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Preface

Usually, the subject of a book on numerical mathematics pertains to a certain field
of application or a certain numerical method. In this book we proceed in a different
way. Stability is a concept that appears in various fields of numerical mathematics
(as well as in other parts of mathematics). Although in each subfield stability is
defined differently, there is a common meaning for this term, roughly described
by the fact that perturbations are not amplifying the result in a dangerous way. In
examining different fields of numerical mathematics concerning stability, we have
the opportunity to recall some facts from numerical analysis. However, numerical
mathematics cannot control stability exclusively for its own purpose. It turns out
that stability is an ambiguous term, which also has strong connections to analysis
and functional analysis.

Although stability is an essential requirement for numerical methods, the particu-
lar stability conditions are often not as obvious as, e.g., consistency conditions. The
book may lead the reader to a better understanding of this term.

This book is an extension of a lecture held in the summer semester of 2003 at
the University of Kiel (Christian-Albrechts-Universität zu Kiel). The exposition is
self-contained, and the necessary facts from numerical analysis and analysis are
provided. Hence, the book is well suited, e.g., as material for seminars in numerical
mathematics.

The author wishes to express his gratitude to the publisher Springer for its
friendly cooperation. In particular, he thanks Ann Kostant, editorial consultant for
Springer, for polishing the English.

Leipzig, October 2013 Wolfgang Hackbusch
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Chapter 1
Introduction

In numerical mathematics we have to distinguish between two types of methods.
There are finite algorithms, which solve a given task with a finite number of arith-
metical operations. An example of such finite algorithms is the Gauss elimination
for solving a system of linear equations. On the other hand, there are problems P
that cannot be solved in finite time. Instead, there are (finite) approximation algo-
rithms that involve solving substituting problems Pn producing results xn, which,
hopefully, tend to the true solution x of the original problem. The increasing close-
ness of Pn to P for n→∞ is the subject of the consistency condition. What really
matters is the convergence xn → x. Whether consistency implies convergence de-
pends on stability. It will turn out that under the assumption of consistency and
possibly some technical conditions, convergence and stability are equivalent.

The original German manuscript has been used for Diplom students in mathemat-
ics. The material in this book is intended for master and Ph.D. students. Besides the
discussion of the role of stability, a second goal is to review basic parts of numerical
analysis.

We start in Chapter 2 with finite algorithms. We recall the condition of a prob-
lem and the stability of an algorithm. The amplification of input and intermediate
floating point errors measures the quality of condition and stability. In this respect,
the terms remain vague, since the amplification factors are some positive real
numbers which may vary between ‘small’ (stable) and ‘large’ (unstable) without
a clear separation.

Chapter 3 is devoted to quadrature methods, more precisely, to families of
quadratures Qn, where, with increasing n, the quality should improve (‘consis-
tency’). ‘Stability’ is again connected with the amplification of input errors. In
contrast to Chapter 2, it is uniquely defined as to whether stability holds or not, since
the terms ‘small’ and ‘large’ are replaced by finiteness or infiniteness of supCn, the
supremum of condition numbers Cn.

Although the stability definition is inspired by numerical phenomena, it is also
suited to purely analytical purposes. Stability is almost equivalent to convergence
of the quadrature result Qn(f) to the exact integral

∫
fdx. Correspondingly,

1W. Hackbusch, The Concept of Stability in Numerical Mathematics,
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2 1 Introduction

analytical tools from functional analysis are involved, namely Weierstrass’ approx-
imation theorem and the uniform boundedness theorem.

Interpolation treated in Chapter 4 follows the same pattern as in Chapter 3. In
both chapters one can pose the question of how important the stability statement
supCn < ∞ is, if one wants to perform only one quadrature or interpolation for a
fixed n. In fact, polynomial interpolation is unstable, but when applied to functions
of certain classes it behaves quite well.

This is different in Chapter 5, where one-step and multistep methods for the
solution of ordinary initial-value problems are treated. Computing approxima-
tions requires an increasing number of steps, when the step size approaches zero.
Often an instability leads to exponential growth of an error, eventually causing a
termination due to overflow.

For ordinary differential equations instability occurs only for proper multistep
methods, whereas one-step methods are always stable. This is different for partial
differential equations, which are investigated in Chapter 6. Here, difference methods
for hyperbolic and parabolic differential equations are treated. Stability describes the
uniform boundedness of powers of the difference operators.

Also in the case of elliptic differential equations discussed in Chapter 7, stability
is needed to prove convergence. In this context, stability describes the boundedness
of the inverse of the difference operator or the finite element matrix independently
of the step size.

The final chapter is devoted to Fredholm integral equations. Modern projection
methods lead to a very easy proof of stability, consistency, and convergence. How-
ever, the Nyström method—the first discretisation method based on quadrature—
requires a more involved analysis. We conclude the chapter with the analysis of the
corresponding eigenvalue problem.

Despite the general concept of stability, there are different aspects to consider
in the subfields. One aspect is the practical importance of stability (cf. §4.6),
another concerns a possible conflict between a higher order of consistency and
stability (cf. §3.5.2, Remark 4.15, Theorem 5.47, §6.6, §7.5.9).



Chapter 2
Stability of Finite Algorithms

2.1 About Algorithms

An algorithm is used to solve a (numerical) problem. For the mathematical formula-
tion of a problem (or task) we use a mapping Φ : X → Y , which is to be evaluated
numerically (cf. [9, Chap. 1]).

An algorithm is executable if the mapping Φ is composed of units that are
realisable in a computer program. We call these units elementary operations. In
the standard case, these elementary operations are the basic arithmetical opera-
tions +,−, ∗, / in the set of real or whole numbers. In addition, the programming
languages offer the use of some special functions like sin, cos, exp,

√
·, . . .

An algorithm is the composition of elementary operations. A finite algorithm
is characterised as involving only a finite number of elementary operations. The
algorithm is a realisation of the mapping

Φ : (x1, . . . , xn) ∈ X = domain(Φ) 7→ (y1, . . . , ym) ∈ Y = range(Φ). (2.1)

If Φ is realisable by at least one algorithm, then there are even infinitely many
algorithms of this kind. Therefore, there is no one-to-one correspondence between
a task and an algorithm.

A finite algorithm can be described by a sequence of vectors

x(0) = (x1, . . . , xn) , x(1), . . . ,x(j) = (x
(j)
1 , . . . , x(j)

nj ), . . . ,x(p) = (y1, . . . , ym) ,

where the values x(j)
i from level j can be computed by elementary operations from

the components of x(j−1).

Example 2.1. The scalar product y=
〈(
x1

x2

)
,
(
x3

x4

)〉
has the input vector (x1, . . . , x4).

The algorithm uses the intermediate values x(1) = (z1, z2) with z1 := x1x2,
z2 := x3x4. Then the output value is obtained from y := z1 + z2.

The opposite of a finite algorithm is an infinite one, which, e.g., computes a
sequence whose limit is the desired result of the problem. Since one has to terminate

W. Hackbusch, The Concept of Stability in Numerical Mathematics,
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4 2 Stability of Finite Algorithms

such an infinite process, one finally obtains a finite algorithm producing an approx-
imate result.

Here we only want to motivate the concept that algorithms should be constructed
carefully regarding stability. It remains to analyse various concrete numerical
methods (see, e.g., the monograph of Higham [5]).

2.2 A Paradoxical Example

2.2.1 First Algorithm

The following problem involves the family of Bessel functions. In such a case, one
is well advised to look into a handbook of special functions. One learns that the n-th
Bessel function (also called cylinder function) can be represented by a power series
or as an integral:

Jn(x) =

∞∑
k=0

(−1)
k

(x/2)n+2k

k! (n+ k)!
for n ∈ N0 (2.2)

=
(−1)

n

π

∫ π

0

eix cos(ϕ) cos(nϕ)dϕ for n ∈ Z. (2.3)

The chosen task is the computation of J5(0.6).

Assume that tabulated values of the first two Bessel functions J0 and J1 are
offered as, e.g., in [13, page 99],

J0(0.6) = 0.9120, J1(0.6) = 0.2867, (2.4)

but not the value of J5(0.6). Furthermore, assume that the book contains the
recurrence relation

Jn+1(x) + Jn−1(x) =
2n

x
Jn(x) for n ∈ Z (2.5)

as well as the property

∞∑
n=−∞

Jn(x) = 1 for all x ∈ R. (2.6)

Exercise 2.2. Prove convergence of the series (2.2) for all x ∈ C (i.e., Jn is an
entire function).

An obvious algorithm solving our problem uses the recursion (2.5) for n =
1, 2, 3, 4 together with the initial values (2.4):
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J2(0.6) = -J0(0.6)+ 2
0.6

J1(0.6) = -0.9120+ 2
0.6

0.2867 = 4.3666710-2,

J3(0.6) = -J1(0.6)+ 4
0.6

J2(0.6) = -0.2867+ 4
0.6

4.3666710-2 = 4.4111110-3,

J4(0.6) = -J2(0.6)+ 6
0.6

J3(0.6) = -4.3666710-2+ 6
0.6

4.4111110-3 = 4.4444410-4,

J5(0.6) = -J3(0.6)+ 8
0.6

J4(0.6) = -4.4111110-3+ 8
0.6

4.4444410-4 = 1.5148110-3.

(2.7)

The result is obtained using only eight elementary operations. The underlying equa-
tions are exact. Nevertheless, the computed result for J5(0.6) is completely wrong,
even the order of magnitude is incorrect! The exact result is J5(0.6) = 1.9948210-5.

Why does the computation fail? Are the tabulated values (2.4) misprinted? No,
they are as correct as they can be. Is the (inexact) computer arithmetic, used in (2.5),
responsible for the deviation? No, even exact arithmetic yields the same results. For
those who are not acquainted with numerical effects, this might look like a paradox:
exact computations using exact formulae yield completely wrong results.

2.2.2 Second Algorithm

Before we give an explanation, we show a second ‘paradox’: an algorithm based on
inexact and even rather dubious formulae yields a perfect result. A numerical analyst
asking for advice would recommend that we use the recurrence relation (2.5) in the
opposite order; i.e., starting from Jm(0.6) and Jm+1(0.6) for some m > 5 and
applying (2.5) in the order n = m − 1,m − 2, . . . . The drawback is that neither
Jm(0.6) nor Jm+1(0.6) are available. The expert’s hint is to replace Jm+1(0.6) by
zero (vague reasoning: that value does not matter). The unknown value Jm(0.6) will
be obtained from the additional property (2.6).

We denote the candidates for Jn(0.6) by jn. The plan is to start from jm+1 := 0
and jm := Jm(0.6) and to apply (2.5): jn−1 = 2n

0.6jn − jn+1. We observe that all
results jm−1, jm−2, . . . depend linearly on jm. Therefore, starting from

j′m+1 := 0, j′m := 1 (2.8)

and calculating

j′n−1 =
2n

0.6
j′n − j′n+1 for n = m,m− 1, . . . , 0, (2.9)

we get quantities j′n with the property jn = jmj
′
n. Now the unknown value jm

can be determined from (2.6). From (2.2) or even from (2.5) we can derive that
J−n(x) = (−1)

n
Jn(x). Hence, (2.6) is equivalent to

J0(x) + 2J2(x) + 2J4(x) + . . . = 1. (2.10)

Replacing the infinite sum by a finite one: j0 + 2
∑bm/2c
ν=1 j2ν = 1, we arrive at

jm ·
(
j′0 + 2

∑bm/2c
ν=1 j′2ν

)
= 1 and, in particular,
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J5(0.6) ≈ jmj′5 = j′5/

j′0 + 2

bm/2c∑
ν=1

j′2ν

 .

The choice m = 10 yields

J5(0.6) = 1.994819537430010-5,

where all 14 digits are correct.

Exercise 2.3. Prove (2.10). Hint: comparison of the coefficients shows that (2.10)
is equivalent to

∑̀
m=0

(−1)
m

(`−m)! (`+m)!
×
{

2, if m > 0
1, if m = 0

}
= 0 for ` > 0.

For the latter identity use exe−x = 1.

2.2.3 Explanation

As stated above, the tabulated values (2.4) are correct, since all four digits offered
in the table are correct. It turns out that we have a fortunate situation since even the
fifth digit is zero: the precise values with six digits are J0(0.6) = 0.912005 and
J1(0.6) = 0.286701. However, the sixth and seventh decimals cause the absolute
errors1

ε
(0)
abs = 0.9120049− 0.9120 = 4.910-6, ε

(1)
abs = 0.28670099− 0.2867 = 9.910-7

(2.11)
and the relative errors

ε
(0)
rel =

4.910-6
0.912005

= 5.310-6, ε
(1)
rel =

9.910-7
0.286701

= 3.410-6 .

Both are relatively small. This leads to the delusive hope that the same accuracy
holds for J5(0.6). Instead, we observe the absolute and relative errors

ε
(5)
abs = 1.510-3, ε

(5)
rel = 75. (2.12)

As we see, the absolute error has increased (from about 10−6 in (2.11) to 10−3 in
(2.12)). Additionally, the small value J5(0.6) � J1(0.6) causes the large relative
error in (2.12).

In order to understand the behaviour of the absolute error, we consider the recur-
sion jn+1 = 2n

0.6jn − jn−1 (cf. (2.5)) for general starting values j0, j1. Obviously,

1 Let x̃ be any approximation of x. Then εabs = x − x̃ is the absolute error, while εrel = x−x̃
x

is the relative error.
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all jn depend linearly on j0, j1. In particular, we obtain

j5 =
74 627

27
j1 −

7820

9
j0.

One verifies that the values j0 = 0.9120 and j1 = 0.2867 from (2.4) yield the value
j5 = 1.5148110-3 from (2.7). The factor 74 627

27 ≈ 2764 is responsible for the strong
amplification of the absolute error of j1.

We add that Bessel functions are particular examples of linear recurrence
relations that have been studied in the article of Oliver [6] (see also [3], [10]).

2.3 Accuracy of Elementary Operations

Floating point arithmetic used in computers is characterised by a fixed mantissa
length. For t digits corresponding to the basis b (t ≥ 1, b ≥ 2), the set M of
machine numbers consists of zero and all numbers of the form

x = ±0.d1 . . . dt ∗ bE = ±bE
t∑

k=1

dkb
−k, where

1 ≤ d1 < b and 0 ≤ dk < b for k > 1, E ∈ Z.

For simplicity, we ignore the boundedness of the exponent E which may lead to
overflow or underflow.

Exercise 2.4. (a) What is the best bound ε in supξ∈R minx∈M |x− ξ|/|x| ≤ ε ?
(b) What is ε in the special case of the dual basis b = 2?

The minimiser x of minx∈M |x − ξ| is the best ‘rounding’ of ξ ∈ R. Denoting
this mapping by rd, we get the following estimate with machine precision eps = ε
(ε from Exercise 2.4):

|x− rd(x)| ≤ eps|x|.

In the following we assume that eps is chosen such that all elementary operations
‘op’ fulfil the following inequality:

|fl (a op b)− (a op b)| ≤ eps |a op b| for all a, b ∈M. (2.13)

Here, fl(. . .) indicates the evaluation of the operations indicated by ‘. . .’ in the sense
of floating-point computer arithmetic. A similar estimate is assumed for elementary
operations with one argument (e.g., fl (

√
a)). Furthermore, we assume eps� 1.

Note that (2.13) controls the relative error.

Remark 2.5. Inequality (2.13) can be regarded as a ‘consistency’ property.

More details about computer arithmetic can be found, e.g., in [7, §16] or [8, §2.5].
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2.4 Error Amplification

The mathematical term ‘amplification’ will be used in a quite general way. If an
error ε is changed into cε, we say that ε is amplified by c, even if c ∈ (0, 1).
The standard case of interest is, of course, whether c > 1 or even c � 1 may
occur.

2.4.1 Cancellation

The reason for the disastrous result for J5(0.6) in the first algorithm can be discussed
by a single operation:

y = x1 − x2. (2.14)

On the one hand, this operation is harmless, since the consistency (2.13) of the
subtraction guarantees that the floating point result ỹ = fl(x1 − x2) satisfies the
estimate2

|ỹ − y| ≤ eps |y|.

On the other hand, this estimate holds only for x1, x2 ∈ M. The more realistic
problem occurs when replacing the exact difference η = ξ1− ξ2 with the difference
x1 − x2 of machine numbers:

η = ξ1 − ξ2, x1 = rd(ξ1), x2 = rd(ξ2), ỹ = fl(x1 − x2),

where ξ1 and ξ2 are general real numbers. The interesting error is

|η − ỹ| for ỹ = fl(x1 − x2).

The absolute error is bounded by

|η − ỹ| ≤ |x1 − x2 − fl(x1 − x2)|+ |∆x1|+ |∆x2|
≤ eps (|x1 − x2|+ |∆x1|+ |∆x2|)

with ∆xi := ξi − xi.

As long as |η| ∼ |xi| (i = 1, 2), the situation is under control, since also the relative
error has size eps. Dramatic cancellation appears when |η| � |x1|+ |x2|. Then the
relative error is. eps |x1|+|x2|

|η| . In the worst case, |η| is of the size eps (|x1|+ |x2|),
so that the relative error equals O(1).

Cancellation takes place for values ξ1 and ξ2 having the same sign and similar
size. On the other hand, the sum of two non-negative numbers is always safe, since
|η| = |ξ1 + ξ2| ≥ |xi| and |η−ỹ||η| ≤ 3eps. The factor 3 corresponds to the three
truncations ξ1 7→ x1, ξ2 7→ x2, x1 + x2 7→ fl(x1 + x2).

2 If x1 and x2 are close, often the exact difference is a machine number so that ỹ = y.
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2.4.1.1 Linear (Differential) Error Analysis

Given the mapping y = Φ(x) in (2.1), we have to check how errors∆xi of the input
value x̃i = xi +∆xi affect the output ỹ = Φ(x̃).

Assume that Φ is continuously differentiable. The Taylor expansion of ỹj =

Φj(x1, . . . , xi + ∆xi, . . . , xn) yields ỹj = Φj(x1, . . . , xn) +
∂Φj
∂xi

∆xi + o(∆xi).
Hence, ∣∣∣∣∂Φj(x1, . . . , xn)

∂xi

∣∣∣∣ (2.15)

is the amplification factor of the input error ∆xi, provided that we consider the
absolute errors. The amplification of the relative error equals∣∣∣∣∂Φj(x1, . . . , xn)

∂xi

∣∣∣∣ · |xi||yj | . (2.16)

Which error is of interest (absolute or relative) depends on the particular problem.
Instead of individual components xi and yj , one may also consider certain norms
‖x‖ and ‖y‖.

2.4.1.2 Condition and Stability

A problem is called well-conditioned if the amplification of the input error is not
much larger than 1. On the other hand, if the error is strongly increased, the problem
is called ill conditioned. The maximal error amplification factor is called condition
or condition number.

Given a problem Φ, letA be any algorithm realising Φ. Let the algorithm use the
following intermediate results:

x(0) = (x1, . . . , xn) 7→
ϕ1

x(1) 7→
ϕ2

. . . 7→
ϕp

x(p) = {y1, . . . , ym}.

We regain the mapping Φ of the problem as the composition Φ = ϕp◦ϕp−1◦. . .◦ϕ1.
The mappings

Φ(q) := ϕp ◦ ϕp−1 ◦ . . . ◦ ϕq+1 for 0 ≤ q ≤ p

describe the transfer from x(q) to x(p) = {y1, . . . , ym} (for q = p, the empty
product is Φ(p) = id). While Φ(0) = Φ depends only on the underlying problem, the
mappings Φ(q) for 1 ≤ q < p depend on the algorithm. The derivative ∂Φ(q)

j /∂x
(q)
i

corresponds to (2.15). It is the amplification factor describing ∆yj/∆x
(q)
i , where

∆x
(q)
i is the error of x(q)

i and ∆yj is the induced error of yj . Since, by definition,
the intermediate result x(q)

i is obtained by an elementary operation, its relative error
is controlled by (2.13).

Let κ be the condition number of problem Φ. If all amplification factors
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|∂Φ(q)
j /∂x

(q)
i | are at most of size κ, the algorithm is called stable. Otherwise, the

algorithm is called unstable.
Note that the terms stability/instability are not related to the problem, but to the

algorithm. Since there are many algorithms for a given problem, one algorithm for
problem Φ may be unstable, while another one could be stable.

Furthermore, we emphasise the relative relation: if the condition κ is large, also
the amplification factors |∂Φ(q)

j /∂x
(q)
i | of a stable algorithm may be large. In the

case of the example in §2.2, the algorithms are stable. The difficulty is the large
condition number.

We summarise: If a problem Φ possesses a large condition number, the disastrous
amplification of the input errors cannot be avoided3 by any algorithm realising Φ. If
the problem is well-conditioned, one has to take care to choose a stable algorithm.

On purpose, the definitions of condition and stability are vague4. It is not fixed
whether we consider relative or absolute errors, single components or a norm of the
error. Furthermore, it remains open as to what amplification factors are considered
to be moderate, large, or very large.

2.4.2 Further Examples

2.4.2.1 Evaluation of the Exponential Function

We consider the simple (scalar) problem Φ(x) = exp(x) for x = ±20 under the
hypothetical assumption that exp does not belong to the elementary operations.

First, we consider the condition. Here, it is natural to ask for the relative errors.
According to (2.16), the condition number equals

d exp(x)

dx
· |x|
| exp(x)|

= |x|.

Hence, moderate-sized values of x (like x = ±20) lead to a well-conditioned
problem.

Any finite algorithm can only compute an approximate value of exp(x). We
prescribe an accuracy ε and ask for an approximation ẽxp(x) satisfying

|exp(x)− ẽxp(x)| ≤ ε exp(x) with ε := 10−6. (2.17)

We fix x = 20 and choose a truncated Taylor expansion

En(x) =

n∑
ν=0

xν

ν!
.

3 The only exception occurs when the input values are exact machine numbers, i.e., ∆xi = 0.
4 A systematic definition is attempted by de Jong [2].
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The obvious algorithm for the evaluation of En is Horner’s scheme consisting of a
sequence of elementary operators. We use the fact that n = 46 leads to a remainder
satisfying (2.17). Indeed, the computed value En(20) = 4.851 651108 shows six
correct leading digits, since the exact result is exp(20) = 4.851 652108.

Next, we consider x = −20. Obviously, the remainder
∣∣∑∞

ν=n−1
xν

ν!

∣∣ for
x = −20 is smaller than for +20. However, because of the relative error, the fac-
tor exp(x) on the right-hand side of (2.17) changes from exp(20) to exp(−20);
hence, a more accurate approximation is required. One can check that n = 79 is
sufficient. However, the computation of En(−20) yields the value 3.910-9, which
deviates strongly from the exact value 2.06110-9. Obviously, this algorithm is not
stable.

The reason for the latter failure is the cancellation of the positive terms in∑39
ν=0

202ν

(2ν)! = 2.4258108 with the negative ones in
∑39
ν=0

−202ν+1

(2ν+1)! = −2.4248108.
A stable algorithm for approximating exp(−20) can be derived from the formula

exp(−20) = 1/ exp(20) ≈ 1/En(20). The choice n = 45 suffices to compute an
approximation satisfying (2.17).

This example elucidates that analytical estimates of approximations as in (2.17)
do not ensure at all that the evaluation of the approximating expression leads to
acceptable results.

2.4.2.2 Zeros of Polynomials

The following example shows that standard concepts, e.g., from linear algebra, may
lead to a completely unstable algorithm. We consider the eigenvalue problem for
symmetric matrices (also here an approximation is unavoidable, since, in general,
eigenvalues are not computable by a finite algorithm). Computing the eigenvalue of
symmetric matrices is well-conditioned, as the following theorem will show. Since
the notation of the spectral norm is needed in the theorem, we recall some facts
about matrix norms. Given some vectors norms ‖·‖, the associated matrix norm is
defined by

‖A‖ := max{‖Ax‖ / ‖x‖ : x 6= 0}

(cf. (3.23) for the operator case). If ‖·‖ = ‖·‖∞ is the maximum norm, the associ-
ated matrix norm is denoted by the identical symbol ‖·‖∞ and called the row-sum
norm (cf. §5.5.4.1). The choice ‖·‖ = ‖·‖2 of the Euclidean vector norm leads us to
the spectral norm ‖·‖2 of matrices. An explicit description of the spectral norm is
‖A‖2 = max{

√
λ : λ eigenvalue of ATA}.

Theorem 2.6. LetA,∆A ∈ Rn×n be matrices withA being symmetric (or normal),
and set Ã := A+∆A. Then, for any eigenvalue λ̃ of Ã, there is an eigenvalue λ of
A such that |λ̃− λ| ≤ ‖∆A‖2.

Proof. A diagonalisation by a unitary transformation does not change the eigen-
values and norms. Therefore, without loss of generality, A = diag{λ1, . . .} is
assumed to be diagonal. Let x̃ 6= 0 be an eigenvector of Ã corresponding to λ̃.
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The identity

(λ̃I −A)−1∆A x̃ = (λ̃I −A)−1 (Ã−A) x̃ = (λ̃I −A)−1 (λ̃I −A) x̃ = x̃

proves ‖(λ̃I − A)−1∆A‖2 ≥ 1 for the spectral norm. We continue the inequality
by 1 ≤ ‖(λ̃I−A)−1∆A‖2 ≤ ‖(λ̃I−A)−1‖2 ‖∆A‖2. SinceA = diag{λ1, . . .}, the
norm equals ‖(λ̃I −A)−1‖2 = 1/ min

1≤i≤n
|λ̃− λi|. Altogether, there is an eigenvalue

λ of A such that |λ̃− λ| = min
i
|λ̃− λi| = 1/‖(λ̃I −A)−1‖2 ≤ ‖∆A‖2 . ut

Since in linear algebra eigenvalues are introduced via the characteristic poly-
nomial, one might get the following idea:

(a) Determine the characteristic polynomial P (x) =
∑n
k=0 akx

k.
(b) Compute the eigenvalues as roots of P : P (x) = 0.
For simplicity we assume that the coefficients ak of P (x) = det(xI −A) can be

determined exactly. Then the second part remains to be investigated: How are the
zeros of P effected by perturbations of ak? Here, the following famous example of
Wilkinson is very informative (cf. [11] or [12, p. 54ff]).

We prescribe the eigenvalues (roots) 1, 2, . . . , 20. They are the zeros of

P (x) =

20∏
k=1

(i− x) = a0 + . . .+ a19x
19 + a20x

20

(a0 = 20! = 2 432 902 008 176 640 000, . . . , a19 = 190, a20 = 1). The large value
of a0 shows the danger of an overflow during computations with polynomials. The
determination of zeros of P seems to be rather easy, because P has only simple
zeros and these are clearly separated.

We perturb only the coefficient a19 into ã19 = a19 − 2−23 (2−23 = 1.19210-7
corresponds to ‘single precision’). The zeros of the perturbed polynomial P̃ are

1, 2, 3, 4, 4.999 999 928, 6.000 006 9, 6.999 69, 8.0072, 8.917,

10.09± 0.64i, 11.79± 1.65i, 13.99± 2.5i, 16.73± 2.8i, 19.5± 1.9i, 20.84.

The (absolute and relative) errors are not only of size O(1), the appearance of five
complex pairs shows that even the structure of the real spectrum is destroyed.

For sufficiently small perturbations, conjugate complex pairs of zeros cannot
occur. Considering the perturbation ã19 = a19 − 2−55 (2−55 = 2.77610-17), we
obtain the zeros

1, 2, . . . , 9, 10, 11− 10−10, 12 + 610-9,
13− 1710-9, 14 + 3710-9, 15− 5910-9, 16 + 4710-9, . . .

For instance, the perturbation of the 15-th zero shows an error amplification by
5910-9/2−55 = 2.1109 .

Stable algorithms for computing the eigenvalue directly are using the entries of
the matrix and avoid the detour via the characteristic polynomial (at least in the form
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of P (x) =
∑n
k=0 akx

k; cf. Quarteroni et al. [8, §5]). In general, one should avoid
polynomials in the classical representation as sums of monomials.

2.4.2.3 Numerical Differentiation and Related Phenomena

The numerical computation of (partial) derivatives is often required if the derivative
is not implemented or if its evaluation is too costly. Assume f ∈ C3(I). The Taylor
expansion

Dhf(x) :=
f(x+ h)− f(x− h)

2h
= f ′(x) +

h2

6
f ′′′(ξ)

with some x − h < ξ < x + h yields the estimate C3h
2 of the error, where C3

is a bound of f ′′′. However, for h → 0 the truncation error spoils the computation
because of the cancellation error. A very optimistic assumption is that the numerical
evaluation of the function yields values f̃(x± h) with the relative accuracy∣∣∣f̃(x± h)− f(x± h)

∣∣∣ ≤ |f(x± h)| eps ≤ C0eps,

where C0 is a bound of f. Therefore, the difference quotient Dhf is perturbed by
an error bounded by C0eps/(2h), and the total error is

εh := C3h
2 + C0eps/(2h).

Minimisation of this bound yields

hopt = 3

√
C0

4C3
eps and εhopt

=
3

4
2

2
3C

2
3
0 C

1
3
3 eps

2
3 .

If f is of reduced smoothness, say f ∈ Cα(I), 1 < α < 3, the factor eps2/3

becomes eps1− 1
α , which is very poor for α > 1 close to 1.

A similar phenomenon can appear in quite another situation. The following
example is due to Bini–Lotti–Romani [1]. Let

f : R2 × R2 → R2

be the bilinear function

f1(x, y) = x1y1, (2.18)
f2(x, y) = x2y1 + x1y2.

We want to evaluate f(x, y) with a minimal number of multiplications.5 The
standard implementation requires three multiplications x1 · y1, x2 · y1, and x1 · y2.

5 If we replace the scalars x1, x2, y1, y2 by matrices, the matrix-matrix multiplication is the
dominant operation concerning cost.
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Instead one can compute fε : R2 × R2 → R2 defined by

fε,1(x, y) = x1y1 + ε2x2y2,

fε,2(x, y) = x2y1 + x1y2

for some ε > 0. Obviously, for ε small enough, we obtain results for any prescribed
accuracy. The second function can be evaluated by the algorithm

(x, y) 7→
[
s1 := (x1 + εx2) · (y1 + εy2)
s2 := (x1 − εx2) · (y1 − εy2)

]
7→ fε :=

[
(s1 + s2)/2
(s1 − s2)/(2ε)

]
,

which requires only two multiplications. The expression (s1 − s2)/(2ε) shows the
analogy to the numerical differentiation, so that again cancellation occurs.

In fact, the numbers of multiplications (3 and 2, respectively) have their origin in
tensor properties. We may rewrite (2.18) as

fi =
∑

1≤j,k≤2

vijkxjyk for i = 1, 2.

The coefficients are

v111 = v221 = v212 = 1 and vijk = 0 otherwise.

v = (vijk) is an element of the tensor space R2 ⊗ R2 ⊗ R2. Its tensor rank is
rank(v) = 3; i.e., r = 3 is the minimal number of terms such that6

vijk =

r∑
µ=1

a
(µ)
i b

(µ)
j c

(µ)
k

for some vectors a(µ), b(µ), c(µ) ∈ R2 (cf. [4, Definition 3.32]). The solution for
r = 3 is

a(1) = b(1) = b(3) = c(1) = c(2) =
[

1
0

]
,

a(2) = a(3) = b(2) = c(3) =
[

0
1

]
.

The corresponding coefficients vε = (vε,ijk) of fε have tensor rank 2:

a(1) =
[

1/2
1/(2ε)

]
, b(1) = c(1) =

[
1
ε

]
,

a(2) =
[

1/2
−1/(2ε)

]
, b(2) = c(2) =

[
1
−ε

]
.

It can be shown that, whenever rank(vε) < rank(v) and vε → v as ε → 0, then
the computation of vε is unstable (cf. Hackbusch [4, Proposition 9.16]).

6 Note that the minimal r in vij =
∑r
µ=1 a

(µ)
i b

(µ)
j is the usual matrix rank of (vij).
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Chapter 3
Quadrature

In this chapter some facts from interpolation are used. Therefore, the reader may
first have a look at §4.1 of the next chapter, which is devoted to interpolation. We
prefer to start with quadrature instead of interpolation, since a projection between
function spaces (interpolation) is more involved than a functional (quadrature).

3.1 Setting of the Problem and Examples

3.1.1 Quadrature Formulae

Any systematic approximation of an integral is called quadrature. We start with a
simple setting of the problem.

Problem 3.1. Assume that f ∈ C ([0, 1]). Compute an approximate value of the
integral ∫ 1

0

f(x)dx.

Other intervals and additional weight functions can be treated, but these general-
isations are uninteresting for our purpose.

For all n ∈ N0 we define a quadrature formula

Qn(f) =
n∑
i=0

ai,nf(xi,n). (3.1)

Here ai,n are the quadrature weights and xi,n are the (disjoint) quadrature points.
A sequence

{Qn : n ∈ N0}

yields a family of quadrature formulae (sometimes also called a quadrature rule
meaning that this rule generates quadrature formulae for all n).

17W. Hackbusch, The Concept of Stability in Numerical Mathematics,
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3.1.2 Interpolatory Quadrature

The usual way to derive (3.1) is the ‘interpolatory quadrature’ via a (family of)
interpolation methods (see §4.1). Consider an interpolation

f(x) ≈ fn(x) :=

n∑
i=0

f(xi,n)Φi,n(x)

with Lagrange functions Φi,n (i.e., Φi,n belongs to the desired function space and
satisfies Φi,n(xj,n) = δij ; cf. (4.2)). Integrating fn instead of f , one obtains∫ 1

0

f(x)dx ≈
∫ 1

0

fn(x)dx =

n∑
i=0

f(xi,n)

∫ 1

0

Φi,n(x)dx︸ ︷︷ ︸
=:ai,n

.

The standard choice is polynomial interpolation. In this case, Φi,n = Li,n are the
Lagrange polynomials

Li,n(x) :=
∏

k∈{1,...,n}\{i}

x− xk,n
xi,n − xk,n

. (3.2)

The advantage of interpolatory quadrature rules is their exactness for certain
functions.

Remark 3.2. Let the interpolatory quadrature be based on interpolation involving
the functions Φi,n. Then all functions from Un := span{Φi,n : 0 ≤ i ≤ n} are
integrated exactly: Qn(f) =

∫ 1

0
f(x)dx for f ∈ Un. In the case of polynomial

interpolation, Un is the space of polynomials of degree ≤ n.

The latter statement does not exclude that even more functions (e.g., polynomials
of higher order) are also integrated exactly.

The next exercise refers to the case of polynomials, where Φi,n = Li,n are the
Lagrange polynomials (3.2).

Exercise 3.3. The definition ai,n =
∫ 1

0
Li,n(x)dx is less helpful for its computation.

Show that instead one can obtain the values ai,n by solving the following system of
linear equations:

n∑
i=0

ai,nx
k
i,n =

1

k + 1
for k = 0, 1, . . . , n.

Hint: Verify that Qn(xk) =
∫ 1

0
xkdx.

So far the quadrature points xi,n are not fixed. Their choice determines the
(family of) quadrature formulae.
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3.1.3 Newton–Cotes Quadrature

Choose equidistant quadrature points in [0, 1]:1

xi,n =
i

n
for i = 0, 1, . . . , n.

The Newton–Cotes quadrature2 is the interpolatory quadrature based on the poly-
nomial interpolation at the nodes xi,n.

Exercise 3.4. Prove the symmetry ai,n = an−i,n (0 ≤ i ≤ n) of the Newton–Cotes
quadrature weights.

For later use we cite the following asymptotic statement about the Newton–Cotes
weights from Ouspensky [6] (also mentioned in [3, p. 79]):

ai,n =
(−1)

i−1
n!

i! (n− i)!n2 log2 n

(
1

i
+

(−1)
n

n− i

)(
1 +O

(
1

logn

))
(3.3)

for 1 ≤ i ≤ n− 1.

3.1.4 Gauss Quadrature

The Legendre polynomial Ln is a polynomial of degree n with the orthogonality
property

∫ 1

−1
Ln(x)p(x)dx = 0 for all polynomials p of degree ≤ n − 1 (cf.

[7, §10.1.2]). This defines Ln uniquely up to a scalar factor, which is irrelevant
for our purpose. We transform Ln from [−1, 1] onto the integration interval [0, 1]:
L̂n(t) = Ln(2t − 1). It is well known that Ln has n distinct roots ξi in [−1, 1].
Hence L̂n has n distinct roots xi := (1 + ξi) /2 in [0, 1]. In the sequel, we rename
L̂n by Ln and call xi the roots of the (transformed) Legendre polynomial.

Let xi,n (0 ≤ i ≤ n) be the zeros of the (transformed) Legendre polynomial
Ln+1 (not Ln!). The interpolatory quadrature with these quadrature points yields
the Gauss quadrature.3

3.2 Consistency

For the interpolatory quadrature defined via polynomial interpolation one uses the
following consistency definition.

1 The family of Newton–Cotes formulae is defined for n ∈ N only, not for n = 0. Formally, we
may add Q0(f) := f(0).
2 See Newton’s remarks in [11, pp. 73-74].
3 The original publication of Gauss [4] is from 1814. Christoffel [2] generalises the method to
integrals with a weight function. For a modern description, see Stroud–Secrest [10].



20 3 Quadrature

Definition 3.5. A family {Qn : n ∈ N0} of quadratures is called consistent if there
is a function g : N0 → N with g(n)→∞ for n→∞, so that

Qn(P ) =

∫ 1

0

P (x)dx for all polynomials P with degree(P ) ≤ g(n). (3.4)

An immediate consequence is the next statement.

Corollary 3.6. Let {Qn : n ∈ N0} be consistent. Then for any polynomial P we
have

lim
n→∞

Qn(P ) =

∫ 1

0

P (x)dx.

Proof. Set γ := degree(P ). Because of g(n) → ∞ for n → ∞, there is an n0

with g(n) ≥ γ for all n ≥ n0. Hence, Qn(P ) =
∫ 1

0
P (x)dx for n ≥ n0 proves the

assertion. ut

The quadrature families mentioned above satisfy (3.4) with the following values
of g(n).

Proposition 3.7. The maximal orders g(n) are

g(n) =

{
n n odd
n+ 1 n even

}
for the Newton–Cotes quadrature,

g(n) = 2n+ 1 for the Gauss quadrature.

Proof. (i) Let P be a polynomial of degree n. The polynomial interpolation Pn of
P in n+1 points yields Pn = P . Hence, by definition, any interpolatory quadrature
satisfies Qn(P ) =

∫ 1

0
Pn(x)dx =

∫ 1

0
P (x)dx, which proves g(n) ≥ n.

(ii) For even n, any polynomial of degree n+ 1 has the form

Pn+1 = a(x− 1/2)n+1 + Pn,

where a ∈ C and Pn has degree n. This proves

Qn(Pn+1) = aQn((x− 1/2)n+1) +Qn(Pn).

Qn(Pn) = 0 follows from Part (i), while in the case of the Newton–Cotes quadra-
ture Qn((x− 1/2)n+1) = 0 can be concluded from Exercise 3.4.

(iii) Let P be a polynomial of degree 2n + 1 and consider the Gauss quadra-
ture. The Euclidean algorithms allows us to divide P by the (transformed) Legendre
polynomial Ln+1: P = pLn+1 + q. Both polynomials p and q are of degree ≤ n.
The integral

∫ 1

0
p(x)Ln+1(x)dx vanishes because of the orthogonality property of

Ln+1. On the other hand,Qn(pLn+1) = 0 follows from the fact that Ln+1 vanishes
at the quadrature points. Hence,

∫ 1

0
P (x)dx =

∫ 1

0
q(x)dx =(i) Qn(q) = Qn(P )

proves the assertion. ut
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Later, we shall formulate an alternative (more general) consistency condition (cf.
§3.4.9).

We conclude this section with consistency considerations for sufficiently smooth
functions known as the Peano kernel representation of the quadrature error. Below
we use the maximum norm

‖ϕ‖∞ = max{|ϕ(x)| : x ∈ [0, 1]}. (3.5)

Remark 3.8 (Peano kernel). Let Qn have maximal consistency order gn. For some
m ∈ N with m ≤ gn suppose that f ∈ Cm+1([0, 1]). Then the quadrature error
equals∫ 1

0

f(x)dx−Qn (f) =

∫ 1

0

πm(x, y)f (m+1)(y)dy (πm defined in the proof).

(3.6a)
The error εn :=

∣∣ ∫ 1

0
f(x)dx−Qn (f)

∣∣ is estimated by

εn ≤ α1,m‖f (m+1)‖∞ and εn ≤ α2,m‖f (m+1)‖L2([0,1]) (3.6b)

with α1,m :=

∫ 1

0

|πm(x, y)|dy, α2,m :=

√∫ 1

0

|πm(x, y)|2dy.

If πm(x, y) does not change sign, the following error equality holds for a suitable
intermediate value ξ ∈ [0, 1]:∫ 1

0

f(x)dx−Qn (f) = αmf
(m+1)(ξ) with αm :=

∫ 1

0

πm(x, y)dy. (3.6c)

Proof. The Taylor representation with remainder term yields f(x) = Pm(x)+r(x),
where the polynomial Pm of degree ≤ m is irrelevant, since its quadrature error
vanishes. Hence the quadrature error of f is equal to that of r. The explicit form of
r is

r(x) =
1

m!

∫ x

0

(x− y)mf (m+1)(y)dy =

∫ 1

0

(x− y)m+f
(m+1)(y)dy,

where (t)+ = t for t ≥ 0 and (t)+ = 0, otherwise. The quadrature error of r equals∫ 1

0

r(x)dx−Qn (r)

=

∫ 1

0

∫ 1

0

(x− y)m+f
(m+1)(y)dydx−

n∑
i=0

ai,n

∫ 1

0

(xi,n − y)m+f
(m+1)(y)dy

=

∫ 1

0

[∫ 1

0

(x− y)m+ dx−
n∑
i=0

ai,n(xi,n − y)m+

]∫ 1

0

f (m+1)(y)dy,

where the bracket defines the Peano kernel πm(x, y) in (3.6a). ut
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3.3 Convergence

3.3.1 Definitions and Estimates

One can pose different questions concerning convergence. Given a function f , we
define the error

εn(f) :=

∣∣∣∣Qn(f)−
∫ 1

0

f(x)dx

∣∣∣∣ . (3.7)

The first question concerns pure convergence: does limn→∞ εn(f) = 0 hold?
For numerical purposes, limn→∞ εn(f) = 0 is a rather poor statement, since
convergence may be arbitrarily slow. Usually, we have in mind a certain accuracy
τ and try to perform the computation of Qn(f) for some n such that εn(f) ≤ τ .
Or, vice versa, we perform the computation for a fixed n and ask for an estimate of
εn(f) for this very n.

In the case of interpolatory quadrature, an estimate of εn(f) for a fixed n can be
obtained via the interpolation error f − fn, since

εn(f) =

∣∣∣∣Qn(f)−
∫ 1

0

f(x)dx

∣∣∣∣ =

∣∣∣∣∫ 1

0

fn(x)dx−
∫ 1

0

f(x)dx

∣∣∣∣
≤
∫ 1

0

|fn(x)− f(x)|dx ≤ ‖fn − f‖∞ ,

(for ‖·‖∞ compare §3.4.7.1). However, this estimate may be too pessimistic. An
optimal error analysis can be based on the Peano kernel (cf. Remark 3.8). In any
case one obtains bounds of the form

εn(f) ≤ cn‖f (kn)‖∞, (3.8)

involving derivatives of f of order kn ≤ g(n) + 1.
Obviously, the right-hand side in (3.8) depends on cn and f (including its deriva-

tives). The quadrature family {Qn} is only responsible for the constants cn, so that
the convergence cn‖f (kn)‖∞ → 0 cannot be taken as a property of {Qn : n ∈ N0}.
Moreover, the inequality (3.8) is applicable to f ∈ Ck([0, 1]) only for n satisfying
kn ≤ k, which excludes kn →∞.

One may ask for error estimates (3.8) with kn = 0:

εn(f) ≤ cn ‖f‖∞ (or more generally, εn(f) ≤ cn‖f (k)‖∞ with fixed k).

The answer is that in this case, cn → 0 cannot hold. For a proof, modify the constant
function f = 1 in η-neighbourhoods of the quadrature points xi,n (0 ≤ i ≤ n) such
that 0 ≤ f̃ ≤ f and f̃(xi,n) = 0. Because of f̃(xi,n) = 0, we conclude that
Qn(f̃)=0, while for sufficiently small η, the integral

∫ 1

0
f̃(x)dx is arbitrarily close

to
∫ 1

0
f(x)dx=1 (the difference is bounded by δ := 2nη). Since ‖f‖∞=‖f̃‖∞=1,

we obtain no better error estimate than



3.3 Convergence 23

εn(f̃) =

∫ 1

0

f̃(x)dx ≥ 1− δ = 1 · ‖f̃‖∞ − δ; i.e., cn ≥ 1.

This proves the following remark.

Remark 3.9. Estimates of the form εn(f) ≤ cn ‖f‖∞ require constants cn ≥ 1.

Hence the right-hand sides cn ‖f‖∞ cannot be a zero sequence. Nevertheless,
εn(f)→ 0 may hold. This leads to the next definition.

Definition 3.10. A family {Qn : n ∈ N0} of quadrature formulae is called conver-
gent if

Qn(f)→
∫ 1

0

f(x)dx for all f ∈ C([0, 1]). (3.9)

Note that (3.9) is an equivalent formulation of εn(f)→ 0.

3.3.2 Functionals, Dual Norm, and Dual Space

Above we made use of the Banach space X = C([0, 1]) equipped with the maxi-
mum norm ‖·‖X = ‖·‖∞ from (3.5). The dual space of X consists of all linear and
continuous mappings φ from X into R. Continuity of φ is equivalent to bounded-
ness; i.e., the following dual norm must be finite:

‖φ‖∗X := sup{|φ(f)| : f ∈ X, ‖f‖X = 1}
= sup{|φ(f)| / ‖f‖X : 0 6= f ∈ X}.

Hence the dual space X∗ is defined by

X∗ := {φ : X → R linear with ‖φ‖∗X <∞}.

For the application of φ ∈ X∗ onto an element f ∈ X , there are the following
equivalent notations:

φ(f) = 〈φ, f〉X∗×X = 〈f, φ〉X×X∗ . (3.10)

A consequence of the Hahn–Banach theorem (cf. Yosida [12, 1.§IV.4]) is the
following statement.

Corollary 3.11. For any f ∈ X, there is a functional φf ∈ X∗ with

‖φf‖∗X = 1 and φf (f) = ‖f‖X .

In §2.4.1.2 we introduced the condition of a mapping by the amplification of
perturbations. In the case of (linear) functionals there is a simple answer.
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Remark 3.12. A perturbation of f ∈ X by δf ∈ X is amplified by the mapping
φ ∈ X∗ by at most the factor ‖φ‖∗X ; i.e.,

|φ(f + δf)− φ(f)| ≤ ‖φ‖∗X ‖δf‖X .

Proof. Use φ(f + δf)− φ(f) = φ(δf) and the definition of ‖φ‖∗X . ut

Exercise 3.13. The integral

I(f) :=

∫ 1

0

f(x)dx

is a linear functional on X = C([0, 1]) with ‖I‖∗X = 1.

Another functional is the Dirac function(al) δa ∈ X∗ defined by δa(f) := f(a).
Here ‖δa‖∗X = 1 holds.

The quadrature formula (3.1) is a functional which may be expressed in terms of
Dirac functionals:

Qn =

n∑
i=0

ai,nδxi,n . (3.11)

Lemma 3.14. Let X = C([0, 1]). The quadrature formula (3.11) has the dual norm

‖Qn‖∗X =

n∑
i=0

|ai,n| .

Proof. Let f ∈ X satisfy ‖f‖X = 1. Then

|Qn(f)| =

∣∣∣∣∣
n∑
i=0

ai,nf(xi,n)

∣∣∣∣∣ ≤
n∑
i=0

|ai,n|

holds because of |f(xi,n)| ≤ ‖f‖X = 1. This proves ‖Qn‖∗X ≤
∑n
i=0 |ai,n|. The

equality sign is obtained by choosing the following particular function g ∈ X . Set
g(xi,n) := sign(ai,n) and interpolate between the quadrature points and the end
points 0, 1 linearly. Then g is continuous, i.e., g ∈ X , and ‖g‖X = 1. The definition
yields the reverse inequality

‖Qn‖∗X = sup{|Qn(f)| : f ∈ X, ‖f‖X = 1} ≥ |Qn(g)| =
n∑
i=0

|ai,n| . ut

The convergence definition (3.9) now reads as En(f)→ 0 for all f ∈ X , where
En := Qn − I is the error functional.

In principle, Qn may consist of functionals other than point evaluations δxi,n .
However, nonlocal functionals like f 7→

∫ 1

0
qi,n(x)f(x)dx are impractical, since

again they require an integration. One may take into account evaluations of deriva-
tives: f 7→ f ′(xi,n); e.g., interpolatory quadrature based on Hermite interpolation.
In this case, the Banach space X = C1([0, 1]) must be chosen.
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3.4 Stability

3.4.1 Amplification of the Input Error

First, we introduce stability by a numerical argument. Let f ∈ C([0, 1]) be the
function to be integrated. The input data for Qn(f) are {f(xi,n) : 0 ≤ i ≤ n}.
Let f̃ be the floating point realisation4 of f with absolute errors δfi,n:

f̃i,n := f̃(xi,n) = f(xi,n) + δfi,n (0 ≤ i ≤ n).

It follows that
|δfi,n| ≤ ‖f − f̃‖∞.

First, we investigate the conditioning of integration and quadrature.

Remark 3.15. (a) The integration problem f 7→ I(f) :=
∫ 1

0
f(x)dx is well-

conditioned. The error estimate is

|I(f)− I(f̃)| ≤ ‖f − f̃‖∞ for all f, f̃ ∈ C([0, 1]). (3.12)

(b) The corresponding error estimate for the quadrature Qn is

|Qn(f̃)−Qn(f)| ≤ Cn‖f − f̃‖∞ (3.13a)

with the condition number Cn := ‖Qn‖∗X =

n∑
i=0

|ai,n| . (3.13b)

Proof. Use Remark 3.12, Exercise 3.13, and Lemma 3.14. ut

3.4.2 Definition of Stability

The constant Cn from (3.13b) is the error amplification factor of the quadrature Qn.
To avoid an increasing error amplification, we have to require that Cn be uniformly
bounded. This leads us directly to the stability definition.

Definition 3.16 (stability). A quadrature family {Qn : n ∈ N0} is called stable if

Cstab := sup
n∈N0

Cn = sup
n∈N0

n∑
i=0

|ai,n| <∞. (3.14)

An equivalent formulation is given below.

4 To be quite precise, f̃ is only defined on the setM of machine numbers. However, for theoretical
purposes, we may extend the function continuously (use, e.g., piecewise interpolation).



26 3 Quadrature

Remark 3.17. (a) A family {Qn : n ∈ N0} of quadrature formulae is stable if and
only if there is some C such that

|Qn(f)| ≤ C‖f‖∞ for all f ∈ C([0, 1]) and all n ∈ N0. (3.15)

(b) Cstab from (3.14) is the minimal constant C in (3.15).

From Part (b) of the remark and after replacing f by f − g, one obtains the
following estimate analogous to (3.13a).

Corollary 3.18. |Qn(f)−Qn(g)| ≤ Cstab‖f − g‖∞ holds for all f, g ∈ C([0, 1])
and all n ∈ N0.

Next we discuss the consequences of stability or instability in the numerical con-
text. By f̃ we denoted the numerically evaluated function, which may be considered
as a floating point version of f . The total errorQn(f̃)−

∫ 1

0
f(x)dx can be estimated

by the triangle inequality:∣∣∣∣Qn(f̃)−
∫ 1

0

f(x)dx

∣∣∣∣ ≤ ∣∣∣Qn(f̃)−Qn(f)
∣∣∣+

∣∣∣∣Qn(f)−
∫ 1

0

f(x)dx

∣∣∣∣
≤ Cn‖f̃ − f‖∞ + εn(f)

(εn(f) from (3.7)). If stability holds, the error is bounded byCstab‖f̃−f‖∞+εn(f)
(cf. Corollary 3.18). Provided that εn(f) → 0, the total error approaches the level
of numerical noise Cstab‖f̃ − f‖∞, which is unavoidable since it is caused by the
input error ‖f̃ − f‖∞.

In the case of instability, Cn →∞ holds. While the term εn(f) approaches zero,
Cn‖f̃ − f‖∞ tends to infinity. Hence, an enlargement of n does not guarantee a
better result. If one does not have further information about the behaviour of εn(f),
it is difficult to find an n such that the total error is as small as possible.

In spite of what has been said about the negative consequences of instability,
we have to state that the quality of a quadrature rule for fixed n has no relation to
stability or instability. The sensitivity of Qn to input errors is given only by the
amplification factor Cn. Note that the size of Cn is not influenced by whether the
sequence (Cn)n∈N is divergent or convergent.

3.4.3 Stability of Particular Quadrature Formulae

Under the minimal condition that Qn be exact for constants (polynomials of order
zero; i.e., g(n) ≥ 0 in (3.4)), one concludes that 1 =

∫ 1

0
dx = Qn(1) =

∑n
i=0 ai,n:

n∑
i=0

ai,n = 1. (3.16)
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Conclusion 3.19. Assume (3.16). (a) If the quadrature weights are non-negative
(i.e., ai,n ≥ 0 for all i and n), then the family {Qn} is stable with

Cstab = Cn = 1 for all n.

(b) In general, the stability constant is bounded from below by Cstab ≥ 1.

Proof. For (a) use
n∑
i=0

|ai,n| =
n∑
i=0

ai,n = 1. Part (b) follows from
n∑
i=0

|ai,n| ≥∣∣∣∣ n∑
i=0

ai,n

∣∣∣∣ = |1| = 1. ut

The latter statement is based upon (3.16). A weaker formulation is provided next.

Exercise 3.20. Conclusion 3.19 remains valid, if (3.16) is replaced by the condition
lim
n→∞

Qn(1) = 1.

A very important property of the Gauss quadrature is the following well-known
fact.

Lemma 3.21. The Gauss quadrature has non-negative weights: ai,n ≥ 0. Hence
the family of Gauss quadratures is stable with constant Cstab = 1.

Proof. Define the polynomial P2n(x) :=
∏

0≤k≤n,k 6=i(x − xk,n)2 of degree 2n.
Obviously,

∫ 1

0
P2n(x)dx > 0. SinceQn is exact for polynomials of degree≤2n+1,

also ai,nP2n(xi,n) = Qn(P2n) > 0. The assertion follows from P2n(xi,n) > 0. ut

The Newton–Cotes formulae satisfy ai,n ≥ 0 only for n ∈ {1, 2, 3, 4, 5, 6, 7, 9}.
On the other hand, the existence of some negative weights ai,n < 0 does not neces-
sarily imply instability. The following table shows the values of Cn from (3.13b):

n 1 to 7 8 9 10 11 12 14 16 18 20 22 24

Cn 1 1.45 1 3.065 1.589 7.532 20.34 58.46 175.5 544.2 1606 9923

Obviously, Cn increases exponentially to infinity; i.e., the Newton–Cotes formulae
seem to be unstable. An exact proof of instability can be based on the asymptotic
description (3.3) of ai,n. For even n, the following inequality holds:

Cn =

n∑
i=0

|ai,n| ≥
∣∣an

2 ,n

∣∣ (ai,n from (3.3)).

