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Preface

This book presents a comprehensive treatment of the analysis and design of control sys-
tems. It is written at the level of the senior engineering (mechanical, electrical, aero-
space, and chemical) student and is intended to be used as a text for the first course in
control systems. The prerequisite on the part of the reader is that he or she has had
introductory courses on differential equations, vector-matrix analysis, circuit analysis,
and mechanics. v

The main revision made in the fourth edition of the text is to present two-degrees-
of-freedom control systems to design high performance control systems such that steady-
state errors in following step, ramp, and acceleration inputs become zero. Also, newly
presented is the computational (MATLAB) approach to determine the pole-zero loca-
tions of the controller to obtain the desired transient response characteristics such that
the maximum overshoot and settling time in the step response be within the specified
values. These subjects are discussed in Chapter 10. Also, Chapter 5 (primarily transient
response analysis) and Chapter 12 (primarily pole placement and observer design) are
expanded using MATL.AB. Many new solved problems are added to these chapters so
that the reader will have a good understanding of the MATLAB approach to the analy-
sis and design of control systems. Throughout the book computational problems are
solved with MATLAB.

Thiis text is organized into 12 chapters. The outline of the book is as follows. Chapter 1
presents an introduction to control systems. Chapter 2 deals with Laplace transforms of
commonly encountered time functions and some of the useful theorems on Laplace
transforms. (If the students have an adequate background on Laplace transforms, this
chapter may be skipped.) Chapter 3 treats mathematical modeling of dynamic systems

ix



(mostly mechanical, electrical, and electronic systems) and develops transfer function
models and state-space models. This chapter also introduces signal flow graphs. Discus-
sions of a linearization technique for nonlinear mathematical models are included in
this chapter.

Chapter 4 presents mathematical modeling of fluid systems (such as liquid-level sys-
tems, pneumatic systems, and hydraulic systems) and thermal systems. Chapter 5 treats
transient response analyses of dynamic systems to step, ramp, and impulse inputs.
MATLARB is extensively used for transient response analysis. Routh’s stability criteri-
on is presented in this chapter for the stability analysis of higher order systems. Steady-
state error analysis of unity-feedback control systems is also presented in this chapter.

Chapter 6 treats the root-locus analysis of control systems. Plotting root loci with
MATLAB is discussed in detail. In this chapter root-locus analyses of positive-feedback
systems, conditionally stable systems, and systems with transport lag are included. Chap-
ter 7 presents the design of lead, lag, and lag-lead compensators with the root-locus
method. Both series and parallel compensation techniques are discussed.

Chapter 8 presents basic materials on frequency-response analysis. Bode diagrams,
polar plots, the Nyquist stability criterion, and closed-loop frequency response are dis-
cussed including the MATLAB approach to obtain frequency response plots. Chapter
9 treats the design and compensation techniques using frequency-response methods.
Specifically, the Bode diagram approach to the design of lead, lag, and lag-lead com-
pensators is discussed in detail.

Chapter 10 first deals with the basic and modified PID controls and then presents
computational (MATLAB) approach to obtain optimal choices of parameter values
of controllers to satisfy requirements on step response characteristics. Next, it presents
two-degrees-of-freedom control systems. The chapter concludes with the design of
high performance control systems that will follow a step, ramp, or acceleration input
without steady-state error. The zero-placement method is used to accomplish such
performance.

Chapter 11 presents a basic analysis of control systems in state space. Concepts of
controllability and observability are given here. This chapter discusses the transforma-
tion of system models (from transfer-function model to state-space model, and vice
versa) with MATLAB. Chapter 12 begins with the pole placement design technique,
followed by the design of state observers. Both full-order and minimum-order state ob-
servers are treated. Then, designs of type 1 servo systems are discussed in detail. In-
cluded in this chapter are the design of regulator systems with observers and design of
control systems with observers. Finally, this chapter concludes with discussions of quad-
ratic optimal regulator systems. *

In this book, the basic concepts involved are emphasized and highly mathematical
arguments are carefully avoided in the presentation of the materials. Mathematical
proofs are provided when they contribute to the understanding of the subjects pre-
sented. All the material has been organized toward a gradual development of control
theory.

Throughout the book, carefully chosen examples are presented at strategic pointsso
that the reader will have a clear understanding of the subject matter discussed. In addi-
tion, a numiber of solved problems (A-problems) are provided at the end of each chap-
ter, except Chapter 1. These solved problems constitute an integral part of the text.
Therefore, it is suggested that the reader study all these problems carefully to obtain a
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deeper understanding of the topics discussed. In addition, many problems (without so-
lutions) of various degrees of difficulty are provided (B-problems). These problems may
be used as homework or quiz purposes. An instructor using this text can obtain a com-
plete solutions manual (for B-problems) from the publisher.

Most of the materials including solved and unsolved problems presented in this book
have been class tested in senior level courses on control systems at the University of
Minnesota.

If this book is used as a text for a quarter course (with 40 lecture hours), most of the
materials in the first 10 chapters (except perhaps Chapter 4) may be covered. [The first
nine chapters cover all basic materials of control systems normally required in a first
course on control systems. Many students enjoy studying computational (MATLAB)
approach to the design of control systems presented in Chapter 10. It is recommended
that Chapter 10 be included in any control courses.] If this book is used as a text fora
semester course (with 56 lecture hours), all or a good part of the book may be covered
with flexibility in skipping certain subjects. Because of the abundance of solved prob-
lems (A-problems) that might answer many possible questions that the reader might
have, this book can also serve as a self-study book for practicing engineers who wish to
study basic control theory.

I would like to express my sincere appreciation to Professors Athimoottil V. Mathew
(Rochester Institute of Technology), Richard Gordon (University of Mississippi), Guy
Beale (George Mason University), and Donald T. Ward (Texas A & M University), who
made valuable suggestions at the early stage of the revision process, and anonymous re-
viewers who made many constructive comments. Appreciation is also due to my former
students, who solved many of the A-problems and B-problems included in this book.

Katsuhiko Ogata
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- Introduction
to Control Systems

1-1 INTRODUCTION

Automatic control has played a V1ta1 role in the advance of engineering and science. In
addition to its extreme importance in space-vehicle systems, missile-guidance systems,
robotic systems, and the like, automatic control has become an important and integral
part of modern manufacturing and industrial processes. For example, automatic control
is essential in the numerical control of machine tools in the manufacturing industries,
in the design of autopilot systems in the acrospace industries, and in the design of cars
and trucks in the automobile industries. It is also essential in such industrial operations
as controlling pressure, temperature, humidity, VlSCOSlty, and flow in the process
industries.

Since advances in the theory and practice of automatic control provide the means for
attaining optimal performance of dynamic systems, improving productivity, relieving
the drudgery of many routine repetitive manual operations, and more, most engineers
and scientists must now have a good understanding of this field.

Historical Review. The first significant work in automatic control was James Watt’s
centrifugal governor for the speed control of a steam engine in the eighteenth century.
Other significant works in the early stages of development of control theory were due
to Minorsky, Hazen, and Nyquist, among many others. In 1922, Minorsky worked on
automatic controllers for steering ships and showed how stability could be determined
from the differential equations describing the system. In 1932, Nyquist developed a rel-
atively simple procedure for determining the stability of closed-loop systems on the
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basis of open-loop response to steady-state sinusoidal inputs. In 1934, Hazen, who in-
troduced the term servomechanisms for position control systems, discussed the design
of relay servomechanisms capable of closely following a changing input.

During the decade of the 1940s, frequency-response methods (especially the Bode
diagram methods due to Bode) made it possible for engineers to design linear closed-
loop control systems that satisfied performance requirements. From the end of the 1940s
to the early 1950s, the root-locus method due to Evans was fully developed.

The frequency-response and root-locus methods, which are the core of classical con-
trol theory, lead to systems that are stable and satisfy a set of more or less arbitrary per-
formance requirements. Such systems are, in general, acceptable but not optimal in any
meaningful sense. Since the late 1950s, the emphasis in control design problems has been
shifted from the design of one of many systems that work to the design of one optimal
system in some meaningful sense.

As modern plants with many inputs and outputs become more and more complex,
the description of a modern control system requires a large number of equations. Clas-
‘sical control theory, which deals only with single-input-single-output systems, becomes
powerless for multiple-input-multiple-output systems. Since about 1960, because the
availability of digital computers made possible time-domain analysis of complex sys-
tems, modern control theory, based on time-domain analysis and synthesis using state
variables, has been developed to cope with the increased complexity of modern plants
and the stringent requirements on accuracy, weight, and cost in military, space, and in-
dustrial applications.

During the years from 1960 to 1980, optimal control of both deterministic and sto-
chastic systems, as well as adaptive and learning control of complex systems, were fully
investigated. From 1980 to the present, developments in modern control theory cen-
tered around robust control, H , control, and associated topics.

Now that digital computers have become cheaper and more compact, they are used
as integral parts of control systems. Recent applications of modern control theory include
such nonengineering systems as biological, biomedical, economic, and socioeconomic
systems.

Definitions. Before we can discuss control systems, some basic terminologies must
be defined.

Controlled Variable and Manipulated Variable. The controlled variable is
the quantity or condition that is measured and controlled. The manipulated variable
is the quantity or condition that is varied by the controller so as to affect the value of
the controlled variable. Normally, the controlled variable is the output of the system.
Control means measuring the value of the controlled variable of the system and ap-
plying the manipulated variable to the system to correct or limit deviation of the meas-
ured value from a desired value.

In studying control engineering, we need to define additional terms that are neces-
sary to describe control systems.

Plants. A plant may be a piece of equipment, perhaps just a set of machine parts.
functioning together, the purpose of which is to perform a particular operation. In this
book, we shall call any physical object to be controlled (such as a mechanical device, a
heating furnace, a chemical reactor, or a spacecraft) a plant.

Chapter 1 / Introduction to Control Systems



Processes. The Merriam-Webster Dictionary defines a process to be a natural, pro-
gressively continuing operation or development marked by a series of gradual changes
that succeed one another in a relatively fixed way and lead toward a particular result or
end; or an artificial or voluntary, progressively continuing operation that consists of a se-
ries of controlled actions or movements systematically directed toward a particular re-
sult or end. In this book we shall call any operation to be controlied a process. Examples
are chemical, economic,-and biological processes.

Systems. A system is a combination of components that act together and perform
a certain objective. A system is not limited to physical ones. The concept of the system
can be applied to abstract, dynamic phenomena such as those encountered in econom-
ics. The word system should, therefore, be interpreted to imply physical, biological, eco-
nomic, and the like, systems.

Disturbances. A disturbance is a signal that tends to adversely affect the value of
the output of a system. If a disturbance is generated within the system, it is called inter-
nal, while an external disturbance is generated outside the system and is an input.

Feedback Control. Feedback control refers to an operation that, in the presence
of disturbances, tends to reduce the difference between the output of a system and some
reference input and does so on the basis of this difference. Here only unpredictable dis-
turbances are so specified, since predictable or known disturbances can always be com-
pensated for within the system.

1-2 EXAMPLES OF CONTROL SYSTEMS

Figure 1-1
Speed control
system.

In this section we shall present several examples of control systems.

Speed Control System. The basic principle of a Watt’s speed governor for an
engine is illustrated in the schematic diagram of Figure 1-1. The amount of fuel admitted
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Figure 1-2
Temperature control
system.
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to the engine is adjusted according to the difference between the desired and the actual
engine speeds.

The sequence of actions may be stated as follows: The speed governor is adjusted such
that, at the desired speed, no pressured oil will flow into either side of the power cylin-
der. If the actual speed drops below the desired value due to disturbance, then the de-
crease in the centrifugal force of the speed governor causes the control valve to move
downward, supplying more fuel, and the speed of the engine increases until the desired
value is reached. On the other hand, if the speed of the engine increases above the de-
sired value, then the increase in the centrifugal force of the governor causes the control
valve to move upward. This decreases the supply of fuel, and the speed of the engine
decreases until the desired value is reached.

In this speed control system, the plant (controlled system) is the engine and the con-
trolled variable is the speed of the engine. The difference between the desired speed
and the actual speed is the error signal. The control signal (the amount of fuel) to be ap-
plied to the plant (engine) is the actuating signal. The external input to disturb the con-
trolled variable is the disturbance. An unexpected change in the load is a disturbance.

Temperature Control System. Figure 1-2 shows a schematic diagram of tem-
perature control of an electric furnace. The temperature in the electric furnace is meas-
ured by a thermometer, which is an analog device. The analog temperature is converted
to a digital temperature by an A/D converter. The digital temperature is fed to a con-
troller through an interface. This digital temperature is compared with the programmed
input temperature, and if there is any discrepancy (error), the controller sends out a sig-
nal to the heater, through an interface, amplifier, and relay, to bring the furnace tem-
perature to a desired value.

Consider the temperature control of the passenger compartment of a car. The desired temperature
(converted to a voltage) is the input to the controller. The actual temperature of the passenger
compartment must be converted to a voltage through a sensor and fed back to the controller for
comparison with the input.

Figure 1-3 is a functional block diagram of temperature control of the passenger compartment
of a car. Note that the ambient temperature and radiation heat transfer from the sun, which are
not constant while the car is driven, act as disturbances.

Chapter 1 / Introduction to Control Systems



Figure i-3
Temperature control
of passenger
compartment

of a car.

Ambient
Sun temperature

Sensor e P\

Radiation |

heat sensor

Y \ 1 ‘ Passenger
Desired compartment
temperature Heater or Passenger temperature

—————| Controller air > com artrgn ot -
(Input) conditioner partme (Output)
1\
Sensor -

The temperature of the passenger compartment differs considerably depending on the place
where it is measured. Instead of using multiple sensors for temperature measurement and
averaging the measured values, it is economical to install a small suction blower at the place where
passengers normally sense the temperature. The temperature of the air from the suction blower
is an indication of the passenger compartment temperature and is considered the output of the
system.

The controller receives the input signal, output signal, and signals from sensors from
disturbance sources. The controller sends out an optimal control signal to the air conditioner or
heater to control the amount of cooling air or warm air so that the passenger compartment
temperature is about the desired temperature.

Business Systems. A business system may consist of many groups. Each task
assigned to a group will represent a dynamic element of the system. Feedback methods
of reporting the accomplishments of each group must be established in such a system for
proper operation. The cross-coupling between functional groups must be made a mini-
mum in order to reduce undesirable delay times in the system. The smaller this cross-
coupling, the smoother the flow of work signals and materials will be.

A business system is a closed-loop system. A good design will reduce the manageri-
al control required. Note that disturbances in this system are the lack of personnel or ma-
terials, interruption of communication, human errors, and the like.

The establishment of a well-founded estimating system based on statistics is manda-
tory to proper management. Note that it is a well-known fact that the performance of
such a system can be improved by the use of lead time, or anticipation.

To apply control theory to improve the performance of such a system, we must rep-
resent the dynamic characteristic of the component groups of the system by a relative-
ly simple set of equations. ’ o

Although it is certainly a difficult problem to derive mathematical representations
of the component groups, the application of optimization techniques to business sys-
tems significantly improves the performance of the business system.

Section 1-2 / Examples of Control Systems 5
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Block diagram of an engineering organizational system.

EXAMPLE 1-2

An engineering organizational system is composed of major groups such as management, research
and developinent, preliminary design, experiments, product design and drafting, fabrication and
assembling, and testing. These groups are interconnected to make up the whole operation.

Such a system may be analyzed by reducing it to the most elementary set of components
necessary that can provide the analytical detail required and by representing the dynamic char-
acteristics of éach component by a set of simple equations. (The dynamic performance of such a
system may be detetmined from the relation between progressive accomplishment and time.)
Draw a functional block diagram showing an engineering organizational system.

A functional block diagram can be drawn by using blocks to represent the functional activi-
ties and interconnecting signal lines to represent the information or product output of the system
operation. A possible block diagram is shown in Figure 1-4.

1-3 CLOSED-LOOP CONTROL VERSUS OPEN-LOOP CONTROL

Feedback Control Systems. A system that maintains a prescribed relationship
between the output and the reference input by comparing them and using the difference
as a means of control is called a feedback control system. An example would be a room-
temperature control system. By measuring the actual room temperature and comparing
it with the reference temperature (desired temperature), the thermostat turns the heat-
ing or cooling equipment on or off in such a way as to ensure that the room tempera-
ture remains at a comfortable level regardless of outside conditions.

Feedback control systems are not limited to engineering but can be found in various
nonengineering fields as well. The human body, for instance, is a highly advanced feed-
back control system. Both body temperature and blood pressure are kept constant by
means of physiological feedback. In fact, feedback performs a vital function: It makes
the human body relatively irisensitive to external dlsturbances thus enabling it to func-
tiont properly in a changing environment.

Closed-Loop Contr'ol SyStems. Feedback control systems-are often referred to
as closed-loop contral systems. In practice, the terms feedback control and closed-loop
control are used interchangeably. In a closed-loop control system the actuating error
signal, which is the difference between the input signal and the feedback signal (which
may be the output signal itself or a function of the output signal and its derivatives
and/or integrals), is fed to the controller so as to reduce the error and bring the output
of the system to a desired value. The term closed-loop control always implies the use of
feedback control action in ordér to reduce system error.

Open-Loop Control Systems. Those systems in which the output has no effect
on the control action are called open-loop control systems. In other words, in an open-
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EXAMPLE 1-3

loop control system the output is neither measured nor fed back for comparison with the
input. One practical example is a washing machine. Soaking, washing, and rinsing in the
washer operate on a time basis. The machine does not measure the output signal, that
is, the cleanliness of the clothes.

In any open-loop control system the output is not compared with the reference input.
Thus, to each reference input there corresponds a fixed operating condition; as a result,
the accuracy of the system depends on calibration. In the presence of disturbances, an
open-loop control system will not perform the desired task. Open-loop control can be
used, in practice, only if the relationship between the input and output is known and if
there are neither internal nor external disturbances. Clearly, such systems are not feed-
back control systems. Note that any control system that operatées on a time basis is open
loop. For instance, traffic control by means of signals operated on a time basis is another
example.of open-loop control. '

Closed-Loop versus Open-Loop Control Systems. - An advantage of the closed-
loop control system is the fact that the use of feedback makes the system response rel-

" atively insensitive to external disturbances and internal variations in system parameters.

It is thus possible to use relatively inaccurate and inexpensive components to obtain
the accurate control of a given plant, whereas doing so is impossible in the open-loop
case. ‘

From the point of view of stability, the open-loop control system is easier to build be-
cause system stability is not a major problem. On the other hand, stability is a major
problem in the closed-loop control system, which may tend to overcorrect errors and
thereby can cause oscillations of constant or changing amplitude.

It should be emphasized that for systems in which the inputs are known ahead of time
and in which there are no disturbances it is advisable to use open-loop control. Closed-
loop control systems have advantages only when unpredictable disturbances and/or un-
predictable variations in system components are present. Note that the output power
rating partially determines the cost, weight, and size of a control system. The number of
components used in a closed-loop control system is more than that for a corresponding

_ open-loop control system. Thus, the closed-loop control system is generally higher in

cost and power. To decrease the required power of a system, open-loop control may be
used where applicable. A proper combination of open-loop and closed-loop controls is
usually less expensive and will give satisfactory overall system performance.

Most analyses and designs of control systems presented in this book are concerned with closed-
loop control systems. Under certain circumstances (such as where no disturbances exist or the
output is hard to measure) open-loop control systems may be desired. Therefore, it is worthwhile
to summarize the advantages and disadvantages of using open-loop control systems.

The major advantages of open-loop control systems are as follows:

1. Simple construction and ease of maintenance.
2. Less expensive than a corresponding closed-loop system.
3. There is no stability problem.

4. Convenient when output is hard to measure or measuring the output precisely is economi- ‘
cally not feasible. (For example, in the washer system, it would be quite expensive to provide
a device to measure the quality of the washer’s output, cleanliness of the clothes.)

Section 1-3 / Closed-Loop Control versus Open-Loop Control . - o 7



The major disadvantages of open-loop control systems are as follows:

1. Disturbances and changes in calibration cause errors, and the output may be different from
what is desired.

2. To maintain the required quality in the output, recalibration is necessary from time to time,

1-4 OUTLINE OF THE BOOK

We briefly describe here the organization and contents of the book.

Chapter 1 has given introductory materials on control systems. Chapter 2 presents
basic Laplace transform theory necessary for understanding the control theory pre-
sented in this book. Chapter 3 deals with mathematical modeling of dynamic systems in
terms of transfer functions and state-space equations. It discusses mathematical model-
ing of mechanical systems and electrical and electronic systems. This chapter also in-
cludes the signal flow graphs and linearization of nonlinear mathematical models.
Chapter 4 treats mathematical modeling of liquid-level systems, pneumatic systems, hy-
draulic systems, and thermal systems. Chapter 5 treats transient-response analyses of
first-.and second-order systems as well as higher-order systems. Detailed discussions of
transient-response analysis with MATLAB are presented. Routh’s stability criterion
and steady-state errors in unity-feedback control systems are also presented in this
chapter.

Chapter 6 gives a root-locus analysis of control systems. General rules for constructing
root loci are presented. Detailed discussions for plotting root loci with MATLAB are in-
cluded. Chapter 7 deals with the design of control systems via the root-locus method.
Specifically, root-locus approaches to the design of lead compensators, lag compensators,
and lag-lead compensators are discussed in detail. Chapter 8 gives the frequency-
response analysis of control systems. Bode diagrams, polar plots, Nyquist stability crite-
rion, and closed-loop frequency response are discussed. Chapter 9 treats control systems
design via the frequency-response approach. Here Bode diagrams are used to design
lead compensators, lag compensators, and lag-lead compensators. Chapter 10 discusses
the basic and modified PID controls. In this chapter two-degrees-of-freedom control
systems are introduced. We design high-performance control systems using two-degrees-
of-freedom configuration. MATLAB is extensively used in the design of such systems.

Chapter 11 presents basic materials for the state-space analysis of control systems.
The solution of the time-invariant state equation is derived and concepts of controlia-
bility and observability are discussed. Chapter 12 treats the design of control systems in
state space. This chapter begins with the pole-placement problems, followed by the de-
sign of state observers, and the design of regulator systems with observers and control
systems with observers. Finally, quadratic optimal control is discussed.

8 Chapter 1 / Introduction to Control Systems



The Laplace Transform*

2-1 INTRODUCTION

The Laplace transform method is an operational method that can be used advanta-
geously for solving linear differential equations. By use of Laplace transforms, we can
convert many common functions, such as sinusoidal functions, damped sinusoidal func-
tions, and exponential functions, into algebraic functions of a complex variable s. Op--
erations such as differentiation and integration can be replaced by algebraic operations
in the complex plane. Thus, a linear differential equation can be transformed into an al-
gebraic equation in a complex variable s. If the algebraic equation in s is solved for the
dependent variable, then the solution of the differential equation (the inverse Laplace
transform of the dependent variable) may be found by use of a Laplace transform table
or by use of the partial-fraction expansion technique, which is presented in Section 2-53
and 2-6.

An advantage of the Laplace transform method is that it allows the use of graphical
techniques for predicting the system performance without actually solving system dif-
ferential equations. Another advantage of the Laplace transform method is that, when
we solve the differential equation, both the transient component and steady-state com-
ponent of the solution can be obtained simultaneously.

Outline of the Cﬁapter. Section 2-1 presents introductory remarks. Section 2-2
briefly reviews complex variables and complex functions. Section 2-3 derives Laplace

*This chapter may be skipped if the student is already familiar with Laplace transforms.



transforms of time functions that are frequently used in control engineering. Section
2-4 presents useful theorems of Laplace transforms, and Section 2-5 treats the inverse
Laplace transformation using the partial-fraction expansion of B(s)/A(s), where A(s)
and B(s) are polynomials in s. Section 26 presents computational methods with MAT-
LAB to obtain the partial-fraction expansion of B(s)/A(s), as well as the zeros and
poles of B(s)/A(s). Finally, Section 2-7 deals with solutions of linear time-invariant dif-
ferential equations by the Laplace transform approach.

2-2 REVIEW OF COMPLEX VARIABLES

10

--an imaginary part or

AND COMPLEX FUNCTIONS

Before we present the Laplace transformation, we shall review the complex variable
and complex function. We shall also review Euler’s theorem, which relates the sinu-
soidal functions to exponential functions.

Complex Variable. A complex number has a real part and an imaginary part, both
of which are constant. If the real part and/or imaginary part are variables,'a complex
quantity is called a complex variable. In the Laplace transformatmn we use the notatxon
5 as a complex variable; that is,

s=0 + jo

where o is the real part and w is the imaginary part.’

Complex Function. A complex function G(s), a function of s, has a real part and

G(s) = G, + jG,
where G, and G, are real quantities. The magnitude of G(s) is VG% + G2, and the

. angle 0 of G(s) is tan_l(G /G,). The angle is measured counterclockwise from the pos-
. itive real axis. The complex conjugate of G(s)is G(s) = G, - jG,.

Complex functions commonly éncountered in linear control systems analysis are -
single-valued functions of s and are uniquely determined for a given value of s.

A complex function G(s) is said to be analytic in_a region if G(s) and all its deriva-
tives exist in that region. The derivative of an analytic function G(s) is given by

G(s + As) - G(s) i AG
As - Aslglo As

L
ZEG(S) o Alsl§0

-Since As = Ao + jAw, As can approach zero along an infinite number of different

paths. It can be shown, but is stated without a proof here, that if the derivatives taken
along two particular paths, that is, As = Ao and As = jAw, are equal, then the deriva-
tive is unique for any other path As = Ao + jAw and so the derivative exists.

For a particular path As = Ao (Wthh means that the path is parallel to the real
axis). :

iG . (AG+ AG) an ﬁ
s (s) = Jlim Ay ]AU = +

do .
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For another particular path As = jAw (which means that the path is para]le] to the
imaginary axis).

. . AG, . 9G, - AG,
L6 = fim (S i) =i
If these two values of the derivative are equal,
96, | oG, oG, 3G,

0w Jw

e % =0
or if the following two conditions
3G, 90, G, 0G,
=— and —
oleg Jw oo ow

are satisfied, then the derivative dG (s)/ ds is uniquiely determined. These two conditions
are known as the Cauchy-Riemann conditions. If these conditions are satisfied, the func-
tion G(s) is analytic.

As an example, consider the following G(s):

1

G(s) = s+ 1
Then
+ jw) = ————" =G, +
G((.T jo) = o+ jo+ 1 Gr + 16y
where
o+1 ~w
- — - G _—
G (o0 + 1% + o? and Yoo+ 1)+ @

It can be seen that, except at s = —1 (that is, o = =1, @ = 0), G(s) satisfies the
Cauchy-Riemann conditions:

G,  9G, w* — (o + 1)

0w  [(0+ 1) + o]

3G, G, 2w(o +1)

00 oo [(c +1)* + o]

Hence G(s) = 1/(s + 1) is analytic in the entire s plane except at s = —1. The deriva-
tive dG (s)/ ds, except at s = 1,is found to be

d oG, . 0G, G,  aG,
—G()— ]wg;_aw—]dw
_ 1 _ 1

(0 + jo + 1) (s +1)2

Note that the derivative of an analytic function can be obtained simply by differentiat-
ing G(s) with respect to s. In this example,

i( ! )z___l_
ds\s +1 (s +1)?
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Points in the s plane at which the function G(s) is analytic are called ordinary points,
while points in the s plane at which the function G(s) is not analytic are called singular
points. Singular points at which the function G(s) or its derivatives approach infinity
are called poles. Singular points at which the function G(s) equals zero are called zeros.

If G(s) approaches infinity as s approaches —p and if the function

G(s)(s + p)", forn =1,2,3,...

has a finite, nonzero value at s = —p,then s = —piscalled apole of order n. If n = i,
the pole is called a simple pole. If n = 2,3,..., the pole is called a second-order pole, a

third-order pole, and so on.
To illustrate, consider the complex function

K(s + 2)(s + 10)
s(s + 1)(s + 5)(s + 15)?

G(s) =

G(s) has zerosats = —2, s = —10,simple polesats = 0,s = —1, s = —5,and a double
pole (multiple pole of order 2) at s = —15. Note that G{s) becomes zero ats = oo, Since
for large values of s

G(s) possesses a triple zero (multiple zero of order 3) at s = oo. If points at infinity are
included, G(s) has the same number of poles as zeros. To summarize, G(s) has five zeros
(s =-2,5 =-10, s =00, s = 00, § = oco0) and five poles (s =0, s = ~1, s = =5,
s = —15,5 = —15).

Euler’s Theorem. The power series expansions of cosf and sin 8 are, respectively,

# o ¢

c059=1—5+5——6—?+~--

. 0 o o

s1n0—9—§+§_%+
And so

o e . (i6y* | 8y . (jo)
cos® + jsin® =1 + (j§) + o + 3 + o + .
Since
2 3

e'=1+x+~2T+§+

we see that
cosf + jsinh = e (2-1)

This is known as Euler’s theoren.
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By using Euler’s theorem, we can express sine and cosine in terms of an exponen-
tial function. Noting that ¢ is the complex conjugate of ¢ and that
e’ = cos® + jsind
e’ = cosf — jsing

we find, after adding or subtracting these two equations, that

(e? + e77) (2-2) |

cosf =

[= g

sin@ = — (e — &™) (2-3)

&

2-3 LAPLACE TRANSFORMATION

We shall first present a definition of the Laplace transformation and a brief discussion
of the condition for the existence of the Laplace transform and then provide examples
for illustrating the derivation of Laplace transforms of several common functions,

Let us define :

i

\ £()

a function of time ¢ such that f(¢) = Ofort <0

s = a complex variable

£ = an operational symbol indicating that the quantity that it prefixes is to
be transformed by the Laplace integral e dt

F(s) = Laplace transform of f(t)

Then the Laplace transform of f(¢) is given by

7o) = £ = [“erailsw] = [rwetar

The reverse process of finding the time function f(¢) from the Laplace transform F(s)
is called the inverse Laplace transformation. The notation for the inverse Laplace trans-
formation is £, and the inverse Laplace transform can be found from F(s) by the fol-
lowing inversion integral:

FUF(s)] = F(1) L ‘/HjooF(s)e“ ds, fort>0 (2-4)

c—joo

where ¢, the abscissa of convergence, is a real constant and is chosen larger than the real
parts of all singular points of F{s).Thus, the path of integration is parallel to the jo axis
and is displaced by the amount ¢ from it. This path of integration is to the right of all sin-
gular points.

Evaluating the inversion integral appears complicated. In practice, we seldom use this
integral for finding f(¢). There are simpler methods for finding f(¢). We shall discuss
such simpler methods in Sections 2-5 and 2-6.

It is noted that in this book the time function f(¢) is always assumed to be zero for
negative time; that is, .

f(t) =0, fort <0

Section 2-3 / Laplace Transformation 13
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Existence of Laplace Transform. The Laplace transform of a function f(¢) ex-
ists if the Laplace integral converges. The integral will converge if f(¢) is sectionally con-
tinuous in every finite interval in the range ¢ > 0 and if it is of exponential order as ¢
approaches infinity. A function f(¢) is said to be of exponential order if a real, positive
constant o exists such that the function

aslio]

approaches zero as t approaches infinity. If the limit of the function e %|f(¢)| approaches
zero for o greater than o, and the limit approaches infinity for o less than o, the value
o is called the abscissa of convergence.
For the function f(t) = Ae™
lim €™ Ae™|
t—00
approaches zero if o > —a. The abscissa of convergence in this case is ¢, = —a.The in-
tegral f0°°f (t)e™ dt converges only if o, the real part of s, is greater than the abscissa of
convergence o.. Thus the operator s must be chosen as a constant such that this integral
converges.
In terms of the poles of the function F(s), the abscissa of convergence o, corre-
sponds to the real part of the pole located farthest to the right in the s plane. For example,

_ for the following function F(s),

_ K(s+3)
F(s) = (s + 1)(s +2)

the abscissa of convergence o, is equal to —1. It can be seen that for such functions as ¢,
sinwt, and ¢ sinwt the abscissa of convergence is equal to zero. For functions like
e, te™, e™ sinwt, and so on, the abscissa of convergence is equal —c. For functions
that increase faster than the exponential function, however, it is impossible to find suit-
able values of the abcissa of convergence. Therefore, such functions as ¢ and re” do not
possess Laplace transforms.

The reader should be cautioned that although e’ (for 0 < ¢ < o0) does not possess

- a Laplace transform, the time function defined by

fiy=¢€, for0=t<T<oo
= 0, fort <0, T <t
does possess a Laplace transform since f(t) = e for only a limited time interval
0 =t = T andnotfor 0 = ¢ = co.Such a signal can be physically generated. Note that the
signals that we can physically generate always have corresponding Laplace transforms.
If a function f(¢) has a Laplace transform, then the Laplace transform of Af(t),
where A is a constant, is given by

“laf(@)] = AL[f(1)]

This is obvious from the definition of the Laplace transform. Since Laplace transforma-
tion is a linear operation, if functions f;(¢) and f,(¢) have Laplace transforms, F;(s) and
Fi(s), respectively, then the Laplace transform of the function afi(t) + Bf,(t) is given by

Llafi(t) + Bfat)] = aFi(s) + BEy(s)

In what follows, we derive Laplace transforms of a few commonly encountered functions.
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Exponential Function. Consider the exponential function
flt)y =0, fort <0
= Ae™, fort=0

where A and « are constants. The Laplace transform of this exponential functlon can be
obtained as follows:

F[Ae] = / Ae™e™dt = A / eati gy =
’ 0 (¥] )

It is seen that the exponential function produces a pole in the complex plane.

In deriving the Laplace transform of f(z) = Ae™, we required that the real part
of s be greater than —a (the abscissa of convergence). A question may immediately
arise as to whether or not the Laplace transform thus obtained is valid in the range
where o < —ea in the s plane. To answer this question, we must resort to the theory
of complex variables. In the theory of complex variables, there is a theorem known
as the analytic extension theorem. It states that, if two analytic functions are equal for
a finite length along any arc in a region in which both are analytic, then they are
equal everywhere in the region. The arc of equality is usually the real axis or a por-
tion of it: By using this theorem the form of F(s) determined by an integration in
which s is allowed to have any real positive value greater than the abscissa of con-
vergence holds for any complex values of s at.which F(s) is analytic. Thus, although
we require the real part of s to be greater than the abscissa of convergence to make
- the integral j(')°°f t)e™ dt absolutely convergent, once the Laplace transform F(s) is
obtained, F(s) can be considered valid throughout the entire s plane except at the
‘poles of F(s).

A
s+ o

Step Function. Consider the step function
f@) =0, fort'< 0
= A, fort >0

where A is a constant. Note that it is a special case of the exponential function Ae™,
where a = 0. The step function is undefined at ¢ = 0. Its Laplace transform is given by

L[A] = A Aesdt =2

" In performing this integration, we assumed that the real part of s was greater than zero
(the abscissa of convergence) and therefore that hm e~ was zero. As stated earlier, the
Laplace transform thus obtained is valid in the entlre s plane except at the pole s = 0.

The step function whose helght is unity is called unit-step function. The unit-step
function that occurs at ¢ = ¢, is frequently written as 1(¢ — ¢,). The step function of

- height A that occurs at 1 = 0 can then be written as f () = Al(t). The Laplace trans-
form of the unit-step function, which is defined by

1(t) = 0, fort <0
' =1, fort > 0"

Section 2-3 / Laplace Transformation. 15
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is 1/s,0r
1
Ln] =<
Physically, a step function occurring at t = 0 corresponds to a constant signal suddenly
applied to the system at time ¢ equals zero.

Ramp Function. Consider the ramp function
f@) =0, fort <0
= At, fort =0
where A is a constant. The Laplace transform of this ramp function is obtained as

[ee] 0 Ae_St
[y
0 0 -s

st

L[A] = / Ate™ dt = At
0

A [= A
A [ gt

Sinusoidal Function. The Laplace transform of the sinusoidal function
f() =0, fort <0

= Asinwt, fort=0

)

where A and o are constants, is obtained as follows. Referring to Equation (2-3), sin wt
can be written

1, A
sinwt = 7(e/wt - e—/wt)
Hence
: A [~ o
ig[A smwt] = ——/ (elwl — e /wt)e sty
2j Jo

A 1 A 1 Aw

=2_js—-jw_2—js+jw_sz+w2
Similarly, the Laplace transform of A cos wt can be derived as follows:

As

F[Acoswt] = — 7
s+ w

Comments. The Laplace transform of any Laplace transformable function f(¢) can
be found by multiplying f(¢) by ¢ and then integrating the product from ¢ = 0 to
t = oco. Once we know the method of obtaining the Laplace transform, however, it is
not necessary to derive the Laplace transform of f(¢) each time. Laplace transform ta-
bles can conveniently be used to find the transform of a given function f(¢). Table 2-1
shows Laplace transforms of time functions that will frequently appear in linear control

systems analysis.
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Table 2-1 Laplace Transform Pairs

f(0) F(s)
1 Unit impulse 8(¢) 1
. 1
2 Unit step 1(¢) P
3 z .
=
tn—l 1
2, k4 T
4 TEEY (n=1,23,..) -
. n!
5 t (n=1,2,3,..) s+
1
—at
6 ¢ s+a
7 te™™ !
(s + a)?
1 1
—— "l =12,3,...
8 m-1n" ¢ (n=123..) s +a)
n!
e =1,2,3, ...
9 . e (n [ ) (S + a)rH-l
. «
10 sin ot
e st + w?
: s
11 cos wt ER
12 sinh wr = -
13 coshwt I _S e
1, ot 1
14 a (t=e) s(s + a)
1 1
15 ~at __. bt
b—a(e ) (s +a)s+b)
16 1 (be™ — ae™) S S—
. b—a (s + a)(s +b)
;! 1 1
17 — 1+ ———(be™ — -1"] e
ab[ a—b(e ae™) s(s + a)(s + b)
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Table 2-1  (continued)

1
18 _2(1 —- e—nt . ate—-al) 1
a s(s + a)?
1 1
19 —(at —1+e* _—
a’ ( ) sX (s + a)
20 e “sinwt _—
(s + a)* + o*
+
21 e coswt —Lza—
(s +a)?+ o?
W, . wg,
2 eisinw, V1 — 2t (0<<1)

s+ 2w,s + o

- —————11—§2 et sin(w, V1 — 2t — ¢)
» ¢ = tan™ viz¢& 5
{

0<¢ <1, 0'<¢<7r/2)

s
2+ 2w, +

1- —-——1_%__52 et sin(w, V1 — 2t + )

A Vi-g

¢ = tan™!

o

s(s? + 2fw,s + «?)

4
0<¢<l, 0<¢<m/2)
: 2
. @
25 1~ ¢
cosw s(s? + o?)
. 3
. [
26 wt — sinwt sz(sz " wz)
3
27 sinwt — wt coswt 20 5
(52 + %)
1 . s
28 EYN t sin wt (s2 N wz)z
o §2 — o
29 . tcoswt P u—
© (Sz + w2)2
) s
% W — w} (cos ot oo wzt) (w% - w%) (sz + w’f’)(sz + w%)
31 1 (s ¢ + wt coswt) ——sz——
o (sinwt + wt cosw 7+ wz)z
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Figure 2-1
Function f(2)1(¢)
and translated
function:

@t — o)1t - a).

In the following discussion we present Laplace transforms of functions as well as the-
orems on the Laplace transformation that are useful in the study of linear control systems.

Translated Function. Let us obtain the Laplace transform of the translated func-
tion f(t — a)1(t — @), where @ = 0. This function is zero for ¢ < «. The functions
f(6)1(¢) and f(t — @)1(t — «) are shown in Figure 2-1.

By definition, the Laplace transform of f( — a)1(r — a) is

Llft — )1t — )] = Awf(t - a)l{t — a)e™ dt

By changing the independent variable from 7 to 7, where 7 = ¢ ~ «, we obtain

/Ooof(t - a)l(t — a)e™dt = [wf(T)l(T)e"S(T+a) dr

Since in this book we always assume that f(¢) = Ofor¢ < 0, f(r)1(r) = O for r < 0.
Hence we can change the lower limit of integration from —a to 0. Thus

. [mf(T)l(T)e_S(T+a) dr = Aw¢(7)1(7)e—s(7+a) dr

- [Tt ar
0
= e“"/ f(r)e™ dr = e*F(s)
0
Where .

F(s) = 2[7(1)] = / "y dr

And so

LIf(t — a)1(t — a)] = e™F(s), fora a 0

This last equation states that the translation of the time function f(¢)1(¢) by « (where
a = 0) corresponds to the multiplication of the transform F(s) by ™.

010 fe-a 10-a)
3

o~

0 ' t 0  a t
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Pulse Function. Consider the pulse function

)
¢

A
f() = P for0 <t <t
o

=0 fort < 0,1, <t

?

Lol (£

/

I

where A and ¢, are constants.

The pulse function here may be considered a step function of height A /¢, that begins
0 and that is superimposed by a negative step function of height A/, beginning
Iy; that is,

att
att

i

f(t) = %1(0 - t—fl(r = 1)

Then the Laplace transform of f(¢) is obtained as

L)) = 52[’%1(:)} - gg[—?— 1t — to)]

0

A A
[0S tos
A

=— (] — ™ 2-5
s (l e ) . (2-5)

Impulse Function. The impulse function is a special limiting case of the pulse
function. Consider the impulse function

A
g(t) = lim —, for0 < r <ty
ty—0 [0

=0, fort < 0,ty <t

Since the height of the impulse function is A /¢, and the duration is ¢y, the area under the
impulse is equal to A. As the duration #, approaches zero, the height A/f, approaches
infinity, but the area under the impulse remains equal to A. Note that the magnitude of
the impulse is measured by its area.

Referring to Equation (2-5), the Laplace transform of this impulse function is shown
to be

. A _
“a0)) = tim| 21— )|
i — o8t
m (At —e™)]
= lim =-—=A
to—0 d Ky

Thus the Laplace transform of the impulse function is equal to the area under the
impulse.
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The impulse function whose area is equal to unity is called the unit-impulse function
or the Dirac delta function. The unit-impulse function occurring at ¢ = f, is usually de-
noted by 8(¢ — #,). 8(t — t,) satisfies the following:

8t — 1) = 0, fort # 1,

8t — 1) =0, fort=1

foa(z — ty)dt =1

00

It should be mentioned that an impulse that has an infinite magnitude and zero
duration is mathematical fiction and does not occur in physical systems. If, however,
the magnitude of a pulse input to a system is very large and its duration is very short
compared to the system time constants, then we can approximate the pulse input by
an impulse function. For instance, if a force or torque input f(¢) is applied to a sys-
tem for a very short time duration, 0 < t < f,, where the magnitude of f(¢) is suffi-
ciently large so that the integral ﬂ)"f (#)dt is not negligible, then this input can be
considered an impulse input. (Note that when we describe the impulse input the area
or magnitude of the impulse is most important, but the exact shape of the impulse is
usually immaterial.) The impulse input supplies energy to the system in an infinites-
imal time.

The concept of the impulse function is quite useful in differentiating discontinuous
functions. The unit-impulse function 8(¢ — ,) can be considered the derivative of the

“tmit-step function 1(¢ — #,) at the point of discontinuity ¢ = , or

8t —t) = %10 )

Conversely, if the unit-impulse function 8(¢ — t,) is integrated, the result is the unit-step
function 1(¢ — ). With the concept of the impulse function we can differentiate a func-
tion containing discontinuities, giving impulses, the magnitudes of which are equal to
the magnitude of each corresponding discontinuity.

Multiplication of f(t) by e™*. If f(¢) is Laplace transformable, its Laplace trans-
form being F(s), then the Laplace transform of e *f(¢) is obtained as

Sﬁ[e_“’f(t)] = /Oooe““’f(t)e”s’ dt = F(s + a) ‘ (2-6)

We see that the multiplication of f(¢) by e * has the effect of replacing s by (s + «a) in
the Laplace transform. Conversely, changing s to (s + a) is equivalent to multiplying ()
by e . (Note that @ may be real or complex.)

The relationship given by Equation (2—-6) is useful in finding the Laplace transforms
of such functions as ¢ * sin wt and e™* cos wt. For instance, since

® s
i F(s), Slcosw] = e

| Esinwt] = = G(s)
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sin wt and e cos wt

ol

it follows from Equation (2-6) that the Laplace transforms of e

. are given, respectively, by

-] . —_ — @
Hewsinor] = F(s + o) =
. _ s+ a
e coswr] = Gls + @) = T

Change of Time Scale. In analyzing physical systems, it is sometimes desirable
to change the time scale or normalize a given time function. The result obtained in terms
of normalized time is useful because it can be applied directly to different systems hav-
ing similar mathematical equations. ' '

If ¢ is changed into ¢/, where a is a positive constant, then the function f(¢) is

changed into f(¢/a). If we denote the Laplace transform of f(¢) by F(s), then the
Laplace transform of f(¢/«) may be obtained as follows: ’

2)]- [

Letting t/a = t, and as = s;, we obtain

sg[ f<é>] _ /0 *F(t ) d{a,)

or
)] -
As an example, consider f(t) = e™ and f(¢/5) = e %% We obtain
9(0)] = 2] = F(8) =5
Hence

if[f(éﬂ = g[e*] = 5F(5s) = 5S5+ :

This result can be verified easily by taking the Laplace transform of e~ directly as fol-
lows: '
1 5

02t -
e = T 0m T 5 1 1

Comments on the Lower Limit of the Laplace Integral. In some cases, f(®)
possesses an impulse function at ¢ = 0.Then the lower limit of the Laplace integral must
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be clearly specified as to whether it is 0— or 0+, since the Laplace transforms of f(t) dif-
fer for these two lower limits. If such a distinction of the lower limit of the Laplace
integral is necessary, we use the notations

LF(0)] = A "f()e ar
[F0)] = L “Hoe de = L] + A F()e dr

If f(¢) involves an impulse function at ¢ = 0,then
EJF ()] # £[f(1)]
since
o+
/ f()e™dt # 0
0~

for such a case. Obviously, if f(#) does not possess an impulse function at ¢ = 0 (that is,
if the function to be transformed is finite between t = 0— and t = 0+), then

£[f(0)] = 2]

2-4 LAPLACE TRANSFORM THEOREMS

Figure 2-2

Step function and
sine function
indicating initial
values at ¢t = 0— and
t = 0+

This section presents several theorems on Laplace transformatlon that are important in
control engineering.

Real Differentiation Theorem. The Laplace transform of the derivative of a func-
tion f(¢) is given by

24 10| = s7s) - 70) )

where f(0) is the initial value. of f(¢) evaluated at ¢t = 0. [Here we assumed
£(0-) = £(0+) = £(0).]

For a given function f(¢), the values of f(0+) and f(0—) may be the same or differ-
ent, as illustrated in Figure 2-2. The distinction between f(0+) and f(0~) is important

B{UNY f®
FO+)
f0-) f0-) f0+)
\«J. . /
0 t 0 t
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when f(¢) has a discontinuity at ¢ = 0 because in such a case df (¢)/dt will involve an im-'
pulse function at ¢ = 0.If f(0+) # f(0-), Equation (2-7) must be modified to

2| 10| =7 - £00)

gg[% fm} = $F(s) - £(0-)

To prove the real differentiation theorem, Equation (2-7), we proceed as follows. In-
tegrating the Laplace integral by parts gives '
[o5] e8] d e—st
0 /0 [dl‘ f(t)}—s a

[ rwear= s
1), li{%f(t)}

e-—st
-5

Hence

F(s) = 5 P

It follows that
2L 10| = s¥(5) - 50
Similarly, we obtain the following relationship for the second derivative of f(¢):
o 50| = 27 - 570 - 70O
where f(0) is the value of df (¢)/ dt evaluated at r = 0. To derive this equation, define

-% ft) = g(r)
Then
0]l ] st 50

= 52270 -}
= #F(s) - 37(0) = (0)

Similarly, for the nth derivative of f(r), we obtain
(n=2) (n=1)

o & F) | = () = 5775(0) = 72 0) =+ = 5FD) - 5FO)
n—1

where £(0), £(0), ... ,(f((>)) represent the values of f(¢),df (t)/ dt, ..., " f(r)/ dr" ™,
respectively, evaluated at r = 0.If the distinction between £, and F_is necessary, we sub-
stitute t = 0+ ort = O—into f(¢),df (¢)/ dt, ...,d""'f(¢)/ dt"~",depending on whether
we take £, or £_.

Note that, in order for Laplace transforms of derivatives of f (1) to exist,
df(t)/ dt* (n = 1,2,3,...) must be Laplace transformable.
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EXAMPLE 2-1

Note also that, if all the initial values of f(¢) and its derivatives are equal to zero, then
the Laplace transform of the nth derivative of f(¢) is given by s"F(s).

Consider the cosine function: /
g(t) =0, fort < 0

COs i, fort =0

The Laplace transform of this cosine function can be obtained directly as in the case of the sinu-

' soidal functlon considered earlier. The use of the real differentiation theorem, however, will be

demonstrated; here by deriving the Laplace transform of the cosine function from the Laplace
transform of the sine function. If we define

fioy=0, fort <0
= sinwf, fort =0
then
. w
Slsinwt] = F(s) = 7

The Laplace transform of the cosine function is obtained as

Pcoswt] = 33[}— (;%smwt)} = —i:[sF(s) - £(0)]

__1_|: Sw O]— s
ol s* + o P+ o

Final-Value Theorem. The final-value theorem relates the steady-state behavior
of f(t) to the behavior of sF(s) in the neighborhood of s = 0. This theorem, however,

- applies if and only if hm f (t) exists [which means that f(¢) settles down to a definite

value for ¢ — oo]. If all- poles of sF(s) lie in the left half s plane, [li)rpo f(¢) exists. But if
sF(s) has poles on the imaginary axis or in the right half s plane, f(¢) will contain os-
cillating or exponentially increasing time functions, respectively, and tli)nolo f(¢) will not
exist. The final-value theorem does not apply to such cases. For instance, if f(¢) is the si-
nusoidal function sin wt, sF(s) has poles at s = +jw and hm f () does not exist. There-
fore, this theorem is not applicable to such a function.

The final-value theorem may be stated as follows. If f(¢) and df (¢)/ dt are Laplace
transformable, if F(s) is the Laplace transform of f(¢), and if tli)ngO f(¢) exists, then

hrn f(t) = hm sF(s)

To prove the theorem, we let s approach zero in the equatlon for the Laplace transform
of the derivative of f(¢) or

. [<[d ,
Jirg K [zﬂf)]e““ dt = lim[sF(s) = £(0)]
Since }1_1}(1) e = 1, we obtain ;
‘ o d o0 ‘ )
‘ A [Zf(f)jldf= f() - f(§0) - £(0)
. =lmsF(s) - £(0)
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from which
f(o0) = Jim (1) = lim sF (s)
The final-value theorem states that the steady-state behavior of f(¢) is the same as the

behavior of sF(s) in the neighborhood of s = 0. Thus, it is possible to obtain the value
of f(¢) att = oo directly from F(s).

EXAMPLE 2-2 Given
1
0] = F6) = 5
what is tliglo f()?
Since the pole of sF(s) = 1/(s + 1) lies in the left half s plane, lim f(z) exists. So the final-
value theorem is applicable in this case. e
. _ L L s o 1 _
tl—l-glof(t) - f(OO) - }I—IR)SF(S) - Ah—I}(l) _g(s + 1) }l—ryr(l)s + 1 1
In fact, this result can easily be verified, since
fe)y=1-¢", fort = 0
Initial-Value Theorem. The initial-value theorem is the counterpart of the final-
value theorem. By using this theorem, we are able to find the value of f(¢) at¢ = 0+ di-
rectly from the Laplace transform of f(z). The initial-value theorem does not give the
value of f(¢) at exactly ¢+ = 0 but at a time slightly greater than zero.
The initial-value theorem may be stated as follows: If f(¢) and df (t)/dt are both
Laplace transformable and if Sle sF(s) exists, then
flo+) = lim sF(s)
To prove this theorem, we use the equation for the &£, transform of df (t)/ dt:
d
]2 10| = srs) - r00)
For the time interval 0+ = ¢ < oo, as s approaches infinity, e™ approaches zero. (Note
that we must use &, rather than &£_ for this condition.) And so
“ld : .
lim {—f(t)]e"“ dt = lim [sF(s) — f(0+)] = 0
s=200 fo. dt $—>00
or
’ f(O+) = Sle sF(s)
In applying the initial-value theorem, we are not limited as to the locations of the poles
of sF(s). Thus the initial-value theorem is valid for the sinusoidal function.
It should be noted that the initial-value theorem and the final-value theorem provide
a convenient check on the solution, since they enable us to predict the system behavior
in the time domain without actually transforming functions in s back to time functions.
Real-Integration Theorem. If f(¢) is of exponential order and f(0—) = f(0+) = £(0),
then the Laplace transform of [f(¢) dt exists and is given by
F(s)  f(0)
=—+—= —
58{/f(t)dt} P p (2-8)
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where F(s) = £[f(z)] and £(0) = [f(¢)dt evaluated at t = 0.

Note that if f(¢) involves an 1mpulse function at ¢ = 0, then f1(0+) # f(0~).S
if f(¢) involves an impulse function at ¢ = 0, we must modlfy Equation (2-8) as follows

o foa] 2222
] 2.1

The real-integration theorem given by Equation (2-8) can be proved in the following
way. Integration by parts yields

A fros]- [1froaks
[rsig] - [

/f(t)dt + ;[ f(H)e™ dt

F1(0) F(s)
s 5

and the theorem is proved.

We see that integration in the time domain is converted into division in the s do-
main. If the initial value of the integral is zero, the Laplace transform of the integral of
f(t) is given by F(s)/s.

The preceding real-integration theorem given by Equation (2-8) can be modified
slightly to deal with the definite integral of f(¢).If f (t) is of exponential order, the
Laplace transform of the definite integral fo f(t)dtis given by.

