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APPENDIX A

Complex-Variable Theory

A-1 COMPLEX-VARIABLE CONCEPT

A-1-1

Complex Variable

A complex variable s has two components: a real component o and an imaginary
component w. Graphically, the real component of s is represented by a o axis in the
horizontal direction, and the imaginary component is measured along the vertical jw axis,
in the complex s-plane. Figure A-1 illustrates the complex s-plane, in which any
arbitrary point s = s, is defined by the coordinates o = o, and v = w;, or simply
s = o T jo,.

A-1-2 Functions of a Complex Variable

The function G(s) is said to be a function of the complex variable s if for every value of
s, there is one or more corresponding values of G(s). Since s is defined to have real and
imaginary parts, the function G(s) is also represented by its real and imaginary parts; that
is,

G(s) = Re G(s) + j Im G(s) (A-1)

where Re G(s) denotes the real part of G(s), and Im G(s) represents the imaginary part of
G(s). The function G(s) is also represented by the complex G(s)-plane, with Re G(s) as
the real axis and Im G(s) as the imaginary axis. If for every value of s there is only one
corresponding value of G(s) in the G(s)-plane, G(s) is said to be a single-valued func-
tion, and the mapping from points in the s-plane onto points in the G(s)-plane is described

jw
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Figure A-1  The complex s-plane.
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Figure A-2  Single-
valued mapping from the
s-plane to the G(s)-plane.

Appendix A Complex-Variable Theory

jo 4 jImG 4
s|=01+jw;
s-plane @ |- - - - — .o G (s)-plane

[ - -

I “*\

[ S<

| » RN »

0 g 0 S0 I ReG
R [
~. [

77777 ~ G(sy)

as single-valued (Fig. A-2). If the mapping from the G(s)-plane to the s-plane is also
single-valued, the mapping is called one-to-one. However, there are many functions for
which the mapping from the function plane to the complex-variable plane is not single-
valued. For instance, given the function

1

G(s) = m (A-2)

it is apparent that for each value of s, there is only one unique corresponding value for
G(s). However, the inverse mapping is not true; for instance, the point G(s) = ¢ is mapped
onto two points, s = 0 and s = —1, in the s-plane.

A-1-3 Analytic Function

A function G(s) of the complex variable s is called an analytic function in a region of the
s-plane if the function and all its derivatives exist in the region. For instance, the func-
tion given in Eq. (A-2) is analytic at every point in the s-plane except at the point s = 0
and s = —1. At these two points, the value of the function is infinite. As another exam-
ple, the function G(s) = s + 2 is analytic at every point in the finite s-plane.

A-1-4 Singularities and Poles of a Function

The singularities of a function are the points in the s-plane at which the function or its
derivatives does not exist. A pole is the most common type of singularity and plays a very
important role in the studies of classical control theory.
The definition of a pole can be stated as: If a function G(s) analytic and single-valued

in the neighborhood of s,, it is said to have a pole of order r at s = s, if the limit

. ey

lim| (s — 5 G(s)
has a finite, nonzero value. In other words, the denominator of G(s) must include the
factor (s — s,)", so when s = s;, the function becomes infinite. If » = 1, the pole at s =
s; is called a simple pole. As an example, the function

10(s + 2)

G = A'3
O =5+ )6+ 3y (A-3)
has a pole of order 2 at s = —3 and simple poles at s = 0 and s = —1. It can also be

said that the function G(s) is analytic in the s-plane except at these poles.



A-1 Complex-Variable Concept =~ A-3

A-1-5 Zeros of a Function

* The total numbers of
poles and zeros of a
rational function is the
same, counting the ones
at infinity

REFERENCES

The definition of a zero of a function can be stated as: If the function G(s) is analytic at
s = s, it is said to have a zero of order r at s = s;if the limit

1 -r

lim| (s — )" G(s)
has a finite, nonzero value. Or, simply, G(s) has a zero of order r at s = s, if 1/G(s) has
an rth-order pole at s = s;. For example, the function in Eq. (2-3) has a simple zero at
s = —2.

If the function under consideration is a rational function of s, that is, a quotient of
two polynomials of s, the total number of poles equals the total number of zeros, count-
ing the multiple-order poles and zeros, and taking into account of the poles and zeros at
infinity. The function in Eq. (A-3) has four finite poles at s = 0, —1, —3, and —3; there

is one finite zero at s = —2, but there are three zeros at infinity, since
. .10
limG(s) = lim— =0 (A-4)
§—00 §—00 §

Therefore, the function has a total of four poles and four zeros in the entire s-plane, in-
cluding infinity.

F. B. Hildebrand, Methods of Applied Mathematics, 2nd ed., Prentice Hall, Englewood Cliffs, NJ. 1965.
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APPENDIX B

Differential and
Difference Equations

B-1 DIFFERENTIAL EQUATIONS

B-1-1 Linear Ordinary Differential Equations

A wide range of systems in engineering are modeled mathematically by differential
equations. These equations generally involve derivatives and integrals of the dependent
variables with respect to the independent variable. For instance, a series electric RLC
(resistance-inductance-capacitance) network can be represented by the differential
equation

Ri +Ldi(t)+1f' d B-1
t — + — | u{t)dt = e(t -
i) + L=+ i = e (B-1)
where R is the resistance; L, the inductance; C, the capacitance; i(f), the current in the net-
work; and e(f), the applied voltage. In this case, e(f) is the forcing function; ¢, the inde-
pendent variable; and i(f), the dependent variable or unknown that is to be determined by
solving the differential equation.

Equation (B-1) is referred to as a second-order differential equation, and we refer to
the system as a second-order system. Strictly speaking, Eq. (B-1) should be referred to
as an integrodifferential equation, since an integral is involved.

In general, the differential equation of an nth-order system is written

dry(t d"y(t dy(t
ORI (O BN 10

_ a,— —
dr b gt Uar

+apy(r) = f(1) (B-2)

which is also known as a linear ordinary differential equation if the coefficients ay,
a, ..., a,_; are not functions of y(7).

In this text, since we treat only systems that contain lumped parameters, the differ-
ential equations encountered are all of the ordinary type. For systems with distributed pa-
rameters, such as in heat-transfer systems, partial differential equations are used.

B-1-2 Nonlinear Differential Equations

Many physical systems are nonlinear and must be described by nonlinear differential equa-
tions. For instance, the differential equation that describes the motion of the pendulum
shown in Fig. B-1 is

da*o(t)

ML
dr’

+ Mgsin6(r) = 0 (B-3)

B-1
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Mg Figure B-1  Simple pendulum.

Since 6(t) appears as a sine function, Eq. (B-3) is nonlinear, and the system is called
a nonlinear system.

B-1-3 First-Order Differential Equations: State Equations

In general, an nth-order differential equation can be decomposed into 7 first-order differ-
ential equations. Because, in principle, first-order differential equations are simpler to
solve than higher-order ones, first-order differential equations are used in the analytical
studies of control systems.

For the differential equation in Eq. (B-1), if we let

x,(r) = Ji(l)dl‘ (B-4)
and
dx,(7) . B-5
t) = =it -
n() = =7 = i) (B-5)
then Eq. (B-1) is decomposed into the following two first-order differential equations:
dx,(?)
= ) (B-6)
dx,(t) 1 R 1
= ——x(t) — —x(t) + et B-7
OB OR ) (B-7)
In a similar manner, for Eq. (B-2), let us define
x(1) = ¥(1)
dy(1)
£ = 22
(1) dt
dn_ly(l)
t) = B-8
50 == (B-8)
then the nth-order differential equation is decomposed into # first-order differential equations:
dx(1)
7 = X, l‘)
dx,(t)
i x3(1)
dx,(1)
= —apx (1) — apx(t) = 0 = X, y(1) = a,-x,(1) + (1) (B-9)



e The state of a system
refers to the past, present,
and future of the system.

* The state variables must
always be a minimal set.

* The output of a system
must always be measurable.

B-1 Differential Equations B-3

Notice that the last equation is obtained by equating the highest-ordered derivative term
in Eq. (B-2) to the rest of the terms. In control systems theory, the set of first-order dif-
ferential equations in Eq. (B-9) is called the state equations, and x,, x,, ... , x, are called
the state variables.

Definition of State Variables

The state of a system refers to the past, present, and future conditions of the system.
From a mathematical perspective, it is convenient to define a set of state variables and
state equations to model dynamic systems. As it turns out, the variables x,(¢), x,(?), ...,
x,(t) defined in Eq. (B-8) are the state variables of the nth-order system described by Eq.
(B-2), and the n first-order differential equations are the state equations. In general, there
are some basic rules regarding the definition of a state variable and what constitutes a
state equation. The state variables must satisfy the following conditions:

1. At any initial time ¢ = t,, the state variables x,(ty), x,(%y), ... , x,(t;) define the
initial states of the system.

2. Once the inputs of the system for t = #, and the initial states just defined are
specified, the state variables should completely define the future behavior of the
system.

The state variables of a system are defined as a minimal set of variables, x(1), x,(),

.oy X,(1), such that knowledge of these variables at any time t, and information on the

input excitation subsequently applied are sufficient to determine the state of the system at
any time t > t,.

The Output Equation

One should not confuse the state variables with the outputs of a system. An output of a
system is a variable that can be measured, but a state variable does not always satisfy
this requirement. For instance, in an electric motor, such state variables as the winding
current, rotor velocity, and displacement can be measured physically, and these variables
all qualify as output variables. On the other hand, magnetic flux can also be regarded as
a state variable in an electric motor, since it represents the past, present, and future states
of the motor, but it cannot be measured directly during operation and therefore does not
ordinarily qualify as an output variable. In general, an output variable can be expressed
as an algebraic combination of the state variables. For the system described by Eq. (B-2),
if y(f) is designated as the output, then the output equation is simply y(¢) = x,(?).

Difference Equations

Because digital controllers are frequently used in control systems, it is necessary to es-
tablish equations that relate digital and discrete-time signals. Just as differential equations
are used to represent systems with analog signals, difference equations are used for sys-
tems with discrete of digital data. Difference equations are also used to approximate dif-
ferential equations, since the former are more easily programmed on a digital computer
and are easier to solve.

A linear nth-order difference equation with constant coefficients can be written as

vk +n)+a, yk+n—1)+ - +ayk + 1) + agyk) = f(k) (B-10)

where y(i), i = k, k + 1, ... , k + n denotes the discrete dependent variable y at the ith
instant if the independent variable is time. In general, the independent variable can be any
real quantity.
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REFERENCES

Similar to the case of the analog systems, it is convenient to use a set of first-order
difference equations, or state equations, to represent a high-order difference equation. For
the difference equation in Eq. (B-10), if we let

xi(k) = y(k)
k) =x;(k + 1) = y(k + 1)

xn—l(k) = xn—Z(k + 1) = y(k +n— 2)
x,(k) =x,_(k+1)=yk+n—1) (B-11)
then by equating the highest-order term to the rest, the equation is written as
x,(k + 1) = —agx,(k) — apxo(k) — - — a,_x,(k) + f(k) (B-12)

The first n — 1 state equations are taken directly from the last n — 1 equations in Eq.
(B-11), and the last one is given by Eq. (B-12). The n state equations are written in vec-
tor-matrix form:

x(k + 1) = Ax(k) + Bu(k) (B-13)
where
x,(k)
k
x(k) = ng ) (B-14)
x,(k)
is the n X 1 state vector, and
0 1 0 0 0
0 0 1 0 0
A=]| : : R : B=|: (B-15)
0 0 0 0 1 0
) —a, —da a, 1

and u(k) = f(k).

C. R. Wylie, Jr., Advanced Engineering Mathematics, 2nd ed. McGraw-Hill, New York, 1960.
B.C.

1.
2. Kuo, Linear Networks and Systems, McGraw-Hill, New York, 1967.
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APPENDIX ‘

Elementary Matrix Theory
and Algebra

C-1 ELEMENTARY MATRIX THEORY

In the study of modern control theory, it is often desirable to use matrix notation to sim-
plify complex mathematical expressions. The matrix notation usually makes the equations
much easier to handle and manipulate.

As a motivation to the reason of using matrix notation, let us consider the following
set of n simultaneous algebraic equations:

apx; tapx, + - tapx, =y
anx, + apx, + -+ ayx, =y
.................................... (C-1
aux, + apx, + -+ a

We may use the matrix equation
Ax =y (C-2)

as a simplified representation of Eq. (C-1). The symbols A, x, and y are defined as mat-
rices, which contain the coefficients and variables of the original equations as their ele-
ments. In terms of matrix algebra, which will be discussed shortly, Eq. (C-2) can be stated
as the product of the matrices A and X is equal to the matrix y. The three matrices involved
are defined as

ap dp o dy,

N (C-3)

Ay ) e Ay,

x = (C-4)

y= (C-5)

Yn_

which are simply bracketed arrays of coefficients and variables. These examples of
matrices prompted the following definition of a matrix.

C-1
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C-1-1 Definition of a Matrix

e It is important to
distinguish between a
matrix and a determinant.

A matrix is a collection of elements arranged in a rectangular or square array. There are
several ways of bracketing a matrix. In this text, the square brackets, such as those in Egs.
(C-3) through (C-5), are used to represent matrices. It is important to distinguish between
a matrix and a determinant. The basic characteristics of these are listed as follows:

Matrix Determinant
* An array of numbers or elements with n e An array of numbers or elements with n
rows and m columns. rows and n columns (always square).
* Does not have a value, although a square ¢ Has a value.

matrix (n = m) has a determinant.

Some important definitions of matrices are given in the following paragraphs.
Matrix Elements: When a matrix is written
ajpp dpp ag
A= |ay ap ax (C-6)
a3 dzp  dsz
where q;; is defined as the element in the ith row and the jth column of the matrix. As a

rule, we always refer to the row first and the column last.

Order of a Matrix: The order of a matrix refers to the total number of rows and columns
of the matrix. For example, the matrix in Eq. (C-6) has three rows and three columns and
is called a 3 X 3 (three-by-three) matrix. A matrix with n rows and m columns is termed
n X m, or n by m.

Square Matrix: A square matrix is one that has the same number of rows as columns.

Column Matrix: A column matrix is one that has one column and more than one row,
that is, an m X 1 matrix, m > 1. Quite often, a column matrix is referred to as a column
vector or simply an m-vector if there are m rows and one column. The matrix in Eq. (C-4)
is a typical n-vector.

Row Matrix: A row matrix is one that has one row and more than one column, that is,
a 1 X n matrix, where n > 1. A row matrix can also be referred as a row-vector.

Diagonal Matrix: A diagonal matrix is a square matrix with a; = 0 for all i # j.
Examples of a diagonal matrix are

a, 0 0

0 0 {5 O}
a

22 0 3
0 0 asz

Unity Matrix (Identity Matrix): A unity matrix is a diagonal matrix with all the ele-
ments on the main diagonal (i = j) equal to 1. A unity matrix is often designated by I or
U. An example of a unity matrix is

1 00
I=|10 1 O (C-7)
0 0 1

Null Matrix: A null matrix is one whose elements are all equal to zero.



» EXAMPLE C-1

C-1 Elementary Matrix Theory C-3

Symmetric Matrix: A symmetric matrix is a square matrix that satisfies the condition
a; = a; for all i and j. A symmetric matrix has the property that if its rows are inter-
changed with its columns, the same matrix is obtained. Two examples of the symmetric
matrix are

6 5 1 L
A=|5 0 10| B= {_4 J (C-8)
110 -1

Determinant of a Matrix: With each square matrix, a determinant having the same
elements and order as the matrix may be defined. The determinant of a square matrix A
is designated by

detA = A, = [A] (C-9)
For example, the determinant of the matrix in Eq. (C-6) is

ayp dpp dis
Al = |ay an ax (C-10)

dz; Az dsg
Cofactor of a Determinant Element: Given any nth-order determinant |A|, the co-
factor A;; of any element a;; is the determinant obtained by eliminating all elements of the

ith row and jth column and then multiplied by (—1)""/. For example, the cofactor of the
element a;; of |[A| in Eq. (C-10) is

Ay Ay

Ay = (_1)H1 = dpdzz T dxdz (C-11)

Az ds3

In general, the value of a determinant can be written in terms of the cofactors. Let A
be an n X n matrix, then the determinant of A can be written in terms of the cofactor of
any row or the cofactor of any column. That is,

detA = D a;A;  (i=10r2,... 0rn) (C-12)

j=1

or

detA = D a;A;  (j=1l0r2,...,orn) (C-13)

i=1

The value of the determinant in Eq. (C-10) is
det A = [A] = a; A + apdp + apAss

= ay(anay; — apaz) — ap(ayas — axay)
+ a(anasn — anas) (C-14)

<

Singular Matrix: A square matrix is said to be singular if the value of its determinant
is zero. If a square matrix has a nonzero determinant, it is called a nonsingular matrix.
When a matrix is singular, it usually means that not all the rows or not all the columns
of the matrix are independent of each other. When the matrix is used to represent a set of
algebraic equations, singularity of the matrix means that these equations are not inde-
pendent of each other.
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» EXAMPLE C-2

» EXAMPLE C-3

Consider the following set of equations:
2x, — 3%+ x3=0
-+ n+ =0 (C-15)
X —2x% +2x,=0

The third equation is equal to the sum of the first two. Thus, these three equations are not com-
pletely independent. In matrix form, these equations may be written as

Ax =0 (C-16)
where
2 =3 1 X
A=]|-1 1 1 X=|x (C-17)
1 -2 2 X3

and 0 is a 3 X 1 null matrix. The determinant of A is 0, and, thus, the matrix A is singular. In this
case, the rows of A are dependent. <4

Transpose of a Matrix: The transpose of a matrix A is defined as the matrix that is
obtained by interchanging the corresponding rows and columns in A. Let A be an n X m
matrix that is represented by

A = [aij}n,m (C'IS)
The transpose of A, denoted by A’, is given by
A’ = transpose of A = [a;],,, (C-19)

Notice that the order of A is n X m, but the order of A’ is m X n.

Consider the 2 X 3 matrix

30021
A—{O » 5} (C-20)

The transpose of A is obtained by interchanging the rows and the columns.

3 0
A'=12 -1 (C-21)

1 5
<

Some Properties of Matrix Transpose

1. (A =A (C-22)
2. (kA)' = kA’, where k is a scalar (C-23)
3. A+B)=A"+PB (C-24)
4. (AB) =B'A’ (C-25)

Adjoint of a Matrix: Let A be a square matrix of order n. The adjoint matrix of A,
denoted by adj A, is defined as

adj A = [A; of detA],, (C-26)

where A;; denotes the cofactor of a;;.
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» EXAMPLE C-4 Consider the 2 X 2 matrix

A= {an a12:| (C-27)
dy  dp
The cofactors are A, = axn, Aj, = —ay;, Ay = —ay,, and Ay, = a,;. Thus, the adjoint matrix of A is
adj A = [An A12} _ { an _021} _ [ axn _al2:| (C-28)
Ay Ay —dp ap —dy ap

Trace of a Square Matrix: Given an n X n matrix with elements a;, the trace of A,
denoted as tr(A), is defined as the sum of the elements on the main diagonal of A; that
is

tr(A) = za,-,- (C-29)

The trace of a matrix has the following properties:

1. tr(A') = tr(A) (C-30)
2. For n X n square matrices A and B,
tr(A + B) = tr(A) + tr(B) (C-31)

C-2 MATRIX ALGEBRA

When carrying out matrix operations, it is necessary to define matrix algebra in the form
of addition, subtraction, multiplication, and division.
C-2-1 Equality of Matrices

Two matrices A and B are said to be equal to each other if they satisfy the following
conditions:

1. They are of the same order.
2. The corresponding elements are equal; that is,

a; = by for every i and j (C-32)
» EXAMPLE C-5
A= {(111 a12:| =B = {bn blZ} (C-33)
ay Ay by by,
implies that a,, = by, a;, = byy, @y = byy, ayy = by <

C-2-2 Addition and Subtraction of Matrices

Two matrices A and B can be added or subtracted to form A = B if they are of the same
order. That is

AxB= [aij]n,m * [bthnm =C= [Cij]n,m (C'34)
where
for all i and . (C-35)

.. .+ b
) g y

The order of the matrices is preserved after addition or subtraction.
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» EXAMPLE C-6 Consider the matrices

C-2-3

C-2-4

C-2-5

e Two matrices can be

multiplied only if they are
conformable.

3 2 0 3
A=]|-1 4 B=|-1 2 (C-36)
0 -1 1 0
which are of the same order. Then the sum of A and B is
340 2+4+3 3 5
C=A+B=| —-1-1 4+2|=|-2 6 (C-37)
0O+1 —-1+0 1 -1
<

Associative Law of Matrix (Addition and Subtraction)

The associative law of scalar algebra still holds for matrix addition and subtraction. That is,

(A+B)+C=A+(B+C) (C-38)

Commutative Law of Matrix (Addition and Subtraction)

The commutative law for matrix addition and subtraction states that the following matrix

relationship is true:
A+B+C=B+C+A=A+C+8B (C-39)

as well as other possible commutative combinations.

Matrix Multiplication

The matrices A and B may be multiplied together to form the product AB if they are conf-
ormable. This means that the number of columns of A must equal the number of rows
of B. In other words, let

A= [aij]n,p B = [bij]q,m (C‘4O)
Then A and B are conformable to form the product
C=AB= [aij}n,p[bij]q,m = [Ctj]n,n1 (C'41)

if and only if p = ¢. The matrix C will have the same number of rows as A and the same
number of columns as B.

It is important to note that A and B may be conformable to form AB, but they may
not be conformable for the product BA, unless in Eq. (C-41), n also equals m. This points
out an important fact that the commutative law is not generally valid for matrix multipli-
cation. It is also noteworthy that even though A and B are conformable for both AB and
BA, usually AB # BA. The following references are made with respect to matrix ma-
nipulation whenever they exist:

AB = A postmultiplied by B or B premultiplied by A (C-42)

C-2-6 Rules of Matrix Multiplication

When the matrices A (n X p) and B (p X m) are conformable to form the matrix C = AB,

the ijth element of C, c;, is given by

V4
ci = D aby (C-43)
k=1

fori=1,2,....,n,andj = 1,2,..., m.
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p EXAMPLE C-7 Given the matrices
A= [%’Jz.s B = [b[j]3,l (C-44)

The two matrices are conformable for the product AB but not for BA. Thus,

b
AB = {all app al3:| b; _ {allbll + apby + a13b31:| (C-45)
ay Ay Ay b Ay by + anbyy + aybs
31
|
> EXAMPLE C-8 Given the matrices
31 10 —1
A=10 1 B = [2 | 0} (C-46)
2 0
The two matrices are conformable for AB and BA.
3 -1 1 -1 -3
1 0 —1
AB=1]0 1 =12 1 0 (C-47)
2 1 0
2 2 0 -2
3
BA—F 0 _1} —{1 _1} (C-48)
2 1 0 6 —1
2 0

Therefore, even though AB and BA both exist, they are not equal. In fact, in this case the products
are not of the same order. <

Although the commutative law does not hold in general for matrix multiplication, the
associative and distributive laws are valid. For the distributive law, we state that
AB + C) = AB + AC (C-49)
if the products are conformable. For the associative law,
(AB)C = A(BC) (C-50)

if the product is conformable.

C-2-7 Multiplication by a Scalar k

Multiplying a matrix A by any scalar k is equivalent to multiplying each element of A
by k.

C-2-8 Inverse of a Matrix (Matrix Division)

e Only square, nonsingular In the algebra of scalar quantities, when we write y = ax, it implies that x = y/a is also
matrices have inverses. true. In matrix algebra, if Ax =y, the it may be possible to write

x=A"y (C-51)
where A ! denotes the matrix inverse of A. The conditions that A~! exists are

1. A is a square matrix.

2. A must be nonsingular.
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» EXAMPLE C-9

e The adjoint of a 2 by 2
matrix is obtained by
interchanging the two main
diagonal elements and
changing the signs of the
elements off the diagonal.

» EXAMPLE C-10

3. If A ' exists, it is given by

o adj A (C-52)
Al
Given the matrix
A= l:all a12:| (C-53)
Ay dp
the inverse of A is given by
[ (5] _a12:|
Al = adj A I Y a (C-54)
A Qypdyy — Aypdyy

where for A to be nonsingular, |A| # 0, or a;,a, — ap,a,, # 0.
Equation (C-54) shows that adj A of a 2 X 2 matrix is obtained by interchanging the two el-
ements on the main diagonal and changing the signs of the elements off the diagonal of A. <

Given the matrix

apy dp daps
A=lay ap axn (C-55)
asz; dzyp  dsz

To find the inverse of A, the adjoint of A is

andy; — ayay  (—apas — a;as) Qyploz — Ay3dy)
adj A = | —(aya33 — axay) ayass — apay —(apay; — ayag) (C-56)
ayay — apay (—ayasn — apas) Aypdyy — Aypdy
The determinant of A is
|A| = ananas; + apayas + a;asndy = a;anas — apayas; = anax;as, (C-57)
|
Some Properties of Matrix Inverse
. AATT=ATA =1 (C-58)
2. (A71)71 =A (C-59)

3. In matrix algebra, in general, AB = AC does not necessarily imply that B = C.
The reader can easily construct an example to illustrate this property. How-
ever, if A is a square, nonsingular matrix, we can premultiply both sides of AB =

AC by A™'. Then,

A'AB = A"'AC (C-60)
which leads to B = C.
4. If A and B are square matrices and are nonsingular, then
(AB) ' =B 'A™! (C-61)

C-2-9 Rank of a Matrix

The rank of a matrix A is the maximum number of linearly independent columns of A,
that is, it is the order of the largest nonsingular matrix contained in A.
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» EXAMPLE C-11 Several examples on the rank of a matrix are as follows:

{0 1} rank = 1 {O > 1 4} rank = 2

0 0 30 3 2

39 2 300

1 3 0 rank = 2 1 2 0 rank = 3

2 6 1 0 0 1 |

The following properties are useful in the determination of the rank of a matrix. Given
an n X m matrix A,

1. Rank of A’ = Rank of A.

2. Rank of A’A = Rank of A.

3. Rank of AA’ = Rank of A.

Properties 2 and 3 are useful in the determination of rank; since A’A and AA’ are

always square, the rank condition can be checked by evaluating the determinant of these
matrices.

C-3 COMPUTER-AIDED SOLUTIONS OF MATRICES

Many commercial software packages such as MATLAB, Maple and MATHCAD contain
routines for matrix manipulations.
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APPENDIX D

Laplace Transform Table

Laplace Transform F(s)

Time Function f{(r)

Unit-impulse function 8(¢)

Unit-step function u(r)

Unit-ramp function ¢

"(n = positive integer)

"e”*(n = positive integer)

1
B -«

(e —e)a#p)

B e p)

1 —at
(1=

1
(1 = e — ate”™)
@

1
—(at — 1+ )
a

1 2 2\ _u
*zt—*‘i‘ t+— e @
0% a (6%

(I — ar)e™

D-1



D-2 Appendix D Laplace Transform Table

(continued)

Laplace Transform F(s)

Time Function f()

o, .
sin w,t
2+ o !
s 13
R E— cos @
st + a)ﬁ !
w? |
—_— — COS w,t
s(s* + ) !
w,(s + @) wn\/m sin(w,t + 6)
s+ of where § = tan”'(w,/a)
B E— Doty ! sin(w,t — 6)
(s + a)(s* + &) o + Wl Vot + o !

where § = tan”'(w,/a)

2

n

57+ 2w,s + o

n

w,

%52 1= (<1

e “sinw,

2
n

s(s* + 2 w,s + o)

[

1

1
— ———e¢ “isin(w, V1 — >t + 0)
V1-¢

where =cos'¢ (£ < 1)
s, O tatgin (0, VT = Bt - 0)
0% M e, — 22—
s+ 2w,s + o me S ¢
where = cos™'¢ (£ < 1)

(s + )

s+ 2w,s + 0

[e? = 2alw, + w?
w, %gzei{w"t sin(w,, V1 — (zl‘ + 0)

L0, V1 -

where § = tan~ ~ o (&<
2 2 1
n _ = e 415 W A _ 2
A+ s T o) t o, + o me sm(w,,\/ﬁt +0)
where 6 = cos (2% — 1) (¢ <
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APPENDIX E

Operational Amplifiers

E-1 OPERATIONAL AMPLIFIERS

Ehlﬁ Operational amplifiers, or simply op-amps, offer a convenient way to build, implement,
Wil | >

or realize continuous-data or s-domain transfer functions. In control systems, op-amps are
often used to implement the controllers or compensators that evolve from the control-
system design process, so in this appendix we illustrate common op-amp configurations.
An in-depth presentation of op-amps is beyond the scope of this text. For those interested,
many texts are available that are devoted to all aspects of op-amp circuit design and

applications [References 1 and 2].

Our primary goal here is to show how to implement first-order transfer functions with
op-amps, while keeping in mind that higher-order transfer functions are also important.
In fact, simple high-order transfer functions can be implemented by connecting first-order
op-amp configurations together. Only a representative sample of the multitude of op-amp

configurations will be discussed.

Some of the practical issues associated with op-amps are demonstrated in simlab (see

Chapter 11).

E-1-1 The Ideal Op-Amp

When good engineering practice is used, an op-amp circuit can be accurately analyzed by
considering the op-amp to be ideal. The ideal op-amp circuit is shown in Fig. E-1, and

has the following properties:

1. The voltage between the + and — terminals is zero, that is, e” = ¢~. This prop-

erty is commonly called the virtual ground or virtual short.

2. The currents into the + and — input terminals are zero. Thus, the input imped-

ance is infinite.

3. The impedance seen looking into the output terminal is zero. Thus, the output is

an ideal voltage source.

4. The input-output relationship is e, = A(e* — e~) where the gain A approaches

infinity.

= = —  Figure E-1  Schematic diagram of an op-amp.

E-1
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The input-output relationship for many op-amp configurations can be determined by
using these principles. An op-amp cannot be used as shown in Fig. E-1. Rather, linear op-
eration requires the addition of feedback of the output signal to the — input terminal.

E-1-2 Sums and Differences

As illustrated in the last chapter, one of the most fundamental elements in a block
diagram or an SFG is the addition or subtraction of signals. When these signals are
voltages, op-amps provide a simple way to add or subtract signals as shown in Fig. E-2,

e, =—(egtep)

ep=¢,te

ey e, =€p,—¢€,

|||-

Figure E-2  Op-amps used to add
© and subtract signals.
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where all the resistors have the same value. Using superposition and the ideal proper-
ties given in the preceding section, the input-output relationship in Fig. E-2(a) is v, =
—(v, — v;). Thus, the output is the negative sum of the input voltages. When a posi-
tive sum is desired, the circuit shown in Fig. E-2(b) can be used. Here the output is
given by e, = e, + e,.

Modifying Fig. E-2(b) slightly gives the differencing circuit shown in Fig. E-2(c),
which has an input-output relationship of e, = ¢, — e,,.

E-1-3 First-Order Op-Amp Configurations

In addition to adding and subtracting signals, op-amps can be used to implement transfer
functions of continuous-data systems. While many alternatives are available, we will
explore only those that use the inverting op-amp configuration shown in Fig. E-3. In the
figure, Z,(s) and Z,(s) are impedances commonly composed of resistors and capacitors.
Inductors are not commonly used because they tend to be bulkier and more expensive.
Using ideal op-amp properties, the input-output relationship, or transfer function, of the
circuit shown in Fig. E-3 can be written in a number of ways, such as

o Eo(s) _ _ZZ(S) _ -1 B
O =50 T T - abme) (=D
- 216 =

where Y,(s) = 1/Z,(s) and Y,(s) = 1/Z(s) are the admittances associated with the circuit
impedances. The different transfer function forms given in Eq. (E-1) apply conveniently
to the different compositions of the circuit impedances.

Using the inverting op-amp configuration shown in Fig. E-3 and using resistors
and capacitors as elements to compose Z,(s), and Z,(s), Table E-1 illustrates a number
of common transfer function implementations. As shown in the Table E-1, it is possi-
ble to implement poles and zeros along the negative real axis as well as at the origin
in the s-plane. Because the inverting op-amp configuration was used, all the trans-
fer functions have negative gains. The negative gain is usually not an issue, since it
is simple to add a gain of —1 to the input and output signal to make the net gain
positive.

—  Z(s)

Figure E-3  Inverting op-amp configuration.
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» EXAMPLE E-1

Appendix E Operational Amplifiers

TABLE E-1 Inverting Op-Amp Transfer Functions
Input Feedback Transfer
Element Element Function Comments
R, R, R, Inverting gain. e.g., if
@ A~ AN~ R, R =Rye, = —e.
Z =R, Z,=R,
R, c,
b AN~ -1 1 Pole at the origin. i.e.,
(b) Z, =R, ‘{ }‘ R,C,) s an integrator.
Y,=s5C,
o R, 7 he origin. i
ero at the origin. i.e.,
© -k VW~ (—R,Cps S Oe
Z,=R, a differentiator.
Y, =sC;
R, 1
R, R,C, Pole at with a dc
(d) AA~ — 16
Z, =R, G s+ gain of —R,/R,.
Y,=-1 +sC, R.C,
=R
R, C, ..
R, A A A B —R, (s + 1/R,C, Pole at the origin and a
(e) AN~ R (f) zero at —1/R,C,,
Zy =R, Zy=R, + le ! i.e., a PI Controller.
Rl
®) R, R.C N 1 Zero at s = R_ic ie.,
Ij g “AAN— b\ s 14
o Z =R, RC a PD controller.
Y, = 1y sCy S
1
R _
: Ry C 1 Pole at s = and a
! (s + > 202
G, R,C, _
(® C 1 zero at s = ——,
1 C, s + R,C,
Y, =L 45, Y, =-L +sC, R,C, ie., a lead or lag
R, R, -
controller.
As an example of op-amp realization of transfer functions, consider the transfer function
K;
G(s) = K, + — + Kps (E-2)
s

where Kp, Kj,, and K; are real constants. In Chapter 10 this transfer function will be called the PID
controller, since the first term is a Proportional gain, the second an Integral term, and the third a
Derivative term. Using Table E-1, the proportional gain can be implemented using line (a), the in-
tegral term can be implemented using line (b), and the derivative term can be implemented using
line (c). By superposition, the output of G(s) is the sum of the responses due to each term in G(s).
This sum can be implemented by adding an additional input resistance to the circuit shown in Fig.
E-2(a). By making the sum negative, the negative gains of the proportional, integral, and derivative



Figure E-4 TImplementa-
tion of a PID controller.
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R2
R,
Kp
=
R "
E(s) —
K, -
N
+ Ei(s) - (5)
I +
Ry =
C(l
Kp
+ Ep(s) R

term implementations are canceled, giving the desired result shown in Fig. E-4. The transfer func-
tions of the components of the op-amp circuit in Fig. E-4 are

. Ep(s) R,
Proportional: = — (E-3)
E(s) R,
Int 1 E(s) 1 (E4)
ntegral: = - -
& Es)  RCs
Derivative: En(s) = —R,Cys (E-5)
: E(s) Ca
The output voltage is
E/(s) = —[Ep(s) + E(s) + Ep(s)] (E-6)

Thus, the transfer function of the PID op-amp circuit is

Es) I R (E-7)
E(s) R, RCs ¢

G(s) =

By equating Eqgs. (E-2) and (E-7), the design is completed by choosing the values of the resis-
tors and the capacitors of the op-amp circuit so that the desired values of Kp, K;, and K, are
matched. The design of the controller should be guided by the availability of standard capacitors
and resistors.

