for a
DTM. The difference is in the transition function A being the mapping of some non-empty
subset of the set 22xG (which does not contain pairs of the form (q4,c;), ¢; € €) to a set
of subsets of the set QxCx{L, R, S}.

As in the case of a DMT, a state of a NDTM is determined by the sequence of all states
of the cells, the inner state of the control device at a given time, and the state of the
cell being scanned.

The main difference between a non-deterministic Turing machine and a deterministic one
is that one step of a NDTM may change the given state of the machine to any of several
possible states, while, for a DTM, the number of possible new states is at most one.
Therefore, having started operating in the same initial state twice, a NDTM may come to
some final state at one time, and to another final state at another time, or it may never
stop.

A NDTM is said to accept a word a if there exists a finite sequence of machine steps
which drives the machine to a final state from the initial state determined by the
description qga. If there is no such a sequence, the machine does not accept this word.

Let a given DTM accept a word a. The number t(a) of steps of the machine required to
reach the final state is called the running time of a DTM for processing word a.

If a NDTM accepts a word a, then, in general, there exist several sequences which drive
the machine from a state qua to a final state.

The running time of a NDTM processing a word a is the length of the shortest sequence
of machine steps which drives it from the state qga to a final state. The running time of
a NDTM is also denoted by t(a).

The function T(n) is called the time complexity of a Turing machine (either
deterministic or non-deterministic) if 7(n) = max{t(a)|a € A,}, where A, is the set of all
words of the length n this machine accepts. If the time complexity T(n) of a Turing machine
does not exceed some polynomial of n, then this machine is said to have a polynomial-time
complexity.

Note that a DMT is very similar to modern computers (e.g., a transition function of a
DMT can be viewed as a computer program). On the other hand, a non-deterministic machine
is an absolutely abstract concept. The concept of the running time of a NDTM is also

abstract. The latter concept can be given a convenient and visual interpretation by using

62 Chapter 1

a so-called “oracle” machine. For any feasible word, an oracle “knows” the shortest
sequence of steps driving the machine to a final state. Before making a step, the machine
applies to the oracle, which indicates in which of the states possible at this step the
machine comes. If the NDTM does not accept the word to be processed, the oracle “lies”,
i.e., it indicates any of the possible states randomly. Under such an interpretation,
determination of the running time of a NDTM is similar to that of a DTM, assuming that the
oracle answer time is zero. We stress once again: both the NDTM and the oracle are
abstract objects. The oracle can be considered as some unknown program. Being connected to
the NDTM, the oracle changes it into a deterministic machine. The main difficulty is that,
as a rule, we either fail to build an oracle for a NDTM or this is a very complicated

program of a low speed.

3.2. A language in a given alphabet is a non-empty set of words of this alphabet.

A language A is called feasible for a given Turing machine (either deterministic or
non-deterministic) if the machine accepts any word of language A. If the machine accepts
those and only those words that belong to language A, the machine is said to recognize
language A.

The class P is the set of all languages for each of which there is a recognizing DTM
of a polynomial-time complexity. The set of all languages for each of which there exists a
recognizing NDTM of a polynomial-time complexity is called the class NP.

Since a deterministic machine can be viewed as a special case of a non-deterministic
machine, it follows that P ¢ NP. However, whether P is a proper subset of NP or P = A/P, is
still an open question. Note that the conjecture that the classes P and AP do not coincide
is quite popular.

For a deterministic Turing machine M, let M(a) denote the result of processing by
machine M a word a written in the input alphabet of this machine. If M does not accept the
word a, then M(a) is not determined.

A language A° is called polynomially reducible’ to a language A if there exists a
deterministic Turing machine M which satisfies the following conditions. The machine M is
of a polynomial-time complexity and processes the words written in the alphabet of language

A® into the words written in the alphabet of language A so that a € A° if and only if

1
The presented definition of polynomial reducibility corresponds to the one given by

R. M. Karp [74]; another definition given by S. A. Cook [82] is more general; however, for

our purposes the presented definition is sufficient.

Elements of Graph Theory and Computational Complexity 63

M(a) € A.

The definition requires the existence of a DTM which recognizes some language A" such
that A° c A’ The result of processing the words which do not belong to A" is not
determined.

It is evident that the relation of polynomial reducibility defined over a set of
languages is transitive.

A language A is NP-complete if A € NP and any language in AP is polynomially reducible
to A.

Theorem 3.1. If a language A is polynomially reducible to a language A and A € P, then
A% e P.

Proof. A deterministic Turing machine M that recognizes language A® can be constructed
by implementing a series composition of the DTM M,, which reduces A® to A, and the DTM M,,
which recognizes language A. A word @ written in the alphabet of language A° after
processing by M, either becomes a word a written in the alphabet of language A or the
result of this processing is not determined. In the latter case, it is clear that a ¢ AC.
In the former case, the word a is an input for M,. If M, accepts a, then the definition of
polynomial reducibility implies that a® € A°. Otherwise, a® ¢ A°. The time complexity of
the constructed machine M does not exceed the polynomial p;(n)+py(n+p,(n)). Here,
polynomials p, and p, are the time complexity functions of the machines M; and M,,
respectively, and n+ p;(n) is an upper bound on the maximal possible length of the result
of processing a word of the length n by machine M,. This proves the theorem.

It follows from Theorem 3.1 that the existence of a recognizing DTM of a polynomial-
time complexity for some NP-complete language implies the existence of such a machine for

any language in the class NP.

3.3. In what follows, we concentrate on decision and extremal combinatorial problems.

A decision problem is a problem of recognizing properties of a certain object, to which
the answer “yes” is to be given if and only if the object has these properties.

An extremal combinatorial problem can be introduced as follows. A function F(x),
x € X', is defined over a finite set X". Given a subset X of set X’, find an element x°
either such that F(x°) = min{F(x)|x € X} (a minimization problem) or such that F(x°) =
max{F(x)|x € X} (a maximization problem).

Decision problems of recognizing properties of objects and language recognition

problems are closely related. We may encode all possible inputs of a decision problem using

64 Chapter 1

the words in an appropriate alphabet and consider the initial problem as a problem of
recognizing the language consisting of all words corresponding to the answer “yes”.

A decision problem belongs to the class P (or NP) if the associated language belongs to
P (or NP, respectively).

Let us consider two alphabets: binary 8 = {0, 1, -, [,], (,), ,} and unary U = {1, -,
[, 1, (;), »}. To encode the inputs of a decision problem, we use the words specified in
one of the alphabet B or U and determined in the following way.

In alphabet B:

(1) a word that is an integer k is a binary representation of & (if £ is negative, then
the sign “-” is used);

(2) if A is a word that represents an integer k, then the word [A] is used as the name,
e.g., this can be used as the number of a vertex of a graph or the number of a job;

(3) if Ay, Ag,..., A, are the words that represent objects A;, A,,..., A, then the
word (A, Ay,..., A,) represents the sequence (A, A,,..., Ay).

In alphabet U, the words used for encoding the problem inputs are determined in a
similar way as in alphabet B, the only difference being that now an integer k is
represented not in the binary but in the unary form, i.e. k¥ is represented by the word
11...1 consisting of k unit digits.

A decision problem is said to be defined in alphabet B (in alphabet W) if the
associated language is determined in alphabet B (in alphabet U, respectively).

A decision problem B is called NP-hard if any problem A € NP defined in alphabet B is
polynomially reducible to it.

A problem B is NP-complete if it is NP-hard and B € NP.

The usage of Turing machine as a formal model for an intuitive concept of an algorithm
has a number of advantages for introducing the definitions and proving the statements.
However, in what follows, we talk about algorithms (either deterministic or non-
deterministic) implying any possible formalization of this concept (the Turing machines,
normal Markovian algorithms or programs written in an algorithmic language).

The concept of an elementary operation depends on the way in which the concept of an
algorithm is formalized. For a Turing machine, this is a machine step; for the algorithms
designed to be run on a computer, elementary operations are such computer operations as
addition, multiplication, comparison of two numbers, writing or reading a number with a
known address, etc.

The time complexity of an algorithm is a function of the problem input length defined

similarly to the time complexity of a Turing machine. The differences are as follows.

Elements of Graph Theory and Computational Complexity 65

First, we use the concept of an elementary operation rather than that of a machine step.
Second, now the final state of an algorithm is either a situation when the answer “yes”
is obtained (in the case of a decision problem) or an element x° € X delivering an
extremum to the objective function is found (in the case of an extremal problem).

An algorithm is called polynomial-time if its time complexity does not exceed some
polynomial of the length of the problem input encoded in the alphabet B.

The concept of the NP-hardness, defined for decision problems, can also be used for
the extremal combinatorial problems.

Associate an extremal problem B with the following decision problem B": determine
whether there exists an element x” in a given set X such that F(x) <y (or F(x) > y in
the case of a problem of maximization) for a given real number y. It is clear that, if x°
is a solution of problem B, then an element x” € X such that F(x") < y exists if and only
if F(x%) < y.

Hence, we may talk about polynomial reducibility of a decision problem B’ to the
corresponding extremal problem B. Similarly, due to the transitivity of the polynomial
reducibility relation, we may talk about the polynomial reducibility of an arbitrary
decision problem A to a given extremal problem B via reducibility of A to the decision
problem B’.

An extremal problem B is called NP-hard if any decision problem A € NP defined in
alphabet B reduces to it in polynomial time. To prove the NP-hardness of an extremal
problem, it suffices to prove the NP-hardness of the corresponding decision problem.

It is obvious that the existence of a polynomial-time algorithm for solving a NP-hard
problem implies that each problem of class NP (including each NP-complete problem) is
solvable in polynomial time.

The fact that a problem belongs to the class of NP-hard problems is one of its most
important characteristics. Assuming that the P # NP conjecture is correct, the existence
of a polynomial-time algorithm for solving any NP-hard problem becomes impossible.
Therefore, the NP-hardness of a problem is one of strong arguments to justify such
approaches as the design of approximation or heuristic algorithms, applying enumeration
schemes (such as the branch-and-bound method), as well as studying special cases of a

problem.

3.4. While the problems can be divided into NP-hard and polynomially solvable (i.e.,
having polynomial-time algorithms for their solution), the NP-hard problems, in turn, can

be subdivided into NP-hard in the strong sense problems and those having

66 Chapter 1

pseudopolynomial-time solution algorithms.

The concept of NP-hardness in the strong sense is of great importance in complexity
analysis of a large number of problems. First, to prove that a problem B is NP-hard in the
strong sense, it suffices to construct a so-called pseudopolynomial (rather than
polynomial) reduction of an NP-hard (in the strong sense) problem A to problem B. Second,
the fact that a problem is NP-hard in the strong sense is the evidence [56] that no fast
€-approximation algorithm exists for its solution (unless P = AP).

Let b be an input of a decision problem B. This input can be encoded either in alphabet
B or in alphabet U. If all inputs of problem B are encoded in alphabet B (or alphabet U),
the problem is said to be determined in alphabet B (or alphabet U, respectively). It is
clear that the length of input b depends on the alphabet used. Let LB(b) (or Lu(b)) denote
the length of the input b in alphabet B (or alphabet U).

An algorithm for solving problem B is said to be pseudopolynomial-time if, for an input
b of the problem, its running time does not exceed some polynomial of Lu(b). Note that any
polynomial-time algorithm is also pseudopolynomial-time.

For a problem B and a polynomial p, let B, denote such a subproblem of problem B that
for any of its inputs b the inequality Lu(b) < p(Lﬁ(b)) holds. Note that the only
difference between a subproblem and the original problem is that, for a subproblem, the
set of all inputs is a subset of the set of all inputs of the original problem.

It is obvious that any pseudopolynomial-time algorithm for solving problem B is a
polynomial-time algorithm for solving problem B, Therefore, unless P = NP, neither a
polynomial-time nor a pseudopolynomial-time algorithm for solving problem B exists if
problem B, is NP-hard.

A decision problem B is called NP-hard in the strong sense if there exists such a
polynomial p that a problem B, is NP-hard. If in this case, B € NP, then problem B is
NP-complete in the strong sense.

An extremal combinatorial problem is called NP-hard in the strong sense if the
corresponding decision problem is NP-hard in the strong sense.

To prove the NP-hardness of a decision problem B, it suffices (due to the transitivity
of the polynomial reducibility relation) to show that some NP-hard problem A° determined in
alphabet B is polynomially reducible to it. A problem A° used for proving the NP-hardness
of other problems is called standard. A similar approach is used to prove the NP-hardness
in the strong sense.

An input of a decision problem determined either in alphabet B or in alphabet U can be

considered as a word in the corresponding alphabet (B or U, respectively). If ® is a

Elements of Graph Theory and Computational Complexity 67

word-processing algorithm, then ®(a) stands for the result of word a processed by this
algorithm.

A problem A is said to be pseudopolynomially reducible to a problem B if a
deterministic algorithm @ exists for processing the inputs of problem A into the inputs of
problem B such that

(1) the answer “yes” corresponds to an input a of the problem A if and only if the
answer “yes” corresponds to the input ®(a);

(2) the running time of algorithm & does not exceed some polynomial of Lu(a);

(3) there exist such polynomials p” and p” that for any input of problem A the
relation p'(Lu(a)) > Lu(q)(a)) and p"(LB(@(a))) > LB(a) hold.

Theorem 3.2. Let a problem A be NP-hard in the strong sense. If there is
pseudopolynomial reduction of problem A to problem B, then the problem B is NP-hard in the
strong sense.

Proof. Since problem A is NP-hard in the strong sense, it follows that there exists a
polynomial p such that the problem A, is NP-hard. We may assume that p has only positive
coefficients. Otherwise, a polynomial p, with positive coefficients exists such that for
any non-negative x the relation py(x) > p(x) holds, and problem A, is a subproblem of
problem AT’o'

Let @ be an algorithm which implements the pseudopolynomial reduction of problem A to
problem B, while p” and p” be polynomials from the definition of the pseudopolynomial
reduction. As above, we may assume that the coefficients p” and p” are positive. We show
that there exist both a polynomial ¢ and a subproblem B, of the problem B such that:
(1) for any input b of problem B, the relation Lu(b) < q(LB(b)) holds; and (2) problem 4,
is polynomially reducible to B,. Define g(x) = p(p(p”(x))). For each input a of problem
A,, find input ®(a) of problem B, and let B, denote the subproblem of problem B determined
by all such inputs ®(a). For all ®(a), where a is an input of problem Ay, the relation
Lu(<I>(a)) < q(LB(Q(a))) holds. In fact, the definition of the polynomials p° and p”
implies that

Ly (®(a)) < p'(Ly(a)) < p'(p(Lg(a)) < p(P(p (Ly(®(a)))) = g(Ly(D(a))).

It is obvious that algorithm ® implements pseudopolynomial reduction of problem 4, to
problem B, however, for any input a of problem A, the relation Lu(a) < p(LB(a)) holds.
Therefore, this reduction is polynomial.

Thus, problem B, is NP-hard and problem B is NP-hard in the strong sense which proves

the theorem.

68 Chapter 1

If an NP-hard decision problem B is such that for any of its inputs b and some

polynomial p the relation Lu(b) < p(LB(b)) holds, then problem B is NP-hard in the strong

sense.

Corollary 3.1. Let a problem A be NP-hard in the strong sense. If A is polynomaially
reducible to a problem B, and there exists a polynomial p” such that for any input a of
problem A the relation p'(Lu(a)) > Lu(é(a)) holds where & is an algorithm which implements
the reduction A to B, then problem B is NP-hard in the strong sense.

In fact, the running time of algorithm & is bounded by a polynomial p of LB(a), and,
hence, by a polynomial of Lu(a). Therefore, @ also implements the pseudopolynomial

reduction of A to B (p can be taken as the polynomial p”).

4. Bibliography and Review

The terminology from set theory and binary relations theory mainly corresponds to the
monographs by Kostrikin [81] and Schreider [186], while the terminology from graph theory
corresponds to the monographs by Harary [163] and Berge [15]. The properties of
series-parallel graphs are studied by Valdes et al. (429, 430] and Gordon [44]. In [429,
430}, an algorithm for recognizing whether a graph is series-parallel is presented. That
algorithm is essentially based on the results obtained in [248]. If a graph is
series-parallel, the algorithm constructs its complete decomposition tree. The running
time of the algorithm is linear with respect to the number of the vertices and the arcs of
a graph in question. An algorithm for constructing a complete decomposition tree of an
arbitrary circuit-free graph is given in [178].

Section 2 is based on the material presented in Section 4.9-4.12 of the monograph by
Aho et al. [7]. In that monograph, the reader can find additional information on balanced
2-3-trees and other data structures. These and related topics are also discussed in the
monographs by Knuth [77] and Reingold et al. [133].

In presenting the topics discussed in Section 3, the authors have mainly followed the
monographs by Mal’tsev [106], Garey and Johnson [56], as well as the monograph [7]. The
interested reader may find relevant information on history of this question in [56]
(Sections 1.4, 1.5, 5.2). Theorem 3.1 is due to Karp [74], while Theorem 3.2 is given by
Garey and Johnson [275].

CHAPTER 2

POLYNOMIALLY SOLVABLE PROBLEMS

This chapter discusses sequencing and scheduling problems for which efficient algorithms
are known, i.e., the algorithms whose running time is bounded by a polynomial function of
the problem input length.

The first eight sections consider systems with a single machine or several identical
machines. Section 9 studies systems with uniform and unrelated parallel machines.

In Section 1, sufficient conditions are established for the existence of optimal
schedules with no preemption at times different from the release dates. Section 2 presents
the necessary and sufficient conditions for the existence of the schedules that are
feasible with respect to given deadlines, and describes the algorithms for finding these
schedules. It is assumed that the set of jobs is not ordered and that preemption is
allowed.

The single-machine scheduling problem of minimizing the maximum cost {the minimax
criterion) is considered in Section 3, and Section 4 studies the problem of minimizing the
total cost (the minisum criterion) for job processing. Note that a number of polynomially
solvable special cases of the latter problem are described in Chapter 3.

Sections 5 and 6 provide results for the problem of finding a time-optimal schedule for
parallel machine processing the jobs of an ordered set, assuming that either the reduction
graph of precedence relation is tree-like, or that the number of machines is equal to 2.
In Section 5, the processing times for all jobs are assumed to be equal and preemption is
forbidden, while in Section 6 the processing times are arbitrary but preemption is
allowed. Section 6 also considers the case in which no precedence relation is defined over
the set of jobs. Section 7 describes algorithms for finding a multi-processor schedule that

is feasible with respect to the deadlines under precedence constraints, provided that the

69

70 Chapter 2

processing times are equal. Again, it is supposed that either the reduction graph of a
precedence relation is tree-like or that the number of machines is equal to two. The
problem of minimizing the maximal lateness for parallel identical machines is studied in
Section 8.

Section 9 is devoted to the problems of minimizing the total and the maximal cost for

parallel (either uniform or unrelated) machine processing.

1. Preemption

In this section, sufficient conditions are established for the existence of optimal

schedules with no preemption at times different from the release dates.

1.1. The jobs of a set N = {1, 2,..., n} are processed on M parallel identical machines.
The release date of a job i € N is d; > 0, its processing time is ¢; > 0. The processing
of each job may be interrupted and resumed at a later time on any available machine. It is
supposed that preemption does not involve time or any other expenses, and the total length
of time intervals in which a job ¢ is processed is equal to t;.

A partial order — is defined over set N to determine the sequencing constraints for job
processing. Let G denote the reduction graph of relation —.

A schedule s = s(t) = {si(t), s(t),..., sy(t)} that is feasible with respect to the
defined precedence relation must satisfy the following conditions: if ¢ — j and
sp(t") = ¢ for some L, then sy(t) # j for all t < ¢t" and for all 1 < H < M. In particular,
it follows that if, for some L, H, and Q, which need not to be distinct, and some
t" < t” < t”, the relations sp(t") = sy(t™) = i and sp(t”) = j hold, then neither
¢t — j nor j — ¢ is possible, i.e., i ~ j.

Since preemption is allowed, it follows that there may exist 1 <i<n,1 <L # H < M,
and 0 < t' < t” < t” < oo such that at least one of the following conditions holds:
(1) sp(t) = sg(t™) = i but sy (t”) # 1 (2) sy (') = sy(t”) = i. If, in this case,
sp(t’+6) # j for any sufficiently small § > 0, then the processing of job i is interrupted
at time t". The preemption of the job i at time ¢” allows the resumption of the processing
of this job at the same time on another machine.

In what follows, it is assumed that the number of preemptions in the processing of each
job is finite and, hence, the number of the break-points of each of the functions s(t),
L =1,2,.. M, is finite as well.

The quality of a schedule s is characterized by the value of a real function

Polynomially Solvable Problems 71

F(x) = F(xq, Xp,..., x,) evaluated at x = (s), where t(s) = (£;(S), T5(8)ye-ry En(s)) is
the vector of the completion times of the jobs in schedule s. It is obvious that t,(s) is
the largest value of t such that there exists a L € {1, 2,..., M} for which si(t) = i. A
feasible (with respect to —) schedule with the smallest value of F(x) is called an optimal

schedule.

1.2. In a general case, an optimal schedule is a preemptive one. We present sufficient
conditions for the existence of optimal schedules for single-machine processing with no

preemption at times different from d;, ¢ = 1, 2,..., n.

Theorem 1.1. If M = 1 and F(x) is a non-decreasing (for x > 0) function, then there
exists an optimal schedule without preemption at times different from d;, i = 1, 2,..., n.

Proof. To prove the theorem, it suffices to show that for any feasible (with respect
to —) schedule s there exists a feasible schedule s* with no preemption at times
different from d;, i = 1, 2,..., n, and such that F(t(s*)) < F(t(s)).

1. Let d1) < d(®) <.< d(?) be the sequence of pairwise distinct values of d;, i = I,
2,..., n. Let the time intervals (d(1), d(2)], (d(?), d(3)],..., (d(*), x) be denoted by
B1y Bay-.-, By, Tespectively.

We introduce the following operations of transforming a schedule.

Operation O,(t’, t”, f), 0 <t <t” <t Denote A = t”—t’. Define s’(t) = s(t+4) in
the interval (¢, E—A]; s’(t) = s(t—(?—t")) in the interval (EgA, E], and s’(t) = s(t) in
the remaining intervals. If s is a schedule, then this is said to be obtained from
schedule s as a result of applying operation O,(t’, t”, E).

Operation O,(1, j, t’, t7, ’t\), 0<t <t'< E, i, j€ N, 1 # j, is used when s(t) = ¢
in the interval (¢, ¢”] and s(t) = j at some ¢t > t. Let (t), #®] be one of the
intervals in which s(t) = j, ¢ < t0 < @ If ®_¢t0 > t"—¢’ then define s(t) = j

in the interval (¢, t”], s(t) = i in the interval (¢, tM4(t"-¢")], and
s(t) = s(t) in the rest of the intervals. If ¢(2)—t() < t”—¢’, then transform s into §
by setting $(t) = j in the interval (¢, t'+¢@-tM] 3(¢) = i in the interval

(tW, ¢@], and 3(t) = s(t) in the rest of the intervals. Taking § as s and choosing the
interval (t'+¢(¢ ¢] as (¢, t”], repeat the transformations described above
until either §(t) = ;7 in (¢, t”] or $(t) # j for all t > t. Denote the resulting
function §(¢t) by s7(t). If s” is a schedule, then this is said to be obtained from
schedule s as a result of applying operation O,(i, j, t’, t”, 2).