££[ / f(®) dt} = Fs) , (2-9)
Lo s

where F(s) = &[f(¢)]. This is also referred to as the real-integration theorem. Note
that if f(¢) involves an impulse function at ¢ = 0 then fo f(t)dt # j;) t) dt and the fol-

lowing distinction must be observed:

Uf }z [f(t)]

[ f(t)dt] if—zi—[—{vc(—t)l

To prove Equation (2-9), first note that

[rwa= [rwa-ro
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where f7(0) is equal to [f(¢) dt evaluated at t = 0 and is a constant. Hence

<4A?mm} [/fmﬁ 2[1(0)]

Noting that f71(0) is a constant so that

v ()
o] -2
we obtain . .
o [r0a] - 70 O 110

Complex-Differentiation Theorem. If f(¢) is Laplace transformable, then, except
at poles of F(s),

d
Hef(0)] = = F(s)
where F(s) = £[f(¢)]. This is known as the complex-differentiation theorem. Also,
dz
()| = = F

In general,

g[tnf(f)] - (_1)n jsn” F(S), forn =1,2,3,...

- 'To prove the complex-differentiation theorem, we proceed as follows:

§£[tf(t)]=/0 tf(t)e™ dt = /f e™)dt

_EST/(; f(l‘)e““dt=~:i;F(s)

Hence the theorem. Similarly, by defining ¢f(r) = g(), the result is
d d d
2 — - _ -2
41270 = <r5()] = 2 6(5) =~ L |- L pgy)|

= -1y L ﬂw—i4«)

Repeating the same process, we obtain

#ef(0)] = (-1 F

F(s), forn =1,2,3,...

Convolution Integral. Consider the Laplace transform of

ﬂfU—ﬂMﬂm
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This integral is often written as
fi(8) * f(1)

The mathematical operation fi(t) * f,(¢) is called convolution. Note that if we put
t — 1 = £, then s

t 0 ‘
/ﬂa—vm&w7=j/ﬁ@ma—§M§
0 ' t

=Aﬁumo—ﬂm
Hence

ﬁ@*ﬁﬂ=%%@—ﬂﬁﬂm

=£%hmo—ﬂm
= fo(t) * fi(¥)

If £1(¢) and f,(¢) are piecewise continuous and of exponential order, then the Laplace
transform of

| Ahu—ﬂmwm

can be obtained as follows:

s{lhu—ﬂMﬂm]=ﬂwﬂm (2-10)

where
RG) = [ herd= 0]
R = [ oo = 250)
0
To prove Equation (2-10) note that fj(t — 7)1(t — r) = O for r > t. Hence
[ =npmrar= [T =i - nptoar
Then »(

§B|:/Otf1(t - T)fz(T)dT] - é?[/omfl(t - - T)fZ(T)dT]

:lﬁ“{fzw*¢ﬂ0~ﬂﬁumﬁm
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Subs_tituting t — 7 = \Ainthis last equation and changiﬁg the order of integration, which
is valid in this case because fi(¢) and f,(¢) are Laplace transformable, we obtain

513[ A it - T)fz(T)deI - /O TH( = D = T)e dr A b dr
- A TR dr A by dr
= lmfl()\)e’s" di /000]”2(7')6‘3T dar

= F(s)F(s)

This last equation gives the Laplace transform of the convolution integral. Conversely,
if the Laplace transform of a function is given by a product of two Laplace transform
functions, F,(s)Fy(s); then the corresponding time function (the inverse Laplace trans-
form) is given by the convolution integral fi(¢) = f,(¢).

Laplace Transform of Product of Two Time Functions. The Laplace transform
of the product of two Laplace transformable functions f(¢) and g(¢) can be given by
¢+ joo

L1080 = 5 [ FoIGG - p)dp (2-11)

—joo
To show this, we may proceed as follows: The Laplace transform of the product of £(¢)
and g(¢) can be written as

f)g) / f)g(t)e™ dt (2-12)
Note that the inversion integral is
1 c+joo v
fl) = 577—] [_ioo F(s)e* ds, fort >0
where c is the abscissa of convergence for F(s).Thus,
c+joo
A 0e0] = 5 [ [ Fwser do st a

Because of the uniform convergence of the integrals considered, we may invert the order
of integration:

£l f(ngn)] = 571—77 / C ]OOF(p)dp /0 () PN dr

oo
Noting that
[sweteora=cis - p
0
we obtain
1 c+joo
“r0¢0) = 5 [ F@)G(s - pap @13

Summary. Table 2-2 summarizes properties and theorems of the Laplace trans-
forms. Most of them have been derived or proved in this section.
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Table 2-2 Properties of Laplace Transforms

1| L[Af(t)] = AF(s)

2 “[A(e) £ Al0] = Fls) * BO)

3 ]2 5] = s(s) - f02)

: ]2 )] = 9F(s) - sr(02) = F(0%)
5 2] L10)] = wF(5) - Zifi0e)

(- k-1
where 7(1) = 2= ()

T elod -2 e,

| el frowr] =B g il o),

8 ${:Af(t)dt] =——

9 /0 f(yde = timF(s) it A “F(¢) dt exists
10 Plef(t)] = F(s + a)
11 : Lft - )it = a)] = e™F(s) =0
dF
o eef()] = - d(:)
d2
13 (0] = 55 F)
14 E[ef ()] = (51)"(;‘1—;F(s) (n=1,2,3,..)
15 sg[% f(t)] = / “F(s)ds it ,12‘%% F() exists
16 i[f(%l-)} = aF(as)
7 ol [5- npmar | = meEe)
18 @ L[ d
[F(00)) = 57 | (@Gt = )
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2-5 INVERSE LAPLACE TRANSFORMATION

32

Asnoted earlier, the inverse Laplace transform can be obtained by use of the inversion
integral given by Equation (2-4). However, the inversion integral is complicated and,
therefore, its use is not recommended for finding inverse Laplace transforms of com-
monly encountered functions in control engineering.

A convenient method for obtaining inverse Laplace transforms is to use a table of
Laplace transforms. In this case, the Laplace transform must be in a form immediately
recognizable in such a table. Quite often the function in question may not appear in ta-
bles of Laplace transforms available to the engineer. If a particular transform F(s) can-
not be found in a table, then we may expand it into partial fractions and write F(s) in
terms of simple functions of s for which the inverse Laplace transforms are already
known. '

Note that these simpler methods for finding inverse Laplace transforms are based
on the fact that the unique correspondence of a time function and its inverse Laplace
transform holds for any continuous time function.

Partial-Fraction Expansion Method for Finding Inverse Laplace Transforms.
For problems in control systems analysis, F(s), the Laplace transform of f(¢), frequently
occurs in the form

_ B(s)
F(s) = A(s)

where A(s) and B(s) are polynomials in s. In the expansion of F(s) = B(s)/A(s) into a
partial-fraction form, it is important that the highest power of s in A(s) be greater than
the highest power of s in B(s). If such is not the case, the numerator B(s) must be divid-
ed by the denominator A(s) in order to produce a polynomial in s plus a remainder (a ratio
of polynomials in s whose numerator is of lower degree than the denominator).

If F(s) is broken up into components,

F(s) = F(s) + BE(s) + -+ E(s)

and if the inverse Laplace transforms of Fi(s), F5(s), ..., F,(s) are readily available,
then

LUF(s)] = L F ()] + L[F(s)] + -+ LE(s)]
= [y + fole) oo 1)

where fi(¢), fo(£),-.., f.(¢) are the inverse Laplace transforms of Fi(s), F5(s), ..., F.(s),
respectively. The inverse Laplace transform of F(s) thus obtained is unique except pos-
sibly at points where the time function is discontinuous. Whenever the time function is
continuous, the time function f(¢) and its Laplace transform F(s) have a one-to-one
correspondence.

The advantage of the partial-fraction expansion approach is that the individual terms
of F(s),resulting from the expansion into partial-fraction form, are very simple functions
of s; consequently, it is not necessary to refer to a Laplace transform table if we memo-
rize several simple Laplace transform pairs. It should be noted, however, that in apply-
ing the partial-fraction expansion technique in the search for the inverse Laplace -
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EXAMPLE 2-3

transform of F(s) = B(s)/A(s) the roots of the denominator polynomial A(s) mustbe
obtained in advance. That is, this method does not apply until the denominator polyno-
mial has been factored.

Partial-Fraction Expansion when F(s) Involves Distinct Poles Only. Consider
F(s) written in the factored form

B(s) _ K(s + z3)(s + z) (s + Zm)
A(s) (s + p)(s + p2)- (s + p,)

where py, pa,..., pPpand 24, 25,... , 2, are either real or complex quantities, but for each
complex p; or z; there will occur the complex conjugate of p; or z;, respectively. If F(s)
involves distinct poles only, then 1t can be expanded into a sum of simple partial fractions
as follows:

F(s) = , form <n

B(s) a; a, a,

= + + .
A(s) s+p st p) s+ pn
where a, (k = 1,2,...,n) are constants. The coefficient a, is called the residue at the pole

ats = —p,.The value of a, can be found by multiplying both sides of Equation (2~14)
by (s + p,) and letting s = —p,, which gives

[ 1 e TR

s+ p;

F(s) = (2-14)

a
+
P2 (S pk)

ay
s+ pr

(s+pk){r~--+s+

a}'l
s +
Pn ( pk)jls=—pk

We see that all the expanded terms drop out with the exceptlon of a,. Thus the residue
ay is found from

B

Note that, since f(¢) is a real function of time, if p; and p, are complex conjugates, then
the residues @, and a, are also complex conjugates. Only one of the conjugates a; or a,,
needs to be evaluated because the other is known automatically.

Since .
a
55_1!: k } = —Pit
s+ p ke
f(t) is obtained as

f(t) = LUF(s)] = aje™™" + aeP + - + a,e?, fort =0

Find the inverse Laplace transform of

s+ 3

FO) =i ne+ 2
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EXAMPLE 2-4

EXAMPLE 2-5

The partial-fraction expansion of F(s) is

s+ 3 o n )
(s+1(s+2) s+1 s+2

F(s) =

where g, and g, are found by using Equation (2-15):

R e e M e IR

w=|o v 20T L,

Thus
fl) = £7F(s)]

2 ~1
= 1 ~1
o))

=27 - ¢, fort =0

Obtain the inverse Laplace transform of

G(S)_s3+5s2+9s+7
(s +1)(s+2)

Here, since the degree of the numerator polynomial is higher than that of the denominator
polynomial, we must divide the numerator by the denominator.

s+ 3
(s +1)(s +2)
Note that the Laplace transform of the unit-impulse function 8(¢) is 1 and that the Laplace trans-

form of d8(¢)/ dt is s. The third term on the right-hand side of this last equation is F(s) in Exam-
ple 2-3. So the inverse Laplace transform of G(s) is given as

G)=s+2+

d
g(e) = 5 8(6) +25() + 2™ — &, fort =0~

Find the inverse Laplace transform of

2s + 12
F(s) = ————
(s) s+ 25+5

Notice that the denominator polynomial can be factored as
2+ 25 +5=(s+1+j2)(s+1-j2)

If the function F(s) involves a pair of complex-conjugate poles, it is convenient not to expand
F(s) into the usual partial fractions but to expand it into the sum of a damped sine and a damped
cosine function.

Noting that s> + 25 + 5 = (s + 1)* + 2% and referring to the Laplace transforms of e
and e cos wt, rewritten thus,

ot

sinwt

w
Sle¥sinwt | = ———p——
le wi] (s + ) + o
s+ a
Ple*coswt | = ——————
[e o] (s + ) + o*
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the given F(s) can be written as a sum of a damped sine and a damped cosine function.
25 + 12 10 + 2(s + 1)
F(s) =5 = YD)
sE+25+5  (s+1)+2
2 o5+ 1
=5 +2-
(s + 1) + 22 (s + 12+ 22

It follows that
F@t) = L[F(s)]

2 . s+ 1
=591 — 2 |4 =7
¥ [(s+1)2+22} 2=Ega[(s+1)2+22:|

= S5¢7'sin2¢ + 2¢ cos2t, fort =0

Partial-Fraction Expansion when F(s) Involves Multiple Poles. Instead of dis-
cussing the general case, we shall use an example to show how to obtain the partial-
fraction expansion of F(s). »

Consider the following F(s):

s+ 25 + 3
F(s) = ——77
6= v 1r
The partial-fraction expansion of this F(s) involves three terms,
— B (S) _ bl b2 b3

F(s)

TAG) s+l A1 i)y

where b,, b,,and b, are determined as follows. By multiplying both sides of this last
equation by (s + 1)°, we have

(s + 1)351% =by(s + 1)* + by(s + 1) + by (2-16)

Then letting s = —1, Equation (2-16) gives

. [(s + 1)352—%)51:_1 = b,

Also, differentiation of both sides of Equation (2-16) with respect to s yields

%[(s + 1)3%‘3] = b, + 2b,(s + 1) (2-17)

It we let s = —1 in Equation (2-17), then

d B(s)
e i), e

By differentiating both sides of Equation (2-17) with respect to s, the result is

d? B(s)
?d‘—s‘z‘[(s + 1)3 A(S):| = 2b,
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From the preceding analysis it can be seen that the values of b, b,, and b, are found
systematically as follows:

3 3 B(s)
b= [y A(s)L,l
=(s? + 25 + 3)—4
=2

o= (£ v53))

= (2S + 2)s=—1
=0

b, = %{fgz[(‘? * 1)3%%]}5=—1

2
= —21-'-[% (s> + 25 + 3):!

s=~1
1
> @)

We thus obtain

f(6) = L[F(s)]
-] el ey

=t 4+ 0+ 2

=1 +1)e?, fort=0

Comments. For complicated functions with denominators involving higher-order
polynomials, partial-fraction expansion may be quite time consuming. In such a case,
use of MATLAB is recommended. (See Section 2-6.)

2-6 PARTIAL-FRACTION EXPANSION WITH MATLAB

36

MATLAB has a command to obtain the partial-fraction expansion of B(s)/A(s).It also
has a command to obtain the zeros and poles of B(s) /A(s).

We shall first present the MATLAB approach to obtain the partial-fraction expan-
sion of B(s)/A(s). Then we discuss the MATLAB approach to obtain the zeros and
poles of B(s)/A(s).

Partial-Fraction Expansion with MATLAB. Consider the following function
B(s)/A(s):

B(s) num _ bys" + bys" ' + - + b,

A(s)  den "+ as"t o+ ay,
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EXAMPLE 2-6

where some of a; and b ;may be zero. In MATLAB row vectors hum and den specify the
coefficients of the numerator and denominator of the transfer function. That is, »

num = [by by ... by
den=1[1 a, .. gn]
The command
[rp,k] = residue(num,den)

finds the residues (r), poles (p), and direct terms (k) of a partial-fraction expansion of
the ratio of two polynomials B(s) and A(s).
The partial-fraction expansion of B(s)/A(s) is given by
B(s) r(1) r(2) r(n)
= + — + .-

As)  s-p(1) s pQ2) s = p(n)
Comparing Equations (2-14) and (2-18), we note that p(1) = —py, p(2) = —pa,...,
p(n) = —p,;r(l) = a;, r(2) = ay,...,r(n) = a,. [k(s) is a direct term.]

+ k(s) (2-18)

Consider the following transfer function,

B(s) 25°+5s%+3s+6
A(s) s +6s2+11s+6

For this function,

The command
' [r,p,k] = residue(num,den)

gives the folibwing result:

[r,p,k] = residue(num,den)
r=

-6.0000
-4.0000
3.0000
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EXAMPLE 2-7

(Note that the re;sidues are returned in column vector r, the poie locations in column vector p, and
the direct term in row vector k.) This is the MATLAB tepresentation of the following partial-
fraction expansion of B(s)/A(s):
' B(s) 25+ 55 +3s+6
A(s) S +682+1ls+6
—6 -4 3

= + + +
s+3 s+2 s+1 2

The résidue com_rhand can also be used to form the polynomials (numerator and denominator)
from its partial-fraction expansion. That is, the command

[num,den] = residuel(r,p,k)

where r, p, and k are as given in the previous MATLAB outpuit, converts the partial-fraction
expansion back to the polynomial ratio B(s)/A(s), as follows:
[num,den] = residue(r,p,k);
printsys(num,den,'s’)
num/den =
253 4+ 552 + 35+ 6
3+ 652+ 115+ 6

The command
printsys(num,den,'s')

pririts the num/den in terms of the ratio of polynomials in s.
Note thatif p(j) = p(j + 1) == = p(j + m — 1)[thatis, p; = pj+1 == pj+ m-1] the
pole p(j) is a pole of multiplicity m. In such a case, the expansion includes terms of the form
" ] i+ 1 r(j+m—1
r(!)‘ LY ‘.)2+__.+ (j .m)
s=p0) s = p(i)] [s = p(]
For details, see Example 2-7.

Expand the following B(s)/A(s) into partial-fractions with MATLAB.

B(s) s*+25+3 S +25+3
A($) (s +1)° S +32+3s+1

For this function, we have

(=)

num =
den =

|
—
—

The command
[r,p,k] = residue(num,den)

gives the result shown on the next page. It is the MATLAB representation of the following partial-
fraction expansion of B(s)/A(s):

B(s) _ 1 0o 2

A(s) s+1 (s+ 12 (s+ 1)
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num=[0 1 2 3];
den=1[1 3 3 1];

[r,p,k] = residue(num,den)
=

1.0000
0.0000
2.0000
p =
" .1.0000

-1.0000
-1.0000

k =
{

Note that the direct term k is zero.
. To obtain the original function B(s)/A(s) fromr, p, and k, enter the followmg program to the- E
computer )

[num,den] = residue(r,p,k);
printsys(num,den,'s')

Then the computer will show the num/den as follows:

2+ 2s+ 3
sA3+3s‘2+3s+1

[y

num/den =

" Finding Zeros and Poles of B(s)/A(s) with MATLAB. MATLAB has a command
‘ [z,p,K] = tf2zp(hum,den) - :

to obtain the zeros, poles, and gain K of B(s)/A(s).
Consider the system defined by
B(s) 4s® + 165 + 12
A(s)  s* +125° + 445° + 48s

To obtain the zeros (z), poles (p), and gain (K), enter the following MATLAB program
into the computer:

num=[0 0 4 16 '12];
den =[1 12 44 48 0];
[z,p,K] = tf2zp(num,den)

Then the computer will produce the following output on the screen:
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zZ=
-3
-1
p =
0
-6.0000
-4.0000
-2.0000
K=
4

The zeros are at s = —3 and —1. The poles are at s = 0, —6, —4, and —2. The gain K is 4.
If the zeros, poles, and gain K are given, then the following MATLAB program will
yield the original num/den.

[num den] = zp2tf(z,p,K);
printsys(num,den,'s')

num/den =

45"2 4+ 1os + 12
s"4 + 125"3 + 445"2 + 48s

2-7 SOLVING LINEAR, TIME-INVARIANT,

40

DIFFERENTIAL EQUATIONS

In this section we are concerned with the use of the Laplace transform method in solv-
ing linear, time-invariant, differential equations.

The Laplace transform method yields the complete solution (complementary solu-
tion and particular solution) of linear, time-invariant, differential equatlons Classical
methods for finding the complete solution of a differential equation require the evalu-
ation of the integration constants from the initial conditions. In the case of the Laplace
transform method, however, this requirement is unnecessary because the initial condi-
tions are automatically included in the Laplace transform of the differential equation.

If all initial conditions are zero, then the Laplace transform of the differential equa-
tion is obtained simply by replacing d/ dt with s, d*/ di® with 5%, and so on.

In solving linear, time-invariant, differential equations by the Laplace transform
method, two steps are involved.
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EXAMPLE 2-8

EXAMPLE 2-9

1. By taking the Laplace transform of each term in the given differential equation,
convert the differential equation into an algebraic equation in s and obtain the
expression for the Laplace transform of the dependent variable by rearranging
the algebraic equation.

2. The time solution of the differential equatlon is obtained by f1nd1ng the 1nverse
Laplace transform of the dependent variable.

In the following discussion, two examples are used to demonstrate the solutlon of
linear, time-invariant, differential equations by the Laplace transform method.
Find the solution x(t) of the differential equation
3('+3)2+2x=0, x(0) = a, x=b

where a and b are constants.
By writing the Laplace transform of x(t) as X(s) or

Elx(n)] = X(s)
we obtain |
Llx] = sX(s) — x(0) ‘
F[¥] = s*X(s) — sx(0) — x(0)
And so the given differential equation becomes.

[s2X (s) — sx(0) — x(0)] + 3[sX(s) — x(0)] + 2X(s) =0

“ By substituting the given initial conditions into this last equation, we obtain

(%X (s) — as — b] + 3[sX(s) — a] +2X(s) = 0
or
(s +3s+2)X(s) =as + b+ 3a
Solving for X (s), we have

as+b+3a  as+b+3a _2a+b__,a+‘b

X(s)zs2+.3s+2_(s+1)(s+2)_s+1 s+2 .

The inverse Laplace transform of X (s) gives

x(t) = £ X(s)] = 52_1[2_“_““2] - 58_1[“_1’2}

s+ 1 s+ 2
= (2a + bYe™ — (a + b)e®, fort = 0
which is the solution of the given differential equation. Notice that the initial‘conditidns q and b
appear in the solution. Thus x(¢) has no undetermined constants.
Find the solution x(¢) of the differential equation
X+ 2%+ 5x =3, x(O)"*O £0) =0
Noting that £[3] = 3 /s, x(0) = 0, and x(0) = 0, the Laplace transform of the differential

equation becomes

2X(5) + ZSX(vs) +5X(s) =

T |
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Solving for X (s}, we find

X(S)=—3_.M_§l_§..ﬁ_+_2_
s(s*+25+5) 55 S55£84+25+5
313 2 3 s+

T5s 10(s+1P2+2% S(s+17+2
Hence the inverse Laplace transform becomes
x(t) = £7X(s)]

3 _1{1} 3 1[ 2 } 3 _[ s+ 1 ]
= e - ——-f — - = 1_—*———-‘—"-——
558 5 10 (s +1)*+ 22 558 (s +1)*+ 22

3.3 s 3
=3 1Oe sin 2¢ 56 cos 2z, fort =0

(8%}

which is the solution of the given differential equation.

42

A-2-1.

A-2-2.

A-2-3.

EXAMPLE PROBLEMS AND SOLUTIONS

Find the poles of the following F(s):

Solution. The poles are found from

or
N e t@) = ¢o(cosw — jsinw) = 1
From this it follov;'; that o = 0,w = +2n7 (n = 0,1, 2,...). Thus, the poles are located at
s=tnr (n=0,1,2,...)
Find the Laplace transform of f(¢) defined by

flr)y =0, fort <0
= te™>, fort =0
Solutipn. Since
1
1) = G(s) =

referring to Equation (2-6), we obtain

1
F(s) = [te™] = G(s + 3) = m
What is the Laplace transform of
fl) =0, fort <0
= sin(wf + ), fort = 0

where 6 is a constant?
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. Figore 2-3

Function f{z).

Solution. Noting that
sin(wt + 8) = sinwt cosf + coswt sinf
we have
[sin(wt + 6)] = cos® L[sinwe] + sind £[coswi]

+ sind

w
= cosf
52+ o 2+ w?
wcosf + ssind

§2 + o?

Find the Laplace transform F(s) of the function f(¢) shown in Figure 2-3. where f(z) = 0 for

¢t < 0 and 2 =< t. Also find the limiting value of F(s) as a approaches zero.

Solution. The function f(¢) can be written

f() = %10) - ;231(1 —a) + ;}2-10 — 24)
Then
F(s) = £[f(1)]
= % [1(0)] - S 21t — a)] + = L[1¢ — 2a)]
- ll — 3.1_ —as 4 ll —2as
T dis ds ¢ 2s’
= ;12;(1 — 27 + ¢72)

As a approaches zero, we have

d —as —2as
126 + e L 2™

lim F(s) = lim = lim
a—>0 0

a a’s a0 d
—(a%)
da

Dse”9 — zse—Zas e-—as _ e—Zns
= lim = lim
a—0 2as a—>0 a
_d_ (e—us _ e—2as> .
. da —se™ + 2se72
= lim = lim
a—0 d a0 1
—\a
L)
=—5s+25=35
f@ 4
1
aZ
!
LIl
0 a 2a t
L __|
Cl2

Example Problems and Solutions
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A-2-5,

A-2-7.

Find the initial value of df (¢)/ dt when the Laplace transform of f(¢) is given by

2s + 1
F(s) = %f(t)] = 50—
() =20 =577
Solution. Using the initial-value theorem,
s(2s +1)

Jim f(1) = f(0+) = lim sF(s) = Jim Z——— =

Since the &, transform of df (¢)/ dt = g(t) is given by

%.[g(1)] = sF(s) ~ f(0+)
_s(2s+1) s =2
T2 +s+1 T @2+s+1

the initial value of df (¢)/ dt is obtained as

tim T o) = tim s[sF(s) - £(00)]

—52 =2
= lim = 1
s=oo g+ g+ 1
The derivative of the unit-impulse function 8(¢) is called a unit-doublet function. (Thus, the inte-
gral of the unit-doublet function is the unit-impulse function.) Mathematically, an example of the
unit-doublet function, which is usually denoted by u,(¢), may be given by

w(t) = ,{)I_IR) 1() — 2[1(t ~tz§,)] + 1{r = 2tp)

Obtain the Laplace transform of u,(r).

Solution. The Laplace transform of u,(¢) is given by

$[u2(t)] = lim l(l — ge—[os + 16_2[’”)

E20g\s s s
-1 1 { t%s2 1—2 41‘%52
-—[ulir%)%‘ -2 1 l‘05+7+"' + — 25 + 5 -+

oL, . .
= + - ==
&)l_% s [tos (higher-order terms in tos)] s

Find the Laplace transform of f(¢) defined by

f@) =0, fort <0
= £’ sinwt, fort =0
Solution. Since
w
Flsinwt] =
[sinwr] 2+ W?

applying the complex-differentiation theorem
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A-2-9,

to this problem, we have

_d_z_[ ) ]_—2(03-}-6(x)s2
ds? (s2 + w2)3

Prove that if f(t) is of exponential order and if fo f(¢) dt exists [which means that ff(¢) dt
assumes a definite value] then

#f()] = fsiner] = L | 2

/mf(t) dr = ;i_%F(s)

where F(s) = [f(¢)].
Solution. Note that

/wa(t.) dt = Ili)n; /Olf(t)dt
§B[[tf(t)dt] = F—ES—Z

Since fO""f (r) dt exists, by applying the final-value theorem to this case,

F(s)

Referring to Equation (2-9),

t
lim/f(t)dt=lims
-0 fy 50
or

fmf(t)dt = lim F(s)
0 5—0

Prove that if f(¢) is a periodic function with period T', then
T -
/ f)e ™ dt
o .
t)] = 1 - e—Ts

Solution.
(a+1)T

[F(0)] = / wera= 3 [T et ar

By changing the independent variabte from ¢ to r,where 7 = ¢t — nT,

gg[f 1) — 2 nTs/f e dr

where we used the fact that f(r + nT) = f(7) because the function f(¢) is periodic with period
T.Noting that :

o
Ee-'nTs =1+eT5 + 25 1 ...

n=0

=1+e™(1+e™ + e+

_Ts< i e—nTs)

n=0
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Figure 24

Periodic function
(square wave).

46

we obtain

It follows that
/Tf(t)e‘” dt
0=
A-2-10. 'What is the Laplace transform of the periodic function shown in Figure 2-4?

T T/2 T
/ f@etdr = / edt + (=1)e ™ dr
0 0 T/2

T

Solution. Note that

T/2 —st

st e

_ €

=S

o )

T/2
B e~ (W/2)Ts _ 1 . TS — g~(1/2)Ts

- s

[ ~Ts _ ze—(l/Z)Ts + 1]

[1 — ¢~ 1/2)Ts]

VJI)—* G |

Referring to Problem A-2-9, we have

/ flt)e™ dt (1/s)[ &(1/2) Ts}

F
(s) = 1—-eT 1-¢T
1 -t g Ts
= ———————S[l n e—(1/2)T:] tanhT
A-2-11. Find the inverse Laplace transform of F(s), where '
1
F(s) =

s(s? + 25 + 2)
Solution. Since
P4+ +2=(s+1+j(s+1-j1)

f®

2| 1y -
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A-2-12,

we notice that F(s) involves a pair of complex-conjugate poles, and so we expand F(s) into the
form

1 a, a,s + as
FO) =i = s T i
s(s>+25+2) 5 s+ 25+2
where a,, a,, and a5 are determined from
1=a(s? + 25 + 2) + (aps + as)s

By comparing coefficients of 5%, 5,and s° terms on both sides of this last equation, respectively, we
obtain

a, + a, =0, 2a, + a3 =0, 2a, =1

from which

Therefore,
11 1 s+2
F(s)=p== s
)= T2 2542
Lt 1 1 _1 s+d
2s 2(s+172+12 2(s+ 1)+ 1
The inverse Laplace transform of F(s) gives

1 1 . 1 ., :
= — —_—— =
1) 27 3¢ sint ¢ cost, fort=z0

Obtain the inverse Laplace transform of

F(s) = 5(s + 2)
sHs + 1)(s + 3)
Solution.
F(s)=25(s+2) =£’1+2§_+ 44
Ss+D(s+3) s s s+1 s§+3
where
S5(s+2) 5
N5 73) e 2
B 5(s +2) 3
LT+ 1) s 18
b — 5(s +2) 10
2 (s + 1){(s +3) s=o— 3
b = _d_[ 5(s +2) :l
Vo ds (s + 1)(s + 3) ds=o
_S(s+ 1)(s +3) = 5(s +2)(2s + 4) 25
- (s + 1)Xs + 302 9
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- A-2-13,

A-2-14.

A-2-15.

Thus

251,101 5 15 1
9s 35 2s+1 18s5s+3

E(s) =

The inverse Laplace transform of F(s) is

25 10 5 5

f)=—-—"—+"—t+2e’ + =™ =
f) 9 3 > e 13 e, fort =0
Find the inverse Laplace transform of _
4403 g ag2
Fis) = 5+ 257+ 35+ 45+ 5
s(s + 1)

Solution. Since the numerator polynomial is of higher degree than the denominator polynomial,
by dividing the numerator by the denominator until the remainder is a fraction, we obtain

2s + 5 a a,
F(s) =’ +s+2+ "=+ 5+2 4+ —+—>—
() ="+ s(s + 1) s 2+s s+ 1
where
25+ 5
1—S+1 s=0_5
25 +5
ay = d = -3
. 5 s=—1
It follows that
5 3

F(s)=s*+s+2+=—
s s+1

The inverse Laplace transform of F(s) is

() = £YF(s)] = 3—;50) + 5;5(1) +28(t) + 5~ 3¢, fort =0~

Derive the inverse Laplace transform of

1
F —
(s) S(S2 + wz)
‘Solutibn.
1 11 1 s
F(s) = =——— =

Hence the inverse Laplace transform of F(s) is obtained as
: 1
f(t) = £YF(s)] = = (1 — coswt), fort=0
w
Obtain the inverse Laplace transform of the following F(s). [Use MATLAB 'to find the partial-
fraction expansion of F(s).]

s° + 8s* + 235> + 355 + 285 + 3
5> + 65% + 8s '

F(s) =
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‘Solution. The following MATLAB program will produce the partial-fraction expansion of F (s):

num=1[1 8 23 35 28 3];
den=[0 016 8 0];
[r,p,kI = residue(num,den)

=

0.3750
0.2500
0.3750

p =
-4
-2
0

123

Note thatk = [1 2 3] means that F(s) involves s* + 25 + 3 as shown below:

0.375 0.25 0.375
s+4 s+2 s

F(s)=s2+2s+3 +

~ Hence, the inverse Laplace transform of F (s)' is given by

flz) = %2—5(1‘) + 2%5(:) + 38(t) + 0375¢™% + 0.25¢7% + 0.375, forr z 0~
xan
Given the zero(s), pole(s), and gain K of B(s)/A(s), obtain the function B(s)/A(s) using MAT-

A-2-16.
LAB. Consider the three cases below.
(1) There is no zero. Polesare at~1 + 2jand—1 — 2j. K = 10.
(2) Azeroisat(. Polesareat—1 4+ 2jand -1 - 2j. K = 10.
(3) Azeroisat—1. Polesareat—2,—4and~8. K = 12.
Solution. MATLAB programs to obtain B(s)/A(s) = num/den for the three cases are shown
below.
z=]; z = [0]; z=[-1];
p = [-142%; -1-2%j]; p = [-14+2%}; -1-2%j]; p = [-2; -4; -8];
K=10; K=10; K=12;
[num,den] = zp2tf(z,p,K); [num,den] = zp2tf(z,p,K); [num,den] = zp2tf(z,p,K);
printsys(num,den) printsys(num,den) printsys(num,den)
num/den = num/den = num/den =
10 10s 125 + 12
2 + 25 + 5 $2 + 25 + 5 $"3 + 14s"2 + 565 + 64
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Solve the following differential equation:
¥+25+10x=1¢  x(0)=0, x(0)=0
Solution. Noting that the initial conditions are zeros, the Laplace transform of the equation
becomes as follows: )
) 2
S X(s) + 25X (s) + 10X (s) = =
N

Hence

2

X(s) = 50—
() s(s? + 2s + 10)

We need to find the partial-fraction expansion of X (s). Since the denominator involves a triple
pole, it is simpler to use MATLAB to obtain the partial-fraction expansion. The following MAT-
LAB program may be used:

num=[0 0000 2};
den=[1 2 10 0 0 0O];
[r,p,k] = residue(num,den)

r=

0.0060- 0.0087i
0.0060+ 0.0087i
-0.0120
-0.0400
— 0.2000

-1.0000- 3.0000i

T A O

» ]/ -1.0000+ 3.0000i

0
0

From the MATLAB output, we find

0.006 — 0.0087]' 0.006 + 0.0087j -0.012 —0.04
X(s) = . s +
s+1-3j s+1+3 s s

L 02
o3
Combining the first two terms on the right-hand side of the equation, we get

0012(s + 1) + 00522 0012 004 02
5) = - e vt
(s +1)2 + 3 s s s

The inverse Laplace transform of X (s) gives

x(t) = 0.012¢™ cos3t. + 0.0174¢™ sin3t — 0.012 — 0.047 + 0.1¢2, fort=0
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PROBLEMS

B-2-1. ;'Find the Laplace transforms of the following
functions:

(a) fi(t) =0, forr <0
= ¢ %% cos12t, fort =0
b) f(t)y =0, fort <0
= sin<4t + %), fort =0

B-2-2. Find the Laplace transforms of the following
functions:

(a) A =0, fort <0
= 3sin(5t + 45°), fort = 0
(b) f(t) =0, fort <0
= 0.03(1 — cos2t), fort=0

B-2-3. Obtain the Laplace transform of the function de-
fined by

fort <0
fort =0

f() =0,

— t2 e*at,

B-2-4. Obtain the Laplace transforms of the following
functions:

(a) flr) =0, forr <0
= sinwt - coswt, fort =0
) £(2) =0, for¢ < 0
= te'sin5t, fort =0

B-2-5. Obtain the Laplace transform of the function de-
fined by ‘

f{®) =0,

= cos2wit - cos3wt,

fort <0
fort =0

B-2-6. What is the Laplace transform of the function f(¢)
shown in Figure 2-5?

RON

Figure 2-5
Function f(t).

a+b t

Problems

B-2-7. Obtain the Laplace transform of the function f(¢)
shown in Figure 2-6.

f® 4

- ' —_— Figure 2-6
0 T ! Function f(z)

B-2-8. Find the Laplace transform of the function f(¢)
shown in Figure 2-7. Also, find the limiting value of & [f(6)]
as a approaches zero.

FION
121
22
a
0 a
2
- l% I ) Figure 27

4 Function f(¢).

B-2-9. By applying the final-value theorem, find the final
value of f(¢) whose Laplace transform is given by -

10
F(S) = m

Verily this result by taking the inverse La'place transform
of F(s) and letting t — oo.
B-2-10. Given ‘
1
F(s) =—"3
(s) (s +2)2

determine the values of f(0+) and £(0+). (Use the initial-
value theorem.,) o ’ '
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B-2-11. Find the inverse Lapiace transform of
s+1
F(s) = ————
(s) s(s? + 5+ 1)

B-2-12. Obtain the inverse Laplace transform of the fol-
lowing function:

5¢7*
s+1

B-2-13. Find the inverse Laplace transforms of the follow-
ing functions:

(a) E(s) = —3
55+ 2
(s + 1)(s + 2)*

B-2-14. Find the inverse Laplace transforms of the follow-
ing functions:

@ Fs) =

() - Bys) =

1
o wi
s(s? + 2w,s + wb)
B-2-15. Obt;iin the partial-fraction expansion of the fol-
lowing function witi MATLAB:

F(s) = 10(s + 2)(s + 4)

‘. (s + 1)(s + 3)(s + 5)?
Then, obtain the inverse Laplace transform of F(s).
B-2-16. Consider the following function F(s):

b)) Fs) = (0<¢<1)

st + 553 + 65 + 95 + 30
s* 4+ 65% + 215 + 465 + 30

F(s) =

Using MATLAB, obtain the partial-fraction expansion of
F(s). Then, obtain the inverse Laplace transform of F(s).

B-2-17. A function B(s) /A(s) consists of the following
zeros, poles, and gain K

zerosats = —1,5s = -2
polesats = 0,5 = —4,5 = —6
gain K =5

Obtain the expression for B(s)/A(s) = num/den with
MATLAB.

B-2-18. What is the solution of the following differential
equation?

2%+ 7x +3x =0, x(0) =3, x(0) =0
B-2-19. Solve the differential equation
X+ 2x = 8(), x(0-)=0

B-2-20. Solve the following differential equation:.

¥+ 2wk +wix =0, x(0)=a, X(0)=b

where a and b are constants.
B-2-21. Obtain the solution of the differential equation
X + ax = Asinot, x(0) =b
B—2-22. Obtain the solution of the differential equation
X+ 3%+ 6x=0, x(0) =0, x(0)=3
B-2-23. Solve the following differential equation:

¥+2%+10x=¢", x(0)=0, x(0)=0
The foreing function e™ is given att = 0 when the system is
at rest. ‘
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3-1 INTRODUCTION

In studying control systems the reader must be able to model dynamic systems and
analyze dynamic characteristics. A mathematical model of a dynamic system is defined
as a set of equations that represents the dynamics of the system accurately or, at least,
fairly well. Note that a mathematical model is not unique to a given system. A system
may be represented in many different ways and, therefore, may have many mathemat-
ical models, depending on one’s perspective.

The dynamics of many systems, whether they are mechanical, electrical, thermal,
economiic, biological, and so on, may be described in terms of differential equations.
Such differential equations may be obtained by using physical laws governing a partic-
ular system, for example, Newton’s laws for mechanical systems and Kirchhoff’s laws for
electrical systems. We must always keep in mind that deriving reasonable mathematical
models is the most important part of the entire analysis of control systems.

Throughout this book we assume that the principle of causality applies to the systems
considered. This means that the current output of the system (the output at time ¢ = 0)
depends on the past input (the input for ¢ < 0) but does not depend on the future input
(the input for r > 0).

Mathematical Models. Mathematical models may assume many different forms.
Depending on the particular system and the particular circumstances, one mathemati-
cal model may be better suited than other models. For example, in optimal control prob-
lems, it is advantageous to use state-space representations. On the other hand, for the
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transient-response or frequency-response analysis of single-input-single-output, linear,
time-invariant systems, the transfer function representation may be more convenient
than any other. Once a mathematical model of a system is obtained, various analytical
and computer tools can be used for analysis and synthesis purposes.

Simplicity Versus Accuracy. In obtaining a mathematical model, we must make
a compromise between the simplicity of the model and the accuracy of the results of
the analysis. In deriving a reasonably simplified mathematical model, we frequently find
it necessary to ignore certain inherent physical properties of the system. In particular,
if a linear lumped-parameter mathematical model (that is, one employing ordinary dif-
ferential equations) is desired, it is always necessary to ignore certain nonlinearities and
distributed parameters that may be present in the physical system. If the effects that
these ignored properties have on the response are small, good agreement will be obtained
between the results of the analysis of a mathematical model and the results of the
experimental study of the physical system.

In general, in solving a new problem, it is desirable to build a simplified model so that
we can get a general feeling for the solution. A more complete mathematical model may
then be built and used for a more accurate analysis.

We must be well aware of the fact that a linear lumped-parameter model, which may
be valid in low-frequency operations, may not be valid at sufficiently high frequencies

since the neglected property of distributed parameters may become an important fac-

tor in the dynamic behavior of the system. For example, the mass of a spring may be
neglected in low-frequency operations, but it becomes an important property of the sys-
tem at high frequencies. (For the case where a mathematical model involves consider-
able errors, robust control theory may be applied.)

Linear Systems. A system is called linear if the principle of superposition
applies. The principle of superposition states that the response produced by the
simultaneous application of two different forcing functions is the sum of the two
individual responses. Hence, for the linear system, the response to several inputs can
be calculated by treating one input at a time and adding the results. It is this principle
that allows one to build up complicated solutions to the linear differential equation
from simple solutions.

In an experimental investigation of a dynamic system, if cause and effect are pro-
portional, thus implying that the principle of superposition holds, then the system can
be considered linear.

Linear Time-Invariant Systems and Linear Time-Varying Systems. A differ-
ential equation is linear if the coefficients are constants or functions only of the inde-
pendent variable. Dynamic systems that are composed of linear time-invariant
lumped-parameter components may be described by linear time-invariant (constant-
coefficient) differential equations. Such systems are called linear time-invariant (or linear
constant-coefficient) systems. Systems that are represented by differential equations
whose coefficients are functions of time are called linear time-varying systems. An ex-
ample of a time-varying control system is a spacecraft control system. (The mass of a
spacecraft changes due to fuel consumption.)
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Outline of the Chapter. Section 3-1 has presented an introduction to the math-
ematical modeling of dynamic systems. Section 3-2 presents the transfer function and
impulse-response function. Section 3-3 introduces automatic control systems and Sec-
tion 3—4 discusses concepts of modeling in state space. Section 3-5 presents state-space
representation of dynamic systems. Section 3-6 discusses transformation of mathemat-
ical models with MATLAR. Section 3-7 treats mathematical modeling of mechanical sys-
tems and discusses Newton’s approach to modeling mechanical systems. Section 3-8
deals with mathematical modeling of electrical and electronic systems. Section 3-9 treats
signal flow graphs and Mason’s gain formula useful to control systems analysis. Finally,
Section 3-10 discusses linearization of nonlinear mathematical models.

3-2 TRANSFER FUNCTION AND IMPULSE-
RESPONSE FUNCTION

In control theory, functions called transfer functions are commonly used to character-
ize the input-output relationships of components or systems that can be described by lin-
ear, time-invariant, differential equations. We begin by defining the transfer function
and follow with a derivation of the transfer function of a mechanical system. Then we
discuss the impulse-response function.

Transfer Function. The transfer function of a linear, time-invariant, differential
equation system is defined as the ratio of the Laplace transform of the output (response
function) to the Laplace transform of the input (driving function) under the assumption
that all initial conditions are zero.

Consider the linear time-invariant system defined by the following differential equation:

(1) _
oy * @y Foot 4y T A,y

(m) (m=1) .
zbox + b]x +"'+bm_1x+bmx (an)

where y is the output of the system and x is the input. The transfer function of this sys-
tem Js the ratio of the Laplace transformed-output to the Laplace transformed input
when all initial conditions are zero, or

¥[output]

SE[input] zero injtial conditions

Y(s) b4+ bs" T 4+ by s + by,

X(s)  ays"+ a4+ +a,.5+a,

Transfer function = G(s) =

By using the concept of transfer function, it is possible to represent system dynam-
ics by algebraic equations in s. If the highest power of s in the denominator of the trans-
fer function is equal to #, the system is called an nth-order system.

Comments on Transfer Function. The applicability of the concept of the trans-
fer function is limited to linear, time-invariant, differential equation systems. The trans-
fer function approach, however, is extensively used in the analysis and design of such
systems. In what follows, we shall list important comments concerning the transfer func-
tion. (Note that in the list a system referred to is one described by a linear, time-invariant,
differential equation.)
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EXAMPLE 3-1

Figure 3-1
Schematic diagram
of a satellite attitude
control system.
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1. The transfer function of a system is a mathematical model in that it is an opera-
tional method of expressing the differential equation that relates the output vari-
able to the input variable.

2. The transfer function is a property of a system itself, independent of the magnitude
and nature of the input or driving function.

3. The transfer function includes the units necessary to relate the input to the output;’
however, it does not provide any information concerning the physical structure of
the system. (The transfer functions of many physically different systems can be
identical.) '

4. If the transfer function of a system is known, the output or response can be stud-
ied for various forms of inputs with a view toward understanding the nature of
the system.

5. If the transfer function of a system is unknown, it may be established experimen-
tally by introducing known inputs and studying the output of the system. Once
established, a transfer function gives a full description of the dynamic character-
istics of the system, as distinct from its physical description.

Consider the satellite attitude control system shown in Figure 3-1. The diagram shows the con-
trol of only the yaw angle 8. (In the actual system there are controls about three axes.) Small jets
apply reaction forces to rotate the satellite body into the desired attitude. The two skew sym-
metrically placed jets denoted by A4 or B operate in pairs. Assume that each jet thrust is F /2 and
atorque T = FIis applied to the system. The jets are applied for a certain time duration and thus
the torque can be written as 7'(¢). The moment of inertia about the axis of rotation at the center
of massis J.

Let us obtain the transfer function of this system by assuming that torque T'(¢) is the input,
and the angular displacement 6(¢) of the satellite is the output. (We consider the motion only in
the plane of the page.)

To derive the transfer function, we proceed according to the following steps.

1. Write the differential equation for the system.

2. Take the Laplace transform of the differential equation, assuming all initial conditions are
Zero.

3. Take the ratio of the output @(s) to the input T'(s). This ratio is the transfer function.

Applying Newton’s second law to the present system and noting that there is no friction in the
environment of the satellite, we have

@ _
dr?

T

Center of mass

Reference
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Taking the Laplace transform of both sides of this last equation and assuming all initial conditions
to be zero yields :

Is*0(s) = T(s)
where @(s) = £[6(t)] = T(s) and T(s) = £[T(t)]. The transfer function of the system is thus

obtained as
o6) 1

T(s)y s

Transfer function =

Convolution Integral. For a linear, time-invariant system the transfer function
G(s) is
Y(s)

G(s) = m

where X (s) is the Laplace transform of the input and Y () is the Laplace transform of
the output, where we assume that all initial conditions involved are zero. It follows that
the output Y (s) can be written as the product of G(s) and X(s), or

Y(s) = G(s)X(s) ' G-,

Note that multiplication in the complex domain is equivalent to convolution in the time
domain (see Section 2-4), so the inverse Laplace transform of Equation (3-1) is given
by the following convolution integral:

y(t) = /Otx('r)g(t = r)dr e—

algfoaing go

: |
= Ag(r)x(z‘ - 7)dr ,

where both g(¢) and x(¢) are O fort < 0. T

- Impulse-Response Function. Consider the output (response) of a system to a
unit-impulse input when the initial conditions are zero. Since the Laplace transform of
the unit-impulse function is unity, the Laplace transform of the output of the system is

Y(s) = G(s) (3-2)

The inverse Laplace transform of the output given by Equation (3-2) gives the impulse
response of the system. The inverse Laplace transform of G(s), or

£G(s)] = 8(0)

is called the impulse-response function. This function g(t) is also called the weighting
function of the system.

The impulse-response function g(¢) is thus the response of a linear system to a unit-
impulse input when the initial conditions are zero. The Laplace transform of this func-
tion gives the transfer function. Therefore, the transfer function and impulse-response
function of a linear, time-invariant system contain the same information about the sys-
tem dynamics. It is hence possible to obtain complete information about the dynamic
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characteristics of the system by exciting it with an impulse input and measuring the re-
sponse. (In practice, a pulse input with a very short duration compared with the signif-
icant time constants of the system can be considered an impulse.)

3-3 AUTOMATIC CONTROL SYSTEMS

Figure 3-2
Element of a block
diagram.

58
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A control system may consist of a number of components. To show the functions
performed by each component, in control engineering, we commonly use a diagram
called the block diagram.This section first explains what a block diagram is. Next, it
discusses introductory aspects of automatic control systems, including various control
actions. Then, it presents a method for obtaining block diagrams for physical systems, and,
finally, discusses techniques to simplify such diagrams.

Block Diagrams. A block diagram of a system is a pictorial representation of the
functions performed by each component and of the flow of signals. Such a diagram de-
picts the interrelationships that exist among the various components. Differing from a
purely abstract mathematical representation, a block diagram has the advantage of
indicating more realistically the signal flows of the actual system.

In a block diagram all system variables are linked to each other through functional
blocks. The functional block or simply block is a symbol for the mathematical operation
on the input signal to the block that produces the output. The transfer functions of the
components are usually entered in the corresponding blocks, which are connected by ar-
rows to indicate the direction of the flow of signals. Note that the signal can pass only
in the direction of the arrows. Thus a block diagram of a control system explicitly shows
a unilateral property.

- ‘Figure 3-2 shows an element of the block diagram. The arrowhead pointing toward
the block indicates the input, and the arrowhead leading away from the block repre-
sents the output. Such arrows are referred to as signals.

Note that the dimensions of the output signal from the block is the dimensions of the
input signal multiplied by the dimensions of the transfer function in the block.

The advantages of the block diagram representation of a system lie in the fact that
it is easy to form the overall block diagram for the entire system by merely connecting
the blocks of the components according to the signal flow and that it is possible to eval-
uate the contribution of each component to the overall performance of the system.

In general, the functional operation of the system can be visualized more readily by
examining the block diagram than by examining the physical system itself. A block di-
agram contains information concerning dynamic behavior, but it does not include any
information on the physical construction of the system. Consequently, many dissimilar
and unrelated systems can be represented by the same block diagram.

1t should be noted that in a block diagram the main source of energy is not explicit-
ly shown and that the block diagram of a given system is not unique. A number of dif-
ferent block diagrams can be drawn for a system, depending on the point of view of the
analysis.

Transfer
v e—— function  —
G(s)
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Figure 3-3

Summing point.

Figure 34
Block diagram of a
closed-loop system.

Figure 3-5

Closed-loop system.

Summing Point. Referring to Figure 3-3, a circle with a cross is the symbol that
indicates a summing operation. The plus or minus sign at each arrowhead indicates
whether that signal is to be added or subtracted. It is important that the quantities being
added or subtracted have the same dimensions and the same units.

Branch Point. A branch point is a point from which the signal from a block goes
concurrently to other blocks or summing points.

Block Diagram of a Closed-Loop System. Figure 3—4 shows an example of a
block diagram of a closed-loop system. The output C(s) is fed back to the summing
point, where it is compared with the reference input R(s). The closed-loop nature of
the system is clearly indicated by the figure. The output of the block, C(s) in this case,
is obtained by multiplying the transfer function G(s) by the input to the block, E(s). Any
linear control system may be represented by a block diagram consisting of blocks, sum-
ming points, and branch points.

When the output is fed back to the summing point for comparison with the input, it
is necessary to convert the form of the output signal to that of the input signal. For
example, in a temperature-control system, the output signal is usually the controlled
temperature. The output signal, which has the dimension of temperature, must be con-
verted to a force or position or voltage before it can be compared with the input signal.
This conversion is accomplished by the feedback element whose transfer function is
H(s), as shown in Figure 3-5. The role of the feedback element is to modify the output
before it is compared with the input. (In most cases the feedback element is a sensor that
measures the output of the plant. The output of the sensor is compared with the system
input, and the actuating error signal is generated.) In the present example, the feedback
signal that is fed back to the summing point for comparison with the input is B(s)
= H(s)C(s). ~

Summing Branch
point * point I
! |
R(s) E(s) C(s)
—————- G(5) -

E A
S

R EGs)
;+ 3

G(s)

B(s)

H(s) |
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Open-Loop Transfer Function and Feedforward Transfer Function. Refer-
ring to Figure 3-3, the ratio of the feedback signal B(s) to the actuating error signal
E(s) is called the open-loop transfer function. That s,

e

(s)
(s)

Open-loop transfer function = = G(s)H(s)

try

The ratio of the output C(s) to the actuating error signal E(s) is called the feed-
forward transfer function, so that

: C(s)
Feedforward transfer function = = G(s)

E(s)

If the feedback transfer function H (s) is unity, then the open-loop transfer function and
the feedforward transfer function are the same. ‘ :

Closed-Loop Transfer Function. For the system shown in Figure 3-5, the output
C(s) and input R(s) are related as follows: since
C(s) = G(s)E(s)
E(s) = R(s) = B(s)
= R(s) — H(s)C(s)

eliminating E(s) from these equations gives

C(s) = G(s)[R(s) — H(s)C(s)]

() Gs)
R(s) 1+ G(s)H(s)

(3-3)

The transfer function relating C(s) to R(s) is called the closed-loop transfer function. This
transfer function relates the closed-loop system dynamics to the dynamics of the feed-
forward elements and feedback elements.

From Equation (3-3), C(s) is given by

C(s) = R(s)

G(s)
1+ G(s)H(s)

Thus the output of the closed-loop system clearly depends on both the closed-loop trans-
fer function and the nature of the input.
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Figure 3-6

(a) Cascaded system,;
(b) parallel system;
(c) feedback (closed-
loop) system.

Obtaining Cascaded, Parallel, and Feedback (Closed-Loop) Transfer Functions
with MATLAB. In control systems analysis, we frequently need to calculate the cas-
caded transfer functions, parallel-connected transfer functions, and feedback-connected
(closed-loop) transfer functions. MATLAB has convenient commands to obtain the cas-
caded, parallel, and feedback (closed-loop) transfer functions.

Suppose that there are two components Gy(s) and G,(s) connected differently as
shown in Figure 3-6, where

num?2
den2

numl ‘
Gy(s) = m, Gy(s) =

To obtain the transfer functions of the cascaded system, parallel system, or feedback
(closed-loop) system, the following commands may be used:

[num, den] = series(num1,den1,numz2,den2)
{num, den] = parallel{num1,den1,num2,den2)
[num, den] = feedback(num1,den1,num2,den2)

As an example, consider the case where

_ 10 _ numl Gy(s) = 5  num2
2+ 25+ 10 denl’ 2 s+5  den2

MATLAB Program 3-1 gives C(s)/R(s) = num/den for each arrangement of G,(s)
and G,(s). Note that the command

Gy(s)

printsys(num,den)

displays the num/den [that is, the transfer function C(s)/R(s)] of the system considered.

