

Design Structure Matrix Methods and Applications

Engineering Systems

Editorial Board:

Joel Moses (Chair), Richard de Neufville, Manuel Heitor, Granger Morgan, Elisabeth Pate-Cornell,

William Rouse

Flexibility in Engineering Design, by Richard de Neufville and Stefan Scholtes, 2011

Engineering a Safer World, by Nancy G. Leveson, 2011

Engineering Systems, by Olivier L. de Week, Daniel Roos, and Christopher L. Magee, 2011

Design Structure Matrix Methods and Applications, by Steven D. Eppinger and Tyson R.

Browning, 2012

Design Structure Matrix Methods and Applications

Steven D. Eppinger and Tyson R. Browning

The MIT Press
Cambridge, Massachusetts
London, England

© 2012 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means
(including photocopying, recording, or information storage and retrieval) without permission in writing from
the publisher.

MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For
information, please email special_sales@mitpress.mit.edu or write to Special Sales Department, The MIT Press,
55 Hayward Street, Cambridge, MA 02142.

This book was set in Syntax and Times Roman by Toppan Best-set Premedia Limited. Printed and bound in the
United States of America.

Library of Congress Cataloging-in-Publication Data

Eppinger, Steven D.
Design structure matrix methods and applications / Steven D. Eppinger and Tyson R. Browning.

p. cm. -(Engineering systems)
Includes bibliographical references and index.
ISBN 978-0-262-01752-7 (hardcover: alk. paper)
1. Product design. 2. Systems engineering. 3. Flexible manufacturing systems. I. Browning, Tyson R., 1971-
II. Title.
TS171.E67 2012
670.42'7 -dc23
2011039033

10 9 8 7 6 5 4 3 2 1

To Don Steward, grandfather of DSM

Contents

Series Foreword ix

Preface xi

1 Introduction to Design Structure Matrix Methods

2 Product Architecture DSM Models 17

3 Product Architecture DSM Examples 33

4 Organization Architecture DSM Models

5 Organization Architecture DSM Examples

6 Process Architecture DSM Models 129

7 Process Architecture DSM Examples 153

8 Multidomain Architecture MDM Models

9 Multidomain Architecture MDM Examples

10 The Future of DSM 325

Index 329

79

93

233

245

1

Series Foreword

Engineering Systems is an emerging field that is at the intersection of engineering, man­

agement, and the social sciences. Designing complex technological systems requires not

only traditional engineering skills but also knowledge of public policy issues and aware­

ness of societal norms and preferences. In order to meet the challenges of rapid techno­

logical change and of scaling systems in size, scope, and complexity, Engineering Systems

promotes the development of new approaches, frameworks, and theories to analyze,

design, deploy, and manage these systems.

This new academic field seeks to expand the set of problems addressed by engineers

and draws on work in the following fields as well as others:

• Technology and Policy

• Systems Engineering

• System and Decision Analysis, Operations Research

• Engineering Management, Innovation, Entrepreneurship

• Manufacturing, Product Development, Industrial Engineering

The Engineering Systems Series will reflect the dynamism of this emerging field and is

intended to provide a unique and effective venue for the publication of textbooks and

scholarly works that push forward research and education in Engineering Systems.

Series Editorial Board:

Joel Moses, Massachusetts Institute of Technology, Chair

Richard de Neufville, Massachusetts Institute of Technology

Manuel Heitor, Instituto Superior Tecnico, Technical University of Lisbon

Granger Morgan, Carnegie Mellon University

Elisabeth Pate-Cornell, Stanford University

William Rouse, Georgia Institute of Technology

Preface

This book derives from our passion to understand and improve the practice of developing

complex systems. Over the past 20 years, we have come to appreciate the rich insights

available to engineers and managers through the use of a straightforward modeling tech­

nique known as the design structure matrix (DSM). It is a highly flexible, network model­

ing method with extensive applications in engineering management and many other

fields.

We have created this book primarily for new DSM practitioners in industry and engi­

neering management training programs. This is because, while DSM has been the subject

of research at MIT and elsewhere for several decades, we recognize that our academic

articles do not speak directly to practitioners. Therefore, we have attempted to explain

DSM methods in this book clearly and concisely, allowing direct application of the tools.

(Nevertheless, we must assume that readers already understand and appreciate the basic

methods, parlance, and issues involved in the contemporary practices of complex system

development and engineering management.) More important, we have assembled here a

range of example applications of DSM, addressing a wide variety of problems in many

industries with complex technical projects.

New researchers in fields related to engineering management will also find this book

of value to help understand the history of DSM methods and applications. There are many

possible research directions to pursue, and we expect this compilation of examples will

help stimulate novel approaches to a range of industrial situations.

The growing community of DSM researchers and practitioners has enabled this book

to take shape in the way it has. Although much of the research and application utilizing

DSM was taking place at MIT in the 1990s, since that time many more researchers around

the world have picked up DSM and helped to extend the methods and demonstrate their

application. Since 1999, an annual conference on DSM has provided the opportunity to

share innovations. Indeed, we have included in the book contributions from many of the

world's most prolific DSM researchers, as well as industrial users of DSM methods.

We have structured this book with chapters explaining each of the primary types of

DSM models; these are for representing product architecture, organization architecture,

xii Preface

process architecture, and multidomain architectures. Following each of these introductory

chapters is a full chapter of examples showing a variety of applications of that DSM type.

The 44 example applications represent a wide range of industries (automotive, aerospace,

electronics, buildings, machinery, pharmaceutical, etc.), nationalities (Australia, Germany,

Japan, Sweden, Turkey, United Kingdom, United States, etc.), and problems addressed

(modularity, outsourcing, system integration, knowledge management, organization

design, project planning, process improvement, etc.). We have tried to strike a balance in

the book between the fundamentals of DSM and the myriad options and opportunities

for enhancements and extensions. Although we go some way toward establishing standard

definitions and nomenclature, we also want to leave an open architecture upon which

others may continue to build.

We hope that this book will advance the field of engineering management-particularly

in the realm of complex projects and systems. We hope to learn of important improve­

ments made through new industrial applications, not only in engineering-based businesses

but also in other organizations that face challenges visualizing, analyzing, and improving

complex systems. We expect that new researchers will be stimulated through this book to

continue the work in developing new ways to utilize DSM and new methods to analyze

DSM models. Finally, we hope that these new practitioners and researchers will join the

growing international DSM community. For more information about the DSM commu­

nity, please refer to the DSM website at www.dsmweb.org.

Finally, we would like to thank several reviewers who kindly perused portions of our

manuscript and offered helpful comments: Tony Atkins, Claudia Eckert, Nitin Joglekar,

Warren Seering, Harold (Mike) Stowe, and Dan Whitney. We would also like to thank

those who enhanced this book with their contributions of example applications.

1

en .. c Q) c o Q.
E o

()

en
Q)

;;
'>
;;
U
<

x
It

X X
X

x)(
x

Introduction to Design Structure Matrix Methods

Components
x x X

X X X X X
X X

X X X
X X

X X X X X
X X X

X X x x x x x x
x x x

x x x x x x
x x x x x

x x x
x x x x

)(It X)(
X)(

Component)()(x
Interactions)(x)(

)(x x x x
x x)()(x

It X X X X)()(x
x)(x

x x x x x)(x x x
x x x x x x)(x)()(

)()()(x x x

(a) Product Architecture OSM

Activities

Q)
Q.
o
Q)

Il.

x

People
x)(

)(x)(
)(x)(

x x)(
X)(

X X X X X
X X

X X X
X)(X X X
X X X X

X X)(
X X X X X

X)(
X X X)(X X

X)(
)(X)(

Communications x x x
x x

x x
x x x x

x x x x x x x
x x x)(x

x x x x x x 1<
)(

(b) Organization Architecture OSM

Activities

�r-.."....--,--------- ---- --- -------,

x

x
x

x
x

x

x
x

x

01
I
I

L.;;.....;.;..""'"'il--::--.."x...."x ... ----- ---------;:-- ;; 1

x x x
x x

x

Information
Flows

x
x

x

)(
x

x x

x x

x

x

I I
I I
I
I
I
I
I
I
I
I
I I

�h=-::--)(::-clt::-cx::-c::i)(- - ;;:
x
x x

x
x

x

x
x x

x x
)(x

x
x x

)(

x

)(

I
I
I
I
I
I
I
I

(c) Process Architecture OSM

Figure 1.1

Moppjng 01
Component.

to Poop'-

Moppjng 01
Component.
to ActivltJol

The four primary types of DSM models discussed in this book.

Mappjng 01
Peop'- to

Componen ..

Moppjngol
People to
Activltl ..

Moppjng 01
Activltle. to
Componentl:

Moppjng 01
Activltles
to People

(d) Multidomain MOM

X
X

X

X
X

X

X

x

x
<

x

x

2 Chapter 1

The Complex World of Systems

Our world is growing more complex every day. As we discover more and more about
nature at both the micro and macro levels, we accumulate an exponentially increasing
amount of information. From subatomic particles to galaxies farther away, we observe
and record more and more data. This information empowers us to design and build ever
more complex artificial systems. From aircraft, automobiles, computers, electronics
systems, ships, machine tools, and buildings to sociotechnical systems, we continue to
improve on ways to get a variety of people, materials, and instructions to work together
to provide capabilities that they could not achieve separately. Learning from and about
these systems provides even more information. As information systems such as the Inter­
net have enabled so much information to disseminate, more and more people are empow­
ered to contribute to this process of information generation.

Today, we are already overwhelmed with more information than we can digest, so we
turn to search engines and filters to help us access the information we want- or think we
want. But as the amount of information continues to grow, and as any one person or
group's knowledge and information-processing capabilities are limited, when it comes to
getting the right information to the right place at the right time, the chances of error are
growing. We must continue to develop techniques for mastering the vast amount of infor­
mation required to understand, design, and improve systems. Because no one person
knows enough to design today's complex systems, useful techniques for managing infor­
mation must draw out the knowledge from individuals and cast it in a way that enables
a trans disciplinary group to review and critique it. This book is about one such technique
that has been used to help people better design, develop, and manage complex engineered
systems such as the ones pictured in figure 1.2. This technique is known as the design
structure matrix (DSM) .

What Is the DSM?

The DSM is a network modeling tool used to represent the elements comprising a system
and their interactions, thereby highlighting the system's architecture (or designed struc­
ture) . DSM is particularly well suited to applications in the development of complex,
engineered systems and has to date primarily been used in the area of engineering man­
agement. On the horizon, however, is a much broader range of DSM applications address­
ing complex issues in health care management, financial systems, public policy, natural
sciences, and social systems.

The DSM is represented as a square N x N matrix, mapping the interactions among
the set of N system elements. A highly flexible tool, DSM has been used to model many
types of systems. Depending on the type of system being modeled, DSM can represent
various types of architectures. For example, to model a product's architecture, the DSM

3 Introduction to Design Structure Matrix Methods

Figure 1.2
Some of the complex systems modeled using DSM: electronics systems (see examples 3.3, 3.9, 7.2, 7.8, 7.9, 9.10),
buildings (see examples 3.8, 5.5, 7.1, 7.4, 7.7), aircraft (see examples 3.2, 3.3, 5.2, 5.3, 7.6, 7.10, 7.11, 9.2, 9.12), and
automobiles (see examples 3.1, 5.1, 7.12, 9.1, 9.4, 9.6, 9.11).

elements would be the components of the product, and the interactions would be the
interfaces between the components (figure l.la) . To model an organization's architecture,
the DSM elements would be the people or teams in the organization, and the interactions
could be communications between the people (figure l.lb) . To model a process architec­
ture, the DSM elements would be the activities in the process, and the interactions would
be the flows of information and/or materials between them (figure l.lc) . DSM models of
different types of architectures can even be combined to represent how the different
system domains are related within a larger system (figure l.ld) . Thus, the DSM is a generic
tool for modeling any type of system architecture. In this book, we discuss how DSM has
been used in all of these domains and more.

Compared with other network modeling methods, the primary benefit of DSM is the
graphical nature of the matrix display format. The matrix provides a highly compact, easily
scalable, and intuitively readable representation of a system architecture. Figure l.3a
shows a simple DSM model of a system with eight elements, along with its equivalent
directed graph (digraph) representation in figure 1.3b. When one is first introduced to the

4 Chapter 1

DSM, many find it easy to think of the cells along the diagonal of the matrix as represent­
ing the system elements- analogous to the nodes in the digraph model. To keep the
matrix diagram compact, the full names of the elements are often listed to the left of the
rows (and sometimes also above the columns) rather than in the diagonal cells. It is also
easy to think of each diagonal cell as potentially having inputs entering from its left and
right sides and outputs leaving from above and below. The sources and destinations of
these input and output interactions are identified by marks in the off-diagonal cells­
analogous to the directional arcs in the digraph model. Examining any row in the matrix
reveals all of the inputs to the element in that row (which are outputs of other elements).
Looking down any column of the matrix shows all of the outputs from the element in
that column (which become inputs to other elements).

In the simple DSM example shown in figure 1.3a, the eight system elements are labeled
A through H, and we have labeled both the rows and columns A through H accordingly.
Reading across row D, for example, we see that element D has inputs from elements A,
B, and F, represented by the X marks in row D, columns A, B, and F. Reading down column
F, we see that element F has outputs going to elements B and D. Thus, the mark in the
off-diagonal cell [D, F] represents an interaction that is both an input and an output
depending on whether one takes the perspective of its provider (column F) or its receiver
(row D).

It is important to note that many DSM resources use the opposite convention, the
transpose of the matrix, with an element's inputs shown in its column and its outputs shown
in its row. The two conventions convey the same information, and both are widely used
because of the diverse roots of matrix-based tools for modeling systems (which is the topic

A B C D E F G H
A A: :X: , , , , , , '

• - __ - � - - - -.1- __ _ _ 1 __ _ __ � __ _ _ " _ _ __ __ _ _ � _ __ _ B :B! ! X! ! X!X !
C

····t···· 1·C·!"····r····t···:·····� ·i
I , , , , I I

D · ·xTir···T"[)T···�·X- �·····r····
I , I , I , '

E ··· ·t·X···t· ·r ··TE· ·-r ···r· ·· !· ···· , I , , , , '
, , I , , , I ---- r----'-----,-----r---- '-----,-----,..----

F : : : : X: F: : , , , , , , '
G

····r····rx-r···r···T···TGr···

, , I , I , I - - - - r - - - - � --- - - :- - - -- � - - - - �- - - - �-- - - -r ----
H !!: X: ! ! H

(a)
Figure 1.3

(b)

The binary DSM (a) with inputs in rows (IR) and its equivalent in digraph form (b).

5 Introduction to Design Structure Matrix Methods

of the next section). Here we begin by adopting the original DSM convention with inputs
in rows (IR) and outputs in columns. Later we also present examples using the opposite
inputs in columns (IC) convention (which stems from W charts and IDEFO diagrams).

The simple DSM in figure 1.3a is called a binary DSM because the off-diagonal marks
indicate merely the presence or absence of an interaction. The binary DSM representation
can be extended in a great variety of ways by including further attributes of the interac­
tions, such as the number of interactions and/or the importance, impact, or strength of
each- which might be represented by using one or more numerical values, symbols, shad­
ings, or colors instead of just the binary marks in each of the off-diagonal cells. This
extended form of DSM is called a numerical DSM. Figure 1.4 shows two examples. Addi­
tional attributes of the elements themselves may also be included by adding more columns
to the left of the square matrix to describe, for example, the type, owner, or status of each
element. (Additional attributes of the interactions, such as their names, requirements, etc.
are usually kept in separate repositories but may be linked to the DSM cells by numerical
identification numbers or indices.)

DSM models can be partitioned or rearranged using a variety of analytical methods,
the most common of which are clustering and sequencing, as shown in figures 1.5a and b,
respectively. Clustering analysis applies primarily to the kinds of interaction networks
found in product and organization architecture DSM models, where interaction marks
are largely symmetric about the diagonal, as described in chapters 2-5. Sequencing analy­
sis applies primarily to the kinds of directional or temporal interaction networks found
in process DSM models, as described in chapters 6-7.

A B C 0 E F G H

A Ai , i 2 i , , , I , , , , · - - - ... ····· T - - - · . ,- - -· · ·· . - r -···. ,···· · - - - -B iBi ili i3il!
_ _ _ _ � _ _ _ _ _ J. _ _ _ _ _ ... _ _ _ _ .J _ _ _ _ _ ,, _ _ _ _ _ ... _ _ _ _ .J _ _ _ _ _

, , , I , , I C i i C iii i i 3
- - - - .. - -- - - .. - -- - -... - -- - ... - - - - - . - - -- -... - - - - .. - - - - -

o 3i2i ioi i4i i
, , I I • , I -- - - ., --- - -,.- -- - -,. - - - - ., - - -- - ,. --- - -,. - - - - .,- - - - -

E i 1 iii E iii
, , I I , , I -- - - -'-----T ----- '------, ----- y --- --,----- ... -----

F iii i 4 iF i i
___ _ .I ___ _ _ l _____ '-___ _ .) _ _ ___ l _____ '- ____ .l _ _ __ _ , , , , . , ,

G i i 1 iii i G i
-- - - .. - - - --. - -- --.. - - - - ... - - -- - .- - - - -.. - - - - .. - --- -

H
'

iii 1 iii H

Figure 1.4

, , , ,

(a)

A B C o E F G H
A
B
C
0
E
F
G
H

(b)

The numerical DSM representation using values (a) or colors (b) to represent strength or type of
interactions.

6 Chapter 1

A
C

A C B E G 0 F H
A:X

----.. ----- ----

xic
B B: : X i X

, " ,
____ ... _____ ____ .J _____ l _____ '- ___ _

E i XiEixi
, " ,

G "'T'" "'TXTGTX-, " +--+-+---I
o ""r'" 'xT"Tx 0 X: X " ,

, " F
H

----oO----- _____ .. ____ ... ____ _
, "
, "
, "
, "

Figure 1.5

(a)

X:F:X
---- .. ----- .. --- -

xii H

o B G F H A C E
o o i " ,

:)(l: l� i J(rT:: :::: F 'X- 'x-rXT F' ""r" ""
---- - - --.. ----- ----

H ixiHi
---- �----- t -----� ---- �-----i__+_-+___I

A Xi :X: iX Ai iX
C
E

-- -_ .. _---_ .. _----'----_ .. _---- -----'----_ .. _---
, I I I "

:X: :X X: C :X , " -- - - ... - - - - - � - - ---.... ----.. --- - - ----... ----- .. - - --

i xi i i X ixi E

(b)

DSM partitioning analysis commonly entails clustering (a) or sequencing (b) based on the interactions con,
tained in the matrix. (To illustrate clustering and sequencing, the interaction data in these two matrices are not
the same and are different than those in figures 1.3 and 1.4.)

Matrix-Based Tools for Modeling System Architectures

The term DSM has its basis in using a matrix to model the design and structure (archi­
tecture) of a system. Over the years, other terms have also been applied using the DSM
initials (e.g., dependency structure matrix, dependency system model, deliverable source
map, and other combinations of such words) . Most of these alternative terms sprang from
a desire to emphasize a particular aspect of a DSM model, such as its ability to model or
map dependencies between elements in a system.

In this book, we adopt the name DSM as a unifying term for a wide variety of square
matrix models, even though some of these predate the term DSM. Our main criterion is
that DSM is a square matrix, with the rows and columns identically labeled and ordered,
and where the off-diagonal elements indicate relationships between the on-diagonal
elements. Later, in chapter 8, we describe a rectangular matrix called a domain mapping

matrix (DMM) used to link DSM matrices across domains. Many matrix-based methods
have their origins in a branch of mathematics called graph theory, which has tended to
focus on analytical techniques. Insights from graph theory continue to provide an impor­
tant source of extensions to DSM analysis methods.

System Architecture

A system is "a combination of interacting elements organized to achieve one or more
stated purposes" (INCOSE 2007, p. C5) . IEEE (2000) defined system architecture as "the

7 Introduction to Design Structure Matrix Methods

fundamental organization of a system embodied in its components, their relationships to
each other, and to the environment, and the principles guiding its design and evolution"
(p. 3). We adopt this IEEE definition with some minor modifications, mainly for the sake
of clarity and emphasis. First, we replace the word "organization" with the generic term
"structure," retaining the former for particular application to what are widely referred to
as organizations (i.e., assemblies of people). Second, we generalize the product-oriented
definition by using the generic term "elements" for any kinds of "components," reserving
the latter term for the elements of a product. Third, we make the connection between
architecture and function explicit. We therefore use the following definition:

System Architecture: The structure of a system- embodied in its elements, their relation­
ships to each other (and to the system's environment), and the principles guiding its
design and evolution - that gives rise to its functions and behaviors.

Thus, a system's architecture describes its elements and their relationships as a structure
that can be designed and may evolve over time. We could refer to DSM as "the system
architecture design matrix," but "design structure matrix" is simpler, has become widely
accepted, and will suffice when understood in the proper context.

All types of systems have architectures. Product architecture refers to the components
and interactions within a physical artifact, such as hardware (and sometimes software),
including automobiles, aircraft, buildings, ships, computers, equipment, machinery, and so
on. Organization architecture refers to the people or teams and their interactions within
an organization. Process architecture refers to the actions and interactions that accomplish
work, such as the design or production of a product, the delivery of a service, or the execu­
tion of software code. While products, organizations, and processes are each a type of
system, at times the term "system" is used to refer to any one of these (e.g., complex
products or portions thereof are often called systems), and sometimes it is used to refer
to all of them collectively. In this book, we strive to use the terms "product," "process,"
or "organization" to refer to each of these particular types of systems while reserving the
more general term "system" for remarks pertaining to any type of system.

Two other categories of relationships that are particularly important in system model­
ing are hierarchical (vertical) and lateral (horizontal). Hierarchical relationships stem
from the decomposition or breakdown of a system into elements. For large and/or complex
systems, decomposition may recur through several levels (Simon 1962, 1996). Lateral
relationships stem from interactions between elements, such as flows of material or
information, at the same level. Hierarchical relationships are often modeled with break­
down structure diagrams- for example, work breakdown structures (WBS), organization
breakdown structures (OBS) or org charts, and product breakdown structures (PBS) or
product trees or indented bills of materials. While a DSM is mainly used to represent the
lateral relationships between elements at a particular level of decomposition, it can also
show elements' locations in a hierarchy, as illustrated in figure 1.6. Note that the DSM in

8 Chapter 1

(a)
Figure 1.6

A B C
A mx
B X B
C X X C

(b)

B2
C1
C2
C3

A1 A2A3 B1 B2 C1 C2 C3

X

X

- r - - -r - _4. --

.-=�"'-'"

X

(c)

X

X X

X X

Decomposition can be represented with a tree diagram (a) or with a DSM, either at a high level (b) or at a
lower level (c).

figure 1.6c shows the lateral relationships among elements at the lowest level of the hier­
archy, whereas the DSM in figure 1.6b shows only the presence of these relationships
between higher level elements in the hierarchy. Note also that panels a-c of figure 1.6 are
not entirely equivalent because the breakdown structure (a) diagram does not include
the lateral relationships.

Why are we so interested in system architecture? Simply put, architecture drives behav­
ior. The structure of a system's elements and interactions causes the emergence of system
attributes, functions, and behaviors (some anticipated and some not). Architecture also
governs a system's performance and value (both short and long term). System designers
make choices about elements and relationships. Some designs are better than others.
Although many reasons can account for the differences, a key one has to do with skill in
developing the system's architecture, which is largely determined by the choices made by
designers (or architects) early in the system's development process.

Although the choice of elements to include in a system has always been a focus
of system designers, relatively recent advances in complexity science have emphasized
the critical role played by the lateral links among elements, particularly when it comes
to the emergence of system behaviors. For a system, the value of the whole is greater than
the sum of its parts. Or, as Rechtin (1991) explained in the context of designing large,
complex systems, "Relationships among elements are what give systems their added
value," and, therefore, "The greatest leverage in system architecting is at the interfaces"
(p. 29).

As many examples presented in this book demonstrate, it is often possible to make
drastic improvements to a system without significantly changing its elements or their
interactions. Large benefits can be achieved merely by changing the way the elements are

9 Introduction to Design Structure Matrix Methods

structured - for example, by grouping product components into a different set of modules,
by grouping people into a different set of teams, or by altering activity sequences in a
process. These kinds of improvements may allow us to better implement the product
architecture, more effectively manage the organization, or more efficiently execute the
process. Such benefits are often the result of a partitioning analysis, such as sequencing
or clustering, applied to the system architecture represented in a DSM format, as illus­
trated in figure 1.5.

Advantages of the DSM for System Architecture Modeling

Although DSM is the focus of this book, it is important to remember that DSM is only
one important tool in a system designer's or modeler's tool kit. In many cases, it is not a
question of finding or choosing a single best method, tool, or representation for architec­
tural modeling; rather, a combination of representations is most powerful (Browning
2009). However, within the suite of potential representations, DSM offers some salient
advantages:

• Conciseness The structured arrangement of elements and interactions provides a
compact representation format. Compared with many other network modeling
approaches, we find that a DSM can meaningfully represent a fairly large, complex
system in a relatively small space.

• Visualization The DSM highlights relationship patterns of particular interest to a system
designer. For example, a process architecture DSM can distinguish feedback interac­
tions, which have magnified implications for the system's behavior, and a product
architecture DSM may show regions of heavy interaction indicative of benefits of
assigning particular components to subsystems or modules. Moreover, the DSM pro­
vides a system-level view that can support more globally optimal decision making and
help orient those focused on particular elements.

• Intuitive Understanding Once introduced to DSM, people find that they are able to
understand the basic structure of a complex system quickly once the DSM model is
properly displayed. Hierarchy and complexity become apparent in even a cursory
review of the DSM.

• Analysis The matrix-based nature of the DSM opens the door to applying a number of
powerful analyses in graph theory and matrix mathematics as well as specialized DSM
analysis methods. DSM analysis can also illuminate indirect links, change propagation,
process iterations, convergence, modularity, and other important patterns and effects.

• Flexibility DSM is a highly flexible system modeling tool. Since its initial development
more than three decades ago, many researchers and practitioners have modified and
extended the basic DSM with helpful graphics, colors, and additional data. New possi­
bilities continue to develop every year.

10 Chapter 1

In our experience of building and evaluating DSM-based models, we have found that
merely building the model provides several important benefits. Modeling may prompt the
acquisition of previously latent system information and stimulate dialog among various
experts, which serves to increase the alignment of their individual mental models. The
DSM provides a common perspective on a system, increases designers' understanding of
the cause-and-effect relationships occurring within the system, helps to organize this
knowledge, and channels creativity and innovation toward beneficial improvements- in
other words, DSM helps people better manage system complexity.

DSM Approach to Architectural Modeling and Analysis

Each of the DSM applications presented in this book essentially follows a five-step
approach to architectural modeling and analysis (figure 1.7). These steps are:

1. Decompose Break the system down into its constituent elements perhaps through
several hierarchical levels.

2. Identify Document the relationships among the system's elements.

3. Analyze Rearrange the elements and relationships to understand structural patterns
and their implications for system behavior.

4. Display Create a useful representation of the DSM model, highlighting features of
particular importance or of special interest.

5. Improve Most DSM applications result in not only better understanding of the system
but also improvement of the system through actions taken as a result of the DSM
analysis and interpretation of its display.

These five steps should be prefaced by appropriate preparation and planning in light
of the purposes, goals, and constraints for the effort. We do not advance these steps as
sufficient to completely understand a complex system; rather, we submit that they can be
extremely powerful and beneficial when designing and managing engineering and socio­
technical systems. Ideally, the last step would include a feedback to the first, closing not
only a continuous improvement loop but also a systematic cycle of learning that increases
knowledge of the system and improves the model's accuracy and richness.

Users of DSM may be process owners, project managers, or consulting staff who are
interested in exploiting the insights DSM can provide to improve the system. The DSM

Identify

Figure 1.7
The DSM approach to system modeling, analysis, and improvement.

11 Introduction to Design Structure Matrix Methods

approach outlined here generally takes practitioners several weeks to execute. The actual
time and effort required for any DSM application would depend on several factors, includ­
ing familiarity with the system being modeled, access to product and process experts,
available documentation, level of modeling detail desired, and experience of the DSM
modelers. Although some DSM models can be extracted automatically from project man­
agement models or software code, most have entailed the direct involvement of experts.

Types of DSM Models

Almost all DSM models to date may be classified into four types within three main
categories as shown in figure 1.8. The first category consists of static architecture models,
representing systems whose elements exist simultaneously. Types of applications in this
category include systems such as products (whose components physically interact with
one another) and organizations (whose members communicate with one another). The
second category consists of temporal flow models, representing systems whose elements
may be actuated over time. All of the applications in the temporal category are types of

Product
Architecture

DSM

(Chapters 2-3)

Figure 1.8

Organization
Architecture

DSM

(Chapters 4-5)

Departments

Indivi duals

Process
Architecture

DSM

(Chapters 6-7)

Subprocesses

ACti�ities
• � J

-
.-

"arameters
I

Product +

Organization +

Process MDM

(Chapters 8-9)

Four types of DSM models. Each type is the focus of two chapters of this book, one chapter introducing the
modeling method and one chapter providing several industrial application examples.

12 Chapter 1

processes, represented as activity-based process models, low-level parameter-based models,
and even software processes (although software is a product, it executes procedurally).
The third category consists of multidomain matrix (MDM) models, which represent more
than one type of DSM (e.g., product, process, and/or organization) in a single matrix. We
present methods for and examples of each of these types of DSM models in this book.

Many readers will note that hardware products and organizations certainly have tem­
poral properties, and there might be insights in applying a temporal DSM to these systems
(Browning 2001), but here we focus on classifying existing applications. So far, studies of
product and organizational evolution have employed a collection of static DSMs as
"snapshots" in time (e.g., Sosa et al. 2007 and examples 5.2 and 9.12).

These four types of DSM models have led to DSM applications in many industries
addressing a wide range of problems and situations. Because the primary, single-domain
applications of DSM have been products, organizations, and processes, we organize the
sections of this book on that basis. Hence, we have grouped all of the temporal flow DSM
models into the process DSM type. A fourth section of the book presents the multidomain
models and their application.

Although we focus this book on DSM research and applications to date in complex,
engineered systems, we hasten to point out that many other applications have great poten­
tial, including portfolios of projects or investments, supply chains or networks, information
technology platforms, enterprise goals and objectives, product requirements, systems of
risk, product-service systems, public policy, and social systems, to name but a few.

A Brief History of DSM

Before the term DSM was coined by Professor Don Steward of California State Univer­
sity, Sacramento, in the 1970s, a branch of graph theory had long used square precedence
matrices to depict relationships among nodes in a digraph. However, Steward has received
primary credit for creating the DSM method by first applying the square-matrix format
to represent a network of design variable (or design task) interactions. The technique was
derived from methods used to sequence large systems of equations in order to solve them
with minimal iteration. In applying this approach to design variables and processes, he
explained that the benefits of the DSM method would include "to develop an effective
engineering plan, showing where estimates are to be used, how design iterations and
reviews are handled, and how information flows during the design work" (Steward 1981 b).
Other contemporary diagramming methods used in the 1970s included process flow
charts, N2 charts, and node-link diagrams, all of which would eventually be transformed
into various DSM formats.

At MIT, we picked up DSM in 1989, recognizing its potential in Steward's book
(Steward 1981a) and IEEE Transactions paper (Steward 1981b). However, we wondered
why there did not appear to be any industrial application of the method. With a series of

13 Introduction to Design Structure Matrix Methods

master's and doctoral students, we undertook a number of industry projects in the auto­
motive, electronics, and aerospace industries in the 1990s (Eppinger et al. 1990, 1994).
Through this experience, we found both the challenge and the promise of DSM for
complex systems industries. We extended DSM from Steward's initial process flow models
and sequencing analysis to include static architectural models, clustering analysis, and a
range of applications to product and organization domains.

Early industry application (and further development) of DSM began at NASA, Boeing,
General Motors, and Intel in the early 1990s. (Several of these works are cited in later
chapters.) Today, there are applications of DSM spanning many more firms in a range of
industries, as partly evidenced by the examples provided in this book.

The DSM research community was established in the late 1990s with a series of work­
shops held at MIT. This worldwide DSM community now includes researchers at universi­
ties throughout Europe, Asia, Australia, South America, and North America. We also
include in the DSM community a network of software developers, consultants, and lead
users in industries where DSM is being actively applied. Indeed, many of the examples
shown in this book come from members of this growing DSM community.

By now there are hundreds of research papers that chronicle the development of DSM
methods and document a wide variety of applications. An extensive listing of these papers
can be found on the DSM community website (www.dsmweb.org).

Structure of This Book

We have organized the remainder of this book in four parts corresponding to the four
primary types of DSM application described earlier. Each part contains two chapters.
First, a chapter describes how the DSM modeling approach is applied to the particular
domain, how such models are analyzed, and the kinds of industrial problems for which
we have found DSM to be useful. Second, a chapter presents a variety of application
examples in a range of industries. Many researchers and practitioners have contributed
examples to this book, and we provide references to their original publications whenever
possible, as their presentations in this book are necessarily abbreviated.

We start with static DSM models in the product domain in chapter 2, with our attention
focused on product architectures, followed by example applications in chapter 3. We then
apply DSM in the organization domain in chapter 4, with a focus on the structure of and
communications within organizations, followed by example applications in chapter 5.
Chapter 6 presents DSM in the process domain, adding a sequential orientation and
temporal flow to the DSM, followed by example applications in chapter 7. Finally, chapter
8 presents several types of multidomain models, combining types of DSM models seen in
the earlier chapters to represent multiple domains simultaneously, followed by example
applications in chapter 9. We conclude in chapter 10 with a look at the future of DSM
methods and applications.

14 Chapter 1

References

The introductory volume of this MIT Press Series on Engineering Systems offers a com­
prehensive overview of the challenges and opportunities of complex engineered systems
today.

de Weck, Olivier L., Daniel Roos, and Christopher L. Magee. 2011. Engineering Systems: Meeting Human Needs
in a Complex Technical World. Cambridge, MA: MIT Press.

Fundamental work on the architecture of complex systems began in the 1960s.

Alexander, Christopher. 1964. Notes on the Synthesis of Form. Cambridge, MA: Harvard University Press.

Rechtin, Eberhardt. 1991. Systems Architecting: Creating & Building Complex Systems. Englewood Cliffs, NJ:
PTR Prentice-Hall.

Simon, Herbert A. 1962. The Architecture of Complexity. Proceedings of the American Philosophical Society
106 (6):467-482.

Simon, Herbert A. 1996. The Sciences of the Artificial. 3rd ed. Cambridge, MA: MIT Press.

IEEE and INCOSE provide helpful background on systems architecting and systems
engineering definitions and methods.

IEEE. 2000. IEEE Recommended Practice for Architectural Description of Software-Intensive Systems. Institute
of Electrical and Electronics Engineers Standards Association, IEEE Std 1471-2000.

INCaSE. 2007. Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities, Version
3.1, International Council on Systems Engineering (INCaSE).

Steward's original 1981 book and IEEE Transactions paper first explained basic DSM
methods and applications to sequencing design parameters.

Steward, Donald V. 1981a. Systems Analysis and Management: Structure, Strategy, and Design. Princeton, NJ:
Petrocelli Books (original edition out of print, but reprinted by TAB Books, 1997).

Steward, Donald V. 1981b. The Design Structure System: A Method for Managing the Design of Complex
Systems. IEEE Transactions on Engineering Management 28 (3):71-74.

DSM research at MIT expanded Steward's original focus from design parameters to
processes, organizations, and product architectures. The following articles summarize
some of these efforts, while many of them appear as separate examples and references in
later chapters.

Eppinger, Steven D., Daniel E. Whitney, Robert P. Smith, and David A. Gebala. 1990, September. Organizing
the Tasks in Complex Design Projects. ASME Conference on Design Theory and Methodology, Chicago, IL, pp.
39-46.

Eppinger, Steven D., Daniel E. Whitney, Robert P. Smith, and David A. Gebala. 1994. A Model-Based Method
for Organizing Tasks in Product Development. Research in Engineering Design 6 (1):1-13.

In particular, Browning reviewed many applications of DSM (and closely related model­
ing methods), establishing the distinction between static and temporal DSMs (and their
associated analysis techniques, clustering, and sequencing, respectively) and the categories

15 Introduction to Design Structure Matrix Methods

of product, organization, process, and parameter DSMs. He also discussed the potential
for crossover applications (e.g., sequencing a product DSM or clustering a process DSM)
and multidomain analyses.

Browning, Tyson R1998. Modeling and Analyzing Cost, Schedule, and Performance in Complex System Product
Development. PhD thesis (TMP), Massachusetts Institute of Technology, Cambridge, MA.

Browning, Tyson R 2001. Applying the Design Structure Matrix to System Decomposition and Integration
Problems: A Review and New Directions. IEEE Transactions on Engineering Management 48 (3):292-306.

The DSM can be used in conjunction with other types of charts, diagrams, and representa­
tions (views) to provide a rich, multifaceted model of a system.

Browning, Tyson R 2009. The Many Views of a Process: Towards a Process Architecture Framework for Product
Development Processes. Systems Engineering 12 (1):69-90.

Sosa et al. used a longitudinal set of static DSMs to analyze the dynamics of evolving
products.

Sosa, Manuel E., Tyson R Browning, and Jiirgen Mihm. 2007, September 4--7. Studying the Dynamics of the
Architecture of Software Products. Proceedings of the ASME 2007 International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2007), Las Vegas, NY.

2 Product Architecture DSM Models

Component TRL 1 , 1 4 3- 3 .3 2 1 1 , 1 a. t 1 t l I 1 1 3 3 1 1 1 1 1 1 1 1 1 '3 3 3 J 1 1 3 3 1 t 1 1

Lo s.u.... 1
l.eI1det Pywo S_O ,.. ... Pym 2

Star Scanner & SLJ"I s.ntor 1

CruIHMGA 1

--
LandarSenIO/'S

lI-IFModem
1_-
I ... ,. Com"'" & 1lF_
1-

VlAES".

ISoace<nIIt Sollw ...

2 2 2 2 2

Entry,Descent, & landing
-

• • Power Dlstrlbullon

• ...---Crulse Avionics

4 l!lri '-1HI-.=-., ...--- Propulsion

: �,tv-
(fa -I � �2 / E""12 Telecommunications

:4�t
Lander Systems ,2

12

,2

1
• ,e
3 ,2
3 &
3 12

• 2 .
2 2 I 2
2 2 , 2

1 2
2 2 1 2
It , 2 ...

1 2
,2 2 2' 1 2-

2
,
1
,
1

S 6 6
6 6 .

,
1 2
1 2

2 2 1 2
1 2

2 2 1 2
I 2
1 2

Areas of High Development Risk

,• :2

- 6 12 12 12 12'2 _ (Ii) 6
1 2

6 6 6
3 I
3 I

6 6 6
�::I�� � ./ Distributed System. ____ """--l.L. �

,./' ___ '\, r I . 12 2
'2

2 2 2
2 2 2

• 2 2 2 •
'2
2 � 2 e � 1 2

2 2 2 4 2 6 6 2 2.
1 4 3 3 3 2 1 , ' 1 "2 1 1 2 1 1 1 1 8 6 1 1 1 1 1 1 t

6 8 2 2 1 2

1 2 2 18 12 6 12 a 2. '2. 2. 2. 4 2 2. 6 6 '2 :2 :2 :2 2. 2 ���3: 1 1 6 .3 3 8 2 2 3 3 . , 2
2. 2. � 6 8 6 2. 2 5 6 2 2 2.

Figure 2.1
A product architecture DSM model augmented to represent technology risks in NASA's Mars Pathfinder
program (see example 3.4).

1 8 Chapter 2

Background

In this chapter, we turn our attention to the architecture of complex products. We show

how DSM is applied to represent and analyze these architectures and the types of insights

gained through such applications. We begin with a brief synopsis of terminology used in

the particular context of product architecture DSM modeling.

Terminology

Product or System A complex product or engineered system. Such systems come in many

forms and include automobiles, aircraft, electronics, software, mechatronics, machinery,

capital equipment, built environments, etc. In this chapter, the general term "system"

refers to either the product itself or the product and its surrounding environment or sup­

porting infrastructure.

Product Architecture The arrangement of components interacting to perform specified

functions. The architecture of a product is embodied in its components, their relationships

to each other and to the product's environment, and the principles guiding its design and

evolution. The terms product architecture and system architecture are used interchange­

ably in certain contexts.

Components The elements comprising a product. Depending on one's point of view, a

component may be a complex product or system.

Interactions The relationships between components or elements in a system. Interactions

may be of various types depending on the nature of the system. Many interactions occur

through interfaces between components.

Product Architecture DSM A mapping of the network of interactions between a product's

components, also known as system architecture DSM, product DSM, and component­
based DSM.

Cluster A set of components grouped because of certain relationships, suggested through

analysis of the product architecture DSM, and defined to comprise a module or

subsystem.

In defining the architecture of complex products and systems, it is common to decompose

the product or system into smaller elements such as subsystems, modules, and compo­

nents. These elements must be integrated to work together in order to achieve the per­

formance of the system as a whole. The field of systems engineering is largely concerned

with delivering system-level performance by planning and controlling the network of

interactions between components and subsystems. The traditional systems engineering V
diagram, shown in figure 2.2, illustrates the process of developing complex systems

through design and decomposition on the "down side of the V" and through component­

to system-level integration and testing on the "up side of the v."

1 9 Product Architecture DSM Models

Technology and
Market Analysis

Feasibility
Exploration

Operations and
Maintenance

Changes and
Upgrades

Figure 2.2

Concept ____ Cust�e.!. A�e.et�c� __ + System
Development equirements Deployment

System-Level __ S�t� �p�i�a�n! _> System �eSign and Test Plans Validation

� % Subsystem Subsystem Specs.,. Subsystem
"6 Design - and"TeSi Prans Validation

I!).. � .
Detail Unit Spe� Component

Design and"Test!" Testing

Component
Development

Imp ementallon

•
Documentation

and Review

Systems Engineering V (adapted from U.S. Department of Transportation).

According to our definition, a product's architecture has to do with the way its compo­

nents work together to perform its functions. Developing the architecture involves three

mappings: (1) hierarchical decomposition of the product into modules and components­

often represented by a product breakdown structure diagram, (2) assignment of functions

to the modules and components-sometimes mapped using a rectangular matrix diagram,

and (3) interactions between modules and components-the focus of our DSM applica­

tions in this domain.

DSM research in the product domain has been motivated by two primary objectives:

design of superior architecture (down side of the V) and improved implementation of the

architecture through more effective system integration (up side of the V). Important

advantages derived from improved architecture and integration may include: enabling

decomposition and segmentation of a product's associated development process and

organization structure (which in turn facilitates outsourcing and project management),

guiding standardization of internal interfaces, facilitating integration and testing at the

component and system levels, addressing potential quality problems during product

development, enabling product platforms and families with appropriate percentages of

common components, and reducing the costs of product adaptation and redesign. Of

course, these are in addition to the general advantages for complexity management, visu­

alization, understanding, and innovation mentioned in chapter 1.

20 Chapter 2

DSM has been used by a number of researchers and practitioners for product archi­

tecture analysis. Depending on the context or author, these DSMs have been given many

different names, including product architecture DSM, system architecture DSM, product
DSM, and component-based DSM. In all of these cases, this type of DSM model repre­

sents the components comprising a product and the relationships between them.

While node-link graph models go back much further, to our knowledge, the first

instance of a square matrix being used to represent a system's components and their

relationships is what systems engineers call an N-square (N2) chart or diagram. The first

written source on N2 diagrams that we are aware of is Lano's 1977 TRW report, later

published as a book (Lano 1979). However, it is our understanding that N2 diagrams have

been in use internally by various u.s. aerospace companies since perhaps the 1950s or

1960s (along with architecture block diagrams and entity-relationship diagrams, which

may show similar content in more of a flowchart format). Figure 2.3 shows an example

of an N2 diagram, which is similar to the DSM (in this case, using the inputs in columns

[Ie] convention). This use of square matrices to model system interfaces continues in the

systems engineering community, notably through inclusion in architecture frameworks

such as the u.s. Department of Defense Architecture Framework (DoDAF) (DoD 2009).

In the 1980s, the House of Quality (Hauser and Clausing 1988), with its "roof" comprising

a triangular half of a square matrix, and Quality Function Deployment (QFD) (e.g., Akao

1990) also demonstrated some of the benefits of mapping the relationships between

product elements.

In 1994, researchers at MIT published a DSM model (figure 2.4 and described more

fully in example 3.1) representing a product's architecture as a network of components

and their interactions (Pimmler and Eppinger 1994). This research exposed benefits of

distinguishing different types of interactions among components (such as spatial proxim­

ity, material flow, information flow, and energy transfer) and of analyzing the model to

prescribe alternative architectures with improved modularity. Since then, the use of square

matrices to model product architectures has continued, and many (but not all) of these

applications have used the term DSM.

Using product architecture DSM models, many researchers and industrial practitioners

have been able to better understand networks of interactions in complex systems, yielding

two primary types of benefits:

• Architecture benefits Planning subsystems or modules, understanding connections

across subsystems or modules, identifying the impact of new technology, assessing the

match between technical and organizational architectures, designing for modularity,

designing for adaptability

• Integration benefits Planning necessary integration and test activities at component,

module, and subsystem levels; identifying problematic interactions that may present

integration challenges

21 Product Architecture DSM Models

TDRS

Figure 2.3

STDN
Ground
Stations

W diagram from early systems engineering (adapted from Lana 1979, p. 96).

Building a Product Architecture DSM

The basic procedure for building a product architecture DSM is as follows:

1. Decompose the overall product or system into its subsystems and/or components. Lay

out the square DSM with components labeling the rows and columns, grouped into

subsystems or modules if appropriate.

2. Identify the known interactions between the components and represent these using

marks or values in the DSM cells.

The climate control DSM model in figure 2.4 illustrates this basic procedure. The system

is decomposed into 16 components, represented by the 16 x 16 DSM. Interactions are

22 Chapter 2

A B C D F G H I J K L M N 0 P
Radiator A A

Engine Fan B 0 B
Heater Core C • C

Heater Hoses D D

Condenser E E

Compressor F 0 F
Evaporator Case G • • •• G
Evaporator Core H • H

Accumulator I

Refrigeration Controls J 0 J

EATC Controls K K

Sensors L L
Command Distribution M 0 0 M

Actuators N • N

Blower Controller 0 • 0
Blower Motor P • •• P

A B C D E F G H I J K L M N 0 P

• Strong Interactions

o Weak Interactions

Figure 2.4
Product architecture DSM model of an automobile climate control system.

shown to be either strong or weak. (The original work used four dimensions to document

four types of interactions, but we summarize them here using marks denoting only two

levels of strength.)

Here are several caveats to consider when creating product architecture DSM models:

• Boundaries The limits of the designated system may or may not be well understood.

Choose the system boundaries so as to include all of the relevant components and

interactions you would like to represent in the DSM model. Early drafts of the model

may prompt one or more revisions of the system boundary as it becomes apparent that

including or excluding certain components will make the model more useful. (An inter­

esting example of this caveat is provided by the climate control system DSM, in which

the vehicle engine is outside the DSM system boundary. See the discussion of this

concern in example 3.1.)

• Interaction types Consider the various types of interfaces, relationships, and interactions

that may exist among components. Some interactions may be well defined, such as

physical adjacency of mating parts or flow of materials among subsystems. Other inter­

actions may be poorly understood, hidden, or only occurring under certain conditions,

23 Product Architecture DSM Models

such as heat transfers, vibrations, electrical interferences, or environmental effects. Dif­

ferent marks, values, or colors in the DSM cells may be used to indicate the various

types of interactions.

• Interaction strengths Consider the level, strength, or degree of interaction among the

components. Instead of a binary DSM, a numerical DSM may be used to show varied

levels of interaction in the off-diagonal cells; for example, a simple scale such as weak

or strong or a numerical scale with additional levels of distinction could be used. Posi­

tive and negative values could distinguish desirable from undesirable interactions.

• Symmetry Most interactions in product architecture DSMs are symmetric. That is, if

component A interacts with component B, then B also interacts with A. Asymmetric

interactions can also be present depending on the types of interactions in the model.

For instance, component C may create noise, which affects component D but not vice

versa.

• Granularity There is a tradeoff between greater richness of the model by decomposing

into smaller components versus modeling simplicity and ease of interpretation by limit­

ing the model's granularity. We usually find there is a sweet spot representing the right

compromise here, so we recommend starting small, with a manageable DSM size of

20-50 components, and only adding components and interactions where additional rich­

ness is needed. Here it is especially important to keep in mind the purpose of the model,

such as supporting a specific decision, and the available resources for building the

model, all of which will help determine the appropriate (or feasible) amount of detail.

Subsequent analysis of the DSM may reveal portions of the model where additional

granularity is needed as well as portions that could be rolled up into lesser detail without

much loss of information or insight.

• Identifying interactions Interaction data for the DSM may come from product documen­

tation, interface specifications, and the like. However, for most product DSM models,

the data collection requires at least some amount of direct discussion with subject

matter experts in order to draw out the tacit and system-level knowledge that may not

be captured in the documentation. Experts should also be consulted to verify and vali­

date the model.

Successful DSM models tend to meet the following criteria:

• The models have a clear purpose (not modeling for the sake of modeling).

• The models use the appropriate amount of detail for the intended purpose.

• The modelers have access to sufficient knowledge or expertise regarding the system.

• The DSM is maintained as a "living model," continuously improving it by incorporating

new knowledge as it becomes available.

• Having a DSM model often prompts the emergence of otherwise latent knowledge.

24 Chapter 2

It is worth noting that, although most of the discussion in this chapter pertains to DSM

models of hardware products, software product architecture can also be represented with

a DSM, where the components are generally modeled at the level of subroutines, func­

tions, or class files and the interactions are data flows and/or function calls. However,

because software actually executes as a process, it is also useful to apply the techniques

of process DSMs (chapter 6). Hence, we provide examples of software product DSMs in

both chapters 3 and 7 (see examples 3.5 and 7.15). Each type of DSM model and analysis

provides a different set of insights.

Analyzing the Product Architecture DSM

Quite a bit of useful insight can be gained merely by building a product architecture DSM

model. Many further insights can be derived through careful analysis of the model. The

most common method of analysis applied to product architecture DSM models is called

clustering. This is a form of partitioning analysis that reorders the rows and columns of

the DSM to group the components according to some objective, which usually pertains

to the number and strength of the interactions. Clusters may be formed to group compo­

nents that may achieve efficiencies through common membership in the cluster. For

example, several components produced by a common supplier, sharing multiple interfaces,

or having complex interactions may be candidates for a cluster.

One of the prominent heuristics in systems architecting is to choose modules such that

they are as independent as possible (i.e., modules with relatively few external interactions

and relatively more internal ones) (Rechtin 1991). However, it is quite common in complex

systems to have both modular and integrative subsystems, as explained in a paper by Sosa,

Eppinger, and Rowles (2003).

Figure 2.5 shows the result of clustering the climate control system DSM. This DSM

analysis indicates three groups of components with many strong, intragroup interactions

and relatively few intergroup interactions. The groups are labeled Front-End Air, Refrig­

erant, and Interior Air. Such groups have been called clusters, chunks, subsystems, or

modules by various authors and in various contexts. The clustering result also identifies

five highly integrative components within the climate control system, forming a distrib­

uted cluster labeled Controls/Connections. A fuller explanation of the climate control

system example and additional clustering results is given in the next chapter (example

3.1), along with a range of additional examples illustrating clustering in a variety of appli­

cations and showing several modifications to the basic approach.

Clustering is essentially a type of assignment problem seeking the optimum allocation

of the N components to M clusters. Clustering algorithms have many applications besides

the DSM (e.g., portfolio and market segmentation), and a variety of algorithms are avail­

able (e.g., Hartigan 1975). However, a DSM clustering analysis presents several potential

challenges.

25 Product Architecture DSM Models

K J

EATC Controls K

Refrigeration Controls J

Heater Hoses D

Command Distribution M

Sensors L
Radiator A

Engine Fan B

Condenser E
Compressor F • •

D

0

0
Accumulator 00

Evaporator Core H
Heater Core C 0

Blower Motor P 0
Blower Controller 0 • 0

Evaporator Case G
Actuators N

K J D M L

A B E

0

A B E

• Strong Interactions

o Weak Interactions

Figure 2.5
Clustered climate control system DSM model.

F I H C P 0 G N
• • • K

. 0 J

0 0 D

0 00 0 M

L
A.
B

flefrlgeranl E
F
I

H

C

P
0
G
N

F I H C P 0 G N

Clustering objective functions for DSM analysis trade off two conflicting goals: (1)

minimize the (number and/or strength of) interactions outside clusters, and (2) minimize

the size of the clusters. The determination of the best objective functions for various DSM

clustering applications is an important area of ongoing research. (The Reference section

at the end of this chapter points to some DSM clustering approaches.) Nevertheless,

comparing the clusters obtained by several different objective functions can often lead

an analyst to useful insights about the product architecture.

Figure 2.6 provides an illustration of clustering analysis based on a simple objective

function. For this example, we used a portion of the climate control system DSM (based

on only the materials interactions, as explained in example 3.1). In this illustration, we

show four possible clustering solutions, with two or three clusters, with or without over­

lapping. The objective function to be minimized considers both the size of the clusters

(ei) and the number of interactions outside the clusters (10), according to the following

equation, where a = 10 and {3 = 100:

M
Obj = aLe? + {3Io

i=1

Uncluslered DSM

A
B
E
F

H
C

P

o
G

A
B
E
F

H
C

P

o
G

A B C

A x

B x
C
E
F
G
H

0
P X

Two Non-Overlapping Clusters

A B E F I H C P 0 G
x

X X
X X X

X X X
X X

X X X J X

r X
X X X X

:+
Ou1sldo Clust"'s: 2 Cluster Sl.e., 2 8 0

Obj= 880

'TWo Overlapping Clusters

A B E F H C P O G
X

X X
X X X

X X X
X X

X X X X
X

X X X X

:+
Ou1slde Clust"'.: 0 Cluster Sl.e.; 6 o

Obl= 610

Figure 2.6

E F

X

X
X

G

X

A
B
E
F

H
C

P

o
G

A
B
E
F

H
C

P

o
G

H 0 P

X
X

x
x

X X
X

X
X x

Three Non-Overlapping Clusters

A B E F H C P 0 G
X

X X
X X X

X X X
X X

X X X X
X

X X X X

: +
0u1s1do Clust.,.: 4 Cluster Slzes: 2

Obi = 160

Three Overlapping Clusters

A B E F H C P O G
X

X X
X X X

X X X
X X

X X X X
X

X X X X

x-L
X

Outside ClustOfS: 0 Cluster Sl.e.: 3 5
Obi = SOO

Clustering analysis based on a simple objective function to minimize both the size of clusters and the number
of interactions outside the clusters.

27 Product Architecture DSM Models

Clustering analysis also requires attention to the following considerations:

• Number of clusters What should be the bounds on M? Without any bounds, an objective

function might find it optimal just to call the whole DSM a single cluster (M = 1) or to

call each component a separate cluster (M = N), although neither of these extreme solu­

tions is typically desirable. The analyst can gain insight by comparing the different solu­

tions found while specifying varied numbers (or ranges) of clusters as a constraint.

• Cluster size A related consideration is if and how to bound the size of each cluster.

Usually, a lower bound of a cluster consisting of a single component should be allowed.

However, it may be necessary to constrain the maximum number of components that

can be assigned to a cluster. Allowing the size of clusters to increase essentially limits

the maximum number of clusters.

• Overlapping clusters The clusters overlap in figure 2.5 and also in two of the clustering

solutions shown in figure 2.6. However, most non-DSM clustering algorithms do not

support a component's membership in two or more clusters. Nevertheless, the identifica­

tion and highlighting of such linking components provides an important architectural

insight. Therefore, DSM clustering analysis generally allows for the possibility of cross­

membership in the clusters if such solutions are of interest in the particular case (e.g.,

Yu et al. 2007).

• Interaction types We also mentioned earlier that the model in figure 2.5 actually accounts

for four different types of interactions among the components. (These are spatial prox­

imity, material flow, information flow, and energy transfer, as presented in further detail

in example 3.1.) Clustering the DSM based on any one of these types of interactions

alone is likely to suggest a different set of clusters than clustering on the combination

of interactions. This begs the question of whether certain types of interactions should be

weighted more heavily than others by the objective function. For example, spatial prox­

imity interactions might be more difficult to achieve via a standard interface than infor­

mation flow interactions, which might be more amenable to a standard protocol. Again,

the analyst can often gain useful insights by comparing the different optimal solutions

found when considering the different types of interactions collectively and separately.

• Integrating elements Figure 2.5 shows a number of components in the upper left of the

DSM that are not explicitly assigned to a cluster because they each have significant

interactions with many components. These integrative or bus components often serve

collective functions (such as monitoring and control) or as interaction conduits (e.g.,

the hoses in the climate control system example or a literal bus or backplane in an

electronic system). Hence, some clustering algorithms allow the analyst to set a bus

threshold, an amount of interaction above which a component is assigned to an integra­

tion cluster (for which it would be sorted toward the upper left or lower right corner

of the DSM). As with other considerations discussed previously, the analyst can gain

insight through sensitivity analysis of the bus threshold.

28 Chapter 2

• Manual clustering Although automated clustering methods are available in software

programs, many product architecture DSMs can be analyzed directly by moving the

rows and columns manually (or with programmed macros) in a spreadsheet application

or by using the manual sorting functions provided in most DSM software. Manual

adjustment is also useful for sensitivity analysis around the solutions proposed by clus­

tering algorithms.

• Multiple clustering solutions Because modularization involves balancing so many factors,

we find it useful to suggest several solutions and consider the interpretation of each

cluster before accepting any results.

Applying the Product Architecture DSM

Product architecture DSMs have been applied to a range of industrial problems and have

produced many useful insights. Several examples are given in the next chapter. Typical

applications include:

• Enhancement of product modularity, which determines subsystem boundaries, relates

to component sharing across product lines, and affects the difficulty of outsourcing and

system integration (see examples 3.2, 3.4, 3.5, 3.9).

• Carefully scrutinizing the clusters suggested by DSM analysis and comparing these to

established subsystems, subassemblies, or modules.

• Identification and application of "design rules," which systems architects and engineers

use to guide and enforce standards across the product architecture (Baldwin and Clark

2000).

• Using insights from the product architecture to inform the design of the product devel­

opment process and/or organization. Planning and managing the system integration

process (the up side of the systems engineering V) based on the network of interactions

(see examples 3.1, 3.2, 3.4, 3.6, 3.7, 5.1, 5.3, 7.8, 9.2, 9.4).

• Understanding product architecture dynamics, evolution, and adaptability across

multiple generations. Sosa et al. (2007) described some metrics for the number of

new, deleted, and changed components and interactions from one product version

or generation to the next. Engel and Browning (2008) explored modularization in

support of design for adaptability and described an approach where the clustering

objective function accounts for each component's option value and change cost, which

tends to separate dynamic components from stable ones to facilitate changeability,

upgrade ability, etc. in the design of product platforms and families (see examples 3.5,

3.6, 3.9).

• Interface management. The DSM can be used to identify and monitor key interfaces.

It can be augmented with attributes such as the name and owner of each interface. Each

29 Product Architecture DSM Models

Conclusion

References

such interface could even spawn a formal interface control document (see examples 3.1,

3.4, 3.6) .

• Product portfolio management. Product architecture DSMs can be overlaid to deter­

mine common and variant components in a product portfolio or family (see examples

3.9, 9.1) .

• In addition to modeling product architectures-and, in chapters 4-5, organization archi­

tectures-static DSMs also have the potential to be used more broadly for applications

in many other nonengineering domains such as public policy analysis and portfolio

segmentation/diversification in financial products.

The product architecture DSM provides a highly effective representation for product

components and their relationships. It documents both the product decomposition and

the network of interactions. It can be analyzed via clustering analysis, which (although it

remains somewhat of an art) generates alternative groupings of components into modules,

improves architectural understanding, and facilitates architectural innovation.

The value of the product architecture DSM increases as products become larger and

more complex systems. This is because system complexity makes it impossible for any

single individual to have a complete, detailed, and accurate mental model of the entire

system. The DSM helps individuals to communicate, compare, and integrate their partial

models of the system. Indeed, two of the main benefits of a DSM model are its abilities

to (1) concisely represent a relatively large number of components and their relationships,

and (2) highlight important groups of components and patterns of interactions, such as

those influencing modularity.

This list of references provides additional background on the product architecture DSM.

Lano produced an internal report at TRW in November 1977 titled "The N2 Chart," pub­

lished as a book in 1979, which described the mechanics of the N2 diagram (see figure

2.3) for a variety of applications similar to the DSM but in a more graphical format than

a matrix. Whereas systems engineers continue to use N2 diagrams, DSM encompasses

most of its capabilities while adding many analytical benefits.

Lano, R. 1. 1979. A Technique for Software and Systems Design. New York: North-Holland.

Pimmler and Eppinger developed the first application of DSM to product and system

architecture, representing component-to-component interactions (see example 3.1). (Prior

DSM work had been limited to process- and parameter-based models.)

30 Chapter 2

Pimmler, Thomas u., and Steven D. Eppinger. 1994, September. Integration Analysis of Product Decompositions.
Proceedings of the ASME International Design Engineering Technical Conferences (Design Theory & Meth­
odology Conference), Minneapolis, MN.

The following sources provide insights on approaches and algorithms for clustering.

McCormick, William T., Paul 1. Schweitzer, and Thomas W. White. 1972. Problem Decomposition and Data
Reorganization by a Clustering Technique. Operations Research 20 (5):993-1009.

Hartigan, John A. 1975. Clustering Algorithms. New York: John Wiley & Sons.

Fernandez, Carlos Ifiaki Gutierrez. 1998. Integration Analysis of Product Architecture to Support Effective Team
Co-Location. Master's thesis (ME), Massachusetts Institute of Technology, Cambridge, MA.

Thebeau, Ronnie E. 2001. Knowledge Management of System Interfaces and Interactions for Product Develop­
ment Processes. Master's thesis (Eng. & Mgmt.), Massachusetts Institute of Technology, Cambridge, MA.

Yu, Tian-Li, Ali A. Yassine, and David E. Goldberg. 2007. An Information Theoretic Method for Developing
Modular Architectures using Genetic Algorithms. Research in Engineering Design 18 (2):91-109.

Holtta-Otto, Katja, V. Tang, and Kevin Otto. 2008. Analyzing Module Commonality for Platform Design using
Dendrograms. Research in Engineering Design 19 (2):127-141.

Zakarian, Armen. 2008. A New Nonbinary Matrix Clustering Algorithm for Development of System Architec­
tures. IEEE Transactions on Systems, Man and Cybernetics. Part C, Applications and Reviews 38 (1):135-141.

Baldwin and Clark used DSM models to illustrate the nature of modularity in product

architecture and discussed the benefits of modular architectures.

Baldwin, Carliss Y., and Kim B. Clark. 2000. Design Rules. Cambridge, MA: MIT Press.

Engel and Browning suggested a clustering objective function to enable architecture

options (i.e., modularizing the components with the greatest change cost and option

value).

Engel, Avner, and Tyson R. Browning. 2008. Designing Systems for Adaptability by Means of Architecture
Options. Systems Engineering 11 (2):125-146.

The "roof" of the House of Quality (formally known as Quality Function Deployment)

is a triangular mapping of relationships between product attributes. This is essentially half

of a DSM model in the domain of customer needs and/or product specifications.

Akao, Yoji, ed. 1990. Quality Function Deployment. Cambridge, MA: Productivity Press.

Hauser, John R., and Don Clausing. 1988. The House of Quality. Harvard Business Review 66 (3):63-73.

By comparing the density of interactions within versus across subsystems, Sosa et al.

explained that the product architecture-based notions of modularity and integrality also

apply more generally to the architectures of complex systems (see example 3.2).

Sosa, Manuel E., Steven D. Eppinger, and Craig M. Rowles. 2003, June. Identifying Modular and Integrative
Systems and Their Impact on Design Team Interactions. Journal of Mechanical Design 125 (2):240-252.

Sharman and Yassine used the DSM to identify several characteristic patterns in product

architectures, including modules, chunks, various kinds of buses, pinning, and holding

away.

31 Product Architecture DSM Models

Sharman, David M., and Ali A. Yassine. 2004. Characterizing Complex Product Architectures. Systems Engineer­
ing 7 (1):35-60.

Sosa et al. used a longitudinal set of static DSMs to analyze the dynamics of evolving

products.

Sosa, Manuel E., Tyson R. Browning, and Jiirgen Mihm. 2007, September 4-7. Studying the Dynamics of the
Architecture of Software Products. Proceedings of the ASME 2007 International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference (IDETCICIE 2007), Las Vegas, NV.

The U.S. Department of Defense (DoD) Architecture Framework (DoDAF) provides a

structure for organizing a number of representations (views) of a complex product or

system. One of these views (SV-3) is essentially an N2 diagram or a DSM.

Department of Defense. 2009. DoD Architecture Framework, Version 2.0. Washington, DC: U.S. Dept. of Defense,
DoD Architecture Framework Working Group.

Rechtin provides invaluable perspective on architecting complex products in general.

Rechtin, Eberhardt. 1991. Systems Architecting: Creating & Building Complex Systems. Englewood Cliffs, NJ:
PTR Prentice-Hall.

3 Product Architecture DSM Examples

Overview

This chapter presents nine example applications of the product architecture DSM as listed
in the table below. Each example describes the purpose of the model (problem to be
addressed) , how the data were collected, how the model was built, and the results. Refer­
ences for further information are also provided where available.

Example Application Organization Purpose

3.1 Automobile Ford Motor Co. , • Increase architectural understanding
climate control USA • Inform organization design
system

3. 2 Commercial Pratt & Whitney, • Examine the extent of modularity in the
aircraft jet engine USA architecture

• Manage interactions across subsystems

3. 3 Digital printing Xerox, • Identify impact of new technology on
system USA existing product architecture

3.4 Mars Pathfinder NASA, • Ascertain areas of high technology risk in
spacecraft USA the system

3.5 Web browser Mozilla, • Assess impact of software redesign
software open source (refactoring) efforts to increase modularity

• Relate software architecture to maintenance
effort

3.6 Helicopter Agusta Westland, • Analyze the risk of change propagation
UK across component interfaces

3.7 Clinical chemistry Johnson & Johnson, • Anticipate potential system integration issues
analyzer USA • Predict system interactions based on product

requirements

3.8 School buildings Building Schools • Increase architectural understanding to guide
for the Future, design requirements and identify alternatives
UK • Adapt design for potential future changes

3. 9 Single-use camera Kodak, • Identify common modules across a product
USA family

34 Chapter 3

Example 3.1 Ford Climate Control System

Contributors

Steven Eppinger and Thomas Pimmler
Massachusetts Institute of Technology

Problem Statement

The Climate Control Division (CCD) of Ford Motor Company (Ford) wanted to better
understand the network of component interactions in the climate control systems it
designed and produced for Ford cars and trucks. These systems are comprised of many
interacting components, and the system engineering managers were primarily looking for
new insights regarding how the components functioned together as modules and how
system engineering and integration activities could be improved.

Data Col lection

Through discussions with several system engineers at CCD in 1994, we first captured the
system decomposition as a list of 16 typical components. We then documented the types
of interactions among the components along four dimensions (spatial adjacency, energy
transfer, materials transfer, and information signals) and quantified these on a 5-point
scale (from -2 for detrimental to +2 for required).

Model

The composite DSM shown in figure 3.1. 1 contains the ratings of all four interaction types
across all of the components. Clustering analysis using any one dimension of interactions
is relatively straightforward, as illustrated by the clustered materials DSM shown in figure
3.1.2. Clustering using any weighted function of all dimensions of the interactions is also
possible. The clustered composite DSM shows such a result in figure 3.1.3, revealing the
three clusters identified in the materials DSM plus a group of integrating elements. A
simplified version of this DSM result is shown in figure 2.5, wherein the DSM graphical
elements indicate each interaction as either strong or weak.

Resu lts

There is some historical significance to this particular DSM application because it was
the first product-based DSM model as far as we know. This was the first time that DSM
had been applied to a network of components and their interactions to represent a

35 Product Architecture DSM Examples

:mc
0

Radiator

Engine Fan

t
Heater Core C

1
Heater Hoses 0

Condenser E �
Compressor F

Evaporator Case G •
-1

Evaporator Core H

Accumulator I -1

Refrigeration Controls J

EATC Controls K

Sensors L

Command Distribution M 1

Actuators N

Blower Controller 0

Blower Motor P •

Figure 3.1.1

E F G H I

; • -1

-1

I
[I
�,

1

• 1 1 1
• •

1
2

2 2

1 1

•
•

�
Key: fSEl � M �

J K L M N 0 P

1

•

1
2

• •
•

1
2

1
2 2 2

1
2
1 1 1 1 1

1
2

' 1

m
2

1

Composite DSM including interactions among components of four types: spatial, energy, information, and
materials.

36 Chapter 3

Sensors

Command Distribution

Actuators
Radiator

Engine Fan

Condenser

Compressor

Accumulator

Evaporator Core

Heater Core

Blower Motor

Blower Controller

Evaporator Case

Figure 3.1.2
Clustered materials DSM.

L
M

N
A

B Front-End Air
E
F

Refrigerant
H
C
P
0 Interior Air

G

product's architecture. We also showed a way to depict multiple interaction types in each
cell and the application of multidimensional clustering analysis.

Three important clusters (interior air, refrigerant, and front-end air) were identified by
considering only the materials transfer-type of interactions, as shown in the clustered
materials DSM (figure 3.1.2). We also performed clustering analysis with the other three
dimensions. A group of integrating components (controls/connections) with interactions
across the entire system was primarily identified through analysis of the DSM based on
the information-type interactions. Finally, to create the composite clustered DSM, we
combined the results of each of the four single-dimensional clustering analyses.

Considering the composite clustering results, we make several observations. The three
clusters included interactions of the materials, energy, and spatial adjacency types.
However, in the highly integrative controls/connections chunk, the interactions were of
the spatial and information types. This suggests that for some systems, certain types of
interactions may be clustered as product modules, whereas other interactions are more
integrative across the entire product or system.

It is also interesting to note that there is no cluster related to the flow of engine coolant
through the radiator and the heater core to provide heating to the passenger compart­
ment. The automobile's engine was not a part of this analysis because Ford did not con­
sider it a climate control component. (Engines were produced by Ford's Powertrain
Division.) Without the engine to couple the heating elements, the analysis did not identify
the heating loop. An important lesson here is to be careful where to draw the boundaries
of the system being represented by the DSM analysis.

37 Product Architecture DSM Examples

K J 0 M L A
1

EATC Controls K 2 2
Refrigeration Controls J 1

2
Heater Hoses 0

1 1 1
Command Distribution M

1
Sensors L 2

Radiator A

Engine Fan B
1

Condenser E
1

Compressor F
2 2

1 -1
Accumulator I

Evaporator Core H

1
Heater Core C

Blower Motor P 1

Blower Controller 0 1
2

Evaporator Case G
1

Actuators N 2

Key:

Figure 3.1.3
Clustered composite DSM.

B E F I H C P

2
1

2
1-1 1

1 1 1

Front-End Air

:1;---' Refrigerant

[J �-��1 � 1.

fSEl � M �

•

-1

•

•

-1

•

•

•

0 G N

2 2

1 1

Interior Air

�
•

•
-•

38 Chapter 3

As hoped, this analytical result had organizational implications for CCD. They were
considering how best to organize climate control system development, and several group­
ings of components and teams had already been proposed. This analysis was able to
provide an additional, objective perspective on the structure of the system based on data
describing the network of interfaces between the components. The subsequent reorgani­
zation of CCD partly reflected the clustering results shown here.

The four interaction types used in this analysis seemed appropriate for this application.
In general, we would expect that other interaction types might be better suited to repre­
senting other types of systems. We also expect that each dimension of interaction analysis
could yield some useful insights.

Reference

Pimmler, Thomas u., and Steven D. Eppinger. 1994, September. Integration Analysis of Product Decompositions.
Proceedings of the ASME International Design Engineering Technical Conferences (Design Theory & Meth­
odology Conference) , Minneapolis, MN.

39 Product Architecture DSM Examples

Example 3.2 Pratt & Whitney Jet Engine

Contributors

Steven Eppinger
Massachusetts Institute of Technology

Manuel Sosa
INSEAD

Craig Rowles
Pratt & Whitney

Problem Statement

Pratt & Whitney, a division of United Technologies Corporation, produces and supports
aircraft jet engines, industrial gas turbines, and space propulsion systems. Development
of a commercial aviation jet engine is a highly complex process involving hundreds of
engineers working simultaneously on the various components and subsystems. This DSM
application investigated the system engineering and system integration aspects of the
PW 4098 jet engine development process through a product architecture DSM. The engine,
as pictured in figure 3.2. 1, is decomposed into eight subsystems, which are comprised of
54 major components.

FN:Fan

LPC: Low-Pressure Compressor

HPC: High-Pressure Compressor

CC: Combustion Chamber

HPT: High-Pressure Turbine

LPT: Low-Pressure Turbine

MC: Mechanical Components

MC and EC EC: Externals and Controls

Figure 3.2.1
PW4098 Jet Engine (courtesy of United Technologies Corp.) .

40 Chapter 3

Data Col lection

Over a period of four months in 1998, Craig Rowles (both an employee of Pratt &
Whitney and a student in MIT's System Design and Management master's program at
the time) interviewed system architects responsible for each major component in the
PW4098 engine program. To reliably capture as many direct dependencies as possible,
he asked about interfaces between components based on known interactions of five
types: spatial adjacency, energy flows (e.g. , heat), material flows, structural connectivity,
and information flows (e.g. , data and control signals). Subsequent analysis and interpreta­
tion of the DSM model was done jointly with Manuel Sosa, a doctoral student at MIT at
the time.