It is important to note that Fig. E-4 is just one of many possible implementations of Eq. (E-2).
For example, it is possible to implement the PID controller with just three op-amps. Also, it is com-
mon to add components to limit the high-frequency gain of the differentiator and to limit the inte-
grator output magnitude, which is often referred to as antiwindup protection. One advantage of the
implementation shown in Fig. E-4 is that each of the three constants Kp, K}, and K}, can be adjusted
or tuned individually by varying resistor values in their respective op-amp circuits.
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Op-amps are also used in control systems for A/D and D/A converters, sampling devices, and
realization of nonlinear elements for system compensation.

REFERENCES

1. E.J. Kennedy, Operational Amplifier Circuits, Holt, Rinehart and Winston, Fort Worth, TX, 1988.
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Applications, Second Edition, McGraw-Hill, New York, 1992.

PROBLEM E-1. Find the transfer functions E,(s)/E(s) for the circuits shown in Fig. EP-1.

R,

+ (a)

(b)

(©

(C))

+ E,(s)

=

= Figure EP-1
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APPENDIX F

Properties and Construction
of the Root Loci

The following properties of the root loci are useful for constructing the root loci manu-
ally and for understanding the root loci. The properties are developed based on the rela-
tionship between the poles and zeros of G(s)H(s) and the zeros of 1 + G(s)H(s), which
are the roots of the characteristic equation.

F-1 K= 0and K = %< Points

The K = 0 points on the root loci are at the poles of G(s)H(s).
The K = * points on the root loci are at the zeros of G(s)H(s).
The poles and zeros referred to here include those at infinity, if any.
The reason for this is seen from the condition of the root loci given by Eq. (8-12),

1
G(s)H(s) = — (F-1)
As the magnitude of K approaches zero, G,(s)H,(s) approaches infinity, so s must ap-
proach the poles of G,(s)H(s) or G(s)H(s). Similarly, as the magnitude of K approaches
infinity, s must approach the poles of G(s)H(s).

» EXAMPLE F-1 Consider the equation
s(s+2)(s+3)+Ks+1)=0 (F-2)

When K = 0, the three roots of the equation are at s = 0, —2, and —3. When the magnitude of K
is infinite, the three roots of the equation are at s = —1, % and . It is useful to consider that in-
finity in the s-plane is a point concept. We can visualize that the finite s-plane is only a small por-
tion of a sphere with an infinite radius. Then, infinity in the s-plane is a point on the opposite side
of the sphere that we face.
Dividing both sides of Eq. (F-2) by the terms that do not contain K, we get
K(s + 1)

1+ G(S)H(S) =1+ m =0 (F-3)

which gives
K(s + 1)

G(s)H(s) = m (F-4)

F-1
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Appendix F Properties and Construction of the Root Loci

jo A
s-plane
K=0 K=0 K=zxx K=0
N N »
A A >
-3 -2 -1 0

Figure F-1  Roots at which K = 0
on the root loci of s(s + 2)(s + 3) +
K(s + 1) =0.

Thus, the three roots of Eq. (F-2) when K = 0 are the same as the poles of the function G(s)H(s).
The three roots of Eq. (F-2) when K = %o are at the three zeros of G(s)H(s), including those at
infinity. The three points on the root loci at which K = 0 and those at which K = #o are shown
in Fig. F-1. <4

F-2 NUMBER OF BRANCHES ON THE ROOT LOCI

e It is important to keep
track of the total number of
branches of the root loci.

» EXAMPLE F-2

A branch of the root loci is the locus of one root when K varies between —o0 and %. The
following property of the root loci results, since the number of branches of the root loci
must equal the number of roots of the equation.

The number of branches of the root loci of F(s) = P(s) + KQ(s) = 0 is equal to

the order of the polynomial.

Keeping track of the individual branches and the total number of branches of the root
locus diagram is important in making certain that the plot is done correctly. This is par-
ticularly true when the root locus plot is done by a computer, since unless each root lo-
cus branch is coded by a different color, it is up to the user to make the distinctions.

The number of branches of the root loci of
s(s +2)(s+3)+K(s+1)=0 (F-5)

is three, since the equation is of the third order. In other words, the equation has three roots, and
thus there should be three root loci. <

F-3 SYMMETRY OF THE ROOT LOCI

e It is important to pay
attention to the symmetry
of the root loci.

The root loci are symmetrical with respect to the real axis of the s-plane. In gen-
eral, the root loci are symmetrical with respect to the axes of symmetry of the pole-
zero configuration of G(s)H(s).

The reason behind this property is because for a polynomial with real coefficients the
roots must be real or in complex-conjugate pairs. In general, if the poles and zeros of
G(s)H(s) is symmetrical to an axis in addition to the real axis in the s-plane, we can re-
gard this axis of symmetry as if it were the real axis of a new complex plane obtained
through a linear transformation.



» EXAMPLE F-3

F-3 Symmetry of the Root Loci F-3

K=0 K<0 K- -x

< <

“5 ‘N ‘;

Axis of
symmetry
K>0
Axis of —Y,
s | T
, ymmetry | N
1 Bl
K>0 K<0

Figure F-2 Root loci of s(s + 2)(s + 3) + K(s + 1) = 0,
showing the properties of symmetry.

Consider the equation
ss+1)(s+2)+K=0 (F-6)
Dividing both sides of the equation by the terms that do not contain K, we get

K

GOH() = 1y + 2)

(F-7)

The root loci of Eq. (F-6) are shown in Fig. F-2 for K = — to K = . Since the pole-zero con-
figuration of G(s)H(s) is symmetrical with respect to the real axis as well as the s = —1 axis, the
root locus plot is symmetrical to the two axes.

As a review of all the properties of the root loci presented thus far, we conduct the following
exercise with regard to the root loci in Fig. F-2.

The points at which K = 0 are at the poles of G(s)H(s), s = 0, —1, and —2. The function
G(s)H(s) has three zeros at s = o at which K = =00, The reader should try to trace out the three
separate branches of the root loci by starting from one of the K = —o points, through the K = 0
point on the same branch, and ending at K = o at s = oo, <
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» EXAMPLE F-4 When the pole-zero configuration of G(s)H(s) is symmetrical with respect to a point in the s-plane,
the root loci will also be symmetrical to that point. This is illustrated by the root locus plot of
s(s+Ds+1+)s+1—-j)+K=0 (F-8)

shown in Fig. F-3.

K>0 — K<0

Figure F-3  Root loci of s(s + 2)(s* + 25 + 2) + K = 0,
showing the properties of symmetry. <

F-4 ANGLES OF ASYMPTOTES OF THE ROOT LOCI AND
BEHAVIOR OF THE ROOT LOCI AT Isl = o«

* Asymptotes of root loci  As shown by the root loci in Figs. F-2 and F-3, when n, the order of P(s) is not equal to
refers to behavior of root ., the order of Q(s), 2|n — m)| of the loci will approach infinity in the s-plane. The prop-
loci at s — ce. erties of the root loci near infinity in the s-plane are described by the asymptotes of the
loci when |[s| — . The angles of the asymptotes and their intersect with the real axis of
the s-plane are described as follows.
For large values of s, the root loci for K = 0 (RL) are asymptotic to asymptotes
with angles given by
(2i + 1)
0, = — X 180° n#*m (F-9)
In = m|
wherei = 0,1,2,...,|n — m| — 1; and n and m are the number of finite poles
and zeros of G(s)H(s), respectively.
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For K = 0 (RL), the angles of the asymptotes are

2i

9. =
In — m|

X 180° n#m (F-10)

i

wherei =0,1,2,... ,|n — m| — 1.

F-5 INTERSECT OF THE ASYMPTOTES (CENTROID)

» EXAMPLE F-5

The intersection of the 2Iln — m| asymptotes of the root loci lies on the real axis of
the s-plane, at

2 finite poles of G(s)H(s) — X finite zeros of G(s)H(s)
o = (E-11)

n—m

where n is the number of finite poles and m is the number of finite zeros of G(s)H(s),

respectively. The intersection of the asymptotes o, represents the center of gravity

of the root loci, and is always a real number.

Since the poles and zeros of G(s)H(s) are either real or in complex-conjugate pairs,
the imaginary parts in the numerator of Eq. (8-35) always cancel each other out. Thus, in
Eq. (F-11), the terms in the summations may be replaced by the real parts of the poles
and zeros of G(s)H(s), respectively. That is,

2 real parts of poles of G(s)H(s) — X real parts of zeros of G(s)H(s)

o= (F-12)
n—m
Consider the transfer function
G(s)H(s) = Kis + 1) F-13
(s)H(s) = s(s + 4)(s2 + 25 +2) (F-13)
which corresponds to the characteristic equation
ss+ (P +25+2)+Ks+1)=0 (F-14)

The pole-zero configuration of G(s)H(s) is shown in Fig. F-4. From the six properties of the root
loci discussed so far, the following information concerning the root loci of Eq. (F-14) when K varies
from —° to % is obtained:

1. K = 0: The points at which K = 0 on the root loci are at the poles of G(s)H(s): s = 0,
—4, =1 +j,and —1 —j.

2. K = =*oo: The points at which K = * on the root loci are at the zeros of G(s)H(s): s =
—1, o, %, and o°.

3. There are four root loci branches, since Eqs. (F-13) and (F-14) are of the fourth order.

The root loci are symmetrical to the real axis.
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k>0K=0

Figure F-4  Asymptotes of the root loci of
s(s+4)(®+25s+2)+ Ks+ 1)=0.

5. Since the number of finite poles of G(s)H(s) exceeds the number of finite zeros of G(s)H(s)
by three (n — m = 4 — 1 = 3), when K = =00, three root loci approach s = .

The angles of the asymptotes of the RL (K = 0) are given by Eq. (F-9):

i = 0: 0, *1800*60"
J : 0 3
540°
j=1 0, = = 180°
3
900°
j=2: 0, = 3 = 300°

The angles of the asymptotes of the root loci for K = 0 are given by Eq. (F-10), and are
calculated to be 0°, 120°, and 240°.

6. The intersection of the asymptotes is given by Eq. (F-12):

o, = = —
4 -1

(=4 —1-1)—(-1) % (F-15)

The asymptotes of the root loci are shown in Fig. F-4. <
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» EXAMPLE F-6 The asymptotes of the root loci of several equations are shown in Fig. F-5.
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Figure F-5 Examples of the asymtotes of the root loci. <
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F-6 ROOT LOCI ON THE REAL AXIS

* The entire real axis of
the s-plane is occupied by

root loci.

1.

The entire real axis of the s-plane is occupied by the root loci for —o < K < oo,

K = 0: On a given section of the real axis, root loci are found in the section
only if the total number of poles and zeros of G(s)H(s) to the right of the sec-
tion is odd.

K = 0: On a given section of the real axis, root loci are found in the section
only if the total number of real poles and zeros of G(s)H(s) to the right of the
section is even. Complex poles and zeros of G(s)H(s) do not affect the type of
root loci found on the real axis.

These properties are arrived at based on the following observations:

1.

At any point s; on the real axis, the angles of the vectors drawn from the complex-
conjugate poles and zeros of G(s)H(s) add up to zero. Thus, only the real zeros and
poles of G(s)H(s) contribute to the angular relations in Egs. (8-18) and (8-19).

Only the real poles and zeros of G(s)H(s) that lie to the right of the point s, con-
tribute to Egs. (8-18) and (8-19), because real poles and zeros that lie to the left
of the point contribute nothing.

Each real pole of G(s)H(s) to the right of s, contributes —180 degrees, and each
real zero of G(s)H(s) to the right of s, contributes +180 degrees to Egs. (8-18)
and (8-19).

The last observation shows that for s; to be a point on the root locus, there must be
an odd number of poles and zeros of G(s)H(s) to the right of the point. For s, to be a
point on the branch of the root loci for K = 0, the total number of poles and zeros of
G(s)H(s) to the right of the point must be even. The following example illustrates the
determination of the properties of the root loci on the real axis of the s-plane.

» EXAMPLE F-7 The root loci on the real axis for two pole-zero configurations of G(s)H(s) are shown in Fig. F-6.
Notice that the entire real axis is occupied by the root loci for all values of K.

jo &
s-plane X
K>0 —~ K<0 N K>OA K<0  K>0 K<0
U N A\ N
0 T
X
jo &
s-plane X
K<0  K>0 K<0 ~ K>0 K<0 K<0
7 \J
0 T
X
K>0 K<0

Figure F-6  Properties of root loci on the real axis. <
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F-7 ANGLES OF DEPARTURE AND ANGLES
OF ARRIVAL OF THE ROOT LOCI

» EXAMPLE F-8

The angle of departure or arrival of a root locus at a pole or zero, respectively, of

G(s)H(s) denotes the angle of the tangent to the locus near the point.

The angles of departure and arrival are determined using Eq. (8-18) for root loci for
positive K and Eq. (8-19) for root loci for negative K. The details are illustrated by the
following example.

For the root-locus diagram shown in Fig. F-7, the root locus near the pole s = —1 + j may be more
accurately sketched by knowing the angle at which the root locus leaves the pole. As shown in Fig.
F-7, the angle of departure of the root locus at s = —1 + j is represented by 6,, measured with re-
spect to the real axis. Let us assign s; to be a point on the RL leaving the pole at —1 + j and is
very close to the pole. Then, s; must satisfy Eq. (8-18). Thus,

£G(s)H(s;) = —(0, + 6, + 0, + 6,) = (2i + 1)180° (F-16)

where i is any integer. Since s, is assumed to be very close to the pole at —1 + j, the angles of the
vectors drawn from the other three poles are approximated by considering that s, is at —1 + j. From

% jo A
t
4
/cP
&
—w0«K K——»
s
»/‘l~ f‘\
& RS}
[~
|
8
|

K>0

Figure F-7 Root loci of s(s + 3)(s> + 2s + 2) + K = 0 to illustrate the angles of
departure or arrival.

K<0
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» EXAMPLE F-9

from each pole
ats=-2.
Angle = 6,

— »nl . <
O M. Sy o ’
0;=0° / Three vectors, one
0

Figure F-8  Angles of departure and arrival at a third-order pole.

Fig. F-7, Eq. (F-16) is written
—(135° + 60, + 90° + 26.6°) = (2i + 1)180° (F-17)

where 6, is the only unknown angle. In this case, we can set i to be —1, and the result for 6,
is —71.6°.

When the angle of departure or arrival of a root locus for positive K at a simple pole or
zero of G(s)H(s) is determined, the angle of arrival or departure of the root locus for negative
K at the same point differs from this angle by 180°, and Eq. (8-19) is now used. Figure F-7
shows that the angle of arrival of the root locus for negative K at —1 + j is 108.4°, which is
180° — 71.6°. Similarly, for the root-locus diagram in Fig. F-8, we can show that the root locus
for negative K arrives at the pole s = —3 with an angle of 180°, and the root locus for positive
K leaves the same pole at 0°. For the pole at s = 0, the angle of arrival of the negative-K root
locus is 180°, whereas the angle of departure of the positive-K root locus is 180°. These angles
are also determined from the knowledge of the type of root loci on sections of the real axis
separated by the poles and zeros of G(s)H(s). Since the total angles of the vectors drawn from
complex-conjugate poles and zeros to any point on the real axis add up to be zero, the angles
of arrival and departure of root loci on the real axis are not affected by the complex poles and
zeros of G(s)H(s). <

In this example we examine the angles of departure and arrival of the root loci at a multiple-order
pole or zero of G(s)H(s). Consider that a G(s)H(s) has a multiple-order (third-order) pole on the
real axis, as shown in Fig. F-8. Only the real poles and zeros of G(s)H(s) are shown, since the com-
plex ones do not affect the type or the angles of arrival and departure of the root loci on the real
axis. For the third-order pole at s = —2, there are three positive-K loci leaving and three negative-
K loci arriving at the point. To find the angles of departure of the positive-K root loci, we assign a
point s; on one of the loci near s = —2, and apply Eq. (8-18). The result is

—0, — 30, + 05 = (2i + 1)180° (F-18)

where 0, and 6; denote the angles of the vectors drawn from the pole at 0 and the zero at —3,
respectively, to s,. The angle 6, is multiplied by 3, since there are three poles at s = —2, so that
there are three vectors drawn from —2 to s,. Setting i to zero in Eq. (F-18), and since 6, = 180°,
0;= 0° we have 0, = 0°, which is the angle of departure of the positive-K root loci that lies between

s = 0 and s = —2. For the angles of departure of the other two positive-K loci, we set i = 1 and
i = 2 successively in Eq. (F-18), and we have 6, = 120° and —120°. Similarly, for the three neg-
ative-K root loci that arrive at s = —2, Eq. (8-19) is used, and the angles of arrivals are found to

be 60°, 180°, and —60°. <
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F-8 INTERSECTION OF THE ROOT LOCI WITH THE IMAGINARY AXIS

¢ Routh-Hurwitz criterion
may be used to find the
intersection of the root loci
on the imaginary axis.

» EXAMPLE F-10

The points where the root loci intersect the imaginary axis of the s-plane, and the corre-
sponding values of K, may be determined by means of the Routh-Hurwitz criterion. For
complex situations, when the root loci have multiple number of intersections on the imag-
inary axis, the intersects and the critical values of K can be determined with the help of
the root-locus computer program. The Bode diagram method in Chapter 9, associated with
the frequency response, can also be used for this purpose.

The root loci shown in Fig. F-7 is for the equation
s(s+3)(s*+25+2)+K=0 (F-19)

Figure F-7 shows that the root loci intersect the jw axis at two points. Applying the Routh-Hurwitz
criterion to Eq. (F-19), and by solving the auxiliary equation, we have the critical value of K for
stability at K = 8.16, and the corresponding crossover points on the jo-axis are at =j1.095. <

F-9 BREAKAWAY POINTS
F-9-1 (Saddle Points) on the Root Loci

Breakaway points on the root loci of an equation correspond to multiple-order roots

of the equation.

Figure F-9(a) illustrates a case in which two branches of the root loci meet at the
breakaway point on the real axis and then depart from the axis in opposite directions. In

s-plane
K=0 K=0
AV . < AV
N > < N
Breakaway
point
(a) (b)
h
/cP
‘e’
J
s-plane
K=0
0 o
I~ Breakaway
point
=

Figure F-9 Examples of breakaway points on the real axis in the s-plane.
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* A root-locus plot may
have more than one
breakaway points.

* Breakaway points may
be complex conjugates in
the s-plane.

this case, the breakaway point represents a double root of the equation when the value of
K is assigned the value corresponding to the point. Figure F-9(b) shows another common
situation when two complex-conjugate root loci approach the real axis, meet at the break-
away point, and then depart in opposite directions along the real axis. In general, a break-
away point may involve more than two root loci. Figure F-9(c) illustrates a situation when
the breakaway point represents a fourth-order root.

A root-locus diagram can have, of course, more than one breakaway point. Moreover,
the breakaway points need not always be on the real axis. Because of the conjugate sym-
metry of the root loci, the breakaway points not on the real axis must be in complex-
conjugate pairs. Refer to Fig. F-12 for an example of root loci with complex breakaway
points. The properties of the breakaway points of root loci are given as follows:

The breakaway points on the root loci of 1 + KG,(s)H(s) = 0 must satisfy

dG(s)H,(s)

=0 F-20
I (F-20)

It is important to point out that the condition for the breakaway point given in Eq.
(F-20) is necessary but not sufficient. In other words, all breakaway points on the root
loci for all values of K must satisfy Eq. (F-20), but not all solutions of Eq. (F-20) are
breakaway points. To be a breakaway point, the solution of Eq. (F-20) must also satisfy
the equation 1 + KG,(s)H,(s) = 0, that is, must also be a point on the root loci for some
real K. In general, the following conclusions may be made with regard to the solutions
of Eq. (F-20):

1. All real solutions of Eq. (F-20) are breakaway points on the root loci for all val-
ues of K, since the entire real axis of the s-plane is occupied by the root loci.

2. The complex-conjugate solutions of Eq. (F-20) are breakaway points only if they
satisfy the characteristic equation or are points on the root loci.
3. Since the condition of the root loci is
K = S (F-21)
Gi(s)Hy(s)
taking the derivative on both sides of the equation with respect to s, we have

dK _ dG,(s)H (s)/ds

(F-22)
ds  [G(s)H(s)]?
Thus, the breakaway point condition can also be written as
dK
—=0 (F-23)
ds

where K is expressed as in Eq. (F-21).

F-9-2 The Angle of Arrival and Departure of Root Loci at the Breakaway Point

The angles at which the root loci arrive or depart from a breakaway point depend on the
number of loci that are involved at the point. For example, the root loci shown in Figs.
F-9(a) and F-9(b) all arrive and break away at 180° apart, whereas in Fig. F-9(c), the four
root loci arrive and depart with angles 90° apart, whereas in Fig. F-9(c), the four root loci
arrive and depart with angles 90° apart. In general,
n root loci (—© < K = ) arrive or depart a breakaway point at 180/n degrees
apart.
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Many root-locus computer programs have features that will obtain the breakaway points,
which a rather tedious task to do manually.

P EXAMPLE F-11 Consider the second-order equation
s(s+2)+ K(s + 4) =0 (F-24)

Based on some of the properties of the root loci described thus far, the root loci of Eq. (F-24) are
sketched as shown in Fig. F-10 for —o0 < K < %, It can be proven that the complex portion of the
root loci is a circle. The two breakaway points are on the real axis, one between 0 and —2 and the
other between —4 and —o°. From Eq. (F-24), we have

GOHO) = 5 (F25)
Applying Eq. (F-20), the breakaway points on the root loci must satisfy
dG,(s)H,(s) _ s(s +2) —2 2(s + 1)(s + 4) o (F-26)
ds s2(s + 2)?
or
s+ 8 +8=0 (F-27)

Solving Eq. (F-27), we find the two breakaway points of the root loci at s = —1.172 and —6.828.
Figure F-10 shows that the two breakaway points are all on the root loci for positive K.

K>0 jo 4
s-plane
oK K=10 K<0 K=0 K=0 K<0 K—-»
< > % ——>
4 -2 0 Iy
K>0
— K>0 K<0
Figure F-10  Root loci of s(s + 2) + K(s + 4) = 0. <
P EXAMPLE F-12 Consider the equation
s+ 25+2+Ks+2)=0 (F-28)

The equivalent G(s)H(s) is obtained by dividing both sides of Eq. (F-28) by the terms that do not
contain K. We have
K(s +2)

G(S)H(S) = m (F-29)



Appendix F Properties and Construction of the Root Loci

F-14
jo 4
K>0 s-plane
w—K K ——o
< < >
-0.586
K>0
K>0 K<0
Figure F-11  Root loci of s + 25 + 2 + K(s + 2) = 0.

Based on the poles and zeros of G(s)H(s), the root loci of Eq. (F-29) are plotted as shown in
Fig. F-11. The plot shows that there are two breakaway points, one for K > 0 and one for K < 0.

These breakaway points are determined from
S+ 2+ 22+ 1)(s +2)
=0 (F-30)

dG(H(s)  d ( ¢ 42 ) )
ds ds\s* + 25 + 2 (s* + 25 + 2)°
or
sSS+45+2=0 (F-31)
The solution of this equation gives the breakaway point as s = —0.586 and s = —3.414. <
P EXAMPLE F-13 Figure F-12 shows the root loci of the equation
s(s +4)(s* +45+20)+ K=0 (F-32)
Dividing both sides of the last equation by the terms that do not contain K, we have
1 + KG\()H,(s) = 1 + K 0 (F-33)
$)H\(s) = = -
e s(s + 4)(s? + 4s + 20)
Since the poles of G,(s)H,(s) are symmetrical about the axes ¢ = —2 and w = 0 in the s-plane, the
root loci of the equation are also symmetrical with respect to these two axes. Taking the derivative

of G,(s)H,(s) with respect to s, we get
45’ + 245 + 725 + 80
u s d =0 (F-34)

dG\(s)H\(s)
ds  [s(s +4)(s® + 4s + 207

or
$+657+ 18 +20=0 (F-35)
The solutions of the last equation are s = —2, —2 + j2.45, and —2 — j2.45. In this case, Fig. F-12
shows that all the solutions of Eq. (F-35) are breakaway points on the root loci, and two of these

points are complex.
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Figure F-12  Root loci of s(s + 4)(s> + 4s + 20) + K = 0.

P EXAMPLE F-14 In this example, we shall show that not all the solutions of Eq. (F-20) are breakaway points on the
(F-36)

root loci. The root loci of the equation
s(s+25+2)+K=0

are shown in Fig. F-13. The root loci show that neither the K = 0 loci nor the K = 0 loci has any
(F-37)

K
=0

breakaway point in this case. However, writing Eq. (F-36) as
1+ KG(s)H(s) =1 + —F———
() s(s* + 25 + 2)

and applying Eq. (F-20), we have the equation for the breakaway points:
(F-38)

3 +4s+2=0

The roots of Eq. (F-38) are s = —0.667 + j0.471 and —0.667 — j0.471. These two roots are
not breakaway points on the root loci, since they do not satisfy Eq. (F-36) for any real value

of K.
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w—K

r 3
v

K>0

K<0

Figure F-13  Root loci of s(s* + 25 + 2) + K = 0. <

F-10 CALCULATION OF K ON THE ROOT LOCI

» EXAMPLE F-15

Once the root loci are constructed, the values of K at any point s, on the loci can be de-
termined by use of the defining equation of Eq. (8-20). Graphically, the magnitude of K
can be written as

K]

_ ITlengths of vectors drawn from the poles of G,(s)H,(s) to s,

= F-39
[T lengths of vectors drawn from the zeros of G,(s)H,(s) to s, (F-39)

As an illustration on the determination of the value of K on the root loci, the root loci of the equa-
tion

$+2s+2+Ks+2)=0 (F-40)
are shown in Fig. F-14. The value of K at the point s; is given by

_AXB
c

K

(F-41)

where A and B are the lengths of the vectors drawn from the poles of G(s)H(s) = K(s + 2)/(s> +
2s + 2) to the point s;, and C is the length of the vector drawn from the zero of G(s)H(s) to s,. In
this case, s, is on the locus where K is positive. In general, the value of K at the point where the
root loci intersect the imaginary axis can also be found by the method just described. Figure F-14
shows that the value of K at s = 0 is —1. The computer method and the Routh-Hurwitz criterion
are other convenient alternatives of finding the critical value of K for stability.



F-10 Calculation of K on the Root Loci F-17

jo &

s-plane

w—K K——x
h 0[k=-1 &
K>0 —K<0
Figure F-14  Graphical method of finding the values of K on the real axis. <

In summary, except for extremely complex cases, the properties on the root loci pre-
sented here should be adequate for making a reasonably accurate sketch of the root-locus
diagram short of plotting it point by point. The computer program can be used to solve
for the exact root locations, the breakaway points, and some of the other specific details
of the root loci, including the plotting of the final loci. However, one cannot rely on the
computer solution completely, since the user still has to decide on the range and resolu-
tion of K so that the root-locus plot has a reasonable appearance. For quick reference, the
important properties described are summarized in Table F-1.

TABLE F-1 Properties of the Root Loci of F(s) = 1 + KG,(s)H,(s) =0

1. K = 0 points The K = 0 points are at the poles of G(s)H(s),
including those at s = o°.
2. K = % points The K = =0 points are at the zeros of G(s)H(s),
including those at s = 0.
3. Number of separate root loci The total number of root loci is equal to the order of
the equation F(s) = 0.
4. Symmetry of root loci The root loci are symmetrical about the axes of
symmetry of the pole-zero configuration of G(s)H(s).
5. Asymptotes of root loci as s — co For large values of s, the root loci for K > 0 are
asymptotic to asymptotes with angles given by
2i + 1
0, = —— X 180°
In — m|

For K < 0, the root loci are asymptotic to

2i
0, = — X 180°
In — m|
where i = 0,1,2, ..., [n —m| — 1,
n = number of finite poles of G(s)H(s), and

m = number of finite zeros of G(s)H(s).



F-18

Appendix F Properties and Construction of the Root Loci

TABLE F-1 (continued)

6. Intersection of the asymptotes (a) The intersection of the asymptotes lies only on
the real axis in the s-plane.
(b) The point of intersection of the asymptotes is
given by

2 real parts of poles of G(s)H(s) — X real parts of zeros of G(s)H(s)
g =

n—m

7. Root loci on the real axis Root loci for K > 0 are found in a section of the real
axis only if the total number of real poles and zeros
of G(s)H(s) to the right of the section is odd. If the
total number of real poles and zeros to the right of a
given section is even, root loci for K < 0 are found.

8. Angles of departure The angle of departure or arrival of the root loci
from a pole or a zero of G(s)H(s) can be determined
by assuming a point s; that is very close to the pole,
or zero, and applying the equation
£LG(s1)H(s)) = /; L(si+ z) — 21 L(si + p)

= =
=2(i + 1)180° K>0
= 2i X 180° K<O0
where i = 0, =1, £2, ....

9. Intersection of the root loci The crossing points of the root loci on the imaginary
axis and with the imaginary axis the corresponding
values of K may be found by use of the Routh-
Hurwitz criterion.

10. Breakaway points The breakaway points on the root loci are determined
by finding the roots of dK/ds = 0, or dG(s)H(s)/
ds = 0. These are necessary conditions only.

11.  Calculation of the values of K The absolute value of K at any point s; on the root
loci is on the root loci determined from the equation

1

K= 16,

The following example illustrates the construction of a root locus diagram manually,
step by step, using the root locus properties given in Table F-1.

P> EXAMPLE F-16 Consider the equation

s(s +5)(s+6)(s* +25s+2)+K(s +3)=0 (F-42)
Dividing both sides of the last equation by the terms that do not contain K, we have
K(s + 3)
G(s)H(s) = (F-43)

s(s + 5)(s + 6)(s* + 25 + 2)
The following properties of the root loci are determined:
The K = 0 points are at the poles of G(s)H(s): s = =5, =6, —1 + j, and —1 —j.
The K = = points are at the zeros of G(s)H(s): s = —3, %, %, %,

There are five separate branches on the root loci.

e A .

The root loci are symmetrical with respect to the real axis of the s-plane.
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wn

Since G(s)H(s) has five poles and one finite zero, four RL and CRL should approach
infinity along the asymptotes. The angles of the asymptotes of the RL are given by
[Eq. (F-9)]

2i + 1 _2i+1

= 180°
L] 5 =1

180° 0=K<w» (F-44)

fori = 0, 1, 2, 3. Thus, the four root loci that approach infinity as K approaches infin-
ity should approach asymptotes with angles of 45°, —45°, 135°, and —135°, respectively.
The angles of the asymptotes of the CRL at infinity are given by Eq. (F-10):

2i 2i
180° = 5 1] 180° -0 < K=0 (F-45)

.=
n = m|

fori = 0, 1, 2, 3. Thus, as K approaches —2, four root loci for K < 0 should approach
infinity along asymptotes with angles of 0°, 90°, 180°, and 270°.
6. The intersection of the asymptotes is given by [Eq. (F-12)]

S(-5-6-1-1)— (=3
oy = ( J )= ( ):—2.5 (F-46)

The results from these six steps are illustrated in Fig. F-15. It should be pointed out that
in general the properties of the asymptotes do not indicate on which side of the asymptotes

g? jo A )
>
N s-plane t &
+ v <
X = J
K=0
oK K=0 K=0 K=z 45° K=0 K——oo
> : O ' : « >
_6 _5 -4 -3 -2 -1 0
K=0 )
25 -
S
/‘(” | ,f\\
& 8 >
I .
K>0 — K<0

Figure F-15  Preliminary calculation of the root loci of
s(s + 5)(s +6)(s*+ 25+ 2) + Kis+3)=0.
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jo
s-plane
K=0
X - J
©—«K K=0\ K=0 K= K=0 K —-
> VAN ) < O) < | < »
» HP———K < O < < »
—6) -5 -3 -1 0 o
X F
K=0
K>0 K<0

Figure F-16  Root loci of s(s + 5)(s + 6)(s> + 25 + 2) + K(s + 3) =0
on the real axis.

the root loci lie. The asymptotes indicate nothing more than the behavior of the root loci as
s — 0. In fact, the root locus can even cross an asymptote in the finite s domain. The segments
of the root loci shown in Fig. F-15 can be accurately plotted only if additional information is

obtained.
7.

Root loci on the real axis: There are K = 0 root loci on the real axis between s = 0 and
—3,and s = —5 and —6. There are K = 0 root loci on the remaining portions of the real
axis, that is, between s = —3 and —5, and s = —6 and —, as shown in Fig. F-16.

Angles of departure: The angle of departure 6 of the root loci leaving the pole at —1 +j
is determined using Eq. (8-18). If s, is a point on the root loci leaving the pole at —1 +},
and s, is very close to the pole, as shown in Fig F-17, Eq. (8-18) gives

L(sy +3)— Ls;— L(sy + 1 +j)— L(sy +5) — L(s; + 1 =)  (F-47)
= (2i + 1)180°
or
26.6° — 135° — 90° — 14° — 11.4° — 6 = (2i + 1)180° (F-48)
fori = 0, =1, £2, ... Therefore, selecting i = 2,
= —43.8° (F-49)
s-plane jo t
1
K=0 L
51 /_\LSI
K=0 K=0 \
% % A N | >
-6 -5 -3 -1 0 a
K=0 K=
K=0 -Jj
L(s1+6)  ZL(s;+5) Z(s7+3)
Z(s;+1+))

Figure F-17 Computation of angle of departure of the root loci of
s(s + 5)(s + 6)(s>+ 25 +2) + K(s + 3) = 0.
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Similarly, Eq. (8-19) is used to determine the angle of arrival 6" of the K = 0 root loci
arriving at the pole —1 + j. It is easy to see that 6" differs from 6 by 180°; thus,

0" = 180° — 43.8° = 136.2° (F-50)

9. The intersection of the root loci on the imaginary axis is determined using Routh’s
tabulation.
Equation (F-42) is written
s+ 13s* + 545° + 825 + (60 + K)s + 3K = 0 (F-51)

Routh’s tabulation is

s 1 54 60 + K
st 13 82 3K
$ 47.7 0.769K 0
5 65.6 — 0.212K 3K 0
3940 — 105K — 0.163K>

s 0 0

65.6 — 0.212K
s° 3K 0 0

For Eq. (F-51) to have no roots on the imaginary axis or in the right-half of the
s-plane, the elements in the first column of Routh’s tabulation must all be of the same
sign. Thus, the following inequalities must be satisfied:

65.6 — 0.212K > 0 or K <309 (F-52)
3940 — 105K — 0.163K* > 0 or K <35 (F-53)
K>0 (F-54)

Thus, all the roots of Eq. (F-51) will stay in the left-half s-plane if K lies between
0 and 35, which means that the root loci of Eq. (F-51) cross the imaginary axis when
K = 35 and K = 0. The coordinates at the crossover points on the imaginary axis that
correspond to K = 35 are determined from the auxiliary equation:

A(s) = (65.6 — 0.212K)s* + 3K = 0 (F-55)

which is obtained by using the coefficients from the row just above the row of zeros in
the s' row that would have happened when K is set to 35. Substituting K = 35 in
Eq. (F 55), we get

58.25 + 105 =0 (F-56)

The roots of Eq. (F-56) are s = j1.34 and —j1.34, which are the points at which
the root loci cross the jw-axis.