Exercise 3.22. (a) Recall Stirling’s formula for the asymptotic representation of n!
(cf. [13, §1.14.16], [5, Anhang 1]).
(b) Using (a), study the behaviour of |an

2 ,n
| and conclude that the family of

Newton–Cotes formulae is unstable.

A further example of a quadrature rule follows in the next section.
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3.4.4 Romberg Quadrature

The existence of negative weights ai,n is not yet a reason for instability, as long
as
∑n
i=0 |ai,n| stays uniformly bounded. The following Romberg quadrature is an

example of a stable quadrature involving negative weights.
For h = 1/N with N ∈ N, the sum

T (f, h) := h

[
1

2
f(0) + f(h) + f(2h) + . . .+ f(1− h) +

1

2
f(1)

]
represents the compound trapezoidal rule. Under the assumption f ∈ Cm([0, 1]),
m even, one can prove the asymptotic expansion

T (f, h) =

∫ 1

0

f(x)dx+h2e2(f)+. . .+hm−2em−2(f)+O(hm‖f (m)‖∞) (3.17)

(cf. Bulirsch [1], [7, §9.6]). Hence, the Richardson extrapolation is applicable:
compute T (f, hi) for different hi, i = 0, . . . , n, and extrapolate the values{(

h2
i , T (f, hi)

)
: i = 0, . . . , n

}
at h = 0. The result can be represented explicitly by the Lagrange polynomials (cf.
Exercise 4.2):

Qn(f) :=

n∑
i=0

T (f, hi)

n∏
ν=0
ν 6=i

h2
ν

h2
ν − h2

i︸ ︷︷ ︸
=:ci,n

=

n∑
i=0

ci,nT (f, hi). (3.18)

We fix an infinite sequence of step sizes

h0 > h1 > h2 > . . . , hi = 1/Ni, Ni ∈ N,

with the property

hi+1 ≤ αhi with 0 < α < 1 for all i ≥ 0. (3.19)

The original quadrature of Romberg [8] is based on α = 1/2. Condition (3.19)
enforces hi → 0 as i→∞. One infers from (3.19) that

hi/hj ≤ αi−j for j ≤ i and hi/hj ≥ αi−j for j ≥ i. (3.20)

Lemma 3.23. There is a constant C < ∞, so that
∑n
i=0 |ci,n| ≤ C for all n ∈ N0

(ci,n from (3.18)).

Proof. First, we recall simple inequalities, gathered in the next exercise.
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Exercise 3.24. Prove (a) 1 + x ≤ ex for all real x and (b) 1
1−x ≤ 1 + ϑx with

ϑ = 1
1−x0

for all 0 ≤ x ≤ x0 < 1.

(i) Part (b) with ϑ = 1
1−α2 yields

m∏
j=1

1

1− α2j
≤

m∏
j=1

(
1 + ϑα2j

)
≤

m∏
j=1

exp
(
ϑα2j

)
≤
∞∏
j=1

exp
(
ϑα2j

)
=: A,

where A = exp
(∑∞

j=1 ϑα
2j
)

= exp α2ϑ
1−α2 = exp

(
α2ϑ2

)
. This implies that

m∏
j=1

α2j

1− α2j
≤ A

m∏
j=1

α2j = Aαm(m+1) ≤ Aαm for all m ≥ 0.

(ii) Split the product
∏
ν 6=i in (3.18) into the partial products

∏i−1
ν=0 and

∏n
ν=i+1.

The first one is estimated by∣∣∣∣∣
i−1∏
ν=0

h2
ν

h2
ν − h2

i

∣∣∣∣∣ =

i−1∏
ν=0

1

1− h2
i /h

2
ν

≤
(3.20)

i−1∏
ν=0

1

1− α2(i−ν)
=

i∏
j=1

1

1− α2j
≤
(i)
A,

while the second one satisfies∣∣∣∣∣
n∏

ν=i+1

h2
ν

h2
ν − h2

i

∣∣∣∣∣ =

n∏
ν=i+1

1

h2
i /h

2
ν − 1

≤
(3.20)

n∏
ν=i+1

1

α2(i−ν) − 1
=

n−i∏
j=1

1

α−2j − 1

=

n−i∏
j=1

α2j

1− α2j
≤
(ii)

Aαn−i.

(iii) The estimate

n∑
i=0

|ci,n| =
n∑
i=0

∣∣∣∣∣
i−1∏
ν=0

h2
ν

h2
ν − h2

i

∣∣∣∣∣×
∣∣∣∣∣

n∏
ν=i+1

h2
ν

h2
ν − h2

i

∣∣∣∣∣ ≤(iii) A2
n∑
i=0

αn−i

< A2
∞∑
j=0

αj =
A2

1− α
=: C

proves the assertion. ut

The quadrature points {xj,n} used in Qn are
⋃n
i=0{0, hi, 2hi, . . . , 1}. For

hi = 1/Ni such that Ni and Nj (0 ≤ i < j ≤ n) are relative prime,5 the weight
associated to the quadrature point xj,n = hn−1 is aj,n = 1

2hn−1cn−1,n. Because of
sign(ci,n) = (−1)

n−i, we conclude that Qn contains negative weights.

5 Under this assumption, the set of interior grid points {νhi : 1 ≤ ν ≤ Ni − 1} are disjoint and
the weights do not add up. However, even without this assumptions one finds grid points xj,n with
negative weight.
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Lemma 3.25. The family of the Romberg quadratures {Qn} in (3.18) is stable.

Proof. The compound trapezoidal rule T (f, hi) =
∑Ni
k=0 τk,if(khi) has the weights

τk,i = hi for 0 < k < Ni and τk,i = hi/2 for k = 0, Ni. In particular,

Ni∑
k=0

|τk,i| =
Ni∑
k=0

τk,i = 1

holds. The quadrature formula Qn is defined by

Qn(f) =
∑
i

ci,n

Ni∑
k=0

τk,if(khi) =
∑
j

aj,nf(xj,n) with aj,n :=
∑

(i,k):khi=xj,n

ci,nτk,i.

Now,
∑
j |aj,n| ≤

∑
i |ci,n|

∑Ni
k=0 |τk,i| =

∑
i |ci,n| ≤

Lemma 3.23
C proves the sta-

bility condition. ut

Lemma 3.26. The family of the Romberg quadratures {Qn} in (3.18) is consistent.

Proof. Let P be a polynomial of degree≤ g(n) := 2n+ 1. In (3.17), the remainder
term for m := 2n + 2 vanishes, since P (m) = 0. This proves that T (f, h) is a
polynomial of degree ≤ n in the variable h2. Extrapolation eliminates the terms
hjiej(P ), j= 2, 4, . . . , 2n, so that Qn(P ) =

∫ 1

0
P (x)dx. Since g(n) = 2n + 1→∞

for n→∞, consistency according to Definition 3.5 is shown. ut

The later Theorem 3.36 will prove convergence of the Romberg quadrature.

Exercise 3.27. Condition hi+1 ≤ αhi from (3.19) can be weakened. Prove: if an
` ∈ N and an α ∈ (0, 1) exist such that hi+` ≤ αhi for all i ≥ 0, then Lemma 3.23
remains valid.

3.4.5 Approximation Theorem of Weierstrass

For the next step of the proof we need the well-known approximation theorem of
Weierstrass.

Theorem 3.28. For all ε > 0 and all f ∈ C([0, 1]) there is a polynomial P = Pε,f
with ‖f − P‖∞ ≤ ε.

An equivalent formulation is: the set P of all polynomials is a dense subset of
C([0, 1]).

In the following we prove a more general form (Stone–Weierstrass theorem). The
next theorem uses the point-wise maximum Max(f, g)(x) := max{f(x), g(x)}
and point-wise minimum Min(f, g)(x) := min{f(x), g(x)} of two functions. The
following condition (i) describes that F is closed under these mappings. Condition
(ii) characterises the approximability at two points (‘separation of points’).
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Lemma 3.29. Let Q ⊂ Rd be compact. Suppose that a family F ⊂ C(Q) of
continuous functions satisfies the following two properties:
(i) Max(f1, f2),Min(f1, f2) ∈ F for all f1, f2 ∈ F .
(ii) For all x′, x′′ ∈ Q, all ε > 0, and all g ∈ C(Q) there is a ϕ ∈ F such that
|ϕ(x′)− g(x′)| < ε and |ϕ(x′′)− g(x′′)| < ε.

Then for all ε > 0 and all g ∈ C(Q) there exists a function f ∈ F with
‖f − g‖∞ < ε (i.e., F is dense in C(Q)).

Proof. (a) Let ε > 0 and g ∈ C(Q) be given. Fix some x′ = x0 ∈ Q, while the
second point x′′ = y ∈ Q will be variable. By assumption (ii) there is a function
h = h(· ;x0, y, ε) with

|h(x0)− g(x0)| < ε, |h(y)− g(y)| < ε.

The latter inequality yields in particular that g(y) − ε < h(y). By continuity of h
and g, this inequality holds in a whole neighbourhood U(y) of y:

g(x)− ε < h(x) for all x ∈ U(y).

Since
⋃
y∈Q U(y) covers the compact set Q, there is a finite subset of neighbour-

hoods {U(yi) : i = 1, . . . , n} covering Q:
⋃n
i=1 U(yi) ⊃ Q. Each yi is associated

to a function h(· ;x0, yi, ε) ∈ F with

g(x)− ε < h(x;x0, yi, ε) for all x ∈ U(yi).

By assumption (i), h(· ;x, ε) := Maxi=1,...,nh(· ;x0, yi, ε) again belongs to F and
satisfies

g(x)− ε < h(x;x0, ε) for all x ∈ Q.

(b) Next, the parameter x0 becomes a variable in Q. Since all h(· ;x0, yi, ε) approx-
imate the function g at x0, the opposite inequality g(x0) + ε > h(x0;x0, ε) holds.
Again, there is a neighbourhood V (x0), so that

g(x) + ε > h(x;x0, ε) for all x ∈ V (x0).

As in Part (a), one finds a finite covering {V (xi) : i = 1, . . . ,m} ofQ. The function

f := Mini=1,...,mh(· ;xi, ε)

belongs again to F and satisfies g + ε > f . Since each h(· ;xi, ε) satisfies the
inequality g − ε < h(· ;xi, ε) from Part (a), also g − ε < f follows. Together, one
obtains ‖f − g‖∞ < ε; i.e., f ∈ F is the desired approximant. ut

Remark 3.30. Instead of the lattice operations Max and Min, one can equivalently
require that F be closed with respect to the absolute value:

f ∈ F ⇒ |f | ∈ F ,

where |f | is defined point-wise: |f |(x) := |f(x)| for all x ∈ Q.
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Proof. Use Max(f, g) = 1
2 (f + g)+ 1

2 |f−g| and Min(f, g) = 1
2 (f + g)− 1

2 |f−g|
and in the reverse direction |f | = Max(f,−f). ut

The addition and multiplication of functions is defined point-wise: (f + g) (x) =
f(x) + g(x), (f · g) (x) = f(x)g(x), x ∈ Q. Correspondingly, multiplication by
scalars from the field K is defined point-wise: (λf) (x) = λf(x).

Definition 3.31 (algebra of functions). A set A of functions is called an algebra, if
A (without multiplication) is a vector space, and, additionally, is equipped with the
multiplication satisfying the usual distributive law.

Example 3.32. Examples of algebras are all (a) continuous functions on Q ⊂ Rd
(no compactness of Q required), (b) bounded functions on Q⊂Rd, (c) polynomials,
(d) trigonometric functions.

In the case of (d) in the previous example one has to show that, e.g., the product
sin(nx) cos(mx) (n,m ∈ N0) is again a trigonometric function. This follows from
2 sin(nx) cos(mx) = sin ((n+m)x) + sin ((n−m)x).

If A ⊂ C(Q) is an algebra, the closure Ā (with respect to the maximum norm
‖·‖∞) is called the closed hull of the algebra A.

Exercise 3.33. If A is an algebra of continuous functions, also Ā is an algebra of
continuous functions; i.e., f, g ∈ Ā implies f + g ∈ Ā and f · g ∈ Ā.

Lemma 3.34 (Weierstrass). Let A ⊂ C(Q) be an algebra. Then |f | ∈ Ā for all
f ∈ A.

Proof. (i) A simple scaling argument shows that it suffices to show the assertion for
f ∈ A with ‖f‖∞ ≤ 1.

(ii) Let ε > 0 be given. The function T (ζ) :=
√
ζ + ε2 is holomorphic in the

complex half-plane <e ζ > −ε2. The Taylor series
∑
αν(x − 1

2 )ν of T (x) has the
convergence radius 1

2 + ε2 and converges uniformly in the interval [0, 1]. Hence
there is a finite Taylor polynomial Pn of degree n, so that∣∣∣√x+ ε2 − Pn(x)

∣∣∣ ≤ ε for all 0 ≤ x ≤ 1.

(iii) Replacing x by x2, we obtain∣∣∣√x2 + ε2 − Pn(x2)
∣∣∣ ≤ ε for all − 1 ≤ x ≤ 1.

The particular case x = 0 shows |ε− Pn(0)| ≤ ε and, therefore, |Pn(0)| ≤ 2ε. The
polynomial Q2n(x) := Pn(x2)−Pn(0) of degree 2n has a vanishing absolute term
and satisfies∣∣∣√x2 + ε2 −Q2n(x)

∣∣∣ ≤ ∣∣∣√x2 + ε2 − Pn(x2)
∣∣∣+ |Pn(0)| ≤ 3ε

for all −1 ≤ x ≤ 1. Using
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∣∣∣ =

ε2∣∣√x2 + ε2 + |x|
∣∣ ≤ ε2

ε
= ε for all − 1 ≤ x ≤ 1,

we obtain the inequality∣∣∣ |x| −Q2n(x)
∣∣∣ ≤ 4ε for all − 1 ≤ x ≤ 1.

(iv) For all f with ‖f‖∞ ≤ 1, the values f(ξ) (ξ ∈ Q) satisfy the inequality
−1 ≤ f(ξ) ≤ 1, so that x = f(ξ) can be inserted into the last inequality:∣∣∣ |f(ξ)| −Q2n(f(ξ))

∣∣∣ ≤ 4ε for all ξ ∈ Q.

Because of 6

Q2n(f(ξ)) =

n∑
ν=1

qν (f(ξ))
2ν

=

(
n∑
ν=1

qνf
2ν

)
(ξ),

Q2n(f) belongs again to A and satisfies the estimate ||f | −Q2n(f)| ≤ 4ε. As
ε > 0 is arbitrary, |f | belongs to the closure of A. ut

Now we prove the theorem of Weierstrass in the generalised form of Stone:

Theorem 3.35 (Stone–Weierstrass). Assume that

(i) Q ⊂ Rd is compact,

(ii) A is an algebra of continuous functions on Q (i.e., A ⊂ C(Q)),

(iii) A separates the points of Q; i.e., for any pair of points x′, x′′ ∈ Q with
x′ 6= x′′ there is a function f ∈ A with f(x′) 6= f(x′′).

Then the closed hull Ā satisfies either Ā = C(Q) or there is an x0 ∈ Q so that

Ā = {f ∈ C(Q) : f(x0) = 0} . (3.21)

Proof. (a) By Lemma 3.34 and Remark 3.30, F = Ā satisfies the requirement (i) of
Lemma 3.29. As soon as (ii) from Lemma 3.29 is shown, F̄ = C(Q) follows. Since
F = Ā is already closed, the first case Ā = C(Q) follows.

(b) For the proof of (ii) from Lemma 3.29, we consider the following alternative:
either for any x ∈ Q there is an f ∈ A with f(x) 6= 0 or there exists an x0 ∈ Q
with f(x0) = 0 for all f ∈ A. The first alternative will be investigated in (c), the
second one in (d).

(c) Assume the first alternative. First we prove the following:
Assertion: For points x′, x′′ ∈ Q with x′ 6= x′′ from Assumption (ii) in Lemma
3.29 there exists an f ∈ A with 0 6= f(x′) 6= f(x′′) 6= 0.

For its proof we use the separability property (iii): f(x′) 6= f(x′′) holds for a
suitable f . Assume f(x′) = 0, which implies f(x′′) 6= 0 (the case f(x′′) = 0 and

6 Here we use that q0 = 0, since f0 = 1 may not necessarily belong to the algebraA.
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f(x′) 6= 0 is completely analogous). The first alternative from Part (b) guarantees
the existence of an f0 ∈ A with f0(x′) 6= 0. The function

fλ := f − λf0

has the properties

0 6= fλ(x′′) for sufficiently small λ, (because of f(x′′) 6= 0)

fλ(x′′) 6= fλ(x′) for sufficiently small λ, (because of f(x′) 6= f(x′′))

fλ(x′) = λf0(x′) 6= 0 for all λ 6= 0.

Hence, for sufficiently small but positive λ, we have

0 6= fλ(x′) 6= fλ(x′′) 6= 0, fλ ∈ A,

and fλ (renamed by f) has the required properties. This proves the assertion.
Let g ∈ C(Q) be the function from assumption (ii) of Lemma 3.29. Concerning

the required ϕ, we make the ansatz ϕ = αf+βf2 with f from the assertion. f ∈ A
implies that also f2, ϕ ∈ A. The conditions ϕ(x′) = g(x′) and ϕ(x′′) = g(x′′) lead
to a 2× 2-system of linear equations for α and β. Since the determinant

f(x′)f2(x′′)− f(x′′)f2(x′) = f(x′)f(x′′) [f(x′′)− f(x′)]

does not vanish, solvability is ensured. Therefore, assumption (ii) of Lemma 3.29 is
satisfied even for ε = 0 and Part (a) shows Ā = C(Q).

(d) Assume the second alternative: there is an x0 ∈ Q with f(x0) = 0 for all
f ∈ A. Let 1I∈ C(Q) be the function with constant value 1. Denote the algebra
generated from A and {1I} by A∗; i.e., A∗ = {f = g + λ1I: g ∈ A, λ ∈ K}.
Obviously, for any x ∈ Q there is an f ∈ A∗ with f(x) 6= 0 (namely f = 1I). Hence
the first alternative applies to A∗. The previous proof shows A∗ = C(Q).

Let g ∈ C(Q) be an arbitrary function with g(x0) = 0, i.e., belonging to
the right-hand side of (3.21). Because of g ∈ C(Q) = A∗, for all ε > 0 there
is an f∗ ∈ A∗ with ‖g − f∗‖∞ < ε. By definition of A∗ one may write f∗ as
f∗ = f + λ1I with f ∈ A. This shows that

‖g − f − λ1I‖∞ < ε.

In particular, at x0 we have |g(x0)− f(x0)− λ| = |λ| < ε. Together, one obtains
‖g − f‖∞ < 2ε, where f ∈ A. This proves (3.21). ut

For the proof of Theorem 3.28 choose Q = [0, 1] (compact subset of R1) and
A as the algebra of all polynomials. For this algebra, assumption (iii) of Theorem
3.35 is satisfied with f(x) = x. Hence, one of the two alternatives Ā = C(Q) or
(3.21) holds. Since the constant function 1I belongs to A, (3.21) is excluded and
Ā = C(Q) is shown.
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3.4.6 Convergence Theorem

We recall Definition 3.10: Qn is convergent if Qn(f) →
∫ 1

0
f(x)dx holds for all

f ∈ C([0, 1]). So far it has remained open as to whether this property would hold.
Note that all previous convergence results require more smoothness than continuity
of f . Now we can give a positive answer. The next theorem follows the pattern

consistency + stability =⇒ convergence. (3.22)

Theorem 3.36 (convergence theorem). If the family {Qn : n ∈ N0} of quadrature
formulae is consistent and stable, then it is convergent.

Proof. Let ε > 0 be given. We have to show that for all f ∈ C([0, 1]) there is an n0

such that ∣∣∣∣Qn(f)−
∫ 1

0

f(x)dx

∣∣∣∣ ≤ ε for n ≥ n0.

Let P be an arbitrary polynomial. The triangle inequality yields∣∣∣∣Qn(f)−
∫ 1

0

f(x)dx

∣∣∣∣
=

∣∣∣∣Qn(f)−Qn(P ) +Qn(P )−
∫ 1

0

P (x)dx+

∫ 1

0

P (x)dx−
∫ 1

0

f(x)dx

∣∣∣∣
≤ |Qn(f)−Qn(P )|+

∣∣∣∣Qn(P )−
∫ 1

0

P (x)dx

∣∣∣∣+

∣∣∣∣∫ 1

0

P (x)dx−
∫ 1

0

f(x)dx

∣∣∣∣ .
We choose P according to Theorem 3.28 such that ‖f − P‖∞ ≤ ε/ (1 + Cstab),
where Cstab is the stability constant. Now, thanks to Corollary 3.18, the first term
|Qn(f)−Qn(P )| can be estimated by

Cstab ‖f − P‖∞ ≤ εCstab/ (1 + Cstab) .

The chosen P has a fixed degree(P ). Because of g(n)→∞ there is an n0 such
that g(n) ≥ degree(P ) for all n ≥ n0. Hence, consistency guarantees exactness of
the quadrature:

∣∣Qn(P )−
∫ 1

0
P (x)dx

∣∣ = 0.
Remark 3.15 yields

∣∣ ∫ 1

0

P (x)dx−
∫ 1

0

f(x)dx
∣∣ ≤ ‖f − P‖∞ ≤ ε/ (1 + Cstab)

for the last term.
Together, the sum of the three terms is bounded by εCstab

1+Cstab
+ ε

1+Cstab
= ε. ut

According to Theorem 3.36, stability is sufficient for convergence. Next we show
that the stability condition (3.14) is also necessary for convergence. As a tool, we
need a further theorem from functional analysis.
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3.4.7 Uniform Boundedness Theorem

3.4.7.1 Banach Space Notations

X is called a normed (linear) space (the norm may be expressed by the explicit
notation (X, ‖·‖)), if a norm ‖·‖ is defined on the vector space X . If necessary, we
write ‖·‖X for the norm on X .
X is called a Banach space, ifX is normed and complete (‘complete’ means that

all Cauchy sequences converge in X).
By L(X,Y ) we denote the set of linear and continuous mappings from X to Y .

Remark 3.37. (a) If X,Y are normed, also L(X,Y ) is normed. The associated
‘operator norm’ of T ∈ L(X,Y ) equals7

‖T‖ := ‖T‖Y←X := sup
x∈X\{0}

‖Tx‖Y
‖x‖X

. (3.23)

(b) By definition, a continuous map T : X → Y from L(X,Y ) leads always to a
finite supremum (3.23). Vice versa, if a linear operator T : X → Y yields a finite
value in (3.23) (i.e., T is bounded), then T is also continuous.

An example of a Banach space is the set X = C(D) of continuous functions
defined on D with bounded norm ‖f‖∞ := supx∈D |f(x)| (for a compact D, the
supremum is even a maximum).

3.4.7.2 Theorem

The uniform boundedness theorem of Banach and Steinhaus connects point-wise
and normwise boundedness.

Theorem 3.38. Assume that
(a) X is a Banach space,
(b) Y is a normed space,
(c) T ⊂ L(X,Y ) is a (in general, infinite) subset of mappings,
(d) supT∈T ‖Tx‖Y <∞ holds for all x ∈ X .

Then T is uniformly bounded; i.e., supT∈T ‖T‖Y←X <∞.

First we add some remarks. Let K be the unit sphere K := {x ∈ X : ‖x‖ ≤ 1}.
Definition (3.23) states that

‖T‖Y←X = sup
x∈K
‖Tx‖Y .

The statement of the theorem becomes supT∈T supx∈K ‖Tx‖ <∞. Since suprema
commute, one may also write supx∈K supT∈T ‖Tx‖ < ∞. Assumption (d) of the

7 For the trivial case of X = {0}, we define the supremum over the empty set by zero.
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theorem reads C(x) := supT∈T ‖Tx‖ < ∞; i.e., the function C(x) is point-wise
bounded. The astonishing8 property is that C(x) is even uniformly bounded on K.

In the later applications we often apply a particular variant of the theorem.

Corollary 3.39. Let X and Y be as in Theorem 3.38. Furthermore, assume that the
operators T, Tn ∈ L(X,Y ) (n ∈ N) satisfy either

(a) {Tnx} a Cauchy sequence for all x ∈ X , or

(b) there exists an operator T ∈ L(X,Y ) with Tnx→ Tx for all x ∈ X .

Then supn∈N ‖Tn‖ <∞ holds.

Proof. In this case T = {Tn ∈ L(X,Y ) : n ∈ N} is countably infinite.
Since any Cauchy sequence is bounded, the boundedness supn∈N ‖Tnx‖Y <∞

follows so that Theorem 3.38 is applicable. This proves part (a).
Assumption (b) implies (a). ut

3.4.7.3 Proof

The proof of Theorem 3.38 is based on two additional theorems. The first is called
Baire’s category theorem or the Baire–Hausdorff theorem.

Theorem 3.40. Let X 6= ∅ be a complete metric space. Assume that X has a repre-
sentation

X =
⋃
k∈N

Ak with closed sets Ak.

Then there exists at least one k0 ∈ N, so that Åk0 6= ∅ (Åk0 denotes the interior of
Ak0).

Proof. (a) For an indirect proof assume Åk = ∅ for all k. We choose a non-empty,
open set U ⊂ X and some k ∈ N. Since Ak closed, U\Ak is again open and non-
empty (otherwise, Ak would contain the open set U ; i.e., Åk ⊃ U 6= ∅). Since
U\Ak is open, it contains a closed sphere Kε(x) with radius ε > 0 and midpoint x.
Without loss of generality, ε ≤ 1/k can be chosen.

(b) Starting with ε0 := 1 and x0 := 0, according to (a), we choose by induction

Kεk(xk) ⊂ Kεk−1
(xk−1)\Ak and εk ≤ 1/k.

Since x` ∈ Kεk(xk) for ` ≥ k and εk → 0 (k → ∞), {xk} is a Cauchy sequence.
Because of completeness, it must converge to some x := limxk ∈ X and belong
to Kεk(xk) for all k. Since Kεk(xk) ∩ Ak = ∅ by construction, it follows that
x /∈

⋃
k∈NAk = X , which is a contradiction. ut

8 Only in the case of a finite-dimensional vector space X , is there a simple proof using
supT∈T ‖Tbi‖Y <∞ for all basis vectors bi of X .
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Theorem 3.41. Let X be a complete metric space and Y a normed space. For some
subsetF ⊂ C0(X,Y ) of the continuous mappings, assume that sup

f∈F
‖f(x)‖Y <∞

for all x ∈ X . Then there exist x0 ∈ X and ε0 > 0 such that

sup
x∈Kε0 (x0)

sup
f∈F
‖f(x)‖Y <∞. (3.24)

Proof. Set Ak :=
⋂
f∈F{x ∈ X : ‖f(x)‖Y ≤ k} for k ∈ N and check that Ak

is closed. According to the assumption, each x ∈ X must belong to some Ak; i.e.,
X =

⋃
k∈NAk. Hence the assumptions of Theorem 3.40 are satisfied. Correspond-

ingly, Åk0 6= ∅ holds for at least one k0 ∈ N. By the definition of Ak, we have
supx∈Ak0

supf∈F ‖f(x)‖Y ≤ k0. Choose a sphere with Kε0(x0) ⊂ Ak0 . This
yields the desired inequality (3.24) with the bound ≤ k0. ut

For the proof of Theorem 3.38 note that a Banach space is also a complete metric
space and L(X,Y ) ⊂ C0(X,Y ), so that we may set F := T . The assumption
supf∈F ‖f(x)‖Y < ∞ is equivalent to supT∈T ‖Tx‖Y < ∞. The result (3.24)
becomes supx∈Kε0 (x0) supT∈T ‖Tx‖Y < ∞. For an arbitrary ξ ∈ X\{0}, the

element xξ := x0 + ε0
‖ξ‖X

ξ belongs to Kε0(x0), so that

‖Tξ‖Y
‖ξ‖X

=
1

ε0
‖T (xξ − x0)‖Y ≤

1

ε0

(
‖Txξ‖Y + ‖Tx0‖Y

)
is uniformly bounded for all T ∈ T and all ξ ∈ X\{0}. Hence the assertion of
Theorem 3.38 follows: sup

T∈T
sup

ξ∈X\{0}

‖Tξ‖Y
‖ξ‖X

= sup
T∈T
‖T‖ <∞.

3.4.8 Necessity of the Stability Condition, Equivalence Theorem

X = C([0, 1]) together with the maximum norm ‖·‖∞ is a Banach space, and
Y := R is normed (its norm is the absolute value). The mappings

f ∈ C([0, 1]) 7→ I(f) :=

∫ 1

0

f(x)dx ∈ R and f ∈ C([0, 1]) 7→ Qn(f) ∈ R

are linear and continuous; hence they belong to L(X,Y ). By Remark 3.37b, conti-
nuity is equivalent to boundedness, which is quantified in the following lemma.

Lemma 3.42. The operator norms of I and Qn ∈ L(X,Y ) are

‖I‖ = 1, ‖Qn‖ = Cn :=

n∑
i=0

|ai,n| . (3.25)

Proof. The estimates ‖I‖ ≤ 1 and ‖Qn‖ ≤ Cn are equivalent to the estimates
(3.12) and (3.13a) from Remark 3.15. According to Remark 3.17b, Cn is the
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minimal constant, implying ‖Qn‖ = Cn. The example f = 1 shows that one is
the best bound for ‖If‖∞ / ‖f‖∞; i.e., ‖I‖ = 1. ut

Apply Corollary 3.39 to T := I and Tn := Qn. Convergence of the quadrature
formulae {Qn} is expressed by Qn (f)→ I(f). From Corollary 3.39 we conclude
that supn∈N ‖Tn‖ < ∞. According to Lemma 3.42, this means supn∈N Cn < ∞
and it is identical to the stability condition of Definition 3.16. Hence, the following
theorem is proved.

Theorem 3.43 (stability theorem). If the family {Qn} of quadrature formulae is
convergent, then {Qn} is stable.

We have already proved ‘consistency + stability =⇒ convergence’ (cf. (3.22)).
Theorem 3.43 yields ‘stability⇐= convergence’. Together, we obtain the following
equivalence theorem.

Theorem 3.44 (equivalence theorem). Assume consistency of the family {Qn} of
quadrature formulae. Then stability and convergence are equivalent.

3.4.9 Modified Definitions for Consistency and Convergence

The terms ‘consistency’ and ‘convergence’ can be even better separated, without
weakening the previous statements.

The previous definition of convergence contains not only the statement that the
sequence Qn (f) is convergent, but also that it has the desired integral

∫ 1

0
f(x)dx

as the limit. The latter part can be omitted:

{Qn} is convergent, if lim
n→∞

Qn(f) exists for all f ∈ C([0, 1]). (3.26)

So far, the definition of consistency is connected with polynomials. Polynomials
come into play since we started from interpolatory quadrature based on polyno-
mial interpolation. An interpolatory quadrature, e.g., based on trigonometric inter-
polation, would not be consistent in the sense of Definition 3.5. According to the
sentence following Theorem 3.28, the decisive property of polynomials is that they
are dense in C([0, 1]). One may replace the polynomials by any other dense subset.
This leads us to the following generalisation of the term ‘consistency’:

{Qn} is consistent if there is a dense subset X0 ⊂ C([0, 1]) such that (3.27)

Qn(f)→
∫ 1

0

f(x)dx for all f ∈ X0.

Note that, simultaneously, we have replaced the exactness Qn(f) =
∫ 1

0
f(x)dx for

n ≥ n0 by the more general convergence definition (3.26). The stability property
remains unchanged.

Then the previous theorem can be reformulated as follows.
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Theorem 3.45. (a) Let {Qn} be consistent in the more general sense of (3.27)
and stable. Then {Qn} is convergent in the sense of (3.26) and, furthermore,
limn→∞Qn(f) =

∫ 1

0
f(x)dx is the desired value of the integral.

(b) Let {Qn} be convergent in the sense of (3.26). Then {Qn} is also stable.
(c) Under the assumption of consistency in the sense of (3.27), stability and conver-
gence (3.26) are equivalent.

Proof. (i) It suffices to show that limn→∞Qn(f) =
∫ 1

0
f(x)dx, since this implies

(3.26). Let f ∈ C([0, 1]) and ε > 0 be given. Because X0 from (3.27) is dense,
there is a g ∈ X0 with

‖f − g‖∞ ≤
ε

2 (1 + Cstab)
(Cstab: stability constant).

According to (3.27), there is an n0 such that
∣∣∣Qn(g)−

∫ 1

0
g(x)dx

∣∣∣ ≤ ε
2 for all

n ≥ n0. The triangle inequality yields the desired estimate∣∣∣∣Qn(f)−
∫ 1

0

f(x)dx

∣∣∣∣
≤ |Qn(f)−Qn(g)|+

∣∣∣∣Qn(g)−
∫ 1

0

g(x)dx

∣∣∣∣+

∣∣∣∣∫ 1

0

g(x)dx−
∫ 1

0

f(x)dx

∣∣∣∣
≤ Cstab ‖f − g‖∞ +

ε

2
+ ‖f − g‖∞ ≤

‖f−g‖∞≤ε/[2(1+Cstab)]
ε.

(ii) Convergence in the sense of (3.26) guarantees that {Qn(f)} has a limit for
all f ∈ C([0, 1]). Alternative (a) of Corollary 3.39 applies and yields

sup
n∈N0

‖Qn‖ = sup
n∈N0

Cn <∞

proving stability.
(iii) Part (c) follows from Parts (a) and (b). ut
Finally, we give a possible application of generalised consistency. To avoid

the difficulties arising from the instability of the Newton–Cotes formulae, one
often uses compound Newton–Cotes formulae. The best known example is the
compound trapezoidal rule, which uses the trapezoidal rule on each subinterval
[i/n, (i+ 1) /n]. The compound trapezoidal rule defines again a family {Qn}. It
is not consistent in the sense of Definition 3.5, since except for constant and linear
functions, no further polynomials are integrated exactly. Instead, we return to the
formulation (3.8) of the quadrature error. The well-known estimate states that∣∣∣∣Qn(f)−

∫ 1

0

f(x)dx

∣∣∣∣ ≤ 1

12n2
‖f ′′‖∞ → 0 (3.28)

for all f ∈ C2([0, 1]) (cf. [9, §3.1]). The subset C2([0, 1]) is dense in C([0, 1])
(simplest proof: C2([0, 1]) ⊃ {polynomials} and the latter set is already dense
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according to Theorem 3.28). Hence the compound trapezoidal rule {Qn} satisfies
the consistency condition (3.27) with X0 = C2([0, 1]). The stability of {Qn}
follows from Conclusion 3.19a, since all weights are positive and Qn(1) = 1.
From Theorem 3.45a we conclude that Qn(f)→

∫ 1

0
f(x)dx for all continuous f .

The trapezoidal rule is the Newton–Cotes method for n = 1. We may fix any
nNC ∈ N and use the corresponding Newton–Cotes formula in each subinterval
[i/n, (i+ 1) /n]. Again, this compound formula is stable, where the stability
constant is given by CnNC from (3.25).

3.5 Further Remarks

3.5.1 General Intervals and Product Quadrature

The restriction of the integral to [0, 1] is a kind of normalisation. If quadrature is
needed over an interval [a, b] of length L = b− a, use the affine mapping

φ : [0, 1]→ [a, b] defined by φ(x) = a+ xL.

For g ∈ C([a, b]), we use
∫ b
a
g(t)dt =

∫ 1

0
f(x)dx with f(x) := Lg(φ(x)) and

apply the quadrature Qn from (3.1) to f :∫ b

a

g(t)dt ≈ Qn (Lg(φ(·))) = L

n∑
i=0

ai,ng(φ(xi,n)).

Obviously, expressed in g evaluations, we obtain a new quadrature on [a, b] by∫ b

a

g(t)dt ≈ Q[a,b]
n (g) := L

n∑
i=0

ai,ng(ti,n) with ti,n := φ(xi,n) = a+ xi,nL.

Also the error estimate can be transferred from [0, 1] to a general interval [a, b].
Assume an error estimate (3.8) for f ∈ Ckn([0, 1]) by∣∣∣∣∫ 1

0

f(x)dx−Qn (f)

∣∣∣∣ ≤ cn‖f (kn)‖∞.

The transformation from above shows immediately that∣∣∣∣∣
∫ b

a

g(t)dt−Q[a,b]
n (g)

∣∣∣∣∣ ≤ cnLkn+1‖g(kn)‖∞.

The stability constant Cn is the minimal cn for kn = 0. One sees that Cn in [0, 1]

becomes C [a,b]
n := LCn in [a, b]. This fact can be interpreted in the way that the
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relative quadrature error 1
L

∣∣ ∫ b
a
g(t)dt−Q[a,b]

n (g)
∣∣ possesses an unchanged stability

constant. Anyway, the stability properties of {Qn} and {Q[a,b]
n } are the same.

In applications it happens that the integrand is a product f(x)g(x), where one
factor—say g—is not well-suited for quadrature (it may be insufficiently smooth,
e.g., containing a weak singularity or it may be highly oscillatory). Interpolation of
f by In(f) =

∑n
i=0 f(xi,n)Φi,n(x) (cf. §3.1.2) induces a quadrature of fg by∫ 1

0

f(x)g(x)dx ≈
n∑
i=0

ai,nf(xi,n) with ai,n :=

∫ 1

0

Φi,n(x)g(x)dx,

which requires that we have precomputed the (exact) integrals
∫ 1

0
Φi,n(x)g(x)dx.

3.5.2 Consistency Versus Stability

As we shall see consistency is often restricted by stability requirements (cf. Re-
mark 4.15, §5.5.6, §6.6). In this respect, quadrature is an exceptional case. Gauss
quadrature Qn is optimal with respect to stability (its stability constant Cstab has
the smallest possible value 1) and it possesses the largest possible consistency order
2n+ 1.

Another astonishing observation is that the Gauss quadrature is stable, although
it is an interpolatory quadrature based on the unstable polynomial interpolation
(cf. §4.5).

3.5.3 Perturbations

In this subsection we consider perturbations of f as well as ofQn. Instead of a fixed
function f , consider a sequence fn → f in C([0, 1]) with the intention of replacing
Qn(f) by Qn(fn).

A possible application of this setting may be as follows. Let tn → ∞ be a
sequence of natural numbers and fn the computer realisation of f by a floating-
point arithmetic with mantissa length tn, so that ‖fn − f‖∞ ≤ C2−tn . Then
Qn(fn) means that parallel to the increase of the number of quadrature points the
arithmetical precision also improves.

The following theorem states that such a perturbation does not destroy conver-
gence.

Theorem 3.46. Let the family {Qn : n ∈ N0} of quadrature formulae be consistent
and stable. Furthermore, assume fn → f for a sequence of fn ∈ C([0, 1]). Then
also Qn(fn) converges to

∫ 1

0
f(x)dx.
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Proof. The previous considerations guarantee Qn(f) →
∫ 1

0
f(x)dx. Thanks to

stability, the perturbation |Qn(fn)−Qn(f)| is bounded by Cstab ‖fn − f‖∞→ 0
and a zero sequence. ut

Similarly, we may perturb Qn. For instance, assume that the exact weights ai,n
are replaced by the truncation ãi,n to mantissa length tn. Then Q̃n = Qn + δQn
holds, where |δQn(f)| ≤ C2−tn ‖f‖∞. For tn → ∞ we obtain the norm conver-
gence ‖δQn‖ → 0, where

‖δQn‖ := sup{|δQn(f)| : f ∈ C([0, 1]) with ‖f‖∞ = 1}.

Theorem 3.47. Let the family {Qn : n ∈ N0} of quadrature formulae be consis-
tent and stable. Furthermore, assume ‖δQn‖ → 0 for a sequence of perturbations
δQn. Then also (Qn + δQn) (f) converges to

∫ 1

0
f(x)dx.

Proof. By definition δQn(f)→ 0, while Qn(f)→
∫ 1

0
f(x)dx. ut

Combining both theorems we even get (Qn + δQn) (fn)→
∫ 1

0
f(x)dx.

3.5.4 Arbitrary Slow Convergence Versus Quantitative Convergence

While estimates as in (3.28) describe the convergence in a quantitative form, the
previous statement Qn(f) →

∫ 1

0
f(x)dx says nothing about the speed of conver-

gence. Such non-quantitative convergence statements are not very helpful in numer-
ical applications. If one does not know whether an error ε = 0.01 has already been
obtained for n = 5, or for n = 106, or even only for n = 101010

, one cannot rely on
such numerical methods.

Exercise 3.48. Given a family of quadrature formulae and any numberN , construct
a continuous function f with the properties

‖f‖∞ = 1,

∫ 1

0

f(x)dx ≥ 1/2, but Qn(f) = 0 for all n ≤ N.

Can something be stated about the convergence speed of Qn(f) →
∫ 1

0
f(x)dx

for a general f ∈ C([0, 1])? A quantified version of convergence can be described
in two equivalent ways. Either we prescribe an ε > 0 and ask for an n(ε) such
that

∣∣Qm(f) −
∫ 1

0
f(x)dx

∣∣ ≤ ε ‖f‖∞ for m ≥ n(ε). Or there is a monotone zero
sequence εn such that

∣∣Qn(f)−
∫ 1

0
f(x)dx

∣∣ ≤ εn ‖f‖∞ .

Remark 3.9 yields a negative result: if
∣∣Qn(f) −

∫ 1

0
f(x)dx

∣∣ ≤ εn ‖f‖∞ holds
for all f ∈ C([0, 1]), necessarily εn ≥ 1 must hold excluding any zero sequence εn.
Consequently, the convergence Qn(f)→

∫ 1

0
f(x)dx can be arbitrarily slow.

The quantitative convergence result of inequality (3.28) holds for f ∈ C2([0, 1]);
i.e., for smoother functions. In fact, we get a similar result for

∣∣Qn(f)−
∫ 1

0
f(x)dx

∣∣,
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if we consider, say f ∈C1([0, 1]), instead of f ∈C([0, 1]). Note that f ∈C1([0, 1])
comes with the norm ‖f‖C1([0,1]) = max{|f(x)| , |f ′(x)| : 0 ≤ x ≤ 1}.

The next result is prepared by the following lemma. We remark that a subsetB of
a Banach space is precompact if and only if the closure B̄ is compact, which means
that all sequences {fk} ⊂ B possess a convergent subsequence: limn→∞ fkn ∈ B̄.
The term ‘precompact’ is synonymous with ‘relatively compact’.

Lemma 3.49. Let M ⊂ X be a precompact subset of the Banach space X . Let the
operatorsAn∈L(X,Y ) be point-wise convergent toA∈L(X,Y ) (i.e.,Anx→ Ax
for all x ∈ X) . Then the sequences {Anx} converge uniformly for all x ∈M ; i.e.,

sup
x∈M
‖Anx−Ax‖Y → 0 for n→∞. (3.29)

Proof. (i) C := sup{‖An‖ : n ∈ N} is finite (‘stability’, cf. Corollary 3.39).
Furthermore, ‖A‖ ≤ C is a simple conclusion.

(ii) We disprove the negation of (3.29). Assume that there are an ε > 0 and
a subsequence N′ ⊂ N such that supx∈M ‖Anx−Ax‖Z ≥ ε for all n ∈ N′.
Therefore, some xn ∈M exists with

‖Anxn −Axn‖Z ≥ ε/2 for all n ∈ N′.

Since M is precompact, there is a further subsequence N′′ ⊂ N′, so that the limit
limn∈N′′ xn =: ξ ∈ M exists. Choose n ∈ N′′ with ‖xn − ξ‖Y ≤ ε/ (8C) and
‖Anξ −Aξ‖Z < ε/4. For this n we obtain

‖Anxn −Axn‖Z ≤ ‖(An −A) (xn − ξ)‖Z + ‖(An −A) ξ‖
< (‖An‖+ ‖A‖︸ ︷︷ ︸

≤2C

) ‖yn − ξ‖Y + ε/4 ≤ ε/2

in contradiction to the previous inequality. ut

Theorem 3.50. There is a zero sequence εn → 0 such that 9∣∣∣∣Qn(f)−
∫ 1

0

f(x)dx

∣∣∣∣ ≤ εn ‖f‖C1([0,1]) for all f ∈ C1([0, 1]). (3.30)

Proof. Let X = C([0, 1]). The subset M := {f ∈ C1([0, 1]) : ‖f‖C1([0,1])} ⊂ X

is precompact due to the theorem of Arzelà–Ascoli recalled below. Apply Lemma
3.49 with Y = R, An = Qn, and A(f) =

∫ 1

0
f(x)dx (note that L(X,R) = X∗).

Set
εn := sup

f∈M

∣∣Qn(f)−
∫ 1

0

f(x)dx
∣∣

A simple scaling argument shows that (3.30) holds. Furthermore, Lemma 3.49 states
that εn → 0. ut
9 We may replace C1([0, 1]) in Theorem 3.50 by the Hölder space Cδ([0, 1]) for any exponent
δ > 0. Its norm is ‖f‖Cδ([0,1]) = max{‖f‖∞ , supx 6=y |f(x)− f(y)| / |x− y|δ}.
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Theorem 3.51 (Arzelà–Ascoli). Let D be compact and M ⊂ C(D). Suppose that
M is uniformly bounded:

sup{‖f‖C(D) : f ∈M},

and equicontinuous; i.e., for any ε > 0 and x ∈ D, there is some δ such that

|f(x)− f(y)| ≤ ε for all f ∈M, and all x, y ∈ D with |x− y| ≤ δ.

Then M is precompact.

For a proof see Yosida [12, 1,§III.3].
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Chapter 4
Interpolation

Interpolation by polynomials is a field in which stability issues have been addressed
quite early. Section 4.5 will list a number of classical results.

4.1 Interpolation Problem

The usual linear 1 interpolation problem is characterised by a subspace Vn of the
Banach space C([0, 1]) (with norm ‖·‖∞; cf. §3.4.7.1) and a set

{xi,n ∈ [0, 1] : 0 ≤ i ≤ n}

of n + 1 different2 interpolation points, also called nodal points. Given a tuple
{yi : 0 ≤ i ≤ n} of ‘function values’, an interpolant Φ ∈ Vn with the property

Φ(xi,n) = yi (0 ≤ i ≤ n) (4.1)

has to be determined.

Exercise 4.1. (a) The interpolation problem is solvable for all tuple {yi : 0≤ i≤n},
if and only if the linear space

Vn :=
{

(Φ(xi,n))
n
i=0 ∈ Rn+1 : Φ ∈ Vn

}
has dimension n+ 1.
(b) If dimVn = n+ 1, the interpolation problem is uniquely solvable.

The interpolation problem (4.1) can be reduced to a system of n+ 1 linear equa-
tions. As is well known, there are two alternatives for linear systems:

1 The term ‘linear’ refers to the underlying linear space Vn, not to linear functions.
2 In the case of the more general Hermite interpolation, a p-fold interpolation point ξ corresponds
to prescribed values of the derivatives f(m)(ξ) for 0 ≤ m ≤ p− 1.

W. Hackbusch, The Concept of Stability in Numerical Mathematics,
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(a) either the interpolation problem is uniquely solvable for arbitrary values yi or
(b) the interpolant either does not exist for certain yi or is not unique.

The polynomial interpolation is characterised by

Vn = {polynomials of degree ≤ n}

and is always solvable. In the case of general vector spaces Vn, we always assume
that the interpolation problem is uniquely solvable.

For the special values yi = δij (j fixed, δij Kronecker symbol), one obtains an
interpolant Φj,n ∈ Vn, which we call the j-th Lagrange function (analogous to the
Lagrange polynomials in the special case of polynomial interpolation).

Exercise 4.2. (a) The interpolant for arbitrary yi (0 ≤ i ≤ n) is given by

Φ =

n∑
i=0

yiΦi,n ∈ Vn. (4.2)

(b) In the case of polynomial interpolation, the Lagrange polynomial is defined by

Li,n(x) := Φi,n(x) :=
∏

j∈{0,...n}\{i}

x− xj
xi − xj

. (4.3)

For continuous functions f we define

In(f) :=

n∑
i=0

f(xi,n)Φi,n (4.4)

as interpolant of yi = f(xi,n). Hence

In : C([0, 1])→ C([0, 1])

is a linear mapping from the continuous functions into itself.

Exercise 4.3. (a) The interpolation In : X = C([0, 1]) → C([0, 1]) is continuous
and linear; i.e., In ∈ L(X,X).
(b) In is a projection; i.e., InIn = In.

The terms ‘convergence’, ‘consistency’ and ‘stability’ of the previous chapter
can easily be adapted to the interpolation problem. Note that we have not only one
interpolation In, but a family {In : n ∈ N0} of interpolations.

The interval [0, 1] is chosen without loss of generality. The following results
can immediately be transferred to a general interval [a, b] by means of the affine
mapping φ(t) = (t− a)/(b− a). The Lagrange functions Φi,n ∈ C([0, 1]) become
Φ̂i,n := Φi,n ◦ φ ∈ C([a, b]). Note that in the case of polynomials, Φi,n and Φ̂i,n
have the same polynomial degree n. The norms ‖In‖ and the stability constantCstab

from §4.3 do not change! Also the error estimate (4.8) remains valid.
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Another subject are interpolations on higher-dimensional domains D ⊂ Rd. The
general concept is still true, but the concrete one-dimensional interpolation methods
do not necessarily have a counterpart in d dimensions. An exception are domains
which are Cartesian products. Then one can apply the tensor product interpolation
discussed in §4.7.

4.2 Convergence and Consistency

Definition 4.4 (convergence). A family {In : n ∈ N0} of interpolations is called
convergent if

lim
n→∞

In(f) exists for all f ∈ C([0, 1]).

Of course, we intend that In(f) → f , but here convergence can be defined
without fixing the limit, since lim In(f) = f will come for free due to consistency.

Concerning consistency, we follow the model of (3.27).

Definition 4.5 (consistency). A family {In : n ∈ N0} of interpolations is called
consistent if there is a dense subset X0 ⊂ C([0, 1]) such that

In(g)→ g for all g ∈ X0.

Exercise 4.6. Let {In} be the interpolation by polynomials of degree ≤ n. Show
that a possible choice of the dense set in Definition 4.5 is X0 := {polynomials}.

4.3 Stability

First, we characterise the operator norm ‖In‖ (cf. (3.23)).

Lemma 4.7. ‖In‖ = ‖
∑n
i=0 |Φi,n(·)|‖∞ holds with Φi,n from (4.4).

Proof. (i) Set Cn := ‖
∑n
i=0 |Φi,n(·)|‖∞. For arbitrary f ∈ C([0, 1]) we conclude

that

|In(f)(x)| =

∣∣∣∣∣
n∑
i=0

f(xi,n)Φi,n(x)

∣∣∣∣∣ ≤
n∑
i=0

|f(xi,n)|︸ ︷︷ ︸
≤‖f‖∞

|Φi,n(x)| ≤ ‖f‖∞
n∑
i=0

|Φi,n(x)|

≤ ‖f‖∞ Cn.

Since this estimate holds for all x ∈ [0, 1], it follows that ‖In(f)‖ ≤ Cn ‖f‖∞.
Because f is arbitrary, ‖In‖ ≤ Cn is proved.

(ii) Let the function
∑n
i=0 |Φi,n(·)| be maximal at x0:

∑n
i=0 |Φi,n(x0)| = Cn.

Choose f ∈ C([0, 1]) with ‖f‖∞ = 1 and f(xi,n) = sign(Φi,n(x0)). Then
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|In(f)(x0)| =

∣∣∣∣∣
n∑
i=0

f(xi,n)Φi,n(x0)

∣∣∣∣∣ =
n∑
i=0

|Φi,n(x0)| = Cn = Cn ‖f‖∞

holds; i.e., ‖In(f)‖∞ = Cn ‖f‖∞ for this f . Hence the operator norm

‖In‖ = sup {‖In(f)‖∞ / ‖f‖∞ : f ∈ C([0, 1])\{0}}

is bounded from below by ‖In‖ ≥ Cn. Together with (i), the equality ‖In‖ = Cn is
proved. ut

Again, stability expresses the boundedness of the sequence of norms ‖In‖.

Definition 4.8 (stability). A family {In : n∈N0} of interpolations is called stable if

Cstab := sup
n∈N0

‖In‖ <∞ for ‖In‖ =

∥∥∥∥∥
n∑
i=0

|Φi,n(·)|

∥∥∥∥∥
∞

. (4.5)

In the context of interpolation, the stability constant Cstab is called Lebesgue
constant.

Polynomial interpolation is a particular way to approximate a continuous func-
tion by a polynomial. Note that the more general approximation due to Weierstrass
is convergent. The relation between the best possible polynomial approximation and
the polynomial interpolation is considered next.

Remark 4.9. Given f ∈ C([0, 1]), let p∗n be the best approximation to f by a poly-
nomial 3 of degree ≤ n, while pn is its interpolant. Then the following estimate
holds:

‖f − pn‖ ≤ (1 + Cn) ‖f − p∗n‖ with Cn = ‖In‖ . (4.6)

Proof. Any polynomial of degree ≤ n is reproduced by interpolation, in particular,
Inp
∗
n = p∗n. Hence,

f − pn = f − Inf = f − [In(f − p∗n) + Inp
∗
n] = f − p∗n + In(f − p∗n)

can be estimated as claimed above. ut

Note that by the Weierstrass approximation theorem 3.28,

‖f − p∗n‖ → 0

holds. An obvious conclusion from (4.6) is the following: If stability would hold
(i.e., Cn ≤ Cstab), also ‖f − pn‖ → 0 follows. Instead, we shall show instabil-
ity, and the asymptotic behaviour on the right-hand side in (4.6) depends on which
process is faster: ‖f − p∗n‖ → 0 or Cn →∞.

3 The space of polynomials can be replaced by any other interpolation subspace Vn.
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4.4 Equivalence Theorem

Following the scheme (3.22), we obtain the next statement.

Theorem 4.10 (convergence theorem). Assume that the family {In : n ∈ N0} of
interpolations is consistent and stable. Then it is also convergent, and furthermore,
In(f)→ f holds.

Proof. Let f ∈ C([0, 1]) and ε > 0 be given. There is some g ∈ X0 with

‖f − g‖∞ ≤
ε

2 (1 + Cstab)
,

whereCstab is the stability constant. According to Definition 4.5, there is an n0 such
that ‖In(g)− g‖∞ ≤

ε
2 for all n ≥ n0. The triangle inequality yields the desired

estimate:

‖In(f)− f‖∞ ≤ ‖In(f)− In(g)‖∞ + ‖In(g)− g‖∞ + ‖g − f‖∞
≤ Cstab ‖f − g‖∞ +

ε

2
+ ‖f − g‖∞ ≤

‖f−g‖∞≤ε/[2(1+Cstab)]
ε. ut

Again, the stability condition turns out to be necessary.

Lemma 4.11. A convergent family {In : n ∈ N0} of interpolations is stable.

Proof. Since {In(f)} converges, the In are uniformly bounded. Apply Corollary
3.39 with X = Y = C([0, 1]) and Tn := In ∈ L(X;Y ). ut

Theorem 4.10 and Lemma 4.11 yield the following equivalence theorem.

Theorem 4.12. Let the family {In : n ∈ N0} of interpolations be consistent. Then
convergence and stability are equivalent.