Model

The binary DSM model displayed in figure 3.2.2 shows the decomposition of the PW4098
engine into its eight subsystems and 54 components. Interfaces are indicated in the DSM
using red shaded cells between pairs of components.

Resu lts

The DSM model identified six of the subsystems as somewhat modular, in that each
subsystem primarily had interfaces among components within the subsystem. These
modular subsystems (listed starting from the front of the engine and from the top of the
matrix) are the fan, low-pressure compressor, high-pressure compressor, combustion
chamber, high-pressure turbine, and low-pressure turbine.

The DSM also showed that the remaining two, more spatially distributed, subsystems
were more functionally integrative across the engine. These distributed subsystems
are the mechanical components and the externals and controls. They tended to have
more interfaces among components of different subsystems and relatively few interfaces
within each subsystem. See Sosa et al. (2003) for details and statistical tests of this
analysis.

Identifying the pattern of component interfaces both within and across subsystems
helped the engineering managers at Pratt & Whitney to better manage the highly
complex challenge of system engineering. Their system engineering practice had been
largely focused on the interactions inside the modular subsystems. Based on this analysis,
they were able to focus more attention on the component interfaces across the
subsystems.

41 Product Architecture DSM Examples

30-HPT Rotor
31-HPT

33-LPT case
34-LPTTEC
35-LPT Vanes

ExtemalS/Conlrols Air system

ExtemalS/Controls 011 system
ExtemalS/Conlrols fuel / 0",10

50·eC Ignobon
51-EC Hamess •

Figure 3.2.2

•

I

•

• -

•

PW4098 Jet Engine System Architecture DSM.

••

II •

� ...

•

•

....
-

•

•

•

•

•

•

•

- •

• -

• •

42 Chapter 3

References

Rowles, Craig M. 1999, February. System Integration Analysis of a Large Commercial Aircraft Engine. Master's
thesis, Massachusetts Institute of Technology, Cambridge, MA.

Sosa, Manuel E. 2000, June. Analyzing the Effects of Product Architecture on Technical Communication in
Product Development Organizations. PhD dissertation, Massachusetts Institute of Technology, Cambridge, MA.

Sosa, Manuel E. , Steven D. Eppinger, and Craig M. Rowles. 2003. Identifying Modular and Integrative Systems
and Their Impact on Design Team Interactions. Journal of Mechanical Design 125 (2) :240-252.

Sosa, Manuel E. , Steven D. Eppinger, and Craig M. Rowles. 2007. A Network Approach to Define Modularity
of Components in Complex Products. Journal of Mechanical Design 129 (11):1118-1129.

43 Product Architecture DSM Examples

Example 3.3 Xerox Digital Printing Technology Infusion

Contributors

Eun Suk Suh
Xerox Corporation

Olivier de Weck
Massachusetts Institute of Technology

Problem Statement

Xerox is a leading designer and manufacturer of digital printing systems such as the one
shown in figure 3.3.1. These printing presses can produce several million high-quality color
publications per month, including yearly corporate reports, books, marketing brochures,
and other documents that are subject to stringent media and image quality requirements.
The market for these machines is growing steadily-mainly at the expense of traditional
offset printing-and it is also highly competitive. Firms compete with features such as
versatility, print quality, system availability, and cost per print, as well as ancillary service
offerings. They continuously innovate and infuse a stream of new features and technolo­
gies into their machines. The main problem addressed in this example is assessment of
the potential performance benefits and the invasiveness of proposed new value-enhancing
technologies into a baseline product architecture. The specific technology considered is
an image density correction subsystem that automatically senses imperfections on the
photoreceptor belt and digitally inverts these undesired features in the digital input to

Figure 3.3.1
Xerox iGen3 Digital Printing System (courtesy of Xerox Corp.) .

44 Chapter 3

achieve both higher image quality and lower operating costs. A DSM was created to
capture the baseline product architecture, while a so-called delta-DSM (!1DSM) is used
to document all the required component and interface changes.

Data Col lection

Over the course of several months in 2007, a full DSM model of the iGen3 digital printing
system was created by Eun Suk Suh (currently a system architect at Xerox and previously
a doctoral student in the MIT Engineering Systems Division). The first decision that had
to be made was the level of decomposition or abstraction at which the machine should
be represented. If the iGen3 digital printing system, shown in figure 3.3. 1, were to be
completely decomposed to individual part numbers, it would result in a DSM with about
2,000 rows and columns. Because this would have been impractical, we decided to repre­
sent the system using a DSM of 84 components, as this size balanced the requirements
of data collection with the desire to obtain a detailed view of the product architecture.
A total of 140 person hours were spent in creating the DSM model. This included
reading assembly drawings and schematics, physically inspecting a prototype machine,
and interviewing experts to verify that all important components and interfaces had
been properly captured. Based on this experience, the effort for manually creating a
product architecture DSM scales approximately with T = 0.02* N2, where T is the number
of person hours and N is the number of components (parts or subsystems) represented
in the DSM model.

Model

The product architecture DSM of the iGen3 digital printing system was created using
the DSM template shown in figure 3.3.2. Each of the four types of interfaces-physical

Figure 3.3.2

physical connection

•
mass flow

energy flow

information flow

Block diagram (left) and corresponding DSM (right) of a simple system. Each DSM cell is subdivided to
represent four types of interfaces (black = physical connection, red = mass flow, green = energy flow, blue =

information flow) .

45 Product Architecture DSM Examples

connections, mass flows (e.g., toner, paper), energy flows (mechanical rotary, electrical,
thermal), and information flows (image data, sensor signals, actuator commands)-was
identified and included as subcells in the DSM (figure 3.3.3). This was important because
the amount of effort in redesigning each of these components and types of interfaces in
the new product is quite different. Figure 3.3.2 shows how to read a highly simplified DSM
of this type for a simple system composed of three components A, B, and C. Following
this template, the full iGen3 digital printing system DSM is shown in figure 3.3.3.

Some noteworthy measures of complexity include the fact that there are 572 physical
connections (black), 45 different mass flows (red), 167 energy flows (green), and 165
information flows (blue) in the system. While complex, the density of the system is only
3.7%. In other words, only 1,033 of the 27,972 off-diagonal cells are occupied. Part of the
reason that the effort for creating such a model scales with N2 and not N is that the empty
cells also need to be confirmed.

We next built a ADSM from the DSM. The ilDSM is based on the underlying product
architecture DSM but captures only the engineering changes that are required to add to
the system a new set of components related to a proposed new technology. The following
steps were taken to construct the ilDSM:

1. Empty all cells of the baseline DSM (figure 3.3.3).

2. To the baseline DSM, add new rows and columns for any newly added components
and insert the names of the new components.

3. For newly added, removed, or modified components and connections, fill in the cor­
responding cells of the ilDSM using the color coding scheme shown in figure 3.3.2.

4. Note that both changes directly required by the new technology as well as indirect
(propagated) changes should be included in the ADSM.

Using these guidelines, a ilDSM for the new technology was constructed. Figure 3.3.4
shows the completed ADSM for the new technology. In the figure, only those elements
that are affected by technology infusion are shown (rows and columns without any change
are deleted). Overall, 15 components were added, eliminated, or revised. There were 33
physical connection changes, no mass flow changes, 7 energy flow changes, and 32 infor­
mation flow changes, for a total of 87 changes in the system.

Resu lts

The ADSM is used to assess the anticipated effort for designing and infusing the new
technology into the baseline product. This can be done in two ways. First, one can simply
assess what fraction of the original product is affected by the new technology. This
fraction is referred to as the Technology Invasiveness Index (TIl) and is computed as
follows:

46 Chapter 3

I I • • I " " . " U d .. " . " • • • n n III .. . I Q , rl U U , "' tl l'f: " M Pl It " .. " ""

,,

-

'''"1 !nglne jt',.",. .�

Figure 3.3.3
Product architecture DSM of the Xerox iGen3 digital printing system, indicating four types of interfaces across
the 84 components, grouped into nine subsystems.

47

1 2

1

3 •
•
•

9

'2

'3

14

15

16

'7

'B

'9

20

21

22

23

24

25 •
26

27

Product Architecture DSM Examples

3 4 5 6

Figure 3.3.4

7 8 9 10 11 12 13

• • • • • • • • • • • •

Components
New componenllsubsystem

Eliminated componenllsubsystem

Redesl ned component

14

• •

15 16 17 1B 19

� ..

'31 !!

Interfaces
Physical connection

Energy flow connection
I nformation now connection

Delta-DSM for auto-density image correction technology.

20 21 22 23 24 25 26 27

•
•
•
•

•

•
II
II
I •

••

•

•

r--
r--

III •

48 Chapter 3

N2 N2

I�>illSMii
TIl =

NEC!J.DSM
=

_i=.,.."l:-'-i=.,.."l,..--__

NEC N1 N1

where

DSM IIDSMii i=l i=l

NEC/1DSM is the number of non-empty cells in the ADSM (figure 3.3.4)
NECDSM is the number of non-empty cells in the baseline DSM (figure 3.3.3)
Nl is the number of elements in the baseline DSM

N2 is the number of elements in the ADSM

TIl represents the relative system change magnitude with respect to the complexity of
the original system due to technology infusion. For the technology examined here, TIl
was calculated to be 8.5%. The changes relate to the physical integration of additional
sensors as well as changes in the electrical power and control subsystems.

A second way to assess impact from the ADSM is to estimate the amount of resources
and effort needed to make each individual design change and the effort associated with
system integration and testing. Two changes may contribute equally to TIl but may require
vastly different amounts of resources to implement. Usually, experts from relevant fields
are consulted to estimate the amount of engineering effort and investment required to
accommodate changes specified in the ..:1DSM. This is then translated into cost. In the case
of the image correction technology presented here, the total effort was estimated to
be 13 person years. This is the required up-front investment for infusing the technology
into the product. The analysis of effort required needs to be complemented along with
an analysis of the performance impact on the attributes that customers value, and that
may lead to additional sales and expected profit. In this particular example, Xerox
decided to include the new technology as part of the next-generation iGen4 digital print­
ing system, which was launched in 2008 and received several awards for its high level of
performance.

References

de Week, 0. L. 2007, October 16-18. On the Role of DSM in Designing Systems and Products for Changeability.
Ninth International Design Structure Matrix Conference, DSM'07, Munich, Germany.

Suh, E. S. , O. L. de Week, and D. Chang. 2007. Flexible Product Platforms: Framework and Case Study. Research
in Engineering Design 18 (2) :67-89.

Suh, E. S. , M. R. Furst, K. 1. Mihalyov, and O. de Week. (2010, Summer) . Technology Infusion for Complex
Systems: A Framework and Case Study. Systems Engineering 13 (2) :186-203.

49 Product Architecture DSM Examples

Example 3.4 NASA Mars Pathfinder Technology Readiness

Contributors

Tim Brady
NASA

Deborah Nightingale
Massachusetts Institute of Technology

Problem Statement

The U.S. National Aeronautics and Space Administration (NASA) has a broad mission­
to conduct human and robotic space exploration, scientific discovery, and aeronautics
research. In the mid- to late 1990s, NASA launched several robotic spacecraft missions to
demonstrate new technology while also executing these missions with shorter develop­
ment times. Successes in this approach included the landing of the Mars Pathfinder in
1997, which provided close-up views of the Martian surface and demonstrated the use of
a small, robotic rover (figure 3.4.1). The successes were offset with some failures, most
notably the loss of both the Mars Climate Orbiter and Mars Polar Lander in 1999. These
failures motivated investigation of the effectiveness of DSM to provide a comprehensive
system view of the product architecture and the effect of technology maturity and risk in
system components.

Data Col lection

Over the course of five months in 2001, Tim Brady (both a NASA employee and a student
in MIT's System Design and Management master's program) researched seven robotic
spacecraft missions, six led by NASA and one led by the Department of Defense. The
cases selected had complex missions with budgets ranging from $30 to $300 million and
development times of approximately three years. Cases were also selected based on avail­
ability of data related to the spacecraft architecture and subsystem technology maturity.
One of these cases was the Mars Pathfinder spacecraft, which landed successfully on the
surface of Mars in July 1997 and deployed a robotic rover.

Model

A technology risk DSM (TR-DSM) is based on a product architecture DSM using a
decomposition of the major components of the spacecraft. The TR-DSM is generated
using a three-step process. In the first step, a product architecture DSM is generated using
values for the strength of each component interface dependence.

50 Chapter 3

Figure 3.4.1
The Mars Pathfinder rover in a simulated test environment (courtesy of NASA) .

The interface dependency value assigned to the DSM cell is obtained by summing
values representing the physical, energy, and information interactions that exist between
a pair of elements. In this DSM example, a physical interface value of 2 is assigned where
a direct physical interface exists. An energy interface value of 2 is assigned where there
is direct energy transfer such as power, propulsion, or thermal loads. The information
interface was assigned a value of 2 where there is direct transfer of information between
components and a value of 1 where information is transferred indirectly between
components.

In the second step of the TR-DSM generation, each component is assigned a technol­
ogy risk factor (TRF). The TRF scale ranges from a value of 1 for the most mature com­
ponents to a value of 5 for the highest risk or unproven components. The specific value
assigned is based on criteria set by NASA's technology readiness level (TRL) definitions
shown in figure 3.4.2. In the TR-DSM (see figure 3.4. 1), a column and row are added next
to the component names, and the TRF values are placed in the DSM cell adjacent to the
component name.

The final step of the TR-DSM generation is calculating the value to be placed in each
cell of the DSM using the following formula:

51 Product Architecture DSM Examples

TRF NASA TRL Definition TRL
1 Actual system "flight proven" through successful mission operations 9
2 Actual system completed and "flight qualified" through test and demonstration 8
2 System prototype in a space environment 7
3 System/subsystem model or prototype demonstration in a relevant environment 6
4 Component and/or breadboard validation in relevant environment 5
4 Component and/or breadboard validation in laboratory environment 4
5 Analytical and experimental critical function and lor characteristic proof-of-concept 3
5 Technology concept and/or application formulated 2
5 Basic principles observed and reported 1

Figure 3.4.2
Technology Risk Factor (TRF) and Technology Readiness Level (TRL) definitions (NASA 2008) .

TRF of TRF of interface dependency A-B interface value in
component A x component B x value A-to-B = technology risk DSM

The TR-DSM for the Mars Pathfinder spacecraft is shown in figure 3.4.3. This DSM
was created to demonstrate application of TRLs to compute areas of high risk in space
system development.

Resu lts

The TR-DSM can be used to highlight areas of development and operational risk. One
of the major objectives of the Pathfinder mission was to demonstrate new technologies
that could help reduce the cost of delivering scientific instruments to Mars. These com­
ponents included a radiation-hardened computer based on commercial hardware, utiliza­
tion of distributed processors linked together with a data bus, telecommunications circuit
boards, and components that supported the strategy for aero-braking entry, parachute
descent, and touchdown with airbags surrounding the lander. The majority of these
advanced technology systems were tested in simulated Martian environments on Earth
and assigned a TRF value of 3 based on the criteria in figure 3.4.2. The aeroshell used
during the entry into the Martian atmosphere could not be fully tested on Earth and was
assigned a TRF value of 4.

The resulting TR-DSM shown in figure 3.4.3 identifies several clusters of technology
risk areas. For example, the entry, descent, and landing (EDL) subsystem shows up as an
area of high technology risk. The high values result from a set of interfaces identified with
relatively high dependence between components with high technology risk factors. The
interfaces associated with the telecommunications, the landing instrumentation, and the
rover also showed clusters of high technology risk.

52 Chapter 3

Component

Delta II launch Vehlcle
Cruise Stage StruCl\Jr.

Crulse Power System

AerosheA tHealShield & B�.ne'

ParachlJta
Solid Rocket AssIsted Decelerator

Alrbag.

_hen Pyro Swilchlng & Pyros
lander Shunt Limiter unu Power OlslribtJtlon and Con�oI
t..am. PalalsiSoiar Array
LanderBaI1erv
lander Pyro Switching Assys and Pyros

Cruise Power Cotwertar

AIM PQWtIr Converblr

Cruise Remole Er1Q Unit

Star Scanner & Sun Sensor

Propulsion OriIIe Elect

Prop<IIsion Heat"'"
Propulsion TankslThruslBra

Teleoornmunications Board. -VME !IF
Telecommunocations BoNd •• TEL iff
CrulseMGA

EnW. O nt & landar LGAs
LanderHGA
Transponder. OIPIe •• r. Amptdler

Mechanical ACiualOfa

Radar Altimeter Lander Sensors HGA Actuators
Lander Romoler Eng Unit
UHF Modem
SO!o<Jrner Rover

FlIght Computer & iff Board�
Imager
A!mospllerfc Structure Instn.mont
1553 Data Bus
VME Bus
Freon Activo The""al Control
Passive Thermal ControllEnc:losuro

SD8C8Cfllft Software

TRI 1

1 •

4 8

2

3

J

1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 1 3 1 1 1 1 3 1 3 1 1 1 1 1 1 1 1

<I 8 2
2 8 - Cruise Vehicle 2 2 2 2 2 2. 2 2

2 I;" 2 1

4 16
3 12
3 II

8 1/ I�� E 41-- Entry,Descent, & Landing

(1....:::1 24 J

2
2
2.
2.
2 2

I&J! 24 24 8 �� ______ �8�� ' 4 8
. L �

•
4
a

Power Distribution
4 4 ---

4 __ Cruise Avionics

�E:
4 4 • __ Propulsion L..:... __ +-,

: .'r ..-
{ 311 311 12

4

12
12

3 12
• 2 8 2 2. I 2.
2 2 1 2

I 2
2 2 1 2.
4 4 2 4

1 2
2 2 1 2

2

/ � 4 Telecommunications � 4 �
6 8 6
6 6 6

1
I 2
\ 2

2. 2 1 2
1 2

2 1 2
I 2 12 1 2

Lander Systems N' 4

:6� 2
Areas of High Development Risk _

12 _ (� t 2.

��"" ':::I ".>W) � : � l / Distributed Systems ____ �:..L � 2 2 2

.,/'" _ r" . C 12 2 2 2 2 12
� 2. 2 6 2 1 2

12
4 2. 2 2 4 2

2 2 2 4 2 6 6 2 2 11 6 2 2 1 2

lander Slructure 1 2 2 1 4 3 3 3 2 1 1 1 1 2 1 1 18 12 6 12 8 2 2 2 2 • 2 2
(��.) �:�212 � :

2 1 1 1 1 8 6 1 1 1 1 1 1 1 1 1 6 3 3 6 2 2 3 3 1 1 2

6 6 2. 2. 2 2 2 222 6 6 8 622 6 8 222
Figure 3.4.3
Technology Risk DSM for Mars Pathfinder.

53 Product Architecture DSM Examples

The Mars Pathfinder project had an exceptional risk management approach, and the
case study can be used to assess the effectiveness of the TR-DSM in identifying the same
project risks. The largest pattern of high-risk numbers in the TR-DSM was consistent with
observations made by the project manager. Following an early investigation into the
nature and potential for development risk in each subsystem, project manager Anthony
Spear noted, "To no one's surprise, the EDL phase emerged as the biggest Mission risk,
with the airbags as the most risky EDL element."

The TR-DSM can be used as an analytical tool throughout a project's development life
cycle for identifying and communicating high-risk areas in a single-system view. High TRF
values can be used to identify subsystems and components requiring a thorough mitiga­
tion strategy during development.

References

Brady, Timothy K. 2002. Utilization of Dependency Structure Matrix Analysis to Assess Complex Project Designs.
Proceedings of ASME Design Engineering Technical Conferences, no. DETCZ002/DTM-34031, Montreal,
Canada.

NASA Research and Technology Program and Project Management Requirements. 2008. Appendix J: Technol­
ogy Readiness Levels, NASA Procedural Requirement, no. NPR 7120.8.

Spear, Anthony 1. 1999. Mars Pathfinder's Lessons Learned from the Mars Pathfinder Project Manager's
Perspective and the Future Road. Acta Astronautica 45 (4-9):235-247.

54 Chapter 3

Example 3.5 Mozilla Software Redesign Effort

Contributors

Alan MacCormack, Carliss Baldwin, and John Rusnak
Harvard Business School

Problem Statement

Many firms experience significant costs related to maintaining legacy software systems
and adapting these systems to uncertain future demands. These costs can be reduced by
"refactoring" efforts-changes to the design that have the impact of reducing system
complexity while maintaining overall system functionality. Unfortunately, we lack robust
methods and metrics for evaluating the impact of these redesign efforts.

In this work, we applied DSM-based methods to explore the impact of a single major
software redesign effort (MacCormack et al. 2006). We focused on the Mozilla web
browser, a product derived from a commercial web browser called Navigator, which was
developed by Netscape. Mozilla was released as open source code in early 1998, with the
hope that volunteer developers would contribute to its ongoing development. Shortly
thereafter, however, it became clear that it was difficult to contribute to Mozilla given
the level of interdependency between the system's components. Hence, a small team of
developers decided to redesign the system, with the intention of making the code more
modular and, hence, easier to work with. We examined the design of Mozilla before and
after this redesign effort.

Data Col lection

The source code for Mozilla is hosted online and is freely available to everyone because
it is distributed as open source code. We accessed all versions of Mozilla that were released
in 1998. We processed the source code of each version through a static analysis tool called
Understand C (distributed by Scientific Toolworks) to identify the dependencies between
source files. We focused on one important dependency type-the "function call"-iden­
tified in prior work as an important determinant of modular structure (Banker et al. 2000;
Rusovan et al. 2005). Function calls are requests by one part of the system to execute
functionality contained in another. We generated a DSM by plotting function call depen­
dencies between source files organized by the directory structure of the system (i.e. , a
nested hierarchy of modules arranged alphabetically within layers). We constrained the
DSM to contain only binary values given that the distribution of function calls between
system elements was highly skewed. We chose to focus only on C files in our analysis,

55 Product Architecture DSM Examples

�.

D_ ' -
-, : -\

,-
., �� !:'
� : ,.

-.

1- .. �: ,

�,

excluding header files, which are much smaller in size and play a different role with regard
to system function.

To understand the level of coupling in a system, we computed the level of visibility
(reachability) for each component. (Chapter 6 illustrates a way to perform this computa­
tion.) Visibility captures all of the direct and indirect dependencies that a component has
with other components. Because function calls have directionality, visibility is not a sym­
metric measure-fan-in visibility (function calls received) and fan-out visibility (function
calls made) may differ for a given component. The mean level of visibility for a system,
however, will be identical in each direction (i.e. , each outgoing call will have a correspond­
ing incoming call) . The visibility matrix for a system is computed by calculating the transi­
tive closure of the first-order dependency matrix. The density of this matrix is called the
system's propagation cost. Intuitively, this metric captures the proportion of a system's
elements that could be affected, on average, when a change is made to one randomly
chosen element.

Model

Figure 3.5. 1 shows the DSMs from two releases of the Mozilla web browser. The left side
shows the DSM for a version of the software before the redesign effort. The right side
shows the DSM for the version of the software immediately after the redesign effort.

Figure 3.5.1

,­
j:

1 N

1
"

1:' '

-I
i
I
,
I
I

� 1 .. ; ,-

Mozilla software architecture DSMs, before (left) and after (right) the redesign effort.

56 Chapter 3

Resu lts

The contrast between the two designs is striking, both visually and quantitatively. The
redesigned version of Mozilla consists of smaller modules (directories) with fewer depen­
dencies between them. The system has a significantly lower dependency density-O.13%
versus 0.24%. In addition, the propagation cost has declined dramatically, from 17.35% to
2.78%. In summary, the redesign had the effect of lowering the potential impact of
changes to the system design by more than 80%.

It is insightful to look at the impact of this redesign effort in the context of the evolu­
tion of Mozilla's design over time. To this effect, we plot the evolution of Mozilla's propa­
gation cost for subsequent releases in figure 3.5.2. The results once again highlight the
value of this type of analysis. Prior to the redesign, Mozilla's level of coupling varied
between 15% and 18%. After the redesign, Mozilla's level of coupling consistently fell to
between 2% and 6%. We conclude that the redesign effort had a significant and sustained
impact on reducing the cost of changes to this system.

Our work demonstrates that the application of DSM-based methods can help reveal
the impact of architectural redesign efforts on complex systems. In this case, a small,
focused team of developers achieved substantial reductions in system complexity over a
period of less than four months. These improvements substantially reduced the effort
required to contribute to the Mozilla project, given each component was coupled to
fewer other components. Contributors needed to understand less of the code to make a

20

18

16

� 14

� 12
o

J� 10
'i
g' 8 Q. e Q. 6

4

2

o

�M
V

•
� /\

V � \.
�

Jan·98 Apr·98 Jul·98 Oct·98 Jan·99 Apr·99 JuI·99 Oct·99 Jan·OO Apr·OO Jul.oo Oct.oo Jan.o1
Release Date

Figure 3.5.2
Evolution of Mozilla's propagation cost over time.

57 Product Architecture DSM Examples

contribution. Each of the changes they did make had a lower probability of affecting other
functions in a negative way. Subsequently, the Mozilla project developed a vibrant com­
munity of programmers willing to contribute new code. The Mozilla software became the
foundation for the highly successful Firefox Internet browser.

In related work, we have used similar methods to tackle a variety of important ques­
tions that require the use of robust and repeatable measures of system architecture. We
have shown that successful open source projects, in general, generate products with more
modular architectures than the equivalent commercial software (MacCormack et al.
2011). We have found that measures of component visibility predict design evolution in
terms of component survival, augmentation, and change (MacCormack 2009). Finally, we
have shown how measures of visibility can be used to characterize different types of
systems, thereby revealing the degree to which each has a "core-periphery" structure
(MacCormack et al. 2010).

References

Banker, Rajiv D. , and Sandra A. Slaughter. 2000. The Moderating Effect of Structure on Volatility and Com­
plexity in Software Enhancement. Information Systems Research 1 1 (3):219-240.

MacCormack , Alan. 2009. The Impact of Component Modularity on Design Evolution: Evidence from the Soft­
ware Industry. Harvard Business School, Working Paper no. 08-038.

MacCormack , Alan, John Rusnak, and Carliss Baldwin. 2006. Exploring the Structure of Complex Software
Designs: An Empirical Study of Open Source and Proprietary Code. Management Science 52 (7) : 1 0 15-1030.

MacCormack , Alan, John Rusnak, and Carliss Baldwin. 20 10. The Architecture of Complex Systems: Do Core­
Periphery Systems Dominate? Harvard Business School, Working Paper no. 10--D59.

MacCormack , Alan, John Rusnak, and Carliss Baldwin. 20 1 1. Exploring the Duality between Product and Orga­
nizational Architectures: A Test of the Mirroring Hypothesis. Harvard Business School, Working Paper no.
08-039.

Rusovan, Srdjan, Mark Lawford, and David Lorge Parnas. 2005. Open Source Software Development: Future
or Fad? In Perspectives on Free and Open Source Software, ed. Joseph Feller et al. Cambridge, MA: MIT Press.

58 Chapter 3

Example 3.6 AgustaWestland Helicopter Change Propagation

Contributors

John Clarkson, Caroline Simons, and Claudia Eckert
Engineering Design Centre, University of Cambridge

Problem Statement

AgustaWestiand produces helicopters for civil and military applications, such as the
AW101 aircraft shown in figure 3.6.1, utilizing an array of world-leading technologies. In
providing products for particular customers, aircraft designs are often based on an existing
model but redesigned or customized to meet specific needs. During this process, a change
to one part of the product will in most cases result in changes to other parts. The predic­
tion of such change provides a significant challenge in the management of redesign and
the customization of complex products where many change propagation paths may be
possible. This DSM application demonstrates a model to predict the risk of change propa­
gation in complex products.

Figure 3 .6.1
A military version of the AW101 helicopter (courtesy of Joao Paulo Nabais) .

59 Product Architecture DSM Examples

Data Col lection

Interviews were conducted in 1999 with 17 senior engineers working on various aspects
of the helicopter design (such as stress analysis, load modeling, or fuselage design) to
assess the scope and complexity of change in existing product ranges. A further four
interviews with chief engineers or deputy chief engineers and an interview with a manager
responsible for producing proposals for new projects focused on understanding the
changes involved in generating a new version of a helicopter. Subsequently, a meeting
was held with seven senior engineers to discuss change propagation and agree on the
structure of the binary DSM for the AW101. Then, two attributes of each interface­
likelihood and impact of change from one component to the other-were elicited from
deputy chief engineers by Agusta Westland staff for use in the propagation analysis.
Finally, details of a number of redesign cases were obtained to provide clear evidence of
change propagation and to assist validation of the analysis method.

Model

The product architecture DSM model shown in figure 3.6.2 comprises 19 key components
and subsystems, all based on the same product architecture-a simplified description of
the helicopter. The original data on likelihood and impact of change between adjacent
components are stored in a conventional product architecture DSM. The derived likeli­
hood and impact of change, taking account of all possible change propagation paths, is
also stored in another DSM. Details of the analytical method for computing the change
propagation results are presented in several research publications from Cambridge EDC
(cited below).

The change propagation DSM shown in figure 3.6.3 represents the combined risk of
changes propagating between systems, both directly and indirectly, with the columns
having impact on the rows (IC convention). The width of the rectangle in each cell depicts
the likelihood of change (certainty represented by the full width of the cell), and the
height depicts the impact of change (complete redesign represented by the full height of
the cell). Thus, with risk calculated as the product of likelihood and impact, the size of
the shaded area of each off-diagonal cell in the DSM conveys the amount of risk. Red
shading signifies a significant risk of change propagation, amber a lower risk, and green
a small risk of propagation. Interestingly, almost every off-diagonal cell is filled.

Resu lts

The nature and extent of change propagation is generally neither clearly understood nor
well predicted. However, it can cause large delays or unexpected spending in design
projects. A change analysis method was developed using a product DSM to assist in the

60 Chapter 3

The AW1 01
Product risk matrix

•
Direct link

Tran smission

Weapons and defensive systems

Figure 3 .6.2
AW101 product architecture DSM.

61 Product Architecture DSM Examples

The AW1 01

i
Product risk matrix

'"

i

CD c
:;: '"

!
'" 'E E CD

1

.!!
.g 'K .2 '" '"

Impact t. � " >- " " " 1l " Q. c c '" � co c

i
CD co 0 :g '"

" "" .r: .2

i a; co c C u

t £ £ '" � CD

j
., .!! c

i .� ----. � '" 8 � u .2 '" E e
] e e

:
co 'c .!: Co Co '" likelihood � E c c 0 e :0 '5 e .2' OJ 'iii OJ c
:0 '> co .. <T :0 � f! « « ID () w LL LL LL ::; ::; I-

Air conditioning
� brL I.:wL -- ---� � l= -- I2L t.1

Auxiliary electrics
, I I- t- I- I III

Avionics II • -. . - • ...
Bare fuselage -- � -
Cabling and pipi ng • •
Engines II lit It Il 1- IlL -- II • 1 •
Eng ine auxiliaries l- I I I • I- I- i

t and . w " .,,� - - - - - "- I. "-

Fire protection
b.. � � -. -- � """""" 0.- -- -- "-

F l ig ht control systems I- I- ,., I- I- J I- I- l- I- 1-. • I- - I -
F uel

'- I- - .. lin 1- ...
Fuselage additional lIems ...l ...l � I- """-

Hyd ra ulics � I -
Ice and rain protection 11 13

.�
IaI III � IR

I I l I
Main rotor blades U l · lfe Main rotor head l - I- _ •
Tail rotor I .-11 tt • I- .e • •
Transmission 1- 0 I- •• • • • l
Weapons and defensive systems t- t- � • • 1ft. I:m

Figure 3 .6.3
AW101 change propagation DSM.

62 Chapter 3

prediction of change propagation in complex products. It appears to provide useful insight
into the change behavior of complex systems, such as a helicopter. In the AWIOl case,
the most significant changes are propagated from many different components and systems
to several others, such as avionics and main rotor blades. Many such change paths shown
in the change propagation DSM are not initially identified in the product architecture
DSM, which represents only direct interactions between components. Propagated changes
are predicted by the change method and are also documented to have happened in prac­
tice at Agusta Westland.

Experience from a number of additional case studies has shown that the time taken to
build a moderately sized model (fewer than 50 components) is acceptable, and the com­
panies involved all found the process valuable. Clearly more work remains to be done.
The analytical method used relies on many assumptions, the validity of which need to be
further explored. However, the need for and the possible success of the change prediction
method seems clear.

References

Clarkson, P. John, Caroline S. Simons, and Claudia M. Eckert. 2004. Predicting Change Propagation in Complex
Design. Journal of Mechanical Design 126 (5) :765-797.

Eckert, Claudia M. , P. John Clarkson, and Winfried Zanker. 2004. Change and Customisation in Complex Engi­
neering Domains. Research in Engineering Design 15 (1) :1-21.

Jarratt, Tim A. w., and Claudia M. Eckert, Nicholas H. M. Caldwell, and P. John Clarkson. 2011. Engineering
Change: An Overview and Perspective on the Literature. Research in Engineering Design 22 (2) :103-124.

63 Product Architecture DSM Examples

Example 3.7 J ohnson & J ohnson Clinical Chemistry Analyzer

Contributor

Oi D. Van Eikema Hommes
Massachusetts Institute of Technology

Problem Statement

Ortho-Clinical Diagnostics (OCD) is a medical device company within Johnson &
Johnson. We studied OCD's OASIS clinical chemistry analyzer-a system typically used
in large hospitals to automate the testing of patients' blood and other body fluids. The
analyzer is a complex system containing electromechanical systems, software, as well as
wet and dry chemistry. The size of the analyzer is similar to a large office copy machine.
At the peak of the development process in 2001, the core development group had
approximately 120 engineers and scientists.

The OASIS analyzer (named VITROS on the market, one model of which is shown in
figure 3.7.1) was the first analyzer OCD designed to incorporate wet chemistry. Previous
OCD products only had thin-film technology. Wet chemistry technology, however, has
been applied for many years in competitors' products. Therefore, the design challenge was
not the technology but rather the integration of two mature technologies into a new
product that was more complex than previous products.

Figure 3.7.1
A Clinical Chemistry Analyzer (courtesy of Ortho-Clinical Diagnostics, Inc.) .

64 Chapter 3

When the case study started, the OASIS program was in the early detailed design phase.
After seeing our presentation introducing the DSM method, the OCD engineers wanted
to build a product architecture DSM in order to capture their understanding of the inter­
actions among the subsystems in the analyzer. They believed that the system interaction
knowledge captured by the DSM would help the system engineers anticipate potential
system integration issues and in turn prevent design rework and schedule delays late in
the program.

In research at MIT, we had developed a matrix transformation method to predict
system interactions based on product requirements without relying on the experts' knowl­
edge about the detailed design (Dong 2002; Dong and Whitney 2001). This method starts
with a Design Matrix (DM) mapping system design parameters to functional require­
ments of the system. (This is a type of domain mapping matrix [DMM] , which is discussed
further in chapter 8.) By selecting the diagonal elements of the DM as the output vari­
ables, the DM can be turned into a DSM, representing the interactions among the design
parameters in the system. Using the DM-DSM matrix transformation technique, engi­
neers can predict the interactions between components in the system based on how they
work together to fulfill the functional requirements.

Because the medical device industry is highly regulated, the product design require­
ments were well documented. Therefore, it was possible to compare the product architec­
ture DSM constructed by the engineering experts with a DSM from the matrix
transformation method in hopes of maximizing our understanding of the system inter­
faces and minimizing system integration risks.

Therefore, the objectives for this case study were to:

1. Build a product architecture DSM to capture system interactions based on experts'
knowledge of the product design during the detailed design phase.

2. Build a product architecture DSM using product requirements and the matrix
transformation method to predict system interactions that exist in the designed
analyzer.

3. Compare and combine the results in 1 and 2 to obtain a comprehensive prediction of
the system interfaces in order to assist the system integration efforts of the OASIS
analyzer.

Data Col lection

We focused this case study on the interactions among the major subsystems of the
OASIS analyzer for two reasons. First, this was the level of detail at which the systems
engineering team was working. Second, the amount of design details at this level was
sufficient to provide insights into the system but not too much for a three-month, one­
person project.

65 Product Architecture DSM Examples

The OeD engineers built two DSMs, one in February 2001 and one in August 2001,
documenting their progressive understanding of the system as more detailed design deci­
sions were made. I spent three summer months at OeD as a researcher to construct the
prediction DSM based on requirements without knowledge of the DSMs that the OeD
engineers built. The OeD engineers and scientists served as consultants when I had ques­
tions regarding the product and technology.

Model

The DSM model shown in figure 3.7.2 is the Expert DSM, representing the combined
results of two DSM building exercises led by the OeD engineers and scientists in

APPS
MACO
U S I F
S U N
IRME
ELME
ERME
SAHA
SLSU
REFL
SRME
STRU
SAI N
ALBU
C U I N
MTLD
PHMT
RGSU
VTLD
POWR
CUDL
MTDL
RGDL
SLDL
VTDL

Figure 3.7.2

August
February
Captured both in February and August

Expert DSM, a consolidation of two DSMs produced by engineering experts.

66 Chapter 3

APPS
MACO

U S I F
S L I N
IRME
ELME
ERME
SAHA
SLSU
REFL
SRME
STRU
SAI N
ALBU
C U I N
MTLD
PHMT
RGSU
VTLD
POWR
CUDL
MTDL
RGDL
SLDL
VTDL

Figure 3.7.3

Pred iction DSM
Expert DSM
Both In the Pred iction DSM and in the Expert DSM

Comparing the Prediction and Expert DSMs.

February and August 2001. The row and column headings are abbreviations for the major
subsystems in the analyzer. The two DSM building exercises did not produce identical
results. The overlaps and differences are identified using symbols and colors in the DSM.

I built a Prediction DSM from design requirements using the matrix transformation
method and compared to the Expert DSM. Figure 3. 7.3 shows the results of this compari­
son. Symbols and colors in the DSM identify the overlaps and differences.

Resu lts

This project produced two important insights: (1) the completeness of the DSM depends
on the coverage of topics during the DSM building exercises; and (2) the matrix

67 Product Architecture DSM Examples

transformation method using product requirements can predict many system interactions
that will happen later in the design process, including those that expert engineers may
miss using the traditional DSM construction approach. These two results are discussed in
more detail below.

The DSMs produced by the engineers in February and August (figure 3. 7.2) display
evolution of their design knowledge during the project. The February DSM did not
contain the interactions marked "A" because the design matured over the course of six
months. However, the DSM construction exercise in August missed the interactions
marked "F." Engineers reviewed the February interactions in August and admitted that
they were still valid but had been missed in August because no one remembered to talk
about reliability issues during that DSM construction exercise.

In addition, figure 3. 7.3 shows that the Prediction DSM based on design requirements
captured system interactions that engineering experts did not capture in the two DSMs
that they built (labeled "P" in figure 3. 7.3). The engineers missed most of these interac­
tions because they did not invite the software engineers to the DSM building exercises.
Historically, OeD products were mostly electromechanical systems. The system engineers
did not realize how intertwined the software system actually was with the rest of the
hardware system. Without the Prediction DSM, there could have been unanticipated
system interactions causing delays and rework late in the system integration phase. Hence,
one of the lessons learned from this case study is that the quality of the DSM constructed
depends heavily on who was invited to provide inputs to the DSM. Any DSM construc­
tion exercise must identify key stakeholders of the system and all of the important design
issues that need to be considered.

The Prediction DSM based on system design requirements missed many marks in
the Expert DSM because the engineers did not give the author the assay chemistry
requirements. Therefore, the system interactions related to assay chemistry were not
predicted. If I had been given the assay requirements documents, then 76% of all of
the marks in figure 3. 7.3 could have been predicted by the requirements-based matrix
transformation method. In addition, the matrix transformation method also predicted
another 3% more interactions that engineering experts missed in their discussions. There­
fore, the requirements-based matrix transformation method, if used in the early stage of
the design process when requirements are understood but detailed design is not yet avail­
able, can be a very powerful technique to anticipate areas in the system that may cause
integration issues and rework. Such understanding early on in the product development
process will make system integration efforts less reactive. This technique can also help
engineers to compare and choose system design concepts that minimize system integra­
tion risks.

At the end of this project, we combined all of the system interfaces learned from the
three DSM construction exercises to form the DSM in figure 3.7.3. This DSM offers a
comprehensive view of the system interactions. The DSM model produced many insights

68 Chapter 3

for the OCD engineers about their system design. OCD system engineers used it to guide
the system design and integration efforts for the OASIS analyzer.

References

Dong, Qi. 2002. Predicting and Managing System Interactions at Early Phase of the Product Development
Process. PhD thesis (Mechanical Engineering) , Massachusetts Institute of Technology, Cambridge, MA.

Dong, Qi, and Daniel E. Whitney. 2001, September 9-12. Designing a Requirement Driven Product Development
Process. DTM21682, Proceedings of ASME Design Engineering Technical Conferences, Pittsburgh, PA.

Dong, Qi, and Daniel E. Whitney. 2003, September 2---6 . The Predictability of System Interactions at the Early
Phase of Product Development Process. DETCZ003/DTM-48635, Proceedings of the 2003 ASME Design Engi­
neering Technical Conferences, Chicago, IL.

69 Product Architecture DSM Examples

Example 3.8 B uilding Schools for the F uture

Contributors

Robert Schmidt III, Jason Deamer, and Simon Austin
Loughborough University, UK

Problem Statement

Building Schools for the Future is a UK government initiative to create schools that
accommodate the changing demands of their users. The project guides designers and
contractors through illustrative examples and best practices, rather than prescriptive rules,
describing how the building could accommodate change. Thus, the initiative relies on
designer intuition to understand the dependencies between components and the physical
implications of future scenarios. In collaboration with the developer on the project, the
Adaptable Futures research group at Loughborough University (Schmidt et al. 2009a)
used a DSM to capture designer decisions and feed back "hidden" design dependencies
as part of the iterative design process.

We used Brand's (1994) taxonomy to decompose a typical building into six layers based
on their expected rates of change as an initial guide for grouping components. A space
layer was added to capture the functional demand of space or gaps between physical
components (figure 3. 8. 1). The DSM examined how well the given solution clustered

Figure 3.8.1

Added for this study
�---i SPACE ���----------���--�

STU FF
PA-(

t--:+-t-- SERVICES
- SKIN

I SITE

1 day 1 month
'30 If" r

7 - 1 5 years
20 yea rs

Eternal
'-- Removed for this study

Building layers (adapted from Brand 1994) .

70 Chapter 3

relative to Brand's layers of change, highlighting critical dependencies between layers and
feeding the information back to the designers.

Data Col lection

We captured information from drawings and reports submitted by the design team (e.g. ,
architectural, structural, and environmental) at the beginning of the design process. We
created a product breakdown structure (PBS) cataloguing component names, descrip­
tions, functions, and options. We listed components in the PBS, classified into a layer, and
identified within a subcategory in each layer (e.g. , foundation is a subcategory of struc­
ture). We captured dependencies as three distinct types of flows: (1) structural (e.g. ,
gravitational, lateral), (2) spatial (e.g. , adjacency, circulation), and (3) service (e.g. , energy,
water). We also recorded the source of each dependency in the DSM, indicating whether
the dependency was explicitly stated (blue), inferred from the drawings (orange), or per­
ceived from team experience (green). We populated the 90 x 90 DSM, shown in figure
3. 8.2, using numerical values (1, 2, or 3) to indicate the dependency type and a color (blue,
orange, or green) to represent the source of information.

Model

The DSM model represents a network of 90 components decomposed into the six pre­
identified layers. We performed a series of automated and manual manipulations to test
the appropriateness of the solution and the layer classification system. We imported the
model into Loomeo (www.teseon.com) to use the software's clustering algorithm. Loomeo
does not recognize with which layer the components are identified and simply organizes
them based on their given dependencies. We set the software to cluster the 90 components
into six modules (equivalent to the number of layers). The clustering was run 10 times
from a control version to check for consistency. We assigned a color to each component
relative to its layer to easily track components that shifted outside their assigned layer.
Figure 3. 8.3 shows a portion of the matrix resulting from the automated clustering, high­
lighting two modules-one built around a predefined layer (structure) and the other
through the combination of four layers (skin, services, space plan, and space)-along with
a group of components with fewer dependencies positioned at the top left of the matrix.
We also manipulated the components manually, both with and without retention of the
layer subsystems. Manual manipulation was initially carried out through visual observa­
tions and a statistical evaluation.

Resu lts

For the most part, the predefined layers held their integrity with the automated cluster­
ing (86% of components stayed within their layer). The structure and space layers

Source of Dependency
Expl icit
Inferred

�-� Perceived ----

Figure 3 .8.2

Type of Dependency
1 Structural
2 Spatia l
3 Service

Component Layers
St ructure
Skin
Servic.es
Space plan
Stuff
Space

DSM showing interactions across 90 components of a building, grouped initially by layers.

72 Chapter 3

o - CT water system
B - Domestic hot and cold waler
o - fixture C (wal l supported)
o - acoustic C (hanging)

0 - w indow B (roof light)

B - roof B (objects)

0 - power (source) E (on-slle)"
B - power (source) F (oll-site)
0 - power (management) A4
B - power (source) G (oW-site)
B - power (managemeot) A7
C - exterior l ight A (wall-mounted)

B - Extemal space A
- column

A - load bearing wall A

- load bearfng wall B
2
3

A - load bearing wall C (Large spans areas) 4
B - bracing 5
B - floor B (first floor) 6

C - floor G (roof 2nd floor)

B - foundation A
B - foundation E
B - foundation F
B - Staircase

Figure 3.8.3

7
8
9

A portion of the clustered DSM, showing two of the clusters.

Module A (SlIe):
Comprised of Dotype components
from four different layers

Module B (Structure):
Tightly bound layer comprised
of A- and B-type components

showed tightly bound modules, whereas the other less-dense modules showed move­
ment outside their layer and sometimes formed smaller clusters within their layer (inter­
nal shifts). In contrast, manual manipulation suggested that certain components (e.g. ,
within the services and skin layers) could be combined with the structural layer, and
certain subcategories within different layers clustered well together (e.g. , foundation
and heating).

More important, we noted that components with a similar dependency pattern behaved
in complementary ways. The iterative clustering identified four dependency types among
the components based on a statistical quantification of dependencies relative to a com­
ponent's layer both inside and outside:

A. high dependencies inside and outside of the layer

B. high dependencies inside of the layer and low dependencies outside

73 Product Architecture DSM Examples

References

C. low dependencies inside of the layer and high dependencies outside

D. low dependencies in and outside of the layer

This characterization allows a logical expression of how components cluster, while
accurately reflecting the behavior of some components provides hints about the proper
placement of more sporadic components. Type A components tend to make up the core
of their layer, while a few move outside to form system-integrating components. Type B
components also remained inside and at the core of their layers, while many type C com­
ponents moved to join a different layer or suggest a new module. The type C components
that remained in the layer tended to be on the periphery of the layer. Type D components
tended to move either to the periphery of their layer or outside their layer as isolated
components or newly formed layers.

The work has led to a method to quickly characterize components, providing refined
guidance for identifying components that require further design, enabling alternative
modules (layers), and suggesting changes in component designs. Early involvement in the
process allows a range of solutions to be visualized by the designer, helping them consider
how the building's components interact and thereby negotiating more informed tradeoffs.
At each design stage, an analysis of the DSM could be made, where observations (guided
by the principles being developed) feed into the next stage of the design process to create
refined modules with fewer dependencies outside their layer, hence creating a more
adaptable solution.

Brand, Stewart. 1994. How Buildings Learn: What Happens After They're Built. New York: Penguin.

Schmidt III , Robert, TofU Eguchi, Simon Austin, and Alistair Gibb. 2009a, October 5-9. Adaptable Futures: A
21st Century Challenge. Changing Roles- New Roles, New Challenges, Rotterdam, the Netherlands.

Schmidt III , Robert, Simon Austin, and David Brown. 2009b, October 12-13. Designing Adaptable Buildings.
Proceedings of the 11th International DSM Conference, Greenville, Sc.

74 Chapter 3

Example 3.9 Kodak Single- Use Camera

Contributors

Fabrice Alizon
Keyplatform Company

Steven B. Shooter
Bucknell University

Problem Statement

Kodak, a manufacturer of photographic equipment and systems, successfully led the
market of single-use cameras by producing a product family that addressed multiple
market segments. Kodak offered a wide range of products that included combinations of
key features such as waterproof, panoramic format, flash, and high definition. Product
platforming enables companies to cut costs while offering tailored products, yet it also
brings the challenge of managing variety within the family. This DSM application dem­
onstrates two DSM techniques to identify modules across a product family: the DSM
variety (DSMV) and the three-dimensional DSM (DSM3D) . Using these two DSM tech­
niques, we are able to study families of products, modules, and interfaces.

Data Col lection

We dissected five Kodak single-use cameras, including the Fun Saver model shown in
figure 3.9.1. Each time a new component was identified, it received a new bill-of-material

Figure 3.9.1
Kodak Fun Saver, one of the single-use cameras studied (courtesy of Eastman Kodak Company) .

75 Product Architecture DSM Examples

(BOM) reference number. We then documented the interactions among components. By
comparing the component interactions across the five camera models, we categorized
each interface as common (occurring in all five), variant (occurring in some of the five),
or unique (occurring in one of the five).

Model

The model works in two main stages using two original DSM techniques: DSMv and
DSM3D• The DSMv, shown in figure 3.9.2, uses a static, binary, product architecture DSM

Figure 3.9.2

Shutter module

• Common inlerface
Va,llInl lnlerfllca
Unique Inlerfllee

Clustered DSMv for one of the cameras.

I
Waterproof module

76 Chapter 3

Figure 3.9.3

Va r iant
i nterfaces

DSM3D showing several single-use camera DSMs overlapping in 3D.

� U n i q ue V� i nterface

to specify the modules in each product containing components that have either common,
variant, or unique interfaces. We proceed the same way for all the products of the family
(total of five), and we then stack these five DSMvs to obtain the DSM3D. The DSM3D,
shown in figure 3.9.3, is a three-dimensional DSM gathering all products of the family
and highlighting the differences.

Based on the interactions among components, a DSM clustering algorithm identified
five modules indicated by square borders in the DSMv. The last component in the list
(Structure) is related to many other components, as indicated with the many colored
squares along the bottom of the DSM. This bus-type component is strategic because there
is an opportunity to use common interfaces to save cost and better handle the diversity.
We see in the DSMv that many interfaces are variant.

77 Product Architecture DSM Examples

The DSMv enables designers to study basic aspects of product architecture such as bus,
mini-bus, and strength of physical interactions. It also helps to investigate the architectural
distribution of modules and interfaces.

Resu lts

The analysis was done through Synerg' (Alizon 2009), a software application devel­
oped to manage product family design. Each DSM was clustered using an original
algorithm, which can cluster a product DSM of more than 1,000 components in only a
few minutes.

Interfaces having instantiation in multiple products are named cross-interfaces. Modules
having instantiation in multiple products are named cross-modules. By identifying cross­
interfaces and cross-modules, we believe this was the first DSM to analyze the overall
architecture of the product family. DSMv provides the current diversity of each product,
whereas the DSM3D highlights the differences among these products. It is beneficial to
have a red and yellow DSM3D such that all elements are either common (red) or unique/
specific (yellow). Designers should avoid blue, which represents variant interfaces that
provide diversity and additional cost.

Cross- Interface Management
These DSM representations assist in decision making and the exploration of alternatives
when developing or refining a product family. Consider a straightforward example where
four interfaces are common and the fifth one is unique/specific. This single interface that
is unique/specific results in a cross-interface characterized as variant. Alteration of that
one interface can dramatically improve the product family. Although it is possible to
identify and interpret this scenario without using DSM3D, one can see the value in more
complex architectures with more challenging interfaces.

This tool can help designers to:

• Try to design a new common interface handling the common and unique interfaces;

• Communicate with other services (such as cost management and marketing) to ulti­
mately negotiate for a common component, leading to a common interface; and

• Financially justify to product management the solution using a variant cross-interface.

Cross-Mod u l e Management
When a cross-module is variant, designers can focus on this cross-module to develop a
common module and common interfaces in an effort to reduce cost.

DSMv and DSM3D are combined in a single process to better manage both modularity
and variety. The DSMv models common, variant, and unique modules and interfaces
across products and enables one to study these in detail. The DSM3D permits a higher

78 Chapter 3

level of analysis for an entire family of products and for cross-modules and cross­
components to study their specification and interfaces.

References

Alizon, Fabrice. 2009, February. Module-Based Design Management-Synerg'. Symposium on Product Family &
Product Platform Design, Helsinki University of Technology (TKK) , Helsinki, Finland.

Alizon, Fabrice, Seung K. Moon, Steven B. Shooter, and Timothy W. Simpson. 2007, September 4--7. Three
Dimensional Design Structure Matrix-DSM3D. ASME Design Engineering Technical Conferences, DETCZ007-
34510, Las Vegas, NV, pp. 941-948.

4
Organization Architecture DSM Models

•

•

•
-

- • I I
•

• • •
-

,. •

I
•

Figure 4.1

•

I

yIII

• •

.. .

•

-
- -

..
•

•

.. •

An organization architecture DSM model showing the network of communications across teams in a project at
Pratt & Whitney developing a jet engine (see example 5.3).

80 Chapter 4

Background

In this chapter, we consider the architecture of organizations, with particular attention to

organizations that develop engineered systems. We show how DSM is applied to represent

and analyze such organizations and the types of insights gained through these DSM

applications. We begin with a brief synopsis of terminology used in the particular context

of organization architecture DSM modeling.

Terminology

Organization A network of people with a common purpose, such as a business unit or a
project developing, producing, selling, or supporting a product.

Organization Architecture The structure of an organization-embodied in its people, their
relationships to each other and to the organization's environment, and the principles
guiding its design and evolution. Organization architectures generally group people into
teams, departments, or other types of organizational units. The terms organization archi­
tecture and organization structure are often used interchangeably, although the latter term
is also used in the more limited sense of lines of authority (reporting relationships).

Organizational Units The elements comprising an organization, such as individuals, teams,
groups, departments, and so on.

Interactions The relationships among units in the organization. We are especially interested
in information flow interactions, which may be formal or informal peer-to-peer commu­
nications, including e-mail, face-to-face discussions, group meetings, presentations, file
transfers, and so on. Other interactions of interest in some cases may be based on relation­
ships of authority, responsibility, accountability, contractual obligations, and so on.

Organization Architecture DSM A mapping of the network of interactions among the
people or units within an organization; also known as organization DSM, organization
structure DSM, people-based DSM, and team-based DSM.

Cluster A larger organizational unit (such as a department, team, or group of teams) sug­
gested through analysis of the organization architecture DSM.

Integrative Mechanisms The means by which work coordination and communication are
facilitated across organizational units; also called coordination mechanisms.

The effective development of products and systems requires project and program manag­

ers to facilitate the flow of information between people and across organizational units.

This presents a dilemma for managers. On the one hand, the appropriate information

must flow to the right people at the right times. Thus, managers may wish to enable more

and better communication, the free flow of ideas, and the open sharing of issues and

concerns, with hopes of building consensus and preempting problems. On the other hand,

this can go too far: Sending everything to everyone in an organization can be problematic,

81 Organization Architecture DSM Models

leading to the familiar phenomenon of information overload. Many individuals in con­

temporary organizations receive hundreds of e-mails per day, and it is simply impossible

to handle all of them. Many people send an e-mail and assume that it is read and under­

stood. This is perhaps worse than not sending the information at all because, while

successful communication has not occurred, the sender may believe it has. Meetings

are another technique commonly employed to enable organizational communications.

However, some people find that they spend most of their time in meetings, without much

time left for actually doing work. So, an unregulated free flow of information is not the

answer either. Managing the flow of information to facilitate the work of large organiza­

tions and complex projects is one of the key reasons that managers seek to design and

architect organizations purposefully.

Organization architecture (or structure) has to do with the way people work together

to deliver value-to accomplish the work of the organization. Specifically, organization

architecture consists of three mappings depicted in figure 4.2: (1) hierarchical decomposi­

tion of the organization into elements (units) such as departments, teams, and individuals;

(2) work assignments and top-down reporting relationships (lines of authority) within the

organization; and (3) lateral relationships (especially information flow) among the orga­

nizational units, also called the interaction network. The first two mappings (decomposi­

tion and reporting roles) are often represented by an organization breakdown structure

(OBS) diagram, commonly known as an organization chart. The DSM has been applied

to the third of these mappings, which calls for a square matrix of interactions. Although

many organizations consider their structure primarily in terms of the decomposition and

defined roles, DSM models offer tremendous value through additional insights not pro­

vided by organization charts.

Business Unit

Reporting Relationships

Departments

Reporting Relationships

Individuals

Interaction Network

Figure 4.2
Organizations are typically decomposed into departments and other groups of people assigned to various roles
such as projects. The network of interactions between people working on a project may be captured in an
organization architecture DSM.

82 Chapter 4

The understanding that organizations can be designed in superior ways, and that supe­

rior organization structures can provide competitive advantages, has motivated research

in several areas. Organization science teaches us that organizations can be designed

"rationally" based on a detailed understanding of the necessary flows of communication.

These communications are what we represent in a DSM as the basis for analysis and/or

design of the organization. Benefits of rational organization design include improved

team structures and insight on the application of integrative mechanisms (or coordination
mechanisms) (see, e.g., Galbraith 1994). Figure 4.3 lists several integrative mechanisms

that have proven useful in the context of engineering projects.

The type of DSM used for organization analysis and design is called the organization
architecture DSM, also known as the organization DSM, organization structure DSM,

1. Co-location

2. Traditional meetings

3. Improved information and
communication technologies

4. Training

5. Town meetings

6. Management mediators

7. Participant mediators

8. Interface control groups

9. Standard process models

10. Boundary objects

11. Incentive systems

12. Shared interpretations

13. Shared knowledge

14. Shared ontologies

15. Situation visibility

Figure 4.3

Physical adjacency of organizational units (e.g., individuals and teams)

Face-to-face gatherings for information sharing and/or decision making

Collaborative tools, e-mail distribution lists, tele- and videoconferencing, linked software
systems for product design, shared databases, etc.

Team building (at each level of integration in the hierarchy), increasing awareness about
integration needs and roles

Not to share technical information, but to boost camaraderie, increase awareness of
wider issues, and bolster the shared culture

Orchestrators, integrators, and heavyweight managers (Clark and Wheelwright 1993)

Boundary spanners, liaisons, and conflict resolvers

Integration teams tasked with ensuring ongoing or incident-specific mediation of issues
regarding specific interfaces

Shared routines and procedures, specification of interfaces and metrics for evaluating

interface effectiveness, interface contracts and scorecards (Browning et al. 2006)

Artifacts manipulated by those on both sides of an interface (Star and Griesemer 1989),
such as shared models

Shared rewards andlor penalties for performance in relation to interfaces or other teams

Common interpretations of design goals, objectives, and problems (Bernstein 2001),
often from common backgrounds or experiences

Common understanding and skill sets (Hoopes and Postrel 1999)

Common terminology across teams for products, processes, and tools

Shared visual orientation of a team's activities and results in relation to other teams'
activities in "the big picture" (Steward 2000)

Some integrative (or coordination) mechanisms (adapted from Browning 2009).

83 Organization Architecture DSM Models

Figure 4.4
A communication network represented by a node-link diagram (undirected graph) instead of a DSM.

people-based DSM, or team-based DSM. This DSM captures the structure of organiza­

tional units and their interactions. The DSM represents people, teams, departments, or

other organizational units as the diagonal cells (also naming the rows and columns) of

the matrix. The communication pathways among these elements are captured by the

marks or values in the off-diagonal cells.

Communication networks can also be depicted using a graph in which interactions

among nodes (usually people) are drawn as a network of arcs. For example, figure 4.4

shows an undirected graph of the same communication network data represented in the

DSM of figure 4.1. These types of node-link diagrams are common in systems analysis,

including that of social networks. Although diagrams such as these have some benefits, a

DSM view generally improves the layout of such information.

Square matrices had already been employed to represent organizational communica­

tion (Allen and George 1993; Lorsch and Lawrence 1972, p. 107) and other types of social

networks before the term DSM became attached to them. However, to our knowledge,

such matrices were not used as the basis for any specialized analyses aside from merely

summing rows and columns. In 1993, McCord and Eppinger at MIT used a DSM to

represent and analyze organization architecture (example 5.1) . This research captured

the frequency of interactions between teams in a large product development project

84 Chapter 4

at General Motors (GM) and prescribed an organization structure with improved modu­

larity and means for integration and coordination.

Many problems in projects can be attributed to integration challenges across organiza­

tional units. For example, two teams may realize too late that they did not properly coor­

dinate certain product design features, resulting in a problem that delays the project.

Moreover, poorly coordinated teams can suffer from gaps (each thinking the other is doing

something) or overlaps (redundant work) . Therefore, a systematic approach is needed for

considering coordination and integration up front when the organization is designed.

Structures within organizations such as teams and departments tend to facilitate inter­

nal communications but also may hinder external communications. Therefore, it is helpful

to map and understand the information flows in the organization and to adjust the struc­

ture to facilitate the proper flows. For example, the assignment of a person to a team often

has implications for physical location (e.g., co-location with other employees) , e-mail

distribution lists, and attendance at particular meetings. In other words, integrative mecha­

nisms like these tend to be applied to the formal structure of groups designed into the

organization. However, in the design of this formal structure, it is wise to consider the

network of desired information flows so that the integrative mechanisms will be most

effective. One way to achieve this in established organizations is to capture in the DSM

some of the informal flows that have evolved among the workforce as channels for both

routine work and problem solving. For newer organizations without such established

flows, the DSM would be used instead to identify the network of desired information

flow relationships based on individuals' expectations and experiences with the type of

challenge at hand.

Building an Organization Architecture DSM

The basic procedure for building an organization architecture DSM model (which is

similar to that used to create a product architecture DSM model) is as follows:

1. Decompose the overall organization into its elemental-level units, such as departments,

teams, and/or individuals. (It is not uncommon for the resulting OBS to have many

similarities to the corresponding product breakdown structure [PBS] because organi­

zational units are often designated to be responsible for particular aspects of a project's

desired result.) Lay out the square DSM with names of the organizational units labeling

the rows and columns, grouped into higher-level organizational units if appropriate.

2. Identify the discovered (or desired) communication interactions between the units and

represent these using marks or values in the DSM cells.

The GM engine development program DSM shown in figure 4.5 illustrates this basic

procedure. The next chapter includes further explanation of this DSM application

(example 5.1) .

85 Organization Architecture DSM Models

A F G D E I B C J K P H N 0 Q L MR S T U V
Engine Block A

Crankshaft F
Flywheel G

Pistons D
Connecting Rods E

Lubrication I
Cylinder Heads B

CamshafWalve Train c
Water Pump/Cooling J

Intake Manifold K
Fuel System p

Accessory Drive H
Air Cleaner N

A.I.R. 0
Throttle Body Q

Exhaust L
E.G.A. M
EVAP R

Ignition s
E.C.M. T

Electrical System u
Engine Assembly v

Figure 4.5

A. · • · • ••• · • · · • • •
• F •••• • · · • • . •

· .G ·
.-

Short Block • •
• • · 0 • • • • • · • · •

• • • E • · · •

• • · • · I · • · · · · • •
• · • · B •• • • • • · • · • · •
• · . • • C · · Valve Train · •
• • • • • J I't" . • · · · · •

• · • · • K • • • • • ••• • • •
• · • P • 0 0 0 · · • •

• • · • 0 • •• H • •• • • · · . · •
Induction � • 0 • N • • ·

· • • • • • 0 0 • · • · •

• • • • • • 0 Q • • · • •
· · • 0 • • 0 . • L • • • · •
· • · • 0 · · · .M · • · •

Emissions/Electrical · • • R • 0

••• · •• 0 • • • 7' • · S •• •
· • · · · · • • • · • • · . .. T. •

• 0 •
• • •

• · • · · • · · •
• • • • • • • • • • • •

I
Freguenc� of Team Interactions

I • Daily • Weekly • Monthly

· · •• U •
• · • • • v

An organization architecture DSM model, representing engine development team interactions at General
Motors (McCord and Eppinger 1993).

Figure 4.5 shows the organization architecture DSM representing the teams that

developed a small-block V8 engine at GM in the 1990s. The DSM shows decomposition

of the organization into 22 cross-functional component development teams (component

teams) and the frequency (daily, weekly, or monthly) of communications reported

between the teams. Each component team had responsibility for developing its com­

ponent or subassembly of the engine, along with its associated production system. The

22 component teams were initially grouped into four subsystem engineering teams

charged with integration of the engine components and delivery of overall, system-level

performance.

The type of organization structure depicted in figure 4.5 is actually quite common in

the development of complex engineered systems (as the examples in chapter 5 illustrate) .

Leaving aside the actual GM situation for a moment, let us consider the implications of

this type of organization structure.

86 Chapter 4

1. Suppose that each component team meets weekly, whereas each subsystem team holds

a bimonthly meeting attended by at least each component team's leader. This is one

type of integrative mechanism that might be used to facilitate the proper dissemination

of information and, hopefully, to enable any cross-team issues to surface sooner rather

than later. However, the intensity of the interactions outside the formal organizational

structure (outside the shaded squares in the DSM representing the subsystem team

boundaries) suggests that this approach is unlikely to prompt all of the desired integra­

tion across teams.

2. Suppose that each component team appoints a liaison to the other teams in its subsys­

tem team. Although this might be helpful, it would not address integration issues with

the component teams in other subsystem teams.

3. Suppose that the project leaders realize that not everyone on every team can be copied

on all e-mails, so they set up distribution lists based on the subsystem team assignments.

Again, this arrangement seems unlikely to ensure sufficient coordination among all of

the teams.

4. Suppose that the project is actually able to physically co-locate all of its teams in an

office building. Managers may choose to assign office areas based on the subsystem

team groupings. While facilitating the communications within each subsystem team,

this decision would inhibit communications across subsystem teams, increasing the

likelihood of integration issues surfacing later at these fissures.

5. Suppose that the program decided to work with some major component suppliers.

Which components could be readily outsourced for development by the suppliers?

Indeed, every component team has significant communication needs with several other

teams. Therefore, any outsourced component development would likely create even

more challenging and problematic coordination within the project.

Hence, a project's organizational architecture has major implications for its ability

to apply-and the effectiveness of-various integrative mechanisms. Where communi­

cation needs exist, they can be either facilitated or inhibited by the application of such

mechanisms.

Here are several caveats to consider when building organization architecture DSM

models:

• Granularity The level of decomposition into organizational units determines the granu­

larity or richness of the DSM model. Organization DSM analysis is most often done at

the level of teams or individuals. However, for large organizations or projects, the analy­

sis may be done with departments or business units. Of course, this is also a tradeoff

with the usability of the model. We have generally found that models on the order of

20 to 50 units are highly understandable and most useful.

87 Organization Architecture DSM Models

• Data collection To document communication interactions for the DSM, it is helpful to

focus data collection with perhaps a single question. Most commonly, this has been

either frequency of communications between the organizational units and/or impor­

tance of such interactions. When collecting data from a team, it is often expedient to

query the team leader, although this individual may lack full knowledge of the team's

interactions with other teams. In that case, it can be helpful to get a second opinion or

ask the full team to verify the team leader's responses.

• Symmetry Organization DSM models are often symmetric because if one person (or

team) communicates with another, the interaction is often reciprocal. However, it is not

uncommon for a majority of the actual information flow to occur in just one of the

directions between two parties. If the modeler wants to distinguish directionality of flow,

then it is important to capture it as part of the data collected.

• Accuracy Because they tend to be symmetric, each interaction in the DSM should typi­

cally be noted by two respondents representing both parties to the communication.

However, when building the DSM, it is common to find several one-sided or mis­

matched interactions (i.e., instances where one party reports the communication and

the other does not, or one party rates the interaction as more frequent or more critical

than does its counterparty) . When the responses differ, this can usually be resolved by

bringing both sides together to discuss the nature of their interactions. We have found

that in most cases when an interaction is overlooked or underrated by one of the parties,

it does in fact exist, although one of the respondents was not fully aware of it; only

rarely does a respondent insist that a disputed interaction does not in fact occur. We

have found that merely building and verifying the DSM model provides the valuable

benefit of reconciling the various respondents' flawed mental models of the organiza­

tion's information flows.

• Representing interactions The strength of the interactions may be represented in

the DSM by numerical values, letters, colors, or graphical elements (or some com­

bination thereof) . Although numbers can be useful for further analysis, visualization

is best accomplished with shading or graphical symbols (such as those used in

figure 4.5) .

• Dynamics Organization DSM models generally provide a static description of the

information flow within an organization. However, project-based organizations are by

nature highly dynamic. Individuals may be assigned to different projects or roles over

time, group assignments may change, communication needs may change as the work

progresses, and so on. Therefore, it is wise to consider the time frame desired in the

model when collecting the data. Separate organization DSMs may be built at periodic

intervals and compared to increase understanding of project and organizational dynam­

ics (see examples 5.2 and 9.12).

88 Chapter 4

Analyzing the Organization DSM

The analytical methods applied to organization architecture DSM models are quite

similar to those described for product architecture DSMs in chapter 2, so our description

here focuses on the minor differences in techniques and interpretation. Because organiza­

tion DSMs are static (i.e., all of the organizational units represented in the matrix exist

simultaneously) , clustering analysis (both manual and automated in software) is typically

used to assign organizational units to groups.

Engineers find the analogy between product architecture and organization structure to

be quite useful. If the units of our organization architecture DSM analysis are the individu­

als in the organization, then these are analogous to components in the product architecture

DSM. The clusters or groups of people in the organization are then akin to the product

modules. We can now apply the same clustering techniques used for product architecture

DSMs; the primary difference may be the formulation of the objective function.

Typically, the objective of clustering an organization DSM is to assign the people having

the greatest needs to communicate with each other to the same groups because this des­

ignation often implies the natural application of integrative mechanisms such as co-loca­

tion, meetings, distribution lists, and managerial oversight, as discussed earlier. It is best

to avoid reliance on critical communication across groups because such paths may lack

natural communication facilitators. However, putting everyone in a large organization into

a single group is also undesirable because this amounts to telling everyone to communicate

with everyone else without any specific guidance, which would undoubtedly lead to infor­

mation overload. Any critical communications that must take place across groups become

targets for special managerial attention and further integrative mechanisms.

Figure 4.6 shows the results of the manual clustering analysis used to reorganize the

GM engine project into five more natural groups based on the communication data in

the DSM. Here, component team assignments to groups were based on the reported

frequency of their interactions. The premise underlying this clustering approach is that

teams needing to exchange information frequently would benefit from tighter integration

through the formal organization structure of higher-level groupings. Where necessary,

component teams were assigned to two or three subsystem teams. Thus, by the nature of

their interactions, some component teams needed to be part of more than one e-mail

distribution list, attend more system integration meetings, appoint more liaisons, and so

on. The five component teams grouped at the bottom of the matrix did not fit neatly into

the four subsystem teams. These five component teams needed to interface with practi­

cally all of the others. Therefore, these five teams were grouped into an integration team.

To implement this structure, GM managers asked a representative from each of these

teams to attend each of the other four groups' meetings. Whatever integrative mechanisms

were deemed most appropriate, their application would be more effective when based on

the underlying needs for coordination dictated by the organizational architecture.

89 Organization Architecture DSM Models

Crankshaft F
Flywheel G

Connecting Rods E
Pistons 0

Lubrication I
Engine Block A

CamshafWalve Train C
Cylinder Heads B1
Intake Manifold K1

Water Pump/Cooling J
Fuel System P

Air Cleaner N
Throttle Body a

EVAP R
Cylinder Heads B2
Intake Manifold K2

A.I.A. 0
Exhaust L

E.G.A. M
Accessory Drive H

Ignition 5
E.C.M. T

Electrical System U
Engine Assembly v

Figure 4.6

F G E 0 I A C B K J P N aRB K 0 L M H 5 T U V
F ••••• · • · • • • •
.G

• E
• · •
• ·

• ·

· Sys-Team1
• • • · ·

0 • • • • · • •
• I • • · · Sys-Team2

•• A •• · • • • ••
· • • C • · ·

· . . . �.. . .
• • • • K1 • Sys-Team3 • • •

• • • • • • rJ;:+-. -. -.--=.�.-"I

• P • • • • •
· N. . • •

• • • a • • • .
.

• •
· .

•
• • .

• • R •
I!B� 2-.-.+--'" • • • · • •

•
•

• •
•

•
• •

• •
· .
• •

•
· .
• •

•
·

· •
Integration •• • ••• K2 • •• • • • •

Team \ • • • • • 0 • • • • . •
• • • • • • L • • • • • •
• Sy.s-Tea.m4 • • • • M • • • • •

• . • . •••• • • ••• • • H · · · .
•• · . ••• • . • . • • • · . 5 •••
• • • • • • ••
• • • • • • • • • •

• • • ••• • •• • •

• • • • • • • • T • •
• • • • • • •• U •

• •• • • • • • • • v

I
Frequency of Team Interactions

I • Dally • Weekly • Monthly

Modified GM engine development organization structure suggested by the DSM clustering analysis.

Usually the analysis of an organization DSM explores several scenarios for the orga­

nization design, trading off the pros and cons of assigning various units to particular

clusters. The analyst may need to consider physical or political constraints on the size and

composition of groups, such as the size and/or location of a facility or established report­

ing relationships. The menu of available integrative mechanisms plays a large role in

enabling a broader range of effective scenarios, such as communication technologies that

compensate for a lack of co-location, dedicated liaison roles to coordinate specific interac­

tions, and so on. The presence or absence of such options will render certain organiza­

tional architectures more or less desirable.