10. Breakaway points: Based on the information gathered from the preceding nine steps, a
trial sketch of the root loci indicates that there can be only one breakaway point on the
entire root loci, and the point should lie between the two poles of G(s)H(s) at s = —5
and —6. To find the breakaway point, we take the derivative on both sides of Eq. (F-43)
with respect to s and set it to zero; the resulting equation is

$ 4 1355 + 665° + 1425 + 1235 + 45 =0 (F-57)

Since there is only one breakaway expected, only one root of the last equation is
the correct solution of the breakaway point. The five roots of Eq. (F-57) are:
s = 3.33 +j1.204 s =3.33 — j1.204
s = —0.656 + j0.468 s = —0.656 — j0.468
s =—553
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Figure F-18 Root loci of s(s + 5)(s + 6)(s* + 25 + 2) + K(s + 3) = 0.

Clearly, the breakaway point is at —5.53. The other four solutions do not satisfy
Eq. (F-51) and are not breakaway points. Based on the information obtained in the last
10 steps, the root loci of Eq. (F-51) are sketched as shown in Fig. F-18 <4



Appendix G
Frequency-Domain Plots

TO ACCOMPANY

AUTOMATIC CONTROL SYSTEMS
EIGHTH EDITION

BY
BENJAMIN C. KUO

FARID GOLNARAGHI

JOHN WILEY & SONS, INC.



Copyright © 2003 John Wiley & Sons, Inc.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning
or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (508)750-8400, fax
(508)750-4470. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY
10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ@WILEY.COM.

To order books or for customer service please call 1-800-CALL WILEY
(225-5945).

ISBN 0-471-13476-7



APPENDIX G

Frequency-Domain Plots

Let G(s) be the forward-path transfer function of a linear control system with unity feed-
back. The frequency-domain analysis of the closed-loop system can be conducted from
the frequency-domain plots of G(s) with s replaced by jw.

The function G(jw) is generally a complex function of the frequency w, and can be
written as

G(jow) = |G(jo)| £G(jw) (G-1)

where |G(jw)| denotes the magnitude of G(jw), and £ G(jw) is the phase of G(jw).
The following frequency-domain plots of G(jw) versus w are often used in the analy-
sis and design of linear control systems in the frequency domain.

1. Polar plot. A plot of the magnitude versus phase in the polar coordinates as w is
varied from zero to infinity.

2. Bode plot. A plot of the magnitude in decibels versus w (or log;,w) in semilog
(or rectangular) coordinates.

3. Magnitude-phase plot. A plot of the magnitude (in decibels) versus the phase on
rectangular coordinates, with w as a variable parameter on the curve.

G-1 COMPUTER-AIDED CONSTRUCTION OF
THE FREQUENCY-DOMAIN PLOTS

The data for plotting of the frequency-domain plots are usually quite time consuming to
generate if the computation is to be carried out manually, especially if the function is of
high order. In practice, a digital computer should be used to do the computation as well
as plotting of the graph. Many software packages that are available commercially can be
used for the construction of the frequency-domain plots. The ACSYS computer program
can be used for this purpose.

From an analytical standpoint, the analyst and designer should be familiar with the
properties of the frequency-domain plots so that proper interpretations can be made on
these plots made by the computer.

G-2 POLAR PLOTS

The polar plot of a function of the complex variable s, G(s), is a plot of the magnitude of
G(jw) versus the phase of G(jw) on polar coordinates as w is varied from zero to infin-
ity. From a mathematical viewpoint, the process can be regarded as the mapping of the
positive half of the imaginary axis of the s-plane onto the G(jw)-plane. A simple example

G-1
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jo 4 jImG 4
s-plane T7s G(jw)-plane
T @
Tjo .
“3 T Gjwy)
> \ >
0 o ) o Re G
IG(jepl
@
N
/
S

» EXAMPLE G-1

Figure G-1 Polar plot shown as a mapping of the positive half of the jw-axis in the s-plane
onto the G(jw)-plane.

of this mapping is shown in Fig. G-1. For any frequency @ = w,, the magnitude and phase
of G(jw,) are represented by a vector in the G(jw)-plane. In measuring the phase, coun-
terclockwise is referred to as positive, and clockwise is negative.

To illustrate the construction of the polar plot of a function G(s), consider the function

1

66 =157 G-2)
where T is a positive constant. Setting s = jw, we have
Gliw) = —— (G-3)
1 + joT
In terms of magnitude and phase, Eq. (G-3) is written
G(jw) = _r /—tan ' wT (G-4)

V1 + o*T?

When o is zero, the magnitude of G(jw) is unity, and the phase of G(jw) is at 0°. Thus, at
o = 0, G(jw) is represented by a vector of unit length directed in the 0° direction. As w increases,

jImG 4
G (jw)-plane

0 Jtan_l oT 1 ReG
Phasor of G(jw)

Vi+o'T? Figure G-2  Polar plot of
1

(1 + joT)

G(jw) =
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» EXAMPLE G-3

G-2 Polar Plots G-3

the magnitude of G(jw) decreases, and the phase becomes more negative. As w increases, the length
of the vector in the polar coordinates decreases, and the vector rotates in the clockwise (negative)
direction. When w approaches infinity, the magnitude of G(jw) becomes zero, and the phase reaches
—90°. This is presented by a vector with an infinitesimally small length directed along the —90°-axis
in the G(jw)-plane. By substituting other finite values of w into Eq. (G-4), the exact plot of G(jw)
turns out to be a semicircle, as shown in Fig. G-2. |

As a second illustrative example, consider the function

Gljw) = 17— (G-5)
JoT,
where T and T, are positive real constants. Equation (G-5) is written
Gljw) = 1+w2T224(t 1T, — tan”! oT)) (G-6)
jw) = 1+ o1y an” o7, — tan” T -

The polar plot of G(jw), in this case, depends on the relative magnitudes of 7', and 7,. If T, is greater
than T, the magnitude of G(jw) is always greater than unity as w is varied from zero to infinity,
and the phase of G(jw) is always positive. If 7), is less than T, the magnitude of G(jw) is always
less than unity, and the phase is always negative. The polar plots of G(jw) of Eq. (G-6) that corre-
spond to these two conditions are shown in Fig. G-3.

jimG 4

G( jw)-plane
w —
(Tr,>T))
T,/T, 1{w=0 w=o
0 >
w=o0 T,T, ReG
~w
(T, <T))
. (1 + joT)
Figure G-3 Polar plots of G(jw) = —————.
(1 + joT)) <

In many control-system applications, such as the Nyquist stability criterion, an exact
plot of the frequency response is not essential. Often, a rough sketch of the polar plot of
the transfer function G(jw)H(jw) is adequate for stability analysis in the frequency do-
main. The general shape of the polar plot of a function G(jw) can be determined from the
following information.

1. The behavior of the magnitude and phase of G(jw) at w = 0 and w = *

2. The intersections of the polar plot with the real and imaginary axes, and the values
of w at these intersections

In frequency-domain analyses of control systems, often we have to determine the basic properties
of a polar plot. Consider the following transfer function:

10

)= r D

(G-7)
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By substituting s = jw in Eq. (G-7), the magnitude and phase of G(jw) at @ = 0 and w = % are
computed as follows:

lim|G(jw)| = i 10 00 G-8

lim|G(jw)| = lim —= = (G-8)
li_)n})LG(jw) = 1i_)n}) £10/jo = —90° (G-9)
. ) .10

lim|G(jo)| = lim — = 0 (G-10)
w—>% W= )

lim 2 G(je) = lim £10/(je?) = —180° (G-11)

Thus, the properties of the polar plot of G(jw) at w = 0 and w = % are ascertained. Next, we
determine the intersections, if any, of the polar plot with the two axes of the G(jw)-plane. If the
polar plot of G(jw) intersects the real axis, at the point of intersection, the imaginary part of G(jw)
is zero; that is,

Im[G(jw)] = 0 (G-12)

To express G(jw) as the sum of its real and imaginary parts, we must rationalize G(jw) by multi-
plying its numerator and denominator by the complex conjugate of its denominator. Therefore, G(jw)
is written
Glw) 10(—jo)(—jo + 1) -100®> . 10w
w) = = —
I (o + D(—jo)—jo+ 1) o'+ ot + o
= Re[G(jw)] + jIm[G(jw)]

(G-13)

When we set Im[G(jw)] to zero, we get w = o0, meaning that the G(jw) plot intersects only
with the real axis of the G(jw)-plane at the origin.

Similarly, the intersection of G(jw) with the imaginary axis is found by setting Re[G(jw)] of
Eq. (G-13) to zero. The only real solution for w is also w = o0, which corresponds to the origin of
the G(jw)-plane. The conclusion is that the polar plot of G(jw) does not intersect any one of the
axes at any finite nonzero frequency. Under certain conditions, we are interested in the properties
of the G(jw) at infinity, which corresponds to w = 0 in this case. From Eq. (G-13), we see that
Im[G(jw)] =  and Re[G(jw)] = —10 at @ = 0. Based on this information, as well as knowledge
of the angles of G(jw) at @ = 0 and w = o, the polar plot of G(jw) is easily sketched without
actual plotting, as shown in Fig. G-4.

. A
G(jw)-plane JImG

Qv

-10 0 Re

0w

10
s(s + 1) <

Figure G-4 Polar plot of G(s) =
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p» EXAMPLE G-4 Given the transfer function

10

G(s)=—F—"F—= G-14
) =G+ e +2) (G-14)
we want to make a rough sketch of the polar plot of G(jw). The following calculations are made

for the properties of the magnitude and phase of G(jw) at w = 0 and w = :

. 5

lim|G(jw)| = lim ~ = co (G-15)

lim 2. G(jw) = lim £5/jw = —90° (G-16)
10

lim |G(jw)| = lim — =0 (G-17)

W—>00 wW—>00 w

lim 2 G(jw) = lim £10/(jo)’ = —270° (G-18)

To find the intersections of the G(jw) plot on the real and imaginary axes of the G(jw)-plane, we
rationalize G(jw) to give

10(—jo)(—jo + 1)(—jo + 2)

Gljw) = —— : o . (G-19)
V)= jatjoo + Do + 2)(~ja)—jo + D~jo + 2
After simplification, the last equation is written
, , , , —30 j10Q2 — o)
G(jw) = Re[G(jw)] + jIm[G(jw)] = (G-20)

97 + (2 — w?)? 9w + 02 — 0*)?

Setting Re[G(jw)] to zero, we have w = %, and G(joo) = 0, which means that the G(jw) plot
intersects the imaginary axis only at the origin. Setting Im[G(jw)] to zero, we have w = £V 2
rad/sec. This gives the point of intersection on the real axis at

G(= j\V2) = —5/3 (G-21)

The result, w = —"V 2 rad/sec, has no physical meaning, because the frequency is negative; it
simply represents a mapping point on the negative jw-axis of the s-plane. In general, if G(s) is a ra-
tional function of s (a quotient of two polynomials of s), the polar plot of G(jw) for negative val-
ues of w is the mirror image of that for positive w, with the mirror placed on the real axis of the
G(jw)-plane. From Eq. (G-20), we also see that Re[G(j0)] = o and Im[G(jO)] = <. With this
information, it is now possible to make a sketch of the polar plot for the transfer function in
Eq. (G-14), as shown in Fig. G-5.

jimG 4

G-plane

5 0 Re G

3
w=V2 rad/sec

Figure G-5 Polar plot of
S 10

) = 5+ s+ 2) <

—
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Although the method of obtaining the rough sketch of the polar plot of a transfer
function as described is quite straightforward, in general, for complicated transfer functions
that may have multiple crossings on the real and imaginary axes of the transfer-function
plane, the algebraic manipulation may again be quite involved. Furthermore, the polar plot
is basically a tool for analysis; it is somewhat awkward for design purposes. We shall
show in the next section that approximate information on the polar plot can always be
obtained from the Bode plot, which can be sketched without any calculations. Thus, for
more complicated transfer functions, sketches of the polar plots can be obtained with the
help of the Bode plots, unless a digital computer is used.

G-3 BODE PLOT (CORNER PLOT OR ASYMPTQTIC PLQT)

* A Bode plot is also
known as a corner plot or
an asymptotic plot.

The Bode plot of the function G(jw) is composed of two plots, one with the amplitude
of G(jw) in decibels (dB) versus log,, @ or w, and the other with the phase of G(jw) in
degrees as a function of log,yw or w. A Bode plot is also known as a corner plot or an
asymptotic plot of G(jw). These names stem from the fact that the Bode plot can be con-
structed by using straight-line approximations that are asymptotic to the actual plot.

In simple terms, the Bode plot has the following features:

1. Since the magnitude of G(jw) in the Bode plot is expressed in dB, product and
division factors in G(jw) became additions and subtractions, respectively. The
phase relations are also added and subtracted from each other algebraically.

2. The magnitude plot of the Bode plot of G(jw) can be approximated by straight-
line segments, which allow the simple sketching of the plot without detailed
computation.

Since the straight-line approximation of the Bode plot is relatively easy to construct,
the data necessary for the other frequency-domain plots, such as the polar plot and the
magnitude-versus-phase plot, can be easily generated from the Bode plot.

Consider the function:
K(s + 2)(s + 2) " (s + z,)
Gls) =
s’ (s + p)(s + pa) (s + p)

where K and T, are real constants, and the zs and the ps may be real or complex (in con-
jugate pairs) numbers. In Chapter 8, Eq. (G-22) is the preferred form for root-locus
construction, since the poles and zeros of G(s) are easily identified. For constructing the
Bode plot manually, G(s) is preferably written in the following form:

K+ Tys)(1 + Tos) - (1 + T,9)
GO) = 0+ T)(1 + Ty (1 + Ts) ©

where K is a real constant, the 7s may be real or complex (in conjugate pairs) numbers,
and T, is the real time delay. If the Bode plot is to be constructed with a computer pro-
gram, then either forms of Eq. (G-22) or Eq. (G-23) can be used.

Since practically all the terms in Eq. (G-23) are of the same form, then without loss
of generality, we can use the following transfer function to illustrate the construction of
the Bode diagram.

e Tis (G-22)

~Tus (G-23)

K(1 + Tys)(1 + Tys)
s(1 + T5)(1 + 24s/w, + s*/w?)

where K, T,;, T}, T», T,, {, and w, are real constants. It is assumed that the second-order
polynomial in the denominator has complex-conjugate zeros.

G(s) = e Tus (G-24)
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The magnitude of G(jw) in dB is obtained by multiplying the logarithm (base 10) of
IG(jw)| by 20; we have

|G(jo)|as = 20logyo|G(jw)| = 20log;o|K| + 20loge|l + joT;| + 20log|l + joT;|
(G-25)
—20logo|jw| — 20log,e|1 + jwT,| — 20log;o|l + j2{w — w*/w}]|

The phase of G(jw) is

LG(jow) = LK + £(1 + joT,) + £(1 + joT,) — Ljo — £(1 + joT,)

- /(1 + 2{w/w, — @*/w?) — wT, rad (G-26)

In general, the function G(jw) may be of higher order than that of Eq. (G-24) and
have many more factored terms. However, Eqs. (G-25) and (G-26) indicate that additional
terms in G(jw) would simply produce more similar terms in the magnitude and phase ex-
pressions, so the basic method of construction of the Bode plot would be the same. We
have also indicated that, in general, G(jw) can contain just five simple types of factors:

1. Constant factor: K

2. Poles or zeros at the origin of order p: (jw)*”

3. Poles or zeros at s = —1/T of order ¢: (1 + jowT)™

4. Complex poles and zeros of order r: (1 + j2{w/w, — w*/w?)™"
5. Pure time delay e /74, where T, p, g, and r are positive integers.

Equations (G-25) and (G-26) verify one of the unique characteristics of the Bode plot
in that each of the five types of factors listed can be considered as a separate plot; the indi-
vidual plots are then added or subtracted accordingly to yield the total magnitude in dB and
the phase plot of G(jw). The curves can be plotted on semilog graph paper or linear rec-
tangular-coordinate graph paper, depending on whether w or log;,w is used as the abscissa.

We shall now investigate sketching the Bode plot of different types of factors.

G-3-1 Real Constant K

Since
Kz = 20log,y K = constant (G-27)
and
0° K>0
LK = { (G-28)
180° K<O0

the Bode plot of the real constant K is shown in Fig. G-6 in semilog coordinates.

G-3-2 Poles and Zeros at the Origin, (jw)*?
The magnitude of (jw)*? in dB is given by
2010g10|(j(1)):p| = iZOploglOw dB (G‘29)

for w = 0. The last expression for a given p represents a straight line in either semilog or
rectangular coordinates. The slopes of these lines are determined by taking the derivative
of Eq. (G-29) with respect to log,,w; that is,

Tlog e (= 20plogio @) = £20p  dB/decade (G-30)
10 @
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Figure G-6 Bode plot of constant K.

These lines pass through the 0-dB axis at @ = 1. Thus, a unit change in log,,w corre-
sponds to a change of =20p dB in magnitude. Furthermore, a unit change in log,,w in
the rectangular coordinates is equivalent to one decade of variation in w, that is, from 1
to 10, 10 to 100, and so on, in the semilog coordinates. Thus, the slopes of the straight
lines described by Eq. (G-29) are said to be =20p dB/decade of frequency.

Instead of decades, sometimes octaves are used to represent the separation of two
frequencies. The frequencies w; and w, are separated by one octave if w,/w,; = 2. The
number of decades between any two frequencies w; and w, is given by

lo w,/w
number of decades = M = logm(wz) (G-3D)
loglo 10 w

Similarly, the number of octaves between w, and w, is

logyp (@/w;) 1 o (%)
log0 2 0301 OB

number of octaves = (G-32)
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Thus, the relation between octaves and decades is

number of octaves = 1/0.301 decades = 3.32 decades (G-33)
Substituting Eq. (G-33) into Eq. (G-30), we have
+20p dB/decade = +=20p X 0.301 = 6p dB/octave (G-34)

For the function G(s) = 1/s, which has a simple pole at s = 0, the magnitude of
G(jw) is a straight line with a slope of —20 dB/decade, and passes through the 0-dB axis

at w = 1 rad/sec.
The phase of (jw)*" is written

£(jw)*" = =p X 90° (G-35)

The magnitude and phase curves of the function (jw)*” are shown in Fig. G-7 for
several values of P,
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Figure G-7 Bode plots of (jw)”.
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G-3-3 Simple Zero, 1 + joT

Consider the function
G(jw) = 1 + joT (G-36)
where T is a positive real constant. The magnitude of G(jw) in dB is
IG(jo)|gs = 20l0g,0|G(jw)| = 20log,, V1 + w’T? (G-37)

To obtain asymptotic approximations of |G(jw)|qs, We consider both very large and very
small values of w. At very low frequencies, w7 << 1, Eq. (G-37) is approximated by

|G(jw)|as = 20log,y1 = 0 dB (G-38)

since w?T? is neglected when compared with 1.
At very high frequencies, T > 1, we can approximate 1 = w’7? by w’T?; then
Eq. (G-37) becomes

|G(jw)|gs = 20log,,V 0*T* = 20log,, T (G-39)

Equation (G-38) represents a straight line with a slope of 20 dB/decade of frequency. The
intersect of these two lines is found by equating Eq. (G-38) to Eq. (G-39), which gives

w=1/T (G-40)

This frequency is also the intersect of high-frequency approximate plot and the low-
frequency approximate plot, which is the 0-dB axis. The frequency given in Eq. (G-40)
is also known as the corner frequency of the Bode plot of Eq. (G-36), since the asymp-
totic plot forms the shape of a corner at this frequency, as shown in Fig. G-8. The actual
|G(jo)|gs plot of Eq. (G-36) is a smooth curve, and deviates only slightly from the straight-
line approximation. The actual values and the straight-line approximation of |1 + jwT|
as functions of w7 are tabulated in Table G-1. The error between the actual magnitude
curve and the straight-line asymptotes is symmetrical with respect to the corner frequency
® = 1/T. Tt is useful to remember that the error is 3 dB at the corner frequency, and 1 dB
at 1 octave above (w = 2/T) and 1 octave below (w = 1/2T) the corner frequency. At
1 decade above and below the corner frequency, the error is dropped to approximately
0.3 dB. Based on these facts, the procedure of making of sketch of |1 + jwT| is as
follows:

1. Locate the corner frequency w = 1/T on the frequency axis.

2. Draw the 20-dB/decade (or 6-dB/octave) line and the horizontal line at 0 dB,
with the two lines intersecting at = 1/T.

3. If necessary, the actual magnitude curve is obtained by adding the errors to the
asymptotic plot at the strategic frequencies. Usually, a smooth curve can be
sketched simply by locating the 3-dB point at the corner frequency and the 1-dB
points at 1 octave above and below the corner frequency.

The phase of G(jw) = 1 + jwT is
/G(jo) = tan”' T (G-41)

Similar to the magnitude curve, a straight-line approximation can be made for the phase
curve. Since the phase of G(jw) varies from 0° to 90°, we can draw a line from 0° at 1
decade below the corner frequency to 90° at 1 decade above the corner frequency. As
shown in Fig. G-8, the maximum deviation between the straight-line approximation and
the actual curve is less than 6°. Table G-1 gives the values of £ (1 + jwT) versus wT.
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TABLE G-1
Straight-Line
Approximation Error | £(1 + joT)
oT logiywT | |1 +joT| | |1 + joT |4 |1+ joT |4 (dB) (deg)
0.01 -2 1.0 0.000043 0 0.00043 0.5
0.10 -1 1.04 0.043 0 0.043 5.7
0.50 -0.3 1.12 1 0 1 26.6
0.76 —0.12 1.26 2 0 2 37.4
1.00 0 1.41 3 0 3 45.0
1.31 0.117 1.65 4.3 2.3 2 52.7
2.00 0.3 2.23 7.0 6.0 1 63.4
10.00 1.0 10.4 20.043 20.0 0.043 84.3
100.00 2.0 100.005 40.00043 40.0 0.00043 89.4
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G-3-4 Simple Pole, 1/(1 + joT)

For the function
1

Gljw) = —— G-42

(o) = 77 ol (G-42)
the magnitude, |G(jw)l in dB, is given by the negative of the right side of Eq. (G-37), and
the phase Z G(jw) is the negative of the angle in Eq. (G-41). Therefore, it is simple to ex-
tend all the analysis for the case of the simple zero to the Bode plot of Eq. (G-42). The

asymptotic approximations of |G(jw)|s at low and high frequencies are

oT <1 |G(jw)|p=0dB (G-43)
oT>1 |G(jo)|e= —20log, oT (G-44)

Thus, the corner frequency of the Bode plot of Eq. (G-42) is still at @ = 1/7, except that
at high frequencies the slope of the straight-line approximation is —20 dB/decade. The phase
of G(jw) is 0 degrees at w = 0, and —90° when w = . The magnitude in dB and phase
of the Bode plot of Eq. (G-42) are shown in Fig. G-8. The data in Table G-1 are still use-
ful for the simple-pole case if appropriate sign changes are made to the numbers. For in-
stance, the numbers in the |1 + joT|yg, the straight-line approximation of |1 + jwT| 4, the
error (db), and the Z(1 + jwT) columns should all be negative. At the corner frequency,
the error between the straight-line approximation and the actual magnitude curve is —3 dB.

G-3-5 Quadratic Poles and Zeros

Now consider the second-order transfer function
a)ﬁ 1

G(s) = 4+ 2w, + W - 1+ (2¢/w,)s + (1/w})s?

We are interested only in the case when { = 1, since otherwise G(s) would have two
unequal real poles, and the Bode plot can be obtained by considering G(s) as the product
of two transfer functions with simple poles.

By letting s = jw, Eq. (G-45) becomes

(G-45)

1

) = [ = (] + 28wl (G40
The magnitude of G(jw) in dB is
20log,, |G(jw)| = —20log,y V[1 — (w/w,)* 2 + 4{(w/w,) (G-47)
At very low frequencies, w/w, << 1; Eq. (G-47) can be approximated as
|G(jw)|ss = 20log, |G(jw)| = —20log;y 1 =0 dB (G-48)

Thus, the low-frequency asymptote of the magnitude plot of Eq. (G-45) is a straight
line that lies on the 0-dB axis. At very high frequencies, w/w, > 1; the magnitude in dB
of G(jw) in Eq. (G-45) becomes

|G(jo)|s = —20log), V(w/w,)* = —40log,(w/w,) dB (G-49)

This equation represents a straight line with a slope of —40 dB/decade in the Bode-
plot coordinates. The intersection of the two asymptotes is found by equating Eq. (G-48)
to Eq. (G-49), yielding the corner frequency at @ = w,. The actual magnitude cuve of
G(jw) in this case may differ strikingly from the asymptotic curve. The reason for this is
that the amplitude and phase curves of the second-order G(jw) depend not only on the
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Figure G-9 Bode plot of G(s) =

corner frequency w,, but also on the damping ratio £, which does not enter the asymptotic
curve. The actual and the asymptotic curves of |G(jw)|qs are shown in Fig. G-9 for several
values of {. The errors between the two sets of curves are shown in Fig. G-10 for the same
set of values of {. The standard procedure of constructing the second-order |G(jw)|gg is to
first locate the corner frequency w,, and —40-dB/decade line to the right of w,. The actual
curve is obtained by making corrections to the asymptotes by using either the data from
the error curves of Fig. G-10 or the curves in Fig. G-9 for the corresponding .
The phase of G(jw) is given by

£G(jw) = —tan'{zij’[l = <$ﬂ} (G-50)

and is plotted as shown in Fig. G-9 for various values of {.

The analysis of the Bode plot of the second-order transfer function of Eq. (G-45) can

be applied to the second-order transfer function with two complex zeros. For
20 1,

G(S):1+;S+7S

(G-51)

n w,
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Figure G-10 Errors in magnitude curves of Bode plots of G(s) = .
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the magnitude and phase curves are obtained by inverting those in Fig. G-9. The errors
between the actual and the asymptotic curves in Fig. G-10 are also inverted.

G-3-6 Pure Time Delay, e 7

* The magnitude of the
pure time delay term is
unity for all w.

» EXAMPLE G-5

The magnitude of the pure time delay term is equal to unity for all values of w. The phase
of the pure time delay term is
Le i = —T, (G-52)
which decreases linearly as a function of w. Thus, for the transfer function
G(jw) = G,(jw)e ™" (G-53)

the magnitude plot |G(jw)|4s is identical to that of |G,(jw)|4s- The phase plot £G(jw) is
obtained by subtracting w7, radians from the phase curve of G,(jw) at various w.

As an illustrative example on the manual contruction of Bode plot, consider the function

10(s + 10)

ols) = s(s +2)(s +3)

(G-54)

The first step is to express G(s) in the form of of Eq. (G-23) and set s = jw (keeping in mind that
for computer plotting, this step is unnecessary); we have

10(1 + j0.1w)
jo(1 + j05w)(1 + j0.2w)

G(jo) (G-55)
Equation (G-54) shows that G(jw) has corner frequencies at w = 2, 5, and 10 rad/sec. The pole at
s = 0 gives a magnitude curve that is a straight line with slope of —20 dB/decade, passing through
the w = 1 rad/sec point on the 0-dB axis. The complete Bode plot of the magnitude and phase of



G-4 Magnitude-Phase Plot G-15

40
\\
\§§\\ o —20 dB/sec
20 \\ Il
“l —40 dB/sec
0 | k\
— Gain crossover / \:§<r/ -60 dB/sec
@ 0 3.88 rad/sec \§\
3 N 0 dBlsec
o 40
O \\\
\\\
-60 \
50 N
N
N
-100
0.10 1 2 5 10 100 1000
w (rad/sec)
-90
\
-120 N
\\\
-150 \
3 AN
<
3 \\
= -180 ~ N
Sl Phase crossover
N 5.78 rad/sec
=210
—240
=270
0.10 1 2 5 10 100 1000
w (rad/sec)
10(s + 10)

Figure G-11  Bode plot of G(s) = m
s(s s

G(jw) is obtained by adding the component curves together, point by point, as shown in Fig. G-11.
The actual curves can be obtained by a computer program and are shown in Fig. G-11. <4

G-4 MAGNITUDE-PHASE PLOT

The magnitude-phase plot of G(jw) is a plot of the magnitude of G(jw) in dB versus its
phase in degrees, with w as a parameter on the curve. One of the most important appli-
cations of this type of plot is that when G(jw) is the forward-path transfer function of a
unity-feedback control system, the plot can be superposed on the Nichols chart (see Chap-
ter 9) to give information on the relative stability and frequency response of the system.
When the gain factor K of the transfer function varies, the plot is simply raised or low-
ered vertically according to the value of K in dB. However, in the construction of the plot,
the property of adding the curves of the individual components of the transfer function in
the Bode plot does not carry over to this case. Thus, it is best to make the magnitude-
phase plot by computer or transfer the data from the Bode plot.
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» EXAMPLE G-6 As an illustrative example, the polar plot and the magnitude-phase plot of Eq. (G-54) are shown in
Fig. G-12 and G-13, respectively. The Bode plot of the function is already shown in Fig. G-11. The
relationships among these three plots are easily identified by comparing the curves in Figs. G-11,

G-12, and G-13.
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G-5 GAIN- AND PHASE-CROSSOVER POINTS

Gain- and phase-crossover points on the frequency-domain plots are important for analy-
sis and design of control systems. These are defined as follows.

Gain-Crossover Point: The gain-crossover point on the frequency-domain plot of G(jw)
is the point at which |G(jw)| = 1 or |G(jw)|sz = 0 dB. The frequency at the gain-crossover
point is called the gain-crossover frequency w,.

Phase-Crossover Point: The phase-crossover point on the frequency-domain plot of
G(jw) is the point at which ZG(jw) = 180°. The frequency at the phase-crossover point
is called the phase-crossover frequency w,.

The gain and phase crossovers are interpreted with respect to three types of plots:

Polar Plot: The gain-crossover point (or points) is where |G(jw)l = 1. The phase-
crossover point (or points) is where £ G(jw) = 180° (see Fig. G-12).

Bode Plot: The gain-crossover point (or points) is where the magnitude curve |G(jw)|4s
crosses the 0-dB axis. The phase-crossover point (or points) is where the phase curve
crosses the 180° axis (see Fig. G-11).

Magnitude-Phase Plot: The gain-crossover point (or points) is where the G(jw) curve
crosses the 0-dB axis. The phase-crossover point (or points) is where the G(jw) curve
crosses the 180° axis (see Fig. G-13).

G-6 MINIMUM-PHASE AND NONMINIMUM-PHASE FUNCTIONS

* The magnitude and phase
characteristics of a
minimum-phase function
are uniquely related.

A majority of the process transfer functions encountered in linear control systems do not
have poles or zeros in the right-half s-plane. This class of transfer functions is called the
minimum-phase transfer functions. When a transfer function has either a pole or a zero
in the right-half s-plane, it is called a nonminimum-phase transfer function.

Minimum-phase transfer functions have an important property in that their mag-
nitude and phase characteristics are uniquely related. In other words, given a minimum-
phase function G(s), knowing its magnitude characteristics |G(jw)l completely defines
the phase characteristics, ZG(jw). Conversely, given £ G(jw), |IG(jw)! is completely
defined.

Nonminimum-phase transfer functions do not have the unique magnitude-phase
relationships. For instance, given the function

1
Gjw) = —"— G-56
(o) =7 ol (G-56)
the magnitude of G(jw) is the same whether 7 is positive (nonminimum phase) or negative
(minimum phase). However, the phase of G(jw) is different for positive and negative 7.
Additional properties of the minimum-phase transfer functions are as follows:

1. For a minimum-phase transfer function G(s) with m zeros and n poles, exclud-
ing the poles at s = 0, if any, when s = jw and as w varies from  to 0, the total
phase variation of G(jw) is (n — m)m/2.

2. The value of a minimum-phase transfer function cannot become zero or infinity
at any finite nonzero frequency.

3. A nonminimum-phase transfer function will always have a more positive phase
shift as w is varied from % to 0.
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» EXAMPLE G-7

* Do not use the Bode plot
and the gain-phase plot of
a nonminimum-phase
transfer function for
stability studies.

As an illustrative example of the properties of the nonminimum-phase transfer function, consider
that the zero of the transfer function of Eq. (G-54) is in the right-half s-plane; that is,

10(s — 10)

G(s) = m (G-57)

The magnitude plot of the Bode diagram of G(jw) is identical to that of the minimum-phase trans-
fer function in Eq. (G-54), as shown in Fig. G-11. The phase curve of the Bode plot of G(jw) of
Eq. (G-57) is shown in Fig. G-14(a), and the polar plot is shown in Fig. G-14(b). Notice that the
nonminimum-phase function has a net phase shift of 270° (from —180° to +90°) as w varies from
o to 0, whereas the minimum-phase transfer function if Eq. (G-54) has a net phase change of only
90° (from —180° to —90°) over the same frequency range.

Care should be taken when using the Bode diagram for the analysis and design of systems with
nonminimum-phase transfer functions. For stability studies, the polar plot, when used along with
the Nyquist criterion discussed in Chapter 9, is more convenient for nonminimum-phase systems.
Bode diagrams of nonminimum-phase forward-path transfer functions should not be used for sta-
bility analysis of closed-loop control systems. The same is true for the magnitude-phase plot.
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APPENDIX H

General Nyquist Criterion

H-1 FORMULATION OF NYQUIST CRITERION

The original Nyquist criterion presented in Chapter 9 is cumbersome to apply when the
loop transfer function is of the nonminimum-phase type; that is, L(s) has either poles and/or
zeros in the right-half s-plane. We shall show that if the loop transfer function is of the
nonminimum-phase type, then plotting the Nyquist plot of L(s) only for s = jw to s = j0
and not enclosing the (—1, jO) point in the L(s)-plane is only a necessary but not sufficient
condition for closed-loop stability. For a system with a nonminimum-phase loop transfer
function L(s), the original Nyquist criterion requires that the L(s) plot that corresponds to
the entire Nyquist path in Fig. 9-20 be made. If the loop transfer function L(s) has poles or
zeros on the jw-axis, then the Nyquist path of Fig. 9-20 must have small indentations around
them on the jw-axis. This adds even more complexity to the construction of the L(s) plot.
Our MATLAB Toolbox (ACSYS) or other computer software can all be used to construct
the plots of only functions that correspond to the positive jw-axis of the s-plane. The rest of
the Nyquist plot that corresponds to the small indentations and the large semicircle on the
Nyquist path have to be plotted manually. With modern computer facilities and software, the
analyst should not be burdened with the chores of manual plotting. Therefore, we are intro-
ducing a simplified Nyquist criterion that can be applied by using only the positive jw-axis
of the Nyquist path and then observing its behavior with reference to the (—1, jO) point.

Yeung [1] introduced a general and yet simplified version of the Nyquist criterion
that allows the determination of stability of closed-loop systems of minimum- as well as
nonminimum-phase loop transfer functions by using only the positive part of the jw-axis
of the Nyquist path. However, if the system is of the minimum-phase type, the test of
whether the (—1, jO) point is enclosed is still simpler to apply. We shall show that for non-
minimum-phase systems, if the (—1, jO) point is enclosed, the system is still unstable.
However, if the (—1, jO) point is not enclosed, then an additional angle condition is all
that must be satisfied by the Nyquist plot of L(s) for the system to be stable.