R(s) C(s)
() — Gy(s) Gyfs) e

Y

I Gi(s) ey

®) R(s) X C(s)
Gh(s) —J

C(s)

Y

R(s)
=~ > @ Gy(s)
© t
Gafs)
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Figure 3-7

Block diagram of an
industrial control
system, which
consists of an
automatic controller,
an actuator, a plant,
and a sensor :

(measuring element).
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MATLAB Program 3-1

numt = {0 O 10];

denl ={[1 2 10];

num2 = [0 5];

den2 = [1 5];

[num, den] = series(num1,den1,num2,den2);
printsys(num,den)

num/den =

50
sA3 4+ 7sM2 + 20s + 50

[num, den] = parallel(num1,den1,num2,den2);
printsys(num,den)

num/den =

5572 + 20s + 100
sA3 4+ 7sA2 + 20s + 50

[num, den] = feedback(num1,den1,num2,den2);
printsys(num,den)

num/den =

10s + 50
sA3 + 7s72 4+ 20s + 100

Automatic Controllers.

________________________

Automatic controller

An automatic controller compares the actual value of
the plant output with the reference input (desired value), determines the deviation, and
- produces a control signal that will reduce the deviation to zero or to a small value.
The manner in which the automatic controller produces the control signal is called
the control action. Figure 3-7 is a block diagram of an industrial control system, which

| Actuator e Plant

Amplifier

Actuating
error signal

Sensor -
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consists of an automatic controller, an actuator, a plant, and a sensor (measuring ele-
ment). The controller detects the actuating error signal, which is usually at a very low
power level, and amplifies it to a sufficiently high level. The output of an automatic
controller is fed to an actuator, such as an electric motor, a hydraulic motor, or a
pneumatic motor or valve. (The actuator is a power device that produces the input to
the plant according to the control signal so that the output signal will approach the
reference input signal.) _

The sensor or measuring element is a device that converts the output variable into
another suitable variable, such as a displacement, pressure, or voltage, that can be used
to compare the output to the reference input signal. This element is in the feedback path
of the closed-loop system. The set point of the controller must be converted to a refer-
ence input with the same units as the feedback signal from the sensor or measuring

-element. -

Classifications of Industrial Controllers. Industrial controllers may be classi-
fied according to their control actions as:

1. Two-position or on-off controllers

2. Proportional controllers

3. Integral controllers

4. Proportional-plus-integral controllers

5. Proportional-plus-derivative controllers

6. Proportional-plus-integral-plus-derivative controllers

Most industrial controllers use electricity or pressurized fluid such as oil or air as
power sources. Consequently, controllers may also be classified according to the kind of
power employed in the operation, such as pneumatic controllers, hydraulic controllers,
or electronic controllers. What kind of controller to use must be decided based on the
nature of the plant and the operating conditions, including such considerations as safety,
cost, availability, reliability, accuracy, weight, and size.

Two-Position or On~Off Control Action. In a two-position control system, the
actuating element has only two fixed positions, which are, in many cases, simply on and
off. Two-position or on—off control is relatively simple and inexpensive and, for this rea-
somn, is very widely used in both industrial and domestic control systems.

Let the output signal from the controller be u(z) and the actuating error signal be e(z).
In two-position control, the signal u(¢) remains at either a maximum or minimum value,
depending on whether the actuating error signal is positive or negative, so that

u(t) = U, fore(t) > 0
=U,, fore(t) <0

where U) and U, are constants. The minimum value U, is usually either zero or —Uj.
Two-position controllers are generally electrical devices, and an electric solenoid-oper-
ated valve is widely used in such controllers. Pneumatic proportional controllers with very
high gains act as two-position controllers and are sometimes called pneumatic two-
position controllers.
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Figure 3-8

(a) Block diagram of
an on—off controller;
(b) block diagram of
an on~off controller

with differential gap.

Figure 3-9

(a) Liquid-level
control system;

(b) electromagnetic
valve.
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Figures 3-8 (a) and (b) show the block diagrams for two-position or on—off con-
trollers. The range through which the actuating error signal must move before the switch-
ing occurs is called the differential gap. A differential gap is indicated in Figure 3-8(b).
Such a differential gap causes the controller output u(¢) to maintain its present value until
the actuating error signal has moved slightly beyond the zero value. In some cases, the
differential gap is a result of unintentional friction and lost motion; however, quite often
it is intentionally provided in order to prevent too frequent operation of the on-off
mechanism.

Consider the liquid-level control system shown in Figure 3-9(a), where the electro-
magnetic valve shown in Figure 3-9(b) is used for controlling the inflow rate. This valve
is either open or closed. With this two-position control, the water inflow rate is either a
positive constant or zero. As shown in Figure 3-10, the output signal continuously moves
between the two limits required to cause the actuating element to move from one fixed
position to the other. Notice that the output curve follows one of two exponential curves,
one corresponding to the filling curve and the other to the emptying curve. Such output
oscillation between two limits is a typical response characteristic of a system under two-
position control..

From Figure 3~10, we notice that the amplitude of the output oscillation can be
reduced by decreasing the differential gap. The decrease in the differential gap, howev-
er, increases the number of on-off switchings per minute and reduces the useful life of
the component. Thesmagnitude of the differential gap must be determined from such con-
siderations as the accuracy required and the life of the component.

Movable iron core

£t —0
[5v
| ~—r—20
gi ! <— Magnetic coil
e : Float

(@) b
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Figure 3-10

Level h(t) versus ¢
curve for the system
shown in Figure 3-9(a).
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Proportional Control Action. For a controller with proportional control action,
the relationship between the output of the controller u(¢) and the actuating error signal
e(t)is

u(t) = K,e(t)

or, in Laplace-transformed quantities,

Ues) _
E(s) Ky

where K, is termed the proportional gain.
Whatever the actual mechanism may be and whatever the form of the operating
power, the proportional controller is essentially an amplifier with an adjustable gain.

Integral Control Action. In a controller with integral control action, the value of
the controller output u(¢) is changed at a rate proportional to the actuating error signal
e(t). That is,

or
u(t) = Ki/() e(t)dr

where K; is an adjustable constant. The transfer function of the integral controller is

Uis) _ K
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Figure 3-11

Block diagram of a
proportional-plus-
integral-plus-

. derivative controller.
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Proportional-Plus-Integral Control Action. The control action of a proportional-
plus-integral controller is defined by

K, [t
u(t) = Kpe(t) + —/e(t)dl
T Jo
or the transfer function of the controller is
5 =l 7s)
— =K1+ —
E(s) r T;s

where T; is called the integral time.

Proportional-Plus-Derivative Control Action. The control action of a proportional-
plus-derivative controller is defined by

de(t)
u(t) = er(l) + KpTd7
and the transfer function is
U(s)
— =K (1 +
E(S) y p(l Tds>

where T, is called the derivative time.

Proportional-Plus-Integral-Plus-Derivative Control Action. The combination of
proportional control action, integral control action, and derivative control action is
termed proportional-plus-integral-plus-derivative control action. This combined action
has the advantages of each of the three individual control actions. The equation of a
controller with this combined action is given by

L

K, [t de(t)
u(t) = Kpe(t) + — [ e(t)dt + K, T,——
T, Ju dt

or the transfer function is

Lol L

I3

where K, is the proportional gain, 7; is the integral time, and T} is the derivative time.
The block diagram of a proportional-plus-integral-plus-derivative controller is shown in
Figure 3-11.

E6) | K1+ T+ T Tus?) | UG)
Tis o

+
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Figure 3-12
Closed-loop system
subjected to a
disturbance.

Disturbance
D(s)

R(s) C(s)
(S Gy(s) Ga(s)

H(s) j—=-

Closed-Loop System Subjected to a Disturbance. Figure 3-12 shows a closed-
loop system subjected to a disturbance. When two inputs (the reference input and dis-
turbance) are present in a linear system, each input can be treated independently of the
other; and the outputs corresponding to each input alone can be added to give the com-
plete output. The way each input is introduced into the system is shown at the summing
point by either a plus or minus sign.

Consider the system shown in Figure 3-12. In examining the effect of the distur-
bance D(s), we may assume that the reference input is zero; we may then calculate the
response Cp(s) to the disturbance only. This response can be found from

Cp(s) - Gy(s)
D(s) 1+ Gy(s)Gy(s)H(s)
On the other hand, in considering the response to the reference input R(s), we may

assume that the disturbance is zero. Then the response Cg(s) to the reference input R(s)
can be obtained from

Cr(s) _ Gi(5)Gy(s)
R(s) 1+ G(8)Gy(s)H(s)

The response to the simultaneous application of the reference input and disturbance
can be obtained by adding the two individual responses. In other words, the response
C(s) due to the simultaneous application of the reference input R(s) and disturbance
D(s) is given by

C(s)

Cr(s) + Cp(s)

_ Gy(s)
1+ Gi(s)Gy(s)H () [Gi(s)R(s) + D(s)]

Consider now the case where |G, (s)H(s)| > 1 and |G(s)G,{(s)H(s)! > 1. In this
case, the closed-loop transfer function Cp(s)/D(s) becomes almost zero, and the effect
of the disturbance is suppressed. This is an advantage of the closed-loop system.

On the other hand, the closed-loop transfer function Cr(s)/R(s) approaches 1/H (s)
as the gain of G;(s)G,(s)H (s) increases. This means that if |G{(s)G,(s)H (s)| > 1then
the closed-loop transfer function Cg(s)/R(s) becomes independent of G,(s) and G,(s)
and becomes inversely proportional to H(s) so that the variations of Gy(s) and G,(s)
do not affect the closed-loop transfer function Cg(s)}/R(s).This is another advantage of
the closed-loop system. It can easily be seen that any closed-loop system with unity feed-
back, H{s) = 1, tends to equalize the input and output.
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Figure 3-13

(a) RC circuit;

(b) block diagram
representing
Equation (3-6);

(c) block diagram
representing
Equation (3-7);

(d) block diagram of
the RC circuit.
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Procedures for Drawing a Block Diagram. To draw a block diagram for a sys-
tem, first write the equations that describe the dynamic behavior of each component.
Then take the Laplace transforms of these equations, assuming zero initial conditions,
and represent each Laplace-transformed equation individually in block form. Finally, as-
semble the elements into a complete block diagram.

As an example, consider the RC circuit shown in Figure 3-13(a). The equations for
this circuit are

. el e()
A= (3-4)
Sidt
€= e (3-5)
The Laplace transforms of Equations (3—4) and (3-5), with zero initial condition, become
Ei - EO
) = B = Eol) 56
R
1(s)
Eo(s) - Cs (3_'7)

Equation (3-6) represents a summing operation, and the corresponding diagram is
shown in Figure 3-13(b). Equation (3-7) represents the block as shown in Figure 3-13(c).
Assembling these two elements, we obtain the overall block diagram for the system as
shown in Figure 3-13(d).

Block Diagram Reduction. It is important to note that blocks can be connected
in series only if the output of one block is not affected by the next following block. If
there are any loading effects between the components, it is necessary to combine these
components into a single block.

Any number of cascaded blocks representing nonloading components can be
replaced by a single block, the transfer function of which is simply the product of the
individual transfer functions.

A complicated block diagram involving many feedback loops can be simplified by
a step-by-step rearrangement. Simplification of the block diagram by rearrangements

I(s)

R Ei(s) 1
C AYAVAVAV, O E —
e /;> C == €y Efs)

i 1
o O ()

(@)
i) 1 |E9) Ei(s) 1 1(s) 1 _ Eus)
| Cs R 1 cs - "

(@
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considerably reduces the labor needed for subsequent mathematical analysis. It should
be noted, however, that as the block diagram is simplified the transfer functions in new
blocks become more complex because new poles and new zeros are generated.

In simplifying a block diagram, remember the following.

1. The product of the transfer functions in the feedforward direction must remain
the same. :
2. The product of the transfer functions around the loop must remain the same.

EXAMPLE 3-2 Consider the system shown in Figure 3-14(a). Simplify this diagram.
By moving the summing point of the negative feedback loop containing H, outside the posi-
tive feedback loop containing H, , we obtain Figure 3-10(b). Eliminating the positive feedback loop,

H, |-
R C
H, -
Eer)
G
R C
(b) = Gy M1 G > Gs
H; -
H

G,
R GG C
O QI meem | '

@ R G,G,G3 c
Figure 3-14 1~ GG + GoG3H,
(a) Multiple-loop

system,;
(b)~(e) successive
reductions of the

R G1G2Gs C

block diagram shown >
in (a) (e) 1- GleHl + GoGiHp + GGG
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we have Figure 3-14(c). The elimination of the loop containing H,/G| gives Figure 3-14(d). Finally,
eliminating the feedback loop results in Figure 3-14(e).

Notice that the numerator of the closed-loop transfer function C(s)/R(s) is the product of the
transfer functions of the feedforward path. The denominator of C(s)/R(s) is equal to

1 (product of the transfer functions around each loop)
=1~ (G,G,H, — G,G;H, — G,G,G;)
=1- G]GQHI + GzG3H2 + GIG2G3

(The positive feedback loop yields a negative term in the denominator.)

3-4 MODELING IN STATE SPACE
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In this section we shall present introductory material on state-space analysis of control
systems.

Modern Control Theory. The modern trend in engineering systems is toward
greater complexity, due mainly to the requirements of complex tasks and good accu-
racy. Complex systems may have multiple inputs and multiple outputs and may be time
varying. Because of the necessity of meeting increasingly stringent requirements on
the performance of control systems, the increase in system complexity, and easy access
to large scale computers, modern control theory, which is a new approach to the analy-
sis and design of complex control systems, has been developed since around 1960. This
new approach is based on the concept of state. The concept of state by itself is not new
since it has been in existence for a long time in the field of classical dynamics and other
fields.

Modern Control Theory Versus Conventional Control Theory. Modern con-
trol theory is contrasted with conventional control theory in that the former is applica-
ble to multiple-input-multiple-output systems, which may be linear or nonlinear, time
invariant or time varying, while the latter is applicable only to linear time-invariant sin-
gle-input-single-output systems. Also, modern control theory is essentially a time-do-
main approach, while conventional control theory is a complex frequency-domain
approach. Before we proceed further, we must define state, state variables, state vector,
and state space.

State. The state of a dynamic system is the smallest set of variables (called stare
variables) such that the knowledge of these variables at r = 1, together with the knowl-
edge of the input for ¢ = ¢,, completely determines the behavior of the system for any
time 1 = f.

Note that the concept of state is by no means limited to physical systems. It is appli-
cable to biological systems, economic systems, social systems, and others.

State Variables. The state variables of a dynamic system are the variables mak-
ing up the smallest set of variables that determine the state of the dynamic system. If at
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least n variables x;, x,, ..., x,, are needed to completely describe the behavior of a dy-
namic system (so that once the input is given for t = ¢, and the initial state at ¢ = #, is
specified, the future state of the system is completely determined), then such n variables
are a set of state variables.

Note that state variables need not be physically measurable or observable quantities.
Variables that do not represent physical quantities and those that are neither measura-
ble nor observable can be chosen as state variables. Such freedom in choosing state vari-
ables is an advantage of the state-space methods. Practically, however, it is convenient
to choose easily measurable quantities for the state variables, if this is possible at all, be-
cause optimal control laws will require the feedback of all state variables with suitable
weighting. '

State Vector. If n state variables are needed to completely describe the behavior
of a given system, then these # state variables can be considered the n components of a
vector x. Such a vector is called a state vector. A state vector is thus a vector that deter-
mines uniquely the system state x(¢) for any time ¢ = ¢,, once the state at¢ = #,is given
and the input u(¢) for ¢ = 1, is specified.

~ State Space. The n-dimensional space whose coordinate axes consist of the x;
axis, x, axis, ..., x, axis, where x;, x,..., X, are state variables; is called a state space. Any
state can be represented by a point in the state space.

State-Space Equations. In state-space analysis we are concerned with three types
of variables that are involved in the modeling of dynamic systems: input variables, out-
put variables, and state variables. As we shall see in Section 3-5, the state-space repre-
sentation for a given system is not unique, except that the number of state variables is
the same for any of the different state-space representations of the same system.

The dynamic system must involve elements that memorize the values of the input for
t = t,. Since integrators in a continuous-time control system serve as memory devices,
the outputs of such integrators can be considered as the variables that define the inter-
nal state of the dynamic system. Thus the outputs of integrators serve as state variables.
The number of state variables to completely define the dynamics of the system is equal
to the number of integrators involved in the system.

Assume that a multiple-input-multiple-output system involves » integrators. Assume
also that there are r inputs u(t), uy(t), ..., u,(t) and m outputs y,(¢), yo(t), ..., y(t).
Define n outputs of the integrators as state variables: x(t), x,(¢), ..., x,(¢) Then the
system may be described by

xl(t) = fl(xl) X5 eees Xpy Ug, Upy ooy Uy t)
x2(t) = fZ(xl’ X veny Xy Uy Upy oon s Uy t)

(3-8)
xn(t) = fn(xl’ Xoy e s Xps Uy, Upyee oo, Uy, t)
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Ax(t)

y(?)

The outputs y(t), v,(t), ...

, V(1) of the system may be given by

yl(t) = gl(xh Xoyoee s Xps U, Upy ooy Uy t)

yz(t) = g2<x1’x29"'7xn; ul7u25 5ur; t)

ym(t) = gm(xla Xy ey Xy Upy Uy ooy Uy t)

If we define

[ x () ]
x,(t)

, f(x,u,¢) =

, g(x,u, 1) =

_y/ﬂ([) -

mfl(xl,xz,‘..
flxy, xa, ..

Lfn(xla Xoyenn
gl(xlaxz,m
gz(xl, Xoyuns

Lgm(xl’ Xy ene

oo

,Xn;l/ll,le,...,U,;t)
sy Xps U, Uny ooy Uy, t)
)
s Ky Uy, Upy oony Uy [)_
. . B
s Xpy Ugy Ugy ooy Uy t)
s Xps Upy Upy oo ,Ltr;t>
)
s Xps Uyp, Ugs ooy Uy t)_

then Equations (3-8) and (3-9) become

X

() = f(x,u, )

y(f) = g(x,u,0)

(3-9)

uy(2)

uy(t)

(3-10)
(3-11)

where Equation (3-10) is the state equation and Equation (3—-11) is the output equation.
If vector functions f and/or g involve time ¢ explicitly, then the system is called a time-

varying system.

If Equations (3—10) and (3-11) are linearized about the operating state, then we

have the following linearized state equation and output equation:

x(1) =
y(1) =

A(D)x(r) + B()u(r)
C(1)x(r) + D()u(r)

(3-12)
(3-13)

where A (1) is called the state matrix, B(¢) the input matrix, C(¢) the output matrix, and
D(¢) the direct transmission matrix. (Details of linearization of nonlinear systems about
the operating state are discussed in Section 3-10.) A block diagram representation of
Equations (3—-12) and (3-13) is shown in Figure 3-15.
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Figure 3-15
Block diagram of the

" linear, continuous-

time control system
represented in state
space.

EXAMPLE 3-3

[:l )
5 (mE
T

Figure 3-16
Mechanical system.

j D(®)

u() x(1) X(® ¥
B() far C

A K

If vector functions f and g do not involve time ¢ explicitly then the system is called a
time-invariant system. In this case, Equations (3-12) and (3~13) can be simplified to

x(z) = Ax(t) + Bu(z) (3-14)
y(t) = Cx(¢) + Du(r) (3-15).

Equation (3-14) is the state equation of the linear, time-invariant system.

Equation (3-15) is the output equation for the same system. In this book we shall be
concerned mostly with systems described by Equations (3-14) and (3-15).

In what follows we shall present an example for deriving a state equation and output
equation.

Consider the mechanical system shown in Figure 3-16. We assume that the system is linear. The
external force u(t) is the input to the system, and the displacement y(¢) of the mass is the output.
The displacement y(t) is measured from the equilibrium position in the absence of the external
force. This system is a single-input—single-output system.
From the diagram, the system equation is
my + by + ky =u (3-16)

This system is of second order. This means that the system involves two integrators. Let us define
state variables x;(t) and x,(¢) as

xi() = y(¢)

x(t) = y(1)
Then we obtain

X1 = X

, 1 . 1
x2=E(——ky-—by) +*";u

or
)‘Cl = X, (3—‘17)
) k b 1
xzz—le—szﬂ-;u (3-18)
The output equation is
Yy =X (3—19)

In a vector-matrix form, Equations (3-17) and (3-18) can be written as
A 0 1 . 0
[,1:| =i k b [ 1} +1 1 |u (3-20)
m  m m
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The output equation, Equation (3-19), can be written as

=1 0][2] (3-21)

Equation (3-20) is a state equation and Equation (3-21) is an output equation for the system.
Equations (3-20) and (3-21) are in the standard form:

x = Ax + Bu
y=Cx + Du
where
0 1 0
A _f_ _ﬁ , B 1 R C=1[1 0], D=0
m m m

Figure 317 is a block diagram for the system. Notice that the outputs of the integrators are state
variables.

Figure 317
Block diagram of the
mechanical system

shown in Figure 3-16.
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Correlation Between Transfer Functions and State-Space Equations. In what
follows we shall show how to derive the transfer function of a single-input-single-out-
put system from the state-space equations.

Let us consider the system whose transfer function is given by

Y(s)
U(s)

= G(s) . (3-22)

This system may be represented in state space by the following equations:
- Xx=Ax+ Bu - (3-23)
y=Cx+ Du (3-24)

where x is the state vector, u is the input, and y is the output. The Laplace transforms of
Equations (3-23) and (3-24) are given by

sX(s8) — x(0) = AX(s) + BU(s) (3-25)
Y(s) = CX(s) + DU(s) (3-26)
u % L X j o f X =y
D] 2 |
k -

Chapter 3 / Mathematical Modeling of Dynamic Systems



EXAMPLE 3-4

Since the transfer function was previously defined as the ratio of the Laplace transform
of the output to the Laplace transform of the input when the initial conditions were
zero, we set x(0) in Equation (3-25) to be zero. Then we have

sX(s) — AX(s) = BU(s)
or
(sT — A)X(s) = BU(s)
By premultiplying (sI — A)™ to both sides of this last equation, we obtain
X(s) = (sI — A)'BU(s) (3-27)
By substituting Equation (3-27) into Equatioh (3-26), we get
Y(s) = [C(sI — A)'B + D]U(s) (3-28)
Upon comparing Equation (3-28) with Equation (3-22), we see that
G(s) =C(sI—A)'B+D (3-29)

This is the transfer-function expression of the system in terms of A, B, C, and D.
Note that the right-hand side of Equation (3-29) involves (s — A)~". Hence G(s)
can be written as

Q(s)

O = - al

where Q(s) is a polynomial in s. Therefore, |sI — A| is equal to the characteristic poly-
nomial of G(s). In other words, the eigenvalues of A are identical to the poles of G(s).

Consider again the mechanical system shown in Figure 3-16. State-space equations for the system
are given by Equations (3-20) and (3-21). We shall obtain the transfer function for the system from
the state-space equations.

By substituting A, B, C, and D into Equation (3-29), we obtain

G(s) = C(s1 — A)'B + D

Since
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we have

b
1 St o
Gs) =11 0] 7 P I
P —s+ =] —= s i =
m m m m
I S
ms? + bs + k

which is the transfer function of the system. The same transfer function can be obtained from
Equation (3-16).

Transfer Matrix. Next, consider a multiple-input-multiple-output system. Assume

that there are r inputs u,, u,, ... , u,, and moutputs y, y,, ..., y,,. Define
' N FM
Y2 U
y = s u=
L ym I L ui’ —

The transfer matrix G(s) relates the output Y(s) to the input U(s), or
Y(s) = G(s)U(s)
where G(s) is given by
G(s)=C(sI-A)'B+D
[The derivation for this equation is the same as that for Equation (3-29).] Since the

input vector uis r dimensional and the output vector y is 7 dimensional, the transfer ma-
trix G(s) is an m X r matrix.

3-5 STATE-SPACE REPRESENTATION OF DYNAMIC SYSTEMS
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A dynamic system consisting of a finite number of lumped elements may be described
by ordinary differential equations in which time is the independent variable. By use of
vector-matrix notation, an nth-order differential equation may be expressed by a first-
order vector-matrix differential equation. If n elements of the vector are a set of state
variables, then the vector-matrix differential equation is a state equation. In this section
we shall present methods for obtaining state-space representations of continuous-time
systems.

State-Space Representation of nth-Order Systems of Linear Differential Equa-
tions in which the Forcing Function Does Not Involve Derivative Terms. Con-

sider the following nth-order system:
NONERCEEY
y+ ay +-+a,y+a,y=u (3-30)

(n=1) .
Noting that the knowledge of y(0), ¥(0),..., vy (0), together with the input u(t) for
t = 0, determines completely the future behavior of the system, we may take
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y(t), y(t), ..., v yl)(t) as a set of # state variables. (Mathematically, such a choice of state
variables is quite convenient. Practically, however, because higher-order derivative terms
are inaccurate, due to the noise effects inherent in any practical situations, such a choice
of the state variables may not be desirable.)

Let us define -

X1 =Yy

X, =y
(n-1)

X, =Y

Then Equation (3-30) can be written as

Xy = Xy
)&2 = X3
Xp-1 = Xn
Xp=aX; — ' — X, + U
or
x = Ax + Bu (3-31)
where o
o 0 1 0 0]
! 0 0 1 0 0
Xy :
X = 5 A = » B =
N 0 0 0 1 _
- L~ Gn —8n-1 _an—-Z" o Tay | ...1_ X

The output can be given by

Xy
X3

| Xn_i
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or
y=Cx (3-32)
where
C=[1 0 - 0]

[Note that D in Equation (3-24) is zero.] The first-order differential equation, Equa-
tion (3-31), is the state equation, and the algebraic equation, Equation (3-32), is the
output equation.
Note that the state-space representation for the transfer function system
Y(s) 1

U(s) s"+as" '+ +a,_s+a,

is given also by Equation (3-31) and (3-32).

State-Space Representation of nth Order Systems of Linear Differential Equa-
tions in which the Forcing Function Involves Derivative Terms. Consider the dif-

ferential equation system that involves derivatives of the forcing function, such as

() (n—1) . (n) (n—1) .
y+a y +--+a,yta,y=bu+b u +--+b_u+bu (3-33)

The main problem in defining the state variables for this case lies in the derivative
terms. The state variables must be such that they will eliminate the derivatives of u in the

state equation.
One way to obtain a state equation and output equation is to define the following n

variables as a set of n state variables:
X =y~ Bou
Xy =y — Bott — Bu =X — Pu

X3 =Y — Boii — Pt — Bou = %y — Pou

(3-34)
(n—1) (n—1) (n—2) . .
X, = y — By — Bu — = Byt — Byu = Xy — Baoil
where B, 81, B2, .- , B, are determined from

Bo = by

Bi = b — afy

Br=b, — aB1 ~ a5

=b;—a18, —a - a
B3 3 18 251 380 (3-35)

Bn = bn - aan*l - an—lﬁl - anBO
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With this choice of state variables the existence and uniqueness of the solution of the
state equation is guaranteed. (Note that this is not the only choice of a set of state vari-
ables.) With the present choice of state variables, we obtain

).Cl ZX2+ﬁ1M

jCz = X3 + Bzu
(3-36)

xn—l = Xn + Bn—lu

X = —a@,X] — Qp_1Xy — " — a1 X, + B,u

[To derive Equation (3-36), see Problem A-3-6.] In terms of vector-matrix equations,
Equation (3-36) and the output equation can be written as

i 0 1 0o - 0 X B
)'Cz 0 0 1 0 X9 BZ
= + u
Xn—l 0 0 0 1 Xn-1 :Bn—l
L- xn = .=, —Oup-1 an— —ap L. *n _| L Bn _
_x1_
X2
y=1[1 0 - 0]| |+Bu
L Xn_]
or
x = Ax + Bu (3-37)
y =Cx + Du (3-38)
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EXAMPLE 3-5

where

Xy 0 1 0 - 0
% Jo o 1 0
X = , A=
Xn—1 0 0 0 1
L *n _| L~y —ap— ap-2 —ap_]
- B, -
B
B = , C=[1 0 O], D=B0=b0
Bn—l
L Bn -

In this state-space representation, matrices A and C are exactly the same as those for
the system of Equation (3-30). The derivatives on the right-hand side of Equation (3-33)
affect only the elements of the B matrix.

Note that the state-space representation for the transfer function

Y(S) _ bosn + b1S”41 + e+ b,,_ls + bn
U(s) s"+ais" '+ +a,5+a,

is given also by Equations (3-37) and (3-38).

There are many ways to obtain state-space representations of systems. Some of them
are presented in this chapter. Methods for obtaining canonical representations of systems
in state space (such as controllable canonical form, observable canonical form, diagonal
canonical form, and Jordan canonical form) are presented in Chapter 11.

MATLAB can be used to obtain state-space representations of systems from trans-
fer function representations, and vice versa. This subject is presented in Section 3-6.

Consider the spring-mass-dashpot system mounted on a massless cart as shown in Figure 3-18. A
dashpot is a device that provides viscous friction, or damping. It consists of a piston and oil-filled
cylinder. Any relative motion between the piston rod and the cylinder is resisted by the oil because
the oil must flow around the piston (or through orifices provided in the piston) from one side of
the piston to the other. The dashpot essentially absorbs energy. This absorbed energy is dissipat-
ed as heat, and the dashpot does not store any kinetic or potential energy. The dashpot is also
called a damper.

Let us obtain mathematical models of this system by assuming that the cart is standing still for
¢t < 0 and the spring-mass-dashpot system on the cart is also standing still for ¢ < 0. In this sys-
tem, u(t) is the displacement of the cart and is the input to the system. At¢ = 0, the cart is moved
at a constant speed, or # = constant. The displacement y(¢) of the mass is the output. (The dis-
placement is relative to the ground.) In this system, m denotes the mass, b denotes the viscous fric-
tion coefficient, and k denotes the spring constant. We assume that the friction force of the dashpot
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Figure 3-18
Spring-mass-
dashpot system
mounted on a cart.

—» U —>y
)
Massless cart k
AAAA
\ YYYY
m
=B
b

O/ 7|
@) )

is proportional to y — i and that the spring is a linear spring; that is, the spring force is propor-
tionalto y — u.
For translational systems, Newton’s second law states that

ma=2F

where m is a mass, a is the acceleration of the mass, and X F is the sum of the forces acting on the
mass in the direction of the acceleration a. Applying Newton’s second law to the present system
and noting that the cart is massless, we obtain

d?y dy du
G- 8) s
or
d?y dy du
— +b—+ky=b—+
mdt2 bdt ky bdt ku

This equation represents a mathematical model of the system considered. Taking the Laplace
transform of this last equation, assuming zero initial condition, gives

(ms® + bs + k)Y (s) = (bs + k)U(s)

Taking the ratio of ¥ (s) to U{(s), we find the transfer function of the system to be

Y(s +
Transfer function = G(s) = UE s§ = zbi b k+ k
ms N

Such a transfer function representation of a mathematical model is used very frequently in con-
trol engineering.
Next we shall obtain a state-space model of this system. We shall first compare the differen-
tial equation for this system
'y'+£jz+£y=£—b‘t+~k—u
m m m m
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with the standard form
V+ay+ayy=byli + biu+ bu

and identify a,, a,, by, b,, and b, as follows:

b b k
;7 a; = 3 bO::O’ blz_n;7 b2=;

ay =
Referring to Equation (3-35), we have
Bo=by =10
ﬁlzbl_fhﬁoz”rb;

k 2
B = by~ a8y — azﬁo=;_ <_)

Then, referring to Equation (3-34), define

Xy =y~ Bu=y

i

Xz

X~ Bu=x——u
m

From Equation (3-36) we have

X1 =%, + B =x +-—u

m
) k b k 2
Xy ==Xy — Xy + fou = ——x; —~—x, + {—“ - <—> ]u
m m m m

and the output-equation becomes

; y=x
or
b
X1 0 1 X1 ;
[} kb []+ (2 “ (3-39)
m m - -
m m .
and
y =11 O][ii (3-40)

Equations (3-39) and (3-40) give a state-space representation of the system. (Note that this is
not the only state-space representation. There are infinitely many state-space representations for
the system.)

82

Chapter 3 / Mathematical Modeling of Dynamic Systems



3-6 TRANSFORMATION OF MATHEMATICAL MODELS WITH MATLAB

MATLAB is quite useful to transform the system model from transfer function to state
space, and vice versa. We shall begin our discussion with transformatlon from transfer
function to state space. ’

Let us write the closed-loop transfer function as

Y(s)  numerator polynomial in s num

U(s) denominator polynomial in s ~ den

Once we .have this transfer-function expression, the MATLAB command
’ [A, B, C, D] = tf2ss(num,den)

will give a state-space representation. It is important to note that the state-space repre-
sentation for any system is not unique. There are many (infinitely many) state-space
representations for the same system. The MATLAB command gives one possible such
state-space representation.

Transformation From Transfer Function to State Space. Consider the trans-
fer function system ‘

Y(s) _ s
U(s) (s + 10)(s® + 4s + 16)
N
= 341
s° + 145% + 565 + 160 (3-41)

There are many (infinitely many) possible state-space representations for this system.
One possible state-space representation is

3 0 1 0][x
X, |'= 0 0 1||x|+ 1 |u
3 ~160 —56 —14 || x5 | | -14 |
X1
y=1[1 0 0} x, | + [0O]u
X3

Another possible state-space representation (among infinitely many alternatives) is

i 14 -56 -160"|[ x, 1
nl=1 1 0 ollx|+]|o0] (3-42)
: .
y=[0 1 0]f x, | + 0w (3-43)
. X3

’
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MATLAB transforms the transfer function given by Equation (3-41) into the state-
space representation given by Equations (3-42) and (3-43). For the example system
considered here, MATLAB Program 3-2 will produce matrices A, B, C,and D.

MATLAB Program 3-2
num=[0 0 1 O]
den=[1 14 56 160];
[A,B,C,D] = tf2ss(num,den)
A=
-14 56 -160

1 0 0

0 1 0
B =

1

0

0
C=

0 1 0
D=

0"

Transformation From State Space to Transfer Function. To obtain the trans-
fer function from state-space equations, use the following command:

{num,den] = ss2tf(A,B,C,D,iu)

iu must be specified for systems with more than one input. For example, if the system
has three inputs (u1, u2, u3), then iu must be either 1, 2, or 3, where 1 implies ul. 2
implies #2, and 3 implies u3. .

If the system has only one input, then either

fnum,den] = ss2tf(A,B,C,D)
or
[num,den] = $s2tf(A,B,C,D,1)

may be used. For the case where the system has multiple inputs and multiple outputs,
see Problem A-3-13.
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EXAMPLE 3-6 Obtain the transfer function of the system defined by the following state-space equations:

X4 0 1 04l x 0
X, | = 0 0 1 x, | + 25 u
X3 -5 =25 -5 X3 -120
Xy
y=[1 0 0} x
X3

MATLAB Program 3-3 will produce the transfer function for the given system. The transfer func-
tion obtained is given by

Y(s) 255 + 5

U(s) s>+5s2+255+5

MATLAB Program 3-3
A=[0 1 0; 0 0 1, -5 -25 -5];

B = [0; 25; -120];
C=[1 0o 0]
D = [0];

[num,den] = ss2tf(A,B,C,D)
num =
0 0.0000 25.0000 5.0000
den
1.0000 -5.0000 25.0000 5.0000
% sxx4% The same result can be obtained by entering the following command: *****
[num,den] = ss2tf(A,B,C,D,1)
num =
0 0.0000 25.0000 5.0000
den =
1.0000 5.0000 25.0000 5.0000

3-7 MECHANICAL SYSTEMS

In this section we shall discuss mathematical modeling of mechanical systems. The fun-
damental law governing mechanical systems is Newton’s second law. It can be applied
to any mechanical system. In this section we shall derive mathematical models of three
mechanical systems. (Mathematical models of additional mechanical systems will be
derived and analyzed throughout the remaining chapters.)
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EXAMPLE 3-7

Figure 3-19
Mechanical system.

EXAMPLE 3-8

86

Obtain the transfer functions X;(s)/U(s) and X,(s)/U(s) of the mechanical system shown in
Figure 3-19.
The equations of motion for the system shown in Figure 3-19 are

myxy = —kix; — ky(x; — x,) — bk, — i) + u
My, = —ksxy — ko(xy — x;) — b3, — )
Simplifying, we obtain
myxy + biy + (ky + ky)x, = bxy + kyxy + u
my¥, + biy, + (ky + ka)x, = by + kax,
Taking the Laplace transforms of these two equations, assuming zero initial conditions, we obtain
[my s + bs + (ky + k)| X\ (s) = (bs + kp)Xo(s) + U(s) (3-44)
[mys? + bs + (ky + k)| Xo(s) = (bs + kp) Xy (s) (3-45)

Solving Equation (3-45), for X,(s) and substituting it into Equation (3-44) and simplifying, we
get

[(mlsz + bs + ky + ky)(mys® + bs + ky + ki) — (bs + kz)z]Xl(s)
= (mys* + bs + ky + k3)U(s)

from which we obtain

Xy(s) m,s° + bs + k, + ki (3.46)
U(s)  (mys® + bs + ky + ky)(mys® + bs + ky + ks) — (bs + k)’

From Equations (3-45) and (3-46) we have
Xz(S) - bs + k2 (3_47)

U(S) (m132 + bs + k1 + kz)(mzsz + bs + kz + k3) - (bs + k2)2

Equations (3-46) and (3-47) are the transfer functions X, (s)/U(s) and X,(s)/U(s), respectively.

u — X} [~ X2
7
L k2
My
—AWy my "y M
' 0 b
[ONO) Q) () 7
”

An inverted pendulum mounted on a motor-driven cart is shown in Figure 3-20(a). This is a model
of the attitude control of a space booster on takeoff. (The objective of the attitude control prob-
lem is to keep the space booster in a vertical position.) The inverted pendulum is unstable in that
it may fall over any time in any direction unless a suitable control force is applied. Here we consider
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Figure 3-20

(a) Inverted
pendulum system;
(b) free-body
diagram.
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(b)

only a two-dimensional problem in which the pendulum moves only in the plane of the page. The
control force u is applied to the cart. Assume that the center of gravity of the pendulum rod is at
its geometric center. Obtain a mathematical model for the system.

Define the angle of the rod from the vertical line as 0. Define also the (x, y) coordinates of
the center of gravity of the pendulum rod as (xG, yG). Then

x + lsin@

Xg

yg = [cos@
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EXAMPLE 3-9

To derive the equations of motion for the system, consider the free-body diagram shown in
Figure 3-20(b). The rotational motion of the pendulum rod about its center of gravity can be
described by

16 = Vising — Hlcos@ (3-48)

where [ is the moment of inertia of the rod about its center of gravity.
The horizontal motion of center of gravity of pendulum rod is given by

2

d
mEZ (x + Isinf) = H (3-49)

The vertical motion of center of gravity of pendulum rod is

d2
mo7 (lcosB) =V — mg (3-50)
The horizontal motion of cart is described by
d*x
M W =u—H . (3—51)

Since we must keep the inverted pendulum vertical, we can assume that 6(z) and 0(t) are
small quantities such that sin@ = 0,cos# = 1,and 86° = 0. Then, Equations (3-48) through (3-50)
can be linearized. The linearized equations are

16 = Vie — HI (3-52)
m(% +16) = H (3-53)
0=V -mg » (3-34)
From Equations (3-51) and (3-53), we obtain
(M + m)x + mlf =u (3-55)

From Equations (3-52), (3-53), and (3~54), we have
16 = mglo — HI
= mgl — [(mx + mlf)
or
(I + mi*)§ + ml% = mglo (3-56)

Equations (3-55) and (3-56) describe the motion of the inverted-pendulum-on-the-cart system.
They constitute a mathematical model of the system.

Consider the inverted pendulum system shown in Figure 3-21. Since in this system the mass is con-
centrated at the top of the rod, the center of gravity is the center of the pendulum ball. For this
case, the moment of inertia of the pendulum about its center of gravity is small, and we assume
I = 0in Equation (3-56). Then the mathematical model for this system becomes as follows:

(M + m)x +mlf =u (3-57)
ml*6 + mlx¥ = mglo (3-58)
Equations (3-57) and (3-58) can be modified to
| Mif = (M +m)gh — u (3-59)
Mx = u ~ mgo (3-60)
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Figure 3-21
Inverted-pendulum
system.
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Equation (3-59) was obtained by eliminating ¥ from Equations (3-57) and (3-58). Equation
(3-60) was obtained by eliminating 6 from Equations (3-57) and (3-58). From Equation (3-59)
we obtain the plant transfer function to be '

O(s) _ 1
-U(s) Mis* — (M + m)g
B 1
M+ m M+ m
Ml<s + YT g><s - M g>

The inverted pendulum plant has one pole on the negative real axis [s = (VM + m/VMI)Vz]
and another on the positive real axis [s = (VM + m/VMI)Vg]. Hence, the plant is open-loop
unstable.

Define state variables xq, x,, x3, and x, by

xy =10
X, =46
X3 =X
X4 = X

Note that angle 0 indicates the rotation of the pendulum rod about point P, and x is the location
of the cart. If we consider 8 and x as the outputs of the system, then

SMEMEM

(Notice that both 6 and x are easily measurable quantities). Then, from the definition of the state
variables and Equations (3-59) and (3-60), we obtain

X, = x,

o MEm 1
2= Ty 8T
)‘C3=X4

. m 1
x4=—~M-gxl+—Mu
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In terms of vector-matrix equations, we have

C 0 1 0 0] 0 ]
K Memeooof™ - L
X9 _ Ml Xy 4 Ml 3-61
is 0 00 1| x o | (3-61)
L X4 _m X4 1
Tt 00 04 a
Xy
'w] 1 0 0 0] x
Lyl L0 0 1 0[] x (3-62)
X4

Equations (3-61) and (3-62) give a state-space representation of the inverted pendulum system.
(Note that state-space representation of the system is not unique. There are infinitely many such
representations for this system.

3-8 ELECTRICAL AND ELECTRONIC SYSTEMS

Figure 3-22
Electrical circuit.

20

Basic laws governing electrical circuits are Kirchhoff’s current law and voltage law.
Kirchhoff’s current law (node law) states that the algebraic sum of all currents entering
and leaving a node is zero. (This law can also be stated as follows: The sum of currents
entering a node is equal to the sum of currents leaving the same node.) Kirchhoff’s volt-
age law (loop law) states that at any given instant the algebraic sum of the voltages
around any loop in an electrical circuit is zero. (This law can also be stated as follows:
The sum of the voltage drops is equal to the sum of the voltage rises around a loop.) A
mathematical model of an electrical circuit can be obtained by applying one or both of
Kirchhoff’s laws to it.

This section first deals with simple electrical circuits and then treats mathematical
modeling of operational amplifier systems.

LRC Circuit. Consider the electrical circuit shown in Figure 3-22. The circuit con-
sists of an inductance L (henry), a resistance R (ochm), and a capacitance C (farad).
Applying Kirchhoff’s voltage law to the system, we obtain the following equations:

di 1
L 7 Ri c / idt = ¢ ( )
L / idt=e (3-64)
C [
L R
o——uIN —MW °
€i c== €y
i
oO— O
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Figure 3-23
Electrical system.

Equations (3-63) and (3-64) give a mathematical model of the circuit.

A transfer function model of the circuit can also be obtained as follows: Taking the
Laplace transforms of Equations (3-63) and (3-64), assuming zero initial conditions,
we obtain

LsI(s) + RI(s) + %%I(s) = Ei(s)
2L 1(s) = Eifs)

If e; is assumed to be the input and e, the output, then the transfer function of this system

is found to be
E(s) _ 1
E(s) LCs*-+ RCs + 1

(3-65)

State-Space Representation. A state-space model of the system shown in
Figure 3-22 may be obtained as follows: First, note that the differential equation for the
system can be obtained from Equation (3-65) as

1
Ey ke, t e, =

L™ " c™ LC
Then by defining state variables by

€;

X1 = €
Xy = éo
and the input and output variables by
u =g
y =€ =X
we obtain
, 0 1 —~ 0
X1 X1
[;. :| = 1 R + 1 ju
X, —_— - x; —_—
LC L |- LC
and
X1
=1 0
y= ]_xz_

These two equations give a mathematical model of the system in state space.

Transfer Functions of Cascaded Elements. Many feedback systems have com-
ponents that load each other. Consider the system shown in Figure 3-23. Assume that
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¢;is the input and e, is the output. The capacitances C; and C, are not charged initially.
It will be shown that the second stage of the circuit (R, C, portion) produces a loading
effect on the first stage (R, C portion). The equations for this system are

1
E (ll - 12) dt + Rlil = ¢ (3—66)
{
and
. . 1 /.
—C—,l— (iy = iy)dt + Ryiy + G /12 dt=10 (3-67)
1 .
62 dt=e, (3-68)

Taking the Laplace transforms of Equations (3-66) through (3-68), respectively, using
zero initial conditions, we obtain

el = K] + R = E() (3-69)
slhs) = 1)) + Robls) + G5 bs) = 0 (3-70)
é;h(s) ~ E,(s) (3-71)

Eliminating /;(s) from Equations (3-69) and (3-70) and writing E;(s) in terms of I,(s),
we find the transfer function between E, (s) and E(s) to be

E,(s) !

E(s) (R,Cs+ 1)(R,Cos + 1) + RCys
_ 1
R, CiRyCys* + (R,Cy + RC, + R Gy)s + 1

(3-72)

The term R, C,s in the denominator of the transfer function represents the interaction
of two simple RC circuits. Since (R,C; + R,C, + R, C2)2 > 4R,C R,C,, the two roots
of the denominator of Equation (3-72) are real.

The present analysis shows that, if two RC circuits are connected in cascade so
that the output from the first circuit is the input to the second, the overall transfer
function is not the product of 1/(R,C,s + 1) and 1/(R,C,s + 1). The reason for this
is that, when we derive the transfer function for an isolated circuit, we implicitly as-
sume that the output is unloaded. In other words, the load impedance is assumed to
be infinite, which means that no power is being withdrawn at the output. When the sec-
ond circuit is connected to the output of the first, however, a certain amount of power
is withdrawn, and thus the assumption of no loading is violated. Therefore, if the trans-
fer function of this system is obtained under the assumption of no loading, then it is
not valid. The degree of the loading effect determines the amount of modification of
the transfer function.
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Figure 3-24
Electrical circuits.

€; % €

(a) (b)

Complex Impedances. In deriving transfer functions for electrical circuits,
we frequently find it convenient to write the Laplace-transformed equations
directly, without writing the differential equations. Consider the system shown in
Figure 3-24(a). In this system, Z; and Z, represent complex impedances. The
complex impedance Z(s) of a two-terminal circuit is the ratio of E(s), the Laplace
transform of the voltage across the terminals, to I(s), the Laplace transform of
the current through the element, under the assumption that the initial conditions
are zero, so that Z(s) = E(s)/I(s). If the two-terminal elements is a resistance R,
capacitance C, or inductance L, then the complex impedance is given by R, 1/Cs,
or Ls, respectively. If complex impedances are connected in series, the total
impedance is the sum of the individual complex impedances.

Remember that the impedance approach is valid only if the initial conditions
involved are all zeros. Since the transfer function requires zero initial conditions, the
impedance approach can be applied to obtain the transfer function of the electrical cir-
cuit. This approach greatly simplifies the derivation of transfer functions of electrical
circuits.

Consider the circuit shown in Figure 3-24(b). Assume that the voltages ¢; and e, are
the input and output of the circuit, respectively. Then the transfer function of this
circuit is

E,(s) Z,(s)
Es)  Zi(s) + Zy(s)

For the system shown in Figure 3-22,

1
ZIZLS+R, ZQZE“
S

Hence the transfer function E,(5)/E;(s) can be found as follows:

1
Eo(s) _ Cs ~ 1
(s) - 2
E(s) Is+ R+ 1 LCs*+ RCs + 1

Cs

which is, of course, identical to Equation (3-65).
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EXAMPLE 3-10

Figure 3-25

(a) The circuit of
Figure 3-23 shown in
terms of impedances;
(b) equivalent circuit
diagram.

Consider again the system shown in Figure 3-23. Obtain the transfer function E,(s)/E,(s) by use
of the complex impedance approach. (Capacitors C; and C, are not charged initially.)

The circuit shown in Figure 3-23 can be redrawn as that shown in Figure 3-25(a), which can
be further modified to Figure 3-25(b).

In the system shown in Figure 3-25(b) the current I is divided into two currents /, and I,.
Noting that

Z,[, =(Zs+ Z)L,, L+L=1
we obtain

[zﬁ[ I = Z I
VU, + 72+ 2, 2Tz, 2+ 7,

Noting that

Z(Z5 + Zy)
E,-(S) =z, + Z,], = | Z m

B B Z:Z,
Efs) = 2= 77

we obtain
E(s) Z,Z,

E(s) Z(Zy,+ Zy+ Zy) + ZJ(Z; + Z,)

Substituting Z, = Ry, Z, = 1/(C1s), Zs = Ry, and Z, = 1/(C,s) into this last equation, we get

11
EO(S _ Cls C2S
E,(s)‘<1 1) 1( 1>
+ R 4|+ —— —
Rl C[ R2 C2S CLS 2 C2S
1

© RICR,Cys* + (R,C + R,Cy + RIGy)s + 1

which is the same as that given by Equation (3-72).

I
Oo—>r Z
1 * 12
Z
o Z Z %) | 7 }
—_—0
Egs) Z
E{s) Zy Z4 Eo(s) Z4 E(s)
0
o o) o -0

@ ®)
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Xi(s)

Xa(s) - Xs(s) X,(s) X3(s)

Gy(s) | Go(s) - ——ee| G (5) GaA) -

Figure 3-26

(2) ®

(a) System consisting of two nonloading cascaded elements; (b) an equivalent system.

Figure 3-27
Electrical system.

Transfer Functions of Nonloading Cascaded Elements. The transfer function
of a system consisting of two nonloading cascaded elements can be obtained by elimi-
nating the intermediate input and output. For example, consider the system shown in
Figure 3-26(a). The transfer functions of the elements are

Xa(s) X3(s)
= and Gy(s) =
X,(5) © %
If the input impedance of the second element is infinite, the output of the first element

is not affected by connecting it to the second element. Then the transfer function of the
whole system becomes

G(s)

L Xs(s) _ Xa(s) Xs(s)
X,(s) X (s)Xs(s)

The transfer function of the whole system is thus the product of the transfer functions
of the individual elements. This is shown in Figure 3-26(b).

As an example, consider the system shown in Figure 3-27. The insertion of an isolating
amplifier between the circuits to obtain nonloading characteristics is frequently used in
combining circuits. Since amplifiers have very high input impedances, an isolation
amplifier inserted between the two circuits justifies the nonloading assumption.

The two simple RC circuits, isolated by an amplifier as shown in Figure 3-27, have
negligible loading effects, and the transfer function of the entire circuit equals the prod-
uct of the individual transfer functions. Thus, in this case,

i((j)) - <R1C11 n i>(K)<§27:;1S~7_I>
(R, Cys + 1§§R2C2s +1)

G(s) = Gy(5)Gy(s)

Electronic Controllers. In what follows we shall discuss electronic controllers
using operational amplifiers. We'begin by deriving the transfer functions of simple
operational-amplifier circuits. Then we derive the transfer functions of some of the
operational-amplifier controllers. Finally, we give operational-amplifier controllers and
their transfer functions in the form of a table.

R, Ry
O—\WW VWWy O
Isolating
e; C\ == amplifier Cy o= e
(gain K)
O O
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Figure 3-28
Operational
amplifier.

Figure 3-29

Inverting amplifier.
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Operational Amplifiers. Operational amplifiers, often called op amps, are
frequently used to amplify signals in sensor circuits. Op amps are also frequently used
in filters used for compensation purposes. Figure 3-28 shows an op amp. It is a common
practice to choose the ground as 0 volt and measure the input voltages e; and e, relative
to the ground. The input e, to the minus terminal of the amplifier is inverted, and the
input e, to the plus terminal is not inverted. The total input to the amplifier thus becomes
e, — e;. Hence, for the circuit shown in Figure 3-28, we have

€, = K(ez - el) = _'K(el - 6'2)

where the inputs e, and e, may be dc or ac signals and X is the differential gain (volt-
age gain). The magnitude of K is approximately 10° ~ 10° for dc signals and ac signals
with frequencies less than approximately 10 Hz. (The differential gain K decreases with
the signal frequency and becomes about unity for frequencies of 1 MHz ~ 50 MHz.)
Note that the op amp amplifies the difference in voltages e; and e,. Such an amplifier is
commonly called a differential amplifier. Since the gain of the op amp is very high, it is
necessary to have a negative feedback from the output to the input to make the ampli-
fier stable. (The feedback is made from the output to the inverted input so that the feed-
back is a negative feedback.)

In the ideal op amp, no current flows into the input terminals, and the output volt-
age is not affected by the load connected to the output terminal. In other words, the
input impedance is infinity and the output impedance is zero. In an actual op amp, a
very small (almost negligible) current flows into an input terminal and the output can-
not be loaded too much. In our analysis here, we make the assumption that the op amps
are ideal.

Inverting Amplifier. Consider the operational amplifier circuit shown in Figure 3-29.
Let us obtain the output voltage ¢,.

i R

€
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Figure 3-30

(a) Noninverting
operational
amplifier;

(b) equivalent
circuit.

The equation for this circuit can be obtained as follows: Define
. € — € . e — &
i ) iy =
R R

Since only a negligible current flows into the amplifier, the current i; must be equal to
current i,. Thus

€ _ B
R R
or
(--%,
1

Thus the circuit shown is an inverting amplifier. If R; = R,, then the op-amp circuit
shown acts as a sign inverter.

Noninverting Amplifier. Figure 3-30(a) shows a noninverting amplifier. A circuit

equivalent to this one is shown in Figure 3-30(b). For the circuit of Figure 3-30(b), we
have

“Kla gt
€ = €; R1 + R2 €o
where K is the differential gain of the amplifier. From this last equation, we get
(7w )
==+ —le,
R +R, K
Since K > 1,if Ry/(Ry + Rp) > 1/K, then

(%)
e = —= e,
o Rl i

This equation gives the output voltage e,. Since ¢, and e; have the same signs, the op-amp
circuit shown in Figure 3--30(a) is noninverting.