Other questions to consider during the analysis include the following:

• Should some units be aggregated or divided? Perhaps the initial OBS needs revision.

Perhaps two teams within a cluster could be combined. Or, perhaps a team that could fit

well in either of two clusters could be divided or left intact but assigned to both clusters.

90 Chapter 4

• What about communication that occurs across organizational levels?

• Should a group of teams designate another team as an input/output manager? Some­

times a single team can serve as the liaison or conduit for a cluster of other teams'

external interactions.

• What about a team whose job is to broadcast communication? This tends to be an

integrative role that will probably fit best in an "integration team" like the one in the

GM example.

Applying the Organization Architecture DSM

Organization architecture DSM models have been applied to both analyze existing

organization structures and their communications and plan new organization struc­

tures. The models have produced many useful insights leading to redesign of organiza­

tions or identification of areas where integrative mechanisms should be applied. Many

organization architecture DSM examples are given in the next chapter. Typical applica­

tions include:

• Application of integrative mechanisms Some types of integrative mechanisms are easily

scaled to large organizations (e.g., database access, e-mail distribution). Other mecha­

nisms are best applied to small groups (e.g., face-to-face team meetings, liaisons). Orga­

nization DSM analysis can assist in choosing appropriate mechanisms for various

coordination challenges within a large project (see examples 5.1, 5.2, 5.3, 5.4, 5.6) .

• System engineering teams The most common usage to date of organization DSM analy­

sis has been to assess the communication needs across team members in a large engi­

neering project. The boundaries of subsystem and integration teams can be planned

based on the interactions in the DSM (see examples 5.1 and 5.3).

• Definition of project teams To plan a single project team within a larger organization,

the DSM is able to identify the core team members based on the communication needs

of the project work (see example 5.6) .

• Rational organization design The premise of this approach is that the people in the

organization need to communicate because the work they are doing is somehow related.

This type of rational organization design may be based on either the product architec­

ture or the process architecture, represented in DSM format, by assigning organizational

responsibilities to each product or process element. This is a way to design entirely new

organizations (because it would be difficult to assess the necessary communication pat­

terns without people to ask) (see examples 5.1, 5.6, 9.3).

• Facility layout By identifying the communication needs across people and departments,

it is possible to determine an efficient assignment of units to office locations (see

example 5.5) .

91 Organization Architecture DSM Models

Conclusion

References

The organization architecture DSM has proven to be an effective representation for a

system of organizational units and their relationships. It provides an intuitive visualization

tool, facilitating discussions and insights about information flow patterns and their impli­

cations. Typically, just building a DSM forces disparate people, teams, and groups to

increase mutual awareness and understanding. Merely aligning people's mental models

of the information flow relationships and patterns can add tremendous value in organiza­

tions. Furthermore, organization DSM models can be analyzed via clustering, which

remains somewhat of an art and is generally combined with manual manipulation of the

DSM to generate alternative perspectives on the organization architecture. These models

improve organizational understanding, facilitate organizational innovation, and inform

the appropriate application of integrative mechanisms.

The value of this type of DSM increases as organizations become larger and more

complex. Coordination can be managed informally in small organizations but breaks

down in large ones. Indeed, two of the main benefits of a DSM model are its abilities to

(1) concisely represent a relatively large number of organizational units and their relation­

ships, and (2) identify important groups of organizational units and patterns of interac­

tions. The DSM helps maintain a shared understanding of the organizational architecture

and its implications.

This list of references provides additional background on the organization architecture

DSM.

To our knowledge, the 1972 book by Lorsch and Lawrence (p. 107) contains the earliest

published example of a square matrix mapping the relationships between organizational

units.

LOTSch, Jay w., and Paul R. Lawrence, eds. 1972. Managing Group and Intergroup Relations. Homewood, IL:
Richard D. Irwin.

Allen studied organizational communications using several methods, including graphs

depicting the networks of connections. Later with George, he used square matrices called

netgraphs to represent sampled data of daily communications between individuals.

Allen, Thomas 1. 1977. Managing the Flow of Technology. Cambridge, MA: MIT Press.

George, Varghese, and Thomas 1. Allen. 1993. Relational Data in Organizational Settings: An Introductory Note
for Using AGNI and Netgraphs to Analyze Nodes, Relationships, Partitions and Boundaries. Connections XVI
(1 & 2).

92 Chapter 4

McCord and Eppinger developed the first application of DSM to a network of team

interactions (example 5.1) . (Prior DSM work had been limited to process- and parameter­

based models.)

McCord, Kent R., and Steven D. Eppinger. 1993. Managing the Integration Problem in Concurrent Engineering.
MIT Sloan School of Management, Working Paper no. 3594.

Eppinger, Steven D. 1997, August. A Planning Method for Integration of Large-Scale Engineering Systems. Inter­
national Conference on Engineering Design, Tampere, Finland, pp. 199-204.

Extending his 1996 thesis and a 1999 paper, Browning discussed issues pertaining to

multiteam integration in large projects or programs. He described a process called "design

for integration," whereby managers could architect a project organization in light of the

product architecture and with the application of 15 types of integrative mechanisms.

Browning, Tyson R. 2009. Using the Design Structure Matrix to Design Program Organizations. In Handbook
of Systems Engineering and Management, 2nd ed., eds. Andrew P. Sage and William B. Rouse. New York: Wiley,
pp. 1401-1424.

Two articles by Sosa, Eppinger, and Rowles derive from a unique study comparing

the network of component interfaces (product architecture DSM) to the network of

team interactions (organization architecture DSM) for a jet engine development project.

The Management Science article explored several explanations to help understand the

misalignment between the two architectures. The Journal of Mechanical Design article

defined the use of the terms modular and integral to describe subsystems within complex

system architectures and identified the impact of these structures on the design team

interactions.

Sosa, Manuel E., Steven D. Eppinger, and Craig M. Rowles. 2003. Identifying Modular and Integrative Systems
and Their Impact on Design Team Interactions. Journal of Mechanical Design 125 (2):240-252.

Sosa, Manuel E., Steven D. Eppinger, and Craig M. Rowles. 2004. The Misalignment of Product Architecture
and Organizational Structure in Complex Product Development. Management Science 50 (12):1674-1689.

These additional references pertain to the integrative mechanisms listed in figure 4.3.

Bernstein, Joshua I. 2001. Multidisciplinary Design Problem Solving on Product Development Teams. PhD thesis
(TMP), Massachusetts Institute of Technology, Cambridge, MA.

Browning, Tyson R., Ernst Fricke, and Herbert Negele. 2006. Key Concepts in Modeling Product Development
Processes. Systems Engineering 9 (2):104-128.

Clark, Kim B., and Steven C. Wheelwright. 1993. Managing New Product and Process Development. New York:
Free Press.

Galbraith, Jay R. 1994. Competing with Flexible Lateral Organizations. 2nd ed. Reading, MA: Addison-Wesley.

Hoopes, David G., and Steven Postrel. 1999. Shared Knowledge, Glitches, and Product Development Perfor­
mance. Strategic Management Journal 20:837-865.

Star, Susan L., and 1. R. Griesemer. 1989. Institutional Ecology, "Translations." and Boundary Objects: Amateurs
and Professionals in Berkeley's Museum of Vertebrate Zoology 1907-39. Social Studies of Science 19
(3):387-420.

Steward, Donald. 2000. A Very Brief Discussion of Information Driven Business Management: A Problem
Solving Approach, <http://www.problematics.com/readings.asp>. Last accessed May 26, 2011.

5 Organization Architecture DSM Examples

Overview

This chapter presents seven example applications of the organization architecture DSM

as listed in the table below. Each example describes the purpose of the model (problem

to be addressed) , how the data were collected, how the model was built, and the results.

References for further information, where available, are also provided.

Example Application Organization Purpose

5.1 Automobile engine General Motors, • Redesign organization architecture for
development project USA enhanced communication and integration

5.2 Military aircraft McDonnell Douglas, • Understand the program's organizational
development program USA architecture and dynamics

5.3 Commercial aircraft Pratt & Whitney, • Investigate patterns of organizational
jet engine USA communication within and across
development project subsystem teams

5.4 International Space NASA, • Evaluate sustaining engineering strategy,
Station USA critical skills, communication, and

coordination

5.5 R&D Center Timken, • Plan arrangement of offices in new
USA technology center

5.6 LNG terminal BP, • Improved organization of a large
development project UK engineering project

5.7 Multinational energy BP, • Analyze the stakeholder value network
project stakeholders UK • Identify channels of stakeholder influence

94 Chapter 5

Exam p l e 5.1 General Motors Powertrain VB Engine Deve lopment

Contributors

Steven Eppinger and Kent McCord

Massachusetts Institute of Technology

Problem Statement

Development of a small-block V8 engine at General Motors Powertrain Division in 1992

was organized as a network of teams. This organization architecture application of DSM

was aimed at improving the effectiveness of GM Powertrain's system engineering process

by enabling more direct and explicit communication within and across the teams. The

engine development project consisted of 22 cross-functional component development

teams (component teams [CTs]) grouped into four subsystem engineering teams (STs) .

Data Collection

We started with decomposition of the engine (shown in figure 5. 1. 1) into its 22 major

components or subassemblies. The organization structure corresponded directly to the

product decomposition, resulting in 22 CTs, each responsible for design and development

Figure 5.1.1
General Motors small-block V8 engine (courtesy of General Motors).

95 Organization Architecture DSM Examples

of one major component or subassembly and its production system. We then asked

the leader of each CT to complete a simple one-page survey form , indicating how often

their CT needed to work with each of the other CTs (daily , weekly , or monthly) in the

detailed design phase of the project. We then identified which CTs comprised each of the

four STs and arranged the DSM accordingly before conducting our own clustering

analysis.

Model

The raw data DSM in figure 5. 1. 2 shows how frequently each of the 22 CTs reportedly

worked with the others. The clusters shown in the DSM of figure 5. 1. 3 indicate the original

assignment of the CTs to STs. Our clustering analysis sought an alternative organization

architecture that would group the CTs into more effective STs such that more of the CT

Engine Block A
Cylinder Heads B

CamshafWalve Train C
Pistons D

Connecting Rods E

Crankshaft F
Flywheel G

Accessory Drive H

Lubrication I
Water Pump/Cooling J

Intake Manifold K
Exhaust L

E.G.A. M
Air Cleaner N

A. I. A. 0
Fuel System P

Throttle Body a
EVAP R

Ignition s
E.C.M. T

Electrical System U
Engine Assembly v

Figure 5.1.2

ABC D E F G H I J K L M N 0 P a R s T U v
A ••• · • · • •• · · • • •

• B • • • ••• · • • . • •
•• c • · · · •

•• • D • • · • • · • •
• · • E • • · •

• • • • F • • • · • · •
· • G • •

•• · • H • • • • • • • • . · •

• · • • · • I · • •
•• • • • • J • · •
• • · • • K • • • • • • • • • •

• · • L • · • • • • · •
· • •• M • · •

• • · N • · •
· • • · • • · • 0 • · •

• • • · P • •
• • • • • • · • a. · • •

• • R • ·

••• · • • • . · • • · • . s • ••
• · • • · • • • • • • T • •

• · •
•• •

. • . • · • · · •
• • • • • • • • • • • • •

Frequency ofTeam Interactions

• Daily • Weekly • Monthly

•• U •
. • • • v

Team communication data set.

96 Chapter 5

Engine Block A
Crankshaft F

Flywheel G

Pistons 0
Connecting Rods E

Lubrication I

Cylinder Heads B
CamshafWalve Train C
Water Pump/Cooling J

Intake Manifold K
Fuel System p

Accessory Drive H
Air Cleaner N

A.I.A. 0
Throttle Body Q

Exhaust L
E.G.A. M
EVAP R

Ignition s
E.C.M. T

Electrical System u
Engine ssembly v

Figure 5.1.3
Original system team structure.

A F G 0 E I B C J K P H N 0 Q L MR S T U V
A • 0 • 0 • ••• 0 • 0 0 • • •

• F •••• • 0 0 • • 0 •
0 • G 0 Short Block • •

• • 0 0 • • • • • 0 • 0 •
• • • E • 0 0 •

• • 0 • 0 I 0 • 0 0 0 0 • •
• 0 • 0 B •• • • • • 0 • 0 • 0 •
• 0 0 • • C 0 0 Valve Train 0 •

• • • • • Jt-: 0 • 0 0 0 0 •
• 0 • 0 • K • • • • • ••• • • •

• 0 • P • 0 0 0 0 0 • •

• • 0 • 0 • •• H • •• • • 0 0 0 0 •

Induction
0 • 0 • N • • 0

0 • -,. • • • 0 0 • 0 • 0 •
• • • • • • 0 Q • • 0 • •

0 0 • 0 • • 0 0 • L • • • · •
0 • 0 • 0 0 0 0 • M · • · •

Emissions/Electrical-o • • R • ·

••• 0 0 •• 0 • • • "'f' • · s •• •
0 • 0 0 0 0 • • • 0 • • T . •

• 0 •

• • •
0 • 0 • 0 0 • 0 0 •

• • • • • • • • • • • •

I Freguenc:i of Team Interactions I • Daily • Weekly 0 Monthly

· . •• U •
• 0 • • • V

interactions would be within STs and fewer would take place outside of the system team

structure. Figure 5. 1.4 shows the results of our reclustering and the proposed reorganiza­

tion of the project.

Results

This was perhaps the first time that a complex technical project at GM was organized

based on data representing their own communication needs. The original ST organization

comprised four STs (Short Block, Valve Train, Induction, and Emissions and Electrical) .

Each ST would meet every two weeks to discuss the integration of their components to

deliver system-level performance. However, the initial DSM layout indicates that this

structure enabled only some of the dozens of interactions that needed to take place across

CTs. We asked the program managers how they address the interactions that are not

within the STs, and they told us that many of the interactions may not in fact be addressed

97 Organization Architecture DSM Examples

F G E 0 I A C B K J P N Q R B K 0 L M H STU V
Crankshaft F

Flywheel G
Connecting Rods E

Pistons D
Lubrication I

Engine Block A
CamshafWalve Train C

Cylinder Heads B1
Intake Manifold K1

Water Pump/Cooling J
Fuel System P

Air Cleaner N
Throttle Body Q

EVAP R
Cylinder Heads B2
Intake Manifold K2

A.I.A. 0
Exhaust L

E.G.A. M
Accessory Drive H

Ignition s
E.C.M. T

Electrical System U
Engine Assembly v

Figure 5.1.4

F ••••• · • ·

• G · Sys-Team1
• E. • • · ·

• · • 0 • • • • · • •
• · • I • • · · Sys-Team2 ·

• · • • A •• · • · ·

· • .C. · ·

• · •• B1 ••
· • · • Kl. Sys-Team3

• • • • • • J · · · • • ·

· P · · • • · ·

· N • · • • ·

• • • Q • • • · •
• • R ·

• • · B2 • • • ·

Integration •• • •• .K2 . ••
Team \ · • · • • o. ·

• • • • L •
• Sy.s-Tea.m4 • • · .M

•
••

• ·

· •
• • •

· • · •••• • • • • • •
· · • •• • · • · • •

· · · • •• • • • •
· • • • · · · • . · ·

••• • •• • • • •• •

I Freguen� of Team Interactions I • Daily • Weekly • Monthly

•
·

•
•

•
·

•
·

•

Proposed system team structure.

• • · •
• •

•
· •

· · • •
•• • •

· •
• • · •
• • • •
• · •

• • •
•
• · • •

• ·

• • · •
• • • •
• • · •

· • • · •
· • · •

H . · •
• S •••
· • T • •
· .. U.
• • • • V

until a p roblem a rises, potentially much late r in the system integ ration phase of the

project. They told us they would appreciate our help to improve this situation.

Our DSM clustering analysis suggested four STs and one integration team (IT) . Each

ST comprised several of the CTs (as before) ; however, now each CT was assigned to one

or more of the STs or to the IT. This structure greatly reduced the number of interactions

occurring outside of the ST structure.

Note that in the proposed reorganization, some CTs were assigned to two STs (Pistons,

for example) . Two CTs (Cylinder Heads and Intake Manifold) were each assigned to three

of the STs. These assignments, of course, reflected each CT's need to interact with certain

of the other CTs and vice versa. Finally, five of the CTs essentially reported that they needed

to work with almost all of the other CTs, and so these five were assigned to be the I T.

Implementation of the proposed system engineering organization structure at GM

Powertrain was fairly straightforward. First, they adopted the new structure of the STs

98 Chapter 5

and planned the ST meetings to be on different days of the week to accommodate those

CTs on multiple STs. Second, the IT was given the responsibility to (1) check in with each

of the STs on a regular basis (and to attend their meetings as needed) , (2) meet as an

integration team to address system-level engine integration and performance issues, and

(3) help the program managers to direct the final system integration phase of the devel­

opment process.

General Motors Powertrain reported to us that the small-block V8 engine development

program that was the subject of this example had the "smoothest integration phase ever."

They attributed this result to a great extent to the new system engineering team structure

shown here.

References

Eppinger, Steven D. 1997, August. A Planning Method for Integration of Large-Scale Engineering Systems. Inter­
national Conference on Engineering Design, Tampere, Finland, pp. 199-204.

Eppinger, Steven D. 2001, January. Innovation at the Speed of Information. Harvard Business Review 79
(1):149-158.

McCord, Kent R.1993,August. Managing the Integration Problem in Concurrent Engineering. MIT Sloan School
of Management, Working Paper no. 3594.

99 Organization Architecture DSM Examples

Exam p l e 5.2 McDonne l l Douglas F/A-18E/F Program

Contributor

Tyson Browning

Neeley School of Business, Texas Christian University

Problem Statement

The Boeing F /A- 18E /F Super Hornet is a fighter /attack aircra ft originally developed by

McDonnell Douglas for the U.S. Navy (figure 5. 2. 1) . The E lF program constituted a major

redesign of the earlier (A-D) versions of the aircraft. A 1995 study investigated the inte­

grative mechanisms among the program's cross-functional development teams during the

Engineering Manufacturing Development (EMD) phase (which spanned late 1992 to

1996) . Part of that study entailed building two "quick-look" DSM models of part of the

program's organizational architecture. One of the models focused on the current organi­

zation, whereas the other examined an earlier situation for comparison.

Data Collection

The leader of each of 41 teams received a two-part survey, one to respond about the

current situation and the other to respond retrospectively about the situation 18 months

earlier. Twenty-three of 41 team leaders responded (56% response rate) ; the program's

limited resources precluded additional follow-up. However, the "quick-look" purpose

of the model was satisfied. Each team leader was asked to indicate whether they

provided and /or received program information from each of the other 40 teams. If

yes in either case, they were further asked to rate the frequency of the interaction on

the following scale: 1 = infrequent (monthly) , 2 = frequent (weekly or biweekly) , and

3 = regular (daily) .

Model

The DSM shown in figure 5. 2. 2 represents the initial (1995) situation for the 23 teams

that responded. The teams were grouped according to the program's OBS. The off-diag­

onal cells show the reported frequency of technical information transmission from the

team in row i to the team in column j. (Note that this is the input-in-columns [I e] conven­

tion, the transpose of the matrix convention used in the other examples in this chapter.)

This DSM is actually the composite of two DSMs, one representing the information pro­

vider point of view (i.e. , built row by row) and the other the receiver perspective (i.e . ,

built column by column) . These two responses should have been identical but were not

100 Chapter 5

Figure 5.2.1
F/A-18E/F Super Hornet (courtesy of Boeing).

always because sometimes one team leader would indicate that his team provided infor­

mation to another team with one frequency, whereas the leader of the other team indi­

cated that his team received it with another frequency. Where the responses agreed, the

DSM in figure 5. 2. 2 shows the off-diagonal cell in white (no shading) . Interestingly, a

common perception of the interaction was the exception rather than the norm. More

often, the provider and the receiver's responses did not agree. Where the two responses

differed by only one level, the DSM shows their average, so they appear with a 0. 5 append­

age in a yellow-shaded cell. For example, if one team leader said the output was daily (3)
while the other said the input was weekly (2) , then the DSM shows 2. 5. A number of the

responses differed more substantially. The 2s and 3s in the red-shaded cells represent

instances where one team leader said 0 or 1 and the other said 2 or 3 (i .e . , responses dif­

fering by two or three levels, respectively) . Ideally, these discrepancies would invite fol­

low-up to determine the source of the misunderstanding. Although follow-up was not

feasible in this case, results from similar models indicate that, once a discrepancy is high­

lighted and discussed by the affected teams, in most cases they find that (1) there really

is an interaction occurring, and (2) the actual frequency is the greater of the two reported

frequencies. Thus, a corrected, final DSM model can be approximated by taking the

maximum of the two responses in each cell.

The resulting DSM is shown in figure 5. 2. 3 , where the size of the dot replaces the

numbers (to aid in visualization) . Extra columns to the right of and below this DSM tally

101 Organization Architecture DSM Examples

A B C 0 E F G H K L M N O P 5 T U Total Avg.
Inner/Outer Wing

LE Flaps/Horizontal Tail
TE Flap/Aileron

Maneuvering Loads

E & B Loads

Structural Dev. & Test

Structural Integrity

Fit Ctrls Computer Soft.
Flying Qual/Control Laws
Fit Ctrls Syst Integ Testing
Weapons Separation
Stability & Control
High Speed Drag & Perf.

Main landing Gear

NLG/Doors/Hooks

Mechanisms/Fit Controls

Armament

Electrical

Assembly AT

Center AT

E
F 2.5
G
H

.5 1.5 1

.s

K .S .5 1 .5

l .5 .5 1 1.5 1

M .5 .5
N
o

T 3 3

U 3

.5 .5 .5

.5 .5 1.5

3 19 1,0

19.5 1.0

3 20 1.0
__ r---�------�-------+--r----+--�

1 1.5 1.5 1

1 2.5 3

1.5

27.5 1.4

18

26

18

11

13

9.S

10

14

17.5

14.5

11

15

0.9

1.3

0.9

,6

,7

,5

.5

,7
,9

.7

,6

,8

11,5 .6

29.5 1,5

15 ,8

26.5 1.3

15 .8

Total: 22 22 23 15 19 26 22 11 14 9 10 12 17 16 12 17 9 28 16 29 16

Avg.: 1.1 1.1 II 0.7 1.0 1.3 II .6 "7 .5 .5 .6 .9 .8 .6 .9 ,4 1.4 ,8 1.4 .8

Figure 5.2.2
DSM showing initial data from team leader responses regarding frequencies of interactions with other teams
in 1995.

the sum and average for each row and column. This DSM is also shaded to show the

hierarchy of the organization (the blocks along the diagonal) and areas of especially

intense interaction outside the current organizational structure.

The DSM shown in figure 5. 2.4 represents the results of the second part of the survey

(the situation 18 months prior, as recollected by the respondents, based on the teams

existing at that time) after similar adjustments. Because each organization DSM shows a

snapshot in time, a series of DSMs is needed to model discrete steps in organizational

evolution. This comparison with an earlier stage of the program shows how teams can be

added (e.g. , teams T and U in the prior DSMs) and subtracted (e.g. , teams A-E in the

below DSM reduced to teams A-C in the above) and how relationships between teams

can change (e.g. , reduction in the frequency of interactions of teams A-C with teams

Maneuvering Loads and Structural Integrity) . Note also the reduction in overall intensity

102 Chapter 5

Inner/Outer Wing

LE Flaps/Horizontal Tail

TE Flap/Aileron

Maneuvering Loads

E & B Loads

Structural Dev. & Test
Structural Integrity
Fit Ctrls Computer Soft.
Flying Qual/Control Laws
Fit Ctrls Syst Integ Tesa ng

Weapons Separation

Stability & Control
High Speed Drag & Perf.
Main Land ing Gear
NLG/Doors/Hooks
Mechanisms/Fit Controls
ECS
Armament

Electrical
Assembly AT

Composite Center AT

A
B

C
0
E
F
G
H
I
J
K
L

M
N
0
P
Q
R
S
T

U

A B C D E F G H
A I�� I�

� l!2 C
• •

.�
• • • • •
• • • •

•

•

•

•

•

•

• • •

•

• • •
• • •

• •

• •

• •

• •

• •

I;f:

• •
• •

• •

• •

•

• •

·

H �

� rf l 11� �!!1 J
•

•
·

·

• •

K L M N O P Q R S T U
• I· •

• I:· •
• •

• • . •
· • • •

• • • • •
• • • •

· •

•

•

K 1�&eJ •

It!1l L � •
I �!� M • ,

N g;J
�

• I'·
�lO •

��' � P · • i'·
• Q •

I- • • • • R l[t!� •
• • � S

• • • • T l[! � U
Total: 26 26 26 16 II 29 26 12 17 11 13 14 II 18 15 2l 10 30 17 31 17

Avg.: 13 1.3 13 0.8 1,1 15 1.3 .6 .9 .6 .7 .7 1.1 .9 .B L1 .5 15 .9 L6 .9

I- Daily (3) • Weekly (2) Monthly (1)

Figure 5.2.3
DSM showing organizational hierarchy and inferred frequencies of interactions in 1995.

Total Avg.
23 L2

22 1.1

22 1,1

32 1.6

22 1.1

29 1.5

22 1.1

12 .6

16 .B

11 .6

13 .7

17 .9

22 1.1

17 .9

12 .6

19 1,0

15 .8

32 1.6

17 .g

27 1.4

16 .8

418

1.00

of interaction (density of the DSM) as indicated by the drop in overall average interaction

from 1.28 to 1.00.

Results

Even as incomplete models of the program's organizational architecture (because several

teams are missing from the picture and several of the responses did not agree), these

"quick-look" DSMs nevertheless provided a basis for several insights (without any clus­

tering analysis) . Two of these are described here.

First, it was clear that, at least initially, the team leaders did not really know who their

team members interacted with and how often. Although a difference of one level, even

103 Organization Architecture DSM Examples

A B C 0 E F G J K P R T U V W V Z AA CC EE FF Total Avg.

Inner Wing A 35 1.8

Outer Wing B 35 1,8

LE Flaps C 30 1,5

Horizonta I Ta 11 0 25 1,3

TE Flap/Aileron E 34 1.7

Maneuvering loads F 43 2.2

E & B loads G 31 1.6

Structural Dev. & Test 23 1-2

Structural Integrity K 36 1.8

Fit Ctrls Computer Soft. P 12 0.6

Flying Qual/Control laws R 22 1.1

Fit Ctrls Syst Integ Testing T 11 0.6

Weapons Separation U 16 0.8

Stability & Control V 23 1.2
High Speed Drag & Perf. W 28 1.4

Main Landing Gear V 22 1.1

NlG/Doors/Hooks Z 13 0.7

Mechanisms/Fit Controls 24 1.2

ECS 16 0.8

Armament 34 1.7
Electrical FF 23 1.2

Total: 37 37 31 26 38 43 31 24 26 12 26 9 15 20 28 22. 15 30 8 35 23 536
Avg.: 1.9 1.9 1,6 1,3 1.9 2.2 1.6 1.2 1.3 0.6 1.3 0,5 0,8 1.0 1,4 1.1 0.8 1.5 0.4 1.8 1.2 1.28

I- Dail� {3) • Weekl� (2) Monthl� {1)

Figure 5.2.4
DSM showing organizational hierarchy and inferred frequencies of interactions in 1993 (from retrospective
responses).

between 0 and 1, might not cause much concern, the larger discrepancies (e.g. , between

o and 3) are more problematic. The results would most likely have improved consistency

if the team leaders had consulted their entire team before finalizing their responses, and

follow-up could have addressed any misunderstandings. However, building the DSM

exposed the team leaders' overall lack of interteam awareness.

Second, the frequent interactions among teams in the same part of the organization

structure (i.e. , interactions within the lightly shaded blocks along the diagonal in the

DSMs) provide some justification for this organization design. However, the large number

of interactions outside these main-diagonal blocks (shaded to highlight groups of espe­

cially intense connections) imply the need for additional integrative mechanisms besides

104 Chapter 5

the meetings, e-mail distribution lists, and physical co-locations that tend to mirror the

organizational structure. Other integrative mechanisms such as collaborative tools, tar­

geted meetings, appointed liaisons, joint team members, standard processes, boundary

objects, or shared ontologies might be helpful in such cases.

References

Browning, Tyson R. 1996. Systematic IP T Integration in Lean Development Programs. Master's thesis (Aero.­
Astro.lTPP), Massachusetts Institute of Technology, Cambridge, MA.

Browning, Tyson R. 1998. Integrative Mechanisms for Multiteam Integration: Findings from Five Case Studies.
Systems Engineering 1 (2):95-112.

Browning, Tyson R. 1999. Designing System Development Projects for Organizational Integration. Systems
Engineering 2 (4):217-225.

Browning, Tyson R. 2009. Using the Design Structure Matrix to Design Program Organizations. In Handbook
of Systems Engineering and Management, eds. Andrew P. Sage and William B. Rouse. New York: Wiley, pp.
1401-1424.

105 Organization Architecture DSM Examples

Exam p l e 5.3 Pratt & Whitney Jet Engine Deve lopment

Contributors

Manuel Sosa

INSEAD

Steven Eppinger

Massachusetts Institute of Technology

Craig Rowles

Pratt & Whitney

Problem Statement

Pratt & Whitney, a division of United Technologies Corporation, produces and supports

commercial and military aircraft jet engines, industrial gas turbines, and space propulsion

systems. Development of a commercial aviation jet engine is a highly complex process

involving hundreds of engineers working simultaneously on the various components and

subsystems. This DSM application investigated the system engineering and system inte­

gration aspects of the engine development project through an organization architecture

DSM model.

Data Collection

Over a period of four months in 1998, Craig Rowles (both an employee of Pratt &

Whitney and a student in MIT's System Design and Management master 's program)

interviewed lead engineers of the teams responsible for the design of all major physical

and functional engine components in the PW40 98 engine program. Subsequent data

codification, analysis, and interpretation of the DSM model were done jointly with Manuel

Sosa, then a doctoral student at MIT working with Professor Steven Eppinger.

Model

The DSM model shown in figure 5. 3 . 1 represents the formal and informal organization

architecture of the design phase of the PW40 98 commercial engine program. The organi­

zation was formally structured into 60 teams. Fifty-four component teams were respon­

sible for the design of the 54 major engine components ; these 54 teams label the first

54 elements of the DSM. These component teams are grouped into eight clusters, each

corresponding to a subsystem (listed starting from the front of the engine and the top

of the matrix) : Fan, Low-Pressure Compressor, High-Pressure Compressor, Combustion

106 Chapter 5

f

i
E
;j

"5 f. d .5
�

•

• I

....
• •

... .

•

• -
- -

• ..
-

•

- • I
I

•
•

•
•

•
- ,. • -. .

I
•

Figure 5.3.1
Organization architecture DSM for the PW4098 jet engine organization.

107 Organization Architecture DSM Examples

Chamber, High-Pressure Turbine, Low-Pressure Turbine, Mechanical Components, and

Externals and Controls. The last six teams in the DSM correspond to six integration teams

that had no direct hardware-design roles but were responsible for ensuring delivery of

engine-level design requirements such as rotor dynamics and secondary air flow. A blue­

colored cell (i,j) in the DSM indicates that team i acquired technical information (during

the Design phase) from team j.

Results

The DSM model not only captured the formal organizational structure of design teams

into eight subsystem groups but also captured the technical communication patterns of

design teams within and across such groups. Identifying the technical communication

patterns both within and across subsystem groups helped the engineering managers better

manage the complex system engineering challenge. The system engineering practice had

been largely focused on facilitating the communications inside the organizational

boundaries.

Based on this analysis, they realized that a significant amount of important technical

communication must occur across these boundaries. Managers decided to dedicate more

attention to facilitate cross-team communication across organizational groups. For

example, some of the cross-boundary team interactions between modular systems in our

study were critical design interfaces that had not been previously identified by design

experts. As a result of our study, managers learned about these interdependencies and

established dedicated design teams or formally extended the responsibility of existing

teams to explicitly handle these critical cross-boundary design interfaces during the devel­

opment of the next engine.

For DSM analysis of the product architecture of the PW40 98 engine, refer to example

3 . 2. A comparison of the product architecture DSM with the organization architecture

DSM is presented in example 9. 2.

References

Rowles, Craig M. 1999, February. System Integration Analysis of a Large Commercial Aircraft Engine. Master's
thesis, Massachusetts Institute of Technology, Cambridge, MA.

Sosa, Manuel E. 2000, June. Analyzing the Effects of Product Architecture on Technical Communication in
Product Development Organizations. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.

Sosa, Manuel E., Steven D. Eppinger, and Craig M. Rowles. 2004, December. The Misalignment of Product
Architecture and Organizational Structure in Complex Product Development. Management Science 50
(12):1674-1689.

Sosa, Manuel E., Steven D. Eppinger, and Craig M. Rowles. 2007, November. Are Your Engineers Talking to
One Another When They Should? Harvard Business Review 85 (11):133-142.

108 Chapter 5

Exam p l e 5.4 NASA International Space Station Sustaining Engineering

Contributor

Tim Brady

NASA Johnson Space Center

Problem Statement

The International Space Station (ISS) began construction in 1998 and has had continuous

occupation by human crews since November 20 0 0 (figure 5.4. 1) . As the ISS grew, NASA

began to plan for providing long-term engineering expertise to support sustained opera­

tions of the vehicle. In 20 0 3 , Kathy Lueders of the ISS Vehicle Office asked Tim Brady

to evaluate the ISS sustaining engineering strategy.

Data Collection

Over the course of four months in 20 0 3 , Tim Brady (a NASA employee supporting ISS)
reviewed ISS documentation and several independent studies of the planned long-term

operation of ISS to characterize the technical effort required to provide the necessary

Figure 5.4.1
The International Space Station (ISS) in orbit (courtesy of NASA).

109 Organization Architecture DSM Examples

engineering expertise. In addition, interviews were conducted with more than 20 people

in varied roles supporting on-orbit operations of the ISS and the Space Shuttle. The

purpose of the data collection was to identify specific tasks and critical skills required for

vehicle operations, examine organizational responsibilities, and examine information

sharing, knowledge capture, and interaction among teams supporting ISS.

Model

Thirty-six critical functions performed by various teams within the ISS organization were

identified to represent the scope of effort supporting on-orbit operations. These functions

were placed into an organization DSM, and interdependency between functions was

valued at 0 for no dependency, 1 for a function with moderate dependency on another,

and 2 for high dependency. The organization DSM for these sustaining engineering func­

tions is shown in figure 5.4. 2. The color scheme (using conditional formatting in Excel)

highlights the greater values.

A major theme captured from interviews related to the importance of critical skills

retention. A second DSM (figure 5.4. 3) was generated to analyze the critical skills used

by the team members supporting ISS operations. This critical skills DSM was generated

by first adding a row lcolumn next to the functions list in the organization DSM. Each of

the 3 6 functions in the DSM was assigned a weighting factor representing its critical skill

value (CSV) .

CSV

1

2

3

Criteria

Requires general engineering or project skill

Requires skill unique to NASA

Requires ISS-unique skills

Example Function

Perform configuration control

Test hardware (to NASA requirements)

Analyze ISS vehicle performance

The final step in forming the critical skills DSM was to calculate the value to be placed

in each cell of the DSM based on the following formula:

CSV of CSV of Functional dependence CSV DSM
function A x function B x DSM value A-B = value A-B

A second analysis of the ISS sustaining engineering organization looked at potential

issues with communications and coordination between functions. Using a similar approach

to the critical skills DSM, a communications penalty DSM was generated. Of the 3 6

activities performed for ISS operations, eight different organizational units are involved

and include groups such as Engineering, Safety, Software, and Flight Controllers. A rowl

column was added to the DSM to denote which one of the eight organizations was

responsible for each function. Looking at each cell of the DSM, if the functions dependent

110 Chapter 5

Function E F G H I JKL M N O P O R S T U VW X Y ZAAAB����MAH
Maintain Support Facilities A Software

Maintain Program Engineering Tools B I __ � �
Maintain Personnel Skills c " Program Control

Maintain Software E _ tI' I
Approve Change Requests F

Maintain Program Requirements G 1 2 2

2
Develop and Verify Software Modifications 0 '-'l�-+.;...�� .A 11 M

z

ISS;lon Planning and Analysis

Maintain System Configuration H Engineering Technical Support
Perform Systems Resource Analysis and Integration

DeveloplMaintaln Mission Plans J
Perform Mission Integration K

Analyze Integrated Systems Performance L
Maintain Logistics and Maintenance Tech Databases M

Perform Logistics Plann ing - Analysis N
Analyze and Trend Subsystem Performance 0

Assess and Manage Subsystem Risk p
Assure Engineering Quality Q
Assure Engineering Safety R

Close Anomalies (CA - RC) s
Develop and Verify Hardware MOdifications T

Maintain Subsystem Analytical Models U
Maintain System Technical data v

Perform Anomaly Engineering Triage w
Perform Anomaly Investigation x

Perform Problem Trend Analysis Y
Perform Real-time Engineering Support

Perform Subsystem Analysis and Integration
Perform Subsystem Management AB

Support Certification of Flight Readiness Process
Test. Repair. Overhaul and Procure Hardware

Assess Operations Safety AE
Right Control - Normal ops AF

Flight Control- Off-nominal ops AG 1 1 2
Perform On-orbit Maintenance - Repair AH L-__ L-_I.,;";:....�L-;..;.. __ ::.:2;:.... ___ ""O"; �;""1;",;;.;,,,;;.;;;.;;.;...,;;..;;,,,;� __ ...;.,;�_--=2� ...

Figure 5.4.2
Organization DSM for ISS sustaining engineering operations.

on each other were performed within the same organization, the dependency value from

figure 5.4.2 remained the same. If the two interdependent functions were performed by

different organizations, the dependency value in figure 5.4.2 was multiplied by five. The

communications penalty between organizational units is represented by the DSM shown

in figure 5.4.4.

Results

Assigning attributes to the functions in the organization DSM provides the opportunity

to analyze different areas of interest. The critical skills DSM in figure 5.4.3 shows three

technical areas with the highest critical skill factors : Mission Planning and Analysis, Engi­

neering Technical Support, and Flight Operations. The DSM identifies specific functions

in these technical areas that require technical competency and an in-depth knowledge of

111 Organization Architecture DSM Examples

Function
311 1 3 3 331 3 3 322 322 2 3 3 3 3 3 2 2 2 3 3 3 2
EF GH IJKL MNOPQR STU VWXYZAAAS��AEAF�AH

Maintain Support Facilities A
Maintain Program Engineering Tools

Maintain Personnel Skills 3
Develop and Verify Software Modifications 3

Maintain Software 3
Approve Change Requests F

Maintain Program Requirements 1 G
Maintain System Configuration 1 H

Perform Systems Resource Analysis and Integration 3 I
Develop/Maintaln Mission Plans 3 J

Perform Mission Integration 3 K
Analyze Integrated Systems Performance 3 L

Maintain Logistics and Maintenance Tech Databases 1 M
Perform Logistics Planning - Analysis 3 N

Analyze and Trend Subsystem Performance 3 0
Assess and Manage Subsystem Risk 3 P

Assure Engineering Quality 2 Q
Assure Engineering Safety 2 R

Close Anomalies (CA - RC) 3 S
Develop and Verify Hardware Modifications 2 T 4

12l Maintain Subsystem Analy1ical Models 2 U
MaIntain System Technical data 2 v 12

Perform Anomaly Engineering Triage 3 W 3 •
Perform Anomaly Investigation 3 X 3

Perform Problem Trend Analysis 3 Y
Perform Real-time Engineering Support 3 Z

Perform Subsystem Analysis and Integration 3 AA
Perform Subsystem Management 2 AS

Support Certification of Flight Readiness Process 2 AC
Test, Repair, Overhaul and Procure Hardware 2 AD

Assess Operations Safety 3 AE
Right Control - Normal ops 3 AF

Right Control - Off-nominal ops 3 AG
Perform On-orbit Ma intenance - Repair 2 AH

Figure 5.4.3
Critical skills DSM for ISS sustaining engineering operations.

12

I
2

the ISS vehicle. For example, personnel performing logistics planning (row/column N)

must understand, in detail, the technical capabilities of critical systems, integrated vehicle

performance, and implications for long-term mission planning. All clusters of high critical

skill factors were examined. Interviews conducted and review of support contracts showed

the ISS personnel in the identified critical areas were highly capable to support long-term

ISS operations, and near-term contracts were in place to retain critical skill groups.

Human spaceflight operations are highly complex and involve large teams of people,

so the involvement of multiple organizations is not surprising. The communications

penalty DSM in figure 5.4.4 highlights specific functions where close coordination across

organizational boundaries is required. Eight major organizations support the 3 6 functions

highlighted in the DSM. The large number of high communication penalty interactions

helped identify potential areas where cross-organization coordination could pose prob­

lems. Review of organizational processes and interviews conducted showed that the use

112 Chapter 5

Function Org

Mainta i n Support Facilities 6 A
Maintain Program Engineering Tools B

Maintain Personnel Ski l ls C

..
Develop and Verify Software Modifications 4 0

Maintain Software 4 E
Approve Change Requests 1 F

Maintain Program Requirements G
Mainta in System Configuration H

Perform -Systems Resource Analysis and Integration 5 I .. DevelcplMalnlaln M ission Plans 3 J •
Perform M ission Integration 3 K

Analyze Integrated Systems Performance 5 L
Ma intain Logistics and M a i ntenance Tech Databases 2 M

Perform Logistics Planning - Analysis 2 N
Analyze and Trend Subsystem Performance 6 0

Assess and Manage Subsystem Risk 6 P
Assure Engineering Q uality 7 Q
Assure Engineering Safety 7 R

Close Anomalies (CA - RC) 6 S
Develop and Verify Hardware Modifications 6 T

Maintain Subsystem Analy1ical Models 6 U
Maintain System Technical data 6 V

Perform Anomaly Engineering Triage 6 W
Perform Anomaly I nvestigation 6 X

Perform Problem Trend Analysis 6 Y
Perform Real-time Engineering Support 6 Z

Perform Subsystem Ana lysis and Inte,gratlon 6 AA
Perform Subsystem Management 6 AS

Support Certification of Flight Readiness Process 6 AC
Test. Repair. Overhaul and Procure Hardware 6 AD

Assess Operations Safety 8 AE
Flight Control - Norma l ops 8 AF

Flight Control - Off-nominal ops 8 AG
Perform On-orbit Ma intenance - Repa i r 8 AH

Figure 5.4.4
Communications penalty DSM for ISS sustaining engineering operations.

of formal technical teams and control boards employed by the ISS since 20 0 3 address the

need for high levels of coordination. For example:

• Mission Planning and Analysis starts far in advance and is revisited continuously based

on the current state of the vehicle. Long-term plans are addressed and coordinated

through ISS control boards, and near-term operations are coordinated through a mission

management team.

• Major elements of Engineering Technical Support are performed by discipline-specific

integrated teams comprised of representatives from all key functions.

• Flight Control Operations is performed by highly trained operators that make real-time

decisions. During critical operations, engineering staff are available to provide real-time

support to flight controllers. During anomaly resolution, mUlti-organization problem

resolution teams are formed.

•

113 Organization Architecture DSM Examples

Exam p l e 5.5 Tim ken Techno logy Center

Contributors

Douglas H. Smith

The Timken Company

Steven Eppinger

Massachusetts Institute of Technology

Problem Statement

The Timken Company has been a leading global manufacturer of roller bearings and

special alloy steels for many decades. By the late 1990s, Timken was growing rapidly into

broader lines of business related to friction management and power transmission. To meet

the company's demands for innovation and more effective product development, Timken

sought closer ties among its business development, technology development, product

design, and manufacturing development functions. It is clear that spatial and organiza­

tional designs interact to determine the effectiveness of communications leading to inno­

vation (Allen and Henn 20 07) . Realizing this, senior management decided it was wise to

co-locate these functions at the company's Technology Center located in North Canton,

Ohio (figure 5. 5. 1) . To create the most effective organization through co-location, Timken

Figure 5.5.1
Timken Technology Center (courtesy of the Timken Company).

114 Chapter 5

managers wanted to find the best possible spatial layout of the dozens of organizational

units relating to new product and business development that were to be housed in the

Technology Center. The organization architecture DSM provided a way to analyze inter­

action data in support of these organization layout decisions.

Data Collection

Timken managers worked with Professor Eppinger to develop a survey for assessment

of coordination needs across numerous groups involved in product and business develop­

ment for the global bearings business. Survey responses were rated on a four-level scale:

critical, important, incidental, or none. These interaction data were placed into an orga­

nization architecture DSM.

Model

The DSM shown in figure 5.5.2 represents the importance of regular interactions between

the 34 organizational units surveyed. The data show that interactions across these units

are dense, with some functions such as sales and business development having critical

interactions with many others. This level of density makes automated DSM clustering

difficult. We therefore used a manual clustering approach, allowing us to manipulate

arrangement of the DSM to suggest various possible groupings. Through discussions with

Timken managers, we developed the clustering result shown in figure 5.5.2.

Results

The organization DSM shows several clusters of interactions rated critical or important.

Moreover, each of these clusters represented groups of people who for years had been

spread over multiple locations in the Canton area. For example, the original Technology

Center comprised primarily R&D staff. Sales, application support, and business develop­

ment functions were located in two other buildings and seldom visited the Technology

Center. A new physical arrangement of these organizations should address these issues.

The DSM shows which functional units were to be located in the Technology Center,

which ones would move to the Corporate Headquarters, and which units would be at

globally distributed locations. Of special note in the DSM is the large grouping of core

functions, labeled Core Development, Business Development Core, and Manufacturing

Side of Core. As noted in the DSM, many of these units have substantial interactions with

sales functions located at another office building; however, not everyone could fit into

the Technology Center, so we decided to draw the line there.

Implementing the clusters suggested by the DSM analysis would be a major transfor­

mation. Nevertheless, managers decided that this was an opportunity to make a change,

115 Organization Architecture DSM Examples

Global Costing

Order Fulfil lment

Order Fulfi l lment Capacity Planning

Asia-Pacific Marketing

Latin America Marketing

Bus iness Economics

Automotive Aftermarket

Aftermarket Distribution

Aftermarket Engineering

Aftermarket Logistics

Purchasing

Bearing Business Qual ity

Research

Process Development

Product Development Info Center

Product Performance & App. Dev.

Prototype Manufacturing

Product Development

TImken Research - Europe

Europe Marketing
Automotive Marketing
Sales Offices

Industrial Marke!!!!g

New Business Development

Automotive Application EngiMering

Automotive Customer Engineering

Automotive Product & Process

Industrial Customer Eng.

Industrial Product & Process

Industrial Application Engineering

Automotive Tool Design

Industrial Tool Design

Manufacturing

Industrial S terns
Already at Technology Center

Move to Tech Center

Move to Corporate Headquarters

Globa l ly Distributed

Figure 5.5.2

• • • • • •
·

• r--��--�.,

· .
• • •
• • • • • • • • • •
• • • • • • • •
• • • • • • • • •
• • • • •

·
• • • • • • • •

Business Development Core
• • • • • • • •

•
. . . .

• • • • • • •
• • •

• • • •
• • • • • • • • • • • • •

• • • • • • • • •
• •
•

• •
• • • . . •

• • • • •

· .
• • · .

• • • • •
• • • •
• • • • •

• • • • •
• • • • •

• • •
• •

• • • •
• •

• • • • •
• • • • • •
• • • • • • • •

• • •
• • • •

• • • • • •
• • •
• • •
· .

• •
• • • •

.-_------., •

· .

• • • • • • • • • •
• • •

•
• • • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • •
• • • • • • • • • • • •

• • • • • • • • • •
• • • • • • • • • •

• • • • • • • • • •
•

• • • • • • •
• • • • •

• • • • • • • • • •
• • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • •
• • • • • • • • • • • • •

• • • • • • • • • • •
• • • • • • • • • • • • • •

• • • • • • • • • • • • • •
• • • •

Manufacturing Side of Core
• • • • • • • •

•
Critical

Important

I ncidental

• • • • • • • • •
· · · · · · · 11 ·
• • • • • • • •

Organization DSM showing the surveyed importance of interactions across groups related to design and devel­
opment of new bearings products at Timken.

116 Chapter 5

and Timken implemented recommendations based on the DSM organizational layout in

the Technology Center in 1999. This brought key business development, engineering

design, and application engineering functions into the same building. For the first time,

the physical architecture and the organizational architecture were designed based on the

needs for collaboration demanded by the business imperatives.

A senior manager noted, "The analysis showed where organizational affinities were not

leveraged in the prior layout. We needed to become a more innovative enterprise, and

this showed a path that would help Timken to do just that." In fact, many important

innovations came out of the new Technology Center, no doubt in part due to the innova­

tive environment it created and the vigorous engagement of key parts of the organization.

In subsequent years, Timken has leveraged the DSM approach for reorganizations and

resource deployment studies on several occasions. Its current challenge is to replicate this

success at its other global R&D locations.

Reference

Allen, Thomas 1. , and Gunter w. Henn. 2007. T he Organization and Architecture of Innovation: Managing the
Flow of Technology. Burlington, MA: Elsevier.

117 Organization Architecture DSM Examples

Exam p l e 5.6 B P L N G Terminal Proj ect

Contributors

Christine Ashton, Laurie Beppler, Gordon Ramjattan, and Sherman Xu

BP p.1.c.

Steven Eppinger

Massachusetts Institute of Technology

Problem Statement

A pilot project was undertaken to test applicability of the organization architecture DSM

to large engineering and construction projects within BP. The subject of this analysis was

a liquefied natural gas (LNG) terminal in the preliminary design phase of its develop­

ment. This proposed LNG terminal would be operated to off-load imported LNG from

marine vessels for processing and distribution to customers across the region. The DSM

analysis was used to study and improve the organizational structure of and communica­

tions within this complex project.

Data Collection

The LNG terminal project involved hundreds of people, even in the preliminary

phases of the development. Organized by functions, the project included seven primary

teams:

• BP Project Leadership

• Commercial

• Public Affairs

• Health, Safety, & Security (HSSE)

• Marketing

• Permitting & Legal

• Technical

To create the DSM, we identified the deliverables required from each functional

team and listed these as the rows of the DSM. We then worked with the team leaders to

identify from which other teams and tasks each team needed information in order to

complete their own deliverables. The DSM cells in each row were shaded green, blue,

or orange, indicating whether information flows into the row, out from the row, or

bidirectionally.

118 Chapter 5

Model

The DSM in figure 5.6.1 shows the initial organization structure of the project, with the

functional team boundaries outlined. Of the 625 interactions, 345 of these (55%) were

found to fall outside the boundaries of the seven teams, and 280 interactions (45 %) were

within team boundaries.

The DSM was then clustered to redefine the project's organizational structure. The

clustering analysis was done by Sherman Xu, one of BP's internal DSM experts, using

manual DSM manipulation and guided by our understanding of the deliver abies and the

multifunctional perspectives required to achieve each one. Essentially this involved

moving jointly owned deliverables from one team to another, redefining team responsi­

bilities, and overlapping the teams. Two such reclustering results were developed and

discussed with the project leaders. Our final recommendations were based on the DSM

shown in figure 5.6.2.

Results

The DSM clustering analysis suggested redefining the project's organization structure. Six

teams were recommended, with new and more explicit responsibilities. Importantly, the

definition of each team was different than the original structure. The six teams were:

• Public Affairs

• Health, Safety, & Security (HSSE)

• Design Basis

• Government Relations

• Technical

• BP Leadership

Because the project was already underway at the time of this analysis, project managers

decided not to change the functional- and individual-level responsibilities for each deliv­

erable. Instead, the new teams would be used to guide the internal communications, task

coordination, and phasing of the deliverables.

Of special note is the newly formed Government Relations team, which considerably

expanded the original Permitting & Legal team. Because this project required extensive

negotiations with and permitting by several government agencies, it was critical to focus

attention on the deliverables for and interfaces with these governmental entities. In fact,

the project was at risk of being delayed or canceled entirely if the appropriate approvals

could not be obtained from the government. This DSM analysis identified how best to

organize the project to address this risk. On the new Government Relations team, tasks

were shared across the original functional teams. Project leaders and team members

,

.. � ;:; � :l ;t � :l! O;: � � R ;;; r.:I R U � � U 1iI ;; ::I R U lli � IUII 1i .. ;o :; :1 U :; U 51 � Cl IiI :K U t; U il . g i n 1 1 1.- 1 2 :: � I:! ;! r r t: � U ;, I:II :l J . Ill • • • ;: ill it J ,1 ti a 5! I n n , _ " =' � ! .: !i: :: ! S 5 51 S � s IS ; !
x x x x
>(.. x x

1/1 Q)
1/1 .i: r:: CIS
0 "0 .- r:: - ::l g 00
� E
• - CIS Q) 0 -
� Q)
o "0 It) .-
It) � ::l

o

:1

w .
• f/) . ' .

Cl c:

. . .

' .

10(.. x >Ix

, . . . = f/) •
= . J: � "

" "
"
�
u

I
;:; � I::I ;t tll lll r. IIl A � � . � $" C ':; I I :;! C I 1 ' ; ; 1 " :O . I E I ; . IiiI C � � ::: lil � :O: I � � I: tll liI � 1 � I!! I R i ! 1II iII � ; � ' � S ! ! ! :; 1 � so I . I II' :: ! l a I I a : II i ll A t lS . ' ! � i! ! � ! � � ill � � .. ::! ' Jl k l 1: . Ii! .. � .. !; � �

..
� Il. • • • • • • " x . .:1-: ____ ----"-.10"--_-----':'-------'.'--· • ,..... .. L....!!..!I.. ----"---.."'1N1llO"",,-__

•
_ ""'. '-;,---,..---"''---''-_----,x :

�

.
. . : .

.
. . .

..
• (1)

i!"

. .

os- • • • • • • n:I • • •

U • •

"C . •
oS: u : '. �

- . .

. . .

5: 1/1 ' . • • • •
- c:: • • • • •

• � � . : �I' • • • • " x • •
� .! : � K>'I : : oc . : • •

> CI) • 0 0::. •

.JI) . • • • 0 . · . .

. " .

. •)l .

: .

�

· .
· .
· .

,: . • r '
• •

<---''---" • ...-' • • '=" '--"-' ...0..' '''''' -"-' -+-_--'.'--_--". __ ---1 • •

·
. I • • • . . x :

. . .
· .

..
.
n
H

� �;
. _, 'iii · · · · · ·· ·

-'. "

n:I

• • • '--;;-'.'<'""+-" _________ --'" 10 • "
c:: :

i� r�
.2'» . . . • � IM ·

1/1
• CI)

.0
�� ,-��r-�.= . . ---".�
;� .� .
2� ' V 1/1 • ::I:
It ,- ...
� . :is .; " . :l :t: •

�� : Q. <C :
I� • • • •

- .

121 Organization Architecture DSM Examples

adopted this structure with confidence that the new structure would deliver greater

project results than the original organization structure.

As shown in figure 5. 6. 2, the new Government Relations team had substantial overlap

of responsibility with the Technical team. Extensive discussions were necessary to decide

how to handle the many important interfaces between these teams. It was decided to

assign both of these teams' leaders with accountability for the joint deliverables involving

both teams but with one of the team leaders (on the Technical team) responsible for

managing the interfaces.

Despite the reorganization and the focus given to the complex set of deliverables

required to apply for government approvals, the project did not receive the necessary

approvals and, unfortunately, was terminated before engineering was completed.

122 Chapter 5

Exam p l e 5.7 B P Stakeholder Val u e N etwork

Contributors

Wen Feng, Edward F. Crawley, and Olivier L. de Weck

Massachusetts Institute of Technology

Rene Keller, Jijun Lin, and Bob Robinson

BP p.1.c.

Problem Statement

BP had secured the rights to a significant oil reservoir in a foreign country by creating a

multibillion dollar joint venture with a local corporation. Although this multinational

energy project would be technically challenging, there were early indications that the

complexity of stakeholder relationships would pose a significant risk. In an effort to

support the project in understanding these complex stakeholder relationships, we utilized

a specialized type of organization architecture DSM to answer the following questions :

What are the primary paths for a project to engage stakeholders? Who are the most

important stakeholders for the project?

Data Collection

A stakeholder value network is a multirelational network consisting of a focal organiza­

tion, the focal organization's stakeholders, and the tangible and intangible value exchanges

between the focal organization and its stakeholders, as well as between the stakeholders

themselves (Feng and Crawley 20 0 8) . To understand the impacts of both direct and indi­

rect relationships between stakeholders (including the focal organization) , qualitative

and quantitative models were built to populate the stakeholder value network. Corre­

spondingly, there were two phases for data collection. First, we surveyed the relevant

documents for the project and interviewed the project managers to identify major stake­

holders of the project and their roles, objectives, and specific needs. These were mapped

as value flows between stakeholders and then taken as the inputs for the qualitative

stakeholder mode1. Second, we designed a questionnaire to ask the representatives of

each stakeholder to characterize their specific needs from two aspects: "recipient's inten­

sity of need" and "source's importance in fulfilling the need." These were combined into

a utility score for each value flow and then taken as the inputs for the quantitative stake­

holder mode1.

123 Organization Architecture DSM Examples

I=:J
I=:J

...
...
...
...

Model

Figure 5.7. 1 shows a map visualizing the qualitative model of the stakeholder value

network of this multinational energy project, which includes 27 value flows between 9

stakeholders. This qualitative model can also be represented by the left DSM in figure

5.7. 2, showing the number of value flows from column stakeholders to row stakeholders.

Further, the right DSM in figure 5.7. 2 shows the total utility score of value flows from

column stakeholders to row stakeholders, which is calculated from the stakeholder ques­

tionnaire and provides the inputs for the quantitative model.

Based on the qualitative model and the numerical inputs from the questionnaire, a

specific algorithm of DSM multiplication was designed to search all the value paths

between any two stakeholders (see figure 5.7. 3) , which were the basis for the quantitative

The Focal Organization

Market Stakeholders

Nonmarket Stakeholders

Political

Information
Goods/Service
Fimlnclal

Future Project Approval

Federal Support

Project Lobbying

I Regulatory
Approva l

I Local
I Community

Workforce

Employment

Environmental
Compl iance

J
ilHost-Countryl

Government r Economic

Project
Support

Approval

Taxes Pol itical
Influence

I Investors
Investment _ I I High-grade Goods 1

I .
I ROI

_ I Enterprise I 1
1 I tow-grade Goods I

Project
I Logistical Support L
1 ost-Country

. . [Corporation I Revenue Shanng

I L .� I .. Investment Technology Transfer
Technology

Technology Requirements Envi ronmental
Impact Plan

Sa les Product

t
Policy

Producl' Revenue Subsystems Contracts Support

I Consumers I I Suppliers I I NGO It--

Figure 5.7.1
Stakeholder map for the multinational energy project.

124 Chapter 5

pro enl hcc Inv con sup he; loe ngo

.......... : Inv

ConsunIen: con

Ho.t.country Government: heg

Local Communl\y: loe

NGO: nvo

Figure 5.7.2

EntIfptH:
HooKounlJy �: hoc

_: Inv

Conoumen: con

SuppI : -

Hool-CounlJy Govont"*,1: hog

Local Community: Ioc

NGO: nvo

DSM for the qualitative model and the inputs for the quantitative model.

A B c D

A A

B B

c c

D D

9
M

Figure 5.7.3
Example of DSM multiplication to compute reachability.

",0 onl hoc Inv con sup heg

0.4 0.4

0.2

0.4

0.4

1.0 0.5 0.5

12

A B c D

cf ae ab+cd

bg+ bh ef ed

dg+dh fe fb

ga+ha gc+hc

model. First, a typical stakeholder value network, or a multidigraph, can be represented

by a DSM using the addition operation to connect the names of multiple flows between

the same pair of stakeholders (see M) . Second, multiplying the original DSM by itself

once computes a new square matrix, in which the element (i, j) in the resulting matrix

represents all the paths from Stakeholder i to j with path length equal to 2 (see M2) . (This

result is generalizable and known in graph theory as the reachability or visibility matrix.

It is discussed further in chapter 6.) We had generous assistance from Yuan Mei of MIT's

Computer Science and Artificial Intelligence Laboratory, who helped in optimizing and

implementing the DSM multiplication analysis.

loe ngo

1 2 0,4

125 Organization Architecture DSM Examples

pro Inl hcc I nv con sup heg loe ngo pro ent hcc fnv con IUp hcg loe: "go

Pnojoct: 43 9 6 9 9 1 8 6 I 6.2 2.1 1.5 1 .6 0.8 0.4 0.9

EnUrprI .. : en\ 2 20 1 2 1 1 2 1 2 1 2 2 EnmprIM: enl 1 .2 2.8 1 .8 0.8 0.4 0.5 1 . 1

H_.country �: hcc 6 1 7 17 1 7 1 7 6 5 1 4 D _-country C�on: hcc 0.8 1 .2 1 .1 1 .0 0.5 0.3 0.3

"'rs: Irw 2 1 1 2 1 1 2 1 2 1 2 2 Irw: Inv 0.2 02 0.4 0.2 0. 1 0.1 0.2

Consume,.: con 2 1 1 2 I 1 2 1 2 1 2 2 0.5 0.4 0.7 0.3 0.2 0.2 0.4

Suppliers: oup 1 9 6 9 9 I 6 6 1 8upp4 : .up 0.4 0.8 0.6 0.7 0.3 0.2 0.4

H-.country Gov.m " hog 6 1 3 I I 1 3 1 3 6 30 1 3 6 Hoat.counlry Gowmment: hell 2.9 42 3.9 3,3 1 .7 1 .2 2.6

local Community: loe 6 1 9 1 3 1 9 1 9 6 7 25 6 local Community: toe: 1 .5 2.8 2.2 22 1 .1 0.6 1 .0

NGO: ngo 6 1 9 1 3 1 9 1 9 6 7 I 6 NGO: ngo 0.6 1 . 1 0.9 0.9 0.4 02 0.4

Figure 5.7.4
DSM for the quantitative model.

Using this algorithm, figure 5.7.4 shows the number of value paths (left) and the total

utility score (right) of those paths between any two stakeholders in the multinational

energy project. The diagonal elements, or all the value paths beginning from and ending

with the same stakeholder, were further analyzed to study the implications of the network

for that stakeholder (in this case, we were most interested in the focal organization, the

Project) .

Results

The following results were obtained from the numerical analysis of the stakeholder

value network presented in figure 5.7. 1. The first result was a list of primary paths for the

Project to engage its stakeholders, which were ranked by the path scores. Figure 5.7. 5

highlights the top six paths with a length greater than two steps. These indirect paths are

useful for the Project to formulate high-leverage strategies when it is difficult to engage

a stakeholder directly. For example, if the Local Community is reluctant to issue the

Regulatory Approval, the Project can turn over Taxes to the Host-Country Government

and then use the Federal Support from the Host-Country Government to influence the

Local Community, as shown in the first path. In fact, project managers confirmed the

significance of these paths with real experience. However, without the stakeholder value

network analysis, supported by the DSM modeling platform, there is no rigorous way to

identify these valuable indirect paths quickly, especially when the size of the network

becomes large.

The second result was a ranking of the relative importance of stakeholders for the

Project, measured by the Weighted Stakeholder Occurrence (WSO):

2.0 0.4

2.4 0.5

1 .0 0,3

0.5 0 . 1

1 .0 0.2

0.8 0.2

3.3 1 . 2

3.1 0.6

0.4 0.2

1 .0

0.8

126 Chapter 5

Environmental

Figure 5.7.5
Project's top six indirect paths.

WSO In the Stakeholder Value Network (43 Paths)

SlJIkeholdttr

Figure 5.7.6

Regulatory
Approval

Project Score = 0.40

Score = 0. 1 6

Score = 0. 16

Score = 0. 16

Score = 0. 16

WSO I n th e Hub-and-S poke Model (14 Paths)

Stakeholder

WSO in the stakeholder value network and WSO in the hub-and-spoke model.

Score = 0. 16

127 Organization Architecture DSM Examples

Weighted Stakeholder Occurrence (WSO) =

Score Sum of the Value Paths Containing a Specific Stakeholder

Score Sum of All the Value Paths for the Focal Organization

Figure 5.7. 6 compares the WSO calculated in the network model with the WSO

calculated in the hub-and-spoke model, where only the direct relationships between

the Project and its immediate stakeholders are examined. The higher importance of the

Local Community and the NGO in the network model was confirmed by managers

and historical facts and essentially meant that project teams -when only considering

direct relationships with stakeholders - are likely to underestimate the influence of some

stakeholders.

References

Cameron, B. G. 2007, June. Value Network Modeling: A Quantitative Method for Comparing Benefit across
Exploration Architectures. Master's thesis, Massachusetts Institute of Technology, Cambridge, MA.

Feng, w., E. F. Crawley, O. L. de Weck, R. Keller, and B. Robinson. 2010 July. Dependency Structure Matrix
Modelling for Stakeholder Value Networks. Proceedings of the 12th International DSM Conference, Cambridge,
UK.

Feng, w., and E. F. Crawley. 2008. Stakeholder Value Network Analysis for Large Oil and Gas Projects. BP-MIT
Research Report.

Sutherland, T. A. 2009, June. Stakeholder Value Network Analysis for Space-Based Earth Observation. Master's
thesis, Massachusetts Institute of Technology, Cambridge, MA.

6

... -
Dot."
-
fI .. _

Process Architecture DSM Models

--

-­
.... ��

-'--��
_ '"'-

k __
1_

--­
_ 1II ...

-�-

-�-
..... _-
"'-"-­

......---.�-

_ -
.... - .. "'-"""

r....-._l.,..
_�'c-

0.-"''-'­
---...... _-

....... 0._......,

-­
�� c..

---

,-,..c:.....,_

1_ _'-

��
--

-�':':"'''''''
'-­

--- --
--

... _-
_ ... -

�r... ... ,,","
--­

... --
--­
..... ,.----

----,-
--

�==
-�­

.­
ow
.... _­

--
..... ""-1_

- ... -

c...

Figure 6.1
A process architecture DSM model depicting a real estate development process (example 7.4) .

1 30 Chapter 6

In this chapter, we consider the architecture of processes, with particular attention to
product development processes for engineered systems. We show how DSM is applied to
represent and analyze such processes and the types of insights gained through these DSM
applications. We begin with a brief synopsis of terminology used in the particular context
of process architecture DSM modeling.

Terminology

Process A system of activities and their interactions comprising a project or business func­
tion, such as an engineering design and development project.

Process Architecture The structure of a process-embodied in its activities and their interac­
tions with each other and the process environment-and the principles guiding its design
and evolution.

Activities The elements of action comprising a process, which in various contexts may be
tasks to execute, information to generate, decisions to make, or design parameters to
determine. Each activity transforms one or more inputs into one or more outputs. Complex
processes are generally broken into phases, stages, or subprocesses, which are further
decomposed into activities.

Interactions The output-to-input relationships between activities. We are especially inter­
ested in work products, deliverables, and information flows, where the outputs of activities
enable the execution of others.

Process Architecture DSM A mapping of the network of interactions among the activities
in the process, also known as process DSM, process flow DSM, activity-based DSM, and
task-based DSM.

Sequencing Analysis of the process architecture DSM through logical ordering of the activi­
ties, identifying sequential, parallel, and coupled sets of activities; also known as partition­
ing analysis for process DSM models.

Coupled Activities A set of two or more activities whose interactions create the potential
for iterations, as there exists a (direct or indirect) path of interactions from each activity
in the set to every other and back to itself; also known as feedback loops, cycles, or circuits
and in graph theory as strongly connected components, vertices, or nodes.

Block A group of coupled activities identified in the process architecture DSM.

Iteration The repetition of activities, also known as rework. Iterations may be planned (due
to coupling or uncertainty) or unplanned (due to discovery of errors or arrival of new
information).

Tearing Analysis of a coupled block of activities to identify interactions for temporary
removal from the block, after which the block is resequenced to suggest a better process.
Torn marks are reinserted into the DSM and become assumptions or starting points when
executing the process-hopefully with minimal iteration.

1 31 Process Architecture DSM Models

Background

Terminology
(continued)

IR/FAD Abbreviation for the main DSM convention used in this book, where the off­
diagonal marks are oriented as inputs in rows (IR) and outputs in columns. With temporal
(process) DSMs, this results in any feedback marks appearing above the diagonal in the
matrix (feedback above diagonal [FAD]) .

le/FBD Abbreviation for the DSM convention with inputs in columns (IC) and feedback
marks below the diagonal (feedback below diagonal [FBD]) . An IC/FBD DSM is the
transpose of an IRiFAD DSM. The two conventions convey equivalent information. Both
are used because each offers advantages.

The disciplines of project management and operations management are largely concerned
with the management of process flows (in projects and operations, respectively) . Numer­
ous methods are used to plan and schedule the start and end of activities and to coordi­
nate the flow of information (as well as materials, funds, and other transfers) in processes.
The most commonly used methods are process flow diagrams or flowcharts-comprised
of boxes representing the activities and arrows representing the flow or transfer of infor­
mation and materials between them-and Gantt charts (Gantt 1919) comprised of bars
representing the activities and, sometimes, arrows showing the dependencies as well. Over
the past 30 years, DSM has also been applied to processes, yielding a highly useful and
potentially richer model of the process architecture and leading to improved process
performance. DSM is especially useful when processes are complex and iterative.

The type of DSM used for process modeling is the process architecture DSM, also called
the process DSM, process flow DSM, activity-based DSM, or task-based DSM. This kind
of DSM represents the network of activities comprising a process and its interactions. Two
variants of the process architecture DSM are the parameter-based DSM and the software
process DSM. In the parameter DSM, the network of design parameter decisions is
modeled as a set of activities, each of which determines one or more design parameters
(see examples 7.13 and 7.14). In the software DSM, the software process flow is modeled
to depict the sequence of execution of the software code (see example 7.15).

The process DSM began as the original DSM technique developed by Don Steward in
the 1960s. As noted in chapter 1, Steward was using matrix-based techniques to solve
systems of equations, where a key consideration is the order in which the variables should
be solved, so as to minimize the need for iteration in the solution algorithm (Steward
1962, 1965). He also realized the applicability of this approach to representing and improv­
ing the order of activities in processes. While Steward's work gained only limited circula­
tion in the 1960s and 1970s, others were using square precedence matrices to concisely

1 32 Chapter 6

represent activity sequences (e.g., Fernando 1969; Hayes 1969), and still others applied
the algorithms for minimizing cycles in matrix representations of systems (e.g., Warfield
1973). Steward's work on the DSM was finally published in 1981, but it was not until the
early 1990s that researchers utilized the DSM methods in earnest. At that time, an explo­
sion of works appeared, mainly by researchers at MIT, applying and extending the original
DSM methods. Process DSM applications at NASA (Rogers 1989, 1996), Boeing (Grose
1994) , and General Motors (Black et al. 1990; Eppinger et al. 1990) in the 1990s were
among the first demonstrations of DSM applied to industrial problems. Since that time,
the use of DSMs to model and analyze process architectures has continued to expand,
making it the largest area of DSM research and application.

Process modeling is a common and long-established field that uses a variety of methods
for modeling and representation (Browning et al. 2006; Browning & Ramasesh 2007) .
Our work in this area, both in academia and industry, has shown us that a few key points
deserve mention regarding processes and process modeling. First, processes exist­
whether we model them or not. Every enterprise has processes (a way to get results) even
if they are not documented, consistent, effective, or efficient. Process modeling often
follows an inductive approach in an effort to document the "as is" reality of how work is
accomplished and results are produced. Tremendous value can come from the discoveries
made during the building of a process model regardless of any further value derived from
analyzing the model.

For clarity in our discussion of processes and process models, we established the defini­
tions at the beginning of this chapter. Three important notes are in order regarding them.
First, the terms process and activity are usually observer-dependent (i.e., one person's
process may be another person's activity). This occurs because processes are a kind of
system and, as such, exhibit the general property that every system is part of a larger
system, and every component of a system may be further decomposed into smaller com­
ponents. Hence, we use the terms process and activity in a relative sense, typically using
the term process to refer to an entire DSM model and the term activity to refer to one of
the elements within it. Second, it is important to note that many of the work products in
processes are just information and may be transmitted informally, meaning that the
modeler may need to do additional work to capture these types of interactions. Third, each
activity is both a customer/receiver/user and a producer/supplier/provider of work prod­
ucts. That is, each activity both requires input(s) and produces output(s). Similarly, each
work product is both an output and an input depending on whether one takes the point
of view of its provider or its user. Some activities may have external inputs and/or produce
external outputs, which may be captured in an extension to the DSM (see example 7.6).

The architecture of a process has to do with the way its activities work together to
deliver results. Specifically, process architecture consists of three types of mappings: (1)
hierarchical decomposition of the process into activities, (2) input-output relationships
between activities, and (3) various mappings of meta-relationships between activities
(such as mutual resource dependencies or multiple instances of similar activities) . The

1 33 Process Architecture DSM Models

DSM has been applied mainly to the second of these, which calls for a square matrix,
whereas the first calls for a work breakdown structure (WBS) and the third usually
requires advanced object-oriented modeling and database referencing techniques. Many
entire books have been written about process modeling methods. Here we limit our focus
to how DSM can be used in process planning and improvement endeavors. (See Browning
[2009] for a perspective on how DSM can be used in conjunction with other process model
views and object-oriented models.)

Casting Rechtin's (1991) insightful explanation of system architecting in the specific
terms of processes (substituting process and activity for system and element, respectively) ,
we get:

• Relationships among [activities] are what give [processes] their added value.

• The greatest leverage in [process] architecting is at the interfaces.

