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Manufacturing is a vital activity for a society from a strategic point of view. It has a long 
history in human civilizations and gives a society a definite edge over its competitors. A 
manufacturing system can be viewed as an arrangement of tasks and processes, properly put 
together, to transform a selected group of raw materials and semi-finished products to a set of 
finished products. Historically, manufacturing activities have grown over centuries and their 
evolution can be divided into three stages. These are craft, mass and lean production methods. 
The development of electrical devices has led to better control of machines and resulted in 
machines with greater flexibility. Recent developments in information technology have made 
it feasible to achieve the purpose of rapid product prototyping, concurrent engineering, 
flexible and agile automation and computer integrated manufacturing. Many manufacturing 
system paradigms have been developed throughout the history of manufacturing, such as 
mass production, just in time manufacturing, lean manufacturing, flexible manufacturing, 
mass customization, agile manufacturing and others. All these systems are working 
efficiently under particular conditions attached to them. With the overall evolution of 
human society, product demand patterns are changing which force manufacturers to adjust 
their system paradigms according to changes. Thus, a change of product demand patterns 
always demands to remodel and improve manufacturing system designs, layouts, facilities 
and provisions which lead to an ongoing search of development of new ways and means 
of designing modern manufacturing systems. This book is a collection of articles aimed at 
finding new ways of manufacturing systems developments.  The articles included in this 
volume comprise of current and new directions of manufacturing systems which I believe 
can lead to the development of more comprehensive and efficient future manufacturing 
systems. People from diverse background like academia, industry, research and others can 
take advantage of this volume and can shape future directions of manufacturing systems. 

Editor
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KSK Campus, University of Engineering and Technology, Lahore, Pakistan 

 
A flexible manufacturing system is a highly automated system consisting of a group of 
workstations interconnected by an automated material handling and storage system and 
controlled by a distributed computer system. It is capable of processing a variety of different 
part styles simultaneously at various workstations and the mix of part styles and quantities 
of production can be adjusted in response to changing demand patterns. A flexible 
manufacturing system comprises of processing stations, material handling and storage 
systems and requires hardware and software provisions. The hardware components 
typically required for a FMS are; 

 Machine tools, for example, machining centers, turning centers, etc. 
 Load/unload stations 
 Guided vehicles 
 Robots 
 Inspection facilities like coordinate measuring machines 
 Programmable Logic Controllers (PLC). 

This chapter describes the hardware provisions required for a flexible manufacturing 
system. 

 
Introduction 

Flexible manufacturing systems consist of hardware and software components. The 
hardware components typically comprise of processing stations, material handling systems 
and automated material storage and retrieval systems. The processing stations are the 
workstations that perform different operations on part families. These workstations are 
CNC machine tools, inspection equipments, assembly stations and material loading/ 
unloading areas. Material handling systems include automated guided vehicle systems, 
roller conveyors, tow line, shuttle cars etc whereas automated storage and retrieval systems 
are used to store and retrieve work parts automatically. Various types of storage and 
retrieval systems are pallets, carousels etc which help in convenient access of different types 
of parts from stores and increase machine utilization of flexible manufacturing systems. The 

1



Future Manufacturing Systems2

processing and assembly equipments used in a flexible manufacturing system depend upon 
the type of work being accomplished by the system. In a system designed for machining 
operations, the principal types of processing stations are CNC machines like CNC 
machining and turning centers. However, the FMS concept is applicable to various other 
processes like automated assembly lines, sheet metal fabrication etc. 

 
Machining Stations 
One of the most common applications of flexible manufacturing system is in the machining 
operations. The workstations designed in these systems, therefore, predominantly consist of 
CNC machines tools. The most common CNC machines tools used include CNC machining 
center, in particular, horizontal machining turning centers. These CNC machine tools 
possess the features that make them compatible with the FMS. These features include 
automatic tool changing and storage, use of palletized work parts, etc.  

 
CNC Machining Center 
A CNC machining center is a highly automated machine tool capable of performing 
multiple machining operations under CNC control in one setup with minimal human 
attention. Machining centers generally include automated pallet changers to load the work 
part to the machine and to unload the finished part that can be readily interfaced with the 
FMS part handling system. A CNC machining center is a sophisticated CNC machine that 
can perform milling, drilling, tapping, and boring operations at the same location with a 
variety of tools. 

Fig. 1. CNC Horizontal Machining Center 

There are several special features that make a machining center more productive machine 
are as follows: 

 
Automatic tool-changing 
As there is a variety of machining operations to be performed by the machines on different 
part styles in a FMS environment, so cutting tools must be changed to switch from one 
machining operation to another. This is done on a machining center under NC program 
control by an automated tool-changer designed to exchange cutters between the machine 
tool spindle and a tool storage drum. The capacities of these drums commonly range from 
16 to 80 cutting tools. 
 

Fig. 2. Tool Storage 

 
Pallet shuttles 
Some machining centers in FMS are equipped with two or more pallet shuttles, which can 
automatically transfer the work part to the spindle of the machining center to perform the 
machining operation on it. With two shuttles, the operator may unload the finished part and 
load the next raw part on load/unload station while the machine tool is engaged in 
machining the current part. This reduces nonproductive time on the machine. 
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Automatic work part positioning 
To enhance the productivity of a machine tool and to reduce the manufacturing lead time,  
machine tools in FMS are equipped with automatic work part positioning system that 
exactly position the work part before the machining operation starts. Many machining 
centers have more than three axes. One of the additional axes is often designed as a rotary 
table to position the part at some specified angle relative to the spindle. The rotary table 
permits the cutter to perform machining on four sides of the part in a single setup. 

Fig. 3. Automated manufacturing cell with two CNC machine tools and robot. 

 
CNC Turning Centers 
A modern CNC turning center is capable of performing various turning and related 
operations, contour turning, and automatic tool indexing, all under computer control. A 
program is fed to the CNC turning center for a particular class of work parts and this 
program repeat itself on every new part. In addition, the most sophisticated turning centers 
can accomplish work part gauging (checking key dimensions after machining), tool 
monitoring (sensors to indicate when tools are worn), automatic tool changing, automatic 
work part changing at the completion of the work cycle. A recent development in the CNC 
machine tool technology is the CNC mill-turn center. This machine has the general 
configuration of a turning center; in addition, it can position a cylindrical work part at a 
specified angle so that a rotating cutter can machine features into the outside surface of the 
work part. 
 
 

 
Fig. 4. CNC Turning Center 
 

Fig. 5. CNC mill-turn center 
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Load/Unload Stations 
Load/unload station is the physical interface between an FMS and the rest of the factory. It 
is the place where raw work parts enter the system and finished parts exit the system. 
Loading and unloading can be accomplished either manually (the most common method) or 
by automatic handling systems. The load/unload stations should be ergonomically 
designed to permit convenient and safe movement of work parts. Mechanized cranes and 
other handling devices are installed to assist the operator with the parts that are too heavy 
to lift by hand. A certain level of cleanliness must be maintained at the workplace, and air 
houses and other washing facilities are often used to flush away chips and ensure clean 
mounting and locating points. The station is often raised slightly above the floor level using 
as open-grid platform to permit chips and cutting fluid to drop through the openings for 
subsequent recycling or disposal. 

Fig. 6. Load/ unload stations in relation to overall system shown.  
 
The load/unload station includes a data entry unit and a monitor for communication 
between the operator and the computer system. Through this system, the operator receives 
the instructions regarding which part to load on the next pallet in order to adhere to 
production schedule. When different pallets are required for different parts, the correct 
pallet must be supplied to the station. When modular fixing is used, the correct fixture must 
be specified and the required components and tools must be available at the workstation to 
build it. When the part loading procedure is completed, the handling system must launch 
the pallet into the system, but not until then; the handling system must be prevented from 
moving the pallet while the operator is still working. All of these conditions require 
communication between the computer system and the operator at the load/unload station. 

 

Robots 
An industrial robot is a general-purpose, programmable machine possessing certain 
anthropomorphic (human like) characteristics. The most obvious anthropomorphic 
characteristic of an industrial robot is its mechanical arm, which is used to perform various 
industrial tasks. Other human-like characteristics are the robot’s capabilities to respond to 
sensory inputs, communicate with other machines and make decisions. These capabilities 
permit robots to perform a variety of useful tasks in industrial environments. One of the 
most common applications of robots in FMS may be loading the raw work part and 
unloading the finished part at the loading/unloading stations. Robots can be found in 
manufacturing industry, military, space exploration, transportation, and medical 
applications. 

 
Types of Robots 
Typical industrial robots do jobs that are difficult, dangerous or dull. They lift heavy objects, 
paint, handle chemicals, and perform assembly work. They perform the same job hours after 
hours, days after days with precision. They don't get tired and they don't make errors 
associated with fatigue and so are ideally suited to performing repetitive tasks. The major 
categories of industrial robots by mechanical structure are:  

 
Cartesian robot /Gantry robot 
These robots are used for pick and place work, assembly operations and handling machine 
tools and arc welding. It's a robot whose arm has three prismatic joints, whose axes are 
coincident with a cartesian coordinator.  
 

 
Fig. 7. A Cartesian robot 
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Fig. 8. A Gantry robot 
 
 Cylindrical robot 
These robots are used for assembly operations, spot welding, and handling at die-casting 
machines. It's a robot whose axes form a cylindrical coordinate system.  
 

 
Fig. 9. A cylindrical robot 
 

 Spherical/Polar robot 
The spherical robots are used for handling work parts at machine tools, spot welding, die-
casting, fettling machines, gas welding and arc welding. It's a robot whose axes form a polar 
coordinate system.  
 

 
Fig. 10. A spherical robot configuration. 
 
 SCARA robot 
The SCARA robots are used for pick and place work, assembly operations and handling 
machine tools. It's a robot which has two parallel rotary joints to provide compliance in a 
plane.  
 

 
Fig. 11. SCARA robot configuration. 



Flexible manufacturing system: hardware components 9

 
Fig. 8. A Gantry robot 
 
 Cylindrical robot 
These robots are used for assembly operations, spot welding, and handling at die-casting 
machines. It's a robot whose axes form a cylindrical coordinate system.  
 

 
Fig. 9. A cylindrical robot 
 

 Spherical/Polar robot 
The spherical robots are used for handling work parts at machine tools, spot welding, die-
casting, fettling machines, gas welding and arc welding. It's a robot whose axes form a polar 
coordinate system.  
 

 
Fig. 10. A spherical robot configuration. 
 
 SCARA robot 
The SCARA robots are used for pick and place work, assembly operations and handling 
machine tools. It's a robot which has two parallel rotary joints to provide compliance in a 
plane.  
 

 
Fig. 11. SCARA robot configuration. 



Future Manufacturing Systems10

 Articulated robot 
An articulated robot is used for assembly operations, die-casting, fettling machines, gas 
welding, arc welding and spray painting. It's a robot whose arm has at least three rotary 
joints.  
 

 
Fig. 12. Articulated robot configuration 

 
Robot Applications 
Due to the diverse nature of robots and their flexibility in motion, there are various forms of 
applications in the flexible manufacturing system. 
 
1. Pick and Drop Operations 
The most common application of robot within FMS is pick and drop operations, where point 
to point control devices are sufficient. These applications include tool changing, 
loading/unloading un-fixtured parts into work tables. The following figure shows a pick 
and drop robot arm. 

 
2. Contouring Operations 
A second major application area for robot is in contouring type operations. These include 
welding, limited machining, deburring, assembly/disassembly and inspection. In case of 
welding, robots have been proven reliable, effective and efficient. However in other areas 
such as machining, deburring and inspection robots’ limited accuracy and repeatability 
limited their applications. In addition, whenever a tool change is required, such as in 
deburring, the cost of robotic change is almost as expensive as that of three-axis machining 
center. It is possible that simple operations which require multiple tools are most efficiently 
performed in the machining centers. 

 

Fig. 13. A robotic arm used for pick and drop operation 
 
3. Assembly/Disassembly 
The use of robot in FMS is wide spread in assembly and disassembly. Robot have been 
proven effective for assembly of small parts and printed circuit board (PCB’s). The following 
figure shows a PCB assembled by robots. 
 

 
Fig. 14. Printed Circuit Boards (PCB) assembled by robots 
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Inspection Equipments 
Since an FMS is a closed system (feedback control system), it is necessary to provide some 
means to monitor the quality of operations being performed. This monitoring can take place 
in many different places and by different components. 
 

 
Fig. 15. Multi Function Gantry CMM 
 

 
Fig. 16. Coordinate measuring machine 

1. Coordinate Measuring Machine 
The most obvious type of inspection equipments is coordinate measuring machine (CMM). 
This machine can be programmed to probe a piece part and identify depth of holes, flatness 
of surfaces and perpendicularity. 
 

 
Fig. 17. A Large Scale CMM 
 
Special requirements usually include constant temperature congruity environment and 
piece part. Also, because of the slow movements necessary to precisely measure surfaces, 
the inspection time is usually long compared to machining time. 
 
2. Probing Machining Centers 
Probe marching centers are also used as for inspection purposes in addition to  CMM 
station. These machines inspect equipment in work centers by inserting a probe into the 
gripper or spindle and then moving the probe contacting the work piece or fixture. 
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Fig. 18. Example of on-machine checking and inspection 
 
Programmable Logic Controllers (PLC’s): 
A programmable logic controller (PLC) is a microcomputer-based controller that uses stored 
instructions in programmable memory to implement logic, sequencing, timing, counting, 
and arithmetic functions through digital or analog input/output (I/O) module, for 
controlling machines and processes. PLC is universally called ‘Work Horse’ of industrial 
automations. Various systems like material handling system, material storage system, 
load/unloading stations, etc. are programmed through PLC in order to streamline the 
operations in a flexible manufacturing system.: 

 PLCs consist of input modules or points, a central processing unit (CPU), and 
output modules or points. The basic components of PLC are the followings: 

 Processor 
 Memory unit 
 Power supply 
 I/O module  
 Programming device 

These components are housed in a suitable cabinet for the industrial environment. The 
processor is the central processing unit of the programmable controller. It execute  various 
logic and sequencing functions by operating on the PLC input to determine the appropriate 
output signal. Connected to the CPU is the PLC memory unit, which contains the programs 
of logic, sequencing, and I/O operation. It also holds data files associated with these 
programs including I/O status bits, counter and timer constants, and other type variable 
and parameter values. This memory unit is referred to as the user or applicant memory 
because its contents are entered by the user. A power supply  is typically used to drive a 
PLC. The I/O module provides the connections to the industrial equipments or process that 
is to be controlled. Inputs to the controller are signals from limits switches, push buttons, 

sensors, and other on/off devices. Outputs from the controller are on/off signals to operate 
motors, valves and other devices required to actuate the process. The PLC is programmed 
by means of a programming device. The programming device is usually detachable from the 
PLC cabinet so that it can be shared among different controllers. The following figure shows 
a PLC input/ output module. 
 

 
Fig. 19. PLC Input /Output Module 
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logic and sequencing functions by operating on the PLC input to determine the appropriate 
output signal. Connected to the CPU is the PLC memory unit, which contains the programs 
of logic, sequencing, and I/O operation. It also holds data files associated with these 
programs including I/O status bits, counter and timer constants, and other type variable 
and parameter values. This memory unit is referred to as the user or applicant memory 
because its contents are entered by the user. A power supply  is typically used to drive a 
PLC. The I/O module provides the connections to the industrial equipments or process that 
is to be controlled. Inputs to the controller are signals from limits switches, push buttons, 

sensors, and other on/off devices. Outputs from the controller are on/off signals to operate 
motors, valves and other devices required to actuate the process. The PLC is programmed 
by means of a programming device. The programming device is usually detachable from the 
PLC cabinet so that it can be shared among different controllers. The following figure shows 
a PLC input/ output module. 
 

 
Fig. 19. PLC Input /Output Module 
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1. Introduction 

A manufacturing system includes a set of machines performing different operations, linked 
by a material handling system. A major consideration in designing a manufacturing system 
is its availability. When a machine or any other hardware component of the system fails, the 
system reconfiguration is often less than perfect. It is shown that, if these imperfections 
constitute even a very small percent of all possible system faults, the availability of the 
system may be considerably reduced. The system availability is computed as the sum of 
probabilities of the system operational states. A state is operational when its performance is 
better than a threshold value. In order to calculate the availability of a manufacturing 
system, its states (each corresponding to an acceptable system level) are determined. A 
system level is acceptable when its production capacity is satisfied. To analyze the system 
with failure/repair process, Markov models are often used. As a manufacturing system 
includes a large number of components with failure/repair processes, the system-level 
Markov model becomes computationally intractable. In this paper, a decomposition 
approach for the analysis of manufacturing systems is decomposed in manufacturing cells. 
A Markov chain is constructed and solved for each cell i to determine the probability of at 
least Ni operational machines at time t. Ni satisfies the production capacity requirement of 
machine cell i. 
The probability is determined so that the material handling carriers provide the service 
required between Ni operational machines in machine cell i, and Ni+1 operational machines 
in machine cell i+1.  
The number i=1,…,n at time t, where n is the number of machine cells in the decomposed 
system.   
Production lines are sets of machines arranged so as to produce a finished product or a 
component of a product. Machines are typically unreliable and experience random 
breakdowns, which lead to unscheduled downtime and production losses. Breakdown of a 
machine affects all other machines in the system, causing blockage of those upstream and 
starvation of those downstream. To minimize such perturbations, finite buffers separate the 
machines. The empty space of buffers protects against blockage and the full space against 
starvation. Thus, production lines may be modeled as sets of machines and buffers 
connected according to a certain topology. From a system theoretic perspective, production 

2
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lines are discrete event systems. Two basic models of machine reliability are mentioned in 
the literature: Bernoulli (Jacobs & Meerkov, 1995) and Markov (Gershwin, 1994), (Lim et al., 
1990). The first model assumes that the process of Bernoulli trials determines the status of a 
machine in each cycle (i.e. the time necessary to process a part). In Markov model the state 
of a machine in a cycle is determined by a conditional probability, with the condition being 
the state of the machine in the previous cycle. Both model Bernoulli and Markov reflect 
practical situations: Bernoulli reliability model is more appropriate when downtime is small 
and comparable with the cycle time. This is often the case in assembly operations where the 
downtime is due to quality problems. Markov models reflect operations where the 
downtime is due to mechanical failures, which could be much longer than the cycle time. In 
this paper we address the Markov model. Intuitively, bottleneck (BN) of a production line is 
understood as a machine that impedes the system performance in the strongest manner. 
Some authors define the BN as the machine with the smallest isolation production rate (i.e. 
the production rate of the machine when no starvation and blockages are present). Others 
call the BN the machine with the largest inventory accumulated in front of it. Any may 
identify the machine that affects the bottom line, i.e. the system production rate, because the 
above definitions are local in nature and do not take into account the total system 
properties, such as the order of the machines in the production line, capacity of the buffers, 
etc. Identification of BNs and their optimal capacity for avoiding the machine downtime is 
considered as one of the most important problems in manufacturing systems. An illustrative 
example will emphasize our approach. 

 
2. The System Model of Production Lines  

The following model of a production line is considered:  
1) The system consists of N machines arranged serially and N+1 buffers separating each 
consecutive pair of machines.  
2) Each buffer Bi is characterized by its capacity Ci <  , 2   i   N, the first and the last 
buffer are considered to be of an infinite capacity. 
3) Each machine has two states: up and down. When up, the machine produces with the rate 
of 1 part per unit of time (cycle); when the machine is down, no production takes place. 
4) The uptime and the downtime of each machine Mi are random variables distributed 
exponentially with parameters i and μi respectively. 
5) Machine Mi is starved at time t if buffer Bi-1 is empty at time t, machine M1 is never 
starved. 
6) Machine Mi is blocked at time t if buffer Bi-1 is full at time t, machine MN is never blocked. 
The isolation production rate of each machine (i.e. the average number of parts produced 
per unit time if no starvation or blockage takes place) is: 
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Machine Mi is the bottleneck (BN) if it is both uptime bottleneck and downtime bottleneck. 
Let Mi be the bottleneck machine. Then it is referred to as the uptime preventive 
maintenance bottleneck if: 
 

     
iTup


>

iTdown


     (4) 

 
If the inequality is reversed, the bottleneck is referred to as the downtime preventive 
maintenance bottleneck. 

Notice: a) The absolute values of 
iTdown


 are used because otherwise this number is 

negative: increase in Tdown leads to a decrease of . 
b) In some instances, the downtime of a machine is due to lapses in the performance of 
manual operators, rather than machine breakdown, thus the identification of downtime 
bottlenecks provides guidance for the development of production automation. 
c) Preventive maintenance, as part of the total production maintenance, leads to both an 
increased uptime and a decrease of automated machine downtime. Some of the preventive 
maintenance measures affect the uptime and others the downtime. We refer to them as 
uptime preventive maintenance and downtime preventive maintenance. Thus, the 
classification of the bottleneck in either uptime bottleneck or downtime bottleneck has an 
impact on planning actions that lead to the most efficient system improvement. 

 
2.1 Bottleneck indicators  
We are seeking bottlenecks identification tools that are based either on the data available on 
the factory floor by means of real time measurements (such as average up - and down - 
time, starvation and blockage time, etc.), or on the data that can be constructively using the 
machines and buffers parameters (i, μi, Ni ). We refer to these tools as bottleneck indicators. 

 
2.1.1 A single machine case  
A single machine defined by the assumptions made in the second paragraph is uptime 
bottleneck if Tup < Tdown and it is downtime bottleneck if Tdown < Tup. 
We can easily show that this assumption is true from (1) since: 
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lines are discrete event systems. Two basic models of machine reliability are mentioned in 
the literature: Bernoulli (Jacobs & Meerkov, 1995) and Markov (Gershwin, 1994), (Lim et al., 
1990). The first model assumes that the process of Bernoulli trials determines the status of a 
machine in each cycle (i.e. the time necessary to process a part). In Markov model the state 
of a machine in a cycle is determined by a conditional probability, with the condition being 
the state of the machine in the previous cycle. Both model Bernoulli and Markov reflect 
practical situations: Bernoulli reliability model is more appropriate when downtime is small 
and comparable with the cycle time. This is often the case in assembly operations where the 
downtime is due to quality problems. Markov models reflect operations where the 
downtime is due to mechanical failures, which could be much longer than the cycle time. In 
this paper we address the Markov model. Intuitively, bottleneck (BN) of a production line is 
understood as a machine that impedes the system performance in the strongest manner. 
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identify the machine that affects the bottom line, i.e. the system production rate, because the 
above definitions are local in nature and do not take into account the total system 
properties, such as the order of the machines in the production line, capacity of the buffers, 
etc. Identification of BNs and their optimal capacity for avoiding the machine downtime is 
considered as one of the most important problems in manufacturing systems. An illustrative 
example will emphasize our approach. 
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buffer are considered to be of an infinite capacity. 
3) Each machine has two states: up and down. When up, the machine produces with the rate 
of 1 part per unit of time (cycle); when the machine is down, no production takes place. 
4) The uptime and the downtime of each machine Mi are random variables distributed 
exponentially with parameters i and μi respectively. 
5) Machine Mi is starved at time t if buffer Bi-1 is empty at time t, machine M1 is never 
starved. 
6) Machine Mi is blocked at time t if buffer Bi-1 is full at time t, machine MN is never blocked. 
The isolation production rate of each machine (i.e. the average number of parts produced 
per unit time if no starvation or blockage takes place) is: 
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c) Preventive maintenance, as part of the total production maintenance, leads to both an 
increased uptime and a decrease of automated machine downtime. Some of the preventive 
maintenance measures affect the uptime and others the downtime. We refer to them as 
uptime preventive maintenance and downtime preventive maintenance. Thus, the 
classification of the bottleneck in either uptime bottleneck or downtime bottleneck has an 
impact on planning actions that lead to the most efficient system improvement. 
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We are seeking bottlenecks identification tools that are based either on the data available on 
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machines and buffers parameters (i, μi, Ni ). We refer to these tools as bottleneck indicators. 
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Tup


 = 
 2TdownTup

Tdown


     (6) 

 
We may say that the smallest average uptime or down-time of a machine defines its nature 
as bottleneck. The primary focus of the preventive maintenance and automation should be 
placed on the downtime further decrease, if Tdown < Tup. If Tup < Tdown, the attention 
should be concentrated on the increase of the uptime. In most practical situations Tdown < 
Tup, therefore the above indicator states that the reduction of the downtime is more efficient 
than a comparable increase of the uptime (Proth. & Xie, 1994). 

 
2.1.2 Two machine cases 
It is well known that, given a constant ratio between Tupi and Tdowni, the machine with the 
longer up - and down - time is more detrimental to the system’s production rate than with a 
shorter up - and down - time. 
In view of this property, one might think that the bottleneck is the machine with the longer 
up - and down - time. This is not true. The reason is that an improvement of the machine 
with a shorter up - and down - time leads to a better utilization of the disturbance 
attenuation capabilities of the buffer than a comparable improvement of the machine with a 
longer up - and down - time. Therefore, an improvement of the “better” machine is the best 
for the system as a whole (Chiang et al., 2000). 

In a production line with two machines of equal efficiency (i.e., 
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), the 

machine with the smaller downtime is the bottleneck (Narahari & Viswandham, 1994). If the 
downtime of this machine is smaller than its uptime, preventive maintenance and 
automation should be directed toward the downtime decrease. If the downtime is 
sufficiently longer than the uptime, preventive maintenance and automation should be 
directed toward the increase of the uptime. 
In the most practical situations, the isolation production rate of the machines (i.e., the faction 
Tup/(Tup+Tdown) is greater than 0,5. Therefore, the most usual bottleneck is the downtime 
bottleneck. To identify the downtime bottleneck in the case of machine with unequal 

efficiency (i.e. 
1
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Tdown
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Tup

) in (Laftit et al., 1992) the following bottleneck 

indicator is given: 
If mb1Tup1Tdown1 < ms2Tup2Tdown2, machine M1 is the downtime bottleneck. 
If mb1Tup1Tdown1 > ms2Tup2Tdown2, machine M2 is the downtime bottleneck. 
The probability of manufacturing blockage mbi is defined as: 
 
mbi = Prob ({Mi is up at time t} {Bi is full at time t} {Mi+1 fails to take parts from Bi at time t}). 
 
The probability of manufacturing starvation msi is defined as:  
 
msi = Prob ({Mi-1 fails to put parts into Bi-1 at time t} {Bi-1 is empty at time t} {Mi is up at time t}). 

 

2.2 Extreme status for buffers  
In the sequel we will try to determine the bottleneck behavior of the machines as a function 
of their efficiency correlated with buffer size. We will also try to anticipate the events like 
buffers full or empty, which determine the bottlenecks. We consider a segment consisting of 
two machines Mi and Mi+1 with intermediate storage Bi at any time between successive 
events. Let TA be the apparent time of an event occurrence at Bi. This event may occur or 
not if, in the mean time, another cancelling event takes place. 
Let Pi be the number of parts which are scheduled in process by Mi until the occurrence of 
the event. We examine two different situations, which result in a buffer event.  
We define the following: 
 
pri  The nominal production rate of machine Mi, i = 1,...,N 
 
BL(j,t) Level of buffer Bj, j = 2,..., N-1 
 
T1j(t)  Delay time until the next arrival to Bj 
 
T2j(t) Delay time until the next departure from Bj 
 
BCj The capacity of buffer Bj, j = 2,..., N  

 
2.2.1 Buffer-full event  
Although the buffer Bi has enough space to accept the parts produced by Mi during the 
transient time T2i, since Mi produces at a faster rate than Mi+1  ( or the delay time T2i is too 
long), buffer Bi will be full (see Fig. 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Buffer - full event 
 
In Fig. 1. the continuous line represents a machine operation on a work-part and the arrows 
represent arrivals to the succeeding buffer. Blank intervals indicate idle periods due to 
blockage or starvation of machines. The function  depicted in Fig.1. is encountered when: 
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(pri > pri+1)  [pri (T2i - T1i) > BCi - BL(i)]     (7) 
 
The buffer - full event will occur when the Pi-th part leaves from Mi. The number of parts 
produced by Mi after t + T1i is Pi -1. From Fig. 1. the sequel relations hold: 
 

Pi - Pi+1 = BCi - BL(i)     (8) 
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Time interval between departure and the processing end of the first blocked part of Mi, lies 
in an inter-departure interval of Mi+1: 
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which yields: 

Pi = 1 + int{[BCi - BL(i) + pri+1(T1i - T2i)].
1ii

i
prpr

pr


}  (13) 

 
2.2.2 Buffer-empty event 
This event is dual to the blockage and analogous results will be derived. The buffer-empty 
event is encountered when buffer Bi is exhausted and its succeeding machine Mi+1 has just 
transmitted a work-part downstream. 
Although the buffer Bi has enough parts for the transient period T1i, because machine Mi+1 
produces faster than Mi (see Fig. 2.), or the delay time T1i is too long, finally Bi becomes 
empty.  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Buffer - empty event 
 
The situation depicted in Fig. 2. is encountered when: 
 

(pri < pri+1)  [pri+1 (Ti1 - T2i) > BL(i)]   (14) 
 
The inter-departure interval of Mi+1 just before the occurrence of the empty buffer event 
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3. The System Model of Flexible Manufacturing Cells  
In this paper, a flexible manufacturing system (FMS) is treated as a discrete event system 
and we consider that the system evolution constitutes a discrete state-space stochastic 
process. In particular, we focus on Markov chain models. Such a model could be generated 
directly or using higher level models such as stochastic Petri nets or discrete event 
simulation. 
Markov models with absorbing states have a trivial steady-state, namely the chain ends up 
in some absorbing state, remaining there forever; therefore, transient analysis alone 
emphasizes the system performance. 
We assume that a manufacturing system evolves in time as a homogenous continuous time 
Markov chain {x(t); t  0} with state space S = {0, 1,...} and infinitesimal generator W. Let i, j 
S and: 
 pij (t) = P{x(t) = j; x(0) = i} (20) 
 
 A(t) = [pij (t)] (21) 
 
The forward and backward differential equations that govern the behavior of this Markov 
chain are respectively given by (Gershwin, 1994): 

 
dt
d

[A(t)] = A(t). W (22) 

 

 
dt
d

 [A(t)]* = W. A(t) (23) 

 
with initial conditions A(0) = I in both cases. Note that these are first order, linear, ordinary 
differential equations. In terms of the individual matrix elements, the above equations 
become: 

 
dt
d

[pij(t)] = wij. pij (t) +  



jk

ikkj tpw  (24) 

 

 
dt
d

[pij(t)] = wii. pij (t) +  



ik

kjik tpw  (25) 

 
The forward and backward equations have the same unique solution given by  

 

 A(t) = eWt (26) 
 
where, eWt is the exponential matrix defined by the Taylor series. 

 eWt = 
 







0 !k

k

k
tW

 (27) 

To find out the state probabilities Y(t) = [p0(t), p1(t),...] where pj(t) = P{x(t) = j}, jS, we need 
to solve the differential equation:  

   
dt
d

[ Y(t)] = Y(t). W (28) 

 
The solution is given by: 

 Y(t) = Y(0). eWt (29) 

 
3.1 Discrete-event model of a flexible manufacturing cell line 
A flexible manufacturing production line is a series arrangement of machines and buffers, as 
shown in Fig. 3. 

 
Fig. 3. The flexible manufacturing cell line 
 
The parts enter the first machine and they are processed and transported to the succeeding 
components, until they finally leave the system. The machines produce at different rates, 
fail, and are repaired randomly, thus causing changes in the flow of parts. The changes 
propagate to neighboring machines and may render them starved or blocked. Buffers of 
finite capacity are inserted in order to reduce these effects. The operation of the production 
line is ruled by the following: 

a) The line consists of N+1 buffers. There is one buffer B0 at the beginning of the line, 
with finite capacity and another Bn at the end, with unlimited capacity. 

b) The uptimes and the downtimes of machines are assumed for convenience to be 
exponential random variables, although any type of distribution may be considered. 

c) In each machine there is space for a single work-part. A machine Mi is starved if it has 
no part to work on and the inventory of the upstream buffer Bi-1 has been exhausted. 
Moreover, Mi is blocked if it is prevented from releasing a finished part downstream 
because Bi is full. 

d) Starved or blocked machines remain forced down until a work-part or a unit space is 
available. During these idle periods, machines do not deteriorate. 

e) Transportation time of work-parts to and from buffers is negligible or is incorporated 
in the processing time.  

As we have seen, absorbing states occur in manufacturing system models that capture 
phenomena such as deadlocks. Interesting for such systems is the time until an absorbing 
state is reached. Let {X(u); u 0} be the Markov chain under consideration. Let the state 
space be finite and given by S = {0, 1,..., m, m+1,..., m+n}, where m  0, n > 0, the first (m+1) 
states are transient states, and the rest of the states are absorbing states. Let 0 be the initial 
state and T, the time to reach any absorbing state. Define: 

…..M MMi-1 Mi B0 Bi-1 Mi+1 MBi Bn ... 
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 pij(t) = P{X(t) = j/ X(0) = i} (30) 
 
Then, we have, for any t > 0 

 P{T > t} = P{X(t)  {m+1,..., m+n}} (31) 
 
So we have: 

 P{T > t} = 1 –  




n

j
jm tP

1
,0  (32) 

 
The cumulative distribution function of T is given by 

 FT(t) =  




n

j
jm tp

1
,0  (33) 

 
The individual probabilities p0,m+j(t) have to be computed by solving the differential 
equations shown in relation (22) or (23). 

 
3.2 The basic cell of the flexible manufacturing system  
The basic cell of the proposed model for flexible manufacturing system analysis consists of a 
machine, for example Mi, its upstream buffer Bi-1 and its downstream buffer Bi. In Fig. 4 we 
have the Markov chain representation of the basic cell of our model for flexible manufacturing 
system analysis and in Fig. 5 we depicted our Makov chain model for flexible manufacturing 
cell system. The interpretation of basic cell is that the machine Mi is in state 0 when there is no 
part being processed, but only transfers of the parts from the machine to its buffers. In state 1, 
when there is a part being processed and a part in state 2, there is a deadlock in the system. 
The arrival rate of parts is i  and the service rate of each part is i . 
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Fig. 5. Markov chain model for flexible manufacturing cells system analysis 

Here, the time to absorption is the time elapsed before a deadlock is reached. We know in 
this case that FT(t) = p02(t). To compute p02(t), we first write down the infinitesimal generator 
W of this Markov chain: 

 W =  



















000

0

iiii
ii

 (34) 

 
First, consider the backward equation (6) for P02(t): 

  )(02 tp
dt
d

=w00. p02(t)+w01. p12(t)+w02. p22(t) (35) 

 
Since w02 = 0, the above becomes: 

  )(02 tp
dt
d

 = -  tpi 02  +  tpi 12  (36) 

 
The backward equation for p12(t) is given by: 

  )(12 tp
dt
d

 = w10. p02(t) + w11. p12(t) + w12. p22(t) (37) 

 
Since p22(t) = 1, the above becomes: 

  )(12 tp
dt
d

 = -  tpi 02  -    tpii 12  + i  (38) 

 
Let pij(s) denote the Laplace transform of pij(t). Taking the transform on either side of the 
equation above, we get: 
 
 sP02(s) = -  sPi 02  +  sPi 12  (39) 

 sP12(s) =  sPi 02  -    sPii 12  + 
s
i  (40) 

 
Simplifying using (20) and (21), we get: 
 

 P02(s) =   22

2

2 iii

i

sss 


 (41) 

 

 
Now, p02(t) can be obtained from equation (41) by inverse Laplace transformation: 
 

 p02(t) = A + B. e-at + C. e-bt (42) 
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where, the constants are given by: 

 a = 
2

42 2
iiiii 

;    b = 
2

42 2
iiiii 

 (43) 

 

 A = 
ab
i ;  B = 

 
 abab

abi

 2

;  C =  abb
i




 (44) 

 
The works (Viswanadham & Ram, 1994), (Lanzon et al., 1996), (Sethi et al., 1997), contain a 
similar discussion on computing the mean time to absorption. 

 
3.3 The buffer events  
In a production line, the next event of a component depends on its current state and on the 
state of adjacent components. An interesting quantity to study is the relation between the 
buffer size and the machine duration of service. This is because a failed machine, being 
coupled with a large buffer, may be delayed enough so that the blocking event is avoided, if 
in the mean time the machine is repaired. So, we may say that in a production line the 
parameter which determines the deadlock of a basic cell, as well as of the entire production 
line, is the buffer size. The phenomenon of blocked and starved states occurs frequently 
when a machine produces at a faster rate than its adjacent ones. In this case, machine Mi is 
located between an empty and a full buffer. It is then forced to wait until a part arrives from 
the upstream cell and upon completion of part processing it is blocked until an empty space 
is available in the downstream buffer. We examine two possibilities: a blocked machine 
empties its upstream buffer (see case A) or a starved machine fills its downstream buffer 
(see case B). In both situations the event is conventionally encountered when a work-part is 
released from Mi to the downstream buffer (see Fig. 6 and Fig. 7). A starved or blocked 
machine alternates between two states for some time until either a not full or a not empty 
event occurs. We consider the segment of machines Mi-1, Mi and Mi+1, and buffers Bi-1 and Bi. 
Let t be the time when the starved and blocked event is encountered and TA the apparent 
time of the next event.  
 

M(i,t) =  
repairunderisif,0

up ismachineif,1

iM
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B(j,t) =   

stateotherwise1,

fullisbufferif2,

emptyisbufferif,0
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BEj(t) =   
otherwise,0

timeatemptiesif,1 tB j  

 

We define the following (Narahari & Viswandham, 1994), (Chiang et al., 2000):  

i  = The nominal production rate (workparts/time-unit) of machine Mi, i = 1,..., n 
T1j(t) = Delay time until the next arrival to Bj 
T2j(t) = Delay time until the next departure from Bj 
We discuss the following situations: Case A: Machine Mi+1 is faster than Mi-1. This situation 
is depicted in Fig. 4 and the condition is: 
 

 (T21 > T1,i-1 + 
i

1
) ( 1 i  > 1 i ) (45) 

 
We note that in Fig. 6 and in Fig. 7 the continuous line represents a machine operation on a 
work-part and the arrows represents arrivals to the succeeding buffer. Blank intervals 
indicate idle periods due to blockage or starvation of machines. The wavy lines denote a 
machine under repair. For Fig. 6, buffer Bi is scheduled to switch from full to an 
intermediate state. The not-full event occurs upon the departure of the last blocked part 
from Mi. We notice that the end-of-processing time of the (1 + Ni)th work-part in Mi is greater 
than the time when a single space for this part is available in Bi. 
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Fig. 6. Starved and blocked machine states when Mi+1 is faster than Mi-1 
 

The opposite holds for the first Ni work-parts. This observation leads to (Ciufudean et al., 
2005): 
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1 i
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 (46) 

and 

 TA = t + T2i + 
1

1


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i

iN   t + T1, i-1 + 
1

1




i

iN + 
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1
 (47) 

 
From relation (26) and (27) we compute the parts until next event, for Bi: 
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From relation (26) and (27) we compute the parts until next event, for Bi: 
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Case B: Machine Mi-1 produces at a faster rate than Mi+1 (machine Mi-1 is faster than Mi+1) and 
the starved machine Mi fills its upstream buffer Bi (see Fig. 5). The condition is: 
 

 (T2i > T1, i-1 + 
i

1
)  ( 1 i  > 1 i ) (49) 

 
This is dual to case A. After that, machine Mi-1 processes Ni-1 parts, a non-empty event will 
occur.  
 
In Fig. 5 we see that the arrival time of (1 + Ni-1)th work-part at buffer Bi-1 is less than the time 
machine Mi is ready to receive it. The opposite holds for the first Ni-1 work-parts (Ciufudean, 
2008). 
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Fig. 7. Starved and blocked machine states when Mi-1 is faster than Mi+1 
 

In a dual situation to case A, we get the parts until the next event, for Bi-1 (Ciufudean & 
Filote, 2010): 

 Ni-1 = 1 + lnt 
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From relation (48) and (52) we notice that the number of parts until the next event depends 
on the service rate of each part. We may say that the buffer dimensions can be calculated in 
such a manner as to avoid the failed state of machines, considering that the time to calculate 
the number of parts until next event is set to T21 = P02 in relation (48) and, respectively, to 
T1,i-1 = P02 in relation (52); where P02 is given by relation (42). 
As we discussed before, the failed state of machines can be avoided if the buffer size is 
bigger than the critical size (the size determined from relation (48) and respectively (52)). 
The condition to be accomplished is that the average time to repair a machine is less than the 
average time to fill the upstream buffer of that machine. 

 
4. An Illustrative Example  

The manufacturing system considered in this paper consists of two cells linked together by a 
material system composed of two buffers A and B and a conveyor. Each cell consists of a 
machine to handle within cell part movement. Pieces enter the system at the load/unload 
station, where they are released from those two buffers, A and B, and then are sorted in cells 
(pieces of type “a“ in one cell, and pieces of type “b” in the other cell). 
We notice that in the buffer A there are pieces of types “a”, “b”, and others, where the 
number of pieces “a” is greater than the number of pieces “b”. In the buffer B there are pieces 
of types “a”, “b”, and others, where the number of pieces “b” is greater than the number of 
pieces “a”. The conveyor moves pieces between the load/unload station of the various cells.  
The sorted piece leaves the system, and an unsorted piece enters the system, respectively 
one of those two buffers A or B. The conveyor along with the central storage incorporates a 
sufficiently large buffer space, so that it can be thought of as possessing infinite storage 
capacity. Thus, if a piece routed to a particular cell finds that the cell is full, its entry is 
refused and it is routed back to the centralized storage area. If a piece routed by the 
conveyor is of a different type than the required types to be sorted, respectively “a” and “b”, 
then that piece is rejected from the system.  
We notice that once a piece is blocked from cell entry, the conveyor does not stop service; 
instead it proceeds with its operation to the other pieces waiting for transport.  
At the system level, we assume that the cells are functionally equivalent, so that each cell 
can provide the necessary processing for a piece. Hence, one cell is sufficient to maintain 
production (at a reduced throughput). We say that the manufacturing system is available 
(or, operational) if the conveyor and at least one of the cells are available. A cell is available 
if its machine is available (Rodriguez et al., 2010).  
Over a specified period of operation, due to the randomly occurring subsystem failures and 
subsequent repairs, the cellular automated manufacturing system will function in different 
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From relation (48) and (52) we notice that the number of parts until the next event depends 
on the service rate of each part. We may say that the buffer dimensions can be calculated in 
such a manner as to avoid the failed state of machines, considering that the time to calculate 
the number of parts until next event is set to T21 = P02 in relation (48) and, respectively, to 
T1,i-1 = P02 in relation (52); where P02 is given by relation (42). 
As we discussed before, the failed state of machines can be avoided if the buffer size is 
bigger than the critical size (the size determined from relation (48) and respectively (52)). 
The condition to be accomplished is that the average time to repair a machine is less than the 
average time to fill the upstream buffer of that machine. 

 
4. An Illustrative Example  

The manufacturing system considered in this paper consists of two cells linked together by a 
material system composed of two buffers A and B and a conveyor. Each cell consists of a 
machine to handle within cell part movement. Pieces enter the system at the load/unload 
station, where they are released from those two buffers, A and B, and then are sorted in cells 
(pieces of type “a“ in one cell, and pieces of type “b” in the other cell). 
We notice that in the buffer A there are pieces of types “a”, “b”, and others, where the 
number of pieces “a” is greater than the number of pieces “b”. In the buffer B there are pieces 
of types “a”, “b”, and others, where the number of pieces “b” is greater than the number of 
pieces “a”. The conveyor moves pieces between the load/unload station of the various cells.  
The sorted piece leaves the system, and an unsorted piece enters the system, respectively 
one of those two buffers A or B. The conveyor along with the central storage incorporates a 
sufficiently large buffer space, so that it can be thought of as possessing infinite storage 
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refused and it is routed back to the centralized storage area. If a piece routed by the 
conveyor is of a different type than the required types to be sorted, respectively “a” and “b”, 
then that piece is rejected from the system.  
We notice that once a piece is blocked from cell entry, the conveyor does not stop service; 
instead it proceeds with its operation to the other pieces waiting for transport.  
At the system level, we assume that the cells are functionally equivalent, so that each cell 
can provide the necessary processing for a piece. Hence, one cell is sufficient to maintain 
production (at a reduced throughput). We say that the manufacturing system is available 
(or, operational) if the conveyor and at least one of the cells are available. A cell is available 
if its machine is available (Rodriguez et al., 2010).  
Over a specified period of operation, due to the randomly occurring subsystem failures and 
subsequent repairs, the cellular automated manufacturing system will function in different 
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configurations and exhibit varying levels of performance over the random residence times 
in these configurations.  
The logical model of our manufacturing system is showed in Fig.8. 

 

 

 

 

 

 

 

 

Fig. 8. Logical model for a manufacturing system 

 
4.1 A Markov model for evaluating the system availability 
For the flexible manufacturing system depicted in Fig. 8, we assume that the machines are 
failure-prone, while the load/unload station and the conveyor are extremely reliable. 
Assuming the failure times and the repair times to be exponentially distributed, we can 
formulate the state process as a continuous time Markov chain (CTMC). The state process is 
given by {X(u), u  0} with state space S = {(ij), i {0,1,2}, j  {0,1}}, where i denotes the 
number of working machines, and j denotes the status of the material handling system (load 
station and conveyor): up “1”, and down “0”. We consider the state independent (or, time 
dependent) failure case and the operation dependent failure case separately. 

 
4.1.1 Time dependent failures  
In this case, the component fails irrespective of whether the system is operational or not. All 
failure states are recoverable. Let ra and rm denote the repair rates of the material handling 
system, and a machine respectively. The state process is shown in Fig. 9, a.  
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Fig. 9. State process of a FMC with time-dependent failures, (a) State process for a state-
independent failure model, (b) Decomposed failure/repair process. 

 

Because the failure/repair behavior of the system components are independent, the state 
process can be decomposed into two CTMCs as shown in Fig. 9, b. Analytically, the state 
process is expressed by relations: S0 = {(21), (11)} and SF = {(20),(10), (00)}. For each state in SF 
no production is possible since the M0HS or both machines are down. In Fig. 2, b the 
failure/repair behavior of each resource type (machines or MHS) is described by a unique 
Markov chain. Thus, the transient state probabilities, pij(t) can be obtained from relation: 

 

 pij(t) = pi(t)·pj(t)                       (53) 
 

where pi(t) is the probability that i machines are working at time t for i = 0,1,2. The 
probability pi(t) is obtained by solving (separately) the failure/repair model of the 
machines. Pj(t) is the probability that j MHS (load/unload station and conveyor) are 
working at instant t, for j = 0,1. Let fa and fm denote the failure rates of MHS and of a 
machine respectively. 
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configurations and exhibit varying levels of performance over the random residence times 
in these configurations.  
The logical model of our manufacturing system is showed in Fig.8. 
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Fig. 9. State process of a FMC with time-dependent failures, (a) State process for a state-
independent failure model, (b) Decomposed failure/repair process. 
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4.1.2 Operation dependent failures  
We assume that when the system is functional, the resources are all fully utilized. Since 
failures occur only when the system is operational, the state space is: S = {(21), (11), (20), (10), 
(01)}, with S0 = {(21), (11)}, SF = {(20), (10), (01)}. The Markov chain model is shown in Fig. 10. 
Transitions representing failures will be allowed only when the resource is busy. Transitions 
rates can however be computed as the product of the failure rates and percentage utilization 
of the resource. If Tkij represents the average utilization of the kth resource in the state (i j), 
the transition rates are given in Fig. 10. 

 

 

 

 

 

 

 

 

Fig. 10. State process of a FMC with state-dependent failures 

 
 4.1.3 A numerical example  
For the FMC presented in this paper in Table 1, the failure/repair data of the system 
components are given. We notice that Tkij (the system average utilization of the kth resource 
in state (ij), Tkij = 1 since the utilization in each operational state is 100% for all  i, j, k, i = 
{0,1,2}, j = {0,1}, k = 4.  
The other notations used in Table 1 are: f, the exponential failure rate of resources; r, the 
exponential repair rate of resources; Np, the required minimum number of operational 
machines in cell p; p = {1,2} and np, the total number of machines in cell p. 
 

 R F Np np Tkij 

Machines 1 0,05 1 2 1 

MHS 0,2 0,001 1 1 1 

Table 1. Data for the numerical study 
 
From Fig. 9 and Fig. 10 we calculate the corresponding infinitesimal generators, and after 
that, the probability vector of CTMC. With relation (1) we calculate the availability of FMC 
given in this article.  
The computational results are summarized in Table 2 for the state process given in Fig. 9 
(FMC with time-dependent failures), and respectively in Table 3 for the state process given in 
Fig. 10 (FMC with state-dependent failures). We consider the system operation over an 
interval of 24 hours (three consecutive shifts). 
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Time [hour] Machines MHS System Availability 

0 1.0000 1.0000 1.0000 

1 0.9800 0.9548 0.9217 

4 0.9470 0.8645 0.7789 

8 0.9335 0.8061 0.7025 

12 0.9330 0.7810 0.6758 

16 0.9331 0.7701 0.6655 

20 0.9330 0.7654 0.6623 

24 0.9328 0.7648 0.6617 

Table 2. Computational results for the FMC in Fig. 9 
 

Time hour Machines MHS System Availability 

0 1.0000 1.0000 1.0000 

1 0.9580 0.9228 0.9001 

4 0.9350 0.8228 0.7362 

8 0.9315 0.8039 0.7008 

12 0.9310 0.7798 0.6739 

16 0.9320 0.7688 0.6632 

20 0.9318 0.7639 0.6598 

24 0.9320 0.7636 0.6583 

Table 3. Computational results for the FMC in Fig. 10 
 
The results of the availability analysis of the flexible manufacturing system are illustrated in 
Fig.11, which depicts the availability of the system as a time function. The numbers x = 2, 3 
indicate the system in Fig. 9, respectively Fig. 10. One can see from Fig.11 that the layout 
with FMC with time-dependent failures is superior to that with FMC with state-dependent 
failure. 
An analytical technique for the availability evaluation of the flexible manufacturing systems 
was presented. The novelty of the approach is that the construction of large Markov chains 
is not required. Using a structural decomposition, the manufacturing system is divided into 
cells. 
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Fig. 11. Availability analysis of the flexible manufacturing system 
 

For each cell, a Markov model was derived and the probability was determined of at least Ni 
working machines in cell i, for i = 1,2,..,n and j working material handling system at time t, 
where Ni and j satisfy the system production capacity requirements. The model presented in 
this paper can be extended to include other components, e.g., tools, control systems. The 
results reported here can form the basis of several enhancements, such as conducting 
throughput studies of cellular flexible manufacturing types with multiple part types.  

 
5. Conclusion 

A model for flexible manufacturing cellular systems analysis has been introduced in this 
paper. Such a model could be generated directly or using higher level models such as 
stochastic Petri nets or discrete event simulation. A discrete-event system formulation and 
state partition into basic cells and fast and slow varying section, lead to a reduced 
computation cost. Further research in this area should focus on systems modeled with 
Markov chains which exhibit a cut-off phenomenon, as the existence of a cut-off 
phenomenon is a good indicator to whether a transient or a steady-state analysis is 
appropriate in a given setting. For example, if the cut-off time is known and the duration of 
observation is less than the cut-off time, then transient analysis is more meaningful than 
steady-state analysis. 
Identification and measurement of the bottleneck times in production lines has implications 
for both natures concerning the preventive maintenance and the production automation. In 
this paper we address the Markov model of production lines with bottlenecks. In lines 
where machines have identical efficiency, the machine with the smaller downtime is the 
bottleneck. In two-machine lines, the downtime bottleneck is the machine with the smallest 
value of p.Tup.Tdown, where p is the probability of blockage for the first machine and the 
probability of starvation for the second. Anticipation of events like full buffer or empty 
buffer, which determine bottlenecks, has also implications for the preventive maintenance of 
the manufacturing system. Future work in this area should focus on extensions of the results 
obtained in manufacturing systems with high failure rates. 
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Fig. 11. Availability analysis of the flexible manufacturing system 
 

For each cell, a Markov model was derived and the probability was determined of at least Ni 
working machines in cell i, for i = 1,2,..,n and j working material handling system at time t, 
where Ni and j satisfy the system production capacity requirements. The model presented in 
this paper can be extended to include other components, e.g., tools, control systems. The 
results reported here can form the basis of several enhancements, such as conducting 
throughput studies of cellular flexible manufacturing types with multiple part types.  

 
5. Conclusion 

A model for flexible manufacturing cellular systems analysis has been introduced in this 
paper. Such a model could be generated directly or using higher level models such as 
stochastic Petri nets or discrete event simulation. A discrete-event system formulation and 
state partition into basic cells and fast and slow varying section, lead to a reduced 
computation cost. Further research in this area should focus on systems modeled with 
Markov chains which exhibit a cut-off phenomenon, as the existence of a cut-off 
phenomenon is a good indicator to whether a transient or a steady-state analysis is 
appropriate in a given setting. For example, if the cut-off time is known and the duration of 
observation is less than the cut-off time, then transient analysis is more meaningful than 
steady-state analysis. 
Identification and measurement of the bottleneck times in production lines has implications 
for both natures concerning the preventive maintenance and the production automation. In 
this paper we address the Markov model of production lines with bottlenecks. In lines 
where machines have identical efficiency, the machine with the smaller downtime is the 
bottleneck. In two-machine lines, the downtime bottleneck is the machine with the smallest 
value of p.Tup.Tdown, where p is the probability of blockage for the first machine and the 
probability of starvation for the second. Anticipation of events like full buffer or empty 
buffer, which determine bottlenecks, has also implications for the preventive maintenance of 
the manufacturing system. Future work in this area should focus on extensions of the results 
obtained in manufacturing systems with high failure rates. 
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1. Introduction

As grid technologies gain popularity, separate clusters and computers are increasingly being
interconnected to create computing architectures for the processing of scientific and commer-
cial applications (Sánchez et al., 2010). These constituent parts may be different from each
other as well as be located either within a single organization or across various geographical
sites. Concerning this, the task of allocating processes to processors on such architecture often
becomes a problem requiring considerable effort. In order to fully exploit this kind of environ-
ments, the programmer must know both the machine architecture and the application code
properly. Moreover, each new application requires another analysis for process scheduling.
Since both resource management and scheduling are key services for grid environments, is-
sues like load balancing represent a common concern for most developers. Thus, a possibility
is to explore the automatic load balancing at middleware level, linking the balancer tool with
the programming library. For instance, an allocation scheme where the processes with longer
computing times are mapped to faster machines can be used. On the other hand, this ap-
proach is not the best one for irregular applications and dynamic distributed environments,
where a good processes-resources assignment performed in the beginning of the application
may not remain efficient with time (Low et al., 2007). At this moment, it is not possible to
recognize either the amount of computation of each process or the communication patterns
among them. Besides fluctuations in the processes’ computation and communication actions,
the processors’ load may vary and networks may become congested while the application is
running. An alternative is to perform process rescheduling by applying the migration of the
processes to new resources, offering runtime load balancing (Chen et al., 2008).
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In this context, we developed a model called MigBSP. MigBSP controls process rescheduling
on dynamic and heterogeneous environments, like multi-cluster ones. It acts over BSP (Bulk
Synchronous Parallel) applications (Valiant, 1990) and works with the concept of hierarchy
in two levels using Sets (considering different networks) and Set Managers. MigBSP’s adjusts
the conclusion of both local computation and global communication phases of BSP processes
to be faster taking benefit from data collected at runtime. This adjustment happens through
the migration of those processes whose have long computation time, perform several com-
munication actions with other processes that belong to a same Set and present low migration
costs. The use of the Computation, Communication and Memory (migration costs) metrics
aims to offer performance and better quality for scheduling decisions. Besides multiple met-
rics, other keyword of MigBSP is adaptivity. Contrary to existing approaches (Bonorden et al.,
2005; Vadhiyar & Dongarra, 2005), MigBSP performs the rescheduling launching according to
the system state in order to reduce its impact on application execution.
The present chapter describes MigBSP and its novel ideas for process rescheduling. We de-
veloped three different BSP-based scientific applications in order to verify the impact and
the efficiency of MigBSP’s algorithms. Besides the choice of the applications, we modeled a
multi-cluster infrastructure and varied the number of processes. Summarizing the results, we
achieved a mean performance gain of 19% when applying process migration over our appli-
cations. Moreover, a mean overhead lower than 7% was observed when migrations are not
applied (if the model decides that migrations are not recommended during all application ex-
ecution). Therefore, the use of multiple metrics and efficient adaptations configure MigBSP
as a viable solution when treating migration of BSP processes. Besides BSP, MigBSP’s algo-
rithms can be used in several other situations where load balancing takes place, such as in
Web servers, data centers and synchronous computations in general (Bonorden et al., 2005).
The remaining of this chapter is organized as follows. Section 2 shows related work and
some opportunities of research. Section 3 describes the rationales of MigBSP, emphasizing
its contribution and novel ideas. Section 4 presents our evaluation methodology. Section
5 discusses the results and points out the performance gain/loss when executing MigBSP.
Finally, the concluding remarks of the chapter are displayed in Section 6.

2. Related Work

GridWay resource broker treats with time and cost optimization on scheduling and migration
areas (Moreno-Vozmediano & Alonso-Conde, 2005). Both migration mechanisms consider
only data from CPU, like speed and load. (Bhandarkar, Brunner & Kale, 2000) presented a
support for adaptive load balancing in MPI applications. Periodically, MPI application trans-
fers control to the load balancer using a special call MPI_Migrate(). This mechanism implies in
modifications in the application code. Besides this last work, a fixed period for rescheduling
launching is also demonstrated in the following approaches (Hernandez & Cole, 2007; Utrera
et al., 2005). Adaptive MPI (AMPI) (Huang et al., 2006) uses Charm++ framework to offer load
balancing. Charm++ uses workload data and objects communication pattern to redistribute
the workload at each load balancing time.
A system for autonomic rescheduling of MPI (Message Passing Interface) programs is pre-
sented in (Du et al., 2004). This work presents an extensible rule-based mechanism for policy
making. When a policy is satisfied, its actions are done. Besides the consideration of moni-
tored data, this system also uses an application description in order to estimate the execution
time. Vadhiyar and Dongarra presented a migration framework and self-adaptivity in GrADS
system (Vadhiyar & Dongarra, 2005). However, they computed the migration costs as a fixed

value. In addition, the gain with rescheduling is based on the remaining execution time pre-
diction over a new specified resource. Thus, this framework must work with applications in
which their parts and durations are known in advance.
(Heiss & Schmitz, 1995) developed a load balancer where the load of each task is represented
by a particle. Such work considers the processors load, the communication among the tasks
and the amount of data to be migrated. This work considers static information about the
behavior of the tasks (number of instructions, interactions among the tasks and amount of
memory). Furthermore, the migration of tasks is performed only to a neighbor node (direct
connection in the processors graph). (Du, Sun & Wu, 2007) measured the migration costs at
application runtime. For that, they described a model that considers the process, the memory,
the I/O and the communication states. Nevertheless, these authors specify neither when to
launch the process migration, nor which processes will be migrated actually. Kondo et al.
(Kondo et al., 2002) described a client-server scheduling model for global computing. Their
model measures the processor speed, the network bandwidth and the disk space to set the
number of work units that can be sent to a client. However, these values are not combined
and the minimum of them gives the number of work that the server will pass to a client.
Concerning the BSP scope, we can cite two works that present migration on BSP applications.
The first one describes the PUBWCL library which aims to take profit of idle cycles from
nodes around the Internet (Bonorden et al., 2005). PUBWCL can migrate a process during its
computation phase as well as after the barrier. All proposed algorithms just use computation
data about processes and the the nodes. Other work comprises an extension of PUB library to
support migration (Bonorden, 2007). The author explains that a load balancer decides when to
launch the process migration. Nevertheless, this issue is not addressed in (Bonorden, 2007).
Bonorden proposed both a centralized and a distributed strategies for load balancing. In the
first one, all nodes send data about their CPU power and load to a master node. The master
verifies the least and the most loaded node and migrates one process between them. In the
distributed approach, every node chooses c other nodes randomly and asks them for their
load. One process is migrated if the minimum load of c analyzed nodes is smaller than the
load of the node that is performing the test. The drawback of this strategy is that it can create
a lot of messages among the nodes. Moreover, both strategies take into consideration neither
the communication among the processes, nor the migration costs.

3. MigBSP: Process Rescheduling Model

A BSP application is divided in one or more supersteps, each one containing both computation
and communication phases followed by a barrier synchronization. Since the barrier always
wait for the slowest process, MigBSP’s final objective is to adjust the processes’ location in
order to reduce the supersteps’ times. Figure 1 (a) shows a superstep k of an application in
which the processes are not balanced among the resources. Figure 1 (b) depicts the expected
result with processes redistribution at the end of superstep k, which will influence the exe-
cution of the following supersteps. MigBSP offers automatic load balancing at middleware
level, requiring no changes in the application code nor previous knowledge about the sys-
tem/application. All necessary data for its functioning can be captured directly in both com-
munication and barrier functions as well as in other sources like the operating system. The
final result of MigBSP is a formalism that answers the following issues regarding process mi-
gration: (i) “When” to launch the mechanism for process migration; (ii) “Which” processes are
candidates for migration and; (iii) “Where” to put the elected processes. We are not interested
in the keyword “How”, that treats the mechanism employed to perform migrations.
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Fig. 1. BSP Supersteps in two different situations

MigBSP can be seen as a scheduling middleware. Concerning this area, (Casavant & Kuhl,
1988) proposed a scheduling taxonomy for general purpose distributed computing systems
in order to formalize the classification of schedulers. MigBSP can be enclosed on the global
and dynamic items. The dynamic feature considers that information for process scheduling
are collected at application runtime. The role of scheduling is spread among several processes
that cooperate among themselves in order to improve resource utilization (processors and
network). Thus, the model performs a physically distributed and cooperative scheduling. The
achieved scheduling is sub-optimal and employs heuristics. Finally, following the horizontal
classification of Casavant and Kuhl, the idea is to present an adaptive scheduling that can
change its execution depending on the environment feedback.

3.1 Model of Parallel Machine and Communication
MigBSP works over an heterogeneous and dynamic distributed environment. The heteroge-
neous issue considers the processors’ capacities (all processors have the same architecture,
e.g. i386), as well as the network bandwidth and level (Fast and Gigabit Ethernet and multi-
clusters environments, for instance). The dynamic behavior deals with environment changes
which were perceived at runtime (such as network congestion and fluctuations on processors’
load). Moreover, the dynamic behavior can also occur at process level, since some processes
may need more computational power or increase their network interaction with other pro-
cesses during application runtime. Each process is mapped to a real processor which can
execute more than one process. In order to turn the scheduling more flexible and efficient,
MigBSP proposes a hierarchical scheduling. The nodes are gathered to create the abstraction
of a Set. A Set could be a LAN network or a cluster. Each Set is composed by one or more
nodes (each with one or more processors) and a Set Manager. The scheduling mechanism is

located inside every process (additional code in barrier function) and inside each Set Manager.
This last entity captures scheduling data from a Set and exchanges it among other managers.
Our communication model affirms that the Sets are fully interconnected, meaning that there
exists at least one communication path between any two nodes. The communication is asyn-
chronous, where the sending is non blocking while the receiving is blocking. In addition, the
underlying network protocol always guarantee reliability and the fact that the messages sent
across the network are received in the order sent previously.

3.2 Question “When”: Process Rescheduling Activation
The decision for process remapping is taken at the end of a superstep. We are employing the
reactive migration approach (Milanés et al., 2008), where the process relocation is launched
from outside the application (in this case, at middleware level). The migration point was
chosen because in this moment it is possible to analyze data about the computation and com-
munication from all processes. We applied two adaptations aiming to put as less intrusion in
the application as possible. They provide an adaptable interval between migration calls.

3.2.1 First Adaptation: Controlling the Migration Interval based on the Processes’ Balance
We are using an index α (α ∈ N∗) in order to turn viable the adaptivity on process rescheduling
calling. α will inform the interval between supersteps to apply process migration. This index
increases if the system tends to the stability in the conclusion time of each superstep and
decreases on the contrary. The last case means that the frequency of calls increases to turn
the system more stable quickly. In order to allow a sliding α, it is necessary to verify if the
distributed system is balanced or not. To treat this issue, the time of each BSP process is
collected at the end of every superstep. Thus, the times of the slowest and the fastest processes
are captured, and an arithmetic average of the times is computed. The distributed system
is considered stable if both Inequalities 1 and 2 are true. In both inequalities, D informs the
percentage of how far the time of the slowest and the fastest processes can be from the average.
The D value is passed in model initialization. Figure 2 shows the algorithm that reveals how
the α value is computed along the application execution. A variable called α′ was employed
to save the temporary value of α. α′ will show the next interval to trigger the load balancing.
α′ suffers a variation of one unity at each superstep depending on the state of the system.

time o f the slowest process < average time . (1 + D) (1)

time o f the f astest process > average time . (1 − D) (2)

In Figure 2, t (k ≤ t ≤ k + α − 1) is the index of a superstep and k represents the superstep
that comes after the last call for load rebalancing or it is 1 when the application is beginning
(k and α will have the same meaning in all algorithms). α′ does not have an upper bound, but
its lower value is the initial value of α. In the best case, the system is always in equilibrium
and α′ always increases. For example, if the system is always stable and the initial value
of α is 10, after 10 supersteps the new value of α will be 20. The idea of the model is to
minimize its intrusion in application execution while the system stays stable, postponing the
process rescheduling activation according to α. In implementation view, BSP processes save
their times in a vector and pass them to their Set Managers when rescheduling is activated.
Following this, all Set Managers exchange their information. Taking into account the the times
of each process, the Set Managers compute both Inequalities 1 and 2. Therefore, each manager
knows the α′ variation locally.
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Fig. 1. BSP Supersteps in two different situations

MigBSP can be seen as a scheduling middleware. Concerning this area, (Casavant & Kuhl,
1988) proposed a scheduling taxonomy for general purpose distributed computing systems
in order to formalize the classification of schedulers. MigBSP can be enclosed on the global
and dynamic items. The dynamic feature considers that information for process scheduling
are collected at application runtime. The role of scheduling is spread among several processes
that cooperate among themselves in order to improve resource utilization (processors and
network). Thus, the model performs a physically distributed and cooperative scheduling. The
achieved scheduling is sub-optimal and employs heuristics. Finally, following the horizontal
classification of Casavant and Kuhl, the idea is to present an adaptive scheduling that can
change its execution depending on the environment feedback.

3.1 Model of Parallel Machine and Communication
MigBSP works over an heterogeneous and dynamic distributed environment. The heteroge-
neous issue considers the processors’ capacities (all processors have the same architecture,
e.g. i386), as well as the network bandwidth and level (Fast and Gigabit Ethernet and multi-
clusters environments, for instance). The dynamic behavior deals with environment changes
which were perceived at runtime (such as network congestion and fluctuations on processors’
load). Moreover, the dynamic behavior can also occur at process level, since some processes
may need more computational power or increase their network interaction with other pro-
cesses during application runtime. Each process is mapped to a real processor which can
execute more than one process. In order to turn the scheduling more flexible and efficient,
MigBSP proposes a hierarchical scheduling. The nodes are gathered to create the abstraction
of a Set. A Set could be a LAN network or a cluster. Each Set is composed by one or more
nodes (each with one or more processors) and a Set Manager. The scheduling mechanism is

located inside every process (additional code in barrier function) and inside each Set Manager.
This last entity captures scheduling data from a Set and exchanges it among other managers.
Our communication model affirms that the Sets are fully interconnected, meaning that there
exists at least one communication path between any two nodes. The communication is asyn-
chronous, where the sending is non blocking while the receiving is blocking. In addition, the
underlying network protocol always guarantee reliability and the fact that the messages sent
across the network are received in the order sent previously.

3.2 Question “When”: Process Rescheduling Activation
The decision for process remapping is taken at the end of a superstep. We are employing the
reactive migration approach (Milanés et al., 2008), where the process relocation is launched
from outside the application (in this case, at middleware level). The migration point was
chosen because in this moment it is possible to analyze data about the computation and com-
munication from all processes. We applied two adaptations aiming to put as less intrusion in
the application as possible. They provide an adaptable interval between migration calls.

3.2.1 First Adaptation: Controlling the Migration Interval based on the Processes’ Balance
We are using an index α (α ∈ N∗) in order to turn viable the adaptivity on process rescheduling
calling. α will inform the interval between supersteps to apply process migration. This index
increases if the system tends to the stability in the conclusion time of each superstep and
decreases on the contrary. The last case means that the frequency of calls increases to turn
the system more stable quickly. In order to allow a sliding α, it is necessary to verify if the
distributed system is balanced or not. To treat this issue, the time of each BSP process is
collected at the end of every superstep. Thus, the times of the slowest and the fastest processes
are captured, and an arithmetic average of the times is computed. The distributed system
is considered stable if both Inequalities 1 and 2 are true. In both inequalities, D informs the
percentage of how far the time of the slowest and the fastest processes can be from the average.
The D value is passed in model initialization. Figure 2 shows the algorithm that reveals how
the α value is computed along the application execution. A variable called α′ was employed
to save the temporary value of α. α′ will show the next interval to trigger the load balancing.
α′ suffers a variation of one unity at each superstep depending on the state of the system.

time o f the slowest process < average time . (1 + D) (1)

time o f the f astest process > average time . (1 − D) (2)

In Figure 2, t (k ≤ t ≤ k + α − 1) is the index of a superstep and k represents the superstep
that comes after the last call for load rebalancing or it is 1 when the application is beginning
(k and α will have the same meaning in all algorithms). α′ does not have an upper bound, but
its lower value is the initial value of α. In the best case, the system is always in equilibrium
and α′ always increases. For example, if the system is always stable and the initial value
of α is 10, after 10 supersteps the new value of α will be 20. The idea of the model is to
minimize its intrusion in application execution while the system stays stable, postponing the
process rescheduling activation according to α. In implementation view, BSP processes save
their times in a vector and pass them to their Set Managers when rescheduling is activated.
Following this, all Set Managers exchange their information. Taking into account the the times
of each process, the Set Managers compute both Inequalities 1 and 2. Therefore, each manager
knows the α′ variation locally.
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1. for t from superstep k to superstep k + α − 1 do
2. if Inequalities 1 and 2 are true then
3. Increase α′ by 1
4. else if α′ > initial α
5. Decrease α′ by 1
6. end if
7. end for
8. Call for BSP process rescheduling
9. α = α′

Fig. 2. Interval of supersteps α for the next call for BSP process rescheduling

3.2.2 Second Adaptation: Controlling the Rescheduling Interval based on the Number of
Calls without Migrations

The other adaptation considers the management of D (see Inequalities 1 and 2) based on the
frequency of migrations. Figure 4 depicts the impact of D when defining the situation of the
processes. The idea is to increase D if process rescheduling is activated for ω consecutive times
and none migrations happen. The increase of D enlarges the interval in which the system is
considered stable, causing the increase of α′ consequently. In contrast, D can decrease down
to a limit if each call produces the migration of at least one process. The algorithm depicted in
Figure 3 presents how D is controlled at each rescheduling call.

1. γ ← Consecutive rescheduling calls without migrations
2. if γ ≥ ω then
3. if D + D

2 < 1then
4. D ← D + D

2
5. end if
6. else if D > initial D and γ = 0 then
7. D ← D - D

2
8. end if

Fig. 3. Stability of the system according to D

The computation of D is done by each Set Manager, which knows if migrations occurred
during the migration call. This adaptation is important when the migration costs are high.
Thus, although a process is selected for migration, its transferring will not take place and the
system will remain with the same scheduling configuration. Consequently, it is pertinent to
increase D in order to minimize MigBSP impact on application execution in this situation.

3.3 Question “Which”: Choosing the Candidate Processes for Migration
The answer for “Which” is solved through our decision function called Potential of Migration
(PM). Each process i computes n functions PM(i, j), where n is the number of Sets and j means
a specific Set. The key idea consists in not performing all available processes-resources tests at
the rescheduling moment. PM(i, j) is found through the combination of Computation, Com-
munication and Memory metrics. The first two work at the computation and communication
phases of a superstep. The Memory metric acts as an idea of migration costs.
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Fig. 4. Balancing situations which depend on the distance D from the average A

3.3.1 Computation Metric
Each process i computes Comp(i, j) functions, where Comp(i, j) informs the Computation met-
ric for a process i and a specific Set j. Set j is used in Comp(i, j) calculus to simulate the
performance of process i on different sites of the parallel architecture. The data used to cal-
culate this metric start at superstep k and finish at superstep k + α − 1. For every superstep t
(k ≤ t ≤ k + α − 1), the number of processor’s instructions (It) and the conclusion time of the
computation phase (CTt) are stored. The value of It is used to evaluate the process stability
(regularity), that is represented by the Computation Pattern called Pcomp(i). This pattern is
a real number that belongs to the [0,1] interval. A Pcomp(i) close to 1 means that the process
i is regular in the number of instructions that executes at each superstep. On the other side,
this pattern will be close to 0 if the process suffers large variations in the amount of executed
instructions. Its initial value is 1 for all processes because it is made an assumption that all
processes are stable. Logically, this value goes down if this is not proven.
Pcomp(i) of process i increases or decreases depending on the prediction of the amount of
performed instructions at each superstep. PIt(i) represents this prediction for superstep t and
process i. It is based on the Aging concept (Tanenbaum, 2003). For instance, PIt(i) at superstep
k+ 3 needs data from supersteps k+ 3, k+ 2, k+ 1 and k. The Aging concept uses the idea that
the prediction value is more strongly influenced by recent supersteps. The generic formula to
compute the prediction PIt(i) for process i and superstep t is shown below.

PIt(i) =
{

It(i) i f t = k
1
2 PIt−1(i) + 1

2 It(i) i f k < t ≤ k + α − 1

The advantage of this prediction scheme is that only data between two process reassign-
ment activations (among the supersteps k and k + α − 1) is used. This scheme saves memory
and contributes to decrease the prediction calculation time. On the other hand, the value of
Pcomp(i) persists during the BSP application execution independently of the amount of calls
for reassignment. Pcomp(i) is updated following the algorithm described in Figure 5. We con-
sider the system stable if the forecast is within a δ margin of fluctuation from the amount of
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1. for t from superstep k to superstep k + α − 1 do
2. if Inequalities 1 and 2 are true then
3. Increase α′ by 1
4. else if α′ > initial α
5. Decrease α′ by 1
6. end if
7. end for
8. Call for BSP process rescheduling
9. α = α′

Fig. 2. Interval of supersteps α for the next call for BSP process rescheduling

3.2.2 Second Adaptation: Controlling the Rescheduling Interval based on the Number of
Calls without Migrations

The other adaptation considers the management of D (see Inequalities 1 and 2) based on the
frequency of migrations. Figure 4 depicts the impact of D when defining the situation of the
processes. The idea is to increase D if process rescheduling is activated for ω consecutive times
and none migrations happen. The increase of D enlarges the interval in which the system is
considered stable, causing the increase of α′ consequently. In contrast, D can decrease down
to a limit if each call produces the migration of at least one process. The algorithm depicted in
Figure 3 presents how D is controlled at each rescheduling call.

1. γ ← Consecutive rescheduling calls without migrations
2. if γ ≥ ω then
3. if D + D

2 < 1then
4. D ← D + D

2
5. end if
6. else if D > initial D and γ = 0 then
7. D ← D - D

2
8. end if

Fig. 3. Stability of the system according to D

The computation of D is done by each Set Manager, which knows if migrations occurred
during the migration call. This adaptation is important when the migration costs are high.
Thus, although a process is selected for migration, its transferring will not take place and the
system will remain with the same scheduling configuration. Consequently, it is pertinent to
increase D in order to minimize MigBSP impact on application execution in this situation.

3.3 Question “Which”: Choosing the Candidate Processes for Migration
The answer for “Which” is solved through our decision function called Potential of Migration
(PM). Each process i computes n functions PM(i, j), where n is the number of Sets and j means
a specific Set. The key idea consists in not performing all available processes-resources tests at
the rescheduling moment. PM(i, j) is found through the combination of Computation, Com-
munication and Memory metrics. The first two work at the computation and communication
phases of a superstep. The Memory metric acts as an idea of migration costs.





 



 

Fig. 4. Balancing situations which depend on the distance D from the average A

3.3.1 Computation Metric
Each process i computes Comp(i, j) functions, where Comp(i, j) informs the Computation met-
ric for a process i and a specific Set j. Set j is used in Comp(i, j) calculus to simulate the
performance of process i on different sites of the parallel architecture. The data used to cal-
culate this metric start at superstep k and finish at superstep k + α − 1. For every superstep t
(k ≤ t ≤ k + α − 1), the number of processor’s instructions (It) and the conclusion time of the
computation phase (CTt) are stored. The value of It is used to evaluate the process stability
(regularity), that is represented by the Computation Pattern called Pcomp(i). This pattern is
a real number that belongs to the [0,1] interval. A Pcomp(i) close to 1 means that the process
i is regular in the number of instructions that executes at each superstep. On the other side,
this pattern will be close to 0 if the process suffers large variations in the amount of executed
instructions. Its initial value is 1 for all processes because it is made an assumption that all
processes are stable. Logically, this value goes down if this is not proven.
Pcomp(i) of process i increases or decreases depending on the prediction of the amount of
performed instructions at each superstep. PIt(i) represents this prediction for superstep t and
process i. It is based on the Aging concept (Tanenbaum, 2003). For instance, PIt(i) at superstep
k+ 3 needs data from supersteps k+ 3, k+ 2, k+ 1 and k. The Aging concept uses the idea that
the prediction value is more strongly influenced by recent supersteps. The generic formula to
compute the prediction PIt(i) for process i and superstep t is shown below.

PIt(i) =
{

It(i) i f t = k
1
2 PIt−1(i) + 1

2 It(i) i f k < t ≤ k + α − 1

The advantage of this prediction scheme is that only data between two process reassign-
ment activations (among the supersteps k and k + α − 1) is used. This scheme saves memory
and contributes to decrease the prediction calculation time. On the other hand, the value of
Pcomp(i) persists during the BSP application execution independently of the amount of calls
for reassignment. Pcomp(i) is updated following the algorithm described in Figure 5. We con-
sider the system stable if the forecast is within a δ margin of fluctuation from the amount of
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instructions performed. For instance, if δ is equal to 0.1 and the number of instructions is 50,
the prediction must be between 45 and 55 to increase the Pcomp(i) value.

1. for t from superstep k to superstep k + α − 1 do
2. if PIt(i) ≥ It(i).(1 − δ) and PIt(i) ≤ It(i).(1 + δ) then
3. Increases Pcomp(i) by 1

α up to 1
4. else
5. Decreases Pcomp(i) by 1

α down to 0
6. endif
7. endfor

Fig. 5. Computation Pattern Pcomp(i) of process i

The computation pattern Pcomp(i) is an element in the Comp(i, j) function. Other element
is a computation time prediction CTPk+α−1(i) of the process i at superstep k + α − 1 (last
superstep executed before process rescheduling). Analogous to PI prediction, CTP also works
with the Aging concept. Supposing that CTt(i) is the computation time of the process i during
superstep t, then the prediction CTPk+α−1(i) is computed as follows.

CTPt(i) =
{

CTt(i) i f t = k
1
2 CTPt−1(i) + 1

2 CTt(i) i f k < t ≤ k + α − 1

Finally, Comp(i, j) presents an index ISetk+α−1(j). This index informs the average capacity
of performance of the Set j at the k + α − 1th superstep. For each processor in a Set, its load
is multiplied by its theoretical capacity. Concerning this, the Set Managers compute a per-
formance average of their Sets and exchange this value. Each manager calculates ISet(j) for
each Set normalizing their performance average by its own average. In the sequence, all Set
Managers pass ISet(j) index to the BSP processes under their jurisdiction.

Comp(i, j) = Pcomp(i) . CTPk+α−1(i) . ISetk+α−1(j) (3)

Equation 3 shows the function to calculate the Computation metric for process i to Set j. The
value of the equation is high if the BSP process presents stability on its executed instructions,
has a large computation time and an efficient Set is involved. However, Comp(i, j) is close to
0 if the process is unstable and/or it finishes its computation phase quickly. The model aims
to migrate a delayed BSP process that presents a good behavior (amount of instructions that
performs is regular) on the resource which belongs currently, because it can follow this actua-
tion in another resource. In addition, we are considering the target Set in order to evaluate its
capacity to receive a process.

3.3.2 Communication Metric
Communication metric is expressed through Comm(i, j), where i denotes a BSP process and
j means the target Set. This metric treats the communication (just receiving actions) involv-
ing the process i and all processes that belong to Set j. In order to compute Comm(i, j), data
collected at superstep k up to k + α − 1 is used. Besides this, each process maintains a com-
munication time for a specified Set at each superstep and a pattern of communication called
Pcomm(i, j). This pattern is a real number within the [0,1] interval. Its alteration depends on

the prediction PBt(i, j), which deals with the number of bytes involved during receptions per-
formed by process i from sendings executed by processes that belong to Set j at superstep t.
PBt(i, j) is based on the Aging concept and is organized as follows.

PBt(i, j) =
{

Bt(i, j) i f t = k
1
2 PBt−1(i, j) + 1

2 Bt(i, j) i f k < t ≤ k + α − 1

In PB(i, j) context, Bt(i, j) is a notation used to assign the number of received bytes by pro-
cess i at superstep t from sendings of processes that belong to Set j. Figure 6 presents the
algorithm which uses this prediction to compute Pcomm(i, j). This algorithm uses a variable
β which informs the acceptable variation in communication prediction. Similarly to δ, if β is
0.1 and Bt(i, j) is 100, we must have our prediction between 90 and 110 in order to configure
superstep t as regular. Pcomm(i, j) is the first element in function Comm(i, j). The second one
is communication time prediction BTPk+α−1(i, j) involving the process i and Set j at super-
step k + α − 1. In order to compute this prediction, the communication time of receivings
BTt(i, j) from process i of sendings from processes that belong to Set j at superstep t is used.
Concerning this, CommTPk+α−1(i, j) is achieved as follows.

BTPt(i) =
{

BTt(i) i f t = k
1
2 BTPt−1(i) + 1

2 BTt(i) i f k < t ≤ k + α − 1

1. for t from superstep k to superstep k + α − 1 do
2. if (1 − β).Bk(i, j) ≤ PBk(i, j) and (1 + β).Bk(i, j) ≥ PBk(i, j) then
3. Increases Pcomm(i, j) by 1

α up to 1
4. else
5. Decreases Pcomm(i, j) by 1

α down to 0
6. endif
7. endfor

Fig. 6. Communication Pattern Pcomm(i, j)

Comm(i, j) = Pcomm(i, j) . BTPk+α−1 (4)

The function that computes Communication metric is presented in Equation 4. The result of
Equation 4 increases if the process i has a regularity considering the received bytes from pro-
cesses of Set j and performs slower communication actions to this Set. The value of Comm(i, j)
is close to 0 if process i presents large variations in the amount of received data from Set j
and/or few (or none) communications are performed with this Set.

3.3.3 Memory Metric
Function Mem(i, j) represents the Memory metric and evaluates the migration cost of the im-
age of process i to a resource in Set j. This metric just uses data collected at the superstep in
which the load rebalancing will be activated (where α is achieved). Firstly, the memory space
in bytes of considered process is captured through M(i). After that, the transfer time of 1 byte
to the destination Set is calculated through T(i, j) function. The communication involving
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instructions performed. For instance, if δ is equal to 0.1 and the number of instructions is 50,
the prediction must be between 45 and 55 to increase the Pcomp(i) value.

1. for t from superstep k to superstep k + α − 1 do
2. if PIt(i) ≥ It(i).(1 − δ) and PIt(i) ≤ It(i).(1 + δ) then
3. Increases Pcomp(i) by 1

α up to 1
4. else
5. Decreases Pcomp(i) by 1

α down to 0
6. endif
7. endfor

Fig. 5. Computation Pattern Pcomp(i) of process i

The computation pattern Pcomp(i) is an element in the Comp(i, j) function. Other element
is a computation time prediction CTPk+α−1(i) of the process i at superstep k + α − 1 (last
superstep executed before process rescheduling). Analogous to PI prediction, CTP also works
with the Aging concept. Supposing that CTt(i) is the computation time of the process i during
superstep t, then the prediction CTPk+α−1(i) is computed as follows.

CTPt(i) =
{

CTt(i) i f t = k
1
2 CTPt−1(i) + 1

2 CTt(i) i f k < t ≤ k + α − 1

Finally, Comp(i, j) presents an index ISetk+α−1(j). This index informs the average capacity
of performance of the Set j at the k + α − 1th superstep. For each processor in a Set, its load
is multiplied by its theoretical capacity. Concerning this, the Set Managers compute a per-
formance average of their Sets and exchange this value. Each manager calculates ISet(j) for
each Set normalizing their performance average by its own average. In the sequence, all Set
Managers pass ISet(j) index to the BSP processes under their jurisdiction.

Comp(i, j) = Pcomp(i) . CTPk+α−1(i) . ISetk+α−1(j) (3)

Equation 3 shows the function to calculate the Computation metric for process i to Set j. The
value of the equation is high if the BSP process presents stability on its executed instructions,
has a large computation time and an efficient Set is involved. However, Comp(i, j) is close to
0 if the process is unstable and/or it finishes its computation phase quickly. The model aims
to migrate a delayed BSP process that presents a good behavior (amount of instructions that
performs is regular) on the resource which belongs currently, because it can follow this actua-
tion in another resource. In addition, we are considering the target Set in order to evaluate its
capacity to receive a process.

3.3.2 Communication Metric
Communication metric is expressed through Comm(i, j), where i denotes a BSP process and
j means the target Set. This metric treats the communication (just receiving actions) involv-
ing the process i and all processes that belong to Set j. In order to compute Comm(i, j), data
collected at superstep k up to k + α − 1 is used. Besides this, each process maintains a com-
munication time for a specified Set at each superstep and a pattern of communication called
Pcomm(i, j). This pattern is a real number within the [0,1] interval. Its alteration depends on

the prediction PBt(i, j), which deals with the number of bytes involved during receptions per-
formed by process i from sendings executed by processes that belong to Set j at superstep t.
PBt(i, j) is based on the Aging concept and is organized as follows.

PBt(i, j) =
{

Bt(i, j) i f t = k
1
2 PBt−1(i, j) + 1

2 Bt(i, j) i f k < t ≤ k + α − 1

In PB(i, j) context, Bt(i, j) is a notation used to assign the number of received bytes by pro-
cess i at superstep t from sendings of processes that belong to Set j. Figure 6 presents the
algorithm which uses this prediction to compute Pcomm(i, j). This algorithm uses a variable
β which informs the acceptable variation in communication prediction. Similarly to δ, if β is
0.1 and Bt(i, j) is 100, we must have our prediction between 90 and 110 in order to configure
superstep t as regular. Pcomm(i, j) is the first element in function Comm(i, j). The second one
is communication time prediction BTPk+α−1(i, j) involving the process i and Set j at super-
step k + α − 1. In order to compute this prediction, the communication time of receivings
BTt(i, j) from process i of sendings from processes that belong to Set j at superstep t is used.
Concerning this, CommTPk+α−1(i, j) is achieved as follows.

BTPt(i) =
{

BTt(i) i f t = k
1
2 BTPt−1(i) + 1

2 BTt(i) i f k < t ≤ k + α − 1

1. for t from superstep k to superstep k + α − 1 do
2. if (1 − β).Bk(i, j) ≤ PBk(i, j) and (1 + β).Bk(i, j) ≥ PBk(i, j) then
3. Increases Pcomm(i, j) by 1

α up to 1
4. else
5. Decreases Pcomm(i, j) by 1

α down to 0
6. endif
7. endfor

Fig. 6. Communication Pattern Pcomm(i, j)

Comm(i, j) = Pcomm(i, j) . BTPk+α−1 (4)

The function that computes Communication metric is presented in Equation 4. The result of
Equation 4 increases if the process i has a regularity considering the received bytes from pro-
cesses of Set j and performs slower communication actions to this Set. The value of Comm(i, j)
is close to 0 if process i presents large variations in the amount of received data from Set j
and/or few (or none) communications are performed with this Set.

3.3.3 Memory Metric
Function Mem(i, j) represents the Memory metric and evaluates the migration cost of the im-
age of process i to a resource in Set j. This metric just uses data collected at the superstep in
which the load rebalancing will be activated (where α is achieved). Firstly, the memory space
in bytes of considered process is captured through M(i). After that, the transfer time of 1 byte
to the destination Set is calculated through T(i, j) function. The communication involving
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process i is established with the Set Manager of each considered Set. Finally, the time spent on
migration operations of process i to Set j is calculated through Mig(i, j) function. These oper-
ations are dependent of operating system, as well as the tool used to offer process migration.
They can include, for example, connections reorganizations, memory serialization, checkpoint
recovery, time spent to create another process in the target host, and so on. However, Mig(i, j)
does not depend on the load of Set j.

Mem(i, j) = M(i) . T(i, j) + Mig(i, j) (5)

Equation 5 shows the elements of Mem(i, j). Analyzing Memory metric, each BSP process will
compute n times Mem(i, j), where n is the number of Sets in the environment. The lower the
value of Mem(i, j) the easier is the transferring of process i to Set j. On the other hand, as
Mem(i, j) increases, the migration cost of the process i to Set j increases as well.

3.3.4 Potential of Migration Analysis
We used the notion of force from Physics to create the Potential of Migration (PM) of each
process. In Physics, force is an influence that can make an object accelerate and is represented
by a vector. A vector has a size (magnitude) and a direction. Analyzing the force idea, each
studied metric can be seen as a vector that acts over an object. In our case, this object is the
migration of a process. Vectors �Comp and �Comm represent the Computation and Communica-
tion metrics, respectively. Both have the same direction and stimulate the process migration.
On the other hand, the Memory metric means the migration costs and is symbolized by vector
�Mem. �Mem works against the migration, since its direction is opposite to �Comp and �Comm.

PM(i, j) = Comp(i, j) + Comm(i, j)− Mem(i, j) (6)

�Comp, �Comm and �Mem vectors are combined to create the resultant vector called �PM (Po-
tential of Migration). Then, �PM means the resultant force that will decide if a process is a
candidate for migration or not. Considering MigBSP context, �PM will be denoted by PM(i, j)
function where i means a process while j represents a specific Set (see Equation 6). Thus, Fig-
ure 7 shows the actuation of Computation, Communication and Memory metrics to compute
PM. Comp(i, j), Comm(i, j) and Mem(i, j) represent the Computation, Communication and
Memory metrics, respectively. The greater the value of PM(i, j), the more prone the process
will be to migrate. A high PM(i, j) means that process i has high computation time, high
communication with processes that belong to Set j and presents low migration costs to j.


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Fig. 7. Resultant force (Potential of Migration): (i) Computation and Communication metrics
act in favor of migration; (ii) Memory works in the opposite direction as migration costs

Each process i will compute n times Equation 6, where n is the amount of Sets in the envi-
ronment. After that, process i sends its highest Potential of Migration to its Set Manager. All

Set Managers exchange their PM values. Concerning this, we applied list scheduling in or-
der to select the candidates for migration. Each Set Manager creates a decreasing ordered list
based on the highest PM of each BSP process. MigBSP uses this list to apply one of two possi-
ble heuristics to select the candidates for migration. The first heuristic chooses processes that
have PM higher than a MAX(PM).x, where MAX(PM) is the highest PM and x a percentage.
The second heuristic takes one process, the first of the list, whose has the highest PM.