O__—___
R *
—MW—
R = R
AW - 2
———C) €

?— + €o

e[ e() R 1

+ Te) O O
L L

() b)
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EXAMPLE 3-11

Figure 3-31 shows an electrical circuit involving an operational amplifier. Obtain the output e, .
Let us define

c_a—e o dd—e) . d-e
h=—p— b=C—F7— —
1

a BT TR,

Noting that the current flowing into the amplifier is negligible, we have

il = iz + i3
Hence
- de-e) ¢-q
Ry dt R,
Since ¢’ = 0, we have
& de, e,

Taking the Laplace transform of this last equation, assuming the zero initial condition, we have

E(s)  RCs+1
R, R,

E,(s)

which can be written as

Eo(s) R2 1

E[(S) Rl RzCS +1

The op-amp circuit shown in Figure 3-31 is a first-order lag circuit. (Several other circuits involving

- op amps are shown in Table 3-1 together with their transfer functions.)

h C
1
l3 AAAA
YYvYy
Ry
i Ry
C AVAVAVAV —
el
+
Figure 3-31 & 2
First-order lag circuit
using operational (o} O
amplifier. L
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Figure 3-32
Operational
amplifier circuit.

EXAMPLE 3-12

I(s)
Zy(s)
» 1
o—2 2 >
E'(s) ———0
EG) > o
oS
O O

Impedance Approach to Obtaining Transfer Functions. Consider the op-amp
circuit shown in Figure 3-32. Similar to the case of electrical circuits we discussed ear-
lier, the impedance approach can be applied to op-amp circuits to obtain their transfer
functions. For the circuit shown in Figure 3-32, we have

Es) — E'(s) _ E'(s) — E,(s)
Z, a Z,

Since E'(s) = 0, we have

Eo(s) - ZZ(S)
Ei(s) Zy(s)

(3-73)

Referring to the op-amp circuit shown in Figure 3-31, obtain the transfer function E,(s)/E;(s) by
use of the impedance approach.
The complex impedances Z;(s) and Z,(s) for this circuit are

1 R,

1 R,Cs +1
Cs + —
h) R2

Zi(s) = R and Zy(s) =

The transfer function E,(s)/E;(s) is, therefore, obtained as

E(s)  Zs) _ Ry 1

E(s) Z,(s) R R,Cs +1

which is, of course, the same as that obtained in Example 3-11.
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= Lead or lag network Sign inverter
(a) (b)
Figure 3-33

(a) Operational-amplifier circuit; (b) operational-amplifier circuit used as a lead or lag compensator.
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Lead or Lag Networks Using Operational Amplifiers. Figure 3-33(a) shows an
electronic circuit using an operational amplifier. The transfer function for this circuit
can be obtained as follows: Define the input impedance and feedback impedance as Z;
and Z,, respectively. Then

7 - Ry 7 - Ry
YTRCsH T 2T R,Cys + 1
Hence, referring to Equation (3-73), we have

1

s +

E(s)__é_ﬂ&R1C15+1__Q R, C; (3-74)
EZ(S) Zl Rl R2C2S + 1 C2 g+ I
R, G,

Notice that the transfer function in Equation (3-74) contains a minus sign. Thus, this circuit
is sign inverting. If such a sign inversion is not convenient in the actual application, a sign
inverter may be connected to either the input or the output of the circuit of Figure 3-33(a).
An example is shown in Figure 3-33(b). The sign inverter has the transfer function of
E()(S ) _ R4
E(s) R,
The sign inverter has the gain of —R,/R;. Hence the network shown in Figure 3-33(b)
has the following transfer function:
1
s +
E,(s) _RRRCs+ 1 RGC R, C,
E(s) RR;R,Cys+1 R, ‘- 1

No4 =
““als + 1
s +

1
T
3-75
T (3-75)
oT
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Figure 3-34
Electronic PID
controller.

Ei(s)

I
H
-
|
|

Yy

Eys)

where

Notice that

R,C
T = R,C,, ol =RC,, K = Tez_c—:
“* T R.G RC, RR ° RC

Q

This network has a dc gain of K, = R, R,/(R,R;).
Note that this network is a lead network if R;C; > R,C,,or a < 1.Itis alag network
if R,C; < R,C,.

PID Controller Using Operational Amplifiers. Figure 3-34 shows an electronic
proportional-plus-integral-plus-derivative controller (a PID controller) using opera-
tional amplifiers. The transfer function E(s)/E;(s) is given by

where

Thus

Noting that

E(s)  Z,
E(s)  Z
R1 R2C2S +1
7, o= 7, =
! R1C1S + 1’ 2 Czs

E(s) _ _<R2C2s + 1)<R1C1s + 1)

E(s) s Ry
Efs) Ry
E(s) R;
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we have

E(s) _ E(s) E(s) _RR, (RICIS + 1)<R2C25 + 1)

E(s)  E(s) E(s) RiR, R,Cys
R,R, { R{C; + R,C 1 _
_ 42( L - T , +R1C1s>
R3Ry R, G, R,Cys
R,(R,C; + R,C
_ RARG ¥ RG) {1 + ! L RGRG } (3-76)
R3R1C2 (Rlcl + R2C2)S R1C1 + R2C2

Notice that the second operational-amplifier circuit acts as a sign inverter as well as a

gain adjuster.
When a PID controller is expressed as

EJs) _ T;
m—K[)(l +?+T(1S>

K, is called the proportional gain, T; is called the integral time, and 7, is called the
derivative time. From Equation (3-76) we obtain the proportional gain K, integral time
T, and derivative time T to be
K - R(R,C, + R,C,)
? R R Gy
_ 1
RC + R)C,

T,

T = R, CR,C,
T RICL+ RCy

When a PID coritroller is expressed as

ZAC
E(s) ¢ s 0

K, is called the proportional gain, Ky is called the integral gain, and K, is called the
derivative gain. For this controller
R(R.C; + R,C,)

K =
’ R3R1C2
Ry
K =
' RyRC
RsR,C;
K, =22
d ,R3

Table 3-1 shows a list of operational-amplifier circuits that may be used as controllers
Or compensators. :
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Table 3-1 Operational-Amplifier Circuits That May Be Used as Compensators

(i(;l:;c(r)(:ll G(s) = ?;((j)) Operational Amplifier Circuits
Ll 33
2 ! 1% Rlé}s
3 PD %%(R,C,s+l)
5 PID % % R Cys +1;2)C('fg2C2s +1)
6 Lead or lag 2—: i—f %-%;%i
| g ey
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3-9 SIGNAL FLOW GRAPHS
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The block diagram is useful for graphically representing control system dynamics and
is used extensively in the analysis and design of control systems. An alternate approach
for graphically representing control system dynamics is the signal flow graph approach,
due to S. J. Mason. It is noted that the signal flow graph approach and the block dia-
gram approach yield the same information and one is in no sense superior to the other.

Signal Flow Graphs. A signal flow graph is a diagram that represents a set of
simultaneous linear algebraic equations. When applying the signal flow graph method
to analyses of control systems, we must first transform linear differential equations into
algebraic equations in s.

A signal flow graph consists of a network in which nodes are connected by direct-
ed branches. Each node represents a system variable, and each branch connected be-
tween two nodes acts as a signal multiplier. Note that the signal flows in only one
direction. The direction of signal flow is indicated by an arrow placed on the branch,
and the multiplication factor is indicated along the branch. The signal flow graph de-
picts the flow of signals from one point of a system to another and gives the relation-
ships among the signals.

As mentioned earlier, a signal flow graph contains essentially the same information
as a block diagram. If a signal flow graph is used to represent a control system, then a
gain formula, called Mason’s gain formula, may be used to obtain the relationships
among system variables without carrying out reduction of the graph.

Definitions. Before we discuss signal flow graphs, we must define certain terms.

Node. A node is a point representing a variable or signal.

Transmittance. The transmittance is a real gain or complex gain between two nodes.
Such gains can be expressed in terms of the transfer function between two nodes.

Branch. A branch is a directed line segment joining two nodes. The gain of a branch
is a transmittance. _

Input node or source. An input node or source is a node that has only outgoing
branches. This corresponds to an independent variable.

Output node or sink. An output node or sink is a node that has only incoming
branches. This corresponds to a dependent variable.

Mixed node. A mixed node is a node that has both incoming and outgoing branches.

Path. A path is a traversal of connected branches in the direction of the branch
arrows. If no node is crossed more than once, the path is open. If the path ends at the
same node from which it began and does not cross any other node more than once, it is
closed. If a path crosses some node more than once but ends at a different node from
which it began, it is neither open nor closed.

Loop. A loop is a closed path.

Loop gain. The loop gain is the product of the branch transmittances of a loop.

Nontouching loops. Loops are nontouching if they do not possess any common
nodes.

Forward path. A forward path is a path from an input node (source) to an output
node (sink) that does not cross any nodes more than once.
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Figure 3-35
Signal flow graph.

X4 Input node
Mizxed node (Source)

\

O - O P O

X x3
Input node Output node
(Source) (Sink)

Forward path gain. A forward path gain is the product of the branch transmittances
of a forward path.

Figure 3-35 shows nodes and branches, together with transmittances.

Properties of Signal Flow Graphs. A few important properties of signal flow
graphs are as follows:

1. A branch indicates the functional dependence of one signal on another. A signal
passes through only in the direction specified by the arrow of the branch.

2. A node adds the signals of all incoming branches and transmits this sum to all out-
going branches.

3. A mixed node, which has both incoming and outgoing branches, may be treated as
an output node (sink) by adding an outgoing branch of unity transmittance. (See
Figure 3-35. Notice that a branch with unity transmittance is directed from x5 to
another node, also denoted by x;.) Note, however, that we cannot change a mixed
node to a source by this method.

4, For a given system, a signal flow graph is not unique. Many different signal flow
graphs can be drawn for a given system by writing the system equations differently.

Signal Flow Graph Algebra. A signal flow graph of a linear system can be drawn
using the foregoing definitions. In doing so, we usually bring the input nodes (sources) to
the left and the output nodes (sinks) to the right. The independent and dependent vari-
ables of the equations become the input nodes (sources) and output nodes (sinks), re-
spectively. The branch transmittances can be obtained from the coefficients of the equations.

To determine the input-output relationship, we may use Mason’s formula, which will
be given later, or we may reduce the signal flow graph to a graph containing only input
and output nodes. To accomplish this, we use the following rules:

1. The value of a node with one incoming branch, as shown in Figure 3-36(a), is
Xy = axj.

2. The total transmittance of cascaded branches is equal to the product of all the
branch transmittances. Cascaded branches can thus be combined into a single
branch by multiplying the transmittances, as shown in Figure 3-36(b).

3. Parallel branches may be combined by adding the transmittances, as shown in
Figure 3-36(c).

4. A mixed node may be eliminated, as shown in Figure 3-36(d).

5. A loop may be eliminated, as shown in Figure 3-36(e). Note that

. X3 = be, Xq = aXq + CX3
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Figure 3-36
Signal flow graphs
and simplifications.
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(@) O Pomeen()

a b ab
X1 X7 X3 X1 X3
a
a+b
(© X1 X2 = o WU S
*1 X2
*1 a ac
c X1
@ =
X3 X4 X4
X2 b be
X2
ab
a x b ab X3 1-be
(&) O \ij = 0 > Q = 0 > O
Xy X3 x| X1 X3
¢
be
Hence
Xq = abx1 + bCX:; (3—77)
or
ab
X3 = X 3-78
1 —pe? ( )

Equation (3-77) corresponds to a diagram having a self-loop of transmittance bc. Elim-
ination of the self-loop yields Equation (3-78), which clearly shows that the overall
transmittance is ab/(1 — bc).

Signal Flow Graph Representation of Linear Systems. Signal flow graphs are
widely applied to linear-system analysis. Here the graph can be drawn from the system
equations or, with practice, can be drawn by inspection of the physical system. Routine
reduction by use of the foregoing rules gives the relation between an input and output
variable.
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Figure 3-37

Signal flow graphs
representing

(a) Equation (3-79),
(b) Equation (3-80),
and

(c) Equation (3-81);
(d) complete signal
flow graph for the
system described by
Equations
(3-79)-(3-81).

ax

a3y
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x| X2 X3
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Consider a system defined by the following set of equations:

Xy = ayg Xy + aAp Xy + ay3X3 -+ b1u1 (3—“79)
Xy = Ay Xy + Ay Xy + a3 X3 + b2u2 . (3—80)
X3 = A3 Xy + a3pXo + dz3 X3 (3‘81)

where u, and u, are input variables and x,, x,, and x; are output variables. A signal flow
graph for this system, a graphical representation of these three simultaneous equations,
indicating the interdependence of the variables, can be obtained as follows: First locate
the nodes x;, x,, and x; as shown in Figure 3-37(a). Note that a;; is the transmittance be-
tween x; and x;. Equation (3-79) states that x, is equal to the sum of the four signals
aj Xy, Xy, aj3%3, and byuy. The signal flow graph representing Equation (3-79) is
shown in Figure 3-37(a). Equation (3-80) states that x, is equal to the sum of a,;x;,
Ay X5, dy3X3, and byu,. The corresponding signal flow graph is shown in Figure 3-37(b).
The signal flow graph representing Equation (3-81) is shown in Figure 3-37(c).

The signal flow graph representing Equations (3-79), (3-80), and (3-81) is then ob-
tained by combining Figures 3-37(a), (b), and (c). Finally, the complete signal flow graph
for the given simultaneous equations is shown in Figure 3-37(d).

In dealing with a signal flow graph, the input nodes (sources) may be considered
one at a time. The output signal is then equal to the sum of the individual contributions
of each input.

The overall gain from an input to an output may be obtained directly from the sig-
nal flow graph by inspection, by use of Mason’s formula, or by a reduction of the graph
to a simpler form.
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Signal Flow Graphs of Control Systems. Some signal flow graphs of simple
control systems are shown in Figure 3-38. For such simple graphs, the closed-loop trans-
fer function C(s)/R(s) [or C(s)/N(s)] can be obtained easily by inspection. For more
complicated signal flow graphs, Mason’s gain formula is quite useful.

R(s) C(s) G(s)
1 G(s) - o - O
R(s) Cls)

R(s) E(s) C(s) 1 G(s)

— G(s) > o > >
R(s) E(s) C(s)

T Hi(s) |- ~H(s)

N(s)
N(s)

R(s) E(s) C(s)
—-—»@—» Gi(s) —»@—» Gals) > 1?( )
S

1 H(s) (-

N(s)
N(s)
+ , 1
R(s) E(s) Cls) { G(s) 1
— G(s) h—»@——-—» o > > > O
R(s) E(s) <) C(s)
T —H(s)
H(s) |~
R(9)
Ri(5) Grls) Cils)
Figure 3-38
Block diagrams and R(s)
corresponding signal p
flow graphs. Ras) 2(5)
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Mason’s Gain Formula for Signal Flow Graphs. In many practical cases, we
wish to determine the relationship between an input variable and an output variable of
the signal flow graph. The transmittance between an input node and an output node is
the overall gain, or overall transmittance, between these two nodes.

Mason’s gain formula, which is applicable to the overall gain, is given by

1
P::Z:;;flAk
where
P, = path gain or transmittance of kth forward path

A = determinant of graph

= 1 — (sum of all individual loop gains) + (sum of gain products of all
possible combinations of two nontouching loops) — (sum of gain
products of all possible combinations of three nontouching
loops) + -+

1— DL, + X LyL.— D LyL,Ly+ -
a b,c doe f

I

> L, = sum of all individual loop gains
E L,L. = sum of gain products of all possible combinations of two nontouching
b loops

ELdLeLf = sum of gain products of all possible combinations of three
de.f nontouching loops

A, = cofactor of the kth forward path determinant of the graph with the
loops touching the kth forward path removed, that is, the cofactor A,
is obtained from A by removing the loops that touch path P,

(Note that the summations are taken over all possible paths from input to output.)
In the following, we shall illustrate the use of Mason’s gain formula by means of two
examples.

EXAMPLE 3-13 Consider the system shown in Figure 3-39. A signal flow graph for this system is shown in Figure
3-40. Let us obtain the closed-loop transfer function C(s)/R(s) by use of Mason’s gain formula.
In this system there is only one forward path between the input R(s) and the output C(s). The

forward path gain is

P = G,G,G;

R & C
o Cg}ﬂ»—G1—’>CgD—¥— Gy G >

Figure 3-39 T Hy |
Muitiple-loop
systemn.

Hy

A

A 4
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Figure 3-40
Signal flow graph
for the system in
Figure 3-39.

EXAMPLE 3-14

110

1
Ris)o » o C(s)

From Figure 3-40, we see that there are three individual loops. The gains of these loops are

L, = GG H,
L, = —-G,G:H,
Ly = —G1G,G,

Note that since all three loops have a common branch, there are no nontouching loops. Hence, the
determinant A is given by

A=1- (L + L, + Ly
=1 - GleHl + GzG3H2 + GleG3

The cofactor A, of the determinant along the forward path connecting the input node and out-
put node is obtained from A by removing the loops that touch this path. Since path P, touches all
three loops, we obtain
A1 =1
Therefore, the overall gain between the input R(s) and the output C(s), or the closed-loop trans-
fer function, is given by
C(s) _ A

Rs) T ="a

_ GGG,
B 1 - GleHl + GzG3H2 + G1G2G3

which is the same as the closed-loop transfer function obtained by block diagram reduction.
Mason’s gain formula thus gives the overall gain C(s)/R(s) without a reduction of the graph.

Consider the system shown in Figure 3-41. Obtain the closed-loop transfer function C(s)/R(s} by
use of Mason’s gain formula.

In this system, there are three forward paths between the input R(s) and the output C(s).
The forward path gains are

Pl = G1G2G3G4G5
Pz = G1G6G4G5

P = G,G,G,

Chapter 3 / Mathematical Modeling of Dynamic Systems



Figure 3-41
Signal flow graph for
a system.

There are four individual loops, The gains of these loops are
L, = ~G,H,
Ly = -G,GH,
L, = —G¢G,GsH,

L4 = _GzG3G4GsH2
Loop L, does not touch loop L,. Hence, the determinant A is given by

A=1—(Ly+ L+ Ly + L) + LiLy (3-82)

The cofactor A, is obtained from A by removing the loops that touch path P;. Therefore, by
removing L, L,, L3, Ly, and L, L, from Equation (3-82), we obtain

A =1
Similarly, the cofactor A, is
A, =1
The cofactor A, is obtained by removing L,, L3, L4, and L, L, from Equation (3-82), giving
A;=1-L, |

The closed-loop transfer function C(s)/R(s) is then

C(s) 1
R(s) =pP= —A—(PlAI + P,A, + PA;)

_ GiGG3GiGs + G1GsGsGs + G1GGi(1 + Gufh)
T 1+ GuH, + GG H,y + GG,GsH, + G,G3G,GsH,, + G H,G,G;H,

Comments. The usual application of signal flow graphs is in system diagramming.
The set of equations describing a linear system is represented by a signal flow graph by es-
tablishing nodes that represent the system variables and by interconnecting the nodes
with weighted, directed, transmittances, which represent the relationships among the vari-
ables. Mason’s gain formula may be used to establish the relationship between an input
and an output. (Alternatively, the variables in the system may be eliminated one by one -
with reduction techniques.) Mason’s gain formula is especially useful in reducing large
and complex system diagrams in one step, without requiring step-by-step reductions.
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Finally, it is noted that in applying the Mason’s gain formula to a given system, one
must be careful not to make mistakes in calculating the cofactors of the forward paths,
A, since any errors. if they exist, may not easily be detected.

3-10 LINEARIZATION OF NONLINEAR MATHEMATICAL MODELS

112

Nonlinedr Systems. A system is nonlinear if the principle of superposition does
not apply. Thus, for a nonlinear system the response to two inputs cannot be calculated
by treating one input at a time and adding the results,

Although many physical relationships are often represented by linear equations,
in most cases actual relationships are not quite linear. In fact, a careful study of phys-
ical systems reveals that even so-called “linear systems” are really linear only in lim-
ited operating ranges. In practice, many electromechanical systems, hydraulic systems,
pneumatic systems, and so on, involve nonlinear relationships among the variables.
For example, the output of a component may saturate for large input signals. There may
be a dead space that affects small signals. (The dead space of a component is a small
range of input variations to which the component is insensitive.) Square-law nonlin-
earity may occur in some components. For instance, dampers used in physical systems
may be linear for low-velocity operations but may become nonlinear at high velaci-
ties, and the damping force may become proportional to the square of the operating
velocity.

Linearization of Nonlinear Systems. In control engineering a normal operation
of the system may be around an equilibrium point, and the signals may be considered
small signals around the equilibrium. (It should be pointed out that there are many ex-
ceptions to such a case.) However, if the system operates around an equilibrium point
and if the signals involved are small signals, then it is possible to approximate the non-
linear system by a linear system. Such a linear system is-equivalent to the nonlinear sys-
tem considered within a limited operating range. Such a linearized model (linear,
time-invariant model) is very important in control engineering.

The linearization procedure to be presented in the following is based on the expan-
sion of nonlinear function into a Taylor series about the operating point and the retention
of only the linear term. Because we neglect higher-order terms of Taylor series expan-
sion, these neglected terms must be small enough; that is, the variables dev1ate only
slightly from the operating condition.

Linear Approximation of Nonlinear Mathematical Models. To obtain a linear
mathematical model for a nonlinear system, we assume that the variables deviate only
slightly from some operating condition. Consider a system whose input is x(¢) and out-
put is y(¢). The relationship between y(¢) and x(¢) is given by

y=f(x) (3-83)

If the normal operating condition corresponds to ¥, y, then Equation (3-83) may be
expanded into a Taylor series about this point as follows:
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y = f(x)

d &
=f()_c)+-£(x—)?)+2l!z£-(x—5€)2+m (3-84)

where the derivatives df/dx, d*f/dx?, ... are evaluated at x = &. If the variation x — &
is small, we may neglect the higher-order terms in x — ¥. Then Equation (3-84) may be
written as

y=y+ K(x — %) (3-85)
where
¥ =f(%x)
_4f
K - dx x=x

Equation (3-85) may be rewritten as
y—y=K(x~-X) (3-86)

which indicates that y — ¥ is proportional to x — %. Equation (3-86) gives a linear math-
ematical model for the nonlinear system given by Equation (3-83) near the operating
point x — X,y — ¥.

Next, consider a nonlinear system whose output y is a function of two inputs x; and
X5, SO that

y = flx, x) (3-87)

To obtain a linear approximation to this nonlinear system, we may expand Equation (3-87)
into a Taylor series about the normal operating point ¥,, ¥,. Then Equation (3-87)
becomes

y = f(7 5) + [a—f(x1 S @}

axq dx,

1 82]‘. v aZf _ B
+ 21 [ax% (X|. xl) + 2 ax‘laxz (Xl xl)(xz x2)
*f

+—5(x, — iz)zil + e

2
dx3

where the partial derivatives are evaluated at x; = ¥;, x, = ¥,. Near the normal oper-
ating point, the higher-order terms may be neglected. The linear mathematical model of
this nonlinear system in the neighborhood of the normal operating condition is then
given by

y—y= K1(x1 - 21) + Kz(xz = )_52)
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EXAMPLE 3-15

where

y= f(ib ?—‘2)
d
o2
9x; X=X, 5=%
d
o
0X3 | x,=%,, x,=%,

The linearization technique presented here is valid in the vicinity of the operating
condition. If the operating conditions vary widely, however, such linearized equations are
not adequate, and nonlinear equations must be dealt with. It is important to remember
that a particular mathematical model used in analysis and design may accurately rep-
resent the dynamics of an actual system for certain operating conditions, but may not be
accurate for other operating conditions.

Linearize the nonlinear equation
z=xy

intheregion 5 = x = 7,10 = y = 12. Find the error if the linearized equation is used to calcu-
late the value of z when x = 5, y = 10.

Since the region considered is given by 5 = x = 7,10 = y < 12,choose ¥ = 6,y = 11. Then
Z = Xy = 66. Let us obtain a linearized equation for the nonlinear equation near a point ¥ = 6,
y =11

Expanding the nonlinear equation into a Taylor series about point x = ¥, y = ¥ and neglecting
the higher-order terms, we have

= a(x = %) + b(y - 7)

&N
|
™

where

Hence the linearized equation is
z~66=11(x — 6) + 6(y — 11)
or
z=11x + 6y — 66
When x = 5, y = 10, the value of z given by the linearized equation is

z=1lx + 6y — 66 = 55 + 60 — 66 = 49

The exact value of z is z = xy = 50. The error is thus 50 — 49 = 1. In terms of percentage, the
error is 2%.
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A-3-1.

A-3-2.

Figure 3-42
Block diagram of a
sysrem.

Figure 3-43
Simplified block
diagrams for the
system shown in
Figure 3-42.

Figure 3-44
Block diagram of a
system.

EXAMPLE PROBLEMS AND SOLUTIONS

Simplify the block diagram shown in Figure 3-42.

'

Solution. First, move the branch point of the path involving H; outside the loop involving H,, as
shown in Figure 3-43(a). Then eliminating two loops results in Figure 3-43(b). Combining two

blocks into one gives Figure 3-43(c).

Simplify the block diagram shown in Figure 3-44. Obtain the transfer function relating C(s) and

R(s).

H
R(s) o C(s)
> > -+ -
Hy
H
G
R(s) C(s)
(@) G & _
Hy
R(s) G H, Cls)
b ™ 1+ 0H, 1+ G e
RGs) | G+H, Cls)
© 1+ GH,
R(s) X(s) C(s)
‘G Gy - P

Example Problems and Solutions
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Figure 3-45

Reduction of the
block diagram shown

in Figure 3-44.

A~3-3.

Figure 3-46

Block diagram of a

system.
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R(s)
— G —»—@—» G

R(s) C(s)
N >»

@

R(s) €(s)
! Gi+1 [t G, —(+ >

)

R(s) C(s)
———| GGy + Gz +1

©

Solution. The block diagram of Figure 3-44 can be modified to that shown in Figure 3-45(a).
Eliminating the minor feedforward path, we obtain Figure 3-45(b), which can be simplified to
that shown in Figure 3-45(c). The transfer function C(s)/R(s) is thus given by

C(s)

m = GG, + G, +1

The same result can also be obtained by proceeding as follows: Since signal X (s) is the sum

of two signals G{R(s) and R(s), we have

X(s) = GR(s) + R(s)
The output signal C(s) is the sum of G, X (s) and R(s). Hence

C(s) = G,X(s) + R(s) = G,[G,R(s) + R(s)] + R(s)

And so we have the same result as before:

C(s)

R(s)
Simplify the block diagram shown in Figure 3-46. Then, obtain the closed-loop transfer function

C(s)/R(s).
l Hy |-

= GG+ G, + 1

@

Y

Y
+

Gs Gy

A

A

Hl HZ

Chapter 3 / Mathematical Modeling of Dynamic Systems



Figure 3-47
Successive
reductions of the
block diagram shown
in Figure 3--46.

A-3-4.

Figure 3-48
Control system with
reference input and
disturbance input.

1 P Hs
el o [
R(s) Cls)
Gl G2 o G3 G4 -
H[ -t Hz :
(a)
Hy _
GiGs |
R(s) G, G, N G, G, Cs)
1+ G,GH, g 1+ GGy Hy g
)
Rs) GG, G, Gy C(s)

1+ G, G H + Gy GoHy~ Gy Gy Hay + G, Gy Gy Gy H) H,

©

Solution. First move the branch point between G, and G, to the right-hand side of the loop con-
taining G5, Gs, and H,. Then move the summing point between G, and G, to the left-hand side
of the first summing point. See Figure 3-47(a). By simplifying each loop, the block diagram can
be modified as shown in Figure 3-47(b). Further simplification results in Figure 3-47(c), from
which the closed-loop transfer function C(s)/R(s) is obtained as

G,G,G5G,

C(s)

R(s) 1+ GG H, + GG H, — G,G3H; + GiG,GG H, H,

Obtain transfer functions C(s)/R(s) and C(s)/D(s) of the system shown in Figure 3-48.

Solution. From Figure 3-48 we have

U(s) = G¢R(s) + G.E(s) (3-88)
C(s) = G,[D(s) + GU(s)] (3-89)
E(s) = R(s) — HC(s) (3-90)
1 Gy D(s)
R(s) E(s) U(s) 0
el e G, G, G >
H -
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A-3-5.

Figure 3-49
System with two
inputs and two
outputs.

118

By substituting Equation (3-88) into Equation (3-89), we get
C(s) = G,D(s) + G,G,[G[R(s) + G.E(s)] (3-91)
By substituting Equation (3-90) into Equation (3-91), we obtain
C(s) = G,D(s) + GiG,{GR(s) + G[R(s). — HC(s)]}
Solving this last equation for C(s), we get
C(s) + GiG,G.HC(s) = G,D(s) + G,G,(G; + G)R(s)

Hence
G,D(s) + GiG,(G; + G.)R(s)

Cls) = 1+ G,G,G.H

(3-92)

Note that Equation (3-92) gives the response C(s) when both reference input R(s) and distur-
bance input D(s) are present.
To find transfer function C(s)/R(s), we let D(s) = 0 in Equation (3-92). Then we obtain

C(S) _ GIGP(Gf + GC)
R(s) 1+ GG,G.H

Similarly, to obtain transfer function C(s)/D(s), we let R(s) = 0 in Equation (3-92). Then
C(s)/D(s) can be given by

C(s) _ G,
D(s) 1+ GG,G.H

Figure 3-49 shows a system with two inputs and two outputs. Derive C,(s)/R;(s), C,(s)/R,(s),
Cy(s)/Ry(5), and C,(5)/R,(s). (In deriving outputs for R,(s), assume that R,(s) is zero, and vice
versa.)

R :@ = G, » C,
G, [
G, [

R, s | G, > C,
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Solution. From the figure, we obtain
G = Gl(Rl - Gscz) (3-93)
G, = GR, — G,Cy) (3-94)

By substituting Equation (3-94) into Equation (3-93), we obtain

C, = G{[R, — G3G|(R; — G,C})] (3-95)
By substituting Equation (3~93) into Equation (3-94), we get

G, = GiR, — G,G\(R, — G;C))] (3-96)
Solving Equation (3-95) for C,, we obtain

_ GlRl - GlG3G4R2

= 3-97
G 1 - G,G,G;G, (3-97)
Solving Equation (3-96) for C, gives
-G,G,G4R; + G,R
C2 — 1%72894 4 4112 (3__98)

1 - GlG2G3G4

Equations (3-97) and (3-98) can be combined in the form of the transfer matrix as follows:

G, _ GGG,
C1 _ 1 - GleG3G4 1- GleG3G4 Rl
G, G,G,G, G, R,

- 1 - G1GzG3G4 1 - GleG3G4

Then the transfer functions Cy(s)/R;(s), Ci{s)/Ry(s), C;(s)/Ri(s) and C,(s)/R,(s) can be obtained
as follows:

Ci(s) - G Cy(s) - GGG,
RI(S) 1- G1G263G4’ Rz(s) 1- G1G2G3G4
Cy(s) _ GGG, Cy(s) _ G,

R(s) 1-GGGG, Rys) 1-GGGG,

Note that Equations (3-97) and (3-98) give responses C; and C,, respectively, when both inputs
R, and R, are present.

Notice that when R,(s) = 0, the original block diagram can be simplified to those shown in
Figures 3-50(a) and (b). Similarly, when R;(s) = 0, the original block diagram can be simplified
to those shown in Figures 3-50(c) and (d). From these simplified block diagrams we can also ob-
tain Cy(s)/Ry(s), Co(s) /Ry(s5), C1(5)/Ry(s), and C,(s)/R;(s), as shown to the right of each corre-
sponding block diagram.
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Figure 3-50
Simplified block
diagrams and
corresponding
closed-loop transfer
functions.

A-3-6.

120

R
@) -i"» P G ;C] —C—l_ = __.i.___
. R, 1-G,G, G, G,
Gy [ Gy -G,
Rl CZ
® R G GGG
G G2 [P G > R 1-G, G, s Gy
Gy |
R2 Cl
© | G P -Gy > G - GGG
4 3 O R 1-G,G,G3 Gy
G, |~
Ry G C G
((¢) R——— -1 G > Ut . S
4 > R, 1-G,G,G3 G,
G, - G, |-tems -Gy

Show that for the differential equation system

state and output equations can be given, respectively, by

V4 @y + oyt azy = byl + bil + b + byu (3-99)
X 0o 1 o0 |[x Bi
X =1 0 0 1 X |+ B |u (3-100)
X3 —a3 ~a; —ap [ X3 Bs
and
xl—
y=1[1 0 0] x5 | + Byu (3-101)
X3 _|
where state variables are defined by
Xy =y = Bou

X, =y — Bott — PBu =3y — Piu

X3 =Y — Boii — Bt — Pou = %, — Pou
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and
Bo = by
Bi=b — wpBy
By = by — a1py — a2
Bz = by — aBy — @By — azfPy
Solution. From the definition of state variables x, and x;, we have
X =Xx; + B (3-102)
Xy = X3 + Bou (3-103)
To derive the equation for x5, we first note from Equation (3-99) that ‘
V =-—a;y — a,y — azy + byl + byii + byu + byu
Since
x3 =y — Boil — Bt — Bu
we have
Xy =Y = Boli ~ Byii — Byt
= (—a1y — a3y — asy) + by¥i + byii + byt + byu — Boil — Byii — Byt
= -a1(‘y' = Boli — Bt — ﬁzu) — a1 Bolh — mPit — a;Bou
*112(}" = Bott — ﬁl“) = @Bt — ayBiu — aa(y - Bo“) = azfBou
+ bl + byil + byt + byu — Bt — Biii — Bou
= a3 — ayx; — azyxy + (by — Bo)il + (by — By — @yBo)ii
+(by = B2 — @By — aPo)ii + (bs — @18, — @y — a3Bou
= ~ayx3 — @y, — azx + (by — a By — 4By — azBo)u
= —apxy — OXp — ax; + Bau
Hence, we get
X3 = —a3X| — Gy%, — a1X3 + Bsu (3-104)

Combining Equations (3-102), (3-103), and (3-104) into a vector-matrix equation, we obtain
Equation (3~100). Also, from the definition of state variable x;, we get the output equation given
by Equation (3-101).

A-3-7. Obtain a state-space equation and output equation for the system defined by

Y(s) 28 +s"+s+2
U(s) s+ 45>+ 5s+2

Solution. From the given transfer function, the differential equation for the system is
VA A4y + 5y +2y =20 + i +u + 2u
Comparing this equation with the standard equation given by Equation (3-33), rewritten

Y+ a )y +ayy+ asy = byii + biii + byt + byu
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we find
a1=47 a2=5, a3=2
by =2, b =1, b, =1, by =2
Referring to Equation (3-35), we have
Bo=by =2
ﬁ1=b1—a1,30=1—4><2=—7
B:=by=aify —afy=1—-4X(-7)~5x2=19
Bs = by — a18; — 4,1 — a3
=2—-4X19~5X(-7)~2X%x2=-43
Referring to Equation (3-34), we define
X =y~ Bou=y~—2u
x2=)'cl—ﬁlu=5cl+7u
x3=562—,32u=)'62—19u
Then referring to Equation (3-36),
X =x—Tu
XZ = X3 + 19u
X3 = —aA3X1 — Xy ™ A1X3 + ,83u
= =2xy — 5x, — 4x3 — 43u

Hence, the state-space representation of the system is

X 0 1 0| x -7
=] 0.0 1T[x|+] 19|«
X3 -2 =5 —4 ||Lx —43
X1
y=1[1 0 0] x, | +2u
X3

This is one possible state-space representation of the system. There are many (infinitely many)
others. If we use MATLAB, it produces the following state-space representation:

Xy -4 =5 =2 || x 1
X, | = 1 0 O|lx|+1{0ju
HlL 01 0] x 0
. .
y=[-7 =9 =2]| x| +2u
X3

See MATLAB Program 3-4. (Note that all state-space representations for the same system ar
equivalent.) -
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A-3-8.

Figure 3-51
Control system.

MATLAB Program 3-4
num=[2 11 2];
den=1[1 4 5 2];
{A,B,C,D] = tf2ss(num, den)
A=

4 5 2

1 0 O

0o 1 0
B =

1

0

0
C=

-7 -9 -2
D=

2

Obtain a state-space model of the system shown in Figure 3-51.

Solution. The system involves one integrator and two delayed integrators. The output of each
integrator or delayed integrator can be a state variable. Let us define the output of the plant as
x;, the output of the controller as x,, and the output of the sensor as x;. Then we obtain

Xi(s) 10
Xz(s) s+ 5
X(s) _1
U(s) = Xa(s) s
Xi(s) 1
XI(S) s + 1
Y(s) = Xi(s)
U(s) i - 10‘ Y(s) .
r s+5
Controller Plant
1
s+ 1
Sensor
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A-3-9.

which can be rewritten as
' sXi(s) = =5X(s) + 10X,(s)
5X5(5) = —Xa(s) + U(s)
sXs5(s) = Xi(s) — Xa(s)
Y(s) = Xi(s)
By taking the inverse Laplace transforms of the preceding four equations, we obtain
X, = ~5x; + 10x,
Xy =—x3+u

)'C3=x1—x3

y=x
Thus, a state-space model of the system in the standard form is given by
X =5 10 0|} x 0
Xy | = 0 0 -1 X |+ 1 ju
X3 1 0 =1} x5 0
X1
y=[10 0]} x,
X3

It is important to note that this is not the only state-space representation of the system. Many
other state-space representations are possible. However, the number of state variables is the same
in any state-space representation of the same system. In the present system, the number of state
variables is three, regardless of what variables are chosen as state variables.

Obtain a state-space model for the system shown in Figure 3-52(a).

Solution. First,notice that (as + b)/s” involves a derivative term. Such a derivative term may be
avoided if we modify {as + b)/s* as
as + b ( b) 1
=la+=-)=

52 s)s

Using this modification, the block diagram of Figure 3-52(a) can be modified to that shown in
Figure 3-52(b).

Define the outputs of the integrators as state variables, as shown in Figure 3-52(b). Then from
Figure 3-52(b) we obtain

Xi(s) - l
X,(s) + alU(s) — Xu(s)] s
Xa(s) _b
U(s) — Xi(s) s
Y(s) = Xi{s)

which may be modified to .
sX,(s) = Xy(s) + alU(s) = Xy(s)]
sX,(s) = —bX (s) + bU(s)

Y(s) = Xi(s)
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Figure 3-52

(a) Control system;
(b) modified block
diagram.

A-3-10.

U(s) Y(s)
[ as+b o —17 o
K
(@
> a
Us) b X(s) ) Xi(s) Xs)
—(+ oo ? — —S— .

(b)

Taking the inverse Laplace transforms of the preceding thfee equations, we obtain
Xy =—ax; + x, + au
.X.fz = —bxl + bu
y=x

Rewriting the state and output equations in the standard vector-matrix form, we obtain
X —a 1 || x a
= +
HEF FEH
X1
=[1 ¢
r = ]|:x2:]

Obtain a state-space representation of the system shown in Figure 3-53(a).
Solution. In this problem, first expand (s + z)/(s + p) into partial fractions.
+ -
stz n p

s+ p s+ p

Next, convert K/ [s(s + a)] into the product of K /sand 1/(s + a).Then redraw the block diagram,
as shown in Figure 3-53(b). Defining a set of state variables, as shown in Figure 3-53(b), we ob-
tain the following equations:

X = —ax; + x,

Xy = —Kx; + Kx; + Ku

k3= —(z = plxy = px; + (2 = plu
y

X1

Exarnple Problems and Solutions ’ 125



igure 3-53

a) Control system;
b) block diagram

:efining state

ariables for the

vstem.
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A-3-11.

=

s+2 K Y
S+p (s +a)

u K Xy 1 Xy y
-+ — > >
S S+a
(b)
Rewriting gives
Xy —a 1 0 Xy 0
X | = -K 0 K X, |+ K u
X3 ~(z—p) 0 -pilx z—p
X1
y=[1 0 0] x
X3

Notice that the output of the integrator and the outputs of the first-order delayed integrators
[1/(s + a)and (z — p)/(s + p)] are chosen as state variables. It is important to remember that
the output of the block (s + z)/(s + p) in Figure 3-53(a) cannot be a state variable, because this
block involves a derivative term, s + z.

Obtain the transfer function of the system defined by

X -1 1 0| x 0
Xy | = 0 -1 1 X | +10 Ju
k3 0 0 -2 X3 1
Xt
y=1[1 0 0]} x
X3

Sohition. Referring to Equation (3-29), the transfer function G(s) is given by
G(s)=C(sl— A)'B+ D

In this problem, matrices A, B, C,and D are

-1 1 0 0
A= 0 -1 114, B=|0], C=[1 0 0], D=0
0 0 -2 1
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Hence .
s+1
G(s)=11 0 0] 0
0
1

-1
s+ 1
0

1

0
-1
s+ 2

1
1

-

=[1 0 0] 0

s+1 (s+1)7
1

(s + 1)(s +2)
1

s+ 1

(s +1)(s +2)

1

0 0 s+ 2

1 1

TP+ 4?55 +2

T (s (s +2)

A-3-12. Obtain a state-space representation of the system shown in Figure 3-54.
Solution. The system equations are
miy; + by + k(y = y) =0
myy, + k(y, = y) = u
The output variables for this system are y; and y,. Define state variables as
1= N
X3 = Y1
X3 =Y
X4 =Y
Then we obtain the following equations:
X=X
Xy = le[_b)"l — k(n — )] = —'r_:;xl - ‘n%xz + m£1x3
X3 = X4
Xy = —ri—z[—k(yz -y +tul= mile - ;nk—2x3 + —nll;u

)

Hence, the state equation is

0
X k b k.
X my m my X,
X3 0 0 0
X4 k

___m_ my WW my
Figure 3-54

Mechanical system. L) Q<)
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and the output equation is

X1
[h]_[l 00 0] X
vl L0 0 1 0]l xs
X4

A-3-13. Consider a system with multiple inputs and multiple outputs. When the system has more than one
output, the command

INUM,den] = ss2tf(A,B,C,D,iu)

produces transfer functions for all outputs to each input. (The numerator coefficients are returned
to matrix NUM with as many rows as there are outputs.)
Consider the system defined by

o] [ o 17[x R
.X.:Z -25 -4 Xy 01 Uy
Vi - 1 0 X1 + 0 0 Uy
3% 0 1 X3 00 Uy
This system involves two inputs and two outputs. Four transfer functions are involved: Y;(s)/Uy(s),

Y,(5)/Uy(s), Yyi(5)/Uys), and Y,(s)/Uy(s). (When considering input u;, we assume that input u,
is zero and vice versa.)

Solution. MATLAB Program 3-5 produces four transfer functions.

MATLAB Program 3-5

A=[0 1;-25 -4];
B=[1 1,0 1];
C={1 0,0 1];
D=[0 0,0 0];

[NUM,den] = ss2tf(A,B,C,D,1)

NUM =
0 1 4
0 0 -25
den =
1 4 25

[NUM,den] = ss2tf(A,B,C,D,2)
NUM =

0 1.0000 5.0000

0 1.0000 -25.0000
den =

1 4 25
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A-3-14.

Figure 3-55

(a) System consisting
of two springs in
parallel;

(b) system consisting
of two springs in
series.

This is the MATLAB representation of the following four transfer functions:

Nis)  s+4 Yo(s) =25
U1(S) 3‘2 + 4s + 25, U1(S) S2 + 45 + 25
His)  s+5 Yo(s)  s=125
Uy(s)  s*+4s+25° Uy(s) s*>+4s+25

Obtain the equivalent spring constants for the systems shown in Figures 3-55(a) and (b),

respectively.

Solution. For the springs in parallel [Figure 3-55(a)] the equivalent spring constant k., is obtained -

from
kix + kyx = F = kyx
or

keq = ky + K

For the springs in series [Figure—-55(b)}, the force in each spring is the same. Thus

kyy =F, kx—-y)=F

Elimination of y from these two equations results in

F
k o :F
2<x kl)
ar
) ky + ky
fox=F+—=F=———"
2x = F le . F

The equivalent spring constant k. for this case is then found as

k= F kik, _ 1
4 X kl + k2 1 1
— + ——
1 2
—— X
/, kl ) eI X
AAAAA
WWy
—— 2 1 ky
ky AWV MY - F
—AAAAAAA
VWWWWWy 2
(a) ®)

Example Problems and Solutions

129



A-3-15,

Figure 3-56

(a) Two dampers
connected in parallel;
(b) two dampers
connected in series.

130

Obtain the equivalent viscous-friction coefficient b,, for each of the systems shown in
Figure 3-56(a) and (b).

Solution.
(a) The force f due to the dampers is
f=bi(y— %) +b(y = %) = (b + b)Y — %)
In terms of the equivalent viscous friction coefficient b,q, force f is given by

f = beq(y - x)
Hence
by =b + b,
(b) The force f due to the dampers is
f=bz-1)=b(y -2 (3-105)

where z is the displacement of a point between damper b, and damper b,. (Note that the
same force is transmitted through the shaft.) From Equation (3-105), we have

(by + bz = by + byi

or

z= b + b, (byy + by x) (3-106)

In terms of the equivalent viscous friction coefficient b,,, force f is given by
f=by— %)
By substituting Equation (3-106) into Equation (3-105), we have

1
f=b(y—2)= bz[)" - m(bz}" + blfc)]

_ by b, (- %)
T
Thus,
o bb, . .
=b,(y— %)= - X
f q(y ) b1 + bz (y )
Hence,
b = b b, 1
”_h+h—1+1
by
bl
! b, b
b2
_"_I'IIl'—‘
x y X z y
@ ()
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A-3-16. Figure 3-57(a) shows a schematic diagram of an automobile suspension system. As the car moves
along the road, the vertical displacements at the tires act as the motion excitation to the auto-
mobile suspension system. The motion of this system consists of a translational motion of the cen-
ter of mass and a rotational motion about the center of mass. Mathematical modeling of the
complete system is quite complicated. _ -

A very simplified version of the suspension system is shown in Figure 3-57(b). Assuming that
the motion x; at point P is the input to the system and the vertical motion x, of the body is the
output, obtain the transfer function X,(s)/X;(s). (Consider the motion of the body only in the ver-
tical direction.) Displacement x, is measured from the equilibrium position in the absence of
mput x;.

Solut}on. The equation of motion for the system shown in Figure 3-57(b) is
mx, + b(x, — ;) + k(x, — x;) = 0
or
mx, + bx, + kx, = bX; + kx;
Taking the Laplace transform of this last equation, assuming zero initial conditions, we obtain
(ms? + bs + k)X,(s) = (bs + k)X(s)

Hence the transfer function X ,(s)/X(s) is given by

X(s)  bs+k
X(s) ms®+bs+k

=~
AAAA

YYvy

o>

& -

Center of mass

\o Auto body
i
Figure 3-57 iz i z L : » l
(a) Automobile T T i
suspension system;
(b) simplified —
suspension system. (@ )
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Figure 3-58

A-3-17.

Suspension system.

132

A-3-18.

Obtain the transfer function Y (s)/U(s) of tne system shown in Figure 3-58. The input u is a
displacement input. (Like the system of Problem A-3-16, this is also a simplified version of an
automobile or motorcycle suspension system. )

Solution. Assume that displacements x and y are measured from respective steady-state posi-
tions in the absence of the input u. Applying the Newton’s second law to this system, we obtain

mE = ly(y — x) + b(y — £) + ky(u ~ x)
myy = ~ky(y ~ x) = b(y ~ %)
Hence, we have
mx + bx + (ky + ky)x = by + kyy + kyu
my + by + kyy = bx + kyx
Taking Laplace transforms of these two equations, assuming zero initial conditions, we obtain
[mys® + bs + (ky + k)| X (5) = (bs + ky)Y (s) + kyU(s)
[mys? + bs + kY (s) = (bs + k)X (s)
Eliminating X (s) from the last two equations, we have

m,st + bs + k,

TR Y(s) = (bs + k)Y (s) + kU(s)

(mys? + bs + ky + k)

which yields
Y(s) ky(bs + k)
U(s)  mymys* + (my + mp)bs® + [kymy + (my + my)ky|s* + kybs + kik,

ny

Obtain the transfer function of the mechanical system shown in Figure 3-59(a). Also obtain the
transfer function of the electrical system shown in Figure 3-39(b). Show that the transfer functions
of the two systems are of identical form and thus they are analogous systems.

Solutien. In Figure 3-59(a) we assume that displacements x;, x,, and y are measured from their
respective steady-state positions. Then the equations of motion for the mechanical system shown

in Figure 3-59(a) are
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(a) Mechanical

(b) analogous
electrical system.

bi(x: = %,) + ky(x; — x,) = by, — 3)
bZ(xo - y) =kyy
By taking the Laplace transforms of these two equations, assuming zero initial conditions, we
“have

bx[SXi(S) - on(s)] + kl[Xl(s) - Xo(s)] = bz[on(s) - SY(S)]
by[sX,(s) = sY(s)] = kY (s)

If we eliminate Y (s) from the last two equations, then we obtain
bys X (s)
bifsXi(s) = sXo(5)] + k[ Xi(s) = Xo(s)] = basXo(s) = bos

or

(bys + k) Xi(s) = (bls + ky + bys — bzs——ﬂ——)Xo(s)
bys + k,

Hence the transfer function X ,(s)/X(s) can be obtained as

wo ) (Ee)

IR
k1S+1 k23+1 +k1S

For the electrical system shown in Figure 3-59(b), the transfer function E,(s)/E{s) is found to
be

1
Ef(s) _ Mt e

B T 1 oo
(I/Rz) + CzS C1S

(RiCys + 1)(Ry,Cys + 1)
(RiCys + 1)(R,Cys + 1) + R, Cys

X
K b, £,
_| I._.
G, R,
e €o
C, T
Oo— -—0
@ (b)
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A-3-19.

Figure 3-60
Bridged T networks.

Figure 3-61

(a) Bridged T
network in terms of
complex impedances;
(b) equivalent
network.

134

A comparison of the transfer functions shows that the systems shown in Figures 3-59(a) and (b)
are analogous.

Obtain the transfer functions E,(s)/E;(s) of the bridged T networks shown in Figures 3-60(a)
and (b).

Solution. The bridged T networks shown can both be represented by the network of
Figure 3-61(a), where we used complex impedances. This network may be modified to that, shown
in Figure 3-61(b). ’

In Figure 3-61(b), note that

11 = 12 + 13, IzZl = (Z3 + Z4)I3

Cz RZ
—1 N 1L a——
1
R R
‘o——m——l——M—«o o]} {——o
C c

AAA

S R, o

T

O QO O —Q
T |
(@

(b)
i 13
Z,
I b
O—> - Z Z3 o]
& Z; €o
I
O— O
(@)
I I
e |
I Zs
z ] o
I \
Z3
Efs)
L
Eys)
Z
\ 28 1
O —0
(b)




Hence

Le—BtZ o &

1Tz +Z,+ 2,0 ST Z A Zy+ Zy !
Then the voltages E;(s) and E,(s) can be obtained as

E,-(s) = lez + Zle

ma+m]

Zo+Z+ Z, |7
Z 2y + Zy + Z4) + Z,(Z5 + Z,)
B Z+ Zy + Z, !

=[Zz+

Es) = Z;5; + 2,1

252,

=22 1 +2z
Zi+Zy+ Zy ! 2y

_aa+ﬁa+a+@
B Z,+ 2y + Z, !

Hence, the transfer function E,(s)/E;(s) of the network shown in Figure 3-61(a) is obtained as
E(s)  Z:Z,+ Z, (Z,+ Z, + Z)
E(s)  Z(Z + Z, + Z) + Z,Zy + Z,Z,
For the bridged T network shown in Figure 3-60(a), substitute

1 1
= — Z. = =
CIS ’ 3 R, Z4 CzS

into Equation (3-107). Then, we obtain the transfer function E,(s)/E(s) to be

(3-107)
Zy=R, 4

1 1
P4+ —|(R+ R+
E,(s) R Cis (R R C25>

E(s) 1 (

1y 1
R+R+—)+R+R—
Cys R C s> R R

2 Cys
RC{RC,s* + 2RC,s + 1
" RCIRC,s* + (2RC, + RCy)s + 1
Similarly, for the bridged T network shown in Figure 3-60(b), we substitute

1 1
_C—s’ Z, = R, Zy = a, Z;=R,

into Equation (3-107). Then the transfer function E,(s)/E;(s) can be obtained as follows:

1
L n(Leder)

Z =

E(s) Cs Cs Cs Cs
E(s) (1 1 ) 11 1
=+ =+ + ——+ Ry—
Riles T ¢s R)+tees TR

3 R,CR,Cs* + 2R, Cs + 1
R,CR,Cs? + 2R,.C + R,C)s + 1
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Figure 3-62
Operational-
amplifier circuit.

A-~-3-20.

A-3-21.
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YVVv
R
AA AIA A
YVVy -
—_o
e, AW +
Ry B
e,
€; C _‘: ‘
e, -0

Obtain the transfer function E,(s)/E(s) of the op-amp circuit shown in Figure 3-62.

Solution. The voltage at point A is

(e,- — ea) + e,

N | =

€4 =

The Laplace-trasformed version of this last equation is

1
Ea(s) = 5 [Eds) + Eof(9)]
The voltage at point B is
1
Cs 1
Ep(s) = ”R—TIE,'(S) = mEt(s)
27 Cs
Since [E(s) — Ea(s)]K = E,(s) and K > 1, we must have E,(s) = Eg(s). Thus
2E(s) + EA9)] = wor s ES)
2t 0 R,Cs+1""
Hence
_ 1
Eo(s) chs - 1 s RZC
Ef(s) RzCs +1° 1
St C

2

Obtain the transfer function E,(s) /E (s) of the op-amp system shown in Figure 3-63 in terms of
complex impedances Z,, Z,, Z;, and Z,. Using the equation derived, obtain the transfer functlon
E,(s)/E;(s) of the op-amp system shown in Figure 3-62.