In other words, while many process models emphasize the activities, the interactions
among activities play a tremendously important role in the process' ability to deliver
value. In fact, the same set of activities may or may not provide value depending on the
inputs they use and how they interact. This point stands as an interesting contrast to some
of the literature on lean processes, where modelers endeavor to categorize activities as
value-adding or non-value-adding according to their intrinsic properties only. However,
providing bad inputs to a value-adding activity yields bad outputs (Browning 2003;
Browning & Heath 2009) .

One of the advantages of the DSM is its emphasis on interactions. Most of the square
matrix is devoted to representing the presence (and sometimes various properties) of the
interactions, and DSM analysis highlights important patterns of interactions and their
implications for process behavior. Moreover, the methods we present below for building
a process DSM, which focus on drawing out the flow of information and work products,
tend to uncover a relatively rich set of interactions. In contrast, many other process mod­
eling methods and representations that are able to represent interactions will, because of
the way they are built and displayed, nevertheless under-represent them. For example,
many flowcharts show only a minimal set of arrows between the boxes-just enough to
connect them-rather than the full set of inputs and outputs for each activity. Similarly,
many Gantt charts do not explicitly indicate the flow of information and work products
that establishes activity dependencies.

Figure 6.2 illustrates how the process DSM is used to represent interactions among
activities, including these four fundamental types of relationships:

• Sequential activities Output of the upstream activities enables execution of the down­
stream activities, so they are executed sequentially. Some sequential activities may be
partially overlapped by starting the downstream activity before the upstream activity
is completed. Overlapping normally sequential tasks to accelerate a process may be
achieved by careful scrutiny of each finish-to-start dependency (Krishnan et al. 1997).

1 34 Chapter 6

A B C D E

A

B

C

D

E •

F • •

G • •

H •

Figure 6.2

F G H

} Sequential (Dependent)

} Parallel (Independent)

} Coupled (Interdependent)

Sequential, parallel, coupled, and conditional activity relationships in the process DSM.

• Parallel activities Without input-output interaction between them, they may be exe­
cuted simultaneously. Note that although parallel activities may not have any direct
interaction, they might depend on the same resource, from which perspective they do
indeed interact. In general, resource constraints are considered in project scheduling
only after the primary input-output dependencies have been addressed.

• Coupled activities Each needs input from one or more of the others, so they must iterate
until they converge on a mutually satisfactory solution. Coupled activities are common
in most types of engineering design and development projects, particularly where uncer­
tainties are addressed through invention, analysis, prototyping, verification, validation,
and testing tasks.

• Conditional activities Execution of the downstream activities is contingent on decisions
made in the upstream activity. Although it is uncommon to show contingent process
flows explicitly in process DSM models, they may be represented in various ways, such
as by using different symbols, as shown with diamond marks in figure 6.2. (This is similar
to the use of diamonds in flowcharts to represent decision points.)

Although each of these types of interactions could be represented in a flowchart or
other process modeling representation, certain patterns -especially the subsets of coupled
activities-often go undocumented and unnoticed in such diagrams, whereas the DSM
can highlight them. In fact, the most common process modeling and analysis tools-the
Project Evaluation and Review Technique (PERT) flowchart, the Critical Path Method
(CPM), and their associated Gantt charts-do not well represent cyclical processes nor

1 35 Process Architecture DSM Models

do they show coupled groups of activities. Coupled tasks would create a rework circuit
in a PERT or CPM diagram, but this is not allowed because the method cannot compute
the critical path through a process containing a cycle. Some other process modeling tech­
niques, such as value stream mapping and IDEF methods, could include coupled activities,
but they are generally not supported by the analysis to identify such cycles.

Process Iterations

In our studies of process architecture, using DSM models of dozens of engineering proj­
ects, we have found that process iteration is one of the most salient phenomena stemming
from the patterns of interaction in a process. Iteration involves the repetition (or rework)
of activities, represented by feedback loops or cycles in the process. Because these feed­
backs are often destabilizing and unplanned, iteration and rework are major drivers of
project cost and schedule overruns and associated risks (e.g., Cooper 1993). For example,
in a study of nine projects at Intel, iteration accounted for 13% to 70% of project dura­
tion, with a mean of 30% (Osborne 1993). (Example 7.2 describes one of these projects.)
A model of a preliminary design process at Boeing (example 7.6) showed how the overall
duration and cost of a project can change dramatically with changes to the process archi­
tecture even without changes to the individual activities themselves (Browning and
Eppinger 2002).

Several authors have discussed design as an iterative process (e.g., Kline 1985) and have
explored the sources of design iterations (e.g., Eppinger et a1. 1994; Steward 1981). Levardy
and Browning (2009) reviewed the following causes of iterations, stating them in the
context of process information flow:

• Inherent coupling Activities are structurally interdependent and cannot be executed
without assuming, exchanging, checking, and updating information in an iterative
fashion.

• Poor activity sequencing Information is created at the wrong time (often too late), which
forces other activities to wait or make assumptions.

• Incomplete activities Information needed by later activities is not fully available, even
though the earlier activities have started.

• Poor communication Information is not transmitted clearly, promptly, or appropriately.

• Input changes External information (or proxy assumptions) used by activities to do
their work is subsequently changed (e.g., requirements changes) , necessitating rework
of those activities and potentially many others that have followed.

• Mistakes Defective information is inadvertently created and later discovered to be
erroneous, causing rework of portions of the process; a greater time lag until this dis­
covery amplifies the effect (Cooper 1993).

136 Chapter 6

In general, iteration occurs when the cumulative output from prior activities, plus the
assumptions that can be reasonably made at the time, are insufficient to enable the next
activities to be properly performed to add appropriate value to a project.

Some of these causes of iteration are avoidable through careful process analysis and
risk management. Other types of iteration are more fundamental to the process and need
to be planned and managed differently. Indeed, some types of iteration should even be
encouraged and facilitated so they will converge more quickly (see example 7.6 regarding
desired iterations, and see example 7.2 for an illustration and discussion of the distinction
between planned and unplanned iterations).

The phenomenon of iteration shows that process architecture matters. The understand­
ing that process architectures can be designed in superior ways, and that superior archi­
tectures can provide competitive advantages, has motivated research and development in
several areas, including that which uses the DSM. Some of these advantages include:
minimizing unplanned rework and iterations, negotiating input-output relationships and
commitments, reducing project duration and cost, and reducing the risks associated with
not meeting deadlines and budgets. Of course, these are in addition to the general advan­
tages for complexity management, visualization, understanding, and innovation men­
tioned in chapter 1.

Building a Process Architecture DSM

The basic procedure for building a process architecture DSM is as follows:

1. Decompose the overall process into its activities (via intermediate subprocesses and
phases/stages if needed). Lay out the square DSM with activities labeling the rows and
columns, listed in the usual sequence (if known) and grouped into subprocesses or
phases/stages if appropriate.

2. Identify the known interactions (input-output relationships) between the activities and
represent these using marks or values in the DSM cells.

The process employed at Boeing for the conceptual design of an unmanned combat
aerial vehicle (UCAV) illustrates the procedure for construction of a process architecture
DSM model. The UCAV DSM is shown in figure 6.3, with both the original process
sequence (top DSM) and an alternative ordering of the activities (bottom DSM), which
is discussed later in this chapter. The first activity sets the design requirements and objec­
tives (DR&O), and the second activity suggests a configuration concept to meet them.
Activities 3-10 then analyze and evaluate the concept from various discipline perspec­
tives, exchanging information and data as they go. Activity 11 collects all of these results
and decides whether to proceed to activity 12-which wraps up the phase and prepares
for the next one (preliminary design)-or to iterate by changing the design concept, the

1 37 Process Architecture DSM Models

Prepare UCAV Conceptual DR&O

Create Configuration Concepts

Prepare 3-View Drawing & Geometry Data

Perform Aerodynamics Analyses & Evaluation

Perform Propulsion Analyses & Evaluation

Perform S&C Characteristics Analyses & Eval.

Perform Mechanical & Electrical Analyses & Eval.

Perform Weights Analyses & Evaluation

Perform Performance Analyses & Evaluation

Perform Multidisciplinary Analyses & Evaluation

Make Concept Assessment and Variant Decisions

Prepare & Distribute Choice Config. Data Set

Prepare UCAV Conceptual DR&O

Create Configuration Concepts

Prepare 3-View Drawing & Geometry Data

Perform Propulsion Analyses & Evaluation

Perform Aerodynamics Analyses & Evaluation

Perform Mechanical & Electrical Analyses & Eval.

Perform Weights Analyses & Evaluation

Perform S&C Characteristics Analyses & Eval.

Perform Performance Analyses & Evaluation

Perform Multidisciplinary Analyses & Evaluation

Make Concept Assessment and Variant Decisions

Prepare & Distribute Choice Config. Data Set

Figure 6.3

2 3 4 5 6 7 8 9 10 11 12
•

•

•

•

5

6 •

7 •

8 • •

9 • • •

10 • • • •

11 • • • • • • •

12 • • •

3 5 4 7 8 6 9 10 11 12

3

5

4 • •

7 •

8 . •

•

L-___I..-+--,
6 . • • •

9 • • •

10 • • • • • •

11 • • • • • • •

12 • • •

•

•

Process DSM model of the UCAV conceptual design process (example 7.6) before sequencing (top) and after
sequencing (boLlom) .

1 38 Chapter 6

DR&O, or both (as represented by the two marks in the upper-right corner of the DSM)
(see example 7.6 for further details and discussion).

Our experience building process DSM models has taught us many lessons about data
collection and graphical representation. These lessons have been helpful in a variety of
DSM applications:

• Sequencing Established processes have a typical sequence, usually documented in a
process flow diagram, Gantt chart, or list of activity start dates or due dates. This typical
sequence is usually a good starting point for the initial activity list used in the DSM
model. Subsequent analysis may scrutinize or optimize the activity sequence, revealing
insights about performance and suggestions for process improvement.

• Process decomposition Established processes also often have an established decomposi­
tion of activities (e.g., a WBS). This decomposition provides a good starting point for
building the model, even if it must be refined later. Regardless, it is important to ensure
that the model's constituent activities indeed capture all of the work done to execute
the process. Sometimes seemingly minor activities can have a significant effect on a
process, so it is important to include them in the model, even if only as part of another
activity. Another key issue may also arise, especially for large, multidisciplinary develop­
ment processes, and that is which way to do the decomposition. Should the process be
broken down first by discipline or by a particular product subsystem, forming subpro­
cesses that span the overall process' entire duration? Or should the process be parsed
first by stages or phases, each containing all activities but only for a portion of the
overall process' duration? Although either approach should eventually reach the same
individual activities, debating the options can bog down a modeling effort. The most
important thing is just to pick an approach, making modifications later if needed.

• Convention for representing input, output, and feedback There are two conventions for
orienting process DSM models. The more common representation for DSMs (originat­
ing from Steward) places activity inputs in the rows (IR) and activity outputs in the
columns, resulting in feedback above the diagonal (IRIFAD). We have used this conven­
tion throughout this chapter. An alternative convention (originating from N2 and IDEFO
diagrams) places inputs in the columns (Ie) and outputs in the rows, resulting in feed­
back below the diagonal (ICIFBD). Four examples (5.2, 7.6, 9.7, 9.11) show DSM models
using the ICIFBD convention. We have heard lengthy debates over the merits of each
convention, but no absolute standard has yet emerged. We have concluded this is mostly
a matter of personal preference based on familiarity with reading one type or the other,
although the ICIFBD convention does provide a benefit with respect to the orientation
of external input and output regions around the square DSM, as demonstrated in
example 7.6. However, it is important to stress that the two conventions convey equiva­
lent information; each is just the matrix transpose of the other.

1 39 Process Architecture DSM Models

• Building and verifying the model In principle, it is possible to create a process DSM by
filling out either the rows or the columns. In the IRIFAD convention, filling the rows
means identifying the inputs for each activity and placing these marks in the appropriate
columns depending on their source. Filling the columns would mean listing where each
activity's outputs go. We have found that it is generally more reliable to ask process
owners where their inputs come from. They know what they need because they gener­
ally have to seek out their input information. However, they may not reliably know
where their outputs are used. Of course, it is also a good practice to discuss outputs. An
eye-opening approach is to build two DSMs-one by rows (i.e., with data on activity
inputs) and one by columns (with data on activity outputs)-and compare these to
verify the model.

• Modeling the as-is process first Experienced process modelers know that it may not be
easy to capture the actual process. People will often explain how the process should be
rather than describing the process as is. In fact, each of these process variants has a
distinct meaning. We generally recommend to capture the as-is process first and then
use insights about what process owners feel should be different to work toward process
improvements. Jumping to supposed improvements without a valid baseline process
model for comparison and discussion can lead to unexpected results.

• Accounting for process iterations Documenting process iterations can be difficult because
many iterations represent errors (as discussed earlier) and many people have been
taught to think of all rework as wasteful. We find it helpful to begin by discussing the
established process-as planned. Then discuss the exceptions-how the process can fail
to go as planned. This discussion may uncover many of the known failure modes of the
process. Many of the examples in the following chapter (such as example 7.2) took this
approach. A full failure modes and effects analysis (FMEA) can even be done. It can
also be difficult to model planned iterations, especially when each iteration involves
executing each activity in a different mode using different (or more mature) inputs and
producing different (or more mature) outputs. In some cases, it is helpful to "unroll"
planned iterations and represent them as a repeated set of activities in the overall
process.

• Interaction strength It is often useful to distinguish the strength (or other attributes) of
each interaction using numerical values, creating a numerical process DSM model.
Several examples in chapter 7 show various ways to quantify interaction strength. For
instance, some advanced models use probability and/or impact data for each interaction
(e.g., Browning and Eppinger 2002; Smith and Eppinger 1997) . Interaction strength can
also vary over successive iterations (Eppinger et al. 1997; Uvardy and Browning 2009) .

• Highlighting coupled activities Coupled activities are often identified in the DSM using
shaded or outlined square boxes along the diagonal, enclosing the marks coupling the

1 40 Chapter 6

activities (see examples 7.2, 7.5, 7.12) . Sometimes parallel activities are shown in a similar
way using dashed boxes or alternating shaded bands (Grose 1994) .

• Visualization guidelines Use appropriate graphics to allow the DSM model to help
explain the process. We have found many ways to use colors, shading, symbols, labels,
and other notations to highlight a wide variety of interesting phenomena. The examples
in chapter 7 illustrate various uses of graphics to add explanatory power to DSM models.

• Granularity of the model Every process can be modeled at several levels of decomposi­
tion. This is primarily a tradeoff of modeling effort versus richness. As the examples in
chapter 7 show, many highly insightful process DSM models are decomposed in the
range of 30 to 70 activities. While building the model, it is not uncommon to discover
specific subprocesses, phases, or activities that merit further decomposition to provide
insight into the situation underlying the actions and interactions within. Similarly, it may
be discovered that some sections of the model could be aggregated without much loss
of insight.

• Accounting for external inputs and outputs External inputs and outputs can be repre­
sented in a process DSM by using additional rows and columns. These are usually
placed outside of the main matrix using the ICIFBD convention (see examples 7.6
and 7.11).

• Model boundaries A DSM model may represent only a portion of a larger process. This
is a useful way to focus on a particularly important (and perhaps complex) portion of
a larger process that needs to be better understood or improved. In this case, however,
important actions and interactions may reside outside the model's scope, so it may be
helpful to include some of the larger (external) process in the model or at least account
for the interactions with the external input and output regions around the DSM.

• Additional attributes of activities and interactions Although not usually shown explicitly
in a DSM, many DSM analyses utilize additional attributes of the activities (e.g., dura­
tion, cost, learning curve, probability, and/or impact of input change) and interactions
(e.g., work product requirements, information maturity, and probability of change)
(Browning 2009) . Depending on the purpose of the model, the modeler should consider
the extent to which such further information should be gathered. While adding richness
to the model and extending its capabilities, these additional data will also increase the
time required to build the model.

• Validating the model It is important to have process owners and workers review and
discuss the model. They should scrutinize any initial insights or findings to see whether
they could be better explained by a required improvement to the model.

The time required to build a process DSM model depends on the amount of data
required and the effort needed to acquire it. As the number of activities grows, the size
of the DSM increases quadratically, as does the number of potential interactions, but our

1 41 Process Architecture DSM Models

experience and some data (Whitney et al. 1999) have shown that this growth is actually
more linear. Whitney et al. (1999) examined several DSM models and found about six
input marks on average. The time required per activity depends on a number of factors,
such as the breadth of input types, the availability of existing documentation to draw from,
the latent process knowledge available from contributors, the experience of the modeler,
the medium of data gathering (survey, online tool, meetings, etc.), and the purpose of the
model. We have encountered a wide range of possible times, with many models falling in
the range of 15 to 45 minutes per activity. In any case, additional richness should be added
to the model only where justified by its purpose.

Analyzing the Process Architecture DSM

Sequencing

The most common method of analysis applied to process architecture DSM models is
called sequencing. This is a form of DSM partitioning analysis that involves reordering
the rows and columns of the DSM to minimize iterations (cycles) (i.e., to arrange the
activities with as many interactions as possible below the diagonal [in the IRIFAD con­
vention]). There are several algorithms for DSM sequencing; some are applied only to
binary DSMs, and others are used to sequence numerical DSMs based on the strength of
the interactions. Meier et al. (2007) provided a survey of various sequencing algorithms
for binary DSMs.

As mentioned in chapter 1, a process architecture DSM includes a temporal dimension.
Unlike the static DSM model types (product and organization architecture), where all
of the elements exist simultaneously, the activities in a process DSM usually begin and
end at different times. Because the value added by an activity depends on its inputs, it is
usually preferable to perform the activity when all of its inputs are ready and available.
Because each input comes from some other activity (or from an external source), the
input-output relationships among the activities provide the initial determinant of their
appropriate sequence. When an activity begins without all of its inputs, it must use
assumptions as a proxy for the missing inputs. Being able to begin without all inputs, by
making assumptions, is a double-edged sword in a project process. This is much harder
(if not impossible) in manufacturing processes because an assembly activity cannot occur
until all of the component parts are physically present. But in project activities, many of
the inputs are information and therefore, for better or worse, can be assumed. Using
assumptions adds risk, however-risk that the assumptions will be partially or even com­
pletely invalidated when the actual input becomes available. We can think of this risk as
the possibility of having to rework some or all of the activity, as well as any other activi­
ties that have already relied on that activity'S output, all of which adds time and cost to
the process.

A

A

B

C

0

E

F

G

H

1 42 Chapter 6

B C

X

X

Thus, the first heuristic for sequencing is to find the order of activities that minimizes
the amount of feedback in the process (i.e., the sequence that minimizes the need for
activities to use assumptions). (As noted in example 7.6, the fastest processes do not
always have a minimal amount of feedback, but it is often a good heuristic.) Hence, the
first heuristic entails an objective of minimizing the number of feedback marks in the
DSM. A more sophisticated heuristic recognizes that short feedbacks are preferable to
long ones. This second objective entails minimizing some combination of the number of
feedbacks and their distance from the diagonal, because a mark's distance from the
diagonal roughly indicates the scope of the feedback, with a mark in the upper right
corner of the DSM (with IRIFAD) indicating a potential return from the end of the
process all the way back to the beginning. Such long feedbacks are especially problematic
because many more activities will have occurred in the interim period between the initial
completion of the upstream activity and its rework (caused by the far downstream activ­
ity). These interim activities proceeded with what they thought were valid inputs, but that
turned out to be errors. When the upstream activity is reworked, however, it is likely that
its outputs will change, thus precipitating a cascade of rework through the process. Thus,
long feedback loops are usually much worse than short ones. However, it is important to
remember that minimizing feedback loops of any kind is still just a proxy for the real
objectives, which are minimizing the process duration and cost or, better yet, maximizing
the value of the process results (Browning 2003).

Although many process DSM models are sequenced manually, guided by the previous
heuristics, several automated sequencing algorithms are available in software tools. Figure
6.4 illustrates a simple method called path searching based on Steward's (1981, p. 54--55)
original algorithm, later summarized by Gebala and Eppinger (1991):

0 E F G H C A B 0 E G H F C A E B O G H F

X

X

C

X A

B

0

E

X G

X X H

X X F

(a)

Figure 6.4

X

X

X

X

X

X X

(b)

X

X

X

X X

X

X

X

C

A

E

B

o

G

H

F

Illustration of DSM sequencing based on Steward's path searching algorithm.

X X

X

X
L

X

X

X X X

:1 X X

X X

(c)

1 43 Process Architecture DSM Models

1. Sequence the activities that are not part of any cycles (loops) . Activities with empty
rows have all required information and can be performed first. Activities with empty
columns provide no information required by future activities and can be performed
last. Once an activity is sequenced, remove it from further consideration. Repeat until
no empty rows or columns are found.

2. Identify cycles by one of the three methods mentioned below. Group together all
activities in a cycle as a single activity and sequence the group as above if the group
has an empty row or column.

3. Repeat steps 1 and 2 until all activities have been sequenced.

Basic sequencing is often called block diagonalization or block triangularization
because it yields a lower triangular matrix (in the IRIFAD convention) where any remain­
ing superdiagonal marks are enclosed in blocks that represent the subsets of coupled
activities. Starting with the unsequenced DSM in figure 6.4a, activity C has a blank row
(i.e., no inputs from other activities in the process) , so it is moved to the beginning, and
F has a blank column, so it is moved to the end, yielding the DSM in figure 6.4b. Because
every remaining activity has an off-diagonal mark, we arbitrarily begin with activity A to
generate a list of successors. This generates the sequence A � E � A. Thus, we isolate
A and E as a cycle, and we group them together. We then note that the group AE has no
inputs from B, D, G, and H, so we move AE up. Taking the next remaining activity, we
find sequence B � D � G � H � B, which implies another cycle. The approach can also
be applied recursively to reveal subcycles such as G � H � G. We now have the DSM
in figure 6.4c, which contains two main blocks of coupled activities.

A second way to find all of the coupled groups of activities in a DSM model utilizes a
linear algebra technique known as the powers of the adjacency matrix (Gebala and
Eppinger 1991; Ledet and Himmelblau 1970; Warfield 1973). The adjacency matrix is
simply the binary version of a DSM (placing ones in the cells with marks and zeros else­
where) . The Boolean square of the adjacency matrix identifies all the indirect connections
two steps removed, the Boolean cube of the matrix finds all connections three steps
removed, and so on. The powers of the adjacency matrix are useful for determining cycles
because any activity in a cycle must be reachable from itself. An activity is reachable from
itself in x steps if, in the adjacency matrix raised to the xth Boolean power, the activity
has a nonzero entry on the diagonal. This is illustrated in figure 6.5, which takes the sub­
matrix from Figure 6.4b (because activities C and F have already been determined not
to reside in cycles) . The Boolean square of the adjacency matrix reveals that activities A,
E, G, and H are in a two-step cycle. The fourth power of the adjacency matrix reveals that
activities B, D, G, and H are in a four-step cycle. The higher powers of the adjacency matrix
reveal no additional cycles in the system. From these, we determine that A and E are
involved in a two-step cycle, G and H are involved in a separate two-step cycle, and B, D,
G, and H are all part of a four-step cycle, of which the G-H cycle is a part-the same

1 44 Chapter 6

A

B

A B O E G H

1

A B O E G H

A 1

A B O E G H

A

o 1

E 1

G

H 1 1

DSM

1

1

B 1

o

E

G 1 1

H 1

1 1

1

1

1

1 1

1

1

B 1

o 1

E

G 1

H 1 1

1

1

1

1

A B O E G H A B O E G H A B O E G H

A

B 1

o 1

E

G 1

H 1

1 1

1 1

1 1

1

Figure 6.5

1

1

A

B

o

E

G

H 1

1

1

Powers of the adjacency matrix for the sub-DSM in figure 6 .4b.

A

B 1

o 1

E

G 1

H 1

structure reached in figure 6.4c. However, finding the blocks of coupled actlVltles
by powers of the adjacency matrix is a computationally intensive operation for large
matrices.

Note that the N matrices derived by raising the adjacency matrix to successive powers
can be overlaid (summed via Boolean arithmetic) to produce the reachability or visibility
matrix, which shows all direct and indirect interactions between the elements (see e.g.,
Warfield 1973) . Figure 6.6 shows a version of the reachability matrix for the DSM in figure
6.4a, where the numbers indicate the number of steps separated in the indirect connection
between activities. Because no activity is more than four steps separated from any other,
the fifth and sixth powers of the adjacency matrix do not provide any further information
(see also examples 3.5 and 5.7) .

A third and more efficient way to isolate the subset of coupled activities is to use Tar­
jan's (1972) depth-first search algorithm. In a manner similar to Steward's path searching

1 45 Process Architecture DSM Models

A B C 0 E F

A 1

B 2 2 3 1

C

0 3 1 3 2

E 1 2

F 2 2 1

G 2 2 2

H 2 3 1

Figure 6.6

G H

2 1

3 2

Reachability matrix showing all indirect connections, with numbers added to show the number of steps removed.

method, with a linear order of computational complexity (in the number of activities and
interactions) , Tarjan's depth-first algorithm follows each activity's outputs to determine
any dependency paths that cycle back to an activity.

The lower portion of figure 6.3 shows the result of sequencing analysis applied to
the UCAV DSM model. This particular binary DSM is quite constrained in terms of
sequencing because of the large number of interactions among the activities in the matrix.
The two feedback marks from activity 11, shown in red in the upper right of the matrix,
are ignored (torn) in the sequencing because they represent planned but optional
iterations. Activities 1 and 2 are found to be coupled but have no other inputs, so they
remain at the start. However, moving activity 5 upstream moves a mark from above to

below the diagonal, and moving activity 6 downstream reduces the size of the second
block.

Although sequencing a totally randomly ordered set of activities can show an enormous
reduction in the amount of feedback, a basic sequencing analysis may not much alter the
original sequence of a working process. However, further analysis can be done to address
and manage the remaining feedback loops. We discuss this next.

Coupled Blocks

Once the blocks of coupled activities have been identified, there are several options for
dealing with them. In practice, the interdependencies are often just acknowledged, and
the individuals and teams executing the activities are told to work together until they
have converged on a solution. Many of the integrative mechanisms discussed in chapter

146 Chapter 6

4 apply here (e.g., co-locating the people involved in the coupled activities, utilizing
collaboration tools, etc.). One significant benefit of the DSM is that the coupled blocks
can be highlighted and the integrative mechanisms can be focused more carefully where
they can be most beneficial. However, some groups of coupled activities are linked more
strongly than others. Some coupled blocks may be merely an artifact of the model's level
of abstraction. In many complex engineering design projects, a substantial portion of the
activities may be coupled (e.g., figure 6.3). We therefore present several methods for
resolving the blocks.

• Further decomposition One approach is to see whether the coupled block of activities
may be decomposed into smaller activities or parameters and then resequenced to
reveal a less coupled subprocess. For example, two coupled activities in a DSM are
actually aggregations of many smaller activities. When each activity is broken down into
its constituents and the interactions are explored more specifically at that level, then a
more linear sequence can usually be found among the lower level activities (see exam­
ples 7.13 and 7.14).

• Aggregation It is also possible to represent the model at a higher level of abstraction
by reducing a coupled block to appear as a single activity, thereby hiding the feedback
marks. This approach is not often recommended, however, because it essentially sweeps
the issues of interest under the rug, so to speak.

• Adding new activities New activities may benefit the process by creating information at
a different point (e.g., earlier), thereby allowing other activities to use real information
instead of making assumptions that may cause rework, or by decoupling the flow
between other activities (see examples 7.2 and 7.5, as well as a fuller explanation in
Lev,hdy and Browning 2009).

• Tearing Tearing is a systematic method of suggesting an effective way to execute a
block of coupled activities with minimal iteration. Tearing involves several steps (as
illustrated in figure 6.7):

C

A

E

B

o

G

H

F

C A E B O G H F

x r----;(
x

x

x

� X

x

x x

x x

x x

x

x

Figure 6.7

----�� Tear 1

C A E B O G H F

C

A x

E

B

o

G

H x

F X

DSM tearing analysis identifies marks to remove from coupled blocks in the DSM.

1 47 Process Architecture DSM Models

1. Find one or more marks to tear out of the block to reduce the coupling most effec­
tively. Steward (1981) explained how to find tears by drawing the block as a node-link
diagram. The best link to tear is the one that breaks the most and the longest
circuit(s) . For example, see tear 1 in figure 6.7.

2. Suggested tears must be accepted or rejected based on knowledge of the process.
Torn marks become assumptions to facilitate execution of the coupled process with
minimal iteration. A suggested tear would be accepted if the process owners believe
the necessary input can be assumed with some confidence. If the input cannot be
assumed, then the next-best tear from step 1 may be suggested.

3. The coupled block is now resequenced by ignoring the torn mark(s) . This should
break the block into one or more smaller blocks and/or individual activities-even­
tually a set of fully sequential and parallel activities. In figure 6.7, the first tear leaves
a smaller block, which is reduced via the second tear.

4. The torn mark(s) must be replaced in the DSM to serve as a reminder to make the
assumption(s) when executing the process and to check the assumption(s) when the
activity generating each torn output is executed. (This was also illustrated in figure 6.3.)

5. Because a torn mark represents an assumption, any such assumption that turns out
to be invalid will probably subject the process to a rework loop (iteration).

6. Note that multiple tears may be enabled by a single assumption. In figure 6.7, assump­
tion of the result(s) of H may allow both B and G to be executed.

Many process DSM applications use sequencing analysis followed by tearing analysis
(see examples 7.1, 7.3, 7.7) .

In addition to the traditional DSM analyses described earlier, several advanced tech­
niques have also been developed for analyzing process DSM models, including the
following:

• Simulation Discrete-event, Monte Carlo simulation provides a method to predict the
distribution of process cost and duration based on a process DSM model augmented
with numerical values for the following effects: activity cost and duration, rework prob­
ability, rework impact, finish-start overlapping, learning curves, resource constraints, and
many other process flow details that can be represented using logic and mathematical
expressions (Browning and Eppinger 2002; Cho and Eppinger 2005) (see examples 7.6,
7.10, and 7.12).

• Eigenstructure A powerful analysis applies to the special case of parallel iteration,
where coupled activities are executed simultaneously and then exchange information,
creating rework as modeled by the DSM interaction values (Smith and Eppinger 1997a).
Analysis of the DSM as a work transformation matrix led to the understanding of the
phenomena of design convergence and design churn (Yassine et al. 2003) in which
iterations may continue while adding little value.

1 48 Chapter 6

• Signal flow graphs and reward Markov chains The special case of sequential iteration,
where coupled activities are executed one at a time based on probabilistic rework, can
be analyzed using several types of analytical models. The signal flow graph method
borrows a technique used to time signals through circuits (Eppinger et al. 1997) . The
reward Markov chain method uses numerical values in the DSM to represent rework
probabilities and can be used to decide the best execution sequence for a coupled block
(Smith and Eppinger 1997b).

• Meta-heuristics Meier et al. (2007) used an enhanced genetic algorithm to sequence
binary DSMs. They presented several interesting findings regarding various objective
functions for sequencing and the scale-up behavior of solution difficulty as a function
of DSM density.

Applying the Process Architecture DSM

Conclusion

Process architecture DSMs have been applied to a range of industrial problems and have
produced many useful insights. Many examples are given in the next chapter. Typical
applications include:

• Representing and visualizing processes and information flow, which is a common theme
through all of the applications presented in chapter 7.

• Analyzing and improving processes, yielding leaner and more streamlined flow. Most
of the examples in chapter 7 demonstrate this.

• Planning a project and developing a realistic schedule based on a more detailed process
model than is typically used by project management software. For example, a DSM can
be converted into a Gantt chart, although this requires some assumptions about the
coupled blocks and the likelihood of iterations (see examples 7.1, 7.3, 7.6, 7.7).

• Managing interfaces between process activities, phases, and stages (see examples 7.4,
7.5, 7.8).

• Highlighting iteration and rework (process FMEA) (see examples 7.2 and 7.12).

• Analyzing process cost, schedule, and risk (see examples 7.6 and 7.12).

• Providing an organized framework and/or a graphical user interface for a process
knowledge database (Browning 2009; Browning et al. 2006).

• Identifying needs for cross-functional, cross-team interactions (hybrid process-organi­
zation DSM) (see examples 7.4 and 7.8) .

DSM provides an effective representation for process systems of activities and their
interactions. The process architecture DSM can be analyzed via DSM sequencing analysis,

1 49 Process Architecture DSM Models

References

which suggests a logical process flow and identifies coupled blocks of activities. Coupled
blocks are executed in an iterative fashion and can be further analyzed by several methods,
including tearing, which suggests assumptions that can be made to facilitate solution of
the coupled activities.

The value of the DSM increases as processes become larger and more complex because
such cases make it less likely that any one individual will have an accurate mental model
of all the work needing to be done and because they create a need for individuals to
communicate, compare, and integrate their partial models of the process.

Process architecture DSM models have been shown to be highly useful because they
can:

• generate and represent alternative perspectives on process architecture

• help improve process understanding

• facilitate process innovation

• reduce process cost, duration, and risk

This list of references provides additional background on the process architecture DSM.

Don Steward's work on efficient means for solving systems of equations resulted in the
term design structure matrix and began the application of process DSMs, the identification
of blocks of coupled activities, and the breakdown of these circuits via tearing. Warfield
built on this work, and Tarjan provided an efficient algorithm for finding the subset of
coupled activities.

Steward, Donald V. 1962. On an Approach to Techniques for the Analysis of the Structure of Large Systems of
Equations. SIAM Review 4 (4) :321-342.

Steward, Donald V. 1965 . Partitioning and Tearing Systems of Equations. Journal of the Society for Industrial
and Applied Mathematics: Series B, Numerical Analysis 2 (2) :345-365.

Steward, Donald V. 1967. The Design Structure System. General Electric internal report no. 67 APE6.

Steward, Donald V. 1981a. Systems Analysis and Management: Structure, Strategy, and Design. New York:
PBI.

Steward, Donald V. 1981b. The Design Structure System: A Method for Managing the Design of Complex
Systems. IEEE Transactions on Engineering Management 28 (3):71-74 .

Denker, Stephen, Donald Steward, and Tyson Browning. 2001. Planning Concurrency and Managing Iteration
in Projects. Project Management Journal 32 (3) :31-38.

Tarjan, Robert. 1972. Depth-First Search and Linear Graph Algorithms. SIAM Journal on Computing 1
(2) : 146-160.

Warfield, John N. 1973. Binary Matrices in System Modeling. IEEE Transactions on Systems, Man, and Cybernet­
ics 3 (5) :441-449.

In the early 1990s, additional works applied the process DSM to engineering design pro­
cesses and complex development projects.

1 50 Chapter 6

Black, Thomas A. , Charles F. Fine, and Emanuel M. Sachs. 1990. A Method for Systems Design Using Precedence
Relationships: An Application to Automotive Brake Systems. MIT Sloan School of Management, Working Paper
no. 3208.

Eppinger, Steven D., Daniel E. Whitney, Robert P. Smith, and David A. Gebala. 1994. A Model-Based Method
for Organizing Tasks in Product Development. Research in Engineering Design 6 (1) : 1-13 .

Gebala, David A. , and Steven D. Eppinger. 1991 , September 22-25. Methods for Analyzing Design Procedures.
Proceedings of the ASME International Design Engineering Technical Conferences (Design Theory & Meth­
odology Conference) , Miami, FL, pp. 227-233.

Grose, David Lee. 1994, September 7-9. Reengineering the Aircraft Design Process. Proceedings of the 5th
AIAA/USAFINASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama City Beach,
FL, Technical Papers, Pt. 1 (A94-36228 12-66) .

Apart from the context of DSM, some authors have highlighted the phenomena of itera­
tion and rework in processes and their implications.

Kline, Stephen 1. 1985 . Innovation Is Not a Linear Process. Research Management 28 (2) :36-45.

Cooper, Kenneth G. 1993. The Rework Cycle: Benchmarks for the Project Manager. Project Management Journal
24 (1) : 17-21.

Several authors provided advanced techniques for analyzing a process DSM.

Rogers, James L. 1989. A Knowledge-Based Tool for Multilevel Decomposition of a Complex Design Problem.
NASA Technical Paper no. TP-2903 .

Rogers, James L. 1996. DeMAID/GA User's Guide - Design Manager's Aid for Intelligent Decomposition with
a Genetic Algorithm. NASA Technical Manual no. TM-110241.

Eppinger, Steven D., Murthy V. Nukala, and Daniel E. Whitney. 1997. Generalized Models of Design Iteration
Using Signal Flow Graphs. Research in Engineering Design 9 (2) : 1 12-123.

Smith, Robert P., and Steven D. Eppinger. 1997a. Identifying Controlling Features of Engineering Design Itera­
tion. Management Science 43 (3):276-293.

Smith, Robert P., and Steven D. Eppinger. 1997b. A Predictive Model of Sequential Iteration in Engineering
Design. Management Science 43 (8) : 1 104-1 120.

Smith, Robert P. , and Steven D. Eppinger. 1998. Deciding Between Sequential and Parallel Tasks in Engineering
Design. Concurrent Engineering: Research and Applications 6 (1) : 15-25 .

Yassine, Ali A. , Nitin Joglekar, Dan Braha, Steven 0. Eppinger, and Daniel E. Whitney. 2003. Information Hiding
in Product Development: The Design Churn Effect. Research in Engineering Design 14 (3) :145-161.

Meier, Christoph, Ali A. Yassine, and Tyson R. Browning. 2007. Design Process Sequencing with Competent
Genetic Algorithms. Journal of Mechanical Design 129 (6) :566-585.

Browning's 1998 dissertation led to the first simulation of a process DSM, which provided
a foundation for several extensions (see additional references at the end of example 7.6) .

Browning, Tyson R. , and Steven D. Eppinger. 2002. Modeling the Impact of Process Architecture on Cost and
Schedule Risk in Product Development. IEEE Transactions on Engineering Management 49 (4) :428-442.

Cho, Soo-Haeng, and Steven D. Eppinger. 2005. A Simulation-Based Process Model for Managing Complex
Design Projects. IEEE Transactions on Engineering Management 52 (3) :316-328.

Levardy, Viktor, and Tyson R. Browning. 2009. An Adaptive Process Model to Support Product Development
Project Management. IEEE Transactions on Engineering Management 56 (4):600-620.

Browning's work in the 2000s placed the process DSM in the larger context of process
modeling, process improvement, and project management.

1 51 Process Architecture DSM Models

Browning, Tyson R. 2002. Process Integration Using the Design Structure Matrix. Systems Engineering 5
(3) : 180-193.

Browning, Tyson R. 2003. On Customer Value and Improvement in Product Development Processes. Systems
Engineering 6 (1) :49-61.

Browning, Tyson R. , Ernst Fricke, and Herbert Negele. 2006. Key Concepts in Modeling Product Development
Processes. Systems Engineering 9 (2) : 104-128.

Browning, Tyson R. , and Ranga V. Ramasesh. 2007. A Survey of Activity Network-Based Process Models for
Managing Product Development Projects. Production and Operations Management 16 (2):217-240.

Browning, Tyson R. 2009. The Many Views of a Process: Towards a Process Architecture Framework for Product
Development Processes. Systems Engineering 12 (1) :69-90.

These additional references are also cited in this chapter.

Browning, Tyson R. , and Ralph D. Heath. 2009. Reconceptualizing the Effects of Lean on Production Costs
with Evidence from the F-22 Program. Journal of Operations Management 27 (1) :23-44.

Fernando, Eustace P. C. 1969. Use of Interdependency Matrix for Expediting Implementation of an Integrated
Development Programme in a Developing Country . Proceedings of the Second International Congress for
Project Planning by Network Analysis, Amsterdam, the Netherlands, pp. 76--85.

Gantt, Henry L. 1919. Organizing for Work. New York: Harcourt, Brace and Howe.

Hayes, M. 1969. The Role of Activity Precedence Relationships in Node-Oriented Networks. Proceedings of the
Second International Congress for Project Planning by Network Analysis, Amsterdam, the Netherlands, pp.
128-146.

Ledet, W. P. , and D. M. Himmelblau. 1970. Decomposition Procedures for the Solving of Large Scale Systems.
Advances in Chemical Engineering 8:185-254.

Rechtin, Eberhardt. 1991. Systems Architecting: Creating & Building Complex Systems. Englewood Cliffs, NJ :
PTR Prentice-Hall.

Whitney, Daniel E., Oi Dong, Jared Judson, and Gregory Mascoli . 1999, September 12-15. Introducing
Knowledge-Based Engineering into an Interconnected Product Development Process. Proceedings of the ASME
International Design Engineering Technical Conferences (Design Theory & Methodology Conference) , Las
Vegas, NV.

7 Process Architecture DSM Examples

Overview

This chapter presents 15 example applications of the process architecture DSM as listed

in the table below. Each example describes the purpose of the model (problem to be

addressed), how the data were collected, how the model was built, and the results. Where

available, references for further information are also provided.

Example Application Organization Purpose

7.1 Science facility University of Melbourne, • Plan sequence of decisions about
development Australia design requirements and building

specifications

7.2 Microprocessor Intel, • Identify planned and unplanned
development USA iterations

• Reduce or eliminate process
failure modes

7.3 Strategy Meat & Livestock Australia, • Understand the information flow
development Australia and assumptions required to

formalize a business process

7.4 Real estate Jones Lang LaSalle, • Highlight cross· functional
development USA interactions for managerial

attention

7.5 Pharmaceutical drug Biogen Idec, • Streamline transition from
development USA research to early development

phase

7.6 Unmanned combat The Boeing Company, • Simulate the effects of process
aerial vehicle USA architecture on project cost,
(UCAV) design duration, uncertainty, and risk

7.7 Hospital design and Skanska, • Develop an integrated,
building procurement UK interdisciplinary project plan

7.8 Equipment Dover Motion, • Understand impact of design task
development USA outsourcing

1 54 Chapter 7

(continued)

Example Application

7.9 Electronics design

7.10 Jet engine noise
analysis

7.11 Avionics software
upgrade

7.12 Automobile sheet
metal components
development

7.13 Heat exchanger
design

7.14 Elevator design

7.15 Software code base

Organization

Yanmar Corp. ,
Japan

Commercial jet industry,
UK

Lockheed Martin,
USA

Ford Motor Company,
USA

Alfa Laval AB,
Sweden

Construction industry,
Turkey

L.L.Bean,
USA

Purpose

• Visualize task dependencies and
rework

• Compare PD processes across
projects

• Assessment of design change
impact

• Develop process for design
optimization

• Demonstrate effects of delays in
external inputs

• Estimate project duration and
variance

• Pinpoint opportunities in the
process architecture to decrease
time and schedule variation

• Decompose design tasks to the
parameter level to assist in
automating a previously manual
process

• Decompose design tasks to the
parameter level to untangle
coupled activities and verify a
higher level process model

• Identify and remove (feedback)
dependencies that cause problems
in software architecture

• Simplify ongoing maintenance of a
large, complex software system

1 55 Process Architecture DSM Examples

Exam p l e 7.1 B i oscience Faci l ity at Un ivers i ty of Melbourne

Contributors

Elke Scheurmann

Rapid Invention Pty Ltd.

Delyth Samuel

University of Melbourne

Problem Statement

In 2010, one of the bioscience institutes of University of Melbourne wanted to obtain

funding for a multistory building extension to their existing facility. This new building

annex was to become an integrated science facility and support Australia's biotechnology

sector through co-location and enhanced engagement with a major industry company and

a high school-level science education facility. This multi-engagement approach was con­

sidered important for the future because it was expected to increase interdisciplinary

research discoveries for the university and industry and expose more school students to

the possibilities of science as a career.

Rapid Invention, a project management consulting firm, was engaged by the university

to develop a project plan when the project had already been underway for at least six

months. We were asked to translate the multitude of stakeholder requirements into a

project plan that could become the basis for a solid funding proposition and lead to a

business plan and funding commitments from four major targeted funders (state govern­

ment, the university, a commercial company, and a major philanthropic trust). The con­

struction phase of the extended facility was to begin within six months so that the building

extension could be occupied within 24 months.

We used DSM for planning the project scope from the ground up since the multiple

agendas and requirements of the stakeholders and the uncoordinated project planning

activities had not uncovered all the unknowns and interdependencies between project

elements. We expected a high overall complexity of the project and anticipated the iden­

tification of hidden risks that could lead to project failure and delays. A plan to manage

any identified risks could then be put into place.

Data Collection

Our first step was to clarify and agree on the aims and objectives of the project with the

university, develop a stakeholder list, and then build a high-level project work breakdown

structure (WBS) by interviewing relevant individuals in the stakeholder organizations.

1 56 Chapter 7

The majority of the project tasks initially related to clearly identifying stakeholder require­

ments and the interdependencies and alignments between them. The second step was to

define input and information dependencies between the identified project tasks. We

defined the dependencies by three strength levels (low, medium, and high) according to

Yassine et al. (1999). This step was followed by an analysis of the automatically created

DSM and optimization of the task sequence through partitioning and tearing of depen­

dencies within iteration blocks. We used ProjectDSM 1.0 project planning software (www.

ProjectDSM.com), which provides an automated DSM optimization step for the triangu­

lation of the DSM and advice wizards to help users optimize task sequences within

coupled blocks.

Model

Although the multitude of stakeholders and requirements made the project appear

complex and confusing when we started, the DSM resulted in a straightforward task

sequence with only four coupled blocks, as shown in figure 7.1.1.

The four coupled blocks (in sequence) related to:

• Requirements relating to collaborative working relationships and facilities among the

various stakeholder organizations.

• Utility requirements of the various co-locating groups.

• Interdependencies among utility vehicle, staff vehicle (cars, bicycle, and motorbikes)

and pedestrian access, walk and driveways, loading ramps and docks, safety, and parking,

with impact on building design and costing.

• Interdependencies between those making funding commitments.

Two tearing steps simplified the largest (third) coupled block by making two assump­

tions about pedestrian security and access and giving priority to utility vehicle access over

staff vehicle assess due to the physical location details near a busy city road. The resulting

process DSM model is shown in figure 7.1.2.

Results

Prior to our involvement, the project had been suffering from an ad hoc planning process

within the lead organization (the existing bioscience institute). The planning process was

based on making a large number of unsubstantiated assumptions about stakeholder

requirements and conditions of the envisioned funders for making funding commitments.

The process of going through the planning process with the DSM software tool allowed

us to rigorously focus on the information dependencies instead of on logistical steps. The

process proved effective at building the necessary assumption verification tasks into the

GI
PI
::
iii
,
,
1/
f
"
,
�
�
�
II
iii • •
" • • •
I; • •
II!
II!
;I;
III
�
,;
/II
III
II
;::
III
IQ
;r;
I'l
1'1
�
iii
�
!'/

It: II

11
=
!'I
..

1 59 Process Architecture DSM Examples

project, and it resulted in a project task sequence that could be implemented by the

project team.

This process highlighted unexpected issues relating to parking, pedestrian access,

private and utility vehicle access, and issues relating to collaboration between university

and commercial scientists, school students, lecturers, and teachers within the facility.

During verification of the various stakeholder requirements and assumptions that had

been made previously, it became evident early in the development phase that the require­

ments of the commercial company had changed substantially during the previous six

months, meaning that they no longer needed additional facilities or space and, therefore,

decided not to go ahead with co-funding the building extension. Due to the interdepen­

dencies between the commitments of the four envisioned funders (the last coupled block),

this led to abandonment of the original plan after execution of the first three tasks of the

project. The project was then replanned into a much smaller project to accommodate only

the science high school.

Reference

Yassine, A. , D. Falkenburg, and K. Chelst. 1999, September. Engineering Design Management: An Information
Structure Approach. International Journal of Production 37 (13):2957-2975.

160 Chapter 7

Exam p l e 7.2 Intel M i crop rocessor Product Develop ment

Contributors

Steven Eppinger and Sean Osborne

Massachusetts Institute of Technology

Problem Statement

Intel Corporation, one of the world's leading semiconductor companies, introduced the

first general purpose microprocessor to the market in 1971. By the 1990s, Intel had become

the largest manufacturer of microprocessors, along with a range of other computer chips.

One of the microprocessor chips from Intel is shown in figure 7.2.1 (much more recent

than the ones studied in this example) . For this DSM application, we were asked to help

Intel to do the following:

1. Better understand their complex process for microprocessor development in general,

2. Reduce the microprocessor product development lead time, and

3. Reduce the unpredictability experienced in the microprocessor product development

lead time.

Data Collection

Sean Osborne, a master's student in MIT's Leaders for Manufacturing program, was

assigned to a six-month internship at Intel in 1992, with the above goals. Over a four-week

period, he met with approximately 25 experienced engineers and managers to learn Intel's

Figure 7.2.1
A dual-core microprocessor chip from Intel (courtesy of Intel Corp.).

161 Process Architecture DSM Examples

microprocessor product development process. Based on these interviews, he represented

the process using a process architecture DSM model.

Model

The DSM model shown in figure 7.2.2 represents Intel's existing product development

process in 1992, as explained by the managers interviewed. The model contains 60 activi­

ties, listed on the left side of the DSM. Green shaded marks below the diagonal represent

flows of information from earlier activities to later ones. Yellow shaded boxes along the

diagonal and pink shaded feedback marks above the diagonal represent two types of

iterations -planned and unplanned -as discussed below. This model does not show any

optimizations, suggestions, or improvements made as a result of this DSM application.

Results

This was one of the early industrial applications of DSM and helped to illustrate the

power of the process architecture DSM not only to capture a real product development

process in detail but also to help discover opportunities to improve the process. One of

the key insights resulting from this model is to see the difference between the planned

and unplanned iterations.

Planned iterations shown in the DSM (the yellow shaded boxes along the diagonal)

are the places where the process requires work across several related activities such that

rework is necessary in order to "get it right the first time." For example, the large block

of 10 circuit design activities beginning with Functional Modeling (activity 17) involves a

number of interconnected design-analysis iterations. This block is followed by another

overlapping block for layout iterations and then a third block of validation iterations.

Unplanned iterations are shown in the DSM as marks above the diagonal, representing

ways in which the planned PD process can fail, resulting in unplanned rework of earlier

activities. (Note the applicability of failure modes and effects analysis [FMEA] to pro­

cesses as well as products.) Perhaps it is not surprising that several of the unplanned itera­

tions emerge from testing and validation activities later in the process. For example, if

Thermal Testing (activity 54) determines that the chip will fail thermally, engineers then

need to follow one of four iteration paths. Depending on the specific type of thermal

failure identified, they would either (1) rework the manufacturing process (activity 52),

(2) repeat the debugging activity (activity 35), (3) repeat the chip packaging (activity 29),

or (4) redesign the functional model (activity 17). Any of these paths could potentially

then include rework of several additional activities, adding up to significant project delays.

In looking at this and eight similar projects at Intel, we found that 13% to 70% of process

duration, with a mean of 30%, was attributable to iteration and rework.

, S
e

t cu
s

to
m

e
r ta

rg
e

l
Z E

s
tim

a
te

 sa
le

s vol
u

m
es

3 E

s
ta

blish
 p

riQ
ng ci

rectio
n

• S

c
h

ed
u

le
 p

ro
ject

 time
 lin

e

5 D
e

ve
lopme

n
t m

ethods

5 M
acro

 ta
rg

e
ts/

co
n

st
ra

in
ts

1 F

inancla
l a

na
ly

sis

� D
e

ve
lop

 p
rog

ra
m

 m
a

p

g C
rea

te
 in

itia
l Q

F
D

 m
a

trix
'0 S

e
t tecl1

n
ica

l re
q

uirem
e

n
ts

"

 W
rile

 cu
st

om
Elf

 speci
fica

tio
n

,2 H
ig

h
-l

e
ve

l mod
e

ling

,3 W
rite

 ta
rge

t spec
ifl

ca
tion

,. D

e
ve

lop
 te

sl pl
a

n

,5 D
e

ve
lop

 va
lid

a
tio

n pla
n

1. Soi

ld ba
se

 p
ro

to
type

11 F
u

nct
ion

al
 m

od
e

ling

'8 D
e

ve
lop

 p
rod

uct
 mod

u
le

s
,9 la

y
o

u
t integ

ra
tio

n

20
 In

teg
ration

 m
od

e
ling

2' R

a
n

dom
 le

sti
n

g
22

 D
e

ve
lop

 te
sl pa

ra
me

le
rs

Z3
 F

in
al

ize
 sc

h
e

m
a

tics

2. V
a

lida
tio

n
 sim

u
la

tio
n

25

 R
e

liabi
lity

 mode
ling

26

 C
o

m
p

le
te

 pr
od

u
c

t la
you

l

21 C
o

ntin
u

ity
 ve

ri
rlCa

tio
n

28

 D
es

ig
n ru

le
 check

29

 D
e

sig
n

 packag
e

30
 G

e
n

e
ra

le
 m

a
.sks

l' V

e
rily

 m
a

sks
 in lab

12 R

u
n

 wa
fer

s
13

 Sort
 wa

fer
s

30
 C

re
a

te
 les

t p
rog

ra
m

s

l5
 D

e
bu

g p
roduct

s

15
 P

ac
ka

ge
 p

rod
u

ct
s

31 F
u

n
ct

ion
al

ity
 le

st
in

g
38

 So
od sam

p
le

s 10 cu
slom

e
rs

39
 F

e
e

d
bac

k from
 custom

ers

• 0 V
e

n
ly

 sa
m

p
le

 funct
io

n
a

lity

• , Ap
prov

e
 p

a
cka

ged
 p

rod
u

ct
s

'2 E
nv

ir
o

n
me

n
ta

l va
fldatio

n
43 C

om
pl

e
te

 pr
od

uc
t va

lid
a

tio
n

.. D
e

ve
lop

 tecl1
. p

u
blica

tion
s

• 5 D

e
ve

lop
 s

e
rvic

e
 c

o
u

rse
s

• 6 D
e

ter
m

ine
 m

a
rke

tin
g na

m
e

4T lice

n
s

in
g

 slra
te

gy

.e
 C

rea
te d

emo
n

str
a

tio
n

49 C

o
nfirm

 q
ua

lity go
a

ts

5()
 Uf

e
 te

st
in

g
5, In

fa
n

t m
o

rt
a

lity
 te

sling

52
 M

ig. p
roce

ss
 s

ta
balza

tio
n

53
 D

e
ve

lop
 fle

ld
 suppo

rt
 plan

54

 T
h

e
rm

a
l tesl

ing

50
 C

o
n

firm
 p

roc
e

ss sta
n

da
rd

s
58

 C
o

n
firm

 p
ack

a
g

e
 s

ta
nda

rd
s

57 F

in
al

 ce
rt

i
rlCS

tion

58
 V

o
lum

e p
rod

u
c

tio
n

I
2

)
.

�
1

7
�

J
W

�
g

g
�

�
�

D
�

�
m

�
�

n
�

�
�

v
�

�
�

�
�

�
M

�
�

�
�

�
�

�
�

�
�

q
q

C
4

4
�

�
�

�
�

�
$

�
�

�
OO

i
•

•

It
•

lIC
:.:

.
. ;r.

:It 1-'.

•
•

•
•

JC
JC

"
.x

�
:.:

.11l
II

•
·

"
.II.

X
•

•

J: x'-I ..
•

•

•
•

•
X

JC
J: x""';-xt-.-. --:-x--'.
• x .II.

"
X •

"
..

•
•

,

.
.a.

� I"
.

"

.
.

o
�

o

o

�

G
e

n
e

ra
tio

n
a

l Le
a

rn
in

g

0"
0

P
la

n
n

ed
 Ite

ra
tio

n
: D

e
slg

n
­

A
n

a
ly

s
is

o

U
n

p
la

n
n

e
d

 Ite
ra

tio
n

s
;

Th
ermal T

e
s

t F
a

ilu
re

s

•
•

It
JC

•
/'

xl·

,
•

"
"

•
•

• "I
-

-
-

-
-

-
�

-
]J

-
�

-
'Q

-
'O

-
-

-
·-

•
I<

x
x

x
"

x
)t

:r:

•
•

JC
X

JI,
..

J:'
J:

•
X

.II.
:It

X
X

•
•

•

"
,

•

•
•

, P
la

n
n

e
d

 Iteration:
0

.
. :It

•
)It

"
x

.
"

"

JC

X
X

X
JC

•
•

X
�

x

,
.

JC.
)It

x ••
.. ,

x
" KIlt

. 'I'
ao

)l
J(

,
.

.
.. •

"
.

"

Layout

o

!?

P
la

n
n

e
d

 Ite
ra

tio
n

:
V

a
lid

a
tio

n

0
0

-
-

-
-

-
-

-
'0

1-
'0

-
-

-
40

.
.

,
. XI· ,

.

o

o

x
..

x
•

-
-

(5
0'

-
(5

-
-

-
-

-
-

-
•

•
•

"
,. " . . . ,

. II
•

"
.

x
x:

.It
•

"
"

,
�

.
•

•

•
•

�

.
.

.

" .
.

,

.,
"

K
K

 JC
.

1

.(
.It

J(

)C

"
•

"
II

"
59

 P
repa.

re
 di

strib
u

tion
 n

e
tw

o
rk I

'x
• -

•
•

•
•

x
I

I
60

 D
a

tive
r j)mdoc

t to custom
ers

�

• •
.. • x

�
.

" :

Figure 7
.2

.2

• = In
fo

nn
a

tlon
 Flo

w
s 0

: P
la

n
ned

 tte
ra

tloos

0 = U
n

pl
a

n
n

ed
 Ite

ra
tio

ns

• = G
e

n
e

ra
tio

na
l L

earnI
ng

D
S

M
 m

o
d

e
l re

p
re

se
n

tin
g

 th
e

 p
ro

d
u

ct d
e

ve
lo

p
m

e
n

t p
ro

ce
ss at In

te
l.

163 Process Architecture DSM Examples

In addition to the planned and unplanned iterations, the DSM model also shows three

instances of generational learning. This is another type of iteration in which something is

discovered during the PD process, but it is too late to incorporate the necessary changes

into the current product. In these cases, the information is passed along to the next gen­

eration of the product, where it may be used in a timely manner.

As a direct result of this DSM analysis, Intel understood the tremendous impact of the

unplanned iterations on the variance in project schedules. They then embarked on an

effort to address each of the unplanned iterations revealed in the DSM model. Some of

the process changes involved resequencing activities, adding new process steps, and allo­

cating different resources to certain activities.

References

Eppinger, Steven D. 2001 , January. Innovation at the Speed of Information. Harvard Business Review 79
(1): 149-158.

Osborne, Sean M. 1993 , June. Product Development Cycle Time Characterization Through Modeling of Process
Iteration. Master's thesis, Massachusetts Institute of Technology, Cambridge, MA.

164 Chapter 7

Exam p l e 7.3 Strategy Develop ment Process for Meat & L ivestock Austra l i a

Contributors

Elke Scheurmann

Rapid Invention Pty Ltd.

Lewis Atkinson

Meat & Livestock Australia

Problem Statement

Meat & Livestock Australia (MLA) is an industry-owned company working in partner­

ship with industry and government to achieve a profitable and sustainable red meat and

livestock industry. MLA provides R&D and marketing services to the Australian red meat

industry.

In 2009, MLA began the scoping process for a new knowledge and information

management system, along with an upgrade of its existing intranet. The design and

content of the new system needed to support existing MLA processes and work flows

and allow MLA staff to access required information relevant to specific process steps.

Because many processes had never been defined formally, new employees had to rely to

a large extent on the tacit knowledge of experienced managers to become competent in

their jobs. We wanted to find out whether we could use the DSM methodology to define

and optimize work processes and workflows so that their related information could be

built into the intranet and accessed at the appropriate step. As an example process, we

used the Research Program Strategy Development (RPSD) process, which had not yet

been formally defined.

Programs are the primary way that MLA structures its work and delivers results

to stakeholders. The MLA Annual Operating Plan is structured across a small number

of broad strategic themes within which each program is articulated. The three basic

qualifications that a program needs to meet before it is funded are industry benefit,

innovation, and stakeholder engagement. An MLA R&D program investment is often

a co-investment with other partners and can be up to $15 to $20 million over several

years.

Data Collection

We selected two novice program managers (PMs) with less than one year of job experi­

ence, who had never planned a program before and posed the following question to them:

"How would you go about planning a completely new research program in your area

165 Process Architecture DSM Examples

if you were asked to do that tomorrow?" We used the ProjectDSM software (www.

ProjectDSM.com) to enter all the activities the PMs would undertake without any par­

ticular order of execution. As it became apparent that the novice PM planning process

did not cover the complete required RPSD (Hubbard 2008), we then used our experience

in R&D and business planning to fill in the gaps by adding further activities. We then

defined the information dependencies between each of the strategy planning activities.

The software automatically created and sequenced a DSM and identified a number of

coupled blocks. We optimized the sequence of the activities within each block by either

promoting or delaying activities or by tearing dependencies.

The final optimized task sequence was discussed with the novice PMs to identify and

correct any issues of implementation.

Model

To arrive at an optimized strategy development process for MLA PMs, it was necessary

to make a number of assumptions about the outcomes of several tasks. Figure 7.3.1

shows the initial matrix with highlighted coupled blocks after adding all required RPSD

activities.

The largest coupled block was simplified first by tearing the dependency between

appropriate prioritization of research areas and the overall impact on the meat industry

value and supply chains. By making this one assumption, this block was broken into two

smaller ones relating to the ex-ante program evaluation steps of defining appropriate

research questions, identifying research capabilities and collaborators, and defining and

apportioning the commercial opportunities and benefits from the research program. We

then continued to tear the smaller blocks, with a total of 17 assumptions. The final DSM

is shown in figure 7.3.2.

Results

The process of using the DSM methodology for analyzing a complex work process such

as strategy development proved successful for MLA. It yielded a process that could be

followed even by novice PMs, provided they had access to appropriate support material

on the intranet about the requirements and deliver abies of each task in the process.

PMs found that defining the process and its activities was valuable. They realized that

they did not have sufficient information available to them to make appropriate planning

decisions and take all necessary steps to arrive at a solid program strategy without having

to consistently fall back on consultation with their immediate managers.

In line with the current literature about strategy development and implementation, our

DSM analysis also highlighted the interdependencies between the environmental/market

analysis, capability analysis, and strategy development steps.

� 1-r++��H-++��rrr+���r++t����rrr+��rrr+�-H�r+��-rr++'��' �' 1 : I-I-I-I-I-I-t-H--H- I- _ ... �-I-t-+- 1-1- --I-'-j-...-+--I-I-�-I-+-I-++�-f.-I-+--!-4-"""'---<-"+-.+-I' . • >- .; �I:I-I-+--I-t-�-r-l-l--t-t-�-r-l-l-++�-I-I-+-++�--+-H-I- : +. . . .
�� 1-+++���++�'-�-������4���� 1 - T

� I 'r' . " . . . t-+-I-t-�-I
" ++��r+++���++�������+4 : I-rr+++� +��r+++�-r�++���++,�

, . • • • • I-t-+:+.�-:- .I

�
'f t-I-: :
�� I-+++�l-rr+++�l-rr+++��rr����' 't 1--=!II-t-1-tf--I-I--I-+-I-+-f--l- I-'-'- - - -t-t-I-t-t-I- : :
�9-1-+-I-t-�-I--I-I--t-t-�-I--I-I-++�-I-I-+-++�-I-H-I-' � ;:' I�t l-r++�-I-I-+-++��I-+-r+���r+-I-t-�'����.
t:::-� 101

'"
)II +-+--t-t-+-l--t-+-+-++-H-t-H- -I-I-i-H- -I-II-I-;-+--I-+
)II -I-I-++-l��-I-+-++�-�I-+-+++-I�I-I�-i-lI-t-�I-: 1-1-1-1-1-1-1-1-1-1--1-1-- �I-
N 1-1-1- H--H'-l-+��-i-lI-t-� -

!

+

.
'; " .

� I-+++�-I
r;- 1--1-

.
+ I-+-I-t-�-I

I- :++++-1
, I-;+;r;-I- •

1-1- • r;-
I-'-'�-I-+-I-t-�-I--I-I--t-t-�-+-H-++�-I-I-+-++�-I-I--t- r:-+. • " t � 1-F�����+4��' �'++������' --�'�'�

� I-+-++�-I-I-+-++��I�++�-I���-I-I--t-I-' -I-I--I-��-I-+-t-++�-I-I-+-++�-r�-I- 1 I-� l' 101 +++-+-1- -I-I-I-f-j--I-I--t-t-�-i-I-rt-+-H-++-l-I' I-I,. -. I--t- �-I-I-I-I- �rrr+��I-t--I-I--I���-I-I-f--I-
: 1-1-1-1-1-1-1-1-1-1-'-1-1-- . ' ' I � '-I-I- • 1- 1 ; - • • ';1-.1-1-1-

�-I--I-I--t-t-�-I
� 1-r++��-�++++-t-�rl-r+++�I-.�·�.+·+·+·4�' �I-+-++++��++++��. �. +.+.�-�++++�H-
� I-I-I-I-I-I-I-f-I-I--I-�- - �- 1-1-1- I 1--:-$:I •
II
>l
III
.,

r-rr r+++++�� ' . : ... �.·r++.c-l-t-l: r� · r.r� :+:++.�.�: I-: t-.+,�.++�· I-. �++++��� 1- 1-- 1-1-1- 1--- 1--- • • • • • I-; f- - • I-
����+++ +-+--j.-+-+ . . , I-+:-+.++�I-___ , �f-+1-++�1-rr+r!..++:-t---t-1 r1-+++++--t+-j+�1-1 +1-+ -++ -t�-t_i-1-1--+--11

1- I-I- I'-I-I-I-I-�I-- • • • • • . • • �I -I-I- I�I - ' - I- ' r
1-1-1-1-1-1--1- . 1-1-1- 1-1-1--1-1-1- -

• • • r;- . t-++-+�I-rt-+--I-+-H�. rr·I-+�- I-I--rrl-++++�rl
� I-+--H·+t��++-+-t�,· • • -1-1-1-1-1- I- rl-: 1- I- .++-+-+-t-+--t-t-H--t-H--H·-H-H I- -j-+-+++-I�
� I-jI--++-+-t--t-�++-+,�, -. I-, t-. +. ++-H�il-r++.++--t-1-. rr++-+.-HI-rt-+-++-H� rr+.++-H, I-rt-+-++��t-o rr

�; I-rr+++++��. :j-,++��.�, I-, I-+-. ++-l-I. -I-.I-I-++�.4-I-t-+-t-++�-I-l-+++-l-f�, I-. I-+-++-l-I�. -I-l-+++� · -j-·
� I-rt-t-rl- • • • , r;-r;-r'-rr++-H-f-r+-++-+-t-jf-r+-++++�rt-�r��-+--rr+-+���I-t-r+-�++-t-1--H
. +++-1-+-+

1--1-- • �·I-r-'- • 1;1-1-1-1-1- r-I-rl-I-I- -,

-fl-I-I-rl-I-I-rl-I-i-I-I-�rl-
1

-
,

I'

1
• I, r .iT .1. -,.-

" r"-"'1 .. 1"[" i "T'.T"
 rio I" r"r n .. 1 .. 1" C "I .. T" rlO-l,T»

 r]) ->'1" r" ; ,,1"T "r ..
. .j.,

j" .. is r .. -"1 ... 1 ..
.. -"],, " .. 1 .. 1,. .,-.. , .. -.. 1 .. I"

'Il.l!�
,,"

�
�

I ju......" ..

....... -.
.epan

],L1.�

""
""IIMiI

II'f;"

• Ie t,o;
I

,:i:::=:.-
-

�
:�

 i IIIII III I i IIII11 i I I i II II1I i 11I1 II II I i II i I1III1 i I I i II II1I
• �

"_
,,_

_

1
'1'1'1'1 1'1 I I I I I I I I I I , I I I I I I I I I I I I I

 I I , I I I I I I I 1 1 I 1 1 I 1 1 1 , 1 1 I 1 1 I

�:�
�
�
�

=

: .. :,. ����J Ii i II i i II i II iii I1I1III i II i II i i II iii i III i I I i II i ! 11111
II "L' _

 ...
..... -

I I I I , , I , "1' E1
, I , , I , , I , I I I 'I

'I I I , I I I I I I , I , I I I , I I I , I I I I , I i
ih�

==-
III rll lTITrr.g

nll [I T 11 n Ii 1111 liT I ITI TTllll1 Tfl r 1 rTf II fT
.. ' ..

. , _

..... --.

I II I I II IT
' r I·

El
l

�-I r 11 I I II i 1 II I I I i I I ! ! I II I ! i I II I II I II I Ii
i

I

��-;-=-'"
--� __

 LL
LLLLL 11

1 ·�J�b:JHi :JJJ
Ll

J
JL

�LLLlJ
J

_:1
LLLLLLLLl

JJ
_U

J
JJ

L
LLLLL II I III

17:..,_
--

-
� .. __

I I I L

L
L

'-
---LL'

..'.iJ.
.'.l-'.

:.
.J-'-

'-
�

u
L

L
·

LI

I
I

UJ
_L

L
L

L
L

L
L

L
L

L
_

I 1..
.l_L

U
..

.LL
L

L
L

L
L

L
L

L
U

II '-4.4:Da7tIe

_
�

1,I4"l:LOCI

II:..
....,._

�

lO
U

 ..
..... �

h t· ..
.,., I'IfiInN

Doft ..
zz ,1G.l·�

II'CIGN
-'_

"-
-_--

-
t 1 I IIdIT

ill I II; 1<
· J ill! I! III! ! 1111111 11111 ! I I I ! 111t1!

i

1l
s.s

·DI
Iint�

�

lOll ,5.-cDI
IM-.o

15iu= ..

.... �
b

�

JI
.5.6;

""'
�

i
I 11111·11 ·11,1 H 11 ·1 : !ll{�

¥W
 IIIII t-R-

1111111111111111111111111111
tr :1.5;

a.dI
,.

 ..
..... .-.

....
..

-
.. 1-

_
_

 ... _

I Hi
n

-t I I I I I I I +.t
 t t+

t t-H
 I I�I A

.j 1 4+
+' , I , , I I , , ! I , H-l-

! , , , I , , : I , , IH

II "'!iJ.M
. 1iIJIC

 ..
...

ICI
-U!

�
_

""'
''

'''

I J'f"-
-

"-
-

I
j

I
1

I
I 1

•
•

.,
I

'
.

�
-

.-
-

.
-

-
-

,

:TtfI
D

1.�
�

'-
-

,.
I

•
,··'0

:M !&
.,.fIDrn

 ..
... -.:IrnaI

II�

•
•

i
• '

•
•

. ,, -

" ..
.. _

_
_

_

I
i

I
T'

"
 I

T
I

"
,. '

.. ,-"-
_

 ... -
-

I
I

.1
, J

I
,

I
-

,
, •

•

:t==
==--

1I
I

ILl
J

LL
I1

J
J

J III
 U

 I ,JJ:I
:J

J
J

"""
-

-
"-

I1
1

I
1

I
11

1
11

1
1

1
1

1
1

1
1 1

1
'1

' II
40

,,-,,_
 .. _

I

I
I I I

I
II :'j

1'1 J I U

U
:'U

LI

!
411"-"_

_
_

II

Ii
i

.. j, .. " ..
.......

...... �

il
L I j I I LI 111

1 II Ii
 I [1l

'I'U
 LI

4J 11.s.:

..,.,.
�

... �," ..

..... ..-dI
_

..

..,;&.6:I
 ..

.
 -a.

".
.....

..
 0.

_
_

_

I I I , I I
 I

I I I
' I I I

'" 1..., _
_

 ,,_
__

I I I I I I I I I

I I I I
I I I I I I I 1

'1 1
'·'1 1'1

..
. �,,-

..
....,.

I I I i
I I

I I
1",'1 1'1

.,
lU:

..
...,...

..,�

�=-=

I11I11 i 111·111111 ; 1·11 H ITII:! I11I
o

.U
Dl!ft'l

loIl
llt:uii::lt&

541 ,L-<lt:r.-.
.iItI

""
""'MA

�

55 ;'I.6.:CJto,o<I
�

�
-.

. __
_ �

!

i
I

�

-1'-'. I.
_ t_ .,.. �

t-
.po

 .. t'

o

U 't.,..,w.a
�

""
""._�_=-=-

--_
_

,,1, ..

.. _
_

 _

-I
1

T
T

i I I ; I 1 : ;'1 r : I ,.
Mll1-J�r.

... �
..

.-..-
I

j
I , I I"

,,1'1 , .
' ,., ',' , I"

� ,.
H

·LL
S.

. pr:at
tr "

fI
�

�

;u;;;
�

�

,'ilI1l1nllTrrrIlTTTT:T t:f.1
r-H

:
.,., I

T

!
6.1 llU:a.

.a,*
*�

"'�

i
I

I I
I

I
I I ! I I ! , I I I I I I I I I I I I i

Q
-U

�
Pf'CItIc

& ..
. (_

�"'1

Figure 7
.3

.2

R
P

S
D

 p
ro

ce
ss D

S
M

 sh
o

w
in

g
 th

e
 fin

a
l task

 se
q

u
e

n
ce

 a
fte

r te
a

rin
g

 th
e

 larg
e

 b
lo

ck
 o

f co
u

p
le

d
 ta

sk
s.

I
,

H-+±
 , ! J. J.

., 'l; b T
D; I I I ! I I

t· "
.

.
 ��-...

r -: · -· r-
-

.
. , oL-J

i
I ,.,

..
I

111:1·I'I·':I·I·I ,I·fhj
 II

! I
I

I I I I
 I I I' [0

I . I.

168 Chapter 7

Noting the need to make certain key assumptions allowed MLA to define specific

information and templates for PMs to help them to cope with the complex interrelation­

ships between the tasks.

As a consequence of having used the DSM methodology on this project, MLA is now

using it to simplify several other process workflows in their organizations prior to speci­

fication and implementation of a Digital Asset Management system and supporting

intranet resources.

Reference

Hubbard, Graham, John Rice, and Paul Beamish. 2008. Strategic Management: Thinking, Analysis, Action.
Frenchs Forest N.S.W.: Pearson Education Australia.