4.5 Instability of Polynomial Interpolation

We choose the equidistant interpolation points xi,n = i/n and restrict ourselves
to even n. The Lagrange polynomial Ln

2 ,n
is particularly large in the subinterval

(0, 1/n). In its midpoint we observe the value

∣∣Ln
2 ,n

(
1

2n

)∣∣ =

∣∣∣∣ n∏
j=0
j 6=n

2

1
2n −

j
n

1
2 −

j
n

∣∣∣∣ =

∣∣∣∣ n∏
j=0
j 6=n

2

1
2 − j
n
2 − j

∣∣∣∣
=

1
2 ×

1
2 ×

3
2 × . . .×

(
n
2 −

3
2

)
×
(
n
2 + 1

2

)
× . . .×

(
n− 1

2

)[(
n
2

)
!
]2 .

Exercise 4.13. Show that the expression from above diverges exponentially.
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Because of Cn = ‖
∑n
i=0 |Li,n(·)|‖∞ ≥ ‖Ln

2 ,n
‖∞ ≥

∣∣Ln
2 ,n

( 1
2n )
∣∣, interpolation

(at equidistant interpolation points) cannot be stable. The true behaviour of Cn has
first4 been described by Turetskii [21]:

Cn ≈
2n+1

en log n
.

The asymptotic is improved by Schönhage [18, Satz 2] to5

Cn ≈ 2n+1/[en (γ + log n)],

where γ is Euler’s constant.6 Even more asymptotic terms are determined in [11].
One may ask whether the situation improves for another choice of interpolation

points. In fact, an asymptotically optimal choice are the so-called Chebyshev points:

xi,n =
1

2

(
1 + cos

(
i+1/2
n+1 π

))
(these are the zeros of the Chebyshev polynomial7 Tn+1 ◦φ, where φ(ξ) = 2ξ+1 is
the affine transformation from [0, 1] onto [−1, 1]). In this case, one can prove that8

‖In‖ ≤ 1 +
2

π
log(n+ 1) (4.7)

(cf. Rivlin [17, Theorem 1.2]), which is asymptotically the best bound, as the next
result shows.

Theorem 4.14. There is some c > 0 such that

‖In‖ >
2

π
log(n+ 1)− c

holds for any choice of interpolation points.

In 1914, Faber [6] proved

‖In‖ >
1

12
log(n+ 1),

while, in 1931, Bernstein [1] showed the asymptotic estimate

4 For historical comments see [20].
5 The function ϕ =

∑n
i=0 |Li,n(·)| attains its maximum Cn in the first and last interval. As

pointed out by Schönhage [18, §4], ϕ is of similar size as in (4.7) for the middle interval.
6 The value γ = 0.5772 . . . is already given in Euler’s first article [5]. Later, Euler computed 15
exact decimals places of γ.
7 The Chebyshev polynomial Tn(x) := cos(n arccos(x)), n ∈ N0, satisfies the three-term
recursion Tn+1(x) = 2xTn(x)− Tn−1(x) (n ≥ 1), starting from T0(x) = 1 and T1(x) = x.
8 A lower bound is ‖In‖ > 2

π
log(n + 1) + 2

π

(
γ + log 8

π

)
= limn→∞ ‖In‖ , where

2
π

(
γ + log 8

π

)
= 0.962 52 . . .
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‖In‖ >
2− ε
π

log(n+ 1) for all ε > 0.

The estimate of Theorem 4.14 originates from Erdös [4]. The bound

‖In‖ >
1

8
√
π

log(n+ 1)

can be found in Natanson [12, p. 370f].
The idea of the proof is as follows. Given xi,n ∈ [0, 1], 0 ≤ i ≤ n, construct

a polynomial P of degree ≤ n (concrete construction, e.g., in [12, p. 370f], [13])
such that |P (xi,n)| ≤ 1, but P (ξ) > Mn for at least one point ξ ∈ [0, 1]. Since the
interpolation of P is exact, i.e., In(P ) = P , the evaluation at ξ yields

‖In‖ =

∥∥∥∥∥
n∑
i=0

|Li,n(·)|

∥∥∥∥∥
∞

≥
n∑
i=0

|Li,n(ξ)|

≥
n∑
i=0

|P (xi,n)Li,n(ξ)| ≥

∣∣∣∣∣
n∑
i=0

P (xi,n)Li,n(ξ)

∣∣∣∣∣ = |P (ξ)| > Mn,

proving ‖In‖ > Mn.
We conclude that any sequence of polynomial interpolations In is unstable.

4.6 Is Stability Important for Practical Computations?

Does the instability of polynomial interpolation mean that one should avoid polyno-
mial interpolation altogether? Practically, one may be interested in an interpolation
In∗ for a fixed n∗. In this case, the theoretically correct answer is: the property of
In∗ has nothing to do with convergence and stability of {In}n∈N. The reason is that
convergence and stability are asymptotic properties of the sequence {In}n∈N and
are in no way related to the properties of a particular member In∗ of the sequence.
One can construct two different sequences {I ′n}n∈N and {I ′′n}n∈N—one stable, the
other unstable—such that I ′n∗ = I ′′n∗ belongs to both sequences. This argument also
holds for the quadrature discussed in the previous chapter.

On the other hand, we may expect that instability expressed by Cn → ∞ may
lead to large values of Cn, unless n is very small. We return to this aspect later.

The convergence statement from Definition 4.4 is, in practice, of no help. The
reason is that the convergence from Definition 4.4 can be arbitrarily slow, so that
for a fixed n, it yields no hint concerning the error In(f) − f . Reasonable error
estimates can only be given if f has a certain smoothness, e.g., f ∈ Cn+1([0, 1]).
Then the standard error estimate of polynomial interpolation states that

‖f − In(f)‖∞ ≤
1

(n+ 1)!
Cω(In)

∥∥∥f (n+1)
∥∥∥
∞
, (4.8)
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where

Cω(In) := ‖ω‖∞ for ω(x) :=

n∏
i=0

(x− xi,n)

(cf. [14, §1.5], [19], [15, §8.1.1], [8, §B.3]). The quantity Cω(In) depends on the
location of the interpolation points. It is minimal for the Chebyshev points, where

Cω(In) = 4−(n+1).

In spite of the instability of polynomial interpolation, we conclude from estimate
(4.8) that convergence holds, provided that ‖f (n+1)‖∞ does not grow too much
as n → ∞ (of course, this requires that f be analytic). However, in this analysis
we have overlooked the numerical rounding errors of the input data.9 When we
evaluate the function values f(xi,n), a perturbed result f(xi,n) + δi,n is returned
with an error |δi,n| ≤ η ‖f‖∞. Therefore, the true interpolant is In(f) + δIn with
δIn =

∑n
i=0 δi,nΦi,n. An estimate of δIn is given by η‖In‖ ‖f‖∞. This yields the

error estimate

‖f − In(f)− δIn‖∞ ≤ ε
int
n + εper

n with

εint
n =

1

(n+ 1)!
Cω(In)‖f (n+1)‖∞ and εper

n = η ‖In‖ ‖f‖∞ .

Since η is small (maybe of the size of machine precision), the contribution εint
n is

not seen in the beginning. However, with increasing n, the part εint
n is assumed to

tend to zero, while εper
n increases to infinity because of the instability of In.

We illustrate this situation in two different scenarios. In both cases we assume
that the analytic function f is such that the exact interpolation error (4.8) decays
like εint

n = e−n.
(1) Assume a perturbation error εper

n = ηen due to an exponential increase of
‖In‖. The resulting error is

e−n + ηen.

Regarding n as a real variable, we find a minimum at n = 1
2 log 1

η with the value
2
√
η. Hence, we cannot achieve better accuracy than half the mantissa length.
(2) According to (4.7), we assume that εint

n = η(1 + 2
π log(n + 1)), so that the

sum
e−n + η(1 +

2

π
log(n+ 1))

is the total error. Here, minimising n is the solution to the fixed-point equation
n = log(n + 1) − log(2η/π). For η = 10−16 the minimal value 3.4η of the total
error is taken at the integer value n = 41. The precision corresponds to almost the
full mantissa length. Hence, in this case the instability ‖In‖ → ∞ is completely
harmless.10

9 There are further rounding errors, which we ignore to simplify the analysis.
10 To construct an example, where even for (4.7) the instability becomes obvious, one has to assume
that the interpolation error decreases very slowly like εintn = 1/ log(n).
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4.7 Tensor Product Interpolation

Finally, we give an example where the norm ‖In‖ is required for the analysis of
the interpolation error, even if we ignore input errors and rounding errors. Consider
the function f(x, y) in two variables (x, y) ∈ [0, 1] × [0, 1]. The two-dimensional
polynomial interpolation can easily be constructed from the previous In. The tensor
product11 I2

n := In ⊗ In can be applied as follows. First, we apply the interpolation
with respect to x. For any y ∈ [0, 1] we have

F (x, y) := In(f(·, y))(x) =

n∑
i=0

f(xi,n, y)Φi,n(x).

In a second step, we apply In with respect to y:

I2
n(f)(x, y) = In (F (x, ·)) (y) =

n∑
i=0

n∑
j=0

f(xi,n, xj,n)Φi,n(x)Φj,n(y).

Inequality (4.8) yields a first error12

|f(x, y)− F (x, y)| ≤ 1

(n+ 1)!
Cω(In)

∥∥∥∥ ∂n+1

∂xn+1
f

∥∥∥∥
∞

for all x, y ∈ [0, 1].

The second one is

F (x, y)− I2
n(f)(x, y) =

n∑
i=0

|f(xi,n, y)− In(f(xi,n, ·)(y)|Φi,n(x).

Again

|f(xi,n, y)− In(f(xi,n, ·)(y)| ≤ 1

(n+ 1)!
Cω(In)

∥∥∥∥ ∂n+1

∂yn+1
f

∥∥∥∥
∞

holds and leads us to the estimate∥∥F − I2
n(f)

∥∥
∞ ≤ ‖In‖

1

(n+ 1)!
Cω(In)

∥∥∥∥ ∂n+1

∂yn+1
f

∥∥∥∥
∞
.

The previous estimates and the triangle inequality yield the final estimate

∥∥f − I2
n(f)

∥∥
∞ ≤

1

(n+ 1)!
Cω(In)

[
‖In‖ ‖

∂n+1

∂yn+1
f‖∞ + ‖ ∂

n+1

∂xn+1
f‖∞

]
.

Note that the divergence of ‖In‖ can be compensated by 1
(n+1)! .

11 Concerning the tensor notation see [9].
12 Here, ‖·‖∞ is the maximum norm over [0, 1]2.
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4.8 Stability of Piecewise Polynomial Interpolation

One possibility to obtain stable interpolations is by constructing a piecewise poly-
nomial interpolation. Here, the degree of the piecewise polynomials is fixed, while
the size of the subintervals approaches zero as n → ∞. Let J = [0, 1] be the
underlying interval. The subdivision is defined by ∆n := {x0, x1, . . . , xn} ⊂ J
containing points satisfying

0 = x0 < x1 < . . . < xn−1 < xn = 1.

This defines the subintervals Jk := [xk−1, xk] of length hk := xk − xk−1 and
δn := max1≤k≤n hk. In principle, all quantities xk, Jk, hk should carry an
additional index n, since each subdivision of the sequence (∆n)n∈N has different
xk = x

(n)
k . For the sake of simplicity we omit this index, except for the grid size

δn, which has to satisfy δn → 0.
Among the class of piecewise polynomial interpolations, we can distinguish two

types depending on the support13 of the Lagrange functions Φj,n. In case of Type I,
Φj,n has a local support, whereas supp(Φj,n) = J for Type II. The precise definition
of a local support is: there are α, β ∈ N0 independent of n such that

supp(Φj,n) ⊂
min{n,j+β}⋃

k=max{1,j−α}

Jk. (4.9)

4.8.1 Case of Local Support

The simplest example is the linear interpolation where In(f)(xk) = f(xk) and f |Jk
(i.e., f restricted to Jk) is a linear polynomial. The corresponding Lagrange function
Φj,n is called the hat function and has the support14 supp(Φj,n) = Jj ∪ Jj+1.

We may fix another polynomial degree d and fix points 0 = ξ0 < ξ1 < . . . <
ξd = 1. In each subinterval Jk = [xk−1, xk] we define interpolation nodes ζ` :=
xk−1 + (xk − xk−1) ξ`. Interpolating f by a polynomial of degree d at these nodes,
we obtain In(f)|Jk . Altogether, In(f) is a continuous15 and piecewise polynomial
function on J. Again, supp(Φj,n) = Jj ∪ Jj+1 holds.

A larger but still local support occurs in the following construction of piecewise
cubic functions. Define In(f)|Jk by cubic interpolation at the nodes14 xk−2, xk−1,
xk, xk+1. Then the support supp(Φj,n) = Jj−1 ∪ Jj ∪ Jj+1 ∪ Jj+2 is larger than
before.

13 The support of a function f defined on I is the closed set supp(f) := {x ∈ I : f(x) 6= 0}.
14 The expression has to be modified for the indices 1 and n at the end points.
15 If In(f) ∈ C1(I) is desired, one may use Hermite interpolation; i.e., also dIn(f)/dx = f ′ at
x = xk−1 and x = xk. This requires a degree d ≥ 3.
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The error estimates can be performed for each subinterval separately. Transfor-
mation of inequality (4.8) to Jk yields ‖In(f)− f‖∞,Jk ≤ Ch

−(d+1)
k ‖f (d+1)‖∞,

where d is the (fixed) degree of the local interpolation polynomial. The overall
estimate is

‖In(f)− f‖∞ ≤ Cδ
−(d+1)
n ‖f (d+1)‖∞ → 0, (4.10)

where we use the condition δn → 0.
Stability is controlled by the maximum norm of Φn :=

∑n
i=1 |Φi,n(·)|. For

the examples from above it is easy to verify that ‖Φi,n‖ ≤ K independently
of i and n. Fix an argument x ∈ I . The local support property (4.9) implies
that Φi,n(x) 6= 0 holds for at most α + β + 1 indices i. Hence

∑n
i=1 |Φi,n(x)|

≤ Cstab := (α+ β + 1)K holds and implies supn ‖In‖ ≤ Cstab (cf. (4.5)).

4.8.2 Spline Interpolation as an Example for Global Support

The space Vn of the natural cubic splines is defined by

Vn =
{
f ∈ C2(I) : f ′′(0) = f ′′(1) = 0, f |Jk cubic polynomial for 1 ≤ k ≤ n

}
.

The interpolating spline function S ∈ Vn has to satisfy S(xk)=f(xk) for 0≤k≤n.
We remark that S is also the minimiser of

min

{∫
J

|g′′(x)|2 dx: g ∈ C2(J) : S(xk) = f(xk) for 0 ≤ k ≤ n
}
.

In this case the support of a Lagrange function Φj,n, which now is called a cardinal
spline, has global support:16 supp(Φj,n) = J . Interestingly, there is another basis
of Vn consisting of so-called B-splines Bj , whose support is local:14 supp(Bj) =
Jj−1 ∪ Jj ∪ Jj+1 ∪ Jj+2. Furthermore, they are non-negative and sum up to

n∑
j=0

Bj = 1. (4.11)

We choose an equidistant17 grid; i.e., Ji = [(i − 1)h, ih] with h := 1/n. The
stability estimate ‖In‖ = ‖

∑n
i=0 |Φi,n(·)|‖∞ ≤ Cstab (cf. (4.5)) is equivalent to

‖S‖∞ ≤ Cstab ‖y‖∞ , where S =

n∑
i=0

yiΦi,n ∈ Vn

is the spline function interpolating yi = S(xi). In the following, we make use of the

16 Φj,n is non-negative in Jj ∪ Jj+1 and has oscillating signs in neighbouring intervals. One
can prove that the maxima of Φj,n in Jk are exponentially decreasing with |j − k|. This fact can
already be used for a stability proof.
17 For the general case compare [14, §2], [15, §8.7], [19, §2.4].
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B-splines, which easily can be described for the equidistant case.18 The evaluation
at the grid points yields

B0(0) = Bn(1) = 1, B0(h) = Bn(1− h) = 1/6,
B1(0) = Bn−1(1) = 0,
B1(h) = Bn−1(1− h) = 2/3, B1(2h) = Bn−1(1− 2h) = 1/6,
Bj(xj) = 2/3, Bj(xj±1) = 1/6 for 2 ≤ j ≤ n− 2.

(4.12)

One verifies that yj :=
∑n
j=0Bj(xj) = 1. Since the constant function S = 1 ∈ Vn

is interpolating, the unique solvability of the spline interpolation proves (4.11).
Now we return to a general spline function S =

∑n
i=0 yiΦi,n. A representation

by B-splines reads S =
∑n
j=0 bjBj . Note that yi = S(xi) =

∑n
j=0 bjBj(xi).

Inserting the values from (4.12), we obtain

y = Ab with A =
1

6


6
1 4 1

. . . . . . . . .
1 4 1

6

 b

for the vectors y = (yi)
n
i=0 and b = (bi)

n
i=0. A can be written as A = 2

3 [I + 1
2C]

with ‖C‖∞ = 1; i.e., A is strongly diagonal dominant and the inverse satisfies∥∥A−1
∥∥
∞ ≤ 3 because of

A−1 =
3

2
[I +

1

2
C]−1 =

3

2

∞∑
ν=0

2−νCν .

Using b = A−1y, we derive from S =
∑n
j=0 bjBj that

|S(x)| =

∣∣∣∣∣∣
n∑
j=0

bjBj(x)

∣∣∣∣∣∣ ≤Bj≥0

n∑
j=0

|bj |Bj(x) ≤ ‖b‖∞
n∑
j=0

Bj(x) =
(4.11)

‖b‖∞

for all x ∈ J , so that the stability estimate ‖S‖∞ ≤ Cstab ‖y‖∞ is proved with
Cstab := 3.

18 The explicit polynomials are

Bj =
1

6h3


ξ3, ξ = x− xj−2, x ∈ Jj−1

h3 + 3h2ξ + 3hξ2 − 3ξ3, ξ = x− xj−1, x ∈ Jj ,
h3 + 3h2ξ + 3hξ2 − 3ξ3, ξ = xj+1 − x, x ∈ Jj+1,
ξ3, ξ = xj+2 − x, x ∈ Jj+2,

 for 2≤j≤n− 2,

B1 =
1

6h3

 6h2x− 2x3, x ∈ J1,
h3 + 3h2ξ + 3hξ2 − 3ξ3, ξ = 2h− x, x ∈ J2,
ξ3, ξ = 3h− x, x ∈ J3,

 , Bn−1(x) = B1(1− x),

B0 =
1

6h3

{
h3 + 3h2ξ + 3hξ2 − ξ3, ξ = h− x, x ∈ J1,
ξ3, ξ = 2h− x, x ∈ J2,

}
, Bn(x) = B0(1− x).
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Remark 4.15. The previous results show that consistency is in conflict with stability.
Polynomial interpolation has an increasing order of consistency, but suffers from in-
stability (cf. Theorem 4.14). On the other hand, piecewise polynomial interpolation
of bounded order is stable.

4.9 From oint-wise Convergence to Operator-Norm
Convergence

As already mentioned in §3.5 in the context of quadrature, only point-wise conver-
gence In(f) → f (f ∈ X) can be expected, but not operator-norm convergence
‖In − id‖ → 0. However, there are situations in which point-wise convergence can
be converted into operator-norm convergence.

An operator K : X → Y is called compact if the image B := {Kf : ‖f‖X≤1}
is precompact (cf. page 44). The following theorem is formulated for an arbitrary,
point-wise convergent sequence of operators An : Y → Z.

Theorem 4.16. Let X,Y, Z be Banach spaces, and A,An ∈ L(Y,Z). Suppose
that point-wise convergence Any → Ay holds for all y ∈ Y . Furthermore, let
K : X→Y be compact. Then the products Pn := AnK converge with respect to
the operator norm to P := AK; i.e., ‖Pn − P‖ → 0.

Proof. M := {Kx : ‖x‖X ≤ 1} ⊂ Y is precompact because of the compactness
of K, so that we can apply Lemma 3.49:

‖Pn − P‖ = sup{‖Pnx− Px‖Z : x ∈ X, ‖x‖ ≤ 1}
= sup{‖An (Kx)−A (Kx)‖Z : x ∈ X, ‖x‖ ≤ 1}
= sup{‖Any −Ay‖Z : y ∈M} →

(3.29)
0. ut

A typical example of a compact operator is the embedding

E :
(
Cλ([0, 1]), ‖·‖Cλ([0,1])

)
→ (C([0, 1]), ‖·‖∞) .

For integer λ ∈ N, Cλ([0, 1]) is the space of λ-times continuously differentiable
functions, where the norm ‖·‖Cλ([0,1]) is the maximum of all derivatives up to order
λ. For 0 < λ < 1, Cλ([0, 1]) are the Hölder continuous functions with ‖·‖Cλ([0,1])

explained in Footnote 9 on page 44. The embedding is the identity mapping:
E(f) = f ; however, the argument f and the image E(f) are associated with differ-
ent norms. As mentioned in the proof of Theorem 3.50,E ∈ L(Cλ([0, 1]), C([0, 1]))
is compact.

In the case of λ=4, estimate (4.10) already yields the operator-norm convergence
‖In − id‖C([0,1])←Cλ([0,1]) ≤ C/n4 → 0. To show a similar operator-norm con-
vergence for 0 < λ < 1, interpret In−id as (In−id)E : Cλ([0, 1])→ C([0, 1]).
Applying Theorem 4.16 with A = id, An = In, and K = E, we obtain

‖In − id‖C([0,1])←Cλ([0,1]) → 0.

P
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4.10 Approximation

Often, interpolation is used as a simple tool to obtain an approximation; i.e., the
interpolation condition (4.1) is not essential. Instead, we can directly ask for a best
approximation Φn ∈ Vn of f ∈ B, where Vn ⊂ B is an (n + 1)-dimensional
subspace of a Banach space B with norm ‖·‖:

‖f − Φn‖ = inf {‖f − g‖ : g ∈ Vn} . (4.13)

Using compactness arguments one obtains the existence of a minimiser Φ. If the
space B is strictly convex,19 the minimiser is unique (cf. [10]).

A prominent choice of Vn are the polynomials of degree ≤ n, while B =
C([a, b]) is equipped with the maximum norm. Polynomials satisfy the following
Haar condition: any 0 6= f ∈ Vn has at most n zeros (cf. Haar [7]). As a con-
sequence, also in this case, the best approximation problem (4.13) has a unique
solution. For the numerical solution of the best approximation the following equi-
oscillation property is essential (cf. Chebyshev [2]):

Theorem 4.17. Let ε := f − Φn be the error of the best approximation in (4.13).
Then there are n+ 2 points xµ with a ≤ x0 < x1 < . . . < xn+1 ≤ b such that

|ε(xµ)| = ‖f − Φn‖ and ε(xµ) = −ε(xµ+1) for 0 ≤ µ ≤ n. (4.14)

The second part of (4.14) describes n+ 1 = dim(Vn) equations, which are used
by the Remez algorithm to determine Φn ∈ Vn (cf. Remez [16]).

From (4.14) one concludes that there are n zeros ξ1 < . . . < ξn of ε = f − Φn;
i.e., Φn can be regarded as an interpolation polynomial with these interpolation
points. However note that the ξµ depend on the function f.

The mapping f 7→ Φn is in general nonlinear. Below, when we consider Hilbert
spaces, it will become a linear projection.

Since the set of polynomials is dense in C([a, b]) (cf. Theorem 3.28), the condi-
tion

V0 ⊂ V1 ⊂ . . . ⊂ Vn ⊂ Vn+1 ⊂ . . . and
⋃
n∈N0

Vn = C([a, b]) (4.15)

is satisfied. Condition (4.15) implies

‖f − Φn‖ ↘ 0 as n→∞ for Φn from (4.13). (4.16)

Stability issues do not appear in this setting. One may consider the sequence
{‖Φn‖ : n ∈ N0} , but (4.16) proves convergence ‖Φn‖ → ‖f‖; i.e., the sequence
must be uniformly bounded.

The approximation is simpler if B is a Hilbert space with scalar product 〈·, ·〉 .
Then the best approximation from (4.13) is obtained by means of the orthogonal

19 B is strictly convex if ‖f‖ = ‖g‖ = 1 and f 6= g imply ‖f + g‖ < 2.
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projection20 Πn ∈ L(B,B) onto Vn:

Φn = Πnf.

Given any orthonormal basis {φµ : 0 ≤ µ ≤ n} of Vn, the solution has the explicit
representation

Φn =

n∑
µ=0

〈f, φµ〉φµ. (4.17)

The standard example is the Fourier approximation of 2π periodic real func-
tions in [−π, π]. The L2 scalar product is 〈f, g〉 =

∫ π
−π fgdx. Let n be even. Vn is

spanned by the orthonormal basis functions{
1√
2π
,

cos(mx)√
π

,
sin(mx)√

π
: 1 ≤ m ≤ n/2

}
.

At first glance there is no stability problem to be discussed, since the operator norm
of orthogonal projections equals one: ‖Πn‖L2←L2 = 1. However, if we consider
the operator norm ‖Πn‖B←B for another Banach space, (in)stability comes into
play.

Let Πn be the Fourier projection from above and choose the Banach space
B = C2π := {f ∈ C([−π, π]) : f(−π) = f(π)} equipped with the maximum
norm ‖·‖∞. We ask for the behaviour of ‖Πn‖∞, where now ‖·‖∞ = ‖·‖C2π←C2π

denotes the operator norm. The mapping (4.17) can be reformulated by means of
the Dirichlet kernel,

(Φnf) (x) =
1

π

∫ π

0

sin(2n+ 1)y

sin(y)
[f(x+ 2y) + f(x− 2y)]dy.

From this representation we infer that

‖Πn‖∞ =
1

π

∫ π

0

∣∣∣∣ sin(2n+ 1)y

sin(y)

∣∣∣∣dy.
Lower and upper bounds of this integral are

4

π2
log(n+ 1) ≤ ‖Πn‖∞ ≤ 1 + log(2n+ 1).

This shows that the Fourier projection is unstable with respect to the maximum
norm. The negation of the uniform boundedness theorem 3.38 together with
‖Πn‖∞ → ∞ implies the well-known fact that uniform convergence Πnf → f
cannot hold for any f ∈ C2π .

The orthogonal Fourier projection Πn is the best choice for the Hilbert space
L2([−π, π]). For C2π one may choose another projection Pn from C2π onto Vn.

20 That means (i) ΠnΠn = Πn (projection property) and (ii) Πn is selfadjoint: 〈Πnf, g〉 =
〈f,Πng〉 for all f, g ∈ B.
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This, however, can only lead to larger norms ‖Pn‖∞ due to the following result of
Cheney et al. [3].

Theorem 4.18. The Fourier projection Πn is the unique minimiser of

min{‖Pn‖∞ : Pn ∈ L(C2π, C2π) projection onto Vn}.
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Chapter 5
Ordinary Differential Equations

The numerical treatment of ordinary differential equations is a field whose scope
has broadened quite a bit over the last fifty years. In particular, a whole spectrum
of different stability conditions has developed. Since this chapter is not the place to
present all details, we concentrate on the most basic concept of stability. As a side-
product, it will lead us to the power bounded matrices, which is a class of matrices
with certain stability properties. More details about ordinary differential equations
can be found, e.g., in [20], [23], [4, 3], [5, §§5-6], and in the two volumes [8], [9].

5.1 Initial-Value Problem

5.1.1 Setting of the Problem

Let f : R × R → R be a continuous function.1 In what follows we are looking
for continuously differentiable functions y(x) satisfying the ordinary differential
equation

y′(x) = f(x, y(x)). (5.1a)

The initial-value problem requires finding a solution y of (5.1a) which, in addition,
satisfies

y(x0) = y0 (5.1b)

for a given ‘initial value’ y0.

Usually one is looking for the solution y at x ≥ x0, either in a finite2 interval
I := [x0, xE ] or in the unbounded interval I := [x0,∞). Correspondingly, f needs
to be defined on I × R.

1 In the case of a system of differential equations, f is defined in R × Rn and the solution y ∈
C1(R,Rn) is vector-valued. For our considerations it is sufficient to study the scalar case n = 1.
2 However, it may happen that the solution exists only on a smaller interval [x0, xS) ⊂ [x0, xE ].
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If f is only continuous, a solution of (5.1a,b) exists due to Peano’s theorem
(at least, in the neighbourhood [x0, x0 + ε) for some ε > 0); however, there may be
more than one solution. Uniqueness is ensured by the assumption that f is Lipschitz
continuous with respect to the second argument (cf. Lipschitz [16, pp. 500ff]. For
simplicity, we formulate the global Lipschitz continuity:

|f(x, y1)− f(x, y2)| ≤ L |y1 − y2| for all x ∈ I, y1 − y2 ∈ R. (5.2)

The Lipschitz constant L will appear in later analysis. Unique solvability will be
stated in Corollary 5.10.

5.1.2 One-Step Methods

We choose a fixed step size3 h > 0. The corresponding grid points are

xi := x0 + ih (i ∈ N0, xi ∈ I).

Next, we define approximations ηi of y(xi). The notation ηi assumes that an under-
lying step size h is defined. If necessary, we write η(x0 + ih;h) instead of ηi. Note
that η(x;h) is defined only for grid points x = x0 + ih (i ∈ N0). The desired
property is η(x;h) ≈ y(x), where the error should tend to zero as h→ 0.

Because of the given initial value y0, we start the computation with

η0 := y0. (5.3)

The prototype of the one-step methods is the Euler method, which starts with
(5.3) and defines recursively

ηi+1 := ηi + hf(xi, ηi). (5.4)

Exercise 5.1. Consider the differential equation y′ = ay (i.e., f(x, y) = ay) with
the initial value y0 = 1 at x0 = 0 (its exact solution is y(x) = eax). Determine the
solution of (5.4). Does y(x) − η(x;h) → 0 hold for h := x/n > 0, when n → ∞
and h→ 0 for fixed nh = x ?

For other one-step methods, one replaces the right-hand side in (5.4) by a more
general expression hφ(xi, ηi, h; f). Here, the last argument f means that inside of φ
the function f can be used for arbitrary evaluations. The Euler method corresponds
to φ(xi, ηi, h; f) = f(xi, ηi).

Definition 5.2. A general explicit one-step method has the form

ηi+1 := ηi + hφ(xi, ηi, h; f). (5.5)

3 In practical implementations one has to admit varying step widths hi = xi+1 − xi. Usually,
these are chosen adaptively.
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Often, the evaluation of φ is performed in several partial steps. For instance, the
Heun method [10] uses the intermediate step ηi+1/2:

ηi+1/2 := ηi +
h

2
f(xi, ηi), ηi+1 := ηi + hf(xi +

h

2
, ηi+1/2).

These equations yield φ(xi, ηi, h; f) := f(xi + h
2 , ηi + h

2 f(xi, ηi)). The classi-
cal Runge–Kutta method uses four intermediate steps (cf. Runge [19], Kutta [15];
history in [1]; for a modern description see, e.g., [8, §II]).

5.1.3 Multistep Methods

The term ‘one-step method’ refers to the fact that (xi+1, ηi+1) is determined only
by (xi, ηi). The past values ηj , j < i, do not enter into the algorithm.

On the other hand, since besides ηi the values ηi−r, ηi−r+1, . . . , ηi−1 are avail-
able (r is a fixed natural number), one may ask whether one can use these data. In-
deed, having more free parameters, one can try to increase the order of the method.
This leads to the r-step method, which is of the form

ηj+r := −
r−1∑
ν=0

ανηj+ν + hφ(xj , ηj+r−1, . . . , ηj , h; f) (5.6)

(more precisely, this is the explicit form of a multistep method) with the additional
parameters α0, . . . , αr−1 ∈ R for j = 0, . . . , r − 1. As we shall see,

r−1∑
ν=0

αν = −1 (5.7)

describes a first consistency condition.

Remark 5.3. Because of (5.7), a multistep method (5.6) with r = 1 coincides with
the one-step method (5.5).

Remark 5.4. In the case of r ≥ 2, the multistep methods (5.6) can only be used
for the computation of ηi for i ≥ r. The computation of η1, η2, . . . , ηr−1 must be
defined in another way (e.g., by a one-step method).

An example of a two-step method is the midpoint formula

ηj+2 = ηj + 2hf(xj+1, ηj+1); (5.8)

i.e., r = 2, α0 = −1, α1 = 0, φ(xj , ηj+1, ηj , h; f) = 2f(xj + h, ηj+1).
A rather dubious proposal is the extrapolation

ηj+2 = 2ηj+1 − ηj ; (5.9)
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i.e., r = 2, α0 = −2, α1 = 1, φ(xj , ηj+1, ηj , h; f) = 0. Even without any
quantitative error analysis one can see that the latter two-step method cannot be
successful. Since (5.9) does not depend on f , it produces the same linear function
ηj = η0 + j (η1 − η0) for all differential equations.

5.2 Fixed-Point Theorem and Recursive Inequalities

We now provide some technical tools required in this chapter.

Theorem 5.5 (Banach’s fixed-point theorem). Let X be a Banach space and
Ψ : X → X a contraction mapping; i.e., there is a constant LΨ ∈ [0, 1) such
that

‖Ψ(x′)− Ψ(x′′)‖X ≤ LΨ ‖x
′ − x′′‖X for all x′, x′′ ∈ X. (5.10a)

Then the fixed-point equation x = Ψ(x) has exactly one solution, and for all starting
values x0 ∈ X the fixed-point iteration xn+1 = Ψ(xn) converges to this solution.
Furthermore, the error of the n-th iterant can be estimated by

‖x− xn‖X ≤
(LΨ )n

1− LΨ
‖x1 − x0‖X for all n ∈ N0. (5.10b)

Proof. (i) Let x′, x′′ be two solutions of the fixed-point equation; i.e., x′ = Ψ(x′)
and x′′ = Ψ(x′′). Exploiting the contraction property with L = LΨ , we get

‖x′ − x′′‖X = ‖Ψ(x′)− Ψ(x′′)‖X ≤ L ‖x
′ − x′′‖X .

From L < 1 we conclude that ‖x′ − x′′‖X = 0; i.e., uniqueness x′ = x′′ is proved.
(ii) The iterants xn of the fixed-point iteration satisfy the inequality

‖xn+1 − xn‖X = ‖Ψ(xn)− Ψ(xn−1)‖X ≤ L ‖xn − xn−1‖X

and thereby ‖xn+1 − xn‖X ≤ Ln ‖x1 − x0‖X . For arbitrary n > m, the multiple
triangle inequality yields the estimate

‖xn − xm‖X ≤
n∑

j=m+1

‖xj − xj−1‖X ≤
n∑

j=m+1

Lj−1 ‖x1 − x0‖X

≤
∞∑
j=m

Lj ‖x1 − x0‖X =
Lm

1− L
‖x1 − x0‖X ; (5.10c)

i.e., {xn} is a Cauchy sequence. Since X is a Banach space and therefore complete,
a limit x∗ = limxn exists. Because of the continuity of the function Ψ , the limit in
xn+1 = Ψ(xn) yields x∗ = Ψ(x∗); i.e., x∗ is a fixed-point solution.

Inequality (5.10b) follows from (5.10c) for n→∞. ut
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In the following analysis, recursive inequalities of the following form will appear:

aν+1 ≤ (1 + hL) aν + hkB for all ν ≥ 0,where L,B, h, k, a0 ≥ 0. (5.11)

The meaning of the parameters is: L Lipschitz constant, h step size, and k local
consistency order.

Lemma 5.6. Any solution of the inequalities (5.11) satisfies the estimate

aν ≤ eνhLa0 + hk−1B ·

 νh for L = 0
eνhL − 1

L
for L > 0

 (ν ∈ N0).

Proof. We pose the following induction hypothesis:

aν ≤ Aν :=

ν−1∑
µ=0

(1 + hL)
µ
hkB + (1 + hL)

ν
a0. (5.12)

The start of the induction is given by a0 ≤ A0 = a0. For the induction step
ν 7→ ν + 1 insert aν ≤ Aν into (5.11):

aν+1 ≤ (1 + hL)Aν + hkB =

ν∑
µ=1

(1 + hL)
µ
hkB + (1 + hL)

ν+1
a0 + hkB

=

ν∑
µ=0

(1 + hL)
µ
hkB + (1 + hL)

ν+1
a0 = Aν+1.

Exercise 3.24a shows that (1 + hL)
ν ≤

(
ehL
)ν

= ehLν . For L > 0, the geometric
sum yields the value

hkB

ν−1∑
µ=0

(1 + hL)
µ

= hkB
(1 + hL)

ν − 1

(1 + hL)− 1
= hk−1B

L
[(1 + hL)

ν − 1]

≤ hk−1B

L

[
ehLν − 1

]
.

Therefore, Aν from (5.12) can be estimated by Aν ≤ hk−1B
L

[
ehLν − 1

]
+ ehLνa0.

The particular case L = 0 can be treated separately or obtained from L > 0 by
performing the limit L→ 0. ut

Exercise 5.7. Prove that any solution ϕ of the inequality ϕ(x) ≤ ϕ0 +L
∫ x
x0
ϕ(t)dt

is bounded by Φ; i.e., ϕ(x) ≤ Φ(x), where Φ is the solution of the integral equation

Φ(x) = ϕ0 + L

∫ x

x0

Φ(t)dt.

Hint: (a) Define Ψ(Φ) by Ψ(Φ)(x) := ϕ0 + L
∫ x
x0
Φ(t)dt. The integral equation is

the fixed-point equation Φ = Ψ(Φ) for Φ ∈ C(I), I = [x0, xE ]. Show that Ψ is a
contraction with respect to the norm
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‖ψ‖ := max{|ψ(t)| exp (−2L(t− x0)) : t ∈ I}

with contraction number LΨ = 1
2 (independently of the length of the interval I ,

including I = [x0,∞)).
(b) Apply the fixed-point iteration Φn+1 := Ψ(Φn) with Φ0 := ϕ and show Φn ≥ ϕ
for all n ≥ 0.

Lemma 5.8. Let X and Y be Banach spaces. The operators S, T ∈ L(X,Y ) are
supposed to satisfy

T−1 ∈ L(Y,X) and ‖S − T‖Y←X‖T−1‖X←Y < 1.

Then also the inverse S−1 ∈ L(Y,X) exists and satisfies

‖S−1‖X←Y ≤
‖T−1‖X←Y

1− ‖S − T‖Y←X‖T−1‖X←Y
.

Proof. Fix y ∈ X . The mapping Φ(x) := T−1(T −S)x+T−1y is contracting with
contraction rate q = ‖T−1‖X←Y ‖S−T‖Y←X < 1. Banach’s fixed-point Theorem
5.5 states the unique solvability of Φ(x) = x, which implies that Tx = TΦ(x) =
(T − S)x+ y and Sx = y. Hence the inverse S−1 exists. The fixed-point iteration
with starting value x0 produces x1 = T−1y. Estimate (5.10b) with n = 0 yields

‖S−1y‖ = ‖S−1y − x0‖ = ‖x− x0‖ ≤
1

1− q
‖x1 − x0‖ =

1

1− q
‖T−1y‖,

which leads to the desired inequality. ut

5.3 Well-Conditioning of the Initial-Value Problem

Before we start with the numerical solution, we should check whether the initial-
value problem, i.e., the mapping (y0, f) 7→ y, is well-conditioned. According to
§2.4.1.2, the amplification of a perturbation of the input data is to be investigated. In
the present case, one can perturb the initial value y0 as well as the function f . The
first case is analysed below, the second one in Theorem 5.12.

Theorem 5.9. Let y1, y2 ∈ C1(I) be two solutions of the differential equation
(5.1a) with the initial values

y1(x0) = y0,1 and y2(x0) = y0,2 respectively.

Assume that f ∈ C(I × R) satisfies (5.2). Then the following estimate4 holds in I:

|y1(x)− y2(x)| ≤ |y0,1 − y0,2| eL(x−x0) with L from (5.2). (5.13)

4 By definition of I in §5.1, x ≥ x0 holds. Otherwise, eL(x−x0) is to be replaced by eL|x−x0|.
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Proof. yi(x) = y0,i +
∫ x
x0
f(t, yi(t))dt holds for i = 1, 2, so that

|y1(x)− y2(x)| =
∣∣∣∣y0,1 − y0,2 +

∫ x

x0

[f(t, y1(t))− f(t, y2(t))] dt

∣∣∣∣
≤ |y0,1 − y0,2|+

∫ x

x0

|f(t, y1(t))− f(t, y2(t))|dt ≤
(5.2)

≤ |y0,1 − y0,2|+
∫ x

x0

L |y1(t)− y2(t)|dt.

The function Φ(x) := |y0,1 − y0,2| eL(x−x0) satisfies the equation

Φ(x) = |y0,1 − y0,2|+
∫ x

x0

LΦ(t)dt on I.

Hence Exercise 5.7 proves |y1(x)− y2(x)| ≤ Φ(x); i.e., (5.13). This ends the proof
of Theorem 5.9. ut

Corollary 5.10. Assumption (5.2) ensures uniqueness of the solution of the initial-
value problem (5.1a,b).

Proof. If y1, y2 ∈ C1(I) are two solutions, Theorem 5.9 yields

|y1(x)− y2(x)| ≤ |y0,1 − y0,2| exp (L(x− x0)) =
y0,1=y0,2

0,

hence y1 = y2 on I . ut

One may denote the solution of the initial-value problem (5.1a,b) by y(x; y0)
with the initial value y0 as second argument. Then (5.13) states that y(·; ·) as well as
f(·, ·) are Lipschitz continuous with respect to the second argument. This statement
can be generalised.

Exercise 5.11. If f(·, ·) is k-times continuously differentiable with respect to the
second argument y, also the solution y(·; ·) does so with respect to y0.

A perturbation of the right-hand side f in (5.1a) is studied next.

Theorem 5.12. Let y and ỹ be solutions of y′ = f(x, y) and ỹ′ = f̃(x, ỹ), respec-
tively, with coinciding initial values y(x0) = ỹ(x0) = y0. Only f (not f̃ ) has to
fulfil the Lipschitz condition (5.2), while∣∣∣f(x, y)− f̃(x, y)

∣∣∣ ≤ ε for all x ∈ I, y ∈ R.

Then

|y(x)− ỹ(x)| ≤
{

ε
L

(
eL(x−x0) − 1

)
if L > 0

ε(x− x0) if L = 0

}
, (L from (5.2)).
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Proof. Set δ(x) := |y(x)− ỹ(x)| and note that

δ(x) =

∣∣∣∣∫ x

x0

[
f(ξ, y(ξ))− f̃(ξ, ỹ(ξ))

]
dξ

∣∣∣∣ ≤ ∫ x

x0

∣∣∣[f(ξ, y(ξ))− f̃(ξ, ỹ(ξ))
]∣∣∣ dξ

=

∫ x

x0

∣∣∣f(ξ, y(ξ))− f(ξ, ỹ(ξ)) + f(ξ, ỹ(ξ))− f̃(ξ, y(ξ))
∣∣∣ dξ

≤
∫ x

x0

|f(ξ, y(ξ))− f(ξ, ỹ(ξ))|dξ +

∫ x

x0

∣∣∣f(ξ, ỹ(ξ))− f̃(ξ, y(ξ))
∣∣∣dξ

≤
∫ x

x0

Lδ(ξ)dξ + (x− x0)ε.

A majorant of δ is the solution d of d(x) =
∫ x
x0
Ld(ξ)dξ+ (x−x0)ε. In the case of

L > 0, the solution is d(x) = ε
L

(
eL(x−x0) − 1

)
. ut

5.4 Analysis of One-Step Methods

In §5.4.1 we explain why for our analysis in §§5.4.3–5.4.5 it is sufficient to study
explicit one-step methods. In §5.4.2 we discuss the Lipschitz continuity of φ.

5.4.1 Implicit Methods

Definition 5.13. A general implicit one-step method has the form

ηi+1 := ηi + hφ(xi, ηi, ηi+1, h; f). (5.14)

An example of (5.14) is the implicit Euler method, where

φ(xi, ηi, ηi+1, h; f) = f(xi + h, ηi+1). (5.15)

Next we assume that φ is defined for xi ∈ I , ηi, ηi+1 ∈ R, and sufficiently small
h (0 < h ≤ h0).

Exercise 5.14. Let φ from (5.14) be Lipschitz continuous with respect to ηi+1:

|φ(xi, ηi, ηi+1, h; f)− φ(xi, ηi, η̂i+1, h; f)| ≤ L |ηi+1 − η̂i+1| .

Show that the fixed-point equation (5.14) is uniquely solvable, if h < 1/L.

Assuming unique solvability of (5.14), a function ηi+1 = Ψ(xi, ηi, h; f) exists
by the implicit function theorem. Inserting ηi+1 = Ψ(xi, ηi, h; f) into the third
argument of φ(xi, ηi, ηi+1, h; f), one obtains formally an explicit one-step method
(5.5) with
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φ̂(xi, ηi, h; f) := φ(xi, ηi, Ψ(xi, ηi, h; f), h; f).

Hence, for theoretical considerations we may restrict ourselves to the explicit
case (5.5). The only additional requirement is that one has to restrict the step sizes
to 0 < h ≤ h0 with sufficiently small h0. For the theoretical analysis the latter
condition is of no consequence, since we study the limit h→ 0.

5.4.2 Lipschitz Continuity of φ

Analogous to the Lipschitz condition (5.2) we shall need Lipschitz continuity of φ:

|φ(xi, η
′, h; f)− φ(xi, η

′′, h; f)| ≤ Lφ |η′ − η′′| for all

xi ∈ I,
η′, η′′ ∈ R,
h ≤ h0.

(5.16)

Since φ is defined implicitly via f , the Lipschitz property of φ is inherited from the
Lipschitz continuity of f . Therefore, we have always to assume that f satisfies (5.2).

Exercise 5.15. (a) Prove for the Euler and Heun methods that (5.2) implies (5.16).
(b) According to §5.4.1, the implicit Euler method (5.15) leads to an explicit method
with φ̂(xi, ηi, h; f). For sufficiently small h, prove Lipschitz continuity of φ̂.

5.4.3 Consistency

We now motivate the consistency condition. Replacing the discrete solution ηi of
ηi+1 := ηi+hφ(xi, ηi, h; f) by the exact solution y(xi) of the differential equation,
we obtain the so-called local discretisation error τ by

y(xi+1) = y(xi) + h [φ(xi, y(xi), h; f) + τ(xi, y(xi);h)] .

For the explicit definition of τ(ξ, η;h) fix ξ ∈ I and η ∈ R, and let Y (· ; ξ, η) be the
solution of (5.1a) with initial value condition

Y (ξ; ξ, η) = η at x = ξ (not at x = x0).

Then

τ(ξ, η;h) :=
Y (ξ + h; ξ, η)− η

h
− φ(ξ, η, h; f) (5.17)

defines the local discretisation error at (ξ, η;h).
Obviously, we may expect that the one-step method (5.5) is better the smaller τ

is. Note that τ = 0 leads to the ideal result ηi = y(xi).
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Definition 5.16. (a) The one-step method characterised by φ is called consistent if

sup
x∈I
|τ(x, y(x);h)| → 0 (h→ 0). (5.18)

Here y is the solution of (5.1a,b). The argument f ∈C(I×R) of φ must satisfy (5.2).
(b) Furthermore, φ is called consistent of order p if τ(x, y(x);h) = O(hp) holds
uniformly for h→ 0 on x ∈ I for all sufficiently smooth f .

Assuming f to be sufficiently smooth,5 one performs the Taylor expansion of
1
h [y(x+ h;x, η)− η] and uses

y(x+ h;x, η) = y(x;x, η) + hy′(x;x, η) + o(h) = η + hf(x, η) + o(h).

Hence (5.18) implies the condition φ(x, η, h; f) → f(x, η). One easily checks that
this condition is satisfied for the methods of Euler and Heun.

However, the trivial one-step method ηi+1 := ηi (i.e., φ = 0) leads, in general,
to τ(x, η;h) = O(1) and is not consistent.

5.4.4 Convergence

We recall the notation ηi = η(xi, h). The desired property is η(x, h) ≈ y(x).
Concerning the limit h → 0, we restrict ourselves tacitly to (a subsequence of)
hn := (x− x0) /n, since then x = nhn belongs to the grid on which η(·, hn) is
defined.

Definition 5.17 (convergence). A one-step method is called convergent if for all
Lipschitz continuous f and all x ∈ I

lim
h→0

η(x, h) = y(x) (y solution of (5.1a,b))

holds. A one-step method has convergence order p if η(x, h) = y(x) + O(hp) for
sufficiently smooth f.

5.4.5 Stability

Consistency controls the error generated in the i-th step from xi to xi+1 under the
assumption that ηi is the exact starting value. At the start, η0 = y0 is indeed exact,
so that according to condition (5.18) the error ε1 := η1 − y1 is o(h) or O(hp+1),
respectively.

During the steps for i ≥ 1 the consistency error, e.g., arising at x1, is transported
into η2, η3, . . . Since the computation proceeds up to x = xn, one has to perform

5 Without p-fold continuous differentiability of f one cannot verify τ(x, η;h) = O(hp).
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n = O(1/h) steps. If the error would be amplified in each step by a factor c > 1
(c independently of h), ηn had an errorO(cn) = O(c1/h). Obviously, such an error
would explode exponentially as h → 0. In addition, not only can the consistency
error ε1 be amplified, but also can all consistency errors εi at the later grid points
xi.

Next we state that—thanks to Lipschitz condition (5.16)—the errors are under
control.6

Lemma 5.18 (stability of one-step methods). Assume that the Lipschitz condi-
tion (5.16) holds with constant Lφ and the local discretisation error is bounded by
|τ(xi, y(xi);h)| ≤ Th (cf. (5.17)). Then the global discretisation error is bounded
by

|η(x, h)− y(x)| ≤ Th
e(x−x0)Lφ − 1

Lφ
. (5.19)

Proof. δi := |ηi − y(xi)| is the global error. The local discretisation error is de-
noted by τi = τ(xi, y(xi);h). Starting with δ0 = 0, we obtain the recursion formula

δi+1 = |ηi+1 − y(xi+1)| = |ηi + hφ(xi, ηi, h; f)− y(xi+1)|

=

∣∣∣∣ηi − y(xi)− h
[
y(xi+1)− y(xi)

h
− φ(xi, ηi, h; f)

]∣∣∣∣
=

∣∣∣∣ηi − y(xi)− h
[
y(xi+1)− y(xi)

h
− φ(xi, y(xi), h; f)

]
+ h [φ(xi, ηi, h; f)− φ(xi, y(xi), h; f)]

∣∣∣∣
≤ |ηi − y(xi)|+ h

∣∣∣∣y(xi+1)− y(xi)

h
− φ(xi, y(xi), h; f)

∣∣∣∣
+ h |φ(xi, ηi, h; f)− φ(xi, y(xi), h; f)|

≤ δi + h |τi|+ hLφδi = (1 + hLφ) δi + hTh ,

which coincides with (5.11) for aν = δν , h = h, L = Lφ, k = 1, B = Th. Lemma
5.6 proves δν ≤ Th(eνhLφ − 1)/Lφ because of a0 = δ0 = 0. ut

So far, consistency is not assumed. From consistency we now derive conver-
gence. Furthermore, consistency order and convergence order will coincide.

Theorem 5.19. Let the one-step method (5.5) fulfil the Lipschitz condition (5.16),
and assume consistency. Then (5.5) is also convergent:

lim
h→0

η(x, h) = y(x).

If, in addition, the consistency order is p, then also the convergence is of order p.

Proof. Consistency implies Th → 0, so that convergence follows from (5.19).
Consistency order p means Th≤Chp and implies |η(x, h)− y(x)|≤O(hp). ut

6 Note that perturbations in the initial value x0 are already analysed in Theorem 5.9.
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We remark that, in general, the Lipschitz condition (5.16) holds only locally.
Then one argues as follows. G := {(x, y) : x ∈ [x0, xE ], |y − y(x)| ≤ 1} is com-
pact. It suffices7 to require (5.16) on G. For sufficiently small h, Th e(x−x0)Lφ−1

Lφ

in (5.19) is bounded by 1 and therefore (x, η(x, h)) ∈ G. A view to the proof
of Lemma 5.18 shows that all intermediate arguments belong to G and therefore,
(5.16) is applicable.

According to Theorem 5.19, one may be very optimistic that any consistent one-
step method applied to some ordinary differential equation is working well. How-
ever, the statement concerns only the asymptotic behaviour as h → 0. A problem
arises if, e.g., the asymptotic behaviour is only observed for h ≤ 10−9, while we
want to apply the methods for a step size h ≥ 0.001. This gives rise to stronger
stability requirements (cf. §5.5.8).

5.5 Analysis of Multistep Methods

The general multistep method is defined in (5.6). Introducing formally αr := 1, we
can rewrite the r-step method as

r∑
ν=0

ανηj+ν = hφ(xj , ηj+r, ηj+r−1, . . . , ηj , h; f) . (5.20a)

A multistep method is called linear if φ has the particular form

φ(xj , ηj+r, ηj+r−1, . . . , ηj ;h; f) =

r∑
µ=0

bµ f(xj+µ, ηj+µ)︸ ︷︷ ︸
=:fj+µ

. (5.20b)

If br = 0, the linear multistep method is explicit, otherwise it is implicit.
The coefficients αν from (5.20a) define the characteristic polynomial

ψ(ζ) :=

r∑
ν=0

ανζ
ν . (5.21a)

In the case of a linear multistep method, a further polynomial can be introduced:

σ(ζ) :=
r−1∑
ν=0

bνζ
ν . (5.21b)

Remark 5.20. Consistency condition (5.7) is equivalent to

ψ(1) = 0. (5.22)

7 Locally Lipschitz continuous functions are uniformly Lipschitz continuous on a compact set.
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5.5.1 Local Discretisation Error, Consistency

Using Y (x; ξ, η) from (5.17), we define the local discretisation error by

τ(x, y;h) := (5.23)

1

h

[
r∑

ν=0

ανY (xj+ν ;xj , y)− hφ
(
xj , Y (xj+ν−1;xj , y), . . . , Y (xj ;xj , y)︸ ︷︷ ︸

=y

, h; f
)]
.

Definition 5.21. A multistep methods is called consistent if

sup
x∈I
|τ(x, y(x);h)| → 0 (h→ 0)

for all f ∈ C(I × R) with Lipschitz property (5.2). Here y(x) is the solution of
(5.1a,b). Furthermore, the multi-step method (5.20a) is called consistent of order p
if |τ(x, y(x);h)| = O(hp) holds for sufficiently smooth f .

For f = 0 and the initial value y0 = 1, the solution is y(x) = 1 and, in this case,
τ(x, y(x);h)→ 0 simplifies to (

∑r
ν=0 αν − hφ) /h→ 0, implying

∑r
ν=0 αν = 0,

which is condition (5.7).

5.5.2 Convergence

Differently from the case of a one-step method, we cannot assume exact starting
values η1, . . . , ηr−1. Therefore, we assume that all starting values are perturbed:

ηj = y(xj) + εj , ε = (εj)j=0,...,r−1 .

We denote the solution corresponding to these starting values by η(x; ε, h).

Definition 5.22. A multistep methods is called convergent if for all f ∈ C(I × R)
with (5.2) and all starting values y0, the global error satisfies

sup
x∈I
|η(x; ε, h)− y(x)| → 0 for h→ 0 and ‖ε‖∞ → 0.