Solution. From Figure 3-63, we find

Ei(s) = Ea(s) _ Ea(s) —
Z, h Z,

Eo(s)
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A
z 2
e
B |+
o z,
€; ZI €y
Figure 3-63
Operational- e o}
amplifier circuit. =
or
z Z
Efs) — (1 + J)EA(S) =-22F (s) (3-108)
Z4 Zy
Since
Ea(s) = Eals) = =2 E (3-109)
Al5) = Exls) = 55 E(5)

by substituting Equation (3-109) into Equation (3-108), we obtain

ZuZy + ZyZy — ZuZ) — ZoZ Z
I: 4441 442 4441 3 1:|E[(S)=——3E0(S)
Z{Z, + Z,)

from which we get the transfer function E,(s)/E(s) to be

E,(s) _ ZyZy — Z3Z,

E(s) - Z{Z, + Z,) (3-110)

To find the transfer function E,(s)/E;(s) of the circuit shown in Figure 3-62, we substitute

Zl = 57 Z2 = R27 Z3 = R17 Z4 = Rl

into Equation (3-110). The result is

1
E(s) BR-Rer pes-i

E(s) (1 >——R2Cs+1
— +
R, Cs R,

which is, as a matter of course, the same as that obtained in Problem A-3-20.
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A-3-22,

Figure 3-64
Operational-
amplifier circuit.
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Obtain the transfer function E,(s)/E;(s) of the operational-amplifier circuit shown in Figure 3-64.

Solution. We will first obtain currents iy, i, i, 14, and is. Then we will use node equations at nodes

A and B.
€ T €4 . €a — & . de,
h =75 "3 I = , is=C —=
R, R, dt
. eA . _deo
Iy = = is = C
4 Rza 5 2 dr

Atnode A,we have iy = i, + iy + i, 0r

€ — €4 €46 de, ey
— = +C—— + =
R, R, Ydt R,
At node B, we get iy = is, or
e _ ¢, de,
R, dt

By rewriting Equation (3-111), we have

Cd_eg+<L+L+L>e _& ke
Ydr R, R, R * R R

From Equation (3-112), we get
: de,

€q = "RZCZ Ti—t—

By substituting Equation (3-114) into Equation (3-113), we obtain

dzeo 1 1 1 ) deo € o
- — )+ | =+ =+ — (-RC)— =—F+
C1< R,C, a7 ) (Rl R, R, ( 2 2) dr R, R,

(3]

(3-111)

(3-112)

(3-113)

(3-114)

Taking the Laplace transform of this last equation, assuming zero initial conditions, we obtain

t .1 1 1 Eis)
_ 2 — 4 — — —— =
CiCyR,S%E,(s) + ( R Rz)( R,C,)sE,(s) R E,(s) R
from which we get the transfer function E,(s)/E;(s) as follows:

Eo(s) 1

E() | RGRGs + [R,C, + RiC, + (Ri/Ry)RyCyls + (Ry/Ry)

Ry
—AWWY-

] C
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A-3-23.

Consider the servo system shown in Figure 3—-65(a). The motor shown is a servomotor, a dc motor
designed specifically to be used in a control system. The operation of this system is as follows: A
pair of potentiometets acts as an error-meastring device. They convert the input and output po-
sitions into proportional electric signals. The command input signal determines the angular posi-
tion r of the wiper arm of the input potentiometer. The angular position 7 is the reference input
to the system, and the electric potential of the arm is proportional to the angular position of the
arm. The output shaft position determines the angular position ¢ of the wiper arm of the output
potentiometer. The difference between the input angular position r and the output angular posi-
tion ¢ is the error signal ¢, or

e=r—c¢

The potential difference e, — e. = ¢, is the error voltage, where e, is proportional to » and e, is pro-
portional to c; that is,e, = Kyr and e, = Kyc, where K, is a proportionality constant. The error volt-
age that appears at the potentiometer terminals is amplified by the amplifier whose gain constant
is K;.The output voltage of this amplifier is applied to the armature circuit of the dc motor. A fixed
voltage is applied to the field winding. If an error exists, the motor develops a torque to rotate the
output load in such a way as to reduce the error to zero. For constant field current, the torque de-
veloped by the motor is

T = Kzl’u

where K, is the motor torque constant and i, is the armature current.

Reference jnput ~ Lnput potentiometer

Output potentiometer !
Feedback signal [ ¢

A § S ¥ R
Error measuring device Amplifier Motor Gear Load
train
@
R(s) £(s) E\(s) KK, &) Cls) R(s) K C(s)
X SWas + Re) Uys + ) + Koiss " SUs +B) >
(b ©
Figure 3-65

(a) Schematic diagram of servo system; (b) block diagram for the system; (c) simplified block

diagram.
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When the armature is rotating, a voltage proportional to the product of the flux and angular
velocity is induced in the armature. For a constant flux, the induced voltage e, is directly propor-
tional to the angular velocity d6/dt, or

de
€, = K3E

where e, is the back emf, Kj is the back emf constant of the motor, and 6 is the angular displace-
ment of the motor shaft.

Obtain the transfer function between the motor shaft angular displacement 6 and the error
voltage e,. Obtain also a block diagram for this system and a simplified block diagram when L,
is negligible.

Solution. The speed of an armature-controlled dc servomotor is controlled by the armature volt-
age e,. (The armature voltage e, = K e, is the output of the amplifier.) The differential equation
for the armature circuit is

di, .
L,,T + R, + ¢ = ¢,

or

di, o
Lo/ + Ris + Ks— = Kie, (3-115)

The equation for torque equilibrium is

d a9 .

Jod_tz + bog}* =T = K, (3-116)
where J; is the inertia of the combination of the motor, load, and gear train referred to the motor
shaft and by, is the viscous-friction coefficient of the combination of the motor, load, and gear train
referred to the motor shaft.

By eliminating i, from Equations (3-115) and (3-116), we obtain

O(s) _ KK
E(s)  s(L.s + R)(Jos + by) + K, Kas

(3-117)

We assume that the gear ratio of the gear train is such that the output shaft rotates n times for each
revolution of the motor shaft, Thus,

C(s) = n6(s) (3-118)
The relationship among E,(s), R(s), and C(s) is
Ey(s) = K[R(s) = C(s)] = KoE(5) (3-119)

The block diagram of this system can be constructed from Equations (3-117), (3-118), and (3-119),
as shown in Figure 3-65(b). The transfer function in the feedforward path of this system is

Gls) = C(s) 6(s) Es) 3 Ky K Kyn
) = 0(s) Es(5) E(s) ~ s[(Lus + R)(os + bu) + KoKo]
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A-3-24.

When L, is small, it can be neglected, and the transfer function G(s) in the feedforward path
becomes

s|R(Jos + by) + K,K;]

G(s) =

— KOKl KZ”/Ru (3_120)

: KK
Tos? + (bo + ; 3>s

a

The term [b, + (K;K3/R,)]s indicates that the back emf of the motor effectively increases the
viscous friction of the system. The inertia J; and viscous friction coefficient b, + (K2K3/ Ra) are
referred to the motor shaft. When J, and by + (K, K3/R,) are multiplied by 1/n? the inertia and
viscous-friction coefficient are expressed in terms of the output shaft. Introducing new parameters
defined by

J = Jo/n* = moment of inertia referred to the output shaft
B = [by + (K, K3/R,)]/n* = viscous-friction coefficient referred to the output shaft

K = KK K)/nR,
the transfer function G(s) given by Equation (3-120) can be simplified, yielding

K
G =
(s) Js* + Bs
or
K”l
G(s) = 70—
s(Tms + 1)
where
R, J
K, = 5’ T, = g Sl U
B B R,b, + KK,

The block diagram of the system shown in Figure 3-65(b) can thus be simplified as shown in
Figure 3-65(c).

Consider the system shown in Figure 3-66. Obtain the closed-loop transfer function C(s)/R(s).
Solution. In this system there is only one forward path that connects the input R(s) and the Out-
put C(s). Thus,

1 1 1

P =
1 Cls Rl Cz.S'
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Figure 3-66
Signal flow graph of
a control system.
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1
R(85) Qi

There are three individual loops. Thus,

Ll__ii
C15R1
1 1
L=~Csrs
11
L="R s

Loop L, does not touch loop L,. (Loop L, touches loop L, and loop L, touches loop L;.) Hence

the determinant A is given by
A=1- (L +L,+ Ly) + (L,Ly)

1 1 1 1
+ + + +
R1C1s R2C25 R1C2s R1C1R2C232

=1

_ Since all three loops touch the forward path P, we remove Ly, L,, L;,and L, L, from A and eval-
uate the cofactor A, as follows: '

Alzl

Thus we obtain the closed-loop transfer function to be

C(s) _hA
R(s) A

1
R1C1 CZSZ

1 1 1 1

1+ + + +
R1 Cls RzCzS RI CQS R1C1 RzCzSz

Ry
R,C,R,C,s* + (R,Cy + R,Cy + RyCy)s + 1
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A-3-25. Obtain the transfer function Y (s)/X (s) of the system shown in Figure 3-67.

Solution. The signal flow graph shown in Figure 3-67 can be successively simplified as shown in
Figures 3-68 (a), (b), and (c). From Figure 3-68(c), X; can be written as

1 s+ a,
Xy=5 X+ —— X,
s s

This last equation can be simplified as
(> +ais+a)Xs =X
from which we obtain
Y(s) bX; b

X(S)—7 32+a15+a2

1
1 X s X s X b
X(S) Qi - P P Y(5)
-
Figure 3-67
Signal flow graph of
a system. -
1 1
X K3 X 5 X3 b
(@ Xs) 0 s > o P e (D)
-a,
L
| X, 82 X3 b
(b) X(s) O - U‘— > O Y(s)
-8 ~ay
. 1
Flgure.3-68 2 X, b
Succeswe ©) Xs) O - o O Y(s)
simplifications of the '
signal flow graph of
Figure 3-67.
—a)s -ay

52
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A-3-26.

Figure 3-69

Block diagram of an
engine-speed control
system.

-+~ Figure 3~70
(a) Signal flow graph for
Y{(s)/X(s)=1/(s + 140),

(b) signal flow graph for
Z(s)/X (s) = 1/(s* + 140s + 100?);
(c) signal flow graph for the
system shown in Fig. 3-69.

144

Figure 3-69 is the block diagram of an engine-speed control system. The speed is measured by a
set of flyweights. Draw a signal flow graph for this system.

Solution. Referring to Figure 3-36(e), a signal flow graph for

Y(s) _ 1
X(s) s+ 140

may be drawn as shown in Figure 3-70(a). Similarly, a signal flow graph for

11

Z(s) 1 s+ 1408

X(s)  s*+ 140s + 1007 1002 1
s+ 140 5

may be drawn as shown in Figure 3-70(b).
Drawing a signal flow graph for each of the system components and combining them together,
a signal flow graph for the complete system may be obtained as shown in Figure 3-70(c).

Load
disturbance
Reference N(s) Actual
speed speed
R(s) @_ 1002 10 10 )
B ——
$%+ 1405 + 1002 0.15+1 205 + 1
Flyweights - Hydraulic Engine
Servo
By 1 1
s s

1
X(5) Ot U Y(s)
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A-3-27. Linearize the nonlinear equation
z = x* + 4xy + 6)*

in the region definedby8 < x = 16,2 =y=4
Solution. Define
flx,y) = z=x* + 4xy + 6y*
Then
2= e = 1@+ [Le-n+ZLo-n] .
where x = 9,y = 3.

Since the higher-order terms in the expanded equation are small, neglecting these higher-
order terms, we obtain

2= Z2=K(x - %) + K(y - §)

where
of o -
K, =— =2F+4y=2X9+4x3=730
9% |x=z,y=5
of - _
K, =— =4+ 12 =4 X9+ 12X3=T72
Y | =z, y=5 ,
Z=F4+4E7+ 672 =P +4X9IX3+6X9=243
Thus

z—243=30(x —9) + 72(y - 3)
Hence a linear approximation of the given nonlinear equation near the operating point is

z—30x -T2y +243 =0
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PROBLEMS

B-3-1. Simplify the block diagram shown in Figure 3-71  B-3-2. Simplify the block diagram shown in Figure 3-72
and obtain the closed-loop transfer function C(s)/R(s). and obtain the transfer function C(s)/R(s).

B-3-3. Simplify the block diagram shown in Figure 3-73
and obtain the closed-loop transfer function C(s)/R(s).

G,
R(s) O C(s)
vy —
» Gy
Vi <
@]~
Gy |-
Figure 3-71 : 1 G
Block diagram of a system.
) >
H) |
¥
(&)
Figure 3-72 Hy |-
Block diagram of a system.
H,
R(s) C(s)
| &
: i

Figure 3-73
Block diagram of a system.
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B-3-4. Consider industrial automatic controllers whose
control actions are proportional, integral, proportional-plus-
integral, proportional-plus-derivative, and proportional-plus-
integral-plus-derivative. The transfer functions of these
controllers can be given, respectively, by

U(s) _

E(s) K,

U(s) K

E(s) s

U(s) _

E(s) 1+ ﬁ)

U(s) _

EG) K, (1 + Tys)

U(s) 1

) = Kp(l tgst Tds)

where U(s) is the Laplace transform of u(t), the controller
output, and E(s) the Laplace transform of e(t), the actuat-

ing error signal. Sketch u{t) versus t curves for each of the
five types of controllers when the actuating error signal is

() e(¢) = unit-step function
(b) e(t) = unit-ramp function
In sketching curves, assume that the numerical values of K,
K;, T;, and T, are given as
K, = proportional gain = 4
K;
7} =

= integral gain = 2
integral time = 2 sec
T, = derivativc time = 0.8 sec

‘B-3-5. Figure 3-74 shows a closed-loop system with a ref-
erence input and d1sturbance input. Obtain the expression
for the output C(s) when both the reference input and dis-
turbance input are present.

B-3-6. Consider the system shown in Figure 3-75. Derive
the expression for the steady-state error when both the ref-
erence input R(s) and disturbance input D(s) are present.

B-3-7. Obtain the transfer functions C(s)/R(s) and

D(s)
C(s)/D(s) of the system shown in Figure 3-76.
R(s) C(s)
(29—-» Gfs) P G (5) e o
t Controller Plant
Figure 3-74
Closed-loop system.
D(s)
R(s) £(s) C(s)
(> Pt G(5) ] Gals) >
Figure 3-75
Control system.
D(s)
R(s C
—»@M | G G G, > G, >
H) -
Figure 3-76 H, -
Control system.

Problems
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‘B-3-8. Obtain a state-space representation of the system B-3-14. Obtain mathematical models of the mechanical

shown in Figure 3-77.

~H e T

Figuré 3-77
Control system.
B-3-9. Consider the system described by
V+3y+2y=u
Derive a state-space representation of the system.
B-3-10. Consider the system described by

HE R HMEH
=oof;]

Obtain the transfer function of the system.

B-3-11. Consider a system defined by the following state-
space equations:

-0 o
=02

Obtain the transfer function G(s) of the system.,
B-3-12. Obtain the transfer matrix of the system defined by

J‘Cl 0 1 0 Xq 0 0 u
BHl=] 0 0 1|lx|{+]01 l:ul}
i —2 —4 —6 || x4 10 2

HEHE

- 2

Y2 01 0 X ‘

B-3-13. Obtain the equivalent viscous-friction coefficient
b, of the system shown in Figure 3-78.

b2
i}
L
bl
1 |
1TE
L b3
x Y

Figure 3-78
Damper system.
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systems shown in Figure 3-79(a) and (b).

—> x (Output)

k (o)
' m
(Input force)
N 7777979777
7
No friction
(@
— x (Output)
k 1 k2 u(t)
m
(Input force)
* 777%977/
No friction
(b)
Figure 3-79

Mechanical systems.

B-3-15. Obtain a state-space representation of the me-
chanical system shown in Figure 3-80, where v, and u, are
the inputs and y, and y, are the outputs.

Y

Figure 3-80
Mechanical system.

B-3-16. Consider the spring-loaded pendulum system
shown in Figure 3-81. Assume that the spring force acting on
the pendulum is zero when the pendulum is vertical, or
6 = 0. Assume also that the friction involved is negligible
and the angle of oscillation 6 is small. Obtain a mathemati-
cal model of the system.
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B-3-19. Obtain the transfer function E,(s)/E;(s) of the
electrical circuit shown in Figure 3-84.

R 2
o, AW AMVY o
&; g L ’> - C [
i iy
O O
mg Figure 3-84

Figure 3-81
Spring-loaded pendulum system.

Electrical circuit.

B-3-17. Referring to Examples 3-8 and 3-9, consider the
inverted pendulum system shown in Figure 3-82. Assume
that the mass of the inverted pendulum is m and is evenly
distributed along the length of the rod. (The center of grav-
ity of the pendulum is located at the center of the rod.) As-
suming that 8 is small, derive mathematical models for the
system in the forms of differential equations, transfer func-

B-3-20. Consider the electrical circuit shown in Figure 3-85.
Obtain the transfer function E,(s)/E;(s) by use of the block
diagram approach.

tions, and state-space equations. Ry .

O'——MNV vAvvv O
¥ ¥y
\
€ C == Co = €
et X
0 4
i x iy i

G
(e, 0]
s .
x Figure 3-85

O r
~ Electrical circuit.
U —— M
@) @) B-3-21. Derive the transfer function of the electrical cir-
4 7 cuit shown in Figure 3-86. Draw a schematic diagram of an
Figure 3-82 ginalogous mechanical system.

Inverted pendulum system.

B-3-18. Obtain the transfer functions X,(s)/U(s) and

X,(s)/U(s) of the mechanical system shown in Figure 3-83. R Gy
o AWy 1' |I O
u = X > X2
Y I Ry
AAkAl k3 A(cf ¢ o
vy my ——AMWV— my AAAJ
T 1 &
b O o 0o = T
” o ‘————0
Figure 3-83 Figure 3-86

Mechanical system.

Problems

Electrical circuit.
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B-3-22. Obtain the transfer function E,(s)/E;(s) of the
op-amp circuit shown in Figure 3-87.

Ry
AAAA
Yyvy
o_.|c " A
—0
€; ¢
(o O

Figure 3-87
Operational-amplifier circuit.

B-3-23. Obtain the transfer function E,(s)/E;(s) of the
op-amp circuit shown in Figure 3-88.

c A
|1 .
(o, 11 +
B -
R, EE
-
€; Ry €y

Yyyy=—=9

B-3-24. Using the impedance approach, obtain the trans-
fer function E,(s)/E;(s) of the op-amp circuit shown in
Figure 3-89.

Ry
AAAA
\AAAS
R
a A —_
T—va
C —0
I
o i P
< €o
€ =R
<>
[, —0

Figure 3-89
" Operational-amplifier circuit.

B-3-25. Consider the system shown in Figure 3-90. An
armature-controlled dc servomotor drives a load consisting
of the moment of inertia J; . The torque developed by the
motor is 7. The moment of inertia of the motor rotor is J,,,.
The angular displacements of the motor rotor and the load
element are 6,, and 6, respectively. The gear ratio is

_]_ n = 6/86,,. Obtain the transfer function &(s)/E{s).
Figure 3-88
Operational-amplifier circuit.
L
O T ——— A
¢;
O
Figure 3-90

Armature-controlled dc servomotor system.
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B-3-26. Obtain the transfer function Y (s) /X (s) of the sys-
tem shown, in Figure 3-91.

by

—a

Figure 3-91
Signal flow graph of a system.

B-3-27. Obtain the transfer function Y (s)/X (s) of the sys-
tem shown in Figure 3-92.

ot

X(5) Oremmmnain

Figure 3-92
Signal flow graph of a system.

Problems

B-3-28. Linearize the nonlinear equation
z= x>+ 8xy + 3y°
in the region defined by 2 = x = 4,10 = y < 12,

B-3-29. Find a linearized equation for

about a point x = 2.

y =02x

151



Mathematical Modeling
of Fluid Systems
and Thermal Systems*

4-1 INTRODUCTION

152

This chapter treats mathematical modeling of fluid systems and thermal systems. As the
most versatile medium for transmitting signals and power, fluids—Iliquids and gases—
have wide usage in industry. Liquids and gases can be distinguished basically by their rel-
ative incompressibilities and the fact that a liquid may have a free surface, whereas a gas
expands to fill its vessel. In the engineering field the term pneumatic describes fluid
systems that use air or gases and Aydraulic applies to those using oil.

We first discuss liquid-level systems that are frequently used in process control. Here
we introduce the concepts of resistance and capacitance to describe the dynamics of
such systems. Then we treat pneumatic systems. Such systems are extensively used in
the automation of production machinery and in the field of automatic controllers. For
instance, pneumatic circuits that convert the energy of compressed air into mechanical
energy enjoy wide usage. Also, various types of pneumatic controllers are widely used
in industry. Next, we present hydraulic servo systems. These are widely used in machine
tool systems, aircraft control systems, etc. We discuss basic aspects of hydraulic servo
systems and hydraulic controllers. Both pneumatic systems and hydraulic systems can
be modeled easily by using the concepts of resistance and capacitance. Finally, we treat
simple thermal systems. Such systems involve heat transfer from one substance to an-
other. Mathematical models of such systems can be obtained by using thermal resistance
and thermal capacitance.

*This chapter assumes an introductory background of fluid dynamics, thermodynamics, and heat transfer as
normally required for mechanical engineering curriculum. If the students using this text do not have such
background, this chapter may be skipped without losing continuity of the analysis and design of control systems
presented in this book.
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Outline of the Chapter. Section 4-1 has just presented introductory material for
the chapter. Section 4-2 discusses liquid-level systems. Section 4-3 treats pneumatic
systems—in particular, the basic principles of pneumatic controllers. Section 4-4 first
discusses hydraulic servo systems and then presents hydraulic controllers. Finally,
Section 4-5 analyzes thermal systems and obtains mathematical models of such systems.

4-2 LIQUID-LEVEL SYSTEMS

In analyzing systems involving fluid flow, we find it necessary to divide flow regimes
into laminar flow and turbulent flow, according to the magnitude of the Reynolds num-
ber. If the Reynolds number is greater than about 3000 to 4000, then the flow is turbu-
lent. The flow is laminar if the Reynolds number is less than about 2000. In the laminar
case, fluid flow occurs in streamlines with no turbulence. Systems involving laminar flow
may be represented by linear differential equations.

Industrial processes often involve flow of liquids through connecting pipes and tanks.
The flow in such processes is often turbulent and not laminar. Systems involving turbu-
lent flow often have to be represented by nonlinear differential equations. If the region
of operation is limited, however, such nonlinear differential equations can be linearized.
We shall discuss such linearized mathematical models of liquid-level systems in this sec-
tion. Note that the introduction of concepts of resistance and capacitance for such liquid-
level systems enables us to describe their dynamic characteristics in simple forms.

Resistance and Capacitance of Liquid-Level Systems. Consider the flow
through a short pipe connecting two tanks. The resistance R for liquid flow in such a
pipe or restriction is defined as the change in the level difference (the difference of the
liquid levels of the two tanks) necessary to cause a unit change in flow rate; that is,

change in level difference, m

change in flow rate, m’/sec |

Since the relationship between the flow rate and level difference differs for the laminar
flow and turbulent flow, we shall consider both cases in the following.

Consider the liquid-level system shown in Figure 4-1(a). In this system the liquid
spouts through the load valve in the side of the tank. If the flow through this restriction
is laminar, the relationship between the steady-state flow rate and steady-state head at
the level of the restriction is given by

Q=KH
where Q = steady-state liquid flow rate, m*/sec
K = coefficient, m?/sec
H = steady-state head, m
For laminar flow, the resistance R, is obtained as
dH H
Rl = e = —
ag  Q
The laminar-flow resistance is constant and is analogous to the electrical resistance.
If the flow through the restriction is turbulent, the steady-state flow rate is given by

Q=KVH (4-1)
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Figure 4-1

(a) Liquid-level
system; (b) head
versus flow rate
curve.
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where Q = steady-state liquid flow rate, m*/sec
K = coefficient, m**/sec
H = steady-state head, m

The resistance R, for turbulent flow is obtained from

dH
R =~=
t dQ
Since from Equation (4-1) we obtain
K
dQ = ——==dH
=i
we have
daH 2VH 2VAVH 2H
dQ K ) 0
Thus,
2H
k="

The value of the turbulent-flow resistance R, depends on the flow rate and the head. The
value of R,, however, may be considered constant if the changes in head and flow rate
are small.

By use of the turbulent-flow resistance, the relationship between Q and H can be
given by

1
Such linearization is valid, provided that changes in the head and flow rate from their
respective steady-state values are small.

In many practical cases, the value of the coefficient K in Equation (4-1), which depends
on the flow coefficient and the area of restriction, is not known. Then the resistance may
be determined by plotting the head versus flow rate curve based on experimental data
and measuring the slope of the curve at the operating condition. An example of such a plot
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is shown in Figure 4-1(b). In the figure, point P is the steady-state operating point. The tan-
gent line to the curve at point P intersects the ordinate at point (O, -H ) Thus, the slope
of this tangent line is 2/ /Q. Since the resistance R, at the operating point P is given by
2H/Q, the resistance R, is the slope of the curve at the operating point.

Consider the operating condition in the neighborhood of point P. Define a small
deviation of the head from the steady-state value as / and the corresponding small
change of the flow rate as g. Then the slope of the curve at point P can be given by

ol _
. o
The linear approximation is based on the fact that the actual curve does not differ much
from its tangent line if the operating condition does not vary too much.

The capacitance C of a tank is defined to be the change in quantity of stored liquid

necessary to cause a unit change in the potential (head). (The potential is the quantity
that indicates the energy level of the system.)

h
Slope of curve at point P = a = ]

change in liquid stored, m*

C =
change in head, m

It should be noted that the capacity (m?®) and the capacitance (m?) are different. The
capacitance of the tank is equal to its cross-sectional area. If this is constant, the capac-
itance is constant for any head.

Liquid-Level Systems. C(.)nsider the system shown in Figure 4-1(a). The vari-
ables are defined as follows:

QO = steady-state flow rate (before any change has occurred), m*/sec

g; = small deviation of inflow rate from its steady-state value, m*/sec

g, = small deviation of outflow rate from its steady-state value, m®/sec

H = steady-state head (before any change has occurred), m

h = small deviation of head from its steady-state value, m

As stated previously, a system can be considered linear if the flow is laminar. Even if
the flow is turbulent, the system can be linearized if changes in the variables are kept
small. Based on the assumption that the system is either linear or linearized, the differential
equation of this system can be obtained as follows: Since the inflow minus outflow during
the small time interval dt is equal to the additional amount stored in the tank, we see that
Cdh = (ql - qo) dt

From the definition of resistance, the relationship between g, and % is given by
h

%:R

The differential equation for this system for a constant value of R becomes
dh

RC= + h = Rg, 42
7 q; (4-2)

Note that RC is the time constant of the system. Taking the Laplace transforms of both
sides of Equation (4-2), assuming the zero initial condition, we obtain

(RCs + 1)YH(s) = RQ(s)
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Figure 4-2
Liquid-level system
with interaction.
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where
H(s)=%[h] and  Qs) = ¥[q]
If g; is considered the input and /4 the output, the transfer function of the system is
H(s) R
Oi(s) RCs+1
If, however, g, is taken as the output, the input being the same, then the transfer
function is
Qo(s) 1

O(s) RCs +1
where we have used the relationship

0,(s) = = H(s)

Liquid-Level Systems with Interaction. Consider the system shown in Figure
4-2.In this system, the two tanks interact. Thus the transfer function of the system is not
the product of two first-order transfer functions.

In the following, we shall assume only small variations of the variables from the
steady-state values. Using the symbols as defined in Figure 4-2 , we can obtain the
following equations for this system:

hi—h
_1}!71—2 =q (4-3)
dh
e (4-4)
h,
—£ = 4-5
R, U] (4-5)
dh
Cz’d_t2 =4 — % (4-6)
If g is considered the input and g, the output, the transfer function of the system is
() _ 1 @)
0(s)  RCiR,Cys* + (R,C, + RyCy + RyCy)s + 1
0+q
—

Tank 1 Tank 2

Ry Hy+hy Ry -
4L I }f_%:%

D
o) g+tq o)

: Steady-state flow rate
: Steady-state liquid level of tank 1
: Steady-state liquid level of tank 2

ST
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It is instructive to obtain Equation (4-7), the transfer function of the interacted
system, by block diagram reduction. From Equations (4-3) through (4-6), we obtain the
elements of the block diagram, as shown in Figure 4-3(a). By connecting signals prop-
erly, we can construct a block diagram, as shown in Figure 4-3(b). This block diagram
can be simplified, as shown in Figure 4-3(c). Further simplifications result in
Figures 4-3(d) and (e). Figure 4-3(e) is equivalent to Equation (4-7).

Hy(s) 1 O1(s) Hs) | 0a(s)
R R [
Hy(s)
Ols) 1 H(s) i(s) 1 H(s)
- > -+ e p——
Cis Cys
Qi(s) QOa(s)
@
O(s) 1 Hy(s) 1 Oi(s) < 1 1 Oals)
CIS R] o Czs HQ_(S) Rz o
®)
RyCys |
os) 99‘ 0’ 1 - 1 QI(S)‘ o 1 L 1 Oa(s)
S 5 Cis Ry o Cys R o
©
Ofs) 1 1 Qa(s)
RCs~1 | | RGyst1 >
Figure 4-3
(a) Elements of the RyCys |~
block diagram of the

system shown in

Figure 4-2; (b) block . @

diagram of the o) 1 Qa(s)
system; (c)-(e) T RICIRCos? + (RICy + RoCo+ RCs + L
successive reductions

of the block diagram. (e)
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Notice the similarity and difference between the transfer function given by
Equation (4-7) and that given by Equation(3-72). The term R, C, s that appears in the
denominator of Equation (4-7) exemplifies the interaction between the two tanks.
Similarly, the term R, C,s in the denominator of Equation (3~72) represents the inter-
action between the two RC circuits shown in Figure 3-23.

4-3 PNEUMATIC SYSTEMS

158

In industrial applications pneumatic systems and hydraulic systems are frequently
compared. Therefore, before we discuss pneumatic systems in detail, we shall give a brief
comparison of these two kinds of systems.

Comparison Between Pneumatic Systems and Hydraulic Systems. The fluid
generally found in pneumatic systems is air; in hydraulic systems it is oil. And it is pri-
marily the different properties of the fluids involved that characterize the differences
between the two systems. These differences can be listed as follows:

1. Air and gases are compressible, whereas oil is incompressible, (except at high pres-
sure).

2. Air lacks lubricating property and always contains water vapor, Qil functions as a
hydraulic fluid as well as a lubricator.

3. The normal operating pressure of pneumatic systems is very much lower than that
of hydraulic systems.

4. Output powers of pneumatic systems are considerably less than those of hydraulic
systems.

5. Accuracy of pneumatic actuators is poor at low velocities, whereas accuracy of
hydraulic actuators may be made satisfactory at all velocities.

6. In pneumatic systems, external leakage is permissible to a certain extent, but in-
ternal leakage must be avoided because the effective pressure difference is rather
small. In hydraulic systems internal leakage is permissible to a certain extent, but
external leakage must be avoided.

7. No return pipes are required in pneumatic systems when air is used, whereas they
are always needed in hydraulic systems.

8. Normal operating temperature for pneumatic systems is 5° to 60°C (41° to 140°F).
The pneumatic system, however, can be operated in the 0° to 200°C (32° to 392°F)
range. Pneumatic systems are insensitive to temperature changes, in contrast to
hydraulic systems, in which fluid friction due to viscosity depends greatly on tem-
perature. Normal operating temperature for hydraulic systems is 20° to 70°C (68°
to 158°F).

9. Pneumatic systems are fire- and explosion-proof, whereas hydraulic systems are
not, unless nonflammable liquid is used.

In what follows we begin with a mathematical modeling of pneumatic systems. Then
we shall present pneumatic proportional controllers.

We shall first give detailed discussions of the principle by which proportional
controllers operate. Then we shall treat methods for obtaining derivative and integral
control actions. Throughout the discussions, we shall place emphasis on the
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Figure 4-4

(a) Schematic
diagram of a
pressure system,;
(b) pressure
difference versus
flow rate curve,

fundamental principles, rather than on the details of the operation of the actual
mechanisms.

Pneumatic Systems. The past decades have seen a great development in low-
pressure pneumatic controllers for industrial control systems, and today they are used
extensively in industrial processes. Reasons for their broad appeal include an explosion-
proof character, simplicity, and éase of maintenance.

Resistance and Capacitance of Pressure Systems. Many industrial processes
and pneumatic controllers involve the flow of a gas or air through connected pipelines
and pressure vessels.

Consider the pressure system shown in Figure 4-4(a). The gas flow through the
restriction is a function of the gas pressure difference p; — p,. Such a pressure system
may be characterized in terms of a resistance and a capacitance.

The gas flow resistance R may be defined as follows:

_ change in gas pressure difference, lb;/ ft2

R change in gas flow rate, Ib/sec
or
R = d(AP) (4-8)
dq

where d(AP) is a small change in the gas pressure difference and dgq is a small change
in the gas flow rate. Computation of the value of the gas flow resistance R may be quite
time consuming. Experimentally, however, it can be easily determined from a plot of
the pressure difference versus flow rate by calculating the slope of the curve at a given
operating condition, as shown in Figure 4-4(b).

The capacitance of the pressure vessel may be defined by

change in gas stored, lb

change in gas pressure, Ib;/ft*

or
dm 7}
c=_y2P (4-9)
dp dp
4P 4
Resistance i Slope =R
= Ly ____ =
~ | P+p aan /i
P +p, / E'?/ !
Capacitance —»i :4—_ -
C 0 q
(@ (b)
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where C = capacitance, 1b-ft*/Ib;
m = mass of gas in vessel, b
p -~
V = volume of vessel, ft°
p = density, Ib/ft?

I

gas pressure, Iby/ft?

The capacitance of the pressure system depends on the type of expansion process
involved. The capacitance can be calculated by use of the ideal gas law. If the gas ex-
pansion process is polytropic and the change of state of the gas is between isothermal
and adiabatic, then
vyt op v
p<m> = constant = K (4-10)
where n = polytropic exponent.
For ideal gases,

T

<=

pv = RT or pv =

where p = absolute pressure, Ib;/ft?
¥ = volume occupied by 1 mole of a gas, ft*/1b-mole
R = universal gas constant, ft-lb;/lb-mole °R
T = absolute temperature, °R
= specific volume of gas, ft*/1b
M = molecular weight of gas per mole, Ib/lb-mole

Thus

P R
pv M T = RyT (4-11)

where R,,; = gas constant, ft-lb;/1b °R.

The polytropic exponent # is unity for isothermal expansion. For adiabatic expansion,
n is equal to the ratio of specific heats c,/c,, where c,, is the specific heat at constant pres-
sure and ¢, is the specific heat at constant volume. In many practical cases, the value of
n is approximately constant, and thus the capacitance may be considered constant.

The value of dp/dp is obtained from Equations (4-10) and (4-11). From
Equation (4-10) we have

dp = Knp" 'dp
or
do_ 1 __ #__ P
dp  Knp"' pnp"'  pn’
Substituting Equation (4-11) into this last equation, we get
dp 1

dp  nRy,T
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The capacitance C is then obtained as
Vv
C =
nRy, T

(4-12)

The capacitance of a given vessel is constant if the temperature stays constant. (In many
practical cases, the polytropic exponent # is approximately 1.0 ~ 1.2 for gases in unin-
sulated metal vessels.)

Pressure Systems. Consider the system shown in Figure 4-4(a). If we assume
only small deviations in the variables from their respective steady-state values, then this
system may be considered linear.

Let us define

P = gas pressure in the vessel at steady state (before changes in pressure have
occurred), Ib,/ft? :
p; = small change in inflow gas pressure, lb;/ft?
p, = small change in gas pressure in the vessel, Ib;/ft?
V = volume of the vessel, ft®
m = mass of gas in vessel, Ib
g = gas flow rate, Ib/sec
p = density of gas, [b/ft®
For small values of p; and p,, the resistance R given by Equation (4-8) becomes constant
and may be written as
Pi — Po

R=+—-F2
q

The capacitance C is given by Equation (4-9), or
_dm
dp

Since the pressure change dp, times the capacitance C is equal to the gas added to the
vessel during dt seconds, we obtain

C

Cdp, = qgdt
or
dp, _ P~ Po
“u "R
which can be written as
RC ap, + p, = p;
dt ¢ '

If p; and p, are considered the input and output, respectively, then the transfer function
of the system is

Pls) 1

P(s) RCs + 1

where RC has the dimension of time and is the time constant of the system.
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Figure 4-5

(a) Schematic
diagram of a
pneumatic nozzle-
flapper amplifier;
(b) characteristic
curve relating nozzle
back pressure and
nozzle-flapper
distance.
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Pneumatic Nozzle-Flapper Amplifiers. A schematic diagram of a pneumatic
nozzle-flapper amplifier is shown in Figure 4-5(a). The power source for this amplifier
is a supply of air at constant pressure. The nozzle-flapper amplifier converts small changes
in the position of the flapper into large changes in the back pressure in the nozzle. Thus
a large power output can be controlled by the very little power that is needed to posi-
tion the flapper.

In Figure 4-5(a), pressurized air is fed through the orifice, and the air is ejected from
the nozzle toward the flapper. Generally, the supply pressure P, for such a controiler
is 20 psig (1.4 kg;/cm? gage). The diameter of the orifice is on the order of 0.01 in.
(0.25 mm) and that of the nozzle is on the order of 0.016 in. (0.4 mm). To ensure prop-
er functioning of the amplifier, the nozzle diameter must be larger than the orifice
diameter.

In operating this system, the flapper is positioned against the nozzle opening. The
nozzle back pressure P, is controlled by the nozzle-flapper distance X. As the flapper
approaches the nozzle, the opposition to the flow of air through the nozzle increases, with
the result that the nozzle back pressure P, increases. If the nozzle is completely closed
by the flapper, the nozzle back pressure P, becomes equal to the supply pressure P,. If
the flapper is moved away from the nozzle, so that the nozzle-flapper distance is wide
(on the order of 0.01 in.), then there is practically no restriction to flow, and the nozzle
back pressure P, takes on a minimum value that depends on the nozzle-flapper device.
(The lowest possible pressure will be the ambient pressure F,.)

Note that, because the air jet puts a force against the flapper, it is necessary to make
the nozzle diameter as small as possible.

A typical curve relating the nozzle back pressure P, to the nozzle-flapper distance
X is shown in Figure 4-5(b). The steep and almost linear part of the curve is utilized in
the actual operation of the nozzle-flapper amplifier. Because the range of flapper dis-
placements is restricted to a small value, the change in output pressure is also small,
unless the curve is very steep.

The nozzle-flapper amplifier converts displacement into a pressure signal. Since
industrial process control systems require large output power to operate large pneu-
matic actuating valves, the power amplification of the nozzle-flapper amplifier is usually
insufficient. Consequently, a pneumatic relay is often needed as a power amplifier in
connection with the nozzle-flapper amplifier.

Input
—~———
o Pp

Orifice Pp

Air supply — AN

j ~«— Flapper
Nozzle

To control %

valve 0 X
(@ ®)
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Figure 4-6
(a) Schematic diagram of a bleed-type relay; (b) schematic diagram of a nonbleed-type relay.

Pneumatic Relays. In practice, in a pneumatic controller, a nozzle-flapper
amplifier acts as the first-stage amplifier and a pneumatic relay as the second-stage am-
plifier. The pneumatic relay is capable of handling a large quantity of airflow.

A schematic diagram of a pneumatic relay is shown in Figure 4-6(a). As the nozzle
back pressure P, increases, the diaphragm valve moves downward. The opening to
the atmosphere decreases and the opening to the pneumatic valve increases, thereby
increasing the control pressure P,. When the diaphragm valve closes the opening to
the atmosphere, the control pressure P, becomes equal to the supply pressure Fi.
When the nozzle back pressure P, decreases and the diaphragm valve moves upward
and shuts off the air supply, the control pressure P, drops to the ambient pressure F,.
The control pressure P, can thus be made to vary from 0 psig to full supply pressure,
usually 20 psig.

The total movement of the diaphragm valve is very small. In all positions of the
valve, except at the position to shut off the air supply, air continues to bleed into the at-
mosphere, even after the equilibrium condition is attained between the nozzle back
pressure and the control pressure. Thus the relay shown in Figure 4-6(a) is called a
bleed-type relay.

There is another type of relay, the nonbleed type. In this one the air bleed stops when
the equilibrium condition is obtained and, therefore, there is no loss of pressurized air
at steady-state operation. Note, however, that the nonbleed-type relay must have an at-
mospheric relief to release the control pressure P, from the pneumatic actuating valve.
A schematic diagram of a nonbleed-type relay is shown in Figure 4-6(b).

In either type of relay, the air supply is controlled by a valve, which is in turn
controlled by the nozzle back pressure. Thus, the nozzle back pressure is converted into
the control pressure with power amplification.

Since the control pressure F, changes almost instantaneously with changes in the
nozzle back pressure P,, the time constant of the pneumatic relay is negligible com-
pared with the other larger time constants of the pneumatic controller and the plant.

It is noted that some pneumatic relays are reverse acting. For example, the relay
shown in Figure 4-7 is a reverse-acting relay. Here, as the nozzle back pressure P,
increases, the ball valve is forced toward the lower seat, thereby decreasing the control
pressure P,.. Thus, this relay is a reverse-acting relay.
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Figure 4-7

Reverse-acting relay.
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Pneumatic Proportional Controllers (Force-Distance Type). Two types of
pneumatic controllers, one called the force-distance type and the other the force-balance
type, are used extensively in industry. Regardiess of how differently industrial pneu-
matic controllers may appear, careful study will show the close similarity in the functions
of the pneumatic circuit. Here we shall consider the force-distance type of pneumatic
controllers.

Figure 4-8(a) shows a schematic diagram of such a proportional controller. The
nozzle-flapper amplifier constitutes the first-stage amplifier, and the nozzle back pres-
sure is controlled by the nozzle-flapper distance. The relay-type amplifier constitutes
the second-stage amplifier. The nozzle back pressure determines the position of the di-
aphragm valve for the second-stage amplifier, which is capable of handling a large
quantity of airflow.

In most pneumatic controllers, some type of pneumatic feedback is employed. Feed-
back of the pneumatic output reduces the amount of actual movement of the flapper.
Instead of mounting the flapper on a fixed point, as shown in Figure 4-8(b), it is often
pivoted on the feedback bellows, as shown in Figure 4-8(c). The amount of feedback can
be regulated by introducing a variable linkage between the feedback bellows and the
flapper connecting point. The flapper then becomes a floating link. It can be moved by
both the error signal and the feedback signal.

The operation of the controller shown in Figure 4-8(a) is as follows. The input sig-
nal to the two-stage pneumatic amplifier is the actuating error signal. Increasing the
actuating error signal moves the flapper to the left. This move will, in turn, increase the
nozzle back pressure, and the diaphragm valve moves downward. This results in an in-
crease of the control pressure. This increase will cause bellows F to expand and move
the flapper to the right, thus opening the nozzle. Because of this feedback, the nozzle-
flapper displacement is very small, but the change in the control pressure can be large.

It should be noted that proper operation of the controller requires that the feed-
back bellows move the flapper less than that movement caused by the error signal alone.
(If these two movements were equal, no control action would result.)

Equations for this controller can be derived as follows. When the actuating error is
zero, or e = 0, an equilibrium state exists with the nozzle-flapper distance equal to X,
the displacement of bellows equal to Y, the displacement of the diaphragm equal to Z,
the nozzle back pressure equal to P,, and the control pressure equal to P,. When an
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Figure 4-8

(a) Schematic diagram of a force-distance type of pneumatic proportional controller;
(b) flapper mounted on a fixed point; (¢) flapper mounted on a feedback bellows:
(d) displacement x as a result of addition of two small displacements;

(e) block diagram for the controller; (f) simplified block diagram for the controller.

actuating error exists, the nozzle-flapper distance, the displacement of the bellows, the
displacement of the diaphragm, the nozzle back pressure, and the control pressure
deviate from their respective equilibrium values. Let these deviations be x, y, z, p,, and
P, respectively. (The positive direction for each displacement variable is indicated by an
arrowhead in the diagram.)
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Assuming that the relationship between the variation in the nozzle back pressure and
the variation in the nozzle-flapper distance is linear, we have

Py = Kix (4-13)
where K| is a positive constant. For the diaphragm valve,

Py = Kz " (4-14)

-

where K is a positive constant. The position of the diaphragm valve determines the
control pressure. If the diaphragm valve is such that the relationship between p, and z
is linear, then

p. = Kiz (4-15)

where Kj is a positive constant. From Equations (4-13), (4-14), and (4-15), we obtain
K K K

- LS x = Kx (4-16)

Pc=[_<2Pb= K,

where K = K,K,/K, is a positive constant. For the flapper, since there are two small
movements (e and y) in opposite directions, we can consider such movements separately
and add up the results of two movements into one displacement x. See Figure 4-8(d).
Thus, for the flapper movement, we have

b __a
a+b° a+b”

4-17)

The bellows acts like a spring, and the-following equation holds true:
Ap. = kgy (4-18)

where A is the effective area of the bellows and k; is the equivalent spring constant,

that is, the stiffness due to the action of the corrugated side of the bellows.

Assuming that all variations in the variables are within a linear range, we can obtain
a block diagram for this system from Equations (4-16), (4-17), and (4-18) as shown in
Figure 4-8(e). From Figure 4-8(e), it can be clearly seen that the pneumatic controller
shown in Figure 4-8(a) itself is a feedback system. The transfer function between p, and
e is given by

b
- 2K
P, n
(s) ___a+b - K, (4-19)
Ets) g2 4
a+ bk,

A simplified block diagram is shown in Figure 4-8(f). Since p. and e are proportional,
the pneumiatic controller shown in Figure 4-8(a) is a pneumatic proportional controller.
As seern from Equation (4-19), the gain of the pneumatic proportional controller can be
widely varied by adjusting the flapper connecting linkage. [The flapper connecting link-
age is not shown in Figure 4-8(a).] In most commercial proportional controllers an ad-
justing knob ot other mechanism is provided for varying the gain by adjusting this linkage.

As noted earlier, the actuating error signal moved the flapper in one direction, and
the feedback bellows moved the flapper in the opposite direction, but to a smaller degree.
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(a) Pneumatic controller without a feedback mechanism; (b) curves P, versus X and P, versus X.

Figure 4-10
Schematic diagram
of a force-balance
type of pneumatic
proportional
controller.

The effect of the feedback bellows is thus to reduce the sensitivity of the controller. The
principle of feedback is commonly used to obtain wide proportional-band controllers.

Pneumatic controllers that do not have feedback mechanisms [which means that
one end of the flapper is fixed, as shown in Figure 4-9(a)] have high sensitivity and are
called pneumatic two-position controllers or pneumatic on—off controllers. In such a con-
troller, only a small motion between the nozzle and the flapper is required to give a
complete change from the maximum to the minimum control pressure. The curves re-
lating P, to X and P, to X are shown in Figure 4-9(b). Notice that a small change in X
can cause a large change in 7, which causes the diaphragm valve to be completely open
or completely closed.

Pneumatic Proportional Controllers (Force-Balance Type). Figure 4-10shows
a schematic diagram of a force-balance pneumatic proportional controller. Force-balance
controllers are in extensive use in industry. Such controllers are called stack controllers.
The basic principle of operation does not differ from that of the force-distance con-
troller. The main advantage of the force-balance controller is that it eliminates many
mechanical linkages and pivot joints, thereby reducing the effects of friction.

In what follows, we shall consider the principle of the force-balance controller. In the
controller shown in Figure 4-10, the reference input pressure P, and the output pressure
P, are fed to large diaphragm chambers. Note that a force-balance pneumatic controller
operates only on pressure signals. Therefore, it is necessary to convert the reference
input and system output to corresponding pressure signals.

Plzk(}—)c+p0)

Atmosphere ——

Reference _ }

¢+ input pressure 4;
’ £ P,

2 Output _

pressure A
. P;

Air supply —> ‘——4

X+x

Control
e
L——\—' pressure

P+ p,
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As in the case of the force-distance controller, this controller employs a flapper,
nozzle, and orifices. In Figure 4-10, the drilled opening in the bottom ‘chamber is the
nozzle. The dlaphragm just above the nozzle acts as a flapper.

The operation of the force-balance controller shown in Figure 4-10 may be sum-
marized as follows: 20-psig air from an air supply flows through an orifice, causing a
reduced pressure in the bottom chamber. Air in this chamber escapes to the atmosphere
through the nozzle. The flow through the nozzle depends on the gap and the pressure
drop across it. An increase in the reference input pressure P,, while the output pres-
sure P, remains the same, causes the valve stem to move down, decreasing the gap
between the nozzle and the flapper diaphragm. This causes the control pressure P, to
increase. Let

P. = Pr - Po (4—20)

If p, = 0, there is an equilibrium state with the nozzle-flapper distance equal to X and

the control pressure equal to P.. At this equilibrium state, P, = Pk (where k < 1) and

X =a(P.A, - PkA,) (4-21)

where « Is a constant.
Let us assume that p, # 0 and define small variations in the nozzle-flapper distance
and control pressure as x and p,, respectively. Then we obtain the following equation:

X +x=aof(P. + p.)A; = (P, + p kA = plA; — A))] (4-22)
From Equations (4-21) and (4-22), we obtain
X = O‘[Pc(l —k)A; - Pe(Az - Al)] (4-23)

At this point, we must examine the quantity x. In the design of pneumatic controllers,
the nozzle-flapper distance is made quite small. In view of the fact that x/« is very much

smaller than p,(1 — k)A, or p,(A; — A,), that s, for p, # 0

X
E < pc(l - k)Al

X
E < pe(A2 - AI)

we may neglect the term x in our analysis. Equation (4-23) can then be rewritten to
reflect this assumption as follows:

Pl = kYA, = plA; — Ay)
and the transfer function between p, and p, becomes

( ) Az - A 1 =K

(5) A] 1 -k P

where p, is defined by Equation (4-20). The controller shown in Figure 4-10 is a
proportional controller. The value of gain K, increases as k approaches unity. Note that
the value of k depends on the diameters of the orifices in the inlet and outlet pipes of
the feedback chamber. (The value of k approaches unity as the resistance to flow in the
orifice of the inlet pipe is made smaller.)
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Figure 4-11
Schematic diagram
of a pneumatic
actuating valve.

Pneumatic Actuating Valves. One characteristic of pneumatic controls is that
they almost exclusively employ pneumatic actuating valves. A pneumatic actuating valve
can provide a large power output. (Since a pneumatic actuator requires a large power
input to produce a large power output, it is necessary that a sufficient quantity of pres-
surized air be available.) In practical pneumatic actuating valves, the valve characteris-
tics may not be linear; that is, the flow may not be directly proportional to the valve
stem position, and also there may be other nonlinear effects, such as hysteresis.

Consider the schematic diagram of a pneumatic actuating valve shown in Figure 4-11.
Assume that the area of the diaphragm is A. Assume also that when the actuating error
is zero the control pressure is equal to P, and the valve displacement is equal to X

In the following analysis, we shall consider small variations in the variables and lin-
earize the pneumatic actuating valve. Let us define the small variation in the control
pressure and the corresponding valve displacement to be p, and x, respectively. Since
a small change in the pneumatic pressure force applied to the diaphragm repositions
the load, consisting of the spring, viscous friction, and mass, the force balance equation
becomes

Ap, = m¥ + bx + kx

where m = mass of the valve and valve stem
b = viscous-friction coefficient
k = spring constant

If the force due to the mass and viscous friction are negligibly small, then this last equa-
tion can be simplified to

Ap, = kx
The transfer function between x and p, thus becomes

X(s)_é_
Ps) k%
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Figure 4-12
Control system.
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where X (s) = £[x]and P(s) = ¥|p.] If q;, the change in flow through the pneumatic
actuating valve, is proportional to x, the change in the valve-stem displacement, then
Qi(s) - K
X(s) 7
where Q,(s) = ¥[q;] and K, is a constant. The transfer function between ¢; and p,
becomes
Oi(s)
F(s)

= K.K,

= K,
where K, is a constant.

The standard control pressure for this kind of a pneumatic actuating valve is between
3 and 15 psig. The valve-stem displacement is limited by the allowable stroke of the
diaphragm and is only a few inches. If a longer stroke is needed, a piston-spring
combination may be employed.

In pneumatic actuating valves, the static-friction force must be limited to a low value
so that excessive hysteresis does not result. Because of the compressibility of air, the
control action may not be positive; that is, an error may exist in the valve-stem position.
The use of a valve positioner results in improvements in the performance of a pneu-
matic actuating valve.

Basic Principle for Obtaining Derivative Control Action. We shall now present
methods for obtaining derivative control action. We shall again place the emphasis on
the principle and not on the details of the actual mechanisms.

The basic principle for generating a desired control action is to insert the inverse of
the desired transfer function in the feedback path. For the system shown in Figure 4-12,
the closed-loop transfer function is

cls)_ Gl
R(s) 1+ G(s)H(s)

If |G(s)H(s)| > 1, then C(s)/R(s) can be modified to

R(s) H(s)

Thus, if proportional-plus-derivative control action is desired, we insert an element
having the transfer function 1/(Ts + 1) in the feedback path.

R(s) Cls)
G(s) -

H(s) [t
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Figure 4-13

(a) Pneumatic proportional controller; (b) block diagram of the controller.
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Consider the pneumatic controller shown in Figure 4-13(a). Considering small changes
in the variables, we can draw a block diagram of this controller as shown in Figure 4-13(b).

From the block diagram we see that the controller is of proportional type.

We shall now show that the addition of a restriction in the negative feedback path
will modify the proportional controller to a proportional-plus-derivative controller, or
a PD controller. ‘

Consider the pneumatic controller shown in Figure 4-14(a). Assuming again small
changes in the actuating error, nozzle-flapper distance, and control pressure, we can sum-
marize the operation of this controller as follows: Let us first assume a small step change
in e. Then the change in the control pressure p, will be instantaneous. The restriction R

P.+p.

Figure 4-14

(a) Pneuriatic
proportional-plus-

- derivative controller;
(b) step change in e
and the corre-
sponding changes in
x and p, plotted
versus £; (¢) block
diagram of the
controller.
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will momentarily prevent the feedback bellows from sensing the pressure change p,.
Thus the feedback bellows will not respond momentarily, and the pneumatic actuating
valve will feel the full effect of the movement of the flapper. As time goes on, the feed-
back bellows will expand. The change in the nozzie-flapper distance x and the change in
the control pressure p, can be plotted against time ¢, as shown in Figure 4-14(b). At steady
state, the feedback bellows acts like an ordinary feedback mechanism. The curve p, ver-
sus ¢ clearly shows that this controller is of the proportional plus-derivative type.