3.4 Analyzing Destination of Elected Processes
Process migration happens after the barrier synchronization of the superstep in which α is
reached (see subsection 3.2). An elected process i has a target Set j informed on its Potential
of Migration PM(i, j). Thus, the pertinent question is to select which node/processor of this
Set can be the destination of the process. Firstly, the Set Manager of process i contacts the
manager of the Set j asking it for a processor to receive a process. This manager verifies the
resources under its responsibility and elects the destination processor.
The manager of the destination Set calculates the time which each processor takes to compute
the work assigned to it. This is performed through Equation 7. time(p) captures the computa-
tion power of processor p taking into account the external load (processes that do not belong
to the BSP application). load(p) represents the CPU load average on the last 15 minutes. This
time interval was adopted based on work of (Moreno-Vozmediano & Alonso-Conde, 2005).
Equation 7 also works with instruction summing of each BSP process assigned to processor p
in the last executed superstep. In this context, S(i, p) is equal to 1 if a process i is executing on
processor p. The processor p with the shortest time(p) is chosen to be tested to receive a BSP
process. After that, this Set Manager computes Equation 8 based on data from process i, as
well as from its own Set.

time(p) =

∑
i,p:S(i,p)=1

Ik+α−1(i)

(1 − load(p)) . cpu(p)
(7)

t1 = time(p) + Bk+α−1(i, j) . T(i, j) + Mem(i, j) (8)

t2 = time(p′) + Bk+α−1(i, j) . T(i, j) (9)

The idea of Equation 8 is to simulate the execution of the considered process in the destination
Set taking into account the migration costs. In this situation, time(p) is the simulation of the
execution of process i on target processor p. In the same way, T(i, j) refers to the transferring
rate of 1 byte of process i inside the Set j (communication established with the Set Manager).
Mem(i, j) is the Memory Metric and is associated with the migration cost (Wmem equal to 1) .
Contrary to time(p) and T(i, j), Mem(i, j) involves the current location of process i and target
Set j. The manager of Set j sends to the manager of process i the destination processor p and
t1 value. This last Set Manager computes Equation 9. This equation is used to analyze the
execution of process i considering its current execution. In this situation, p′ is the current
processor of process i and T(i, j) means the transfer rate between the Set of process i and Set
j. On both Equations 8 and 9, Bk+α−1(i,j) is the amount of received bytes of process i from
sendings of processes that belong to Set j at superstep k + α − 1. Process i will migrate from
p′ to p if t1 < t2.
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process i is established with the Set Manager of each considered Set. Finally, the time spent on
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They can include, for example, connections reorganizations, memory serialization, checkpoint
recovery, time spent to create another process in the target host, and so on. However, Mig(i, j)
does not depend on the load of Set j.

Mem(i, j) = M(i) . T(i, j) + Mig(i, j) (5)

Equation 5 shows the elements of Mem(i, j). Analyzing Memory metric, each BSP process will
compute n times Mem(i, j), where n is the number of Sets in the environment. The lower the
value of Mem(i, j) the easier is the transferring of process i to Set j. On the other hand, as
Mem(i, j) increases, the migration cost of the process i to Set j increases as well.

3.3.4 Potential of Migration Analysis
We used the notion of force from Physics to create the Potential of Migration (PM) of each
process. In Physics, force is an influence that can make an object accelerate and is represented
by a vector. A vector has a size (magnitude) and a direction. Analyzing the force idea, each
studied metric can be seen as a vector that acts over an object. In our case, this object is the
migration of a process. Vectors �Comp and �Comm represent the Computation and Communica-
tion metrics, respectively. Both have the same direction and stimulate the process migration.
On the other hand, the Memory metric means the migration costs and is symbolized by vector
�Mem. �Mem works against the migration, since its direction is opposite to �Comp and �Comm.

PM(i, j) = Comp(i, j) + Comm(i, j)− Mem(i, j) (6)

�Comp, �Comm and �Mem vectors are combined to create the resultant vector called �PM (Po-
tential of Migration). Then, �PM means the resultant force that will decide if a process is a
candidate for migration or not. Considering MigBSP context, �PM will be denoted by PM(i, j)
function where i means a process while j represents a specific Set (see Equation 6). Thus, Fig-
ure 7 shows the actuation of Computation, Communication and Memory metrics to compute
PM. Comp(i, j), Comm(i, j) and Mem(i, j) represent the Computation, Communication and
Memory metrics, respectively. The greater the value of PM(i, j), the more prone the process
will be to migrate. A high PM(i, j) means that process i has high computation time, high
communication with processes that belong to Set j and presents low migration costs to j.
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Each process i will compute n times Equation 6, where n is the amount of Sets in the envi-
ronment. After that, process i sends its highest Potential of Migration to its Set Manager. All

Set Managers exchange their PM values. Concerning this, we applied list scheduling in or-
der to select the candidates for migration. Each Set Manager creates a decreasing ordered list
based on the highest PM of each BSP process. MigBSP uses this list to apply one of two possi-
ble heuristics to select the candidates for migration. The first heuristic chooses processes that
have PM higher than a MAX(PM).x, where MAX(PM) is the highest PM and x a percentage.
The second heuristic takes one process, the first of the list, whose has the highest PM.

3.4 Analyzing Destination of Elected Processes
Process migration happens after the barrier synchronization of the superstep in which α is
reached (see subsection 3.2). An elected process i has a target Set j informed on its Potential
of Migration PM(i, j). Thus, the pertinent question is to select which node/processor of this
Set can be the destination of the process. Firstly, the Set Manager of process i contacts the
manager of the Set j asking it for a processor to receive a process. This manager verifies the
resources under its responsibility and elects the destination processor.
The manager of the destination Set calculates the time which each processor takes to compute
the work assigned to it. This is performed through Equation 7. time(p) captures the computa-
tion power of processor p taking into account the external load (processes that do not belong
to the BSP application). load(p) represents the CPU load average on the last 15 minutes. This
time interval was adopted based on work of (Moreno-Vozmediano & Alonso-Conde, 2005).
Equation 7 also works with instruction summing of each BSP process assigned to processor p
in the last executed superstep. In this context, S(i, p) is equal to 1 if a process i is executing on
processor p. The processor p with the shortest time(p) is chosen to be tested to receive a BSP
process. After that, this Set Manager computes Equation 8 based on data from process i, as
well as from its own Set.

time(p) =
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i,p:S(i,p)=1
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(1 − load(p)) . cpu(p)
(7)

t1 = time(p) + Bk+α−1(i, j) . T(i, j) + Mem(i, j) (8)

t2 = time(p′) + Bk+α−1(i, j) . T(i, j) (9)

The idea of Equation 8 is to simulate the execution of the considered process in the destination
Set taking into account the migration costs. In this situation, time(p) is the simulation of the
execution of process i on target processor p. In the same way, T(i, j) refers to the transferring
rate of 1 byte of process i inside the Set j (communication established with the Set Manager).
Mem(i, j) is the Memory Metric and is associated with the migration cost (Wmem equal to 1) .
Contrary to time(p) and T(i, j), Mem(i, j) involves the current location of process i and target
Set j. The manager of Set j sends to the manager of process i the destination processor p and
t1 value. This last Set Manager computes Equation 9. This equation is used to analyze the
execution of process i considering its current execution. In this situation, p′ is the current
processor of process i and T(i, j) means the transfer rate between the Set of process i and Set
j. On both Equations 8 and 9, Bk+α−1(i,j) is the amount of received bytes of process i from
sendings of processes that belong to Set j at superstep k + α − 1. Process i will migrate from
p′ to p if t1 < t2.
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4. Evaluation Methodology

The main objective of this evaluation is to observe the changes on performance when MigBSP
controls the process relocation in different scientific applications. Concerning this, we are
testing MigBSP with three applications, which are listed below.

(i) Lattice Boltzmann application - It is widely used in the computational fluid dynamics
area. Its algorithm may be easily adapted to a large serie of other computing areas.

(ii) Smith-Waterman application - This application is based on dynamic programming and
it is characterized by the variation in the computation intensity along the matrix cells.

(iii) LU decomposition application - This application presents an algorithm where a matrix
is written as the product of a lower triangular matrix and an upper triangular matrix.
The decomposition is used to solve systems of linear equations.

While the first application is regular, the other two present an irregular behavior. The regu-
larity issue treats the processes’ activities at each superstep. The behaviors of the processes
on the last two applications change along the execution due to fluctuations on the number of
instructions and/or on the amount of communicated bytes that the processes perform at each
superstep. The evaluation comprises the simulation of the applications on three scenarios.

• Scenario (i): Application execution simply;

• Scenario (ii): Application execution with scheduler without applying migrations;

• Scenario (iii): Application execution with scheduler allowing migrations.

Scenario ii consists in performing all scheduling calculus about which processes will migrate,
but it does not comprise any migrations. Scenario iii enables migrations and adds the mi-
grations costs on those processes that migrate from one processor to another. The difference
between scenarios ii and i represents exactly the overhead imposed by MigBSP. We are using
the SimGrid Simulator (Casanova et al., 2008) (MSG module), which makes possible applica-
tion modeling and process migration. This simulator is deterministic, where a specific input
always results in the same output. In addition, a time equal to Mem(i, j) is paid for each mi-
gration of process i to Set j (see subsection 3.3). We assembled an infrastructure with five Sets,
which is depicted in Figure 8. This infrastructure represents the clusters and the network con-
nections that we have at UFRGS University, Brazil. Each node has a single processor. For the
sake of simplicity, we hide the network of each cluster. Clusters Labtec, Corisco and Frontal
have their nodes linked by Fast Ethernet, while ICE and Aquario use Gigabit connection. The
migration costs are based on executions with AMPI (Huang et al., 2006) on our clusters.
Figure 8 also reveals the initial processes-recourses mappings. The basic idea is to fill one
cluster and then to pass to another one. We map one process per node owing to each one has
a single processor. If the amount of process is greater than processors, the mapping begins
again from the first Set. The notation {(p,m)} is used in the following sections and means that
process p is running over machine m (or p will migrate to m). Finally, the tests were executed
using α equal to 2, 4, 8 and 16. Furthermore, we employed ω equal to 3 and initial D equal to
0.5. The first application used the heuristic two to select the process for migration, while the
other two employ the heuristic one to choose the candidates with x equal to 80%.

5. Results Remarks and Discussions

This section is divided in three subsections, which explain in details the results of each tested
application separately. The overall analysis of the results will be presented in the last section.
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Fig. 8. Testbed infrastructure and the initial processes-resources mappings

5.1 Lattice Boltzmann Method
This method is a powerful technique for the computational modeling of a wide variety of
complex fluid flow problems (Schepke, 2007). It models the fluid consisting of particles whose
perform consecutive propagation and collision processes over a discrete lattice mesh.

5.1.1 Modeling de Problem
We modeled a BSP implementation of a 2D-based Lattice Boltzmann Method to SimGrid using
vertical domain decomposition. The data volume is divided into spatially contiguous blocks
along one axis. Multiple copies of the same program run simultaneously, each operating on its
own block of data. At the end of each iteration, data that lie on the boundaries between blocks
are passed between the appropriate processes and the superstep is completed. An abstract
view of the problem is illustrated in Figure 9.
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Fig. 9. Different matrix partition organizations when varying the number of processes

Besides Lattice Boltzmann, the developed scheme encompasses a broad spectrum of scien-
tific computations, from mesh based solvers, signal processing to image processing algo-
rithms. The considered matrix requires the computation of 1010 instructions and occupies 10
Megabytes in memory. As we can observe in Figure 9, matrix partition will influence the num-
ber of instructions to be executed per process and, consequently, the size of each process in
memory. Nevertheless, the quantity of communication remains the same independent of the
used partition scheme. It is important to emphasize that our modeling may be characterized
as regular, where each superstep presents the same number of instructions to be computed
by processes as well as the same communication behavior. When using 10 processes, each
one is responsible for a sub-lattice computation of 109 instructions, occupies 1.5 Megabyte
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4. Evaluation Methodology

The main objective of this evaluation is to observe the changes on performance when MigBSP
controls the process relocation in different scientific applications. Concerning this, we are
testing MigBSP with three applications, which are listed below.

(i) Lattice Boltzmann application - It is widely used in the computational fluid dynamics
area. Its algorithm may be easily adapted to a large serie of other computing areas.

(ii) Smith-Waterman application - This application is based on dynamic programming and
it is characterized by the variation in the computation intensity along the matrix cells.

(iii) LU decomposition application - This application presents an algorithm where a matrix
is written as the product of a lower triangular matrix and an upper triangular matrix.
The decomposition is used to solve systems of linear equations.

While the first application is regular, the other two present an irregular behavior. The regu-
larity issue treats the processes’ activities at each superstep. The behaviors of the processes
on the last two applications change along the execution due to fluctuations on the number of
instructions and/or on the amount of communicated bytes that the processes perform at each
superstep. The evaluation comprises the simulation of the applications on three scenarios.

• Scenario (i): Application execution simply;

• Scenario (ii): Application execution with scheduler without applying migrations;

• Scenario (iii): Application execution with scheduler allowing migrations.

Scenario ii consists in performing all scheduling calculus about which processes will migrate,
but it does not comprise any migrations. Scenario iii enables migrations and adds the mi-
grations costs on those processes that migrate from one processor to another. The difference
between scenarios ii and i represents exactly the overhead imposed by MigBSP. We are using
the SimGrid Simulator (Casanova et al., 2008) (MSG module), which makes possible applica-
tion modeling and process migration. This simulator is deterministic, where a specific input
always results in the same output. In addition, a time equal to Mem(i, j) is paid for each mi-
gration of process i to Set j (see subsection 3.3). We assembled an infrastructure with five Sets,
which is depicted in Figure 8. This infrastructure represents the clusters and the network con-
nections that we have at UFRGS University, Brazil. Each node has a single processor. For the
sake of simplicity, we hide the network of each cluster. Clusters Labtec, Corisco and Frontal
have their nodes linked by Fast Ethernet, while ICE and Aquario use Gigabit connection. The
migration costs are based on executions with AMPI (Huang et al., 2006) on our clusters.
Figure 8 also reveals the initial processes-recourses mappings. The basic idea is to fill one
cluster and then to pass to another one. We map one process per node owing to each one has
a single processor. If the amount of process is greater than processors, the mapping begins
again from the first Set. The notation {(p,m)} is used in the following sections and means that
process p is running over machine m (or p will migrate to m). Finally, the tests were executed
using α equal to 2, 4, 8 and 16. Furthermore, we employed ω equal to 3 and initial D equal to
0.5. The first application used the heuristic two to select the process for migration, while the
other two employ the heuristic one to choose the candidates with x equal to 80%.

5. Results Remarks and Discussions

This section is divided in three subsections, which explain in details the results of each tested
application separately. The overall analysis of the results will be presented in the last section.
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5.1 Lattice Boltzmann Method
This method is a powerful technique for the computational modeling of a wide variety of
complex fluid flow problems (Schepke, 2007). It models the fluid consisting of particles whose
perform consecutive propagation and collision processes over a discrete lattice mesh.

5.1.1 Modeling de Problem
We modeled a BSP implementation of a 2D-based Lattice Boltzmann Method to SimGrid using
vertical domain decomposition. The data volume is divided into spatially contiguous blocks
along one axis. Multiple copies of the same program run simultaneously, each operating on its
own block of data. At the end of each iteration, data that lie on the boundaries between blocks
are passed between the appropriate processes and the superstep is completed. An abstract
view of the problem is illustrated in Figure 9.
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Fig. 9. Different matrix partition organizations when varying the number of processes

Besides Lattice Boltzmann, the developed scheme encompasses a broad spectrum of scien-
tific computations, from mesh based solvers, signal processing to image processing algo-
rithms. The considered matrix requires the computation of 1010 instructions and occupies 10
Megabytes in memory. As we can observe in Figure 9, matrix partition will influence the num-
ber of instructions to be executed per process and, consequently, the size of each process in
memory. Nevertheless, the quantity of communication remains the same independent of the
used partition scheme. It is important to emphasize that our modeling may be characterized
as regular, where each superstep presents the same number of instructions to be computed
by processes as well as the same communication behavior. When using 10 processes, each
one is responsible for a sub-lattice computation of 109 instructions, occupies 1.5 Megabyte
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(500 Kbytes is fixed to other process’ data) and passes 100 Kilobytes of boundary data to its
right neighbor. In the same way, when 25 processes are employed, each one computes 4.108

instructions and occupies 900 Kbytes in memory.

5.1.2 Results and Discussions
Table 1 presents the times when testing 10 processes. Firstly, we can observe that MigBSP’s
intrusivity on application execution is short when comparing both scenarios i and ii (over-
head lower than 5%). The processes are balanced among themselves with this configuration,
causing the increasing of α at each call for process rescheduling. This explain the low impact
when comparing scenarios i and ii. Besides this, MigBSP decides that migrations are inviable
for any moment, independing on the amount of executed supersteps. In this case, our model
causes a loss of performance in application execution. We obtained negative values of PM
when the rescheduling was tested. This fact resulted in an empty list of migration candidates.

Super- Scenario i α = 4 α = 8 α = 16
step Scen. ii Scen. iii Scen. ii Scen. iii Scen. ii Scen. iii

10 6.70 7.05 7.05 7.05 7.05 6.70 6.70
50 33.60 34.59 34.59 34.26 34.26 34.04 34.04

100 67.20 68.53 68.53 68.20 68.20 67.87 67.87
500 336.02 338.02 338.02 337.69 337.69 337.32 337.32
1000 672.04 674.39 674.39 674.06 674.06 673.73 673.73
2000 1344.09 1347.88 1347.88 1346.67 1346.67 1344.91 1344.91

Table 1. Evaluating 10 processes on three considered scenarios (time in seconds)

The results of the execution of 25 processes are presented in Table 2. In this context, the system
remains stable and α grows at each rescheduling call. One migration occurred {(p21,a1)} when
testing 10 supersteps and using α equal to 4. Our notation informs that process p21 was re-
assigned to run on node a1. A second and a third migrations happened when considering 50
supersteps: {(p22,a2), (p23,a3)}. They happened in the next two calls for process rescheduling
(at supersteps 12 and 28). When evaluating 2000 supersteps and maintaining this value of α,
eight migrations take place: {(p21,a1), (p22,a2), (p23,a3), (p24,a4), (p25,a5), (p18,a6), (p19,a7),
(p20,a8)}. We analyzed that all migrations occurred to the fastest cluster (Aquario). The first
five migrations moved processes from cluster Corisco to Aquario. After that, three processes
from Labtec were chosen for migration. Concluding, we obtained a profit of 14% after execut-
ing 2000 supersteps when α equal to 4 is used.

Super- Scenario i α = 4 α = 8 α = 16
steps Scen. ii Scen. iii Scen. ii Scen. iii Scen. ii Scen. iii

10 3.49 4.18 4.42 4.42 4.44 3.49 3.49
50 17.35 19.32 20.45 18.66 19.44 18.66 19.42

100 34.70 37.33 38.91 36.67 37.90 36.01 36.88
500 173.53 177.46 154.87 176.80 161.48 176.80 179.24
1000 347.06 351.64 297.13 350.97 303.72 350.31 317.96
2000 694.12 699.47 592.26 698.68 599,14 697.43 613.88

Table 2. Evaluating 25 processes on three considered scenarios (time in seconds)

Analyzing scenario iii with α equal to 16, we detected that the first migration is postponed,
which results in a larger final time when compared with lower values of α. With α 4 for
instance, we have more calls for process rescheduling with migrations during the first super-
steps. This fact will cause a large overhead to be paid during this period. These penalty costs
are amortized when the amount of executed supersteps increases. Thus, the configuration
with α 4 outperforms other studied values of α when 2000 supersteps are evaluated. Figure
10 illustrates the frequency of process rescheduling calls when testing 25 processes and 2000
supersteps. We can observe that 6 calls are done with α 16, while 8 are performed when initial
α changes to 4. Considering scenarios ii, we conclude that the greater is α, the lower is the
model’s impact if migrations are not applied (situation in which migration viability is false).

    



    

      

 










Fig. 10. Number of rescheduling calls when 25 processes and 2000 supersteps are evaluated

Table 3 shows the results when the number of processes is increased to 50. The processes
are considered balanced and α increases at each rescheduling call. In this manner, we have
the same configuration of calls when testing 25 processes (see Figure 10). We achieved 8
migrations when 2000 supersteps are evaluated: {(p38,a1), (p40,a2), (p42, a3), (p39, a4), (p41,
a5), (p37, a6), (p22, a7), (p21, a8)}. MigBSP moves all processes from cluster Frontal to Aquario
and transfers two process from Corisco to the fastest cluster. Using α 4, 430.95s and 408.25s
were obtained for scenarios i and iii, respectively. Besides this 5% of gain with α 4, we also
achieve a gain when α is equal to 8. However, the final result when changing initial α to 16 in
scenario iii is worse than scenario i, since the migrations are delayed and more supersteps are
need to achieve a gain in this situation. Table 4 presents the execution of 100 processes over the
tested infrastructure. As the situations with 25 and 50 processes, the environment when 100
processes are evaluated is stable and the processes are balanced among the resources. Thus,
α increases at each rescheduling call. The same migrations occurred when testing 50 and 100
processes, since the configuration with 100 just uses more nodes from cluster ICE. In general,
the same percentage of gain was achieve with 50 and 100 processes.
The results of scenarios i, ii and iii with 200 processes is shown in Table 5. We have an un-
stable scenario in this situation, which explains the fact of a large overhead in scenario ii.
Considering this scenario, α will begin to grow after ω calls for process rescheduling without
migrations. Taking into account scenario iii and α equal to 4, 2 migrations are done when ex-
ecuting 10 supersteps: {(p195,a1), (p197,a2)}. Besides these, 10 migrations take place when 50
supersteps were tested: {(p196,a3), (p198,a4), (p199,a5), (p200,a6), (p38,a7), (p39,a8), (p37,a9),
(p40,a10), (p41,a11), (p42, a12)}. Despite the happening of these migrations, the processes are
still unbalanced with adopted value of D and, then, α does not increase at each superstep.
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(500 Kbytes is fixed to other process’ data) and passes 100 Kilobytes of boundary data to its
right neighbor. In the same way, when 25 processes are employed, each one computes 4.108

instructions and occupies 900 Kbytes in memory.

5.1.2 Results and Discussions
Table 1 presents the times when testing 10 processes. Firstly, we can observe that MigBSP’s
intrusivity on application execution is short when comparing both scenarios i and ii (over-
head lower than 5%). The processes are balanced among themselves with this configuration,
causing the increasing of α at each call for process rescheduling. This explain the low impact
when comparing scenarios i and ii. Besides this, MigBSP decides that migrations are inviable
for any moment, independing on the amount of executed supersteps. In this case, our model
causes a loss of performance in application execution. We obtained negative values of PM
when the rescheduling was tested. This fact resulted in an empty list of migration candidates.

Super- Scenario i α = 4 α = 8 α = 16
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Table 1. Evaluating 10 processes on three considered scenarios (time in seconds)

The results of the execution of 25 processes are presented in Table 2. In this context, the system
remains stable and α grows at each rescheduling call. One migration occurred {(p21,a1)} when
testing 10 supersteps and using α equal to 4. Our notation informs that process p21 was re-
assigned to run on node a1. A second and a third migrations happened when considering 50
supersteps: {(p22,a2), (p23,a3)}. They happened in the next two calls for process rescheduling
(at supersteps 12 and 28). When evaluating 2000 supersteps and maintaining this value of α,
eight migrations take place: {(p21,a1), (p22,a2), (p23,a3), (p24,a4), (p25,a5), (p18,a6), (p19,a7),
(p20,a8)}. We analyzed that all migrations occurred to the fastest cluster (Aquario). The first
five migrations moved processes from cluster Corisco to Aquario. After that, three processes
from Labtec were chosen for migration. Concluding, we obtained a profit of 14% after execut-
ing 2000 supersteps when α equal to 4 is used.

Super- Scenario i α = 4 α = 8 α = 16
steps Scen. ii Scen. iii Scen. ii Scen. iii Scen. ii Scen. iii

10 3.49 4.18 4.42 4.42 4.44 3.49 3.49
50 17.35 19.32 20.45 18.66 19.44 18.66 19.42
100 34.70 37.33 38.91 36.67 37.90 36.01 36.88
500 173.53 177.46 154.87 176.80 161.48 176.80 179.24
1000 347.06 351.64 297.13 350.97 303.72 350.31 317.96
2000 694.12 699.47 592.26 698.68 599,14 697.43 613.88

Table 2. Evaluating 25 processes on three considered scenarios (time in seconds)

Analyzing scenario iii with α equal to 16, we detected that the first migration is postponed,
which results in a larger final time when compared with lower values of α. With α 4 for
instance, we have more calls for process rescheduling with migrations during the first super-
steps. This fact will cause a large overhead to be paid during this period. These penalty costs
are amortized when the amount of executed supersteps increases. Thus, the configuration
with α 4 outperforms other studied values of α when 2000 supersteps are evaluated. Figure
10 illustrates the frequency of process rescheduling calls when testing 25 processes and 2000
supersteps. We can observe that 6 calls are done with α 16, while 8 are performed when initial
α changes to 4. Considering scenarios ii, we conclude that the greater is α, the lower is the
model’s impact if migrations are not applied (situation in which migration viability is false).
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Fig. 10. Number of rescheduling calls when 25 processes and 2000 supersteps are evaluated

Table 3 shows the results when the number of processes is increased to 50. The processes
are considered balanced and α increases at each rescheduling call. In this manner, we have
the same configuration of calls when testing 25 processes (see Figure 10). We achieved 8
migrations when 2000 supersteps are evaluated: {(p38,a1), (p40,a2), (p42, a3), (p39, a4), (p41,
a5), (p37, a6), (p22, a7), (p21, a8)}. MigBSP moves all processes from cluster Frontal to Aquario
and transfers two process from Corisco to the fastest cluster. Using α 4, 430.95s and 408.25s
were obtained for scenarios i and iii, respectively. Besides this 5% of gain with α 4, we also
achieve a gain when α is equal to 8. However, the final result when changing initial α to 16 in
scenario iii is worse than scenario i, since the migrations are delayed and more supersteps are
need to achieve a gain in this situation. Table 4 presents the execution of 100 processes over the
tested infrastructure. As the situations with 25 and 50 processes, the environment when 100
processes are evaluated is stable and the processes are balanced among the resources. Thus,
α increases at each rescheduling call. The same migrations occurred when testing 50 and 100
processes, since the configuration with 100 just uses more nodes from cluster ICE. In general,
the same percentage of gain was achieve with 50 and 100 processes.
The results of scenarios i, ii and iii with 200 processes is shown in Table 5. We have an un-
stable scenario in this situation, which explains the fact of a large overhead in scenario ii.
Considering this scenario, α will begin to grow after ω calls for process rescheduling without
migrations. Taking into account scenario iii and α equal to 4, 2 migrations are done when ex-
ecuting 10 supersteps: {(p195,a1), (p197,a2)}. Besides these, 10 migrations take place when 50
supersteps were tested: {(p196,a3), (p198,a4), (p199,a5), (p200,a6), (p38,a7), (p39,a8), (p37,a9),
(p40,a10), (p41,a11), (p42, a12)}. Despite the happening of these migrations, the processes are
still unbalanced with adopted value of D and, then, α does not increase at each superstep.
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Super- Scenario i α = 4 α = 8 α = 16
steps Scen. ii Scen. iii Scen. ii Scen. iii Scen. ii Scen. iii

10 2.16 2.95 3.20 2.95 3.17 2.16 2.16
50 10.78 13.14 14.47 12.35 13.32 12.35 13.03

100 21.55 24.70 26.68 29.91 25.92 23.13 24.63
500 107.74 112.46 106.90 111.67 115.73 111.67 117.84
1000 215.48 220.98 199.83 220.19 207.78 219.40 226.43
2000 430.95 436.79 408.25 435.88 417.56 434.68 434.30

Table 3. Evaluating 50 processes on three considered scenarios (time in seconds)

Super- Scenario i α = 4 α = 8 α = 16
steps Scen. ii Scen. iii Scen. ii Scen. iii Scen. ii Scen. iii

10 1.22 2.08 2.24 2.08 2.21 1.22 1.22
50 5.94 8.59 9.63 7.71 8.48 7.71 8.19

100 11.86 15.40 16.99 14.52 16.24 13.63 14.94
500 59.25 64.57 62.55 63.68 67.25 63.68 69.37
1000 118.48 124.69 113.87 123.80 119.06 122.92 129.46
2000 236.96 243.70 224.48 241.12 232.87 239.23 241.52

Table 4. Evaluating 100 processes on three considered scenarios (time in seconds)

Super- Scenario i α = 4 α = 8 α = 16
steps Scen. ii Scen. iii Scen. ii Scen. iii Scen. ii Scen. iii

10 1.04 2.86 3.06 1.95 2.11 1.04 1.04
50 5.09 10.56 17.14 9.65 11.06 7.82 8.15

100 10.15 16.53 25.43 15.62 21.97 14.71 16.04
500 50.66 57.84 68.44 56.93 71.42 55.92 77.05
1000 101.29 108.78 102.59 107.84 106.89 105.25 117.57
2000 200.43 209.46 194.87 208.13 202.22 204.69 211.69

Table 5. Evaluating 200 processes on three considered scenarios (time in seconds)

After these migrations, MigBSP does not indicate the viability of other ones. Thus, after ω
calls without migrations, MigBSP enlarges the value of D and α begins to increase following
adaptation 2 (see Subsection 3.2 for details).

Processes Scenario i - Without process migration Scenario iii - With process migration

10 0.005380s 0.005380s
25 0.023943s 0.010765s
50 0.033487s 0.025360s

100 0.036126s 0.028337s
200 0.043247s 0.031440s

Table 6. Barrier times on two situations

Table 6 presents the barrier times captured when 2000 supersteps were tested. More espe-
cially, the time is captured when the last superstep is executed. We implemented a centralized

master-slave approach for barrier, where process 1 receives and sends a scheduling message
from/to other BSP processes. Thus, the barrier time is captured on process 1. The times shown
in the third column of Table 6 do not include both scheduling messages and computation. Our
idea is to demonstrate that the remapping of processes decreases the time to compute the BSP
supersteps. Therefore, process 1 can reduce the waiting time for barrier computation since the
processes reach this moment faster. Analyzing such table, we observed that a gain of 22% in
time was achieved when comparing barrier time on scenarios i and iii with 50 processes. The
gain was reduced when 100 processes were tested. This occurs because we just include more
nodes from cluster ICE with 100 processes if compared with the execution of 50 processes.

5.2 Smith-Waterman Application
Our second application is based on dynamic programming (DP), which is a popular algorithm
design technique for optimization problems (Low et al., 2007). DP algorithms can be classified
according to the matrix size and the dependency relationship of each matrix cell. An algorithm
for a problem of size n is called a tD/eD algorithm if its matrix size is O(nt) and each matrix
cell depends on O(ne) other cells. 2D/1D algorithms are all irregular with changes on load
computation density along the matrix’s cells. In particular, we observed the Smith-Waterman
algorithm that is a well-known 2D/1D algorithm for local sequence alignment (Smith, 1988).

5.2.1 Modeling the Problem
Smith-Waterman algorithm proceeds in a series of wavefronts diagonally across the matrix.
Figure 11 (a) illustrates the concept of the algorithm for a 4×4 matrix with a column-based
processes allocation. The more intense the shading, the greater is the load computation den-
sity of the cell. Each wavefront corresponds to a BSP superstep. For instance, Figure 11 (b)
shows a 4×4 matrix that presents 7 supersteps. The computation load is uniform inside a
particular superstep, growing up when the number of the superstep increases. Both organi-
zations of diagonal-based supersteps mapping and column-based processes mapping bring
the following conclusions: (i) 2n − 1 supersteps are crossed to compute a square matrix with
order n and; (ii) each process will be involved on n supersteps. Figures 11 (b) and (c) show
the communication actions among the processes. Considering that cell x, y (x means a matrix’
line, while y is a matrix’ column) needs data from the x, y − 1 and x − 1, y other ones, we will
have an interaction from process py to process py + 1. We do not have communication inside
the same matrix column, since it corresponds to the same process.
The configuration of scenarios ii and iii depends on the Computation Pattern Pcomp(i) of each
process i (see Subsection 3.3 for more details) . Pcomp(i) increases or decreases depending on
the prediction of the amount of performed instructions at each superstep. We consider a spe-
cific process as regular if the forecast is within a δ margin of fluctuation from the amount of
instructions performed actually. In our experiments, we are using 106 as the amount of in-
structions for the first superstep and 109 for the last one. The increase of load computational
density among the supersteps is uniform. In other words, we take the difference between 109

and 106 and divide by the number of involved supersteps in a specific execution. Considering
this, we applied δ equal to 0.01 (1%) and 0.50 (50%) to scenarios ii and iii, respectively. This last
value was used because I2(1) is 565.105 and PI2(1) is 287.105 when a 10×10 matrix is tested
(see details about the notations in Subsection 3.3). The percentage of 50% enforces instruction
regularity in the system. Both values of δ will influence the Computation metric, and conse-
quently the choosing of candidates for migration. Scenario ii tends to obtain negatives values
for PM since the Computation Metric will be close to 0. Consequently, no migrations will
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Super- Scenario i α = 4 α = 8 α = 16
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2000 200.43 209.46 194.87 208.13 202.22 204.69 211.69

Table 5. Evaluating 200 processes on three considered scenarios (time in seconds)

After these migrations, MigBSP does not indicate the viability of other ones. Thus, after ω
calls without migrations, MigBSP enlarges the value of D and α begins to increase following
adaptation 2 (see Subsection 3.2 for details).

Processes Scenario i - Without process migration Scenario iii - With process migration

10 0.005380s 0.005380s
25 0.023943s 0.010765s
50 0.033487s 0.025360s
100 0.036126s 0.028337s
200 0.043247s 0.031440s

Table 6. Barrier times on two situations

Table 6 presents the barrier times captured when 2000 supersteps were tested. More espe-
cially, the time is captured when the last superstep is executed. We implemented a centralized

master-slave approach for barrier, where process 1 receives and sends a scheduling message
from/to other BSP processes. Thus, the barrier time is captured on process 1. The times shown
in the third column of Table 6 do not include both scheduling messages and computation. Our
idea is to demonstrate that the remapping of processes decreases the time to compute the BSP
supersteps. Therefore, process 1 can reduce the waiting time for barrier computation since the
processes reach this moment faster. Analyzing such table, we observed that a gain of 22% in
time was achieved when comparing barrier time on scenarios i and iii with 50 processes. The
gain was reduced when 100 processes were tested. This occurs because we just include more
nodes from cluster ICE with 100 processes if compared with the execution of 50 processes.

5.2 Smith-Waterman Application
Our second application is based on dynamic programming (DP), which is a popular algorithm
design technique for optimization problems (Low et al., 2007). DP algorithms can be classified
according to the matrix size and the dependency relationship of each matrix cell. An algorithm
for a problem of size n is called a tD/eD algorithm if its matrix size is O(nt) and each matrix
cell depends on O(ne) other cells. 2D/1D algorithms are all irregular with changes on load
computation density along the matrix’s cells. In particular, we observed the Smith-Waterman
algorithm that is a well-known 2D/1D algorithm for local sequence alignment (Smith, 1988).

5.2.1 Modeling the Problem
Smith-Waterman algorithm proceeds in a series of wavefronts diagonally across the matrix.
Figure 11 (a) illustrates the concept of the algorithm for a 4×4 matrix with a column-based
processes allocation. The more intense the shading, the greater is the load computation den-
sity of the cell. Each wavefront corresponds to a BSP superstep. For instance, Figure 11 (b)
shows a 4×4 matrix that presents 7 supersteps. The computation load is uniform inside a
particular superstep, growing up when the number of the superstep increases. Both organi-
zations of diagonal-based supersteps mapping and column-based processes mapping bring
the following conclusions: (i) 2n − 1 supersteps are crossed to compute a square matrix with
order n and; (ii) each process will be involved on n supersteps. Figures 11 (b) and (c) show
the communication actions among the processes. Considering that cell x, y (x means a matrix’
line, while y is a matrix’ column) needs data from the x, y − 1 and x − 1, y other ones, we will
have an interaction from process py to process py + 1. We do not have communication inside
the same matrix column, since it corresponds to the same process.
The configuration of scenarios ii and iii depends on the Computation Pattern Pcomp(i) of each
process i (see Subsection 3.3 for more details) . Pcomp(i) increases or decreases depending on
the prediction of the amount of performed instructions at each superstep. We consider a spe-
cific process as regular if the forecast is within a δ margin of fluctuation from the amount of
instructions performed actually. In our experiments, we are using 106 as the amount of in-
structions for the first superstep and 109 for the last one. The increase of load computational
density among the supersteps is uniform. In other words, we take the difference between 109

and 106 and divide by the number of involved supersteps in a specific execution. Considering
this, we applied δ equal to 0.01 (1%) and 0.50 (50%) to scenarios ii and iii, respectively. This last
value was used because I2(1) is 565.105 and PI2(1) is 287.105 when a 10×10 matrix is tested
(see details about the notations in Subsection 3.3). The percentage of 50% enforces instruction
regularity in the system. Both values of δ will influence the Computation metric, and conse-
quently the choosing of candidates for migration. Scenario ii tends to obtain negatives values
for PM since the Computation Metric will be close to 0. Consequently, no migrations will
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Fig. 11. Different views of Smith-Waterman irregular application

happen on this scenario. We tested the behavior of square matrixes of order 10, 25, 50, 100 and
200. Each cell of a 10×10 matrix needs to communicate 500 Kbytes and each process occupies
1.2 Mbyte in memory (700 Kbytes comprise other application data). The cell of 25×25 matrix
communicates 200 Kbytes and each process occupies 900 Kbytes in memory and so on.

5.2.2 Results and Discussions
Table 7 presents the application evaluation. Nineteen supersteps were crossed when a 10×10
matrix was tested. Adopting this size of matrix and α 2, 13.34s and 14.15s were obtained for
scenarios i and ii which represents a cost of 8%. The higher is the value of α, the lower is
the MigBSP overhead on application execution. This occurs because the system is stable (pro-
cesses are balanced) and α always increases at each rescheduling call. Three calls for process
relocation were done when testing α 2 (at supersteps 2, 6 and 14). The rescheduling call at
superstep 2 does not produce migrations. At this step, the load computational density is not
enough to overlap the consider migration costs involved on process transferring operation.
The same occurred on the next call at superstep 6. The last call happened at superstep 14,
which resulted on 6 migrations: {(p5,a1), (p6,a2), (p7,a3), (p8,a4), (p9,a5), (p10,a6)}. MigBSP
indicated the migration of processes that are responsible to compute the final supersteps. The
execution with α equal to 4 implies in a shorter overhead since two calls were done (at super-
steps 4 and 12). Observing scenario iii, we do not have migrations in the first call, but eight
occurred in the other one. Processes 3 up to 10 migrated in this last call to cluster Aquario. α 4
outperforms α 2 for two reasons: (i) it does less rescheduling calls and; (ii) the call that causes
process migration was done at a specific superstep in which MigBSP takes better decisions.
The system stays stable when the 25×25 matrix was tested. α 2 produces a gain of 11% in
performance when considering 25×25 matrix and scenario iii. This configuration presents
four calls for process rescheduling, where two of them produce migrations. No migrations
are indicated at supersteps 2 and 6. Nevertheless, processes 1 up to 12 are migrated at su-
perstep 14 while processes 21 up to 25 are transferred at superstep 30. These transferring
operations occurred to the fastest cluster. In this last call, the remaining execution presents
19 supersteps (from 31 to 49) to amortize the migration costs and to get better performance.
The execution when considering α 8 and scenario iii brings an overhead if compared with
scenario i. Two calls for migrations were done, at supersteps 8 and 24. The first call causes

Scenarios Order of considered matrices
10×10 25×25 50×50 100×100 200×200

Scenario i 13.34s 40.74s 92.59s 162.66s 389.91s

Scenario ii

α = 2 14.15s 43.05s 95.70s 166.57s 394.68s
α = 4 14.71s 42.24s 94.84s 165.66s 393.75s
α = 8 13.78s 41.63s 94.03s 164.80s 392.85s
α = 16 13.42s 41.28s 93.36s 164.04s 392.01s

Scenario iii

α = 2 13.09s 35.97s 85.95s 150.57 374.62s
α = 4 11.94s 34.82s 84.65s 148.89s 375.53s
α = 8 13.82s 41.64s 83.00s 146.55s 374.38s
α = 16 12.40s 40.64s 85.21s 162.49s 374.40s

Table 7. Evaluation of scenarios i, ii and iii when varying the matrix size

the migration of just one process (number 1) to a1 and the second one produces three migra-
tions: {(p21,a2),(p22,a3),(p23,a4)}. We observed that processes p24 and p25 stayed on cluster
Corisco. Despite performed migrations, these two processes compromise the supersteps that
include them. Both are executing on a slower cluster and the barrier waits for the slowest pro-
cess. Maintaining the matrix size and adopting α 16, we have two calls: at supersteps 16 and
48. This last call migrates p24 an p25 to cluster Aquario. Although this movement is pertinent
to get performance, just one superstep is executed before ending the application.
Fifty processes were evaluated when the 50×50 matrix was considered. In this context, α also
increases at each call for process rescheduling. We observed that an overhead of 3% was found
when scenario i and ii were compared (using α 2). In addition, we observed that all values of
α achieved a gain of performance in scenario iii. Especially when α 2 was used, five calls for
process rescheduling were done (at supersteps 2, 6, 14, 30 and 62). No migrations are indicated
in the first three calls. The greater is the matrix size, the greater is the amount of supersteps
needed to make migrations viable. This happens because our total load is fixed (independent
of the matrix size) but the load partition increases uniformly along the supersteps (see Section
4 for details). Process 21 up to 29 are migrated to cluster Aquario at superstep 30, while
process 37 up to 42 are migrated to this cluster at superstep 62. Using α equal to 4, 84.65s were
obtained for scenario iii which results a gain of 9%. This gain is greater than that achieved
with α 2 because now the last rescheduling call is done at superstep 60. The same processes
were migrated at this point. However, there are two more supersteps to execute using α equal
to 4. Three rescheduling calls were done with α8 (at supersteps 8, 24 and 56). Only the last two
produce migration. Three processes are migrated at superstep 24: {(p21,a1),(p22,a2),(p23,a3)}.
Process 37 up to 42 are migrated to cluster Aquario at superstep 56. This last call is efficient
since it transfers all processes from cluster Frontal to Aquario.
The execution with a 100×100 matrix shows good results with process migration. Six
rescheduling calls were done when using α 2. Migrations did not occur at the first three su-
persteps (2, 6 and 14). Process 21 up to 29 are migrated to cluster Aquario after superstep 30.
In addition, process 37 to 42 are migrated to cluster Aquario at superstep 62. Finally, super-
step 126 indicates 7 migrations, but just 5 occurred: p30 up to p36 to cluster Aquario. These
migrations complete one process per node on cluster Aquario. MigBSP selected for migration
those processes that belonged to cluster Corisco and Frontal, which are the slowest clusters on
our infrastructure testbed. α equal to 16 produced 3 attempts for migration when a 100×100
matrix is evaluated (at supersteps 16, 48 and 112). All of them triggered migrations. In the first



Process rescheduling: enabling performance  
by applying multiple metrics and efficient adaptations 57

   







   

   







   


















Fig. 11. Different views of Smith-Waterman irregular application

happen on this scenario. We tested the behavior of square matrixes of order 10, 25, 50, 100 and
200. Each cell of a 10×10 matrix needs to communicate 500 Kbytes and each process occupies
1.2 Mbyte in memory (700 Kbytes comprise other application data). The cell of 25×25 matrix
communicates 200 Kbytes and each process occupies 900 Kbytes in memory and so on.

5.2.2 Results and Discussions
Table 7 presents the application evaluation. Nineteen supersteps were crossed when a 10×10
matrix was tested. Adopting this size of matrix and α 2, 13.34s and 14.15s were obtained for
scenarios i and ii which represents a cost of 8%. The higher is the value of α, the lower is
the MigBSP overhead on application execution. This occurs because the system is stable (pro-
cesses are balanced) and α always increases at each rescheduling call. Three calls for process
relocation were done when testing α 2 (at supersteps 2, 6 and 14). The rescheduling call at
superstep 2 does not produce migrations. At this step, the load computational density is not
enough to overlap the consider migration costs involved on process transferring operation.
The same occurred on the next call at superstep 6. The last call happened at superstep 14,
which resulted on 6 migrations: {(p5,a1), (p6,a2), (p7,a3), (p8,a4), (p9,a5), (p10,a6)}. MigBSP
indicated the migration of processes that are responsible to compute the final supersteps. The
execution with α equal to 4 implies in a shorter overhead since two calls were done (at super-
steps 4 and 12). Observing scenario iii, we do not have migrations in the first call, but eight
occurred in the other one. Processes 3 up to 10 migrated in this last call to cluster Aquario. α 4
outperforms α 2 for two reasons: (i) it does less rescheduling calls and; (ii) the call that causes
process migration was done at a specific superstep in which MigBSP takes better decisions.
The system stays stable when the 25×25 matrix was tested. α 2 produces a gain of 11% in
performance when considering 25×25 matrix and scenario iii. This configuration presents
four calls for process rescheduling, where two of them produce migrations. No migrations
are indicated at supersteps 2 and 6. Nevertheless, processes 1 up to 12 are migrated at su-
perstep 14 while processes 21 up to 25 are transferred at superstep 30. These transferring
operations occurred to the fastest cluster. In this last call, the remaining execution presents
19 supersteps (from 31 to 49) to amortize the migration costs and to get better performance.
The execution when considering α 8 and scenario iii brings an overhead if compared with
scenario i. Two calls for migrations were done, at supersteps 8 and 24. The first call causes

Scenarios Order of considered matrices
10×10 25×25 50×50 100×100 200×200

Scenario i 13.34s 40.74s 92.59s 162.66s 389.91s

Scenario ii

α = 2 14.15s 43.05s 95.70s 166.57s 394.68s
α = 4 14.71s 42.24s 94.84s 165.66s 393.75s
α = 8 13.78s 41.63s 94.03s 164.80s 392.85s
α = 16 13.42s 41.28s 93.36s 164.04s 392.01s

Scenario iii

α = 2 13.09s 35.97s 85.95s 150.57 374.62s
α = 4 11.94s 34.82s 84.65s 148.89s 375.53s
α = 8 13.82s 41.64s 83.00s 146.55s 374.38s
α = 16 12.40s 40.64s 85.21s 162.49s 374.40s

Table 7. Evaluation of scenarios i, ii and iii when varying the matrix size

the migration of just one process (number 1) to a1 and the second one produces three migra-
tions: {(p21,a2),(p22,a3),(p23,a4)}. We observed that processes p24 and p25 stayed on cluster
Corisco. Despite performed migrations, these two processes compromise the supersteps that
include them. Both are executing on a slower cluster and the barrier waits for the slowest pro-
cess. Maintaining the matrix size and adopting α 16, we have two calls: at supersteps 16 and
48. This last call migrates p24 an p25 to cluster Aquario. Although this movement is pertinent
to get performance, just one superstep is executed before ending the application.
Fifty processes were evaluated when the 50×50 matrix was considered. In this context, α also
increases at each call for process rescheduling. We observed that an overhead of 3% was found
when scenario i and ii were compared (using α 2). In addition, we observed that all values of
α achieved a gain of performance in scenario iii. Especially when α 2 was used, five calls for
process rescheduling were done (at supersteps 2, 6, 14, 30 and 62). No migrations are indicated
in the first three calls. The greater is the matrix size, the greater is the amount of supersteps
needed to make migrations viable. This happens because our total load is fixed (independent
of the matrix size) but the load partition increases uniformly along the supersteps (see Section
4 for details). Process 21 up to 29 are migrated to cluster Aquario at superstep 30, while
process 37 up to 42 are migrated to this cluster at superstep 62. Using α equal to 4, 84.65s were
obtained for scenario iii which results a gain of 9%. This gain is greater than that achieved
with α 2 because now the last rescheduling call is done at superstep 60. The same processes
were migrated at this point. However, there are two more supersteps to execute using α equal
to 4. Three rescheduling calls were done with α8 (at supersteps 8, 24 and 56). Only the last two
produce migration. Three processes are migrated at superstep 24: {(p21,a1),(p22,a2),(p23,a3)}.
Process 37 up to 42 are migrated to cluster Aquario at superstep 56. This last call is efficient
since it transfers all processes from cluster Frontal to Aquario.
The execution with a 100×100 matrix shows good results with process migration. Six
rescheduling calls were done when using α 2. Migrations did not occur at the first three su-
persteps (2, 6 and 14). Process 21 up to 29 are migrated to cluster Aquario after superstep 30.
In addition, process 37 to 42 are migrated to cluster Aquario at superstep 62. Finally, super-
step 126 indicates 7 migrations, but just 5 occurred: p30 up to p36 to cluster Aquario. These
migrations complete one process per node on cluster Aquario. MigBSP selected for migration
those processes that belonged to cluster Corisco and Frontal, which are the slowest clusters on
our infrastructure testbed. α equal to 16 produced 3 attempts for migration when a 100×100
matrix is evaluated (at supersteps 16, 48 and 112). All of them triggered migrations. In the first
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call, the 11th first processes are migrated to cluster Aquario. All process from cluster Frontal
are migrated to Aquario at superstep 48. Finally, 15 processes are selected as candidates for
migration after crossing 112 supersteps. They are: p21 to p36. This spectrum of candidates
is equal to the processes that are running on Frontal. Considering this, only 3 processes were
migrated actually: {(p34,a18),(p35a19),(p36,a20)}.
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Fig. 12. Migration behavior when testing a 200 × 200 matrix with initial α equal to 2

Table 7 also shows the application performance when the 200×200 matrix was tested. Sat-
isfactory results were obtained with process migration. The system stays stable during all
application execution. Despite having more than one process mapped to one processor, some-
times just a portion of them is responsible for computation at a specific moment. This occurs
because the processes are mapped to matrix columns, while supersteps comprise the anti-
diagonals of the matrix. Figure 12 illustrates the migrations behavior along the execution
with α 2. Using α 2 and considering scenario iii, 8 calls for process rescheduling were done.
Migrations were not done at supersteps 2, 6 and 14. Processes 21 up to 31 are migrated to
cluster Aquario at superstep 30. Moreover, all processes from cluster Frontal are migrated to
Aquario at superstep 62. Six processes are candidates for migration at superstep 126: p30 to
p36. However, only p31 up to p36 are migrated to cluster Aquario. These migrations hap-
pen because the processes initially mapped to cluster Aquario do not collaborate yet with BSP
computation. Migrations are not viable at superstep 254. Finally, 12 processes (p189 to p200)
are migrated to cluster Aquario when superstep 388 was crossed. At this time, all previous
processes allocated to Aquario are inactive and the migrations are viable. However, just 10
remaining supersteps are executed to amortize the process migration costs.

5.3 LU Decomposition Application
Consider a system of linear equations A.x = b, where A is a given n × n non singular matrix,
b a given vector of length n, and x the unknown solution vector of length n. One method for
solving this system is by using the LU Decomposition technique. It comprises the decompo-
sition of the matrix A into a lower triangular matrix L and an upper triangular matrix U such

that A = LU. A n × n matrix L is called unit lower triangular if li,i = 1 for all i, 0 ≤ i < n, and
li,j = 0 for all i, j where 0 ≤ i < j < n. An n × n matrix U is called upper triangular if ui,j = 0
for all i, j with 0 ≤ j < i < n.
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Fig. 13. L and U matrices with the same memory space of the original matrix A0

1. for k from 0 to n − 1 do for k from 0 to n − 1 do
2. for j from k to n − 1 do for i from k + 1 to n − 1 do
3. uk,j = ak

k,j ai,k =
ai,k
ak,k

4. endfor endfor
5. for i from k + 1 to n − 1 do for i from k + 1 to n − 1 do
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i,k =

ak
i,k

uk,k
for j from k + 1 to n − 1 do

7. endfor ai,j = ai,j − ai,k . ak,j
8. for i from k + 1 to n − 1 do endfor
9. for j from k + 1 to n − 1 do endfor
10. ak+1

i,j = ak
i,j − li,k . uk,j endfor

11. endfor
12. endfor
13. endfor

Fig. 14. Two algorithms to solve the LU Decomposition problem

On input, A contains the original matrix A0, whereas on output it contains the values of L
below the diagonal and the values of U above and on the diagonal such that LU = A0. Figure
13 illustrates the organization of LU computation. The values of L and U computed so far
and the computed sub-matrix Ak may be stored in the same memory space of A0. Figure 14
presents the sequential algorithm for producing L and U in stages. Stage k first computes the
elements uk,j, j ≥ k, of row k of U and the elements li,k, i > k, of column k of L. Then, it
computes Ak+1 in preparation for the next stage. Figure 14 also presents in the right side the
functioning of the previous algorithm using just the elements from matrix A. Figure 13 (b)
presents the data that is necessary to compute ai,j. Besides its own value, ai,j is updated using
a value from the same line and another from the same column.

5.3.1 Modeling the Problem
This section explains how we modeled the LU sequential application on a BSP-based parallel
one. Firstly, the bulk of the computational work in stage k of the sequential algorithm is the
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call, the 11th first processes are migrated to cluster Aquario. All process from cluster Frontal
are migrated to Aquario at superstep 48. Finally, 15 processes are selected as candidates for
migration after crossing 112 supersteps. They are: p21 to p36. This spectrum of candidates
is equal to the processes that are running on Frontal. Considering this, only 3 processes were
migrated actually: {(p34,a18),(p35a19),(p36,a20)}.
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Fig. 12. Migration behavior when testing a 200 × 200 matrix with initial α equal to 2

Table 7 also shows the application performance when the 200×200 matrix was tested. Sat-
isfactory results were obtained with process migration. The system stays stable during all
application execution. Despite having more than one process mapped to one processor, some-
times just a portion of them is responsible for computation at a specific moment. This occurs
because the processes are mapped to matrix columns, while supersteps comprise the anti-
diagonals of the matrix. Figure 12 illustrates the migrations behavior along the execution
with α 2. Using α 2 and considering scenario iii, 8 calls for process rescheduling were done.
Migrations were not done at supersteps 2, 6 and 14. Processes 21 up to 31 are migrated to
cluster Aquario at superstep 30. Moreover, all processes from cluster Frontal are migrated to
Aquario at superstep 62. Six processes are candidates for migration at superstep 126: p30 to
p36. However, only p31 up to p36 are migrated to cluster Aquario. These migrations hap-
pen because the processes initially mapped to cluster Aquario do not collaborate yet with BSP
computation. Migrations are not viable at superstep 254. Finally, 12 processes (p189 to p200)
are migrated to cluster Aquario when superstep 388 was crossed. At this time, all previous
processes allocated to Aquario are inactive and the migrations are viable. However, just 10
remaining supersteps are executed to amortize the process migration costs.

5.3 LU Decomposition Application
Consider a system of linear equations A.x = b, where A is a given n × n non singular matrix,
b a given vector of length n, and x the unknown solution vector of length n. One method for
solving this system is by using the LU Decomposition technique. It comprises the decompo-
sition of the matrix A into a lower triangular matrix L and an upper triangular matrix U such

that A = LU. A n × n matrix L is called unit lower triangular if li,i = 1 for all i, 0 ≤ i < n, and
li,j = 0 for all i, j where 0 ≤ i < j < n. An n × n matrix U is called upper triangular if ui,j = 0
for all i, j with 0 ≤ j < i < n.
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Fig. 13. L and U matrices with the same memory space of the original matrix A0

1. for k from 0 to n − 1 do for k from 0 to n − 1 do
2. for j from k to n − 1 do for i from k + 1 to n − 1 do
3. uk,j = ak

k,j ai,k =
ai,k
ak,k

4. endfor endfor
5. for i from k + 1 to n − 1 do for i from k + 1 to n − 1 do
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for j from k + 1 to n − 1 do

7. endfor ai,j = ai,j − ai,k . ak,j
8. for i from k + 1 to n − 1 do endfor
9. for j from k + 1 to n − 1 do endfor
10. ak+1

i,j = ak
i,j − li,k . uk,j endfor

11. endfor
12. endfor
13. endfor

Fig. 14. Two algorithms to solve the LU Decomposition problem

On input, A contains the original matrix A0, whereas on output it contains the values of L
below the diagonal and the values of U above and on the diagonal such that LU = A0. Figure
13 illustrates the organization of LU computation. The values of L and U computed so far
and the computed sub-matrix Ak may be stored in the same memory space of A0. Figure 14
presents the sequential algorithm for producing L and U in stages. Stage k first computes the
elements uk,j, j ≥ k, of row k of U and the elements li,k, i > k, of column k of L. Then, it
computes Ak+1 in preparation for the next stage. Figure 14 also presents in the right side the
functioning of the previous algorithm using just the elements from matrix A. Figure 13 (b)
presents the data that is necessary to compute ai,j. Besides its own value, ai,j is updated using
a value from the same line and another from the same column.

5.3.1 Modeling the Problem
This section explains how we modeled the LU sequential application on a BSP-based parallel
one. Firstly, the bulk of the computational work in stage k of the sequential algorithm is the



Future Manufacturing Systems60

modification of the matrix elements ai,j with i, j ≥ k + 1. Aiming to prevent communication
of large amounts of data, the update of ai,j = ai,j + ai,k.ak,j must be performed by the process
whose contains ai,j. This implies that only elements of column k and row k of A need to be
communicated in stage k in order to compute the new sub-matrix Ak. An important obser-
vation is that the modification of the elements in row A(i, k + 1 : n − 1) uses only one value
of column k of A, namely ai,k. The provided notation A(i, k + 1 : n − 1) denotes the cells of
line i varying from column k + 1 to n − 1. If we distribute each matrix row over a limit set
of N processes, then the communication of an element from column k can be restricted to a
multicast to N processes. Similarly, the change of the elements in A(k + 1 : n − 1, j) uses only
one value from row k of A, namely ak,j. If we divide each column over a set of M processes,
the communication of an element of row k can be restricted to a multicast to M processes.
We are using a Cartesian scheme for the distribution of matrices. The square cyclic distribution
is used since it is particularly suitable for matrix computations (Bisseling, 2004). Thus, it is
natural to organize the processes by two-dimensional identifiers P(s, t) with 0 ≤ s < M and
0 ≤ t < N, where the number of processes p = M.N. Figure 15 depicts a 6× 6 matrix mapped
to 6 processes, where M = 2 and N = 3. Assuming that M and N are factors of n, each process
will store nc (number of cells) cells in memory (see Equation 10).

nc =
n
M

.
n
N

(10)
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Fig. 15. Cartesian distribution of a matrix over 2×3 (M × N) processes

A parallel algorithm uses data parallelism for computations and the need-to-know principle
to design the communication phase of each superstep. Following the concepts of BSP, all
communication performed during a superstep will be completed when finishing it and the
data will be available at the beginning of the next superstep (Bonorden, 2007). Concerning
this, we modeled our algorithm using three kinds of supersteps. They are explained in Table
8. The element ak,k is passed to the process that computes ai,k in the first kind of superstep.
The computation of ai,k is expressed in the beginning of the second superstep. This superstep
is also responsible for sending the elements ai,k and ak,j to ai,j. First of all, we pass the element
ai,k, k + 1 ≤ i < n, to the N − 1 processes that execute on the respective row i. This kind of
superstep also comprises the passing of ak,j, k + 1 ≤ j < n, to M − 1 processes which execute
on the respective column j. The superstep 3 considers the computation of ai,j, the increase of
k (next stage of the algorithm) and the transmission of ak,k to ai,k elements (k + 1 ≤ i < n).
The application will execute one superstep of type 1 and will follow with the interleaving of
supersteps 2 and 3. Thus, a n× n matrix will trigger 2n+ 1 supersteps in our LU modeling. We

Type of su-
perstep

Steps and explanation

First Step 1.1 : k = 0
Step 1.2 - Pass the element ak,k to cells which will compute ai,k (k + 1 ≤ i <
n)

Second

Step 2.1 : Computation of ai,k (k + 1 ≤ i < n) by cells which own them
Step 2.2 : For each i (k + 1 ≤ i < n), pass the element ai,k to other ai,j
elements in the same line (k + 1 ≤ j < n)
Step 2.3 : For each j (k + 1 ≤ j < n), pass the element ak,j to other ai,j
elements in the same column (k + 1 ≤ i < n)

Third

Step 3.1 : For each i and j (k + 1 ≤ i, j < n), calculate ai,j as ai,j + ai,k.ak,j
Step 3.2 : k = k + 1
Step 3.3 : Pass the element ak,k to cells which will compute ai,k (k + 1 ≤ i <
n)

Table 8. Modeling three types of supersteps for LU computation

modeled the Cartesian distribution M × N in the following manner: 5× 5, 10× 5, 10× 10 and
20 × 10 for 25, 50, 100 and 200 processes, respectively. Moreover, we are applying simulation
over square matrices with orders 500, 1000, 2000 and 5000. Lastly, the tests were executed
using α = 4, ω = 3, D = 0.5 and x = 80%.

5.3.2 Results and Discussions
Table 9 presents the results when evaluating LU application. The tests with the first matrix
size show the worst results. Formerly, the higher the number of processes, the worse the
performance, as we can observe in scenario i. The reasons for the observed times are the
overheads related to communication and synchronization. Secondly, MigBSP indicated that
all migration attempts were not viable due to low computing and communication loads when
compared to migration costs. Considering this, both scenarios ii and iii have the same results.

Processes 500×500 matrix 1000×1000 matrix 2000×2000 matrix
i ii iii i ii iii i ii iii

25 1.68 2.42 2.42 11.65 13.13 10.24 90.11 91.26 76.20
50 2.59 3.54 3.34 10.10 11.18 9.63 60.23 61.98 54.18
100 6.70 7.81 7.65 15.22 16.21 16.21 48.79 50.25 46.87
200 13.23 14.89 14.89 28.21 30.46 30.46 74.14 76.97 76.97

Table 9. First results when executing LU linked to MigBSP (time in seconds)

When testing a 1000× 1000 matrix with 25 processes, the first rescheduling call does not cause
migrations. After this call at superstep 4, the next one at superstep 11 informs the migration of
5 processes from cluster Corisco. They were all transferred to cluster Aquario, which has the
highest computation power. MigBSP does not point migrations in the future calls. α always
increases its value at each rescheduling call since the processes are balanced after the men-
tioned relocations. MigBSP obtained a gain of 12% of performance with 25 processes when
comparing scenarios i and iii. With the same size of matrix and 50 processes, 6 processes from
Frontal were migrated to Aquario at superstep 9. Although these migrations are profitable,
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modification of the matrix elements ai,j with i, j ≥ k + 1. Aiming to prevent communication
of large amounts of data, the update of ai,j = ai,j + ai,k.ak,j must be performed by the process
whose contains ai,j. This implies that only elements of column k and row k of A need to be
communicated in stage k in order to compute the new sub-matrix Ak. An important obser-
vation is that the modification of the elements in row A(i, k + 1 : n − 1) uses only one value
of column k of A, namely ai,k. The provided notation A(i, k + 1 : n − 1) denotes the cells of
line i varying from column k + 1 to n − 1. If we distribute each matrix row over a limit set
of N processes, then the communication of an element from column k can be restricted to a
multicast to N processes. Similarly, the change of the elements in A(k + 1 : n − 1, j) uses only
one value from row k of A, namely ak,j. If we divide each column over a set of M processes,
the communication of an element of row k can be restricted to a multicast to M processes.
We are using a Cartesian scheme for the distribution of matrices. The square cyclic distribution
is used since it is particularly suitable for matrix computations (Bisseling, 2004). Thus, it is
natural to organize the processes by two-dimensional identifiers P(s, t) with 0 ≤ s < M and
0 ≤ t < N, where the number of processes p = M.N. Figure 15 depicts a 6× 6 matrix mapped
to 6 processes, where M = 2 and N = 3. Assuming that M and N are factors of n, each process
will store nc (number of cells) cells in memory (see Equation 10).
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n
M
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Fig. 15. Cartesian distribution of a matrix over 2×3 (M × N) processes

A parallel algorithm uses data parallelism for computations and the need-to-know principle
to design the communication phase of each superstep. Following the concepts of BSP, all
communication performed during a superstep will be completed when finishing it and the
data will be available at the beginning of the next superstep (Bonorden, 2007). Concerning
this, we modeled our algorithm using three kinds of supersteps. They are explained in Table
8. The element ak,k is passed to the process that computes ai,k in the first kind of superstep.
The computation of ai,k is expressed in the beginning of the second superstep. This superstep
is also responsible for sending the elements ai,k and ak,j to ai,j. First of all, we pass the element
ai,k, k + 1 ≤ i < n, to the N − 1 processes that execute on the respective row i. This kind of
superstep also comprises the passing of ak,j, k + 1 ≤ j < n, to M − 1 processes which execute
on the respective column j. The superstep 3 considers the computation of ai,j, the increase of
k (next stage of the algorithm) and the transmission of ak,k to ai,k elements (k + 1 ≤ i < n).
The application will execute one superstep of type 1 and will follow with the interleaving of
supersteps 2 and 3. Thus, a n× n matrix will trigger 2n+ 1 supersteps in our LU modeling. We

Type of su-
perstep

Steps and explanation

First Step 1.1 : k = 0
Step 1.2 - Pass the element ak,k to cells which will compute ai,k (k + 1 ≤ i <
n)

Second

Step 2.1 : Computation of ai,k (k + 1 ≤ i < n) by cells which own them
Step 2.2 : For each i (k + 1 ≤ i < n), pass the element ai,k to other ai,j
elements in the same line (k + 1 ≤ j < n)
Step 2.3 : For each j (k + 1 ≤ j < n), pass the element ak,j to other ai,j
elements in the same column (k + 1 ≤ i < n)

Third

Step 3.1 : For each i and j (k + 1 ≤ i, j < n), calculate ai,j as ai,j + ai,k.ak,j
Step 3.2 : k = k + 1
Step 3.3 : Pass the element ak,k to cells which will compute ai,k (k + 1 ≤ i <
n)

Table 8. Modeling three types of supersteps for LU computation

modeled the Cartesian distribution M × N in the following manner: 5× 5, 10× 5, 10× 10 and
20 × 10 for 25, 50, 100 and 200 processes, respectively. Moreover, we are applying simulation
over square matrices with orders 500, 1000, 2000 and 5000. Lastly, the tests were executed
using α = 4, ω = 3, D = 0.5 and x = 80%.

5.3.2 Results and Discussions
Table 9 presents the results when evaluating LU application. The tests with the first matrix
size show the worst results. Formerly, the higher the number of processes, the worse the
performance, as we can observe in scenario i. The reasons for the observed times are the
overheads related to communication and synchronization. Secondly, MigBSP indicated that
all migration attempts were not viable due to low computing and communication loads when
compared to migration costs. Considering this, both scenarios ii and iii have the same results.

Processes 500×500 matrix 1000×1000 matrix 2000×2000 matrix
i ii iii i ii iii i ii iii

25 1.68 2.42 2.42 11.65 13.13 10.24 90.11 91.26 76.20
50 2.59 3.54 3.34 10.10 11.18 9.63 60.23 61.98 54.18
100 6.70 7.81 7.65 15.22 16.21 16.21 48.79 50.25 46.87
200 13.23 14.89 14.89 28.21 30.46 30.46 74.14 76.97 76.97

Table 9. First results when executing LU linked to MigBSP (time in seconds)

When testing a 1000× 1000 matrix with 25 processes, the first rescheduling call does not cause
migrations. After this call at superstep 4, the next one at superstep 11 informs the migration of
5 processes from cluster Corisco. They were all transferred to cluster Aquario, which has the
highest computation power. MigBSP does not point migrations in the future calls. α always
increases its value at each rescheduling call since the processes are balanced after the men-
tioned relocations. MigBSP obtained a gain of 12% of performance with 25 processes when
comparing scenarios i and iii. With the same size of matrix and 50 processes, 6 processes from
Frontal were migrated to Aquario at superstep 9. Although these migrations are profitable,
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they do not provide stability to the system and the processes remain unbalanced among the
resources. Migrations are not viable in the next 3 calls at supersteps 15, 21 and 27. After
that, MigBSP launches our second adaptation on rescheduling frequency in order to alleviate
its impact and α begins to grow until the end of the application. The tests with 50 processes
obtained gains of just 5% with process migration. This is explained by the fact that the compu-
tational load is decreased in this configuration when compared to the one with 25 processes.
In addition, the bigger the number of the superstep, the smaller the computational load re-
quired by it. Therefore, the more advanced the execution, the lesser the gain with migrations.
The tests with 100 and 200 processes do not present migrations owing to the forces that act in
favor of migration are weaker than the Memory metric in all rescheduling calls.
The execution with a 2000× 2000 matrix presents good results because the computational load
is increased. We observed a gain of 15% with process relocation when testing 25 processes.
All processes from cluster Corisco were migrated to Aquario in the first rescheduling call (at
superstep 4). Thus, the application can take profit from this relocation in its beginning, when
it demands more computations. The time for concluding the LU application is reduced when
passing from 25 to 50 processes as we can see in scenario i. However, the use of MigBSP
resulted in lower gains. Scenario i presented 60.23s while scenario iii achieved 56.18s (9% of
profit). When considering 50 processes, 6 processes were transferred from cluster Frontal to
Aquario at superstep 4. The next call occurs at superstep 9, where 16 processes from cluster
Corisco were elected as migration candidates to Aquario. However, MigBSP indicated the
migration of 14 processes, since there were only 14 unoccupied processors in the target cluster.
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Fig. 16. Performance graph with our three scenarios for a 5000 × 5000 matrix

We observed that the higher the matrix order, the better the results with process migration.
Considering this, the evaluation of a 5000× 5000 matrix can be seen in the Figure 16. The sim-
ple movement of all processes from cluster Corisco to Aquario represented a gain of 19% when
executing 25 processes. The tests with 50 processes obtained 852.31s and 723.64s for scenario
i and iii, respectively. The same migration behavior found on the tests with the 2000 × 2000
matrix was achieved in Scenario iii However, the increase of matrix order represented a gain
of 15% (order 5000) instead of 10% (order 2000). This analysis helps us to verify our previ-
ous hypothesis about performance gains when enlarging the matrix. Finally, the tests with
200 processes indicated the migration of 6 processes (p195 up to p200) from cluster Corisco to
Aquario at superstep 4. Thus, the nodes that belong to Corisco just execute one BSP process
while the nodes from Aquario begin to treat 2 processes. The remaining rescheduling calls
inform the processes from Labtec as those with the higher values of PM. However, their mi-
grations are not considered profitable. The final execution with 200 processes achieved 460.85s
and 450.33s for scenarios i and iii, respectively.

6. Conclusion

Scheduling schemes for multi-programmed parallel systems can be viewed in two lev-
els (Frachtenberg & Schwiegelshohn, 2008). In the first level processors are allocated to a
job. In the second level processes from a job are (re)scheduled using this pool of processors.
MigBSP can be included in this last scheme, offering algorithms for load (BSP processes) re-
balancing among the resources during the application runtime. In the best of our knowledge,
MigBSP is the pioneer model on treating BSP process rescheduling with three metrics and
adaptations on remapping frequency. These features are enabled by MigBSP at middleware
level, without changing the application code.
Considering the spectrum of the three tested applications, we can take the following conclu-
sions in a nutshell: (i) the larger the computing grain, the better the gain with processes migra-
tion; (ii) MigBSP does not indicate the migration of those processes that have high migration
costs when compared to computation and communication loads; (iii) MigBSP presented a low
overhead on application execution when migrations are not applied; (v) our tests prioritizes
migrations to cluster Aquario since it is the fastest one among considered clusters and tested
applications are CPU-bound and; (vi) MigBSP does not work with previous knowledge about
application. Considering this last topic, MigBSP indicates migrations even when the applica-
tion is close to finish. In this situation, these migrations bring an overhead since the remaining
time for application conclusion is too short to amortize their costs.
The results showed that MigBSP presented a low overhead on application execution. The
calculus of the PM (Potential of Migration) as well as our efficient adaptations were respon-
sible for this feature. PM considers processes and Sets (different sites), not performing all
processes-resources tests at the rescheduling moment. Meanwhile, our adaptations were cru-
cial to enable MigBSP as a viable scheduler. Instead of performing the rescheduling call at
each fixed interval, they manage a flexible interval between calls based on the behavior of the
processes. The concepts of the adaptations are: (i) to postpone the rescheduling call if the
system is stable (processes are balanced) or to turn it more frequent, otherwise; (ii) to delay
this call if a pattern without migrations in ω calls is observed.
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they do not provide stability to the system and the processes remain unbalanced among the
resources. Migrations are not viable in the next 3 calls at supersteps 15, 21 and 27. After
that, MigBSP launches our second adaptation on rescheduling frequency in order to alleviate
its impact and α begins to grow until the end of the application. The tests with 50 processes
obtained gains of just 5% with process migration. This is explained by the fact that the compu-
tational load is decreased in this configuration when compared to the one with 25 processes.
In addition, the bigger the number of the superstep, the smaller the computational load re-
quired by it. Therefore, the more advanced the execution, the lesser the gain with migrations.
The tests with 100 and 200 processes do not present migrations owing to the forces that act in
favor of migration are weaker than the Memory metric in all rescheduling calls.
The execution with a 2000× 2000 matrix presents good results because the computational load
is increased. We observed a gain of 15% with process relocation when testing 25 processes.
All processes from cluster Corisco were migrated to Aquario in the first rescheduling call (at
superstep 4). Thus, the application can take profit from this relocation in its beginning, when
it demands more computations. The time for concluding the LU application is reduced when
passing from 25 to 50 processes as we can see in scenario i. However, the use of MigBSP
resulted in lower gains. Scenario i presented 60.23s while scenario iii achieved 56.18s (9% of
profit). When considering 50 processes, 6 processes were transferred from cluster Frontal to
Aquario at superstep 4. The next call occurs at superstep 9, where 16 processes from cluster
Corisco were elected as migration candidates to Aquario. However, MigBSP indicated the
migration of 14 processes, since there were only 14 unoccupied processors in the target cluster.
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We observed that the higher the matrix order, the better the results with process migration.
Considering this, the evaluation of a 5000× 5000 matrix can be seen in the Figure 16. The sim-
ple movement of all processes from cluster Corisco to Aquario represented a gain of 19% when
executing 25 processes. The tests with 50 processes obtained 852.31s and 723.64s for scenario
i and iii, respectively. The same migration behavior found on the tests with the 2000 × 2000
matrix was achieved in Scenario iii However, the increase of matrix order represented a gain
of 15% (order 5000) instead of 10% (order 2000). This analysis helps us to verify our previ-
ous hypothesis about performance gains when enlarging the matrix. Finally, the tests with
200 processes indicated the migration of 6 processes (p195 up to p200) from cluster Corisco to
Aquario at superstep 4. Thus, the nodes that belong to Corisco just execute one BSP process
while the nodes from Aquario begin to treat 2 processes. The remaining rescheduling calls
inform the processes from Labtec as those with the higher values of PM. However, their mi-
grations are not considered profitable. The final execution with 200 processes achieved 460.85s
and 450.33s for scenarios i and iii, respectively.

6. Conclusion

Scheduling schemes for multi-programmed parallel systems can be viewed in two lev-
els (Frachtenberg & Schwiegelshohn, 2008). In the first level processors are allocated to a
job. In the second level processes from a job are (re)scheduled using this pool of processors.
MigBSP can be included in this last scheme, offering algorithms for load (BSP processes) re-
balancing among the resources during the application runtime. In the best of our knowledge,
MigBSP is the pioneer model on treating BSP process rescheduling with three metrics and
adaptations on remapping frequency. These features are enabled by MigBSP at middleware
level, without changing the application code.
Considering the spectrum of the three tested applications, we can take the following conclu-
sions in a nutshell: (i) the larger the computing grain, the better the gain with processes migra-
tion; (ii) MigBSP does not indicate the migration of those processes that have high migration
costs when compared to computation and communication loads; (iii) MigBSP presented a low
overhead on application execution when migrations are not applied; (v) our tests prioritizes
migrations to cluster Aquario since it is the fastest one among considered clusters and tested
applications are CPU-bound and; (vi) MigBSP does not work with previous knowledge about
application. Considering this last topic, MigBSP indicates migrations even when the applica-
tion is close to finish. In this situation, these migrations bring an overhead since the remaining
time for application conclusion is too short to amortize their costs.
The results showed that MigBSP presented a low overhead on application execution. The
calculus of the PM (Potential of Migration) as well as our efficient adaptations were respon-
sible for this feature. PM considers processes and Sets (different sites), not performing all
processes-resources tests at the rescheduling moment. Meanwhile, our adaptations were cru-
cial to enable MigBSP as a viable scheduler. Instead of performing the rescheduling call at
each fixed interval, they manage a flexible interval between calls based on the behavior of the
processes. The concepts of the adaptations are: (i) to postpone the rescheduling call if the
system is stable (processes are balanced) or to turn it more frequent, otherwise; (ii) to delay
this call if a pattern without migrations in ω calls is observed.
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1. Introduction  

During the past half century, market competition has been very intense and production 
companies have been trying to find more efficient ways to manufacture their products. 
While during the period 1960 to 1970 manufacturing cost was the primary concern, later it 
was followed by product quality and delivery speed. New strategies had to be formulated 
by companies to adapt to the environment in which they operate, to be more flexible in their 
operations, and to satisfy different market segments. As a result of these efforts, a new 
manufacturing technology, called Flexible Manufacturing Systems (FMS), was innovated. 
FMS is a philosophy, in which "systems" is the key concept. A system view is incorporated 
into manufacturing. FMS is also one way that manufacturers are able to achieve agility, to 
have fastest response to the market, to operate with the lowest total cost, and to gain the 
greatest skills in satisfying the customers.  
 
Today flexibility means to produce reasonably priced customized products of high quality 
that can be quickly delivered to customers. With respect to manufacturing, flexibility could 
mean the capability of producing different products without major retooling; ability to 
change an old line to produce new products; or the ability to change a production schedule 
to handle multiple parts. From customer’s point of view, flexibility is the ability to have 
flexible speed of delivery. With respect to operations, flexibility means the ability to 
efficiently produce highly customized and unique products. With respect to capacity, 
flexibility means the ability to rapidly increase or decrease production levels or to shift 
capacity quickly from one product or service to another. Finally, strategically flexibility 
means the ability of a company to offer a wide variety of products to its customers. In a 
manufacturing system, machine flexibility, material handling flexibility, and operation 
flexibility are the important aspects considered. 
 
The idea of an FMS was proposed in England in 1960s under the name "System 24", which 
was a flexible machining system that could operate without human operators 24 hours a day 
under computer control. Initial emphasis was on automation rather than the reorganization 
of workflow. Initial FMS were very large and complex, consisting of many Computer 
Numerical Controlled (CNC) machines and sophisticated material handling systems, such 
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as robots, automated guided vehicles (AGV) and automated pallets, all controlled by 
complex software. Part and tool handling robots could handle any family of parts for which 
the system had been designed and developed. Only a limited number of industries could 
afford investing in a highly expensive FMS as described above. However, the current trend 
is toward small versions of the traditional FMS, called flexible manufacturing cells (FMC) or 
flexible manufacturing modules (FMM). Today one or more CNC machines served by one 
or more robots and a pallet system are considered a flexible cell and two ore more cells are 
considered as a flexible manufacturing system. Other related systems are Flexible Assembly 
Cells (FAC), Flexible Manufacturing Groups (FMG), Flexible Production Systems (FPS), and 
Flexible Manufacturing Lines (FML). 
 
A basic FMC consists of a robot, one or more flexible machines including inspection, and an 
external material handling system such as an automated pallet for moving blanks and 
finished parts into and out of the cell. The robot is utilized for internal material handling 
which includes machine loading and unloading. The FMC is capable of doing different 
operations on a variety of parts, which usually form a part family with selection by a group 
technology approach. Chan and Bedworth (1990) indicated that the most feasible approach 
to automate a production system with flexibility is to initially incorporate small FMC into 
the system. This approach requires lower investment, less risk, and also satisfies many of the 
benefits gained through larger and more costly structures, such as flexible manufacturing 
systems (FMS). While FMS are very expensive and generally require investments in millions 
of dollars, FMC are less costly, smaller and less complex systems. Therefore, for smaller 
companies with restricted capital resources, a gradual integration is initiated with limited 
investment in a small FMC, which facilitates subsequent integration into a larger system, 
such as an FMS.  
 
Machining cells are widely used in industry to process a variety of parts to achieve high 
productivity in production environments with rapidly changing product structures and 
customer demand. They offer flexibility to be adapted to the changes in operational 
requirements. There are various types of Flexible Manufacturing Cells (FMC) incorporated 
into Flexible Manufacturing Systems (FMS) with a variety of flexible machines for discrete 
part machining. In addition to discrete part machining systems, there are different types of 
assembly machines and CNC punching press systems, which are also configured as flexible 
cells. FMS and FMC performance depends on several operational and system characteristics, 
which may include part scheduling and system operational characteristics. In the past, most 
of the FMC related research has been in the areas of part scheduling and system control. 
Scheduling algorithms are developed to determine the best processing sequence of parts to 
optimize FMC performance and equipment utilization. It has also been realized that system 
characteristics, such as design configuration and operation of an FMC have significant effect 
on its performance. Machining rate, pallet capacity, robot and pallet speed, and equipment 
failure and repair rates are important system characteristics affecting FMC performance. 
Several models have been developed for FMS and FMC in relation to the effects of different 
parameters on system performance. Wang and Wan (1993) studied the dynamic reliability of 
a FMS based on fuzzy information. Yuanidis et al. (1994) used a heuristic procedure called 
group method of data handling to asses FMS reliability with minimal data available. Han et 
al. (2006) analyzed FMC reliability through the method of fuzzy fault tree based on 

triangular fuzzy membership. Khodabandehloo and Sayles (2007) investigated the 
applicability of fault tree analysis and event tree analysis to production reliability in FMS 
and concluded that event tree analysis was more effective in solving this problem. Henneke 
and Choi (1990), Savsar and Cogun (1993), and Cogun and Savsar (1996) have presented 
stochastic and simulation models for evaluating the performance of FMC and FMS with 
respect to system configuration and component speeds, such as machining rate, robot and 
pallet speeds. Koulamas (1992) and Savsar (2000) have looked into the reliability and 
maintenance aspects and presented stochastic models for the FMC, which operate under 
stochastic environment with tool failure and replacement consideration. They developed 
Markov models to study the effects of tool failures on system performance measures for a 
FMC with a single machine served by a robot for part loading/unloading and a pallet for 
part transfers. There are several other studies related to the reliability analysis of 
manufacturing systems. Butler and Rao (1993) use symbolic logic to analyze reliability of 
complex systems. Their heuristic approach is based on artificial intelligence and expert 
systems. Black and Mejabi (1995) have used object oriented simulation modeling to study 
reliability of complex manufacturing equipment. They presented a hierarchical approach to 
model complex systems.  
 
Simeu-Abazi, et. al. (1997) uses decomposition and iterative analysis of Markov chains to 
obtain numerical solutions for the reliability and dependability of manufacturing systems. 
Adamyan and He (2002) presented a methodology to identify the sequences of failures and 
probability of their occurrences in an automated manufacturing system. They used Petri 
nets and reachability trees to develop a model for sequential failure analysis in 
manufacturing systems. Aldaihani and Savsar (2005a) and Savsar (2008) presented a 
stochastic model and numerical solutions for a reliable FMC with two machines served by a 
single robot. Savsar and Aldaihani (2004) and Savsar and Aldaihani (2008) have developed 
stochastic models for unreliable FMC systems with two unreliable machines served by a 
robot and a pallet system. Aldaihani and Savsar (2005b) and Aldaihani and Savsar (2008) 
have presented stochastic models and numerical solutions for performance analysis of an 
unreliable FMC with two unreliable machines served by two robots and a pallet. These 
performance measures are compared to the previous results obtained for the FMC with a 
single robot. Abdulmalek, Savsar, and Aldaihani (2004) presented a simulation model and 
analysis for tool change policies in a FMC with two machines and a robot, based on ARENA 
simulation software. Closed form analytical solutions are obtained and FMC analysis is 
performed for different performance measures and selected cell operations. The results are 
also compared to reliable FMC system.  
 
This chapter summarizes several stochastic models and results for reliability analysis of 
FMC systems with single  machines and  multiple machines served by one or two robots for 
loading and unloading of parts; and a pallet handling device for moving batch of parts into 
and out of the cell. Because flexible manufacturing cells are designed to process a wide 
variety of parts, they have relatively high utilizations compared to traditional machining 
systems. As a result of high utilizations, these systems are subject to failures more than 
traditional systems. Therefore, reliability and availability analysis of FMC systems are 
extremely important for flexible manufacturing systems. The model and the results 
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systems (FMS). While FMS are very expensive and generally require investments in millions 
of dollars, FMC are less costly, smaller and less complex systems. Therefore, for smaller 
companies with restricted capital resources, a gradual integration is initiated with limited 
investment in a small FMC, which facilitates subsequent integration into a larger system, 
such as an FMS.  
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Scheduling algorithms are developed to determine the best processing sequence of parts to 
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parameters on system performance. Wang and Wan (1993) studied the dynamic reliability of 
a FMS based on fuzzy information. Yuanidis et al. (1994) used a heuristic procedure called 
group method of data handling to asses FMS reliability with minimal data available. Han et 
al. (2006) analyzed FMC reliability through the method of fuzzy fault tree based on 
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applicability of fault tree analysis and event tree analysis to production reliability in FMS 
and concluded that event tree analysis was more effective in solving this problem. Henneke 
and Choi (1990), Savsar and Cogun (1993), and Cogun and Savsar (1996) have presented 
stochastic and simulation models for evaluating the performance of FMC and FMS with 
respect to system configuration and component speeds, such as machining rate, robot and 
pallet speeds. Koulamas (1992) and Savsar (2000) have looked into the reliability and 
maintenance aspects and presented stochastic models for the FMC, which operate under 
stochastic environment with tool failure and replacement consideration. They developed 
Markov models to study the effects of tool failures on system performance measures for a 
FMC with a single machine served by a robot for part loading/unloading and a pallet for 
part transfers. There are several other studies related to the reliability analysis of 
manufacturing systems. Butler and Rao (1993) use symbolic logic to analyze reliability of 
complex systems. Their heuristic approach is based on artificial intelligence and expert 
systems. Black and Mejabi (1995) have used object oriented simulation modeling to study 
reliability of complex manufacturing equipment. They presented a hierarchical approach to 
model complex systems.  
 
Simeu-Abazi, et. al. (1997) uses decomposition and iterative analysis of Markov chains to 
obtain numerical solutions for the reliability and dependability of manufacturing systems. 
Adamyan and He (2002) presented a methodology to identify the sequences of failures and 
probability of their occurrences in an automated manufacturing system. They used Petri 
nets and reachability trees to develop a model for sequential failure analysis in 
manufacturing systems. Aldaihani and Savsar (2005a) and Savsar (2008) presented a 
stochastic model and numerical solutions for a reliable FMC with two machines served by a 
single robot. Savsar and Aldaihani (2004) and Savsar and Aldaihani (2008) have developed 
stochastic models for unreliable FMC systems with two unreliable machines served by a 
robot and a pallet system. Aldaihani and Savsar (2005b) and Aldaihani and Savsar (2008) 
have presented stochastic models and numerical solutions for performance analysis of an 
unreliable FMC with two unreliable machines served by two robots and a pallet. These 
performance measures are compared to the previous results obtained for the FMC with a 
single robot. Abdulmalek, Savsar, and Aldaihani (2004) presented a simulation model and 
analysis for tool change policies in a FMC with two machines and a robot, based on ARENA 
simulation software. Closed form analytical solutions are obtained and FMC analysis is 
performed for different performance measures and selected cell operations. The results are 
also compared to reliable FMC system.  
 
This chapter summarizes several stochastic models and results for reliability analysis of 
FMC systems with single  machines and  multiple machines served by one or two robots for 
loading and unloading of parts; and a pallet handling device for moving batch of parts into 
and out of the cell. Because flexible manufacturing cells are designed to process a wide 
variety of parts, they have relatively high utilizations compared to traditional machining 
systems. As a result of high utilizations, these systems are subject to failures more than 
traditional systems. Therefore, reliability and availability analysis of FMC systems are 
extremely important for flexible manufacturing systems. The model and the results 
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presented in this chapter can be useful for design engineers as well as operational managers 
in production and maintenance planning. 

 
2. Operation of a Flexible Manufacturing Cell 

Operations of two FMC systems are illustrated in Figure 1. In case of two machine FMC 
system, operation sequence is as follows: An automated pallet handling system delivers n 
blanks consisting of different parts into the cell. The robot reaches to the pallet, grips a 
blank, moves to the first machine and loads the blank. While the machine starts operation on 
the part, the robot reaches the pallet, grips the second part and moves to the second machine 
and loads it. Next, robot reaches to the machine which finishes its operation first, unloads 
the finished part and loads a new part. The loading/unloading operation continues in this 
way with the preference given to the machine which finishes its operation first. After the 
machining operations of all parts on the pallet are completed, the pallet with n finished 
parts moves out and a new pallet with n blanks is delivered into the cell by the pallet 
handling system automatically. In case of the FMC with a single machine, robot loads the 
machine with a blank and waits until the part is completed; then unloads the finished part 
and loads a new blank. The operation sequence continues in this manner. Machines are 
assumed to be unreliable and fail during the operations. Time to failure and time to repair 
are assumed to follow exponential distribution.  Due to the introduction of different parts 
into the FMC, failures of machines, and random characteristics of system operation, 
processing times as well as loading/unloading times are random, which present a 
complication in studying and modeling FMC operations. If there were no randomness in 
system parameters and the pallet exchange times were neglected, the problem could be 
analyzed by a man-machine assignment chart for non-identical machines, and by a symbolic 
formulation for identical machines. However, because of random operations the system 
needs to be modeled by a stochastic process. 
 
 

               Machine              Machine 1 
 

                                               In/out         
 

           Pallet                        Pallet In/Out 
 
 
    Robot                      Machine 2 
 
 
 

       Robot 
 

               (a)                                     (b) 
Fig. 1. Flexible manufacturing cells: (a) one machine, a robot and a pallet; and (b) two 
machines, a robot and a pallet 

 

3. Reliability Modeling of a FMC with a Single Machine  

In this section, stochastic models are presented for the FMC system with a single machine as 
discussed above and illustrated in Figure 1a. A reliability model and related analysis are 
presented for the FMC system with a single machine and a robot. Processing times on the 
machine, robot loading and unloading times, pallet transfer times and the equipment up 
and down times are all assumed as random quantities that follow exponential distribution. 
The model is applied to a case example and the results are presented in graphical forms. 

 
3.1 A Stochastic Model for a FMC with a Single Machine  
In order to model FMC operations, the following system states and notations are defined: 

Sijk(t) = state of the FMC at time t 
Pijk(t) = probability that the system will be in state Sijk(t) 
i = number of blanks in FMC (on the pallet and on the machine or the robot 

gripper) 
j = state of the production machine (j=0 if the machine is idle; j=1 if the machine is 

operating on a part; and j=d if the machine is down under repair) 
k= state of the robot (k=1 if the robot is loading/unloading the machine; k=0 if 

the robot is not engaged in loading/unloading the machine; and k=d if the 
robot is down under repair). 