A stronger requirement is that we also perturb the equations (5.20a) by εj for
j ≥ r:

r∑
ν=0

ανηj+ν = hφ(xj , ηj+r−1, . . . , ηj , h; f) + hεj+r for j ≥ 0. (5.24)

In this case, ε = (εj)j≥0 is a tuple with as many entries as grid points (note that
the quantities εj for j < r and j ≥ r have a quite different meaning!). Again,
η(x; ε, h)→ y(x) can be required for h→ 0 and ‖ε‖∞ → 0.
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5.5.3 Stability

We recall the characteristic polynomial ψ defined in (5.21a).

Definition 5.23. The multistep method (5.20a) is called stable if all roots ζ of the
characteristic polynomial ψ have the following property: either |ζ| < 1 or ζ is a
simple zero with |ζ| = 1.

We check three examples:
(1) The midpoint rule (5.8) yields ψ(ζ) = ζ2 − 1. Both zeros ζ = ±1 are simple

with |ζ| = 1. Therefore, the midpoint rule is stable.
(2) The two-step method (5.9) describing the extrapolation corresponds toψ(ζ) =

ζ2 − 2ζ + 1 = (ζ − 1)
2. Therefore, ζ = 1 is a double root and indicates instability.

(3) In the case of a one-step methods (i.e., r = 1), αr = 1 and (5.7) lead to
ψ(ζ) = ζ−1. The only zero ζ = 1 satisfies the second condition in Definition 5.23.
This proves the following remark corresponding to the result of Lemma 5.18.

Remark 5.24. One-step methods are always stable in the sense of Definition 5.23.

5.5.4 Difference Equations

The relation between the stability condition from Definition 5.23 and the multistep
methods (5.20a) is not quite obvious. The connection will be given in the study of
difference equations. As preparation we first discuss power bounded matrices.

5.5.4.1 Power Bounded Matrices

Definition 5.25. Let ‖·‖ be a matrix norm. A square matrix A is power bounded8 if

sup{‖An‖ : n ∈ N} <∞. (5.25)

Because of the norm equivalence in finite-dimensional vector spaces, the choice
of the matrix norm ‖·‖ in Definition 5.25 is irrelevant.

To prepare the next theorem, we recall some terms from linear algebra:
Let λ be an eigenvalue of A ∈ Cd×d. λ has algebraic multiplicity k ∈ N0,

if the characteristic polynomial det(ζI − A) contains the factor (ζ − λ)
k, but not

(ζ − λ)
k+1

. λ has geometric multiplicity k ∈ N0 if dim{e ∈ Cd : Ae = λe} = k.
The inequality ‘geometric multiplicity ≤ algebraic multiplicity’ is always valid.

8 In principle, we would like to use the term ‘stable matrix’; however, this notation is already used
for matrices satisfying sup{‖exp(tA)‖ : t > 0} <∞.

We remark that there is an extension of power boundedness to a family F of matrices by
sup{‖An‖ : n ∈ N, A ∈ F} < ∞. Characterisations are given by the Kreiss matrix theorem
(cf. Kreiss [13], Morton [17], and [18, Sect. 4.9]). For a generalisation, see Toh–Trefethen [22].
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‖·‖ is an associated matrix norm in Cd×d if there is a vector norm ||| · ||| in Cd
such that ‖A‖ = sup{||| Ax ||| / ||| x |||: x 6= 0} for all A ∈ Cd×d.

The norm ‖·‖∞ has two meanings. For vectors x ∈ Cd, it is the maximum norm
‖x‖∞ = maxi |xi|, while for matrices it is the associated matrix norm. Because of
the property ‖M‖∞ = maxi

∑
j |Mij |, it is also called the row-sum (matrix) norm.

We denote the spectrum of a square matrix M by

σ(M) := {λ ∈ C : λ eigenvalue of M}.

Exercise 5.26. Suppose that ‖·‖ is an associated matrix norm. Prove |λ| ≤ ‖M‖
for all λ ∈ σ(M).

Theorem 5.27. Equivalent characterisations of the power boundedness of A are
(5.26a) as well as (5.26b):

All eigenvalues of A satisfy either
(a) |λ| < 1 or
(b) |λ| = 1, and λ has coinciding algebraic and geometric multiplicities.

(5.26a)

There is an associated matrix norm such that ‖A‖ ≤ 1. (5.26b)

Proof. We shall prove (5.25)⇒ (5.26a)⇒ (5.26b)⇒ (5.25).
(i) Assume (5.25) and set Cstab := sup{‖An‖ : n ∈ N}. Choose an associated

matrix norm ‖·‖. Applying Exercise 5.26 to M = An, we obtain |λn| = |λ|n ≤
‖An‖ ≤ Cstab for all n ∈ N, hence |λ| ≤ 1. Assume |λ| = 1. If λ has higher
algebraic than geometric multiplicity, there is an eigenvector e 6= 0 and a generalised
eigenvector h, so that Ae = λe and Ah = e + λh. We conclude that Anh =
λn−1 (ne+ λh) and ‖Anh‖ = ‖ne+ λh‖ ≥ n ‖e‖ − ‖λh‖ → ∞ as n → ∞, in
the contradiction to ‖Anh‖ ≤ Cstab ‖h‖. Hence, (5.26a) holds.

(ii) Assume (5.26a). Sort the eigenvalues λi of A such that |λ1| ≤ |λ2| ≤ . . . <
|λd−m+1| = . . . = |λd| = 1, where m ≥ 0 is the number the zeros with absolute
value equal to one. Consider the Jordan normal form

J = T−1AT =

[
J1 0
0 D

]
with


J1 =


λ1 ∗

λ2 ∗
. . . ∗

λd−m

 ,
D = diag{λd−m+1, . . . , λd},

where the entries ∗ are either zero or one. Since the algebraic and geometric
multiplicities of λd−m+1, . . . , λd coincide, D is a diagonal m × m matrix, while
all eigenvalues λi (i = 1, . . . , r − m) have absolute value < 1. Set ∆ε :=
diag{1, ε, ε2, . . . , εr−1} with ε ∈ (0, 1 − |λr−m|]. One verifies that ∆−1

ε J∆ε has
the row-sum norm ‖∆−1

ε J∆ε‖∞ ≤ 1. Therefore, a transformation by S := T∆ε

yields the norm ‖S−1AS‖∞ ≤ 1. ‖A‖ := ‖S−1AS‖∞ is the associated matrix
norm corresponding to the vector norm ‖x‖ := ‖Sx‖∞. This proves (5.26b).

(iii) Assume (5.26b). Associated matrix norms are submultiplicative; i.e.,
‖An‖ ≤ ‖A‖n, so that ‖A‖ ≤ 1 implies Cstab = 1 <∞. ut
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So far, we have considered a single matrix. In the case of a family A ⊂ Cn×n
of matrices, one likes to have a criterion as to whether there is a uniform bound of
sup{‖An‖ : n ∈ N, A ∈ A}.

Lemma 5.28. Let A ⊂ Cn×n be bounded, and suppose that there is some γ < 1
such that the eigenvalues satisfy |λ1(A)| ≤ |λ2(A)| ≤ . . . ≤ |λn(A)| ≤ 1 and
|λn−1(A)| ≤ γ < 1 for all A ∈ A. Then sup{‖An‖ : n ∈ N, A ∈ A} <∞.

Proof. We may choose the spectral norm ‖ · ‖ = ‖ · ‖2. The Schur normal form RA
is defined byA = QRAQ

−1,Q unitary,RA upper triangular, with (RA)ii = λi(A).
By boundedness ofA, there is some M > 0 such that RA is bounded entry-wise by
(RA)ij ≤ Rij , where the matrix R is defined by Rij := 0 for i > j, Rii := γ for

1 ≤ i ≤ n−1, Rnn := 1, Rij := M for i < j; i.e., R =


γ . . . M M

0
. . . M M

0 . . . γ M
0 . . . 0 1

. It is easy to

verify that ‖An‖2 = ‖RnA‖2 ≤ ‖Rn‖2. Since R is power bounded, we have proved
a uniform bound. ut

5.5.4.2 Solution Space F0

The set F = CN0 consists of sequences x = (xj)j∈N0
of complex numbers. We are

looking for sequences x ∈ F satisfying the following difference equation:

r∑
ν=0

ανxj+ν = 0 for all j ≥ 0,where αr = 1. (5.27)

Lemma 5.29. (a) F forms a linear vector space.
(b) F0 := {x ∈ F satisfies (5.27)} is a linear subspace of F with dim(F0) = r.

Proof. (i) The vector space properties of F and F0 are trivial. It remains to prove
dimF0 = r. We define x(i) ∈ F for i = 0, 1, . . . , r − 1 by the initial values
x

(i)
j = δij for j ∈ {0, . . . , r − 1}. For j ≥ r we use (5.27) to define

x
(i)
j :=

r−1∑
ν=0

ανx
(i)
j−r+ν for all j ≥ r. (5.28)

Obviously, x(i) satisfies (5.27); i.e., x(i) ∈ F0 for 0 ≤ i ≤ r − 1.
(ii) Assume

∑
i βix

(i) = 0. Evaluating the entries at j ∈ {0, . . . , r − 1}, we
obtain 0 =

∑
i βix

(i)
j =

∑
i βiδij = βj , which proves linear independence.

(iii) For each x ∈ F0 we define y := x−
∑r−1
i=0 xix

(i) ∈ F0, which by definition
satisfies y0 = y1 = . . . = yr−1 = 0. Analogous to (5.28), these initial values lead
to yj = 0 for all j ≥ r. The result y = 0 proves that {x(0), . . . ,x(r−1)} already
spans F0. Together, dim(F0) = r follows. ut
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5.5.4.3 Representation of the Solutions

Remark 5.30. (a) Let ζ0 ∈ C be a root of the polynomial ψ(ζ) =
∑r
ν=0 ανζ

ν .
Then x = (ζj0)j∈N0

is a solution of (5.27); i.e., x ∈ F0.
(b) Suppose that ψ has r different zeros ζi ∈ C, i = 1, . . . , r. Then the solutions
x(i) = (ζji )j∈N0 form a basis of the space F0.

Proof. (i) Inserting xj = ζj0 into (5.27) yields

r∑
ν=0

ανxj+ν =

r∑
ν=0

ανζ
j+ν
0 = ζj0

r∑
ν=0

ανζ
ν
0 = ζj0ψ(ζ0) = 0;

i.e., x ∈ F0.
(ii) By Part (i), x(i) ∈ F0 holds. One easily verifies that the solutions x(i) are

linearly independent. Because of dimF0 = r, {x(i) : 1 ≤ i ≤ r} forms a basis. ut

In the case of Remark 5.30, the zeros are simple. It remains to discuss the case
of multiple zeros.

We recall that the polynomial ψ has an (at least) k-fold zero ζ0 if and only if
ψ(ζ0) = ψ′(ζ0) = . . . = ψ(k−1)(ζ0) = 0 . The Leibniz rule yields

( d

dζ

)` (
ζjψ(ζ)

)
= 0 at ζ = ζ0 for 0 ≤ ` ≤ k − 1.

The explicit representation of ( d
dζ )`

(
ζjψ(ζ)

)
reads

0 =
(
ζjψ(ζ)

)(`)∣∣∣
ζ=ζ0

=
r∑

ν=0

ανζ
j+ν−`
0 (j + ν) (j + ν − 1) · . . . · (j + ν − `+ 1) .

(5.29)
Define x(`) for ` ∈ {0, 1, . . . , k − 1} via x(`)

j = ζj0j (j − 1) · . . . · (j − `+ 1).
Insertion into the difference equation (5.27) yields

r∑
ν=0

ανx
(`)
j+ν =

r∑
ν=0

ανζ
j+ν
0 (j + ν) (j + ν − 1) · . . . · (j + ν − `+ 1) .

This is ζ`0 times the expression in (5.29); hence
∑r
ν=0 ανx

(`)
j+ν = 0; i.e., x(`) ∈ F0.

Remark 5.31. Let ζ0 6= 0 be a zero of ψ with multiplicity k.
(a) Then x(0), . . . ,x(k−1) with x(`)

j = ζj0
∏`−1
ν=0(j − ν) (` = 0, . . . , k − 1) are k

linearly independent solutions of (5.27).
(b) Similarly, x̂(`)

j = ζj0j
` represent k linearly independent solutions of (5.27).

Proof. (i) x(`) ∈ F0 is shown above. The linear independence for ` = 0, . . . , k − 1

follows, e.g., from the different growth of x(`)
j /ζj0 for j →∞.
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(ii)
{∏`−1

ν=0(x− ν) : ` = 0, . . . , k − 1
}

as well as
{
x` : ` = 0, . . . , k − 1

}
are

bases of the polynomials of degree ≤ k − 1. Therefore {x(0), . . . ,x(k−1)} and
{x̂(0), . . . , x̂(k−1)} span the same space. ut

The case ζ0 = 0 is excluded in Remark 5.31, since the previous definition leads
to x(`)

j = 0 for j ≥ min{1− `, 0} and therefore does not yield linearly independent
solutions.

Remark 5.32. Let ζ0 = 0 be a k-fold zero of ψ. Then x(i) with x(i)
j = (δij)j∈N0

(i = 0, . . . , k − 1) are k linearly independent solutions of (5.27).

Proof. Use ψ(0) = ψ′(0) = . . . = ψ(k−1)(0) = 0 to obtain α0 = . . . = αk−1 = 0.
This shows that

∑r
ν=0 ανx

(i)
j+ν =

∑r
ν=k ανx

(i)
j+ν . By definition, x(i)

j+ν = 0 holds
for ν ≥ k; i.e., (5.27) is satisfied. Obviously, the x(i) are linearly independent. ut

Theorem 5.33. Let ζi (i = 1, . . . ,m) be the different zeros of the polynomial
ψ(ζ) =

∑r
ν=0 ανζ

ν with the corresponding multiplicities ki. Any ζi gives rise
to ki solutions of (5.27), which are defined in Remark 5.31, if ζi 6= 0, and in
Remark 5.32, if ζi = 0. Altogether, r linearly independent solutions spanning F0

are characterised.

Proof. The linear independence of the constructed solutions is left as an exercise.
In Theorem 5.33,

∑
ki = r solutions are described. They form a basis of F0, since,

according to Lemma 5.29, dimF0 = r holds. ut

5.5.4.4 Stability

Definition 5.34. The difference equation (5.27) is called stable if any solution of
(5.27) is bounded with respect to the supremum norm:

‖x‖∞ := sup
j∈N0

|xj | <∞ for all x ∈ F0.

Remark 5.35. A characterisation equivalent to Definition 5.34 reads as follows:
there is a constant C, so that

‖x‖∞ ≤ C max
j=0,...,r−1

|xj | for all x ∈ F0. (5.30)

Proof. (i) Eq. (5.30) implies ‖x‖∞ <∞, since maxj=0,...,r−1 |xj | is always finite.
(ii) We choose the basis x(i) ∈ F0 as in (ii) of the proof of Lemma 5.29. x has

a representation x =
∑r−1
i=0 xix

(i). Assuming stability in the sense of Definition
5.34, we have Ci := ‖x(i)‖∞ < ∞ and therefore also C :=

∑r−1
i=0 Ci < ∞.

The estimate ‖x‖∞ = ‖
∑r−1
i=0 xix

(i)‖∞ ≤
∑r−1
i=0 |xi| ‖x(i)‖∞ =

∑r−1
i=0 Ci |xi| ≤

C maxj=0,...,r−1 |xj | proves (5.30). ut
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Obviously, all solutions of (5.27) are bounded if and only if all basis solutions
given in Theorem 5.33 are bounded. The following complete list of disjoint cases
refers to the zeros ζi of ψ and their multiplicities ki.

1. |ζi| < 1: all sequences (ζji j
`)j∈N0

with 0 ≤ ` < ki are zero sequences and
therefore bounded.

2. |ζi| > 1: for all sequences lead to lim |ζji j`| =∞; i.e., they are unbounded.
3. |ζi| = 1 and ki = 1 (simple zero): (ζji )j∈N0

is bounded by 1 in absolute value.
4. |ζi| = 1 and ki > 1 (multiple zero): lim |ζji j`| = ∞ holds for 1 ≤ ` ≤ ki − 1;

i.e., the sequences are unbounded.

Therefore, the first and third cases characterise the stable situations, while the
second and fourth cases lead to instability. This proves the next theorem.

Theorem 5.36. The difference equation (5.27) is stable if and only if ψ satisfies the
stability condition from Definition 5.23.

5.5.4.5 Companion Matrix

Definition 5.37. The companion matrix of the polynomial ψ(ζ) =
∑r
ν=0 ανζ

ν is of
size r × r and is equal to

A =


0 1

. . .
. . .
0 1

−α0 . . . −αr−2 −αr−1

 . (5.31)

Remark 5.38. (a) det(ζI −A) = ψ(ζ).
(b) Any solution (xj)j∈N0

of the difference equation (5.27) satisfies (5.32) and, vice
versa, (5.32) implies (5.27):

xj+1

xj+2

...
xj+r

 = A


xj
xj+1

...
xj+r−1

 . (5.32)

By (5.32) we can formally reformulate the r-step method as a one-step method
for the r-tuple Xj := (xj , . . . , xj+r−1)

>. Therefore, the stability behaviour must
be expressed by the properties of A. An obvious connection is described in the next
remark.

Remark 5.39. The difference equation (5.27) is stable if and only if A is a power
bounded matrix.

Proof. Let ‖·‖ denote a vector norm as well as the associated matrix norm. The
tuple Xj satisfies Xj = AXj−1 (cf. (5.32)). In particular, Xn = AnX0 holds.
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Uniform boundedness of |xj | and ‖Xj‖ are equivalent. If (5.27) is stable, ‖AnX0‖
is uniformly bounded for all X0 with ‖X0‖ ≤ 1 and all n ∈ N; i.e., A is a power
bounded matrix. On the other hand, Cstab := sup{‖An‖ : n ∈ N} < ∞ yields the
estimate ‖Xn‖ ≤ Cstab‖X0‖ and therefore stability. ut

Using (5.26b), we obtain the next statement.

Lemma 5.40. The difference equation (5.27) is stable if and only if there is an
associated matrix norm, so that ‖A‖ ≤ 1 holds for the companion matrix A from
(5.31).

5.5.4.6 Estimates of Inhomogeneous Solutions

Theorem 5.41. Suppose that the difference equation is stable and that the initial
values fulfil |xj | ≤ α for 0 ≤ j ≤ r − 1. If the sequence (xj)j∈N0

satisfies the
inhomogeneous difference equation

∑r
ν=0 ανxj+ν = βj+r with

|βj+r| ≤ β + γmax{|xµ| : 0 ≤ µ ≤ j + r − 1}

for some γ ≥ 0, then there exist k and k′ such that

|xj | ≤ kk′αejkγ +

{
jkβ for γ = 0,
β
γ

(
ejγk − 1

)
for γ > 0.

Proof. (i) Let A be the companion matrix. ‖·‖ denotes the vector norm in Rr as
well as the associated matrix norm ‖·‖ from Lemma 5.40. Because of the norm
equivalence,

‖X‖∞ ≤ k ‖X‖ , ‖X‖ ≤ k′ ‖X‖∞ for all X ∈ Rr

holds for suitable k, k′.
(ii) Set Xj := (xj , . . . , xj+r−1)

> and e = (0, . . . , 0, 1)
> ∈ Rr. According to

Lemma 5.40, ‖A‖ ≤ 1 holds. Since a scaling of the vector norm does not change
the associated matrix norm, we assume without loss of generality that ‖e‖ = 1. The
difference equation

∑r
ν=0 ανxj+ν = βj+r is equivalent to

Xj+1 = AXj + βj+re.

(iii) Set ξj := max{|xµ| : 0 ≤ µ ≤ j}. By definition of Xµ, also ξj =
max0≤µ≤j−r+1 ‖Xµ‖∞ is valid for j ≥ r − 1. It follows that

‖Xj+1‖ = ‖AXj + βj+re‖ ≤ ‖A‖︸︷︷︸
≤1

‖Xj‖+ |βj+r| ‖e‖︸︷︷︸
=1

≤ ‖Xj‖+ |βj+r|

≤ ‖Xj‖+ β + γξj+r−1.

Define ηj by
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η0 := ‖X0‖ , ηj+1 := ηj + β + γξj+r−1. (5.33)

Obviously, ‖Xj‖ ≤ ηj and ηj+1 ≥ ηj (j ≥ 0) hold. The estimate

ξj+r−1 = max
0≤µ≤j+r−1

|xµ| = max
0≤µ≤j

‖Xµ‖∞

≤ max
0≤µ≤j

k ‖Xµ‖ ≤ k max
0≤µ≤j

ηµ =
ηj+1≥ηj

kηj

together with the definition (5.33) of ηj+1 yields

ηj+1 ≤ (1 + γk) ηj + β.

Apply Lemma 5.6 to this inequality. The corresponding quantities in (5.11) are
ν ≡ j, aν ≡ ηj , h ≡ 1, L ≡ kγ, B ≡ β. Lemma 5.6 yields the inequality

ηj ≤ η0ejkγ +

{
jβ if γ = 0
β
kγ

(
ejkγ − 1

)
if γ > 0

}
(j ∈ N0).

Furthermore, η0 = ‖X0‖ ≤ k′ ‖X0‖∞ ≤ k′α and |xj | ≤ ‖Xj‖∞ ≤ k ‖Xj‖ ≤ kηj
holds. Together, the assertion of the theorem follows. ut

5.5.5 Stability and Convergence Theorems

We shall show that convergence and stability of multistep methods are almost
equivalent. For exact statements one needs a further assumption concerning the
connection of φ(xj , ηj+r−1, . . . , ηj , h; f) and f . A very weak assumption is

f = 0 =⇒ φ(xj , ηj+r−1, . . . , ηj , h; f) = 0. (5.34)

This assumption is satisfied, in particular, for the important class of linear r-step
methods:

φ(xj , ηj+r, . . . , ηj , h; f) =

r∑
µ=0

bµfj+µ with fk = f(xk, ηk). (5.35)

Theorem 5.42 (stability theorem). Suppose (5.34). Then the convergence from
Definition 5.22 implies stability.

Proof. (i) We choose f = 0 and the starting value y0 = 0. Therefore, y = 0 is
the exact solution of the initial-value problem, while the discrete solution satisfies
the equations

∑r
ν=0 ανηj+ν = 0 with initial values η0 = ε0, . . . , ηr−1 = εr−1

(cf. Definition 5.22). Since
∑r
ν=0 ανηj+ν = 0 is the difference equation (5.27),

(ηj)j∈N0
∈ F0 holds. However, we have to note that the multistep method visits

only the finite section (ηj)0≤j≤J(h) with J(h) = b(xE − x0) /hc, since those j
satisfy xj ∈ I.
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(ii) For the indirect proof, assume instability. Then an unbounded solution
x ∈ F0 exists. The divergence

C(h) := max {|xj | : 0 ≤ j ≤ J(h)} → ∞ for h→ 0

follows from J(h) → ∞ for h → 0 and ‖x‖∞ = ∞. Choose the initial pertur-
bation ε = (εj)j=0,...,r−1 := (xj/C(h))j=0,...,r−1. Obviously, ‖ε‖∞ → 0 holds
for h → 0. For this initial perturbation the multistep method produces the solution
(ηj)0≤j≤J(h) with ηj = 1

C(h)xj . Since

sup
x∈I
|η(x; ε, h)− y(x)| = 1

C(h)
max {|xj | : 0 ≤ j ≤ J(h)} = 1,

this error does not tend to 0 as h → 0, ‖ε‖∞ → 0, in contradiction to the assumed
convergence. ut

For the reverse direction we need a Lipschitz condition corresponding to (5.16)
in the case of a one-step method:

for each f ∈ C(I × R) with (5.2) there is Lφ ∈ R such that (5.36)
|φ(xj , ur−1, . . . , u0, h; f)− φ(xj , vr−1, . . . , v0, h; f)| ≤ Lφ max

i=0,...,r−1
|ui − vi| .

Remark 5.43. Condition (5.36) is satisfied for linear r-step methods (5.35).

Theorem 5.44 (convergence theorem). Let (5.36) be valid. Furthermore, the multi-
step method is supposed to be consistent and stable. Then it is convergent (even in
the stronger sense as discussed below Definition 5.22).

Proof. The initial error is defined by ηj = y(xj) + εj for j = 0, . . . , r − 1. The
multistep formula with additional errors hεj+r is described in (5.24). The norm of
the error is ‖ε‖∞ := max{|εj | : 0 ≤ j ≤ J(h)} with J(h) as in the previous
proof (the usual convergence leads to εj = 0 for r ≤ j ≤ J(h), only in the case
described in brackets can εj 6= 0 appear for r ≤ j ≤ J(h)). We have to show that
η(x; ε, h)→ y(x) for h→ 0, ‖ε‖∞ → 0.

The error is denoted by ej := ηj − y(xj). The initial values for 0 ≤ j ≤ r − 1
are ej = εj . The equation

r∑
ν=0

ανy(xj+ν)−hφ(xj , y(xj+r−1), . . . , y(xj), h; f) = hτ(xj , y(xj);h) =: hτj+r

containing the local discretisation error τj+r is equivalent to (5.23). We form the
difference between the latter equation and (5.24) for j ≥ r and obtain

r∑
ν=0

ανej+ν = βj+r := h (εj+r − τj+r)

+ h [φ(xj , ηj+r−1,. . . , ηj , h; f)− φ(xj , y(xj+r−1),. . . , y(xj), h; f)] .
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From (5.36) we infer that

|βj+r| ≤ hLφ max
j≤µ≤,j+r−1

|eµ|+ h (‖ε‖∞ + ‖τ‖∞) ,

where τ = (τj)r≤j≤J(h) , ‖τ‖∞ = max
r≤j≤J(h)

|τj |.

The consistency condition supx∈I τ(x, y(x);h)→0 implies ‖τ‖∞→0 for h→0.
The assumptions of Theorem 5.41 hold with

xj = ej , α = ‖ε‖∞ , β = h (‖ε‖∞ + ‖τ‖∞) , γ = hLφ,

so that the theorem yields

|ej | ≤ kk′ ‖ε‖∞ ejhLφk +
‖ε‖∞ + ‖τ‖∞

Lφ

(
ejhLφk − 1

)
(5.37)

in the case of hLφ > 0 (the case hLφ = 0 is analogous). The product jh in the
exponent is to be interpreted as xj − x0 and therefore bounded by xE − x0 (or it
is constant and equal to x in the limit process j = n → ∞, h := (x− x0) /n). As
part of the definition of convergence, ‖τ‖∞ → 0 (consistency) and ‖ε‖∞ → 0
holds for h → 0. According to (5.37), ej converges uniformly to zero; i.e.,
supx∈I |η(x; ε, h)− y(x)| → 0. ut

Corollary 5.45. In addition to the assumptions in Theorem 5.44 assume consistency
of order p. Then also the convergence order is p, provided that the initial errors are
sufficiently small:

|η(x; ε, h)− y(x)| ≤ C
(
hp +

r−1
max
j=0
|εj |
)
.

Proof. We have ‖ε‖∞ = max0≤j≤r−1 |εj | and ‖τ‖∞ ≤ O(hp). Inequality (5.37)
proves the desired error bound. ut

5.5.6 Construction of Optimal Multistep Methods

5.5.6.1 Examples

The Adams–Bashforth methods are explicit linear r-step methods of the form

ηj+r = ηj+r−1 + h

r−1∑
µ=0

bµfj+µ (5.38)

(cf. (5.20b)). The associated characteristic polynomial is

ψ(ζ) = ζr − ζr−1 = ζr−1 (ζ − 1) .
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Its zeros are ζ1 = . . . = ζr−1 = 0, ζr = 1, so that the Adams–Bashforth methods
are stable. The coefficients bµ (µ = 0, . . . , r − 1) can be used to make the local con-
sistency error as small as possible. The optimal choice yields a multistep method9

of order r.

Exercise 5.46. (a)Euler’s method is the optimal Adams–Bashforth method for r=1.
(b) What are the optimal coefficients b0, b1 in (5.38) for r = 2 ?

The general explicit linear two-step method

ηj+2 = −α1ηj+1 − α0ηj + h [b1fj+1 + b0fj ]

contains four free parameter. Because of the side condition (5.7) (i.e., α0 +α1 = 1),
there remain three degrees of freedom. Thus, the optimal choice α0 = −5, α0 = 2,
α1 = 4, b1 = 4 of the coefficients can reach consistency of order p = 3. The
resulting method is

ηj+2 = −4ηj+1 + 5ηj + h [4fj+1 + 2fj ] . (5.39)

j xj ηj − y(xj)
2 0.02 −0.1610-8
3 0.03 +0.5010-8
4 0.04 −0.3010-7
5 0.05 +0.1410-6
...

...
...

99 0.99 +0.1310+60
100 1.00 −0.6510+60

The associated polynomial is

ψ(ζ) = ζ2 + 4ζ − 5 = (ζ − 1) (ζ + 5) .

The root −5 proves instability. We demonstrate that this
instability is clearly observed in practice. We apply (5.39)
to the initial-value problem y′ = −y, y(0) = 1 =: η0

(⇒ y(x) = e−x) and choose the exact value η1 := e−h

to avoid any further error. The step size in I = [0, 1] is
chosen by h = 0.01. The root ζ = −5 is responsible for

alternating signs of the error and for the explosive increase (598 = 3.21068).

5.5.6.2 Stable Multistep Methods of Optimal Order

The previous example shows that one cannot use all coefficients αν , bµ from (5.6)
and (5.35) in order to maximise the consistency order. Instead stability is a side
condition, when we optimise αν , bµ. The characterisation of optimal stable multi-
step methods is due to Dahlquist [2].

Theorem 5.47. (a) If r ≥ 1 is odd, the highest consistency order of a stable linear
r-step method is p = r + 1.
(b) If r ≥ 2 is even, the highest consistency order is p = r+ 2. In this case, all roots
of the characteristic polynomial ψ have absolute value 1.

9 Note the following advantage of multistep methods compared with one-step methods: In spite
of the increased consistency order r, only one function value fj+r−1 = f(xj+r−1, ηj+r−1)
needs to be evaluated per grid point xj ; the others are known from the previous steps.
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5.5.6.3 Proof

Step 1: A stable linear r-step method of order p = r + 1 is existing.
For this purpose, substitute the variable ζ of the polynomials ψ(ζ) and σ(ζ) from

(5.21a,b) by z:

ζ =
1 + z

1− z
, z =

ζ − 1

ζ + 1
. (5.40a)

This defines the functions

p(z) :=

(
1− z

2

)r
ψ

(
1 + z

1− z

)
, s(z) =

(
1− z

2

)r
σ

(
1 + z

1− z

)
. (5.40b)

Remark 5.48. (a) p(z) and s(z) are polynomials of degree ≤ r.
(b) If ζ0 6= −1 is a root of ψ(ζ) with multiplicity k, then p(z) has the root z0 = ζ0−1

ζ0+1
again of multiplicity k.
(c) The transformation (5.40a) maps the complex unit circle |ζ| < 1 onto the left
half-plane <e z < 0; in particular, ζ = 1 is mapped onto z = 0, and ζ = −1 onto
z =∞.

Proof. (i) Part (c) can be verified directly. For Part (a) note that p(z) is a lin-
ear combination of the polynomials ( 1+z

1−z )ν (1− z)r = (1− z)r−ν (1 + z)
ν for

0 ≤ ν ≤ r , which are all of degree r. Similarly for s.
(ii) Let k be the multiplicity of ζ0. Then ψ(ζ) = (ζ − ζ0)

k
ψ0(ζ) holds with

some ψ0(ζ0) 6= 0. Hence,

p(z) =

(
1− z

2

)r (
1 + z

1− z
− ζ0

)k
ψ0

(
1 + z

1− z

)
= (1 + z − (1− z) ζ0)

k

[
1

2r
(1− z)r−k ψ0

(
1 + z

1− z

)]
= (z − z0)

k

[
(1− z)r−k

2r (ζ0 + 1)
k
ψ0

(
1 + z

1− z

)]
.

Since ζ0 =∞ is excluded, z0 = 1 is not a root and the bracket [. . .] does not vanish
at z = z0. This proves Part (b). ut

Because of stability and ψ(1) = 0 (cf. (5.22)), ζ = 1 is a simple root. By
Remark 5.48c, p(z) has a simple root at z = 0. Hence, p is of the form

p(z) = α1z + α2z
2 + . . .+ α`z

` with α1 6= 0, ` = degree(p) ≤ k. (5.41a)

Without loss of generality, we may assume that

α1 > 0. (5.41b)

(otherwise scale the equation of the multistep method by −1 changing ψ(ζ) into
−ψ(ζ)). We shall prove that
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αµ ≥ 0 for all 1 ≤ µ ≤ r. (5.41c)

For this purpose, we denote the zeros of p by zν = xν + i yν (xν , yν ∈ R). Then,

p(z) = α` z
∏
ν

(z − zν) = α` z
∏

ν with yν=0

(z − xν)
∏

ν with yν 6=0

(
(z − xν)

2
+ y2

ν

)
(5.41d)

must hold, where the last product is taken over all pairs of conjugate complex zeros.
Stability implies |ζν | ≤ 1, which by Remark 5.48c implies <e zν ≤ 0; i.e., xν ≤ 0.
Because of z − xν = z + |xν |, all polynomial coefficients of p(z) must carry the
same sign (or vanish). Hence, (5.41b) implies (5.41c).

We define the holomorphic function

ϕ(ζ) :=
ψ(ζ)

log ζ
− σ(ζ). (5.42)

Note that because of ψ(1) = 0, ϕ has no singularity at ζ = 1. A related function is

g(z) :=

(
1− z

2

)r
ϕ

(
1 + z

1− z

)
=

p(z)

log 1+z
1−z
− s(z). (5.43)

Theorem 5.49. Assume ψ(1) = 0 (cf. (5.22)). Then the linear multistep method
(5.20b) has the (local) consistency order p if and only if ζ = 1 is a p-fold root of ϕ.

Proof. Assume consistency order p. We choose the differential equation y′ = y.
Then we have (up to a factor) z(t) = et and

τ(x, y, h) =

r∑
ν=0

aνex+νh − h
r∑

ν=0
bνex+νh

h
= ex

r∑
ν=0

aν(eh)ν − h
r∑

ν=0
bν(eh)ν

h

= ex
(
ψ(eh)

h
− σ(eh)

)
= exϕ(eh).

Set δ := eh−1 = h·eθh (0 < θ < h from the mean value theorem). Hence, δ can be
estimated from both sides by const · h. The Taylor expansion of ϕ(eh) = ϕ(1 + δ)
around δ = 0 exists, since ϕ is holomorphic at ζ = 1:

ϕ(eh) = ϕ(1) + ϕ′(1)δ + . . .+
ϕ(p−1)(1)

(p− 1)!
δp−1 +O(δp).

Since δk∼hk, we conclude from τ(x, y, h) =O(hp) =O(δp) that terms involving
δk with k < p cannot appear; i.e., ϕ(1) = ϕ′(1) = . . . = ϕ(p−1)(1) = 0. Hence,
1 is a p-fold zero of ϕ.

On the other hand, if 1 is a p-fold zero, the Taylor expansion shows that
τ(x, y, h) = exϕ(eh) = O(δp) = O(hp) and therefore the method has consistency
order p. ut
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Concerning g, the following implications from (5.43) are valid:

g(z) has a p-fold zero at z = 0

⇔ ϕ(ζ) has a p-fold zero at ζ = 1

⇔ p = consistency order.

We recall the function p(z) from (5.40b). Since p(z)/ log 1+z
1−z is holomorphic at

z = 0, there is a power series

z

log 1+z
1−z

p(z)

z
= β0 + β1z + β2z

2 + . . . (5.44a)

The function g connects p and s. To obtain a p-fold zero of g at z = 0, s must be of
the form s(z) =

∑r
µ=0 β

′
µz
µ with β′µ = βµ for 0 ≤ µ ≤ p− 1. Since we consider

the case p = r + 1 > r = degree(s) of Theorem 5.47a, the polynomial s(z) is
already uniquely determined:

s(z) = β0 + β1z + . . .+ βrz
r, (5.44b)

where r = p − 1. Polynomial s from (5.44b) determines a unique σ (cf. (5.40b)).
This ends the construction of a stable method of order p = r + 1.

Step 2: For odd r, there is no stable method of consistency order p > r + 1.
Let the method have an order p > r + 1. The comparison of (5.44a) and (5.44b)

shows that in (5.44a)

βµ = 0 for r + 1 ≤ µ ≤ p− 1 (5.44c)

must hold (the first βµ for 0 ≤ µ ≤ r can be made to zero by the choice (5.44b)).
The function z/ log 1+z

1−z is an even function in z, so that the power series becomes

z

log 1+z
1−z

= c0 + c2z
2 + c4z

4 + . . .

Let αµ be the coefficients from (5.41a), where we set αµ := 0 for µ > ` =
degree(p). Comparing the coefficients of both sides in (5.44a), we obtain

β0 = c0α1, . . . β2ν = c0α2ν+1 + c2α2ν−1 + . . .+ c2να1,

β1 = c0α2, . . . β2ν+1 = c0α2ν+2 + c2α2ν + . . .+ c2να2.

We shall prove that c2ν < 0 for all ν ≥ 1. Hence, for odd r it follows that

βr+1 = c0αr+2︸ ︷︷ ︸
=0

+ c2︸︷︷︸
<0

αr︸︷︷︸
≥0

+ c4︸︷︷︸
<0

αr−2︸ ︷︷ ︸
≥0

+ . . .+ cr+1︸︷︷︸
<0

α1︸︷︷︸
>0

< 0 (5.44d)

in contradiction to βr+1 = 0 (cf. (5.44c)).
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For the proof of c2ν < 0 we need the following lemma of Kaluza [12].

Lemma 5.50. Let f(t) =
∑∞
ν=0Aνt

ν and g(t) =
∑∞
ν=0Bνt

ν be power series with
the properties

f(t)g(t) ≡ 1, Aν > 0 (ν ≥ 0), Aν+1Aν−1 > A2
ν (ν ≥ 1).

Then Bν < 0 holds for all ν ≥ 1.

Proof. (i) The assumption Aν+1Aν−1 > A2
ν can be written as Aν+1

Aν
> Aν

Aν−1
for

ν ≥ 1. From this we conclude that An+1

An
> An−ν+1

An−ν
for 1 ≤ ν ≤ n. The latter

inequality can be rewritten as

An+1An−ν −AnAn−ν+1 > 0. (5.45)

(ii) Without loss of generality assumeA0 = 1. This impliesB0 = 1. Comparison
of the coefficients in f(t)g(t) ≡ 1 proves that

0 = An+

n∑
ν=1

BνAn−ν (n ≥ 1), −Bn+1 = An+1+

n∑
ν=1

BνAn−ν+1 (n ≥ 0).

For n = 0, the latter identity shows thatB1<0. Multiply the first equation byAn+1,
the second by −An, and add: AnBn+1 =

∑n
ν=1Bν (An+1An−ν −AnAn−ν+1).

Thanks to (5.45), Bn+1 < 0 follows by induction. ut

We apply this lemma to f(z2) = 1
z log 1+z

1−z = 2+ 2
3z

2+ 2
5z

4+. . . The coefficients
Aν = 2

2ν+1 > 0 satisfy

Aν+1Aν−1 =
2

2ν + 3
· 2

2ν − 1
=

4

(2ν + 1)
2 − 4

>
4

(2ν + 1)
2 = A2

ν

and therefore the supposition of the lemma. Since Bν = c2ν , the assertion of Step 2
is proved.
Step 3: For even r, stable methods are characterised as in Theorem 5.47b.

For even r, the sum corresponding to (5.44d) becomes

βr+1 = c0αr+2︸ ︷︷ ︸
=0

+ c2︸︷︷︸
<0

αr︸︷︷︸
≥0

+ c4︸︷︷︸
<0

αr−2︸ ︷︷ ︸
≥0

+ . . .+ cr︸︷︷︸
<0

α2︸︷︷︸
≥0

≤ 0,

where βr+1 = 0 holds if and only if α2 = α4 = . . . = αr = 0. The latter property
is equivalent to p(z) being odd:

p(z) = −p(−z) for all z.

Hence, each root zν of p corresponds to a root−zν . As stability requires <e zν ≤ 0,
we obtain <e zν = 0 for all zν , corresponding to the condition |ζν | = 1. On the
other hand, we have the reverse statement: If |ζν | = 1 for all root of ψ, it follows
that <e zν = 0 and
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p(z) = const · z
∏
ν

(
z2 − (=m zν)

2
)

and therefore p(z) = −p(−z). Hence, the order p = r + 2 can be obtained.
Order p = r + 3 (r even) cannot be reached, since by Step 2 βr+2 < 0.

5.5.7 Further Remarks

5.5.7.1 Systems of Differential Equations

The previous considerations concerning stability remain unchanged for systems
y′ = f(x, y), where y and f take values in Rn. Nevertheless, further complications
can appear.

First, we consider the case of stiff systems. The previous convergence analysis
provides statements for the limit h → 0. The proven error estimates hold for h
sufficiently small. A more practical question is: how large can we choose h, when
does the asymptotic regime start? For instance, the differential equation y′ = −y
has the positive and decreasing solution e−x, while the explicit Euler scheme (5.4)
with step size h = 3 yields the values ηj = (−2)j , which are oscillatory in sign
and increasing. A simple analysis shows that for h < 1 also the discrete solution
is positive and decreasing. Now assume the system y′ = Ay of linear differential
equations with A = diag{−1,−1000} ∈ R2×2. The dominant part of the solution
is
(
y1
0

)
e−x related to the eigenvalue one, since the other component

(
0
y2

)
e−1000x

decays very strongly. As in the one-dimensional example from above, one would
like to use a step size of the size h < 1. However, the second component enforces
the inequality h < 1/1000. This effect appears for general linear systems, if A
possesses one eigenvalue of moderate size and another one with strongly negative
real part, or for nonlinear systems y′ = f(x, y), where A(x) := ∂f/∂y has similar
properties. This leads to the definition of A-stability (or absolute stability; cf. [20],
[9], [3]). Good candidates for A-stable methods are implicit ones (cf. 5.4.1). Implicit
methods have to solve a linear system of the form Az = b. Here, another problem
arises. For instance, the spatial discretisation of a parabolic initial value problem (see
Chap. 6) yields a large stiff system of ordinary differential equations. The solution
of the large linear system requires further numerical techniques (cf. [6]).

Next, we consider the formulation By′ = Cy of a linear system or, in the gen-
eral nonlinear case, F (x, y, y′) = 0. If B is regular (or F solvable with respect to
y′), we regain the previous system with A := B−1C. If, however, B ∈ Rn×n is
singular with rank k, the system By′ = Cy consists of a mixture of n − k differ-
ential equations and k algebraic side conditions. In this case, the system is called
a differential-algebraic equations (DAE; [14]). In between there are singularly per-
turbed systems, where B = B0 + εB1 is regular for ε > 0, but ε is small and B0 is
singular.
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5.5.8 Other Stability Concepts

The analysis of numerical schemes for ordinary differential equations has created
many further variants of stability definitions. Besides this, there are stability con-
ditions (e.g., Lyapunov stability) which are not connected with discretisations, but
with the (undiscretised) differential equation and its dynamical behaviour (cf. [8,
§I.13], [11, §X], [7], [21]).
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11. Heuser, H.: Gewöhnliche Differentialgleichungen. Teubner, Stuttgart (1991)
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Chapter 6
Instationary Partial Differential Equations

The analysis presented in this chapter evolved soon after 1950, when discretisations
of hyperbolic and parabolic differential equations had to be developed. Most of the
material can be found in Richtmyer–Morton [21], see also Lax–Richtmyer [16].
All results concern linear differential equations. In the case of hyperbolic equa-
tions there is a crucial difference between linear and nonlinear problems, since in
the nonlinear case many unpleasant features may occur that are unknown in the
linear case. Concerning general hyperbolic conservation laws, we refer, e.g., to
Kröner [14] and LeVeque [19]. However, even in the nonlinear case, the linearised
problems should satisfy the stability conditions described here.

6.1 Introduction and Examples

6.1.1 Notation, Problem Setting, Function Spaces

Replacing the scalar ordinary differential equation by a linear system of ordinary
differential equations, one obtains y′ = Ay + f , where—in the simplest case—
A is a constant N × N matrix, and y and f have values in RN (or CN ). In this
case, the previous results concerning one-step and multistep methods can easily
be generalised. The situation changes if the (bounded) matrix A is replaced by an
unbounded differential operator, as we do now.

The independent variable x of the ordinary differential equation is renamed by t
(‘time’ variable). The differential operator A contains differentiations with respect
to spatial variables x1, . . . , xd. Although d = 3 is the realistic case, we restrict our
considerations mainly to d = 1. The case d > 1 will be discussed in §6.5.6.1.

Notation 6.1. The desired solution is denoted by u (instead of y). The independent
variables are t and x. The classical notation for u depending on t and x is u(t, x).
Let B be a space of functions in the variable x. Then u(t) denotes the function
u(t, ·) ∈ B (partially evaluated at t). Therefore, u(t, x) and u(t)(x) are equivalent
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notations. Let I = [0, T ] be the time interval in which t varies. If DA ⊂ B is the
domain1 of the differential operators A, the partial differential equation takes the
following form: Find a continuous function u : I → DA ⊂ B such that

∂

∂t
u(t) = Au(t) for all t ∈ I. (6.1a)

The initial-value condition is given by

u(0) = u0 for some u0 ∈ DA ⊂ B. (6.1b)

Concerning the differential operator A, we discuss two model cases:

A := a
∂

∂x
(a 6= 0) and A := a

∂2

∂x2
(a > 0). (6.2)

In what follows, the domain of u(·, ·) is the set

Σ = I × R with I = [0, T ]. (6.3)

Here the time t varies in I = [0, T ], while the spatial variable x varies in R.
I corresponds to the interval I = [x0, xE ] from §5.1. The spatial domain R is
chosen as the unbounded domain to avoid boundary conditions.2

We restrict our considerations to two Banach spaces, generally denoted by B:
• B = C(R), space of the complex-valued, uniformly3 continuous functions with

finite supremum norm ‖v‖B = ‖v‖∞ = sup{|v(x)| : x ∈ R}.
• B = L2(R), space of the complex-valued, measurable, and square-integrable

functions. This means that the L2 norm

‖v‖B = ‖v‖2 =

√∫
R
|v(x)|2 dx

is finite. This Banach space is also a Hilbert space with the scalar product

(u, v) :=

∫
R
u(x)v(x)dx.

For both cases of (6.2) we shall show that the initial-value problem is solvable.

1 The domain of a differential operator A is DA = {v ∈ B : Av ∈ B is defined}. Often, it
suffices to choose a smaller, dense set B0 ⊂ DA and to extend the results continuously onto DA.
2 A similar situation arises if the solutions are assumed to be 2π-periodic in x. This corresponds
to the bounded domainΣ = I × [0, 2π] with periodic boundary condition u(t, 0) = u(t, 2π). In
the 2π-periodic case, the spaces are

Cper(R) := {v ∈ C(R) : v(x) = v(x+ 2π) for all x ∈ R},
L2

per(R) := {v ∈ L2(R) : v(x) = v(x+ 2π) for almost all x ∈ R}.
3 Note that limits of uniformly continuous functions are again uniformly continuous.
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6.1.2 The Hyperbolic CaseA = a∂/∂x

First we choose B = C(R). The domain of A = a ∂
∂x is the subspace B0 = C1(R),

which is dense in B. The partial differential equation4

∂

∂t
u = a

∂

∂x
u

is of hyperbolic type.5 The solution of problem (6.1a,b) can be described directly.

Lemma 6.2. For any u0 ∈ B0 = C1(R), the unique solution of the initial-value
problem (6.1a,b) is given by u(t, x) := u0(x+ at).

Proof. (i) By ∂
∂tu = ∂

∂tu0(x+at) = au′0(x+at) and a ∂
∂xu0(x+at) = au′0(x+at),

the differential equation (6.1a) is satisfied. The initial value is u(0, x) := u0(x).
(ii) Concerning uniqueness, we transform to the (characteristic) direction:

ξ = x+ at, τ = t, U(τ, ξ) := u(t(τ, ξ), x(τ, ξ))

with the inverse transformation t(τ, ξ) = τ , x(τ, ξ) = ξ − aτ . The chain rule
yields ∂

∂τU = ∂
∂tu

∂
∂τ t + ∂

∂xu
∂
∂τ x = ∂

∂tu − a
∂
∂xu = 0. With respect to the new

variables, Eq. (6.1a) becomes the ordinary differential equation ∂
∂τU(τ, ξ) = 0 (for

each ξ ∈ R). Hence, there is a unique constant solution U(τ, ξ) = U(0, ξ) =
u(t(0, ξ), x(0, ξ)) = u(0, ξ) = u0(ξ). ut

In the case of the space B = L2(R), we choose B0 := C∞0 (R) ⊂ DA (or
B0 := C1(R) ∩ L2(R)) as a dense subspace in B. Here C∞0 (R) is the set of all
infinitely often differentiable functions with compact support (cf. Footnote 13 on
page 56). Lemma 6.2 holds also for this B0.

Remark 6.3. Let t ≥ 0 be arbitrary. If the initial value u0 belongs to C1(R) or
C∞0 (R), then also the solution u(t) belongs to C1(R) or C∞0 (R), respectively.
Furthermore,

‖u(t)‖B = ‖u0‖B
holds for ‖·‖B = ‖·‖∞ as well as for ‖·‖B = ‖·‖2.

Proof. Since u(t) is a shifted version of u0 and a shift does not change the norm
‖·‖B , the assertions follow. ut

Exercise 6.4. Extend the previous statement to any Lp norm

‖u‖p = p

√∫
R
|u(x)|p dx (1 ≤ p <∞).

4 The case of a = 0 is exceptional, since then ut = 0 can be considered as a family of ordinary
differential equations for each x ∈ R. Hence, the theory of §5 applies again.
5 Concerning the definition of types of partial differential equations, see Hackbusch [8, §1].
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6.1.3 The Parabolic CaseA = ∂2/∂x2

The parabolic differential equation ∂
∂tu = a∂

2u
∂x2 is called the heat equation, since it

describes the evolution of the temperature u as a function of time t and space x in
the case an infinite wire (one-dimensional case!). The factor a > 0 is the thermal
conductivity. If a is constant, we may assume a=1 (otherwise, transform by t 7→at
or x 7→

√
ax):

∂u

∂t
=
∂2u

∂x2
for t > 0. (6.4)

Lemma 6.5. The solution of (6.4) with a continuous initial value (6.1b) is given by

u(t, x) =
1√
4πt

∫ ∞
−∞

u0(ξ) exp
(
−(x−ξ)2

4t

)
dξ for t > 0 and x ∈ R. (6.5)

Proof. (i) One verifies that 1√
4πt

exp
(−(x−ξ)2

4t

)
is a solution of (6.4) for each ξ ∈ R

and t > 0. Since the integrand in (6.5) decays exponentially, one can interchange
integration and differentiation, and obtains that u from (6.5) satisfies (6.4).

(ii) It remains to prove that limt↘0 u(t, x) = u0(x). Note that

1√
4πt

∫ ∞
−∞

exp

(
−ζ2

4t

)
dζ = 1 for t > 0 (6.6)

(cf. [27, p. 187]). Substitution ζ = ξ − x yields

u(t, x) =
1√
4πt

∫ ∞
−∞

u0(ξ) exp

(
− (x− ξ)2

4t

)
dξ

= u0(x) +
1√
4πt

∫ ∞
−∞

[u0(ξ)− u0(x)] exp

(
− (x− ξ)2

4t

)
dξ.

If we can prove that the last term tends to zero as t ↘ 0, the desired statement
limt↘0 u(t, x) = u0(x) follows.

Let x and ε > 0 be fixed. Because of continuity of u0, there is a δ > 0 such
that |u0(ξ)− u0(x)| ≤ ε/2 for all |ξ − x| ≤ δ. We split the integral into the sum of
three terms:

I1(t, x) :=
1√
4πt

∫ x+δ

x−δ
[u0(ξ)− u0(x)] exp

(
− (x− ξ)2

4t

)
dξ,

I2(t, x) :=
1√
4πt

∫ x−δ

−∞
[u0(ξ)− u0(x)] exp

(
− (x− ξ)2

4t

)
dξ,

I3(t, x) :=
1√
4πt

∫ ∞
x+δ

[u0(ξ)− u0(x)] exp

(
− (x− ξ)2

4t

)
dξ.

The first integral is bounded by
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|I1(t, x)| ≤ 1√
4πt

∫ x+δ

x−δ
|u0(ξ)− u0(x)| exp

(
− (x− ξ)2

4t

)
dξ

≤ ε/2√
4πt

∫ x+δ

x−δ
exp

(
− (x− ξ)2

4t

)
dξ

≤ ε/2√
4πt

∫ ∞
−∞

exp

(
− (x− ξ)2

4t

)
dξ =

(6.6)

ε

2
.

Set C := supx∈R |u0(x)| <∞. Then I2 is bounded by

|I2(t, x)| ≤ 1√
4πt

∫ x−δ

−∞
|u0(ξ)− u0(x)| exp

(
− (x− ξ)2

4t

)
dξ

≤ 2C√
4πt

∫ x−δ

−∞
exp

(
− (x− ξ)2

4t

)
dξ

=
τ=(x−ξ)/

√
4t

2C√
π

∫ ∞
δ/
√

4t

exp
(
−τ2

)
dτ.

Since the improper integral
∫∞
−∞ exp

(
−τ2

)
dτ exists,

∫∞
R

exp
(
−τ2

)
dτ tends to

zero as R → ∞. Therefore, a sufficiently small t > 0 yields |I2(t, x)| ≤ ε
4 . We

obtain the same bound |I3(t, x)| ≤ ε
4 for I3. Together,∣∣∣∣∣ 1√

4πt

∫ ∞
−∞

[u0(ξ)− u0(x)] exp

(
− (x− ξ)2

4t

)
dξ

∣∣∣∣∣ ≤ ε

2
+
ε

4
+
ε

4
= ε

holds for sufficiently small t > 0. As x and ε are arbitrarily chosen,

lim
t↘0

1√
4πt

∫ ∞
−∞

[u0(ξ)− u0(x)] exp

(
− (x− ξ)2

4t

)
dξ = 0

is proved for all x. ut

The representation (6.5) shows that the solution u(t) at t > 0 is infinitely often
differentiable, although the initial value u0 is only continuous. However, the solution
exists only for t > 0, not for t < 0. Note the different property in the hyperbolic
case, where the representation of the solution from Lemma 6.2 holds for all t ∈ R.

In the hyperbolic case, the norm ‖u(t)‖B is independent of t, whereas in the
parabolic case, only a monotonicity statement holds.

Lemma 6.6. Let u(t) ∈ B = C(R) be a solution of (6.4). Then the inequality
‖u(t)‖∞ ≤ ‖u(0)‖∞ holds for all t ≥ 0.

Proof. Set C := ‖u(0)‖∞ and let t > 0. From (6.5) we infer that

|u(t, x)| ≤ 1√
4πt

∫ ∞
−∞
|u0(ξ)| exp

(
− (x− ξ)2

4t

)
dξ
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≤ C√
4πt

∫ ∞
−∞

exp

(
− (x− ξ)2

4t

)
dξ =

(6.6)
C ;

hence, ‖u(t)‖∞ ≤ C. ut

Lemma 6.7. Let u(t) ∈ B = L2(R) be a solution of (6.4). Then ‖u(t)‖2 ≤ ‖u(0)‖2
holds for all t ≥ 0.