2. Without loss of generality, we may consider only such schedules s for which the

72 Chapter 2

condition s(t’) = s(t”) = k # 0, where t’, t” € 8, 1 <[< v, and ¢’ < t”, implies
that s(¢) = k for all t" <t <t

In fact, if s(t) = k in the subintervals (¢;, ¢;] and (¢;’, t;] of interval B;,, where
t, < t; but s(t) # k for t, t; < t < t/’, then applying operation Oy(t{, t;, t;’) to
schedule s gives a new schedule s” with s’(t) = k in the interval (¢{"-(t;—¢{), t;’]. The
schedule s” is, obviously, feasible with respect to — and ?(s’) < 7(s), therefore,
F(¥(s)) < F(%(s)).

3. If in some interval B;, [< v, the processing of m > 2 jobs is interrupted (with
resumption in subsequent intervals), then schedule s can be transformed into schedule s’
having at least the same quality and being feasible with respect to —, such that, in s,
the processing of at most m—1 jobs is interrupted in the interval under consideration.

Let the processing of jobs i and j be interrupted in the interval 8;, | < v, and
s(t) = i in the interval (¢, ¢;] c B, while s(¢) = j in the interval (¢{', ;] < B
Due to Item 2 of this proof, it follows that s(t) = ¢ for some ¢t > d*1) and s(t) = j for
some ¢ > d("*1). Suppose, for example, that Z,(s) > 7(s).

If t; > t;, we apply operation O,(i, j, t{, ts, d¥*D)) to schedule s and obtain a new
schedule s” in which either the processing of job j is completed in the interval 3; (i.e.,
ti(s’) < d"D) or job i is not processed in this interval. Schedule s” is feasible with
respect to — and F(%(s") < F(t(s)).

If t, < t{, then applying operation O)(t;, t;, t;)) to schedule s gives a feasible
(with respect to —) schedule § with F(%(5)) < F(t(s)), satisfying the conditions of the
previous case.

4. If in the interval 8;, | < v, there is only one job j processed with preemption (the
processing of j is resumed in some subsequent interval), then schedule s can be
transformed into a new feasible (with respect to —) schedule s” with F(%(s")) < F(%(s)),
either with no preemption in the interval 8; or with a preemption at time d(*+1).

Suppose that s(t) = j in the interval (¢, t;] c 8, t; < d*VD and s(t) = j at some
t > dU+D),

If either s(d?*V)) = 0 or the processing of some job is completed at time d(*+! then
applying operation Oy(t{, t;, d™*V) to schedule s gives the desired schedule s”.

Let s(t) = i in the interval (¢, t37], ¢, < d™) < ¢, If %;(s) = t;’, then apply
operation O,(t{, t;, t;’) to schedule s. If Z;(s) > t;, two cases are possible: either
ti(s) < tj(s) or ti(s) > t;(s). In the former case, apply operation Oy(t], t; t;’) to
schedule s, and, if t;'—(¢t;—t{) < d®™*V, then apply operation O,(j, i, t; —(t;—t{),

d*), ¢y to the obtained schedule. In the latter case, apply operation

Polynomially Solvable Problems 73

O\(ty, t3, t;") to schedule s, and operation O,(i, j, t{, d¥D |) to the resulting
schedule. In any case, we obtain the desired schedule s’.

5. Since the number of preemptions is finite, we conclude that after a finite number of
the described transformation steps the original schedule s can be transformed into a
schedule s* which either is non-preemptive or in this schedule preemptions happen only at
times d®, [= 2, 3,.., v. Note that the intervals 3, should be considered one after
another, moving from left to right.

Each of the obtained schedules is feasible with respect to — and has at least the same
quality as the original one. This proves the theorem.

The theorem gives an exact upper bound (equal to v—1 where v is the number of distinct
release dates d;, i = 1, 2,..., n) on the smallest number of preemptions in an optimal
single-machine schedule.

We give an example in which an optimal schedule has exactly v—1 preemptions and there
is no optimal schedule having fewer preemptions.

Define M = 1,n=3,d, =0,dy =1, d3 =2, t, =ty = t3 = 2, F(x) = x;+5x,+20x3. In the

case under consideration, there exists the unique optimal schedule presented in Fig. 1.1.

s*
3
3k
2 2

L

1 S |
x—i H

| 1 | | L

Fig. 1.1
In this schedule, the processing of job 1 is interrupted at time t = d, = 1, while the
processing of job 2 is interrupted at time t = d; = 2. The processing of these jobs is

resumed at times t = 5 and t = 4, respectively.

Corollary. If d; = d, i = 1, 2,..., n, then for M = 1 and a non-decreasing function F(x),

there exists a non-preemptive optimal schedule.

1.3. Now we consider the multi-machine case.
Let us introduce the concept of an e-quasi-concave function of n variables.

A function F(x), x = (%, Xg..., Xx,) is called concave if for any vectors

74 Chapter 2

x) x(2) € E" and a number A, 0 < A < 1, the following inequality

FOxW 4 (1-1)x®) > AF(xD) 4+ (1-1)F(x(2)) (1.1)

holds. Here E™ is the set of all n-dimensional vectors.
A function F(x) is quasi—concave if for any vectors x(V), x(2) € E™ and a number A,

0 < A < 1, the inequality
FOxM 4 (1-2)x(2)) > min{F(xV), F(x?)} (1.2)

holds.

Let EF be the set of all n-dimensional vectors e, whose components are the numbers 0, 1,
and -1.

A function F(x) is e-quasi-concave if for any vectors x(!) € E®, e € E}, and any numbers
o and A, o > 0, 0 < A < 1, inequality (1.2) holds where x(? = x(1) qe.

By definition, a concave function is quasi-concave, and a quasi-concave one is
e-quasi-concave as well. As can be easily seen, there exist e-quasi-concave functions which
are not quasi-concave, and quasi-concave functions which are not concave.

Note that, since function F(x) characterizes the quality of a schedule, it suffices to
demand that it should possess some required properties on some subset of E™ rather than on
the entire set. In particular, it suffices to consider vectors x > 0 which do not contain

more than M equal components.

Theorem 1.2. If M >2,d; =d, ¢ =1, 2,..., n, G = (N, @) and F(x) is a non-decreasing
e-quasi-concave function (for x > 0), then there exists an optimal non-preemptive
schedule.

Proof. To prove the theorem, it suffices to show that for any schedule s there exists a
non-preemptive schedule s* such that F(t(s*)) < F(t(s)).

1. Without loss of generality, assume d = 0. Let us introduce the following operations of
schedule transformation.

Operation O,(Q, R, t'), 1 < Q # R < M, t" > 0. The schedule s'(¢t) = {s{(t), s3(t),-..,
sy(t)} is said to be obtained from schedule s by applying operation Oy(Q, R, t) if
sp(t) = sp(t) for all 0 < ¢t < 00 and all L # Q, R; sg(t) = sg(t) and sg(t) = sg(t) in the
interval [0, t7]; sg(t) = sg(t) and sg(t) = sg(t) for all ¢ < t < co. This operation
interchanges the machines Q and R starting at time ¢". Since the machines are identical,
it follows that F(Z(s")) = F(t(s)).

Operation 0,(Q, t, +a), 1 < Q < M, t" > 0, a > 0. This operation either increases or

reduces the idle time on some machine Q by a specific value a. Applying this operation to

Polynomially Solvable Problems 75

schedule s yields the family of functions s'(t) = {s{(t), s5(t),..., sy(t)} where si(t) =
sy(t) for all 0 < ¢t < o0 and all L # Q; sj(t) = sg(t) in the interval [0, ¢'], s5(t) = 0 in
the interval (¢, t"+a] and sj(t) = sp(t-a) for all t'+a < ¢ < oo if a is positive; sj(t) =
sp(t) in the interval [0, t'—a] and sg(t) = sp(t+a) for all t’~a <t < co if a is negative.
If 5" is a schedule, then F(z(s")) < F(Z(s)) for a negative a.

Operation O4(Q, R, t', t”, a), 1 < O, R< M, t">0,t >a > 0. Consider a family of
functions s(t) = {s{(t), S5(t),-.., sy(t)}, where sj(t) = s;(¢t) for all 0 < t < oo and all
L # Q, R; s4(t) = sp(t) in the interval [0, t'-a], and sg(t) = sp(t+a) for all
t'—a < t < 00; sg(t) = sg(t) in the interval [0, t); sg(t) = sg(t+t'—t"—a) in the
interval (t”, t"+a] and sg(t) = sp(t—a) for all t"+a <t < c0. If 0 = R and t" < t7,
define si(t) = sp(t) in the intervals [0, t’-a] and (t"+a, ®), so(t) = sp(t+a) in the
interval (t'—a, t”] and sj(t) = sp(t+t'—t"-a) in the interval (t”, t"+a]. If s is a
schedule, this is said to be obtained from schedule s by applying operation
05(0, R, t', t”, a).

Operation O4(Q, t', t”, t), 1 < Q < M, 0 <t < t” < t. Denote A = t”"—t". Define
sp(t) = sy(t) forall 1 < L # Q < M and for all 0 < ¢t < 00; 55(t) = sg(t+4) in the interval
(¢, ?—A], so(t) = sQ(t—(f—t”)) in the interval (t-A4, f] and s’(t) = s(t) in the
remaining intervals. If s” is a schedule, this is said to be obtained from schedule s by
applying operation O4(Q, t’, t”, ;).

2. Without loss of generality, we may consider only such schedules s for which either
sg(t) # 0 in some interval [0, T;] and sy(¢t) = 0 for ¢t > T, or si(t) = 0 for all ¢t > 0,
L=1,2,... M.

Take, for example, sp(t’) = 0 and sg(t) # 0 for some ¢t > ¢t > 0. Since schedule s has a
finite number of preemptions, it follows that both R and ¢" can be chosen such that t” is
the largest possible. Suppose that s;(t") = v and sy (t'+6) = p;, L = 1, 2,..., M. The
values of vy and p; need not to be different. Choose a positive é such that s;(t'+8;) = y
forall 0 < 6, <6, L =1, 2,.., M.

If there is such a Q, 1 < Q < M, that vy # 0 and pp = 0, apply operation Oy(R, Q, t) to
schedule s to obtain a new schedule s’.

If all vy = 0, L = 1, 2,...; M, then choose the largest a such that s;(t) = 0 in the
interval (¢"-a, t7] for all L = 1, 2,..., M. Apply operation O,(R, t’, -a) to schedule s
to obtain a new schedule s”.

If none of the mentioned situations takes place, then there exists a H, 1 < H < M, such
that gy # 0 and py # vy for all L = 1, 2,..., M. In particular, it may happen that # = R.
Apply operation Oy (R, H, t’) to schedule s, and operation O,(R, t’, —(t'-a)) to the

76 Chapter 2

obtained schedule where a is the largest value such that s;(t) # py in the interval
(t'—a, t) for all L = 1, 2,..., M. Denote the resulting schedule by s".

In any case, the idle time on machine R is reduced without increasing the idle times of
the other machines. Since t(s) < ?(s) and F(x) is a non-decreasing function, it follows
that F(%(s")) < F(t(s)). By repeating similar arguments finitely many times, we come to
the desired conclusion.

3. Let schedule s allow preemptions only at time ¢ = ¢, and at this moment the
processing of v < M jobs ky, ky,..., k, is interrupted. A job k; is processed for ¢; time
units on a machine Q;, and then for ¢t;’ time units on a machine R;. If Q; = R;, then we
have st(t(1)+6) # k; for a sufficiently small § > 0. Let A; denote the length of the time
interval between time t1) and the time at which the processing of job k;j is resumed.
Define A;x = min{4;[1 < j < v}.

Suppose that Q;+ = Rj«. Apply operation O,(Q;x, tW —tla, 1@, tM 4+ Ajx) to schedule s.
As a result, schedule s with 7(s") < t(s) is obtained.

Suppose now that Qj» # Rjs. If Ajx = 0, then by applying operation O)(R;x, Qjx, (V) to
schedule s we obtain schedule s” with t(s") = t(s).

If Ajx > 0, then apply operation O(Rjx, Qje, tM+A;x+t%k, t), t7i) to schedule s.
The resulting family of functions s(!) is a schedule, because there is no preemption in
schedule s for t > tM. If F(z(sV)) < F(%(s)), denote s(!) by s".

Suppose that F(z(s)) > F(t(s)). If, in schedule s, the processing of at least one of
the jobs ky, ky,..., k, is resumed on machine Q;x, then let © denote the length of the time
interval between t(!) and the time at which the processing of the first of these jobs is
resumed. It is clear that ® > A;« and sQ]_*(t) # k; for all (M) < ¢ < ¢(MW4+6 and all
1<j<oIf st‘(t) # k; for all ¢ > tM and all 1 < j < v, then define @ = W, where W
is a sufficiently large number. Denote © = min{@, tjs}. Apply operation O3(Q;*, Rj+,
tW-txt0, tM4+ A, O) to schedule s. The resulting family of functions s(2) is a
schedule. The vectors t(s()) and %(s(?)) are connected with the vector t(s) by the
relation £(s(V)) = 7(s)+et;+ and 7(s() = 7(s)-€®" for some vector e € EF. Since function
F(x) is e-quasi-concave and F(t(s)) > F(t(s)) by assumption, it follows that
F(t(s®)) < F(t(s)).

If © > tix, then denote s(2) by s”. If @ < tj, apply operation O4(Q;x, tV—tjs, tM) -0,
t1) to schedule s to obtain a schedule s® with 7(s®) < F(s?). Let
sg3eM) = sé;‘_l(t“)+6) for any sufficiently small § > 0. Apply operation O(Q;+, L,
tM) to schedule s(®). Denote the resulting schedule by s”.

Thus, in any case, we are able to find a schedule s” which has at least the same quality

Polynomially Solvable Problems 7

as the original schedule s, and also allows preemptions only at time ¢ = t(1). However, at
this time, the processing of at most v—1 jobs is interrupted Therefore, there is also a
non-preemptive schedule having at least the same quality as the original schedule s.

4. To complete the proof, it suffices to show that if, in schedule s, preemptions happen
only at times ¢, ¢ ¢ then there exists a schedule s° which allows
preemptions only at times ¢(1), ¢(2) . ¢(-1) and F(%(s") < F(t(s)).

Schedule s satisfies the conditions of the previous item for t > t(*-1). Therefore, we
may define ¢(*) = 0 and use the above considerations. As a result, we obtain a schedule
which has no preemption at t > #(*-1), coincides with the original schedule at ¢t < #(*-1),
and has at least the same quality. This proves the theorem.

The proof of Theorem 1.2 immediately implies the existence of a schedule s*(t) = {s}(t),
s;(t),..., s;,(t)} which has the mentioned properties and also the property that either
sZ(t) # 0 in some interval (d, T;) and sj(t) = O for t > Ty, or sp(t) = 0 for all t > d,
L=1,2,.., M

Note that if at least one of the conditions of this theorem is violated, then, in
general, the search for an optimal schedule may not be restricted to non-preemptive

schedules. Below, we present the corresponding examples.

2 1 4 3 4
Machine 2 i———————-}——i Machine 2
1 i3 1 2
Machine 1 - Machine 1
1 | | |
0 1 2 3 4 t 0 1 2 3 4 t
(a) (b)
1 2
Machine 2 1
2 i3
Machine 1
i I
0 1 2 3 4 t
(c)
Fig. 1.2
(a) The values of d; are different. Define M = 2; n =3;d, =0;d, =1, d3 = 2; t; = 3;
t, = t3 = 2; F(x;, x5, %3) = %,+2x,+3x3. In the case under consideration, for any

non-preemptive schedule s we have F(t(s)) > 24. On the other hand, for the schedule ¥
shown in Fig. 1.2a, we have F((3)) = 22. In this schedule, the processing of job 1 is

interrupted at time t = d; = 2 to be resumed on the other machine at time ¢t = 3.

78 Chapter 2

(b) The set of jobs is ordered, i.e., G # (N, @). Define M = 2;n = 4;d; =0,i=1, 2,
3,4t =ty =t3 =1, ty =2, F(xy, x5, X3, X4) = 2(x;+x,+%3)+ x4, and assume that 1 — 2
and 1 — 3. In this case, F((s)) = 14 corresponds to the best non-preemptive schedule s.
An optimal schedule s* with F(Z(s*)) = 13 is shown in Fig. 1.2b. In this schedule, the
processing of job 4 is interrupted at time ¢ = 1 to be resumed on the same machine at time
t = 2.

(c) Function F(x) is not e-quasi-concave. Let M = 2; n = 3; d; = 0; ¢« = 1, 2, 3;
t, =ty =tz = 2; F(xy, %3, x3) = x?+x%+x2. In this case, F(x) is non-decreasing in the
positive octant but it is not an e-quasi-concave function.

In fact, for x(= (0, 1, 2), e = (0, 1, -1), & = 1 and A = 1/2, we have x(?) = (0, 2,
1) and F(AxM 4 (1-A2)x(®) = F(0, 3/2, 3/2) = 9/2 < min{F(0, 1, 2), F(0, 2, 1)} = 5. One of
the optimal schedules is shown in Fig. 1.2c, where the processing of job 2 is interrupted
at time ¢ = 1 to be resumed on the other machine at time ¢ = 2. The value of F(x)
corresponding to this schedule is 22, while for all non-preemptive schedules we have

F(x) > 24.

2. Deadline-Feasible Schedules

In this section, the necessary and sufficient conditions are established for the
existence of a schedule for processing n jobs on M parallel identical machines in which
each job is completed by the corresponding deadline. Algorithms for constructing such

schedules are given. Preemption in the processing of any job is allowed.

2.1. The jobs of a set N = {1, 2,..., n} are processed on parallel identical machines.
The release date of a job ¢ € N is d; > 0, its processing time is equal to t; > 0. The
deadline D; > d;+t; by which a job ¢ must be completed, is known. In practical
applications, the values d;, t; and D;, ¢ = 1, 2,.., n, are rational and can be
considered to be integers by choosing an appropriate scale. It is assumed that preemption
does not consume time and that the number of preemptions is finite.

A schedule s in which all jobs are completed by the corresponding deadlines, i.e.,
Tis) < D;, i =1, 2,..., n, is called feasible (with respect to deadlines). Here t;(s) is
the completion time of job ¢ in a schedule s.

We present the necessary and sufficient conditions for the existence of feasible

schedules, and show how to find them (if such schedules exist).

Polynomially Solvable Problems 79

2.2. If set N of jobs can be divided into two subsets N, and N, such that
max{D;|7 € N;} < min{d;|i € N,}, then a feasible schedule for processing the jobs of set N
exists if and only if feasible schedules exist for processing the jobs of each subset N,
and N,. In what follows, it is supposed that such a situation does not arise.

Let €; < €3 < ... < €pyy, p < 2n-1, be a set of all pairwise distinct values of d; and
D, i =1, 2,..., n, Ey = (e, exyy] and Ay = e —€, k =1, 2,..., p. Let n(k). denote
the number of all jobs i € N such that E}, < (d;, D;].

Suppose that there exists such a I, 1 </ < p, and such job j € N that n(l) < M and
Ey c (dj, Dy]. It is obvious that job j can be processed in the time interval E, on any
machine without affecting the processing of the other jobs. If A; > t;j, then delete job j
from set N. If A; < tj, reduce the processing time of job j by A, Perform these
operations for all j € N, such that E; ¢ (dj, D;]. As a result, we obtain a new set N* of
jobs and new processing times of the jobs in this set.

For each i € N” such that D; > e,,, we reduce the deadline D; by 4,, and for each
t € N’ such that d; > e,;, we also reduce its release date d; by A,.

As can be easily seen, a feasible schedule for processing the jobs of set N exists if
and only if there exists a feasible schedule for processing the jobs of set N* (with d;,
t;, D; changed as described above). Taking set N” as N, we can repeat the above arguments
until either N* = @ is obtained, or n(k) > M for all k.

In the former case, we conclude that a feasible schedule s does exist, and the described
procedure is, in fact, a procedure for finding such a schedule. In each step, we analyze
an interval E; = (e, ey,] with n(l) < M and the set N; = {j;, Jjg..., Jny} of jobs
which can be processed in this interval. Since |N;| = n(l) < M, it follows that, for
4 < tj,, we may define s;(t) = j, in the interval E;, while for 4; > th we define
sp(t) = j, in the interval (e, e,+th] and sy(t) = 0 in the interval (€1+th» €l
L =1, 2., n(l). If n(l) < M, then si(t) = 0 in the interval E,, L = n(l)+1,
n(l)+2,..., M. In this case, a feasible schedule is found in O(n?) time.

In the latter case, we come to the problem of a smaller dimension where n(k) > M for all

intervals FEjy.

2.3. Associate the set of time intervals {E), E,,..., Ep}, the set of jobs {1, 2,..., n}
and the sequence t;, i = 1, 2,..., n, with a network I" (see Fig. 2.1) containing the
source vertex xg, the sink vertex z, and the intermediate vertices x,, x,,..., Xpy Y1

Y25+, Yn- A vertex x; corresponds to interval Ey, a vertex y; corresponds to job i.

80 Chapter 2

Connect vertices x; and y; by the arc of the capacity c(xx, v;) = Ay if and only if
Ex < (d;, D;]; connect vertices x, and x; by the arc of the capacity c(xg, xx) = MA;; and
connect vertices y; and z by the arc of the capacity c(y;, 2) = t;, k = 1, 2,..., P,
¢ =1, 2,..., n. The arcs (xy, %), k = 1, 2,..., p, are called the input arcs, while the
arcs (y;, 2), ¢ = 1, 2,..., n, are called the output arcs of the network. Note that the

network " can be constructed in at most O(n?) time.