 = loading rate of the robot (parts/unit time) 
u = unloading rate of the robot (parts/unit time) 
z = combined loading/unloading rate of the robot (parts/unit time) 
 = pallet transfer rate (pallets/unit time)  
 = failure rate of the production machine (1/ = mean time between machine 

failures) 
 = repair rate of the production machine (1/ = mean machine repair time) 
 = failure rate of the robot 
 = repair rate of the robot 
 = machining rate (or production rate) of the machine (parts/unit time) 
n = pallet capacity (number of parts/pallet) 
Qc = production output rate of the cell  in terms of parts/unit time 
 

Using the state probability definitions and the notations above, the stochastic transition flow 
diagram of the unreliable FMC operation, with machine tool and robot failures, is shown in 
Figure 2. Using the fact that the net flow rate at each state is equal to the difference between 
the rates of flow in and flow out, the following system of differential equations are 
constructed for the unreliable FMC with machine and robot failures. While robot failures are 
not as significant as machine failures, they are incorporated into the model in the last 
column of figure 2 as Sijd. 
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Fig. 2. Stochastic transition diagram of the FMC with machine tool and robot failures 
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For the steady state solution, we let t and thus dP(t)/dt0 in the equation set (1) above. 
The resulting set of difference equations are solved by using the fact that sum of all state 
probabilities is 1;   
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The following general solution set given by equation (3) is obtained for the state 
probabilities. 
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measures are calculated by using the system state probabilities determined above. P0,0,0 
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Similarly, utilization rate of the machine is the fraction of time that the machine is 
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and utilization rate of the robot is the fraction of time that the robot is operational given by: 
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Fig. 2. Stochastic transition diagram of the FMC with machine tool and robot failures 
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Future Manufacturing Systems72

                  L P P Pr n i
i

n

  




, , , , , ,0 0 0 1
1

1

0 0 1  = [/ + (n-1)/z + /u]P0,0,0                   (7) 

 
The above model is for the unreliable cell with machine tool and robot failures. For the 
reliable FMC without machine and robot failures, system states corresponding to Si,d,0 and 
Si,0,d, where i=0,1,...,n-1, are not applicable. A procedure similar to the above could be 
applied to the rest of the transition diagram and the utilization rates of the reliable FMC 
components could be obtained. However, an easier way is to use the fact that a reliable FMC 
is a system with no failures, i.e. =0 and =0. Thus, setting s=/=0 and r=/=0 in 
Equations 5-7, the following set of equations (8-10) are easily obtained for the reliable FMC. 
 

           Lh = P0,0,0 = 1/[1+n/+(n-1) /z +(u+)/u]                                   (8) 
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                                    Lr = [(n-1)/z + / + /u] P0,0,0            (10) 

 
Production output rate of the cell, Qc, is defined as the number of parts processed by the 
machine per unit time. It is obtained for both, reliable and unreliable cells as follows: 
 

                                                    Qc= Lm = (n/)P0,0,0 = nP0,0,0                                          (11) 
 
Equations (5-11) are easily used to determine the utilization rates of the cell components, as 
well as the production output rate of the cell, for both, reliable and unreliable cell systems. It 
is interesting to note that the ratios Lm/Lh and Lr/Lh are the same for reliable and unreliable 
cells. This can be easily verified by substituting the corresponding values and determining 
the ratios: 

Lm/Lh = n/    is the same for both reliable and unreliable cells. Similarly, 
Lr/Lh = (n-1)/z + / + /u   is also the same for reliable and unreliable cells. 
 

The implications of these results are that failures of system components have no effects on 
the two ratios given above. The functional relationships or the proportionality rates are the 
same regardless of the cell reliability. In other words, relative utilization rates of the machine 
and the robot remain constant regardless of the degree of reliability introduced. In order to 
illustrate application of the stochastic model, a case example is solved with the model and 
the results are presented in the next section.  

 
3.2 Case Example for a Single-Machine FMC  
A case example has been selected with the following FMC parameters in order to illustrate 
the application of the model. The results are presented in graphical forms.  
 Followings are the assumed mean values for various cell parameters:  
 Operation time per part = -1 = 4 time units 
 Robot loading time (for the first part) = -1 = 1/6 time units 

 Robot loading/unloading time for subsequent parts = z-1 = 1/3 time units 
 Robot unloading time for the last part = u-1 = 1/6 time units 
 Time between machine tool failures = -1 = 100 time units 

Repair time (down time) of the machine tool = -1 = 10 time units 
 Time between robot failures = -1 = Assumed to be zero for this case. 
 Repair time (down time) of the robot = -1 = Assumed to be zero for this case. 
 Pallet transfer time = -1 = 4 time units per pallet   
 Pallet capacity, n, has been varied from 1 to 20 parts/pallet.  
 
Utilization rates of the production machine, the robot, and the pallet handling systems are 
compared for the reliable and unreliable FMC with component failures in order to visualize 
the effects of these failures on the utilization of different components for different pallet 
capacities. Figure 3 illustrates the utilization rate of the production machine. As it can be 
seen from this figure, machine tool utilization is highly affected by the pallet capacity up to 
a certain level and stabilizes thereafter. However, there is significant gap between fully 
reliable cell and the unreliable cell, with specified component hazard rates. Decrease in 
machine tool utilization is directly reflected in cell productivity. The mentioned gap 
increases with increasing pallet capacity. Production output rate of the cell, Qc, is obtained 
by multiplying the machine tool utilization with the average production output rate. For 
example, in case of the pallet capacity of 20 parts/pallet, production output rate of the fully 
reliable cell would be about Qc= Lm =(0.88)(1/4)=0.22 parts/time unit, while the 
production output rate of the unreliable cell would be about (0.75)(1/4) = 0.19 parts/time 
unit. Note that, since the average processing time is 4 time units, the average output rate is 
1/4 = 0.25 parts/time unit if the machine is fully utilized.  Figure 4 shows the percentage of 
time the machine would be down due to failures. Reliable cell has zero percentage in this 
case. Figure 5 shows the percent of time machine is idle with respect to pallet capacity. 
Reliable cell has slightly higher idle time as compared to unreliable cell, but the trend is very 
similar. Figure 6 shows robot utilization for both reliable and unreliable cases. Robot 
utilization for reliable cell is much higher than that for unreliable cell due to low utilization 
of the machine. Figure 7 shows the pallet utilizations, which is almost the same for reliable 
and unreliable cell.  Figure 8 shows the production output rate of the FMC as a function of 
pallet capacity. There is a significant difference in production rates between the reliable and 
unreliable cells. The results that are shown in these figures with respect to the effects of 
pallet capacity on various FMC performance measures,  may seem to be obvious; however, 
exact effects of specific parameters on various FMC performance measures can not be 
predicted without formulation and solution of the models presented in this chapter. These 
models are useful for design engineers and operational managers for analysis of FMC 
systems operating under different conditions. 
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Fig. 3. Effects of pallet capacity on machine utilization   
Fig. 4. Effects of pallet capacity on machine down state  
 

Fig. 5. Effects of pallet capacity on machine idle state   
Fig. 6. Effects of pallet capacity on robot utilization 
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Fig. 7. Effects of pallet capacity on pallet utilization   
Fig. 8. Effects of pallet capacity on FMC Production rate  

 
3.3 Economic Analysis of a Single-Machine FMC 
In order to demonstrate application of the stochastic model for single-machine FMC to cost 
analysis and optimization of the system, the following notations and cost equations are 
developed and a case example is solved to illustrate the results. 
 
Cm=Total machine cost per unit time; Cmf=Fixed machine cost per unit of time; Cmv= 
Variable machine cost per unit time; Cr= Total robot cost per unit time; Crf= Fixed robot cost 
per unit time; Crv = Variable robot cost per unit time;  
Cp= Total pallet cost per unit time; Cpf= Fixed pallet cost per unit time; Cpv =Variable pallet 
cost per unit time.  
 

                                                               Cm = Cmf+Cmv*v1                             (12) 
 

                                                         Cr = Crn+Crv*zi                                              (13) 
 

       Cp = CpfCpv*n                                                           (14) 
 
Total FMC cost per unit of production, TC, is given by the following equation, where Qc is 
production rate (units produced per unit time). 
 

  TC=(Cm+Cr+Cp)/Qc                                                     (15) 
 

In order to illustrate behavior of the system with respect to various cost measures, a case 
problem with specified cost and speed parameters are selected as follows: z = 3; Cmf = 1.0; 
Cmv = 0.2; Crf = 0.108; Cpv = 0.054; Cpf= 0.108; Crv = 0.054. Other parameters are as given in 
section 2. 2. Figure 9 shows the behavior of FMC cost per unit of production as function of 
pallet capacity for the reliable and unreliable FMC operations. Optimum occurs at n=4 and 
n=3 for the reliable and unreliable FMC systems respectively. The trend in cost is almost the 
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Fig. 3. Effects of pallet capacity on machine utilization   
Fig. 4. Effects of pallet capacity on machine down state  
 

Fig. 5. Effects of pallet capacity on machine idle state   
Fig. 6. Effects of pallet capacity on robot utilization 
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same in both cases. Total costs show a decreasing pattern with increasing pallet capacity 
with optimum pallet capacity ranging between 3 and 4 units depending on the FMC 
operational conditions. It is possible to include other cost parameters related to lot sizes 
(pallet capacity) and develop cost models that could be utilized in real life applications. 
These results show the usefulness of the stochastic model presented with respect to cost 
optimization of FMC systems. 
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Fig. 9. Total FMC cost as a function of pallet capacity. 

 
4. Reliability Modeling of a FMC with Multiple Machines 

In this section, reliability modeling of a FMC with two machines and a single robot is 
presented. Processing times on the machines, robot loading and unloading times, pallet 
transfer times, machine operation times, as well as machine failure and repair times are all 
assumed as random quantities that follow exponential distribution. Development of the 
model follows the same procedure as it was done for the single-machine FMC system with 
necessary modifications for multiple machines. 

 
4.1 A Stochastic Model for a FMC with Two Machines and a Robot  
In order to analyze FMC operations with stochastic parameters, stochastic model is 
developed using Markov chains as in the previous section. First, the following system states 
and notations are defined: 

Sijkl(t) = state of the FMC at time t, with subscripts i, j, k, and l as described below. 
Pijkl(t) = probability that the system will be in state Sijkl(t) 
i =number of blanks in FMC (on the pallet, the machine, or the robot gripper) 
j = state of the production machine 1 (j=0 if the machine is idle; j=1 if the machine is 

operating on a part;  

and j=2 if the machine is waiting for the robot; j=3 if the machine is under repair) 
k = state of the production machine 2 (j=0 if the M/C is idle; j=1 if the machine is 

operating on a part;  
and j=2 if the machine is waiting for the robot, j=3 if the machine is under repair) 
l = state of the robot (l=0 if the robot is idle; l=1 if the robot is loading/unloading 

machine 1 ; k=2 if the robot is loading/unloading machine 2) 
lm = loading rate of the robot for machine m (m=1,2) (parts/unit time) 
um = unloading rate of the robot for machine m (m=1,2) (parts/unit time) 
zm = combined loading/unloading rate of the robot for machine m (m=1,2)    
w  = pallet transfer rate (pallets/unit time)  
m= failure rate of production machine m (1/m = mean time between failures) 
m= repair rate of the production machine m (1/m = mean machine repair time) 
vm= machining rate (or production rate) of machine m (parts/unit time) 
n   = pallet capacity (number of parts/pallet) 
Qc = production output rate of the cell in terms of parts/unit time 

In order to analyze the FMC system with two machines, state equations that describe the 
rate of flow between the states are developed and presented here. Because of its large size, 
the transition flow diagram has not been shown here. Using the fact that the net flow rate at 
each state is equal to the difference between the rates of flow in and flow out, a set of 
differential equations are obtained for the system. For example, for the state (n,001), rate of 
change with respect to time t is given by:   
 

dPn,001(t)/dt = (w)P0, 000-(l1)Pn, 001 

 
At steady state, t; dPn,001(t)/dt0 and the differential equation changes into a difference 
equation. The resulting difference equations for all states are given by the equation sets 
(16a), (16b) and (16c) below. The whole set of equations is divided into three subsets: The 
first subset (16a) includes the equations for the loading of initial parts; the last subset (16c) 
includes the equations for the unloading of the final parts; and the subset (16b) includes all 
the general equations for intermediate parts. These equations must be solved to obtain the 
state probabilities and FMC system performance measures. 
 

w P0, 000 – l1 Pn, 001  =  0 
l1 Pn, 001 + 1 Pn-1, 302 – (v1 + l2 + 1) Pn-1, 102  =  0 

1 Pn-1, 102 – (l2 + 1) Pn-1, 302  = 0 
v1 Pn-1, 102 – l2 Pn-1, 202  =  0 

2 Pn-2, 110 + 1 Pn-2, 330  – (v1 + 1 +  2) Pn-2, 130  = 0 
l2 Pn-1, 102 + 1 Pn-2, 310  + 2 Pn-2, 130  – (v1 + v2 + 1 + 2) Pn-2, 110  = 0 

l2 Pn-1, 302 + 1 Pn-2, 110  + 2 Pn-2, 330  – (v2 + 2 + 1) Pn-2, 310  = 0 
1 Pn-2, 130 + 2 Pn-2, 310  – (1 + 2) Pn-2, 330  = 0 

v2 Pn-2, 011 – z1 Pn-2, 021  =  0 
v1 Pn-2, 110 + l2 Pn-1, 202  + 2 Pn-2,031  – (v2 + z1 + 2) Pn-2, 011  = 0 

v1 Pn-2, 130 + 2 Pn-2, 011 – (z1 + 2) Pn-2, 031  = 0 
v2 Pn-2, 310 + 1 Pn-2, 102 – (z2 + 1) Pn-2, 302  = 0 

v2 Pn-2, 110 + 1 Pn-2, 302 – (v1 + z2 + 1) Pn-2, 102  = 0 
                         v1 Pn-2, 102 – z2 Pn-2, 202  = 0                                                (16a) 
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same in both cases. Total costs show a decreasing pattern with increasing pallet capacity 
with optimum pallet capacity ranging between 3 and 4 units depending on the FMC 
operational conditions. It is possible to include other cost parameters related to lot sizes 
(pallet capacity) and develop cost models that could be utilized in real life applications. 
These results show the usefulness of the stochastic model presented with respect to cost 
optimization of FMC systems. 
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transfer times, machine operation times, as well as machine failure and repair times are all 
assumed as random quantities that follow exponential distribution. Development of the 
model follows the same procedure as it was done for the single-machine FMC system with 
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4.1 A Stochastic Model for a FMC with Two Machines and a Robot  
In order to analyze FMC operations with stochastic parameters, stochastic model is 
developed using Markov chains as in the previous section. First, the following system states 
and notations are defined: 

Sijkl(t) = state of the FMC at time t, with subscripts i, j, k, and l as described below. 
Pijkl(t) = probability that the system will be in state Sijkl(t) 
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j = state of the production machine 1 (j=0 if the machine is idle; j=1 if the machine is 

operating on a part;  

and j=2 if the machine is waiting for the robot; j=3 if the machine is under repair) 
k = state of the production machine 2 (j=0 if the M/C is idle; j=1 if the machine is 

operating on a part;  
and j=2 if the machine is waiting for the robot, j=3 if the machine is under repair) 
l = state of the robot (l=0 if the robot is idle; l=1 if the robot is loading/unloading 

machine 1 ; k=2 if the robot is loading/unloading machine 2) 
lm = loading rate of the robot for machine m (m=1,2) (parts/unit time) 
um = unloading rate of the robot for machine m (m=1,2) (parts/unit time) 
zm = combined loading/unloading rate of the robot for machine m (m=1,2)    
w  = pallet transfer rate (pallets/unit time)  
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vm= machining rate (or production rate) of machine m (parts/unit time) 
n   = pallet capacity (number of parts/pallet) 
Qc = production output rate of the cell in terms of parts/unit time 

In order to analyze the FMC system with two machines, state equations that describe the 
rate of flow between the states are developed and presented here. Because of its large size, 
the transition flow diagram has not been shown here. Using the fact that the net flow rate at 
each state is equal to the difference between the rates of flow in and flow out, a set of 
differential equations are obtained for the system. For example, for the state (n,001), rate of 
change with respect to time t is given by:   
 

dPn,001(t)/dt = (w)P0, 000-(l1)Pn, 001 

 
At steady state, t; dPn,001(t)/dt0 and the differential equation changes into a difference 
equation. The resulting difference equations for all states are given by the equation sets 
(16a), (16b) and (16c) below. The whole set of equations is divided into three subsets: The 
first subset (16a) includes the equations for the loading of initial parts; the last subset (16c) 
includes the equations for the unloading of the final parts; and the subset (16b) includes all 
the general equations for intermediate parts. These equations must be solved to obtain the 
state probabilities and FMC system performance measures. 
 

w P0, 000 – l1 Pn, 001  =  0 
l1 Pn, 001 + 1 Pn-1, 302 – (v1 + l2 + 1) Pn-1, 102  =  0 

1 Pn-1, 102 – (l2 + 1) Pn-1, 302  = 0 
v1 Pn-1, 102 – l2 Pn-1, 202  =  0 

2 Pn-2, 110 + 1 Pn-2, 330  – (v1 + 1 +  2) Pn-2, 130  = 0 
l2 Pn-1, 102 + 1 Pn-2, 310  + 2 Pn-2, 130  – (v1 + v2 + 1 + 2) Pn-2, 110  = 0 

l2 Pn-1, 302 + 1 Pn-2, 110  + 2 Pn-2, 330  – (v2 + 2 + 1) Pn-2, 310  = 0 
1 Pn-2, 130 + 2 Pn-2, 310  – (1 + 2) Pn-2, 330  = 0 

v2 Pn-2, 011 – z1 Pn-2, 021  =  0 
v1 Pn-2, 110 + l2 Pn-1, 202  + 2 Pn-2,031  – (v2 + z1 + 2) Pn-2, 011  = 0 

v1 Pn-2, 130 + 2 Pn-2, 011 – (z1 + 2) Pn-2, 031  = 0 
v2 Pn-2, 310 + 1 Pn-2, 102 – (z2 + 1) Pn-2, 302  = 0 

v2 Pn-2, 110 + 1 Pn-2, 302 – (v1 + z2 + 1) Pn-2, 102  = 0 
                         v1 Pn-2, 102 – z2 Pn-2, 202  = 0                                                (16a) 
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z1 Px+1, 031 + 2 Px, 110  + 1 Px, 330 – (v1 + 1 + 2) Px, 130  = 0 
z1 Px+1, 011 + z2 Px+1, 102  + 1 Px, 310 + 2 Px, 130 – (v1 + v2 + 1 + 2) Px, 110 =0 

z2 Px+1, 302 + 1 Px, 110  + 2 Px, 330 – (2 + 1+ v2) Px, 310  = 0 
1 Px, 130 + 2 Px, 310  – (1 + 2) Px, 330  = 0 

v1 Px, 102 – z2 Px, 202  =  0 
v2 Px, 110 + z1 Px+1, 021  + 1 Px, 302 – (v1 + z2 + 1) Px, 102  = 0 

v2 Px, 310 + 1 Px, 102  – (z2 + 1) Px, 302  = 0 
v1 Px, 130 + 2 Px, 011 – (z1 + 2) Px, 031  = 0 

v1 Px, 110 + z2 Px+1, 202 + 2 Px, 031 – (v2 + z1 + 2) Px, 011  = 0 
                  v2 Px, 011 – z1 Px, 021  =  0      for x = 1,2,..., n-3   (16b) 

………………………………….. 
z1 P1, 031 + 2 P0, 110 + 1 P0, 330 – (v1 + 1 + 2) P0, 130 = 0 

1 P0, 310 + 2 P0, 130 – (v1 + v2 + 1 + 2) P0, 110 + z1 P1, 011 + z2 P1, 102 = 0 
z2 P1, 302 + 1 P0, 110 + 2 P0, 330 – (v2 + 2 + 1) P0, 310 = 0 

1 P0, 130 + 2 P0, 310 – (1 + 2) P0, 330 = 0 
v1 P0, 102 – u2 P0, 202  =  0 

v2 P0, 110 + z1 P1, 021 + 1P0, 302 – (v1 + u2 + 1) P0, 102  = 0 
v2 P0, 310 + 1 P0, 102 – (u2 + 1) P0, 302  = 0 
v1 P0, 130 + 2 P0, 011 – (u1 + 2) P0, 031  = 0 

v1 P0, 110 + z2 P1, 202 + 2 P0, 031 – (v2 + u1 + 2) P0, 011  = 0 
v2 P0, 011 – u1 P0, 021  =  0 

u2 P0, 302 + 1 P0, 100 –  1 P0, 300  = 0 
u2 P0, 102 + 1 P0, 300  –  (v1 + 1) P0, 100  = 0 
u1 P0, 011 + 2 P0, 030  –  (v2 + 2 ) P0, 010  = 0 

u1 P0, 031 + 2 P0, 010 –  2 P0, 030  = 0 
v1 P0, 100 + u2 P0, 202 –  u1 P0, 001  = 0 
v2 P0, 010 + u1 P0, 021 –  u2 P0, 002  = 0 

                                         u1 P0, 001 + u2 P0, 002 – w P0, 000  = 0                                            (16c) 
 

The system consists of 10n+1 equations and equal number of unknowns. For example, for 
n=4, number of system states, as well as number of equations, is 10(4) +1=41 and for n=10, it 
is 10(10) + 1= 101. It is possible to obtain an exact solution for this system of equations given 
by PT=0, where P is the state probabilities vector to be determined and T is the probability 
transition rate matrix. It is known that all the equations in PT=0 are not linearly independent 
and thus the matrix T is singular, which does not have an inverse. We must add the 
normalizing condition given by equation (17) below, which assures that sum of all state 
probabilities, is 1, to the three sets of equations above by eliminating one of them. 
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Exact numerical solutions can be obtained for all state probabilities. However, for large 
values of n, exact numerical solution becomes tedious and one has to resort to software in 
order to obtain a solution for a given system. Therefore, it is preferable to have a closed form 
solution for the state probabilities, as well as system performance measures for applications 

of the model in system design and analysis. Savsar and Aldaihani (2008) have obtained a 
closed form solution for this problem, which involved sophisticated algebraic analysis and 
manipulations. In the following section, we present the results obtained for the closed form 
solution. 

 
4.2 A Closed Form Solution for Two-Machine FMC Model 
After a systematic procedure and comprehensive algebraic manipulations, equation sets 
(16a, 16b and 16c) are solved for the unknown probabilities. Equation set (16a) consists of 14 
equations and involves n, n-1, and n-2; equation set (16b) consists of 10 equations with x, for 
x=1,…,n-3;  equation set (16c) consists of 17 equations involving with n=0. In order to 
present the solution, a set of intermediary variables are defined based on the system 
parameters as given in tables 1-3. 
 
Based on the definitions given in tables 1-3, algebraic equation sets 16a, 16b, and 16c are 
solved step by step for the unknown state probabilities. The solution results are summarized 
in Table 4 for n 3. In the case of n<3, a solution will be obtained only for n=2, since FMC 
system has two machines and therefore it is physically meaningless to have n=1 part 
delivered into the system by the pallet. Therefore, a special solution is obtained for n=2 due 
to the reduction in number of equations in this case. To find P0, 000 we use the renumbering 
of the state probabilities as shown in table 4. For example, state probability Pn,001 is 
represented by Pn,1; Pn-1,102 by Pn-1,2; Pn-1,302 by Pn-1,3; and so on until P0,002 by P0,40. We have a 
normalizing condition represented by equation (17) above and the last equation in table 4, in 
addition to a set of 40 state equations (set 18) in the table. Since the sum of probabilities has 
to be 1, we need to use the normalizing condition to determine P0,000. Substituting the state 
probabilities into the normalizing condition given by equation 17, we obtain equation 19 
given below. Finally, values of state probabilities, Pijkl given in table 4, are substituted into 
equation 19 to obtain P0,000 with respect to known parameters. All state probabilities are then 
determined with respect to P0,000. 
 

a = v1 + 1 b = v2 + 2 c = v1 + v2 + 1+ 2 
D = v1 + v2 + 1 + 2 e = z1 + 2 f = z2 + 1 

g = v1 +l2 + 1   h = v1 + 1 + 2 k = v2 + 2 + 1 
p = v1 + z2 + 1 q = v2 + z1 + 2 r = l2 + 1 

s = 1 + 2 t = 1 + 2 x = v1 + u2 + 1 
y = v2 + u1 + 2 A = u2 + 1 B = u1 + 2 

Table 1. First Set of Variables 
 

C1 = 2/h C2 = 1/h C3 = l2rw/c(gr – 11) 
C4 = u1/c C5 = 2/c C6 = l21w/k(gr – 11) 
C7 = 1/k C8 = 2/k C9 = 1/s 
C10 = 2/s C11 = qe – 2 2 C12 = gr – 11 

C13 = pf – 11 C14 = 11 – kc C15 =  11– 22 
C16 =  22 – sk   

Table 2. Second Set of Variables 
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z1 Px+1, 031 + 2 Px, 110  + 1 Px, 330 – (v1 + 1 + 2) Px, 130  = 0 
z1 Px+1, 011 + z2 Px+1, 102  + 1 Px, 310 + 2 Px, 130 – (v1 + v2 + 1 + 2) Px, 110 =0 

z2 Px+1, 302 + 1 Px, 110  + 2 Px, 330 – (2 + 1+ v2) Px, 310  = 0 
1 Px, 130 + 2 Px, 310  – (1 + 2) Px, 330  = 0 

v1 Px, 102 – z2 Px, 202  =  0 
v2 Px, 110 + z1 Px+1, 021  + 1 Px, 302 – (v1 + z2 + 1) Px, 102  = 0 

v2 Px, 310 + 1 Px, 102  – (z2 + 1) Px, 302  = 0 
v1 Px, 130 + 2 Px, 011 – (z1 + 2) Px, 031  = 0 

v1 Px, 110 + z2 Px+1, 202 + 2 Px, 031 – (v2 + z1 + 2) Px, 011  = 0 
                  v2 Px, 011 – z1 Px, 021  =  0      for x = 1,2,..., n-3   (16b) 

………………………………….. 
z1 P1, 031 + 2 P0, 110 + 1 P0, 330 – (v1 + 1 + 2) P0, 130 = 0 

1 P0, 310 + 2 P0, 130 – (v1 + v2 + 1 + 2) P0, 110 + z1 P1, 011 + z2 P1, 102 = 0 
z2 P1, 302 + 1 P0, 110 + 2 P0, 330 – (v2 + 2 + 1) P0, 310 = 0 

1 P0, 130 + 2 P0, 310 – (1 + 2) P0, 330 = 0 
v1 P0, 102 – u2 P0, 202  =  0 

v2 P0, 110 + z1 P1, 021 + 1P0, 302 – (v1 + u2 + 1) P0, 102  = 0 
v2 P0, 310 + 1 P0, 102 – (u2 + 1) P0, 302  = 0 
v1 P0, 130 + 2 P0, 011 – (u1 + 2) P0, 031  = 0 

v1 P0, 110 + z2 P1, 202 + 2 P0, 031 – (v2 + u1 + 2) P0, 011  = 0 
v2 P0, 011 – u1 P0, 021  =  0 

u2 P0, 302 + 1 P0, 100 –  1 P0, 300  = 0 
u2 P0, 102 + 1 P0, 300  –  (v1 + 1) P0, 100  = 0 
u1 P0, 011 + 2 P0, 030  –  (v2 + 2 ) P0, 010  = 0 

u1 P0, 031 + 2 P0, 010 –  2 P0, 030  = 0 
v1 P0, 100 + u2 P0, 202 –  u1 P0, 001  = 0 
v2 P0, 010 + u1 P0, 021 –  u2 P0, 002  = 0 

                                         u1 P0, 001 + u2 P0, 002 – w P0, 000  = 0                                            (16c) 
 

The system consists of 10n+1 equations and equal number of unknowns. For example, for 
n=4, number of system states, as well as number of equations, is 10(4) +1=41 and for n=10, it 
is 10(10) + 1= 101. It is possible to obtain an exact solution for this system of equations given 
by PT=0, where P is the state probabilities vector to be determined and T is the probability 
transition rate matrix. It is known that all the equations in PT=0 are not linearly independent 
and thus the matrix T is singular, which does not have an inverse. We must add the 
normalizing condition given by equation (17) below, which assures that sum of all state 
probabilities, is 1, to the three sets of equations above by eliminating one of them. 
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Exact numerical solutions can be obtained for all state probabilities. However, for large 
values of n, exact numerical solution becomes tedious and one has to resort to software in 
order to obtain a solution for a given system. Therefore, it is preferable to have a closed form 
solution for the state probabilities, as well as system performance measures for applications 

of the model in system design and analysis. Savsar and Aldaihani (2008) have obtained a 
closed form solution for this problem, which involved sophisticated algebraic analysis and 
manipulations. In the following section, we present the results obtained for the closed form 
solution. 

 
4.2 A Closed Form Solution for Two-Machine FMC Model 
After a systematic procedure and comprehensive algebraic manipulations, equation sets 
(16a, 16b and 16c) are solved for the unknown probabilities. Equation set (16a) consists of 14 
equations and involves n, n-1, and n-2; equation set (16b) consists of 10 equations with x, for 
x=1,…,n-3;  equation set (16c) consists of 17 equations involving with n=0. In order to 
present the solution, a set of intermediary variables are defined based on the system 
parameters as given in tables 1-3. 
 
Based on the definitions given in tables 1-3, algebraic equation sets 16a, 16b, and 16c are 
solved step by step for the unknown state probabilities. The solution results are summarized 
in Table 4 for n 3. In the case of n<3, a solution will be obtained only for n=2, since FMC 
system has two machines and therefore it is physically meaningless to have n=1 part 
delivered into the system by the pallet. Therefore, a special solution is obtained for n=2 due 
to the reduction in number of equations in this case. To find P0, 000 we use the renumbering 
of the state probabilities as shown in table 4. For example, state probability Pn,001 is 
represented by Pn,1; Pn-1,102 by Pn-1,2; Pn-1,302 by Pn-1,3; and so on until P0,002 by P0,40. We have a 
normalizing condition represented by equation (17) above and the last equation in table 4, in 
addition to a set of 40 state equations (set 18) in the table. Since the sum of probabilities has 
to be 1, we need to use the normalizing condition to determine P0,000. Substituting the state 
probabilities into the normalizing condition given by equation 17, we obtain equation 19 
given below. Finally, values of state probabilities, Pijkl given in table 4, are substituted into 
equation 19 to obtain P0,000 with respect to known parameters. All state probabilities are then 
determined with respect to P0,000. 
 

a = v1 + 1 b = v2 + 2 c = v1 + v2 + 1+ 2 
D = v1 + v2 + 1 + 2 e = z1 + 2 f = z2 + 1 

g = v1 +l2 + 1   h = v1 + 1 + 2 k = v2 + 2 + 1 
p = v1 + z2 + 1 q = v2 + z1 + 2 r = l2 + 1 

s = 1 + 2 t = 1 + 2 x = v1 + u2 + 1 
y = v2 + u1 + 2 A = u2 + 1 B = u1 + 2 

Table 1. First Set of Variables 
 

C1 = 2/h C2 = 1/h C3 = l2rw/c(gr – 11) 
C4 = u1/c C5 = 2/c C6 = l21w/k(gr – 11) 
C7 = 1/k C8 = 2/k C9 = 1/s 
C10 = 2/s C11 = qe – 2 2 C12 = gr – 11 

C13 = pf – 11 C14 = 11 – kc C15 =  11– 22 
C16 =  22 – sk   

Table 2. Second Set of Variables 
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Table 3. Third Set of Variables 
 
 
 
 

F1 = w/l1 F2 = rw/C12 F3 = 1w/C12 4 1 2 12F v rw l C  

   
   

2 10 6 3 7 1 3 8 10 1 4 6
5

5 10 4 9 1 8 2 7 1 5 2 9 4 7 8 10

1

1

C C C C C C C C C C C C
F

C C C C C C C C C C C C C C C C

   


      
 

    6 3 8 10 4 6 5 8 5 10 4 9 5 5 4 7 8 10(1 ) 1F C C C C C F C C C C C F C C C C C         

 7 6 10 5 10 4 9 5 3 10 4( )F F C C C C C F C C C      8 6 5 5 3 4F F C F C C    

9 1 6 11 1 11 12 1 2 5 11F ev F C ev rw C C v F C    10 2 9 1F v F z  

 11 1 5 2 9F v F F e   12 2 6 2 1 8 13F v F f v F C   

13 2 8 1 12F v F f F f   14 1 12 1F v F z  

 1 1 9 2 12A z F z F c   2 1 1 2 13A A z F kc   
2

3 14 15 2 2A C C k c c       2
4 1 2 1 14 2A kc s C kc      

5 1 14A A C kc  6 1 2 1 14 2( )A kc C kc      

7 1 14 1 5 2 9 2( )A z C v F F kc e     8 14 2 2( )A hC kc c     

 1 1 1 8 2 14R z v D D e   R2 = z1D14 + z2D12 R3 = z2D13 

 1 1 1 16 15G sk C C     2 1 2 1 16 2G s C c       3 2 2 2 3 1 16G R s R C     

 4 1 1 16G k C h     5 2 1 1 2 16G C      6 1 2 3 16 1G R C R    

      15 4 2 7 6 2 5 4 8 3 6F A A A A A A A A A A        16 3 15 2 5 4F A F A A A    

   17 2 2 15 1 2 16 1 1F kcA kF F kc           18 17 2 15 1 1F cF F cA     

   19 2 17 9 1 18 13F v fF fF F C     20 2 18 1 19F v F F f   

21 1 19 2F v F z   22 1 2 12 1 2 15 17 11F v e z F z F e F C    

23 2 22 1F v F z   24 1 15 2 22F v F F e   

   25 2 6 3 5 2 4 1 5F G G G G G G G G     26 3 1 25 2F G G F G   

 27 2 3 1 25 1 2 26 16F R k F F C         28 1 25 27 2F F sF     

   29 2 28 2 1 26 1 2 14 1 1F v xF v F v D Ax         30 2 26 2 14 1 29F v F v D F x    

31 1 30 2F v F u     32 1 26 1 12 2 1 25 2 2F Bv F Bv D v F By       

 33 1 25 2 32F v F F B   34 2 32 1F v F u     35 2 30 29 1F u F F a     

 36 2 29 1 35 1F u F F       37 1 33 1 2 32 2 2F bu F u F b      

 38 1 32 2 37F u F F b    39 1 35 30 1F v F F u    40 2 38 32 2F v F F u   

Pn, 001 = F1P0,000           (1) Pn-1, 102 = F2P0,000       (2) Pn-1, 302 = F3P0,000        (3)  

Pn-1, 202 = F4P0,000         (4) Pn-2, 130 = F5P0,000       (5) Pn-2, 110 = F6P0,000        (6) 

Pn-2, 330 = F7P0,000         (7) Pn-2, 310 = F8P0,000       (8) Pn-2, 011 = F9P0,000        (9)   

Pn-2, 021 = F10P0,000       (10) Pn-2, 031 = F11P0,000     (11) Pn-2, 102 = F12P0,000     (12)   

Pn-2, 302 = F13P0,000       (13) Pn-2, 202 = F14P0,000     (14) Px, 130 = F15P0,000       (15) 

Px, 110 = F17P0,000         (16)   Px, 310 = F18P0,000       (17)   Px, 330 = F16P0,000       (18)     

Px, 302 = F20P0,000         (19)  Px, 102 = F19P0,000       (20)    Px, 202 = F21P0,000        (21)    

Px, 021 = F23P0,000         (22) Px, 011 = F22P0,000       (23)   Px, 031 = F24P0,000        (24)   
  x = 1, ……, n – 3 

P0, 130 = F25P0,000         (25) P0, 110 = F26P0,000        (26)   P0, 330 = F27P0,000        (27) 

P0, 310 = F28P0,000         (28)  P0, 302 = F29P0,000        (29) P0, 102 = F30P0,000         (30) 

P0, 202 = F31P0,000         (31) P0, 031 = F33P0,000        (32)  P0, 011 = F32P0,000         (33)   

P0, 021 = F34P0,000         (34) P0, 300 = F35P0,000        (35)   P0, 100 = F36P0,000         (36)   

P0, 010 = F37P0,000         (37) P0, 030 = F38P0,000        (38)    P0, 001 = F39P0,000         (39) 

P0, 002 = F40P0,000         (40)    1jP               (41)  Equation Set (18) 

Table 4. Equation set (18); summary of solutions (for n 3) 
 
From equation (17) and substitution of the values results in the following equation: 
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which is solved to obtain P0,000 as: 
 

P0,000 = 
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Table 3. Third Set of Variables 
 
 
 
 

F1 = w/l1 F2 = rw/C12 F3 = 1w/C12 4 1 2 12F v rw l C  

   
   

2 10 6 3 7 1 3 8 10 1 4 6
5

5 10 4 9 1 8 2 7 1 5 2 9 4 7 8 10

1

1

C C C C C C C C C C C C
F

C C C C C C C C C C C C C C C C

   


      
 

    6 3 8 10 4 6 5 8 5 10 4 9 5 5 4 7 8 10(1 ) 1F C C C C C F C C C C C F C C C C C         

 7 6 10 5 10 4 9 5 3 10 4( )F F C C C C C F C C C      8 6 5 5 3 4F F C F C C    

9 1 6 11 1 11 12 1 2 5 11F ev F C ev rw C C v F C    10 2 9 1F v F z  

 11 1 5 2 9F v F F e   12 2 6 2 1 8 13F v F f v F C   

13 2 8 1 12F v F f F f   14 1 12 1F v F z  

 1 1 9 2 12A z F z F c   2 1 1 2 13A A z F kc   
2

3 14 15 2 2A C C k c c       2
4 1 2 1 14 2A kc s C kc      

5 1 14A A C kc  6 1 2 1 14 2( )A kc C kc      

7 1 14 1 5 2 9 2( )A z C v F F kc e     8 14 2 2( )A hC kc c     

 1 1 1 8 2 14R z v D D e   R2 = z1D14 + z2D12 R3 = z2D13 

 1 1 1 16 15G sk C C     2 1 2 1 16 2G s C c       3 2 2 2 3 1 16G R s R C     

 4 1 1 16G k C h     5 2 1 1 2 16G C      6 1 2 3 16 1G R C R    

      15 4 2 7 6 2 5 4 8 3 6F A A A A A A A A A A        16 3 15 2 5 4F A F A A A    

   17 2 2 15 1 2 16 1 1F kcA kF F kc           18 17 2 15 1 1F cF F cA     

   19 2 17 9 1 18 13F v fF fF F C     20 2 18 1 19F v F F f   

21 1 19 2F v F z   22 1 2 12 1 2 15 17 11F v e z F z F e F C    

23 2 22 1F v F z   24 1 15 2 22F v F F e   

   25 2 6 3 5 2 4 1 5F G G G G G G G G     26 3 1 25 2F G G F G   

 27 2 3 1 25 1 2 26 16F R k F F C         28 1 25 27 2F F sF     

   29 2 28 2 1 26 1 2 14 1 1F v xF v F v D Ax         30 2 26 2 14 1 29F v F v D F x    

31 1 30 2F v F u     32 1 26 1 12 2 1 25 2 2F Bv F Bv D v F By       

 33 1 25 2 32F v F F B   34 2 32 1F v F u     35 2 30 29 1F u F F a     

 36 2 29 1 35 1F u F F       37 1 33 1 2 32 2 2F bu F u F b      

 38 1 32 2 37F u F F b    39 1 35 30 1F v F F u    40 2 38 32 2F v F F u   

Pn, 001 = F1P0,000           (1) Pn-1, 102 = F2P0,000       (2) Pn-1, 302 = F3P0,000        (3)  

Pn-1, 202 = F4P0,000         (4) Pn-2, 130 = F5P0,000       (5) Pn-2, 110 = F6P0,000        (6) 

Pn-2, 330 = F7P0,000         (7) Pn-2, 310 = F8P0,000       (8) Pn-2, 011 = F9P0,000        (9)   

Pn-2, 021 = F10P0,000       (10) Pn-2, 031 = F11P0,000     (11) Pn-2, 102 = F12P0,000     (12)   

Pn-2, 302 = F13P0,000       (13) Pn-2, 202 = F14P0,000     (14) Px, 130 = F15P0,000       (15) 

Px, 110 = F17P0,000         (16)   Px, 310 = F18P0,000       (17)   Px, 330 = F16P0,000       (18)     

Px, 302 = F20P0,000         (19)  Px, 102 = F19P0,000       (20)    Px, 202 = F21P0,000        (21)    

Px, 021 = F23P0,000         (22) Px, 011 = F22P0,000       (23)   Px, 031 = F24P0,000        (24)   
  x = 1, ……, n – 3 

P0, 130 = F25P0,000         (25) P0, 110 = F26P0,000        (26)   P0, 330 = F27P0,000        (27) 

P0, 310 = F28P0,000         (28)  P0, 302 = F29P0,000        (29) P0, 102 = F30P0,000         (30) 

P0, 202 = F31P0,000         (31) P0, 031 = F33P0,000        (32)  P0, 011 = F32P0,000         (33)   

P0, 021 = F34P0,000         (34) P0, 300 = F35P0,000        (35)   P0, 100 = F36P0,000         (36)   

P0, 010 = F37P0,000         (37) P0, 030 = F38P0,000        (38)    P0, 001 = F39P0,000         (39) 

P0, 002 = F40P0,000         (40)    1jP               (41)  Equation Set (18) 

Table 4. Equation set (18); summary of solutions (for n 3) 
 
From equation (17) and substitution of the values results in the following equation: 
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which is solved to obtain P0,000 as: 
 

P0,000 = 
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Finally P0,000 is substituted back into the equations in table 4 to obtain values of state 
probabilities. Equation (19) and the solution obtained for the state probabilities are valid for 
n 3. For n=2, special modifications need to be made since none of the equations in set 16b 
are applicable in the case of n=2. Only the first 4 equations in set 16a and all 17 equations in 
set 16c are applicable for the case n=2. In the set 16a, n is replaced by 2. Table 5 shows the 
modified parameter equations for n=2, while all other equations are the same as those given 
for n=3 in tables 1-3. In addition to the changes given in table 5, there are slight 
modifications in some of the equations in the set 16c. These changes are listed below: 
 Delete all the terms involving z1 including, (z1P1,031) from the first equation, (z1P1,011) 

from the second equation, and (z1P1,021) from the sixth equation of the set 16c; replace z2 
by l2 in the second equation of the set 16c to obtain the following equations respectively.  

 
2 P0, 110 + 1 P0, 330 – (v1 + 1 + 2) P0, 130 = 0 

1 P0, 310 + 2 P0, 130 – (v1 + v2 + 1 + 2) P0, 110 + l2 P1, 102 = 0 
v2 P0, 110 + 1P0, 302 – (v1 + u2 + 1) P0, 102  = 0 

 
 Replace z2 with l2 in the third and in the ninth equations of the set 16c to obtain the 

following equations respectively. 
l2 P1, 302 + 1 P0, 110 + 2 P0, 330 – (v2 + 2 + 1) P0, 310 = 0 
v1 P0, 110 + l2 P1, 202 + 2 P0, 031 – (v2 + u1 + 2) P0, 011  = 0 
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All other values are as given in table 4. 

Table 5. Definition of variables for n = 2 
 
All the remaining solution steps are similar to the general case of n 3. Thus, for n=2, 
equations 1-4 of the set (18) in table 4 remain the same, equations 5-24 of the set (18) are 
dropped, and equations 25-40 of the set (18) are changed according to the modifications 
mentioned above. Once the state probabilities are determined, it is then possible to 
determine various system and subsystem performance measures.  
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       M2 busy = 0,000 6 8 9 17 18 22 26 28 32 37( 3)( )P F F F n F F F F F F F                     (25) 
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4.3 Case Example for a Two-Machine FMC  
In this section, we present some numerical results for the two-machine unreliable FMC 
problem with different parameters. The results are also compared to the reliable FMC 
results in order to see the effects of equipment failures on system performance measures. 
The parameter values for the two-machine unreliable FMC system are shown in table 6. The 
parameters for the reliable system are the same with the exception that there are no failures 
and repairs in the reliable system. Values given in the table are the mean values for various 
parameters and the mean is the inverse of the rate in each case. Figure 10 shows the 
production output rate as a function of the pallet capacity (n) at different robot 
loading/unloading rates, z. As it is seen from the figure, production rate increases with 
increasing pallet capacity and robot loading rates. While the rate of increase is higher 
initially, it levels off at higher values of n.  
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Finally P0,000 is substituted back into the equations in table 4 to obtain values of state 
probabilities. Equation (19) and the solution obtained for the state probabilities are valid for 
n 3. For n=2, special modifications need to be made since none of the equations in set 16b 
are applicable in the case of n=2. Only the first 4 equations in set 16a and all 17 equations in 
set 16c are applicable for the case n=2. In the set 16a, n is replaced by 2. Table 5 shows the 
modified parameter equations for n=2, while all other equations are the same as those given 
for n=3 in tables 1-3. In addition to the changes given in table 5, there are slight 
modifications in some of the equations in the set 16c. These changes are listed below: 
 Delete all the terms involving z1 including, (z1P1,031) from the first equation, (z1P1,011) 

from the second equation, and (z1P1,021) from the sixth equation of the set 16c; replace z2 
by l2 in the second equation of the set 16c to obtain the following equations respectively.  

 
2 P0, 110 + 1 P0, 330 – (v1 + 1 + 2) P0, 130 = 0 

1 P0, 310 + 2 P0, 130 – (v1 + v2 + 1 + 2) P0, 110 + l2 P1, 102 = 0 
v2 P0, 110 + 1P0, 302 – (v1 + u2 + 1) P0, 102  = 0 

 
 Replace z2 with l2 in the third and in the ninth equations of the set 16c to obtain the 

following equations respectively. 
l2 P1, 302 + 1 P0, 110 + 2 P0, 330 – (v2 + 2 + 1) P0, 310 = 0 
v1 P0, 110 + l2 P1, 202 + 2 P0, 031 – (v2 + u1 + 2) P0, 011  = 0 
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All other values are as given in table 4. 

Table 5. Definition of variables for n = 2 
 
All the remaining solution steps are similar to the general case of n 3. Thus, for n=2, 
equations 1-4 of the set (18) in table 4 remain the same, equations 5-24 of the set (18) are 
dropped, and equations 25-40 of the set (18) are changed according to the modifications 
mentioned above. Once the state probabilities are determined, it is then possible to 
determine various system and subsystem performance measures.  
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4.3 Case Example for a Two-Machine FMC  
In this section, we present some numerical results for the two-machine unreliable FMC 
problem with different parameters. The results are also compared to the reliable FMC 
results in order to see the effects of equipment failures on system performance measures. 
The parameter values for the two-machine unreliable FMC system are shown in table 6. The 
parameters for the reliable system are the same with the exception that there are no failures 
and repairs in the reliable system. Values given in the table are the mean values for various 
parameters and the mean is the inverse of the rate in each case. Figure 10 shows the 
production output rate as a function of the pallet capacity (n) at different robot 
loading/unloading rates, z. As it is seen from the figure, production rate increases with 
increasing pallet capacity and robot loading rates. While the rate of increase is higher 
initially, it levels off at higher values of n.  
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Operation time per part 1/vm = 1 time unit, m=1, 2 for machines 1 and 2 
 Robot loading time for the first part 1/lm = 0.25 time units, for machines m=1, 2 
 Robot load/unload time for subsequent parts 1/zm = 0.5 time units, m=1, 2 
 Robot unloading time for the last part 1/um = 0.25 time units, m=1, 2 
 Mean time to failure for machine m 1/m = 100 time units 

Mean time to repair the machine m 1/m = 10 time units 

Pallet transfer time 1/w = 1,…,10 time units per pallet   

Pallet capacity n=4 units 

Table 6. Parameter values for the unreliable FMC system 
 
Figure 11 shows the production rate of the FMC system as a function of pallet capacity (n) 
and four different machine repair rates (μ=0.05, 0.1, 0.5, 1). Other parameters are kept 
constant as before. As the machine repair rates are increased, FMC production rate 
increases, but the increase is marginal when μ is changed from 0.5 to 1 repair per unit time. 
While it is not shown here, the effects of pallet capacity (n) and pallet loading rate (w) on 
FMC production rate has a similar trend. Production rate increases with increasing w up to 
a certain level and levels off after that.  Effects of various parameters on FMC component 
utilizations, including the machines, the robot, and the pallet handling system, can also be 
obtained by the equations presented above. 
 
Unreliable FMC system performance results obtained from the stochastic model presented 
in this paper are compared to the reliable FMC system performance results, whose model is 
reported elsewhere in Savsar and Aldaihani (2004) and Aldaihani and Savsar (2005a). 
Figure 12 shows the production output results for both the reliable and unreliable FMC 
system for a pallet capacity of n=4 units at different pallet transfer rates. Production rate 
increases with respect to pallet transfer rates for both, reliable and unreliable systems. 
Reliable FMC has 8-10% higher production rate than the unreliable FMC in this case. 
Production rate significantly increases with increasing pallet transfer rate up to the rate of 4 
pallets per time unit. After this rate, production rate increases at a slower pace. Figure 13 
compares machine utilizations for reliable and unreliable cells. Machine 1 has higher 
utilizations in either case because priority is given to machine 1 during initial loading when 
a pallet moves into the cell. Machine utilizations are significantly higher for reliable FMC 
than unreliable FMC. The utilization rates also increase sharply with respect to pallet 
transfer rates up to the rate of 4 pallets per time unit. After this, utilization increases are not 
as significant. The best pallet transfer rate must be established for each particular FMC using 
similar analysis as presented here. Other performance measures can be compared by using 
the models presented. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Effects of pallet capacity (n) and robot loading rata (z)on FMC production rate. 

Fig. 11. Effects of pallet capacity (n) and repair rate (μ) on FMC production rate. 
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Operation time per part 1/vm = 1 time unit, m=1, 2 for machines 1 and 2 
 Robot loading time for the first part 1/lm = 0.25 time units, for machines m=1, 2 
 Robot load/unload time for subsequent parts 1/zm = 0.5 time units, m=1, 2 
 Robot unloading time for the last part 1/um = 0.25 time units, m=1, 2 
 Mean time to failure for machine m 1/m = 100 time units 

Mean time to repair the machine m 1/m = 10 time units 

Pallet transfer time 1/w = 1,…,10 time units per pallet   

Pallet capacity n=4 units 

Table 6. Parameter values for the unreliable FMC system 
 
Figure 11 shows the production rate of the FMC system as a function of pallet capacity (n) 
and four different machine repair rates (μ=0.05, 0.1, 0.5, 1). Other parameters are kept 
constant as before. As the machine repair rates are increased, FMC production rate 
increases, but the increase is marginal when μ is changed from 0.5 to 1 repair per unit time. 
While it is not shown here, the effects of pallet capacity (n) and pallet loading rate (w) on 
FMC production rate has a similar trend. Production rate increases with increasing w up to 
a certain level and levels off after that.  Effects of various parameters on FMC component 
utilizations, including the machines, the robot, and the pallet handling system, can also be 
obtained by the equations presented above. 
 
Unreliable FMC system performance results obtained from the stochastic model presented 
in this paper are compared to the reliable FMC system performance results, whose model is 
reported elsewhere in Savsar and Aldaihani (2004) and Aldaihani and Savsar (2005a). 
Figure 12 shows the production output results for both the reliable and unreliable FMC 
system for a pallet capacity of n=4 units at different pallet transfer rates. Production rate 
increases with respect to pallet transfer rates for both, reliable and unreliable systems. 
Reliable FMC has 8-10% higher production rate than the unreliable FMC in this case. 
Production rate significantly increases with increasing pallet transfer rate up to the rate of 4 
pallets per time unit. After this rate, production rate increases at a slower pace. Figure 13 
compares machine utilizations for reliable and unreliable cells. Machine 1 has higher 
utilizations in either case because priority is given to machine 1 during initial loading when 
a pallet moves into the cell. Machine utilizations are significantly higher for reliable FMC 
than unreliable FMC. The utilization rates also increase sharply with respect to pallet 
transfer rates up to the rate of 4 pallets per time unit. After this, utilization increases are not 
as significant. The best pallet transfer rate must be established for each particular FMC using 
similar analysis as presented here. Other performance measures can be compared by using 
the models presented. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Effects of pallet capacity (n) and robot loading rata (z)on FMC production rate. 

Fig. 11. Effects of pallet capacity (n) and repair rate (μ) on FMC production rate. 
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Fig. 12. Effects of pallet transfer rates on FMC production rates for unreliable and reliable FMC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Effects of pallet transfer rates on FMC Machine utilizations for unreliable and 
reliable FMC 
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5. Reliability Modeling of FMC with Multiple Robots 

FMC systems with more than one machine can be served with more than one robot 
depending on the requirements for loading and unloading operations. Figure 14 shows a 
FMC with two unreliable machines and two robots. Operation of the cell is similar to the 
FMCs discussed in section 1. The only difference here is that each machine is attended by a 
specific robot for loading and unloading operations, which are carried out according to a 
scheduling program. The robots, the machines, and the pallet must be coordinated by a 
common control system, which controls all the operations in the cell. When the parts of 
various shapes and types are delivered into the system, the control system can direct the 
robots for necessary loading and unloading activities.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. An FMC with two machines served by two robots and a pallet handling system 

 
5.1 A Stochastic Model for a FMC with Two Machines and Two Robots 
In order to analyze reliability and performance of this FMC system, a stochastic model 
similar to the model given in section 3 has been developed by Aldaihani and Savsar (2008).  
This model is an extension of the model developed for the FMC with two machines and a 
single robot. The only addition here is another subscript in the state definition for the system 
due to one additional robot, which results in several additional state equations. In particular, 
the state of the system is described by Si,jklm(t) and probability of the system being in this 
state is given by Pi,jklm(t), where  

i = number of blanks in FMC (on the pallet, the machine, or the robot gripper) 
j = state of the production machine 1 (j=0 if the machine is idle; j=1 if the machine is 

operating on a part; and j=2 if the machine is under repair) 
k = state of the production machine 2 (k=0 if the M/C is idle; k=1 if the machine is 

operating on a part; and k=2 if the machine is under repair) 
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Fig. 12. Effects of pallet transfer rates on FMC production rates for unreliable and reliable FMC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Effects of pallet transfer rates on FMC Machine utilizations for unreliable and 
reliable FMC 
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5. Reliability Modeling of FMC with Multiple Robots 

FMC systems with more than one machine can be served with more than one robot 
depending on the requirements for loading and unloading operations. Figure 14 shows a 
FMC with two unreliable machines and two robots. Operation of the cell is similar to the 
FMCs discussed in section 1. The only difference here is that each machine is attended by a 
specific robot for loading and unloading operations, which are carried out according to a 
scheduling program. The robots, the machines, and the pallet must be coordinated by a 
common control system, which controls all the operations in the cell. When the parts of 
various shapes and types are delivered into the system, the control system can direct the 
robots for necessary loading and unloading activities.  
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similar to the model given in section 3 has been developed by Aldaihani and Savsar (2008).  
This model is an extension of the model developed for the FMC with two machines and a 
single robot. The only addition here is another subscript in the state definition for the system 
due to one additional robot, which results in several additional state equations. In particular, 
the state of the system is described by Si,jklm(t) and probability of the system being in this 
state is given by Pi,jklm(t), where  

i = number of blanks in FMC (on the pallet, the machine, or the robot gripper) 
j = state of the production machine 1 (j=0 if the machine is idle; j=1 if the machine is 

operating on a part; and j=2 if the machine is under repair) 
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l = state of the robot 1 (l=0 if the robot is idle; l=1 if the robot is loading/unloading) 
m= state of the robot 2 (l=0 if the robot is idle; l=1 if the robot is loading/unloading) 
System parameters change slightly due to additional robot and the following 

notations are used: 
lr = loading rate of robot r for machine r (r=1,2) (parts/unit time) 
ur = unloading rate of robot r for machine r (r=1,2) (parts/unit time) 
zr = combined loading/unloading rate of robot r for machine r (r=1,2)    
w = pallet transfer rate (pallets/unit time)  
r= failure rate of the production machine r (1/r = mean time between failures) 
r= repair rate of the production machine r (1/r = mean machine repair time) 
vr= machining rate (or production rate) of machine r (parts/unit time) 
n   = pallet capacity (number of parts/pallet) 
Qc = production output rate of the cell in terms of parts/unit time 

A set of differential equations are obtained for the two-machine two-robot stochastic FMC in 
a similar way as it was done for the single robot case by using the fact that the net flow rate at 
each state is equal to the difference between the rates of flow in and flow out. For example, for 
the state (n,0011), rate of change with respect to time t is given by:   
 

dPn,0011(t)/dt = (w)P0,0000 -(l1+l2)Pn,0011 

 
At steady state, t; dP(t)/dt0 and the differential equation changes into a difference 
equation. The resulting difference equations for all states, which govern the FMC behavior 
at steady state, are given by equation set 31 below. These equations must be solved to obtain 
the state probabilities and system performance measures. There are 9n+4 equations and 
equal number of unknowns. It is difficult to obtain a closed form solution for these 
equations due to large number of states. However, exact numerical solutions have been 
obtained by using the MAPLE equation solver with symbolic manipulation. 
 

w P0,0000 –  ( l1 + l2 ) Pn,0011  = 0 
v1 Pn-1,1001 + v2  Pn-1,0110  - ( z1  + z2 ) Pn-1,0011  = 0 

l2  Pn,0011 + 2 Pn-1,0210 - ( v2 + l1 + 2 ) Pn-1,0110  = 0 
l1  Pn,0011 + 1 Pn-1,2001 - ( v1 + l2 + 1 ) Pn-1,1001  = 0 

1 Pn-1,1001 - ( l2 + 1 ) Pn-1,2001  = 0 
2 Pn-1,0110 - ( l1 + 2 ) Pn-1,0210  = 0 

l1  Pn-1,0110  +  l2 Pn-1,1001  + 1 Pn-2,2100 + 2 Pn-2,1200 - ( v1 + v2 + 1 + 2 ) Pn-2,1100  =  0 
l2  Pn-1,2001 +1 Pn-2,1100 + 2 Pn-2,2200 - ( v2 +2 + 1) Pn-2,2100  =  0 

1 Pn-2,1200  +2 Pn-2,2100 - (1 + 2 ) Pn-2,2200  =  0 
l1 Pn-1,0210  +2  Pn-2,1100  +  1 Pn-2,2200  - (v1  + 1 + 2 ) Pn-2,1200  =  0 

v1  Pn-2,1001 + v2 Pn-2,0110  -  (z1 + z2 ) Pn-2,0011  =  0 
v1  Pn-2,1100  +z2  Pn-1,0011  + 2  Pn-2,0210  -  (v2 + z1 + 2 ) Pn-2,0110  = 0 
v2  Pn-2,1100  +z1 Pn-1,0011 +  1  Pn-2,2001 - ( v1 + z2 + 1  ) Pn-2,1001 =  0 

v2 Pn-2,2100  +1 Pn-2,1001 - ( z2 + 1 ) Pn-2,2001  =  0 
v1  Pn-2,1200  +2  Pn-2,0110  - ( z1 + 2  ) Pn-2,0210  = 0 

 
 
 

z1 Pn-2,0110  + z2  Pn-2,1001  + 1 Pn-x,2100  + 2  Pn-x,1200  - ( v1 + v2 + 1 + 2)  Pn-x,1100  = 0 
z2  Pn-2,2001  + 1  Pn-x,1100  +  2 Pn-x,2200  - ( v2 + 2 + 1  )  Pn-x,2100   =  0 

1 Pn-x,1200  +  2  Pn-x,2100  - (  1 + 2 ) Pn-x,2200   = 0 
z1  Pn-2,0210  + 2  Pn-x,1100  +  1  Pn-x,2200  - ( v1 + 1 + 2  ) Pn-x,1200  =  0 

v1  Pn-x,1001 + v2  Pn-x,0110  - ( z1 + z2 ) Pn-x,0011   =  0 
v1 Pn-x,1100  + z2  Pn-2,0011  + 2 Pn-x,0210  - ( v2 + z1 + 2 )  Pn-x,0110  =  0 
v2  Pn-x,1100  +  z1 Pn-2,0011  +  1 Pn-x,2001  - ( v1 + z2 + 1 ) Pn-x,1001  =  0 

v2  Pn-x,2100  + 1 Pn-x,1001   - ( z2  + 1 )  Pn-x,2001  =  0 
v1 Pn-x,1200  + 2  Pn-x,0110  - ( z1 + 2 ) Pn-x,0210  =  0 
…………………………………………………… 

z1 P2,0110 + z2 P2,1001 +  1 P1,2100  + 2 P1,1200  - ( v1 + v2 + 1 + 2 ) P1,1100  =  0 
z2 P2,2001 + 1 P1,1100 + 2 P1,2200 - ( v2 + 2 + 1 ) P1,2100  = 0 

1 P1,1200  +  2 P1,2100 - (1 + 2 ) P1,2200  = 0 
z1 P2,0210 + 2 P1,1100 + 1 P1,2200 - ( v1 + 1 + 2 ) P1,1200 = 0 

v1 P1,1001  +  v2 P1,0110  - ( z1 + z2 ) P1,0011 = 0 
v1 P1,1100 + z2 P2,0011 + 2 P1,0210  - ( v2 + z1 + 2 ) P1,0110  = 0 
v2 P1,1100 +  z1 P2,0011 + 1 P1,2001 - ( v1 + z2 + 1 ) P1,1001 = 0 

v2 P1,2100  + 1 P1,1001 - ( z2  + 1 ) P1,2001  =  0 
v1 P1,1200 + 2  P1,0110 - ( z1 + 2 ) P1,0210  = 0 

z1 P1,0110 + z2 P1,1001 + 1 P0,2100 + 2 P0,1200 - ( v1 + v2 +1 + 2 ) P0,1100  = 0 
z2 P1,2001 + 1 P0,1100 + 2 P0,2200 - ( v2 + 2 + 1 ) P0,2100  = 0 

1 P0,1200 + 2 P0,2100 - (1 + 2 ) P0,2200 = 0 
z1 P1,0210 + 2  P0,1100 + 1 P0,2200 - ( v1 + 1 + 1 ) P0,1200  = 0 
v1 P0,1100 + z2 P1,0011 + 2 P0,0210 -( v2 + u1 + 2 ) P0,0110 = 0 
v2 P0,1100 + z1 P1,0011 + 1 P0,2001 - ( v1 + u2 + 1 ) P0,1001 = 0 

v2 P0,2100 + 1  P0,1001 - ( u2 + 1 ) P0,2001 = 0 
v1 P0,1200 + 2  P0,0110  - ( u1 + 2 ) P0,0210 = 0 
u1 P0,0110 + 2  P0,0200 - ( v2 + 2  ) P0,0100  = 0 

v1   P0,1001 + v2  P0,0110 - ( u1 + u2 )  P0,0011  = 0 
u2  P0,1001  + 1 P0,2000 - ( v1 + 1 )  P0,1000 = 0 

u2  P0,2001 + 1 P0,1000 - 1 P0,2000  = 0 
u1 P0,0210  +  2  P0,0100 - 2 P0,0200  = 0 
v2  P0,0100 + u1 P0,0011 - u2 P0,0001 = 0 
v1  P0,1000  + u2  P0,0011 - u1 P0,0010  = 0 
  u1  P0,0010 + u2 P0,0001 - w P0,0000  = 0                                              (31) 

 
For example, for n=6, number of system states, as well as number of equations is 9(6)+4=58. 
In order to determine numerical solutions, for 58 state probabilities represented by the 
vector, P, the set of equations given by PT=0 must be solved for P, where T is the probability 
transition rate matrix, which is the matrix of the coefficients in equation set  (31). It is known 
that all the equations in PT=0 are not linearly independent and thus matrix T is singular 
with no inverse. We must add the normalizing condition given by equation (32) below, 
which assures that sum of all state probabilities is 1, to the set of 58 equations given for the 
FMC case above by eliminating one of them. 

 



Reliability Modeling and Analysis of Flexible Manufacturing Cells 89

l = state of the robot 1 (l=0 if the robot is idle; l=1 if the robot is loading/unloading) 
m= state of the robot 2 (l=0 if the robot is idle; l=1 if the robot is loading/unloading) 
System parameters change slightly due to additional robot and the following 

notations are used: 
lr = loading rate of robot r for machine r (r=1,2) (parts/unit time) 
ur = unloading rate of robot r for machine r (r=1,2) (parts/unit time) 
zr = combined loading/unloading rate of robot r for machine r (r=1,2)    
w = pallet transfer rate (pallets/unit time)  
r= failure rate of the production machine r (1/r = mean time between failures) 
r= repair rate of the production machine r (1/r = mean machine repair time) 
vr= machining rate (or production rate) of machine r (parts/unit time) 
n   = pallet capacity (number of parts/pallet) 
Qc = production output rate of the cell in terms of parts/unit time 

A set of differential equations are obtained for the two-machine two-robot stochastic FMC in 
a similar way as it was done for the single robot case by using the fact that the net flow rate at 
each state is equal to the difference between the rates of flow in and flow out. For example, for 
the state (n,0011), rate of change with respect to time t is given by:   
 

dPn,0011(t)/dt = (w)P0,0000 -(l1+l2)Pn,0011 

 
At steady state, t; dP(t)/dt0 and the differential equation changes into a difference 
equation. The resulting difference equations for all states, which govern the FMC behavior 
at steady state, are given by equation set 31 below. These equations must be solved to obtain 
the state probabilities and system performance measures. There are 9n+4 equations and 
equal number of unknowns. It is difficult to obtain a closed form solution for these 
equations due to large number of states. However, exact numerical solutions have been 
obtained by using the MAPLE equation solver with symbolic manipulation. 
 

w P0,0000 –  ( l1 + l2 ) Pn,0011  = 0 
v1 Pn-1,1001 + v2  Pn-1,0110  - ( z1  + z2 ) Pn-1,0011  = 0 

l2  Pn,0011 + 2 Pn-1,0210 - ( v2 + l1 + 2 ) Pn-1,0110  = 0 
l1  Pn,0011 + 1 Pn-1,2001 - ( v1 + l2 + 1 ) Pn-1,1001  = 0 

1 Pn-1,1001 - ( l2 + 1 ) Pn-1,2001  = 0 
2 Pn-1,0110 - ( l1 + 2 ) Pn-1,0210  = 0 

l1  Pn-1,0110  +  l2 Pn-1,1001  + 1 Pn-2,2100 + 2 Pn-2,1200 - ( v1 + v2 + 1 + 2 ) Pn-2,1100  =  0 
l2  Pn-1,2001 +1 Pn-2,1100 + 2 Pn-2,2200 - ( v2 +2 + 1) Pn-2,2100  =  0 

1 Pn-2,1200  +2 Pn-2,2100 - (1 + 2 ) Pn-2,2200  =  0 
l1 Pn-1,0210  +2  Pn-2,1100  +  1 Pn-2,2200  - (v1  + 1 + 2 ) Pn-2,1200  =  0 

v1  Pn-2,1001 + v2 Pn-2,0110  -  (z1 + z2 ) Pn-2,0011  =  0 
v1  Pn-2,1100  +z2  Pn-1,0011  + 2  Pn-2,0210  -  (v2 + z1 + 2 ) Pn-2,0110  = 0 
v2  Pn-2,1100  +z1 Pn-1,0011 +  1  Pn-2,2001 - ( v1 + z2 + 1  ) Pn-2,1001 =  0 

v2 Pn-2,2100  +1 Pn-2,1001 - ( z2 + 1 ) Pn-2,2001  =  0 
v1  Pn-2,1200  +2  Pn-2,0110  - ( z1 + 2  ) Pn-2,0210  = 0 

 
 
 

z1 Pn-2,0110  + z2  Pn-2,1001  + 1 Pn-x,2100  + 2  Pn-x,1200  - ( v1 + v2 + 1 + 2)  Pn-x,1100  = 0 
z2  Pn-2,2001  + 1  Pn-x,1100  +  2 Pn-x,2200  - ( v2 + 2 + 1  )  Pn-x,2100   =  0 

1 Pn-x,1200  +  2  Pn-x,2100  - (  1 + 2 ) Pn-x,2200   = 0 
z1  Pn-2,0210  + 2  Pn-x,1100  +  1  Pn-x,2200  - ( v1 + 1 + 2  ) Pn-x,1200  =  0 

v1  Pn-x,1001 + v2  Pn-x,0110  - ( z1 + z2 ) Pn-x,0011   =  0 
v1 Pn-x,1100  + z2  Pn-2,0011  + 2 Pn-x,0210  - ( v2 + z1 + 2 )  Pn-x,0110  =  0 
v2  Pn-x,1100  +  z1 Pn-2,0011  +  1 Pn-x,2001  - ( v1 + z2 + 1 ) Pn-x,1001  =  0 

v2  Pn-x,2100  + 1 Pn-x,1001   - ( z2  + 1 )  Pn-x,2001  =  0 
v1 Pn-x,1200  + 2  Pn-x,0110  - ( z1 + 2 ) Pn-x,0210  =  0 
…………………………………………………… 

z1 P2,0110 + z2 P2,1001 +  1 P1,2100  + 2 P1,1200  - ( v1 + v2 + 1 + 2 ) P1,1100  =  0 
z2 P2,2001 + 1 P1,1100 + 2 P1,2200 - ( v2 + 2 + 1 ) P1,2100  = 0 

1 P1,1200  +  2 P1,2100 - (1 + 2 ) P1,2200  = 0 
z1 P2,0210 + 2 P1,1100 + 1 P1,2200 - ( v1 + 1 + 2 ) P1,1200 = 0 

v1 P1,1001  +  v2 P1,0110  - ( z1 + z2 ) P1,0011 = 0 
v1 P1,1100 + z2 P2,0011 + 2 P1,0210  - ( v2 + z1 + 2 ) P1,0110  = 0 
v2 P1,1100 +  z1 P2,0011 + 1 P1,2001 - ( v1 + z2 + 1 ) P1,1001 = 0 

v2 P1,2100  + 1 P1,1001 - ( z2  + 1 ) P1,2001  =  0 
v1 P1,1200 + 2  P1,0110 - ( z1 + 2 ) P1,0210  = 0 

z1 P1,0110 + z2 P1,1001 + 1 P0,2100 + 2 P0,1200 - ( v1 + v2 +1 + 2 ) P0,1100  = 0 
z2 P1,2001 + 1 P0,1100 + 2 P0,2200 - ( v2 + 2 + 1 ) P0,2100  = 0 

1 P0,1200 + 2 P0,2100 - (1 + 2 ) P0,2200 = 0 
z1 P1,0210 + 2  P0,1100 + 1 P0,2200 - ( v1 + 1 + 1 ) P0,1200  = 0 
v1 P0,1100 + z2 P1,0011 + 2 P0,0210 -( v2 + u1 + 2 ) P0,0110 = 0 
v2 P0,1100 + z1 P1,0011 + 1 P0,2001 - ( v1 + u2 + 1 ) P0,1001 = 0 

v2 P0,2100 + 1  P0,1001 - ( u2 + 1 ) P0,2001 = 0 
v1 P0,1200 + 2  P0,0110  - ( u1 + 2 ) P0,0210 = 0 
u1 P0,0110 + 2  P0,0200 - ( v2 + 2  ) P0,0100  = 0 

v1   P0,1001 + v2  P0,0110 - ( u1 + u2 )  P0,0011  = 0 
u2  P0,1001  + 1 P0,2000 - ( v1 + 1 )  P0,1000 = 0 

u2  P0,2001 + 1 P0,1000 - 1 P0,2000  = 0 
u1 P0,0210  +  2  P0,0100 - 2 P0,0200  = 0 
v2  P0,0100 + u1 P0,0011 - u2 P0,0001 = 0 
v1  P0,1000  + u2  P0,0011 - u1 P0,0010  = 0 
  u1  P0,0010 + u2 P0,0001 - w P0,0000  = 0                                              (31) 

 
For example, for n=6, number of system states, as well as number of equations is 9(6)+4=58. 
In order to determine numerical solutions, for 58 state probabilities represented by the 
vector, P, the set of equations given by PT=0 must be solved for P, where T is the probability 
transition rate matrix, which is the matrix of the coefficients in equation set  (31). It is known 
that all the equations in PT=0 are not linearly independent and thus matrix T is singular 
with no inverse. We must add the normalizing condition given by equation (32) below, 
which assures that sum of all state probabilities is 1, to the set of 58 equations given for the 
FMC case above by eliminating one of them. 
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Exact numerical solutions are obtained for each state probability. In the following section, 
several numerical solutions are obtained and the results are presented.  

 
5.2 Case Example For Multi-Robot FMC System 
In this section, we present numerical results of a case example for the FMC with two 
machines and two robots. The case example is solved by the proposed model and the results 
are presented in tabular form. Table 7 shows the operational parameters of the FMC system 
considered. The time related parameters are mean values in each case.  
 

Operational Parameters Parameter Values 
Mean processing time per part, 1/vr 1.00 time unit, r = 1 and 2 (for machines 1 

and 2) 
Mean robot loading time for the first part, 
1/lr 

0.25 time units for machines and robots  
r = 1,2 

Mean robot loading/unloading time for 
subsequent parts, 1/zr 

0.50 time units for both robots and 
machines, r = 1,2 

Mean robot unloading time for last part, 
1/ur 

0.25 time units for robots and machines,   
r = 1,2 

Mean time to failure for machine r, 1/r 100 time units for both machines, r = 1,2 
Mean repair time of machine r, 1/r 10 time units for both machines, r = 1,2 
Mean pallet transfer time,  1/w Varied between 1,…,10 time units per pallet   
Pallet capacity n = 4 units. 

Table 7. Multi-Robot FMC operational parameters considered in the analysis.  
 
Results of analysis for the double robot FMC are shown in tabular form in table 8, which 
summarizes the percentages of times for system states, particularly the states in which each 
FMC component is idle, busy or under repair. One can use this table to evaluate 
performance of each system component, such as the fraction of time that each machine 
would be idle, under repair, or operational; or the fraction of time that each robot and the 
pallet would be idle or operational in the steady state. Figure 15 shows the production 
output rate of the FMC system with respect to pallet transfer rates at three different machine 
repair rates. As it is seen in the figure, when the repair rate is doubled from 0.1 to 0.2, the 
production rate increases twice more than the rate of increase when the repair rate is 
doubled from 0.2 to 0.4. The increase in the production rate as a function of the pallet rate is 
also shown in this figure. The trend in the production rate is similar to previous cases, that 
is, a pallet transfer rate of 3 or more units/unit time is effective for increasing production 
output rate under any possible repair policy. Such analysis are extremely useful for 
operational engineers and maintenance managers for effective operation of an FMC and for 
planning of maintenance/repair activities as well as for production planning.  
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Fig. 15. FMC production rate as a function of pallet transfer rate at three different machine 
repair rates   

 
6. Conclusions 

The demand for customized products has been continuously increasing in recent years and 
a great deal of attention has been given to automation of manufacturing, specifically to 
flexible manufacturing systems (FMS) and flexible manufacturing cells (FMC). FMC are less 
costly, smaller, and less complex systems than FMS. In order to get full benefit from these 
systems, they have to be analyzed in detail before implementation as well as during their 
operations. While modeling and analysis of traditional machines and production systems 
have been subject of extensive research over the past several years, not as many studies can 
be seen on FMC systems. Also, there are many books written about conventional 
manufacturing systems and very few on FMS and FMC systems. 
In this chapter, we have presented a method for developing stochastic models to be used in 
the design and analysis of unreliable FMC systems with one or more machines that are 
served by one or more robots and a common pallet handling system. The models are used to 
determine system performance measures, such as production output rate and system 
component utilizations, under different parametric conditions. Exact solutions were 
obtained for the stochastic models either in closed form or numerically and case problems 
were solved by these models to illustrate their applications and the results obtained. As 
shown by various results and graphs, the models could be a useful tool in the design as well 
as in the operational phases of FMC. It was observed that the FMC production rate was 
significantly affected by cell parameters such as pallet capacity, pallet transfer rate, robot 
loading/unloading rates, or the repair rates of the machines. Equipment utilizations are also 
analyzed with respect to different parameters by using the models presented. These models 
could be useful for system designers, FMC manufacturers, and the operation engineers.  
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Exact numerical solutions are obtained for each state probability. In the following section, 
several numerical solutions are obtained and the results are presented.  

 
5.2 Case Example For Multi-Robot FMC System 
In this section, we present numerical results of a case example for the FMC with two 
machines and two robots. The case example is solved by the proposed model and the results 
are presented in tabular form. Table 7 shows the operational parameters of the FMC system 
considered. The time related parameters are mean values in each case.  
 

Operational Parameters Parameter Values 
Mean processing time per part, 1/vr 1.00 time unit, r = 1 and 2 (for machines 1 

and 2) 
Mean robot loading time for the first part, 
1/lr 

0.25 time units for machines and robots  
r = 1,2 

Mean robot loading/unloading time for 
subsequent parts, 1/zr 

0.50 time units for both robots and 
machines, r = 1,2 

Mean robot unloading time for last part, 
1/ur 

0.25 time units for robots and machines,   
r = 1,2 

Mean time to failure for machine r, 1/r 100 time units for both machines, r = 1,2 
Mean repair time of machine r, 1/r 10 time units for both machines, r = 1,2 
Mean pallet transfer time,  1/w Varied between 1,…,10 time units per pallet   
Pallet capacity n = 4 units. 

Table 7. Multi-Robot FMC operational parameters considered in the analysis.  
 
Results of analysis for the double robot FMC are shown in tabular form in table 8, which 
summarizes the percentages of times for system states, particularly the states in which each 
FMC component is idle, busy or under repair. One can use this table to evaluate 
performance of each system component, such as the fraction of time that each machine 
would be idle, under repair, or operational; or the fraction of time that each robot and the 
pallet would be idle or operational in the steady state. Figure 15 shows the production 
output rate of the FMC system with respect to pallet transfer rates at three different machine 
repair rates. As it is seen in the figure, when the repair rate is doubled from 0.1 to 0.2, the 
production rate increases twice more than the rate of increase when the repair rate is 
doubled from 0.2 to 0.4. The increase in the production rate as a function of the pallet rate is 
also shown in this figure. The trend in the production rate is similar to previous cases, that 
is, a pallet transfer rate of 3 or more units/unit time is effective for increasing production 
output rate under any possible repair policy. Such analysis are extremely useful for 
operational engineers and maintenance managers for effective operation of an FMC and for 
planning of maintenance/repair activities as well as for production planning.  
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Fig. 15. FMC production rate as a function of pallet transfer rate at three different machine 
repair rates   

 
6. Conclusions 

The demand for customized products has been continuously increasing in recent years and 
a great deal of attention has been given to automation of manufacturing, specifically to 
flexible manufacturing systems (FMS) and flexible manufacturing cells (FMC). FMC are less 
costly, smaller, and less complex systems than FMS. In order to get full benefit from these 
systems, they have to be analyzed in detail before implementation as well as during their 
operations. While modeling and analysis of traditional machines and production systems 
have been subject of extensive research over the past several years, not as many studies can 
be seen on FMC systems. Also, there are many books written about conventional 
manufacturing systems and very few on FMS and FMC systems. 
In this chapter, we have presented a method for developing stochastic models to be used in 
the design and analysis of unreliable FMC systems with one or more machines that are 
served by one or more robots and a common pallet handling system. The models are used to 
determine system performance measures, such as production output rate and system 
component utilizations, under different parametric conditions. Exact solutions were 
obtained for the stochastic models either in closed form or numerically and case problems 
were solved by these models to illustrate their applications and the results obtained. As 
shown by various results and graphs, the models could be a useful tool in the design as well 
as in the operational phases of FMC. It was observed that the FMC production rate was 
significantly affected by cell parameters such as pallet capacity, pallet transfer rate, robot 
loading/unloading rates, or the repair rates of the machines. Equipment utilizations are also 
analyzed with respect to different parameters by using the models presented. These models 
could be useful for system designers, FMC manufacturers, and the operation engineers.  
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P.T.R.   1 2 3 4 5 6 7 8 9 10 

Machine 1 
Busy 0.407 0.453 0.471 0.480 0.486 0.490 0.493 0.495 0.497 0.498 
Idle 0.552 0.502 0.482 0.472 0.465 0.461 0.458 0.455 0.454 0.452 

Repair 0.041 0.045 0.047 0.048 0.049 0.049 0.049 0.050 0.050 0.050 

Machine 2 
Busy 0.407 0.453 0.471 0.480 0.486 0.490 0.493 0.495 0.497 0.498 
Idle 0.552 0.502 0.482 0.472 0.465 0.461 0.458 0.455 0.454 0.452 

Repair 0.041 0.045 0.047 0.048 0.486 0.049 0.049 0.050 0.050 0.050 

Robot 1 Busy 0.209 0.232 0.241 0.246 0.249 0.251 0.253 0.254 0.255 0.255 
Idle 0.792 0.768 0.759 0.754 0.751 0.749 0.747 0.746 0.745 0.745 

Robot 2 Busy 0.209 0.232 0.241 0.246 0.249 0.251 0.253 0.254 0.255 0.255 
Idle 0.792 0.768 0.759 0.754 0.751 0.749 0.747 0.746 0.745 0.745 

Pallet Busy 0.204 0.113 0.079 0.060 0.049 0.041 0.035 0.031 0.028 0.025 
Idle 0.797 0.887 0.922 0.940 0.951 0.959 0.965 0.969 0.972 0.975 

Production  0.814 0.906 0.942 0.960 0.972 0.980 0.986 0.990 0.994 0.996 
Table 8. Percentages of time in which system components are in different states at different 
pallet transfer rates (P.T.R.) for pallet capacity of n=4 and the FMC parameters of table 7. 
 
Stochastic models and the closed form solution formulas obtained in this paper could be 
used to analyze and optimize the productivity and other performance measures of a FMC 
under different machine, robot, and pallet operational characteristics. Using the models 
presented in this paper, best parameter combinations can be determined for a given FMC 
system. In particular, best machining rates, robot loading and unloading rates, pallet 
capacity, and pallet transfer rates can be determined for a given set of FMC machine 
characteristics. Furthermore, reliability and availability analysis of the FMC system can be 
determined based on different failure/repair characteristics of the machines in the system. It 
is possible to optimize machine repair rates, based on other system parameters, to achieve 
maximum production output rates and other performance measures. 

 
Acknowledgement 

This chapter was prepared with a support from Kuwait University Research Administration 
under the research grant number EI01/08. 

 
7. References 

Abdulmalek, F., Savsar, M., and Aldaihani, M. (2004). “Simulation of Tool Change Policies 
in a Flexible Manufacturing Cell”, WSEAS Transactions on Systems, Vol. 7, No. 3, pp. 
2546-2552. 

Adamyan, A. and He, D. (2002). “Analysis of sequential failures for assessment of reliability 
and safety of manufacturing systems”, Reliability Engineering & System Safety, No. 
76, pp. 227-236. 

Aldaihani, M. and Savsar, M. (2005a). “Stochastic Modeling and Analysis of a Two-Machine 
Flexible Manufacturing Cell”, Computers and Industrial Engineering, No. 49, pp. 600-
610. 

Aldaihani, M. and Savsar, M. (2005b). “Modeling of a Flexible Manufacturing Cell with Two 
Unreliable Machines Served by Two Robots”, INFORMS Annual Conference, 
November 13-16, San Francisco, CA, USA. 

Aldaihani, M. and Savsar, M. (2008). “Stochastic models for reliable and unreliable flexible 
manufacturing cells with two machines and two robots”, International journal of 
Industrial and Systems Engineering, Vol. 3, No. 5, pp. 610-624. 

Black, J. J. and Mejabi, O. O. (1995). “Simulation of Complex Manufacturing Equipment 
Reliability Using Object Oriented Methods”, Reliability Engineering & System Safety, 
No. 48, pp. 11-18.  

Chan, D. and Bedworth, D.D. (1990). “Design of a Scheduling System for Flexible 
Manufacturing Cells” International Journal  of Production Research, No. 28, pp. 2037-
2049.  

Butler, A. C. and Rao, S. S. (1993). “Reliability Analysis of Complex Systems Using Symbolic 
Logic”, Reliability Engineering & System Safety, No. 40, pp. 49-60. 

Cogun, C. and Savsar, M. (1996). “Performance Evaluation of a Flexible Manufacturing Cell 
(FMC) by Computer Simulation”, Modeling Measurement, & Control B, Vol. 62, No. 2, 
pp. 31-44. 

Han, B. T., Zhang, C. B., Sun, C. S., and Xu, C. J. (2006), “Reliability Analysis of Flexible 
Manufacturing Cells Based on Triangular Fuzzy Number”, Communications in 
Statistics-Theory and Methods, 35 (10), 1897-1907. 

Henneke, M. J. and Choi, R.H. (1990). “Evaluation of FMS Parameters on Overall System 
Parameters” Computers an Industrial Engineering, No. 18, pp.105-110. 

Khodabandehloo, K. and Sayles, R. S. (2007). “Production Reliability in Flexible 
Manufacturing Systems”, Quality and Reliability Engineering International, Vol. 2, No. 
3, pp. 171-182. 

Koulamas, C.P. (1992). “A Stochastic Model for a Machining Cell with Tool Failure and Tool 
Replacement Considerations”, Computers and Operations Research, No. 19, pp. 717-
729. 

Savsar, M. and Cogun, C. (1993). “Stochastic Modeling and Comparisons of Two Flexible 
Manufacturing Cells with Single and Double Gripper Robots”, International Journal 
of Production Research, No. 31, pp. 633-645. 

Savsar, M. (2000), “Reliability analysis of a flexible manufacturing cell”, Reliability Eng. & 
System Safety, No. 67, pp. 147-132. 

Savsar, M. and Aldaihani, M. (2004). Modeling and Analysis of a Flexible Manufacturing 
Cell with two Machines Served by a Robot” IMS’2004: The 4th International 
Symposium on Intelligent Manufacturing, September 4-6, Sakarya, Turkey. 

Savsar, M. and Aldaihani, M. (2008). “Modeling of Machine Failures in a Flexible 
Manufacturing Cell with Two Machines Served by a Robot”, Journal of Reliability 
and System Safety, Vol. 93, No. 10, pp. 1551-1562.   

Savsar, M. (2008). "Calculating Production Rate of a Flexible Manufacturing Module", 
International Journal of Advanced Manufacturing Technology, Vol. 37, pp. 760-769. 



Reliability Modeling and Analysis of Flexible Manufacturing Cells 93

P.T.R.   1 2 3 4 5 6 7 8 9 10 
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Idle 0.552 0.502 0.482 0.472 0.465 0.461 0.458 0.455 0.454 0.452 
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Table 8. Percentages of time in which system components are in different states at different 
pallet transfer rates (P.T.R.) for pallet capacity of n=4 and the FMC parameters of table 7. 
 
Stochastic models and the closed form solution formulas obtained in this paper could be 
used to analyze and optimize the productivity and other performance measures of a FMC 
under different machine, robot, and pallet operational characteristics. Using the models 
presented in this paper, best parameter combinations can be determined for a given FMC 
system. In particular, best machining rates, robot loading and unloading rates, pallet 
capacity, and pallet transfer rates can be determined for a given set of FMC machine 
characteristics. Furthermore, reliability and availability analysis of the FMC system can be 
determined based on different failure/repair characteristics of the machines in the system. It 
is possible to optimize machine repair rates, based on other system parameters, to achieve 
maximum production output rates and other performance measures. 
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1. Introduction 

The manufacturing industry will continue to be in the future one of the main wealth 
generators of the world economy (CMV, 1998). In the last decades world has moved towards 
a global economy, with markets demanding for products with high quality at lower costs, 
highly customized and with short life cycles, imposing new requirements on manufacturing 
enterprises, namely in terms of quality, response, agility and flexibility, that are crucial for an 
enterprise staying in the business.  
The traditional manufacturing control systems are not designed to exhibit these capabilities of 
responsiveness, flexibility, robustness and re-configurability, since they are built upon 
centralized and hierarchical control structures. They present good production optimization, 
but a weak response to adopt due to the rigidity and centralization of their control structures. 
Such centralized hierarchical organization normally leads to situations where the whole system 
is shutting down by single failures at one point of the system hierarchy (Colombo et al., 2006). 
The current challenge is to develop collaborative and reconfigurable manufacturing control 
systems that support efficiently small batches, product diversity, high quality and low costs, by 
introducing innovative characteristics of adaptation, agility and modularization.  
Information and communication technologies, and artificial intelligence techniques, have 
been used for more than two decades addressing this challenge. Namely, agent-based and 
holonic manufacturing control seem to be suitable to face these requirements such as 
modularity, scalability, autonomy and re-usability, since they present decentralization of 
control over distributed structures. When properly designed and implemented, agent-based 
control systems result in a performance that is flexible, robust, adaptive and fully tolerant, 
which are key factors for manufacturing success in the increasingly global marketplace. 
In this chapter, we review the different manufacturing control architecture including 
centralized and distributed. We discuss about intelligent and distributed manufacturing 
control systems using emerging paradigms, such as multi-agent systems and holonic 
manufacturing systems (HMSs), and present two case studies about the applications of 
agent-based manufacturing control systems for process planning and scheduling. The 
objective of this chapter is to provide an overview about the application of multi-agent 
systems and holonic manufacturing principles to manufacturing environment, but to focus 
on the manufacturing control applications. 
The chapter is organized as follows. Section 2 reviews the concepts associated with 
manufacturing control systems, describing the traditional approaches and the distributed 
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and intelligent ones, namely the agent-based and holonic manufacturing control system. In 
section 3, we present two case studied including real-time scheduling method for holonic 
manufacturing system and agent-based dynamic integrated process planning and 
scheduling in flexible manufacturing system. Finally, we briefly discuss about realizing the 
agent based manufacturing system by applying the ORiN (Open Robot Interface Network) 
architecture which recently has been developed for manufacturing automation. 

 
2. Manufacturing control systems 
 

2.1 Traditional approach to manufacturing control problem 
The manufacturing control is concerned with managing and controlling the physical 
activities in the factory aiming to execute the manufacturing plans, provided by the 
manufacturing planning activity, and to monitor the progress of the product as it is being 
processed, assembled, moved, and inspected in the factory. Algorithms at this level are used 
to decide what to produce, how much to produce, when production is to be finished, how  
and when to use the resources or make them available, when to release jobs into the factory, 
which jobs to release, job routing, and job/operation sequencing (Baker, 1998). 
Due to its complexity, especially the high number of interactions between the different 
components and the variety of functions executed, manufacturing control systems are 
traditionally implemented using centralized or hierarchical control approaches, comprising,  
the following main components: planning, scheduling, execution (i.e. dispatching, 
monitoring, diagnosis and error recovery) and machine/device control. Each one of these 
components operates in a specific temporal horizon, ranging from weeks at the strategic level 
to seconds at the shop floor. 
The traditional approach to manufacturing control systems based on centralized or 
hierarchical control structures, presents good characteristics in terms of productivity, 
essentially due to its intrinsic optimization capabilities. However, dynamic and adaptive 
response to change is, currently, the key to competitiveness, and the traditional approaches 
to manufacturing control typically fall into large monolithic and centralized software 
packages that are developed and adapted case by case, requiring a huge and expensive effort 
to implement, maintain or re-configure. In conclusion, they are not adequate because they do 
not support efficiently the current requirements imposed to manufacturing systems, namely 
in terms of flexibility, expansibility, agility and re-configurability. 