Proof. It is sufficient to restrict to u(0) ∈ DA. One concludes either from (6.5) or
from general considerations (cf. (6.7e)) that ∂2u

∂x2 ∈ L2(R) for t ≥ 0, so that the
following integrals exist. Let t′′ ≥ t′ ≥ 0. Because of∫

R
u(t′′, x)2dx−

∫
R
u(t′, x)2dx =

∫
R

∫ t′′

t′

∂

∂t

(
u(t′, x)2

)
dtdx

= 2

∫
R

∫ t′′

t′
u(t, x)

∂u(t, x)

∂t
dtdx = 2

∫
R

∫ t′′

t′
u(t, x)

∂2u(t, x)

∂x2
dtdx

= 2

∫ t′′

t′

∫
R
u(t, x)

∂2u(t, x)

∂x2
dxdt = −2

∫ t′′

t′

∫
R

(
∂u(t, x)

∂x

)2

dxdt ≤ 0,

‖u(t)‖22 is weakly decreasing. ut

6.2 Semigroup of Solution Operators

In the following, B0 = C∞(R)∩B is chosen as a dense subset of B. We know that
ut = Au has a classical solution for any initial value u0 ∈ B0. A solution is called
classical or strong if ut(t) and Au(t) are elements of B for all t ≥ 0. We recall that
‖u(t)‖B ≤ ‖u0‖B has been proved.

Obviously, the mapping from u0 ∈ B0 into the solution u(t) at some fixed t ≥ 0
is linear. This defines the solution operator

T (t) : u0 7→ u(t) for t ≥ 0. (6.7a)

So far, T (t) is defined on B0. From ‖u(t)‖B ≤ ‖u0‖B and the density of B0 we
infer that T (t) is a bounded operator and can be extended uniquely and continuously
onto B.

Remark 6.8. Suppose that T (t) ∈ L(B0, B) and that B0 is dense in B. Then T (t)
can be extended uniquely and continuously onto B. The extended T (t) ∈ L(B,B)
and the original mapping T (t) ∈ L(B0, B) have equal operator norms; i.e.,
sup{‖T (t)v‖B / ‖v‖B : 0 6= v ∈ B0} = sup{‖T (t)v‖B / ‖v‖B : 0 6= v ∈ B}.

Proof. Let u0∈B. There is a sequence v0,n∈B0 with limn→∞ ‖u0 − v0,n‖B = 0.
One verifies that vn := T (t)v0,n forms a Cauchy sequence, and therefore it defines
a unique u := limn→∞ vn. The definition T (t)u0 =: u defines the continuous
extension T (t) ∈ L(B,B) of the desired form. ut
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Because of
T (t) ∈ L(B,B), (6.7b)

any initial value u0 ∈ B leads to a function u(t) := T (t)u0 ∈ B. If u0 ∈ B\B0,
the resulting function is called a ‘generalised’ or ‘weak’ solution in contrast to the
strong solution mentioned above. Note that the descriptions u(t, x) := u0(x + at)
from Lemma 6.2 and of u(t, x) by (6.5) make sense for any u0 ∈ B.

Next, we show the semigroup property

T (t)T (s) = T (t+ s) for all t, s ≥ 0. (6.7c)

For this purpose consider the strong solution u(τ) = T (τ)u0 for an initial value
u0 ∈ B0 and fix some s ≥ 0. Then û0 := u(s) equals T (s)u0. Set û(t) := u(t+s).
Since ût(t) = ut(t+s) = Au(t+s) = Aû(t) and û(0) = u(s) = û0, we conclude
that û(t) = T (t)û0; i.e., T (t + s)u0 = u(t + s) = û(t) = T (t)û0 = T (t)T (s)u0

holds for all u0 ∈ B0. Since B0 is dense in B, the identity (6.7c) follows.
The operators A and T (t) commute:

AT (t) = T (t)A on DA (6.7d)

(see Footnote 1 for the domain DA of A). For a proof, consider the strong solution
u(t) = T (t)u0 for any u0 ∈ B0. The third line in

AT (t)u0 = Au(t) = ut(t)

= lim
h↘0

u(t+ h)− u(t)

h
= lim
h↘0

1

h
[T (t+ h)− T (t)]u0

= lim
h↘0

T (t) [T (h)− I]u0 = T (t)

[
lim
h↘0

u(h)− u(0)

h

]
= T (t)ut(0) = T (t)Au(0) = T (t)Au0

uses the continuity of T (t) (cf. (6.7b)). Since T (t)Au0 ∈ B is defined for all
u0 ∈ DA , also AT (t) has this property. This proves6

T (t) : DA 7→ DA for t ≥ 0. (6.7e)

The definition of T (t) yields

T (0) = I (identity) (6.7f)

for t = 0; i.e., {T (t) : t ≥ 0} is a semigroup with neutral element. It is called
the semigroup generated by A. The generating operator A can be regained via
Av = limt↘0 [(T (t)v − v) /t] for all v ∈ DA. Another notation for T (t) is
etA = exp(tA).

6 The semigroups of hyperbolic and parabolic problems have different properties. In the parabolic
case, T (t) : DA 7→ B holds for positive t (even T (t) : DA → C∞(R) ∩ B) as can be seen
from (6.5), whereas in the hyperbolic case the smoothness does not improve with increasing t.
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Finally, we discuss the behaviour of generalised solutions u(t) = T (t)u0 with
u0 ∈ B for t → 0. In Lemma 6.5 u0 is assumed to be continuous (not necessarily
uniformly continuous) and point-wise convergence u(t, x)→ u0(x) for all x ∈ R is
shown. Assuming uniform continuity, we obtain uniform convergence by the same
proof; i.e., u(t) = T (t)u0 → u0 in B as t → 0. Under the resulting property
lim ‖[T (t)− T (0)]u0‖B → 0 for all u0 ∈ B the semigroup is called continuous.
The same situation happens in the hyperbolic case for any u0 ∈ C(R).

Above we used the inequality ‖u(t)‖B ≤ ‖u0‖B for t ≥ 0. The constant one can
be replaced by any bound and the range t ≥ 0 may be reduced to any interval [0, τ ],
τ > 0.

Exercise 6.9. Suppose that Kτ := sup0≤t≤τ ‖T (t)‖B←B < ∞ for some τ > 0.
Prove ‖T (t)‖B←B ≤ K

dt/τe
τ for any t ≥ 0, where dxe := min{n ∈ Z : x ≤ n}.

In the next subsections, we shall refer to the following inequality (6.8), which
holds with KT = 1 for the model examples A = a ∂

∂x and A = ∂2

∂x2 .

Assumption 6.10. Let {T (t) ∈ L(B,B) : t ≥ 0} be a semigroup with neutral
element T (0). Moreover, T (t) is supposed to be uniformly bounded on I = [0, T ]:

‖T (t)‖B←B ≤ KT for all t ∈ I = [0, T ]. (6.8)

So far, only the homogeneous equation ut(t) = Au(t) has been studied.

Remark 6.11. The solution of the inhomogeneous equation ∂
∂tu(t) = Au(t) + f(t)

can be represented by

u(t) = T (t)u0 +

∫ t

0

T (t− s)f(s)ds.

6.3 Discretisation of the Partial Differential Equation

6.3.1 Notations

We replace the real axis R of the x variable by an infinite grid of step size ∆x > 0:

G∆x = {x = ν∆x : ν ∈ Z}. (6.9)

Correspondingly, the interval I = [0, T ] is replaced by a finite grid of step size
∆t > 0:

I∆t = {t = µ∆t ≤ T : µ ∈ N0}.

The Cartesian product of both grids yields the rectangular grid

Σ∆t
∆x := I∆t ×G∆x = {(t, x) ∈ Σ : x/∆x ∈ Z, t/∆t ∈ N0} (6.10)
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(cf. (6.3)). As we shall see, the step sizes ∆x,∆t are, in general, not chosen inde-
pendently, but are connected by a parameter λ (the power of ∆x corresponds to the
order of the differential operator A):

λ =

{
∆t/∆x in the hyperbolic case A = a ∂

∂x ,

∆t/∆x2 in the parabolic case A = ∂2

∂x2 .
(6.11)

For a grid function U : Σ∆t
∆x → C we use the notation

Uµν := U(µ∆t, ν∆x) for (µ∆t, ν∆x) ∈ Σ∆t
∆x, µ ∈ N0, ν ∈ Z.

All grid values at t = µ∆t are collected in

Uµ := (Uµν )ν∈Z .

Let ` = CZ be the linear space of two-sided infinite sequences with component-
wise addition and multiplication by scalars. The Banach spaces B = C(R) (or
L∞(R)) and B = L2(R) correspond to the sequence spaces `∞ and `2:
• `∞ = CZ with the norm ‖U‖`∞ = sup{|Uν | : ν ∈ Z} is a Banach space,

• `2 = CZ with the norm ‖U‖`2 =
√
∆x
∑
ν∈Z |Uν |

2 is a Hilbert space.

As a common symbol we use `p (p ∈ {2,∞}).

6.3.2 Transfer Operators r, p

The continuous Banach space B and the discrete space `p of grid functions are
connected via

r = r∆x : B → `p. (6.12a)

The letter r means ‘restriction’. The index ∆x will be omitted, when the underlying
step size is known.

In the case of B = C(R), an obvious choice of r is the evaluation at the grid
points of G∆x:

u ∈ C(R)⇒ ru ∈ `∞ with (ru)j = u(j∆x) for j ∈ Z. (6.12b)

In the case of B = L2(R) this is impossible, since L2 functions have no well-
defined point evaluations. Instead, one can use mean values:

u ∈ L2(R)⇒ ru ∈ `2 with (ru)j =
1

∆x

∫ (j+1/2)∆x

(j−1/2)∆x

u(x)dx for j ∈ Z.

(6.12c)
We suppose that r = r∆x : B → `p is bounded:

‖r∆x‖`p←B ≤ Cr for all ∆x > 0. (6.13)
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Lemma 6.12. The restrictions (6.12b,c) satisfy condition (6.13) with Cr = 1 with
respect to the respective norms ‖·‖`∞←C(R) and ‖·‖`2←L2(R).

Proof. (i) ‖ru‖`∞ = sup{|u(j∆x)| : j ∈ Z} ≤ sup{|u(x)| : x ∈ R} = ‖u‖C(R)

yields (6.12b).

(ii) ‖ru‖2`2 = ‖ru‖22 = ∆x
∑
j | (ru)j |2 = 1

∆x

∑
j

∣∣∣∫ (j+1/2)∆x

(j−1/2)∆x
u(x)dx

∣∣∣2 and
Schwarz’ inequality∣∣∣∣∣

∫ (j+1/2)∆x

(j−1/2)∆x

u(x)dx

∣∣∣∣∣
2

≤

[∫ (j+1/2)∆x

(j−1/2)∆x

1dx

]
·

[∫ (j+1/2)∆x

(j−1/2)∆x

|u(x)|2 dx

]

= ∆x

∫ (j+1/2)∆x

(j−1/2)∆x

|u(x)|2 dx

yield (6.12c): ‖ru‖2`2 ≤
∑
j

(j+1/2)∆x∫
(j−1/2)∆x

|u(x)|2 dx =
∫
R
|u(x)|2 dx = ‖u‖2L2(R). ut

The ‘prolongation’ p acts in the reverse direction: p = p∆x : `p → B. We
suppose the existence of a prolongation p with the following properties:

‖p∆x‖B←`p ≤ Cp for all ∆x > 0 and rp = I. (6.14)

The condition rp = I indicates that p is a right-inverse of r.

Exercise 6.13. Verify that in the cases (6.12b,c) the following choices of p satisfy
condition (6.14) with Cp = 1:

p is piecewise linear interpolation: (6.15a)
v ∈ `∞ 7→ pv ∈ C(R) with (pv) (x) = ϑvj + (1− ϑ) vj+1,

where x = (j + ϑ)∆x, j ∈ Z, ϑ ∈ [0, 1),

or

p is piecewise constant interpolation: (6.15b)

v ∈ `2 7→ pv ∈ L2(R) with (pv) (x) = vj ,

where x ∈
[
(j − 1

2 )∆x, (j + 1
2 )∆x

)
, j ∈ Z.

6.3.3 Difference Schemes

Initially, U0 is prescribed via U0
ν = ru0 (r from (6.12a), u0 from (6.1b)). The

explicit difference scheme

Uµ+1
ν =

∑
j∈Z

ajU
µ
ν+j (6.16)



6.3 Discretisation of the Partial Differential Equation 103

allows us to compute the next time step Uµ+1 from Uµ. In practice,
∑
j∈Z is a finite

sum; i.e., almost all aj vanish.

Example 6.14. (a) In the hyperbolic case, one may replace ∂
∂tu by the difference

quotient u(t+∆t,x)−u(t,x)
∆t and A = a∂u∂x by au(t,x+∆x)−u(t,x)

∆x . Solving

u(t+∆t, x)− u(t, x)

∆t
= a

u(t, x+∆x)− u(t, x)

∆x

with respect to u(t+∆t, x) and using the relation (6.11), one obtains

u(t+∆t, x) = u(t, x) +
a∆t

∆x

[
u(t, x+∆x)− u(t, x)

]
;

i.e., Uµ+1
ν = (1− aλ)Uµν + aλUµν+1. (6.17a)

(b) Replacing the right-sided difference u(t,x+∆x)−u(t,x)
∆x by the symmetric differ-

ence u(t,x+∆x)−u(t,x−∆x)
2∆x , one derives the difference scheme

Uµ+1
ν = −aλ

2
Uµν−1 + Uµν +

aλ

2
Uµν+1. (6.17b)

(c) A replacement of u(t+∆t,x)−u(t,x)
∆t by u(t+∆t,x)−[u(t,x+∆x)+u(t,x−∆x)]/2

∆t yields

Uµ+1
ν =

1− aλ
2

Uµν−1 +
1 + aλ

2
Uµν+1. (6.17c)

(d) In the parabolic case of A = ∂2

∂x2 , the difference quotient u(t+∆t,x)−u(t,x)
∆t for

∂
∂tu and the second difference quotient u(t,x−∆x)−2u(t,x)+u(t,x+∆x)

∆x2 for ∂2u
∂x2 are

obvious choices and lead together with λ = ∆t/∆x2 from (6.11) to

u(t+∆t, x)− u(t, x)

∆t
=

2u(t, x)− u(t, x−∆x)− u(t, x+∆x)

∆x2
;

i.e.,
Uµ+1
ν = λUµν−1 + (1− 2λ)Uµν + λUµν+1. (6.18)

The difference scheme (6.16) describes a linear mapping Uµ 7→ Uµ+1 and
defines the linear operator

C : `p → `p, (CU)ν :=
∑
j∈Z

ajUν+j for U ∈ `p. (6.19)

Hence, a shorter form of (6.16) is

Uµ+1 = CUµ. (6.20)
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Notation 6.15. The difference operator C (and therefore also the coefficients aj)
may depend on the parameter λ and the step size ∆t:

C = C(λ,∆t).

The dependence on ∆x follows implicitly via (6.11).

An example of a ∆t-depending difference operator is given next.

Example 6.16. Let C(λ) be a suitable difference operator for A = a ∂
∂x . Then the

differential operator A = a ∂
∂x + b can be discretised by

C ′(λ,∆t) := C(λ) +∆t · b;

i.e., a0 from (6.16) is replaced by

a′0 := a0 +∆t · b.

Exercise 6.17. Prove: (a) If
∑
j∈Z |aj | <∞, then C(λ,∆t) ∈ L(`∞, `∞).

(b) If supj∈Z |aj | <∞, then C(λ,∆t) ∈ L(`2, `2).

A µ-fold application of C(λ,∆t) yields

Uµ = CµU0 and U(µ∆t, ν∆x) =
(
CµU0

)
ν
.

Remark 6.18. So far, the coefficients aj are assumed to be scalars. If the scalar
equation ∂

∂tu = Au for u : I × R → R is replaced by a vector-valued equa-
tion for u : I × R → RN , the coefficients aj in (6.19) become N × N matrices.
The vector-valued case will be discussed in §6.5.5.

The shift operator Ej is defined by

(EjU)ν := Uj+ν .

Since a shift does not change the `p-norm of U ,

‖Ej‖`p←`p = 1 (6.21)

holds. The difference operator C from (6.19) can be reformulated as

C :=
∑
j∈Z

ajEj . (6.22)

We conclude with a numerical computation of the example (6.17b), where we
choose a= 2 and λ= 1; i.e., ∆t=∆x. The initial value U0 is the constant value 1
with the exception that at x = 0 we perturb 1 by 1.001. Without this perturbation,
the solution of ut = 2ux is u(t, x) = 1 and also the discrete solution is Uµν = 1.
We aim at the solution u(1, x) at t = 1. Three computations with the step sizes
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∆t = 1, 1
10 ,

1
100 are shown. The required number of time steps is 1, 10, or 100,

respectively. The last three rows of the table list the values of U1/∆t
ν = U(1, ν∆x)

for −2 ≤ ν ≤ 2.

u(t,−2∆x) u(t,−∆x) u(t, 0) u(t,∆x) u(t, 2∆x) ∆t = ∆x
t = 0 1.000 1.000 1.001 1.000 1.000

t = 1 1.000 1.001 1.001 0.999 1.000 1
t = 1 1.045 0.230 0.869 1.770 1.045 1/10
t = 1 6.2981030 −3.754 61030 6462.5 3.754 61030 6.2981030 1/100

Instead of convergence to u(t, x), we observe that completely wrong approxima-
tions are produced. The reason is an obvious instability of scheme (6.17b) (cf. Ex-
ample 6.46b). Note that we may replace the perturbed value 1.001 also by 1+10−16.
This would change, e.g., 6.2981030 to 6.2981017, which is equally wrong.

6.4 Consistency, Convergence, and Stability

6.4.1 Definitions

Again, the restriction r from §6.3.2 is used. Consistency will depend on the under-
lying norm `p, where p = 2,∞ are the discussed examples corresponding to the
Banach spacesB = L2(R) and C(R). We say that ‘`p is suited toB’, if the require-
ments (6.13) and (6.14) are satisfied.

Definition 6.19 (consistency). Let B0 ⊂ DA be a dense subset of B. Let `p be
suited to B. The solution of (6.1a,b) is denoted by u(t) = T (t)u0, u0 ∈ B0. The
local discretisation error τ is defined by

τ(t) =
1

∆t
[ru(t+∆t)− C(λ,∆t)ru(t)] .

The difference scheme C(λ,∆t) is called consistent (with respect to `p) if for all
u0 ∈ B0,

sup {‖τ(t)‖`p : 0 ≤ t ≤ T −∆t} → 0 as ∆t→ 0.

The latter condition is equivalent to

sup
0≤t≤T−∆t

‖[rT (∆t)− C(λ,∆t)r]T (t)u0‖`p := o(∆t) for all u0 ∈ B0.

Note that the following definition of convergence refers to the whole Banach
space B, not to a dense subspace B0.
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Definition 6.20 (convergence). For all u0 ∈ B, let u(t) = T (t)u0 denote the
generalised solution. The difference scheme C(λ,∆t) is called convergent (with
respect to `p), if

‖ru(t)− C(λ,∆t)µru0‖`p → 0 for ∆t→ 0 and µ∆t→ t ∈ I = [0, T ].

Definition 6.21 (stability). The difference scheme C(λ,∆t) is called stable (with
respect to `p) if

sup{‖C(λ,∆t)µ‖`p←`p : ∆t ≥ 0, µ ∈ N0, 0 ≤ µ∆t ≤ T} <∞. (6.23)

If (6.23) holds only for certain values of λ, the scheme is called conditionally stable;
otherwise, the scheme is called unconditionally stable.

In the case of (6.23), the stability constant is defined by

K = K(λ) := sup{‖C(λ,∆t)µ‖`p←`p : ∆t ≥ 0, µ ∈ N0, 0 ≤ µ∆t ≤ T}.
Instead of ‘stable with respect to `p’ we say for short ‘`p stable’. Similarly, the

terms ‘`p stability’, ‘`p consistent’, ‘`p consistency’ etc. are used.

6.4.2 Convergence, Stability and Equivalence Theorems

First, we show that consistency and stability—together with some mild technical
assumptions—imply convergence.

Theorem 6.22 (convergence theorem). Suppose (a) to (d):
(a) r bounded with respect to `p (cf. (6.13)),
(b) T (t) satisfies Assumption 6.10,
(c) `p stability of the difference scheme C(λ,∆t),
(d) `p consistency.

Then the difference scheme is convergent with respect to `p.

Proof. (i) Given an initial value u0 ∈ B0 ⊂ DA (B0 dense subset of B), define
u(t) = T (t)u0. We split the discretisation error as follows:

ru(t)− C(λ,∆t)µru0 = r [u(t)− u(µ∆t)] + [rT (µ∆t)− C(λ,∆t)µr]u0

= r [u(t)− u(µ∆t)] + [rT (∆t)µ − C(λ,∆t)µr]u0.

Use the telescopic sum

rAµ −Bµr =

µ−1∑
ν=0

Bν [rA−Br]Aµ−ν−1

with A := T (∆t) and B := C(λ,∆t). This shows

‖ru(t)− C(λ,∆t)µru0‖`p ≤ ‖r‖`p←B ‖u(t)− u(µ∆t)‖B +

+

µ−1∑
ν=0

‖C(λ,∆t)ν‖`p←`p
∥∥{rT (∆t)− C(λ,∆t)r

}
u
(

(µ− ν − 1)∆t
)∥∥
`p
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≤ Kr ‖u(t)− u(µ∆t)‖B +

µ−1∑
ν=0

K(λ)∆t
∥∥τ( (µ− ν − 1)∆t

)∥∥
`p

with the stability constant K(λ). Since u0 ∈ B0 ⊂ DA, the solution u(t) =
T (t)u0 is strong, therefore differentiable and in particular continuous (cf. (6.7e)):
‖u(t)− u(µ∆t)‖B → 0 as µ∆t→ t. Therefore, the first term is a zero sequence.

Because of the consistency assumption, the local discretisation error τ tends to
zero uniformly. From ‖τ((µ− ν − 1)∆t)‖`p ≤ ε we infer that

µ−1∑
ν=0

K(λ)∆t ‖τ((µ− ν − 1)∆t)‖`p ≤ µK(λ)∆tε ≤
µ∆t≤T

K(λ)Tε,

so that the whole sum tends to zero. This proves convergence in the case of an initial
value u0 ∈ B0.

(ii) For a general initial value u0 ∈ B and an arbitrary ε > 0, one finds a u∗0 ∈ B0

with ‖u0 − u∗0‖B ≤ ε/ [3Kr max {‖T (t)‖B←B ,K(λ)}]. The associated solution
u∗(t) = T (t)u∗0 satisfies

‖r [u(t)− u∗(t)]‖`p ≤ Kr ‖T (t) [u0 − u∗0]‖B ≤ Kr ‖T (t)‖B←B ‖u0 − u∗0‖B ≤
ε

3

and
‖C(λ,∆t)µru0 − C(λ,∆t)µru∗0‖`p = ‖C(λ,∆t)µr [u0 − u∗0]‖`p

≤ K(λ)Kr ‖u0 − u∗0‖B ≤ ε/3.

Together with ‖ru∗(t)− C(λ,∆t)µru∗0‖`p ≤ ε/3 from (i) for sufficiently small∆t
and t−µ∆t, it follows that ‖ru(t)− C(λ,∆t)µru0‖`p ≤ ε, so that also for general
initial values u0 ∈ B convergence is shown. ut

Next, we show that stability is also necessary for convergence.

Theorem 6.23 (stability theorem). Choose B and `p suitably, so that (6.13),
(6.14), and (6.8) hold. Then `p convergence implies `p stability.

Proof. For an indirect proof assume that the difference scheme is unstable. Then
there are sequences ∆tν > 0, µν ∈ N0 with 0 ≤ µν∆tν ≤ T , so that

‖C(λ,∆tν)µν‖`p←`p →∞ for ν →∞.

Since the interval I=[0, T ] is compact, there is a subsequence with µν∆tν→ t∈I .
The latter convergence yields

‖ru(t)− C(λ,∆tν)µνru0‖`p → 0 for all u0 ∈ B,

and therefore,

‖C(λ,∆tν)µνru0‖`p ≤ 1 + ‖ru(t)‖`p ≤
u(t)=T (t)u0

1 + ‖r‖`p←B ‖T (t)‖B←B ‖u0‖B

≤
(6.13), (6.8)

1 +KrKT ‖u0‖B =: K1(u0) for ν ≥ ν0
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with sufficiently large ν0 = ν0(u0). One concludes that Cν := C(λ,∆tν)µνr
is a point-wise bounded sequence of operators. Corollary 3.39 yields that Cν is
uniformly bounded: there is a constant K with

‖C(λ,∆tν)µνr‖`p←B ≤ K for all ν ∈ N.

Since, according to (6.14), p is a bounded right-inverse of r, it follows that

‖C(λ,∆tν)µν‖`p←`p = ‖C(λ,∆tν)µνrp‖`p←`p
≤ ‖C(λ,∆tν)µνr‖`p←B ‖p‖B←`p ≤

(6.14)
KKp

in contradiction to the assumption ‖C(λ,∆tν)µν‖`p←`p →∞. ut

The conclusion from both theorems is the equivalence theorem.

Theorem 6.24 (equivalence theorem). Suppose (6.8), (6.13), (6.14), and `p con-
sistency. Then `p convergence and `p stability are equivalent.

6.4.3 Other Norms

So far, we restrict the analysis to the `p and Lp norms for p = 2 and p = ∞. For
1 ≤ p <∞, the Lp norm is defined in Exercise 6.4, while `p is defined analogously.
The reason for the restriction to p ∈ {2,∞} is twofold. If different properties hold
for `2 and `∞, a more involved analysis is necessary to describe the properties for
`p with 2 < p < ∞. It might be that the separation is between p = 2 and p > 2,
because in the latter case the Hilbert structure is lost. However, it might also happen
that properties change between the cases p < ∞ and p = ∞, since in the first case
`p is reflexive, but not in the latter case.

If stability estimates hold for both cases p = 2 and p = ∞, we are in a very
pleasant situation, since these bounds imply corresponding estimates for the `p and
Lp setting for 2 < p < ∞. This result is based on the interpolation estimate by
Riesz–Thorin. It is proved by Marcel7 Riesz [23] in8 1926/27, while Thorin [25]
(1939) simplified the proof. In the following lemma, let ‖·‖p←p be the operator
norm of L(`p, `p) or L(Lp, Lp).

Lemma 6.25 (Riesz–Thorin theorem). Assume 1 ≤ p1 ≤ q ≤ p2 ≤ ∞. Then

‖·‖q←q ≤ ‖·‖
α
p1←p1 ‖·‖

β
p2←p2 with α =

q − p1

p2 − p1
, β =

p2 − q
p2 − p1

.

7 Marcel Riesz is the younger brother of Frigyes Riesz, who is the author of, e.g., [22].
8 The article belongs to Volume 49, which is associated to the year 1926. However, it is the last
article of that volume and carries the footnote ‘Imprimé le 11 janvier 1927’. Therefore, one finds
also 1927 as the publication date.
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Note that α+ β = 1. This implies that p1 stability (i.e., ‖. . .‖p1←p1 ≤ M1) and
p2 stability ‖. . .‖p2←p2 ≤M2 imply q stability in the form

‖. . .‖q←q ≤M := Mα
1 M

β
2 .

Hence, if a criterion yields both `2 and `∞ stability, then `p stability holds for all
2 ≤ p ≤ ∞.

6.5 Sufficient and Necessary Conditions for Stability

6.5.1 First Criteria

The following results belong to the classical stability theory of Lax–Richtmyer [16].

Criterion 6.26. If

‖C(λ,∆t)‖`p←`p ≤ 1 +Kλ∆t for all ∆t > 0,

then the difference scheme is `p stable with stability constant K(λ) := eTKλ .

Proof. Use

‖C(λ,∆t)µ‖`p←`p ≤ ‖C(λ,∆t)‖µ`p←`p ≤ (1 +Kλ∆t)
µ

and apply Exercise 3.24a: (1 +Kλ∆t)
µ ≤

(
eKλ∆t

)µ
= eKλµ∆t ≤

µ∆t≤T
eKλT . ut

The coefficients aj of C(λ,∆t) can be used to estimate ‖C(λ,∆t)‖`p←`p .

Remark 6.27. The difference scheme (6.19) satisfies ‖C(λ,∆t)‖`p←`p ≤
∑
|aj | .

Proof. ‖C(λ,∆t)‖`p←`p =
∥∥∥∑j ajEj

∥∥∥
`p←`p

≤
∑
j |aj | ‖Ej‖`p←`p =

∑
j |aj |

follows from (6.22) and (6.21). ut

Combining the previous statements, we arrive at the next result.

Corollary 6.28. If
∑
j |aj | ≤ 1 + Kλ∆t for all ∆t > 0, the difference scheme is

stable (with respect to the `2 and `∞ norms) with stability constant K(λ) := eTKλ .

Definition 6.29 (positive difference scheme). A difference scheme (6.19) is called
positive if aj ≥ 0 holds for all coefficients.

Positive difference schemes map non-negative initial values U0 ∈ `p into non-
negative solutions Uµ, which often is an appreciated property. From Corollary 6.28
we infer the next one.
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Criterion 6.30. Positive difference schemes (6.19) with
∑
j aj = 1 + O(∆t) are

stable (with respect to the `2 and `∞ norms).

We can also formulate a criterion for instability.

Criterion 6.31. Suppose that
∑
aj ≥ 1 + ∆t c(∆t) with lim∆t→0 c(∆t) = ∞.

Then the difference scheme (6.19) is unstable (with respect to `2 and `∞ norms).

Proof. (i) In the case of `∞, choose the constant grid function U0 ∈ `∞, i.e.,
U0
j = 1 for all j ∈ Z. Then U1 = C(λ,∆t)U0 equals ζU0 with ζ :=

∑
aj

and, correspondingly, Uµ = C(λ,∆t)µU0 = ζµU0. Hence, ‖C(λ,∆t)µ‖`p←`p ≥
ζµ ≥ [1 +∆tc(∆t)]

µ. Exercise 6.32a proves the assertion.
(ii) In the case of `2, the previous proof cannot be repeated, since U0 /∈ `2.

Instead, the proof will be given after Theorem 6.44 on page 118. ut

Exercise 6.32. Suppose that lim∆t→0 c(∆t) =∞. (a) Prove

sup{[1 +∆t c(∆t)]
µ

: µ ∈ N0, ∆t > 0, µ∆t ≤ T} =∞.

(b) Show that for any constant K > 0 and all positive integers µ with µ ≤ T/∆t,
the µ-th root µ

√
K satisfies the inequality µ

√
K ≤ 1 + Cρ∆t. Hint: set c(∆t) :={

µ
√
K − 1

}
/∆t and prove that Cρ := sup∆t>0 c(∆t) <∞.

Next, we apply the criteria to the examples in §6.3.3.

Example 6.33. (a) In (6.17a), the non-zero coefficients are a0 = 1 − aλ and
a1 = aλ. Assume a ≥ 0. For λ with 0 ≤ aλ ≤ 1, (6.17a) is a positive scheme
with

∑
aj = 1; hence, it is `2 and `∞ stable according to Corollary 6.28.

(b) In (6.17b), the non-zero coefficients are a−1 = −aλ2 , a0 = 1, and a1 = aλ
2 .

Excluding the trivial case a = 0 (cf. Footnote 4 on page 95), we cannot apply
Corollary 6.28, since

∑
|aj | = 1 + aλ > 1. (6.17b) is not a positive scheme.

(c) In (6.17c), the non-zero coefficients are a−1 = 1−aλ
2 and a1 = 1+aλ

2 . Under the
condition |aλ| ≤ 1 the scheme is positive, and Criterion 6.30 ensures `2 and `∞

stability:
∑
aj = 1.

(d) In (6.18), the non-zero coefficients are a−1 = λ, a0 = 1 − 2λ, a1 = λ. For
λ ∈ (0, 1/2] the scheme is positive, and Criterion 6.30 ensures `2 and `∞ stability.

An interesting question is whether a stable scheme remains stable after a pertur-
bation (cf. §3.5.3).

Lemma 6.34 (perturbation lemma). Let C(λ,∆t) be `p stable with stability con-
stant K(λ). Suppose that a perturbation D(λ,∆t) is bounded by

‖D(λ,∆t)‖`p←`p ≤ CD∆t.

Then
C ′(λ,∆t) := C(λ,∆t) +D(λ,∆t)
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is again `p stable with stability constant 9

K ′(λ) ≤ K(λ)eK(λ)CDT ,

where I = [0, T ] is the given time interval. This result holds also in the case that
C(λ,∆t) and D(λ,∆t) are non-commutative10 operators.

Proof. We have to estimate C ′(λ,∆t)µ. The simple binomial formula is only valid
for commutative terms. In the general case, we have

[C +D]
µ

=

µ∑
m=0

∑
α1+...+αµ+1=µ−m

Cα1DCα2D · · ·CαmDCαm+1 ,

where the second sum runs over all αj ∈ N0 with α1 + . . .+ αµ+1 = µ−m. Each
term Cα1DCα2D · · ·CαmDCαm+1 contains m factors D and µ − m factors C.
For a fixed m ∈ [0, µ] the number of these terms is

(
µ
m

)
. Together with the estimate

‖Cα1DCα2D · · ·CαµDCαµ+1‖
≤ ‖Cα1‖ ‖D‖ ‖Cα2‖ ‖D‖ · · · ‖Cαm‖ ‖D‖ ‖Cαm+1‖ ≤ K(λ)m+1 (CD∆t)

m

we arrive at the inequality

‖C ′(λ,∆t)µ‖`p←`p =

= ‖[C(λ,∆t) +D(λ,∆t)]
µ‖`p←`p ≤

µ∑
m=0

(
µ
m

)
K(λ)m+1 (CD∆t)

m

= K(λ)

µ∑
m=0

(
µ
m

)
(K(λ)CD∆t)

m
= K(λ) [1 +K(λ)CD∆t]

µ
.

with [1 +K(λ)CD∆t]
µ ≤ eK(λ)CDµ∆t ≤

µ∆t≤T
eK(λ)CDT (cf. Exercise 3.24). ut

Remark 6.35. (a) A simple application of Lemma 6.34 is the following one. Let
the differential operator A in ∂

∂tu = Au (cf. (6.1a)) be A = A1 + A0, where
A1 contains derivatives of at least first order, while A0u=a0u is the term of order
zero. The discretisation yields correspondinglyC(λ,∆t) = C1(λ,∆t)+C0(λ,∆t).
A consistent discretisation ofC0 satisfies the estimate ‖C0(λ,∆t)‖`p←`p = O(∆t).
By Lemma 6.34, the stability of C1(λ,∆t) implies the stability of C(λ,∆t). There-
fore, it suffices to investigate differential operators A without terms of order zero.
(b) Let A = A1 be the principal part from above. The property A1 = 0 (1 ∈ `∞:
constant function with value one) shows that u = 1 is a solution. This implies the
special consistency condition∑

j∈Z
aj = 1 (= I in the matrix-valued case ) (6.24)

for the coefficients of C(λ,∆t) (cf. (6.19)).

9 If commutativity CD = DC holds, the stability constant improves: K′(λ) ≤ K(λ)eCDT .
10 Non-commutativity occurs for matrix-valued coefficients aj (cf. §6.5.5).
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Next we need the spectral radius11

ρ(A) := sup{|λ| : λ singular value of A}. (6.25)

Criterion 6.36. A necessary condition for stability (with respect to `2 and `∞) is

ρ(C(λ,∆t)) ≤ 1 +O(∆t).

Proof. ρ(Aµ) = ρ(A)µ holds for µ ∈ N. On the other hand, ρ(A) ≤ ‖A‖ is valid
for any associated norm. Therefore, stability yields

ρ(C(λ,∆t))µ = ρ(C(λ,∆t)µ) ≤ ‖C(λ,∆t)µ‖`p←`p ≤ K(λ)

for all µ,∆t with µ∆t ≤ T . Exercise 6.32b proves ρ(C(λ,∆t)) ≤ 1 + Cρ∆t. ut

Remark 6.37. Suppose that the operator C(λ,∆t) ∈ L(`2, `2) is normal; i.e.,
C(λ,∆t) commutes with the adjoint operator C(λ,∆t)∗. Then ρ(C(λ,∆t)) =
‖C(λ,∆t)‖`2←`2 holds and `2 stability is equivalent to ρ(C(λ,∆t)) ≤ 1 +O(∆t).

Proof. (i) Let C be a normal operator. First we prove ‖C2‖`2←`2 = ‖C∗C‖`2←`2 .
From

〈CCu,CCu〉`2 = 〈C∗CCu,Cu〉`2 = 〈CC∗Cu,Cu〉`2 = 〈C∗Cu,C∗Cu〉`2

it follows that

‖C2‖2`2←`2 = sup
‖u‖`2=1

〈CCu,CCu〉`2 = sup
‖u‖`2=1

〈C∗Cu,C∗Cu〉`2 = ‖C∗C‖2`2←`2 .

Since also

‖C∗C‖`2←`2 = sup
‖u‖`2=‖v‖`2=1

〈u,C∗Cv〉`2 = sup
‖u‖`2=‖v‖`2=1

〈Cu,Cv〉`2 ≥
u=v

≥ sup
‖u‖`2=1

〈Cu,Cu〉`2 = ‖C‖2`2←`2 ,

‖C‖2`2←`2 ≥ ‖C2‖`2←`2 is shown. Because of ‖C2‖`2←`2 ≤ ‖C‖2`2←`2 (submulti-
plicativity of the operator norm), the equality ‖C2‖`2←`2 = ‖C∗C‖`2←`2 is proved.
Analogously, ‖C‖n`2←`2 = ‖Cn‖`2←`2 follows for all n = 2k (k ∈ N).

(ii) The characterisation ρ(C)=limn→∞
n
√
‖Cn‖`2←`2 together with (i) proves

ρ(C) = ‖C‖`2←`2 .

(iii) According to Criterion 6.36, ρ(C(λ,∆t)) ≤ 1 + O(∆t) is necessary,
while ‖C(λ,∆t)‖`2←`2 ≤ 1 + O(∆t) is sufficient (cf. Criterion 6.26). Since
ρ(C(λ,∆t)) = ‖C(λ,∆t)‖`2←`2 , both inequalities are identical. ut

11 λ is regular value of A, if λI − A is bijective and the inverse (λI −A)−1 ∈ L(B,B)
exists. Otherwise, λ is a singular value of A. In the case of finite-dimensional vector spaces (i.e.,
for matrices), the terms ‘singular value’ and ‘eigenvalue’ coincide.
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Since ρ(C(λ,∆t)) ≤ 1 +O(∆t) from Remark 6.37 is relatively easy to check,
one may ask whether a similar criterion holds for more general operators. For this
purpose we introduce the ‘almost normal operators’: C(λ,∆t) is almost normal if

‖C(λ,∆t)C(λ,∆t)∗ − C(λ,∆t)∗C(λ,∆t)‖`2←`2 ≤M (∆t)
2 ‖C(λ,∆t)‖2`2←`2

for some constant M <∞.

Criterion 6.38 (Lax [15, p. 41]). If C(λ,∆t) is almost normal, then `2 stability is
equivalent to the estimate ‖C(λ,∆t)‖`2←`2 ≤ 1 +O(∆t).

Proof. (i) Since ‖C(λ,∆t)‖`2←`2 ≤ 1 +O(∆t) is sufficient according to Criterion
6.26, it only remains to prove the necessity. Below, we abbreviate C(λ,∆t) by C.

(ii) First we prove by induction that (C∗)
µ
Cµ can be reordered into (C∗C)

µ in
at most µ2/2 steps (one step consists of C∗C 7→ CC∗). In the case of µ = 1, no
permutation is required and 0 ≤

(
12
)
/2 proves the start of induction. Suppose the

induction hypothesis for µ. Then

(C∗C)
µ+1

↪→
µ2/2 steps

(C∗)
µ
CµC∗C ↪→

µ steps
(C∗)

µ+1
Cµ+1

and µ2

2 + µ ≤ (µ+1)2

2 prove the hypothesis.
(iii) Each interchange perturbs the operator norm at most byM (∆t)

2 ‖C‖2µ`2←`2 .
In the following formula the factors Cj , 1 ≤ j ≤ 2µ, are either C or C∗:

‖C1 · · ·CνCC∗Cν+3 · · ·C2µ − C1 · · ·CνC∗CCν+3 · · ·C2µ‖`2←`2
≤ ‖C1 · · ·Cν‖`2←`2 ‖CC

∗ − C∗C‖`2←`2 ‖Cν+3 · · ·C2µ‖`2←`2

≤ ‖C‖ν`2←`2
[
M (∆t)

2 ‖C‖2`2←`2
]
‖C‖2µ−ν−2

`2←`2 = M (∆t)
2 ‖C‖2µ`2←`2

for all 0 ≤ ν ≤ 2µ− 2 (note that ‖C∗‖`2←`2 = ‖C‖`2←`2 ).
(iv) Forming the supremum over all u ∈ `2 with ‖u‖`2 = 1 in

〈Cµu,Cµu〉`2 = 〈u, (C∗)µ Cµu〉`2

≥
(ii), (iii)

〈u, (C∗C)
µ
u〉`2 −

M

2
(µ∆t)

2 ‖C‖2µ`2←`2 ‖u‖
2
`2 ,

the left-hand side becomes ‖Cµ‖2`2←`2 , while the right-hand side yields the lower

bound
[
1− M

2 (µ∆t)
2
]
‖C‖2µ`2←`2 because of

sup 〈u, (C∗C)
µ
u〉`2 = ‖(C∗C)

µ‖`2←`2 =
C∗C normal

‖C∗C‖µ`2←`2 = ‖C‖2µ`2←`2 .

Together with stability, this shows that[
1− M

2
(µ∆t)

2

]
‖C‖2µ`2←`2 ≤ ‖C

µ‖2`2←`2 ≤ K(λ)2. (6.26)
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Restricting µ and ∆t by µ∆t ≤ min{1/
√
M,T}, we obtain 1 − M

2 (µ∆t)
2 ≥ 1

2 .
Inequality (6.26) implies ‖C‖`2←`2 ≤ 2µ

√
2K(λ)2. Exercise 6.32b shows that

‖C‖`2←`2 = ‖C(λ,∆t)‖`2←`2 ≤ 1 +O(∆t). ut

The previous statements are connected to estimates of the kind

‖C(λ,∆t)‖`2←`2 ≤ 1 or ‖C(λ,∆t)‖`2←`2 ≤ 1 +O(∆t).

These inequalities are the most convenient conditions proving stability. However,
even if ‖C(λ,∆t)‖`2←`2 ≥ c > 1, it may happen that the powers stay bounded
(‖C(λ,∆t)µ‖`2←`2 ≤ const). In that case one may try to find an equivalent norm
which behaves easier. Since the square ‖U‖2`2 =

∑
i∈Z |Ui|

2 is a quadratic form,
one may introduce another quadratic form Q(U) such that

1

K1
‖U‖2`2 ≤ Q(U) ≤ K1 ‖U‖2`2 for all U ∈ `2. (6.27)

This describes the equivalence of the norms ‖·‖`2 and
√
Q(·). The next lemma is a

slight generalisation of the ‘energy method’ stated in [21, pages 139–140].

Lemma 6.39. Let (6.27) be valid. Suppose that the growth of Q(·) for one time step
Uµ+1 = C(λ,∆t)Uµ is limited by

0 ≤ Q(Uµ+1)−Q(Uµ) ≤ K2∆t
(
‖Uµ‖2`2 +

∥∥Uµ+1
∥∥2

`2

)
+K3∆t. (6.28a)

Then, for ∆t ≤ 1/(2K1K2), the norms Q(Uµ) and ‖Uµ‖`2 stay bounded. More
precisely,

‖Uµ‖2`2 ≤
{(

2K2
1 − 1

) ∥∥U0
∥∥2

`2
+

K3

2K2

}(
1 +K∆t

1−K∆t

)µ
− K3

2K2
for µ ∈ N.

(6.28b)

Proof. We introduce the following abbreviations:

qµ := Q(Uµ), sµ := ‖Uµ‖2`2 , K := K1K2, L := K1K3, c :=
1 +K∆t

1−K∆t
.

Since sµ ≤ K1qµ = K1

[
q0 +

µ−1∑̀
=0

(q`+1 − q`)
]
≤ K1

[
K1s0 +

µ−1∑̀
=0

(q`+1 − q`)
]

,

we infer from (6.28a) that

sµ ≤
(
K2

1 −K1K2∆t
)
s0 + 2K1K2∆t

µ−1∑
`=0

s` +K1K2∆t sµ +K1K3µ∆t.

Using the abbreviations K and L, we get
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(1−K∆t) sµ ≤
(
K2

1 −K∆t
)
s0 + 2K∆t

µ−1∑
`=0

s` + Lµ∆t for all µ ∈ N.

(6.29a)
Note that 1−K∆t ≥ 1/2 because of ∆t ≤ 1/(2K1K2). The induction hypothesis

sµ ≤ Sµ := Acµ −B with B :=
K3

2K2
, A :=

(
2K2

1 − 1
)
s0 +B (6.29b)

is easily verified for µ = 0, since K2
1 ≥ 1 follows from (6.27):

S0 = Ac0 −B =
(
2K2

1 − 1
)
s0 +B −B ≥ s0.

Assume that s` ≤ S` holds for all ` ≤ µ− 1. Insertion of s` ≤ S` and (6.29b) into
(6.29a) yields

(1−K∆t) sµ ≤
(
K2

1 −K∆t
)
s0 + 2K∆t

∑µ−1

`=0
S` + Lµ∆t

≤
(
K2

1 −K∆t
)
s0 + 2AK∆t

∑µ−1

`=0
c` − 2BKµ∆t+ Lµ∆t.

Using
∑µ−1
`=0 c

` = cµ−1
c−1 = 1−K∆t

2K∆t (cµ − 1), we continue:

(1−K∆t) sµ ≤
(
K2

1 −K∆t
)
s0 + (1−K∆t)A (cµ − 1) + (L− 2KB)µ∆t

=
L=2KB

(1−K∆t)
{
Acµ −B︸ ︷︷ ︸

=Sµ

+B +
K2

1−K∆t
1−K∆t s0 −A

}
.

The expression K2
1−K∆t

1−K∆t is monotone in K∆t. From K∆t ≤ 1/2 we infer that

B +
K2

1−K∆t
1−K∆t s0 −A ≤ B +

(
2K2

1 − 1
)
s0 −A = 0,

which proves sµ ≤ Sµ for µ. ut

To derive further stability criteria in the case of `2, we need Fourier transforma-
tions, which are provided in the next part.

6.5.2 Fourier Analysis

A 2π-periodic function f ∈ L2
2π(R) is the 2π-periodic extension of f ∈ L2(0, 2π)

to R. The associated Fourier series is

1√
2π

∑
α∈Z

ϕαeiαξ with ϕα :=
1√
2π

∫ 2π

0

f(ξ)e−iαξdξ (α ∈ Z),
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where i =
√
−1. In the case of sufficiently smooth 2π-periodic functions f , the

Fourier series converges uniformly (with respect to ‖·‖∞) to f . For general L2 func-
tions, the convergence holds only in the sense of the L2 norm. Therefore, the series
in f(ξ) = 1√

2π

∑
α∈Z ϕαeiαξ has to be understood in the sense of ‖·‖L2(0,2π). In

the sequel, the following isometry (Parseval equality) is essential:

‖f‖L2(0,2π) = ‖ϕ‖`2 , where ϕ = (ϕα)α∈Z . (6.30)

The transfer from the function f ∈ L2(0, 2π) to its Fourier coefficients ϕ ∈ `2 is
the Fourier analysis, which will be denoted by F :

Ff = ϕ.

On the other hand, the mapping ϕ 7→ 1√
2π

∑
α∈Z ϕαeiαξ = f is called the Fourier

synthesis and coincides with the inverse F−1.
For p = 2, the solutionsUµ of the difference scheme are `2 sequences. We denote

the associated 2π-periodic functions by Ûµ:

Ûµ := F−1Uµ, Ûµ(ξ) =
1√
2π

∑
α∈Z

Uµα eiαξ.

The difference scheme Uµ+1 = C(λ,∆t)Uµ is equivalent to

Ûµ+1 =F−1Uµ+1 =F−1C(λ,∆t)Uµ=F−1C(λ,∆t)FF−1Uµ= Ĉ(λ,∆t)Ûµ

with
Ĉ(λ,∆t) := F−1C(λ,∆t)F . (6.31)

While C(λ,∆t) ∈ L(`2, `2), the transformed operator Ĉ(λ,∆t) belongs to the
space L(L2(0, 2π), L2(0, 2π)).

Exercise 6.40. Using the isometry (6.30), prove

‖F‖`2←L2(0,2π) = ‖F−1‖L2(0,2π)←`2 = 1 (6.32)

(i.e., F and F−1 are unitary) and show that

‖A‖`2←`2 = ‖F−1A‖L2(0,2π)←`2 for all A ∈ L(`2, `2),

‖B‖L2(0,2π)←`2 = ‖BF‖L2(0,2π)←L2(0,2π) for all B ∈ L(`2, L2(0, 2π)).

The decisive quantity for stability is the operator norm ‖C(λ,∆t)µ‖`2←`2 . The
previous exercise shows that

‖C(λ,∆t)µ‖`2←`2 =
∥∥F−1C(λ,∆t)µ

∥∥
L2(0,2π)←`2

=‖F−1C(λ,∆t)µF‖L2(0,2π)←L2(0,2π) =‖
[
FC(λ,∆t)F−1

]µ ‖L2(0,2π)←L2(0,2π)

=‖Ĉ(λ,∆t)µ‖L2(0,2π)←L2(0,2π). (6.33)
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This leads us to the following remark.

Remark 6.41. An equivalent definition of `2 stability with the stability constant
K(λ) is

‖Ĉ(λ,∆t)µ‖L2(0,2π)←L2(0,2π) ≤ K(λ) for all µ ∈ N0, ∆t > 0 with µ∆t ≤ T.

For the concrete determination of Ĉ(λ,∆t) from (6.31) we consider a term
Cj = ajEj from C(λ,∆t) =

∑
j Cj (cf. (6.22) and (6.19)):

(CjU)ν := ajUν+j for U ∈ `2.

As stated above, ĈjÛ = F−1CjU holds with Û = F−1U ; i.e., Û ∈ L2(0, 2π)
is the Fourier series 1√

2π

∑
α∈Z Uαeiαξ with the coefficients U = (Uα)α∈Z ∈ `2.

Fourier synthesis of CjU = (ajUα+j)α∈Z yields

F−1CjU =
1√
2π

∑
α∈Z

(ajUα+j) eiαξ = aj
1√
2π

∑
α∈Z

Uα+je
iαξ

=
β=α+j

aj
1√
2π

∑
β∈Z

Uβei(β−j)ξ = aje
−ijξ 1√

2π

∑
β∈Z

Uβeiβξ = aje
−ijξÛ .

A comparison with F−1CjU = ĈjÛ shows that Ĉj = aje
−ijξ; i.e., the linear

mapping Ĉj : L2(0, 2π)→ L2(0, 2π) is the multiplication by the function aje−ijξ.
Since Ĉ(λ,∆t) = F−1C(λ,∆t)F = F−1

∑
j CjF =

∑
j F−1CjF =

∑
j Ĉj ,

we obtain the following remark.

Remark 6.42. Consider the difference operator C(λ,∆t) =
∑
j∈Z ajEj . The

Fourier transformed operator is Ĉ(λ,∆t)=
∑
j∈Zaje

−ijξ. Application of Ĉ(λ,∆t)

corresponds to the multiplication by the trigonometric polynomial 12

G(ξ) :=
∑
j∈Z

aje
−ijξ, (6.34)

which is called the ‘characteristic function’ or ‘symbol’ of C(λ,∆t).

Exercise 6.43. Let φ ∈ C(R) be a bounded continuous function. Define the multi-
plication operator Φ : B → B by (Φ(f)) (ξ) := φ(ξ)f(ξ) for all ξ ∈ R. Prove for
both cases B = C(R) and B = L2(R) that Φ ∈ L(B,B) possesses the operator
norm ‖Φ‖B←B = ‖φ‖∞.

Therefore, the identity (6.33) becomes

‖C(λ,∆t)µ‖`2←`2 = sup{|G(ξ)µ| : ξ ∈ R}. (6.35)

Here, ξ ∈ R can be replaced by ξ ∈ [0, 2π), since G is 2π-periodic.13

12 The parameters λ,∆t are omitted in G(ξ) = G(ξ;λ,∆t). Note that aj depends on λ,∆t.
13 If the coefficients aj are matrices (cf. Remark 6.18), |G(ξ)µ| is to be replaced by the spectral
norm ‖G(ξ)µ‖2.
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6.5.3 Further Criteria

Application of the last exercise to Ĉ(λ,∆t)µ =
(∑

j∈Z aje
−ijξ

)µ
yields

‖Ĉ(λ,∆t)µ‖L2(0,2π)←L2(0,2π) =
∥∥∥(∑

j∈Z
aje
−ijξ

)µ∥∥∥
∞

=
∥∥∥∑

j∈Z
aje
−ijξ

∥∥∥µ
∞
. (6.36)

Note that (6.36) is only valid for scalar coefficients aj . Together with Remark 6.41,
(6.36) leads to the following theorem.

Theorem 6.44. The difference scheme (6.19) is `2 stable if and only if the charac-
teristic function G(ξ) =

∑
j∈Z aje

−ijξ satisfies the estimate (6.37) with suitable
Kλ:

|G(ξ)| ≤ 1 +Kλ∆t for all ξ ∈ R. (6.37)

Proof. (i) (6.37) implies ‖C(λ,∆t)‖`2←`2 = ‖Ĉ(λ,∆t)‖L2(0,2π)←L2(0,2π) =
‖G‖∞ ≤ 1 +Kλ∆t, so that Corollary 6.28 proves stability.

(ii) Set c(∆t) := (‖G‖∞ − 1) /∆t. If there is no constant Kλ with (6.37),
c(∆t)→∞ follows for ∆t→ 0. Exercise 6.32a and (6.36) imply instability. ut

Proof of Criterion 6.31 in the case of `2. Since inequality
∑
aj ≥ 1 +∆t c(∆t)

with lim∆t→∞ c(∆t) = ∞ is supposed and ‖G‖∞ ≥ |G(0)| = |
∑
aj | holds,

Exercise 6.32a proves `2 instability. ut
The previous analysis refers to `2. However, the characteristic function has also

consequences for `∞.

Lemma 6.45. LetC(λ,∆t) be of the form (6.19) with constant coefficients aj . Then
`∞ stability implies `2 stability:

‖C(λ,∆t)µ‖`∞←`∞ ≥ ‖G
µ‖∞ = ‖C(λ,∆t)µ‖`2←`2 for all µ ∈ N0.

The negation of this statement is: if the difference scheme (6.19) is `2 unstable, it is
also `∞ unstable.