Fig. 2.1

Each deadline-feasible schedule s determines the flow f which saturates the output arcs
of the network I'. In fact, let T;(s) be the total processing time of job i in the

interval Ey in schedule s, ¢ = 1, 2,..., n, k = 1, 2,..., p. It is obvious that
2
Tik(s) < Ag holds for all 7 and k; the inequality Y 7(s) = ¢; holds for any i € N, the
k=1
n
inequality ¥ 7j(s) < MA; holds for any interval Ej, and, besides, the equality
P n =1 n
Y L Ti(s) = X t; holds.
k=1 i=1 =1
Define f(xg, xx) = ¥ Ti(s) for each arc (xo, xi), define f(xx, v;) = Ti(s) for each
i=1

arc (xg, ¥;), and define f(y;, z) = t; for each arc (y;, z). Note that the value of
function f corresponding to any arc does not exceed its capacity, and, moreover, for each
output arc of the network, this is equal to the capacity. Besides, for any intermediate
vertex v, the sum of the values of function f over all arcs entering v is equal to the sum

of its values over all arcs leaving v. The sum of the values of function f over all input
n

arcs of the network and the sum over all output arcs are both equal to Y ¢;. Therefore,
i=1

n
function f is a flow (with the value of ¥ ¢;) which saturates the output arcs of the
i=1

Polynomially Solvable Problems 81

network I
On the other hand, each flow f which saturates the output arcs of the network I
determines a deadline-feasible schedule. In this case, the flow along an arc (xg, y;) is

interpreted as the total processing time of job ¢ in interval Ej. Note that
P n

(%, Vi) < Ak, L flxx, vi) = t; and T f(xg, y;) < MA,. Given a flow along the arcs
k=1 i=1

(xxs i), @ = 1, 2,..., n, for each vertex x;, a schedule for the interval Ey can be

constructed. This can be done by the following algorithm called the packing algorithm.
Let the jobs of a set N have to be processed in a time interval E = (e’, ¢”]. The jobs

are processed on M parallel identical machines. The processing time of a job ¢ € N is Tis

the conditions 7; < A hold for all ¢ € IV, and, moreover, ¥ T; < MA, where A = e"-¢".

ieN
Let m = (4, I5...y i|ﬁ|) denote an arbitrary permutation of the elements of set N.
Define a function o(t) in the interval (e’, e’+MA], assuming that o(t) = ¢; in the

k-1 k
interval (e’ e'+r,~l], o(t) = % in the interval (e'+ ET,-]_, e+ ET,-JJ, k=2, 3,.,
j=1 j=1

|[N|, and set o(t) = O in the interval (e'+ L 7;, e +MA] if L 7; < MA. A schedule
ieN ieN

s(t) = {s;(t), S(t),..., sy(t)} for processing the jobs of set N in interval E is said to
be constructed by the packing algorithm if in this interval si(t) = o(t+(L-1)A), L = 1,
2,..., M.

It is clear that such a schedule in interval E can be found in at most O(|N|) time. In
this schedule, the number of preemptions does not exceed M- 1.

Having constructed the schedule for each interval E} by the packing algorithm and having
“concatenated” the schedules for the intervals E,, E,,..., E, we obtain a deadline-
feasible schedule for the jobs of set N. Finding such schedules requires no more than
O(np) time, i.e., at most O(n?) time. The resulting schedule has at most n(p—1)+(M-1)p
preemptions. In fact, while constructing a schedule for each interval Ej, we obtain at
most M -1 preemptions, while “concatenating” the resulting schedules involves at most
n(p-1) preemptions.

Finding a maximal flow in a network with n vertices requires O(n®) time [2]. If the
n

value of the resulting flow in the network I' is ¥ ¢;, then there is a deadline-feasible
i=1

schedule which can be found in at most O(n?) time and which has at most n(p-1)+(M-1)p

preemptions. Otherwise, a feasible schedule does not exist.

2.4. We now establish the necessary and sufficient conditions for the existence of

deadline-feasible schedules.

82 Chapter 2

For N ¢ N, let E(/V) denote the set of the numbers of all intervals E}, each obeying the
condition Ey € (d;, D,;] at least for one i IV, and let 7i(k) denote the number of all jobs
i € N such that Ey c (d;, D).

Due to the saturation theorem [15], a flow, which saturates the output arcs of the
network I', exists if and only if the inequalities

Zji) A, min{M, 7i(k)} (2.1)
ieN keE(N)
hold for all N ¢ N.
Thus, the following statement holds.

Theorem 2.1. A deadline-feasible schedule exists if and only if inequalities (2.1) hold
for all N c N.

Since t; < D;—d; for all ¢ € N, the subsets N ¢ N which contain at least two elements
should be considered. The total number of inequalities (2.1) is equal to 2"—(n+1).

We show that the inequalities (2.1) hold for all Ncnif they hold for some specially
chosen subsets N ¢ N.

Let us choose an arbitrary subset N ¢ N. Represent E(N) as E(N) = E® u E(?) where
EW A E®D =g ED = (v, vl,.., p}, 1<v<p<p, E@ = {k e E(N)|k > p+2}. Suppose
that E(® # @. Then set N can be divided into two non-empty disjoint subsets N; and N, so
that E(N;) = E® and E(N,) = E®. In fact, if there is such an i € N that
E(i) n E®W % @ and E(i) n E® # o then, due to the definition of E(i), we obtain
p+1 € E(N). As can be easily seen, if inequality (2.1) holds for N = N; and N = N,, then
it also holds for N = N.

Therefore, the inequalities (2.1) hold for all N ¢ N if and only if they hold for all
N ¢ N satisfying the condition: there exist such v and p that 1 < v < p < p and E(N) = {v,
v+1,..., u}

The following procedure can be used for finding the required sets N. Choose arbitrary v
and g, 1 < v < p < p. Define ¢ = {v, v+1,..., u}. Find the set N" of all i € N for which
E(@) ¢ c¢. If E(N) = ¢, then define N,, = N’ In this case, the pair v, u is called
essential. Let N"u denote the set of all proper subsets N” of the set N,, satisfying the
condition E(N”) = c. The set N,, and all subsets in [V,,“ are the desired sets N. Applying
this procedure to all pairs v, g, 1 < v < p < p, we find all sets N for which inequalities
(2.1) should be verified.

If the values of M, d;, t;, D;, i = 1, 2,...; n, are such that for all essential pairs

v, p the inequalities (2.1) hold for any N e [V,,# if they hold for N = N,,, then we say

Polynomially Solvable Problems 83

that the regularity condition holds. In this case, the number of inequalities (2.1) to be
verified does not exceed n(n+1)/2. In fact, if a pair v, p is essential, then e, € {dj,
dy,..., dp} and e,y € {Dy, Da,..., Dp}. The largest number of essential pairs is obtained
if all d; and D;, i = 1, 2,..., n, are different. By numbering the jobs in increasing
order of D;, we come to the conclusion that for any essential pair v, u where e, = d;,

€441 = Dj the inequality 7 < j holds.

2.5. Let us consider the case M = 1. In this case, inequality (2.1) can be written in
the form
Yus Y4 (2.2)
ieN keE(N)
for all N ¢ N.
Let the jobs be numbered in non-decreasing order of the deadlines. Let N} denote the set
of all jobs i € N for which d; > di and D; < D,.
Since, in the case under consideration, the regularity condition holds, it follows that
inequalities (2.2) hold for all NcN if and only if
Y ti < Di—dy (2.3)
ient
forall 1 <k <l<n.
It can easily be shown that inequalities (2.3) for all 1 < k <! < n can be verified in
at most O(n?) time.

Note that if d; < dyyy, © = 1, 2,..., n—1, then (2.3) can be written in the form

]
Yt < Dy-dy (2.4)
i=k

forall 1 <k <l
If d; > djyy, © = 1, 2,..., n—1, then inequalities (2.3) hold for all 1 < k <! < n, if

IA

n.

and only if

k
Y ti < Dp—diy k=1, 2, n. (2.5)
i=1
If d; =d, i =1, 2,..., n, then (2.5) becomes
k
): t; < D—d, k =1, 2,...,n. (2.6)

i=1

We describe an O(nlogn) algorithm for finding a feasible schedule s. The algorithm

extends the known rule of job processing in non-decreasing order of deadlines (the EDD

84 Chapter 2

rule) to the case of different release dates, i.e., according to the algorithm, the
available job which has the smallest deadline, is selected to start processing.

Let {d®, 4@ .. d®)} be a set of all distinct values of d; and dV < d® < ... <
d® < d*) = W, where W is a sufficiently large number.

In the first step, define 7 = d), Ny = {i|i € N, d; = dV} and s(t) = 0 for
0<t<db

In each step, we have a certain time 7 (suppose that d®*1) <7 < d®), 2 <u <v+1) and
some set N, of jobs. Choose a job j € Ny with the smallest number (i.e., with the earliest

[No| = 1, define s(t) = 0 for all T+t; < t < d®.

deadline). Define s(t) = j for all 7 < ¢t < min{d®™, 7+¢;}, and, if 7+t; < d® and

If 7+t; > d), then add to Ny all jobs i € N with d; = d® and redefine t; to become
equal to t;—(d®-7). If either 7+t; < d® and |Ng| = 1, or T+t; = d®), then delete
job j from Ny and add all jobs i € N with d; = d®. In any case, define 7 = d®. If
T+t < d®) and |Ng| > 1, then delete job j from N, and set 7 equal to T+t

As a result, we obtain a new time 7, a new set N, and go to the next step. The schedule
s is constructed when Ny = @.

We show that if there exists a feasible schedule, then the schedule s found by the
described algorithm is feasible. It suffices to show that if s is not a feasible schedule,
then at least one of inequalities (2.3) is violated.

Let [be a job with the smallest number for which the deadline is violated in the
schedule s, i.e., t;(s) < D;, i = 1, 2,..., =1, and ¢;(s) > D,. Set t" = t;(s). Let r be
the number of a step of the algorithm, in which s(t") = [is obtained, and 7, be the value
of 7 at which we enter step r.

Define t” = max{t|t < 7,, s(t) = 0}. It is easy to check that t” = d; for some i € N
and d; < d,.

If all jobs chosen to be processed in the first r—1 steps have numbers less than [/, then
define ¢ = t”.

Let p, p < f, be a step of the algorithm with the largest number, in which a job " such
that I” > ! is chosen for processing. If 7, is the value of 7 we enter step p, then
dy > d@*V) (where d® < 7, < d@*Y) and s(t) # i holds in the interval (d(@*V), ¢7] if
d; < d@*1). In fact, if there exists a job ! with d;.. < d(@*) which is processed in
this interval, then !” > !” (otherwise, job [” rather than ! would have been chosen in
step p). This, however, contradicts the fact that p is the last step before step r such

that a job with the number larger than [is chosen to be processed. Define ¢ = max{t”,
d(@y,

Polynomially Solvable Problems 85

Let k£ be a job with the smallest number, for which dy = t. It is clear that k < L.
In the interval (dj, t’] only such jobs are processed, for which d; > d; and i < [, i.e.
D; < D,. Therefore,

dy +1;Nfctl >t > D
and hence, for jobs k£ and [, inequality (2.3) is violated.

We show that the running time of the described algorithm for finding a feasible schedule
is O(nlogn). Sort the jobs in non-decreasing order of d; (this requires O(nlogn) time, see
Section 2.7 of Chapter 1). Find the set Ny of all jobs i € N with d; = d(). Define a
binary relation = over set N, assuming that ¢ = j if and only if ¢ < j. It is clear that
relation = is a total strict order and, hence, a total pseudo-order. In the first step of
the algorithm, we represent the set Ny ¢ N ordered according to relation = as a balanced
2-3-tree (this takes O(n) time; see Section 2.3 of Chapter 1).

The number of steps of the algorithm does not exceed 2n—1 because, in each step, either
processing of some job is completed or a new job ready for processing is added to the set
Ny.

In each step, choosing job j € Ny with the smallest number (i.e., finding a maximal with
respect to = element of set N;) takes a constant time (in fact, one elementary operation
is required; see Section 2 of Chapter 1). Either deleting a job from Nj or adding a new
job to Ny requires O(logn) time. Changing the processing time of job j is equivalent to
deleting job j from Ny followed by inserting job j with a new processing time to N,. This
also requires at most O(logn) time.

Hence, it follows that the total running time required for finding a schedule s does not
exceed O(nlogn).

Remark 1. If d; < d;,,, then schedule s is non-preemptive. Therefore, conditions (2.4)
and (2.6) are necessary and sufficient for the existence of a single—machine deadline-
feasible non — preemptive schedule.

Remark 2. A feasible schedule for a partially ordered set of jobs (as before, M = 1 and
preemption is allowed) can be found by an O(n?) algorithm described in Sections 3.6 and

3.7 of this chapter.

2.6. Let M >1,d, =d, D; =D, i =1, 2,..., n. As before, it is assumed that ¢t; < D—d,
t=1, 2,..., n
Inequalities (2.1) can be written as

Y t; < (D-d) min{M, |N|}, N c N.
ieN

86 Chapter 2

Since, in this case, the regularity condition is satisfied, it follows that a feasible
schedule exists if and only if
i t; < (D-d)M. (2.7)
i=1
It is obvious that verifying this inequality takes at most O(n) time. If a feasible
schedule exists, it can be found by the packing algorithm applied to the set N of jobs in
the time interval (d, D] (see Section 2.3). This also takes O(n) time. In the resulting

schedule, the number of preemptions does not exceed M-1.

2.7. We now consider the case M > 1, assuming that either D; = D or d; = d, i = 1,
2,..., n. These situations are equivalent, since a feasible schedule for processing jobs
with parameters d; and D; = D exists if and only if there is a feasible schedule for
processing jobs with parameters d; = d and D] = D+d-d,.

In what follows, without loss of generality, we consider the case M > 1, d; = 0, i = 1,
2,..., n. It is again assumed that t; < D;, 1 = 1, 2,..., n.

Let the jobs be numbered in non-decreasing order of D;. For Nc N, assume that N = {1y,
iy, 4}, Where i; < 4 if j < k. Inequality (2.1) can be written in the form

it,-j < D,«lmin{l, M} + (D"z—D"l) min{l-1, M} +...+
=1 (2.8)
+ (D D;) min{2, M} + (D,-I—D-).

o2 i
Since t; < Dy, 7 = 1, 2,..., n, it follows that inequality (2.8) holds for any set N

Yoo

with |N| =l<MIf [Nl = | > M, then inequality (2.8) can be written in the form
1 !
'Z b < Y Di . (2.9)
j=1 Jj=l-M+1
This inequality holds if and only if
i - M+l i 1
Ztk+. Z b< Z D,-j.
k=1 j=l-M+2 Jj=l-M+1

Thus, a feasible schedule exists if and only if

iy M M
Yo+ ,Z b, < .ZD,-]A (2.10)
k=1 i=2 j=1
holds for all N = {i1, 125..., iy} € N. The total number of these inequalities is [’,‘1’]

In this case, the regularity condition may be, in general, violated. In fact, consider
the intervals Ey = (Dy_;, Di] of the length Ay = Dy—Dy_y, k = 1, 2,..., n, where D, = 0,

and the case of A; = 0 is included. For each essential pair v, p, we have v = 1 and

Polynomially Solvable Problems 87

u € {1, 2,.., n}. Therefore, the set N,, is of the form Ny, = {1, 2,., u},
g =1, 2,.., n, and for each N € N,,,, we have p € N". Let M = 2, ¢, = t3 = 1, t, = 2,
ty =5 D, =1,D, =2 Dy =4, Dy = 5. A direct verification shows that inequality (2.1)
holds for Ny, = {1}, Ny, = {1, 2}, N3 = {1, 2, 3}, Ny = {1, 2, 3, 4}, but this does not
hold for N” = {1, 2, 4} € Ny,
We show that the regularity condition holds if ¢; = ¢, ¢ = 1, 2,...,, n. If N = Ny, =
{1, 2,..., u}, g > M, then inequality (2.9) can be written as
ut < i Dy. (2.11)
k=p-M+1
Suppose that this inequality holds for all g > M. Choose an arbitrary x4 and an arbitrary

set N” = {4, 1g,..., 5§} € NI“, > M, 4 <iy < ... <4 = pu Let a job 7_y,, have the

we
number p. Define "= p+ M —1. Since §j_y; 2 {-M+1, wehavep'>land it <pt< Y Di=
k=p-M+1
1

m ~
Y D, < Y D;. Hence, inequality (2.9) also holds for N = N”.
k=p j=1"M+1J

Thus, a feasible schedule for M > 1, d; = 0, t; =t < Dy, 1 = 1, 2,..., n, exists if and
only if inequalities (2.11) hold for all p > M. The number of these inequalities is n—M.

2.8. Let, as before, M > 1, d; = 0, t; < D;, 1 = 1, 2,..., n. We describe an O(nlogn)
algorithm for finding a feasible schedule. This algorithm is a natural generalization of
the packing algorithm.

Let D < D® < .. < D be all pairwise distinct values of D;. Let N, denote the
set of all jobs i € N with D; = D®, u = 1, 2,..., v. Define T." = 0, L = 1, 2,..., M.

The algorithm consists of v steps. In each step u, u = 1, 2,..., v, we are given D(®)
T,(f‘)7 L=1,2,.,M, and a job set N,. A step of the algorithm involves |N,| iterations,
at each of which one job 7 € N, is assigned for processing.

At the first iteration of step u, define D = D™, T = Tiu), 6, =D-T;, L =1, 2,...,
M, N = N,. At each iteration of this step, take an arbitrary job i e N.

(a) If t; > 6;, L =1, 2,..., M, then, as shown below, there is no feasible schedule.

(b) If ¢t; < &, for all machines L for which é;, # 0, then define sp(t) = 7 in the
interval (Tp, Tp+t;]. Here P is a machine with the smallest §p # 0 (if there are several
of them, take any). Modify Tp and ép, assuming them to be equal to Tp+t; and Sp—¢;,
respectively.

(c) Suppose that the conditions in (a) and (b) do not hold. Let P be a machine with the
largest ép such that ¢; > p. If ¢; > 6p, assume that Q is a machine with the smallest 6y

such that ¢; < 8y. If there are several machines which satisfy the above conditions, take

88 Chapter 2

any of them as P or Q. Define sp(t) = i in the interval (Tp, D], and, if t; > 6p, then
define sp(t) = 7 in the interval (Tg, To+ti—8p]. Modify Tp and ép, setting them to be
equal to D and 0, respectively. Modify Ty, and 8p, setting them to be equal to To+t;-8p
and 6p+6p—t;, respectively.

Delete job ¢ from IV, proceed to the next iteration, and so on, until N = @ is obtained.
In that case, go to the next step u+1, assuming Ti"“) =Ty, L =1, 2,., M. Having
performed step v, define s;(¢t) = 0 for ¢ > T,Ev+l), L=1,2,..M.

Note that if conditions (b) and (c) hold for each iteration of this algorithm, we obtain
a feasible schedule s. Otherwise, the algorithm stops as soon as, at some iteration,
conditions (a) hold.

We show that the running time of this algorithm is O(nlogn).

Each iteration is associated with a set R of all pairwise distinct values of T
considered at that iteration. Since, for any T° and T” in R, either 7" < T” or T” < T’
holds, it follows that set R is ordered by the relation < and can be represented as a
balanced 2-3-tree (see Section 2 of Chapter 1). Each T € R is associated with a terminal
vertex (a leaf) of the balanced 2-3-tree and with a list of numbers L of the machines for
which T; = T. At the first iteration of the first step, we have R = {T} where T = 0. This
value of T corresponds to the tree consisting of a single vertex, and to the list {1,
2,..., M} of machines.

At each iteration, the search for the cases, in which either ¢; > §; = D-T, holds for
all L =1, 2,...;, M, or t; < D-Ty, holds for all L such that D-T; # 0, reduces to finding
either the smallest element T* the set R or the largest element T” such that T” < D. (We
may take any machine in the list corresponding to the value of T” as machine P). If none
of these cases takes place, it is required to find machines P and Q. To do that, it
suffices to find the smallest element T € R such that ¢t; > D-T, and, if ¢t; > D-T, the
largest element T e R such that t; < D-T. All these operations can be implemented in
O(logM) time (see Section 2.8 of Chapter 1).

The modification of the value Tp reduces to deleting the number P from the list of
machines corresponding to T, and, if the obtained list is empty, to deleting the element T
from R.

Let a modified value of Tp be equal to 7". If T" € R, then the number P should be added
to the list of machines corresponding to 7". If set R does not contain 7", then T~ should
be inserted into R, and the list {P} of machines corresponding to T~ should be formed. The
value of Ty is modified in the same way. These operations also require O(logM) time.

Since the total number of iterations is n, finding a schedule s takes O(nlogM) time (if

Polynomially Solvable Problems 89

the jobs are pre-sorted in non-decreasing order of their deadlines). Taking into account
the running time required to sort the jobs in non-decreasing order of D;, we conclude that
the time complexity of the algorithm is O(nlogn+nlogM) or, equivalently, O(nlogn), due to
M < n.

2.9. We show that if a feasible schedule does exist, then the algorithm described in
Section 2.8 finds such a schedule s. In other words, if the algorithm does not find a
schedule (i.e., at some iteration t; > &;, L = 1, 2,..., M, holds for the chosen job i),
then there is no feasible schedule.

Let s() be some feasible schedule for processing the jobs of set N, and let N(V) be a
set of jobs processed according to this schedule in the interval (0, D). It is clear
that N, ¢ N,

Note that t; < DY), i € N, and the first step of the algorithm under consideration is,
essentially, the packing algorithm applied to the set N, of jobs in the interval (0, D(V]
(see Section 2.3). If N(1) % N, then choose all jobs i € N(») such that, in the schedule
s, they are processed within the interval (0, D] for ¢; < ¢t; time units (it is obvious
that each i ¢ N,). Define the processing times of these jobs to be equal to t;, and apply
the packing algorithm to the set N in the interval (0, D()]. Here, a permutation which
starts with all jobs of set N, can be chosen as permutation 7 of the elements of set N(V).
Denote the resulting schedule for the jobs of set N() in the interval (0, D] by s(1).
By defining s(®)(t) = s()(¢) in the interval (0, D] and s®(t) = s(I(t) beyond this
interval, we obtain a feasible schedule s(2). It is clear that s(2 is such a feasible

2)(t) = sy(t) for 0 <t < Tiz), L =1, 2., M, where Tﬁz) are the values

schedule that sg
of Ty, L =1, 2,..., M, obtained after the first step of the algorithm.

Let s(® denote a feasible schedule such that s{*)(t) = sp(t) for 0 <t < TfW, L = 1,
2,..., M, where TE") are the values of T;, L = 1, 2,..., M, obtained after the (u—1)th
step of the algorithm. We show that, in this case, we may pass from the schedule s(*) to a
feasible schedule s(®**) such that: (1) s\"*(t) = s,(t) for 0 < t < Ti"“);
(2) s£"+1)(t) = s,{u)(t) for t > D L = 1, 2,..., M. Tt is evident that sf*+V(z) =
sty foro<t <TM L =1, 2,., M.

As shown below, in order to prove this, it suffices to prove the following Statement A:
If there is a schedule § for processing the jobs of some set N such that the conditions
Sy(t) = 0 are satisfied for all ¢t < Ty < D and all t > D, L = 1, 2,..., M, then the
schedule § for processing the jobs of this set, constructed by the procedure to be

performed in each step of the algorithm, also satisfies the above conditions.

90 Chapter 2

If Statement A holds then we can pass from the schedule s(®) to the schedule s(*+1) in
the following way. Let N denote the set of all those i € N for which there exist such L
and t, 1 <L < M, Tzu) <t < D™ that siu)(t) = 1. It is obvious that N, ¢ NIt N # N,
and a job i € N\Nu is processed in the interval (0, D™)] for t; < ¢; time units, then
choose t; and D™ as the processing times and the deadlines, respectively, for all
i e N\Nu. Apply the procedure performed at each step of the algorithm to the set N,
choosing the jobs of set N, first.

Now, we proceed to a direct proof of Statement A. The proof is by induction with respect
to the number 7 of jobs in N. The statement holds for i = 1. Suppose that it is valid for
all i, 1 <@ < [, and show that the statement also holds for 7 = L.

Without loss of generality, assume that T; > T;,;, L = 1, 2,..., M—1. Represent the
interval (Ty, D] as a family of subintervals of length A such that schedule 5 is
non-preemptive within these subintervals and each time T}, &, # 0, is the beginning of
some subinterval (this can be done because § has a finite number of preemptions). Let the
obtained time intervals of length A be numbered by the integers 1, 2,..., g, starting with
the interval (Ty, Ty+ A]. An interval with the number o is of the form (Ty+(o—1)A, Ty +aA].