Let us consider the two Nyquist paths shown in Figs. H-1(a) and H-1(b). Apparently,
the Nyquist path I'y;, in Fig. H-1(a) is the original one shown in Fig. 9-20, whereas the
path I,, in Fig. H-1(b) encircles not only the entire right-half s-plane, but also all the poles
and zeros of L(s) on the jw-axis, if there are any. Let us define the following quantities.

Z
P = number of poles of L(s), or of 1 + L(s), that are in the right-half s-plane.

number of zeros of 1 + L(s) that are in the right-half s-plane.

P, = number of poles of L(s), or of 1 + L(s), that are on the jw-axis, including the
origin.

N, = number of times the (—1, jO) point of the L(s)-plane that is encircled by the
Nyquist plot of L(s) corresponding to T'y;.

H-1
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Figure H-1 (a) Nyquist path, (b) An alternative Nyquist path, (Source: K. S. Yeung, “A Refor-
mulation of Nyquist’s Criterion,” /[EEE Trans. Educ., Vol. E-28, pp. 58—60, February 1985.)

N, = number of times the (—1, jO) point of the L(s)-plane that is encircled by the
Nyquist plot of L(s) corresponding to T'y,.

Then, with reference to the two Nyquist paths in Fig. H-1, and according to the Nyquist
criterion,

N =Z-P (H-1)
and
N,=Z—-P—-P, (H-2)

Let @, and P, represent the net angles traversed by the Nyquist plot of L(s) with
respect to the (—1, jO) point, corresponding to I'y; and I',, respectively. Then,

®, = N, X 360° = (Z — P)360° (H-3)
®, =N, X 360° = (Z—- P — P,)360° (H-4)
Let us consider that each of the Nyquist paths I';; and I'y, is composed of three portions:

1. The portion from s = —joo to +j along the semicircle with infinite radius
2. The portion along the jw-axis, excluding all the small indentations
3. All the small indentations on the jw-axis
Since the Nyquist paths in Fig. H-1 are symmetrical about the real axis in the s-plane, the

angles traversed by the Nyquist plots are identical for positive and negative values of w.
Thus, ®, and ®, are written

D, =20, + D, + O, (H-5)
O, =20, — D), + Py (H-6)
where @, = angle traversed by the Nyquist plot of L(s) with respect to the (—1, jO) point,

corresponding to the positive jw-axis or the —jw-axis of the s-plane, excluding
the small indentations.



* In general, Nyquist
criterion can be carried out
by drawing the Nyquist
plot of L(jw) that
corresponds to w = % to
w = 0.

* The angle ®,; is an angle
variation, so that ®,, =
—270° is not the same as
®,, = 90°.

H-1 Formulation of Nyquist Criterion H-3

®,, = angle traversed by the Nyquist plot of L(s) with respect to the (—1, jO) point,
corresponding to the small indentations on the jw-axis of I'y;. Since on I'y, the
directions of the small indentations are opposite to that of I';;, the sign of ®,,
in Eq. (H-5) is negative.

®,; = angle traversed by the Nyquist plot of L(s) with respect to the (—1, jO) point,
corresponding to the semicircle with infinite radius on the Nyquist paths.

For a transfer function L(s) that does not have more zeros than poles, the Nyquist plot
of L(s) that corresponds to the infinite semicircle must either be a point on the real axis
or a trajectory around the origin of the L(s)-plane. Thus, the angle ®,; traversed by the
phasor drawn from the (—1, jO) point to the Nyquist plot along the semicircle with infi-
nite radius is always zero.

Now adding Eq. (H-5) to Eq. (H-6) and using Eqgs. (H-3) and (H-4), we get

b, + P, =4,
= (2Z — 2P — P,)360° (H-7)
Solving for ®,;, we get
®,,=(Z~-P—-05P,)180° (H-8)

The equation states:

The total angle traversed by the phasor drawn from the (—1, jO) point to the L(s)
Nyquist plot that corresponds to the portion on the positive jw-axis of the s-plan, exclud-
ing the small indentations, if any, equals

The number of zeros of 1 + L(s) in the right-half s-plane
— the number of poles of L(s) in the right-half s-plane (H-9)
—0.5(the number of poles of L(s) on the jw-axis)180°

Thus, the Nyquist stability criterion can be carried out by constructing only the
Nyquist plot that corresponds to the s = jo to s = 0 portion on the Nyquist path. Fur-
thermore, if the closed-loop system is unstable, by knowing the values of ®,,, P,, and P,
Eq. (H-8) gives the number of roots of the characteristic equation that are in the right-half
s-plane.

For the closed-loop system to be stable, Z must equal zero. Thus, the Nyquist crite-
rion for stability of the closed-loop system is

®, = —(0.5P, + P)180° (H-10)

Since P, and P cannot be negative, the last equation indicates that
if the phase traversed by the Nyquist plot of L(jw) as @ varies from % to 0,
®,,, is positive with respect to the (—1, jO) point, the closed-loop system is
unstable.
However, if @, is negative, it still has to satisfy Eq. (H-9) for the system to be stable.
With reference to the Nyquist plot of L(jw) and the (—1, jO) point, we see that when
the angle variation ®,; is positive, it corresponds to the (—1, jO) point being enclosed.
Thus, the condition that the Nyquist plot of L(jw) not enclosing the (—1, jO) point is
a necessary condition for closed-loop stability for nonminimum-phase systems. How-
ever, if the (—1, jO) point is not enclosed by the Nyquist plot of L(jw), for the non-
minimum-phase system to be closed-loop stable, the angle variation ®,; still has to
satisfy Eq. (H-9).
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H-1-1 System with Minimum-Phase Loop Transfer Functions

If L(s) is of the minimum-phase type, then P = 0 and P, denotes the number of poles of
L(s) that are at the origin. Eq. (H-8) becomes

®,, = (Z-05P,)180° (H-11)
For closed-loop stability, Z = 0; Eq. (H-11) becomes
(D” = _Pw X 900 (H—12)

Since P, denotes the number of poles of L(s) that are at the origin, it is easy to see that
if the (—1, jO) point is not enclosed by the Nyquist plot of L(s), ®,, will always be given
by Eq. (H-12). Thus, when L(s) is of the minimum-phase type, the condition that the
(—1, jO) point not be enclosed by the Nyquist plot is a necessary and sufficient condition
for closed-loop stability.

H-1-2 Systems with Improper Loop Transfer Functions

Equation (H-8) is derived based on the condition that ®,; = 0, which is true only if L(s)
is strictly proper; that is, it has more poles than zeros. For improper transfer functions,
we can again use the method discussed in Section 9-6 by plotting the Nyquist plot of

1/L(s).

H-2 ILLUSTRATIVE EXAMPLES—GENERAL NYQUIST CRITERION
MINIMUM AND NONMINIMUM TRANSFER FUNCTIONS

In the following example we shall show that the Nyquist plot of a nonminimum-phase
transfer function does not enclose the (—1, jO) point, and yet the system is unstable.

P EXAMPLE H-1 Consider that the loop transfer function of a control system is given by

Ls) S —s5+1 (H-13)
) = -
s(s*> — 65 + 5)
jImL4
L(jw)-plane
A4
w = 0
1 0 RgL

@)= -90°

Enclosed
area

A 4

Figure H-2  Nyquist plot
sf—s+1 S
s(s> — 65 + 5)

of L(s) =

00+
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Since L(s) has one pole at the origin, and two poles in the right-half s-plane, P, = 1 and P = 2.
From Eq. (H-9), the closed-loop system is stable if the following condition is satisfied:

®,, = —(0.5P, + P)I80° = —450° (H-14)

The Nyquist plot of L(jw) for @ = % to w = 0 is plotted as shown in Fig. H-2. Apparently, in this
case, the (—1, jO) point is not enclosed by the Nyquist plot. However, since ®;; is —90°, and not
—450°, the system is unstable. Substituting ®;; = 90° into Eq. (9-82) and solving for Z, we have
Z = 2, which means that there are two closed-loop poles in the right-half s-plane. <

Consider the system described in Example 9-1. the loop transfer function of the system, L(s), is
given in Eq. (9-59), and is repeated below.

K

s(s + 2)(s + 10) H-15)

L(jw) =
The Nyquist plot of L(jw) is shown in Fig. 9-25. It is shown in Example 9-1 that for closed-loop
stability, the (—1, jO) point in the L(jw)-plane must be to the left of the intersect of the Nyquist
plot with the real axis.
Now we shall apply the generalized Nyquist criterion to the system. Since L(s) is of the
minimum-phase type, P = 0, and it has one pole at the origin, thus, P, = 1. Substituting these
quantities into Eq. (H-11), we have

®,, = (Z - 0.5)180° (H-16)

For closed-loop stability, Z must equal zero; thus the last equation gives ®,; = —90°. This means
that the phasor drawn from the (—1, jO) to the Nyquist plot, from @ = % to @ = 0, must equal
—90°, or 90° in the CW direction. Figure H-3(a) shows that if the (—1, jO) point is to the left of
the intersect of L(jw) with the real axis, @, is indeed —90°. On the other hand, if the (—1, jO)
point is to the right of the intersect as shown in Fig. H-3(b) when the value of K is greater than 240,
then, &, is +270°, or (more easily observed when the critical point is enclosed), the system would
be unstable. Substituting, @, = 270° into Eq. (H-16), we get Z = 2, which means that the char-
acteristic equation has two roots in the right-half s-plane. Thus, for systems with minimum-phase
loop transfer functions, the Nyquist criterion with the “enclosure” test is easier to observe, but when
the system is unstable, it does not tell how many characteristic equation roots are in the right-half
plane; the general Nyquist criterion does.

L(jw)-plane jImL 4 L(jw)-plane jImL 4
-1 @ =-90°| - w=0%
— o e —
/ 0 Rel -1 0 Re L
@), = +270°
Enclosed Enclosed
area area
3 3
| |
) S
(a) (b)

K

Figure H-3 Nyquist plot of L(s) = m
NS s

(a) K < 240. (b) K > 240.
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P EXAMPLE H-3 Consider that a control system has the loop transfer function

L K(s — 1) -~

(S)_s(s-i-l) (H-17)

We observed from the last equation that P, = 1, and P = 0. The function L(s) is of the nonminimum-

phase type, since it has a zero at s = 1. Thus, the Nyquist criterion on enclosure cannot be used
adequately in this case. From Eq. (H-8), the requirement for closed-loop stability is

®,, = —(0.5P, + P)180° = —90° (H-18)

Thus, the stability criterion requires that the phasor drawn from the (—1, jO) point to the Nyquist
plot of L(jw) should traverse —90° as w varies from % to 0.

To sketch the Nyquist plot of L(s) that corresponds to the postive portion of the jw-axis of the
s-plane, we set s = jow in Eq. (H-17). We get

K(jo = 1) K(jo = 1)

L(jw) = = H-19
U0) = oo + 1)~ o + jo (H-19)
When @ = ®,
. K
L(joo) = — =04£-90° (H-20)
Joly=u
When w = 0,
. K
L(jO) = — = 0/90° (H-21)
JW =0

To find the intersect of the L(jw) plot on the real axis, we rationalize the function by multiplying
the numerator and the denominator of Eq. (H-19) by —w® — jw. We have
K(jo — 1)(~a* — jo) _ K[20 + (1 — o?)]

Ljw) = ot + o - w(cu2 + 1) (H-22)

Setting the imaginary part of L(jw) to zero and solving for w?, we have
> = *1 rad/sec (H-23)
Forw =1,
L(j1) =K (H-24)

NYQUIST PLOT FOR K > 0. Based on the preceding information, the Nyquist plot of
L(jw) that corresponds to the positive portion of the jw-axis is sketched as shown in Fig. H-4 for
K > 0. Figure H-4 shows that as  varies from % to 0 along the Nyquist plot, the net angle ®,; tra-
versed by the phasor drawn from the (—1, jO) point to the Nyquist plot is +90°. Thus, the system
is unstable because @, is positive. We can also readily see that (—1, jO) is enclosed by the Nyquist
plot, and so the same conclusion on closed-loop stability can be drawn.

From Eq. (H-7),

®,, = (Z - 0.5P, — P)180° = (Z — 0.5)180° = 90° (H-25)

Thus, Z = 1, which means that the characteristic equation of the closed-loop system has one root
in the right-half s-plane. The characteristic equation of the system is

s+(1+Ks—K=0 (H-26)
We can easily verify that stability requires
0>K> -1 (H-27)

NYQUIST PLOT FOR K < 0. Figure H-5(a) shows the Nyquist plot of L(jw) when K lies
between 0 and — 1. Notice that the plot is obtained by rorating the L(jw) plot of Fig. H-4 by 180°
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jImL 4
o
1
e
L(jw)-plane
Enclosed
area
D =490°
Figure H-4 Nyquist plot of the
7? system in Example H-3.
K(s — 1)
L(s) = ————.
s(s + 1)

about the origin. As w is varied from % to 0, the angle ®,; in Fig. H-5(a) has a net rotation of —90°,
which agrees with the stability requirement in Eq. (H-18), and the closed-loop system is stable. It
should be reminded that since L(jw) is of the minimum-phase type, the fact that the Nyquist plot
of L(jw) of Fig. H-5(a) does not enclose the (—1, jO) is not the reason that the system is stable.

Figure H-5(b) shows the Nyquist plot when K < —1. Now we see that the (—1, jO) point is
enclosed, so system is unstable. Checking the value of ®;;, we have ®,; = 270°, which differs from
the required —90°. Using Eq. (H-8),

®,, = (Z - 0.5P, — P)180° = (Z — 0.5)180° = 270° (H-28)

Thus, Z = 2, which means that the characteristic equation has two roots in the right-half s-plane.
In general, when K changes sign, it is not necessary to redraw the Nyquist plot as shown in Fig. H-5.
Equation (9-40) can be written as

1+ L(S) =1+ KLI(S) =0 (H-29)
jImL 4 JImL 4
L(jw)-plane L(jw)-plane
-1<K<0 K<-1
S De== |
- u K 0 Rel
@), =-90° w=1 @), = +270°
Enclosed Enclosed

area area

S e
\ )
5 =)

(@ (b)

K(s
Figure H-5 Nyquist plots of the system in Example H-3. L(s) = (

s(s
() 1 <K<0. (b) K< —1.



H-8 Appendix H General Nyquist Criterion

jImL 4
2 T
3 3
L(jw)-plane Enclosed
—
~I<K<0 ™ B closed
area . .
Figure H-6 Nyquist plot of
w=2 . Kis—1)
> L(s) = — -~ withK <0.
0 Re L s(s + 1)
The (+1, jO) point is the critical
point.
where K is positive. For negative K, the last equation can be written as
1 —KL(s)=0 (H-30)
or
KL\(s) =1 (H-31)

where K is now positive. Thus, Eq. (H-31) shows that when K is negative, we can still use the L(jw)
plot for positive K, but designate the (+1, jO) point as the critical point for stability analysis.

Figure H-6 shows the Nyquist plot of Eq. (H-17) for K > 0. When K is negative, the (+1, jO)
point is regarded as the critical point. As shown in Fig. H-6, for —1 < K < 0, ®;, is —90°, which
is the required value, and the system is stable. When K < —1, the (+1, jO) point is enclosed by the
Nyquist plot, and the system is unstable. These results agree with those obtained from Fig. H-5
when the Nyquist plots for K < 0 were actually constructed.

It is of interest to compare the Nyquist stability analysis with the root-locus analysis. Figure
H-7 shows the root loci of the characteristic equation of the system with the loop transfer function

s-plane K<0

r 3

K<0

Figure H-7 Complete root loci of system in Example H-3.
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given in Eq. (H-17). The stability condition of the system as a function of K is clearly indicated by
the root-locus diagram. The RL between 0 and +1 on the real axis indicates that the system is un-
stable for 0 < K < «. The RL indicates that for negative values of K, the system is unstable for
—o < K < —1, and the system is stable only for the range of —1 < K < 0. The root loci cross
the jw-axis at w = *1 rad/sec, which are the values of w at which the Nyquist plot of L(jw) intersects
the negative real axis.

P EXAMPLE H-4 Consider the control system shown in Fig. H-8. It is desired to determine the range of K for which
the system is stable. The loop transfer function of the system is

L Y(s) 10K(s + 2) .
l=—t = g
) E(s) s +35410 ( )
The poles of L(s) are found to be at s = —3.72, 0.361 + j1.6, and 0.361 — j1.6. Or, we can use
the Routh-Hurwitz criterion to verify that L(s) has two poles in the right-half s-plane. Thus, P = 2,
and P, = 0. The transfer function L(s) is of the nonminimum-phase type. From Eq. (H-9), the
requirement for the closed-loop system to be stable is

®,, = —(0.5P, + P)180° = —360° (H-33)

Setting s = jw, Eq. (H-32) becomes

Loy = e T2 (1-34)
(10 = 3w”) — jw’
At w = o,
L(j*) = 0£180° (H-35)
Atw = 0,
L(j0) = 2K (H-36)

To find the intersect on the real axis of the L(jw)-plane, we rationalize L(jw) as

10K{2(10 — 30®) — o* + j[w(10 — 3w?) + 2w?]}

L(jw) = H-37
() (10 — 302 + o° H-37)

Setting the imaginary part of L(jw) to zero, we have
o(10 — 30*) + 20° =0 (H-38)

The solutions of the last equation are w = 0 and w = *V10 = 3.16 rad/sec, which are the
frequencies at which the L(jw) plot intersects the real axis of the L(jw)-plane. When w = 0, we
already have L(jO) = 2K in Eq. (H-36). When w = 3.16 rad/sec,

L(j3.16) = —K (H-39)

R(s) E(s) 10 Y(s)
> K(s+2) > Zoed) >

Figure H-8 Block diagram of the control system in Example H-4.
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Figure H-10 Complete
root loci of the system in
Example H-4.
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jImL 4

543K

L(jw)-plane
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jImL 4
j5.43K L(jw)-plane
w=1.54
w=+/10
@, = -360° ‘ = =0
k\ -1 Jo 2K Rel
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Figure H-9 Nyquist plots of the system in Example H-4. (a) 1 > K > 0. (b) K > 1.

Figure H-9(a) shows the Nqyuist plot of L(jw) for 0 < K < 1. Since the (—1, jO) point is enclosed
by the Nyquist plot, the closed-loop system is unstable. We can also show that the angle traversed by
@, is 0° not —360°, as required in Eq. (H-33). Figure H-9(b) shows the Nyquist plot of L(jw) when
K is greater than unity. In this case, the angle ®,; rotates a total of —360°, thus, the system is stable.

v
8 @
t
X
K=1%} j\/10
s-plane
K=0
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—o— K K=0 K=t 0 K— —©
K<0 -3.72 K>0 2 -0.5 s
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When K is negative, we can use the plots in Fig. H-9, and regard the (+1, jO) point as the critical
point. The following stability conditions are observed:

2K < —1: The (+1, jO) point lies between O and 2K, and is not enclosed by L(jw), but
®,, = —180° the system is unstable. For stability, ®,; must equal —360°.

—1 < 2K <0: The(+1, jO) point is to the right of the point 2K, and is enclosed by the Nyquist
plot; the system is unstable. In this case, ®;; = 0°.

The conclusion is that the system is stable for K > 1. The root loci of the system are shown
in Fig. H-10. Clearly, when K is negative, one branch of the RL will always stay in the right-half
plane, and the system is unstable. The system is stable only for K > 1, and the root loci cross the
Jjw-axis at @ = *=3.16 rad/sec, which corresponds to the frequency at which the L(jw) plot inter-
sects the negative real axis. The value of K at the crossing point on the jw-axis is 1.

Consider a control system with the loop transfer function

K

L=+ 9 H-40)
which has a pair of imaginary poles at s = j2 and —j2. Thus, P, = 2, and P = 0. To apply the
Nyquist criterion in the original form, we would have to define the Nyquist path with small inden-
tations around these poles.

Instead of constructing the entire Nyquist plot, the portion that corresponds to s = joo to jO is
plotted as shown in Fig. H-11. The data for this Nyquist plot are easily obtained using any of the

frequency-domain program mentioned earlier.

jImL 4
<
N
<
L(jw)-plane
Enclosed
arca (p” =0° ¢” = _180°
Critical point Critical point  Critical point
K>0 K<-8 0>K>-8
@, = +180° Unstable Stable
Unstable
| w=%® K78 | R
-1 0 +1 /" +1 Re L
w=0
Y
45
Enclosed
area
3
N
2

Figure H-11  Nyquist plot of the control system in Example H-5.
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From Eq. (H-9), the value of ®,; required for stability is
®,, = —(0.5P, + P)180° = —180° (H-41)

As seen from Fig. H-11, the magnitude of L(jw) goes to infinity when w = 2 rad/sec. When
K is positive, the critical point (—1, jO) is not enclosed by the Nyquist plot, and the system is un-
stable. For the angle check, when w varies from % to 2, the angle ®,, is +135° and for the por-
tion of @ = 2 to 0, ®,, is +45°. Thus, the total ®,; is +180°, not —180°. The system is unstable
for all positive values of K.

When K is negative, the critical point in Fig. H-11 is at (+1, jO). Figure H-11 shows that if the
(+1, jO) point lies between 0 and K/8, it is enclosed by the Nyquist path, and the system is unstable.
Thus, the system is unstable for K < —8. When the (+1, jO) point is to the right of the K/8 point,
@), from w = © to w = 2 is —45° and from w = 2 to @ = 0 is —135°. Thus the total ®;, as w varies
from o to 0 is —180°, which agrees with the value required in Eq. (H-41). The system is stable for O
> K > —8. The summary of the Nyquist criterion application to this system is as follows.

®,, (deg) for ®,, (deg) for Total &, Critical Stability
Range of K w=2t0 w=2t0® (deg) Point Condition
K>0 +135 +45 +180 —1 point
enclosed Unstable
K< -8 —45 +45 0 +1 point
enclosed Unstable
-8 <K<O0 —45 —135 —180 Stable

The complete root loci of the characteristic equation of the system are constructed in Fig. H-12
using the pole-zero configuration of Eq. (H-40). The stability condition of —8 < K < 0 is easily
viewed from the root loci.

K>0 0 K<0 o

Figure H-12  Complete root loci of the system in Example H-5. <
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H-3 STABILITY ANALYSIS OF MULTILOOP SYSTEMS

» EXAMPLE H-6

The Nyquist stability analyses conducted in the preceding sections are all directed toward
the loop transfer function L(s). It does not matter whether the system is with single loop
or multiple loops, since once the loop transfer function is obtained, stability analysis can
be conducted using either the Routh-Hurwitz criterion, root loci, or the Nyquist criterion.

For multiloop feedback systems, it may be advantageous to analyze the stability of
the system by working from the inner loop toward the outer loop, one at a time. This way,
more insight may be gained on the stability of the individual loops of the system. The
following example will illustrate this approach.

Figure H-13 shows the block diagram of a system that controls the gun turret of a tank. During
servicing of the turret control system, the mechanic accidentally opened the outer loop of the sys-
tem. With the power turned on, the gun turret went out of control, and finally flew apart. The pur-
pose of this example is to show that it is inadequate to investigate just the stability of the overall
system. In general, for a multiloop control system, one should conduct a systematic stability analy-
sis of all the inner loops of the system. It is admissible to have unstable inner loops, as long as the
overall system is stable. However, if such a situation exists, it is important to forewarn or take pre-
cautionary measures to prevent opening the loops during operation.
The loop transfer function of the inner loop is

6

G(s)=——= H-42
)= T s+ 2) (H-42)
Figure H-14 shows the Nyquist plot of G(s). Since the plot intersects the real axis at the —1 point
at w = 1.414 rad/sec, the inner loop is marginally stable. Therefore, if the outer loop of the system
is opened, the system will oscillate continuously with a frequency of 1.414 rad/sec. The loop trans-

fer function of the overall system is
L(s) = G(5)G(s) B 100(s + 0.1)
() =77 G(s) (s + 10)(s* + 35> + 25 + 6)

(H-43)

R(s) E(s) |16.67(s +0.1) 6 Y(s) o
+ s+10 ¥ s(s +1)(s +2) "

G.(s) G(s)

Figure H-13 Multiloop feedback control system for tank turret control.
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Figure H-14  Nyquist plot of G(S) = m
N®) N

Since L(s) has two poles on the jw-axis and the rest are in the left-half s-plane, P, = 2 and P = 0.
The function is also of the nonminimum-phase type, so we must use Eq. (H-9) for the stability test
of the overall system. Thus,

®,, = —(0.5P, + P)180° = —180° (H-44)

The Nyquist plot of L(s) is plotted as shown in Fig. H-15. The angle @, for v = ® to v = 1.414
rad/sec is —90°, and from w = 1.414 rad/sec to @ = 0 is —90°. Thus, the total value of ®,; for
o = »tow = 0is —180° and the overall system is stable.

In general, when more than two loops are involved, the proper way is to start with the stabil-
ity of the innermost loop by opening all the outer loops, and then add one loop at a time, until the
outermost loop is closed.

FImL

15k L(jw)-plane

05

05

100(s + 0.1)
(s + 10)(s* + 3s* + 25 + 6) <

Figure H-15  Nyquist plot of L(s) =
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H-1. The loop transfer functions L(s) of single-feedback-loop systems are given in the follow-
ing equations. Sketch the Nyquist plot of L(jw) for @ = 0 to %. Determine the stability of the
closed-loop system. If the system is unstable, find the number of poles of the closed-loop transfer
function that are in the right-half s-plane. Solve for the intersect of L(jw) on the negative real
axis of the L(jw)-plane analytically. You may construct the Nyquist plot of L(jw) using any
computer program.

70 oS0
(@) L) s(s + (s — 1) (b) Lis) s(s +35)(s — 1)
© L) =02 @ L(s) = ——

s(s* + 35+ 1) s(s + 1)(s* + 2)
2 —55+2 ) B —0.1(s* = 1I)(s + 2)
w2 rmei0 DO

(e) L(s) =

H-2. The loop transfer functions of single-feedback-loop control systems are given in the fol-
lowing equations. Apply the Nyquist criterion and determine the values of K for the system to be
stable. Sketch the Nyquist plot of L(jw) with K = 1 for @ = 0 to @ = %. You may use a com-
puter program to plot the Nyquist plots.

_KG—2) -
(a) L(s) = 5(32 -1 (b) L(s) = s(s + 10)(s — 2)
_ O K(s+1) K& —5s+2)
© L) = 5 m T @ L) = 527 + 25 + 10)
(e) L(S) — M ) L(s) = M

s+ s+ 1) s(s + 1)(s* + 4)

H-3. Figure HP-3 shows the Nyquist plots of the loop transfer function L(jw) for @ = 0 to w =
for single-feedback-loop control systems. The number of poles of L(jw) that are on the jw-axis, P,,
and in the right-half s-plane, P, are indicated for each case. Determine the stability of the closed-
loop system by applying the Nyquist criterion. For the unstable systems, give the number of
zeros of 1 + L(s) that are in the right-half s-plane.

H-4. It was mentioned in the text that when the function L(jw) has more zeros than poles, it is
necessary to plot the Nyquist plot of 1/L(jw) to apply the simplified Nyquist criterion. Determine
the stability of the systems described by the function 1/L(jw) shown in Fig. HP-4. For each case,
the values of P, and P for the function 1/L(jw) are given, where P, refers to the number of
poles of 1/L(jw) that are on the jw-axis, and P refers to the number of poles of 1 + 1/L(jw) that
are in the right-half s-plane.

H-5. Figure HP-5 shows the Nyquist plots of loop transfer function L(jw) for w = 0 to w = =
for single-feedback-loop control systems. The gain K appears as a multiplying factor in L(s). The
number of poles of L(jw) that are on the jw-axis and in the right-half s-plane are indicated in
each case. Determine the range(s) of K for closed-loop system stability.

H-6. The characteristic equations of linear control systems are given below. Apply the Nyquist
criterion to determine the values of K for system stability. Check the answers by means of the
Routh-Hurwitz criterion.

(a) $* +4Ks* + (K+5)s+10=0 (b) s+ K(s*+2s+1)=0
© s(s+ 1)(s*+4)+Ks*+1)=0 (d) s>+ 25 + 20s + 10K =0
(e s(s*+3s+3)+Ks+2)=0
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APPENDIX I

Discrete-Data
Control Systems

I-1 INTRODUCTION

In recent years discrete-data and digital control systems have become more important in
industry, mainly because of advances made in microprocessors and microcomputers. In
addition, there are distinct advantages working with digital versus analog signals.

The block diagram of a typical digital control system is shown in Fig. I-1. The sys-
tem is characterized by digitally coded signals at various parts of the system. However,
the output device of the system is usually an analog component, such as a dc motor, driven
by analog signals. Therefore, a digital control system often requires the use of digital-
to-analog (D/A) and analog-to-digital (A/D) converters.

I-2 THE z-TRANSFORM

Just as linear continuous-data systems are described by differential equations, linear dig-
ital control systems are described by difference equations (see Appendix B). We have seen
that Laplace transform is a powerful method of solving linear time-invariant differential
equations. Similarly, z-transform is an operational method of solving linear time-invariant
difference equations.

I-2-1 Definition of the z-Transform

Consider the sequence y(k), k = 0, 1, 2, ..., where y(k) could represent a sequence of
numbers or events. The z-transform of y(k) is defined as

Y(z) = z-transform of y(k) = Z[y(k)]
= > k) (I-1)
k=0

where z is a complex variable with real and imaginary parts. The significance of this def-
inition will become clear later. One important property of the z-transform is that it can

r(t) r*(t) h(t) ()
DIGITAL » D/A PROCESS I
CONTROLLER

A

Figure I-1  Block diagram of a typical digital control system.

I-1
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» EXAMPLE I-1

» EXAMPLE I-2

convert a sequence of numbers in the real domain into an expression in the complex
z-domain. The following examples illustrate the derivation of the z-transforms of two
simple functions.

Consider the sequence
yky=e* k=0,1,2,... (I-2)
where « is a real constant. Applying Eq. (I-1), the z-transform of y(k) is written
Y(z) = 2 e k=14 e 22+ I-3)
=0
which converges for [e™* z7!| < 1.

Multiplying both sides of the last equation by e ® z~!, subtracting the resulting equation from
Eq. (I-3), and solving for ¥(z), the latter is expressed in closed form as

1 z
Y(z) = = 1-4
Q=T (1-4)
for ez < 1. |
In Example I-1, if &« = 0, we have
(k) =1 k=0,1,2,... (I1-5)

which represents a sequence of ones. Then, the z-transform of y(k) is

Y) =14z 472+ = Zl (1-6)
T

which converges for |z] > 1. <

I-2-2 Relationship between the Laplace Transform and the z-Transform

While the mathematicians like to talk about sequences, engineers feel more at home deal-
ing with signals. It may be useful to represent the sequence y(kT), k = 0, 1, 2, ... as a
train of impulses separated by the time interval 7. The latter is defined as the sampling
period. The impulse at the kth time instant, 6(f+ — kT), carries the value of y(kT). This
situation occurs quite often in digital and sampled-data control systems in which a signal
y(#) is digitized or sampled every T seconds to form a time sequence that represents the
signal at the sampling instants. Thus, we can relate the sequence y(kT) with a signal that
can be expressed as

©

y¥(t) = D) y(kT)8(t — kT) (I-7)

k=0
Taking the Laplace transform on both sides of Eq. (I-7), we have

©

> y(kT)e (I-8)

k=0

P
~
[
N
I
D
-
)
*
~—
-~
G
=
I

Comparing Eq. (I-8) with Eq. (I-1), we see that the z-transform may be related to the
Laplace transform through

z=e€" (1-9)
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In fact, the z-transform as defined in Eq. (I-1) may be regarded as a special case with
T = 1. The definition of the z-transform in Eq. (I-9) allows us to treat sampled systems
and perform digital simulation of continuous-data systems. Thus, we can summarize the
definition of the z-transform as

Y(z) = Z[y(kT)] = Z[y*(1)] = Z[Y*(s)] (I-10)
Or, we can write
Y(z) = Z[y(1)] = Z[¥(s)] (I-11)

with the understanding that the function y(7) is first sampled or discretized to get y*(f) be-
fore taking the z-transform.

P EXAMPLE I-3 Consider the time function
(1) = e uyr) (1-12)
The z-transform of y(#) is obtained by performing the following steps:

1. Represent the values of y(¢) at the time instants t = k7, k = 0, 1, 2, ..., to form the function
yH:
yE) =D e (1t — kT) (1-13)

k=0

2. Take the Laplace transform on both sides of Eq. (I-13):
Y*(S) — E e—akTe—kTs — 2 e—(s-Hx)kT (1_14)
=0 =0

3. Express Y*(s) in closed form and apply Eq. (I-9), giving the z-transform,

Y(z) = 7_Z T (1-15)
Z e

In general, the z-transforms of more complex functions may be obtained with the help of some
of the z-transform theorems that follow. For engineering purposes, a z-transform table such as that
in Appendix J may be used to transform from y(k) to Y(z). <

Some Important Theorems of the z-Transform
Some of the commonly used theorems of the z-transform are stated in the following with-
out proof. Just as in the case of the Laplace transform, these theorems are useful in many
aspects of the z-transform analysis. For uniformity, the real sequence is expressed as y(kT),
and if a sampling period is not involved, T can be set to unity.
Theorem 1. Addition and Subtraction
If y,(kT) and y,(kT) have z-transforms Y,(z) and Y,(2), respectively, then
ZIn(kT) = y,(kT)] = Yi(2) = Y,(2) (I-16)
Theorem 2. Multiplication by a Constant
Zlay(kT)] = aZ[y(kT)] = a¥(z) (I1-17)

where « is a constant.
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e The final-value theorem
is valid only if

(1 — z7HY(z) does not
have poles on or inside the
unit circle Izl = 1.

Theorem 3. Real Translation (Time Delay and Time Advance)

Z[y(kT — nT)] = 7 "Y(2) (I-18)
and
Z[y(kT + nT)] = z"| Y(z) — njy(kT)z*k] (I-19)

where n is a positive integer.

Equation (I-18) represents the z-transform of a time sequence that is shifted to the
right by n7, and Eq. (I-19) denotes that of a time sequence shifted to the left by n7. The
reason that the right-hand side of Eq. (I-19) is not just z"Y(z) is because the one-sided
z-transform, similar to the Laplace transform, is defined only for £ = 0. Thus, the second
term on the right-hand side of Eq. (I-19) simply represents the sequence that is lost after
it is shifted to the left of k = 0.

Theorem 4. Complex Translation
Z[e" M y(kT)] = Y(ze™T) (1-20)

where a is a constant. Y(z) is the z-transform of y(kT).

Theorem 5. Initial-Value Theorem
lim y(kT) = lim ¥(z) (1-21)

if the limit exists.

Theorem 6. Final-Value Theorem
]}im y(kT) = lirr11(1 -7 HY(2) (1-22)

if the function (1 — z ")Y(z) has no poles on or outside the unit circle |z| = 1 in the
z-plane.

Theorem 7. Real Convolution

N
Y,(2)Ys(z) = Eyl (KT)y»(NT — kT } {2 (kT)y,(NT — kT)
=2z [YI(kT) yo(kT)] (1-23)
where “*’ denotes real convolution in the discrete-time domain.