Proof. Choose the special initial value U0 with U0
ν = eiνξ, where ξ ∈ R is charac-

terised by |G(ξ)| = ‖G‖∞. Note that U0 ∈ `∞ and ‖U0‖∞ = 1. Application of
C(λ,∆t) yields U1 = C(λ,∆t)U0 with

U1
ν =

∑
j∈Z

ajU
0
ν+j =

∑
j∈Z

aje
i(ν+j)ξ = eiνξ

∑
j∈Z

aje
ijξ = G(ξ)U0

ν ,

so that C(λ,∆t)µU0 = G(ξ)µU0 and ‖C(λ,∆t)µU0‖∞ = ‖G(ξ)µU0‖∞ =
|G(ξ)|µ ‖U0‖∞ = ‖Gµ‖∞ ‖U0‖∞. This proves the assertion. ut

Below, the examples from §6.3.3 are again analysed with regard to (in)stability.
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Example 6.46. (a) Scheme (6.17a) with a0 = 1 − aλ, a1 = aλ. For λ satisfy-
ing 0 ≤ aλ ≤ 1 , stability is already confirmed in Example 6.33a. The associated
characteristic function

G(ξ) := 1− aλ+ aλe−iξ = 1− aλ (1− cos ξ)− iaλ sin ξ

has modulus |G(π)| = |1− 2aλ| at ξ = π. Since |G(π)| > 1 for all aλ /∈ [0, 1],
Theorem 6.44 and Lemma 6.45 prove instability with respect to `2 and `∞ for aλ
outside of [0, 1]. Hence, the scheme (6.17a) is conditionally stable (with respect to
`2 and `∞) under the restriction aλ ∈ [0, 1], and unstable otherwise.
(b) Scheme (6.17b) with a−1 = −aλ2 , a0 = 1, a1 = aλ

2 . The associated character-
istic function

G(ξ) := −aλ
2

eiξ + 1 +
aλ

2
e−iξ = 1− iaλ sin ξ

has maximum norm ‖G‖∞ =

√
1 + |aλ|2 and, therefore, except the trivial case

a = 0, the scheme is always unstable (with respect to `2 and `∞).
(c) Scheme (6.17c) with a−1 = 1−aλ

2 , a1 = 1+aλ
2 . If |aλ| ≤ 1, Example 6.33c

shows stability. Because of

G(ξ) :=
1− aλ

2
eiξ +

1 + aλ

2
e−iξ and |G(ξ)|2 = cos2 ξ + |aλ|2 sin2 ξ,

the bound ‖G‖∞ = max{1, |aλ|2} follows. Hence, the scheme is conditionally
stable for |aλ| ≤ 1, but unstable for |aλ| > 1 (with respect to `2 and `∞).
(d) Scheme (6.18) with a−1 = λ, a0 = 1 − 2λ, a1 = λ. For λ ∈ (0, 1/2], stability
is shown in Example 6.33d. Because of

G(ξ) := λeiξ + 1− 2λ+ λe−iξ = 1− 2λ(1− cos ξ)

and ‖G‖∞ = |G(π)| = |1− 4λ| the scheme is conditionally stable for λ ∈ (0, 1/2],
but unstable for λ > 1/2 (with respect to `2 and `∞).

Lemma 6.45 yields a direct relation between G and `2 stability. Because of the
inequality ‖C(λ,∆t)µ‖`∞←`∞ ≥ ‖C(λ,∆t)µ‖`2←`2 , boundedness of powers ofG
is necessary for `∞ stability. As we shall see, this condition is not sufficient for `∞

stability. A complete characterisation of `∞ stability is given by Thomée [24].

Theorem 6.47. Assume a difference scheme (6.16) with G(ξ) =
∑
j∈Z aje

−ijξ (cf.
(6.34)). Then the scheme is `∞ stable if and only if either condition (a) or (b) is
fulfilled:

(a) G(ξ) = ce−ijξ with |c| = 1,
(b) the set {ξ ∈ [−π, π] : |G(ξ)| = 1} = {ξ1, . . . , ξN} has finite cardinality, and

there are numbers αk ∈ R, βk ∈ N, and γk ∈ C with <e γk > 0, such that

G(ξk + ξ) = G(ξk) exp
(
iαkξ−γkξ2βk(1 + o(1))

)
as ξ → 0 (1 ≤ k ≤ N).
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The CFL condition is a necessary condition for convergence. ‘CFL’ abbreviates
the names of the authors Courant, Friedrichs, Lewy of [1].14

Criterion 6.48 (Courant–Friedrichs–Lewy). Let the hyperbolic differential equa-
tion ∂

∂tu = a ∂
∂xu be discretised by the explicit difference scheme (6.16). Set

J1 = min{j ∈ Z : aj 6= 0},
J2 = max{j ∈ Z : aj 6= 0},

so that the sum
∑
j∈Z

ajU
µ
ν+j can be reduced to

∑
J1≤j≤J2

ajU
µ
ν+j . If

aλ /∈ [J1, J2],

the scheme is not convergent (with respect to any norm). Therefore, aλ ∈ [J1, J2] is
a necessary convergence condition.

Because of the equivalence theorem, stability cannot hold for aλ /∈ [J1, J2].
Hence, the CFL criterion is also a stability criterion.

Proof of Criterion 6.48. For an arbitrary space-time point (t, x) with t > 0, the
solution is u(t, x) = u0(x + at) according to Lemma 6.2. One verifies that a grid
point (t, x) = (µ∆t, ν∆x) of the solution Uµν depends only on the initial values U0

k

with k ∈ [ν + µJ1, ν + µJ2]. Multiplication by ∆x shows

xk = k∆x ∈ [x+ µ∆xJ1, x+ µ∆xJ2]

= [x+ µ∆xJ1, x+ µ∆xJ2]

= [x+ tJ1/λ, x+ tJ2/λ].

If aλ /∈ [J1, J2], then x+ at /∈ [x+ tJ1/λ, x+ tJ2/λ]. Therefore, the computation
of Uµν does not use those data, on which the solution u(t, x) depends. To be more
precise, choose an initial value u0 ∈ C∞0 (R) with

u0(a) 6= 0, supp(u0) ⊂ R\[J1/λ, J2/λ].

Then U(1, x) = 0 holds in a neighbourhood of x = 0, while the true solution
satisfies u(1, 0) = u0(a) 6= 0 and even u(1, x) 6= 0 in a neighbourhood of x = 0.
As a consequence, Uµν cannot converge to u. ut

As an example, take the scheme (6.17a). Since a0 = 1 − aλ and a1 = aλ, the
CFL bounds are J1 = 0 and J2 = 1. The necessary CFL condition aλ ∈ [0, 1]
coincides for Example 6.46a with the exact stability property.

We summarise the mentioned necessary and/or sufficient conditions in the fol-
lowing table.

14 The original paper is written in German. An English translation can be found in [3,AppendixC].
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statement name or necessary sufficient
comment `2 `∞ `2 `∞

Criterion 6.26 * *
Corollary 6.28 * *
Criterion 6.30 positive scheme * *
Criterion 6.31 * *
Lemma 6.34 perturbation * *
Criterion 6.36 * *
Criterion 6.38 almost normal * *
Theorem 6.44 * *
Lemma 6.45 * *
Theorem 6.47 * *
Criterion 6.48 CFL * *
Criterion 6.52 * *
Criterion 6.54(a) von Neumann * *
Criterion 6.54(b) von Neumann * *
Lemma 6.55 Lax-Wendroff *
Criterion 6.57 Friedrichs *
Theorem 6.58 Friedrichs *

6.5.4 Implicit Schemes

All schemes examined so far are, at best, conditionally stable. In order to obtain
unconditionally stable schemes, one must admit implicit difference schemes.15

In the parabolic case ∂u
∂t = ∂2u

∂x2 , the second x-difference can be formed at time
level t+∆t, i.e.,

∂2u

∂x2
≈ u(t+∆t, x−∆x)− 2u(t+∆t, x) + u(t+∆t, x+∆x)

∆x2
,

while the time derivative ∂
∂tu becomes u(t+∆t,x)−u(t,x)

∆t as before. This leads to

−λUµ+1
ν−1 + (1 + 2λ)Uµ+1

ν − λUµ+1
ν+1 = Uµν . (6.38)

Instead of the explicit form Uµ+1 = C(λ,∆t)Uµ, one now obtains an implicit
scheme of the form

C1(λ,∆t)Uµ+1 = C2(λ,∆t)Uµ, (6.39)

where in the present case the operators are given by

15 The CFL criterion does not apply to implicit schemes, since formally implicit schemes can be
viewed as explicit ones with an infinite sum (i.e., J1 = −∞, J2 =∞). Then aλ ∈ [J1, J2] = R
is valid, and the CFL condition is always satisfied.
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(C1(λ,∆t)U)ν =
∑

−1≤j≤1

a1,jUν+j with a1,−1 = a1,1 = −λ, a1,0 = 1 + 2λ and

C2(λ,∆t)U =
∑
j∈Z

a2,jUν+j with a2,0 = 1,

{
all other coefficients = 0;
i.e., C2 = identity.

One would like to solve (6.39) with respect to Uµ+1:

Uµ+1 = C(λ,∆t)Uµ with C(λ,∆t) := [C1(λ,∆t)]
−1
C2(λ,∆t). (6.40)

Therefore, the existence of the inverse [C1(λ,∆t)]
−1 is to be investigated.

Lemma 6.49. (a) If the coefficients a1,j of C1(λ,∆t) satisfy the inequality( ∑
j∈Z\{0}

|a1,j |

)
/ |a1,0| ≤ 1− ε < 1 for some ε > 0,

then the inverse exists and satisfies ‖ [C1(λ,∆t)]
−1 ‖`p←`p ≤ 1

ε|a1,0| .

(b) The inverse [C1(λ,∆t)]
−1 exists in L(`2, `2) if and only if the characteristic

function G1(ξ) of C1 satisfies an inequality |G1(ξ)| ≥ η > 0. The norm equals

‖ [C1(λ,∆t)]
−1 ‖`2←`2 = 1/ inf

ξ∈R
|G1(ξ)| .

Proof. (i) The equation C1V = U is equivalent to the fixed-point equation

V =
1

a1,0
(U − C ′1V ) =: Φ(V ) with C ′1 := C1 − a1,0I.

The contraction constant of Φ is ‖C ′1‖`p←`p / |a1,0|. By Remark 6.27,

‖C ′1‖`p←`p
|a1,0|

≤
∑
j∈Z\{0} |a1,j |
|a1,0|

≤ 1− ε

is valid, so that a unique inverse exists. The estimate

‖V ‖`p ≤
1

|a1,0|
‖U‖`p + (1− ε) ‖V ‖`p

shows that ε ‖V ‖`p ≤
1
|a1,0| ‖U‖`p , so that ‖ [C1(λ,∆t)]

−1 ‖`p←`p has the bound
1/ (ε |a1,0|).

(ii) Ĉ1(λ,∆t) = F−1C1(λ,∆t)F is the Fourier transformation ofC1. Ĉ1(λ,∆t)

is the operator Û 7→ G1Û . Obviously, the multiplication operator M ∈ L(`2, `2)

with MÛ := (1/G1) Û is the inverse of Ĉ1. The norm of M is

‖M‖`2←`2 = ‖Ĉ−1
1 ‖`2←`2 = ‖1/G1‖∞ ≤ 1/η.
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On the other hand, one verifies that ‖Ĉ−1
1 ‖`2←`2 cannot be finite if inf |G1| equals

zero. Since the Fourier transform does not change the `2 norm, the equality
‖C−1

1 ‖`2←`2 = ‖Ĉ−1
1 ‖`2←`2 = ‖1/G1‖∞ = 1/ infξ∈R |G1(ξ)| follows. ut

Example 6.50. The scheme (6.38) is `2 stable for all λ = ∆t/∆x2; i.e., it is uncon-
ditionally stable.

Proof. G1(ξ) = −λeiξ+1+2λ−λe−iξ = 1+2λ (1− cosx) ≥ infξ∈R |G1(ξ)| = 1
is the characteristic function of C1. Since C2 = I , we obtain

C(λ,∆t) := [C1(λ,∆t)]
−1
C2(λ,∆t) = [C1(λ,∆t)]

−1

and ‖C−1
1 ‖`2←`2 = 1/ infξ∈R |G1(ξ)| = 1. Stability follows by Criterion 6.26. ut

Remark 6.51. [C1(λ,∆t)]
−1 from above is equal to the infinite operator

[C1(λ,∆t)]
−1

=
∑
j∈Z

aj(λ)Ej with aj =
1√

1 + 4λ

(
2λ

2λ+ 1 +
√

1 + 4λ

)|j|
;

i.e., the implicit scheme (6.38) is identical to Uµ+1
ν =

∑
j∈Z

ajU
µ
ν+j .

Proof. Check that C1(λ,∆t)
∑
j∈Z ajEj = identity. ut

The general case of an implicit scheme (6.39) is treated in the next criterion (its
proof is identical to that of Theorem 6.44).

Criterion 6.52. The scheme (6.39) is `2 stable if and only if the characteristic func-
tion

G(ξ) := G2(ξ)/G1(ξ)

satisfies condition (6.37).

Example 6.53. A modification of (6.38) is the so-called theta scheme

− λΘUµ+1
ν−1 + (1 + 2λΘ)Uµ+1

ν − λΘUµ+1
ν+1 (6.41)

= λ (1−Θ)Uµν−1 + (1− 2λ (1−Θ))Uµν + λ (1−Θ)Uµν+1

for Θ ∈ [0, 1]. For Θ = 0 and Θ = 1 we regain (6.18) and (6.38), respectively.
For Θ = 1/2, (6.41) is called16 the Crank–Nicolson scheme. The scheme (6.41) is
unconditionally `2 stable for Θ ∈ [1/2, 1], whereas in the case of Θ ∈ [0, 1/2) it is
conditionally `2 stable for

λ ≤ 1/ (2 (1− 2Θ)) .

In all stable cases, ‖C(λ,∆t)‖`2←`2 = 1 holds.

16 Occasionally, one finds the incorrect spelling ‘Crank–Nicholson’. The second author of [2] is
Mrs. Phyllis Nicolson (1917–1968).
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Proof. Let (DU)ν = −Uν−1 + 2Uν − Uν+1 be the negative second difference
operator. The characteristic function of D is GD(ξ) = 2 − 2 cos ξ = 4 sin2(ξ/2).
The operators C1, C2 from (6.39) in the case of (6.41) are

C1(λ,∆t) = I + λΘD and C2(λ,∆t) = I − λ (1−Θ)D.

The associated functions are

G1(ξ) = 1 + λΘGD(ξ) and G2(ξ) = 1− λ (1−Θ)GD(ξ),

so that

G(ξ) =
1− λ (1−Θ)GD(ξ)

1 + λΘGD(ξ)
.

The function 1−λ(1−Θ)X
1+λΘX is monotonically decreasing with respect to X , so that the

maximum of |G(ξ)| is taken at X = 0 = GD(0) or X = 4 = GD(π):

‖G‖∞ = max{G(0),−G(π)} = max

{
1,

4λ (1−Θ)− 1

1 + 4λΘ

}
.

If Θ ∈ [ 1
2 , 1], then

−G(π) =
4λ (1−Θ)− 1

1 + 4λΘ
=

4λ

1 + 4λΘ
− 1 ≤

Θ≥ 1
2

4λ

1 + 2λ
− 1 =

2λ− 1

2λ+ 1
≤ 1

proves ‖G‖∞ = 1.

In the case ofΘ ∈ [0, 1/2), the choice of λmust ensure the estimate−G(π) ≤ 1.
Equivalent statements are

4λ (1−Θ)− 1 ≤ 1 + 4λΘ ⇔ 4λ (1− 2Θ) ≤ 2⇔ λ ≤ 1/ (2 (1− 2Θ)) . ut

6.5.5 Vector-Valued Grid Functions

So far, `p has been the set the complex-valued sequences (Uν)ν∈Z, Uν ∈ C. If the
equation ∂

∂tu(t) = Au(t) from (6.1a) is vector-valued (values in CN ), also the grid
functions (Uν)ν∈Z must be vector-valued:

`p = {U = (Uν)ν∈Z : Uν ∈ CN} with the norms

‖U‖2 =

√∑
ν∈Z
‖Uν‖22, ‖U‖∞ = sup

ν∈Z
‖Uν‖∞ ,

where ‖Uν‖p is the Euclidean norm in CN (p = 2) or the maximum norm in CN
(p =∞, cf. Remark 6.18).
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Now, the coefficients aj in the difference scheme (6.19) areN×N matrices. The
statements concerning consistency, convergence, and stability remain unchanged
(only the norms are to be interpreted differently). However, the criteria (see §6.5
and later) are to be generalised to the case N > 1.

Criterion 6.26 remains valid without any change.
The estimate in Remark 6.27 becomes

‖C(λ,∆t)‖`p←`p ≤
∑
j

‖aj‖p ,

where ‖.‖2 is the spectral norm and ‖.‖∞ is the row-sum norm for N ×N matrices.

In Corollary 6.28 one has to replace
∑
|aj | by

∑
j ‖aj‖p.

When we form G(ξ) =
∑
j∈Z aje

−ijξ by the Fourier transform, G(ξ) is now an
N ×N matrix-valued function. The characterisation (6.35) becomes

‖C(λ,∆t)µ‖`2←`2 = sup{‖G(ξ)µ‖2 : ξ ∈ [0, 2π)}. (6.42)

Instead of the relatively abstract operator C(λ,∆t), one has now to investigate the
boundedness of the N ×N matrices G(ξ)µ.

According to Criterion 6.36, ρ(C(λ,∆t)) ≤ 1 + O(∆t) is a necessary condi-
tion. Since the unitary Fourier transform does not change the spectra, C(λ,∆t) and
{G(ξ) : ξ ∈ [0, 2π)} have identical eigenvalues. This will lead to the von Neumann
condition. Here the spectral radius ρ(G(ξ)) is defined in (6.25). Part (b) corresponds
to Remark 6.37.

Criterion 6.54 (von Neumann condition). (a) A necessary condition for stability
(with respect to `2 and `∞) is

sup{ρ(G(ξ)) : ξ ∈ [0, 2π)} ≤ 1 +O(∆t).

(b) If all matrices G(ξ) are normal, this condition is even sufficient for `2 stability.

The following statement uses the numerical radius of a matrix:

r(A) := sup
06=v∈CN

∣∣∣∣∣ 〈Av, v〉‖v‖22

∣∣∣∣∣ .
Lemma 6.55 (Lax–Wendroff condition, [18]). Suppose that there is a constant
KLW such that

r (G(ξ)) ≤ 1 +KLW∆t for all ξ ∈ [0, 1].

Then the scheme is `2 stable.
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Proof. The numerical radius of general square matrices A possesses the properties

‖A‖2 ≤ 2r(A), r(An) ≤ r(A)n for n ∈ N0

(cf. §2.9.5 in [6] or [7]). Hence,

‖G(ξ)n‖2 ≤ 2r(G(ξ)n) ≤ 2r(G(ξ))n ≤ 2 (1 +KLW∆t)
n ≤ 2 exp(KLWT )

holds for all n with n∆t ≤ T and all ξ ∈ [0, 2π). Because of (6.42), the assertion is
proved. ut

Definition 6.29 carries over to the matrix case when we replace non-negative
reals by positive semidefinite matrices; i.e., a positive difference scheme is charac-
terised by ‘aj positive semidefinite’.

Exercise 6.56. Suppose that the positive semidefinite coefficients aj are either
(i) all diagonal or
(ii) simultaneously diagonalisable; i.e., there is a transformation S such that the

matrices dj = SajS
−1 are diagonal for all j.

Show that analogous to Criterion 6.30, the difference scheme (6.19) is `2 and
`∞ stable if

∑
aj = I (cf. (6.24)).

However, also without simultaneous diagonalisability, the criterion can be
generalised. Note that even x-dependent coefficients aj = aj(x) are allowed.

Criterion 6.57 (Friedrichs [5]). Suppose that the difference scheme (6.19) has
positive semidefinite coefficients aj satisfying the consistency condition

∑
j∈Zaj=I

(cf. (6.24)). The coefficients aj must be either constant or the following three
conditions must hold:

(i) the hyperbolic case with λ = ∆t/∆x is given (cf. (6.11)),
(ii) aj(·) are globally Lipschitz continuous in R with Lipschitz constant Lj ,
(iii) B :=

∑
j∈Z jLj <∞.

Then
‖C(λ,∆t)‖`2←`2 ≤ 1 + CL∆t

holds with CL=B/ (2λ) implying `2 stability.

Proof. We prove the general case (constant coefficients correspond to Lj = 0). In

(C(λ,∆t)V,U)`2 = ∆x
∑
ν∈Z

∑
j∈Z
〈aj(ν∆x)Vν+j , Uν〉

(
U, V ∈ `2

)
(6.43)

〈·, ·〉 denotes the scalar product of CN (N is the dimension of Uν , Vν ∈ CN ).

Any positive semidefinite matrix M fulfils |〈Mx, y〉| ≤ 1
2 〈Mx, x〉+ 1

2 〈My, y〉
for x, y ∈ CN . Application to (6.43) yields



6.5 Sufficient and Necessary Conditions for Stability 127∣∣∣∣∣∣∆x
∑
ν∈Z

∑
j∈Z
〈aj(ν∆x)Vν+j , Uν〉

∣∣∣∣∣∣
≤ ∆x

2

∑
ν∈Z

∑
j∈Z
〈aj(ν∆x)Uν , Uν〉+

∆x

2

∑
ν∈Z

∑
j∈Z
〈aj(ν∆x)Vν+j , Vν+j〉 .

The first term is ∆x
2

∑
ν∈Z

〈 ∑
j∈Z

aj(ν∆x)Uν , Uν

〉
=

(6.24)

∆x
2

∑
ν∈Z
‖Uν‖22 = 1

2 ‖U‖
2
`2 .

Substitute ν in the second term by µ = ν + j:

∆x

2

∑
ν∈Z

∑
j∈Z
〈aj(ν∆x)Vν+j , Vν+j〉 =

∆x

2

∑
µ∈Z

∑
j∈Z
〈aj((µ− j)∆x)Vµ, Vµ〉 .

Because of Lipschitz continuity, ‖aj((µ− j)∆x) − aj(µ∆x)‖2 ≤ Ljj∆x holds.
With B =

∑
j∈Z jLj <∞ (assumption (iii)) we estimate by

∆x
2

∑
µ∈Z

∑
j∈Z
〈aj((µ− j)∆x)Vµ, Vµ〉

=
(6.24)

∆x
2

∑
µ∈Z

∑
j∈Z
〈[aj((µ− j)∆x)− aj(µ∆x)]Vµ, Vµ〉+ ∆x

2 ‖V ‖
2
`2

≤ 1 +B∆x

2
‖V ‖2`2 .

From the previous estimates we obtain |(CV,U)`2 | ≤
1
2 ‖U‖

2
`2 + 1+B∆x

2 ‖V ‖2`2 .
Characterising the norm by

‖C(λ,∆t)‖`2←`2 = sup
‖U‖`2=‖V ‖`2=1

|(CV,U)`2 | ,

we obtain the inequality ‖C(λ,∆t)‖`2←`2 ≤ 1 + B∆x
2 = 1 + CL∆t. The last step

uses either ∆x = ∆t/λ from assumption (i) or B = 0 (constant coefficients). ut

We add some comments concerning the latter criterion.
(1) Inequality ‖C(λ,∆t)‖`2←`2 ≤ 1 +O(∆x) = 1 +O(

√
∆t) is not sufficient for

stability in the parabolic case with λ = ∆t/∆x2.
(2) If the coefficients aj are constant, the vanishing values Lj = B = CL = 0 show
that ‖C(λ,∆t)‖`2←`2 = 1.
(3) If only finitely many coefficients are different from zero, B =

∑
j∈Z jLj < ∞

is satisfied.
A positive difference scheme can be obtained as discretisation of the symmetric

hyperbolic system of differential equations

∂

∂t
u+A(x)

∂

∂x
u = 0 (A(x) symmetric N ×N matrix, u ∈ CN ). (6.44)
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Replacing ∂
∂xu by u(t,x+∆x)−u(t,x−∆x)

2r∆x and ∂
∂tu by u(t+∆t,x)−ū(t,x)

∆t with the
average ū(t, x) = 1

2 [u(t, x+∆x) + u(t, x−∆x)], we are led to the difference
scheme (Friedrichs’ scheme)

(C(λ,∆t)U)ν =
1

2
{[I − λA(ν∆x)]Uν−1 + [I + λA(ν∆x)]Uν+1} . (6.45)

Choosing 0 < λ ≤ 1/ supx∈R ‖A(x)‖2, we obtain a positive scheme C(λ,∆t).
Hence `2 stability follows, provided that A(x) is Lipschitz continuous.

Criterion 6.36 as well as Remark 6.37 and Criterion 6.38 remain valid in the
vector-valued case.

Also in the vector-valued case, the Fourier transformed difference operator has
the form Ĉ(λ,∆t)(ξ) =

∑
j∈Z aje

−ijξ, where now Ĉ is a 2π-periodic function,
whose values are N × N matrices. As in the scalar case, the stability estimate
‖C(λ,∆t)µ‖`2←`2 ≤ K(λ) holds for all µ∆t ≤ T if and only if

‖Ĉ(λ,∆t)µ‖L2(0,2π)←L2(0,2π) ≤ K(λ).

However, the equality
∥∥(∑

j∈Z aje
−ijξ

)µ∥∥
∞ =

∥∥∑
j∈Z aje

−ijξ
∥∥µ
∞ from (6.36) is,

in general, no longer valid for the matrix-valued case, but becomes an inequality:∥∥(∑
j∈Z

aje
−ijξ

)µ∥∥
∞ ≤

∥∥∑
j∈Z

aje
−ijξ

∥∥µ
∞.

The investigation of `∞ stability of a hyperbolic system is more involved.
Following Mizohata [20], we define regular hyperbolicity. A system

∂

∂t
u+A(t, x)

∂

∂x
u = 0 (A N×Nmatrix, u ∈ CN, x ∈ R, 0 ≤ t ≤ T ) (6.46)

is called regularly hyperbolic, if the eigenvalues di(t, x) (1 ≤ i ≤ N ) of A(t, x)
are real and distinct; i.e., there is some δ > 0 such that

|di(t, x)− dj(t, x)| ≥ δ for all i 6= j (1 ≤ i, j ≤ N, x ∈ R, 0 ≤ t ≤ T ).

The following stability result is proved by Tomoeda [26].

Theorem 6.58. Suppose that (6.46) is a regularly hyperbolic system satisfying the
smoothness condition

sup{|A(t, x)|, |At(t, x)|, |Ax(t, x)| : x ∈ R, 0 ≤ t ≤ T} <∞.

Then Friedrichs’ scheme (6.45) with

0 < λ < 1/ sup
x∈R,0≤t≤T

|di(t, x)|

is `∞ stable.
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6.5.6 Generalisations

In §6.5.5 we have already analysed the generalisation to the case of systems of
differential equations with vector-valued solutions. Next, a series of further gen-
eralisations is discussed.

6.5.6.1 Spatially Multivariate Case

Instead of one spatial variables, we admit d variables x = (x1, . . . , xd) (d = 3 is
the standard case). Then the heat equation (6.4) becomes ∂u

∂t = ∆u for t > 0 with
the Laplace operator ∆ =

∑d
k=1

∂2

∂x2
k

. The representation (6.5) of u can be adapted
to the d-dimensional situation.

The hyperbolic differential equation ∂
∂tu = a ∂

∂xu is generalised to

∂

∂t
u =

d∑
k=1

Ak
∂u

∂xk
. (6.47)

For the discretisation, the grid G∆x = {x = ν∆x : ν ∈ Z} from (6.9) is to be
replaced by the d-dimensional grid17

G∆x = {x = ν∆x : ν ∈ Zd}

with multi-indices ν = (ν1, . . . , νd), νj ∈ Z. Now, the Banach space `p is CZd

equipped with the norms

‖U‖`∞ = sup{|Uν | : ν ∈ Zd} and ‖U‖`2 =

√
∆xd

∑
ν∈Zd

|Uν |2.

The Fourier transform of U ∈ `2 yields

Û(ξ) =
1

(2π)
d/2

∑
ν∈Zd

Uνeiνξ,

where
νξ = 〈ν, ξ〉 =

d∑
k=1

νjξj

denotes the Euclidean scalar product in Rd.
The stability analysis of system (6.47) with N × N matrices Ak leads to the

following complication. In the univariate case d = 1, all coefficient matrices aj
of C(λ,∆t) are derived from only one matrix A1, so that in the standard case the
matrices aj are mutually commutable (and thereby simultaneously diagonalisable).
For d > 1 with non-commutative matricesAk in (6.47), the matrices aj are expected
to be not simultaneously diagonalisable.

17 In principle, different step widths ∆xj make sense. However, after a transformation xj 7→
∆x1

∆xj
xj of the spatial variables we regain a common step size ∆x.
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6.5.6.2 Time-Dependent Coefficients

The coefficients in the differential equation (6.2) or (6.47) may depend on t:

a = a(t) or Ak = Ak(t).

In this case the concept of the semigroup of solution operators (cf. §6.2) need to be
modified a bit. Instead of T (t), the operator T (t1, t0) with 0≤ t0≤ t1≤T appears,
which describes the transition of an initial value at time t0 to the solution at time t1.
The semigroup property reads T (t2, t1)T (t1, t0) = T (t2, t0) for t0 ≤ t1 ≤ t2 and
T (t, t) = I .

The discretisation yields time-dependent difference schemes C(t;λ,∆t) at
t = µ∆t with Uµ = C(µ∆t;λ,∆t)Uµ−1 :

(C(t;λ,∆t)U)ν =
∑

j∈Zd
aj(t)Uν+j for U ∈ `p and ν ∈ Zd.

In the stability definition (6.23), C(λ,∆t)µ is to be replaced by the product

C(t0 + µ∆t;λ,∆t) · C(t0 + (µ− 1)∆t;λ,∆t) · . . . · C(t0 +∆t;λ,∆t)

with 0 ≤ t0 ≤ t0 + µ∆t ≤ T .
Criteria 6.26, 6.36 and Lemma 6.34 hold also in the time-dependent case.

6.5.6.3 Spatially Dependent Coefficients

The differential equation may contain spatially dependent coefficients as, e.g., in
the differential equation (6.44). Correspondingly, all coefficients aj = aj(x) of
C(λ,∆t) may depend on x. Criterion 6.57 explicitly admits variable coefficients in
the case of positive difference schemes.

There are criteria using again the function

G(x, ξ) :=
∑
j∈Z

aj(x) e−ijξ, (6.48)

which formally corresponds to (6.34). However, G is not the Fourier transform
F−1C(λ,∆t)F !

Having an operator C(λ,∆t) with variable coefficients, we can introduce the
operator

C(x0;λ,∆t)

by replacing all coefficients aj(x) by the constant coefficients aj(x0). We say
that C(x0;λ,∆t) is the operator C frozen at x0. G(x0, ξ) is the Fourier trans-
form of C(x0;λ,∆t). This leads to the obvious question as to whether stability
of the original scheme C(λ,∆t) corresponds to the stability of the frozen operator
C(x0;λ,∆t) at all x0 ∈ R. The general answer is negative.
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Remark 6.59 (Kreiss [9, §7]). Stability of C(x0;λ,∆t) at all x0 ∈ R is, in general,
neither sufficient nor necessary for the stability of C(λ,∆t).

Typical sufficient criteria require besides Lipschitz continuity of the coefficients
aj(·) that the scheme be dissipative. Here, C(λ,∆t) is called dissipative of order
2r (r ∈ N) if there are constants δ, τ > 0 such that

|λν(x,∆t, ξ)| ≤ 1− δ |ξ|2r for all x ∈ R, ∆t ∈ (0, τ), |ξ| ≤ π, (6.49)

holds for the eigenvalues λν (ν = 1, . . . , N ) of G(x, ξ).

We hint to a connection between condition (6.49) and the Definition 5.23 of the
stability of ordinary differential equations, which requires that zeros λν of ψ with
|λν | = 1 be simple zeros, while otherwise |λν | < 1 must hold. In the case of (6.49),
the powers ‖G(x, ξ)n‖ must be uniformly bounded, while in the second case the
companion matrix must satisfy ‖An‖ ≤ const (cf. Remark 5.39). However, the
difference is that in the second case only finitely many eigenvalues exist, so that
max |λν | < 1 holds for all eigenvalues with |λν | 6= 1. In the case of |λν(x,∆t, ξ)|,
the eigenvalues λν are continuous functions of ξ and their absolute value may tend
to 1. Condition (6.49) describes quantitatively how fast λν(x,∆t, ξ) approaches 1.

The stability result of Kreiss [10] takes the following form (see also [21, §5.4]).

Theorem 6.60. Suppose the matrices aj of the hyperbolic system

ut =

d∑
j=1

aj(x)uxj

to be Hermitian, uniformly bounded, and uniformly Lipschitz continuous with
respect to x. If the difference scheme is dissipative of order 2r and accurate of
order 2r − 1 for some r > 0, then it is `2 stable.

6.5.6.4 Initial-Boundary Value Problem

If we replace the real axis inΣ = [0, T ]×R (cf. (6.3)) by an interval or the half-axis
[0,∞), the new computational domain Σ = [0, T ]× [0,∞) has a non-empty spatial
boundary [0, T ]×{0}. Then the parabolic initial-value problem has to be completed
by a boundary condition at x = 0; e.g.,

u(t, 0) = uB(t)

with some given function uB to determine a unique solution.
In the case of hyperbolic problems the situation is more involved. The model

problem ∂
∂tu(t) = a ∂

∂xu(t) in (6.2) requires the same kind of boundary condi-
tion as above if a > 0. Otherwise, the differential equation is uniquely determined
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without further condition at x = 0. In the case of hyperbolic systems, the number
of characteristic directions with positive slope determines the number of necessary
boundary conditions.

After the discretisation, the grid G∆x from (6.9) has to be replaced by the one-
sided infinite grid G∆x = {x = ν∆x : ν ∈ N0}. The space B becomes `p =
{U = (Uν)ν∈N0}, where U0 is fixed by the boundary conditions. For an analysis we
refer to Kreiss [11, 12], Richtmyer–Morton [21, §6], and Kreiss–Wu [13].

6.5.6.5 Multistep Schemes

So far, we have considered one-step methods; i.e., Un+1 is computed from Un.
As we already know from ordinary differential equations, instability may arise
from improperly designed multistep methods. As an example of a two-step method
we discuss the popular leap-frog scheme, first applied to the hyperbolic equation
∂
∂tu = a ∂

∂xu. Both derivatives are discretised by the symmetric difference quotient;
i.e.,

∂

∂t
u ≈ 1

2∆t
[u(t+∆t, x)− u(t−∆t, x)] and

∂

∂x
u ≈ 1

2∆x
[u(t, x+∆x)− u(t, x−∆x)].

The resulting two-step method is

Uµ+1
ν = Uµ−1

ν + λa[Uµν+1 − U
µ
ν−1]. (6.50)

As usual, we need starting values for µ = 0 and µ = 1 to proceed with the leap-frog
scheme. The name originates from the fact that the computation of Uµ+1

ν involves
only values

Umn with n+m = ν + µ+ 1 (modulo 2).

The grid Σ∆t
∆x defined in (6.10) splits into the two colours of the chequer board:

Σeven∪̇Σodd, where

Σeven = {(n∆x,m∆t) ∈ Σ∆t
∆x : n+m even integer}.

This observation allows us to reduce the computation to Σeven, which halves the
cost of the computation.

The stability analysis follows the idea of Remark 5.38b: we formulate the two-
step method as a one-step method for V µ :=

[
Uµ

Uµ−1

]
:[

Uµ+1

Uµ

]
=

[
λa (E1 − E−1) 1

1 0

] [
Uµ

Uµ−1

]
;

i.e., V µ+1 = CV µ with
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C :=

[
λa (E1 − E−1) 1

1 0

]
=

[
−λa 0

0 0

]
E−1 +

[
0 1
1 0

]
+

[
λa 1
1 0

]
E1.

Here Ej is the shift operator from (6.22). The corresponding characteristic function
G(ξ) from (6.34) is now matrix-valued:

G(ξ) =

[
λa
(
e−iξ − eiξ

)
1

1 0

]
=

[
−2iλa sin ξ 1

1 0

]
(0 ≤ ξ ≤ 2π).

One easily checks that |λa| > 1 together with ξ = π/2 (i.e., sin ξ = 1) leads to
an eigenvalue λ(ξ) with |λ(ξ)| > 1. Von Neumann’s condition in Criterion 6.54a
implies that |λa| ≤ 1 is necessary for `2 stability.

Proposition 6.61. The leap-frog scheme (6.50) is `2 stable if and only if |λa| < 1.

Proof. It remains to show that |λa| < 1 implies stability. For this purpose we give
an explicit description of the powers G(ξ)n. Abbreviate x := −λa sin ξ, so that
G(ξ) =

[
2ix
1

1
0

]
. We claim that

G(ξ)n =

[
inUn(x) in−1Un−1(x)

in−1Un−1(x) in−2Un−2(x)

]
for n ≥ 1, (6.51)

where Un are the Chebyshev polynomials of the second kind. These are defined on
[−1, 1] by

Un(x) :=
sin((n+ 1) arccos(x))√

1− x2
(n = −1, 0, 1, . . .)

and satisfy the same three-term recursion

Un+1(x) = 2xUn(x)− Un−1(x)

as the Chebyshev polynomials (of the first kind) mentioned in Footnote 7 on
page 52. Statement (6.51) holds for n = 1. The recursion formula together with
G(ξ)n+1 = G(ξ)nG(ξ) proves the induction step.

If |λa| ≤ A < 1, the inequalities |x| ≤ A < 1 and |ϕ| ≤ arccos(A) < 1 follow,
where ϕ := arccos(x). One verifies that

Un(x) = Un(cosϕ) = sin((n+ 1)ϕ)/ sin(ϕ)

is bounded by Un(A) ≈ 1/[2(1 − A)] independently of n. Hence ‖G(ξ)n‖ is uni-
formly bounded in n, and `2 stability follows.

If A = 1, the polynomials are bounded by

|Un(x)| ≤ Un(0) = n+ 1,

implying (a rather weak form18 of) instability. ut

18 If the amplification factor is some fixed ζ > 1, the instability effects of ‖C(λ,∆t)n‖ > ζn

are easily observed and may lead to an overflow in the very end. On the other hand, we conclude
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The original leap-frog scheme of Du Fort–Frankel [4] is applied to the parabolic
problem (6.4). Here we start from

∂

∂t
u ≈ 1

2∆t
[u(t+∆t, x)− u(t−∆t, x)] and

∂2

∂x2
u ≈ 1

∆x2
[u(t, x−∆x)− 2u(t, x) + u(t, x+∆x)].

In order to obtain the leap-frog pattern, we replace 2u(t, x) by the average
u(t+∆t, x) +u(t−∆t, x). Together with λ = ∆t/∆x2 (cf. (6.11)), we obtain the
Du Fort–Frankel scheme

(1 + 2λ)Uµ+1
ν = (1− 2λ)Uµ−1

ν + 2λ[Uµν+1 + Uµν−1]. (6.52)

The stability analysis can again be based on the representation of G(ξ)n. For
λ ≤ 1/2, a simpler approach makes use of the fact that the coefficients 1−2λ

1+2λ and
2λ

1+2λ of Uµ+1
ν , Uµν+1, U

µ
ν−1 are positive. As in Criterion 6.30, one concludes that

the scheme (6.52) is `∞ stable, which implies `2 stability.

For λ > 1/2 we return to the characteristic function

G(ξ) =

[
2λ

1+2λ

(
e−iξ + eiξ

)
1−2λ
1+2λ

1 0

]
=

[
4λ

1+2λcos ξ 1−2λ
1+2λ

1 0

]
(0 ≤ ξ ≤ 2π).

All eigenvalues are of absolute value ≤ 1. The eigenvalue 1 appears for ξ = 0

and is a single one (the other is 1−2λ
1+2λ ). A double eigenvalue

√
2λ−1
2λ+1 < 1 occurs

for sin2 ξ = 1/(4λ
2
). Hence, by Lemma 5.28, the powers of G(ξ) are uniformly

bounded. This proves the following statement.

Proposition 6.62. For any fixed λ =∆t/∆x2, the Du Fort–Frankel scheme (6.52) is
`2 stable.

As pointed out in [16, §19], it is important to perform the limit ∆t,∆x → 0
in such a way that λ =∆t/∆x2 stays constant, although any value of λ is allowed.
If one forms the limit ∆t,∆x → 0 so that the ratio µ = ∆t/∆x is constant, one
obtains the solution of the differential equation

ut = uxx − µutt;

i.e., consistency is violated.

from ‖C(λ,∆t)n‖ ≈ n that the result at some fixed T = n∆t > 0 contains errors, amplified
by T/∆t. If the initial values are such that the consistency error is of the second order O(∆t2),
we have still a discretisation error O(∆t) at t = T . As in §4.6, we have to take into consideration
floating point errors, which are also amplified by T

∆t
. Together, we obtain an errorO(∆t2+ eps

∆t
),

eps: machine precision, so that we cannot obtain better results than O(eps2/3).
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6.5.7 Dissipativity for Parabolic Discretisations

Finally, we discuss the dissipativity (6.49) for discretisations of the heat equation
(6.4). Since the solution operator strongly damps high-frequency components, a
smoothing effect occurs: initial values u0, which are only supposed to be contin-
uous (or to belong to L∞), lead to solutions u(t) of (6.5) which are infinitely often
differentiable for all t > 0. A corresponding condition for the discrete schemes is
condition (6.49), which in this case takes the form

|G(ξ)| ≤ 1− δ |ξ|2r for all |ξ| ≤ π, (6.53)

since G does not depend on x, and 1× 1 matrices coincide with the eigenvalue.

Exercise 6.63. (a) The simplest scheme (6.18) satisfies (6.53) with the parameters

r = 1,

δ = min{4λ, 2 (1− 2λ)}/π2 for 0 < λ ≤ 1/2.

Dissipativity holds for 0 < λ < 1/2 because of δ > 0, but it fails for λ = 1/2.

(b) The Crank–Nicolson scheme (which is (6.41) with Θ = 1/2) is dissipative for
all λ > 0 with r = 1. For λ → ∞, the `2 stability is uniform (i.e., the stability
constant remains bounded for λ→∞), but dissipativity vanishes (i.e., δ → 0).

6.6 Consistency Versus Stability

Scheme (6.20) is called consistent of order p if p is maximal with the property

u(t+∆t)− C(λ,∆t)u(t) = O(∆tp+1)

for all sufficiently smooth solutions u of the differential equations.
The Taylor expansion applied to Example (6.17a) yields

u(t+∆t, x)− (1− aλ)u(t, x)− aλu(t, x+∆x) =λ=∆t/∆x

= u+∆tut +
∆t2

2
utt −

(
1− a ∆t

∆x

)
u− a ∆t

∆x

[
u+∆xux +

∆x2

2
uxx

]
+ . . .

= ∆t [ut − aux] +
∆t2

2

[
utt −

∆x

∆t
auxx

]
+ . . .

Here the functions are to be evaluated at (t, x) and ‘. . .’ are higher-order terms. The
first bracket vanishes, since u is a solution of ut = aux. The second bracket is, in
general, different from zero, so that the discretisation (6.17a) has consistency order
p = 1.
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Remark 6.64. There is an exceptional case in the derivation from above. Applying
the differential equation twice, we get

utt = a(ux)t = a(ut)x = a(aux)x = a2uxx.

Therefore, utt − ∆x
∆t auxx = 0 proves a higher order of consistency if λ = 1/a.

In fact, the difference scheme becomes Uµ+1
ν = Uµν+1, and one verifies that the

discrete solution coincides with the exact one restricted to the grid (the consistency
order may be described by p = ∞). This case corresponds to condition (a) in
Theorem 6.47.

Also the other schemes (6.17b,c,d) are of first order consistency. A difference
scheme of the second order is the following Lax–Wendroff scheme (cf. [17, p. 221]):

Uµ+1
ν =

[
(aλ)2

2 + aλ
2

]
Uµν−1 +

[
1− (aλ)2

]
Uµν +

[
(aλ)2

2 − aλ
2

]
Uµν+1. (6.54)

Second order consistency is seen from the Taylor expansion

u(t+∆t, x)

= u+∆tut + ∆t2

2 utt +O(∆t3) = u+ aλ∆xux + (aλ∆x)2

2 uxx +O(∆t3)

= u(t, x) + aλ[u(t, x+∆x)− u(t, x−∆x)]

+ (aλ)2

2 [u(t, x+∆x)− 2u(t, x) + u(t, x−∆x)] +O(∆t3).

Lemma 6.65. The Lax–Wendroff scheme (6.54) is `2 stable if and only if |aλ| ≤ 1.

Proof. Verify that G(ξ) = 1 − iaλ sin ξ − (aλ)2 (1− cos ξ) is the characteristic
function. For

|G(ξ)|2 = [1− τ (1− cos ξ)]
2

+ τ sin 2ξ with τ := (aλ)2

we use sin2 ξ = 1− cos2 ξ and substitute x := cos ξ. Then we have to prove that the
polynomial

p(x) = [1− τ (1− x)]
2

+ τ
(
1− x2

)
= 1 + τ2 − τ + 2(τ − τ2)x+

(
τ2 − τ

)
x2

remains bounded by 1 for all values x = cos ξ ∈ [−1, 1]. Inserting x = −1 yields
(2τ − 1)

2 and proves that τ ≤ 1 is necessary (τ ≥ 0 holds by definition).
Since by definition |G(ξ)|2 = p(x) ≥ 0, the maximum is given by

max{p(1), p(−1)} = max{1, (2τ − 1)
2} = 1,

where for the last step we used |aλ| ≤ 1. Now `2 stability follows from Theorem
6.44. ut

As in §5.5.6, we may ask whether there is a possible conflict between consistency
and stability. While in Theorem 5.47 the consistency order p is limited, it is now the
parity of p which need to be restricted in certain cases.
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We consider the hyperbolic problem ∂
∂tu = a ∂

∂xu and a general explicit differ-
ence scheme (6.16) with coefficients aj . Again, we introduce G(ξ) :=

∑
j aje

−ijξ

(cf. (6.34)). Furthermore, we choose the Banach space `∞ and ask for `∞ stable
schemes. Using Theorem 6.47, Thomée [24] proves the following implication for
the consistency order.

Theorem 6.66. Under the assumption from above, `∞ stability implies that the con-
sistency order is odd.19 Furthermore, there are `∞ stable schemes for any odd order.

Since the Lax–Wendroff scheme has even consistency order (p = 2), it cannot
be `∞ stable. However, the instability is rather weak. Thomée [24] also proves the
following two-sided inequality for the Lax–Wendroff scheme:

C ′n1/12 ≤ ‖C(λ,∆t)n‖`∞←`∞ ≤ C
′′n1/6.
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Chapter 7
Stability for Discretisations of Elliptic Problems

In the previous chapter we treated partial differential equations of hyperbolic and
parabolic type. The third type of elliptic differential equations is considered in this
chapter. In the hyperbolic and parabolic cases, the solution operator is a mapping
from a Banach space B into itself. In the elliptic case the solution operator is
given by the inverse differential operator L−1, which is a mapping between different
spaces. This requires introducing a pair (X,Y ) of spaces.

7.1 Elliptic Differential Equations

The prototype of elliptic differential equations is the Poisson equation

Lu := uxx + uyy = f in Ω , (7.1)

where Ω is a bounded domain in R2. To obtain a unique solution, we have to add a
boundary condition on Γ := ∂Ω, e.g., the homogeneous Dirichlet data

u = 0 on Γ.

Another choice would be the inhomogeneous condition u = g or conditions on
(normal) derivatives of u on Γ . The combination of a differential equation (e.g.,
(7.1)) with a boundary condition is called a boundary value problem.

A more general linear differential equations in d variables x = (x1, . . . , xd) is

Lu = f with L =
d∑

i,j=1

∂

∂xi
aij(x)

∂

∂xj
+ L0 , (7.2)

whereL0 may contain further derivatives of order≤ 1.L is called uniformly elliptic,
if
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d∑
i,j=1

aij(x)ξiξj ≥ δ ‖ξ‖22 for all x ∈ Ω and all ξ = (ξ1, . . . , ξd) ∈ Rd

with a positive constant δ.
We call u a classical solution of Lu = f and u|Γ = 0, if u ∈ C2(Ω) ∩ C0(Ω),

where
C0(Ω) =

{
u ∈ C(Ω) : u = 0 on Γ

}
.

As discussed in §7.4.2, in general, we cannot expect the solution to be a classical
one, even for a very smooth boundary.

7.2 Discretisation

As in §6.5.6.1, Ω is covered by a grid. In the case of classical difference schemes,
this is a Cartesian grid of step size h = hn = 1

n+1 , while for finite element dis-
cretisations one uses an n-dimensional subspace of functions defined piecewise on
a more general triangulation. It is not necessary to require a discretisation for all
n ∈ N. Instead, we assume that there is an infinite subset

N′ ⊂ N,

so that the discretisation is defined for all n ∈ N′.
The Poisson equation (7.1) in the square Ω = (0, 1)

2 will serve as a model
example. The grid is

Ωn := {(νh, µh) ∈ Ω : ν, µ = 1, . . . , n}.

Instead of u(x, y) from (7.1), we are looking for approximations of u at the nodal
points (νh, µh) ∈ Ωn:

uν,µ ≈ u(νh, µh).

In each nodal point (νh, µh), the second x derivative uxx from (7.1) is replaced by
the second divided difference 1

h2 [uν−1,µ − 2uν,µ + uν+1,µ]. Correspondingly, uyy
becomes 1

h2 [uν,µ−1 − 2uν,µ + uν,µ+1]. Together, we obtain the so-called five-point
scheme:

1

h2
[−4uν,µ + uν−1,µ + uν+1,µ + uν,µ−1 + uν,µ+1] = fν,µ for all 1≤ν, µ≤n,

(7.3)
where fν,µ := f(νh, µh) is the evaluation1 of the right-hand side f of (7.1). If
ν = 1, equation (7.3) contains also the value uν−1,µ = u0,µ. Note that the point
(0, µh) lies on the boundary Γn := {(x, y) ∈ Γ : x/h, y/h ∈ Z}, and does not

1 A finite element discretisation using piecewise linear functions in a regular triangle grid yields
the same matrix, only the right-hand side fh consists of integral mean-values fν,µ instead of point
evaluations.
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belong to Ωn. Because of the boundary condition u = 0, all values uν′,µ′ in (7.3)
with (ν′h, µ′h) ∈ Γh can be replaced by zero. As a result, one obtains a system of
n2 linear equations for the n2 unknowns {uν,µ : (νh, µh) ∈ Ωn}:

Lnun = fn, (7.4)

where un = (uν,µ)(νh,µh)∈Ωn and fn = (fν,µ)(νh,µh)∈Ωn .
Correspondingly, one can discretise more general differential equations as, e.g.,

(7.2) in even more complicated domains by difference or finite element methods
(cf. [8, 10]).

Remark 7.1. The matrix Ln from (7.4) and (7.3) has the following properties:

(a) Ln is sparse, in particular, it possesses at most five non-zero entries per row.

(b) Ln is symmetric.

(c) −Ln has positive diagonal elements 4
h2 , while all off-diagonal entries are ≤ 0.

(d) the sum of entries in each row of−Ln is≥0. More precisely: if 2≤ν, µ≤n− 1,
the sum is 0; at the corner points (ν, µ) ∈ {(1, 1), (1, n), (n, 1), (n, n)} the sum
equals 2/h2; for the other points with ν or µ in {1, n} the sum is 1/h2.

(e) For a concrete representation of the matrix Ln, one must order the com-
ponents of the vectors un, fn. A possible ordering is the lexicographical one:
(1, 1), (2, 1), . . . , (n, 1), (1, 2), . . . , (n, 2), . . . , (1, n), . . . , (n, n). In this case,
Ln has the block form

Ln =
1

h2


T I
I T I

. . .
. . .

. . .
I T I

I T

 with T =


−4 1

1 −4 1
. . .

. . .
. . .

1 −4 1
1 −4

 ,

where all blocks T, I are of size n× n. Empty blocks and matrix entries are zero.

In the case of the matrix Ln from (7.3) (but not for any discretisation of elliptic
differential equations) Ln is in particular an M-matrix (cf. [7, §6.4], [8, §4.3]).

Definition 7.2 (M-matrix [17]). A matrix A ∈ Rn×n is called an M-matrix if

(a) Aii > 0 for all 1 ≤ i ≤ n,
(b) Aij ≤ 0 for all 1 ≤ i 6= j ≤ n,
(c) A regular, and A−1 has only non-negative entries:

(
A−1

)
ij
≥ 0.

Remark 7.1c shows the properties (a) and (b) of A = −Ln. Remark 7.1d, to-
gether with the fact that Ln is irreducible, describes that A = −Ln is irreducibly
diagonal dominant. Irreducibly diagonal dominant matrices with the properties (a)
and (b) already possess property (c); i.e., −Ln is an M-matrix (cf. Hackbusch [7,
Theorem 6.4.10b]).
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7.3 General Concept

7.3.1 Consistency

X
RnX−→ Xn

↓ L ↓ Ln

Y
PnY
�
RnY

Yn

The consistency condition must ensure that Ln is a discretisa-
tion of the differential operator L. For this purpose we intro-
duce Banach spaces for the domains and ranges of L and Ln:
X,Y,Xn, Yn, so that

L : X → Y, Ln : Xn → Yn (n ∈ N′) (7.5a)

are continuous mappings. Furthermore, let

RnX : X → Xn, RnY : Y → Yn, fn = RnY f (n ∈ N′) (7.5b)

be ‘restrictions’ from the function spaces X,Y into the spaces Xn, Yn of ‘grid
functions’. Note that RnY defines the right-hand side fn in (7.4). A mapping in the
opposite direction is the ‘prolongation’

PnY : Yn → Y (n ∈ N′). (7.5c)

The consistency condition has to relate L and Ln. Since both mappings act in
different spaces, the auxiliary mappings RnX , R

n
Y , P

n
Y are needed. They permit us to

formulate consistency in two versions. Condition (7.6a) measures the consistency
error by ‖ · ‖Yn , while (7.6b) uses ‖ · ‖Y :

lim
N′3n→∞

‖ (LnR
n
X −RnY L)u‖Yn = 0 for all u ∈ X, (7.6a)

lim
N′3n→∞

‖ (PnY LnR
n
X − L)u‖Y = 0 for all u ∈ X. (7.6b)

The conditions (7.6a,b) are almost equivalent. For this purpose, some of the
following technical assumptions are of interest:

PnYR
n
Y f → f for all f ∈ Y, (7.7a)

‖PnY ‖Y←Yn ≤ CP , (7.7b)
‖fn‖Yn ≤ C ′P ‖PnY fn‖Y for all fh ∈ Yh, (7.7c)
RnY P

n
Y = I, (7.7d)

‖RnY ‖Yn←Y ≤ CR. (7.7e)

In the case of (7.7d), PnY is a right-inverse of RnY .

Exercise 7.3. Suppositions (7.7d,e) imply (7.7c) with C ′P = CR.

Under the conditions (7.7a-c), the consistency formulations (7.6a,b) are equiva-
lent; more precisely:
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Proposition 7.4. (a) If (7.7a,b), then (7.6a) implies (7.6b).
(b) If (7.7a,c), then (7.6b) implies (7.6a).

Proof. (i) Condition (7.7a) implies (PnYR
n
Y − I)Lu→ 0. Using the splitting

(PnY LnR
n
X − L)u = PnY (LnR

n
X −RnY L)u+ (PnYR

n
Y − I)Lu,

we observe equivalence in the following statements:

(PnY LnR
n
X − L)u→ 0 ⇔ PnY (LnR

n
X −RnY L)u→ 0.

(ii) (7.6a) and (7.7b) imply PnY (LnR
n
X −RnY L)u→ 0 and, by (i), (7.6b).