Let 7 be the job chosen at the first iteration of the algorithm for finding schedule §.
The existence of the schedule § implies that there is a machine L for which ¢; < &;. If,
in schedule §, job 7 is processed on two machines (P and Q), then Q = P+1. Let t" and ¢t~
be the completion times of job i on machines P and P+1, respectively. If ¢ is not
processed on machine P+1, then define t” = Tp,,.

Let us transform schedule § (see Fig. 2.2a) to a new schedule s* (see Fig. 2.2b) in the
following way. If in a time interval o (of length A) with Tyy+aA > Tp we have that
Sk(t) = i, K # P, then define sp(t) = 5k(t) and sg(t) = 5p(t) in the interval o
If Sg(t) = 7 in the interval o with Ty+aA < Tp, and V is a machine with the smallest
number for which Ty < Ty+aA, then define sy(t) = Sg(t) and sg(t) = §y(t) in the interval
«. In other cases, define s/(t) = §,(¢), L = 1, 2,..., M. It is easy to verify that s” is
a schedule.

The time T is called the ready time of machine L. This machine is said to be ready in
the interval o if T; < Ty+aA.

Let us introduce two operations for transforming schedule s” into a new schedule s”.
Operation O\(«, B) is applied when the same number of machines are ready in the intervals
with numbers o and B (o < B) (for example, intervals 7 and 8, or 15 and 16 in Fig. 2.2b).
This operation interchanges these intervals: s;'(t) = s;(t+(8-o)A) and s/ (t+(8-x)A) =
sp(t) for Ty+(a-1)A <t < Ty+oA and s;(t) = s;(t) for other values of ¢, L =1, 2,..., M.

Polynomially Solvable Problems

91

It is easy to verify that s” is a schedile.

Ty i i i i i
Machine M 4{ ’——| f_‘ _|
i i i H
Tpi1
Machine P+1
Tp i
Machi P [
T i
Machine 2 i '—‘
TP oy
Machine 1 }_
A A A TN TN R N AN AN M NSO NN NN N N N
2 4 6 8 10 12 14 16 t
a)
Ty :
Machine M |=__—*—4
i ;
Cpe1 i i
Machine P+1 — {
i Tp i i i i
Machine P ———{ ——‘ L-——
T
Machine 2
T
Machine 1
A T S N AN SN NN SN NN NN DU SN NN N B
2 4 6 8 10 12 14 16 t
b)
Fig. 2.2

Operation Oy(c, B, R, Z) (where o, § are the numbers of intervals, o < 8, while R, Z are

the numbers of machines, such that Ty+ oA < Tg < Ty +BA) is applied when a different number

of machines are ready in the intervals o and 3, and the relation sz(t) = ¢ holds in the

interval o, while s;(t) # ¢ holds in the interval 8, L = 1, 2,..., M; for example, in

Fig. 2.2b, one may choose «=1,8=5,Z=M,R=P+lora=4,=9,Z=P+1,R=P.In

this case, there exists a machine V such that sy(t) = k holds in the interval 8 where

92 Chapter 2

either ¥ = 0 or k € N and s;(t) # k for L = 1, 2,..., M in the interval «. Operation
Oy(et, B8, R, Z) is performed in two stages. Define s;(t) = k in the interval o and
sp(t) = i in the interval 8 without changing schedule s* in other cases: si(t) = si(t).
Then define sy(t) = sg(t) and sz(t) = sy(t) in the interval B without changing the
schedule s° in other cases: s;(t) = s;(t). As a result of performing operation
Oy(c, B, R, Z), we obtain schedule s” in which the job 7 is processed on machine R in the
interval g8, i.e., the processing of job ¢ is transferred from machine Z (interval o) to
machine R (interval).

Suppose that the intervals for processing job 7 in schedules s and § do not coincide.
Then one of the following cases is possible.

Case 1. t; < 6p. In this case, P = 1. Apply operation O,(c, 8, 1, Z) to s" (and again
denote the obtained schedule by s”) whenever there exist intervals «, 8 and a machine Z,
1 < Z < M, such that Ty+8A > T, and sz(t) = i in the interval o, while s{(¢) # ¢ in the
interval 3. As a result, we obtain the schedule s’ such that s;(t) # ¢ for L # 1. Whenever
there are intervals o and g such that T) < Ty+oA < T +t; < Ty+BA < D, and s{(t) # 7 in the
interval «, while s{(t) = ¢ in the interval 8, apply operation O;(c, B) to s and again
denote the obtained schedule by s’. As a result, we obtain schedule s” such that s{(t) = ¢
in the interval (T, T,+t¢,].

Case 2. t; > 5p. Whenever there are intervals «, 8 and a machine Z, P < Z < M, such that
Ty+BA > Tp, and sz(t) = ¢ in the interval «, while sp(t) # 7 in the interval B, apply
operation O,(«, B8, P, Z) to s” and again denote the obtained schedule by s”. As a result,
we obtain schedule s” such that sp(t) = ¢ in the interval (Tp, D]. Whenever there are
intervals o, 8 and a machine Z, P+1 < Z < M, such that Tp,, < Ty+BA < Tp, and sz(t) =1 in
the interval o, while sp,(t) # ¢ in the interval 8, apply operation Oy(c, B, P, Z) to s’
and again denote the obtained schedule by s”. As a result, we obtain schedule s” such that
sp(t) # i for L > P+1. Note that t; < ép,; = D~Tp+(Tp—Tp,,). Finally, when there are
intervals o and 8 such that Tpy < Ty+ A< Tp, +t;~8p<Ty+BA<Tp, and sp,(t) # 1 in the
interval o, while sp,,(¢) = ¢ in the interval 8, apply operation O)(c, B) to s” and again
denote the obtained schedule by s”. As a result, we obtain a schedule s” such that
sp41(t) = @ in the interval (Tp,q, Tp,1+t;—8p] and sp(t) = ¢ in the interval (Tp, D]. Note
that it follows from t; < 8p,y = D—Tp,, that Tp,,+¢t;~6p = Tpy +t;,~D+Tp < Tp.

In both cases, we obtain a schedule s” such that the intervals for processing job ¢ in
this schedule coincide with the intervals for processing this job in schedule §.

By defining T'p = t', Tp,; = t” and temporarily disregarding job i, we come to the case

of [-1 jobs (with the new values of T). Taking into account the inductive assumption, we

Polynomially Solvable Problems 93

conclude that schedule § for processing the jobs of set N, which is constructed according
to the procedure to be performed in each step of the algorithm, is in fact the desired
one. This completes the proof of Statement A.

Remark. The maximal number of preemptions in processing the jobs in the schedule
found by the algorithm described in Section 2.8 is n-1.

It can be easily seen that the first job in the schedule is processed with no
preemption, while the processing of each subsequent job can be interrupted at most once.

The maximum number of preemptions can be reduced to n—2 by constructing a schedule for
the first n—1 jobs by the above algorithm, and by assigning the last job to be processed

on the machine with the smallest value of Tj.

3. Single Machine. Maximal Cost

In this section, the problem of minimizing the maximal cost for scheduling n jobs on a
single machine is considered. Various assumptions are made with regard to the release

dates, the due dates, cost functions, and other parameters.

3.1. The jobs of a set N = {1, 2,..., n} are processed on a single machine. Preemption
in processing any job is allowed. A job ¢« € N is available not earlier than the release
time d; > 0, its processing time is t; > 0, and the due date is D; > 0. A precedence
relation — is defined over set N which describes a feasible order of job processing. The
reduction graph of that relation is denoted by G = (N, U). Each job i € N is associated
with a non-decreasing real function ¢;(¢) which represents the cost for having job ¢
completed at time ¢.

It is required to find a feasible (with respect to —») schedule s* which minimizes the

function
Fmax(s) = max{(pi(zi(s))‘i € N} (3~1)

over all schedules s feasible with respect to — where %;(s) is the completion time of job

i in schedule s.

3.2. Suppose that d; = 0, ¢ = 1, 2,..., n. In this case, the search for an optimal
schedule s* can be restricted to considering the class of schedules according to which

each job is processed without preemption (see Section 1 of this chapter). Each of these

94 Chapter 2

schedules is specified by a permutation 7 = (i), 4y,..., i,) of the elements of N
(feasible with respect to —, i.e., the relation i, — i, implies that v < p). Let the set
of all feasible permutations be denoted by P, (G).

It is required to find a permutation 7* in the set P,(G) with the smallest value of the

function
Frax(m) = max{p(ty(m))|i e N}, (3.2)
where T;(m) is the completion time of job ¢ if the jobs are processed according to the
sequence 7, i.e., ?ik(ﬂ') = jiltij. Such a permutation 7* is called optimal.
Let Q" denote the set of all minimal (with respect to the order relation — defined over

N) elements of a set Q c N.

Theorem 3.1. In the case d; = 0, i = 1, 2,..., n, a permutation T = (i}, ip,..., ip)

such that iy € Jy for k = 1, 2,..., n, where Ji = {1, ig-..., i}, and

‘pik[it'f} - min{“”[L "’J

5=1 =1

le J;}, (3.3)

is optimal.

Proof. Permutation 7 is feasible because, if otherwise, there exist indices & and j,
k > j, such that 4 —s i; and, therefore, ¢ ¢ Jj.

Let m* = (i}, iy,..., i) be an optimal permutation. We show that 7* can be transformed

into m without increasing the value of function (3.2). Suppose that for some k, 1 < k < n,

the relations i # 7 and z';- = i¢; hold for all j > k. It suffices to show that
FrgxT) = Frax(7*), where 7" = (0, i, ik41,-, in) and o is the sequence (i}, is,...,
z',:) without the element 7. It is obvious that n° € P,(G). Since {i}, ig,....05x} = {7},

i9y..ey ix}, it follows from (3.3) that

k k
%‘k(?ik(”')) = %, []; lzﬂ < pix L=1ti*} = Sé’i;(?z‘;(”*)) < Frgx(T¥).

Since T;x(7’) < tt;(n*) for i € {0}, fi?(n’) = T;x(m*) for j > k and all functions
j

@i(t) are non-decreasing, we conclude that p;(£;(7) < @(E4T*)) < Fpax(m*) for all

1t € N, i # i Therefore, Fp.(T") < Fpa(7*), but since 7* is an optimal permutation, we
have Fl (7)) = Fhax(7*). This proves the theorem.

Theorem 3.1 immediately implies an algorithm for finding an optimal permutation in n
steps.

Define J,, = N. Find such an i, € J, that i (Tn) = min{py(T,) |l € J,}, where T,, =

Polynomially Solvable Problems 95

Lt
‘lEJn

Similarly, define J,, = J\{ip}. Find such an i, , e J,, that ei (Tn) =
min{py(Tp_1) |l € Jpoi}, where Ty = ; t;, and so on.
1

n-1
Repeating this process, we eventually find a required optimal sequence 7* = (i, i,...,

).

The running time of the algorithm is O(n?). In each step, finding a minimal (with
respect to —) element of a set and deleting one of them from that set requires Ofn) time
(see Section 1.4 of Chapter 1). Thus, the total time for these operations in all n steps
does not exceed O(n?). In each step r = n—k+1, r = 1, 2,..., n, of the algorithm, at most
k values of the cost functions have to be computed and at most k-1 comparisons of these
values have to be performed. Therefore, the total number of cost function evaluations does
not exceed n(n+1)/2, while the total number of their comparisons does not exceed n(n-1)/2.
Hence, the algorithm requires at most O(n?) time (provided that computing a cost function

value takes a constant time).

3.3. We consider some special cases of the problem of minimizing the maximal cost,
assuming, as before, that d; = 0, ¢ = 1, 2,..., n.

Let the cost functions g;(t) be such that for any v, u € N, either p,(t) < ¢,(¢) hold
for all ¢ € (0, T] or p,(t) > p,(t) hold for all t € (0, T]. Here T = igNti. Let the jobs
be numbered in such a way that ¢;(t) > @,(t) > ... > @,(t) for all t € (0, T].

In the case under consideration, in a step r = n~k+1 , r = 1, 2,..., n, of the algorithm
for finding an optimal permutation, it suffices to take an element of the set Ji with the
largest number as the element i. In this case, the running time of the algorithm is still
O(n?), but computation of the cost function values is not required. If G = (N, @), then
the permutation 7* = (1, 2,..., n) is optimal. In this case, an optimal permutation is
found by numbering the jobs in at most O(nlogn) time.

These are some examples of the cost functions that have the described property:
(a) olt) = pl)+oy i = 1, 2. m (D) @) = oup(t), o > 0, i = 1, 2., n,
o(t) 2 0, t € (0, T); (¢) pi(t) = p(t+oy), i = 1, 2,..., n. Here ¢ is a non-decreasing
function defined over the interval (0, T]. In each of these cases, the jobs should be

numbered in non-increasing order of ;.

If the due dates D;, i = 1, 2,..., n, are given, then non-decreasing functions of
the lateness L; = ¢;—D; are normally used as the cost functions. If, in this case
pi(t) = p(t-D;), i = 1, 2,..., n, and ¢ is a non-decreasing function, then the cost

functions belong to the type (c), and the jobs should be numbered in non-decreasing order

96 Chapter 2

of the due dates.
Therefore, if G = (N, @) and D, < D, < ... < D, then the permutation 7n* = (1, 2,..., n)

is optimal for the problem of:

- minimizing the maximal lateness (the case of @,(t) = t-D;);
- minimizing the maximal tardiness (the case of ¢;(t) = max{t-D;, 0});

- finding a schedule without late jobs (the case of ¢;(t) = sgn(max{t—D;, 0})).

3.4. Let d; > 0, p;(t) = @(t-D;), i =1, 2,..., n, where ¢ is a non-decreasing function.
Preemption in processing each job is forbidden.

It is clear that a permutation 7* € P,(G) which minimizes the maximal lateness
Linax(T) = max{t;(r) - D;|i € N} also minimizes the maximal cost Fp,,(T) = max{p(¢,(7) - D;)|
1 € N}. Consider two situations. In the first, the jobs have the parameters d;, t;, D; and
are processed according to the sequence m = (i, is,..., i,), while in the second
situation, the jobs have the parameters d;’, t;, D; and are processed according to the
sequence T~ = (i, Ipy,.., 17). Let us find sufficient conditions for the maximal
latenesses to be equal in both cases.

It can be easily shown (for example, by induction with respect to [) that, in the first

situation, the completion time of a job ¢ is fil(n') = max{?,-l_l(ﬂ'), d{'}+t,-l =
1 -

max{d{k+ i |k=1, 2., l}, where tio(ﬂ') = 0. Hence, in the first situation, the
j=k J

1
maximal lateness is [qy = max{d{k+ T 3i].—D11|1 < k <! < n}. Similarly, in the second
=k

!
situation, the maximal lateness is L., = max{d{l'+ Yt ~D,-'l;|1 <k<lg n}
j=k J

If the equality d,-D, = d,-D,” holds for any v and g, 1 < v, g < n, then
Lyax = Limax:

Thus, if di = C-D;” and D] = C~d{, i = 1, 2,..., n, then in both cases, the maximal
latenesses are the same. Here C is an arbitrary constant.

In a number of cases, this observation allows the solution procedure for the problem
with d; = 0, ¢ = 1, 2,..., n, to be extended to problems with d; > 0, ¢ = 1, 2,..., n.

In fact, consider the following Problem A. Let d; = di > 0, D; = D = D,
wit) = p(t-D;), i = 1, 2,..., n, where p(x) is a non-decreasing function. Preemption in
job processing is forbidden. A precedence relation — with the reduction graph G is
defined over the set N = {1, 2,..., n} of jobs.

It is required to find a permutation 7 in the set P,(G) of permutations (feasible with

respect to —) which minimizes the function

Polynomially Solvable Problems 97

Finax() = max{@(zi_Di)‘i € N} (3.4)

Note that a special case of Problem A (D; = 0, 7 = 1, 2,..., n, ¢(t) = t) is the problem
of finding a time-optimal schedule.

Let us consider Problem B of minimizing function (3.4) over the set P,(G"), provided
that d; = d; = 0, D; = D; = D-d;, i = 1, 2,..., n, and G’ is the reduction graph of the
precedence relation = defined over the set N which is inverse to the order — (i.e.
v = p if and only if g — v).

Since for C = D the relations d; = C-D; and D] = C-d{, i = 1, 2,..., n, hold, we
conclude that, if 7B)=(i;, i,,..., i,) is a solution of Problem B, then 74 = (i,
in_1,--+, %;) is a solution of Problem A. In particular, if G = (N, @), then it follows
from the previous item of this section, that processing the jobs in non-decreasing order

of their due dates solves Problem B. Therefore, to solve Problem A, it suffices to process

the jobs in non-decreasing order of their release dates.

3.5. We now consider the problem of minimizing the maximal cost for processing n jobs on
a single machine assuming that the release dates are different, the values of t; and d;,
1 =1, 2,...,, n, are rational and can be regarded as integers by choosing an appropriate
scale. Preemption is allowed. It is assumed that the cost functions ¢;(t) are arbitrary
non-decreasing functions. The precedence relation — is defined over set N = {1, 2,..., n}
of jobs. We look for an optimal schedule in the class of schedules that are feasible with
respect to —.

Let the unit length time intervals starting at ¢ = O be numbered by the integers
1, 2,... . Due to Theorem 1.1 (see Section 1 of this chapter), there exists an optimal
schedule which is either non-preemptive or preemptions happen only at the release dates.
Thus, it suffices to consider the schedules s(t) such that s(t) = const in each unit time
interval. In other words, in order to specify a schedule, it suffices to assign (obeying
certain conditions) one of the numbers 0, 1, 2,..., n to each unit interval.

Let B°(z) denote the set of all direct predecessors of i in N (i.e., all those k € N for
which k& — ¢ and there is no j such that ¥ — j and j — 7). Define d; = d; if B°(i) = @,
and, otherwise, define d; = max{d;, max{dy+t;|k € B°(¢)}. It is clear that the processing
of job i cannot start before d;.

Let the jobs be numbered so that d; < d, < ... < d,,. Define N; = {k|k € N, k > i}. Let
T'(s) denotes the makespan (i.e., the maximum completion time) for schedule s. The maximal

cost Fpu.(s) for schedule s is calculated by formula (3.1).

98 Chapter 2

Lemma 3.1. There exists a schedule s* which minimizes both T(s) and Foq(s) such that
T(s*) = max{3i+ Z tk|i € N}.

keN;
Proof. Note that max{3i+k2Ntk|i € N} is the time before which the processing of all jobs
€N

of set N cannot be completed. Therefore, if, for some schedule §, the equality

T(5) = d;+ ¥ t; is obtained for a certain i € N, then ¥ is a schedule with the smallest
KeN

€Ny

T(s).
Let s” be a schedule with the smallest value of Fpa.(s). If s7(t) # 0 holds for all unit
intervals with the numbers d,+1, d,+2,..., T(s’), then s is the desired schedule s*.
Suppose that for some of the above intervals s(t) = 0 holds. Among these intervals
choose the one with the largest number 7. If there is such a job i € N that d; = 7 and the
processing of all jobs 1, 2,.., i-1 is completed before the time 7, then T(s") =

d;+ ¥ t, and s” is the desired schedule s*. Otherwise, schedule s” can be transformed into

keN;

the schedule s” such that s(t) = s"(t) in the unit intervals with the numbers 1, 2,y
7-1 and s7(t) # 0 in the interval 7. Moreover, T(s”) < T(s") and Fpge(s™) = Fpax(s).

In fact, if there is no such i € N that d; = 7, then we may define s”(t) = s¢) in all
intervals except 7 and 7+1, while defining s”(t) = s’(t+1) in the interval 7 and
s”(t) = 0 in the interval 7+ 1. Suppose that d; = T for some i € N and there is such a job
J that Ej < 7 and the processing of job j is completed in the interval with the number
7" > 7. If there are several such jobs, then the one with the smallest number may be
chosen as job j. Define s”(t) = s(t) in all intervals besides T and 7, while defining
s”(t) = j in the interval 7 and s”(¢t) = 0 in the interval 7"

It is clear that, in any case, schedule s” is feasible, and, besides, T(s”) < T(s)
and Frgy(s”) = Frras(s)-

Repeating these considerations finitely many times, we either conclude that s* is a
desired schedule s* or obtain a schedule 5% such that Fpay(s®) = Fpae(s), s%(t) # 0 in
the intervals with the numbers 7, 7+1, ..., T(s) -1 and s°(t) = 0 in the interval with the
number 7'(s") and in the subsequent intervals, i.e. T(s°) < T(s"). This proves the lemma.

It follows from Lemma 3.1 that the search for a schedule which minimizes function
Frnax(s) can be restricted to considering the class of time-optimal schedules. A schedule
s* which minimizes both T(s) and F.(s) is called optimal.

For an optimal schedule, the makespan is equal to

T = max{aﬁ Y wlie N}. (3.5)

keN;

Polynomially Solvable Problems 99

Let [denote the largest i € N for which the maximum is achieved in (3.5). Suppose that

u € Ny and
@u(T) = min{p(T)|i € Nj}- (3.6)

For a time-optimal schedule, the makespan for the jobs of set N\u is given by

T = max{a,- + Z tx

keN ; \u

1 e N\u}. (3.7)

Along with the initial problem, consider the following reduced scheduling problem. If
ty < T-T’, delete job u from set N. If t, > T—T", then job u is given a new processing
time equal to ¢, = t,— (T —7T") and a new cost function ¢,(t) = -W, where W is a sufficiently
large number. Leave the parameters of other jobs unchanged. Let s” be an optimal (i.e.
minimizing both T(s) and Fpg(s)) schedule for the reduced problem. We show that
T(is) =T

In fact, if ¢, T-T’, then T(s’) = T by definition. Let ¢, > T-T". We have

<
T = T—(T-T) = d, + Xtptta—(T-T") = dy+ T ty+ts It is obvious that T(s") > T". If
keN’\u keNl\u

T(s) =dj+ Y (k+t; > T’ for some j < u, then by adding T-T" to both sides of this
keN \u
J
inequality, we obtain d;+ ¥ tx > T, which contradicts (3.5). If T(s") = dj+ ¥ tx > T for
keN keN .
j J

some j > u, then E]-+ ¥ t, > T, which contradicts (3.7). Therefore, T(s") = T".
keN \u
J

Theorem 3.2. Let s* be an optimal schedule for the reduced problem and T” = max{d,,
T’}. Then a schedule s such that s(t) = u in the interval (T”, T] and s(t) = s'(t) in
other intervals is an optimal one for the initial problem.

Proof. We show that among optimal schedules for the initial problem there exists a
schedule § such that 5(t) = u in the interval (T, T].

Suppose that T* < d,, i.e., for any job i € N\u the inequality d;+ Y tx < d, holds.
keN \u
Hence, d, = d, and d;+ ¥ tx < dy,+t, for any i € N, i.e., T = d,+t,. Therefore, for any
keN
1

schedule s such that T(s) = T, we have s(t) = u in the interval (d,, T].

Suppose that T > d,. Consider a schedule s optimal for the initial problem and such
that s(t) # u in the unit interval with the number ¢, ¢ > T’, and s(t) = u in the
intervals with the numbers g+1, ¢+2,..., T. The case ¢ = T is also possible.