A block diagram corresponding to this pneumatic controller is shown in
Figure 4-14(c). In the block diagram, K is a constant, A4 is the area of the bellows, and
k, is the equivalent spring constant of the bellows. The transfer function between p, and
¢ can be obtained from the block diagram as follows:

b
P.(s) a+b
E(s) 1 Ka A 1
a+ bk, RCs + 1

In such a controller the loop gain |KaA/[(a + b)k,(RCs + 1)]| is made much greater
than unity. Thus the transfer function P(s)/E(s) can be simplified to give
F(s)
E(s)

= K,(1 + Tys)

where
bk,
K —_

/)“‘}ZZ’ Td:RC

Thus, delayed negative feedback, or the transfer function 1/(RCs + 1) in the feedback
path, modifies the proportional controller to a proportional-plus-derivative controller.

Note that if the feedback valve is fully opened the control action becomes propor-
tional. If the feedback valve is fully closed, the control action becomes narrow-band
proportional (on—off).

Obtaining Pneumatic Proportional-Plus-Integral Control Action. Consider
the proportional controller shown in Figure 4-13(a). Considering small changes in the
variables, we can show that the addition of delayed positive feedback will modify this
proportional controller to a proportional:plus-integral controller, or a PI controller.

Consider the pneumatic controller shown in Figure 4-15(a). The operation of this
controller is as follows: The bellows denoted by I is connected to the control pressure
source without any restriction. The bellows denoted by I1 is connected to the control pres-
sure source through a restriction. Let us assume a small step change in the actuating
error. This will cause the back pressure in the nozzle to change instantaneously. Thus a
change in the control pressure p, also occurs instantaneously. Due to the restriction of
the valve in the path to bellows I, there will be a pressure drop across the valve. As
time goes on, air will flow across the valve in such a way that the change in pressure in
bellows II attains the value p,. Thus bellows II will expand or contract as time elapses
in such a way as to move the flapper an additional amount in the direction of the orig-
inal displacement e. This will cause the back pressure p,. in the nozzle to change contin-
uously, as shown in Figure 4-15(b).
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Figure 4-15

(a) Pneumatic
proportional-plus-
integral controller;
(b) step change ine
and the corre-
sponding changes in
x and p, plotted
versus f; (¢) block
diagram of the
controller;

(d) simplified block
diagram.
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Note that the integral control action in the controller takes the form of slowly
canceling the feedback that the proportional control originally provided.

A block diagram of this controller under the assumption of small variations in the
variables is shown in Figure 4-15(c). A simplification of this block diagram yields
Figure 4-15(d). The transfer function of this controller is

b
a+b

+_§E_é<1“;>
a+bk, RCs + 1
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where K is a constant, A is the area of the bellows, and &, is the equivalent spring constant
of the combined bellows. If [KaARCs/{(a + b)k,(RCs + 1)]| > 1, which is usually the
case, the transfer function can be simplified to

P(s) ( 1 )
=Kl1+=
E(s) o\ 1 T:s
where
K, = 2% T, = RC
P gA’ i

Obtaining Pneumatic Proportional-Plus-Integral-Plus-Derivative Control
Action. A combination of the pneumatic controllers shown in Figures 4-14(a) and
4-15(a) yields a proportional-plus-integral-plus-derivative controller, or a PID con-
troller. Figure 4-16(a) shows a schematic diagram of such a controller. Figure 4-16(b)
shows a block diagram of this controller under the assumption of small variations in the

variables. :
€ —-— O
)? + X 4—] \
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C
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Figure 4-16 : Cl et
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proportional-plus- Py
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derivative controller; -
(b) block diagram of T
the controller. . ()
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The transfer function of this controller is
bK
F(s) _ a+b
E(s) . Ka A (RC-RC)s
a+ bk, (RCs + 1)(RCs + 1)

By defining
T,=RC, T;=R,C

and noting that under normal operation |KaA(T; — T,)s/[ (a + b)k(Tys + 1)(T;s +1)]| >1
and 7; > T,, we obtain

.

(s) _ bk, (Tys + )(Tis + 1)
E(s) “aA (T, - T)s

L bk, T,Ts* + Tis + 1

" aA Ls
1
where
bk,
P gA

Equation (4-24) indicates that the controller shown in Figure 4-16(a) is a proportional-
plus-integral-plus-derivative controller or a PID controller.

4-4 HYDRAULIC SYSTEMS

Except for low-pressure pneumatic controllers, compressed air has seldom been used for
the continuous control of the motion of devices having significant mass under external
load forces. For such a case, hydraulic controllers are generally preferred.

Hydraulic Systems. The widespread use of hydraulic circuitry in machine tool
applications, aircraft control systems, and similar operations occurs because of such fac-
tors as positiveness, accuracy, flexibility, high horsepower-to-weight ratio, fast starting,
stopping, and reversal with smoothness and precision, and simplicity of operations.

The operating pressure in hydraulic systems i1s somewhere between 145 and
5000 1bg/in.? (between 1 and 35 MPa). In some special applications, the operating
pressure may go up to 10,000 Ib;/in.? (70 MPa). For the same power requirement, the
weight and size of the hydraulic unit can be made smaller by increasing the supply
pressure. With high-pressure hydraulic systems, very large force can be obtained.
Rapid-acting, accurate positioning of heavy loads is possible with hydraulic systems.
A combination of electronic and hydraulic systems is widely used because it com-
bines the advantages of both electronic control and hydraulic power.
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Advantages and Disadvantages of Hydraulic Systems. There are certain
advantages and disadvantages in using hydraulic systems rather than other systems.
Some of the advantages are the following:

1. Hydraulic fluid acts as a lubricant, in addition to carrying away heat generated in
the system to a convenient heat exchanger.

2. Comparatively small sized hydraulic actuators can develop large forces or torques.

3. Hydraulic actuators have a higher speed of response with fast starts, stops, and
speed reversals.

4, Hydraulic actuators can be operated under continuous, intermittent, reversing,
and stalled conditions without damage.

5. Availability of both linear and rotary actuators gives flexibility in design.

6. Because of low leakages in hydraulic actuators, speed drop when loads are applied
is small.

On the other hand, several disadvantages tend to limit their use.

1. Hydraulic power is not readily available compared to electric power.

2. Cost of a hydraulic system may be higher than a comparable electrical system
performing a similar function.

3. Fire and explosion hazards exist unless fire-resistant fluids are used.

4. Because it is difficult to maintain a hydraulic system that is free from leaks, the
system tends to be messy. ’

5. Contaminated oil may cause failure in the proper functioning of a hydraulic
system.

6. As aresult of the nonlinear and other complex characteristics involved, the design
of sophisticated hydraulic systems is quite involved.

7. Hydraulic circuits have generally poor damping characteristics. If a hydraulic circuit
is not designed properly, some unstable phenomena may occur or disappear, de-
pending on the operating condition.

Comments. Particular attention is necessary to ensure that the hydraulic system
is stable and satisfactory under all operating conditions. Since the viscosity of hydraulic
fluid can greatly affect damping and friction effects of the hydraulic circuits, stability
tests must be carried out at the highest possible operating temperature.

Note that most hydraulic systems are nonlinear. Sometimes, however, it is possible
to linearize nonlinear systems so as to reduce their complexity and permit solutions that
are sufficiently accurate for most purposes. A useful linearization technique for dealing
with nonlinear systems was presented in Section 3-10.

Hydraulic Servo System. Figure 4-17(a) shows a hydraulic servomotor. It is
essentially a pilot-valve-controlled hydraulic power amplifier and actuator. The pilot
valve is a balanced valve, in the sense that the pressure forces acting on it are all balanced.
A very large power output can be controlled by a pilot valve, which can be positioned
with very little power.

In practice, the ports shown in Figure 4-17(a) are often made wider than the corre-
sponding valves. In such a case, there is always leakage through the valves. Such leak-

Chapter 4 / Mathematical Modeling of Fluid Systems and Thermal Systems



Figure 4-17

(a) Hydraulic servo
system; (b) enlarged
diagram of the valve
orifice area.
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age improves both the sensitivity and the linearity of the hydraulic servomotor. In the
following analysis we shall make the assumption that the ports are made wider than
the valves, that is, the valves are underlapped. [Note that sometimes a dither signal, a
high-frequency signal of very small amplitude (with respect to the maximum
displacement of the valve), is superimposed on the motion of the pilot valve. This also
improves the sensitivity and linearity. In this case also there is leakage through the valve.]

We shall apply the linearization technique presented in Section 3-10 to obtain a lin-
earized mathematical model of the hydraulic servomotor. We assume that the valve is
underlapped and symmetrical and admits hydraulic fluid under high pressure into a
power cylinder that contains a large piston, so that a large hydraulic force is established
to move a load.

In Figure 4-17(b) we have an enlarged diagram of the valve orifice area. Let us
define the valve orifice areas of ports 1,2,3,4 as A, A,, A;, A,, respectively. Also, define
the flow rates through ports 1,2, 3,4 as g,, q,, 43, g4, respectively. Note that, since the -
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valve is symmetrical, A; = A; and A, = A4. Assuming the displacement x to be small,
we obtain
X0
A1:A3=k<7+x>

Ay = A, = k<ﬁ - )
2= Ay = 5 X
where k is a constant. '

Furthermore, we shall assume that the return pressure p, in the return line is small
and thus can be neglected. Then, referring to Figure 4-17(a), flow rates through valve
orifices are

2g X
¢ = 4 7(ps - p)=CVp, — Pl(—zg + x>

2g X

G = A, 7<Ps_P2>:C2VPs“P2<EO_X>
2g X X

gz = €1 A 7(P2_P0)=Q1VP2“P0<?0+X>=C1\/}Tz<70+x>
2g X

qs = Ay 7(P1”P0)2C2VP1“P0 ’2“ 2\/1T ————x

where C; = ¢;kV2g/vand C, = c,kV2g/v,and vy is the specific weight and is given by
v = pg, where p is mass density and g is the acceleration of gravity. The flow rate g to
the left-hand side of the power piston is

X, X
q=q — ¢ =CNp,— pi (—29 + X> - GV, <—29 - X> (4-25)

The flow rate from the right-hand side of the power p1ston to the drain is the same as
this g and is given by

X X
q=q3——q2=C1\/E;<—29+x> —szps—p2<?0—x>

In the present analysis we assume that the fluid is incompressible. Since the valve is
symmetrical we have g, = g; and g, = g,4. By equating g; and g3, we obtain

Ps ™ D= D
or

Ds=DPit P2
If we define the pressure difference across the power piston as Ap or

Ap=p—p
then

_pstAp _ps—Ap
P 5 ) P2 7 -
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For the symmetrical valve shown in Figure 4-17(a), the pressure in each side of the
power piston is (1/2) p, when no load is applied, or Ap = 0. As the spool valve is dis-
placed, the pressure in one line increases as the pressure in the other line decreases by
the same amount.

In terms of p, and Ap, we can rewrite the flow rate g given by Equation (4-25) as

ps — Ap (X ps+Ap(x
q9=q ~— 4= Cu/—2—~<5+ x) - CZw/—z——(?_ x)

Noting that the supply pressure p, is constant. the flow rate g can be written as a func-
tion of the valve displacement x and pressure difference Ap, or

_ . [p—Ap(x B /ps+AP<ﬁ._ >_
q = C B — <2+x> G, > > x| = f(x,Ap)

By applying the linearization technique presented in Section 3-10 to this case, the lin-
earized equation about point x = X, Ap = Ap,q = g is

g~ g=a{x—Xx)+ b(Ap — Ap) (4-26)
where
g = f(%, Aq)
o N
0X | =% Ap=ap
df G xO _
JETY) HE— [zwvzr—Tp( )

& <x° X>:I <0
2\/—‘\/ps + Ap

Coefficients a and b here are called valve coefficients. Equation (4-26) is a linearized
mathematical model of the spool valve near an operating pointx = ¥, Ap = Ap,q = §.
The values of valve coefficients a and b vary with the operating point. Note that 3f/6Ap
is negative and so b is negative.

Since the normal operating point is the point where X = 0, Ap = 0,4 = 0, near the
normal operating point, Equation (4-26) becomes

where
- Ds
K1~(C1+C2) > >0
K, =(C +C)——x—°——>0
2 ! 4NN p, -

Equation (4-27) is a linearized mathematical model of the spool valve near the origin
(¥ =0,Ap = 0, = 0.) Note that the region near the origin is most important in this
kind of system, because the system operation usually occurs near this point.
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Figure 4-18
Characteristic curves
of the linearized
hydraulic
Servomotor.
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Figure 4-18 shows this linearized relationship among g, x, and A P. The straight lines
shown are the characteristic curves of the linearized hydraulic servomotor. This family
of curves consists of equidistant parallel straight lines, parametrized by x.

In the present analysis, we assume that the load reactive forces are small so that the
leakage flow rate and oil compressibility can be ignored. (For the case where the load
reactive forces are large, see Problem A—4-13.)

Referring to Figure 4-17(a), we see that the rate of flow of oil g times df is equal to
the power piston displacement dy times the piston area A times the density of oil p.
Thus, we obtain

Apdy = qgdt

Notice that for a given flow rate g the larger the piston area A is, the lower will be the
velocity dy/dr. Hence, if the piston area A is made smaller, the other variables re-
maining constant, the velocity dy/dt will become higher. Also, an increased flow rate g

- will cause an increased velocity of the power piston and will make the response time

shorter.
Equation (4-27) can now be written as

1 dy >
AP = K2 (le Ap dr
The force developed by the power piston is equal to the pressure difference AP times
the piston area A or
Force developed by the power piston = A AP
A dy)
a (le AP

For a given maximum force, if the pressure difference is sufficiently high, the piston
area, or the volume of oil in the cylinder, can be made small. Consequently, to minimize
the weight of the controller, we must make the supply pressure sufficiently high.
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Assume that the power piston moves a load consisting of a mass and viscous friction.
Then the force developed by the power piston is applied to the load mass and friction,
and we obtain

. . A .
s + b = 2 (Kix = 4p))

or

Alp ) AK;
y+|b+—]y=—7" 4-28
my ( L A (4-28)
where m is the mass of the load and b is the viscous-friction coefficient.

Assuming that the pilot valve displacement x is the input and the power piston
displacement y is the output, we find that the transfer function for the hydraulic servo-
motor is, from Equation (4-28),

Y(s) 1
X(s) s[(mK2>s N bK, N ﬂ]
AK, AK, | K
K
= —— 4-
s(Ts + 1) (4-29)
where
1 mK,
K=o d T=——2+
bK, Ap bK, + Ap
AK, K,

From Equation (4-29) we see that this transfer function is of the second order. If the ratio
mK,/(bK, + Ap) is negligibly small or the time constant 7 is negligible, the transfer
function Y () /X (s) can be simplified to give

Y(s) K

X(s) s

It is noted that a more detailed analysis shows that if oil leakage, compressibility
(including the effects of dissolved air), expansion of pipelines, and the likes are taken into
consideration, the transfer function becomes

Y(s) K
X(s)  s(Tys + 1)(Tys + 1)
where T; and 7, are time constants. As a matter of fact, these time constants depend on

the volume of oil in the operating circuit. The smaller the volume, the smaller the time
constants.

Hydraulic Integral Controller. The hydraulic servomotor shown in Figure 4-19 is
a pilot-valve-controlled hydraulic power amplifier and actuator. Similar to the hydraulic
servo system shown in Figure 4-17, for negligibly small load mass the servomotor shown
in Figure 4-19 acts as an integrator or an integral controller. Such a servomotor consti-
tutes the basis of the hydraulic control circuit.
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Figure 4-19
Hydraulic
servomotor.
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In the hydraulic servomotor shown in Figure 4-19, the pilot valve (a four-way valve)
has two lands on the spool. If the width of the land is smaller than the port in the valve
sleeve, the valve is said to be underlapped. Overlapped valves have a land width greater
than the port width. A zero-lapped valve has a land width that is identical to the port
width. (If the pilot valve is a zero-lapped valve, analyses of hydraulic servomotors become
simpler.)

In the present analysis, we assume that hydraulic fluid is incompressible and that the
inertia force of the power piston and load is negligible compared to the hydraulic force
at the power piston. We also assume that the pilot valve is a zero-lapped valve, and the
oil flow rate is proportional to the pilot valve displacement. '

Operation of this hydraulic servomotor is as follows. If input x moves the pilot valve
to the right, port II is uncovered, and so high-pressure oil enters the right-hand side of
the power piston. Since port I is connected, to the drain port, the oil in the left-hand
side of the power piston is returned to the drain. The oil flowing into the power cylin-
der is at high pressure; the oil flowing out from the power cylinder into the drain is at
low pressure. The resulting difference in pressure on both sides of the power piston will
cause it to move to the left,

Note that the rate of flow of oil g(kg/sec) times dt (sec) is equal to the power piston
displacement dy(m) times the piston area A(m?) times the density of oil p(kg/m®).
Therefore,

Apdy = qdt (4-30)

Because of the assumption that the oil flow rate g is proportional to the pilot valve
displacement x, we have

q = Kix (4-31)

where K is a pbéﬁ'tive constant. From Equations (4-30) and (4-31) we obtain

P e
X oKy
P dt 1
The Laplace transform of this last equation, assuming a zero initial condition, gives

ApsY (s) = K1 X(s)

Chapter 4 / Mathematical Modeling of Fluid Systems and Thermal Systems



i S

Figure 4-20

(a) Servomotor that
acts as a proportional
controller; (b) block
diagram of the
Servomotor.

or :
Yo _ K _K
X(s) Aps s

where K = K,/(Ap). Thus the hydraulic servomotor shown in Figure 4-19 acts as an
integral controller.

Hydraulic Proportional Controller. It has been shown that the servomotor in
Figure 4-19 acts as an integral controller. This servomotor can be modified to a pro-
portional controller by means of a feedback link. Consider the hydraulic controller
shown in Figure 4-20(a). The left-hand side of the pilot valve is joined to the left-hand
side of the power piston by a link ABC.This link is a floating link rather than one mov-
ing about a fixed pivot.

The controller here operates in the following way. If input e moves the pilot valve fo
the right, port II will be uncovered and high-pressure oil will flow through port II into
the right-band side of the power piston and force this piston to the left. The power pis-
ton, in moving to the left, will carry the feedback link ABC with it, thereby moving the
pilot valve to the left. This action continues until the pilot piston again covers ports I and
IT. A block diagram of the system can be drawn as in Figure 4-20(b). The transfer func-
tion between Y (s) and E(s) is given by

b_K
Y(s)  a+bs
E(s) 1+£ a
sa+b

Noting that under the normal operating conditions we have |Ka/[s(a + b)]| > 1, this
last equation can be simplified to

Y (s

E(s) a ?
The transfer function between y and ¢ becomes a constant. Thus, the hydraulic controller
shown in Figure 4-20(a) acts as a proportional controller, the gain of which is K,. This gain

0il
under
A pressure

E(s) Y(s)

Sl

X(s)

hl?q

a+b

(2) (®
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can be adjusted by effectively changing the lever ratio b/a. (The adjusting mechanism is

not shown in the diagram.)
We have thus seen that the addition of a feedback link will cause the hydraulic
servomotor to act as a proportional controller.

Dashpots. The dashpot (also called a damper) shown in Figure 4-21(a) acts as a
differentiating element. Suppose that we introduce a step displacement to the piston
position y. Then the displacement z becomes equal to y momentarily. Because of the
spring force, however, the oil will flow through the resistance R and the cylinder will
come back to the original position. The curves y versus ¢ and z versus ¢ are shown in
Figure 4-21(b).

Let us derive the transfer function between the displacement z and displacement y.
Define the pressures existing on the right and left sides of the piston as P,(Ib;/in.%) and
Py(Iby/in.?), respectively. Suppose that the inertia force involved is negligible. Then the
force acting on the piston must balance the spring force. Thus

AP, — B) = kz

where A = piston area, in.”
k = spring constant, Ib;/in.

The flow rate g is given by p_p
17 12

9= g
where g = flow rate through the restriction, 1b/sec
R = resistance to flow at the restriction, Ib;-sec/in.%-1b

Since the flow through the restriction during dt seconds must equal the change in the
mass of oil to the left of the piston during the same dt seconds, we obtain

qdt = Ap(dy — dz)

where p = density, Ib/in.%. (We assume that the fluid is incompressible or p = constant.)
This last equation can be rewritten as

dy _dz

q P -PF  kz
de dt Ap RAp RA)p

Py Py
AN

Y(s)‘+ Zis)
- T
i
R AN -
y z

(@ ®) ©

-z

Figure 4-21
(a) Dashpot; (b) step change in y and the corresponding change in z plotted versus ¢; (¢) block

diagram of the dashpot.
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by _di, ke
dt dt RAY
Taking the Laplace transforms of both sides of this last equation, assuming zero initial
conditions, we obtain

sY(s) = sZ(s) + %ZPZ(S)

The transfer function of this system thus becomes
Z(s) s
Y
(s) s + k2
: RAp
Let us define RA%p/k = T. (Note that RA%p/k has the dimension of time.) Then
Z(s) Ts 1
Y(s) Ts+1 i+ 1
Ts

Clearly, the dashpot is a differentiating element. Figure 4-21(c) shows a block diagram
representation for this system.

Obtaining Hydraulic Proportional-Plus-Integral Control Action. Figure 4-22(a)
shows a schematic diagram of a hydraulic proportional-plus-integral controller, A block
diagram of this controller is shown in Figure 4-22(b). The transfer function Y (s)/E(s)

is given by
: b _IS
Y(s) _ a+bs
E(s) Ka T
(s) 1+
a+bTs +1
Qil
under
pressure
X
Spring ! '
constant = k | EX(s) 5 X(sz % Y(:)
7 ‘ i a+b 0 >
‘ 1= 7
Z
% == o
of oil = p AN a S +
Resistance = R
@ ®)
Figure 4-22

(a) Schematic diagram of a hydraulic proportional-plus-integral controller; (b) block diagram of the controller.
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In such a controller, under normal operation |[KaT/[(a + b)(Ts + 1)]| > 1, with the
result that

mo ~ 17
_ 4+ —
E(s) Ko\ 1 Tis
where \
b RA%p
K, = 2 T,=T = =

Thus the controller shown in Figure 4-23(a) is a proportional-plus-integral controller
(PI controller).

Obtaining Hydraulic Proportional-Plus-Derivative Control Action. Figure 4-23(a)
shows a schematic diagram of a hydraulic proportional-plus-derivative controller. The
cylinders are fixed in space and the pistons can move. For this system, notice that

k(y —z) = A(Pz - Pl)

‘Density of oil = p

Figure 4-23

_B-Ph
1 R
qgdt = pAdz
Hence
A RA%p dz
y=rTm z k dt
or
Z(s) 1
Y(s) Ts+1
B [ 5 xs) [ Y(s)
atb K i
y
~ 20
a+b Ts+1

@ ®

(a) Schematic diagram of a hydraulic proportional-plus-derivative controller; (b) block diagram of the controller.
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Figure 4-24
Schematic diagram
of a hydraulic
proportional-plus-
integral-plus-

derivative controller.

where

A block diagram for this system is shown in Figure 4-23(b). From the block diagram the
transfer function Y (s)/E(s) can be obtained as
b_K
Y(s) a+bs
E(s) a K 1
+ —
1 a+bsTs+1

Under normal operation we have [aK/[(a + b)s(Ts + 1)]| > 1. Hence

Y(s) = 1+T
E(S) - p( ! S)
where
b RAp
b= T

Thus the controller shown in Figure 4-23(a) is a proportional-plus-derivative controller
(PD controller).

Obtaining Hydraulic Proportional-Plus-Integral-Plus-Derivative Control Action.
Figure 4-24 shows a schematic diagram of a hydraulic proportional-plus-integral-plus-
derivative controller. It is a combination of the proportional-plus-integral controller
and proportional-plus derivative controller.

If the two dashpots are identical, the transfer function Z(s) /Y (s) can be obtained as
follows:

Z(s) Ts
Y(s) TiTs*+ (T, +2T)s + 1

(For the derivation of this transfer function, refer to Problem A-4-12.)

by
]
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Figure 4-25

Block diagram for
the system shown in
Figure 4-24.

E(s) X(s) Y(s)

“ |

Y

a+b

a Zs) Ty s
a+b T\ T+ (T +2Ty)s + 1

A block diagram for this system is shown in Figure 4-25. The transfer function
Y (s)/E(s) can be obtained as
K
Y(s) b s
E(s) a+b1+ a K Iis
a+tbs T\Ts*+ (T, + 2T)s + 1
Under normal operation of the system we have

a K Tis

— > 1
a+bs T\Ts*+ (T, + 2Ty)s + 1
Hence
Y(s) bThs + (T +2D)s + 1
E(s) a Tis
= Kp + = + de
where
b T + 2T, b1 _b
K"—a T, K= aTy Kd_aT2

Thus, the controller shown in Figure 4-24 is a proportional-plus-integral-plus-derivative
controller (PID controller).

4-5 THERMAL SYSTEMS

188

Thermal systems are those that involve the transfer of heat from one substance to
another. Thermal systems may be analyzed in terms of resistance and capacitance,
although the thermal capacitance and thermal resistance may not be represented
accurately as lumped parameters since they are usually distributed throughout the sub-
stance. For precise analysis, distributed-parameter models must be used. Here, however,
to simplify the analysis we shall assume that a thermal system can be represented by a
lumped-parameter model, that substances that are characterized by resistance to heat
flow have negligible heat capacitance, and that substances that are characterized by heat
capacitance have negligible resistance to heat flow.

There are three different ways heat can flow from one substance to another: con-
duction, convection, and radiation. Here we consider only conduction and convection.
(Radiation heat transfer is appreciable only if the temperature of the emitter is very
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high compared to that of the receiver. Most thermal processes in process control systems
do not involve radiation heat transfer.)
For conduction or convection heat transfer,

g =K A6

where ¢ = heat flow rate, kcal/sec
AO = temperature difference, °C
K = coefficient, kcal/sec °C
The coefficient K is given by

kA
K = A% for conduction
= HA, for convection

where k = thermal conductivity, kcal/m sec °C
A = area normal to heat flow, m?
AX = thickness of conductor, m

H = convection coefficient, kcal/m? sec °C

Thermal Resistance and Thermal Capacitance. The thermal resistance R for
heat transfer between two substances may be defined as follows:

change in temperature difference, °C

change in heat flow rate, kcal/sec

The thermal resistance for conduction or convection heat transfer is given by
d(Ae) 1 /

dq K

Since the thermal conductivity and convection coefficients are almost constant, the
thermal resistance for either conduction or convection is constant.
The thermal capacitance C is defined by

change in heat stored, kcal

change in temperature, °C

or

C = mc

i

where m = mass of substance considered, kg

specific heat of substance, kcal/kg °C

C

Thermal System. Consider the system shown in Figure 4-26(a). It is assumed
that the tank is insulated to eliminate heat loss to the surrounding air. It is also assumed
that there is no heat storage in the insulation and that the liquid in the tank is perfectly
mixed so that it is at a uniform temperature. Thus, a single temperature is used to describe
the temperature of the liquid in the tank and of the outflowing liquid.
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Figure 4-26

(a) Thermal system:
(b) block didagram of
the system.
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Let us define

O, = steady-state temperature of inflowing liquid, °C
0, = steady-state temperature of outflowing liquid, °C
G = steady-state liquid flow rate, kg/sec
M = mass of liquid in tank, kg

¢ = specific heat of liquid, kcal/kg °C

R = thermal resistance, °C sec/kcal

C = thermal capacitance, kcal/°C

H = steady-state heat input rate, kcal/sec

Assume that the temperature of the inflowing liquid is kept constant and that the heat
input rate to the system (heat supplied by the heater) is suddenly changed from H to
H + h;, where h; represents a small change in the heat input rate. The heat outflow rate
will then change gradually from H to H + h,. The temperature of the outflowing lig-
uid will also be changed from @, to®, + # For this case, h,, C, and R are obtained,
respectively, as

h, = Gcb
C = Mc

6 1
R"hO_Gc

The heat balance equation for this system is
Ccdo = (h; — h,)dt

or
CE:hi—ho
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which may be rewritten as

do

R
Cdt

+ 0 = Rh;

Note that the time constant of the system is equal to RC or M /G seconds. The transfer
function relating 6 and #; is given by

O(s) R

H(s) RCs+ 1

where @(s) = £[6(t)] and H(s) = L[h(1)].

In practice, the temperature of the inflowing liquid may fluctuate and may act as a
load disturbance. (If a constant outflow temperature is desired, an automatic controller
may be installed to adjust the heat inflow rate to compensate for the fluctuations in the
temperature of the inflowing liquid.) If the temperature of the inflowing liquid is sud-
denly changed from @, to ®; + 6; while the heat input rate H and the liquid flow rate
G are kept constant, then the heat outflow rate will be changed from H to # + h,, and
the temperature of the outflowing liquid will be changed from @,to @, + 6. The heat
balance equation for this case is

C do = (Geb; — h,)dt

or
Cﬁ = GCB‘ - hO
dt
which may be rewritten
dr

The transfer function relating # and 6, is given by

O(s) 1
O(s)  RCs +1

where O(s) = [6(¢)] and O(s) = L[6,(1)].

If the present thermal system is subjected to changes in both the temperature of the
inflowing liquid and the heat input rate, while the liquid flow rate is kept constant, the
change 6 in the temperature of the outflowing liquid can be given by the following
equation:

RCZ 1 6=0,+ R,
dt '

A block diagram corresponding to this case is shown in Figure 4-26(b). Notice that the *
system involves two inputs.
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EXAMPLE PROBLEMS AND SOLUTIONS

A-4-1. Inthe liquid-level system of Figure 4-27 assume that the outflow rate Q m*/sec through the out-
flow valve is related to the head H m by

Q= KVH = 001VH

Assume also that when the inflow rate Q; is 0.015 m®/sec the head stays constant. For ¢ < 0 the
system is at steady state (Q; = 0.015 m*/sec). At ¢ = 0 the inflow valve is closed and so there is
no inflow for ¢+ = 0. Find the time necessary to empty the tank to half the original head. The
capacitance C of the tank is 2 m%

Solution. When the head is stationary, the inflow rate equals the outflow rate. Thus head H, at
t = 0 is obtained from

0.015 = 0.01VH,

or
H,=225m
The equation for the system forz > 0 is
—CdH = Qdt
or
ad 0 ~0.01VH
dt C 2
Hence
dH
— = —0.005 dt
vVH

Assume that,at¢ = £, H = 1.125 m. Integrating both sides of this last equation, we obtain

*1.125 dH /fl
—— —0.005) dr = —0.005¢
Lo V- oo 1

It follows that

1.125

= 2V1.125 - 2v/2.25 = —0.005¢,

2.25

Qiﬁqu

.

2VH

Capacitance C

[«

Figure 4-27
Liquid-level system.

k= 0
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A-4-2.

Figure 4-28
Liquid-level system.

or

t, = 175.7

Thus, the head becomes half the original value (2.25 m) in 175.7 sec.

Consider the liquid-level system shown in Figure 4-28. At steady state, the inflow rate and out-
flow rate are both O and the flow rate between the tanks is zero. The heads of tanks 1 and 2 are
both H. At ¢ = 0, the inflow rate is changed from Q to Q + ¢, where g is a small change in the
inflow rate. The resulting changes in the heads (/, and /,) and flow rates (g, and g,) are assumed
to be small. The capacitances of tanks 1 and 2 are C; and C;, respectively. The resistance of the valve
between the tanks is R, and that of the outflow valve is R,.

Derive mathematical models for the system when (a) g is the input and A, the output, (b) g is
the input and ¢, the output, and (c) ¢ is the input and 4, the output.

Seolution. (a) For tank 1, we have
Cidhy = g, dt
where
hy — hy
q1 = T

Consequently,
dh,
R, C 71'—[— + h = hy

For tank 2, we get
Crdhy = (g~ a1 — )

where
l’lz - hl
R, '’

Q=

It follows that
dh, R,

R,
RZCZ? +—=—hy + h, = Ryg + Ehl

R,

By eliminating A, from Equations (4-32) and (4~33), we have

d*h

dh d
RICRG—3 + (RiC + RC, + RC) 2 + iy = RiR,Cy 73 + Ryg

dr’

é+q—¥:&;\

Example Problems and Solutions

—0+q

(4-32)

(4-33)

(4-34)
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In terms of the transfer function, we have
Hy(s) " Ry(RCys + 1)
0(5) ~ RiCR,Co5* + (RiCy + RyCy + RyCy)s + 1
This is the desired mathematical model in which ¢ is considered the input and #, is the output.
(b) Substitution of 4, = R,q, into Equation (4-34) gives
d’q, dg

dg
RCR,Cy— + (R,C, + R,C, + chl)—d—tz— + g =RC+g

This equation is a mathematical model of the system when q is considered the input and g, is the
output. In terms of the transfer function, we obtain

Qz(s) _ RICIS +1
Q(s) R1C1R2C252 + (Rlcl + R2C2 + R2C1)s + 1

(c) Elimination of h, from Equations (4-32) and (4-33), yields

d*h, dhy
R1C1R2C2? + (RCy + RC, + chl)? + hy = Ryg

which is a mathematical model of the system in which g is considered the input and A, is the out-
put. In terms of the transfer function, we get

Hy(s) - R,
0(s) R, CR,Gs* + (RCy + R,C, + R,Cy)s + 1

A-4-3. Consider the liquid-level system shown in Figure 4-29. In the system, 0, and Q, are steady-state
inflow rates and H, and H, are steady-state heads. The quantities g;1, g, 1, 52, g1, and g, are con-
sidered small. Obtain a state-space representation for the system when &, and h, are the outputs
and g, and g;, are the inputs.

Solution. The equations for the system are

Cidh = (%‘1 - ‘h) dt (4-35)
h = h

a7 4-36

R, Ujt ( )

Cydh, = (g1 + qn — q,)dt (4-37)
hy

}; =4, (4—38)

01+ an—> DRI k= g

_>Ql+gz+qo

Figure 4-29 &) C— G
.. Liquid-level system. O +q

P
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Elimination of g, from Equation (4-35) using Equation (4-36) results in

dhl . 1 hl - hz)
a C, (‘In R, (4-39) -

Eliminating ¢, and g, from Equation (4-37) by using Equations (4-36) and (4-38) gives

dhz 1 hl - hz h2>
— = —— 4 4-4
dr C2 ( R1 i RZ ( 0)

Define state variables x; and x, by

X =M
X, = hz
the input variables u; and u, by
U = 4qn
U = 4n
and the output variables y, and y, by
n=h=x
V=h=x

Then Equations (4--39) and (4-40) can be written as

1

X=———x +—x,+—u
TUORGTY RGO

)'c—lx—(l +1> +iu
PTRGT ARG T RGP G

In the form of the standard vector-matrix representation, we have

11 1]
).Cl - R1C1 R]Cl X1 " C1 Uy
X2 1 _( 1 + 1 ) X3 0 _1_ Uz

R1C2 R1C2 R2C2 CZ

which is the state equation, and

HEE M

which is the output equation.
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A-4-4.

Figure 4-30
Liquid-level system.

196

Consider the liquid-level system shown in Figure 4-30. At steady state the inflow rate is @, = 0,
the outflow rate is @, = @, and head is H = H. If the flow is turbulent, then we have

O=KVH

Assume that at¢ = 0 the inflow rate is changed from Q; = QtoQ, =0 + g;. This change céuses
the head to change from H = H to H = H + h, which, in turn, causes the outflow rate to change
from Q, = Qto Q, = Q + g,. For this system we have

¢ -0-0,-0-kVA

dt
where C is the capacitance of the tank, Let us define
dH 1 KVH
o ‘f(H:Qi)_EQi——C— (4-41)

Note that the steady-state operating condition is (4, 0)and H = H + h,Q; = O + g;. Since at
steady-state operation dH/dt = 0,we have f(H,0) = 0.
Linearize Equation (4-41) near the operating point (4, Q).

Solution. Using the linearization technique presented in Section 3-10, a linearized equation for
Equation (4-41) can be obtained as follows:

om0 -5
o " SH.Q) =g (H - H)+ -5 (0, - Q) - )
where o
f(H,0)=0
o K 0 1 0 1

H |y-no-a 20vVE  NE20VE  2CH RC

where we used the resistance R defined by

@1\ ;'\ﬁ,

Also,

9 1
Qi \u=-m,0-0 C
Then Equation (4-42) can be written as

dH _

1 - 1 —
—CZ;————E’C—(H“H)‘*'E(QI"‘Q) (4_43)

0;i=0+q

I{=ﬁ+h
l

0= §+ 9o

—pl—
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A-4-5,

Figure 4-31

(a) Pneumatic
pressure system,
(b) pressure
difference versus
mass flow rate
curves.

Since H — H = hand Q; — O = q;, Equation (4-43) can be written as

a1, .1
i rc'TCE

or

Rc%ﬁ'*'h_qu

which is the linearized equation for the liquid-level system and is the same as Equation (4-2) that
we obtained in Section 4-2.

The value of the gas constant for any gas may be determined from accurate experimental obser-
vations of simultaneous values of p, v,and T

Obtain the gas constant R, for air. Note that at 32°F and 14.7 psia the specific volume of air
is 12.39 ft3/1b. Then obtain the capacitance of a 20-ft pressure vessel that contains air at 160°F. As-
sume that the expansion process is isothermal.

Solution.

v 147 X 144 X 123
R, = p? = e 2 = 533 ftdby/Ib°R

Referring to Equation (4-12), the capacitance of a 20-ft> pressure vessel is

1% 20 1b
= = X 107
¢ nR;T 1X533 X620 = 605 % 10 Ibg/ft?

Note that in terms of SI units, R,;, is given by
R, = 287 N-m/kg K

In the pneumatic pressure system of Figure 4-31(a), assume that, for 1 < 0, the system is at steady
state and that the pressure of the entire system is P. Also, assume that the two bellows are iden-

‘tical. At ¢ = 0, the input pressure is changed from P to P + p,. Then the pressures in bellows 1

and 2 will change from P to P + p, and from P to P + p,, respectively. The capacity (volume)
of each bellows is 5 X 107 m?, and the operating pressure difference A p (difference between p;
and p; or difference between p; and p) is between —0.5 X 10° N/m? and 0.5 X 10° N/m? The

Bellows 1 Bellows 2

Ap(Nm?) | = Valve2

0.5 X 10° F-- Valve 1

Valve 1

1.5 X 107 g(kg/sec)

—0.5 X 10°

@ )
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corresponding mass flow rates (kg/sec) through the valves are shown in Figure 4-31(b). Assume
that the bellows expand or contract linearly with the air pressures applied to them, that the equiv-
alent spring constant of the bellows system is k = 1 X 10° N/m, and that each bellows has area
A=15X 10" m% :

Defining the displacement of the midpoint of the rod that connects two bellows as x, find the
transfer function X (s)/P(s). Assume that the exparision process is isothermal and that the
temperature of the entire system stays at 30°C.

Solution. Referring to Section 4-3, transfer function P,(s)/P,(s) can be obtained as

B(s) . 1

P(s) R Cs+1 (4-44)
Similarly, transfer function By(s)/B(s) is

Py(s

2(s) ! (4-45)

P(s)  RyCs + 1

The force acting on bellows 1 in the x direction is A(P + p,), and the force acting on bellows 2
in the negative x direction is A(P + p,). The resultant force balances with kx, the equivalent
spring force of the corrugated sides of the bellows.

A(Pl - Pz) = kx
or
A[P(s) — Pys)] = kX(s) (4-46)

Referring to Equations (4-44) and (4-45), we see that

1 1
A(s) = Bfs) = <R1Cs +1  R,Cs + 1)3(5)
R2CS - R1CS

= R s
(R,Cs + 1)(R,Cs + 1) (s)
By substituting this last equation into Equation (4-46) and rewriting, the transfer function
X(s)/P(s) is obtained as
X(s) A (RC—RC)s

P(s) K (R,Cs + 1)\R,Cs + 1) (“=47)

The numerical values of average resistances R; and R, are

dAp 05 x10° N/m?

= =" = (167 X 10" ——

R dq 3 x10° kg/sec

dAp 05 % 10° N/m?
= = = 0333 x 10! ———
R, dgy 1.5x107 kg/sec

The nunierical value of capacitance C of each bellows is
1% 5% 10™ , kg
= = — =575 x 107
¢ nR;T 1 x 287 X (273 + 30) N/m?
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A~4-1,

Figure 4-32
Schematic diagram
of a pneumatic

- controller.

where R, = 287 N-m/kg K. (See Problem A—4-5.) Consequently,

RC = 0.167 x 10 X 575 X 107 = 9.60 sec
R,C = 0333 X 10" X 5.75 X 107 = 19.2 sec

By substituting the numerical values for A, k, R, C, and R,C into Equation (4-47), we obtain

X(s) 1.44 x 1075
P(s)  (9.6s + 1)(192s + 1)

Draw a block diagram of the pneumatic controller shown in Figure 4-32. Then derive the trans-
fer function of this controller. Assume that R; <€ R;.

If the resistance R, is removed (replaced by the line-sized tubing), what control action do we
get? If the resistance R; is removed (replaced by the line-sized tubing), what control action do we
get?

Solation. Let us assume that when e = 0 the nozzle-flapper distance is equal to X and the con-
trol pressure is equal to P.. In the present analysis, we shall assume small deviations from the
respective reference values as follows:
e = small error signal
x = small change in the nozzle-flapper distance
p. = small change in the control pressure
pr = small pressure change in bellows I due to small change in the control pressure

pu = small pressure change in bellows II due to small change in the control pressure
y = small displacement at the lower end of the flapper

In this controller,p, is transmitted to bellows I through the resistance R,. Similarly,p, is trans-
mitted to bellows II through the series of resistances R, and R;. The relationship between p, and

D is

Pi(s) _ 1 _ 1
CP(s) RGCs+1 Tys+1

e
a
4
_J
.13;.+p1 g X+x b

13; +pu

——
c y
R;
R4
—
Petpe B
- f:,g{}. -
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Figure 4-33

(a) Block diagram of
the pneumatic
controller shown in
Figure 4-32;

(b) simplified block
diagram.

200

where T, = R,C = derivative time. Similarly, p;; and p, are related by the transfer function
Pu(s) _ 1 __ 1
P(s) RCs+1 Ts-+1
where T, = R,C = integral time. The force-balance equation for the two bellows is
(PI . PII)A = kyy

where k, is the stiffness of the two connected bellows and A is the cross-sectional area of the
bellows. The relationship among the variables e, x, and y is

b __a
x~a+be a+by

The relationship betweenp, and x is
p. = Kx (K > 0)

From the equations just derived, a block diagram of the controller can be drawn, as shown in
Figure 4-33(a). Simplification of this block diagram results in Figure 4-33(b).
The transfer function between P,(s) and E(s) is

b

F(s) _ a+b
E(s) a A( Tis >( 1 )
Lt K e \Ts s 1\ Tps + 1

For a practical controller, under normal operation |[KaAT;s/[(a + b)k(Tis + 1)(Tys + 1)]| is
very much greater than unity and 7; > T,. Therefore, the transfer function can be simplified as

follows:

£(s) b X(s) Fi(s)
reamie--1 > K e
a+b
a "4 Py(s) 1
a+b| ] ks h Tys+1
Py(s) 1
T;s+!
(a)
E(s) b X(s) . Po(s)
B - K
a+b
adT; s

@+ by k(Tis+ 1) (Tys+1)

(®
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A~4-8.
Figure 4-34
(a) Overlapped spool
valve;

(b) underlapped
spool valve.

Figure 4-35

(a) Uncovered port
area A versus
displacement x curve
for the overlapped
valve; (b) uncovered
port area A versus
displacement x curve
for the underlapped
valve,

P(s)  bk(Tis + 1)(Tys + 1)

E(s) ~ aAT;s
bka‘ Tz + Td 1 )
= T
aA ( T, Ts =
1
= p(l -+ - + TdS)
where
« = P
T a4

Thus the controller shown in Figure 4-32 is a proportional-plus-integral-plus-derivative one.

If the resistance R, is removed, or R; = 0, the action becomes that of a proportional-plus-
integral controller. Co

If the resistance R; is removed, or R; = 0, the action becomes that of a narrow-band propor-
tional, or two-position, controller. (Note that the actions of two feedback bellows cancel each
other, and there is no feedback.)

Actual spool valves are either overlapped or underlapped because of manufacturing tolerances.
Consider the overlapped and underlapped spool valves shown in Figures 4-34(a) and (b). Sketch
curves relating the uncovered port area A versus displacement x.

Solution. For the overlapped valve, a dead zone exists between — 1 xgand 3 x,, or =3 xp < x < Jx,.
The uncovered port area A versus displacement x curve is shown in Figure 4-35(a). Such an over-
lapped valve is unfit as a control valve.

For the underlapped valve, the port area A versus displacement x curve is shown in
Figure 4-35(b). The effective curve for the underlapped region has a higher slope, meaning a
higher sensitivity. Valves used for controls are usually underlapped.

] |

X %o % %
2 2 2 2
] V] Lot ——>\F / |
X = X e LJ
High Low High Low
pressure pressure pressure pressure
(a) (&)
A r Ak
Area exposed to
high pressure
Effective
area 7

7 ]*__ e </ x
X <_ %o
7 -

— Area exposed to
low pressure

@ ®)
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A-4-9. Figure 4-36 shows a hydraulic jet-pipe controller. Hydraulic fluid is ejected from the jet pipe. If
the jet pipe is shifted to the right from the neutral position, the power piston moves to the left,
and vice versa. The jet pipe valve is not used as much as the flapper valve because of large null
flow, slower response, and rather unpredictable characteristics. Its main advantage lies in its
insensitivity to dirty fluids.

Suppose that the power piston is connected to a light load so that the inertia force of the load
element is negligible compared to the hydraulic force developed by the power piston. What type
of control action does this controller produce?

Solution. Define the displacement of the jet nozzle from the neutral position as x and the
displacement of the power piston as y. If the jet nozzle is moved to the right by a small displace-
ment x, the oil flows to the right side of the power piston, and the oil in the left side of the power
piston is returned to the drain. The oil flowing into the power cylinder is at high pressure; the oil
flowing out from the power cylinder into the drain is at low pressure. The resulting pressure
difference causes the power piston to move to the left.

For a small jet nozzle displacement x, the flow rate g to the power cylinder is proportional to

x; that is,
q = le
For the power cylinder,
Apdy = q dt

where A is the power piston area and p is the density of oil. Hence

&y 9 _K

bac A S oisl SV

di  Ap Ap * *

A

— x
7
Figure 4-36
Hydraulic jet-pipe Oil under
controller. pressure
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A-4-10:

_ Figure 4-37
Schematic diagram
of a flow control
system using a
hydraulic jet-pipe
controller.

where K = K;/(Ap) = constant. The transfer function Y{(s)/X (s) is thus

Y(s) _K

X(s) s

The controller produces the integral control action.

Figure 4-37 shows a hydraulic jet-pipe applied to a ﬂow control system. The jet-pipe controller
governs the position of the butterfly valve. Discuss the operation of this system. Plot a possible
curve relating the displacement x of the nozzle to the total force F acting on the power piston.

Solution. The operation of this system is as follows: The flow rate is measured by the orifice,
and the pressure difference produced by this orifice is transmitted to the diaphragm of the
pressure measuring device. The diaphragm is connected to the free swinging nozzle, or jet pipe,
through a linkage. High-pressure oil ejects from the nozzle all the time. When the nozzle is at a
neutral position, no oil flows through either of the pipes to move the power piston. If the noz-
zle is displaced by the motion of the balance arm to one side, the high-pressure oil flows through
the corresponding pipe, and the oil in the power cylinder flows back to the sump through the
other pipe.

Assume that the system is initially at rest. If the reference input is changed suddenly to a
higher flow rate, then the nozzle is moved in such a direction as to move the power piston and open
the butterfly valve. Then the flow rate will increase, the pressure differénce across the orifice be-
comes larger, and the nozzle will move back to the neutral position. The movement of the power
piston stops when x, the displacement of the nozzle, comes back to and stays at the neutral posi-
tion. (The jet pipe controller thus possesses an integrating property.)

Butterfly valve
[
|
\/>
E\ — 1= / {Z
*y
Power piston
Power
cylinder
Oil under
pressure

Jet pipe

Reference input

Pump

Sump

Filter
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Figure 4-38
Force versus
diplacement curve.

A-4-11.

Figure 4-39
Speed control
system.

204

The relationship between the total force F acting on the power piston and the displacement
x of the nozzle is shown in Figure 4-38. The total force is equal to the pressure difference AP
across the piston times the area A of the power piston. For a small displacement x of the nozzle,
the total force F and displacement x may be considered proportional.

Explain the operation of the speed control system shown in Figure 4-39.

z

k

>
b E:
az\\ — a)
4

f

L— e
'[: Oil under

" pressure
1 . e

4

Engine

Solution. If the engine speed increases, the sleeve of the fly-ball governor moves upward. This
movement acts as the input to the hydraulic controller. A positive error signal (upward motion of
the sleeve) causes the power piston to move downward, reduces the fuel-valve opening, and
decreases the engine speed. A block diagram for the system is shown in Figure 4-40.

From the block diagram the transfer function Y (s)/E(s) can be obtained as

K

Y(s) _ s
Tog + K
E(s) a +a 1+ a; bs

ay +a,bs + ks
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Figure 4-40
Block diagram for
the speed control
system shown in
Figure 4-39.

A-4-12.

Figure 4-41
Hydraulic system.

E(s) ()

az

h]ﬁ

‘ a+ap

a | 29| s

ay+a bs+k |
If the following condition applies,
% bs Kls
a, +a, bs + ks

the transfer function Y (s)/E(s) becomes

Y(S)‘_ a, a1+a2bs+k_%<1+lc_)
E(s) ata a bs a

bs

The speed controller has proportional-plus-integral control action.

Derive the transfer function Z(s) /Y (s) of the hydraulic system shown in Figure 4-41. Assume that

the two dashpots in the system are identical ones.

Solution. In deriving the equations for the system, we assume that force F is applied at the right
end of the shaft causing displacement y. (All displacements y, w, and z are measured from re-
spective equilibrium positions when no force is applied at the right end of the shaft.) When force
F is applied, pressure P, becomes higher than pressure Pj, or P, > Pi. Similarly, P, > P.

For the force balance, we have the following equation:

ky(y — w) = A(P, — P) + A(B — P)

Since
kyz = A(P, — Py)

and

LB

R

we have

kiz = ARgq,
Also, since

qudt = Aldw —~ dz)p

we have

q; = A(w — i)P

e B B .
P 7 ‘I'—"‘—’y VWW—s = [
-5 ! l P]l - !PZ le —~ 47
7

Area = A

Example Problems and Solutions

(4-48)

(4-49)

205



206

or
kiz
ARp

w—2z=

Define A?Rp = B. (B is the viscous friction coefficient.) Then

..k
w-i=g2 : (4-50)

Also, for the right-hand side dashpot we have

Hence
_ o _AB- Py
Ap A’Rp
or
A(P, — P) = Bw (4-51)

Substituting Equations (4—49) and (4-51) into Equation (4-48) we have
kzy - k2w = klz + Bw

Taking the Laplace transform of this last equation, assuming zero initial condition, we obtain

kY (s) = (k, + Bs)W(s) + k Z(s) (4-52)
Taking the Laplace transform of Equation (4-50), assuming zero initial condition, we obtain
k, + Bs
W(s) = Z(s) (4-53)

N
By using Equation (4-53) to eliminate W (s) from Equation (4-52), we obtain

ki + Bs
Bs

kY(s) = (k; + Bs) Z(s) + kZ(s)

from which we obtain the transfer function Z(s)/Y (s) to be

Z(s) k,s
- kik
Y(s) Bs? + (2k1 + kz)s + ——13—2
Multiplying B/(k; k,) to both the numerator and denominator of this last equation, we get
B
Z(s) _ ky
Y(s) B , (23 B)
— 2t =+ = s+ 1
k' T \k k)
Define B/k; = Ty, B/k, = T,. Then the transfer function Z(s)/Y (s) becomes as follows:
Z(s) Tis

Y(s) TT,s* + (T, + 2Ty)s + 1
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A-4-13.

Figure 4-42
Hydraulic servo
system.

Consider the hydraulic servo system shown in Figure 4-42. Assuming that the load reaction forces
are not negligible, derive a mathematical model of the system. Assume also that the mass of the
power piston is included in the load mass m.

Solution. In deriving a mathematical model of the system when the load reactive forces are not
negligible, such effects as the pressure drop across the orifice, the leakage of oil around the valve
and around the piston, and the compressibility of the oil must be considered. '

The pressure drop across the orifice is a function of the supply pressure p, and the pressure -
difference Ap = p; — p,. Thus the flow rate ¢ is a nonlinear function of valve displacement x
and pressure difference Ap or

q = f(x,Ap)
Linearizing this nonlinear equation about the origin (x = 0, Ap = 0, g = 0), we obtain, refer-
ring to Equation (4-27), :

g =Kx~ KAp - : (4-54)
The flow rate g can be considered as consisting of three parts ‘
qg=qo+q.+qc (4-55)
where g, = useful flow rate to the power cylinder causing power piston to move, kg/sec
q. = leakage flow rate, kg/sec
gc = equivalent compressibility flow rate, kg/sec

Let us obtain specific expressions for gy, g, ,and g.. The flow g, dt to the left-hand side of the power
piston causes the piston to move to the right by dy. So we have

Apdy = qydt

where A (m?) is the power piston area, p (kg/m?) the density of oil, and dy (m) the displacement
of the power piston. Then

dy
_ . 4
qo = Ap dt (4-56)

The leakage component g, can be written
q, = LAp (4-57)

where L is the leakage coefficient of the system.