169 Process Architecture DSM Examples

Exam p l e 7.4 Real Estate Development at Jones Lang LaSa l l e

Contributors

John Sullivan, Benjamin Bulloch, and David Geitner

Center for Real Estate, Massachusetts Institute of Technology

Problem Statement

Real estate development, as with any capital-intensive project, involves a complex process

in which a developer looks to meet a market demand at a particular moment in time for

an economically viable cost. During this process, tasks are completed and the information

produced is synthesized into other related tasks. This information flow iteratively changes

the development process and ultimately shapes the end product. The outcome of each

task is never fully certain at the beginning. Both internal and external events in the

process can result in planned or unplanned changes, making the process of development

highly iterative. Through these numerous iterations, information is collected, analyzed,

Figure 7.4.1
4 Van de Graaff Drive, an office building in Burlington, Massachusetts, developed by Jones Lang LaSalle (cour­
tesy of Jones Lang LaSalle).

170 Chapter 7

and disseminated to other project participants. It is the role of the real estate developer

to understand and effectively manage the information flows among the dozens of project

stakeholders.

Throughout the real estate development life cycle, the project team executes many

tasks as they work toward construction, completion, occupancy, and financial stabilization.

Although each of these tasks varies in length, cost, and desired outcome, they can be

generally grouped into five functions:

1. Market and competitive analysis (Marketing)

2. Physical and design analysis (Design)

3. Political and legal analysis (Political)

4. Financial analysis (Financial)

5. Project management

Although many tasks interact and share information within a function, many tasks

share and receive information to and from tasks of different functions. The process of

managing intra-functional exchanges versus managing cross-functional exchanges of

information can be different. When working on two tasks within the same function,

goals are more easily understood, and the tasks are generally completed by the same

group or type of people. When information is shared between tasks of different functions

(e.g., impact of the design on financial returns), miscommunication is more likely to

occur if the exchange of information is not handled carefully. Project and financial risk

is more likely in these types of interactions. Identifying where cross-functional inter­

actions occur can help determine where additional management and oversight may be

required. By highlighting these types of interactions, a developer can more efficiently

utilize time and resources, reducing the risk that is inherent in any real estate development

process.

Data Collection

We worked with the Boston office of Jones Lang LaSalle, a leading real estate develop­

ment firm, one of whose projects is shown in figure 7.4.1. We began by exploring the

range of disciplines required and tasks executed during the real estate development

process. Through interviews of individual team members and the group as a whole, we

identified the standard tasks involved in a typical project and which of the five primary

functions owned each task. We then conducted interviews to identify the information

exchanges required to execute each task and to better understand how the tasks were

completed. With these data, we created a baseline DSM, shown in figure 7.4.2, to repre­

sent the general interactions and information flows for a typical real estate development

project.

171 Process Architecture DSM Examples

Marked",
Do •••

PaIItIuI

finandal
Project Manapment

.............
_ -'-"""-lWd��

.... 111 � ... f_ (�---...''''"''*
---bt��

---' �I .. Or�

_ ... -
"_

�"...",�...,...
..... �r __
c...'" �

""""'* ,....."...
,..".�"'

--­�1......wSI""""' •
......,.1Iopoot, �"'-IU. ,....� .. c..

�-.....�c-.
__ � u-

--­
.... _-........ ,-*� ---­t_ .. � """c-r..";JIt • ..wu.CJioIIII
......... -

,-fitftIftII'wN �
.",...� ... --1ImII�._�
.,.. ... c.n , ""'*« ... ,-. c.eo.aatf

-,-

--.........,-�",....... "'_�{1iI
--

--

1eflIt,lW&T� -"­
"*-1'11"""'"

-_

........ -.­f04lVM"''''''�

--
"""'"MI.iIor..

..... -.­.... "lfIIICttoh;tWLII.\1II c. iW
.... _-

--

Figure 7.4.2
Functional-interaction process DSM for a real estate development project.

172 Chapter 7

Model

After choosing a desired level of granularity for analysis and completing the data collec­

tion process mentioned earlier, we created a real estate development DSM consisting of

91 individual tasks and 1,148 information exchanges, which are noted by X marks in the

DSM. The 91 tasks were grouped according to the six stages of the development process

and also identified with one of the five functions and labeled accordingly with different

colors.

We also color coded the information exchange marks in the DSM to distinguish intra­

and cross-functional interactions. Green marks represent tasks that interact with tasks in

the same functional group (e.g., two Marketing tasks or two Political tasks), while red

marks represent tasks that interact across functions (e.g., a Marketing task provides infor­

mation to a Financial task). This allows a quick and clear understanding of where and

when these more challenging, cross-functional interactions may occur. Interestingly, our

analysis found in this case that 69.5% of the interactions were across functions (red in

the DSM).

Results

By adding color to the DSM tasks and interactions, this model adds additional depth

to the matrix, yielding important insights. As explained previously, task interactions

that occur within the same function (shaded in green) are likely to occur between

groups that "speak the same language" or have disciplinary affinities. This information

flow is more likely to be smooth with a lower risk of miscommunication or conflicting

goals.

Our analysis identified the multidisciplinary interactions (shaded in red), which occur

between teams that have less in common or are less familiar with each other's professional

work. For example, a zoning attorney may have difficulty communicating a complicated

zoning board ruling to the architecture team, which must then translate this information

into design changes. This type of information flow may require greater attention by the

project manager, who is responsible for successfully synthesizing the flow of information

both within and across the functional boundaries. These may be more risky or more costly

interactions with a higher likelihood of unnecessary iterative cycles. The architecture team

in this example may draft five versions of a design until it finally matches the zoning

board's requirement. Although multiple iterations may help ensure a more comprehen­

sive process, it comes at the expense of both time and money. An efficient balance

between thoroughness and timely completion must be understood and implemented by

the developer to ensure optimal results. This model, which we call a Functional-Interaction

Process DSM, provides a useful tool for managers to visualize one important source of

preventable risk in large projects.

173 Process Architecture DSM Examples

References

Bulloch, Benjamin, and John Sullivan. 2009, September. Application of the Design Structure Matrix (DSM)
to the Real Estate Development Process. Master's thesis, Massachusetts Institute of Technology, Cambridge,
MA.

Bulloch, Benjamin, and John Sullivan. 20 10 , July. Information-The Key to the Real Estate Development
Process. Cornell Real Estate Review 8:78-87.

174 Chapter 7

Exam p l e 7.5 B i ogen Idee D rug Development

Contributor

Anshuman Tripathy

Indian Institute of Management, Bangalore

Problem Statement

Biogen Idec is a leading biopharmaceutical company involved in drug development in the

areas of autoimmune disorders, neurological disorders, cancer treatment, and so on. It was

formed in 2003 by the merger of Biogen and Idec. Their key drugs include Avonex (figure

7.5.1), Tysabri, and Rituxan. As a response to increased activity in their development pipe­

line, Biogen Idec introduced a formal drug development process in 2003. In 2004, a project

team was tasked to review the new process for opportunities to smooth the transition from

the end of its Research Phase to the start of its Development Phase (an in-between phase

known as R-to-D Transition). The team developed a DSM to represent the drug develop­

ment process flow, including its tasks, the dependencies among the tasks, and the prevalent

iterations. Analysis and discussion of the DSM identified a change in the drug develop­

ment process that could help improve the process during the R-to-D Transition Phase.

Data Collection

Based on a series of interviews with scientists and managers at Biogen Idec in 2005,

Anshuman Tripathy (then a PhD student at MIT) worked with the Biogen Idec team to

Figure 7.5.1
Avonex multiple sclerosis treatment by Biogen Idec (courtesy of Biogen Idec).

175 Process Architecture DSM Examples

develop the DSM model for the early drug development process leading to the start of

phase 1 clinical trials. This 145-task process DSM covered the process from strategic

opportunity generation to the injection of the drug into the first patient in phase 1 clinical

trials. The DSM process model was verified by various scientists and managers at Biogen

Idec.

Model

Figure 7.5.2 shows a condensed form of the DSM model with only 53 tasks spanning three

phases of the processes: Research, R-to-D Transition, and Early Development. This DSM

shows two groups of activities during the Research Phase: Prospect Evaluation and Can­

didate Identification. Molecular antibody development, toxicology tests, and pharmaco­

kinetics are some of the key activities that take place in this early stage of the process.

This is followed by the R-to-D Transition Phase, during which the preclinical development

plans are developed. Thereafter, the Early Development Phase begins with a group of

activities known as the initial new drug (IND) Enabling Track, which leads to the start

of phase 1 clinical trials. Animal trials (a requirement for establishing safety standards of

the drug), technology transfer, confirmation by manufacturing and quality control, and

initial meetings with the Food and Drug Administration (FDA) are important activities

that take place during the Early Development phase.

Results

The DSM identified several iterations within and across the phases described earlier.

However, through our analysis and discussions with the team, one of these iterations

provided the clearest opportunity to intervene and improve the process. The pre-IND

meeting with the FDA (task 46) was part of the IND Enabling Track. The purpose of this

meeting was to get formal feedback from the FDA on the IND-enabling toxicology study

plan and the proposed phase 1 clinical plan and protocol. In most cases, this meeting

would result in the FDA asking Biogen Idec to revise its plans, requiring the program

team to return to the FDA later for approval of the plan (task 34). We recommended

having the R-to-D Transition Phase gate take place only after the pre-IND meeting is

completed and firm plans leading to IND-filing are drawn up. To enable this change,

several other tasks (tasks 36, 40, 41, 42, 43, 44, 45) needed to be advanced from the Early

Development Phase to the R-to-D Transition Phase. Three new steps also needed to be

added: providing resources to CMCIClinicallPCDS (task 54), revision of IND-enabling

toxicity study protocol (task 55), and revision of CDP and phase 1 clinical protocol

concept (task 56). These were required to support senior management approval for

R-to-D Transition (task 34). These process changes are represented in the DSM shown in

figure 7.5.3.

GO
 ..

III
-=

Il.

1d""lIfy
lBrgo'

Fomu.a
lB

 moIeo.JI
or and

 lhera
pe

Ul
lc hypo4nes

es and
 _

 sIrvIegy

�
SRC

OK
 Ie<

 r_
 (_

 and
.,.

.,..1
Gene

nl
lle k"l'

 Il
lll

llenls
 (ronstec

le<l
 eels.

. <lones
, p_

 et�1
Ilew

lop key
 .. vbc

 <ICtMty
 and

 _
,XiI

I as
says (roder>1

 one!
 twrnon

)
tnm

 ..
... _

IS
 10

 gotIOral
8 mAb

 and
 KIe<!tI)

' �
 ",.AI>

 "",..,_
 a"" bodI

-.
.pt

VaIdate
 moI

lIOI
IM �ypothes

 .. In Wro
 WIl

lI PfOID
Iype

 mAbs

Evaluate
 1argeI

_
 "' h..

.,..., dosease
 (_,

,:II �uma
n ..

...... '
9

Ta!'Q
e1

 t=oler.�
 �

 ind
ic:a

';ons

-=

10 �
"

YM>
.rro<a<y

_
"'

�
�

and
de.>OlOp

_
pla

",

e
11. Comple

te
 I""

 ..
. PI(

 8N1
1ys1s '"

 lOde
 ..

. mAts
. n.

�.uo
. -.

._
. and

 __
 model

::

12 . Es1ot>I<
5lI etI

Icacy 01_
' ..

...... ., pMId
 di_

sa
 modoI

s (voJida
lB hypolh

os.s
 .,

 \/!YO
)

..
13 Ther.opo

ubc
 h)'pdhe&

os ISv-.
1Dd

 ilOd
 lhe

r�bc
modal

rty_

�
14. Ge

t SRC OK rOf
 _

_
 10 CIP

15 Cho
ose lead

 _
 mAD

 cand
llla

lB and
 back

 ..
... 'ell WT

 or
 a9'1'

)
16 Gtno

I«t8
 huMan

WKI
lo

id
 candodaI

as
17 VaIdate

 t'lJ
manlZ8d

 mAb
 kl

ll
ltfl)

 asI
Ia)'S (blnaong

 a�
 potancy

. saleaJay
,

18 EvoI
ua

le t'lJ
rnorwzed

ve
,.

....Gl
mAb

on
 pP.,

IOI
 _

_
 llr�

1� C _

_
_

 cano
odall

l(l>J
manae<l

mAb
l

2O
C

"
',.

.de
�

t
21 Ge

".
rate

 in
..

..." .tIicacy
/dosrn!l

pllCbgo
 wi

th
 �

_
t mAb

: 22. Genera. In 'I/�

 PtCI
..

.r:posute
 d&Sa

 .. ,..,
 �

nucS'fOd
enI: mAD

 .,
 p-f1tGI

4IMHe

.:!
23 0< .• c"

"p u.
.u r..

..a.... �
 r,,·"

 CMlnlf!ft
ial. '!'Ode

 01
 P¢O'j

..
.......,. ""'-

J
Il.

24 1."1tial

 _
_

 of I'IurnanIHd
 mAl>

 ClOS
S re

et'NlIY
 to

 NHP '
 ills

 ..
.

c
25 Conduct

 ..
. Iy\Ical

.,..,..-
010b0�

 _
_

 of "..
.-..zed

 mAb

.2
26

 Transl
er

lNl
l1lc:a1 ..

.. yslm
elhods

 10
 produc!

 de>'elclp
monl

 and
 p<

ed
lm:al

ii

27 Conduct
 ..

..... p*"
 10

_
 SIUI

I'f a""
 PI<

 SlUdy

C
24

 0.
.-... '0 c

le·-
r,"�

"",
'" 1tld

 "K!"C ... : �
 fo:'

 Pf,ast
t I

I!!
29

 Ile>'8io
p �

 pI\arm;I
ooIcgy _

 GlP
 TOIl ..

......,uonsfAlctf
 design

�

31

1. Ilo*Ie
 physleaI

 proclJc:
l conAg!.n

Ioon and
 deYeIop

 CMC
 _

q 31. _

 far
 campleIi

onolOPdebvenlb
leslor R�cHl

_
si1Ion

 �

o

n
 �

 '"
 �

1leYeklp
menI P1ar1

�

53 IleIo!Io
p _

 lOP
34

 DOC
 __

 1or
 R�

 __
 (1I

Indng.,.
., rescu

ce
a.-ny

)
35. Program

leam
lon

na_
38

· GIno
 ..

. I!I1d
 soled

 procI.>c
1ion '-"

 11M

37 . CompIe
IB pilysIcaI

--'
 and

 pno
rmo

oeutJeal anaIy$oO
 01

_
 mAl>

:: 38 Scale

 up
 pro

oess.,.
., de¥eIop

 rnatenBJ
 lor

 Pl
e-CI

I1!C81
 ..

... for
 1M)

'"

29
. TECH

 Transier
r (01

 MnIgIQA
stancIar

d& Irazen
)

�
40

' SOIed
..,

mal
 spec!IOS

lor
lalclO

OlOgy_
t

_

41 Conduct
 s.i'IgIo

 clo
se

 _
 PK and

 ..
.... close

 range
 r.

.ding 1OxldIy
_

5;

42 . Develop
 lNo.

..nabelong
 IImaty

 Sl
lOly proIO<XJ

j
E

43
 0."'0 __

__ .r on'"9\'

g.
44

,..-.
� , COP rC

W1I

 0.
.

'ii
4S

 Oral
 �

 docu
ment

P\arl

) antS
 Ph.Ha

 I ,I '"teal!
 pmtuc

cf 00fKi'

>
46

� �

49

 �'r.alu
 P "ta.

..-e
�

"')Cr-
l"eo.sl.lQl31

(� btC'C
t, Jrf' s:.

.lt,o:,ol CWl
>-1411 �

l"'�

1r '"iI
� u .. ,,

!o :odll rrt.iIfQ

.n
50

 Dral
INO and

 OOC
 �

 for
 Pba

se
 I (h.tKIs

 and
 teSOU'O

OS)
51 Salt ,':t

 5T�
'{""'S,"""'

,tn
. and

 ('TV"
"'L ..

... lile IRBa�
 .•

:a Cf'I
!.8

IOf1"
"\5

52 Comc>IoI
e tr\8J'I

IJIac1uong
 ..

...".1 for
 _

1_
 one!

 SlO
p ma

_
 to otudy

 sileS

53
 1ND

 __
 1or

Pt1ase
.

Tas
k R.e

spo
nsibility

Research
Prod

uct Development
Noncl

inical
Clinica

l

Transiton Team or Program Team

Figure 7
.5

.2

,.; -
�

..
x

Pro.
pect

_

Evaluati

on
_M'

I

x • ·1·
.

x x � �
 mA

b de
y and

 tn
-v

ltro
 testing

)(•
Candid

ate

• _

Identiflcatl
on

-
x •

X �
humaniud

.nAb
 de

y
•

x

x
x x

x)(

.a
x

x

x X
It

)()(
• x

xiX X X

X X

X • •

• x

x X

Jl
X

X
x

•
•

x

x x
• x

to
xIP

K-fee
db

ad<

p..,.
..IN

D te
edbadc

-
X Jl

JND

Enabl
ing

Trac
k

x x

E
xistin

g
 p

ro
ce

ss flo
w

 D
S

M
 fo

r th
e

 e
a

rly p
h

a
se

s o
f th

e
 B

io
g

e
n

 Id
e

c d
ru

g
 d

e
ve

lo
p

m
e

n
t p

ro
ce

ss, sp
a

n
n

in
g

 R
e

se
a

rch
, R

-to
-D

 T
ran

sitio
n

, a
n

d
 E

arly D
e

ve
lo

p
m

e
n

t.

.. III co
�

IL

1 I Identify target
2

Fonn
ulate m

olecular and therapeutic hypotheses and test strategy
3

Get SRC OK for resources (m
oney and people)

4
Generate key reagents (lransfected celis, clones, proteins, etc.)
Develop key in vitro activity and bioanatytical assays (rodent and hum

an)
Im

m
unize rodents to generate m

Ab and identify prototype m
Ab candidate and back-ups

Validate m
olecular hypothesis in vitro with prototype m

Abs
8

Evaluate target expression in hum
an disease (with hum

an tissues)
9

Target potential clinical indications
�

110 Establish in vivo effICacy m

odels of target indications and develop test plans
�

11
Com

plete initial PK analysis of rodent m
Abs, half·life, blodistribution, and disease m

odel
�

12 Establish efficacy of rodent m
Abs in pivitol disease m

odels (validate hypothesis in vivo)
en

13
Therapeutic hypothesis Is validated and therapeutic m

odality chosen
�

14 Get SRC OK for transition to C
IP

15
Choose lead rodent m

Ab candidate and back·up (e.g. W
T or agly)

16 Generate hum
anized lead candidates

17 Validate hum
anized m

Ab in vitro assays (binding affi
nity. potency, selectivity)

18
Evaluate hum

anized versions of m
Ab In pivitol disease m

odel if applicable
19 Choose lead clinical candidate (hum

anized m
Ab)

20 Cell line developm
ent

21 G
enerate in vivo efficacy/dosing package w

ith hum
anized/rodent m

Ab
22 G

enerate in vivo PKl
exposure data w

ith hum
anized/rodent m

Ab in pivitol disease
23 Develop initial product profile (with Com

m
ercial . m

ode of introduction , etc.)
24 Initial evaluation of hum

anized m
Ab cross reactivity to NHP cells/tissues

25 Conduct analytical and initial stabitity studies of hum
anized m

Ab
26 Transfer analyt

ical assays/m
ethods to product developm

ent and preclinical
Q)

27 Conduct initial pilot toxicity study and PK study
=

28 Develop clinical regim
en and indications for Phase I dosage

�

29 Develop regulatory
 pharm

acology and G
LP Tox assum

ptions/study design
a.

30 Define physical product configuration and develop CM

C assum
ptions

g
31 Review for com

pletion of CIP deliverables for R·to--D transition com
pletion

;:

32 Developm
ent of Pre·Clinical Developm

ent Plan
'Uj

54
 DO

C provides prelim
inary resources to CM

C/ClinicaVPCOS
:6

36 Design cell m
fg line, assess physical. chem

ical and pharm
aceutical properties

�
40 Select anim

al species for toxicology assessm
ent

o

41 Conduct single dose ranging PK and initial dose range finding toxicity studies
o

42 Develop IND-enabeling toxicity study protocol
't

t'
43 Define biom

arl!;er strategy
�

44

 Develop COP (Clinical Developm
ent Plan) and Phase I clinical protocol concept

45 Draft Pre·IND docum
ent

46
55

1Revise IND..enabling toxicity study protocol
56 Revise COP and Phase 1 clinical protocol concept
33 Develop initial lOP
34 DO

C approval for R·to·o transition (funding and resource availability)
35 Program

 team
 form

ation
�

37 Com
plete physical. chem

ical. and pharm
aceutical analysis of hum

anized m
A

b
�

38 Scale up process and develop m
aterial for Pre-Clinical trials for INo

a.

39 TECH Transfer (all M
nfg/Q

A standards frozen)
-=

47 Conduct IND-enabeling toxicity studies with toxiookinetic m

easures
�

48 Determ
ine therapeutic safety m

argins based on preClinical tox data
�

49 Finalize Phase I protocol. investigator brochure. safety profile. and case form
s

>t

50 Draft INo and DOC approval for Phase I (funds and resources)
�

51 Select study Sites, vendors, and com

plete site IRS approval
&I

52 Com
plete m

anufacturing m
aterial for Phase I studies and ship m

aterial to study sites
53 IND approval for Phase I

Figure 7
.5

-3

Prospect
_

Evaluation

.M

x x : �
 m

A
b dev and in-vitro testing

x x
x x
x x

Candidate
... _

Identification

M

•
x -

x �

x x
xl x x x

x x

x x
x x

x x

x x

hum
anized m

A
b dey

x -

toxJPK feedback

x x

P
ro

p
o

se
d

 p
ro

ce
ss flo

w
 D

S
M

 fo
r th

e
 e

a
rly p

h
a

se
s o

f th
e

 B
io

g
e

n
 Id

ee d
ru

g
 d

e
ve

lo
p

m
e

n
t p

ro
ce

ss.

INO
Enabling

Track

178 Chapter 7

Reference

The recommended changes provided two key benefits:

1. There is a physical deliverable at the R-to-D gate. The existing process had a list of

deliverables regarding information flow from Research to CMC, PCDS and Clinical,

but there was no outside feedback, no particular experiment/testing, no event, and so

on that verified the quality of output from Research to Development at this phase

gate.

2. Senior management would now approve (task 34) firmer timing plans and resource

requirements, leading to IND filing and firm plans for dosing first subject. Although

the number of phase gate meetings between the program team and the senior manage­

ment would remain the same, it would reduce the need for the program team to revert

to senior management for approval of revised timing/resources subsequent to the

pre-IND meeting (outside the phase gate review).

Tripathy, Anshuman. 2005, October. Application of Design Structure Matrix (DSM) to Early Drug Research and
Development Process. 7th International Dependency Structure Matrix (DSM) Conference, Seattle, WA.

179 Process Architecture DSM Examples

Exam p l e 7.6 Boe i n g UCAV Design Process Model i n g and S i mulati on

Contributor

Tyson Browning

Neeley School of Business, Texas Christian University

Problem Statement

In the late 1990s, Boeing designed various unmanned combat aerial vehicles (UCAVs)

for the U.S. military (figure 7.6.1). Each successful UCAV design would evolve through

several phases, beginning with the Conceptual and Preliminary Design phases. Each phase

involved several disciplines, each evaluating a design from their own perspective and then

sharing information, making the process highly iterative. We built a process model to

increase understanding of these iterations and their implications. In particular, we wanted

to simulate the effects of the process architecture on the project's cost, duration, and risks.

Figure 7.6.1
Artist's concept drawing of the X-45A aircraft, one of several UCAV designs developed by Boeing for the U.S.
Joint Unmanned Combat Air System (courtesy of The Boeing Company).

180 Chapter 7

Data Collection

In 1997, working on site at Boeing as a researcher from the Lean Aerospace Initiative at

MIT, I built the model and simulation as part of my doctoral research. With input and

support from Harold (Mike) Stowe and several other Boeing employees, we identified

an initial set of activities comprising the Conceptual and Preliminary Design phases as

well as one or more individuals with expertise in each of the activities. Over several weeks,

I conducted face-to-face interviews with most of these individuals and received additional

inputs via a survey form. The initial model and results were reviewed by several Boeing

employees who provided additional input for verification and calibration. Full details of

this process and the model are provided in the dissertation (Browning 1998).

Model

The model was built at the level of 12 Conceptual Design and 14 Preliminary Design

activities, as shown in figure 7.6.2. Each phase consists of an initial activity to define design

requirements and objectives (DR&O), followed by a couple of activities to create and

distribute a design configuration (a design concept proposed to satisfy the DR&O) . Then,

several disciplines -such as aerodynamics, propulsion, stability and control (S&C) ,
mechanical and electrical, weights, and performance -each evaluate the configuration

from their own perspective. In the Conceptual Design phase, these various analyses and

evaluations are pulled together in a review activity (11), which results in either a decision

to proceed to the Preliminary Design phase or to iterate within the Conceptual Design

phase by revising the design configuration, the DR&O, or both. The Preliminary Design

phase is similar, although each discipline evaluates the proposed configuration in greater

detail and some additional disciplines (such as manufacturing) are added. This phase

culminates in the gathering of all data pertaining to the design for use in preparing a

proposal to secure further funding for a subsequent Detailed Design phase. Note that

iterations may occur within the Preliminary Design phase, but there is no formal return

to the Conceptual Design phase from Preliminary Design.

The DSM includes regions showing external inputs (above) and external outputs (to

the right) . For this reason, this DSM adopts the ICIFBD convention discussed in chapter

6. Note that the names shown by the rows and columns of these regions identify only the

name of the input or output, not its supplier or receiver (although it would be more

technically correct to make them do so) .

Figure 7.6.3 shows some of the additional data collected about the Preliminary Design

activities. The left side of the figure shows a numerical DSM (now using the IRIFAD

convention) where the off-diagonal cells indicate the probability of an activity's output

causing any rework for the activity using it as an input. (For example, the output of activ­

ity 9 has a 20% chance of causing rework for activity 2.) The middle part of the figure

c
CI 'iii CII

C
C;
::l Q.
CII u
c
0

0

C
CI 'iii
CII

C
�
.,
C

� a; ...
�

181 Process Architecture DSM Examples

External Inputs
Company Historical Data • • • • • • • • • • • • • • • •
Functlonal lnnovatlons & Assumptions • • • • • • • • • • • • • •
C&A Requlramants •
Specific Vehicle Mission Requirements •
Payload & Avionics Power Info. •
Conceptual Design Deadline •
Conceptual Design Budget •
USAF Requiremants •
Preliminary Design Budget •
Preliminary Design Deadline •
Preliminary Design Resources •
Equlpmant Geometry •
UCAV Propulsion Analyses •
Results from sim�8r loads probtems •

Activities 4 5 6 7 8 9 10 1 1 12 2 3 4 5 6 7 8 9 1 0 1 1 12 13 1 4
P"'paTe UCAV Conceptual DR&a 1 • • • • • • • • •
C...ate Confoguration Concepts 2 • • •
P",pare 3·Vlew Drawing & Geometry Data 3 •
Perform Aerodynamics Analyses & Evaluation 4 • • • • •
Perform Propulsion Analyses & Evaluaflon 5 • • • • •
Perform S&C Characterisflcs Analyses & Eval. 6 • • • •
Perform Mechanical & Electrical Analyses & Eval. 7 • • • •
Perform Weights Analyses & Evaluation 8 • • • • • •
Perform Performance Analyses & Evaluatlon 9 • •
Perform Multidisciplinary Analyses & Evaluation 1 0
Make Concept Assessment and Variant Decisions 11 • •
Prepare & Distribute Chojce Conrog. Data Set 12
Prepare UCAV Preliminary DR&D 1 • • • • • • • •
Create UCAV Preliminary Design Configuralton 2 •
Prepare & Distribute Surfaced Models & Internal Drawings 3 • • •
Perform Aerodynamics Analyses & Evaluation • •
Create InlUal Structural Geometry 5 • • • • •
Prepare Structural Geometry & NOles for FEM 6 • • •
Develop Structural Desogn Conditions 7 • • •
Perform Weights & Inertias Analyses & EvaluallOO 8 • •
Perform S&C Analyses & Evaluation g No Relum 10 •
Develop Balanced Freebody Diagrams & External loads 10 Conceptual Design •
Establish Inlernal Load Distributions 1 1 from Preliminary Design •
Evaluate Structural Strength. Sliffness. & Ufe 12 • •
Preliminary Manufacturing Planning & Analyses 1 3 •
Prepare UCAV Proposal 14

Figure 7.6.2
Process DSM model of the conceptual (yellow) and preliminary (green) design phases for UCAV development
at Boeing (shown with the IC/FBD convention to facilitate the orientation of the external input and output
regions).

External
Outputs

c B
� � � � &. 6. � ·o .t .t � jf

•

• •

•
•

182 Chapter 7

DSM Showing Rework ProbablUtles DSM Showing Rework Impacts

2 3 4 5 6 7 8 9 10 11 12 13 14 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4

.2 .1

Durations
Min. Ukely

1 .9 2
4 75 5

2.66 2.8

Costs
Max. Min. Ukely Max.

3 8.6 9.0 1 3.5

8.75 5.3 5.6 9.8

4.2 3.0 3.2 4.7

4 .3 .4 9 1 0 1 2.5 6.8 7.5 9.4
5 .4
6 . 1

7 .4

8

9 .4
1 0
1 1

1 2 .4
13 .5

.5 .5

.5

. 1

.5 .2

.5 .5 .5

.4 .5

. 3 . 1

.5

. 1

. 1

.5

.3

.5

.9

.3 .3

.1

.0 .3 . 1

.5

1 4.25
9

72
4.75

18

9.5

14.25

1 3.5

30

1 5 26.25 1 28.3 1 35.0 236.3

1 0 1 1 1 0. 1 1 1 ,3 1 2.4

8 1 0 1 0.8 12 .0 1 5.0

5 8.75 8.9 9.4 1 6.4
20 22 20.3 22.5 24.8

1 0 1 7.5 21 .4 22 .5 39.4
1 5 26.25 2 1 .4 22 .5 39.4

1 5 18.75 40.5 45.0 56.3

32.5 36 21 3.8 231 .6 256.5
14 .3 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 4.5 5 6.25 20.3 22.5 28. 1

Figure 7.6.3
Rework probability and impact DSMs (IR/FAD) , duration, cost, and improvement curve data for the Prelimi­
nary Design phase activities.

shows another numerical DSM where the off-diagonal cells indicate the impact of any

such rework that occurs, where the impact is expressed in terms of the portion of the

activity having to be redone. (For example, if the output from activity 9 causes rework

for activity 2, then it will require activity 2 to redo 10% of its work.) In one case (activity

8 � 5), the impact of any rework was deemed negligible.

The right side of figure 7.6.3 shows the duration, cost, and improvement (or learning)

curve (Ie) data for each activity. The experts were asked to provide three estimates of

activity duration (in work days): minimum (or optimistic), most likely, and maximum (or

pessimistic). The three cost estimates (in thousands of dollars) were derived by multiply­

ing each respective duration estimate by the resource estimates the experts also provided.

Experts also supplied the improvement curve estimate, which is applied as a simple step

function: For the second and any subsequent iterations of an activity, it will require x%

of its original duration and cost. (For example, reworking activity 13 requires only 28%

of the time and cost taken in the initial pass.) The IC helps account for common situations

where design and evaluation activities build complex models, for example, but can then

rerun those models much more quickly with revised inputs. Note that all data provided

for public release from this project have been disguised.

Results

I built a discrete-event, Monte Carlo simulation to estimate a joint distribution of overall

duration and cost for the Preliminary Design phase. The tool used each activity's sequence

in the DSM (1-14) to simulate the following work policy:

�
35%

20%

60%

33%

40%

1 00%

35%

1 00%

25%

50%

75%

30%

28%
70%

183 Process Architecture DSM Examples

• An activity must wait on any upstream activity (i.e., any activity earlier in the sequence)

from which it receives direct inputs .

• An activity may proceed without any inputs it needs from downstream activities (by

making assumptions about them).

We used this work policy to allow for a comparison of various activity sequences

(process architectures) in the DSM.

Whenever a simulated activity finishes, the simulation checks for the possibility of

rework for upstream activities. If any such rework occurs, then the simulation also checks

for any additional rework caused for interim activities (called second-order rework). For

example, if activity 9 causes some rework for activity 2, that change in activity 2 has a

30% chance of propagating to (causing second-order rework for) activity 3, and so on.

Because rework checks are made each time an activity finishes (whether it is being

worked for the first time or not), higher orders of rework, although rare, are also captured

by the simulation.

Using Latin Hypercube sampling, the simulation finds a duration and then a cost (90%

correlated with the duration sample) for each activity at the start of each run. These dura­

tions and costs are added as the simulation progresses until all activities (and any rework)

are finished, resulting in a total duration and cost for the project. The project is simulated

repeatedly in batches of 100 runs until the mean and variance of both the duration and

cost distributions stabilize to within 1 %. Generating stable output distributions for the

UCAV Preliminary Design process typically required about 1,100 to 1,400 runs (requiring

at most a few seconds on modern computers). For further details of the simulation's

implementation, see Browning and Eppinger (2002).

Figure 7.6.4 shows an example Gantt chart generated from a single simulation run.

This instance demonstrates several interesting characteristics of the simulation. First,

1 •
2 -
3 _ •
4 - -
5 - -

2:- 6
.> 7 ·B 8 « 9

1 0
1 1
1 2
1 3
1 4

0 20

Figure 7.6.4

-
-
-

-==:�
-

•

-

40 60 80 100

E lapsed Time (Days)

-

120 140 160

Example Gantt chart from simulation of the process DSM (adapted from Browning and Eppinger 2002).

184 Chapter 7

note that activities 4 and 5 begin together because they do not depend on each other.

Activity 4 finishes first and causes some rework for activity 3, which immediately begins

again. Activity 5, which had not yet finished, halts its work because it also depends on

activity 3. Activity 5 resumes once activity 3 finishes. Because activity 4 also resumes

at this point, we find that the rework of activity 3 had also caused some second-order

rework for activity 4. Activity 12 also caused some rework for activity 8, which in turn

caused some (second-order) rework for activity 9. However, this additional work for

activity 9 could proceed in parallel with activity 13, which does not depend on activity 9.

Finally, note activity 13's large contribution to the critical path and the project's overall

duration.

Figure 7.6.5 shows a contour plot of the joint duration-cost distribution, where the

shading represents the frequency of a simulated outcome. The two straight, crossing lines

represent the budget of $630k (vertical line) and the deadline of 130 days (horizontal

line). Thus, project managers would ideally prefer the majority of the distribution to fall

in the window on the lower left, where outcomes meet or exceed both goals. However,

as it stands, 51 % of the project's outcomes overrun the budget, and 67% of the outcomes

miss the deadline. (These statistics are easily gathered from the cumulative form of the

distribution, the integral of the distribution shown in figure 7.6.5.)

Many process improvement methodologies suggest ways to perform activities faster

and cheaper. Although these can be beneficial, the DSM simulation provides insight on

ways to improve the overall process without changing the cost or duration of any individual

� '" �
c o
.� :J
o

Figure 7.6.5

Cost ($k)

4.5

3.5
3
2.5
2
1 .5

0.5
o

Joint cost and duration distribution of outcomes from the simulated process (adapted from Browning and
Eppinger 2002).

185 Process Architecture DSM Examples

.3

.4

. 1

.4

.4

.4

.5

.3

DSM Showing Rework Probabilities
2 3 4 5 1 3 6 7 8 9 1 0 11 1 2 1 4 200

.5

.4 .4

.2
180 3

2.5
. 1 .3 . 1 160

2

.5 1 .5
.5

.1 .5 .2
.5 .5 ,5

.4 .5 0.5
.5

.4 .4 .4 .4 .4 .4 .4 .4 o
850 900 950 1000

Figure 7.6.6
The improved process resulting from moving one activity upstream (adapted from Browning and Eppinger
2002).

activity. It turns out that process architecture provides a powerful lever for managers to

control project time and cost. One aspect of this power, iterative overlapping, is first dem­

onstrated by example. In figure 7.6.6, we move activity 13 upstream (to the sixth position),

thus allowing it to begin without the input from activity 9 (making an assumption about

it instead), even though this increases the likelihood of rework by adding a feedback mark

in the DSM. (The impact DSM, not shown in figure 7.6.6, is also changed accordingly.)

The right side of the figure shows the result of this change in the distribution of cost and

duration outcomes. Although the frequency of cost overruns has increased slightly to

61 %, the number of schedule overruns has been reduced substantially to 7%.

How did moving activity 13 upstream provide such a large boost in project speed?

Figure 7.6.7 illustrates the effect of taking a long activity with a big improvement curve

(like activity 13, which contributes a lot to project duration, as shown in figure 7.6.4, and

has an Ie of 28%) off the critical path and letting it get started early. Although the chances

of rework increase (and along with it the cost) because of the assumption(s) being made

in lieu of final information for inputs, it is much faster for the overall project to have that

relatively short amount of rework on the critical path rather than the full activity. Thus,

although the cost in case B is slightly greater than in case A, the duration is much less:

CB > CA, whereas DB < DA•

This DSM simulation led to many extensions, including those listed in the references

after the first two items.

186 Chapter 7

No Iterative Overlapping Iterative Overlapping I
I

\..

Critical Path
Activity 1

Critical Path I I Activity 2
�

y
DA = t1 + t2

eA = c1 + c2

Figure 7.6.7

.............
.
...

I Critical Path
Activity 1

, ,
• •

Off Critical Path

It. I Activity 2

�
DB = t1 + t2 . (Impact

"Informal; Preliminary
Information

Assumplions

"Formal: Final
Information

. Ie)

eB = c1 + c2 + c2 • (Impact · Ie)

I

Iterative overlapping can accelerate a process, reducing its duration, D, while incurring only slightly greater cost,
C (adapted from Browning and Eppinger 2002).

References

Browning, Tyson R. 1998. Modeling and Analyzing Cost, Schedule, and Performance in Complex System Product
Development. PhD thesis (TMP), Massachusetts Institute of Technology, Cambridge, MA.

Browning, Tyson R. , and Steven D. Eppinger. 2002. Modeling Impacts of Process Architecture on Cost and
Schedule Risk in Product Development. IEEE Transactions on Engineering Managemenl 49 (4):428-442.

Abdelsalam, Hisham M.E. , and Han P. Bao. 2007. Re-sequencing of Design Processes with Activity Stochastic
Time and Cost: An Optimization-Simulation Approach. Journal of Mechanical Design 129 (2): 150-157.

Afsharian, Sharareh, Marco Giacomobono, and Paola Inverardi. 2008, May 13. A Framework for Software
Project Estimation Based on COSMIC, DSM and Rework Characterization. Proceedings of the 1 st International
Workshop on Business Impact of Process Improvements, Leipzig, Germany, pp. 15-24.

Araki, Katsufumi. 2008, November 1 1-12. Advanced Project Management Framework for Product Development.
Proceedings of the 10th International Design Structure Matrix Conference, Stockholm, Sweden, pp. 143-156.

Chen, Dong-Yu, Wan-Hua Qiu, Min Yang, and Mei-Yung Leung. 2007, September 21-25. Activity Flow Optimi­
zation and Risk Evaluation of Complex Project. Proceedings of the International Conference on Wireless Com­
munications, Networking and Mobile Computing (WiCom 2007), Shanghai, China, pp. 5191-5194.

Cho, Soo-Haeng, and Steven D. Eppinger. 2005. A Simulation-Based Process Model for Managing Complex
Design Projects. IEEE Transactions on Engineering Management 52 (3):316-328.

Gartner, Thomas, Norbert Rohleder, and Christopher M. Schlick. 2009, October 1 1-13. DeSiM -A Simulation
Tool for Project and Change Management on the Basis of Design Structure Matrices. Proceedings of the 1 1 th
International Design Structure Matrix Conference, Greenville, SC, pp. 259-270.

Huang, Enzhen, and Shi-Jie (Gary) Chen. 2006. Estimation of Project Completion Time and Factors Analysis
for Concurrent Engineering Project Management: A Simulation Approach. Concurrent Engineering: Research
and Applications 14 (4):329-341.

Jun, Hong-Bae, Hyun-Soo Ahn, and Hyo-Won Suh. 2005. On Identifying and Estimating the Cycle Time of
Product Development Process. IEEE Transactions on Engineering Management 52 (3):336-349.

Levardy, Viktor, and Tyson R. Browning. 2009. An Adaptive Process Model to Support Product Development
Project Management. IEEE Transactions on Engineering Management 56 (4):600-620.

Wynn, David c., and P. John Clarkson. 2009, August 24-27. Design Project Planning, Monitoring and Re-Planning
through Process Simulation. Proceedings of the International Conference on Engineering Design (ICED),
Stanford, CA.

Define:

187 Process Architecture DSM Examples

Exam p l e 7.7 Skanska Hosp ital Development Process

Contributors

John Steele and Paul Waskett

Adept Management Ltd.

Problem Statement

Skanska, one of the world's leading design and construction companies, works in Sweden,

the United Kingdom, and the United States, primarily in the building sector. As early as

1998, the Egan report to the UK construction industry highlighted the need for improved

integration of the team to ensure effective management of the design process and timely

and efficient delivery of construction. Like many industries, the construction sector has

long struggled with integrating the independent working processes of multiple project

participants. Skanska sought methods for improving their delivery of design and procure­

ment as an integrated process and turned to Adept Management for guidance and support.

Adept Management, a UK-based design management consultancy, developed the ADePT

methodology (see figure 7.7.1) and software in the late 1990s to enable integration of the

design and procurement process. ADePT has DSM at its heart. Here we describe its

-, -, -, _. -.. --' =: _. =: _. -­_. _. _.
=:

Streamline:

a

. � ­
- -

Plan :
Project &
discipl ine
schedules

Processes &
dependencies

Optimize decision�
making process

Del iver:
Management &
reporting

Figure 7.7.1
Process architecture DSM is at the core of the ADePT methodology.

188 Chapter 7

application on a major UK hospital development by Skanska. The aim of our work was

to generate an information-driven design and procurement schedule that reflected the

interdisciplinary nature of the design process and could be used to optimize the overall

project delivery schedule through effective alignment of the preconstruction and con­

struction phases.

Data Collection

Adept Management consultants held an interdisciplinary design workshop for all project

participants. The session was facilitated to create interaction and openness between

attendees prior to a work breakdown structure (WBS) being formulated. The WBS was

initially developed top-down using a discipline-based decomposition, allowing a subsys­

tem decomposition to then follow. The resulting WBS provided the framework within

which design activities could be identified and stored.

Adept Management consultants then held meetings with each of the design disciplines

independently to populate the deepest level of the WBS with design activities. These were

facilitated using a data library of design activities (and associated information dependen­

cies) that had been developed and validated through research and multiple industrial

applications. Where activities did not exist in the data library, they were captured and

embedded within the data set. All activities were determined using this approach, and a

subsequent review of the embedded information dependencies by each design discipline

resulted in a validated and agreed process model. These data were then analyzed using

the DSM functionality of the ADePT software.

Model

The DSM shown partially in figure 7.7.2 comprises more than 2,500 design and procure­

ment activities at the deepest level of the WBS. The ADePT software uses a stepwise

approach to build layers of data within the process model. This ensures that the model is

populated with sufficient data to enable optimization and tearing within the DSM, as well

as the additional data required (such as responsibility, duration, and effort) to enable

automatic generation of the sequence in the client's scheduling tool of choice (Primavera

P6 here). The ADePT software utilizes a numerical DSM with the dependencies between

activities, in this case information flows, being rated on a 3-point scale based on the criti­

cality of the information to completing the activity (as defined by the owner of each

activity), with A being considered critical, B important, and C nice to have (the inference

being that C-rated information can be easily assumed with little risk to the project). This

enables optimization of the activity sequence based on the availability of outputs associ­

ated with the most critical dependencies.

189

Prepae facade fe�I:l"e$ " , .
Prod.!ce facade leweS" . . .

PrOOJce 100(1'19 at.&e 'P .. .
Edabist! Walemo & tolefa . . .
UpWte bl.ti1g elevatXln .. .

Urdeftake wind load caIc. ..
Undeftake ,ocI s� Ioad . . . == Flit OYefal tukfng footpn

II F "'" " ,.,.. U ProdJc:e !JOI..rid lloof aa

1I p,,,,,,,,, _ ,,,,, ,,,,,,,
= luue GA Iayru: aawngs:

II FNhe rCXWTl �
II DeteltJ'W'le Wt shaft �
lI �ee at_case WIdths «l.
= Calc:tMte aze ��
II PrepafO cues GA aawn .. Agree lit me I JM!jforman.
II Advtse on sbuctu"aI !J1It i
= FIX � COfe uzes .. Fill stOl� " OV'eI'aI buldn
1I p,"""" """""
II r, = Ed.� appOlan'lo!lltt! rNII U Undeftake Roof dab load II Agree fMIOf stnJctuai eIe

II Advise on I'lIbai scheOJe = Confim mai'I cidrb.tion f . • •
II Ddemwle IMII'I owibubo
II Detemtr1e tTlWllistnbwD .
II OetefllW'le mal'l lisbibubo == Detenme marl cisbb.m .. Dde!TlW'le mIWl rre engn .. CalctMte anal powef de .. Del:emw'le IT\aI"l tistnbubo
II CaiclMlte demand /01 watt
D Calct.Nte appiOICITIatesys.
II Dell!ftJ'W'le IfIM'I dranage

Process Architecture DSM Examples

[» Zoom !NOImai

1 0 , 2.11

10 1 2 1 3

1 0 1 2,.
1 0 1 2.2. 1

1 0 ' . 2.5 1

1 0 1 2.5 2

75 12.3.1

75 1 . 2.5 .3

75 1 . 2.5.4

40 2 . 1 .2 .6

70 1 .2 . 1 .7

10 2. 1 .3 .m

10 2. 1 . 3.re

1 1 1 1 (1)

' 1 1 107

1 11 1 CE

1 11 1 09

1 1 1 1 1 0

1 1 1 2.1

1 3 1 5 Archtectue
1 . 32 5 Archtecture
1 3 3 5 MechanIcaI Eno
1 34 5 AJcAl:ect\n

, ... , 5 Afchtectue
2.12.1 5 Sbuctua Engr
2 1 2 2 5 Structl.l'al EI'9"

1 1 2. 1 1 5 Alcnted\e
1 1 2 12 5 Afchtectue

2 . 1 3 02 Structuai Engir
2 13 04 5buctual Engr
2. 1 . 3 00 S�al E ngr-
312.2 MecharIcaI Eno
1 1 . "" Mecharical E �
3 2. 1 ' Mectw.caI E no
3 2.2 1 Mechancal Eno
32.<2 M ecMncal Eno
3.2.2 3 M � Eno
3 2 3 1 M echancal Eno
1 3 1 1 Eleclncal Enon
3 3, 1 3 Elecbical Enon
3 <1 Pl.tJk HeaJh E
3< 2 N>lcHooith E

0 3 0 5 NlIIc Heath E

Figure 7.7.2
A block of activities in the DSM indicating interdisciplinary collaboration, displayed using the ADePT
software.

The activities of the various disciplines fall into natural blocks where feedback loops

exist, as seen in the DSM model. These blocks represent interdisciplinary systems that

require the input of mUltiple perspectives to ensure coordination; in effect, the weighted

optimization identifies positive periods of iteration in the design process and positions

them relative to the remainder of the process.

The blocks vary in size from two activities (couples) to many hundreds of activities

(large-scale interdependency) depending on the number and direction of information

dependencies present in the model and the weighting that is allocated. The blocks were

reviewed by the team, and those that were deemed to represent a clearly definable coor­

dination "hot-spot" were scheduled as such within the Primavera P6 application, to be

resolved either by interdisciplinary workshops or, where resource availability did not

allow co-location, as stepwise processes with agreed review and rework periods. Those

1 90 Chapter 7

blocks that were not easily defined (because they contained too many activities or were,

in effect, a collection of interdependent coordination events) were partitioned using an

embedded sequencing algorithm. This ranks discrete dependencies between activities

within each iterative loop in terms of the potential reduction in the size of the block if

the dependency were removed. This then allowed the design team to interrogate the

model and make collective judgments about where decisions could be made with certainty

(which involved capturing the decision, assigning an owner, changing the A or B classifi­

cation to a C classification, and then re-running the sequence optimization). This shared

decision making helps achieve the team integration sought by all projects -which was a

core objective of the Egan report recommendation.

Once the project activities were developed into a workable design and procurement

process, the data were exported into the Primavera software to create the schedule. There­

after, any changes in either the ADePT file or the P6 file would be synchronized to ensure

consistency of data. This was critical in enabling change analysis during the delivery

period. The optimum design sequence was linked with the construction schedule to check

the interface between the design and construction process and enable the alignment of

all phases of the project through an agreed procurement strategy (Waskett et al. 2010).

This provided the basis for the implementation of production control principles to manage,

monitor, and control the rate of information production of the integrated team. Putting

the plan into action is so vital, yet it is where many projects fail, often due to the inade­

quacy of the definition and optimization of the design process.

Results

Skanska was familiar with DSM (as a component of ADePT) prior to this project imple­

mentation, having used the method regularly to plan the preconstruction phase of proj­

ects. However, Skanska's design teams differ in composition from project to project (the

nature of the project dictating the mix of specialists required), and, as such, the modeling

and review process was new to this group. The DSM-based planning process has proved

to be a powerful vehicle for team engagement and synchronization in every project. In

this case, the design team remained committed beyond the modeling and optimization

stage to maintaining the rate of production that they defined within the integrated pro­

cess -the resulting schedule being far more acceptable and reliable than an imposed

timeline because it was defined from their agreed scope of work (activities), accurate

information requirements, and their own terminology. The robustness of the workflow

defined within the schedule and the definition of information dependencies between

activities enabled sophisticated production control principles to be implemented. Conse­

quently, weekly work plans were produced, and progress was reported using a range of

performance metrics (including percentage plan complete, design days complete, and

work in progress) that are rarely implemented during the preconstruction phase.

1 91 Process Architecture DSM Examples

Look-ahead planning was also applied, enabling analysis of constraints, risk mitigation,

and short-term process redefinition to be undertaken to adjust the process to maintain

progress in line with the master project schedule. Skanska's design director on the project

was in little doubt about the value of the approach, stating in a feature in Building Maga­

zine (2008) :

As a management operation we get to clearly see how the design team is performing against our integrated

project schedule and what issues are preventing them from delivering. We also get to see trends in performance

over time, which can be very informative. The technique is powerful in improving the designers' ability to deliver

to the schedule and in their performance in general. It has also contributed to Skanska's efforts to continuously

improve. We find ourselves in a much stronger position to deliver key procurement and construction

information.

Without the DSM analysis as a component of the wider ADePT methodology, this type

of dynamic process management, monitoring, and control would have been impossible to

achieve, particularly given the iterative nature of the design process and the industry's

propensity to sequence work based on an assumed linearity in the process -due in main

to the prevalence of the critical path method.

References

Wheal, Kate. 2008, May 30. A Healthy Option. Building Magazine (21).

Construction Task Force. 1998. Rethinking Construction. London: Department of Trade and Industry, HMSo.

Waskett, P., A. Newton, 1. Steele, M. Cahill, and 1. Beaumont. 2010, October 20-22. Achieving Reliable Delivery
of Design Information for Procurement and Construction. Proceedings of the 3rd International World of Con­
struction Project Management conference, Coventry, England.

1 92 Chapter 7

Exam p l e 7.8 Dover Motion Preci s i o n Systems Develop ment Process

Contributors

Anshuman Tripathy

Indian Institute of Management, Bangalore

Steven Eppinger

Massachusetts Institute of Technology

Problem Statement

Dover Motion, a business unit of Danaher Corporation, produces air-bearing-based preci­

sion motion machinery (see figure 7.8.1) that is utilized in a wide range of high-tech

manufacturing industries, including data storage, flat panel display, semiconductor lithog­

raphy and wafer inspection, circuit board assembly, high-precision assembly, and metrol­

ogy. Due to its ability to develop customized solutions based on its core air-bearing

Figure 7.8 .1
Precision inspection tool using Dover's air bearing technology and high-performance motion control system
(courtesy of Dover).

1 93 Process Architecture DSM Examples

technology, Dover has a loyal customer base that values the quality, speed, and agility

with which their needs are addressed. This process architecture DSM application inves­

tigated the product development process at Dover to identify opportunities for the off­

shoring of development tasks to seek lower engineering labor rates.

Data Collection

An initial briefing of Dover's nascent global product development (GPD) effort was fol­

lowed by interviews with Dover managers and system engineers, conducted by Anshuman

Tripathy (then a PhD student at MIT) in 2006. We identified the key product development

process steps followed by Dover to develop their custom precision motion systems. We

then identified the sequence of process steps (tasks), the key information dependencies

among these tasks, and the stage review points.

Model

The DSM in figure 7.8.2 shows the product development process architecture, beginning

with the customer request and ending with shipment of the product to the customer. The

six process stages and "toll gate" review positions are also identified in the DSM. The

DSM marks in each row reflect the information needed by the task from prior tasks.

The shaded blocks of tasks along the diagonal in the DSM represent interdependencies

where tasks are performed simultaneously with mutual sharing of information. These

iterative groups of tasks occur during the development of each of the key subsystems:

structure (containing the core air-bearing technology), controls (electrical, hydraulic, and

pneumatic systems), and software (both standard portions and elements unique to each

product).

Results

Dover's initial offshoring efforts (to an engineering service provider in India) were limited

to certain standard engineering tasks, such as CAD drawing and detailing. These tasks

are identified in the DSM by "Outsource" in the column next to the task names and with

a light shaded block in the diagonal cell. As can be seen in the DSM, these offshore tasks

were coupled to several other tasks that were kept in house at Dover. The necessary

iterations with the engineering service provider in India made this global process difficult

to manage. As a result, the offshore, outsourced engineering service firm found the quick

engineering turnaround requirements of Dover's business challenging, and Dover decided

to pause the relationship.

Thereafter, Dover joined its parent Danaher Motion's offshoring efforts at their Global

Development Center (GDC) in India. They started with the same content as their initial

R
e

v
ie

w
 c

usto
m

e
r re

q
u

e
st

D
e

v
e

lo
p

 p
ro

d
u

c
t propos

a
l a

n
d

 e
sta

b
lish

 com
mercial ptOpOf58

I (d
e

sig
n

 c
o

n
ce

p
t a

n
d

 sy
ste

m
 a

rc
h

ite
c

tu
re

 o
utlin

e
d

)
� I F

in
a

liz
e

 SpecifICa
tio

n
S a

n
d

 d
e

liv
e

nt
b

le
s

 w
ith

 cu
sto

m
e

r

t;
O

b
ta

in
 P

u
rch

a
se

 Onl
er fro

m
 c

usto
m

e
r

TOLL GATE' 1
A

llo
c

a
tio

n
 o

f ra
S0UfC8

S fO
(the

 p
ro

je
c

t

� I B
ta

in
sto

m
ill9

, re
vie

w
 of c

o
n

c
e

p
t, c

ry
s

ta
lliz

a
tio

n
 o

f p
ro

d
u

ct in
t8

f'l
1

�
Concept

 fre
e

ze
, w

h
ic

h
 is

 b
o

u
g

h
t In

 b
y

 th
e

 c
u

sto
m

e
r

TOU-GATE '2
D

e
la

�e
d

 d
e

sig
nin

g
/

3
D

 M
o

d
e

ling

B
a

sic s
tructu

Ai
 (frame/I,

+,ti!Idmefl
t stru

c
ture

, Iso
la

tio
n

 syste
m

, g
ra

n
ite

 pW
tfo

rm
 a

n
d

 axis
 ca

rry
in

g
 m

o
tio

n
)

•
B

a
sic

 slJU
c

ture
 d

e
sig

n
e

d
 in

h
o

u
se

-
D

e
ta

iWn
g

 (d
ra

w
in

g
s/d

ra
ft

in
g

 for
 m

a
n

ufacturi
n

g
) fo

r b
a

s
ic

 s
tru

ctu
re

-
R

e
v

ie
w

 a
n

d
 slg

n
a

rr
 o

f d
e

ta
ile

d
 d

ra
w

in
g

s

C
o

n
tro

l s
ys

te
m

 (p
o

w
e

r, 8
ft\

p\ifiefs
. c

o
m

p
u

te
rs)

•
Id

e
n

tify re
q

U
lfe

d
 co

n
tro

l syste
m

 p
a

rt
s from

 w
iltu

n m
a

rke
l·a

v
a

ila
b

le
 ra

ng
e

 (p
re

fe
re

n
c

e
 10 use

 D
a

n
a

he
r p

ro
d

u
cts)

-
Id

e
n

tity u
n

iq
u

e
 d

e
velopme

n
ts re

q
u

ire
d

 for
 co

n
tro

l s
ys

te
m

 p
a

rts
 a

nd
 a

ppropria
te

 SlJ
p

p
lle

rs
 (D

a
n

a
h

e
r p

re
fe

re
d

)

'"I"
D

e
ve

lo
p

 specf
fica

tto
ns a

nd
 d

e
llY

e
ra

b
le

s for
 un

iq
ue

 sy
ste

m
 p

a
rts a

n
d

 p
la

ce
 o

rd
e

r 00 sup
pliers

�
-

C
o

m
p

le
te

 d
e

sig
n

 for
 u

n
iq

u
e

 c
o

ntro
l sysle

m
 p

a
rt

s

ti _ A
g

re
e

 o
n

 fin
a

l d
e

s
ig

n
 for

 u
l'1I

q
u

e
 c

o
n

tro
l syste

m
 p

a
n

s (e
q

u
iv

a
le

nt to
 o

k to
 m

a
n

u
fa

ctu
re

)

S
o

ftw
a

re
 d

e
v

e
lo

p
m

e
n

t

•
Id

e
n

tify
 apecific

atio
o

s a
n

d
 d

e
lJve

ra
b

ie
s fo

r s
o

ftw
a

re
 d

e
v

e
lo

p
e

r

• Softw
are

 d
e

v
e

lopment

• A
g

re
e

 o
n

 PfOI)OS8
I fro

m
 so

ftw
a

re
 d

e
v

e
lo

p
e

r

R
e

..n
e

w
 a

ll fi
n

a
l d

e
sig

n
s fo

r a
 syste

m
 a

n
d

 then
 a

 p
ro

d
u

c
t le

v
e

l s
lg

n
o

ll

D
e

v
e

lo
p

 80M fo
r the

 product

C
o

m
p

le
te

 d
e

sig
n

 re
vie

w
 lor

 the
 prod

uct

TOllGATE'!
R

e
le

a
se

 a
ll p

a
rts fo

r p
roc

u
re

m
e

n
t

.1 M
a

n
u

fa
c

tu
ring

 g
e

lS in
vo

lv
e

d
· id

e
n

tifie
s resource

s
�

D
e

v
e

lo
p

 m
a

n
u

fa
c

tu
rin

g
 m

o
d

e
l (in

te
g

ra
tio

n
 p

la
n

n
in

g
, D

FM, FMEA a
n

a
lys

is
, m

a
n

ufa
d

u
rin

g
 e

va
lua

tio
n

)

Ii;
P

ro
d

u
c

t o
k 10 m

a
n

u
facture

TOLLGATE'"
M

a
n

u
fa

c
tu

re
 in

h
o

u
se

 parts
 a

n
d

 q
u

a
lity

 in
spection

R
e

vie
w

 a
ll b

o
u

g
ht o

u
t p

a
rt

s a
n

d
 q

u
a

lity in
s

p
e

c
tio

n

� I A
sS&f1l

b
le

 a
nd

 cons
truct

 th
e

 p
m

d
u

d

t;
P

ro
d

u
c

t q
ua

lific
a

tio
n

 pe
r specifIC

atio
n

s a
n

d
 d

e
liv

e
ra

b
le

s

P
ro

d
U

CI re
a

d
y

 10 s
h

ip

TOllGATE,S
S

h
ip

proclucl

� I R
e

v
ie

w
 p

ro
d

u
c

t p
e

rf
o

rm
a

n
c

e
 a

l the
 cus

to
m

e
r e

n
d

 (9
0

 d
a

y
s

)

�
D

e
v

e
lo

p
 TGW, TG

R, l
e

sso
n

s le
a

m
l

 e
tc

. a
n

d
 re

v
ie

w
 c:

:ompIele
 proiect

TOllGATE,.

Figure 7.8.2

In
 h

o
u

se

In
h

o
u

se

In
h

o
u

se

In
h

o
u

se

In
h

o
u

se

In
h

o
u

se

In
h

o
u

se

In
h

o
u

se

O
U

tso
u

rc
e

In
 h

o
u

se

In
h

o
u

se

In
 h

o
u

se

In
 ..

 O
U

t

O
U

tso
u

rce

In
h

o
u

se

In
+

O
U

I

O
o

lSo
u

rc
e

In
h

o
u

se

In
 h

o
u

se

In
 h

o
u

s
e

In
h

o
u

se

In
 h

o
u

s
e

In
h

o
u

s
e

In
h

o
u

se

In
h

o
u

se

In
h

o
u

se

In
h

o
u

se

In
h

o
u

se

In
h

o
u

se

In
h

o
u

se

In
h

o
u

se

In
 h

o
u

se

In
h

o
u

se
 N

x x :N

 . _r-
--

�
�

--
--

--
--

--
--

--
--

,-
--

--
--

--
--

--
--

--
--1

x

X x

X X X X X X X
X

X
X

X
X

xix
X

X
X

X
X X X

X

X X

X
X

X
X X

x�
X

�
 X

X

X

:�

P
ro

ce
ss D

S
M

 m
o

d
e

l fo
r p

re
cisio

n
 e

q
u

ip
m

e
n

t d
e

ve
lo

p
m

e
n

t p
ro

ce
ss at D

o
ve

r.

1 95 Process Architecture DSM Examples

offshoring attempt. However, in this second attempt, project engineers at the GDC were

trained on Dover's products and documented processes. This allowed for a much smoother

GPD process and further development of offshore capability and responsibility.

References

Eppinger, Steven D. , and Anil R. Chitkara. (2006, Summer). The New Practice of Global Product Development.
MIT Sloan Management Review 47 (4):22-30.

Tripathy, Anshuman. 20 10 , January. Work Distribution in Global Product Development Organizations. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA.

Tripathy, Anshuman, and Steven D. Eppinger. 20 1 1 , August. Organizing Global Product Development for
Complex Engineered Systems. IEEE Transactions on Engineering Management 58 (3):510-529.

1 96 Chapter 7

Exam p l e 7.9 E lectro n i c Devices Product Development at Yan mar

Contributors

Minoru Okubo

Electronics Development Center, Yanmar Co., Ltd.

Yukari Arai

iTiD Consulting

Problem Statement

Yanmar Co., Ltd. is a leading Japanese manufacturer of industrial machinery, including

engines, agricultural machines, construction machines, and small boats. Yanmar was

founded in 1912, and its products are known to be highly reliable. In 1968, Yanmar

received the Deming award for the first time in the engine industry. The Electronics

Development Center (ELC) is Yanmar's dedicated R&D center responsible for the

development of all electronic devices. In 2005, the ELC faced many challenges in product

development (PD), such as new safety and environmental regulations, and severe global

competition. It also had problems in collaboration with other divisions at Yanmar, so the

success of each PD project depended heavily on the skills and experience of its project

manager and members. A major initiative titled Young Energy Leads to Liberty (YELL

project) was undertaken to improve Yanmar's product quality, minimize development

time, and make its organization sustainable in the market. In the assessment phase of this

project, a process DSM was used at Yanmar with the following objectives:

1. Visualize the dependencies among PD tasks and the actual status of rework.

2. Analyze and compare the PD process for different devices.

3. Determine the main organizational problems.

Using DSM, Yanmar identified several PD process improvement actions and success­

fully achieved goals for product quality and organizational characteristics.

Data Collection

In the YELL project, iTiD Consulting supported Yanmar engineers to analyze their PD

process with a DSM. Over a period of one and half months, we held about 15 two- to

three-hour workshops to visualize the dependency levels among PD tasks and actual

rework. We also used DSM to further analyze major unexpected rework, which led to

finding the underlying problems in the Yanmar PD process.

1 97 Process Architecture DSM Examples

Transmission
ECU

Meter

Concept
Design

Detail

Design

Prototype
Evaluation

&
Design

Improve-
ment

Prepare
for

Mass

Model

The models shown here represent the as-is PD process in 2005. We list PD tasks for vehicle

electronic devices for three different modules in chronological order in figure 7.9.1. PD

tasks for the same modules in figure 7.9 .1 are listed separately by module in chronological

order in figure 7.9.2. Schematic DSMs for four electronic devices at ELC are shown in

figure 7.9.3 to compare the characteristics of each PD process.

Results

Several engineers noted in the interviews that collaboration with other engineers is not

active during the PD phase at the ELC, and this can be inferred from figures 7.9.1 and

Detai l Design

. • .
J"

•
•

•

.,.

I

r
:

•

•
•

Prototype Evaluation & Design Improvement
Prepare for

Mass Production

. " • • • " • • • • • • • • • " • • • : • • • : : • • _ '!"": •• • ,..=---

•
1 -

I

Rework resulting from
Insufficient review of

specification

•

Production
,I :: a

Figure 7.9.1
Process DSM for vehicie electronics (three modules developed simultaneously).

1 98 Chapter 7

a. c: 8 � Transmission ECU M eter Control ECU g = I () C • • • • • • • • c • • • • " . 11; . ,.. ,. • • • • • • • • • • " . c - . •
I�� • • : . : : : : . : : ----.-:----.. - ---

..
..

h o i • -

�
•

•
•

Figure 7.9.2
Process DSM for vehicle electronics (three modules developed separately).

7.9.2. Only a small number of tasks are positioned near the diagonal in figure 7.9 .1 , and

major rework occurred in the later PD phase as a result of insufficient analysis of speci­

fications. According to figure 7.9.2, its process seems to be a typical modular PD process

with few dependency relations among modules. This implies that its PD process and

organization were immature to integrate across modules. At this point, the same issues

are likely to exist in the PD processes for other devices.

In the organization, the ELC functioned like a supplier of different electronic

devices, and their PD targets were not well aligned with the organization as a whole.

The ELC's management wanted to clearly understand the essential problems before

determining strategy and action plans for redesigning the process. We also created and

used DSMs to analyze the PD processes of three other devices to find similarity and

uniqueness across the PD processes at the ELC. Their schematic DSMs are shown in

figure 7.9.3 .

1 99 Process Architecture DSM Examples

Concept &
Functi on

Design

(a) Vehicle electronics

System Design & Val idation

(c) Engine electronics
Figure 7.9.3

Target
Area

Target
A rea

Schematic DSM models for four types of electronics products.

Co ept Design

x xx x x x
xx x x x x

x x

Improvement on new requests,
Maintenance & Update

(b) Air conditioner electronics

Preparation for Mass Production

(d) PC application

200 Chapter 7

In figure 7.9.3a, an electronic device on a vehicle and another on an air conditioner

(figure 7.9.3b) were developed mainly by combining ready-made modules, so their PD

processes were similar in having a comparatively small number of iterations. However,

the PD process for the air conditioner was superior because more of the iterations take

place in the earlier concept design phase, as depicted in the DSM. It is believed that

because more resources were spent in the early development phase, this led to a reduction

in the number of coordination tasks across modules.

In figure 7.9.3c, an electronic device on an engine and a personal computer application

(figure 7.9.3d) were developed mainly with new technologies, so their PD processes were

similar in having a large number of iterations. With a further analysis of the DSM, we

found that major rework from the later phase back to the earlier phase was the result of

insufficient consideration of the product requirements before the concept design phase.

For the electronic device on the engine (figure 7.9.3c), additional resources were required

to resolve many issues left open from the machine-level evaluation phase.

At Yanmar ELC, DSM was used for many PD projects to visualize the dependencies

among PD tasks and the sources of rework. With detailed analyses, Yanmar was able to:

1. Determine characteristics and issues in the PD processes of different devices.

2. Understand the power of DSM as a reviewing tool for their PD projects.

3. Accelerate technology innovation projects such as all-purpose ECU for different

vehicles.

Reference

hUp://www. itid.co. jp/projects/case/006.html (in Japanese)

201 Process Architecture DSM Examples

Exam p l e 7.1 0 Change Impact Analys i s of Aero-Acoustic N o i se Effects

Contributors

David Wynn, Nicholas Caldwell, and John Clarkson

Engineering Design Centre, University of Cambridge

Problem Statement

There is a continuing desire to reduce the environmental noise contribution from com­

mercial jet aircraft. This involves the use of ever more sophisticated design and simulation

tools to predict the effects of design changes and installation details such as flaps and

engine pylons on noise levels transmitted from the aircraft to the ground. In practice, this

requires design approaches that facilitate optimization at an acceptable cost. To this end,

a process description for investigating jet noise aero-acoustic installation effects has been

developed, and its performance in terms of cost and benefits has been investigated.

Data Collection

The project owner identified the key analysis tools required to investigate a range of

performance criteria related to jet noise aero-acoustic installation effects. In addition, they

identified the resources required to undertake the analysis and key decisions to be made.

These resources and decisions are split across different companies involved in the process.

The authors compiled this information into a process model and added key validation

activities and feedback paths. A DSM and a network diagram were generated automati­

cally from the process model by the Engineering Design Center's Cambridge Advanced

Modeler (CAM) software tool.

Model

The model, illustrated in figure 7.10 .1 , comprises a set of design and analysis activities

(represented by arrows), including key parameters and services (represented by ellipses)

executed by identifiable resources (represented by people) from a variety of organiza­

tions. These activities interact via a moderate number of feed-forward and feedback links.

This structure is most evident in the process flow model or equivalent force-directed

network diagram and results in the blue-shaded blocks shown along the diagonal in the

process DSM in figure 7.10.2. This is an unusual process DSM in that it combines activities

(the block arrows from figure 7.10 .1) , deliverables (including design parameters and

models of parts, the ellipses from the same figure), and resources (people), each as an

individual row and column. However, it is interesting to observe on occasion how linking

202 Chapter 7

Figure 7.1 0 .1

.,"

Design and analysis activities (arrows), utilizing and generating key parameters and services (ellipses), are
executed by identifiable resources (people) from a variety of organizations.

parameters are assigned to blocks in the larger model. This model was subsequently used

as the basis of a simulation, which estimates the impact of a change initiated in one or

more design parameters, accounting for iterations and resource dependencies.

Results

The level of rework required to implement a change is inextricably linked to the depen­

dencies between activities, as well as their iterations and timings. Simulation of such

processes can enable the impact of a proposed change to be appreciated before commit­

ting to executing the process. The jet noise aero-acoustic installation effects model used

to perform the evaluation directly reflects an existing process map created by designers.

It contains iteration at two levels: (1) within each design and evaluation activity and (2)

203 Process Architecture DSM Examples

Figure 7.1 0 .2
DSM showing coupled groups of design and analysis activities, key parameters and services, and resources.

204 Chapter 7

Q P07
Q P01
Q V01

Q V07

Q P04

Q P02
Q P08

Q P06

Q VOS

Q V06

Q P09
Q VOO

Q P1 3
Q V1 3
Q V04
Q P05
Q V02

Q P03
Q V05
Q V03

Figure 7.1 0.3
Design (Pxx) and analysis (Vxx) activities as elements in a probabilistic Gantt chart.

between such activities. Simulation of this process enabled the impact of the higher level

iteration to be distinguished from that of the lower level activities, providing the designers

with a clearer view as to the sensitivity of each activity to given changes and helping them

understand the likely impact of their actions on other process stakeholders. After selecting

the parameter(s) that initiate a given change, on the process map or DSM, the design

rework predicted by the simulation is presented as a probabilistic Gantt chart (figure

7.10.3) , which clearly identifies the design (Pxx) and analysis (Vxx) tasks and associated

stakeholders that may be affected by the change and when.

References

Jarratt, Tim, Claudia Eckert, Nicholas Caldwell, and John Clarkson. 2011 . Engineering Change: An Overview
and Perspective on the Literature. Research in Engineering Design 22 (2): 103-124.

Wynn, David, Seena Nair, and John Clarkson. 2009, August 24-27. The P3 Platform: An Approach and Software
System for Developing Diagrammatic Model-Based Methods in Design Research. Proceedings of the 17th Inter­
national Conference on Engineering Design, Stanford, CA.

Wynn, David, Nicholas Caldwell, and John Clarkson. 2010 , May 17-20. Can Change Prediction Help Prioritize
Redesign Work in Future Engineering Systems? Proceedings of the 1 1 th International Design conference,
Dubrovnik , Croatia.

205 Process Architecture DSM Examples

Exam p l e 7.1 1 Lockheed Marti n F-1 6 Avion ics Upgrade Process

Contributor

Tyson Browning

Neeley School of Business, Texas Christian University

Problem Statement

The Lockheed Martin F-16 Fighting Falcon is a multirole jet fighter aircraft originally

developed by General Dynamics for the U.S. Air Force (USAF). Since the approval of

production in 1976, more than 4,400 F-16s have been produced and are in use by about

25 countries, making it the largest Western jet fighter program. Because of its ongoing

popularity, Lockheed Martin continues to develop upgraded systems for the aircraft. A

view of the F-16 cockpit is shown in figure 7.11.1.