Note that t, > T-T, since otherwise T +t, < T, which contradicts (3.5) due to the
inequality d, < T". Therefore, there exists an interval with the number p, p < ¢, in which
5(t) = u. Here, p can be chosen in such a way that s(¢) # u in the intervals p+1, p+2,...,

q-1.

100 Chapter 2

Since the maximum in (3.5) is attained at [< u we have s(t) # 0 in the interval (d, T
and, hence, in the interval (p+1, ¢] as well. Among the jobs processed in the time
interval (p+1, ¢] choose the job with the smallest number v. Note that d, < p, otherwise

d,+ ¥ tp > T Let job v be completed at time r. It is clear that p<r<aq.
keN \u
v

We construct a schedule 5 by defining 5(t) = v in the interval p, 5(t) = u in the
interval with the number r and 5 (¢)

and, besides, T(5) = T(s) and F

max(

= 5(t) in other intervals. This schedule is feasible,
5) € Frax(5) because o (T) < ¢, (T).

Repeating these considerations finitely many times, we obtain an optimal schedule § such
that $(t) = u in the intervals g, g+1,..., T. Thus, this is a desired schedule 5.

The schedule § determines a schedule 5" for the reduced problem (by defining §7(¢) = 0
in the interval (T°, T] and §°(t) = §(t) in other intervals). If s is an optimal schedule
for the reduced problem, then for schedule s for the initial problem such that s(t) = u in
the interval (T”, T] and s(t) = s{t) in other intervals, the following holds:

Frax(s) = max{Fpax(s"), 0u(T)} < max{F,,(5"), ©u(T)} = Frax(5). This proves the theorem.

3.6. An algorithm for finding an optimal schedule s* follows directly from Theorem 3.2.
In each step, calculate T by formula (3.5), find job ! with the largest number among the
jobs for which the maximum is attained in (3.5), and job u € N; for which (3.6) holds.
Find 7° by formula (3.7) and compute T” = max{d,, T’}. Define s*(t) = u in the interval
(T”, T] and formulate the following reduced problem: if ¢, < T-T", then delete u from N,
if t, > T-T’, then define the cost function ¢,(t) = -W in the interval (0, T"] and set the
processing time of job u to be equal to t,—(T-T"). Go to the next step, and so on, until
N = @ is obtained. Define s*(¢) = 0 in all intervals for which s*(t) is not yet
determined.

It is clear that schedule s* is found in a finite number of steps. Moreover, as shown
below, the number of steps in the algorithm is at most 2n—1. .

We now show that the running time of the algorithm for finding an optimal schedule s* is
O(n?).

For each 7 € N, finding the set B(i) and computing d; requires at most O(n) time. Thus,
for all 7 € N, this takes O(n?) time.

It is clear that, in each step of the algorithm, computing T, T°, T” and finding job !
takes O(n) time. Finding set N;, as well as finding and deleting job u € N, can be done in
O(n) time (see Section 1.4 of Chapter 1), provided that the computation of the cost
function value requires a constant time.

We now show that the number of steps in the algorithm is at most 2n—1. First, we show

Polynomially Solvable Problems 101

that, if, in schedule s*, preemption happens at time ¢, then t" = d; for some i € N.
Consider an arbitrary step r of the algorithm. Let N be a set of jobs to be considered
in this step, and let . and u, be the jobs [and u found in this step. Assume that 7 and
T’ are calculated by formulas (3.5) and (3.7), respectively. It is obvious that in the
interval (E,r, T) only the jobs of the set N,r are processed. If ty < T-T’, then job u,
is processed in the time interval (T—tur, T] with no preemption. Let tu, > T-T and j be

the job with the smallest number for which Ej+ ¥ tx = T holds. Then d_j = d;, since,
N A\u

keN -\
j
otherwise, dy+t; = d; for some k € B(j), k < j, and dy+ L t; = T". Note that E"r < d;
ieN,
k
(otherwise, it follows from T'+tur > T that 3j+ ¥ tx > T, which contradicts (3.5)) and,
keN .
J

hence, u, & Nj. It is evident that in the interval (d;, 7] only the jobs of set N; are
processed. Therefore, the processing of job wu, is interrupted.
We show that this interruption takes place at time dj. In fact, in step r, define

<pur(t) = -W in the interval (0, 77] and, therefore, the inequality

Pu, (d;) < pild;) (3.8)
holds for all i e N,r\N]-. Having performed a certain number of steps of the algorithm
(i.e., having found a schedule for processing the jobs of set N; in the interval
(dj, T]), we obtain the reduced problem for which the set N of the jobs still to be
processed coincides with N\N;. In the next step, we obtain T = d;. Taking into account
(3.8) and the fact that in the interval (dj, d;] only the jobs of set N’r\Nj can be
processed, we conclude that, in this step, job u, is chosen as job wu, i.e. s*(t) = u, in
the interval with the number d;. Thus, the processing of job u is interrupted at time d;.

Any job processed with preemption in schedule s* can be given similar consideration.

Thus, if, in schedule s*, there is a preemption at time ¢’, then t" = d; for some i € N
and, hence, the total number of preemptions does not exceed n—1. Since job n is processed
with no preemption, it follows that the number of steps in the algorithm is at most
2(n-1)+1 = 2n-1.

Thus, the running time of the algorithm for finding schedule s* is O(n?).

3.7. We now consider some special cases of the problem of minimizing the maximal cost.
Let the cost functions ¢;(t) be such that for any v, 1 € N, either ¢,(t) < ¢,(t) holds for
all t € (0, T] or p,(t) = p,(t) holds for all ¢t € (0, T], where T is computed by formula
(3.5). Examples of the cost functions having this property are given in Section 3.3.

In this case, the running time of the algorithm is still O(n?) but computation the cost

functions in each step of the algorithm is not required. To see this, associate each job

102 Chapter 2

i € N with an integer J(i) (called the job index) so that the relation ¢,(t) < Pult),
t € (0, T] implies J(r) < J(u). In each step of the algorithm, finding a job u € N; for
which (3.6) holds reduces to finding the job with the smallest index in the set N;. This
can be done in at most O(n) time.

One of the functions that has the required property is ¢;(t) = sign(max{t—D;, 0}) (see
Section 3.3). Therefore, the proposed algorithm can be used for finding a schedule for a

partially ordered set of jobs that is feasible with respect to deadlines.

3.8. To conclude this section, note that if, in each step of the algorithm, the relation
t, < T-T holds for job u, then the resulting schedule s* is non-preemptive. In this case,
the algorithm can also be used for solving the problem assuming that preemption is
forbidden .

Various sufficient conditions can be formulated under which this situation takes place.
Below, we present some of them.

(a) Let d denote a common divisor of the numbers d,, dj,..., d,. If t; = d, i = 1,
2,..., n, then s* is non-preemptive. In fact, in this case T and T’ are multiples of d
and, hence, T-T’ > d. In particular, s* is non-preemptive if ¢t; = 1, i = 1, 2,..., n.

(b) Schedule s* is non-preemptive if d;+¢; < djuy, @ = 1, 2,..., n—1. In fact, in this
case, in step r of the algorithm, we have T = dp_,y1+tprss I = dprp+tn, and,
consequently, u = n-r+1 and T-T" > t,,.

(c) Schedule s* is non-preemptive if ¢;(t) = @(t-d;), i = 1, 2,..., n, and ¢ is a
non-decreasing function. In fact, in this case, in each step, the job with the

highest number is chosen as job u. Suppose that, in some step, T = Ej+ Y t; holds for
keN \u
J

some j € N. Then T"+t, < T (otherwise, T'+t, = ;ij+k§1vt»k > T which contradicts (3.5)).

Note that due to Lemma 3.1, the smallest value of T(s) corresponds to schedule s*;
therefore a time-optimal non-preemptive schedule can be obtained, for example, by setting
pi(t) = t-d;, i =1, 2,..., n.

If a precedence relation — is not specified over set N, then d; = d;, i = 1, 2,..., n,
and ¢;(t) = @(t—d;) is a function of the flow time of job i. Thus, the smallest value of
the maximal job flow time and, therefore, of any non—-decreasing function of this time is
achieved when the jobs are processed with no preemption according to the sequence (1,

2,..., n). Recall that, in this case, we have d; < d, < ... < d,,.

Polynomially Solvable Problems 103

4. Single Machine. Total Cost

This section considers a number of polynomially solvable single-machine scheduling

problems to minimize the total cost.

4.1. The jobs of set N = {1, 2,..., n} are processed on a single machine. The release
date of a job i € N is d; > 0, its processing time is t; > 0, and its due date is D; > 0.
Preemption in the processing of any job is allowed. Each job ¢ € N is associated with a
cost function ¢;(t) that is non—decreasing (in the planning interval

It is required to find a schedule s* for processing the jobs of set N which minimizes

the function
F(s) =) @il@i(s)) (4.1)
i=1

Here t;(s) is the completion time of a job ¢ in schedule s. The schedule s* is called
optimal.

In the following, we consider the problems of finding optimal schedules if

(a) @;(t) = oyuy(t), where u(t) = 0 if ¢t < D, uy(t) = 1 if t > Dy oy >0, ¢ = 1,
2,..., n; it is assumed that d; and D; are related in the following way: if d, < d,, then
D, < Dy, 1 € v, p < n this problem is usually called the problem of minimizing the
weighted number of late jobs;

(b) p;(t) are arbitrary (non-decreasing) functions, d; and D; are integers, and t; = 1,
t=1, 2., n

(c) pi(t) = p(t)+B; ¢ = 1, 2,..., n, where ¢(t) is a non-decreasing function.

Note that the situation in which the jobs are simultaneously available (i.e., d; = 0,
i = 1, 2,..., n) and (non-decreasing) cost functions belong to exactly one of the
following classes: (1) pi(t) = i+ By, (2) @i(t) = owexp(yt)+ B, and (3) @i(t) = (t)+B; is

considered in Chapter 3.

4.2. Consider the first of the problems mentioned above. Let d; and D; be such that for
all 1 < v, u < n, the condition d, < d, implies D, < D,,. Let the jobs be numbered in such
a way that the inequalities d; < d, < ... < d, and D, < D, < ... < D,, hold.

A schedule s with no late jobs exists if and only if the inequalities

[}
Yt < Di-dy (4.2)

i=k
for any 1 < k <! < n (see Section 2.5 of this chapter).

104 Chapter 2

For a non-preemptive schedule determined by a permutation 7 = (41, tgy..y i), the
completion time of a job ij, J =1, 2,..., n, is given by

?i-(ﬂ') = max{dijv ?z’j‘l(ﬂ')}+tijv ?z

’ (m) = 0. (4.3)

0
For N' c N, let my. denote a permutation of the elements of N in which the jobs are
sorted in numerical order. If the jobs are processed according to the sequence ﬁ = (1,

2,..., n), then it follows from (4.3) that
1
T(Ty) = max {dk+ Z t;
i=k

foralll =1, 2,..., n.

l<ks< l} (4.4)

Comparing (4.2) and (4.4), we come to the following conclusion.

A schedule s with no late jobs exists if and only if for the sequence ;r; the
inequalities T(my) < Dy hold for all | = 1, 2,..., n.

Therefore, if in the sequence ﬁ at least one of the due dates is violated, then there
is no schedule (either preemptive or non-preemptive) without late jobs.

Let s be some schedule for processing the jobs of set N, and R be a set of late jobs,
i.e., jobs which are completed after their due dates in schedule s. Let R’ denote a set of
late jobs assuming that the jobs are processed according to the sequence (ﬁ\R, mg) where
mg is an arbitrary permutation of the elements of R.

We show that R” ¢ R. Let us find a schedule s for processing the jobs of the set N\R
assuming s(¢) = 0, if s(t) € R and, otherwise, setting s(t) = s(t). It is obvious that in
schedule s, all jobs of set N\R are completed by their due dates. Therefore, there are no
late jobs if the jobs are processed according to the sequence ﬂ\R, ie. R" c R.

Let @;(t) = ouu(t), where u;(t) = 0 if ¢t < Dy u(t) = 1if ¢ > Dy o > 0, 7 = 1,
2,..., n. If R is the set of late jobs schedule s, then Fy(s) = igRo%

If s* is an optimal schedule and R* is the set of late jobs in this schedule, then a
schedule 5 determined by the permutation (ﬂ'—,;\R*, Tgx) 15 also optimal for any sequence g«
of the elements of set R*.

In fact, if R is a set of late jobs in schedule ¥, then R ¢ R* and Fe(5) = T o4 <
igk*o‘/,‘ = Fy(s*).

Thus, in the case under consideration, to find an optimal schedule, it suffices to find

a set R* ¢ N with the smallest value of f(R) = ¥ o4 such that the processing of the jobs
ieR

of set N\R* in numerical order does not imply violation of the due dates. Such a set R* is

called optimal. In general, there may be several such sets: R}, Rj,..., R;. Denote

Polynomially Solvable Problems 105

o* = {R}, R;,..., R}
In the following, along with the original problem of finding a set R*, we consider the
reduced problems derived from the original one by removing a certain subset of jobs.
Let R ¢ R’: e H* and R* be an optimal set for the reduced problem obtained from the
original one by removing the set R of jobs. Then the set R = R U R* is optimal for the
original problem, i.e. R” € H*. In fact, none of the jobs in set N\R’ is late if they are
processed according to the sequence ﬂ_)N\R,, and

*

R = F(R)+f(R¥) < f(R)+f(R\R) = f(R5).

Let ™ = (ij, 9gy--., ig), and T(m) denote the completion time of job i, assuming that
the jobs of the set {;, iy..., i} are processed according to the sequence 7. Let m\iy,
1 < v < k, denote the permutation obtained from 7 by removing an element iy, i.e., Let
m\iy, 1 < v < k, denote the permutation obtained from m by deleting an element i, ie.,
iy = (b1, Ggyes yoty lygrse). Similarly, m\N” is the permutation obtained from

7 by deleting the elements of a set N" € {7} = {i|, is..., &}

Theorem 4.1. Let 7= (1, 2,y n), T;(7) < Dy, j =1, 2,0, k=1, T(7) > Dy and
7 = (1, 2,..., k). If there exists such a p, 1 < p < k, that T(m\p) < T(m\v) and oy, < o,
for all 1 < v < k, then there exists such an optimal set R* that p € R*.

Proof. Note that in the case under consideration, any optimal set R* € H* contains at
least one job v, 1 < v < k.

We prove the theorem by induction with respect to the number of jobs n. It is obvious
that for n = 1 the theorem holds. Suppose that the theorem holds n < ny,. We show that this
also holds for n = ng+1.

1. Let H* = {R}, R},..., R}}. In each of the sets R], choose the job with the highest
number 8;. Define 8 = max{6;|1 < < v}.

(a) Suppose that k < 6. Delete the job 8 from set N. If the conditions of the theorem
hold for the original problem, then they still hold for the obtained reduced problem.
Since, in the reduced problem, we have n = ny, it follows that there exists an optimal set
which contains job p. Adding job 6 to this set, we obtain the desired optimal set R*.

(b) Let ¥ = n. In this case, job n is the only late job in the sequence 7 = (1, 2,...,
n). We have T(m\u) < T(m\n) = Tp_y(7) < Dy < Dy,. Since o, < o, for all 1 <v < n, we may
define R* = {u}.

2. In what follows, we assume that 8§ < k < n.

—
s

)|

Denote z;(my.,) = max{0, ?j(TrN,)—Dj}, where j € N" ¢ N. Define 2(m) = max{z;(

106 Chapter 2

k<j<n}
Since, in the case under consideration, any optimal set R* is contained in {7}, we have
T(m)-T(m\R*) > z(7r_)). On the other hand, if T(r)-T(m\R) > z(7r_)) for some set R ¢ {7} and

Y o, = Y o« then R € A*.
i€R ieR*

(a) Let k < n—2. Formulate a new problem obtained by deleting the jobs k+1, k+2,.,n
from set N, followed by adding a new job k+1 with dy,; = dy, Diyy = T(7), tgy; = 2(7) and
o4y = W, where W is a sufficiently large number. Let N denote the obtained set of jobs.

It is obvious that, for any R* € H*, no job of the set N\R* is late if these jobs are
processed according to the sequence 7r_1_:'\R*' If R* is an optimal set for the new problem,
then igk*ai = zé}a*o{i. Since oy, = W, it follows that R* ¢ {r}. We have that

Tl za) = TR 4 thy1 = T(M\RS) +2(77) < Dy = T(m)
holds. Therefore, T(m)-T(m\R*) > z(7). Thus, R* is an optimal set for the original
problem.

For the new problem, we have |N’| = k+1 < n-1 = ny. If the theorem conditions hold for
the original problem, then they still hold for the new problem. By induction, there exists
a set R* which contains p.

(b) Let £k = n—1 and z,_,(
T(1) = Doy +2n(7). Hence, T(m)-T(m\n) > zoa(m) = 2
R* = {u).

(c) Suppose that ¥ = n—1 and z,,_l(?) < z,(T)

T) 2 za(T). We have T(m\g) < T(m\(n—1)) < Dp_p < D,,_; and
7r_)) Therefore, we may set
. Let R* be some optimal set which does
not contain g, and let ¥ be a job in R* with the lowest number. Denote R = R*\7y. To prove
the theorem, it suffices to show that the set R = R U p is optimal.

Since o, < o, we have _Zkai s_ER*ozi. Therefore the set R is optimal if T(m\R) < D,_,
l1E 1€

and T(T \R) < D,. Since T(m\p) < T(m\(n-1)) < D, < D,., and p € R, we have
T(m\R) < D,_;. It is obvious that T(?\R*) < D,,. Therefore, we have only to show that

T(T \R) < T(T \R*). (4.5)

We show that, in the case under consideration, the inequality T(m\u) < T(7\y) implies

T(x\u) < T(T\y) (4.6)
which, in turn, implies

T(m\{, r}) < T(T\{7, r}) (4.7)
for any r € R.

Inequality (4.6) follows from the inequality T(m\p) < T(m\y) and from the obvious

Polynomially Solvable Problems 107

relation T(7 \v) = max{T(m\v), d,}+t, valid for any v e {r}.

If R = @, then (4.6) gives (4.5), and the theorem is proved. Therefore, in the
following, we assume that R#oandy <k

Let us prove that inequality (4.7) holds. We introduce the following notation:
AT\ = T(m)-T(T \i) and AT \\j) = T(7 \))=-T(T \{, j}), 4 j € {m}. Define
§ = tim)-d; for i = 2, 3., n, & = t; (7T \r)-d; for i > r+2, and
5:+1 = ?r—l(?\r)_dr)rl-

Note that &; > 0 for all i > y+1 (otherwise, deleting y from 7 does not affect the
completion times of jobs n—1 and n and, hence, v ¢ R*). The inequality T(m\u) < T(m\(n-1))
implies that §; > §,_; and, therefore, §; > 0 for all 7 > p+1.

It is clear that

A(T\p) = min{t,, min{§;|pu+1 < i < n}},
A(™\y) = min{t,, min{&;|y+1 < i < n}}.
It follows from (4.6) that
AT \p) 2 AT \y). (4.8)

Note that & > 0 (otherwise, ¥ ¢ R*) and 8 > &8 fori>r+l. Also, observe that &, >
6;1, since
61 = Tra(TAP) = dpyy =TT) =dpyy < T y(T0) —d,
Suppose that r > max{y, u}. Then
AT A\Mp) = min{t,, min{&;|p+1 < i < r-1}, min{&;|r+1 < i < n}},
A(mMir\y) = min{t,, min{§;|y+1 < i < r-1}, min{&;|r+1 < i < n}}.

Denote ¢ = min{t,, min{é;|u+1 < i < r-1}}, b = min{t., min{&;|y+1 < i < r-1}},

¢ = min{6;|r <i<n}, d = min{&; |r+1<i < n}. Then A(T \) = min{a, c}, A(T \7) = min{b,
c}, AT \r\p) = min{a, d}, AT \r\y) = min{b, d}.
Inequality (4.8) can be written as
min{a, ¢} > min{b, c}. (4.9)

The inequalities &; > &;, i > r+1, and &, > 6:” imply ¢ > d. We show that, in this
case, the inequality
min{a, d} > min{b, d}. (4.10)

holds. If ¢ < a, then min{a, d} = d. If ¢ > a, then it follows from (4.9) that a > b,
hence (4.10) holds.

Inequality (4.10) implies A(?T_)\r\u) > A(?\r\'}/) and, therefore, relation (4.7) holds.

108 Chapter 2

Suppose that ¥ < r < w. In this case

AT A\A\p) = min{t,, min{&;|p+1 < i < n}},
A(mr\v) = min{t,, min{&;|y+1 < i < r-1}, min{}|r+1 < i < n}}.

Denote 4 = z,, B = min{t,, min{&;|y+1 < i < r-1}}, C = min{&;|p+1 < i < n},
D =min{&|r+1<i<pu}, E =86, C =min{8;|u+1<i<n}, D' =min{6;|r+1 <i< pu}
Then

A(m"\p) = min{4, C}, AT \y) = min{B, E, D, C},
AT \r\p) = min{4, C’}, A(T \r\y) = min{B, D', C’}.

Inequality (4.8) can be written as
min{A, C} > min{B, E, D, C}. (4.11)
It follows from &; > &;, i > r+1, that D > D" and C > C’, while 8, > 6, implies

E>D.
We show that it follows from (4.11) that

min{A, C} > min{B, D", C}. (4.12)

In fact, if C" < A, then C’ > min{B, D’, C’}. Otherwise, min{4, C} = A = min{4, C} >
min{B, E, D, C} > min{B, D', C’}.

Inequality (4.12) implies A(T \r\u) > A(ﬂ_)\r\y) and, therefore, relation (4.7) holds.

We now pass to the direct proof of relation (4.5). Delete job r from the set N. It is
obvious that set R*\r is optimal for the obtained reduced problem. Since |R*| > 2, we have
zn(ﬁ\r) > 0. If job n is the only late job, then Item (1b) of this proof implies R* = {u,
r}. Suppose that Zn~1(ﬁ\r) > 0. Inequality (4.7) implies T(ﬂ_)N\T\u) < T(ﬂ\r\‘y). It
follows from the latter inequality (see (4.6) and (4.7)) that T(ﬂ\r\{u, r}) < T(ﬁ\r\{y,

r}), where r; € R\r. The last inequality can be written as
TE\{g, 1, 1) < T(E\{y, 7y 7).

Repeating similar considerations finitely many times, we conclude that relation (4.5)

holds. The theorem is proved.

Corollary 4.1. Let R ¢ R* € H*, ;;\R = (24, Ugyeeey Chyerey Bp)s ?,-j(ﬁ\k) < Di]_, j=1,
2,..., k-1, t,-k(ﬁ\k) > D,-k and T = (iy, ip,..., ig). If there exists a p, 1 < pu < k, such
that T(m\i,) < T(m\i,) and %, <o for all 1 < v < k, then there exists a set R* € H*
such that R U i, ¢ R*.

This statement directly follows from Theorem 4.1 and the above remark on the relation

Polynomially Solvable Problems 109

between optimal solutions of the original and reduced problems.