Po Ps Po

o

Ai@@lgéfjli‘t

~AAAA
pl pz YYYY
y > O ~ m
] [ .
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The equivalent compressibility flow rate g, can be expressed in terms of the effective bulk
modulus K of oil (including the effects of entrapped air, expansion of pipes, etc.), where
_ dAp
T —dV/V

(Here dVis negative and so —dV is positive.) Rewriting this last equation gives

4
~dV = —d A
K dar
or
—dy _ pV dAp

Pmar T K ar
Noting that g = p(—dV')/dt, we find

_ oV by

dc = K dt (4-58)

where V is the effective volume of oil under compression (that is, approximately half the total

power cylinder volume).
Using Equations (4-54) through (4-58),

qg=Kx—K,Ap

=qo+ gL+ qc
dy oV dAp
= —+ e —
Apdt LAP+K dt
or
dy pVdAp
._..+.__.»-—————- = —
Ap—+ +(L+ K,))Ap = Kix (4-59)

The force developed by the power piston is A Ap, and this force is applied to the load elements.
Thus

d’y  dy
—Z + b=+ ky=AA 4-60
m e b " ky= AAp ( )

Eliminating A p from Equations (4-59) and (4-60) results in

pVm &3y N [pVb N (L + Kz)m:I d?y
KA df KA A dr*

oVk (L + K)b ]ﬂ . (L + Ky)k

+ =
KA A d 4 =K

+[Ap+

This is a mathematical model of the system relating the valve spool displacement x and the power
piston displacement y when the load reactive forces are not negligible.
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A-4-14,

Figure 4-43
Air heating system.

Considering small deviations from steady-state operation, draw a block diagram of the air heat-
ing system shown in Figure 4-43. Assume that the heat loss to the surroundings and the heat
capacitance of the metal parts of the heater are negligible.

Solution. Let us define

A e R QI

H

= steady-state temperature of inlet air, °C

= steady-state temperature of outlet air, °C

mass flow rate of air through the heating chamber, kg/sec

= mass of air contained in the heating chamber, kg

= specific heat of air, kcal/kg °C

= thermal resistance, °C sec/kcal

= thermal capacitance of air contained in the heating chamber = Mc, kcal/°C

= steady-state heat input, kcal/sec

Let us assume that the heat input is suddenly changed from H to H + h and the inlet air
temperature is suddenly changed from &, to @, + 6,. Then the outlet air temperature will be
changed from @, to 6, + ,.

The equation describing the system behavior is

or

Noting that

we obtain

or

6,

+6;

e

Cdo, = [h + Gc(6; — 0,)]at

Cg?ﬂ—h+G(0 -6,
dl‘— €\b; [4

1

GC—E

de, 1
C—L—it—_h+E(9‘ 90)

de,
RC—+6,=Rh + 6,
dt

—
H+h B+ 6
Heater

Example Problems and Solutions
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Figure 444

Block diagram of the
air heating system
shown in

Figure 4-43.

A-4-15.

Figure 4-45
Thin, glass-wall,
mercury thermo-
meter system.

210

Ofs) 1
. RCs +1
H{(s) R O,(s)
> >+ -
RCs +1

Taking the Laplace transforms of both sides of this last equation and substituting the initial
condition that 6,(0) = 0, we obtain

R

T RCs + 1 Oi(s)

O, (s) H(s)

1
+__—
RCs + 1

The block diagram of the system corresponding to this equation is shown in Figure 4-44.

Consider the thin, glass-wall, mercury thermometer system shown in Figure 4-45. Assume that the
thermometer is at a uniform temperature ® (ambient temperature) and that at ¢+ = 0 it is
immersed in a bath of temperature & + 6,, where 8, is the bath temperature (which may be con-
stant or changing) measured from the ambient temperature @. Define the instantaneous ther-
mometer temperature by @ + 650 that 0 is the change in the thermometer temperature satisfying
the condition that §(0) = 0. Obtain a mathematical model for the system. Also obtain an electri-
cal analog of the thermometer system.

Solution. A mathematical model for the system can be derived by considering heat balance as fol-
lows: The heat entering the thermometer during dt sec is g dt, where g is the heat flow rate to the
thermometer. This heat is stored in the thermal capacitance C of the thermometer, thereby rais-
ing its temperature by d6. Thus the heat-balance equation is

Cdo =qdt (4-61)
Since thermal resistance R may be written as

d(Ae
CUR

dq q

heat flow rate g may be given, in terms of thermal resistance R, as

=(@+0b)—(@+0) 6, — 6

R R
Thermormeter
e+
G+ 0, -<}— Bath
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where @ + 6, is the bath temperature and @ + 0 is the thermometer temperature. Hence, we
can rewrite Equation (4-61) as

g 0, — 6
C — T e—————
dt R
or
de
RC = +6 =4, (4-62)

Equation (4-62) is a mathematical model of the thermometer system.

Referring to Equation (4-62), an electrical analog for the thermometer system can be writ-
ten as

de,

dt

An electrical circuit represented by this last equation is shown in Figure 4-46.

RC

+e,= ¢

R
Figure 4-46 ' B
Electrical analog of
the thermometer e; C e,
system shown in T
Figure 4-45. o— o
PROBLEMS

B—4-1. Consider the liquid-level system shown in where Q is the flow rate measured in m’/sec and H is in
Figure 4-47. Assuming that H = 3 m,Q = 0.02 m*/sec,and  meters.

the cross-sectional area of the tank is equal to 5 m?, obtain Suppose that the head is 2 m at t = 0. What will be the
the time constant of the system at the operating point head at¢ = 60 sec?

(H, Q). Assume that the flow through the valve is turbulent.

04 I
;

H+h _ )
t £ 0+4o r ‘ 4
. —> 3m >
/ A ? :
Capacitance Resistance 1 2m
C R H ! .
Figure 4-47 l '
Liquid-level system. = i —L

B-4-2. Consider the conical water tank system shown in
Figure 4-48; The flow through the valve is turbulent and is
lated t '
. related to the head H by Figure 4-48

O = 0.005VH Conical water tank system.
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B-4-3, Consider the liquid-level system shown in
Figure 4-49. At steady state the inflow rate is Q and the out-
flow rate is also 0. Assume that at t = O the inflow rate is
changed from Q to Q0 + ¢;, where g, is a small quantity. The
disturbance input is g, which is also a small quantity. Draw
a block diagram of the system and simplify it to obtain Hy(s)
as a function of Q,(s) and Q,(s), where Hy(s) = £[ha(t)],
Qi(s) = £[qi(2)], and Qu(s) = £[g4(¢)]. The, capacitances
of tanks 1 and 2 are C, and C;, respectively.

é+q,—>:1>T<l:\\

Tank1\

B-4-4. Consider the liquid-level control system shown in

' Figure 4-50. The controller is of the proportional type. The

set point of the controller is fixed.

Draw a block diagram of the system, assuming that
changes in the variables are small. Obtain the transfer func-
tion between the level of the second tank and the distur-
bance input g, Obtain the steady-state error when the
disturbance g, is a unit-step function.

({:D-%:@ g4
»

— g+

Figure 4-49
Liquid-level system.

Proportional
controller

Q’*“Ii i
—_—

Ry

Cy

Figure 4-50
Liquid-level contyol system.
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B-4-5. For the pneumatic system shown in Figure 4-51,
assume that steady-state values of the air pressure and the
displacement of the bellows are P and X, respectively.
Assume also that the input pressure is changed from P to
P + p,, where p; is a small change in the input pressure. This
change will cause the displacement of the bellows to change
- asmall amount x. Assuming that the capacitance of the bel-
lows is C and the resistance of the valve is R, obtain the
transfer function relating x and p;.

NN

F+p[
—_—
R

Figure 4-51
Pneumatic system.

Py+py

B-4-6. Figure 4-52 shows a pneumatic controller. The pneu-
matic relay has the characteristic that p. = Kp,, where
K > 0. What kind of control action does this controller
produce? Derive the transfer function P,(s)/E(s).

B-4-7. Consider the pneumatic controller shown in
Figure 4-53. Assuming that the pneumatic relay has the char-
acteristics that p, = Kp, (where K > 0), determine the con-
trol action of this controller. The input to the controller is e
and the output is p,.

ANRANAN
A 0 ]

P+p,

Actuating error signal

Flapper

Orifice —

—_
—

Py

Figure 4-52
Pneumatic controller.
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Assume that the pneumatic relay has the characteristics that

B-4-8. Figure 4-54 shows a pneumatic controller. The sig-
p. = Kp,, where K > 0.

nal e is the input and the change in the control pressure p,
is the output. Obtain the transfer function P,(s)/E(s).

Actuating error signal

Flapper

Qrifice —

oo
]
¥

s~

]
s,
]
[

I?S—_- g
i

Figure 4-53
Pneumatic controller.

Actuating error signal
Flapper

Py+py Nozzle
N Y

Orifice =

Y
1.

Figure 4-54
Pneumatic controller.
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B—4-9. Consider the pneumatic controller shown in
Figure 4-55. What control action does this controller pro-
duce? Assume that the pneumatic relay has the character-
istics that p, = Kp,, where K > 0.

B-4-10. Figure 4-56 shows a flapper valve. It is placed
between two opposing nozzles If the flapper is moved slight-
ly to the right, the pressure unbalance occurs in the nozzles
and the power piston moves to the left, and vice versa. Such

Py+py
N

a device is frequently used in hydraulic servos as the first-

* stage valve in two-stage servovalves. This usage occurs

because considerable force may be needed to stroke larger
spool valves that result from the steady-state flow force. To
reduce or compensate this force, two-stage valve configura-
tion is often employed; a flapper valve or jet pipe is used as
the first-stage valve to provide a necessary force to stroke
the second-stage spool valve.

Actuating error signal

Flapper

Orifice —

Figure 4-55
Pneumatic controller.

-
Y
-———)
-
(24

1

\_.7

5
H

= O ~—)
= Flapper
—m ~ -
[ ] SN\ [ |
L.
Figure 4-56 R
Flapper valve.
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Figure 4-57 shows a schematic diagram of a hydraulic
servomotor in which the error signal is amplified in two
stages using a jet pipe and a pilot valve. Draw a block
diagram of the system of Figure 457 and then find the trans-
fer function between y and x, where x is the air pressure and
y is the displacement of the power piston.

B-4-11. Figure 4-58 is a schematic diagram of an aircraft
elevator control system. The input to the system is the de-
flection angle @ of the control lever, and the output is the el-
evator angle ¢. Assume that angles § and ¢ are relatively
small. Show that for each angle 6 of the control lever there
is a corresponding (steady-state) elevator angle ¢.

-l
N

-
ﬂﬂ[

Oil under
pressure

Figure 4-57

D‘: —~— X
Oil under
pressure

gy

Schematic diagram of a hydraulic servomotor.

Oil under
pressure

Figure 4-58
Aircraft elevator control system.
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B-4-12. Consider the liquid-level control system shown in We assume that the velocity of the power piston (valve)
Figure 4-59. The inlet valve is controlled by a hydraulic is proportional to pilot valve displacement x, or

integral controller. Assume that the steady-state inflow rate dy

is Q and steady-state outflow rate is also O, the steady-state —=Kx

head is H, steady-state pilot valve displacement is X = 0, :
and steady-state valve position is Y. We assume that the set ~ where K| is a positive constant. We also assume that the
point R corresponds to the steady-state head H. The set change in the inflow rate g, is negatively proportional to the
point is fixed. Assume also that the disturbance inflow rate  change in the valve opening y, or

q,4, which is a small quantity, is applied to the water tank at e

t = 0.This disturbance causes the head to change from H to 4 o4
H + h. This change results in a change in the outflow rate  Where K, is a positive constant.

by g,. Through the hydraulic controller, the change in head Assuming the following numerical values for the system,
causes a change in the inflow rate from O to O + g;. (The C=2m? R = 0.5 sec/m?, K, = 1m?/sec
integral controller tends to keep the head constant as much _ _ _ -1

as possible in the presence of disturbances.) We assume that a=1025m, b=075m, Ky = 4sec
all changes are of small quantities. obtain the transfer function H(s)/Q,(s).

—
‘ )_/ +y qd
S (F—:%:
0+ ‘IIP
T
T ~ — C (Capacitance)
H+h ]
! s,
R
(Resistance)
Figure 4-59

Liquid-level control system.
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B-4-13. Consider the controller shown in Figure 4-60. The
input is the air pressure p; measured from some steady-state
reference pressure P and the output is the displacement y of
the power piston. Obtain the transfer function Y (s)/F(s).

B-4-14. A thermocouple has a time constant of 2 sec. A
thermal well has a time constant of 30 sec. When the ther-
mocouple is inserted into the well, this temperature-

measuring device can be considered a two-capacitance
system.

Determine the time constants of the combined thermo-
couple-thermal well system. Assume that the weight of the
thermocouple is 8 g and the weight of the thermal well is
40 g. Assume also that the specific heats of the thermocouple
and thermal well are the same.

~— Air p; (Input)

Figure 4-60
Controlier.
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y (Output)
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Transient and Steady-State
Response Analyses

5-1 INTRODUCTION

It was stated in Chapter 3 that the first step in analyzing a control system was to derive
a mathematical model of the system. Once such a model is obtained, various methods
are available for the analysis of system performance.

In practice, the input signal to a control system is not known ahead of time but is
random in nature, and the instantaneous input cannot be expressed analytically. Only in
some special cases is the input signal known in advance and expressible analytically or
by curves, such as in the case of the automatic control of cutting tools.

In analyzing and designing control systems, we must have a basis of comparison of
performance of various control systems. This basis may be set up by specifying particu-
lar test input signals and by comparing the responses of various systems to these input
signals.

Many design criteria are based on the response to such signals or on the response of
systems to changes in initial conditions (without any test signals). The use of test signals
can be justified because of a correlation existing between the response characteristics
of a system to a typical test input signal and the capability of the system to cope with
actual input signals.

Typical Test Signals. The commonly used test input signals are those of step
functions, ramp functions, acceleration functions, impulse functions, sinusoidal functions,
and the like. With these test signals, mathematical and experimental analyses of control
systems can be carried out easily since the signals are very simple functions of time.
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Which of these typical input signals to use for analyzing system characteristics may
be determined by the form of the input that the system will be subjected to most
frequently under normal operation.-If the inputs to a control system are gradually
changing functions of time, then a ramp function of time may be a good test signal. Sim-
ilarly, if a system is subjected to sudden disturbances, a step function of time may be a
good test signal; and for a system subjected to shock inputs, an impulse function may be
best. Once a control system is designed on the basis of test signals, the performance of
the system in response to actual inputs is generally satisfactory. The use of such test
signals enables one to compare the performance of all systems on the same basis.

Transient Response and Steady-State Response. The time response of a
control system consists of two parts: the transient response and the steady-state response.
By transient response, we mean that which goes from the initial state to the final state.
By steady-state response, we mean the manner in which the system output behaves as
t approaches infinity. Thus the system response c¢(¢) may be written as

c(r) = cu(t) + c(t)

where the first term on the right-hand side of the equation is the transient response and
the second term is the steady-state response.

Absolute Stability, Relative Stability, and Steady-State Error. In designing a
control system, we must be able to predict the dynamic behavior of the system from a
knowledge of the components. The most important characteristic of the dynamic
behavior of a control system is absolute stability, that is, whether the system is stable or
unstable. A control system is in equilibrium if, in the absence of any disturbance or input,
the output stays in the same state. A linear time-invariant control system is stable if the
output eventually comes back to its equilibrium state when the system is subjected to
an initial condition. A linear time-invariant control system is critically stable if oscilla-
tions of the output continue forever. It is unstable if the output diverges without bound
from its equilibrium state when the system is subjected to an initial condition. Actually,
the output of a physical system may increase to a certain extent but may be limited by
mechanical “stops,” or the system may break down or become nonlinear after the out-
put exceeds a certain magnitude so that the linear differential equations no longer apply.

Important system behavior (other than absolute stability) to which we must give
careful consideration includes relative stability and steady-state error. Since a physical
control system involves energy storage, the output of the system, when subjected to an
input, cannot follow the input immediately but exhibits a transient response before a
steady state can be reached. The transient response of a practical control system often
exhibits damped oscillations before reaching a steady state. If the output of a system at
steady state does not exactly agree with the input, the system is said to have steady-
state error. This error is indicative of the accuracy of the system. In analyzing a control
system, we must examine transient-response behavior and steady-state behavior.

Outline of the Chapter. This chapter is concerned with system responses to
aperiodic signals (such as step, ramp, acceleration, and impulse functions of time). The
outline of the chapter is as follows: Section 5-1 has presented introductory material for
the chapter. Section 5-2 treats the response of first-order systems to aperiodic inputs.
Section 5-3 deals with the transient response of the second-order systems. Detailed
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analyses of the step response, ramp response, and impulse response of the second-order
systems are presented. Section 54 discusses the transient response analysis of higher-
order systems. Section 5-5 gives an introduction to the MATLAB approach to the solution
of transient response problems. Section 5-6 gives an example of a transient-response
problem solved with MATLAB. Section 5-7 presents Routh’s stability criterion. Section
5-8 discusses effects of integral and derivative control actions on system performance.
Finally, Section 5-9 treats steady-state errors in unity-feedback control systems.

5-2 FIRST-ORDER SYSTEMS

Figure 5-1
(a) Block diagram of
a first-order system;
(b) simplified block
diagram.

Consider the first-order system shown in Figure 5-1(a). Physically, this system may
represent an RC circuit, thermal system, or the like. A simplified block diagram is shown
in Figure 5-1(b). The input-output relationship is given by
C(s) 1
R(s) Ts+1
In the following, we shall analyze the system responses to such inputs as the unit-step,
unit-ramp, and unit-impulse functions. The initial conditions are assumed to be zero.
Note that all systems having the same transfer function will exhibit the same output
in response to the same input. For any given physical system, the mathematical response
can be given a physical interpretation.

(-1

Unit-Step Response of First-Order Systems. Since the Laplace transform of
the unit-step function is 1/s, substituting R(s) = 1/s into Equation (5-1), we obtain
1 1
Cls) = Ts +1s

Expanding C(s) into partial fractions gives

1 T 1 1
q”‘s_n+1*§_s+uﬁ)

(5-2)

Taking the inverse Laplace transform of Equation (5-2), we obtain
c(ty=1-¢"7, fort =0 (5-3)

Equation (5-3) states that initially the output ¢(¢) is zero and finally it becomes unity.
One important characteristic of such an exponential response curve ¢(¢) isthatatt = T
the value of ¢(¢) is 0.632, or the response ¢(¢) has reached 63.2% of its total change. This
may be easily seen by substituting t = 7' in c¢(¢). That is,

oT)=1— e = 0632

R(s) K9 [ ) R(s) ] )
-+ -— » | >

() (b)
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Figure 5-2
Exponential
response curve.
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Note that the smaller the time constant T, the faster the system response. Another
important characteristic of the exponential response curve is that the slope of the tangent
line at¢ = 0is 1/7,since

de —= le—t/’f = _1_

dt |y T 0 T

The output would reach the final value at ¢+ = T if it maintained its initial speed of
response. From Equation (5-4) we see that the slope of the response curve ¢(¢) decreases
monotonically from 1/T att = 0to zero att = oo.

The exponential response curve ¢(¢) given by Equation (5-3) is si. wn in Figure 5-2.
In one time constant, the exponential response curve has gone from 0 to 63.2% of the final
value. In two time constants, the response reaches 86.5% of the final value. At ¢ = 37,47,
and 5T, the response reaches 95%, 98.2%, and 99.3%, respectively, of the final value. Thus,
for t = 4T, the response remains within 2% of the final value. As seen from Equation
(5-3), the steady state is reached mathematically only after an infinite time. In practice,
however, a reasonable estimate of the response time is the length of time the response
curve needs to reach and stay within the 2% line of the final value, or four time constants.

(5-4)

Unit-Ramp Response of First-Order Systems. Since the Laplace transform of
the unit-ramp function is 1/s% we obtain the output of the system of Figure 5-1(a) as

11
CO) =751 9

Expanding C(s) into partial fractions gives

1 T 72
T e e + —.
c(s) £ s Ts+1 (5-5)
Taking the inverse Laplace transform of Equation (5-5), we obtain
c(t)y=t—-T+Te", forr=0 (5-6)

The error signal e(z) is then

r(t) = (1)
=T(1 — 7

(1)
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Figure 5-3
Unit-ramp response
of the system shown
in Figure 5-1(a).

" Figure 54
Unit-impulse
response of the
system shown in
Figure 5-1(a).
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As t approaches infinity, e /" approaches zero, and thus the error signal e(t) approaches
T or
e(o0) =T

The unit-ramp input and the system output are shown in Figure 5-3. The error in
following the unit-ramp input is equal to T for sufficiently large ¢. The smaller the time
constant 7', the smaller the steady-state error in following the ramp input.

{nit-Impulse Response of First-Order Systems. For the unit-impulse input,
R(s) = 1 and the output of the system of Figure 5-1(a) can be obtained as

1
€)= 7577 -7)
The inverse Laplace transform of Equation (5-7) gives
1
c(t)y ==e"T, fort=0 (5-8)

T

The response curve given by Equation (5-8) is shown in Figure 5-4.
o) )

L
T
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An Important Property of Linear Time-Invariant Systems. In the analysis
above, it has been shown that for the unit-ramp input the output c(¢) is

c(t)=t-T +Te'", fort=0 [See Equation (5-6).]
For the unit-step input, which is the derivative of unit-ramp input, the output c(z) is
c(t) =1=¢"", fort =0 [See Equation (5-3).]

Finally, for the unit-impulse input, which is the derivative of unit-step input, the output
c(t)is

1
c(t) = T e fort =0  [See Equation (5-8).]

Comparing the system responses to these three inputs clearly indicates that the response
to the derivative of an input signal can be obtained by differentiating the response of the
system to the original signal. It can also be seen that the response to the integral of the
original signal can be obtained by integrating the response of the system to the original
signal and by determining the integration constant from the zero output initial condi-
tion. This is a property of linear time-invariant systems. Linear time-varying systems and
nonlinear systems do not possess this property.

5-3 SECOND-ORDER SYSTEMS

224

In this section, we shall obtain the response of a typical second-order control system to
a step input, ramp input, and impulse input. Here we consider a servo system as an
example of a second-order system.

Servo System. The servo system shown in Figure 5-5(a) consists of a proportional
controller and load elements (inertia and viscous friction elements). Suppose that we
wish to control the output position ¢ in accordance with the input position r.

The equation for the load elements is

Je+ Bé=T
where T is the torque produced by the proportional controller whose gain is K. By
taking Laplace transforms of both sides of this last equation, assuming the zero initial

conditions, we obtain
Js*C(s) + BsC(s) = T(s)
So the transfer function between C(s) and T'(s) is
C(s) 1
T(s) s(Js+ B)
By using this transfer function. Figure 5-5(a) can be redrawn as in Figure 5-5(b), which

can be modified to that shown in Figure 5-5(c). The closed-loop transfer function is then
obtained as

C(s) K B K/J
R(s) Js’+ Bs+K s+ (B/J)s + (K/J)

Such a system where the closed-loop transfer function possesses two poles is called a
second-order system. (Some second-order systems may involve one or two zeros.)
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Figure 5-5

(a) Servo system,
(b) block diagram;
(c) simplified block
diagram.
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Step Response of Second-Order System. The closed-loop transfer function of
the system shown in Figure 5-5(c) is
C(s) B K

R(s) Js*+Bs+ K (5-9)

which can be rewritten as
K
C(s) J

O L B YK 2T -5

The closed-loop poles are complex conjugates if B> — 4JK < 0 and they are real if
B? — 4JK = 0.In the transient-response analysis, it is convenient to write
K 2

— = w, 7=2§wn=20

where o is called the attenuation; w,, the undamped natural frequency; and £, the damp-
ing ratio of the system. The damping ratio { is the ratio of the actual damping B to the
critical damping B, = 2VJK or
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Figure 5-6
Second-order system.
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In terms of { and w,,, the system shown in Figure 5-5(¢) can be modified to that shown
in Figure 5-6, and the closed-loop transfer function C(s)/R(s) given by Equation (5-9)
can be written

C(s) _ wj
R(s) §* + 2w,s +

(5-10)

This form is called the standard form of the second-order system.

The dynamic behavior of the second-order system can then be described in terms of
two parameters ¢ and w,. If 0 < { < 1, the closed-loop poles are complex conjugates
and lie in the left-half s plane. The system is then called underdamped, and the tran-
sient response is oscillatory. If { = 0, the transient response does not die out. If { = 1,
the system is called critically damped. Overdamped systems correspond to { > 1.

We shall now solve for the response of the system shown in Figure 5-6 to a unit-step
input. We shall consider three different cases: the underdamped (0 < ¢ < 1), critically
damped ({ = 1), and overdamped ({ > 1) cases.

(1) Underdamped case (0 < { < 1): In this case, C(s)/R(s) can be written
Cs) _ o,
R(S) (S + é’wn + jwd)(s + gwn - ]wd)

where w; = 0, V1 — {2. The frequency w,, is called the damped natural frequency. For
a unit-step input, C(s) can be written

@

§? + 2fw,s + wl)s

C(s) = ( (5-11)

The inverse Laplace transform of Equation (5-11) can be obtained easily if C(s) is writ-
ten in the following form:

1 s+ 2w,
Cls) = 5 82+ 2w,s + o
1 s+ {w, {w,

s (s + {w,,)z -+ wzzi (s -+ (w,l)z + wé

In Chapter 2 it was shown that

+{w
v
(S + gwn)z + w3

(s + Lw,)" + o}

i

e cos wyt
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Hence the inverse Laplace transform of Equation (5-11) is obtained as
£C(s)] = (1)

=1- e—{w"[<COS wyt +

%{2/ sin U)dt)
V1—§3
{

e~{m,,t (
=1 — ———=sin| w,t + tan™
V1~
This result can be obtained directly by using a table of Laplace transforms. From
Equation (5-12),it can be seen that the frequency of transient oscillation is the damped
natural frequency w, and thus varies with the damping ratio . The error s1gna1 for this
system is the difference between the input and output and is

e(t) = r(t) — c(t)

= e‘“’“‘(COS wyt +

, fort =0 (5-12)

i . )
—————sinwyt |, fort=0
vi-g2 ¢
This error signal exhibits a damped sinusoidal oscillation. At steady state, or at t = oo,
no error exists between the input and output.

If the damping ratio ¢ is equal to zero, the response becomes undamped and
oscillations continue indefinitely. The response ¢(t) for the zero damping case may be
obtained by substituting { = 0 in Equation (5-12), yielding

c(t) =1 — cosw,t, fort =0 (5-13)

Thus, from Equation (5-13), we see that w, represents the undamped natural frequen-
cy of the system. That is, w, is that frequency at which the system output would oscillate
if the damping were decreased to zero. If the linear system has any amount of damping,
the undamped natural frequency cannot be observed experimentally. The frequency
that may be observed is the damped natural frequency w,, which is equal to w, V1 — £2.
This frequency is always lower than the undamped natural frequency. An increase in
would reduce the damped natural frequency w,. If £ is increased beyond unity, the
response becomes overdamped and will not oscillate.

(2) Critically damped case ({ = 1): If the two poles of C(s)/R(s) are equal, the system
is said to be a critically damped one.
For a unit-step input, R(s) = 1/s and C(s) can be written
2

Cls) = "= (5-14)
) (S + w,,) s
The inverse Laplace transform of Equation (5-14) may be found as
c(t) =1 — (1 + w,), fort =0 (5-15)

This result can also be obtained by letting { approach unity in Equation (5-12) and by
using the following limit:

sin wyt . sinw,V1 — %t
= lim ———— = w,t

}%\/1—f42 {1 ‘\/1_;«2
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(3) Overdamped case ({ > 1): In this case, the two poles of C(s)/R(s) are negative
real and unequal. For a unit-step input, R(s) = 1/s and C(s) can be written

w2

< 5-16
(s+§wn+wn\/§2—1)(s —I—[wn—wn\/{z~1)s ( )

The inverse Laplace transform of Equation (5-16) is

C(s) =

cr) =1+ : e VE T
2V -1+ VE-1)
1 oV Do

-—2\/52—1(5— F-1)

) w, < e—slt e—szt >
b — - = -

5 —_gz —\ s 5 ) fort =0 (5-17)
where s, = ({ + V{2 — 1)w, and s, = ({ — V{* — 1)w,. Thus, the response c(r)
includes two decaying exponential terms.

When ¢ is appreciably greater than unity, one of the two decaying exponentials
decreases much faster than the other, so the faster decaying exponential term (which
corresponds to a smaller time constant) may be neglected. That is, if —s, is located very
much closer to the jw axis than —s; (which means |s,| < |s,|), then for an approximate
solution we may neglect —s, . This is permissible because the effect of —s, on the response
is much smaller than that of —s,, since the term involving s; in Equation (5-17) decays
much faster than the term involving s,. Once the faster decaying exponential term has
disappeared, the response is similar to that of a first-order system, and C(s)/R(s) may
be approximated by

C(S>_ {w, — 0,V =1 L)

R(s) s+§wn—wn\/§2~1'"s+52

This approximate form is a direct consequence of the fact that the initial values and
final values of both the original C(s)/R(s) and the approximate one agree with each
other.

With the approximate transfer function C(s)/R(s), the unit-step response can be
obtained as

gw” - w” gz - 1
(s + {w, — w, VI = 1)s

C(s) =

The time response c¢(t) is then

o(t) =1 — Vet forr =0
This gives an approximate unit-step response when one of the poles of C(s)/R(s) can
be neglected.

A family of unit-step response curves c(r) with various values of { is shown in Fig-
ure 5-7, where the abscissa is the dimensionless variable w,t. The curves are functions
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Figure 5-7
Unit-step response
curves of the system
shown in Figure 5--6.
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only of {. These curves are obtained from Equations (5-12), (5-15), and (5-17). The
system described by these equations was initially at rest.

Note that two second-order systems having the same { but different w, will exhibit
the same overshoot and the same oscillatory pattern. Such systems are said to have the
same relative stability.

It is important to note that, for second-order systems whose closed-loop transfer
functions are different from that given by Equation (5-10), the step-response curves
may look quite different from those shown in Figure 5-7.

From Figure 5-7, we see that an underdamped system with { between 0.5 and 0.8 gets
close to the final value more rapidly than a critically damped or overdamped system.
Among the systems responding without oscillation, a critically damped system exhibits
the fastest response. An overdamped system is always sluggish in responding to any
inputs.

Definitions of Transient-Response Specifications. In many practical cases,
the desired performance characteristics of control systems are specified in terms of
time-domain quantities. Systems with energy storage cannot respond instantaneously
and will exhibit transient responses whenever they are subjected to inputs or
disturbances.

Frequently, the performance characteristics of a control system are specified in terms
of the transient response to a unit-step input since it is easy to generate and is suffi-
ciently drastic. (If the response to a step input is known, it is mathematically possible to
compute the response to any input.)

The transient response of a system to a unit-step input depends on the initial condi-
tions. For convenience in comparing transient responses of various systems, it is a com-
mon practice to use the standard initial condition that the system is at rest initially with
the output and all time derivatives thereof zero. Then the response characteristics of
many systems can be easily compared.
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The transient response of a practical control system often exhibits damped oscilla-
tions before reaching steady state. In specifying the transient-response characteristics of -
a control system to a unit-step input, it is common to specify the following:

1. Delay time, t,

2. Rise time, ¢,

3. Peak time, ¢,

4. Maximum overshoot, M,

5. Settling time, ¢,

These specifications are defined in what follows and are shown graphically in Figure 5-8.

1. Delay time, t,: The delay time is the time required for the response to reach half
the final value the very first time.

2. Rise time, ¢,: The rise time is the time required for the response to rise from 10%
to 90%, 5% to 95%, or 0% to 100% of its final value. For underdamped second-
order systems, the 0% to 100% rise time is normally used. For overdamped systems,
the 10% to 90% rise time is commonly used.

3. Peak time, ¢ ,: The peak time is the time required for the response to reach the first
peak of the overshoot. _

4. Maximum (percent) overshoot, M,: The maximum overshoot is the maximum
peak value of the response curve measured from unity. If the final steady-state
value of the response differs from unity, then it is common to use the maximum
percent overshoot. It is defined by

C(tp) = ¢(o0)

¢(oo)
The amount of the maximum (percent) overshoot directly indicates the relative
stability of the system.

5. Settling time, #,: The settling time is the time required for the response curve to
reach and stay within a range about the final value of size specified by absolute per-
centage of the final value (usually 2% or 5%). The settling time is related to the
largest time constant of the control system. Which percentage error criterion to use
may be determined from the objectives of the system design in question.

Maximum percent overshoot = X 100%

() | )
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Figure 5-9
Definition of the
angle 8.

The time-domain specifications just given are quite important since most control
systems are time-domain systems; that is, they must exhibit acceptable time responses.
(This means that, the control system must be modified until the transient response is
satisfactory.)

Note that not all these speaflcatlons necessarily apply to any given case. For exam-
ple, for an overdamped system, the terms peak time and maximum overshoot do not
apply. (For systems that yield steady-state errors for step inputs, this error must be kept
within a specified percentage level. Detailed discussions of steady-state errors are post-
poned until Section 5-9.)

A Few Comments on Transient-Response Specifications. Except for certain
applications where oscillations cannot be tolerated, it is desirable that the transient re-
sponse be sufficiently fast and be sufficiently damped. Thus, for a desirable transient re-
sponse of a second-order system, the damping ratio must be between 0.4 and 0.8. Small -
values of {({ < 04) yield excessive overshoot in the transient response, and a system
with a large value of £(¢ > 0.8).responds sluggishly.

‘We shall see later that the maximum overshoot and the rise time conflict with each other.
In other words, both the maximum overshoot and the rise time cannot be made smaller
simultaneously. If one of them is made smaller, the other necessarily becomes larger.

Second-Order Systems and Transient-Response Specnﬁcatlons In the fol-
lowing, we shall obtain the rise time, peak time, maximum overshoot, and settling time
of the second-order system given by Equation (5-10). These values will be obtained in
terms of  and w,,. The system is assumed to be underdamped.

Risetimet,: Referring to Equation (5-12), we obtain the rise time ¢, by letting c(z,) = 1.

c(t,) =1=1- e'f“’"’/(cos wyt, + %sin wdtr>- (5-18)
1-¢
Since e # 0, we obtain from Equation (5-18) the following equation:
£ .
cos wyt, + ————=sinwyt, = 0
V1-¢
or
V1 - §2 Wy
tanwyt, = — ————— = — —
14 oy
Thus, the rise time ¢, is
1 ’ T =
;= -——tan“( “”) _T—FB (5-19)
Wy o @y
where (3 is defined in Figure 5-9. Clearly, for a small value of t,, w, must be large.
Jjo
T—Q'" Jey
o, I — {2 L @y
/ﬁ .
] o
ek
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Peak time t,: Referring to Equation (5-12), we may obtain the peak time by differen-
tiating c(¢) with respect to time and letting this derivative equal zero. Since
dc

T = §a),,e_§“’”’<0(')swdt +

—-\/—1£_:? sin wdz)

- . {oy
+e §w,.r<wd sinwyt — —2=——

COS a)dt
V1=
and the cosine terms in this last equation cancel each other, dc/dt, evaluated at t = ¢ o
can be simplified to '
dc

. , -
" = (sinwyt,) ——==e"*" = 0

1=t V1 - 52

This last equation yields the following equation:

sinwyt, = 0
or
wyt, = 0,7, 2m,37,...
Since the peak time corresponds to the first peak overshoot, w,t, = 7. Hence

f, = — (5-20)

T Wy
The peak time 7, corresponds to one-half cycle of the frequency of damped oscillation.

Maximum overshoot M,: The maximum overshoot occurs at the peak time or at
t = t, = m/w,. Assuming that the final value of the output is unity, M, is obtained from
Equation (5-12) as

Mp c(tp) -1

— —e'g"’“(w/w")<COS7T + #Sinﬂ
A /1 _ §2

= glolodr = SNV (5-21)

The maximum percent overshoot is e 17/#J7 x 100%.
If the final value ¢(o0) of the output is not unity, then we need to use the following
equation:
C([p) = ¢(00)
M,=—"———=
¢(o0)
Settling time t,: For an underdamped second-order system, the transient response is
obtained from Equation (5-12) as
e—gw,,t A /1 —_ 52)
V1=
The curves 1 + (e‘{“’"‘ /NV1 - 52) are the envelope curves of the transient response to

a unit-step input. The response curve ¢(¢) always remains within a pair of the envelope
curves, as shown in Figure 5-10. The time constant of these envelope curves is 1/{w,.

c(t)y =1~ sin(wdt + tan™ , fort =0
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Figure 5-10

Pair of envelope
curves for the unit-
step response curve
of the system shown
in Figure 5-6.

c(t)

1+

J1-¢2

0
1

ez

The speed of decay of the transient response depends on the value of the time
constant 1/{w,. For a given w,, the settling time ¢, is'a function of the damping ratio {.
From Figure 5-7, we see that for the same w, and for a range of { between 0 and 1 the
settling time ¢, for a very lightly damped system is larger than that for a properly damped
system. For an overdamped system, the settling time ¢, becomes large because of the
sluggish response.

The settling time corresponding to a +2% or +£5% tolerance band may be measured
in terms of the time constant T = 1/{w, from the curves of Figure 5-7 for different
values of £.The results are shown in Figure 5-11.For 0 < ¢ < 0.9,if the 2% criterion is
used, ¢, is approximately four times the time constant of the system. If the 5% criterion
is used, then ¢, is approximately three times the time constant. Note that the settling
time reaches a minimum value around ¢ = 0.76 (for the 2% criterion) or { = 0.68 (for
the 5% criterion) and then increases almost linearly for large values of . ¢.
The discontinuities in the curves of Figure 5-11 arise because an infinitesimal change
in the value of { can cause a finite change in the settling time.

For convenience in comparing the responses of systems, we commonly define the
settling time ¢, to be

4 4 o
[, =47 = o la (2% criterion) (5-22)
or
3 3 .
t,=3T =—=—— (5% criterion) (5-23)
o lw,

Note that the settling time is'inversely proportional to the product of the damping
ratio and the undamped natural frequency of the system. Since the value of { is usually
determined from the requirement of permissible maximum overshoot, the settling time
is determined primarily by the undamped natural frequency w,. This means that the
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Figure 5-11
Settling time ¢
versus { curves.

Figure 5-12
M, versus { curve.
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duration of the transient period may be varied, without changing the maximum over-
shoot, by adjusting the undamped natural frequency w,,.

From the preceding analysis, it is evident that for rapid response w, must be large.
To limit the maximum overshoot M, and to make the settling time small, the damping
ratio £ should not be too small. The relationship between the maximum percent over-
shoot M, and the damping ratio { is presented in Figure 5-12. Note that if the damping
ratio is between 0.4 and 0.7 then the maximum percent overshoot for step response is
between 25% and 4%.

o
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EXAMPLE 5-1

It is important to note that the equations for obtaining the rise time, peak time, max-
imum overshoot, and settling time are valid only for the standard second-order system
defined by Equation (5-10). If the second-order system involves a zero or two zeros,
the shape of the unit-step response curve will be quite different from those shown in
Figure 5-7. : ' ‘

Consider the system shown in Figure 5-6, where { = 0.6 and w, = 5 rad/sec. Let us obtain the rise
time ¢,, peak time f,, maximum overshoot M,, and settling time ¢, when the system is subjected -
to a unit-step input.

From the given values of { and w,, we obtain w,; = w,V1 — {* = 4and o = {w, = 3.

Rise time t,. The rise time is

_77——[323.14—-,8

" W, 4
where B is given by
_ Wg a4
= tan”' — = tan™' - = 0.93
B an p an 3 0.93 rad
The rise time ¢, is thus
- 3.14 - 093 _ 0.55 sec
4
Peak time t,: The peak time is
T 314
t, = ~a—)d— = 0.785 sec

Maximum overshoot M,: 'The maximum overshoot is

Mp — e~(r7/w(,)7r — e—(3/4)><3.14 = 0.095
The maximum percent overshoot is thus 9.5%.
Sertling time t;:  For the 2% criterion, the settling time is

ts=i=i=1.3356c
o 3

For the 5% criterion,

3
t, = =§=1sec

Servo System with Velocity Feedback. The derivative of the output signal can
be used to improve system performance. In obtaining the derivative of the output
position signal, it is desirable to use a tachometer instead of physically differentiating the
output signal. (Note that the differentiation amplifies noise effects. In fact, if
discontinuous noises are present, differentiation amplifies the discontinuous noises more
than the useful signal. For example, the output of a potentiometer is a discontinuous
voltage signal because, as the potentiometer brush is moving on the windings, voltages
are induced in the switchover turns and thus generate transients. The output of the po-
tentiometer therefore should not be followed by a differentiating element.)
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Figure 5-13

(a) Block diagram of
a servo system;

(b) simplified block
diagram.

EXAMPLE 5-2

236

R(s) C(s)

Kh ]

@

R(s) K Cls)
s(Us + B + KKy) >

®)

The tachometer, a special dc generator, is frequently used to measure velocity with-
out differentiation process. The output of a tachometer is proportional to the angular
velocity of the motor. )

Consider the servo system shown in Figure 5-13(a). In this device, the velocity signal,
together with the positional signal, is fed back to the input to produce the actuating
error signal. In any servo system, such a velocity signal can be easily generated by a
tachometer. The block diagram shown in Figure 5-13(a) can be simplified, as shown in
Figure 5-13(b), giving

C(s) K
R(s) Js*+ (B+ KK,)s + K
Comparing Equation (5-24) with Equation (5-9), notice that the velocity feedback has
the effect of increasing damping. The damping ratio £ becomes
: - B+ KK,
2VKJI

The undamped natural frequency w, = VK/J is not affected by velocity feedback. Not-
ing that the maximum overshoot for a unit-step input can be controlled by controlling
the value of the damping ratio ¢, we can reduce the maximum overshoot by adjusting
the velocity feedback constant K, so that ¢ is between 0.4 and 0.7.

Remember that velocity feedback has the effect of increasing the damping ratio
without affecting the undamped natural frequency of the system.

(5-24)

(5-25)

For the system shown in Figure 5-13(a), determine the values of gain K and velocity feedback
constant K, so that the maximum overshoot in the unit-step response is 0.2 and the peak time is 1 sec.
With these values of K and K, obtain the rise time and settling time. Assume that / = 1 kg-m? and
B = 1 N-m/rad/sec.

Determination of the values of K and K;,: The maximum overshoot M, is given by Equation
(5-21) as
M[) = e‘"(f/ v ’"!z)w
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This value must be 0.2. Thus,
e NVI-0m = 02

or
_fm . 1.61
V1 - 72
which yields
£ = 0456

The peak time ¢, is specified as 1 sec] therefore, from Equation (5-20),

or

Since { is 0.456, w,, is

0, = ——t =353

n /——1 — {2
Since the natural frequency w, is equal to VK/J,
K = Jo? = o} = 125 N-m
Then, K}, is, from Equation (5-25),

_2VKI;-B 2VK{-1
T K - K

= 0.178 sec

Rise time t,: From Equation (5-19), the rise time ¢, is

m— B

t, =
Wy

where
w
g = tan“f = tan™'1.95 = 1.10
Thus, ¢, is
t, = 0.65 sec
Settling time t,:  For the 2% criterion,
4
t, = — = 248 sec
a
For the 5% criterion,

t, = 3. 1.86 sec
o
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Figure 5-14
Unit-impulse
response curves of
the system shown in
Figure 5-6.

238

Impulse Response of Second-Order Systems. For a unit-impulse input #(¢), the
corresponding Laplace transform is unity, or R(s) = 1.The unit-impulse response C(s)
of the second-order system shown in Figure 5-6 is

C(s) = E

wn
2 2
s+ 2fw,s + w;

The inverse Laplace transform of this equation yields the time solution for the response
c(t) as follows:

For0 = ¢ <1,
e(t) = \/_%_?e-w sinw,\V/1 — ¢, fort=0 (5-26)
For{ =1,
c(t) = wite™',  fort =0 (5-27)
For ¢ > 1,
o(t) = — e VTt O VI forp =0 (5-28)

2VEE -1 2VEE -1

Note that without taking the inverse Laplace transform of C(s) we can also obtain
the time response ¢(¢) by differentiating the corresponding unit-step response since
the unit-impulse function is the time derivative of the unit-step function. A family of
unit-impulse response curves given by Equations (5-26) and (5-27) with various val-
ues of { is shown in Figure 5-14. The curves c¢(t) /w, are plotted against the dimen-
sionless variable w,f, and thus they are functions only of . For the critically damped
and overdamped cases, the unit-impulse response is always positive or zero; that is,
c(t) = 0.This can be seen from Equations (5-27) and (5-28). For the underdamped
case, the unit-impulse response ¢(t) oscillates about zero and takes both positive and
negative values.

1.0
0.8 N g: 0.1
0.6 [—F£ ¢=03
A\SERELE
=07
0.4 %\\Q)&?/ ?: >
0.2 \
@ 0 \\ 4/—\
Wy \\\___/ \
02
\ N~
04
~0.6
-0.8
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Figure 5-15
Unit-impulse
response curve of the
system shown in
Figure 5-6.

c(t) y

Unit-impulse response

o
o ,T\-/ ‘ :

'p

From the foregoing analysis, we may conclude that if the impulse response c(t) does
not change sign, the system is either critically damped or overdamped, in which case
the corresponding step response does not overshoot but increases or decreases monot-
onically and approaches a constant value.

The maximum overshoot for the unit-impulse response of the underdamped system

occurs at

f=———t WhereO<{ <1 (5-29)
W, V 1- Zz

[Equation (5-29) can be obtained by equating dc/dt to zero and solving for ¢.] The max-
imum overshoot is

A/1 — 2
£ tan™! 1-¢ >, where0 < ¢ <1 (5-30)

c(t),max = w,,exp(— \/1———52_ 7

[Equation (5-30) can be obtained by substituting Equation (5-29) into Equation (5-26).]

Since the unit-impulse response function is the time derivative of the unit-step
response function, the maximum overshoot M, for the unit-step response can be
found from the corresponding unit-impulse response. That is, the area under the unit-
impulse response curve from ¢ = 0 to the time of the first zero, as shown in Figure
5-15,is 1 + M,, where M, is the maximum overshoot (for the unit-step response)
given by Equation (5-21). The peak time ¢, (for the unit-step response) given by
Equation (5-20) corresponds to the time that the unit-impulse response first crosses
the time axis.

5-4 HIGHER-ORDER SYSTEMS

In this section we shall present a transient response analysis of higher-order systems in
general terms. It will be seen that the response of higher-order systems is the sum of the
responses of first-order and second-order systems.
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Figure 5-16
Control system.
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Transient Response of Higher-Order Systems. Consider the system shown in
Figure 5-16. The closed-loop transfer function is
Cls) _ G(s)
R(s) 1+ G(s)H(s)

(5-31)

In general, G(s) and H (s) are given as ratios of polynomials in s, or

G(s) = g—% and  H(s) = %

where p(s), g(s), n(s),and d(s) are polynomials in s¢’Fhe closed-loop transfer function
given by Equation (5-31) may then be written

) pls)dls)
R(s)  q(s)d(s) + p(s)n(s)
bys" A bys" T A+ b, s+ b,
T oays" + ays" e+ a, s +oa,

(m=n)

The transient response of this system to any given input can be obtained by a computer
simulation. {See Section 5--5.) If an analytical expression for the transient response is de-
sired, then it is necessary to factor the denominator polynomial.  MATLAB may be
used for finding the roots of the denominator polynomial. Use the command roots(den).]
Once the numerator and the denominator have been factored, C(s)/R(s) can be writ-
ten in the form
C(s) K(S -+ zl)(s + zz)---(s + zm) (5-32)
R(s)  (s+ p)s + po) (s + pa)
Let us examine the response behavior of this system to a unit-step input. Consider
first the case where the closed-loop poles are all real and distinct. For a unit-step input,
Equation (5-32) can be written

a n a
) = — + — e
Cls) = ; T, (5-33)
where g, is the residue of the pole at s = —p;. (If the system involves multiple poles,

then C(s) will have multiple-pole terms.) [The partial-fraction expansion of C(s), as
given by Equation (5-33). can be obtained easily with MATLAB. Use the residue
command.]

If ali closed-foop poles lie in. the left-half s plane, the relative magnitudes of the
residues determine the relative importance of the components in the expanded form of

R(s) Cs)
—>®—¢> G(s) »

]

H(s)

Chapter 5 / Transient and Steady-State Response Analyses



C(s). If there is a closed-loop zero close to a closed-loop pole, then the residue at this
pole is small and the coefficient of the transient-response term corresponding to this pole
becomes small. A pair of closely located poles and zeros will effectively cancel each
other. If a pole is located very far from the origin, the residue at this pole may be small.
The transients corresponding to such a remote pole are small and last a short time. Terms
in the expanded form of C(s) having very small residues contribute little to the transient
response, and these terms may be neglected. If this is done, the higher-order system may
be approximated by a lower-order one. (Such an approximation often enables us to es-
timate the response characteristics of a higher-order system from those of a simplified
one.) '

Next, consider the case where the poles of C(s) consist of real poles and pairs of
complex-conjugate poles. A pair of complex-conjugate poles yields a second-order term
in s. Since the factored form of the higher-order characteristic equation consists of first-
and second-order terms, Equation (5-33) can be rewritten

q . r V13— 2
C(S) _ _j_ + i a] N 2 bk(S + {kwk) + Cry, {k

2
=1 s -+ p] =1 S2 + ng(l)ks + Wy

(g +2r =n)

where we assumed all closed-loop poles are distinct. [If the closed-loop poles involve
multiple poles, C(s) must have multiple-pole terms.] From this last equation, we see that
the response of a higher-order system is composed of a number of terms involving the
simple functions found in the responses of first- and second-order systems. The unit-
step response ¢(t), the inverse Laplace transform of C(s), is then

q r
c(t) =a+ Dae + Y bt cosw, V1 — [t
= =1

¥
+ D et sinw, V1 = 3t fort =0 (5-34)
=1

Thus the response curve of a stable higher-order system is the sum of a number of
exponential curves and damped sinusoidal curves.

If all closed-loop poles lie in the left-half s plane, then the exponential terms and
the damped exponential terms in Equation (5-34) will approach zero as time ¢ increases.
The steady-state output is then ¢(c0) = a.

Let us assume that the system considered is a stable one. Then the closed-loop poles
that are located far from the jw axis have large negative real parts. The exponential
terms that correspond to these poles decay very rapidly to zero. (Note that the hori-
zontal distance from a closed-loop pole to the jw axis determines the settling time of tran-
sients due to that pole. The smaller the distance is, the longer the settling time.)

Remember that the type of transient response is determined by the closed-loop
poles, while the shape of the transient response is primarily determined by the closed-
loop zeros. As we have seen earlier, the poles of the input R{s) yield the steady-state
response terms in the solution, while the poles of C(s)/R(s) enter into the exponential
transient-response terms and/or damped sinusoidal transient-response terms. The zeros
of C(s)/R(s) do not affect the exponents in the exponential terms, but they do affect the
magnitudes and signs of the residues. '

Section 5-4 / Higher-Order Systems 241



242

Dominant Closed-Loop Poles. The relative dominance of closed-loop poles is
determined by the ratio of the real parts of the closed-loop poles, as well as by the rel-
ative magnitudes of the residues evaluated at the closed-loop poles. The magnitudes of
the residues depend on both the closed-loop poles and zeros.

If the ratios of the real parts exceed 5 and there are no zeros nearby, then the closed-
loop poles nearest the jw axis will dominate in the transient-response behavior because
these poles correspond to transient-response terms that decay slowly. Those closed-loop
poles that have dominant effects on the transient-response behavior are called dominant
closed-loop poles. Quite often the dominant closed-loop poles occur in the form of a
complex-conjugate pair. The dominant closed-loop poles are most important among all
closed-loop poles.

Note that the gain of a higher-order system is often adjusted so that there will exist
a pair of dominant complex-conjugate closed-loop poles. The presence of such poles in
a stable system reduces the effects of such nonlinearities as dead zone, backlash, and
coulomb-friction.

Stability Analysis in the Complex Plane. The stability of a linear closed-loop
system can be determined from the location of the closed-loop poles in the s plane. If
any of these poles lie in the right-half s plane, then with increasing time they give rise
to the dominant mode, and the transient response increases monotonically or oscillates
with increasing amplitude. This represents an unstable system. For such a system, as
soon as the power is turned on, the output may increase with time. If no saturation
takes place in the system and no mechanical stop is provided, then the system may
eventually be subjected to damage and fail since the response of a real physical sys-
tem cannot increase indefinitely. Therefore, closed-loop poles in the right-half s plane
are not permissible in the usual linear control system. If all closed-loop poles lie to the

- left of the jw axis, any transient response eventually reaches equilibrium. This repre-

sents a stable system.

Whether a linear system is stable or unstable is a property of the system itself and
does not depend on the input or driving function of the system. The poles of the input,
or driving function, do not affect the property of stability of the system, but they con-
tribute only to steady-state response terms in the solution. Thus, the problem of absolute
stability can be solved readily by choosing no closed-loop poles in the right-half s plane,
including the jw axis. (Mathematically, closed-loop poles on the jw axis will yield oscil-
lations, the amplitude of which is neither decaying nor growing with time. In practical
cases, where noise is present, however, the amplitude of oscillations may increase at a
rate determined by the noise power level. Therefore, a control system should not have
closed-loop poles on the jw axis.)

Note that the mere fact that all closed-loop poles lie in the left-half 5 plane does not
guarantee satisfactory transient-response characteristics. If dominant complex-conjugate
closed-loop poles lie close to the jo axis, the transient response may exhibit excessive
oscillations or may be very slow. Therefore, to guarantee fast, yet well-damped, transient-
response characteristics, it is necessary that the closed-loop poles of the system lie in a
particular region in the complex plane, such as the region bounded by the shaded area
in Figure 5-17.

Since the relative stability and transient-response performance of a closed-loop con-
trol system are directly related to the closed-loop pole-zero configuration in the s plane,
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Figure 5-17
Region in the
complex plane
satisfying the
conditions ¢{ > 04
andt, < 4/o.

el

In this region
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it is frequently necessary to adjust one or more system parameters in order to obtain suit-
able configurations. The effects of varying system parameters on the closed-loop poles
will be discussed in detail in Chapter 6.

5-5 TRANSIENT-RESPONSE ANALYSIS WITH MATLAB

Introduction. The practical procedure for plotting time response curves of systems
higher than second-order is through computer simulation. In this section we present the
computational approach to the transient-response analysis with MATLAB. In particular,
we discuss step response, impulse response, ramp response, and responses to other simple
inputs.