 
2.2 Agent-based manufacturing control 
The multi-agent system paradigm derives from the distributed artificial intelligence (DAI) 
field, being characterized by decentralization and parallel execution of activities based on 
autonomous entities, called agents. The definition of agent concept is neither unique nor 
consensual (Russel & Norvig, 1995; Wooldridge & Jennings, 1995;Wooldridge, 2002). Despite 
some definitions and interpretations for agents, a suitable definition is: “An autonomous 
component that represents physical or logical objects in the system, capable to act in order to 
achieve its goals, and being able to interact with other agents, when it does not possess 
knowledge and skills to reach alone its objectives”. The most important properties of an 
agent are the autonomy, intelligence, adaptation and co-operation. 
There are several agent architectures, ranging from reactive agents, operating in a 
stimulus–response manner, to deliberative agents characterized by their pro-active reasoning 

and goal-oriented behaviour. A well-known deliberative and cognitive agent-type is 
belief–desire–intention (BDI) architecture, which origin lies in a theory of human practical 
reasoning, focusing particularly on the role of intentions in practical reasoning (Wooldridge, 
2002). In the BDI agents, the decision-making depends on the manipulation of beliefs, desires 
and intentions of the agents.  
A multi-agent system can be defined as a set of agents that represent the objects of a system, 
capable of interacting, in order to achieve their individual goals, when they have not enough 
knowledge and/or skills to achieve individually their objectives. Agents organize 
themselves into a heterarchical structure characterized by the high-level of autonomy and 
co-operation, being the client–server structure with fixed relations no more applied (Diltis et 
al., 1991). These features allow a high performance against disturbances, but the global 
optimization reduced, because the decision-making is local and autonomous, without a 
global view of the system. The expansibility of the system is easier, and only enough to 
modify the functioning of some agents or add new agents to the control system. 
In the automation and manufacturing domains, an agent can represent physical resources, 
such as machine tools, robots, auto-guided vehicles (AGVs) and products or logical objects, 
such as the schedulers and orders (Sepehri & Tehrani, 2005). Using the appropriate 
distributed control algorithms, individual machines and product agents can make their own 
manufacturing control decisions relating to resource allocation and coordination, using an 
automated form of “negotiation”. The key benefit of such approach is that if production is 
disrupted or re-organized in some way, the same negotiation process still takes place, with 
different machines or products making the decisions, and hence the system is relatively 
robust to change. 

 
2.3 Holonic manufacturing control 
The Holonic Manufacturing System (HMS) is a paradigm that translates into the 
manufacturing world the concepts developed by Arthur Koestler from living organisms and 
social organizations. In middle of sixties, Koestler introduced the word holon to describe the 
basic unit of organization in living organisms and social organizations, based on Herbert 
Simon theories and on his observations (Koestler, 1969).  
The HMS has been proposed and discussed in the HMS consortium, in order to develop a 
new autonomous distributed architecture of the manufacturing systems, which are 
applicable to very small batch productions. The HMS consortium has developed the 
following definitions to help the common understanding of the HMS (Wyns, 1999). 
 

 
Fig. 1. A physical holon. 
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and intelligent ones, namely the agent-based and holonic manufacturing control system. In 
section 3, we present two case studied including real-time scheduling method for holonic 
manufacturing system and agent-based dynamic integrated process planning and 
scheduling in flexible manufacturing system. Finally, we briefly discuss about realizing the 
agent based manufacturing system by applying the ORiN (Open Robot Interface Network) 
architecture which recently has been developed for manufacturing automation. 

 
2. Manufacturing control systems 
 

2.1 Traditional approach to manufacturing control problem 
The manufacturing control is concerned with managing and controlling the physical 
activities in the factory aiming to execute the manufacturing plans, provided by the 
manufacturing planning activity, and to monitor the progress of the product as it is being 
processed, assembled, moved, and inspected in the factory. Algorithms at this level are used 
to decide what to produce, how much to produce, when production is to be finished, how  
and when to use the resources or make them available, when to release jobs into the factory, 
which jobs to release, job routing, and job/operation sequencing (Baker, 1998). 
Due to its complexity, especially the high number of interactions between the different 
components and the variety of functions executed, manufacturing control systems are 
traditionally implemented using centralized or hierarchical control approaches, comprising,  
the following main components: planning, scheduling, execution (i.e. dispatching, 
monitoring, diagnosis and error recovery) and machine/device control. Each one of these 
components operates in a specific temporal horizon, ranging from weeks at the strategic level 
to seconds at the shop floor. 
The traditional approach to manufacturing control systems based on centralized or 
hierarchical control structures, presents good characteristics in terms of productivity, 
essentially due to its intrinsic optimization capabilities. However, dynamic and adaptive 
response to change is, currently, the key to competitiveness, and the traditional approaches 
to manufacturing control typically fall into large monolithic and centralized software 
packages that are developed and adapted case by case, requiring a huge and expensive effort 
to implement, maintain or re-configure. In conclusion, they are not adequate because they do 
not support efficiently the current requirements imposed to manufacturing systems, namely 
in terms of flexibility, expansibility, agility and re-configurability. 

 
2.2 Agent-based manufacturing control 
The multi-agent system paradigm derives from the distributed artificial intelligence (DAI) 
field, being characterized by decentralization and parallel execution of activities based on 
autonomous entities, called agents. The definition of agent concept is neither unique nor 
consensual (Russel & Norvig, 1995; Wooldridge & Jennings, 1995;Wooldridge, 2002). Despite 
some definitions and interpretations for agents, a suitable definition is: “An autonomous 
component that represents physical or logical objects in the system, capable to act in order to 
achieve its goals, and being able to interact with other agents, when it does not possess 
knowledge and skills to reach alone its objectives”. The most important properties of an 
agent are the autonomy, intelligence, adaptation and co-operation. 
There are several agent architectures, ranging from reactive agents, operating in a 
stimulus–response manner, to deliberative agents characterized by their pro-active reasoning 

and goal-oriented behaviour. A well-known deliberative and cognitive agent-type is 
belief–desire–intention (BDI) architecture, which origin lies in a theory of human practical 
reasoning, focusing particularly on the role of intentions in practical reasoning (Wooldridge, 
2002). In the BDI agents, the decision-making depends on the manipulation of beliefs, desires 
and intentions of the agents.  
A multi-agent system can be defined as a set of agents that represent the objects of a system, 
capable of interacting, in order to achieve their individual goals, when they have not enough 
knowledge and/or skills to achieve individually their objectives. Agents organize 
themselves into a heterarchical structure characterized by the high-level of autonomy and 
co-operation, being the client–server structure with fixed relations no more applied (Diltis et 
al., 1991). These features allow a high performance against disturbances, but the global 
optimization reduced, because the decision-making is local and autonomous, without a 
global view of the system. The expansibility of the system is easier, and only enough to 
modify the functioning of some agents or add new agents to the control system. 
In the automation and manufacturing domains, an agent can represent physical resources, 
such as machine tools, robots, auto-guided vehicles (AGVs) and products or logical objects, 
such as the schedulers and orders (Sepehri & Tehrani, 2005). Using the appropriate 
distributed control algorithms, individual machines and product agents can make their own 
manufacturing control decisions relating to resource allocation and coordination, using an 
automated form of “negotiation”. The key benefit of such approach is that if production is 
disrupted or re-organized in some way, the same negotiation process still takes place, with 
different machines or products making the decisions, and hence the system is relatively 
robust to change. 

 
2.3 Holonic manufacturing control 
The Holonic Manufacturing System (HMS) is a paradigm that translates into the 
manufacturing world the concepts developed by Arthur Koestler from living organisms and 
social organizations. In middle of sixties, Koestler introduced the word holon to describe the 
basic unit of organization in living organisms and social organizations, based on Herbert 
Simon theories and on his observations (Koestler, 1969).  
The HMS has been proposed and discussed in the HMS consortium, in order to develop a 
new autonomous distributed architecture of the manufacturing systems, which are 
applicable to very small batch productions. The HMS consortium has developed the 
following definitions to help the common understanding of the HMS (Wyns, 1999). 
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 Holon: An autonomous and cooperative building block of a manufacturing system for 
transforming, transporting, storing and/or validating information and physical objects. 
A holon can represent a physical or logical activity, such as a robot, a machine, an 
order, a flexible manufacturing system or even an human operator. The holon has 
information about itself and the environment, containing an information processing 
part and a physical processing part when the holon represents a physical device 
(Winkler & Mey, 1994), such as an industrial robot, as illustrated in Fig. 1. 

 Autonomy: The capability of an entity to create and control the execution of its own 
plans and strategies. 

 Cooperation: A process whereby a set of entities develops mutually acceptable plans 
and executes these plans. 

 Holarchy: A system of holons that can cooperate to achieve a goal or objective. The 
holarchy defines the basic rules for cooperation of the holons and thereby limits their 
autonomy. 

Brussel et al. (1998) has proposed PROSA a reference architecture is built around three types 
of basic holons: order holons, product holons, and resource holons. Each of them is 
responsible for one aspect of manufacturing control, logistics, technological planning, or 
resource capabilities respectively. These basic holons are structured using object-oriented 
concepts like aggregation and specialization. Staff holons can be added to assist the basic 
holons with expert knowledge. These allow for the use of centralized algorithms and for the 
incorporation of legacy systems.  

 
3. Agent and Holonic Case Studies in Manufacturing Systems 

3.1 Real-time scheduling method for HMS 
In this case study, we discuss about a real-time scheduling method for the manufacturing 
processes in the HMS. The components in the HMS are basically divided into three classes; 
they are CNC machine tool (CMT) holons, job holons, and coordination holons. We develop 
a coordination method for the coordination holon to determine a suitable combination of the 
CMT holons and the job holons based on the utility values. We verify the effectiveness of the 
proposed real-time scheduling method from the view point of the objective functions of the 
individual CMT holons and job holons. 

 
Fig. 2. Real-time scheduling method based on utility values 

 
3.1.1 Basic Architecture of HMS 
The holons in the HMS are divided into three classes based on their roles in the 
manufacturing processes and the scheduling processes. 
 CNC machine tool (CMT) holons: They transform the job holons in the manufacturing 

process. In the scheduling process, they evaluate the utility values for the candidate job 
holons which carry out the machining process in the next time period. 

 Job holons: They are transformed by the CMT holons from the blank materials to the 
final products in the manufacturing process. In the scheduling process, they evaluate the 
utility values for the candidate CMT holons which carry out the machining process in 
the next time period. 

 Coordination holon: It carries out the coordination among the holons, and selects a most 
suitable combination of the CMT holons and the job holons for the machining process in 
the next time period in the scheduling process. 

 
3.1.2 Real-time scheduling processes based on utility values 
It is assumed here that the individual job holons have the following technological 
information representing the machining process of the jobs. 
Mik : k-th machining process of the job holon i. (i = 1,..,α)，(k = 1,..,β)． 
ACik : Required machining accuracy of machining process Mik. It is assumed that the 

machining accuracy is represented by the levels of accuracy indicated by 1, 2, and 3, 
which mean rough, medium high, and high accuracy, individually. 

Rikm : m-th candidate of CMT holon, which can carry out the machining process Mik. (m = 
1,...,γ)． 

Tikm : Machining time in the case where the CMT holon Rikm carries out the machining 
process Mik. 

Wi : Waiting time until the job holon i becomes idle if it is under machining status. 
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 Holon: An autonomous and cooperative building block of a manufacturing system for 
transforming, transporting, storing and/or validating information and physical objects. 
A holon can represent a physical or logical activity, such as a robot, a machine, an 
order, a flexible manufacturing system or even an human operator. The holon has 
information about itself and the environment, containing an information processing 
part and a physical processing part when the holon represents a physical device 
(Winkler & Mey, 1994), such as an industrial robot, as illustrated in Fig. 1. 

 Autonomy: The capability of an entity to create and control the execution of its own 
plans and strategies. 

 Cooperation: A process whereby a set of entities develops mutually acceptable plans 
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 Holarchy: A system of holons that can cooperate to achieve a goal or objective. The 
holarchy defines the basic rules for cooperation of the holons and thereby limits their 
autonomy. 

Brussel et al. (1998) has proposed PROSA a reference architecture is built around three types 
of basic holons: order holons, product holons, and resource holons. Each of them is 
responsible for one aspect of manufacturing control, logistics, technological planning, or 
resource capabilities respectively. These basic holons are structured using object-oriented 
concepts like aggregation and specialization. Staff holons can be added to assist the basic 
holons with expert knowledge. These allow for the use of centralized algorithms and for the 
incorporation of legacy systems.  

 
3. Agent and Holonic Case Studies in Manufacturing Systems 

3.1 Real-time scheduling method for HMS 
In this case study, we discuss about a real-time scheduling method for the manufacturing 
processes in the HMS. The components in the HMS are basically divided into three classes; 
they are CNC machine tool (CMT) holons, job holons, and coordination holons. We develop 
a coordination method for the coordination holon to determine a suitable combination of the 
CMT holons and the job holons based on the utility values. We verify the effectiveness of the 
proposed real-time scheduling method from the view point of the objective functions of the 
individual CMT holons and job holons. 

 
Fig. 2. Real-time scheduling method based on utility values 

 
3.1.1 Basic Architecture of HMS 
The holons in the HMS are divided into three classes based on their roles in the 
manufacturing processes and the scheduling processes. 
 CNC machine tool (CMT) holons: They transform the job holons in the manufacturing 

process. In the scheduling process, they evaluate the utility values for the candidate job 
holons which carry out the machining process in the next time period. 

 Job holons: They are transformed by the CMT holons from the blank materials to the 
final products in the manufacturing process. In the scheduling process, they evaluate the 
utility values for the candidate CMT holons which carry out the machining process in 
the next time period. 

 Coordination holon: It carries out the coordination among the holons, and selects a most 
suitable combination of the CMT holons and the job holons for the machining process in 
the next time period in the scheduling process. 

 
3.1.2 Real-time scheduling processes based on utility values 
It is assumed here that the individual job holons have the following technological 
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Objective functions Objective function values 

CMT holon 
Efficiency Σ Machining time / Total time 

Machining 
accuracy 

Σ(Machining accuracy of CMTs – Required 
machining accuracy of jobs) 

Job holon Flow-time Σ(Machining time + Waiting time) 
Machining cost Σ(Machining cost of CMTs) 

Table 1. Objective functions of holons 
 
The individual CMT holons have the following technological information representing the 
machining capability of the resources for the machining process Mik. 

MACikm : Machining accuracy in the case where the CMT holon Rikm carries out the    
         machining process Mik. MACikm is also represented by the level of 1, 2 and 3. 
MCOikm : Machining cost in the case where the CMT holon Rikm carries out the machining  
         process Mik. 
Wikm : Waiting time until CMT holon Rikm becomes idle if it is under machining status. 
Based on the information above mentioned, a real-time scheduling method based on the 
utility values shown in Fig. 2 is proposed, to select a suitable combination between the job 
holons and the CMT holons which carries out the machining process in the next time period. 
At the time t, all the ‘idling’ holons have to select their machining schedules in the next time 
period, as shown in the Fig. 2. The following procedure is proposed for the individual holons 
to select their machining schedules. 

(1) Retrieval of status data: The individual ‘idling’ holons firstly get the status data from the 
other holons which are ‘operating’ or ‘idling’. The ‘idling’ holons can start the 
machining process in the next time period. 

(2) Selection of candidate holons: The individual ‘idling’ holons select all the candidate holons 
for the machining process in the next time period. For instances, the job holon i selects 
the CMT holons which can carry out the next machining process Mik. On the other hand, 
the CMT holon j select all the candidate job holons which can be machined by the CMT 
holon j. 

(3) Determination of utility values: The individual holons determine the utility values for the 
individual candidates selected in the second step. For instances, the job holon 
determines the utility values, based on its own decision criteria for all the candidate 
CMT holons which can carry out the next machining process. 

(4) Coordination: All the job holons and the CMT holons send the selected candidates and 
the utility values of the candidates to the coordination holon. The coordination holon 
determine a suitable combination of the job holons and the CMT holons which carry out 
the machining processes in the next time period, based on the utility values. The 
decision criteria of the coordination holon is to maximize the total sum of the utility 
values of all the holons. 

 
3.1.3 Evaluation of utility values 
It is assumed that the individual holons have one of the objective functions shown in Table 1 
for evaluating the utility values. 

(1) Efficiency of CMT holons→ ME to be maximized 
ME is the ratio of the total machining time of the CMT holon and the total time after the 
CMT holon starts the operations. The total time includes both the machining time and 
the idling time of the CMT holon. 

(2) Machining accuracy of CMT holons→MA to be minimized 
MA is the difference between the level of machining accuracy of the CMT holons and the 
required level of accuracy of the machining process.  

(3) Flow-time of job holons→JT to be minimized 
JT is the flow-time of the job holon. JT includes the machining time and the idling time of 
the job holons. 

(4) Machining cost of job holons→ JC to be minimized 
JC is the sum of the machining cost of the job holon, which are evaluated from the 
machining costs of the CMT holons. 

The following procedures are provided for the CMT holons to evaluate the utility values. Let 
us consider a CMT holon j at a time t. It is assumed that TTj·t, MEj·t, and MAj·t show the total 
time after the CMT holon j starts its operations, the efficiency, and the evaluated value of 
machining accuracy of the CMT holon j, respectively. If the CMT holon j selects a candidate 
job holon i for carrying out the machining process Mik, the efficiency and the evaluated value 
of the machining accuracy are estimated by the following equations. 

MEj·t+1(i) = (MEj·t · TTj·t + Tikm)/(TTj·t + Tikm + Wi)  (1) 
MAj·t+1(i) = MAj·t + (MACikm – ACik)      (2) 

where, the CMT holon j can carry out the machining process Mik of job holon i (j = Rikm). 
As regards the job holons, the following equations are applied to evaluate the flow-time and 
the machining costs, for the case where a job holon i selects a candidate CMT holon j (= Rikm) 
for carrying out the machining process Mik. It is assumed that JTi·t and JCi·t give the total time 
after the job holon i is inputted to the HMS and the machining cost, respectively. 

JTi·t+1(j) = JTi·t + Tikm + Wikm   (3) 
JCi·t+1(j) = JCi·t + MCOikm   (4) 

The objective functions mentioned above have different units. Some of them shall be 
maximized and others shall be minimized. Therefore, the utility values are normalized from 
0 to 1, by applying the following equations. 
 Efficiency of CMT holons 

RUVj(i) = 1–{
,1

max
i

[MEj·t+1(i)] – MEj·t+1(i)} / {
,1

max
i

[MEj·t+1(i)] –
,1

min
i

[MEj·t+1(i)]} (5) 

 Machining accuracy of CMT holons 
RUVj(i) = {

,1
max
i

[MAj·t+1(i)] – MAj·t+1(i) } / {
,1

max
i

[MAj·t+1(i)] –
,1

min
i

[MAj·t+1(i)]} (6) 

 Flow-time of job holons 
JUVi(j) = {

,1
max
j

[JTi·t+1(j)] – JTi·t+1(j) } / {
,1

max
j

[JTi·t+1(j)] –
,1

min
j

[JTi·t+1(j)]} (7) 

 Machining cost of job holons 
JUVi(j) = {

,1
max
j

[JCi·t+1(j)] – JCi·t+1(j) } / {
,1

max
j

[JCi·t+1(j)] –
,1

min
j

[JCi·t+1(j)]} (8) 

where, max[f(x)] and min[f(x)] give the maximum value and the minimum value of f(x)  
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CMT holon 
Efficiency Σ Machining time / Total time 

Machining 
accuracy 

Σ(Machining accuracy of CMTs – Required 
machining accuracy of jobs) 

Job holon Flow-time Σ(Machining time + Waiting time) 
Machining cost Σ(Machining cost of CMTs) 

Table 1. Objective functions of holons 
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MCOikm : Machining cost in the case where the CMT holon Rikm carries out the machining  
         process Mik. 
Wikm : Waiting time until CMT holon Rikm becomes idle if it is under machining status. 
Based on the information above mentioned, a real-time scheduling method based on the 
utility values shown in Fig. 2 is proposed, to select a suitable combination between the job 
holons and the CMT holons which carries out the machining process in the next time period. 
At the time t, all the ‘idling’ holons have to select their machining schedules in the next time 
period, as shown in the Fig. 2. The following procedure is proposed for the individual holons 
to select their machining schedules. 

(1) Retrieval of status data: The individual ‘idling’ holons firstly get the status data from the 
other holons which are ‘operating’ or ‘idling’. The ‘idling’ holons can start the 
machining process in the next time period. 

(2) Selection of candidate holons: The individual ‘idling’ holons select all the candidate holons 
for the machining process in the next time period. For instances, the job holon i selects 
the CMT holons which can carry out the next machining process Mik. On the other hand, 
the CMT holon j select all the candidate job holons which can be machined by the CMT 
holon j. 

(3) Determination of utility values: The individual holons determine the utility values for the 
individual candidates selected in the second step. For instances, the job holon 
determines the utility values, based on its own decision criteria for all the candidate 
CMT holons which can carry out the next machining process. 

(4) Coordination: All the job holons and the CMT holons send the selected candidates and 
the utility values of the candidates to the coordination holon. The coordination holon 
determine a suitable combination of the job holons and the CMT holons which carry out 
the machining processes in the next time period, based on the utility values. The 
decision criteria of the coordination holon is to maximize the total sum of the utility 
values of all the holons. 

 
3.1.3 Evaluation of utility values 
It is assumed that the individual holons have one of the objective functions shown in Table 1 
for evaluating the utility values. 

(1) Efficiency of CMT holons→ ME to be maximized 
ME is the ratio of the total machining time of the CMT holon and the total time after the 
CMT holon starts the operations. The total time includes both the machining time and 
the idling time of the CMT holon. 

(2) Machining accuracy of CMT holons→MA to be minimized 
MA is the difference between the level of machining accuracy of the CMT holons and the 
required level of accuracy of the machining process.  

(3) Flow-time of job holons→JT to be minimized 
JT is the flow-time of the job holon. JT includes the machining time and the idling time of 
the job holons. 

(4) Machining cost of job holons→ JC to be minimized 
JC is the sum of the machining cost of the job holon, which are evaluated from the 
machining costs of the CMT holons. 

The following procedures are provided for the CMT holons to evaluate the utility values. Let 
us consider a CMT holon j at a time t. It is assumed that TTj·t, MEj·t, and MAj·t show the total 
time after the CMT holon j starts its operations, the efficiency, and the evaluated value of 
machining accuracy of the CMT holon j, respectively. If the CMT holon j selects a candidate 
job holon i for carrying out the machining process Mik, the efficiency and the evaluated value 
of the machining accuracy are estimated by the following equations. 

MEj·t+1(i) = (MEj·t · TTj·t + Tikm)/(TTj·t + Tikm + Wi)  (1) 
MAj·t+1(i) = MAj·t + (MACikm – ACik)      (2) 

where, the CMT holon j can carry out the machining process Mik of job holon i (j = Rikm). 
As regards the job holons, the following equations are applied to evaluate the flow-time and 
the machining costs, for the case where a job holon i selects a candidate CMT holon j (= Rikm) 
for carrying out the machining process Mik. It is assumed that JTi·t and JCi·t give the total time 
after the job holon i is inputted to the HMS and the machining cost, respectively. 

JTi·t+1(j) = JTi·t + Tikm + Wikm   (3) 
JCi·t+1(j) = JCi·t + MCOikm   (4) 

The objective functions mentioned above have different units. Some of them shall be 
maximized and others shall be minimized. Therefore, the utility values are normalized from 
0 to 1, by applying the following equations. 
 Efficiency of CMT holons 
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where, max[f(x)] and min[f(x)] give the maximum value and the minimum value of f(x)  
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 Resource 1 Resource 2 ··· Resource γ 
Job 1 a11 a12 ··· a1γ 
Job 2 a21 a22 ··· a2γ 

··· ··· ··· ··· ··· 
Job � aτ1 aτ2 ··· aτγ 

Table 2. Combination of CMT and job holons 
 
evaluated for all candidates x. � and γ gives the number of the candidate job holons for the 
CMT holon j, and the number of the candidate CMT holons for the job holon i, respectively. 

 
3.1.4 Coordination among holons 
After evaluating the utility values, all the ‘idling’ holons send all the candidates and their 
utility values to the coordination holon, and the coordination holon select a most suitable 
combination of the CMT holons and the job holons, which execute the machining processes 
in the next time period. The coordination process is summarized in the following, for the case 
where the coordination holon determines a suitable combination of all the candidates of the 
job holons i (i = 1,2,..,�) and the CMT holons j (j =1,2,.., γ).  
The utility value δij of the combination of job holon i and CMT holons j is given by the 
following equation 

δij = RUVj(i) + JUVi(j)    (9) 
 

The problem to be solved by the coordination holon is to select a combination of job holons 
and CMT holons which maximize the total of the utility value, as shown in the following 
equation. 

Aaij
maximize (



11 

ji

aij · δij)   (10) 

where, aij (= 0 or 1) are the decision parameters, as shown in Table 2. If aij =1, the job holon i is 
machined by the CMT holon j in the next time period. Otherwise, job holon i is not machined 
by the CMT holon j. Only one job holon is machined by one CMT holon, therefore, A is a set 
of aij which satisfy the following equation. 



1

i

aij 1, 


1

j

aij 1          11) 

 
3.1.5 Case study 
Some case studies have been carried out to verify the effectiveness of the proposed methods. 
The HMS model consisting of 10 CMT holons is considered for the case study. The individual 
CMT holons have the different objective functions and the different machining capacities, 
such as the machining time Tikm, the machining accuracy MACikm, and the machining cost 
MCOikm. 
As regards the job holons, 12 job holons are considered in the case study, which have the 
different objective functions and the machining process. 12 cases are considered in the case 
study by changing the machining capacities of the individual CMT holons. Fig. 3 summarizes 
the comparison between the proposed scheduling method based on utility values and the 

rule-based method, from the viewpoint of the objective function values of the individual 
holons. In the Fig. 3, the horizontal axis gives the type of the objective functions of the 
individual holons, and the vertical axis shows the average number of holons λ, the objective 
function values of which are improved by the utility values based methods. The λ is 
calculated by the following equation. 
 

 
Fig. 3. Results of case study 
 

λ =
12

1

g

(ag – bg) / 12        (12) 

 

ag: number of holons, the objective function values of which are improved by the proposed 
method in the case g, 
bg: number of holons, the objective function values of which are deteriorated by the proposed 
method in the case g. 
As shown in Fig. 3. the proposed scheduling method based on utility values is effective to 
improve the objective function values of the individual holons from the view point of total 
number of holons. However, the dispatching rules applied to the rule-based method is very 
effective to reduce the total make span, therefore some holons with the objective functions of 
the efficiency or the flow-time do not improve their objective function values by the 
proposed method. 

 
3.2 Agent-based dynamic integrated process planning and scheduling  
Process planning and scheduling are important manufacturing planning activities which 
deal with resource utilization and time span of manufacturing operations. The process 
planning and scheduling tasks are very complicated and time consuming, if it is applied to 
the dynamically changing FMSs (Flexible Manufacturing Systems).  
PROSA has already proposed a reference architecture for developing distributed 
manufacturing system including three types of basic holons: resource holons, product 
holons and order holons (Brussel et al., 1998). Leitao & Restivo (2006) also proposed a 
control architecture, designated by ADAptive holonic Control aRchitecture (ADACOR) for 
FMS, intends to contribute to the improvement of the manufacturing control systems 
performance in term of agile reaction to disturbances and change. Although, there are 
general architecture and far more detail than is needed for practical applications. We use the 
elements of PROSA and ADACOR architectures to develop a multi agent architecture for 
real time integrated process planning and scheduling system in the FMSs, which generate 
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Table 2. Combination of CMT and job holons 
 
evaluated for all candidates x. � and γ gives the number of the candidate job holons for the 
CMT holon j, and the number of the candidate CMT holons for the job holon i, respectively. 
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improve the objective function values of the individual holons from the view point of total 
number of holons. However, the dispatching rules applied to the rule-based method is very 
effective to reduce the total make span, therefore some holons with the objective functions of 
the efficiency or the flow-time do not improve their objective function values by the 
proposed method. 
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Process planning and scheduling are important manufacturing planning activities which 
deal with resource utilization and time span of manufacturing operations. The process 
planning and scheduling tasks are very complicated and time consuming, if it is applied to 
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suitable process plans and schedules based on the status of the FMSs. A comprehensive 
design and implementation have been done to show the effectiveness of the multi agent 
approach for dynamic integrated process planning and scheduling of mechanical parts. The 
methods proposed in the literatures deal mainly with the process planning and scheduling 
tasks in the static environment in which the jobs specifications and the manufacturing 
system status are stable (Leitao, 2009). However, it is now required to develop an integrated 
process planning and scheduling systems applicable to the dynamic environment in which 
some unforeseen disturbances may occur. In this case study, we propose a multi-agent 
based integrated system for process planning and scheduling in the dynamic environment, 
in order to cope with the jobs specification changes and the unforeseen disruptions, such as 
the malfunction of the machine tools and through the simulation, we are going to illustrate 
how the agents are able to real timely handle disturbances effectively.  
In the literature of agent based manufacturing system, many researches apply simple 
algorithms such as dispatching rules which are applicable for real time decision making. 
These methods are simple and applicable, but they do not guarantee the effectiveness for 
complex problems in the manufacturing systems. As the efficiency becomes more important 
in the agent based manufacturing (Shen et al., 2006, Wang et al., 2006), we apply 
coordination agent and a mathematical model for assigning the jobs to the machine tools. 
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are summarized in Fig.4. The attributes of the physical agents according to the Fig. 4 are 
summarized in the following. 

Job agents. The job agents represent the jobs to be manufactured in the FMSs. The role of the 
job agents in the process planning is to certify the correct machining processes of the jobs. It is 
quite similar of product holon in PROSA architecture although we encapsulate the process 
plan networks in order to dynamically generate alternative process plans which is the key 
factor for integrating the process planning and scheduling and disturbance handling. The 
process plan network has essential role for improving the efficiency of the total system and 
handling the unforeseen disturbances. Generating alternative process plans has not been 
discussed clearly in the previous architectures and we present a reliable method based on the 
process plan network to generate process plans according to available manufacturing 
processes. The job agents include the following information to describe the orders and the 
machining features. 

Job information: 
The job information section describes the order information, the locations and the 
progresses of the machining processes of the jobs. 

Machining features: 
The machining feature section gives the machining features of the jobs and their 
technical data such as the types, the tolerances and the roughness. These technical 
data are required to select appropriate machining processes. 

Process plan networks: 
The process plan networks represent the generated process plans in non-linear and 
hierarchical ways. It includes all the alternative process plans that satisfy the 
technological requirements of the jobs. Although the mechanical parts are 
complicated but the size of process plan network in practice will remain limited as 
we are able to group the manufacturing features. Generally in FMSs, the machining 
centers which include wide range of cutting tools are able to carry out many 
manufacturing processes of the job at the same time.  
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Job Status: 
We consider the following status for the job agents. 

 Idle: The job agent is idle and waiting for the next machining operations. 
 Machining operation: The job agent is under machining processes on the 

machine tools. 
 Transportation and re-fixturing: The job agent is transported and/or 

re-fixtured for its next machining operations.  

Machine tool agents. The machine tool agents represent the machine tools which are quite 
similar as the resource holon at PROSA and operational holon at ADACOR reference 
architectures. PROSA considers the machine tool, cutting tools and fixtures as individual 
holons. At FMSs generally each machine tools include wide range of the cutting tools for 
doing different machining processes. To avoid the complexity for practical applications in 
large manufacturing systems, we do not consider separate agents for cutting tools and 
fixtures to decrease the total number of agents. We are trying to identify the differences 
between cutting tools and fixtures by using the information from machining process agent. 
The agents representing such resources as the preparation stations and the AGV are not 
considered, at present, since only the machining processes are discussed in the present 
research. The machine tool agents are responsible for generating proposals to the machining 
processes required from the job agents. The proposals include the machining time, the 
transportation time and the re-fixturing time needed to carry out the required machining 
processes of the job agents. The machine tool agents include the following information to 
represent the machine tools in the FMSs. 

1. Machine tool information: 
The machine tool section specifies the shape generation functions, which are 
represented by the cutting motions, the spindle directions, the feed motions and the 
maximum product size.  

2. Machine tool status: 
We consider the following status for the machine tool agents in the simulation  

 Idle: The machine tool is idle and negotiating with job agents for next 
machining operation 

 Machining operation: The machine tool is machining the job agent 
 Breakdown: The machine tool has been broken and is under recovery 

process  
3. Cutting tool: 

The characteristics of the cutting tools are described in the cutting tool section, 
which includes the information about the cutting tool types, the tool sizes and the 
cutting edge types. 

4. Fixture:  
The fixture section describes the fixture types, and the positions of the fixtures 
against the spindle axis.  

Machining process agents. The machining process agents represent the machining processes of 
machining features of the jobs, which are carried out by the machine tools. It plays a key role 
for dynamic process planning and disturbance handling by providing the available and 
suitable machining processes for job agents. This task has mainly handled by the resource 
holons at previous architectures. In PROSA the resource holon is mainly responsible for 

selecting the best process by selecting the appropriate tools and cutting speed. Although in 
the practical applications, selecting the suitable manufacturing process is mainly is done by 
using manufacturing standards and tables which we encapsulate this knowledge in the 
machining process agent. The information related to the available machining processes and 
their capabilities will be updated from design department. The agents include the following 
information. 
1. Machining process ID which is the combination of the ID of the machine tools, the ID of 

the fixtures and the ID of the cutting tools. 
2. Machining process types and machining features types, which can be generated by the 

machining processes 
3. Surface roughness, tolerances and material removal rate of the machining processes. 
4. Machining process status:  

The status represents the dynamic status of the machining processes in the FMSs. The 
machining process agents have two statuses.  

 inactive: if one of the machine tool, the cutting tool and the fixture related to 
the machining process are broken-down 

 active: otherwise 

 
3.2.2.2 Information agents 
The information agents are virtual agents for governing the negotiation protocol and 
decision-making. 

Production engineering agents. The production engineering agents generate the job agents, the 
machine tool agents, and the machining process agents to specify the geometric and 
technological information of the jobs, the machine tools and the machining processes of the 
FMSs. The agents play a key role for initializing the information of the physical agents. The 
design department has an important role for initialization and disturbance handling in our 
architecture. It real timely modifies the job specifications according to the design change 
orders or customer requests during the manufacturing.  

Job order agents. The job order agents represent the manufacturing tasks and it is quite similar 
to order holon at PROSA and task holon at ADACOR reference architectures. They are 
information agents, which carry  out the  negotiation  processes  between  the job  
agents and  the  machine  tool  agents to generate suitable process plans. The agents have 
crucial influence on the system performance by deploying efficient decision-making 
mechanism to select the appropriate machine tools for the individual machining features of 
the jobs. 

Coordination agent. The multi agent architecture proposed here is distributed, and the benefits 
inherited from distributed architecture include flexibility and robustness. However, absence 
of higher authority, in general, may result in a lower performance compared with 
hierarchical systems that are able to achieve global optimization. We introduce a 
coordination agent to improve the performance which is similar to staff holon at PROSA and 
supervisor holon at ADACOR reference architectures. The coordination agents are proposed 
to determine a suitable assignment of the job agents to the machine tool agents at each step of 
the negotiation. The coordination agents are capable to make mathematical models 
according the information sent from the  machine tool  and job  agents to  find a suitable 
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Job Status: 
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transportation time and the re-fixturing time needed to carry out the required machining 
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represent the machine tools in the FMSs. 
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The machine tool section specifies the shape generation functions, which are 
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maximum product size.  
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3. Cutting tool: 

The characteristics of the cutting tools are described in the cutting tool section, 
which includes the information about the cutting tool types, the tool sizes and the 
cutting edge types. 

4. Fixture:  
The fixture section describes the fixture types, and the positions of the fixtures 
against the spindle axis.  

Machining process agents. The machining process agents represent the machining processes of 
machining features of the jobs, which are carried out by the machine tools. It plays a key role 
for dynamic process planning and disturbance handling by providing the available and 
suitable machining processes for job agents. This task has mainly handled by the resource 
holons at previous architectures. In PROSA the resource holon is mainly responsible for 

selecting the best process by selecting the appropriate tools and cutting speed. Although in 
the practical applications, selecting the suitable manufacturing process is mainly is done by 
using manufacturing standards and tables which we encapsulate this knowledge in the 
machining process agent. The information related to the available machining processes and 
their capabilities will be updated from design department. The agents include the following 
information. 
1. Machining process ID which is the combination of the ID of the machine tools, the ID of 

the fixtures and the ID of the cutting tools. 
2. Machining process types and machining features types, which can be generated by the 

machining processes 
3. Surface roughness, tolerances and material removal rate of the machining processes. 
4. Machining process status:  

The status represents the dynamic status of the machining processes in the FMSs. The 
machining process agents have two statuses.  

 inactive: if one of the machine tool, the cutting tool and the fixture related to 
the machining process are broken-down 

 active: otherwise 

 
3.2.2.2 Information agents 
The information agents are virtual agents for governing the negotiation protocol and 
decision-making. 

Production engineering agents. The production engineering agents generate the job agents, the 
machine tool agents, and the machining process agents to specify the geometric and 
technological information of the jobs, the machine tools and the machining processes of the 
FMSs. The agents play a key role for initializing the information of the physical agents. The 
design department has an important role for initialization and disturbance handling in our 
architecture. It real timely modifies the job specifications according to the design change 
orders or customer requests during the manufacturing.  

Job order agents. The job order agents represent the manufacturing tasks and it is quite similar 
to order holon at PROSA and task holon at ADACOR reference architectures. They are 
information agents, which carry  out the  negotiation  processes  between  the job  
agents and  the  machine  tool  agents to generate suitable process plans. The agents have 
crucial influence on the system performance by deploying efficient decision-making 
mechanism to select the appropriate machine tools for the individual machining features of 
the jobs. 

Coordination agent. The multi agent architecture proposed here is distributed, and the benefits 
inherited from distributed architecture include flexibility and robustness. However, absence 
of higher authority, in general, may result in a lower performance compared with 
hierarchical systems that are able to achieve global optimization. We introduce a 
coordination agent to improve the performance which is similar to staff holon at PROSA and 
supervisor holon at ADACOR reference architectures. The coordination agents are proposed 
to determine a suitable assignment of the job agents to the machine tool agents at each step of 
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according the information sent from the  machine tool  and job  agents to  find a suitable 
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assignment of the job agents to the machine tool agents at each step of negotiation. There are 
a few research in the literature about the optimizing the multi agent architecture for 
integrated process planning and scheduling (Shen et al., 2006). In this case study, we present 
a method by combining the mathematical modeling and process plan networks to optimize 
the total system. The optimization method works effectively for real time applications and 
generates suitable solutions.  
 

 
Fig. 5. Negotiation protocol among agents 
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A negotiation protocol among the agents is required to coordinate the distributed decisions 
of the individual agents for solving the complex problems in the integrated process 
planning and scheduling of the FMSs. Here, we define a negotiation protocol to meet the 
requirements for integrated process planning and scheduling and also handling the 
unforeseen disturbances. The problems to be solved here are as follows. 

1. Selection of candidate machining processes for individual machining features. 
2. Selection of suitable combinations of the machine tools, the cutting tools and the 

fixtures. 
3. Selection of suitable machining sequences of the machining features. 

In the protocol proposed here, the individual agents have three types of boards named 
“request boards”, “proposal boards” and “status boards” for the communication. The 
requests from the other agents are firstly sent to the request boards, and the agents scan and 
read the requests from the boards, every fixed time intervals named RTIP (reading time 
interval period). The individual agents secondly generate the proposals to the requests, and 
store them in the proposal boards. The statuses of the agents are changed and stored in the 
status board, if necessary. Fig. 5. summarizes the negotiation protocol proposed  here to  
generate  suitable process  plans and schedules by the  distributed  
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MF1 mp1 mt1 fi1 ct1 
MF1 mp5 mt2 fi2 ct1 
MF3 mp4 mt1 fi2 ct2 
MF3 mp7 mt2 fi1 ct2 

mt1: Vertical machining center, mt2: Horizontal machining center ct1: End Milling, ct2: Drill 

Table 3. Alternative machining processes for machining features MF1 and MF3 
 
decision-makings of the individual agents and the negotiations among the agents. The 
negotiation processes are carried out through the following steps.  
Step 1: Initialization 
The production engineering agents firstly generate all the job agents, the machine tool 
agents and the machining process agents to initialize the status of the target FMSs. They also 
define the machining features, which can be generated simultaneously by the same 
combinations of the machine tools, the cutting tools and the fixtures, and assign them to the 
job agents.  
Step 2: Requests for available machining processes 
The job agents select a set of the machining features, which can be machined in the next 
machining process, based on the precedence constraints among the machining features. For 
example, let us consider a case shown in Fig.6. This part consists of three machining features 
(see Fig.6 (b)). They are, one slot MF1, and two holes MF2 and MF3. The precedence 
constraints for this example is shown in Fig. 6(c). In the first step, the machining features 
MF1 and MF3 are sent to the machining process agents, and they select a set of available 
alternative machining processes for the individual machining features, based on the 
specifications of the machining features, such as the geometries, the sizes, the surface 
roughness, and the tolerances as shown in the Table 3.  
The selected machining processes include the information about the machine tools, the 
cutting tools and the fixtures. The selected machining processes for the individual machining 
features are sent back to the job agents. The job agents generate a set of groups of the 
machining features, which can be machined by the same combinations of the machine tools, 
the cutting tools and the fixtures. Machining features belonging to the same setup have been 
grouped together for one machine to minimize the setup/fixture time. This means that the 
grouped machining features are machined by one machining process concurrently, and the 
job agents generate the nodes representing all the grouped machining features in the process  
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assignment of the job agents to the machine tool agents at each step of negotiation. There are 
a few research in the literature about the optimizing the multi agent architecture for 
integrated process planning and scheduling (Shen et al., 2006). In this case study, we present 
a method by combining the mathematical modeling and process plan networks to optimize 
the total system. The optimization method works effectively for real time applications and 
generates suitable solutions.  
 

 
Fig. 5. Negotiation protocol among agents 

 
3.2.3 Negotiation Protocol 
A negotiation protocol among the agents is required to coordinate the distributed decisions 
of the individual agents for solving the complex problems in the integrated process 
planning and scheduling of the FMSs. Here, we define a negotiation protocol to meet the 
requirements for integrated process planning and scheduling and also handling the 
unforeseen disturbances. The problems to be solved here are as follows. 

1. Selection of candidate machining processes for individual machining features. 
2. Selection of suitable combinations of the machine tools, the cutting tools and the 

fixtures. 
3. Selection of suitable machining sequences of the machining features. 

In the protocol proposed here, the individual agents have three types of boards named 
“request boards”, “proposal boards” and “status boards” for the communication. The 
requests from the other agents are firstly sent to the request boards, and the agents scan and 
read the requests from the boards, every fixed time intervals named RTIP (reading time 
interval period). The individual agents secondly generate the proposals to the requests, and 
store them in the proposal boards. The statuses of the agents are changed and stored in the 
status board, if necessary. Fig. 5. summarizes the negotiation protocol proposed  here to  
generate  suitable process  plans and schedules by the  distributed  

MF1

MF2 MF3

(a) part geometry (b) machining features

MF1 MF2

(c) precedence constraints
 

Fig. 6. An example of parts 
 

Machining 
Features 

Machining 
Process ID 

Machine 
Tool ID 

Fixture 
ID 

Cutting 
Tool ID 

MF1 mp1 mt1 fi1 ct1 
MF1 mp5 mt2 fi2 ct1 
MF3 mp4 mt1 fi2 ct2 
MF3 mp7 mt2 fi1 ct2 

mt1: Vertical machining center, mt2: Horizontal machining center ct1: End Milling, ct2: Drill 

Table 3. Alternative machining processes for machining features MF1 and MF3 
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define the machining features, which can be generated simultaneously by the same 
combinations of the machine tools, the cutting tools and the fixtures, and assign them to the 
job agents.  
Step 2: Requests for available machining processes 
The job agents select a set of the machining features, which can be machined in the next 
machining process, based on the precedence constraints among the machining features. For 
example, let us consider a case shown in Fig.6. This part consists of three machining features 
(see Fig.6 (b)). They are, one slot MF1, and two holes MF2 and MF3. The precedence 
constraints for this example is shown in Fig. 6(c). In the first step, the machining features 
MF1 and MF3 are sent to the machining process agents, and they select a set of available 
alternative machining processes for the individual machining features, based on the 
specifications of the machining features, such as the geometries, the sizes, the surface 
roughness, and the tolerances as shown in the Table 3.  
The selected machining processes include the information about the machine tools, the 
cutting tools and the fixtures. The selected machining processes for the individual machining 
features are sent back to the job agents. The job agents generate a set of groups of the 
machining features, which can be machined by the same combinations of the machine tools, 
the cutting tools and the fixtures. Machining features belonging to the same setup have been 
grouped together for one machine to minimize the setup/fixture time. This means that the 
grouped machining features are machined by one machining process concurrently, and the 
job agents generate the nodes representing all the grouped machining features in the process  
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Fig. 7. Process plan network. 
 
plan networks as shown in the first level nodes N� to N� in Fig.7. The contents of the process 
plan networks are described in the previous paper. (Tehrani et al., 2007). The individual nodes 
in the process plan networks represent a set of the machining features which could be 
machined by one machining process. An algorithm also generates  nodes representing the 
machining sequences of the machining features based on the precedence constraints. The 
information of the generated nodes is sent to the job order agents for the negotiations.  

Step 3: Request generation by job order agents  
The job order agents create requests for the machining process execution for the individual nodes 
of the process plan networks, which are the groups of the machining features that can be 
generated by same machine tools. The requests for the job agents are generated according to the 
process plan network which guarantees that we always generate feasible solutions and different 
operations of one job agents can not be processed simultaneously. The generated requests are 
sent to the request boards of the corresponding machine tool agents. The content of request 
includes the machining features and selected machine tool, cutting tool and fixture. As you can 
see in Fig. 7, there are four nodes  N� to N� in the first level of the process plan network. For 
each of them, the requests are generated and sent to the related machine tools MT1 and MT2.  
Step 4: Proposal preparation by machine tool agents 
The machine tool agents read all the requests from the request boards every RTIP (Reading Time 
Interval Period) if it is idle and each machine can handle only one job at a time. The machine tool 
agents analyze the request messages, and generate appropriate proposals to all the requests. We 
consider a heuristic algorithm to estimate minimum completion time for generating appropriate 
proposal for each request by the machine tool agents, as shown in the followings. 

Minimum completion time estimation 
The machine tool agents need to estimate the completion time of the remaining 
machining features of the job agents. A procedure is developed and given to the job 
agents to estimate the minimal completion time of the remaining machining features, 
based on the process plan networks shown in Fig. 7. When a machine tool agent requires 
a job agent to estimate the minimum completion time, the job agent starts the procedures 
from the start node which is specified by the machine tool agent, and repeat to generate 
and to select suitable successive nodes with the minimum machining time. When all the 
machining features are included in the process plan networks, the job agent find both 
the machining sequences of the machining features and the estimated minimal 
completion time. Consider a case where we are at node N� of the process plan network 
and we are going to estimate the manufacturing time from the node N� to the end node. 
The algorithm for calculating the estimated minimum completion time from node N� to 
the end node is summarized in the followings. 

Initialization: 

 Set RMF and AMF. The RMF is the set of the remaining machining features. The 
AMF is the set of the available machining features that do not have any preceding 
machining features and could be done firstly considering the precedence 
constraints among the nodes of the process plan networks.(AMF � RMF). 

 Put the node N� in ECTS set. The ECTS is the set of the nodes in the path from 
node the N�  to the end of the process plan network, which has the minimum 
manufacturing time.  

 Set a initial node N�. In the N�, RMF ={set remaining machining features}, AMF={set 
of machining features without any successors}. 

(1) Generate a set of successor nodes SN � �N�|t � �,�, � |SN|� of the node N� for all feasible 
machining processes mp� � �mt�, fx�, ct��, � � �, � , R, (R = total number of available 
machining processes) by applying the following algorithm. 
 Cluster all features of the AMF set of the node N� that could be machined with the 

machining process mp�, 
 Generate a new node N� representing a set of machining features which can be 

machined by the machining process mp� and put it in the SN set. The links to the 
nodes N� , which are successor nodes, are stored in the node N�  for further 
processing, 

 Estimate the manufacturing time for node N�  that includes the time of the 
machining, the transportation and the re-fixturing processes, 

 Update the RMF and AMF sets for the node N�, 

(2) Select a successor node N� from the SN set which has the minimum machining time for 
the next step of extension, and move it to the ECTS set. 

(3) If RMF set of N� is not empty consider node N� as node N� and go to (1). 
(4) If RMF set of N� is empty, it means that we are in the end of the process plan network. 

The sum of the manufacturing time for the nodes in ECTS set is the estimation of the 
minimum completion time from node N� to the end. 
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machining, the transportation and the re-fixturing processes, 

 Update the RMF and AMF sets for the node N�, 

(2) Select a successor node N� from the SN set which has the minimum machining time for 
the next step of extension, and move it to the ECTS set. 

(3) If RMF set of N� is not empty consider node N� as node N� and go to (1). 
(4) If RMF set of N� is empty, it means that we are in the end of the process plan network. 

The sum of the manufacturing time for the nodes in ECTS set is the estimation of the 
minimum completion time from node N� to the end. 
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Let us consider a case where we are going to calculate the estimation of minimum 
completion time for node N�at the process plan network shown in Fig. 7. We start with node 
N�, and there are four successor nodes N�, N�, N�, N� from the node N� as shown in Fig. 7. 
We select the node N� which has the minimum manufacturing time, and we put it in the 
ECTS set. We expand the node N� at the next stage of the algorithm and there are two 
successor nodes N� ,  N�� . The node N�  is selected and which has the minimum 
manufacturing time, we put it in the ECTS set. As you can see in Fig. 7, for the node N� the 
RMF  set is empty and the algorithm stops. It is because that there are no remaining 
machining features in the node N�. The sum of the manufacturing time for the nodes in ECTS 
set is the estimation of the completion time from node N�until end.  
Following this, the job agent returns the estimated completion time to the machine tool agent. 
As you can see in the Fig.7, the estimation of completion time for all nodes N�, N�, N�, N� are 
calculated and these values are returned to the machine tool agent. This procedure can 
estimate the completion time of all the remaining machining features, however it requires the 
additional communications between the machine tool agents and the job agents. The 
machine tool agents generate proposals for each request based on the minimal completion 
time of the remaining machining features and send them to the coordination agents.  
Step 5: Selection of appropriate proposals by coordination agent 
The coordination agents scan all received proposals from the machine tool agents every RTIP, 
and assign the appropriate machine tool agents to the job agents. At present, we consider 
only the flow time of the job agents, and our goal is to minimize the average flow time of all 
the job agents. The flow time considered here includes the machining time, the 
transportation time, the re-fixturing time and the tool changing time. The constraints of the 
model are that only one machine tool agent is selected for each job agent and only one job 
agent has been assigned to each machine tool agent. The followings summarize the formulas 
representing the optimization problems considered here. 

Parameters: 

MP � �mp�: �mt�, fx�, ct��|� � �, � , R�, R � |MP|,   (13) 

MT � �mt��� � �,�, � ��, � � |MT|,    (14) 

FI � �ft�|f � �,�, � F�, F � |FI|,  (15) 

CT � �ct�|t � �,�, � T�, T � |CT|    (16) 
where,  
mp�: ID of machining process, mt�: ID of machine tools, ft�: ID of fixtures, ct�: ID of cutting 
tools. 
FT��,��

� : Estimation of completion time of job agent i (i = 1,2,..m) according to the machining 
process mp� (r = 1,2,..R) with machine tool agent mt� (j = 1,2,..n). 
 
Design variables: 
 ���,��

� = 1: if the machine tool agent mt� is selected for job agent i according to the  
            machining process mp�  
 0: otherwise. 
 

Mathematical Model: 

Minimize  � � ∑ ∑ ∑ x������R��� FT��������������    (17) 
∑ ∑ x������R��� � ������ � ������ � ���� � � �����    (18) 
∑ ∑ x������R��� � ������ � �� � � ���� � � �����       (19) 
x������ � ����      (20) 

 
We add dummy variables to equations (18) and (19) to change the constraints of sets of 
equations. Equation (17) is the objective function that is the total of the estimated flow time of 
all the job agents. Equation (18) is a constraint that only one machine tool agent is selected for 
each job agent. Equation (19) is a constraint that only one job agent has been assigned to each 
machine tool agent. The model described in equations (17)-(20)  is an  assignment  
problem and  can be  solved as a linear  programming  model. We can release the 
equation (20) from the model and apply linear techniques and the optimal solution will be 
integer. We can use other objective functions such as minimizing the manufacturing costs 
and minimizing the average of tardiness of all jobs with the above model.  
After solving the above model, the coordination agents inform both the job agents and the 
machine tool agents that the machining features sent from the job agents shall be machined 
by the selected machine tools. This means that the coordination agents dynamically generate 
the process plans and the production schedules of the job agents and the machine tool agents. 
The job agents and the machine tool agents selected here carry out the requested machining 
processes in the next step. Therefore, the statuses of these agents are changed, and the status 
data are stored in the status boards. All the agents monitor the status data if necessary.  

Step 6: Preparation for next operation  
When the machine tool agents complete the machining operations of the job agents, the job 
agents modify their process plan networks. That is, the job agents delete the corresponding 
nodes representing the group of the machining features which was completed by the 
machine tool agents. New nodes of the process plan networks are generated to specify the 
groups of the machining features to be machined in the next step. The procedures presented 
in Steps 2 to 6 are repeated until the job agents do not have any remaining machining 
features. 

 
3.2.4 Synchronization 
The synchronization of negotiation between different agents is important issue for 
developing the multi agent architecture. The Petri nets (Proth & Xie 1996) are used, in the 
case study, for synchronizing the messages and the negotiation protocols between the 
different agents. This Petri nets control both the sequence and the timing of the interaction 
and the messages between the agents. Each Petri net represents one agent or interacting 
agents. Fig. 8 shows an example of the interaction between the agents for generating and 
sending the requests to the request board of the machine tool agents and generating the 
proposals by the machine tool agents. These Petri nets are linked with each other with global 
transition (transitions,

1714842 ,,,, ttttt in Fig. 8). 
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Let us consider a case where we are going to calculate the estimation of minimum 
completion time for node N�at the process plan network shown in Fig. 7. We start with node 
N�, and there are four successor nodes N�, N�, N�, N� from the node N� as shown in Fig. 7. 
We select the node N� which has the minimum manufacturing time, and we put it in the 
ECTS set. We expand the node N� at the next stage of the algorithm and there are two 
successor nodes N� ,  N�� . The node N�  is selected and which has the minimum 
manufacturing time, we put it in the ECTS set. As you can see in Fig. 7, for the node N� the 
RMF  set is empty and the algorithm stops. It is because that there are no remaining 
machining features in the node N�. The sum of the manufacturing time for the nodes in ECTS 
set is the estimation of the completion time from node N�until end.  
Following this, the job agent returns the estimated completion time to the machine tool agent. 
As you can see in the Fig.7, the estimation of completion time for all nodes N�, N�, N�, N� are 
calculated and these values are returned to the machine tool agent. This procedure can 
estimate the completion time of all the remaining machining features, however it requires the 
additional communications between the machine tool agents and the job agents. The 
machine tool agents generate proposals for each request based on the minimal completion 
time of the remaining machining features and send them to the coordination agents.  
Step 5: Selection of appropriate proposals by coordination agent 
The coordination agents scan all received proposals from the machine tool agents every RTIP, 
and assign the appropriate machine tool agents to the job agents. At present, we consider 
only the flow time of the job agents, and our goal is to minimize the average flow time of all 
the job agents. The flow time considered here includes the machining time, the 
transportation time, the re-fixturing time and the tool changing time. The constraints of the 
model are that only one machine tool agent is selected for each job agent and only one job 
agent has been assigned to each machine tool agent. The followings summarize the formulas 
representing the optimization problems considered here. 

Parameters: 

MP � �mp�: �mt�, fx�, ct��|� � �, � , R�, R � |MP|,   (13) 

MT � �mt��� � �,�, � ��, � � |MT|,    (14) 

FI � �ft�|f � �,�, � F�, F � |FI|,  (15) 

CT � �ct�|t � �,�, � T�, T � |CT|    (16) 
where,  
mp�: ID of machining process, mt�: ID of machine tools, ft�: ID of fixtures, ct�: ID of cutting 
tools. 
FT��,��

� : Estimation of completion time of job agent i (i = 1,2,..m) according to the machining 
process mp� (r = 1,2,..R) with machine tool agent mt� (j = 1,2,..n). 
 
Design variables: 
 ���,��

� = 1: if the machine tool agent mt� is selected for job agent i according to the  
            machining process mp�  
 0: otherwise. 
 

Mathematical Model: 

Minimize  � � ∑ ∑ ∑ x������R��� FT��������������    (17) 
∑ ∑ x������R��� � ������ � ������ � ���� � � �����    (18) 
∑ ∑ x������R��� � ������ � �� � � ���� � � �����       (19) 
x������ � ����      (20) 

 
We add dummy variables to equations (18) and (19) to change the constraints of sets of 
equations. Equation (17) is the objective function that is the total of the estimated flow time of 
all the job agents. Equation (18) is a constraint that only one machine tool agent is selected for 
each job agent. Equation (19) is a constraint that only one job agent has been assigned to each 
machine tool agent. The model described in equations (17)-(20)  is an  assignment  
problem and  can be  solved as a linear  programming  model. We can release the 
equation (20) from the model and apply linear techniques and the optimal solution will be 
integer. We can use other objective functions such as minimizing the manufacturing costs 
and minimizing the average of tardiness of all jobs with the above model.  
After solving the above model, the coordination agents inform both the job agents and the 
machine tool agents that the machining features sent from the job agents shall be machined 
by the selected machine tools. This means that the coordination agents dynamically generate 
the process plans and the production schedules of the job agents and the machine tool agents. 
The job agents and the machine tool agents selected here carry out the requested machining 
processes in the next step. Therefore, the statuses of these agents are changed, and the status 
data are stored in the status boards. All the agents monitor the status data if necessary.  

Step 6: Preparation for next operation  
When the machine tool agents complete the machining operations of the job agents, the job 
agents modify their process plan networks. That is, the job agents delete the corresponding 
nodes representing the group of the machining features which was completed by the 
machine tool agents. New nodes of the process plan networks are generated to specify the 
groups of the machining features to be machined in the next step. The procedures presented 
in Steps 2 to 6 are repeated until the job agents do not have any remaining machining 
features. 

 
3.2.4 Synchronization 
The synchronization of negotiation between different agents is important issue for 
developing the multi agent architecture. The Petri nets (Proth & Xie 1996) are used, in the 
case study, for synchronizing the messages and the negotiation protocols between the 
different agents. This Petri nets control both the sequence and the timing of the interaction 
and the messages between the agents. Each Petri net represents one agent or interacting 
agents. Fig. 8 shows an example of the interaction between the agents for generating and 
sending the requests to the request board of the machine tool agents and generating the 
proposals by the machine tool agents. These Petri nets are linked with each other with global 
transition (transitions,

1714842 ,,,, ttttt in Fig. 8). 
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Fig. 8. Synchronizing agents for generating requests and proposals 

 
3.2.4 Simulation Software and Experimental Results 
A prototype of the agent based integrated process planning and scheduling system and the 
graphical presentation  system have  been developed  for the  case studies. The system 
developed here is able to simulate the distributed decision makings of the agents, the 
negotiation processes among the agents, and also the manufacturing processes in the FMS. 
The coordination agent use ILOG CPLEX optimization engine for solving the integer 
programming model of the coordination and for assigning the job agents to machine tool 
agents. Some case studies have been carried out to verify the applicability and the 
effectiveness of the proposed  system to the  integrated process  planning  and  
scheduling  problems in the  FMSs. The  FMS considered here includes 7 machine tools 
and 4 job types. Fig. 9 shows the geometries of the job agents and their manufacturing 
features including cylinder and box type shape for the case studies. The detailed information 
of the machining features and the machining resources of the case studies are brought in the 
previous paper (Tehrani et al., 2007). The RTIP in the simulation is set to be 2 sec. for the 
machine tool agents, 3 sec for coordination agents and 4 sec. for the job agents. 

 
3.2.4.1 Efficiency of the proposed architecture 
Two case studies have been done to evaluate the impact of introducing the coordination 
agents in multi agent systems. We compare the results with the dispatching rules which the 
job agents applying SPT dispatching rules for selecting the machine tools for their 
manufacturing operations without assisting from the coordination agents.  

 
(a)             (b)        

 
(c)                    (d) 

Fig. 9. Jobs considered in case studies. 
 
Fig. 10 summarizes the comparison of the proposed architecture and the previous method 
from the view points of the average flow time of all the job agents and the calculation time for 
coordination. In the Fig. 10 the vertical axis gives the flow time of the individual job agents 
and the horizontal axis shows the individual job agents and their types.  
It is understood, from Fig. 10(a) and (b), that the multi-agent systems with the coordination 
agents generate more suitable process plans and schedules from the viewpoint of the average 
flow time of the all the job agents. As you can see, the average flow time has been improved 
10.9% and 10.39% for the cases (a) and (b) of Fig. 10, respectively. It is because that the 
mathematical programming methods applied here are suitable to reduce the average flow time 
of the job agents of the job shop process planning and scheduling problems. The calculation 
time for coordination is enough short and the proposed method  is suitable for the real time 
application, when we have enormous number of job agents and machine tool agents.  

 
3.2.4.2 Robustness of the proposed architecture  
An additional experiment is also carried out to assess the robustness of the proposed architecture 
against the malfunction of the machine tools. The original process plans and schedules are shown 
for 10 job agents in the Gantt chart of Fig. 11 (a). In the experiment, the machine tool “MT14” is 
broken down at simulation time 4811 sec. and the recovery time is assumed to be 5000 sec. As 
you can see in the Gantt chart of Fig. 11 (b), the proposed architecture can dynamically generate 
alternative process and schedule to cope with the malfunctions of the machine tools. The job 
agents can be dynamically allocated to another manufacturing route in the process plan networks 
and new process plans for jobs 7,6,4,3 and job 2 has been generated dynamically.  
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3.2.4 Simulation Software and Experimental Results 
A prototype of the agent based integrated process planning and scheduling system and the 
graphical presentation  system have  been developed  for the  case studies. The system 
developed here is able to simulate the distributed decision makings of the agents, the 
negotiation processes among the agents, and also the manufacturing processes in the FMS. 
The coordination agent use ILOG CPLEX optimization engine for solving the integer 
programming model of the coordination and for assigning the job agents to machine tool 
agents. Some case studies have been carried out to verify the applicability and the 
effectiveness of the proposed  system to the  integrated process  planning  and  
scheduling  problems in the  FMSs. The  FMS considered here includes 7 machine tools 
and 4 job types. Fig. 9 shows the geometries of the job agents and their manufacturing 
features including cylinder and box type shape for the case studies. The detailed information 
of the machining features and the machining resources of the case studies are brought in the 
previous paper (Tehrani et al., 2007). The RTIP in the simulation is set to be 2 sec. for the 
machine tool agents, 3 sec for coordination agents and 4 sec. for the job agents. 

 
3.2.4.1 Efficiency of the proposed architecture 
Two case studies have been done to evaluate the impact of introducing the coordination 
agents in multi agent systems. We compare the results with the dispatching rules which the 
job agents applying SPT dispatching rules for selecting the machine tools for their 
manufacturing operations without assisting from the coordination agents.  
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Fig. 9. Jobs considered in case studies. 
 
Fig. 10 summarizes the comparison of the proposed architecture and the previous method 
from the view points of the average flow time of all the job agents and the calculation time for 
coordination. In the Fig. 10 the vertical axis gives the flow time of the individual job agents 
and the horizontal axis shows the individual job agents and their types.  
It is understood, from Fig. 10(a) and (b), that the multi-agent systems with the coordination 
agents generate more suitable process plans and schedules from the viewpoint of the average 
flow time of the all the job agents. As you can see, the average flow time has been improved 
10.9% and 10.39% for the cases (a) and (b) of Fig. 10, respectively. It is because that the 
mathematical programming methods applied here are suitable to reduce the average flow time 
of the job agents of the job shop process planning and scheduling problems. The calculation 
time for coordination is enough short and the proposed method  is suitable for the real time 
application, when we have enormous number of job agents and machine tool agents.  

 
3.2.4.2 Robustness of the proposed architecture  
An additional experiment is also carried out to assess the robustness of the proposed architecture 
against the malfunction of the machine tools. The original process plans and schedules are shown 
for 10 job agents in the Gantt chart of Fig. 11 (a). In the experiment, the machine tool “MT14” is 
broken down at simulation time 4811 sec. and the recovery time is assumed to be 5000 sec. As 
you can see in the Gantt chart of Fig. 11 (b), the proposed architecture can dynamically generate 
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(a) Case study with 10 job agents  

 
(b) Case study with 9 job agents. 

Fig. 10. Case study and comparison with previous result. 
 
In the other experiments, the following unforeseen changes have been considered in the job 
specifications.  

1. Change the roughness of the machining features  
 Job 03, MF16 at simulation time 3000 
 Job 10, MF18 at simulation time 10000 

2. Add a new machining feature to the job 
 Job 02, MF21 at simulation time 7000 
 Job 04, MF24 at simulation time 5000 
 Job 05, MF25 at simulation time 2900 

3. Change the size of machining feature 
 Job 10, MF16 at simulation time 10000 
 Job 03, MF21 at simulation time 6500 

The results are shown the Gantt chart of Fig. 11 (c). As shown in Gantt chart Fig. 11 (c), the 
proposed architecture can dynamically generate updated process plans and schedules to 
cope with the changes of job specifications.  
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(a) Case study with 10 job agents  

 
(b) Case study with 9 job agents. 

Fig. 10. Case study and comparison with previous result. 
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Fig. 12. Two layers of ORIN architecture 

 
4. Realizing the agent manufacturing system 

In spite of the promising perspective of these emergent distributed and intelligent 
approaches, until now the industrial applications of control systems developed in the context 
of reconfigurable manufacturing systems are extremely rare and the implemented 
functionalities are normally restrict, being very slow the adoption of these concepts by 
industry (Marik & McFarlane 2005).  
We have collaboration with DENSO Wave Co. for realizing the agent manufacturing system 
through the ORIN architecture. ORIN 2.0 (Open Robot Interface for Network) provides 
integrated interface to access to the devices on the network (Hibino et al., 2006). You can 
easily access the data inside the devices from application software by using ORIN regardless 
of the manufacturers, devices or specifications of communication protocols. ORIN is a 
Distributed Real Manufacturing Simulation Environment (DRMSE) that consists of two 
layers; engine layer and provider layer as shown in the Fig. 12. The provider layer has a 
function to absorb a difference of controller equipment types and emulators. The engine 
layer provides interfaces for manufacturing applications. 
ORIN proposes a hardware and software architecture for realizing the agent based 
manufacturing system. The agents would be software modules that communicate with the 
real hardware in the manufacturing system through the ORIN platform. The communication 
between agents for making decision and handling the negotiation protocol could been done 
and synchronized through the communication channels provided by ORIN platform. The job 
agents and corresponding physical part would be recognized and traced through the 
manufacturing by using bar code or RFID. The machine tools and robots could be connected 
directly through their controller and we can also define and re-program PLCs and different 
controller of the manufacturing systems.  
In our research, we have successfully integrated our agent based simulation program with 
ORIN architecture. A barcode reader (DENSO AT10Q-SM) and a bar code generator 
(DENSO QRdraw Ad) have been connected to the agents through the ORIN architecture. The 
job agent receives the information from kanban by barcode reader. The bar code generator 

has been applied for generating the kanban cards including the job agent information, the 
disturbances and the job specification changes. The job agents and the machine tool agents 
can communicate and exchange data real timely through the ORIN architecture with the 
corresponding hardware in the manufacturing system.  

 
5. Conclusion 

Manufacturing companies at the beginning of 21th century have to face a dynamic 
environment where economical, technological and customer trends change rapidly, 
requiring the increase of flexibility and agility to react to unexpected disturbances, 
maintaining the productivity and quality parameters. The traditional manufacturing control 
systems are adapted on a case-by- case basis, requiring an expensive and huge 
time-consuming effort to develop, maintain or re-configure. The missing re- configurability 
is derived from the lack of agility to support emergency (change and unexpected 
disturbances). The challenge is to develop innovative, agile and reconfigurable architectures 
for distributed manufacturing control systems, using emergent paradigms and technologies. 
Multi-agent systems and HMSs are two promising paradigms to build this new class of 
distributed and intelligent manufacturing control systems. In this chapter, the manufacturing 
control systems, especially using artificial intelligence techniques to develop it, namely 
multi-agent systems and HMSs, was reviewed. Two case studies have been discussed in 
detail and their contributions, results and benefits of applying agent and holonic 
manufacturing control have been reviewed.  
In first case study, a new real-time scheduling methods for the HMS are proposed to select a 
suitable combination of the CNC machine tool (CMT) holons and the job holons which carry 
out the machining process. A distributed decision-making procedure is proposed to select a 
suitable combination of the CMT holons and the job holons for the next machining processes, 
based on the utility values for the candidates. Some case studies of the real-time scheduling 
have been carried out to verify the effectiveness of the proposed methods. It was shown, 
through case studies, that the proposed methods are effective to improve the objective 
functions of the individual holons. In the second case study, a multi-agent system was 
proposed for the integrated process planning and scheduling systems for the FMSs. A 
systematic procedure was proposed to generate suitable process plans of the jobs and 
suitable schedules of the machine tools. The proposed method is able to solve the process 
planning and scheduling problems concurrently and dynamically, with use of the 
mathematical optimization methods and search algorithms of the process plan networks. 
Some case studies have been carried out to verify the applicability of the proposed method to 
the integrated process planning and scheduling problems in the FMSs including 7 machine 
tools and 10 jobs. It was shown, through the case studies, that the proposed multi-agent 
architecture is capable to generate appropriate process plans and schedules. It was also 
shown that the proposed architecture generates alternative process plans dynamically, to 
cope with the malfunctions of the machine tools and unforeseen job specification changes. 
In the future research, we are trying to expand the architecture for other objective functions 
and multi objective integrated process planning and scheduling. We also are trying to 
develop general agents according to DCOM technology and defining interfaces for them that 
make agents possible to connect directly to ORIN to communicate with manufacturing 
hardware, real timely. 
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1. Introduction 

Material handling can be defined as an integrated system involving such activities as 
moving, handling, storing and controlling of materials by means of gravity, manual effort or 
power activated machinery. Moving materials utilize time and space. Any movement of 
materials requires that the size, shape, weight and condition of the material, as well as the 
path and frequency of the move be analyzed. Storing materials provide a buffer between 
operations. It facilitates the efficient use of people and machines and provides an efficient 
organization of materials. The considerations for material system design include the size, 
weight, condition and stack ability of materials; the required throughput; and building 
constraints such as floor loading, floor condition, column spacing etc. The protection of 
materials include both packaging and protecting against damage and theft of material as 
well as the use of safeguards on the information system to include protection against the 
material being mishandled, misplaced, misappropriated and processed in a wrong 
sequence. Controlling material includes both physical control as well as status of material 
control. Physical control is the orientation of sequence and space between material 
movements. Status control is the real time awareness of the location, amount, destination, 
origin, ownership and schedule of material. Maintaining the correct degree of control is a 
challenge because the right amount of control depends upon the culture of the organization 
and the people who manage and perform material handling functions. 
Material handling is an important area of concern in flexible manufacturing systems because 
more than 80 % of time that material spends on a shop floor is spent either in waiting or in 
transportation, although both these activities are non-value added activities. Efficient 
material handling is needed for less congestion, timely delivery and reduced idle time of 
machines due to non-availability or accumulation of materials at workstations. Safe 
handling of materials is important in a plant as it reduces wastage, breakage, loss and 
scrapes etc. 

 

6
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2. Principles of material handlings 

The material handling principles provide fundamentals of material handling practices and 
provide guidance to material handling system designers. The following is a brief description 
of material handling principles. 

 
2.1 Planning principle 
All material handling should be the result of a deliberate plan where the needs, performance 
objectives and functional specification of the proposed methods are completely defined at 
the outset. In its simplest form a material handing plan defines the material (what) and the 
moves (when and where); together they define the method (how and who). 

 
2.2 Standardization principle 
Standardize handling methods and equipments wherever possible. Material handling 
methods, equipment, controls and software should be standardized within the limits of 
achieving overall performance objectives and without sacrificing needed flexibility, 
modularity and throughout anticipation of changing future requirements. 

 
2.3 Ergonomic principle 
Human capabilities and limitations must be recognized and respected in the design of 
material handling tasks and equipment to ensure safe and effective operations. Equipments 
should be selected that eliminates repetitive and strenuous manual labor and which 
effectively interacts with human operators and users. 

 
2.4 Flexibility principle 
Use methods and equipments that can perform a variety of tasks under varying operating 
conditions.  

 
2.5 Simplification 
Simplify material handling by eliminating, reducing or combining unnecessary movements 
and equipments. 

 
2.6 Gravity 
Utilize gravity to move material wherever possible. 

 
2.7 Layout 
Prepare an operation sequence and equipment layout for all viable system solutions and 
then select the best possible configuration. 

 
2.8 Cost 
Compare the economic justification of alternate solutions with equipment and methods on 
the basis of economic effectiveness as measured by expenses per unit handled. 

2.9 Maintenance 
Prepare a plan for preventive maintenance and scheduled repairs on all material handling 
equipments. 

 
2.10 Unit load principle 
A unit load is one that can be stored or moved as a single entity at one time, such as a pallet, 
container or tote, regardless of the number of individual items that make up the load. Unit 
loads shall be appropriately sized and configured in a way which achieves the material flow 
and inventory objectives at each stage in the supply chain. 

 
2.11 Space utilization principle 
Effective and efficient use must be made of all available space. In work areas, cluttered and 
unorganized spaces and blocked aisles should be eliminated. When transporting loads 
within a facility, the use of overhead space should be considered as an option. 

 
2.12 System principle 
Material movement and storage activities should be fully integrated to form a coordinated, 
operational system which spans receiving, inspection, storage, production, assembly, 
packaging, unitizing, order selection, shipping, transportation and the handling of returns. 
Systems integration should encompass the entire supply chain including reverse logistics. It 
should include suppliers, manufacturers, distributors and customers. 

 
2.13 Automation principle 
Material handling operations should be mechanized and/or automated where feasible to 
improve operational efficiency, increase responsiveness, and improve consistency and 

predictability. 
 
2.14 Environmental principle 
Environmental impact and energy consumption should be considered as criteria when 
designing or selecting alternative equipment and material handling systems. 

 
2.15 Life cycle cost principle 
A thorough economic analysis should account for the entire life cycle of all material 
handling equipment and resulting systems. Life cycle costs include capital investment, 
installation, setup and equipment programming, training, system testing and acceptance, 
operating (labor, utilities, etc.), maintenance and repair, reuse value, and ultimate disposal 

 
3. Material Transport Equipment 

International Materials Management Society has classified equipment as (1) conveyor, (2) 
cranes, elevators, and hoists, (3) positioning, weighing, and control equipment, (4) industrial 
vehicles, (5) motor vehicles, (6) railroad cars, (7) marine carriers, (8) aircraft, and (9) 
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containers and supports. The following provides the details of material transport 
equipments. 

 
3.1 Conveyor Systems 
A Conveyor is used when a material is moved very frequently between specific points and 
the path between points is fixed. Conveyors combined with modern identification and 
recognition systems like bar code technologies have played a significant role in the 
transportation and sorting of a large variety of products in modern warehouses. Some of the 
common types of conveyors are:  

 Roller conveyor 
 Skate- wheel conveyor 
 Belt conveyor 
 In- floor towline conveyor  
 Overhead trolley conveyor   
 Cart-on-track conveyor 

 
3.1.1 Roller Conveyor 
In roller conveyors, the pathway consists of a series of rollers that are perpendicular to the 
direction of travel. Loads must possess a flat bottom to span several rollers which can be 
either powered or non-powered. Powered rollers rotate to drive the loads forward in roller 
conveyor. The following figure shows a roller conveyor.                          
 

 
Fig. 1. Roller conveyor 

 
3.1.2 Skate-Wheel Conveyor 
Skate-wheel conveyors are similar in operation to roller conveyor but use skate wheels 
instead of rollers and are generally lighter weight and non-powered. Sometimes, these are 
built as portable units that can be used for loading and unloading truck trailers in shipping 
and receiving. Figure 2 shows a skate-wheel roller. 

 
Fig. 2. Skate-wheel conveyor 

 
3.1.3 Belt Conveyor 
A belt conveyor is a continuous loop with forward path to move loads in which the belt is 
made of reinforced elastomeric support slider or rollers used to support forward loop. There 
are two common forms: 

 Flat belt (shown) 
 V-shaped for bulk materials 

 

 
Fig. 3. Belt conveyor 

 
3.1.4 In-Floor Tow-Line Conveyor 
These are four-wheel carts powered by moving chains or cables in trenches in the floor. 
Carts use steel pins (or grippers) to project below floor level and engage the chain (or 
pulley) for towing. This allows carts to be disengaged from towline for loading and 
unloading purpose as is shown in Figure 4. 
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A belt conveyor is a continuous loop with forward path to move loads in which the belt is 
made of reinforced elastomeric support slider or rollers used to support forward loop. There 
are two common forms: 

 Flat belt (shown) 
 V-shaped for bulk materials 

 

 
Fig. 3. Belt conveyor 

 
3.1.4 In-Floor Tow-Line Conveyor 
These are four-wheel carts powered by moving chains or cables in trenches in the floor. 
Carts use steel pins (or grippers) to project below floor level and engage the chain (or 
pulley) for towing. This allows carts to be disengaged from towline for loading and 
unloading purpose as is shown in Figure 4. 
 



Future Manufacturing Systems126

 
Fig. 4. In-floor two-line conveyor. 

 
3.1.5 Overhead Trolley Conveyor 
A trolley is a wheeled carriage running on an overhead track from which loads can be 
suspended. Trolleys are connected and moved by a chain or cable that forms a complete 
loop and are often used to move parts and assemblies between major production areas. 
Figure 5 shows an overhead trolley conveyor. 
 

 
Fig. 5. Over-head trolley conveyor 

 
3.1.6 Cart-On-Track Conveyor 
Carts ride on a track above floor level and are driven by a spinning tube. The forward 
motion of cart is controlled by a drive wheel whose angle can be changed from zero (idle) to 
45 degrees (forward). It is shown in the following figure. 

 
Fig. 6. Cart-on-track coveyor. 

 
3.2 Cranes and Hoists 
Cranes are normally used for transferring materials with some considerable size and weight 
and for intermittent flow of material. In general, loads handled by cranes are more varied 
with respect to their shape and weight than those handled by a conveyor. Hoists are 
frequently attached to cranes for vertical translation that is, lifting and lowering of loads. 
They can be operated manually, electrically, or pneumatically. Cranes usually include hoists 
so that the crane-and-hoist combination provides 

 Horizontal transport  
 Vertical lifting and lowering 

This class of material handling equipments can typically lift & move a material up to 100 
tons. A hoist consists of one or more fixed pulley & one or more rotatable pulley & a hook to 
attach load with it. The number of pulleys in hoist determines its mechanical advantage 
which is the ratio of load lifted & deriving force. Hoist with mechanical advantage of four 
are shown below:  
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Fig. 7.                 (a) Sketch of the hoist          (b) diagram to illustrate mechanical advantage 
 
There are different types of cranes that are used in industrial applications. Some of these are 
discussed below. 

 
3.2.1 Bridge Crane 
A bridge crane consist of one or two horizontal girder or beam suspended between fixed rail 
on either end which are connected to the structure of building. The hoist trolley can be 
moved along the length of bridge & bridge can be moved the length of rail in building. 
These two capabilities provide motion along X-axis & Y-axis whereas hoist can provide 
motion in the z-axis. Their application includes heavy machinery fabrication. They have 
ability to carry load up to 100 tons. 
 

 
Fig. 8. Bridge crane 

 

3.2.2 Half-gantry crane 
Half gantry crane is distinguished from bridge crane by the presence of one or two vertical 
supporting elements which support horizontal girder. Gantry cranes may be half or 
double.Half gantry has one supporting vertical element whereas double gantry crane has 
two vertical supporting legs.  
 

 
Fig. 9. Half gantry crane 

 
3.2.3 Jib Crane 
Jib cranes consist of a rotating arm with a hoist that runs along its length. The arm usually 
revolves on an axis which can be a fixed, ground-mounted post, or can be a wall or ceiling-
mounted pin.  
 

 
Fig. 10. Jib Crane 
 
Wall-bracket mounted jib cranes are usually the least expensive jib cranes, but they require 
the most headroom and exert more force on their mounting wall. Cantilever jib cranes place 
the arm at the top, allowing for maximum lift when used in situations with limited 
headroom. They also exert less force on the wall on which they're mounted. Tie rod jib 
cranes make use of a tie rod between the arm and the mounting area. More inexpensive jib 
cranes feature manually operated chain hoists, while sophisticated cranes use an electric 
chain hoist. Jib cranes are used when the desired lifting area resides within a (semi-
)circular arc.  
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3.2.4 Stacker Crane 
It is similar to a bridge crane. The major difference is that, instead of using a hoist, the 
stacker crane uses a mast with forks or a platform to handle unit loads. Stacker cranes are 
generally used for storing and retrieving unit loads in storage racks, especially in high-rise 
applications.  

 
4. Automated Retrieval and storage equipments 

Storage equipments can be in the form of racks, shelves, bins and drawers. Among these, 
storage rack is probably the most common form of storage equipment. There are numerous 
variants and configurations of storage racks, which include single-deep, double-deep rack, 
cantilever rack etc. and configurations that are designed to facilitate specific storage and 
retrieval operations drive-through, flow-through etc. More sophisticated retrieval and 
storage system combine the use of storage equipment, storing and retrieval machines and 
control that are manifested in a modern automated storage/ retrieval system.  

 
5. Automated Guided Vehicles 

An Automated Guided Vehicle System (AGVS) is a material handling system that uses 
independently operated, self-propelled vehicles guided along defined pathways in the 
facility floor. It is an automated material handling system which moves along predefined 
and preprogrammed path along an aisle from one station to another. The main parts of an 
AGV include structure, drive system, steering mechanism, power source (battery) and 
onboard computer for control. 

 
5.1 Types of AGV 
The following are common types of AGVs.  

 
5.1.1 Driverless Automated Guided Train 
These are the first type of AGVS to be introduced around 1954.Its typical application is 
moving heavy payloads over long distances in warehouses and factories without 
intermediate stops along the route 

 
Fig. 11. Driverless automated guided vehicle 

 
5.1.2 AGV Pallet Truck 
These are used to move palletized loads along predetermined routes. Vehicle is backed into 
loaded pallet by worker; pallet is then elevated from floor. Worker drives pallet truck to 
AGV guide path and programs destination. 
 

 
Fig. 12. AGV pallet truck 

 
5.1.3 Unit Load Carrier 
These are used to move unit loads from station to station and are often equipped for 
automatic loading/unloading of pallets using roller conveyors, moving belts, or mechanized 
lift platforms. 
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Fig. 13. Unit load carrier 

 
5.1.4 Light load AGV 
It can be applied for smaller loads. These are typically used in electronics assembly and 
office environments as mail and snack carriers. 

 
5.1.5 Assembly AGV 
These are used as assembly platforms, for example car chassis, engines etc., by carrying 
products and transport them through assembly stations.  

 
5.1.6 Forklift AGV 
It has the ability to pick up and drop off palletized loads both at floor level and on stands. 
Generally, these fork lift AGVs have sensors on forks for pallet interfacing.  

 
5.1.7 Rail-Guided Vehicles 
These are self-propelled vehicles that ride on a fixed-rail system. These vehicles operate 
independently and are driven by electric motors that pick up power from an electrified rail. 
Fixed rail system may be:  

i. Overhead monorail - suspended overhead from the ceiling 
ii. On-floor - parallel fixed rails, tracks generally protrude up from the floor 

 

 
Fig. 14. Rail guided vehicle 

5.2 AGVS System Management 
AGVS is a complex system and a number of parameters need to be considered which 
include: 
Guide-path layout 
Number of AGVs required 
Operational and transportation control 

 
5.2.1 Guide-path layout 
The guide-path layout defines the possible vehicle movement path. Links and nodes that 
represent the action points such as pick-up and drop-off points, maintenance areas and 
intersections represent the path. The guide-path can be divided into four types: 

1. Unidirectional single lane guide-path 
2. Bi-directional single lane guide-path 
3. Multiple lanes 
4. Mixed guide-path. 

Generally bidirectional single lane is considered the most cost effective and widely used 
layout. 

 
5.2.2 Number of AGVs required 
It is important to estimate the optimum number of AGVs required for a system as too many 
AGVs  will congest the traffic while too few means larger idle time for workstations in a 
system. Generally, the number of AGVs required is the sum of the total loaded and empty 
travel time and waiting time of the AGVs divided by the time an AGV is available. 

 
5.2.3 Operational and Transportation Control 
The operation and transportation consists of vehicle dispatching, vehicle routing and traffic 
control issues. Once a demand arises for an AGV, a choice needs to be made regarding the 
vehicle to be dispatched among the pool of vehicles available. In an event when several 
workstations need servicing, a choice is to be made as to which workstation is to be 
serviced. The selection criteria can be applied for assigning the vehicles or workstations 
based on one or a combination of the following: 
A random vehicle 
Longest idle vehicle 
Nearest vehicle 
Farthest vehicle 
Least utilized vehicle 
Random workstation 
Nearest workstation 
Farthest workstation 
Maximum queue size 
Minimum remaining queue size 
First come fist served 
Unit load arrival time, due time or priority. 
In order to dispatch an AGV to any workstation, it is necessary to find the shortest feasible 
path from the existing position. While selecting the shortest path it is necessary to consider 
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only those paths which are free and not occupied by vehicles. It may also be necessary to 
consider the future positions of the vehicles in the route in addition to their current occupied 
positions. In identifying the traffic control systems for AGVs movement, the approaches that 
can be used are forward sensing control, zone sensing control and combinatorial control. In 
forward sensing control, an AGV is equipped with obstruction detecting sensors that can 
identify another AGV in front of it and slow down or stop. This helps in improving the AGV 
utilization due to closer allowable distance between vehicles. However, this approach may 
not be able to detect the obstacles at intersections and around corners. This is generally 
useful for long and straight path which is divided into zones. Once an AGV enters a zone, it 
becomes unavailable for other AGVs which may introduce system inefficiency. The main 
advantages derived from the use of AGVs in manufacturing environment are: 
Dispatching, tracking and monitoring under real time control which help in planned 
delivery. 
Better resource utilization as AGVs can be economically justified. 
Increased control over material flow and movement 
Reduced product damage and routing flexibility 
Increased throughput because of dependable on-time delivery. 

 
6. Industrial Robots 

Industrial robots are very useful material handling devices in an automated environment. 
An industrial robot is a reprogrammable multifunctional manipulator designed to move 
materials, parts, tools, or other devices by means of variable programmed motions and to 
perform a variety of other tasks. It is also defined as a machine formed by a mechanism 
including several degrees of freedom often having the appearance of one or several arms 
ending in a wrist capable of holding a job, tool and inspection device. It is automatically 
controlled, reprogrammable, multipurpose manipulative machine with several 
reprogrammable axes which is either fixed in place or mobile for use in industrial 
automation applications. 

 
6.1 Robot components 
The following are basic components of an industrial robot. 

 
6.1.1 Manipulator 
It is a mechanical unit that provides motions similar to those of human arm and hand. The 
end of wrist can reach a point in space having a specific set of coordinates in specific 
orientation. 

 
6.1.2 End effector 
It is attached with the end of wrist in a robot. It is a special purpose tooling which enables 
the robot to perform a particular job. Depending on the type of work, end effector may be 
equipped with any of the following: 

a) Grippers, hooks, vacuum cups, and adhesive fingers for material handling 
b) Spray guns for painting 
c) Attachments for different kinds of welding processes. 

6.1.3 Control system 
It is a brain of a robot which gives commands for the movements of the robot. It stores the 
data to initiate and terminate movements of the manipulator. It interfaces with the 
computers and other equipments such as manufacturing cells or assembly operations. 

 
6.1.4 Power supply 
It supplies the power to the controller and manipulator. Each motion of manipulator is 
controlled and regulated by actuators that use an electrical, pneumatic or hydraulic power. 

 
6.2 Robot Types 
Robots are generally classified as Cartesian or rectilinear, cylindrical, polar or spherical 
jointed arms. They are also classified, from material handling point of view, as under: 

 
6.2.1 Pick and place robot 
It is also called fixed sequence robot and is programmed for a specific operation. Its 
movements are from point to point and cycle is repeated. These robots are simple and 
inexpensive and are used to pick and place materials. 

 
6.2.2 Playback robot 
This robot learns the work and motions from operator who leads the playback robot and its 
end effector through the desired path. The robot memorizes and records the path and 
sequence of motions and can repeat them continuously without any further action or 
guidance by the operator. 

 
6.2.3 Numerically controlled robot 
It is a programmable type of robot and works same as the numerical control machines. The 
robot is servo controlled by digital data and its sequence of movements can be changed with 
relative ease. 

 
6.2.4 Intelligent robot 
It is capable of performing some of the functions and tasks carried out by humans and is 
equipped with a variety of sensors with usual and tactile capabilities. It can perform tasks 
such as moving among a variety of machines on a shop floor avoiding collisions. It can 
recognize, select and properly grip the correct work piece. 

 
6.3 Robot applications in Material handling 
The major applications in material handling include: 
1. Industrial robots are used to load/ unload materials during operations. 
2. These are used to transfer the material from one conveyor to another. 
3. These are used in palletizing and de-palletizing in such a way that parts/ materials are 

taken from conveyor and are loaded on to a pallet in a desired pattern and sequence 
and vice-versa. 

4. These are very effective in automated assembly where repetitive work is required. 
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5. Intelligent robots can be used to automatically pick the right work piece without 
interference of operator and hence improves quality and pace of work. 
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1. Introduction 

Many real manufacturing systems process a large number of product variants in the same 
flow. These products may differ in some optional components; consequently, the processing 
time on a machine differs from one product to the next, and the need to prepare one or more 
machines before beginning or after the finishing of jobs is frequently presented. The 
preparation activities are: machine adjustment and feeders preparation to process a next job, 
dismantling after a previous job, machine calibrating, inspection of accessories or tools, 
cleaning of the machines and adjacent areas, etc. In the scheduling theory, the time required 
to shift from one job to another on a given machine is defined as additional production cost 
or setup time. The scheduling problems, which consider the setup times, have a high 
computational complexity. Pinedo (2008) presents a proof of the NP-hardness of the single 
machine case with setup consideration. They are more complex when the resource model 
has the parallel machine environment.  

The time that a job spends on a machine includes three phases: setup, processing, and 
removal. In the majority of investigations dedicated to production planning and scheduling 
it is assumed that the setup/removal times are negligible or nonseparable, therefore they are 
included in the job processing time, and hence are ignored. The nonseparable setup time 
assumption simplifies the analysis, and these problems can be formulated and solved as 
standard scheduling problem. However, an explicit treatment of the setup times in most 
applications is required and represents a special interest, because machine setup time is a 
significant factor for production scheduling in many cases. It may easily consume more than 
20% of available machine capacity if it is not well handled (Pinedo, 2008). 

Numerous examples of scheduling problems which consider separable setup times are 
given in the literature, including electronics manufacturing, automobile assembly plant, the 
packaging industry, textile industry, steel manufacturing, airplane engine plant, label sticker 
manufacturing company, semiconductor industry, maritime container terminal,  ceramic tile 
manufacturing sector, as well as in electronics industry in sections for inserting components 
on printed circuit boards (PCB), where this kind of problems is frequent.  

7
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The purpose of this chapter is to present a class of deterministic scheduling problems in a 
multi-stage parallel machine environment called hybrid flow shop with setup times and 
appropriate methods for its resolution. The chapter includes a description of model with 
necessary definitions and notations; concepts of product family and batch, which are 
important elements of setup time analysis as well as a classification of setup times and 
problems that each category produces. The last section is focused on problems with 
sequence-depended setup times in hybrid flow shops. A review of investigated cases is 
explained, including the application of genetic algorithms for this kind of scheduling 
problems: structure of a genetic algorithm and description of several crossover operators 
appropriated to use based on previous investigations of authors. This section includes an 
algorithm and an example of a complex problem solution. A conclusion is presented at the 
chapter end.  