In 2000, Lockheed Martin sought a way to isolate and manage the additional process

iterations and the consequential increases in cost and lead time caused by delays in

customer-furnished equipment (CFE), an external input provided by the USAF to the

upgrade process. For example, upgrading the F-16 weapons launch capabilities requires

that any new weapons be available for integration and testing. In one case, the USAF

wanted the F-16 to be compatible with another contractor's new missile, which was

delayed by nine months. Meanwhile, the F-16 upgrade process was expected to proceed

anyway and finish by the original deadline, despite the additional risk created by the

delayed input. These types of situations motivated Lockheed Martin to seek a way to

Figure 7.1 1 .1
F-16 cockpit and avionics system controls (courtesy of Lockheed Martin).

206 Chapter 7

pinpoint the implications of a holdup of an external input and justify any appropriate

changes in schedules or other expectations.

Data Collection

Tyson Browning, then an employee at Lockheed Martin, advised a small team on repre­

senting the existing process in a DSM. Because of limited resources for building the

model, the team used existing process documentation as the basis for an initial DSM,

which was then revised slightly through some brief discussions and a meeting with the

project manager. Rather than seeking to capture the process completely, model building

ended once the model had achieved sufficient richness and accuracy to serve its immedi­

ate purpose.

Model

The DSM shown in figure 7.11.2 contains a set of high-level activities constituting the

avionics upgrade development process. The activities were originally grouped by organi­

zation or specialization, and these designations are indicated in the letters preceding each

activity name (such as S for software development, F for flight test, and L for logistics)

and by the color coding of the row labels. Note that the DSM actually shows a subset of

the development activities because not all activities were relevant in this particular

instance (which is why the activity numbers go up to 42 although the DSM does not

contain 42 activities). The initial DSM (not shown) was resequenced to arrive at the upper

triangular DSM shown here. This reordering of the rows and columns of the matrix inter­

mixed activities from the various organizations and moved some activities (such as 29)

far upstream in the process. The region above the main DSM shows where some of the

external inputs enter the process. We used the ICIFBD convention so that these external

inputs would line up with the columns of the activities receiving them.

Results

The input of particular interest, CFE, is used by activity 16, Detailed Design. Activity 16

should occur between activities 15 and 17 (even in the resequenced DSM), but if all of

its inputs are not available, then it is faced with two options: (1) wait for the inputs, or

(2) proceed based on assumptions about the inputs.

Option one is demonstrated in the DSM by moving activity 16 downstream in the

process to the actual point in time where the CFE input shows up. This delay has several

consequences. First, the output from activity 16 (that becomes an input to 17) will in turn

be delayed, so it now appears below the diagonal in the DSM. Hence, activity 17 must

confront the same dilemma faced by activity 16: wait or guess. Activities 25 and 37, in turn,

207 Process Architecture DSM Examples

Final LAR Provided

Final Ground Test Conflguratron Provided

ELJNT Data Provided
Final Flyable Unit & Support Provided

R6 Interface Documentation (PIC)

R7 Draft Requirements Baseline & Documentation (DSSRC)

L
M
N
0
P
a
R

6

FLT 2 TIS Generation 29
R8 Requirements Baseline & Documentation (SSRC) 8
54 Review R DP's #1 & #2 Phases (PIC) 12
T1 TIF I TAF 22
T2 Test Requirements Design 24
Fl T 3 Anal TIS Gene ration 30
S5 Review PH3 SNV Requirements (DSSRC) 13
SIL2 SNV Development (T1IIIt Statlon lOC) 1 9
T2 Partitioned 10 Existing D B 23
56 Feedback on ReqUirements (55 RC 14
SIL3 HIW Oevef9pmant crest StatIon lOC) 20
57 Complete Pre!. Design (PDR TIM) 15
56 Detailed Design (CDR TIM) 1 8
S9 Code & Integration (Rn) 17
T3 Run Tests 25
L 1 Early OTE Manuscript Preparetion 37
S8 Detailed DeSign (CDR TIM) ,.

T4 Complete Test Runs 26
FLT 4 SI W Change Action (SCA) Processed 31
Fl T5 Ground Test AEI 32
� � m �
A1 System ASLVT 34
A3 DT Raclommendalion for the start of OT 36
A2 Software FCAIPCA 35
L2 SUpport Equipment SNV Development 38
L3 TOITCTO Manuscript Preparation 39
L4 TOlTeTO Verification I Vatadltatlon 40
L5 TOITCTO Clean-Up and Sell Off 4 1

6 7 29 8

•
•
•

•
• •

•

•

•

3. What was a feed-forward
from 16 to 17 now becomes
a feedback.

•

•

•
•

•

1. (FE arrives later than

pla nned, as notionally
represented by this shift
to the right

2. Detailed Design (activity
16) either waits (moves
downstream) or proceeds
usIng a ssumptions (in which
case it may have to be
reworked downstream)

kL�6_P_ri�n_tin�g�a_nd�D_i�s� .. bu�u�on� ____ ���� __ � __ ��� __ 42 L-__________________________ �� ____________________________ ��

Figure 7.1 1 .2
DSM representation (IC/FBD) of the F-16 software upgrade development process, with external inputs shown
above.

208 Chapter 7

must then also face the same dilemma. Hence, any holdup of an activity may cause a

cascade of delays through the project, and the DSM allows one to determine the specific

activities affected.

Option two, starting the activity at its originally scheduled time on the basis of assump­

tions about its missing input, may be possible but usually incurs risk; if the assumptions

turn out wrong, then the activity must be reworked once the real input arrives. Further­

more, any downstream activities that proceeded based on what may turn out to be a faulty

output from the activity may also have to be reworked, and so on. The scope of this

cascade of changes can be visualized in the DSM as similar to the effects of delaying the

activity (option one). By moving activity 16 downstream in the DSM, until the point where

the actual inputs arrive (and any assumptions made earlier can be verified), we see how

a mark moves below the diagonal of the matrix. As the distance of this mark from the

diagonal grows, so does the scope of the potential cascade of rework.

Lockheed Martin used this DSM model of delays in external inputs as a basis for dis­

cussion with USAF customer representatives. Lockheed Martin was able to anticipate the

impacts on development cost and schedule, communicate the implications of these delays,

and renegotiate specific commitments with other activities in the process in order to adapt

in dynamic situations. In particular, it became clearer how external events caused specific

internal rework, and how decisions and situations that caused additional marks to move

below the diagonal in the DSM increased a project's risks.

Reference

Browning, Tyson R. 2000 , September 18. Notional, Project Risk Management Using the DSM. Proceedings of
the 2nd MIT Design Structure Matrix Workshop, Cambridge, MA.

209 Process Architecture DSM Examples

Exam p l e 7.1 2 Ford Motor Com pany H ood Develop ment Process

Contributors

Tony P. Zambito

Ford Motor Company

Daniel E. Whitney

Massachusetts Institute of Technology

Ali A. Yassine

American University of Beirut

Problem Statement

Ford Motor Company is one of the world's largest automobile manufacturers. By the

1990s, Ford and other automotive OEMs were faced with unprecedented global competi­

tion where product refresh rate and body styling were widely recognized as sources of

competitive advantage (see figure 7.12.1). This required faster and more reliable product

development processes. The goal of this DSM application was to understand the feasibility

and effectiveness of using the DSM to improve a real-life, highly evolved, and iterative

process. Improvement was defined in terms of:

Figure 7.1 2 .1
Modern automobile designs include highly styled sheet metal body panels (2010 Taurus, courtesy of Ford
Motor Co.).

Task Description
ED II)

10
1

2
3

4
5

6
7

8
9

10 11
12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 41 42 43 441

(da),l)
S

tra
te

g
ie

s lo
r p

rod
u

c
t, m

kt, m
ig

, su
p

p
ly, d

e
sig

n
, a

n
d

 rB
Y

5
8

b
ility

 c
o

n
fln

n
e

d
 (E

s
L

 P
O

L
)

S
e

le
c

t m
a

t8f'i
a

ls
'O

f a
ll sy

ste
m

 c
o

m
p

o
n

e
n

t.

S
e

le
c

t powertr8
ln

 lin
e

u
p

F
re

e
ze

 proporti
o

n
s a

n
d

 se
le

c
te

d
 h

a
rd

p
o

in
l$

V
e

rify th
a

t h
a

rd
p

o
ln

ts a
n

d
 stru

cll
 .. 1 jo

in
t d

e
sig

n
s a

re
 co

m
p

a
tib

le
 w

i p
ro

g
ra

m
 ta

rg
e

tl

Ap
prove

 m
a

ste
r lec1ion

l

D
e

ve
lo

p
 In

itia
l d

e
sig

n
 c

o
n

c
e

p
t (p

re
lim

in
a

ry
 C

A
D

 m
o

d
e

l)

e
stim

a
te

 b
la

n
k liz

e

E
5

tim
a

te
e

ll'
o

rts

' I'
7

,

9
1

6
1

6

D
e

ve
lo

p
 initia

l a
tta

c
h

m
e

n
t sdl

e
m

e

10 I 4 I 2
E

ltim
a

te
 la

tc
h

 lo
a

d
s

11
C

h
e

a
t o

u
te

r p
a

n
e

l su
rfa

ce

12
D

e
lin

e
 h

in
g

e
 co

n
c

e
p

t

Ge
l p

re
lim

. m
fg a

n
d

 a
s)'

 fe
a

l. (fo
rm

, h
o

le
s, h

e
m

, w
e

ld
 p

a
tterns

, m
a

stic
 lo

c
a

tio
n

s, a
d

h
e

sive
)

P
tlf

fOl"m cosI
 a

n
a

ly
sis (va

n
a

b
le

 a
n

d
 In

ve
stm

e
n

l)

Ptlf
form

 sw
in

g
 stu

d
y

1
h

e
m

e
 a

p
p

ro
va

l fo
r In

te
rio

r a
n

d
 e

xte
rio

r a
p

p
e

a
ra

n
c

e
 (p

re
lim

 so
rf a

va
tla

b
le

)

M
a

it:
e

tin
g

 c
o

m
m

its to
 n

e
t AMIf1\it

I; in
itia

l orderi
n

g
 g

u
id

e
 a

va
�a

b
le

P
ro

g
ra

m
 O

V
P

s
 a

n
d

 F
M

E
A

s c
o

m
p

le
te

19

4 I 4
Ap

prove
d

 th
e

m
e

 re
fin

e
d

 for
 cr

a
ftsm

a
n

sh
ip

 e
xe

c
u

tio
n

 (c
o

n
sisle

n
t w

i P
A

 o
b

je
c

tive
s)

20
P

D
N

O
· In

te
riO

f a
n

d
 e

lr
te

riO
f C

la
ss 1A

 su
rf

a
c

e
s tra

nsftlfT
e

d
 to

 e
n

g
in

e
e

rin
g

 (+/. O
.S

m
m

)
21

C
o

n
d

u
d

 c
u

b
e

 re
vie

w
 a

n
d

 g
e

t su
rfa

c
e

 buyofI'

22

V
e

rif)' m
fg

 a
n

d
 li

S
),

 le
a

s
. (fo

rm
, h

o
lM

, n
e

m
, w

e
ld

 p
a

tte
rn

l, m
a

s
tic

 lo
c

a
tio

n
s, a

d
h

e
sive

)

E
Vll

lu
a

te
 fu

n
c

Uo
n

a
l p

e
rf

o
rm

a
n

c
e

 (a
n

ll
lytic!l

ay
)

lt8
f1l

te
 fro

m
 in

itia
l d

e
sig

n
 c

o
n

c
e

p
t to a

c
h

ie
ve

 sa
fe

 d
e

sig
n

 c
o

n
c

e
p

t

P
D

N
 1 • R

e
le

a
se

 Iyste
m

 d
e

sig
n

 In
te

n
t le

ve
l concep

t to m
a

n
u

fa
c

tu
rin

g

D
e

ve
lo

p
 lta

m
p

ln
g

 to
o

lin
g

D
e

ve
lo

p
 h

e
m

m
in

g
 too

�n
g

 (if a
p

p
lic

a
b

le
)

D
e

ve
lo

p
 a

sse
m

b
ly

 to
o

lin
g

P
D

N
2

 • l
a

st C
Ia

I
S 1s

u
rfa

c
e

 veri
fied

 a
n

d
 re

le
a

se
d

 fO
f m

a
jo

r fOfml
ld p

a
rts

P
D

N
J

· F
in

a
l m

a
th

 1,2
, &

 3 d
a

ta
 re

le
a

se
d

C
A

D
 file

l re
ne

ct p
re

-C
P

 ve
rific

a
tio

n
 c

h
a

n
g

e
s

"I'
24

41
6

" " 27
28
,. 30

31
32 Is

M
a

ke
 '

ik
e

 p
ro

d
u

c
tio

n
"

p
a

rt a
n

d
 a

s)' to
o

ls / tl
fg

o
n

o
m

lc
s / proces

s she
e

ts (to e
xte

n
t le

a
sib

le
)

33
F

lrIt
C

P
s

ll
vll

ia
b

ie
lo

rtu
n

W'l
g

ll
n

d
d

u
ra

b
ilily

te
s

tin
g

C
o

m
p

le
te

 C
M

M
 a

n
a

ly
sis 01 a

ll e
n

d
 Ite

m
l

 &
 lu

b
a

sse
m

b
lie

l

Ptlf
form

 O
V

 te
sts (p

h
ysical

)

Verify
 m

a
n

u
fa

c
tu

rin
g

 a
n

d
 a

sse
m

b
ly

 proces
s C8

p
ll

b
Uity

C
o

m
p

le
te

 p
re

�m
. E

S
O

 lor:
 C

P
 d

U
l8

b
ility

 te
stin

g

C
om

p
le

te
 p

re
�m

. E
S

O
 lo

r: K
nown

 c
h

a
n

g
e

s from
 C

P
c

o
n

ta
in

a
b

ie
 lo

r 1
P

P

C
o

m
p

le
te

 p
re

tim
. E

S
O

 lo
r: In

itia
l se

t 01 road
 te

sts c
o

m
p

le
te

d

C
o

m
p

le
te

 p
re

tim
. E

S
O

 lo
r: D

e
sig

n
 Is

 J1 le
ve

l· n
o

 fu
rth

e
r c

h
a

n
g

e
s e

xc
e

p
t N

o
-B

id
s

C
o

m
p

le
te

 p
fe

�m
. E

S
O

 lo
r: E

n
g

. c
o

n
fidence

 th
a

t o
b

Je
ctives

 w
Hl b

e
 m

e
t d

e
c

la
re

d

S
u

p
p

lie
r c

om
m

itm
e

n
t to

 sup
port 1

P
P

 w
i P

S
W

 p
a

rts

R
e

a
d

in
e

ss to
 proce

ed to
 10

01 try
o

ut (TI
O

), 1P
P

 a
n

d
 Jo

b
.

,

34 35
36
37
38

39
40
41
42
" ..

,
,

,
.

.
,

,
,

, ,

,
. ,

,
1

,
. ,

,
, ,
. ,
,

,

2
.

2
.

,
,

,
2

,
2

,
2

2
'

 • 6
3

1
6

.
1.

,
, ,

,

'I'
,

2
2

3
1

6
4

2
9

6
4

6
4

6
2

2

In
fo

rm
a

tlo
n

V
a

rla
b

llltv

2
2

1
2

2
2

3
2

2
3

1
2

2
2

2
1

2
2

1
3

2
3

2
2

3
2

2
2

2
1

2
2

3
2

1
3

2
2

2
2

2
1

1
0

Figure 7.12.2

15

..

10
20

15

10
15

20
10
15
15
20
'20
..
100
20
20
20
..

10
20

15

30

10

EO
(r)

(%

E
C

(I)
E

C
(r)

ofED(I))
($000)

($000)
.%

SO

SO
,,%

SO

SO
.%

1 0

SO
,,%

1 0

SO
,,%

1 0

SO
15%

SO

SO
"

"

SO
"

.. "

1 0
SO

.. "
1 0

1 0
""

10
"

.. "

1 0
10

,,%

1 0
"

,,%

1 0
"

""
SO

"
"

"

SO
10

,,%

1 0
"

99"

SO
55

99%

SO
1 0

"
"

SO

SO
.. "

1 0

55
.. %

SO

55
,,%

"'

55
,,%

SO

"
,,%

1 0

55
,,%

SO

"
""

SO
55

10%

$6,000
'10

,,%

,,,.
"'

,,%

$1,500
'10

""
SO

5 5
""

SO
"

,,%

SO
5 5

2'"
$100

55
' "

"'
"

99"

SO
SO

""
'"

"
""

1 0
SO

99"

SO
SO

99"

1 0
10

.. "

1 0
SO

.. "

1 0
SO

99"

SO
SO

....
SO

SO
""

SO
1 0

B
a

se
lin

e
 D

S
M

, re
p

re
se

n
tin

g
 th

e
 e

xistin
g

 h
o

o
d

 d
e

ve
lo

p
m

e
n

t p
ro

cess. A
n

n
o

tatio
n

s in
d

ica
te

 h
o

w
 d

u
ra

tio
n

, co
st, a

n
d

 d
e

p
e

n
d

e
n

cy d
a

ta
 w

e
re

 cap
tu

re
d

 in
 th

is
fo

rm
a

t.

2 1 1 Process Architecture DSM Examples

• Reduction of product development lead time

• Reduction of product development lead-time variation

Data Collection

Tony Zambito, an experienced Ford engineer and master's student in MIT's System

Design and Management program, studied the development process for hood design and

created a process DSM over a period of approximately nine months in 1999 while execut­

ing the existing hood development process. Data for the hood DSM came from three

primary sources:

• Interviews with approximately 15 experienced engineers, technical specialists, and man­

agers from styling, engineering, manufacturing, and assembly functions

• Existing development data for task durations, process lead times, nominal resource

levels, and typical areas of rework

• Real-time data gathered during the execution of current hood development projects

Model

The DSM model shown in figure 7.12.2 represents Ford's baseline (as-is) hood develop­

ment process in 1999, as confirmed by interviewees.

Interviewee input and data were used to estimate the cost and duration of initially

executing and reworking each activity. These data are shown in the columns at the right

of the DSM, where ED(i) and ED(r) represent the initial and rework durations, respec­

tively. Similarly, EC(i) and EC(r) represent initial and rework costs, respectively.

The blocks in the DSM highlight iterative groups of activities in the as-is execution

sequence. The blocks were initially identified by inspection using the above-diagonal

marks as a guide and then refined through further interviews.

Dependencies between tasks are marked with a numerical index termed "task volatil­

ity" (TV) , which represents the probability of rework. Specifically, TV is the product of

the variability of the input information termed "information variability" (IV) and the

receiving task's sensitivity to change in that information, termed "task sensitivity" (TS).

That is, TV = IV x TS. These metrics are similar to those used by Krishnan et al. (1997) .

Each task was assigned one of three IV levels (shown along the bottom of the DSM

in figure 7.12.2) and each dependent task was assigned one of three TS levels (captured

in a separate matrix). Figure 7.12.3 describes these levels and the range of possible TV
values.

Lead time of this baseline process was simulated using a Monte Carlo simulation

(Browning and Eppinger, 2002; example 7.6) . This simulation model was calibrated against

actual lead times by scaling the task volatility values (Yassine et al. 2001) .

2 1 2 Chapter 7

o Q) _ 01

Qi'
01

� e
Cll

.c :� t)
- "S 'iii a.
C E
QI .9 en

.:w: ;:;.
III :�
� ;!: '"

e
Q) �

Q) e
> Cll

. ., .c .- u
"' .. e '"
CIl 0 f/) E

o Q) _ 01
Q) e
> Cll . _ J:: ."!:! U '"
e 0 CIl '-f/) Cll E
o CIl
- 01 CIl e
> Cll
� '5 e _
CIl '" '" 0 E E

Figure 7 .1 2 .3

C")

N

....

Task Volati l ity Values
(Probability of Rework)

3 6 9
Moderate High Very High

2 4 6
Low Moderate High

1 2 3
Very Low Low Moderate

1 2 3
<25% 25-50% >75%

Information Variabi l ity
(Likel ihood of Input Changing)

Nine possible task volatility values result from information variability (IV) and task sensitivity (TS)
combinations.

Results

The simulation analysis indicated that the mean lead time of the baseline process was 929

days, with a standard deviation of 149 days, This suggests that rework accounts for a sig­

nificant portion of the lead time and creates substantial variance. Resequencing the matrix

using a standard DSM sequencing algorithm only moved one task and consequently

showed no lead-time improvement in the simulation.

Reducing lead time therefore required restructuring the dependencies to reduce itera­

tion, which was accomplished by redefining some tasks and methods. For example, there

is a dense set of dependencies between task 7, a CAD designer developing the initial CAD

model, and task 24, an engineer doing an analysis to evaluate performance of the design.

Failure to meet requirements in task 24 results in reworking the design in task 7. The

process from task 7 to 24 takes 55 days initially and 28 days for each iteration. This is

illustrated in figure 7.12.4.

2 1 3 Process Architecture DSM Examples

7. Develop initial design
concept (prelim CAD model)

24. Evaluate functional
performance (analytical ly)

Figure 7 .1 2 .4

9. Develop structural CAD
mode ls

1 1 . Develop preliminary
design intent CAD model

7. Generate structural

requirements (analytically)

1-oIE---� 8. Develop conceptual
design strategy

1 0. Verify functional

performance (analytically)

An example where rework for two coupled tasks required 28 days per iteration. These two tasks were decom­
posed into five tasks that changed the dependency structure and reduced the iteration time.

r---------------------, -7. Generate structural
requirements (analytically)

1 0. Verify functional

performance (ana lytical ly)

Figure 7 .1 2 .5

1 1 . Develop prel im inary
design intent CAD model

The restructured tasks removed some of the work from the iterative loop. The entire set of tasks required about
the same duration as the original two tasks, but the iteration time was reduced from 28 days to 8 days per
iteration.

Task Description
E

D
 (I)

10
1

2
3

4
5

6
7

1 1 10
11 12 13 14 15 1t1 17 11 11 20 21 22 23 24 25 2tI 27 21 29 30 31 32 33 34 35 3t1 37 31 39 40 41 42

43
44 45 461

(d
l)'

S
)

S
tr

a
te

g
ie

s lo
r p

ro
d

u
c

t, m
k

t, m
ig

, su
p

p
ly

, d
e

s
ig

n
, a

n
d

 re
u

sa
b

ility
 c

o
n

firm
e

d
 (E

s
t. P

O
L

)

S
e

le
c

t m
a

te
ria

ls fo
r a

U sy
lte

m
 c

o
m

p
o

n
e

n
ts

S
e

la
c

t
p

o
w

e
rtra

in
tin

e
u

p

F
re

e
z

e
 proporti

o
n

s
 a

n
d

 se
le

c
te

d
 h

a
rd

p
o

in
ls

V
e

rify th
a

t h
a

rd
p

o
in

ts a
n

d
 structu

ra
l Jo

In
t d

e
s

ig
n

s
 are

 co
m

p
a

tib
le

 w
i p

ro
g

ra
m

 ta
rg

e
ts

A
p

p
ro

ve
m

a
Sl

e
r

se
c

tio
n

s

Ge
n

e
ra

te
 slr\l(;

tu
ra

l re
q

u
ire

m
e

n
ts

 (a
n

a
ly

tic
a

lly
)

D
e

v
e

lo
p

 c
o

n
ce

p
tu

a
l d

e
slg

n
 stra

te
g

y

D
e

v
e

lo
p

 S
lr\l(;

tu
ra

l C
A

D
 m

o
d

e
l

V
e

rify
fu

n
c

tio
o

a
l

p
e

rf
o

rm
a

n
c

e
(a

n
a

ly
ti

c
a

ny
)

D
e

v
e

lo
p

 p
rtI

Wm
in

a
ry

 d
e

s
ig

n
 in

te
n

t C
A

D
 m

o
d

e
l

E
s

tim
a

te
 b

la
n

k
 s

iz
e

E
s

tim
a

te
e

rr
o

rts

D
e

v
e

lo
p

 in
itia

l a
tta

c
h

m
e

n
t s

c
h

e
m

e

E
s

tim
a

te
 la

tc
h

 lo
a

d
s

C
h

e
a

t o
u

te
r p

a
n

e
i s

u
rfa

c
e

D
e

li
n

e
 h

in
g

e
 concep

t

Ge
t p

re
lim

. m
fg

 a
n

d
 a

sy
 fe

a
s. (form

. h
o

le
s

, h
e

m
. w

e
ld

 p
a

tte
rn

 •• m
a

slic
 lo

c
a

tio
n

s. a
d

h
e

s
iv

e
)

P
e

rfOl
ll1 c

o
st a

n
a

ly
s

is
 (v

a
ria

b
le

 a
n

d
 In

v
e

s
tm

e
n

t)

Theme
 a

p
p

ro
v

a
l fo

r In
le

rio
r a

n
d

 e
xte

rio
r a

p
p

e
a

ra
n

c
e

 (p
re

lim
 s

u
rf a

v
a

ila
b

le
)

M
a

rK
e

tin
g

 c
o

m
m

its to
 n

e
t re

v
e

n
u

e
; in

itia
l o

rd
e

rin
g

 g
u

id
e

 a
v

a
Ha

b
ie

A
p

p
ro

v
e

d
 th

e
m

e
 re

f
m

e
d

 fOf'
 c

n
fts

m
a

n
s

h
ip

 e
x

e
c

u
tio

n
 (c

o
n

s
is

te
n

t w
i PA

 o
b

jecti'v
e

s
)

P
e

rfo
rm

 s
w

in
g

 .
tu

d
y

P
ro

g
ra

m
 O

V
P

s
 a

n
d

 F
M

EA
s

 c
o

m
p

le
te

P
O

N
O

 • In
te

rio
r a

n
d

 e
J

de
rio

r C
la

s
s

 tA
su

rf
a

c
e

s tra
n

sfe
rre

d
 to

 e
n

g
ln

e
tl

rin
g

 (+/·O.5rnrn
)

C
o

n
d

u
c

t c
u

b
e

 re
v

ie
w

 a
n

d
 g

e
t s

u
rfa

c
e

 b
u

y
o

ff

V
e

rify m
fg

 a
n

d
 a

s
y

 fe
a

s
. (fOfT

Tl, h
o

le
s

. h
e

m
, w

e
ld

 p
a

tte
rn

s
, m

a
s

He
 lo

ca
tio

n
s

. a
d

h
e

s
iv

e
)

P
O

N
 I . R

e
le

a
s

e
 s

y
lle

m
 d

e
s

ig
n

 In
te

n
t le

v
e

l concep
t to

 m
a

n
u

fa
c

tu
rin

g

D
e

v
e

io
p

sta
m

p
in

g
lo

o
lin

g

D
e

v
e

lo
p

 h
e

m
m

in
g

 too
Wn

g
 (if a

p
p

lic
a

b
le

)

D
e

v
e

lo
p

 a
s

s
e

m
b

ly
 to

o
lin

g

P
O

N
2

· L
a

s
t C

la
ss 1su

rfa
c

e
 v

e
rifie

d
 a

n
d

 re
le

a
se

d
 fo

r m
a

jo
r fo

rme
d

 p
a

rts

P
D

N
J

· F
in

a
l m

a
th

 1
,2

. &
 J

 d
a

ta
 re

le
a

se
d

C
A

D
 file

s re
na

c
t p

re
-C

P
 v

e
rific

a
tio

n
 c

n
a

n
g

e
s

M
a

k
e

 "lik
e

 p
ro

d
u

c
tio

n
"

p
a

rt
 a

n
d

 a
s

y
 i0

0i., e
rg

o
o

o
m

ic
s I p

roc
e

ss .
h

e
e

ts (to e
x

te
n

t fe
a

sib
le

)

F
irs

l
C

P
S

 a
v

a
ila

b
le

 for lu
n

in
g

 a
n

d
 d

u
ra

b
ility

te
s

\t'l
g

C
o

m
p

le
te

 C
M

M
 a

n
a

ly
s

is
 0

1 a
U e

n
d

 lIe
m

s
 &

 s
u

b
a

s
s

e
m

b
lie

s

P
e

rfo
rm

 D
V

 te
sts (p

h
y

lie
a

l)

V
e

rify m
a

n
u

fa
c

tu
rin

g
 a

fKI
 a

s
se

m
b

ly
 proces

s
 c

a
p

a
b

ility

C
o

m
p

le
te

 p
re

Hm
. E

S
O

 fo
r. C

P
 d

u
ra

b
iNty

 te
s

tin
g

C
o

m
p

le
te

 p
re

lim
. E

S
O

 fo
r: In

itia
l set

 o
f ro

a
d

 te
sts c

o
m

p
le

te
d

C
o

m
p

le
te

 p
re

�m
. E

S
O

 fo
r. K

n
o

w
n

 c
h

a
n

g
e

s
 fro

m
 C

P
 c

o
n

ta
in

a
b

le
 fo

r 1 P
P

C
o

m
p

le
te

 p
re

lim
. E

S
O

 lo
r. D

e
s

ig
n

 Is J
l

le
v

e
l· n

o
 fu

rt
h

e
r c

h
a

n
g

e
s e

x
c

e
p

t N
o

·S
ld

s

S
u

p
p

lie
r c

o
m

mitmen
t 10

 s
u

p
Pori

l
P

P
 w

I P
S

W
 p

a
rts

C
o

m
p

le
te

 p
re

lim
. E

S
O

 lo
r. E

n
g

. c
o

n
fid

e
n

c
e

 th
a

i o
b

fe
c

tiv
e

s w
KI b

e
 m

e
t d

e
c

la
re

d

R
e

a
d

in
e

ss 10
 proce

ed to
 100

1 try
O

u
l (TT

O
). lP

P
 a

n
d

 J
o

b
 #1

10

11

12 13 " 15 16 17 " 19 " " 22 23
2414

4

25
" 2714

4
,

"
,

,
,. 30

J
1

32 33 3416
'l..!.

" 36 37 " " .. ., 42
43

,
,

4

"I
9

4

..
.

46
9

6
4

"

In
fo

rm
a

tlo
n

V
l

rll
b

llltv
 2

1
2

2
2

2
1

2
2

1
2

2
2

3
1

2
2

2
2

1
2

2
1

3
2

3
2

2
2

2
2

1
2

2
3

2
1

3
2

2
2

2
•

Figure 7.12.6
DSM

 fo
r th

e
 im

p
ro

ve
d

 h
o

o
d

 d
e

ve
lo

p
m

e
n

t p
ro

ce
ss in

 w
h

ich
 se

ve
ra

l ite
ra

tive
 lo

o
p

s w
e

re
 re

stru
ctu

re
d

 to
 re

d
u

ce
 o

ve
ra

ll ite
ra

tio
n

 tim
e

.

15 " 30

10

"

10

" "

10

"
4"
..

10
0

" " " 10

"

" 30

10

E
O

(r)
{%

E

C
(I)

01 E
O

,I))
(SOO

O
)

0%
so

,%

so
25"

so
25"

"
25%

10

15"
so

.. "
so

99"
"

99"
10

.. "
10

.. "
so

.. "
so

.. "
10

.. "
so

.. "
so

.. "
so

.. "
10

.. "
10

.. "
so

25·1.
10

.. "
so

.. "
10

25"
so

.. "
10

.. "
so

""
'

10

25"
so

.. "
so

10
%

S

tI
,O

O
O

25"
, .. ,

25"
S

l,5O
O

....
10

.. "
so

25"
10

25"
S

10
0

0%
$

1'

.. "
so

....
$

1,

.. "
so

.. "
so

99"
so

.. "
10

99"
so

....
10

.. "
so

.. "
10

E
C

(r)
(S

O
O

O
)

10

2 1 5 Process Architecture DSM Examples

Historical data indicated that a designer typically spends four to five months in design

(task 7) . This suggests roughly four iterations. DSM simulation estimated that task 7 would

be iterated 4.1 times.

Improving this critical iteration loop involved redefining the development process to

accelerate the necessary iterations and decouple as many of the other tasks as possible.

To do so, we decomposed the two tasks into five, as shown in figure 7.12.4. As illustrated

in figure 7.12.5, this change reduced each iteration by 20 days. Figure 7.12.6 shows the

resulting DSM and the effect on the design iteration loop.

The result of this DSM application was a dramatic reduction in hood development lead

time (and variance), from 929 (149) days to 772 (43) days, according to the simulation.

The first hood developed using this process took 790 days and also technically out­

performed the last hood developed under the baseline process.

The benefit of reducing timing variance is often overlooked. However, variance reduc­

tion gives the program manager confidence in the schedule and thus confidence to

perform extra iterations where they can be helpful for performance. This is somewhat

counterintuitive, as the common understanding is that iterations are bad. Even experi­

enced project analysts generally compute only the mean duration and do not expect that

estimating the variance will add any special insight. Nevertheless, uncertainty and risk

reduction are primary considerations in complex product development projects, so analy­

sis of variance should receive more attention.

References

Browning, Tyson R. , and Steven D. Eppinger. 2002 , November. Modeling Impacts of Process Architecture on
Cost and Schedule Risk in Product Development. IEEE Transactions on Engineering Management 49
(4) :428-442.

Krishnan, Viswanathan, Steven D. Eppinger, and Daniel E. Whitney. 1997, April. A Model-Based Framework to
Overlap Product Development Activities. Management Science 43 (4):437-451.

Yassine, Ali A. , Daniel E. Whitney, and Tony P. Zambito. 2001. Assessment of Rework Probabilities for Simulating
Product Development Processes Using the Design Structure Matrix (DSM) . ASME Design Engineering Technical
Conferences, DTM-21693.

2 1 6 Chapter 7

Exam p l e 7.1 3 Alfa Laval AB H eat Exchanger Design

Contributors

Ingvar Rask

SSPA

Staffan Sunnersj6

School of Engineering, J6nk6ping University

Both authors were previously at the Swedish Institute of Production Research, IVF, at

the time of this example.

Problem Statement

Alfa Laval AB is a manufacturing company active in about 100 countries and supplying

systems for liquid separation, heat treatment, and fluid handling. One of its product lines

is a range of plate heat exchangers for use in process industries such as food and energy

production. One example is shown in figure 7.13 .1. The heat exchanger consists of a stack

of plates each with pressed channels that contain process fluids. The patterns and dimen­

sions of the channels are of critical importance for the system's performance. Because

new variants of the basic concepts are frequently required, the company decided to

develop a computerized system for automated channel design. For this purpose, the

network of tasks and their dependencies in the design process were analyzed using a

process architecture DSM.

Data Collection

Clarifying the steps of the design process was a project lasting about three years and was

done in parallel with development of the design automation system. The work was done

by Ingvar Rask in cooperation with company experts. The design process includes engi­

neering design, stress analysis, fluid flow analysis, and manufacturing processes. Thus,

company expertise from several disciplines was captured in the design process tasks and

their interdependencies. During this project, the need for a structured approach gradually

emerged, and it was decided to employ a DSM.

When the prototype design automation system was tested and the development of the

final system was approved, the structure of the design process was clearly represented by

the DSM models.

2 1 7 Process Architecture DSM Examples

Figure 7.1 3 . 1
Plate heat exchanger (courtesy of Alfa Laval Lund AB).

2 1 8 Chapter 7

Requirements
Prognos is 2

Type of concept 3
Specification 4
Main dimensions 5

Materia l selection 6
Gasket design 7

Cross section design 8
Cross section analysis
Pattem design

Strength requirements 1 1
Product p a rt design

Cutter des ign 1 3
Tool part design

Tool preparation
Tool manufacturing
Prototype series

Figure 7.1 3 .2

1 2 3 4 5 6 7 8 9 1 0 11 1 2 1 3 14 1 5 16 1 7

Sequenced DSM identifying a block of seven coupled tasks in the heat plate exchanger design process.

Model

The main steps of the design process are represented in the DSM shown in figure 7.13.2.

The tasks are represented in a sequence that has evolved over many years of practical

experience.

The DSM identifies seven coupled tasks forming a circuit involving design and analysis

of flow channel cross section (8, 9) , channel pattern design (10) , strength analysis (11) ,

plate design (12) , design of the cutter for machining the press tool (13) , and press tool

design (14) . These tasks require involvement from three different departments: design

office, strength analysis, and production preparation.

To analyze the circuit in enough detail to devise a solution algorithm, tasks 8-14

were expanded to the parameter level. The resulting matrix, before analysis, is given in

figure 7.13.3 .

Using a standard algorithm, we resequenced the DSM to arrive at the DSM in figure

7.13.4, where it is apparent that the dependencies form two clusters of parameters that

relate to two separable design issues -design of flow channel cross section and flow

channel pattern (layout).

Reaching a solution requires an iterative approach with assumed starting values for

parameters with feedback dependencies (the seven superdiagonal marks remaining in the

DSM). This is in fact an optimization problem where the coupled parameters are best

solved using a suitable standard optimization algorithm.

In ut
eSO'Rd
eso:v
eSO.aT
eSO:h
eSA:V_e
eSA:Rd_e
CSA:aT_e
CSA:Yf
CSA:tMin
CSA:dt
CSA:d
PAD:af

PAD:am
PAD:ap
PAD:J
PAD:I

PAO:Beta

SR:af..e
SR:am_8
SR;ap_e
SR:Beta_e
SR:Aftetd
SR:Af
SR:Am
SR:Ap

R:dAMln
PRO:V
PRO:Rd
PRO:aT

PRO:I

PRO:j
PRO:Beta
PRO:h
CO:Vv
CO:R
CO:h
TO:VV
TO:Rd
TO:aT

TO:Beta

TO:l

TO:j
TO,h

TO:Vmln

TO:dtMln

TO:aTMln

2 1 9 Process Architecture DSM Examples

4
5 1
6
7
8
9

1 0

1 1
1 2
13
14
1 5
16 1
1 7

18
19
20
21
22
23 1
24
25
26
27
28
29
30
3 1

32
33
34
35 1
36
37
38
39
40

4 1

42
43

44
45
46
47

2 3 4 5 6 7 8 S 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

1 1
1 1 1

Figure 7.1 3 .3

1 1 1
1 1

1 1 1 1

1 1

1
1

Expansion of the coupled block of seven design tasks to the parameter level.

220 Chapter 7

In ut 1
CSO:h 5
CO:Vv 35
iTO:Vmln 45
TO:dlMin 46
iTO:aTMln 47
CSA:Rd_e 7
CSA:V_e 6

CSA:aT_e 8
CSA:d 12
CSA:Yf 9
CSA:dl 1 1
CSA:lMin 10
CSO:aT 4
CSO:V 3
CSO:Rd 2
PRO:h 34
iTO:VV 38

22
23

.Bm_e 20
25
19
1 7
24

:ap_e 21
PAD:) 16
SR:ap_8 26
SR:dAMln Z1
PAD:ap 1 5
PAD:.' 13
PAD:arn 14
PAD:BeIa 18
PRO:V 28
PRO:Rd 29
PRO:a! 30
CD:R 36
CD:h 37
PRO� 31
PRO:] 32
PRO:Beta 33
iTO:Rd 39
:TO:sT 40
;TO:h 44

:Bela 41
: 1 42

1 2 3 4 5 6 7 8 9 1 0 1 1 12 1 3 14 1 5 1 6 1 7 1 8 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 "39 40 41 42 43 44 45 46 47

TO;i � � __ � ________ __

Figure 7.1 3 .4
Resequenced parameter-level DSM intermingling the original seven design tasks.

221 Process Architecture DSM Examples

Results

It is a common experience that when a work task is to be computerized, the manual

process that it supports or replaces needs to be described in a much more exhaustive and

stringent way than was previously necessary. This might be an obstacle, but it also provides

a great opportunity to review and streamline the process.

This application demonstrated how the DSM model and analysis can reveal critical

characteristics of the design problem. This showed how to implement the design automa­

tion system in an optimal way. The DSM identified the sequence of process steps, includ­

ing where parallel work can be executed and how the coupled tasks could best be solved

through iterations. This is a natural extension of the use of DSMs for process mapping

and planning and satisfies the increased stringency required when developing design

automation systems.

References

Amen, Rafael, Ingvar Rask, and Staffan Sunnersjo. 1999, September 12-15. Matching Design Tasks to Knowl­
edge-Based Software Tools- When Intuition Does Not Suffice. Proceedings of the ASME International Design
Engineering Technical Conferences (Design Theory & Methodology Conference), Las Vegas, NV.

Rask , Ingvar, and Staffan Sunnersjo. 1998, October 6-8. Design Structure Matrices for the Planning of Rule-Based
Engineering Systems. Proceedings of the European Conference on Integration in Manufacturing, Goteborg,
Sweden.

222 Chapter 7

Exam p l e 7.1 4 E l evato r Design Process

Contributor

Sule Tasli Pektas

Bilkent University

Problem Statement

The Industry Foundation Classes (IFC) project is the world's largest effort to date

aimed at standardizing the representation of building product and process knowledge.

IFCs are developed by an international nonprofit organization named BuildingSMART

and have become widely accepted as the international standard. The process modeling

methods used in the IFC development are IDEFO and Business Process Modeling

Notation (BPMN). This study observed two important limitations of the IFC process

modeling:

• IDEFO and BPMN are only able to create well-structured models when the activities

include a sufficient level of detail. They represent the dependencies in the process in a

limited way, so it is difficult to see the true architecture of the process .

• The tools were employed in merely a top-down fashion, where the modeling begins at

a high level and is decomposed as needed. However, it is also useful to go backward

(i.e., to use the deliverables as building blocks and integrate the model from the bottom­

up). This also helps to verify the accuracy of the interactions in the model.

Thus, this study demonstrated the complementary use of parameter-based DSM models

with conventional higher level process models in the construction industry.

Data Collection

We applied the parameter-based DSM modeling in a case study of elevator design. An

architectural office, its engineering collaborators, and an elevator provider participated

in the study. Sule Tasli Pektas collected the data through inspection of design documents

and interviews with designers over five months.

First, higher level IDEFO process models of the elevator design process were produced

in compliance with the IFC process modeling notation. Then a parameter-based DSM

model of the process was developed to provide better insights into the processes. The data

collection process was highly iterative; the draft models were often revised according to

the comments received from the participants.

223 Process Architecture DSM Examples

Model

In the DSM model shown in figure 7.14.1, marks in a row represent inputs to a parameter

decision while marks in a column represent the output results of the parameter decision

(IRIFAD convention). Colors associate the parameter decisions with higher level activi­

ties. Parameters highlighted in red on the diagonal are critical ones that would appear to

cause large iteration cycles in the process.

Results

This bottom-up, parameter-based approach provided new insights into the higher level

tasks and allowed the improved process to be based on the rational and natural informa­

tion flows rather than superficial assumptions. To illustrate how the parameter-based

DSM helped to improve the higher level models in the case study, a simple example was

extracted from the large models.

Figure 7.14.2 shows two coupled activities in the elevator design process. However, the

detailed structure within this cycle (i.e., which parameter decisions within the activities

depend on each other) is not clear from either the IDEFO view (a) or from the high-level

activity-based DSM (b).

However, the parameter-based DSM decomposes the two-coupled activities to the

parameter level. This shows the parameter decisions in a more detailed process map

(figure 7.14.3a). When this DSM is resequenced, the appropriate ordering of decisions is

obtained, and, in this case, the iteration is removed from the process (figure 7.14.3b). As

a result, the parameters in the process can be regrouped into three activities instead of

the original two. In this way, the integrated process model can be based on the more

detailed information flows rather than just the overview activities.

Of course, this example is simple, and in many cases iteration cannot be totally removed

from engineering design processes. However, we applied this approach in two case

studies in building design, and we believe that the findings of these studies supported

the complementary uses of the parameter-based DSM with the conventional IFC process

models.

One challenge of the parameter-based DSM observed in this study is the large number

of parameters to be determined by the design processes. However, capturing and manag­

ing all parameter decisions in a process may not be necessary. In order to increase the

efficiency of the models, the parameter-based DSM decomposition can be used only for

the problematic activities such as highly coupled activities, activities that involve many

actors, or critical activities that tend to cause delays in the process. Thus, this study dem­

onstrated the functionality of the parameter-based DSM. We believe that this procedure

can be further explored and exploited in many ways.

224 Chapter 7

��� __________________ �,..1 2 3 4 5 6 7 9 8
Building Type 1 • 10 1 1 1 2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2B 29 31 32 33 34 35 36 37 3B
Building Slyle 2 ..

T.T�en�a�ng���p,e ________________ �3��X�����������������+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-�� F loor Area
Building Siruciure layoul

x x l
X X x l

I
j i

I X X
Average Number of Passengers per Tnp 1 1)(Xx BI�X
Conl ract Capacily 1 2 X

fA�ve��=a�g. ,e�H�li�g. lhfe�s�I �Ca�I�I R�eve�r-sa�I�F�lo-or------�1�3�+-;--r-+��Xrl--+���h;X X --r-+_;__r_+��r-t-+-;--r-+�--r-+_;--r_+��r-t-+-;-;
fA�.�e���g,e�NPu�m7b�er�o�f���o�p,s����-----+fI4�-+�--t-;--r�--r-+--r-+��X� --t-;--t-+--r-+�r-+-;--t-;--t-+--r-+�r-+-;--t-;--t-+-;
f.C�o�n�I�%c�I�S�p,e�e�d����----------�1�5rX���r-+-�Xrl--t��r-t-�X;-� Irn�. r-+-;--r-+�X;--r-+��r-t-+-;--r-+�--r-+-;--r-t�-i
Singl e Floor T�nsil Time 16 X X X�
Car Door Opening Configuration 1 7 X I

f.O�o�o�r�O�p,en='i�nW�'C�lo�sl�n�g�Ti�m�e��--------i7.18�-+-;--t-;--t-+--r-+--r_+-;�t-;--r-+-- X Rar-+--r_+�r-t-;--t-+--r-+--r_+-;--t-;--t-+--r-i
l

Time Consumed when Stopping 1 9 X Il1!l X I
f.vv.�'�th�G�e�a�rin�,g� ________________ -f.20����r-t-+_+-;-_r-r_+-+��r-rX��-f�����I���r-r-+-+-;_;--r-+-+-f�--r-r-+-+-;I F l oor Cycle Time 21 X X -P'\ I
Average Passenger T�nsfer Time 22 X X rtI X X X I
Round Trip Time 23 X IrB X X X X X

X X Uppeak Handling Capacily 24 X X I
f.N�u�m�b�e�r o�f�E�I��a�l�ors��L-----------�2�5r-+-;--r-+��r-t-+--r.���--r-+-;__r_+��r-t-+--r.X� X ��r-+-�X�X���r-t-+-;--rX�7.X; X X X X X X X Elevator Type 27 X _ I

X)(
X Car Deplh 29 X X � X I

Car GrouPInQ 31 X X W:=!_I---+-+-+-;-;-; X X
Structural Frame LH Side Clearance 32 .La

Figure 7 .14 .1
A partial view of the partitioned DSM model of the elevator design process.

225 Process Architecture DSM Examples

Car Detai ls Number of Cars

(a)

(b)

Figure 7.1 4 .2

Decide Hoistway
Dimensions and

Detai ls A21 51

Design Software

Hoistway Length
HOistway Width
Hoistway Height

Decide Pit
Dimensions A21 52

Firm Design Detai ls

Decide Hoistway Dimensions and Detai ls
Decide Pit DimensIons

1
2

Hoistway Finishes
Type of Guiderai ls

Pit Headroom
Pit Sump Recess Length
Pit Sump Recess Width
Pit Sump Recess Height

1 2
X

X

Two coupled activities in the elevator design process: IDEFO view (a) and activity-based DSM view (b) .

Hoistway Width 1 Hoistway Width

Hoistway Depth 2 Hoistway Depth 2
Hoistway Height 3 Hoistway Finishes 4
Hoistway Finishes 4 Pit Headroom 6
T pe of Gu iderails 5 Hoistway Height 3
Pit Headroom 6 Type of Gu iderails 5
Pit Sump Recess Length 7 Pit Sump Recess Length 7
Pit Sump Recess Width 8 Pit Sump Recess Width 8
Pit Sum Recess De th 9 Pit Sum Recess De th 9

(a) (b)
Figure 7.1 4 .3
Two coupled activities of the elevator design process: the initial parameter-based DSM (a) and the resequenced
DSM (b) .

226 Chapter 7

References

Pektas, Sule T. 20 10 , July. The Complementary Use of the Parameter-Based Design Structure Matrix and the IFC
Process Models for Integration in the Construction Industry. Proceedings of the 12th International Dependency
Structure Modelling (DSM) Conference: Managing Complexity by Modelling Dependencies, Cambridge, UK,
pp. 389-402.

Pektas, Sule T. , and Mustafa Pultar. 2006. Modelling Detailed Information Flows in Building Design with the
Parameter-based Design Structure Matrix. Design Studies 27 (1):99-122.

227 Process Architecture DSM Examples

Exam p l e 7.1 5 L.L. Bean Software Code Base

Contributors

Carl Hinsman

L.L.Bean, Inc.

Neeraj Sangal

Lattix, Inc.

Judith Stafford

Tufts University

Problem Statement

L.L.Bean is a large retail business whose development processes must be agile in order

to allow rapid enhancement and maintenance of its technology infrastructure. Over the

past decade, L.L.Bean's software code base had become brittle and difficult to maintain.

An effort was launched to identify and develop new approaches to software development

that would enable ongoing agility to support the ever-increasing demands of a successful

business. This example summarizes L.L.Bean's effort to restructure its code base and

adopt process improvements that support an agile, architecture-based approach to soft­

ware development, governance, and maintenance.

Data Collection

Over a period of six months in 2006-2007, a small team of software engineers at L.L.Bean

undertook two key tasks. First, we researched the abstract nature of software architecture

primarily through articles and academic papers. Managing dependencies is not a new

problem, and considerable research and analysis on a wide range of approaches was avail­

able. Second, we created a detailed model of the existing static dependencies in L.L.Bean's

Java code base and identified patterns in those dependencies.

Initially, a combination of open-source tools was used for graphing and dependency

analysis. The processes were computationally intensive, and there was a limit to the

amount of code that could be analyzed collectively. Furthermore, these views were often

incomprehensible and of little practical value in either communicating or managing the

architecture. L.L.Bean's research identified the Lattix DSM-based dependency analysis

tool as promising. The Lattix tool offered a comprehensive and easy-to-understand user

interface, a mechanism for prototyping and applying architecture rules, and support for

"what if" analysis without code modification.

228 Chapter 7

Model

The DSM model was created from L.L.Bean's Java-based application software. A Java

compiler generates Java byte code by compiling Java source code into Java classes. These

Java classes are in turn aggregated into Jar files. The Jar files were loaded into Lattix,

which extracted the interdependencies and created the DSM model. For purposes of this

model, we loaded Jar files for the infrastructure and the various application domains into

Lattix. The model was constructed by loading in more than 100 Jar files for a system of

more than one million lines of code. The code is organized into more than 100 packages

composed of 3,000 classes, thus yielding a DSM (figure 7.15 .1) clearly illustrating all

dependencies within the modeled code base. We accounted for dependencies such as

invocations, inheritances, data member references, and constructs.

Lattix generates a hierarchical DSM that is initially organized by Jar files and then by

the package and class structure within each Jar file. At each level of the hierarchy, it is

easy to see the coupling by applying a partitioning (sequencing) algorithm. The initial

model gave us a big-picture view of how various parts of the software were coupled

together. The numbers in the off-diagonal cells of the DSM indicate the strength of

dependency from one component to another.

Results

The initial model was a hierarchical DSM that reflects the Jar files and the package/class

hierarchy. This model was then transformed to the desired architecture. This meant creat­

ing abstractions for different layers, domains, and applications. The Java class components

were grouped into three categories: domain-independent, domain-specific, and applica­

tion-specific. These classes were organized into common layers according to their specific­

ity, with the most generalized layers at the bottom and the most specific layers at the top.

In this approach, each layer is governed by the principle that members of a given layer

can only depend on other members in the same layer or in layers below it. Each layer, or

smaller subset within a layer, is assembled in a cohesive unit, often referred to as a

program library or subsystem. These cohesive units were Java Jar files. This approach

produced a set of independently developable components that are not coupled by cyclical

interdependencies.

Modeling the desired architecture also gave us visibility into undesirable dependencies.

Three key errors were identified that were at the core of the interdependency entangle­

ment. We classified these as Misplaced Common Types, Misplaced Inheritable Concrete

Classes, and Catch-all Subsystems. Within Lattix, we moved Java classes to their appropri­

ate package according to both their generality/specificity and their behavior/responsibil­

ity. At the end of this process, we were surprised to observe that nearly all undesirable

dependencies at the top level had been eliminated. (Note the absence of superdiagonal

I

1
7

89

1
2

4
1 0
1
8
2

3

229 Process Architecture DSM Examples

74 4 5 2
1

13 2
1
3
5
6

1 2
4

97
4 1

6 2 2 2
I 2 2 3 4

1 0
2
4

3 8 3

t-+
1

19-13
2 ---,� -

1 1 I 16 I 1 4
2 I l

i
2 1 tL j I f-
7 18 3 ·r r-

65 6 171 1 7 2 2 7 32 3 4 2 1 2
2 27 3 I I

1 I
4 16 4 2 2 I 4 1

I 5 I 1 1
12 I 38 1 1 1 5

1
7 21 II

l
3

1 I 3 I
2 '30 10 6 20$ 22 6 1 3 1 26 3 1 5 5 24 1 6 1 2 I 1 2 1 I --+-12 302 16 26 ... 43 2 4 1 16 73 4 44 12 14 4 1 8

2
2

Figure 7.1 5 .1

4

1
1

8

1 3

+-
.-o t t+ -I-

+
1 I

I -L 1
3

�
-r I

3
7
I

:..J-+ t u i I l-
i- 2

-

30 -+-- f31 38 ' 8" I !
I I I I 1 I I
I I I 1 , . 2 1 I 2 -

F 5

=S1
16 1 ,-- 1 1 1 >-
4 I-

I -l-i-I I

2 1 1 r: I
56 1 1 5 I I 2 I 1 2
10 2 1 f- c-- 104 4 10 4 54 13 61 3 2 3'71i3
2

1 2
1 2

An excerpt from the full DSM, showing the partitioning result for a selected module.

,
I

5 I
I

1 I

I
1
,
I
I
,
I
I
I

I I
1 I

,
I
I I f-

- '
I
I
I
I
I
I
,
,
I
I
, 4- , t I ---I-

2 2

I
1 1 1
1

1 I
r I

2 I
�. I

I 1 1
1 I 1 ;LJ, 1 1
1
2 2 1 28 6 1 4 4

I
.J

230 Chapter 7

References

III a. n
"U 0 0
� 3 3
o· III 3

$root III :i" 0 !:!: ::J 0 I/) ::J

.- N IN

ItJ application 1 26%

r±J domain 2 469 35%
!±l commons 3 1 4 1 E 2360 38%

Figure 7.1 5 .2
Top-level DSM showing the total number of dependencies among the three main modules.

entries in figure 7.15.2.) Furthermore, modeling the desired architecture also gave us vis­

ibility into the causes for the cyclical dependencies between Jar files that had caused

difficulties in our build system.

To maintain the architecture, a set of rules was created that could be applied to the

DSM models, thereby further improving the visibility of maintenance processes. These

rules enforce a layered architecture and essentially state that members of a given layer

may only depend on other members in the same layer or in lower layers. Rules also help

software engineers identify reuse candidates. When violations occur, the nature of the

dependencies and the specific behavior of the Java code are closely analyzed. If there are

multiple dependencies on a single resource that break an allowed dependency rule, then

the target resource is a candidate for repackaging to a lower level.

The DSM model provided consistent visibility and supported ongoing communication

among development teams, configuration engineers, and project leaders. It also facilitated

change impact analysis.

L.L.Bean found that increasing the visibility of software architecture greatly reduced

architectural drift as the system evolved and at the same time reduced ongoing mainte­

nance costs. Architectural visibility also provided guidance for large-scale refactoring.

L.L.Bean discovered that changing the structure of the system can sometimes be achieved

without substantial code modification. Large-scale reorganization is a complex process

that, when done with proper tool support and in a disciplined software development

environment, can be highly effective. The results of this experience demonstrated that

architecture-based analysis can improve the productivity of software development.

Clements, P. , F. Bachmann, L. Bass, D. Garlan, 1. Ivers, R. Little, R. Nord, and 1. Stafford. 2003. Documenting
Software Architectures: Views and Beyond. New York: Addison Wesley.

231 Process Architecture DSM Examples

Hinsman, c., N. Sangal, and 1. Stafford. 2009, June 24-26. Achieving Agility through Architecture Visibility. Inter­
national Conference on Quality of Software Architecture, QoSA 2009, LNCS 5581-01 16 , East Strassburgh,
PA.

Sangal, N. , E. Jordan, V. Sinha, and D. Jackson. 2005, October. Using Dependency Models to Manage Complex
Software Architecture. Proceedings of the 20th annual ACM SIGPLAN Conference on Object-Oriented Pro­
gramming Systems Languages and Applications, San Diego, CA, pp. 167-176.

Stafford, 1. , D. Richardson, and A. Wolf. 1998. Architecture-Level Dependence Analysis in Support of Software
Maintenance. Proceedings of the 3rd International Conference on Software Architecture, Orlando, FL,
pp. 129-132.

8 Multidomain Architecture MOM Models

Functions-Components
MOM Representation of

an Integreted Starter
Generator (ISG) Hybrid

Product Functions DSM
1 2 :I 4 5 6 7 8 10 11 12 13 14 15 16 18 19

� f j 1 fw�!.�
.fi � ,� 8 E
Oi 'Sl !] ::. :;
� � I � j � i':>���[� 0

a; � � � :::. �
.liS: :6 ��iE j l � � ��l�!� � � � � � s �
� ���§1S.

1 �s-oorn�Fu -e l----------------"
� 8�8'[8

2 Store ElectJ1c Energy
3 Convert Fuel Into Medlanioal Energy

4 Convert Mechanicalinlo ElecUical Energy
5 Convert Eleclricalinoo Mechanical Energy
6 Deliver (Recover) lorquelo (from) wheels
7 Convert Momenltransferred (mechanical)
8 Equal. Rotation

10 CouptaJUncoupte Momenl

11 Release Energy as Heal 10 Ihe Environment
12 Transfer Heal (10 Cooling syslem)
13 T18nsfer Momenl 10 (from) the road
14 Slow or Stop Vehicle (recovering energy)
IS Slow Of Stop Vehicle (using friclion)
16 Control Energy Flow
18 Consume EI. Energy for AuIO Accessory OPS
19 Consume Mach. Energy lor Engine Accessory
1 Fuel Tank

2 High Vollage BaUery
4 Inlemal Comboslion Engl
5 E-Molor/Generalorl

11 Transmission
13 DlllerenUal Gear
18 CJUlch Dlrecl Coupllngl
21 Coonng syslem
22 Wheels
23 Brak ... syslem

24 Power Electronics/Inverter

28 Additional Eleclric Accessories
27 Mechanical Accessories

Figure 8.1

I 1

1 1

1 1
1 1 1

1 2 J 4 5 6 7 8 10 11 12 13 14 15 16 18 19 1 2 5 11 13 18 21 22 23 24 28 27

Functions-Components DMM Components DSM

MOM model of BMW's hybrid vehicle starter/generator architecture, including two OSM domains-compo­
nents and functions-and the OMM relating them (example 9.1).

234 Chapter 8

Background

So far this book has shown DSM models representing architectures of systems in a single

domain-product, organization, or process. In this chapter, we introduce matrix models

representing two or more domains at once. There are various forms of multidomain matrix

(MDM) models, and here we present some of the ways they can be used and the types

of insights gained through such applications. We begin with a brief synopsis of terminol­

ogy used in discussion of MDM models.

Terminology

Domain The realm of the elements comprising a DSM model of a system (e.g., product,

process, organization, etc.) . For multidomain models, elements are typically grouped by

domain, at least initially.

1.5d DSM An extension of DSM modeling in which each element belongs to one domain

but is also tagged (e.g., by color coding) according to its relationship with elements in a

second domain.

Domain Mapping Matrix (DMM) A (typically) non-square matrix mapping the domain of
one DSM to the domain of another DSM.

Multidomain Matrix (MDM) An extension of DSM modeling in which two or more DSM

models in different domains are represented simultaneously. Each single-domain DSM is

on the diagonal of the MDM, and the off-diagonal blocks are DMMs.

As the breadth of DSM applications expanded in the 1990s and early 2000s, researchers

sought ways to represent the relationships between elements in different domains.

Eppinger and Salminen (2001) and Browning (2001) discussed three mappings across

DSM domains: product components to organizational units, process activities to product

components, and organizational units to process activities. DSM-based models have now

been extended to two or more domains, which have been termed multidomain matrix

(MDM) models by Maurer (2007). Moreover, a great many applications outside the DSM

umbrella have utilized various types of rectangular matrices to map across domains,

including Quality Function Deployment (QFD)-which maps customer needs to product

specifications, among other things-(e.g., Akao 1990), Axiomatic Design-which maps

product requirements to components-(Suh 2001), and the Responsibility Allocation

Matrix (RAM)-which maps activities to people-(PMI 2008), just to name a few. The

fundamental commonality among such methods is the need to model a greater variety of

relationships among different types of elements or among the elements of what may be

considered to be different systems.

235 Multidomain Architecture MOM Models

Although complex engineering projects may be considered to be individual complex

systems, a number of different systems have been identified, modeled, and studied within

projects. So far this book has focused on three such systems: the desired result (product) ,

the work done to get to that result (process) , and the people who do the work (organiza­

tion). Maintaining the distinctions between these systems has enabled focused modeling

and the generation of insights that might not have been as apparent otherwise. For

example, Browning et al. (2006) distinguished five critical domains in a project (figure

8.2): the product system (desired result) , the process system (activities done to get the

product), the organization system (organizational units that perform activities) , the tool

system (tools, technologies, facilities, and resources used by people to do activities), and

the goal system (requirements, targets, objectives, and constraints for and on the other

four domains). In complex projects, each of these domains is a complex system, each has

an architecture, and each affects the others. (Moreover, as figure 8.2 indicates, these

domains may also interact across projects, such as when an enterprise endeavors to use

a common process, tool set, or organizational resources across projects.) To explore such

cross-domain effects, modelers need multidomain methods. Because the DSM has shown

great benefits for modeling and gaining insight into complex systems, it is not surprising

that extensions to the basic DSM have developed to enable such efforts.

In this chapter, we discuss three types of cross-domain modeling constructs related to

the DSM:

1. The 1.5-domain DSM (LSd DSM) extends the basic DSM by adding an enhanced

representation scheme (such as color coding) to project the shadow of one domain

Project

Organization]

Product

Figure 8.2
Five domains or systems in a project (adapted from Browning et al. 2006).

236 Chapter 8

(such as the organizational unit responsible for an activity) onto the DSM of a focal

domain (such as the activities in a process).

2. The domain mapping matrix (DMM) is a rectangular matrix that shows the relation­

ships between two domains (such as people assigned to activities). A DMM does not

show the relationships within either of the domains; it only shows the mapping between

them.

3. The multidomain matrix (MDM) combines two or more DSMs and DMMs into a

larger, multisystem (or "system of systems") model.

Extending DSM to More Than One Domain: 1.5d DSMs

A simple extension of the common single-domain DSM model is achieved by labeling

the DSM elements according to their relationship with elements in a secondary domain.

This can be implemented by adding one (or more) columns next to the element labels,

indicating their situation in the second domain. Figure 8.3 shows a simple example of the

1.Sd DSM approach. In this illustration, there are nine DSM elements (labeled 1-9) in

the primary domain. They are mapped to three elements (labeled A, B, and C) in the

secondary domain. The DSM is partitioned based on the structure of the primary domain.

Colored shading of the names according to the secondary domain assists in understanding

the cross-domain mapping.

Typical uses of a 1.Sd DSM would be to tag the tasks in a process DSM with the orga­

nizational responsibility of each task (see example 7.4) or to identify the suppliers of each

component represented in a product DSM (see example 9.3).

Secondary Primary 1 2 3 4 5 6 7 8 9
A 1 1
B 2 X 2
A 3 X 3
C 4 X X 4
A 5 X X 5 X X
B 6 X X X X 6
B 7 X X 7 X
C 8 X X X 8
A 9 X X 9

Figure 8.3
The l.Sd DSM represents a primary DSM domain and labels the elements with a second domain.

237 Multidomain Architecture MOM Models

, Process
DSM Process-Organization

DMM

pxo
pxp

Organization
DSM

oxo

Figure 8.4
The DMM relates the elements of one DSM domain to elements of another DSM domain-in this case, process
activities to organizational units.

Mapping Between Two Domains Using the DMM

Rectangular matrices are commonly used to map the relationships between two sets of

items. Danilovic and Browning (2007) reviewed several examples of such uses and codi­

fied the term DMM as an inclusive term, complementary to DSM. The DMM is a rect­

angular (n x m) matrix mapping between two domains, such as the process and organization

domains shown in figure 8.4. Each individual domain may be modeled with a DSM, which

captures the internal relationships between its elements (and sometimes also external

relationships with elements of the same type) but not relationships to the elements in

other domains. Like a DSM, a DMM may be binary, merely indicating the presence or

absence of a direct relationship, or it may contain numbers or other symbols indicating

the strength, degree, or type of relationship across domains. For example, the DMM in

figure 8.4 could correspond to the responsibility allocation matrix (RAM) used by project

managers, which is also called a RAeI chart because it can be used to indicate four types

of person-to-activity relationships: responsible, accountable, consult, and inform (PMI

2008).

Figure 8.5 shows a binary DMM mapping customer requirements to product specifica­

tions (i.e., essentially a top-level QFD matrix). Figure 8.6 shows the same data after a

clustering analysis, identifying four major and one minor cluster with the rectangular

•

•

•

•
• • •
•

• • •

•
•

• •
•

•
•

•

•
•
•

•
• •

• •
•

•

•
•
•
•

•
•

• •
• •

•
•

•

•
• •

•

•

•

•

Produci pcclncatlon
• ookinll of clIslnrd
• Ocrro.tJ ook fioh r,lcI

• • ... Forcod CmiVeclion lIocording 10 DIN .1;]lIdunl,

• c};\S1 ull w[",·tJck
. .� hlekcn legs. combl

I'lIdltlonlll high power ond low power

• .. IE derrosl

• .. Reheul power x,� W

• . .. T"ll.l, Qn whole ghelr"rell
• Whol� �rt!1I U!mhlc

• ;:: CIIV I)' dcplll
• � Cavlly width
• !;; OVIIY openinG wldtll

• :;: Cuvily hoi(llli

•
•

;;: 000 visibilily oolh with opcn pnd 010 cd door

;: Nni�e leVel
• :; MW omoloney

;; Able 10 .witch olTlh dlaplny'l

::; IlIlm: Lurgesl covlly In the l110rkcl
:; Tillie from un pocked uDillo in lolled unil

•• Product dimensions inside coblnet
� Producl deplh inside cllbinet
t= 1!.I�ri\Jr lind inlerior heighl
� OOu •• urfa e nush with V"vity bottom wholl OpOIl

t� oillponanls obovo cavity
l;! Ensy 10 open and clos the door
!j Boll m hinged door dcsilln

!; Drop down door

t; No "dirt \nIPS" Ihul impede ole!lni,,¥
� I!nl!y 10 1;1o"n cavity. door und <011111,11 ponel
::: Aqua.R�I1I.E1l'o oMln.1 nn In.lde vuvlty .utfllce.
l:l Using design clemen IS I'ronllNldltlottul oven

t:: Viewing ongles
:c Disploy inlensiiy

I:: Di�phlY lexl PDd symbols eu,)' 10 undCl1!lnnd
� lellr gruphit nnd bulltmll
:; Vlllihi. and clear symbQI!l/button.

� tl�lIr tFU lind QRG

� Bill colour Gild surl ce IfCntmelll 3S olitor npllliollCllS

• � Dine oe [itcHes 08 cooking
L.:;.�.;",, ___________________ -, � op 10Iernne.'5

Figure 8.5
Example of a DMM before clustering analysis (adapted from Danilovic and Browning 2007).

•
• •

• • •
• • •
• • • •

• • •
• • •
• •
• •

[;] • •

• •
• •

• •
• • • •
• • •

•
•
•

•
• •

•
•

• •
•
•

•
• •

• •
•
•
•
•

•
•
•
•
•
•

Figure 8.6

:;
�
...

�
�

I� '" ..
1::
iJ ..
�
...
:;:

1=
:::
�
I;!
::
i:
,. '"
;;;
..

• ...
• '"

It '"
Ui

r
.. ""
::l
;;
:;:
:;;
:::
::
:;;

I'"
Ui

..
,.,
-
,. ."
..

I'roolle' pcclncMtion
luionl LRl'gu.' ell Ii)' In Ih" nlarke,

Produci depth in ide cobiDCI

1',,1<1"0' dhnen.loHillnalde eObirlCI
U inll dosilln clcmenl5 from /nldilion"1 nven

ICAr grophl ond bullon
Vi.iblc und olOllr .Yl11bollC!bulion.

nm� colour Ind 'urthce treutment us otlier IIpplfone�H

VI.wioll! '1II11le.

sy 10 open Dnd CIONC the door
Tim" I;'OIn unpilekod unll lu In�lulll!d unll

I'or cd convc lion occ(lrdiJl� 10 n1N stond Ird�

Nolilo Icv,,1
lip 1(lI�mneo:s

Icor I U nnd QRO
Door �urrncc nu!Ch willl cuvity bottom wlum open

lerlor (lnd inlerior hei hi
Aqua.ltoul. fi •• onal1l", olllMld" euvll)' .urlueC!!

o y 10 cleon ellvliy. door Dnd conlrol ponel

Nu "dlrl lrllp'" Ihlll illlpede delln nl!

'000 vlSihililY pnlh wllh (lPclIlIl,d �Insed dllnr

Reheai power xxx W
To�·d. on whole Nhe!" DrQU

Tou Ion wlr'-l'Ock

Snme IJcjlhcLlolC tl.'f cunking

Disploy lexi nod symbols cosy 10 under lond
DlsplllY Inlcnslly

Drop do\vn door

HOllom hlnycd door design

Whole Ilrcll ij�lIhie
avlty heigh I
IIvily oponing wldlh
"vlt)' widih
IIvlly deplh

MWcm�ien�y

I C'dorm'l

Tmdilionnl hillh power Illd low power

eh eken lell8. Qmbl
Defro.1i nok r.�h mel

(' king 01' UBlnrd

ompollconl.K nbove cllvily

Able 10 swll�h 011' Ihe dlspl, � •

Example of a DMM after clustering analysis (adapted from Danilovic and Browning 2007),

240 Chapter 8

outlines. (Note that the DMM does not necessarily contain marks along a diagonal, so

the clusters may appear anywhere in the matrix.) This analysis shows how a particular

group of customer requirements is addressed by a set of product specifications. (In tradi­

tional QFD analysis, this tends to happen only in terms of individual elements, not sets

thereof.) The clusters indicate where a high level of relationships requires intense coor­

dination across domains or within each domain due to mutual relationships with the other.

Figure 8.6 also identifies an area without relationships between the domains, the last two

columns, where two product specifications do not correspond to any customer require­

ments. This implies that we might be missing some important information from the cus­

tomer requirements, or that we might have introduced some superfluous product

specifications. Thus, DMMs can help clarify the relationships between domains, and they

may furthermore help verify the elements comprising each domain.

Modeling Within and Between Two or More Domains Using the MDM

DSMs and DMMs may be used in conjunction to analyze the influences of one system

domain on another or to infer the presence of elements and relationships in one system

from another. This possibility led to the proposition of a matrix of matrices, as illustrated

in figure 8.7. When Mendeleev proposed the periodic table of elements, not all of the

elements had been discovered, but their likelihood of existing could be inferred from the

open slots in the table. Similarly, at the time of figure 8.7 (circa 2004), not all of the DSMs

and DMMs existed in actual applications. Since then, various combinations of DSMs and

DMMs have been proposed and explored, including subdomains of the product system

(Danilovic and Browning 2007), the Engineering Systems Matrix (Bartolomei 2007), and

several other combinations (e.g., Lindemann et al. 2009; Maurer 2007). By 2007, Maurer

had codified the term multidomain matrix to refer to such applications, and this term

gained popularity in the DSM community.

Analysis techniques for the MDM are still being contemplated and developed. It is not

yet clear how best to analyze an MDM holistically because it contains a mixture of static

and temporal DSMs. Should an MDM be clustered, sequenced, or both? Or might some

other kind of analysis provide still further insights? Several of the presentations at the

recent DSM conferences provide further explorations of these possibilities and applica­

tions, as do the examples in chapter 9.

Special Case for Two Domains

When two domains are decomposed such that there is a one-to-one mapping from one

to the other, we have a special case that can be considered without using a DMM. Several

possible examples may be: One person is assigned to each process activity, one team is

designated for each product component, or one product specification corresponds to each

241 Multidomain Architecture MOM Models

Goals
Goals- Goals-

DSM Product Process
DMM DMM 9 xg
gxd gxp

Product
Product-

DSM Process

dxd
DMM
dxp

Process
DSM
pxp

Figure 8.7

Goals- Goals-
Organization Tools

DMM DMM
gxo 9 x t

Product- Product-
Organization Tools

DMM DMM
dxo d xt

Process- Process-
Organl�atlon Tools

DMM DMM
pxo px t

Organization
Org.-
Tools DSM DMM

oxo
oxt

Tools
DSM
txt

"Periodic table" of OSMs and OMMs, forming an MOM (adapted from Oanilovic and Browning 2007).

customer need. The one-to-one mapping means that both DSM domains have the same

number of elements and that the DMM relating them would be trivial (an identity

matrix). Moreover, we can directly compare the two DSMs by ordering the elements the

same way in both matrices and examining the set of off-diagonal interactions in both

matrices. Analysis of this sort has compared product architecture to organizational archi­

tecture, with fascinating insights regarding organizational effectiveness (see example 9.2).

Applying OMMs and MOMs

DMMs and MDMs have been applied to a range of industrial problems and have begun

to produce many useful insights. Many examples are given in the next chapter. Typical

and potential applications include:

• Identifying needs for cross-functional, cross-team interactions in an organization based

on interactions among product components or process activities (see examples 9.2, 9.4,

9.6, 9.12).