4.3. In a general case, the search for an optimal set R* involves a large number of
variants. In enumerative solution methods, applying Corollary 4.1 can frequently reduce
this search. In this section, several special cases of the problem are considered for
which the set R* can be found as a result of systematic application of Corollary 4.1.

In these cases, the algorithm for finding the set R* is as follows. It is assumed, as
before, that for all 1 < v, u < n the condition d, < d, implies D, < D,. Let the jobs be

numbered in such a way that the inequalities d; < d, < ... < d, and D, < D, < ... < D,

hold. Define R = @. In each step, find the first late job 7, provided that the jobs are

processed according to the sequence 7I'—)N\R = (&, %3,..., ¢). If there are no late jobs,
then R* = R, otherwise, define m = (4, ¢,...,). In the situations considered below,

in each step of the algorithm a job ¢, can be found such that T(m\i,) < T(m\i,) and

o, < o for all 1 < v < k. Find this job, redefine R to be equal to R U i, and go to

M
the next step. It is obvious that the number of steps in the algorithm is at most n. We
show that the running time of the algorithm is at most O(n?).

Numbering the jobs in such a way that the inequalities d, < d, < ... < d, and D, < D, <

. < D, hold (or verifying that this numbering is impossible) takes O(nlogn) time (see
Section 2.1 of Chapter 1).

In each step, the procedure for finding the job i, can be implemented as follows. Let u
and v be numbers of the jobs i and i,, respectively, and o be a subsequence of 7 found in
the previous step. Let ?N\R = (¢, I5..+y %). Compute ?i].(ﬁ\le) for i; > u+1 by formula
(4.3), assuming ?ij_l(ﬁ\R) = T(o\v) for i; = u+1 (in the first step, assume u = 0 and
%(F};\Ie) = 0). Comparing ?ij(?;\R) and Dij, ij 2 u+1, choose the first job, for which the
inequality 31‘].("_)N\R) > Di]_ holds, as the job 4. It is obvious that finding jobs i, (in
all steps of the algorithm) requires at most O(n) time.

Consider the procedure of choosing the job i, such that T(m\i,) < T(m\i,) holds for all
l<v <k If k=1, then ¢, = 4. If k¥ > 1, the job ¢, can be found in k iterations. At
the first iteration, define p = i,, form two dummy sequences o, and o, and define
T(0y) = T(o;) = 0. At iteration [, | = 2, 3,..., k, define 0 = (0,3, %) and 0] = (04,
i1—1}+t"1-1' If
T(o;) > T(o7), set p equal to ¢, the sequence o, equal to oj, and the value of T(g;)

t.1). Compute T(0;) = max{T(o;,), dil}+£il ,and T(o7) = max{T(o7,), d

equal to T(oj). It is clear that job p found after the kth iteration satisfies the
condition T(m\p) < T(m\i,) for all 1 < v < k. Define i, = p. It is easy to verify that

finding job 7, in each step takes at most O(k) time, or at most O(n) time.

110 Chapter 2

Thus, in the case under consideration, finding an optimal set R* requires at most O(n?)

time.

(a) Consider the problem on minimizing the number of late jobs with the same release
dates. In this case, d; = dy = ... =d, = 0, 0y =0y = ... = o, = 1.

Let the jobs be numbered in non-decreasing order of their due dates: D <D, <..<D,
Since T(m\z,) = T(7r)—t,-y, 1 <v <k, it follows that the job i € {r} with the longest
processing time t; has to be chosen as 1,.

Example. Let N = {1, 2,3, 4,5,6},d; =0, 0;, = 1,4 =1, 2,..., 6; the values of t;

and D; are given in Table 4.1.

Table 4.1
i 1 2 3 4 5 6
t, 4 1 3 2 3 1
D; 4 5 6 7 7 8
—> . . . - —>
The set R, the sequence TR = (i1, i2,--, &) and the values of lij(”N\R) and Dij’

Jj =1, 2,., r, for each step of the algorithm are shown in Table 4.2. This table also
contains the values of i, ™ = (7}, 4s...,) and i, obtained in each step. Note that,
in the second step, either job 3 or job 5 can be chosen as t,. Here, we have chosen
=3.

We have R* = {1, 3}. The schedules defined by the permutations 7} = (2, 4, 5, 6, 1, 3)

and 7r; = (2, 4, 6, 3, 1) are optimal. There are two late jobs.
Table 4.2

Step 1 2 3
R %] 1 1,3
;N\Rz(il,iz_..,ir) 1]2]3] 4| 5| s 2|3|4|s]| 6 2|4]s|s
Yij(;N\R) a|s|sftof13|1a | 1]{4a|6|o]10 | 1]3]6]|7
Dy a|sle| 7| 7| 8 | s|le|7|7]|s s|7(7]8
tk 3 5 -
m=(iy,1,, yig) (1,2,3) (2,3,4,5) -
il‘ 1 3

In the case under consideration, finding an optimal set R* can be implemented in at most
O(nlogn) time by using balanced 2-3-trees for data representation (see Section 2 of

Chapter 1). Define the total pseudo-order = over set N in the following way: i —» j if

Polynomially Solvable Problems 111

and only if ¢; > ¢;. In each step of the algorithm an ordered set {r} is represented as a
balanced 2-3-tree. Then finding job i, (which is a maximal element with respect to =)
takes constant time; in fact, one elementary operation is required. Deleting job i, from
{n} takes O(logn) time. Therefore, finding job 7, in all steps of the algorithm requires
at most O(nlogn) time.

We show that constructing balanced 2-3-trees in all steps of the algorithm can be done
in at most O(nlogn) time. In the first step, constructing the tree takes O(n) time. Let u
be the number of job i, and N” be a set {7}\i, found in some step of the algorithm. In the
next step, finding the set {7} involves including jobs u+1, u+2,..., v into set N’, where
v is the number of the job i in this step. Obtaining the balanced 2-3-tree corresponding
to the set {7} from the tree for the set N" can be done in O(n;logn) time, where n; = v—u.
Thus, representing the sets {7} by the balanced 2-3-trees in all steps of the algorithm

requires at most O(nlogn) time.

(b) Suppose that d; = 0, i = 1, 2,..., n, and, for any 1 < i, j < n, the condition
t; < t; implies o; > o;. Let the jobs be numbered in non-decreasing order of their due
dates, i.e., D; < D, < ... < Dy,

Since T(m\i,) = T(7r)—t,-y, 1 < v <k, it follows that the job i € {7} with the longest

processing time t; and the smallest weight o; has to be chosen as the job i,. In this

case, finding an optimal set requires at most O(nlogn) time.

(c) Consider the problem on minimizing the number of late jobs with different release
dates. As before, assume that the jobs are numbered in such a way that d; < d, < ... < d,
and D; < Dy < ... < Dy

Since, in this case o = oy = ... = o, = 1, it follows that for finding the job i, it
suffices to compute T(m\i,) for all 1 < v < & and to choose the job with the smallest of
these values.

Example. Let N = {1, 2, 3, 4, 5, 6}, o = 1, i = 1, 2,..., 6. The values of t;, d; and
D; are given in Table 4.3. .

Table 4.3
i 1 2 3 4 5 6
t; 1 2 2 3 2
d; 1 2 3 3 4 7
D; 3 4 5 7 8 9

112 Chapter 2

(1) Define R = @. The sequence Tyg = (i), gy 7,) = (1, 2, 3, 4, 5, 6). To find the

job t, compute ?ij(“'_)N\R) by formula (4.3) and compare it with D,-j: TI(W_)N\R) =2 < Dy,
T5(Ty\g) = 4 = Dy, T5(Tag) = 6 > Dy. Thus, i = 3 and 7 = (1, 2, 3).

For finding the job i,, we use the procedure described above when analyzing the running
time for constructing an optimal set R*. At the first iteration, we have p = 1,
0, = 0{ = (@), T(a;) = T(o{) = 0. At the second iteration, 0, = (2), 0; = (1), T(0,) = 4
and T(0;) = 2. Since T(0;) > T(03), define p = 2, 0, = 05 = (1) and T(0,) = T(0;) = 2. At
the third iteration o3 = (1, 3), o5 = (1, 2); T(03) = 5 and T(o;) = 4. Since
T(03) > T(03), define p = 3, 03 = 03 = (1, 2), T(03) = T(03) = 4. Define t, =p =3 and
R = {3}.

(2) We have R = {3}, Tayg = (1, 2, 4,5, 6), ix = 5, 7 = (1, 2, 4, 5) and i, = 4. Define
R = {3, 4}.

(3) If the jobs are processed according to the sequence F_)N\R = (1, 2, 5, 6), there are
no late jobs. Therefore, R* = {3, 4} and the schedules specified by the permutations
m™ =(1,2 5 6, 3,4) and 7, = (1, 2, 5, 6, 4, 3) are optimal. The number of late jobs
is 2.

(d) Suppose that the jobs can be numbered so that d; < d, < ... < d,, D; < D, <
<D, 8 St S Sty o 20 > > O

In this case, while finding an optimal set R*, the job i, can be chosen as iy- In fact,
Q< oy and T(m\i) < T(7r)—tik < T(ﬂ)—tlu < T(m\i,), 1 <v < k-1

As shown above, finding the jobs i, in all steps of the algorithm can be done in O(n)
time. Therefore, in the case under consideration, finding an optimal set requires at most

O(nlogn) time.

(e) Suppose that the jobs can be numbered in such a way that d;, < d, < ... < d,
Dy<Dy<...<Dpy oy 205> .20 and ¢; < djy-d; ,i=1,2,.., n-1

In this case, T(m\i;) < T(ﬂ)—tik, T(m\i,) = T(m) and %y S O 1 < v < k-1. Therefore,
job 2 can be taken as i,. Finding an optimal set requires O(nlogn) time.

(f) Suppose that the jobs can be numbered so that D, < D, < ... < D, oq < oy <

.S 0, dp = di g+t 2(n-i)t <8, < 2n-i)t+t, i =1, 2,..., n, dy = 0, ¢ > 0.

In this case, we have
T(”\h)=T(ﬂ')—(til—l)ST(")-(Z(n—il)t-t)v

T(m\i,) = T(m)—t; > T(m)—(2(n—-i,)t+t), 2 < v < k.

Polynomially Solvable Problems 113

Since i, < i,-1, we have T(m\i) < T(m\i,) for all 2 < v < k. Since % < o

s iv’
2 < v <k, it follows that the job i; can be chosen as i,. Finding an optimal set takes

O(nlogn) time.

4.4. Consider the problem of minimizing the total cost that differs from the problem
considered in Section 4.2 in the following: (1) d; = 0, ¢ = 1, 2,..., n, and (2) the jobs
of a given set 0 ¢ N must be completed before their corresponding due dates.

The cost functions are of the form ¢;(t) = ogu,(t), where uyt) = 0, if ¢ < D; and
ut) = 1, if t > D;; oy > 0, ¢ ¢ Q. It is required to find a schedule s* with the lowest
total cost, provided that jobs of set O do not violate their due dates. Such a schedule is
called optimal.

Let the jobs be numbered in non-decreasing order of their due dates. If R* is a set of
late jobs in schedule s*, then, similarly to Section 4.2, a schedule § determined by a
permutation (?N\Rﬁ Tr+) is optimal for any sequence Tpx of the jobs of R*. Thus, the
problem reduces to finding such a set R* of jobs such that (a) R* ¢ N\Q; (b) jobs of the
set N\R* processed in numerical order do not violate their due dates, and (c) for any set

R satisfying the conditions (a) and (b), the lowest value of f(R) = ¥ «; corresponds to
1€R
the set R*. The set R* is called optimal for the problem under consideration.

J
Let O = {qi, qa;---, Qp}, Where ¢y < g < ... < qp. I } ty, > D, for some 1 < j < p,
1=1 j

J
then the problem has no solution. Then, we assume that Iglqu < qu forj =1, 2,.., p.

Let us modify the job due dates in the following way. Define D; = D; for each job i,

gp < i < n. Define D; = min{D;, l—)qftqj} for each job 7, q;.; <7 < ¢;-1, where j = p,
j

p-1,., 1 and ¢, = 1.

Let us consider the reduced problem obtained from the original one by removing the jobs
of set Q, followed by making corresponding changes to the due dates for the remaining
jobs. Assign the due date D; to a job i € N' = N\Q in the following way. Define D; = D,

= J
for each job i, ¢ < g;. Define D] = Di*lgltql for each job i, gq; < i < gj,;, where
1 <j<pand gy =n+l.
J

It can be easily shown that the condition } tg < D,

1=1

for all i € N. We show that, for the reduced problem, the relation D; < D holds for

4 j = 1,...,p, implies that D] > 0

v < p1. To do this, it suffices to show that D, < Dj, provided that job v directly precedes
job g in the sequence ﬁ

Suppose that ¢; < ¥ < fi < gj41, 1 < j < p. Then it follows from D, < D, that D, < D,,,

114 Chapter 2

and this implies D, < D,;. Tt is easy to verify that for 1 < v < pu < ¢y, D, < D, as well.
Suppose that v < ¢; < p < gj4y, 1 < j < p. If j = 1, then D) = D, = min{D,, D‘h*t‘h}'

If p>1, then D, = min{D‘,,7 Dql—tql, qu—tql—zqz}. If p =1, then lz,, = min{D,, D‘Il_tql}'

On the other hand, D, = D#-tql. If p>1, then D; = min{D#~tql, qu—tql—tqz}. If p=1,

then D‘; = Du_tql' Since Dq1 < Dw we have D, < D;;'

If j > 1, then
B . izv
D, =D,- Z tg, = mm{DD— Z tqy qu, Z tql}.
=1 =1 l=1
If p > j, then
j-1 j _ j+1
D, = mln{ V—IZ typ qu—lz top qu“lz qu}.
=1 =1 =1
If p = j, then

Jjzl J
D, = min{D,, - Yty Dy - Y ;ql}.
=1 !

=1

On the other hand,

_ J
Dp=Dy=)ty

=1

If p > j, then

J _ Jj+1
= mln{D#—lZ tgp qu”ﬁlz tql}.
=1 =1

If p = j, then

-}
|

J
Dp=Dy=)ty

=1

Since D, < D,, we have D, < D,.
j

Similarly, we can show that D, < D, for v < ¢, g < tt < gx41, L < j <k < p.

Since for the reduced problem, the inequality 0 < D < D, holds for any jobs v, u € N’,
v < u, it follows that this problem belongs to the class of problems considered in
Sections 4.2 and 4.3. In particular, if for the reduced problem the condition t, < ¢,
implies o, > oy, for any v, u € N’, then an optimal set can be found in O(nlogn’) time,

where n” = |N’| (see Item (b) of Section 4.3).

Theorem. 4.2. A set R’ optimal for a reduced problem is optimal for the original
problem.
Proof. Let R* be an optimal set for the original problem. It is obvious that R* ¢ N’.

Polynomially Solvable Problems 115

To prove the theorem, it suffices to show that (a) ?i(ﬂ'_)N,\R*) < D; for all i € N\R*,
and (b) fi(w_)N\R,) < D; for all i € N\R". In fact, relation (a) implies ¥ o; < Y Q>
ie€R’ teR

while the latter inequality and (b) imply optimality of the R” for the original problem.
(1) First, we prove that relation (a) holds. For any i € N\R* the inequality

TdTmex) < D; holds, while for i, ¢, < i < g¢;-1, j = 1, 2., p,

k —
TdTamre) < Dy~ Lty j < k < p, is valid. Hence, T(Tyygx) < Dy, i € N\R¥.

For a job ¢, ¢ < ¢;-1, we have ?,-(57_;,\,?*) = li(T(_)N\R*) < D; = D;. For a job i,
g; <1 < @541, We have that
J J
Ti(TNAR®) = Ti(Ty\gr) - Z lzltql =D;
holds. Therefore, ti(ﬂ'N'\R*) < D; for all i € N\R*.

(2) Now we prove that relation (b) also holds. The inequality ?i(W_)N,\R,) < D; holds for
any ¢ € N\R" Therefore, for i € N, i < ¢, we have ?i(ﬁ\lg,) = f,-(;r—N),\R,) < D{ =
D; < D;, while for i € N, g; > 1> gy,] =1, 2,..., p, we have that

- - J J' _
ti(Tw\g-) = ti(”N/\R'H"IZIth < DHZ;% =Di< D

holds.
We show that ¢ (WN\R) < Dy r J=12,., p If g <iforallie N, then

Z TrN\R Z t, < D
Otherwise, let ¢ be a job in N” with the largest number for which £ < g; holds. Then
N . j o
tq,(Ti\R") = tE(ﬂN'\R')+IZ tg, < D£+lz by
=1 =1
If§<qkf0rallk:1 2,. ,p,thenDé:Dfand

Z t‘1(+ Z tql = ‘1]"

l l=1

— > —

fy,(Tie) < D

I Mw

1
’ — i-1
If ¢y <& <g; < g5 then Dg = De- thl and
=1
i-1 7 i-1

(WN\R) < De= Y tg+ Z ty < qu—lZ by — Z ‘qﬁ" Z tg = Dy,
=1

1=1 =1

Thus, we obtain fi(wN\R,) < D; for all 7 € N\R". The theorem is proved.

4.5. We now consider the problem of finding a schedule s* which minimizes (4.1),

provided that d; are integers, ¢; = 1 and @(t);y = 1, 2,.., n, are non-decreasing

116 Chapter 2

functions. Such a schedule is called optimal.

Since all ¢; = 1 and there exists an optimal schedule with no preemption at times
different from d; (see Section 1 of Chapter 2), there exists an optimal non-preemptive
schedule. A non-preemptive schedule s is specified the sequence 7 = (71, %9y.ey 1) of
jobs. In this case, the completion time for job i; is ?ij(ﬂ') = max{d,-j, ?ij-l(ﬂ)}+1’
J =1, 2,..., n, where t,-o(7r) = 0.

Let the jobs be numbered in non-decreasing order of d;. Without loss of generality,
assume d; = 0. Let s be a schedule specified by the permutation ﬁ = (1, 2,..., n), such
that s(¢) # 0 in the time intervals (a;, by}, (ay, by),..., (@, bx), 0 = a, < by < a; <
by < ... <@g < by, and s(t) = 0 outside these intervals. Let N, denote the set of jobs
processed in an interval (a,, b,], v = 1, 2,..., k.

We show that there exists an optimal non-preemptive schedule § such that 5(t) € N, in
the interval (a,, b,]), v = 1, 2,..., k, and 5(¢) = 0 outside these intervals.

Let s* be an optimal non-preemptive schedule such that s*(¢t) # 0 in the time intervals
(a1, bil, (az, bs3),., (@, By], @] < b] < a3 < by < ... < af < b], and s*(t) = 0 outside
these intervals. Let N, denote the set of jobs processed in an interval (ag, byl p =1,
2,0, L

Let the unit length time intervals starting from d = 0 be numbered by the integers 1,
2, An interval 8 is of the form (6-1, 8].

If @) < af and s*(t) = 1 in an interval @, then construct a new schedule by defining
s(¢) = 1 in the interval 1, s7(¢) = 0 in the interval § and s'(t) = s*(t) in other
intervals. It is obvious that Fy(s') = Fg(s*).

If @ = af, then by < by. If b] = by, then N{ = Ny. If b{ < by, then N c N, and s* can
be transformed into a schedule s” by defining s”(t) = j € N,\N, in the interval (by,
b{+1], s”(t) = 0 in the interval 6" and s”(t) = s*(t) in other intervals. Here 8 is an
interval such that s*(t) = j. It is obvious that Fy(s”) = Fg(s*).

Repeating these considerations, we conclude that in a finite number of steps schedule s*
can be transformed into the desired schedule 5.

Thus, in the case under consideration, the problem of finding an optimal schedule is
decomposed into k subproblems of finding optimal schedules for the sets N;, N,,..., Ny, of
jobs. For each subproblem v, all jobs of the set N, are started and completed in the time
interval (a,, b,], where a, = min {d;|i € N,}, b, = a,+n,, n, = |N,|, provided that these
jobs are processed according to the sequence 7T_N)V (i-e., in non-decreasing order of d;).

We show that finding an optimal schedule for a set N, of jobs reduces to solving a n,xn,

assignment problem. Without loss of generality, we assume that n, = n, a, = d; = 0,

Polynomially Solvable Problems 117

b, = n. Let ¢;5 = ¢;(0) for 8 = d;+1, d;+2,..., n, and ¢c;p = W for § = 1, 2,..., d;, where
W is a sufficiently large number. Introduce a variable x;p equal to 1 if job i is

processed in interval 8; otherwise, its value is 0. We have
n n

minimize Z Z CigXig (4.13)
i=1 8=1

subject to

n

z X9 =1,1=1, 2,0y My (4.14)
8=1

n

Yxg=1,0=12..,n (4.15)

i=1

Conditions (4.14) imply that each job ¢ is processed in some unit interval 8, 1 < 8§ < n.
Conditions (4.15) imply that one of the jobs is processed in each unit length interval.

Assume that ¢,(8) can be computed in a constant time (in fact, computing ¢,(6) can be
viewed as an elementary operation). Then preparing the input for the assignment problem
(4.13)-(4.15) takes at most O(n?) time. Since an assignment problem can be solved in at
most O(n®) time (see, e.g., [58]), the original problem of finding an optimal schedule can
be solved in O(n?) time.

Remark 1. If the considered problem is supplemented with the condition that the
processing of each job ¢ must be completed by the deadline D;, then in constructing the
assignment problem it suffices to define c¢; = ¢(8) for 6 = d;+1, d;+2,..., D; and
cig =W for 8 =1, 2,..., d; and 8 = D;+1, D;+2,..., n, where W is a sufficiently large
number.

Remark 2. Consider the following problem of minimizing the cumulative processing cost.
The jobs of the set N are processed on a single machine. For a job i € N, the release date
is d;, its processing time is f;; d; and t; being integers. Each job is associated with a
non-decreasing function ,(6), where 8 is the number of a unit length time interval.

Preemption is allowed at integer times. If a job ¢ is processed in unit length time
Li

intervals 6,, 6,,..., 0,{, then its processing cost is Y ;(0;). It is required to find a
k=1

schedule for which the cumulative cost for processing all jobs is minimal. This problem
reduces to the the one of minimizing the total cost considered above. In fact, each job i
can be considered as t; jobs of unit length, (1), 4(2) ') Define di(j) = d;, let

the cost function <pi(J)(t) be equal to ;(0) for t € (-1, 0],ie N, j =1, 2., t.

4.6. To conclude this section, we consider the problem of minimizing the total cost for

118 Chapter 2

a single machine, provided that the cost functions are p;(t) = p(E)+by i =1, 2,..., n,
where ¢(t) is a non-decreasing function. It is again assumed that the release date of a
job 7 is d; > O, its processing time is ¢; > 0, i = 1, 2,..., n, and preemption is
allowed.

In the situation under consideration, there exists an optimal schedule with no
preemptions at times different from d;, i = 1, 2,..., n (see Section lof Chapter 2). We
show that it can be found by the so-called SPT (“shortest processing time”) rule extended
to the case of different release dates.

The algorithm for constructing an optimal schedule can be described as follows. The
decision to start (or to resume) the processing of a job is taken either when a new job is
released or when the previous job is completed.