 
2. Hybrid flow shop with setup times  

In the scheduling theory, a multi-stage production process with the property that all 
products have to pass through a number of stages in the same order is classified as a flow 
shop. In a simple flow shop, each stage consists of a single machine, which handles at most 
one operation at a time. It is more realistic to assume that, at every stage, a number of 
machines that operate in parallel are available. This model is known as a hybrid  flow shop 
(HFS). Some stages may have only one machine, but for the model to be qualified as a HFS, 
at least one stage must have multiple machines in parallel. These machines can be identical, 
or have different capacities. Each job is processed by at most one machine at each stage. The 
flow of products in the plant is unidirectional; each product is processed at only one 
machine in each stage.  

The HFS models are common in the industry, which have the same technological route for 
all products as a sequence of stages, and any stages have a group of machines to realize the 
same operation. Various process industries, such as chemical, textile, metallurgical, 
semiconductors, printed circuit board, pharmaceutical, oil, food, and automobile 
manufacture, can be modeled as a HFS. In such industries, at some stages the facilities are 
duplicated in parallel to increase the overall capacities or to balance the capacities of the 
stages, or either to eliminate or to reduce the impact of bottleneck stages on the shop floor 
capacities.  

Among scheduling problems which consider separable setup times in parallel machine 
environment, there is a class of problems of a high computational complexity, where setup 
from one product to another occurs on a machine; and machine parameters, which have to 
be changed during a setup, differ according to the production sequence. It leads to 
sequence-dependent setup times and consequently to sequence-dependent setup costs.  

A HFS with setup times has the following characteristics: 

 There are k stages of processing in a linear order: 1, 2, …, k. 
 Each of the n jobs visits the stages in this order, though all jobs do not need to visit all 

stages. Stages may be skipped for a particular job, but the process flow for each job is 
the same.  

 

 Each stage has a predetermined number of parallel machines. However, the number of 
machines varies from stage to stage. 

 The processing time for every job on every machine that it visits is known in advance 
and is constant. 

 A job represents the processing of an item or a set of identical items (a container, a 
pallet, a box, a lot or a part) called batch. 

 The jobs can belong to different job families. Jobs from the same family may have 
different processing times, but they can be processed on a machine after another 
without requiring any adjustment of machine in between. 

 Every job is to be processed on one machine at a time without preemption and a 
machine processes no more than the job at a time. When an operation is started on a 
machine, it must be finished without interruption. 

 Typically, buffers are located between stages to store intermediate products.  
 The problem consists of assigning the jobs to machines at each stage and sequencing 

the jobs assigned to the same machine so that some optimality criteria are minimized. 

The following index are used to describing the problems: j for job, j = 1,…, n, i for stage,  
i = 1, 2, …,k; mi for number of machines at the stage i; l for machine index, l = 1, 2, …, mi.  

The three-field notation || is used to describe all details of considered HFS problem 
variant. The   field denotes the shop configuration, including the shop type and machine 
environment per stage. The  field   discomposes into four parameter, i.e. 1, 2, 3, and 4, 
positioned as 12, (34(1), 34(2), …, 34(2)). Here, parameter 1 indicates the considered 
shop, and parameter 2 indicates the number of stages. For the HFS notation, FH is in the 1 
position, and the value of parameter 2  has to be major that one. For each stage, parameters 
3 and 4 indicate the machine set environments. More specifically, 3 indicates information 
about the type of the machines while 4 indicates the number of machines in the stage.  

The possible machine set environments on the stage i of a HFS are:  

1. Single machine (1): a special case; any stages (not all) in a HFS can have only one 
machine. 

2. Identical machines in parallel (Pmi): job j may be processed on any of mi machines; 
3. Uniformed machines in parallel (Qmi): the mi machines in the set have different speeds; a 

job j may be processed on anyone machine of set, however its processing time is 
proportional of the machine speed. 

4. Unrelated machines in parallel (Rmi): a set of mi different machines in parallel. The time 
that a job spends on a machine depends on the job and the machine. 

 
When there are several consecutive stages with the same machine set environments, the 
parameters 3 and 4 can be grouped as ((34(i))i=sk),  where s and k  are the index of the first 
and the last consecutive stage, respectively. For example, the notation FH4, (1,(P2(i))i=23,R3(4)) 
refers to a HFS configuration with four stages where there are one machine at the first stage, 
two identical machines in parallel at second and third stages and three unrelated parallel 
machines in the fourth stage. 

The  field provides the shop properties; also other conditions and details of the processing 
characteristics, which may enumerate multiple entries, also may be empty if they are not. 
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The purpose of this chapter is to present a class of deterministic scheduling problems in a 
multi-stage parallel machine environment called hybrid flow shop with setup times and 
appropriate methods for its resolution. The chapter includes a description of model with 
necessary definitions and notations; concepts of product family and batch, which are 
important elements of setup time analysis as well as a classification of setup times and 
problems that each category produces. The last section is focused on problems with 
sequence-depended setup times in hybrid flow shops. A review of investigated cases is 
explained, including the application of genetic algorithms for this kind of scheduling 
problems: structure of a genetic algorithm and description of several crossover operators 
appropriated to use based on previous investigations of authors. This section includes an 
algorithm and an example of a complex problem solution. A conclusion is presented at the 
chapter end.  

 
2. Hybrid flow shop with setup times  

In the scheduling theory, a multi-stage production process with the property that all 
products have to pass through a number of stages in the same order is classified as a flow 
shop. In a simple flow shop, each stage consists of a single machine, which handles at most 
one operation at a time. It is more realistic to assume that, at every stage, a number of 
machines that operate in parallel are available. This model is known as a hybrid  flow shop 
(HFS). Some stages may have only one machine, but for the model to be qualified as a HFS, 
at least one stage must have multiple machines in parallel. These machines can be identical, 
or have different capacities. Each job is processed by at most one machine at each stage. The 
flow of products in the plant is unidirectional; each product is processed at only one 
machine in each stage.  

The HFS models are common in the industry, which have the same technological route for 
all products as a sequence of stages, and any stages have a group of machines to realize the 
same operation. Various process industries, such as chemical, textile, metallurgical, 
semiconductors, printed circuit board, pharmaceutical, oil, food, and automobile 
manufacture, can be modeled as a HFS. In such industries, at some stages the facilities are 
duplicated in parallel to increase the overall capacities or to balance the capacities of the 
stages, or either to eliminate or to reduce the impact of bottleneck stages on the shop floor 
capacities.  

Among scheduling problems which consider separable setup times in parallel machine 
environment, there is a class of problems of a high computational complexity, where setup 
from one product to another occurs on a machine; and machine parameters, which have to 
be changed during a setup, differ according to the production sequence. It leads to 
sequence-dependent setup times and consequently to sequence-dependent setup costs.  

A HFS with setup times has the following characteristics: 

 There are k stages of processing in a linear order: 1, 2, …, k. 
 Each of the n jobs visits the stages in this order, though all jobs do not need to visit all 

stages. Stages may be skipped for a particular job, but the process flow for each job is 
the same.  

 

 Each stage has a predetermined number of parallel machines. However, the number of 
machines varies from stage to stage. 

 The processing time for every job on every machine that it visits is known in advance 
and is constant. 

 A job represents the processing of an item or a set of identical items (a container, a 
pallet, a box, a lot or a part) called batch. 

 The jobs can belong to different job families. Jobs from the same family may have 
different processing times, but they can be processed on a machine after another 
without requiring any adjustment of machine in between. 

 Every job is to be processed on one machine at a time without preemption and a 
machine processes no more than the job at a time. When an operation is started on a 
machine, it must be finished without interruption. 

 Typically, buffers are located between stages to store intermediate products.  
 The problem consists of assigning the jobs to machines at each stage and sequencing 

the jobs assigned to the same machine so that some optimality criteria are minimized. 

The following index are used to describing the problems: j for job, j = 1,…, n, i for stage,  
i = 1, 2, …,k; mi for number of machines at the stage i; l for machine index, l = 1, 2, …, mi.  

The three-field notation || is used to describe all details of considered HFS problem 
variant. The   field denotes the shop configuration, including the shop type and machine 
environment per stage. The  field   discomposes into four parameter, i.e. 1, 2, 3, and 4, 
positioned as 12, (34(1), 34(2), …, 34(2)). Here, parameter 1 indicates the considered 
shop, and parameter 2 indicates the number of stages. For the HFS notation, FH is in the 1 
position, and the value of parameter 2  has to be major that one. For each stage, parameters 
3 and 4 indicate the machine set environments. More specifically, 3 indicates information 
about the type of the machines while 4 indicates the number of machines in the stage.  

The possible machine set environments on the stage i of a HFS are:  

1. Single machine (1): a special case; any stages (not all) in a HFS can have only one 
machine. 

2. Identical machines in parallel (Pmi): job j may be processed on any of mi machines; 
3. Uniformed machines in parallel (Qmi): the mi machines in the set have different speeds; a 

job j may be processed on anyone machine of set, however its processing time is 
proportional of the machine speed. 

4. Unrelated machines in parallel (Rmi): a set of mi different machines in parallel. The time 
that a job spends on a machine depends on the job and the machine. 

 
When there are several consecutive stages with the same machine set environments, the 
parameters 3 and 4 can be grouped as ((34(i))i=sk),  where s and k  are the index of the first 
and the last consecutive stage, respectively. For example, the notation FH4, (1,(P2(i))i=23,R3(4)) 
refers to a HFS configuration with four stages where there are one machine at the first stage, 
two identical machines in parallel at second and third stages and three unrelated parallel 
machines in the fourth stage. 

The  field provides the shop properties; also other conditions and details of the processing 
characteristics, which may enumerate multiple entries, also may be empty if they are not. 
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The following model properties are frequently associated with a setup time HFS scheduling 
problem: 

batch(b)   Batch processing. A machine is able to process up to b jobs continuously without 
any setup.  

brkdown  Machine breakdown implies that a machine may not be continuously available. 
fmls  Job families. The n jobs belong to F different job families. Jobs from the same family 

may have different processing times, but they can be processed on a machine after 
another without requiring any setup in between.  

Mjk  Machine eligibility restrictions. Processing of job j is restricted to the set Mj of 
machines at stage k. 

rj  Release dates. The job j cannot start processing before release data rj. 
R  Removal time. Machines become free only after the setup of the job has been 

removed. 
Ssi  Sequence-independent setup times. The setup time of machine depends only on the 

job to process and does not depend on the previous job.  
Ssd  Sequence-dependent setup times. The setup time of machine required to process 

next job depends on the previous job. 
wj The priority factor denoting the weight or importance of job j relative to the other 

jobs of system.  

The   field establishes the objective to be minimized. The more common objective functions 
to minimize in a HFS scheduling problem are: maxC as maximum completion time;  maxF  as 
maximum  flow time; maxL as maximum  lateness; maxT  as maximum tardiness; 

maxE maximum earliness, among others. The most used objective function to be minimized 
in a HFS scheduling problem is the completion time when the last job to leave the system, 
referred to a makespan or Cmax.  

A HFS standard scheduling problem with k stages and a number of the identical parallel 
machines in each stage is denoted as FHk, ((PM(i))i=1k)||Cmax. In this case, the formula 
defines a HFS with k stages, |M(i)| identical machines in parallel on stage i, i = 1, …, k; there 
are not any special parameter , and the objective is the makespan minimizing.  

Figure 1 illustrates the physical relationship between machines and stages, which 
corresponds to the notation FH3, (1, P3(2), R2(3))|Mj3, Ssd|Tmax , referring to tri-stage HFS. The 
stage 1 has one machine, stage 2 has three identical machines in parallel, and stage 3 has two 
parallel unrelated machines; Mj3 and Ssd  indicate that there are machine eligibility 
restrictions at stage 3 and setup times depended on the sequence of jobs. The objective is the 
maximum tardiness minimizing. Moreover, the figure shows that there are unlimited 
buffers between stages to storage unfinished products, so called Work In Process (WIP).  
A production system, to be classified as a HFS has to be flexible. It is important to know the 
differences between a flexible production system and a traditional one; what exactly means 
the concept of flexibility and what justifies the use of specific production planning models 
for flexible production systems. Automated manufacturing systems display flexibility in 
multiple  and   intertwined  ways, pertaining to the equipment, processes, products,  
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Fig. 1. Resource model for a tri-stage HFS. 
 
production volumes, etc. Among the more important concepts, are the following  
(Crama, 1997), (Vairaktarakis, 2004):  
1. machine flexibility, the ability of the machines to perform various types of operations 

without requiring a prohibitive effort in switching from one operation to another; 
2. material handling flexibility, the ability of the material handling system to move different 

parts efficiently for proper positioning and processing through the manufacturing 
facility; 

3. operation flexibility, the ability to realize it in different ways; 
4. processing flexibility, that means that jobs may skip stages or there is a set of part types 

that the system can produce without major setups; 
5. routing flexibility, the ability of a manufacturing system to produce a part by alternate 

routes through the system. 

A planning production model with sets machines in parallel has to comply with one of these 
concepts to be classified as a flexible flow shop tacking in account that the flow of products 
in the plant is unidirectional. The hybridizing occurs when any products require special 
manufacture conditions, e.g., different qualities and capacities of machines at the same 
stage, assignment any jobs on certain machines, and another special conditions. 

Meanwhile, the HFS has been studied since the 70th, the researcher put much attention to 
this model and some new designs were discovered on the recent years. This fact probably 
implicates confusions in the terminology and notations. Actually, there is not in the 
literature a conventional classification of this kind of flow shops. A variety of known models 
should be interpreted as a HFS or its special case.  

There are: 

Flexible flow shop (FFS); a HFS in the parallel identical machine environment when the 
machines in each set are identical (processing flexibility within a production stage which is 
derived from the ability to process a job on any parallel machine at stage). Some authors, as 
e.g., Pinedo (2008), Jungwattanakit  et al., (2009) do not use the notion HFS, and describe the 
more complex configurations as a FFS with not identical parallel machines at least on one 
stage. Moreover, a variety of authors do not differ between terms of FFS and HFS referring 
this model as a flexible (hybrid) flow shop (Allahverdi et al., 2008); or use the HFS term in 
parallel identical machine environment (Naderi et al., 2009). 

Flexible flow line (FFL) and Flow shop with multiple processors (FSMP or MPFS) are equivalent 
to a FFS (Lin & Liao, 2003). Zandieh at al. (2006) considering that the HFS is known 
commonly as a flexible flow line, because the flow of jobs in that system is unidirectional.  
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The following model properties are frequently associated with a setup time HFS scheduling 
problem: 

batch(b)   Batch processing. A machine is able to process up to b jobs continuously without 
any setup.  

brkdown  Machine breakdown implies that a machine may not be continuously available. 
fmls  Job families. The n jobs belong to F different job families. Jobs from the same family 

may have different processing times, but they can be processed on a machine after 
another without requiring any setup in between.  

Mjk  Machine eligibility restrictions. Processing of job j is restricted to the set Mj of 
machines at stage k. 

rj  Release dates. The job j cannot start processing before release data rj. 
R  Removal time. Machines become free only after the setup of the job has been 

removed. 
Ssi  Sequence-independent setup times. The setup time of machine depends only on the 

job to process and does not depend on the previous job.  
Ssd  Sequence-dependent setup times. The setup time of machine required to process 

next job depends on the previous job. 
wj The priority factor denoting the weight or importance of job j relative to the other 

jobs of system.  

The   field establishes the objective to be minimized. The more common objective functions 
to minimize in a HFS scheduling problem are: maxC as maximum completion time;  maxF  as 
maximum  flow time; maxL as maximum  lateness; maxT  as maximum tardiness; 

maxE maximum earliness, among others. The most used objective function to be minimized 
in a HFS scheduling problem is the completion time when the last job to leave the system, 
referred to a makespan or Cmax.  

A HFS standard scheduling problem with k stages and a number of the identical parallel 
machines in each stage is denoted as FHk, ((PM(i))i=1k)||Cmax. In this case, the formula 
defines a HFS with k stages, |M(i)| identical machines in parallel on stage i, i = 1, …, k; there 
are not any special parameter , and the objective is the makespan minimizing.  

Figure 1 illustrates the physical relationship between machines and stages, which 
corresponds to the notation FH3, (1, P3(2), R2(3))|Mj3, Ssd|Tmax , referring to tri-stage HFS. The 
stage 1 has one machine, stage 2 has three identical machines in parallel, and stage 3 has two 
parallel unrelated machines; Mj3 and Ssd  indicate that there are machine eligibility 
restrictions at stage 3 and setup times depended on the sequence of jobs. The objective is the 
maximum tardiness minimizing. Moreover, the figure shows that there are unlimited 
buffers between stages to storage unfinished products, so called Work In Process (WIP).  
A production system, to be classified as a HFS has to be flexible. It is important to know the 
differences between a flexible production system and a traditional one; what exactly means 
the concept of flexibility and what justifies the use of specific production planning models 
for flexible production systems. Automated manufacturing systems display flexibility in 
multiple  and   intertwined  ways, pertaining to the equipment, processes, products,  
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Fig. 1. Resource model for a tri-stage HFS. 
 
production volumes, etc. Among the more important concepts, are the following  
(Crama, 1997), (Vairaktarakis, 2004):  
1. machine flexibility, the ability of the machines to perform various types of operations 

without requiring a prohibitive effort in switching from one operation to another; 
2. material handling flexibility, the ability of the material handling system to move different 

parts efficiently for proper positioning and processing through the manufacturing 
facility; 

3. operation flexibility, the ability to realize it in different ways; 
4. processing flexibility, that means that jobs may skip stages or there is a set of part types 

that the system can produce without major setups; 
5. routing flexibility, the ability of a manufacturing system to produce a part by alternate 

routes through the system. 

A planning production model with sets machines in parallel has to comply with one of these 
concepts to be classified as a flexible flow shop tacking in account that the flow of products 
in the plant is unidirectional. The hybridizing occurs when any products require special 
manufacture conditions, e.g., different qualities and capacities of machines at the same 
stage, assignment any jobs on certain machines, and another special conditions. 

Meanwhile, the HFS has been studied since the 70th, the researcher put much attention to 
this model and some new designs were discovered on the recent years. This fact probably 
implicates confusions in the terminology and notations. Actually, there is not in the 
literature a conventional classification of this kind of flow shops. A variety of known models 
should be interpreted as a HFS or its special case.  

There are: 

Flexible flow shop (FFS); a HFS in the parallel identical machine environment when the 
machines in each set are identical (processing flexibility within a production stage which is 
derived from the ability to process a job on any parallel machine at stage). Some authors, as 
e.g., Pinedo (2008), Jungwattanakit  et al., (2009) do not use the notion HFS, and describe the 
more complex configurations as a FFS with not identical parallel machines at least on one 
stage. Moreover, a variety of authors do not differ between terms of FFS and HFS referring 
this model as a flexible (hybrid) flow shop (Allahverdi et al., 2008); or use the HFS term in 
parallel identical machine environment (Naderi et al., 2009). 

Flexible flow line (FFL) and Flow shop with multiple processors (FSMP or MPFS) are equivalent 
to a FFS (Lin & Liao, 2003). Zandieh at al. (2006) considering that the HFS is known 
commonly as a flexible flow line, because the flow of jobs in that system is unidirectional.  
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Hybrid flexible flow shop or Flexible hybrid flow line (HFFL); this model is equivalent to a HFS 
where jobs might skip stages (processing flexibility across production stages) (Ruiz & 
Vazquez-Rodriguez, 2010), (Allahverdi et al., 2008) 

Parallel HFS (PHFS) system represents a HFS decomposed into smaller HFS sub-designs 
operated in parallel. More specific, a PHFS is composed of a number of independent sub-
designs each of which is a HFS of the unidirectional routing (routing flexibility) 
(Vairaktarakis, 2004).  

The HFS scheduling problems which consider setup times are among the most difficult 
classes of scheduling problems. It is known, that a one-machine sequence-dependent setup 
scheduling problem is equivalent to a traveling-salesman problem which is NP-hard, even 
for a small system, the complexity of this problem is beyond the reach of existing theories 
(Pinedo, 2008). A HFS restricted to two processing stages, even in the simplest case when 
one stage contains two identical machines and the second only a single machine, is already 
NP-hard, according to Gupta (1988). Moreover, the special case where there is a single 
machine per stage, known as the flow shop, and the simplest case where there is a single 
stage with several machines, known as the parallel machine environment, are also NP-hard 
(Glover & Laguna., 1997). The total number of possible solutions for a HFS to be n!(Пi=1k mi)n 

while the number of possible solutions in a regular flow shop scheduling problem is n! The 
complicity of a HFS scheduling problem with setup time condition depends essentially on 
setup time nature. 

 
3. Batch processing 

A technical similarity between products of a plant often reflects an obvious grouping of 
them into product groups. Products can be sorted out into groups according to their design 
attributes, which include part shape, size, surface texture, material type, raw material estate, 
or according to their manufacturing attributes. The technical similarities of the products 
within a group permit reduce essentially the setups number on a machine, when a setup 
from one product to another occurs and hence manufacturing time would be decreased and 
consequently machine usage time would be improved. 

This idea is adapted by the Group Technology (GT) (Andrés et al., 2005). The GT concept is 
based on the simplification and standardization process. It was dedicated originally to 
single machine environment to reduce setup times. This concept was further extended to the 
production planning in productive systems which have some available resources in each of 
the stages of production and not negligible setups known as the HFS problem with setup 
times dependent on the sequence (Li, 1997). 

From the GT surge the concepts of product family and batch. The jobs are supposed to be 
partitioned into F families, F ≥ 1. A batch is a set of jobs of the same family. Batching occurs 
only if setup costs or times are not negligible and several jobs of the same product type have 
to be produced. When the processing is realized in batches (lots, pallets, containers, boxes), 
the operations processed simultaneously start together and complete together, with just a 
single setup in the beginning. Their processing time depends only on the family of the batch.  

When one batch is completed, the resources have to be adjusted for the next batch. The time 
needed for the setup depends on the families of both adjacent batches. A batch is called 

 

feasible if it can be processed without any tool switches. While families are supposed to be 
given in advance, batch formation is a part of the decision making process. To batch-sizes 
calculating has to decide how many units must be produced consecutively. In (Liu & Chang, 
2000) is indicated that the processing in large batches may increase machine utilization and 
reduce the total setup time. However, large batch processing increases the flow time. There 
is a tradeoff between flow time and machine utilization by selecting batch size and 
scheduling. According to the GT, no family can be split, only a single batch can be formed 
for each family.  

Batch setup models are further partitioned into batch availability and job availability models. 
According to the batch availability model, all the jobs of the same batch become available for 
processing and leave the machine together. Two rules that define the processing time of a 
batch are distinguished (Lushchakova & Strusevich, 2010):  

 In the case of sequential batch processing, also known as ‘‘sum-batch”, the processing 
time of a batch on machine is equal to the total processing times of its jobs;  

 In the case of simultaneous batch processing, also known as ‘‘max-batch”, the 
processing time of a batch on machine is equal to the largest processing time of its jobs. 

In the job availability model, each job’s start and completion times are independent on other 
jobs in its batch.  

The term of family denotes initial job partitioning, while the term of batch is used to denote a 
part of the solution. Many publications use the term batch to denote the initial job 
partitioning and they use different names like sub-batch, lot, sub-lot, etc., to denote a set of 
jobs of the same family processed consecutively on the same machine. In the literature, a job 
availability model is considered, if not stated otherwise.  

Li (1997) gives an example of scheduling problem from an airplane engine plant, Pratt and 
Whitney Inc. (PWI). The blade line, one of the production lines at PWI, characterized as a 
two-stages HFS, produces various types of blades used in airplane engines. Each stage of the 
blade line at PWI has a different number of machines. The types of blades that have similar 
processing requirements are grouped into families. A major setup is required if a machine at 
any stage switches from one family of blades to the other. A minor setup is required if a 
machine switches from one type of blade to another type in the same family. Since setup 
times are not insignificant and unit processing times for all types of blades are very short, 
the plant processes each type of blade in batches (lots). 

The batch setup time (cost) can be machine dependent or sequence (of families) dependent. It 
is sequence-dependent if its duration (cost) depends on the families of both the current and 
the immediately preceding batches, and is sequence-independent if its duration (cost) 
depends solely on the family of the current batch to be processed. 

A HFS scheduling problems with setup times which consider job processing in batches can 
be sequence-dependent as well as sequence-independent. Most studies assume that either no 
setup has to be performed or that setup times are sequence-independent and there is only a 
single unit of each product type. In this case, a job’s setup time may be added to its process 
time. However, if setup times are sequence-dependent or if several jobs of the same product 
type have to be produced, setups have to be considered explicitly. 
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Hybrid flexible flow shop or Flexible hybrid flow line (HFFL); this model is equivalent to a HFS 
where jobs might skip stages (processing flexibility across production stages) (Ruiz & 
Vazquez-Rodriguez, 2010), (Allahverdi et al., 2008) 

Parallel HFS (PHFS) system represents a HFS decomposed into smaller HFS sub-designs 
operated in parallel. More specific, a PHFS is composed of a number of independent sub-
designs each of which is a HFS of the unidirectional routing (routing flexibility) 
(Vairaktarakis, 2004).  

The HFS scheduling problems which consider setup times are among the most difficult 
classes of scheduling problems. It is known, that a one-machine sequence-dependent setup 
scheduling problem is equivalent to a traveling-salesman problem which is NP-hard, even 
for a small system, the complexity of this problem is beyond the reach of existing theories 
(Pinedo, 2008). A HFS restricted to two processing stages, even in the simplest case when 
one stage contains two identical machines and the second only a single machine, is already 
NP-hard, according to Gupta (1988). Moreover, the special case where there is a single 
machine per stage, known as the flow shop, and the simplest case where there is a single 
stage with several machines, known as the parallel machine environment, are also NP-hard 
(Glover & Laguna., 1997). The total number of possible solutions for a HFS to be n!(Пi=1k mi)n 

while the number of possible solutions in a regular flow shop scheduling problem is n! The 
complicity of a HFS scheduling problem with setup time condition depends essentially on 
setup time nature. 

 
3. Batch processing 

A technical similarity between products of a plant often reflects an obvious grouping of 
them into product groups. Products can be sorted out into groups according to their design 
attributes, which include part shape, size, surface texture, material type, raw material estate, 
or according to their manufacturing attributes. The technical similarities of the products 
within a group permit reduce essentially the setups number on a machine, when a setup 
from one product to another occurs and hence manufacturing time would be decreased and 
consequently machine usage time would be improved. 

This idea is adapted by the Group Technology (GT) (Andrés et al., 2005). The GT concept is 
based on the simplification and standardization process. It was dedicated originally to 
single machine environment to reduce setup times. This concept was further extended to the 
production planning in productive systems which have some available resources in each of 
the stages of production and not negligible setups known as the HFS problem with setup 
times dependent on the sequence (Li, 1997). 

From the GT surge the concepts of product family and batch. The jobs are supposed to be 
partitioned into F families, F ≥ 1. A batch is a set of jobs of the same family. Batching occurs 
only if setup costs or times are not negligible and several jobs of the same product type have 
to be produced. When the processing is realized in batches (lots, pallets, containers, boxes), 
the operations processed simultaneously start together and complete together, with just a 
single setup in the beginning. Their processing time depends only on the family of the batch.  

When one batch is completed, the resources have to be adjusted for the next batch. The time 
needed for the setup depends on the families of both adjacent batches. A batch is called 

 

feasible if it can be processed without any tool switches. While families are supposed to be 
given in advance, batch formation is a part of the decision making process. To batch-sizes 
calculating has to decide how many units must be produced consecutively. In (Liu & Chang, 
2000) is indicated that the processing in large batches may increase machine utilization and 
reduce the total setup time. However, large batch processing increases the flow time. There 
is a tradeoff between flow time and machine utilization by selecting batch size and 
scheduling. According to the GT, no family can be split, only a single batch can be formed 
for each family.  

Batch setup models are further partitioned into batch availability and job availability models. 
According to the batch availability model, all the jobs of the same batch become available for 
processing and leave the machine together. Two rules that define the processing time of a 
batch are distinguished (Lushchakova & Strusevich, 2010):  

 In the case of sequential batch processing, also known as ‘‘sum-batch”, the processing 
time of a batch on machine is equal to the total processing times of its jobs;  

 In the case of simultaneous batch processing, also known as ‘‘max-batch”, the 
processing time of a batch on machine is equal to the largest processing time of its jobs. 

In the job availability model, each job’s start and completion times are independent on other 
jobs in its batch.  

The term of family denotes initial job partitioning, while the term of batch is used to denote a 
part of the solution. Many publications use the term batch to denote the initial job 
partitioning and they use different names like sub-batch, lot, sub-lot, etc., to denote a set of 
jobs of the same family processed consecutively on the same machine. In the literature, a job 
availability model is considered, if not stated otherwise.  

Li (1997) gives an example of scheduling problem from an airplane engine plant, Pratt and 
Whitney Inc. (PWI). The blade line, one of the production lines at PWI, characterized as a 
two-stages HFS, produces various types of blades used in airplane engines. Each stage of the 
blade line at PWI has a different number of machines. The types of blades that have similar 
processing requirements are grouped into families. A major setup is required if a machine at 
any stage switches from one family of blades to the other. A minor setup is required if a 
machine switches from one type of blade to another type in the same family. Since setup 
times are not insignificant and unit processing times for all types of blades are very short, 
the plant processes each type of blade in batches (lots). 

The batch setup time (cost) can be machine dependent or sequence (of families) dependent. It 
is sequence-dependent if its duration (cost) depends on the families of both the current and 
the immediately preceding batches, and is sequence-independent if its duration (cost) 
depends solely on the family of the current batch to be processed. 

A HFS scheduling problems with setup times which consider job processing in batches can 
be sequence-dependent as well as sequence-independent. Most studies assume that either no 
setup has to be performed or that setup times are sequence-independent and there is only a 
single unit of each product type. In this case, a job’s setup time may be added to its process 
time. However, if setup times are sequence-dependent or if several jobs of the same product 
type have to be produced, setups have to be considered explicitly. 
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In a non-batch processing environment, a setup time (cost) is incurred prior to the 
processing of each job. The corresponding model can also be viewed as a batch setup time 
(cost) model in which each family consists of a single job.  

 
4. Classification of HFS with setup times 

The setup times, defined as the time required to shift from one job to another on a given 
machine, are considered as separable and non-separable from the processing operation.  

The non-separable setup times are either included in the processing times or are negligible, 
and hence are ignored. There exist some situations in which the nonseparable setup and 
removal operations must be modeled and closely coordinated. Such situations are common 
in automatic production systems which involve intermediate material handling devices, like 
an automatic guided vehicles and robots, loading and unloading (Crama, 1997), (Kim et al., 
1997), (Pinedo, 2008). 

When these operations are separable, i.e. they are not a part of processing operation, the 
structure of the breakdown time when a job belongs to a machine is as follows (Cheng et al., 
2000): 

1) Setup time that is independent on the job sequence. This operation consists of activities 
such as fetching the required details, and fixtures, and setting them up on the machine. 

2) Setup time that is dependent on the job to be processed. The carrying out of this 
operation includes the time required to put the job in the jigs and fixtures and to adjust 
the tools. 

3) Processing time of the job being processed. 
4) Removal time that is independent on the job that has been processed. This operation 

includes activities such as dismounting the jigs, the fixtures and/or tools, 
inspecting/sharpening of the tools, and cleaning the machine and the adjacent area. 

5) Removal time that is dependent on the job that just has been processed. This operation 
includes activities such as disengaging the tools from the job, and releasing the job 
from the jigs and fixtures. 

Three phases of job processing can be grouped as following: the separable setup, the 
processing, and the separable removal times represented by items (1, 2), (3), and (4, 5), 
respectively. When separable setup/removal times are not negligible in the scheduling 
problem, they should be explicitly considered.  

The setup times which are separable from the processing times, could be anticipatory 
(detached) or non-anticipatory (attached). A setup is anticipatory if it can be started before the 
corresponding job or batch becomes available on the machine. In such a situation, the idle 
time of a machine can be used to complete the setup of a job on a specific machine. 
Otherwise, a setup is non-anticipatory  and the setup operations can start only when the job 
arrives at a machine as the setup is attached to the job. Further, setup times of a job at a 
specific machine could be dependent on the job immediately preceding that job or be 
independent on it. If it is not stated explicitly that setups are non-anticipatory.  

 

As follows, a classification of HFS scheduling problems with setup times, derivate from the 
classification presented in (Cheng et al., 2000), is described. These problems generally fall 
into the following four board categories depending on practical situations (Figure 2): 

HFS with ST

Dependent of Independent of 

Family sequenceJob sequence

Batch Group Batch Group

Job sequence Family sequence

 
Fig. 2. Classification of HFS with setup times. 
 
 HFS with sequence-independent job setup times. 
 HFS with sequence-dependent job setup times. 
 HFS with sequence-independent family setup times: 

 HFS with sequence-independent group setup times; 
 HFS with sequence-independent batch setup times. 

 HFS with sequence-dependent family setup times: 
 HFS with sequence-dependent group setup times; 
 HFS with sequence-dependent batch setup times. 

HFS with sequence-independent job setup times. The setup times are separable from the 
processing times and sequence-independent, i.e., depend only on the job to process and do 
not depend on the job sequence on this machine. Such setup times could be either detached 
or attached to the processing times. However, if this setup time is attached to a job, the idle 
time of a machine cannot be used, and hence the setup time have to be considered as a part 
of the processing time and the problem can be formulated and solved as a standard HFS 
problem. For this reason, only detached sequence-independent job setup times represent a 
special interest. Further, removal times could be either zero or positive. The removal times, 
if they are present, have to be included in makespan definition.  

Three papers with different setup/removal restrictions are mentioned as references. In (Kim 
et al., 1997) the Cmax minimizing problem for FFS with two stages, independent setup times 
and negligible removal times is considered. A scheduling rule similar to the Johnson's rule is 
suggested to minimize makespan. Another work, (Low, 2005), addresses to a HFS with J 
stages and unrelated parallel machines at each stage, independent setup and dependent 
removal times. The objective is to minimize total flow time in the system. A simulated 
annealing-based heuristic is proposed to solve the addressed problem in a reasonable 
running time. In (Harjunkoski & Grossmann, 2002) is considered a HFS model where setup 
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In a non-batch processing environment, a setup time (cost) is incurred prior to the 
processing of each job. The corresponding model can also be viewed as a batch setup time 
(cost) model in which each family consists of a single job.  

 
4. Classification of HFS with setup times 

The setup times, defined as the time required to shift from one job to another on a given 
machine, are considered as separable and non-separable from the processing operation.  

The non-separable setup times are either included in the processing times or are negligible, 
and hence are ignored. There exist some situations in which the nonseparable setup and 
removal operations must be modeled and closely coordinated. Such situations are common 
in automatic production systems which involve intermediate material handling devices, like 
an automatic guided vehicles and robots, loading and unloading (Crama, 1997), (Kim et al., 
1997), (Pinedo, 2008). 

When these operations are separable, i.e. they are not a part of processing operation, the 
structure of the breakdown time when a job belongs to a machine is as follows (Cheng et al., 
2000): 

1) Setup time that is independent on the job sequence. This operation consists of activities 
such as fetching the required details, and fixtures, and setting them up on the machine. 

2) Setup time that is dependent on the job to be processed. The carrying out of this 
operation includes the time required to put the job in the jigs and fixtures and to adjust 
the tools. 

3) Processing time of the job being processed. 
4) Removal time that is independent on the job that has been processed. This operation 

includes activities such as dismounting the jigs, the fixtures and/or tools, 
inspecting/sharpening of the tools, and cleaning the machine and the adjacent area. 

5) Removal time that is dependent on the job that just has been processed. This operation 
includes activities such as disengaging the tools from the job, and releasing the job 
from the jigs and fixtures. 

Three phases of job processing can be grouped as following: the separable setup, the 
processing, and the separable removal times represented by items (1, 2), (3), and (4, 5), 
respectively. When separable setup/removal times are not negligible in the scheduling 
problem, they should be explicitly considered.  

The setup times which are separable from the processing times, could be anticipatory 
(detached) or non-anticipatory (attached). A setup is anticipatory if it can be started before the 
corresponding job or batch becomes available on the machine. In such a situation, the idle 
time of a machine can be used to complete the setup of a job on a specific machine. 
Otherwise, a setup is non-anticipatory  and the setup operations can start only when the job 
arrives at a machine as the setup is attached to the job. Further, setup times of a job at a 
specific machine could be dependent on the job immediately preceding that job or be 
independent on it. If it is not stated explicitly that setups are non-anticipatory.  

 

As follows, a classification of HFS scheduling problems with setup times, derivate from the 
classification presented in (Cheng et al., 2000), is described. These problems generally fall 
into the following four board categories depending on practical situations (Figure 2): 

HFS with ST

Dependent of Independent of 

Family sequenceJob sequence

Batch Group Batch Group

Job sequence Family sequence

 
Fig. 2. Classification of HFS with setup times. 
 
 HFS with sequence-independent job setup times. 
 HFS with sequence-dependent job setup times. 
 HFS with sequence-independent family setup times: 

 HFS with sequence-independent group setup times; 
 HFS with sequence-independent batch setup times. 

 HFS with sequence-dependent family setup times: 
 HFS with sequence-dependent group setup times; 
 HFS with sequence-dependent batch setup times. 

HFS with sequence-independent job setup times. The setup times are separable from the 
processing times and sequence-independent, i.e., depend only on the job to process and do 
not depend on the job sequence on this machine. Such setup times could be either detached 
or attached to the processing times. However, if this setup time is attached to a job, the idle 
time of a machine cannot be used, and hence the setup time have to be considered as a part 
of the processing time and the problem can be formulated and solved as a standard HFS 
problem. For this reason, only detached sequence-independent job setup times represent a 
special interest. Further, removal times could be either zero or positive. The removal times, 
if they are present, have to be included in makespan definition.  

Three papers with different setup/removal restrictions are mentioned as references. In (Kim 
et al., 1997) the Cmax minimizing problem for FFS with two stages, independent setup times 
and negligible removal times is considered. A scheduling rule similar to the Johnson's rule is 
suggested to minimize makespan. Another work, (Low, 2005), addresses to a HFS with J 
stages and unrelated parallel machines at each stage, independent setup and dependent 
removal times. The objective is to minimize total flow time in the system. A simulated 
annealing-based heuristic is proposed to solve the addressed problem in a reasonable 
running time. In (Harjunkoski & Grossmann, 2002) is considered a HFS model where setup 
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times are included, but they are only dependent on the machine and not on the job. The 
objective is to minimize job assignment costs and one-time machine-initialization costs.  

HFS with sequence-dependent job setup times (Li, 1997), (Naderi et al., 2009).This situation 
occurs when the part of the setup of job i can be used for processing the next job j. It 
implicates that the removal time of the job i will depend on the job j to be processed next. On 
the other hand, the setup time of job j also depends on the job i being processed currently, 
because the setup part of the previous job i can be used for the next job j. The net effect of 
these two factors is that the setup time of job j depends on the immediately preceding job i. 
Sequence-dependent setup times are of the anticipatory (detached) type because their 
nature. Therefore, the setup information cannot move with the job; and sequence-dependent 
setup times cannot be of the attached type as information about the currently processed job 
i; and the next job j requires to determine the needed setup time to be processed. 

HFS with sequence-independent/dependent family setup times. In the above two categories the 
setups are associated with individual jobs. However, in many real-world situations, the 
processing of jobs is realized taking in account the job family. When jobs belonging to the 
same family scheduled contiguously, they only need a common setup operation, and so 
called family setup times (FST) are involved. The job partitioning into families implicates two 
next situations:  

 the setup operation arises only when a machine shifts from processing a job in one 
family to processing a job in another family;  

 a job containing several identical items may be split into multiple sublots and the setup 
operation arises only when a machine shifts from processing the sublot of one job to 
processing a sublot of another job.  
In general, these FST scheduling problems require two interrelated decisions: 

 the size and number of the sublots of each family where the items of a single sublot are 
processed together;  

 the scheduling of each sublot through the HFS where each sublot requires setup on 
each machine. According to the GT assumption, a family does not split into sublots, and 
the jobs of the same family are processed together. It refers to so called HFS with group 
setup time (GST) problem. However, if the families are split, it requires a solution of an 
interrelated batching problem to find the optimal size of each sublot. It refers to a so 
called HFS with batch setup times (BST) problems.  

Since the BST problems require the solution of two interrelated problems (that of batching 
and scheduling), these problems are relatively harder to solve than their corresponding GST 
problems requiring only the solution of a scheduling problem (Monma & Potts, 1989). 

The setup times in the Sequence-Independent Family Setup Times problem could be either 
attached or detached. Since each sublot in case of BST (or family in case of GST problem) 
consists of multiple jobs, the sequence-independent setup time cannot be added to the 
processing time of any one of these jobs, as the first job in the sequence of the sublot or batch 
is not known until the scheduling problem is solved. However, for the sequence-dependent 
BST and GST problems, the sequence-dependent sublot or batch setup times are only of the 
detached type. 

 

Batch scheduling problem with setup times arises frequently in process industries, parts 
manufacturing environments and cellular assembly systems (such as chemical, 
pharmaceutical, food processing, metal processing, printing industries and semiconductor 
testing facilities). Detailed surveys of the recent publications about HFS with setup times 
might be consulted in (Ribas et al., 2010), (Ruiz, 2010), (Allajverdi, et al., 2008), (Zandieh et 
al., 2006). 

 
5. HFS with sequence-dependent setup times  

5.1 Investigated problems  
In recent years, many researchers put attention to the HFS problem with sequence- 
dependent setup times in consequence of its complexity, the variety of models as realistic as 
theoretical, and used tools to the algorithm creation. On Table 1 are summarized 
publications dedicated to the investigation of the HFS with sequence-dependent setup 
times. The first column indicates the year of publication, the second is the bibliographical 
reference, the third describes the problem; and the final column shows the resolution 
method, type of approach as well as other case details.  

 
Year Author Problem Comments 
1991 Guinet ( )

1 max,(( ) )| |{ , }k m
k sdFHm PM S C T  ad-hoc 

heuristics, 
textile 
industry 

1993 Adler et al. ( )
1,(( ) )| |k m w

k adFMm RM S T  

 

DR, packging 
industry 

 Voss (1) (2 )
max,(( ,1 )| |sdFHm PM S C  TS and 

heuristics 

1995 Aghezzaf et al. ( )
1 max max,(( ) )| |{ , , }k m

k sdFHm RM S C F F  
MPF, 
heuristics, 
carpet 
manufacturing 

1997 Li (1) (2 )
max2,((1 , ))| , , |sdFH PM batch S split C  

heuristics, 
major and 
minor setups, 
airplane 
engine plant 

2000 Liu & Chang ( )
1,(( ) ))| , |k m w w

k sdFHm PM S block E T   
MPF based 
heuristics 

2003 Kurz & Askin ( )
1 max,(( ) ))| |k m

k sdFHm PM S C  
heuristics 

 Lin & Liao ( ) (1) (2)2
1 max,(( ) ))| , |k

k sd jFHm PM S M wT  
heuristic, label 
sticker 
manufacturing 

2004 Kurz & Askin ( )
1 max,(( ) ))| |k m

k sdFHm PM S C  MPF, MPR-
GA 
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times are included, but they are only dependent on the machine and not on the job. The 
objective is to minimize job assignment costs and one-time machine-initialization costs.  

HFS with sequence-dependent job setup times (Li, 1997), (Naderi et al., 2009).This situation 
occurs when the part of the setup of job i can be used for processing the next job j. It 
implicates that the removal time of the job i will depend on the job j to be processed next. On 
the other hand, the setup time of job j also depends on the job i being processed currently, 
because the setup part of the previous job i can be used for the next job j. The net effect of 
these two factors is that the setup time of job j depends on the immediately preceding job i. 
Sequence-dependent setup times are of the anticipatory (detached) type because their 
nature. Therefore, the setup information cannot move with the job; and sequence-dependent 
setup times cannot be of the attached type as information about the currently processed job 
i; and the next job j requires to determine the needed setup time to be processed. 

HFS with sequence-independent/dependent family setup times. In the above two categories the 
setups are associated with individual jobs. However, in many real-world situations, the 
processing of jobs is realized taking in account the job family. When jobs belonging to the 
same family scheduled contiguously, they only need a common setup operation, and so 
called family setup times (FST) are involved. The job partitioning into families implicates two 
next situations:  

 the setup operation arises only when a machine shifts from processing a job in one 
family to processing a job in another family;  

 a job containing several identical items may be split into multiple sublots and the setup 
operation arises only when a machine shifts from processing the sublot of one job to 
processing a sublot of another job.  
In general, these FST scheduling problems require two interrelated decisions: 

 the size and number of the sublots of each family where the items of a single sublot are 
processed together;  

 the scheduling of each sublot through the HFS where each sublot requires setup on 
each machine. According to the GT assumption, a family does not split into sublots, and 
the jobs of the same family are processed together. It refers to so called HFS with group 
setup time (GST) problem. However, if the families are split, it requires a solution of an 
interrelated batching problem to find the optimal size of each sublot. It refers to a so 
called HFS with batch setup times (BST) problems.  

Since the BST problems require the solution of two interrelated problems (that of batching 
and scheduling), these problems are relatively harder to solve than their corresponding GST 
problems requiring only the solution of a scheduling problem (Monma & Potts, 1989). 

The setup times in the Sequence-Independent Family Setup Times problem could be either 
attached or detached. Since each sublot in case of BST (or family in case of GST problem) 
consists of multiple jobs, the sequence-independent setup time cannot be added to the 
processing time of any one of these jobs, as the first job in the sequence of the sublot or batch 
is not known until the scheduling problem is solved. However, for the sequence-dependent 
BST and GST problems, the sequence-dependent sublot or batch setup times are only of the 
detached type. 

 

Batch scheduling problem with setup times arises frequently in process industries, parts 
manufacturing environments and cellular assembly systems (such as chemical, 
pharmaceutical, food processing, metal processing, printing industries and semiconductor 
testing facilities). Detailed surveys of the recent publications about HFS with setup times 
might be consulted in (Ribas et al., 2010), (Ruiz, 2010), (Allajverdi, et al., 2008), (Zandieh et 
al., 2006). 

 
5. HFS with sequence-dependent setup times  

5.1 Investigated problems  
In recent years, many researchers put attention to the HFS problem with sequence- 
dependent setup times in consequence of its complexity, the variety of models as realistic as 
theoretical, and used tools to the algorithm creation. On Table 1 are summarized 
publications dedicated to the investigation of the HFS with sequence-dependent setup 
times. The first column indicates the year of publication, the second is the bibliographical 
reference, the third describes the problem; and the final column shows the resolution 
method, type of approach as well as other case details.  

 
Year Author Problem Comments 
1991 Guinet ( )

1 max,(( ) )| |{ , }k m
k sdFHm PM S C T  ad-hoc 

heuristics, 
textile 
industry 

1993 Adler et al. ( )
1,(( ) )| |k m w

k adFMm RM S T  

 

DR, packging 
industry 

 Voss (1) (2 )
max,(( ,1 )| |sdFHm PM S C  TS and 

heuristics 

1995 Aghezzaf et al. ( )
1 max max,(( ) )| |{ , , }k m

k sdFHm RM S C F F  
MPF, 
heuristics, 
carpet 
manufacturing 

1997 Li (1) (2 )
max2,((1 , ))| , , |sdFH PM batch S split C  

heuristics, 
major and 
minor setups, 
airplane 
engine plant 

2000 Liu & Chang ( )
1,(( ) ))| , |k m w w

k sdFHm PM S block E T   
MPF based 
heuristics 

2003 Kurz & Askin ( )
1 max,(( ) ))| |k m

k sdFHm PM S C  
heuristics 

 Lin & Liao ( ) (1) (2)2
1 max,(( ) ))| , |k

k sd jFHm PM S M wT  
heuristic, label 
sticker 
manufacturing 

2004 Kurz & Askin ( )
1 max,(( ) ))| |k m

k sdFHm PM S C  MPF, MPR-
GA 
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2005 Andres et al. ( ) 3
13,(( ) ))| |k

k sdFH PM S other  MPF, GT 

 Pearn et al. ( )
1,(( ) ))| |k m

k sdFHm PM S T  MPF, 
heuristics, 
packaging 
industry 

 Tang et al. ( )
1 max,(( ) ))| |k m

k sdFHm PM S C  NN 

2006 Ruiz & Maroto ( )
1 max,(( ) ))| , |k m

k sd jFHm RM S M C  MPR-GA 

 Zandieh ( )
1 max,(( ) ))| |k m

k sdFHm PM S C  Artificial 
Immune 
System 

2007 Chen et al. ( ) 3
1 max3,(( ) ))| , , |k

k sdFH RM S block prec C  MPF, lower 
bounds, TS, 
container 
terminal 

 Voss & Witt ( )
1,(( ) )| |k m w

k sdFHm PM S T  MPF, DR, 
heuristics. 
Multi-project 
RCPSP, steel 
manufacturing 

2008 Jungwattanakit 
et al. 

( )
1 max,(( ) ) (1)| , | )k

k sd
m

jFHm RM S r C U     MPF, 
heuristics, GA, 
SA, TS 

 Ruiz et al. 
m

( )
1 ax,(( ) ))| , , , , , |m

j
k

k sdFHm RM skip rm lag S M prec C

 

MPF, 
heuristics 

2009 Jungwattanakit 
et al. 

( )
1 max,(( ) ) (1)| , | )k

k sd
m

jFHm RM S r C U     MPF, 
heuristics, DR, 
GA 

 Naderi et al., a ( )
1,(( ) ))| , |{ , }k m

k sdFHm PM S transport F T  SA 

 Yaurima et al. ( )
1 max,(( ) ))| , , |k m

k sd jFHm RM S M buffer C  MPR-GA, 
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Table 1. Investigated problems of HFS with sequence-dependent setup times. 
 
The table shows that in recent years the publications are dedicated to more complex models of 
the problem, with unrelated parallel machine environment, release times, limited buffers, lags, 
and machine eligibility among others. A general framework to solve the problem includes: 
dispatching rules (DR), neural networks (NN), tabu search (TS), multiple permutation 
representation (MPR), local search (LS), simulated annealing (SA), genetic algorithms (GA). 
Mathematical programming formulation (MPF) is developed for many models. 

The procedures to seek a solution of a HFS problem can be classified into two principal 
categories (Quadt & Kuhn, 2007): optimal procedures and heuristics. The literature does not 

 

report application of any optimal procedure, like Dynamic Programming or Branch & 
Bound methods, to solution of a HFS problem with sequence-dependent setup times. 
Heuristics do not necessarily find an optimal solution. However, they are usually faster than 
optimal procedures and some of them are used for realistic problem sizes. Heuristics may be 
split into holistic and decomposition approaches. Holistic approaches consider the complete 
scheduling problem in an integrated way. A simple holistic approach is to use dispatching 
rules to select the next job that has to be produced whenever a machine becomes idle. The 
use of such heuristics is very common in HFS, see, e.g., (Adler et al., 1993), (Voss & Witt, 
2007), (Jungwattanakit et al., 2009). 
Most holistic procedures are local search methods or metaheuristics. In HFS, a job consists of 
several operations, one for each production stage. Thus, a HFS schedule assigns machine for 
each operation as well as a production sequence for each machine. A move to a neighboring 
schedule may change the machine assignment of an operation or its position in the 
sequence. This neighborhood is very large. Hence, local search procedures and 
metaheuristics must find ways to limit the size of the neighborhood. This can be done by 
only allowing certain moves that appear promising. Examples of metaheuristic techniques 
application are given in (Tang et al., 2005), (Chen et al., 2007), (Naderi et al., 2009), (Yaurima 
et al., 2009), among others. 

In contrast to holistic approaches, decomposition approaches divide the problem into 
segments that are considered consecutively, with respect to the production stages, the 
individual jobs, or the sub-problems to be solved (batching, loading, and sequencing), e.g., 
(Li, 1997), (Alfieri, 2009). 

The HFS scheduling problems with sequence-dependent setup times are among the most 
difficult classes of scheduling problems. When a practical problem of large instance sizes 
does not require of a fast result obtain, a good approximate solutions are achieved through a 
genetic algorithm (GA). 

 
5.2 GA approach 
A GA is a well known search technique used to find solutions to optimization problems. It 
was proposed by Holland (1975). All GA act according to the scheme represented on Figure 
3. Candidate solutions are encoded by chromosomes (also called genomes or individuals). 
The set of initial individuals forms the population. Fitness values are defined over the 
individuals and measure the quality of the represented solution. The genomes are evolved 
through the genetic operators generation by generation to find optimal or near-optimal 
solutions. Three genetic operators are repeatedly applied: selection, crossover, and 
mutation. The selection picks chromosomes to mate and produce offspring. The crossover 
combines two selected chromosomes to create next generation of chromosomes. The 
mutation randomly reorganizes the structure of genes in a chromosome, so that a new 
combination of genes may appear in the next generation. The individuals evolve until some 
stopping criterion is met.  

The first paper was by Ruiz and Maroto (2006) where application of GA techniques to HFS 
problem with sequence-dependent setup times had been realized. There were considered 
the makespan minimization criterion on a m-stage problem with unrelated parallel 
machines, sequence-dependent setup times and machine eligibility. The proposed GA was 
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a wide range of heuristics and other metaheuristics, among them, ACO based heuristics, TS 
procedures, other GAs, SA and deterministic procedures. A similar problem, with unrelated 
parallel machines at each stage, and setup times, was approached in (Jungwattanakit, et al. 
2008) using GAs and later in (Jungwattanakit, et al., 2009) applying several heuristics 
including DR, GA, tailored heuristics, TS and SA. In these two papers, the authors study a 
linear combination of the makespan and a number of tardy jobs as an objective. Recently, in  
(Yaurima, et al., 2009) is proposed a GA for a complex HFS problem considering makespan 
minimization on an m-stage problem with sequence-dependent setup times, unrelated 
parallel machines, machine eligibility and limited buffers.  

 
5.3 Crossover operators 
The crossover operator is an important factor for a good performance of the GA. The 
following crossover operators should be considered to solve the examined problem 
according to previous investigations of authors. 

1. OBX - Order Based Crossover (Gen, 1997), (Figure 4). 
 

 
Fig. 4. OBX Crossover  
 
This operator is based on a binary mask. The values of the mask equal to one indicate that 
the corresponding sequence of elements from parent 1 to child, is copied. The remaining 

7 1 9 8 4 6 2 5 3
1 2 3 4 5 6 7 8 9

7 2 3 1 5 4 6 8 9
1 2 3 4 5 6 7 8 9

Father 2 

0 1 1 0 1 0 0 1 1 
1 2 3 4 5 6 7 8 9

Mask 

1 2 3 4 5 6 7 8 9 
1 2 3 4 5 6 7 8 9 

Father 1 

Child  

 

elements from parent 2 are copied. The mask values are generated randomly and uniformly 
in all crossover operations. 

2. PPX - Precedence Preservative Crossover (Bierwirth, et al., 1996), (Figure 5). 
 

 
Fig. 5. PPX Crossover 
 
This operator is based on a binary mask. The values of the mask equal to 1 indicate that 
corresponding elements from parent 1 are copied to child and values equal to 0 indicates that the 
elements are copied from parent 2, according to each value of the mask one at a time alternately. 

3. OSX - One Segment Crossover (Guinet & Salomon, 1996), (Figure 6).  
 

 
Fig. 6. OSX Crossover 
 
Two points are randomly chosen. The elements from parent 1 since position 1 to the first 
place are copied. Elements from parent 2 since first point to the second point are copied. 
Finally, the items from parent 1 since the second point to last position are copied, 
considering not copied elements. 

4. TP - Two Point (Michalewicz, 1996), (Figure 7). 
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Two points are randomly chosen. The elements from parent 1 since first position to the first 
point and since second point to the last position are copied. The elements from parent 2 
since first point to the second point are copied. 

 
Fig. 7. TP Crossover 
 
5. SB2OX - Similar Block 2-Point Order Crossover (Ruiz & Maroto, 2006), (Figure 8).  

The common blocks in both parents (at least two consecutive identical jobs) are copied to the 
children, then two random cut points are defined and the section between these two points 
directly copied to children. The missing elements of each offspring are copied in the relative 
order of the other parent. 

6. ST2PX - Setup Time Two Point Crossover (Yaurima, et al., 2009), (Figure 9). 

In this crossover operator the sequence-dependent setup time is considered. Two points 
randomly in the sequence are chosen. The elements since first position to the first point and 
since second point to the last position, are copied from parent 1. The elements since first 
point to the second point are copied from parent 2 according to the minimum setup time of 
one machine randomly chosen from the first stage.  

 
5.4 A problem of makespan minimizing in a HFS with multiple constrains  
A complex problem of makespan minimizing in a HFS with sequence-dependent setup 
times, unrelated machines, availability constraints and limited buffers is presented. The real 
case of the television production environment is considered (Yaurima, et al., 2009). 

Different television models are distinguished by their set of PCBs. The monthly production 
plan is developed based on current requirements, machines availability and resource 
constrains. It is updated daily depending on the final section requirements. It is examined the 
auto-Insertion section, where various PCB types are manufactured with automated machines 
for 70 television models, 45 machines and production units of different brands are dealt with.  

The auto-insertion section is represented by a HFS with six stages (operations) common for 
all PCB types. However, some PCBs do not require all six operations. Each stage consists of 
several insertion machines in parallel, and they are dedicated to the certain types of 
component processing. At each instant of time, each machine works on at most one PCB, 
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and each PCB is processed by at most one machine. The PCBs are moving along the 
assembly line, from one machine to another until it became a complete unit.  
 

 
a) 

 
b) 

 
c) 

Fig. 8. SB2OX Crossover: 
a) the common jobs in both parents are copied over to the offspring;  
b) jobs before a randomly chosen cut point are inherited from the direct parent;  
c) the missing elements in the offspring are copied in the relative order of the other parent. 

The flow is determined by technological constraints. Machines of different brands with 
identical functionality but with different speeds or capabilities are included in the stage. The 
processing time depends on the machine brand. It is considered scheduling in the presence 
of machine eligibility restrictions when not all machines can process all PCBs, and machine 
availability restrictions when the use of machines depends on their current state: active or in 
maintenance service. Adjustment of the machine and the preparation of its feeder are 
required when the board type is changed. The feeders have different capacities (number of 
slots). For example, machines could have 60 slots or 80 slots. The time needed for 
adjustment essentially depends on the board type previously processed in the machine. It 
cannot be neglected in the television PCB production environment. Hence, a sequence-
dependent setup time is needed. Each machine has a limited capacity buffer for storing WIP. 
If the storage is filled to full capacity, the production on this machine is blocked.  

The problem is modeled as a HFS with the following constraints: (1) From two to six 
successive stages with the common flow pattern for all PCB types; (2) Stages with unrelated 
machines; (3) Machine eligibility/availability; (4) Sequence-dependent setup time; (5) 
Limited buffers. The goal is to find a schedule that minimizes the total production time. 
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Fig. 9. ST2PX Crossover 
 
The problem is denoted as ( ) ( )

1 max,(( ) | , , |i m
i sd jFHm RM S M Block C . The next is the problem 

statement: Let a set N of n jobs, {1,2,..., }N n  given at time 0 has to be processed in a set M 
of m consecutive production stages, {1,2,..., }M m , without preemption. The objective to 
minimizing is total completion time known as makespan. On stage i M , a set 

{1,2,..., }i iM m  of unrelated parallel machines is given, where 1iM  .  

Each job has to be processed by exactly one machine at each stage. Let , ,i l jp  be the 

processing time of job j N , on machine il M , at stage i. A machine based sequence-
dependent setup time is considered. Let 

, , ,i l j k
S  be the setup time on machine l, at stage i, 

when processing job k N , after processing job j. A set of eligible machines that can process 
job j at stage i, is denoted as ,i jE ,

 
1 ij iE m  . For each machine il M  a limited buffer for 

jobs is given. A maximal storage capacity in front of each machine l is ,i lb ,  ,1 | | .i lb n  

Many authors separate sequencing and assignment decisions in the HFS problems. To solve 
this problem, a way proposed by Ruiz and Maroto (2006) is used, where the assignment of 
jobs to machines in each stage is done by a  evaluation function. In the HFS with no setup 
times and no availability constraint assignment of the job to the first available machine 
would result in the earliest completion time of the job. In the HFS with unrelated parallel 
machines it is demonstrated that if the first available machine is very slow for a given job, 
assigning the job to this machine can result in a later completion time compared with 
assignment to other machines. With the consideration of the setup times this problem 

 

becomes worse. To solve it, in our algorithm, a job is assigned to the machine that can finish 
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speeds, setup times, machine availability, and buffer size. 

The calculation of the total completion time maxC  is as follow: Let  be a job permutation or 
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The GA, was tuned up by the following parameters elected in the parameter calibration 
step: crossover  ST2PX; mutation Swap; crossover probability 0.8; mutation probability 0.1; 
population size 200. The execution steps of this algorithm (GASBC) are presented below. 
 
Algorithm. GASBC. 

 Input: The population of Psize individuals.  
Output: An individual of length n. 
01. generate_population 
02. regeneration = 1 

 03. while not stopping_criterion do  
 04.    for i=0 to Psize  

05.   evaluate_objective_function(i) 
 06.  keep_the_best_individual_found() 
 07.  if actual_best_makespan >= previous_best_makespan 
 08.   iterations_without_improvement = iterations_without_improvement +1 
 09.   if iterations_without_improvement = 25  
 10.    if regeneration = 10  
 11.        stopping_criterion = true 
 12.      else 
 13.       sort_the_population_in_ascending_order_of_Cmax() 
 14.       regenerate_population() 
 15.        regeneration = regeneration+1 
 16.       iterations_without_improvement = 0 
 17.  select_individuals_by_the_binary_tournament_selection 
 18.  crossover ST2PX with probability 0.8 
 19.  mutation SWAP with probability 0.1 
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5.5 Example 
The following example illustrates this algorithm execution. Let is considered an instance 
with parameters n = 7, m = 3, m1 = m2 = 2, and m3=1. Let Table 2 sets up eligibility, and Table 
3 processing times. The number -1 means that the machine l is not eligible or not available 
for the job j. Table 4 shows sequence-dependent setup times of job k if job j precedes to job k. 
Table 5 shows the limited buffer sizes. 

Job j Stage i 

1 2 3 

1 {1} {1} {1} 

2 {2} {1,2} {1} 

3 {1,2} {1,2} {1} 

4 {1,2} {2} {1} 

5 {1,2} {1,2} {1} 

6 {1} {2} {1} 

7 {2} {2} {1} 
Table 2. A set of eligible machines  
at stage i that can process job j   

  Stage i 1 1 2 2 3 

 Machine l 1 2 1 2 1 

Job j 1 54 -1 69 -1 60 

 2 -1 76 75 67 55 

 3 58 93 51 82 75 

 4 59 95 -1 52 88 

 5 75 62 58 73 93 

 6 50 -1 -1 52 61 

  7 -1 57 -1 66 93 
Table 3.The processing time , ,i l jp  of job j ,  
on machine l , at stage i. 

 

Job k 1 2 3 4 5 6 7 

Job j 1 0 41 50 28 27 29 29 

  2 38 0 25 38 47 48 31 

  3 29 35 0 38 25 29 34 

  4 42 26 37 0 26 33 30 

  5 28 45 47 31 0 47 27 

  6 36 29 27 44 31 0 29 

  7 42 28 49 49 32 49 0 
Table 4. Sequence-dependent setup times 
 for the first machine 

Stage i 1  1 2  2  3 

Machine l 1 2 1 2 1 

 Buffer bi,l 2 2 3 2 3 
Table 5. Limited buffers 

 

Let a population with 10 individuals is generated (Figure 10). Figure 11 presents the fitness 
value of each individual. The best solution is represented by the individual 2 with makespan 
817. The population is ordered and regenerated: 20% best individuals are kept, 40% are 
replaced by simple Insert mutation of the best individual, and reminding worst 40% are 
replaced by randomly generated individuals. Figure 12 shows the regeneration result. 

Figure 13 shows result of the binary selection. The ST2PX crossover is applied with  
probability 0.8 (Figure 14). Let is assumed that the first point is at position 2, and the second 
point is at position 6 (Fig. 14A). Elements from position 1 to position 2 of parent 1 are copied 

 

to the child. Elements from position 6 to position 7 (last position) are copied from parent 1 
(Fig. 14B). The remaining positions of the child are filled with best elements from parent 2, 
taking into account the sequence-dependent setup times (Fig. 14C). Three jobs (4, 2 and 7) 
can be processed at position 3 after processing job 3 at position 2. Hence, three setup times 
(37, 25, 49) are compared, and job 2 with minimal setup time 25 is chosen. Two setup times 
(46 and 28) are compared for position 4, and job 7 is chosen. The last job (4) is copied to 
position 5. Finally, the SWAP mutation is applied with probability 0.1 (Fig. 15). Fig. 16 
shows the Gantt chart of the final result.  
 

 
Fig. 10. Initial population  

 
Fig. 11. Fitness value of each individual 

 

 
Fig. 12. Regeneration procedure 

 
Fig. 13. Binary selection 
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Fig. 14. ST2PX crossover application 
 

 
Fig. 15. SWAP mutation 

 
6. Conclusion 

There are several applications of the HFS scheduling problems which consider setup times 
in industry, and the variety of models as realistic as theoretical is practically innumerable; 
then this field of study will attract always the researcher attention. The hardest situation 
involving setup times is HFS problem with sequence-dependent setup times. It is among the 
most difficult classes of scheduling problems. Due the complexity, artificial intelligence and 
metaheuristic techniques should be used for practical problems with multistage parallel 
machine environment and large instance sizes, in particularity, evolutionary algorithms.  
Actually, the authors are exploring a mixed model which consist of a HFS combined with a 
number of assemble lines. There are considered setup times of machines. The problem 
involves splitting of lots. Its solution consumes all topics exposed in this chapter. 

 

 

 
Fig. 16. Gantt chart for the problem solution (Cmax = 805) 
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1. Introduction

The batch processing machines (BPMs) have the ability to process more than one job together
(called a batch). So the scheduling problem of the BPMs concerns not only the priorities of the
jobs obtaining the processing service of a BPM, but the number of the jobs processed together
on them. According to diverse classified criteria (such as the number of the BPMs and the
job families), the scheduling problem of the BPMs can be further divided into several styles,
e.g., a single BPM scheduling problem (SBPM), identical parallel BPMs scheduling problem
(PBPM) , non-identical PBPM, the BPMs scheduling problem with compatible job families and
the BPMs scheduling problem with incompatible job families.
In this paper, we address the BPMs scheduling problem in a semiconductor wafer fabrication
facility (fab), in where there are many BPMs, such as diffusion machines, oxidation machines
and dry strip machines. The jobs processed on those machines cannot be batched together
unless they use the same recipe of those BPMs. As a result, the scheduling problem of those
BPMs is abstracted as identical PBPM with incompatible job families. In a fab, because most
of upstream and downstream machines of the BPMs are non-BPMs, jobs must be batched
or split regularly during their fabrication processes. Therefore, a good scheduling solution
of those BPMs is essential to efficiently utilize their capacity and satisfy the requirements of
their downstream machines to balance the fab-wide workload and achieve better fab-wide
operational performance.
In recent years, there have been many studies of the BPMs scheduling problem. Mathirajan
and Sivakumar (Mathirajan & Sivakumar, 2006) have reviewed 98 articles published between
1986 and 2004 on this topic, and the research has considerably evolved since 2004. For ex-
ample, to minimize the makespan or average flow time of the jobs, Chien and Chen (Chien
& Chen, 2007) developed a genetic algorithm (GA) for batch sequencing combined with a
novel timetabling algorithm to handle waiting time constraints, frequency-based setups, lim-
ited machine availability and a rolling horizon-based scheduling mechanism for scheduling
of furnaces for semiconductor fabrication. Chou et al. (Chou et al., 2006) presented a hybrid
GA for SBPM with arbitrary job release times. To meet due date requirements from customers,
Gupta and Sivakumar (Gupta & Sivakumar, 2007) presented a dynamic scheduling method
for SBPM with a look-ahead batching strategy to control the delivery performance between
earliness and tardiness measures. Erramilli and Mason (Erramilli & Mason, 2006) proposed a
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mixed integer program and a simulated annealing (SA)-based heuristic method to solve SBPM
to minimize the total weighted tardiness (TWT). To be applicable to a real production envi-
ronment, some research work has also considered upcoming jobs. Solomon et al.(Solomon et
al., 2002) presented a dispatching policy for the BPMs that incorporated knowledge of future
arrivals, the status of critical machines in subsequent processing, and setup times into batch
processing scheduling. Mönch et al. (Mönch et al., 2006) proposed a simple heuristic method
based on the Apparent Tardiness Cost (ATC) Dispatching Rule to minimize the TWT on PBPM
with incompatible job families and unequal job ready times, in which inductive decision trees
and neural networks from machine learning were used to estimate the look-ahead parameter.
Liu et al. (Liu et al., 2007) proved that SBPM of minimizing the total tardiness was NP-hard
even if the machine capacity was only two jobs. Accordingly, most studies have used heuris-
tic rules (e.g.,(Gupta & Sivakumar, 2007; Solomon et al., 2002; Mönch et al., 2006)) or meta-
heuristic searching methods (e.g., (Chien & Chen, 2007; Chou et al., 2006; Erramilli & Mason,
2006)). Although heuristic rules can reach a solution quickly, they are myopic algorithms that
pursue local optimization without considering global optimization. Consequently, the meta-
heuristic searching methods (such as GA and SA) have been gradually adopted to obtain
global optima.
Ant Colony Optimization (ACO), inspired by the foraging behavior of real ant colonies, is a
population-based approach developed by Dorigo in 1992 (Dorigo M, 1992). ACO has been
successfully applied to several NP-hard combinatorial optimization problems, such as the
Traveling Salesman Problem (TSP), Quadratic Assignment Problem (QAP), Vehicle Routing
Problem (VRP), Job-Shop Scheduling Problem (JSP), Flow-Shop Scheduling Problem (FSP),
etc.(Dorigo M. & Stützle T., 2004). However, few researchers have applied ACO to solve
the BPMs scheduling problem. Only Srinivasa Raghavan and Venkataramana (Srinivasa &
Venkataramana, 2006) used an ACO algorithm to solve a static scheduling problem of mini-
mizing the TWT of PBPM with incompatible job families.
In this paper, firstly, we build an identical PBPM model concerned the practical considerations
of incompatible jobs, dynamic job arrivals, sequence-dependent setup times and the qual-run
requirements of advanced process control (APC). Then, we propose an ACO-based solution
to simultaneously minimize the TWT and makespan of the jobs. Finally, the effectiveness of
the proposed method is demonstrated by a variety of simulation experiments. The simulation
results show that the proposed method produces smaller TWT and makespan than the com-
mon Apparent Tardiness Cost-Batched Apparent Tardiness Cost (ATC-BATC) rule, Max Batch
Size rule (MBS), a GA and an Ant System algorithm (AS).
The rest of this paper is organized in four sections. In Section 2, we present the problem
description and assumptions. Then we outline the ACO-based solution in Section 3. In section
4, we show computational experiments and results. Finally, we give conclusions and future
research topics in section 5.

2. Problem Description and Assumptions

2.1 Problem description
With the 3-field notation, the PBPM scheduling problem in this paper can be denoted as

M|Aij, Qi, Batch, incompatible| min(∑
i

∑
j

wijTij + maxi,j(Fij)) (1)

where M is the number of the BPMs in PBPM; Aij is the arrival time of job j of family i ; Qi
is the qual-run time of family i ; wij and Tij are the weight, the tardiness and the completion
time of job j of family i , respectively.
There are two way to solve a PBPM scheduling problem. One is to distribute the jobs to PBPM
first, then batch the jobs and determine the priorities of the batches on each BPM. The other is
to batch the jobs first, then distribute the batches to PBPM and sequence the batches on each
BPM. Balasubramanian et al.(Balasubramanian et al., 2004) have shown by extensive simula-
tions that the second way achieved better solutions with less computation time. Therefore, we
have adopted the second style.
There are two main constraints when forming the batches. First, only jobs belonging to the
same family can be processed together. Second, the number of the jobs in a batch cannot
exceed the capacity of the PBPM (i.e., maximum batch size constraint). Another important
consideration is the trade-off between the waiting time for forming a full batch and the waste
of the PBPM capacity.
Distributing and sequencing the batches are the same as in other problems of scheduling par-
allel machines. The issues to consider are the hot lots, workload balance and the utilization of
the PBPM. It is also worthwhile to consider the trade-off between the setup times of schedul-
ing and the qual-run requirements of APC. In real semiconductor manufacturing environ-
ments, APC could achieve the best quality result by frequent changeovers between jobs from
different families, possibly avoiding the need for qual-runs. However, frequent changeovers
cost setup time and cause capacity loss. Instead of achieving the best quality, APC determines
a parameter range which represents acceptable quality for every job family. Based on this
range, APC provides a threshold value ni for each job family i . If a machine has been pro-
cessing no less than ni jobs (or batches for BPMs) from family j(j �= i) ,then before the next
time it processes jobs from family i ,a qual-run is required on that machine. In a qual-run, no
real job is processed. A blank wafer is processed to obtain the status of the machine so that
the operator can properly set the machine parameters to achieve high quality results. Before
the result of the qual-run is available, jobs cannot be processed on that machine. Therefore,
a trade-off between the time lost for setups and the time lost due to qual-runs is required.
However, most related research has not considered the qual-run requirements of APC. We
have found only the studies of Cai et al. (Cai et al., 2007) and Patel (Patel N-S, 2004) that
incorporated the constraint of process control into scheduling decisions.

2.2 Problem assumptions
The assumptions involved in the PBPM scheduling problem include:
(i) The machines in the PBPM are identical;
(ii) The PBPM scheduling problem is considered with a schedule horizon (e.g., one shift, one
day or several days), within which the scheduling plan of the jobs from multiple families is
decided;
(iii) The processing time of a batch on one machine is independent of the number of the jobs
in the batch;
(iv) Once processing begins on a batch, no job can be removed from or added to the machine
until it finishes.
(v) There are sequence-dependent random setup times for changeovers between jobs from
different families, and no setup times between jobs from the same family.
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mixed integer program and a simulated annealing (SA)-based heuristic method to solve SBPM
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of incompatible jobs, dynamic job arrivals, sequence-dependent setup times and the qual-run
requirements of advanced process control (APC). Then, we propose an ACO-based solution
to simultaneously minimize the TWT and makespan of the jobs. Finally, the effectiveness of
the proposed method is demonstrated by a variety of simulation experiments. The simulation
results show that the proposed method produces smaller TWT and makespan than the com-
mon Apparent Tardiness Cost-Batched Apparent Tardiness Cost (ATC-BATC) rule, Max Batch
Size rule (MBS), a GA and an Ant System algorithm (AS).
The rest of this paper is organized in four sections. In Section 2, we present the problem
description and assumptions. Then we outline the ACO-based solution in Section 3. In section
4, we show computational experiments and results. Finally, we give conclusions and future
research topics in section 5.

2. Problem Description and Assumptions

2.1 Problem description
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∑
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wijTij + maxi,j(Fij)) (1)

where M is the number of the BPMs in PBPM; Aij is the arrival time of job j of family i ; Qi
is the qual-run time of family i ; wij and Tij are the weight, the tardiness and the completion
time of job j of family i , respectively.
There are two way to solve a PBPM scheduling problem. One is to distribute the jobs to PBPM
first, then batch the jobs and determine the priorities of the batches on each BPM. The other is
to batch the jobs first, then distribute the batches to PBPM and sequence the batches on each
BPM. Balasubramanian et al.(Balasubramanian et al., 2004) have shown by extensive simula-
tions that the second way achieved better solutions with less computation time. Therefore, we
have adopted the second style.
There are two main constraints when forming the batches. First, only jobs belonging to the
same family can be processed together. Second, the number of the jobs in a batch cannot
exceed the capacity of the PBPM (i.e., maximum batch size constraint). Another important
consideration is the trade-off between the waiting time for forming a full batch and the waste
of the PBPM capacity.
Distributing and sequencing the batches are the same as in other problems of scheduling par-
allel machines. The issues to consider are the hot lots, workload balance and the utilization of
the PBPM. It is also worthwhile to consider the trade-off between the setup times of schedul-
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ments, APC could achieve the best quality result by frequent changeovers between jobs from
different families, possibly avoiding the need for qual-runs. However, frequent changeovers
cost setup time and cause capacity loss. Instead of achieving the best quality, APC determines
a parameter range which represents acceptable quality for every job family. Based on this
range, APC provides a threshold value ni for each job family i . If a machine has been pro-
cessing no less than ni jobs (or batches for BPMs) from family j(j �= i) ,then before the next
time it processes jobs from family i ,a qual-run is required on that machine. In a qual-run, no
real job is processed. A blank wafer is processed to obtain the status of the machine so that
the operator can properly set the machine parameters to achieve high quality results. Before
the result of the qual-run is available, jobs cannot be processed on that machine. Therefore,
a trade-off between the time lost for setups and the time lost due to qual-runs is required.
However, most related research has not considered the qual-run requirements of APC. We
have found only the studies of Cai et al. (Cai et al., 2007) and Patel (Patel N-S, 2004) that
incorporated the constraint of process control into scheduling decisions.

2.2 Problem assumptions
The assumptions involved in the PBPM scheduling problem include:
(i) The machines in the PBPM are identical;
(ii) The PBPM scheduling problem is considered with a schedule horizon (e.g., one shift, one
day or several days), within which the scheduling plan of the jobs from multiple families is
decided;
(iii) The processing time of a batch on one machine is independent of the number of the jobs
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3. ACO-Based Solution

3.1 Build a search space
Before we use an ACO algorithm to find a solution, the first task is to build a search space for
the ACO algorithm. In this paper, the search space is composed of nodes which are combina-
tions of the batches and the BPMs in the PBPM.
For Ni jobs, there are C1

Ni
+ C2

Ni
+ ...+ CB

Ni
( C is the combination operator) batching styles,

subject to the constraint of maximum batch size. In the case of many jobs (especially with a
number of dynamic arrival jobs), this kind of batching style will result in lower computation
efficiency. In this paper, we form the batches using the time window concept (denoted by ∆t )
proposed by Mönch et al. (Mönch et al., 2005).

∆t = dt × Avg(Pij) (2)

where Pij is the processing time of job j of family i ; Avg(Pij) is the average processing time
of the jobs; dt is a distribution parameter of ∆t .
At each batching decision point t ( t is set as the earliest ready time of the jobs to be batched),
the jobs of family i with arrival (ready) time less than the upper boundary of the time window
interval t + ∆t is denoted as M(j, t, ∆t) = {ij|Aij ≤ t + ∆t } .Then, we batch the jobs in
M(j, t, ∆t) subject to the maximum batch size constraint. We repeat the above process until all
jobs have been assigned to a batch. The ready time of each batch equals the latest arrival time
of the jobs in the batch. Finally, the search space (denoted as S )is built with nodes composed
of the batches and the BPMs in the PBPM.
Table 1 shows a simple example of building a search space. We assume that there are 2
machines in the PBPM and their batch size is 2 jobs. There are 2 families of jobs whose
processing times are set to 10 min and 15 min, respectively. For each family, there are
3 jobs to be scheduled. Here dt is set to 1. Then the time window ∆t can be com-
puted as ∆t = 1 × (10 + 10 + 10 + 10 + 15 + 15 + 15)/6 = 12.5 min .The batches
formed are shown in Table 2. These batches and machines constitute the search space S =
{(l11, m1), (l12, m1), ((l11, l12), m1), (l13, m1), (l21, m1), (l22, m1), (l23, m1), ((l22, l23), m1), (l11, m2),
(l12, m2), ((l11, l12), m2), (l13, m2), (l21, m2), (l22, m2), (l23, m2), ((l22, l23), m2)} ,whose size is 16
nodes.

Job(lij) l11 l12 l13 l21 l22 l23
Aij(min) 0 5 15 8 13 18

Table 1. An example of building a search space

Batches l11 l12 (l11, l12) l13 l21 l22 l23 (l22, l23)
ABatch(min) 0 5 5 15 8 13 18 18

Table 2. The formed batches for the simple example

3.2 Find a solution with an ACO algorithm
The parameters used in the ACO algorithm to find a solution are defined in Table 3.

Parameter Meaning
m The index of the BPMs in PBPM
B The capacity of the BPMs in PBPM
ij The index of the jobs, which means job j of family i
∆t The time window for job batching
dt The distribution parameter of time window ∆t
K The number of the ants in the artificial ant colony
k The index of the artificial ants
tmax The maximum number of iterations
t1 The iteration index
δ The minimum change of the minimum objective values

in two consecutive iterations
Lk

tabu The tabu-list of ant k
Lk

task The task-list of ant k
τ0 The initial pheromone on each arc
WTATC−BATC The TWT of the scheduling results obtained by ATC-BATC rule
FATC−BATC The makespan of the scheduling results obtained by ATC-BATC rule
l The task-list of ant k
c A candidate node in Lk

task
τc0 l The pheromone on the arc (c0, l)
c0 The last node selected by artificial ant k using the same machine as c
q A probability parameter (0 ≤ q ≤ 1)
α A parameter denoting the relative importance of

the pheromone density and the heuristic factor
ηc0c The heuristic factor if c is selected as the successor task of c0
Pc The processing time of c
Uc0c The setup time for the changeover between c0 and c
xc The qual-run parameter of c
Ac The arrival time of c
Qc The qual-run time of c
Fc0 The processing finish time of c0
Bc The batch size of c
Wc The workload of the machine processing c0 if c

is selected as the successor task of c0
Wm The workload of machine m
γ A parameter to regulate the workload among the BPMs in PBPM
minm(Ft1−1) The earliest finish time of the BPMs in PBPM in iteration t1 − 1
maxm(Ft1−1) The latest finish time of the BPMs in PBPM in iteration t1 − 1
ξ A parameter to reduce the pheromone trail on an arc used

by an ant to make it less attractive to the following ants
OVt1 The minimum objective value of the solutions in iteration t1
OVt1−1 The minimum objective value of the solutions in iteration t1 − 1
x, y Two different nodes in the search space
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3. ACO-Based Solution
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Ni
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Ni
+ ...+ CB

Ni
( C is the combination operator) batching styles,

subject to the constraint of maximum batch size. In the case of many jobs (especially with a
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γ A parameter to regulate the workload among the BPMs in PBPM
minm(Ft1−1) The earliest finish time of the BPMs in PBPM in iteration t1 − 1
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by an ant to make it less attractive to the following ants
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Future Manufacturing Systems168

τxy(t1) The pheromone on arc (x, y) in iteration t1
τxy(t1 + 1) The pheromone on arc (x, y) in iteration t1 + 1
∆τbs

xy The new pheromone deposition related to the best-so-far solution
ρ The pheromone evaporation parameter
Tbs The best-so-far solution during the search process

Table 3. The list of parameters used in the ACO algorithm

The detailed flowchart of the ACO algorithm is shown in Figure 1.

Fig. 1. The flowchart of the ACO algorithm

Step 1: Initialization. There are four main tasks in the initialization stage: to determine the
number of the ants in the artificial ant colony, to set the termination conditions for the search,
to initialize each artificial ant, and to set the initial pheromones on the arcs.
a) The number of ants in the artificial ant colony
Here we set the number of ants in the artificial ant colony to the number of nodes in the search
space. For example, the number of artificial ants for solving the problem in Table 1 can be set
to 16.
b) The termination conditions
Here we set two kinds of termination conditions. One is the maximum number of iterations
(denoted by tmax ). The other is the minimum change of the minimum objective values in
two consecutive iterations (denoted by δ ).
c) Initialization of each artificial ant
First, we build a tabu-list and a task-list for each artificial ant (indexed with k ), denoted by
Lk

tabu and Lk
task , whose initial values are set to φ and S ,respectively. Then, we distribute

the start points (i.e., the nodes in the search space) randomly to each artificial ant. The node
distributed to ant k is added to Lk

tabu , and deleted from Lk
task . To guarantee that each

job is processed only once, the nodes with the same job as the distributed node are also
deleted from Lk

task .Take the problem in Table 1 as an example, and assume that the node
(l11, m1) is assigned to ant 1 .Then the tabu-list and task-list of ant 1 become {(l11, m1)} and
{(l12, m1), (l13, m1), (l21, m1), (l22, m1), (l23, m1), ((l22, l23), m1), (l12, m2), (l13, m2), (l21, m2), (l23,
m2), ((l22, l23), m2)} ,respectively.
d) Initialization of the pheromone on each arc
The initial pheromone on each arc is set with the scheduling results obtained by the ATC-
BATC rule, which also guarantees that the scheduling results achieved by the proposed ACO
algorithm are no worse than those of the ATC-BATC rule.

τ0 = 1 / (K × (WTATC−BATC + FATC−BATC)) (3)

Step 2: Each artificial ant searches for its solution. Artificial ant k selects its next node l from
its task-list Lk

task according to the so-called pseudorandom proportional rule, given by

l =




arg maxc∈Lk
task

{ ατc0c + (1−α)ηc0c

Σcατc0c + (1−α)ηc0c
}, q ≤ q0

maxc(rand(0, 1)× ατc0c + (1−α)ηc0c

Σcατc0c + (1−α)ηc0c
, otherwise

(4)

ηc0c = (1 − Pc+Uc0c+xcQc+max((Ac−Fc0 ),0)
maxc(Pc)+maxc(Uc0c)+maxc(Qc)+max((maxc(Ac)−Fc0 ),0)

) + Bc
B + γ∆Wc

∆Wc =

{ Wc
maxm(Wm)

, Wc ≤ maxm(Wm)
Wc

maxm(Wm)
− 1, Wc > maxm(Wm)

γ =
ΣiΣj Pij/M−minm(Ft1−1)

maxm(Ft1−1)−ΣiΣj Pij/M

xc =




1, if no less than nibatches from familyj(j �= c)have been processed
−1, if(ni − 1)batches from familyj(j �= c)have been processed
0, otherwise
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space. For example, the number of artificial ants for solving the problem in Table 1 can be set
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(denoted by tmax ). The other is the minimum change of the minimum objective values in
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task . To guarantee that each
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The initial pheromone on each arc is set with the scheduling results obtained by the ATC-
BATC rule, which also guarantees that the scheduling results achieved by the proposed ACO
algorithm are no worse than those of the ATC-BATC rule.
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Obviously, ant k selects the node with the highest attractiveness indicated by the learned
pheromone trails and the heuristic information with probability q0 , while with probability
1 − q0 it performs a biased exploration of the arcs. The heuristic factor ηc0c simultaneously
takes into consideration on c ’s occupation time (including possible qual-run time, processing
time, setup time and waiting time), the capacity utilization rate and the relative workload of
the machine.
The selected node is added to Lk

tabu and deleted from Lk
task .Meanwhile, the nodes with the

same job as the selected node are also deleted from Lk
task .Then, the local pheromone trail is

updated

τc0 l = (1 − ξ)τc0 l + ξτ0 (5)

The parameter ξ allows artificial ants to increase their exploration of new arcs, and in practice
avoids a stagnation behavior (i.e., the ants do not converge on a common path).
The process is repeated until Lk

task is empty. Obviously, the tabu-list Lk
tabu is the solution

obtained by ant k ’s search process.
Step 3: Determine whether the termination conditions are satisfied. First, we compute the
objective values of the solutions obtained by the artificial ants. Then we select the minimum
to compare with that of the last iteration. If the difference between these two consecutive
minimum objective values is no more than a small positive value (denoted by δ ), we stop
the search process. The tabu-list with the minimum objective value is taken as the solution.
Otherwise, we determine whether tmax has been reached. If the answer is yes, we select the
tabu-list with the minimum objective value as the solution. Otherwise, we go to step 4.
Step 4: Pheromone updating. We update the pheromone values on the arcs with the best-so-
far solution according to equation (6), and then repeat steps 2 and 3.

τxy(t1 + 1) = (1 − ρ)τxy(t1) + ρ∆τbs
xy, ∀(x, y) ∈ Tbs (6)

∆τbs
xy = 1/mink(ΣiΣjwijTij + maxi,j(Fij)), 0 < ρ < 1

The pheromone trail update, both evaporation and new pheromone deposition, only applies
to the arcs of the best-so-far solution, not to all the arcs. In this way, the computational com-
plexity of the pheromone update at each iteration is reduced from O(K2) to O(K) .The
deposited pheromone is discounted by a factor ρ , which results in the new pheromone
trail being a weighted average between the old pheromone value and the newly deposited
pheromone.

4. Computational experiments and results

4.1 The scheduling methods to be compared
We compared the performances of the proposed ACO algorithm with those of ATC-BATC,
MBS, a GA (refer to (Balasubramanian et al., 2004)) and an Ant System algorithm (refer to
(Li et al., 2008) ). As a common BPM scheduling rule, ATC-BATC has good performance on
static BPM scheduling problems. To adapt it to dynamic jobs arrival, we made some small
modifications to the rule. The decision flow of the modified ATC-BATC rule is as follows.
First, at each batching decision point t , compute the index of job j of family i which belongs
to M(j, t, ∆t) .

Iij(t0) =
wij

Pij
exp( −

(dij − Pij − t0 + (Aij − t0)
+)+

k1P
) (7)

where wij , Pij , dij and Aij are the weight, the processing time, the due date and the
arrival time of job j of family i ,respectively; t0 is the scheduling decision point; k1 is the
look-ahead parameter, which usually ranges from 0.1 to 5; and P is the average processing
time of the jobs. Then form batches by selecting jobs in a non-increasing order of Iij ,subject to
the maximum batch size constraint. Repeat the above process until the batching is complete.
Second, make a batch sequence in non-increasing order of Ibi according to equation (8) and
distribute the batches to BPMs of the PBPM in turn

Ibi(t0) = Σj=1nbi Iij(t0)× min(
nbi
B

, 1) (8)

where nbi is the number of the jobs in a batch of family i .

4.2 The problem cases for the simulations
We used the dry strip operations in a real wafer fab to demonstrate the proposed ACO
algorithm. There are 3 identical machines for the dry strip operations in this wafer fab.
Each machine has a capacity of 3 jobs and can process 4 different recipes. The thresh-
old value for the qual-run requirements of each recipe is 3 jobs. The processing times
for recipe1 , recipe2 , recipe3 and recipe4 are random variables from the uniform
distributions Uni f orm(90, 100), Uni f orm(90, 100), Uni f orm(70, 80)andUni f orm(90, 100) , re-
spectively. The setup times are from the distribution Uni f orm(10, 20) .The qual-run
times for recipe1 , recipe2 , recipe3 and recipe4 conform to the distributions
Uni f orm(30, 40), Uni f orm(30, 40), Uni f orm(20, 30) , and Uni f orm(30, 40) , respectively. The
time unit is minutes.

4.3 Determining the distribution parameter dt for time window ∆t
Although Mönch et al.(Mönch et al., 2005) presented the concept of the time window, they did
not specify how to determine its value. We ran a number of simulations on random problem
cases (shown in Table 4) to determine the best value for the distribution parameter dt of the
time window ∆t . ATC-BATC was used for the simulations, with its look-ahead parameter
k1 set to 0.5 (according to extensive simulations). Values of dt in the range from 0 to 2.0 at
intervals of 0.25 were tested. The simulation results are shown in Table 5 and Figure 2. From
the simulation results, we can reach the following conclusions.