MATLAB Representation of Linear Systems. The transfer function of a system
is represented by two arrays of numbers. Consider the system

C(s) __25+725
R(s) s*+4s+25

(5-35)

This system can be represented as two arrays, each containing the coefficients of the
polynomials in decreasing powers of s as follows:

num = [2 25]

den={1 4 25]
An alternative representation is

num = [0 2 25]

den=[1 4 25]
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In this expression a zero is padded. Note that if zeros are padded, the dimensions of
“num” vector and “den” vector become the same. An advantage of padding zeros is that
the “num” vector and “den” vector can be directly added. For example,

num+den=1[0 2 25] +[1 4 25]
=[1 6 50]

If num and den (the numerator and denominator of the closed-loop transfer function)
are known, commands such as

step(num,den),  step(num,den,t)

will generate plots of unit-step responses (t in the step command is the user-specified time.)

For a control system defined in a state-space form, where state matrix A, control
matrix B, output matrix C, and direct transmission matrix D of state-space equations are
known, the command

step(A,B,C,D)
will generate plots of unit-step responses. The time vector is automatically determined
when t is not explicitly included in the step commands.

Note that the command step(sys) may be used to obtain the unit-step response of a
system. First, define the system by

sys = tf(num,den)

or
sys = ss{A,B,C,D)
Then, to obtain, for example, the unit-step response, enter
step(sys)

into the computer.
When step commands have left-hand arguments such as

ly,x,1] = step(num,den,t)

ly,xt] = step(A,B,C,D,iu)

ly,x,t] = step(A,B,C,D,iut) (5-36)
no plot is shown on the screen. Hence it is necessary to use a plot command to see the
response curves. The matrices y and x contain the output and state response of the sys-
tem, respectively, evaluated at the computation time points t. (y has as many columns as
outputs and one row for each element in t. x has as many columns as states and one row
for each element in t.)

Note in Equation (5-36) that the scalar iu is an index into the inputs of the system
and specifies which input is to be used for the response, and t is the user-specified time.
If the system involves multiple inputs and multiple outputs, the step command, such as
given by Equation (5-36), produces a series of step response plots, one for each input
and output combination of

x = Ax + Bu
y = Cx + Du
(For details, see Example 5-3.)
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EXAMPLE 5-3

Consider the following system:
X"l - -1 -1 X1 + 1 1 Uy
)‘CZ 6.5 0 X3 1 , 0 Uy
»w|_ {1 0f x + 0 0|l wy
Y 01 X5 0 0|l
Obtain the unit-step response curves.
Although it is not necessary to obtain the transfer matrix expression for the system to obtain

the unit-step response curves with MATLAB, we shall derive such an expression for reference.
For the system defined by '

X = Ax + Bu
y=Cx + Du
the transfer matrix G(s) is a matrix that relates Y(s) and U(s) as follows:
Y(s) = G(s)U(s)

Taking Laplace transforms of the state-space equations, we obtain

sX(s) — x(0) = AX(s) + BU(s) (5-37)
Y(s) = CX(s) + DU(s) (5-38)

In deriving the transfer matrix, we assume that x(0) = 0. Then, from Equation (5-37), we get
X(s) = (sI — A)'BU(s) (5-39)

Substituting Equation (5-39) into Equation (5-38), we obtain
Y(s) = [C(sT — A)'B + D]U(s)
Thus the transfer matrix G(s) is given by
G(s) =C(sI—A)'B+D

The transfer matrix G(s) for the given system becomes

G(s) = C(sI — A)"'B
_[1 oq[s+1 11T 1
01 -65 s 1 0
1 3 -1 1 1
P4+ s+65065 s+1 1 0
_ 1 s—1 s
S+s+65]s+75 65

s—1 K3

[YI(S)] | P +s+65 S+5+65 [UI(S):I
Y(s) s +75 6.5 Uy(s)

2+ 5+65 s2+s5s+65

[

Hence

Since this system involves two inputs and two outputs, four transfer functions may be defined
depending on which signals are considered as input and output. Note that, when considering the
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Figure 5-18
Unit-step response
curves.

246

signal u; as the input, we assume that signal u, is zero, and vice versa. The four transfer functions
are

N s-1 Yo s
U(s) s*+s+65 Upyf(s) s*+s+65
Y(s)  s+75 Y(s) 6.5

U(s) s*+s+65 Uyfs) s2+s+65

The four individual step-response curves can be plotted by use of the command
step(A,B,C,D)

MATLAB Program 5-1 produces four such step-response curves. The curves are shown in Figure
5-18.

MATLAB Program 5-1
A=[-1 =1:6.5 0];
B=[1 1;1 0];

C={1 0,0 1];

D =1[0 0;0 0];
step(A,B,C,D)

Step Response

From: Ul From: U2

To: Y1

Amplitude

To: Y2

0 a j 0 ; i

Time (sec)
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To plot two step-response curves for the input «, in one diagram and two step-response curves
for the input u, in another diagram, we may use the commands

step(A,B,C,D,1)
and
step(A,B,C,D,2)
respectively. MATLAB Program 5-2 is a program to plot two step-response curves for the input

u, in one diagram and two step-response curves for the input u, in another diagram. Figure 5-19
shows the two diagrams, each consisting of two step-response curves.

MATLAB Program 5-2

% ***** |n this program we plot step-response curves of a system
% having two inputs (u1 and u2) and two outputs (y1 and y2) *****

% ***** We shall first plot step-response curves when the input is
% ul. Then we shall plot step-response curves when the input is
0/o u2 & okok ok

% ***** Enter matrices A, B, C, and D #¥#**

A=[1 -1:6.5 0);
B=1[1 1;1 0l;
C=1[1 0,0 1];
D=[0 0;0 0L

% ***** To plot step-response curves when the input is ut, enter
% the command 'step(A,B,C,D,1)" *#***

step(A,B,C,D,1)

grid

title (‘Step-Response Plots: Input = ut (u2 = 0)")
text(3.4, -0.06,'Y1")

text(3.4, 1.4,'Y2")

% ***** Next, we shall plot step-response curves when the input
% is u2. Enter the command 'step(A,B,C,D,2)" #****

step(A,B,C,D,2)

grid

title {'Step-Response Plots: input = u2 (ul = 0)")
text(3,0.14,'Y1")

text(2.8,1.1,'Y2")
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Figure 5-19
Unit-step response
curves. (a) u, is the
input (u, = 0); (b) u,
is the input (#; = 0).

Step-Response Plots: Input = «1 (42 =0)
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Writing Text on the Graphics Screen. To write text on the graphics screen, enter,
for example, the following statements:

text(3.4, -0.06,'Y1")
and
text(3.4,1.4,'Y2")

The first statement tells the computer to write ‘Y1’ beginning at the coordinates x = 3.4,
y = —0.06. Similarly, the second statement tells the computer to write ‘Y2’ beginning at
the coordinates x = 3.4, y = 1.4.[See MATLAB Program 5-2 and Figure 5-19(a).]
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Another way to write a'text or texts in the plot is to use the gtext command. The
syntax is
gtext('text)
When gtext is executed, the computer waits until the cursor is positioned (using a mouse)
at the desired position in the screen. When the left mouse button is pressed, the text
enclosed in simple quotes is written on the plot at the cursor’s position. Any number of
gtext commands can be used in a plot. (See, for example, MATLAB Program 5-15.)

MATLAB Description of Standard Second-Order System. Asnoted earlier, the
second-order system .

2

G(s) = (5-40)

2+ 2w,s + ?
is called the standard second-order system. Given w, and ¢, the command
printsys(num,den) or printsys(num,den,s)

prints num/den as a ratio of polynomials in s.
Consider, for example, the case where w, = Srad/sec and { = 0.4. MATLAB Program
5-3 generates the standard second-order system where w, = Srad/secand { = 04.

MATLAB Program 5-3

wn=>5;
damping_ratio = 0.4;
[numO,den] = ord2(wn,damping_ratio);
num = 5A2*numo;
printsys(num,den,'s')
num/den =

25

SA2 + 4s + 25

Obtaining the Unit-Step Response of the Transfer-Function System. Letus
consider the unit-step response of the system given by

25
§2 +4s + 25

G(s) =

MATLAB Program 54 will yield a plot of the unit-step response of this system. A plot
of the unit-step response curve is shown in Figure 5-20.

Notice in Figure 5-20 (and many others) that the x axis and y axis labels are auto-
matically determined. If it is desired to label the x axis and y axis differently, we need
to modify the step command. For example, if it is desired to label the x axis as 't Sec' and
the y axis as ‘Input and Output,” then use step-response commands with left-hand
arguments, such as

¢ = step(hum,den,t)
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Figure 5-20
Unit-step response
curve.

l "EXAMPLE 5-4
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or, more generally,
ly,x,t] = step(num,den,t)
See, for example, MATLAB Program 5-6.

MATLAB Program 5-4

Yo =mmmmmmmmmaan Unit-step response =~-~---------

% ***#* Enter the numerator and denominator of the transfer
% function *****

num= [0 0 25];
den=[1 4 25];

% ***** Enter the following step—reéponse commang **¥#**
step(num,den)
% ***** Enter grid and title of the plot *****

grid
title (* Unit-Step Response of G(s) = 25/(s"2+4s+25)")

Unit-Step Response of G(s) = 25/(s2+4s+25)

14 :

Amplitude :

0 0.5 1 L5 2 2.5 3
Time (sec)

Obtaining Three-Dimensional Plot of Unit-Step Response Curves with
MATLAB. MATILAB enables us to plot three-dimensional plots easily. The command
to obtain three-dimensional plots is “mesh.”

Consider the closed-loop system defined by
cts) 1
R(s) s*+20s+1
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(The undamped natural frequerncy e, is normalized to 1.) Plot unit-step response curves c(¢) when
¢ assumes the following values:

£=0,02, 04, 06. 03, 1.0

Also plot a three-dimensional plot. ,

An illustrative MATLAB program for plotting a three-dimensional diagram of unit-step
response-curves of this second-order system is given in MATLAB 5-5. This program includes a
program to obtain a two-dimensional plot (ordinary unit-step response curves) and a program to

_obtain a three-dimensional plot. The resulting plots are shown in Figures 5-21(a) and (b). [Note
that mesh(y) will produce a three-dimensional plot the same as Figure 5-21(b) except that x axis
and y axis are interchanged. See Problem A-5-17.]

When a MATLAB program involves repetitive computations, many different MATLAB
programs can be written. In this book many different MATLAB programs using loops such as
“while loop” and “for loop” are presented for illustration purposes. The reader is advised to study
all those programs and try to improve them if possible.

MATLAB Program 5-5

Yo ~mmn-- Two-dimensional plot and three-dimensional plot of unit-step
% response curves for the standard second-order system with wn =1
% and zeta = 0, 0.2, 0.4, 0.6, 0.8, and 1. ~---mn-

t=0:0.2:10;
zeta=[0 0.2 04 06 08 1];
forn=1:6;

num=[0 0 1};

den=1[1 2*zeta(n) 1];
[y(1:51,n),x,t] = step(num,den,t);
end

% To plot a two-dimensional diagram, enter the command plot(t,y).

plot(t,y)

grid

title('Plot of Unit-Step Response Curves with \omega_n = 1 and \zeta = 0, 0.2, 0.4, 0.6, 0.8, 1')
xlabel('t (sec)")
ylabei('Response’)
text(4.1,1.86,"\zeta = 0')
text(3.5,1.5,'0.2")

text(3 .5,1.24,'0.4")
text(3.5,1.08,'0.6")
text(3.5,0.95,'0.8")
text(3.5,0.86,'1.0')

% To plot a three-dimensional diagram, enter the command mesh(t,zeta,y").

mesh(t,zeta,y")

title('Three-Dimensional Plot of Unit-Step Response Curves')
xlabel('t Sec')

ylabel("\zeta')

zlabel('Response')
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Figure 5-21

(a) Two-dimensional
plots of unit-step
response curves for

¢ =10,02,04,06,08,
and 1.0; (b) three-
dimensional plots of
unit-step response
curves.

) Plot of Unit-Step Response Curves with w, = 1 and { =0, 0.2, 0.4, 0.6, 0.8, 1

<]

Response

t (sec)

(@

Three-Dimensional Plot of Unit-Step Response Curves

Response

®)
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Obtaining Rise Time, Peak Time, Maximum Overshoot, and Settling Time
with MATLAB. MATLAB can conveniently be used to obtain the rise time, peak time,
maximum overshoot, and settling time. Consider the system defined by

C(s) 25

R(s) s>+ 6s+25
MATLAB Program 5-6 yields the rise time, peak time, maximum overshoot, and settling
time. A unit-step response curve for this system is given in Figure 5-22 to verify the
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Figure 5-22
Unit-step response
curve.

results obtained with MATLAB Program 5-6. (Note that this program can also be
applied to higher-order systems. See Problem A-5-12.)

MATLAB Program 5-6

Y% ------ This is a MATLAB program to find the rise time, peak time,
% maximum overshoot, and settling time of the second-order system
% and higher-order system -------

Yo ~mmnmnnn In this example, we assume zeta = 0.6 and wn = 5 —weeeen

num=[0 0 25];

den=[1 6 25];

t = 0:0.005:5;

ly,x,t] = step(num,den,t);

r=1; while y(r) < 1.0001; r=r + 1; end;
rise_time = (r - 1)*0.005

rise_time =
0.5550

[ymax,tp] = max(y);
peak_time = (tp - 1)*0.005

peak_time =
0.7850
max_overshoot = ymax-1
max_overshoot =
0.0948

s =1001; while y(s) > 0.98 & y(s) < 1.02; s =s - 1; end;
settling_time = (s - 1)*0.005

settling_time =
1.1850

Step Response

1.4

=
S

—

e
)

Amplitude
o
(=)}
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N
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EXAMPLE 5-5
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Impulse Response. The unit-impulse response of a control system may be
obtained by using one of the following MATLAB commands:

impulse(num,den)
impulse(A,B,C,D)
ly,x,tl = impulse{num,den)

ly,x,t} = impulse(num,den,t) (541)
ly,x,t] = impulse(A,B,C,D)

ly,x,t] = impulse(A,B,C,D,iu) (5-42)
ly,x,t] = impulse(A,B,C,D,iu,t) (5-43)

The command impulse(num,den) plots the unit-impulse response on the screen. The
commarnd impulse(A,B,C,D) produces a series of unit-impulse-response plots, one for
each input and output combination of the system

X = Ax + Bu
y = Cx + Du

with the time vector automatically determined. Note that in Equations (5-42) and (5-43)
the scalar iu is an index into the inputs of the system and specifies which input to be used
for the impulse response.

Note also that in Equations (5-41) and (5-43) t is the user-supplied time vector. The
vector t specifies the times at which the impulse response is to be computed.

If MATLAB is invoked with the left-hand argument [y,x,t], such as in the case of
ly,x,t] = impulse(A,B,C,D), the command returns the output and state responses of the
system and the time vector t. No plot is drawn on the screen. The matrices y and x con-
tain the output and state responses of the system evaluated at the time points t. (y has
as many columns as outputs and one row for each element in t. x has as many columns
as state variables and one row for each element in t.)

Obtain the unit-impulse response of the following system:

HEEE HEHE
y=11 01[’;] + [0Ju

A possible MATLAB program‘ is shown in MATLAB Program 5-7.The resulting response curve
is shown in Figure 5-23.

MATLAB Program 5-7
A=[0 1;-1 -1};
| B=1{0;1];
| =10 0
D = [0];
impulse(A,B,C,D);
grid;
title('Unit-lmpulse Response’)
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Unit-Impulse Response

Figure 5--23
Unit-impulse
response CUIvVe, Time (sec)

EXAMPLE 5-6 Obtain the unit;impulse response of the following system:
C(s) 1

Re) -9 = m i om 1 .
MATLAB Program 5-8 will produce the unit-impulse response. The resulting plot is shown in

Figure 5-24.

MATLAB Program 5-8

num=[0 0 1];

den=[1 0.2 1];

impulse(num,den);

grid

title(‘Unit-Impulse Response of G(s) = 1/(s”2 + 0.2s + 1))

Unit-Impulse Response of G(s) = 1/(s2+0.2s+1)
1 T T T T T T T T T

Figure 5-24 S S S A S SR S S
Unit-impulse 0 5 10 15 20 25 30 35 40 45 50
response curve. Time (sec)
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Figure 5-25
Unit-impulse
TeSponse curve
obtained as the unit-
step response of
sG(s) =

s/(s% + 0.2s + 1)

256

Alternative Approach to Obtain Impulse Response. Note that when the initial
conditions are zero the unit-impulse response of G(s) is the same as the unit-step
response of sG(s).

Consider the unit-impulse response of the system considered in Example 5-6. Since
R({s) = 1 for the unit-impulse input, we have

C(s) :
R(S) C(S) - G<S) -

1
s+ 025 +1
s 1
2+02s+1s

We can thus convert the unit-impulse response of G(s) to the unit-step response of

sG(s).
If we enter the following num and den into MATLAB,
num=1[0 1 0]
den=1[1 0.2 1]

and use the step-response command; as given in MATLAB Program 5-9, we obtain a
plot of the unit-impulse response of the system as shown in Figure 5-25.

MATLAB Program 5-9

num=[0 1 O];

den=[1 0.2 1];

step(num,den);

grid

title(‘Unit-Step Response of sG(s) = s/(s”2 + 0.2s + 1))

Unit-Step Response of sG(s) = s/(s2+0.25+1)

—_

T T T
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Ramp Response. There is no ramp command in MATLAB. Therefore, we need
to use the step command or the Isim command (presented later) to obtain the ramp re-
sponse. Specifically, to obtain the ramp response of the transfer-function system G(s),
divide G(s) by s and use the step-response command. For example, consider the closed-
loop system

C(s) 1
R(s) s*+s+1

For a unit-ramp input, R(s) = 1/s*. Hence
1 1 1 1
C(s) = = =
(s) sP+s+1s2 (SP+s+1)ss

To obtain the unit-ramp response of this system, enter the following numerator and de-
nominator into the MATLAB program,

num=1[0 0 0 1];
den=1[1 11 0];

and use the step-response command. See MATLAB Program 5-10. The plot obtained
by using this program is shown in Figure 5-26.

MATLAB Program 5-10

Yo ==mmmmmmmmmmaan Unit-ramp response ---------------

% ***** The unit-ramp response is obtained as the unit-step
% response of G(s)/s *****

% ***¥*x Fnrar the numerator and denominator of G(s)/s *****

num=1[0 0 0 1];
den=[1 11 0];

% ***** Specify the computing time points (such as t = 0:0.1:7)
% and then enter step-response command: ¢ = step(num,den,t) *****

t=0:0.1.7;
¢ = step(num,den,t);’

% ***** |n plotting the ramp-response curve, add the reference
% input to the plot. The reference input is t. Add to the

% argument of the plot command with the following: t,t,'-'. Thus
% the plot command becomes as follows: plot{t,c,'0',t,t,'-") *****

plot(t,c,'o' t,t,'-")

% ***+* Add grid, title, xlabel, and ylabe| *****

grid

titte('Unit-Ramp Response Curve for System G(s) = 1/(s2 + s + 1)")

xlabel('t Sec')
ylabel('Input and Output")
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Figure 5-26
Unit-ramp response
curve.
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Unit-Ramp Response Curve for System G(s) = 1/(s2+s+1)

Input and Output

t Sec

Unit-Ramp Response of a System Defined in State Space. Next, we shall treat
the unit-ramp response of the system in state-space form. Consider the system described by
' X = Ax + Bu
y=0Cx + Du
where u is the unit-ramp function. In what follows, we shall consider a simple example
to explain the method. Consider the case where

0 1 0
[0 1 5[] s

c=[1 0], . D=10]

When the initial conditions are zeros, the unit-ramp response is the integral of the unit-
step response. Hence the unit-ramp response can be given by

t
z= / ydt (5-44)
0
From Equation (5-44), we obtain
=y =x (5-45)
Let us define
Z = X3
Then Equation (5-45) becomes v
© X3 = Xy (5-46)
Combining Equation (5-46) with the original state-space equation, we obtain
X 0 1- 0 x 0
Y 1=1-1 =1 0| x, {+|1 |u (547)
X3 1 0 0 x5 0
1
z=1[0 0 1]| x, (5-48)
X3
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where u appearing in Equation (5-47) is the unit-step function. These equations can be

written as
x = AAx + BBu
z = CCx + DDu
where
0 1 0
AA=|~-1 -1 0=
1 0 0

0 B
BB=|1 :l:O:I’ CC=[0 0 1], DD = [0]
1 0

Note that x; is the third element of x. A plot of the unit-ramp response curve z(¢) can
be obtained by entering MATLAB Program 5-11 into the computer. A plot of the unit-

ramp response curve obtained from this MATLAB program is shown in Figure 5-27.

MATLAB Program 5-11

Yo mmmmmmmmmmmmean Unit-ramp response —-------m~am---

% ***** The unit-ramp response is obtained by adding a new
% state variable x3. The dimension of the state equation
% is enlarged by one *****

% ***** Enter matrices A, B, C, and D of the original state
% equation and output equation *****

A=1[0 1:-1 -1];
B=[0; 1];
c=11 0];

D =10];

% **+¥* Enter matrices AA, BB, CC, and DD of the new,
% enlarged state equation and output equation *****

AA = [A zeros(2,1);C 0];

BB = [B;0];
CC=1{00 1];
DD = [0];

% ***** Enter step-response command: [z,x,t] = step(AA,BB,CC,DD) *****
[z,x,1] = step(AA,BB,CC,DD);

% ***** n plotting x3 add the unit-ramp input t in the plot

% by entering the following command: plot{t,x3,'0",t,t,'-") *****

x3 =10 0 1]*¢; plot(t,x3,'0',t,t,'-")

grid

title('Unit-Ramp Response')

xlabel('t Sec')

ylabel('Input and Output")
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Unit-Ramp Response

Input and Output

Figure 5-27
Unit-ramp response
curve.

Obtaining Response to Arbitrary Input. To obtain the response to an arbitrary
input, the command Isim may be used. The commands like

{sim(num,den,r,t)
Isim(A,B,C,D,u,t)
y = Isim(num,den,rt)

y = Isim{A,B,C,D,u,t)

will generate the response to input time function r or u. See the following two examples.

(Also, see Problems A-5-14 through A-5-16.)

EXAMPLE 5-7 Using the Isim command, obtain the unit-ramp response of the following system:

C(s)_ 1
R(s) s*+s+1
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We may enter MATLAB Program 5-12 into the computer to obtain the unit-ramp response. The
resulting plot is shown in Figure 5-28.

MATLAB Program 5-12

Yo ~m=mmm- Ramp Response -------
num=1[0 0 1]; ’
den=1[1 1 1];

t=0:0.1:8;

r=1t

y = Isim(num,den,rt);

plot(t,r,'-' t,y,'0")

grid

title('Unit-Ramp Response Obtained by Use of Command "lsim"')
xlabel('t Sec')

ylabel(*Unit-Ramp Input and System Output')
text(2.1,4.65,'Unit-Ramp Input')

text(4.5,2.0,'Output’)

Unit-Ramp Response Obtained by Use of Command “Isim”

Y - S I S A A
' { Unit-Ramp Input : :

Unit-Ramp Input and System Output
N

Figure 5-28 % 1 2 3 3 5 6 7 8
Unit-ramp response. t Sec
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EXAMPLE 5-8 Consider the system
[xl} _ [—1 0‘5] x], [0
Xz - 1 0 X9 1 “
- *1
y=1[1 0][ xj

Using MATLAB, obtain the response curves y(¢) when the input « is given by

1. u = unit-step input
2. u=¢"
Assume that the initial state is x(0) = 0.
A possible MATLAB program to produce the responses of this system to the unit-step input

[u = 1(¢)] and the exponential input [u = ¢™ ] is shown in MATLAB Program 5-13. The result-
ing response curves are shown in Figures 5-29(a) and (b), respectively.

MATLAB Program 5-13

t=0:0.1:12;

A=[-1 0.5;-1 0};

B = [0;1]; :
C=[1 0]; Lo
D = [0];

% For the unit-step input u = 1{t), use the command "y = step(A,B,C,D,1,1)'".

y = step(A,B,C,D,1,t);
plot(t,y)

grid

title(' Unit-Step Response')
xlabel('t Sec')
ylabel('Output')

% For the response to exponential input u = exp(-t), use the command
% z = Isim(A,B,C,D,u,t).

u = exp(-t);

z = Isim(A,B,C,D,u,t);

plot(t,u,'-',t,z,'0")

grid

title('Response to Exponential Input u = exp(-t)*)
xlabel('t Sec')

ylabel('Exponential Input and System Output')
text(2.3,0.49,'Exponential input')
text(6.4,0.28,'Output")
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Figure 5-29

(a) Unit-step
response;

(b) response to input
u=e

Unit-Step Response
1.4 T T T T T

QOutput

t Sec

(@)

Response to Exponential Input u = e
1.2 T T T T T

Exponential Input and System Output

Response to Initial Condition. In what follows we shall present a few methods
for obtaining the response to an initial condition. Commands that we may use are “step”
or “initial”. We shall first present a method to obtain the response to initial condition
using a simple example. Then we shall discuss the response to initial condition when the
system is given in state-space form. Finally, we shall present a command initial to obtain
the response of a system given in a state-space form.
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EXAMPLE 5-9

7

Figure 5-30
Mechanical system.

264

Consider the mechanical system shown in Figure 5-30, where m = 1 kg, b = 3 N-sec/m, and
k = 2 N/m. Assume that at t+ = 0 the mass m is pulled downward such that x(0) = 0.1 m and
x(0) = 0.05 m/sec. The displacement x(¢) is measured from the equilibrium position before the
mass is pulled down. Obtain the motion of the mass subjected to the initial condition. (Assume
no external forcing function.)
The system equation is
m¥ +bx + kx =0
with the initial conditions x(0) = 0.1 m and x(0) = 0.05 m/sec. (x is measured from the equilib-
rium position.) The Laplace transform of the system equation gives
m[s*X (s) = sx(0) — £(0)] + b[sX(s) — x(0)] + kX(s) =0
or
(ms* + bs + k)X (s) = mx(0)s + mx(0) + bx(0)
Solving this last equation for X (s) and substituting the given numerical values, we obtain
mx(0)s + mx(0) + bx(0)
ms? + bs + k
0.1s + 0.35

T2 +35+2

X(s) =

This equation can be written as
0.1s% + 0.35s 1
X($)=—5—"F7"--
sc+3s+2 s
Hence the motion of the mass m may be obtained as the unit-step response of the following
system:
0.15% + 0.35s
G(s)=——7—+
s°+ 35+ 2
MATLAB Program 5-14 will give a plot of the motion of the mass. The plot is shown in Figure 5-31.

MATLAB Program 5-14

Yo mmmmmmmmmmmamn Response to initial condition ---------------

% ****¥* System response to initial condition is converted to
% a unit-step response by modifying the numerator polynomial *****

9%, **#*%* Enter the numerator and denominator of the transfer
% function G(s) *****

num = [0.1 0.35 0];
den=1[1 3 2];

9% ***+* Enter the following step-response command *****
step(num,den)
% *#*#* Enter grid and title of the plot *##**

grid
title('Response of Spring-Mass-Damper System to Initial Condition')
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Figure 5--31
Response of the
mechanical system
considered in
Example 5-9.
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Response to Initial Condition (State-Space Approach, Case 1). Consider the
system defined by

X = AX, x(0) = xg (5-49)

Let us obtain the response x(¢) when the initial condition x(0) is specified. (There is no
external input function acting on this system.) Assume that x is an n-vector.
First, take Laplace transforms of both sides of Equation (5-49).

sX(s) — x(0) = AX(s)

This equation can be rewritten as

sX(s) = AX(s) + x(0) (5-50)
Taking the inverse Laplace transform of Equation (5-50), we obtain
x = Ax + x(0) 5(¢) (5-51)

(Notice that by taking the Laplace transform of a differential equation and then by
taking the inverse Laplace transform of the Laplace-transformed equation we generate
a differential equation that involves the initial condition.)

Now define
7 =X (5-52)
Then Equation (5-51) can be written as
Z = Az + x(0) 6(1r) (5-53)
By integrating Equation (5-53) with respect to ¢, we obtain
z = Az + x(0)1(¢) = Az + Bu (5-54)

where
B = x(0), u = 1(t)
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system defined by

Referring to Equation (5-52), the state x(t) is given by z(¢). Thus,
x=1%= Az + Bu (5-55)

The solution of Equations (5-54) and (5-55) gives the response to the initial condition.
Summarizing, the response of Equation (5-49) to the initial condition x(0) is obtained
by solving the following state-space equations:

Z = Az + Bu
x = Az + Bu
where .
B = x(0), u = 1(z)
MATLAB commands to obtain the response curves in one diagram are given next.
[x,z,t] = step(A,B,A,B);
x1=[1 0 0...0]*';
x2=[0 1 0..0]*;

xn=[0 0 0..1]*";
plot(t,x1,t,x2, ... ,t,xn)

Response to Initial Condition (State-Space Approach, Case 2). Consider the

X = Ax, x(0) = x (5-56)
y = Cx (5-57)

(Assume that x is an #-vector and y is an m-vector.)
Similar to case 1, by defining

we can obtain the following equation:
z = Az + x(0)1(t) = Az + Bu (5-58)
where
B = x(0), u = 1(1)

Noting that x = z, Equation (5-57) can be written as

y=Cz (5-59)
By substituting Equation (5-58) into Equation (5-59), we obtain
y = C(Az + Bu) = CAz + CBu (5-60)
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EXAMPLE 5-10

The solution of Equations (5-58) and (5-60) gives the response of the system to a given
initial condition. MATLAB commands to obtain the response curves (output curves y1
versus t, y2 versust, ..., ym versus t) are shown next.

ly,zt] = step(A,B,C*A,C*B);
yl=[1 0 0..0]*";
y2=1[0 1 0..0]*",

ym=1[0 0 0..1]*",
plotlt,y1,ty2, ... tym)

Obtain the response of the system subjected to the given initial condition.
¥ | 0 110x x(0) 1 |2
b —10 =5 |Lxi |Lx(0) 1

X = Ax, x(0) = x,

or

Obtaining the respouse of the system to the given initial condition becomes that of solving the unit-
step response of the following system:
z = Az + Bu
x = Az + Bu
where
B = x(0), u = 1(1)

Hence a p&ssible MATLAB program for obtaining the response may be given as shown in
MATLAB Program 5-15. The resulting response curves are shown in Figure 5-32.

MATLAB Program 5-15

t=0:0.01:3;

=[0 1;-10 -5];

= [2;1};

,z,t] = step(A,B,A,B,1,1);

x1 =[1 0]*x';

x2 = [0 1}*x;
plot(t,x1,'x',t,x2,'-")

grid

title('Response to Initial Condition")
xlabel('t Sec")

ylabel('State Variables x1 and x2')
gtext('x1"')

gtext('x2")

A
B
[x

Section 5-5 / Transient-Response Analysis with MATLAB 267



Response to Initial Condition

2
)
g 1
5
[0}
= 0
|
s
>
o -l
3]
&
-2
Figure 5-32
Response of system 3 : : ; : :
in Example 5-10 to o 0.5 1 . 15 2 2.5 3
t Sec

initial condition.

Obtaining Response to Initial Condition by Use of Command Initial. If the

system is given in the state-space form, then the following command
initial(A,B,C,D, [initial condition],t)

will produce the response to the initial condition.
Suppose that we have the system defined by

X = Ax + Bu, x(0) = xg

y=Cx + Du

where

Then the command “initial” can be used as shown in MATLAB Program 5-16 to obtain
the response to the initial condition. The response curves x;(f) and x,(¢) are shown in
Figure 5-33. They are the same as those shown in Figure 5-32.
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Figure 5-33
Response curves to
initial condition.

EXAMPLE 5-11

MATLAB Program 5-16

t = 0:0.05:3;
A=[0 1;-10 -5];
B = [0;01;
C=1[0 0;
D = [0];
ly,x] = initial(A,B,C,D,[2;1],0)
1 [T 0]*x';
= [0 1]*x';
plot(t,x1 ,'o't,x1,t,x2,'x',t,x2)
grid

title('Response to Initial Condition')
xlabel('t Sec')

ylabel('State Variables x1 and x2')
gtext('x1"')

gtext('x2")

Response to Initial Condition

State Variables x,; and x,

t Sec

Consider the following system that is subjected to the initial condition. (No external forcing

function is present.)
Yy +8y+ 17y + 10y =0
y0)=2 jy0)=1 y0) =05
Obtain the response y(¢) to the given initial condition.
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By defining the state variables as

X =Yy
X, =y
X3 =y
~ we obtain the following state-space representation for the system:
X, 0 1 01 x x1(0)
Xy | = 0 0 1l % |, x0) [=] 1
X3 ~10 =17 -8 || x5 x3(0) 0.5
X1
y=1[1 0 0]| x,
X3

A possible MATLAB program to obtain the response y(t) is given in MATLAB Program 5-17.
The resulting response curve is shown in Figure 5-34.

MATLAB Program 5-17

t=0:0.05:10;

A=[0 100 0 1;-10 -17 -8];
B = [0;0;0];

C=[1 0 0)];

D = [0];

y = initial(A,B,C,D,[2;1;0.5],1);
plot(t,y)

grid

title('Response to Initial Condition")
xlabel('t (sec)')
ylabel('Output y')

Response to Initial Condition

25 ,

Figure 5-34
Response y(z) to
initial condition. t (sec)
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5-6 AN EXAMPLE PROBLEM SOLVED WITH MATLAB

Figure 5-35

(a) Wheel with
hanging mass-
damper system;
(b) dynamic
response of the
system.

The purpose of this section is to present a MATLAB solution to the response of a
mechanical vibratory system.

Mechanical Vibratory System. Consider the mechanical vibratory system shown
in Figure 5-35(a). A wheel has a spring-mass-damper system hanging from it. The wheel
is in a track that contains a flat (horizontal) portion, a slanted (downward at 45°) por-
tion, and another flat (horizontal) portion. We start the motion of the system by nudg-
ing the wheel over the edge of the ramp. As the wheel drops down the ramp for a total
0f 0.707 m (vertically measured), the mass m hanging from the spring and damper drops
with it, and the mass gains momentum that dissipates gradually. In this problem the
wheel is assumed to slide on the slanted portion of the track without friction. On the sec-
ond flat portion of the track, the wheel slides and rolls. The wheel continues to move on
the flat portion of the track until it is stopped by an external means.

Push off edge
to start
N
0. 707 m
k
¥
@

0 ‘T\
0.2 j
e \
0.6

YYVy

i

AMA

l
1.2 \]:J.J/

1.4

AN
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0 0.5 1 1.5
t Sec
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Figure 5-36

(a) Wheel with mass
m slides on inclined
plane; (b) curve x(¢)
Vversus .

272

Assume the following numerical values for m, b, and k:
m = 4 kg, b = 40 N-sec/m, k = 400 N/m

Assume also that the mass m,, of the wheel is negligible compared with the mass m.
Obtain x(t), the vertical motion of the wheel. Then obtain Y (s), the Laplace transform
of y(¢), which represents the up and down motion of mass /. The coordinate y is attached
to the spring-mass-damper system as shown in Figure 5-35(a) and is measured from the
equilibrium position of the system. The initial conditions are that y(0) = Oand y(0) = 0.
Note that in this problem we are interested only in the vertical motions of the spring-
mass-damper system. Note also that the system is frictionless with the exception of the
damper, which relies on viscosity for its operation.

As the spring-mass-damper component travels down the ramp, it will undergo an
acceleration produced as a result of the gravity force. When the spring-mass-damper
reaches the level region at the bottom of the ramp, a shock will immediately be imposed
on the spring-mass-damper component. It will, however, eventually come to a state of
equilibrium following the impact due to the settling effects of the damper and spring. The
dynamic response of this system is shown in Figure 5-35(b).

Determination of x(f). The system starts with zero initial velocity and follows the
track. The input to the system is the vertical position x along the track, and the output
is the vertical position y of the mass. Since we assume no sliding friction, referring to
Figure 5-36(a) we have in the z direction the following equation:

my =0

45°
Y 7,
mg R
()
0 02 04 06 08 10 12 t
T T ™ T T |
l
ll
02 - | 0.537
]
|
04 !
I
i
0.6 |- i
08 |~

®
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mZ = mg sin45°
or
Z = 9.81 x 0.707 = 6.9357

Let us define the time it takes for the wheel to move from z = 0to z = 1 m as #;. Then
=6 9357ﬁ =1
z=6. 2

which yields
t; = 0.537 sec
Thus x(¢) can be given as follows: v
x(t) = 0.707z = 0.707 X 3.4678¢* = 2.452¢%, for0 =t =< 0.537
= 0.707, for 0.537 < ¢

It follows that from ¢ = 0.537 sec to ¢t = co we have an input defined by a constant of
0.707.The position x at the end of the ramp is 0.707 and it takes 0.537 sec to get there.
A curve x(¢) versus ¢ is shown in Figure 5-36(b). Note that the positive direction of x(t)
is vertically downward.

To get a better picture of the events taking place in the system, we need to look at
the input, shown in Figure 5-36(b). The effects of gravity do not allow us to model the
behavior of the system with an ordinary ramp, but rather a parabolic function, which is
followed by the input.

Determination of Transfer Function Y(s)/X(s). Next, we shall obtain the equation
of motion for the system and then the transfer function Y (s) /X (s). Since y is measured
from the equilibrium position, the system equation becomes

my + b(y — %)+ k(y—-x)=0
or
my + by + ky = bx + kx

where x is the input to the system and y is the output. By substituting the given numer-
ical values for m, b, and k, we obtain

4y + 40y + 400y = 40% + 400x
or

¥ + 10y + 100y = 10x + 100x
The transfer function for the system can now be given by

Y(s) 10s + 100

X(s)  s*+ 10s + 100

where the input x(¢) is given by 2.452¢* (for 0 < ¢ < 0.537) and 0.707 (for 0.537 < t).
Our problem here is to plot the response curve with MATLAB.
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MATLAB Solution. Since the input consists of two different time functions (one

is an acceleration input and the other is a step input,) we shall use “Isim” command in

this problem. Since
x(t) = 2452¢%,  for0 = ¢ = 0.537
x(t) = 0.707, for 0.537 <t

we choose the computing time interval to be 0.001 sec. We define x as an array of points

in MATLAB. This array initially follows x(¢) = 2.452¢* and, after ¢t = 0.537 sec, follows
x(t) = 0.707. We assume that the time regionis 0 < ¢ = 1.5.
The acceleration input in the first part can be written as
t1 = 0:0.001:0.537
x1 = 2.452*(t1.72)
where t1 represents a time count and x1 is the first part of the complete input function.
(There are 538 calculation points from the initial position until the input reaches
0.707 m.) For the second part of the input, we need a step function with magnitude 0.707.
After time 0.537 sec,
t2 = 0.538:0.001:1.5
x2 = 0.707*ones(size(t2))
(There are 963 points from 0.538 sec through 1.5 sec, inclusive.) The next step is to trans-
form both inputs to one complete input:
x = [x1 x2]
(The two input equations are transformed into a single vector, in order to appear as a
single entry in the |sim command argument.)
Now we can use the Isim command
y = Isim(num,den,x,1)
and plot the response y(¢) as well as the input x(¢). A possible MATLAB program is
shown in MATLAB Program 5-18. Note that the plotted input and output functions
are negated. The resulting curves x(¢) and y(¢) are shown in Figure 5-37.

MATLAB Program 5-18

num = [0 10 100j;

den=[1 10 100];

t1 = 0:0.001:0.537;

x1 = 2.452%(t1.12);

t2 = 0.538:0.001:1.5;

x2 = 0.707*ones(size(t2));

t=[t1 t2];

x = [x1 x2];

y = Isim(num,den,x,t);

plot(t,-x,'x',t,-y)

grid

title('"Response of Hanging Mass-Damper-Spring System')
xlabel('t (sec)")

ylable('Negative of Input x and Negative of Output y')
text(0.07,-0.66,'Negative of Input x')
text(0.55,-0.14,'Negative of Output y')
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Figure 5-37
Curves —x(t) versus ¢
and —y(t) versus t.

Response of Hanging Mass-Damper-Spring System

Negative of Output y

Negative of Input x and Negative of Output y

5-7 ROUTH’S STABILITY CRITERION

The most important problem in linear control systems concerns stability. That is, under
what conditions will a system become unstable? If it is unstable, how should we stabi-
lize the system? In Section 5-4 it was stated that a control system is stable if and only if
all closed-loop poles lie in the left-half s plane. Most linear closed-loop systems have
closed-loop transfer functions of the form '

< C(8)  bys™ 4 bys™ "l 4 -+ by_ys + by _ B(s)

R(s) aps"+aps" '+ +a,s+a, Al)

where the a’s and b’s are constants and m =< n. A simple criterion, known as Routh’s
stability criterion, enables us to determine the number of closed-loop poles that lie in
the right-half s plane without having to factor the depominator polynomial. (The
polynomial may include parameters that MATLAB cannot handle.)

Routh’s Stability Criterion. Routh’s stability criterion tells us whether or not
there are unstable roots in a polynomial equation without actually solving for them.
This stability criterion applies to polynomials with only a finite number of terms. When
the criterion is applied to a control system, information about absolute stability can be
obtained directly from the coefficients of the characteristic equation.

The procedure in Routh’s stability criterion is as follows:

1. Write the polynomial in s in the following form:
ays" + aps" P+ +a, s +a,=0 (5-61)
where the coefficients are real quantities. We assume that a,, # 0; that is, any zero
root has been removed.

2. If any of the coefficients are zero or negative in the presence of at least one posi-
tive coefficient, there is a root or roots that are imaginary or that have positive
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real parts. Therefore, in such a case, the system is not stable. If we are interested in
only the absolute stability, there is no need to follow the procedure further. Note
that all the coefficients must be positive. This is a necessary condition, as may be
seen from the following argument: A polynomial in s having real coefficients can
always be factored into linear and quadratic factors, such as (s + a) and
(s2 + bs + c), where a, b, and c¢ are real. The linear factors yield real roots and
the quadratic factors yield complex-conjugate roots of the polynomial. The factor
(52 + bs + c) yields roots having negative real parts only if b and ¢ are both pos-
itive. For all roots to have negative real parts, the constants 4, b, ¢,and so on, in all
factors must be positive. The product of any number of linear and quadratic factors
containing only positive coefficients always yields a polynomial with positive
coefficients. It is important to note that the condition that all the coefficients be
positive is not sufficient to assure stability. The necessary but not sufficient
condition for stability is that the coefficients of Equation (5-61) all be present and
all have a positive sign. (If all a’s are negative, they can be made positive by
multiplying both sides of the equation by —1.)

If all coefficients are positive, arrange the coefficients of the polynomial in rows
and columns according to the following pattern:

s ay, a, a, ag
s a; ay as ag
s"2 by b, by by
"3 o o oo
st dy dy dy d,

s e &
| .
s fi
0
s &1

The process of forming rows continues until we run out of elements. (The total number
of rows is n + 1.) The coefficients b,, by, b3, and so on, are evaluated as follows:

ayd; — apds

b —_
1 a;
a1a4 - a0a5
by= ———=
. a,
aydg — dodq
by = —————

ay
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EXAMPLE 5-12

The evaluation of the b’s is continued until the remaining ones are all zero. The same
pattern of cross-multiplying the coefficients of the two previous rows is followed in .
evaluating the ¢’s, d’s, e’s, and so on. That is,

_ bya; — ab,

o = b
_ bias — a,bs
bla7 - a1b4
C3 = —r

and

d, = ¢1by ;‘1 bic,
d, = ci1b; ; bic;

This process is continued until the nth row has been completed. The complete array of

~ coefficients is triangular. Note that in developing the array an entire row may be divid-

ed or multiplied by a positive number in order to simplify the subsequent numerical
calculation without altering the stability conclusion.

Routh’s stability criterion states that the number of roots of Equation (5-61) with
positive real parts is equal to the number of changes in sign of the coefficients of the first
column of the array. It should be noted that the exact values of the terms in the first col-
umn need not be known; instead, only the signs are needed. The necessary and suffi-
cient condition that all roots of Equation (5-61) lie in the left-half s plane is that all the
coefficients of Equation (5-61) be positive and all terms in the first column of the array
have positive signs.

Let us apply Routh’s stability criterion to the following third-order polynomial:
ays® + ay 8t + ays +ay =0

where all the coefficients are positive numbers. The array of coefficients becomes
3

s ag a,
s? a, a,
1 as;a; — agds
s
a1
s° a,

The condition that all roots have negative real parts is given by

aja, > ayas
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EXAMPLE 5-13

Consider the following polynomial:
S +282+352+4s5+5=0

Let us follow the procedure just presented and construct the array of coefficients. (The first two
rows can be obtained directly from the given polynomial. The remaining terms are obtained from
these. If any coefficients are missing, they may be replaced by zeros in the array.)

s 1 3 5 st 1 3 5

$ 2 4 0|l 2 4 & Thesecondrow is divided
1 2 0 by2

£ 15 2 1 5

st -6 st =3

s 5 5 5

In this example, the number of changes in sign of the coefficients in the first column is 2. This
means that there are two roots with positive real parts. Note that the result is unchanged when the
coefficients of any row are multiplied or divided by a positive number in order to simplify the
computation.

278

Special Cases. If a first-column term in any row is zero, but the remaining terms
are not zero or there is no remaining term, then the zero term is replaced by a very small
positive number € and the rest of the array is evaluated. For example, consider the
following equation:

S +2%+s+2=0 (5-62)
The array of coefficients is
$ 01 1
s 2 2
st 0~ e
02

If the sign of the coefficient above the zero (e) is the same as that below it, it indicates
that there are a pair of imaginary roots. Actually, Equation (5-62) has two roots at
s = +j.

If, however, the sign of the coefficient above the zero (e) is opposite that below it, it
indicates that there is one sign change. For example, for the equation

s =35+2=(s—-1)*(s+2)=0

the array of coefficients is

. s 1 =3
One sign change: 2 0me 2
2
st -3 - “é'
ign ch :
One sign change 0 )

There are two sign changes of the coefficients in the first column. This agrees with the
correct result indicated by the factored form of the polynomial equation.
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If all the coefficients in any derived row are zero, it indicates that there are roots of
equal magnitude lying radially opposite in the s plane, that is, two real roots with equal
magnitudes and opposite signs and/or two conjugate imaginary roots. In such a case, the
evaluation of the rest of the array can be continued by forming an auxiliary polynomi-
al with the coefficients of the last row and by using the coefficients of the derivative of
this polynomial in the next row. Such roots with equal magnitudes and lying radially op-
posite in the s plane can be found by solving the auxiliary polynomial, which is always
even. For a 2n-degree auxiliary polynomial, there are n pairs of equal and opposite roots.
For example, consider the following equation:

54+ 25 + 245° + 485 ~ 255 — 50 =0

The array of coefficients is

s 1 24 =25
s* 2 48 —-50 <« Auxiliary polynomial P(s)
s$ 0 0

The terms in the s° row are all zero. (Note that such a case occurs only in an odd-
numbered row.) The auxiliary polynomial is then formed from the coefficients of the s*
row. The auxiliary polynomial P(s) is

P(s) = 2s* + 485 — 50

which indicates that there are two pairs of roots of equal magnitude and opposite sign
(that is, two real roots with the same magnitude but opposite signs or two complex-
conjugate roots on the imaginary axis). These pairs are obtained by solving the auxiliary
polynomial equation P(s) = 0.The derivative of P(s) with respect to s is

dP (s)
ds

The terms in the s° row are replaced by the coefficients of the last equation, that is, 8 and 96.
The array of coefficients then becomes

> 1 24 =125

= 85> + 965

s

s 2 48 —50

s 8 96 « Coefficients of dP (s)/ds
s 24 =50

st 1127 0

s =50

We see that there is one change in sign in the first column of the new array. Thus, the orig-
inal equation has one root with a positive real part. By solving for roots of the auxiliary
polynomial equation, :

25 + 485 — 50=0
we obtain

or
s =1, s = =£j5
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Figure 5-38
Control system.
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These two pairs of roots of P(s) are a part of the roots of the original equation. As a
matter of fact, the original equation can be written in factored form as follows:

(s+ (s = 1)(s+j5)(s—j5)(s+2)=0

Clearly, the original equation has one root with a positive real part.

Relative Stability Analysis. Routh’s stability criterion provides the answer to
the question of absolute stability. This, in many practical cases is not sufficient. We usu-
ally require information about the relative stability of the system. A useful approach
for examining relative stability is to shift the s-plane axis and apply Routh’s stability
criterion. That is, we substitute

s =50 (o = constant)

into the characteristic equation of the system, write the polynomial in terms of §; and
apply Routh’s stability criterion to the new polynomial in §. The number of changes of
sign in the first column of the array developed for the polynomial in § is equal to the num-
ber of roots that are located to the right of the vertical line s = —¢.Thus, this test reveals
the number of roots that lie to the right of the vertical line s = ~o.

Application of Routh’s Stability Criterion to Control System Analysis. Routh’s
stability criterion is of limited usefulness in linear control system analysis mainly because
it does not suggest how to improve relative stability or how to stabilize an unstable
system. It is possible, however, to determine the effects of changing one or two
parameters of a system by examining the values that cause instability. In the following,
we shall consider the problem of determining the stability range of a parameter value.

Consider the system shown in Figure 5-38. Let us determine the range of K for
stability. The closed-loop transfer function is

C(s) B K
R(s) s(s*>+s+1)(s+2)+K

The characteristic equation is
s+ 35+ 352+ 25 + K =0

The array of coefficients becomes

st 1 3 K
52 3 2 0
s z K
st 2-2K
s° K
R(s) C(s)
:® g s(s2+s+K1)(s+2)

|
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For stability, K must be positive, and all coefficients in the first column must be positive.
Therefore,

14
—>K>90
9

When K = 4, the system becomes oscillatory and, mathematically, the oscillation is
sustained at constant amplitude.

Note that the ranges of design parameters that lead to stability may be determined
by use of Routh’s stability criterion.

5-8 EFFECTS OF INTEGRAL AND DERIVATIVE CONTROL
ACTIONS ON SYSTEM PERFORMANCE

Figure 5-39

(a) Plots of e(t) and
u(t) curves showing
nonzero control
signal when the
actuating error signal
is zero (integral
control); (b) plots of
e(t) and u(t) curves
showing zero control
signal when the
actuating error signal
is zero (proportional
control).

In this section, we shall investigate the effects of integral and derivative control actions
on the system performance. Here we shall consider only simple systems so that the
effects of integral and derivative control actions on system performance can be clearly
seen.

Integral Control Action. In the proportional control of a plant whose transfer
function does not possess an integrator 1/s, there is a steady-state error, or offset, in the
response to a step input. Such an offset can be eliminated if the integral control action
is included in the controller.

In the integral control of a plant, the control signal, the output signal from the
controller, at any instant is the area under the actuating error signal curve up to that
instant. The control signal u(¢) can have a nonzero value when the actuating error signal
e(t) is zero, as shown in Figure 5-39(a). This is impossible in the case of the proportional
controller since a nonzero control signal requires a nonzero actuating error signal.
(A nonzero actuating error signal at steady state means that there is an offset.) Figure
5-39(b) shows the curve e(t) versus ¢ and the corresponding curve u() versus ¢ when the
controller is of the proportional type. '

Note that integral control action, while removing offset or steady-state error, may lead
to oscillatory response of slowly decreasing amplitude or even increasing amplitude,
both of which are usually undesirable.

20) e(?)

t 0 t

0
u(f) D\/\ u(t)
0

Tt
(@) (b)

Section 5-8 / Effects of Integral and Derivative Control Actions on System Performance 281



Figure 5-40
Proportional control
system.

Figure 5-41
Unit-step response
and offset.
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Proportional Control of Systems. We shall show that the proportional control
of a system without an integrator will result in a steady-state error with a step input. We
shall then show that such an error can be eliminated if integral control action is included
in the controller.

Consider the system shown in Figure 5-40. Let us obtain the steady-state error in the
unit-step response of the system. Define

K
Gls) = Ts+1
Since
E(s) R(s) — C(s) . C(s) _ 1
R(s) R(s) R(s) 1+ G(s)
the error E(s) is given by
E(s) = 1 R(s) = ————R(s)
) =176 6 Kk ¢
1+
Ts +1
For the unit-step input R(s) = 1/s, we have
Ts+1 1
B =517k
The steady-state error is
Ts +1 1

o = fmelt) = ImpsE() = i 7 = B
Such a system without an integrator in the feedforward path always has a steady-state
error in the step response. Such a steady-state error is called an offset. Figure 541 shows
the unit-step response and the offset.

<) Offset
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Figure 5-42
Integral control
system.:

Figure 5-43
- Control system with

a torque disturbance, -
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Integral Control of Systems. Consider the system shown in Figure 5-42. The .
controller is an integral controller. The closed-loop transfer function of the system is
C(s) K

R(s) s(Ts+1)+K

Hence
E(s) R(s) =C(s)  s(Ts+1)
R(s) - R(s)  s(Ts+1)+K

Since the system is stable, the steady-state error for the unit-step response can be
obtained by applying the final-value theorem, as follows:

ey = ﬁi_%sE@)

. sH{Ts+1) 1
= lim —————

=0Ts  + s+ K s
=0

Integral control of the system thus eliminates the steady-state error in the response to
the step input. This is an important improvement over the proportional control alone,
which gives offset.

Response to Torque Disturbances (Proportional Control). Let us investigate
the effect of a torque disturbance occurring at the load element. Consider the system
shown in Figure 5-43. The proportional controller delivers torque T to position the load
element, which consists of moment of inertia and viscous friction. Torque disturbance is
denoted by D.

Assuming that the reference input is zero or R(s) = 0, the transfer function between
C(s) and D(s) is given by

R E T ) C
s+ b)
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Figure 5-44
Proportional-plus-
integral control of a
load element
consisting of moment
of inertia and viscous
friction.
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Hence
E(s) C(s) 1
D(s)  D(s)  Js+bs+K,

The steady-state error due to a step disturbance torque of magnitude T} is given by

€ = }i_r)r(l;sE(s)

. —s Ty
= lim ~—5—————r—

s—=0 Js* + bs + K, s
K

14

At steady state, the proportional controller provides the torque —7,, which is equal in
magnitude but opposite in sign