Thus, we see that as in the Laplace transform, the z-transform of the product of two real
functions y,(k) and y,(k) is not equal to the product of the z-transforms Y;(z) and Y,(2).
One exception to this in the case of the z-transform is if one of the two functions is the
delay e ™, where N is a positive integer, then

2[e M Y(s)] = Z[e ) 2[V6)] = VY () (1-24)

Table I-1 summarizes the theorems on the z-transform just given. The following
examples illustrate the usefulness of some of these theorems.
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TABLE I-1 Theorems of z-Transforms

Addition and subtraction Zy(kT) = y,(kT)] = Y,(2) = Ya(z)
Multiplication by a constant  Z[ay(kT)] = aZ[y(kT)] = a¥(z)
Real translation Zy(k — n)T] = z7"Y(z) (time delay)

n—1
Zly(k + m)T] = 2| ¥(z) — D y(kT)z™*| (time advance)
k=0

where n = positive integer

Complex translation Z[e ™ Ty(kT)] = Y(ze™"T)
Initial-value theorem limy(kT) = lim¥(z)
k—0 z—>®
Final-value theorem limy(kT) = lim(1 — z HY¥(2)
k—o z—1

if (1 — z ")Y¥(z) has no poles on or inside |z| = 1.
Yi(2)Ya(z) = Z{ Eyl(kT))’z(NT - kT)}
k=0

Real convolution =Z { > yo(kT)y,(NT — kT)}
k=0
Z[yi(KT) * y(kT)]

> EXAMPLE I-4 (complex translation theorem) To find the z-transform of y(r) = te™, let f(t) = t, t = 0; then

Tz
F(z) = Z[tu(t)] = Z(kT) = - 17 1-25)
Using the complex translation theorem in Eq. (I-20), we obtain
—at aT TZe_aT
Y(z) = Z[te “ut)] = F(ze*") = m (I-26)
<
P EXAMPLE I-5 (final-value theorem) Given the function
0.7927
Y() = < (1-27)

(z — 1)(z% — 0.146z + 0.208)

determine the value of y(kT') as k approaches infinity.
Since the function (1 — z~")¥(z) does not have any pole on or outside the unit circle |z] = 1 in
the z-plane, the final-value theorem in Eq. (I-22) can be applied. Thus,

0.7927
2 — 0416z + 0.208

limy(kT) = lim (1-28)

<

I-2-4 Inverse z-Transform

e The inverse z-transform  Just as in the Laplace transform, one of the major objectives of the z-transform is that al-
of Y(z) is y(kT), not y(2). gebraic manipulations can be made first in the z-domain, and then the final time response
determined by the inverse z-transform. In general, the inverse z-transform of a function
Y(z) yields information on y(kT) only, not on y(t). In other words, the z-transform carries
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e If Y(s) has at least one
zero at z = 0, the partial-
fraction expansion of
Y(z)/z should first be
performed.

» EXAMPLE 1-6

 If Y(s) does not have any
zeros at z = 0, then
perform the partial-fraction
expansion of Y(z) directly.

» EXAMPLE I-7

information only at the sampling instants. With this in mind, the inverse z-transform can
be carried out by one of the following three methods:

1. Partial-fraction expansion
2. Power-series method

3. The inverse formula

Partial-Fraction Expansion Method

The z-transform function Y(z) is expanded by partial-fraction expansion into a sum of sim-
ple recognizable terms, and the z-transform table is used to determine the corresponding
y(kT). In carrying out the partial-fraction expansion, there is a slight difference between
the z-transform and the Laplace transform procedures. With reference to the z-transform
table, we note that practically all the z-transform functions have the term z in the numer-
ator. Therefore, we should expand Y(z) into the form of

Kz Kyz

Y(z) = + + .- 1-2
(2) 1— e, o BT (1-29)

To do this, first expand Y(z)/z into fractions and then multiply by z to obtain the final
expression. The following example will illustrate this procedure.

Given the z-transform function

B (1 —e™T)
Y(z) = == (1-30)

find the inverse z-transform. Expanding Y(z)/z by partial-fraction expansion, we have

@ - 1 _ # (I-31)
z z—1 z—e¢
The final expanded expression for Y(z) is
z b4
Y(z) = " (1-32)

z—1 z—e€

From the z-transform table in Appendix J, the corresponding inverse z-transform of Y(z) is found to be
yAT)=1—e " k=0,1,2,... (1-33)

<

It should be pointed out that if ¥(z) does not contain any factors of z in the numera-
tor, this usually means that the time sequence has a delay, and the partial-fraction expan-
sion of Y(z) should be carried out without first dividing the function by z. The following
example illustrates this situation.

Consider the function

Y(z) S (1-34)

)= T —as -
=D —e)

which does not contain any powers of z as a factor in the numerator. In this case, the partial-fraction

expansion of ¥Y(z) is carried out directly. We have

Y(z) = E— (I-35)
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Although the z-transform table does not contain exact matches for the components in Eq. (I-35),
we recognize that the inverse z-transform of the first term on the right-hand side can be written as

el o5

z—1

= wl(k — 1)T] k=1,2,... (1-36)
Similarly, the second term on the right-hand side of Eq. (I-35) can be identified with a time delay
of T seconds. Thus, the inverse z-transform of Y(z) is written

ykT) = (1 — e« y[(k = DT]  k=1,2,... (1-37)
<

I-2-5 Computer Solution of the Partial-Fraction Expansion of Y(2)/z

» EXAMPLE I-8

Whether the function to be expanded by partial fraction is in the form of Y(z)/z or ¥(z),
the computer programs designed for performing the partial-fraction of Laplace transform
functions can still be applied.

Power-Series Method

The definition of the z-transform in Eq. (I-1) gives a straightforward method of carrying
out the inverse z-transform. Based on Eq. (I-1) we can clearly see that in the sampled case
the coefficient of z % in Y(z) is simply y(kT). Thus, if we expand Y(z) into a power series
in powers of 7z ¥, we can find the values of y(kT) fork =0,1,2, ...

Consider the function Y(z) given in Eq. (I-30), which can be expanded into a power series of 7!

by dividing the numerator polynomial by the denominator polynomial by long division. The result is
Y@)=(1—e )z + (1 =)+ + (1 —e*)h + - (1-38)

Thus, it is apparent that
YAT)=1—e*" k=0,1,2,... (1-39)

which is the same result as in Eq. (I-33). |

Inversion Formula
The time sequence y(kT') can be determined from Y(z) by use of the inversion formula:

WKT) = —— 7{ Y()2tdz (1-40)
27j Jr

which is a contour integration along the path T, that is, a circle of radius |z| = ¢” centered

at the origin in the z-plane, and c is a value such that the poles of ¥(z)z*~" are inside the circle.

The inversion formula of the z-transform is similar to that of the inverse Laplace-transform

integral given in Eq. (2-10). One way of evaluating the contour integration of Eq. (I-40) is to

use the residue theorem of complex-variable theory (the details are not covered here).

I-2-6 Application of the z-Transform to the
Solution of Linear Difference Equations

The z-transform can be used to solve linear difference equations. As a simple example,
let us consider the first-order unforced difference equation

yk + 1)+ yk) =0 (I1-41)



I-8

Appendix | Discrete-Data Control Systems

» EXAMPLE 1-9

To solve this equation, we take the z-transform on both sides of the equation. By this, we
mean that we multiply both sides of the equation by z * and take the sum from k = 0 to
k = . We have

©

Syt + Dz + D yk)z k=0 (1-42)
k=0

k=0

By using the definition of Y(z) and the real translation theorem of Eq. (I-19) for time
advance, the last equation is written

Z[Y(z) = ¥(0)] + Y(z) = 0 (I-43)
Solving for Y(z), we get

Y@ = (0) (1-44)

The inverse z-transform of the last equation can be obtained by expanding Y(z) into a
power series in z!' by long division. We have

Yo)=(1 -z +27 =27+ )x0) (1-45)
Thus, y(k) is written
y(k) = (=1)fy(0)  k=0,1,2,... (1-46)

Equation (I-41) is recognized as a single state equation. The z-transform solution of
high-order discrete-data systems described by state equations is treated in Section I-3.

The following example shows the z-transform solution of a second-order difference
equation.

Consider the second-order difference equation
y(k + 2) + 0.5y(k + 1) + 0.2y(k) = u(k) (1-47)
where
u(k) = u(k) =1 fork=0,1,2,... (1-48)

The initial conditions of y(k) are: y(0) = 0 and y(1) = 0.
Taking the z-transform on both sides of Eq. (I-47), we get

[22Y(z) — 22y(0) — zy(1)] + 0.5[z¥(z) — 2y(0)] + 0.2Y(z) = U(z) (1-49)

The z-transform of u(k) is U(z) = z/(z — 1). Substituting the initial conditions of y(k) and the ex-
pression of U(z) into Eq. (I-49) and solving for Y(z), we have

Z

Y(z) = 1-50
@ = @+ 05+ 02) @-50)
The partial-fraction expansion of Y(z)/z is
Y(z)  0.588 1.036¢/128 1.036¢ 771283
— = - 1-51)

z  z—1 z+025+4/037 z+025—;037

where the exponents in the numerator coefficients are in radians.
Taking the inverse z-transform of Y(z), we get
y(k) = (0.588 — 1.036(0.447)k[e*j(2.165k*1,283) + ej(2.165k*l,283)]
= 0.588 — 2.072(0.447) cos(2.165k — 1.283) k=0 (1-52)
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40 >< L B N 10)
T " Figure I-2  Sample-and-hold

(S/H) device.

I-3 TRANSFER FUNCTIONS OF DISCRETE-DATA SYSTEMS

* The ideal sampler is not
a physical entity. It is used
only for the representation
of discrete data.

Discrete-data control systems have the unique features that the signals in these systems
either are in the form of pulse trains or are digitally coded, and the controlled processes
often contain analog components. For instance, a dc motor, which is an analog device,
can be controlled either by a controller that outputs analog signals or by a digital con-
troller that outputs digital data. In the latter case, an interface such as a digital-to-analog
(D/A) converter is necessary to couple the digital component to the analog devices. The
input and output of the discrete-data system in Fig. I-1 can be represented by number se-
quences with the numbers separated by the sampling period 7. For linear operation, the
D/A converter can be represented by a sample-and-hold (S/H) device, which consists of
a sampler and a data-hold device. The S/H that is most often used for the analysis of dis-
crete-data systems consists of an ideal sampler and a zero-order-hold (ZOH) device.
Thus, the system shown in Fig. I-1 can be functionally represented by the block diagram
in Fig. I-2. Figure I-3 shows the typical operation of an ideal sampler and a ZOH. The
continuous data r(f) is sampled with a sampling period T by the ideal sampler. The out-
put of the ideal sampler r*(¢) is a train of impulses with the magnitudes of r(¢) at T car-
ried by the strengths of the impulses. Note that the ideal sampler is not a physical entity.
It is devised simply to represent the discrete-time signal mathematically. In Fig. I-3, the
arrows at the sampling instants represent impulses. Since, by definition, an impulse has
zero pulse width and infinite height, the lengths of the arrows simply represent the areas

r(1)

(a)

r(r)

. .
¢ N - N
’ S~ \\
.
1 f p 10T 11T 12T 13T
v

T 2T 3T 4T 5T 6T 7T 8T 97 “¥_} ¥.° t
(b)

(=]

h(z)
Figure I-3  (a) Input sig-

nal to an ideal sampler.
(b) Output signal of an
0

T 2T 3T 4T ST 6T 7T 8T oT — —— . 1Qea1 sampler. (c) Output
signal of a zero-order-

(©) hold (ZOH) device.




I-10

Appendix | Discrete-Data Control Systems

I G(s) I

oy O Jon M | coNTROLLED | ¥
M PROCESS

Figure I-4  Block diagram of a discrete-data system.

under the impulses and are the magnitudes of the input signal 7(¢) at the sampling instants.
The ZOH simply holds the magnitude of the signal carried by the incoming impulse at a
given time instant, say, k7T, for the entire sampling period ¢ until the next impulse arrives
at t = (k + 1)T. The output of the ZOH is a staircase approximation of the input to the
ideal sampler, 7(¢). As the sampling period T approaches zero, the output of the ZOH, Ah(r)
approaches r(f), that is,

limh(r) = r(7) (1-53)

However, since the output of the sampler, r*(f), is an impulse train, its limit as 7" ap-
proaches zero does not have any physical meaning. Based on the preceding discussions,
a typical open-loop discrete-data system is modeled as shown in Fig. [-4.

There are several ways of deriving the transfer-function representation of the system
in Fig. I-5. The following derivation is based on the Fourier-series representation of the
signal r*(f). We begin by writing

r(t) = r(1)5:(1) (I-54)

where 0 (f) is the unit-impulse train,

0

8:(1) = S 8(1 — kT) (I-55)

k=—x
Since 8,(¢) is a periodic function with period 7, it can be expressed as a Fourier series:
8:(1) = D, C,elrm™" (I-56)

where C, is the Fourier coefficient, and is given by

1 (" .
C,= 7 J S (t)e "' dt (1-57)
0

where w, = 27/T is the sampling frequency in rad/sec.

SZ
*(t
s I SRR VNN
: T
* :
(1t >{ 0] ZOH () Cog{"lggal_é]_éED ' y(®) >
T

Figure I-5 Discrete-data system with a fictitious sampler.



I-3 Transfer Functions of Discrete-Data Systems I-11

Since the unit impulse is defined as a pulse with a width of 8 and a height of 1/8,
and 6 — 0, C, is written
—jnwd 1

1(° 1 -
C, = limJ' et df = lim————— = — (1-58)
0070 | -0 jnw,T6 T

Substituting Eq. (I-58) in Eq. (I-56), and then the latter in Eq. (I-54), we get

= 2 r(t)e ! (1-59)
Taking the Laplace transform on both sides of Eq. (I-59), and using the complex shifting
property of Eq. (2-23), we get

o

1
— E R(s — jnw,) = T E R(s + jnw,) (1-60)
Equation (I-60) represents the Laplace transform of the sampled signal r*(7). It is an
alternative expression to Eq. (I-8). From Eq. (I-8), R*(s) can be written as

= i r(kT)e s (I-61)
k=0

Since the summing limits of R*(s) range from — to o, if s is replaced by s + jmw, in
Eq. (I-60), where m is any integer, we have

R*(s + jmw,) = R*(s) (1-62)

Pulse-Transfer Function
Now we are ready to derive the transfer function of the discrete-data system shown in
Fig. I-4. The Laplace transform of the system output y(?) is written

Y(s) = G(s)R*(s) (I-63)

Although the output y(¢) is obtained from Y(s) by taking the inverse Laplace transform on
both sides of Eq. (I-63), this step is difficult to execute because G(s) and R*(s) represent
different types of signals. To overcome this problem, we apply a fictitious sampler at the
output of the system, as shown in Fig. I-5. The fictitious sampler S, has the same sam-
pling period T and is synchronized to the original sampler S,. The sampled form of y(7)
is y*(¢). Applying Eq. (I-60) to y*(¢), and using Eq. (I-63), we have

1 o
? 2 (s + jnw)R*(s + jnw,) (1-64)

In view of the relationship in Eq. (I-62), Eq. (64) is written

1 e<]
Yi(s) = R*(s) > G(s + jnw,) = R*(s)G*(s) (1-65)
where G*(s) is defined the same way as R*(s) in Eq. (I-60), and is called the pulse-
transfer function of G(s).

z-Transfer Function
Now that all the functions in Eq. (I-65) are in sampled form, where R*(s), G*(s), and
Y*(s) all have the form of Eq. (I-61), we can take the z-transform on both sides of the
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Figure I-6 (a) Discrete-data system with cascaded elements and a sampler separating the two
elements. (b) Discrete-data system with cascaded elements and no sampler in between.

equation by substituting z = ™. We have
Y(z) = GR(:) (1-66)

where G(z) is defined as the z-transfer function of G(s), and is given by
G(z) = > g(kT)z™* (1-67)
=0

Thus, for the discrete-data system shown in Figs. I-5 and I-6, the z-transform of the out-
put is equal to the z-transfer function of the process and the z-transform of the input.

Transfer Functions of Discrete-Data Systems with Cascade Elements

The transfer-function representation of discrete-data systems with elements connected in
cascade is slightly more involved than that for continuous-data systems, because of the
variation of having or not having samplers in between the elements. Figure I-6 shows two
different discrete-data systems that contain two elements connected in cascade. In the sys-
tem of Fig. I-6(a), the two elements are separated by the sampler S,, which is synchro-
nized to, and has the same period as, the sampler ;. The two elements in the system of
Fig. I-6(b) are connected directly together. It is important to distinguish these two cases
when deriving the pulse-transfer function and the z-transfer function. For the system in
Fig. I-6(a), the output of G,(s) is written

D(s) = G,(s)R*(s) (1-68)
and the system output is

Y(s) = Gy(s)D*(s) (1-69)
Taking the pulse transform on both sides of Eq. (I-68), and using Eq. (I-62), we have

D*(s) = Gi(s)R*(s) (1-70)
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Now substituting Eq. (I-70) in Eq. (I-69) and taking the pulse transform, we get
¢ The z-transform of two Y*(s) = GT(s)G% (s)R*(s) I-71)
systems separated by a
sampler is equal to the

product of the z-transforms Y(z) = G,(z2)G5(2)R(z) (1-72)

of the two systems.

The corresponding z-transform expression of Eq. (I-71) is

We conclude that the z-transform of two systems separated by a sampler is equal to the
product of the z-transforms of the two systems.
The Laplace transform of the output of the system in Fig. I-6(b) is

Y(s) = Gi(s)Ga(s)R*(s) (I-73)
Taking the pulse transform on both sides of the last equation, we get
Yi(s) = [Gi(s)Gofs) [*R*(s) (I-74)
where
< . :
[G\(5)Gy(s)]* = = D Gi(s + jnw)Gy(s + jnw,) (1-75)

Notice that since G,(s) and G,(s) are not separated by a sampler, they have to be treated
as one system when taking the pulse transform.
Taking the z-transform on both sides of Eq. (I-74) gives

Y(z) = Z{[Gi(s)Ga(s) [*}R(2) (1-76)
Let
Z{[G\(5)Gx(s)]*} = G\Gy(2) d-77)
Then, Eq. (I-76) is written
Y(z) = G,G5(2)R(z) (I-78)

I-3-2 Transfer Function of the Zero-Order-Hold

Based on the description of the ZOH given earlier, its impulse response is shown in Fig. I-7.
The transfer function of the ZOH is written

1 —e

Gi(s) = Llgi()] = —— (1-79)

Thus, if the ZOH is connected in cascade with a linear process using transfer function
G,(s), as shown in Fig. I-5, the z-transform of the combination is written

Ts

66 = 21606491 = 2(1 = 649) (-50)

& (D)

0 T t  Figure I-7 Impulse response of the ZOH.
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By using the time-delay property of z-transforms, Eq. (I-18), Eq. (I-80) is simplified to

-1 G[’(S)
Gz) = (1 -z )2~ (1-81)
P EXAMPLE I-10 Consider that for the system shown in Fig. I-5,
1
) 5

The sampling period is 1 second. The z-transfer function of the system between the input and the
output is determined using Eq. (I-81).

-1 ;
Gl)=(1-zh2 <SZ(S + 0.5))
S 4 ) _ 0426z + 0361

(1-83)
S
(1=292( 5 2 — 1.606z + 0.606

s s+05

Transfer Functions of Closed-Loop Discrete-Data Systems

The transfer functions of closed-loop discrete-data systems are derived using the following
procedures:

1. Regard the outputs of samplers as inputs to the system.
2. All other noninputs of the system are treated as outputs.

3. Write cause-and-effect equations between the inputs and the outputs of the system
using the SFG gain formula.

4. Take the pulsed transform or the z-transform of the equations obtained in step 3,
and manipulate these equations to get the pulse-transfer function or the z-transfer
function.

Reference [1] describes the sampled signal flow graph that can be used to implement
step 4 using the SFG gain formula.

The following examples illustrate the algebraic procedure of finding the transfer
functions of closed-loop discrete-data systems.

P EXAMPLE I-11 Consider the closed-loop discrete-data system shown in Fig. I-8. The output of the sampler is re-
garded as an input to the system. Thus, the system has inputs R(s) and E*(s). The signals E(s) and
Y(s) are regarded as the outputs of the system.
Writing the cause-and-effect equations for E(s) and Y(s) using the gain formula, we get
E(s) = R(s) — G(s)H(s)E*(s) (1-84)
Y(s) = G(s)E*(s) (1-85)

_____ =2y - X0,

r(®) ( ) e(t) e*(1) ()
» G >
R(s) + E(s) )f E*(s) ) Y(s)

H(s)

A

Figure I-8 Closed-loop discrete-data system.
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Notice that the right-hand side of the last two equations contains only the inputs R(s) and E*(s)
and the transfer functions. Taking the pulse transform on both sides of Eq. (I-60) and solving for
E*(s), we get

© = T ewHe) (50
Substituting E*(s) from Eq. (I-86) into Eq. (I-85), we get
G(s)
Y(s) = ———~—-R*(s) (1-87)

1+ [G(s)H(s)]*

Taking the pulse transform on both sides of Eq. (I-87), and using Eq. (I-62), we arrive at the pulse-
transfer function of the closed-loop system,

Yi(s) G*(s)

= 1-88
RA() 1+ [GIH()]* 5
Taking the z-transform on both sides of the last equation, we have
Yz G(z
©_ 6Q 590
R(z) 1+ GH(z)
>

We show in this example that although it is possible to define an input-output transfer function for
the system in Fig. I-8, this may not be possible for all discrete-data systems. Let us consider the
system shown in Fig. [-9, which has a sampler in the feedback path. In this case, the outputs of the
sampler Y*(s) and R(s) are the inputs of the system; Y(s) and E(s) are regarded as the outputs. Writ-
ing E(s) and Y(s) in terms of the inputs using the gain formula, we get

Y(s) = G(s)E(s) (1-90)
E(s) = R(s) — H(s)Y*(s) (I1-91)

Taking the pulse transform on both sides of the last two equations and after simple algebraic
manipulations, the pulse transform of the output is written

[G(s)R(s)J*

) = T ) (92

Note that the input R(s) and the transfer function G(s) are now combined as one function, [G(s)R(s)]*,
and we cannot define a transfer function in the form of Y*(s)/R*(s). The z-transform of the output
is written

GR(2)

Y(z) = TGH(z) (I-93)

A4

() < > 20 - Yo
R(s) + E(s) Y(s)

H(S) Rl y*(t) X

Y¥(s) 4

Figure I-9  Closed-loop discrete-data system. <
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Although we have been able to arrive at the input-output transfer function and transfer re-
lation of the systems in Figs. I-8 and I-9 by algebraic means without difficulty, for more
complex system configurations, the algebraic method may become tedious. The signal-
flow graph method may be extended to the analysis of discrete-data systems; the reader
may refer to [1] for details.

[-4 STATE EQUATIONS OF LINEAR DISCRETE-DATA SYSTEMS

I-4-1

Just as for continuous-data systems, the modern way of modeling a discrete-data system
is by discrete state equations. As described earlier, when dealing with discrete-data systems,
we often encounter two situations. The first one is that the system contains continuous-data
components, but the signals at certain points of the system are discrete with respect to time
because of sample-and-hold (S/H) operations. In this case, the components of the system
are still described by differential equations, but because of the discrete-time data, the dif-
ferential equations are discretized to yield a set of difference equations. The second situa-
tion involves systems that are completely discrete with respect to time, and the system
dynamics should be difference equations from the outset.

Discrete State Equations

Let us consider the discrete-data control system with an S/H device, as shown in Fig. I-10.
Typical signals that appear at various points in the system are shown in the figure. The
output signal y(#) ordinarily is a continuous-data signal. The output of the S/H, A(?), is a
sequence of steps. Therefore, we can write

h(r) = h(kT) = r(KT) (1-94)

forkT=t<(k+ DT, k=0,1,2, ...
Now we let the linear process G be described by the state equation and output equation:

dx(r)
o = AX() + Bi(7) (1-95)
y(t) = Cx(¢) + Dh(r) (I-96)

where x(7) is the n X n state vector, and /(f) and y(¢) are the scalar input and output, re-
spectively. The matrices A, B, C, and D are coefficient matrices. By using Eq. (5-44), the
state transition equation is

t
x(1) = (1t — 19)x(1y) + Jd)(t — 7)Bh(T)dT (1-97)
Iy
for t = ¢,. If we are interested only in the responses at the sampling instants, we let t =
(k + DT and 1, = kT. Then Eq. (I-97) becomes
(k+1)T
x[(k + 1)T] = ¢(T)x(KT) + J o[ (k + DT — 7]BA(7)dr (1-98)
kT
Since A(t) is piecewise constant, as defined in Eq. (I-95), the input (7) in Eq. (I-98)
can be taken outside of the integral sign. Equation (I-98) is written
(k+1)T
x[(k + 1)T] = ¢(T)x(kT) + j ¢[(k + )T — 7]Bdr h(kT) (1-99)
kT
or
x[(k + 1)T] = &(T)x(kT) + O(T)h(kT) (I-100)
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Figure I-10  Discrete-data system with sample-and-hold (S/H).

where
(k+1)T T
oT) = J o[(k+ )T — 7]Bdr = J (T — 7)Bdr (I-101)
kT 0
Equation (I-100) is of the form of a set of linear first-order difference equations in vector-
matrix form, and is referred to as the vector-matrix discrete state equation.

I-4-2 Solutions of the Discrete State Equations:
Discrete State-Transition Equations

The discrete state equations represented by Eq. (I-100) can be solved by using a simple
recursion procedure. By setting k = 0, 1, 2, ... successively in Eq. (I-100), the following
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equations result:

k=0: x(T) = ¢(T)x(0) + O(T)h(0) (I-102)
k=1 x(27) = ¢(2T) = G(T)x(T) + O(T)h(T) (I-103)
k=2 x(37) = ¢(3T) = G(T)x(2T) + O(T)h(27) (I-104)
k = n—1: x(nT) = d(Dx[(n — 1)T] + 6(T)h[(n — 1)T]  (I-105)

Substituting Eq. (I-102) into Eq. (I-103), then Eq. (I-103) into Eq. (I-104), and so on, we
obtain the following solution for Eq. (I-100):

n—1

x(nT) = ¢"(T)x(0) + ;}¢”’i’1(T)6(T)h(iT) (1-106)

where, from Eq. (5-36), ¢"(T) = [§(T)]" = ¢(nT).

Equation (I-106) is defined as the discrete state-transition equation of the discrete-
data system. It is interesting to note that Eq. (I-106) is analogous to its continuous-data
counterpart in Eq. (5-41). The state-transition equation of Eq. (I-97) describes the state of
the system of Fig. I-10 for all values of #, whereas the discrete state-transition equation
in Eq. (I-106) describes the states only at the sampling instants t = nT, n = 0, 1, 2, ....

With nT considered as the initial time, where n is any positive integer, the state-
transition equation is

x[(n + N)T] = ¢™(T)x(nT) + 2¢N SN T)O(TR[(n + i)T] 1-107)

where N is a positive integer.
The output of the system at the sampling instants is obtained by substituting t = nT
and Eq. (I-106) into Eq. (I-96), yielding

y(nT) = Cx(nT) + Dh(nT)

= Cp(nT)x(0) + C E(b [(n — i — DT)O(T)A(iT) + Dh(nT)  (1-108)

An important advantage of the state-variable method over the z-transform method is
that it can be modified easily to describe the states and the output between sampling in-
stants. In Egs. (I-97), if we let t = (n + A)T, where 0 < A = 1 and 1, = nT, we get

(n+A)T
x[(n + A)T] = G(AT)x(nT) + J ¢[(n + AT — 7]Bdrh(nT)
— B(ATIX(HT) + O(ATYA(nT) (1-109)

By varying the value of A between 0 and 1, the information on the state variables between
the sampling instants is completely described by Eq. (I-109).

When a linear system has only discrete data through the system, its dynamics can be
described by a set of discrete state equations:

x[(k + 1)T] = Ax(kT) + Br(kT) (I1-110)
and output equations:
y(kT) = Cx(kT) + Dr(kT) I-111)

where A, B, C, and D are coefficient matrices of the appropriate dimensions. Notice that
Eq. (I-110) is basically of the same form as Eq. (I-100). The only difference in the two
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situations is the starting point of system representation. In the case of Eq. (I-100), the
starting point is the continuous-data state equations of Eq. (I-95); ¢(T') and 6(T) are
determined from the A and B matrices, and must satisfy the conditions and properties of
the state transition matrix. In the case of Eq. (I-110), the equation itself represents an out-
right description of the discrete-data system, and there are no restrictions on the matrices
A and B.

The solution of Eq. (I-110) follows directly from that of Eq. (I-100), and is

n—1

x(nT) = A"x(0) + > A"~ 'Br(iT) (1-112)
i=0
where
A" = AAAA---A
(I-113)
[« n —]

I-4-3 z-Transform Solution of Discrete State Equations

In Section I-1-5, we illustrated the solution of a simple discrete state equation by the z-
transform method. In this section, the discrete state equations in vector-matrix form of an
nth-order system are solved by z-transformation. Consider the discrete state equations

x[(k + 1)T] = Ax(kT) + Br(kT) 1-114)
Taking the z-transform on both sides of the last equation, we get
zX(z) — zx(0) = AX(z) + BR(z) 1-115)
Solving for X(z) from Eq. (I-115), we get
X(z) = (zI — A)'zx(0) + (zI — A)"' BR(z) (1-116)
Taking the inverse z-transform on both sides of Eq. (I-116), we have
x(nT) = Z7'[(z1 — A)"'z]x(0) + Z7'[(zI — A)"'BR(z)] 1-117)
In order to carry out the inverse z-transform operation of the last equation, we write the
z-transform of A" as

Z(A") = ZOA"{" =1+ Az '+ A% 7%+ (I-118)

Premultiplying both sides of Eq. (I-118) by Az ! and subtracting the result from the last
equation, we get

(I—-AzHZA") =1 (I-119)
Therefore, solving for Z(A") from the last equation yields
ZAN=I—-Az)"'=@E-A)"z (1-120)
or
A" = Z7(d - A)7'Z] I-121)

Equation (I-121) represents a way of finding A" by using the z-transform method. Simi-
larly, we can prove that

n—1

Z [zl = A)'BR(z)] = EA"*f*‘Br(iT) (1-122)
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Now we substitute Eqs. (I-121) and (I-122) into Eq. (I-117), x(nT) becomes
n—1

x(nT) = A"x(0) + D) A"~ 'Br(iT) (1-123)
i=0

which is identical to Eq. (I-112).

I-4-4 Transfer-Function Matrix and the Characteristic Equation

» EXAMPLE 1-13

Once a discrete-data system is modeled by the dynamic equations of Egs. (I-110) and
(I-111), the transfer-function relation of the system can be expressed in terms of the
coefficient matrices. By setting the initial state x(0) to zero, Eq. (I-116) becomes

X(z) = (zI — A)"'BR(2) (1-124)
Substituting Eq. (I-124) into the z-transformed version of Eq. (I-111), we have
Y(z) = [C(zI — A)"'B + D]R(z) = G(z)R(z) (I-125)
where the transfer-function matrix of the system is defined as
Gz =CzZI-A)'B+D (I1-126)
or
G(2) - C[adj(zI —|1Z&I)li ‘;|ZI — A|D] @“127)
The characteristic equation of the system is defined as
|ZI — Al =0 1-128)

In general, a linear time-invariant discrete-data system with one input and one out-
put can be described by the following difference equation with constant coefficients:

Yk +m)T] + a,_y[(k + n = DT] + a, ,y[(k + n = 2)T]
et al)’[((k + 1))T] + ao)’(kT)

= b,r[(k + m)T] + b,,_r[(k + m — 1)T]

o+ byr[((k + 1)T] + bor(kT) n=m

+

1-129)

+

Taking the z-transform on both sides of Eq. (I-129) and setting zero initial conditions, the
transfer function of the system is written

Y(z)  b,2" + b, "+t bzt by
R(s) I Ha, "+ az Foa

n=m (1-130)

The characteristic equation is obtained by equating the denominator polynomial of the
transfer function to zero.

D ta, "M+t azta,=0 (I-131)

Consider that a discrete-data system is described by the difference equation
y(k +2) + 5y(k + 1) + 3y(k) = r(k + 1) + 2r(k) (I-132)
The transfer function of the system is simply

Y(z) z+2
v N —— (I-133)
R(z) z#+5z+3
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The characteristic equation is
Z24+5+3=0 (I-134)

The state variables of the system may be defined as

xi(k) = y(k) (I-135)
x(k) = x,(k + 1) — r(k) (I-136)

Substituting the last two equations into Eq. (I-132) gives the two state equations as

Xk + 1) = (k) + r(k) (1-137)
X(k + 1) = —=3x,(k) — 5x,(k) — 3r(k) (I-138)

from which we have the matrices A and B:

a-[ 0] e[
-3 -5 T -3 (1-139)

The same characteristic equation as in Eq. (I-134) is obtained by using |zZI — A| = 0. <

I-4-5 State Diagrams of Discrete-Data Systems

When a discrete-data system is described by difference or discrete state equations, a dis-
crete state diagram may be constructed for the system. Similar to the relations between
the analog-computer block diagram and the state diagram for continuous-data systems,
the elements of a discrete state diagram resemble the computing elements of a digital com-
puter. Some of the operations of a digital computer are multiplication by a constant, ad-
dition of several variables, and time delay or shifting. The discrete state diagram can
be used to determine the transfer functions as well as for digital implementation of the
system. The mathematical description of these basic digital computations and their cor-
responding z-transform expressions are as follows:

1.  Multiplication by a constant:

X(kT) = ax,(kT) (I-140)
X5(2) = aX,(z) (I1-141)
2. Summing:

X(kT) = x,(kT) + x5(kT) (I-142)
Xo(z) = Xi(2) + X3(2) (1-143)

3. Shifting or time delay:
xo(kT) = x[(k + 1)7] (1-144)
Xy(z) = 2X4(2) — 2x,(0) (I1-145)

or

Xi(z) = 77 'X5(2) + x,(0) (I-146)

The state diagram representation of these operations are illustrated in Fig. I-11. The
initial time ¢ = 0 in Egs. (I-145) and (I-146) can be generalized to ¢ = t,. Then the equa-
tions represent the discrete-time state transition from ¢ = .
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* The state variables are
defined as the outputs of
the delay units in the
state diagram.
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a

X,(2) © > O X,(2)
X5(2) = aX(2)
Xo(2)
1
X,(2)
1
X2

X5(2) = Xo(2) + X,(2)

x1(0)

XZ(Z) O >

X,(2)

X,@) =7 X,(2) + x,(0)

Figure I-11  Basic elements of a discrete state diagram.

Consider again the difference equation in Eq. (I-132), which is

y(k + 2) + Sy(k + 1) + 3y(k) = r(k + 1) + 2r(k) (I-147)

One way of constructing the discrete state diagram for the system is to use the state equations. In
this case, the state equations are already defined in Eqs. (I-137) and (I-138). By using essentially
the same principle as the state diagram for continuous-data systems, the state diagram for Eqgs.
(I-137) and (I-138) is shown in Fig. I-12. The time delay unit z~' is used to relate x,(k + 1) to x,(k).
The state variables are defined as the outputs of the delay units in the state diagram.