242 Chapter 8

Conclusion

References

• Inferring elements and/or interactions in other domains. A DSM and a DMM can be

used to infer the intra-domain relationships in another DSM. This can be used both as

a starting point for building another DSM and as a means of verifying the information

therein. Furthermore, in a dynamic sense, changes in one domain may signal or trigger

particular changes in the other, making an MDM a potential source of leading indica­

tors of product, process, organizational, or other changes. Such inferences can also be

used to focus the attention of those modeling or monitoring the system on particular

areas of expected interest (see examples 9.5, 9.6, 9.11, 9.12) .

• Project architecting and evolution. How do the domains comprising a project affect each

other? How do similar domains relate across projects? Is there a preferable order to

the design of the systems comprising a project? That is, perhaps the desired result

(product architecture) should determine the appropriate activities to be done (process

architecture), which should then determine the appropriate organization architecture.

But then what process and organization architectures should be used to determine the

product architecture? Clearly, each of these systems must co-evolve over the course of

a project. An MDM can help model and analyze these dynamics and the emergent

behaviors of the systems (see examples 9.6, 9.7, 9.11, 9.12).

MDMs provide a promising avenue for modeling complex, multidomain systems such as

projects. MDM models can be rich and complex, encapsulating a lot of information, so

they hold great potential for applications that require organizing, managing, and analyzing

large amounts of information about product, process, organization, and other elements

and their intra- and interdomain relationships.

Morelli's master's thesis at MIT, summarized in this IEEE Transactions article, developed

the first multidomain DSM model, with a mapping between and comparison of process

to organization domains.

Morelli, Mark D. , Steven D. Eppinger, and Rosaline K. Gulati. 1995, August. Predicting Technical Com­
munication in Product Development Organizations. IEEE Transactions on Engineering Management 42
(3):215-222.

Eppinger and Salminen presented the concept of using models in the three primary

DSM domains and explained how they could be mapped and compared across

domains. Browning also discussed several opportunities for applying DSMs across these

domains.

243 Multidomain Architecture MOM Models

Browning, Tyson R. 2001. Applying the Design Structure Matrix to System Decomposition and Integration
Problems: A Review and New Directions. IEEE Transactions on Engineering Management 48 (3):292-306.

Eppinger, Steven D. , and Vesa Salminen. 2001, August. Patterns of Product Development Interactions. Interna­
tional Conference on Engineering Design, Glasgow, Scotland.

Gulati and Eppinger explored the co-evolution of the product and organization architec­

tures of complex products, using examples from the automobile industry. Sosa's doctoral

thesis at MIT, summarized in a Management Science article, utilized DSM models in both

domains and compared them to assess the (mis)alignment between architectures across

the product and organization domains (see also example 9.2).

Eppinger, Steven D. , and Rosaline K. Gulati. 1996, May. The Coupling of Product Architecture and Organiza­
tional Structure Decisions. MIT Sloan School of Management, Working Paper no. 3906.

Sosa, Manuel E., Steven D. Eppinger, and Craig M. Rowles. 2004, December. The Misalignment of Product
Architecture and Organizational Structure in Complex Product Development. Management Science 50
(12):1674-1689.

Based on a paper and presentation at the 2004 DSM Conference, Danilovic and Browning

formalized the DMM construct and first suggested a "periodic table" array of DSMs and

DMMs that would later be called an MDM.

Danilovic, Mike, and Tyson R. Browning. 2007. Managing Complex Product Development Projects with Design
Structure Matrices and Domain Mapping Matrices. International Journal of Project Management 25
(3):300-314.

Maurer's doctoral dissertation first proposed the term MDM and explored several ways

that MDM models can be used.

Maurer, Maik S. Structural Awareness in Complex Product Design. 2007. PhD thesis, Technischen Universitat
Miinchen, Munich, Germany.

Lindemann, Udo, Maik Maurer, and Thomas Braun. 2009. Structural Complexity Management: An Approach for
the Field of Product Design. Berlin, Germany: Springer.

Bartolomei's dissertation investigated the use of MDMs (calling them Engineering

Systems Matrices [ESMs]) for modeling sociotechnical systems and the potential use of

real options in such systems.

Bartolomei, Jason E. 2007. Qualitative Knowledge Construction for Engineering Systems: Extending the Design
Structure Matrix Methodology in Scope and Procedure. PhD thesis, Massachusetts Institute of Technology,
Cambridge, MA.

Several types of cross-domain mapping matrices have been used in engineering and

project management, including Axiomatic Design, Quality Function Deployment, and the

Responsibility Allocation Matrix.

Akao, Yoji, ed. 1990. Quality Function Deployment. Cambridge, MA: Productivity Press.

Carley, Kathleen M., and David Krackhardt. 1999, June. A Typology for C2 Measures. Proceedings of the 1999
International Symposium on Command and Control Research and Technology, Newport, RI.

244 Chapter 8

Krackhardt, David, and Kathleen M. Carley. 1998, June. A PCANS Model of Structure in Organizations. Pro­
ceedings of the 1998 International Symposium on Command and Control Research and Technology, Monterey,
CA.

PMI. 2008. A Guide to the Project Management Body of Knowledge. 4th ed. Newtown Square, PA: Project
Management Institute.

Suh, Nam P. 2001. Axiomatic Design. New York: Oxford University Press.

Browning et al. discussed five interacting domains in complex projects.

Browning, Tyson R., Ernst Fricke, and Herbert Negele. 2006. Key Concepts in Modeling Product Development
Processes. Systems Engineering 9 (2):104-128.

9 Multidomain Architecture MOM Examples

Overview

This chapter presents 13 example applications of matrix models representing architec­
tures in multiple domains as listed in the table below. Each example describes the purpose
of the model (problem to be addressed), how the data were collected, how the model
was built, and the results. Where available, references for further information are also
provided.

Example Application

9.1 Hybrid vehicle
architecture concepts
(MDM)

9.2 Jet engine product and
organizational structures
(two DSMs)

9.3 Mailing system (1.Sd
DSM)

9.4 Team composition for
collaboration (DMM)

9.5 Political organization
(DMM and DSM)

9.6 Multidisciplinary
development of electric
sunroof (MDM)

9.7 Adhesive anchors and
dispensers (MDM)

Organization

BMW,
Germany

Pratt &
Whitney,
USA

Pitney Bowes,
USA

Audi AG,
Germany

United States
Senate,
USA

BMW,
Germany

HILT!,
Germany

Purpose

• Compare alternative product architectures for
hybrid automobiles in terms of structure and
functional capabilities

• Explore alignment of architectures in product
and organization domains

• Identify opportunities for and impact of
component and module design outsourcing

• Formalize interactions between design and
simulation departments

• Identify organizational structure of
interactions between members, inferred from
joint committee assignments

• Provide multidisciplinary system
understanding and an effective interlinking of
the discipline-specific development processes

• Visualize developers' interdisciplinary change
impact

• Identify suitable possibilities for adjusting the
system's configuration

• Support the design of experiments

• Identify measures for better control of the
system's complexity

246 Chapter 9

(continued)

Example

9.8

9.9

9.10

9.11

9.12

9.13

Application

Change packaging in
systems design (MDM)

Airport security (MDM)

Large-scale integrated
chip design for a 4G
mobile phone (MDM)

Automobile body-in-white
development (MDM)

Miniaturized unmanned
air vehicle development
(MDM)

Industrial supply chain
network (MDM)

Organization

Digital
Research Labs,
UK

Bauhaus
Luftfahrt e. v.,
Germany

Japan Society
for the
Promotion of
Science,
Japan

Audi AG,
Germany

Air Force
Research
Laboratory,
USA

Kalmar
Industries,
Sweden

Purpose

• Assist in identifying the most appropriate
change processing approach for a given
project

• Explore possible future threat scenarios with
respect to existing security measures

• Find an improved chip design based on better
understanding of the initial design processes

• Support a balanced improvement approach,
incorporating process, organizational, and
information technology aspects

• Examine the impact of engineer turnover
within the design organization

• Examine the effects of changing requirements
on the design

• Examine design evolution

• Identify platform and modularity
opportunities

• Explore the sources and effects of design
changes

• Develop collaboration plan

• Design information exchange process

247 Multidomain Architecture MOM Examples

Example 9 . 1 BMW H ybrid Vehicle Architecture Concepts

Contributor

Carlos Gorbea
BMW and Technische UniversiHit Munchen

Problem Statement

The BMW Group is a leading vehicle manufacturer based in Munich, Germany, known
for the BMW and MINI premium performance brands. In 2008, BMW's vehicle architec­
ture division investigated the structural relationships between functions and components
of various hybrid vehicle configurations. The study aimed at understanding how hybrid
vehicle concepts differ in structure and functional capability based on changes in their
basic configuration using MDMs.

Data Collection

The data collection was led by Carlos Gorbea during approximately four months of his
doctoral research conducted at BMW's Innovation and Development Center in Munich.
The work was performed alongside the BMW Future Hybrids Development Team and
Professor Udo Lindemann from the Institute for Product Development at Technische
Universitat Munchen (TUM). The data to build two-domain MDMs for eight hybrid
vehicle powertrain subsystem concepts were collected by means of workshops and meet­
ings with BMW subject matter experts. Subsequent analysis and interpretation of the
topic was worked with the help of Dipl. Ing. Tobias Spielmanleitner's thesis work at TUM
in 2008.

Model

Each MDM model is composed of a product architecture DSM showing physical compo­
nent connections (symmetric) and a product function DSM showing input and output
energy flows of functional relationships (non-symmetric). A DMM relates these two
domains by showing which components provide which functions. (Note that these rela­
tionships between functions and components are non-directional, so the placement of the
DMM above or below the diagonal of the two DSMs does not matter.)

Each function and component is assigned a unique index number. An example MDM
representation for an integrated starter generator (ISG) hybrid powertrain is shown in
figure 9.1.1. Each product architecture MDM includes row and column entries for each
identified index number-including null components and functions not present within

Functions-Components
MOM Representation of

an Integreted Starter
Generator (ISG) Hybrid

1 Store Fuel

Convert Mechanical Into Electrical Energy
Convert Electrical Into Mechanical Energy
Denver (Recover) lorque 10 (from) wheels
Convert Momenllransferred (mechanical)

11 Release Energy as Heal to Ihe Envlronmenl
Heat (to Cooling system)

Moment to (from) the road

Fuel Tank

2 High Voltage Battery
4 Inlernal Combuslion Engine

5 E-Motor/Generator1

11

13 Differential Gear

18 Clutch Direct Coupling1

21 Cooling System
22
23

24

26 Electric Accessories

27 Mechanical Accessories

Figure 9.1.1

Product Functions DSM
2 3 4 5 6 7 8 10 11 12 13 14 15 16 18 19

en � c: Q. 0 en >- >- en B .. >: 0 <II e> e> a; E � .. '" ., ! ." c: e> 51 8
� c: c: e '" <: UJ UJ � .. " ." C C en -'" c: '" i '" '"] � E � E � .Q .5 c: W 0> 0> UJ ·c c � .5- .. !! .5 U c:

� g '" :: en � ;;; :: !2 UJ -5 � >- > Cl � iD !2 !2 en ::> '" t:: c: E 0 c: <: co '" OJ Cl u u; -'" !2 :; ::> � '" .5 :K .g 2- .2 � u .5 !2 e- � E .. "8 � '" 0 :I: � '" >. :; E g � :; en U g � e> c: '" .. UJ c 0 g .c: .c: '"
UJ £1 � � c: .If. UJ � iii :;

2 3 4 5 6 7 8 10 11 12 13 14 15 16 18 19

Functions-Components DMM
2 4 5 11 13 18 21 22 23 24 26 27

Components DSM

Function and component MOM for an integrated starter generator (ISG) hybrid powertrain.

249 Multidomain Architecture MOM Examples

Vehicle Powertrain

Configuration Schematic

(ISG Hybrid)

Energy Flow legend
Mechanical

Electrical
Thermal

Figure 9.1.2
Schematic depiction used as a guide to the MOM creation.

Brake System Wheels

the architecture -to ensure that matrix size remains the same during matrix manipula­
tions. These null elements are truncated or hidden when not needed.

The MDM was built based on a graphical sketch of the powertrain system (figure 9.1.2)
as agreed to by the team in a preliminary step. This schematic shows where physical con­
nections exist between components documented in the components DSM. Additionally,
mechanical, electrical, thermal, and chemical energy flows are shown by the use of colors
and arrows. The directional and bidirectional nature of these flows serves as a guide for
building the product functions DSM. For example, the Fuel Tank and the IC Engine
components share a physical connection shown by the solid green arrow, which results in
symmetrical edges above and below the diagonal between the two components in figure
9.1.1. The chemical energy of fuel, however, can only flow in one direction, which results
in only one edge between the functions Store Fuel and Convert Fuel into Mechanical
Energy above the diagonal in figure 9.1.1.

Two MDMs of the same size can be compared via matrix subtraction. The resulting
MDM is labeled a ilMDM (delta MDM) as presented in figure 9.1.3. The ilMDM method
can be used to compare two distinct architectures or two versions of a single architecture

250 Chapter 9

1 l a O O O a
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 0 1 0 0 0
5 0 0 0 1 0 0
6 0 0 0 0 1 0
1 0 0 0 0 1 0
8 0 0 0 0 0 1

L\MDM
--=-.l. 2 l 4 5 6 111213141516171s1 ..--:-� 2 3 4 5 6 11I213141516171s1 �II!!I 0 0 0 a r+ II!!I..Q. 0 1 0

+*".&...g. �� r+ *i.�*� 3 0 o ""!" .. �r4- 3 0 a ""!" .. * � 4 0 0 1 �Ii.� 4 1 0 - 1 �.&.�
5 0 0 0 0 �Ii. 5 0 a 0 0 � Ii.
6 0 0 1 0 0 _ 6 0 0 0 0 0 _

, 0 a a 1 0 0 1 1 0 0 0 0 a ,..:;. 0 0 0 1 0 a 1 0 a 0 0 0 � 0 a 0 ·1 a 0 4-• ..::. 0 a 0 0 0 2 0 1 0 0 0 0 4-1!!I.\i. a 0 0 0 0 1 a a 0 0 a a � • ..::. 0 0 0 a 0

± t� ... � � � � � � � � � � � i t �... � � � � ! � � � � � � rt t�" � � � �
1 0 0 o "..::.�,..g.. 5 0 0 0 1 0 0 0 'i" -a- ° • ..::. 4-,..g.. 5 0 ° 0 0 0 0 1 0 0 o ".::.�,..g..

X 0 ° 0 0 ""!"liJ. e.g... 6 0 0 0 0 1 a 0 0 0 0 II!!I 0 e.g... 6 0 0 0 0 0 0 p;-r 0 0 0 0 ""!"l.,.,..g..
o "'l lo a 1 II!!I.O 7 0 0 0 0 1 I..Ii" 0 c1!>. 1 0 0 0 _.0 7 0 0 0 0 O.Jlo' 0 0 0 0 0 1 �.o
° 0 .". oQ" 0 ° ° ��..!::=8 ==O.-.O!I..-:; �"U;.../,..,;l'"' ... o"-'-o�O";..&..;��o o.;::o�:.....-==s ::;0

=='
0 0 ... �=-""!';..&..;o'-' 0 0 0 0 ° 0 °

Subtraction by Fields
Figure 9.1.3
�MDM is computed as the difference between two MDMs of identical size.

that has been updated. Changes indicate that a component or function has been added
or dropped.

Because of the binary nature of these MDMs, the ilMDM results in matrix fields with
values of {-I,O,l}. A ilMDM matrix field value of {-I} shows a component or functional
element present in architecture MDM2 that is not contained in architecture MDMJ-as
shown in figure 9.1.3. ilMDM matrix field values of {OJ denote no change, whereas a value
of {I} indicates an interaction present in architecture MDMJ not contained in architecture
MDM2.

I,MDMs provide another useful analysis tool. The I,MDM, referred to as a sum MDM
or sigma MDM, is built by the addition of two or more MDMs as shown in figure 9.1.4.
Similar to the LlMDM, the matrices being added in a I,MDM must match in terms of the
function and component elements within the matrix position indexes.

Results

Two benefits of the ilMDM method were readily recognized. First, the changes in com­
ponents and functionality were easy to detect when comparing two architectures. Second,
the method was useful in catching logical errors in matrices filled by hand in a workshop
environment.

The addition of the eight MDMs within the set of vehicle concepts analyzed enabled
the determination of which components apply to all architectures (cells showing a sum
equal to the number of MDMs in the sum) and which components were found to vary
across architectures. Architectures showing fields with a result of I indicate that the func­
tion or component is unique to one architecture from the original set. The information
provided by the I,MDM can be used to develop rules for design synthesis that specify

251 Multidomain Architecture MOM Examples

, 2 3 4 � �, + � lr � 3T T T 4 "t T ., T
5 0 0 " 6 0 0 1 0
1 0 0

o 1 000 3 0 o 1 !l 0
4 0 o 1 o 0 5 0 o 0 1 0
6 0 o 0 m1 00 a 01\1
8 0 000

+ MDM2 + ... + = �MDM
1112131415161'1 1 �. 2 3 4 5 111213141516171 �, 2 3 4 � 1112131415161'71 1 �, 2 3 4 5 111213141516171

+ � � � • � � T • t � � 3ft f-1 T 3 ft .. f-1 -t 3 ft .. rt Ii
4 rt T " T 4 rt rt • T 4 ft ft � rt 0 0 0 " 0 , 0 ., 5 0 1 0 " 6 0 0 6 0 0 0 6 1 2 0

!. � 0 0 0 0
1 1 0 �� 0 0 a 6 0 1 1 a !� 0 � a � 0 1 3 0 10 'Ii 0 1.0
2 0 1 0 0 0 2 0 1 0 o 0 2 0 3 0 00 -¥- 0 1 0 0 0

f4f4 •• -4f4-*
3 o 0 1 0 0

t+f4 •• �..g.�
3 0 0 , o 0 -4�" 1 f4-4� 3[0 0 300 1 0 l1li 3 f,.g. 0 3

,.g.�-* ,f44 1 0 0 0 ,,4 00000 1

4 5
6

o 0 , o 0 o 1 000
0

�f4-* • ..g.�
4 0 0 o 0 0 0 ,� 5 0

1 10000 0 6 0
0 1 0 o 1 1 0 0 4 0 0 3 0 oi" 3 II! O 't-o a o 1 a Tf-&Ii'_TO 5 0 a 030 "t-tfto_'tT
a 0 , o 0 0 0 0 ,; 6 0 a 01. 3 1 0 a 0 o .. � 01001. a a � 'oi [001[000l1li 0 a � O'oi 0[0 1 0 0 0 [0 o 0 3 o 0 � 001

o 0 0 a 000 8 a 1)00 o 0 o 0 0 0 0 0 0 8 "ll o a 0000 100 8 0 O.lff 0 0 o 0 0 0 1 0 0
"""- -" """""- -'" ""-- -"

Addition by Fields
Figure 9.1.4
IMDM is computed by summing MOMs of identical size.

which component sets are necessary to perform a particular function or vice versa. It can
also reveal components that are critical in all design variants.

The DMM portion of the IMDM is particularly useful. This DMM describes all con­
nections between the component and functional domains across all architectures in the
set. By turning the IDMM to a binary form, it can be used as a generic DMM in matrix
manipulations when computing the function DSM given that a particular component
DSM is known. This generic DMM thus enables DSM computations to explore function­
component relationships of new structural configurations.

The IDMM is also useful in visualizing architecture information. For example, reading
the DMM along a column shows the different components that map to the fulfillment of
one function. Reading the DMM across rows displays the multiple functions a component
can perform or that it is partly involved in performing.

In short, LlMDMs and IMDMs offer a wide range of information when comparing
product architectures. The methodologies presented can also apply to other types of
architectures and MDMs.

References

Gorbea, Carlos. 2011, February. Vehicle Architecture and Lifecycle Cost Analysis in a New Age of Architectural
Competition. PhD thesis, Technische Universitat Miinchen (Institute for Product Development), Miinchen,
Germany.

Gorbea, Carlos, Ernst Fricke, and Udo Lindemann. 2007, October 16-18. Pre-Selection of Hybrid Electric Vehicle
Architectures During the Initial Design Phase. Proceedings of the 9th International DSM Conference, Munich,
Germany, pp. 225-234.

Gorbea, Carlos, Tobias Spielmannleitner, Udo Lindemann, and Ernst Fricke. 2008, November 11-12. Analysis
of Hybrid Vehicle Architectures Using Multiple Domain Matrices. Proceedings of the 10th International DSM
conference, Stockholm, Sweden, pp. 375-387.

252 Chapter 9

Example 9.2 Pratt & W hitney Jet Engine Product and Organizational S tructures

Contributors

Manuel Sosa
INSEAD

Steven Eppinger
Massachusetts Institute of Technology

Craig Rowles
Pratt & Whitney

Problem Statement

Pratt & Whitney, a division of United Technologies Corporation, produces and supports
aircraft jet engines, industrial gas turbines, and space propulsion systems. Development
of a commercial aviation jet engine is a highly complex process, involving hundreds of
engineers working simultaneously on the various components and subsystems. This two­
domain DSM application investigated the system engineering and system integration
aspects of the engine development process through the comparison of a product archi­
tecture DSM and an organization architecture DSM corresponding to the design of a
commercial aircraft jet engine.

Data Collection

Over a period of four months in 1998, Craig Rowles (both an employee of Pratt &
Whitney and a student in MIT's System Design and Management master's program)
interviewed system architects in the PW4098 engine program (to capture the product
architecture DSM) and lead engineers of the teams responsible for the design of all major
physical and functional engine components (to capture the organization architecture
DSM). Subsequent data codification, analysis, and interpretation of the DSM models were
done jointly with Manuel Sosa, then a doctoral student at MIT. For a more thorough
explanation of the product architecture DSM model, see example 3.2. For details of the
organization architecture model, see example 5.3.

Model

The two-domain DSM model maps both the product and organization architectures
of the PW4098 engine program by overlaying its (54 x 54 binary) organization DSM onto
the corresponding (54 x 54 binary) product DSM, as shown in figure 9.2.1. This direct

253 Multidomain Architecture MOM Examples

•

•

Organization Architecture DSM
(Team Interactions)

Figure 9.2.1

I :to..,.· ." :.(" -�'�_'u I�"l .

c:
o � No
E oS c:
E CIS Yes
�

I

Two-Domain DSM
(Comparison)

D

Yes No
Component Interface

The product-domain DSM and the organization-domain DSM models were compared to identify areas of (mis)
alignment between the product architecture and the organization architecture.

254 Chapter 9

comparison of the DSM models across two domains is possible because there is one
component design team in the organization DSM for each component in the product
DSM. Both DSMs are sequenced identically, with clusters shown to represent boundaries
of each subsystem (team) . Each cell in the resulting alignment DSM corresponds to one
of the following cases:

• Matched team interaction and component interface An interface between two compo­
nents is matched by communication between the corresponding design teams (purple
cells);

• Matched lack of team interaction and component interface No interface between two com­
ponents corresponds to lack of communication between the corresponding design teams
(blank cells) ;

• Unmatched component interface An identified interface between two components is not
matched by technical communication between the corresponding design teams (red
cells);

• Unmatched team interaction Two teams interact even though there is not an identified
interface between the components designed by those teams (blue cells) .

Results

The resulting two-domain comparison DSM not only captured the product-organization
alignment during the design phase of the engine development but also the cases of
product-organization misalignment. Although there was a significant alignment of the
component interfaces and team interactions (almost 90% of the cells in the resultant
DSM were either blank or purple) , there was also a significant occurrence of misalign­
ment (46% of the non-blank cells in the resultant DSM were either red or blue) .

To investigate the misalignment, we studied several possible product and organiza­
tional factors that were systematically associated with the occurrence of mismatches
of the component interfaces and team interactions. Three of the results of this analysis
were:

1. We had collected information rating the criticality of each component interface in the
product DSM. This allowed us to conduct an analysis to test the extent to which inter­
face criticality matters. We found that less critical component interfaces were more
often unmatched by team interactions.

2. We also had data regarding the nature of each of the component interfaces (spatial,
materials, energy, etc.) . Our analysis showed that some types of component interfaces
were at higher risk of being unattended.

3. Because we knew which subsystem (team) was related to each component (team) , we
were able to analyze the interactions both within and across subsystems. This analysis

255 Multidomain Architecture MOM Examples

showed that mismatched interactions in both domains were more likely to occur across
organizational boundaries corresponding to the subsystem definitions.

Our results helped engineering managers at Pratt & Whitney to better manage their
complex system engineering challenges. Based on our analysis, they realized that a sig­
nificant number of critical, unattended, and/or unidentified interfaces existed across sub­
system boundaries. As a result, they applied more attention to identify and coordinate
critical cross-boundary interactions.

References

Rowles, Craig M. 1999, February. System Integration Analysis of a Large Commercial Aircraft Engine. Master's
thesis, Massachusetts Institute of Technology, Cambridge, MA.

Sosa, Manuel E. 2000, June. Analyzing the Effects of Product Architecture on Technical Communication in
Product Development Organizations. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.

Sosa, Manuel E., Steven D. Eppinger, and Craig M. Rowles. 2004, December. The Misalignment of Product
Architecture and Organizational Structure in Complex Product Development. Management Science 50
(12):1674-1689.

Sosa, Manuel E., Steven D. Eppinger, and Craig M. Rowles. 2007, November. Are Your Engineers Talking to
One Another When They Should? Harvard Business Review 85 (11):133-142.

256 Chapter 9

Example 9 .3 Pitney Bowes Mailing S y s tem

Contributors

Anshuman Tripathy
Indian Institute of Management, Bangalore

Steven Eppinger
Massachusetts Institute of Technology

Problem Statement

Pitney Bowes is the world's largest vendor of mailing systems. Enabled by R&D innova­
tion and advances in technology, and motivated by changes in postal regulations, Pitney
Bowes products have evolved over the years from purely mechanical devices to complex
mechatronic systems for processing mail at high speeds. This 1.Sd DSM application
explores the product development process of the MEGA mailing system in order to
identify global product development opportunities for Pitney Bowes.

Data Collection

Through a series of interviews with engineers and managers at Pitney Bowes in 2006,
Anshuman Tripathy (then a PhD student at MIT) documented the overall product devel­
opment process for the MEGA mailing system (figure 9.3.1) , including the product
breakdown structure (PBS) of the system into components and their respective design
and manufacturing organizations. We represented the development process using a
process architecture DSM model and augmented this with information about the develop­
ment dependencies between the product components and assignments to their respective
design and manufacturing sources. The 1.Sd DSM model of figure 9.3.2 was verified
through discussions with Pitney Bowes personnel.

Model

The DSM shows the three phases of the development of the MEGA mailing system­
system architecture, module development, and system integration. Decomposition of the
MEGA mailing system, seen in the module development phase, identifies three mod­
ules-user interface, input, and finishing-each of which is comprised of several compo­
nents represented in the DSM as engineering design tasks. The DSM shows three shaded
groups of module development activities with coupling among the component develop­
ment tasks within each module and little coupling across the three modules. The columns

257 Multidomain Architecture MOM Examples

Figure 9.3.1
A Pitney Bowes digital mailing system (courtesy of Pitney Bowes).

"Design" and "MfgEng/Prodn" identify whether Pitney Bowes or a supplier was respon­
sible for the development and production of each component.

Results

The DSM shows that, following system architecture development, the three modules
could each be developed quite independently. Such clean interfaces between modules
were possible because Pitney Bowes spent a lot of effort (typically, approximately half of
the product development project duration) in the system architecture phase of develop­
ment. The DSM also shows that although each module has a primary manufacturing
supplier producing many of its components, relatively little of the component design effort
was conducted by these suppliers. We used the l.Sd DSM representation to provide Pitney
Bowes new insight into the feasibility of further offshore product development of each
of the modules.

At the time of our DSM analysis of the MEGA mailing system, the user interface
module was being manufactured primarily by a single supplier, Cherry. The DSM suggests
that most of the development work of this module could eventually also be outsourced
to the same supplier. However, the PSD and software/chip would need to be controlled
closely due to security considerations, so these would likely not be assigned to Cherry.

Most of the input module components were being manufactured and assembled by
Brother. This supplier was also known for its engineering capabilities and could be con­
sidered for the complete design, development, production, and testing of the input module.
This could include the power supply unit, which was then being developed and supplied
by various suppliers, and comprised of standard parts.

Finally, the design and development of the entire finishing module, with the exception
of the MMC (motion controller), which was considered a core technology, could feasibly

E . .!.
 � �

��,j�
� <'

2
a..

ill 2i Q. � §. o

Qi � o Q) :; "

o

::;

Q) :; "8 ::; 1l � � � OJ .,

J � .E � � .� i :5 u.
.

�&>��
(I)'E

ro
.c

6;-

o,
Q.

.

Figure 9.3.2

B
ro

a
d

 V
is

io
n

 o
f P

ro
d

u
c

t R
e

q
u

ire
m

e
n

ts

P
ro

d
u

c
t P

e
rf

o
rm

a
n

c
e

 S
p

e
c

ific
a

tio
n

s

In
d

u
s

tria
l

P
S

D

Design
P

B

P
B

P
B

MfgEng/Prodn

S
e

c
 V

e
n

d
 (C

A
, U

S
A

)

C
o

re
 P

ro
c

e
s

s
o

r

S
e

c
 V

e
n

d

P
B

C

h
e

rry
 (W

I, U
S

A
)

I x x
x x x x x

D
is

p
la

y

P
B

K
e

y
b

o
a

rd

P
B

F
le

x
ic

irc
u

it
C

h
e

rry

U
S

B
 H

o
s

t
P

B

M
o

d
e

m

P
B

C
h

e
rry

 (W
I, U

S
A

)

C
h

e
rry

 (W
I, U

S
A

) I x x x
C

h
e

rry
 (W

I, U
S

A
)

x
C

h
e

rry
 (W

I, U
S

A
)

x x x
S

o
ftw

a
re

P

B

C
h

e
rry

 (W
I, U

S
A

)

P
B

 (In
 h

o
u

s
e

)
x

Ix x x
E

x
te

rn
a

l P
la

s
tic

s

P
B

F
e

e
d

e
r M

e
c

h
a

n
is

m

P
B

B

ro
th

e
r (C

h
in

a
)

T
ra

n
s

m
is

s
io

n

P
B

B

ro
th

e
r (C

h
in

a
)

O
e

d
< a

s
s

y

P
B

B

ro
th

e
r (C

h
in

a
)

B
a

s
e

 (tu
b

) a
n

d
 o

th
e

r e
x

te
rn

a
l p

la
s

tic
s

P

B

B
ro

th
e

r (C
h

in
a

)

S
e

p
a

ra
to

r
P

B

B
ro

th
e

r (C
h

in
a

)

M
o

is
te

n
in

g
 a

n
d

 s
e

a
lin

g

P
B

B

ro
th

e
r (C

h
in

a
)

P
o

w
e

r S
u

p
p

ly

V
a

rio
u

s

V
a

rio
u

s
 (N. A

m
e

r)

x x x x x

x x
x x

W
e

ig
h

in
g

 P
la

tfo
rm

P

B

S
c

a
le

 V
e

n
d

 (C
h

in
a

) I x x x
E

x
te

rn
a

l P
la

s
tic

s

P
B

V

a
rio

u
s

 (N. A
rn

e
r)

I
M

M
C

 (M
o

tio
n

 C
o

n
tro

l)
P

B

V
a

rio
u

s
 (N. A

rn
e

r)

T
a

p
e

 u
n

it (a
ls

o
 d

o
e

s
 p

e
rt o

f tp
t)

P
B

C

a
n

o
n

 (J
a

p
e

n
)

T
ra

n
s

p
o

rt (b
e

lt)
P

B

C
a

n
o

n
 (J

a
p

e
n

)

P
rin

te
r

C
a

n
o

n

C
a

n
o

n
 (J

a
p

e
n

)

x x x x x x
A

S
IC

 m
o

d
u

le

P
B

P

B
 (In

 h
o

u
s

e
)

I x x
x x x x x

x

x x x
x

x x x
x x x x x x x x x x x

In
te

g
ra

tio
n

 o
f F

in
a

l D
e

s
ig

n

P
B

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

S
ystem

 a
rch

ite
ctu

re
 D

S
M

 fo
r P

itn
e

y B
o

w
e

s M
E

G
A

 m
a

ilin
g

 syste
m

.

x
x

x

259 Multidomain Architecture MOM Examples

be outsourced to Canon. Canon, in Japan, was already developing and supplying the
printer unit.

The coupling within each of the module development activity blocks would appear to
favor outsourcing all of each module's component design effort to a single supplier. This
would also facilitate the integration of each module. Furthermore, given the presence of
such clean interfaces between the modules, Pitney Bowes would likely be able to manage
the final system integration effectively. Our analysis was presented to Pitney Bowes man­
agers who were then able to develop their design outsourcing strategy accordingly.

References

Tripathy, Anshuman. 2010, January. Work Distribution in Global Product Development Organizations. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA.

Tripathy, Anshuman, and Steven D. Eppinger. 2011, August. Organizing Global Product Development for
Complex Engineered Systems. IEEE Transactions on Engineering Management 58(3):510-529.

260 Chapter 9

Example 9.4 Audi AG Team Composition for Collaboration

Contributors

Matthias Kreimeyer
Institute of Product Development, TUM

Ulrich HerfeId
AudiAG

Problem Statement

To enable efficient collaboration among different disciplines, cross-functional team struc­
tures are an important enabler. This example shows how DMMs were used to help for­
malize interactions between design and simulation departments at Audi AG, a major
premium automobile manufacturer in Germany. This engineering process involves an
organization of approximately 800 engineers in embodiment design and about 50 engi­
neers in simulation, who were part of the development of the so-called "trimmed body"
of a sedan. This scope comprises the car's body, all doors and hatches, as well as the inte­
rior paneling, including about 400 components exposed to approximately 130 numerically
simulated load cases related to comfort and safety.

Within the design process, individual engineers need to collaborate with a multitude of
colleagues to cooperatively design a highly integrated product. This DMM application
was therefore aimed to support these engineers with a structure to communicate with
other engineers as needed to establish different functions (represented as load cases) to
validate the vehicle's components and their interfaces. We focused our analysis to answer
the question of how, through teams of manageable size, coordination of all engineers
could be achieved so that, at the same time, information transfer in both directions could
be ensured.

Data Collection

The scope of our data collection included all engineering functions concerned with the
trimmed-body finite-element simulation for NVH load cases only (noise, vibration, and
harshness requirements). Three weighted DMMs were built:

1. responsibility of embodiment design engineers for components

2. involvement of components in simulated load cases

3. responsibility of simulation engineers for load cases to be simulated

261 Multidomain Architecture MOM Examples

The DMM models were built as weighted matrices to represent the degree of involve­
ment of one domain in the next. The data were collected mostly from documentation of
functional and technical specifications for the overall vehicle project. For each component
or subsystem, specific load cases and simulations are necessary to receive technical
approval. These data were collected through interviews of the simulation engineers.

The component responsibility data were obtained from the specification documents
that contained a basic work breakdown structure (WBS). This attribution of responsibili­
ties was then refined based on Audi's phone book and interviews in both simulation and
design departments.

Model

In each DMM, the strength of the involvement between domains was expressed as a score
using a 3-point scale. For the second DMM, mapping components to load cases, the fol­
lowing scale was used:

• Level 3-component is evaluated by load case (strongest linkage)

• Level 2-component is a significant part of the model

• Level l-component is an element of the model's border area

Depending on how much an engineer is responsible for a component (in embodiment
design) or a load case (in simulation), his or her involvement in that element is scored
accordingly in the DMM. This ensures at a later stage that those people of higher rele­
vance to a cluster of components and load cases can be identified. In the first and third
DMMs, the following scale was used:

• Level 3-engineer is responsible for component or load case (strongest linkage)

• Level 2-engineer conducts the embodiment design/simulation of component/load
case

• Level l-engineer supports embodiment design/simulation of component/load case

We found that component and simulation responsibilities were often not formalized.
Ultimately, therefore, only levels 2 and 3 were used because level 1 was too fuzzy to serve
as a basis for consistent data acquisition.

Figure 9.4.1 shows the DMM mapping components to load cases.

Results

To obtain teams, in a first step, the component to load case DMM was clustered, as shown
in figure 9.4.1. Each cluster contains a set of components and load cases that are similar

I I

Figure 9.4.1
C

lu
stered

 D
M

M
 m

a
p

p
in

g
 co

m
p

o
n

en
ts (in

 co
lu

m
n

s) to
 lo

a
d

 ca
se

s (in
 ro

w
s) w

ith
 w

e
ig

h
ts (3

 =
 re

d
, 2

=
 o

ra
n

g
e

, 1 =
 y

e
llo

w
).

263 Multidomain Architecture MOM Examples

from the structural point of view, as the components serve the load cases in a comparable
manner and vice versa. A cluster is therefore a building block across which communica­
tion between design and simulation engineers can be aligned. However, the designation
of clusters needs to be done carefully to obtain good clusters (i.e., where both components
among each other and load cases among each other are comparable in the way one
domain serves the other). The clustering was, therefore, done manually involving much
discussion with the engineers over two days to ensure proper interpretation of the results.
We found that the difficulty was not in finding the clusters but in breaking larger clusters
into smaller ones.

We joined the three DMMs as illustrated in figure 9.4.2. By doing so, we could
determine which engineers were involved in each cluster in the component-to-Ioad
case DMM. Depending on the size of the initial cluster, these teams could be large.
In such a case, one large team is not desirable, so clusters were decomposed to a more
manageable size.

To support the clustering decisions, the level of interaction between any two organiza­
tional units can be calculated as follows: If an engineer is only supporting the embodiment
design (weight 1) of one component that only borders the simulation area (weight 1) and
only has to interact with a simulation engineer who is supporting the simulation of a load
case (weight 1), then their interaction strength is low (1 * 1 * 1 = 1). If, however, another
person is responsible for the embodiment design of a component (weight 3) and conducts
the embodiment design of yet another component (weight 2), and each component is
evaluated (weight 3) by a simulation engineer responsible for that load case (weight 3),
then the interaction strength comes to 3 * 3 * (3 + 2) = 45.

Each of these cluster-based teams described a set of components that related to a
set of load cases. Therefore, these clusters needed to be collected to evaluate load
cases or components. The clusters served as building blocks and were combined to
form teams. Some teams integrated all design engineers involved in a cluster of load
cases. Other teams involved all simulation results relevant to a cluster of components,
forming a functional integration team. A total of 153 clusters were combined into 12
teams for function evaluation and 22 teams for the integration of functions into
components.

To generate a core team that could supervise the overall activities of these 34 teams,
only interactions at level 3 were considered for all three matrices. In doing so, the
component-to-Ioad cases DMM in figure 9.4.2 contains only rows and columns with
at least one red element. The DMM for the simulation engineers was rather small
because only six simulation departments were involved in the 65 remaining load
cases; 32 out of 153 clusters were identified as core clusters with relevant level 3 relation­
ships that contribute to the coordination team. Figure 9.4.2 also demonstrates how
team building blocks were constituted from the clusters of the component-to-Ioad case
DMM.

sim
ulation

departm
ents

en

..
.

c Q)

c o

0.
.

E o

()

Figure 9.4.2

design departm
ents

f{tl
i � i i

load cases

cluster with weights
2 and 3 relating

com
ponents and

load cases

T
h

e
 th

re
e

 D
M

M
s, w

ith
 th

e
 clu

ste
re

d
 co

m
p

o
n

e
n

ts to
 lo

a
d

 ca
se

s D
M

M
 (lo

w
e

r rig
h

t) u
se

d
 to

 d
e

d
u

ce
 te

a
m

 b
u

ild
in

g
 b

lo
ck

s, sh
o

w
in

g
 o

n
ly e

le
m

e
n

ts w
ith

 o
n

e
 o

r m
o

re

le
v

e
l 3

 w
e

ig
h

ts (red
 ce

lls).

265 Multidomain Architecture MOM Examples

References

Herfeld, Ulrich, Matthias Kreimeyer, Frank Deubzer, Tobias Frank, Udo Lindemann, and Ulrich Knaust. 2006.
Verkniipfung von Komponenten und Funktionen zur Integration von Konstruktion und Simulation in der Karos­
serieentwicklung. Berechnung und Simulation im Fahrzeugbau, pp. 259-276. VDI Wissensforum IWB GmbH.
(in German)

Kreimeyer, Matthias, Frank Deubzer, Mike Danilovic, Stefan Daniel Fuchs, Ulrich Herfeld, and Udo Linde­
mann. August, 2007. Team Composition to Enhance Collaboration between Embodiment Design and Simulation
Departments. Proceedings of the International Conference on Engineering Design, ICED'07,The Design Society,
Paris, France.

266 Chapter 9

Example 9.5 U .S . S enate

Contributor

Jason E. Bartolomei
Massachusetts Institute of Technology

Problem Statement

For many, the U.S. Senate is a complex organization that is difficult to understand.
Actually, the senate is both structurally and behaviorally complex. In this example, the
MDM and DSM are used to understand the relationships between senate offices through
each senator's committee assignments. As many know, the control over the legislative
process happens in committee. In the senate, members are assigned to several committees.
The relationships that senators share through their committee assignments provide an
important component to understanding the structure of the Senate. By better understand­
ing this structure, Senate staffs, committee staffs, and external organizations are better
able to develop engagement strategies for legislation. This example uses the MDM as

Figure 9.5.1
U.S. Capitol building (courtesy of Architect of the Capitol).

267 Multidomain Architecture MOM Examples

a means to visualize and analytically examine the structure of the U.S. Senate (111th
Congress).

Data Collection

Every year a number of organizations publish the Senate Committee Assignments. This
publicly available information was used to construct the MDM.

Model

The MDM consists of two matrices. The first, a DMM (see excerpt in figure 9.5.2) relates
each senator's office (SO) to its corresponding subcommittee assignments (CTE).

Using the information provided in this DMM, we are able to determine the connections
between SOs through their committee assignments by simply squaring the matrix:

[CTE X SO]T [CTE x SO]

This yields the SO DSM [SO x SO] shown in figure 9.5.3.

Results

The SO DSM shown in figure 9.5.3 provides a means for understanding the structure
of the Senate. The diagonal cells (i,i) indicate the number of committee assignments
for each senator, with green shading for those with fewer than 10 committees and red
shading for 10 or more committees. Each off-diagonal cell (i,j) represents the sum of the

1

c: ..

J - -::::!::::::' =[:�:
. m l + .

.. ±-· ='ljjj·-
J-++t-I i l l , I

Figure 9.5.2
Excerpt of the SO to CT E DMM.

"""'­
""'"'
"'""" """"
""'"' ""'"
......
'-' "'"
-..........
,­
.........
Got­
........
.....
-.....
......
-,""-.......
-.-..
""' -.. ...

268 Chapter 9

Figure 9.5.3
DSM showing relationships between senate offices.

269 Multidomain Architecture MOM Examples

subcommittee assignments shared by senators i and j, with lighter shading for one or two
shared assignments and darker shading for three or more shared committees.

The connectedness of the offices within the Senate was analyzed using social network
analysis. In social network analysis, betweenness centrality (Be) is associated with the
control of information; stakeholders with higher Be have greater influence on an
organization.

Be is a centrality measure of a node. Nodes that occur on many shortest paths between
other nodes have higher Be than those that do not. In calculating Be, it is assumed that
the network is undirected (a symmetric DSM) and connected with the allowance of loops
and multiple links. Be is computed as follows for each node:

1. For each pair of nodes (i,j), compute all shortest paths between them.

2. For each pair of nodes (i,j), determine the fraction of shortest paths that pass through
the node in question.

3. Sum this fraction over all pairs of nodes (i,j).
Figure 9.5.4 charts each senator's Be and number of committee assignments sorted

by declining BC This plot indicates that, although generally senators are assigned to

40 ,--

35 ��---

30 +-----�----�--

2S +-------------

20 �----------------------------------��==��---

15

10

5 r--------------------------------------

Figure 9.5.4

-Betweenness Centrality -Number of Committees

Betweenness centrality and number of committee assignments for each senator.

270 Chapter 9

between 8 and 15 committees, some senators are much more centrally connected than
others.

Although one must consider many additional factors when analyzing the Senate, the
DSM and network metrics provide interesting ways to visualize and analyze the U.S.
Senate as a system.

Reference

The Original U.S. Congress Handbook, 111 th Congress 2nd Session 2010 Edition, Columbia Books, Inc. Bethesda
MD, Feb 2010

271 Multidomain Architecture MOM Examples

Example 9.6 BMW Electric S unroof

Contributors

David Hellenbrand, Holger Diehl, Stefanie Zirkler, Markus Petermann, and Udo
Lindemann

Technische Universitat Miinchen

Problem Statement

BMW is a worldwide producer of innovative, premium class automobiles. Due to growing
comfort and environmental sustainability requirements, the development of mechatronic
systems is of rising importance. To handle the development of complex mechatronic
products, multidisciplinary system understanding and an effective interlinking of the
discipline-specific development processes is critical. The development of an electric
sunroof for the BMW 7 Series (figure 9.6.1) provided an opportunity to analyze and
optimize such a multidisciplinary development process. The project was part of CAR@
TUM, a joint project of the Technische Universitat Miinchen and the BMW Group.

Data Collection

The collection of information within BMW, the creation of the model, and the subsequent
analysis were carried out by PhD students Holger Diehl, Stefanie (Braun) Zirkler,
Markus Petermann, and David Hellenbrand in 2007 and 2008. Through an analysis of

Figure 9.6.1
Sunroof of the BMW 7 Series (courtesy of BMW).

272 Chapter 9

technical descriptions of the sunroof and documents describing the development process,
we were able to get a basic understanding of the product and the associated development
process. In parallel, we conducted interviews and workshops with engineers from the
development departments involved. This allowed us to refine our basic model, capture
missing information, and recognize problems within the process. We also presented the
model and our initial analysis results to the engineers in regular meetings for discussion
and validation.

Model

Figure 9.6.2 illustrates the layout of the MDM used to model the interdependencies within
the sunroof product and its development process. The overall model consists of six sub­
domains, the first five of which are each modeled with a DSM:

• Functions (subdomain of the product domain)
• System elements (i.e., components; sub domain of the product domain)
• Deliverables (outcome of activities, intermediate product representations; subdomain

of the process domain)
• Activities (subdomain of the process domain)
• Responsible persons (subdomain of the organization domain)
• Project milestones (subdomain of the process domain)

The product and process models are linked through the deliverables produced. There
are direct (e.g., deliverable and responsible person) and indirect linkages (e.g., function
is affected by milestone) between the different domains. However, the data in figure 9.6.2
are only notional and do not represent the actual connections. For this MDM application,
the upper triangle of the MDM is of interest because the MDM is symmetric (although
all of the DSMs on the diagonal are not) .

Figure 9.6.3 shows actual data for some of the individual DSMs and DMMs. In all cases,
only binary matrices are used. For better identification and understanding of cross-disci­
pline connections, the elements within the matrices (except the functions) are colored
according to their discipline. Mechanical parts are displayed in purple, software is green,
and electronic components are red. Elements that are not an internal part of the sunroof
(like CAN-Bus or power supply) but are necessary to fulfill required functions are colored
yellow. This distinction of internal and external elements enables a better understanding
of the relationships among the different subsystems of the car, which are often not known
by all of the designers at each moment.

In general, it is not necessary (or practical) to fill the entire MDM with all of its DSMs
and DMMs. Using MDM computation (matrix multiplications) , often the indirect con­
nections in any missing matrices can be derived from a set of basic ones (mainly the

273 Multidomain Architecture MOM Examples

ft IT:lft'rn'F.lo, � l r

1111 II 0 0

prot: • II b 0 b

M odel • • •
• � 7

......... �
� sequence of L I I del iverables I

..-

" Tj;ln:till J r Il�,+-�· • 1)., ·1f:J lr �
:;J �: itc :'! �:

0 III
0 III D b

0 I. 0
� •

• • 0 • •
0 •

0

I I I.
sequence of 10

work packages 10 � r-.... � • •
� r-- I. I.

� • • /

Figure 9.6.2

ess Proc
Mod el

-'"-

,....--

• • I •

etwork of involvedl
R-

persons I
-......j y� ��

f?'.-l/1 l.(, 10 L'-I �

Layout of the MOM used to analyze the product and its development process.

•
•
Q

b
10

•

274

SEt
' "
IE ,
IE �
IE !
IE ,
lE I
lE a
s . .
IE IO
IE ll
IE II
lE U . ".
IE lS
Il l.

lE U
IE "
lE n
,,,.
lE n
,, ,.
I'"�
1.,0
I '"
l nl

u
, .
"

• . ,
•

"
F 1I>

U
f l.

U
lA
15

Fl.
"
II

f l.
, ..

Jt
. n
' "
"

' " . ,.
' "
" "
. u
' "
. ..
' " . ..

Chapter 9

•

• •
I

• • •

..

System Elements DSM

... •
• •

•

.. •
• .. • •

• • • • • •
• • • • •

Functions to System Elements DMM

Figure 9.6.3

le I
.. ,
se .
se .
se 5 .. .
se 7
se a
IE .

se l'
se 25
se '6
se 2 7
SE "
se ..
se ,.
SE 31
se .I L_ ______ ���L_ ___

System Elements to Deliverables DMM

Activities DSM

Two DSM and two DMM excerpts from the MDM model.

275 Multidomain Architecture MOM Examples

diagonal DSMs and their adjacent DMMs) (Lindemann et al. 2009). The computation of
indirect interdependencies based on the known interconnections can be done (e.g., by
using a single DMM to derive two DSMs or by combining a DSM of one domain and a
neighboring DMM to compute a DSM in another domain). Altogether there are six
computational logics. The identification and analysis of indirect dependencies is of special
interest because our interviews showed that these unknown, indirect dependencies are
responsible for most of the problems and delay within the process.

Results

The integrated product and process model of the sunroof offered a high variety of pos­
sibilities to analyze and optimize the system. Some examples are described below.

Within the product model (functions, system elements), it was possible to deduce the
functional structure from (shared) system elements. The graphical representation of this
structure enabled the engineers at BMW to realize and understand hidden dependencies
among the components and functions even across disciplines and departments. These
indirect dependencies, especially across departments, were often surprising and respon­
sible for unsuccessful tests.

In the case of design changes, the model enabled the developers to notice which func­
tions or other components were affected. This is particularly important because the
functional responsibility is often located in a different department. As a result, they were
able to see who had to be informed of the change and which functions had to be checked.
In addition, the linkage of product and process models also offered the possibility to easily
trace the impacts on the process structure of changes in the product structure.

The combination of the derived functional structure with the DMM mapping functions
to responsibilities allowed the deduction of a network of responsibilities based on common
functions. Analysis of the responsibilities DSM showed that there were two kinds of
responsibilities involved within the project. On the one hand, a highly interconnected core
team is responsible for the technical development of the sunroof. On the other hand, a
lot of departments are only involved in certain aspects such as testing or the vehicle
interior. This information can be used for the composition of teams or the optimization
of BMW's organization structure.

The model also allowed associating the project milestones with functions and system
elements through the deliverables, which meets well-established working routines in
departments of different disciplines. The engineers were able to see immediately which
milestone affects which function and system element and could use that information for
their personal work planning.

Another issue is planning future development processes. Using the MDM model makes
it possible to derive a simplified sequence of the work packages. Assuming the basic
logical structuring of the process by milestones where customer functions are tested, the

276 Chapter 9

time between two milestones is determined by the work packages necessary to produce
the deliverables within that development phase. Starting from a milestone, the work pack­
ages can be arranged forward or backward in time, where the sequence of work packages
can be deduced from the sequence of deliverables.

References

Braun, Stefanie Constanze, Holger Diehl, Markus Petermann, David Hellenbrand, and Udo Lindemann. 2007,
October. Function Driven Process Design for the Development of Mechatronic Systems. Proceedings of the 9th
International DSM Conference, Munich, Germany.

Fischer, Markus, Stefanie Braun, David Hellenbrand, Christian Richter, Olaf Sabbah, Christian Scharfenberger,
Michael Strolz, Patrick Kuhl, and Georg Farber. 2008, September. Multidisciplinary Development of New Door
and Seat Concepts as Part of an Ergonomic Ingress/Egress Support System. Proceedings of the FISITA World
Automotive Congress, FISITA (UK) Limited, Munich, Germany.

Lindemann, Udo, Maik Maurer, and Thomas Braun. 2009. Structural Complexity Management: An Approach for
the Field of Product Design. Berlin: Springer.

277 Multidomain Architecture MOM Examples

Example 9 .7 H I LT I Adhesive Anchors and D is pensers

Contributors

Maik Maurer and Alexander Suessmann
Technische Universitat Miinchen

Andreas Schell
HILTI Entwicklungsgesellschaft mbH

Problem Statement

HILTI Entwicklungsgesellschaft is a division of the HILTI Group, a provider of tools,
systems, and services for the global construction industry. HILTI's HIT system is a
two-component, adhesive injection system (figure 9.7.1) for heavy duty anchoring in con­
crete. The system consists of different dispensers and foil cartridges containing the adhe­
sives. Ongoing development of the HIT system includes many product improvements
over time. Due to the complexity of the integrated system, even small changes to
some components can require significant changes in others. Moreover, it proved difficult
for experts of different areas such as foil design, mortar development, and mechanical
engineering to take all interdisciplinary side effects into account. This MDM application
was intended to help ensure successful product development with the following
objectives:

Figure 9.7.1
HILTI's HIT adhesive injection anchoring system (courtesy of HILTI Entwicklungsgesellschaft).

278 Chapter 9

1. Visualize developers' interdisciplinary change impact.

2. Identify suitable possibilities for adjusting the system's configuration and support the
design of experiments (DoE).

3. Identify measures for better control of the system's complexity.

Data Collection

Over a period of four months in 2010, Alexander Suessmann, a graduate student at the
Technische Universitat Miinchen, conducted interviews with experienced developers of
the HIT system at HILT ! Entwicklungsgesellschaft. After decomposing the product
system into components, he inquired about: (1) design parameters that can be directly
influenced, and (2) indirect relational characteristics of the entire system, which are
determined by the design parameters. A certain shape of a component, for instance,
represents a design parameter; this determines the flow resistance, which is a relational
characteristic.

Prior to the collection of dependencies, the design parameters were classified into
domains of shape, material, type/state, production parameter, environment parameter,
and mortar ingredients in order to define distinct types of direct interactions (e.g.,
geometrical).

The acquisition of dependencies in the MDM was executed subset by subset. Within a
half-day workshop, typically one or two subsets could be completed. An important advan­
tage of the decomposition of the entire system into subsets was that for every workshop,
only the required experts, typically two or three, had to participate.

Model

Figure 9.7.2 shows the two main domains represented in the MDM-design parameters
(DPs) and relational characteristics (Res). The meaning of the dependencies is noted in

Design Relationa l

Pa ra meters Chara cteristics

Design
ca n cha nge dete r m i n e

Pa ra meters

Re lational >< i nfluence
Characte ristics

Figure 9.7.2
Basic MOM layout for the HIT system.

279 Multidomain Architecture MOM Examples

the three matrices. The domain in a row is mapped to the domain in a column (IC/FBD
convention) . For example, design parameters can change other design parameters, whereas
design parameters can determine relational characteristics. The lower left part of the
MDM does not contain problem-relevant dependencies and can be excluded.

The MDM shown in figure 9.7.3 decomposes both main domains into subgroups. The
RC domain additionally contains a subgroup named System. It relates to RCs that cannot
be allocated to a single component. For example, the final mixing quality and mortar
volume per stroke are typical system RCs. The total number of elements is about 300.
Only dark gray-shaded matrices contain dependency information; 110 of the 169 possible
matrices were able to be excluded from further data acquisition, which meant that not
all possible dependencies in the entire MDM had to be considered. Therefore, the system
modeling process could be executed efficiently.

Figure 9.7.4 shows details of the portion of the DMM marked * * * in figure 9.7.3. It shows
exemplar DPs and RCs of the foil packs. Cells containing a 1 indicate that a DP (row)
determines a RC (column) , whereas a 0 indicates that the dependency has been discussed
and no influence has been identified.

Results

The MDM layout depicted in figure 9.7.3 gives an outline of the system as it summarizes
the component dependencies. For example, the Foil Pack DPs influence not only the RCs
of the Foil Pack but also those of the Foil Cartridge and the System. For investigating
details such as which DPs can change which DPs and influence which RCs, we examined
the particular DSMs and DMMs, respectively.

Alternatively, the MDM can be analyzed at the element level of detail. For these inves­
tigations, we also utilized graph theory. For instance, the force-directed graph shown in
figure 9.7.5 illustrates the entire MDM with elements indicated by IDs. We colored the
DPs and RCs to show each component's contribution to the system's RCs (pink) and
their mutual influence. Elements and dependencies on the edge of component clusters
represent their interfaces to other components. They can be itemized by focusing on the
active and/or passive surrounding of single elements. Altering elements on the edge of a
component cluster can necessitate changes to other components. This is illustrated in the
right side of figure 9.7.6, where the direct surrounding of a connector DP (yellow) is
shown. The DP determines RCs of the system (pink) and the foil packs (orange) . More­
over, its modification potentially changes several other DPs allocated to the dispenser
(blue) and the mixer (red) . Those changes often remain unrecognized as they concern
interdisciplinary responsibility. By means of feedforward analyses conducted on those
elements (see left side of figure 9.7.6), we were able to systematically rule out and discuss
all potential change propagations (e.g., the outlet geometry of the connector indirectly
influences the mortar's mixing quality) .

280 Chapter 9

1-----.---

�
<II

.... <II
E
� to a..
c: QQ

'iii <II
0

Connector

Foil cartridge
Holder

Foil Pack

Foil cartridge

Figure 9.7,3

� <II c: c:
o u

Design Parameters

t :u � "C
a o _ :t:
:f

• • •

More detailed MOM layout of the HIT system, with shaded subsets containing direct dependencies.

281 Multidomain Architecture MOM Examples

DP FP Thickness of layers A

DP FP Thickness of layers B
DP FP Cl i p type A

DP FP Cl i p type B

DP FP Length A

DP FP Length B

DP FP Diameter A

DP FP Diameter B

Figure 9.7.4

0 0

0 0

0 0

0 0

0 0

Excerpt regarding foil packs from the DP-to-RC DMM.

< co
co
QJ
E
�

"0 >
0... D D �
U 0... 0...

� � a:: u u
a:: a::

0

0

0

0 0

0 0

0 0

The DP and RC mindset used in the local MDM definition also complies with the
design of experiments used in the development process of the HIT system. DPs and RCs
correspond to parameters to be varied and characteristics to be measured, respectively.
Therefore, we used the active and/or passive surrounding also for navigating through the
structure and for systematically identifying and evaluating suitable DPs for determining
certain RCs. The passive surrounding of an RC reveals all DPs determining it and all RCs
having an influence on it. If no suitable DPs were in the direct surrounding of a particular
RC, then we used one of the ambient RCs for determining it and regarded its passive
surrounding. Once a potentially suitable DP was detected, it was evaluated by a feedfor­
ward analysis that revealed all the side effects of altering it (e.g., the connection of outlet
geometry and mortar mixing quality as mentioned earlier).

We also applied a structural Pareto analysis to the RC DSM to identify measures for
better control of the system's complexity. The analysis disclosed that an RC of the dis­
penser contributed to about 2,000 potential feedback loops allocated to three incoming
relations. RCs like this should be stabilized or designed more robustly. We weakened the
impact of relevant RCs to simplify the system's configuration. Therefore, we identified

282 Chapter 9

Figure 9.7.5
Force-directed graph representation of the entire MOM.

283 Multidomain Architecture MOM Examples

Feedfo rwa rd

Figure 9.7.6
Details of a feed forward analysis (left) and a direct surrounding view (right) of two connector DPs in figure 9.7.5.

adequate DPs (as described earlier) and consequently increased the robustness of the
significant RC. Thus, the system became easier to handle.

References

Lindemann, Udo, Maik Maurer, and Thomas Braun. 2009. Structural Complexity Management: An Approach for
the Field of Product Design. Heidelberg: Springer.

Suessmann, Alexander. 2010, October. Structural Complexity Management in the Field of Adhesive Anchor
System Design. Diploma thesis, Technische Universitat Mlinchen, Munich, Germany.

284 Chapter 9

Example 9 .8 D igital Res earch L abs Change Packaging in Sys tems D es ign

Contributors

Naveed Ahmad, David Wynn, and John Clarkson
Engineering Design Centre, University of Cambridge

Problem Statement

Engineering changes are ubiquitous in development projects. They are unpredictable in
terms of when they occur and also in terms of their nature and how they propagate. In
practice, changes that arise unexpectedly during a project are often put aside and allowed
to accumulate because executing them together can reduce overheads such as task setup
time and testing after performing the rework. However, it can also create additional work
while changes wait to be processed because tasks are done that may have to be revisited
when the changes are eventually processed. This raises interesting questions when decid­
ing how to process changes and an opportunity for an MDM-based simulation model to
assist in identifying the most appropriate change processing approach for a given project.

Data Collection

A simulation model was constructed for a microcontroller-based device, a product of
Digital Research Labs, an engineering design company based in Pakistan. The model was
constructed in three stages by eliciting a product subsystem DSM, a process DSM, and a
product-to-process DMM in which each subsystem is connected to at least one activity
that contributes to its definition in the detailed design process. In this context, such links
are assumed to be directional. The design was modeled by the authors using documenta­
tion provided by the manufacturer and supplemented by telephone interviews with the
designers. The model was then sent by e-mail to the designers, who verified that it repre­
sented their product and process. The procedure for building the product DSM consisted
of decomposing the product into subsystems/components, recording the linkages between
these items, and estimating the impact and likelihood of a change propagating directly
between each pair of subsystems. Likewise, the procedure for building the process DSM
consisted of decomposing the product development process into activities and identifying
the associated input and output information. The total time required to build the product
and process DSMs, as well as the linking DMM, was about eight hours.

Model

The MDM has the product DSM in the upper left corner and the larger process DSM in
the lower right corner (see figure 9.8.1). The product DSM takes the form of a change

285 Multidomain Architecture MOM Examples

Gl l!!l! lCO
I =��
. �
==
.�..., c_

GI

1---1--WTj-�
j

I I f f f 8
§ j I i f I i J j II 8 1 ! . 0 0

D O

0

0 0
D OD 0 0 0

D 0
o 0 - -..."ply

-- 0 . 1Iooc/�rv o 0 DtJ
.� _ Clod<
. -om.a_IPCBl

I;� F'" [fl_ CIod< --I II Uot .. � _ I I!I - .. --.. g.. �. -.... I l!I __ I m _ _ I I!l.SIzo -.g I �,;;; .. ---
-

I m _ =
I C � _ dn>.I _fl'CII)
1 �-"!. ... -"""!!1

PCB -"::'T_ _ _ -
"," - -.g -... T_ Ood<
"" - - - -
"" T _
-""T_ =
'""""'t*"PCB -... T_ _..."pIy 1� 1Iooc_ ;OjJ 1IIpl&�-
1wI _ ... _ _ _ _ _ - ,., I C _ _ I � -�-irrpvoo"",,,
-"" AnII � " "' _ ..."pIy
JitJ Aamtie the lC's. � _ .-n an .. PC8
11 """""'" _,.,-
� FNI: � ri .. cM:uIltamd .. "'*&I

1 " ----
l e _,.,_ 1° _ _ _

� 1..oaIfrIg " flllt ft 1hl "*ro a:Jt'hk --
!Q.I Wtt!Ing coda far hi rriau �
�T_"'_ -
"" _ � uc l" _ r.oc

Figure 9.8.1

0 0
0 0

D O 0 0 0 0 0 0 0
D O

0
1-0 0 01 1
0

0 0 0,...........,0

0
-+-- DI_
t �- c-1--- I-

�
LJ I

r- I- l+ �

I
I

1-.
I

GI
� JI" ' "I" I' �T ;�����"�" �r 1· �rn"I" ·r�'o

: I j f t f t l J �
U i i § 1 1 I i t ! I ld l� I I I I! l i � ! 1 ! H i l ! J ! & f li f § I I l i t ! � II � ' J I ; ! I � I ; � i I j t ! I II Ill ! ! ! H ! I � : t f z , i I � l id Z fJ

� ! � f l � l lf I J l i I I J , I I � I , f � f � f
- .

l- .- l- I I- I I i- f I-
J j

,
i
I 1---

I
l- I

• 1 t 0 t 0
to

0
0

0
1 0

0 D O 0
D D 0

0 0'
0

0 0 0 0 0 0
0

0
0 0 0

0 0 0
0 0 0

0 0
0 0 0 0

MOM for microcontroller product and design process.

286 Chapter 9

propagation DSM with marks at the intersections representing the risk of change propa­
gating between subsystems (see example 3.6 for an explanation and application of the
change propagation DSM). The process DSM and the product-to-process DMM are
binary, with marks of uniform size representing a link. The combined MDM was used as
the basis for a simulation experiment to identify the tradeoff between change review
interval (the time between processing changes) and the average delay to project comple­
tion. In the experiment, each change request is processed in three steps: (1) the product
DSM is used to identify the components, (2) the product-to-process DMM is used to
identify the activities directly related to these components, and (3) the process DSM is
used to identify all the activities requiring rework. These activities are then stored in a
buffer for a fixed interval after which their execution is simulated.

Results

Early results indicated that an optimal review interval to limit project delay could be
found (figure 9.8.2) assuming a realistic sequence of changes; in this case, a delay of a
little more than 30% of the duration is expected if no changes occur. Changes occurring
during a design project may be executed immediately or left to accumulate in batches.
The modeling and analysis performed in this study highlighted the need to choose an
appropriate change processing interval to minimize the overhead of unnecessary rework.
The results were of great interest to Digital Research Labs, and investigations are ongoing
to explore the merits of changes to their processes.

70
�

III � 60
c:: 0 :p III 50 1i. E
8 40 � III
"[30 D-
.E
> III 20 Oi �
III 110 10 �
�

�
.---/'

�

1 2 3 4 5 6 7 8 9 10 11 12 13
Change review interval (days)

Figure 9.8.2
Average delay in project completion for varying intervals.

287 Multidomain Architecture MOM Examples

This model can be developed further to incorporate other factors influencing the execu­
tion of changes -most important, the availability of resources to execute change requests.
The simulations also highlight the number of times each activity was reworked and the
amount of rework in different activities, data that could be utilized to adjust the product
or process architecture to make projects less sensitive to repeated rework.

References

Ahmad, Naveed, David Wynn, and John Clarkson. 2010, July 22-23. The Impact of Packaging Interdependent
Change Requests on Project Lead Time. Proceedings of the 12th International Dependency and Structure Mod­
eling Conference, Cambridge, England.

Ahmad, Naveed, David Wynn, and John Clarkson. 2010, October 20-22. When Should Design Changes Be
Allowed to Accumulate? Proceedings of IDMME - Virtual Concept, Bordeaux, France.

Clarkson, John, Caroline Simons, and Claudia Eckert. 2004. Predicting Change Propagation in Complex Design.
Journal of Mechanical Design 126 (5) :765-797.

288 Chapter 9

Example 9 .9 Airport S ecurity S y s tem

Contributors

Maik Maurer
Teseon GmbH

Mara Cole
Bauhaus Luftfahrt e.Y.

Problem Statement

Civil aviation faces a constant threat from terrorist attacks. The airport functions as a
gateway, and installed security checkpoints are meant to reduce the occurrence of attacks.
Being able to cope in an efficient way with both potential threats and increasing passenger
volume is a highly demanding challenge. To prepare the airport for future threats, one
needs to take a systems view in order to thoroughly understand the elements of possible
future threat scenarios as well as their interrelation with existing security measures.

Data Collection

Bauhaus Luftfahrt is an international think tank founded by the Bavarian Ministry
for Economic Affairs and three aerospace companies, EADS, Liebherr-Aerospace,
and MTU Together with Teseon, a software development and consulting company,
Bauhaus Luftfahrt constructed an airport security system MDM model containing
approximately 300 elements grouped into 15 domains. Within this system, there are
approximately 11,000 possible relations, of which more than 3,200 direct dependencies
were specified. At first, we identified the relevant elements in brainstorming sessions with
up to six experts and a moderator. The identified elements were directly depicted in a
mind map and then classified in a hierarchical tree structure. Elements describing the
main branches of this structure served as the 15 domains for the MDM model, structured
as shown in figure 9.9.l.

The 15 domains in the square MDM resulted in 225 submatrices describing general
dependencies within and between the domains. In a subsequent step, relevant submatrices
with direct dependencies were identified and characterized. For example, the domain tool/
weapon is linked directly to the domain use of tool/weapon (by the relation allows) but
not to the domain intention of offender. It turned out that fewer than 20% of the subma­
trices were directly dependent and consequently utilized for the system modeling.

Finally, we transferred the system elements from the mind map to the MDM as row
and column elements in their respective domains. In a series of workshops, the element

II !Q
a

ct
o

r
u

II �
u

se

p
o

te
n

tia
l

of
fender

In
te

n
tio

n
 o

f

offen
der

-
0

to
o

l /w
e

a
p

o
n

;: :g

u
se

 o
f to

o
l/

B
w

e
a

p
o

n

...
1il II ..
.c

..

..
 --

-
--

--
a

p
p

ro
a

ch
 o

f

o
ff

e
n

d
e

r

In
se

rt
io

n
 o

f

to
o

l /w
e

a
p

o
n

tar
p

t
--

--
..

th
re

a
t

d
e

p
a

rt
u

re

zo
n

e

6
e

n
d

 zo
n

e

>

.!!! t
attack zo

n
e

0 Co

se

cu
rity

..
'iii

a
ctiv

ity

se
cu

rity

te
ch

n
o

lo
gy

Figure 9.9.1

use case
p

o
te

n
tia

l
In

te
n

tio
n

 o
f

to
o

l/
w

e
a

p
o

n

a
ct

o
r

u
se

o

ff
e

n
d

e
r

o
ff

e
n

d
e

r

ca
n ca

rry

e
x

c
lu

d
e

s
o

u
t

e
x

clu
d

e
s

e
x

c
lu

d
e

s

h
a

s

co
rre

la
te

s

w
ith

ca
n d

e
te

ct

L
a

y
o

u
t o

f th
e

 M
O

M
 fo

r d
e

scrib
in

g
 v

a
lid

 th
re

a
t sce

n
a

rio
s.

threat sceanarlo
u

se
 o

f to
o

l/
a

p
p

ro
a

ch
 o

f
In

se
rt

io
n

 o
f

w
e

a
p

o
n

o

ff
e

n
d

e
r

to
o

l/
w

e
a

p
o

n

e
xclu

d
e

s
e

x
c

lu
d

e
s

e
x

clu
d

e
s

e
x

clu
d

e
s

e
x

c
lu

d
e

s

a
llo

w
s

su
ita

b
le

 fo
r

a
llo

w
s

c
a

n

ca
n im

p
e

d
e

c

o
u

n
te

ra
ct

airport layout

th
re

a
t

d
e

p
a

n
u

re

a
tta

ck

se
cu

rity

se
cu

rity

ta
r

p
t

e
n

d
 zo

n
e

a

ct
ivi

ty

te
ch

n
o

lo
g

y

zo
n

e

zo
n

e

e
x

clu
d

e
s

e
x

clu
d

e
s

c
a

n
 le

a
d

 to

e
x

clu
d

e
s

e
x

clu
d

e
s

e
xclu

d
e

s
e

x
clu

d
e

s
so

jo
u

rn
so

jo
u

rn
in

d
u

ce
s

a
llo

w
s

is lo
ca

te
d

in

re
a

ch
a

b
le

th
ro

u
g

h

su
ita

b
le

 fo
r

a
llo

w
s

su
ita

b
le

 fo
r

a
llo

w
s

s
u

ita
b

le

fo
r

a
llo

w
s

le
a

d
s to

a
llo

w
s

co
rre

la
te

s
is lo

ca
te

d

w
ith

in

c
a

n
 le

a
d

 to

h
a

s

fo
llo

w
e

r

is
 situ

a
te

d

is
 situ

a
te

d

is situ
a

te
d

ca

n a
p

p
ly

in

in

in

290 Chapter 9

....
OJ

�
c

� 0
-0
c: 0 .Z' c:
OJ

.... c
. -

ta rget
L.- V> OJ L.- OJ 3 OJ � .!:: 0 3 III

.... ·u ,

e 0 III "iij "0 6D - III C C OJ
.... e OJ � III ·E :::J 0 L.-
C U III OJ e (5 :::J "0 0 C L.- III L.- bO ti c c 0 III al III OJ C U 0 L.- OJ , :::J :::J OJ u a. c � III £ L.-£ e OJ OJ ti c u!!!l :g OJ "0 C ·c .� £ 0 OJ V>

bO V> "0 0 C ·C :::J :0 bO .Z' III
;; � L.- ·iii L.-C :::J ·iii 0. V> U :::J .Cij III C -.� 0 C :::J E OJ OJ L.- .� 0 c 0 - III L.- V> 0. - -z; , , , , , , , , , , , c , :::J III .t .t -e -e -e -e -e OJ OJ OJ -e E E -e � � 0 0 0 0 0 0.. 0.. 0.. 0 L.- 0
� u 0. 0. a. 0. 0. 0 0 0 0. E 0 0.