Problemparameter Valueused Numbero f values
Numbero f jobs 20 1
Arrivaltimeso f jobs Uni f orm(−rΣiΣjPij/(BM), rΣiΣjPij/(BM)) 8

r = 0.25, 0.50, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0
Duedateso f jobs Aij + Pij + Uni f orm(0, Avg(Pij)) 1
Timewindow∆t dt · Avg(Pij) 9

dt = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2.0
Weightperjob Uni f orm(0, 1) 1

Totalparametercombinations 72
Numbero f problemspercombination 5
Totalproblems 360

Table 4. Problem cases for determining the time window ∆t



ACO-based Multi-objective Scheduling of Identical  
Parallel Batch Processing Machines in Semiconductor Manufacturing 171

Obviously, ant k selects the node with the highest attractiveness indicated by the learned
pheromone trails and the heuristic information with probability q0 , while with probability
1 − q0 it performs a biased exploration of the arcs. The heuristic factor ηc0c simultaneously
takes into consideration on c ’s occupation time (including possible qual-run time, processing
time, setup time and waiting time), the capacity utilization rate and the relative workload of
the machine.
The selected node is added to Lk

tabu and deleted from Lk
task .Meanwhile, the nodes with the

same job as the selected node are also deleted from Lk
task .Then, the local pheromone trail is

updated
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avoids a stagnation behavior (i.e., the ants do not converge on a common path).
The process is repeated until Lk

task is empty. Obviously, the tabu-list Lk
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obtained by ant k ’s search process.
Step 3: Determine whether the termination conditions are satisfied. First, we compute the
objective values of the solutions obtained by the artificial ants. Then we select the minimum
to compare with that of the last iteration. If the difference between these two consecutive
minimum objective values is no more than a small positive value (denoted by δ ), we stop
the search process. The tabu-list with the minimum objective value is taken as the solution.
Otherwise, we determine whether tmax has been reached. If the answer is yes, we select the
tabu-list with the minimum objective value as the solution. Otherwise, we go to step 4.
Step 4: Pheromone updating. We update the pheromone values on the arcs with the best-so-
far solution according to equation (6), and then repeat steps 2 and 3.

τxy(t1 + 1) = (1 − ρ)τxy(t1) + ρ∆τbs
xy, ∀(x, y) ∈ Tbs (6)

∆τbs
xy = 1/mink(ΣiΣjwijTij + maxi,j(Fij)), 0 < ρ < 1

The pheromone trail update, both evaporation and new pheromone deposition, only applies
to the arcs of the best-so-far solution, not to all the arcs. In this way, the computational com-
plexity of the pheromone update at each iteration is reduced from O(K2) to O(K) .The
deposited pheromone is discounted by a factor ρ , which results in the new pheromone
trail being a weighted average between the old pheromone value and the newly deposited
pheromone.

4. Computational experiments and results

4.1 The scheduling methods to be compared
We compared the performances of the proposed ACO algorithm with those of ATC-BATC,
MBS, a GA (refer to (Balasubramanian et al., 2004)) and an Ant System algorithm (refer to
(Li et al., 2008) ). As a common BPM scheduling rule, ATC-BATC has good performance on
static BPM scheduling problems. To adapt it to dynamic jobs arrival, we made some small
modifications to the rule. The decision flow of the modified ATC-BATC rule is as follows.
First, at each batching decision point t , compute the index of job j of family i which belongs
to M(j, t, ∆t) .

Iij(t0) =
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where wij , Pij , dij and Aij are the weight, the processing time, the due date and the
arrival time of job j of family i ,respectively; t0 is the scheduling decision point; k1 is the
look-ahead parameter, which usually ranges from 0.1 to 5; and P is the average processing
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where nbi is the number of the jobs in a batch of family i .
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We used the dry strip operations in a real wafer fab to demonstrate the proposed ACO
algorithm. There are 3 identical machines for the dry strip operations in this wafer fab.
Each machine has a capacity of 3 jobs and can process 4 different recipes. The thresh-
old value for the qual-run requirements of each recipe is 3 jobs. The processing times
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Uni f orm(30, 40), Uni f orm(30, 40), Uni f orm(20, 30) , and Uni f orm(30, 40) , respectively. The
time unit is minutes.

4.3 Determining the distribution parameter dt for time window ∆t
Although Mönch et al.(Mönch et al., 2005) presented the concept of the time window, they did
not specify how to determine its value. We ran a number of simulations on random problem
cases (shown in Table 4) to determine the best value for the distribution parameter dt of the
time window ∆t . ATC-BATC was used for the simulations, with its look-ahead parameter
k1 set to 0.5 (according to extensive simulations). Values of dt in the range from 0 to 2.0 at
intervals of 0.25 were tested. The simulation results are shown in Table 5 and Figure 2. From
the simulation results, we can reach the following conclusions.
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r = 0.25 r = 0.5 r = 0.75 r = 1.0 r = 1.25 r = 1.5 r = 1.75 r = 2.0
dt = 0.25 169.40 242.45 239.39 335.41 257.45 253.24 312.09 345.01
dt = 0.50 168.44 226.08 182.97 250.39 257.18 253.24 262.68 345.01
dt = 0.75 168.44 178.25 182.97 250.39 250.27 251.35 277.44 342.01
dt = 1.00 168.44 178.25 182.97 230.49 205.27 233.97 257.13 330.12
dt = 1.25 168.44 178.25 182.34 230.49 206.65 233.97 257.13 330.12
dt = 1.50 168.44 178.25 182.34 230.49 206.65 233.97 261.68 332.98
dt = 1.75 168.44 178.25 182.34 230.20 218.49 233.97 261.68 333.52
dt = 2.00 168.44 178.25 182.34 230.20 218.49 233.97 262.90 333.52

Table 5. The average objective values with variables dt and r

Fig. 2. The objective values with variables dt and r

i) The parameter dt interacts strongly with the arrival time distribution parameter r ; the
best choice is dt = 1 for most cases. ii) Larger dt is not better than smaller dt when r is
large. For example, when r was set to 1.25, 1.75 or 2.0, the objective values with dt = 1.5 ,
dt = 1.75 or dt = 2.0 were more than with dt = 1 .
In addition, we simulated the same problem cases with the proposed ACO algorithm. The
parameters q0 , α , ρ , δ , ξ and tmax were set to 0.5, 0.5, 0.1, 0.001, 0.1 and 100,
respectively. The average improvements of ACO with different values of r compared with
ATC-BATC are shown in Figure 3. The improvement increased with r , with an inflection in
the curve at r = 1 . When r was from 0.25 to 1 or from 1.25 to 2, the larger was r , the better
were the improvements by ACO. Furthermore, the improvements for r above 1 were better
than those for r from 0.25 to 1. In the following simulations, we only consider r values from
0.25 to 1.

4.4 Determining the values of the parameters in the ACO algorithm
a) Determine the probability parameter q0 Tuning the parameter q0 allows adjusting the
degree of exploration and the choice of whether to concentrate the search around the best-so-
far solution or to explore other solutions. We determined the probability parameter q0 of
the proposed ACO algorithm with the same problem cases shown in Table 4 with the time
window ∆t ’s distribution parameter dt set to 1. The parameters α , ρ , δ , ξ and tmax
were set to 0.5, 0.1, 0.001, 0.1 and 100, respectively. The simulation results are shown in Figure
4. From these results, we can conclude that q0 = 0.2 is the best selection for most cases.
b) Determine the pheromone importance parameter α We determined the pheromone impor-
tance parameter α with the same problem cases shown in Table 4 with dt = 1 and q0 = 0.2 .

The parameters , ρ , δ , ξ and tmax were set to 0.1, 0.001, 0.1 and 100, respectively. The
simulation results are shown in Figure 5. In all cases, α = 0.7 was the best choice.
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Parameter Value
α 0.7
q0 0.2
ρ 0.1
δ 0.001
ξ 0.1
tmax 100

Table 6. The parameters of the ACO algorithm

distribution of the jobs on the ACO algorithm’s performance. The number of jobs was grad-
ually increased by multiplying the number of machines and the number of recipes on each
machine. The average improvements on the TWT and makespan of ACO are shown in Figure
6. From the simulation results, we can make the following conclusions.

Problemparameter Valueused Numbero f values
Numbero f jobs 20,32,44,56,68,80 6
Arrivaltimeso f jobs Uni f orm(−rΣiΣjPij/(BM), rΣiΣjPij/(BM)) 4

r = 0.25, 0.50, 0.75, 1.0
Duedateso f jobs Aij + Pij + Uni f orm(0, Avg(Pij)) 1
Timewindow∆t dt · Avg(Pij), dt = 1 1

dt = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2.0
Weightperjob Uni f orm(0, 1) 1

Totalparametercombinations 24
Numbero f problemspercombination 10
Totalproblems 240

Table 7. The problem cases for comparing ACO and ATC-BATC

i) The value of the arrival time distribution parameter r had an important impact on the
ACO algorithm’s average improvements on the TWT and makespan. Larger r , i.e., the job
arrivals were spread over a larger time range, resulted in better improvements on the TWT
and makespan. In addition, the performance of MBS increasingly deteriorated with larger r
(shown in Figure 6(a)).
ii) Comparing to the heuristic rules (ATC-BATC and MBS), the number of jobs affected the
ACO algorithm’s average improvements on the average of the TWT and makespan. The more
jobs, the better the average improvements, independent on r ’s value. However, comparing
to the GA and AS, the impact of change in the number of jobs on the improvements of ACO
on the average of the TWT and makespan fluctuated (shown in Figure 6(b)).
To further discuss the impacts of the batch size and the number of the recipes on the BPMs,
and the number of the BPMs on the performance of the proposed method, it is assumed that
the range of the number of the machines is from 3 to 5, the range of the batch size of a BPM
is from 3 to 5, and the range of the number of the recipes of a BPM is from 4 to 6. Other
conditions are the same as Table 7. The simulation results are shown in Figure 7. Obviously,
the number and the capacity of the machines and the number of the recipes play an important
role on the average improvements on the TWT and makespan of the ACO algorithm. Less
machines, the bigger capacity and more recipes, the more average improvements on the TWT

and makespan are. In addition, the performance of MBS increasingly improved with more
recipes and bigger capacity.

(a) The improvements by ACO with variable arrival time distri-
bution of jobs ∗ Imp_avg_ATC_BATC the average improvements
on the TWT and makespan of ACO compared to ATC-BATC;
the Imp_avg_GA : the average improvements on the TWT and
makespan of ACO compared to GA; Imp_avg_AS : the average
improvements on the TWT and makespan of ACO compared to
AS

(b) The improvements by ACO with variable number of the jobs

Fig. 6. Simulation results for comparison between ACO and ATC-BATC, MBS, GA and AS

5. Conclusions

Batch processing machines play important roles in semiconductor wafer fabrication facili-
ties. In this paper, we modeled the batch processing operations in a real wafer fab as an
identical PBPM problem considering the practical complications of incompatible job families,
dynamic job arrivals, sequence-dependent setup times and qual-run requirements of APC,
and proposed an ACO algorithm to solve the problem with smaller TWT and makespan than
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5. Conclusions

Batch processing machines play important roles in semiconductor wafer fabrication facili-
ties. In this paper, we modeled the batch processing operations in a real wafer fab as an
identical PBPM problem considering the practical complications of incompatible job families,
dynamic job arrivals, sequence-dependent setup times and qual-run requirements of APC,
and proposed an ACO algorithm to solve the problem with smaller TWT and makespan than
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ATC-BATC, MBS, GA and AS. The main contributions of the paper are to create a method
applicable in a production environment, to propose a better value for the time window ∆t
from simulations, and to apply the ACO algorithm to obtain the solutions. Our next step is to
integrate the ACO algorithm with the advanced planning and scheduling software of the real
wafer fab.

(a) The improvements by ACO with variable capac-
ity of a BPM

(b) The improvements by ACO with variable num-
ber of the BPMs

(c) The improvements by ACO with variable num-
ber of the recipes of a BPM

Fig. 7. The impacts of the batch size, the number of the recipes on the BPMs and the number
of the BPMs
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1. Introduction     
 

The trend of shifting abroad personnel-intensive assembly from Europe to foreign countries 
continues. Manufacturing systems widely differ in investment, demand and output. Since 
sales figures can hardly be forecasted, it is necessary to conceptualize highly flexible and 
adaptable systems which can be upgraded by more scale-economic solutions during product 
life cycle, even under extremely difficult forecasting conditions. Unlike flexible systems, agile 
ones are expected to be capable of actively varying their own structure. Due to the 
unpredictability of change, they are not limited to a pre-defined system range typical for so 
called flexible systems but are required to shift between different levels of systems ranges.  
Modern manufacturing systems are increasingly required to be adaptable to changing 
market demands, which adds to their structural and operational complexity (Matt, 2005). 
Thus, one of the major challenges at the early design stages is to select an manufacturing 
system configuration that allows both – a high efficiency due to a complexity reduced 
(static) system design, and a enhanced adaptability to changing environmental requirements 
without negative impact on system complexity. 
Organizational functional periodicity is a mechanism that enables the re-initialization of an 
organization in general and of a manufacturing system in particular. It is the result of 
converting the combinatorial complexity caused by the dynamics of socioeconomic systems 
into a periodic complexity problem of an organization. 
Starting from the Axiomatic Design (AD) based complexity theory this chapter investigates 
on the basis of a long-term study performed in an industrial company the effects of 
organizational periodicity as a trigger for a regular organizational reset on the agility and 
the sustainable performance of a manufacturing system. 
Besides the presentation of the AD based design template which helps system designers to 
design efficient and flexible manufacturing systems, the main findings of this research can 
be summarized as follows: organizational functional periodicity depends on 
environmentally triggered socio-economic changes. The analysis of the economic cycle 
shows high degrees of periodicity, which can be used to actively trigger a company’s action 
for change, before market and environment force it to. Along an economic sinus interval of 
about 9 years, sub-periods are defined that trigger the re-initialization of a manufacturing 
system’s set of FRs and thus establish the system’s agility. 
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2. Agility – an Answer to Growing Environmental Complexity 
 

The actual economic crash initiated by the subprime mortgage crisis has been leading to 
another global follow-up recession. Most enterprises are struggling with overcapacities 
caused by an abrupt decrease in market demand, and our industrial nations – traditional 
sources of common wealth in our “old world” – are groaning under the burden of 
mountains of debts. But did this crisis really come surprisingly? 
The answer is no, although nobody could exactly determine its starting point in time. In fact, 
the economic cycle is a well-known phenomenon. Often new business opportunities created 
by a new technology (e.g. digital photography, GPS, smart items, photovoltaic cells, etc.) or 
some “hypes” such as the “dotcoms” in the late 90s may trigger an economic boom. Initially, 
wealth is created when growing market demand for new or “hip” products generates new 
jobs and promotes productivity and growth. However, quantitative economic growth is 
limited (Matt, 2007) and when it turns to be artificially maintained on an only speculative 
basis, the economic system is going to collapse.  
Analyzing analogical behaviors in natural and other systems, we understand that the reason 
for this lays in the interaction of a system’s elements in terms of causal or feedback loops 
(O’Connor & McDermott, 1998). System growth is driven by positive (or escalating) causal 
loops (Senge 1997). Even an exponential growth of a system is limited, either by the system’s 
failure or collapse (for example, the growth of cancer cells is limited by the organism’s 
death) or by negative feedback loops (for example, a continuous growth of an animal 
population is stopped by a limited availability of food, see Briggs & Peat 2006).  
To maintain stability and survivability, a growing system needs to establish subsystems that 
are embedded in a superior structure (Vester 1999). Life on earth has not been spread all 
over the earth ball as a simple mash of organic cells but started to structure and 
differentiate, that is to grow qualitatively. A randomized cross-linking of the system 
components will inevitably lead to a stability loss. Thus, a system can overcome its 
quantitative growth limits only by qualitative growth, establishing a stabile network 
structure with nodes that are subject to cell division as soon as they reach a critical 
dimension. 

 
2.1 The Mechanisms of Complexity 
A system’s ability to grow depends to a considerable extent on its structure and design. Its 
design is “good” if it is able to fulfill a set of specific requirements or expectations.  
An entrepreneur or an investor for instance expects that a company makes profit and that it 
increases its value. The entrepreneurial risk expresses the uncertainty that these targets or 
expectations are fulfilled, especially over time when environmental conditions change and 
influence the system design. The complexity of a system is determined by the uncertainty in 
achieving the system’s functional requirements (Suh 2005) and is caused by two factors: by a 
time-independent poor design that causes a system-inherent low efficiency (system design), 
and by a time-dependent reduction of system performance due to system deterioration or to 
market or technology changes (system dynamics).  
To enable a sustainable and profitable system growth, its entire complexity must be reduced 
and then be controlled over time. To reduce a system’s complexity, its subsystems should 
not overlap in their contribution to the overall system’s functionality, they must be mutually 
exclusive. On the other hand, the interplay of system components must be collectively 

 

exhaustive in order to include every issue relevant to the entire system’s functionality. 
Finally, this procedure has to be repeated over time as changes in the system’s environments 
might impact its original design and thus lead to a loss in efficiency and competitiveness. 
The time-independent complexity of a system is a measure for a system’s ability to satisfy a 
set of functional requirements without worrying about time-dependent changes that might 
influence the system’s behavior. It consists of two components: a time-independent real 
complexity and a time-independent imaginary complexity. The real complexity tells if the 
system range is inside or partly or completely outside the system’s design range. The 
imaginary complexity results from a lack of understanding of the system design, in other 
words the lack of knowledge makes the system complex. If the system is designed to always 
fulfill the system requirements, that is the range of the system’s functional requirements 
(system range) is always inside the system’s range of design parameters (design range), it 
can be defined a “good” design. This topic will be treated in more detail in a following 
section. 
 

Total System
Complexity

Time-Independent
Complexity

Time-Dependent
Complexity

Real
Complexity

Imaginary
Complexity

Periodic
Complexity

Combinatorial
Complexity

= 0
for de-coupled design

= 0
for un-coupled design

= predictable,
can be managed
by re-initialization

= unpredictable,
can be managed
by introduction of
functional periodicity

 
Fig. 1. Elements of the Axiomatic Design Based Complexity Theory 
 
Time dependent system complexity has its origins in the unpredictability of future events 
that might change the current system. There are two types of time-dependent complexities 
(Suh 2005): The first type of time-dependent complexity is called periodic complexity. It 
only exists in a finite time period, resulting from a limited number of probable 
combinations. These probable combinations may be partially predicted on the basis of 
existing experiences with the system or with a very systematic research of possible failure 
sources.  
The second type of time-dependent complexity is called combinatorial complexity. It 
increases as a function of time proportionally to the time-dependent increasing number of 
possible combinations of the system’s functional requirements. This may lead to a chaotic 
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mountains of debts. But did this crisis really come surprisingly? 
The answer is no, although nobody could exactly determine its starting point in time. In fact, 
the economic cycle is a well-known phenomenon. Often new business opportunities created 
by a new technology (e.g. digital photography, GPS, smart items, photovoltaic cells, etc.) or 
some “hypes” such as the “dotcoms” in the late 90s may trigger an economic boom. Initially, 
wealth is created when growing market demand for new or “hip” products generates new 
jobs and promotes productivity and growth. However, quantitative economic growth is 
limited (Matt, 2007) and when it turns to be artificially maintained on an only speculative 
basis, the economic system is going to collapse.  
Analyzing analogical behaviors in natural and other systems, we understand that the reason 
for this lays in the interaction of a system’s elements in terms of causal or feedback loops 
(O’Connor & McDermott, 1998). System growth is driven by positive (or escalating) causal 
loops (Senge 1997). Even an exponential growth of a system is limited, either by the system’s 
failure or collapse (for example, the growth of cancer cells is limited by the organism’s 
death) or by negative feedback loops (for example, a continuous growth of an animal 
population is stopped by a limited availability of food, see Briggs & Peat 2006).  
To maintain stability and survivability, a growing system needs to establish subsystems that 
are embedded in a superior structure (Vester 1999). Life on earth has not been spread all 
over the earth ball as a simple mash of organic cells but started to structure and 
differentiate, that is to grow qualitatively. A randomized cross-linking of the system 
components will inevitably lead to a stability loss. Thus, a system can overcome its 
quantitative growth limits only by qualitative growth, establishing a stabile network 
structure with nodes that are subject to cell division as soon as they reach a critical 
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2.1 The Mechanisms of Complexity 
A system’s ability to grow depends to a considerable extent on its structure and design. Its 
design is “good” if it is able to fulfill a set of specific requirements or expectations.  
An entrepreneur or an investor for instance expects that a company makes profit and that it 
increases its value. The entrepreneurial risk expresses the uncertainty that these targets or 
expectations are fulfilled, especially over time when environmental conditions change and 
influence the system design. The complexity of a system is determined by the uncertainty in 
achieving the system’s functional requirements (Suh 2005) and is caused by two factors: by a 
time-independent poor design that causes a system-inherent low efficiency (system design), 
and by a time-dependent reduction of system performance due to system deterioration or to 
market or technology changes (system dynamics).  
To enable a sustainable and profitable system growth, its entire complexity must be reduced 
and then be controlled over time. To reduce a system’s complexity, its subsystems should 
not overlap in their contribution to the overall system’s functionality, they must be mutually 
exclusive. On the other hand, the interplay of system components must be collectively 

 

exhaustive in order to include every issue relevant to the entire system’s functionality. 
Finally, this procedure has to be repeated over time as changes in the system’s environments 
might impact its original design and thus lead to a loss in efficiency and competitiveness. 
The time-independent complexity of a system is a measure for a system’s ability to satisfy a 
set of functional requirements without worrying about time-dependent changes that might 
influence the system’s behavior. It consists of two components: a time-independent real 
complexity and a time-independent imaginary complexity. The real complexity tells if the 
system range is inside or partly or completely outside the system’s design range. The 
imaginary complexity results from a lack of understanding of the system design, in other 
words the lack of knowledge makes the system complex. If the system is designed to always 
fulfill the system requirements, that is the range of the system’s functional requirements 
(system range) is always inside the system’s range of design parameters (design range), it 
can be defined a “good” design. This topic will be treated in more detail in a following 
section. 
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Fig. 1. Elements of the Axiomatic Design Based Complexity Theory 
 
Time dependent system complexity has its origins in the unpredictability of future events 
that might change the current system. There are two types of time-dependent complexities 
(Suh 2005): The first type of time-dependent complexity is called periodic complexity. It 
only exists in a finite time period, resulting from a limited number of probable 
combinations. These probable combinations may be partially predicted on the basis of 
existing experiences with the system or with a very systematic research of possible failure 
sources.  
The second type of time-dependent complexity is called combinatorial complexity. It 
increases as a function of time proportionally to the time-dependent increasing number of 
possible combinations of the system’s functional requirements. This may lead to a chaotic 



Future Manufacturing Systems182

 

state or even to a system failure. The critical issue as to combinatorial complexity is that it is 
completely unpredictable. 
According to Nam Suh, the economic cycle is a good example of time-dependent 
combinatorial complexity at work (Suh, 2005). To provide stabile system efficiency, the time-
dependent combinatorial complexity must be changed into a time-dependent periodic 
complexity by introducing a functional periodicity. If the functional periodicity can be 
designed in at the design stage, the system will last much longer than other systems. This 
way the system becomes “agile”. 

 
2.2 Agility 
In recent scientific publications, terms like flexibility (De Toni & Tonchia, 1998), 
reconfigurability (Koren et al., 1999), agility (Yusuf et al., 1999) and more recently 
changeability (Wiendahl & Heger, 2003) or mutability (Spath & Scholz, 2007) have been 
defined in many different contexts and often refer to the same or at least a very similar idea 
(Saleh et al., 2001). Nyhuis et al. (2005) even state that changeover ability, reconfigurability, 
flexibility, transformability, and agility are all types of changeability, enumerated in the 
order of increasing system level context. 
Flexibility means that an operation system is variable within a specific combination of in-, 
out- and throughput. The term is often used in the context of flexible manufacturing systems 
and describes different abilities of a manufacturing system to handle changes in daily or 
weekly volume of the same product (volume flexibility) to manufacture a variety of 
products without major modification of existing facilities (product mix flexibility), to 
process a given set of parts on alternative machines (routing flexibility), or to interchange 
the ordering of operations (operation flexibility) on a given part (Suarez et al., 1991). 
Reconfigurability aims at the reuse of the original system’s components in a new 
manufacturing system (Mehrabi, 2000). It is focused on technical aspects of machining and 
assembly and is thus limited to single manufacturing workstations or cells (Zaeh et al., 
2005). Agility as the highest order of a system’s changeability, in contrast, means the ability 
of an operation system to alter autonomously the configuration to meet new, previously 
unknown demands e. g. from the market as quickly as the environmental changes (Blecker 
& Graf, 2004).  
Unlike flexible systems, agile ones are expected to be capable of actively varying their own 
structure. Due to the unpredictability of change, they are not limited to a pre-defined system 
range typical for so called flexible systems but are required to shift between different levels 
of systems ranges (Spath & Scholz, 2007). 

 
2.3 The Principles of Axiomatic Design (AD) 
The theory of Axiomatic Design was developed by Professor Nam P. Suh in the mid-1970s 
with the goal to develop a scientific, generalized, codified, and systematic procedure for 
design. Originally starting from product design, AD was extended to many different other 
design problems and proved to be applicable to many different kinds of systems. 
Manufacturing systems are collections of people, machines, equipment and procedures 
organized to accomplish the manufacturing operations of a company (Groover, 2001). As 
system theory states, every system may be defined as an assemblage of subsystems. 

 

Accordingly, a manufacturing system can be seen as an assemblage of single manufacturing 
stations along the system’s value stream (Matt, 2006).  
The Axiomatic Design world consists of four domains (Suh, 2001): the customer domain, the 
functional domain, the physical domain and the process domain.  
The customer domain is characterized by the customer needs or attributes (CAs) the 
customer is looking for in a product, process, system or other design object. In the functional 
domain the customer attributes are specified in terms of functional requirements (FRs) and 
constraints (Cs). As such, the functional requirements represent the actual objectives and 
goals of the design. The design parameters (DPs) express how to satisfy the functional 
requirements. Finally, to realize the design solution specified by the design parameters, the 
process variables (PVs) are stated in the process domain (Suh, 2001). For the design of 
manufacturing systems the physical domain is not needed (Reynal & Cochran, 1996). 
Most system design tasks are very complex, which makes it necessary to decompose the 
problem. The development of a hierarchy will be done by zigzagging between the domains. 
The zigzagging takes place between two domains. After defining the FR of the top level a 
design concept (DP) has to be generated.  
Within mapping between the domains the designer is guided by two fundamental axioms 
that offer a basis for evaluating and selecting designs in order to produce a robust design 
(Suh, 2001): 
 

 Axiom 1: The Independence Axiom. Maintain the independence of the functional 
requirements. The Independence Axiom states that when there are two or more 
FRs, the design solution must be such that each one of the FRs can be satisfied 
without affecting the other FRs. 

 Axiom 2: The Information Axiom. Minimize the information content I of the 
design. The Information Axiom is defined in terms of the probability of 
successfully achieving FRs or DPs. It states that the design with the least amount of 
information is the best to achieve the functional requirements of the design. 

 
The FRs and DPs are described mathematically as a vector. The Design Matrix [DM] 
describes the relationship between FRs and DPs in a mathematical equation (Suh, 2001): 
 

{FR} = [DM]{DP}  (1) 

 
With three FRs and three DPs, the above equation may be written in terms of its elements as: 
 

FR1 = A11 DP1 + A12 DP2 + A13 DP3 
FR2 = A21 DP1 + A22 DP2 + A23 DP3 
FR3 = A31 DP1 + A32 DP2 + A33 DP3 

(2) 

 
The goal of a manufacturing system design decision is to make the system range inside the 
design range (Suh, 2006). The information content I of a system with n FRs is described by 
the joint probability that all n FRs are fulfilled by the respective set of DPs. The information 
content is measured by the ratio of the common range between the design and the system 
range (Suh, 2001). To satisfy the Independence Axiom, the design matrix must be either 
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state or even to a system failure. The critical issue as to combinatorial complexity is that it is 
completely unpredictable. 
According to Nam Suh, the economic cycle is a good example of time-dependent 
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dependent combinatorial complexity must be changed into a time-dependent periodic 
complexity by introducing a functional periodicity. If the functional periodicity can be 
designed in at the design stage, the system will last much longer than other systems. This 
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flexibility, transformability, and agility are all types of changeability, enumerated in the 
order of increasing system level context. 
Flexibility means that an operation system is variable within a specific combination of in-, 
out- and throughput. The term is often used in the context of flexible manufacturing systems 
and describes different abilities of a manufacturing system to handle changes in daily or 
weekly volume of the same product (volume flexibility) to manufacture a variety of 
products without major modification of existing facilities (product mix flexibility), to 
process a given set of parts on alternative machines (routing flexibility), or to interchange 
the ordering of operations (operation flexibility) on a given part (Suarez et al., 1991). 
Reconfigurability aims at the reuse of the original system’s components in a new 
manufacturing system (Mehrabi, 2000). It is focused on technical aspects of machining and 
assembly and is thus limited to single manufacturing workstations or cells (Zaeh et al., 
2005). Agility as the highest order of a system’s changeability, in contrast, means the ability 
of an operation system to alter autonomously the configuration to meet new, previously 
unknown demands e. g. from the market as quickly as the environmental changes (Blecker 
& Graf, 2004).  
Unlike flexible systems, agile ones are expected to be capable of actively varying their own 
structure. Due to the unpredictability of change, they are not limited to a pre-defined system 
range typical for so called flexible systems but are required to shift between different levels 
of systems ranges (Spath & Scholz, 2007). 

 
2.3 The Principles of Axiomatic Design (AD) 
The theory of Axiomatic Design was developed by Professor Nam P. Suh in the mid-1970s 
with the goal to develop a scientific, generalized, codified, and systematic procedure for 
design. Originally starting from product design, AD was extended to many different other 
design problems and proved to be applicable to many different kinds of systems. 
Manufacturing systems are collections of people, machines, equipment and procedures 
organized to accomplish the manufacturing operations of a company (Groover, 2001). As 
system theory states, every system may be defined as an assemblage of subsystems. 

 

Accordingly, a manufacturing system can be seen as an assemblage of single manufacturing 
stations along the system’s value stream (Matt, 2006).  
The Axiomatic Design world consists of four domains (Suh, 2001): the customer domain, the 
functional domain, the physical domain and the process domain.  
The customer domain is characterized by the customer needs or attributes (CAs) the 
customer is looking for in a product, process, system or other design object. In the functional 
domain the customer attributes are specified in terms of functional requirements (FRs) and 
constraints (Cs). As such, the functional requirements represent the actual objectives and 
goals of the design. The design parameters (DPs) express how to satisfy the functional 
requirements. Finally, to realize the design solution specified by the design parameters, the 
process variables (PVs) are stated in the process domain (Suh, 2001). For the design of 
manufacturing systems the physical domain is not needed (Reynal & Cochran, 1996). 
Most system design tasks are very complex, which makes it necessary to decompose the 
problem. The development of a hierarchy will be done by zigzagging between the domains. 
The zigzagging takes place between two domains. After defining the FR of the top level a 
design concept (DP) has to be generated.  
Within mapping between the domains the designer is guided by two fundamental axioms 
that offer a basis for evaluating and selecting designs in order to produce a robust design 
(Suh, 2001): 
 

 Axiom 1: The Independence Axiom. Maintain the independence of the functional 
requirements. The Independence Axiom states that when there are two or more 
FRs, the design solution must be such that each one of the FRs can be satisfied 
without affecting the other FRs. 

 Axiom 2: The Information Axiom. Minimize the information content I of the 
design. The Information Axiom is defined in terms of the probability of 
successfully achieving FRs or DPs. It states that the design with the least amount of 
information is the best to achieve the functional requirements of the design. 

 
The FRs and DPs are described mathematically as a vector. The Design Matrix [DM] 
describes the relationship between FRs and DPs in a mathematical equation (Suh, 2001): 
 

{FR} = [DM]{DP}  (1) 

 
With three FRs and three DPs, the above equation may be written in terms of its elements as: 
 

FR1 = A11 DP1 + A12 DP2 + A13 DP3 
FR2 = A21 DP1 + A22 DP2 + A23 DP3 
FR3 = A31 DP1 + A32 DP2 + A33 DP3 

(2) 

 
The goal of a manufacturing system design decision is to make the system range inside the 
design range (Suh, 2006). The information content I of a system with n FRs is described by 
the joint probability that all n FRs are fulfilled by the respective set of DPs. The information 
content is measured by the ratio of the common range between the design and the system 
range (Suh, 2001). To satisfy the Independence Axiom, the design matrix must be either 
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diagonal or triangular (Fig. 2). When the design matrix is diagonal, each of the FRs can be 
satisfied independently by means of exactly one DP. It represents the ideal case of an 
uncoupled system design where the design range of every single DP perfectly meets the 
system range of exactly one FR, irrespective of the sequence of the fulfillment of the 
functional requirements. This means, that the design equation can be solved without any 
restrictions. In this case, the above equation (2) may be written as: 
 

FR1 = A11 DP1 
FR2 = A22 DP2 
FR3 = A33 DP3 

(2.1) 

 
Both components of the time-independent complexity – the real complexity and the 
imaginary complexity – are zero, in other words: the total time-independent complexity of 
the system is zero (see also Fig. 1). 
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Fig. 2. Exemplary illustration of the Independence Axiom (Lee & Jeziorek, 2006) 
 
When the matrix is triangular, the independence of FRs can be guaranteed if and only if the 
DPs are determined in a proper sequence. In the case of a decoupled design, which design 
range also fits the system range, the real complexity equals to zero, but the complexity 
consists in the uncertainty of fulfilling the design task due to different possible sequences. 
Thus, it depends on a particular sequence and represents a decoupled design creating a 
time-independent imaginary complexity. In terms of equation (2), this has the following 
consequence: 
 

FR1 = A11 DP1 
                 FR2 = A21 DP1 + A22 DP2 

                                   FR3 = A31 DP1 + A32 DP2 + A33 DP3 
(2.2) 

 
Any other form of the design matrix is called a full matrix and results in a coupled design. 
 

 

3. Axiomatic Design of Agile Manufacturing Systems 
 

A manufacturing system is a dynamic system, because it is subject to temporal variation and 
must be changeable on demand (Cochran et al., 2000; Matt, 2006). Market and strategy 
changes will influence its system range of functional requirements and therefore impact the 
system’s design (Reynal & Cochran, 1996). Considering for example a given production 
program, all possible product variants that can be manufactured at a certain point in time 
determine the static system complexity. However, the dynamic complexity is determined by 
the frequency and magnitude of changes of the production program when new product 
variants are introduced or eliminated. When both complexities are low, then the system is 
simple. In the case of a high (low) structural complexity and low (high) dynamic complexity, 
the system is considered to be complicated (relatively complex). When both complexities are 
high, then the system is said to be extremely complex (Ulrich & Probst, 1995). On the basis 
of these definitions, every approach aiming at the reduction of a system’s complexity 
consequently has to focus on the redesign of the system elements and their relationships. 
 
Following the considerations made in section 2.1, two general ways to attack the problems 
associated with complex systems can be identified. The first is to simplify them, the second 
to control them. Leanness is about the former in that it advocates waste removal and 
simplification (Naylor et. al., 1999). It aims at the complexity reduction of a system at a 
certain point in time. Thus, system simplification is about eliminating or reducing the time-
independent complexity of a system. Agility is the ability to transform and adapt a 
manufacturing system to new circumstances caused by market or environmental 
turbulences (Zaeh et. al., 2005). Thus, complexity control is associated with the elimination 
or reduction of a system’s time-dependent complexity. To adopt design strategies that 
consider Lean and Agility principles, it is important to introduce decoupling points. A 
material decoupling point is the point in the value chain to which customer orders are 
allowed to penetrate. At this point there is buffer stock and further downstream the product 
is differentiated. A very helpful tool in this context is value stream mapping, a key element 
of the Lean toolbox, which represents a very effective method for the visualization, the 
analysis and the redesign of production and supply chain processes including material flow 
as well as information flow (Rother & Shook, 1998). The methodology provides process 
boxes, which describe manufacturing or assembly processes following the flow principle, 
with no material stoppages within their borderlines. Ideally, a continuous flow without 
interruptions can be realized between the various assembly modules. However, most 
process steps have different cycle times and thus buffers (decouplers) have to be provided at 
their transitions for synchronization (Suh, 2001).  
To define the functional requirements of a manufacturing system and to transform them 
into a good system design, Axiomatic Design (AD) is proposed to be a very helpful tool 
(Cochran & Reynal, 1999): the authors analyse the design of four manufacturing systems 
designs in terms of system performance and use the methodology to design an assembly 
area and to improve a machining cell at two different companies. However, the lifetime of 
such a design varies from 3 to 18 months (Rother & Shook, 1998). During this period, the 
design can be supposed to behave in a nearly time-independent way. Afterwards, it is again 
subject to changes. Thus, to maintain the efficiency of a manufacturing system design, also 
the time-dependent side of complexity has to be considered.  
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diagonal or triangular (Fig. 2). When the design matrix is diagonal, each of the FRs can be 
satisfied independently by means of exactly one DP. It represents the ideal case of an 
uncoupled system design where the design range of every single DP perfectly meets the 
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When the matrix is triangular, the independence of FRs can be guaranteed if and only if the 
DPs are determined in a proper sequence. In the case of a decoupled design, which design 
range also fits the system range, the real complexity equals to zero, but the complexity 
consists in the uncertainty of fulfilling the design task due to different possible sequences. 
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A manufacturing system is a dynamic system, because it is subject to temporal variation and 
must be changeable on demand (Cochran et al., 2000; Matt, 2006). Market and strategy 
changes will influence its system range of functional requirements and therefore impact the 
system’s design (Reynal & Cochran, 1996). Considering for example a given production 
program, all possible product variants that can be manufactured at a certain point in time 
determine the static system complexity. However, the dynamic complexity is determined by 
the frequency and magnitude of changes of the production program when new product 
variants are introduced or eliminated. When both complexities are low, then the system is 
simple. In the case of a high (low) structural complexity and low (high) dynamic complexity, 
the system is considered to be complicated (relatively complex). When both complexities are 
high, then the system is said to be extremely complex (Ulrich & Probst, 1995). On the basis 
of these definitions, every approach aiming at the reduction of a system’s complexity 
consequently has to focus on the redesign of the system elements and their relationships. 
 
Following the considerations made in section 2.1, two general ways to attack the problems 
associated with complex systems can be identified. The first is to simplify them, the second 
to control them. Leanness is about the former in that it advocates waste removal and 
simplification (Naylor et. al., 1999). It aims at the complexity reduction of a system at a 
certain point in time. Thus, system simplification is about eliminating or reducing the time-
independent complexity of a system. Agility is the ability to transform and adapt a 
manufacturing system to new circumstances caused by market or environmental 
turbulences (Zaeh et. al., 2005). Thus, complexity control is associated with the elimination 
or reduction of a system’s time-dependent complexity. To adopt design strategies that 
consider Lean and Agility principles, it is important to introduce decoupling points. A 
material decoupling point is the point in the value chain to which customer orders are 
allowed to penetrate. At this point there is buffer stock and further downstream the product 
is differentiated. A very helpful tool in this context is value stream mapping, a key element 
of the Lean toolbox, which represents a very effective method for the visualization, the 
analysis and the redesign of production and supply chain processes including material flow 
as well as information flow (Rother & Shook, 1998). The methodology provides process 
boxes, which describe manufacturing or assembly processes following the flow principle, 
with no material stoppages within their borderlines. Ideally, a continuous flow without 
interruptions can be realized between the various assembly modules. However, most 
process steps have different cycle times and thus buffers (decouplers) have to be provided at 
their transitions for synchronization (Suh, 2001).  
To define the functional requirements of a manufacturing system and to transform them 
into a good system design, Axiomatic Design (AD) is proposed to be a very helpful tool 
(Cochran & Reynal, 1999): the authors analyse the design of four manufacturing systems 
designs in terms of system performance and use the methodology to design an assembly 
area and to improve a machining cell at two different companies. However, the lifetime of 
such a design varies from 3 to 18 months (Rother & Shook, 1998). During this period, the 
design can be supposed to behave in a nearly time-independent way. Afterwards, it is again 
subject to changes. Thus, to maintain the efficiency of a manufacturing system design, also 
the time-dependent side of complexity has to be considered.  
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Thus, the methodology presented in the following provides two steps based on the AD 
complexity theory: First, the system is designed to fulfill the time-independent requirements 
of efficiency and flexibility within a “predictable” planning horizon of 6 to 24 months 
(Rother & Shook, 1998; Matt, 2006). This design step uses the approach of the production 
module templates (Matt, 2008).  
In a second step, a (time-dependent) agility strategy is elaborated to allow a quick shift to 
another (nearly) time-independent system level. 

 
3.1 Efficiency and Flexibility: Reduce the Time-Independent Complexity 
One of the major goals of manufacturing system design is to reduce the time-independent 
real complexity to zero. The real complexity is a consequence of the system range being 
outside of the design range. If the system design is coupled it is difficult to make the system 
range lie inside the design range. Therefore, the following procedure is recommended: 
First, the system designer must try to achieve an uncoupled or decoupled design, i.e. a 
design that satisfies the Independence Axiom.  
Then, every DP’s design range has to be fitted and adapted into the corresponding FR’s 
system range. This way, the system becomes robust by eliminating the real complexity. The 
imaginary complexity rises with the information content of the design. In an uncoupled 
design, the information content is zero and so an imaginary complexity does not exist. 
However, in the case of a decoupled design, the designer has to choose the best solution 
among different alternatives, which is the one with the less complex sequence. 
 
The probably most important step in Axiomatic design is the definition of the first level of 
FRs. It requires a very careful analysis of the customer needs regarding the design of the 
manufacturing systems.  
The translation of the CAs into FRs is very important and difficult at the same time, because 
the quality of the further design depends on the completeness and correctness of the chosen 
CAs. According to generally accepted notions (Womack and Jones, 2003; Bicheno, 2004) 
regarding a manufacturing systems objective system, the following three basic CAs can be 
identified:  
 
CA1:  Maximize the customer responsiveness (according to the 6 “Rs” in logistics: the 

right products in the right quantity and the right quality at the right time and the 
right place and at the right price) 

CA2:  Minimize the total manufacturing cost per unit 
CA3:  Minimize inventory and coordination related costs 
 
Starting from these basic CAs, the following generally applicable FRs for manufacturing 
system design can be derived: 
 
FR1:  Produce to demand 
FR2:  Realize lowest possible unit cost 
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The design parameters mapped by functional requirements are: 
 
DP1:  Only consistent increments of work demanded by customers are released 
DP2:  Manufacturing stations are designed for low cost production 
DP3:  Strategy to keep inventory and coordination related costs at the lowest level 
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Since the design solution cannot be finalized or completed by the selected set of DPs at the 
highest level, the FRs need to be decomposed further. This decomposition is done in parallel 
with the zigzagging between the FRs and DPs (Suh, 2001; Cochran, et al., 2002). 
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Fig. 3. Second level decomposition of the FR-tree (Matt, 2009/a) 
 
The so developed 2nd level FR-tree is shown in Fig. 3. By doing the zigzagging between FRs 
and DPs, as done on the first level, the DPs for the second level corresponding to FR-2 can 
be identified in order to maximize independence (Matt, 2006): 
 
DP-11 Determine and produce to takt time (for details see: Matt, 2006 and Matt, 2008) 
DP-12 (a) Single model case: no significant variations, sufficient volumes to justify the 

dedication of the system to the production of just one item or a family of nearly 
identical items. Introduction of process-principle (multi-station system) if 
sequentially arranged stations can be balanced to in-line continuous flow.  
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Thus, the methodology presented in the following provides two steps based on the AD 
complexity theory: First, the system is designed to fulfill the time-independent requirements 
of efficiency and flexibility within a “predictable” planning horizon of 6 to 24 months 
(Rother & Shook, 1998; Matt, 2006). This design step uses the approach of the production 
module templates (Matt, 2008).  
In a second step, a (time-dependent) agility strategy is elaborated to allow a quick shift to 
another (nearly) time-independent system level. 

 
3.1 Efficiency and Flexibility: Reduce the Time-Independent Complexity 
One of the major goals of manufacturing system design is to reduce the time-independent 
real complexity to zero. The real complexity is a consequence of the system range being 
outside of the design range. If the system design is coupled it is difficult to make the system 
range lie inside the design range. Therefore, the following procedure is recommended: 
First, the system designer must try to achieve an uncoupled or decoupled design, i.e. a 
design that satisfies the Independence Axiom.  
Then, every DP’s design range has to be fitted and adapted into the corresponding FR’s 
system range. This way, the system becomes robust by eliminating the real complexity. The 
imaginary complexity rises with the information content of the design. In an uncoupled 
design, the information content is zero and so an imaginary complexity does not exist. 
However, in the case of a decoupled design, the designer has to choose the best solution 
among different alternatives, which is the one with the less complex sequence. 
 
The probably most important step in Axiomatic design is the definition of the first level of 
FRs. It requires a very careful analysis of the customer needs regarding the design of the 
manufacturing systems.  
The translation of the CAs into FRs is very important and difficult at the same time, because 
the quality of the further design depends on the completeness and correctness of the chosen 
CAs. According to generally accepted notions (Womack and Jones, 2003; Bicheno, 2004) 
regarding a manufacturing systems objective system, the following three basic CAs can be 
identified:  
 
CA1:  Maximize the customer responsiveness (according to the 6 “Rs” in logistics: the 

right products in the right quantity and the right quality at the right time and the 
right place and at the right price) 

CA2:  Minimize the total manufacturing cost per unit 
CA3:  Minimize inventory and coordination related costs 
 
Starting from these basic CAs, the following generally applicable FRs for manufacturing 
system design can be derived: 
 
FR1:  Produce to demand 
FR2:  Realize lowest possible unit cost 
FR3:  Realize lowest possible overhead expenses 
 
 
 

 

The design parameters mapped by functional requirements are: 
 
DP1:  Only consistent increments of work demanded by customers are released 
DP2:  Manufacturing stations are designed for low cost production 
DP3:  Strategy to keep inventory and coordination related costs at the lowest level 
 
The design matrix provides a decoupled design (triangular design matrix) as shown in the 
following equation: 
 



















































DP3
DP2
DP1

X00
0X0
X0X

FR3
FR2
FR1

 (3) 

 
Since the design solution cannot be finalized or completed by the selected set of DPs at the 
highest level, the FRs need to be decomposed further. This decomposition is done in parallel 
with the zigzagging between the FRs and DPs (Suh, 2001; Cochran, et al., 2002). 
 

FR 1
Produce to demand

FR 2
Realize lowest 

possible unit costs

FR 11 Identify the required output rate

FR 12 Create a continuous flow

FR 13 Respond quickly to unplanned production problems
FR 14 Minimize production disturbances by planned standstills
FR 15 Achieve operational flexibility

FR 21 Achieve a high yield of acceptable work units 
FR 22 Minimize labor costs 

FR 23 Minimize one time expenditures

FR 3
Realize lowest 

possible overhead 
expenses

FR 31 Minimize the distance between source and process

FR 32 Provide a complete order picking 

FR 33 Eliminate unnecessary motion and prevent defects 
throughout the material handling operation

 
Fig. 3. Second level decomposition of the FR-tree (Matt, 2009/a) 
 
The so developed 2nd level FR-tree is shown in Fig. 3. By doing the zigzagging between FRs 
and DPs, as done on the first level, the DPs for the second level corresponding to FR-2 can 
be identified in order to maximize independence (Matt, 2006): 
 
DP-11 Determine and produce to takt time (for details see: Matt, 2006 and Matt, 2008) 
DP-12 (a) Single model case: no significant variations, sufficient volumes to justify the 

dedication of the system to the production of just one item or a family of nearly 
identical items. Introduction of process-principle (multi-station system) if 
sequentially arranged stations can be balanced to in-line continuous flow.  



Future Manufacturing Systems188

 

(b) Batch model case: Different parts or products are made by the system. Batching is 
necessary due to long setup or changeover times  
(c) Mixed model case: different parts or products are made by the system, but the 
system is able to handle these differences without the need for setup or changeover.  
(c.1) Introduction of process-principle (sequential multi-station system with fixed 
routing) if sequentially arranged stations can be balanced to in-line continuous flow 
independent from product variants and their production sequence. 
(c.2) Introduction of object-principle if lead times of the single process steps vary 
widely and cannot be balanced (single-station system, eventually parallel stations if 
cycle times of the single station exceed the takt time). This is usually the case with a 
high complexity of the production program with very different variants. 

DP-13 Visual control and fast intervention strategy (Introduction of TPM – Total 
Productivity Maintenance) 

DP-14 Reduction and workload optimized scheduling of planned standstills (TPM) 
DP-15 Setup reduction (Optimization with SMED – Single Minute Exchange of Die) 
 
The effective design parameters (DPs) for FR-21, FR-22 and FR-23 are the following (Matt, 
2006): 
 
DP-21 Production with increased probability of producing only good pieces and of 

detecting/managing defective parts  
DP-22 Effective use of workforce 
DP-23 Investment in modular system components based on a system thinking approach 
 
For FR-31, FR-32 and FR-33, the design parameters mapped by functional requirements are 
(Matt, 2009/b): 
 
DP-21: Short distances between material storage location and process 
DP-22: Design equipment and methods that allow handling and transport of the complete 

order set 
DP-23: Design equipment and methods that allow an effective and defect-free interaction 

between humans and material  
 
The single level Design Matrices as well as the complete Design Matrix are decoupled. 
Interested readers are referred to (Matt, 2008) for more detailed information about the above 
described AD based template approach for manufacturing system design. 

 
3.2 Agility: Control Time-Dependent Complexity 
Time dependent system complexity has its origins in the unpredictability of future events 
that might change the current system and its respective system range. The shifting between 
different levels of system ranges cannot be controlled by the normal flexibility tolerances 
provided in a manufacturing system design. It is subject to system dynamics and thus has to 
be handled within the domain of time-dependent complexity. According to Suh (2005), there 
are two types of time-dependent complexities: 
As previously outlined, the first type of time-dependent complexity is called periodic 
complexity. It only exists in a finite time period, resulting from a limited number of probable 

 

combinations. These probable combinations may be partially predicted on the basis of 
existing experiences with the system or with a very systematic research of possible failure 
sources, e.g. with FMEA.  
The goal of a manufacturing system design is to make the system range lie inside the design 
range. The information content I of a system with n FRs is described by the joint probability 
that all n FRs are fulfilled by the respective set of DPs. The information content is measured 
by the ratio of the common range between the design and the system range (Suh, 2006). 
However, a system might deteriorate during its service life and its design range will move 
outside the required system range. In this case, the system’s initial state must be established 
by re-initialization. 
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Fig. 4. The economic cycle drives an organization’s functional periodicity (Matt, 2009/a) 
 
The second type of time-dependent complexity is called combinatorial complexity. It 
increases as a function of time proportionally to the time-dependent increasing number of 
possible combinations of the system’s functional requirements. It may lead to a chaotic state 
or even to a system failure. The critical issue with combinatorial complexity is that it is 
completely unpredictable. Combinatorial complexity can be reduced through re-
initialization of the system by defining a functional period (Suh, 2005). 
A functional period is a set of functions repeating itself on a regular time interval, like the 
one shown in Fig. 4 showing the periodicity of our economic system. Organizational 
systems – e.g. a manufacturing system – need (organizational) functional periodicity. When 
they do not renew themselves by resetting and reinitializing their functional requirements, 
they can become an entity that wastes resources (Suh, 2005).  
To maximize the operational excellence of a manufacturing system in order to provide its 
transformability to unforeseen changes, the system must be designed to satisfy its FRs at all 
times. Ideally, such a system has zero total complexity, i.e. both time-independent and time-
dependent complexity. Once the manufacturing system has been designed according to the 
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The second type of time-dependent complexity is called combinatorial complexity. It 
increases as a function of time proportionally to the time-dependent increasing number of 
possible combinations of the system’s functional requirements. It may lead to a chaotic state 
or even to a system failure. The critical issue with combinatorial complexity is that it is 
completely unpredictable. Combinatorial complexity can be reduced through re-
initialization of the system by defining a functional period (Suh, 2005). 
A functional period is a set of functions repeating itself on a regular time interval, like the 
one shown in Fig. 4 showing the periodicity of our economic system. Organizational 
systems – e.g. a manufacturing system – need (organizational) functional periodicity. When 
they do not renew themselves by resetting and reinitializing their functional requirements, 
they can become an entity that wastes resources (Suh, 2005).  
To maximize the operational excellence of a manufacturing system in order to provide its 
transformability to unforeseen changes, the system must be designed to satisfy its FRs at all 
times. Ideally, such a system has zero total complexity, i.e. both time-independent and time-
dependent complexity. Once the manufacturing system has been designed according to the 
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above described principles of time-independent complexity reduction, its time-dependent 
complexity has to be reduced in order to manage unpredictable shifts between different 
levels of the manufacturing system’s range of functional requirements.  
To design an agile manufacturing system, the time-dependent combinatorial complexity 
must be changed into a time-dependent periodic complexity by introducing a functional 
periodicity. If the functional periodicity can be designed in at the design stage, the system’s 
changeability will be more robust than in any other system (Suh, 2005). 
It is important to anticipate the economic cycle in order to maintain competitiveness (Fig. 5). 
However, the average period of the economic cycle (ca. 9 years) might be too long for the 
company specific dynamics. The current research results obtained from the observation of 
good industrial practice show that a possible solution might be to introduce a sinus interval 
compressed by a 1/n factor (stretching constant), with for example n=2 or n=3. For n=2, this 
means that the re-organization cycle repeats about every 4-5 years, for n=3 this is 3 years. 

 
4. Illustrative Example 
 

To illustrate the previously described approach, an industrial example of a manufacturer of 
electrotechnical tools and equipment is discussed. For a recently developed and presented 
cable scissor, an efficient and flexible assembly system has to be designed: two scissor blades 
have to be joined with a screw, a lining disc and a screw nut; afterwards, the assembled 
scissor is packaged together with some accessories.  

 
4.1 Efficiency and Flexibility: Reduce the Time-Independent Complexity 
The first step is the elimination or reduction of the time-independent complexity. Thus, the 
design must first fulfill the Independence Axiom. According to the design template 
presented in section 3.1, the single model case is chosen: the product has no significant 
variations and sufficient volumes to justify the dedication of the system to the assembly of 
just one item or a family of nearly identical items.  
To meet the required takt time, a semi-automatic screwing device is provided as first station 
in a two-station assembly system. However, to create a robust system, the real complexity 
has to be reduced or eliminated by fitting the DPs’ design range to the corresponding FRs’ 
system range. Thus, a dynamometric screwdriver is applied which torque tolerance fits the 
required system range. To evade the problem of imaginary complexity, the system design 
has to be uncoupled. In an inline multi-station assembly system, this requirement can be 
achieved by introducing de-couplers (buffers) between the single stations.  
However, buffers have the negative effect to create an increase of handling and therefore a 
loss in the system’s efficiency. A possible solution to decouple an assembly system and at 
the same time maintain a low level of non value adding activities is the so called “moving 
fixture” for workpieces (Lotter et al., 1998).  
It consists of a base plate with holding fixtures to clamp the single workpieces and is 
manually or automatically moved on a belt conveyor from one to the next station. To 
decouple the line, several of these moving fixtures form a storage buffer between the single 
assembly stations. 
 

 

 

4.2 Agility: Control Time-Dependent Complexity 
The next step is to reduce and control the system’s time-dependent complexity. The new 
designed system might deteriorate during its service life and its design range will move 
outside the required system range. In this case, the system’s initial state must be established 
by re-initialization. This can be done by defining fixed maintenance intervals or by regular 
or continuous tool monitoring, where the status of the screwing unit is determined and the 
decision is taken whether to continue production, to maintain or even substitute the tool. In 
the specific case of the electrotechnical device manufacturer, the design range of the 
dynamometric screwdriver moves out of the scissors’ system range and thus creates quality 
problems. To reduce or even eliminate this periodically appearing complexity (periodic 
complexity), regular checks of the screwing device are introduced. 
However, the most critical aspect in system design is the combinatorial complexity. Being 
completely unpredictable, this type of complexity can be just controlled by transforming it 
into a periodic complexity. Combinatorial complexity mostly results from market or 
environmental turbulences that create extra organizational efforts.  
As a socioeconomic system, a company is embedded in general economic cycles of upturn 
and downturn phases (Fig. 4).  
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Fig. 5. Company specific functional periodicity of the manufacturing system 
 
Obviously, every economic sector or even every single company has a different cyclic 
behavior regarding the timeline (Fig. 5). It passes always the following four stages: 
rationalization, innovation, expansion and organization. The company individual 
adaptation is given by the mapping of this generally applicable cycle along the timeline as a 
sinus curve (Matt, 2009/a). The company individual interval can be determined 
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Fig. 5. Company specific functional periodicity of the manufacturing system 
 
Obviously, every economic sector or even every single company has a different cyclic 
behavior regarding the timeline (Fig. 5). It passes always the following four stages: 
rationalization, innovation, expansion and organization. The company individual 
adaptation is given by the mapping of this generally applicable cycle along the timeline as a 
sinus curve (Matt, 2009/a). The company individual interval can be determined 
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heuristically, i.e. based on data and experiences from past. In our example, the company 
specific ideal sinus-interval of the manufacturing system’s functional periodicity is 4 years 
(n=2). As far as research showed, it is determined very much by the average product life 
cycle and the related company specific innovation cycles.  
 

object-oriented

process-oriented

 
Fig. 6. One-set flow with moving fixtures plates in different flow-variants  
 
Knowing the rhythm of change within a specific industry, suitable strategies for fast volume 
and variant adaptation can be developed, transforming combinatorial into the manageable 
periodic complexity. Fig. 6 shows for the present example the re-initialization strategy for 
the current process-oriented manufacturing system design (Spath & Scholz, 2007): as the 
number of variants shows a significant increase, a switch of DP-12 towards a mixed-model 
case c.1 or c.2 is possible. 

 
5. Conclusion 
 

In this chapter, a concept for the integrated design of efficient, flexible and changeable 
manufacturing systems was discussed. Starting from the AD based complexity theory, a 
procedure was presented that helps system designers not only to design assembly systems 
with low or zero time-independent complexity (focus: flexibility and efficiency), but also to 
prevent the unpredictable influences of the time-dependent combinatorial complexity by 
transforming it into a periodic review and adaptation of the system’s volume and variant 
capabilities (focus: agility). Future research will concentrate on a more sophisticated 
determination of the stretching constant in the company individual sinus-curve-model. 
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heuristically, i.e. based on data and experiences from past. In our example, the company 
specific ideal sinus-interval of the manufacturing system’s functional periodicity is 4 years 
(n=2). As far as research showed, it is determined very much by the average product life 
cycle and the related company specific innovation cycles.  
 

object-oriented
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Fig. 6. One-set flow with moving fixtures plates in different flow-variants  
 
Knowing the rhythm of change within a specific industry, suitable strategies for fast volume 
and variant adaptation can be developed, transforming combinatorial into the manageable 
periodic complexity. Fig. 6 shows for the present example the re-initialization strategy for 
the current process-oriented manufacturing system design (Spath & Scholz, 2007): as the 
number of variants shows a significant increase, a switch of DP-12 towards a mixed-model 
case c.1 or c.2 is possible. 

 
5. Conclusion 
 

In this chapter, a concept for the integrated design of efficient, flexible and changeable 
manufacturing systems was discussed. Starting from the AD based complexity theory, a 
procedure was presented that helps system designers not only to design assembly systems 
with low or zero time-independent complexity (focus: flexibility and efficiency), but also to 
prevent the unpredictable influences of the time-dependent combinatorial complexity by 
transforming it into a periodic review and adaptation of the system’s volume and variant 
capabilities (focus: agility). Future research will concentrate on a more sophisticated 
determination of the stretching constant in the company individual sinus-curve-model. 
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1. Introduction     

This research addresses a known set of issues with Agile Software Development through a 
unique form of solution. In fact, the research approach can be considered as one of the first 
ever research to propose a hybrid process paradigm to overcome Agile process issues with 
the assistance of Lean manufacturing principles. Research results show a significant 
improvement for the normal Agile practices, which indeed a unique and worthy finding for 
Agile practitioners. After years of being practiced in the industry the Agile software 
development process possesses standard characteristics of a process paradigm (Perera, 
2009). However, due to the inherited higher degree of flexibility and the exceptional abstract 
nature of the process principles, Agile process heavily depends upon the project and people 
norms once it is implemented. Having more flexibility is a better attribute for a process, if it 
is used by competent experts who can take productive decisions at right moments. 
However, depending too much on expert knowledge to process and product adjustments is 
a questionable concern to a growing project with rapid changes to its development and 
releases. 
Software applications are complex and intangible products, which are difficult to manage. 
Hence Software Lifecycle management becomes one of the key research areas in software 
engineering. Due to the nature of the software, software researchers and practitioners are 
focused on improving the software processes which are used to develop software. The 
underline assumption is that there is a direct correlation between the quality of the process 
and the quality of the developed software (Fuggetta, 2000). A software process can be 
considered as a set of tools, methods and practices, we use to produce a software product 
(Humphrey, 2006). These are the prime parameters, also known as Key Process Areas 
(KPAs), that differentiate the process based software development from ad-hoc 
programming. Identifying KPAs is one of the main considerations when a certain process 
model to be improved (Fatina, 2005). In this research, the KPAs of Agile practice were 
studied and reviewed for required improvements, considering criticisms on those. Specially, 
the driving KPAs of Agile practice such as, the non-standardized process flow, reliance on 
key people, and immense flexibility were the considerations for this study. Then the Lean 
principle for possible key practices to incorporate with classical Agile practice was 
examined.  

10
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The remainder of this chapter is arranged into 8 sections as follows: section 2 provides some 
background literature on the major areas of interest with respect to this research; section 3 
describes the research problem this research worked on as an extension to the literature 
review. The section 4 presents the proposed blended process model as a solution to the 
research problem being considered. Section 5 and section 6 elaborate the detail on the 
experiment conducted to evaluate the proposed process model and the analysis of the 
results obtained, respectively. The Section 6 describes possible policy implications and 
future work before concluding. Finally, the section 8 with references completes the chapter.  

 
2. Background 

This section includes a comprehensive synopsis of the literature referred for the study. In 
fact, the main emphasis was given on the topics; the Agile software development, the Lean 
principle, and the Lean software development. Therefore, this section is divided into three 
main areas of literature, representing the focus of the study. There is a plethora of case 
studies and application stories on Agile software practice and Lean principle in an isolated 
manner. As the paper explains in the problem section, most of those cases do not emphasize 
the possible improvements to the two practices to overcome their weaknesses. Further, there 
are concerns of using these two practices in certain applications and specific cases, 
considering their weaknesses. For this study, it was considered that the proposed blended 
process model should be derived upon the fundamental parameters of the two practices, for 
the simplicity and to obtain a generic process model as the outcome. Hence, the literature 
focus was decided to be on fundamental concepts of the selected two practices than their 
applications or customized models.      

 
2.1 Agile Software development 
Agile software process was introduced and defined by a group of experts in a collective 
nature, to overcome issues with the traditional software processes. Agile Manifesto was the 
proper introduction of the Agile methods to the software industry. According to the Agile 
Manifesto the following four norms are the basics of the Agile methods. 

• Individuals and interactions over processes and tools 
• Working software over comprehensive documentation 
• Customer collaboration over contract negotiation 
• Responding to change over following a plan (Agile Manifesto, 2001).  

Most of the traditional software processes suffer from having heaps of documents once the 
project finishes. Despite from those most obvious differences between plan-driven life-cycle 
models and Agile development is that Agile models are fewer documents oriented and 
place more emphasis on code development (Perera & Fernando, 2007). By the nature of this 
paradigm, it also provides some other benefits like, flexible project management, cost 
effective adaptability (Perera & Fernando, 2009), increase communication and ultimately 
increased customer satisfaction (Perera & Fernando, 2007). Agile Methods are a reaction to 
traditional ways of developing software and acknowledge the need for an alternative to 
documentation driven, heavyweight software development processes (Cohen, et al., 2003). 
Augustine (2005) has defined Agile Software Development as the work of energizing, 
empowering, and enabling project teams to rapidly and reliably deliver business value by 

 

engaging customers and continuously learning and adapting to their changing needs and 
environments. 
Agile software development which emphasizes sense-and-respond, self-organization, cross-
functional teams, and continuous adaptation, has been adopted by an increasing number of 
organizations to improve their software development (Lee and Xia, 2010). However, it was 
observed that when applied to large scale industrial projects, Agile practices fail to keep 
their stability and performance measures within the expected norms (Perera & Fernando, 
2007). This also confirms the fact of the unbalanced number of many successful Agile 
projects teams with few developers, ideally less than 10 persons. Agile techniques have 
demonstrated immense potential for developing more effective, higher-quality software. 
However, scaling these techniques to the enterprise presents many challenges (Shalloway, at 
el., 2009). One of the main objectives of this study to raise the stability of Agile process with 
Lean principle, which may help to sustain with large development teams, even though the 
experiment environment of this research does not incorporate such teams. Moreover, in the 
Agile world, requirements change rapidly developers expect this and are not fazed by the 
possibility of having to discard their work and start over (Black, at el., 2009). However, the 
software process and productivity standards and norms believe that such level of work 
discard and alterations are essentially impact to the end productivity; more or less it will be 
compensated either by compromising the customer expectations or more frequently, at the 
expense of the developer time. This factor was considered as a prime motive when the 
experiments were designed to assess the productivity of the proposed process model. More 
detailed analysis on Agile process issues is included in the section 3.    

 
2.2 Lean Principle 
The Lean principle has a long history of application in Japanese automobile industry, 
especially within the Toyota manufacturing process. Taiichi Ohno has done a pioneering 
work to introduce the Toyota Production System with based on Lean concept. Taiichi Ohno 
and Shigeo Shingo introduced their new concept to the Toyota Production System in result 
in a significant productivity boost in early 1950 (Ohno, 1988). After few decades of the Lean 
concept introduction in Japan, many researchers around the world began to investigate 
possible applications of this concept as a generic production model. The early articles were 
named as Toyota Production System instead of the name Lean concept/principle, and the 
first English article was published by Sugimori, et al. (1977) on the principles of the Toyota 
Production System. However, with the book on ‘Lean Thinking’ by Womack and Jones in 
1996 has triggered the momentum on Lean applications to various industries and relevant 
researches (Womack and Jones, 2003). More interestingly, software development 
(Poppendieck, 2007) and pharmaceutical (Petrillo, 2007) industries were the early adapters 
of this new manufacturing concept, spanning across two segments of the commercial arena; 
the service sector and manufacturing sector, respectively. More discussion on the Lean 
Software Development is included in the next section.   
The Lean principle is based on two practices: the elimination of the waste (Muda) from the 
production process, and the continuous quality inspection, known as Jidoka, within the 
production process (Danovaro, at. el, 2008). In fact, Jidoka is an operational process which 
ensures the waste is within the expected amounts or at zero levels. Therefore, essentially, the 
elimination of waste is the fundamental objective of the Lean principle, although, there are 
derived and extended applications can be seen, to date.    
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demonstrated immense potential for developing more effective, higher-quality software. 
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1996 has triggered the momentum on Lean applications to various industries and relevant 
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(Poppendieck, 2007) and pharmaceutical (Petrillo, 2007) industries were the early adapters 
of this new manufacturing concept, spanning across two segments of the commercial arena; 
the service sector and manufacturing sector, respectively. More discussion on the Lean 
Software Development is included in the next section.   
The Lean principle is based on two practices: the elimination of the waste (Muda) from the 
production process, and the continuous quality inspection, known as Jidoka, within the 
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There are five basic principles of Lean manufacturing: as Specify value, Identify all the steps 
in the value stream, Flow smoothly, Pull value, and Pursue perfection are the five principles 
in Lean practice (Womack & Jones, 2003). 
 

Value Stream Analysis

Understand Customer Value

Smooth Flow

Pull Value

Perfection

 
Fig. 1. Lean Principle Model – Five Basic Principles and Their Relationship 
 
Step 1 - Understand Customer Value—Value must be externally focused. Only what 
customers perceive as value is important for the development. 
Step 2 - Value Stream Analysis— Once the value that is required to deliver to the 
customers has been identified, you need to analyze all the steps in your business processes 
to determine which ones actually add value. If an action does not add value, you should 
consider changing it or removing it from the process. 
Step 3 – Smooth Flow—Instead of moving the product from one work centre to the next in 
large batches, production should flow continuously from raw materials to finished goods in 
dedicated production cells. 
Step 4 – Pull Value —Rather than building goods to stock, customer demand pulls finished 
goods through the system. Work is not performed unless the part is required downstream. 
Step 5 - Perfection—As you eliminate waste from your processes and flow product 
continuously according to the demands of your customers, you will realize that there is no 
end to reducing time, cost, space, mistakes, and effort (Womack and Jones, 2003). 
Lean principle is composite with unique methodologies to perform the operational 
activities. Kanban (Pull) production system is one important method (Gross, 2003). In that 
approach, throughout the production lines one can schedule the value flow process 
efficiently, and activities flow using signalling to each other with respect to the workflow. In 
1953 Toyota applied this logic in their main plant machine shop (Ohno, 1988). Just In Time 
(JIT) is the basic process Toyota used, and the Kanban is an improved process of the JIT 
(Kupanhy, 1995). For this research Kanban was identified as a key element of the proposed 
blended process model to facilitate value flow without an overhead burden to the Agile 
software practitioner. 

 
2.3 Lean Software development 
Applying Lean principles to software development projects has been advocated for over ten 
years, and it will be shown that the extensive Lean literature is a valuable source of ideas for 
software development (Middleton, at el., 2007). One of the domains affected by the Lean 
Thinking was the Software Development, which generated the term Lean Software 
Development (Udo, at el., 2008). The first glimpse of Lean Software Development was 
appeared with the research work done by Middleton (2001), on two industry case studies of 

 

software engineering with Lean implementation. However, Mary Poppendiek and Tom 
Poppendiek (2003) were the pioneers of introducing a more enhanced software 
development practice based on Lean principle, which was branded as Lean Software 
Development. 
Lean Software Development mainly focuses on defect minimization within the software 
development activities. Effectively, the Lean Software Development model has been able to 
map seven wastes in production systems to software domains; a brief overview of this 
mapping is shown in the following table 1. It is adapted from the work of Poppendiek & 
Poppendiek (2003), and Poppendiek (2007). 
  

Wastes in Production Domain Corresponding wastes in Software Domain 

Overproduction Extra Features 

Inventory Requirements 

Extra processing steps Extra steps 

Motion Finding Information 

Defects Defects not caught by tests 

Waiting Waiting, including customers 

Transportation Handoffs 

Table 1. Corresponding seven types of waste in software development 
 
There are some criticisms on this way of thinking with the software development activities. 
Specially, even though these seven waste types and the Lean Software Development 
practices are successful enough to minimize defects of the software development, this 
abstract way of process mapping does not provide a sufficient level of information for a 
comprehensive software process practice. In deed that is the key issue with using Lean 
Software Development practice in large scale industry projects. In fact, Lean Software 
Development does not incorporate the key software lifecycle activities, such as Requirement 
Engineering, Software Design, Software Testing and Software Deployment, but the Software 
Development. Without any of these key steps it is rather inappropriate to consider Lean 
Software Development as a software process model for generic use.       

 
3. The Research Problem 

The main purpose of this research was to formulate a new software process paradigm 
model and evaluate its success. Having said so, let’s consider the research problem that this 
research tries to address. In fact, this research mainly considers Agile practice and Lean 
concept, as the research’s basis. Agile development has significantly impacted industrial 
software development practices; though it’s wide popularity, there's an increasing 
perplexity on software architecture's role and Agile approaches (Abrahamsson, at el., 2010). 
The team lead engineers and the software development managers may be unsure how to 
adopt Agile methods incrementally, which situational practices should perform, and how to 
engender enthusiasm in team members (Syed-Abdullah, et al., 2007). Chow and Cao (2008) 



A Blended Process Model for Agile Software Development with Lean Concept 199

 

There are five basic principles of Lean manufacturing: as Specify value, Identify all the steps 
in the value stream, Flow smoothly, Pull value, and Pursue perfection are the five principles 
in Lean practice (Womack & Jones, 2003). 
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Fig. 1. Lean Principle Model – Five Basic Principles and Their Relationship 
 
Step 1 - Understand Customer Value—Value must be externally focused. Only what 
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customers has been identified, you need to analyze all the steps in your business processes 
to determine which ones actually add value. If an action does not add value, you should 
consider changing it or removing it from the process. 
Step 3 – Smooth Flow—Instead of moving the product from one work centre to the next in 
large batches, production should flow continuously from raw materials to finished goods in 
dedicated production cells. 
Step 4 – Pull Value —Rather than building goods to stock, customer demand pulls finished 
goods through the system. Work is not performed unless the part is required downstream. 
Step 5 - Perfection—As you eliminate waste from your processes and flow product 
continuously according to the demands of your customers, you will realize that there is no 
end to reducing time, cost, space, mistakes, and effort (Womack and Jones, 2003). 
Lean principle is composite with unique methodologies to perform the operational 
activities. Kanban (Pull) production system is one important method (Gross, 2003). In that 
approach, throughout the production lines one can schedule the value flow process 
efficiently, and activities flow using signalling to each other with respect to the workflow. In 
1953 Toyota applied this logic in their main plant machine shop (Ohno, 1988). Just In Time 
(JIT) is the basic process Toyota used, and the Kanban is an improved process of the JIT 
(Kupanhy, 1995). For this research Kanban was identified as a key element of the proposed 
blended process model to facilitate value flow without an overhead burden to the Agile 
software practitioner. 

 
2.3 Lean Software development 
Applying Lean principles to software development projects has been advocated for over ten 
years, and it will be shown that the extensive Lean literature is a valuable source of ideas for 
software development (Middleton, at el., 2007). One of the domains affected by the Lean 
Thinking was the Software Development, which generated the term Lean Software 
Development (Udo, at el., 2008). The first glimpse of Lean Software Development was 
appeared with the research work done by Middleton (2001), on two industry case studies of 

 

software engineering with Lean implementation. However, Mary Poppendiek and Tom 
Poppendiek (2003) were the pioneers of introducing a more enhanced software 
development practice based on Lean principle, which was branded as Lean Software 
Development. 
Lean Software Development mainly focuses on defect minimization within the software 
development activities. Effectively, the Lean Software Development model has been able to 
map seven wastes in production systems to software domains; a brief overview of this 
mapping is shown in the following table 1. It is adapted from the work of Poppendiek & 
Poppendiek (2003), and Poppendiek (2007). 
  

Wastes in Production Domain Corresponding wastes in Software Domain 
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adopt Agile methods incrementally, which situational practices should perform, and how to 
engender enthusiasm in team members (Syed-Abdullah, et al., 2007). Chow and Cao (2008) 
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have done a survey study to identify critical success factors in Agile software projects which 
they have categorized into four major aspects; Quality, Scope, Time, and Cost. This also 
indicates that precise settings for quality, scope, time and cost will result in a successful 
Agile software project. The Agile development literature is largely anecdotal and 
prescriptive, lacking empirical evidence and theoretical foundation to support the principles 
and practices of Agile development (Lee and Xia, 2010); this also indicates that there is a 
concern on standard practice of Agile principles and norms across the industry.  Mainly, 
due to the high flexibility and lack of awareness, Agile practitioners interpret their own 
forms of Agility, where in most of the cases deviate heavily from the optimum Agile best 
practices. In terms of scalability Agile practices are usually applied to projects with smaller 
teams of ten or fewer people (Deek, at el., 2005). This limitation is also considered due to the 
uncertain and highly expert based interpretations and implementations of the basic Agile 
principles.  
There have been many efforts to improve Agile practices but to date some of the Agile 
process based software projects suffer due to the weaknesses inclusive to the process 
practices and individual forms of Agile applications. However, there is no successful 
method to address the behavioural issues with Agile practices and standardizing it for a 
uniform practice independent from expert judgment, unfortunately. Process improvement 
offers a sustainable method of making project success probability a significantly higher 
value irrespective of individual dependencies (Jacobs, 2006). Salo and Abrahamsson (2005) 
have done an empirical study on Agile software development integration with software 
process improvement, where they state continuous improvement of Agile software 
development processes is important in enhancing the capabilities of the project members 
and the organization as a whole. Miller and Sy (2009) have indicated an extensive summary 
of factors that affects Agile software processes, where the major concerns are concentrated 
on aspects such as poor communication, lack of expertise for autonomous development, 
weak value flow, dependency issues, etc. Essentially, this provides an excellent arena to 
perform Lean practices along with Agile process as a remedy; The Lean principle more or 
less address most of these issues in a more flexible manner where agility could not be 
successful. Lean manufacturing has a proven set of records for flexible and productive 
manufacturing in many industries. However, Leanness alone may not be appropriate for 
software development, instead of agility, as the basic Lean model focuses on defect 
minimization as the prime objective. Narasimhan and others (2006) have indicated that 
Agile practice could presume leanness but leanness might not presume Agile nature. This is 
an interesting claim. However, there are no significant further studies done afterwards.  
Therefore, as the basic problem domain of this research, the above mentioned Agile process 
weaknesses have been considered. The research has successfully tried to formulate a 
blended process model with combining appropriate Lean principles with the Agile software 
process to improve the Agile process stability, certainty, and productivity without 
compromising its advantages.  

 
4. The Blended Process: Lean-Agile hybrid model 

Yusuf and Adeleye (2002) have compared the effectiveness of Lean and Agile 
manufacturing in UK. Even though, the conclusions were derived that Agile manufacturing 
slightly outperform Lean manufacturing, there is no comprehensive study have been done 

 

on software development context. Further, the research focus on agility and Lean practices 
in software development have been more or less equally supportive observations for both 
Agile and Lean software development approaches. Therefore, this research was driven with 
the prime motivation of combining the best aspects of the both processes to form a blended 
process model.  
Santana (at el., 2009) have indicated that the focus of Agile project learning should be on 
improving the performance of the ongoing project. This continuous learning with an 
ongoing project will effectively increase the quality and productivity of the produce being 
developed. It is important to have a parallel vigilance over the Agile activities, as they are 
more or less implemented according to the individual project and people norms. Prince and 
Kay (2003) combined Agile manufacturing with Lean concept to achieve better production 
flow. Integrating Lean and Agile characteristics becomes an important study on how these 
philosophies can assist business to prosper (Naylor, at el., 1999), although, software process 
development researches have not been guided to a reasonable extent so far, unfortunately. 
The solution for the Agile process poor scalability is to integrate the principles and practices 
of Lean with Agile ideology and methods (Shalloway, at el., 2009). Moreover, to combine 
Agile process with Lean practices, it is required to ensure that there will not be redundant 
process steps in the outcome due to the higher degree of similarity between the two 
processes being considered. Though Agile and Lean practices are appeared to be similar, 
there are basic differences between the two in the context they are applied; the difference is 
in the underlying perspective and philosophy and the mindset (Hibbs, at el., 2009). 
As briefly explain in the section 3 above, with this blended process model, the identified key 
Agile weaknesses were addressed through Lean practices. In that sense, the prime objective 
of this proposed model was to increase the process stability, developer autonomy, and 
higher degree of productivity over the classical Agile practices. It was hypothesised that 
incorporating Lean streamlined routine based activities within Agile development phase 
would help to achieve these objectives. Specially, the main hypothesis was that through 
Lean incorporation, developers get more time to focus on their development work than 
worrying about the process management activities. 

 
4.1 Lean-Agile Hybrid Model 
As the first step towards the model development, a simple value stream map was developed 
respective to the Agile process based on the basic classical Agile principles and standard 
practices. According to Oppenheim (2004), the current-state of the value stream map enables 
the identification of wastes and possible improvements; hence, using this value stream, 
possible weak spots were identified comparing the Lean value stream against the Agile. 
Even though this was a trivial activity, it was one of the crucial steps for the success of the 
model. One of the major drawbacks with classical Agile value stream map was the higher 
degree of developer effort to streamline the development process. Literary, this is an 
overhead task for a developer. Unfortunately, the role of the project manager is not 
significant at the grass root level of development in an Agile team; hence development team 
members should perform relevant scheduling and workflow management, individually. 
This can also affect to their decision making on the technical designs as well. In the 
proposed model, these possible overhead points were incorporated with relevant Lean steps 
at the micro level. The underline hypothesis was to inject routine practises of Lean steps into 
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flexible yet weak Agile process points where the blended process will have more certain and 
stable process points over classical Agile, respectively. 
With this understanding of the Agile process weak points, the proposed blended process 
model was developed with a 4 step Lean model; in fact, one step of the altered Lean model 
is a combination of the basic steps ‘Smooth Flow’ and ‘Pull Value’. It was identified that 
these two core Lean principles can be combined and practiced along with the Agile 
Development phase. Literally, the Development phase of the Agile practice overwhelms 
significantly the other phases; it further justifies the decision taken to merge these two Lean 
steps. The proposed model and the classical Agile model are shown in the following figure 
2.     

 
Fig. 2. The Classical Agile Process Model (Left) and the Proposed Lean-Agile Blended 
Process Model (Right) 
 
The proposed model mainly tries to address the issue of overhead work on an Agile 
developer, despite the expected Development work. Specially, this is a significant issue 
which is the fundamental cause for many Agile weakness described above. With the value 
stream map, it was identified that due to the nature of Process Micro Management by the 
individual developer this overhead work can be significant, and affects the developer 
productivity in a substantial manner. With the incorporation of Lean steps the process 
expects to routines most of the trivial work parallel with the development work, without 
much effort from the developer end. However, the mere incorporation of the altered Lean 
steps with relevant Agile activities would not give a practicable model with realistic steps. 
Therefore, a further step towards process implementation was incorporated in a more 
tangible manner. The rectangular boxes in the figure represent these steps which ware the 
linkages with abstract Lean principles and Agile phases as appropriately. The first step – 
Planning represents the initial action towards the respective iteration of the Agile process, 
where it covers the value understanding and development priorities for the iteration. The 
second step – the work schedule and process flow is the effective starting point of the 
proposed model. There the developers decide how their development work (Value Stream) 

 

should be, and they decide the process flow. The most significant improvement can be seen 
with third step – following stream with ‘Kanban’, where each developer (or pair) should 
follow the decided the value stream based work through ‘Kanban’ cards. A Kanban card is a 
simple form of signalling mechanism between the workers of a Lean practice. Anybody can 
define their own Kanban cards according to their requirements. Though it is a simple 
technique, it has a proven record of success. Specially, a person who follows the process 
with Kanban does not have to think about the process at all, but the work assigned with that 
Kanban card. A simple, yet sufficient Kanban card was designed for the experiments. One of 
the used Kanban cards is shown in the following figure 3.    
 

 
Fig. 3. A Snapshot of a Used Kanban Card during the Experiment 
 
As the final step of the proposed model, a rigorous testing at the micro level was introduced 
as a perfection norm. This testing effectively higher granular than unit testing, making lesser 
load on unit testing and sub system testing activities, while giving more opportunities to 
find errors in the code, specially before they are being camouflaged. Beyond this step, the 
blended process reiterates with the next cycle of the development similar to the classical 
Agile process.   

 
5. The Experiment Methodology 

Conducting an experiment to evaluate a software process is not an easy task. There are 
various study types that can be performed. In many cases, the type of study will depend on 
the circumstances. Much of what we do in the software engineering domain is 
opportunistic, and we are often limited by the situation available (Basili, 2007). However, 
“The approaches vary in cost, level of confidence in the results, insights gained, and the 
balance between quantitative and qualitative research methods” (Basili, 1993). First, the 
experiment methodology should comply with the objectives of the underlined study. 
Further, the experimental paradigms require an experimental design, observation, data 
collection and validation on the process or product being studied (Basili, 1993). With these 
objectives in mind, following experiment environment was designed to evaluate the 
proposed process model’s success over classical Agile process.   
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5.1 The Experiment Environment 
This experiment was designed to evaluate the introduced new hybrid software process 
paradigm’s appropriateness in the practical environments. The experiment environment 
and the performance measures were carefully selected in accordance with the prime 
objective of the experiment and to suit with the research hypothesis.  
The experiment environment was selected in a way to practice the two software paradigms, 
collect their respective measures, and analyze the collected results. Therefore, it was decided 
to conduct the experiment with a controlled sample. 
The final year student projects of the Department of Computer Science and Engineering 
(CSE), University of Moratuwa, were the best possible test samples available for this study. 
Those final year projects created a homogeneous experiment platform among each project. 
For this study, 10 final year project groups were selected to participate in this experiment in 
voluntarily basis. Each project group was consisted of 4 final year CSE students.  
Before the experiment 4 mini workshops were conducted for the entire sample (10 groups) on 
the Agile practice of software development. This was to ensure to diminish the knowledge gap 
on the Agile process between the groups as well as between the group members within a 
group. After that 5 groups were separated from the rest to follow the new Lean-Agile blended 
process model, which is considered as the experiment sample. These 5 groups were selected 
entirely upon the voluntarily basis. For this experiment sample, 3 additional mini workshops 
were conducted to familiarize the Lean principle and the new process model. However, extra 
measures were taken on planning and delivering of these 3 mini workshops to ensure no 
additional Agile process skills were developed on the experiment sample students over the 
controlled sample. The other five groups were asked to follow the classical Agile practice, 
which was considered as the controlled experiment sample. While leaving both samples a 
fortnight to practice their process methods, the experiment phase started. Data gathering was 
done thereafter for 10 weeks, on per group basis, within the Software Development phase of 
their projects. A typical working instance model of a group which practiced the proposed 
blended process is shown in the figure 4 below.  
 

 
Fig. 4. The Lean-Agile Value Cell – An Instance of a Student Group Development Work   

 
5.2 Performance measures 
Since the experiment was focused on comparing the two samples to find out which one is 
better with respect to the software development, a set of essential measurement parameters 

 

were identified. One important fact to mention here is that the division of the Lines Of 
Codes (LOC) parameter to three parts as New LOC, Changed LOC, and Removed LOC.  If 
only total LOC is measured, changes to where the LOC comes from may go undetected 
(Rozum, 1991). These changes may reflect significant differences in the effort and schedule 
required to complete the project. Performance measures are shown in the following table 2.  
 

Measurement  Amount Work level (Human hours) 

New LOC N_LOC H_NLOC 

Changed LOC C_LOC H_CLOC 

Removed LOC R_LOC H_RLOC 

Defects fixed D H_D 

Expected work -- H_EW 

Actual work -- H_AW 

Table 2. Measurement Parameters for the Experiment 
 

The number of defects fixed is important to understand the difference between the two 
practices in the context of quality enhancements to the developed software. Expected work 
amount and the actual work amount values were used to compare the effective work 
completion rate between two paradigms. 
All these performance attributes were measured as quantitative values during the examined 
time period along with their respective work amount in human hours. This human hour 
measure is very important to understand the difference of work loads in the classical Agile 
and the improved Agile process model. In addition to that, the human hour values were 
used to identify the weighted factors for the statistical analysis on the three types of LOC; 
New, Changed and Removed, measured during the experiment. Furthermore, in some 
cases, human hour values were used significantly to verify the respective LOC values for 
their accuracy. One could question the appropriateness of the selected experiment 
environment and the measurement parameters for this study. However, due to the 
following reasons, the experiment methodology can be justified steadily. 

 
5.3 Experiment Rationalization   
Software process related experiments are heavily suffered by the people factor. Process can 
provide a useful framework for groups of individuals to work together, but process per se 
cannot overcome a lack of competency (Cockburn, 2001). Individual competency 
discrepancies on software development can cause varying results in the experiments. But, 
the selected participants of this experiment have the least skill differences when compared 
with the other possible participant samples. The same year (final year) students, who have 
followed a more or less similar set of courses and projects, can be considered as equally 
skilled developers, compared to generic sample of developers. Industrial software firms 
always have different competent software developers for their projects, and organization to 
organization, people competencies differ significantly. It affects to the homogeneity of the 
sample participants to a significant extent.    
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Fig. 4. The Lean-Agile Value Cell – An Instance of a Student Group Development Work   

 
5.2 Performance measures 
Since the experiment was focused on comparing the two samples to find out which one is 
better with respect to the software development, a set of essential measurement parameters 

 

were identified. One important fact to mention here is that the division of the Lines Of 
Codes (LOC) parameter to three parts as New LOC, Changed LOC, and Removed LOC.  If 
only total LOC is measured, changes to where the LOC comes from may go undetected 
(Rozum, 1991). These changes may reflect significant differences in the effort and schedule 
required to complete the project. Performance measures are shown in the following table 2.  
 

Measurement  Amount Work level (Human hours) 

New LOC N_LOC H_NLOC 

Changed LOC C_LOC H_CLOC 

Removed LOC R_LOC H_RLOC 

Defects fixed D H_D 

Expected work -- H_EW 

Actual work -- H_AW 

Table 2. Measurement Parameters for the Experiment 
 

The number of defects fixed is important to understand the difference between the two 
practices in the context of quality enhancements to the developed software. Expected work 
amount and the actual work amount values were used to compare the effective work 
completion rate between two paradigms. 
All these performance attributes were measured as quantitative values during the examined 
time period along with their respective work amount in human hours. This human hour 
measure is very important to understand the difference of work loads in the classical Agile 
and the improved Agile process model. In addition to that, the human hour values were 
used to identify the weighted factors for the statistical analysis on the three types of LOC; 
New, Changed and Removed, measured during the experiment. Furthermore, in some 
cases, human hour values were used significantly to verify the respective LOC values for 
their accuracy. One could question the appropriateness of the selected experiment 
environment and the measurement parameters for this study. However, due to the 
following reasons, the experiment methodology can be justified steadily. 

 
5.3 Experiment Rationalization   
Software process related experiments are heavily suffered by the people factor. Process can 
provide a useful framework for groups of individuals to work together, but process per se 
cannot overcome a lack of competency (Cockburn, 2001). Individual competency 
discrepancies on software development can cause varying results in the experiments. But, 
the selected participants of this experiment have the least skill differences when compared 
with the other possible participant samples. The same year (final year) students, who have 
followed a more or less similar set of courses and projects, can be considered as equally 
skilled developers, compared to generic sample of developers. Industrial software firms 
always have different competent software developers for their projects, and organization to 
organization, people competencies differ significantly. It affects to the homogeneity of the 
sample participants to a significant extent.    
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Another aspect is the scope of the selected projects. All these projects are worth of 10 GPA 
credits for the students’ graduation. Therefore, initial guidance on project scope was given 
to the students. In addition to that at the beginning of the project work, a set of experts 
analyzed those project proposals and ensured to keep the projects within the expected scope 
for a final year project. If the industrial projects were taken into the experiment, this type of 
similar scoped projects may not be available. Therefore, it is reasonable to assume all 
projects have a similar work level required for their completion.  
Furthermore, the final year students have equal time and resource constraints while 
practicing their project with their other academic activities. Specially, this was a key success 
factor to constrain student development work to have a uniform experiment environment.  
All these create the best experiment platform one could ever find to this type of an 
experiment. If the samples were taken from the industry, this kind of uniformity would not 
be possible, since different organizations have different resource levels and different 
schedules for the completion of their projects. As the experiment is sensitive to relative 
measures, that kind of project environment can create too much deviated results from the 
tolerant levels. 

 
6. Results and Analysis 

6.1 Analysis – Hypothesis Testing 1 
Though the main objective for this research was defined at the beginning, for this analysis a 
derived hypothesis from the main objective was used. In fact, what has been evaluated in 
this analysis was the main objective of the study, but using a slightly different hypothesis, 
merely because to align the analysis with the data and the objectives of the study.  
In this analysis, the software development productivity rate was considered as a measure of 
the effective Line of Codes (LOC) being produced. With that perspective, following 
hypotheses were defined for the analysis.  
Null hypothesis (H0) – Agile software development productivity cannot be improved by 
combining Lean principles   
Alternative hypothesis (H1) – Agile software development productivity can be improved by 
combining Lean principles   
Since the analysis is based on LOC and the collected data samples have three different LOC 
values, i.e. New LOC, Changed LOC, and Deleted LOC, weighted summations of those 
three were derived on per group, per week basis.  Considering the human work hours spent 
on each category and the usefulness to the final code, following three weights were 
identified. WN = 1 for New LOC, WC = -0.5 for changed LOC, and WR = -1 for removed LOC.  
Using these weights, 50 data values were derived for a sample and the values are shown in 
the following tables for the two samples. For a given Week (Wi) and for a given Group (Gi), 
the LOC value was obtained as the equation (1). 
 