The state-transition equations of the system can be obtained directly from the state diagram
using the SFG gain formula. By referring to X,(z) and X,(z) as the output nodes and x,(0), x,(0),
and R(z) as input nodes in Fig. I-12, the state-transition equations are written as

X 1[1+527" 7! 0 1[z7'(1 + 5271 = 3272
olmal' S5 o) Al S e ae
X)(2) Al -3z 1 |1x,(0) A -3z =3z
x1(0)
1
-3 7! 1 7 I
> > > O > » O
r(k) X(k+1) xy(k+1) x1(k) y(k)
R(z) X1(2) Y(z)
-3
Figure I-12  Discrete state diagram of the system described by the difference equation of Eq. (I-132)

or by the state equations of Egs. (I-137) and (I-138).
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R(z)

x,(0)

A A

o > > > > o
R(2) \/59@ Vl(z) Y(2)
43 0.7

(b) Cascade decomposition

x1(0)
e

Figure I-13  State diagrams
of the transfer function

Yz) (z2+2) -0.7
R(z) (2 +5z+3) (c) Parallel decomposition
where
A=1+57"+3;7 (I-149)

The same transfer function between R(z) and Y(z) as in Eq. (I-133) can be obtained directly from
the state diagram in Fig. I-13 by applying the SFG gain formula between these two nodes.

As an alternative, the discrete state diagram can be drawn directly from the difference equa-
tion via the transfer function, using the decomposition schemes (Fig. I-13). The decomposition of
a discrete-data transfer function follows basically the same procedure as that of an analog transfer
function covered in Section 5-9, and so the details are not repeated here. <4
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% Figure I-14  State-diagram representation of the
e(kT*) o > O H(s)  zero-order-hold (ZOH).

I-4-6 State Diagrams for Sampled-Data Systems

» EXAMPLE I-15

When a discrete-data system has continuous-data as well as discrete-data elements, with
the two types of elements separated by sample-and-hold devices, a state diagram model
for the sample-and-hold (zero-order-hold) must be established.

Consider that the input of the ZOH is denoted by e*(¢), which is a train of impulses,
and the output by /(7). Since the ZOH simply holds the strength of the input impulse at
the sampling instant until the next input comes, the signal A(7) is a sequence of steps. The
input-output relation in the Laplace domain is

H(s) = ——E*(s) (I-150)

In the time domain, the relation is simply
h(t) = e(kT™) (I1-151)

for kT =t < (k + DT

In the state-diagram notation, we need the relation between H(s) and e(kT ). For this
purpose, we take the Laplace transform on both sides of Eq. (I-151) to give
_e(kT™)
s

H(s) (I1-152)
for kT =t < (k + 1)T. The state-diagram representation of the zero-order-hold is shown
in Fig. I-14.

As an illustrative example on how the state diagram of a sampled-data system is constructed, let us
consider the system in Fig. I-15. We shall demonstrate the various ways of modeling the input-
output relations of the system. First, the Laplace transform of the output of the system is written in
terms of the input to the ZOH.

1—e ™ 1

Y(s) = — T E) (1-153)

Taking the z-transform on both sides of Eq. (I-153), we get

_lfefT
- T

Y(2) E(?) (1-154)

z—e

Figure I-16 shows the state diagram for Eq. (I-154). The discrete dynamic equations of the system
are written directly from the state diagram.

x[(k+ DT] = —e T (kT) + (1 — e M)e(kT™) (I-155)
Y(kT) = x,(kT) (I-156)
e(®) > L0 o " Gs) = S}i ¥(®
T

Figure I-15 Sampled-data system.
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l—e ! x(k+ DT

O »
e(kT™) X, (kT)
X0 Figure I-16  Discrete state diagram of the system in
- Fig. I-15. <

[-5 STABILITY OF DISCRETE-DATA SYSTEMS

I-5-1 BIBO Stability

The definitions of BIBO and zero-input stability can be readily extended to linear time-
invariant SISO discrete-data control systems.

Let u(kT), y(kT), and g(kT) be the input, output, and impulse sequence of a linear time-
invariant SISO discrete-data system, respectively. With zero initial conditions, the system
is said to be BIBO stable, or simply stable, if its output sequence y(kT) is bounded to a
bounded input u(kT). As with the treatment in Section 6-1, we can show that for the sys-
tem to be BIBO stable, the following condition must be met:

k:zo |g(kT)| < o (1-157)

I-5-2 Zero-Input Stability

For zero-input stability, the output sequence of the system must satisfy the following
conditions:

1 [ykT)| =M < » (I-158)
2. lim|y(kT)| = 0 (1-159)
k—o0

Thus, zero-input stability can also be referred to as asymptotic stability. We can show
that both the BIBO stability and the zero-input stability of discrete-data systems require
that the roots of the characteristic equation lie inside the unit circle |z| = 1 in the z-plane.
This is not surprising, since the jw-axis of the s-plane is mapped onto the unit circle in the
z-plane. The regions of stability and instability for discrete-data systems in the z-plane are
shown in Fig. I-17. Let the characteristic equation roots of a linear discrete-data time-
invariant SISO system be z;, i = 1, 2, ..., n. The possible stability conditions of the system
are summarized in Table I-2 with respect to the roots of the characteristic equation.

TABLE I-2 Stability Conditions of Linear Time-Invariant Discrete-Data SISO Systems

Stability condition

Root values

Asymptotically stable or simply stable |z;) < 1foralli,i = 1,2, ..., n (all roots inside the unit circle)
Marginally stable or marginally unstable |z;| = 1 for any i for simple roots, and no |z;| > 1 for i= 1, 2, ..., n (at least one

Unstable

simple root, no multiple-order roots on the unit circle, and no roots outside the
unit circle)

|zi| > 1 for any i, or |z;| = 1 for any multiple-order root. i = 1, 2, ..., n (at least
one simple root outside the unit circle and at least one multiple-order root on the
unit circle)
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jimzt
z-plane
Unstable Unstable
Unit circle
Stable
1 0 1 Rez

Stable

Unstable Unstable
Figure I-17  Stable and unstable regions for

discrete-data systems in the z-plane.

The following example illustrates the relationship between the closed-loop transfer-
function poles, which are the characteristic equation roots, and the stability condition of
the system.

» EXAMPLE I-16

5z
MGz) = o o) Stable system
& (z—0.2)(z — 0.8) y
5z
M&) = i@ - 08) Unstabl ¢ due to th leatz = —1.2
) (z+ 1.2)(z — 0.8) nstable system due to the pole at z
M) 5(z+ 1) Massinly sl d 1
U =Dz - 08) arginally stable due to z =
2z = 1)(z — 08) ginally
M(z) 1) Unstable d deorder pol |
= . . _ o
< ZZ(Z + 1)2 (Z + 01) nstable due to second-order pole at z
<

I-5-3 Stability Tests of Discrete-Data Systems

We pointed out in Section I-5 that the stability test of a linear discrete-data system is
essentially a problem of investigating whether all the roots of the characteristic equa-
tion are inside the unit circle |z| = 1 in the z-plane. The Nyquist criterion, root-locus
diagram, and Bode diagram, originally devised for continuous-data systems, can all be
extended to the stability studies of discrete-data systems. One exception is the Routh-
Hurwitz criterion, which in its original form is restricted to only the imaginary axis of
the s-plane as the stability boundary, and thus can be applied only to continuous-data
systems.

Bilinear Transformation Method [1]

We can still apply the Routh-Hurwitz criterion to discrete-data systems if we can find a
transformation that transforms the unit circle in the z-plane onto the imaginary axis of
another complex plane. We cannot use the z-transform relation z = exp(7s) or s = (Inz)/T,
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since it would transform an algebraic equation in z into a nonalgebraic equation in s, and
the Routh test still cannot be applied. However, there are many bilinear transformations
of the form of

ar + b

cr +d

7= (1-160)

where a, b, ¢, d are real constants, and r is a complex variable, that will transform circles
in the z-plane onto straight lines in the r-plane. One such transformation that transforms
the interior of the unit circle of the z-plane onto the left half of the r-plane is

1+
1—r

Z (I-161)
which is referred to as the r-transformation. Once the characteristic equation in z is trans-
formed into the r domain using Eq. (I-161), the Routh-Hurwitz criterion can again be
applied to the equation in r.

The r-transformation given in Eq. (I-161) is probably the simplest form that can be used
for manual transformation of an equation F(z) to an equation in . Another transformation
that is often used in discrete-data control-system design in the frequency domain is

3 (2/T) +w
2= o) —w (1-162)
or
_2z-1 1-163
v Tz + 1 (I- )

which is called the w-transformation. Note that the w-transformation becomes the
r-transformation when 7 = 2. The advantage of the w-transformation over the r-
transformation is that the imaginary axis of the w-plane resembles that of the s-plane. To
show this, we substitute

z = e"" = cos wT + j sin wT (I-164)
into Eq. (I-163), and we get
2 coswT + jsin wT — 1

w= — (I-165)
T coswT + jsin wT + 1
Rationalizing the last equation, and simplifying, we get
; 2 an L (1-166)
= jw, = ] —tan— -
w=Jjo, =] T B

Thus, the unit circle in the z-plane is mapped onto the imaginary axis w = jw,, in the
w-plane. the relationship between w,, and w, the real frequency, is

T s
= —tan— = —tan—— (I-167)
[ON

where w; is the sampling frequency in rad/sec. The correlation between w and w,, is that
they both go to 0 and o at the same time. For Routh-Hurwitz criterion, of course, the
w-transformation is more difficult to use, especially since the sampling period T appears
in Eq. (I-163). However, if computer programs are available for the transformations, the
difference is insignificant.
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» EXAMPLE 1-17

» EXAMPLE 1-18

The following examples illustrate the application of the r-transformation to a char-
acteristic equation in z so that the equation can be tested by Routh-Hurwitz criterion in
the r-domain.

Consider that the characteristic equation of a discrete-data control system is

2+ 59472 + 7.7z — 0.368 = 0 (1-168)
Substituting Eq. (I-161) into the last equation and simplifying, we get
3.1287° — 11.74r% + 2.344r + 1427 =0 (I-169)
Routh’s tabulation of the last equation is
r 3.128 2.344
Sign change
r? —11.74 14.27
Sign change
r! 6.146 0
r° 14.27

Since there are two sign changes in the first column of the tabulation, Eq. (I-169) has two roots in
the right half of the r-plane. This corresponds to Eq. (I-168) having two roots outside the unit circle
in the z-plane. This result can be checked by solving the two equations in z and 7 For Eq. (I-168),
the roots are: z = —2.0, z = —3.984, and z = 0.0461. The three corresponding roots in the r-plane
are: r = 3.0, r = 1.67, and r = —0.9117, respectively. <

Let us consider a design problem using the bilinear transformation and Routh-Hurwitz criterion.
The characteristic equation of a linear discrete-data control system is given as

F@)=2+2+z+K=0 (1-170)

where K is a real constant. The problem is to find the range of values of K so that the system is sta-
ble. We first transform F(z) into an equation in r using the bilinear transformation of Eq. (I-161).
The result is

(1-Kr+0+3Kr*+31-Kr+3+K=0 (I-171)
Routh’s tabulation of the last equation is
r3 1-K 3(1 — K)
r? 1+ 3K 3+K
o 8K(1 — K) 0
1+ 3K
o 3+ K

For a stable system, the numbers in the first column of the tabulation must be of the same sign. We
can show that these numbers cannot be all negative, since the conditions contradict each other. Next,
for all the numbers to be positive, we have the following conditions:

1-K>0 1+3K>0 K>0 3+K>0
which lead to the condition for stability:
0<K<I (1-172)
<4
Direct Stability Tests

There are stability tests that can be applied directly to the characteristic equation in z with
reference to the unit circle in the z-plane. One of the first methods that gives the necessary
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and sufficient conditions for the characteristic equation roots to lie inside the unit circle is
the Schur-Cohn criterion [2]. A simpler tabulation method was devised by Jury and Blan-
chard [3, 4] and is called Jury’s stability criterion [6]. R. H. Raible [5] devised an alter-
nate tabular form of Jury’s stability test. Unfortunately, these analytical tests all become very
tedious for equations higher than the second order, especially when the equation has unknown
parameter(s) in it. Then, there is no reason to use any of these tests if all the coefficients of
the equation are known, since we can always use a root-finding program on a computer.
Weighing all the pros and cons, this author believes that when the characteristic equation
has at least one unknown parameter, the bilinear transformation method is still the best man-
ual method for determining stability of linear discrete-data systems. However, it is useful to
introduce the necessary condition of stability that can be checked by inspection.

Consider that the characteristic equation of a linear time-invariant discrete-data system is

F(Z) = a,,Zn + an—lzn_l + - +az+ay = 0 (1-173)

where all the coefficients are real. Among all the conditions provided in Jury’s test, the
following necessary conditions must be satisfied for F(z) to have no roots on or outside
the unit circle.

F(1) >0

F(—=1)>0 if n = even integer

F(—=1) <0 if n = odd integer (1-174)
lao| < a,

If an equation of the form of Eq. (I-173) violates any one of these conditions, then not all
of the roots are inside the unit circle, and the system would not be stable. Apparently,
these necessary conditions can be checked easily by inspection.

Consider the equation
Fz) =22+ 224+ 05+ 025=0 (1-175)
Applying the conditions in Eq. (I-174), we have

F(1)=275>0 and F(-1)=-025<0 for n = 3, which is odd
lag| = 0.25 < ay = 1

Thus, the conditions in Eq. (I-174) are all satisfied, but nothing can be said about the stability of
the system. <
Consider the equation

F)=2+2+05+125=0 (I-176)
The conditions in Eq. (6-58) are

F(-1)=075>0 for n = 3, which is odd
lag| = 1.25, which is not less than as, which equals 1.
Since for odd n F(—1) must be negative, the equation in Eq. (I-176) has at least one root outside

the unit circle. The condition on the absolute value of a, is also not met. <

Second-Order Systems
The conditions in Eq. (I-174) become necessary and sufficient when the system is of the
second order. That is, the necessary and sufficient conditions for the second-order equation

F(z) = ay* + az +ag =0 1-177)
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to have no roots on or outside the unit circle are

F(1) >0
F(-1)>0 (I-178)
lao| < a,
» EXAMPLE I-21 Consider the equation
Fz)=2z +z+025=0 (I1-179)

Applying the conditions in Eq. (I-178), we have
F(1)=225>0  F(-1)=025>0  forn =2, whichis even
lag] = 0.25 < a, =1

Thus, the conditions in Eq. (I-178) are all satisfied. The two roots in Eq. (I-179) are all inside the
unit circle, and the system is stable. <

[-6 TIME-DOMAIN PROPERTIES OF DISCRETE-DATA SYSTEMS

1-6-1

Time Response of Discrete-Data Control Systems

To carry out the design of discrete-data control systems in the time domain or the z-
domain, we must first study the time- and z-domain properties of these systems. We
learned from the previous sections that the output responses of most discrete-data con-
trol systems are functions of the continuous-time variable 7. Thus, the time-domain spec-
ifications such as the maximum overshoot, rise time, damping ration, and so forth, can
still be applied to discrete-data systems. The only difference is that in order to make
use of the analytical tools such as z-transforms, the continuous data found in a discrete-
data system are sampled so that the independent time variable is k7, where T is the
sampling period in seconds. Also, instead of working in the s-plane, the transient per-
formance of a discrete-data system is characterized by poles and zeros of the transfer
function in the z-plane.
The objectives of the following sections are as follows:

1. To present methods of finding the discretized time responses of discrete-data con-
trol systems
To describe the important characteristics of the discretized time response y(kT)
To establish the significance of pole and zero locations in the z-plane
To provide comparison between time responses of continuous-data and discrete-
data control systems

Let us refer to the block diagram of the discrete-data control system shown in Fig.
I-18. The transfer function of the system is

Y@ G()
R(z) 1+ GH()

(1-180)

where GH(z) denotes the z-transform of G(s)H(s). Once the input R(z) is given, the out-
put sequence y(kT') can be determined using one of the following two methods:

1. Take the inverse z-transform of Y(z) using the z-transform table.

2. Expand Y(z) into a power series of z .



Figure I-18 Block
diagram of a discrete-
data control system.
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The z-transform of the output is defined as
Y(z) = D y(kD)™* (I-181)

k=0

The discrete-time response y(kT') can be determined by referring to the coefficient of z ¢

fork=0,1,2,....Remember that y(kT), k = 0, 1, 2, . . . contains only the sampled in-
formation on y(f) at the sampling instants. If the sampling period is large relative to the most
significant time constant of the system, y(k7)) may not be an accurate representation of y(?).

P> EXAMPLE 1-22 Consider that the position-control system described in Section 7-7 has discrete data in the forward

path, so that the system is now described by the block diagram of Fig. I-18. For K = 14.5, the trans-
fer function of the controlled process is
65,250

G,)(S) = m (1—182)

The forward-path transfer function of the discrete-data system is

G
%s)} (1-183)

GhOGp(Z) = Z[GhOGp(s)] =(1- Zil)z[
For a sampling period of 7 = 0.001 second, the z-transfer function in Eq. (I-183) is evaluated as
0.029z + 0.0257

GoG,(2) = 1-184
mCy(2) 22 — 1.697z + 0.697 (@-184)

The closed-loop transfer function of the system is

Y(z)  GwGy(a)  0.029z + 0.0257 L155)
Rz) 1+ GuG,z) z*— 1.668z + 0.7226

where R(z) and Y(z) represent the z-transforms of the input and the output, respectively. For a unit-
step input, R(z) = z/(z — 1). The output transform Y(z) becomes
2(0.029z + 0.0257)

Y6 = (z — 1)(z2 — 1.668z + 0.7226) (-186)

The output sequence y(kT") can be determined by dividing the numerator polynomial of ¥(z) by its
denominator polynomial to yield a power series in z~!. Figure I-20 shows the plot of y(kT) (dots)
versus k7, when 7 = 0.001 second. For comparison, the unit-step response of the continuous-data
system in Section 7-6 with K = 14.5 is shown in the same figure. As seen in Fig. I-19, when the
sampling period is small, the output responses of the discrete-data and the continuous-data systems
are very similar. The maximum value of y(kT') is 1.0731, or a 7.31 percent maximum overshoot, as
against the 4.3 percent maximum overshoot for the continuous-data system.
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When the sampling period is increased to 0.01 second, the forward-path transfer function of the
discrete-data system is

1.3198z + 0.4379

G G,(z) = 1-187
WG = 2 0072 1 0.027 (187
and the closed-loop transfer function is

Y(z 1.3198z + 0.4379

16 < (I-188)

RE) 2%+ 0.29297 + 0.4649

The output sequence y(kT) with T = 0.01 second is shown in Fig. I-19 with k = 0, 1, 2, 3, 4, and
5. The true continuous-time output of the discrete-data system is shown as the dotted curve. Notice
that the maximum value of y(kT) is 1.3712, but the true maximum overshoot is considerably higher
than that. Thus, the larger sampling period only makes the system less stable, but the sampled out-
put no longer gives an accurate measure of the true output.

When the sampling period is increased to 0.01658 second, the characteristic equation of the
discrete-data system is

72 + 14938z + 0.4939 = 0 (I-189)

which has roots at z = —0.494 and z = —1.000. The root at —1.000 causes the step response of the
system to oscillate with a constant amplitude, and the system is marginally stable. Thus, for all sampling
periods greater than 0.01658 second, the discrete-data system will be unstable. From Section 7-6, we
learned that the second-order continuous-data system is always stable for finite positive values of K.
For the discrete-data system, the sample-and-hold has the effect of making the system less stable, and
if the value of T is too large, the second-order system can become unstable. Figure I-20 shows the tra-
jectories of the two characteristic-equation roots of the discrete-data system as the sampling period T
varies. Notice that when the sampling period is very small, the two characteristic-equation roots are
very close to the z = 1 point and are complex. When 7' = 0.01608 second, the two roots become equal
and real and are negative. Unlike the continuous-data system, the case of two identical roots on the
negative real axis in the z-plane does not correspond to critical damping. For discrete-data systems,
when one or more characteristic-equation roots lie on the negative real axis of the z-plane, the system
response will oscillate with positive and negative peaks. Figure I-21 shows the oscillatory response of
y(kT) when T = 0.01658 second, which is the critical value for stability. Beyond this value of 7, one
root will move outside the unit circle, and the system will become unstable.
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Figure I-21  Oscillatory
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period 7 = 0.01658
second.
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I1-6-2 Mapping between s-Plane and z-Plane Trajectories

For analysis and design purposes, it is important to study the relation between the location
of the characteristic-equation roots in the z-plane and the time response of the discrete-data
system. In Section I-2, the periodic property of the Laplace transform of the Laplace trans-
form of the sampled signal R*(s) is established by Eq. (I-62); that is, R*(s + jmw,) =
R*(s), where m is an integer. In other words, given any point s; in the s-plane, the func-
tion R*(s) has the same value at all periodic points s = s, + jmw,. Thus, the s-plane is di-
vided into an infinite number of periodic strips, as shown in Fig. I-22(a). The strip between

jw A
1 s-plane
JjSw /2
Complementary L
strip J &ty
Jj3w,/2
Complementary .
I strip s
Jjogl2
Primary R
strip 0 o

—jo,l2

Complementary
strip

Complementary
strip

% —j3wy2

—j5w,/2

(a)

jImz 4
z-plane

S =jw
s=—0=* jo/2 /

(o< 0) s=% jwd2 §=- s=0,jmo,m=1,2,...

S
I!/ »
>

-1 T T 1 T Re z
s=-0*jo/2| s=-0<0 s=0>0
(0>0)

Figure I-22  Periodic
strips in the s-plane and
the corresponding points
and lines between the
(®) s-plane and the z-plane.
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® = w,/2 is called the primary strip, and all others at higher frequencies are called the
complementary strips. Figure 1-22(b) shows the mapping of the periodic strips from the
s-plane to the z-plane, and the details are explained as follows.

1. The jw-axis in the s-plane is mapped onto the unit circle |z| = 1 in the z-plane.

2. The boundaries of the period strips, s = jmw,/2, m = *1, =3, 5, ..., are
mapped onto the negative real axis of the z-plane. The portion inside the unit
circle corresponds to o < 0, and the portion outside the unit circle corresponds
to o > 0.

3. The center lines of the periodic strips, s = jmw, m = 0, £2, £4, ..., are mapped
onto the positive real axis of the z-plane. The portion inside the unit circle cor-
responds to o < 0, and the portion outside the unit circle corresponds to o > 0.

4. Regions shown in the periodic strips in the left-half s-plane are mapped onto the
interior of the unit circle in the z-plane.
5. The point z = 1 in the z-plane corresponds to the origin, s = 0, in the x-plane.

6. The origin, z = 0, in the z-plane corresponds to s = —c in the s-plane.

In the time-domain analysis of continuous-data systems, we devise the damping fac-
tor «, the damping ratio ¢, and the natural undamped frequency w,, to characterize the sys-
tem dynamics. The same parameters can be defined for discrete-data systems with respect
to the characteristic-equation roots in the z-plane. The loci of the constant-c, constant-,
constant-w, and constant-w,, in the z-plane are described in the following sections.

Constant-Damping Loci: For a constant-damping factor ¢ = « in the s-plane, the cor-
responding trajectory in the z-plane is described by

z=e" (1-190)
which is a circle centered at the origin with a radius of ¢*’, as shown in Fig. I-23.

Constant-Frequency Loci: The constant-frequency w = w, locus in the s-plane is a
horizontal line parallel to the o-axis. The corresponding z-plane locus is a straight line
emanating from the origin at an angle of # = w,T radians, measured from the real axis,
as shown in Fig. [-24.

jo A jimz 4

s-plane Unit z-plane

circle\
- 0 a; o -1 Q el )1 Re'z

Constant-
damping loci

(a) (a)
Figure I-23  Constant-damping loci in the s-plane and the z-plane.
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Figure I-24  Constant-frequency loci in the s-plane and the z-plane.

Constant Natural-Undamped Frequency Loci: The constant-w, loci in the s-plane are
concentric circles with the center at the origin, and the radius is w,. The corresponding
constant-w, loci in the z-plane are shown in Fig. I-25 for w, = ®,/16 to w,/2. Only the

loci inside the unit circle are shown.

Constant-Damping Ratio Loci: For a constant-damping ratio ¢, the s-plane loci are

described by

s =—wtan B + jw (I-191)
The constant-{ loci in the z-plane are described by
z=el" = 2@/ D /w, (I-192)
Jimz 4 z-plane
w, = w4
w, = w8
w, = w8 w, = w16
w, = w/16 )
o 1 Re'z

(@) (b)

Figure 1-25 Constant-natural-undamped frequency loci in the s-plane and the z-plane.



I-6 Time-Domain Properties of Discrete-Data Systems 1-37

jw A
s-plane
B=60° 45° 30° 207 510°30
S~ N NN ‘\“5IO|| 1.
———————— D R e e e e e —éij
0 o
(@)
P z-plane JjIm 4
B=0"0=0 B=20°{=0.342

B=3°§=0.052\A

B=5"{=0.087

B=10"{=0.174
B=15(=0259

B=30"{=0.5
B=45"(=0.707
B=60"=0.866

B=90", {=1.0

(b)

Figure I-26  Constant-damping-ratio loci in the s-plane and the z-plane.

where

B = sin~ !¢ = constant (1-193)

For a given value of B, the constant-{ locus in the z-plane, described by Eq. (I-193), is a
logarithmic spiral for 0° < B < 90°. Figure 1-26 shows several typical constant-{ loci in

the top half of the z-plane.

I1-6-3 Relation between Characteristic-Equation Roots and Transient Response

Based on the discussions given in the last section, we can establish the basic relation be-
tween the characteristic-equation roots and the transient response of a discrete-data system,



1I-38  Appendix | Discrete-Data Control Systems

Figure I-27 (a) Transient
responses corresponding to
various pole locations of
Y*(s) in the s-plane
(complex-conjugate poles
only). (b) Transient-
response sequence corre-
sponding to various pole
locations of Y(z) in the
z-plane.
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keeping in mind that, in general, the zeros of the closed-loop transfer function will also
play an important role on the response, but not on the stability, of the system.

Roots on the Positive Real Axis in the z-Plane: Roots on the positive real axis inside
the unit circle of the z-plane give rise to responses that decay exponentially with an in-
crease of kT. Typical responses relative to the root locations are shown in Figs. [-27 and
1-28. The roots closer to the unit circle will decay slower. When the root is at z = 1, the
response has a constant amplitude. Roots outside the unit circle correspond to unstable
systems, and the responses will increase with k7.

Roots on the Negative Real Axis in the z-Plane: The negative real axis of the z-plane
corresponds to the boundaries of the periodic strips in the s-plane. For example, when
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Figure I-28 (a) Transient responses corresponding to various pole loca-
tions of Y*(s) in the s-plane (complex-conjugate poles on the boundaries
between periodic strips). (b) Transient-response sequence corresponding
to various pole locations of Y(z) in the z-plane.

s = —0, * jw,/2, the complex-conjugate points are on the boundaries of the primary
strip in the s-plane. The corresponding z-plane points are
7= e*(rlTetijT/Z — _efrr,T (1_194)

which are on the negative real axis of the z-plane. For the frequency of w,/2, the output
sequence will have exactly one sample in each one-half period of the envelope. Thus,
the output sequence will occur in alternating positive and negative pulses, as shown in
Fig. I-28(b).
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Complex-Conjugate Roots in the z-Plane: Complex-conjugate roots inside the unit cir-
cle in the z-plane correspond to oscillatory responses that decay with an increase in k7.
Roots that are closer to the unit circle will decay slower. As the roots move toward the
second and the third quadrants, the frequency of oscillation of the response increases.
Refer to Figs. I-27 and 1-28 for typical examples.

[-7 STEADY-STATE ERROR ANALYSIS
OF DISCRETE-DATA CONTROL SYSTEMS

Since the input and output signals of a typical discrete-data control system are continuous-
time functions, as shown in the block diagram of Fig. I-19, the error signal should still
be defined as

e(t) = r(t) — ¥(1) (1-195)

where r(¢) is the input, y(¢) is the output. The error analysis conducted here is only for
unity-feedback systems with H(s) = 1. Due to the discrete data that appear inside the sys-
tem, z-transform or difference equations are often used, so that the input and output are
represented in sampled form, r(kT") and y(kT), respectively. Thus, the error signal is more
appropriately represented by e*(¢) or e(kT). That is,

e*(t) = r¥(t) — y*(1) (1-196)
or
e(kT) = r(kT) — y(kT) (1-197)

The steady-state error at the sampling instants is defined as

e = lime*(r) = lime(kT) (I1-198)
t—® k—
By using the final-value theorem of the z-transform, the steady-state error is

et = lime(kT) = lim(1 — z ")E(z) (1-199)
k—>0 z—1

provided that the function (1 — z~")E(z) does not have any pole on or outside the unit cir-
cle in the z-plane. It should be pointed out that since the true error of the system is e(?),
e’ predicts only the steady-state error of the system at the sampling instants.

By expressing E(z) in terms of R(z) and G,,,G,(2), Eq. (I-199) is written

R
e* = lime(kT) = lim(1 — z") (z)

- 7 1-200
k—>0 z—1 1 + GhoGp(Z) ( )

This expression shows that the steady-state error depends on the reference input R(z) as
well as the forward-path transfer function G,,G,(z) Just as in the continuous-data systems,
we shall consider only the three basic types of input signals and the associated error con-
stants and relate e} to these and the type of the system.
Let the transfer function of the controlled process in the system of Fig. I-18 be of the
form
K(1 + T,5)(1 + Tps)---(1 + T,,s)

W) = 0+ T) (1 + Tos)-(1 + Tn) (-201)

where j = 0, 1, 2, .... The transfer function G,,,G,(2) is
K(1 + T,s)(1 + Tys)--(1 + T,s)
SN+ Tys)(1 + Tos)--(1 + T)

GuG,(z)=(1—-z"Z (1-202)
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Steady-State Error Due to a Step-Function Input
When the input to the system, r(¢), in Fig. I-18 is a step function with magnitude R, the
z-transform of r(r) is

R() = (1-203)

Substituting R(z) into Eq. (I-200), we get

R
* = lim = 1-204
@I+ GuGo) 1+ 1imGLG,(2) (1-204)
z—1

Let the step-error constant be defined as

K = 11_1)1} G1,G,\(2) (1-205)
Equation (I-204) becomes
R
ek = (1-206)
1 + K3

Thus, we see that the steady-state error of the discrete-data control system in Fig. [-18 is
related to the step-error constant K% in the same way as in the continuous-data case, except
that K% is given by Eq. (I-205).

We can relate K% to the system type as follows.

For a type-0 system, j = 0 in Eq. (I-202), and the equation becomes

K(1 + T,s)(1 + Tps)--- (1 + Tms)} (1:207)

GrGylz) = (1 = Z_I)Z[ S(I + Tis)(1 + Tos)--(1 + T,9)

Performing partial-fraction expansion to the function inside the square brackets of the last
equation, we get

—1 K
GiG,(z) = (1 — z7')Z| — + terms due to the nonzero poles
§ (1-208)

- zl)[ Kz

] + terms due to the nonzero poles
7 —

Since the terms due to the nonzero poles do not contain the term (z — 1) in the denomi-
nator, the step-error constant is written

K
K% = 1imG,,G,(z) = lim(1 — 7)) = K (1-209)
z—1 =

1 z—1
Similarly, for a type-1 system, G,,G,(z) will have an s* term in the denominator that
corresponds to a term (z — 1)% This causes the step-error constant K*% to be infinite. The
same is true for any system type greater than 1. The summary of the error constants and
the steady-state error due to a step input is as follows:

System Type K% et
0 K R/ +K)
1 o 0

2 o 0
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Steady-State Error Due to a Ramp-Function Input
When the reference input to the system in Fig. I-18 is a ramp function of magnitude R,
r(t) = Rtuf). The steady-state error in Eq. (I-200) becomes

RT

* = lim 1-210
T I D + GuG)] (-210)

R

1
1imZTGhoG,,(z)

z—1

Let the ramp-error constant be defined as

1
Ki=—lim[(z — 1)G,,,G,(z)] (I-211)
z—1
Then, Eq. (I-210) becomes
i R 1-212
€5 = Ki’f ( - )

The ramp-error constant K;* is meaningful only when the input r(¢) is a ramp function and
if the function (z — 1)G,,G,(z) in Eq. (I-211) does not have any poles on or outside the
unit circle |z| = 1. The relations between the steady-state error e, K:* and the system
type when the input is a ramp function with magnitude R are summarized as follows.

System Type K}  e¥

0 0 o
1 K R/K
2 ® 0

Steady-State Error Due to a Parabolic-Function Input
When the input is a parabolic function, r(f) = Rtu,(r)/2; the z-transform of r(f) is

RT?z(z + 1)
= 1-213)
2(z — 1)
From Eq. (I-200), the steady-state error at the sampling instants is
= T} Riz + 1) (1-214)
ef = —lim -
T 251 = 1)L+ GuG9)]
_ R
1. )
F!IHII(Z - 1) Ghqu(Z)
By defining the parabolic-error constant as
1
K= —lim[(z — 1)’G},G,(2)] (1-215)
T -1
the steady-state error due to a parabolic-function input is
R
ek = — (1-216)

K3
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The relations between the steady-state error e¥, K7, and the system type when the input is a
parabolic function with its z-transform described by Eq. (I-213) are summarized as follows.

System Type K% €%

0 0 o
1 0 o
2 K R/K
3 © 0

[-8 ROOT LOCI OF DISCRETE-DATA SYSTEMS

Figure I-29 Discrete-data
control system.

The root-locus technique can be can be applied to discrete-data systems without any com-
plications. With the z-transformed transfer function, the root loci for discrete-data systems
are plotted in the z-plane, rather than in the s-plane. Let us consider the discrete-data con-
trol system shown in Fig. I-29. The characteristic equation roots of the system satisfy the
following equation:

1 + GH*(s) =0 1-217)
in the s-plane, or

1+ GH(z) =0 (1-218)
in the z-plane. From Eq (I-64) GH*(s) is written

%

GH*(s) = G(s + jnw,)H(s + jnw,) (1-219)

1
T,
which is an infinite series. Thus, the poles and zeros of GH*(s) in the s-plane will be in-
finite in number. This evidently makes the construction of the root loci of Eq. (I-217) in
the s-plane quite complex. As an illustration, consider that for the system of Fig. I-29,

G(s)H(s) = s(silfw) (1-220)
Substituting Eq. (I-220) into Eq. (I-219), we get
GH*(s) = — - K - (I1-221)
T, (s + jnwy)(s + jnw, + 1)
which has poles at s = —jnw, and s = —1 —jnw,, where n takes on all integers between

—o0 and . The pole configuration of GH*(s) is shown in Fig. I-30(a). By using the prop-
erties of the RL in the s-plane, RL of 1 + GH*(s) = 0 are drawn as shown in Fig. I-30(b)
for the sampling period 7 = 1 s. The RL contain an infinite number of branches, and these

R(s) E(s) E*(s) Y(s)
—» >

G(s)

H(s) [«
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* The same procedures of
construction of root loci of
continuous-data systems
can be applied to root loci
of discrete-data systems in
the z-plane.