(iii) (7.7a) and (7.6b) imply PnY (LnR
n
X−RnY L)u → 0. Now assumption (7.7c)

proves (7.6a). ut

7.3.2 Convergence

In the sequel, a further norm ‖ · ‖X̂n on X can be fixed, which may be weaker than
‖ · ‖Xn (or equal), but stronger than ‖ · ‖Yn (or equal):2

‖ · ‖Xn & ‖ · ‖X̂n & ‖ · ‖Yn .

The discrete space X̂n should correspond to a space X̂ with X ⊂ X̂ ⊂ {u ∈ Y :
u|Γ = 0}. The correspondence is expressed by

‖RnX‖X̂n←X̂ ≤ ĈR for all n. (7.8)

Convergence should express that any solution u ∈ X of the differential equation
Lu = f (with boundary condition u = 0) leads to a sequence {un} of discrete
solutions tending to u. Since the discrete grid function un ∈ Xn and the function
u ∈ X belong to difference spaces, we compare the restriction RnXu ∈ Xn with
un and require ‖RnXu−un‖X̂n → 0. The corresponding discrete solution takes the
form un = L−1

n fn = L−1
n RnY f = L−1

n RnY Lu. We allow that Ln is not invertible
for finitely many n. Restricting N′ to the remaining set, we suppose in what follows
that L−1

n exists for all n ∈ N′.
The discussion from above leads to the following definition.

Definition 7.5 (convergence). With X and X̂n as above, the sequence {Ln, RnY }
defining the discretisation is called convergent if

‖(RnX − L−1
n RnY L)u‖X̂n → 0 for all u ∈ X and N′ 3 n→∞. (7.9)

An alternative definition of convergence is the following. We replace u ∈ X by
f = Lu ∈ range(L) ⊂ Y , and require convergence for all f ∈ Y , i.e., for all
solutions u = L−1f with f ∈ Y :

‖(RnXL−1 − L−1
n RnY )f‖X̂n → 0 for all f ∈ Y and N′ 3 n→∞. (7.10)

2 An & Bn means that there is a constant C, independent of n, such that An ≥ CBn.
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Lemma 7.6. (a) Statement (7.10) implies (7.9).
(b) If L :X→Y is bijective, both characterisations (7.9) and (7.10) are equivalent.

Proof. Let u ∈ X be arbitrary. For f := Lu, (RnXL
−1 − L−1

n RnY )f from (7.10)
equals (RnX − L−1

n RnY L)u, proving (7.9), and therefore, Part (a).
In the bijective case, any f ∈ Y has the representation f = Lu for some u ∈ X .

The insertion proves Part (b). ut

7.3.3 Stability

The following definition of stability depends on the choice of X̂n.

Definition 7.7. Stability is characterised by the uniform boundedness of L−1
n :

sup
N′3n→∞

‖L−1
n ‖X̂n←Yn ≤ Cstab. (7.11)

Theorem 7.8 (convergence theorem). Consistency (7.6a) of u ∈ X and stability
(7.11) imply convergence (7.9) to u ∈ X .

Proof. (RnX − L−1
n RnY L)u = L−1

n (LnR
n
X −RnY L)u yields

‖(RnX − L−1
n RnY L)u‖X̂n ≤ ‖L

−1
n ‖Xn←Yn‖ (LnR

n
X −RnY L)u‖Yn

≤ Cstab‖ (LnR
n
X −RnY L)u‖Yn → 0,

proving convergence (7.9). ut

Although the setting is similar to the previous chapters, a stability theorem stating
that ‘convergence implies stability’ is, in general, not valid, as we shall prove in
§7.4.2. However, the stability theorem can be based on the convergence definition
in (7.10). Again, the following technical requirement comes into play:

sup
f∈Y : fn=RnY f

‖fn‖Yn
‖f‖Y

≥ 1/C ′R for all 0 6= fn ∈ Yn, n ∈ N′. (7.12)

Lemma 7.9. The conditions (7.7b,d) imply (7.12) with C ′R = CP .

Proof. f := PnY fn yields sup{. . .} ≥ ‖fn‖Yn
‖PnY fn‖Y ≥

1
CP

‖fn‖Yn
‖fn‖Yn

= 1/CP . ut

Theorem 7.10 (stability theorem). Suppose (7.8), ‖L−1‖X̂←Y ≤ CL−1 , and
(7.12). Then convergence in the sense of (7.10) implies stability (7.11).

Proof. Inequality (7.10) describes the point-wise convergence of the operator
RnXL

−1 − L−1
n RnY ; hence, by Corollary 3.39, the operator norm is uniformly

bounded: ‖RnXL−1 − L−1
n RnY ‖X̂n←Y ≤ C. We conclude that
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‖L−1
n RnY ‖X̂n←Y ≤ C + ‖RnXL−1‖X̂n←Yn ≤ C + ĈRCL−1 .

Inequality (7.12) implies ‖RnY f‖Yn ≤ C ′R‖f‖Y . The definition of the operator
norm together with (7.12) yields

‖L−1
n RnY ‖X̂n←Y = sup

0 6=f∈Y

‖L−1
n RnY f‖X̂n
‖f‖Y

= sup
06=f∈Y

‖L−1
n RnY f‖X̂n
‖RnY f‖Yn

‖RnY f‖Yn
‖f‖Y

= sup
0 6=fn∈Yn

sup
f∈Y : fn=RnY f

‖L−1
n fn‖X̂n
‖fn‖Yn

‖fn‖Yn
‖f‖Y

≥
‖L−1

n ‖X̂n←Yn
C ′R

,

proving that ‖L−1
n ‖X̂n←Yn is bounded independently of n. ut

Since the convergence definition (7.10) allows us to derive stability, it seems to be
the more suitable definition. However, without bijectivity of L : X → Y , definition
(7.10) does not lead to a convergence theorem as in Theorem 7.8. In §7.4.2 we
shall study bijectivity of L in more detail and gives examples, where bijectivity
fails because of range(L) $ Y . On the other hand, fixing Y and replacing X by
{L−1f : f ∈ Y } % X would be rather impractical, since it require a consistency
condition involving generalised solutions (cf. §7.4.2).

Only if bijectivity holds, can the equivalence theorem be formulated.

Theorem 7.11 (equivalence theorem). Suppose that the spaces X̂ , X , and Y are
chosen such that L : X → Y is bijective, ‖L−1‖X̂←Y ≤ CL−1 , and (7.8) and
(7.12) hold. Then convergence (7.9) and stability (7.11) are equivalent.

Proof. The direction ‘stability ⇒ convergence’ is stated in Theorem 7.8. Because
of bijectivity; (7.9) implies (7.10) (cf. Lemma 7.6), and Theorem 7.10 shows
‘(7.10)⇒ stability’. ut

Remark 7.12. Consistency and convergence can be regarded in two different ways.
The previous setting asked for the respective conditions for all u ∈ X . On the other
hand, we can consider one particular solution u = L−1f . Because of extra smooth-
ness, the consistency error εn := ‖ (LnR

n
X −RnY L)u‖Yn may behave as O(n−α)

for some α > 0. Then the proof of Theorem 7.8 shows that also the discretisation
error ‖(RnX − L−1

n RnY L)u‖X̂n ≤ Cstabεn is of the same kind.

7.4 Application to Difference Schemes

7.4.1 Classical Choice of Norms

The concrete choice of the Banach spaces depends on the kind of discretisation.
The following spaces correspond to difference methods and classical solutions of
boundary value problems:
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X = C2(Ω) ∩ C0(Ω),
Y = C(Ω),

Xn = Rn2

, Xn 3 un = (uν,µ)(νh,µh)∈Ωn ,

Yn = Rn2

, Yn 3 fn = (fν,µ)(νh,µh)∈Ωn ,

(7.13a)

with the norms3

‖u‖X = max{‖u‖∞, ‖ux‖∞, ‖uy‖∞, ‖uxx‖∞, ‖uyy‖∞},
‖u‖Y = ‖u‖∞ := max{|u(x, y)| : (x, y) ∈ Ω},
‖un‖Xn= max{‖un‖∞, ‖∂xun‖∞, ‖∂yun‖∞, ‖∂xxun‖∞, ‖∂yyun‖∞},
‖fn‖Yn = ‖fn‖∞ := max{|uν,µ| : (νh, µh) ∈ Ωn},

(7.13b)

where ∂x, ∂y, ∂xx, ∂yy are the first and second divided difference quotients with
step size h := 1/n. The associated restrictions are the point-wise restrictions:

(RnXu)ν,µ := u(νh, µh) , (RnY f)ν,µ := f(νh, µh) .

The components of (LnR
n
X −RnY L)u are

[∂xx + ∂yy]u(x, y)− [uxx(x, y) + uyy(x, y)] for (x, y) ∈ Ωn.

Since, for u ∈ X0 ⊂ C2(Ω) ∩ C0(Ω), the second differences ∂xxu converge uni-
formly to the second derivative uxx, it follows that ‖(LnRnX − RnY L)u‖Xn → 0
for n→ 0. Therefore, the consistency condition (7.6a) is verified.

Consistency follows immediately for X0 = X = C2(Ω) ∩ C0(Ω), since the
difference quotients in LnR

n
Xu tend uniformly to the derivatives in RnY Lu.

The additional space X̂ = C0(Ω) is equipped with the maximum norm

‖un‖X̂n = ‖un‖Yn = ‖un‖∞.

Therefore, ‖L−1
n ‖X̂n←Yn becomes the row-sum norm ‖L−1

n ‖∞. For the estimate of
‖L−1

n ‖∞ in the model example (7.3), we use that−Ln is an M-matrix (cf. Definition
7.2). For M-matrices there is a constructive way to determine the row-sum norm of
the inverse. In the following lemma, 1I is the vector with all entries of value one.

Lemma 7.13. Let A be an M-matrix and w a vector such that the inequality
Aw ≥1I holds component-wise. Then ‖A−1‖∞ ≤ ‖w‖∞ holds.

Proof. For u ∈ Rn, the vector (|ui|)ni=1 is denoted by |u|. The following inequal-
ities are to be understood component-wise. We have |u| ≤ ‖u‖∞1I≤ ‖u‖∞Aw.
Because of the M-matrix property (c), A−1 ≥ 0 holds, so that∣∣A−1u

∣∣ ≤ A−1 |u| ≤ A−1 ‖u‖∞Aw = ‖u‖∞ w

and ‖A−1u‖∞/ ‖u‖∞ ≤ ‖w‖∞ can be obtained. Therefore, the desired estimate
follows: ‖A−1‖∞ = supu 6=0 ‖A−1u‖∞/ ‖u‖∞ ≤ ‖w‖∞. ut

3 Only the norm of Yh appears in (7.6a) and (7.11).
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In the case ofA=−Ln one has to look for a function w(x, y) with Lw(x, y)≥1.
A possible solution isw(x, y) = 1

2x (1− x) with the maximum norm ‖w‖∞ = 1/8.
Then the point-wise restriction yields the vector wh = RnXw on the grid Ωn. Since
second differences and second derivatives are identical in the case of a quadratic
function, it follows that (−Ln)wh ≥1I and ‖wh‖∞ ≤ 1/8, proving the stability
property

‖L−1
n ‖∞ ≤ 1/8 for all n ∈ N (7.14)

with Cstab = 1/8.
Using the consistency, which is checked above, and the stability result (7.14), we

obtain convergence by Theorem 7.8. As discussed in §7.4.2, the given theory does
not fully correspond to the previous setting, because convergence does not imply
stability.

Another aspect is the order of consistency. So far, only the convergence order
o(1) is shown. In general, one likes to show that ‖RnXu− un‖Xn = O(hκ) for
some κ > 0. For this purpose, the solution u ∈ X must have additional smoothness
properties: u ∈ Z for some Z ⊂ X = C2(Ω) ∩ C0(Ω). Choosing

Z := X ∩ C4(Ω),

we conclude that ‖ (LnR
n
X −RnY L)u‖Yn = O(h2) for all u ∈ Z. Correspondingly,

convergence follows with the same order:

‖RnXu− un‖X̂n = O(h2).

7.4.2 Bijectivity of L

By choosing the spaces X,Y , the operator L is bounded as a mapping from X into
Y . Assuming uniqueness of solutions, injectivity of L ∈ L(X,Y ) holds. This fact
guarantees the existence of L−1 ∈ L(range(L), X). If, in addition, L is surjective,
the inverse L−1 is a continuous mapping from Y onto X.

Theorem 7.14. The differential operators L from (7.1) or (7.2) belong to
L(C2(Ω) ∩ C0(Ω), C(Ω)), but are not surjective.

The proof is given in [8, 10, Theorem 3.2.7]. The consequences are:

1. The definitions (7.9) and (7.10) of convergence are not equivalent.
2. If L is injective, L−1 exists as bounded mapping from C(Ω), e.g., into
X̂ = C1(Ω) ∩ C0(Ω) or X̂ = C0(Ω), but it does not belong to the space
L(C(Ω), C2(Ω) ∩ C0(Ω)).

Concerning the first statement, note that the characterisation (7.9) refers to all
solutions in C2(Ω) ∩ C0(Ω), whereas (7.10) refers to all solutions u = L−1f for
f ∈ C(Ω).
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For the proof of the second statement, we have to introduce the generalised
solutions u = L−1f , which do not belong to C2(Ω) ∩ C0(Ω). For this purpose,
one can use Green’s representation

u(x) =

∫
Ω

G(x, y)f(y)dy. (7.15)

The Green function G(·, ·) satisfies LG(·, y)=0 for all y∈Ω and G(x, ·)=0 for
x∈Γ . In the case of Poisson’s equation (7.1) in the circle Ω = {‖x‖ < 1} ⊂ R2,

G(x, y) = − 1

2π

[
log ‖x− y‖ − log

(
‖x‖

∥∥y − 1

‖x‖2
x
∥∥)]

holds (cf. §2.2 in [8, 10]). Since G as well as ∂
∂xi

G(x, y) has an integrable singular-
ity, the integral in (7.15) exists and defines a function in X̂ = C1(Ω) ∩ C0(Ω). In
particular, X̂ = C0(Ω) leads to the (finite) operator norm∥∥L−1

∥∥
C(Ω)←C(Ω)

=

∫
Ω

|G(x, y)|dy.

If f is Hölder continuous, the function u defined in (7.15) belongs to C2 and is a
solution of Lu = f . This proves that (7.15) defines generalised solutions in X̂ and
that L−1 ∈ L(C(Ω), X̂).

To apply the equivalence Theorem 7.11, we have to look for spaces X,Y , such
that L : X → Y is bijective. An example of classical function spaces are the
Hölder spaces Y = Cλ(Ω), 0 < λ < 1, and X = C2+λ(Ω). The (unusual)
discrete norm on Yn is defined by the maximum over all |f(x)|, x ∈ Ωn, and
|f(x)− f(y)| / ‖x− y‖λ, x, y ∈ Ωn.

A canonical choice of X,Y with a bijective L : X → Y , obtained from the
variational setting, are the Sobolev spaces X = H1

0 (Ω) and Y = H−1(Ω) (cf.
§7.5). Under suitable conditions (e.g., smooth coefficients aij in (7.2) and convex
Ω), also the choices of X = H2(Ω) ∩H1

0 (Ω) and Y = L2(Ω) are valid.
The previous convexity condition excludes domains Ω with reentrant corners.

A class of domains allowing reentrant corners are Lipschitz domains (i.e., there must
be a Lipschitz continuous parametrisation of Γ ). Nečas [15] proves the following
regularity result.

Theorem 7.15. Let Ω be a bounded Lipschitz domain, and suppose that L is uni-
formly elliptic with Hölder continuous coefficients aij ∈Ct(Ω) of order t∈ (0, 1

2 ].
Then L : X → Y and L−1 : Y → X are bounded for the Sobolev spaces4

X = H1+s
0 (Ω), Y = H−1+s(Ω) for any s with 0 ≤ s < t ≤ 1/2.

Note that s = 0 yields the trivial statement L : H1
0 (Ω)� H−1(Ω). By Theorem

7.15, smooth functions f produce solutions in the space H3/2−ε
0 (Ω) for all ε > 0.

4 The Sobolev spaces Ht(Ω) and Ht0(Ω) are introduced in [8, 10].
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It is possible to discretise the boundary value problem by a difference scheme
and to analyse Ln with respect to discrete Sobolev spaces Xn and Yn of the re-
spective order 1 + s and −1 + s (cf. Hackbusch [6]). Then, the stability estimate
‖L−1

n ‖Yn←Xn ≤ Cstab holds as well as consistency ‖ (LnR
n
X −RnY L)u‖Yn → 0

for all u ∈ X = H1+s
0 (Ω). Regularity properties of difference schemes are also

discussed in Jovanovič–Süli [13].

7.5 Finite Element Discretisation

7.5.1 Variational Problem

The variation formulation of the boundary value problem (7.1) and (7.2) is based on
a bilinear form:

a(u, v) = −
∫
Ω

f(x)v(x)dx for all v ∈ H1
0 (Ω), where (7.16a)

a(u, v) :=

∫
Ω

∑d

j=1

∂u(x)

∂xj

∂v(x)

∂xj
dx. (7.16b)

The Sobolev space H1
0 (Ω) can be understood as the completion of C1(Ω)∩C0(Ω)

with respect to the norm

‖u‖H1 :=

√√√√∫
Ω

[
|u(x)|2 +

d∑
j=1

∣∣∣∣ ∂∂xj u(x)

∣∣∣∣2 ]dx
(cf. §6.2 in [8, 10]). The dual space H−1(Ω) consists of all functionals with finite
norm

‖f‖H−1 = sup{|f(v)| : v ∈ H1
0 (Ω), ‖v‖H1 = 1}.

The second embedding in H1
0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω) is based on the identifica-

tion of functions f ∈ L2(Ω) with the functional f(v) :=
∫
Ω
f(x)v(x)dx.

If the bilinear form a(·, ·) is bounded, i.e.,

Ca := sup{a(u, v) : u, v ∈ H1
0 (Ω), ‖u‖H1 = ‖v‖H1 = 1} <∞, (7.17)

and problem (7.16a) is identical to the abstract equation

Au = f with A ∈ L(H1
0 (Ω), H−1(Ω)), u ∈ H1

0 (Ω), f ∈ H−1(Ω).

If, in general, a is a bilinear form on X ×X , the operator A ∈ L(X,X∗) (X∗ dual
space of X) is defined by

(Au) (v) := a(u, v) for all u, v ∈ X. (7.18)

The norm ‖A‖H1←H−1 coincides with Ca from above. The particular example
(7.16b) satisfies Ca < 1.



150 7 Stability for Discretisations of Elliptic Problems

If A−1 ∈ L(H−1(Ω), H1
0 (Ω)) exists, u := A−1f is the desired solution (it is

called a ‘weak solution’). The existence of A−1 can be expressed by the so-called
inf-sup conditions for the bilinear form a (more precisely, the inf-sup expression is
an equivalent formulation of 1/‖A−1‖H1←H−1 ; cf. §6.5 in [8, 10]).

A very convenient, sufficient condition is the H1
0 (Ω)-coercivity5

a(u, u) ≥ εco ‖u‖2H1 with εco > 0 for all u ∈ H1
0 (Ω). (7.19)

Above, we used the spaces X,Y together with the differential operator L. Now
L will be replaced by A, involving the spaces

X := H1
0 (Ω), Y := H−1(Ω).

Note that Y = X∗ is the dual space with the dual norm

‖f‖X∗ := sup{|f(u)| : u ∈ X, ‖u‖X ≤ 1}.

As (7.19) is valid for (7.16b),A ∈ L(X,Y ) is bijective; i.e.,A−1 ∈ L(Y,X) exists.

7.5.2 Galerkin Discretisation

The Galerkin discretisation is completely characterised by a subspace Un ⊂ X of
dimension n. We consider a family {Un}n∈N′ , where N′ ⊂ N is an infinite subset.
The finite element method is a particular example, where Un consists of piecewise
polynomials. The vector space Un can be equipped with different norms. We set
Xn := Un equipped with the norm ‖·‖H1 . The discrete solution un ∈ Xn is defined
by

a(un, vn) = −
∫
Ω

f(x)vn(x)dx for all vn ∈ Xn.

The restriction of a bilinear form a(·, ·) on X×X to a subspace Xn×Xn yields
again a bilinear form an(·, ·) on Xn × Xn. If a is bounded by Ca (cf. (7.17)), the
boundCan of an satisfiesCan ≤ Ca. In the same way asA ∈ L(X,X∗) is uniquely
determined by a, the bilinear form an corresponds to an operator

An ∈ L(Xn, X
∗
n). (7.20)

Note that X∗n is Un equipped with the norm dual to Xn.

5 The algebraic counterpart is the following statement: if A + AH is positive definite, then A is
regular. More precisely, A + AH ≥ 2εcoI implies ‖A−1‖2 ≤ 1/εco. In the case of A = AH,
‖A−1‖2 = 1/εco holds.
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Exercise 7.16. The dual norm of X∗n is not the restriction of the dual norm of X∗ to
Un. Prove that ‖fn‖X∗n ≤ ‖fn‖X∗ for fn ∈ X∗n.

Remark 7.17. Let Xn ⊂ X . If a(·, ·) is X-coercive with constant ε (cf. (7.19)),
an(·, ·) is Xn-coercive with a constant εn,co satisfying εn,co ≥ εco. As a conse-
quence, X-coercive bilinear forms a(·, ·) lead to stable Galerkin approximations
such that A−1

n ∈ L(X∗n, Xn) exists. In the symmetric case,

‖A−1
n ‖Xn←X∗n ≤ ‖A

−1‖X←X∗

holds.

7.5.3 Consistency

The main consistency condition is described in terms of the subspaces Un: the
distance between Un and any u ∈ X has to satisfy

inf{‖u− vn‖X : vn ∈ Un} → 0 for n→∞ and all u ∈ X.

An equivalent statement is the point-wise convergence

‖u−Πnu‖X → 0 for all u ∈ X as n→∞, (7.21)

where Πn : X → Xn is the X-orthogonal projection onto Xn. The projection may
be considered as an element of L(X,X) as well as L(X,Xn). The dual operator
Π∗n then belongs to L(X∗, X∗) as well as L(X∗n, X

∗).

Remark 7.18. (a) The Riesz isomorphism6 J : X → X∗ is a unitary operator; i.e.,
J∗ = J−1. For any f ∈ X∗, the action f(u), u ∈ X , can be described by the scalar
product 〈J∗f, u〉X . X∗ is a Hilbert space with the scalar product

〈f, g〉X∗ := 〈J∗f, J∗g〉X .

(b) Let X = Xn ⊕ X⊥n be an X-orthogonal decomposition and set Yn := JXn,
Y ⊥n := JX⊥n . Then X∗ = Yn ⊕ Y ⊥n is an X∗-orthogonal decomposition.
(c) The X-orthogonal projection Πn ∈ L(X,X) onto Xn satisfies

JΠn = Π∗nJ ;

i.e., the dual projection has the representation Π∗n = JΠnJ
∗ = JΠnJ

−1.
(d) Property (7.21) is equivalent to

‖v −Π∗nv‖X∗ → 0 for all v ∈ X∗ as n→∞. (7.22)

6 Also called the Fréchet–Riesz isomorphism, since both, Fréchet [4] and Frigyes Riesz [19]
published their results in 1907. See also [20, II.30].
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Proof. For Part (b) write yn ∈ Yn and y⊥n ∈ Y ⊥n as yn = Jxn and y⊥n = Jx⊥n
for suitable xn ∈ Xn and x⊥n ∈ X⊥n . Then〈

yn, y
⊥
n

〉
X∗

=
〈
J∗yn, J

∗y⊥n
〉
X

=
〈
J−1yn, J

−1y⊥n
〉
X

=
〈
xn, x

⊥
n

〉
X

= 0.

For Part (c) verify that Π∗n maps y = yn + y⊥n into yn (with notations yn ∈ Yn
and y⊥n ∈ Y ⊥n as in Part (b)).

For Part (d) with v = Ju use ‖v − Π∗nv‖X∗ = ‖ (I −Π∗n) Ju‖X∗ =Part (c)

‖J (I −Πn)u‖X∗ = ‖ (I −Πn)u‖X . ut

We recall the operators A from (7.18) and An from (7.20).

Remark 7.19. The relation between A ∈ L(X,X∗) and An ∈ L(Xn, X
∗
n) is given

by
An = Π∗nAΠn.

Proof. This follows from 〈Anun, vn〉X∗n×Xn = a(un, vn) = a(Πnun, Πnvn) =

〈AΠnun,Πnvn〉X∗×X = 〈Π∗nAΠnun, vn〉X∗×X for all un, vn ∈ Xn. ut

The canonical choice of the space Yn isX∗n. The mappings betweenX,Y,Xn, Yn
are as follows:

Y := X∗, Yn := X∗n, (7.23a)
RnX = Πn : X → Xn X-orthogonal projection onto Xn, (7.23b)
RnY : Y → Yn restriction to Xn ⊂ X; i.e., fn = RnY f = f |Xn ∈ X∗n, (7.23c)
PnY := (RnX)∗ = Π∗n = JΠnJ

∗ : Yn → Y. (7.23d)

We consider RnX as a mapping onto Xn (not into X). Concerning RnY , note that
the mapping f ∈ Y = X∗ can be restricted to the subspaceXn ⊂ X . For PnY = Π∗n
compare Remark 7.19a.

Lemma 7.20. Assumption (7.21) implies the consistency statement (7.6a).

Proof. Application of the functional (AnR
n
X −RnYA)u to vn ∈ Xn yields

[(AnR
n
X −RnYA)u] (vn) = an(RnXu, vn)− a(u, vn) = a(Πnu, vn)− a(u, vn)

= a(Πnu− u, vn),

proving ‖ (LnR
n
X −RnY L)u‖Yn ≤ Ca‖u − Πnu‖X → 0 with Ca from (7.17)

because of (7.21). ut

Next, we verify that all conditions (7.7a–e) are valid. The constants are
CP = C ′P = CR = 1. Concerning the proof of (7.7a), we note that

PnYR
n
Y f − f = Π∗nf − f →

(7.22)
0.

Hence, the consistency statement (7.6a) is equivalent to (7.6b) (cf. Proposition 7.4a),
which reads (PnYAnR

n
X −A)u = (Π∗nAnΠn −A)u→ 0 in Y .
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7.5.4 Convergence and Stability

We assume that A is invertible; i.e., the variational problem (7.16a) is uniquely
solvable. First we set X̂n := Xn with norm ‖ · ‖X̂n = ‖ · ‖Xn . For further conclu-
sions, we have to ensure stability. For simplicity, we assume that the bilinear form is
X-coercive (cf. (7.19)). Then, as stated in Remark 7.17, εn,co ≥ εco proves stability.

From consistency (7.6a), using Theorem 7.8, we infer convergence in both (7.9)
and (7.10), since A : X → Y is bijective (cf. Lemma 7.6b). The convergence
statement (7.10) takes the form

(RnXA
−1 −A−1

n RnY )f = (ΠnA
−1 −A−1

n )f

= Πnu− un → 0 in X for N′ 3 n→∞,

where u and un are the exact and discrete solutions, respectively. This is not the
standard Galerkin convergence statement

u− un → 0 in X for N′ 3 n→∞,

but the latter statement follows immediately from condition (7.21): u −Πnu → 0
in X .

7.5.5 Quantitative Discretisation Error and Regularity

Finite element discretisation uses the subspace Un ⊂ X = H1
0 (Ω) of, e.g., piece-

wise linear functions on a triangulation. Let h = hn be the largest diameter of
the involved triangles (or other elements, e.g., tetrahedra in the three-dimensional
case). In the standard case, hn = O(n−1/d) is to be expected (d: spatial dimension,
Ω ⊂ Rd), provided that n is related to the dimension: n = dim(Un).

The consistency error is bounded by Ca‖u − Πnu‖X as shown by the proof
of Lemma 7.20. According to Remark 7.12, the discretisation error ‖u − un‖X
can be estimated by7 (1 + CstabCa) ‖u−Πnu‖X . While u ∈ X = H1

0 (Ω) allows
only point-wise convergence, quantitative error bound can be expected for smoother
functions u. Assume, e.g., u ∈ H2(Ω) ∩H1

0 (Ω). Then the finite element error can
be proved to be ‖u− un‖H1

0 (Ω) = O(h). More generally, finite elements of degree
p lead to an error8

‖u− un‖H1
0 (Ω) = O(hmin(p,t−1)

n ), if u ∈ Ht(Ω) ∩H1
0 (Ω), t > 1. (7.24)

The property u ∈ Ht(Ω) may hold by accident or for systematic reasons
(‘regularity properties’). Solvability of the boundary value problem is equivalent

7 This is the result of Cea’s lemma, which is usually proved differently (cf. Theorem 8.2.1 in
[8, 10]).
8 See Footnote 4 on page 148.
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to A−1 ∈ L(H−1(Ω), H1
0 (Ω)) (cf. §7.5.1). It describes that the solution process

increases the degree of smoothness by 2. One may ask whether a similar statement

A−1 ∈ L(Ht−2(Ω), Ht(Ω) ∩H1
0 (Ω))

holds for certain t > 1. In this case, the problem is called t-regular. Such regularity
statements depend on the smoothness of the coefficients of the differential operator
(7.2) and on the smoothness of the boundary. Theorem 7.15 yields t-regularity for
1 < t < 3/2 under the condition that Ω is a Lipschitz domain. For convex domains
(or domains that are smooth images of convex domains) and sufficiently smooth
coefficients, the problem is 2-regular:

A−1 ∈ L(L2(Ω), H2(Ω) ∩H1
0 (Ω)).

Piecewise linear finite elements are of degree p = 1. Assuming 2-regularity,
f ∈ L2(Ω) ensures u ∈ H2(Ω)∩H1

0 (Ω), so that ‖u−un‖H1
0 (Ω) = C2hn‖f‖L2(Ω)

follows from (7.24).

7.5.6 L2 Error

The adjoint operatorA∗ ∈ L(X,X∗) belongs to the adjoint bilinear form a∗ defined
by a∗(u, v) := a(v, u). In this section we assume that A∗ is 2-regular.

The representation u−un = A−1f−A−1
n Πnf = (A−1−A−1

n Πn)f shows that

En := A−1 −A−1
n Πn = A−1 −ΠnA

−1
n Πn

can be considered as error operator with the property

‖Enf‖H1
0 (Ω) ≤ C2hn‖f‖L2(Ω),

where C2 depends on details of the finite element triangulation (cf. [8, 10]).

Lemma 7.21. EnAEn = En holds for Galerkin discretisation.

Proof. The identity

EnAEn = (A−1 −A−1
n Πn)A(A−1 −ΠnA

−1
n Πn)

= A−1 − 2A−1
n Πn +A−1

n ΠnAΠnA
−1
n Πn = En

follows from ΠnAΠn = An. ut

Theorem 7.22. Assume that A∗ is 2-regular, and ‖E∗ng‖H1
0 (Ω) ≤ C2hn‖g‖L2(Ω).

Then
‖u− un‖L2(Ω) = ‖Enf‖L2(Ω) ≤ CaC2hn‖Enf‖H1

0 (Ω).
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Proof. For any g ∈ L2(Ω) with ‖g‖L2(Ω) = 1 and f ∈ X∗, we have

〈Enf, g〉X×X∗ =
Lemma 7.21

〈EnAEnf, g〉X×X∗ = 〈AEnf,E∗ng〉X∗×X
= a(Enf,E

∗
ng),∣∣〈Enf, g〉X×X∗ ∣∣ ≤ Ca‖Enf‖X‖E∗ng‖X ≤ CaC2hn‖Enf‖X .

By identification L2(Ω) = (L2(Ω))∗, we can continue with

〈Ef, g〉X×X∗ = g(Ef) = (Ef, g)L2(Ω)

for g ∈ L2(Ω). Since

‖Enf‖L2(Ω) = max{| (Ef, g)L2(Ω) | : g ∈ L
2(Ω), ‖g‖L2(Ω) = 1},

the assertion follows. ut

Theorem 7.22 states that the L2 error is by one factor of hn better than the H1

error ‖Enf‖H1
0 (Ω) = ‖u − un‖H1

0 (Ω). This result, which traces back to Aubin [1]
and Nitsche [16], is usually proved differently, making indirect use of Lemma 7.21.

7.5.7 Stability of Saddle Point Problems

If coercivity (7.19) holds and if a is symmetric: a(u, v) = a(v, u), the variational
formulation (7.16a) is equivalent to the minimisation of J(u) := 1

2a(u, u) − f(u).
Quite another type is the following saddle point problem. We are looking for
functions v ∈ V and w ∈W (V,W Hilbert spaces) satisfying

a(v, v′) + b(w, v′) = f1(v′) for all v′ ∈ V,
b(y, w′) = f2(w′) for all w′ ∈W,

(7.25)

with bilinear forms a : V × V → R and b : W × V → R.
An example of the general form (7.25) is Stokes’ problem, where

V = (H1
0 (Ω))d, W = {f ∈ L2(Ω) :

∫
Ω

fdξ = 0},

a(v, v′) =

∫
Ω

〈∇v,∇x〉dξ, b(w, v′) =

∫
Ω

w div v′dξ. (7.26)

Define

J(v, w) := 1
2a(v, v) + b(w, v)− f1(v)− f2(w).

The following saddle point properties are proved in [8, 10, Theorem 12.2.4].
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Theorem 7.23. Let a(·, ·) be symmetric and coercive. (v, w) ∈ V ×W is a solution
of (7.25), if and only if

J(v, w′) ≤ J(v, w) ≤ J(v′, w) for all v′ ∈ V,w′ ∈W.

Furthermore,

J(v, w) = min
v′∈V

J(v′, w) = max
w′∈W

min
v′∈V

J(v′, w′).

The bilinear forms a and b in (7.25) give rise to operators A ∈ L(V, V ∗) and
B ∈ L(W,V ∗). The variational setting (7.25) is equivalent to the operator equation[

A B
B∗ 0

] [
v
w

]
=

[
f1

f2

]
.

Solvability of the problem is equivalent to the existence of the inverse of

C :=

[
A B
B∗ 0

]
.

Since C is symmetric, its eigenvalues are real. In the case of a symmetric and coer-
cive a(·, ·), all eigenvalues of the operator A are positive. However, C is indefinite;
i.e., it has positive and negative eigenvalues. One can show that the discrete operator
An has eigenvalues larger or equal to those of A (Lemma 7.17 states this result for
the smallest eigenvalue). In the indefinite case, such a simple result is not available.
To the contrary, a wrong type of discretisation can easily generate zero eigenvalues
of Cn; i.e., the discrete problem is not solvable.

The following counterexample reveals a paradoxical situation. We choose sub-
spaces Vn ⊂ V and Wn ⊂W such that

dimWn > dimVn.

Seemingly, a high-dimensional subspace Wn should improve the approximation of
the component w, but instead, it spoils the whole system. For a proof consider the
block [

Bn
0

]
.

In the best case, this part has rank dimVn (number of rows of Bn). Since the matrix
Cn is of size Nn × Nn with Nn := dimWn + dimVn, its rank is bounded by
2 dimVn < Nn. Therefore, at least dimWn − dimVn > 0 vanishing eigenvalues
must exist.

An equivalent statement for the stability

‖C−1
n ‖(Vn×Wn)←(V ∗n×W∗n) ≤ Cstab

is the following inf-sup condition, which is also called the Babuška–Brezzi
condition:
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inf
v0∈V0,n with ‖v0‖V =1

sup
x0∈V0,n with ‖x0‖V =1

|a(v0, x0)| ≥ α > 0, (7.27a)

sup
x0∈V0,n with ‖x0‖V =1

|a(x0, v0)| > 0 for all 0 6= v0 ∈ V0,n,

(7.27b)

inf
w∈Wn with ‖w‖W=1

sup
x∈Vn with ‖v‖V =1

|b(w, x)| ≥ β > 0, (7.27c)

where
V0,n := ker(B∗n) = {v ∈ V : b(y, v) = 0 for all y ∈Wn} ⊂ Vn.

The uniform boundedness of C−1
n is expressed by the fact that the positive numbers

α, β in (7.27a,c) are independent of n (cf. §12.3.2 in [8, 10]).
The solvability of the undiscretised saddle-point problem is characterised by the

same conditions (7.27a-c), but with V0,n and Vn replaced by V0 = ker(B∗) and V .
In the case of Stokes’ problem (7.26), a(·, ·) is coercive on the whole space V , but
for elasticity problems, one must exploit the fact that coercivity is only needed for
the smaller subspace V0 ⊂ V (cf. Braess [2, §III.4 and §VI]).

7.5.8 Further Remarks

7.5.8.1 Perturbations ofAn and fh

The determination of An and fh requires the evaluation of integrals. This can be
done exactly forAn in cases of constant coefficients as in (7.1). However, for general
f and general coefficients as in (7.2), the integral must be approximated by some
quadrature thereby producing additional perturbations δAn and δfn. Whatever the
origin of these perturbations, the natural requirements are

‖δAn‖X∗n←Xn → 0, ‖δfn‖X∗n → 0 as N′ 3 n→∞. (7.28)

The following statement has a similar flavour as in Theorems 3.46 and 3.47.

Theorem 7.24. Suppose that the Galerkin approximation, characterised by
{An, fn}n∈N′ , is stable with ‖A−1

n ‖Xn←X∗n ≤ Cstab. Then, under assumption
(7.28), also the perturbed discretisation {An + δAn, fn + δfn}n∈N′ is stable.
The resulting solution ũn = un + δun (un: unperturbed discrete solution) satis-
fies the asymptotic inequality

‖δun‖Xn (7.29)

≤
[
‖δAn‖X∗n←XnCstab ‖fn‖X∗n + ‖δfn‖X∗n

] (
Cstab +O(‖δAn‖X∗n←Xn)

)
.
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Proof. Write An + δAn as An(I +A−1
n δAn) and note that∥∥A−1

n δAn
∥∥
Xn←Xn

≤
∥∥A−1

n

∥∥
Xn←X∗n

‖δAn‖X∗n←Xn ≤ Cstab ‖δAn‖X∗n←Xn → 0.

Define the subset N′′ := {n ∈ N′ : ‖δAn‖X∗n←Xn ≤
1

2Cstab
}. Then, for n∈N′′, we

have
∥∥A−1

n δAn
∥∥
Xn←Xn

≤ 1/2 and ‖(I + A−1
n δAn)−1‖Xn←Xn ≤ 2 (cf. Lemma

5.8), so that

‖(An + δAn)−1‖Xn←X∗n = ‖(I +A−1
n δAn)−1A−1

n ‖Xn←X∗n ≤ 2Cstab =: C ′stab.

This proves the stability of An + δAn.
(An + δAn)−1 −A−1

n = [(I +A−1
n δAn)−1 − I]A−1

n can be estimated by

‖(An+δAn)−1−A−1
n ‖Xn←X∗n ≤ Cstab‖δAn‖X∗n←Xn(Cstab+O(‖δAn‖X∗n←Xn)),

while ‖(An+δAn)−1‖Xn←X∗n ≤ (Cstab+‖δAn‖X∗n←Xn). Therefore, we conclude
that

δun = ũn − un = (An + δAn)−1 (fn + δfn)−A−1
n fn

= [(An + δAn)−1 −A−1
n ]fn + (An + δAn)−1δfn

can be estimated as in (7.29). ut

As an illustration, we discuss the case of quadrature mentioned above. The non-
vanishing entries aij of the finite element matrix An are of the size O(h−2+d/2)
when we assume a quasi-uniform discretisation with maximal grid size h in the d-
dimensional domain Ω ⊂ Rd. A general quadrature method of the second order
leads to an absolute error of size O(hd/2) and to the spectral norm ‖δAn‖2 =
O(hd/2). Since ‖·‖X∗n←Xn ≤ ‖·‖2 , the first inequality in (7.28) is satisfied.

Another error treatment follows the idea of backward analysis. Let a(u, v) =∫
Ω
〈∇v, c(x)∇u〉dx be the bilinear form with a (piecewise) smooth coefficient

c. For piecewise linear finite elements bi, the integrals
∫
∆
〈∇bi, c(x)∇bj〉dx are

const ·
∫
∆
c(x)dx (∆: triangle). Let c∆ be the quadrature result of

∫
∆
c(x)dx

and define a new boundary value problem with piecewise constant coefficients
c̃(x) := c∆/

∫
∆

dx for x ∈ ∆. Then the finite element matrix An + δAn is the
exact matrix for the new bilinear form ã(·, ·).

Another formulation of the total error including (7.29) is given by the first Strang
lemma (cf. Braess [2, Part III, §1]): for coercive bilinear forms a(·, ·) and an(·, ·) and
right-hand sides f and fn let u and un be the respective solutions of

a(u, v) = f for all v ∈ X, an(un, vn) = fn for all vn ∈ Xn ⊂ X.

Then

‖u− un‖X ≤ C
{

inf
vn∈Xn

‖u− vn‖X + sup
wn∈Xn

|a(un, wn)− an(un, wn)|
‖wn‖X

+ sup
wn∈Xn

|(f − fn)(wn)|
‖wn‖X

}
.
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7.5.8.2 Nonconforming Methods

The standard conforming finite element methods are characterised by the inclusion
Xn ⊂ X,which allows us to evaluate a(un, vn) for un, vn ∈ Xn. This is also called
internal approximation. An external approximation uses a sequence of spaces Xn

containing also elements outside of X; i.e.,

Xn 6⊂ X.

The variational formulation of the nonconforming Galerkin method is of the form

find un ∈ Xn with an(un, vn) = fn(vn) for all vn ∈ Xn, (7.30)

where the subscript of an indicates that the bilinear form depends on n. The
associated operator An : Xn → X ′n is defined by

(Anun)(vn) = an(un, vn) for all un, vn ∈ Xn.

Therefore, the variational formulation (7.30) is equivalent to

Anun = fn. (7.31)

Above we defined a vector space Xn, but we have not yet defined a norm. In
general, this norm depends on n:

Xn normed by ||| · |||n.

As mentioned above, the bilinear form an(·, ·) : Xn×Xn → R defines the operator
An : Xn → X ′n via an(xn, ·) = 〈Anxn, ·〉X′n×Xn . Stability is characterised by
the existence of the inverse A−1

n —at least for an infinite subset N′ ⊂ N—and the
uniform estimate

Cstab := sup
n∈N′

∥∥A−1
n

∥∥
X′n←Xn

<∞.

Since Xn is finite-dimensional, the latter statement is equivalent to the inf-sup
condition

inf
0 6=vn∈Vn

sup
06=wn∈Vn

|an(vn, wn)|
|||vn|||n|||wn|||n

≥ 1

Cstab
> 0. (7.32)

Before we study the connection between an(·, ·) and a(·, ·), we consider the
functionals fn and f. The usual setting a(u, v) = f(v) (v ∈ X) describes the
problem Au = f with a functional f ∈ X ′. The obvious discrete formulation

an(un, vn) = f(vn) for all vn ∈ Xn (7.33)

is not quite sound, since f may be undefined for vn ∈ Xn\X (note that Xn\X 6= ∅
in the nonconforming case). There are two remedies: (a) Extend f continuously to
fn such that f(v) = fn(v) for v ∈ X . (b) Usually, we have a Gelfand triple
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X ⊂ U = U ′ ⊂ X ′

(e.g., with U = L2(Ω), cf. §6.3.3 in [8, 10]). If f ∈ U ′ and Xn ⊂ U, the functional
f is well defined on Xn and the variational formulation (7.33) makes sense (i.e., we
may choose fn := f ).

The restriction of f to a smaller subset U ′ $ X ′ implies that also the solution u
belongs to a subspace strictly smaller than X. We denote this space by X∗. In the
case of f ∈ U ′, this is

X∗ := {A−1f : f ∈ U ′} $ X.

There is always the problem of how to compare the discrete solution un ∈ Xn

and the exact solution u ∈ X if the spaces Xn and X are different. One possibility
is to restrict u ∈ X toXn and to compare both in Xn (cf. (7.6a)). Another approach
is to extend un ∈ Xn into X (cf. (7.6b)). The latter case is trivial in the conforming
Galerkin case, since we have the natural inclusion Xn ⊂ X. In the nonconforming
case, neither Xn nor X contain both u and un. This problem leads us to the next
construction: we define a common superspace

X∗n ⊃ X∗ and X∗n ⊃ Xn with norm ||| · |||∗n.

Then the difference u − un belongs to X∗n and convergence can be formulated by
|||u− un|||∗n → 0. We require that

||| · |||n ≤ C̄∗||| · |||∗n on Xn (7.34)

with a constant C̄∗. Without loss of generality, we may scale ||| · |||∗n such that
C̄∗ = 1.

The next requirement is that the bilinear form an(·, ·) can be continuously ex-
tended from Xn ×Xn onto X∗n ×Xn such that

|an(v, w)| ≤ Ca|||v|||∗n|||w|||n for all v ∈ X∗n, w ∈ Xn. (7.35)

Remark 7.25. Assume that (V, ‖·‖V ) and (W, ‖·‖W ) are Banach spaces with an
intersection V ∩ W possibly larger than the zero space {0}. Then a canoni-
cal norm of the smallest common superspace U := span(V,W ) is defined by
‖u‖U := inf{‖v‖V + ‖w‖W : u = v + w, v ∈ V,w ∈W}.

Corollary 7.26. Assume that ‖·‖V and ‖·‖W are equivalent norms on V ∩W. Prove
that ‖v‖V ≤ ‖v‖U ≤ C ‖v‖V for all v ∈ V and ‖w‖W ≤ ‖w‖U ≤ C ‖w‖W for
all w ∈W , where ‖·‖U is the norm from Remark 7.25.

Consistency is expressed by

an(u, vn) = f(vn) for all vn ∈ Xn, (7.36)

where u is the solution of a(u, v) = f(v) for v ∈ X (here, we assume that f belongs
to X ′n). Then the error estimate (Strang’s second lemma, cf. [18, §1.3])
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|||u− un|||n ≤
(
C̄∗ + CaCstab

)
inf

wn∈Xn
|||u− wn|||∗n + CaCstab|||fn − f |||∗n

holds, where ||| · |||∗n is the norm dual to ||| · |||n.

Proof. Let un be the discrete solution, while wh ∈ Xn is arbitrary. From (7.32) we
infer that

|||un − wn|||n ≤ Cstab sup
vn∈Xn with |||vn|||n=1

|an(un − wn, vn)| .

Split an(un−wn, vn) into an(un− u, vn) + an(u−wn, vn). The first term can be
reformulated in terms of (7.30) and (7.36): an(un − u, vn) = (fn − f)(vn); hence

|an(un − u, vn)| ≤ |||fn − f |||∗n

because |||vn|||n = 1. The second term is estimated by

|an(u− wn, vn)| ≤ Ca|||u− wn|||∗n

(cf. (7.35)). Together, we obtain

|||un − wn|||n ≤ Cstab

(
|||fn − f |||∗n + Ca|||u− wn|||∗n

)
.

The triangle inequality yields

|||u− wn|||n ≤ |||u− un|||n + |||un − wn|||n
≤ C̄∗|||u− un|||∗n + |||un − wn|||n
≤
(
C̄∗ + CaCstab

)
|||u− wn|||∗n + CaCstab|||fn − f |||∗n.

Taking the infimum over all wn, we obtain the error estimate. ut

The consistency condition (7.36) is not always satisfied in practical examples
as, e.g., Wilson’s element (for a definition and analysis compare, e.g., Shi [22]).
As a remedy, one has tried to formulate criteria that are easier to check, the so-
called patch tests. Stummel [24, 25] analysed the patch tests and proved that they
are neither necessary nor sufficient for stability.

7.5.8.3 Discontinuous Galerkin Method

A prominent example of a nonconforming finite element is the discontinuous
Galerkin method (DG), which started in the field of hyperbolic problems and for
elliptic problems with dominant convection. Now it has become a popular method
also for standard elliptic problems (see [18], [3], [14], [21, p. 255]).

The spaces X∗ and X∗n ⊃ Xn ⊃ X∗ are as follows. X∗ = H1
0 (Ω) is the

standard choice. Given any triangulation Tn ofΩ, the broken H1 space is defined by
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X∗n :=
{
u|T ∈ H1(T ) for all τ ∈ Tn

}
with ‖u‖Xn :=

√∑
τ∈Tn

‖un‖2H1(τ).

The remarkable fact is that no conditions are required concerning the connection
of u|T ′ and u|T ′′ for neighboured elements T ′, T ′′ ∈ Tn; i.e., in general, func-
tions from X∗n are discontinuous across the internal boundaries of Tn. Obviously,
X∗n ⊃ X∗ = H1

0 (Ω) holds.
The DG finite element space is the subspace Xn of X∗n, where all u|T are,

e.g., piecewise linearly affine. The advantage of the discontinuous Galerkin method
becomes obvious when we want to choose different polynomial degrees for different
elements. Hence, the computational overhead for an hp-method is much lower.

Starting from a strong solution of −∆u = f in Ω with u = 0 on Γ = ∂Ω,
multiplication with a test function v ∈ Xn and partial integration in each T ∈ Tn
yield the variational form (7.36) with∫

Ω

(−∆u) vndx =
∑
τ∈Tn

∫
τ

〈∇un,∇vn〉dx−
∑
E∈En

∫
E

{
∂u

∂nE

}
[vn] ds

and fn(v) =
∫
Ω
fvdx.Here, En is the set of all edges of τ ∈ Tn. Each edgeE ∈ En

is associated with a normal nE (the sign of the direction does not matter). The curly
bracket {. . .} is the average of the expression in the two elements containing E,
while [. . .] is the difference (its sign depends on the direction of nE). The right-
hand side in the latter expression is no longer symmetric. Since [u] = 0 for u ∈ X∗,
we may add further terms without changing the consistency property:

an(un, vn) :=
∑
τ∈Tn

∫
τ

〈∇un,∇vn〉dx (7.37)

−
∑
E∈En

∫
E

{
∂un
∂nE

}
[vn]−

{
∂vn
∂nE

}
[un] ds

+ η
∑
E∈En

h−1
E

∫
E

[un] [vn] ds.

The expression in the second line is antisymmetric. Therefore it vanishes for
un = vn, and

an(un, un) =
∑
τ∈Tn

‖∇un‖2L2(τ) + η
∑
E∈En

h−1
E

∫
E

[un]
2

ds

proves coercivity of an.
Other variants of the discontinuous Galerkin methods use a symmetric bilinear

form with the term
∑
E∈En

∫
E

{
∂un
∂nE

}
[vn] +

{
∂vn
∂nE

}
[un] ds in the second line of

(7.37) (cf. [18, pp. 124ff]).
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7.5.9 Consistency Versus Stability

7.5.9.1 Convection-Diffusion Equation

For ordinary differential equations, we mentioned stiff differential equations (cf.
§5.5.7.1). In that case, standard stable schemes work in the limit h → 0, but their
results are useless unless h ≤ h0, where h0 may be a rather small number. A similar
phenomenon can happen for the discretisation of elliptic problems.

The differential equation

−∆u+ 〈c, gradu〉 = f in Ω ⊂ R2, u = 0 on Γ = ∂Ω, (7.38)

is called singularly perturbed if ‖c‖ � 1. Because of the dominant convection
term 〈c, gradu〉, the problem can be considered as a perturbation of the hyperbolic
problem 〈c, gradu〉 = f. Since the hyperbolic problem cannot be combined with
boundary data u = 0 on all of Γ, the solution of (7.38) develops a boundary layer at
the outflow part of the boundary.

A stable discretisation can be constructed as follows. The part−∆u is discretised
by the five-point formula (7.3). The treatment of 〈c, gradu〉 depends on the signs of
the components c1, c2 in c = (c1, c2). Assume c1 > 0. Then c1∂u/∂x1 is replaced
by the backward difference

c1
h

(uν,µ − uν−1,µ) .

If c1 < 0, the forward difference

c1
h

(uν+1,µ − uν,µ)

is used. The second term c2∂u/∂x2 in 〈c, gradu〉 is treated analogously. As a
result, the discretisation matrix is an M-matrix (cf. Definition 7.2). This property
helps to prove the stability of the discretisation.However, the consistency order is
one because of the one-sided differences.

Second-order consistency can be obtained by replacing ci ∂u/∂xi with
symmetric differences. The conflict with stability can be checked by the violation
of the M-matrix sign conditions. If c1 > 0, the coefficient of uν+1,µ becomes

− 1

h2
+
c1
2h

and fails to be non-positive unless h ≤ 2/c1. Because of the assumption ‖c‖ � 1,
the requirement h ≤ 2/c1 limits the use of the second-order scheme to rather small
step sizes.

This conflict between consistency and stability also occurs for finite element
discretisation (the corresponding modifications are, e.g., streamline diffusion
methods, cf. John–Maubach–Tobiska [12]).
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7.5.9.2 Defect Correction Methods

A possible remedy is the use of the defect correction scheme. It is based on two
different discretisations:

Lhuh = fh (7.39a)

is a stable scheme, possibly of a low order of consistency, whereas the second
scheme

L′hu
′
h = f ′h (7.39b)

has an order of higher consistency. Scheme (7.39b) is not required to be stable. It
may even be singular (i.e., a solution u′h may not exist).

The method consists of two steps. First, the basic scheme (7.39a) is applied to
obtain the starting value u(0)

h :

u
(0)
h := L−1

h fh. (7.40a)

Next the defect of u(0)
h with respect to the second scheme is computed:

dh := L′hu
(0)
h − f

′
h. (7.40b)

The correction using dh is performed in the second and final step:

u
(1)
h := u

(0)
h − L

−1
h dh. (7.40c)

We shall show that u(1)
h has better consistency properties than u(0)

h . Note that
u

(1)
h is neither a solution of (7.39a) nor of (7.39b). If (7.39a) has consistency order

one, the defect correction by (7.40c) can increase the consistency order of u(1)
h only

by one. Therefore, the steps (7.40b,c) must be repeated a few times, if the consis-
tency order of (7.39b) is larger than two. However, it is essential that the number of
iterations be a small finite number. Otherwise, the possible instability of (7.39b)
would destroy the result.

For the proof, we assume the following properties:

u∗: exact solution; u∗h := RXh u
∗,

‖Lhu∗h − fh‖H−1
h
≤ Ch, ‖L′hu∗h − f ′h‖H−1

h
≤ Ch2, (7.41)∥∥L−1

h

∥∥
H1
h←H

−1
h
≤ C,

∥∥L−1
h

∥∥
H2
h←L2

h
≤ C,

‖Lh − L′h‖H−1
h ←H2

h
≤ Ch.

Here L2
h, H1

h, H
2
h are the discrete analogues of L2

h(Ω), H1
h(Ω), H2

h(Ω) (with
derivatives replaced by divided differences). H−1

h is the dual space of H1
h.

The last estimate of Lh−L′h in (7.41) can be obtained as follows. Split Lh−L′h
into
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L′h
(
I −RXh PXh

)
−
(
R′Yh L− L′hRXh

)
PXh +

(
R′Yh −RYh

)
LPXh

+
(
RYh L− LhRXh

)
PXh − Lh

(
I −RXh PXh

)
and assume ∥∥I −RXh PXh ∥∥H1

h←H2
h
,
∥∥R′Yh L− L′hRXh ∥∥H−1

h ←H2 ≤ Ch,∥∥R′Yh −RYh ∥∥H−1
h ←L2 ,

∥∥RYh L− LhRXh ∥∥H−1
h ←H2 ≤ Ch,

‖L′h‖H−1
h ←H1

h
, ‖Lh‖H−1

h ←H1
h
, ‖L‖L2←H2 ,

∥∥PXh ∥∥H2←H2
h
≤ C.