Let {dV, d®,.., d®} be a set of all pairwise-distinct values of d;, and
dV <d® < . < d® < d®*1) = W, where W is a sufficiently large number.

In the first step, define 7 = d, Ny = {i|i € N, d; = dV} and s(t) = 0 for
0 <t < dY. In each step, there is a certain time 7 (e.g., assume d*1) < 7 < d®),
2 < u £ v+1) and some set N, of jobs. In set Ny, find a job ! with the shortest processing
time, i.e., # = min{t;|i € Ny}. Define s(¢) = I for all 7 < ¢t < min{d®), 7+¢;}, and, if
T+t < d® and |Ny| = 1, define s(t) = 0 for all T+ < t < d(®.

If 74+t > d™, then add all jobs i € N with d; = d® to Ny, and let t be equal to
t—(d®W 7). If either (a) T+8 < d® and [Ng| = 1 or (b) T+t = d®, then delete job [
from Ny and add all jobs ¢ € N with d; = d®. In any case, define 7 = d®. If
T+ < d® and |Ny| > 1, then delete job [from Ny and set 7 to be equal to 7+¢. As a
result, we obtain a new time 7 and a new set Ny. Go to the next step. The scheduling is
completed when Ny, = @.

We show that the resulting schedule is the desired optimal schedule. The proof is by
induction with respect to the number v of different release dates.

Let v = 1, ie., the release dates for all jobs are the same (without loss of
generality, assume that d; = d = 0, ¢ = 1, 2,..., n). In this case, there exists an
optimal non-preemptive schedule (see Section 1 of Chapter 2) that is specified by the
sequence m* = (4, ip..., I,) of jobs. The completion time of a job 4 is

k
t, (m*) = ¥ tip‘ In the schedule constructed by the described algorithm, let the jobs be
p=1

i

processed according to the sequence m = (j;, Jjp,..., Jn). It is clear that tjk < tjk“,
k=1 2,., n-1If ti, > b and & = (i), fgyeey yiy, Tyyyy By Gysser, Bp), then

i () = fik(ﬂ*) for k =1, 2,..., v—1 and k = v+2, v+3,..., n, ?,-u(?f) = fiu+l(7r*) and

() < tiu(ﬂ*). Since ¢(t) is a non-decreasing function, it follows that the schedule

|]

s

Polynomially Solvable Problems 119

determined by the sequence % is also optimal. Repeating these considerations finitely many
times, we conclude that the sequence 7 determines an optimal schedule.

Suppose that this statement holds for v = V. We show that this also holds for v = V+1.

Let s* be an optimal schedule. Without loss of generality, we may assume that it belongs
to the class of schedules with no preemption at times different from d9, i =1, 2., v
Let s be a schedule constructed by the algorithm described above.

If the total processing time of jobs with release dates equal to d®) do tiot exceed
d®_d0) or s(t) = s*(t) in the interval (dV), d?], then by the induction assumption
we have Fx(s) = Fy(s*). In the following, it is assumed that s*(t) # 0 in the interval
(dW, d?).

Suppose that s(t) = s*(t) for all dV) <t <71, s(t) =i forall 7T <t < min{d(?,
T4t}, s¥(t) = j for all T < t < min{d®, 7+t;} and t; > t;.

(1) Let 74¢; > d®. Find all time intervals in which either s*(t) = i or s*(t) = j. It
is clear that the total length of these intervals is t;+¢;. Find a schedule s? by setting
s9(¢) = i or s9¢) = j in these intervals in such a way that the condition s%(¢)) = ¢ and
s%(t,) = j implies #; < t,. In other intervals, define s(t) = s*(¢). Since t; < t;, we
obtain Fy(s%) = Fy(s*). In the interval (d(V), d(®], we have s%(t) = s(t).

(2) Let T+t; < d®. Find a new schedule § by setting 3(t) = i in the interval (7, T+¢],
$(t) = j in all intervals for which s*(¢) = 4, and §(t) = s*(¢) in other intervals. Since
t; > t;, we obtain Fyg(8) = Fg(s*).

Suppose that T+t; < d(®). Let by t the largest value of ¢t e (d(V, d®], for which
5(t) = 7.

s> T+t;+¢;, then find a schedule s by setting s(t) = S(t+t;—t;) in the interval
(T+¢;, ?—(t]-—ti)], s(t) = j in the interval (?w(zj—z,-), 1] and s(¢) = 5(¢) in other
intervals. Again, we have Fyg(s) = Fx(5).

Ift= T+, then find a schedule 5 by setting s (t) = 3(t+t;—t;) in the interval (7+¢;,
d® —(t;-t)], 5(t) = j in the interval (d®-(t;-t;), d*] and 5 (¢) = §(t) in other
intervals. It is clear that Fyg(s) = Fg(5).

If 5(d®) = k # j and 5(t) = & for some ¢t > d(?, then select all time intervals in
which either s (¢) = j or 5 (t) = k. The total length of these intervals is equal to ;+tx.
Find a schedule s* by setting either s(¢) = j or s(¢t) = k in the selected intervals in
such a way that the conditions s(¢,) = j and s(t;) = k imply either (a) £, < ¢ if
t; < tp or (b) b > ¢ if t; > t. For other intervals, define s(¢) = 5 (t). It can be
easily shown Fyg(s’) = Fy(5).

In any case, we obtain a new optimal schedule which coincides with the schedule s in the

120 Chapter 2

interval (d()), 74¢;] and has no preemption before the time d(?,

Repeating similar considerations finitely many times, we come to an optimal schedule §
such that 5(t) = s(t) in the interval (d), d®]. Due to the inductive assumption, we
conclude that the schedule constructed by the described algorithm is optimal.

To implement some procedures of the described algorithm, we can represent the data using
the balanced 2-3-trees. In this case, an optimal schedule can be found in at most O(nlogn)
time.

Define a total pseudo-order — over the set N in the following way: i — j if and only
if t; < ¢;. In the first step of the algorithm, represent the ordered set N, ¢ N as a
balanced 2-3-tree. This can be done in O(n) time (see Section 2.3 of Chapter 1).

The number of steps of the algorithm is at most 2n—1 since, in each step, at least one
of the following situations is occurs: (a) some job is completed; (b) a new job is added
to the set Ny In each step, finding a job I € N,y with the shortest processing time (i.e.,
finding an element of the set Ny that is maximal with respect to —s) requires one
elementary operation. Deleting job ! from N, or adding a new job to N, takes at most
O(logn) time (see Section 2 of Chapter 1). Changing the processing time of the job [is
equivalent to deleting / from Ny, followed by adding ! with a new processing time to N,
(here we consider that the relation — is defined for a new element and any i € N, 1 # [).
This also takes at most O(logn) time. Hence, an optimal schedule can be found in at most
O(nlogn) time.

Example. Consider the problem of minimizing the total flow time for single-machine
processing. This problem is a special case of the problem of minimizing the total cost
(for p(t) =t and b; = 0, 4 = 1, 2,..., n) discussed in this section. Let n = 7, and the

processing times ¢; and the release dates d; are given in Table 4.4.

Table 4.4
i 1 2 3 4 5 6 7
t; 4 2 2 1 3 1 1
d; 1 1 4 7 7 11 15

We have d(1) = 1, d(®) = 4, d® = 7, d® = 11, d® = 15. Define d(® = W, where W
is a sufficiently large number. The value of 7 and the set Ny for each step of the
algorithm are given in Table 4.5. This table also presents job I € N, with the shortest

processing time, the values of s(t), and new value of ¢ obtained in this step (if the

Polynomially Solvable Problems

121

processing time of job ! is changed in this step). The resulting schedule is presented in

Fig. 4.1.
Table 4.5
Step T Ny s(t) New t;
1 1 1,2 s(t , 0% ;8 -
s(t)=2, <
2 3 1 s(t)=1,3<t<4 t;=3
3 4 1,3 s(t)=3,4<t<6 -
4 6 1 s(t)=1,6<t<T t1=2
5 7 1,4,5 s(t)=4,T<t<8 -
6 8 1,5 s(t)=1,8<t<10 -
7 10 5 s(t)=5,10<t<11 t5=2
8 11 5,6 s(t)=6,11<t<12
9 12 5 s(t)=5,12<t<14;
s(t)=0,14<t<15
10 15 7 s(t)=5,15<t<16;
s(t)=16,14<t<W
1 w %) - -

s(t)

1 i

8 9 10 11 12 13

14

15 16

122 Chapter 2

5. Identical Machines. Maximal Completion Time.

Equal Processing Times

In this section we consider the problem of finding a time-optimal schedule for identical
parallel machines and a partially ordered set of jobs with equal processing times,
assuming that either the reduction graph of a precedence relation is tree-like or that

there are two machines.

5.1. The jobs of a set N = {1, 2,..., n} are processed on M parallel identical machines.
All jobs have the same release dates (ie., d; = 0, i = 1, 2,..., n) and equal processing
times. Without loss of generality, we assume t; = 1, i = 1, 2,..., n, where t; is the

processing time of a job i. Preemption is forbidden. A precedence relation —s is defined
over set N to determine a feasible job processing sequence. Let the reduction graph of
this relation be denoted by G. Let ¢,(s) be the completion time of a job i in schedule s.
It is required to find a feasible (with respect to —) schedule s* for processing the jobs

of set N which minimizes the makespan (i.e., the maximal completion time of all jobs):

T(s) = max{t,(s)|i € N}. (5.1)

The value T(s) is called the length of schedule s, and schedule s* is called a (time-)
optimal schedule.

Let the unit length time intervals starting at ¢ = 0 be numbered by the integers 1,
2,... . An interval with the number # is of the form (6-1, 8)]. In what follows, we do not
distinguish between a job and the corresponding vertex of graph G. As before, N~ and N*
denote the sets of all minimal and maximal (with respect to —) elements of set N. For a
job i, let A%:) denote the set of its direct successors, and let BY(i) denote the set of

its direct predecessors. In graph G, h(:) denotes the height of a vertex i.

5.2. Let each connected component of the reduction graph G be an intree.

We describe an algorithm for finding a schedule that is feasible with respect to —s,
called the h-algorithm. A schedule found by this algorithm is called an h-schedule. We
show that an h-schedule is an optimal one.

The number of steps in the h-algorithm is equal to the length of an h-schedule. A step
consists of at most M+1 iterations. At each of these iterations (except the last one), a

job is assigned to be processed in the unit time interval §. At the last iteration, the

Polynomially Solvable Problems 123

transition to the next step is performed. The total number of iterations is T(s)+n-1,
where T(s) is the length of an h-schedule.

First, define sy(t) = 0 for L = 1, 2,..., M, t > 0 and consider all jobs of set N to be
unmarked. Set § = 1.

In each step €, the following iterations are to be performed. Find a machine H such that
sy(8) = 0. Choose a job j with the largest height A(j) among unmarked jobs of set N
Define sy(t) = j in the interval 6, mark job j, and go to the next iteration. If either we
fail to find machine H or all jobs of N* have been marked, then delete the marked jobs
from N. If N # @, increase 6 by 1 and go to the next step. If N = @, then the h-schedule
s(t) = {s1(8), Sa(t),-.., sy(t)} is constructed.

Let the vertices of graph G (i.e., the jobs of set N) be numbered as described in the
case of an intree in Section 1.4 of Chapter 1. Then, at each iteration of the h-algorithm,
the job with the highest number among the unmarked jobs of the set N™ can be chosen as the
job j.

Let A be the list of the jobs of set N sorted in decreasing order of their numbering. At
each iteration of the h-algorithm, choose the first unmarked element of list A belonging
to set N* as the job j. The resulting schedule is called a A-schedule (schedules of this
type are also called list schedules). It is clear that a A-schedule found according to the

list A = (n, n-1,..., 2, 1) is, at the same time, an h-schedule.

Example. Let M = 3, N = {1, 2,...,, 12}, ¢t; = 1, d; = 0, ¢ = 1, 2,..., 12, and the

reduction graph of the precedence relation defined over N is shown in Fig. 5.1a.
9 1

0 1 12
® ®]
\I / / Machine 3
7 8 @
\ / Machine 2

30

4 @5 @6
\I \ / Machine 1
[]
2

1

1

(a) (b)

Fig. 5.1
The vertices of this graph are numbered according to Section 1.4 of Chapter 1.
We now construct the corresponding A-schedule. First, assume s;(t) = 0 for L = 1, 2, 3,
¢t > 0. The value of 6, the set N* for each step of the algorithm, as well as the set of
marked jobs (by the beginning of an iteration), the machine H and the job j for each

iteration are given in Table 5.1. This table also contains the values of sy(¢) obtained at

124 Chapter 2

each iteration. The resulting A-schedule is presented in Fig. 5.1b. Here T(s) = 5.

Table 5.1

Step 8 1 2

Nt 3, 5, 6, 9, 10, 11, 12 3

Iteration 1 2 3 4 1 2 3 4
Marked jobs - 12 11, 12|10,11,12 - 9 8, 9 |6,8,9

H 1 2 3 - 1 2 3 -

The value of s1(t)=]|sa(t)=|s3(t)= s1(t)=|sa(t)=|s3(t)=
sy(t) for =12 =11 =10 = =8 =
f-1<t<8

Step 6 3 4 5

Nt 3, 5, 7 2, 4 1

Iteration 1 2 3 1 1 2 3 1 2
Marked jobs - 7 s, 7 [3,5,7 - 4 2, 4 - 2

H 1 2 3 - 1 2 3 1 2

The value of s (t)=|s2(t)=|s3(t)= sp(t)=|s,(t)= sy(t)=
sp(t) for =7 = = =4 = =
f-1<t<8

We show that finding a A-schedule takes at most O(n) time. It is assumed that the
vertices of the graph G are numbered as in Section 1.4 of Chapter 1, and the graph G is
represented in the following way. There are two one-dimensional arrays Oy and S, each
consisting of n elements. The number by written in the kth position of the array Qg shows
how many direct predecessors vertex k has, while the direct successor of vertex k is
placed in the kth position of the array S,.

The array Qp is to be changed at each iteration. Let N(f) denote the set of the jobs
assigned to be processed in step 6 of the h-algorithm. Let ny be an element of the set

N(f) with the smallest number. It is obvious that the set N(1) consists of the first M

Polynomially Solvable Problems 125

elements in the list A, which correspond to the zero elements of the array Qg. If there
are less than M such elements, they all compose the set N(1).

At each iteration of step &, choose the element of the set N(#) with the largest number
as the job j and delete it from N(f) (which corresponds to marking the job j). Find the
direct successor i of the job j in the position j of the array S4 and decrease the ith
element of the array Qg by 1 (which corresponds to deleting j from G). If the ith element
of the array Op happens to be zero and ¢ > ng, insert the job i into the set N(6+1). If,
when entering the next step 8+ 1, we have |N(#+1)| < M, then scan the list A starting with
the element with the number ng—1, and insert the elements of that list, which correspond
to the zero elements of the array Qp, into the set N(6+1) (trying to make that set
consist of M jobs, if possible). It is clear that if the data are represented in the

way described, then finding the schedule requires at most O(n) time.
5.3. As mentioned above, a A-schedule is, at the same time, an h-schedule.

Theorem 5.1. If the reduction graph G of the precedence relation — defined over set N
is an intree, then an h-schedule is a time-optimal schedule for processing the jobs of set
N.

Proof. Suppose that the theorem does not hold. Then for the given number of machines M
there exists the smallest (with respect to the cardinality) set N such that an h-schedule
s is not time-optimal. Let |N| = n, T(s) = T and T* be the length of the optimal schedule
for processing the jobs of set N. It follows that T > T*.

Let r be the terminal vertex of the graph G. For any schedule § of the length 7, only
job r is processed in the interval 7. Hence, it follows that if §,(¢) # 0, L = 1, 2,...,
M, in the time interval (0, 7-2], and Sy(t) # O for some H, 1 < H < M, in the interval
T~1, then schedule § is optimal (in this case, the jobs of set N\r cannot be processed
within less than 7—-1 time units).

Let N, denote set N obtained by the step 6, 6 = 1, 2,..., T, of the h-algorithm. Since
s is not optimal, there exists a machine H such that sy(t) = 0 in some interval §’, where
8" < T-2. Therefore, at the last iteration of step 8 all jobs of the set Ny, are marked,
and |Ng.| < M. Since G is an intree, it follows that |Ng.,,;| < |Ng.| < M. Hence, in the
interval 8°+1 (and, therefore, in the interval T-2) at least one machine is idle.

Note that, for schedule s, job r is processed in the interval T, while all jobs processed
in the interval 71 belong to the set B%(r). Among the jobs processed in the interval T -2

there is a job which does not belong to the set B°(r) (otherwise, there would not be an

126 Chapter 2

idle machine in the interval T-2). Therefore, there is a job 7 processed in the interval
T-2, such that r” e B%r’) holds for some r" e BY(r).

Let R = r u B%r). It is clear that by defining s;(¢) = 0 if s;(¢) = i, i € R, and
si(t) = s;(t) in other cases, we obtain an h-schedule s for processing the jobs of set
N = N\R. In this case, T(s") = T-2, and the height of each job is two units less than
that for the initial problem.

The reduction graph G” of the relation — which corresponds to the set N° can be
transformed into a tree by adding a new vertex r and connecting the terminal vertices of
the graph G” with 7 by the arcs leaving these vertices.

We can obtain an h-schedule s” for processing the jobs of set N = N° U r from the
schedule s” by setting s;(t) = r and s;{(t) = s/(t) for L = 2, 3,..., M in the interval
T-1 and s;{t) = si(t), L = 1, 2,..., M, in other intervals. It is clear that T(s”) = T-1
and |N7| < n-1.

An optimal schedule s* for the jobs of set N has the length T*. Defining 5,(t) = 0 if
sZ(t) =1, 1 € R (except the case L = 1 and T*-2 < ¢t < T*-1), s,(t) = 7 in the interval
T*-1 and s;(t) = si(t) in other cases, L = 1, 2,..., M, we obtain a schedule 5 for
processing the jobs of set N” having the length T% -1 < T—1. Therefore, the h-schedule s~
for processing the jobs of set N” where |N”| < n-1 is not optimal. We have come to a

contradiction. This proves the theorem.

Corollary 5.1. If each of the connected components of the graph G is an intree, then an
h-schedule is a time-optimal schedule for processing the jobs of set N.

Proof. Let us add a new job 7 to the set N and assume that i — 7 for all { € N. The
reduction graph of the relation — specified on the set N U 7 is an intree. Construct an
h-schedule s” for processing the set N U 7. Due to theorem 5.1 this schedule is optimal.
In schedule s’, the job 7 is processed last, say, in the time interval 7. The jobs of set
N are processed in the intervals 1, 2,..., 7—1. Defining s;(¢) = 0 in the interval 7 and
sp(t) = sg(t), L = 1, 2,..., M, in other intervals, we obtain an h-schedule s for
processing the jobs of set N. This schedule is optimal, because otherwise schedule s
would not be optimal. This proves the corollary.

Suppose that each connected component of the graph G is an outtree. Reverse the
orientation of each arc of this graph. As a result, we obtain the graph G’ such that each
of its components is an intree. It is clear that the graph G’ is the reduction graph of
the precedence relation which is the inverse of the initial one. Using the graph G’, find

an h-schedule s". Having found schedule s” (and, hence, having found its length T(s")),

Polynomially Solvable Problems 127

find a schedule s, by setting sy(t) = si(t) for t > T(s") and sy(t) = sp(t+T(s")-20+1),
L=1,2., M for -1 <t <8, 0 =1, 2., T(s). The schedule s is called an
h-schedule. The lengths of schedules s and s” are equal, and the feasibility of s with
respect to the graph G’ implies the feasibility of s with respect to G (and vice versa).

Thus, the following statement follows.

Corollary 5.2. If each connected component of the graph G is an outtree, then an

h-schedule is a time—optimal schedule for processing the jobs of set N.

5.4. We now consider the case when the reduction graph G of the precedence relation —
defined over N is an arbitrary circuit-free directed graph, but the number of machines
M =2

Let v = (vy, Vg, V) and p = (fy, Ho,..., Hy) be sequences of integers, and %,
1 >0. If k = 0, the sequence v is empty. Sequence v is said to be lexicographically
smaller than sequence g if: (1) there is such 4, 1 < ¢ < k, that for all j, 1 < j < 4,
v; = pj and v; < g hold or (2) vy = pj, j =1, 2,.., k, and k£ < L

Let the vertices of the graph G be numbered in the following way. Assign number 1 to one
of the terminal vertices. Let numbers 1, 2,..., j—1 be assigned and Q be a set of such
non-numbered vertices which have no non-numbered successors. For each vertex ¢ € Q,
construct a sequence a(i) of all its direct successors (i.e., the jobs of a set A%(7)),
taking the elements in decreasing numerical order. Assign the number j to one of the jobs
i € Q with the lexicographically smallest sequence a(z).

Renumbering the vertices of the graph G in the described way requires at most O(n?)
time. In fact, suppose that the vertices of the graph G are numbered arbitrarily and G is
given by its adjacency matrix. Find all terminal vertices of the graph, and make the list
Q4 of n elements such that the number |A%¢)| is placed in the ith position. It is obvious
that this requires at most O(n?) time. We show how to change the current vertex numbering
into the one described above.

Let 0 be a queue of vertices ready to be assigned new numbers (these vertices are either
terminal or the new numbers have been assigned to all of their successors). At the
beginning, O consists of all terminal vertices of a graph. Form the list L consisting of
vertices which have not been given new numbers but which have direct successors with new
numbers. Each vertex appears in the list L at most once. Initially, the list L is empty.

The algorithm for renumbering the vertices consists of n steps, each corresponding to

the assignment of a new number to some vertex. In each step, assign the next number to the

128 Chapter 2

first element in the queue 0. Suppose that this element is ¢. Delete q from 0. Adjust the
list L in the following way. Using the adjacency matrix, for each element i in the list L
verify whether ¢ belongs to the set B%q). If i € B%gq), mark this element in the list L
and in the adjacency matrix. Form a sequence L’ consisting of two parts. In the first
part, arrange arbitrarily the elements of the set B%g) which are not included in L (to do
this, scan the column g of the adjacency matrix and remove the marks from this matrix). In
the second part, arrange the marked elements of the list L (in the same order as in the
list L). Change the list L by deleting the marked elements and adding the sequence L’ to
the rear of L. It is easy to check that, in each step, constructing the list L takes O(n)
time. In the list L, the elements ¢ are arranged in lexicographically increasing order of
the sequences a(i). Here a(i) denotes the decreasing sequence of the numbers of those
direct successors of a job 7 which have been given new numbers (up to the step under
consideration); in particular, a(i) = a(i) if all direct successors of a job i have been
given new numbers. The described arrangement of the list L does not require the sequences
a(7) to be obtained as such.

For each job j € B%g), reduce the number in the jth position of the list Q, by one.
Scanning the list L from the front to the rear, choose such elements i that 0 is placed in
the tth position of the list 0,4, delete them from L and add them to 0. Having performed
this procedure for all jobs of the list L, we obtain a new list L, a new queue Q and go to
the next step. It is obvious that the running time of each step in the algorithm is at

most O(n) and, hence, numbering all vertices of the graph takes at most O(n?) time.

Example. Let the reduction graph of a precedence relation defined over set N be shown in

Fig. 5.2, and the initial numbering of its vertices is given by the letters A, B,..., J.