» EXAMPLE I1-23

jo & S0 jo 4
s-plane s-plane
j3w, A
X K=0X»—+<f K=0
.5
J g)s 0« K v K=432 K >
J2wy A
X . 3w, K=0 Y% <« K=0
jTX 0 —K A 4 K=4.32 K — o
jws F 8
X o K=0X»—<+xX K=0
i% 0K Y K=432 § _ .,
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X » — 1t >
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Figure I-30  Pole configuration of GH*(s) and the root-locus diagram in the s-plane for the
. R . K
discrete-data system in Fig. 1-29 with G(s)H(s) = m, T =1 sec.
s(s

clearly indicate that the closed-loop system is unstable for all values of K greater than
4.32. In contrast, it is well known that the same system without sampling is stable for all
positive values of K.

The root-locus problem for discrete-data systems is simplified if the root loci are con-
structed in the z-plane using Eq. (I-218). Since Eq. (I-218) is, in general, a rational function
in z with constant coefficients, its poles and zeros are finite in number, and the number of
root loci is finite in the z-plane. The same procedures of construction for continuous-data
systems are directly applicable in the z-plane for discrete-data systems. The following ex-
amples illustrate the constructions of root loci for discrete-data systems in the z-plane.

Consider that for the discrete-data system shown in Fig. 1-29 the loop transfer function in the
z domain is

0.632Kz

CHE) = 1) - 0369)

(1-222)
The RL of the closed-loop characteristic equation are constructed based on the pole-zero configura-
tion of GH(z), as shown in Fig. I-31. Notice that when the value of K exceeds 4.32, one of the two
roots moves outside the unit circle, and the system becomes unstable. The constant-damping-ratio
locus may be superimposed on the RL to determine the required value of K for a specified damping
ratio. In Fig. I-31, the constant-damping-ratio locus for { = 0.5 is drawn, and the intersection with
the RL gives the desired value of K = 1. For the same system, if the sampling period 7 is increased
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Figure I-31  Root-locus
diagram of a discrete-data

Unit / control system without
circle zero-order-hold.
K
G(s)H(s) = ,
OHO) = 7

T = 1 second.

to 2 seconds, the z-transform loop transfer function becomes

0.865Kz
CHE) = e - 0.139) (1-223)
The RL for this case are shown in Fig. I-32. Note that although the complex part of the RL for
T = 2 seconds takes the form of a smaller circle than that when 7 = 1 second, the system is actu-
ally less stable, since the marginal value of K for stability is 2.624, as compared with the marginal
K of 4.32 for T = second.
Next, let us consider that a zero-order-hold is inserted between the sampler and the controlled
process G(s) in the system of Fig. I-29. The loop transfer function of the system with the zero-order-
hold is

K(T—14+eMz—-Te"+1—¢]
(z=1)z—eT)

G,,GH(z) = (1-224)

jImz A

z-plane

Figure I-32  Root-locus
diagram of a discrete-data
control system without
zero-order-hold.
G(s)H(s) = K

(S) (S) - S(S+1),
T = 2 seconds.
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z-plane
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(a) Root loci for T=1 second
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Figure I-33  Root-locus
diagram of a discrete-
data control system with
zero-order-hold.

G(s)H(s) =

K=1.46

(b) Root loci for T'= 2 seconds s(s + 1)'

The RL of the system with ZOH for 7 = 1 and 2 seconds are shown in Fig. I-33(a) and I-33(b),
respectively. In this case, the marginal value of stability for K is 2.3 for 7 = 1 second and 1.46 for
T = 2 seconds. Comparing the root loci of the system with and without the ZOH, we see that the
ZOH reduces the stability margin of the discrete-data system.

In conclusion, the root loci of discrete-data systems can be constructed in the z-plane using es-
sentially the same properties as those of the continuous-data systems in the s-plane. However, the
absolute and relative stability conditions of the discrete-data system must be investigated with re-
spect to the unit circle and the other interpretation of performance with respect to the regions in the
z-plane. <

[-9 FREQUENCY-DOMAIN ANALYSIS
OF DISCRETE-DATA CONTROL SYSTEMS

All the frequency-domain methods discussed in the preceding sections can be ex-
tended to the analysis of discrete-data systems. Consider the discrete-data system shown



Figure 1-34  Closed-loop
discrete-data control
system.

1-9-1

Figure I-35 Relation
between the jw-axis in the
s-plane and the unit circle
in the z-plane.

I-9 Frequency-Domain Analysis of Discrete-Data Control Systems 1-47
>( Y¥(s)
T
R(s)+ E(s) E*(s) e — s GGs) Y(s) >
B ! le(s)
in Fig. I-34. The closed-loop transfer function of the system is
Y(z G,,G(z
@) _ Gl 25)

Rz) 1+ G,G(2)

where G,,G(2) is the z-transform of G, (s)G(s). Just as in the case of continuous-data sys-
tems, the absolute and relative stability conditions of the closed-loop discrete-data system can
be investigated by making the frequency-domain plots of G,,G(z). Since the positive jw-axis
of the s-plane corresponds to real frequency, the frequency-domain plots of G,,,G(z) are ob-
tained by setting z = ¢/*” and then letting w vary from 0 to . This is also equivalent to map-
ping the points on the unit circle, |z| = 1, in the z-plane onto the G,,G(e’*")-plane. Since the
unit circle repeats for every sampling frequency w,(= 27/T), as shown in Fig. I-35, when w
is varied along the jw-axis, the frequency-domain plot of G(e/*”) repeats for = nw; to
(n + Dw,, n =0, 1,2, .... Thus, it is necessary to plot G,,G(e’*") only for the range of
o = 0to w = w,. In fact, since the unit circle in the z-plane is symmetrical about the real
axis, the plot of G,,G(e/“") in the polar coordinates for @ = 0 to w,/2 needs to be plotted.

Bode Plot with the w-Transformation

The w-transformation introduced in Eq. (I-162) can be used for frequency-domain analysis
and design of discrete-data control systems. The transformation is

2/T) +w (1-226)
1= -
2/T) — w
jo A jlmz 4
s-plane o= w4 z-plane
5= Jog -
=jw
\
Jjogd2 ~
®=
w= w2 w=0
0 o -1 I Re:

Unit circle
w=3w/2
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In the frequency domain, we set [Eq. (I-166)],

; 2 an L (1-227)
w = jw, = j—tan—— -
Jwy, =] T B
For frequency-domain analysis of a discrete-data system, we substitute Eqs. (I-226) and
(I-227) in G(z) to get G(jw,,); the latter can be used to form the Bode plot or the polar
plot of the system.

P EXAMPLE I-24  As an illustrative example on frequency-domain plots of discrete-data control systems, let the trans-

Figure |-36  Bode plot of
G,G(z) of the system in
Fig. 1-34, with

G(s) = 1.57/[s(s + 1)].
T = 1.57 sec, and with
and without ZOH.

fer function of the process in the system in Fig. I-34 be

1.57
s(s + 1)

Gls) = (1-228)
and the sampling frequency is 4 rad/sec. Let us first consider that the system does not have a zero-
order-hold, so that
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Figure 1-37  Frequency-
domain plot of
Gls) = 1.57 ,

s(s + 1)
T = 1.57 seconds, and
with and without ZOH.
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The frequency response of G,,G(z) is obtained by substituting z = ¢/*T in Eq. (I-228). The polar
plot of G,,G(e’*") for @ = 0 to w,/2 is shown in Fig. 1-36. The mirror image of the locus shown,
with the mirror placed on the real axis, represents the plot for v = w,/2 to w,.

The Bode plot of G,,G(e’") consists of the graphs of |G,,G(e/")| in dB versus w, and
£.G,,,G(e’") in degrees versus w, as shown in Fig. I-37 for three decades of frequency with the
plots ended at ® = w,/2 = 2 rad/sec.

For the sake of comparison, the forward-path transfer function of the system with a zero-order-
hold is obtained:

1.2215z + 0.7306

GG = 1y = 0.208)

(1-230)

The polar plot and the Bode plot of the last equation are shown in Figs. I-36 and 1-37, re-
spectively. Notice that the polar plot of the system with the ZOH intersects the negative real axis
at a point that is closer to the (—1, jO) point than that of the system without the ZOH. Thus, the
system with the ZOH is less stable. Similarly, the phase of the Bode plot of the system with the
ZOH is more negative than that of the system without the ZOH. The gain margin, phase margin,
and peak resonance of the two systems are summarized as follows.

Gain Margin (dB) Phase Margin (deg) M,

Without ZOH 5.77 39.0 1.58
With ZOH 0.71 291 22.64

As an alternative, the Bode plot and polar plot of the forward-path transfer function can be
done using the w-transformation of Egs. (I-226). For the system with ZOH, the forward-path transfer

j Im GhoG(Kij) 4

GM =0.71 dB =2 rad/sec

/\l R

\ 0 " Re Gy, Gle/T)

PM =2091°

w=2
GM =5.77dB

With ZOH

Without ZOH
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function in the w-domain is

L57(1 + 0.504w)(1 — 1.0913w)

G,,Gl = 1-231
wG(w) w(l + 1.197w) (=231)
60 \\
N
50 \ N,
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Figure 1-38  Bode plot of G,,G(z) of the system in Fig. I-34 with G(s) = m, T=157
S5

seconds with and without ZOH. The plots are done with the w-transformation, w = jw,,.
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For the system without ZOH,

1 — 0.6163w?

G Gjw) = ——— 2
WG = L0 1978m)

(1-232)
Substituting w = jw,, into Eq. (I-232), the Bode plots are made as shown in Fig. (I-38). Notice that
the frequency coordinates in Fig. I-38 are w,,, whereas those in Fig. I-36 are the real frequency w.
The two frequencies are related through Eq. (I-227).

The conclusion from this illustrative example is that once z is replaced by e’*" in the z-domain
transfer function, or if the w-transform is used, all the frequency-domain analysis techniques avail-
able for continuous-data systems can be applied to discrete-data systems. <

[-10 DESIGN OF DISCRETE-DATA CONTROL SYSTEMS

1-10-1

Introduction

The design of discrete-data control systems is similar in principle to the design of
continuous-data control systems. The design objective is basically that of determining the
controller so that the system will perform in accordance with specifications. In fact, in
most situations, the controlled process is the same, except in discrete-data systems the
controller is designed to process sampled or digital data.

The design of discrete-data control systems treated in this chapter is intended only
for introductory purposes. An in-depth coverage of the subject may be found in books
dedicated to digital control. In this chapter we deal only with the design of a control sys-
tem with a cascade digital controller and a system with digital state feedback. Block
diagrams of these systems are shown in Fig. 1-39.

Just as with the design of continuous-data control systems, the design of discrete-data
control systems can be carried out in either the frequency domain or the time domain.
Using computer programs, digital control systems can be designed with a minimum amount
of trial and error.

(1) e(t) e*(1) e*(1) y(0)
—— D) ¥ — ZOH [ G >
+ T T
- Digital Controlled
Controller Process
[ ) >
(@)
r& ﬂ L \] Controlled *®)
ZOH
I 7 Process
* T
K

()

Figure I-39 (a) Digital control system with cascade digital controller. (b) Digital control system
with state feedback.
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1-10-2 Digital Implementation of Analog Controllers

It seems that most people learn how to design continuous-data systems before they learn
to design digital systems, if at all. Therefore, it is not surprising that most engineers
prefer to design continuous-data systems. Ideally, if the designer intends to use digital
control, the system should be designed so that the dynamics of the controller can be de-
scribed by a z-transfer function or difference equations. However, there are situations
in which the analog controller is already designed, but the availability and advantages
of digital control suggest that the controller be implemented by digital elements. Thus,
the problems discussed in this section are twofold: first how continuous-data controllers
such as PID, phase-lead or phase-lag controllers, and others can be approximated by
digital controllers; and second, the problem of implementing digital controllers by dig-
ital processors.

1-10-3 Digital Implementation of the PID Controller

The PID controller in the continuous-data domain is described by
K;
Gs) = Kp + Kps + " (1-233)

The proportional component K is implemented digitally by a constant gain Kp. Since a
digital computer or processor has finite word length, the constant K, cannot be realized
with infinite resolution.
The time derivative of a function f(¢) at = kT can be approximated by the backward-
difference rule, using the values of f(f) measured at ¢+ = k7 and (k — 1)7, that is,
df(r) 1

“a | T TUGT) — fl(k = DT]) (1-234)

To find the z-transfer function of the derivative operation described before, we take the
z-transform on both sides of Eq. (I-234). We have

df(1) > 1 z—1
Z|—- =—(1 -z "F(&) = F 1-235
( a | (1 =2 )FR) = = —F(@) (I-235)
Thus, the z-transfer function of the digital differentiator is
z—1
Gp(z) = Kp (1-236)
Tz

where K, is the proportional constant of the derivative controller. Replacing z by e in
Eq. (I-236), we can show that as the sampling period T approaches zero, G(z) approaches
Kps, which is the transfer function of the analog derivative controller. In general, the choice
of the sampling period is extremely important. The value of 7 should be sufficiently small
so that the digital approximation is adequately accurate.

There are a number of numerical integration rules that can be used to digitally ap-
proximate the integral controller K,/s. The three basic methods of approximating the area
of a function numerically are trapezoidal integration, forward-rectangular integration,
and backward-rectangular integration. These are described as follows.

Trapezoidal Integration
The trapezoidal-integration rule approximates the area under the function f(f) by a
series of trapezoids, as shown in Fig. I-40. Let the integral of f(f) evaluated at t = kT be



I-10 Design of Discrete-Data Control Systems 1-53

A
Sltk=1T]
10 fO)
ul(k—1T]
> Figure I-40 Trapezoidal-
0 (k- DT kT t integration rule.
designated as u(kT'). Then,
T
wkT) = ul(k = DT] + SAF(T) = f[(k = DT]} (1-237)

where the area under f(¢) for (k — 1)T = r < kT is approximated by the area of the trape-
zoid in the interval. Taking the z-transform on both sides of Eq. (I-237), we have the trans-
fer function of the digital integrator as

G(2) = K Uz) KT(z+1)

"Fo) 20— 1) (-238)

where K; is the proportional constant.

Forward-Rectangular Integration
For the forward-rectangular integration, we approximate the area under f(f) by rectangles,
as shown in Fig. [-41. the integral of f(¢) at t = kT is approximated by

u(kT) = u[(k — )T] + Tf (KT) (1-239)

By taking the z-transform on both sides of Eq. (I-141), the transfer function of the digi-
tal integrator using the forward-rectangular rule is
Uiz) KTz

G/(z) = KI%— 1

(1-240)

Backward-Rectangular Integration
For the backward-rectangular integration, the digital approximation rule is illustrated in
Fig. I-42. The integral of f(¢) at t = kT is approximated by

u(kT) = u[(k — D)T] + Tf[(k — DT] (1-241)
The z-transfer function of the digital integrator using the backward-rectangular integra-
tion rule is
Uz) KT

JT)

ul(k—DT]

. Figure I-41 Forward-
0 (k— DT kT t rectangular integration rule.
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Figure I-43 Block
diagram of a digital-
program implementation
of the PID controller.

Stk D11

Figure I-42  Backward-rectangular
0 (k—1)T kT t integration rule.

By combining the proportional, derivative, and integration operations described before,
the digital PID controller is modeled by the following transfer functions.

Trapezoidal Integration

TK, K TK, 2K K
<KP+I+D>Z2+<1_KP_D>Z+D

2 T 2 T T
Gz) = (1-243)
(z—1)
Forward-Rectangular Integration
K, 2K, K,
Ko+ — +TK |2 — | Kp + — |z + —
( T ’)Z ( T )Z T
G(z) = (1-244)
(z—1)
Backward-Rectangular Integration
K 2K, K
(K,, + T”)zz - (TK, — Kp — T’)>z + 7”
Gz) = (1-245)
(z—1)
When K; = 0, the transfer function of the digital PD controller is
K, K,
s
T T
G(z) = . (1-246)
» Kp
|-l
» 2
A
SKT) | Kp u(kT)
y 7 >
+ +




Figure I-44 Realization
of a digital controller by
an analog controller with
sample-and-hold units.
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Once the transfer function of a digital controller is determined, the controller can be im-
plemented by a digital processor or computer. The operator z ! is interpreted as a time
delay of T seconds. In practice, the time delay is implemented by storing a variable in
some storage location in the computer and then taking it out after 7 seconds have elapsed.
Figure 1-43 illustrates a block diagram representation of the digital program of the PID
controller using the trapezoidal-integration rule.

1-10-4 Digital Implementation of Lead and Lag Controllers

In principle, any continuous-data controller can be made into a digital controller sim-
ply by adding sample-and-hold units at the input and the output terminals of the con-
troller and selecting a sampling frequency as small as is practical. Figure I-44 illustrates
the basic scheme with G.(s), the transfer function of the continuous-data controller, and
G.(2), the equivalent digital controller. The sampling period 7 should be sufficiently
small so that the dynamic characteristics of the continuous-data controller are not lost
through the digitization. The system configuration in Fig. 1-44 actually suggests that
given the continuous-data controller G (s), the equivalent digital controller G.(z) can be
obtained by the arrangement shown. On the other hand, given the digital controller G.(z),
we can realize it by using an analog controller G (s) and sample-and-hold units, as shown
in Fig. 1-44.

P> EXAMPLE 1-25 As an illustrative example, consider that the continuous-data controller in Fig. I-44 is represented

by the transfer function

s+ 1
Gs) = ——— (1-247)
s+ 161

From Fig. I-44, the transfer function of the digital controller is written

U)o { s+ 1 }
Gla) = Fz) 1=z s(s + 1.61) (1-248)
2 — (0.62¢7197 + 0.38)
= 7 — e*l.ﬁ]T

The digital-program implementation of Eq. (I-248) is shown in Fig. I-45.

+
D > 0.38 +0.62¢ 017 > i

A4
|

2~
A

+
+

-1.61T
e <

Figure I-45 Digital-program realization of Eq. (I-248). <
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[-11 DIGITAL CONTROLLERS

* One advantage of the
digital controller is that its
program can be easily
altered.

Digital controllers can be realized by digital networks, digital computers, microproces-
sors, or digital signal processors (DSPs). A distinct advantage of digital controllers im-
plemented by microprocessors or DSPs is that the control algorithm contained in the con-
troller can be easily altered by changing the program. Changing the components of a
continuous-data controller is rather difficult once the controller has been built.

I-11-1  Physical Realizability of Digital Controllers

Figure 1-46  Signal-flow
graph of digital program
by direct decomposition
of Eq. (I-249) with n = 3
and m = 2.

The transfer function of a digital controller can be expressed as

Exz) by+ bz ' 4+ bz
Glz) = z) _ By . < (1-249)
EI(Z) aO + aIZ —+ e 4+ anZ

where n and m are positive integers. The transfer function G.(z) is said to be physically
realizable if its output does not precede any input. This means that the series expansion
of G.(z) should not have any positive powers in z. In terms of the G.(z) given in Eq.
(I-249), if by # 0, then a, # 0. If G.(z) is expressed as

b,z" + b, 2" '+ -+ bz + by
a, 2"+ a,_ 2"+ 4+ aiz + a,

G(2) = (I1-250)
then the physical realizability requirement is n = m.

The decomposition techniques presented in Chapter 5 can be applied to realize the
digital controller transfer function by a digital program. We consider that a digital program
is capable of performing arithmetic operations of addition, subtraction, multiplication by
a constant, and shifting. The three basic methods of decomposition for digital program-
ming are discussed in the following sections.

Digital Program by Direct Decomposition
Applying direct decomposition to Eq. (I-249), we have the following equations:

1

Eyz) = ;O(bo + bz o+ b2 ™MX(2) 1-251)
1 1, . B

X(z) = ;OEI(Z) - ;O(alz +az P+ + a, MX() (1-252)

Figure 1-46 shows the signal flow graph of a direct digital program of Eq. (I-249) by di-
rect decomposition for m = 2 and n = 3. The branches with gains of 7~ represent time
delays or shifts of one sampling period.

bilag

1/ay
>
>
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Digital Program by Cascade Decomposition

The transfer function G.(z) can be written as a product of first- or second-order transfer
functions, each realizable by a simple digital program. The digital program of the overall
transfer function is then represented by these simple digital programs connected in cas-
cade. Equation (I-249) is written in factored form as

G(2) = G(2)Ga(2) -+ Gu(2) (1-253)

where the individual factors can be expressed as

Real Pole and Zero

G()—KlJrc"Z_1 (1-254)
&) = il-l—d,-z*l )
Complex Conjugate Poles (No Zeros)
G.(z) = K (1-255)
)= 1+ dyz ' + doz? i
Complex Conjugate Poles with One Zero
1+ cz !
Guz) = K < (1-256)

1+ dyz " + dyz?

and several other possible forms up to the second order.

Digital Program by Parallel Decomposition

The transfer function in Eq. (I-249) can be expanded into a sum of simple first- or second-
order terms by partial-fraction expansion. These terms are then realized by digital programs
connected in parallel.

Consider the following transfer function of a digital controller.

E\(z) 10(1 + 0.5z7Y)
TE(@ (-2 (102
Since the leading coefficients of the numerator and denominator polynomials in z~! are all constants,

the transfer function is physically realizable. The transfer function G.(z) is realized by the three
types of digital programs discussed earlier.

G.(2) (I1-257)

Direct Digital Programming
Equation (I-257) is written

Ey(z 10(1 + 0.5z ")X(z
G(z) = e) _ (,1 ),(1) (1-258)
E(z) (1 —-2zH1-02zX(z)
Expanding the numerator and denominator of the last equation and equating, we have
Ex(z) = (10 + 527 )X(z) (1-259)
X(z) = E\(z) + 1.227'X(z) — 0.227%X(z) (1-260)

The last two equations are realized by the digital program shown in Fig. I-47.

Cascade Digital Programming
The right-hand side of Eq. (I-257) is divided into two factors in one of several possible ways.
_Ez) 1+057" 10

Gla) E(z) 1-z"' 1-027" (26D
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Figure I-47 Direct digital program of Eq. (I-257).

Figure 1-48 shows the signal flow graph of the cascade digital program of the controller.

,
(9]
Y=
\
|

Figure 1-48 Cascade digital program of Eq. (I-257).

Parallel Digital Programming
The right-hand side of Eq. (I-257) is expanded by partial fraction into two separate terms.

Ey(z) 18.75 8.75
G(z) = = - 1-262
@) E() 1-z' 1-02;" (1-262)
Figure 1-49 shows the signal flow graph of the parallel digital program of the controller.
0.2
Figure 1-49  Parallel digital program of Eq. (I-257). <

I-12 DESIGN OF DISCRETE-DATA CONTROL SYSTEMS IN
THE FREQUENCY DOMAIN AND THE z-PLANE

The w-transformation introduced in Section I-5 can be used to carry out the design
of discrete-data control systems in the frequency domain. Once the transfer function
of the controlled process is transformed into the w-domain, all the design techniques
for continuous-data control systems can be applied to the design of discrete-data
systems.
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I1-12-1 Phase-Lead and Phase-Lag Controllers in the w-Domain

» EXAMPLE 1-27

Just as in the s-domain, the single-stage phase-lead and phase-lag controllers in the
w-domain can be expressed by the transfer function
1 +arw
G.(w) R (1-263)
where a > 1 corresponds to phase lead and a < 1 corresponds to phase lag. When w is
replaced by jw,, the Bode plots of Eq. (I-263) are identical to those of Figs. 10-28 and
10-45 for a > 1 and a < 1, respectively. Once the controller is designed in the w-domain,
the z-domain controller is obtained by substituting the w-transformation relationship in
Eq. (I-163); that is,
2z—1
W=
Tz+1

(1-264)

The following example illustrates the design of a discrete-data control system using the
w-transformation in the frequency domain and the z-plane.

Consider the sun-seeker control system described in Section 4-9, and shown in Fig. 10-29. Now let
us assume that the system has discrete data so that there is a ZOH in the forward path. The sam-
pling period is 0.01 second. The transfer function of the controlled process is

2500

=— 1-265
o) s(s + 25) ( )
The z-transfer function of the forward path, including the sample-and-hold is,
2500
GG,z) = (1 — 7! Z(7> 1-266
7o p(Z) ( Z ) s2(s T 25) ( )
Carrying out the z-transform in the last equation with 7 = 0.01 second, we get
GG (2) = 0.1152z + 0.106 (1.267)
W )z — 0.7788)
The closed-loop transfer function of the discrete-data system is
0,z GiGylz 0.1152z + 0.106
( ) _ h0 1( ) _ Z (1—268)

0,(z) 1+ GuGy(z) 2 — 1.66367 + 0.8848

The unit-step response of the uncompensated system is shown in Fig. [-50. The maximum over-
shoot is 66 percent.
Let us carry out the design in the frequency domain using the w-transformation of Eq. (I-162),

B 2/T) +w 1269
T -w (1-269)
Substituting Eq. (I-269) into Eq. (I-268), we have
100(1 — 0.005w)(1 + 0.000208w)
GiG,(w) = (1-270)

w(l + 0.0402w)

The Bode plot of the last equation is shown in Fig. I-51. The gain and phase margins of the
uncompensated system are 6.39 dB and 14.77°, respectively.

Phase-Lag Controller Design in the Frequency Domain
Let us first design the system using a phase-lag controller with the transfer function given in Eq.
(I-263) with a < 1. Let us require that the phase margin of the system be at least 50°.
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Figure I-50  Step responses of discrete-data sun-seeker system in Example 1-27.

From the Bode plot in Fig. I-51, a phase margin of 50° can be realized if the gain crossover
point is at w,, = 12.8 and the gain of the magnitude curve of G,,G,(jw,) is 16.7 dB.

Thus, we need —16.7 dB of attenuation to bring the magnitude curve down so that it will cross
the 0-dB axis at w,, = 12.8. We set

20log,pa = —16.7 dB (1-271)

from which we get a = 0.1462. Next, we set 1/at to be at least one decade below the gain crossover
point at w,, = 12.8. We set

—=1 (1-272)
ar
Thus,
1
—=a =0.1462 (1-273)
T
The phase-lag controller in the w-domain is
1+ 1+
Gw) = —" = v (1-274)

L+7w 1+ 684w

Substituting the z-w-transform relation, w = (2/T)(z — 1)/(z + 1), in Eq. (I-274), the phase-lag
controller in the z-domain is obtained,
z—0.99
G/ (z) = 0.1468 ————— 1-275
{2 z — 0.9985 d-273)
The Bode plot of the forward-path transfer function with the phase-lag controller of Eq. (I-274) is
shown in Fig. I-51. The phase margin of the compensated system is improved to 55°. The unit-step
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response of the phase-lag compensated system is shown in Fig. I-50. The maximum overshoot is
reduced to 16 percent.

Phase-Lead Controller Design in the Frequency Domain

A phase-lead controller is obtained by using a > 1 in Eq. (I-263). The same principle for the de-
sign of phase-lead controllers of continuous-data systems described in Chapter 10 can be applied
here. Since the slope of the phase curve near the gain crossover is rather steep, as shown in Fig. I-51,
it is expected that some difficulty may be encountered in designing a phase-lead controller for the
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system. Nevertheless, we can assign a relatively large value for a, rather than using the amount of
phase lead required as a guideline.
Let us set @ = 20. The gain of the controller at high values of w,, is

20log,oa = 20log,, 20 = 26 dB (1-276)

From the design technique outlined in Chapter 10, the new gain crossover should be located at the
point where the magnitude curve is at —26/2 = —13 dB. Thus, the geometric mean of the two cor-
ner frequencies of the phase-lead controller should be at the point where the magnitude of G,,,G,(jw)
is —13 dB. From Fig. I-51 this is found to be at w,, = 115. Thus,

1
—=115Va = 514 (1-277)
.

The w-domain transfer function of the phase-lead controller is

_lL4+arw 1+ 0.03888w

G = = 1-278
) = T 1+ 0.001944w (-278)
The transfer function of the phase-lead controller in the z-domain is
8.7776z — 6.7776
G(z) = X Z I (1-279)

1.3888z + 0.6112

The Bode plot of the phase-lead compensated system is shown in Fig. I-51. The phase margin of
the compensated system is 50.83°. The unit-step response of the phase-lead compensated system is
shown in Fig. I-50. The maximum overshoot is 27 percent, but the rise time is faster.

Digital PD-Controller Design in the z-Plane
The digital PD controller is described by the transfer function in Eq. (I-246), and is repeated as

K\ Kp
Kp+-2); -2
(F T)Z T

G.(2) = - (1-280)

To satisfy the condition that G(1) = 1 so that G.(z) does not affect the steady-state error of the sys-

tem, we set K, = 1. Applying the digital PD controller as a cascade controller to the sun-seeker

system, the forward-path transfer function of the compensated system is

(I + 100Kp)z — 100K, 0.1152z + 0.106
z (z — 1)(z — 0.7788)

G(2)G1,G\(z) = (1-281)

We can use the root-contour method to investigate the effects of varying Kj,. The characteristic equa-
tion of the closed-loop system is

(2% — 1.66367 + 0.8848) + 11.52K,(z — 1)(z + 0.9217) = 0 (1-282)

Dividing both sides of the last equation by the terms that do not contain K, the equivalent forward-
path transfer function with K, appearing as a multiplying factor is

1152K,(z — 1)(z + 0.9217)
@) T T2 — 16636z + 0.8848)

(1-283)

The root contours of the system for K;, > 0 are shown in Fig. I-52. These root contours show that
the effectiveness of the digital PD controller is limited for this system, since the contours do not
dip low enough toward the real axis. In fact, we can show that the best value of K}, from the stand-
point of overshoot is 0.022, and the maximum overshoot is 28 percent.

Digital PI-Controller Design in the z-Plane
The digital PI controller introduced in Section I-10-3 can be used to improve the steady-state per-
formance by increasing the system type and, at the same time, improve the relative stability by using
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Figure I-52 Root contours of sun-seeker system in Example 1-27 with digital PD controller.
K, varies.

the dipole principle. Let us select the backward-rectangular integration implementation of the PID con-
troller given by Eq. (I-245). With K, = 0, the transfer function of the digital PI controller becomes

Ly KT
Kpz — (Kp — KT) K,
Gl =————7 K1 (1-284)

The principle of the dipole design of the PI controller is to place the zero of G.(z) very close to the
pole at z = 1. The effective gain provided by the controller is essentially equal to Kp.
To create a root-locus problem, the transfer function in Eq. (I-267) is written

K(z + 0.9217)
(z — 1)(z — 0.7788)

G1Gy(z) = (I1-285)
where K = 0.1152. The root loci of the system are drawn as shown in Fig. I-53. The roots of the
characteristic equation when K = 0.1152 are 0.8318 + j0.4392 and 0.8318 — j0.4392. As shown
earlier, the maximum overshoot of the system is 66 percent. If K is reduced to 0.01152, the
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Figure I-53 Root loci of sun-seeker system in Example I-27 with and without digital PI
controller.

characteristic equation roots are at 0.8836 + j0.0926 and 0.8836 — j0.0926. The maximum over-
shoot is reduced to only 3 percent.

We can show that if the gain in the numerator of Eq. (I-265) is reduced to 250, the maximum
overshoot of the system would be reduced to 3 percent. This means to realize a similar improve-
ment on the maximum overshoot, the value of K, in Eq. (I-284) should be set to 0.1. At the same
time, we let the zero of G(z) be at 0.995. Thus,

— 0.995
G(z) = 01— (1-286)
z—1
The corresponding value of K; is 0.05. The forward-path transfer function of the system with the

PI controller becomes
_ 0.1K(z + 0.995)(z + 0.9217)

GC(Z)GhoGp(Z) - (Z — 1)2(Z — 07788)

(I1-287)



I-13 Design of Discrete-Data Control Systems with Deadbeat Response 1-65

where K = 0.1152. The root loci of the compensated system are shown in Fig. I-53. When
K = 0.1152, the two dominant roots of the characteristic equation are at 0.8863 + ;j0.0898
and 0.8863 — j0.0898. The third root is at 0.9948, which is very close to the pole of G.(z)
at z = 1, and thus the effect on the transient response is negligible. We can show that the ac-
tual maximum overshoot of the system with the forward-path transfer function in Eq. (I-287)
is approximately 8 percent.

This design problem simply illustrates the mechanics of designing a phase-lead and phase-lag
controller using the w-transformation method in the frequency domain and digital PD and PI con-
trollers in the z-plane. No attempt was made in optimizing the system with respect to a set of per-
formance specifications. <

I-13 DESIGN OF DISCRETE-DATA CONTROL SYSTEMS
WITH DEADBEAT RESPONSE

One difference between a continuous-data control system and a discrete-data control sys-
tem is that the latter is capable of exhibiting a deadbeat response. A deadbeat response
is one that reaches the desired reference trajectory in a minimum amount of time without
error. In contrast, a continuous-data system reaches the final steady-state trajectory or
value theoretically only when time reaches infinity. The switching operation of sampling
allows the discrete-data systems to have a finite transient period. Figure I-54 shows a typ-
ical deadbeat response of a discrete-data system subject to a unit-step input. The output
response reaches the desired steady state with zero error in a minimum number of sam-
pling periods without intersampling oscillations.

H. R. Sirisena [10] showed that given a discrete-data control system with the con-
trolled process described by

0(z™")
P(z™")

for the system to have a deadbeat response to a step input, the transfer function of the
digital controller is given by

GG,z ") = (1-288)

G.(2) P (1-289)
L' ) = — < -
o(1) = 0@z )
where Q(1) is the value of Q(z™!) with z7! = 1.
The following example illustrates the design of a discrete-data system with deadbeat
response using Eq. (I-289).

o) 4

I I I I I I I
0 T 2T 3T 4T 5T 6T T t

Figure I-54 A typical deadbeat response to a unit-step input.
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P> EXAMPLE 1-28 Consider the discrete-data sun-seeker system discussed in Example I-27. The forward-path transfer

* The root sensitivity of a

system with deadbeat
response is poor.

function of the uncompensated system is given in Eq. (I-207) and is written as

0(z")  0.1152z7'(1 + 0.9217z")

GG, (z)) = = 1-290
wGol(z) Pz (1 —z7"(1 —0.7788z7") (1-290)
Thus,
0(z ™) = 0.1152z (1 + 0.9217z7") (1-291)
Pz ) =(1-2z"1-0.778%z7") (1-292)
and Q(1) = 0.22138.
The digital controller for a deadbeat response is obtained by using Eq. (I-289).
P! 1=z (1 - 07788
Gz = ) = ( X - ) - (1-293)
o(1) — 0(z'") 0.22138 — 0.1152z ' — 0.106z
Thus,
z — 1)(z — 0.7788
Gz) = ( 5 X ) (1-294)
0.22138z" — 0.1152z — 0.106
The forward-path transfer function of the compensated system is
GG, GA) = 0.1152(z + 0.9217) (1295)
QGG = 5 21382 — 0.11522 — 0.106 )
The closed-loop transfer function of the compensated system is
0,z G.(2)G,,G,(z
() _ GGG, 1296,
®r(z) L+ GL'(Z)GhoGp(Z)
~0.0.5204(z + 0.9217)
2
For a unit-step function input, the output transform is
0.5204(z + 0.9217)
o2) = (1-297)

Az —1)
=0.5204z7 '+ 2+ 4

Thus, the output response reaches the unit-step input in two sampling periods.

To show that the output response is without intersampling ripples, we evaluate the output
velocity of the system; that is, w,(f) = d6,(1)/dt.