Lemma 7.27. Under the suppositions (7.41), the result u(1)
h of the defect correction

method satisfies the estimate ‖u(1)
h − u∗h‖H1

h
≤ Ch2.

Proof. We may rewrite u(1)
h − u∗h as

u
(1)
h − u

∗
h = u

(0)
h − u

∗
h − L−1

h

[
L′hu

(0)
h − f

′
h

]
=
[
I − L−1

h L′h
] [
u

(0)
h − u

∗
h

]
+ L−1

h [L′hu
∗
h − f ′h]

= L−1
h [Lh − L′h]

[
u

(0)
h − u

∗
h

]
+ L−1

h [L′hu
∗
h − f ′h] .

Consistency ‖L′hu∗h − f ′h‖H−1
h
≤ Ch2 and stability

∥∥L−1
h

∥∥
H1
h←H

−1
h
≤ C imply

that the second term satisfies ‖L−1
h [L′hu

∗
h − f ′h] ‖H1

h
≤ Ch2.

Similarly,

‖u(0)
h − u

∗
h‖H2

h
=
∥∥L−1

h fh − u∗h
∥∥
H2
h
≤
∥∥L−1

h

∥∥
H2
h←L2

h
‖Lhu∗h − fh‖L2

h
≤ Ch

holds. The inequalities
∥∥L−1

h

∥∥
H1
h←H

−1
h
≤ C and ‖Lh − L′h‖H2

h←H
−1
h
≤ Ch yield

the estimate
‖L−1

h [Lh − L′h] [u
(0)
h − u

∗
h]‖H1

h
≤ Ch2

for the first term. Together, the assertion of the lemma follows. ut
The defect correction method was introduced by Stetter [23]. A further descrip-

tion can be found in Hackbusch [9, §14.2]. The particular case of diffusion with
dominant convection is analysed by Hemker [11].

The application of the defect correction method is not restricted to elliptic
problems. An application to a hyperbolic initial-value problem can be found in [5].
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C. R. Acad. Sci. Paris 144, 1409–1411 (1907)

20. Riesz, F., Sz.-Nagy, B.: Functional Analysis. Dover Publ. Inc, New York (1990)
21. Roos, H.G., Stynes, M., Tobiska, L.: Numerical methods for singularly perturbed differential

equations: Convection-diffusion and flow problems, Springer Series in Computational Math-
ematics, Vol. 24. Springer, Berlin (1996)

22. Shi, Z.C.: A convergence condition for the quadrilateral Wilson element. Numer. Math. 44,
349–361 (1984)

23. Stetter, H.J.: The defect correction principle and discretization methods. Numer. Math. 29,
425–443 (1978)

24. Stummel, F.: The generalized patch test. SIAM J. Numer. Anal. 16, 449–471 (1979)
25. Stummel, F.: The limitations of the patch test. Int. J. Num. Meth. Engng. 15, 177–188 (1980)

http://www.mis.mpg.de/scicomp/Fulltext/EllDgl.ps


Chapter 8
Stability for Discretisations of Integral
Equations

Since the paper of Nyström [7], integral equations are used to solve certain boundary
value problems. Concerning the integral equation method and its discretisation, we
refer to Sauter–Schwab [8] and Hsiao–Wendland [5]. The following considerations
of stability hold as long as the integral kernel is weakly singular.

8.1 Integral Equations and Their Discretisations

8.1.1 Integral Equation, Banach Space

The Fredholm integral equation of the second kind is described by

λf = g +Kf, (8.1)

where λ ∈ C\{0} and the function g are given together with an integral operator K
defined by

(Kf) (x) =

∫
D

k(x, y)f(y)dy for all x ∈ D. (8.2)

If λ = 0, Eq. (8.1) is called Fredholm’s integral equation of the first kind (cf. Fred-
holm [3]). The integration domain D is an (often compact) subset of Rn. Other
interesting applications lead to surface integrals; i.e., D = ∂Ω of some Ω ⊂ Rn.

The function g belongs to a Banach space X with norm ‖·‖. The solution f of
(8.1) is also sought in X: g, f ∈ X . The Banach space X must be chosen such that

K ∈ L(X,X)

holds; i.e., K is a bounded mapping from X into itself. An equivalent notation of
problem (8.1) is1

(λI −K) f = g.

1 Equations (λA−K) f = g with a not necessarily bounded operator A are considered in [6].
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If λI −K : X → X is bijective, also the inverse (λI −K)
−1 belongs to L(X,X)

(this is a consequence of the open mapping theorem; cf. [10, §II.5]) and a formal
description of the solution is

f = (λI −K)
−1
g.

The operator norm ‖·‖X←X is also denoted by ‖·‖.
The standard choices for X are X = C(D) or X = L2(D) with the norms

‖f‖ = supx∈D |f(x)| or ‖f‖ =
√∫

D
|f(x)|2dx, respectively.

In many cases, the operator K is not only bounded, but also compact (cf. §4.9).

Lemma 8.1. (a) If k ∈ L2(D×D), then K : X → X is compact for X = L2(D).
(b) IfD is compact and k ∈ C(D×D), thenK : X→X is compact forX= C(D).

Proof. The proof will be postponed to §8.1.2.1. ut

A more general criterion in the case of X = C(D) is the following.

Theorem 8.2. Suppose that D is compact and that k satisfies∫
D

|k(x, y)|dy <∞, lim
ξ→x

∫
D

|k(ξ, y)− k(x, y)|dy = 0 for all x ∈ D. (8.3)

Then K is compact for X = C(D).

Proof. (i) Precompactness of M := {Kf : f ∈ C(D), ‖f‖ ≤ 1} follows by
Arzelà–Ascoli’s theorem (cf. Theorem 3.51). Part (iii) will show uniform bounded-
ness of M, while Part (iv) will yield equicontinuity.

(ii) We introduce the following auxiliary functions:

ϕ(x) :=

∫
D

|k(x, y)|dy, Φ(ξ, x) :=

∫
D

|k(ξ, y)− k(x, y)|dy.

Claim: ϕ ∈ C(D) is bounded, and Φ ∈ C(D ×D) is uniformly continuous. From
|ϕ(ξ)− ϕ(x)| =

∣∣∫
D

(|k(ξ, y)| − |k(x, y)|) dy
∣∣ ≤ ∫

D
|k(ξ, y)− k(x, y)|dy =

Φ(ξ, x) and (8.3), it follows that ϕ is continuous. A continuous function on a com-
pact set is bounded. An analogous estimate shows |Φ(ξ, x)− Φ(ξ, x′)| ≤ Φ(x, x′)
and |Φ(ξ, x)− Φ(ξ′, x)| ≤ Φ(ξ, ξ′). Again by (8.3), Φ is continuous on the compact
set D ×D; hence, uniformly continuous.

(iii) Each g = Kf ∈M is bounded by ‖g‖ ≤ ‖ϕ‖, since

|g(x)| =
∣∣∣∣∫
D

k(x, y)f(y)dy

∣∣∣∣ ≤∫
D

|k(x, y)| |f(y)|dy ≤ ϕ(x) ‖f‖ ≤ ϕ(x) ≤ ‖ϕ‖ .

Hence M is uniformly bounded.
(iv) Fix ε > 0. As Φ is uniformly continuous (cf. (ii)), there is some δ > 0 such

that Φ(ξ, x) = |Φ(ξ, x)− Φ(x, x)| ≤ ε for all ξ, x ∈ D with |ξ − x| ≤ δ. For any
g = Kf ∈M we have
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|g(ξ)− g(x)| =
∣∣∣∣∫
D

[k(ξ, y)− k(x, y)] f(y)dy

∣∣∣∣ ≤ ∫
D

|k(ξ, y)− k(x, y)|

≤1︷ ︸︸ ︷
|f(y)|dy

≤ Φ(ξ, x) ≤ ε for |ξ − x| ≤ δ,

proving that all functions g ∈M are equicontinuous. ut
We mention that the conditions from (8.3) are also necessary, provided that

k(x, ·) ∈ L1(D) for all x ∈ D.

8.1.2 Discretisations

There are various discretisation techniques leading to a sequence of ‘discrete’ inte-
gral operators Kn ∈ L(X,X), n ∈ N, with the property that the range of Kn is
n-dimensional. The corresponding ‘discrete’ integral equation is

λfn = g +Knfn (8.4a)

or λfn = gn +Knfn, (8.4b)

where in the latter case
gn → g (8.4c)

is assumed.
Because the right-hand sides in (8.4a,b) are contained in an at most (n + 1)-

dimensional subspace, λ 6= 0 implies that fn belongs to this subspace. This leads to
a system of finitely many linear equations.

8.1.2.1 Kernel Approximation

The kernel approximation approximates the kernel function k(·, ·) by a so-called
degenerate kernel

kn(x, y) =

n∑
j=1

aj(x)bj(y) for x, y ∈ D, (8.5)

leading to

Knf =

∫
D

kn(·, y)f(y)dy =

n∑
j=1

aj(·)
∫
D

bj(y)f(y)dy.

Exercise 8.3. Let X = C(D) or X = L2(D). Suppose that ‖kn − k‖C(D×D) → 0

or ‖kn − k‖L2(D×D) → 0, respectively. Prove the corresponding operator norm
convergence ‖K −Kn‖ → 0.

The suppositions of Exercise 8.3 imply even compactness of K.
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Remark 8.4. Suppose that Kn has a finite-dimensional range. Then ‖K−Kn‖→0
implies that K,Kn : X → X are compact operators.

Proof. We recall two properties of compact operators: (i) finite dimension range
implies compactness, (ii) a limit of compact operators is compact. From (i) we
infer that Kn is compact, while (ii) proves that K = limKn is compact. ut

Proof of Lemma 8.1. It is sufficient to verify the supposition of Exercise 8.3.
For Part (b) involving X = C(D), use Weierstrass’ approximation theorem. Since
D ×D is compact, there is a sequence of polynomials Pn(x, y) of degree ≤ n− 1
such that ‖Pn − k‖C(D×D) → 0. Since kn := Pn has a representation (8.5) with
aj(x) = xj and a polynomial bj(y) of degree ≤ n− 1, Exercise 8.3 can be applied.

Proof. In the Hilbert case of X = L2(D), K possesses an infinite singular value
decomposition2

K =

∞∑
j=1

σjajb
∗
j with orthonormal {aj}, {bj} ⊂ X,

where the singular values satisfy σ1 ≥ σ2 ≥ . . . ≥ 0 , σ1 = ‖K‖, and
∞∑
j=1

σ2
j = ‖k‖2L2(D×D) <∞

(cf. [9], [4, §4.4.3]). The operator Kn =
∑n
j=1 σjajb

∗
j has the kernel

kn(x, y) =

n∑
j=1

σjaj(x)bj(y)

and satisfies ‖K −Kn‖2 =
∑∞
j=n+1 σ

2
j → 0. ut

8.1.2.2 Projection Method

The projection method is characterised by a sequence of subspaces Xn ⊂ X and
projections Πn ∈ L(X,X) with

Xn = range(Πn) with dim(Xn) = n. (8.6)

Either we construct a sequence of projections {Πn} and define Xn by (8.6),
or we build a sequence of subspaces {Xn} and define Πn as a projection onto Xn.

Setting
Kn := ΠnK and gn := Πng,

we obtain the discrete problem by (8.4b): λfn = gn +Knfn. Note that the solution
belongs to Xn, provided that λ 6= 0 and the solution exists.

2 b′j denotes the corresponding functional b′j(ϕ) :=
∫
D
bj(y)ϕ(y)dy; formally, b′j := Jbj is

obtained by the Riesz isomorphism explained in Remark 7.18.
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There are two standard choices of Πn.
(1) CaseX=C(D). Define an interpolation at the points {ξk,n : 1 ≤ k ≤ n}⊂D

by

Πnϕ :=

n∑
k=1

ϕ(ξk,n)Lk,n

with Lagrange functions Lk,n ∈ X (cf. page 48). Since fn ∈ Xn, it suffices to
know the function values fn,k := fn(ξk,n). The generation of the system of linear
equations requires computing the integrals

(KLk,n) (ξk,n) =

∫
D

k(ξk,n, y)Lk,n(y)dy.

(2) CaseX = L2(D). The Hilbert space structure ofX allows us to defineΠn as
the orthogonal projection onto Xn, where Xn = span{ϕk,n : 1 ≤ k ≤ n} is some
Galerkin subspace of dimension n. The generation of the linear system requires
computing ∫

D

∫
D

ϕk,n(x)k(x, y)ϕk,n(y)dxdy.

8.1.2.3 Nyström Method

The integral
∫
D
. . . dy suggests applying a quadrature method∫

D

ϕ(y)dy ≈ Qn(ϕ) =

n∑
j=1

aj,nϕ(ξj,n).

This leads to the Nyström discretisation

λfn(x) = g(x) +

n∑
k=1

ak,nk(x, ξk,n)fn(ξk,n) for all x ∈ D (8.7)

(cf. Nyström [7]). Restricting the latter equation to x ∈ {ξk,n : 1 ≤ k ≤ n}, we
obtain a linear system for fn(ξk,n), 1 ≤ k ≤ n. If this system has a unique solution,
the values fn(ξk,n) inserted into the right-hand side of (8.7) determine fn(x) for all
x ∈ D, provided that λ 6= 0. The extension of fn(ξk,n) to fn ∈ C(D) is also called
Nyström interpolation. Because of this interpolation, the Nyström discretisation can
again be written as λfn = g +Knfn with

(Knϕ) (x) =

n∑
k=1

ak,nk(x, ξk,n)ϕ(ξk,n). (8.8)

Since we need point evaluations, the Banach space X = C(D) must be used.
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8.2 Stability Theory

8.2.1 Consistency

Let K,Kn ∈ L(X,X) be operators acting in a Banach space X.

Definition 8.5 (consistency). {Kn} is called consistent with respect to K if 3

Knϕ→ Kϕ for all ϕ ∈ X. (8.9)

{Kn} is called consistent if some K ∈ L(X,X) exists satisfying (8.9).

Exercise 8.6. (a) Prove that {Kn} is consistent with respect to K if and only if
(i) Knϕ→ Kϕ for all ϕ ∈M ⊂ X and some M dense in X , and
(ii) supn ‖Kn‖ <∞.

(b) Assuming thatKnϕ is a Cauchy sequence and supn ‖Kn‖ <∞, defineK by
Kϕ := limKnϕ and prove that K∈L(X,X); i.e., {Kn} is consistent with respect
to K.

(c) Operator norm convergence ‖K −Kn‖ → 0 is sufficient for consistency.

8.2.2 Stability

Stability refers to the value λ 6= 0 from problem (8.1). This λ is assumed to be fixed.
Otherwise, one has to use the term ‘stable with respect to λ’.

Definition 8.7 (stability). {Kn} is called stable if there exist some n0 ∈ N and
Cstab ∈ R such that 4

‖ (λI −Kn)
−1 ‖ ≤ Cstab for all n ≥ n0.

If (λI −K)
−1 ∈ L(X,X), the inverse exists also for perturbations of K.

Remark 8.8. Suppose (λI −K)
−1 ∈ L(X,X) and

‖K −Kn‖ < 1/‖ (λI −K)
−1 ‖.

Then

‖ (λI −Kn)
−1 ‖ ≤ ‖ (λI −K)

−1 ‖
1− ‖ (λI −K)

−1 ‖ ‖K −Kn‖
.

Proof. Apply Lemma 5.8 with T := λI −K and S := λI −Kn. ut

3 In Definition 4.5, consistency involves Knϕ → Kϕ only for ϕ from a dense subset X0 ⊂ X.
Then the full statement (8.9) could be obtained from stability: supn ‖Kn‖ < ∞. Here, stability
will be defined differently. This is the reason to define consistency as in (8.9).
4 ‖ (λI −K)−1 ‖ ≤ Cstab is the short notation for ‘λI − K ∈ L(X,X) is bijective and the
inverse satisfies ‖ (λI −K)−1 ‖ ≤ Cstab ’.
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A simple consequence is the following stability result.

Remark 8.9. If (λI −K)
−1 ∈ L(X,X) and ‖K −Kn‖ → 0, then {Kn} is stable.

The roles of K and Kn can be interchanged.

Exercise 8.10. If ‖K −Kn‖ < 1/‖ (λI −Kn)
−1 ‖ holds for all n ≥ n0, then the

inverse (λI −K)
−1 ∈ L(X,X) exists. The assumption is, in particular, valid, if

‖K −Kn‖ → 0 and {Kn} is stable.

8.2.3 Convergence

Definition 8.11 (convergence). {Kn} is called convergent if there is some n0 ∈ N
such that
(i) λfn = g +Knfn is solvable for all g ∈ X and n ≥ n0, and
(ii) the limit limn fn exists in X .

The next remark shows that f := limn fn satisfies the continuous problem. The
existence of (λI −K)

−1 is left open, but will follow later from Theorem 8.16.

Remark 8.12. If {Kn} is consistent and convergent, then f := limn fn satisfies
λf = g +Kf (cf. (8.1)) and the operator λI −K is surjective.

Proof. (i) By Exercise 8.6a, C := supn ‖Kn‖ < ∞ holds. The solutions fn exist
for n ≥ n0 and define some f := limn fn. Consistency shows that

‖Knfn −Kf‖ = ‖Kn (fn − f)− (K −Kn) f‖
≤ C ‖fn − f‖+ ‖(K −Kn) f‖ → 0;

hence the limit process n→∞ in λfn = g +Knfn yields λf = g +Kf .
(ii) Since for all g ∈ X , (i) yields a solution of (λI −K) f = g, surjectivity

follows. ut

A particular result of the Riesz–Schauder theory (cf. Yosida [10, §X.5]) is the
following result.

Lemma 8.13. Suppose that λ 6= 0,K ∈ L(X,X) compact. Then λI−K is injective
if and only if λI −K is surjective.

Exercise 8.14. Let K be compact and {Kn} be consistent and convergent. Prove
(λI −K)

−1 ∈ L(X,X).

Lemma 8.15. If {Kn} is stable and consistent, then the operator λI−K is injective.
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Proof. Injectivity follows from ‖(λI −K)ϕ‖ ≥ η ‖ϕ‖ for some η > 0 and all
ϕ ∈ X . For an indirect proof assume that there is a sequence ϕn ∈ X with

‖ϕn‖ = 1 and ‖ψn‖ ≤ 1/n for ψn := (λI −K)ϕn.

By consistency Kmϕn → Kϕn for m → ∞ and fixed n. Hence there is some
mn ∈ N such that ‖Kmϕn −Kϕn‖ ≤ 1/n for m ≥ mn. We estimate the norm of
ζn,m := (λI −Km)ϕn = ψn − (Kmϕn −Kϕn) by 2/n for m ≥ mn. Stability
and the representation ϕn = (λI −Km)

−1
ζn,m yields 1 = ‖ϕn‖ ≤ C · 2/n.

The contradiction follows for n > 2C. ut

8.2.4 Equivalence

Theorem 8.16 (stability theorem). (a) Convergence implies stability.
(b) Convergence and consistency imply stability and (λI −K)

−1 ∈ L(X,X).

Proof. Part (a) follows again by Banach–Steinhaus (Corollary 3.39).
In the case of Part (b), Remark 8.12 states that λI − K is surjective. Since, by

Part (a) stability holds, Lemma 8.15 proves that λI −K is also injective. Together,
λI −K is bijective, which proves (λI −K)

−1 ∈ L(X,X). ut

Theorem 8.17 (convergence theorem). Suppose consistency, stability, and either
(i) λI −K surjective or (ii) K compact.
(a) Then {Kn} is convergent and

fn = (λI −Kn)
−1
g → f = (λI −K)

−1
g for all g ∈ X.

(b) If gn → g, then fn = (λI −Kn)
−1
gn → f = (λI −K)

−1
g.

Proof. Lemma 8.15 ensures injectivity of λI − K. Together with assumption (i),
(λI −K)

−1 ∈ L(X,X) is proved. In the case of (ii), we conclude that injectivity
of λI − K implies surjectivity (cf. Lemma 8.13), if λ 6= 0 and K compact. This
allows us to define f := (λI −K)

−1
g. Set

dn := λf −Knf − gn,

where either gn := g (case of (8.4a)) or gn → g. Consistency and gn → g show that
dn→0. Subtraction of fn :=(λI−Kn)

−1
gn implies that (λI−Kn) (f − fn)=dn

and
f − fn = (λI −Kn)

−1
dn

for n≥n0. Stability yields the estimate ‖f − fn‖ ≤ C ‖dn‖ → 0; i.e., fn →f . ut

Combining the previous theorems, we obtain the next one.
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Theorem 8.18 (equivalence theorem). Suppose consistency and one of the condi-
tions (i) or (ii) from Theorem 8.17. Then stability and convergence are equivalent.
Furthermore, gn → g implies

fn = (λI −Kn)
−1
gn → f = (λI −K)

−1
g.

Remark 8.19. The suppositions (λI −K)
−1 ∈ L(X,X) and ‖K −Kn‖ → 0

imply consistency, stability, and convergence.

Proof. Exercise 8.6c shows consistency. Remark 8.9 yields stability. Finally,
convergence is ensured by Theorem 8.17a. ut

For the numerical solution of a linear problem Ax = b, the condition of A is
important:

cond(A) =

{
‖A‖‖A−1‖ if A,A−1 ∈ L(X,X),
∞ otherwise. (8.10)

Exercise 8.20. If {Kn} is consistent and convergent, then there is some n0 ∈ N
such that

sup
n≥n0

cond(λI −Kn) <∞.

8.3 Projection Methods

We recall that a projection method is characterised by the sequences {Πn} and
{Xn = range(Πn)}. The approximation of X by {Xn} is described by the condi-
tion

dist(x,Xn) := inf{‖x− y‖ : y ∈ Xn} → 0 for all x ∈ X. (8.11)

Definition 8.21. A sequence {Πn} is called convergent if Πnx = x for all x ∈ X.

Exercise 8.22. Prove that a convergent sequence {Πn} generates subspaces Xn

satisfying condition (8.11).

The terms consistency and stability can also be applied to {Πn}.

Exercise 8.23. Define:
(i) {Πn} is consistent if there is a dense subset M ⊂ X such that Πnx = x for all
x ∈M ;

(ii) {Πn} is stable if supn ‖Πn‖ <∞.
Prove that convergence (see Definition 8.21) is equivalent to consistency and
stability.
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8.4 Stability Theory for Nyström’s Method

We recall that only the Banach space X = C(D) (or a Banach space with even
stronger topology) makes sense. Therefore, throughout this section X = C(D) is
chosen.

Lemma 8.24. Assume thatD is compact and k ∈C(D×D). Then ‖K−Kn‖≥‖K‖.

Proof. The operator norm ‖K‖ can be shown to be equal to supx∈D
∫
D
|k(x, y)|dy.

Since D is compact, the supremum is a minimum; i.e., there is some ξ ∈ D
with ‖K‖ =

∫
D
|k(ξ, y)|dy. For any ε > 0, one can construct a function

ϕε ∈ X = C(D) such that ‖ϕε‖ = 1, ‖Kϕε‖ ≥
∫
D
|k(ξ, y)|dy − ε, and in

addition, ϕε(ξk,n) = 0 for 1 ≤ k ≤ n. The latter property implies Knϕε = 0, so
that ‖K −Kn‖ ≥ ‖(K −Kn)ϕε‖ = ‖Kϕε‖ ≥ ‖K‖ − ε. As ε > 0 is arbitrary,
the assertion follows. ut

The statement of the lemma shows that we cannot use the argument that the
operator norm convergence ‖K −Kn‖ → 0 proves the desired properties.

It will turn out that instead of K − Kn, the products (K − Kn)K and
(K−Kn)Kn may still converge to zero. The next theorem of Brakhage [2] proves
the main step. Here we use the operators S, T ∈ L(X,X) which replace K and Kn

(for a fixed n). In this theorem, X may be any Banach space.

Theorem 8.25. Let X be a Banach space and λ 6= 0. Suppose that the operators
S, T , (λI − S)

−1 belong to L(X,X), and that T is compact. Under the condition

‖(T − S)T‖ < |λ| /‖ (λI − S)
−1 ‖, (8.12a)

also (λI − T )
−1 ∈ L(X,X) exists and satisfies

‖ (λI − T )
−1 ‖ ≤ 1 + ‖ (λI − S)

−1 ‖ ‖T‖
|λ| − ‖ (λI − S)

−1 ‖ ‖(T − S)T‖
. (8.12b)

The solutions of (λI − S) fS = g and (λI − T ) fT = g differ by

‖fS − fT ‖ ≤ ‖ (λI − S)
−1 ‖‖(T − S)T‖ ‖fS‖+ ‖(T − S) g‖

|λ| −
∥∥∥(λI − S)

−1
∥∥∥ ‖(T − S)T‖

, (8.12c)

‖fS − fT ‖ ≤ ‖ (λI − T )
−1 ‖ ‖(T − S) fS‖ . (8.12d)

Proof. (i) If (λI − T )
−1 ∈ L(X,X), the identity I = 1

λ [(λI − T ) + T ] leads to
(λI − T )

−1
= 1

λ [I + (λI − T )
−1
T ]. We replace (λI − T )

−1 on the right-hand
side by the inverse (λI − S)

−1, whose existence is assumed, and define

A :=
1

λ
[I + (λI − S)

−1
T ].

B := A (λI − T ) should approximate the identity:
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B = 1
λ [I + (λI − S)

−1
T ] (λI − T ) = I − 1

λ [T − (λI − S)
−1
T (λI − T )]

= I − 1
λ (λI − S)

−1
[(λI − S)T − T (λI − T )]

= I − 1
λ (λI − S)

−1
(T − S)T.

By assumption,

‖ 1
λ (λI − S)

−1
(T − S)T‖ ≤ ‖ (λI − S)

−1 ‖ ‖(T − S)T‖ / |λ| < 1

holds and proves the existence of B−1.
(ii) Since B = A (λI − T ) is injective (even bijective), also λI − T must be

injective. Lemma 8.13 states that λI − T is surjective; hence, λI − T is bijec-
tive and (λI − T )

−1 ∈ L(X,X) exists. In particular, B = A (λI − T ) implies
(λI − T )

−1
= B−1A:

(λI − T )
−1

=
[
λI − (λI − S)

−1
(T − S)T

]−1

[I + (λI − S)
−1
T ].

The inverse on the right-hand side can be estimated by∥∥∥∥[λI − (λI − S)
−1

(T − S)T
]−1
∥∥∥∥ ≤ 1

|λ| − ‖ (λI − S)
−1 ‖ ‖(T − S)T‖

(cf. Lemma 5.8). Together with ‖I + (λI − S)
−1
T‖ ≤ 1 + ‖ (λI − S)

−1 ‖ ‖T‖,
we obtain inequality (8.12b).

(iii) Subtracting (λI − T ) fT = g from (λI − S) fS = g, we obtain the expres-
sion λ(fS − fT ) = SfS − TfT = T (fS − fT ) + (S − T )fS and

fS − fT = (λI − T )
−1

(S − T )fS .

This proves inequality (8.12c). Interchanging S and T , we arrive at fT − fS =
(λI − S)

−1
(T − S)fT . Replace fT on the right-hand side by fT = 1

λ (g + TfT ):

fT − fS = 1
λ (λI − S)

−1
(T − S)(g + TfT )

= 1
λ (λI − S)

−1
(T − S)(g + TfS) + 1

λ (λI−S)
−1

(T−S)T (fT−fS).

This proves

fT − fS =
[
λI − (λI − S)

−1
(T − S)T

]−1
1
λ (λI − S)

−1
(T − S)(g + TfS).

Norm estimates yield the assertion. ut

The key assumption of Theorem 8.25 is that ‖(T − S)T‖ is small enough. Set
S = K and replace the fixed operator T by a sequence {Kn}. Then we have to take
care that (K − Kn)Kn → 0. This will be achieved by the following definition of
collectively compact operators (cf. Anselone [1]).
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Definition 8.26 (collective compactness). A sequence {Kn} ⊂ L(X,X) is called
collectively compact if the following set is precompact:

{Knϕ : ϕ ∈ X, ‖ϕ‖ ≤ 1, n ∈ N} . (8.13)

Since we have introduced collective compactness to analyse the Nyström method,
we have to demonstrate that the Nyström method produces collectively compact op-
erators Kn. The following assumption that k is continuous is not restrictive, since a
quadrature method requires point evaluations.

Lemma 8.27. Assume that D is compact and k ∈ C(D × D). Then any Nyström
method based on a stable quadrature rule yields a collectively compact set {Kn} of
operators.

Proof. (i) Stability of the quadrature rule in (8.7) is expressed by the inequality∑n
k=1 |ak,n| ≤ Cstab.
(ii) The set (8.13) is uniformly bounded: |

∑n
k=1 ak,nk(·, ξk,n)ϕ(ξk,n)| ≤∑n

k=1 |ak,n| |k(·, ξk,n)| |ϕ(ξk,n)| ≤
Part i,‖ϕ‖≤1

C := Cstab ‖k‖∞.

(iii) Since D × D is compact, k(·, ·) is uniformly continuous. In particular,
for all ε > 0 there is some δε > 0 such that x, y ∈ D with ‖x− y‖ ≤ δε
satisfy |k(x, ξk,n)− k(y, ξk,n)| ≤ ε/Cstab. Hence the elements of (8.13) are
equicontinuous:∣∣∣∣∣

n∑
k=1

ak,nk(x, ξk,n)ϕ(ξk,n)−
n∑
k=1

ak,nk(y, ξk,n)ϕ(ξk,n)

∣∣∣∣∣
≤

n∑
k=1

|ak,n| |k(x, ξk,n)− k(y, ξk,n)| |ϕ(ξk,n)| ≤ Cstab · ε/Cstab = ε.

By Theorem 3.51 (Arzelà–Ascoli), the set (8.13) is precompact; i.e., {Kn} is
collectively compact. ut

We show that the operator norm convergence, which is valid for the previous
discretisations, implies the new property.

Lemma 8.28. Suppose that each operator Kn is compact (e.g., because of a
finite-dimensional range). If ‖K −Kn‖ → 0, then {Kn} is collectively compact.

Proof. (i) Remark 8.4 states that K is compact.
(ii) We have to show thatM := {Knϕ : ϕ ∈ X, ‖ϕ‖ ≤ 1, n ∈ N} is precompact.

A sequence in M has the form {Kn(j)ϕj} with n(j) ∈ N and ‖ϕj‖ ≤ 1. Let
N := lim supn(j) ∈ N ∪ {∞}.

Case A: N < ∞. The subsequence can be chosen such that nk := n(jk) = N
for all k ∈ N. By the compactness of KN , the sequence KNϕjk = Knkϕjk has a
convergent subsequence.

Case B: N = ∞. A subsequence can be chosen such that nk+1 > nk. By
the same argument as before, there is a convergent subsequence Kϕjk . Since
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‖K −Knk‖ → 0 implies (K −Knk)ϕjk → 0, the same subsequence {jk} yields
a convergent sequence Knkϕjk = Kϕjk − (K −Knk)ϕjk . ut

Next, we list some properties of collectively compact operators.

Lemma 8.29. Let {Kn} be collectively compact.
(a) Each Kn is compact.
(b) If {Kn} is consistent with respect to K (i.e., Knϕ → Kϕ for all ϕ ∈ X) ,
then K is compact, {Kn} is uniformly bounded, and

‖(K −Kn)K‖ → 0 and ‖(K −Kn)Kn‖ → 0.

Proof. (i) Let M be the set defined in (8.13). Part (a) follows immediately, since
{Knϕ : ϕ ∈ X, ‖ϕ‖ ≤ 1} ⊂M for anyn.

(ii) AsKϕ = limKnϕ, it belongs to the closureM which is compact. Therefore,
K is compact.

(iii) {Kn} is uniformly bounded because of Corollary 3.39.
(iv) The image of E := {ϕ ∈ X, ‖ϕ‖ ≤ 1} under K or Kn is contained in the

compact set M . Hence, Lemma 3.49 and the definition of the operator norm prove
that ‖(K −Kn)K‖ = supϕ∈E ‖(K −Kn)Kϕ‖ ≤ supψ∈M ‖(K −Kn)ψ‖ → 0
and similarly for (K −Kn)Kn. ut

Exercise 8.30. Prove: (a) If B ⊂ X is bounded and {Kn} collectively compact,
then {Knf : f ∈ B,n ∈ N} is precompact.
(b) If {An} is collectively compact and {Bn} uniformly bounded (a weaker
condition is collective compactness; cf. Lemma 8.29), then {AnBn} is collectively
compact.

The statement of Exercise 8.30b corresponds to the fact that AB is compact if
A is compact and B bounded. The conditions on A and B can be interchanged:
AB is compact if A is bounded and B compact. The analogue for collective
compactness is given in the next lemma. Note that consistency of {An} implies
uniform boundedness (cf. Exercise 8.6a).

Lemma 8.31. Suppose that {An} is consistent, while {Bn} is collectively compact.
Then {AnBn} is collectively compact.

Proof. We have to show that the set M := {AnBnf : ‖f‖ ≤ 1, n ∈ N} is pre-
compact. A sequence from M has the form

ϕk := AnkBnkfk with ‖ϕk‖ ≤ 1 and nk ∈ N.

Set gk := Bnkfk. By collective compactness of {Bn}, there is a subsequence
(denoted again by k) such that

gk = Bnkϕk → g.

Next, two cases must be distinguished: (A) supnk <∞ and (B) supnk =∞.



180 8 Stability for Discretisations of Integral Equations

Case A: We can select a subsequence that such nk = n is constant; i.e., gk =
Bnϕk → g. Continuity of An proves ϕk = Angk → Ang; i.e., a convergent
subsequence is found.

Case B: Then ϕk = Ankgk, where, without loss of generality, we may assume
nk+1 > nk. By consistency, there is some A with

Ankg → Ag and sup
nk∈N

‖Ank‖ <∞.

Therefore, Ankgk − Ag = Ank (gk − g) + (Ank − A)g → 0 shows that Ankgk is
a convergent subsequence. ut

Combining Theorem 8.25 and Lemma 8.29, we obtain the following main result.

Theorem 8.32. Let λ 6= 0 satisfy5 (λI −K)
−1 ∈ L(X,X). Suppose that {Kn} is

consistent with respect to K and collectively compact. Then {Kn} is stable and
convergent. Furthermore, there is some n0 ∈ N such that for all n ≥ n0 the
following statements hold:

‖ (λI −Kn)
−1 ‖ ≤ 1 + ‖ (λI −K)

−1 ‖ ‖Kn‖
|λ| − ‖ (λI −K)

−1 ‖ ‖(K −Kn)Kn‖
(n ≥ n0);

the solutions f = (λI −K)
−1
g and fn = (λI −Kn)

−1
g satisfy

‖f − fn‖ ≤ ‖ (λI −K)
−1 ‖‖(K −Kn)Kn‖ ‖f‖+ ‖K −Kn‖ ‖g‖
|λ| − ‖ (λI −K)

−1 ‖ ‖(K −Kn)Kn‖
,

‖f − fn‖ ≤ ‖ (λI −Kn)
−1 ‖ ‖(K −Kn)f‖ (n ≥ n0).

Conclusion 8.33. Assume that D is compact and k ∈ C(D × D). Let λ 6= 0 be
a regular value of K. Then, any Nyström method based on a consistent and stable
quadrature is also stable and convergent.

Proof. By Lemma 8.27 {Kn} is collectively compact. Consistency of the quadrature
method implies consistency of {Kn}. Now, Theorem 8.32 yields the statement. ut

8.5 Perturbation Results

Lemma 8.34. Let {Kn} be stable with constant Cstab : ‖ (λI −Kn)
−1 ‖ ≤ Cstab.

Let {Tn} be bounded by ‖Tn‖ ≤ ζ/Cstab with ζ < 1 for all n ≥ n0. Then, also
{Kn + Tn} is stable.

Proof. The proof follows the same lines as in Remark 8.8. ut

5 In Lemma 8.40 we shall show that this assumption is necessary.
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Theorem 8.35. Suppose that λ 6= 0 is a regular value of K + T ; i.e., the inverse
(λI−K−T )−1 ∈ L(X,X) exists. Assume that {Kn} is convergent and consistent
with respect to K ∈ L(X,X), {Tn} is collectively compact with Tnϕ → Tϕ for
all ϕ ∈ X . Then, also {Kn + Tn} is stable, consistent, and convergent.

Proof. (i) By Theorem 8.16b, λI − K is bijective and (λI − K)−1 ∈ L(X,X)
exists.

(ii) To prove that {(λI − Kn)−1Tn} is collectively compact, we apply Lemma
8.31 with An = (λI −Kn)−1 and Bn = Tn. By Theorems 8.16 and 8.17a, An is
consistent with respect to A = (λI −K)−1; i.e., the suppositions of Lemma 8.31
are satisfied.

(iii) For any ϕ ∈ X, Theorem 8.17b with gn := Tnϕ → Tϕ proves that
Cn := (λI − Kn)−1Tn satisfies Cnϕ → Aϕ, where C := (λI − K)−1T . This
shows that {An} is consistent with respect to A.

(iv) Because of λI − K − T = (λI − K)(I − C) and (i), also the inverse
(I − C)−1 ∈ L(X,X) exists. Since {Cn} is collectively compact (cf. (ii)), and
consistent with respect to C (cf. (iii)) with (I − C)−1 ∈ L(X,X), Theorem 8.32
states stability:

∥∥(I − Cn)−1
∥∥ ≤ C. From

(λI −Kn − Tn)−1 = (I − Cn)−1(λI −Kn)−1

we conclude that also {Kn + Tn} is stable.
(v) Consistency of {Kn +Tn} is trivial. Since λI −K −T = (λI −K)(I −C)

is bijective (cf. (iv)), convergence follows from Theorem 8.17a. ut

8.6 Application to Eigenvalue Problems

So far, we have required that (λI −K)−1 and (λI −Kn)−1, at least for n ≥ n0,
exist. Then, λ ∈ C is called a regular value of K and Kn. The singular values of K
[Kn] are those for which λI −K [λI −Kn] is not bijective. The Riesz–Schauder
theory states that for compactK, all singular values are either λ = 0 or eigenvalues,
which means that there is an eigenfunction f such that

λf = Kf (0 6= f ∈ X). (8.14a)

Similarly, we have discrete eigenvalue problems

λnfn = Knfn (0 6= fn ∈ X, n ∈ N). (8.14b)

The sets of all singular values are the spectra σ = σ(K) and σn = σ(Kn), respec-
tively. The Riesz–Schauder theory states the following.

Remark 8.36. Either the range of a compact operator is finite-dimensional (imply-
ing that σ is a finite set), or λ = 0 ∈ σ is the only accumulation point of the
spectrum.
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The obvious question is how λ ∈ σ and λn ∈ σn are related. The following
results require only consistency of {Kn} toK and collective compactness of {Kn},
which holds for all discretisations discussed before.

Theorem 8.37. Suppose that {Kn} is consistent with respect to K and collectively
compact. Let {λn} be a sequence of eigenvalues of (8.14b) with corresponding
eigenfunction fn ∈ X normalised by ‖fn‖ = 1. Then, there exists a subsequence
{nk} such that either λnk → 0 or λnk → λ ∈ σ. In the latter case, the subsequence
can be chosen such that fnk → f with f being an eigenfunction of (8.14a).

Proof. (i) First we show uniform boundedness: sup{|λn| : λn ∈ σn, n ∈ N} <∞.
|λn| ≤ ‖Kn‖ follows from |λn| = ‖λnfn‖ = ‖Knfn‖ ≤ ‖Kn‖‖fn‖ = ‖Kn‖
because of ‖fn‖ = 1. Consistency of Knϕ→ Kϕ for all ϕ ∈ X implies that Kn is
uniformly bounded: C := supn∈N ‖Kn‖ <∞. Together, |λn| ≤ C follows.

(ii) Since {z ∈ C : |z| ≤ C} is compact, there is a convergent subsequence
λn → λ (n ∈ N′). If λ 6= 0, we have to show that λ ∈ σ. Because of ‖fn‖ = 1,
collective compactness of {Kn} implies that there is a second subsequence
n ∈ N′′ ⊂ N′ for which Knfn is convergent. By (8.14b) and λn → λ 6= 0,
this yields convergence of fn to some f :

fn =
1

λn
Knfn → f.

Continuity of the norm yields ‖f‖ = 1, implying f 6= 0. The first two terms in
Knfn = Kn (fn − f) + (Kn −K) f + Kf vanish (use supn∈N ‖Kn‖ < ∞ and
consistency), so that Knfn → Kf as well as Knfn = λnfn → λf, proving that
λ ∈ σ is an eigenvalue of K. ut

The statement of Theorem 8.37 about the eigenvalues can be abbreviated by ‘the
set of accumulation points of

⋃
n∈N σn is contained in σ’. Now we prove the reverse

direction: ‘σ is contained in the set of accumulation points of
⋃
n∈N σn’.

Theorem 8.38. Suppose that {Kn} is consistent with respect to K and collectively
compact. Then, for any 0 6= λ ∈ σ there is a sequence {λn} of eigenvalues from
(8.14b) with λ = limn∈N λn. Again, a subsequence can be chosen so that the eigen-
functions fnk from (8.14b) converge to an eigenfunction of (8.14a).

We prepare the proof by two lemmata. The following functions on C will be
needed:

κn(λ) :=

{
1/‖(λI −Kn)−1‖ if λ /∈ σn,
0 otherwise.

Exercise 8.39. Prove that κn is not only continuous, but also satisfies the Lipschitz
property |κn(λ)− κn(µ)| ≤ |λ− µ| for all λ, µ ∈ C.

The next lemma describes the equivalence of limn∈N κn(λ) = 0 and λ ∈ σ.
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Lemma 8.40. Suppose that {Kn} is consistent with respect to K.
(a) limn∈N κn(λ) = 0 for each λ ∈ σ.
(b) Suppose, in addition, that the set {Kn} is collectively compact, λ 6= 0, and
limn∈N κn(λ) = 0. Then λ ∈ σ is an eigenvalue of K.

Proof. (i) Let λ ∈ σ with corresponding eigenfunction f 6= 0: λf = Kf . Set
gn := λf −Knf . Consistency implies that gn → 0. For an indirect proof assume
that limn∈N κn(λ) ≥ 2ε > 0 and choose a subsequence such that κn(λ) ≥ ε; i.e.,
‖(λI −Kn)−1‖ ≤ 1/ε. Then

‖f‖ = ‖(λI −Kn)−1gn‖ ≤ ‖(λI −Kn)−1‖‖gn‖ ≤ ‖gn‖/ε→ 0

is a contradiction to f 6= 0. This ends the proof of Part (a).
(ii) The assumptions of Part (b) imply ‖(λI −Kn)−1‖ → ∞ (we write formally

‖(λI −Kn)−1‖ =∞ for λ ∈ σn). Hence, there are functions {fn} and {gn} with

(λI −Kn) fn = gn, ‖fn‖ = 1, gn → 0.

By collective compactness, a subsequence {Knkfnk} is convergent. Therefore
fnk = (gnk +Knkfnk)/λ has some limit f with

‖f‖ = 1 and f = lim(gnk +Knkfnk)/λ = Kf/λ;

i.e., λ is an eigenvalue of K (details as in Part (ii) of the proof above). ut
Lemma 8.41. Let Ω ⊂ C\{0} be compact. Then, either σn ∩Ω 6= ∅ or κn takes its
minimum on the boundary ∂Ω.

Proof. Assume that σn∩Ω = ∅ and fix some ϕ ∈ X with ‖ϕ‖ = 1. By assumption,
(zI−Kn)−1ϕ is well-defined for all z ∈ Ω. Since κn is continuous, and Ω is com-
pact, maxz∈Ω κn(z) = κn(λ) holds for some λ ∈ Ω. Choose Φ ∈ X∗ according to
Corollary 3.11 such that ‖Φ‖∗X = 1 and Φ((λI −Kn)−1ϕ) =

∥∥(λI −Kn)−1ϕ
∥∥,

and define a complex function by

F (z) := Φ((zI −Kn)−1ϕ) ∈ C.

Its derivative F ′(z) = −Φ((zI−Kn)−2ϕ) is defined inΩ, so that F is holomorphic
in Ω. Hence, |F | takes its maximum on ∂Ω:∥∥(λI −Kn)−1ϕ

∥∥ = F (λ) = |F (λ)| ≤ max{|F (z)| : z ∈ ∂Ω}.

The inequality

|F (z)| = |Φ((zI −Kn)−1ϕ)| ≤ ‖Φ‖∗X
∥∥(zI −Kn)−1ϕ

∥∥
≤
∥∥(zI −Kn)−1

∥∥ = 1/κn(z)

holds for all z ∈ ∂Ω, so that∥∥(λI −Kn)−1ϕ
∥∥ ≤ max{1/κn(z) : z ∈ ∂Ω} = 1/min{κn(z) : z ∈ ∂Ω}.
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Since the choice of ϕ ∈ X with ‖ϕ‖ = 1 is arbitrary,∥∥(λI −Kn)−1
∥∥ ≤ 1

min{κn(z) : z ∈ ∂Ω}

follows, which is equivalent to min{κn(z) : z ∈ ∂Ω} ≤ κn(λ); i.e., the minimum
is taken on ∂Ω. ut

Now, we give the proof of Theorem 8.38.
(i) K is compact (cf. Remark 8.29b), and each eigenvalue 0 6= λ ∈ σ is isolated

(Remark 8.36). Choose a complex neighbourhood Ω of λ such that

0 /∈ Ω ⊂ C, Ω ∩ σ = {λ}, λ ∈ Ω\∂Ω, Ω compact. (8.15)

For αn := min{κn(z) : z ∈ ∂Ω} we want to show αn ≥ ε > 0 for n ≥ n0.
For an indirect proof, assume αnk → 0. Define zn ∈ ∂Ω by αn = κn(zn). Since
∂Ω is compact, znk → ζ for some ζ ∈ ∂Ω. By |κnk(ζ)− κnk(znk)| ≤ |ζ − znk |
(cf. Exercise 8.39), κnk(znk)→ 0 follows and implies that ζ ∈ Ω ∩ σ (cf. Lemma
8.40b) in contradiction to (8.15).

(ii) Assume αn ≥ ε > 0 for n ≥ n0. As κn(λ)→ 0 (cf. Lemma 8.40a), one can
choose n0 such that κn(λ) ≤ ε/2 for n ≥ n0. Since the minimum is not attained
on ∂Ω, one concludes from Lemma 8.41 that Ω ∩ σn 6= ∅; i.e., there are eigen-
values λn ∈ σn for all n ≥ n0. Since Ω can be an arbitrarily small neighbourhood,
there are λn ∈ σn with limλn = λ. Theorem 8.37 yields the statement about the
eigenfunctions.

References

1. Anselone, P.M.: Collectively Compact Operator Approximation Theory and Applications to
Integral Equations. Prentice-Hall, Englewood Cliffs (1971)
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boundary condition, 139
boundary value problem, 139

variation formulation, 149
broken Sobolev norm, 161

cancellation, 8
cardinal spline, 57
Cea’s lemma, 153

CFL condition, 120
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Chebyshev polynomials

of first kind, 52
of second kind, 133

classical solution, 140
coercivity, 150
collectively compact, 178
compact, 31, 44, 59, see operator, compact

collectively, 178
pre-, 44, 45, 59
relatively, 44

companion matrix, 81
complete, 36
condition, 25

of a matrix, 175
condition (number), 9
conductivity, 96
consistency, 7, 20, 30, 39, 49, 71, 73, 75, 105,

142, 172
consistency order, 72, 73, 75, 85, 88
consistency versus stability, 42, 59, 86, 135,
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convection-diffusion equation, 163
convergence, 22, 23, 39, 49, 72, 75, 105, 143,

173
arbitrary slow, 43
order of, 147

convergence order, 73, 85
convergence speed, 43
convergence theorem, 35, 51, 84, 106, 144,
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Courant–Friedrichs–Lewy criterion, 120
Crank–Nicolson scheme, 123, 135
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Lax–Wendroff, 125
von Neumann, 125

cylinder function, 4

DAE, 91
defect correction, 164
degenerate kernel, 169
difference equation, 78, 102

stable, 80
difference scheme, 140

explicit, 102
implicit, 121
inhomogeneous, 82
positive, 109, 110, 126

differential equation
hyperbolic, 95, 165
inhomogeneous, 100
ordinary, 63
parabolic, 96, 135
partial, 94
symmetric hyperbolic, 127
uniformly elliptic, 139

differential equations
stiff, 91

differential-algebraic equations, 91
differentiation, numerical, 13
Dirac function(al), 24
Dirichlet kernel, 61
discontinuous Galerkin method, 161
discretisation error

global, 73
local, 71, 75, 105

dissipative, 131
dissipativity, 135
domain, 94
dominant convection, 163, 165
Du Fort–Frankel scheme, 134
dual basis, 7
dual norm, 23
dual space, 23, 149

eigenvalue problem, 11, 12, 181
elementary operations, 3

accuracy of, 7
energy method, 114
equi-oscillation, 60
equicontinuous, 45
equivalence theorem, 39, 51, 108, 175
error

absolute, 6
relative, 6

error amplification, 8
error analysis, linear, 9
Euler method, 64

explicit, 71
implicit, 70, 71

Euler’s constant, 52
expansion, asymptotic, 28
extrapolation, Richardson, 28

finite element method, 141
five-point scheme, 140, 163
fixed-point equation, 66
fixed-point iteration, 66
Fourier analysis, 115
Fourier series, 115
Fourier synthesis, 116
Fredholm integral equation

first kind, 167
second kind, 167

Friedrichs’ scheme, 128
functional, 23

Galerkin method, 150
discontinuous, 161

Gauss quadrature, 19
Gelfand triple, 159
Green’s representation, 148
grid function, 101

hat function, 56
heat equation, 96, 129
Hermite interpolation, 24, 47
Heun method, 65, 71
Hölder space, 44
hyperbolicity

regular, 128
symmetric, 127

inf-sup condition, 150, 156
initial-boundary value problem, 131
initial-value problem, 63

well-conditioning of the, 68
interpolation, 47

Hermite, 24, 47
Nyström, 171
polynomial, 48
tensor product, 55

interpolation points, 47
Chebyshev, 52
equidistant, 51

interpolatory quadrature, 18
inverse, right-, 102

Jordan normal form, 77

kernel
degenerate, 169
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Peano, 21
kernel approximation, 169
Kreiss matrix theorem, 76

Lagrange function, 18
Lagrange polynomial, 18, 28, 48
Laplace operator, 129
Lax–Wendroff scheme, 136
leap-frog scheme, 132
Lebesgue constant, 50
Legendre polynomial, 19
Lipschitz condition, 84
Lipschitz continuity, 64, 71, 126, 131
Lipschitz domain, 148

M-matrix, 141, 146, 163
machine number, 7
machine precision, 7
matrix

companion, 81
power bounded, 76, 81
sparse, 141
stable, 76

matrix norm, 76
associated, 11, 77, 82
row-sum, 11, 77
spectral, 11

maximum norm, 11, 21
midpoint formula, 65
multiplication operator, 117
multiplicity

algebraic, 76
geometric, 76

multistep method, 74, 132
explicit, 65
linear, 74, 83, 85
optimal, 85

Newton–Cotes quadrature, 19
nodal points, 47
norm

dual, 23
L2, 94
`2, 101
Lp, 95, 108
`p, 108
`∞, 101
matrix, see matrix norm
maximum, 11, 21, 32, 38
operator, 36, 38, 59
row-sum, 11, 77
spectral, 11
supremum, 80

norm equivalence, 76, 82

normed space, 36
numerical differentiation, 13
numerical radius, 125
Nyström interpolation, 171
Nyström method, 171, 176

one-step method, 64, 76
explicit, 64, 70
implicit, 70

operator
almost normal, 113
compact, 59, 168, 170
multiplication, 117
normal, 112
shift, 104
solution, 98
transfer, 101

operator norm, 36
operator-norm convergence, 59
order

consistency, 73
convergence, 73

overflow, 7

Parseval equality, 116
patch test, 161
Peano kernel, 21, 22
perturbation, 42, 157, 180
perturbation lemma, 110
Poisson equation, 139
polynomial

characteristic, 12, 74, 86
Chebyshev, 52, 133
Lagrange, 18, 28, 48
Legendre, 19
root, 12, 79, 80
trigonometric, 117
zeros of a, 11

polynomial interpolation, 48
instability of, 51
piecewise, 56

precompact, see compact, pre-, 59
problem, 3

boundary value, 139
eigenvalue, 11, 12, 181
ill conditioned, 9
initial-value, 63
saddle point, 155
Stokes, 155
t-regular, 154
well conditioned, 9, 11, 25, 68

projection method, 170, 175
projection, orthogonal, 171
prolongation, 102
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quadrature, 17, 171
Gauss, 19, 20, 27
interpolatory, 18, 19, 39
Newton–Cotes, 19, 20, 27
Romberg, 28

quadrature weights, 17

recurrence relation, 4, 7
regular value, 181
regularity, 148, 149, 153
Remez algorithm, 60
restriction, 101, 142
Richardson extrapolation, 28
Riesz isomorphism, 151
Riesz–Schauder theory, 173, 181
Riesz–Thorin theorem, 108
right-inverse, 102
Romberg quadrature, 28
row-sum norm, 11
Runge-Kutta method, 65

saddle point problem, 155
scheme

Crank–Nicolson, 123, 135
difference, see difference scheme
Du Fort–Frankel, 134
five-point, 140, 163
Friedrichs’, 128
Lax–Wendroff, 136
leap-frog, 132
theta, 123

semigroup
continuous, 100
generated by A, 99
with neutral element, 99

separation of points, 30
shift operator, 104
singular value, 181
singular value decomposition

infinite, 170
Sobolev norm, broken, 161
Sobolev space, 148, 149
solution

classical, 98, 140
generalised, 99
strong, 98, 99
weak, 99, 150

solution operator, 98
space, dual, 23
spectral norm, 11
spectral radius, 112, 125
spectrum, 77, 181
speed of convergence, 43

spline
B-, 57
cardinal, 57
cubic, 57

stability, 25, 27, 30, 49, 72, 76, 80, 81, 92, 106,
109, 117, 144, 172

conditional, 106
unconditional, 106, 123

stability constant, 106
stability theorem, 39, 51, 83, 107, 144, 174
stiff differential equations, 91
Stokes problem, 155
Stone–Weierstrass theorem, 30, 33
Strang lemma

first, 158
second, 160

streamline diffusion method, 163
strictly convex, 60
support of a function, 56
symbol, 117
system, regularly hyperbolic, 128

tensor product interpolation, 55
tensor rank, 14
theorem

Arzelà–Ascoli, 45
Baire’s category, 37
Baire–Hausdorff, 37
Banach’s fixed-point, 66
Brakhage, 176
convergence, see convergence theorem
Dahlquist, 86
equivalence, see equivalence theorem
Hahn–Banach, 23
Kreiss matrix, 76
open mapping, 168
Peano, 64
Riesz–Thorin, 108
stability, 39, see stability theorem
Stone–Weierstrass, 30, 33
uniform boundedness, 36
Weierstrass’ approximation, 30, 170

theta scheme, 123
transfer operator, 101
trapezoidal rule, compound, 28, 40

underflow, 7
uniform boundedness theorem, 36

variation formulation, 149

weak solution, 150
Wilson’s element, 161
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