L.- L.- L.- L.- L.- L.- OJ OJ OJ L.- 0 - L.-·iii ·iii ·iii ·iii ·iii ·iii ·iii 0. 0. 0. ·iii u c ·iii
e conom i c l oss 1 1 1 1 1 1 1 0 0 0 1 1 1 1

h u man l i fe 1 1 0 0 0 0 0 1 1 1 0 0 0 0

atte ntion , head l i nes 1 1 1 0 1 1 0 1 1 1 0 0 0 1

fe ar, d e mora l i sat i o n 1 1 1 0 1 1 0 1 1 1 0 0 0 1

s u rvival , escape 1 1 0 0 0 0 0 0 0 0 0 0 0 0

base mot i ve s - p e rsonal ga i n 1 1 0 0 0 0 0 0 0 0 0 1 0 0

base mot i ve s - m u rd e r 1 0 0 0 0 0 0 1 1 1 0 0 0 0

me ntal l y d i st u rbed 1 1 1 1 1 1 1 1 1 1 1 1 1 1

bl ackmai l 1 1 1 1 1 1 1 1 1 1 1 1 1 1

none 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9.9.2
DMM showing direct dependencies between the intention of offender and larget domains.

dependencies indicated by the direct interrelation of the respective domains were speci­
fied. See figure 9.9.2 for an example DMM.

Model

The identified domains can be aligned by triangularization, resulting in a clear sequence
for the composition of valid threat scenarios as illustrated in figure 9.9.3. Starting the
scenario-building process, the first two domains indicate a person's apparent use of the
airport infrastructure. Whether somebody goes shopping or on an international flight
affects which kind of security measures he might be confronted with and which areas of
the airport he might have access to. This definition already narrows down the element
choice for the subsequent scenario generation (figure 9.9.3, group 1). For example, some­
body shopping at the airport will not be able to reach the target, aircraft- on ground,
because he will not be granted access to secure areas.

291 Multidomain Architecture MOM Examples

Befo re the p rocess : vague fea r of atta cks

-

Figure 9.9.3

Afterwa rds : c lear defi n it ion of th reat scena r io

and potent i a l ly effective secu rity measures

MOM structured into groups of OSMs and/or OMMs.

After the elements of the first two domains are specified, the threat scenario can be
assembled. The composition of a valid scenario without any circular logic in the building
process can be assured by choosing the elements according to the sequence indicated by
the MDM. Group 2 in figure 9.9.3 contains the relevant domains for this. Each selection
affects the elements in the following domains; they are reduced to the ones consistent
with the chosen scenario. When at least one element of each domain is settled (multise­
lection of some elements is possible, such as in the tool/weapon domain) , a structurally
consistent scenario is completed. In addition to the scenario, it is important to know the
attacker's way through the airport. Based on this information, scenario-specific security
measures can be deduced. Possibilities are greatly reduced by specifying the use case

292 Chapter 9

(group 1). Additional choices have to be made in group 3 (the dependencies between
threat scenarios and the airport layout) .

The remaining areas of the MDM contain security measures addressing single elements
of the scenario (group 4) and information about the specific airport's security infrastruc­
ture (group 5). The information from these two parts of the MDM is needed to evaluate
the airport's capacities to address the threat.

Results

An important result was a well-documented structure of the system and the interrelations
of its elements-already achieved during the data acquisition phase. This clarified the
definitions shared by all the participants.

Systematic data acquisition provided the basis for a structured assessment of threat
scenarios. The system of airport security was too large for reasonably tracking the con­
nection of each desired pair of scenario elements in the matrix, given the required level
of detail. For this reason, we developed a tool for facilitating the data access. A scenario
builder draws on the data gathered in the MDM and guides the user through the process
of building a plausible scenario. It provides the sequence in which the elements need to
be specified: Elements can only be chosen if they are consistent with the prespecified
aspects of the scenario. Thus, it is impossible to assemble structurally inconsistent sce­
narios when working with the builder. Furthermore, after completing a scenario, the
builder automatically indicates which security activities and technologies address ele­
ments of the respective scenario. The tool offers intuitive interaction with the complex
structure, making the broad space of all structurally consistent scenarios accessible.

In planning airport checkpoints while taking possible future threats into account, it is
desirable to account for as many scenarios as possible. Because the manual creation of
scenarios is time consuming, the scenario builder has been automated, permuting through
all possible element combinations and consequently producing all of the structural pos­
sibilities in the scenario design space.

Analyzing these data gave us hints concerning weak spots in the existing structure:
Scenario clusters with few security technologies and activities addressing them might not
be well protected. However, scenarios addressed by a large number of security measures
might hint at possible redundancies in the airport layout. Such an analysis serves as a
basis when testing the implementation of alternative techniques and layouts: If a poorly
protected scenario cluster is addressed by new processes or technologies, then new mea­
sures seem appropriate.

References

Cole, Mara, and Andreas Kuhlmann. 2010, June. Preparing Today's Airport Security for Future Threats-A
Comprehensive Scenario-Based Approach. Proceedings of the 12th annual conference of the Finland Futures
Research Centre, Turku, Finland.

293 Multidomain Architecture MOM Examples

Cole, Mara, Andreas Kuhlmann, and Oliver Schwetje. 2009, June. Aviation Security -A Structural Complexity
Management Approach. Proceedings of the 13th Air Transport Research Society World Conference, Abu Dhabi,
United Arab Emirates.

Maurer, Maik, Wieland Biedermann, Andreas Kuhlmann, and Thomas Braun. 2009, October. The 2- Tupel­
Constraint and How to Overcome It. Proceedings of the 11th International Design Structure Matrix Conference,
Greenville, Sc.

Maurer, Maik, Wieland Biedermann, Mara Cole, John DAvanzo, and Dirk Dickmanns. 2009, December. Airport
Security: From Single Threat Aspects to Valid Scenarios and Risk Assessment. Proceedings of the 1st annual
Global Conference on Systems and Enterprises, Washington, DC.

294 Chapter 9

Example 9 . 1 0 4 G Mobile Phone LSI Chip D es ign

Contributors

Tsuyoshi Koga, Akihiro Hirao, and Kazuhiro Aoyama
Department of Systems Innovation, University of Tokyo

Yoshiharu Iwata
Center for Advanced Science and Innovation, Osaka University

Problem Statement

The design of large-scale integration (LSI) chips in the semiconductor industry has
entered a phase of major change. As the spacing between transistors narrows, it is pre­
dicted to reach a physical limit. A major focus of R&D efforts today is how to find better
structures for LSI chips, such as System-on-a-Chip (SoC) or System-in-a-Package (SiP)
architectures. Hence, a new method of supporting design decisions in the initial design
stage is strongly desired. To help improve LSI chip design, we built an MDM model to
increase understanding of the initial design and engineering processes.

Data Collection

Through discussions with industrial design engineers in Committee No. 177 on System
Design and Integration in the Japan Society for the Promotion of Science, we captured
170 typical design parameters (e.g., memory capacity) and 100 design tasks, which are
related to parameters through equations (e.g., memory capacity is calculated from the
total area and spacing between transistors). The dependencies between parameters there­
fore come from the equations. We represented the design system of a LSI chip based on
these equations, which consist mainly of four domains: computing, thermal, electrical, and
spatial.

Model

Figure 9.10.1 illustrates the structure of the overall MDM model, which contains four
DSMs. The system-based DSM represents the dependencies between subsystems. The
component-based DSM represents the dependencies between product components. The
parameter-based DSM represents the dependencies between parameters. The task-based
DSM represents the dependencies between design tasks. The relationships among sub­
systems, components, parameters, and design tasks are defined in the DMMs.

Figure 9.10.2 shows the task-based DSM for LSI chip design. Design tasks in this case
are the mathematical or empirical relationships (such as equations) between parameters.

295 Multidomain Architecture MOM Examples

System­
Component

DMM

Parameters

System­
Parameter

DMM

Component­
Parameter

DMM

Component-based clustering

System-based clustering

Figure 9.1 0 .1
Structure of the overall MOM model.

Tasks

System-
Task
DMM

Component-
Task
DMM

Parameter­
Task
DMM

en c 0-VI '< � (I) 3 VI

0 a 3
"8 :;) CD :;) ur

The off-diagonal cells in the matrix identify the number of interactions between design
tasks via the parameters. The parameter design process can be planned based on this
matrix.

This matrix is somewhat difficult to interpret because the dependencies are widely
distributed and often bidirectional. It lacks coherence because this initial DSM of math­
ematical relationships does not specify any parameter design clusters or sequence.
However, we can analyze this DSM to reveal a structure, which indicates how to efficiently
execute the design process. We begin the analysis by identifying design clusters, and then
the design process is obtained.

Results

Figure 9.10.3 shows the result of clustering the process DSM based on an understanding
of the overall LSI structure and four types of domain knowledge in the MDM. Each
cluster is a group of tasks based on the architecture of subsystems, components, and

296 Chapter 9

Figure 9.10.2
Process (task) DSM of 100 design tasks and their interactions.

297 Multidomain Architecture MOM Examples

Figure 9.10.3
Process (task) DSM clustered on the basis of other domains in the LSI chip architecture MDM.

298 Chapter 9

parameters, with dependencies between design parameters collected inside the clusters.
Based on the DMMs, three different kinds of clustering algorithms were used for the
task-based DSM: (1) subsystem-based (hierarchical) clustering, (2) component-based
(structural) clustering, and (3) parameter-based (functional) clustering. Three different
sets of clusters (hierarchical, structural, and functional) were thus obtained. The LSI
designer reviewed these results and selected good clusters. Figure 9.10.3 shows one of
these clustering results.

Figure 9.10.4 shows a clustering result with 170 parameters, resulting in a design
sequence. To obtain this result, the clustered, parameter DSM was sequenced two times,
first by sequencing the clusters and second by sequencing the parameters within each
cluster. Figure 9.10.4 therefore suggests an overall design process for the LSI chip, with
three main findings: (1) the logic chip should be designed before the dynamic random

' .

M";===:":"=" ===::;""'.HU HUUUU til un" ' .U I U

- - - - - - 'L._D_e_Si.;;.gn_o_f L_o..;;g;...i c_I;.../O_...J
I I < - _ _ - �L-___ D_es_i_g_n_o_f_Lo_g_i_C _Tec_h_n_o_l o_g_y_N_o_d_e __ --I

, I

, I . .

Design of Logic chi p and

Core Circuit

Desig n of System LS I
....

� -,'- " .
Design of Logic Ch i p

\ "

and rel ated LS I co mponent . ' - - .. .
,

Design of D RAM Memor,y:Ch i p

t: m ,
'--___ De_s_ig;...n_o_f_' l_n_si_d_e_B_u_m_p_';....._-'� - _ _ _ 11

Figure 9.10.4
Clustered and sequenced parameter-based DSM, suggesting the overall LSI design process at the parameter
level.

299 Multidomain Architecture MOM Examples

access memory (DRAM), (2) the technology node (which sets the transistor spacing)
should be determined before the logic chip and DRAM design, and (3) the inside bump
(an interface between logic and memory chip) should be designed last.

References

Hirao, Akihiro. 2009, March. Design Process Planning for Development of Complex Product System. Bachelor's
thesis, University of Tokyo, Tokyo, Japan.

Hirao, Akihiro, Tsuyoshi Koga, and Kazuhiro Aoyama. 2010 July. Planning Support of Initial Design Process
Based on Clustering and Ordering of Tasks- Design Example of an Integrated Circuit. Proceedings of the 12th
International Design Structure Matrix Conference, Cambridge, England, pp. 83-96.

Koga, Tsuyoshi, Wataru Ono, Akihiro Hirao, and Kazuhiro Aoyama. 2010, October. Structuring of Early Process
of Product Development Considering Order and Dependencies between Design Tasks. Proceedings of the JSME
D&S conference, 231O (CD-ROM) , Japan Society of Mechanical Engineers, Tokyo, Japan.

300 Chapter 9

Example 9 . 1 1 Audi AG Body- in- W hite D evelopment

Contributor

Matthias Kreimeyer
Technische UniversiUit Munchen

Problem Statement

In the context of a research project on the improvement of communication among the
different design and simulation departments concerned with the design of the body-in­
white at Audi AG, Germany, the company's overall design process was analyzed to reveal
the tasks and business objects (work products) that guide the development process at the
organizational interfaces. Overall, a balanced improvement incorporating process, orga­
nizational, and information technology aspects was desired, so an MDM approach was
chosen.

Data Collection

The MDM was exported from a process model built in event-driven process chain nota­
tion using the ARIS Toolset 6.1 by IDS Scheer AG. Each task represents a work package
of four to six weeks of effort for one organizational unit. The process model was built
based on 68 interviews with various staff involved in the process, involving the domains
shown in the meta-MDM in figure 9.11.1. For each interview, individual process models
were built and later consolidated in a series of workshops to form the overall process
model. In addition, the organizational structure was added to complete the model as well
as the checklists for necessary deliverables that were used for each milestone. The data
on milestones were rather incomplete and were finally omitted. For the modeling of tasks
and business objects (e.g., the "crash simulation results"), a denomination scheme was
used to designate the responsibility of the involved personnel (e.g., "support," "do," "coor­
dinate," etc.) or the type of task ("make concept," "develop," etc.).

Model

OR gates were modeled explicitly, representing points in the process where the flow of
information is either split or joined. Only 54 explicit decisions were modeled (i.e., deci­
sions that were taken actively during the design process). To generate a simple model,
AND decisions were not explicitly modeled, and XOR decisions were represented only
as OR.

301 Multidomain Architecture MOM Examples

Tasks
Business Org .

M i lestones
IT OR

Objects U n its Systems Gates

Tasks
T generates T generates

BO l o il BO�
1 0 2 - BO is

Business BO is input
necessary � BO is input

Objects for T �� for T
1 0 3 reach M 1 0 4 1 0 5

r- -
Organizational

OU IS

W

�
responsible

Units

Mi lestones

for T 10 6
'-,-.;'

IT has
IT Systems IT su pport(fc interface t

1 0 �
OR Gates

1 0 7 IT
-

BO is input T generates OR precedes
for T BO

1 0 1� OR
1 0 9 1 0 1 1

Figure 9.11.1
Meta-MOM used for process analysis CIC/FBO convention).

Such decision points occur between tasks and business objects (e.g., when a task makes
a decision that results in different business objects and vice versa). This leads to the four
DMMs (IDs 2, 5, 9, and 10) shown in figure 9.11.1. Additionally, one decision can lead to
another, represented as a DSM as shown in the same figure (ID 11). To represent these
OR gates, therefore, each decision point was modeled as an individual entity of a new
domain ("OR Gates") and related with the appropriate relationship types, either "T
generates BO" or "BO is input for T," according to where the decision point was inserted.

More generally, decision points, modeled as OR gates in this case, can be represented
as a separate domain that does not have an impact on the relationship type. The example
in figure 9.11.2 shows how two business objects BO 1 and BO 2 lead to two tasks T 1
and T 2 (or any combination thereof, as shown by the joining OR gate OR 1 and the
splitting OR gate OR 2). These dependencies are shown in the MDM on the right hand
side, which represents the three domains and the appropriate relationship types as shown
in figure 9.11.1.

The MDM shown in figure 9.11.3 was exported using a standardized export function
from the process modeling tool that delivers various lists. These lists were, in a second
step, used to build the DMMs and DSMs. Overall, 160 tasks, 134 business objects, 14

302 Chapter 9

Figure 9.11.2

OR 1

.------[2D

OR 2

Task DSM derived from business objects and OR gates (IC/FBD convention).

organizational units, and 27 IT systems comprise the MDM, which was validated through
several workshops and analyses.

The native data were used to derive the task DSM shown in figure 9.11.4 by following
the flow of information via the business objects exchanged by the tasks and via the deci­
sion points (two at most between any two tasks) within the process. If, for example, the
task "coordinate aeroacoustics" is followed by a business object "results for aeroacoustics
simulation," which leads to the task "support development of structure," then the first
task was linked directly to the second task in the derived DSM. Intermediate OR gates
were treated similarly (Kreimeyer and Lindemann 2011). The resulting DSM was ran­
domly cross-checked with engineers involved in the process to ensure that the aggregation
did not bring about false results. In theory, other DSMs could be calculated (e.g., via
common IT systems), but these were not regarded here because the derivation procedure
generally yielded dense DSMs that did not provide much insight. (This is a common
problem when deriving a DSM for a domain with fewer nodes.)

Results

To obtain the core drivers of the process, five different complexity metrics were applied
to the derived task DSM. First, the in-degree and out-degree regard the immediate
context of each task and count its incoming and outgoing interfaces, respectively. Thus,
the degree (the sum of the in- and out-degrees) identifies tasks that demand high coor­
dination effort and that are critical sources or sinks of information. The degree distribu­
tion of all tasks can be plotted as a frequency histogram, as in figure 9.11.5. This shows
that the process depends largely on tasks that are only minimally connected, while there
are a few key tasks with a degree of around 10 to 12, and there are two nodes with degree
30 and 32, respectively. These two tasks act as major information sinks and thus as hubs
in the immediate context of the process.

�

-'

�

I·.

� f [=-� k ¥

I! !!Ji
-

!§3<.

t i

'.

�
 .. -.- .-�

. -

'".-
-

-
. .

_
0"_

.. 0:.:..-

... _
,,-

.""
 -

l=':�
')=�

'.

Figure 9.11.3

.-
-

-

-,

j... _
_

 ..
........ --: .. -:-.. .,.

_m

O
v

e
ra

ll M
O

M
 w

ith
 n

a
tiv

e
 d

ata (e
m

p
ty m

a
trice

s sh
a

d
e

d
 g

re
y).

--

� -:

..
..-.

..
..

 .
.. ..

......

"" "'"'''
'''''

'''
"

 ... ,
,''

,
,

'
'

'
'

''
,'

,
,

'
'

'
'

'
'

'
'

'
,

'
'

,
,'

,
',

.,
,

'
'

'
'

,
'

'
,''

'
'

,
'

'
'

'
'

",I
,�

,"'-;
;;;l

"
"

"
"=

"
,

,
,

,
,

,
,

,
,

,,=

--.
. '--"

'l

-..
.... ,

-
�

 y

or

_

: .. ',--..

..
.

1,,1 ..
. p.

I "r �. .

..
I

.
1

 ••
•

.
.

W
1 1 1 "'1 1 1
.. ==z
4 . Il0l 1
...... , .. ,
!�

304 Chapter 9

Figure 9.11.4

. . . .
·

..
.. : e •• •• . . . ;: .; .. :�

::-
. . . .

.
· .

. . .. ·

y.
i ie! :5:.

.
. . •

._ a .:: • • · .

. .
.

.

: :
· .
· . ·

:: -::-

· . ..

Task DSM derived from business objects and OR gates (IC/FBD convention).

.

.
.

. .
. I:: :.

305 Multidomain Architecture MOM Examples

50

45

40
x
G> 3S � Cl G>
� 30
" � .5 25

:; I I .� 20 I '" \ , .>< \ , \ '" \ , , S 15 \ , (; , I
2! ,
c: 10 G> to
a <> 5 0

0

• _ _ , /In-<legree
, "

Degree x

1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 1 32

Figure 9.11.5
Degree distribution for in-degree and out-degree.

The second complexity metric, reach ability (outgoing and incoming), specifies the path
length by which a task can reach every other task in the process. It thereby extends the
degree measure to the whole process and not just the immediate vicinity of a task.

Third, the snowball and forerun factors regard the outgoing and incoming hierarchies
of each task, respectively (i.e., the nodes that can be attained from each task directly or
via n intermediate tasks). However, they do not simply assess how many other tasks can
be reached; they also assess the distance to each task in the hierarchy, thus taking into
account that tasks which are farther away have less impact. Hence, they normalize the
reach ability measures.

Fourth, relative centrality counts the number of geodesics (shortest paths) between any
pair of tasks that pass via a given task, therefore assessing how many information chan­
nels go via any given task. This metric helps to assess how much a task contributes to
architecting a system, as a more central task will have a greater influence on how infor­
mation is processed.

Fifth, the occurrence of iterations is assessed by regarding how many cycles in the DSM
include each task. As such, the concept is similar to that of the relative centrality, but
focusing on how much each task contributes to rework cycles in the process, thereby being
more relevant to the problem-solving process. Although these numbers may seem large,
they represent the occurrence of each task in all cycles from length two (one task to the
next and back) to the longest cycle. These results are in line with the high centrality of
the three tasks shown: The more central a task is to the process, the more rework cycles

306 Chapter 9

AC 43 - Setup simulation model for crash

AC 65 - Coordinate simulation of crash

AC 91 - Coordinate simulation of passenger safety

Figure 9.11.6
Complexity metrics for three tasks.

1

� GI 0> e GI 0> � Q) :; �
0 1:
3 32

1 6 30
1 2 1 5

2

ld ?:-0> = 0> = c: .o c: .o '- to 'E � O ,c £' 0 8 tO :> to O e £ �
1 05 1 08
1 09 1 1 1
1 08 1 1 2

TOJl outl ier

3 4 5
til

.... Ol
0 � u U � � $ o Ol Iii C: � � � "8 .0 2 � = e .0 c: e to - E 0 � B c: 0 :> <11 fJ) u.. Z c.

25 .8 62.7 396 145.754
51 .9 62.4 3233 205,467
47.3 50.7 1 1 90 1 56,927

J Second outlier l:rhird outlier

will typically go across it. Figure 9.11.6 displays results for three selected tasks. The shading
indicates that a task was among the top three values (i.e., a "structural outlier").

Coordinate simulation of crash (task 65) is by far the most important task of the process,
being among the top three for almost all metrics. This is in line with Audi's strategy for
vehicles, as crashworthiness is one of the most important properties a car is optimized
toward. The task is well embedded in its immediate vicinity, as both a high in- and out­
degree show. The high in-degree refers, in fact, to the need to collect a lot of different
business objects to build a crash simulation model. Also, the crash model is later used for
other simulations and therefore forwarded to other tasks, as the high out-degree shows.
At the same time, the results from this task are used to improve the design for the car
body, hence its high centrality. However, the factual setup of the simulation model (i.e.,
not the coordination of this process) makes use of even more inputs, as the in-degree
shows, while having relatively few outputs. This task collects information from all across
the process, which results in the highest possible value for the forerun factor.

As a result, a process improvement project was focused to work, in a first step, on raising
the efficiency of simulation models, as these business objects showed to be the most
central in the process. Using the MDM, the stakeholders involved in building the various
business objects (e.g., simulation models) could be derived as a starting point for this
improvement project.

The separation of the different domains in the process analysis provided two advan­
tages versus using only a DSM. First, the MDM could simply be generated by exporting
various DSMs and DMMs out of a standard process modeling tool (ARIS Toolset 6.1),
and thus the native dependency information could be generated in the way that engineers
at Audi AG were used to, thereby making sure the information was well understood,
correct, and consistent. Second, the analysis of the Task DSM could always be traced back

307 Multidomain Architecture MOM Examples

to involved business objects, hence facilitating the interpretation of the results (e.g., the
task "Coordinate simulation for crash" is involved in many rework cycles that, to a large
extent, depend on a single business object, although it is linked to several).

References

Kreimeyer, Matthias, Stefanie Braun, Matthias Giirtler, and Udo Lindemann. August, 2009. Extending Multiple
Domain Matrices to allow for the Modeling of Boolean Operators in Process Models. International Conference
on Engineering Design- ICED'09, The Design Society, Stanford, CA.

Kreimeyer, Matthias, and Udo Lindemann. 2011. Complexity Metrics in Engineering Design. Berlin: Springer.

308 Chapter 9

Example 9 . 1 2 U .S . Air F orce MAV D evelopment

Contributors

Jason Bartolomei, Richard de Neufville, Daniel Hastings, and Jennifer Wilds
Massachusetts Institute of Technology

Problem Statement

The US. Air Force Research Laboratory (AFRL) is the US. Air Force's leading organiza­
tion dedicated to the discovery, development, and integration of war fighting technologies
for air, space, and cyberspace forces. The AFRL was tasked to develop a miniaturized
unmanned air vehicle (MAV) for US. Special Forces (figure 9.12.1). This quick reaction
project integrated several technologies under development within the AFRL, as well as
technologies developed by industry and academia. To understand this complexity, this
project applied MDM analysis using product, organization, and process DSMs and their
corresponding DMMs. The model used a time-series data set to capture the dynamic
complexity of a product development system. This allowed examination of the impact of
engineer turnover within the design organization, the effects of changing requirements
on the design, and the design evolution. Analysis identified platform and modularity
opportunities in the design by allowing system engineers to explore the sources and
effects of design changes in the product development system.

Data Collection

Over a two-year period, Jason Bartolomei (a US. Air Force officer and PhD student in
MIT's Engineering Systems Division) observed the MAV project underway at the AFRL.
While constructing the MDM model for the MAV project, Bartolomei found that much of
the information surrounding the system resided not in technical documentation but rather
in the stories of the people in and around the system. Transparency of assumptions and
traceability of sources were vitally important due to the qualitative nature of the system's
data, the scope of the system that transcended one person's direct knowledge and exper­
tise, and the system complexity measured by the number of components and interactions.

As such, Bartolomei developed and used a data collection and multidomain modeling
technique suitable for the types of qualitative knowledge data surrounding the develop­
ment of complex engineering systems. The method follows an iterative, systematic process
that translates system information collected through interviews, observation, and docu­
mentation into an Engineering Systems MDM (ES-MDM). The modeling process is
comprised of the following steps:

309 Multidomain Architecture MOM Examples

Figure 9.12.1
A miniaturized unmanned air vehicle (left) and its ground control station (right).

1. Identify the system of interest The ES-MDM framework consisted of six DSMs and 15
DMMs as shown in figure 9.12.2. (The interdomain relationships are undirected, so the
ES-MDM is symmetric, and the 15 DMMs above the diagonal are the same as the 15
below.) The six DSMs addressed the following domains:

• System Drivers (Environmental) Domain A variety of factors including regulatory agen­

cies, other military organizations, various technologies, military acquisition system,
congressional budgets, and others. Example components in this DSM include chang­
ing threats ("red force"), rapidly advancing technologies, as well as changing inter­
faces to friendly ("blue force") technologies and tactics that the MAY needed to
interact with to perform user-defined missions.

• Stakeholders (Organization) Domain AFRL managers, engineering, and technical
support staff, as well as several subcontractors responsible for the development and
testing of technical subsystems, plus a variety of external stakeholders.

• Objectives Domain Purposes and goals of the system; here, the design and devel­
opment of MAY prototypes that meets customer needs on schedule and within
costs.

• Functions Domain A decomposition of the objectives into a hierarchy of functions
and subfunctions.

• Objects (Product) Domain The MAY system, subsystems, and components, including
a laptop computer, antennae, backpack, as well as fabrication equipment used in
production.

• Activities (Process) Domain Processes, activities, and tasks involved in the design,
development, and management of the MAY system.

310 Chapter 9

System Stakeholders Objectives Functions Objects Activltfes Drivers

The l ist and Relates the Relates the Relates the Relates the Relates the
interactions of stakeholders objectives that functions that technical activities that

System exogenous that act on act on act on components that act on

Drivers factors that act exogenous exogenous exogenous act on exogenous
or acted on by variables variables variables exogenous variables
the system variables

Relates the The Ust and Relates the Relates the Relates the Relates the
exogenous interactions of objectives that functions that technical act/vltres that

Stakeholders variables that the human act on act on components that act on

act on system entlfles with in stakeholders stakeholders act on stakeholders
stakeholders the system stakeholders

Relates the Relates the The l ist and Relates the Relates the Relates the
exogenous stakeholders interactions of functions that technical act/vitfes that

Objectives
variables that that define or combined act on or relate components that act on system

act on system contribute to the purposes and to system act on system objectives
objectives system goals of the objectives objectives

objectives system

Relates the Relates the Relates the The l ist and Relates the Relates the
exogenous stakeholders objectives that Interactions of technical actlvitfes that

Functions variables that that act on are decomposed functions of the components that act on system

act on system system Into system system are traceable to functions
functions functions functions system functions

Relates the Relates the Relates the Relates the The l ist and Relates the
exogenous stakeholders objectlve.s that functions that Interactions of activities that

Objects
variables that that act on the act on or are allocated to technical act on technical
act on system technical constrain technical components of components
technical components of technical components the system
components the system components

Relates the Relates the Relates the Relates the Relates the The list and
exogenous stakeholders objectives that fun ctions that technical Interactions of

Activities
variables that that engage in or act on or are allocated to components that activities of the

act on the act on the constrain system activities act on system system
system activities activities of the system act/vlties activities

system

Figure 9.12.2
The Engineering Systems MDM (IR/FAD convention).

2. Define objectives for analysis See the "Problem Statement" section. Because time-series
information for each of the domains was important, mUltiple ES-MDMs would be
needed to represent different time periods.

3. Collect data Qualitative, social science methods for eliciting data through interviews
are central to constructing the ES-MDM. Subject matter experts were interviewed with
open-ended questions, and recorded interviews were transcribed. In addition, pertinent
documentation describing the system was collected, including technical data used for
computational models, engineering drawings, e-mails, and program presentations. Data
were collected over 24 months (December 2004--December 2006) and represent all 46

311 Multidomain Architecture MOM Examples

Stakeholders
Stakeholder >

t
Stakeholder

t-.t
Mary John > Mary

Stakeholder > Stakeholders
Stakeholder

t-.t •

,
Mary > John John

Stakeholder > Stakeholder >

Objectives Objectives

t-.+ t-.+
Mary > Objectlve1 John > Objective1

Figure 9.12.3

Objectives >
Stakeholders

+-.t
Objective1 > Mary

Objectives >
Stakeholders

+-.t
Objective1 > John

Objectives

+
Objectlve1

Placing the coded data into the ES-MDM (step 5).

months of the MAV project duration (February 2003-December 2006). All together,
several thousand pages of interview transcripts, program documentation, and other
data were collected.

4. Code the data Tag the data as they pertain to the nodes, relations, and attributes of
the six domains of the ES-MDM.

5. Organize the coded data in the ES-MDM Figure 9.12.3 demonstrates this step for the
interview transcripts.

6. Examine the model for missing/conflicting data Each element of the model can be ref­
erenced to raw data (interviews, documentation, etc.). Experts were invited to review
and verify the data and the model.

7. Resolve missing data Take action to resolve conflicts. This was done through additional
interviews, reviews of the raw data, and other similar actions.

8. Perform analysis Various quantitative analytical methods are available to examine the
system structure and behavior.

9. Iterate Modelers are likely to perform several iterations of the methodology in the
analysis of a complex system.

312 Chapter 9

Stakeholders

"'
c: ,g
u
c: .r

1'l CI) "is o

"
"

. : ' �

..

•

. . - ,

....

" ,
" ,

"

Objectives

" ., "

. .

. . ..
"

'.. I
I

" .

"
" ,

' "

.

Functions

.

f •• • •

" ,
"

.... "
"

"
" .-

(

"

. .
. _ .

" .­
_ J' .-...

, .

Objects

. ,

• : .1 ' I , . . - .

' .

�.
"

. '
I

: '

Proc.

: .. :

1
. -,:. (

" £ � . �----��--------���----------------��------�------��

Figure 9,12.4
The full ES-MDM (at time I),

Figure 9,12.4 shows the overall MAY ES-MDM, and figure 9,12,5 shows the stakehold­
ers DSM portion of the ES-MDM in greater detail.

Results

One important question facing project leadership was, "Should we be managing this
project at the subsystem or component level?" Insights into this question drive organiza­
tional structure, resource decisions, and process development. To explore this question,
we computed a common network metric, betweenness centrality (Be), which measures

313 Multidomain Architecture MOM Examples

Stakeholder 1

Sta keholder 2
Stakeholder 3
Stakeholder 4
Stakeholder 5
Sta keholder 6
Stakeholder 7
Sta keholder 8
Stakeholder 9

Stakeholder 1 0
Stakeholder 1 1
Sta keholder 1 2
Stakeholder 1 3
Stakeholder 1 4
Stakeholder 1 5

Sta keholder 1 6
Stakeholder 1 7
Stakeholder 1 8
Stakeholder 1 9

Stakeholder 20
Stakeholder 2 1
Stakeholder 22
Stakeholder 23
Stakeholder 24
Stakeholder 25

Stakeholder 26
Stakeholder 27
Stakeholder 28
Stakeholder 29

.... Ql "0 (5 r.
Ql -'>It. til U5

N ("')
.... iii Ql "0 "0 (5 (5 r. r.
Ql Ql -'>It. -'>It. til 2 U5 en

Figure 9.12.5

.;t Lt') CD
.... iii Ql Ql "0 "0 "0 (5 (5 (5 r. r. r.
Ql Ql Ql -'>It. .><: -'>It.
2 2 til
en en U5

•
-

I'-
.... Ql "0 (5 r.
Ql -'>It. til U5

I

0 ex) Ol

•

Stakeholder DSM portion of the ES-MDM.

N ("') .;t Lt')-
iii iii "-

Ql Ql "0 "0 "0 "0 (5 (5 (5 (5 r. r. r. r.
Ql Ql Ql Q) -'>It. -'>It. -'>It. -'>It.
2 2 til til
en en U5 U5

CD I'- ex) Ol 0 N N ("') ..,. Lt') CD I'- ex) Ol N N N N N N N N N
iii iii iii iii "- iii iii iii iii iii Ql Ql Ql Ql III "0 "0 "0 "0 "0 "0 "0 "0 "0 "0 "0 "0 "0 "0 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 r. r. r. r. r. r. r. r. r. r. r. r. r. r.
Q) Q) Q) Q) Q) Q) Q) Q) Q) Q) Q) Q) Q) Q) -'>It. .><: -'" -'" -'>It. -'" -'" -'>It. -'" -'>It. -'" -'>It. -'>It. -'" til til 2 til 2 2 til til til til til til 2 til U5 U5 en U5 en en U5 U5 U5 U5 U5 U5 en U5

I
•

•

314 Chapter 9

Rank Objects OSM Only
1 Engine Subsystem
2 Ground StlItion Tran mitter
3 Control ubsystem
4 Ground tlItion ubsystem
5 Ground tation oftwate
6 Actuator # 1
7 W1l1 Subsystem
8 Battery Connectors
9 Ribs

J O \Ving Composite Structure

Figure 9.12.6

BC
373
272
244
21 2
1 97
1 54
1 38
1 35
1 27

1 03

Rank Entire ES-MDM BC
1 Autopilot Subsystem 1 977
2 Communication ubsystem 1 822
3 Ground tlItion ubsystem 1 749
4 Air Vehicle 1 388
5 Ing Subsystem 1299
6 Battery ubsystem 1 0 1 3
7 Fuselage Subsystem 1 008
8 Ground tlItion oftware 992
9 Control ubsystem 967

] 0 Fuselage Structure 967

Betweenness centrality (BC) for Product component (objects) only (left) and all ES-MDM elements (right).

Rank MAV-PO Socin! Network BC Rank MAV-PO Entire Network BC
1 PM\XfJ 500 1 PMW] 1 0973
2 STCC 1 99 2 KTRDM 3680

-

3 PMBI (MAV-PO PM 3) 84 3 KTRNM 1 972 - --

4 SPOMD 55 4 STCC 1 557
5 SPOKE 45 5 PMBI 1A -PO PM 3) 1 373
6 SPOGR 44 6 KTRRC 1 004

--

7 KTRDM 40 7 KTRTT 6 1 8
8 STYA 22 8 KTRBR 390

9 ST P 20 9 SPOMD 293
1 0 PMFC 1 5 1 0 STYA 275

Figure 9.12.7
Be for stakeholders only (left) and stakeholders rankings with respect to all ES-MDM elements (right).

the number of times an element within the ES-MDM occurs on the short path connecting
two other elements. We used it to compare the top ten components in the Objects Matrix
with the top ten elements in the entire ES-MDM. The results, shown in figure 9.12.6,
indicated that subsystems have greater connectivity than components in the larger system.
From a management perspective, this suggested that the MAY program should be
managed at the subsystem level rather than the component level. For systems like the
MAY, organizing around subsystems was a good approach because the product system
integrated several commercially available subsystems. By managing at the subsystem level
of complexity, the program could optimize the allocation of manpower and better facili­
tate systems integration.

The same analysis was used on the Stakeholders DSM. In social network analysis, BC
is associated with the control of information: Stakeholders with higher BC have greater
influence on a social network. Figure 9.12.7 shows the results, at time 3, where each
acronym "XXXX" represents a particular individual. In the social domain, the highest

315 Multidomain Architecture MOM Examples

Time l Time 2 Time 3 Time 4 Time S
Degree Centrality 38 46 61 53 8
BC 3643 5427 1 1 836 1 0331 I 1 769

PMWJ
STCC Degree Centrality 1 6 2 1 28 23 4

BC 820 866 1 667 3501 I 241
MAV-PD Avgs Degree Centrality 4.9 4.9 4.7 5.0 3.8

BC 238 258 280 296 339

Figure 9.12.8
Centrality measures for MAV stakeholders over time.

ranked stakeholders were PMWJ and STCC, the chief engineer and the customer, respec­
tively. PMBI was the program manager; SPOMD, SPOKE, and SPOGR were contract
managers; and KT RDM was the lead contractor responsible for the ground station and
production. These results were as expected. The rankings changed, however, when the
analysis was expanded to include the functional, technical, and process domains, as
shown on the right side of figure 9.12.7. For example, subcontractor KTRDM's ranking
surpassed that of the program manager PMBI. The ES-MDM thus revealed that KT RDM,
a seemingly less important stakeholder when looking at the social network, was far
more connected and had greater influence in the overall MAV engineering system. The
ES-MDM provided a means to better understand the roles of stakeholders involved in
the system.

The ES-MDM was also used to examine how stakeholder characteristics changed over
time. We compared stakeholders PMWJ and STCC's degree centrality (the count of con­
nections for a node) and BC over several six-month intervals (figure 9.12.8). The analysis
compared these centrality measures with those for their replacements at time 5. The
metrics for both PMWJ and STCC grew over time and were always much larger compared
with those of the average individual within the MAV system. At time 5, however, both
PMWJ and STCC were removed and replaced with new agents. The replacements had
significantly smaller centrality measures, an indication that they were not as well con­
nected in the system. In this case, the ES-MDM and analysis can be used as a tool to
identify the downside risks associated with personnel changes. For the MAV program, the
changeover in personnel correlated with a decline in project performance. A benefit of
the ES-MDM is that it gives new personnel a means to engage more deliberately in the
system by revealing important connections within and across domains.

We also analyzed the entire MAV development system over time. As shown in figure
9.12.9, the size of the MAV network and the density of the relationships changed over
time. These changes are not surprising because frequent organizational and technology
changes were well documented. It is interesting to note the difference in network metrics
at time 5. The degradation in the number of relations far exceeds that in the number of
nodes. The average degree <k> and clustering coefficient is lower compared with those

316 Chapter 9

MAV ES-MOM

Time I
Time 2
Time]
Time 4
Time S

Stakeholders DSM Time 3
Objects DSM Time 3

Figure 9.12.9

ot' nCldos. n

1 &4
1 96
261.
223
206
47
52

.... of l ink�. //I /'w�. degree. !wg. path
< to- length. I

884 4.S7 3 .6 1
956 4.93 3 .67
1 232 4.70] .61
1 1 06 4.96 3 .67
778 3 .77 4.44
328 6.97 2.115
226 4.34 2 .93

Various complexity metrics computed over five time periods.

- -� Clustering Clu.�t.ring <Ie'> / "
coet!. (" ' . coc:ff.. C" lug c k >

3.29 0.29 (1.2 1 0.03
3.3 1 0.3 1 O.:!Il 0,03
].60 0.32 1 1 20 0.02
3.38 0.30 0 , 1 9 0.02
4.0 1 0.22 0. 1 3 0.02
1 .98 0.68 11 .33 0. 1 5
2.69 0.32 n.2l O.OS

in other periods, and path length seems much longer. This observation prompted a reex­
amination of the system for insights as to what might have happened.

At time 5, the changes in the network metrics reflect the loss of PMWJ and STCC.
Their replacements from outside organizations had no experience with the MAV. This
disrupted the cohesion of the MAV team, as management changed from the flat structure
created by PMWJ and STCC's social connections into what seemed to be a classic military
stovepipe. The time 5 ES-MDM shows a longer average path length and a smaller average
clustering coefficient, which supports the qualitative data indicating significant structural
changes when PMWJ and STCC left the project. Efforts to develop new MAV prototypes
then rapidly diminished. Within six months, the project lost its capacity to develop MAV
prototypes. The project objectives then changed to develop a small subset of the original
system.

The ES-MDM holds promise as an industrial tool for systems engineers. The informa­
tion used to build common system-level models and products such as QFD and DoDAF
can be captured in a fully attributed ES-MDM. Plus, the ES-MDM captures information
about the social and environmental domains important to systems engineering projects.
Last, a collection of ES-MDMs can represent time-series information about a project.

References

Bartolomei, Jason E. 2007, June. Qualitative Knowledge Construction for Engineering Systems: Extending the
Design Structure Matrix Methodology in Scope and Procedure. PhD thesis, Engineering Systems Division, Mas­
sachusetts Institute of Technology, Cambridge, MA.

Bartolomei, Jason E., Daniel E. Hastings, Richard de Neufville, and Donna Rhodes. 2012. Engineering Systems
Multiple Domain Matrix: An Organizing Framework for Modeling Large-Scale Complex Systems. Systems
Engineering 15 (1):41-61.

Bartolomei, Jason E., Susan S. Silbey, Daniel E. Hastings, Richard de Neufville, and Donna Rhodes. 2009, June.
Qualitative Knowledge Construction for Engineering Systems: Bridging the Unspannable Chasm between Social
Sciences and Hard Sciences. Proceedings of the International Conference on Engineering Systems, Massachu­
setts Institute of Technology, Cambridge, MA.

317 Multidomain Architecture MOM Examples

Example 9 . 1 3 K almar I ndus tries S upplier N etwork

Contributors

Mike Danilovic
Halmstad University

Mats Winroth
Chalmers University of Technology

Problem Statement

Kalmar Industries produces heavy-duty materials handling equipment such as reach­
stackers that are used in port and transportation operations. To deliver anticipated large
customer orders of reach-stackers in a limited time frame, Kalmar worked to strengthen
and intensify its collaboration with three major suppliers, Hiflex, Euromaster, and Kone,
in a joint, co-located industrial network. The major challenge was to design the collabora­
tive and information exchange processes between the four companies.

Data Collection

Based on the extended Miltenburg framework (1995), we formulated a large MDM model
of the industrial network surrounding the reach-stacker development and production.
Three major aspects were modeled for each of the four companies involved-the com­
petitive analysis focusing on market and customer requirements, the decision criteria
regarding design of the manufacturing and management system, and layout of the manu­
facturing process-resulting in the 216 x 216 matrix shown in figure 9.13.1. Data for
the MDM model came from interviews with managers at the four companies. The
number and shading in each off-diagonal cell represents the strength of the dependency:
3 (red) = very strong, 2 (pink) = medium, and 1 (yellow) = low. All three domains are
based on a static analysis, but there is a dynamic relationship between those three. They
influence each other within and between each company.

Each of the three aspects of the process involves numerous interactions among Kalmar,
the system integrator (SI), and the suppliers. The SI has to analyze the market situation
and customer requirements. In this process, the present manufacturing systems influence
the analysis of decision areas, which is fed back to the design of the production system.
There is also a process of synchronization between the SI and the preferred suppliers
regarding market situation and customer demands, as well as a negotiation of how the
suppliers should organize their production systems according to what the SI is capable of
doing on its own and what part of the supplier organization should be relocated within
proximity of the SI. Third is a process of adaptation within and between each supplier.

Figure 9.13.1
Original MDM of the entire corporate network.

319 Multidomain Architecture MOM Examples

They have to decide how to respond to the demands, what part to relocate, and how to
develop new organizational routines to handle the daily activities, not only in their own
corporation but also within the entire network.

Model

The initial MDM model shown in figure 9.13.1 represents grouping according to the four
corporate entities.

Results

We initially performed a clustering analysis at the corporate network level, analyzing the
entire MDM as if it were a large DSM. We used the clustering algorithm of McCormick
et al. (1972), followed by some further, manual adjustments. Figure 9.13.2 shows the
result, where we identified five clusters along the diagonal. We allowed these clusters to
overlap, designating the common element in two clusters as a linking element. Figure
9.13.3 zooms in on cluster 3. Here we can see detailed interdependencies among all four
corporations (SI and suppliers A, B, and C) that span all three aspects of the Miltenburg
framework. Although it had been clear that the SI needed to work closely with each
supplier, this analysis revealed the importance of the suppliers also working closely with
each other.

In the next step, we treated the large MDM as a combination of DSMs and DMMs, as
shown in figure 9.13.4. DMMs 1 and 4 show analysis between Kalmar Industries and
Hiflex, DMMs 2 and 5 show analysis between Euromaster and Kalmar Industries, and
so on. DMMs 7-12 show analyses between suppliers. The final analyses we conducted
were on the separate DSMs and DMMs, focusing on dependencies among the four
companies.

For example, figure 9.13.5 shows DMM 4, which has been clustered to show three major
areas in which detailed information flows create interdependencies between Kalmar
Industries and Hiflex. (The same procedure was used for each of the other DSMs and
DMMs.) These three clusters were identified by visualization and manual evaluation of
the elements. In order for the network to function efficiently, it is crucial that each
company understand what kind of information different stakeholders need and how each
other's competitive advantage is influenced by strategic decisions, actions, and intercon­
nectivities. The combination of DSM and DMM approaches used in this research explores
and enables synchronization, within and between companies, regarding aspects of their
intra- and interfirm competitive situation, decision criteria, and production system layout.
The participative approach that we have chosen, involving people from all companies of
the network, involves several functions and strategizing processes in the analysis, reveals
assumptions regarding the market and competitive situation, and explores the need

Figure 9.13.2
In

itia
l a

n
a

lysis o
f th

e
 o

v
e

ra
ll co

rp
o

ra
te

 n
e

tw
o

rk
 v

ia
 clu

ste
rin

g
.

W

IV

o

(')

::r

I»
"

 � \I
I

D
S

M
 3

-O
U

T
P

U
T �� .• �

 1
;,'"11""k4

' ,�,,�., ,oil; *' '
C

LU
S

T
E

R
 3

) "'� \'"
,

',,/"
,

g
� _ •.

"
,

"
'-

-
'"

I!!

1,1.3 Toial
lead

 lim
e

'"1.1 Lead
 tim

e In pmructio
n

1.1.3 T
Ola

llea
d

 time

Figure 9.13.3
D

eta
iled

 v
ie

w
 o

f clu
ste

r 3
 fro

m
 fig

u
re

 9
.1

3
,2

,

1 2

1
1

1
1

1 2

1
1

1 II I !
g

ti i
G i

"
-

E

1 2
2

1
1

2 2 -
8 � ;
� .; .§
� s �
:; �

-J

1
1

2
1

2
2

2
2

2 2
1

2
2

1
2

2 2
1

1
2 2

2

W

IV

..
...

� c:: ;:;'

a: o 3 e!. :::I » � ::r

;= Q. c:: til � C

� m

� 3 " tD II
I

322 Chapter 9

Figure 9.13.4

DMM 9
".

SUPPLI ER B -
SU PPLIER A

.

DMM ll ..
SUPPLIER C -
SU PPLIER A

Parsing the MOM into OSMs and OMMs.

'.

.

• SYST I NT..£GRATOR .SYST I NT£G RATOR

- StJ PPLI ER B •

- S(:jPPLIER C

DrtlM 7
SU PPLIER A ­

SUPPLI ER �

DMM 12
..

SUPPLIER C -
SUPPLI E R B

..

..

DftlM 8
SUPPLI E R A -

SU PPLI ER �

D�M l0
SUPPLIER B ­
SUPPLI E R C

..

323 Multidomain Architecture MOM Examples

System Integrator -
Supplier A

Domain Mapping Matrix
OUTPUT

Figure 9.13.5

2
2

1 1 1
,

1 1 ,

1 1

t
1 2 t

2
2

t 1

1 1
1
1

t i t
t t 1

1 I 1

1 1

1
2
2
1

t t
2
1

1 t t

1 1 1

Detailed view of DMM 4 from figure 9.13.4 after clustering analysis.

•

I
1

B 1 1 1
1

1
- ,

2 1 t 2 1 1

324 Chapter 9

for adaptation to customer and business partner needs. Finally, this approach reduces
uncertainty in decision making and organizational and process design and enables devel­
opment of self-organizing networks. In our analysis of linkages between manufacturing
strategies and the production system in a collaborative network setting, we could identify
three major processes-loops of information processing-to help develop a joint manu­
facturing strategy for the collaborative network, design the production systems within
each company, and thus improve manufacturing and delivery of complete products to the
final customer. In other words, the SI and the three suppliers must synchronize their
strategies and positions to be more successful, and the MDM pinpoints exactly where this
must occur.

The outcome was a self-organized, self-regulated system, where each supplier was
proactive and solved planning issues without Kalmar Industries having to act and give
orders. This was supported by an open system for information management that all four
companies could access.

References

Danilovic, Mike, and Tyson Browning. 2007. Managing Complex Product Development Projects with Design
Structure Matrices and Domain Mapping Matrices. International Journal of Project Management 25
(3):300-314.

Danilovic, Mike, and Bengt Sandkull. 2005. The Use of Dependence Structure Matrix and Domain Mapping
Matrix in Managing Uncertainty in Multiple Project Situations. International Journal of Project Management
23:193-203.

Danilovic, Mike, and Mats Winroth. 2006. Corporate Manufacturing Network: From Hierarchy to Self-Organis­
ing System. International Journal of Integrated Supply Management 2 (1):106--13l.

McCormick, William T., Paul 1. Schweitzer, and Thomas W. White. 1972. Problem Decomposition and Data
Reorganization by a Clustering Technique. Operations Research 20 (5):993-1009.

Miltenburg, John. 1995. How to Formulate and Implement a Winning Plan. Portland, OR: Productivity Press.

Winroth, Mats, and Mike Danilovic. 2002, April 5-8. Manufacturing Strategies- Congruence of Manufacturing
Processes Within a Supply Chain. Proceedings of the 13th annual conference of the Production and Operations
Management Society, San Francisco, CA.

10
The Future of DSM

The basic DSM methods are several decades old. However, only in recent years has the

extension of these methods allowed the application of DSM to such a wide range of

problems in engineering management. This book has primarily explained how DSM can

be used to develop important insights through modeling, analysis, and scrutiny of DSM

models of product, organization, and process architectures-either separately or as mul­

tiple domains in linked models. With this book, we have tried to bring new users of DSM

up to speed by presenting the fundamental methods and selected applications in each

domain of DSM modeling.

Despite several decades of DSM history, we believe that DSM research and application

is still at an early stage in its life cycle. Many important lessons have been learned, with

more to come. Much research has been done, with more to come. Several DSM software

tools are now available, with more to come.

This final chapter of the book reviews some of the broader lessons we have learned

about DSM and its application to engineering management. We recognize that the state

of the art is continuously evolving through research and development of DSM methods.

Finally, we point readers to a number of resources available to support DSM users, includ­

ing conferences, training, software, and the DSM website. We look forward to the coming

decades as the methods yield even greater impact and the field matures.

Lessons Learned 50 Far

As researchers, teachers, and practitioners, we have used DSM to model, analyze, under­

stand, and improve more than 100 different types of projects in various industrial contexts.

Here are some of the most salient lessons we have learned through this experience:

1. A little modeling goes a long way Tremendously important insights can arise through a

relatively modest modeling effort.

2. D5M does not give the answers Process owners, system engineers, program managers,

and other key stakeholders interpret the DSM models in context. Their greater under-

326 Chapter 10

standing of the situation is facilitated by DSM; it is this understanding that yields the

answers which are the keys to improvement.

3. DSM is not the hammer for every nail DSM is part of a larger context of system model­

ing. Many complementary tools are available and should certainly be used where they

better suit the problem at hand.

4. DSM captures both explicit and implicit knowledge A careful modeling effort not only

uses available documentation but also reveals the information inside the heads of

experts. In this way, DSM may expose underlying assumptions and behaviors that are

hidden from traditional views.

5. Not everyone needs to see the same DSM view DSM models may be usefully tailored to

provide different perspectives for each stakeholder. DSMs may be summarized as

high-level models, expanding areas of specific interest, or annotated to highlight rel­

evant features.

6. Creating DSM models is not as hard as it may seem Many people exposed to DSM for

the first time are taken aback by the concise visual representation of the matrix model.

They assume that "it takes a PhD from MIT to do it." However, this is absolutely not

the case. Most DSM models of the scale we have found to be highly useful can be

created in a few weeks of effort by a modeler with access to experts in the domain of

the model. Some can be developed much more quickly if the data to build the model

are readily available in existing documentation.

7. All models are wrong; some are useful The eminent statistician, George Box, is credited

with this statement about statistical models. However, we believe this to be true of

DSM models as well. All models make assumptions and simplifications. With experi­

ence, you will be able to make the right ones and create useful DSM models that yield

important benefits.

8. DSM facilitates continuous improvement DSM modeling can be a highly effective tool

in the ongoing improvement efforts for products, organizations, and processes. Much

additional benefit can be gained from keeping a DSM as a "living model," where it

serves as a repository for organizational learning and is continuously improved along

with its subject.

9. Exploit the visual power of DSM In almost every DSM application, we have found that

the visual display of DSM can be used to tremendous benefit-perhaps even more

powerfully than the analytical tools that support DSM. We have chosen examples in

this book to demonstrate many different ways to use colors, graphics, labels, and so

forth in DSM models.

10. DSM experts are valuable and in short supply This is by no means intended to be a self­

serving statement. We refer to the internal DSM experts that some companies have

developed. They are able to provide DSM modeling support to projects throughout

the organization.

327 The Future of DSM

Research Is Ongoing

We have been engaged in DSM research for much of our professional careers. DSM

researchers around the world (many of whom have contributed examples to this book)

continue to advance the frontier of DSM knowledge. All of these researchers welcome

the involvement of industrial sponsors as field research sites for direct access to real-world

problems. In fact, DSM is one of the most directly applied areas of research at the inter­

section of engineering and management.

The DSM community has been holding an annual conference since 1999. At this event,

we have presentations of the latest DSM research from around the world. We also see

new DSM applications from industrial practitioners and consultants. Developers of DSM

software tools will usually provide demonstrations of the newest capabilities in modeling

support. We very much welcome new participants to the conference. We do expect attend­

ees to have a basic familiarity with DSM methods in order to get the most out of the

presentations. This book provides that, but tutorials have also been offered before the

conference begins for participants who are new to DSM.

At recent conferences, we have seen the realm of DSM modeling expand from engi­

neering into other domains where a network view of interacting entities is helpful. Some

of the newer areas where DSM is proving to be useful include social networks, geopoliti­

cal problems, healthcare systems, financial systems, and education. This trend is certain to

continue in the coming years as more areas recognize the value of a systems perspective

on their important issues.

DSM researchers are exploring new data collection and model building methods, which

we hope will yield insightful models more easily. We expect DSM researchers to continue

the development of better DSM analysis tools for handling large matrices, sequencing

and clustering methods for specialized situations, and further innovations in visualization

and display of DSM models.

Software and Training

When we began our research in this area, there were no specialized DSM software tools

available. Much of our work, therefore, has utilized standard spreadsheet software (e.g. ,

Microsoft Excel) augmented with macros to facilitate manipulation, graphical elements

to enhance display, and analysis using either standard functions or additional mathemati­

cal software (e.g. , MathWorks MATLAB).

Despite the dearth of DSM software solutions, we decided long ago not to get into the

software business. Our concerns included losing objectivity and credibility as leading

researchers if we were to be personally involved in selling DSM tools. Instead, we have

made our research results publicly available through our publications, including new

methods and algorithms. Many of these results have been incorporated into the DSM

software tools that have emerged in recent years.

328 Chapter 10

Website

Today there are several free and commercial tools for DSM creation, display, and

analysis. Some of the software tools will import or export files with Excel or various

project management software. We will not review each of the tools here, as the field is

still rapidly developing. Although each of the tools has unique strengths and none of the

tools does every kind of DSM analysis and display presented in this book, many of them

have impressive capabilities today. Indeed the tools are improving every year, and they

provide invaluable support for the DSM analyst. All of the tools we are aware of are listed

on the DSM website (see below).

There are several sources of DSM training for new practitioners. Courses and tutorials

are offered at universities where DSM research is underway and by some consultants

specializing in DSM application. Many of these offerings are also listed on the DSM

website.

At this time, the DSM website is the primary location where the international DSM com­

munity archives publications, posts notices of upcoming conferences, and provides links

to training programs, software, and consulting services. The website also contains an online

tutorial with basic information about many of the DSM methods presented in this book.

www.dsmweb.org

Index

Activities
definition, 130
modeling (see Process architecture DSM; MDM)

Activity-based DSM. See Process architecture DSM
Adhesive anchoring systems, DSM example, 277-283
Adjacency matrix, 143-144
Aeronautics and space, DSM examples

MDM (multidomain matrix)
airport security system, 288-293
Pratt & Whitney jet engines, 252-255
U.S. Air Force MAV development, 308-316

organization architecture
McDonnell Douglas F/A-18 ElF program, 99-104
NASA International Space Station, 108--112
Pratt & Whitney jet engine, 105-107

process architecture
Boeing UCAV, 136-138
jet noise, change impact analysis, 201-204
Lockheed Martin F-16 avionics upgrade, 205-208
UCAV (unmanned combat aerial vehicle),

179-186
product architecture

AgustaWestland helicopter change propagation,
58-62

jet engines, 39-42
NASA Mars Pathfinder, 49-53
Pratt & Whitney jet engine, 39-42

Aggregation, coupled activities, 146
Agusta Westland helicopter change propagation,

DSM example, 58...{i2
Ahmad, Naveed, 284
Airport security system, DSM example, 288-293
Alfa Laval AB heat exchanger design, DSM

example, 216-221
Alizon, Fabrice, 74
Analyzing

organization architecture DSM, 88-90
process architecture DSM, 141-148
product architecture DSM, 24-28

Aoyama, Kazuhiro, 294
Arai, Yukari, 196

Ashton, Christine, 117
Atkinson, Lewis, 164
Audi AG, DSM examples

body-in-white development, 300-307
team collaboration, 260-265

Austin, Simon, 69
Automobile industry, examples

MDM (multidomain matrix)
Audi AG, body-in-white development, 300-307
Audi AG, team collaboration, 260-265
BMW, electric sunroof, 271-276
BMW, hybrid vehicle, 247-251

organization architecture, 94-98
General Motors engine development, 94-98

product architecture, 33-38
Ford climate control system, 33-38

Baldwin, Carliss, 54
Bartolomei, Jason E., 266, 308
Beppler, Laurie, 117
Binary DSM, definition, 5
Biogen Idec drug development, DSM example,

174-178
Bioscience facility, University of Melbourne, DSM

example, 155-159
Block diagonalization, 143
Block triangularization. See Block diagonalization
BMW, MDM examples

electric sunroof, 271-276
hybrid vehicle, 247-251

Boeing Company, The, DSM examples, 136-138,
179-186

BP, DSM examples
LNG terminal project, 117-121
organization architecture, 117-127
stakeholder value network, 122-127

Brady, Tim, 49, 108
Browning, Tyson, 99, 179, 205
Building Schools for the Future, DSM example,

69-73
Bullock, Benjamin, 169

330 Index

Caldwell, Nicholas, 201
Cameras, DSM example, 74-78
Change impact analysis for jet noise, DSM example,

201-204
Charts. See Flowcharts; Gantt charts; Organization

charts
Chemistry analyzer, DSM example, 63-68
Chunks. See Clustering
Circuits. See Iterations
Clarkson, John, 58, 201, 284
Climate control system, DSM example, 33-38
Clustering

organization architecture DSM, 80, 88-90
product architecture DSM, 18, 24-28

Clustering analysis, product architecture DSM
cluster size, 27
example, 26
integrating elements, 27
interaction types, 27
manual clustering, 28
multiple clustering solutions, 28
number of clusters, 27
overlapping clusters, 27
overview, 24-25

Cole, Mara, 288
Communication, modeling. See MDM (multidomain

matrix); Organization architecture DSM
Components

definition, 18
modeling (see MDM; Product architecture DSM)

Computers and electronics, DSM examples
L.L. Bean software code base, 227-231
microprocessor development, 160-163
software code base, 227-231
Yanmar, electronic devices development, 196-200

Conditional activities, 134
Coordination mechanisms. See Integrative

mechanisms
Coupled activities

adding activities, 146
aggregation, 146
decomposition, 146
definition, 130
description, 134
finding, 143-145
highlighting, 139-140
resolving, 146--147
tearing, 146--147

CPM (Critical Path Method), 134-135
Crawley, Edward F., 122
Cycles. See Iterations

Danaher Corp. See Dover Motion
Danilovic, Mike, 317
Data collection, process architecture DSM,

138-140
1.5d DSM, 234-236. See also MDM (multidomain

matrix)

Deamer, Jason, 69
Decomposition

coupled activities, 146
hierarchical relationships, 7
process architecture DSM, 138

de Neufville, Richard, 308
Depth-first search algorithm, 144-145
de Weck, Olivier, 43, 122
Diehl, Holger, 271
Digital printing technology, DSM example, 43-48
Digital Research Labs change packaging, DSM

example, 284-287
DMM (domain mapping matrix)

definition, 234
description, 236
mapping between two domains, 237-240
typical applications, 241-242

Domain, definition, 234
Dover Motion precision systems development, DSM

example, 192-195
Drugs. See Health and pharmaceuticals
DSM (design structure matrix)

definition, 2
extending to multiple domains (see MDM)
future of, 325-328
history of, 12-13, 131-132
model types, 1, 11-12 (see also specific types)
for multiple architectures (see MDM)
overview, 2-6
software, 327-328
training, 327-328

Eckert, Claudia, 58
Eigenstructure, 147
Electronics. See Computers and electronics
Elevator design, DSM example, 222-226
Eppinger, Steven

Dover Motion development process, 192
Ford climate control system, 34
General Motors engine development, 94
Intel microprocessor development, 160
Pitney Bowes mailing system, 256
Pratt & Whitney jet engines, 39, 105, 252
Timken technology center, 113

Feedback loops. See Iterations
Feedback representation, 138
Feng, Wen, 122
Fighter plane development, DSM example, 99-104,

205-208
Flowcharts, 134-135
Ford Motor Company, DSM examples

climate control system, 33-38
hood development, 209-215
process architecture, 209-215
product architecture, 33-38

4G mobile phone LSI chip design, DSM example,
294-299

331 Index

Gantt charts, 131, 134, 183, 204
Geitner, David, 169
General Motors engine development, DSM example,

94--98
4G mobile phone LSI chip design, DSM example,

294-299
Gorbea, Carlos, 247
Granularity, product architecture DSM, 23
Graphic representation, process architecture DSM,

138-140

Hastings, Daniel, 308
Health and pharmaceuticals, DSM examples

Biogen Idec drug development, 174--178
Skanska Hospital development process, 187-191

Heat exchanger design, DSM example, 216-221
Helicopter change propagation, DSM example, 58---{)2
Hellenbrand, David, 271
Herfeld, Ulrich, 260
Hierarchical (vertical) relationships, 7--8
Hierarchical DSM, 7-8
HILTI adhesive anchoring systems, DSM example,

277-283
Hinsman, Carl, 227
Hirao, Akihiro, 294
Horizontal (lateral) relationships, 7-8

IC/FBD, definition, 131
Identifying interactions, product architecture DSM, 23
Information flows, modeling. See MDM

(multidomain matrix); Process architecture DSM
Inputs/outputs

matrix display, 5
process architecture DSM, 138

Integrating elements, clustering analysis, 27
Integrative mechanisms, 80, 82
Intel microprocessor development, DSM example,

160-163
Interactions

additional attributes, 140
definition, 18, 80, 130

Interaction strengths
process architecture DSM, 139
product architecture DSM, 23

Interaction types
clustering analysis, product architecture DSM, 27
product architecture DSM, 22-23

International Space Station, DSM example, 108-112
IR/FAD, definition, 131
Iterations

accounting for, 139
causes of, 135
definition, 130

Iwata, Yoshiharu, 294

Jet engines, DSM examples
jet noise, change impact analysis, 201-204
MDM (multidomain matrix), 252-255

organization architecture, 99-107
Pratt & Whitney jet engine, 39-42, 105-107
process architecture, 201-204
product architecture, 39-42

Johnson & Johnson chemistry analyzer, DSM
example, 63-68

Jones Lang LaSalle real estate development, DSM
example, 169-173

Kalmar Industries supplier network, DSM example,
317-324

Keller, Rene, 122
Kodak single-use cameras, DSM example, 74-78
Koga, Tsuyoshi, 294
Kreimeyer, Matthias, 260, 300

Lateral (horizontal) relationships, 7-8
Lin, Jijun, 122
Lindemann, Udo, 271
L.L. Bean software code base, DSM example,

227-231
LNG (liquid natural gas) terminal project, DSM

example, 117-121
Lockheed Martin F-16 avionics upgrade, DSM

example, 205-208
Long feedbacks, 142

MacCormack, Alan, 54
Mailing system, DSM example, 256-259
Manual clustering, 28
Mapping

product architecture DSM, 19
between two domains, 240

Markov chains, 148
Matrix-based modeling tools

DSM, 7-12 (see also DMM; MDM)
pre-DSM, 6

Matrix display
defining characteristics, 6
description, 3-5

Maurer, Maik, 277, 288
MAY development, DSM example, 308-316
McCord, Kent, 94
McDonnell Douglas F/A-18 E/F program, DSM

example, 99-104
MDM (multidomain matrix)

l.5d DSM, 234--236
definition, 234
description, 12, 236
domain, definition, 234
examples

airport security system, 288-293
Audi AG body-in-white development, 300--307
BMW electric sunroof, 271-276
BMW hybrid vehicle, 247-251
Digital Research Labs change packaging, 284-287
4G mobile phone LSI chip design, 294-299
HILT! adhesive anchoring systems, 277-283

332 Index

MDM (multidomain matrix) (cont.)
Kalmar Industries supplier network, 317-324
overview, 245-246
U.S. Air Force MAV development, 308-316

overview, 234--236
sample matrix, 1, 233
two DSM domains special case, 240-241
typical applications, 241-242

Medical applications. See Health and
pharmaceuticals

Meta-heuristics, 148
Microprocessor development, DSM example,

160-163
MLA (Meat & Livestock Australia), DSM example,

164-168
Mobile phone LSI chip design, DSM example,

294-299
Modules. See Clustering
Mozilla software redesign, DSM example, 54--57
Multidomain matrix (MDM). See MDM

(multidomain matrix)

NASA
International Space Station, DSM example, 108-112
Mars Pathfinder, DSM example, 49-53

Neufville, Richard de, 308
Nightingale, Deborah, 49
N-square diagrams, 20-21
Numerical DSM, definition, 5

OBS (organization breakdown structure) diagrams.
See Organization charts

Okubo, Minoru, 196
1.5d DSM, 234-236
Organization, definition, 80
Organizational units, definition, 80
Organization architecture, definition, 7, 80
Organization architecture DSM

analyzing, 88-90
building, 84--88
caveats, 87--88
clustering, 88-90
definition, 80
description, 3, 82--83
examples

BP LNG terminal project, 117-121
BP stakeholder value network, 122-127
General Motors engine development, 94-98
McDonnell Douglas FIA-18 ElF program, 99-104
NASA International Space Station, 108-112
overview, 93
Pratt & Whitney jet engine, 105-107
Timken technology center, 113-116

organization charts, 81
overview, 80--84
structural implications, 85--87
typical applications, 90

Organization breakdown structure (OBS) diagrams.
See Organization charts

Organization charts, 81
Organization DSM. See Organization architecture

DSM
Organization structure DSM. See Organization

architecture DSM
Osborne, Sean, 160
Overlapping clusters, 27

Parallel activities, 134
Parameter-based DSM. See Process architecture

DSM
Partitioning analysis, 24-28
Partitioning DSMs, 5---6. See also Clustering;

Sequencing
Pathfinder, DSM example, 49-5
Pektas, Sule Tasli, 222
People, modeling. See MDM (multidomain matrix);

Organization architecture DSM
People-based DSM. See Organization architecture

DSM
PERT (Project Evaluation and Review Technique)

charts, 134-135
Petermann, Markus, 271
Pharmaceuticals. See Health and pharmaceuticals
Pimmler, Thomas, 34
Pitney Bowes mailing system, DSM example, 256-259
Powers of the adjacency matrix, 143-144
Pratt & Whitney jet engines, DSM examples

MDM (multidomain matrix), 252-255
organization architecture, 105-107
product architecture, 39-42

Process architecture, definition, 7, 130
Process architecture DSM

activity relationships, 133-134
analyzing, 141-145, 147-148
block diagonalization, 143
building, 136-141
coupled activities, 130, 134, 143-147
data collection, 138-140
definition, 130
depth-first search algorithm, 144-145
description, 3
eigenstructure, 147
examples

Alfa Laval AB, heat exchanger design, 216--221
Biogen Idec drug development, 174-178
bioscience facility, University of Melbourne,

155-159
Boeing UCAV, 136-138, 179-186
change impact analysis, jet noise, 201-204
Dover Motion precision systems development,

192-195
elevator design, 222-226
Ford, hood development, 209-215
Intel microprocessor development, 160--163

333 Index

L.L. Bean software code base, 227-231
Lockheed Martin F-16 avionics upgrade, 205-208
MLA, strategy process development, 164--168
overview, 153-154
real estate development, Jones Lang LaSalle,

169-173
Skanska Hospital development process, 187-191
Yanmar, electronic devices development, 196-200

external input/output, 140
feedback representation, 138
graphic representation, 138-140
input/output representation, 138
interaction strength, 139
iterations in, 130, 135, 139
long feedbacks, 142
Markov chains, 148
meta-heuristics, 148
modeling

as-is processes, 139
building models, 139
description, 132
focus, 140
model granularity, 140
verifying models, 139

overview, 131-136
powers of the adjacency matrix, 143-144
process decomposition, 138
sequencing, 138, 141-145
signal flow graphs, 148
simulation, 147, 179-186, 201-204, 209-215
tearing, 146-147
typical applications, 148
visualization guidelines, 140

Process DSM. See Process architecture DSM
Processes

vs. activities, 132-133
definition, 130

Process flow DSM. See Process architecture DSM
Product, definition, 18
Product architecture, definition, 7, 18
Product architecture DSM

analyzing, 24-28
benefits of, 20
boundaries, 22
building, 21-24
caveats, 22-23
clustering analysis

cluster size, 27
example, 26
integrating elements, 27
interaction types, 27
manual clustering, 28
multiple clustering solutions, 28
number of clusters, 27
overlapping clusters, 27
overview, 24--25

criteria for success, 23

definition, 18
description, 2-3
examples

AgustaWestland helicopter change propagation,
58-62

Building Schools for the Future, 69-73
Ford climate control system, 33-38
Johnson & Johnson chemistry analyzer, 63"'{)8
Kodak single-use cameras, 74-78
Mozilla software redesign, 54-57
NASA Mars Pathfinder, 49-53
overview, 33
Pratt & Whitney jet engine, 39-42
Xerox digital printing technology, 43-48

granularity, 23
identifying interactions, 23
interaction strengths, 23
interaction types, 22-23
mappings, 19
N-square diagrams, 20--21
overview, 18-21
partitioning analysis, 24-28
symmetry, 23
typical applications, 28-29
V diagrams, 18-19

Project Evaluation and Review Technique (PERT)
charts, 134-135

Ramjattan, Gordon, 117
Rask, Ingvar, 216
Real estate development, DSM example, 169-173
Rearranging DSMs. See Partitioning DSMs
Relationships between activities, 133-134
Rework. See Iterations
Robinson, Bob, 122
Rowles, Craig, 39, 105, 252
Rusnak, John, 54

Samuel, Delyth, 155
Sangal, Neeraj, 227
Scheurmann, Elke, 155, 164
Schmidt, Robert, III, 69
School, design, DSM example, 69-73
Sequencing

definition, 130
process architecture DSM, 138, 141-145

Sequential activities, 133-134
Shooter, Steven B., 74
Signal flow graphs, 148
Simons, Caroline, 58
Simulation, process architecture DSM, 147
Skanska Hospital development process, DSM

example, 187-191
Smith, Douglas H., 113
Software code base, DSM example, 227-231
Software redesign, DSM example, 54-57
Software tools for DSM, 327-328

334 Index

Sosa, �anuel, 39, 105, 252
Space technology. See Aeronautics and space
Stafford, Judith, 227
Stakeholder value network, DS� example, 122-127
Static architecture models, 11-12
Steele, John, 187
Steward, Don, 12-13, 131-132
Subsystems. See Clustering
Suessmann, Alexander, 277
Suh, Eun Suk, 43
Sullivan, John, 169
Sunnersjii, Staffan, 216
Supplier network, DS� example, 317-324
Symmetry, product architecture DS�, 23
System, definition, 6, 18
System architecture, definition, 6-7

Task-based DS�. See Process architecture DS�
Team-based DS�. See Organization architecture

DS�
Tearing

coupled activities, 146-147
definition, 130

Temporal flow models, 11-12
Timken technology center, DS� example, 113-116
Training for DS�, 327-328
Tripathy, Anshuman, 174, 192, 256

UCAV (unmanned combat aerial vehicle), DS�
examples, 136-138, 179-186

U.S. Air Force �AV development, DS� example,
308-316

U.S. Senate, DS� example, 266-270

Van Eikema Hommes, Oi D., 63
V diagrams, 18-19
Vertical (hierarchical) relationships, 7-8
Visualization guidelines, 140

Waskett, Paul, 187
Weck, Olivier de, 43, 122
Whitney, Daniel E., 209
Wilds, Jennifer, 308
Winroth, �ats, 317
Wynn, David, 201, 284

Xerox digital printing technology, DS� example,
43-48

Xu, Sherman, 117

Yanmar electronic devices development, DS�
example, 196-200

Yassine, Ali A., 209

Zambito, Tony P., 209
Zirkler, Stefanie, 271