Polynomially Solvable Problems 129

Table 5.2
L Changes
New number | g . . . ~
Step B (q) L after at the in list [0}
of vertex .
being end of 04
corrected|a step
1 A=1 FG FG FG FG [F]=1, BC
[G]=2
2 B=2 D D FGD FGD [D]=1 c
3 Cc=3 DEF EFD GEFD G [D]=[E])= EFD
=[F]=o0
4 E=4 GH HG HG HG [G]=1, FD
[H]=2
5 F=5 HIJ IJH GIJH GIH [H]=[I]= DJ
=1,[J]=0
6 D=6 GHI GIH GIH - [Gl=[H]= JGIH
=[I]=0
7 J=7 — - - - - GIH
8 G=8 - - - - - IH
9 I=9 - - - - - H
10 H=10 - - - - - -

The set of terminal vertices is {A, B, C}, and the list O, is of the form (0, 0, 0, 2,
1, 2, 3, 3, 2, 1). Initially 0= (A, B, C) and L = (@). For each step of the algorithm of
obtaining the new numbering of the vertices, Table 5.2 gives the new number of a vertex g,
set B%q), sequence L’ where the marked elements of the list L are underlined, list L
(after being corrected as well as at the end of a step). This table also contains the new
values of the elements of the list Q4 obtained at the end of a step and the queue 0. The
number in position p in the list Q4 is denoted by [p], p = A, B,..., J. The new numbers of

vertices are shown in Fig. 5.2 (in parentheses).

5.5. We describe an algorithm for finding a schedule that is feasible with respect to —
which is called (by analogy with Section 5.2) a A-schedule. Then we show that a A-schedule
is a time-optimal schedule in the case of two machines.

Suppose that the vertices of the graph G are numbered by the integers 1, 2,..., n as
described in Section 5.4, and that A = (n, n—1,..., 1).

The number of steps in the algorithm for constructing the A-schedule s is equal to the

130 Chapter 2

length T(s) of the schedule. In a step 8, 6 = 1, 2,..., T(s), a schedule in the interval 8
is to be constructed, and the jobs assigned to be processed in this interval are deleted
from set N. For step 6, let i and j be the jobs with the largest numbers in the sets N*
and N*\i, respectively. In the interval 0, define s,(t) = i, and, if |N+| > 1, define
sy(t) = j, otherwise, define s,(t) = 0. Delete 7 from set N. If |N+| > 1, then delete j as
well. If N # @, increase 6 by 1 and go to the next step. If N = 2, define s,(t) =
53(t) = 0 for ¢ > . As a result, we obtain the A-schedule s(t) = {5,(), s,(¢)}.

Finding the set N* and deleting elements ¢ and j from N requires at most O(n) time in
each step of the algorithm (see Section 1.4 of Chapter 1). Therefore, the running time of

the algorithm is at most O(n?).

Example. Let M = 2, N = {1, 2,.., 1T}, t; = 1, d; = 0, i = 1, 2,..., 17, and the
reduction graph G of precedence relation defined over N is given in Fig. 5.3a. The jobs
are numbered by the algorithm described in Section 5.4. Note that the subgraph of the
graph G induced by the set of vertices {1, 2,..., 10} coincides with the graph considered

in Section 5.4.

Machine 2 ﬁ

Machine 1]

Polynomially Solvable Problems 131

For each step 8 of the algorithm, Table 5.3 gives the set N*, the numbers of jobs i and
j, as well as the obtained values of s,(¢t) and s,(t). The constructed A-schedule is shown

in Fig. 5.3b.

Table 5.3

Step 6 1 2 3 4 5 6 7 8 9
+ 15,16 ,17 (7,15 14 |9,13|11,12(|8,10{4,5,6[1,2,4(1,3
N
i 17 15 14 13 12 10 6 4 3
i 16 7 — 9 11 8 5 2 1
sy(t) for 8-1<t<8 17 15 14 13 12 10 6 4 3
sa(t) for 6-1<t<f 16 7 0 9 11 8 5 2 1

5.6. We now prove the following statement:

Theorem 5.2. A A-schedule is a time-optimal schedule for the two-machine processing of
the jobs of set N.

Proof. Let s denote the A-schedule found by the algorithm described in Section 5.5.

Suppose that, in schedule s, a job k € N is processed in the time interval &§;. Note that
if the job 7 is processed on the first machine and 6; < &, then i > k. In fact, let
&; = 0 and let Ny denote the set N* obtained in the step @ of the algorithm. If k& e N,
then i > k according to the procedure of constructing the A-schedule. If k ¢ Ny, then
there exists a job [€ Ny such that [— k. According to the procedure of A-scheduling, we
have 7 > [, and the numbering of the vertices implies that for any ! and k such that
l — k, | > k holds. Hence, ¢ > k.

If s7(t) = 0 in the interval 8, machine L is said to processed a dummy job O in this
interval. Let N be the set N of jobs with the dummy job 0 included.

Define the jobs pg, Piy-eey Pus Py € Ny v = 0, 1o, U, Ty, Ppyeeey Ty, Ty € N, v = 0,
1,..., u, and the sets of jobs Py, Py,..., Py, P, ¢ N, v = 0, 1,..., u, in the following
way.

Let py and ry be jobs processed in schedule s in the time interval T(s) on the first and
the second machine, respectively. Note that p, > ry. Suppose that p,_;, Py_g,..., Pg and
Ty_ty Tyzs--s Tg have been defined. Let r, denote such a job of the set N that
Ty < Po-ty 6,v < 61’:;-1 and there is no such job k € N that 6,v <6 < 61’:;—1 and k£ < py,_;-

It is clear that the job r, is processed on the second machine (if the job i is processed

132 Chapter 2

on the first machine and §; < 61’1;—1’ then ¢ > p, ;). Let p, denote the job processed on

the first machine in the interval 6rv (thus, 61’1) = 6rv). Suppose that the jobs p,,

Pu-15-+» Pg and Ty, Ty y,..., 7o have been defined, and there is no job rys1 (i.e. either
6, = 1 or k > p, for all k such that & < 6p). For all v, 0 < v < u, define
u u
P,=1{k e N|¢5},v+1 < 8 < &, } U py. Define also P, = {k € N|§; < 6p,} U Pu-
The values p,, r, and P,, v = 0, 1,..., u, for the schedule in Fig. 5.3b are shown in
Fig. 5.4.
Py Py
16 r3=T ro=0 9 11 8 5 r1=2 ro=1
Machine 2 I I % { } ‘{
P, Py
17 py=1s P13 12 10 6 pr=1
Machine 1 { p2=14} } % } f Po= 3
I
E—
i | | | Il I 1 | 1
t
0 1 2 3 4 5 6 7 8 9
Fig. 5.4

We show that k¥ — k" for all k € P, and k" € P, v = 1, 2,..., u.

First, we show that p, — &’ for all k" € P,_;. By definition of the job r,, for that
job the inequality r, < p,; holds, and k" > p,, holds for all k" € P,_;. Consequently,
T, < k". Let N denote the set N* obtained by the step érv. The definition of a A-schedule
implies that r, is the job with the largest number in the set N\p,. Hence, for any
k" e P, it follows that k'¢ N. Thus, pr — k.

Let k # p,. First, assume that k € P,. The definition of the set P, implies that k > Dy
Let a(k) and a(p,) be the sequences of all direct successors of the jobs k and p,,
respectively, sorted in decreasing numerical order. The inequality & > p, implies that
a(p,) is lexicographically smaller than the sequence a(k).

We show that the first [P:‘1| elements of the sequence a(p,) are jobs of the set Py _,.
In fact, for any k" € P, the inequality k" > p,, holds, and for any j such that
65 > 61,”_1 the inequality p,_; > j holds. Hence, the elements of set P,_; have the largest
numbers among all the jobs processed after the interval 61’:;' Since p, — k° for all
k' € Py,, we bave p, ¢ BY() for all [€ P,_,, and the first |P}_,| elements of the
sequence a(p,) are the elements of set P:_l,

If the sequence a(p,) is lexicographically smaller than a(k), the condition k e BY%() is

Polynomzally Solvable Problems 133

satisfied for any [€ Py, i.e., k — k" for any k" € P,_,.

Finally, if k¥ # p, and k ¢ Py, then k — j for some j & P, which implies ¥ — k’ for
any k' € P,_,.

Now, it can be easily shown that the A-schedule is optimal. For any k¥ € P, and k" € P,,,
where u > v > v" > 0, k — k" holds, i.e., all jobs of the set P, must be completed before
the jobs of the set P,. start. Each of the sets P,, v = 0, 1,..., u, contains an odd
number of jobs. Let P, include 2n,—1 jobs. Evidently, it takes at least n, time units to

process all jobs of set P,, and for any schedule § (feasible with respect to —s) for

u u
processing the jobs of set N, T(§) > ¥ n, holds. Since T(s) = ¥ n, holds for schedule s,
v=0 0

v=

this schedule is optimal. This proves the theorem.

Remark. As can be seen from the example below, in general, a A-schedule need not be
optimal if M # 2.

Let N = {1, 2,..., 11}, M =3, t;, =1, d; = 0, 1 = 1, 2,..., 11, and the reduction
graph G of the relation — defined over set N be shown in Fig. 5.5. The jobs of set N are
numbered as described in Section 5.4.

Figure 5.6a presents the A-schedule s constructed by the algorithm described in Section
5.5, while Fig. 5.6b shows an optimal schedule s*. We have T(s*) = 4, T(s) = 5.

9 4 7 5 3
Machine 3 } Machine 3

10 7 5 2 10 8 4 1
Machine 2 Machine 2

11 8 6 3 1 11 9 6 2
Machine 1 Machine 1

i i
0 1 2 3 4 5 t 0 1 2 3 4 t

Fig. 5.6

134 Chapter 2

6. Identical Machines. Maximal Completion Time. Preemption

In this section we consider the problem of finding a time-optimal preemptive schedule
for processing n jobs on M parallel identical machines. Polynomial algorithms are given
for the cases: (a) the set of jobs is not ordered; (b) the reduction graph of the
precedence relation is tree-like; (¢) M = 2 and the reduction graph is arbitrary. In the

last two cases the job processing times are assumed to be commensurable.

6.1. The jobs of a set N = {1, 2,..., n} are processed on M parallel identical machines.
The processing time of a job i € N is t; > 0. All jobs have the same release dates.
Without loss of generality, we assume that the release date is d = 0. Preemption is
allowed. It is assumed that preemptions do not consume time, and that their number is
finite.

The precedence relation — is defined over set N to specify a possible order of job
processing. The reduction graph of this relation is denoted by G = (N, U). If t;(s) is the
completion time of the job 7 in a schedule s, then T'(s) = max{f,-(s)[i e N} is, evidently,
the maximal completion time for schedule s (the length of schedule s). It is required to
find a time-optimal schedule s*, i.e., a schedule which is the shortest among all feasible

(with respect to —s) schedules.

6.2. Suppose that the set of jobs is not ordered, ie., G = (N, @). Recall that
Section 2.3 of this chapter described the following packing algorithm for finding a
schedule for processing the jobs of set N = {1, 2,..., n} on M parallel identical machines
in the interval (e’, e”] subject to t; < A for all + € N and Y t; < MA (here
A =e"-¢). e

Let # = (i, ¢3..., i) be an arbitrary permutation of the elements of set N. In the

interval (e, e’+MA], define the function o(t) assuming o(t) = ¢, in the interval
k-1 k

(¢, e’+ty], o(t) = i in the interval (e’+ ¢ 3ij7 e+ ¥ tij], k = 2, 3,..., n, and, if
j=1 i=1

L t; < MA, then o(t) = 0 in the interval (e’+ T t;, e"+MA]. A schedule s(t) = {s,(¢),

ieN ieN

S5(t),-.., Sy(t)} for processing the jobs of set N is said to be found by the packing

algorithm if s;(¢t) = o(t+(L-1)A) in the interval (e’, "] and s;(t) = 0, L = 1, 2,..., M,

outside this interval.

The running time for finding schedule s(t) is at most O(n), and the number of

preemptions in the resulting schedule is at most M -1.

Polynomially Solvable Problems 135

If the length T* of an optimal schedule is known, then the schedule s* can be found by
applying the packing algorithm in the interval (0, T*]. It is clear that the value of T*

cannot be less than T = ma.x{max{t,—|i e N}, 'ENti/M}' On the other hand, the packing
1€

algorithm applied to the interval (0, T°] finds a schedule for processing the jobs of set
N with the length 79. Thus, T* = T°.

We show that M —1 (the maximal number of preemptions for the schedule obtained by the
packing algorithm) is a tight lower bound on the number of preemptions in an optimal
schedule. In other words, there exists an instance of the problem under consideration such
that any optimal schedule contains at least M -1 preemptions.

Let N = {1, 2,..., M+1} and t; = M for all ¢ € N. The packing algorithm finds an optimal
schedule of length M+1 without idle machines in the interval (0, M+1]. It is obvious that
any optimal schedule does not allow idle time in this interval. Suppose that there exists
an optimal schedule § with a number of preemptions less than M—1. Then at least two
machines (say, machines K and L) process the jobs without preemption. Furthermore, these
machines process some jobs k£ and ! in the interval (0, M] without preemption. Therefore,
there are times ¢t and t” such that M <t < t" < M+1, and in the interval (¢, t’], machine
K processes some job 7, while machine L processes job j. In the interval (¢, t’], the
other M -2 machines can process only the jobs of set N\{i, j, k, I}, i.e., at most M-3
jobs. Thus, in the interval (¢, t’], at least one machine is idle, and schedule § cannot

be optimal.

6.3. Let the precedence relation — be defined over set N of jobs, and G = (N, U) be the
reduction graph of this relation. Each vertex ¢ of graph G is given the weight ¢; (i.e.,
the processing time of job 7).

In the following, we do not distinguish between a job i € N and the corresponding vertex
of graph G. Since no misunderstanding arises, the concepts of the processing time t; of
job i and the weight t; of vertex ¢ are considered to be equivalent. We also use, for
example, the expression “a schedule for the graph G” (instead of “a schedule that is
feasible with respect to — for processing the jobs of set N”).

Throughout this section, it is assumed that all t; are commensurable, i.e., there is a
real number w such that ¢; = [w, where [; are natural numbers, i = 1, 2,..., n.

Let us consider the graph G,, = (N, U,,) obtained from G by replacing each vertex i € N
by the chain of [; vertices ¢, i,..., i,l_, (4215 45) € Uwy § = 2, 3,..., ;. In this
case, we replace all arcs entering a vertex ¢ of graph G by the arcs entering the vertex

i, in graph G,, and the arcs leaving a vertex i, by the arcs leaving i,i in G,. Notice

136 Chapter 2

that all jobs of set N, have equal processing times w.

L 1, I; 2, 2,

L, L, I

Fig. 6.1
In turn, each vertex of graph G, can be represented as a chain of p vertices of eqtal
weight w/p. Let G/, denote the resulting graph. The graphs G,, and G, corresponding to
the graph G in Fig. 6.1a are shown in Figs. 6.1b and 6.l1c. Here ¢, = 7.5, t, = 5,
ty = 2.5, t; = 10, w = 2.5, and p = 2.
It is easy to see that non-preemptive schedules for each of the graphs G, or G, are
(in general, preemptive) schedules for the graph G.
For a graph &, let T*(&) and 7‘*(&) be the lengths of non-preemptive and preemptive

optimal schedules, respectively.

Theorem 6.1. For p = 1, 2, ... the relation

T*(G) < TX(Gyyp) < T(G)+c/p

holds where the value of ¢ depends only on n and w.

Proof. Let s be a preemptive optimal schedule for graph G, and 7, < 7, <...< T,, denote
the sequence of time moments at which at least one job is completed in this schedule.
Assume 7, = 0. For a k, 1 < k < m, consider the time interval Iy = (Tp_;, 7). It is
obvious that all jobs processed in this interval are incomparable (with respect to —).
Suppose that the jobs processed in the interval I, are j;, js,..., j"k' Let & denote the
total processing time of job j in this interval. Regarding j as a job with the
processing time &, | = 1, 2,...; ng, find a schedule for processing the jobs j;, js,...,
j”k in the interval I; by the packing algorithm. Let s” be the schedule obtained by the
packing algorithm applied to all intervals Iy, £ = 1, 2,..., m. It is clear that T(s") =
T(s).

For schedule s’, let us call a time interval (¢, t”] the assignment interval if in
this interval s;(¢t) = const, L = 1, 2,..., M, and there exist both H and Q, 1 < H < Q < M,
such that spj(t’) # sg(t’+8) and si(t”) # so(t”+6) for a sufficiently small § > 0 (i.e.,

Polynomially Solvable Problems 137

at times t” and t” another job is assigned to be processed). Since in schedule s” the
processing of a job is interrupted at most twice in an interval I (or at most once if the
completion time of a job is 7), there are at most 2n assignment intervals in an interval
Iy.

Since there are no restrictions on the times of possible preemptions, the length of
subintervals of the processing of each job in the schedule s” need not be a multiple of
w/p. Let us increase (if necessarily) the length of each assignment interval so that it
becomes a multiple of w/p. The length of each interval I increases by at most 2nw/p,
while the length of the whole “schedule” increases by at most 2n?w/p. Here, we use the
quotation marks to point out that the processing of each job ¢ may take longer than is
actually necessary (more than the processing time t;). We call this new “schedule” an
extended schedule.

If t; = Lw, then job 7 is processed in the extended schedule at least within I;p
subintervals of the length w/p. Let), 1,,..., i,'_p be the vertices of the graph G,
which correspond to job i. Let us find 2 (non-preemptive) schedule § for the graph G,,,
such that the jobs ¢, iy,..., i‘i” are processed in the first [;p intervals in which
job ¢ is processed in the extended schedule. In the remaining intervals of processing
job 7 the relation §(t) = 0 holds for all appropriate L. We have T(3) < T(s")+2n%w/p.

It is obvious that T*(G,,) < T(3) and, hence, T*(Gyyp) < T%(G)+2n%w/p.

An optimal non-preemptive schedule for the graph G, is some schedule, presumably a
preemptive one, for the graph G. Hence, T*(G) < T*(Gyyp)- This proves the theorem.

This theorem allows us to approximate with any desired accuracy (by choosing an
appropriate p) an optimal preemptive schedule for G using an optimal non-preemptive

schedule for G/, with equal weights of vertices.

w/p

6.4. We now introduce the concept of a schedule for the machine-sharing processing of
jobs.

Consider a system of M parallel identical machines as a processing system which uses
total power M. Assume that at any time some power o(z), 0 < ¢(¢) < 1, can be used in the
processing of a job i. In this case, the total power to be used at each time cannot exceed
M.

In the situation under consideration, a machine can process more than one job at a time
and uses some portion of its power for each job (machine sharing). A job 7 is processed in
a time interval (¢', t”] if and only if at each time t e (t’, t”] non-zero power is to

be used in the for processing of this job. It is assumed that the processing of each job i

138 Chapter 2

can be defined by specifying a finite number of time intervals such that the power to be
used in each interval for processing job 7 is constant.
Let &,, 6&,,..., & be the lengths of all time intervals in which a job i € N is

processed, and oy(i), y(i),..., oy(i) be portions of power to be used in the processing
!
job ¢ in these intervals. Then the relation ¥ oy(7)6x = t; holds.
k=1

Without going into formalities, a machine-sharing schedule s, is a sequence of time
intervals such that for each of them a set N € N of jobs together with portions of power
to be used in this interval for processing each job of the set N° are indicated. In
particular, the case N" = @ is possible.

It is assumed that the number of mentioned intervals is finite, the total power to be
spent in each interval does not exceed M, and assigning the new portions of power happens
at the left end of an interval. In the schedule sy, preemption is allowed in processing
each job, and precedence constraints must be satisfied (if i — j, then in schedule s, the
processing of job j starts only after job i is completed).

As usually, for a schedule s, the length T(sy) denotes the time taken to process all
jobs. Since the jobs are processed since the time ¢t = 0, T(sy) is in fact the completion
time of the last job. A schedule s5 of the shortest length is called optimal (or

time-optimal) schedule.

22=2
o(2)=4/7
t,=1 ta=2 tg=1 a(2)=1/2
«(3)=4/7
GJ © a(3)=1/2
a(l)=1 a(6)=1
\ / ¢ o(4)=6/7 «(5)=3/4)
—>| 5
6 0 . X 5 a0
ty=2 ts=1 3 3
(a) (b)
3 4 5
Machine 2 i i
1 i 2 3 2 i3 6
Machine 1
i i
0 1 1 t
1- 2- 3- 4 4- 4- 5-
3 3 3
(c)
Fig. 6.2

For the graph G shown Fig. 6.2a, one of the schedules s, is given in Fig. 6.2b. Here

Polynomially Solvable Problems 139

M = 2. The sequence of intervals (0, 1], (1, 3~] (33, 42] [4— 52] and (5—,)
corresponds to this schedule. In the interval (0, 1] job 1 is processed, and the power
allocated for its processing in this interval is «(1) = 1. In the interval [1, 3%], jobs 2,
3 and 4 are processed, and here o(2) = (3) = %, of4) = E In each interval, the total
power to be used does not exceed M =2 Job 2is processed in the intervals (1, 3~ :| and
[’i- 4=] For this job, we have 7 X 2— + l X 1— = 2. Similar relations also hold for the
other JObS. The precedence constramts in _]ob processing defined by the graph G are
satisfied. Processing is non-preemptive. The value of T(sy) = 5;.

Let Sy denote the set of all machine-sharing schedules s, while S denote the set of all
schedules s (in the usual sense) for processing the jobs of set N. In both cases,
preemption is allowed. Since each schedule s € S is at the same time a machine-sharing
schedule (the case of¢) = 1 for all i € N), we have S c S,

We show that any schedule so € S, may be transformed into a schedule s « S such that
T(s) < T(sy), and this takes at most O(n?) time.

Let 7 = 0 and 7; < T, <..< T, be the times moments at which at least one job is
completed in schedule s,. For a k, 1 < k < m, let us consider the interval I = (7., Ti)
and the set f\"k of jobs processed in s, in this interval. It is obvious that the jobs of
set Nk are incomparable (with respect to —).

Let ¥, Ya,.., 71 be the lengths of the subintervals for processing a job j e IV,c in the

interval Iy, and the amounts of power to be used in the processing of job j in these
subintervals be oy(j), oy(j),..., o4(j), respectively. The value 4; = E o(7)y; may be

considered as an ordinary processing time of job j in the interval I,. Since o;(7) < 1, we
have Aj < 7, ~7y. At any time, the total power does not exceed M, therefore, Y A<
jeNN
M(Tr41~Ti). Hence, we can construct a schedule s € S for processing the jobs of set Ny in
the interval [; by the packing algorithm. By “concatenating” the schedules for the

intervals I, k = 1, 2,..., m, we obtain the schedule s such that T(s) <

T(sq)- Since the
running time of the packing algorithm is O(n), it takes at most O(n2) time to transform a
given schedule sq into a schedule s.

The schedule s found by the packing algorithm from the schedule s,, presented in
Fig. 6.2b, is given in Fig. 6.2c.

6.5. As follows from Section 6.4, the problem of finding a (time-) optimal schedu