LOC = WN*N_LOC + WC*C_LOC + WR*R_LOC   (1) 
 
 
 
 
 

 

  W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 
G1 55.5 80.5 191.5 320 365 409.5 373 557 462 668 
G3 67 107.5 145 275 375 377.5 420 585 744.5 575 
G4 66 112 168 301 345 397 336.5 192 580.5 442.5 
G9 52.5 187 200.5 475.5 676.5 581.5 444.5 567 745 944 
G10 48 203.5 364.5 481 551.5 659 672.5 751.5 386 908.5 

Table 3. Sample A (Classical Agile Process) weighted sums of LOC 
 

 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 
G2 102.5 204 240 391.5 486 542 533 533.5 680.5 540.5 
G5 107.5 170 375 494 574.5 470.5 220 610 501 755 
G6 97 221 388.5 751 692 812 594.5 939 688.5 779 
G7 130.5 380.5 570.5 695.5 844.5 919 879.5 1081 1088 699.5 
G8 49 342 435 86 920.5 1097 1084 968 943 981.5 

Table 4. Sample B (Lean-Agile Process) weighted sums of LOC 
  

To compare the samples with above data and test the hypothesis, Analysis of Variance 
(ANOVA) statistical method was selected. Instead of manual calculation, the Minitab© 
statistical application was used. Minitab release 13.20 was the application version which 
used for this analysis. As the name implies, ANOVA is based on variance analysis between 
the samples, and it is a widely used statistic model for comparing two or more samples for 
their means. Actually, the Analysis of Variance (or F-test), as with Student’s t-test,  is fairly 
robust with respect to violations of the assumptions of normality and homogeneity of 
variance, so the primary claim is that of equality of means; the alternative hypothesis, then, 
is that at least one of the population means is different from the others. The p-values 
derived from its use are not strongly affected by such violations, as long as the violations are 
not too extreme (Vokey and Allen, 2002). ANOVA uses the following equation (2). 
 

SST = SSW + SSB                                                  (2) 
 

This is the fundamental equation of ANOVA; the unique partitioning of the total sum of 
squares (SST) into two components: the sum of squares within groups (SSW) plus the sum 
of squares between groups (SSB). This is a very abstract model, though the computations of 
those values are somewhat complex, however, further detail of ANOVA is beyond the scope 
of this research. The Minitab output for the ANOVA on this hypothesis test is shown in the 
figure 5, below. 
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Fig. 5. Minitab output - ANOVA output for hypothesis test on effective LOC 
 
Sample A: The mean value μA = 399.9 LOC/week and the standard deviation σA = 233.0.  
Sample B: The mean value μB = 573.8 LOC/week and the standard deviation σB = 305.6. 

From the average developed LOC values for a week, clearly, the blended Agile practice is 
capable of producing more effective LOC than the classical Agile practice; hence, a higher 
productivity. However, just by considering the means of the samples, hypothesis tests 
cannot be done, statistically. With the ANOVA test, the p-value or the significance level was 
0.002 for the groups A and B. In ANOVA, to reject the H0 the p-value should be less than 
0.05 and if not the H0 will be accepted. In this case, the p-value is 0.002 i.e. p < 0.05; 
therefore, reject the Null hypothesis (H0) with 95% confidence level. This implies that the 
Agile process development productivity can be improved by applying Lean practices. 

 
6.2 Analysis – Hypothesis Testing 1 
This analysis is similar to the previous one where in this case, the same derived hypothesis 
was used. The only difference in this analysis is the data samples were derived using the 
collected two parameters of expected work and the actual work. In this analysis, the 
successful achievement levels of the scheduled workloads were used to evaluate the two 
methods. Once again, the same hypothesis with the LOC analysis was used as follows. 
Null hypothesis (H0) – Agile process developer productivity cannot be improved through 
applying Lean principle  
Alternative hypothesis (H1) – Agile process developer productivity can be improved by 
using Lean practice techniques  
For a given week (Wi) and a given group (Gi), the actual work level was calculated 
considering the work hour measures. For this analysis, the work done on defect fixing time 
was not considered, since that time was not scheduled explicitly, in the expected work 
norms. However, with the results it was obvious that there had been a direct impact from 
the defect fixing work to the actual work level, making it further deviate from the expected 
work norm.  

 

Since the analysis was based on achievement level of the scheduled work for a given week, 
the following model (3) was used to derive the required sample information for the 
hypothesis testing. 
 

level work Expected
level) work Expected  -  level work Actual(  * 100%              (3) 

Having a positive value as the output from this equation means, in that particular week, the 
actual work done has exceeded the scheduled or expected work amount. A negative value 
indicates that the actual work done is less than that of the expected. The values were 
considered as percentages for the comparison and analysis convenience. 
 

 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 

G1 -39% -27.5% -17% -28% -9.6% -7% -34% -18.7% -24.7% -22.3% 

G3 -30% -23.3% -31.4% -27.7% -16% -16% -38% -28% -16% -13% 

G4 -29% -25.8% -34% -32% -23.1% -17.3% -16.2% -12% -15% -17.6% 

G9 -17.3% -18% -35.6% -22.7% -18% -29.3% -16% -4% -15.1% -27.2% 

G10 -14.7% -16% -33.3% -9.3% -21% -29.2% -12% -1.2% -23.2% -17.7% 

Table 5. Sample A – deviation percentage from expected work amount 
 

 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 

G2 -42% -34% 8% -24% -21.6% -8% -15.2% -19% -2.7% -40% 

G5 -20% -20% -2.7% 1% -18% -1.5% -14% -24% -16 -13.8% 

G6 -14.4% -2% -12% -9% -3.8% -5.7% -26% -58.7% -5.3% -11.7% 

G7 -10.6% -28% -9.3% -18% -5% -13.3% -17.3% -5.3% -30% -22.2% 

G8 -16% -16% -7% -12% -15.3% -20% -26.7% -17.3% -32% -13.3% 

Table 6. Sample B – deviation percentage from expected work amount 
 
The above two tables (Table 5 and 6) show the deviation percentages from the expected 
work amount for the two samples. These data samples used to test the hypothesis using 
ANOVA method as done in the previous analysis.  
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The above two tables (Table 5 and 6) show the deviation percentages from the expected 
work amount for the two samples. These data samples used to test the hypothesis using 
ANOVA method as done in the previous analysis.  
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Fig. 6. MINITAB output - ANOVA output for hypothesis test on work levels 
 
According to the obtained results from the ANOVA test, following information was 
obtained for the analysis. 
 
For the sample A: The mean value μA = -21.4% and the standard deviation σA = 8.82.  
For the sample B: The mean value μB = -16.21% and the standard deviation σB = 11.99. 
 
According to the used equation model, having a higher (towards to the positive values) 
mean value is better since the deviation from the expected work level is lesser. Furthermore, 
statistically the ANOVA test resulted in the p-value as 0.016; i.e. p< 0.05. This means that the 
Null hypothesis (H0) can be rejected with 95% confidence level, based on achieving the 
expected effective work level for a given time period. For the work hour measures, since the 
additional tasks were not incorporated, clearly, the blended process practice allows higher 
productivity with a higher effective work level. This implies that the Agile process 
developer productivity can be improved by incorporating Lean practices along with 
developers’ usual Agile process tasks.  

 
6.3 Analysis – Defect Rate Behaviour 
Apart from the hypothesis testing, the defect fixing rate was also analyzed for the two 
samples through the examined time period. A defect was classified as an unexpected or 
erroneous behaviour of a selected piece of module or component, which has been already 
compiled successfully and committed to the project. With that respect, compilation errors of 
the code were not considered as defects. The main intention for this analysis was to examine 
the supportability level towards the work perfection of the two paradigms.  
 

 

 
Fig. 7. Average defects rates in the examined time period for the two samples 
 
A significant pattern difference between the defect rates of the two samples was observed 
during the experiment period, as shown in Figure 7. A higher rate for Lean-Agile sample at 
the early stages of development was due to that their autonomous and value perfection 
norms with the development. On the other hand, the classical Agile groups did not find 
many defects during the early weeks, since they did not pay much attention to the 
perfection of what they were developing. At the later stages, this situation swapped 
between the two samples and the Lean-Agile practice seems to have a stable minimal defect 
rate, where as the classical Agile practice has experienced a high and varying defect rate. A 
possible explanation to this behaviour is that the unfixed hidden defects in components 
from early developments would cause emerging defects once they integrated each other. 
Importantly, having lesser defects in the later stages is very essential for the stability of the 
project and to be aligned with the project schedule. Furthermore, defects emerge in later 
stages are relatively expensive to fix than that of the early stages. However, the average 
defect rates per week for the two samples were close to each other as (Sample A) μA = 2.2, 
and (Sample B) μB = 1.92. If the study was extended further, this closeness would have 
changed since the group A is getting further defects with its trend. However, based on the 
available information it can be concluded that applying Lean principles stabilizes the Agile 
development phase with respect to quality and perfection, especially in later stages of the 
development phase. 

 
6.4 Experiment Limitations 
There have been few experimental limitations were identified with this research, which are 
mentioned below. However, their impact to the result was not significant enough to create 
externalities among the data samples; hence to the outcome. One of the key limitations 
observed with the experiment was that the assumed identical skill level among the students 
in the sample. It is a known fact that no two humans can have identical skill levels. 
However, this fact is a generic limitation to all the experiments, which involve human skill 
based activities. The best possible scenario one could achieve is to have nearly similar 
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skilled people within the sample, i.e. minimize the skill differences as much as possible. In 
that regard, the selected experiment population is one of the best cases one could find for 
such an experiment. The reasons for such a strong statement were discussed under the 
experiment rationalization section. Therefore, the impact of this limitation was minimal to 
the study. 
Another limitation with the study was the truncation errors of the collected data. Literally, 
what have happened to be the developers were confident on expressing their values with 
integer figures of hours without the decimal or fractional values. For an example, they might 
have said their actual work amount as 23 hours, but the precise value may be 23.2 hours or 
22.7 hours, etc. This was with the LOC measures as well. If there were extreme cases, which 
questioned the accuracy of the data additional parameters such as compile time and 
codebase log files, were used to cross validate the claimed figures, as a sanity check. 
However, since this is common to both samples of the experiment this was nullified at the 
end. Furthermore, this type of truncation errors have the normal distribution behaviour 
where the standard error mean is 0; i.e. the impact at the population level is insignificant. 
Another limitation was the domain differences between the projects. Sometimes, domain 
specific knowledge can be a significant factor for project success. Some of the projects were 
in different domains, which introduced some impact to the experiments. However, since 
students have already followed their literature survey and background studies, at the time 
they engage with software development, every group had a sufficient level of competence 
on their respective domains, resulted in lesser impact to the experiment outcome. 

 
7. Conclusion 

This research has introduced significant policy implications to Agile practitioners. First of 
all, software development activities which follow Agile process, can be considerably 
benefited through using the proposed process model. In fact, the proposed process model 
successfully, creates more value oriented, certain, value streamed, and productive software 
development environment over the classical Agile approach. The research results also reveal 
a more defect free development activity, essentially in the crucial stages of the development. 
Importantly, the proposed blended process shows more stability over frequent requirement 
changes, which is inevitable within an Agile process based software development. The used 
Lean principles have acted as stabilizing agents within certain Agile practices.  
Another possible implication derives from this study is that, like the proposed process 
practice improves the development works within the software development phase, there is a 
significant potential to improve the other software lifecycle phases, such as, Requirement 
Engineering, Design, Testing, and Deployment, even though they are less visible within the 
Agile practices. In fact, more dominancy on development phase alone, has made the Agile 
practices more vulnerable to process instability, frequent changes and overhead 
development works. With the Lean practices, Agile process can have short yet steady 
Requirement Engineering, Design and Testing phases without affecting to the main 
development works.  
Moreover, the recent hype on Agile manufacturing can also be benefited from the 
amalgamation of suitable Lean concepts as required. This means, though this study was 
mainly focused on software industry, it is possible to extend the proposed process model as 
required for other industries of interest. Specially, the industries of promising future with 

 

Agile manufacturing, could be enhanced the process potentials resulting in fruitful returns. 
Moreover, the flexibility given in the proposed process model allows practitioners to 
customize their practices as per the industry norms without reducing the benefits. 
It is required a further examine on this proposed process model in a broad spectrum of 
industrial environments and formulate a standardized process practice for the proposed 
model. It is crucial to substantially practice the model in a wider range of projects in 
diversified environments to fine tune the proposed practices. Therefore, it is expected, thus 
encourage industrial practitioners to use this model widely while interested researchers to 
research further to improve, standardize and make popular for the benefit of Agile 
practitioners.      
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that regard, the selected experiment population is one of the best cases one could find for 
such an experiment. The reasons for such a strong statement were discussed under the 
experiment rationalization section. Therefore, the impact of this limitation was minimal to 
the study. 
Another limitation with the study was the truncation errors of the collected data. Literally, 
what have happened to be the developers were confident on expressing their values with 
integer figures of hours without the decimal or fractional values. For an example, they might 
have said their actual work amount as 23 hours, but the precise value may be 23.2 hours or 
22.7 hours, etc. This was with the LOC measures as well. If there were extreme cases, which 
questioned the accuracy of the data additional parameters such as compile time and 
codebase log files, were used to cross validate the claimed figures, as a sanity check. 
However, since this is common to both samples of the experiment this was nullified at the 
end. Furthermore, this type of truncation errors have the normal distribution behaviour 
where the standard error mean is 0; i.e. the impact at the population level is insignificant. 
Another limitation was the domain differences between the projects. Sometimes, domain 
specific knowledge can be a significant factor for project success. Some of the projects were 
in different domains, which introduced some impact to the experiments. However, since 
students have already followed their literature survey and background studies, at the time 
they engage with software development, every group had a sufficient level of competence 
on their respective domains, resulted in lesser impact to the experiment outcome. 

 
7. Conclusion 

This research has introduced significant policy implications to Agile practitioners. First of 
all, software development activities which follow Agile process, can be considerably 
benefited through using the proposed process model. In fact, the proposed process model 
successfully, creates more value oriented, certain, value streamed, and productive software 
development environment over the classical Agile approach. The research results also reveal 
a more defect free development activity, essentially in the crucial stages of the development. 
Importantly, the proposed blended process shows more stability over frequent requirement 
changes, which is inevitable within an Agile process based software development. The used 
Lean principles have acted as stabilizing agents within certain Agile practices.  
Another possible implication derives from this study is that, like the proposed process 
practice improves the development works within the software development phase, there is a 
significant potential to improve the other software lifecycle phases, such as, Requirement 
Engineering, Design, Testing, and Deployment, even though they are less visible within the 
Agile practices. In fact, more dominancy on development phase alone, has made the Agile 
practices more vulnerable to process instability, frequent changes and overhead 
development works. With the Lean practices, Agile process can have short yet steady 
Requirement Engineering, Design and Testing phases without affecting to the main 
development works.  
Moreover, the recent hype on Agile manufacturing can also be benefited from the 
amalgamation of suitable Lean concepts as required. This means, though this study was 
mainly focused on software industry, it is possible to extend the proposed process model as 
required for other industries of interest. Specially, the industries of promising future with 

 

Agile manufacturing, could be enhanced the process potentials resulting in fruitful returns. 
Moreover, the flexibility given in the proposed process model allows practitioners to 
customize their practices as per the industry norms without reducing the benefits. 
It is required a further examine on this proposed process model in a broad spectrum of 
industrial environments and formulate a standardized process practice for the proposed 
model. It is crucial to substantially practice the model in a wider range of projects in 
diversified environments to fine tune the proposed practices. Therefore, it is expected, thus 
encourage industrial practitioners to use this model widely while interested researchers to 
research further to improve, standardize and make popular for the benefit of Agile 
practitioners.      
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1. Introduction 

In the last fifty years, many manufacturers have chosen the implementation of Flexible 
Manufacturing Systems (FMS) or Computer Integrated Manufacturing (CIM) in their shop 
floor or, at least, the automation of some of the operations carried out therein with the 
intention of increasing their productivity and becoming more competitive (Shawaky, 1998; 
Sokolowski, 2001; Cho, 1999; Govekar, 2000; Brophy, 2002).  
With reference to machining operations, the implementation of these systems requires the 
supervision of different aspects related to the machine (diagnostic and performance 
monitoring), the tool or tooling (state of wear, lubrication, alignment), the workpiece 
(geometry and dimensions, surface features and roughness, tolerances, metallurgical 
damage), the cutting parameters (cutting speed, feed rate, depth of cut), or the process itself 
(chip formation, temperature, energy consumption) (Byrne, 1995; D'Errico, 1997; Tönshoff, 
1988; Grabec, 1998; Inasaki, 1998; Kopac, 2001; Fu, 1996; Masory, 1991; Huang, 1998; Teti, 
1995; Teti, 1999). 
For the monitoring and control of the above mentioned aspects, it has been necessary to 
make notable efforts in the development of appropriate process monitoring systems (Burke 
& Rangwala, 1991; Chen et al., 1994; Chen et al., 1999; Chen, 2000). Such systems are typically 
based on different types of sensors such as cutting force and torque, motor current and 
effective power, vibrations, acoustic emission or audible sound (Desforges, 2004; Peng, 2004; 
Lin, 2002; Sokolowski, 2001; Ouafi et al., 2000; Karlsson et al., 2000; Chen & Chen, 1999; 
Jemielniak et al., 1998; Byrne, 1995; Dornfeld, 1992; Masory, 1991). However, despite all the 
efforts, standard solutions for their industrial application have not been found yet. The large 
number and high complexity of the phenomena that take place during machining processes 
and the possibility to choose among numerous alternatives in each implementation step of 
the process monitoring system (e.g. cutting test definition, type and location of sensors, 
monitoring test definition, signal processing method or process modeler selection) are the 
main responsible for the existence of more than one solution. 
The review and analysis of the relevant literature on this topic revealed that it is necessary to 
develop and implement an experimental system allowing for the systematical 
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characterizarion of the different parameters that influence the process before realizing a 
process monitoring system applicable to industry (Hou, 2003; Jin & Shi, 2001; Hong, 1993; 
Malakooti et al., 1995; Venkastesh et al., 1997; Xiaoli et al., 1997; Xu & Ge, 2004). This will 
allow to establish an adequate knowledge and control of the critical factors involved in the 
process monitoring system by means of single factor variations. Moreover, it will be also 
possible to identify the variations produced by potential spurious sources when the process 
monitoring system is applied to real situations in the shop floor. 
This work reports on the approach for the development of a machining process monitoring 
system based on audible sound sensors. Audible sound energy appears as one of the most 
practical techniques since it can serve to replace the traditional ability of the operator, based 
on his experience and senses (mainly vision and hearing), to determine the process state and 
react adequately to any machine performance decay (Lu, 2000). This technique has been 
attempted for decision making on machining process conditions but it has not been 
extensively studied yet for applications in industrial process monitoring (Teti, 2004; Teti & 
Baciu, 2004). The main critical issues related to the employment of this technology in 
industry are the need to protect the sensor from the hazardous machining environment 
(cutting fluids and metal chips) and the environment noise (from adjacent machines, motors, 
conveyors or other processes) that may contaminate the relevant signals during machining 
(Lu, 2000; Teti & Baciu, 2004; Teti et al., 2004; Wilcos, 1997; Clark, 2003). 
The principal benefits of audible sound sensors for machining process monitoring are 
associated with the nature of the sensors employed in the acquisition of the signals. These 
are, in general, easy to mount on the machine tool, in particular near the machining point, 
with little or no interference with the machine, the tool, the workpiece or the chip formation. 
Besides, these sensors, basically microphones, are easy to use in combination with standard 
phonometers or spectrum analysers. These characteristics of audible sound sensors make 
the realization of the monitoring procedure quite straightforward. In addition, their 
maintenance is simple since they only require a careful handling to avoid being hit or 
damaged. Accordingly, they usually provide for a favourable cost/benefit ratio. 
The key novelties of the approach proposed in this work are, on the one hand, the 
application of a systematic methodology to set up the cutting trials allowing for a better 
comparison with other similar experimental works and, as a result, the advance in the 
standardization for the development of such systems. On the other hand, the independent 
signal analysis of the noise generated by the machine used for the cutting trials and by the 
working environment allows to filter this noise out of the signals obtained during the actual 
material processing. Lastly, the possibility has been verified to apply the results of this 
approach for the development of process monitoring procedures based on sensors of a 
different type, in particular acoustic emission sensors, where the stress waves produced 
within the work material do not travel through air but only in the work material itself. The 
combined application of audible sound energy sensors and acoustic emission sensors could 
allow for the acquisition of more exhaustive information from both low frequency (audible 
sound) and high frequency (acoustic emission) acoustic signal analysis. This would 
decidedly contribute to the realization of the concept of sensor fusion technology for process 
monitoring (Emel, 1991; Niu et al., 1998). 
The described methodology was applied to characterize the audible sound signals emitted 
by different cutting conditions during milling processes. The classification of audible sound 
signal features for process monitoring in milling was carried out by graphical analysis and 

 

parallel distributed data processing based on artificial neural networks. In the following 
sections, the methodology, the experimentation, the sensor signal detection and analysis 
methods, and the obtained results are reported and critically assessed. 

 
2. Methodology 

The methodology proposed for the design and implementation of a process monitoring 
system based on audible sound energy sensors includes the steps described below. 
Cutting tests definition. All the elements involved in the cutting tests, along with their basic 
characteristics and properties, should be defined in this step, as reported in the systematic 
methodology proposed in (Rubio & Teti, 2005) for the establishment of tool condition 
monitoring systems. In particular, the cutting operation, the machine tool, the workpiece 
(material and size), the tools (type, material, coating, dimensions and fresh/worn state), the 
cutting parameters (cutting speed, feed rate, depth of cut) and the possible use of cutting 
fluid, should be defined. Although this seems obvious and there are in the literature works 
that report thorough descriptions of the cutting tests (Teti & Buonadonna, 1999), most of the 
authors do not provide, or not with the desired detail, all the necessary information to allow 
for a correct analysis of the results and an adequate comparison with the results obtained by 
other authors.  
Process monitoring tests definition. The monitoring tests dealt with in this work are based on 
the use of audible sound energy sensors. The broadband sound pressure level of the audible 
signals is detected by means of sensing devices dedicated to the measure and display this 
type of signals. All detected audible sound signals are transferred on PC and off-line 
analysed. In order to verify the repeatability of the monitoring tests, the audible sound 
signal specimens should be recorded several times (> 3) for each cutting condition. The 
noise of the machine tool running unloaded should be recorded as well in order to be able, 
later, to characterise the audible sound signals from the cutting process deprived of the 
disturbing noise generated by both machine and working environment. 
Selection of signal processing and decision making methods. To select the most adequate signal 
processing and decision making methods, a review of the main advanced signal processing 
(Rubio et al., 2006a) and decision making procedures (Rubio et al., 2006b) used in machining 
process monitoring based on acoustic sensors was carried out. As a result, the Fast Fourier 
Transform (FFT) was selected for signal processing and feature extraction whereas 
supervised Neural Network (NN) paradigms were adopted for signal feature pattern 
recognition and process conditions decision making. 
Experimental layout. The most essential aspects of the experimental layout concern the 
audible sound sensor location and protection: firstly, the selection of the distance between 
sensor and cutting point in order to detect the signals correctly, and, secondly, the way to 
protect the sensor from the chips, the cutting fluid and other pollutants during machining. 
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Furthermore, the noise of the machine tool running unloaded should be recorded for its 
later subtraction from audible sound signals detected during the material removal process. 
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Signal processing and decision making. After the sensor monitoring tests, the processing and 
analysis of the recorded signals by means of the methods selected earlier must be carried out 
together with the decision making procedure applied to significant signal features: in this 
work, the FFT for signal processing and supervised NN paradigms for decision making. 
Design and implementation of the process monitoring system. On the basis of the issues of the 
previous steps, the implementation procedure for an on-line machining process monitoring 
system based on audible sound energy sensors can be proposed. 

 
3. Application  

According to the methodology described in the previous section, experimental applications 
were carried out as outlined below. 
Cutting tests definition. Following the methodology for the definition of the cutting tests 
(Rubio & Teti, 2005), the machining operation was defined as a milling process carried out 
on a conventional DORMAC FU-100 milling machine. The workpiece was a plate of size of 
100 x 200 x 40 mm made of T4-6056 Al alloy. The tool was a fresh 5-teeth milling cutter of 
12.16 x 8.18 x 5.16 mm, made of WC-Co inserts coated with TiN. The cutting conditions 
were: spindle speed, S = 800 and 1000 rpm; feed rate, f = 40, 80 and 160 mm/min and depth 
of cut, d = 0.5 and 1 mm. The tests were conducted under dry cutting conditions. Table 1 
summarizes the cutting test description. 
 

Table 1. Summary of the cutting test description. 
 
Process monitoring tests definition. The audible sound energy monitoring system was 
composed of a Larson Davis 2800 Spectrum Analyser, a standard Larson Davis preamplifier 
model PRM 900B, a ½” free field high sensitivity sensor and a ½” pre-polarized microphone 
(Fu, 1996). All audible sound signals detected by the Larson Davis 2800 Spectrum Analyser 
were transferred on PC for off-line analysis. 

Element Type/ Characteristics/Properties 

Cutting operation Milling 

Machine Tool Conventional: DORMAC FU-100 milling machine 

Workpiece  Material: 6056 aluminium alloy with T4 thermal treatment 
Dimensions: 100 x 200 x 40 mm 

Tool 

Type: 5-teeth milling cutter 
Material: tungsten particles and cobalt matrix carbide (WC-Co) 
Coat material: titanium nitride (TiN) 
Dimensions: 12,16 x 8,18 x 5,16 mm 
State: Fresh 

Cutting conditions 
Cutting speed, S = 800 - 1000 rpm  
Feed rate, f = 40 – 80 - 160 mm/min  
Depth of cut, d = 0.5 - 1 mm 

Coolant  No 

 

Selection of signal processing and decision making methods. The selected signal processing and 
feature extraction method was the FFT and the signal features pattern recognition for 
decision making was based on supervised NN data processing since this approach had been 
used in previous works with satisfactory results (Teti, 2004; Teti & Baciu, 2004). 
Experimental layout. Figure 1 shows the experimental layout. The distance between the 
microphone and the cutting point was set in such a way that, during each machining 
operation, was approximately equal to 85 mm. Particular attention was paid to protect the 
microphone from the chips by means of a plastic mesh and to isolate the experimental area 
from environment noise that could contaminate the detected signals. 
 

 
Fig. 1. Experimental layout. 
 
Performance of the cutting and process monitoring tests. The experimental tests carried out with 
the different cutting conditions are reported in Table 2. Each test was rehearsed 3 times in 
order to check for repeatability. Simultaneously, the sensor monitoring procedure was 
applied during each test.  
Signal processing and decision making. The spectrum analyser was set to 800 lines acquisition 
mode and a FFT zoom was set equal to 2. In this way, as the capture interval was from 0 to 
10000 Hz, by dividing this frequency interval into 800 lines, a step of 12.5 Hz was achieved. 
Besides the audible sound signal detected in sound Level Meter mode, a series of signal 
parameters (SUM (LIN) SUM (A), SLOW, SLOW MIN, SLOW MAX, FAST, FAST MIN, 
FAST MAX, IMPULSE, LEQ, SEL, PEAK, Tmax3 and Tmax5) were obtained and recorded as 
well. The option “by time” allowed to save the measurements automatically, with end time 
equal to 10 seconds and step equal to 1 second. The transfer velocity was set at 9600 Baud, 
which was the same as the velocity imposed to the PC for file transfer. For graphical data 
processing and display, Spectrum Pressure Level-Noise (Spectrum Pressure Lave, 1998) and 
Vibrations Works (OS Windows) (Noise and Vibrations Works, 1998) and CA Cricket Graph 
III (OS Mac) (CA-Cricket Graph III,1992) software packages were used. For NN data 
processing, the Neural Network Explorer software package was used (Masters, 1993). 
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Table 2. Cutting test parameters. 
 
Design and establishment of the process monitoring system. Once the audible sound signals have 
been fully characterized for each of the diverse cutting conditions, it becomes possible to 
compare these reference signals with the new ones detected during the normal process 
operation in such a way that the differences between reference signals and current signals 

Test Id. S (rpm) f (mm/min) d (mm) 
1 800 --- --- 
2 800 --- --- 
3 800 --- --- 
4 1000 --- --- 
5 1000 --- --- 
6 100 --- --- 
7 800 40 0.5 
8 800 40 0.5 
9 800 40 0.5 
10 800 80 0.5 
11 800 80 0.5 
12 800 80 0.5 
13 800 160 0.5 
14 800 160 0.5 
15 800 160 0.5 
16 800 40 1 
17 800 40 1 
18 800 40 1 
19 800 80 1 
20 800 80 1 
21 800 80 1 
22 800 160 1 
23 800 160 1 
24 800 160 1 
25 1000 40 0.5 
26 1000 40 0.5 
27 1000 40 0.5 
28 1000 80 0.5 
29 1000 80 0.5 
30 1000 80 0.5 
31 1000 160 0.5 
32 1000 160 0.5 
33 1000 160 0.5 
34 1000 40 1 
35 1000 40 1 
36 1000 40 1 
37 1000 80 1 
38 1000 80 1 
39 1000 80 1 
40 1000 160 1 
41 1000 160 1 
42 1000 160 1 

 

allow for the reliable sensor monitoring and control of the machining process. The target is 
to achieve an on-line monitoring system using as reference the signals conditioned through 
machine tool and working environment noise filtering and suppression. 

 
4. Results 

After audible sound signals detection, the repeatability of the tests was verified by 
calculating the differences between recorded signals and dividing the result by 800 (number 
of acquisition lines of the spectrum analyser). All the computed values were less than 5%. 
Then, a reference signal for the machine and environment noise was established as the 
average of the 3 signals obtained from each of the unloaded machine tool running tests. 
Figure 2 shows the reference signal in terms of amplitude, Sa (dB), versus frequency, f (Hz), 
for the 5th second of the cutting test with S = 800 rpm and f = 80 mm/min. Along with the 
reference signal for the machine and environment noise, the average signals for d = 0.5 mm 
and d = 1 mm under the same S and f conditions were plotted as well. 
The reference signal was subtracted from the audible sound signals detected during the 
actual machining tests to obtain a “difference signal” for classification analysis. All further 
analyses were carried out using these difference signals (Figure 3). 
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Fig. 2. Signal amplitude Sa (dB) vs. frequency f (Hz) of the audible sound signals for the 5th 
second of each test. Namely, milling with S = 800 rpm, f = 80 mm/min, d = 0.5 mm; milling 
with S = 800 rpm, f = 80 mm/min, d = 1 mm, and machine tool running unloaded at S = 800 
rpm. 
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Fig. 3. Amplitude of the difference between machining audible sound and machine tool 
noise (”difference signal”) for each of the ten seconds of cutting test: a) first; b) second; c) 
thrird; d) fourth; e) fifth; f) sixth; g) seventh; h) eighth; i) ninth; j) tenth second. 

            a) 

 

The maximum amplitude of the ”difference signal” was evaluated for each frequency 
interval and for each second of cutting test. The six frequency intervals selected for audible 
sound signal processing were: 0-0.25, 0.25-0.5, 0.5-1, 1-2.5, 2.5-5, 5-10 kHz. Figure 4 reports 
examples of the ”difference signal” maximum amplitude Sa diffMAX (dB) versus frequency 
intervals f (Hz) for cutting tests with S = 800 rpm, f = 80 mm/min and d = 0.5 mm or 1 mm 
cases, for each of the ten seconds of each cutting test. The figure shows that for frequency 
values higher than 1 kHz it is possible to discriminate audible sound signals obtained from 
machining with different depth of cut values. 
Graphical representation of data in high dimensions (> 3) feature spaces is not feasible. 
Thus, the results are presented in a 2 dimensions feature space by pair-wise plotting of 
frequency intervals maximum signal amplitude as shown in Figure 5 for two low frequency 
intervals, in Figure 6 for two medium frequency intervals, and in Figure 7 for two high 
frequency intervals. The figures show that for the two high frequency intervals the 
separation between cluster points characteristic of the two depth of cut values is very good.  
The same can be seen if the ”difference signal” maximum amplitude is plotted versus depth 
of cut as shown in Figure 8 for low, medium and high frequency intervals. 
At low frequencies (0-0.25 kHz; 0.25-0.5 kHz), the Sa diffMAX value is around 10 dB for both 
depth of cut values (0.5 and 1 mm). In this case, depth of cut discrimination is unfeasible. 
However, at high frequencies (1-2.5 kHz; 2.5-5 kHz) the Sa diffMAX value is around 10 dB for 
depth of cut 0.5 mm and around 30 dB for a depth of cut 1 mm and recognition becomes 
feasible. 
A supervised NN data processing was utilized for pattern recognition using the 6-
component feature vectors made of the ”difference signal” maximum amplitudes for the 6 
frequency intervals. A three-layers feed-forward back-propagation NN was built with the 
following configuration: input layer with 6 nodes; hidden layer with 3 nodes determined by 
the cascade learning procedure (Teti & Buonadonna, 1999); output layer with 1 node. 
The 6-3-1 NN was trained and tested according to the leave-k-out procedure with k = 2 (Teti 
& Buonadonna, 1999), using a number of learning steps comprised between 1000 and 14000. 
In Figure 9, the NN output is reported versus the number of input patterns for 12000 and 
14000 learning steps. From this figure, it can be seen that the NN Success Rate (SR) in the 
identification of depth of cut becomes 100% after 14000 learning steps. 
Figure 10 reports the NN SR versus learning steps for different treshold values. From the 
figure, it can be noted that the NN SR is 85% as early as 2000 learning steps. 
Figure 11 reports the NN SR versus threshold value for variable numbers of learning steps. 
From the figure, it can be observed that the NN SR starts decreasing gradually only for 
threshold values < 0.3, except in the case of the lowest number of learning steps (i.e. 1000) 
for which a rapid SR reduction is expectedly verified. 
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frequency intervals. The figures show that for the two high frequency intervals the 
separation between cluster points characteristic of the two depth of cut values is very good.  
The same can be seen if the ”difference signal” maximum amplitude is plotted versus depth 
of cut as shown in Figure 8 for low, medium and high frequency intervals. 
At low frequencies (0-0.25 kHz; 0.25-0.5 kHz), the Sa diffMAX value is around 10 dB for both 
depth of cut values (0.5 and 1 mm). In this case, depth of cut discrimination is unfeasible. 
However, at high frequencies (1-2.5 kHz; 2.5-5 kHz) the Sa diffMAX value is around 10 dB for 
depth of cut 0.5 mm and around 30 dB for a depth of cut 1 mm and recognition becomes 
feasible. 
A supervised NN data processing was utilized for pattern recognition using the 6-
component feature vectors made of the ”difference signal” maximum amplitudes for the 6 
frequency intervals. A three-layers feed-forward back-propagation NN was built with the 
following configuration: input layer with 6 nodes; hidden layer with 3 nodes determined by 
the cascade learning procedure (Teti & Buonadonna, 1999); output layer with 1 node. 
The 6-3-1 NN was trained and tested according to the leave-k-out procedure with k = 2 (Teti 
& Buonadonna, 1999), using a number of learning steps comprised between 1000 and 14000. 
In Figure 9, the NN output is reported versus the number of input patterns for 12000 and 
14000 learning steps. From this figure, it can be seen that the NN Success Rate (SR) in the 
identification of depth of cut becomes 100% after 14000 learning steps. 
Figure 10 reports the NN SR versus learning steps for different treshold values. From the 
figure, it can be noted that the NN SR is 85% as early as 2000 learning steps. 
Figure 11 reports the NN SR versus threshold value for variable numbers of learning steps. 
From the figure, it can be observed that the NN SR starts decreasing gradually only for 
threshold values < 0.3, except in the case of the lowest number of learning steps (i.e. 1000) 
for which a rapid SR reduction is expectedly verified. 
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Fig. 4. “Difference signal” maximum amplitude Sa diffMAX (dB) vs. frequency intervals f 
(Hz) for the S = 800 rpm, f = 80 mm/min, and d = 0.5 or 1 mm cases, for each of the ten 
seconds of cutting test: a) first; b) second; c) third; d) fourth; e) fifth; f) sixth; g) seventh; h) 
eighth; i) ninth; j) tenth second. 
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Fig. 5. Pair-wise plots of “difference signal” maximum amplitudes for low frequency 
intervals. 
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Fig. 6. Pair-wise plots of “difference signal” maximum amplitudes for medium frequency 
intervals. 
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Fig. 6. Pair-wise plots of “difference signal” maximum amplitudes for medium frequency 
intervals. 
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Fig. 7. Pair-wise plots of “difference signal” maximum amplitudes for high frequency 
intervals. 
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Fig. 8. ”Difference signal” maximum amplitudes vs. depth of cut. 
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Fig. 9. Neural Network output vs. number of input patterns for: a) 12000 and b) 14000 
learning steps. 
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Fig. 7. Pair-wise plots of “difference signal” maximum amplitudes for high frequency 
intervals. 
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Fig. 8. ”Difference signal” maximum amplitudes vs. depth of cut. 
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Fig. 9. Neural Network output vs. number of input patterns for: a) 12000 and b) 14000 
learning steps. 
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Fig. 10. Neural Network Success Rate vs. number of learning steps for different threshold 
values. 
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Fig. 11. Neural Networks Success Rate vs. threshold value for different numbers of learning 
steps. 
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5. Conclusion 

During the last years, notable efforts have been made to develop reliable and industrially 
applicable machining monitoring systems based on different types of sensors, especially in 
production environments that require fully unmanned operation such as Flexible 
Manufacturing Systems (FMS) or Computer Integrated Manufacturing (CIM). 
The main focus of this work is the establishment of a methodology to implement a process 
monitoring system based on audible sound energy sensors for application to milling 
operations. 
In order to characterise the audible sound energy signals emitted by different cutting 
conditions during milling of T4-6056 Al alloy plates, machining parameters were varied and 
the corresponding acoustic signals were detected and processed in the frequency domain by 
a real-time spectrum analyser. 
The classification of audible sound signal features was performed in two-
dimensional space by graphical analysis and in multi-dimensional spaces by 
parallel distributed data processing using a supervised Neural Network paradigm. 
The experimental results showed that the identification of depth of cut variation can realised 
only with reference to high frequency ranges. Besides, the supervised Neural Network data 
processing proved that the recognition of depth of cut value can be reliably achieved 
independently of the frequency range. 
The proposed approach allows to state that: (1) the application of a systematic methodology 
to set up the cutting tests permits a more thorough comparison with other similar 
experimental works; (2) sensor signal analysis independent of the noise generated by the 
machine tool and the working environment is obtainable by subtracting the noise 
characteristic signal from the signals detected during the cutting tests; (3) the results 
obtained in this approach can be utilized for the development of process monitoring 
procedures based on sensors of different types, such as acoustic emission sensors where the 
high frequency (> 20 kHz) stress waves produced within the work material do not travel 
through air but only in the material itself. The combined application of audible sound 
energy sensors and acoustic emission sensors could make available more comprehensive 
information on process conditions through both low frequency (audible sound) and high 
frequency (acoustic emission) signal analysis, realizing the concept of sensor fusion 
technology. 
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applicable machining monitoring systems based on different types of sensors, especially in 
production environments that require fully unmanned operation such as Flexible 
Manufacturing Systems (FMS) or Computer Integrated Manufacturing (CIM). 
The main focus of this work is the establishment of a methodology to implement a process 
monitoring system based on audible sound energy sensors for application to milling 
operations. 
In order to characterise the audible sound energy signals emitted by different cutting 
conditions during milling of T4-6056 Al alloy plates, machining parameters were varied and 
the corresponding acoustic signals were detected and processed in the frequency domain by 
a real-time spectrum analyser. 
The classification of audible sound signal features was performed in two-
dimensional space by graphical analysis and in multi-dimensional spaces by 
parallel distributed data processing using a supervised Neural Network paradigm. 
The experimental results showed that the identification of depth of cut variation can realised 
only with reference to high frequency ranges. Besides, the supervised Neural Network data 
processing proved that the recognition of depth of cut value can be reliably achieved 
independently of the frequency range. 
The proposed approach allows to state that: (1) the application of a systematic methodology 
to set up the cutting tests permits a more thorough comparison with other similar 
experimental works; (2) sensor signal analysis independent of the noise generated by the 
machine tool and the working environment is obtainable by subtracting the noise 
characteristic signal from the signals detected during the cutting tests; (3) the results 
obtained in this approach can be utilized for the development of process monitoring 
procedures based on sensors of different types, such as acoustic emission sensors where the 
high frequency (> 20 kHz) stress waves produced within the work material do not travel 
through air but only in the material itself. The combined application of audible sound 
energy sensors and acoustic emission sensors could make available more comprehensive 
information on process conditions through both low frequency (audible sound) and high 
frequency (acoustic emission) signal analysis, realizing the concept of sensor fusion 
technology. 
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1. Introduction     

Particle swarm optimization (PSO) algorithm is a kind of random optimization algorithm 
based on swarm intelligence. Swarm intelligence of PSO is produced by cooperation and 
competition between particles, which is used for guiding optimization search. PSO has been 
studied widely in many applications due to its good global searching ability. Currently PSO 
has been widely used in function optimization, neural network training, pattern 
classification, system control and other applications. The research on PSO in recent years 
indicates that PSO has fast convergence speed and good quality in solutions and fine 
robustness on optimization in multidimensional space functions or in dynamic objectives, 
which is suitable for project applications. In this chapter, we firstly introduce searching 
mechanism and algorithm processes of PSO. Then, some important problems are solved 
when PSO is used for job shop scheduling problems (JSSP), such as hybrid algorithms 
between particle swarm and other algorithms (HPSO), its deadlock issues, and the proof of 
PSO and HPSO convergence. This chapter can provide guides effectively for readers who 
apply particle swarm optimization algorithm. 

 
2. Particle Swarm Optimization Algorithm for JSSP 

Particle swarm optimization (PSO) is an evolutionary computation technique developed by 
Kennedy and Eberhart in 1995. The particle swarm concept was motivated by the simulation 
of social behaviors. PSO algorithm constitutes the simple conduct rules for each particle, 
remembers the best position of the particles, and shares the information between particles. 
That is, PSO algorithm achieves the optimization through cooperation and competition 
between the individuals of population. Comparing with other evolutionary algorithms, PSO 
algorithm retains the global search strategy based on population, and belongs to the simple 
model of movement and velocity. PSO algorithm can dynamically adjust the current search 
with unique memory. Considering the currency and validity of the algorithm, PSO 
algorithm has been studied in many applications. 
Job shop scheduling problem (JSSP) is the simplification model of an actual problem, and 
among the most typical and hardest combinatorial optimization problems, which is a NP 
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complete problem. JSSP is often used to test the performance of the intelligent algorithms, 
which has important research and actual engineering meanings. 

 
2.1 Introduction of PSO 
PSO algorithm simulates the prey behavior of a bird flock. We can imagine a scene, a group 
of birds are random searching the food, and there is only a piece of food in this region. All 
the birds don’t know the place of food, but they know distance from the current location to 
the place of food. What is the optimal strategy of searching the food? The most simple and 
effective strategy is to search the areas where are close to the birds. 
PSO algorithm is motivated from the model, and is used to solve optimization problems. 
Each optimization is considered as a bird in the search space called a particle. Each particle 
has a fitness value that is decided by an optimization function, has a velocity to determine 
its flight direction and distance. PSO algorithm constructs an initial particle swarm (random 
solutions), then find the optimal solution through iterations. In each iteration, particles 
update their velocities and positions by tracking the two extreme values. An optimal 
solution is the individual extremum pBest that is found by the particle itself, and another 
optimal solution is the global individual extremum gBest that is found by the current 
population. 
In traditional PSO algorithm, the particle swarm searches results in space of m*n dimension, 
each particle position means a result of the problem. The particle continuously adjusts itself 
position X to search new results. Let Pid denote the optimal result that the particle obtains. 
Let Pgd denote the optimal position that the particle swarm passed, the best total result in the 
search domain. Let V denote the speed of the particle. 
 

Vid(t+1)=   Vid(t) + 1 rand() (Pid – Xid(t)) + 2 rand() (Pgd – Xid(t)) (1) 
 
Let Vid(t) denote the speed of d dimension of particle i in generation t, denote inertia 
weight, and ‘-’ denote distance. Let 1 and 2 denote parameter, which can adjust Pid and Pgd  

respectively. rand() is the random number generation function. Therefore, we can get the 
next particle position. 
 

Xid(t+1) = Xid(t) + Vid(t+1) (2) 
 
Considering the formula (1) and (2), we can find that the moving direction of particle is 
decided by three parts. That is, the initial speed Xid(t) of the particle, and the optimum 
distance Pid – Xid(t) that the particle passed, and the optimum distance Pgd – Xid(t) that the 
particle swarm passed. The relative importance of three parts is decided by weighting 
coefficient ，1，2。 
The traditional PSO algorithm is described as follows. 
STEP 1: Construct an initial particle swarm, that is randomly set the initial position X and 
the initial velocity V of each particle; 
STEP 2: Calculate fitness value of each particle; 
STEP 3: Compare each particle fitness value and its best position fitness value Pid, if better, 
update Pid; 

 

STEP 4: Compare each particle best position Pid and the best position of particle swarm Pgd, if 
better, update Pgd; 
STEP 5: adjust the velocity and position according the formula (1) and (2); 
STEP 6: If termination conditions are satisfied (good enough position or the maximum 
number of iterations), then end; otherwise, go to 2. 
PSO algorithm is a kind of evolutionary algorithm, which has several typical characteristics. 
First, the individual of population has been randomly initialized a random solution in the 
initialization process. Secondly, the better solutions of a new generation are obtained by 
searching the solution space. At last, a new generation of population is produced on the 
basis of the previous generation. 

 
2.2 Convergence of PSO 
The convergence of intelligence optimization algorithm is an important problem for the 
application of intelligent optimization algorithms. It is necessary that we discuss the 
convergence of PSO algorithm before solving a practical problem. 

 
2.2.1 Convergence of Traditional PSO 
It is a difficult problem to prove the convergence for an intelligent optimization algorithm. 
Two assumptions H1 and H2 proposed by Solis and Wet were introduced, which were used 
to prove the global convergence of the pure optimization algorithm with probability 1. 
General requirements of stochastic optimization algorithm convergence are described as 
follows. 
An optimization problem A, f  and stochastic optimization algorithm D are given. xk is the 
results of the k-th iterations, and results of the next iteration is xk+1 (xk+1 = D( xk,  )), where  
is the solution that has been searched by algorithm D. 
Condition H1: f( D( x,  ) )  f( x ), if   A, set f( D( xk,  ) )  f(  ), where A is the subset of 
the Rn, and A denotes the constraint space of the problem. 
Conditions H1 random algorithm can guarantee the correctness; their objective is to ensure 
optimization of the solution to the fitness value of f (x) non-incremental. 
A global convergence of the algorithm, which means sequence 

0)}({ kkxf  can reach 
infimum inf( f( x ) : x  A) in the feasible solution A. Because it is possible that the feasible 
solution A of optimization problem exist discontinuity spaces or isolated spots, infimum 
and other fitness value is incontinuous. Considering this potential problem, search infimum 
is defined in Lebesgue measure space as shown in formula 3, where v[X] denotes Lebesgue 
measure in set X. 
 

 = inf( t : v[ x  A | f( x ) < t ] > 0 ) (3) 
 
Formula (3) implies that non-empty set of the search space is existent, where the fitness of 
its members infinitely are close to . The definition of v[X]and A guarantee that nonempty 
point does not exist in set A. So the algorithm can reach or be close to the infimum without 
searching all points of set A. 
Therefore, the optimal region can be defined as the following formula, where  > 0, M∞. 
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measure in set X. 
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Formula (3) implies that non-empty set of the search space is existent, where the fitness of 
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If the optimization algorithm find a point among R，M, the point is an acceptable global 
optimal or near to the global optimum.  

Condition H2: 0])[1(
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Where vk[B] is probability measure in set B, and B is the kth iteration set of algorithm D. 
Algorithm D satisfies condition H2. It means, it is impossible that algorithm D searches the 
points among set B, and let v[B] > 0. Because R，M  A, it is possible that the global 
optimum can be found. 
Theorem 1 (Global Convergence): Supposing that f is measurable and feasible solution 
space A is measurable subset of Rn, algorithm D satisfies condition H1 and H2. And 

algorithm D generates series 
0}{ kkx . Then 
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P[ xk  R，M ] is probability measure in R，M, and R，M is the kth iteration set of algorithm D. 
Considering theorem 1, the global convergence of stochastic algorithms must satisfy the 
conditions H1 and H2. Because each iteration of PSO algorithm has kept the best position, 
conditions H1 must be satisfied. However, utilizing Markov chain theory and mathematical 
theory of real variable, Dr. Van den Bergh has proved that PSO algorithm does not satisfy 
conditions H2. 

 
2.2.2 Convergence of Improved PSO 
Because the traditional PSO algorithm does not guarantee global convergence, the position 
and velocity update equations are improved for solving JSSP. Considering the formula (1) 
and (2), although vk and xk is multidimensional variable, each dimension is independent. 
Therefore the convergence analysis can be simplified to the one-dimensional. In order to 
expand the solution space of PSO algorithm, we adopt the velocity update equation and 
position update equation of particle i as follows: 
 

vi(t+1) = (Pi - xi(t)) + (Pg - xi(t)) (4) 
xi(t+1) = xi(t)+ vi(t+1) (5) 

 
In formula (4) and (5), , (,  [0，1]) are random numbers. The part (Pi - xi(t)) 
represents that the best private distance experience of the particle i in group t is inhabited by 
probability ; And the part (Pg - xi(t)) represents that the best group distance experience of 
all the particles in group t is inhabited by probability . 
 It can be obtained from formula (4) and (5) that the bigger the value of  is the larger impact 
of Pi is, and the greater possibility of particle’s moving to the local optimum will become; 

 

Similarly, the bigger the value of  is the larger impact of Pg is and the greater possibility of 
particle’s moving to the global optimum will become. 
The particle i will stop moving when x i (t) = Pi = Pg. Namely xi(t+1) = xi(t). In order to 
expand the solution space of PSO algorithm, we save Pg as historical global best position 
and regenerate position xi(t+1) of particle i randomly in the solution space, which will make 
the particle i continue to search.   
Through the operation, equation (5) can be deformed as follows: 
 

                    xi( t + 1 ) = ( 1 – c ) xi( t ) + c1 pi + c2 pg (6) 
 
When pi, pg fixed, equation (6) is a simple linear difference equation, when xi(0) = xi 0, its 
solution is: 
 

              xi( t ) = k + ( xi 0 – k ) ( 1 – c ) t 
(7)           k =

c
pcpc gi 21 
，c = c1 + c2 

 
Considering the formula (7), the formula (6) has convergence if | 1 – c | < 1. That is, if t  
∞, then xi( t )

c
pcpc gi 21  . If | 1 – c | < 1, then 0 < c1 + c2 < 2. That is, if 0 < c1 + c2 < 2, the 

evolution equation of improved PSO algorithm is asymptotic convergence. The convergence 
region shown in Fig. 1. 
 

 
Fig. 1. Convergence region 
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Considering theorem 1, if a random optimization algorithm satisfies condition H1 and H2, 
we can guarantee that the algorithm can converge to global optimal solution with 
probability 1. We will discuss the problem whether the improved PSO algorithm is able to 
satisfy condition H1 and H2. 
In the improved PSO algorithm, the solution sequence is{ pg，t }, where t denotes evolutional 
generation, and pg，t denotes the best position of particle swarm in generation t. The function 
D is redefined by the improved PSO algorithm. 
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It is easy to prove that the condition H1 is satisfied. 
In order to satisfy the conditions H2, the sample space of particle swarm A must contain A. 
Namely, 
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Where Mi，t is the support set of the sample space of particle i in generation t. Considering 
particle j, let Mi，t = A when xj( t ) = pi = pg. Let the other particle i: 
 

))1(())1(()1( 21,  txptxptxM igiiiti   (13) 
 
Because of 0  1  c1 and 0  2  c2, Mi，t is a super rectangle with vertices, where 1 = 2 = 0, 1 

= c1, and 2 = c2. Let v[ Mi，t ∩ A ] < v( A ), when max( c1 | pi - xi( t - 1 ) |，c2 | pg - xi( t – 1 ) | )  
< 0.5 × diam(A), where diam( A ) denotes the length of A. Considering condition H2, the 
length of Mi，t is near to 0 when t  ∞. Therefore, the measure v[ Mi，t ] of each Mi，t is 
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. Considering theorem 1, the 

improved algorithm can converge to a global optimal solution with probability 1. 
There is almost identical convergence between the improved PSO algorithm and the 
traditional PSO algorithm. That is, the parameter xi(t) can converge to the best location 
within the finite range. The traditional PSO algorithm does not guarantee global 
convergence, but the improved PSO algorithm can converge to a global optimal solution 
with probability 1 when generation t is near to ∞. 

 
2.3 Convergence of PSO 
Job shop scheduling problems (JSSP) is an important part of production scheduling of an 
enterprise, which is one kind of the most typical and hardest combinatorial optimization 
problems, an NP complete problem. The main task in scheduling, in terms of production 
targets and constraints, is to determine the precise process route, time, machine and 
operation for every process object. JSSP is often used to test the performance of the 
intelligent algorithms, which is significant for research and actual engineering. 
Particle swarm optimization (PSO) algorithm is a kind of random optimization algorithm 
based on continuous optimization problems. PSO algorithm is less studied to solve JSSP. 
The PSO algorithm design of solving JSSP is difficult, and the efficient PSO algorithm design 
of solving JSSP is more difficult.  
Leticia etc. construct the single machine scheduling algorithm based on random coding of 
JSSP, and the algorithm is a kind of retardation minimum time algorithm. The algorithm 
utilizes the dynamic mutation operators to ensure the diversity of particle populations. The 
algorithm has been tested respectively with 40 jobs and 50 jobs, and the algorithm achieves 
good results. Lina etc. construct PSO algorithm based on operation code to solve JSSP. They 
apply the crossover and mutation operation of GA in place of the update operations of 
velocity and position of PSO algorithm.  
In the hybrid particle swarm optimization, Jerald.J etc. apply GA, SA and PSO algorithm to 
solve scheduling problems of flexible manufacturing systems. The hybrid algorithm 
optimizes machine idle time and reduces the cost of production tardiness. Liu etc. combine 
PSO algorithm and VNS. The hybrid algorithm minimizes the makespan of the flexible JSSP. 
Xia etc. design the hybrid PSO algorithm based on SA local search algorithm. The hybrid 
algorithm can solve multi-objective flexible JSSP. In order to minimize the makespan, Sha 
etc. construct the hybrid algorithm based on Hash table to solve JSSP. In the hybrid 
algorithm, Giffler-Thompson (G&T) algorithm is adopted to construct the feasible solution 
from the particle location of Hash table, and SWAP operation updates the particle velocity. 
The hybrid algorithm combines with TS algorithm based on block structure. 

 
2.3.1 JSSP Description 
Each instance of the problem J/ /Cmax is defined by a set of jobs, a set of machines and a set 
of operations. Each job consists of a sequence of operations, each of which has to be 
performed on a given machine for a given time. A schedule is an allocation of the operations 
to time intervals on the machines. The problem is to find the schedule that minimizes the 
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Considering theorem 1, if a random optimization algorithm satisfies condition H1 and H2, 
we can guarantee that the algorithm can converge to global optimal solution with 
probability 1. We will discuss the problem whether the improved PSO algorithm is able to 
satisfy condition H1 and H2. 
In the improved PSO algorithm, the solution sequence is{ pg，t }, where t denotes evolutional 
generation, and pg，t denotes the best position of particle swarm in generation t. The function 
D is redefined by the improved PSO algorithm. 
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It is easy to prove that the condition H1 is satisfied. 
In order to satisfy the conditions H2, the sample space of particle swarm A must contain A. 
Namely, 
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Where Mi，t is the support set of the sample space of particle i in generation t. Considering 
particle j, let Mi，t = A when xj( t ) = pi = pg. Let the other particle i: 
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Because of 0  1  c1 and 0  2  c2, Mi，t is a super rectangle with vertices, where 1 = 2 = 0, 1 

= c1, and 2 = c2. Let v[ Mi，t ∩ A ] < v( A ), when max( c1 | pi - xi( t - 1 ) |，c2 | pg - xi( t – 1 ) | )  
< 0.5 × diam(A), where diam( A ) denotes the length of A. Considering condition H2, the 
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improved algorithm can converge to a global optimal solution with probability 1. 
There is almost identical convergence between the improved PSO algorithm and the 
traditional PSO algorithm. That is, the parameter xi(t) can converge to the best location 
within the finite range. The traditional PSO algorithm does not guarantee global 
convergence, but the improved PSO algorithm can converge to a global optimal solution 
with probability 1 when generation t is near to ∞. 

 
2.3 Convergence of PSO 
Job shop scheduling problems (JSSP) is an important part of production scheduling of an 
enterprise, which is one kind of the most typical and hardest combinatorial optimization 
problems, an NP complete problem. The main task in scheduling, in terms of production 
targets and constraints, is to determine the precise process route, time, machine and 
operation for every process object. JSSP is often used to test the performance of the 
intelligent algorithms, which is significant for research and actual engineering. 
Particle swarm optimization (PSO) algorithm is a kind of random optimization algorithm 
based on continuous optimization problems. PSO algorithm is less studied to solve JSSP. 
The PSO algorithm design of solving JSSP is difficult, and the efficient PSO algorithm design 
of solving JSSP is more difficult.  
Leticia etc. construct the single machine scheduling algorithm based on random coding of 
JSSP, and the algorithm is a kind of retardation minimum time algorithm. The algorithm 
utilizes the dynamic mutation operators to ensure the diversity of particle populations. The 
algorithm has been tested respectively with 40 jobs and 50 jobs, and the algorithm achieves 
good results. Lina etc. construct PSO algorithm based on operation code to solve JSSP. They 
apply the crossover and mutation operation of GA in place of the update operations of 
velocity and position of PSO algorithm.  
In the hybrid particle swarm optimization, Jerald.J etc. apply GA, SA and PSO algorithm to 
solve scheduling problems of flexible manufacturing systems. The hybrid algorithm 
optimizes machine idle time and reduces the cost of production tardiness. Liu etc. combine 
PSO algorithm and VNS. The hybrid algorithm minimizes the makespan of the flexible JSSP. 
Xia etc. design the hybrid PSO algorithm based on SA local search algorithm. The hybrid 
algorithm can solve multi-objective flexible JSSP. In order to minimize the makespan, Sha 
etc. construct the hybrid algorithm based on Hash table to solve JSSP. In the hybrid 
algorithm, Giffler-Thompson (G&T) algorithm is adopted to construct the feasible solution 
from the particle location of Hash table, and SWAP operation updates the particle velocity. 
The hybrid algorithm combines with TS algorithm based on block structure. 

 
2.3.1 JSSP Description 
Each instance of the problem J/ /Cmax is defined by a set of jobs, a set of machines and a set 
of operations. Each job consists of a sequence of operations, each of which has to be 
performed on a given machine for a given time. A schedule is an allocation of the operations 
to time intervals on the machines. The problem is to find the schedule that minimizes the 
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makespan subject to the following constraints: (i) the precedence of operations given by 
each job are to be respected, (ii) each machine can perform at most one operation at a time 
and (iii) the operations cannot be interrupted. 
Let: 
 J = {1, … ,n} denote the set of jobs; 
M = {1, … ,m} denote the set of machines; 
 V = {0,1, … ,n +1} denote the set of operations, where 0 and n +1 represent the dummy 

start and finish operations, respectively; 
A be the set of pair of operations constrained by the precedence relations, as in (i); 
 Vk be the set of operations to be performed by the machine k; 
 Ek  Vk × Vk be the set of pair of operations to be performed on the machine k and which 

therefore have to be sequenced, as specified in (ii); 
 pv and tv denote the (fixed) processing time and the (variable) start time of the operation 

v, respectively. The processing time of the 0 and n +1 operations is equal to zero, i.e., 0p  
= 1np  = 0. 

Given the above assumptions, the problem can be stated as searching minimize 1nt   
subject to 
 

tj – ti ≥ pi,                 (i , j)∈A,                                                
tj – ti ≥ pi ∨ti – tj ≥ pj,             (i , j)∈ Ek, k∈M, 

ti ≥ 0,                     i∈V. 
(14) 

 
The first set of constraints represents the precedence relations among the operations of the 
same job, whereas the second set of constraints describes the sequencing of the operations 
on the same machine. These constraints impose that either tj – ti ≥ pi or ti – tj ≥ pj,. Any 
feasible solution of the problem (1) is called a schedule. 
In this framework, it is useful to represent the job shop scheduling problem in terms of a 
disjunctive graph G:=(V,A, E), where V is the set of nodes, A the set of ordinary arcs 
(conjunctive) and E the set of disjunctive arcs. The nodes of G correspond to operations, the 
directed arcs correspond to precedence relations, and the disjunctive arcs correspond to 
operations to be performed on the same machine. More precisely, k

m
k EE 1  , where Ek is 

the subset of disjunctive arcs is related to a machine k; each disjunctive arc of E can be 
considered as a pair of opposite directed arcs. The length of an arc (i,j)∈A is pi, the length of 
an disjunctive arc (i,j)∈E is either pi or pj depending on its orientation. The selection of a 
processing order on each machine involves the orientation of the disjunctive arcs, in order to 
produce an acyclic directed graph. A schedule on a disjunctive graph G consists in finding a 
set of orientations that minimizes the length of the longest path (critical path) in the resulting 
acyclic directed graph.  
According to the Adams et al. method, the graph G can be decomposed into one direct 
subgraph D=(V , A), by deleting disjunctive arcs, and in m cliques Gk=(Vk , Ek), obtained 
from G by deleting both the conjunctive arcs and the dummy nodes 0 and 1~ n . A selection 
Sk in Ek contains exactly one arc between each pair of opposite arcs in Ek . A selection is 
acyclic since it does not contain any directed cycle. Moreover, sequencing the operations on 

 

the machine k is equivalent to choosing an acyclic selection in Ek . A complete selection S is 
the union of selections Sk , one for each Ek , k∈M. S generates the directed graph DS =(V, 
A∪S);S is acyclic if the associated directed graph DS is acyclic. An acyclic complete selection 
S infers a schedule, i.e., a feasible solution of Problem. 
In order to solve the job shop scheduling problem the best acyclic complete selection S* that 
minimizes the value of the length of the longest critical path in the direct graph 
DS*=(V,A∪S*)must be determined.  
The neighbourhood of the current solution can be formed by the solutions generated by 
inverting the direction of a disjunctive arc in the critical path of DS . To this end, as stated by 
other authors, it is useful to decompose the critical path into a sequence of r blocks  
(B1,B2, . . . ,Br). Each block contains the operations processed on the same machine; for each 
pair of consecutive blocks Bj,Bj+1 with 1≤j≤r the last operation of Bj and the first of Bj+1 belong 
to the same job but are performed on different machines. 

 
2.3.2 PSO for Solving JSSP 
As for applying PSO to the job shop scheduling problem, the problem can be described as 
that n jobs are processed by m machines. A certain list such as Sm = (Oi), i＝1, …, n，
demonstrates the list of jobs processed on a machine, then the amount of possible lists is n!, 
list set S = { Sk | k = 1, 2, …, m} is used to express the process that n jobs done by m machines, 
the whole possibility of solutions is (n!)m. As job shop scheduling problem, when all the 
operations in the solution is configured, the best processed list that satisfies the efficiency 
index can be seeked. Therefore, for solving job shop scheduling problem by PSO, we only 
need to change m encoding of each particle to seek optimal solution. According to the above, 
definition of operating list in job shop problem is given here.  
Definition 1: exchanging operation. In the operation list, operation Oi on position i and 
operation Oj on position j change their positions each other. This behavior is called 
exchanging operation, the operator is denoted as . For the list S, the exchange of Oi and Oj  
is expressed as S(Oi,Oj), where, (Oi,Oj) denotes the operation exchange, which can be 
simply expressed as Oij. Then S’＝S(Oi,Oj)＝SOij, S’ denotes the list which has been 
disposed.  
Example 1: with regard to the job shop problem in which 6 jobs are processed on m 
machines, the list done on machine m is Sm＝(2 4 6 1 3 5 ), for the list Sm, if operation 2 and 
operation 6 exchanges, their position are respectively 1 and 3, the exchange process can be 
described as following formula.  
Here, S’m = Sm (O1,O3) =(2 4 6 1 3 5)  (2,6) =( 6 4 2 1 3 5). 
Definition 2: exchange list. The operation list composed of no less than one exchanges among 
operations is named as exchange list, which is denoted as CS, and CS = (O1i1j, O2k2l, …, Onpnq ). 
When the list only have one time exchange operate, CS = (O1i1j,), where the sequence O1i1j, 
O2k2l, …, Onpnq, denotes the sequence of exchanging operations in the list S. 
Exchange list acts on certain fraction of Sm, and it means that all the exchange operation in 
the list acts on Sm one by one, namely S’m = SmCS = Sm （O1i1j, O2k2l, …, Onpnq）=  
[[Sm  (O1i,O1j) ]  (O2k,O2l) ]… (Onp,Onq). 
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makespan subject to the following constraints: (i) the precedence of operations given by 
each job are to be respected, (ii) each machine can perform at most one operation at a time 
and (iii) the operations cannot be interrupted. 
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 J = {1, … ,n} denote the set of jobs; 
M = {1, … ,m} denote the set of machines; 
 V = {0,1, … ,n +1} denote the set of operations, where 0 and n +1 represent the dummy 

start and finish operations, respectively; 
A be the set of pair of operations constrained by the precedence relations, as in (i); 
 Vk be the set of operations to be performed by the machine k; 
 Ek  Vk × Vk be the set of pair of operations to be performed on the machine k and which 

therefore have to be sequenced, as specified in (ii); 
 pv and tv denote the (fixed) processing time and the (variable) start time of the operation 

v, respectively. The processing time of the 0 and n +1 operations is equal to zero, i.e., 0p  
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The first set of constraints represents the precedence relations among the operations of the 
same job, whereas the second set of constraints describes the sequencing of the operations 
on the same machine. These constraints impose that either tj – ti ≥ pi or ti – tj ≥ pj,. Any 
feasible solution of the problem (1) is called a schedule. 
In this framework, it is useful to represent the job shop scheduling problem in terms of a 
disjunctive graph G:=(V,A, E), where V is the set of nodes, A the set of ordinary arcs 
(conjunctive) and E the set of disjunctive arcs. The nodes of G correspond to operations, the 
directed arcs correspond to precedence relations, and the disjunctive arcs correspond to 
operations to be performed on the same machine. More precisely, k
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the subset of disjunctive arcs is related to a machine k; each disjunctive arc of E can be 
considered as a pair of opposite directed arcs. The length of an arc (i,j)∈A is pi, the length of 
an disjunctive arc (i,j)∈E is either pi or pj depending on its orientation. The selection of a 
processing order on each machine involves the orientation of the disjunctive arcs, in order to 
produce an acyclic directed graph. A schedule on a disjunctive graph G consists in finding a 
set of orientations that minimizes the length of the longest path (critical path) in the resulting 
acyclic directed graph.  
According to the Adams et al. method, the graph G can be decomposed into one direct 
subgraph D=(V , A), by deleting disjunctive arcs, and in m cliques Gk=(Vk , Ek), obtained 
from G by deleting both the conjunctive arcs and the dummy nodes 0 and 1~ n . A selection 
Sk in Ek contains exactly one arc between each pair of opposite arcs in Ek . A selection is 
acyclic since it does not contain any directed cycle. Moreover, sequencing the operations on 

 

the machine k is equivalent to choosing an acyclic selection in Ek . A complete selection S is 
the union of selections Sk , one for each Ek , k∈M. S generates the directed graph DS =(V, 
A∪S);S is acyclic if the associated directed graph DS is acyclic. An acyclic complete selection 
S infers a schedule, i.e., a feasible solution of Problem. 
In order to solve the job shop scheduling problem the best acyclic complete selection S* that 
minimizes the value of the length of the longest critical path in the direct graph 
DS*=(V,A∪S*)must be determined.  
The neighbourhood of the current solution can be formed by the solutions generated by 
inverting the direction of a disjunctive arc in the critical path of DS . To this end, as stated by 
other authors, it is useful to decompose the critical path into a sequence of r blocks  
(B1,B2, . . . ,Br). Each block contains the operations processed on the same machine; for each 
pair of consecutive blocks Bj,Bj+1 with 1≤j≤r the last operation of Bj and the first of Bj+1 belong 
to the same job but are performed on different machines. 

 
2.3.2 PSO for Solving JSSP 
As for applying PSO to the job shop scheduling problem, the problem can be described as 
that n jobs are processed by m machines. A certain list such as Sm = (Oi), i＝1, …, n，
demonstrates the list of jobs processed on a machine, then the amount of possible lists is n!, 
list set S = { Sk | k = 1, 2, …, m} is used to express the process that n jobs done by m machines, 
the whole possibility of solutions is (n!)m. As job shop scheduling problem, when all the 
operations in the solution is configured, the best processed list that satisfies the efficiency 
index can be seeked. Therefore, for solving job shop scheduling problem by PSO, we only 
need to change m encoding of each particle to seek optimal solution. According to the above, 
definition of operating list in job shop problem is given here.  
Definition 1: exchanging operation. In the operation list, operation Oi on position i and 
operation Oj on position j change their positions each other. This behavior is called 
exchanging operation, the operator is denoted as . For the list S, the exchange of Oi and Oj  
is expressed as S(Oi,Oj), where, (Oi,Oj) denotes the operation exchange, which can be 
simply expressed as Oij. Then S’＝S(Oi,Oj)＝SOij, S’ denotes the list which has been 
disposed.  
Example 1: with regard to the job shop problem in which 6 jobs are processed on m 
machines, the list done on machine m is Sm＝(2 4 6 1 3 5 ), for the list Sm, if operation 2 and 
operation 6 exchanges, their position are respectively 1 and 3, the exchange process can be 
described as following formula.  
Here, S’m = Sm (O1,O3) =(2 4 6 1 3 5)  (2,6) =( 6 4 2 1 3 5). 
Definition 2: exchange list. The operation list composed of no less than one exchanges among 
operations is named as exchange list, which is denoted as CS, and CS = (O1i1j, O2k2l, …, Onpnq ). 
When the list only have one time exchange operate, CS = (O1i1j,), where the sequence O1i1j, 
O2k2l, …, Onpnq, denotes the sequence of exchanging operations in the list S. 
Exchange list acts on certain fraction of Sm, and it means that all the exchange operation in 
the list acts on Sm one by one, namely S’m = SmCS = Sm （O1i1j, O2k2l, …, Onpnq）=  
[[Sm  (O1i,O1j) ]  (O2k,O2l) ]… (Onp,Onq). 
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Definition 3: Equal set of exchange list. Different exchange list acts on the same solution, 
maybe the same solution is obtained. All the exchange lists which products the same 
solution is called the equal set.  
Definition 4: united operation of exchanged list. When more than two exchanging lists such 
as CS1，CS2，…, CSn, which act on one list according to the sequence is named as united 
operate, moreover, the operator is denoted as , the unit of exchange list is expressed as HS, 
HS= CS1CS2…CSn. Through the principle stated above, it can be described as 
 S’= S  HS= S （CS1CS2…CSn）, where S’ denotes the new operation list that S had 
been exchanged according to the exchange list.      
Through definition 3 and definition 4, a new solution S’ can be obtained after acting on 
solution S with CS1 and CS2.  Supposed that there is another exchange list that acts on the 
solution S, if a same solution S’ can be obtained, then the unite of CS1 and CS2 is equal to CS, 
which can be expressed as CS＝ CS1  CS2, CS and CS1  CS2 belong to the same equal set, 
generally speaking, CS is not sole. 
Definition 5: Basic exchange list. In the equal set {CSi} of exchanging list, exchange list BS 
with least exchange operators is called basic exchange list of this equal set. Supposed X and 
Y are operation list on machine m, constructing an exchange list BS which satisfies X = Y  
BS, if BS is of least exchange operation, then BS is a basic exchange list, which is denoted as 
BS = Y  X.  
According to the following method, a basic exchange list can be constructed, supposed that 
two solutions of problem FT06 are given, the lists on machine m are respectively X and Y.  
Eg:  X= ( 1 2 3 4 5 6 )，    Y= ( 2 6 3 1 5 4). 
It can be seen that，in the operation X, O1 =1. and in operation Y, O4= 1, let Y’s first operate 
exchanging O1i1 be Y  (O1,O4), then Y1 = Y (O1,O4), there exists Y1= ( 1 6 3 2 5 4); in X,  
O2 =2, and in Y1, O4= 2, let the second exchange operate O2k2l be Y1 (O2 ,O4), then  
Y2=Y1  (O2,O4), there exists Y2= ( 1 2 3 6 5 4). Similarly, the third exchange operate  
O3p3q is Y2 (O4 ,O6), there exists Y3 = Y2 (O4, O6)= X. Spontaneously,  
BS = (O1i1j, O2k2l, O3p3q ) is of the minimal exchange operations, which is named as a basic 
exchange list, namely, BS = Y  X. Here, BS = Y  X= (O1i1j, O2k2l, O3p3q )= 
((O1 ,O4)  (O2,O4)  (O4,O6)）. 
Aiming at PSO used to solve job shop problem, formula of basic PSO is not fit for this new 
type algorithm, so the formulas are recreated as follows: 
 

Vid = ( Xid  Pid)  ( Xid  Pgd) (15) 
X’id = Xid Vid (16) 

 
Where ,  are random number and (,  [0，1]). ( Xid Pid) expresses that all the 
exchange operations of basic exchange list (XidPid) are withheld by the probability . 
Similarly, ( Xid Pgd) expresses that all the exchange operations of basic exchange list  
( Xid Pgd) are withheld by the probability  . 
According to the formula (15) and (16), it can be seen that, the greater  is, the stronger Pid 

affects, the probability of moving towards to the local optimization is magnified. In the same 
way, the greater  is, the stronger Pgd effect, the probability of moving towards to the global 
optimization is magnified.      

 

Due to the regularity of object functions, the optimal solution must be in the active 
scheduling set, so PSO uses the solution produced with G&T as the initial solution. For the 
random and widespread searching ability, the exchanging list based PSO is used to search 
globally. In the process of running PSO algorithm, if any infeasible solution appears, it must 
be adjusted. When there exists Pi(t) = Pid = Pgd  for the particle Pi(t) of generation t, then 
recreate this particle, so that PSO algorithm for job shop problem is constructed.  
The steps of solving JSSP by PSO are described as following: 
Step1: Use G&T algorithm to produce an initial solution, initialize Pid with the initial 
solution, initialize Pgd with the best Pid; 
Step2: If the end condition is satisfied, go to Step6; 
Step3: According to the position of Xid, calculate Xid ‘s next position X’id, namely new 
solution; 

a) A = Xid Pid denotes that A acts on Xid to get Pid , where, A is a basic exchange list,; 
b) B= Xid  Pgd, where B is also a basic exchange list; 
c) Calculate validity Vid of particle according to formula (15); 
d) Calculate new position X’id (solution) according to formula (16);   

Step4: Adjust infeasible solution; 
Step5: Calculate fitness: 

a) If a better solution is got, then update Pid;   
b) If a better solution of the whole swarm is searched out, then update Pgd, 

simultaneously adopt G&T to recreate a new particle instead. Go Step2; 
Step6: Show the optimal solution obtained by this algorithm (Pgd). 
Adjustment of infeasible solution is described in hybrid PSO algorithm. 

 
2.4 Summary 
Particle swarm optimization (PSO) is an evolutionary computation technique developed by 
Kennedy and Eberhart in 1995. The particle swarm concept was motivated by the simulation 
of social behaviors. The original intent was to graphically simulate the graceful but 
unpredictable choreography of bird flock. In the section, we introduce search mechanisms 
and processes of PSO, and analyze the convergence of PSO theoretically. A new PSO 
algorithm is proposed based on exchanged factors and exchanged lists, which is put the PSO 
idea into the discrete field of JSSP. 

 
3. Hybrid Particle Swarm optimization Algorithm for JSSP 

Recently, the theorem of No Free lunch (NFL) is proposed for evaluating optimization 
algorithms by professor Wolpert and Macready of Stanford University. It is shown that 
there isn’t a single solution that adapts to all problems effectively. Radcliffe and Surry have 
the same conclusion. 
For example, if GA algorithm is better than SA algorithm when solving the problem set A, 
then SA algorithm must be better than GA algorithm when solving the problem set B. 
Considering all the circumstances, two algorithms have the same performance. Therefore, 
there is no kind of intelligent optimization algorithm better than the other intelligent 
optimization algorithms. That is, every method has its corresponding application 
circumstances. 
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Definition 3: Equal set of exchange list. Different exchange list acts on the same solution, 
maybe the same solution is obtained. All the exchange lists which products the same 
solution is called the equal set.  
Definition 4: united operation of exchanged list. When more than two exchanging lists such 
as CS1，CS2，…, CSn, which act on one list according to the sequence is named as united 
operate, moreover, the operator is denoted as , the unit of exchange list is expressed as HS, 
HS= CS1CS2…CSn. Through the principle stated above, it can be described as 
 S’= S  HS= S （CS1CS2…CSn）, where S’ denotes the new operation list that S had 
been exchanged according to the exchange list.      
Through definition 3 and definition 4, a new solution S’ can be obtained after acting on 
solution S with CS1 and CS2.  Supposed that there is another exchange list that acts on the 
solution S, if a same solution S’ can be obtained, then the unite of CS1 and CS2 is equal to CS, 
which can be expressed as CS＝ CS1  CS2, CS and CS1  CS2 belong to the same equal set, 
generally speaking, CS is not sole. 
Definition 5: Basic exchange list. In the equal set {CSi} of exchanging list, exchange list BS 
with least exchange operators is called basic exchange list of this equal set. Supposed X and 
Y are operation list on machine m, constructing an exchange list BS which satisfies X = Y  
BS, if BS is of least exchange operation, then BS is a basic exchange list, which is denoted as 
BS = Y  X.  
According to the following method, a basic exchange list can be constructed, supposed that 
two solutions of problem FT06 are given, the lists on machine m are respectively X and Y.  
Eg:  X= ( 1 2 3 4 5 6 )，    Y= ( 2 6 3 1 5 4). 
It can be seen that，in the operation X, O1 =1. and in operation Y, O4= 1, let Y’s first operate 
exchanging O1i1 be Y  (O1,O4), then Y1 = Y (O1,O4), there exists Y1= ( 1 6 3 2 5 4); in X,  
O2 =2, and in Y1, O4= 2, let the second exchange operate O2k2l be Y1 (O2 ,O4), then  
Y2=Y1  (O2,O4), there exists Y2= ( 1 2 3 6 5 4). Similarly, the third exchange operate  
O3p3q is Y2 (O4 ,O6), there exists Y3 = Y2 (O4, O6)= X. Spontaneously,  
BS = (O1i1j, O2k2l, O3p3q ) is of the minimal exchange operations, which is named as a basic 
exchange list, namely, BS = Y  X. Here, BS = Y  X= (O1i1j, O2k2l, O3p3q )= 
((O1 ,O4)  (O2,O4)  (O4,O6)）. 
Aiming at PSO used to solve job shop problem, formula of basic PSO is not fit for this new 
type algorithm, so the formulas are recreated as follows: 
 

Vid = ( Xid  Pid)  ( Xid  Pgd) (15) 
X’id = Xid Vid (16) 

 
Where ,  are random number and (,  [0，1]). ( Xid Pid) expresses that all the 
exchange operations of basic exchange list (XidPid) are withheld by the probability . 
Similarly, ( Xid Pgd) expresses that all the exchange operations of basic exchange list  
( Xid Pgd) are withheld by the probability  . 
According to the formula (15) and (16), it can be seen that, the greater  is, the stronger Pid 

affects, the probability of moving towards to the local optimization is magnified. In the same 
way, the greater  is, the stronger Pgd effect, the probability of moving towards to the global 
optimization is magnified.      

 

Due to the regularity of object functions, the optimal solution must be in the active 
scheduling set, so PSO uses the solution produced with G&T as the initial solution. For the 
random and widespread searching ability, the exchanging list based PSO is used to search 
globally. In the process of running PSO algorithm, if any infeasible solution appears, it must 
be adjusted. When there exists Pi(t) = Pid = Pgd  for the particle Pi(t) of generation t, then 
recreate this particle, so that PSO algorithm for job shop problem is constructed.  
The steps of solving JSSP by PSO are described as following: 
Step1: Use G&T algorithm to produce an initial solution, initialize Pid with the initial 
solution, initialize Pgd with the best Pid; 
Step2: If the end condition is satisfied, go to Step6; 
Step3: According to the position of Xid, calculate Xid ‘s next position X’id, namely new 
solution; 

a) A = Xid Pid denotes that A acts on Xid to get Pid , where, A is a basic exchange list,; 
b) B= Xid  Pgd, where B is also a basic exchange list; 
c) Calculate validity Vid of particle according to formula (15); 
d) Calculate new position X’id (solution) according to formula (16);   

Step4: Adjust infeasible solution; 
Step5: Calculate fitness: 

a) If a better solution is got, then update Pid;   
b) If a better solution of the whole swarm is searched out, then update Pgd, 

simultaneously adopt G&T to recreate a new particle instead. Go Step2; 
Step6: Show the optimal solution obtained by this algorithm (Pgd). 
Adjustment of infeasible solution is described in hybrid PSO algorithm. 

 
2.4 Summary 
Particle swarm optimization (PSO) is an evolutionary computation technique developed by 
Kennedy and Eberhart in 1995. The particle swarm concept was motivated by the simulation 
of social behaviors. The original intent was to graphically simulate the graceful but 
unpredictable choreography of bird flock. In the section, we introduce search mechanisms 
and processes of PSO, and analyze the convergence of PSO theoretically. A new PSO 
algorithm is proposed based on exchanged factors and exchanged lists, which is put the PSO 
idea into the discrete field of JSSP. 

 
3. Hybrid Particle Swarm optimization Algorithm for JSSP 

Recently, the theorem of No Free lunch (NFL) is proposed for evaluating optimization 
algorithms by professor Wolpert and Macready of Stanford University. It is shown that 
there isn’t a single solution that adapts to all problems effectively. Radcliffe and Surry have 
the same conclusion. 
For example, if GA algorithm is better than SA algorithm when solving the problem set A, 
then SA algorithm must be better than GA algorithm when solving the problem set B. 
Considering all the circumstances, two algorithms have the same performance. Therefore, 
there is no kind of intelligent optimization algorithm better than the other intelligent 
optimization algorithms. That is, every method has its corresponding application 
circumstances. 
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In theory and practice, adopting a single intelligent algorithm is not enough for solving 
JSSP. The hybrid algorithm is an effective method, which enlarges the application domain 
and improves their performance. A hybrid algorithm combines effectively some features of 
several algorithms, such as optimization mechanism, process, search behavior, operation, 
and so on. The hybrid algorithm will have better optimization efficiency. 

 
3.1 HSPSO 
If adopting a single algorithm to solve job shop problems, it is hard to improve the local 
optimization after some running time of the algorithm, it is necessary to find out a method 
to escape from this local optimization. Therefore, a hybrid PSO algorithm based on 
exchanging list is proposed. 
The design ideas of hybrid optimization algorithm HPSO are as follows: (1) Due to the 
regularity of object function, the optimal solution must be in the active scheduling set, so 
HPSO uses the solution produced with G&T as the initial solution. (2) For the randomly and 
widespread searching ability, the exchanging list based PSO is used to search globally. (3) In 
the process of running PSO algorithm, if an infeasible solution appears, it must be adjusted. 
(4) In order to avoid algorithm falling in a local optimization too early, TS exploiting 
strategy embedded critical operations based on exchanging neighbors is adopted to realize 
local parallel search, simultaneously improve the local search ability.  
When there exists Pi(t) = Pid = Pgd  for the particle Pi(t) of generation t, then adopt G&T 
algorithm to regenerate the particle, so that hybrid PSO algorithm for solving JSSP is 
constructed. The arithmetic frame is shown as Fig. 2. 
 

 
Fig. 2. Frame of the hybrid PSO algorithm 
 
The steps of solving job shop problem by HPSO are described as following: 
Step1: Use G&T algorithm to produce initial solution, initialize Pid with an initial solution, 
initialize Pgd with the best Pid; 
Step2: If the end condition is satisfied, go to Step7; 
Step3: According to the position of Xid, calculate Xid ‘s next position X’id, namely a new 
solution; 

a) A = Xid Pid denotes that A acts on Xid to get Pid , where, A is a basic exchange list,; 
b) B= Xid  Pgd, where B is also a basic exchange list;  

 

c) Calculate validity Vid of particle according to formula (8); 
d) Calculate new position X’id (solution) according to formula (9);   

Step4: Adjust infeasible solutions; 
Step5: Select some solutions by the probability Pl to perform TS; 
Step6: Calculate fitness: 

a) If a better solution is gotten, then update Pid;   
b) If a better solution of the whole swarm is searched out, then update Pgd, 

simultaneously adopt G&T to recreate a new particle instead. Go Step2; 
Step7: Show the optimal solution obtained by this algorithm (Pgd). 

 
3.2 TS based on neighbor exchanging of critical operation 
Taboo search(TS) algorithm is one of the best algorithms for solving job shop scheduling 
problem. So far, its running speed is faster, and it may provide a better induct within the 
whole searching field compared with other algorithms. 
In order to obtain better searching results and higher efficiency, neighbors must be highly 
constrained and can be rapidly assessed. The possibility of moving to high quality solutions 
should be increased. 
The local searching function is TS algorithm. To improve the efficiency of the local 
searching, we modify the TS algorithm. Firstly, the algorithm reduces the maximum that 
doesn’t evolution. Secondly, a new exchanging strategy of neighbors is proposed based on 
critical operations so that TS algorithm can rapidly assess neighbors. We firstly indicate the 
neighbor exchanging based on the critical operation. 
The feasible solution of job shop scheduling is usually denoted by the gantt graph. The gantt 
graph of 6×6 problem is illustrated in Fig. 3. In the figure, x-axis denotes the process time, y-
axis denotes the machines, and every rectangular block marked (i, j) denotes the operation j 
of task i, and it is denoted as Oij. 
The optimized result of job shop scheduling problem is related to the length of the critical 
paths. The critical path is that the longest path without time intervals between operations in 
an available schedule. A solution always has many critical paths. For example, in Fig. 3, 
there are two critical paths. The first one is (4,1) (3,2) (5,1) (5,2) (4,2) (4,3) (5,3) (3,4) (3,5) (6,4) 
(5,5) (5,6) and another one is (4,1) (3,2) (5,1) (5,2) (4,2) (3,3) (3,4) (3,5) (6,4) (5,5) (5,6). 
Furthermore, operations of the critical path can be decomposed into blocks. A block is a set 
of consecutive operations in a critical path in one machine. For example, operation (5,2), 
(4,2) and  operation (4,3), (5,3), (3,4) in the first critical path forms the block respectively. 
Operation (5,2), (4,2), (3,3) and (3,4) in the second critical path forms the block respectively. 
For the two consecutive blocks, the last operation of the anterior block and the first 
operation of the latter block are always in the same task. For example the operation (3,3) and 
(3,4) of task 3 are in the same task. 
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In theory and practice, adopting a single intelligent algorithm is not enough for solving 
JSSP. The hybrid algorithm is an effective method, which enlarges the application domain 
and improves their performance. A hybrid algorithm combines effectively some features of 
several algorithms, such as optimization mechanism, process, search behavior, operation, 
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If adopting a single algorithm to solve job shop problems, it is hard to improve the local 
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local parallel search, simultaneously improve the local search ability.  
When there exists Pi(t) = Pid = Pgd  for the particle Pi(t) of generation t, then adopt G&T 
algorithm to regenerate the particle, so that hybrid PSO algorithm for solving JSSP is 
constructed. The arithmetic frame is shown as Fig. 2. 
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The steps of solving job shop problem by HPSO are described as following: 
Step1: Use G&T algorithm to produce initial solution, initialize Pid with an initial solution, 
initialize Pgd with the best Pid; 
Step2: If the end condition is satisfied, go to Step7; 
Step3: According to the position of Xid, calculate Xid ‘s next position X’id, namely a new 
solution; 

a) A = Xid Pid denotes that A acts on Xid to get Pid , where, A is a basic exchange list,; 
b) B= Xid  Pgd, where B is also a basic exchange list;  

 

c) Calculate validity Vid of particle according to formula (8); 
d) Calculate new position X’id (solution) according to formula (9);   

Step4: Adjust infeasible solutions; 
Step5: Select some solutions by the probability Pl to perform TS; 
Step6: Calculate fitness: 

a) If a better solution is gotten, then update Pid;   
b) If a better solution of the whole swarm is searched out, then update Pgd, 

simultaneously adopt G&T to recreate a new particle instead. Go Step2; 
Step7: Show the optimal solution obtained by this algorithm (Pgd). 

 
3.2 TS based on neighbor exchanging of critical operation 
Taboo search(TS) algorithm is one of the best algorithms for solving job shop scheduling 
problem. So far, its running speed is faster, and it may provide a better induct within the 
whole searching field compared with other algorithms. 
In order to obtain better searching results and higher efficiency, neighbors must be highly 
constrained and can be rapidly assessed. The possibility of moving to high quality solutions 
should be increased. 
The local searching function is TS algorithm. To improve the efficiency of the local 
searching, we modify the TS algorithm. Firstly, the algorithm reduces the maximum that 
doesn’t evolution. Secondly, a new exchanging strategy of neighbors is proposed based on 
critical operations so that TS algorithm can rapidly assess neighbors. We firstly indicate the 
neighbor exchanging based on the critical operation. 
The feasible solution of job shop scheduling is usually denoted by the gantt graph. The gantt 
graph of 6×6 problem is illustrated in Fig. 3. In the figure, x-axis denotes the process time, y-
axis denotes the machines, and every rectangular block marked (i, j) denotes the operation j 
of task i, and it is denoted as Oij. 
The optimized result of job shop scheduling problem is related to the length of the critical 
paths. The critical path is that the longest path without time intervals between operations in 
an available schedule. A solution always has many critical paths. For example, in Fig. 3, 
there are two critical paths. The first one is (4,1) (3,2) (5,1) (5,2) (4,2) (4,3) (5,3) (3,4) (3,5) (6,4) 
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(4,2) and  operation (4,3), (5,3), (3,4) in the first critical path forms the block respectively. 
Operation (5,2), (4,2), (3,3) and (3,4) in the second critical path forms the block respectively. 
For the two consecutive blocks, the last operation of the anterior block and the first 
operation of the latter block are always in the same task. For example the operation (3,3) and 
(3,4) of task 3 are in the same task. 
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Fig. 3. 6×6 problem solution Gantt figure 
 
Let Jp(v) represent the previous operation of operation v in the same job, and Mp(v) denote 
the previous operation of operation v processed in the same machine, St(v) and Et(v) denote 
the start time and the end time of the operation v respectively. 
Definition 6: Critical operation. In critical path, if operation satisfy the condition that St(v)= 
Et(Mp(v))=Et(Jp(v)), then v is called a critical operation. 
When critical path is not unique, not all the neighbor exchanges can shorten the critical path. 
For example, Fig. 3 describes a gantt graph which shows the 6×6 problem, the exchange of 
(4,2) and (3,3) is unable to shorten the critical path. Because St(3,4）= MAX( Et(5,3), Et(3,3) ), 
operation (3,4) is a critical operation, due to the dependency of critical operation (3,4) on 
operation (3,3), (5,3), although operation (3,3) is shortened, the neighbor exchange before the 
critical operation is unable to shorten the critical path.  
The method of choosing neighbors based on the critical operations is as follows: when the 
critical path is sole, exchangeable neighbors in the critical path is considered as a set for 
neighbor selection; when the critical path is not sole, the exchangeable neighbors between 
the last critical operation and the last operation is viewed as a set for neighbor selection; TS 
algorithm selects an exchangeable neighbor (usually the best neighbor) from the above 
neighbors set to commute. If the set described above is null, then stop the current search 
with TS. 
When TS algorithm search process runs for certain times, the quality of solution can not be 
improved, then TS algorithm stops. 
Because of adopting new exchanging strategy of neighbors based on critical operations, TS 
algorithm reduces invalid neighbor exchanges, enhances searching efficiency, increases the 
possibility of escaping from the local optimization, and expands the searching range. 
Simultaneity, when there is no exchangeable neighbor, it indicates that the cost of improving 
the solution is too large, or the current solution is already the optimal solution. Then the 
searching is terminated. 