The z-transfer function of the output velocity is written

Gl - =z 20
Q,(z) s(s +25)
00 GEGLGH 2
_100(z = 1)
Z2
The output velocity response due to a unit-step input is
Q(z) = ? =100z~ (1-299)

Thus, the output velocity becomes zero after the second sampling period, which proves that the po-
sition response is deadbeat without intersampling ripples. The responses of 6,(f) and w,(7) are shown
in Fig. I-55. The characteristic of a system with deadbeat response is that the poles of the closed-
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6o(1)
1.0 -
0.5204 |-
| | | | | | |
0 T 2T 3T 4T 5T 6T T t
wo(t) A
100
| | | | | I |
0 T 2T 3T 4T 5T 6T T t

Figure I-55 Output position and velocity responses of discrete-data sun-seeker system in
Example 1-28.

loop transfer function are all at z = 0. Since these are multiple-order poles, from the standpoint of
root sensitivity discussed in Chapter 8, the root sensitivity of a system with deadbeat response is
very high. <

[-14 POLE-PLACEMENT DESIGN WITH STATE FEEDBACK

Just as for continuous-data systems, pole-placement design through state feedback can be
applied to discrete-data systems. Let us consider the discrete-data system described by the
following state equation:

x[(k + 1)T] = AX(kT) + Bu(kT) (1-300)

where x(kT') is an n X 1 state vector, and u(kT) is the scalar control. The state-feedback
control is

u(kT) = —Kx(kT) + r(kT) (1-301)

where K is the 1 X n feedback matrix with constant-gain elements. By substitut-
ing Eq. (I-301) into Eq. (I-300), the closed-loop system is represented by the state
equation

x[(k + 1)T] = (A — BK)x(kT) (1-302)

Just as in the continuous-data case treated in Section 10-12, we can show that if the pair
[A, B] is completely controllable, a matrix K exists that can give an arbitrary set of eigen-
values of (A — BK); that is, the n roots of the characteristic equation

1 — A+ BK| =0 (1-303)

can be arbitrarily placed. The following example illustrates the design of a discrete-data
control system with state feedback and pole placement.
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P EXAMPLE 1-29 Consider that the sun-seeker system described in Example 10-9 is subject to sampled data so that the

state diagram of the system without feedback is shown in Fig. I-56(a). The sampling period is 0.01
second. The dynamics of the ZOH are represented by the branch with a transfer function of 1/s. The
closed-loop system with state feedback for the time interval (k7)) = ¢t = (k + 1)T is portrayed by the
state diagram shown in Fig. I-56(b), where the feedback gains k; and k, form the feedback matrix

K = [k k] (1-304)

Applying the SFG gain formula to Fig. I-56(b), with X,(s) and X,(s) as outputs and x;(kT") and x,(kT)
as inputs, we have

X,(s) = F - L()kl}x (kT) + { L 200k | (kT) (1-305)
s sXs +25)]" s(s +25)  sX(s+25))"
—2500k, 2500k, 1

X2 s) = mxl(kT - mxz(kT) + mxz(kT) (1-306)

Taking the inverse Laplace transform on both sides of Eqgs. (I-305) and (I-306) and letting ¢ =
(k + 1T, we have the discrete-data state equations as

x[(k+ DT] = (1 — 0.1152k,)x,(kT) + (0.2212 — 0.1152k,)x,(kT)
o[(k + DT] = —22.12kx,(kT) + (0.7788 — 22.12k,)x,(kT) (1-307)

Thus, the coefficient matrix of the closed-loop system with state feedback is

1 —0.1152k; 0.2212 — 0.1152k2}
A —BK = 1-308
{ —22.12k, 0.7788 — 22.12k, ( )
The characteristic equation of the closed-loop system is
— 1+ 0.1152k;, —0.2212 + 0.1152%
ZL— A+ BK| = | ! 2 (1-309)
22.12k, z — 0.7788 + 22.12k,

=22 + (—1.7788 + 0.1152k, + 22.12ky)z + 0.7788 + 4.8032k, — 22.12k, = 0

Let the desired location of the characteristic equation roots be at z = 0, 0. The conditions on &, and
k, are
—1.7788 + 0.1152k; + 22.12k, = 0 (1-310)

0.7788 + 4.8032k, — 22.12k, = 0 (I-311)

Solving for k; and k, from the last two equations, we get

u(t)

Figure I-56 (a) Signal-
flow graph of open-loop,
discrete-data, sun-seeker
system. (b) Signal-flow
graph of discrete-data,
sun-seeker system with
state feedback.

k, = 0.2033 and k, = —0.07936 (I1-312)
57! 2500 5! 5!
>y o o > > > o
T wXs) ~ ZOH \/)Q(s) X,(s)
25

—k
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I-1. Find the z-transforms of the following functions.

(a) flk) = ke 3 (b) f(k) = ksin2k

(¢) flk) =e *sin3k (d) flk)=FKe *

I-2. Determine the z-transforms of the following sequences.
(a) f(kT) = kT'sin2kT

(b) f(k) = {

I-3.  Perform the partial-fraction of the following functions, if applicable, and then find the
z-transforms using the z-transform table.

1 k=0,2,4,6,...,even integers
-1 k=1,3,5,7,...,0dd integers

1 1
W= WY
10 5
() F(s) = S () F(s) = w2

I-4.  Find the inverse z-transforms f(k) of the following functions. Apply partial-fraction expan-
sion to F(z) and then use the z-transform table.

- 102 - <
(a) F(Z) - (Z — l)(Z — 02) (b) F(Z) (Z _ 1)(22 + 74+ 1)
(¢) F(z) = < (d) F(z) = =

(z — 1)(z + 0.85) (z—1)(z—05)

I-5.  Given that Z[f(k)] = F(z), find the value of f(k) as k approaches infinity without obtaining
the inverse z-transform of F(z). Use the final-value theorem of the z-transform if it is applicable.

B 0.368z _ 10z

@R = @ - 1z v 0m32) PO T e
T - =

(©) Fz) = (z— 1)z - 05) @ F&) (z = Dz~ 15)

Check the answers by carrying out the long division of F(z) and express it in a power series of 7.

I-6.  Solve the following difference equations by means of the z-transform.
(a) x(k +2) —x(k + 1) + 0.1x(k) = u(k)  x(0) = x(1) =0
(b) x(k +2) —x(k) =0 x(0)=1, x(1)=0



1-70 Appendix | Discrete-Data Control Systems

* z-transform applications

* Time response, discrete-
data system

 Transfer function,
discrete-data system

e Numerical integration

I-7. This problem deals with the application of the difference equations and the z-transform to a
loan-amortization problem. Consider that a new car is purchased with a load of P, dollars over a
period of N months at a monthly interest rate of r percent. The principal and interest are to be
paid back in N equal payments of u dollars each.

(a) Show that the difference equation that describes the loan process can be written as
Pk +1)=(1+r)Pk) —u

where P(k) = amount owed after the kth period, k = 0, 1, 2, ... , N.
P(O) = P, = initial amount borrowed
P(N) = 0 (after N periods, owe nothing)
The last two conditions are also known as the boundary conditions.
(b) Solve the difference equation in part (a) by the recursive method, starting with k = 0, then
k =1, 2, ..., and substituting successively. Show that the solution of the equation is
(1 + r)VPyr
1+ -1

(c) Solve the difference equation in part (a) by using the z-transform method.

(d) Consider that P, = $15,000, r = 0.01 (1 percent per month), and N = 48 months. Find u,
the monthly payment.

I-8. Perform the partial-fraction expansion to the following z-transfer functions.

o se B 10z(z — 0.2)
(a) G(Z) - (Z _ 1)(2 — 01) (b) G(Z) n (Z — 1)(2 - OS)(Z - 08)
(©) G(z) = < (d) G(z) = =

(z = 1)(z—05) z=1)(Z—-z+1)
(d) Find y(¢) for = 0 when the input is a unit-step function. Use G,(s) as determined in part (b).
I-9. A linear time-invariant discrete-data system has an output that is described by the time
sequence

ykT) =1 — %7 k=0,1,2,...
when the system is subject to an input sequence described by r(k7T) = 1 for all = 0. Find the

transfer function G(z) = Y(z)/R(s).

I-10. Find the transfer functions Y(z)/R(z) of the discrete-data systems shown in Fig. IP-10. The
sampling period is 0.5 second.

I-11. It is well known that the transfer function of an analog integrator is

Y(s) 1

G(S):m:;

where X(s) and Y(s) are the Laplace transforms of the input and the output of the integrator,
respectively. There are many ways of implementing integration digitally. In a basic computer course,
the rectangular integration is described by the schemes shown in Fig. IP-10. The continuous signal
x(7) is approximated by a staircase signal; 7 is the sampling period. The integral of x(z), which is the
area under x(7), is approximated by the area under the rectangular approximation signal.

(a) Let y(kT') denote the digital approximation of the integral of x(#) from ¢ = 0 to t = kT. Then
y(kT) can be written as

VKT) = y{(k — 1)T] + Tx(kT) (1)
where y[(k — 1)T] denotes the area under x(¢) from ¢t = 0 to t = (k — 1)T. Take the z-transform
on both sides of Eq. (1) and show that the transfer function of the digital integrator is
Y@ T
Xz z-1




Problems 1-71

(1) X (1) 1 ()

s(s+2)

(a)

r(t) X (1) 1 10 ¥(?)

T s +1 s +2
(b)
(1) r5(n) 1 X 10 y(®)
T s +1 T s +2
(©)
w_ >¢ o ho | s |
y ™ ZOH " s6+2) >
(d)
() e(n) e*(1) 5 DIOIN
? y g 7o 56+ [ [
(e)
BRCAUN > 5 .
ZOH ser1) (5+2) >
Figure IP-10 ®

(b) The rectangular integration described in Fig. IP-11(a) can be interpreted as a sample-and-
hold operation, as shown in Fig. IP-11(b). The signal x(¢) is first sent through an ideal sampler
with sampling period 7. The output of the sampler is the sequence x(0), x(T), ..., x(kT), .... These
numbers are then sent through a “backward” hold device to give the rectangle of height x(kT")
during the time interval from (k — 1)T to k7. Verify the result obtained in part (a) for G(z) using
the “backward” sample-and-hold interpretation.

(c) As an alternative, we can use a “forward” rectangular hold, as shown in Fig. IP-11(c). Find
the transfer function G(z) for such a rectangular integrator.

* Vector-matrix discrete I-12. The block diagram of a sampled-data system is shown in Fig. IP-12. The state equations
state equations of the controlled process are
dx(t dx(t
O B ) - e + )

dt dt
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x(t) A
0 x(T)  x@T) x(k+ )T
x(0) ©(3T) x(kT)
x(4T)
—
0 T 2T 3T 4T  (k-1DT kT (k+ 1T t=
(@)
T S I T EYR
T HOLD y
Ideal
Sampler
(b)
x(l‘) A
x(T)  x(2T)
x(0) x(kT)
X(3T) x(k+1)T J
~
0 T 2T 3T 4T  (k-1D)T kT (k+ 1T t=
Figure IP-11 ©

where /() is the output of the sample-and-hold; that is, u(#) is constant during the sampling period 7.
(a) Find the vector-matrix discrete state equations in the form of

x[(k + 1)T] = S(T)X(KT) + O(T)u(kT)

(b) Find x(NT) as functions of x(0) and u(kT) for k = 0, 1, 2, ... N.

—> )
u) Dy o h() . :
——» ZOH b i=Ax+Bh ¥
Figure IP-12 !
* Vector-matrix discrete I-13. Repeat Problem I-12 for the linear sampled-data system with the following state equations.
state equations (1) dxf)
s T =)
The sampling period is 0.001 second.
 Discrete-data system, I-14. (a) Find the transfer function X(z)/U(z) for the system described in Problem I-12.
transfer function (b) Find the characteristic equation of the system described in Problem I-12.
 Discrete-data system, 1-15. (a) Find the transfer function X(z)/U(z) for the system described in Problem I-13.

transfer function (b) Find the characteristic equation and its roots of the system described in Problem I-13.
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* Sampled-data system,
state equations, state
diagram

Figure IP-18

e Stability of discrete-data
systems

* Stability of digital
control system

* Stability of digital
control system

Problems 1-73

I-16. Draw a state diagram for the digital control system represented by the following dynamic
equations:
x(k + 1) = Ax(k) + Bu(k) y(k) = x,(k)

0o 1 -1 0
A=10 1 2 B=|0
5 3 -1 1

Find the characteristic equation of the system.

I-17. The state diagram of a digital control system is shown in Fig. IP-17. Write the dynamic
equations.
Find the transfer function Y(z)/R(z).

v —
O

r(k) y(k)

I-18. The block diagram of a sampled-data system is shown in Fig. IP-18. Write the discrete
state equations of the system. Draw a state diagram for the system.

r(1) e(t) e*(t) ()
» ZOH »  G(s) >
+ g >T{
Gls)=— =
(s) = ] T=1sec

1-19. Apply the w-transform to the following characteristic equations of discrete-data control
systems, and determine the conditions of stability (asymptotically stable, marginally stable, or
unstable) using the Routh-Hurwitz criterion.

(a)zz+1.52—1=0 (b)z3+zz+3z+0.2=()
(© 2 -122-22+3=0 () 2-22-22+05=0

Check the answers by solving for the roots of the equations using a root-finding computer pro-
gram.

I-20. A digital control system is described by the state equation
x(k + 1) = (0.368 — 0.632K)x(k) + Kr(k)

where r(k) is the input, and x(k) is the state variable. Determine the values of K for the system to
be asymptotically stable.

I-21. The characteristic equation of a linear digital control system is
2+ 7+ 15k~ (K+05)=0

Determine the values of K for the system to be asymptotically stable.
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e Stability of discrete-data
control system

Figure IP-22

e Sampled-data system

Figure IP-24

e Sampled-data system,
error constants
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I-22.  The block diagram of a discrete-data control system is shown in Fig. IP-22.

(a) For T = 0.1 second, find the values of K so that the system is asymptotically stable at the
sampling instants.

(b) Repeat part (a) when the sampling period is 0.5 second.
(c) Repeat part (a) when the sampling period is 1.0 second.

(o) el 0 K 0
—\ >1( »  ZOH Y e TS >
I-23.  Use a root-finding computer program to find the roots of the following characteristic

equations of linear discrete-data control systems, and determine the stability condition of the
systems.

(a) 2+22+122+05=0
() 0572 +72+152+05=0

b)) Z2+2+z-05=0
(d) ' + 052" + 0252 + 0.1z — 025 =0
I-24. The block diagram of a sampled-data control system is shown in Fig. IP-24.

(a) Derive the forward-path and the closed-loop transfer functions of the system in z-transforms.

The sampling period is 0.1 second.
(b) Compute the unit-step response y(kT) for k = 0 to 100.
(c) Repeat parts (a) and (b) for 7 = 0.05 second.

R(s) E(s) E*(s) H(s) 5

s(s+2)

Y(s) R

ZOH

A

+ T

I-25.  The block diagram of a sampled-data control system is shown in Fig. IP-25.

(a) Find the error constants K K% and K.

(b) Derive the transfer functions Y(z)/E(z) and Y(2)/R(2).

(¢) For T'= 0.1 second, find the critical value of K for system stability.

(d) Compute the unit-step response y(k7) for k = 0 to 50 for "= 0.1 second and K, = 5.
(e) Repeat part (d) for 7 = 0.1 second and K, = 1.

R(s) :: E(s)
+

Y
@ ()

A4
|
A 4

U(s U*(s
(O T o ! 1
+ T 8 S

Figure IP-25

v
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I-26. The forward-path dc-motor control system described in Problem 5-33 is now incorporated
in a digital control system, as shown in Fig. IP-26(a). The microprocessor takes the information
from the encoder and computes the velocity information. This generates the sequence of numbers,
w(kT) k =0, 1, 2, . . .. The microprocessor then generates the error signal e(kT) = r(kT) —
w(kT). The digital control is modeled by the block diagram shown in Fig. IP-26(b). Use the
parameter values given in Problem 5-33.

(a) Find the transfer function £2(z)/E(z) with the sampling period 7 = 0.1 second.

(b) Find the closed-loop transfer function {2(z)/R(z). Find the characteristic equation and its
roots. Locate these roots in the z-plane. Show that the closed-loop system is unstable when

T = 0.1 second.

(c) Repeat parts (a) and (b) for 7 = 0.01 and 0.001 second. Use any computer simulation
program.

(d) Find the error constants K% K, and K¥ Find the steady-state error e(kT) as k — o when the
input 7(¢) is a unit-step function, a unit-ramp function, and a parabolic function #u(f)/2.

R, Damper
0 *7) ’ N
r e @,
> »| AMPLIFIER n
MICROPROCESSOR » D/A > 5 €q ey (M ROTOR
A
ENCODER |«
(a)
>y %50,
T
R(s E(s E*(s 0,
(s) (s) (s) - b G,(5) n(S) .
+ T
Amplifier-motor
damper
(b)
Figure IP-26

* Root loci of sampled-
data system

1-27. The block diagram of a sampled-data control system is shown in Fig. IP-27.
(a) Construct the root loci in the z-plane for the system for K = 0, without the zero-order
hold, when 7' = 0.5 second, and then with 7 = 0.1 second. Find the marginal values of K for
stability.

K

Gls) = s(s +5)

(b) Repeat part (a) when the system has a zero-order-hold, as shown in Fig. IP-27.
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Figure IP-27

* Root loci of sampled-
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e Root loci of discrete-
data systems

* Frequency-domain
analysis of discrete-data
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analysis of liquid-level
control system with
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* Digital integration

* Digital program
implementation of digital
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E*(s) Ys)

R(s) E(s) >{

+ T

» ZOH » G(s)

I-28.  The system shown in Fig. [P-27 has the following transfer function.

Ke*OJA‘
) = 5+ )6+ 2)

Construct the root loci in the z-plane for K = 0, with 7' = 0.1 second.

1-29. The characteristic equations of linear discrete-data control systems are given in the following
equations. Construct the root loci for K = 0. Determine the marginal value of K for stability.

(a) 2+ K2+ 15Kz —(K+1)=0
(b) 22+ (0.15K — 1.5z + 1 =0
() 2+ (01IK—1)z+05=0
(d) 22+ (0.4 + 0.14K)z + (0.5 + 0.5K) = 0
© - —-z+04)+4X107°Kz+ 1)(z+07)=0
I-30. The forward-path transfer function of a unity-feedback discrete-data control system with
sample-and-hold is
0.0952z
GG = 1) — 0.905)
The sampling period is 7= 0.1 second.
(a) Plot the plot of G,,G(z) and determine the stability of the closed-loop system.
(b) Apply the w-transformation of Eq. (I-226) to G,,G(z) and plot the Bode plot of G,,G(w).
Find the gain and phase margins of the system.
I-31. Consider that the liquid-level control system described in Problem 6-13 is now subject to
sample-and-hold operation. The forward-path transfer function of the system is
GLG(2) 1 - e—“( 16.67TN )
s s(s + 1)(s + 12.5)

The sampling period is 0.05 second. The parameter N represents the number of inlet valves.
Construct the Bode plot of G,,,G(w) using the w-transformation of Eq. (I-226), and determine the
limiting value of N (integer) for the closed-loop system to be stable.

I-32. Find the digital equivalents using the following integration rules for the controllers
given. (a) Backward-rectangular integration rule, (b) forward-rectangular integration rule, and
(c) trapezoidal-integration rule. Use the backward-difference rule for derivatives.

(i) Gs) =2 + @ (i) G(s) = 10 + 0.1s (i) G,(s) = 1 + 0.25 + %

I-33. A continuous-data controller with sample-and-hold units is shown in Fig. IP-33. The sam-
pling period is 0.1 second. Find the transfer function of the equivalent digital controller. Draw a
digital-program implementation diagram for the digital controller. Carry out the analysis for the
following continuous-data controllers.

Gls) = b) G.(s) 10(s + 1.5)
(d) (,'(S) - s+ 12 ( ) C(S) - (S + 10)
K 1 +0.4s
© Gl = 55 @ G = 1500
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* Physical realizability of
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with digital PD controller

Figure IP-35
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with digital PD controller
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with digital phase-lead
controller

e Aircraft attitude control
system with digital
controller

Problems 1-77
SZ
YD)
——— ———
S, | T
r(t) >{ rHn JOH LI 6.0 | Y@ o
T c

I-34. Determine which of the following digital transfer functions are physically realizable.

10(1 + 0.2271 + 0.5272) 1-5Z71 — 172
Gz) = b) G(z) =— —F——
@ GL) 7 4+ 772+ 15770 (b) G) 1+z7 142772
+ 1.5
© G) = 5— @) Gz) =7+ 0557

2+ +z+1
7'+ 27240577
7'+

(e) G(z) =01z + 1 + ! (1) G(z) =

I-35. The transfer function of the process of the inventory-control system described in Problem
10-17 is

The block diagram of the system with a PD  controller and sample-and-hold is shown in Fig. IP-35.
Find the transfer function of the digital PD controller using the following equation,

K\  Kp
Kp+—2); -2
(” T)Z T

Z

Gz) =

() e(n)

pUN

—> G ZOH

v
ol

_>T{ -
- 60—

Select a sampling period 7 so that the maximum overshoot of y(k7T") will be less than 1 percent.

1-36. Figure IP-35 shows the block diagram of the inventory-control system described in Prob-
lem 10-17 with a digital PD controller. The sampling period is 0.01 second. Consider that the
digital PD controller has the transfer function

Kp(z — 1)
T,

Z

G(,(Z) = KP +

(a) Find the values of Kp and K}, so that two of the three roots of the characteristic equation are
at 0.5 and 0.5. Find the third root. Plot the output response y(kT) for k = 0, 1,2, . ...

(b) Set K, = 1. Find the value of K, so that the maximum overshoot of y(kT') is a minimum.

I-37. For the inventory-control system described in Problem I-36, design a phase-lead controller
using the w-transformation so that the phase-margin of the system is at least 60°. Can you design
a phase-lag controller in the w-domain? If not, explain why not.

1-38. The process transfer function of the second-order aircraft attitude control system described
in Problem 10-5 is
4500K

Gl = {5 + 3612)
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* Sun-seeker system with
digital controller; deadbeat
response

* Sun-seeker system with
state feedback

 State-feedback control

Consider that the system is to be compensated by a series digital controller G(z) through a
sample-and-hold.

(a) Find the value of K so that the discrete ramp-error constant K is 100.

(b) With the value of K found in part (a), plot the unit-step response of the output y*(#) and find
maximum overshoot.

(c) Design the digital controller so that the output is a deadbeat response to a step input. Plot the
unit-step response.

1-39. The sun-seeker system described in Example I-5 is considered to be controlled by a series
digital controller with the transfer function G.(z). The sampling period is 0.01 second. Design the
controller so that the output of the system is a deadbeat response to a unit-step input. Plot the
unit-step response of the designed system.

1-40. Design the state-feedback control for the sun-seeker system in Example I-5 so that the
characteristic equation roots are at z = 0.5, 0.5.

I-41. Consider the digital control system

x[(k + DT] = Ax(KT) + Bu(kT)

a-[ ] »-0l

The state-feedback control is described by u(kT) = —Kx(kT'), where K = [k; k,]. Find the val-
ues of k; and k, so that the roots of the characteristic equation of the closed-loop system are at
0.5 and 0.7.

where
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APPENDIX

z-Transform Table

Laplace Transform

Time Function

z-Transform

1 Unit impulse 6(f) 1
1 . z
— Unit step u(?)
K z—1
! 8,(1) = iﬁ(r—nT) <
1 - eirs r n=0 z—1
1 ; Tz
5? (z — 17
1 LZ Tz(z + 1)
5 2 2(z — 1)
1 t" (=D z
n+l 7| lim n —aT
s n! an0 n! 9"z —e
1 e*a/ < -
s+ a z—e*
1 Car Tze T
2 e’ “al\2
(s + a) (z— e
o 1 at (1 B eiaT)z
o« —e 7
(s + ) () — e )
@ . z sin wT'
- 3 sin wt 5
s©+ W z- — 2zcos wT + 1
L e sin wt ze” " sin T
(s + @) + & 72 — 2ze T cos wT + e 7
s z(z — cos wT)
5 5 cos wt 5
s+ w 7" — 2zcoswT + 1
s+ a m; . 72— ze T cos wT
— e cos w
(s + @) + o 7 — 2ze T cos wT + e 7
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Answers to Selected Problems

The answers given in the following section are for certain 23 Gls) = 1—e* G 1 | — o)
selected problems. These answers are given for checking 3. @) Gls) = s(1+¢7) r(s) = s( )
purposes, and thus are often shown for only certain parts of a 2(1 — e7%%)
b) G(s) =
problem. (b) G(s) (1 + e 0%
1
CHAPTER 2 Mathematical Foundation 2-6. (a) g(t) = - ——e ¥+ e t=0
2-1. (a) Poles:s = 0,0, —1, —10; _ 3 22,, - 3
zetos: s = —2, %, %, %o, (e) g(r)=05t¢" t=0
(¢) Poles:s =0,—1+j,—1—j;
zero: s = —2, %, o,

CHAPTER 3 Block Diagrams and Signal-Flow Graphs
3-1. (d) Steady-state speed = 6.66 ft/sec
V(s) 0.002333K(s + 8.5714)e %3

E(s) s+ 6s + 0.00035K(s + 8.5714)¢ 0%

3-2. (¢) System transfer function:

E(s 1 + Gs(s)H,(s) — G(5)G5(s
o, o LTGRO ZOUGN L G600 + Gioms)
R(s) [y=o A
L0
N(s) lr=0 A
Y. G,G,G;G,Gs + G¢(1 + G3H, + G,H
3.8, (b) 1 = GGGOs 6(A 3, 4H3)
1
A =1+ G,GH, + GsHy + G,Hy + G,G3G,GsH, — GyGeH H, + G,GyGyH Hy — GoG,GH,HsH,
Y, G,G,G;G, + G3G4,G
3-12. (a) 76 _ 12394 345
Yily,=o A
A =1+ GH, + GH, + G,G,GsG,H; + G3G,GsHs + G,G,H,H,
314, () Y(s) _ 10(s + 4) 316, Gfs) — s(s + 10)
T ES) e £+ 65 — 20 B AT
3-19. (b) A = 1 — 2[G(s)]? 3-20. (b) y(1) = (20 — 25¢~" + Se (1)

3-21. (b) Characteristic equation: s +7s+25=0
3-22. (¢) Characteristic equation:  s° + 55> + 65 + 10 = 0
. Y(s) 1
(d) Transfer function: m = Pt 52+ 65410
3-24. (¢) Characteristic equation:  s* + 21.01s* + 30.198s + 10 = 0

CHAPTER 4 Modeling of Physical Systems
&y, (By + B))dy, Bydy, 1 dy, dy, K

4-1. (b) Force equations: F = o i + o + M 3 E = ? _ Ezyz
. a0, K 1 do,
4-3. (b) Torque equations: P 77(01 -0, t+ jT’ K, — 0,) = BI
4-7. (b) Optimal gear ratio: n* = VJ,/J; 4-8. (b) Transfer function: Y(s) = r
T,(s)  s[(J, + Mr’)s + B,]
H,-(S) m( ) ~ 1
4-12. (a) = —(R, + L,s) (b)

He(s)

4-14. (d) Forward-path transfer function:

)(S) KKxKin
( ) [‘ITLaSZ + (Ra‘IT + BmLa)S + RuBm + KiKh]

Ans-1
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608.7 X 10° K
4-16. (c) Forward-path transfer function: G(s) = — 3 5 5
s(s7 + 423.425% + 2.6667 X 10°s + 4.2342 X 10°)
4-18. (¢) Characteristic equation: Js* + (JK, + B)s + K,B + KiK,e ™ =
) ) dx(r) dv(r) )
4-21. (b) State equations: i,(t) as input, o w(1), Pl —By(1) + KK;i(1)
Y(s) KKnG (s)e” ™"

4-26. (b) F d-path t fer function:. —— =
(b) Forward-path transfer function: - = R L) + Ju)s + By + KoK}

CHAPTER 5 State Variable Analysis
5-3. (a) Eigenvalues: s = —0.5 + ;j1.323, —0.5 —;1.323
3t 0
(c) State transition matrix: (1) = {eo “a
=
(g) Characteristic equation: A(s) = s> + 155> + 75s + 125 =0
5-6. (a) Eigenvalues of A: 2.325, —0.3376 + j0.5623, —0.3376 — j0.5623

(b) (3) Output transfer function: ~C) = 52
ransfer function: =
utpu u U(s) (s + 1)2
1 -1 0 9 6 1
58.(c)S=[B AB AB)]=|1 -2 4| P=SM=|6 5 1
1 -6 23 311
0 1 10
=[B AB]= P—SM-=
© S = ] L _3}, S {—1 J
2 2+2V2 cost  sint
5-11. = ) is singular. 5-13. —
(©3 [\fz 2+ \ﬁ} S is singular 3. @ () [—Sint cost}
5.16. (a) Forward-path transfer function:  G(s) = ~&). = 5K, + Kss)
-16. (a) Forward-path transfer function: (s) = E(s) = TG+ A6+ 5) 5 10]
. 5(K; + Kss)
Closed-loop transfer function: M(s) = — 5 S
s+ 957 + 20s° + (10 + 5K,)s + 5K,
et
5-19. (b) State transition matrix: (1) = eO i
e
Xy -2 20 -1 0| x 0 -1
' 0 -10 1 0 0 0
5-28. (b) State equations: ),Cz = =l { u }
3 —0.1 0 —20 L xs 0 O0|LTp
%y 0 0 0 —5)x] [30 o0

5-32. (b) Characteristic equation: s* + 225> + 170s + 600 = 0
5-42. The system is controllable.
. ®v(s) KIH
5-43. (a) Transfer function: = 5 3
R(s)  J,5°(Jgs* + Kps + K; + Ky)

11
5-45. (b) For controllability, k, # 5

; for observability, |[V| = —1 + 3k; — 3k, # 0

CHAPTER 6 Stability of Linear Control Systems
6-1. (b) Poles are at s = —5, —jV2,jV2,. Two poles on imaginary axis. Marginally stable.
(d) Polesareats = =5, — 1 +j, — 1 —j. All poles in the left-half s-plane. Stable.
6-2. (b) No roots in RHP. (f) Two roots in RHP.
6-3. (e) Conditions for stability: K > 2 and K < —2.9055
6-5. (b) Condition for stability: K > 4.6667 6-9. Stability requirement: K, > 0.081
6-12. (a) There is one root in the region to the right of s = —1 in the s-plane.
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CHAPTER 7 Time-Domain Analysis of Control Systems
7-3. () K,=*, K,=K, K,=0

. . 1 boKy 2 . .
7-5. (a) Unit-step input: e, =—| 1 — = —; unit-ramp input: e, = %
KH ay 3
(d) Unit-step input: e,= 0; unit-ramp input: e, = 0.05; unit-parabolic input: e, = %
7-6. (c¢) Unit-step input: e, = 2.4; unit-ramp and unit-parabolic inputs: e, = ®

7-10. (a) Stability requirement: K, > 0.02 and K > 0
7-13. Rise time ¢, = 0.2 sec; w, = 10.82 rad/sec; K = 4.68; K, = 0.0206

: ¥(s) 802.59
7-15. System transfer function: —— = — , Vmax = 1.2 (20% overshoot)
R(s) s* + 25.84s + 802.59
7-24. (b) k2 =59 + 10k, (c) k, = 13.14 7-27. (a) Stability requirement: 0 < K < 3000.56
(c) Stability requirement: 0 < K < 1400
Y(s) 100s(s + 2)
7-28. f) a =5 = 5
D(s)l,—y s + 100s* + 699s + 1000
0.995 4.975
7-32. Gs)=—F" = Gs)=—F""=
@ Guls) = {0805y © Ol =T 0.0009)
0.2222

735 @) Gils) = 1 7ssw)

CHAPTER 8 Root-Locus Technique
82.(a) K>0: 0, =135 K<0: 0, =—45 (e) 6,= —108.435°
8-4. (a) Breakaway-point equation: 2s> + 20s* + 745> + 110s*> + 485 = 0
Breakaway points: —0.7272, —2.3887
8-5. (h) Intersect of asymptotes: o; = —4; breakaway points: 0, —4, —8
() Breakaway points: —2.07, 2.07, —jl1.47, jl1.47
87. () {=0.707, K=284
8-16. (a) o, = —1.5; breakaway points: (K > 0) 0, —3.851
8-21. (a) Breakaway-point equation: 2s* + 3(1 + a)s + 6a = 0
For no breakaway point other than at s = 0, 0.333 < a < 3.

CHAPTER 9 Frequency-Domain Analysis
9-1. (¢) For K = 100, w, = 10rad/sec, ¢ = 0.327, M, = 1618, w, = 9.45 rad/sec
9-2. (b) M, = 1534, w, = 4 rad/sec, BW = 6.223 rad/sec
() M, =1.57, w,= 0.82rad/sec, BW = 1.12 rad/sec
9-5. Maximum M, = 1.496, minimum BW = 1.4106 rad/sec

Ans-3

9-9. (a) The Nyquist plot encloses the —1 point. The closed-loop system is unstable. The characteristic equation has two

roots in the right-half s-plane.
(b) Nyquist plot intersects the negative real axis at —0.8333. Thus the closed-loop system is stable.
9-10. (a) The system is stable for 0 < K < 240. 9-11. (a) The system is stable for —25 < K < oo,
9-12. The system is stable for 0 < K < o, except at K = 1.

9-14. (a) The system is stable for |K| < V200. 9-15. (a) For stability, N < 3 (N has to be an integer).

9-18. (a) For stability, 7, = 1.47 seconds. 9-21. (b) Maximum D = 15.7 in.
9-25. (e) GM = 6.82 dB, PM = 50.27°
(h) GM = infinite, PM = 13.4°
9-26. (¢) K can be increased by 28.71 dB. 9-27. (d) K must be decreased by —2.92 dB.
9-33. (b) PM = 2.65°, GM = 1051 dB, M, = 17.72, w, = 5.75 rad/sec, BW = 9.53 rad/sec
9-35. (a) The gain-crossover frequency is 10 rad/sec.
(d) ®M = 34.5°
(g) BW = 30 rad/sec
9-36. (b) T, = 0.1244 second 9-40. (b) GM = 30.72 dB, PM = infinite
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CHAPTER 10 Design of Control Systems

10-3.
10-7.
10-9.
10-13.
10-16.
10-22.

10-25.
10-27.

10-34.

10-40.
10-45.

(a) Kp =10, K, =0.09 10-5. (b) K, = 0.00175

(a) K, =0.09, PM =93.8°, GM =00, M,=1, BW = 141 rad/sec

(@ K, =11, K;,=10, K,=10, PM = 31.51°

(a) ¢, = minimum (0.851 sec) when K, = 0.6. K, <4.9718 for stability.

(b) K;, = 399.85, K, = 348.93 10-20. K, = 50, K, =6, K, = 100
(a) Set 1/aT = 10 so that the pole of G(s) at s = —10 is cancelled.

(b) Set the additional phase lead at 67°. The new gain-crossover frequency = 70 rad/sec.

(a) R, = 2.65 X 10° gives a relative damping ratio of 0.65.

(@) a = 1000, T = 0.0004 (¢) a = 0.074 10-30. (b) {, = 1.222, w, = 45 rad/sec
1 + 0.0487s
K =>5. 10-38. =
593 0-38. (0 Gls) = 170 00348
1 + 15.63s
(a) GC(S) = m 10-43. (a) Kl =11

() k, = —64.84, ky = 20.34 10-46. (b) K, = 2, K, = 200