 
3.3 HPSO Convergence 
Dr. Van den Bergh has proved that PSO algorithm diverges both in the local region and the 
global region with the criteria presented by Solis and Wets, under which stochastic search 
algorithms can be considered as a global search algorithms, or merely locally search 
algorithms. We analyze the convergence of PSO algorithm with an optimum keeping 

 

strategy and TS algorithm by Markov chain theory at a different aspect in this book, and 
HPSO algorithm based on PSO and TS algorithm is proved to be convergent. First of all, we 
give an introduction of Markov chain theory as follows. 
Definition 7 (Markov chain) A stochastic sequence {Xn,n T} and a discrete temporal series 
T={0,1,2,…} are given, all state values corresponding to each Xn constitute the set of discrete 
state S={s0,s1,s2,…}. The stochastic sequence {Xn,n T} is called Markov chain as soon as the 
conditional probability satisfies the formula (17) as for each integer n T and any 
s0,s1,s2,…,sn+1 S. 
 

P{Xn+1=sn+1|X0=s0,X1=s1,…,Xn=sn}=P{Xn+1=sn+1|Xn=sn} (17) 
 
Definition 8 (Transit ionprobability matrix) The conditional probability pi,j=P{Xn+1=j|Xn=i} 
is called transition probability of Markov chain {Xn,n T}, where i,j∈S. The matrix 
{Pi,j:i,j=1,…,k} is called k×k transition probability matrix. 
Definition 9 (Finite homogeneous Markov chain) Markov chain is called finite 
homogeneous Markov chain if conditional probability pi,j(n) of Markov chain {Xn,n T} has 
nothing to do with n and its set of state S={s0,s1,s2,…sk} is finite, where i,j∈I. Then pi,j(n) is 
always regarded as pi,j. 
Lemma 1 Markov chain {Xn,n T} with transition probability matrix P is irreducible if and 
only if the conditional probability satisfies formula (11) for any si,sj S, where the set of state 
is S={s0,s1,s2,…sk}. 
 

P{Xm+n=sj| Xm=si }>0 (18) 
 
Lemma 2  Transition probability matrix P is irreducible if P can be turned into the form 
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lim , P∞= 1’p∞, p∞= p0P∞ has nothing to do 

with the initial distribution, and pi∞>0(1≤i≤m), pi∞=0(m≤i≤k). 
In this book, we set the change of the group made up of social collaboration S, self adapting 
A and competition C three basic evolution operations, where social collaboration S means 
that the particle adjusts its movement by cooperating with the best position Pg of the group; 
the self adapting A indicates that the particle adjusts its movement at the next moment by 
cooperation between cognition part (Pi - xi(t)) and social collaboration part (Pg – xi(t)); All 
old particles xi(t) are totally replaced by new particles xi(t+1) with optimum keeping 
strategy to update their self best position and group position. Therefore, the course of 
transformation can be presented respectively by stochastic matrix PS, PA and PC, and the 
transition probability matrix of TS algorithm is presented by stochastic matrix PT. 
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Let Jp(v) represent the previous operation of operation v in the same job, and Mp(v) denote 
the previous operation of operation v processed in the same machine, St(v) and Et(v) denote 
the start time and the end time of the operation v respectively. 
Definition 6: Critical operation. In critical path, if operation satisfy the condition that St(v)= 
Et(Mp(v))=Et(Jp(v)), then v is called a critical operation. 
When critical path is not unique, not all the neighbor exchanges can shorten the critical path. 
For example, Fig. 3 describes a gantt graph which shows the 6×6 problem, the exchange of 
(4,2) and (3,3) is unable to shorten the critical path. Because St(3,4）= MAX( Et(5,3), Et(3,3) ), 
operation (3,4) is a critical operation, due to the dependency of critical operation (3,4) on 
operation (3,3), (5,3), although operation (3,3) is shortened, the neighbor exchange before the 
critical operation is unable to shorten the critical path.  
The method of choosing neighbors based on the critical operations is as follows: when the 
critical path is sole, exchangeable neighbors in the critical path is considered as a set for 
neighbor selection; when the critical path is not sole, the exchangeable neighbors between 
the last critical operation and the last operation is viewed as a set for neighbor selection; TS 
algorithm selects an exchangeable neighbor (usually the best neighbor) from the above 
neighbors set to commute. If the set described above is null, then stop the current search 
with TS. 
When TS algorithm search process runs for certain times, the quality of solution can not be 
improved, then TS algorithm stops. 
Because of adopting new exchanging strategy of neighbors based on critical operations, TS 
algorithm reduces invalid neighbor exchanges, enhances searching efficiency, increases the 
possibility of escaping from the local optimization, and expands the searching range. 
Simultaneity, when there is no exchangeable neighbor, it indicates that the cost of improving 
the solution is too large, or the current solution is already the optimal solution. Then the 
searching is terminated. 
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strategy and TS algorithm by Markov chain theory at a different aspect in this book, and 
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the self adapting A indicates that the particle adjusts its movement at the next moment by 
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transformation can be presented respectively by stochastic matrix PS, PA and PC, and the 
transition probability matrix of TS algorithm is presented by stochastic matrix PT. 
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Theorem 3 The hybrid algorithm HPSO based on PSO and TS algorithm is finite 
homogeneous Markov chain. 
Proof: Since the probability of group in next state rests with the current state, which is 
independent of the past state, HPSO algorithm with the set of finite state S={s0,s1,s2,…,sk} is 
Markov chain. Suppose that PS, PA , PC  and PT  are independent of time intervals, then the 
searching course of HPSO can be noted by a transition probability matrix with one step 
P=PT[PC(PSPA)], which is independent of time intervals as well. Therefore, the whole search 
course of HPSO is finite homogeneous Markov chain. 
The design of the neighborhood is the key factor to impact on the quality and efficiency of 
algorithm as for the neighborhood search algorithm TS. Therefore, we first give two 
assumptions about the neighborhood structure as follows to ensure the convergence of TS 
algorithm. 
Assumption 1: The neighborhood structure is supposed to be symmetrical. That is, 
si,sj S,si N(sj) sj N(si),i,j=0,…,k; 
Assumption 2: On the point view of the graph theory, the graph GN  is supposed to be 
strongly connected. Namely, there must be a path from si to sj for any si,sj S, where 
i,j=0,…,k. 
Theorem 4 HPSO algorithm with the optimum keeping strategy is global asymptotic 
convergence when time is endless, namely the algorithm will converge to the optimal 
group. 
Proof: Compared with the standard PSO velocity update equation, the equation has 
abandoned the previous velocity ωvi(t) of particle i, which will make at least one particle of 
the particle swarm stop evolution of each generation due to its best history position. The 
optimal strategy algorithm is adopted in this hybrid algorithm. For convenience, the optimal 
individual reserved from each generation is saved in the left side of the population, but it 
does not participate in the evolutionary process. The state which contains the same optimal 
solution is arranged in order as same as which in the original state space, and the one which 
contains the different optimal solution is arranged in order according to the fitness value. 
Then new social collaboration transition probability matrix, self adapting transition 
probability matrix and competition transition probability matrix can be presented 
respectively as PS*=diag(PS,PS,…,PS) ,PA*=diag(PA,PA,…,PA) , and PC*=diag(PC,PC,…, PC). After 
the competition, we’ll compare the optimal solution of the current population with the 
optimal solution reserved from the former generation, such an operation is presented by 
U=(uij). Set Zt=max{f(popit+1) ,i=1,2,…,N} be the optimal fitness, then the transition probability 
from Popt=[Zt-1,pop1t,pop2t,…,popNt] to Popt+1=[Zt,pop1t+1,pop2t+1,…,popNt+1] is presented as 
follows: 
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Thus, there is unique element 1 in every line of the U, the others are 0. Meanwhile, U is 
lower triangular matrix considering that the individual or is replaced by better or remains 
unchanged. Therefore, U is noted as follows: 
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Where Uij is k×k matrix, and U11 is unit matrix. That is to say that the transition probability 
matrix with one step of PSO algorithm is lower triangular matrix. 
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Obviously, P* is an irreducible stochastic matrix. 
In theory, it has been proved that if the search space S of TS is limited, and neighborhood 
structure satisfies the above assumption 1 and assumption 2, TS algorithm will converge to 
optimal solutions inevitably. Then the transition probability matrix with one step of TS 
algorithm is irreducible stochastic matrix as well. Apparently, the transition probability 
matrix of HPSO algorithm P=PTP* is irreducible stochastic matrix. This shows that the 
probability of individual staying in the non-global optimal solution tends to 0, therefore 
HPSO algorithm with the optimum keeping strategy will converge to the optimal group 
when time is endless. Namely,

t
limP(Zt Sopt)=1,where Sopt is the optimal solution set. 

 
3.4 Experiments and Analysis 
According to the above analysis, the global asymptotic convergence of HPSO algorithm can 
be guaranteed theoretically. However, the proof is based on perfect operation situations 
such as sufficiently large taboo list, infinite time and so on. Considering the reality of 
computer limitations and the limited time, we just take the convergence theory as the 
guidance in the specific computational experiments, some relaxations are made in 
accordance with the actual conditions on aspects of taboo length, search steps. Therefore, the 
solutions of some problems we obtained can just go nearly to rather than reach the optimal 
solution.    
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Theorem 3 The hybrid algorithm HPSO based on PSO and TS algorithm is finite 
homogeneous Markov chain. 
Proof: Since the probability of group in next state rests with the current state, which is 
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algorithm. 
Assumption 1: The neighborhood structure is supposed to be symmetrical. That is, 
si,sj S,si N(sj) sj N(si),i,j=0,…,k; 
Assumption 2: On the point view of the graph theory, the graph GN  is supposed to be 
strongly connected. Namely, there must be a path from si to sj for any si,sj S, where 
i,j=0,…,k. 
Theorem 4 HPSO algorithm with the optimum keeping strategy is global asymptotic 
convergence when time is endless, namely the algorithm will converge to the optimal 
group. 
Proof: Compared with the standard PSO velocity update equation, the equation has 
abandoned the previous velocity ωvi(t) of particle i, which will make at least one particle of 
the particle swarm stop evolution of each generation due to its best history position. The 
optimal strategy algorithm is adopted in this hybrid algorithm. For convenience, the optimal 
individual reserved from each generation is saved in the left side of the population, but it 
does not participate in the evolutionary process. The state which contains the same optimal 
solution is arranged in order as same as which in the original state space, and the one which 
contains the different optimal solution is arranged in order according to the fitness value. 
Then new social collaboration transition probability matrix, self adapting transition 
probability matrix and competition transition probability matrix can be presented 
respectively as PS*=diag(PS,PS,…,PS) ,PA*=diag(PA,PA,…,PA) , and PC*=diag(PC,PC,…, PC). After 
the competition, we’ll compare the optimal solution of the current population with the 
optimal solution reserved from the former generation, such an operation is presented by 
U=(uij). Set Zt=max{f(popit+1) ,i=1,2,…,N} be the optimal fitness, then the transition probability 
from Popt=[Zt-1,pop1t,pop2t,…,popNt] to Popt+1=[Zt,pop1t+1,pop2t+1,…,popNt+1] is presented as 
follows: 
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Thus, there is unique element 1 in every line of the U, the others are 0. Meanwhile, U is 
lower triangular matrix considering that the individual or is replaced by better or remains 
unchanged. Therefore, U is noted as follows: 
 

 





















kkkk UUU

UU
U

U




21

2221

11

 
(21) 

 
Where Uij is k×k matrix, and U11 is unit matrix. That is to say that the transition probability 
matrix with one step of PSO algorithm is lower triangular matrix. 
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Obviously, P* is an irreducible stochastic matrix. 
In theory, it has been proved that if the search space S of TS is limited, and neighborhood 
structure satisfies the above assumption 1 and assumption 2, TS algorithm will converge to 
optimal solutions inevitably. Then the transition probability matrix with one step of TS 
algorithm is irreducible stochastic matrix as well. Apparently, the transition probability 
matrix of HPSO algorithm P=PTP* is irreducible stochastic matrix. This shows that the 
probability of individual staying in the non-global optimal solution tends to 0, therefore 
HPSO algorithm with the optimum keeping strategy will converge to the optimal group 
when time is endless. Namely,

t
limP(Zt Sopt)=1,where Sopt is the optimal solution set. 

 
3.4 Experiments and Analysis 
According to the above analysis, the global asymptotic convergence of HPSO algorithm can 
be guaranteed theoretically. However, the proof is based on perfect operation situations 
such as sufficiently large taboo list, infinite time and so on. Considering the reality of 
computer limitations and the limited time, we just take the convergence theory as the 
guidance in the specific computational experiments, some relaxations are made in 
accordance with the actual conditions on aspects of taboo length, search steps. Therefore, the 
solutions of some problems we obtained can just go nearly to rather than reach the optimal 
solution.    
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In this experiment, we apply the HPSO algorithm to 13 typical benchmark job-shop 
scheduling problems including FT10, LA02, LA21, LA24, LA25, LA27, LA29, LA36, LA37, 
LA38, LA39 and LA40. The experimental results are shown in Table 1. 
In PSO algorithm, the swarm size is set to |O|*200%, where |O| is the number of 
operations, and maximum of iterative generations is set to |O|*200%; In HPSO algorithm, 
the swarm size is set to |O|*70% and maximum of iterative generations is set to |O|*70%. 
We choose the unfeasible solution of PSO algorithm by probability Pl (Pl=20%) as the initial 
solution of TS algorithm, after 50 search steps, algorithm will end if it couldn’t find a better 
solution in TS algorithm. The swarm size of PGA is set to |O|*70% and maximum of 
iterative generations is set to |O|*70%, where the crossover probability is 0.85, the mutation 
probability is 0.05. 
 

Note:The bold letters are optimum. 
 

Table 1. The Average Value of Ten Times Experiments And Optimal Values 
 
The algorithm for JSSP mentioned above can be easily implemented on computer. We 
program the algorithm in C and run it on CPU AMD2800+with 1G.Table 1 shows that we 
can find the optimums of problem FT10, LA02, LA19 and LA36 when we apply HPSO 
algorithm to solve the 13 benchmark problems. We can obtain that there are 10 average 
value of ten times experiments of HPSO algorithm better than PGA algorithm, and the 
deviation between the average value of ten times experiments of HPSO algorithm and the 
optimum is lower than which between PSO algorithm and the optimum by 11.69% . Thus 
the overall search capability of the algorithm is improved, which make the algorithm get 
closer to the optimum solution. 
We analyze the convergence of PSO algorithm with optimum keeping strategy and TS 
algorithm by Markov chain theory as for the Job Shop problem, and present a hybrid 
algorithm called HPSO algorithm with global asymptotic convergence based on the above 

Problem 
Optimum

Makespan

PGA PSO HPSO 

Optimum
Average 
value

time/SOptimum
Average
value

time/SOptimum
Average 
 value 

time/S 

FT10(10×10) 930 943 963.0 60.09 977 996.9 24.88 930 945.2 37.49 

LA02(10×5) 655 655 682.4 14.43 702 734.2 3.71 655 668.2 5.05 

LA19(10×10) 842 842 842.0 54.38 874 884.0 10.22 842 842.6 26.21 

LA21(15×10) 1046 1058 1068.0 171.18 1254 1281.6 28.50 1078 1099.0 200.77 

LA24(15×10) 935 945 949.0 165.86 1130 1149.3 27.81 947 959.4 218.16 

LA25(15×10) 977 1020 1026.5 177.18 1174 1197.0 30.43 999 1018.5 217.70 

LA27(20×10) 1235 1442 1464.9 577.59 1502 1530.1 457.35 1257 1267.4 558.50 

LA29(20×10) 1153 1305 1330.7 569.55 1439 1488.3 500.75 1198 1214.6 512.1 

LA36(15×15) 1268 1318 1326.3 687.78 1338 1356.8 758.5 1268 1283.3 599.0 

LA37(15×15) 1397 1436 1441.1 790.57 1503 1519.2 714.01 1415 1425.8 817.2 

LA38(15×15) 1196 1242 1251.0 731.47 1262 1294.3 708.33 1208 1217.5 723.3 

LA39(15×15) 1233 1244 1247.3 720.53 1306 1320.3 709.20 1244 1246.4 614.0 

LA40(15×15) 1222 1243 1286.4 855.50 1284 1299.8 738.17 1224 1233.1 766.26 

 

convergence theory. This algorithm has made full use of the large scale random search 
capability and the social cooperation of PSO algorithm, at the same time, the local parallel 
TS algorithm is embedded to improve the local search capability. We apply the above 
convergence theory to computational experiment and find the optimum of problem FT10, 
LA02 and LA19 in a short period. When compared with PGA algorithm and PSO algorithm, 
there are 10 average value in ten times experiments of HPSO algorithm better than PGA 
algorithm, and the deviation between the average value of ten times experiments of HPSO 
algorithm and the optimum is lower than that of between PSO algorithm and the optimum 
by 11.69%. Thus the overall searching capability of the algorithm is improved, which has 
demonstrated the effectiveness of solving Job Shop Scheduling problem by HPSO algorithm. 

 
3.5 Summary 
The theorem of No Free lunch (NFL) shows that there isn’t a single solution that adapts to 
all problems effectively. Therefore, a hybrid algorithm of particle swarm optimization and 
tabu search algorithm (TS) for solving JSSP is proposed motivated by the strong global 
search capability of PSO algorithm and the good local search capability of TS algorithm. 
Meanwhile, the convergence of HPSO is proved, and experimental simulation results are 
given. 

 
4. Strategies for Deadlock Elimination for JSSP using PSO 

Deadlock is a state that the requests of scheduling transactions which contest resources one 
another can not be satisfied. Namely, the stagnancy is among transactions waiting for one 
another appears. When using a PSO algorithm to solve constrained optimization problems, 
deadlock is one of the key problems need to be solved. In PSO algorithm, we optimize the 
various operations of jobs based on PSO code. Because the different operations of the same 
job are studied as the separate object. Different objects can be in different machine queues. 
So this may be a single legitimate machine queue (two jobs does not occupy the same 
machine at the same time). Meanwhile, deadlock is latent among the queues on different 
machines. Efficiency and feasibility are decided by various conditions when using PSO to 
solve JSSP. Deadlock is a kind of the most important link. The strategies for eliminating 
deadlock are proposed in the book. 

 
4.1 Deadlock Problem of JSSP 
We find that the machines as resources are preempted by the jobs in the production process, 
and the rings that jobs are waiting for one another are created. The state is called as 
deadlock. Each job is waiting other resources occupied by another job. The utilization rate of 
the system will decline. If the particle deadlock can not be solved in time, the whole 
production system will collapse, and automate production will be unable to continue. 
The computer scientist first put forward deadlock when dealing with the allocation of 
resources in the operating system. Coffman has given four necessary conditions for 
deadlocks as follows: 
(1) Exclusion. Resources only can be allocated to a particular task or an idle task. Resources 
can not be occupied simultaneously by two tasks. 
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In this experiment, we apply the HPSO algorithm to 13 typical benchmark job-shop 
scheduling problems including FT10, LA02, LA21, LA24, LA25, LA27, LA29, LA36, LA37, 
LA38, LA39 and LA40. The experimental results are shown in Table 1. 
In PSO algorithm, the swarm size is set to |O|*200%, where |O| is the number of 
operations, and maximum of iterative generations is set to |O|*200%; In HPSO algorithm, 
the swarm size is set to |O|*70% and maximum of iterative generations is set to |O|*70%. 
We choose the unfeasible solution of PSO algorithm by probability Pl (Pl=20%) as the initial 
solution of TS algorithm, after 50 search steps, algorithm will end if it couldn’t find a better 
solution in TS algorithm. The swarm size of PGA is set to |O|*70% and maximum of 
iterative generations is set to |O|*70%, where the crossover probability is 0.85, the mutation 
probability is 0.05. 
 

Note:The bold letters are optimum. 
 

Table 1. The Average Value of Ten Times Experiments And Optimal Values 
 
The algorithm for JSSP mentioned above can be easily implemented on computer. We 
program the algorithm in C and run it on CPU AMD2800+with 1G.Table 1 shows that we 
can find the optimums of problem FT10, LA02, LA19 and LA36 when we apply HPSO 
algorithm to solve the 13 benchmark problems. We can obtain that there are 10 average 
value of ten times experiments of HPSO algorithm better than PGA algorithm, and the 
deviation between the average value of ten times experiments of HPSO algorithm and the 
optimum is lower than which between PSO algorithm and the optimum by 11.69% . Thus 
the overall search capability of the algorithm is improved, which make the algorithm get 
closer to the optimum solution. 
We analyze the convergence of PSO algorithm with optimum keeping strategy and TS 
algorithm by Markov chain theory as for the Job Shop problem, and present a hybrid 
algorithm called HPSO algorithm with global asymptotic convergence based on the above 
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Optimum

Makespan

PGA PSO HPSO 
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Average 
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time/SOptimum
Average
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FT10(10×10) 930 943 963.0 60.09 977 996.9 24.88 930 945.2 37.49 

LA02(10×5) 655 655 682.4 14.43 702 734.2 3.71 655 668.2 5.05 

LA19(10×10) 842 842 842.0 54.38 874 884.0 10.22 842 842.6 26.21 

LA21(15×10) 1046 1058 1068.0 171.18 1254 1281.6 28.50 1078 1099.0 200.77 

LA24(15×10) 935 945 949.0 165.86 1130 1149.3 27.81 947 959.4 218.16 

LA25(15×10) 977 1020 1026.5 177.18 1174 1197.0 30.43 999 1018.5 217.70 
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LA40(15×15) 1222 1243 1286.4 855.50 1284 1299.8 738.17 1224 1233.1 766.26 

 

convergence theory. This algorithm has made full use of the large scale random search 
capability and the social cooperation of PSO algorithm, at the same time, the local parallel 
TS algorithm is embedded to improve the local search capability. We apply the above 
convergence theory to computational experiment and find the optimum of problem FT10, 
LA02 and LA19 in a short period. When compared with PGA algorithm and PSO algorithm, 
there are 10 average value in ten times experiments of HPSO algorithm better than PGA 
algorithm, and the deviation between the average value of ten times experiments of HPSO 
algorithm and the optimum is lower than that of between PSO algorithm and the optimum 
by 11.69%. Thus the overall searching capability of the algorithm is improved, which has 
demonstrated the effectiveness of solving Job Shop Scheduling problem by HPSO algorithm. 

 
3.5 Summary 
The theorem of No Free lunch (NFL) shows that there isn’t a single solution that adapts to 
all problems effectively. Therefore, a hybrid algorithm of particle swarm optimization and 
tabu search algorithm (TS) for solving JSSP is proposed motivated by the strong global 
search capability of PSO algorithm and the good local search capability of TS algorithm. 
Meanwhile, the convergence of HPSO is proved, and experimental simulation results are 
given. 

 
4. Strategies for Deadlock Elimination for JSSP using PSO 

Deadlock is a state that the requests of scheduling transactions which contest resources one 
another can not be satisfied. Namely, the stagnancy is among transactions waiting for one 
another appears. When using a PSO algorithm to solve constrained optimization problems, 
deadlock is one of the key problems need to be solved. In PSO algorithm, we optimize the 
various operations of jobs based on PSO code. Because the different operations of the same 
job are studied as the separate object. Different objects can be in different machine queues. 
So this may be a single legitimate machine queue (two jobs does not occupy the same 
machine at the same time). Meanwhile, deadlock is latent among the queues on different 
machines. Efficiency and feasibility are decided by various conditions when using PSO to 
solve JSSP. Deadlock is a kind of the most important link. The strategies for eliminating 
deadlock are proposed in the book. 

 
4.1 Deadlock Problem of JSSP 
We find that the machines as resources are preempted by the jobs in the production process, 
and the rings that jobs are waiting for one another are created. The state is called as 
deadlock. Each job is waiting other resources occupied by another job. The utilization rate of 
the system will decline. If the particle deadlock can not be solved in time, the whole 
production system will collapse, and automate production will be unable to continue. 
The computer scientist first put forward deadlock when dealing with the allocation of 
resources in the operating system. Coffman has given four necessary conditions for 
deadlocks as follows: 
(1) Exclusion. Resources only can be allocated to a particular task or an idle task. Resources 
can not be occupied simultaneously by two tasks. 



Future Manufacturing Systems254

 

(2) Non-preemption. Resources is non-preemptive. When the corresponding process task is 
completed, the task will release occupied resources. 
(3) Occupation and waiting. The task has been occupying some resources. Meanwhile, the 
task requests additional resources that have been occupied by other task.  
(4) Circular and waiting. There exists a set of requested resources {P1,P2,…,Pn}. Where P1 is 
waiting for resources occupied by P2, P2 is waiting for resources occupied by P3, …, Pn is 
waiting for resources occupied by P1. 
In the shop scheduling, there exists that the requests of scheduling transactions which 
contest resources one another can not be satisfied, so a state of stagnancy among 
transactions waiting for one another appears, resulting in deadlock and emergence of 
infeasible solutions. When using a hybrid PSO algorithm to solve JSSP, deadlock is one of 
the key problems need to be solved. To obtain valid hybrid PSO algorithm for JSSP, we 
study the reasons producing deadlocks in PSO algorithm, and present three 
countermeasures for deadlock elimination: encoding elimination, detection and 
reconstruction, and direct reconstruction. 
While solving JSSP using a hybrid PSO, we firstly transfer JSSP into encoding denotation 
based on operations as the result of scheduling. Different operations of identical jobs may be 
processed on different machines, which can result in deadlock among job queues on 
different machines, being infeasible solution. In this solution space corresponding to 
encoding based on operation, it not only contains feasible solutions, but also contains 
infeasible solutions (namely, solutions with deadlock). For example with a 6×6 shop 
scheduling problem, Fig. 4 denotes one possible scheduling gantt chart, and the vertical 
coordinate denotes serial number of processing machine. 
 

 
Fig. 4. A possible scheduling gantt of a typical (6×6 scheduling problem) 
 
We can see from Fig. 4 that job queue on both machine 2 and machine 3 have deadlock, 
namely, operation (5,3)→(3,3) and (3,4)→(5,2) just a typical waiting deadlock. Because 
before operation (5,3) is processed, it must wait until operation (5,2) has be finished, while 
operation (3,4) before operation (5,2) must wait until operation (3,3) has be finished, but 
operation (3,3) is after (5,3), namely, this scheduling has deadlock. Occurrence of deadlock 
makes particles generated by G&T in hybrid PSO could not go on evolution, because the 
algorithm simulates course of processing according to scheduling scheme under the above 
dual restrictions, while valuing individuals, fitness values always are computed according 
to job’s last makespan in processing system, the makespan of the last operation is just 
circulation ending time of the whole batch of jobs. Deadlock makes the process stagnated at 

 

the position of deadlock and could not go ahead, so we could not gain this operation’s 
maximal makespan in a common sense, which forms infeasible scheduling solution in 
solution space. So, while effectively solving JSSP using PSO or hybrid PSO, the deadlock 
matter is an obstacle which we must solve. 

 
4.2 Deadlock Elimination and Reconstruction 
 

4.2.1 Encoding Elimination 
In deadlock elimination strategy, we design an encoding denotation based on operations as 
the result of scheduling. Then we utilize the encoding and decoding to eliminate deadlock 
(that is, the infeasible solution). 
During the optimizing process, m segments of each particle are changed. If we produce 
solutions by encoding m segments of a particle directly, it is possible to produce some 
infeasible solutions, which is also called dead lock, and it will lead to bad optimization 
efficiency. Aiming at an n×m job shop scheduling problem in which the chromosome is 
made up of n×m genes, when the operation position of every machine is changed, the 
position of operations in the chromosome corresponding to the position of machines is 
changed, so a feasible solution is obtained, and infeasible solution is avoided, either the 
characteristic of PSO algorithm is reserved. 
The encoding process based on operations is: for the problem that n jobs need to be 
processed on m machine. The chromosome is an nm array that denotes all operations. For 
a matter of convenience, let m=3, n=3, and chromosome starts with such a segment of 
genes:[2, 1, 3, 2, 1, 2, 1, 3, 3]. We assign the same symbol for the same job’s operation, where 
1 denotes job J1, 2 denotes job J2, and 3 denotes job J3. Because each job has three processes, 
each job appears three times in chromosome. The operation of job is equivalent to the order 
in chromosome. 
The decoding process based on the encoding operation is: firstly, the chromosome is 
transformed to an orderly list that denotes an order of the production process. Secondly, 
according to the processing order of each operation, scheduling scheme is given. The 
scheme includes the start time and end time of every job. 
For above 6×6 problem, in particle swarm chromosome encoding, there are six dimensions, 
each of which has a position value. Here, the position value is composed of six segments of 
chromosomes divided by machine devices, and chromosome’s encoding method is an 
encoding composed of a whole segment chromosome (36 bits genes on it), where each gene 
which represents a job index is a decimal number. According to its size order, distribute 
operations over again for the whole segment of chromosome’s genes. So, particle’s position 
shift is not restricted to operation shift on a single machine, but within the whole segment of 
chromosome. 
 

job Machine sequence 
operation1 Operation2 operation3 

J1 1 2 3 
J2 1 2 3 
J3 2 1 3 

 

Table 2. 33 Job Shop scheduling problem 
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(2) Non-preemption. Resources is non-preemptive. When the corresponding process task is 
completed, the task will release occupied resources. 
(3) Occupation and waiting. The task has been occupying some resources. Meanwhile, the 
task requests additional resources that have been occupied by other task.  
(4) Circular and waiting. There exists a set of requested resources {P1,P2,…,Pn}. Where P1 is 
waiting for resources occupied by P2, P2 is waiting for resources occupied by P3, …, Pn is 
waiting for resources occupied by P1. 
In the shop scheduling, there exists that the requests of scheduling transactions which 
contest resources one another can not be satisfied, so a state of stagnancy among 
transactions waiting for one another appears, resulting in deadlock and emergence of 
infeasible solutions. When using a hybrid PSO algorithm to solve JSSP, deadlock is one of 
the key problems need to be solved. To obtain valid hybrid PSO algorithm for JSSP, we 
study the reasons producing deadlocks in PSO algorithm, and present three 
countermeasures for deadlock elimination: encoding elimination, detection and 
reconstruction, and direct reconstruction. 
While solving JSSP using a hybrid PSO, we firstly transfer JSSP into encoding denotation 
based on operations as the result of scheduling. Different operations of identical jobs may be 
processed on different machines, which can result in deadlock among job queues on 
different machines, being infeasible solution. In this solution space corresponding to 
encoding based on operation, it not only contains feasible solutions, but also contains 
infeasible solutions (namely, solutions with deadlock). For example with a 6×6 shop 
scheduling problem, Fig. 4 denotes one possible scheduling gantt chart, and the vertical 
coordinate denotes serial number of processing machine. 
 

 
Fig. 4. A possible scheduling gantt of a typical (6×6 scheduling problem) 
 
We can see from Fig. 4 that job queue on both machine 2 and machine 3 have deadlock, 
namely, operation (5,3)→(3,3) and (3,4)→(5,2) just a typical waiting deadlock. Because 
before operation (5,3) is processed, it must wait until operation (5,2) has be finished, while 
operation (3,4) before operation (5,2) must wait until operation (3,3) has be finished, but 
operation (3,3) is after (5,3), namely, this scheduling has deadlock. Occurrence of deadlock 
makes particles generated by G&T in hybrid PSO could not go on evolution, because the 
algorithm simulates course of processing according to scheduling scheme under the above 
dual restrictions, while valuing individuals, fitness values always are computed according 
to job’s last makespan in processing system, the makespan of the last operation is just 
circulation ending time of the whole batch of jobs. Deadlock makes the process stagnated at 

 

the position of deadlock and could not go ahead, so we could not gain this operation’s 
maximal makespan in a common sense, which forms infeasible scheduling solution in 
solution space. So, while effectively solving JSSP using PSO or hybrid PSO, the deadlock 
matter is an obstacle which we must solve. 

 
4.2 Deadlock Elimination and Reconstruction 
 

4.2.1 Encoding Elimination 
In deadlock elimination strategy, we design an encoding denotation based on operations as 
the result of scheduling. Then we utilize the encoding and decoding to eliminate deadlock 
(that is, the infeasible solution). 
During the optimizing process, m segments of each particle are changed. If we produce 
solutions by encoding m segments of a particle directly, it is possible to produce some 
infeasible solutions, which is also called dead lock, and it will lead to bad optimization 
efficiency. Aiming at an n×m job shop scheduling problem in which the chromosome is 
made up of n×m genes, when the operation position of every machine is changed, the 
position of operations in the chromosome corresponding to the position of machines is 
changed, so a feasible solution is obtained, and infeasible solution is avoided, either the 
characteristic of PSO algorithm is reserved. 
The encoding process based on operations is: for the problem that n jobs need to be 
processed on m machine. The chromosome is an nm array that denotes all operations. For 
a matter of convenience, let m=3, n=3, and chromosome starts with such a segment of 
genes:[2, 1, 3, 2, 1, 2, 1, 3, 3]. We assign the same symbol for the same job’s operation, where 
1 denotes job J1, 2 denotes job J2, and 3 denotes job J3. Because each job has three processes, 
each job appears three times in chromosome. The operation of job is equivalent to the order 
in chromosome. 
The decoding process based on the encoding operation is: firstly, the chromosome is 
transformed to an orderly list that denotes an order of the production process. Secondly, 
according to the processing order of each operation, scheduling scheme is given. The 
scheme includes the start time and end time of every job. 
For above 6×6 problem, in particle swarm chromosome encoding, there are six dimensions, 
each of which has a position value. Here, the position value is composed of six segments of 
chromosomes divided by machine devices, and chromosome’s encoding method is an 
encoding composed of a whole segment chromosome (36 bits genes on it), where each gene 
which represents a job index is a decimal number. According to its size order, distribute 
operations over again for the whole segment of chromosome’s genes. So, particle’s position 
shift is not restricted to operation shift on a single machine, but within the whole segment of 
chromosome. 
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See table 2, suppose that the chromosome of a 33 Job Shop scheduling problem is［2 1 1 3 1 
2 3 3 2］, then the process sequence of each machine is as follows: M１［２１３］, M２［１３

２］, M３［１２３］. If optimizing it with PSO, the sequence of Ｍ１ is changed into ［３２
１］, then the solution become infeasible, because the operations on each machine are all not 
the first operation. However, by recoding and decoding the chromosome again, new feasible 
solution can be converted. The new chromosome encoding is ［3 2 1 3 1 2 1 3 2］, and the 
new sequence of each machine by decoding is: M１[2 1 3], M２[3 1 2], M３[2 1 3]. 
Based on such encoding elimination method for deadlock, it makes this algorithm 
simplified. Each time dealing with deadlock, we only need to take out the first operation in 
the waiting schedule, and distribute it to corresponding machine according to the rule of 
earliest finish time; we take out all bits in chromosome and dispose them, and then we 
obtain a feasible scheduling scheme, it is not necessary to detect deadlock and tackle fitness 
value of deadlock scheduling. Although the algorithm is simple, it has good searching 
capability because the decoding process can create an active scheduling. 

 
4.2.2 Detection and Reconstruction 
In process of PSO’s colony evolution, it can easily bethink of decline strategy, namely, 
abandon infeasible solution brought by deadlock while only feasible solution is preserved, 
in which way we could not have to consider the infeasible solutions. This method is 
available to problems which have weak restrictions, since for weak restrictions feasible 
solutions have larger proportion in searching solution space; however, this method could 
still find some good solution from searching space. But, as to JSSP model which is a sort of 
problem with strong restriction, according to the encoding method in chart 1, feasible 
solutions have a little ratio in searching space, the complexity of searching for feasible 
solution is not inferior to the original problem (as to 10×10 problem’s first-generation 
population, the author generates scheduling by particle evolution, in which, the proportion 
of feasible scheduling is less than 3%, see table 3). It is obvious that, with above encoding 
method, as to JSSP, only considering feasible solution is not enough. 
 

 1 2 3 4 5 6 7 8 9 10 
0 0.98 0.98 0.81 0.86 0.75 0.79 0.78 0.79 0.75 0.68 
10 0.65 0.66 0.65 0.63 0.58 0.59 0.55 0.55 0.51 0.47 
20 0.46 0.44 0.47 0.48 0.48 0.55 0.46 0.44 0.43 0.48 
30 0.46 0.49 0.42 0.49 0.46 0.41 0.38 0.41 0.43 0.37 
40 0.70 0.69 0.71 0.73 0.71 0.71 0.66 0.68 0.60 0.63 
50 0.69 0.74 0.69 0.65 0.69 0.67 0.74 0.76 0.70 0.75 
60 0.71 0.76 0.65 0.74 0.71 0.66 0.66 0.65 0.63 0.65 

 

Table 3. The proportions of deadlock particles to the total particles in seventy generations of 
FT10 

 
Note that, one characteristic of this sort of deadlock scheduling, namely, is high quantity 
and can hardly be found one by one, but its existence can be easily detected. Here, we 
provide design for deadlock elimination and reconstruction, that is, in routine G&T 
algorithm “randomly selects an operation in clash set”, is modified as “according to the 

 

operations’ sequence in deadlock’s scheduling generated by PSO algorithm, select 
operations in clash set G”. Consequently, it makes the scheduling being deadlock restored, 
making the ratio of feasible solution ascend gradually in process of evolution and selection. 
As to JSSP, the detecting times of deadlock is denoted as “T”, the worst case is that we 
examine circularly each operation queue once, while we only need to examine m×n times, if 
there is no deadlock in scheduling, T is m×n times. In process of detection, none but 
deadlock can make the algorithm process stagnate, that is, the algorithm is blocked by 
deadlock, in which case we can eliminate deadlock by rebuilding clash set using G&T. In the 
clash set, according to the order of job index of operation on machine in scheduling having 
deadlock, select operations, thereby, the scheduling having deadlock gets restoration. 

 
4.2.3 Direct Reconstruction 
From above analysis for 10×10 problem’s deadlock, we can see, in the encoding based on 
operation, deadlock is in a great deal. In practice, among JSSP’s strong restriction problems, 
deadlock scheduling is in a great proportion in the whole solution space, the effect of the 
way detecting deadlock is not necessary very good. Because detection need a lot of cost, the 
worst case of deadlock detection is the same as JSSP, it also a combinatorial blast problem, 
and deadlock’s concrete information is skimble-skamble for JSSP. So, we design a direct 
reconstruction which directly rebuilds clash set using G&T. In the clash set, according to the 
order of job index of operation on machine in scheduling having deadlock, we select 
operations, namely, no necessary detect deadlock for evolving particle and directly 
reconstruct new solution, which makes the ratio of better solution ascend gradually, finally 
making the swarm go ahead towards optimization. This method avoids deadlock detection, 
comparatively, time performance may be simplified. 
Seen from the above, the direct reconstruction is different from deadlock elimination 
reconstruction in that we do not judge whether there is a deadlock, but directly rebuild clash 
set using G&T. In the clash set, according to the order of job index of operation on machine 
in scheduling having deadlock, we select operations, thereby, the scheduling having 
deadlock gets restoration. 

 
4.3 Experiments and Analysis 
The experiment in this section aims at JSSP, solving 13 typical benchmarks hard problems, 
such as FT10, LA02, LA19, LA21, LA24, LA25, LA27, LA29, LA36, LA37, LA38, LA39, LA40. 
In hybrid PSO (HPSO) using deadlock elimination strategy, the population size of PSO is set 
as |O|*70%,  where |O| is the total number of operation; every evolution generation 
number is |O|*70%; we select |O|*Pl particles from particle swarm and perform TS search, 
if though TS’s search process has passed half of total operation number we still can not 
obtain better solution, we end TS process. 
The experiment in this section is implemented with C code, the experiment environment is: 
CPU with Pentium-4 2.4G, and memory with 512M. HPSO1, HPSO2, and HPSO3 are hybrid 
PSO respectively using encoding elimination, detection and reconstruction, and direct 
reconstruction. The average fitness values of ten times searching solution of HPSO1, HPSO2, 
and HPSO3 respectively are 2.66%, 3.13% and 2.62%. 
Seen from the experiment results, the effect of hybrid PSO using encoding elimination is 
worse than that using direct reconstruction, since that, with encoding elimination, the 
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See table 2, suppose that the chromosome of a 33 Job Shop scheduling problem is［2 1 1 3 1 
2 3 3 2］, then the process sequence of each machine is as follows: M１［２１３］, M２［１３

２］, M３［１２３］. If optimizing it with PSO, the sequence of Ｍ１ is changed into ［３２
１］, then the solution become infeasible, because the operations on each machine are all not 
the first operation. However, by recoding and decoding the chromosome again, new feasible 
solution can be converted. The new chromosome encoding is ［3 2 1 3 1 2 1 3 2］, and the 
new sequence of each machine by decoding is: M１[2 1 3], M２[3 1 2], M３[2 1 3]. 
Based on such encoding elimination method for deadlock, it makes this algorithm 
simplified. Each time dealing with deadlock, we only need to take out the first operation in 
the waiting schedule, and distribute it to corresponding machine according to the rule of 
earliest finish time; we take out all bits in chromosome and dispose them, and then we 
obtain a feasible scheduling scheme, it is not necessary to detect deadlock and tackle fitness 
value of deadlock scheduling. Although the algorithm is simple, it has good searching 
capability because the decoding process can create an active scheduling. 

 
4.2.2 Detection and Reconstruction 
In process of PSO’s colony evolution, it can easily bethink of decline strategy, namely, 
abandon infeasible solution brought by deadlock while only feasible solution is preserved, 
in which way we could not have to consider the infeasible solutions. This method is 
available to problems which have weak restrictions, since for weak restrictions feasible 
solutions have larger proportion in searching solution space; however, this method could 
still find some good solution from searching space. But, as to JSSP model which is a sort of 
problem with strong restriction, according to the encoding method in chart 1, feasible 
solutions have a little ratio in searching space, the complexity of searching for feasible 
solution is not inferior to the original problem (as to 10×10 problem’s first-generation 
population, the author generates scheduling by particle evolution, in which, the proportion 
of feasible scheduling is less than 3%, see table 3). It is obvious that, with above encoding 
method, as to JSSP, only considering feasible solution is not enough. 
 

 1 2 3 4 5 6 7 8 9 10 
0 0.98 0.98 0.81 0.86 0.75 0.79 0.78 0.79 0.75 0.68 
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60 0.71 0.76 0.65 0.74 0.71 0.66 0.66 0.65 0.63 0.65 
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FT10 

 
Note that, one characteristic of this sort of deadlock scheduling, namely, is high quantity 
and can hardly be found one by one, but its existence can be easily detected. Here, we 
provide design for deadlock elimination and reconstruction, that is, in routine G&T 
algorithm “randomly selects an operation in clash set”, is modified as “according to the 

 

operations’ sequence in deadlock’s scheduling generated by PSO algorithm, select 
operations in clash set G”. Consequently, it makes the scheduling being deadlock restored, 
making the ratio of feasible solution ascend gradually in process of evolution and selection. 
As to JSSP, the detecting times of deadlock is denoted as “T”, the worst case is that we 
examine circularly each operation queue once, while we only need to examine m×n times, if 
there is no deadlock in scheduling, T is m×n times. In process of detection, none but 
deadlock can make the algorithm process stagnate, that is, the algorithm is blocked by 
deadlock, in which case we can eliminate deadlock by rebuilding clash set using G&T. In the 
clash set, according to the order of job index of operation on machine in scheduling having 
deadlock, select operations, thereby, the scheduling having deadlock gets restoration. 

 
4.2.3 Direct Reconstruction 
From above analysis for 10×10 problem’s deadlock, we can see, in the encoding based on 
operation, deadlock is in a great deal. In practice, among JSSP’s strong restriction problems, 
deadlock scheduling is in a great proportion in the whole solution space, the effect of the 
way detecting deadlock is not necessary very good. Because detection need a lot of cost, the 
worst case of deadlock detection is the same as JSSP, it also a combinatorial blast problem, 
and deadlock’s concrete information is skimble-skamble for JSSP. So, we design a direct 
reconstruction which directly rebuilds clash set using G&T. In the clash set, according to the 
order of job index of operation on machine in scheduling having deadlock, we select 
operations, namely, no necessary detect deadlock for evolving particle and directly 
reconstruct new solution, which makes the ratio of better solution ascend gradually, finally 
making the swarm go ahead towards optimization. This method avoids deadlock detection, 
comparatively, time performance may be simplified. 
Seen from the above, the direct reconstruction is different from deadlock elimination 
reconstruction in that we do not judge whether there is a deadlock, but directly rebuild clash 
set using G&T. In the clash set, according to the order of job index of operation on machine 
in scheduling having deadlock, we select operations, thereby, the scheduling having 
deadlock gets restoration. 

 
4.3 Experiments and Analysis 
The experiment in this section aims at JSSP, solving 13 typical benchmarks hard problems, 
such as FT10, LA02, LA19, LA21, LA24, LA25, LA27, LA29, LA36, LA37, LA38, LA39, LA40. 
In hybrid PSO (HPSO) using deadlock elimination strategy, the population size of PSO is set 
as |O|*70%,  where |O| is the total number of operation; every evolution generation 
number is |O|*70%; we select |O|*Pl particles from particle swarm and perform TS search, 
if though TS’s search process has passed half of total operation number we still can not 
obtain better solution, we end TS process. 
The experiment in this section is implemented with C code, the experiment environment is: 
CPU with Pentium-4 2.4G, and memory with 512M. HPSO1, HPSO2, and HPSO3 are hybrid 
PSO respectively using encoding elimination, detection and reconstruction, and direct 
reconstruction. The average fitness values of ten times searching solution of HPSO1, HPSO2, 
and HPSO3 respectively are 2.66%, 3.13% and 2.62%. 
Seen from the experiment results, the effect of hybrid PSO using encoding elimination is 
worse than that using direct reconstruction, since that, with encoding elimination, the 
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scheduling schemes generated by particle whose position has changed have many repeated 
scheduling schemes, namely, there are many particles which have the same position in the 
particle swarm, and most of them are non-active scheduling, which reduces the diversity of 
particles, and conflicts with PSO algorithm whose original intention aims at enhancing the 
diversity of particles, although the running time of the algorithm is short, the searching 
performance is bad comparatively.  
The difference between deadlock elimination reconstruction and directly reconstruction is 
that, the former detects and judges whether the solution has deadlock, if the solution has 
deadlock, reconstruct it; the latter doesn’t detect solution, but directly reconstructs solution. 
In deadlock elimination and reconstruction, we total up all infeasible particles in every 
generation, namely, the proportion of particle being deadlock to the total particle number in 
the swarm. And we have totaled for the typical problems (FT10, LA02), from which we can 
see the difference of the two methods. 
 

 1 2 3 4 5 6 7 8 9 10 
0 0.91 0.83 0.89 0.88 0.77 0.75 0.63 0.60 0.56 0.52 
10 0.48 0.40 0.40 0.27 0.26 0.32 0.18 0.28 0.30 0.28 
20 0.28 0.19 0.17 0.17 0.15 0.15 0.20 0.13 0.16 0.16 
30 0.19 0.22 0.05 0.07 0.03 -- -- -- -- -- 

 

Table 4. The proportions of deadlock particles to the total particles in thirty five generations 
of LA02 

 
We can see from the experiment results, as to JSSP in which the number of job and machine 
is more or less equal, deadlock elimination reconstruction and direct reconstruction are all 
square in their search time and search results. As to JSSP in which the number of job is more 
than the number of machine, it is better employing hybrid PSO using direct reconstruction. 
Because in JSSP in which the number of job is more than the number of machine, the 
operation number of each job is oppositely small, thereby, the number of infeasible solution 
after particle evolution is oppositely small, which can be seen from the statistic result in 
table 4, since the number of the feasible solution is oppositely large, the detection algorithm 
runs and does not know the solution is feasible solution until the algorithm runs out, so the 
algorithm’s running time is oppositely long, and after particle’s evolution, the number of 
particles whose fitness value are smaller than the fitness value of the primary particle is 
oppositely large, which is a disadvantage for obtaining global optimal solution, but as to 
JSSP in which the number of job and machine is more or less equal, the number of the 
infeasible solution after particle evolution is oppositely large, for which we can conclude 
from the statistic result in table 3 that detection algorithm can drop midway, which can 
reduce the computation time, at the same time, among particles obtained by improved G&T 
repair algorithm, the number of particles whose fitness value after evolution is smaller than 
the fitness value before evolution is oppositely small, which makes for the search for 
optimal solution. The experiment results also indicate that, the hybrid PSO using direct 
reconstruction has better effect and advantage for solving JSSP. 
In seventy generations of FT10 and thirty five generations of LA02, the proportions of 
deadlock particles to the total particles are shown in table 3 and table 4, in which the 
proportion is the ratio of deadlock scheduling to the total scheduling in the particle swarm 
in every generation. The population size of PSO is set as |O|*70%,  where|O| is the total 

 

number of operation; every evolution generation number are |O|*70%, the total number of 
operation is m×n, namely, (10×10=100) the generation number is 70. 
 

Note: boldface is the optimization. 
 

Table 5. The optimal value and average values in ten times’ experiments 

 
4.4 Summary 
To obtain valid hybrid PSO algorithm for JSSP, the reasons producing deadlocks in hybrid 
PSO algorithm is studied, and three strategies for eliminating deadlocks are proposed. 
When solving highly constrained combinatorial optimization problems, deadlock is one of 
the key problems need to be solved. The experiment results show that HPSO algorithm is a 
kind of feasible and effective method for sloving JSSP. With contrast experiments on 13 hard 
benchmark problems, both the results of deadlock detection and optimization objective 
results show that direct reconstruction is more effective, and better than the other two 
methods in searching quality. The hybrid PSO using direct reconstruction for deadlock 
problem has more advantages comparatively. The deadlock elimination algorithm, namely, 
the hybrid PSO for JSSP given in this book, has improved the solution quality of the hybrid 
PSO for JSSP, and which has provided a feasible and effective method for solving deadlock 
problem in PSO.   

 

Benchmarks 
problem 

Optimal 
Makespan 

HPSO1 HPSO2 HPSO3 
Optimal 

Value 
Average 

Value 
Time 
(sec) 

Optimal 
Value 

Average 
Value 

Time 
(sec) 

Optimal 
Value 

Average 
Value 

Time 
(sec) 

FT10(10×10) 930 934 939.2 44.83 930 936.7 36.83 930 937.5 37.69 

LA02(10×5) 655 655 667.6 1.41 655 688.4 7.275 655 656.0 4.22 

LA19(10×10) 842 850 883.4 19.97 842 849.9 14.604 842 845.5 13.87 

LA21(15×10) 1046 1055 1067.2 211.66 1078 1088.8 255.09 1050 1080.9 244.25 

LA24(15×10) 935 954 959.3 228.62 950 958.2 258.69 944 950.4 250.91 

LA25(15×10) 977 986 991.6 214.48 989 992.6 249.28 977 983.4 250.24 

LA27(20×10) 1235 1265 1277 204.66 1269 1302.9 288.13 1260 1288.9 258.35 

LA29(20×10) 1153 1203 1210.8 257.08 1253 1273.1 280.78 1200 1227.8 289.42 

LA36(15×15) 1268 1292 1300 288.23 1274 1283.1 301.90 1280 1296.4 290.85 

LA37(15×15) 1397 1433 1448.3 310.52 1415 1439.1 359.83 1415 1435.8 360.72 

LA38(15×15) 1196 1209 1220 340.71 1212 1221.0 343.31 1204 1255.8 350.81 

LA39(15×15) 1233 1248 1264.2 350.81 1233 1260.0 340.30 1233 1260.5 364.73 

LA40(15×15) 1222 1230 1234.6 364.21 1229 1236.2 360.77 1229 1238.6 385.62 
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scheduling schemes generated by particle whose position has changed have many repeated 
scheduling schemes, namely, there are many particles which have the same position in the 
particle swarm, and most of them are non-active scheduling, which reduces the diversity of 
particles, and conflicts with PSO algorithm whose original intention aims at enhancing the 
diversity of particles, although the running time of the algorithm is short, the searching 
performance is bad comparatively.  
The difference between deadlock elimination reconstruction and directly reconstruction is 
that, the former detects and judges whether the solution has deadlock, if the solution has 
deadlock, reconstruct it; the latter doesn’t detect solution, but directly reconstructs solution. 
In deadlock elimination and reconstruction, we total up all infeasible particles in every 
generation, namely, the proportion of particle being deadlock to the total particle number in 
the swarm. And we have totaled for the typical problems (FT10, LA02), from which we can 
see the difference of the two methods. 
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Table 4. The proportions of deadlock particles to the total particles in thirty five generations 
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We can see from the experiment results, as to JSSP in which the number of job and machine 
is more or less equal, deadlock elimination reconstruction and direct reconstruction are all 
square in their search time and search results. As to JSSP in which the number of job is more 
than the number of machine, it is better employing hybrid PSO using direct reconstruction. 
Because in JSSP in which the number of job is more than the number of machine, the 
operation number of each job is oppositely small, thereby, the number of infeasible solution 
after particle evolution is oppositely small, which can be seen from the statistic result in 
table 4, since the number of the feasible solution is oppositely large, the detection algorithm 
runs and does not know the solution is feasible solution until the algorithm runs out, so the 
algorithm’s running time is oppositely long, and after particle’s evolution, the number of 
particles whose fitness value are smaller than the fitness value of the primary particle is 
oppositely large, which is a disadvantage for obtaining global optimal solution, but as to 
JSSP in which the number of job and machine is more or less equal, the number of the 
infeasible solution after particle evolution is oppositely large, for which we can conclude 
from the statistic result in table 3 that detection algorithm can drop midway, which can 
reduce the computation time, at the same time, among particles obtained by improved G&T 
repair algorithm, the number of particles whose fitness value after evolution is smaller than 
the fitness value before evolution is oppositely small, which makes for the search for 
optimal solution. The experiment results also indicate that, the hybrid PSO using direct 
reconstruction has better effect and advantage for solving JSSP. 
In seventy generations of FT10 and thirty five generations of LA02, the proportions of 
deadlock particles to the total particles are shown in table 3 and table 4, in which the 
proportion is the ratio of deadlock scheduling to the total scheduling in the particle swarm 
in every generation. The population size of PSO is set as |O|*70%,  where|O| is the total 

 

number of operation; every evolution generation number are |O|*70%, the total number of 
operation is m×n, namely, (10×10=100) the generation number is 70. 
 

Note: boldface is the optimization. 
 

Table 5. The optimal value and average values in ten times’ experiments 

 
4.4 Summary 
To obtain valid hybrid PSO algorithm for JSSP, the reasons producing deadlocks in hybrid 
PSO algorithm is studied, and three strategies for eliminating deadlocks are proposed. 
When solving highly constrained combinatorial optimization problems, deadlock is one of 
the key problems need to be solved. The experiment results show that HPSO algorithm is a 
kind of feasible and effective method for sloving JSSP. With contrast experiments on 13 hard 
benchmark problems, both the results of deadlock detection and optimization objective 
results show that direct reconstruction is more effective, and better than the other two 
methods in searching quality. The hybrid PSO using direct reconstruction for deadlock 
problem has more advantages comparatively. The deadlock elimination algorithm, namely, 
the hybrid PSO for JSSP given in this book, has improved the solution quality of the hybrid 
PSO for JSSP, and which has provided a feasible and effective method for solving deadlock 
problem in PSO.   

 

Benchmarks 
problem 

Optimal 
Makespan 

HPSO1 HPSO2 HPSO3 
Optimal 

Value 
Average 

Value 
Time 
(sec) 

Optimal 
Value 

Average 
Value 

Time 
(sec) 

Optimal 
Value 

Average 
Value 

Time 
(sec) 

FT10(10×10) 930 934 939.2 44.83 930 936.7 36.83 930 937.5 37.69 

LA02(10×5) 655 655 667.6 1.41 655 688.4 7.275 655 656.0 4.22 

LA19(10×10) 842 850 883.4 19.97 842 849.9 14.604 842 845.5 13.87 

LA21(15×10) 1046 1055 1067.2 211.66 1078 1088.8 255.09 1050 1080.9 244.25 

LA24(15×10) 935 954 959.3 228.62 950 958.2 258.69 944 950.4 250.91 

LA25(15×10) 977 986 991.6 214.48 989 992.6 249.28 977 983.4 250.24 

LA27(20×10) 1235 1265 1277 204.66 1269 1302.9 288.13 1260 1288.9 258.35 

LA29(20×10) 1153 1203 1210.8 257.08 1253 1273.1 280.78 1200 1227.8 289.42 

LA36(15×15) 1268 1292 1300 288.23 1274 1283.1 301.90 1280 1296.4 290.85 

LA37(15×15) 1397 1433 1448.3 310.52 1415 1439.1 359.83 1415 1435.8 360.72 

LA38(15×15) 1196 1209 1220 340.71 1212 1221.0 343.31 1204 1255.8 350.81 

LA39(15×15) 1233 1248 1264.2 350.81 1233 1260.0 340.30 1233 1260.5 364.73 

LA40(15×15) 1222 1230 1234.6 364.21 1229 1236.2 360.77 1229 1238.6 385.62 
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5. Other Hybrid PSO Algorithms for JSSP 

As the diversity of optimization, the research experience and preferences of researchers 
often determine the selection of algorithms. The application of algorithms is various, and the 
new optimal alogorihm is difficlut proposed based on the natural mechanism. Therefore, the 
hybrid algorithm is an important and effective way to improve algorithm. In the section, we 
introduce other hybrid PSO algorithm for solving JSSP, including hybrid algorithm of PSO 
and simulated annealing (SA) algorithm, hybrid algorithm of PSO and genetic algorithm 
(GA). 

 
5.1 Hybrid Algorithm of PSO and SA 
 

5.1.1 Hybrid Algorithm Design 
Simulated annealing algorithm (SA) is a kind of stochastic search algorithm based on Monte 
Carlo iteration search strategy. SA algorithm has the jumping ability and strong 
universality, and it is easy to be realized. However, the running time of SA is long and its 
efficiency is low. PSO algorithm has strong universality. However, PSO has the 
disadvantages of prematurity and the tendency of falling into the local optimization. 
Therefore, a hybrid algorithm based on PSO and SA algorithm (HPSOSA) is proposed for 
improving the overall quality of the optimization algorithm. 
According to the characteristics of random and large-scale search of PSO, we adopt PSO to 
construct a group of the initial solutions with good quality and dispersion. At the same time, 
each particle pursues the process of parallel search of SA in the population Pl. SA algorithm 
not only is a supplement of PSO and beneficial for the local improvement, but also has the 
probabilistic jumping ability of escaping the local optimization. 

 
5.1.2 Enhanced Simulated Annealing 
In theory, SA algorithm can search the global optimal solution with probability 1 only if the 
parameters of algorithm satisfy the convergence conditions. However, it is impossible that 
some convergence conditions be met strictly according to SA algorithm convergence theory. 
The selection of SA algorithm parameters is still a problem. In the book, SA algorithm is 
used to local search of the hybrid algorithm, and we improve the process and sampling of 
SA algorithm. 
(1) The operational pattern at a single comparison of traditional SA algorithm requests the 
fully high initial temperature and slow temperature drop. SA algorithm optimizes the part 
solution of the population each generation of PSO algorithm, and each random searching 
selects a value from a range as the initial temperature. 
(2) The sampling process of traditional SA algorithm requests that sampling time at each 
temperature is long enough, and the temperature tends to 0 eventually. When the 
temperature remains unchanged in continuous n steps at the current state, we think that the 
Metropolis sampling is stable. Then, SA algorithm will terminate calculation in the 
temperature. If the optimal solution remains unchanged in continuous n steps at cooling 
process, we think that the algorithm is convergent. 
 
 
 

 

The parameters of SA algorithm: 
(1) Initial temperature t0 
The higher the initial temperature is, the larger rate of quality solution will be obtained. 
However, the cost of calculation will increase too. Therefore, we should certainly tradeoffs 
quality and efficiency when choosing the initial temperature. Before the local search in ESA, 
we make sure of the biggest difference between two targets (| max|) of PSO. Then 
according to the difference, the initial temperature is set by function t0=- max/lnpr (pr is 
initial speedups at convergence). If pr is close to 1, and the initial random status can express 
the whole status space, the algorithm will accept all status almost in same probability, will 
not accept the restriction of the smallest solution completely. 
(2) cooling rateω (0<ω<1) 
The more ω is close to 1, it shows that the slower the cooling rate decreases, and vice versa. 
Moreover, the algorithm has different search depths in different cooling rates. Therefore, SA 
algorithm uses the strategy of the variable cooling rate for improving the randomness of 
search by the random changing ω values in the search process. 
(3) Iterative times L 
The iterative times of each temperature is fixed value. When the temperature is high, the 
algorithm will accept all status almost in same probability, and the iterative times can 
reduce. When the temperature is gradually decreasing, the algorithm will reject most of 
status almost in same probability. If the iterative times reduce, the objective function will 
converge to a local optimization prematurely. In the enhanced algorithm, SA has different 
iterative times in different temperature. When the temperature is decreased, the iterative 
times of the same temperature will increase. 

 
5.2 HPSOSA Algorithm 
Considering normality of the objective function, the optimal solution is situated in an active 
schedule. In HPSOSA algorithm, Giffler-Thompson (G&T) algorithm is adopted to construct 
the initial solution of PSO, which has the ability of random and large-scale search. 
According to the convergence of PSO, each particle pursues the process of SA parallel 
searching in the degressive population Pl. Then, the solutions which aren’t selected and new 
solutions by SA conduct the search solutions of PSO in the current generation. Adopt G&T 
algorithm to regenerate the particle, when Xid(t)=Pid=Pgd in generation t. 
In HPSOSA algorithm, we not only utilize parallel SA algorithm improving the search area, 
but also use PSO algorithm ensuring the convergence. The hybrid algorithm give attention 
to the accuracy and efficiency of optimization. 
 
 
 
 
 
 
 
 
 
 
 



Hybrid particle swarm algorithm for job shop scheduling problems 261
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(2) The sampling process of traditional SA algorithm requests that sampling time at each 
temperature is long enough, and the temperature tends to 0 eventually. When the 
temperature remains unchanged in continuous n steps at the current state, we think that the 
Metropolis sampling is stable. Then, SA algorithm will terminate calculation in the 
temperature. If the optimal solution remains unchanged in continuous n steps at cooling 
process, we think that the algorithm is convergent. 
 
 
 

 

The parameters of SA algorithm: 
(1) Initial temperature t0 
The higher the initial temperature is, the larger rate of quality solution will be obtained. 
However, the cost of calculation will increase too. Therefore, we should certainly tradeoffs 
quality and efficiency when choosing the initial temperature. Before the local search in ESA, 
we make sure of the biggest difference between two targets (| max|) of PSO. Then 
according to the difference, the initial temperature is set by function t0=- max/lnpr (pr is 
initial speedups at convergence). If pr is close to 1, and the initial random status can express 
the whole status space, the algorithm will accept all status almost in same probability, will 
not accept the restriction of the smallest solution completely. 
(2) cooling rateω (0<ω<1) 
The more ω is close to 1, it shows that the slower the cooling rate decreases, and vice versa. 
Moreover, the algorithm has different search depths in different cooling rates. Therefore, SA 
algorithm uses the strategy of the variable cooling rate for improving the randomness of 
search by the random changing ω values in the search process. 
(3) Iterative times L 
The iterative times of each temperature is fixed value. When the temperature is high, the 
algorithm will accept all status almost in same probability, and the iterative times can 
reduce. When the temperature is gradually decreasing, the algorithm will reject most of 
status almost in same probability. If the iterative times reduce, the objective function will 
converge to a local optimization prematurely. In the enhanced algorithm, SA has different 
iterative times in different temperature. When the temperature is decreased, the iterative 
times of the same temperature will increase. 

 
5.2 HPSOSA Algorithm 
Considering normality of the objective function, the optimal solution is situated in an active 
schedule. In HPSOSA algorithm, Giffler-Thompson (G&T) algorithm is adopted to construct 
the initial solution of PSO, which has the ability of random and large-scale search. 
According to the convergence of PSO, each particle pursues the process of SA parallel 
searching in the degressive population Pl. Then, the solutions which aren’t selected and new 
solutions by SA conduct the search solutions of PSO in the current generation. Adopt G&T 
algorithm to regenerate the particle, when Xid(t)=Pid=Pgd in generation t. 
In HPSOSA algorithm, we not only utilize parallel SA algorithm improving the search area, 
but also use PSO algorithm ensuring the convergence. The hybrid algorithm give attention 
to the accuracy and efficiency of optimization. 
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HPSOSA algorithm is described as: 
Begin 
PSn ← DetermineSizeOfParticleSwarm() 
Pgd ← NULL; Pid ← NULL; Pl ← 0.2;    
ConstructionInitializeParticleSwarm ( PSn )  
while termination conditions not satisfied do 

CalculationParticleValidity( Vid ) 
CalculationParticleNewPosition( Xid ) 
if ( rand( 0, 1 ) < Pl ) then 

  ESASearch( ) 
else  

ApplyLocalSearch( ) 
 end if 

CalculateParticleFitnessValue( ) 
Update( Pid )   
Update( Pgd ) 

 if ( Pid== Pgd ) then 
   GenerateNewParticle( i )                  //G&T algorithm 
 end if 
end while 
Output  Pgd 
End 

 
5.3 Hybrid Algorithm of PSO and GA 
 

5.3.1 Hybrid Algorithm Design 
Genetic algorithm (GA) is a kind of algorithm for solving JSSP, and the algorithm has the 
ability of large-scale and global-convergence search. However, after the evolution to a 
certain evolutional generations, the objective function value (satisfaction) almost does not 
change, falling into the local optimization. If there is no external interference, it is difficult to 
leave the local optimum. Meanwhile, if external intervention can break the balance, the 
probability of searching the optimal solution will increase. 
PSO algorithm is a kind of search algorithm based on iteration search strategy, and PSO 
algorithm has the characteristics of global optimization. In the last few years, along with 
application study is further, PSO has expanded its application to solve JSSP. It is found that 
PSO algorithm is good in the early evolution for solving JSSP. However, particle 
populations will quickly lose diversity, and PSO algorithm will cause premature 
convergence or slow the global convergence. 
We should choose the algorithms with different characteristics, make them integrate 
mutually, give full play to their advantages, and generate the better efficiency of 
optimization. It is undoubted that it is an effective way to solve JSSP. Therefore, the hybrid 
parallel GA and PSO (HPSOGA) algorithm is established for solving JSSP. Considering the 
difference of the search mechanism and characteristics of PSO and GA algorithm, the 
parallel asynchronous hybrid method is adopted as the hybrid method. There are the global 
search in two populations individually, using the principle of different search algorithms. 

 

Simultaneity, migration Operator is adopted to achieve the intercommunication between 
PSO and GA algorithm. When the optimization algorithm of one population falls into the 
local optimization, another algorithm disturbs the first population. Through exchanging 
individuals in the evolutionary process, the search area and accuracy are improved. 
The HPSOGA algorithm is established for solving JSSP, its parallel hybrid model is 
illustrated in Fig. 5. 
 

 
Fig. 5. HPSOGA parallel hybrid model with TS 

 
5.3.2 Migration Operator Design 
The key cycle of the hybrid algorithm is the designing of communication medium, which 
can make different algorithms exchange their information with each other so as to cause 
populations to share high quality seed. Thereby, introduce migration operation, which not 
only improves the diversity of GA population and enlarges the search scope of solution 
space, but also enhances the convergence of PSO population and deals with particles 
evolution halt problem. As two different algorithms are employed parallel hybrid to search 
optimization solution, it is too unilateral that only a single migration strategy is adopted. 
According to different specificity of both algorithms, two migration strategies related with 
two different migration occasions are designed, corresponding a migration strategy in each 
migration occasion is employed. 
(1) Considering the fact that a particle stops evolution in the process of PSO evolution, if the 
particle which stops evolution is detected out, a solution randomly from GA population is 
selected, and it is diverted to PSO and replaced with the particle which stops evolution; if 
there are several particles which stop evolving in PSO population, the other GA solutions 
which have different fitness value are selected and diverted to PSO, and the corresponding 
particles which stops evolution are replaced; the particle which stops evolution is migrated 
to GA population and replaced with the individual whose fitness value is lowest in GA 
population. 
(2) According to the fact that GA is prone to convergence, in the process of GA population 
evolution, the convergence factor cf is detected every certain generation in this algorithm. 
When a convergence factor is smaller than the preset value, select several good solutions 
whose fitness value are different from PSO population, and divert them to GA population 
so as to disturb GA evolution; meanwhile, select several good solutions whose fitness value 



Hybrid particle swarm algorithm for job shop scheduling problems 263

 

HPSOSA algorithm is described as: 
Begin 
PSn ← DetermineSizeOfParticleSwarm() 
Pgd ← NULL; Pid ← NULL; Pl ← 0.2;    
ConstructionInitializeParticleSwarm ( PSn )  
while termination conditions not satisfied do 

CalculationParticleValidity( Vid ) 
CalculationParticleNewPosition( Xid ) 
if ( rand( 0, 1 ) < Pl ) then 

  ESASearch( ) 
else  

ApplyLocalSearch( ) 
 end if 

CalculateParticleFitnessValue( ) 
Update( Pid )   
Update( Pgd ) 

 if ( Pid== Pgd ) then 
   GenerateNewParticle( i )                  //G&T algorithm 
 end if 
end while 
Output  Pgd 
End 

 
5.3 Hybrid Algorithm of PSO and GA 
 

5.3.1 Hybrid Algorithm Design 
Genetic algorithm (GA) is a kind of algorithm for solving JSSP, and the algorithm has the 
ability of large-scale and global-convergence search. However, after the evolution to a 
certain evolutional generations, the objective function value (satisfaction) almost does not 
change, falling into the local optimization. If there is no external interference, it is difficult to 
leave the local optimum. Meanwhile, if external intervention can break the balance, the 
probability of searching the optimal solution will increase. 
PSO algorithm is a kind of search algorithm based on iteration search strategy, and PSO 
algorithm has the characteristics of global optimization. In the last few years, along with 
application study is further, PSO has expanded its application to solve JSSP. It is found that 
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populations will quickly lose diversity, and PSO algorithm will cause premature 
convergence or slow the global convergence. 
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mutually, give full play to their advantages, and generate the better efficiency of 
optimization. It is undoubted that it is an effective way to solve JSSP. Therefore, the hybrid 
parallel GA and PSO (HPSOGA) algorithm is established for solving JSSP. Considering the 
difference of the search mechanism and characteristics of PSO and GA algorithm, the 
parallel asynchronous hybrid method is adopted as the hybrid method. There are the global 
search in two populations individually, using the principle of different search algorithms. 

 

Simultaneity, migration Operator is adopted to achieve the intercommunication between 
PSO and GA algorithm. When the optimization algorithm of one population falls into the 
local optimization, another algorithm disturbs the first population. Through exchanging 
individuals in the evolutionary process, the search area and accuracy are improved. 
The HPSOGA algorithm is established for solving JSSP, its parallel hybrid model is 
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5.3.2 Migration Operator Design 
The key cycle of the hybrid algorithm is the designing of communication medium, which 
can make different algorithms exchange their information with each other so as to cause 
populations to share high quality seed. Thereby, introduce migration operation, which not 
only improves the diversity of GA population and enlarges the search scope of solution 
space, but also enhances the convergence of PSO population and deals with particles 
evolution halt problem. As two different algorithms are employed parallel hybrid to search 
optimization solution, it is too unilateral that only a single migration strategy is adopted. 
According to different specificity of both algorithms, two migration strategies related with 
two different migration occasions are designed, corresponding a migration strategy in each 
migration occasion is employed. 
(1) Considering the fact that a particle stops evolution in the process of PSO evolution, if the 
particle which stops evolution is detected out, a solution randomly from GA population is 
selected, and it is diverted to PSO and replaced with the particle which stops evolution; if 
there are several particles which stop evolving in PSO population, the other GA solutions 
which have different fitness value are selected and diverted to PSO, and the corresponding 
particles which stops evolution are replaced; the particle which stops evolution is migrated 
to GA population and replaced with the individual whose fitness value is lowest in GA 
population. 
(2) According to the fact that GA is prone to convergence, in the process of GA population 
evolution, the convergence factor cf is detected every certain generation in this algorithm. 
When a convergence factor is smaller than the preset value, select several good solutions 
whose fitness value are different from PSO population, and divert them to GA population 
so as to disturb GA evolution; meanwhile, select several good solutions whose fitness value 
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are different from GA population, and then diverts them to PSO population. So it can be 
achieved that two populations exchange their good individuals. The computation function 
of convergence facto cf is formulated as formula (16), in which fi denotes the fitness of 
chromosome i. 
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||

 
(23) 

 
During the initial phase of migration operation, smaller the migration rate and larger 
migration intervals are set. The main reason is to maintain the diversity of population, not 
destroy the inherent evolution mode of the algorithm. Then, with the increase of evolving 
generation, migration rates is increased and the migration interval is decreased gradually, 
which benefits improving of good individual spread in the whole population, convergence 
speed, accelerating solving speed, and achieving new balance. Thus it assures that it can 
find best solution of JSSP. This is a dynamic migration strategy.  
For each migration strategy, if local search method is employed to conduct deeply search for 
migrated good individuals, on the one hand, the approximately best or the global best 
solution of the problem can be found as soon as possible, on the other hand, the better guide 
for migrating objective population can also be provided. The tabu search (TS) is employed 
as the local search operator. 
A list structure with 1 in length is employed in TS algorithm. In the process of TS search, if 
neighbor which improves solution is found, the neighbor is saved in the list with probability 
γ (0<γ<1). When the list is full, replace the neighbor in the list with the new neighbor needed 
to be saved; when better solution is still not found within the maximal generation, pop the 
neighbor saved in the list, and go on searching. The function of recording neighbor which is 
potential to improve solution is performed by the list. Meanwhile the neighbor is put into 
the list once, γ will be decreased once by a certain rate λ (λ<1). Because the more deeply the 
search is conducted, the less the chance of improving solution is. So it make the probability 
of input list descend, which can lower the chance of the same neighbor is input to the list 
repeatedly, avoid useless search, and dynamic memory function of the list is achieved. 

 
5.3.3 HPSOGA Algorithm 
HPSOGA algorithm is described as: 
GAn ← DetermineSizeOfGAPopulation()   
PSn ← DetermineSizeOfParticleSwarm()   
GASbs ← NULL；Pc ← 0.85; Pm ← 0.1; 
cf = 0；iter = 0;  mig = 0;                                                     //mig is migration parameter 
Pgd ← NULL; Pid ← NULL; Sbs ←NULL; 
ps = 0；                                                                      //ps is the number of stopping evolvement 
 
 
 
 
 

 

Begin 
ConstructionInitializePopulation ( GAn )   
ConstructionInitializeParticleSwarm ( PSn )   
while termination conditions not satisfied do 

RouletteWheelSelectionOperation( )  //selection operation 
CrossoverOperation( Pc )      
MutationOperation( Pm )      
CalculatePopulationFitnessValue( ) 

if (iter % 5 == 0) then 
cf ← ComputeConvergenceFactor( )  
if ( cf < 0.05 ) then 
 mig++ 
end if 

end if 
MigrationFromParticleSwarm( mig , TS ) // migration operation 

Update( GASbs ) 
CalculationParticleValidity( Vid ) 
CalculationParticleNewPosition( Xid ) 
CalculateParticleFitnessValue( ) 
Update( Pid )   
Update( Pgd ) 
ps ← NonEvolvementParticleNumber（）  
if ( ps > 0 ) then 

MigrationFromGAPopulation( ps , TS )  // migration operation 
end if 
iter++ 

end while 
Output  Sbs ←  max{ AI(Pgd), AI(GASbs ) } 
End 

 
5.4 Summary 
In the section, we introduce another two different hybrid PSO algorithms for solving JSSP. 
When constructing the hybrid PSO algorithm, the key is how to use the different optimized 
mechanism of algorithms, making up for deficiencies each other. With the deepened study 
of the intelligent optimization problem, effective hybrid algorithms will continue to emerge 
for solving JSSP. 

 
6. Summary 

In the chapter, we describe PSO algorithm, propose HPSO algorithm for solving JSSP, 
analyze the convergence of HPSO, and provide three strategies for deadlock elimination. 
Then, we present other hybrid PSO algorithm. The chapter can give readers comprehensive 
research results on hybrid particle swarm optimization algorithms for JSSP, which will 
promote research and application of JSSP. 
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Begin 
ConstructionInitializePopulation ( GAn )   
ConstructionInitializeParticleSwarm ( PSn )   
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RouletteWheelSelectionOperation( )  //selection operation 
CrossoverOperation( Pc )      
MutationOperation( Pm )      
CalculatePopulationFitnessValue( ) 

if (iter % 5 == 0) then 
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if ( cf < 0.05 ) then 
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end while 
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5.4 Summary 
In the section, we introduce another two different hybrid PSO algorithms for solving JSSP. 
When constructing the hybrid PSO algorithm, the key is how to use the different optimized 
mechanism of algorithms, making up for deficiencies each other. With the deepened study 
of the intelligent optimization problem, effective hybrid algorithms will continue to emerge 
for solving JSSP. 

 
6. Summary 

In the chapter, we describe PSO algorithm, propose HPSO algorithm for solving JSSP, 
analyze the convergence of HPSO, and provide three strategies for deadlock elimination. 
Then, we present other hybrid PSO algorithm. The chapter can give readers comprehensive 
research results on hybrid particle swarm optimization algorithms for JSSP, which will 
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Future Manufacturing Systems266

 

7. References 

Byung Joo Park, Hyung Rim Choi, Hyun Soo Kim.(2003). A hybrid genetic algorithm for the 
job shop scheduling problem. Computers & industrial engineering, Vol.45 (4),597-613 

Cagnina L, Esquivel S, Gallard R.(2004). Particle Swarm Optimization for Sequencing 
Problems: A Case Study, Proceedings of 2004 Congress on Evolutionary Computation, 
Oregon, Portland, pp. 536-540 

Chang Fang，Liaw.(2000). A hybrid genetic algorithm for the open shop scheduling 
problem. European Journal of Operational Research, Vol.124(1), 393-407 

Cheng R, Gen M.(1996). Atutorial survey of job-shop scheduling problems using genetic 
algorithms-I. Representation. Computers and Industrial Engineering, Vol. 30(4), 983-
997 

Christian B, Dirk C M.(1999). Production scheduling and rescheduling with genetic 
algorithms. Evolutionary Computation, Vol.7(1), 1-17 

Eberhart R，Kenned J.(1995). A New Optimizer Using Particles Swarm Theory, Proc Sixth 
International Symposium on Micro Machine and Human Science, pp. 39-43. Nagoya, 
Japan: IEEE service Center.Piscataway 

Eugeniusz Nowicki, Czeslaw Smutnicki.(1996). A Fast Taboo Search Algorithm for the Job 
Shop Problem. Management Science, Vol.42 (6), 797- 813 

Giffler, B. and Thompson, G. L.(1960). Algorithms for Solving Production Scheduling 
Problems. Operations Research, Vol.8(4), 487-503 

Isaacson D L , Madsen R W.(1976). Markov chain theory and applications, John Wiley&Sons Inc 
Jain A S, Meeran S.(1999). Deterministic job-shop scheduling: past, present and future. 

European Journal of Operational Research, Vol.113(2), 390~434 
Jerald J, Asolcan P, Prabaharan G, et al.(2004). Scheduling Optimization of Flexible 

Manufacturing Systems Using Particle Swarm Optimization Algorithm. Advanced 
Manufacturing Technology 

K ennedy J，Eberhart R.C.(2001). Swarm Intelligence, San Francisco: San Francisco Morgan 
Kaufman Publishers 

Kirkpatrick, S., Gelatt, C. D. (Jr) and Vecchi, M. P.(1983). Optimization by Simulated 
Annealing, Science, Vol.220(5), 671-680 

Kolonko, M.(1998). Some New Results on Simulated Annealing Applied to the Job Shop 
Scheduling Problem, the European Journal of Operational Research 

Leticia Cagnina, Susana Esquivel, Raul Gallard.(2004). Particle Swarm Optimization for 
Sequencing Problems: A Case Study, Proceedings of 2004 Congress on Evolutionary    
Computation, Oregon, Portland, pp. 536-540 

Lian Z G, Jiao B, Gu X S.(2006). A similar particle swarm optimization algorithm for job shop 
scheduling to minimize makespan. Appl. Math. Comput. , Vol.183, 1008-1017 

Liu H B, Abraham A, Choi O, et al.(2006). Variable neighborhood particle swarm 
optimization for multi-objective flexible job shop scheduling problems. LNCS, 
Vol.4247, 197-204 

Ph. Preux, E.-G. Talbi.(1999). Towards hybrid evolutionary algorithms. International 
transactions in operational research,  Vol.6 (6), 557-570 

Radcliffe N .J, Surrv P D.(1995). Fundamental limitations on search algorithms, U K: Cniversity  
of Edinburnh 

Sha D Y, Hsu C Y.(2006). A hybrid particle swarm optimization for job shop scheduling 
problem. Comput. Ind. Eng. Vol.51, 791-808 

 

SongXiao-Yu，Cao Yang，Meng Qiu-Hong.(2008). Study on particle swarm algorithm for 
Job Shop scheduling problems. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems 
Engineering and Electronics, Vol.30(12), 2398-2401 

Van Laarhoven, P. J. M.,Aarts, E. H. L., Lenstra, J. K.(1992). Job Shop Scheduling by 
Simulated Annealing, Operations Research, Vol.40,113-135 

Wolpert D H, Macready W G.(1995). No Free Lunch theotrems on search algorithms, U K: 
Univercity of Edinburnh 

Xia weijun, Wu zhiming, Zhangwei, et al.(2004). A New Hybrid Optimization Algorithm for 
the Job Shop Scheduling Problem. Proceedings of the 2004 American Control 
Conference Boston, Massachusette, pp. 5552-5557 

Xia W J, Wu Z M.(2005). An effective hybrid optimization approach for multi-objective 
flexible job shop scheduling problems. Comput. Ind. Eng. Vol.48, 409-425 

Xia W J, Wu Z M.(2006). A hybrid particle swarm optimization approach for the job shop 
scheduling problem. Int. J. Adv. Manuf. Technol. Vol.29, 360-366 

Xu Gang, Wu Zhi ming.(2002). Deadlock-free scheduling method using Petrinet model 
analysis and GA. Proc of the IEEE Int Conf on Control Application, pp. 1153-1159 

Yamada, T. and Nakano, R.(1996). Job-Shop Scheduling by Simulated Annealing Combined 
with Deterministic Local Search, Meta-heuristics: Theory and Applications, Kluwer 
Academic Publishers, Boston, MA, USA, Chapter 15, pp. 237-248 

Yamada, T. and Nakano, R.(1996). Scheduling by Genetic Local Search with Multi-Step 
Crossover, PPSN'IV Fourth International Conference on Parallel Problem Solving from 
Nature, pp. 960-969, Berlin, Germany, Sept 22-26 

Yamada, T. and Nakano, R.(1996). A Fusion of Crossover and Local Search, ICIT'96 IEEE 
International Conference on Industrial Technology, pp. 426-430, Shanghai, China, Dec 
2-6 

Yannakakis, M.(1990). The Analysis of Local Search Problems and their Heuristics, 
Proceedings of the 7th Annual Symposium on Theoretical Aspects of Computer Science, 
pp. 298-311. 

Yannakakis, M.(1997). Computational Complexity of Local Search, in Aarts, E. H. L. and 
Lenstra, J. K (eds) Local Search in Combinatorial Optimization, Wiley, Chichester, Chapter 
2, pp. 19-55 



Hybrid particle swarm algorithm for job shop scheduling problems 267

 

7. References 

Byung Joo Park, Hyung Rim Choi, Hyun Soo Kim.(2003). A hybrid genetic algorithm for the 
job shop scheduling problem. Computers & industrial engineering, Vol.45 (4),597-613 

Cagnina L, Esquivel S, Gallard R.(2004). Particle Swarm Optimization for Sequencing 
Problems: A Case Study, Proceedings of 2004 Congress on Evolutionary Computation, 
Oregon, Portland, pp. 536-540 

Chang Fang，Liaw.(2000). A hybrid genetic algorithm for the open shop scheduling 
problem. European Journal of Operational Research, Vol.124(1), 393-407 

Cheng R, Gen M.(1996). Atutorial survey of job-shop scheduling problems using genetic 
algorithms-I. Representation. Computers and Industrial Engineering, Vol. 30(4), 983-
997 

Christian B, Dirk C M.(1999). Production scheduling and rescheduling with genetic 
algorithms. Evolutionary Computation, Vol.7(1), 1-17 

Eberhart R，Kenned J.(1995). A New Optimizer Using Particles Swarm Theory, Proc Sixth 
International Symposium on Micro Machine and Human Science, pp. 39-43. Nagoya, 
Japan: IEEE service Center.Piscataway 

Eugeniusz Nowicki, Czeslaw Smutnicki.(1996). A Fast Taboo Search Algorithm for the Job 
Shop Problem. Management Science, Vol.42 (6), 797- 813 

Giffler, B. and Thompson, G. L.(1960). Algorithms for Solving Production Scheduling 
Problems. Operations Research, Vol.8(4), 487-503 

Isaacson D L , Madsen R W.(1976). Markov chain theory and applications, John Wiley&Sons Inc 
Jain A S, Meeran S.(1999). Deterministic job-shop scheduling: past, present and future. 

European Journal of Operational Research, Vol.113(2), 390~434 
Jerald J, Asolcan P, Prabaharan G, et al.(2004). Scheduling Optimization of Flexible 

Manufacturing Systems Using Particle Swarm Optimization Algorithm. Advanced 
Manufacturing Technology 

K ennedy J，Eberhart R.C.(2001). Swarm Intelligence, San Francisco: San Francisco Morgan 
Kaufman Publishers 

Kirkpatrick, S., Gelatt, C. D. (Jr) and Vecchi, M. P.(1983). Optimization by Simulated 
Annealing, Science, Vol.220(5), 671-680 

Kolonko, M.(1998). Some New Results on Simulated Annealing Applied to the Job Shop 
Scheduling Problem, the European Journal of Operational Research 

Leticia Cagnina, Susana Esquivel, Raul Gallard.(2004). Particle Swarm Optimization for 
Sequencing Problems: A Case Study, Proceedings of 2004 Congress on Evolutionary    
Computation, Oregon, Portland, pp. 536-540 

Lian Z G, Jiao B, Gu X S.(2006). A similar particle swarm optimization algorithm for job shop 
scheduling to minimize makespan. Appl. Math. Comput. , Vol.183, 1008-1017 

Liu H B, Abraham A, Choi O, et al.(2006). Variable neighborhood particle swarm 
optimization for multi-objective flexible job shop scheduling problems. LNCS, 
Vol.4247, 197-204 

Ph. Preux, E.-G. Talbi.(1999). Towards hybrid evolutionary algorithms. International 
transactions in operational research,  Vol.6 (6), 557-570 

Radcliffe N .J, Surrv P D.(1995). Fundamental limitations on search algorithms, U K: Cniversity  
of Edinburnh 

Sha D Y, Hsu C Y.(2006). A hybrid particle swarm optimization for job shop scheduling 
problem. Comput. Ind. Eng. Vol.51, 791-808 

 

SongXiao-Yu，Cao Yang，Meng Qiu-Hong.(2008). Study on particle swarm algorithm for 
Job Shop scheduling problems. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems 
Engineering and Electronics, Vol.30(12), 2398-2401 

Van Laarhoven, P. J. M.,Aarts, E. H. L., Lenstra, J. K.(1992). Job Shop Scheduling by 
Simulated Annealing, Operations Research, Vol.40,113-135 

Wolpert D H, Macready W G.(1995). No Free Lunch theotrems on search algorithms, U K: 
Univercity of Edinburnh 

Xia weijun, Wu zhiming, Zhangwei, et al.(2004). A New Hybrid Optimization Algorithm for 
the Job Shop Scheduling Problem. Proceedings of the 2004 American Control 
Conference Boston, Massachusette, pp. 5552-5557 

Xia W J, Wu Z M.(2005). An effective hybrid optimization approach for multi-objective 
flexible job shop scheduling problems. Comput. Ind. Eng. Vol.48, 409-425 

Xia W J, Wu Z M.(2006). A hybrid particle swarm optimization approach for the job shop 
scheduling problem. Int. J. Adv. Manuf. Technol. Vol.29, 360-366 

Xu Gang, Wu Zhi ming.(2002). Deadlock-free scheduling method using Petrinet model 
analysis and GA. Proc of the IEEE Int Conf on Control Application, pp. 1153-1159 

Yamada, T. and Nakano, R.(1996). Job-Shop Scheduling by Simulated Annealing Combined 
with Deterministic Local Search, Meta-heuristics: Theory and Applications, Kluwer 
Academic Publishers, Boston, MA, USA, Chapter 15, pp. 237-248 

Yamada, T. and Nakano, R.(1996). Scheduling by Genetic Local Search with Multi-Step 
Crossover, PPSN'IV Fourth International Conference on Parallel Problem Solving from 
Nature, pp. 960-969, Berlin, Germany, Sept 22-26 

Yamada, T. and Nakano, R.(1996). A Fusion of Crossover and Local Search, ICIT'96 IEEE 
International Conference on Industrial Technology, pp. 426-430, Shanghai, China, Dec 
2-6 

Yannakakis, M.(1990). The Analysis of Local Search Problems and their Heuristics, 
Proceedings of the 7th Annual Symposium on Theoretical Aspects of Computer Science, 
pp. 298-311. 

Yannakakis, M.(1997). Computational Complexity of Local Search, in Aarts, E. H. L. and 
Lenstra, J. K (eds) Local Search in Combinatorial Optimization, Wiley, Chichester, Chapter 
2, pp. 19-55 



Future Manufacturing Systems268


	Preface
	Flexible manufacturing system: hardware components
	Dr. Tauseef Aized
	Discrete event models for flexible manufacturing cells
	Constantin Filote and Calin Ciufudean
	Process rescheduling: enabling performance by applying multiple metrics and efficient adaptations
	Rodrigo da Rosa Righi, Laércio Pilla, Alexandre Carissimi, Philippe Navaux and Hans-Ulrich Heiss
	Reliability Modeling and Analysis of Flexible Manufacturing Cells
	Mehmet Savsar
	Multi agent and holonic manufacturing control
	Sugimura Nobuhiro,Tehrani Nik Nejad Hossein and Iwamura koji
	Materials handling in flexible manufacturing systems
	Dr. Tauseef Aized
	Scheduling methods for hybrid flow shops with setup times
	Larysa Burtseva, Victor Yaurima and Rainier Romero Parra
	ACO-based Multi-objective Scheduling of Identical Parallel Batch Processing Machines in Semiconductor Manufacturing
	Axiomatic Design of Agile Manufacturing Systems
	Dominik T. Matt
	A Blended Process Model for Agile Software Development with Lean Concept
	Indika Perera
	Process monitoring systems for machining using audible sound energy sensors
	Eva M. Rubio and Roberto Teti
	Hybrid particle swarm algorithm for job shop scheduling problems
	Xiaoyu Song

